ML101450241
| ML101450241 | |
| Person / Time | |
|---|---|
| Site: | Susquehanna |
| Issue date: | 05/24/2010 |
| From: | Funderburk C Dominion Resources Services |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| 10-320 | |
| Download: ML101450241 (23) | |
Text
Dominion Resources Services, Inc.
5000 Dominion Boulevard, Glen Allen, VA 23060 Web Address: www.dom.com May 24, 2010 U. S. Nuclear Regulatory Commission Attention: Document Control Desk One White Flint North 11555 Rockville Pike Rockville, MD 20852-2738 VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)
NORTH ANNA POWER STATION UNIT 1 CYCLE 21 CORE OPERATING LIMITS REPORT, REVISION 3 Serial No.10-320 NLOS/ETS Docket No.
50-338 License No.
NPF-4 Pursuant to North Anna Technical Specification 5.6.5.d, attached is a copy of the Dominion Core Operating Limits Report for North Anna Unit 1 Cycle 21, Pattern WIT.
Revision 3 supports plant operations with the measurement uncertainty recapture uprate.
If you have any questions regarding this submittal, please contact Mr. Thomas Shaub at (804) 273-2763.
Sincerely,
(~-
C. L. Funderburk, Director Nuclear Licensing and Operations Support Dominion Resources Services, Inc.
for Virginia Electric and Power Company
Attachment:
CORE OPERATING LIMITS REPORT, North Anna 1 Cycle 21 Pattern WIT, Revision 3 Commitments made in this letter: None
cc:
U.S. Nuclear Regulatory Commission - Region II Marquis One Tower 245 Peachtree Center Ave., NE, Suite 1200 Atlanta, Georgia 30303-1257 Mr. J. E. Reasor, Jr.
Old Dominion Electric Cooperative Innsbrook Corporate Center 4201 Dominion Blvd.
Suite 300 Glen Allen, Virginia 23060 NRC Senior Resident Inspector North Anna Power Station Dr. V. Sreenivas NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 G-9A 11555 Rockville Pike Rockville, Maryland 20852-2738 Ms. K. R. Cotton NRC Project Manager U. S. Nuclear Regulatory Commission One White Flint North Mail Stop 08 G-9A 11555 Rockville Pike Rockville, Maryland 20852-2738 Serial No.10-320 Docket Nos. 50-338 Cycle 21 Pattern WIT COLR Page 2 of 2
Serial No.10-320 Docket No. 50-338 ATTACHMENT CORE OPERATING LIMITS REPORT FOR NORTH ANNA UNIT 1 CYCLE 21 PATTERN WIT, REVISION 3 NORTH ANNA POWER STATION VIRGINIA ELECTRIC AND POWER COMPANY (DOMINION)
Page 1 of21
Serial No.10-320 Docket No. 50-338 N1C21 CORE OPERATING LIMITS REPORT INTRODUCTION The Core Operating Limits Report (COLR) for North Anna Unit 1 Cycle 21 has been prepared in accordance with North Anna Technical Specification 5.6.5. The technical specifications affected by this report are listed below:
TS 2.1.1 TS 3.1.1 TS 3.1.3 TS 3.1.4 TS 3.1.5 TS 3.1.6 TS 3.1.9 TS 3.2.1 TS 3.2.2 TS 3.2.3 TS 3.3.1 TS 3.4.1 TS 3.5.6 TS 3.9.1 Reactor Core Safety Limits Shutdown Margin (SDM)
Moderator Temperature Coefficient (MTC)
Rod Group Alignment Limits Shutdown Bank Insertion Limit Control Bank Insertion Limits Physics Test Exceptions-Mode 2 Heat Flux Hot Channel Factor Nuclear Enthalpy Rise Hot Channel Factor (FNLlli)
Axial Flux Difference (AFD)
Reactor Trip System (RTS) Instrumentation RCS Pressure, Temperature, and Flow DNB Limits Boron Injection Tank (BIT)
Boron Concentration In addition, a technical requirement (TR) in the NAPS Technical Requirements Manual (TRM) refers to theCOLR:
TR 3.1.1 Boration Flow Paths - Operating The analytical methods used to determine the core operating limits are those previously approved by the NRC and discussed in the documents listed in the References Section.
Cycle-specific values are presented in bold. Text in italics is provided for information only.
COLR-N1C21, Rev. 3 Page 2 of21
Serial No.10-320 Docket No. 50-338 REFERENCES 1.
VEP-FRD-42 Rev 2. I-A, Reload Nuclear Design Methodology, August 2003.
(Methodology for TS 3.1.1 - Shutdown Margin, TS 3.1.3 - Moderator Temperature Coefficient, TS 3.1.5 - Shutdown Bank Insertion Limit, TS 3.1.4 - Rod Group Alignment Limits, TS 3.1.6-Control Bank Insertion Limits, TS 3.1.9 - Physics Test Exceptions-Mode 2, TS 3.2.1 - Heat Flux Hot Channel Factor, TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor, TS 3.5.6 - Boron
. Injection Tank (BIT) and TS 3.9.1-Boron Concentration) 2.
VEP-NE-2-A, Rev. 0 Statistical DNBR Evaluation Methodology, June 1987.
(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1 - RCS Pressure, Temperature and Flow DNB Limits) 3.
VEP-NE Rev. O.l-A, Relaxed Power Distribution Control Methodology and Associated FQ Surveillance Technical Specifications, August 2003.
(Methodology for TS 3.2.1-Heat Flux Hot Channel Factor and TS 3.2.3 - Axial Flux Difference) 4.
WCAP-8745-P-A, Design Bases for the Thermal Overpower ~T and Thermal Overtemperature ~T Trip Functions, September 1986.
(Methodology for TS 2.1.1 - Reactor Core Safety Limits and TS 3.3.1 - Reactor Trip System Instrumentation) 5.
WCAP-14483-A, Generic Methodology for Expanded Core Operating Limits Report, January 1999.
(Methodology for TS 2.1.1-Reactor Core Safety Limits, TS 3.1.1-Shutdown Margin, TS 3.1.4
- Rod Group Alignment Limits, TS 3.1.9 - Physics Test Exceptions-Mode 2, TS 3.3.1 - Reactor Trip System Instrumentation, TS 3.4.1 - RCS Pressure, Temperature, and Flow DNB Limits, TS 3.5.6 - Boron Injection Tank (BIT) and TS 3.9.1-Boron Concentration) 6.
BAW-10227P-A, Rev. 0, "Evaluation of Advanced Cladding and Structural Material (M5) in PWR Reactor Fuel."
(Methodology for TS 2.1.1 - Reactor Core Safety Limits, TS 3.2.1 - Heat Flux Hot Channel Factor) 7.
EMF-2103 (P) (A), Rev. 0, "Realistic Large Break LOCA Methodology for Pressurized Water Reactors."
(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor) 8.
EMF-96-029 (P) (A), Rev. 0, "Reactor Analysis System for PWRs."
(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)
COLR-N1C21, Rev. 3 Page 3 of21
Serial No.10-320 Docket No. 50-338 9.
BAW-10168P-A, Rev. 3, "RSG LOCA - BWNT Loss-of-Coolant Accident Evaluation Model for Recirculating Steam Generator Plants,." December 1996. Volume II only (SBLOCA models).
(Methodology for TS 3.2.1 - Heat Flux Hot Channel Factor)
- 10. DOM-NAF-2-A, Rev. O.l-A, "Reactor Core Thermal-Hydraulics Using the VIPRE-D Computer Code," including Appendix A, "Qualification of the F-ANP BWU CHF Correlations in the VIPRE-D Computer Code,." July 2009.
(Methodology for TS 3.2.2 - Nuclear Enthalpy Rise Hot Channel Factor and TS 3.4.1-RCS Pressure, Temperature and Flow DNB Limits)
COLR-N1C21, Rev. 3 Page 4 of21
Serial No.10-320 Docket No. 50-338 2.0 SAFETY LIMITS (SLs) 2.1 SLs 2.1.1 Reactor Core SLs In MODES 1 and 2, the combination of THERMAL POWER, Reactor Coolant System (RCS) highest loop average temperature, and pressurizer pressure shall not exceed the limits specified in COLR Figure 2.1-1; and the following SLs shall not be exceeded.
2.1.1.1 The departure from nucleate boiling ratio (DNBR) shall be maintained greater than or equal to the 95/95 DNBR criterion for the DNB correlations and methodologies specified in the References Section.
2.1.1.2 The peak fuel centerline temperature shall be maintained < 5173°P, decreasing by 65°P per 10,000 MWDIMTU of burnup.
COLR-N1C21, Rev. 3 Page 5 of21
......~""""'-.........~
'- ~
............~
psia 1"-00..... --~
..............~( psia
......~....
~........
~
........~
\\.
............~
200( psia
...............\\\\.
~
\\.
\\
\\ \\.
1 Rh( nc:i::l
\\.'
\\
~
\\.
.............. \\.\\\\
\\.
Serial No.10-320 Docket No. 50-338 COLR Figure 2.1-1 NORTH ANNA REACTOR CORE SAFETY LIMITS 665 660 655 650 645 640 635 630 625 620 615 610 605
GOO 595 590 585 580 575 570 o
10 20 30 40 50 60 70 80 90 100 110 120 Percent of RATED THERMAL POWER COLR-N1C21, Rev. 3 Page 6 of21
Serial No.10-320 Docket No. 50-338 3.1 REACTIVITY CONTROL SYSTEMS 3.1.1 SHUTDOWN MARGIN (SDM)
LCO 3.1.1 SDM shall be ~ 1.77 %Ak/k.
3.1.3 Moderator Temperature Coefficient (MTC)
LCO 3.1.3 The MTC shall be maintained within the limits specified below. The upper limit of MTC is +0.6 x 10-4 AkIkIoF, when < 70% RTP, and 0.0 AkIkIoF when ~. 70%
RTP.
The BOC/ARO-MTC shall be $; +0.6 x 10-4 AkIkIoF (upper limit), when < 70%
RTP, and $; 0.0 AkIkIoF when ~ 70% RTP.
The EOC/AROIRTP-MTC shall be less negative than -5.0 x 10-4 AkIkIoF (lower limit).
The MTC surveillance limits are:
The 300 ppmlAROIRTP-MTC should be less negative than or equal to
-4.0 x 10-4 AkIkIoF [Note 2].
The 60 ppmlAROIRTP-MTC should be less negative than or equal to
-4.7 x 10-4 AkIkIoF [Note 3].
SR 3.1.3.2 Verify MTC is within -5.0 x 10-4 dk/k/oF (lower limit).
Note 2: Ifthe MTC is more negative than -4.0 x 10-4 AkIkIoF, SR 3.1.3.2 shall be repeated once per 14 EFPD during the remainder of the fuel cycle.
Note 3: SR 3.1.3.2 need not be repeated if the MTC measured at the equivalent of equilibrium RTP-ARO boron concentration of::;; 60 ppm is less negative than -4.7 x 10-4 AkIkIoF.
3.1.4 Rod Group Alignment Limits Required Action A.l.l Verify SDM to be ~ 1.77 % Ak/k.
Required Action B.1.1 Verify SDM to be ~ 1.77 % Ak/k.
Required Action D.1.1 Verify SDM to be ~ 1.77 % Ak/k.
COLR-NIC21, Rev. 3 Page 7 of 21
Serial No.10-320 Docket No. 50-338 3.1.5 Shutdown Bank Insertion Limits LCO 3.1.5 Each shutdown bank shall be withdrawn to at least 226 steps.
Required Action A.1.1 Verify SDM to be;::: 1.77 % Ak/k.
Required Action B.1 Verify SDM to be;::: 1.77 % Ak/k.
SR 3.1.5.1 Verify each shutdown bank is withdrawn to at least 226 steps.
3.1.6 Control Bank Insertion Limits LCO 3.1.6 Control banks shall be limited in physical insertion as shown in eOLR Figure 3.1-
- 1. Sequence of withdrawal shall be A, B, C and D, in that order; and the overlap limit during withdrawal shall be 98 steps.
Required Action A.1.1 Verify SDM to be;::: 1.77 % Ak/k.
Required Action B.1.1 Verify SDM to be;::: 1.77 % Ak/k.
Required Action C.1 Verify SDM to be;::: 1.77 % Ak/k.
SR 3.1.6.1 SR 3.1.6.2 SR 3.1.6.3 Verify estimated critical control bank position is within the insertion limits specified in eOLR Figure 3.1-1.
Verify each control bank is within the insertion limits specified in eOLR Figure 3.1-1.
Verify each control bank not fully withdrawn from the core is within the sequence and overlap limits specified in LeO 3.1.6 above.
3.1.9 PHYSICS TESTS Exceptions - MODE 2 LCO 3.1.9.b SDM is;::: 1.77 % Ak/k.
SR 3.1.9.4 Verify SDM to be;::: 1.77 % Ak/k.
COLR-N1C21, Rev. 3 Page 8 of21
Serial No.10-320 Docket No. 50-338 COLR Figure 3.1-1 North Anna 1 Cycle 21
(
Control Rod Bank Insertion Limits
/' (O.52~,226)
C-BA fJK
/
1/
/
f1 () 1194)
/
/
/'
/
Full wid posi ion = 22E steps
/V
/
/
/
//
/
/
/
V
/
/
D-BAN~
(0, 118
/
/
/
/
V
/
V
/
V
/
V
/
(.048,0 230 220 210 200 190 180 170
~ 160
~ 150
~ 140 ti
'*" 130 c:
.2 120
.~ 110 D-
- c. 100
- Je 90 G
"C 80 oa:
70 60 50 40 30 20 10 o
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Fraction of Rated Thermal Power 0.8 0.9 1.0 COLR-NIC21, Rev. 3 Page 9 of 21
Serial No.10-320 Docket No. 50-338 3.2 POWER DISTRIBUTION LIMITS 3.2.1 Heat Flux Hot Channel Factor (FQ(Z))
LCO 3.2.1 FQ(Z), as approximated by FQM(Z), shall be within the limits specified below.
CFQ =2.32 The Measured Heat Flux Hot Channel Factor, FQM(Z), shall be limited by the following relationships:
CFQ K(Z)
FM(Z)~__ --
Q P
N(Z)
CFQ K(Z)
FM(Z)~__ --
Q 0.5 N(Z) for P>0.5 for P~0.5 where:
THERMAL POWER P= RATEDTHERMALPOWER ; and K(Z) is provided in COLR Figure 3.2-1, N(Z) is a cycle-specific non-equilibrium multiplier on FQM(Z) to account for power distribution transients during normal operation, provided in COLR Table 3.2-1.
The discussion in the Bases Section B 3.2.1 for this LCO requires the application of a cycle dependent non-equilibrium multiplier, N(Z), to the measured peaking factor, FQM(Z), before comparing it to the limit. N(Z) accounts for power distribution transients encountered during normal operation. Asfunction N(Z) is dependent on the predicted equilibrium FQ(Z) and is sensitive to the axial power distribution, it is typically generatedfrom the actual EOC burnup distribution that can only be obtained after the shutdown of the previous cycle. The cycle-specific N(Z) function is presented in COLR Table 3.2-1.
COLR-N1C21, Rev. 3 Page 10 of21
Serial No.10-320 Docket No. 50-338 COLR Table 3.2-1 NIC21 Normal Operation N(Z)
NODE HEIGHT oto 1000 1000 to 3000 3000 to 5000 5000 to 7000 7000 to 9000 9000 to 11 000 (FEET)
MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.094 1.107 1.111 1.135 1.137 1.137 11 10.0 1.103 1.106 1.118 1.134 1.136 1.136 12 9.8 1.113 1.111 1.125 1.132 1.133 1.133 13 9.6 1.121 1.118 1.131 1.131 1.132 1.133 14 9.4 1.126 1.120 1.134 1.132 1.132 1.129 15 9.2 1.130 1.122 1.137 1.138 1.138 1.133 16 9.0 1.140 1.131 1.143 1.153 1.153 1.149 17 8.8 1.147 1.140 1.151 1.167 1.168 1.168 18 8.6 1.151 1.144 1.155 1.172 1.174 1.174 19 8.4 1.150 1.145 1.160 1.173 1.175 1.175 20 8.2 1.150 1.146 1.167 1.176 1.179 1.179 21 8.0 1.149 1.145 1.171 1.176 1.180 1.180 22 7.8 1.148 1.145 1.173 1.176 1.181 1.180 23 7.6 1.144 1.142 1.172 1.174 1.177 1.177 24 7.4 1.138 1.138 1.172 1.172 1.170 1.171 25 7.2 1.134 1.134 1.170 1.170 1.165 1.167 26 7.0 1.132 1.132 1.167 1.167 1.162 1.166 27 6.8 1.131 1.131 1.166 1.165 1.159 1.164 28 6.6 1.130 1.132 1.163 1.163 1.157 1.162 29 6.4 1.124 1.130 1.156 1.157 1.154 1.157 30 6.2 1.117 1.127 1.145 1.151 1.150 1.152 31 6.0 1.113 1.127 1.140 1.150 1.150 1.153 32 5.8 1.110 1.124 1.132 1.146 1.146 1.151 33 5.6 1.104 1.114 1.117 1.132 1.133 1.141 34 5.4 1.099 1.104 1.105 1.119 1.122 1.131 35 5.2 1.096 1.099 1.100 1.112 1.116 1.126 36 5.0 1.097 1.100 1.101 1.110 1.114 1.120 37 4.8 1.100 1.102 1.103 1.109 1.110 1.109 38 4.6 1.104 1.107 1.106 1.111 1.111 1.103 39 4.4 1.109 1.111 1.111 1.116 1.116 1.104 40 4.2 1.116 1.118 1.118 1.124 1.124 1.107 41 4.0 1.125 1.126 1.126 1.133 1.133 1.111 42 3.8 1.134 1.133 1.132 1.139 1.139 1.116 43 3.6 1.142 1.139 1.136 1.142 1.142 1.121 44 3.4 1.149 1.146 1.138 1.142 1.142 1.125 45 3.2 1.156 1.154 1.141 1.143 1.143 1.129 46 3.0 1.165 1.162 1.146 1.148 1.148 1.135 47 2.8 1.176 1.173 1.154 1.156 1.156 1.142 48 2.6 1.186 1.183 1.162 1.161 1.161 1.145 49 2.4 1.198 1.195 1.174 1.170 1.170 1.151 50 2.2 1.214 1.211 1.190 1.188 1.188 1.165 51 2.0 1.224 1.222 1.202 1.200 1.200 1.174 52 1.8 1.227 1.224 1.204 1.202 1.202 1.175 These decks were generated for normal pre-MUR (2893 MWt) ARO operation flux maps and are considered representative for MUR uprate conditions. Additional N(z) decks may be generated for the specific plant conditions (including MUR uprate conditions) at the time of the flux map, if necessary, consistent with the methodology described in the RPDC topical (Reference 3).
COLR-N1C21, Rev. 3 Page 11 of21
Serial No.10-320 Docket No. 50-338 COLR Table 3.2-1 (continued)
N1C21 Normal Operation N(Z)
NODE HEIGHT 11000 to 13000 13000 to 15000 15000 to 17000 17000 to 19000 19000 to EOR (FEET)
MWD/MTU MWD/MTU MWD/MTU MWD/MTU MWD/MTU 10 10.2 1.130 1.130 1.111 1.114 1.117 11 10.0 1.127 1.128 1.110 1.114 1.117 12 9.8 1.126 1.125 1.108 1.112 1.115 13 9.6 1.127 1.123 1.108 1.111 1.114 14 9.4 1.126 1.119 1.105 1.106 1.109 15 9.2 1.129 1.121 1.109 1.109 1.112 16 9.0 1.138 1.129 1.127 1.127 1.130 17 8.8 1.149 1.142 1.149 1.149 1.152 18 8.6 1.150 1.147 1.155 1.155 1.158 19 8.4 1.154 1.154 1.160 1.162 1.165 20 8.2 1.164 1.165 1.173 1.179 1.179 21 8.0 1.172 1.172 1.181 1.190 1.190 22 7.8 1.174 1.174 1.183 1.193 1.193 23 7.6 1.176 1.176 1.185 1.198 1.198 24 7.4 1.178 1.178 1.189 1.207 1.207 25 7.2 1.180 1.179 1.191 1.211 1.211 26 7.0 1.179 1.179 1.191 1.212 1.212 27 6.8 1.178 1.177 1.189 1.213 1.213 28 6.6 1.175 1.175 1.188 1.213 1.213 29 6.4 1.169 1.172 1.189 1.212 1.212 30 6.2 1.160 1.169 1.189 1.207 1.207 31 6.0 1.156 1.170 1.191 1.206 1.206 32 5.8 1.151 1.168 1.187 1.199 1.199 33 5.6 1.142 1.159 1.176 1.181 1.181 34 5.4 1.135 1.149 1.165 1.164 1.165 35 5.2 1.131 1.146 1.161 1.159 1.161 36 5.0 1.126 1.139 1.154 1.155 1.158 37 4.8 1.119 1.128 1.142 1.146 1.151 38 4.6 1.117 1.121 1.128 1.137 1.141 39 4.4 1.120 1.120 1.117 1.132 1.133 40 4.2 1.123 1.122 1.114 1.125 1.127 41 4.0 1.126 1.126 1.119 1.121 1.128 42 3.8 1.129 1.129 1.121 1.127 1.132 43 3.6 1.132 1.132 1.124 1.140 1.141 44 3.4 1.137 1.137 1.130 1.150 1.149 45 3.2 1.142 1.142 1.138 1.158 1.158 46 3.0 1.147 1.147 1.145 1.166 1.166 47 2.8 1.149 1.149 1.151 1.171 1.171 48 2.6 1.150 1.149 1.153 1.173 1.172 49 2.4 1.150 1.151 1.157 1.175 1.175 50 2.2 1.152 1.156 1.167 1.181 1.182 51 2.0 1.154 1.160 1.175 1.185 1.189 52 1.8 1.153 1.161 1.177 1.186 1.194 These decks were generated for normal pre-MUR (2893 MWt) ARO operation flux maps and are considered representative for MUR uprate conditions. Additional N(z) decks may be generated for the specific plant conditions (including MUR uprate conditions) at the time of the flux map, if necessary, consistent with the methodology described in the RPDC topical (Reference 3). EOR is defined as Hot Full Power End of Reactivity.
COLR-N1C21, Rev. 3 Page 12 of21
COLR Figure 3.2-1 K(Z)
- Normalized FQ as a Function of Core Height Serial No.10-320 Docket No. 50-338 1.2 1.1 1.0 0.9 0.8 N0'
- u. 0.7 cw N:J
<C 0.6
- iEa:oz
~ 0.5
- t 0.4 0.3 0.2 6,1.0-r-----r---I---r----.
(12.925) 0.1 0.0 a
1 2
3 4
5 6
7 8
CORE HEIGHT (FT) 9 10 11 12 13 COLR-N1C21, Rev. 3 Page 13 of21
Serial No.10-320 Docket No. 50-338 3.2.2 Nuclear Enthalpy Rise Hot Channel Factor (FNLlli)
LCO 3.2.2 FNLlli shall be within the limits specified below.
~MI :::; 1.587{1 + 0.3(1-PH where:
THERMAL POWER P =
RATED THERMAL POWER SR 3.2.2.1 Verify FNLlli is within limits specified above.
3.2.3 AXIAL FLUX DIFFERENCE (AFD)
LCO 3.2.3 The AFD in % flux difference units shall be maintained within the limits specified in COLR Figure 3.2-2.
COLR-N1C21, Rev. 3 Page 14 of 21
120 110 100 90 80 CI)
==
0ll.
(ij 70 E...
CI)
J:I-
"C 60 CI)-
C'Cla:-
0 50 s::
CI)u...
CI) 40 ll.
30 20 10 COLR Figure 3.2-2 North Anna 1 Cycle 21 Axial Flux Difference Limits
(-1 ~,100
(+,100)
Unaeee,: able /
\\
Opera ion Unaeeep able
)oera ion
/
\\
\\
1/
Ac eeptapie O~ eratioh \\
//
\\
V
\\
/
(-27, 0)
(+20, 00)
Serial No.10-320 Docket No. 50-338 o
-30
-20
-10 o
10 20 30 COLR-NIC21, Rev. 3 Percent Flux Difference (Delta-I)
Page 15 of21
Serial No.10-320 Docket No. 50-338 3.3 INSTRUMENTATION 3.3.1 Reactor Trip System (RTS) Instrumentation TS Table 3.3.1-1 Note 1: Overtemperature ~T The Overtemperature ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.
where: ~T is measured RCS ~T, OF.
~To is the indicated ~T at RTP, OF.
s is the Laplace transform operator, sec-I.
T is the measured RCS average temperature, OF.
T' is the nominal Tavg at RTP, ~ 586.8 OF.
P is the measured pressurizer pressure, psig.
P' is the nominal RCS operating pressure, ~ 2235 psig.
KI ~ 1.2715 K3 ~ 0.001144 Ipsig "0., ti =time constants utilized in the lead-lag controllerfor Tavg
'tl ~ 23.75 sec
't2 ~ 4.4 sec (1+'['is)/(1+tis) = function generated by the lead-lag controllerfor Tavg dynamic compensation fl (~I) ~ 0.0165{ (qt - qb)}
when (qt - qb) < -35% RTP o
when-35% RTP ~ (qt - qb) ~ +3% RTP 0.0198{(qt - qb) - 3}
when (qt - qb) > +3% RTP Where qt and qb are percent RTP in the upper and lower halves of the core, respectively, and qt + qb is the total THERMAL POWER in percent RTP.
COLR-N1C21, Rev. 3 Page 16 of21
Serial No.10-320 Docket No. 50-338 TS Table 3.3.1-1 Note 2: Overpower ~T The Overpower ~T Function Allowable Value shall not exceed the following nominal trip setpoint by more than 2% of ~T span, with the numerical values of the parameters as specified below.
where: ~T is measured RCS ~T, OF.
~To is the indicated ~T at RTP, oF.
s is the Laplace transform operator, sec-I.
T is the measured RCS average temperature, OF.
T' is the nominal Tavg at RTP, ::;; 586.8 OF.
K;::;; 1.0865 Ks ~ 0.0197 /oF for increasing Tavg o/oF for decreasing Tavg Kt; ~ 0.00162 fOF when T > T' o/oF when T ~ T' 7J = time constant utilized in the rate lag controllerfor Tavg
't3 ~ 9.5 sec T3S/(1+T3S) = function generated by the rate lag controllerfor Tavg dynamic compensation f2(~I) = 0, for all M.
COLR-N1C21, Rev. 3 Page 17 of21
Serial No.10-320 Docket No. 50-338 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.1 RCS Pressure, Temperature, and Flow Departure from Nucleate Boiling (DNB) Limits LCO 3.4.1 RCS DNB parameters for pressurizer pressure, RCS average temperature, and RCS total flow rate shall be within the limits specified below:
a.
Pressurizer pressure is greater than or equal to 2205 psig; b.
RCS average temperature is less than or equal to 591°F; and c.
RCS total flow rate is greater than or equal to 295,000 gpm.
SR 3.4.1.1 SR 3.4.1.2 SR 3.4.1.3 SR 3.4.1.4 COLR-NIC21, Rev. 3 Verify pressurizer pressure is greater than or equal to 2205 psig.
Verify RCS average temperature is less than or equal to 591°F.
Verify RCS total flow rate is greater than or equal to 295,000 gpm.
NOTE--------------------------------------------
Not required to be performed until 30 days after ~ 90% RTP.
Verify by precision heat balance that RCS total flow rate is ~ 295,000 gpm.
Page 18 of21
3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) 3.5.6 Boron Injection Tank (BIT)
Serial No.10-320 Docket No. 50-338 Required Action B.2 COLR-N1C21, Rev. 3 Borate to an SDM ~ 1.77 % Ak/k at 200 of.
Page 19 of21
Serial No.10-320 Docket No. 50-338 3.9 REFUELING OPERATIONS 3.9.1 Boron Concentration LCO 3.9.1 Boron concentrations of the Reactor Coolant System (RCS), the refueling canal, and the refueling cavity shall be maintained ~ 2600 ppm.
SR 3.9.1.1 Verify boron concentration is within the limit specified above.
COLR-N1C21, Rev. 3 Page 20 of21
Serial No.10-320 Docket No. 50-338 NAPS TECHNICAL REQUIREMENTS MANUAL TRM 3.1 TR 3.1.1 REACTIVITY CONTROL SYSTEMS Boration Flow Paths - Operating Required Action D.2 COLR-N1C21, Rev. 3 Borate to a SHUTDOWN MARGIN ~ 1.77 % Ak/k at 200 OF, after xenon decay.
Page 21 of21