ML13311A218
| ML13311A218 | |
| Person / Time | |
|---|---|
| Site: | San Onofre |
| Issue date: | 11/19/1979 |
| From: | Levin H Office of Nuclear Reactor Regulation |
| To: | Crutchfield D Office of Nuclear Reactor Regulation |
| References | |
| TASK-03-06, TASK-3-6, TASK-RR NUDOCS 7912110412 | |
| Download: ML13311A218 (83) | |
Text
0 UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555 November 19, 1979 MEMORANDUM FOR: D. M. Crutchfield, Chief Systematic Evaluation Program Branch, DOR FROM:
H. A. Levin Systematic Evaluation Program Branch, DOR
SUBJECT:
MEETING
SUMMARY
- SOUTHERN CALIFORNIA EDISON CO.
SAN ONOFRE NUCLEAR GENERATING STATION NO. 1 On September 18, 1979, representatives of Southern California Edison Co.
(SCE) and their consultants met with the NRC staff and NRC consultants in Bethesda, MD. to discuss details of the licensee's Site Specific Earthquake Study. Attendees are listed in Enclosure 1 and the meeting agenda is summarized in Enclosure 2.
SCE and their consultants made a presentation which addressed the following four supplemental tasks which were requested by the NRC as a result of the review of the final report, "Simulation of Earth quake Ground Motions for San Onofre Nuclear Generating Station Unit 1", dated May 1978.
Task 1 - Mesh size Task 2 - Slip function Task 3 - Model Parameter Studies Task 4 - Computation of size parameters/Validation at distances greater than 20 Km SCE provided a summary of the objectives of the overall program and their conclusions. This information is summarized in Enclosure 3 which was provided by SCE at the meeting.
SCE stated their position, that the site specific response spectrum as defined by this study is the appropriate seismic input to be used to re-evaluate the seismic design of San Onofre Unit 1. The NRC staff reiterated that this study, along with other empirical arguments and input from NRC consultants, would form the basis for a staff decision on an acceptable seismic input design basis. However, the staff indicated that there were significant unanswered questions which would make sole reliance on this new methodology very difficult.
The NRC staff indicated that a decision would be forthcoming in approximately two months. SCE agreed to continue with their seismic re-evaluation efforts when this decision has been made.
Howard A. Levin Systematic Evaluation Program Branch Division of Operating Reactors
Enclosure:
As stated
ENCLOSURE I LIST OF ATTENDEES SITE SPECIFIC EARTHQUAKE MEETING SOUTHERN CALIFORNIA EDISON SEPTEMBER 18, 1979 SCE LLL H. G. Hawkins D. Bernreuter W. C. Moody P. J. West R. C. Sholes EPRI S. W. Smith R. Leyse MIT Keiiti Aki TERA M. J. Hauf G. A. Frazier NRC H. A. Levin R. E. Jackson C. H. Hofmayer T. Cardone P. Sobel D. M. Crutchfield L. Reiter UCSD J. E. Luco St. Louis University R. Herrman
1 ENCLOSURE 2 SCE/TERA PRESENTATION SITE SPECIFIC EARTHQUAKE STUDY SAN ONOFRE UNIT 1 SEPTEMBER 18, 1979 I.
Introduction/Objectives Wes Moody 5 min II.
Program Background Gene Hawkins 5 min I.
Response to Staff/Consultant Gerry Frazier 45 min Comments A.
Task 1-Mesh Size B.
Task 2-Slip Function C.
Task 3-Model Parameter Studies IV.
Summary of Program Results Stu Smith 10 min V.
Response to Proposed Task 4 Gerry Frazier 20 min A. Magnitudes-ML, MS, 4b, MO B. Validation of Distances Greater than 20 Km VI.
Conclusions Wes Moody 5 min
ENCLOSURE 3 EARTHQUAKE MODEL EARTHQUAKE RUPTURE WAVE PROPAGATION METHOD:
METHOD:
EMPERICAL CHARACTERIZATION MATHEMATICAL MODELS FOR OF LABORATORY EXPERIMENTS, WAVES IN HORIZONTALLY ANALYTIC SOLUTIONS AND LAYERED VISCOELASTIC NUMERICAL CALCULATIONS MATERIALS PARAMETERS:
PARAMETERS:(FOR EACH LAYER)
RUPTURE VELOCITY THICKNESS SLIP VELOCITY DENSITY OFFSET P-AND S-WAVE VELOCITY RISE TIME MATERIAL DAMPING RESULTS:
RESULTS:
CHARACTERIZATION OF RESPONSE AT EARTH'S SURFACE FAULT SLIP DUE TO POINT DISTRUBANCES (GREEN'S FUNCTION)
GROUND MOTION SIMULATION METHOD:
CONVOLUTION OF FAULT SLIP WITH GREEN'S FUNCTIONS FOR THE.EARTH PARAMETERS:
FAULT/SITE GEOMETRY, HYPOCENTER, DIRECTION OF RUPTURE, RUPTURE EXTENT RESULTS:
COMPUTED EARTHQUAKE GROUND MOTIONS AND RESPONSE SPECTRA 2
PHASE I OBJECTIVES
- 1. MESH STUDIES A. DEMONSTRATE SUITABILITY OF MESH TREATMENT B, DEVELOP CHARACTERIZATION OF INCOHERENT RUPTURE
- 2. SLIP FUNCTION STUDIES A. EXAMINE ALTERNATE PERSCRIPTION OF FAULT SLIP B. EXTRAPOLATE SLIP FUNCTION FOR SITE SPECIFIC STUDIES
- 3. MODEL PARAMETER STUDIES A. PERFORM ADDITIONAL PARAMETER STUDIES B, PROVIDE ADDITIONAL SUPPORT FOR MODEL PARAMETERS 3
SUMMARY
AND CONCLUSIONS
- 1. MESH TREATMENT MEETS THE CRITERION ESTABLISHED IN OCTOBER, 1978.
- 2. INCOHERENT RUPTURE MODEL IS SUPERIOR TO COHERENT RUPTURE.
- 3.
THREE PARAMETER SLIP FUNCTION HAS BEEN IMPROVED.
4, TWO PARAMETER SLIP FUNTION IS NOT ADEQUATE FOR PERIODS FROM 1.0 TO 10 SECONDS.
- 5. MAXIMUM SLIP VELOCITY IS THE SAME FOR THE PARKFIELD AND IMPERIAL VALLEY EARTHQUAKES.
- 6. VERTICAL COMPONENTS OF GROUND MOTION ARE IMPROVED OVER RESULTS OF MAY, 1978.
- 7. SITE SPECIFIC RESULTS DO NOT SIGNIFICANTLY DEPEND ON CHARACTERIZATION OF FAULT SLIP FOR FREQUENCIES GREATER THAN 2HZ.
- 8. SITE SPECIFIC SPECTRUM IS NOT SIGNIFICANTLY CHANGED FROM RESULTS OF MAY, 1978, 4
100.
SITE SE 10.0 U
._*_/_
Mean using DELTA's Three-Parameter 1.0 Slip Function with Randomness Two-Parameter Slip Functi on with Randomness J
Three-Parameter Slip Function without Randomness May, 1978 Report 0.1 so si1 s
I ioillui I
I I
I 0.1 1.0 10.0 PERIOD (SEC)
Site specific results using alternate rupture processes for southeast component.
5
100.0.
SITE NE 10.0 LU z
- 1. 0
/
Mean using DELTA's Three-Parameter
_j Slip Function with Randomness Two-Parameter Slip Function with Randomness
-Three-Parameter Slip Function without Randomness 0.1
.e 0.1 1.0 10.0 PERID (SEC)
Site specific results using alternate rupture processes for northeast component.
6
100.
SITE VERT 10.0 J/
.01 U*
z 1.0 Mean using DELTA's Three-Parameter Slip Function with Randomness Two-Parameter Slip Function with Randomness
-- Three-Parameter Slip Function Without Randomness 0.1 0.1 1.0 10.0 PERIOD (SEC)
Site specific results using alternate rupture processes for vertical component.
7
SITE SE 100.0.
-10.0 1.0 Calculated 2% Mean UI.
Calculated 2% Mean + l
.67g Housner 2%
0.1 1 1 "if, T
0.1 1.0 10.0 PERIOD (SEC)
Calculated mean plus and minus one standard deviation for southeast component of response spectra (2% damping) for hypothesized earth quake "D", 8 km offshore from San Onofre Site.
8
SITE NE 100. Q.
10.0~
.0 Cs, Z
Calculated 2% Mean Calculated 2% Mean + l
.67g Housner 2%
0.
1 1
1 1
1 left I
I loll 0.1 1.0 10.0 PERIOD (SEC)
Calculated mean plus and minus one standard deviation for northeast component of response spectra (2% damping) for hypothesized earth quake "D", 8 km offshore from San Onofre Site.
9
SITE VERT 100.
-10.0 U
1.0
/
-LJ Calculated 2% Mean
.44g Housner 2%
0.1 0.1 1.0 10.0 PERIOD (SEC)
Calculated mean plus and minus one standard deviation for vertical component of response spectra (2% damping) for hypothesized earth quake "'D",
8 km offshore from San Onofre Site.
0 O0
100.
SITE SE 10.0 Calculated 10% Mean Calculated 10% Mean + 10a
.67g Housner 10%
0.11.0 1.0.0 PERIOD (SEC)
Calculated mean plus and minus one standard deviation for southeast component of response spectra (10% damping) for hypothesized earth quake "D", 8 km offshore from San Onofre Site..
L)1
SITE NE 100.0.
-10.0 bi 1.0_
Calculated 10% Mean Calculated 10% Mean + la
.67g Housner 10%
0.1 0.1 1.0 10.0 PERIOD (SEC)
Calculated mean plus and minus one standard deviation for northeast component of response spectra (10% damping) for hypothesized earth quake "D", 8 km offshore from San Onofre Site.
12
100.(
SITE VERT
-410.0 U
I0 Calculated 10% Mean Calculated 10% Mean + l
.44g Housner 10%
0.1 1 11
,1 1 1 1 1
I 0.1 1.0 10.0 PERIOD (SEC)
Calculated mean plus and minus one standard deviation for vertical component of response spectra (10% damping) for hypothesized earth quake "D", 8 km offshore from San Onofre Site.
13
x2 Receiver Coordinates (xl, x2, 0, t)
Sx2xl f
r0 Rupture Coordinates (y1, 0, y2 x3 Ground~ Slip
- Gres Motion I FunctionJ
- Function) ty u(x, t) = JdS(y)]
dr s(y, T) g(x, t; y, T)
.114 Ground motoneain.
14ntio
Receiver (.941020)
(0,0,1.44)
Hypocenter
(-1,0,2.44)
Close in mesh size study (focussed).
1 km mesh RESPONSE SPECTRA 2% Damping
.5 km mesh
.25 km mesh
.125 km mesh 100.0 00 ci 10.0 0.1 1.0 10.0 Period (sec) 15
Receiver (-1.94,0,0) x Hypocenter
(-1,0,2.44) z Close in mesh size study (defocussed).
RESPONSE SPECTRA 1 km mesh 2% Damping
.5 km mesh
.25 km mesh
.........125 km mesh 100.0 c"J C:)
C) 10.0 1 0 t
o esI I
I n t s e I
I m a 0.1 1.0 10.0 Period (sec) 16
Receiver (14.94,0,0)
(0,0,1.44)
Hyocenter~
Far away mesh size study (focussedy.
________1 km mesh RESPONSE SPECTRA 2% Damping
.5 km mesh
.25 km mesh
.125 km mesh 100.0 C~~.
t C) o0.
c 0.1 1.0 10.0 Period (sec) 17
Receiver (1,0,0) r
(-1,0,1.5)
Hypocenter
(-11,0,1.5) z Close in horizontal line source study Cfocussed),
RESPONSE SPECTRA 2% Damping 100.0 00
- 1*
>, 10.0 U
0 1.0 km mesh 0.5 km mesh 0.25 km mesh 1.0 0.1 1.0 10.0 Period (sec) 18
Receiver (4,0,0)
- r
(-11,0,1.5)
Hypocenter
(-1,0,1.5)
Intermediate horizontal source study (defocussed).
RESPONSE'SPECTRA 2% Damping 100.0 CO 10.0 o
1.0 km mesh 0.5 km mesh S-0.25 km mesh 1.0 0.1 1.0 10.0 Period (sec)
Receiver (9,0,0)
(-1,0,1.5)
Hypocenter
(-11,0,1.5)
Far away horizontal line source study (focussed).
RESPONSE SPECTRA 2% Damping 100.0 LD/
10.0 0~
0 1.0 km mesh 0.5 km mesh 0.25 km mesh 1.0 a
t il 0.1 1.0 10.0 Period (sec) gn
Receiver (100)
(-1,0,.319)
Hypo center X
(-1,0,13.319) z Close in vertical line source study (focussed).
RESPONSE SPECTRA 2% Damping 0.5 km mesh 0.25 km mesh 100.0 LOo 0
0 10.0
.4.0 0.1 1.0
.10.0 Period (sec)
_21*
Receiver (10,0.0) r Hypocenter
(-1,0,.319)
(1,0, 13. 319 z
Close in vertical line study (defocussed).
RESPONSE SPECTRA 2% Damping 1.0 km 0.5 km
.0.25 km 100.0 CD c) 4j 10.0 1.0 1 1.
s oil s s s a
s n
0.1 1.0 10.0 Period (sec) 22
Receiver (14,090)
V+r
(-1 0,.319)
Hypo center J-1,0,13.319 Far away vertical line source study 'focussed).
RESPONSE SPECTRA 2% Damping 100.0 CD 10.0 o_
1.0 km mesh 0.5 km mesh 0.25 km mesh 1.0 11 Jo e
I I I f i.
-Isl1 s e s 0.1 1.0 10.0 Period (sec) 23
Receiver (14,0,0) r Hypocenter
(-1,0,.319)
(-1,0,13.319 z
Far away verttcal line source study-(defocussed).
O RESPONSE SPECTRA 2% Damping 100.0 0
>~ 10.0 1.0 km mesh 0.5 km mesh 0.25 km mesh 0.1 1 0 10 Period (sec) 2
Hypocenter
(-1,0,.319)
(-1 0,13.319) z Far away vertical 1tne-source study (defocussed).
SMOOTHED RESPONSE SPECTRA
- 2% Damping 100.0 co C) to
'0 CD 10.0
- 4 0
1.0 km mesh 0.5 km mesh 0.25 km mesh 1 0 1
I I I lI I
I I a lliI 0.1 1.0 10.0 Period (sec) 25
Initial Slip Velocity (dynamic stress drop)
Fault Slip Final Offset (static stress drop)
Time
-+~
1/40 sec Rupture "Rise Time" Initiation Idealized slip function used in May, 1978 report.
26
DELTA'S THREE-PARAMETER SLIP FUNCTION IvI SC 4J p
t-t s (t)
=
v t
Time 0
tR L4) t o
tTime o
R vo initial slip velocity dynamic stress drop.
S,.
=Final fault offset astatic stress drop to =time of rupture initiation t
= rise time (duratlion of slip at a poipt.
Rs 00
- 0.
SS m
for two-parameter model.
Idealized slip function in which. p =[1n(s,/At v )]/1n(tRAt) is assigned to cause s(t = t
+
)=s.Note th~t P= I for tR =s,./vo, thus yielding he two-parameter slip function.
.27
TABLE 4-1 RANDOM PARAMETERS MICRO-INCOHERENCE (within I-km zones of rupture)
(1)
Single zones of rupture produce at least 0.1 sec of signal spread at the receiver.
II.
MACRO-RANDOMNESS (between I-km zones of rupture)
(2)
Initiation time randomness gross rupture arrival + 0 to I sec of randomness.
(3)
Rupture direction randomness
= gross direction of rupture extension + 300 of randomness.
(4)
Fault orientation randomness
= gross strike orientation + 200 of randomness.
(5)
Receiver orientation randomness
= direction of particle motion at recording station +300 of randomness.
28 TERA CORPORATION
100.
SITE SE 10.0.
U..
.0 L)J 0.1 0.1 1.0 10.0 PERIOD (SEC)
Effect of varying random number sequence thirteen times on site specific response for southeast component.
29
100.
SITE SE
-10.0 C-,
LLJ1.0 Calculated Mean Calculated Mean + 1 a 0.1 0.1 1.0 10.0 PERIOD (SEC)
Calculated mean plus or minus one standard deviation for southeast component of site specific response as shown in Figure 4-4.
30
100.Q.
SITE NE
-1.0O CO)
Calculated Mean Calculated Mean + 1 0.1 0.11.0 10.0 PE 10D (SEC)
Calculated mean plus or minus one standard deviation for northeast component of site specific response as shown in Figure 4-5.
N3
DELTA EARTHQUAKE MODEL
- 1.
Gross Rupture Velocity
= VR = 0.9 x shear-wave velocity
- 2.
Maximum Slip Velocity
= v
= 800 cm/sec
- 3.
Fault Offset
= s = 60 for Parkfield
= 50 to 500 cm for Imperial Valley
= 130 cm for Offshore San Onofre
- 4.
Slip Duration
= tR = fault width/shear-wave velocity
= 2.7 for Parkfield
= 3.8 for Imperial Valley
= 2.9 for San Onofre
- 5.
Random Parameters (refer to Table 4-1).
- 6.
Rupture Extent (km)
Imperial Valley Parkfield San Onofre "D" Length 48 26 40 Width 11 9
9 Shallowest Extent 1
1.5 1
Deepest Extent 12 10.5 10 Hypocentral Depth 12 10.5 10 32
@1976 BRAWLEY N
EL CENTRO
- EPICENTER 1940 IMPERIAL VALLEY 0
10 20km FAULT TRACE Map of the Imperial Valley.
33
PARKFIELD
- EPICENTER FAULT TRACE N
I I
I 0
5 10km e
2 TEMBLOR 5
0 8
12 Map of the San Andreas Fault near Parkfield.
34
MAXIMUM VALUES OF ACCELERATION, VELOCITY AND DISPLACEMENT Acceleration Velocity Displacement (g)
(cm/sec)
(cm)
Station Component Obs.
Calc.
Obs.
Calc.
Obs.
Calc.
El Centro South 0.35 0.49 30 33 10 20 West 0.25 0.19 38 24 20 49 Vertical 0.2,,
0.15 10 13 6
11 Parkfield N65E 0.5 1.20 80 77 26 20 2
N25W 0.64 25 Vertical 0.2 0.23 12 15 4
2 Parkfield 5
N85E 0.45 0.47 28 26 7
11 N05W 0.35 0.40 22 26 5
9 Vertical 0.14 0.15 7
8 3.5 1.6 Parkfield 8
N50E 0.25 0.23 10 19 5
6 N40W 0.30 0.32 12 13 4
7 Vertical 0.08 0.14 5
8 2
2 Parkfield N50E 0.06 0.14 7
6 4
5 12 N40W 0.07 0.15 8
9 6
6 Vertical 0.05 0.06 5
6 3
1 Parkfield Temblor N65W 0.30 0.14 15 10 4
4 S25W 0.35 0.23 20 20 6
8 Vertical 0.15 0.06 4.5 3.4 1.4 1.3 San Onofre SE 0.34 29 17 NE 0.39 31 16 Vertical 0.11 8
4 DELTA'S EARTHQUAKE MODEL WITH RANDOMNESS Maximum Slip Velocity = 800 cm/sec Rupture Velocity = 0.9 of shear wave velocity 35
1oo.
ELC N-S ELC E-W 10.0 Li z7 dM CO
>aMax.
Calc.
Obs.
ILj0Max.
Caic.
Obs.
Acc.
0.49 0.3 Acc.
0.19 0.25 Vel.
30 Vel.
24 38
- s.
20 10 Disp.
49 20 Disp.
2 1
0.1.
___-T r -rrn IT 0.1 i.0
- 10.
0
'.0 0
- 0.
PERIOD (SEC)
PERIOD (SEC) 100.
ELC VERT Calculated Observed Z 10.0 Comparison of the smoothed 2%
'Ji velocity response spectra of the 1940 Imperial Valley Earthquake using DELTA's three-parameter slip function with randomness.
~1.0 -Max.
Calc. Obs.
Acc.
0.15 0.2 Vel.
13 10 Disp.
11 6
0.1 1.0 10.0 PERIOD (SEC) 36
100.0 STA 2 N65E STA 2 N251-I UL, L) 1.0 Max.
Calc. Obs.
Max.
Caic. Obs.
Acc.
1.20 0.5 Acc.
0.64 Vel.
77 80 Vel.
25 Disp.
20 26 Disp. 9 0.1 1.0
- 1.
0.1 1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 10.o STA 2 VERT
-Calculated Observed 10.0
/
Comparison of the smoothed 2%
velocity response spectra recorded at Station 2 of the 1966 Parkfield Earthquake using DELTA's three parameter slip function with UJ1.0randomness.
'1.0
-Max.
Calc. Obs.
Acc.
0.23 0.2 Vel.
15 12 Disp. 2 4
0.1 SIllill I
I Ililli 1
I IIIIII 0.1 1.0 10.0 PERIOD (SEC) 37
100.0 STA 5 N85E STA 5 N05W Z 10.0 Lii
-JF I1.0 Max.
Calc. Obs.
Max.
Calc. Obs.
Acc.
0.47 0.45 Acc.
0.40 0.35 Vel.
26 28 Vel.
26 22 Disp.
11 0.7 Disp.
9 5
,i l
0.1 1.0 10.01.0 10.0 PERIOD [SEC)
PERIOD [SEC)'
100.
STA 5 VERT Calculated Observed Z10. 0, Comparison of the smoothed 2%
velocity response spectra recorded at Station 5 of the 1966 Parkfield Earthquake using DELTA's three parameter slip function with
.0-randomness.
Max.
Calc. Obs.
Acc.
0.15 0.14 Vel.
8 7
Disp.
1.6 3.5 10.1 0.1 st illT I
l I II III I
I l I I 0.1 1.0 10.0 PERIOD (SEC) 38
100.
/
Max.
Calc. Obs.
Max.
Caic. Obs.
Acc.
0.23 0.25 Acc.
0.32 0.30 Vel.
19 10 Vel.
13 12 Disp.
6 5
Disp. 7 4
0.1 1.0 10.1
- 0.
'.0 PERIOD (SEC)
PERIOD (SEC) 100.0 STA 8 VERT Calculated Observed
~.10. 0
- 1.
Comparison of the smoothed 2%
velocity response spectra recorded at Station 8 of the 1966 Parkfield Earthquake using DELTA's three parameter slip function with I__
randomness.
'Max.
Calc. Obs.
Acc.
0.14 0.08 Vel.
8 5
Disp.
2 2
0.1 1.0 10.0 PERIOD (SEC) 39
100.
STA TB N65N STA TB S254 U-10.0.
/
__j
_/
Max.
Cac. Obs.
Max.
Calc.
Obs.
cc-Acc.
0.23 0.35
' Acc.
0.14 0.30 Vel.
10 15 Disp.
4 4
0.1 1 -
I 1
4 1 FI I11 I
q il I
I 0.1 1.0 10.0 0.1 1.0 10.0 PER1od (SEC)
PERID (SEC) 100.0 STA TB VERT Calculated Observed
- 10. 0 Comparison of the smoothed 2%
velocity response spectra recorded at Station TB of the 1966 Parkfield Earthquake using DELTA's three Li parameter slip function with randomness.
10Max. Calc. Obs.
Acc.
0.06 0.15 Vel.
3.4 4.5 Disp.
1.3 1.4 0.1 1.0 10.0 PERIOD (SEC) 40
uo.
-10.0 W 1.0 Max.
Cac. Obs.
Acc.
0.14 0.06 Acc.
0.15 0.07 Vel.
6 7
Vel.
9 8
Disp.
5 4
Disp.
6 6
0.1
D 0
111I II~
11 0.1 1.0 10.0 0.1 1.0 10.0 PERIOD (SEE)
PERIOD (SEC) 100.
STA 12 VERT Calculated Observed Z;10.0 Comparison of the smoothed 2%
velocity response spectra recorded at Station 12 of the 1966 Parkfield Earthquake using DELTA's three parameter slip function with randomness.
1.0 Max.
Calc. Obs.
Acc.
0.06 0.05 Vel.
6 5
Disp.
1 3
0.1 1.0 10.0 PERIOD (SEC)
100.
SITE SE SITE NE 10.0 S/
/
>1.0 Max.
Calc.
Obs.
Max.
Calc.
Obs.
Acc.
0.34 Acc.
0.39 Vel.
29 Vel.
31 Disp.
17 Disp.
16
- 0.
- lil, l
I I I 1
.lill 1
1 1
g I
l ilIil II 0.1 1.0 10.0 0.1 1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 100.
SITE VERT L.
10.0 Smoothed 2% velocity response spectra using DELTA's three parameter slip function with randomness.
1.0
/
Max.
Calc. Obs.
/
Acc.
0.11 Vel.
8 Disp.
4 1
1 Il ill I
I 5 1
II III I
I I
IIII 0.1 1.0 10.0 PERIOD (SECT 41
MAXIMUM VALUES OF ACCELERATION, VELOCITY AND DISPLACEMENT Acceleration Velocity Displacement (g)
(cm/sec)
(cm)
Station Component Obs.
Calc.
Obs.
Calc.
Obs.
Calc.
El Centro South 0.35 0.59 30 82 10 384 West 0.25 0.30 38 128 20 549 Vertical 0.2,...
0.15 10 40 6
74 Parkfield N65E 0.5 1.20 80 294 26 176 2
N25W 0.66 115 74 Vertical 0.2 0.29 12 27 4
22 Parkfi el d 5
N85E 0.45 0.59 28 123 7
129 N05W 0.35 0.44 22 77 5
244 Vertical 0.14 0.16 7
23 3.5 25 Parkfield 8
N50E 0.25 0.34 10 60 5
158 N40W 0.30 0.31 12 68 4
237 Vertical 0.08
.0.16 5
22 2
18 Parkfield N50E 0.06 0.14 7
38 4
197 12N5E00 0.473419 N40W 0.07 0.18 8
50 6
172 Vertical 0,05 0.11 5
21 3
17 Parkfield Temblor N65W 0.30 0.18 15 35 4
141 S25W 0.35 0.35 20 87 6
105 Vertical 0.15 0.06 4.5 14 1.4 13 San Onofre SE 0.44 87 264 NE 0.55 88 192 Vertical 0.11 24 37 TWO-PARAMETER SLIP FUNCTION WITH RANDOMNESS Maximum Slip Velocity = 480 cm/sec Rupture Velocity = 0.9 of shear wave velocity 42
Z 10.0 LiJ
.0Max.
Cac. Obs.
Max.
Calc. Obs.
Acc.
1.20 0.5 Acc.
0.66 Vel.
294 80 Vel.
115 Disp.
176 26 Disp.
O I
II I
I l
I 1
111151 I
(I S
I~ llSI 555 illi I
I I l 5l5il I
I Sl IlS i 0.1 1.0 10.0 0.1 1.0
- 10.
PERIOD [SEC)
PERIOD (SEC) 100.
STA 2 VERT Calculated 10.0 Observed Comparison of the smoothed 2%
velocity response spectra recorded at Station 2 of the 1966 Parkfield Earthquake using two-parameter slip function (TR sly0)
J1.0 Max.
Calc. Obs.
sifucon(R 0v with randomness.
Acc.
0.29 0.2 Vel.
27 12 Disp.
22 4
0 1
5 55i i 5
I II IIII5 II I
I l il-l 0.1 1.0 10.0 PERIOD
[SEC) 44
100.
ELC N-S ELC E-W 010.0 Cr) 51.0 Max.
Calc.
Obs.
Max.
Calc. Obs.
Acc.
0.59 0.35 Acc.
0.30 0.25 Vel.
82 30 Vel.
128 38 Disp.
384 10 Disp.
549
- 20.
0.1
,,m
,,im
,m,,,
a a 0.1 1.0 10.0 0.1 1.0 10.0 PERIO0 (SEC)
PERIOD (SEC) 100.
ELC VERT Calculated Observed L)10.0/
Comparison of the smoothed 2%
velocity response spectra of the 1940 Imperial Valley Earthquake using two-parameter slip function (TR = sl/)
with randomness.
- 01. 0 Max.
Calc. Obs.
Acc.
0.15 0.2 Vel.
40 10 Disp.
74 6
0.1 0.1 1.D 10.0 PERIOD (SEC) 43
100.
STA 5 N85E STA 5 N05W ID.I 510.0 Li U1.0 Max.
Calc.
Obs.
Max.
Calc.
Obs.
Acc.
0.59 0.45 Acc.
0.44 0.35 Vel.
123 28 Vel.
77 22 Disp.
129 7
Disp.
244 5
i0.1
.0 10.0 0.1 1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 100.0 STA 5 VERT Calculated 10.0 Observed Comparison of the smoothed 2%
velocity response spectra recorded at Station 5 of the 1966 Parkfield Earthquake using two-parameter slip function (TR = sjvo)
/
Mx C
with randomness.
- 1.
/
Max.
Cal c. Obs.
Acc.
0.16 0.14 Vel.
23 7
Disp.
25 3.5]
0. I
,-T r "
0.1 1.0 10.0 PERIOD (SEC) 45
100.
STA 8 N50E STA 8 N40W U10.0 U)1 1.0
-Max.
Calc.
Obs.
Max.
Calc. Obs.
Acc.
0.34 0.25 Acc.
0.31 0.30 Vel.
60 10 Vel.
68 12 Disp.
158 5
Disp. 237 4
0.1 1.0 10.0 0.1 1.0 10.0 PERIJ OD (SEbl PER I OD (SEC) 100.
STA 8 VERT Calculated 510.0 Observed Comparison of the smoothed 2%
velocity response spectra recorded at Station 8 of the 1966 Parkfield Earthquake using two-parameter W1.0
/
Max.
Calc.
Obs.
slip function (TR =s /v with randomness.
Acc.
0.16 0.08 Vel.
22 5
Disp.
18 2
0.1 1.0 0.D PERIOD (SEC) 46
I0 STIA 12 N50E.
STA 12 N11004
-10.0.-/
Ln I-I Wh~o Max.
Calc. Obs.
Max.
Calc. Obs.
Acc.,
0.18 0.07 Acc.
0.14 0.06 0.18 0.07 Vel.
38 7
Vel.
50 8
Disp.
197 4
Disp 172 6
0.1 1.0 10.0, 0.1 1.0 10.C PERIOD (SEC)
PERIOD (SEC) 100.
STA 12 VERT Calculated Observed
-10.0 Comparison of the smoothed 2%
velocity response spectra recorded at Station 12 of the 1966 Parkfield Earthquake using two-parameter
__-____slip function (TR = svo with randomness.
Acc.
0.11 0.05 Vel.
21 5
Disp.
17 3
0.1 I
0.1 1.0 10.0 PERIOD [SEC) 47
100.
STA TB N65 STA TB S25N Z3 10.0 1.0 Max.
Calc. Obs.
Max.
Calc. Obs.
Acc.
0.18 0.3C Acc.
0.35 0.35 Vel.
35 15 Vel.
87 20 Disp.
141 4
Disp.
105 6
0.1 I,
0.1 1.0 10.0 0.1 1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 100.
STA TB VERT Calculated Observed
-10.0 Comparison of the smoothed 2%
velocity response spectra recorded at Station TB of the 1966 Parkfield Earthquake using two-parameter
,-slip function (T = sl 1.0 Mwith randomness.
1.0 Max.
Calc. Os Acc.
0.06.0.15 Vel.
14 4.5 Disp.
13 1.4 0.1 1
i il lIt II I
I FI 11 llfll 0.1 1.0 10.0 PERIOD (SEC) 48
100.Q SITE SE SITE NE
'I 310.0
__7 Wi Max.
Calic.
Obs.
- 1.0 Max.
Calc.
Obs.
._Max._Calc._Obs.
Acc 0.44
-Acc.
0.55 Vel.
87 Vel.
88 Disp.
264 Disp.
192
- o.
.0 1.0 0.1
'1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 100.
SITE VERT 10.0 Smoothed 2% velocity response spectra using two-parameter slip function (TR = s 0/v
- 0) with randomness.
-LJ 1.0 Max.
Calc. Obs.
Acc.
0.11 Vel.
24 Disp.
~
0.11.0 10.0 PERiOD (SEC) 49
MAXIMUM VALUES OF ACCELERATION, VELOCITY AND DISPLACEMENT Acceleration Velocity Displacement (g)
(cm/sec)
(cm)
Station Component Obs.
Calc.
Obs.
Calc.
Obs.
Calc.
El Centro South 0.35 0.45 30 55 10 32 West 0.25 0.35 38 72 20 94 Vertical 0.2,
0.35 10 20 6
19 Parkfield N65E 0.5 6.57 80 201 26 55 2
N25W 1.38 47 16 Vertical 0.2 0.27 12 12 4
3 Parkfield 5
N85E 0.45 1.26 28 82 7
30 N05W 0.35 0.35 22 22 5
14 Vertical 0.14 0.28 7
12 3.5 3
Parkfield 8
N50E 0.25 0.30 10 26 5
11 N40W 0.30 0.35 12 23 4
14 Vertical 0.08 0.23 5
13 2
3 Parkfield N50E 0.06 0.10 7
10 4
7 12 N40W 0.07 0.16 8
13 6
8 Vertical 0,05 0.09 5
9 3
3 Parkfield Temblor N65W 0.30 0.16 15 13 4
7 S25W 0.35 0.53 20 59 6
19 Vertical 0.15 0.13 4.5 6.5 1.4 2.0 San Onofre San SE 0.21 32 38 NE 0.26 21 24 Vertical 0.12 10 6
DELTA MODEL WITHOUT RANDOMNESS Maximum Slip Velocity = 1000 cm for Parkfield 1200 cm/sec for Imperial Valley and Site Specific Rupture Velocity 0.9 of shear wave velocity 50
100.4 ELC N-S ELC E L10.0 U) 1-0 Max.
Calc. Obs.
Max.
Calc. Obs.
Acc.
0.45 0.35 Acc.
0.35 0.25 Vel.
55 30 Vel.
72 38 Disp.
32 10 Disp.
94 20 0.1 1.0'
'0.0 0.1 1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 100.
ELC VERT Calculated 10.0 Observed Comparison of the smoothed 2%
velocity response spectra of the 1940 Imperial Valley Earthquake using DELTA's three-parameter slip function without randomness.
1.0 Max.
Calc. Obs.
Acc.
0.35 0.2 Vel.
20 10 Disp. 19 6
0.1
,,,551 5
S*
0.a 1.0 10.0 PERIOD (SEC) 51
300.
NSTA 2 N25W Lii 1.0 Max.
Calc. Obs.
Max.
Calc.
Obs.
-Acc.
6.57 0.5 Acc.
1.38 Vel.
201 80' Vel.
47 Disp.
55 26 Disp.
16 0,
~.*
0.1 1.0 10.0 0.1 1.0 10.0 PERIOD (SEC)
PERIOD [SEC) 300.0.
STA 2 VERT Calculated Observed Comparison of the smoothed 2%
velocity response spectra recorded at Station 2 of the 1966 Parkfield Earthquake using DELTA's three parameter slip function without randomness.
~1.0 Max.
Calc. Obs.
Acc.
0.27 0.2 Vel.
12 12 Disp.
3 4
0.1 n
0.3 1.0 10.0 PERIOD [SEC) 52
100. &
-LJ 3.0 Max.
Calc.
Obs.
Max.
Calc. Obs.
Acc.
1.26 0.45 Acc.
0.35 0.35 Vel.
82 28 Vel.
22 22 Disp. 30 7
Disp.
14 l
- 0.
I Iy u Bil
,I I
ifII I
I
- III I
rTIF 0.1 1.0 0.0 0.1 1.0 10.0 PERIOD (SEC)
PERIOD (SEC) 100.0 ST 5 VERT Calculated Observed Comparison of the smoothed 2%
velocity response spectra recorded at Station 5 of the 1966 Parkfield Earthquake using DELTA's three parameter slip function without
- 1. 0 Max.
Calc. Obs.
randomness.
Acc.
0.28 0.14 Vel.
12 7
Disp. 3 3.5 0.1 h
l 0.1 1.0 10.0 PERJCL TSEC) 53
100.(
STR 8 N50E STA 8 N40W 10.0 L0
-0Max.
Calc. Obs.
Max.
Calc. Obs.
Acc.
0.30 0.25 cc Vel.
26 10 Vel.
23 12 Disp.
11 5
Disp.
14 4
0.1 I,,
,I a
I a, a n
0.1 1.0 10.0 0.1 3.0 10.0 PERIOD (SEC)
'PERIOD (SEC) 100.(L-STA 8 VERT Calculated ZS 10.0-Observed U.J Comparison of the smoothed 2%
'velocity response spectra recorded at Station 8 of the 1966 Parkfield Earthquake using DELTA's'three-.
- CJI, parameter slip function without LIJ randomness.
Max.
Calc. Obs.
Acc.
0.23
- 0.
08 Vel.
13 5
Disp.
3 2
0.1 1.0 10.0 01101.
PERIOD (SEC) 54.
100.
STA 12 N50E STA 12 N40W 0U 10.0 Li 10 -Max.
Calc. Obs.
-Max.
Calc.. Obs.
Acc.
0.10 0.06
-Acc.
0.16 0.07 Vel.
10 7
-Vl 13 8
Disp. 7 4
Disp.
8
- 6.
0.13.
1.00.1 1.0 10.0
'PERIOD (SEC)
PER10D (SEC) 100.
STA 12 VERT Calculated Observed N10.0 Comparison of the smoothed 2%
velocity response spectra recorded at Station 12 of the 1966 Parkfield Earthquake using DELTA's three-.
parameter slip function without.
randomness.
1.0 Max.
Calc. Obs.
~Acc.
0.09.0-05
.Vel.
9 5
Disp.
3 3
0.1________
I111a i
g g
a I giti I
ISS IIII IE IS 111 I
I
- 111 0.1 1.0 10.0 PERIOD (SEC)
100.0 STA TB N65W STA TB S25W 1.0
/
Ma x.
Calc. Obs.
Max.
Calc.Os Acc.
0.16 0.30
-Acc.
0.53 0.35 Vel.
13 15
-Vel.
59 20 Disp.
7 4
Disp. 19 6
L)IO.I
- 0.
1
.00.0.1.0 10.0 PERI0D (SEt)
PERIOD (SEC) 100.(CL STA TB.VERT Calculated Max.
CObserved Aa.
.10030.0.
.5 03 Comparison of the smoothed 2%
velocity response spectra recorded at Station TB of the 1966 Parkfield Earthquake using DELTA's three parameter slip function without
- Uj. 0randomness.
Max.
Calc.a Obs.
Acc.
0.13 0.15 Vel.
6.5 4.5 Disp. 2.0 1.4 4 1 5 8
il I
~I 1 0
- 0.
1.010.
PERIOD (SEC) 56
100..
SITE SE SITE NE G10.0.00 1.0 -
'0Max.
Calc. Obs.
Max.
Calc.
Obs.
Acc.
0.21 Acc.
0.26 Vel.
32 Vel.
21 Disp.
38 Disp.
24 1 I nge I
a t
e s
i I
I I fIill I
i I
al I
I I l i t,,
0.1 1.0 30.0 0.1 1.0 10.0 PERIOD ISEC)
PEkIOD (SEC) 300.(1 SITE VERT L10.0 Smoothed 2% velocity response spectra using DELTA's three parameter slip function without randomness.
1.0 1.0 Max.
Calc. Obs.
Acc.
0.12 Vel.
10 Disp.
6 0.1 0.1 1.0 30.0 PERIOD (SEC) 57
PARKFIELD Station 2 N65E Recorded Data
-. 40 77.9 u
-59.4 7.91
-26.3 550
-59.4 0
Time (sec)
Time histories recorded for horizontal component N65E at Parkfield Station 2.
PARKFIELD Station 2 N65E DELTA Model with Randomness
-.82
-47.3 E
-77.2 6.95 sp.
-19.8 0
25 50 Time (sec)
Time histories computed for horizontal component N65E at Parkfield Station 2 1
jJ.
PARKFIELD 7
-Station 2 N65E DELTA Model without Randomness
-2.03 200.9 C26.
-5.
45
-165.3 2.25 0.0 Time (sec)
Time histories computed for horizontal component N65E at Parkfield Station 2 using DELTA's Earthquake Model without randomness.,
.24 PARKFIELD Station 8 N50E Recorded Data U
-.16 10.8 E
>-10.8 4.05 E
-4.41 0
25 50 Time (sec)
Time histories for horizontal component N50E at Parkfield Station 8.
PARKFIELD
.2.
-Station 8 N50E DELTA Model with Randomness
.17 11.6
-18..6.
6.03 CL
-1 8 0
25 50 Time histories computed for horizontal component N50E at Parkfiel-d Station 8 using DELTA's Earthquake Model with Latnnc
18 PARKFIELD
.1 Station 8 N50E DELTA Model without Randomness U
-. 30 26.3
-24.3 11.2
-3i45.
0 25 50 Time (sec)
Time histories.computed for horizontal component N50E at Parkfield Station 8 using DELTA's Earthquake Model without randomness.
INFLUENCE OF RANDOMNESS FOR PARKFIELD EARTHQUAKE Ratio STA 2 STA 8 STA 2/ STA*8 Peak DELTA Model N65E N25W Vert. N50E N40W Vert. Horiz. Vert.
Full Max. Acc.
1.20 0.64 0.23 0.23 0.32 0.15 3.8 1.5 Randomness Max. Vel.
77
,25 15 19 13 8.4 4.1 1.8 v = 800 Max. Displ.
20 8.7 2.1 5.9 7.1 1.6 2.8 1.3 Removing Max. Acc.
2.46 1.59 0.25 0.36 0.55 0.14 4.5 1.8 Micro Max. Vel.
82 41 15
.21 16 8.3 3.9 1.8 Incoherence Max. Displ.
20 9.2 2.1 5.9 7.2 1.6 2.8 1.3 v
= 800 0
emovi ng itiation Max. Acc.
1.87 1.57 0.32 0.32 0.32 0.10 5.8 3.2 me Max. Vel.
114 68 15 23 16 9.5 5.0 1.6 Randomness Max. Displ.
35 13' 3.1 6.6 8.8 2.3 4.0 1.3 v 0 = 800 Removing Rupture Max. Acc.
1.47 0.83 0.27 0.30 0.29 0.11 4.9 2.5 Direction Max. Vel.
80 32 14 22 12 8.1 3.6 1.7 Randomness Max. Displ.
20 9.1 2.1 5.8 7.2 1.7 2.8 1.2 v
= 800 o
Removing Fault Max. Acc.
1.33 0.64 0.15.
0.23 0.25 0.12 5.3 1.3 Orientation Max. Vel.
85 31 6.8 15 13 8.4 5.7 0.8 Randomness Max. Displ.
24 11 1.4 7.8 9.5 1.8 2.5 0.8 v0 = 800 Removing Receiver Max. Acc.
1.37 0.36 0.23 0.20 0.38 0.15 3.6 1.5 Orientation Max. Vel.
92 24 15 15 19 8.4 4.8 1.8 Randomness Max. Displ.
22 8.0 2.1 6.8 9.6 1.6 2.3 1.3 v
= 800 Max. Acc.
6.57 1.38 0.27 0.30 0.35 0.23 18.8 1.2 andomness Max. Vel.
201 47 12 26 23 13 7.7 0.9 v0 1000 Max. Disp.
55 16 2.6 11 14 3.33 3.9 0.8 64
FAULT LOCATION PARAMETER STUDY A
Rupture Direction C
D E
4 8 12 km F
G SITE I
I
. 1 1
0 10 20 30 km The rupture plots were separated for purposes of illustration only. All of the earthquakes are aligned with Earthquake A, 8 km from the 'site.
A14ap.of seven 40-km earthquakes used to study the effect of earthquake location.
A DIVISION OF TERA CORPORATION 65
SENSITIVITY STUDIES PARAMETER EFFECT ON RESPONSE SPECTRUM RUPTURE GEOMETRY LOCATION ALONG O.Z.D.
MAXIMUM EFFECT FOR RUPTURE TOWARD (40KM RUPTURE)
AND REACHING POINT ON OZD, ADJACENT TO SITE.
LENGTH SMALL INCREASE IN AMPLITUDE WITH (MAXIMUM FOCUSING)
INCREASING RUPTURE LENGTH FOR LOW FREQUENCIES.
HYPOCENTRAL DEPTH NO SIGNIFICANT TREND (MAXIMUM FOCUSING)
RUPTURE TOP/BOTTOM NO SIGNIFICANT TREND DISTANCE SIGNIFICANT DECREASE IN AMPLITUDE WITH INCREASE IN DISTANCE FROM O.Z.D.
RUPTURE PARAMETERS RUPTURE VELOCITY AMPLITUDES INCREASE WITH INCREASING RUPTURE VELOCITY PARTICULARLY AT HIGH FREQUENCY, SLIP VELOCITY AMPLITUDE INCREASES WITH INCREASING SLIP VELOCITY, PARTICULARLY AT HIGH FREQUENCY.
OFFSET AMPLITUDE INCREASES WITH INCREASING OFFSET FOR FREQUENCIES LOWER THAN 2HZ.
ISE TIME SMALL INCREASES IN AMPLITUDE WITH DECREASING RISE TIME FOR FREQUENCIES LESS THAN 2HZ 66
100.
SITE SE m*
10.0*
U z
-J.
__/_Mean using DELTA's Three-Parameter Slip Function with Randomness Two-Parameter Slip Function with Randomness Three-Parameter Slip Function without Randomness May, 1978 Report 0.1 J so
- 0. 1 1.0 10.0 PERIOD (SEC)
Site specific results using alternate rupture processes for southeast component.
67
TASI( Ll A. DETERMINE ML FOR COMPUTER-GENERATED GROUND MOTIONS B. COMPUTE GROUND MOTIONS AT DISTANCES GREATER THAN 30 OR JKM. FOR COMPARISON WITH DATA, C. DETERMINE M0. M S Mb.
MAGNITUDE DETERMINATIONS OBSERVED EARTHQUAKE ML M (DYNE-CM)
MS MS mb PARKFIELD M (DATA)+0.2*
5.1x1025 6.35 6,4 L
IMPERIAL VALLEY ML (DATA)+0.2 3.6x1026 7.3 7.1 E SPECIFIC
~6.2 1.47x1O26 6,94
- N65w COMPONENT OF TEMBLOR STATION GAVE MJ=ML(DATA)-0.4
- mb HAS NOT BEEN DETERMINED FOR THE COMPUTER-GENERATED EARTHQUAKES.
2
Viscoelastic Parameters for the Geologic Structure at the San Onofre Site O
0 a
p p
S Depth to Layer P-wave S-wave Density Compressional Shear Top of Layer Thickness Velocity Velocity g/cc Quality Quality km km km/sec km/sec Factor Factor 0.0 0.021 1.88 0.62 2.16 114 17 0.021 0.044 1.95 0.64 2.16 120 17 0.065 0.032 2.03 0.66 2.16 126 18 0.097 0.113 2.13 0.79 2.10 122 22 0.210 0.11 2.28 0.93 2.10 123 27 0.32 0.33 2.48 1.16 2.10 124 36 0.65 0.27 2.75 1.39 2.24 133 45 0.92 0.27 2.85 1.47 2.24 137 49 1.19 0.10 3.10 1.66 2.47 148 57 1.29 0.10 3.20 1.71 2.47 154 59 1.39 2.12
'4.80 2.94 2.60 231 115 3.51 6.97 5.70 3.49 2.76 286 143 10.48 6.10 3.73 2.76 312 156
.25 QS=
30 QP = 3/4 Q 2
3
Max. Peak =0.1111E-01 r =10 km 0
Max. Peak =0.1712E-02 ciiC-,E 0
~r
=20 km U
Max. Peak =0.6835E-03 r 30 km 0
Of Max. Peak =0.6498E-03 r =40 km 0~
E Max. Pea 0.5368E-03 j
r50km 0
Max. Peak =0.3700E-03 r = 60 km 0.0 6.0 12.0 1.8.0 24.0 30.0:1 Time (sec)
Radial displacement component for reference earth structure.
4
~L
-toe
100.
10.0 (I,
GE G
WLLJ 1.0
- 10.
100.
EPICENTRRL DISTANCE (KM)
Ratios of the maximum peaks for the radial Green's function displacements from the double Q earth structure divided by the corresponding maximum peaks from the reference earth structure, as a function of epicentral distance.
5
100.0L 10.0 E_
20 hz F
10 hz CC~
.001 5 hz I-LuJ to 1
hz U1.0 0 I
. 0
-s - a 1
ED 0.1 a
- 10.
100.
EPICENTRAL DISTANCE (KM)
Ratios of the Fourier spectral amplitudes for the radial Green's function displacements from the double Q earth structure divided by the corresponding Fourier spectral values from the reference earth structure, as a function of epicentral distance.
6
100.
(n 10.0 2
20 hz c
1 0 h z r
1..
5 h z 1.0 a-7 0.1
. V -
0100
- 10.
EPICENTRRL DISTRNCE (KM)
Ratios of the response spectral amplitudes for the radial Green's function accelerations from the double Q earth structure divided by the corresponding response spectral values from the reference earth structure, as a function of epicentral distance.
7
Max. Peak = 0.3054E-01 r
10 km Max.
Peak 0.6418E-02 r
20 km E
Max.
Peak = 0.2198E-02 r =30 km (0
- r 0 Max. Peak 0.1730E-02 r =40 km NJ -0 F
Max.
Peak = 0.1528E-02 r=50 km 0
Max. Peak =0.9826E-03 r =60 km 0
0.0 6.0 12.0 18.0 24.0 30.0 Time (sec)
Azimuthal displacement component for reference earth structure.
8
Max. Peak = 0.5999E-01 r
10 km 0
Max. Peak 0.1259E-01 r =20 km 0
Max. Peak = 0.4274E-02 r =30 km ro Max. Peak 0.5362E-02 r =40 km 0>
N Max. Peak = 0.3826E-'02 r
50 km 0
Max. Peak = 0.2131E-02 r =60 km
- 0.
0.0 6.0 12.0 18.0 24.0 30.0 Time (sec)
Azimuthal displacement component for double Q earth structure.
9
100.
1.0 0.1 100.
- 10.
.EPICENTRAL DISTANCE (KM)
Ratios of the maximum peaks for the azimuthal Green's function displacements from the double Q earth, structure divided by the corresponding maximum peaks from the reference earth structure, as a function of epicentral distance..
10
100.
20 hz 10 hz 10.0 cc a_
(n 5 hz
- 1. 0
- 10.
EPICENTRAL DISTANCE (KM)
Ratios of the Fourier spectral amplitudes for the azimuthal Green's function displacements from the double Q earth structure divided by the corresponding Fourier spectral values from the reference earth structure, as a function of epicentral distance.
Results obtained by ray tracing are indicated by solid lines.
100.0 10 hz CO10. 0 0
20 hz 5 hz L..
1 hz Cr)
~1.0 0
CO)
Lii
- 10.
100.
EPICENTRRL DISTRNCE (KM)
Ratios of the response spectral amplitudes for the azimuthal Green's function accelerations from the double Q earth structure divided by the corresponding response spectral values from the reference earth structure, as a function of epicentral distance.
12
[ _..
_. I ___ -
I -
, 1,
-1.
-- I 11
_111
.- f -,;--111%;, -
I 1 "I,.
silil I
s I
l
, I,
" I 7 I
-,%7, I
11 I - a. ",
7 1 1
, z 7... :
"..111,
- i..
,,,, -, :7,;-,,-, "',.-- _ - " T, 7, --,,",i T'a, -,7r-
'4 n,
,W,f,
'.,, D'i:,,.
-qspA., k, -;-p
-".", t -
, W 4' '
,, 4 v,
, xf r Wl
-, _ 'i jl," ' 1, I
,; j -,* -,-'- " "
-,, k -, ',",
I t -
__. 11 --'PN _7 1'1
,q -.
- R,;l
- p.
- 7
, - I
, iiii. I
',-V1, l J,
I I
,,._ iz
,,,,, r'-, ".,._;-,
.1 n!*,, -',- ' A,"', - -1 _ -- ;.1 "I --
1 -.-,. -.-
41 I I
I I
,,Ai_ K f ll ___",
I'-- o,,
-1 I
, T,,
,, x, -
, &F,
',..' l I
'44-,,,7, I I
,,F,' W
,.t-
't
': I, I
"I I I I.,'_,,, _'_', -
I.
I -
I -
tF.,-,
) ",
I z 2 r 1_ "_ ll _!,,
,,,,l,,:_-,, '. ' ".
-vl
- ---v 7,,,, ',,- 1.2
- ""l, -,
-1,
- "; *,-,,-",,l
- _-,,I Z: ""
"_1 1, _ :,,"Fl -,
-V
.11
., - I
,-, - Y t
'r.,
5,- - 1, - 1 51 " -.,
I
.j "",.,,7 I I I.11 -
,., " - I-. _. -
, T "',.
"., " " t,,
7'..
,fz-':',7-4
-% -7""
"I'l;',
v T -,,
't
,I'.,
- a.1, T,
A,.,
, -t -,!-,
11 I-
-I'll." i" I' I
.1 1 11. -
'T i '-.":',,
1,,,,
t..,*!,
t,
%,7--.-
".,;,,-7 -- i,,
-. " 1 1 -
-7,
-- -,"'r, -_,, -,. '_."-,;,
i -
I I
1,
.,,,, -rc, ','.',,
ll yl I -
1-1-41mv- -1 IT
,.f,, w, - -
p
,.',,,,, I I - I 1;., 1,,,,'.
i ",._,
I r
-. j ", -
,,,_ Z, tl I 4. I,), - -
-,_,, -I _1.
L,,,
i
,S,
--, -,,i,
f
'I,- -,,
, i -1, - ",
_ l i,<' -, "
1 r-..l 0
1 1 11
, -,- V,,:,." ',, -, -,- _-;. -, - ", -,,',
, -.,-;." 7'1 Z4,,,,.. P,,'.
.-1, 11 I- 'I',
,.,,, ',,V, ',',, -,- -,--
,, e:,' "-, - -, -,.,- 1 ". ". v,,,,,
j, -,;.
T
",;-,__ -- - -,'V,,,, "".,, -
o
- 1. 11 I I III-J,,;I,-
. j,
..,l
,,r-,,,-
-i -;-r, ", -,,',,,l, "
_, W.,.
I I
I I
- 1.
4, -,
-,- ;;, -,,1:,,
f, '..
I 11"
.. I 1 1,;,- - -,,
1-
, ;., 7,,
. r,-. -
! I
- g,
i--__-,,P,,' '. 1 1 17,- --.,
,:e,,". -
- f,,.-,-,Z-!v_,
- 1. 7.',, "", 1,,., '4_ -,",-, -.- : -r,.-,-,,,,,,.;,. -', ',f ',-,',- * '.', -,. ", _7 p.
p -"- I 1,!_
i
.. 11
- 1
-.. w,,:.T I
f -, -, ",, 1'.-.,
_; 7:._ -
)
-,, 7, ';,',.,j,,: :.fw " ', -
"". " :," !,,.-.,Z,, g I
,:,, 4-_,, 6 ;
,,z...
Z,
" "' z-,-.-,-,, 4 t -
-',,.,,, "k, ",: j;,4' f f, __
1 11
.., I "", -t.1 2 ;, -,P -, !!:,%
, +,4;,J,, ",i " '-'-'
- -, I,, -.-
r
_1,
_(,
, l, I I -
,. ft t.-. 1, V e
,4 i-,-V
'.,q
, 't,,
,' 4 z, I -,,
1". 11,.
-,f
",:.-,j,
-,.,', Q'.'
" -4.
--, 'il t__ -.
-g.4 ; -
ll p
,_ 11 -,, -
I--
, -Rl, < ---, -,, ; :.',;,,,.-i,'. -,,'-,-'4, ;-,,';
-,,, -,4_t,, 4, Wv ?l
--,,,,, " " :.-t;.",'..,",,,
t--,
, ".,. - " -A,
-, 1.,,,, -, ".,"",
7;_j,-,
,,, I #,
-, v z -.,-,,' - 'A
-11,
_??; I I
_j
-1,,
I 1 I _11 1.___.
'4 W 0
,f '
j,,,.,,l
'j -,,,,p,,
_ 4,1,
,I,--,-
- 1. I
- 1. 1_1-
".l.
W.,,,..;,, -1
_ l
- I.,
, -_ _ -'-' I -,._,._.- -
__.- z 'I 'i
! I p -, :,_
1-
., L, 1, _,,
a DN
-.7, -- _Rwm I
41,,
, I
!. 1-'
,.r,
" I I, % -4 k,
_4
,z I i 11-1,
-" 1, ') 1 ',,, ", ;,7 I ", -1
_,, 1,
,oli:1 4'
_I
, Wr I
, it,,;, ',
z".:'t, -,,
.,.! Yl,
. A -1., 1,
4,
- 1 et i,
-,Ik, - -
I I
I -
,.,, : l
-.,'.,,-,,., 7,1 -, ",-,,,',.-
,4t
- k',i y,
,, 7.1 -y " -7
,6 L-
',,", :&-, i,-. ',I: -", Y i, --
,-i
'W,-l
- !4_w 0-7r-
--r -
'1 '6,,,.- -
- r,
,k,, -,,',?,, -.- - -1,
q
- nj i
, _.w!,
,,7 A
.- I
_J" I
I I I
, -, -_,A_
1_1
- 11.
A_
10 0 W I
---,,,',A,,,,,,,*",-,-.-, -,
i'-,',, -, :-,-,, "'-
',.,,,- 1, I
".1, 11
', ""-, l'-,';.',,
,I
-,._,.-._- I I 4'. i-P z A, r
_ ll 1;
_: I I - I, I i,,-,'i-4., -.t i.,, -, -: r WIM
-, --,. ;: I.
04Q.
1 4, -I'- I 1. - I i,1-1_11,
- "., ! M,.., ",-"I
., 7'.
, -,'_ ;,!, "", _ -, - _Y,'
,, "I
,4' - ;7wl
,; --.!,,- ',,--_:, --,,,,,., _--,.;-.'-z-,,% 11
, - _.,,,-,,, -,,,.,- t
'.1 i
, 4,2j i
',' ;,-;C-_
.t c,
- 1. -
P._t I.,
, ; _111-,
Z_, ;:,,
".,,.%4,,:r,_ i-l,-:
__ l -,;,,
, --,, Z, _",.
4,
j
_ v-,,,- -
" - 11 I ",,',-'l'l-'t -',
-, I -,,-
"i 1
-"M 4, v,
A'ij,'
I
.4 "!. -;, ; __.-
-_'l *.,
-1,111,,
i 11 Oki
'm
- -4 " " "
1 I. I I
._..V i4l.l
-1
,, - I I
R-1
,,,7 i Z
! r
. 1
":,, '. ',',', " -,' :, ',?,-
-, E"f: -;V. r -,
, 4' -
1 ', "'j, -
N t, L I
"I
- f, 4',
ll '
t
__ Ll 7i W" I I '..
v r_
,-., -2,j,_'_
11
..jj
-I r -
.. 1
, -1; rt',,-r -
F.=Jlld
. 1, M
I
-,.;),
_4,
r'l,
- -Zl,,
",=
I
^i 1XII,
'_._ 11_1,11,
' - sa,
I
, R,
,V '-,!
-t,
-.1,
,7,
,-, i, "i-3_
1
' ', ;:"_, :,,'?
_c l
1--l "I
_1,,
9,41 n ow gz-.
1:-'_-
_7, -
Z' I I, q
=
I
I
- 1. -, -
1 -l 1,
I.
.I.-
=
, I I
_., 1, -
7; 1,,"
N, W.-
ZL,
, z
. _., 1_',
-. I '. -
.l.;'._-
11111-l
.1, -
I 1
, III',,,,
-,ll_,ifl.
l
,i:,
-l",
- ";T",,,
I 11, l
-1 I
_,,;,!.,z 1 :,;, ',
- 1. _
i.__11_1
' 7 -,
- 4 I '.
- .I I lrlv_-
I iij I
1:-'r -,,..,
-'-;*,r, ", 7 "
I.",
i-.
I
.1 1-11 I I I
_4_
I -
1, -,
""I",,,_,
, I, I !, -_. -,.
-_ --_, V-
, 1,: 7
,.,,, e, '.,t
_, I.,
i I
W 1-
.,-,. i-, -Zl
_;_ I
'i ll 11-1 ll
.4',..,-,
i I
1, I ll
" r ',_,
114;:
I I',,
i' 11.-._l.___-
_1 I, -, 4, _ _, "
-li 2
I
, s.,
L I
t, -_
I 1-
,-,,.1 1, 11 --.
d,..,
1111V
,,-,,._,f-"l
,V, 1, -
1-I I
- 1.
T.
,I
., _1_111. I-i, -
T.
-,J-
,,,- -l l'-
p-,
I
,t,*
11,,_-
I ' ',
, V _.. 1-1,
, __:.", I _,_,
(:y 7
I,
' %11.
, S.l,, " "_
_111.,--,
-1 v,,
-1,
,,, :,., t
- r,
0 ill j,
,.1_1-1 I
"I 11,
_l I,
l-,
_,,,z,',,, "",: -,, -,'--,,. - _, -
I I
I 11 _-
, I".
I
,-,,-, Z,,, ".
V -C,-,,,
_J _-, -
,Z, 0,':,, j 1 7 11.
1 '
-V,',,, :, -.-
_4
, ;,',' 111,
.1 I 1.
1 1._:
i-f I
-. '.,,,,',, 1 ",,,,
"A 1
11,
'!- '_t' '-
,',j iii r ', ',,--,,-,,, -
l I
I ".
p,,',
".., 'r,, -
1:1 _
- .,i, k
I 1, 1 1 -1..
'l
'l-
, J, r-
_-L-1 I
1
!:-l-_'
v
- ."i -
rW 7 "I'
I
- 2.,","',
,,,,,,.,_,v I, I,- -
I
. _7 'A',
z I I.
I I-k' _-
9; I
L;',-.I;.
ll I
l ll I
_.,"l I
-7,,,,
I 1"-_
'I
,.-Z!l,.,:'
k '11, 7-t,'
I i", 1" 1, L;
- 1.11, I 1
I I
, "L -Z
_ L,.'
.11
-1,:--
I
_1 I -
I
'1 k,
)
la 2 I
-i _ '
_?",
I ",
I
' : L - _
r; '
,- 7 11,111
._,. _,L,:",.,_.
11,.,I ":-
1
-1 I
, 2, L
, t,",,
A., _ in-, A "
I,, 1_,
1:,
,1 I
I L '
L I ",
L% "
l
_ I
, -r,, "_)::
, ?
4
,.,,,,Y,..?,-
,.f ',
' l,
- I '-,
-J
.,, :.'--.',z
' L I,
IV -
I L
, -I -
2, ",
I,
-15" b,
-: t, 4-"
I
, '..1
,% I' '
"', k L,
I
,. I
,7,
'_7
, -1.
'.'. ","y'
, I I "..
1, I I
- -1, " ":
ll..
_5,
1, I
-I a
L 1
-1, -
- 1. -
_. I I
1: "
': I
-Z "R,,--i^_-,
?." ",
',- l
'tj I",,
l-,-,
.il..,, -,
L -
-, __- -J 4,;",,% -
V',
r,
i
-, -1,,;L
- ;L4"
- 1.
,,,,Z I
":-, ':, I.N.,
", I I
F,
,- 4 1,
.- Z,
L
__,-L'-
P
. I I 1 11, 1 11
'i
!,,< ',, 1,,
_-'.'j.',,,
, 7-74 --,
.,,4,t",
"I,
/'
_ I", ', ',"
I I I I.
I I L.,
I, ll.-
I I
I i
-;,L'
'.,V-:
,-.-J,*,,,;,tt ', P,
.7 i-If, li
'. 1. "
1,
- I,,,. -_,
iti.5 It,
. _tl, A,
I.., A',,,,,,
- i..
,e 1,
I 1 :,-.
L C',
',. "11_1 _.
, -,- i,
t j *,
7'., 4' I, r-.,
q,_ -
- -.*-1 l
.1
-A -,
, n, -
4-,, 1
,, tl,,
e,
'I
_,, I I I ' _' 1, -
% L
,i, 1-
. - I- -,
": -,.-..f;
--,,, : __:.1 -
-- 7,7',,-,
'i, t 7
6 l I,,
, n,.,.,
'. 4:,
-. - 1!,
--,I,-
L' I
L.- "I'll-,
', I
- _.
I
,, L, I
,, '-'.,4__
lz,,,,,, L,
. -1 ',',
l I
- ;', L':' -
" 1, l
- -;,z,
, i _ ',
X
,, " I,,.
I
" I 1:1 1
_ il,,
4,
.1-,,
,j,',
I '
t,
'_,4-",
I
-1 7 '7V z
. I
, 51,'
-, *,, 12,,
'11i.'A i
.
- I L'.' V_-
-,7, L-j, _
" ;j': ;F
_;'r.Z.
,, I 1,_,
7_
,i-_
-1 il-
-I
-1 tv-11 -1 "
_.,L 11 -
I I
I f
I I -
7,
,,,-c, :47_,_ -1,-,d, T
l. r J- ---
I
-_1
-- - I", 1_7,_ - 1: -,
I 11, I
4,
- j,
- 1.,,-,
4 j,"':
1, '.-i;,
,, ^ -
,-X V,,
.!,' -i
,,,,.;, i
,,., I i3,
- 1.
, k "
_,'. ', 'r
'V,
, 1
, I -
,j- - -
I
, i,,-_
1
, - :-_- "',, 1,
,,r, F
,., 11 o
-;Allr T
z
- , I f
4 mLl',
I,-
14" J,.
I.
I I I."
4.,
I I
-'_-Zi,' ',T, _aw,
'r,,_ -
',,'4,
,-,,.-::-",t"
- , "L-,
21'- _'-,'
,- ; i*,
.4,--i,,
-A r,,,,
1 i
1,
-1 I,,.,,_'
Lt
_,".,,_,,,_,,,,." 'i" :". :,,,-
1_,
I I
r-I
- 11.
p!r I
v:,!
,.,, 'I, -,,,-
"'t _ :,,
, "', 1, i
I,-
I
.,-L-z,,
L
.,I",
4 I
L 11,
- V_5 -,,_ 9..,L; -,-
- 4,,,-,,
.. l
,j;,"
,4 7
.,;,. -"J I -
I "
. " 1, t
'N r
r 0
N.. O rZ
?,,,,, ;,-,-rv
,_ z-
",14,
,A,
-A
..,'r,
. Wll_
- 5,
I
- 1.
t,
1-l 1111.1-1
"?
,-I
.11
-,_. :4 L 1,
.1 '_-
ro" W_
4, N.
-A,,$.,p' 7t "
IV." 1, 4 111_a'
-. 1-1
, 11, l._. __
I 11 l
4 '; 1,
'N
.P6 l"
f,,
'Y' I I
', '1,1
_-Z
,W
'T 4-
._nf
- A;,,,
I
, _:z"*, ;l, O"
.V,,
__,.;'A I
_., Y-t t, -
-_ "YL,
W, N l
iw t'. ___ -
It"
,4 L.-
,1-
_1 ' "
'L'
,I:'
_-4, J;,
l I
-1 v
z, ",
- 1140, 1
7 L ' ' _
, "71.,
- 14. !t
-7,
.V., -
_ +.
I 11-
"_ _1.',
'l 11 I I i.
_. ", I : -
I.1, I
It 1, 4, ;', _-,'!
- Q r.i-L, I.,
I I I 1 -
v
,-I I., - A
- I I
"I
. VQ r xX
,, "i,
.j,
AA,
- - J 1,
i - -
- ,, Y 11 I~
I-',
- 5.,- -,,
'1',.I_.
- ,z I
- ' "L"' -
1
_4,
_.__._,?_
z _
, I IU 4M
, k
-,I I,
l
, l
':4,,.-",., _,-"t, -_ --L, t m,;, ' - -
i '11, -";." ", -
7_
h.."
.7 11 I 11 I
F)'.,,;, 4,
.fl
- I
,_.,.: _l rl,
11
. I "
I I
A'l _.
,if,,,,,,
ZA P,
L
', M titi, iN I
, _ "." I,-,
"I 4 __.
_ -I-I
__ -, I I - I,, -
., ;U,',7, 1-1
,., -_,.N
-_ -,,.,, jl-_,.-,"
..I I "
I- -
I 6,
- L -..,
-,_j."
' L'
. z 11.'_, I
'A t].,
j " '.1
-; '5 -
?
-_U.",
I,
, I I I.
- I.
I -
t -,
-,, -r I.-
-1
-..4 I,. I..
I I __
- - -,,q I
)l
- 1.
"., '11,.
i 11 11, 1,, _,
,,,-:,.,'A ZATlf, I.,
l ",,,
,4,,,
" 4-- --, 14,,,
, x iT,,,
I 11
';, _,,4
-11,, _, -,.,
I
--2,-
11,,: ',,, -, -
, ' ":%L
-f. :;2, I_%
' j 1.111,
- L l ;
1,, '
, I,, -,.,, t,,,
I -1
.kv ':
I -.
4'11-1.
'--I'
! L
, -, " - _.": 'I",
I,
, I I -
-."v I
, x I \\;
.)
I
" t'_,
. I I
L,
' l I.
- I,:
" I '
,k-'_'_-l*-
,, "L-'
l I
,4; 4
0-
, I,:
-1 R
.1.".
, -1 'I,,
11 Z'_' 7 I 5
L., _
- _w,
1
-a I
m -,-,
t ",
,, 1,,
C-,.-,,--,
ZZ -,,,
-_L 4,
E
-1,-
, Ji':, A -t:; lf
,._. t'l I-,,
, " I ',
, I-,
_ "l,,P'
'. 1, 11 -
- .1,7) 1 l,,
L-
- "w
_: 11 "'I
,.7 1
,I,
'5.',,J 2.
l
' "IN"
. t I
'.':j _,
f
_,'v;,
'L I
, 11., 1, 2,
. tt 1 1",.,,
9 I
_-).
111
, km I I 7
,r;
_Z._.,!
- 1.,
.rl i -"",I A
.,f k
i-Z, -
W.",
- 'N 1
1
' i I !:,,
-I "A I
I
, I 1,
, I A,,
).
I i
'_ 11 I
, L
, 4
., Y 1't 1' -1
_2 -
"I'll.:
'l-
-1,
.11W.
I
,A
.4 5
W,
.k,
, 7,11i.,
1.1, :
I 11711511F 6..
l 11 I -
, I " f,,,:"
I, N
91
-I I
, I., l -
_. "I.., -1 li
, l
- a i,;4 I
- 1"K, I
"; I
-f,
, Dic 1,,;
I,
---il I,
1
_1131"o
. 1
., w L.,
,,01'11; ZW V.
77
_0 t
.14 *f
- fd' I I [
33",
I A M
'I
- le I
....... - _m I
"...t.
-, ",, I., -
11,
.. I., 11, I'll
_ - -, I..
ll I
I I
I I I
., I "I...
t e
- _ !:, 'I,:, I - -, -,
-1
-1
_4 r,,
., :.11 7 I 'I.,
1, -_i
, ",. I -1 l
A 711V.1 I
?,
i I R
_ OR li
%, _ '_ :,_ _", _ %.' ',,', L
,-I,.
, ' " L-j":,, 1,,
,_,',_, - 1, 1-1 1
.L,
klj --
lo!- I -
I I-,
11
- r :
, : _ ; I
,'J,.,-
7,.. -
,,;.,, ', L X -
",- 1 L.,' -,
_. I -_ _
- , 'l 4w.1, 1'.
'l., I 1
111 " ;,,,, Z' "-'.0 -1 11 ", :",-- -
',,.4.
r -,,,,;; 1-,
l
. l
","Irl' I
, _1 '_.,l', r_-l,,,,,,-,-,,
-.,', "" :C.
z 1
. 'lll T " L; Y,
r
- 1. I
_1 1., 1 4, l
) v
'4 1, : !.,-, ',,
- -_ I I p ll,-- " S z I I,
11,
., -7 i '
i", -L L I
"' 7"
' ' 'k-_'
,",-l. 1.
W, 4 " '4-, ;, -
i
.,Ir,,,
Lt f
I-I
/11
, I I "', -,.,- _,,.,
, X, f- -, ': '..
,,,,,. I, _
4*
- ] lt
, W,
" I I I
-, I I,
- k, 4 F
,*, 1,
-,-,; 4, -
-,y
-,:*;?
1_
tl, ;;.'., -.,,
, L I I,a
. I, " ii'
.r-
.,Z _
I - ", A.,
I,,
,, 4
,V,, - _
1, 5
1,
- t R
I
_f L :,,,.,_.;,,
- i,
-,L.- '," W.
4
",.1
(
-l 41',,,,
, 7 v
. I _,,_ -
I."
,-I,'_-
-L&'
I';-
_, ; L 7
j, I L"
__, ':I'T,"'
.-,?7 ;-:,'
L, j-
,_,, -, ",.!Ir7:
,,-:.,--., I,-, !,,
1, -,
I I I ;,.1 V,,, I "I"'N l
,., c -
,,-I, Zi
""7k -
,'_-"-_)"
- , I.
- ; c-,.;,
, i 11 t,
7 -;,
-;, '.;._,, -.2 L
1 Nt
-1,
'.1 1 -4 :'-', ',
l 4*,
Sw
_,", _1 -
I,_',"'.\\ - :
t-
. _. I~,
_---;.,r i._P 11,,,-
j
, 7.
I
._,A l
,; '.,I!
1 -
r tq' -; " -_ '
,J,-"-,., - ;,,';,4_-,' ' ',,';,-_;,,
Z " --- - -,- !1 I
Ll
- .. - - P, -r
-1, 4 '- -
4 ',., -;l_-,,..-!,
I i. -, _, ;--
- -% A,:i, i' 1 11 1_;
,,. Ll
,.,, 7,,,-7,
_11J
,,,,L 4 r.
, - ---- -, "4"7:
--,,-.,.' -i",
L 7i.
, _,;;,,.1 z"', -, 111, -
I 11
,, 17-,.
X,,
'_"":,' "L' "' ;_""' " y"'I",-F ',
,,". -, L- -'. -,-,t" - -"
, i:igk
- I _
., 'L
- t;,V,
,.>,t,
, -,. k, 1-I
- " v,',j 1-1 I 1,
_ j,
., ;'& x,,, t....
I I "." I L.,
,,,,, j j__I '_ -",.Lt I
I y,
I..
'. -k G,,
- ,,,, -, 4.
44
, i
, _,,_,_,i7.,, 17,,_,; ',,,
_ *,.-- -i 14 -,,
, J,.. _ -;', ',,, -- --,
7 "' lt fill 11111 I
'V i
-,,., 'o _
,,,," Z1. t,
1:11
,, f,;_,..
,' ', rl"-,,,_;.,',. ".
r
,, v
. _ '.' ? bo, ",,,
T,
-, -, -1 1, 'j-",
1 t
.11 7
I' f
4
,ss I
" 3,';- _- -
,,, j-1,,. I I,. 5,
-, e- -
I I
L, I
i-
,,, I
- I
,: )
_- 1. 1,
.-,,, ve,,
q 'l I,
v I,
..-.Vo','
, I 4
-'i '.
'l-
-t 1 4 1113 1
p, l,,
X'), - -1 A
.11 I
I I
I L
1W,,,.,, _-
.,.1 1.
.W I-
"Lr,:
..f';
" !r, I -
11
'14 _, -
I
_ l 1 -_,'
1,,: -
"I 4
vl,',,_
,,.- -, ",?" l"":i
,.,. I
'r -A, ',',,".!...,
(, "
I,,
?:'),
I
_-z,
I -, :
f t-
, '*. 4 11.
I I
I I
-t-I _.,-
,., -4.,
I I
I 11.
I I
I, I
, '-, 1, -,
, I 11 I...
M, ? i444 imm IMF
-1 111.1,:
."il I I
J-.
I I.
.1
- 1. --
L' I
11 l
W'.
11 I -1 11
- I -I.
- -
n:
I A24, JL
?, - _ -;
I I :
I 11 1-41 I
I.r. I,
_W,,,,,,
l -
ii