ML13316A547

From kanterella
Jump to navigation Jump to search
Reactor Vessel Fluence Calculation,Pts Evaluation & Flux Reduction Factor Curves
ML13316A547
Person / Time
Site: San Onofre Southern California Edison icon.png
Issue date: 02/28/1990
From: Shaun Anderson, Chicots J, Ray N
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML13316A548 List:
References
MT-SMART-067(90, MT-SMART-067(90), MT-SMART-67(90, MT-SMART-67(90), NUDOCS 9006200551
Download: ML13316A547 (75)


Text

MT-SMART-067( 90)

SAN ONOFRE UNIT 1 REACTOR VESSEL FLUENCE CALCULATION, PTS EVALUATION AND FLUX REDUCTION FACTOR CURVES N. K. Ray S. L. Anderson J. M. Chicots February 1990 Approved by:

dv I. A. Meyer, Manager Structural Materials & Reliability Technology Work performed under shop order SPRP-108 WESTINGHOUSE ELECTRIC CORPORATION Nuclear and Advanced Technology Division P.O. Box 2728 Pittsburgh, Pennsylvania 15230-2728

4171s/03200:10 9006200551 9006 1 PDR ADOCK 05000206

TABLE OF CONTENTS Section Title

1.0 INTRODUCTION

2.0 PLANT SPECIFIC FLUENCE CALCULATION 2.1 Method of Analysis 2.2 Results of Analysis 3.0 PRESSURIZED THERMAL SHOCK 3.1 Plant Specific PTS evaluation 4.0 FLUX REDUCTION GOAL 4.1 Pressurized Thermal Shock 4.2 Limiting Fluence

5.0 CONCLUSION

6.0 REFERENCES

4178s/032990:10*

LIST OF TABLES Table Title Page 2-1 Radial Mesh Line Dimensions for the R, Theta Model 2-6 of the San Onofre Unit 1 Reactor 2-2 Azimuthal Mesh Line Dimensions for the R, Theta Model 2-7 of the San Onofre Unit 1 Reactor 2-3 Maximum Fast Neutron Fluence (E > 1.0 MeV) as a 2-8 Function of Full Power Operating Time - With Thermal Shield 2-4 Maximum Fast Neutron Fluence.(E > 1.0 MeV) as a Function 2-9 of Full Power Operating Time - Without Thermal Shield 2-5 Maximum Fast Neutron (E > 1.0 MeV) Flux and EOC 10 Fluence 2-10 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Cycle 1-10 Average Power Distribution - With Thermal Shield) 2-6 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-11 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 1 Projection with Thermal Shield) 2-7 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-12 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 2 Projection with Thermal Shield) 4178/0320: 10

LIST OF TABLES (continued)

Table Title Page 2-8 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-13 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 3 Projection with Thermal Shield) 2-9 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-14 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 4 Projection with Thermal Shield) 2-10 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-15 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance'Capsules (Based on Case 1 Projection without Thermal Shield) 2-11 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-16 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 2 Projection without Thermal Shield) 2-12 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-17 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 3 Projection without Thermal Shield) 2-13 Maximum End of License Fast Neutron (E > 1.0 MeV) Fluence 2-18 as a Function of Azimuthal Angle Within the Pressure Vessel and Surveillance Capsules (Based on Case 4 Projection without Thermal Shield) 2-14 Maximum Fast Neutron Flux (E > 1.0 MeV) as a Function 2-19 of Radius at an Azimuthal Angle of 0.0 Degrees-with Thermal Shield) 41e76o/032 o:

10 iii

LIST OF TABLES (continued)

Table Title Page 3-1 San Onofre Unit 1 Reactor Vessel 3-3 Beltline Region Material Toughness Data (Unirradiated) 3-2 Fluence Values for the Use of RTPTS 3-5 Evaluation (With Thermal Shield) 3-3 Fluence Values for the Use of RTPTS 3-6 Evaluation (Without Thermal Shield) 3-4 San Onofre Unit 1 RTPTS Evaluations -

3-7 With Thermal Shield 3-5 San Onofre Unit 1 RTPTS Evaluations -

3-9 Without Thermal Shield 5-1 Summary of Flux Reduction Factors 5-2 4178s/032900:10 iv

LIST OF FIGURES Figure Title Page 2-1 Mesh Line Schematic Used in the R, Theta Analysis of 2-20 San Onofre Unit 1 2-2 Relative Axial Distribution of Fast Neutron (E > 1.0 MeV) 2-21 Fluence at the Inner Radius of the San Onofre Unit 1 Reactor Vessel 2-3 Fast Neutron (E > 1.0 MeV) Flux as a Function of 2-22 Azimuthal Angle Within the Pressure Vessel Cycle 1-10 Average Power Distribution With Thermal Shield 2-4 Fast Neutron (E > 1.0 MeV) Flux as a Function of 2-23 Azimuthal Angle Within the Pressure Vessel - Case 1 and Case 4 Condition for Projection - With Thermal Shield 2-5 Fast Neutron (E > 1.0 MeV) Flux as a Function of 2-24 Azimuthal Angle Within the Pressure Vessel - Case 1 and Case 4 Condition for Projection - Without Thermal Shield 2-6 Fast Neutron (E > 1.0 MeV) Fluence Projections as a 2-25 Function of Azimuthal Angle at the inner radius of the San Onofre Unit 1 Pressure Vessel - With Thermal Shield 2-7 Fast Neutron (E > 1.0 MeV) Fluence Projections as 2-26 a Function of Azimuthal Angle at the Inner Radius of the San Onofre Unit 1 Pressure Vessel - Without Thermal Shield 2-8 Fast Neutron (E > 1.0 MeV) Flux as a Function of Radius 2-27 at an Azimuthal Angle of 0.0 Degrees 4178s/032990:1o v

LIST OF FIGURES (Cont'd)

Figure Title Page 3-1.

Identification and Location of Beltline Region Material 3-4 of San Onofre Unit 1 Reactor Vessel 3-2 Fluence Versus RTPTS Using Proposed PTS Rule 3-11 4-1 Case 1 - Flux Reduction Factor Curve for San Onofre 4-3 Unit 1 With Thermal Shield (Limiting Fluence 1.0E20) 4-2 Case 2 - Flux Reduction Factor Curve for San Onofre 4-4 Unit 1 With Thermal Shield (Limiting Fluence 1.0E20) 4-3 Case 3 - Flux Reduction Factor Curve for San Onofre 4-5.

Unit 1 With Thermal Shield (Limiting Fluence 1.0E20) 4-4 Case 4 - Flux Reduction Factor Curve for San Onofre 4-6 Unit 1 With Thermal Shield (Limiting Fluence 1.0E20) 4-5 Case 1 - Flux Reduction Factor Curve for San Onofre 4-7 Unit 1 With Thermal Shield (Limiting Fluence 1.2E20) 4-6 Case 2 - Flux Reduction Factor Curve for San Onofre 4-8 Unit 1 With Thermal Shield (Limiting Fluence 1.2E20) 4-7 Case 3 - Flux Reduction Factor Curve for San Onofre 4-9 Unit 1 With Thermal Shield (Limiting Fluence 1.2E20) 4-8 Case 4 - Flux Reduction Factor Curve for San Onofre 4-10 Unit 1 With Thermal Shield (Limiting Fluence 1.2E20) 4-9 Case 1 - Flux Reduction Factor Curve for San Onofre 4-11 Unit 1 With Thermal Shield (Limiting Fluence 1.5E20) 4178s/032990:10 Vi

LIST OF FIGURES (Cont'd)

Figure Title Pa 4-10 Case 2 -

Flux Reduction Factor Curve for San Onofre 4-12 Unit 1 With Thermal Shield (Limiting Fluence 1.5E20) 4-11 Case 3 - Flux Reduction Factor Curve for San Onofre 4-13 Unit 1 With Thermal Shield (Limiting Fluence 1.5E20) 4-12 Case 4 - Flux Reduction Factor Curve for San Onofre 4-14 Unit 1 With Thermal Shield (Limiting Fluence 1.5E20) 4-13 Case 1 - Flux Reduction Factor Curve for San Onofre 4-15 Unit 1 Without Thermal Shield (Limiting Fluence 1.0E20) 4-14 Case 2 & 3 - Flux Reduction Factor Curve for San Onofre 4-16 Unit 1 Without Thermal Shield (Limiting Fluence 1.0E20) 4-15 Case 4 - Flux Reduction Factor Curve for San Onofre 4-17 Unit 1 Without Therma-l Shield (Limiting Fluence 1.0E20) 4-16 Case 1 - Flux Reduction Factor Curve for San Onofre 4-18 Unit 1 Without Thermal Shield (Limiting Fluence 1.2E20) 4-17 Case 2 & 3 - Flux Reduction Factor Curve for San Onofre 4-19 Unit 1 Without Thermal Shield (Limiting Fluence 1.2E20) 4-18 Case 4 - Flux Reduction Factor Curve for San Onofre 4-20 Unit 1 Without Thermal Shield (Limiting Fluence 1.2E20) 4-19 Case 1 -

Flux Reduction Factor Curve for San Onofre 4-21 Unit 1 Without Thermal Shield (Limiting Fluence 1.5E20) 4178s/032900: 10 vii

LIST OF FIGURES (Cont'd)

Figure Title Page 4-20 Case 2 & 3 -

Flux Reduction Factor Curve for San Onofre 4-22 Unit 1 Without Thermal Shield (Limiting Fluence 1.5E20) 4-21 Case 4 - Flux Reduction Factor Curve for San Onofre 4-23 Unit 1 Without Thermal Shield (Limiting Fluence 1.5E20) 4178s/032990:10 viii

1.0 INTRODUCTION

Neutron embrittlement represents the most significant damage mechanism that could potentially limit the lifetime of the reactor vessel.

This report provides plant specific fluence calculations, Reference Temperature evaluations using proposed Pressurized Thermal Shock IPTS) (1]

and Regulatory Guide 1.99, Revision 2 [2] rules and flux reduction factor curves.

A plant specific fluence evaluation was performed to project the neutron fluence for each of four cases for the San Onofre Unit 1 reactor vessel core power distribution:

Case 1) Cycle 1 through 10 average power distribution with 553*F downcomer temperature.

Case 2) Cycle 9 power distribution with 553*F downcomer temperature.

Case 3) Cycle 1 through 10 average power distribution with 528*F downcomer temperature.0 Case 4) Cycle 9 power distribution with 528*F downcomer temperature.

The pressurized thermal shock (PTS] evaluation of the San Onofre Unit 1 reactor vessel was based on the proposed PTS rule. RTPTS vs. fluence and RTNOT vs. fluence plots were developed, and these plots are a useful tool in performing a PTS evaluation.

Flux reduction factor curves were developed based on the limiting fluence and i) with thermal shield, ii) without thermal shield, iii) with the four different cases of core power distribution along with downcomer temperatures and iv) at four estimates of vessel life.

4178s/03200 10 1-1

2.0 PLANT SPECIFIC FLUENCE CALCULATION This section describes the results of a series of discrete ordinates Sn transport calculations performed for the San Onofre Unit I reactor. These calculations provide best estimate current (EOC 10) fast fluence (E > 1.0 MeV) exposure of the reactor pressure vessel and surveillance capsules; and projections of future exposure both with and without the thermal shield in place. In performing these calculations, plant specific core power distributions for the first ten operating fuel cycles were used to develop the neutron source distribution in the reactor core.

The results of the transport calculations based on these calculated neutron source distributions were then integrated with neutron dosimetry measurements from the first three surveillance capsules withdrawn from the reactor to establish an overall "best estimate" of the current and future exposure of the pressure vessel.

As will be discussed in subsequent sections these exposure evaluations also accounted for variations in core power level and coolant temperature that have occurred during the plant lifetime.

2.1 Method of Analysis In performing the fast neutron evaluations for the San Onofre Unit 1 reactor, two sets of transport calculations were carried out. The first set of computations consisted of two-dimensional R, Theta calculations using a core power distribution representative of the first ten cycles of operation. This calculation was performed with and without the thermal shield included in the geometry. The results of these calculations, when coupled with capsule dosimetry, were used to establish the current fast fluence exposure of the reactor vessel as well as to determine the increase in the fast neutron flux that would occur if the thermal shield were to be removed at the end of the tenth fuel cycle (EOC 10).

These two-dimensional calculations were carried out using the DOT discrete ordinates code (3] and the SAILOR cross-section library [4].

The SAILOR library is a 47 group ENDFB-IV based data set produced specifically for light 4178s/0329n0o 2-1

water reactor applications. In the current analysis, anisotropic scattering was treated with a P3 expansion of the scattering cross-section and the angular discretization was modeled with an S8 order of angular quadrature.

Each of these calculations was normalized to a core power level of 1347 MWt.

The mesh.line schematic describing the geometry modeled in the R, Theta calculations is depicted in figure 2.1.

The radial and azimuthal mesh line dimensions corresponding to this geometry are listed in Tables 2.1 and 2.2, respectively. In regard to this model, it should be noted that the San Onofre reactor vessel surveillance program includes eight irradiation capsules positioned at the following relative azimuthal angles: 11.32 deg (A and D),

18.68 deg (E), 28.73 deg (C and F), 32.90 deg (H), and 41.25 deg (B and G).

To date both capsules have been withdrawn from the 11.32 degree position and Capsule F has been removed from the 28.73 degree location. In developing the analytical model for this analysis, therefore, capsules positioned at 11.32, 28.73, and 41.25 degrees were rotated into the mockup octant such that direct analytical/measurement comparisons could be made for capsules that have already been withdrawn and, by interpolation, lead factors could be estimated for capsules not included in the model.

The core power distribution used in the two-dimensional analyses was developed from the.cycle specific designs for the first ten cycles of operation. A composite spatial distribution was created by burnup weighing each of the individual sets of cycle specific data to provide a neutron source representative of the average of cycles 1 through 10. A similar processing procedure was used to create a time averaged axial power distribution for use in developing the axial variation of neutron exposure in the beltline region of the pressure vessel.

Having the analytical results representative of the current exposure of the pressure vessel, four scenarios were evaluated to establish the projection of vessel exposure for future operation.

These four scenarios consisted of two potential core power distributions and two reactor inlet water temperatures.

The four cases investigated may be summarized as follows:

4178s/032990:10 2-2

CASE 1 -

Operation with the cycle 1-10 average power distribution and an inlet temperature of 553*F.

CASE 2 -

Operation with the cycle 9 average power distribution and an inlet temperature of 553*F.

CASE 3 -

Operation with the cycle 1-10 average power distribution and an inlet temperature of 528*F.

CASE 4 -

Operation with the cycle 9 average power distribution and an inlet temperature of 528*F.

Each of these operating conditions was investigated with and without the thermal shield.

In order to obtain data to evaluate these four scenarios, a second set of transport calculations using the ANISN one-dimensional Sn transport code (5]

was carried out.

These one-dimensional computations utilized a cylindrical geometry representative of the 0 degree azimuth in the San Onofre Unit 1 reactor. The 0 degree angle is coincident with the location of the maximum exposure of the pressure vessel, and, likewise, with the location of the limiting plate material.

As with the two-dimensional analysis, these ANISN computations utilized a P3 cross-section set from the SAILOR library and an S8 order of angular quadrature. The radial source distribution within the reactor core was taken from the DOT calculations along the 0 degree radial traverse. The ANISN calculations were completed for varying downcomer temperatures both with and without the thermal shield. Fast neutron flux ratios from these one-dimensional calculations were used to adjust the previously described two-dimensional results for varying temperature conditions.

Rather than directly using the analytically based exposures described in the preceding paragraphs, all exposure projections were adjusted by an additional normalization factor of 1.18 to account for biases observed between plant specific calculations and the results of neutron dosimetry from the first three surveillance capsules removed from the San Onofre Unit 1 reactor.

417as/032ss:1o 2-3

The factor of 1.18 was derived by taking the average of the measurement to calculation ratios (M/C) as follows.

M/C CAPSULE A 1.06 CAPSULE D 1.17 CAPSULE F 1.32 AVERAGE 1.18 This normalization procedure is consistent with the Westinghouse exposure evaluation methodology and assures that any biases in the methodology or random variations in reactor operating parameters have been accounted for in the determination of both the current best estimate exposure of the pressure vessel and of the projected future exposure of the vessel.

2.2 Results of Analysis Pertinent results form the transport calculations described previously are summarized in Tables 2-3 through 2-14 and Figures 2-2 through 2-8. In Tables 2-3 and 2-4 the maximum fast neutron fluence (E > 1.0 MeV) is presented as a function of full power operating for each of the four projection scenarios.

Data in Table 2-3 pertains to future operation with the thermal shield in place, whereas, the data in Table 2-4 represent operation without the thermal shield. In regard to both Tables 2-3 and 2-4 the 12 EFPY data point represents the best estimate exposure at the end of cycle 10 (projected to occur in June 1990); and, therefore, establishes the baseline exposure for projection into the future.

An examination of the data contained in Tables 2-3 and 2-4 indicates that vessel exposure will be minimized with the thermal shield in place and with future fuel management patterned after the cycle 9 low leakage scheme, Case 4. In this case, the end of life (27 EFPY) exposure of the vessel will be limited to 6.85E+19 n/cm.

4178s/032n :0o 2-4

Baseline exposure information representative of cycle 1-10 operation is provided in Tables 2-5. This table includes the azimuthal distribution of both the time averaged neutron flux and the integrated exposure at the end of cycle 10 (12 EFPY).

Exposure levels are tabulated at the surveillance capsules as well as at several locations within the vessel wall.

Similar information for projection into the future is given in Tables 2-6 through 2-13. Data is provided based on each of the four projection scenarios both with and without the thermal shield in place. In each case the azimuthal flux distribution used to make the projections as well as the end of license (24 EFPY) integrated exposure is tabulated. Again, data are provided at the surveillance capsule locations as well as at the pressure vessel inner radius, 1/4 thickness, and 3/4 thickness locations. As a further point of interest, radial distributions of neutron flux along the 0.0 degree azimuth are tabulated in Table 2-14. Here data are provided for both the cycle 1-10 time averaged condition and the case 4 projection scenario with the thermal shield in place. An indication of how these radial distributions would change based on other projection scenarios or with the thermal shield removed can be obtained by comparison of corresponding data from Tables 2-5 through 2-13.

The relative axial distribution of neutron exposure to be used in conjunction with all of the tabulated neutron flux and fluence values is depicted in Figure 2-2. Axial distributions of exposure over the beltline region of the pressure vessel may be obtained by multiplying the data given in Tables 2-3 through 2-13 by the appropriate values from Figure 2-2. Selected data from the neutron flux and fluence information given in Tables 2-5 through 2-14 are depicted graphical in Figures 2-3 through 2-8.

The azimuthal distributions of neutron flux pertinent to cycles 1-10 as well as to future projection with and without the thermal shield in place are depicted in Figures 2-3 through 2-5, respectively. Corresponding azimuthal distributions of EOC 10 (12 EFPY) and end of license (24 EFPY) maximum vessel fluence are depicted in Figures 2-6 and 2-7. In regard to these graphical presentations only data based on Case 1 and Case 4 projections are depicted. These plots bracket the Case 2 and Case 3 results which can be obtained directly from the appropriate tabulations.

Finally, the radial traverse along the 0.0 degree azimuth are shown in Figure 2-8.

4178s/032o: 1 2-5

TABLE 2-1 RADIAL MESH LINE DIMENSIONS FOR THE R, THETA MODEL OF THE SAN ONOFRE UNIT 1 REACTOR LINE RADIUS LINE RADIUS LINE RADIUS LINE RADIUS I

95.00 29 137.47 57 154.60 85 180.74 2

100.00 30 138.00 58 154.94 86 181.12 3

105.00 31 138.40 59 155.83 87 181.50 4

110.00 3Z 138.93 60 156.72 88 183.00 5

112.00 33 139.76 61 157.61 89 184.88 6

114.00 34 140.12 62 158.50 90 186.75 7

116.00 35 140.54 63 159.39 91 188.63 8

118.00 36 141.39 64 160.45 92 190.50 9

120.00 37 141.85 65 161.58 93 192.38 10 1ZZ.00 38 142.65 66 162.70 94 194.25 11 124.00 39 143.55 67 163.83 95 196.13 12 126.00 40 144.07 68 164.78 SS 198.01 13 127.36 41 144.50 69 165.74 97 199.88 14 128.94 42 145.37, 70 166.69 98 201.76 15 1Z9.9Z 43 146.07 71 167.64 99 203.63 16 131.19 44 146.55 72 168.15 100 205.51 17 131.47 45 147.68 73 168.66 101 209.57 18 132.55 46 148.74 74 169.16 102 213.64 19 132.86 47 149.09 75 169.67 103 217.70 20 133.21 48 149.54 76 170.18 104 221.77 Zi 133.84 49 149.85 77 170.55 105 225.83 22 134.19 50 150.12 78 171.95 106 227.00 23 134.62 51 150.65 79 173.35 107 230.0 24 135.25 52 151.13 89 174.75 108 235.00 25 135.85 53 151.56 81 176.63 109 240.00 26 136.45 54 152.24 82 178.50 110 245.00 27 136.80 55 152.67 83 180.00 28 137.03 56 154.30 84 180.34 418s./32No: 10 2-6

TABLE 2-2 AZIMUTHAL MESH LINE DIMENSIONS FOR THE R, THETA MODEL OF THE SAN ONOFRE UNIT 1 REACTOR LINE THETA THETA LINE THETA THETA (d

Ldg (rev)

No j2deal (rev) 1

.0.00 0.00000 27 27.12 0.07533 2

0.50 0.00139 28 28.20 0.07933 3

1.00 0.00278 29 Z8.41 0.07892 4

3.00 0.00833 30 28.63 0.07953 5

5.00 0.01389 31 Z8.84 0.08011 6

7.00 0.01944 32 29.06 0.08072 7

8.62 0.02394 33 29.Z7 0.08131 8

9.70 0.0Z694 34 30.35 0.08431 9

10.78 0.02994 35 31.43 0.08731 10 10.99 0.03053 36 32.45 0.09014 11 11.21 0.03114 37 33.47 0.09297 12 11.42 0.03172 38 34.49 0.09581 13 11.64 0.03233 39 35.51 0.09864 14 11.85 0.03292 40 36.53 0.10147 15 12.94 0.03594 41 37.55 0.10431 16 14.02 0.03894 42 38.55 0.10708 17 15.23 0.04231 43 39.64 9.11011 19 16.44 0.04567 44 40.72 0.11311 19 17.65 0.04903 45 40.93 0.11369 20 18.86 0.05239 46 41.14 0.11428 21 ZO.07 0.05575 47 41.36 0.11489 22 21.28 0.05911 48 41.57 0.11547 23 22.49 0.06247 49 41.78 0.11606 24 23.70 0.06583 5

42.87 0.11908 ZS 24.91 0.06919 51 43.95 0.12208 26 26.03 0.07231 52 45.00 0.12500 8/032990102-7

TABLE 2-3 MAXIMUM FAST NEUTRON FLUENCE (E > 1.0 MeV) AS A FUNCTION OF FULL POWER OPERATING TIME - WITH THERMAL SHIELD FLUENCE [n/cM2]

EFOY CASE 1 CASE 2 CASE 3 CASE 4 12.00 3.68E+19 3.68E+19 3.68E+19 3.68E+19 PROJECTED EXPOSURE 6/90 13.00 3.99E+19 3.97E+19 3.97E+19 3.94E+19 14.00 4.31E+19 4.ZSE*19 4.26E+19 4.21E+19 15.00 4.62E+19 4.S4E+19 4.S5E+19 4.47E+19 16.00 4.94E+19 4.82E+19 4.84E+19 4.73E+19 17.00 S.2SE+19S.11E+95.13E+19S.O@E+19 18.00 S.S6E+19 5.40E+19 S.41E+19 S.26E+l9 19.00 5.98E+19 5.68E*19 S.70E+19 S.S2E+19 20.00 6.19E+19 S.97E419 S.99E+1S.78E+19 21.00 6.S1E+19 6.2SE+19 6.28E+19 6.OSE+19 22.00 6.82E+19 6.S4E+19 S.S7E+19 6.31E+19 23.00 7.13E+19 6.83E+19 6.85E+19 6.S7E+19 24.00 7.4SE+ 9 7-11E+19 7.I5E.19 6.84E+19 25.00 7.76E+19 7.40E+19 7.44E+19 7.10E+19 26.00 8.08E+19 7.68E+19 7.73E+19 7.6E+19 27.00 8.39E+19 7.97E+19 7.73E+19 7.3E+19 28.00 8.70E+19 8.26E+19 8.30E+19 7.89E+19 29.00 9.02E+19 8.54E+19 8.SSE*15 8.15E+19 30.00 9.33E+19 8.83E+19 8.88E+19 8.41E+19 31.00 9.65E+19 9.8E+19 9.17E+19 8.68E+19 32.00 9.96E+19 9.40E+19 9.46E+19 3.94E+19 33.00 1.03E420 9.69E+19 9.7E+19 9.20E+19 34.00 1.06E+20 4.97E+19 4.55E+0 9.47E+19 35.00 1.09E+20 4.83E+20 1.03E+20 9.73E+19 36.00 1.12E520 1.1SE+20 5.16E+0 9.90E+19 37.00 1.ISE+20 1.98E+29 1.09E+2 1.03E+19 38.00 118E+20 1.11E+20 1.72E+0 5.OSE+0 39.60 1.22E+25 1.14E+2 1.15E+20 1.78E+2 40.60 i.ZSE+O 1.17E+10 1.18E+12 1.15E+2 41.0 1.18E+20 1.54E+20 1.21E+20 1.13E+9 42.60 1.31E+26 1.83E+19 1.24E+20

.16E+2 43.60 1.34E+20 7.2SE+20 7.26E+19 6.18E+20 44.60 1.37E+20 1.2E+29 7.29E+29 7.21E+20 4S.09 1.40E+27 1.31E+20 1.32E+2 1.24E+2 46.60 1.44E+20 1.34E+2 8.3E+20 7.26E+2 7.00 18.47E+20 1.37E+12 1.38E+20 1.29E+29 48.00 1.59E+20 8.4E+20 1.41E+20 1.31E+20 4173.9032990 00 2

33.00

.93E+2

TABLE 2-4 MAXIMUM FAST NEUTRON FLUENCE (E > 1.0 MeV) AS A FUNCTION OF FULL POWER OPERATING TIME - WITHOUT THERMAL SHIELD FLUENCE In/cmZ EPPY CASE 1 CASE 2 CASE 3 CASE 4 12.00 3.68E+19 3.68E+19 3.68E+19 3.SSE+19 PROJECTED EXPOSURE 6/90 13.00 4.13E+19 4.89E+19 4.09E+19 4.06E+19 14.00 4.59E+19 4.SE+19 4.SIE+19 4.43E+19 15.00 5.04E+19 4.92E+19 4.92E+19 4.81E+19 16.00 S.SOE+19 5.33E+19 S.33E+19 5.18E+19 17.00 5.9SE+19 S.75E+19 5.75E+19 S.S6E+19 18.00 6.40E+19 6.16E+19 6.1SE+19 5.94E+19 19.00 6.86E+19 6.S7E+19 6.57E+19 6.31E+19 20.00 7.31E+19 6.98E+19 6.98E+19 6.69E+19 21.00 7.77E+19 7.40E+19 7.40E+19 7.06E+19 22.00 8.22E+19 7.81E+19 7.81E+19 7.44E+19 23.00 8.67E+19 8.22E+19 8.22E+19 7.82E+19 24.00 9.13E+19 8.64E+19 8.64E+19 8.19E+19 25.00 9.58E+19 9.SE+19 9.OSE+19 8.57E+19 26.00 1.00E+20 9.46E+19 9.46E+19 8.94E+19 27.00 1.0SE+20 9.88E+19 9.88E+19 9.32E+19 28.00 1.09E+20 1.03E+20 1.03E+20 9.70E+19 29.00 1.14E+20 1.07E+20 1.07E+20 i.01E+20 30.00 1,19E+20 1.11E+20 1.1IE+20 1.04E+20 31.00 1.23E+20 1.1SE+20 I.15E+20 1.08E+20 32.00 1.28E+20 1.19E+20 1.19E+20 1.12E+20 33.00 1.32E+20 1.24E+20 1.24E+20 l.16E+20 34.00 1.37E+26 1.28E+20 1.28E+20 1.20E+20 35.00 I.41E+20 1.32E+20 1.32E+20 1.23E+20 36.00 1.46E+29 1.36E+20 1.36E+20 1.27E+20 37.00 1.50E+20 1.40E+20 1.40E+20 1.31E+20 38.00 1.55E+20 1.44E+20 1.44E+20 1.35E+20 39.00 1.59E+29 1.48E+20 1.48E+20 1.38E+20 40.00 1.64E+20 1.52E+20 1.52E+29 1.42E+20 41.09 1.68E+20 I.S7E+29 l.57E+20 1.46E+20 42.89 1.73E+20 1.61E+29 1.61E+20 1.59E+20 43.99 1.78E+20 t.65E+20 1.65E+20 1.S3E+20 44.09 1.82E+20 1.69E+21 1.69E+20 1.S7E+20 45.00 1.87E+20 1.73E+20 1.73E+20 1.61E+20 46.0) 1.91E+21 1.77E+29 1.77E+29 1.65E+29

-7.00 1.96E+20 1.81E+29 1.81E+20 1.68E+20 48.00 2.0E+20 1.85E+20 1.85E+20 1.72E+20 4176s/032Ms:1o 2-9

TABLE 2-5 MAXIMUM FAST NEUTRON FLUX (E > 1.0 MeV) AND EOC 10 FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CYCLE 1-10 AVERAGE POWER DISTRIBUTION WITH THERMAL SHIELD)

CYCLE 1-16 AVERASE END OF CYCLE 10 FLUX (I )

.0 1ev) In/c2-sec3 FLUENCE (E ) 1.0 nve In/cs2)

THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL (deg)

CENTER IR 1/4 T 3/4 T CENTER IR 1/4 T 3/4 T 0.25 9.73(+10 4.66E+ll 7.3t*49 3.58E+t9 1.77E+19 2.79E+ta 0.75 9.70E+19 4.66E+16 7.37E#99 3.67E+19 1.77E+19 2.79E+16 2.9 9.65E+14 4.62E+te 7.29E+69 3.6SE+9 1.75E+t9 2.76E+18 4.W0 9.35(+16 4.48E+l 7.85E+49 3.54E+19 1.76E+19 2.67E+19 6.0 8.81E+1 4.22(+9 6.62E+09 3.34t*19 1.6@t*19 2.59(+19 7.81 8.95E+e 3.86E+4 6.14E+99 3.65E+ts 1.46E+19 2.33E+18 9.16 7.29(+10 3.S4E+10 5.71E+09 2.76(019 1.34E+19 2.16E+18 16.24 6.69E+9e 3.25E+19 5.37E+49 2.53E+49 1.23E+19 2.03E+18 18.89 4.SE+(1t 6.42E+16 3.ttE+e 5.96E+69 1.76E+29 2.43E+19 1.18E+19 1.96E+10 11.16 4.46Ett 6.31E+19 3.16E+10 5.99E+69 1.67E+20 2.39E+19 1.16(+19 1.93E+1 11.32 4.3E+t1 6.20E+10 3.004E+16 5.atE+9 1.63E+29 2.35t*S 1.14E*9I9

.9E*18 1t.53 4.20t91 6.9Et+10 2.9SE*IS 4.93E+49 1.59(+29 2.38E+19 1.12E+19 1.87E+18 11.7S 4.491991 S.9SE1 e 2.99E*e1 4.86E+09 t.SSE26 2.25E*19 1.16E419 1.4at*18 12.46 S.56E4e 2.7SE+te 4.63E+09 2.11E+19 1.64E+19 1.75416 13.48 5.12E+19 2.55E*IA 4.31E+10 1.94f+19 9.67+18 1.63E+18 14.63 4.77E+6 2.38E+16 4.02E+99 1.81E+19 9.96t+10 9.52E+18 1S.84 2.99E+t 4.50E+lt 2.23E+10 3.79E+09 1.13E+29 1.70(419 8.43E+18 1.43E+18 17.25 2.85E+11 4.29E+10 2.62+19 3.SE**9 1.8E+20 1.62E+19 8.03E+18 1.35E+18 18.26 2.73+114 4.12E+19 2.93E+9 3.38E*99 1.03E+20 1.56E+19 7.69E+18 1.28E+18 19.47 2.65E+1 3.99(+l0 1.96Ele 3.26E*99 1.98E+20 1.59t*9S 7.42E+18 1.23E+10 20.68 2.S8E+11 3.88E+10 1.9919 3.13E+90 9.77E+19 1.47E+19 7.19E+18 1.19E+18 21.89 3.79(o1e 1.84E+10 3.1E*09 1.44E+19 6.97E+19 1.14E+18 23.t9 3.69(El 1.79411 2.9tt*09 1.40E+19 6.77(+16 1.18E+18 24.31 3.56(+96 9.72(+9 2.@649 1.35E+19 6.52E+18 1.96E+18 25.47 3.41(+9 1.6SE+1 2.76E9 1.29E+19 6.25E+198 1.02Eta 26.58 3.245+10 I.59+10 2.61E09 1.23E+19 6.@tE+19 9.98+17 27.66 3.1@E+19 1.SIEte 2.53E+09 1.17E+19 S.73E+18 9.58E+17 28.31 2.00+I1 3.SE+10 1.48t+19 2.48E*09 7.57(*99 9.16E+t9 5.62E*1 9.44E*97 23.52 1.99E*tt 3.03E+

1.47(+40 2.47E89 7.54E*I9 9.95(+19 S.57E+18 9.35(17 28.74 1.96E4t 3.0(4+10 1.46E110 2.44E+09 7.42E+19 1.14(+19 S.S3E+18 9.26E*17 28.95 1.95E9t 2.91E*** 1.41+14 2.43E+9 7.38E19 1.13E+19 S.49t*19 9.21(*17 29.17 1.94(ot1 2.91E*10 1.44t+40 2.40+09 7.35E+19 1.12+419 S.44E+6 9.1E+17 29.31 2.37(+10 1.40f+10 2.351+01 1.09(*9S 5.32E+90 0.91E+17 30.89 1.77(+91 2.799+10 1.37E+10 2.28E+49 6.76E+19 1.06E+19 S.18E+8 8.62(+17 31.94 9.73E+11 2.73(+0 1.34(+10 2.26(*09 6.5E*t9 1.034+19 1.87(+18 8.33E*17 32.96 1.791411 2.69E+19 1.31E+0 2.14(4*1 6.44t*(9 1.02E+1 4.95E+18 6.099t17 33.98 9.87t+tt 2.53(+19 1.271+19 2.6714t 6.32E*1S 9.96E*0 4.02(+18 7.86E+17 3S.H 1.521.91 2.55E+10 1.24t*9 2.02(+49 6.13(+19 1.66(+18 4.68E#18 7.65+17 36.62 2.46(+9 1.15+010 9.96(+fS 9.32(+18 4.Sit*18 7.41(+17 37.04 2.35(+10-.151.I0 1.16E409 0.90(+16 4.34(+18 7.14(.17 38.65 2.25E+e 1.IKt*10 1.83E+09 6.52(+90 4.17(46 6.94(+17 31.10 2.15+1I9 I.0st+6e 1.77t+f0 8.14(+8 4.0et*10 6.79E+17 40.10 2.07(+16 1.02E+10 1.73(+01 7.84(+18 3.16(+18 6.56E+17 40.13 1.25E+11 2.06(+10 1.0et(0 1.71(*09 4.7719 7.00(+16 3.0(+18 6.46(+17 41.04 1.251+(1 2.0E4*10 9.991+49 1.71E+49 4.73E+19 7.76(4+0 3.78E+18 6.46(+17 41.25 1.24(+1 2.849+11 1.91Et4 1.69(41 4.70(+19 7.73E+8 3.77+18 6.42E+17 41.47 1.24t*II 2.31+140 1. 11+49 1.588E09 4.70toIt 7.695+18 3.74(19 6.37t17 41.68 1.23t*I9 2.019+10 9.83(+49 1.68E09 4.66E*19 7.1t+9 a 3.72(+16 6.38t*97 42.33 1.97190 9.701*9 1.65E*9 7.46E+1 3.67[418 6.27E+17 43.41 9.95E+0 9.50E**9 1.63E*9 7.38(+18 3.63(+90 6.17E+17 44.48 1.951+10 1.SS1+

1.62E+49 7.30t*96 3.62E*S 6.12E*17 41 6s/03290o 0o 2-10

TABLE 2-6 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV)

FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 1 PROJECTION - WITH THERMAL SHIELD)

CASE I PROJECTION END OF LICENSE (24 EFPY)

FLUX (E ) 1.8 Nev) (n/c2-sec3 FLUENCE (E >

.6 May) Cn/cm2l THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL (dog)

CENTER ZR 1/4 T 3/4 T CENTER ZR 1/4 T 3/4 T 0.2S 9.9SE.l0 4.79E+10 7.56E+99 7.46E+h9 3.57E+19 S.U6E+19 0.79 1.93E.ll 4.79E416 7.54E+09 7.43E19 3.57E+19 6.6SE*10 2.60 9.99E~l0 4.73E416 7. A7E409 7.48E+19 3.541.119 5.S9E18 4.N6 9.57E+10 4.SIE.16 7.221+09 7.1719 3.43E19 5.46E18 6.N6 9.62E4I6 4.32E10 6.79E+49 6.7SE1 3.23E+19 S.07E.18 7.81 6.24E10 3.961430 6.29E409 6.17E19 2.96E19 4.71E18 9.16 7.461410 3.62E+10 5.941409 S.S9E.19 2.71E19 4.37E+18 10.24 6.ISE+l0 3.33E416 S.49E*01 S.131419 2.49E+19 4.11E+18 ti.8l 4.6IE.11 1.S71416 3.161*16 S.29E*01 3.4SE420 4.92E+19 2.38E+19 3.96E~lI 11.16 4.SIEl 6.

46E-t 1 3.14f416 S.21E*0l 3.37E+26 4.94E+19 2.351+19 3.9@E+19 11.32 4.46(4l I1.3S1*10 30971.10 S.13E+09 3.3K+220 4.715E+I9 2.3@f41! 3.14E+l6 11.53 4.3@E411 6.231410 3.62E416 50.09*G 3.22E+20 4.66E+19 2.26-E+19 3.79E+18 11.7S 4.19(411I 6.61E.I0 2.97E16 4.97E.09 3.13E+26 4.S6E.19 2.22E+19 3.721416 12.46 S.69E.16 2.8IE+I9 4.741*01 4.26E+19 2.11E+19 3.SSE.16 13.46 S.24E10 2.61E+10 4.42E+69 3.92E+19 1.96E19 3.31E+18 14.63 4.I8E+I9 2.431430 4.1E+9 3.66E19 1.S2E+19 3.99E19 15.64 3.86E411 4.61E.I0 2.29E410 3.671401 2.29(+20 3.49E*19 1.71E+19 2.90E18 17.9S 2.92E411 4.391410 2.17E19 3.6SE*09 2.19E+29 3.29E1 1.63E19 2.73E+18 16.26 2.861.II 4.22E*16 2.#SE*l0 3.47E+09 2.19E+20 3.16E19 I.S6E*l9 2.53E18 19.47 2.71E.lI 4.99E.I6 2.6IE+10 3.33E.09 2.03E+28 3.6E19 1.58E+19 2.50E.19 20.66 2.64El 3.97E.l 1.94E1 3.201*09 1.99E+20 2.27E+19 1.46E411 2.49E+19 21.69 3.6861.88+190 3.09E+09 2.9@E+19 1.41E19 2.31E*l8 23.10 3.78E1 1.83E10 2.98E+69 2.03E19 1.37E+19 2.23E+18 24.31 3.651+18 1.76E+16 2.061+09 2.73E19 1.32E+19 2.14E10 2S.47 3.49E.I0 l.69E*)6 2.76E.01 2.61E+19 1.26E+12 2.67E18 26.58 3.321416 1.62E10 2.67E+49 2.46E.11 1.22E+19 2.66E16 27.56 3.17E.I6 l.SSE~lf 2.S9(.09 2.38E+19 1.16E+19 1.94E18 23.31 2.9(1411 3.12E416 I.S2E410 2.541401 1.531420 2.34E+19 1.14E419 I.99E+10 26.52 2.04E411 3. 1 K16 I.S11.16 2.S3E.09 1.531.zg 2.32E419 1.13E+19 1.89E19 26.74 2.0lE.1l 3.6E+10 1.SlE#I0 2.561*01 I.S0E+29 2.31E+19 1.12E+19 1.07E+19 29.9S 2.001411 3.051410 1.461416 2.491461 1.49E+29 2.29E+19 I.lIEI19 1.86E+16 21.17 1.9(411I 3.021410 1.47E14 2.461.09 1.41E+20 2.26E+19 l.16E19 1.641416 21.81 2.941410 I.44E416 2.41E+49 2.29E+19 1.88E+19 l.90E10 30.69 I.lI1.I1 2.86E*I0 I.4@fI6 2.33E49 1.36E+29 2.Id1.I9 1.65E1 1.74E19 31.94 1.77E.II 2.69(436 I.37E.I0 2.251+69 1.33E+20 2.09(41I 1.83E+19 1.59E*I6 32.96 1.74411 2.7SE410 1.341416 2.19(4 1.301420 2.61411 1.09(419 1.64E1616 33.96 1.71E411 2.69(4)0 1.301416 2.12E449 1.21421 2.121419 9.751416 1.59E11 3S.66 I.66f.Il 2.61[*1# 1.27E+10 2.071409 1.24E420 1.t5(411 1.461410 I.SS518 36.02 2.S29140 1.221+4 2.40E109 1.19911 9.1314)6 1.16(416 37.14 2.41E410 1.17E416 1.931*4 l.60(.uI 8.79E410 1.44E+16 36.15 2.301.16 I.13E.I0 1.81149 1.721411 0.441416 1.40E18 39.10 2' 201+

11 I.#06l1. 11f+0I49 1.66[411 8.19f+I8 1.36E410 40.18 2.121 1.8411 1.771+09 1.591*11 7.611416 1.33E416 40.33 1.29E411 2.11(410 1.63E4)6 l.7SE.09 9.6E~lg 1.S61411 7.69E416 1.31E11 41.0 4 I.231.Il 2. 1 K+1I I1.92E14 1.76E409 1.6411 1.S7E.I1 7.651416 I.31E.IS 41.2S, 1.27E411 2.09E416 1.92E+16 1.74E+09

9. 5K+ I I.56E.11 7.621416 1.30+1I1I 41.47 1.27E411 2.66E.I0 I.0I1.I6

.*721461 3.514)1l 1.161411 7*S*EI3 1.29"*,1 41.68 i.26E.Ii 2.16E410 1.911+10 1.721409 1.431411 1.64E419 7.53(413 I1.29(416 042.33 2.621416 9.

9149 1.691.01 I.S114l1 7.431413 1.27E416 43.41

2. I(4 10 2.811+09 1.67E+09 1.411411 7.341*18 1.2SE18 44.48 2.09(41 1. 761*09.19(401 1.411 7.321 1.24E10 41 7$s/032M9: 10 2-11

TABLE 2-7 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV)

FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 2 PROJECTION - WITH THERMAL SHIELD)

CASE 2 PROJECTION END OF LICENSE (24 EFPY)

FLUX (E > 1.8 New) (n/c*2*s]c FLUENCE (t ) 1.0 Nev tn/C2l THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL (dog)

CENTER JR 1/4 T 3/4 T CENTER IR 1/4 T 3

T 0.25 1.061*10 4.34E4)0 S.87E+01 7.12E+19 3.AIE.II S.40E.S 1.715 1.04E*10 4.34E410 6.86E+09 7.14E+19 3.41E+19 5.39E*la 2.8 8.99E+16 4.31E+10 6.79E+49 7.86E+19 3.38E+19 S.33Eil 4.00 8.71E+4 4.17Eei0 6.561*09 6.9419 3.29E19 S.lSE+16 6."6 S.21E.bs 3.93E+10 6.17E~fu 6.44EI19 3.19E+19 4.84E18 7.81

7. 60+ 19 3.69E+10 1.72E*01 S. 81* 19 2.82E+19l 4.49E+18 9.16 6.79E+19 3.29E+19 5.321*0!

S.33EI19 2.S9E19 4.17E18 10.24 6.23E*10 3.03Eei0 S.SSE*09 4.89E+19 2.38E19 3.92E+18 10.01 4.19E411 S.96E~l0 2.89416 4.SIE*01 3.29E+26 4.76*11 2.27E19 3.78E.is 11.10 4.19E+11 S.SSE.I0 2.SSE~l6 4.74E+49 3.22E+21 4.52E.ig 2.241419 3.72E~iU 11.32 4.011411 S.79E.Ol 2.94E1 4.67E*09 3.161*20 4.SAE.I1 2.2K19 3.67E18 11.53 3.SIE.II 5.661+10 2.751410 4.601409 3.97E+29 4.45E+19 2.16E19 3.61E18 11.7S 3.819411 S.S4E*10 2.76E16 4.62E+4 2.911+20 4.3151+19 2.12E+19 3.SSE18 12.48 S.ISE~l0 2.S6E.iO 4.31E+09 4.07E+19 2.91E19 3.39E+18 13.48 4.77E416 2.38E~lf 4.021401 3.75E+19 1.3714)1 3.161+18 14.63 4.441410 2.21E19 3.75E+49 3.49E*19 1.74E19 2.94E+18 15.84 2.791411 4.19E+10 2.071*10 3.52E+09 2.19E+29 3.29E+19 1.63E+19 2.76E+18 17.#S 2.66E.Il 4.##E+10 1.90E19 3.321*01 2.18E#29 3.14E+19 1.S51*19 2.601419 10.26 2.541*11 3.841410 1.89E+19 3.151+09 2.89E+26 3.11E+19 1.49E+19 2.48E18 19.47 2.471*l1 3.72E*10 I.02E*I0 3.13E+69 1.94+429 2.92E+19 1.43E+19 2.38E18 20.66 2.

4K+ I 3.611410 i.77E+19 2.92E+09 1.991+20 2.84Eeu9 1.39E+19 2.29E+b9 21.89 3.S31*10 1.71E19 2.91E+09 2.77E+19 1.351+19 2.21E+19 23.16 3.44E*10 1.66E10 2.71E+09 2.701*19 1.31E+19 2.13E+18 24.31 3.32E,10 1.6#E#10 2-61E+69 2.88E+19 i.26E*19 2.051411 2S.47 3.18E+10 I.S4E*10 2.S]E409 2.49E+19 1.21E+19 1.97E18 26.18 30.10l 1.4$E+10 2.43E+09 2.37E+u9 1.161+19 1.91E18 27.16 2.09E14 1.411*10 2.36E+09 2.27E19 I.IIE+19 I.65E+hu 23.31 1.06E*11 2.84E+10 1.301410 2.31E+49 1.46E420 2.23E+19 1.4SE+19 1.82E*11 29.52 1.8S1*11 2.82f16 1.37E*I6 2.361+09 1.461+26 2.22E19 i.Oe.fiI 81E18 23.74 1.#3E.I

2. 3610 1.36E19 2.29E*0l 1.43E+20 2.291+ 19 1.97f11.79E+b8 23.95 I.82E1.u 2.79[+1* 1.311410 2.261+01 1.431+20 2.18f+19 1.861+19 1.78E*10 29.17 I.81E+11 2.751410 1.34+.11 2.241*09 1.421+20 2.16E.ll 1.1E1 1.76f.IS 29.81 2.671410 1.31E19 2.199*09
2. 10K+19 1.13f19 1.721*13 30.819 1.65f411 2.601*10 1.271410 2.12E49 1.211420 2.041+19 10.13+

1.611 31.14 1.61E111 2.54E*I0 1.2SE410 20 59101 1.27E+20 2.00"E+

1.9796+10 1.61E+18 32.16 1.50141I1 2.511410 1.221410 1.99*01 1.241420 1.171*11 V.511 l.SIE.1S 33.21 1.5K+1II 2.45E1'10 1. I K+11 1.131*01 1.22E+20 1.12E19 1.311410 1.621418 3S.11 1.511.1) 2.31+0 1.151410 1.881*01i 1.19E+20 1.87E19 9.041410 1.481+10 36.82 2.29E*uO l.111410 1.321.01 1.061 1.721*10 1.431413 37.04

2. 1 14 1.07E*10 1.761*01 1.72E412 8.311+10 1.301*10 31.01 2.101410 1.031410 1.71E49 1.851,11 0.614, 1.341410 31.10 2

.00 1* 1.051*01 1.5511 1.5711 7.73E*16 1.29E*10 40.11 1.13E*10 9.491+49 1.11E+09 1.61E+11 7.461*10 1.271411 40.83 1.17E411 1.121416 1.311*01 I1.511401 1.22E419 1.111*11 7.341*11 1.251*11 41.04 l.111*11 1.311*10 1.31E409 l.511.00 1.141*12 1.50E19 7.311*10 1.2SE410 41.25 1.111*11 1.M901 1.27E+01 1.501*01 2.47t+19 1.411*11 7.211.10 1.241*13 41.47 1.111*11 1.011*10 9.21E+41 1.371*09 2.071 1.4K19 7.23E18 1.23E19 41.61 I.I51+11 1.87f19 1.161+09 1.571*01 3.001* 19 1.471*19 7.19E*10 1.23E1 42.33 1.34E410 9.83E+09 1.141401 1.441*19 7.011*10 1.21E*10 43.41 1.82E1

1..13109 1.121*01 1.43119 7.011,10 1.111* 10 44.40,
1. 821*#10 1.901*09 I.Sl1*01 1.43E19116.111*0I I.Ilo.I 4178s/032M:

10 2-12

TABLE 2-8, MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV) FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 3 PROJECTION - WITH THERMAL SHIELD)

CASE 3 PROJECTION END OF LICENSE (24 EFPY)

FLUX (E ) 1.0 1 e v)n/nc2-secj FLUINCE (E >

.1 Mow) WWI THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL (dog)

CENTER ZR 1/4 T 3/4 T CENTER ZR 1/4 T 3/4 T 0.25 9.17E:10 4.401+10 6.951+09 7.1619 3.43E+19 5.4319 6.71 9.14E10 4.401:10 6.94E+89 7.14E+19 3.43E:19 S.42E:l8 2.00 9.l1EKI1 4.36E+10 6.87E+69 7*I0+,

3.40f+19 S.311+18 4.00 I.ll1+I0 4.22E+10 6.64E:09 6.88E19 3.29E+19 5.181+18 6.00 6.301+11 3.981,10 6.241+#9 6.43E+19 3.19E+19 4.87E10 7.81 7.59E+16 3.64E:10 5.791:09 5.92E+19 2.8419 4.52E+18 9.16 6.87E*I0 3.33E+10 S.30E+09 5.361+19 2.6@E+19 4.201.16 10.24 1.311+10 3.%1410 5.#S1+09 4.92E+19 2.3919 3.951+18 16.89 4.24E+11 6.$51+11 2.9'31+16 4.87E+99 3.319+26 4.72E+19 2.21E+19 3.89E+18 11.16 4.)51+11 5.951+16 2.91:10 4.79E+89 3.241:20 4.64E+19 2.2SE+19 3.74E+18 11.32 4.051+11 S.34E+10 2.03E+10 4.72E+49 3.16E+29 4.56E:19 2.2,1E+19 3.69E18 11.53 3.961+11 S.731:10 2.70E16 4.151+09 3.99E+21 4.47E+19 2.17E+19 3.63E19 11.7S 3.851:11 5.61t+16 2.73E:I0 4.18E+09 3.01E+20 4.38E+19 2.131+19 3.57E+19 12.40 5.24E+16 2.591+16 4.37E+99 4.09E+19 2.02E+19 3.41E+18 13.40 4.83E+10 2.41E+16 4.171+09 3.77E+19 1.8E+19 3.17E+18 14.63 4.54E+10 2.24:11 3.791+09 3.511:19 1.751+19 2.96E11 17.05 2:69f:11 4:04E+10 2.01+10 3.36f+49 2.19E+29 3:161+19 1:56E+19 2:62E:18 11.6 2.821+1; 3.88E+10.10E+19 3.19E+49 2.21E+26 3.03E+19 1.49E19 2.49E+19 1.72.S61+11 3.76E+10 1.151:10 3.07E+09 I.95E+20 2.94+19 1.44E+19 2.39E+18 20.68 2.431+l1 3.661+16 1.79E+10 2.95E+49 1.9#E+29 2.851+19 1.48E+19 2.30E11 21.39 3.571+10 1.73t+10 2.84E+09 2.79E+19 1.35E*19 2.22E+19 23.10 3.461+10 1.68E+16 2.751+09 2.71E+19 1.31E+19 2.14E+18 24.31 3.361.10 1.62E*10 2.641+09 2.62E+19 1.27E+19 2.06E+18 25.47 3.211+1 1.561+10 2.54E+09 2.511:19 1.21E+19 1.98E+18 26.58 3.951:11 1.49E+10 2.461:09 2.38E+19 1.171:19 1.92E+10 27.66 2.921:10 1.431+10 2.38E+09 2.29E+19 1.11E+19 1.86E19 29.31 1.19E+11 2.87E14 1.4$1+10 2.34E+09 1.47E+20 2.241+i9 1.091+9 i.o3E.18 29.S2 1.9811 2.86E18 1.391+10 2.331+09 1.46E+29 2.231+19 1.96E+19 1.82E:18 28.74 1.851+11 2.84E+16 1.38E1 2.301+09 1.441+20 2.211+l9 1.17E+19 1.86E+19 20.95 1.841+11 2.81E+10 1.371+11 2.291+09 1.436+20 2.191+19 1.07E:19 1.79E18 29.17 1.131+11 2.70E14 1.351+10 2.271+09 1.431+20 2.17E:19 1.061:19 1.77E:18 29.81 2.701+10 1.32E+16 2.221+09 2.11E+19 1.93E+19 1.73E11 30.89 1.571+11 2.63E+10 1.291:10 2.14E+09 1.301+20 2.061+11 1.011+11 1.67E18 31.34 1.53E:11 2.57+10 1.261+10 2.071+09 1.27E+20 2.1E*11 9.86E+10 1.621:10 32.96 1.601:1 1 2.641+10 1.231418 2.911+09 1.251:20 1.911+12 9.611+13 1.57E+18 33.93 1.571lI 2.48011 1.201:10 1.961409 1.23E+20 1.9119 9.361+10 1.531:10 35.00 I.531+l1 2.4*1+10 1.171:10 1.911+01

1. 1 S41201.001+19 9.69E1 1.491:18 36.02 2.321+10 1.129+10 1.64E+49 1.819+11 6.78E+18 1.,44f+ 10 37.04 2.211+16 1.981:10 1.701+09 1.73E+:19 1.431:10 1.39E+18 38.#5 2.121+10 1.04E1:101.73f:49 1.561+l11 K0+I I 1.351+13 39.10 2.03E:10 1.96E+69 1.67t*09 1.511:19 7.731:13 1.301+18 40.18 1.951+10 9.61E+09 1.631+09 1.521:19 7.501:10 1.271+10 46.13 1.191+11 1.04E1 9.46E:09 1.61E+09 9.271+19 1.521+19 7.301:13 1.2S1+11 41.04 1.101+11 1.231+1 9.421+09 1.611+09 9.29E+l9 1.111+19 7.361:1 1.211:16 41.21 1.171:11 1.921:16 2.371:09 1.601:09 9.121+19 1.

50+611 7.321:10 1.2S1:10 41.47 1.171+11 1.91E11 2.321+09 1.541+42 9.121:11 1.401:19 7.271:10 1.2018 41.60 1.I61:I1 1.091+10 9.261:09 1.681+01 9.16+11 1.41+19 7.23E10 1.24E10 042.33 1.091:10 9.141+09 1.66E+49 1.4E11 7.13E+10 1.22E18 43.41 1.94[410 9.031+01 1.541+09 1.431+19 7.051+11 1. 2K18 44.48 1.841+10 0001.09 1.621+01 1.43911 7.021+ll 1.191:11 1

2-13

TABLE 2-9 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV) FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 4 PROJECTION - WITH THERMAL SHIELD)

CASE 4 PROJECTION 00 OF LICENSE (24 EFPY)

FLUX (IE

) I.1 Rev) n/c2-sed FLUENCE 1E > 1.0 ftv) tn/cve2I THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL (dog)

CENTER IR 1/4 T 3/4 T CENTER ZR 1/4 T 3/4 T 0.25 l.3SE+e 4.86E+10 6.33E+69 6.85E+19 3.20E+19 S.IS1+16 6.7S 8.32E+19 4.89E+19 6.32E+499 1.9319 3.2819 S.1IE+1I 2.0 8i.28E+te 3.97E+l0 6.2E+09

.72E+1 3.2519 S.13E+1 4.W8 9.02E+10 3.84E+19 6.05E*9 6.SIE.19 3-15E+19 4.96E+18 S.6 7.56+10 3.62E+10 5.68E+409 6.29E49 2.27E+19 4.66E+10 7.81 6.911+10 3.31E+19 5.27E+49 5.66E*19 2.7219 4.32E+18 9.16 6.251+16 3.93E+10 4.99E+99 5.13E+19 2.49(411 4.11E10 11.24 5.74E*10 2.79E+10 4.60E+99 4.71E+19 2.29E+19 3.791418 10.89 3.86f+11 5.511+10 2.67E+10 4.43E+49 3.17+20 4.S2E419 2.19E+19 3.6319 11.10 3.78418 S.41t+1e 2.631+10 4.36E09 3.101.20 4.44E19 2.151419 3.581413 11.32 3.691+11 5.32E+ e 2.585+10 4.30E+49 363+20 4.36E19 2.11E19 3.S31413 11.53 3.61+11 5.22+1*0 2.53E+48 4.231*99

.96E#29 4.20E+19 2.oIE.1 3.471410 11.71 3.511+11 5.11E+18 2.49180 4.17f89 2.8E+20 4.19E+19 2.84E+19 3.4218 12.46 4.77E+1 2.36E+10 3.97E+99 3.91E+19 1.93E411 3.2618 13.48 4.39E+ e 2.19E+10 3.70E+#9 3.60E19 1.80E+19 3.0311 14.63 4.89t*10 2.84E+19 3.461*09 3.36119 1.67E+19 2.1311 t5.84 2.57E+1t 3.86E1*e 1.91E+10 3.24f*09 2.0123 3.17E+19 1.571419 2;66E*l8 17.95 2.451+11 3.8Ele 1.82E*10 3.86E*09 2.1E+21 3.12E+19 1.43E+19 2.361410 18.25 2.345+11 3.S3E*1 1.74E+19 2.3619 2.011+20 t.**211 1.43E+19 2.30E+10 19.47 2.27E+11 3.421+10 1.68*10 2.791+09 1.96E+26 2.1E+19 1.38E+19 2.2918 29.68 2.211+11 3.33E+0 1.63E+19 2.691+09 1.82E+20 2.73E+19 1.34E+19 2.2919 21.89 3.25E+10 I.S810 2.SSE99 2.67E+19 1.29E+19 2.1216 23.10 3.17Ee 1.53E+19 2.50*09 2.68E+19 1.26E+19 2.SSE.18 24.31 3.0SE410 1.48E-10 2.401'09 2.014 1.211411 1.97E+18 25.47 2.93E+l0 1.42E+19 2.31*4+9 2.40E419 1.16E+19 1.S@E.18 26.58 2.781+10 1.36Ete 2.24+9 2.2E+19 1.12+19 1.8318 27.66 2.661+14 1.36E*I9 2.17E*49 2.161419 1.0612 1.78E+10 28.31 1.721+11 2.621*10 1.27E+10 2.13E+69 1.41*29 2.151419 1.94E+19 1.716 28.52 1.71Ett 2.68E1te 1.26E*0 2.12E+9 1.41420 2.13+19 1.94E#19 1.7418 28.74 1.6a4it 2.581+10 1.25E+10 2.184*9 1.39[+20 2.121+19 1.03E+19 1.72E10 23.95 1.171ott 2.SSE61e 1.24E+t0 2.019149 1.37E+29 2.101+19 1.121419 1.71E+18 29.17 t.661+11 2.53t*IS 1.23E+1 2.06E+9 1.37+29 2.911419 1.6112 1.6910 29.81 2.46140 1.201+1e 2.82E+49 2.92E+19 1.8810 1.6610 30.89 1.521+11 2.311.10 1.171+10 1.SE+01 1.25120 I.NE+19 2.6211 1.66E+19 31.14 1.461+11 2.341+16 1.161+10 1.11+409 1.221.29 1.92E+19 1.4211 1.5511 32.16 1.45411 2.311+1 1.121+1e 1.83109 1.291+20 1.891411 1.19(410 I.50+ I$

33.98 1.431411 2.25+11 1.091+10 1.781+4 1.1120 1.11+11 0.11141 1.46140 35.0* 1.311+11 2.194*

I1.e61+1 1.731-49 1.14+26 1*.711+11 1.70118 1.4211 36.02 2.111+19 1.021+10 1.11+1 1.73+19 83618 1.3318 37.94 2.021+19 1.841+09 1.621401 1.61+19 8.17*191.331.10 38.85 1.931+10 1.451+49 1.571+#1 1.131419 7.751410 1.29f+10 31.10 1.14E+14 1.071+01 1.521+499 1.51119 7.441+16 1.251410 40.18 1.7t+16 8.741+09 1.41E401 1.46**S 7.171413 1.2216 40.83 1.86+111 I.77E+e 0.511+09 1.46E#099 1.8711 I.4o1

7.

M.2K*

10 41.84 1.07t*It 1.711+10 8.57E+09 1.46149

..11 1.44E+19 7.631410 1.201411 41.25 1.e61e11 1.75to1e 1.53109 1.45+92

.721+1 1.441419 7.00+I13

.111 41.47 1.06E+11 1.74t+1 6.481*09 1.44E+09 8.721+19 1.439411 5.361+13 1.161+13 41.68 1.06E11 1.721100 0.43E+9 1.441+09

.619 1.411 6.111413 1.1319 42.33 1.69t*te 6.32E41 1.421*01 1.399+1 6.82E01 1.16E1 43.41 1.S7E1S 6.221+91.40109 1.3711 6.741+18..15**18 44.40 1.67t14

8. 1U64.1 1.3814Et1 6.721+19 1.14E+18 41.78s/032S 7:2 E0+8 S.3+1-.9Et1.45!

TABLE 2-10 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV) FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 1 PROJECTION - WITHOUT THERMAL SHIELD)

CASE 1 PROJECTION ENID OF LICENSE (Q4 EFPY)

FLUX (Q > 1.0 Nov) (n/ous-s*cl FLUENCE (E > 1.0 Nev) In/a23 THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL (deg)

CENTER IR 1/4 T 3/4 T CENTER IR 1/4 T 3/4 T 0.25 1.44141 7.02E+10 1.14E+10 1.14t41 4.42E+99 7.1e+18 0.75 1.43E+11 7.41E+.10 9.93E+4S 3.08419 4.4ZE+19 7.46E+18 2.0 1.43E+9t 6.97E+te I.1ZE+190 I.TE+ S 4.39E+1 7.02E+18 4.0 1.39E+99 6.60E+10 9.99E+10 8.80E+19 4.27E+19 6.B6E+18 6.86 1.33E+11 6.47E+9e 1.64E+10 8.36193 4.064E+19 6.44t+6 7.81 1.23E+tt 6.03E190 S.77E+09 7.72E+19 3.715119 6.03E+18 3.16 1.14E+11 5.62E+19 S.24E+4 7.0E+19 3.47E+19 5.668+18 10.24 1.07E+11 5.29E+10 8.81+409 6.5E+19 3.23E419 5.36E+18 19.81 1.64E+11 5.1E+10 8.544E+4 6.36E+19 3.11E+19 5.ISE+18 11.10 1.031+11 S.04E+le 8.4E+49 6.26E*99 3.67E419 5.12E+16 11.32 1.01+11 4.7E+190 8.34E+0S 6.19E+15 3.62E+19 5.6E+18 11.53 1.00E+91 4.11E+14 8.231+9 6.1E+19 2.58E+9 4.9SE+18 11.71 1.861+10 4.84E+10 8.12E+49 S.SSE+1 2.13E+19 4.SE+18 12.40 9.33E+90 4.631+10 7.81E+09 5.64f+19 2.801+19 4.79E+18 13.48 8.62E+10 4.32E+19 7.31E+06 5.21E+19 2.60E+19 4.44E+18 14.63 7.96E+10 4.01E+10 6.83E+09 4.82E419 2.42E+19 4.11E+18 15.84 7.44E+19 3.73E+90 6.39E+9 4.51E+13 2.26E+19 3.85E+18 17.06 6.37+19 3.Sii+i 6.01E+46 4.26E+19 2.13E+19 3.62E+18 18.26 6.62Eie 3.331+10 5.891+46 4.07E+19 2.03E+19 3.44+18 1S.47 8.37E+10 3.tSE+10 S. "i+69 3.9E+1S 1.SSE+19 3.25E+18 20.88 6.16E+10 3.68E+lf4 5.22E+49 3.81E+19 1.69E+19 3.16E+18 21.89 6.ZE+10 3.00E+90 5.0SE+09 3.72E+19 1.83E+19 3.65E+18 23.10 5.89E+19 2.12E+l 4.89E+09 3.63E+19 1.76+19 2.96+18 24.31 5.768+10 2.84E1E4 4.74E+49 3.S3E+lS 1.73E+99 2.851+98 25.47 S.SE+90 2.76E+10 4.60E+4S 3.41E+19 1.671+19 2.765+16 26.58 S.42E+90 2.88E140 4.491+49 3.2BE+19 1.6tE+19 2.69E+18 27.66 5.26E+19 2.601+44 4.38E+46 3.17E+19 9.5E+19 2.62E+18 28.31 5.9SE91e 2.58E+90 4.33E+49 3.1ZE+19 9.53E+9S 2.58E+18 25.52

5. 17E+9I 2.541+90 4.321+46 3.11E+19 1.52E+19 2.57E+18 28.74 S.ISE+90 2.53E+9f 4.29E+M6 3.06E+9 9.51E+19 2.SSE+18 23.95 5.91+10 2.521+9 4.26E+06 3.06E+19 1.SE+S 2.541+18 21.17 5.0t+e10 2.5E+10 4.24E+46 3."41+11 1.49+19 2.511+18 21.81 4.38140 2.46E+10 4.515+06 2.17E+19 1.48E+1 2.46E+98 36.89 4.82E+19 2.35+10 4.02E+41 2.88E+99 1.421+19 2.38t+18 31.94 4.61E+90 2.32E+90 3.34E+0 2.0E1+93 1.331+1S 2.31E+18 32.16 4.50140 2.241+10 3.77t+U9 2.72E+9l 1.341+13 2.24E+18 33.18 4.3E+10 2.17E+90 3.651+46 2.541+93 I.36E+19 2.17E+18
31.
  • 4.191+10.081+10 3.S3E+06 2.511+11 9.26E+1 2.9e*18 36.02 4.061+10 2.021+10 3.431+46 2.471+19 1.221+95 2.04E+18 37.04 3.SZE+I 9.SS+90 3.32E+06 2.37E+13 1.17E+19 1.57E+16 38.66 3.711+190 1.1*4+10 3.241+46 2.2S1+9S 1.14+3 9.12E98 33.10 3.701+*0 1.651+10 3.11E+66 2.221+9 1.010+13 1.871+g 44.18 3.64E+10 9.82E+10 3.141+49
2.

961+13 9.71+13 1.85E+18 40.83 3.641410 1.811+10 3.1+06 2.15419 I.0G411 1.831+18 49.04 3.541+10 1.6W4+10 3.121+6 2.16E+t 1.66E+13 1.831+18 41.25 3.641+9e 1.0E+10 3.11+09 2.15E+1 1.661419 1.82E+18 41.47 3.83E+10 1.711+19 3.19 +4 2.141+11 1.06E+91 1.811E+1 41.5 3.521+10 1.711410 3.09f+03 2.13E419 1.56+13 1.51E+98 42.33 3.571+10 1.76E+10 3. 6E+66 2.1*9 9.4t*I 1.79+148 43.41 3.541+90 1.771+9 3.04+49 2.05E+19 9.03E+91 1.77E+18 44.48 3.531410 1.77E+10 3.021+64 2.07E+13 1.03E+1 1.76E+1 4178/032990: 10 2-15

TABLE 2-11 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV) FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 2 PROJECTION - WITHOUT THERMAL SHIELD)

CASE 2 PROJECTION END OF LICENSE i24 EFPY)

FLUX (E > 1.0 Nev) In/Gan-sed FLUENCI Q

).0 Nov) (n/amZl THETA CAPSULE VESSEL VESSEL VESSEL CASULE VESSEL VESSEL VESSEL (deg)

CENTER IR 1/4 T 3/4T CENTER IR 1/4 T 3/4 T 0.21 1.31E+11 1.38E+10 31..14 4.18E+13 8.711+16 0.715 1.3t1I 6.36E+19 1.03E+10 1.61413 4.16E+13 6.76418 Z.46 1.3+11 6.34E+1e 1.02E100 6.65413 4.15413 6.63E+18 4.00 1.26+11 6.18E410 I.13E+46

.3219 4.0E1 6.4315 6.60 l.21E+11 5.86E+19 3.46E4 7.31+1 3.83E19 6.9E18 7.81 1.12E41 5.49E+10 8.89E+49 7.3K13 3.S4E415 5.631415 9.11 1.04E+11 5.11+10 8.41E+49 5.61141 3.28E+I3 5.341 10.24 3.73E+14 4.81E10 8.0446 5.221419 3.466+13 S.06918 10.88 3.4SE+te 4.641+10 7.77E+6 6.41E+1S 2.315 4.501+16 11.10 3.34E410 4.581+10 7.68E409 5.31413 2.541+13 4.8418 11.32 S.23E+te 4.53E+1 7.SSE+49 S.541413 2.861411 4.771+18 11.53

.12110 4.46E+le 7.49E+09

.711+13 9.I1E+I1 4.71E+18 11.715 8.37+10 4.44t1 7.331+N6 5.551+11 2.751413 4.5411 12.44 8.49E+10 4.21E410 7.19E+49 6.321+19 2.54E+11 4.4"E41I I 13.46 7.85190 3.331+10 6.65E+49 4.31E419 2.4SE411 4.161+16 14.63 7.24E+1 3.651+14 6.211+09 4.661419 2.2E413 3.851+15 16.84 6.731+10 3.31E+1e S.81E+46 4.26*11 2.13E+14 3.631+15 17.06 5.34E4e 3.1SE+10 S.46t496 4.0311 2.011413 3.421+15 15.26 8.02E+te 3.03E+10 5.181+49 3.841 1.31E+13 3.24E+18 19.47 S.0E+10 2.5et*Ie 4.SSE+3 3.711+11 1.64E+15 3.11E18 20.55 S.52E+10 2.50E+10 4.75E+41 3.56141 1.76E+19 2.151+15 21.89 1.48Ee 2.73E+10 4.51E+4 3.11+1 1.73E+19 2.651418 23.10 5.361491 2.65E+10 4.41E+46 3.4311 1.61411 2.71E+18 24.31 5.24E+10 2.58E+10 4.31E+69 3.33E+19 1.63E+19 2.5318 21.47 5.08E+14 2.511+10 4.191+0 3.211+19 1.SE+11 2.61E+1 28.58 4.93E+16 2.43E+10 4.6E+44 3.061+13 I.SZ419 2.SN416 27.66 4.79E+14 2.37E+10 3.9t*446 2.S5+13 1.47E+19 2.47E+18 28.31 4.72E+14 2.33+410 3.941+4f 2.141+19 1."E+19 2.43111 25.52 4.70E+1 2.32E+10 3.331 I.33E+19 1.43E+11 2.4Z1+16 25.74 4.651+10 2.361+10 3.3046

.3114 1.431+13 2.4*1+15 25.35 4.65+10 2.2SE+10 3.58E+644 2.531+13 I.4Z113 2.331 23.17 4.621+10 2.25E+10 3.6549 1.411413 2.37E18 23.81 4.S3E+S 2.241410 3.77E+46 2.&6+15 1.3&1+19 2.321+16 3.55 4.3SE+1e 2.at+10 3.551BE+46 2.7241 1.341+1 2.261+15 31.54 4.241+10 2.11E410 3.56E+46 2.69419 1.31E19 2.19141 32.31 4.10E+10 2.04t*10 3.43E+49 2.371+11 1.271411 2.I1E+1S 33.98 3.3SE+1e 1.371+10 3.3214

.411+13 1.231+1 2.041+13 35.6 3.82+10 1.561.+

3.2144 2.4113 1.19E+11 l.351 36.0t 3.8146 1.841+10 3.12E+40 2.331+13 1.111415 1.321+15 37.04 3.56E+10 1.75+10 3.021449 2.24111 1.11E+13 1.561418 38.66 3.4E+110 1.732+10 2.16E+4 2.16+11 1.67E411 1.411+18 35.10 3.37E+10 1.6Sat*

Z.591+46 S.4l1413 1.6S413 1.774+1 4.18 3.311+10 1.85E+10 2.8E+446 2.04+13 1.01P+1 1.74E14 40.83 3.31E+10 1.641+10 2.531+46 2.031+1 1.0013 1.721+ I 41.04 3.31+e 1.841+10 2.31+46 2.01+1.131418 1.721+15 41.25 3.3)E+10 1.54E+14 2.521+46 2.05+11 1.35E+18 1.71E1 41.47 3.31+10 1.63E+10 2.52E44 2.2E411 1.13E+14 1.711415 41.68 3.2SE410 1.63E+10 2.1t+46 2.61E413 3.l31.IS 1.761 42.33 3.2SE+l0 1.321+10 2.791+46 1.371+11 3.50+15 1.55+1 43.41 3.221+0 1.8110 2.781+46 1.113 3.73E+16 1.1615 44.48 3.11*10 1.51E410 2.711446 1.31413 3.70+6 1.66E+16 417../0326 10 2-16

0 TABLE 2-12 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV) FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 3 PROJECTION - WITHOUT THERMAL SHIELD)

CASE 3 PROJECTION END OF LICENSE (24 EFPY)

FLUX (E ) 1.0 Rev) in/onZ.cj FLUENCE (I > 1.0 Nev) In/cm21 THETA CAPSULE VESSEL VESSEL VESSEL CASULE VESSEL VESSEL VESSEL (dog)

CENTER IR 1/4 T 3/4?

CENTER R

1/4T 3/4 T 0.25 1.31E411 8.39E+4e 1.03E410 8.64E+19 4.18E+13 6.71E+l6 0.75 I.30E411 8.381+10 1.03+149 6.60641 4.IKE41 6.70E+18 2.60 1.3K+611 6.35E+10 1.42E+10 S.El1 4.15141.

6.6418 4.60 1.26E411 6.18E414 S.94E+09 8.32E#13 4.0E415 6.43E418 6.00 1.21E+I1 5.8SE+10 9.48+06 7.31(413 3.63E+19 6.03(416 7.81 I.12E411 5.49E+10 8.89E+09 7.36(41 3.S44;3 5.691413 S.16 1.64E+11 S.

12E+9 I.41E49N 6.69E.IU 3.Z8E+9 S.34E+18 10.24 9.73E+e 4.81E+Ie 8.0et*0g 6.22(419 3.061413 S.06E+16 1W.8s S.45E+Ie 4.54E+10 7.77E+049 6.0IE+5 2.94EoI9 4.3*(18 11.10 S.35!41# 4.58(+10 7.68E+03 S.43E45l 2.S06413 4.5411 11.32 9.23E+4e 4.53E+10 7.5SE+6 5.&4(49 2.85(41 4.77E.II 11.S3 S.12E+10 4.47E+te 7.49E+0 S.7E.19 2.81(419 4.71E+18 11.75 8.97E410 4.44E+I9 7.3SE+Mg 6.51 2.76E+19 4.84(15 12.40 8.49E+1 4.22E+Ie 7.16.0g S.32E.ie3 g.64+19 4.4"E418 13.48 7.85E410 3.93E+t1 6.e5(406 4.91E415 2.46E19 4.1SE+11 14.63 7.24E+14 3.65E149 6.211+44 4.551413 2.261*19 3.8E+8 15.84 6.74E+16 3.3SE+410 5.81E+49 4.2519 2.1319 3.63E+I8 17.06 6.34E10 3.195+10 5.46E+f9 4.03E+19 2.41E+9 3.42(.16 18.28 6.62E+le 3.03E+10 S.1I8E+49 3

1 SISE1 411 19.47 S.841If 2.S4E+1 4.95E+49 3.71E+19 1.94E+19 3.11E+16 20.88 5.62E+19 2.BOE+19 4.75E+49.f+S179*3Z9E1 21.8S.43Ee1*

2.73Ei+9 4.59469 3.91(19 1.73E+19 2.88E+16 23.10 S.38E+ie 2.66E+14 4.45E+49 3.43E419 1.68(413 2.79(416 24.31 S.24E+10 2.58.E+i 4.31E+9 3.33E13 I.63E415 2.69E*16 25.47 S.60t+

2.51E+10 4.I1E+4g 3.22E+13 I.51E41 2.61(418 25.56 4.93E+10 2.44E+1 4.8E+4 3.SEI 9

3.53E418 27.66 4.79E+10 2.37+10 3.SSE+M41 2.9 1.47E419 2.47E:1S 28.31 4.72E+10 2.33E+1 3.341o0 2.941419 1.4119 s.431418 25.52 4.71E+0 2.32E+te 3.S3E+4S Z.93E411 1.43E+19 2.42(418 28.74 4.69E+1 2.354+I0 3.906+0g 2.51(411 1.43E+13 Z.4K+418 28.35 4.85(+10 2.29+10 3.68E+40 2.69(411 1.42E419 2.391+1 29.17 4.62(+10 2.281+10 3.85(+49 2.17(:IS l.4IE415 2.37i*18 23.81 4.53E+10 2.241+10 3.77E+4A 2.141 I.38E+19 2.32E:18 30.85 4.3E+10 2.18U+1i 3.55E+4 2.72(49 1.34E+13 2.251418 31.94 4.24t+10 Z.111+10 3.1SE+46 2.84+1 1.31E+19 2.)8116 32.96 4.eIN*

1*2.04410 3.43E+6 Z.57E18 1.27E+15 2.11(418 33.98 3.38+14, 1.37+10 3.32(+06 2.48.I1 1.23E419 Z.04116 35.0 3.82E+10 1.10S410 3.22(+09 2.41E*13 1.19419 1.95(416 36.02 3.BSE+t*

1.34E+41 3.12E406 2.33E413 1.11(415 1.S2(415 37.04 3.SE 140 1.76410 3.0310 2.24E411 1.1(

I.6E1+I1 38.06 3.46E410 1.73[+10 2.36t40 2.1$E.

1.17E+1g 1.11(4 33.10 3.371410 1.55410 2.Set+g 2.66(411 1.04E419 1.771413 40.is 3.311+10 I.AGE+IS 2.88+446 2.04(419 1.0141 1.74(41 40.83 3.311410 1.84E410 2.4t+46

-g3141g 1.66(41 1.72(418 41.64 3.31E+10 1.84+10, 2.04(+g

.03E411 3.33(416 1.72(41 41.25 3.31(410 1.84410 2.32446 2.03.11 1.97E 1.71(418 41.47 3.36+10 1.0 3+10 2.82(+46 Z.021+11 1.3416 1.71E4 41.58 3.23E+14 1.83E+10 2611.06 Z.01(419 5.13:16 1.7Sit18 42.33 3.29(410 1.2E+410 2.79(+46 1.96(41 I.106:11

.63(4I8 43.41 3.224+10 1.t11*10 2.76E44 1.311*3 3.73(411 1.6(EI8 44631(1 1.61(410 2.751+06 1.35(411 1.70(415 1.6HA(I5 41 781,0328.:310 2-17

TABLE 2-13 MAXIMUM END OF LICENSE FAST NEUTRON (E > 1.0 MeV)

FLUENCE AS A FUNCTION OF AZIMUTHAL ANGLE WITHIN THE PRESSURE VESSEL AND SURVEILLANCE CAPSULES (BASED ON CASE 4 PROJECTION - WITHOUT THERMAL SHIELD)

CASE 4 PROJECTION END OF LICENSE (24 EFPY)

FLUX CE > 1.0 Nev) In/cnZ-sec)

FLUENCE (E > 1.0 Nev) In/oZ21 THETA CAPSULE VESSEL VESSEL VESSEL CAPSULE VESSEL VESSEL VESSEL idea)

CENTER IR 1/4 T 3/4 T CENTER IR 1/4 T 3/4 T 0.25 1.13E+11 5.66E+11 S.38t406 8.19E+15 3.SBE+ts 1.35E+18 0.75 1.18l61I 5.73E#10 S.37E+09 8.tSE+19 3.SSE+13 6.34E+18 2.00 1.18E+11 5.77E+10 S.29t+E6 8.13E+19 3.53E+19 6.28E+18

4.

1.15411 5.62E+10 9.03E+49 7.89E194 3.82E+19 8.0E418 6.06 1.ieE+11 S.34E+10 8.606+

7.49E+19 3.52E+19 5.76E+18 7.81 1.02E1)t 4.98E410 8.0E+*9 8.51E+19 3.3151+1 S.385E+18 3.16 9.43E+10 4.5E1+10 7.64E59 6.33E+3 3.101+19 S.05E+18 10.24 5.84E+10 4.37E+le 7.27E+9 S.858+19 2.89E+18 4.79t+11 10.89 l.58E+10 4.224E+1 7.06E+49 5.68E+13 2.77E+1S 4.63E+18 11.10 8.49E410 4.1BE+10 8.38G496 5.5+K491 2.74E+13 4.57E+18 11.32 8.39E+10 4.11E+10 6.89E+49 5.52E+13 2.89E+19 4.SIE+18 II.S3 8.231410 4.061E+1e.811+09 5.44E+13 2.BSE+IS 4.45E*a 11.75 6.15(+10 4.*+1.)0 6.71E+09 S.34E+15 2.6118E 4.38E16 12.40 7.72E+10 3.83Ete 6.46E+49 5.03E+19 2.45E+13 4.20E46 13.48 7.13E+10 3.57E+le 6.64E+#9 4.64E+13 2.32E+15 3.32E+I8 14.83 6.SSE+1e 3.31E+16 S.64E+49 4.36E+19 2.15141 3.S6E+18 15.84 6.12E+10 3."E+16 S.28E+49 4.02E+15 2.01+19 3.43E418 17.06 S.76E+e 2.90E+10 4.36E+49 3.81E*1S 1.SE+19 3.23E+18 18.26 5.47E+e 2.75E+1 4.76E+6 3.53E+19 1.81t+19 3.06E+16 19.47 S.27E+1 2.54E4e 4.56+06 3.51t*1S 1.74E+19 2.34E+16 20.68 S.11E4)e 2.5E+10 4.32E49N 3.44E+13 1.68E+19 2.82E+18 21.69 4.96+141 2.48E+10 4.17E49 3.32E19 1.53E+19 2.72E186 23.10 4.97E+10 2.41E+10 4.4E49 3.24E+13 1.511+15 2.53E+18 24.31 4.76E10 2.35E1)0 3.92E+49 3.15E+19 I.54E+19 2.54E18) 25.47 4.6t1)0 2.28E+10 3.81E+46 3.E4t1 1.49SE+19 2.46E185 26.58 4.4411 2.21E+

3.71E+09 2.32E+11 1.44E+19 2.39E+18 27.65 4.351810 2.1SE+10 3.62E+46 2.82E+19 1.31E+1) 2.33E+4 28.31 4.231+1 2.11E410 3.58E40 2.78E+19 1.36E+19 2.30E+18 28.52 4.27E+14 2.10.E+10 3.57E+6 2.77E+11 1.35E+15 2.2E+18 2.74 4.26E+18 2.0E14I0 3.56+44U 2.71E+13 1.35E1) 2.27E418 28.15 4.22114 2.06t+1e 3.521446 2.73E143 1.34E+1S 2.26E+1 23.17 4.20E10 2.07E+10 3.51E+46 2.71419 1.33+13 2.24E+18 21.81 4.114+10 2.03E+10 3.43E+4 2.64(419 1.361+t1 2.1314)8 30.83 3.9+1110 1.361*10 3.321+*6 2.571+1 1.2?Edg 2.12E18 31.94 3.61E4)0 ).g2+140 3.22E+46 2.43E+1) 1.23E+19 2.06E+1 32.36 3.721410 1.816410 3.11146 2.431415 1.20+1$ 1.99+18 33.18 3.5E+10 1.711+10 3.021+40 2.36E+1 I.11E+1 1.13E41 35.0*

3.47E+10 1.73E+10 2.S0E+

2.28E+) 1.12141 1.67E+14 36.02 3.311+e 1.67E+10 2.83+46 2.2E+1) I.06t*IS 1.61815 37.04 3.249+10 1.52E+10 2.711+09 2.121+15 1.*61+IS 1.75E18 38.85 3.141+1 I.7e1410 2.561+4 2.4t141 1.011413 1.71t+1 33.10 3.0o4 1.531+16 2.531+0 1.17E+15 1.614I 1.171+1 40.18 3.011410 I.S*le 2.66E+6 1.121+13 3.5E+18 1.84E+18 40.83 3.01+10 1.491+10 2.8+49 1.12E+11 1.46E+1 1.821E*a 41.04 3.11*10 1.451+10 2.56t+"g 1.1211 3.43+148 1.521+18 41.25 3.011410 1.45t*1 Z.511+06 1.11413 1.40418 I.81E+18 41.47 3.014)0 1.481410 2.11E+4g I.Set*tS 1.36E+16 1.51415 41.58 2.91+16 1.48414 2.666 I.85t*1S 3.33E18 1.64E+18 42.33 2.5E+10 1.47E+10 2.S3E+0g 1.5E+1I 5.24(418 1.51E+18 43.41) 2.32+140 1.4816)0 2.5)1+06 1.3SE*t 1.17E+)8 1.571)8 44.46 2.1110e I.4GE1 e2.66E+46 1.641+13 1.151418 1.1SE148 417$s/03200:10 2-18

TABLE 2-141 MAXIMUM FAST NEUTRON FLUX (E > 1.0 MeV) AS A FUNCTION OF RADIUS AT AN AZIMUTHAL ANGLE OF 0.0 DEGREES - WITH THERMAL SHIELD FLUX (n/cm2-sec)

FLUX (n/cm2-sec)

RADIUS CYCLE RADIUS CYCLE (cm)

AVG 1-10 CASE 4 (cm)

AVG 1-10 CASE 4 149.99 1.30E+13 1.21E+13 169.93 4.96E+11 4.38E+11 150.39 1.18E+13 1.09E+13 170.37 4.33E.11 3.91E+1l 150.89 1.05E+13 9.74E+12 171.25 3.49E+11 3.13E+11 151.35 9.63E+12 8.89E+12 172.65 2.63E+1i 2.36E+11 151.90 8.69E+12 8.01E+12 174.05 2.O5E.I1 1.81E*11 152.46 7.95E+12 7.32E+12 175.69 l.58E+11 I.40E+11 153.49 5.88E+12 6.32E+12 177.57 1.23E+11 1.08E+11 154.4S 6.34E+12 5.79E+12 179.25 1.04E+II 9.14E+10 154.77 6.22E+12 5.68E+12 180.17 9.99E+10 8.77E+10 155.39 5.88E+12 5.2SE+12 180.S4 9.S5E*10 8.46E+10 156.28 S.24E+12 4.68E+12 180.93 9.60E10 8.23E+10 157.17 4.52E+12 4.04E+12 181.31 9.3@E+10 7.97E+10 158.06 3.80E+12 3.39E+12 182.25 8.46E+10 7.25E+10 158.95 3.OSE+12 2.72E+12 183.94 6.93E+10 5.94E+10 159.92 2.37E+12 2.17E+12 185.82 5.40E+10 4.64E+10 161.02 1.91E+12 1.73E+12 187.69 4.16E+10 3.57E+;0 182.14 1.62E+12. 1.47E+12 189.57 3.18E*10 2.73E+10 163.27 1.44E+12 1.30E+12 191.44 2.42E+10 2.07E+10 164.31 1.36E+12 1.20E+12 193.32 l.83E+10 1.56E+10 165.26 1.22E+12 1.08E+12 195.19 1.38E+10 1.17E+10 166.22 1.07E+12 9.45E+1 197.07 1.04E+0 8.93E+09 167.17 9.18E+11 8.IOE+11 98.9S 7.77E+09 6.67E+09 167.90 8.05E+11 7.09E+11 200.82 S.78E*09 4.96E+09

.168.41 7.2SE+1I 6.40E+It 202.70 4.22E+09 3.63E09 ISE-91 6.SOE+II S.73E+l 204.7 2.94E09 2.34E+09 41787/032230:E+

2-19

3-CORE 8a-REssu.SS VESSEL CLID

__E_

o0 -

At*

CA P 9'-

SataL.

I -

cpuc~zrtE_

5-t.aWTIs 4t-SutVI.LrAWCE caps 7~~-

-.RT.7

_1_

I 7----.-

asL

)

2 III

.11 A

nnit man ntntol MOA bff UUMAKJ 4

2.7i*

Figure 2-1.

Mesh Line Schematic Used in the R, Theta Analysis of San Onofre Unit 1 4178s/032990:10 2-20 0.L S 'S M *3 *a

  • )

C

)

L

.3 49 6

D ISYRI PROM CoE MtOPLJ E,

(StL Figure 2-2. Relative Axial Distribution of Fast Neutron (E > 1.0 MeV)

Fluence Within the San Onofre Unit 1 Pressure Vessel 4178s/032 0 12-21

TI a

7

-7 Figure 2-3. Fast Neutron (E > 1.0 MeV) Flux as a Function of Azimuthal Angle Within the Reactor Vessel Cycle 1-10 Average Power Distribution - With Thermal Shield 4178s/032990:10 2-22

tS 10 6

o 7.-k 0A o

Jto ao 46s6

)

Figure 2-4. Fast Neutron (E > 1.0 MeV) Flux as a Function of Azimuthal Angle Within the Pressure Vessel Case 1

and Case 4

Condition for Projection With Thermal Shield 4178s/032990:10 2 2

70 7

-"1 Z

I N

~~7.

7

)Q 0

)

o.30 0o Figure 2-5. Fast Neutron (E > 1.0 MeV) Flux as a Function of Azimuthal Angle Within the Pressure Vessel - Case 1 and Case 4 Condition for Projection - Without Thermal Shield 41n.6o0eson 2-24

3.-

7 3

9-I 0

Ito 0

Figure 2-6. Fast Neutron (E > 1.0 MeV) Fluence Projections as a Function of Azimuthal Angle at the Inner Radius of the San Onofre Unit 1

Pressure Vessel With Thermal Shield 417s./032no0:1 2-25

4 7.-

5.-

ee 7 ".--

GIN EF=7 7-E

-_-Z 7=

__r Rt_

(des)

Figure 2-7.

Fast Neutron (E

1.0 MeV)

Fluence Projections as a Function of Azimuthal Angle at the Inner Radius of the San Onofre Unit 1 Pressure Vessel - Without Thermal Shield 41 78s/03290 10 2-26

)a Jo-4 R~and CI S

7 q

)010 ADO C

O Figure 2-8.

Fast Neutron (E > 1.0 MeV) Flux as a Function of Radius at an Azimuthal Angle of 0.0 Degrees 4178s/032990 10 2-27

3.0 PRESSURIZED THERMAL SHOCK In December 1989, the Nuclear Regulatory Commission (NRC) has issued a proposed rule to address "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events".

This method to calculate RTPTS is essentially the same, as the calculation of RTNDT published in May 1988 as Regulatory Guide 1.99, Revision 2. The proposed PTS rule is as follows:

RTPTS = I + M + A RTPTS (1) where I =the initial reference transition temperature of the unirradiated material measured as defined in the ASME Section III Code, NB2331.

If a measured value is not available, the following generic mean values must be used:

0*F for welds made with Linde 80 flux and

-56*F for welds made with Linde 0091, 1092 and 124 and ARCOS B-5 weld fluxes.

M the margin to be added to cover uncertainties in the values of initial RTNDT, copper and nickel content, fluence and calculation procedures. In equation (1), M is 66*F for welds and 48*F for base metal if generic values of I are used and M is 56*F for welds and 34*F for base metal if measured values of I are used.

ARTPTS the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows:

RTPTS ECF] f(0.28 - 0.1 Log f)

(2) where CF (*F) the chemistry factor, a function of copper and nickel content.

CF is given in Table 1 for welds and in Table 2 for base metal (plates and forgings) (1].

Linear interpolation is permitted.

4178s/032990 10 3-1

f the best estimate neutron fluence in units of 1019 n/cm2 (E greater than 1 MeV), at the clad-base metal interface on the inside surface of the vessel at the location where the material in question receives the highest fluence for the period of service in question.

3.1 Plant Specific PTS Evaluation Pressurized thermal shock evaluations were performed using 1) the NRC proposed PTS rule.

Figure 3-1 identifies the location of all beltline region materials for the San Onofre Unit 1 reactor vessel.

The materials of importance for the beltline region are the intermediate and lower shell plates, longitudinal welds and the circumferential weld. Table 3-1 provides the material chemistry of the beltline region of the San Onofre Unit 1 Reactor Vessel.

Table 3-2 and 3-3 summarizes the fluence values used in generating Tables 3-4 and 3-5.

RTPTS values for 27 and 48 Effective Full Power Years (EFPY) were calculated and are provided in Tables 3-4 and 3-5 using the proposed PTS rule. These tables are based on i) plant specific fluence for four different cases (see Section 2) and ii) plant specific CU & Ni contents and material chemistry from Tables 1 and 2 of Reference (1).

Data in Tables 3-4 and 3-5 were calculated assuming the presence of the thermal shield and without thermal shield respectively.

RTPTS vs. fluence is shown in Figure 3-2 and it is based on proposed PTS rule.

41 7as03290:o 3-2

TABLE 3-1 SAN ONOFRE UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIAL TOUGHNESS DATA (UNIRRADIATED)

Component CU Ni Initial (wt %)

(wt %)

RTNOT(*F)

Upper Shell, W7601-3 0.15 0.20

8.

Upper Shell, W7601-6 0.16 0.20

24.

Upper Shell, W7601-7 0.15 0.20

12.

Intermediate Shell, W7601-1 0.17 0.2

60.

Intermediate Shell, W7601-8 0.18 0.2

40.

Intermediate Shell, W7601-9 0-.18.

0.2

55.

Lower Shell, W7601-2 0.17 0.2

34.

Lower Shell, W7601-4 0.14 0.2

51.

Lower Shell, W7601-5 0.14 0.2

82.

Weld 0.19 0.2

-56.

417 s/032OO:n 3-3

0 18006 0

t7601-7 0

W601-3 6-860C690 2-860 2700 7-860A W!601-9 W601-8 7-860 7-860C W0W1601-1

-2700 W7601-4 8-860B 860 1800.

00 W60-2 V1601-5 Figure 3-1.

Identification and Location of Beltline Region Material of the San Onofre Unit 1 Reactor Vessel 41 es/0229se: 1o 3-4

TABLE 3-2 FLUENCE VALUES FOR THE USE OF RTPTS EVALUATION (WITH THERMAL SHIELD) 27 EFPY 48 EFPY Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 Upper Shell, W7601-3 7.55 7.17 7.22 6.87 13.5 12.6 12.7 11.8 Upper Shell, W7601-6 7.55 7.17 7.22 6.87 13.5 12.6 12.7 11.8 Upper Shell, W7601-7 7.55 7.17 7.22 6.87 13.5 12.6 12.7 11.8 Int. Shell, W7601-1 8.39 7.97 8.02 7.63 15.0 14.0 14.1 13.1 Int. Shell, W7601-8 8.39 7.97 8.02 7.63 15.0 14.0 14.1 13.1 Int. Shell, W7601-9 8.39 7.97 8.02 7.63 15.0 14.0 14.1 13.1 Lower Shell, W7601-2 2.27 2.15 2.17 2.06 4.05 3.78 3.81 3.54 Lower Shell, W7601-4 2.27 2.15 2.17 2.06 4.05 3.78 3.81 3.54 Lower Shell, W7601-5 2.27 2.15 2.17 2.06 4.05 3.78 3.81 3.54 Weld 8.39 7.97 8.02 7.63 15.0 14.0 14.1 13.1 Fluence are in 1019 n/cm 2, (E > 1.0 MeV) 41 1 0 10.

TABLE 3-3 FLUENCE VALUES FOR THE USE OF RTPTS EVALUATION (WITHOUT THERMAL SHIELD) 27 EFPY 48 EFPY Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 Upper Shell, W7601-3 9.45 8.89 8.89 8.39 18.0 16.7 16.7 15.5 Upper Shell, W7601-6 9.45 8.89 8.89 8.39 18.0 16.7 16.7 15.5 Upper Shell, W7601-7 9.45 8.89 8.89 8.39 18.0 16.7 16.7 15.5 Int. Shell, W7601-1 10.50 9.88 9.88 9.32 20.0 18.5 18.5 17.2 Int. Shell, W7601-8 10.50 9.88 9.88 9.32 20.0 18.5 18.5 17.2 Int. Shell, W7601-9 10.50 9.88 9.88 9.32 20.0 18.5 18.5 17.2 Lower Shell, W7601-2 2.84 2.67 2.67 2.61 5.4 5.0 5.0 4.65 Lower Shell, W7601-4 2.84 2.67 2.67 2.61 5.4 5.0 5.0 4.65 Lower Shell, W7601-5 2.84 2.67 2.67 2.61 5.4 5.0 5.0 4.65 Weld 10.5 9.88 9.88 9.32 20.0 18.5 18.5 17.2 Fluence are in 1019 n/cm2, (E > 1.0 MeV) 4178l/032990 10

TABLE 3-4 SAN ONOFRE UNIT 1 RTPTS EVALUATIONS WITH THERMAL SHIELD CASE 1 RTpts (*F)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 160 166 270 Upper Shell, W7601-6 182 188 270 Upper Shell, W7601-7 164 170 270 Int. Shell, W7601-1 225 231 270 Int. Shell, W7601-8 211 217 270 Int. Shell, W7601-9 226 232 270 Lower Shell, W7601-2 176 188 270 Lower Shell, W7601-4 177 187 270 Lower Shell, W7601-5 208 218 270 Weld 159 165 300 CASE 2 RTpts (*F)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 160 165 270 Upper Shell, W7601-6 181 187 270 Upper Shell, W7601-7 164 169 270 Int. Shell, W7601-1 225 230 270 Int. Shell, W7601-8 210 216 270 Int. Shell, W7601-9 225 231 270 Lower Shell, W7601-2 174 186 270 Lower Shell, W7601-4 176 186 270 Lower Shell, W7601-5 207 217 270 Weld 158 165 300 CASE 3 RTpts (*F)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 160 165 270 Upper Shell, W7601-6 181 187 270 Upper Shell, W7601-7 164 169 270 Int. Shell, W7601-1 225 230 270 Int. Shell, W7601-8 211 216 270 Int. Shell, W7601-9 226 231 270 Lower Shell, W7601-2 175 186 270 Lower Shell, W7601-4 176 186 270 Lower Shell, W7601-5 207 217 270 Weld 158 165 300 417es032Se 10 3-7

TABLE 3-4 (continued)

SAN ONOFRE UNIT 1 RTpT EVALUATIONS WITH THERMAL SHIELD CASE 4 RTpts (*F)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 159 165 270 Upper Shell, W7601-6 181 187 270 Upper Shell, W7601-7 163 169 270 Int. Shell, W7601-1 224 230 270 Int. Shell, W7601-8 210 216 270 Int. Shell, W7601-9 225 231 270 Lower Shell, W7601-2 173 185 270 Lower Shell, W7601-4 175 185 270 Lower Shell, W7601-5 206 216 270 Weld 158 165 300 417,032He:O 3-8

TABLE 3-5 SAN ONOFRE UNIT 1 RTPT EVALUATIONS WITHOUT THERMAL SHIELD CASE 1 RTpts (oF)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 163 167 270 Upper Shell, W7601-6 185 189 270 Upper Shell, W7601-7 167 171 270 Int. Shell, W7601-1 228 232 270 Int. Shell, W7601-8 214 218 270 Int. Shell, W7601-9 229 233 270 Lower Shell, W7601-2 180 193 270 Lower Shell, W7601-4 181 191 270 Lower Shell, W7601-5 212 222 270 Weld 162 167 300 CASE 2 RTpts (*F)

Screening Component 27 EFPY 48 EFPT Criteria Upper Shell, W7601-3 162 167 270 Upper Shell, W7601-6 184 189 270 Upper Shell, W7601-7 166 171 270 Int. Shell, W7601-1 227 232 270 Int. Shell, W7601-8 213 218 270 Int. Shell, W7601-9 228 233 270 Lower Shell, W7601-2 179 191 270 Lower Shell, W7601-4 180 190 270 Lower Shell, W7601-5 211 221 270 Weld 161 166 300 CASE 3 RTpts (*F)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 162 167 270 Upper Shell, W7601-6 184 189 270 Upper Shell, W7601-7 166 171 270 Int. Shell, W7601-1 227 232 270 Int. Shell, W7601-8 213 218 270 Int. Shell, W7601-9 228 233 270 Lower Shell, W7601-2 179 191 270 Lower Shell, W7601-4 180 190 270 Lower Shell, W7601-5 211 221 270 Weld 161 166 300 4178s/03290:o 3-9

TABLE 3-5 (continued)

SAN ONOFRE UNIT 1 RTpTS EVALUATIONS WITHOUT THERMAL SHIELD CASE 4 RTpts (*F)

Screening Component 27 EFPY 48 EFPY Criteria Upper Shell, W7601-3 161 166 270 Upper Shell, W7601-6 183 189 270 Upper Shell, W7601-7 165 170 270 Int. Shell, W7601-1 226 231 270 Int. Shell, W7601-8 212 218 270 Int. Shell, W7601-9 227 233 270 Lower Shell, W7601-2 179 190 270 Lower Shell, W7601-4 179 189 270 Lower Shell, W7601-5 210 220 270 Weld 161 166 300 478s/03299:10 3-10

240 W760 -8 W760 -2 200 W760 -4

u.

Li CL WELD 160 NOTE: W7601-) is he I miti g material for P essu-ized Theral Slock Evaluation.

120 U

1 2 3

4 5

6 7

8 9

10 11 12 13 14 15 16 17 18 19 20 FLUENCE 1QE19(N/CMXX2) figure 3-2. Fluence V PTS Using Proposed PTS Rule 4

990 10 I

4.0 FLUX REDUCTION GOAL Neutron flux reduction goals for the San Onofre Unit 1 reactor vessel were established for the key issues related to neutron embrittlement.

The key issues considered in this report are i) pressurized thermal shock and ii) the upper bound cumulative fluence.

4.1 Pressurized Thermal Shock Tables 3-4 and 3-5 are the PTS values for.the San Onofre Reactor Vessel with and without thermal shield considering four different cases of plant specific fluence. It is clear, however, that based on the current screening criteria for pressurized thermal shock, that the San Onofre Unit 1 reactor vessel will be within the screening criteria up to 48 effective full power years (EFPY).

Therefore, considering the pressurized thermal shock criteria, there is no need for-flux reduction as long as i) PTS rule and screening criteria remain the same and ii) no significant change in material chemistry.

4.2 Limiting Fluence In May 1988, the Nuclear Regulatory Commission published Regulatory Guide 1.99, Revision 2 [2].

In that methodology, the N.R.C. provided a trend curve for the prediction of radiation embrittlement. This trend curve is based on operating reactors data. Enough data were not available beyond a cumulative fluence of 3x1019 n/cm2 and only one single data was available at a fluence level of 1 x 1020 n/cm2 The Regulatory Guide 1.99, Revision 2 trend curve is provided up to cumulative fluence of 1 x 1020 n/cm2.

This is because there is no data presently available beyond this point to predict the damage mechanism due to radiation.

120 2

Because of this lack of data beyond 1 x 10 n/cm, Westinghouse suggested that the cumulative fluence of any reactor vessel should be limited to 1 x 1020 2, until sufficient data are available beyond this point.

418/022Uo:1o 4-1

However, at the request of the customer, three different limiting fluences were considered for developing flux reduction factors, and they are 1.0 x 20 2

20 2

20 2

10 n/cm, 1.2 x 10 n/cm and 1.5 x 10 n/cm2.

Also, four different cases of plant specific fluence values along with the cases of with and without thermal shields were considered. The flux reduction factor curves were developed for four different expected life of the reactor vessel and they are 24, 27, 32 and 48 EFPYs.

These curves are illustrated in figures 4-1 through 4-21. The illustration of the curves are:

the top curve is for 48 EFPY followed by 32, 27 and 24 EFPYs. Some of these curves indicated a negative flux reduction factor which means that there is no need for any flux reduction for those vessel life.

4178s/032990: 10 4-2

7 b..

o 7

uL C

4)4 V

2 1

10 20 30 40 50 Time in Plant Life-EF-PY figure 4-1.

Case 1 -flux Reduction factor Curve for San Onofre Unit 1 With Thermal Shield (Limiting Fluence 1.0E20) 4 178*/022890, 10

07 4-J C

x 2

1 10 20 30 40 50 Time in Plant Life -

EFPY Figure 4-2. Case 2 - flu uction Factor Curve for San Onofre Unit 1 With al. Shield (Limiting Fluence 1.0E20) 212890 10

0 7

x 4

1Q 0

O 1 0 20 30

40.

50 Time in Plant Life

-EFPY IL' figure 4-3.

Case 3 -flux Reduction Factor Curve for San Onofre Unit 1 With Thermal Shield (Limiting Fluence 1.0E20) 4178s/022890 10

O 7

C 1Q 0

4

.4 V

o 7

10 20 30 40 50 Time in Plant Life -

EFPY AFigure

44. Case 4 -Flux ction Factor Curve for San Onofre 410 n901 Unit 1 With T I Shield (Limiting Fluence 1.0E20)

9 8

O o

7 C.

O6 5

x 4

3 2

1 Q~;

2Q40 50 10 20O Time in Plant Life -

EFPY Figure 4-5. Case 1 - Flux Reduction Fajtor Curve for San Onofre.

Unit 1 With Therial Shield (LimiLing Fluence 1.2E20) 4178s/022890 10

9 8

0 o

7 L

O 4A 6

x OO L 4

2 1

1 0 20 30 40 50 Time in Plant Life-EFPY Figure 4-6. Case 2 -Flux e tion Factor Curve for San Onofre Unit 1 With I Shield (Limiting Fluence 1.2E20) 090 10Ti

9

'O C

O 6

3 X

IL 4

0 10 20 O40 5C Time in Plant Life -EFPY figure 4-.7.

Case 3 - Flux Reduction Factor Curve for San Onofre Unit 1 With Thermal Shield (Limiting Fluence 1.2E20) 418s0 MO1

07

-J4 O3 2

1 10O 20 30 40 5O Time in Plant Life

-EF PY figure 4-8. Case 4 - Flux tion Factor Curve for San Onofre 41a U,1 Unit 1 With Th Shield (Limiting Fluence 1.2E20)

9 8

IL 0

4-4 o

7 IA-C 10 20 3

50 Time in Plant Lif

- EFPY

-~f x

Figure 4-9.

Case 1 -flux Reduction Fac or Curve for San Onofre Unit 1 With Thermal Shield Limiting Fluence 1.5E20) 4178s/022890 10

O 7

C 4

O3 0

10O 20 30 40 50 Timec in Plant Life -EFPY figure 4-10. Case 2 -flux tinFactor Curve for San Onofre Unit 1 With I Shield (Limiting Fluence 1.5E20) 4100 10

A-0

'O 0

o7 C

0 6

x 4)4 2

0 10 20 3Q 40 50 Tirne in Plant Life -

EFPY Figure 4-11.

Case 3 - Flux Reduction Factor Curve for San Onofre Unit 1 With Thermal Shield (Limiting Fluence 1.5E20) 4178%/0 22890 10

9 8

0 6

C 444 6

V 3O

~11_0_20_30 40__50 4

4 4)4 2

0 10 20 30 40 50 Time in Plant Life -

EFPY Figure 4-12. Case 4 -Flux ction factor Curve for San Onofre Unit 1 With T 1 Shield (Limiting Fluence 1.5E20)

  • 7 9

8 C

0 X

i4 4

or7 2

c0 10O 20 30 40 50 Time in Plant L e -

EFPY Figure 4-13. Case 1 -flux Reduction F ctor Curve for San Onofre Unit 1 Without Thermal Sh eld (Limiting Fluence 1.0E20) 41785/022890 10

V 0

7 tL C

40 6

3 5

4)4 U

2 1

10 20 30 40 50 Time in Plant Life -

EFPY Figure 4-14.

Case 2 & 3 - F Reduction factor Curve for San Onofre Unit 1 Witho rmal Shield (Limiting Fluence 1.0E20)

8 7

C o X

26-O4 x3 U

2 0-0 10 20 40 50 Time in Plant Life -

EFPY Figure 4-15. Case 4 -

Flux Reduction Factor Curve for San Onofre Unit 1 Without Thermal Shield (Limiting Fluence 1 0E20) 41 I8/0122890.10

8 0

1 O

0 6

1 0 20 30 40 50 Tim e in Plant Life -EFPY Figure 4-16. Case 1I Flu x tion Factor Curve for San Onofre me soUnit 1 Withou mal Shield (Limiting Fluence 1.2E20) 5-7

___1__

8 o

7 IL

'C 06 X

4 1

1 20 30 40 50 Time in Plant Life -

EFPY Figure 4-17.

Case 2 & 3 - Flux Reduction Factor Curve for San Onofre Unit 1 Without Thermal Shield (Limiting Fluence 1.2E20) 4178%/022890 10

9 8

'0 0

7 C

I 4-6 V2 31 x

3 O
  • 00 10 20 30 40 50 Time in Plant Life -

EFPY figure 4-18. Case 4 - FIgineduction Factor Curve for San Onofre aUnit 1 Wit hermal Shield,(Limiting Fluence 1.2E20) 822890 1O

'10 8

C 7

iL X

C4 Or 2

0 6

1~1 1O 20 30 40 50 Time in Plant Life -

EFPY Figure 4-19. Case 1 -

Flux Reduction Factor Curve for San Onofri Unit 1 Without Thermal Shield (Limiting Fluence 1.5E20) 4tlas/022890 10

9-8 O

7 LL C

6-5 -

x PQ4 3

2 1

0 10 20 30 40 50 Time in Plant Life -

EFPY Figure 4-20. Case 2 & 3 -

x Reduction Factor Curve for San Onofre Unit 1 With erinal Shield (Limiting Fluence 1.5E20)

0 7 010 4J4 3

5 2

16 10O 20 30

.40 50 Tirn e in Plant Life -EFPY figure 4-21.

Case 4 -flux Reduction Factor Curve for San Onofre Unit 1 Without Thermal Shield (Limiting Fluence 1.5E20) 41/8u/022890 10

5.0 CONCLUSION

Pressurized Thermal Shock It has been shown in the previous section, that, the San Onofre Unit 1 reactor vessel RTPTS values will be within the screening criteria up to 48EFPY, based on the Nuclear Regulatory Commission's proposed pressurized thermal shock rule.

Therefore, no flux reduction is necessary for the San Onofre Unit 1 vessel for PTS evaluation up to 48EFPY, provided i) no significant change in PTS rule, ii) no major change in material chemistry and iii) no significant change in the systems affecting PTS.

Limiting Fluence Table 5-1 provides a summary of the results based on the flux reduction factor curves developed, using a limiting fluence of 1.0 x 1020 n/cm and assuming an implementation time of 15EFPY.

The following are the observations:

0 Case 4 needs the lowest flux reduction factors.

o For an extended life up to 48EFPY, some amount of flux reduction is necessary for all fluence cases.

o Reactor vessel without thermal shield needs flux reduction even for 32EFPY life of vessel.

417&s/0221o90:O 5-1

TABLE 5-1

SUMMARY

OF FLUX REDUCTION FACTORS Case 1 Case 2 Case 3 Case 4 Mode 24 27 32 48 24 27 32 48 24 27 32 48 24 27 32 48 With Jhermal Shield 2.0 1.75 1.8 1.6 Without Thermal Shield 1.1 1.6 3

1.4 2.7 1.4 2.7 1.3 2.4 Cn 1. Vessel life considered for flux reduction factors are 24, 27, 32 and 48 EFPYs.

2. Case 1. Case 2. Case 3 and Case 4 are different cases of fluence as described in Section 2.
3.

means no flux reduction necessary.

4.

'0' means minor flux reduction necessary.

5. Numbers e.g., 2.0 means flux reduction factor necessary to maintain the vessel within limiting fluence.
6. This table assumes a limiting fluence of I x 10 2 n/cm 2 and implementation time at 15 EFPY.

4178h/032990.10

6.0 REFERENCES

1. U.S. Nuclear Regulatory Commission, 10CFR50, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events",

Proposed Rule, Federal Register, Vol. 54, No. 246 December 26, 1989.

2. Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials," USNRC, May 1988.
3. R. G. Soltesz, et. al., "Nuclear Rocket Shielding Methods, Modification, Updating, and Input Data Preparation. Vol. 5, Two-Oimensional Discrete Ordinates Transport Technique", WANL-PR(LL)-034, Vol. 5, August 1970.
4. ORNL RSIC Data Library Collection DLC-76, SAILOR Coupled Self-Shielded, 47 Neutron, 20 Gamma Ray, P3, Cross Section Library for Light Water Reactors.
5. R. G. Soltesz, et. al., "Nuclear Rocket Shielding Methods, Modification; Updating, and Input Data Preparation. Vol. 4, One-Oimensional Discrete Ordinates Transport Technique", WANL-PR(LL)-034, Vol. 4, August 1970.

4178s/0320:10 6-1

ATTACHMENT 3