ML13324A135
| ML13324A135 | |
| Person / Time | |
|---|---|
| Site: | San Onofre |
| Issue date: | 08/17/1979 |
| From: | Rood H Office of Nuclear Reactor Regulation |
| To: | Office of Nuclear Reactor Regulation |
| References | |
| NUDOCS 7909120126 | |
| Download: ML13324A135 (52) | |
Text
{{#Wiki_filter:Meeting Summary Docket File J. Knight NRC PDR S. Hanauer Local POR R. Tedesco TIC R. Bosnak NRR Reading S. Pawlicki LWR #2 File F. Schauer E. Case K. Kniel D. Bunch T. Novak D. F. Ross Z. Rosztoczy D. B. Vassallo W. Butler S. Varga V. Benaroya D. Skovholt R. Satterfield W. Gammill V. Moore J. Stolz M. Ernst R. Baer F. Rosa
- 0. Parr R. P. Denise C. Heltemes EP Branch Chief W. Haass G. Chipman R. Houston J. Collins L. Crocker W. Kreger
- 0. Crutchfield G. Lear F. J. Williams B. Youngblood R. J. Mattson L. Hulman R. DeYoung NRC
Participants:
Project Manager - H. Rood M. Kaczmarsky Attorney, ELD - L. Chandler J. Read J. Lee K. Campe IE(3) L. Soffer ACRS(16) A. Brauner L. Rubenstein C. Ferrell o 2,
"IOt EGU1. o UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555 AUG 1 7'1919 DOCKET NO.: 50-361 and 50-362 APPLICANTS: SOUTHERN CALIFORNIA EDISON COMPANY SAN DIEGO GAS AND ELECTRIC COMPANY FACILITY: SAN ONOFRE NUCLEAR GENERATING STATION, UNIT NO. 2 AND 3
SUBJECT:
MEETING TO DISCUSS AAB OPEN ITEMS On June 12, 1979, representatives of the applicants met with the NRC staff in Bethesda, Maryland to discuss the applicant's response to two AAB open issues. These were Open Item AAB-1, explosion hazards (reference Q312.42) and Open Item AAB-2, gas pipeline hazards (reference Q312.36). Attendees at the meeting are given in Enclosure 1. The slides presented at the meeting by the applicants are given in Enclosure 2. The applicants indicated that the material presented at the meeting would be incorporated into the FSAR in Amendment 16, which was scheduled for submittal during the latter part of July, 1979. H. Rood, Project Manager Light Water Reactors Branch No. 2 Division of Project Management
Enclosures:
As stated: cc: See attached sheet ~r f~(VW
Mr. James H. Drake Vice President Southern California Edison Company 2244 Walnut Grove Avenue P. 0. Box 800 Rosemead, California 91770 Mr. B. W. Gilman Senior Vice President - Operations San Diego Gas and Electric Company 101 Ash Street P. 0. Box 1831 San Diego, California 92112 cc: Charles R. Kocher, Esq. James A. Beoletto, Esq. Southern California Edison Company 2244 Walnut Grove Avenue P. 0. Box 800 Rosemead, California 91770 Chickering and Gregory ATTN: David R. Pigott, Esq. Counsel for San Diego Gas & Electric Company and Southern California Edison Company Three Embarcadero Center, 23rd Floor San Francisco, California 94112 Mr. Kenneth E. Carr City Manager City of San Clemente 100 Avenido Presidio San Clemente, California 92672 Alan R. Watts, Esq. Rourke & Woodruff 1055 North Main Street Suite 1020 Santa Ana, California 92701 Lawrence Q. Garcia, Esq. California Public Utilities Commission 5066 State Building San Francisco, California 94102
Mr. James H. Drake Mr. B. W. Gilman cc: Mr. R. W. DeVane, Jr. Combustion Engineering, Inc. 1000 Prospect Hill Road Windsor, Connecticut 06095 Mr. P. Dragolovich Bechtel Power Corporation P. 0. Box 60860, Terminal Annex Los Angeles, California 90060 Mr. Mark Medford Southern California Edison Company 2244 Walnut Grove Avenue P. 0. Box 800 Rosemead, California 91770 Henry Peters San Diego Gas & Electric Company Post Office Box 1831 San Diego, California 92112 Ms. Lyn Harris Hicks Advocate for GJARD 3908 Calle Ariana San Clemente, California 92672 Richard J. Wharton, Esq. 4655 Cass Street, Suite 304 San Diego, California 92109 -Phyllis M. Gallagher, Esq. Suite 220 615 Civic Center Drive West Santa Ana, California 92701 Mr. Robert J. Pate United States Nuclear Regulatory Commission P. 0. Box 4167 San Clemente, California 92672
AUG 1 ENCLOSURE 1 ATTENDEES SAN ONOFRE MEETING ON 6/12/79 NAME ORGANIZATION H. Rood NRC Myron M. Kaczmarsky NRC Jacques Read NRC Kaz. Campe NRC L. Soffer NRC A. Brauner NRC Charles Ferrell NRC Mark Medford SCE Tony Wheeler SAI E.R. Schmidt NUS C. Y. Li NUS R. H. Broadhurst NUS E. A. Hughes SAI
LPG 1-5 AND RAIL CYROGENIC LIQUIDS 1-5 COMPRESSED GASES 1-5 EXPLOSIVES 1-5 AND RAIL o FLAMMABLE LIQUIDS 1-5 re) ~~C4 tit r.3)
Figure 3-1. Simplified Event Troo For Transportation Hzords NO ACCIDENT FIRE Oj ACCIDENT IN 0 EXPLOSION SPILL I ACCIDENT OUTSIDE, OF 0 P(S11A)! NO. OF DRIFTS UTOF O SHIPMENTS VAPOR EXPLOSION IN 0 NSH CLOUD X DRIFTS TOFIRE IN ACCIDENT. DRIFT P(S2/A), X P(MM PSAOTHERWISE' OTHLIRWISE,2 P(83/A): P(S4/A) NO SPILL; -0 X I: POTENTIAL HAZARDi IC(: ~
HIGHWAY OR RAILWAY REGION I EXPLOSIVE OVERPRESSURE IS OF CONCERN REGION II-FLAMMABLE GAS IS OF CONCERN
- Figure 3-3I*
P = NSH P(A/M) N (Si/A) P (E/S)
- Li lI.
1 K= 34 ft/lb 3 (3 PSI PEAK REFLECTED) W= TNT EQUIVALENT USING: ISENTHALPIC FLASH FRACTION 10% ENERGY YIELD SPILL QUANTITY DISTRIBUTION
P NSH KPA/M pZ {(S /A) [I P(F/S) -P(E/S)J P(IGNITION 0') P(E/IALi} j~-a cot
4 P = NSH P(A/M) A P(Si/A) 1 - P(F/S) P(E/S) i=1 M 1-Pi (IGNITION BEFORE O ) =1 P (WIND TOWARD 0 )/ L~
4 NQAIO' OF: LINE: P ()A1er(LOG A-1.38021] { 2-45318 0 t ~-4 .10T F RACTION OF F LAMMABLE PLUMES IGNltED.JP(A):t A= 0.175 2 ; Figure 3-6. -Probability of Flammable Phirne.ignition Versus Plume Area ______at the Time of Ignition
4..O C/7 MEJ
P (A/M) 0.57 x 106 1-5 $200 TRUCK ACCIDENTS MILE x 0,42 $2000 TRUCK ACCIDENTS $250 TRUCK ACCIDENTS 3 x, 106 TANK TRUCK ACCIDENTS/MILE 2.41 x 10-TRUCK ACCIDENTS/MILE 0.13 x 10 1-5 TANK TRUCK ACCIDENTS/MILE tJ
P(S/A) 1977 30,000 ACCIDENTS HAZARDOUS MATERIAL TANK TRUCKS 1000 OVER-THE-ROAD - COMPRESSED LIQUIFIED GAS DIVIDED HIGHWAY 33 NO RAMPS SPILL 2 1973-79 7-SPILLS / 109 $2000 ACCIDENTS P(S/A) = 0.064
P(E/S) = 1/24 = 0,042 P(F/S) = 11/24 = 0-.458 NEITHER E NOR F = 12/24 = 0,500
P(A/M) P(S/A) = P(S/M) 3.7 x 10 ATSF ACCIDENTS/MILE 6 10.9 x 10-NATIONAL ACCIDENTS/MILE x 0152 x 10-6 LOSS OF LADING LPG TANK CAR MILE = 0.051 x 10- 6 ATSF LOSS OF LADING TANK CAR MILE
TYPE I DETONATION 3/163 0.018 II BLEVE 19/163 0,117 III & IV FIRES 58/163 0,356 V NO FIRE OR EXPLI 83/163 .509
COMMODITY DEPENDENT INPUT PARAMETERS Hydrogen Hydrogen Hydrogen Railroad Number of Annual Shipments 200 4-20. 52th Exotosives p A c c id e n ts p er L o ad ed T ru c k M ile 0 1 2 i 6 0: 3 x 0 7 3 o~6 2 2 4t y e n 5 2 1 4 1 1 ~L~ 1 072 4lo i : Ilst. 1GI n c1 t0.132 x 10-0.134 x 10- 6 0.13 x 10-6 .0 2x1-6 .0 06 .0 0 i 6 -g Probability2 Exlso G1ve Spill 04 *0 .064 .10 10.10 .0432 .01 x1 16x Probability fire Given p i n .04 .06 .04 .02.02.02.08 Probability of No Explosion orFiro .500 5 5 .5 .5 .500 .573 P'robability of B0LEVE .0.125 ..0 -.142 Vapor Cloud Probability of Ignition
- 117 -
8-Fiue Vapor Cloud Probability lire Given Ignition .895 1.0 9 S .8F.18 4 Vapor Cloud Probability Explosion Given Ignition .105 0.0 .95 .05 .85 .405 1.aximumcShipment Quantity I0,00 gal. 9.,000 gal. 850 gal. 16.45 ft3ges it4.00 ft-t 30,000 20.548 lbs. 0t 3 50000f00 Quantity of Vapor - Lbs. 1465 3185 502 9.20 1.02 -9 Equivalent Wt. of TN.F2 - Lbs. 15.877 3321 1555
- 2.
6408 261.2 -47,g34 Lower Flammability Limit - % .12.1 5.0.0 4.0 49 2. 2.1 Spill or Shoipment Size Distribution Table0000e 4-10
- 1. Probability of significant explosion per exploive train mile
- 2. For maximum quantity spilled S1 8
33116I L o w e
- r.
F. mm a b_ L im it 26.24 7 6 3
- 2.
4 0 Spil or ~pmetSze Dstriutio
- 2.
Table -5 10% 100
OVERPRESSURE AND FLAMMABLE VAPOR CLOUD INPUT PARAMETERS Stability Class G Wind Speed 1.5 m/sec at 10 m height Initial Dilution Air/Gas = 3/1 Minimum Cloud Height 1 m. Ambient Temperature 78oF Temperature of the Gas Saturation Temperature at 14.7 psia for Liquified Gas Ambient Temperature for Compressed Gas Wind Direction Frequency FSAR Table 2.3-22 Explosive Equivalent Yield 10% Based on Energy Region II Radius 370 feet Peak Reflected Overpressure 3 psi NUS CORPORATION
1 19AU Overpressure Greater Than 3 psi Length of Route in Region I 0.297 0.505 (for maximum spill quantity) - miles -6 -6 Annual Probability due to Explosions 0.23 x 10-6 0.058 x 10. at Accident Site Total Length of Route Which Can 2.16 3.07 Affect Plant (for maximum spill quantity) - Miles Annual Probability Due to Drifting 0.28 x 10 0.17 x 10 Cloud Explosions Total Annual Probability of 0.51 x 10-6 0.23 x 10-6 Exceeding 3 psi Flammable Vapor Cloud At Plant Annual Probability of Flammable 0.089 x 106 0.035 x 10-6 Cloud At Plant
SENSITIVITY STUDY - LPG ON 1-5 Probability of Flammable Vapor Cloud Being Probability of Exceeding at the Plant 3 psi - per year -per year 6 6 Basic Case* 0.51 x 10~ 0.089 x 10 Initial Dilution - 1/1 0.51 x 10-0.089 x 10 Vertical Dispersion - 0.51 x 10-6 0.092 x 106 0.5 Class G Drifting Vapor Cloud 0.76 x 106 0.089 x 10. Explosion Probability - 0.2 Flash Fraction - 0.5 0.62 x 10-6 0.099 x 10-6 Ignition Probability - 0A.9 x 10-6 0.36 x 10 10% per 20 meters The parameters for basic case are Initial Dilution - 3/1, Vertical Dispersion Class G r, Drifting Vapor Cloud Explosion Probability -0.1, Flash Fraction -0.352, Ignition Probability - curve shown in figure 4-6.
WAU I7 Probaoility of Flammable Probability of Exceeding Vapor Cloud Being 3psi at the Plant -10 per year per year LPG - Highway 0.51 .089 LPG - Rail 0.23 .035 LNG .010 Liquid Hydrogen 0.001 .002 Compressed Hydrogen - 1 0.002 .012 Compressed Hydrogen - 2 0.0008 .001 Acetylene 0.0004 .002 Explosives - Highway 0.020 Explosives - Rail 0.005 TOTAL 0.77 0.15
AUG 1 7 1979 CONSERVATISMS CRITERIA CONSERVATIVE RELATIVE TO 10CFR100 No MASSIVE STRUCTURES ON 1-5 TO CAUSE GROSS TANK FAILURE ALL 1-5 ACCIDENTS ASSUMED AT NEAR EDGE OF RIGHT-OF-WAY CHANGES IN TANK CARS TO REDUCE PUNCTURE 50-90% INSTANTANEOUS PUFF CONSERVATIVE DISPERSION CONSIDERS GRAVITY FOLLOWED BY TURBULENCE ENTIRE QUANTITY IN PUFF UTILIZED IN OVERPRESSURE ANALYSIS EXPLOSIVE YIELD NEAR MAXIMUM PLANT AREA POTENTIALLY AFFECTED BY OVERPRESSURE AND FLAMMABLE CLOUD IS CONSERVATIVE
Q312.36 PROVIDE PRA FOR 12 INCH NATURAL GAS PIPELINE I STATISTICAL RUPTURE DATA t METEOROLOGICAL CONDITIONS
RESPONSE
LIKELIHOOD OF PLANT EFFECT DUE TO CONCENTRATION OF GAS AT AIR INTAKE IS EXCEEDINGLY SMALL <<e10-6
BACKGROUND DATA
- NATURAL GAS PIPELINE --
450 FT. EAST OF STRUCTURES I OWNED BY SOUTHERN CALIFORNIA GAS COMPANY I CONCENTRATION REQUIRED FOR INTAKE EFFECTS -- 4.4% I NATURAL GAS COMPOSITION
- 91% METHANE
- 5% ETHANE 8 4% MISCELLANEOUS I PIPE BURIED 30 INCHES
AUG 1 71 TWO PHASES OF RELEASE DUE TO RUPTURE I INITIAL HIGH BLOWDOWN 8 SIGNIFICANT TURBULENCE 1 UPWARD VELOCITY I SHORT DURATION (5 - 10 SEC) I STEADY STATE RELEASE I REDUCED TURBULENCE I MODEST UPWARD VELOCITY I LONG DURATION
AMG 17 17 ANALYTICAL APPROACH I COMPUTE TRANSIENT FLOW FROM BREAK USING ONE DIMENSIONAL UNSTEADY GASDYNAMICS I ALLOW GAS TO EXPAND TO ATMOSPHERIC PRESSURE AFTER LEAVING PIPE I MODEL PLUME DEVELOPMENT USING INTEGRAL METHOD BASED ON STACK PLUME METHOD I PREDICT DOWNWARD DISPLACEMENT OF STREAMLINES OVER BLUFF USING ELECTRICAL ANALOG METHOD 8 DISPLACE ISO-CONCENTRATION LINES DOWNWARD ACCORDING TO STREAMLINE DISPLACEMENT
TRANSIENT BREAKFLOW BREAK DECOMPRESSION WAVE M-1 V; 0 (SONIC) I DECOMPRESSION WAVE dP = -pcdV (LANDAU & LIFSHITZ, FLUID MECHANICS) j FLOW BETWEEN WAVE AND EXIT FANNO FRICTION (SHAPIRO, COMPRESSIBLE FLUID FLOW) I STEADY FLOW ISOTHERMAL FLOW (CRANE HANDBOOK)
500 FIGURE 1. TRANSIENT FLOW RATE AS A FUNCTION OF TIME FOLLOWING A RUPTURE 400 300 200 100 37 LBM/SEC STEADY STATE 8 0 0 10 20 30 40 TIME (SECONDS)
AUG1 7 gg EXPANSION AT SOURCE 2 GAS EXPANDS TO ATMOSPHERIC PRESSURE WITH VELOCITY EQUAL TO WIND SPEED I REPLACED WITH EQUIVALENT GAUSSIAN PROFILE
PLUME ANALYSIS I INTEGRAL SMOKESTACK METHOD OF 0OMS I COMPUTES PLUME TRAJECTORY IN UNIFORM HORIZONTAL FLOWFIELD I USES CONSERVATION OF MASS, MOMENTUM, AND ENERGY I VELOCITY AND CONCENTRATION PROFILES OF GAUSSIAN SHAPE I ASSUMES CONTIGUOUS PLUME
Plume "Edge" : r=b/i' M Gaussian, e.g., u (r, s) -U Cos 6 U p .a a a 16U
- u*4(s II~~~]n XW*X
!O-0 0 200 00 600 800 DISTANCE (FT.) FIGURE 2. SCHEMATIC OF PHYSICAL SITUATION AND PLUME COORDINATES*.
PLUME MODEL EQUATIONS I ENTRAINMENT d b% /fA on 21r dr[ 2 bp a l ~ u ()I + a 27aJsi3 efoosel I CONSERVATION OF SPECIES d /cu21rr dz m I CONSERVATION OF X-MOMENTUM
- b.
95P2 cos$+21:r di Zb pa Uaaliu()~m aOn 8 + Cdvbp5 %5 2Isin3t
SCONSERVATION OF Y-NOMNTUN d 02 !a~n 2.: g(p,-P)2rdz C Cd ibp aua2 sia2e Cosa. I CONSERVATION OF ENERGY f , 1cp ra 0 ~ 2.b (l 0 ap,a c o o.aa lu() I GAUSSIAN PROFILES u(r,s) -ua~cOU I + u(a) 0-* /b2 + *(,) -r 9a),2 bs) c(Z-08) - C'(B) 0-l2/lb2
g1:1 STREAMLINE DISPLACEMENT I FLOW SEPARATES AT BLUFF DIFFUSER DATA - SEPARATION FOR ANGLES 220 280 IN OUR CASE 1 FLOW REATTACHES AT UPPER EDGE OF BUILDING ASSUMED SEPARATION STREAMLINE SEPARATED EGION I FLOW ABOVE SEPARATION REGION PREDICTED WITH ELECTRICAL ANALOG METHOD
300 2 8 0 2 4 0 2 2.0 2 0 0 -12 3-U- I 8 0 Dislace tent 160 1 4 0 a 0 100 B 60o 2 0 2 A A:R INAKE 40-PIPELINE 0 100 200
- 300 4 00 500 600 70 8u0 900 DISTANCE (FT Figure 3. Plume Displacement.
AUG 1 7 197 t00 c 80 Jet Flow __Hysterests Zone s oet I Fully Developed Two -Dimensional Stall 40 b 30 Large Transitory Stall 20 5Line of Appreciable Stall 10 8 6 4 2 No Appreciable Stall 1.5 L5 2 3 4 6 8 10 15 20 30 40 60 Diffuser flow regimes as established by Fox and.Kline (1962] for two-dimen sional diffusers.
AUG 7~~ 100 DROP AT DROP AT CONTROL ROOM 50 PURGE INLET 0 50 100 150 200 HEIGHT AT BLUFF
AUG 17 TO CALCULATE RISK RISK = FREQUENCY CONSEQUENCES FREQUENCY = F (PIPE RUPTURE)
- P.(UPWARD VELOCITY)
- P (WIND DIRECTION)
P (WIND SPEED) P (STABILITY)
- P (4.4% CONCENTRATION AT AIR INTAKE WITH INTAKE OPEN)
F (PIPE RUPTURE) = 3.3 x 10-4 /YEAR-MILE INITIAL CASE: SHORTEST DISTANCE TO PLANT I HIGH INITIAL FLOW RATE
- STEADY STATE FLOW RATE I VARIOUS WIND SPEEDS
5 0 0-*- Pl i 60 Plume-edge 560 as 0 Lower flannability limit 12 0 400 Wind Speed-* O*Ft (/5 380 5 0 0 Plm etrin a 0. 280 260 Z ER( BLUFF EFFECT____ --2-0---- Upper ____lim O H 220 200 160 140 120 100 so u 4 0 0 ARIG lC 3-20 3 I0 EL/ -100 0 100 200 300 '.00 ho0 ~ 0U0 lUo 000U Plume Trajectory -- DISTANCE (FT.) Wind Speed=0.5m/s, Steady State Break Flow
6 0 0 560 I II-Plume centerline 5 4 0 5 2 0 Plume edge s 0 0
- Upper flammability limit Lower flannubility limit
. £ 0 Wind Speed 3 M/I e.1.0 1.20 34 0 3~I*NSUF FICIE NT TLIAVEL DISTANCE trJ 3 2 0 3 0 0 30 0 H260 H 220 100 2 0e 100 60 2 0 20 -. 0 IPELINE 0 100 200 300 400 500 600 700 00 9 00 Plume Trajectory -- DISTANCE (FT.) Winrd So ed= 3 m/s, Steady State Break Flow
6 0 0 560 -* - Plume centerline 5 4 0 2 0 Plume edge 0 0 Upper flaubility limit 0 Lower flanvnability limit 4a 0 lind Speed *6..5M/s '.20 4 4 0 380 INS FFIC ENT RAVEL'DISTANC_ 360--------------------------- 340 300 H 0260 220 100 140 q 26 0. 2 o 0 N C 200 60 10 20 3000 0 0 0 0 1 0 0 _e 6 0 .0 -l 0 0 0 1 00. 2 00 3 00 4 00 5 00 0 0 7 00 a800 90 0 Plume Trajectory -- DISTANCE (FT.) Wi nr n= F n St=)arlv Stlte Brek Flow
600 500 Plume centerline 0-Plume edge 520 5 0 0 Upper flannability limit -**-_Lower flannability limtt 4 6 0 dind Speed* 10MM s4 4 0 4o 2 0 4I 0 0 3 0 0 3 6 0 I N UFFI IENT TRAV L DISTANCE [300 3 280 260 2 00 220
- 1. a 0 11.0 1.?0 100 0
6 0 e 20 .0u PPELINE -1 0 0 s re e l t st II 1 0 100 200 300 00 b 0 0O 1.00 100 0 0 9 0 Plume Trajectory -- DISTANCE (FT.) Wind Speed=10m/s, Steady State Break Flow
600 tU T, e. 50 I 56.0 520
- 0- Plume centerline Plume edge 4o 0 0
- 0** Upper flaarnability limit 4o 6 0 h* *-
Lower flanability limit 4 2 0 iind Speed.b.5t 4s 0 0 380j-340I ~300 280-- I'H 260 0 3 20 2 2 0 .2 2 00 100 100 1_- 160 1 00 2 iur 6. PlA Trjctr IA DITNE F. 0 2 0 -4 0 26 0 AR INT AK so "1 0 0 0 10 0 2 00 3 00 Is00 500 000 0 0 00 10 F igure 6. Plumne Trajecto ry -- DISTANCE (FT.) Wind Speed = 0.5m/s, Initial.Break Flow
6 0 0 580 Plume centerline 20 Plume edge 5 0 0 Upper flamnability limit Lower flamnability limit. to G 14tind $peed
- m/s If 2 0 3 2 0 3 0 0 2 8 0 2 6 0 2 2 0 3 0 0 2 1 0
-n 3.0
- 30.
Z -2 o UlA H 20 10 003020150400008 0 1 220 G10 110 00 -20J 0 1 00 2 00' 3 00 40 0 5 00 0 0 70.0 a800 0 a Figure 7, Plume Trajectory -~ DISTANCE (FT.) Wind Speed=3m/s, Initial Break Flow
500 560 0 -I~- 0 Plume centerline .5 2 0 Plume edge. 5 0 0 Upper flanubility limit 4 0 0 Lower flamability limit to. 0 Wind Speed
- 6.5
/s 420 300 30 0 3 6 0... 300 ~300 S260 6,0 2 4,0 1 a0 4 0 220 0 0 160 40 2.0 M K 100. 60 120 12 0 V -4 0 00 -20o 0 100 200 100 400 500 600 7100 000 9 0 Figure 8. Plume Trajectory -- DISTANCE (FT.) Wind Speed=6.5m/s, Initial Break Flow
60 0 Plure centerline 540 Plume edge S2 0 5-0 0..--
- .Upper flamability limit Lower flamability limit 4 0 0 46 0 Wind Speed
- I(M/S 41 00 320 360 300 S260 220 100 160 120 100 60 Ia0 40 It 20 6 0 PI2 INS:k NTK
-t0 0 100 200 300 400 500 600 700 800 9 0 Figure 9. Plume Trajectory -- DISTANCE (FT.) Wind Speed=10m/s, Initial Break Flow -4a 0
INITIAL RELEASE RATE: -P LA s C URm P MG H:~ T I~SPACE"1E'T
- 3LAr; SF~T:. PURG WIND SPEED
- BLUFF AT..CRI AT PURGE (VERT I CAL).
5 M/sc10 NEGL. NGL. LARGE 3:M/SEc 100' 58' 55' 550' 6.5 M/SEC 5' 81 80 200' 10 M/SEC 0 82' 82' -45' STEADY STATE RELEASE: HT. AT DISPLACEMENT DISPLACEMENT DIST. TO DOES NOT
- WIND SPEED BLUFF AT CRI AT PURGE 4.4%
REA .5 M/SEC NA X 3 M/SEC 78' 68' 65 200' X 6.5 M/SEC 10 82' 80' 350' X 10 M/SEC O' 83' 83' 500' X
CONSERVATISM DEMONSTRATION: F (PIPE RUPTURE1 3, 3 XiQ7YEAR-MILE FREQUE NCY OF 1NTERACTON = 3.3x10 4
- AC-mUPA PT=70 P (WIND DIRECTION P (WIND SPEEDI ITO INTAKE CjNTKE OPEN).
L (CRITICAL PIPE) SAssuMING WIND SPEED >10 M/SEC
- AssuMING No VERTICAL DISPLACEMENT
- USING 1000' TRAVEL TO 4.4% CONC. 2 10 M/SEC
- LENGTH OF CRITICAL PIPE = 1400'
PIPE SEGMENT P qIND % P CINTER-P( P) (200'/SEGMENT) WIND DIR. M/SEC SECTION)_ 3 NNE .01 .36 3.6 x 105 4 N.02 .6 72 x 10 5 NE .02 .36 7.2 x 10-5 6 ENE 0 .36 0 7 ENE 0 .36 0 TOTAL = 118 x 104 (OVER 600' OF PIPE) F (PIPE RUPTURE) = 3.3 x 10-4 /YEAR-MILE F (INTERACTION) =
- 3. x i0 1.8 x 10j4 600]
6YEAR-MILE [= =.6.75 x 10-1 /YEAR}}