ML112380579

From kanterella
Jump to navigation Jump to search
Rev 0 to Cycle 13 Colr
ML112380579
Person / Time
Site: Duane Arnold NextEra Energy icon.png
Issue date: 09/30/1993
From: Hopkins B
IES Utilities, (Formerly Iowa Electric Light & Power Co)
To:
Shared Package
ML112380580 List:
References
NUDOCS 9309290264
Download: ML112380579 (24)


Text

Attachment 1 IOWA ELECTRIC LIGHT AND POWER COMPANY DUANE ARNOLD ENERGY CENTER CYCLE 13 CORE OPERATING LIMITS REPORT REV 0 September, 1993 Prepared by:

Verified by:

Concurred by:

A-9 7-U3 Nuclear Licensing Nuclear Fuels Reactor and Computer Performance Reviewed by:

Approved by:

Chaijran, 0 erations Committee P\\

S Plnt Superintendent, Nuclear

-7 7-9309290264 930921 PDR ADOCK 05000331 P

PDR

1.0 Core Operating Limits Report This Core Operating Limits Report for Cycle 13 has been prepared in accordance with the requirements of Technical Specification 6.11.2. The core operating limits have been developed using NRC-approved methodology (Reference 1) and are documented in References 2 and 3.

The Cycle 13 values for the core operating limits are provided in Section 3.0 of this report.

2.0 References

1.

General Electric Standard Application for Reactor Fuel, NEDE-2401 1-P-A*

2.

Duane Arnold Energy Center SAFER/GESTR-LOCA Loss-of-Coolant Accident Analysis, NEDC-3131 OP, August, 1986*

3.

Supplemental Reload Licensing Submittal for Duane Arnold Eng Center, Reload 12. Cycle 13, 23A7210, Rev 0, June, 1993

4.

Duane Arnold Energy Center Single Loop Operation, NEDO-24272, July 1980

5.

Average Power Range Monitor. Rod Block Monitor and Technical Specification Inrovement (ARTS) Proqram for the Duane Arnold Energy Center, NEDC-30813, December 1984

6.

GE Fuel Bundle Designs, NEDE-31152P, December 1988*

  • Approved revision number at time reload fuel analysis are performed.

Page 2

3.0 Core Operating Limits

1. Maximum Average Planar Linear Heat Generation Rate (MAPLHGR)

TS 3.12.A.

a. The MAPLHGR for each fuel type as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-7 multiplied by the smaller of the two MAPFAC factors determined from Figures 8 and 9.
b. During SLO, the actual MAPLHGR for each type of fuel as a function of average planar exposure shall not exceed the limiting value shown in Figures 1-7 multiplied by the smaller of the two MAPFAC factors determined from Figures 9 and 10.
c. Tables 1-7 provide the MAPLHGR values (KW/ft) for the exposure points (GWd/ST) used in the SAFER/GESTR-LOCA analysis.

Tables 1-7 correspond to Figures 1-7 respectively.

2. Linear Heat Generation Rate (LHGR) - TS 3.12.B.
a. The LHGR of any rod in any GE8x8EB or GE8x8NB-3 fuel assembly shall not exceed 14.4 KW/ft.
3. Minimum Critical Power Ratio (MCPR) -TS 3.12.C
a. The MCPR shall be equal to or greater than the Operating Limit MCPR, which is a function of core thermal power, core flow, fuel type*, and scram time (Tau). For core thermal power greater than or equal to 25% of rated and less than 30% of rated (25% < P <

30%), the Operating Limit MCPR is given by Figure 11. For core thermal power greater than or equal to 30% of rated (P > 30%),

the Operating Limit MCPR is the greater of either:

i) The applicable flow-dependent MCPR determined from Figure 12, or ii) The appropriate RATED POWER MCPR from Figure 13 multiplied by the applicable power-dependent MCPR multiplier determined from Figure 11.

b. During SLO with core thermal power greater than or equal to 25%

of rated, the SLO operating limit MCPR is determined by adding 0.03 to the operating limit MCPR determined above.

Cycle 13 MCPR limits are applicable to all DAEC fuel types.

Page 3

4.0 Reload Fuel Bundles FUEL TYPE GE8B-P8DOB303-8GZ-80M-4WR-1 50-T GE8B-P8DQB324-1 1GZ-80M-4WR-150-T GE1 0-P8HXB321-11GZ-70M-150-T GE1 0-P8HXB317-7GZ-70M-1 50-T GE1 0-P8HXB321 -11 GZ-70M-1 50-T GE1 O-P8HXB316-8GZ-1 00M-1 50-T GE1 0-P8DXB327-1 OGZ1 -100M-1 50-T GE1 0-P8DXB327-8GZ2-1 0GM-1 50-T CYCLE LOADED 10 10 11 11 12 12 13 13 Page 4 NUMBER 8

24 40 64 24 80 56 72

TABLE 1 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

GE8B-P8DQB303-8GZ-80M-4WR-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 0.2 2.0 4.0 6.0 8.0 10.0 12.5 15.0 20.0 41.8 50.0 11.53 11.53 11.75 12.27 12.69 12.96 13.16 13.22 12.89 12.30 9.65 8.06 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 5

TABLE 2 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

GE8B-P8DOB324-11GZ-80M-4WR-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 3.0 7.0 10.0 12.5 20.0 25.0 35.0 45.0 50.0 11.20 11.85 12.54 13.07 13.06 12.05 11.39 10.12 8.46 5.99 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 6

TABLE 3 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

GE10-P8HXB321-11GZ-70M-150-T Planar Average Exposure (GWd/ST) 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.5 Linear Heat Generation Rate (KW/ft) 10.77 10.85 11.02 11.27 11.56 11.86 12.08 12.24 12.41 12.59 12.78 12.97 13.12 12.89 12.25 11.57 10.24 8.68 5.86 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 7

TABLE 4 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

GE10-P8HXB317-7GZ-100M-150-T Planar Average Exposure (GWd/ST) 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.7 Linear Heat Generation Rate (KW/ft) 11.50 11.50 11.56 11.69 11.84 12.02 12.21 12.42 12.64 12.87 13.07 13.21 13.24 12.93 12.23 11.54 10.21 8.71 5.86 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 8

TABLE 5 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

GE10-P8HXB316-8GZ-10OM-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.8 11.22 11.28 11.42 11.62 11.81 12.02 12.22 12.34 12.46 12.59 12.74 12.89 12.99 12.76 12.27 11.63 10.23 8.79 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 9

TABLE 6 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

Planar Average Exposure (GWd/ST) 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.7 GE1 0-P8HXB327-1 0GZ1 -1 OOM-1 50-T Linear Heat Generation Rate (KW/ft) 11.49 11.56 11.71 11.88 12.05 12.23 12.42 12.57 12.70 12.82 12.95 13.09 13.17 12.90 12.16 11.38 9.92 8.51 5.77 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 10

TABLE 7 Linear Heat Generation Rate as a function of Planar Average Exposure*

Fuel type:

GE10-P8HXB327-8GZ2-10OM-150-T Planar Linear Heat Average Generation Exposure Rate (GWd/ST)

(KW/ft) 0.0 0.2 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.5 15.0 20.0 25.0 35.0 45.0 50.1 11.72 11.77 11.88 11.96 12.04 12.10 12.17 12.24 12.31 12.39 12.47 12.56 12.57 12.33 11.81 11.29 10.20 8.48 5.90 These are nominal values to be used for manual calculations. The actual lattice-type dependent values are modeled in the process computer.

Page 11

MAPLHGR VS PAE GE8B-P8DQB303-8GZ-80M-4WR-1 50-T PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 1 1

1 1

1 1

U (5

I41 a_

MAPLHGR VS PAE GE8B-P8DQB324-1 1 GZ-80M-4WR-1 50-T

.14 cc13 10 w9 7-5 0

3 7

10 12.5 20 25 35 PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 2

MAPLHGR VS PAE GE1 O-P8HXB321 -11 GZ-70M-1 50-T 1 4 1 I

l I

I Il N

N N

l0 N1 N

Il l

LL Iu

-J z 0

w w

0.2 1

2 3

4 5 6

7 PLANAR AVERAGE 8

9 10 EXPOSURE 12.5 15 25 35 45 (GWd/ST)

FIGURE 3

.4 10 1 a 1

19---

8-

7.

6 8....

0 50.5

'11 1

MAPLHGR VS PAE GE1 O-P8HXB317-7GZ-70M-1 50-T K

11 I ____

1....i

~

I 4

4 4-1 4

1 r I--I I

t

~I I

I' 1

1 1

1 1

1 Ax p

cc 0

w CE w

0 0.2 1

2 3

4 5

PLANAR 7

9 10 12.5 15 20 25 35 45 50.7 AVERAGE EXPOSURE (GWd/ST)

FIGURE 4 14 1

12--

11-10 9------ ---

I-4 8-7..---

1~~**

6---

  • I T

I I-0 1

i I

i i

i 4 -----------

i I

I I

I i

i -

1 r 6

8

MAPLHGR VS PAE GE10 -P8HXB316-8GZ-1 OOM-1 50-T LL U

2 CC 0

c z

0 w

CC w

D u

u.2 1

I 5

PLANAR 6

7 0

AVERAGE 10

12. Z EXPOSURE (GWd/ST)

FIGURE 5 14 10 8-6--

5-

^

A f

~

4~

4~

~

ff

~

~

A A

45' 508v~

15 u

25 u 35 9

20 v 2z

MAPLHGR VS PAE GE1 O-P8DXB327-1 OGZ1 -1 OOM-1 50-T 14 12 1-6-

LL

-J 2 z w

w 2

3 4

5 PLANAR 6

7 AVERAGE 8

10 12.5 15 20 25 35 45 50.7 EXPOSURE (GWd/ST)

FIGURE 6 0.2 0

9

MAPLHGR VS PAE GE1 O-P8DXB327-8GZ2-1 OOM-1 50-T 130 12 10 47 1

10 12 5 15 20 25 5

<5 50.1 f;3~~

A 7

P Q

10 125 115 20 25 35 45 50.1 PLANAR AVERAGE EXPOSURE (GWd/ST)

FIGURE 7 UI LL z

<1 0C w

CJ

)U 02 I-1I

FLOW DEPENDENT MAPLHGR MULTIPLIER TWO LOOP OPERATION 1

0I 8---

1 1

I F-i' FOR F<75.8 MAPFACf=0.00678F+0.4861 FOR F>75.8 MAPFACf=1.00 WHERE F=CORE FLOW IN % OF RATED c

0 u3:

0 I

U L

0

-. -I I

I 18161 I I I I I I I I I I I I I I II I

T I 1 1 I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1~ 1 1 1 1 1 1i I I I I I I I I 40 50 60 70 CORE FLOW (% RATED)

FIGURE 8 80 90 1

1.

0.
0.

0.

4-i 7-0.6j

~i-----~--~~-----*'-'-----*----...--1---.-------.-.-...

A A

30 00

=

POWER DEPENDENT MAPLHGR MULTIPLIER 1Z 9-Z.:-

<50% COR FLOW 0

u 0

Ir 0

(-3 I

CL

+/- _____

.~

>50% CDRE FLOW 30 40 50 CORE THERMAL FOR P<25 : NO THERMAL LIMIT MONITORING REQUIRED FOR 25<P<30 AND F<50 MAPFACp=0.6+0.005224(P-30)

FOR 25<P<30 AND F>50 MAPFACp=0.5+0.005224(P-30)

FOR 30<P<96 MAP FACp= 1.0+0.005224(P-96)

FOR P>96 MAPFACp=1.0 WHERE P=CORE POWER IN % OF RATED F=CORE FLOW IN% OF RATED 60 70 80 POWER (% RATED) 1.

A)

'J.

A s-A.

4 1

0.7-

-4

.4.-

1~.-

0AA-)

0.5 20 I.

1 1 II I

FIGURE 9 liii 11111111 90 100 I

FLOW DEPENDENT MAPLHGR MULTIPLIER SINGLE LOOP OPERATION 1.0 FOR F<56.6 MAPFACf=0.00678F+0.4861 o 07FOR F>56.6 MAPFACf=0.87 O

\\WHERE F=CORE FLOW IN % OF RATED a:

-5J

.6 0r CORE FLOW (% RATED)

FIGURE 10

POWER DEPENDENT MCPR LIMITS N

r r

r

>50% COqE FLOW 3---

<50 % CORE FLOW 1-

-1___

0-o NOTE:

Y-AXIS NUMBERS REPRESENT (a) OLMCPRp FOR 25<P<30 (b) Kp FOR P>30 1.---

1 70 FOR 25<P<30 AND F<50 OLMCPRp=1.9+0.02(30-P)

FOR 25<P<30 AND F>50 OLMCPRp=2.15+0.02(30-P)

FOR 30<P<45 Kp=1.28+0.0134(45-P)

FOR 45<P<60 Kp=1.15+0.00867(60-P)

FOR Pk60 Kp=1.0+0.00375(100-P)

WHERE OLMCPRp=POWER DEPENDENT OPERATING LIMIT MCPR Kp=POWER DEPENDENT MCPR MULTIPLIER P=CORE POWER IN % OF RATED F=CORE FLOW IN % OF RATED 80 90 100 POWER (%RATED)

FIGURE 11

2.

2.

T

2.
2.
2.

1.

0~

0

-J 0

0~

11 20 30 40 50 I I I I I I I I I I I I I

FLOW DEPENDENT MCPR LIMITS T

r I

6 5

A.

__5_____

.2-30 I I I I II i 40 50 60 70 CORE FLOW (%RATED)

FIGURE 12 1.7 1

1

.4 a

0

-J 0 I.'+I FOR F<40 OLMCPRf= (-0.00571 F+1.655) x (1 +0.0032(40-F))

FOR 40<F<79.7 OLMCPRf=-0.00571 F+1.655 FOR F>79.7 OLMCPRf=1.20 WHERE OLMCPRf= FLOW DEPENDENT OPERATING LIMIT MCPR F=CORE FLOW IN% OF RATED 1

.4I1.I 80 90 100

MCPR vs TAU OPTION A OPTION B 0.5 TAU FIGURE 13 0

1 0~

0 1

1 1

1.35 1.33 1.31 1.29 1.27

-1.25 1

1

'2

.23

.21

.19 1.17