ML103230389

From kanterella
Jump to navigation Jump to search
Uftr Digital Control System Upgrade UFTR-QAI-102.3, Uftr Id Coding Concept
ML103230389
Person / Time
Site: 05000083
Issue date: 11/05/2010
From: Ghita G
Univ of Florida
To:
Office of Nuclear Reactor Regulation
References
UFTR-QAI-102.3
Download: ML103230389 (19)


Text

ProjectID: QA-I UF/NRE UFTR ID CODING CONCEPT Revision 0 Copy 1 UFTR Page I of 19 Project

Title:

UFTR DIGITAL CONTROL SYSTEM UPGRADE UFTR-QAI-102.3, UFTR ID Coding Concept Prepared by, Reviewed by, Dr. Gabriel Ghita Prof. Alireza Haghighat

........ (Signature) * ..... f.. /.*/ (Signature)

D ate: .6 . z... .. . 0 Date: . . S,/. J0 Approved by, Prof. D9 >Wayne Schubring

.*. ignature).t:.

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 UFINRE Name: Name: Revision 0 Copy 1 UFTR Date: Initials: Date: Initials: Vol. 1 Page 2 of 19 THE DISTRIBUTION LIST OF THE DOCUMENT No. Name Affiliation Signature Date 1.

2.

3.

4.

5.

6.

t 1-- 1*

4- *6* 4 1- -t -t 4- + 4 4- + 4

Preparedby Reviewed by QA-I, UFTR QA-1-.102.3 UFINRE Name: Revision 0 Copy 1 UFTR Name:

Date: Initials: Date: Initials: VoL 1 Page3 of 19 THE LIST OF THE REVISED PAGES OF TheE DOCUMENT Revision no. Reviewed by Approved by The Modified Pages Date

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 UFINRE Name: Revision 0 Copy I UFTR Name:

Date: Initials: Date: Initials: VoL 1 Page4 of 19 TABLE OF CONTENTS

1. Purpose ............................................................................................................................... 5
2. References .......................................................................................................................... 6
3. Abbreviations, and Acronym s ...................................................................................... 7
4. Coding of I& C Equipm ent ........................................................................................... 8 4.1 ID Coding of Field Equipm ent ............................................................................... 8 4.2 Cabinets ID Coding .......................................................................................... 10 4.3 CPU ID Coding .................................................................................................. 10
5. ID Coding for Design Docum entation ...................................................................... 12 5.1 Hardware Diagram Coding ............................................................................... 12 5.2 Function Diagram Coding ............................................................................... 13 5.2.1 Function Diagram Coding for Input Sub-modules ............................. 13 5.2.2 Function Diagram Coding for Function Modules ................................ 13 5.2.3 Function Diagram Coding for Output Sub-modules .......................... 14
6. ID Coding of I& C Signals ........................................................................................... 16 6.1 Signal Coding Standard ................................................................................... 16 6.2 Analog Signal Coding ......................................................................................... 16 6.3 Binary Signal Coding ........................................................................................ 17 6.4 M onitoring Signal Coding .................................................................................. 19

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 UFINRE UFTR Name: Name: Revision 0 Copy I Date: Initials: Date: Initials: Vol. 1 Page 5 of 19

1. Purpose The University of Florida Training Reactor (UFTR) identification (ID) coding provides a standardized method of naming equipment, diagrams and signals for the purpose of continuity in identification during the project development process. The Reactor Protection System (RPS) specifications for the project are described in UFTR-QA 1-100, "Functional Requirements Specification (FRS)," /I/.

This document defines the rules for the assignment of ID codes to:

  • Instrumentation and Control (I&C) equipment
  • I&C signals This document forms an essential design input for the Software Requirement Specification (SRS) document.

Preparedby Reviewed by QA-1, UFTR QA-I-I 02.3 UFINRE Name: Revision 0 Copy 1 UFTR Name:

Date: Initials: Date: Initials: Vol. 1 Page 6 of 19

2. References

/1/ UFTR-QA1-100, "Functional Requirements Specification (FRS)"

/2/ UFTR-QAI-200, "T3000 Functional Requirements Specification (FRS)"

/3/ AREVA NP Inc. Document No., 01-1007858-00, "TELEPERM XS Engineering System SPACE (TXS Core Software 3.3.6 )"

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 UFINRE Name: Name: Revision 0 Copy I UFTR Date : Initials: Date : Initials: Vol. 1 Page 7 of 19

3. Abbreviations, and Acronyms ARM Area Radiation Monitor BF3 Boron Tri-fluoride CH Channel CPU Central Processing Unit FC Fission Chamber FD Function Diagram FM Fan Monitor FRM Flow Rate Monitor I&C Instrumentation and Control IC Ion Chamber ID Identification MSI Monitoring and Service Interface NI Nuclear Instrumentation RPS Reactor Protection System RTD Resistive Temperature Detector SPACE Specification And Coding Environment TXS TELEPERM XS

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 MARE UFTR Name: Name: Revision 0 Copy I Date: Initials: Date: Initials: VoL 1 Page 8 of 19

4. Coding of I&C Equipment 4.1 ID Coding of Field Equipment The ID coding of UFTR's field equipment identifies the devices within the system following the format presented in Table 4. 1-1 (Note that although the maximum number of characters that can be used in the naming scheme of the SPACE Engineering System is twenty characters, not all of the available character spaces are used).

Table 4.1-1 Equipment ID Code format description El Ej E E U.L [ Q L.

Q .

> . s l -n . I cz2Ca33 415 1 E> E 62 >'1. 91.0 10 8 9 101 0101 = 3 34151 511J181 2

=,

The first two characters are implied as "UF" (University ofFlorida Training Reactor) when it is not included in the ID. The following character is number 1, which shall be used for the reactor Unit Number. The ID code includes inform.ation of the device location (System) and the Device Type. When less than 3 characters are needed for the System code, a space or underscore in its place shall be used. Device type is designated a 2 characters field. In the case of the SPACE Engineering System which does not allow the use of underscores, a blank shall be used. The SPACE Engineering System also will not allow ID codes containing more than one blank between characters. Any additional blanks that would violate this rule should be omitted. Four digits are assigned to the Device Number and, in special cases, additional information can be added to the end of the ID on the three available Suffix fields.

The ID code for the sensors includes abbreviation for the sensor name, the sensor location in the reactor system, and the order of redundant channels. Table 4.1-2 presents the ID code for all the sensors in the UFTR RPS.

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 UF/NRE Name: Name: Revision 0 Copy 1 Date: Initials: Date: Initials: Vol. 1 Page 9 of 19 Table 4.1-2 ID codes for Sensors Nuclear Instrumentation (NI) ID Codes Sensor location Primary Seconda Reactor (Redundant) Channel I Comments Coolant I () Cell (PC) Coolant (SC) (CEL)

BF3 I 1PCNI0001RI FC 2 IPCNI0002RI IC 3 E PCNI0003RI _

Resistive Temperature (RT) Detectors Box I I 1PC_RT0001RI Box 2 2 IPC RT0002RI Box 3 3 IPCRT0003RI Box 4 4 IPC RT0004R1 Box 5 5 IPCRT0005RI Box 6 6 ]PC RT0006RI Inlet 7 IPCRT007RI Outlet 8 I PC RT008RI Inlet 1 iSCRT0009RI Outlet 2 iSC RT0010RI Flow Rate Monitors (FR)

Inlet 1 1PC_FR0029RI Outlet 2 IPC_FR0028RI Inlet I ISC FR0026RI T3000 FRS*

Outlet 2 ISCFR0027RI T3000 FRS*

Water Level (WL) Monitors Box I IPCWL000IR1_

Storage 2 IPC_WL0002RI T3000 FRS*

Tank Shield Tank I ICELWL0022RI Aerial Radiation Monitor (RM)

South jI ICELRM0045ARI North 2 1ICELRM0045BRI East 3 ICELRM0045CRI West j 4 1CELRM0045DR1 Fan Monitor (FM)

Core 1 1CELFMOOOIRI T3000 FRS*

Ventilation Stack 2 ICELFMOO02RI T3000 FRS*

Dilution ______

Stack Dilution 3 ICELFMOO03RI T3000 FRS*

RPM I

  • Sensor included on the Functional Requirements Specifications (FRS) of the T3000 non-safety system, /2/

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 UF/NRE Name: Revision 0 Copy I UFTR Name:

Date : Initials: Date: fnitials: Vol. 1 Page 10 of 19 Table 4.1-3 presents a few samples for the sensor ID codes as projected onto the ID code table.

Table 4.1-3 Equipment ID Code Sample

[

12134156f17 ]89 1011j12113114115116117118119120 1I IIIII~ tl lllllll h1 Nb 1o 0 0 T _

F Unit #1,Primary Coolant, Reisiv Temp. Det.

Redundant Channel I

_ _ 1 =..=..#5 (Box 5), Red.Ch.I I S C IT 1 0 R I I I(Outlet),

UF, Unit #1,Sec. CoolantResistive Temp.Det.#2 Red. Ch. I I C EL Unit #1, Reactor cell, Water Level Monitor #1 M41 tI# R fSouth),

UUnit # 1,Red. Ch- Icell, Aerial Radiation Monitor Reactor 4.2 Cabinets ID Coding The maximum number of characters that can be used in the naming scheme of the SPACE Engineering System for the I&C cabinets is ten. UFTR is using the following two cabinets.

Cabinet 1RPSCA0001 Reactor Protection System Cabinet 0001 Contains: Redundant Channel 1 (AQP-1)

Cabinet 1RPSCA0002 Reactor Protection System Cabinet 0002 Contains: Monitoring Service Interface (MSI)

Table 4.2-1 presents the projection of the Cabinet ID Codes onto the ID code table.

Table 4.2-1 Cabinets ID Codes FlF 9 slSS[sDID nn n[.nI S E 1I = I jjL 12 3 4 15 16 7 8 9 1011112113114.15 16117118 19120

=

]

- 1 cIA,00[ 0!0 ILL 4.3 CPU ID Coding The application code generated by the SPACE code generators is assigned to a CPU-ID, which has to be defined in the function diagrams. If no CPU-ID is defined, the code generators (i.e., SPACE) will assign one. However, it is beneficial to apply a systematic naming scheme to the CPU-ID. For the UFTR RPS, the following scheme is used:

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 UFINRE UFTR Name: Name: Revision 0 Copy 1 Date: fnitials: Date: fnitials: VoL 1 Page 11 of 19 Positions 1 2 3 4 lii1_ Number I I L..Location I L.. Component Unit Number (1)

Position I is assigned to the reactor Unit Number which is I for this application.

Position 2, "Component," referred to the components of the TXS system such as Acquisition and Processing (AQP), Service Unit (SU), etc., and the third position 3, "Location" refers to the location within the TXS safety system. Positions 2 and 3 are used together to clearly clarify the place of a CPU within the system. Table 4.3-1 presents a matrix of Component vs. Location.

Table 4.3-1 Running number matrix (Positions 2 and 3)

Position 2 (Component) 0 Location Assigned #

AQP- I Cabinet I I MSI Cabinet 2 2 SU Service Unit 3 GW Gateway 4 QDS QDS 5 Position 4 of the CPU ID contains the CPU number.

Table 4.3-2 presents the CPU ID Coding considered for the CPUs used in the UFTR TXS System.

Table 4.3-2 CPU ID Codes CPUs ID Code AQP-1 Unit Number (1), AQP-1 (01), CPU (1) 1011 Unit Number (1), AQP-1 (01), CPU (2) 1012 MSI Unit Number (1), MSI (22), CPU (I) 1021 SU Unit Number (1), SU (03), CPU (1) 1031 GW Unit Number (1), GW (04), CPU (1) 1041 QDS Unit Number (1), QDS (05), CPU (1) 1051

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 MNRE Name: Revision 0 Copy I UFTR Name:

Date: Initials: Date: Initials: VoL 1 Page 12 of 19

5. ID Coding for Design Documentation The TXS Software Engineering Tools document the hardware and software in the form of diagrams, which are identified by ID codes. SPACE diagrams are distinguished by diagram type. For additional information on SPACE diagrams, see the SPACE overview document /3/.

5.1 Hardware Diagram Coding Table 5. 1-1 shows the ID code for the Cabinet Overview Diagram (YDN). There is only one cabinet overview diagram for the project. Again, the leading number is the Unit Number 1.

Table 5.1-1 Cabinet Overview Diagram (YDN) i12 3 4 15 16 17 18 L9 11011 111211314 1516171811920 11IRIPI sICA I I I I I'I!t Table 5.1-2 defines the naming convention for the individual Cabinet Arrangement Diagrams (YDR) and an example IRPSCA0001, is listed. YDRs are named the same as the cabinet equipment ID. According to SPACE specification, ID can have up to 10 characters (see Section 2.1).

Table 5.1-2 Cabinet Arrangement Diagrams (YDR)

S12 13 14 15 16 17 18 19 110 11 1.12 13 14 1511611711s 19L2 SI RIPSICA 010 0 II I Table 5.1-3 shows the ID code for the Network Diagram (YUR).

Table 5.1-3 Network Diagram (YUR) 1 2 13 4 15 6 1718 19 1lO111112113 14115116117 18 191 o 1IRIPIS CIAINIWl I I'l I Table 5.1-4 defines the naming convention for the Input/Output Hardware Diagrams (YFR/RHOO) and an example (lPCRT0007) is listed. YFRs are named the same as the field device ID (see Section 4.1).

Table 5.1-4 Input / Output Hardware Diagrams (YFR/RHOO) 1 2 13 14 15 16 17 18 9 11011121311411511617181920 I I I11PIcI._IRIT!0I0I017IRJI I1I1I ID equals equipment ID of the field device (see Table 4.1-2).

Preparedby Reviewed by QA-1, UFTR QA-I-I02.3 UFINRE UFTR Name: Name: Revision 0 Copy I Date: Initials: Date: Initials: VoL 1 Page 13 of 19 5.2 Function Diagram Coding The application software designed for the TXS computers using the SPACE Engineering System is based on function diagrams (FD). These FDs must be named using an unambiguous ID code. The FDs are identified by this ID code. Signal connections between function diagrams carry the ID code of the source FD plus a signal identifier.

The functional requirements are broken down into:

  • Input sub-modules, receiving data from the field or control board;

" I&C Functions, using the data provided by the input sub-modules and providing outputs to the output sub-modules;

" Output sub-modules, driving the output interface to the field or control board /

control panel.

5.2.1 Function Diagram Coding for Input Sub-modules The sub-modules that read field inputs are named using the ID code of the component providing the field input (i.e., the sensors, monitors, etc) in addition to identifying the TXS computer on which these functions are executed. Table 5.2.1-1 represents the coding scheme for the input function diagrams.

Table 5.2.1-1 Input Function Diagrams (YFRIRSOO) 12 3 4 15 16 17 18 19 11011.l12M14516117118 19 201 I I Field Device jA j IRPS Input Functions running on AQP- I Field Device IB Input Functions running on MSI For example, below, we demonstrate the ID coding for an input sub-module running on the AQP-I with an input from the Primary Coolant Resistive Temperature Detector for Fuel Box #5 within the Redundant Channel 1:

1PCRT0005RI Field Device: Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel I A AQP-I IPCRT0005RIA Primary Coolant RT for Fuel Box #5, on AQP-I, Input Function Diagram NOTE: When an input function diagram constitutes multiple input sources, naming convention does not change. Input function diagram naming is established with the primary field device.

5.2.2 Function Diagram Coding for Function Modules The ID coding for safety function diagrams is comprised of the ID coding of the Function and an identifier for the component which execute the function. Table

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 UNRE Name: Name: Revision 0 Copy 1 Date: Initials: Date: Initials: Vol. 1 Page 14 of 19 5.2.2-1 presents the ID coding for a Function Diagram running on different components.

1 213 14 15 Table 16 17 185.2.2-1 19 10olFunction Diag rams (YFR/RSOO) 112 113114115116117 1819201 FnIn1n1 IIIRIP SI RPSU1Flu L LR I U

n nIslFuIn. n 1 [

In !II I !

=1 1 [

II I

jRPS Functions running on AQP - 1 Functions running on.MSl Transfer diagrams running on MSI IRPsFUlnlnn I I Transfer diagrams running on Gateway For example, below, we present the ID coding for a Function Diagram running on the AQP-1 component performing a high flux trip function:

IRPSFU0002 RPS Function 2: Hiah Flux Trio A AOP- I 1RPSFU0002A High Flux Trip in AQP-1, Function Diagram 5.2.3 Function Diagram Coding for Output Sub-modules Output sub-modules send safety system actuation signals to the field, Annunciators, Event Recorder, or Main Control Board. Field Component and Main Control Board output function diagrams are named using the ID code of the component they drive. In addition, the Field Component and Main Control Board output function diagram names identify the TXS computer where the function resides on. Annunciator and Event Recorder output function diagrams are named using the ID code of the function they are driven from. In addition, the Annunciator and Event Recorder output function diagram names identify the TXS computer where the function resides on. Table 5.2.3-1 represents the coding schema for the output function diagrams for Field Components and Main Control Board.

Table 5.2.3-1 Output Function Diagrams (YFR/RSOO) 1 3 14 15 16 17 18 19 11.011 121141516 17 18119120

] Field Device IA RPS Output Functions running on AQP-1 Field Device IB Output Functions running on MSI O

Field Device IC - Output Functions running on Gateway For example, below, we present the ID coding for an Output Function Diagram (YFR/RSOO) running on the AQP-1 component:

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 UFINRE Name: Revision 0 Copy 1 UFTR Name:

Date: Initials: Date: Initials: VoL. 1 Page 15 of 19 lPCRT0005RI Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel I A AQP - I IPCRT0005RIA Primary Coolant RTD for Fuel Box #5 Channel 1, AQP -

1, Output Function Diagram Table 5.2.3-2 represents the coding schema for the output function diagrams for Annunciators and Event Recorders.

Table 5.2.3-2 Output Function Diagrams (YFR/RHO1) 1 2 13 4 15 16 7 8 19 !1011121131415 161711S[191201 I I j RIPISIFlUjnjnInInIAI I I I I I I IAQP-1Annunciators/EventRecordersI For example, below, we present the ID coding for an Output Function Diagram (YFR/RH0O1) running on the AQP-1 component:

1RPSFU0002 RPS Function 2: High Flux Trip A AQP - I Annunciator/Event Recorder IRPSFU0002A High Flux Trip in AQP-1 to Annunciator/Event Recorder

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 UFI7RE UFTR Name: Name: Revision 0 Copy I Date: Initials: Date: Initials: Vol. 1 Page 16 of 19

6. ID Coding of I&C Signals 6.1 Signal Coding Standard The SPACE Engineering System requires ID codes for signals being exchanged between function diagrams. These signals that are called "external signals" carry the ID code of the function diagram they are originating from, plus a signal identifier. Table 6.1-I defines the coding standard for signals. All signals start with a Function ID Code.

Function ID Code can be (see Section 5):

" Sensor ID

" Sensor liD with suffix

  • Field Contact ID

" Function ID

  • Function ID with suffix
  • Function ID with predefined suffix

" Component ID

  • Component ID with predefined suffix Column I and 2 of Table 6.1-1 define the type of signal. XA is for analog signals, XB is for binary signals, and XM is for monitoring signals. Column 3 and 4 designate different input and output signals with a numerical value.

Table 6.1-1 Signal Coding Standard Sijgnals________

1 2 3 4 Function ID Code X A n n Analog Signals Function ID Code X B n In Binary Signals Function ID Code X M n n Monitoring Signals 6.2 Analog Signal Coding Table 6.2-1 represents actual defined analog signals for the UFTR Digital Control System Upgrade Project.

Table 6.2-1 Analog Signal Coding Specification Analog Signals 1 2 3 4 Function ID Code FX IA In n

Preparedby Reviewed by QA-1, UFTR QA-1-102.3 UFINRE UFTR Name: Name: Revision 0 Copy I Date: Initials: Date: Initials: VoL 1 Page 17 of 19 Analog Input Signals to RPS

<Sensor ID> X A 0 0 temperature Signal Input Signal (4 wire RTD) fCurrent Input Signal (0/20mA, 4/2OmA)

<Sensor ID> X A 0 1 from field device,

_ output of temperature transmitter

<Sensor ID> X A I I Ilsolated Output Signal (0/2OmA, 4/20mA) of SNV1, Redundant Ch. I NI Input Signals to RPS Total Flux

<Senso ID>]x [ A o i, Redundant Ch. ISignal (/0A solated Output (O/2OmA) of SNVI,

<Sensor I X OTHER NI FUNCTIONS Power Supply Monitoring

<Sensor ID> X I A 3 1 I(+)] 5V from Bipolar Power Supply (BPS)

<Sensor ID> X A 3 2 (-)15V from Bipolar Power Supply (BPS)

<Sensor ID> X A 3 3 Power from Detector Power Supply (DPS)

Delta Flux

<Sensor ID> X IA 12 10 JOutput to Indicator Internal Analog Signals

<Sensor ID><Suffix> jX A 7 SA nalog Signal (engineering units) to other n gfwr ucin Software Functions

<Sensor ID><Suffix> X A 9 n nalog Signal to MSI Any unspecified ranges may be used to supplement any other ranges on an "as needed" basis.

Example:

IPCRT0005RI Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel I A AQP- 1 XA71 Analow Sional to other lnnut Function Diaoram X 71 Analofy Signal to other Input Function Diap-ram IPCRT0005RIA XA71 Primary Coolant RTD for Fuel Box #5 Channel 1, AQP-1, Internal Analog Signal 6.3 Binary Signal Coding Table 6.3-1 represents actual defined binary signals for the UFTR Digital Control System Upgrade Project.

Preparedby Reviewed by QA-1, UFTR QA-.1-102.3 UFINRE UFR Name Name Revision 0 copy I UFTR Date : Initials: Dte::

JDate Initials:

Initials: VOL VoL Il Page 18 I Page 18 of 19 of 19 Table 6.3-1 Binary Signal Coding Specification Binary Signals 1 2F3 4 Function ID Code X B nInn Binary Input Signals to Voter

<Field Contact ID> X B 0 n Field Contact (12VAC), NO

<Field Contact ID> X B 5 n Field Contact (12VAC), NC (if exists)

<Field Contact ID> X B 1 n Optocoupler Output (24VDC), NO

<Field Contact ID> X B 6 n Optocoupler Output (24VDC), NC (if exists)

Binary Output Signals of Voters to Annunciator, etc.

<Function ID> X B 2 n TXS Output (24VDC), Voter

<Function ID> X B_ 3 n Dry Contact (Output of Interposing Equipment)

Binary Input Signals to RPS Protection Sets

<Field Contact ID> X B 0 n Field Contact (12VAC),NO

<Field Contact ID> X B 5 n Field Contact (12VAC), NC (if exists)

<Field Contact ID> X B I n Optocoupler Output (24VDC), NO

<Field Contact ID> I X B 6 n Optocoupler Output (24VDC), NC (if exists)

Binary Output Signals of RPS Protection Sets to Annunciator, etc.

<Function ID><Suffix> X BI 21 n TXS Output (24VDC)

<Function ID><Suffix> X B 3 n Dry Contact (Output of Interposing Equipment)

Internal Binary Signals (SW)

<Function ID><Suffix> X BI 7 n Binary Signal to other Software Functions

<Function ID><Suffix> XI B 9 njBinary Signal to MSI Any unspecified ranges may be used to supplement any other ranges on an "as needed" basis.

Example:

IRPSFUO00 1 Function Diagram A AQP-1 XR921 Binary Signal to other Saft Function Diagram X 21 IRPSFU0001A XB21 Function Diagram, AQP-I, Binary Output Signal

Preparedby Reviewed by QA-I, UFTR QA-1-102.3 UFINRE Name: Revision 0 Copy 1 UFTR Name:

Date: Initials: Date: Initials: VoL 1 Page 19 of 19 6.4 Monitoring Signal Coding Table 6.4-1 represents monitoring signals for the UFTR Digital Control System Upgrade Project.

Table 6.4-1 Monitoring Signal Coding Specification Coded Monitoring Signals 1n n d2 3 4 Function ID Code IX M n- _n Monitoring Signals to Signal Online Validation

<Function Diagram ID> X M 0 n Monitoring Signal from 2nd Min Function Block

<Function Diagram ID> X M I n Monitoring Signal from 2nd Max Function Block

<Function Diagram ID> X M 2 n Monitoring Signal from 2 out of 3 Function Block

<Function Diagram ID> iX3 D aM 3onitoring Signal from 2 out of 4 Function n Block Any unspecified ranges may be used to supplement any other ranges on an "as needed" basis.

IPCRT0005RI Primary Coolant Resistive Temperature Detector for Fuel Box #5, Redundant Channel I A AQP-1 XM 01 Monitoring Signal from 2nd Min Function Block XM01 IPCRT0005RIA XM01 Primary Coolant RTD for Fuel Box #5 Channel 1, AQP-1, 2 nd Min Function Block Monitoring Signal