ML101320405
ML101320405 | |
Person / Time | |
---|---|
Site: | Crystal River |
Issue date: | 04/01/2010 |
From: | Florida Power Corp |
To: | Office of Nuclear Reactor Regulation |
References | |
3F0410-04 | |
Download: ML101320405 (325) | |
Text
U. S. Nuclear Regulatory Commission Response to 3F0410-04 Request for Documents RAI 3-4 CR Seagrass Technical Advisory Committee Final Report
" FIJNAL 2 EYDR T
" " ** Submitted By FLORIDA POWER CORPORATION CRYSTAL RIVER UNITS 1 ,2, 3 L NPDES PERMIT FLOO*I 5 NO.
ffjOO00159
The Florida Power Corporation's (FPC) Crystal River Energy Complex is located on the west coast, approximately 1.5 miles from the shore of the Gulf of Mexico. Approximately 2.5 miles north of the site are the mouths of the Withlacoochee River and the Cross Florida Barge Canal.
NPDES Permit No. FL00001 59 currently authorizes the discharge of industrial wastewater from Units 1, 2 and 3. Unit 1 began commercial operation in October 1966, Unit 2 in November 1969. On December 31, 1974, EPA issued an NPDES permit for the operation of Units 1, 2 and 3 which required offstream cooling subject to consideration of a variance and alternative thermal limits under Section 316 of the Clean Water Act. Subsequently, Unit 3 began commercial operation in March 1977.
The thermal component of the discharge from the facility was subject to the water quality standards specified in Section 17-3.050 FAC. The rule required that thermal discharges "shall not increase the temperature of the receiving body of water (RBW) so as to cause substantial damage or harm to the aquatic life or vegetation therein or interfere with the beneficial uses assigned to the RBW". During renewal of the NPDES (and state Industrial Wastewater) permit in 1979, and in accordance with Section 316 and Section 17-3, EPA and the FDEP required post-operational biological and thermal studies in order to make a determination of the need for offstream cooling, reduced thermal discharge and/or reduced intake flow. Following the completion of the 316 (a) and (b) studies in 1984, the EPA and the FDEP issued a public notice of determination that 'substantial damage" had occurred in approximately 1100 acres of Crystal Bay, primarily due to the thermal discharge from the facility.
Subsequently, in accordance with Section 17-3.05(1)(a)(3), FAC, the agencies, imposed permit limitations on the thermal component of the discharge consistent with off-stream cooling. The EPA and FDEP agreed that offstream cooling would subsequently satisfy the requirements of the Florida Water Quality Standards and Sections 316 (a) and (b) of the Act. FPC disagreed with the conclusions made from the study. Specifically, FPC questioned if seagrass was ever actually present in the area, the extent of the area identified as affected and if the thermal discharge from the site resulted in substantial damage in the area to plants and animals. In February 1987, FPC initially proposed to extend the discharge canal into deeper water as an alternative to off-stream cooling towers.
Following rejection of the initial proposal, FPC offered a second proposal in 1988 which included the construction of helper cooling towers.
In 1989, following several years of testimony, engineering studies and negotiations, the EPA issued an NPDES (and state Industrial Wastewater) permit with the following requirements: installation of flow reduction equipment to reduce flow through the plant by 15 percent during the months of November through April; construction and operation of a multi-species mariculture center to mitigate for intake impacts to aquatic fisheries; and construction and operation of helper cooling towers to mitigate for thermal impacts to water quality, macrophytes and seagrasses. The multi-species mariculture center was operational October 1991 and flow reduction was implemented May 1992. The helper cooling towers were designed and constructed to ensure that a maximum discharge temperature from the Crystal River site point of discharge (POD) of 97.00 F. Following implementation of cooling tower operation in 1993, the permit required that seagrass monitoring be conducted to quantify seagrass presence and recovery within the zone of discharge of the facility and the establishment of a Seagrass Technical Advisory Committee (TAC) to review the report and make recommendations regarding future activities at the site.
The results of the seagrass monitoring project and recommendations of members of the Seagrass TAC are included in this report.
Following commencement of helper cooling tower operation, NPDES Permit FL0000159 required the following:
Seagrass Monitoring Evaluation of seagrass colonization in the zone of discharge after a period of two years to determine recruitment rates and zones. A baseline distribution survey using aerial photography and field surveys, including one survey no later than two years following the initial survey. If natural colonization is determined to be proceeding at an acceptable rate, no further activity will be required.
Seagrass Technical Adviýso!y Commijte*
The establishment of a Technical Advisory Committee to review the seagrass monitoring reports and offer suggestions regarding future activities at the site.
Sprig Plantine If natural colonization is unsatisfactory, sprig planting will be conducted during the third year of tower operation and will consist of replicated, multi-species plots in a cross section of discharge habitats.
Seagrass planting If it is determined that seagrass planting is feasible and necessary, seagrass will be planted in the area within the zone of discharge during years 5 through 9 following tower operation, at a rate of ten (10) acres per year.
Biological studies were conducted by Mote Marine Laboratory for three years following implementation of the helper cooling towers at the Crystal River Energy Complex. The study was conducted to quantify seagrass presence and recovery within a two mile radius of the site point of discharge (POD) into the Gulf of Mexico.
Spatial as well as temporal patterns in the distribution of seagrasses and rhizophytic algae occurred at transacts and seagrass monitoring bed locations. Patterns depicted a system of bed recruitment and expansion in submerged aquatic vegetation (SAV) cover and condition over the three year monitoring period. Six new beds appeared in barren areas, and of those, three persisted into 1995. More than half of the intensely monitored beds had net increases in perimeter and 8 of 15 beds also increased with respect to cover from 1993 to 1994. Biomass was lower and productivity was higher in 1995, than in 1994, possibly a result of the heavy storms and rains which occurred in 1995. Overall, changes along the transact and bed locations within the 2 mile zone of discharge were mirrored by changes at more distant sites.
W1-1CHNIM l A'0V1WSR )M IfJf A Seagrass Technical Advisory Committee (TAC) which consisted of representatives from state and federal environmental agencies and experts in the field of seagrass dynamics convened to review the Crystal River seagrass monitoring reports and make recommendations regarding future activities at the site.
Participants are as follows:
Mr. Gary Serviss, Senior Scientist, CCI Environmental Services, Inc.
Dr. Clinton Dawes, University Distinguished Research Professor, Department of Biology, University of South Florida.
Dr. Michael Durako, Senior Research Scientist, Florida Marine Research Institute, Florida Department of Environmental Protection.
Mr. Phillip Murphy, Acting Chief, Ecological Support Branch, U. S. Environmental Protection Agency.
Mr. David Bruzek, Manager, Crystal River Mariculture Center, Florida Power Corporation.
Ms. Manitia Moultrie, Chair, Seagrass TAC, Environmental Specialist, Florida Power Corporation.
The initial meeting of the Seagrass TAC was held on February 21, 1996 at the Florida Power Corporation, General Office Complex.
Seagrass TAC members discussed the history of the Crystal River site and the results of the Seagrass Monitoring Project conducted in 1994 and 1995. The following issues were discussed:
o Expansion of Seagrass Beds o Percent Cover o Total Seagrass Biomass o Shoot Density o Productivity Overall, several seagrass beds had net increases in perimeter and cover from 1993 to 1994, with some decrease in cover in 1995. Biomass was lower and productivity was higher in 1995 than in 1994.
TAC members agreed that there may be an infinite array of causes for the increase in productivity and decrease in biomass within the seagrass communities. While the inclination of the TAC was to question if the helper cooling towers have had an impact on seagrass recovery, the focus of the committee was to evaluate seagrass recovery rates within a two mile radius of the site POD and determine if 'acceptable" recolonization has occurred. The lack of barren controls which are representative of the study area, the lack of historical data and the regional affects on productivity and biomass were discussed.
The second meeting of the Seagrass TAC was held on March 29, 1996 at the Crystal River Mariculture Center. A helicopter tour of Crystal River Units 1, 2 and 3 and the study area was conducted prior to the meeting.
A summary of the 316 studies which was conducted from June 1983 to August 1984 was provided to the TAC. The monitoring program was conducted to evaluate the effects of plant operations on the area within the zone of discharge from the Crystal River site.
The impact of light intensity, turbidity, salinity variation and suspended load on seagrass colonization was evaluated. The TAC suggested that these factors are a significant influence on seagrass colonization and could be more critical than the temperature factor.
TAC members indicated that they could not determine if adequate seagrass colonization has occurred within the zone of discharge in comparison to regional seagrass colonization rates. There are insufficient areas within the region which are actually representative of the zone of discharge due to the location of the spoil dikes and influences offsite from the Withlacoochee River, Cross Florida Barge Canal and Homosassa Springs.
TAC members indicated that based on available data, there are too many factors to consider which may have a dramatic impact on seagrass colonization. The historical data and geography of the area suggest that while temperature cannot be ruled out as an impact to seagrass colonization, the primary factor affecting seagrass recolonization may not be temperature since seagrass recolonization has not been dramatic since implementation of the helper cooling towers. Impacts which need to be considered which were not a part of this study include turbidity, light intensity and salinity variations.
TAC members agreed that the isolation of these factors may not be appropriate for FPC to evaluate since FPC performed the necessary mitigation and should not be required to continue to evaluate the area to isolate which factor is responsible for past impacts to the seagrass community.
The TAC also discussed the cost and benefits of sprig planting and subsequent monitoring to evaluate physical data, seagrass survival rates and regrowth. As a result of this discussion, the TAC agreed that sprig planting may be futile if factors such as turbidity and light intensity are as limiting as they appear to be.
Following the final meeting, each TAC member was asked to provide an official comment letter to address the following issues:
o Interpretation of the historical ecological data regarding impact to seagrass communities within the zone of discharge of the Crystal River POD.
o Expected seagrass recolonization rates based on current research, existing data and regional impacts.
o The requirement to conduct sprig planting, if natural colonization is unsatisfactory and conduct subsequent monitoring to evaluate seagrass survival rates, Comments from the TAC members are provided in the following section.
4 COMMENTS A 44
'- 4 SEMASA§§ TAC MEMBE7ý Dr. Clinton Dawe§, U§F Mir. GCay Se§rvss, CCD Dr. Mklichae Durako, FIDEP Mr. Phifl~op Murphy, U.S. IEPA 44
'4 t I 44l*:
4 t;*
' -i.I., A
From the historical data available, it appears that seagrass beds were present in the POD region but were lost due to the discharge/construction activities. By 1983-84 there were only minimal grass patches and this apparently has remained at the same level based on the 1993-95 study. The patchy nature of seagrass communities surrounding the Crystal River Plant indicates that there are wide fluctuations in seagrass development. Thus one cannot anticipate development of extensive beds at any time in the near future but might expect some contraction.
The colonization rate of the beds appears to be static based on the limited data from the 1993-95 study. However, without control sites outside the impacted region, it is difficult to know just how different expansion or contraction rates are. Thus, a small study comparing colonization rates within and outside the POD/impacted sites might be an alternative to planting. The Syringodium beds to the south of the channels might serve as controls. If this is done, continuous recordings of temperature and salinity are needed.
My experience suggests that the impacted area (POD, region of channels) will not change much in the next 10 to 15 years and that the seagrass communities are in a steady state at this time. The one problem, as pointed out, is the high rates of blade growth determined in 1996, without expansion.
This suggests a reaction to high temperatures, low light and a future contraction of the beds.
A general seagrass planting should not be attempted unless there is evidence that the sprigs would survive in the POD and impacted region. If sprig planting is decided on, a number of small pilot, or test plantings should first be tried (2 year study) over the zones (A through D) listed in the 1983-84 study (Fig. 6.1-7). Such a study should include continuous monitoring of temperature and salinity data.
Clinton J. Dawes Distinguished Research Professor University of South Florida
Historical data relative to the composition, density and distribution of seagrasses within the zone of discharge of the Crystal River POD is limited. A single map from the 1975 Florida Power Corporation (FPC) report documents the distribution and standing crop of submerged aquatic vegetation (SAV). The methods used to prepare the map, the intensity of the survey effort and the antecedent weather conditions are not known. It is also not known if this map accurately reflects the historic distribution and density of SAV in the zone of discharge.
Consideration must be given to the limited historic distribution data. The historic SAY map essentially represents a snapshot in time and actual historic SAV coverage may vary substantially from that shown on the map.
Based on the above-mentioned limitation, the actual impact to seagrass communities in the zone of discharge is difficult to quantify. Although SAV cover is substantially less than in the 1975 map, it appears that a large percent of the zone of discharge area was barren or sparsely vegetated in 1975.
Review of the water quality section of the 316 Study provides insight into the dynamics of the zone of discharge. The water quality data indicates that this area is probably marginal at supporting seagrasses. The photometry data indicate that a significant percentage of incident light is absorbed before reaching the substrate over much of the zone of discharge. Unconsolidated sediments were documented to resuspend under windy conditions and result in increased turbidity. The area was also documented to be a highly depositional environment.
The 316 Study documented the spatial temperature variation from the POD. Isotherms were provided for the zone of discharge for various tidal and seasonal combinations. These figures provide information relative to the potential impact area of SAV which could be attributed to elevated temperature levels.
The two mile zone of discharge radius for seagrass community impacts due to elevated temperatures appears conservative (ie., larger than the temperature data would indicate). Although the impact of high water temperature on seagrass communities has been well documented, the temperature changes documented in the 316 Study would not be expected, in and of themselves, to result in the loss of seagrasses within the entire area. It appears that other factors may also have contributed to the reduced coverage of SAV in the zone of discharge. Again, it is important to note these results are based upon a limited historical data base relative to SAV coverage.
Seagrass colonization rates at this location are difficult to estimate. As previously discussed, there is limited historical data on actual seagrass coverage. This combined with the depositional nature of the area, wind suspension of unconsolidated material and the low transparency of the water provide variables to consider in predicting colonization rates.
Based upon the temperature modeling before and after helper cooling tower usage, recolonization of seagrasses would be expected within a portion of the zone of discharge. This predicted recolonization, however, assumes that the higher temperatures were the sole or primary cause of seagrass loss in some areas and that the reduction of temperature in and of itself would allow the area to recolonize. This does not appear to be a reasonable assumption based upon the nature of the area.
Drawing conclusions from the Seagrass Monitoring Report data is exacerbated by several factors.
Relative to the study design, it generally appears appropriate for answering the questions discussed.
The study could, however, have benefited from water quality data at varying distances from the POD.
This is especially true because of the climatic events which occurred in 1995. The impact of these climatical events upon seagrass recolonization is difficult to assess in the absence of some abiotic water quality parameters.
Short of phenomenal natural recolonization, it was probably optimistic to expect two years of monitoring to provide sufficient data on recolonization trends; Typically, monitoring would be necessary over several years to allow for natural fluctuations in recolonization rates and still reveal the appropriate trends. This is especially true when the marginal water quality of the area is considered.
The results of the monitoring in 1994 were encouraging since a few new beds were observed to colonize the area near the POD. Unfortunately, the monitoring in 1995 confused the trends, with seagrasses disappearing from 1994 locations and beds appearing in new locations. The climatic events of 1995 may well have contributed to the variable recolonization of seagrasses. The 316 Study documented the effect of storms on turbidity levels and several storms occurred in 1995.
The results of the study do not allow for a finding that recolonization is proceeding at acceptable rates nor are the results such that one would conclude that recolonization is occurring at unacceptable rates. The limited time frame of data collection combined with the regional climatic events in 1995 does not provide a clear picture of recolonization trends.
The following recommendations are provided:
- Continue monitoring the recolonization of seagrasses, as done in 1994 and 1.995, until the trend data stabilizes. Once stabilized, the data can be reviewed for acceptable rates of recolonization.
Monitoring could be done every other year to provide information on long-term trends.
- Add the collection of key abiotic parameters (e.g., salinity, transparency, temperature, turbidity) to the monitoring program. Data collection points should extend outward from the POD for approximately three miles. The frequency of water quality monitoring should be sufficient to characterize the various basins.
o Sprig planting is not recommended at this time. Before expending funds to study the planting of seagrasses, the issue of natural recolonization rates should be resolved. The water quality data may also be helpful in determining which basins are likely to be compatible with seagrass re-establishment. Failure of areas to naturally recolonize likely indicates that conditions are not suitable for seagrass establishment and sprig planting would be unsuccessful.
Gary M. Serviss Senior Scientist CCI Environmental Services, Inc.
A primary limitation to the interpretation of the historical data, is the lack of a reliable, pre-operational seagrass distribution map, Based on the findings of the 316(a) studies which were undertaken after Unit 3 was operational, approximately 3,000 acres adjacent to the POD were biologically adversely affected by POD discharge and 1,100 acres were barren of seagrasses. The 316(a) studies concluded this impact was primarily due to thermal effects. Installation of helper cooling towers, which became operational on June 15, 1993, was intended to return the discharge area to the approximate thermal levels in existence prior to the operation of Unit 3. A three-year monitoring report on the seagrass communities adjacent to and in the area contiguous to the POD suggests that the Crystal River site is dynamic, with increases and decreases in seagrass biomass and coverage being observed throughout the study area over the three-year study period. This study did not demonstrate any persistent seagrass recovery within the zone nearest to the POD. The absence of temperature, salinity or light-availability data precludes any assessment as to the reasons why seagrasses have not recolonized the interior 1,100 acre zone. Individual patches of seagrasses were observed to colonize the area, but most disappeared within a year. The lack of suitable control sites also limits the interpretation of the monitoring data with respect to natural, regional seagrass recolonization rate.
The lack of spatial water temperature data in the study area before and after the installation of the helper cooling towers is most surprising (and disturbing). Water temperature reduction was the reason for the helper cooling tower installation. Merely measuring temperatures at the POD does not provide sufficient information regarding the effective spatial scope of the reduced temperatures.
Statements made in both the seagrass monitoring report and in the presentation of the report's findings by Mote Marine Lab scientists, coupled with my observations during the aerial overflight of the sight suggest that factors (e.g., turbidity, salinity, stochastic meteorological events) other than temperature may also be affecting potential recolonization of the site by seagrasses. Without reliable data on light availability, salinity variation, and disturbance regimes, it is impossible to ascertain what factors are restricting recolonization in the study.
Based on the information provided and discussions with the other TAC members, I would not recornrend attempting any significant transplanting efforts until more information regarding the physical attributes of the near-POD area have been gathered, specifically turbidity and light availability data.
Michael J. Durako, Ph.D.
Senior Research Scientist Florida Marine Research Institute
. . ... . . ...
This letter is in response to our conversations over the past three months as they relate to the request for my participation on the Seagrass Technical Advisory Committee for the Crystal River Plant.
I regret that our participation was severely hampered by the budgetary crisis and associated travel restraints which our office incurred precisely during the period that the TAC was convened. This likewise, coincided with the retirement of Mr. Delbert Hicks who had served for years as the EPA representative for biological matters regarding the Crystal River Power Plant. With his departure, the institutional knowledge of our staff relative to the Crystal River Plant also went out the door.
Consequently, I have been playing catch-up without too much success. Thanks to you for supplying me with the TAC meeting minutes and other associated literature. They are my only connection to the questions and TAC discussion relative to the Seagrass Study. Accordingly, with these qualifiers, I offer the following limited comments.
As we discussed several weeks ago via telephone, the seagrass study by Mote Marine Lab is, at best, inconclusive regarding regeneration of seagrasses within the thermal plume area. I think it would be stretching any facts to suggest that recolonization is occurring. It appears from the information that I have at hand, that there are many compounding variables, within the zone potential impact formerly attributed to the heated discharge, which singularly, or collectively, could affect seagrass growth and/or recolonization. While elevated ambient temperatures are the focus of your company's concerns because of Section 316 requirements, it goes without argument the role of turbidity and associated light attenuation play relative to seagrass communities. Like the members of the TAC who were able to participate in the site visit, I, too, am unable to evaluate the interaction of elevated water temperature, turbidity, and light extinction, in the impact area versus control areas.
From the information packages you have provided me, my only evidence of the turbidity fronts which have been discussed, is a single aerial photograph which, indeed, appears to indicate a zone of turbidity in excess of ambient, associated with the thermal plume area. I note within the meeting minutes the attribution of this turbidity to the affects of discharges from the Cross Florida Barge Canal.
While I cannot refute or confirm this possibility, it does appear to me that the turbidity is most elevated within the thermal plume area. If this perception is correct, I think an appropriate consideration is whether any physical phenomena associated with the increased water temperature is conducive to enhancing, and sustaining, resuspension of sediments within the thermal plume area beyond what is measurable in adjacent coastal areas beyond the thermal plume. We cannot dismiss too quickly the affects of temperature interaction with other factors.
In closing, it is important for me to emphasize that the above comments are offered solely in a technical advisory capacity and does not reflect EPA's position on regulatory matters. Any such position must come from the NPDES program office in EPA's, Region IV, Water Division. Thanks for your patience with us during the past four difficult months.
Phillip Murphy, Acting Chief Ecological Support Branch U. S. Environmental Protection Agency
44 FLORDA POWER CGROGAWON 7vMARY I
,{
RCQMkMH DAThON
As a result of the 316 (a) and (b) studies which were conducted in June 1983 - August 1984, the EPA and FDEP determined that substantial damage had occurred within the zone of discharge to the Gulf of Mexico from the Crystal River site. The demonstration and subsequent determination was controversial due to the complex dynamics of the shallow receiving water body (zone of discharge),
the lack of historical baseline data to document conditions within the region prior to the operation of Units 1, 2 and 3 and the lack of environmental justification to require FPC to mitigate for thermal impacts to Crystal Bay.
FPC continues to question if seagrass was ever present in all of the areas identified as being impacted from the thermal discharge from FPC following the 316 studies. A historical vegetation map for the study area provided by the University of Florida provides the only historical baseline map for comparison. The validity of the map is questionable since it does not provide a description of methods, date, an author or narrative.
Ecosystem stress to the biota within the zone of discharge is affected by factors unrelated to the operation of Units 1, 2 and 3 . These factors include salinity, turbidity, siltation and the geography of the area (i.e., fluctuation from the Cross Florida Barge Canal, the input of fresh water and suspended sediment from the Withlacoochee River and H-lomossassa Springs).
FPC strenuously objected to the requirement to construct helper cooling towers, due to the enormous cost and the lack of environmental justification. While the installation of cooling towers has reduced the temperature in the near shore area and subsequently limited heated water discharges, this change in temperature has not necessarily resulted in any significant measurable benefit to the Crystal Bay area. To date, FPC has completed construction of the helper cooling towers to mitigate for thermal impacts and completed the seagrass monitoring project as specified in the permit, at a cost of over $90 million. Seagrass monitoring results are inconclusive and thus support FPC's initial contention that temperature is not the only factor which affects seagrass colonization in the area.
FPC has always doubted that a cost effective monitoring program could be developed to evaluate biological recovery within the zone of discharge as a function of thermal reductions. It would be difficult for biologists to isolate the individual components which contribute to ecosystem stress and determine their incremental influence on the aquatic community. Additionally, FPC should not be required to conduct long term monitoring to determine the limiting factor to seagrass recovery and/or attempt to identify the impact of light intensity, salinity, regional impacts and/or temperature impacts on seagrass recovery within the zone of discharge from the Crystal River site.
Given the fact that FPC initially questioned the environmental benefit of the construction of cooling towers and contended that temperature was not the limiting factor to seagrass colonization and that a monitoring program would not adequately evaluate biological recovery, FPC request that no further action be required with regard to the seagrass monitoring project.
In conclusion, FPC and members of the TAC currently agree that temperature is not the limiting factor to seagrass recovery. While the TAC suggest that additional data may be warranted to clearly identify the limiting factor to seagrass recovery, they concur that FPC has mitigated for past thermal impacts as required by the FDEP and EPA. FPC should not be required to conduct long term monitoring to determine the limiting factor to seagrass recovery since this is beyond the intent of the seagrass monitoring project. Additionally, an attempt to identify the impact of light intensity, salinity, regional impacts and/or temperature impacts on seagrass recovery within the zone of discharge from Crystal River is overly burdensome and may not result in any significant environmental benefit. Since temperature is not the limiting factor, sprig planting would obviously be futile if factors such as turbidity and light intensity are as limiting as they appear to be. The requirement to conduct sprig planting and subsequent seagrass planting and monitoring should be deleted from the NPDES permit.
U. S. Nuclear Regulatory Commission Response to 3F0410-04 Request for Documents RAI 3-4 Crystal River 1993 Seagrass Study
t -
1993 Summary Report for:
CRYSTAL RIVER 3 YEAR NPDES MONITORING PROJECT FPC Contract S01100 Work Authorization 301 (Addenda I and 2) submitted December 20, 1993 to Ms. Manitia Moultrie Environmental Services Department Florida Power Corporation 3201 34th Street South St. Petersburg, Florida 33733 by the Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota, Florida 34236 Ernest D. Estevez, Ph.D.
and Michael A. Marshall, Ph.D.
Principal Investigators
INTRODUCTION Florida Power Corporation (FPC) and federal and state regulatory agencies seek to demonstrate that the operation of new helper cooling towers at the FPC Crystal River Station will lead to an expansion in the area of benthic habitat occupied by submerged aquatic vegetation (SAV: seagrasses and rhizophytic macroalgae). A monitoring program was begun in the Fall of 1993 and will continue on an annual basis through the Fall of 1995. The monitoring program emphasizes near-shore waters within a two mile radius of the point of discharge (POD) of the Crystal River Station.
Available Information Early surveys and aerials are described in the 316 Demonstration Report and the 1986 MML report, "Submerged Aquatic Vegetation in the Vicinity of the FPC Crystal River Power Station."
Studies performed in the 1970s by the University of Florida contained a single map by Martin Van Tine of "approximate attached macrophyte standing crop" during the summer of an unknown year (Florida Power Corporation, 1975). The map depicted areas of high and low standing crop, including barren areas. Nothing is known of sampling methods or effort.
Two SAV surveys were performed in the vicinity of the Crystal River Station during the 1980s. The first was conducted under MML supervision as part of the 316 Demonstration Study, in 1983 and 1984. The second was sponsored by FPC and conducted by MML in 1986, to determine the nature of offshore SAV beds closer to the influence of the Withlacoochee River.
The 316 Demonstration Study occupied 50 survey stations' "Thermal" stations fell along four transects between the Barge and Intake Canals. "Control" stations fell along three transects north of the Barge Canal and three transects south of the Intake Canal. (Thirteen of the 50 stations fall within a 2 mile radius from POD, north of the intake canal.) Ten square-meter quadrats were deployed at each station and percent cover of seagrass and algae was determined in each. Nine "intensive" stations were equally divided among Halodule, Thalassia, and Syringodium sites in thermal and control areas. Intensive stations were visited on 6 week intervals.
Biomass and productivity (2-week cl]ip method) was measured at each station.
No intensive stations were sampled in November of either year. Aerial I
photographs were taken in February of 1983 and 1984, and in October/November of 1983. Only three of eight planned, quarterly overflights produced successful aerial images due to poor water quality. Later ground-truthing resulted in SAV maps drawn at a scale of 1:18,000 on stable acetate.
Dense SAV was mapped south of the Intake Canal and between the Intake and Discharge Canals. Sparse SAV beds were mapped in Basins I and 3. SAV near Fisherman's Cut was seasonally variable. A large area of SAV in Basin 4 was more persistent. Most of these areas fall within a 2-mile POD radius.
Barren areas were most widespread in Basins 1, 2 and 3. Other results are presented in the 316 Demonstration Report.
In November 1986, MML surveyed 177 stations between the Barge and Intake Canals, west of the POD. Station density was determined through a statistical analysis of previous SAV bed distribution. (Twenty-five stations fell within a 2-mile POD radius.) Original LORAN positions of all stations are still available. At each station, 120 meter dive lines were surveyed for dispersion and abundance of SAV.
The survey found that most stations west of the 1983-84 study area contained SAV. SAV (especially sparse macroalgae) was also found at areas mapped as barren in the earlier studies. Caulerpa species were ubiquitous, but other rhizophytic algae were more common in the southern half of the survey area.
Overall, there were declines in SAV richness and cover toward the north and toward the west, within the 1986 survey area. Extensive areas of drift and lithophytic Sargassum were also observed.
Rationale The major questions to be answered by the monitoring plan are:
- 1) Are barren areas being colonized by SAV?
- 2) Are existing areas of SAV expanding?
To answer Question 1, it is necessary to design and implement a robust survey program in barren areas. To answer Question 2, selected SAV beds will be surveyed at a very fine scale and results will be compared each year. Beds will be chosen on the basis of geographic (basin), depth, historic temperature, and species characteristics. The perimeter of selected beds will be staked and subsequent surveys will compare edge 2
locations to stake locations. To anticipate the possibility of stake loss, a second system of benchmarks and measurements was developed.
Professional aerial photography will be used' to backstop the field measurements. We have not recommended using aerial imagery as a primary source of SAV dispersion data because past experience has shown that turbidity, color, tide, sea surface conditions, and weather are significant impediments to successful photography at this site. On the other hand, when it is successful, aerial photography can reveal changes in SAV that fixed-station methods might miss. Consequently, we have arranged to fly the site and examine each year's new imagery prior to commencing field work, where possible. If the imagery is good, field time can be spent investigating apparent features and changes. If the imagery is poor, there will be no loss of data.
Important corollary questions include:
- 3) Changes in SAV cover outside of the designated study area (control sites);
- 4) Changes in the relative abundance of macroalgae, compared to seagrasses; and
- 5) Changes in the biomass or productivity of existing SAV beds.
We address Question 3 by occupying barren and vegetated sites in control sites, and by including these areas in the flight lines for aerial photography. Where- possible, control stations are selected at a variety of depths comparable to stations within the 2-mile POD radius.
We address Question 4 by measuring percent cover by species, and percent barren area, at stations within the SAV beds selected for more intensive surveys.
Changes in SAV biomass or productivity (Question 5) will be determined by sampling the intensive survey beds during August of each year. The 316 Demonstration Study reported a strong dependence of variation in these parameters, on time. Seagrass biomass and. productivity during the Fall are transitional between maxima in August and September, and minima in December and January. Consequently, it may be difficult to identify statistically significant differences, between years, using November data. Interannual 3
differences are particularly difficult to detect in beds of mixed species, which are more common than single-species beds near Crystal River Station.
The 1994 Summary Report will include descriptions of methods and data resulting from the summer measurements of biomass and productivity.
METHODS Positioning Several independent systems were employed. Approximate station locations were mapped onto charts carried in the field, to depict the orientation of a station to creeks, islands, day marks, levees, and other land marks. The end points of transects were marked on land or in marshes with steel bars, stones, colored paint, or other permanent material. Locations were also determined by recording compass bearings to local landmarks.
Transect end points and station locations were measured using a Voyager LORAN Navigator and a Magellan NAVPRO global positioning system. Electronic positions also were measured for NOS benchmarks at the mouth of the discharge canal, and at the U.S. Geological Survey "Knott" benchmark on Drum Island. Preliminary analysis of the electronic data indicate high field reproducibility but relatively low map precision (see Discussion).
Barren Area Transects Prospective barren areas were defined by analyzing historic data and conducting a reconnaissance of the study area. Effort was concentrated in areas suggested as once-vegetated by historical sources, but presently barren. Final transect locations were selected to cover the ranges of depths, bottom types, and thermal effects encountered at the site. As shown in Figure 1, most effort was directed to Basins 1, 2 and 3, with some effort in the areas of Basins 4 and 5, closest to the POD (e.g, inside the 2-mile radius).
Barren areas were surveyed by a diver towed behind a shallow draft vessel.
Most transects ran due north or south to pre-determined landmarks. For long transects, or transects run under inclement weather, tows followed transect 4,
lines marked in advance with temporary buoys. Buoys marked end points and way points, as needed. Beginning and end points were permanently positioned and marked. Where needed, tows were made into the current to reduce drift.
If the diver encountered seagrass or rhizophytic algae in barren areas the vessel stopped and marked the site(s). After the transect was finished, the crew returned to temporary markers. The immediate area was reconnoitered to determine the extent of SAV. If it corresponded to a previously-mapped SAV bed, it was recorded as "mapped" and was discounted as barren area. If new, the area, centroid position, species composition, and percent cover (see below) of the SAV was to be recorded, unless the vegetation was found to be Sarqassum attached to rock outcrops . All SAV markers and transect buoys were then recovered, and a new transect begun.
Intensive SAV BED Surveys Sites were chosen for the initial surveys based on their location relative to the discharge canal. An initial field effort (a 2 day reconnaissance trip) was undertaken to determine present-day SAV bed locations. Previous mapping studies and aerial photographs of various ages were used as guides to areas'where SAV beds were known to have been present in the past. High probability areas were searched by skin divers and the 15 stations depicted in Figure I were occupied. The selection process divided the sites between 3 thermally un-impacted "control" sites and 12 impacted sites.
GPS and LORAN coordinates and compass sightings were used to record the location of seagrass beds selected for study. Several beds were marked by crab trap buoys anchored with screw-in tie down anchors. General site descriptions were recorded for each area in order to relocate the beds on subsequent trips.
Within each bed, the position of a "center" marker was determined by GPS, LORAN, and compass bearings. Center markers are hemispherical concrete parking lot markers. Each marker was painted with blue anti-fouling paint and anchored to the bottom with screw-in anchors. Concrete markers were tied to the anchors with 1" diameter nylon rope.
I/ In fact, the only SAV encountered on barren-area transects was either already mapped, or Sargassum growing on rock outcrops.
5
Edges of all 15 sites were marked in order to determine whether the seagrass beds expand, contract, or remain unchanged during the duration of the three year study. New growth or contraction of existing seagrass bed edges will be determined by returning to the marked beds at one-year intervals.
Seagrass bed edges were marked with short (<1.0 m) sections of 3/8" steel reinforcement rods driven into the bottom with a small sledge hammer. Each steel stake was allowed to extend about 10 cm upward from the sediment surface. Seagrass bed edges were usually very easy to define, based on the sharp delineations between bare bottom and vegetated bottom.
A surveyor's tape was strung out along the set of edge markers at each site.
Distances between edge markers and the distance from the center marker to each edge marker were recorded. Relocation of the edge markers and center marker, on future site visits, will be facilitated by these measurements.
It should also be possible to locate the exact position of lost edge markers if the center marker is found.
The percentage of bottom covered by SAV on the edge of each bed (from 0.0 to 1.0 m into each bed) and deeper into the bed (at a distance of 2.0 to 3.0 m) was measured. Ten 1.0 m2 quadrat-based estimates of bottom cover were taken along the vegetated edge of each SAV bed. The quadrats were positioned on the vegetated side of a randomly selected subset of the 15 edge markers at each site. Ten 1.0 m2 additional cover estimates were made by flipping the quadrat frame over twice away from the perimeter of each seagrass bed.
Subdivisions (100 cm2) of the 1.0 m2 quadrat were used as the units for the cover estimates. SAV coverage was determined by counting the number of units in which various species of SAV were actually rooted. A barren square was defined as being devoid of any rooted vegetation. Seagrass blades from plants rooted in other units were not counted as cover in the otherwise completely barren units. Four seagrasses (Halodule, Syringodium, Thalassia, and Halophila) were encountered in the study sites. Two species of the rhizophytic algal genus, Caulerpa, were found at several of the sites.
Divers recorded data on slates and the data were transferred to log books for later use.
To document that water or sediment depths did not vary so much near the edges of SAV beds that future lateral growth might be inhibited, additional data were collected at each site. Water depth and sediment thickness were measured on the edge of each SAV bed and at 1.0 and 2.0 m distances into the barren zone. A marked measuring stick was used to measure water depth.
6
Sediment thickness was determined by pushing a 1.5 m long, 3/8" diameter iron rod into the bottom. The rod was pushed in to its full length or to the point of refusal. The rod was then withdrawn and the depth of penetration was measured. Measurements of each type were made adjacent to alternate stake markers along the edges of each of the 15 seagrass beds.
DISCUSSION All data collected from the 1993 sampling effort appear in the tables and appendix tables that follow. These data form the baseline of descriptive information against which prospective changes in 1994 and 1995 will be measured.
As mentioned before, two additional types of data are likely to be generated before the barren transects and intensive SAV beds are revisited. If the 1993 aerial photography is successful, images will be photo-interpreted, ground-truthed, and digitally mapped by a subcontractor. An effort will be made during ground-truthing to distinguish lithophytic Sarqassum from seagrasses and rhizophytic algae. A separate report will accompany the maps.
The digital map will also be useful in plotting the precise locations of transects and intensive survey sites. At present, no existing base map is available at the level of detail needed to plot LORAN and GPS data collected in 1993. If the 1993 aerial photography is successful, the 1994 Summary Report will contain a registered base map showing the precise locations of transects and stations.
The second type of new information will result from the biomass and productivity studies first scheduled for August, 1994. We propose to perform the SAV condition monitoring in August of 1994 and 1995, for 3 reasons. First, November condition data are transitional between seasonal extremes, and highly variable. Second, August water temperatures are annual maxima, so impacts to SAV respiration and net productivity will be accentuated. Third, an August sampling time allows for laboratory processing of samples by the due date of the annual reports.
7
FIGURE I The base map employed in Figure 1A and 1B is a composite in which marsh and canal shorelines, and oyster reefs, have been added to the 1983 SAV map produced as part of the FPC 316 Demonstration Study. Shorelines were transferred from U.S. Geological Survey topographic quadrangles and oyster reefs were taken from unpublished data available at Mote Marine Laboratory.
Spoil islands of the Cross-Florida Barge Canal appear at the top of the map, which is north. The discharge canal levee is the shorter feature depicted to the north of the longer levee on the intake canal. In the map, A denotes algal beds; S, seagrass beds; AS, mixed beds dominated by algae; SA, mixed beds dominated by seagrass; 0, open or barren bottom.
FiQure 1A This figure depicts the number and orientation of barren area transects established for the present study. One transect, "13W", is not shown. It is north of the Barge Canal, extending from Green 35 day mark on the Canal, to Green 23A day mark on the Withlacoochee River. Note that most transects have at least one land-side end, which has been marked in the field with a permanent monument. Transect "9W" is 2 miles from the point of discharge.
Figure 1B This figure depicts the locations of SAV beds selected for intensive surveys (percent cover, biomass, productivity, etc.).
One station, "10", is immediately south of station "9" but off the figure. Stations 1-3 are in Basin 1. Stations 5-7 are in Basin 2. Four stations between the canals are in Basin 3.
Station 11 is in Rocky Cove. Station 13 is 2 miles from the point of discharge.
8
1ý j 0
0~
0 0
0 0
0 0
0 21PIv 0
- C-0 0A 0.'
0A .0.
FIGURE 1A
.Q3 <ý2 b 0
0 0
0
.,1 0
&~ 0 0
0 0 4 0
.s~
4 0
0
?,. 9 0-'
FIGURE 18
Table 1. Coordinates of seagrass survey transects.
Transect Base Latitude Base Lonaitude End Latitude End Lonaitude Base Base End End Transect Latitude Lonaitude Latitude Longitude Loran (45) Loran (62) Loran (45) Loran (62) 1W 28 57 35.1 82 43 34.9 28 57 51.9 82 43 33.8 45228.34 62881.46 2W 45230.49 62881.28 28 57 36.4 82 43 49.4 28 58 02.2 82 43 49.1 45230.18 62883.19 45234.21 62882.99 3W 28 57 33. 4 82 44 02.5. 28 58 34.9 82 44 08.4 45232.58 62885.16 45240.93 62884.77 4W 28 57 35.8 82 44 17.1 28 58 34,0 82 44 23.8 45234.41 62886.86 5W 45242.99 62886.69 28 57 31.8 82 44 36.5 28 58 08.5 82 44 37.3 45236.43 62888.88 6W 45241.70 62888.66 28 57 31,8 82 44 36.5 28 57 11.0 82 44 37.4 45236.43 62888.88 45231.83 7W 62889.06 28 56 58.2 82 44 48.1 45233.29 62890.74 8W 28 56 54.5 82 44 58.4 9W 45234.42 62892.08 28 56 48.9 82 45 15.6 45236.71 62894.34 IN 28 57 41.4 82 44 05. 2 11W 45233.15 62884.81 28 57 54.1 82 d6 13.2 28 58 03.9 82 46 12.6 45252.52 62900.14 2N 28 58 06.5 45253.71 62900.27 82 46 26.1 28 58 03.9 82 46 12.6 45255.38 62901.73 45253.71 62900.27 12W 28 58 46.9 82 45 37.8 28 57 05.3 82 45 34.6 45238.65 lOW 62896.69 45241.36 62896.41 28 57 31.2 82 45 41.1 28 57 19.2 82 45 42.1 45243.29 62896.76 13W 28 58 45.,4 45243.29 62896.82 82 47 07.8 28 59 14,9 82 47 10.2 45266.69 62906.44 45271.22 62906.49
Table 2. Station locations for the seagrass bed edge observations.
Station Date Latitude Longitude Loran (45) Loran (62) 1 09-Nov-93 28 57 58.39 82 43 56.35 45234.56 62883.88 2 10-Nov-93 28 58 00.79 82 43 50.00 45234.06 62883.08 3 10-Nov-93 28 58 03.88 82 43 41.91 45233.61 62882.21 4 10-Nov-93 28 57 17.67 82 44 21.52 45232.47 62887.19 5 11-Nov-93 28 58 35.81 82 44 33.48 45244.78 62888.00 6 11-Nov-93 N/A N/A 45240.33 62885.49 7 11-Nov-93 28 58 25 00 82 44 09 00 45237.91 62884.67 8 11-Nov-93 28 57 07.30 82 44 19.26 45230.70 62887.06 9 23-Nov-93 28 56 49.65 82 43 25.10 45220.91 62880.80 10 23-Nov-93 28 56 41.19 82 43 14.31 45218.47 62879.68 11 23-Nov-93 28 57 23.73 82 43 38.31 45227.68 62882.13 12 24-Nov-93 28 57 10.49 82 44 17.21 45230.03 62886.80 13 24-Nov-93 28 58 12.34 82 45 15.62 45274.30 67893.40 14 07-Dec-93 28 57 04.40 82 44 35.00 45232.39 67889.09 15 07-Dec-93 28 57 05.90 82 44 39.40 45232.91 62889.56
Table 3. Summary statistics for water depth variations (cm) from the grass bed perimeter to I meter outside the bed.
Station (n) Mean S.D. Mininum Maximum 1 13 .23 1.30 -2 3 2 15 .00 1.20 -2 3 3 9 .67 2.60 -5 4 4 8 -1.63 2.62 -71 0 5 7 2.14 3.93 0 10 6 8 .13 1 .73 -2 4 7 8 1.88 3.72 0 10 8 6 -. 83 2.04 -5 0 9 8 -1.88 2.53 -5 2 10 8 .63 2.07 -2 5 11 8 -1.25 1.83 -5 1 12 8 .13 2.64 -3 4 13 8 -. 63 1.77 -5 0 14 9 5.78 3.63 0 10 8 .63 3.20 -5 5 15
Table 4. Summary statistics for water depth variations (cm) from the grass bed perimeter to 2 meters outside the bed.
Station (n) Mean S.D. Mininum Maximum 1 13 -. 46 1.13 -2 2 2 15 .27 1.58 -2 5 3 9 1.67 2.50 -1 6 4 8 -2.50 3.02 -7 2 5 7 3.14 2.41 0 5 6 8 .13 .83 -1 2 7 8 4.38 8.21 -5 20 8 6 .83 2.04 0 5 9 8 -3.25 2.19 -5 0 10 8 .88 2.10 -2 5 11 8 -1.50 1.93 -5 1 12 8 -. 88 2.42 -3 4 13 8 .00 .00 0 0 14 9 11.89 8.25 2 30 15 8 .25 2.76 -5 5
Table 5. Summary statistics for sediment depth from the grass bed perimeter.
Station (n) Mean S.D. Mininum Maximum 1 13 69.00 33.55 15 100 2 15 73.67 34.62 25 120 3 9 12.22 8.80 3 28 4 8 11.75 16.30 0 48 5 7 100.71 24.57 70 150 6 7 59.29 39.52 15 100 7 8 39.25 26.44 20 100 8 6 21.17 8.70 7 30 9 8 11.88 6.79 2 20 10 8 35.63 39.04 5 115 11 8 7.38 5.95 1 20 12 8 6.25 3.06 2 10 13 8 45.63 18.69 20 75 14 9 54.00 43.19 10 140 15 8 8.63 4.47 5 19
Table 6. Summary statistics for sediment depth from 1 meter outside the grass bed perimeter.
Station (n) Mean S.D. Mininum Maximum I 13 70.15 28.67 18 100 2 15 73.73 35.55 25 120 3 9 13.67 6.69 8 30 4 8 10.50 16.80 0 48 5 7 97.86 31.07 65 160 6 7 61.43 37.42 17 100 7 8 30.88 15.76 15 55 8 6 20.83 6.71 12 30 9 8 10.50 6.76 2 20 10 8 35.88 40.52 2 120 11 8 4.25 2.87 1 10 12 8 8.88 5.41 2 20
.13 8 39.50 14.40 22 58 14 9 56.11 41.02 5 120 15 8 8.63 3.74 3 15
Table 7. Summary statistics for sediment depth from 2 meters outside the grass bed perimeter.
Station (n) Mean S.D. Mininum Maximum 1 13 66.08 29.81 20 100 2 15 78.47 36.16 25 126 3 9 11.89 8.48 5 26 4 8 14.13 19.64 0 53 5 7 91.57 28.41 70 150 6 7 37.14 16.89 15 58 7 8 22.25 12.31 10 48 8 6 17.50 4.59 12 25 9 8 14.13 6.56 2 20 10 8 31.38 41.78 2 120 11 8 5.50 4.34 1 13 12 8 6.63 4.47 12 13 8 47.38 20.79 15 70 14 9 55.89 37.67 5 130 15 8 8.00 2.62 5 12
Table 8. Summary statistics for sediment depth differences from the grass bed perimeter and I meter outside the bed.
Station (n) Mean S.D. Mininum Maximum 1 13 1.15 23.06 -42 42 2 15 .07 11.82 -27 30 3 9 1.44 6.89 -10 8 4 8 -1.25 4.03 -10 4 5 7 -2.86 17.04 -30 20 6 7 2.14 10.01 -10 23 7 8 -8.38 28.44 -75 15 8 6 -. 33 5.32 -10 5 9 8 -1.38 8.83 -14 13 10 8 .25 20.12 -22 45 11 8 -3.13 7.22 -19 4 12 8 2.63 5.78 -4 14 13 8 -6.13 10.66 -21 5 14 9 2.11 37.57 -38 90 15 8 .00 5.90 -11 8
Table 9. Summary statistics for sediment depth differences from the grass bed perimeter and 2 meters outside the bed.
Station (n) Mean S.D. Mininum Maximum 1 13 -2.92 29.68 -52 72 2 15 4.80 14.72 -25 42 3 9 -. 33 6.60 -7 13 4 8 2.38 13.38 -12 31 5 7 -9.14 10.65 -29 0 6 7 -22.14 41.05 -80 33 7 8 -17.00 27.59 -80 8 8 6 -3.67 5.65 -10 5 9 8 2.25 8.46 -10 18 10 8 -4.25 7.05 -13 5 11 8 -1.88 6.36 -15 5 12 8 .38 4.75 -7 7 13 8 1.75 13.04 -18 15 14 9 1.89 27.14 -58 25 15 8 -. 63 5.95 -13 7
Table 10. Average percent cover (n=10) of Im quadrats on the perimeter and 2 meters inside the perimeter of seagrass beds.
Perimeter Inside Total Perimeter Perimeter Total inside Inside Station Vegetation Seagrass Algae Vegetation Seagrass Algae 1 79.6 79.6 .0 80.0 80.0 .0 2 87.1 87.1 .0 96.4 96.4 .0 3 80.1 80.1 .0 93.7 93.7 .0 4 76.3 76.3 .0 87.0 86.6 1.3 5 90.4 90.4 .0 83.2 83.2 .0 6 91.8 91.8 .0 98.7 98.7 .0 7 91.5 91.5 .0 98.5 98.5 .0 8 94.7 94.7 .5 93.2 93.2 .0 9 87.6 87.6 .2 81.2 81.2 .0 10 76.8 74.7 4.4 57.0 56.7 1.7 11 98.0 98.0 .0 98.3 98.3 .0 12 90.3 86.6 2.2 92.7 88.9 3.8 13 72.2 31.7 40.5 80.4 19.4 63.4 14 90.7 90.7 .0 91.2 91.2 .3 15 83.9 83.9 2.7 96.9 96.9 .0
Table 11. Counts of presence of seagrass and algae species in 1 m2 quadrats inside (I) and on perimeters QP) of grass beds.
Halodule Syringodium Cau7erpa wright ii fl7iforme prolifera Ha lophi la Thalassia Caulerpa englemannii testudinum mexicana Station n P I P I P I P I P I P I 1 10 9 10 0 0 0 0 0 0 0 0 0 0 2 10 10 10 0 0 0 0 0 0 0 0 0 0 3 10 10 10 0 0 0 0 0 0 0 0 0 0 4 9 9 9 1 0 0 0 0 0 0 2 0 0 5 10 10 10 0 0 0 0 0 0 0 0 6 9 0 0 9 9 4 2 0 0 0 0 0 0 7 10 0 0 10 10 0 1. 0 0 0 0 0 0 0 8 9 9 9 1 0 2 4 0 0 0 0 0 0 0 9 10 0 1 6 2 10 10 0 0 0 10 10 0 0 0 0 1 1 10 9 0 4 3 0 11 0 0 10 0 0 2 0 10 10 0 0 0 0 12 10 0 0 0 2 0 0 10 10 0 3 4 0 0 13 10 0
4 1 0 0 0 0 3 4 7 7 7 14 10 9 10 0 0 0 0 1 0 1 0 0 15 10 7 8 0 0 0 0 3 3 0 1 0 0 5 7 14 17 7 7 Total 96 96, 99 99 16 16 10 10 40 , 39 40 39 5 7 14 17 7 7
Appendix Table 1. Water and sediment depths at the seagrass bed perimeters and differences in depths at 0, 1 and 2 meters from the bed edge.
Perimeter Water Depths (cm) Sediment Depths (cm)
Station ID. Ift) Om 1m 2m Om-Im nm-2m Om Im 2m Om-Im 0m-2m 0.0 88 87 86 -1 -2 82 47 61 -35 -21 16.1 86 89 85 3 -1 87 79 71 -8 -16 27.2 89 91 87 2 -2 71 100 100 29 29 40.3 88 88 88 0 0 100 100 48 0 -52 73.0 90 90 89 0 -1 100 100 100 0 0 88.0 91 91 91 0 0 100 100 82 0 -18 99.0 93 94 95 I 2 28 70 100 42 72 114.0 94 94 95 0 1 100 58 71 -42 -29 130.0 90 90 90 0 0 100 100 100 0 0 149.0 91 90 90 -1 36 38 36 2 0
-0 166.5 89 90 89 0 20 18 20 -2 0 184.8 82 80 81 -2 -1 58 60 50 2 -8 198.7 85 85 84 0 -1 15 42 20 27 5 0.0 80 79 80 -1 0 40 40 25 0 -15 11.4 80 80 80 0 0 25 25 32 0 7 21.6 80 80 81 0 1 34 33 35 -1 1 32.1 81 81 81 0 0 26 30 28 4 2 44.4 85 88 85 3 0 78 74 120 -4 42 60.0 90 90 90 0 0 120 120 120 0 0 71.6 90 90 90 0 0 71 101 71 30 0 79.1 91 89 89 -2 -2 120 120 95 0 -25 90.3 89 90 94 1 5 120 120 120 0 0 99.2 90 88 90 -2 0 120 120 126 0 6 105.1 90 90 90 0 90 80 99 -10 9 113.6 88 89 90 1 2 70 43 82 -27 12 126.3 90 90 90 0 0 76 71 94 -5 18 139.4 90 90. 89 0 -1 60 73 70 13 10 147.1 89 89 88 0 -1 55 56 60 1 5 0.0 70 70 69 0 -1 5 11 5 6 0 10.7 68 70 70 2 2 12 8 5 -4 -7 22.8 70 70 70 0 0 18 11 13 -7 -5 3 34.9 75 70 75 -5 0 5 11 5 6 0
Appendix Table 1. Continued. Page 2 Perimeter Water Depths (cm) Sediment Depths (cm)
Station ID. (ft) Om Im 2m Om-Im Om-2m Om 1m 2m Om-Im Om-2m 62.2 70 70 70 0 0 5 12 18 7 13 102.3 71 75 77 4 6 28 18 23 -10 -5 120.2 70 70 75 0 5 12 12 5 0 -7 141.6 70 72 70 2 0 3 10 7 7 4 176.2 65 68 68 3 3 22 30 26 8 4 0.0 82 80 80 -2 -2 2 1 0 -1 -2 20.4 94 90 90 -4 -4 22 20 53 -2 31 57.5 95 95 95 0 0 48 48 36 0 -12 92.3 85 85 85 0 0 2 3 10 1 8 97.8 90 90 86 0 -4 8 12 8 4 0 108.8 85 85 80 0 -5 2 0 1 -2 -1 132.3 87 80 80 -7 -7 10 0. 0 -10 -10 139.8 80 80 82 0 2 0 0 5 0 5 0.0 125 125 130 0 5 150 160 150 10 0 13.5 130 130 132 0 2 70 90 70 20 0 21.6 130 140 135 10 5 100- 100 90 0 -10 52.0 130 135 135 5 5 100 100 100 0 0 57.4 135 135 135 0 0 100 70 71 -30 -29 82.3 130 130 135 0 5 85 65 70 -20 -15 89.0 130 130 130 0 0 100 100 90 0 -10 0.0 105 104 105 -1 0 100 100 45 0 -55 18.6 105 105 105 0 0 100 100 45 0 -55 33.4 100 100 100 0 0 100 100 20 0 -80 54.6 95 95 95 0 0 25 25 25 0 0 72.8 95 95 95 0 0 15 17 15 2 0 101.2 95 95 94 0 -1 50 40 52 -10 2 110.4 100 104 100 4 0 N/A N/A N/A 0 0 120.9 102 100- 104 -2 2 25 48 58 23 33 0.0 70 70 70 0 0 100 25 20 -75 -80 16.2 70 70 70 0 0 22 15 25 -7 3 22.1 70 70 70 0 0 45 40 30 -5 -15 52.3 70 70 70 0 0 40 55 48 15 8 59.2 100 100 95 0 -5 22 18 10 -4 -12
Appendix Table 1. Continued. Page 3 Perimeter Water Depths (cm) Sediment Depths (cm)
Statinn ID. (ft) Om Im 2m Om-Im Om-2m Om Im ?m Om-Im Om-2m 7 80.7 90 90 100 0 10 25 15 12 -10 -13 7 93.4 80 90 100 10 20 40 50 15 10 -25 7 107.0 90 95 100 5 10 20 29 18 9 -2 8 0.0 150 150 150 0 0 30 20 25 -10 -5 8 10.4 150 150 150 0 0 30 30 20 0 -10 8 22.9 150 150 150 0 0 23 27 15 4 -8 8 43.9 150 150 150 0 0 20 20 15 0 -5 8 79.0 145 140 150 -5 5 17 16 18 -1 1 8 86.6 150 150 150 0 0 7 12 12 5 5 9 0.0 120 115 115 -5 -5 2 15 2 13 0 9 37.3 128 127 125 -1 -3 10 10 18 0 8 9 63.5 125 125 120 0 -5 15 2 10 -13 -5 9 95.1 125 122 120 -3 -5 18 17 20 -1 2 9 116.3 125 120 120 -5 -5 15 20 20 5 5 9 136.9 125 122 122 -3 -3 20 6 10 -14 -10 9 153.8 130 130 130 0 0 2 2 20 0 18 9 167.4 130 132 130 2 0 13 12 13 -1 0 10 0.0 105 105 105 0 0 14 2 2 -12 -12 10 25.1 105 110 110 5 5 14 16 16 2 2 10 48.2 115 115 115 0 0 5 3 6 -2 1 10 75.8 120 120 120 0 0 25 13 15 -12 -10 10 101.0 125 123 123 -2 -2 15 60 15 45 0 10 126.0 120 120 122 0 2 20 18 7 -2 -13 10 149.4 115 115 115 0 0 77 55 70 -22 -7 10 166.3 113 115 115 2 2 115 120 120 5 5 11 0.0 82 80 79 -2 -3 10 10 13 0 3 11 11.1 80 75 78 -5 -2 8 3 1 -5 -7 11 21.0 80 78 75 -2 -5 5 1 10 -4 5 11 29.6 78 78 78 0 0 2 5 1 3 -1 11 51.1 71 71 69 0 -2 8 4 7 -4 -1 11 81.0 80 79 80 -1 0 20 1 5 -19 -15 11 87.6 80 79 79 -1 -1 1 5 2 4 1 11 97.0 79 80 80 1 1 5 5 5 0 0
Appendix Table 1. Continued. Page 4 Perimeter Water Depths (cm) Sediment Depths (cm)
Station ID. (ft) Om Im 2m Om-Im Om-2m Om Im 2m Om-im Om-2m 12 0.0 118 115 115 -3 -3 5 7 12 2 7 12 18.5 115 115 115 0 0 10 12 12 2 2 12 34.8 116 120 120 4 4 6 20 10 14 4 12 52.5 120 120 120 0 0 2 7 2 5 0 12 71.0 118 118 115 0 -3 4 2 1 -2 -3 12 85.5 112 110 110 -2 -2 4 10 8 6 4 12 100.6 101 105 10.1 4 0 9 5 5 -4 -4 12 124.3 98 96 95 -2 -3 10 8 3 -2 -7 13 0.0 80 75 80 -5 0 20 25 15 5 -5 13 30.3 95 95 95 0 0 50 35 65 -15 15 13 56.8 110 110 110 0 0 35 35 45 0 10 13 75.4 120 120 120 0 0 22 22 25 0 3 13 87.0 120 120 120 0 0 52 31 34 -21 -18 13 105.5 115 115 115 0 0 75 55 60 -20 -15 13 122.1 120 120 120 0 0 55 55 70 0 15 13 127.5 120 120 120 0 0 56 58 65 2 9 14 0.0 80 80 85 0 5 20 110 45 90 25 14 22.2 89 95 97 6 8 72 52 90 -20 18 14 41.4 115 120 125 5 10 55 76 76 21 21 14 59.1 130 140 160 10 30 140 120 130 -20 -10 14 77.9 130 140 145 10 15 100 62 42 -38 -58 14 87.3 130 140 145 10. 15 40 30 35 -10 -5 14 109.7 95 100 110 5 15 30 45 55 15 25 14 129.3 80 82 82 2 2 10 5 25 -5 15 14 149.2 68 72 75 4 7 19 5 5 -14 -14 15 0.0 90 90 95 0 5 5 5 5 0 0 15 19.3 90 95 92 5 2 9 3 7 -6 -2 15 41.4 90 95 90 5 0 8 11 8 3 0 15 62.0 90 90 90 0 0 7 15 12 8 5 15 80.2 90 90 90 0 0 5 8 12 3 7 15 102.1 90 90 90 0 0 7 8 7 1 0 15 116.5 95 90 90 -5 -5 19 8 6 -11 -13 15 133.6 95 95 95 0 0 9 11 7 2 -2
Appendix Table 2. Vegetation coverage (percent) in seagrass beds for I M2 quadrats along bed perimeters and two meters inside beds.
Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Vecietation Seaarass AlIae Soeci es Cover 16.1 43 43 Halodule wrighti i 43 27.2 93 93 Halodule wrightii 93 27.2 74 74 Halodule wright i 74 40.3 85 85 Halodu1e wright i 85 40.3 89 89 Ha lodule1wrighti 89 54.0 97 97 Ha7odu1e wright ii 97 54.0 79 79 Halodule wrighti i 79 73.0 71 71 Halodule wright ii 71 73.0 79 79 HaModule wright i i 79 138.7 96 96 Halodule wright ii 96 138.7 82 82 Halodule wrighti 82 149.0 94 94 Halodule wrfghtii 94 149.0 87 87 Halodule wrightii 87 166.5 96 96 Halodule wrightii 96 166.5 73 73 Halodule wrightii 73 184.8 90 90 Halodule wrightii 90 184.8 73 73 Halodule wrighti i 73 198.7 35 35 Halodule wright i7 35 198.7 80 80 Halodule wrightii 80 0.0 96 96 Halodule wrightii 96 0.0 94 94 Ha7odu7e wright i i 94 32.1 98 98 Halodule wright ii 98 32.1 80 80 Halodule wrightii 80 44.4 98 98 Halodule wrighti i 98 44.4 95 95 Halodule wright ii 95 60.0 98 98 Halodule wrighti i 98 60.0 100 100 Halodule wrightii 100 71.6 100 100 Halodule wrightii 100 71.6 100 100 Halodule wright i i 100 79.1 97 97 Halodule wright i i 97 79.1 87 87 Halodule wright ii 87
Appendix Table 2. Continued. Page 2 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Veqetation Seacrass A~n*B Snp ci s Cover Alnae 99.2 95 95 0 Halodule wrightii 95 99.2 93 93 0 Halodule wright! i 93 113.6 96 96 0 Halodule wrighti? 96 113.6 82 82 0 Halodule wright i 82 126.3 92 92 0 Halodule wright it 92 126.3 83 83 0 Halodule wright ii 83 139.4 94 94 0 Halodule wrightif 94 139.4 57 57 0 Halodule wright ii 57 0.0 88 88 0 Halodule wrightii 88 0.0 70 70 0 Halodule wrighti! 70 10.7 87 87 0 Ha loduIe wrighti! 87 10.7 84 84 0 Halodule wright ii 84 22.8 100 100 0 Ha lodule wrightii .100 22.8 92 92 0 Halodule wrighti! 92 34.9 100 100 0 Halodule wright i' 100 34.9 94 94 0 Halodule wrighti! 94 62.2 98 98 0 Halodule wright! i 98 62.2 64 64 0 Halodule wrighti' 64 93.0 81 81 0 Halodule wrighti! 81 93.0 84 84 0 Halodu1e wrightii 84 120.2 91 91 0 Halodule wrighti" 91 120.2 98 98 0 Halodule wrightii 98 141.6 100 100 0 Halodule wright! i 100 141.6 46 46 0 Halodule wright i 46 163.0 100 100 0 Ha1odule wrightOi 100 163.0 93 93 0 Ha1odule wrightHi 93 176.2 92 92 0 Halodule wrightHi 92 176.2 76 76 0 Halodule wright!i 76 0.0 84 84 0 Halodule wrightii 84 0.0 92 92 0 Halodule wrightii 92 20.4 74 74 0 Halodule wrightii 74 20.4 71 71 0 Halodule wrightii 71
Appendix Table 2. Continued. Pag? 3 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Vegetation Seagrass Algae Species Cover 4 36.1 1 71 71 0 Halodu7e wrightii 71 4 36.1 P 68 68 0 Halodule wrightii 68 4 50.5 I 87 87 0 Halodule wrightii 87 4 50.5 P 66 66 0 Halodule wrightii 65 4 50.5 P 66 66 0 Halophila englemannii I 4 57.5 I 94 94 0 Halodule wrightii 94 4 57.5 P 73 73 0 Halodule wrightii 73 4 92.3 I 96 96 0 Halodule wrightii 96 4 92.3 P 78 78 0 Halodule wrightii 78 4 103.8 I 89 87 2 Caulerpa prolifera 2 4 103.8 I 89 87 2 Halodule wrightii 87 4 103.8 P 70 70 0 fialodule wrightii 70 4 124.5 1 95 95 5 Caulerpa pro7ifera 5 4 124.5 I 95 95 5 Halodule wrighti 90 4 124.5 P 89 89 0 Halodule wrightMi 89 4 139.8 I 83 83 0 Halodule wrightii 83 4 139.8 P 90 90 0 Halodule wrightiH 90 5 0.0 I 40 40 0 Mlodule wrightHi 40 5 0.0 P 92 92, 0 Halodule wrightii 92 5 5.8 I 96 96 0 Halodu7e wrighti 96 5 5.8 P 93 93 0 Halodule wrightii 93 5 13.5 I 91 91 0 Halodule wrightii 91 5 13.5 P 93 93 0 Halodule wrightii 93 5 21.6 I 93 93 0 Halodu7e wrightii 93 5 21.6 P 83 83 0 Halodule wrightii 83 5 31.6 I 84 84 0 Halodule wrightii 84 5 31.6 P 88 88 0 Halodule wrightii 88 5 38.8 I 77 77 0 Halodule wrightii 77 5 38.8 P 89 89 0 Halodule wrightii 89 5 45.4 I 80 80 0 Halodule wrightii 80 5 45.4 P 88 88 0 Halodu7e wrightii 88 5 82.3 1 79 79 0 Halodule wrightii 79
Appendix Table 2. Continued Page 4 Perimeter/
Perimeter Interior Total Total Total Station 1D. (ft) (P/1) VeQetation Seaqrass Algae Species Cover 5 82.3 P 100 100 0 Halodule wrightii 100 5 89.0 I 96 96 0 Halodule wrightil 96 5 89.0 P 88 88 0 Halodule wrightHi 88 5 102.3 I 96 96 0 Halodule wrightHi 96 5 102.3 P 90 90 0 Halodule wrightii 90 6 0.0 I 100 100 0 Halodule wrightii 100 6 0.0 P 100 100 0 Halodule wrightOi 100 6 18.6 1 97 97 0 Halodule wrightHi 59 6 18.6 I 97 97 0 Halophila englemannii 38 6 18.6 P 75 75 0 Halodule wrightii 75 6 27.9 1 99 99 0 Halodule wrightii 99 6 27.9 I 99 99 0 lalophila englemannii 1 6 27.9 P 83 83 0 Halodule wrightii 83 6 27.9 P 83 83 0 Halophila englemannii 10 6 33.4 1 100 100 0 Halodule wrightii 100 6 33.4 P 94 94 0 Halodule wrightii 92 6 33.4 P 94 94 0 Halophhla englemannii 2 6 40.6 1 99 99 0 Malodule wrightii 99 6 40.6 P 90 90 0 Halodule wrightii 90 6 54.6 I 99 99 0 Halodule wrightii 99 6 54.6 P 98 98 0 Halodule wrightii 97 6 54.6 P 98 98 0 Halophila englemannii 1 6 84.5 1 99 99 0 Halodule wrightii 99.
6 84.5 P 94 94 0 Halodule wrightil 94 6 101.2 I 99 99 0 Halodule wrightii 99 6 101.2 P 98 98 0 Halodule wrightii 98 6 120.9 I 98 98 0 Halodule wrightil 90 6 120.9 P 93 93 0 Halodule wrightii 93 6 120.9 P 93 93 0 Halophila englemannii 15 7 0.0 I 100 100 0 Halodule wrightii 100 7 0.0 P 93 93 0 Halodule wrightii 93 7 16.2 I 88 88 0 Halodule wrightii 88
Appendix Table 2. Continued. Page 5 Perimeter/
Perimeter Interior Total Total Total Station ID, (ft) (P/I.) Vegetation Seaqrass Algae Species Cover 7 16.2 P 86 86 0 Halodule wrightiH 86 7 22.1 I 95 95 0 Halodule wrightil 95 7 22.1 P 66 66 0 Halodule wrightil 66 7 37.3 I 100 100 0 Halodule wrightHi 100 7 37.3 P 100 100 0 Halodule wrightii 100 7 44.9 I 100 100 0 Halodule wrightHi 100 7 44.9 P 90 90 0 Halodule wrightii 90 7 74.0 1 100 100 0 Halodule wrightil 100 7 74.0 P 94 94 0 Halodule wrightOi 94 7 80.7 I 100 100 0 Halodule wrightil 100 7 80.7 P 96 96 0 Halodule wrightHi 96 7 93.4 I 100 100 0 halodule wrightii 100 7 93.4 P 100 100 0 Halodule wrightii 100 7 101.0 I 100 100 0 Halodule wrightii 100 7 101.0 1 100 100 0 Halophila englemannii 2 7 101.0 P 97 97 0 Halodule wrightii 97 7 107.0 I 100 100 0 Malodule wrightii 100 7 107.0 P 93 93 0 Halodule wrightii 93 8 0.0 I 91 91 0 HaModule wrightii 91 8 0.0 I 91 91 0 Halophila englemannii 6 8 0.0 P 99 99 2 Caulerpa prolifera 2 8 0.0 P 99 99 2 Halodule wrightii 99 8 0.0 P 99 99 2 Halophila englemannii 2 8 5.7 I 97 97 0 Halodule wrightii 97 8 5.7 1 97 97 0 Halophila englemannii 2 8 5.7 P 94 94 0 Halodule wrightii 94 8 13.4 I 98 98 0 Halodule wrightii 98 8 13.4 1 98 98 0 Halophi7a engiemannii 6 8 13.4 P 100 100 0 Halodule wrightii '100 8 22.9 I 100 100 0 Halodule wrightii 100 8 22.9 1 100 100 0 Halophila englemannii 4 8 22.9 P 95 95 0 Halodule wrightii 95
Appendix Table 2. Continued.
PagE 6 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Vegetation Sea-grass Algae Species Cover 8 28.3 1 94 94 0 Halodule wrightil 8 28.3 94 P 94 94 0 Halodule wrightHi 8 94 28.3 P 94 94 0 Halophila engiemannii 8 43.9 4 I 90 90 0 Halodule wrightHi 90 8 43.9 P 76 76 0 Halodule wrightii 8 76 48.7 1 75 75 0 10alodue wrightii 8 75 48.7 P 100 100 0 Halodule wrightHi 8 100 57.6 I 86 86 0 Halodule wrightii 8 57.6 86 P 96 96 0 Halodule wrightif 8 96 79.0 I 94 94 0 Halodule wrightii 8 79.0 94 P 90 90 0 Halodule wrightii 9 0.0 90 I 56 56 0 Syringodium filiforme 56 9 0.0 P 94 94 0 Halophila englemannii 9 0.0 2 P 94 94 0 Syringodium filiforme 9 11.0 94 I 94 94 0 Syringodium filiforme 9 11.0 94 P 96 96 0 Syringodium filiforme 9 24.0 96 I 94 94 0 Halodule wrightii 9 24.0 6 1 94 94 0 Syringodium filiforme 9 94 24.0 P 93 93 0 Syringodium filiforme 9 93 49.6 I 85 85 0 Syringodium filiforme 9 49.6 85 P 80 80 1 Caulerpa prolifera 9 49.6 1 P 80 80 1 Halophila englemannii 9 3 49.6 P 80 80 1 Syringodium filiforme 9 63.5 I 80 93 93 0 Syringodium filiforme 93 9 63.5 P 86 86 0 Syringodium filiforme 9 78.3 86 I 84 84 0 Halophila englemannii 9 2 78.3 I 84 84 0 Syringodium filiforme 9 82 78.3 P 92 92 0 Syringodiuin filiforme 9 116.3 ý92 I 28 28 0 Syringodium filiforme 9 116.3 28 P 89 89 0 Halophila englemannii 9 116.3 11 P 89 89 0 Syringodium filiforme 9 136.9 78 I 91 91 0 Halophila englemannii 10
Appendix Table 2. Continued.
Paged 7 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Vegetation Seaqrass Algae. Species Cover 9 136.9 1 91 91 0 Syringodium filiforme 9 136.9 91 P 79 79 0 Halophila englemannii 10 9 136.9 P 79 79 0 Syringodium filiforme 9 153.8 I 79 67 67 0 Syringodium filiforme 67 9 153.8 P 89 89 0 Halophila englemannii 9 153.8 P 7 89 89 0 Syringodium filiforme 89 9 167.4 1 94 94 0 Syringodium filiforme 9 167.4 94 P 90 90 0 Halophila englemannii 3 9 167.4 P 90 90 0 Syringodium filiforme 10 90 0.0 I 24 24 0 Halophila englemannii 17 10 0.0 1 24 24 0 Syringodium filiforme 10 0.0 7 P 90 90 4 Caulerpa prolifera 4 10 0.0 P 90 90 4 Syringodium filiforme 10 14.0 1 9.0 78 78 0 Syringodium filiforme 78 10 14.0 P 77 77 8 Caulerpa prolifera 10 14.0 8 P 77 77 8 Syringodium filiforme 77 10 25.1 I 84 84 4 Caulerpa prolifera 10 25.1 4 I 84 84 4 Syringodium filiforme 84 10 25.1 P 84 68 16 Caulerpa prol7fera 10 16 25.1 P 84 68 16 Syringodium filiforme 84 10 36.8 I 59 59 0 Syringodium flliforme 10 59 36.8 P 80 80 0 Syringodium filiforme 80 10 48.2 I 68 68 6 Caulerpa prolifera 10 6 48.2 I 68 68 6 Syringodium filiforme 68 10 48.2 P 77 77 0 Syringodium filiforme 10 77 63.7 I 60 58 2 Caulerpa prolifera 2 10 63.7 1 60 58 2 Syringodium filiforme 10 63.7 58 P 6 6 0 Syringodium filiforme 6 10 75.8 I 0 0 0 Bare 10 75.8 0 P 13 13 0 Syringodium filiforme 13 10 91.1 I 19 19 0 Syringodium filiforme 10 19 91.1 P 87 87 5 Caulerpa proifera 5
Appendix Table 2'. Continued.
Page" 8 Perimeter/
Perimeter Interior Total Total Total Statinn In. (ft) (P/Tl,;r"-as.. Veoetation Seaorass
........ ... ~Vp pta ..
io . Se
. a q-' ...
Aloae
, ---
Snpecies
. . .. Cover 10 91.1 87 87 5 Syringodium filiforme 10 87 136.7 76 76 0 Syringodium filiforme 76 10 136.7 100 100 0 Halophila englemannii 10 3 136.7 100 100 0 Syringodium filiforme 100 10 166.3 94 94 0 Syringodium filtforme 10 94 166.3 100 100 0 Syringodium filiforme 11 100 0.0 100 100 0 Syringodium fi7iforme 100 11 0.0 99 99 0 Syringodium filiforme 11 11.1 99 11.1 100 100 0 Syringodium filiforme 100 11 100 100 0 Halophila englemannii 11 11.1 1 11 100 100 0 Syringodium filiforme 100 11 21.0 99 99 0 Syringodium filiforme 21.0 99 11 97 97 0 Syringodium filiforme 97 11 29.6 100 100 0 Syringodium filiforme 100 11i 29.6 98 98 0 Syringodium filfiforme 40.6 98 11 94 94 0 Syringodium fi7iforme 94 40.6 100 100 0 Syringodium filiforme 11 51.1 100 11 95 95 0 Syringodium fi7iforme 95 51.1 93 93 0 Halophila englemannii
!1 51.1 2 11 93 93 0 Syringodium filiforme 93 81.0 95 95 0 Syringodium fififorme 11 95 81.0 100 100 0 Syringodium fi7iforme 11 100 11 87.6 100 100 0 Syringodium ff7iforme 87.6 100 11 100 100 0 Syringodium fi7iforme 100 104.2 100 100 0 Syringodium fi1iforme
- 11. 100 104.2 100 100 0 Syringodium filiforme 1.1 100 1l 115.0 100 100 0 Syringodlum filiforme 115.0 100 12 96 96 0 Syringodium filiforme 96 12 0.0 100 100 0 Halodule wrightii 0.0 1O00 100 12 100 0 Syringodium filiforme 100 0.0 88 88 0 Syringodium filiforme 12 10.0 88 98 92 6 Caulerpa prolifera 6
Appendix Table 2 . Continued. Page'9 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Vegetation Seagrass Algae Species Cover 12 10.0 I 98 92 6 Syringodium filiforme 92 12 10.0 P 88 88 0 Syringodium filiforme 88 12 28.1 I 70 68 2 Caulerpa prolifera 2 12 28.1 I 70 68 2 Halodule wrightii 34 12 28.1 I 70 68 2 Syringodium filiforme 34 12 28.1 P 89 88 1 Caulerpa prolifera 1 12 28.1 P 89 88 1 Syringodium filiforme 88 12 42.2 I 100 80 20 Caulerpa prolifera 20 12 42.2 I 100 80 20 Syringodium filiforme 80 12 42.2 P 88 66 12 Caulerpa prolifera 12 12 42.2 P 88 66 12 Syringodium filiforme 66 12 52.5 I 97 97 0 Syringodium filiforme 97 12 52.5 P 94 93 1 Caulerpa prol7fera 1 12 52.5 P 94 93 1 Syringodium filiforme 93 12 61.6 I 100 99 1 Caulerpa prolifera I 12 61.6 I 100 99 1 Syringodium filiforme 99 12 61.6 P 96 96 0 Syringodium filiforme 96 12 71.0 I 97 97 0 Syringodwum filfiforme 97 12 71.0 P 95 95 0 Syringodium filiforme 95 12 85.5 I 89 89 0 Syringodium filiforme 89 12 85.5 P 95 95 0 Syringodlum filiforme 95 12 92.6 I 96 96 0 Syringodium filiforme 96 12 92.6 P 78 78 0 Syringodium fillforme 78 12 110.4 I 98 98 0 Syringodium fi7iforme 98 12 110.4 P 92 92 0 Syringodium fi7iforme 92 13 0.0 I 96 96 15 Caulerpa prolifera 15 13 0.0 I 96 96 15 Halodule wrightii 96 13 0.0 I 96 96 15 Thalassia testudinum 5 13 0.0 P 82 76 6 Caulerpa prolifera 6 13 0.0 P 82 76 6 Halodule wrightii 78 13 14.5 I 94 10 84 Caulerpa prolifera 6 13 14.5 I 94 10 84 Caulerpa mexicana 78
.. *.
p Appendix Table 2..Continued.
Page 10 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft). (P/I) Vegetation SeaQrass Algae Species Cover 13 14.5 I 94 10 84 Thalassia testudinum 13 14.5 P 10 68 55 13 Caulerpa mexicana 13 13 14.5 P 68 55 13 Halodule wrightii 55 13 14.5 P 68 55 13 Thalassia testudinum 3 13 30.3 i 53 16 37 Caulerpa mexicana 37 13 30.3 I 53 16 37 Thalassia testudinum 16 13 30.3 P 55 0 55 Caulerpa mexicana 55 13 48.8 1 97 0 97 Caulerpa prolifera 70 13 48.8 I 97 0 97 Caulerpa mexicana 27 13 48.8 P 100 0 100 Caulerpa prolifera 80 13 48.8 P 100 0 100 13 Caulerpa mexicana 20 56.8, I 50 0 50 Caulerpa prolifera 13 56.,8 20 I 50 0 50 Caulerpa mexicana 13 56.8 P 30 72 0 72 Caulerpa mexicana 72 13 75.4 1 90 0 90 Caulerpa prolifera 80 13 75.4 1 90 0 90 13 Caulerpa mexicana 10 75.4 P 60 0 60 Caulerpa mexicana 13 60 87.0 1 70 0 70 Caulerpa prolifera 13 87.0 P 70 70 0 70 Caulerpa prolifera 70 13 94.9 1 42 0 42 Caulerpa prol7fera 42 13 94.9 P 40 0 40 Caulerpa mexicana 40 13 122.1 }I 95 0 95 Caulerpa mexicana 95 13 122.1 P 60 20 40 Caulerpa mexicana 40 13 122.1 P 60 20 40 Halodule wrightii 20 13 127.5 I 90 0 90 Caulerpa mexicana 90 13 127.5 P 85 75 10 Caulerpa prollfera 10 13 127.5 P 85 75 10 Halodule wrightii 75 14 0.0 I 69. 69 0 Halodule wrightii 69 14 0.0 P 100 100 0 14 Halodule wrightil 100 22.2 I 98 98 0 Halodule wrightii 14 22.2 98 P 100 100 0 Halodule wrightii 14 41.4 I 100 95 95 0 Halodule wrightii 95
Appendix Table 2. Continued.
Page 11 Perimeter/
Perimeter Interior Total Total Total Station ID. (ft) (P/I) Vegetation Seaqrass Algae Species Cover 14 41.4 P 82 82 0 Halodule wrightii 82 14 50.6 I 97 97 0 Halodule wrightii 97 14 50.6 P 73 73 0 Halodule wrightii 14 73 59.1 I 95 95 0 Halodule wrightii 95 14 59.1 P 95 95 0 Halodule wrightil 14 95 77.9 I 93 93 2 Caulerpa pro!ifera 14 2 77.9 I 93 93 2 Halodule wrightii 91 14 77.9 P 97 97 0 Halodule wrightOi 14 97 87.3 I 93 93 0 Halodule wrightil 14 93 87.3 P 96 96 0 Halodule wrighti7 14 96 109.7 1 95 95 0 Ha lodule wrightii 14 95 109.7 P 89 89 0 Halodule wrightOi 14 89 129.3 I 83 83 0 Halodule wrighti 3 14 129.3 I 83 83 0 Thalassia testudinum 14 83 129.3 P 77 77 0 Thalassia testudinum 14 149.2 77 I 100 100 0 Halodule wrightii 100 14 149.2 P 98 98 0 Halodule wrightii 15 98 0.0 I 95 95 0 Thalassia testudinum 15 95 0.0 P 90 90 0 Thalassia testudinum 15 90 19.3 I 95 95 0 Thalassia testudinum 15 95 19.3 P 88 88 0 Thalassia testudinum 15 88 32.4 I 89 89 0 Halodule wrightii 15 18 32.4 I 89 89 0 Thalassia testudinum 15 32.4 86 P 28 28 0 Thalassia testudinum 28 15 41.4 I 100 100 0 Halodule wrighti 15 100 41.4 P 89 89 0 Halodule wrightHi 15 89 62.0 I 100 100 0 Halodule wrightil 15 100 62.0 P 100 100 0 Halodule wrightHi 15 100 69.8 I 100 100 0 Halodule wrightii 15 100 69.8 P 78 78 0 Halodule wrightii 15 78 90.1 1 100 100 0 Halodule wrightii 15 100 90.1 P 100 100 0 Halodule wrighti 100
Appendix Table 2. Continued. Page 12 Perimeter/
Perimeter Interior Total Total Total C+ ,+1, Tn f +N fO / T N Al n n CnArin
.. IL111 L I lll IL .
.Q~~JlI 1.1 .J~A'.l ~ ~ I'tIArJnyUa, 15 102.1 I 100 100 0 Malodule wrightii 100 15 102.1 P 75 75 15 Caulerpa prolifera 15 15 102.1 P 75 75 15 Halodule wrightif 75 15 116.5 I 100 100 0 Halodule wrightii 100 15 116.5 P 100 100 0 Halodule wrightii 100 15 133.6 I 98 98 0 Halodule wrightii 98 15 133.6 P 100 100 0 Halodule wrightil 100
U. S. Nuclear Regulatory Commission Response to 3F0410-04 Request for Documents RAI 3-4 Crystal River 1994 Seagrass Study
1994 Summary Report for:
CRYSTAL RIVER 3 YEAR NPDES MONITORING PROJECT FPC Contract SOI1O0 Work Authorization 401 (Addendum 2) submitted December 19, 1994 to Ms. Manitia Moultrie Environmental Services Department Florida Power Corporation 3201 34th Street South St. Petersburg, Florida 33733 by the Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota, Florida 34236 Ernest D. Estevez, Ph.D.
and Michael J. Marshall, Ph,.D.
Principal Investigators I-
INTRODUCTION Florida Power Corporation (FPC) and federal and state regulatory agencies seek to demonstrate that the operation of new helper cooling towers at the FPC Crystal River Station will lead to an expansion in the area of benthic habitat occupied by submerged aquatic vegetation (SAV: seagrasses and rhizophytic macroalgae). A monitoring program was begun in the Fall of 1993 and is continuing, on an annual basis through the Fall of 1995. The monitoring program emphasizes near-shore waters within a two mile radius from the point of discharge (POD) of the Crystal River Station.
The 1993 Summary Report (Estevez and Marshall, 19931) reviewed SAV information available for the Crystal River Station area, and also provided the technical rationale for the present monitoring study. To recapitulate highlights of the rationale:
-- Past efforts at aerial photography have often met with failure due usually to turbidity;
-- New monitoring should take advantage of successful photography but not depend upon it;
-- Surveys are needed to determine whether new SAV beds are recruiting into barren areas, especially the areas that once supported SAV;
-- In the event that barren areas are not recolonized, existing SAV beds should be monitored to determine whether they are expanding along their margins;
-- If SAV is not expanding or colonizing new areas, there may be signs of improvement within existing beds insofar as SAV condition (biomass, productivity) is concerned. Say condition in August 1994 should be compared to condition in August of 1995 for indications of improvements, although the variances are expected to be high.
Estevez, E.D. and M.A. Marshall. 1993. 1993 summary report for Crystal River 3 year NPDES monitoring project, FPC Contract No. S01100. Mote Marine Laboratory Technical Report Number 343. Sarasota FL.
I
This report summarizes findings for barren area surveys, "perimeter" studies at intensive SAV beds, and the August 1994 condition assessment.
METHODS Positioning Several independent systems were employed. Approximate station locations were mapped onto charts carried in the field, to depict the orientation of a station to creeks, islands, day marks, levees, and other land marks. LORAN and GPS coordinates of all stations and transects, measured in 1993, were also taken into the field. As needed, the end points of transects that were marked on land or in marshes with steel bars, stones, colored paint, or other permanent material were replaced.
In 1994, transect end points and station locations were again measured using a Voyager LORAN Navigator and a Magellan NAVPRO global positioning system.
Electronic positions also were measured for NOS benchmarks at the mouth of the discharge canal, and at the U.S. Geological Survey "Knott" benchmark on Drum Island. Preliminary analysis of the electronic data indicate high field accuracy but relatively low map precision (see Discussion).
Barren Area Transects Barren area transects established in 1993 were revisited in October 1994.
As shown in Figure 1, most effort was directed to Basins 1, 2 and 3, with some effort in the areas of Basins 4 and 5, closest to the POD (e.g, inside the 2-mile radius).
Barren areas were surveyed by a diver towed behind a shallow draft vessel.
Most transects ran due north or south to pre-determined landmarks. For long transects, tows followed transect lines marked in advance with temporary buoys. Buoys marked end points and way points, as needed. Beginning and end points were permanently positioned and marked. Where needed, tows were made into the current to reduce drift.
2
If the diver encountered seagrass or rhizophytic algae in barren areas the vessel stopped and marked the site(s). The immediate area was reconnoitered to determine the extent of SAV. If it corresponded to a previously-mapped SAV bed, it was recorded as "mapped" and was discounted as barren area. If new, the area, centroid position, species composition, and percent cover (see below) of the SAV was to be recorded, unless the vegetation was found to be Sarqassum attached to rock outcrops. SAV markers were then recovered, and the survey of the transect continued.
Intensive SAV BED Surveys In October 1994, GPS and LORAN coordinates and compass sightings were used to relocate the seagrass beds selected for study. Several beds were marked by crab trap buoys anchored with screw-in tie down anchors to facilitate site recovery in 1995.
Within each bed, the position of a "center" marker was determined in 1993 by GPS, LORAN, and compass bearings. Center markers are hemispherical concrete parking lot markers. Each marker was painted with blue anti-fouling paint and anchored to the bottom With screw-in anchors. Concrete markers were tied to the anchors with 1" diameter nylon rope.
Edges of all 15 sites were marked during 1993 in order to determine whether the seagrass beds expand, contract, or remain unchanged during the duration of the three year study.
Seagrass bed edges were marked with short (<1.0 m) sections of 3/8" steel reinforcement rods driven into the bottom with a small sledge hammer.ý Each steel stake was allowed to extend about 10 cm upward from the sediment surface. Seagrass bed edges were usually very easy to define, based on the sharp delineations between bare bottom and vegetated bottom.
A surveyor's tape was strung out along the set of edge markers at each site.
In 1993, distances between edge markers and the distance from the center marker to each edge marker were recorded.
In 1994, bed markers were found by wading, snorkeling, or pulling a weighted polypropylene line across the bottom. Center markers and edge markers were relocated or replaced as needed. The majority of markers was relocated, so that only a few needed to be replaced. PVC poles were installed next to 3
each edge marker to simplify working in turbid water. The distance of the actual SAV bed edge was tape-measured from the edge marker. Seaward changes were recorded as expansions. Changes toward the central bed marker were recorded as contractions.
As in 1993, the percentage of bottom covered by SAV on the edge of each bed (from 0.0 to 1.0 m into each bed) and deeper into, the bed (at a distance of 2.0 to 3.0 m) was measured. Ten 1.0 m2 quadrat-based estimates of bottom cover were taken along the vegetated edge of each SAV bed. The quadrats were positioned on the vegetated side of a randomly selected subset of the 15 edge markers at each site. Ten 1.0 m2 additional cover estimates were made by flipping the quadrat frame over twice away from the perimeter of each seagrass bed.
Subdivisions (100 cm2) of the 1.0 m2 quadrat were used as the units for the cover estimates. SAV coverage was determined by counting the number of units in which various species of SAV were actually rooted. A barren square was defined as being devoid of any rooted vegetation. Seagrass blades from plants rooted in other units were not counted as cover in the otherwise completely barren units. Four seagrasses (Halodule, Syringodium, Thalassia, and Halophila) were encountered in the study sites. Two species of the rhizophytic algal genus, Caulerga, were found at several of the sites.
Divers recorded data on slates and the data were transferred to log books for later use.
SAV Condition Condition was defined as SAV shoot count, above-ground biomass, and productivity. Methods and effort followed the 316 Demonstration Study (Mattson et al.,19862 ) with some variations as noted below. SAV condition was measured at the 15 intensive beds that are used for perimeter measurements in the 1993-95 monitoring program.
2/ Mattson, R., J.A. Derrenbacker, Jr. and R.R. Lewis. 1986. Effects of thermal addition from the Crystal River generating complex on the submerged macrophytic communities in Crystal Bay, Florida, pp. 11-67 in K. Mahadevan et al. (eds.), Proceedings, Southeastern Workshop on Aquatic Ecological Effects of Power Generation, Mote Marine Laboratory Technical Report Number 124.
Sarasota FL.
4
At each station, 6 samples for biomass of seagrasses and rhizophytic macroalgae were collected with a 25x25 cm sampler. The sampler was a PVC frame partially covered by a dive bag. Macrophytes clipped at the sediment surface floated into the upturned bag, which was labelled, closed and removed before moving to the next clip site. Contents of 6 samples were sorted into seagrasses (,by species) and algae (pooled). Sorted samples were dri'ed to constant weight at 1050 C and weighed.
Seagrass productivity was determined as 14 day regrowth. At least 4, and usually 5 or 6, replicate measurements were made in each bed, using 11.3 cm diameter clip rings for Halodule, or 16.7 cm diameter clip rings for other seagrasses. After clip rings were installed, all SAV was clipped level with the surface of the ring, and discarded. Two weeks later, new growth was harvested, ,sorted, preserved, and labelled. Samples were dried to constant weight at 700 C and weighed. Seagrass shoot densities were measured by counting the shoots collected in the clip rings after 14 days of regrowth.
As biomass and productivity samples were being made in the field, percent cover was measured within the interior of each bed. Percent cover was determined by the same methods employed in annual sampling.
RESULTS All data collected from the 1994 sampling effort appear in the tables and appendix tables that follow. Data from 1993 are included where appropriate.
Barren Area Transects Three SAV beds were encountered in 1994 that were not seen when the transects were established in 1993 (Table 1). Two were Halodule beds and the third was a mixed Halodule-Syrinqodium bed with small amounts of the green alga, Caulerpa.
One of the "new" beds was found on Transect IN, which is Basin 1. It was a small (7x10 m), sparse (5% mean cover) Halodule bed with short (<5 cm) blades. The bed was growing in a silty sand underlain by rock. Many large 5
(10-20 cm) burrows were found in the rock near the bed and elsewhere on the Basin I flats crossed by Transects IN, IW and 2W. The burrows were not seen in 1993.
Another Halodule bed was found on Transect 3W, in Basin 2. The bed covered 40 m of transect on flats southwest of Thumb Island. The north end of the bed was characterized by sparse calcareous green algae and Halodule was the principal SAV at the bed's southern end. Average percent cover of Halodule near the south end of the bed was 48%.
A third novel bed was found on Transect 5W, which crosses from Basin 2 into Basin 3. The bed was found in the Basin 2 portion of the transect, south of Drum Island. The bed was a mixture of small, dense patches of either Caulerpa (4% mean cover) or Halodule (14% mean cover), with the two sometimes combined. Syringodium was present but rare (30% cover in 1 of 10 replicates.
Perimeter Beds Thirteen of 15 intensively studied SAV beds had positive growth along their margins since 1993, based on the mean change observed at 10 to 16 reference markers per bed (Table 2). Mean expansion ranged from 0.06 m to 6.51 m.
Standard deviations usually exceeded means because considerable variation was measured, ranging in expanding beds from 0.0 to 14.0 m.
Two stations, 3 in Basin I and 5 in Basin 2, contracted by -0.38 m and -
0.21 m in terms of their respective mean values.
On a basin-wise basis, Basin 3 SAV beds showed approximately twice the mean expansion values as beds in Basins I or 2, or control beds south of the intake canal.
Percent Cover The majority of cases in both 1993 and 1994 were such that percent cover measurements were made on algae-free SAV beds (Table 3). Although algae were present in some cases, the cover and changes in cover of seagrass generally represent the same values as data for "total vegetation".
6
In 1994, no basin-wise differences in mean cover were significant. Basin 3 had greater than 90% cover compared to mean covers of 71-78% in Basin 1 and 61-70% in Basin 2.
Percent cover was determined along the perimeters of beds and in the bed interior (Table 4). For both locations, as many beds had increases in seagrass cover as had decreases (7 each, 1 with no data). Perimeter samples averaged a decrease in percent cover of 5.1% from 1993 to 1994, whereas interior samples averaged a decrease of 3.4% over the same period. No basin-wise patterns or trends in cover change were seen.
Biomass Biomass was evaluated for individual seagrass species, all seagrass, and all vegetation (Table 5). For Halodule, biomass had a bimodal distribution when plotted in terms of station proximity to the POD (Figure 2A). Stations I and 15 had maximum Halodule biomass values, but no significant differences occurred between station pairs.
Syrinciodium occurred at fewer stations but biomass data also displayed a bimodal distribution with respect to station order (Figure 2B). It is noteworthy that the relationship between percent cover and biomass of Syringodium was meaningful whereas the relationship for Halodule was not (Figure 3).
Combining all seagrass species biomass obscured the bimodal pattern seen for individual species biomass (Figure 4), although it is evident that stations closest to-the POD had much lower mean biomass values than more distantý stations. Mean seagrass biomass values for the six stations closest to the POD were significantly lower than mean biomass values for 3 more distant stations (9,11, and 12).
All vegetation (seagrass plus rhizophytic macroalgae) biomass accentuated the spatial pattern seen for all seagrass species combined (Figure 4).
Distant stations north of the Intake Canal had greater mean biomass values than stations closer to the POD, due largely to the increased abundance of macroalgae.
7
Shoot Density Mean numbers of Halodule shoots per square meter also displayed a bimodal distribution with respect to station order (Figure 5), whereas the pattern was not as evident for Syrincodium.
Productivity Clip data (Table 6) were normalized for regrowth period and sample size to calculate productivity as mg dry weight per square meter per day (Table 7).
Halodule productivity data were bimodally distributed with respect to station proximity to the POD, whereas Syrinqodium productivity was not (Figure 6).
DISCUSSION Based on data from 1993 and 1994, including data collected for the first time in 1994, the following points are offered.
- 1. "New" SAV beds appeared along barren-area transects. Three beds were found in 1994 that were not seen in 1993. Two are small Halodule beds in relatively close proximity (Basins I and 2) to the point of discharge. The apparent recruitment of beds into barren areas could be an artifact of sampling dates (November-December 1993 versus October 1994), especially for the multiple species bed on Transect 5 near Drum Island. Beds on transects closer to the point of discharge are more likely to be genuine additions, because the tidal flats in that area are shallow, easily surveyed, and frequently visited. Surveys in 1995 will determine whether these beds have persisted or grown, and whether additional new beds occur.
- 2. Recruitment of new beds into barren areas has not been extensive.
During the first full year of monitoring, there was no evidence that SAV was colonizing extensive areas of barren sediment. This suggests that seasonal differences in SAV cover were not great from 1993 to 1994. Historical data indicate that losses of SAV along the southern side of Basin 3 were considerable. The record is moot as to whether the cause of this decline was thermal stress, turbidity, or other factor(s). To the extent that 8
thermal stress was involved, the southern side of Basin 3 remains a likely area to expect SAV colonization during the coming year.
- 3. The seaward edges of selected SAV beds have expanded. Thirteen of 15 SAV beds had positive growth along their margins since 1993, on the order of 0.7 to 1.4 m. Basin 3 SAV beds showed approximately twice the mean expansion values as beds in other basins. This trend could be an artifact of sampling a month earlier in 1994 than in 1993. Sampling in 1995 will be directly comparable to 1994 sampling and will provide insight to the permanence of bed expansion.
- 4. No significant patterns in 1994 SAV cover were observed. In 1994, Basin 3 beds had higher percent cover3 averages than beds in other basins.
Compared to 1993, there were small (<5.1%) decreases in percent cover along the perimeter and within the interior of beds. Neither temporal trends nor spatial patterns in percent cover were significant.
- 5. Other indicators of SAV condition covaried and were distributed in a bimodal pattern with respect to station proximity to the POD. Biomass, shoot density, and productivity rates increased, decreased (to minima at Station 5), and then increased relative to distance from the POD, especially for Halodule. This pattern suggests that more than one factor influences spatial variation in seagrass condition, a finding consistent with previous investigations.
- 6. Combining species of seaqrass or adding rhizophytic macroalgae to-condition data transforms spatial patterns. Meanstation biomass values are bimodal on a species basis. Combining species or adding algae changes the spatial pattern so that biomass increases with distance from the-POD. Total biomass is much lower at the 6 stations closest to the POD than at more distant stations, reflecting algal contributions.
Photography and Mapping The 1993-94 aerial photography effort was unsuccessful due to low water clarity. A 1994-95 effort is in progress. If it is successful, images will be photo-interpreted, ground-truthed, and digitally mapped by a subcontractor. An effort will be made during ground-truthing to distinguish 3/ Of seagrasses, the dominant component of total SAV.
9
lithophytic Sarqassum from seagrasses and rhizophytic algae. A separate report will accompany the maps. Progress has also been made in producing an independent GIS map of the study area, at the level of detail needed to plot LORAN and GPS data collected in 1993 and 1994. A draft GIS product was submitted to FPC in October 1994 and a final version will be submitted for approval as soon as a computer hardware failure is repaired.
Conclusions In 1994 the monitoring program at Crystal River produced repeat data and new data concerning the occurrence, spatial extent, and condition of SAV within a 2 mile radius of the point of discharge. Repeat data indicate that existing SAV beds are stable. No evidence was found that existing beds were retreating from their 1993 dimensions. Most beds expanded along their margins, by an amount that could be due to the one month difference in sampling time. Condition data suggest that the expansion was not an artifact of sampling date, and surveys in 1995 will determine whether expansion is continuing. Condition data were either uninformative (percent cover) or indicated a bimodal spatial pattern relative to proximity of stations to the POD. Shoot densities, biomass, and productivity tended to increase with distance from the POD but the pattern of increases indicates that several factors affect SAV condition. Data to be collected in 1995 will reveal the persistence of these patterns and allow for trends to be identified between years. In 1994, three beds of mostly Halodule were encountered along transects crossing areas that were barren in 1993. One bed was in Basin 1, very close to the POD. Other beds appeared in.Basin 2, the area next closest to the POD. No new beds were found in Basin 3, where colonization of barren areas was expected on the basis of historic data, but colonization in Basins 1 and 2 offer hope that additional recruitment will be detected throughout the study area in 1995.
10
FIGURE I The base map employed in Figure 1A and 1B is a composite in which marsh and canal shorelines, and oyster reefs, have been added to the 1983 SAV map produced as part of the FPC 316 Demonstration Study. Shorelines were transferred from U.S. Geological Survey topographic quadrangles and oyster reefs were taken from unpublished data available at Mote Marine Laboratory.
Spoil islands of the Cross-Florida Barge Canal appear at the top of the map, which is north. The discharge canal levee is the shorter feature depicted to the north of the longer levee on the intake canal. In the map, A denotes algal beds; S, seagrass beds; AS, mixed beds dominated by algae; SA, mixed beds dominated by seagrass; 0, open or barren bottom.
Figure IA This figure depicts the number and orientation of barren area transects established for the present study. One transect, "13W", is not shown. It is north of the Barge Canal, extending from Green 35 day mark on the Canal, to Green 23A day mark on the Withlacoochee River. Note that most transects have at least one land-side end, which has been marked in the field with a permanent monument. Transect "9W" is 2 miles from the point of discharge.
The locations of 3 "new" barren area SAV beds encountered in 1994 are highlighted with asterisks (*).
Figure 1B This figure depicts the locations of SAV beds selected for intensive surveys (percent cover, biomass, productivity, etc.).
One station, "10", is immediately south of station "9" but off the figure. Stations 1-3 are in Basin 1. Stations 5-7 are in Basin 2. Four stations between the canals are in Basin 3.
Station 11 is in Rocky Cove. Station 13 is 2 miles from the point of discharge.
11
K:
0 0
0
'4, 4,?N 0
0 0
0 0
0 0 e 1 0 2~>~'1 )k~ 0 * ýrl8.9
.0.
FIGURE 1A: Barren Area Transects
.Cý-,
'ýýj 0
0 0
0 0
0
,%
0 0
0 0° 0
0
,s.9 0*
FIGURE IB: Intensive SAV Beds
Halodule wrightii 125 11
--
100+
0E-N 75-50 E
0 im 25 O.
5 8 1,1,1"-.
15 14 3 2 1 7 6 Station Syringodium filiforme 200-150-C14 E
100-E
.0 50-0 F
.01; -
8 14 12 11 9 10 Station Figure 2. Biomass in order of station proximity to POD.
A, Halodule; B, Syringodium.
Holodule wrightii 100 F 2 7 1 0 15 0
140 00 6
80+ 08
'0 C,
5 CL 604 8 3
4 4 C ' C 40 0 10 20 30 40 50 60 70 80 Biomass (g/m 2)
Syringodium filiforme 100- 0 0
0 12 80- 9 0
6U0 0
0 0 10 4
C., 40 20+
0 0 25 50 75 100 125 150 Biomass (g/m 2)
Figure 3. Biomass vs. Percent Cover (mean station val-ues). A, Halodule; B, Syringodium.
40(
300, E 200, 0
100 0
3 2 1 7 6 5 4 8 1514121311 9 10 Station All Seagrass 200 150+
cJ E
100+
E 0
50-+
IJ I" L4; 1M I. I
-i .ll . I . . . .. .
'Ma"iq
. . . . . . . . . . . . . . .. . . . -
3 2 1 7 6 5 4-8 15 14 12 13 1'1 9 10 Station Figure 4. Biomass in order of station proximity to POD.
A, All vegetation- B, All seagrass.
Halodule wrightii 1000-800-E 600+
0~
0 400 -
(n 200-0 .= : . . .
S I
. . I I
. . .Z i
.. .. . , . . ... ....
3 2 1 7 6 5 8 15 14 13 Station Syringodium filiforme 1000 800 i
600+
0 0.
M- 400 -
0f 200-0- 4 12 11 9 10 Station Figure,5. Shoot density in order of station proximity to POD. A, Halodule. B, Syringodium.
Halodule wrightii 1000-800-E E 600-kN
~4.J 3 4004 ,
C
-o 200-0 L
0..
U 3 2 1 7 6 5 8. 15 14 13 Station Syringodium filiforme 1200 -t
>4 1000-E 8004-600+4-ll-Q 0p E- 400-200-II 4
Lq 11
-,,,b 9
, , &
12 Station Figure i6. Productivity in order of station proximity to POD. A, Halodule; B, Syringodium.
Table 1. SAV beds found in October 1994 on 1993 barren area transects.
Bed I Bed 2 Bed 3 Transect No. IN 3W 5W Basin No. 1 2 2/3 LORAN 45- 229.16 236.00 240.85 62- 880.75 885.49 888.81 Near to: POD Thumb I. Drum I.
Mean % Cover Halodule 5 48 14 Syringodium 0 0 3 Caulerpa 0 0 4 Bare 95 52 85 N 10 9 10
Table 2. Expansion of seagrass beds measured along staked edges: December 1993-October 1994.
Mean No. of Expansion Min Max qtntinn -Ita~kpr (mI .q-n- (MI Im) 1 13 1.90 1.42 -1.40 4.10 2 15 0.98 1.58 -2.30 3.30 3 15 -0.38 0.93 -2.00 1.40 4 14 0.06 0.41 -0.60 0.80 5 16 -0.21 0.52 -1.00 0.70 6 13 0.48 0.99 -0.70 2.30 7 12 2.52 1.99 0.00 6.00 8 10 6.51 4.02 1.30 14.00 9 14 0.83 0.60 0.00 2.30 10 14 0.71 0.79 0.00 2.70 11 12 0.58 0.27 0.00 1.00 12 14 0.30 1.05 -1.40 3.10 13 13 0.05 3.29 -6.00 4.60 14 15 0.56 0.59 -0.60 1.40 15 15 0.56 0.75 -0.10 2.70
Table 3. Counts of presence of seagrass and algae species in Im2 quadrats inside (1) and on perimeters (P) of grass beds.
Halodule Halophila Syringodium Thalassia Caulerpa Caulerpa wrightii englemannii filiforme testudinum prolifera mexicana Date Station P I P I P I P I P I P I 1993-12 1 9 10 0 0 0 0 0 1994-08 10 10 0 0 0 0 0 1994-10 10 10 0 0 0 0 0 1993-12 2 10 10 0 0 0 0 0 1994-08 2 10 10 0 0 0,, 0 0 1994-10 2 10 10 0 0 0 0 0 1993-12 3 10 10 0 0 0 0 0 1994-08 3 10 10 0 0 0 10 0 1994-10 3 9 10 0 0 0 0 0 1993-12 4 9 9 1 0 0 0 0 1994-08 4 0 0 0 10 10 0 1994-10 4 0 0 0 1 11 10 4 1993-12 5 10 10 0 0 0 0 0 1994-08 5 10 10 0 0 0 0 I 1994-10 5 10 10 0 1 0 0 0 1993-12 6 9 9 4 2 0 0 0 1994-08 6 8 8 6 5 0 0 0 1994-10 6! 10 10 7 5 0 0 0 1993-12 7 10 10 0 1 0 0 0 1994-08 7 10 10 0 6 0 0 0 1994-10 7 9 8 1 I 1 2 1 1993-12 8 9 9 2 4 0 0 1994-08 8 7 7 2 1 4 5 0 1994-10 8 4 4 0 0 10 10 0 1993-12 9 0 1 6 2 10 10 1
1994-08 9 0 0 7 5 10 10 6
1994-10 9 1 0 6 6 10 10 0
1993-12 10 0 0 1 1 10 9 4 1994-08 10 0 0 0 0 9 10 10 1994-10 10 0 0 0 0 10 10 0 1993-12 11 0 0 2 0 10 10 0
Table 3. Continued.
Halodule Halophila Syringodium Thalassia Caulerpa Caulerpa wrightif englemannii filiforme testudinum prolifera mexicana Date Station P I P I P I p T p I p T p I 1994-08 11 0 0 1 0 10 10 0 0 0 0 0 0 1994-10 11 1 0 0 0 10 10 0 0 2 2 0 0 1993-12 12 0 2 0 0 10 10 0 0 3 4 0 0 1994-08 12 0 0 0 0 10 10 0 0 0 0 0 0 1994-10 12 9 6 2 2 0 0 2 3 8 2 6 7 1993-12 13 4 1 0 0 0 0 1 3 4 7 7 7 1994-08 13 2 0 1 0 0 0 7 0 12 0 8 0 1994-10 13 9 10 1 1 0 0 0 0 1 0 0 0 1993-12 14 9 10 0 0 0 0 0 1 0 0 1994-08 14 8 10 0 0 0 0 3 0 0 0 0 0 1994-10 14 8 8 1 1 0 0 2 2 2 0 0 0 1993-12 15 7 8 0 0 0 0 3 3 1 0 0 0 1994-08 15 10 10 0 0 0 0 0 0 I 0 0 0
Table 4. Average percent cover (n = 10) of I m quadrats on the perimeter and 2 m inside the perimeter of seagrass beds for each station and date.
Perimeter Inside Total Perimeter Perimeter Inside Total Inside natp Station Veaetation Seaarass Aloae Vepetation SOaurass Alaae 1993-12 1 79.6 79.6 0.0 80.0 80.0 0.0 1
1994-08 100.0 100.0 0.0 100.0 100.0 0.0 1994-10 96.1 96.1 0.0 92.5 92.5 0.0 1993-12 2 87.1 87.1 0.0 96.4 96.4 0.0 1994-08 2 99.0 99.0 0.0 98.9 98.9 0.0 1994-10 2 81.5 81.5 0.0 97.1 97.1 0.0 1993-12 3 80.1 80.1 0.0 93.7 93.7 0.0 1994-08 3 42.0 42.0 0.0 36.9 36.9 0.0 1994-10 3 34.7 34.7 0.0 45.3 45.3 0.0 1993-12 4 76.3 76.3 0.0 87.0 86.6 1.3 1994-08 4 73.5 73.5 0.0 72.5 72.5 0.0 1994-10 4 85.0 84.8 4.9 71.8 71.6 2.5 1993-12 5 90.4 90.4 0.0 83.2 83.2 0.0 1994-08 5 59.7 59.7 0.3 49.7 49.7 0.0 1994-10 5 26.1 26.1 0.0 39.4 39.2 0.0 1993-12 6 91.8 91.8 0.0 98.7 98.7 0.0 1994-08 6 83.9 83.9 0.0 91.1 91.1 0.0 1994-10 6 74.4 74.4 0.0 92.3 92.3 0.0 1993-12 7 91.5 91.5 0.0 98.5 98.5 0.0 1994-08 7 73.1 73.1 0.0 85.8 85.8 0.3 1994-10 7 91.1 91.1 0.3 98.2 98.2 0.0 1993-12 8 94.7 94.7 0.5 93.2 93.2 0.0 1994-08 8 95.5 95.5 0.0 92.0 92.0 2.3 1994-10 8 93.8 93.8 0.0 95.5 95.5 0.0 1993-12 9 87.6 87.6 0.2 81.2 81.2 0.0 1994-08 9 88.7 87.6 9.8 94.2 94.2 1.3 1994-10 9 92.0 92.0 0.2 98.5 98.5 0.4 1993-12 10 76.8 74.7 4.4 57.0 56.7 1.7 1994-08 10 96.4 43.0 75.8 94.8 84.3 38.8 1993-12 11 98.0 98'.0 0.0 98.3 98.3 0.0 1994-08 11 99.6 99.6 0.0 100.0 100.0 0.0 1994-10 11 99.8 99.8 0.0 100.0 100.0 0.0 1993-12 12 90.3 86.6 2.2 92.7 88.9 3.8 1994-08 12 98.9 98.9 0.0 95.5 95.5 0.0 1994-10 12 91.8 91.8 0.9 98.0 98.0 0.8 1993-12 13 72.2 31.7 40.5 80.4 19.4 63.4 1994-08 13 N/A N/A N/A 82.6 31.8 54.9 1994-10 13 75.7 53.9 40.9 60.4 49.6 13.8 1993-12 14 90.7 90.7 0.0 91.2 91.2 0.3 1994-08 14 85.4 85.4 0.0 87.8 87.8 0.7 1994-10 14 87.4 87.5 0.2 88.0 88.0 0.0 1993-12 15 83.9 83.9 2.7 96.9 96.9 0.0 1994-08 15 86.9 86.9 0.5 98.4 98.4 0.8 1994-10 15 95.2 90.7 24.9 96.5 90.9 17.6
Table 5. Dry Weight biomass (g) per mn. Means and standard deviations from six replicate 25 x 25 cm quadrats.
Syringodlum Halophila Halodule Thalassia Caulerpa Caulerpa Fi4r fm a An q7AM~nnii #me+.4h4 num ni-'n 7 iný fflVi ~nA2 flv,4+' A1n,,2e I IItVII~t ~ ~l~UIII VI II 'dll 4V. bL~AI ILIIS IJ viitatit tt.nI ~.4t~ Lt- f . Ai '. 2 ,
Station 1 Count (>Og) 6 Mean 26.2 S.D. 17.7 Station 2 Count (>Og) 6 Mean 13.1 S.D. 2.8 Station 3 Count (>Og) 6 Mean 8.3 S.D. 5.7 Station 4 Count (>Og) 6 2 Mean 42.9 27.4 S.D. 15.9 42.4 Station 5 Count (>Og) 6 Mean 8.5 S.D. 5.7 Station 6 Count (>Og) 6 Mean 20.3 S.D. 14.3 Station 7 Count (>og) 2 6 Mean 2.3 18.3 S.D. 4.4 5.7 Station 8 Count (>Og) 5 4 5 5 Mean 33.4 1.8 19.9 24.3 S.D. 34.9 2.1 12.1 38.1
Table 5. Continued.
Syringodium Halophila Halodule Thalassia Caulerpa Caulerpa filiforme englemannii wrightii testudinum prolifera mexicana Drift Algae Station 9 Count (>Og) 6 4 1 3 Mean 71.8 3.4 0.5 4.9 S.D. 14.8 3.6 1.1 8.8 Station 10 Count (>Og) 5 1 6 2 Mean 54.2 0.6 23.4 76.2 S.D. 35.1 1.6 22.5 118.1 Station 11 1 Count (>Og) 6 Mean 126.7 S.D. 34.0 Station 12 Count (>Og) 6 1 5 4 Mean 109.2 13.3 1.6 182.4 S.D. 72.5 32.5 1.9 198.4 Station 13 Count (>Og) 5 5 4 6 Mean 38.4 18.3 171.8 124.0 S.D. 42.3 15.9 163.0 194.2 Station 14 Count (>Og) 4 6 5 Mean 13.7 10.6 50.7 S.D. 24.3 4.0 60.8 Station 15 Count (>Og) 6 2 3 Mean 69.1 3.3 14.5 S.D. 51.5 6.6 29.1
Table 6. Dry weights (ug) from clipped 14-day growth samples.
Clip Area Weight Shoot Weight Station Snecies Mean S.D. Mean S.D.
I Halodule wrightii 743 293 153 34 2 Halodule wrighti i 288 125 81 29 3 Halodule wrightii 117 102 41 13 5 Halodule wrightMi 110 52 63 26 6 Halodule wrightHi 492 210 132 68 7 Halodule wright ii 291 109 87 38 8 Halodu1e wrightii 621 257 109 32 13 Halodule wright ii 261 209 69 43 14 Halodule wrighti i 843 290 208 82 15 Halodule wrightii 629 166 125 60 4 Syringodium fi 1iforme 1332 617 260 86 9 Syringodium fi7 iforme 2476 1184 189 45 10 Syringodium fif7 forme 1328 623 105 32 11 Syringodium fl7 iforme 988 500 355 117 12 Syringodium f iiforme 934 615 170 113
Table 7. Productivity (mg/m2/day) and number of shoots (m2) from grass clip sample and dry weight biomass (mg/m2) from quadrat collections.
Productivity Biomass (mg/m2/day) Shoots per m2 (g/m2)
Station Species Mean S.D. Mean S.D. Mean S.D.
3 Halodule wri ghti i 83 73 259 151 8.3 5.7 2 Hal odule wrightii 205 89 379 192 13.1 2.8 Hal odul e wrightii 529 209 465 103 26.22 17.7 7 Hal odul e wrightii 207 77' 379 204 18.3 s.7 6 Halodul e wrightii 350 150 382 117 15.1 9.5 5 Hal odule wrightii 73 34 199 126 8.5 5.7 8 Hal odule wrightii 516 213 638 350 19.9 12.1 15 Hal odul e wrightii 522 138 638 409 69.1 51.5 14 Halodule wrightii 700 241 474 275 10.6 4.0 13 Hal odul e wrightii 186 149 339 167 4 Syringodium fi 1i forme 434 201 228 72 42.9 15.9 12 Syringodium fi 1i forme 305 201 247 69 109,.2 72.5 11 Syringodium fil i forme 376 190 137 91 126.7 34.0 9 Syringodium f I iforme 807 386 594 258 71.8 14.8 10 Syringodium fi I i forme 433 203 575 249 54.2 35.1
Appendix Table 1. Station locations for the seagrass bed edge observations in 1994.
Station Latitude Lonaitude Loran (45) Loran (62) 1 28 57 58.39 82 43 56.35 45234.56 62883.88 2 28 58 00.79 82 43 50.00 45234.06 62883.08 3 28 58 03.88 82 43 41.91 45233.61 62882.21 4 28 57 17.67 82 44 21.52 45232.47 62887.19 5 28 58 35.81 82 44 33.48 45244.78 62888.00 6 N/A N/A 45240.33 62885.49 7 28 58 25 00 82 44 09 00 45237.91 62884.67 8 28 57 07.30 82 44 19.26 45230.70 62887.06 9 28 56 49.65 82 43 25.10 45220.91 62880.80 10 28 56 41.19 82 43 14.31 45218.47 62879.68 11 28 57 23.73 82 43 38.31 45227.68 62882.13 12 28 57 10.49 82 44 17.21 45230.03 62886.80 13 28 58 12.34 82 45 15.62 45274.30 67893.40 14 28 57 04.40 82 44 35.00 45232.39 67889.09 15 28 57 05.90 82 44 39.40 45232.91 62889.56
Appendix Table 2. Vegetation coverage (percent) in seagrass beds for 1m2 quadrats along bed perimeters and 2 meters inside beds.
Perimeter/
Interior Total Total Total Date Station Ren (P/I) Veaetation Seaarass Al aae Snecies Cover 1993-12 1 43 43 Halodule wrightii 43 1993-12 2 93 93 Halodule wrightii 93 1993-12 2 74 74 Halodule wright i 74 1993-12 3 85 85 Halodu1e wrightii 85 1993-12 3 89 89 Halodule wrightii 89 1993-12 4 97 97 Halodule wright ii 97 1993-12 4 79 79 Halodule wrightii 79 1993-12 5 71 71 Halodule wrightii 71 1993-12 5 79 79 Halodule wrightHi 79 1993-12 6 96 96 Halodule wrightii 96 1993-12 6 82 82 Halodule wrightil 82 1993-12 7 94 94 Halodule wrightii 94 1993-12 7 87 87 Halodule wrightii 87 1993-12 8 96 96 Halodule wright]i 96 1993-12 8, 73 73 Halodule wright ii 73 1993-12 9 90 90 Halodule wright ii 90 1993-12 9 73 73 Halodule wrighti 1 73 1993-12 10 35 35 Halodu1e wrighti 1 35 1993-12 10 80 80 Halodule wrightii 80 1993-12 1 96 96 Halodule wrightHi 96 1993-12 1 94 94 Halodule wrightii 94 1993-12 2 98 98 Halodule wrightii 98 1993-12 2 80 80 Halodule wrightii 80 1993-12 3 98 98 Halodule wrightii 98 1993-12 3 95 95 Halodule wrightii 95 1993-12 4 98 98 Halodule wrightii 98 1993-12 4 100 100 Halodule wrightii 100 1993-12 5 100 100 Halodule wrighti i 100 1993-12 5 100 100 Halodule wrightii 100 1993-12 6 97 97 Halodule wright ii 97 1993-12 6 87 87 Halodule wrightii 87 1993-12 7 95 95 Halodule wrightii 95 1993-12 7 93 93 Halodule wrightSi 93 1993-12 8 96 96 Halodu1e wrightii 96 1993-12 8 82 82 Halodule wrightii 82 1993-12 9 92 92 Halodu1e wrightii 92 1993-12 9 83 83 Halodule wrightii 83 1993-12 10 94 94 Halodu1e wrightii 94 1993-12 10 57 57 Halodu1e wrightil 57 1 88 88 Halodule wrightii 88 1993-12 1993-12 1 70 70 Halodu1e wrightiHi 70 1993-12 2 87 87 Halodu7e wrightii 87 1993-12 2 84 84 Halodule wrightii 84 1993-12 3 100 100 Halodule wright i 100 1993-12 3 92 92 Halodule wrightii 92 1993-12 4 100 100 Halodule wrightii 100
Appendix Table 2. Continued. Page 2 Perimeter/
Interior Total Total Total fl~tt~ Station Ren (P/I1 Veaetation Seacrass Alaae Soecies Cover Dat ..
Sta . io . . .
Ren - .. i ... . i-- - ..
1993-12 4 94 94 Halodule wrightii 94 1993-12 5 98 98 Halodule wrightii 98 1993-12 5 64 64 Halodule wrighti 64 1993-12 6 81 81 Halodule wrightil 81 1993-12 6 84 84 Halodule wright I 84 1993-12 7 91 91 Halodule wrightii 91 1993-12 7 98 98 Halodule wrightii 98 1993-12 8 100 100 Halodule wright ii 100 1993-12 8 46 46 Halodule wright 1 46 1993-12 9 100 100 Halodule wright'i 100 1993-12 9 93 93 Halodule wrightHi 93 1993-12 10 92 92 Halodule wrightii 92 1993-12 10 76 76 Halodule wrightii 76 1993-12 1 84 84 vright iii Halodule wright! 84 1993-12 1 92 92 Halodule wrightii . 92 1993-12 2 74 74 Halodule wright i t 74 1993-12 2 71 71 Halodule wrightii 71 1993-12 3 71 71 Halodule wrightii 71 1993-12 3 68 68 Halodule wrightii 68 1993-12 4 87 87 Halodule wrightii 87 1993-12 4 66 66 Halodule wrighti i 65 1993-12 4 66 66 Halophila englemannii 1 1993-12 5 94 94 Halodule wrightii 94 1993-12 5 73 73 Halodule wrightHi 73 1993-12 6 96 96 Halodule wrightii 96 1993-12 6 78 78 Halodule wrightii 78 1993-12 7 89 87 Caulerpa prolifera 2 1993-12 7 89 87 Halodule wrightii 87 1993-12 7 70 70 Halodule wrightii 70 1993-12 8 95 95 Caulerpa prolifera 5 1993-12 8 95 95 Halodule wrightii 90 1993-12 8 89 89 Halodule wrighti 89 1993-12 9 83 83 Halodule wrighti 83 1993-12 9 90 90 Halodule wrighti 90 1993-12 1 40 40 Halodule wrighti 40 1993-12 1 92 92 Halodule wrightfi 92 1993-12 2 96 96 Halodule, wrighti 96 1993-12 2 93 93 Halodule wrightii 93 1993-12 3 91 91 Halodule wrightil 91 1993-12 3 93 93 Halodule wrightil 93 1993-12 4 93 93 ialodule wrightfi 93 1993-12 4 83 83 Halodule wrightil 83 1993-12 5 84 84 Halodule wrightil 84 1993-12 5 88 88 Halodule wrightHi 88 1993-12 6 77 77 HalOdule wrighti 77 1993-12 6 89 89 HaModule wrightii 89 1993-12 7 80 80 Halodule wrighti 80 1993-12 7 88 88 Halodule wrighti" 88
Appendix Table 2. Continued. Page 3 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seacrass Algae Species Cover 1993-12 5 8 I 79 79 0 Halodule wrightii 79 1993-12 5 8 P 100 100 0 Halodule wrighti 100 1993-12 5 9 I 96 96 0 Halodule wrightii 96 1993-12 5 9 P 88 88 0 Halodule wrightii 88 1993-12 5 10 1 96 96 0 Halodule wrightii 96 1993-12 5 10 P 90 90 0 Halodule wrightii 90 1993-12 6 1 I 100 100 0 Halodule wrightii 100 1993-12 6 1 P 100 100 0 Halodule wrightii 100 1993-12 6 2 I 97 97 0 Halodule wrightii 59 1993-12 6 2 I 97 97 0 Halophila englemannii 38 1993-12 6 2 P 75 75 0 Halodule wrightii 75 1993-12 6 3 I 99 99 0 Halodule wrightii 99 1993-12 6 3 1 99 99 0 Halophila eng7emannii I 1993-12 6 3 P 83 83 0 Halodule wrightii 83 1993-12 6 3 P 83 83 0 Halophila englemannii 10 1993-12 6 4 I 100 100 0 Halodule wrightii 100 1993-12 6 4 P .94 94 0 Halodule wrightiH 92 1993-12 6 4 P 94 94 0 Halophila englemannii 2 1993-12 6 5 I 99 99 0 Halodule wrightii 99 1993-12 6 5 P 90 90 0 Halodule wrightil 90 1993-12 6 6 1 99 99 0 Halodule wrightii 99 1993-12 6 6 P 98 98 0 Halodule wrightiH 97 1993-12 6 6 P 98 98 0 Halophila englemannii 1 1993-12 6 7 I 99 99 0 Halodule wrightii 99 1993-12 6 7 P 94 94 0 Halodule wrightii 94 1993-12 6 8 I 99 99 0 Halodule wrightii 99 1993-12 6 8 P 98 98 0 Halodule wrightii 98 1993-12 6 9 1 98 98 0 Halodule wrightii 98 1993-12 6 9 P 93 93 0 Halodule wrightii 93 1993-12 6 9 P 93 93 0 Halophila englemannii 15 1993-12 7 1 I 100 100 0 Halodule wrightii 100 1993-12 7 1 P 93 93 0 HaModule wrightii 93 1993-12 7 2 I 88 88 0 Halodule wrightil 88 1993-12 7 2 P 86 86 0 Halodule wrightii 86 1993-12 7 3 I 95 95 0 Halodule wrighti" 95 1993-12 7 3 P 66 66 0 Halodule wrightii 66 1993-12 7 4 I 100 100 0 Halodule wrighti 100 1993-12 7 4 P 100 100 0 Halodule wrightil 100 1993-12 7 5 I 100 100 0 Halodule wrightHi 100 1993-12 7 5 P 90 90 0 Halodule wrightii 90 1993-12 7 6 I 100 100 0 Halodule wrightii 100 1993-12 7 6 P 94 94 0 Halodule wrightHi 94 1993-12 7 7 I 100 100 0 Halodule wrightii 100 1993-12 7 7 P 96 96 0 Halodule wrightil 96' 1993-12 7 8 I 100 100 0 Halodule wright' 100 1993-12 7 8 P 100 100 0 Halodule wrightHi 100 1993-12 7 9 I 100 100 0 Halodule wrightii 100 1993-12 7 9 I 100 100 0 Halophila englemannii 2
Appendix Table 2. Continued. Page 4 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Veqetation Seaqras.s Algae Species Cover 1993-12 7 9 P 97 97 0 Halodule wrightii 97 1993-12 7 10 I 100 100 0 Malodule wrightii 100 1993-12 7 10 P 93 93 0 Halodule wrightii 93 199a-12 8 1 I 91 91 0 Halodu7e wrightii 91 1993-12 8 1 I 91 91 0 Halophila englemannii 6 1993-12 8 1 P 99 99 2 Caulerpa prolifera 2 1993-12 8 1 P 99 99 2 Halodule wrightfi 99 1993-12 8 1 P 99 99 2 Halophila englemannii 2 1993-12 8 2 I 97 97 0 Halodule wrightii 97 1993-12 8 2 I 97 97 0 Halophila englemannii 2 1993-12 8 2 P 94 94 0 Halodule wrightii 94 1993-12 8 3 I 98 98 0 Halodule wrightii 98 1993-12 8 3 I 98 98 0 Halophila englemannii 6 1993-12 8 3 P 100 100 0 Halodule wrightii 100 1993-12 8 4 I 100 100 0 Halodule wrightii 100 1993-12 8 4 I 100 100 0 Halophila englemannii 4 1993-12 8 4 P 95 95 0 Halodule wrightil 95 1993-12 8 5 I 94 94 0 HaModule wrightii 94 1993-12 8 5 P 94 94 0 Halodule wrightii 94 1993-12 8 5 P 94 94 0 Halophila englemannii 4 1993-12 8 6 I 90 90 0 Halodule wrightii 90 1993-12 8 6 P 76 76 0 Halodule wrightii 76 1993-12 8 7 I 75 75 0 Haloduie wrightii 75 1993-12 8 7 P 100 100 0 Halodule wrightii 100 1993-12 8 8 I 86 86 0 Halodule wrightii 86 1993-12 8 8 P 96 96 0 Halodule wrightii 96 1993-12 8 9 I 94 94 0 Halodule wrightii 94 1993-12 8 9 P 90 90 0 Halodule wrightii 90 1993-12 9 1 1 56 56 0 Syringodium filiforme 56 1993-12 9 1 P 94 94 0 Halophila'englemannii 2 1993-12 9 1 P 94 94 0 Syringodium filiforme 94 1993-12 9 2 I 94 94 0 Syringodium filiforme 94 1993-12 9 2 P 96 96 0 Syringodium filiforme 96 1993-12 9 3 I 94 94 0 Halodule wrightii 6 1993-12 9 3 1 94 94 0 Syringodium fiMiforme 94 1993-12 9 3 P 93 93 0 Syringodium filiforme 93 1993-12 9 4 I 85 85 0 Syringodium filiforme 85 1993-12 9 4 P 80 80 1 Caulerpa prolifera 1 1993-12 9 4 P 80 80 1 Halophila englemannii 3 1993-12 9 4 P 80 80 1 Syringodium filiforme 80 1993-12 9 5 1 93 93 0 Syringodium filiforme 93 1993-12 9 5 P 86 86 0 Syringodium filiforme 86 1993-12 9 6 1 84 84 0 Halophila englemannii 2 1993-12 9 6 1 84 84 0 Syringodium filiforme 82 1993-12 9 6 P 92 92 0 Syringodium filiforme 92 1993-12 9 7 1 28 28 0 Syringodium filiforme 28 1993-12 9 7 P 89 89 0 Halophila englemannii 11 1993-12 9 7 P 89 89 0 Syringodium filiforme 78
Appendix Table 2. Continued. Page 5 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1993-12 9 8 I 91 91 0 Halophila englemannii 10 1993-12 9 8 I 91 91 0 Syringodium filiforme 91 1993-12 9 8 P 79 79 0 Halophila englemannii 10 1993-12 9 8 P 79 79 0 Syringodium filiforme 79 1993-12 9 9 I 67 67 0 Syringodium filiforme 67 1993-12 9 9 P 89 89 0 Halophila englemannii 7 1993-12 9 9 P 89 89 0 Syringodium filiforme 89 1993-12 9 10 I 94 94 0 Syringodium filiforme 94 1993-12 9 10 P 90 90 0 Halophila englemannii 3 1993-12 9 10 P 90 90 0 Syringodium filiforme 90 1993-12 10 1 I 24 24 0 Halophila englemannii 17 1993-12 10 1 I 24 24 0 Syringodium filiforme 7 1993-12 10 1 P 90 90 4 Caulerpa prolifera 4 1993-12 10 1 P 90 90 4 Syringodium filiforme 90 1993-12 10 2 I 78 78 0 Syringodium filiforme 78 1993-12 10 2 P 77 77 8 Caulerpa prolifera 8 1993-12 10 2 P 77 77 8 Syringodium filiforme 77 1993-12 10 3 I 84 84 4 Caulerpa prolifera 4 1993-12 10 3 I 84 84 4 Syringodium filiforme 84 1993-12 10 3 P 84 68 16 Caulerpa prolifera 16 1993-12 10 3 P 84 68 16 Syringodium filiforme 84 1993-12 10 4 I 59 59 0 Syringodium filiforme 59 1993-12 10 4 P 80 80 0 Syringodium filiforme 80 1993-12 10 5 I 68 68 6 Caulerpa prolifera 6 1993-12 10 5 1 68 68 6 Syringodium filiforme 68 1993-12 10 5 P 77 77 0 Syringodium filiforme 77 1993-12 10 6 I 60 58 2 Caulerpa prolifera 2 1993-12 10 6 I 60 58 2 Syringodiumfiliforme 58 1993-12 10 6 P 6 6 0 Syringodium filiforme 6 1993-12 10 7 I 0 0 0 Bare 0 1993-12 10 7 P 13 13 0 Syringodium filiforme 13 1993-12 10 8 I 19 19 0 Syringodium ffliforme 19 1993-12 10 8 P 87 87 5 Caulerpa prolifera 5 1993-12 10 8 P 87 87 5 Syringodium filiforme 87 1993-12 10 9 I 76 76 0 Syringodium filiforme 76 1993-12 10 9 P 100 100 0 Halophila englemannii 3 1993-12 10 9 P 100 100 0 Syringodium filiforme 100 1993-12 10 10 I 94 94 0 Syringodium filiforme 94 1993-12 10 10 P 100 100 0 Syringodium filiforme 100 1993-12 11 1 I 100 100 0 Syringodium filiforme 100 1993-12 11 1 P 99 99 0 Syringodium filiforme 99 1993-12 11 2 I 100 100 0 Syringodium filiforme 100 1993-12 11 2 P 100 100 0 Halophila englemannii 1 1993-12 11 2 P 100 100 0 Syringodium filiforme 100 1993-12 11 3 I 99 99 0 Syringodium filiforme 99 1993-12 11 3 P 97 97 0 Syringodium filiforme 97 1993-12 11 4 I 100 100 0 Syringodium filiforme 100 1993-12 11 4 P 98 98 0 Syringodium filiforme 98
Appendix Table 2. Continued. Page 6 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1993-12 11 5 I 94 94 0 Syringodium filiforme 94 1993-12 11 5 P 100 100 0 Syringodium filiforme 100 1993-12 11 6 I 95 95 0 Syringodium filiforme 95 1993-12 11 6 P 93 93 0 Halophila englemannii 2 1993-12 11 6 P 93 93 0 Syringodium filiforme 93 1993-12 11 7 I 95 95 0 Syringodium filiforme 95 1993-12 11 7 P 100 100 0 Syringodium filiforme 100 1993-12 11 8 I 100 100 0 Syringodium filiforme 100 1993-12 11 8 P 100 100 0 Syringodium filiforme 100 1993-12 11 9 I 100 100 0 Syringodium filiforme 100 1993-12 11 9 P 100 100 0 Syringodium filiforme 100 1993-12 11 10 I 100 100 0 Syringodium filiforme 100 1993-12 11 10 P 96 96 0 Syringodium filiforme 96 1993-12 12 1 I 100 100 0 Halodule wrightii 100 1993-12 12 1 I 100 100 0 Syringodium filiforme 100 1993-12 12 1 P 88 88 0 Syringodium filiforme 88 1993-12 12 2 I 98 92 6 Caulerpa prolifera 6 1993-12 12 2 I 98 92 6 Syringodium filiforme 92 1993-12 12 2 P 88 88 0 Syringodium filiforme 88 1993-12 12 3 I 70 68 2 Caulerpa prolifera 2 1993-12 12 3 I 70 68 2 Halodule wrightii 34 1993-12 12 3 I 70 68 2 Syringodium filiforme 34 1993-12 12 3 P 89 88 1 Caulerpa prolifera 1 1993-12 12 3 P 89 88 1 Syringodium filiforme 88 1993-12 12 4 I 100 80 20 Caulerpa prolifera 20 1993-12 12 4 I 100 80 20 Syringodium filiforme 80 1993-12 12 4 P 88 66 12 Caulerpa prolifera 12 1993-12 12 4 P 88 66 12 Syringodium-filiforme 66 1993-12 12 5 I 97 97 0 Syringodium filiforme 97 1993-12 12 5 P 94 93 1 Caulerpa prolifera 1 1993-12 12 5 P 94 93 1 Syringodium filiforme 93 1993-12 12 6 I 100 99 1 Caulerpa prolifera 1 1993-12 12 6 I 100 99 1 Syringodium filiforme 99 1993-12 12 6 P 96 96 0 Syringodium filiforme 96 1993-12 12 7 I 97 97 0 Syringodium filiforme 97 1993-12 12 7 P 95 95 0 Syringodium filiforme 95 1993-12 12 8 I 89 89 0 Syringodium filiforme 89 1993-12 12 8 P 95 95 0 Syringodium filiforme 95 1993-12 12 9 I 96 96 0 Syringodium filiforme 96 1993-12 12 9 P 78 78 0 Syringodium filiforme 78 1993-12 12 10 I 98 98 0 Syringodium filiforme 98 1993-12 12 10 P 92 92 0 Syringodium filiforme 92 1993-12 13 1 I 96 96 15 Caulerpa prolifera 15 1993-12 13 1 I 96 96 15 Halodule wrightii 96 1993-12 13 1 1 96 96 15 Thalassia testudinum 5 1993-12 13 1 P 82 76 6 Caulerpa pro)ifera 6 1993-12 13 1 P 82 76 6 Halodule wrightii 78 1993-12 13 2 1 94 10 84 Caulerpa prolifera 6
Appendix Table 2. Continued. Page 7 Perimeter/
Interior Total Total Total nate Station ReD (P/I) Veaetation Seaqrass Alaae Soecies Cover 1993-12 13 2 94 10 84 Caulerpa mexicana 78 1993-12 13 2 94 10 84 Thalassia testudinum 10 1993-12 13 2 68 55 13 Caulerpa mexicana' 13 1993-12 13 2 68 55 13 Halodule wrightii 55 1993-12 13 2 68 55 13 Thalassia testudinum 3 1993-12 13 3 53 16 37 Caulerpa mexicana .37 1993-12 13 3 53 16 37 ThalassJia testudinum 16 1993-12 13 4 55 0 55 Caulerpa mexicana 55 1993-12 13 4 97 0 97 Caulerpa prolifera 70 1993-12 13 4 97 0 97 Caulerpa mexicana 27 1993-12 13 4 100 0 100 Caulerpa prol ifera 80 1993-12 13 5 100 0 100 Caulerpa mexicana 20 1993-12 13 S 50 0 50 Caulerpa prolifera 20 1993-12 13 50 0 50 Caulerpa mexicana 30 1993-12 13 5 72 0 72 Caulerpa mexicana 72 1993-12 13 6 90 0 90 Caulerpa prolifera 80 1993-12 13 6 90 0 90 Caulerpa mextcana 10 1993-12 13 6 60 0 60 Caulerpa mexicana 60 1993-12 13 7 70 0 70 Caulerpa prol ifera 70 1993-12 13 7 70 0 70 Caulerpa prol ifera 70 1993-12 13 8 42 0 42 Caulerpa pro1ifera 42 1993-12 13 8 40 0 40 Caulerpa mexicana 40 1993-12 13 9 95 0 95 Caulerpa mexicana 95 1993-12 13 9 60 20 40 Caulerpa mexicana 40 1993-12 13 9 60 20 40 Halodule wrightii 20 1993-12 13 10 90 75 90 Caulerpa mexicana 90 1993-12 13 10 85 75 10 Caulerpa prolifera 10 1993-12 13 10 85 10 ialodule wrightii 75 1993-12 14 1 69 69 0 Halodule wrightHi 69 1993-12 14 1 100 100 0 Halodule wright'i 100 1993-12 14 2 98 98 0 Halodule wrightii 98 1993-12 14 2 100 100 0 Halodule wrightii 100 1993-12 14 3 95 95 0 Halodule wrightli 95 1993-12 14 3 82 82 0 Halodule wrightiH 82 1993-12 14 4 97 97 0 Halodule wrightil 97 1993-12 14 4 73 73 0 Halodule wrightMi 73 1993-12 14 5 95 95 0 Halodule wrightil 95 1993-12 14 5 95 95 0 Halodule wrighti 95 1993-12 14 6 93 93 2 Caulerpa prolifera 2 1993-12 14 6 93 93 2 Halodule wrightii 91 1993-12 14 6 97 97 0 Halodule wrightHi 97 1993-12 14 7 .93 93 0 Halodule wrightif 93 1993-12 14 7 96 96 0 Halodule wrightfi 96 1993-12 14 8 95 95 0 Halodule wrightHi 95 1993-12 14 8 89 89 0 Halodule wrightii 89 1993-12 14 9 83 83 0 Halodule wrightHi 3 1993-12 14 9 83 83 0 Thalassia testudinum 83 14 9 77 77 0 Thalassia testudinum 77 1993-12
Appendix Table 2. Continued. Page 8 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seaqrass Algae Species Cover 1993-12 14 10 I 100 100 0 Halodule wrightii 100 1993-12 14 10 P 98 98 0 Halodule wrightii 98 1993-12 15 1 I 95 95 0 Thalassia testudinum 95 1993-12 15 1 P 90 90 0 Thalassia testudinum 90 1993-12 15 2 I 95 95 0 Thalassia testudinum 95 1993-12 15 2 P 88 88 0 Thalassia testudinum 88 1993-12 15 3 1 89 89 0 Halodule wrightii 18 1993-12 15 3 I 89 89 0 Thalassia testudinum 86 1993-12 15 3 P 28 28 0 Thalassia testudinum 28 1993-12 15 4 I 100 100 0 Halodule wrlghtif 100 1993-12 15 4 P 89 89 0 Halodule Wrightii 89 1993-12 15 5 I 100 100 0 Halodule wright i 100 1993-12 15 5 P 100 100 0 Halodule wrightMi 100 1993-12 15 6 I 100 100 0 Halodule wrightii 100 1993-12 15 6 P 78 78 0 Halodule wrightli 78 1993-12 15 7 I 100 100 0 Halodu7e wrightii 100 1993-12 15 7 P 100 100 0 Halodu7e wrightii 100 1993-12 15 8 I 100 100 0 Halodule wrighti 100 1993-12 15 8 P 75 75 15 Caulerpa prolifera 15 1993-12 15 8 P 75 75 15 Halodule wrightil 75 1993-12 15 9 I 100 100 0 Halodule wrightii 100 1993-12 15 9 P 100 100 0 Halodule wrightii 100 1993-12 15 10 I 98 98 0 Halodule wrightMi 98 1993-12 15 10 P 100 100 0 Halodule wrightil 100 1994-08 1 1 P 100 100 0 Halodule wrightil 100 1994-08 1 1 1 100 100 0 Halodule wrightii 100 1994-08 1 2 P 100 100 0 Halodule wright i 100 1994-08 1 2 I 100 100 0 Ha7odule wrightil 100 1994-08 1 3 P 100 100 0 Halodule wrightii 100 1994-08 1 3 I 100 100 0 Halodule wrightMi 100 1994-08 1 4 P 100 100 0 Halodule wrightli 100 1994-08 1 4 I 100 100 0 Halodule wrightii 100 1994-08 1 5 P 100 100 0 Halodule wrightM 100 1994-08 1 5 I 100 100 0 Halodule wrightit 100 1994-08 1 6 P 100 100 0 Halodule wrightii 100 1994-08 1 6 I 100 100 0 Halodule wrightHi 100 1994-08 1 7 P 100 100 0 Halodule wrightii 100 1994-08 1 7 I 100 100 0 Halodule wrightii 100 1994-08 1 8 P 100 100 0 Halodule wright17 100 1994-08 1 8 I 100 100 0 Halodule wrightii 100 1994-08 1 9 P 100 100 0 Halodule wrightii 100 1994-08 1 .9 I 100 100 0 Halodule wrightii 100 1994-08 1 10 P 100 100 0 Halodule wrlghti1 100 1994-08 1 10 I 100 100 0 Halodule wrightil 100 1994-08 2 1 P 94 94 0 Halodule wright i 94 1994-08 2 1 1 92 92 0 Halodule wrightii 92 1994-08 2 2 P 100 100 0 Halodule wrightil 100 1994-08 2 2 I 100 100 0 Halodule wrightil 100
Appendix Table 2. Continued. Page 9 Perimeter/
Interior Total Total Total (P/I) Veqetation Seaqrass Alar* *n*i* Cnw~r Date Station Reo. Cover
.... ..
St t o DI L I )
Al sae, 1994-08 3 100 100 Halodule wrighti 100 1994-08 3 10,0 100 Halodule wrightii 100 1994-08 4 100 100 Halodule wrightii 100 1994-08 4 100 100 Halodule wrightii 100 19,94-08 5 100 100 Halodule wrightii 100 1994-08 5 100 100 Halodule wrightii 100 1994-08 6 100 100 Halodule wrightit 100 1994-08 6 100 100 Halodule wrightit 100 1994-08 7 100 100 Halodule wrightii 100 1994-08 7 100 100 Halodule wrightii 100 1994-08 8 100 100 Halodule wrightit 100 1994-08 8 100 100 Halodule wrightii 100 1994-08 9 100 100 Halodule wrightil 100 1994-08 9 99 99 Halodule wrightit 99 1994-08 10 96 96 Halodule wrightii 96 1994-08 10 98 98 Halodule wrightii 98 1994-08 1 46 46 Halodule wrightil 46 1994-08 1 30 30 Halodule wrightit 30 1994-08 2 15 15 Halodule wrightii 15 1994-08 2 25 25 Halodule wrightii 25 1994-08 3 64 64 Halodule wrightii 64 1994-08 3 81 81 Ha lodule wrightii 81 1994-08 4 28 28 Halodule wrightii 28 1994-08 4 36 36 Halodule wrightil 36 1994-08 5 54 54 Halodule wrightii 54 1994-08 5 30 30 Halodule wrightii 30 0 Halodule wrightii .0 1994-08 6 0 1994-08 6 15 15 Halodule wrightii 15 1994-08 7 80 80 Halodule wrightil 80 1994-08 7 15 15 Halodule wrightiM 15 1994-08 8 65 65 Halodule wrightii 65 1994-08 8 90 90 Halodule wrightil 90 1994-08 9 42 42 Halodule wrightit 42 1994-08 9 20 20 Halodule wrightii 20 1994-08 10 26 26 Halodule wrighti 26 1994-08 10 27 27 Halodule wrightit 27 1994-08 1 98 98 Syringodium filiforme 98 1994-08 1 100 100 Syringodium ft7iforme 100 1994-08 2 73 73 Syringodium fi7iforme 73 2 94 94 Syringodium filiforme 94 1994-08 1994-08 3 91 91 Syringodium filiforme 91 1994-08 3 58 58 Syringodium filiforme 58 1994-08 4 70 70 Syringodium filiforme 70 1994-08 4 83 83 Syringodium filiforme 83 1994-08 5 48 48 Syringodium filiforme 48 1994-08 5 58 58 Syringodium fi7iforme 58 1994-08 6 76 76 Syringodium fi7iforme 76 1994-08 6 84 84 Syringodium filiforme 84
Appendix Table 2. Continued. Page 10 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seacrass Algae Species Cover' 1994-08 4 7 P 76 76 0 Syringodium filiforme 76 1994-08 4 7 I 95 95 0 Syringodium filiforme 95 1994-08 4 8 p 80 80 0 Syringodium filiforme 80 1994-08 4 8 I 18 18 0 Syringodium filiforme 18 1994-08 4 8 P 80 80 0 Halophila englemannii 1 1994-08 4 9 P 96 96 0 Syringodium filiforme 96 1994-08 4 9 I 91 91 0 Syringodium filfiforme 91 1994-08 4 10 P 21 21 0 Syringodium filiforme 21 1994-08 4 10 1 44 44 0 Syringodium filiforme 44 1994-08 5 1 P 56 56 0 Halodule wrightii 56 1994-08 5 1 I 50 50 0 Halodule wrightii 50 1994-08 5 2 P 53 53 0 Halodule wrightil 53 1994-08 5 2 I 65 65 0 Halodule wrightil 65 1994-08 5 3 P 71 71 0 Halodule wrightii 71 1994-08 5 3 I 18 18 0 Halodule wrightii 18 1994-08 5 3 P 71 71 3 Caulerpa prolifera 3 1994-08 5 4 P 48 48 0 Halodule wrightii 48 1994-08 5 4 I 9 9 0 Halodule wrightii 9 1994-08 5 5 P 37 37 0 HaModule wrightii 37 1994-08 5 5 I 16 16 0 Halodule wrightii 16 1994-08 5 6 P 50 50 0 Halodule wrightii 50 1994-08 5 6 I 74 74 0 Halodule wrightii 74 1994-08 5 7 P 85 85 0 Halodule wrightil 85 1994-08 5 7 I 98 98 0 Halodule wrightii 98 1994-08 5 8 P 74 74 0 Halodule wrightii 74 1994-08 5 8 I 85 85 0 Halodule wrightii 85 1994-08 5 9 P 55 55 0 Halodule wrightll 55 1994-08 5 9 I 4 4 0 Halodule wrightii 4 1994-08 5 10 P 57 57 0 Halodule wrightii 57 1994-08 5 10 I 78 78 0 Halodule wrightii 78 1994-08 6 1 P 66 66 0 Halodule wrightii 66 1994-08 6 1 I 85 85 0 Halodule wrightii 85 1994-08 6 1 P 66 66 0 Halophila englemannii 3 1994-08 6 1 I 85 85 0 Halophila englemannii 4 1994-08 6 2 P 63 63 0 Halodule wrightii 63 1994-08 6 2 I 81 81 0 Halodule wrightii 81 1994-08 6 2 P 63 63 0 Halophila englemannii 1 1994-08 6 2 I 81 81 0 Halophila englemannil 1 1994-08 6 3 P 93 93 0 Halodule wrightil 93 1994-08 6 3 I 97 97 0 Halodule wrightii 97 1994-08 6 3 P 93 93 0 Halophila englemannil 7 1994-08 6 4 P 92 92 0 Halodule wrightii 92 1994-08 6 4 I 92 92 0 Halodule wrightif 92 1994-08 6 4 P 92 92 0 Halophila englemannii 5 1994-08 6 4 1 92 92 0 Halophila englemannii 6 1994-08 6 5 P 84 84 0 Halodule wrightif 84 1994-08 6 5 I 91 91 0 Halodule wrightii 91 1994-08 6 5 P 84 84 0 Halophila englemannii 6
Appendix Table 2. Continued. Page 11 Perimeter/
Interior Total Total Total Date Station Rep. (P/I.) Vegetation Seaqrass Algae Species Cover 1994-08 6 5 I 91 91 0 Halophila englemannii 1 1994-08 6 6 P 92 92 0 Halodule wrightii 92 1994-08 6 6 I 99 99 0 Halodule wrightii 99 1994-08 6 7 P 94 94 0 Halodule wrightii 94 1994-08 6 7 I 95 95 0 HaModule wrightii 95 1994-08 6 7 P 94 94 0 Halophila englemannii 3 1994-08 6 7 I 95 95 0 Haloph1la englemannil '5 1994-08 6 8 P 98 9,8 0 Halodule wrighti" 98 1994-08 6 8 1 100 100 0 Halodule wrightil 100 1994-08 7 1 P 61 61 0 Halodule wrightfi 61 1994-08 7 2 P 58 58 0 Halodule wrightii 58 1994-08 7 3 P 49 49 0 Halodule wrightil 49 1994-08 7 4 P 79 79 0 Halodule wrighti 79 1994-08 7 5 P 78 78 0 Halodule wrightii 78 1994-08 7 6 P 75 75 0 Halodule wrightii 75 1994-08 7 7 P 87 87 0 Halodule wrightil 87 1994-08 7 8 P 80 80 0 Halodule wrightif 80 1994-08 7 9 P 76 76 0 Halodule wrighti" 76 1994-08 7 10 P 88 88 0 Halodu7e wrightii 88 1994-08 7 1 I 73 73 2 Halodule wrightil 73 1994-08 7 2 I 56 56 0 Halodu7e wrightil 56 1994-08 7 3 1 90 90 0 Halodule wrightHi 90 1994-08 7 4 I 75 75 0 Halodule wrightil 75 1994-08 7 5 1 89 89 0 Ha7odule wrightif 89 1994-08 7 6 I 99 99 0 Halodule wrightiH 99 1994-08 7 7 1 94 94 0 Halodule wrightii 94 1994-08 7 8 1 97 97 0 Halodule wrighti 97 1994-08 7 9 1 98 98 0 Halodule wrightii 98 1994-08 7 10 1 96 96 0 Halodule wrightil 96 1994-08 7 1 I 73 73 0 Caulerpa mexicana 2 1994-08 7 2 1 56 56 0 Halophila englemannii 10 1994-08 7 4 I 75 75 3 Halophila englemannii 3 1994-08 7 6 1 99 99 0 Halophila englemannii 15 1994-08 7 7 I 94 94 0 Halophila englemannii 3 1994-08 7 9 I 98 98 0 Halophila englemannii 7 1994-08 7 10 I 96 96 0 Halophila englemannit 7 1994-08 8 1 P 99 99 0 Halodule wrightii 99 1994-08 8 2 P 100 100 0 Halodule wrightii 100 1994-08 8 3 P 88 88, 0 Halodulewrightii 88 1994-08 8 4 P 96 96 0 Halodule wrightif 96 1994-08 8 5 P 94 94 0 Halodule wrightii 94 1994-08 8 6 P 91 91 0 Syringodium filiforme 91 1994-08 8 6 P 91 91 0 Halophila englemannii 3 1994-08 8 7 P 95 95 0 Halodule wrightii 95 1994-08 8 7 P 95 95 0 Halophila englemannii 1 1994-08 8 8 P 100 100 0 Syringodium filiforme 100 1994-08 8 9 P 98 98 0 Halodule wrightii 73 1994-08 8 9 P 98 98 0 Syringodium filiforme 83
Appendix Table 2. Continued. Page 12 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seacrass Algae Species Cover 1994-08 8 10 P 97 97 0 Syringodium filiforme 97 1994-08 8 1 1 100 100 0 Halodule wrightif 100 1994-08 8 2 I 96 96 0 Halodu7e wrightfi 96 1994-08 8 3 I 60 60 0 Syringodium filiforme 6 1994-08 8 3 I 60 60 0 Halodule wrightii 60 1994-08 8 4 I 100 100 0 HaModule wrightii 100 1994-08 8 5 I 95 95 0 Walodule~wrightii 95 1994-08 8 6 I 99 99 0 Syringodium filiforme 99 1994-08 8 7 1 96 96 11 Halodule wrightii 96 1994-08 8 7 I 96 96 11 Caulerpa prolifera 1 1994-08 8 7 I 96 96 11 Udotea conglutinata 11 1994-08 8 8 1 92 92 1 HaModule wrightii 55 1994-08 8 8 I 92 92 1 Caulerpa prolifera 1 1994-08 8 8 I 92 92 1 Syringodium filiforme 28 1994-08 8 9 1 99 99 0 Syringodium filiforme 98 1994-08 8 9 1 99 99 0 Halophila englemannii 2 1994-08 8 10 I 100 100 0 Syringodium filiforme 100 1994-08 9 1 P 100 100 4 Syringodium filiforme 100 1994-08 9 1 P 100 100 4 Halophila englemannif 8 1994-08 9 1 P 100 100 4 Caulerpa prolifera 4 1994-08 9 2 P 11 11 1 Syringodium filiforme 11 1994-08 9 2 P 11 11 1 Caulerpa prolifera 1 1994-08 9 3 P 71 71 0 Syringodium filiforme 71 1994-08 9 3 P 71 71 0 Halophila englemannii 5 1994-08 9 4 P 93 93 0 Syringodium filiforme 93 1994-08 9 5 P 96 96 0 Syringodium filiforme 96 1994-08 9 6 P 100 92 20 Syringodium filiforme 92 1994-08 9 6 P 100 92 20 Halophila englemannii 38 1994-08 9 6 P 100 92 20 Caulerpa prolifera 18 1994-08 9 6 P 100 92 20 Udotea, conglutinata 2 1994-08 9 7 P 93 93 8 Syringodium filiforme 88 1994-08 9 7 P 93 93 8 Halophila englemannii 46 1994-08 9 7 P 93 93 8 Udotea conglutinata 8 1994-08 9 8 P 96 96 5 Syringodium filiforme 81 1994-08 9 8 P 96 96 5 Halophila englemannii 60 1994-08 9 8 P 96 96 5 Caulerpa prolifera 5 1994-08 9 9 P 96 96 20 Syringodium filiforme 87 1994-08 9 9 P 96 96 20 Halophila englemannii 32 1994-08 9 9 P 96 96 20 Caulerpa prolifera 15 1994-08 9 9 P 96 96 20 Udotea conglutinata 5 1994-08 9 10 P 98 98 13 Syringodium filiforme 86 1994-08 9 10 P 98 98 13 Halophila englemannii 42 1994-08 9 10 P 98 98 13 Caulerpa prolifera 9 1994-08 9 10 P 98 98 13 Udotea conglutinata 4 1994-08 9 1 I 73 73 1 Syringodium filiforme 73 1994-08 9 1 I 73 73 1 Udotea conglutinata 1 1994-08 9 1 I 73 ,73 1 Halophila englemannii 3 1994-08 9 2 1 100 100 2 Syringodium filiforme .100
Appendix Table 2. Continued. Page 13 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-08 9 2 I 100 100 2 Halophila englemannii 8 1994-08 9 2 I 100 100 2 Caulerpa prolifera 2 1994-08 9 3 I 97 97 0 Syringodium filiforme .97 1994-08 9 3 I 97 97 0 Halophila englemannii 2 1994-08 9 4 I 95 95 3 Syringodium filiforme 95 1994-08 9 4 I 95 95 3 Caulerpa prolifera 3 1994-08 9 5 I 100 100 0 Syringodium filiforme 100 1994-08 9 6 I 98 98 0 Syringodium filiforme 98 1994-08 9 7 I 96 96 0 Syringodium filiforme 96 1994-08 9 8 1 100 100 0 Syringodium filiforme 100 1994-08 9 9 1 100 100 3, Syringbdium filiforme 100 1994-08 9 9 I 100 100 3 Halophila englemannii 12 1994-08 9 9 I 100 100 3 Caulerpa prolifera 3 1994-08 9 10 I 96 96 0 Syringodium filiforme 95 1994-08 9 10 I 96 96 0 Halophila englemannii 29 1994-08 10 1 P 74 42 32 Syringodium filiforme 42 1994-08 10 1 P 74 42 32 Caulerpa prolifera 32 1994-08 10 2 P 92 55 40 Syringodium fi-liforme 55 1994-08 10 2 P 92 55 40 Caulerpa prolifera 40 1994-08 10 3 P 99 6 99 Syringodium filiforme 6 1994-08 10 3 P 99 6 99 Caulerpa prolifera 99 1994-08 10 4 P 100 47 96 Syringodium filiforme 47 1994-08 10 4 P 100 47 96 Caulerpa prolifera 96 1994-08 10 5 P 100 64 36 Syringodium filiforme 64 1994-08 10 5 P 100 64 36 Caulerpa prolifera 36 1994-08 10 6 P 100 74 90 Syringodium filiforme 74 1994-08 10 6 P 100 74 90 Udotea conglutinata 2 1994-08 10 6 P 100 74 90 Caulerpa prolifera 90 1994-08 10 7 P 100 50 80, Syringodium filiforme 50 1994-08 10 7 P 100 50 80 Caulerpa prolifera 80 1994-08 10 7 P 100 50 80 Udotea cong~lutinata 2 1994-08 10 8 P 99 11 99 Syringodium filiforme 11 1994-08 10 8 P 99 11 99 Caulerpa prolifera 99 1994-08 10 9 P 99 0 99 Caulerpa prolifera 99 1994-08 10 10 P 99 40 89 Syringodium filiforme 40 1994-08 10 10 P 99 40 89 Caulerpa prolifera 89 1994-08 10 1 I 52 30 22 Syringodium filiforme 30 1994-08 10 1 I 52 30 22 Caulerpa prolifera 22 1994-08 10 2 I 100 100 7 Syringodium filiforme 100 1994-08 10 2 I 100 100 7 Caulerpa prolifera 7 1994-08 10 3 I 96 89 9 Syringodium filiforme 89 1994-08 10 3 I 96 89 9 Caulerpa prolifera 9 1994-08 10 4 I 100 36 66 Syringodium filiforme 35 1994-08 10 4 I 100 36 66 Caulerpa prolifera 66 1994-08 10 5 1 100 100 0 Syringodium filiforme 100 1994-08 10 6 I 100 100 8 Syringodium filiforme 100 1994-08 10 6 I 100 100 8 Caulerpa prolifera 8 1994-08 10 7 I 100 100 46 Syringodium filiforme 100
Appendix Table 2. Continued Page 14 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seaqrass Algae Species Cover 1994-08 10 7 I 100 100 46 Caulerpa prolifera 46 1994-08 10 8 I 100 94 89 Syringodium filforme 94 1994-08 10 8 I 100 94 89 Caulerpa prolifera 89 1994-08 10 8 I 100 94 89 Udotea conglutinata 5 1994-08 10 9 I 100 99 10 Syringodium filiforme 99 1994-08 10 9 I 100 99 10 Caulerpa prolifera 10 1994-08 10 10 I 100 98 86 Syringodium ffliforme 98 1994-08 10 10 I 100 98 86 Caulerpa prolifera 86 1994-08 11 1 P 98 98 0 Syringodium filiforme 98 1994-08 11 1 P 98 98 0 Halophila englemannii 2 1994-08 11 2 P 100 100 0 Syringodium filiforme 100 1994-08 11 3 P 100 100 0 Syringodium filiforme 100 1994-08 11 4 P 100 100 0 Syringodium filiforme 100 1994-08 11 5 P 100 100 0 Syringodium filiforme 100 1994-08 11 6 P 100 100 0 Syringodium filiforme 100 1994-08 11 7 P 100 100 0 Syringodium filiforme 100 1994-08 11 8 P 100 100 0 Syringodium filiforme 100 1994-08 11 9 P 100 100 0 Syringodium filiforme 100 1994-08 11 10 P 100 100 0 Syringodium ffi7forme 100 1994-08 11 1 I 100 100 0 Syringodium filiforme 100 1994-08 11 2 I 100 100 0 Syringodium filiforme 100 1994-08 11 3 I 100 100 0 Syringodium filiforme 100 1994-08 11 4 I 100 100 0 Syringodium filiforme 100 1994-08 11 5 I 100 100 0 Syringodium fi7 iforme 100 1994-08 11 6 1 100 100 0 Syringodium filfiforme 100 1994-08 11 7 1 100 100 0. Syringodium filiforme 100 1994-08 11 8 1 100 100 0 Syrlngodium filiforme 100 1994-08 11 9 I 100 100 0 Syringodiumrfiliforme 100 1994-08 11 10 1 100 100 0 Syringodium filiforme 100 1994-08 12 1 P 100 1100 0 Syringodium filiforme 100 1994-08 12 1 1 100 100 0 Syringodium filiforme 100 1994-08 12 2 P 100 100 0 Syringodium filfiforme 100 1994-08 12 2 1 100 100 0 Syringodium fi 1iforme 100 1994-08 12 3 P 99 99 0 Syringodium filiforme 99 1994-08 12 3 I 99 99 0 Syringodium filiforme 99 1994-08 12 4 P 90 90 0 Syringodium filiforme 90 1994-08 12 4 I 90 90 0 Syringodium filiforme 90 1994-08 12 5 P 100 100 0 Syringodium filiforme 1.00 1994-08 12 5 I 70 70 0 Syringodium filiforme 70 1994-08 12 6 P 100 100 0 Syringodium filiforme 100 1994-08 12 6 1 100 100 0 Syringodium filiforme 100 1994-08 12 7 P 100 100 0 Syringodium fi,liforme 100 1994-08 12 7 I 100 100 0 Syringodium filiforme 100 1994-08 12 8 P 100 100 0 Syringodium fillforme 100 1994-08 12 8 I 100 100 0 Syringodium filiforme 100 1994-08 12 9 P 100 100 0 Syringodium ffliforme 100 1994-08 12 9 I 100 100 0 Syringodium filiforme 100 1994-08 12 10 P 100 100 0 Syringodium filiforme 100
Appendix Table 2. Continued. Page 15 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-08 12 10 I 96 96 0 Syringodium filiforme 96 1994-08 14 1 P 91 91 0 Halodule wrightil 89 1994-08 14 1 P 91 91 0 Thalassia testudinum 2 1994-08 14 2 P 92 92 0 Halodule wrighti7 92 1994-08 14 3 P 90 90 0 Halodule wrightii 90 1994-08 14 4 P 81 81 0 Halodule wrightil 81 1994-08 14 5 P 93 93 0 Halodule wrightil 93 1994-08 14 6 P 100 100 0 Halodule wrighti7 100 1994-08 14 7 P 100 100 0 Halodule wrightil 100 1994-08 14 8 P 100 100 0 Halodule wrightii 100 1994-08 14 9 P 90 90 0 Thalassia testudinum 90 1994-08 14 10 P 11 11 0 Thalassia testudinum 89 1994-08 14 1 1 97 97 4 Halodule wrightii 97 1994-08 14 1 I 97 97 4 Halimeda incrassata 4 1994-08 14 2 I 77 77 0 Halodule wrightii 77 1994-08 14 3 1 85 85 0 Halodule wrighti7 85 1994-08 14 4 1 97 97 0 HaModule wrightii 97 1994-08 14 5 1 13 13 0 Halodule wrightii 13 1994-08 14 6 1 100 100 0 Halodule wrighti7 100 1994-08 14 7 I 100 100 0 Halodule wrighti7 100 1994-08 14 8 1 100 100 0 Halodule wrightii 100 1994-08 14 9 1 100 100 0 Halodule wrightii 100 1994-08 14 10 I 100 100 0 Halodu.le wrightii 100 1994-08 15 1 P 90 90 0 Halodule wrightil 90 1994-08 15 2 P 88 88 0 Ha7odule wrightil 88 1994-08 15 3 P 78 78 0 Halodule wright~i 78 1994-08 15 4 P 71 71 0 Halodule wrighti7 71 1994-08 15 5 P 80 80 0 HaModule wrightii 80 1994-08 15 6 P 99 99 3 Halodule wrighti 99 1994-08 15 6 P 99 99 3 Caulerpa prolifera 3 1994-08 15 7 P 98 98 0 Halodule wrightii 98 1994-08 15 8 P 99 99 0 Halodule wrightii 99 1994-08 15 9 P 56 56 0 Halodule wrightii 56 1994-08 15 10 P 98 98 0 Halodule Wrightii 98 1994-08 15 1 I 98 98 0 Halodule' wright ii 98 1994-08 15 2 I 94 94 0 Halodule wrightii 94 1994-08 15 3 I 93 93 0 Halodule wrightii 93 1994-08 15 4 I 100 100 0 Halodule wrightii 100 1994-08 15 5 I 100 100 0 Halodule wrightii 100 1994-08 15 6 I 99 99 3 Halodule wrightii 99 1994-08 15 7 1 99 99 3 Halimeda incrassata 3 1994-08 15 7 I 99 99 2 Halodule wrightii 99 1994-08 1.5 8 I 99 99 2 Halimeda incrassata 2 1994-08 15 8 I 100 100 0 HaModule wrightiH 100 1,994-08 15 9 I 100 100 0 Halodule wrightii 100 1994-08 15 10 I 100 100 0 Halodule wrightil 100 1994-08 13 1 P/I 99 0 99 Caulerpa prolifera 99 1994-08 13 2 P/I 65 1 66 Caulerpa prolifera 65
Appendix Table 2. Continued. Page 16 Perimeter/
Interior Total Total Total Date Station Rep. (P/1) Vegetation Seagrass Algae Species Cover 1994-08 13 2 P/I 65 1 66 Thalassia testudinum 1 1994-08 13 3 P/I 74 74 0 Thalassla testudinum 74 1994-08 13 4 P/I 95 7 88 Caulerpa prolifera 88 1994-08 13 4 P/I 95 7 88 Thalassia testudinum 7 1994-08 13 5 P/I 28 0 28 Caulerpa prolifera 21 1994-08 13 5 P/I 28 0 28 Caulerpa mexicana 7 1994-08 13 6 P/I 65 31 34 Caulerpa prolifera 18 1994-08 13 6 P/I 65 31 34 Cau7erpa mexicana 16 1994-08 13 6 P/I 65 31 34 Thalassia testudinum 10 1994-08 13 6 P/I 65 31 34 Halophila englemannii 21 1994-08 13 7 P/I 87 0 87 Caulerpa mexicana 87 1994-08 13 8 P/I 56 0 56 Caulerpa mexicana 56 1994-08 13 9 P/I 97 0 97 Caulerpa prolifera 97 1994-08 13 10 P/I 94 0 94 Caulerpa prolifera 94 1994-08 13 11 P/I 96 96 18 Thalassia testudinum 55 1994-08 13 11 P/I 96 96 18 Halodule wrightil 41 1994-08 13 11 P/I 96 96 18 Caulerpa prolifera 18 1994-08 13 12 P/I 100 61 65 Thalassia testudinum 61 1994-08 13 12 P/I 100 61 65 Caulerpa prolifera 57 1994-08 13 12 P/I 100 61 65 Caulerpa mexicana 8 1994-08 13 13 P/I 87 67 16 Thalassia testudinum 42 1994-08 13 13 P/I 87 67 16 Caulerpa mexicana 9 1994-08 13 13 P/I 87 67 16 Halodule wrightii 15 1994-08 13 13 P/I 87 67 16 Caulerpa prolifera 7 1994-08 13 14 P/I 100 0 100 Caulerpa prolifera 29 1994-08 13 14 P/I 100 0 100 Caulerpa mexicana 100 1994-08 13 15 P/I 100 0 100 Caulerpa prolifera 2 1994-08 13 15 P/I 100 0 100 Caulerpa mexicana 100 1994-10 1 1 P 71 71 0 Halodule wrightii 71 1994-10 1 1 I 54 54 0 Halodule wrightii 54 1994-10 1 2 P 100 100 0 Halodule wrightil 100 1994-10 1 2 I 99 99 0 Halodule wrightii 99 1994-10 1 3 P 96 96 0 Halodule wrightif 96 1994-10 1 3 I 77 77 0 Halodule wrightii 77 1994-10 1 4 P 100 100 0 Halodule wrightii 100 1994-10 1 4 I 97 97 0 Halodule wrightii 97 1994-10 1 5 P 99 99 0 Halodule wrightii 99 1994-10 1 5 I 99 99 0 Halodule wrightil 99 1994-10 1 6 P 96 96 0 Halodule wrightii 96 1994-10 1 6 I 100 100 0 Halodule wrightii 100 1994-10 1 7 P 100 100 0 Halodule wrightii 100 1994-10 1 7 I 100 100 0 Halodule wrightii 100 1994-10 1 8 P 99 99 0 Halodule wrightii 99 1994-10 1 8 I 99 99 0 Halodule wrightii 99 1994-10 1 9 P 100 100 0 Halodule wrightii 100 1994-10 1 9 I 100 100 0 Halodule wrightii 100 1994-10 1 10 P 100 100 0 Halodule wrightii 100 1994-10 1 10 I 100 100 0 Halodule wrightii 100
Appendix Table 2. Continued. Page 17 Perimeter/
Interior Total Total Total Date Station Reo. (P1I) Veqetation Seaqrass Alaae SDecies Cover 1994-10 1 85 85 Halodule wrightii 85 1994-10 1 93 93 Halodule wrightil 93 1994-10 2 93 93 Halodule wrightii 93 1994-10 2 96 96 Halodule wrightii 96 1994-10 3 92 92 Halodule wrightii 92 1994-10 3 92 92 Halodule wrightii 92 1994-10 4 98 98 Halodule wrightii 98 1994-10 4 100 100 Halodule wrightii 100 1994-10 5 96 96 Halodule wrightii 96 1994-10 5 100 100 Halodule wrightii 100 1994-10 6 65 65 Halodule wrightii 65 1994-10 6 99 99 Halodule wrightii 99 1994-10 7 81 81 Halodule wrightif 81 1994-10 7 99 99 Halodule wrightif 99 1994-10 8 50 50 Halodule wrightii 50 1994-10 8 100 100 Halodule wrightii 100 1994-10 9 87 87 Halodule wrightif 87 1994-10 9 97 97 Halodule wrightii 97 1994-10 10 68 68 Halodule wrightii 68 1994-10 10 95 95 Halodule wrightHi 95 1994-10 1 22 22 Halodule wrightii 22 1994-10 1 26 26 Halodule wrighti" 26 1994-10 2 6. 6 Malodule wrightii 6 1994-10 2 8 8 Halodule wrighti" 8 1994-10 3 91 91 Halodule wrighti 91 1994-10 3 6 6 Halodule wright'7 6 1994-10 4 72 72 Halodule wrightii 72 1994-10 4 12 12 Halodule wrightii 12 1994-10 5 17 17 Halodule wrightii 17 1994-10 5 16 16 Halodule wrightii 16 1994-10 6 46 46 Halodule wrightii 46 1994-10 6 55 55 Halodule wrightii 55 1994-10 7 28 28 Halodule wrightHi 28 7 96 96 Halodule wrightHi 96 1994-10 1994-10 8 4 4 Halodule wrightii 4 1994-10 8 74 74 Halodule wrightii 74 1994-10 9 0 0 Bare 0 1994-10 9 86 86 Halodule wrightii 86 1994-10 10 61 61 Halodule wrightii 61 1994-10 10 74 74 Halodule wrightii 74 1994-10 1 92 92 Halimeda incrassata 3 1994-10 1 92 92 Udotea conglutinata 5 1994-10 1 92 92 Syringodium filiforme 92 1994-10 1 99 99 Syringodium filiforme 99 1994-10 2 78 78 Syringodium filiforme 78 1994-10 2 83 83 Syringodium fi1iforme 83 1994-10 2 83 83 Halimeda incrassata 3 1994-10 2 83 83 Halophila englemannii 6
Appendix Table 2. Continued. Page 18 Perimeter/
Interior Total Total Total Date Station Rep. (P11) Veqetation Seagrass Algae Species Cover 1994-10 4 3 P 75 75 0 Syringodium fi7iforme 75 1994-10 4 3 I 87 87 0 Syringodium filiforme 87 1994-10 4 4 P 91 89 2 Caulerpa prolifera 2 1994-10 4 4 P 91 89 2 Syringodium filiforme 89 1994-10 4 4 1 88 88 3 Syringodium filiforme 88 1994-10 4 4 I 88 88 3 Halimeda incrassata 3 1994-10 4 5 P 57 57 0 Syringodium filiforme 57 1994-10 4 5 I 2 2 0 Syringodium fi7iforme 2 1994-10 4 6 P 13 13 0 Syringodium filiforme 13 1994-10 4 6 I 22 22 0 Syringodium filiforme 22 1994-10 4 7 P 89 89 2 Syringodium filiforme 89 1994-10 4 7 P 89 89 2 Caulerpa prolifera 2 1994-10 4 7 I 79 78 1 Caulerpa prolifera 1 1994-10 4 7 1 79 78 1 Syringodium filiforme 78 1994-10 4 8 P 100 100 14 Penicillus sp. 2 1994-10 4 8 P 100 100 14 Syringodium filiforme 4 1994-10 4 8 P 100 100 14 Caulerpa prolifera 8 1994-10 4 8 P 100 100 14 Syringodium fi7iforme 100 1994-10 4 8 1 88 88 0 Syringodium filiforme 88 1994-10 4 9 P 80 80 0 Syringodium filiforme 80 1994-10 4 9 I 30 30 0 Syringodium filiforme 30 1994-10 4 10 P 92 92 2 Halimeda incrassata 1 1994-10 4 10 P 92 92 2 Caulerpa prolifera I 1994-10 4 10 P 92 92 2 Syringodium Filforme 92 1994-10 4 10 I 94 94 0 Syringodium filiforme 94 1994-10 5 1 P 46 46 0 Halodule wrightHi 46 1994-10 5 1 I 24 24 0 Malodule wrightii 24 1994-10 5 2 P 52 52 0 Halodule wrightii 52 1994-10 5 2 I 29 29 0 Halodule wrightii 29 1994-10 5 3 P 14 14 0 Halodule wrightii 14 1994-10 5 3 1 60 60 0 Halodule wrighti 60 1994-10 5 4 P 15 15 0 Halodule wrightii 15 1994-10 5. 4 I 51 51 0 Halodule wrightil 51 1994-10 5 5 P 22 22 0 Halodule wrightil 22 1994-10 5 5 I 53 53 0 Halodule wrightil 53 1994-10 5 6 P 73 73 0 Halodule wrightil 73 1994-10 5 6 I 6 5 0 Halodule wrighti 5 1994-10 5 6 I 6 5 0 Halophila englemannii 1 1994-10 5 7 P 13 13 0 Halodule wrightii 13 1994-10 5 7 I 19 19 0 Halodule wrightii 19 1994-10 5 8 P 8 8 0 Halodule wrightil 8 1994-10 5 8 1 15 15 0 Halodule wrightii 15 1994-10 5 9 P 12 12 0 Halodule wrightiH 12 1994-10 5 9 I 84 84 0 Halodule wrightii 84 1994-10 5 10 P 6 6 0 Halodule wrightii 6 1994-10 5 10 1 86 86 0 Halodule wrlghtii 86 1994-10 6 1 P 65 65 0 Halodule wrightii 65 1994-10 6 1 P 65 65 0 Halophila englemannii 8
Appendix Table 2. Continued. Page 19 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-10 6 1 I 90 90 0 Halodule wrightii 90 1994-10 6 1 I 90 90 0 Halophila englemannii 6 1994-10 6 2 P 86 86 0 Halodule wrightii 86 1994-10 6 2 P 86 86 0 Halophila englemannii 4 1994-10 6 2 I 97 97 0 Halodule wrightii 97 1994-10 6 2 I 97 97 0 Halophila englemannii 1 1994-10 6 3 P 94 94 0 Halodule wrightii 94 1994-10 6 3 1 100 100 0 Halodule wrightii 100 1994-10 6 3 I 100 100 0 Halophila englemannii 16 1994-10 6 4 P 100 100 0 Halodule wrightii 100 1994-10 6 4 I 100 100 0 Halodule wrightil 100 1994-10 6 4 I 100 100 0 Halophila englemannii 4 1994-10 6 5 P 67 67 0 Halodule wrightiH 53 1994-10 6 5 P 67 67 0 Halophila englemannii 16 1994-10 6 5 I 81 81 0 Halodule wrightii 81 1994-10 6 6 P 71 71 0 Halodule wrightil 66 1994-10 6 6 P 71 71 0 Halophila englemannii 8 1994-10 6 6 1 97 97 0 Halodule wrightii 97 1994-10 6 7 P 68 68 0 Halodule wrightii 55 1994-10 6 7 P 68 68 0 Halophila englemannii 28 1994-10 6 7 1 98 98 0 Halodule wrightii 98 1994-10 6 8 P 87 87 0 Halodule wrightii 87 1994-10 6 8 P 87 87 0 Halophila englemannii 7 1994-10 6 8 I 68 68 0 Halodule wrightii 62 1994-10 6 8 I 68 68 0 Halophila englemannii 21 1994-10 6 9 P 70 70 0 Halodule wrightii 70 1994-10 6 9 P 70 70 0 Halophila englemannii 11 1994-10 6 9 I 99 99 0 Halodule wrightii 99 1994-10 6 10 P 43 43 0 Halodule wrightii 43 1994-10 6 10 I 100 100 0 Halodule wrightii 100 1994-10 7 1 P 96 9,6 0 Halodule wrightHii 96 1994-10 7 1 I 96 96 0 Halodule wrightii 96 1994-10 7 2 P 99 99 0 Halodule wrighti 99 1994-10 7 2 I 97 97 0 Halodule wrightii 97 1994-10 7 3 P 73 73 0 Halodule wrightii 73 1994-10 7 3 I 100 100 0 Halodule wrightii 100 1994-10 7 4 P 100 100 0 Halodule wrightiH 100 1994-10 7 4 I 100 100 0 Halodule wrightil 100 1994-10 7 5 P 97 97 0 Halodule wrightii 97 1994-10 7 5 I 98 98 0 Halodu7e wrighti 98 1994-10 7 6 P 76 76 0 Halodule wrighti 76 1994-10 7 6 I 98 98 0 Halodule wrighti" 98 1994-10 7 7 P 99 99 0 Halodule wrightii 99 1994-10 7 7 I 100 100 0 Halodule wrightil 100 1994-10 7 8 P 91 91 1 Caulerpa prolifera 1 1994-10 7 8 P 91 91 1 Halodule wrightii 88 1994-10 7 8 P 91 91 1 Halophila englemannii 16 1994-10 7 8 I 96 96 0 Halodule wrightii 96
Appendix Table 2. Continued. Page 20 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Covegr 1994-10 7 8 I 96 96 0 Halophila englemannii 9 1994-10 7 9 P 100 100 0 Syringodium filiforme 100 1994-10 7 9 I 100 100 0 Syringodium filiforme 100 1994-10 7 10 P 80 80 0 Halodule wrightii 80 1994-10 7 10 I 99 99 0 Syringodium filiforme 99 1994-10 8 1 P 86 86 0 Syringodium filiforme 86 1994-10 8 1 I 100 100 0 Syringodium filiforme 100 1994-10 8 2 P 96 96 0 Syringodium filiforme 96 1994-10 8 2 I 93 93 0 Syringodium filiforme 93 1994-10 8 2 I 93 93 0 Halodule wrightii 40 1994-10 8 3 P 94 94 0 Syringodium filiforme 94 1994-10 8 3 P 94 94 0 Halodule wrightii 6 1994-10 8 3 I 92 92 0 Syringodium fi7iforme 92 1994-10 8 4 P 94 94 0 Syringodium filiforme 94 1994-10 8 4 I 100 100 0 Syringodium filiforme 100 1994-10 8 5 P 92 92 0 Syringodium filiforme 92 1994-10 8 5 P 92 92 0 Halodule wrightiH 26 1994-10 8 5 I 93 93 0 Syringodium filiforme 93 1994-10 8 5 1 93 93 0 Halodule wrightii 28 1994-10 8 6 P 100 100 0 Syringodium filiforme 100 1994-10 8 6 I 100 100 0 Syringodium filiforme 100 1994-10 8 7 P 95 95 0 Syringodium filiforme 95 1994-10 8 7 P 95 95 0 Halodule wrightii 5 1994-10 8 7 I 100 100 0 Syringodium filiforme 100 1994-10 8 7 I 100 100 0 Halodule wrightii 3 1994-10 8 8 P 75 75 0 Syringodium filiforme 75 1994-10 8 8 I 88 88 0 Syringodiumfiliforme 88 1994-10 8 8 I 88 88 0 Halodule wrightii 3 1994-10 8 9 P 100 100 0 5yringodium filiforme 100 1994-10 8 9 I 98 98 0 Syringodium filiforme 98 1994-10 8 10 P 100 100 0 Syringodium filiforme 100 1994-10 8 10 P 100 100 0 Halodule wrightii 2 1994-10 8 10 I 99 99 0 Syringodium filiforme 99 1994-10 9 1 P 92 92 0 Syringodium fi1iforme 92 1994-10 9 1 I 98 98 0 Syringodium filiforme 98 1994-10 9 1 I 98 98 0 Halophila englemannii 2 1994-10 9 2 P 98 98 0 Syringodium filiforme 98 1994-10 9 2 P 98 98 0 Halophila englemannii 2 1994-10 9 2 I 95 95 0 Syringodium filiforme 95 1994-10 9 2 I 95 95 0 Halophila englemannii 12 1994-10 9 3 P 97 97 0 Syringodium filiforme 97 1994-10 9 3 I 100 100 0 Syringodium filiforme 100 1994-10 9 3 I 100 100 0 Halophila englemannii 10 1994-10 9 4 P 92 92 0 Syringodium filiforme 92 1994-10 9 4 I 98 98 2 Syringodium filiforme 98 1994-10 9 4 1 98 98 2 Halophila englemannii 8 1994-10 9 4 1 98 98 2 Udotea conglutinata 2 1994-10 9 5 P 85 85 2 Syringodium ff7iforme 85
Appendix Table 2. Continued. Page 21 Perimeter/
Interior Total Total Total Date Station ReD (P/I) VeQetation Seaarass Alae Species Cover 1994-10 9 5 85 85 Udotea conglutinata 2 1994-10 9 5 100 100 Syringodium filiforme 100 1994-10 9 5 100 100 Halophila englemannii 8 1994-10 9 6 100 100 Syringodium filiforme 100 1994-10 9 6 100 100 Halophila englemannii 14 1994-10 9 6 100 100 Syringodium filiforme 100 1994-10 9 7 95 95 Syringodium filiforme 95 1994-10 9 7 95 95 Halophila englemannii 2 1994-10 9 7 97 97 Syringodium filiforme 97 1994-10 9 8 97 97 Syringodium ftliforme 89 1994-10 9 8 97 97 Halophila englemannii 8 1994-10 9 8 97 97 Halodule wrightii 5 1994-10 9 8 100 100 Syringodium filiforme 100 1994-10 9 8 100 100 Halophila englemannii 4 1994-10 9 9 80 80 Syringodium filiforme 80 1994-10 9 9 80 80 Halophila englemannit 1 1994-10 9 9 99 99 Syringodium filiforme 99 1994-10 9 10 84 84 Syringodium filiforme 84 1994-10 9 10 84 84 Halophila englemannii 5 1994-10 9 10 98 98 Syringodium filiforme 98 1994-10 11 1 100 100 Syringodium filiforme 100 1994-10 11 1 100 100 SyringodurM filiforme 100 1994-10 11 2 100 100 Syringodium filiforme 100 1994-10 11 2 100 100 Syringodium ft1iforme 100 1994-10 11 3 100 100 Syringodium ft7iforme 100 1994-10 11 3 100 100 Syringodium filitforme 100 1994-10 11 4 99 99 Syringodium filiforme 99 1994-10 11 4 100 100 Syringodiumrf1iforme 100 1994-10 11 5 100 100 Syringodtium filiforme 100 1994-10 11 100 100 Syringodium filiforme 100 1994-10 11 6 100 100 Syringodium ft1iforme 100 1994-10 11 6 100 100 Syringodium filiforme 100 11 7 99 99 Syringodium filiforme 99 1994-10 11 7 100 100 Syringodium filiforme 100 1994-10 1994-10 11 8 100 100 Syringodium fi7iforme 100 1994-10 11 8 100 100 Syringodium fi7iforme 100 1994-10 11 9 100 100 Syringodium ftliforme 100 11 9 100 100 Syringodium filiforme 100 1994-10 1994-10 11 10 100 100 Syringodium ftliforme 100 1994-10 11 10 100 100 Syringodium filiforme 100 12 1 98 98 Syringodium fMliforme 98 1994-10 1994-10 12 100 100 Syringodium filiforme 100 1994-10 12 2 99 99 Syringodium fitiforme 99 1994-10 12 2 100 100 Syringodium f1liforme 100 12 3 92 92 Syringodium filiforme 65 1994-10 1994-10 12 3 92 92 Halodule wrightHi 25 1994-10 12 3 92 92 Caulerpa prolifera 2 1994-10 12 3 93 93 Syringodium filiforme 93
Appendix Table 2. Continued. Page 22 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-10 12 3 I 93 93 3 Caulerpa prolifera 3 1994-10 12 4 P 100 100 0 Syringodium filiforme 100 1994-10 12 4 I 90 90 0 Syringodium filiforme 90 1994-10 12 5 P 100 100 0 Syringodium filiforme 100 1994-10 12 5 I 100 100 0 Syringodium filiforme 100 1994-10 12 6 P 100 100 0 Syringodium fiMiforme 100 1994-10 12 6 I 100 100 0 Syringodium fi7iforme 100 1994-10 12 7 P 100 100 3 Syringodium filiforme 100 1994-10 12 7 P 100 100 3 Caulerpa prolifera 3 1994-10 12 7 I 100 100 2 Syringodium filiforme 100 1994-10 12 7 I 100 100 2 Caulerpa prolifera 2 1994-10 12 8 P 100 100 0 Syringodium filiforme 100 1994-10 12 8 I 100 100 0 Syringodium filiforme 100 1994-10 12 9 P 21 21 0 Syringodium filiforme 21 1994-10 12 9 I 100 100 0 Syringodium filiforme 100 1994-10 12 10 P 100 100 0 Syringodium filiforme 100 1994-10 12 10 I 100 100 0 Syringodium filiforme 100 1994-10 13 1 P 99 90 77 Halodule wrightii 90 1994-10 13 1 P 99 90 77 Caulerpa prolifera 77 1994-10 13 1 I 99 81 18 Thalassia testudinum 81 1994-10 13 1 I 99 81 18 Caulerpa mexicana 18 1994-10 13 1 I 99 81 18 Halodule wrightii 1 1994-10 13 2 P 96 80 69 Thalassia testudinum 72 1994-10 13 2 P 96 80 69 Halodule wrightii 8 1994-10 13 2 P 96 80 69 Caulerpa mexicana 60 1994-10 13 2 P 96 80 69 Caulerpa prolifera 9 1994-10 13 2 I 96 96 8 Thalassia testudinum 96 1994-10 13 2 I 96 96 8 Caulerpa mexicana 8 1994-10 13 3 P 94 23 84 Tha7assia testudinum 12 1994-10 13 3 P 94 23 84 Halodule wrightii 11 1994-10 13 3 P 94 23 84 Caulerpa prolifera 32 1994-10 13 3 P 94 23 84 Caulerpa mexicana 52 1994-10 13 3 I 72 8 64 Caulerpa mexicana 64 1994-10 13 3 I 72 8 64 Thalassia testudinum 8 1994-10 13 4 P 92 0 92 Caulerpa mexicana 78 1994-10 13 4 P 92 0 92 Caulerpa prolifera 16 1994-10 13 4 I 68 57 11 Halodule wrightii 57 1994-10 13 4 I 68 57 11 Caulerpa prolifera 10 1994-10 13 4 I 68 57 11 Caulerpa mexicana 1 1994-10 13 5 P 25 25 5 Halodule wrightii 25 1994-10 13 5 P 25 25 5 Caulerpa prolifera 5 1994-10 13 6 P 70 60 19 Halodule wrightfi 59 1994-10 13 6 P 70 60 19 Caulerpa prolifera 15 1994-10 13 6 P 70 60 19 Caulerpa mexicana 4 1994-10 13 6 P 70 60 19 Halophila englemannii 1 1994-10 13 7 P 70 70 6 Halodule wrightii 70 1994-10 13 7 P 70 70 6 Caulerpa mexicana 6 1994-10 13 7 P 70 70 6 Halophila englemannii 1
Appendix Table 2. Continued. Page 23 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-10 13 7 I 40 40 7 Halodule wrightii 40 1994-10 13 7 1 40 40 7 Caulerpa prolifera 6 1994-10 13 7 I 40 40 7 Caulerpa mexicana 1 1994-10 13 8 P 80 80 10 Halodule wrightii 80 1994-10 13 8 P 80 80 10 Caulerpa mexicana 5 1994-10 13 8 P 80 80 10 Caulerpa prolifera 5 1994-10 13 8 1 20 20 10 Haloduie wrightii 20 1994-10 13 8 I 20 20 10 Caulerpa mexicana 10 1994-10 13 9 P 83 83 0 Halodule wrightii 83 1994-10 13 9 I 30 30 0 Halodule wrightii 30 1994-10 13 9 I 30 30 0 Halophila englemannii 5 1994-10 13 10 P 20 20 10 Halodule wrightii 20 1994-10 13 10 P 20 20 10 Caulerpa prolifera 10 1994-10 13 10 I 50 50 1 Halodule wrightiM 40 1994-10 13 10 I 50 50 1 Halophila englemannii 10 1994-10 13 10 I 50 50 1 Caulerpa mexicana 1 1994-10 14 1 P 96 96 0 Halodule wrightii 96 1994-10 14 1 I 84 84 0 Halodule wrightii 84 1994-10 14 2 P 91 91 0 Thalassia testudinum 91 1994-10 14 2 1 72 72 0 Halodule wrightii 72 1994-10 14 2 I 72 72 0 Thalassia testudinum 2 1994-10 14 3 P 67 67 0 Halodule wrightii 67 1994-10 14 3 I 84 84 0 Halodule wrightii 84 1994-10 14 4 P 96 96 0 Haloduie wrightii .96 1994-10 14 4 I 99 99 0 Halodule wrightii 99 1994-10 14 5 P 99 99 0 Halodule wrightii 99 1994-10 14 5 I 97 97 0 Halodule wrightii 97 1994-10 14 6 P 95 95 0 Halodule wrightii 95 1994-10 14 6 1 98 98 0 Halodule wrightii 98 1994-10 14 7 P 76 76 0 Halodule wrightii 76 1994-10 14 7 I 97 97 0 Halodule wrightii 97 1994-10 14 8 P 87 88 1 Halodule wrightii 87 1994-10 14 8 P 87 88 1 Caulerpa prolifera 1 1994-10 14 8 I 86 86 0 Halodule wrightii 86 1994-10 14 9 P 88 88 0 Halodule wrightii 88 1994-10 14 9 I 88 88 0 Halodule wrightii 88 1994-10 14 10 P 79 79 0 Haloduie wrightii 79 1994-10 14 10 I 91 91 0 Halodule wrightii 91 1994-10 15 1 P 87 87 0 Thalassia testudinum 87 1994-10 15 1 I 87 87 0 Thalassia testudinum 87 1994-10 15 2 P 91 91 0 Thalassia testudinum 91 1994-10 15 2 1 84 84 0 Thalassia testudinum 84 1994-10 15 3 P 86 86 0 Halodule wrightii 86 1994-10 15 3 I 97 97 0 Halodule wrightii 97 1994-10 15 4 P 96 96 1 HaModule wrightil 96 1994-10 15 4 P 96 96 1 Udotea conglutinata 1 1994-10 15 4 I 86 86 0 Halodule wrightit 86 1994-10 15 5 P 100 100 0 Halodule wrightii 100
Appendix Table 2. Continued. Page 24 Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-10 15 5 I 100 100 0 Halodule wrightii 100 1994-10 15 6 P 91 91 0 Halodule wrightii 83 1994-10 15 6 P 91 91 0 Halophila englemannii 11 1994-10 15 6 I 100 100 0 Halodule wrightii 100 1994-10 15 6 I 100 100 0 Halophila englemannii 4 1994-10 15 7 P 94 94 70 Halodule wrightii 94 1994-10 15 7 P 94 94 70 Halimeda incrassata 70 1994-10 15 7 I 100 96 22 Halodule wrightii 96 1994-10 15 7 I 100 96 22 Halimeda incrassata 22 1994-10 15 8 P 96 76 78 Halodule wrightii 76 1994-10 15 8 P 96 76 78 Halimeda incrassata 76 1994-10 15 8 P 96 76 78 Udotea conglutinata 2 1994-10 15 8 I 100 65 98 Halimeda incrassata 98 1994-10 15 8 I 100 65 98 Halodule wrightii 65 1994-10 15 9 P 100 95 23 Halodule wrightii 95 1994-10 15 9 P 100 95 23 Halimeda incrassata 2 1994-10 15 9 P 100 95 23 Caulerpa prolifera 19 1994-10 15 9 P 100 95 23 Udotea conglutinata 2 1994-10 15 9 1 100 100 3 Halodule wrightii 100 1994-10 15 9 I 100 100 3 Halimeda incrassata 3 1994-10 15 10 P 97 95 3 Halodule wrightii 95 1994-10 15 10 P 97 95 3 Caulerpa prolifera 3 1994-10 15 10 I 97 97 0 Halodule wrightii 97
Appendix Table 3. Expansion or contraction of seagrass beds measured from staked edges: December 1993-October 1994. The "Perimeter" and "Radius" distances identify the stakes.
Perimeter Radius Grass Expansion Station ID ID (m) 0.0 15.7 3.10 16.1 12.5 3.35 27.2 10.2 2.10 40.3 8.7 2.20 54.0 8.5 2.20 73.0 10.3 -1.40 88.0 7.6 well inside bed 99.0 7.4 well inside bed 114.0 11.1 1.30 130.0 14.0 3.10 138.7 16.6 1.60 149.0 18.9 4.10 166.5 21.5 1.50 184.8 19.3 0.60 198.7 15.8 1.00 0.0 12.7 0.00 11.4 12.9 1.60 21.6 14.0 0.30 32.1 11.5 3.30 44.4 8.1 -0.10 60.0 6.4 2.70 71.6 8.2 2.60 79.i 9.7 1.70 90.3 11.8 1.60 99.2 13.9 0.00 105.1 13.8 0.00 113.6 11.6 -2.30 in hole; filled 126.3 14.7 0.00 139.4 15.9 0.00 147.1 15.9 3.30 0.0 13.3 1.40 10.7 12.3 -1.50 22.8 11.1 0.00 34.9 9.1 0.00 43.1 7.3 -1.00 62.2 8.4 -0.30 83.3 13.7 0.00 93.0 17.5 0.02 102.3 19.5 1.10 112.6 20.4 -0.10 120.2 22.1 0.00 132.6 22.6 -2.00 141.6 22.7 -1.10 163.0 27.2 -1.10 176.2 31.3 -1.10
Appendix Table 3. Continued. Page 2 Perimeter Radius Grass Expansion Station ID ID (m) 0.0 18.0 0.50 9.5 15.4 -0.50 20.4 12.5 0.60 36.1 7.2 0.10 50.5 4.3 -0.60 57.5 2.1 0.00 84.2 9.8 -0.40 92.3 9.9 0.00 97.8 10.4 0.80 103.8 11.8 0.40 108.8 12.9 0.10 124.5 17.5 0.10 132.3 18.4 0.00 139.8 19.1 -0.20 0.0 9.2 0.50 5.8 8.5 0.00 13.5 0.50 21..6 10.8 0.00 31.6 12.5 -0.20 38.8 11.4 0.00 45.4 10.0 -0.80 52.0 8.4 -0.60 57.4 8.0 -0.30 63.5 7.3 0.70 70.8 8.2 -0.60 82.3 9.4 -1.00 89.0 11.3 0.00 97.0 12.4 -0.60 102.3 14.4 -1.00 111.2 14.8 0.00 0.0 13.1 0.70 11.1 7.9 -0.50 18.6 7.9 -0.70 27.9 7.6 -0.60 33.4 7.6 2.30 40.6 8.1 0.00 54.6 10.7 0.30 new stake 66.4 13.5 2.00 new stake 72.8 15.4 0.60 84.5 18.9 -0.40 101.2 22.3 0.00 110.4 20.8 1.10 120.9 27.8 1.40 0.0 10.6 4.40 7.4 10.8 4.00 16.2 13.0 missing 22.1 14.4 1.10 37.3 8.6 2.50
Appendix Table 3. Continued. Page 3 Perimeter Radius Grass Expansion Station ID ID (m) 7 44.9 9.6 4.50 7 52.3 10.0 3.00 7 59.2 11.1 6.00 7 64.7 10.7 3.00 7 74.0 9.5 1.50 7 80.7 11.8 missing; not replaced 7 93.4 14.2 missing; not replaced 7 101.0 15.4 0.20 7 107.0 11.9 0.00 7 116.8 18.4 0.00 8 0.0 11.8 14.00 8 5.7 10.9 7.40 8 10.4 8.8 10.20 8 13.6 N/A 8 22.9 9.9 3.20 8 28.3 10.2 4.30 8 43.9 9.8 7.20 8 48.7 9.2 7.60 8 57.6 8.6 8.50 8 79.0 11.7 1.30 8 86.6 11.9 1.40 9 0.0 25.5 9 11.0 22.7 0.20 9 24.0 1880.0 0.50 9 37.3 15.4 0.00 9 49.6 12.4 found on leaving 9 63.5 13.2 0.00 9 78.3 11.8 0.60 9 95.1 9.0 1.20 9 107.1 9.6 2.30 9 11,6.3 12.4 1.30 9 126.8 14.3 1.10 9 136.9 16.3 0.70.
9 145.1 18.1 0.80 9 153.8 20.7 0.80 9 160.4 22.4 1.10 9 167.4 24.1 1.00 10 0.0 18.5 0.40 10 14.0 15.2 0.25 10 25.1 12.2 0.40 10 36.8 9.0 0.80 10 48.2 6.3 replaced 10 63.7 4.0 0.10 10 75.8 7.4 0.30 10 91.1 11.6 1.30 10 101.0 14.1 0.00 10 118.8 18.7 0.00 10 126.0 20.2 1.20
Appendix Table 3. Continued. Page 4 Perimeter Radius Grass Expansion Station ID ID (1) 10 136.7 18.6 2.70 10 149.4 15.1 0.70 10 158.0 12.8 0.00 10 166.3 10.4 1.80 11 0.0 12.8 1.00 11 11.1 11.2 0.50 11 21.0 11.1 0.40 11 29.6 10.2 0.70 11 40.6 12.1 0.00 11 51.1 13.4 0.70 11 61.0 14.2 0.30 11 81.0 8.8 0.70 11 87.6 8.2 0.80 11 97.0 8.9 0.80 11 104.2 8.8 0.50 11 115.0 12.5 0.60 12 0.0 18.9 0.00 12 10.0 19.1 12 18.5 20.2 0.10 12 28.1 18.9 0.50 12 34.8 17.0 0.55 12 42.2 15.9 0.40 12 52.5 14.3 0.30 12 61.6 12.8 0.40 12 71.0 12.3 0.80 12 75.8 12.4 1.10 12 85.5 12.6 -0.90 12 92.6 12.6 -1.40 12 100.6 12.7 -0.70 12 110.4 11.7 3.10 12 124.3 14.8 0.00 13 0.0 14.4 0.00 13 14.5 13.9 0.00 13 30.3 12.7 0.00 13 48.8 14.7 -1.40 13 56.8 16.9 -4.00 13 63.9 18.8 -6.00 13 75.4 17.4 -1.30 13 80.5 17.9 -1.60 13 87.0 19.5 -1.50 13 94.9 20.9 2.80 13 105.5 20.6 4.40 13 114.9 23.3 4.60 13 122.1 24.2 found on leaving 13 127.5 24.9 4.60 14 0.0 17.9 1.00 14 11.9 14.4 0.80 14 22.2 11.3 1.00
Appendix Table 3. Continued. Page 5 Perimeter Radius Grass Expansion Station ID ID (m) 14 31.1 8.9 1.20 14 41.4 8.6 0.80 14 50.6 7.6 -0.40 14 59.1 5.0 1.40 14 69,.5 4.2 0.90 14 77.9 3.8 0.00 14 87.3 6.4 -0.60 14 98.1 8.1 0.00 14 109.7 10.4 replaced 14 119.9 13.5 0.70 14 129.3 16.1 0.20 14 139.5 11.3 0.70 14 149.2 10.6 0.70 15 0.0 19.0 2.70 15 9.4 17.7 0.80 15 19.3 15.3 0.40 15 32.4 11.3 -0.10 15 41.4 9.2 0.30 15 50.3 10.2 0.00 15 62.0 6.7 1.40 15 69.8 4.3 0.10 15 80.2 5.0 0.00 15 90.1 6.2 0.10 15 102.1 8.7 0.00 15 109.4 10.8 0.60 15 116.5 12.1 0.35 15 125.0 14.6 0.50 15 133.6 17.1 1.30
Appendix Table 4. Dry weight biomass from 25 cm x 25 cm quadrats.
Station Rep. SpD. Biomass (q)
I I Halodule wrightil 1.53 1 2 Halodule wrightii 1.66 1 3 Halodule wrightii 0.55 1 4 Halodule wrightHi 1.37 1 5 Halodule wrightiH 0.98 1 6 Halodule wrightiH 3.74 2 1 Halodule wrightil 0.63 2 2 Halodule wrightii 1.06 2 3 Halodule wrightii 0.70 2 4 Halodule wrightii 0.97 2 5 Halodule wrightil 0.87 2 6 Halodule wrightHi 0.67 3 1 Halodule wrightii 0.48 3 2 Halodule wrightii 0.12 3 3 Halodule wrightii 0.56 3 4 Halodule wrightil 0.40 3 5 Halodule wrightii 1.18 3 6 Halodule wrightii 0.39 4 1 Drift Algae 4.96 4 1 Syringodium filiforme 4.14 4 2 Syringodium filiforme 1.51 4 3 Syringodium filiforme 1.90 4 4 Drift Algae 5.30 4 4 Syringodium filiforme 2.76 4 5 Syrlngodlum filiforme 2.27 4 6 Syringodium filiforme 3.49 5 1 Halodule wrightii 0.50 5 2 Halodule wrightii 0.16 5 3 Halodule wrightii 1.13 5 4 Halodule wrightii 0.29 5 5 Halodule wrightii 0.35 5 6 Halodule wrightil 0.75 6 1 Halodule wrightHi 1.15 6 2 Halodule wrightii 0.43 6 3 Halodule wrightii 1.96 6 3 Halodule wrighti 0.70 6 4 Halodule wrightil 2.04 6 5 Halodule wrightii 0.51 6 6 Halodule wrightii 0.83 7 1 Halodule wrightil 0.83 7 2 Halodule wrightii 1.31 7 3 Halodule wrightii 1.51 7 4 Halodule wrightii 1.55 7 4 Halophila englemannii 0.19 7 5 Halodule wrightii 0.73 7 5 Halophila englemannii 0.69 7 6 Halodule wrightii 0.94 8 1 Drift Algae 0.56 8 1 Halodule wrightii 1.25
Appendix Table 4. Continued: Page 2 Station Rep. Spp. Biomass (qc) 8 1 Halophila englemannii 0.21 8 1 Syringodium filiforme 3.66 8 2 Drift Algae 0.08 8 2 Syringodium filiforme 5.74 8 3 Drift Algae 2.23 8 3 Halodule wrightii 1.18 8 3 Halophila englemannii 0.32 8 3 Syringodium filiforme 0.73 8 4 Drift Algae 0.18 8 4 Halodule wrightii 2.03 8 4 Halophila englemannii 0.09 8 5 Drift Algae 6.08 8 5 Halodule wrightii 2.02 8 5 Syringodium filiforme 0.94 8 6 Halodule wrightii 0.99 8 6 Halophila englemannii 0.04 8 6 Syringodium filiforme 1.44 9 1 Halophila englemannii 0.11 9 1 Syringodium filiforme 3.29 9 2 Drift.Algae 0.11 9 2 Halodule wrightii 0.17 9 2 Halophila englemannii 0.56 9 2 Syringodium filiforme 4.09 9 3 Halophila englemahnii 0.38 9 3 Syringodium filiforme 3.85 9 4 Drift Algae 1.40 9 4 Syringodium filiforme 5.52 9 5 Drift Algae 0.31 9 5 Syringodium filiforme 5.58 9 6 Halophila eng7emannii 0.21 9 6 Syringodium filiforme 4.61 10 1 Caulerpa prolifera 0.61 10 1 Syringodium filiforme 4.41 10 2 Caulerpa prolifera 0.78 10 2 Drift Algae 14.16 10 2 Syringodium filiforme 5.23 10 3 Caulerpa prolifera 2.80 10 3 Syringodium filfforme 5.85 10 4 Caulerpa prolffera 0.52 10 4 Syringodium filiforme 2.77 10 5 Caulerpa prolifera 3.67 10 5 Drift Algae 14.42 10 5 Halophfla englemannli 0.24 10 6 Caulerpa prolifera 0.38 10 6 Syringodium filiforme 2.06 11 1 Syringodium filiforme 9.12 11 2 Syrlngodium filiforme 7.84 11 3 Syringodium filiforme 6.77 11 4 Syringodium filiforme 11.45
Appendix Table 4. Continued. Page 3 Station Rep. Spp. Biomass (q) 11 5 Syringodium filiforme 6.97 11 6 Syringodium filiforme 5.37 12 1 Caulerpa prolifera 0.02 12 1 Syringodium filiforme 5.96 12 2 Caulerpa prolifera 0.04 12 2 Syringodium filiforme 8.36 12 3 Drift Algae 13.16 12 3 Halodule wrightil 4.97 12 3 Syringodium filiforme 1.45 12 4 Caulerpa prolifera 0.17 12 4 Drift Algae 32.31 12 4 Syringodium filiforme 9.63 12 5 Caulerpa prolifera 0.31 12 5 Drift Algae 5.62 12 5 Syringodium filiforme 2.25 12 6 Caulerpa prolifera 0.06 12 6 Drift Algae 17.30 12 6 Syringodium filiforme 13.30 13 1 Caulerpa prolifera 2.58 13 1 Drift Algae 2.34 13 1 Thalassia testudinum 7.34 13 2 Caulerpa mexicana 20.91 13 2 Drift Algae 2.11 13 3 Caulerpa prolifera 2.15 13 3 Drift Algae 3.19 13 3 Thalassia testudinum 3.14 13 4 Caulerpa mexicana 18.84 13 4 Caulerpa prolifera 0.86 13 4 Drift Algae 32.43 13 4 Thalassia testudinum 1.70 13 5 Caulerpa mexicana 19.90 13 5 Caulerpa prolifera 0.70 13 5 Drift Algae 1.74 13 5 Thalassia testudinum 1.56 13 6 Caulerpa mexicana 4.78 13 6 Caulerpa prolifera 0.59 13 6 Drift Algae 4.68 13 6 Thalassia testudinum 0.66 14 1 Drift Algae 1.34 14 1 Halodule wrightii 0.85 14 1 Syringodium filiforme 0.37 14 2 Drift Algae 3.01 14 2 Halodule wrightil 0.86 14 3 Halodule wrightii 0.41 14 3 Syringodium filiforme 0.53 14 4 Drift Algae 4.13 14 4 Halodule wrightil 0.37 14 4 Syringodium filiforme 0.30 14 5 Drift Algae 0.32
Appendix Table 4. Continued. Page 4 Station Rep. Spp. Biomass (g) 14 5 Halodule wrightii 0.95 14 6 Drift Algae 10.23 14 6 Halodule wrightii 0.55 14 6 Syringodium filiforme 3.92 15 I Halodule wrightii 1.06 15 1 Thalassia testudinum 0.21 15 2 Drift Algae 0.09 15 2 Halodule wrightii 1.39 15 3 Halodule wrightii 8.35 15 4 Drift Algae 4.56 15 4 Halodule wrightii 7.63 15 5 Drift Algae 0.79 15 5 Halodule wrightii 5.27 15 6 Halodule wrightii 2.20 15 6 Thalassia testudinum 1.03
Appendix Table 5. Biomass (ug) of 14-day growth clip samples.
Number of Grass Wt./Shoot Station Rep. Species Shoots Wt. (ug) (Uq) 1 A Halodule wrightil 3 275 92 1 B Halodule wrightii 5 762 152 1 C Halodule wrightli 5 848 170 1 D Halodule wrightii 5 881 176 I E Halodule wrightii 4 566 142 1 F Halodule wrightii 6 1128 188 2 A Halodule wrightii 3 385 128 2 B Halodule wrightii 2 170 85 2 C Halodule wrightil 7 456 65 2 D Halodule wrightii 3 216 72 2 E Halodule wrightii 4 215 54 3 A Halodule wrightii 3 77 26 3 B Halodule wrightii 2 90 45 3 C Halodule wrightii 1 31 31 3 D Halodule wrightii 5 295 59 3 E Halodule wrightii 2 93 47 4 A Syringodium filiforme 7 1428 204 4 B Syringodium filiforme 6 2190 365 4 C Syringodium filiforme 4 1279 320 4 D Syringodium filiforme 5 1312 262 4 E Syringodium filiforme 3 451 150 5 A Halodule wrightii 3 130 43 5 B Halodule wrightii 1 90 90 5 C Halodule wrightil 1 103 103 5 D Halodule wrightii 1 49 49 5 E Halodule wrightii 2 88 .44 5 F Halodule wrightii 4 201 50 6 A Halodule wrightii 5 494 99-6 B Halodule wrightii 3 802 267 6 C Halodule wrightil 4 430 108 6 D Halodule wrightii 2 154 77 6 E Halodule wrightii 4 497 124 6 F Halodule wrightil 5 575 115 7 A Halodule wrightil 2 304 152 7 B Halodule wrightii 2 156 78 7 C Halodule wrightii 6 455 76 7 D Halodule wrightil 6 295 49 7 E Halodule wrightil 3 246 82 8 A Halodule wrightiH 2 258 129 8 B Halodule wrightii 4 508 127 8 C Halodule wrightii 8 794 99 8 D Halodule wrightii 11 626 57 8 E Halodule wrighti 7 919 131 9 A Syringodium filiforme 17 3420 201 9 B Syringodium filiforme 9 2054 228 9 C Syringodium filiforme 9 1941 216 9 D Syringodium filiforme 21 3940 188 9 E Syringodium filiforme 9 1023 114
Appendix Table 5. Continued. Page 2 Number of Grass Wt./Shoot Station Rep. Species Shoots Wt. (uq,) (Mg) 10 A Syringodium filiforme 8 1066 133 10 B Syringodium filiforme 18 1968 109 10 C Syringodium filiforme 19 1851 97 10 D Syringodium filiforine 8 433 54 10 E Syringodium filiforme 10 1322 132 11 A Syringodium filiforme 2 478 239 11 B Syringodium filiforme 2 818 409 11 C Syringodium filiforme 6 1668 278 11 D Syringodium filiforme 2 986 493 12 A Syringodium filiforme 3 246 82 12 B Syringodium filiforme 5 1764 353 12 C Syringodium filiforme 6 1068 178 12 D Syringodium filiforme 7 1181 169 12 E Syringodium filiforme 6 413 69 13 A Halodule wrightii 6 538 90 13 B Halodule wrightil 3 398 133 13 C Halodule wrightii 2 72 36 13 0 Halodule wrightii 4 246 62 13 E Halodule wrightil 2 51 26 14 A Halodule wrightHi 6 743 124 14 B Halodule wrightii 3 859 286 14 C Halodule wrightil 8 1230 154 14 D Halodule wrightii 2 540 2,70 15 A Halodule wrightii 3 533 178 15 B Halodule wrighti 6 468 78 15 C Halodule wrightii 13 688 53 15 D Halodule wrightii 7 889 127 15 E Halodule wrightii 3 565 188.
Appendix Table 6. Productivity (mg/m2/day) and number of shoots per m2 calculated from grass clip samples Number of Productivity Regrowth Station Rep. Species Shoots (mg/m2/day) Shoots/m2 Days Halodule wrightil 3 196 2,99 14 Hal odul e wrightii 5 543 499 14 Halodul e wrightii 5 604 499 14 1 Hal odule wrightii 5 627 499 14 1 Halodule wrightii 4 403 399 14 1 Hal odul e wrightii 6 803 598 14 2 Hal odul e wrightii 3 274 299 14 2 Halodule wrightii 2 121 199 14 2 Halodule wrightii 7 325 698 14 2 Hal odul e wrightii 3 154 299 14 Hal odul e wrighti i 4 153 399 14 3 Hal odul e wright i i 3 55 299 14 3 Halodule wrightii 2 64 199 14 3 Hal odul e wrightii 1 22 100 14 3 Halodule wrighti i 5 210 499 14 3 Halodule wrightil 2 66 199 14 5 Hal odul e wrightii 3 86 299 15 5 Hal odul e wrightii I 60 100 15 5 Halodul e wrightii 1 68 100 15 5 Hal odul e wrightii 1 33 100 15 5 Halodule wrightii 2 58 199 15 5 Halodule wrightil 4 134 399 15 6 Hal odul e wrightii 5 352 499 14 6 Halodule wrightii 3 571 299 14 6 Halodule wrightii 4 306 399 14 6 Hal odul e wrightii 2 110 199 14 6 Halodul e wrightii 4 354 399 14 wrightii 5 409 .499 14 Hal odul e 7 Hal odul e wrightii 2 216 199 14 7 Halodule wrighti i 2, 111 199 14 7 Halodule wrightil 6 324 598 14 7 Hal odul e wrightil 6 210 598 14 7 Halodule wrightil 3 175 299 14 8 Hal odul e wrightil 2 214 199 12 a Hal odul e wrighti i 4 422 399 12 8 Hal odul e wrightii 8 660 798 12 8
8 Halodule wrightil 11 520 1097 12 Halodule wrightii 7 764 698 12 13 Hal odul e wrightil 6 383 598 14 13 13 Hal odul e wrightii 3 283 299 14 13 Hal odul e wrighti i 2 51 199 14 13 Hal odul e wrightii 4 175 399 14 14 Hal odul e wrightii 2 36 199 14 14 Halodule wrighti i 6 617 598 12 14 Hal odul e wrightii 3 714 299 12 14 Hal odule wrightii 8 1022 798 12 14 Halodule wrightii 2 449 199 12 Hal odul e wrighti i 3 443 299 12
Appendix Table 6. continued Page 2 Number of Productivity Regrowth Station Rep. Species Shoots (mg/m2/day) Shoots/m2 Days 15 Halodule wrightii 6 389 598 12 15 Halodule wrightii 13 572 1296 12 15 Halodule wrightii 7 739 698 12 15 Halodule wrightii 3 469 299 12 4 Syringodium filiforme 7 466 320 .14 4 Syringodium filiforme 6 714 274 14 4 Syringodium filiforme 4 417 183 14 4 Syringodium filiforme 5 428 228 14 4 Syringodium filiforme 3 147 137 14 9 Syringodium filiforme 17 1115 776 14 9 Syringodium filiforme 9 670 411 14 9 Syringodium filiforme 9 633 411 14 9 Syringodium filiforme 21 1285 959 14 9 Syringodium filiforme 9 334 411 14 10 Syringodium filiforme 8 348 365 14 10 Syringodium filiforme 18 642 822 14 10 Syringodium filiforme 19 604 868 14 10 Syringodium filiforme 8 141 365 14 10 Syringodium filiforme 10 431 457 14 11 Syringodium filiforme 2 182 91 12 11 Syringodium filiforme 2 311 91 12 1i Syringodium filiforme 6 635 274 12 12 Syringodium filiforme 2 375 91 12 12 Syringodium filiforme 3 80 137 14 12 Syringodium filiforme 5 575 228 14 12 Syringodium filiforme 6 348 274 14 12 Syringodium filiforme 7 385 -320 14 12 Syringodium filiforme 6 135 274 14
U. S. Nuclear Regulatory Commission Response to 3F0410-04 Request for Documents RAI 3-4 Crystal River 1995 Seagrass Study
1995 Summary Report for:
CRYSTAL RIVER 3 YEAR NPDES MONITORING PROJECT FPC Contract S01100 Work Authorization 501 (Addendum 1) submitted December 15, 1995 to Ms. Manitia Moultrie Environmental Services Department Florida Power Corporation 3201 34th Street South St. Petersburg, Florida 33733 by the Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota, Florida 34236 Ernest D. Estevez, Ph.D.
and Michael J. Marshall, Ph.D.
'Principal Investigators
EXECUTIVE
SUMMARY
Florida Power Corporation (FPC) and federal and state regulatory agencies seek to demonstrate that the operation of new helper coolihg towers at the FPC Crystal River Station will, lead to an expansion in the area of benthic habitat occupied by submerged aquatic vegetation (SAV; seagrasses and rhizophytic macroalgae). A mon*itoring, program was begun in the Fall of 1993 and was completed in the Fall of 1995. The monitoring program emphasized near-shore waters within a two mile radius from the point of discharge (POD) of the Crystal River Station,.
The major questions to be answered by the monitoring plan were 1)Are, barren areas bei.ng colonized by SAy?, and 2) Are existing areas of SAV expanding? To answer Question 1,it was necessary to design and: implement a robust survey program in barren areas. To answer Question 2. selected SAV beds were surveyed at a very fine scale and results were compared between years. Important corollary questions included: 3) Changes in SAV'cover outside of the designated study area (control sites); 4) Changes in the relative abundance of 'macroalgae, compared to seagrasses: and. 5) Changes in the biomass or productivity of existing SAV beds. We addressed Question 3 by occupying barren and vegetated sites in control sites. We addressed, Question 4 by measuring percent cover by species, and percent barren area, at stations within the SAV beds selected for more intensive surveys.
Changes in SAV biomass or productivity (Question 5) were determined by sampling the intensive survey beds during August of each year.
Professional aerial photography was to be used to backstop the field measurements. We did not recommend using aerial imagery as a primary source of SAV dispersion data because past experience has shown that turbidity, color, tide, sea surface conditions,. and weather are significant impediments to successful photography at this site. Aerial photography scheduled for 1993 was not completed until spring of 1994 because of unSuitable weather and water conditions. Usefulness of 1994 images was marginal due to turbidity fronts in Basins 1 and 2. equivalent to the study area within a 2 mile POD radius. Photography authorized for fall 1994 was not completed des pite extended readiness through 1995. Flight conditions were hampered during winter 1994-95., and unusual. tropical storm condi'tions reduced water clarity during summer and fall, 1995.,
Our plans for field sampling were informed by, the record of poor conditions for aerial photography at the site. Lack of contemporaneous aerial photographs prevented the production of digitized SAV maps, but did not hamper our ability to monitor barren and vegetated areas throughout the study area, in order to answer project questions. Future attempts at aerial photography should be made, with or without collateral field sampling, as opportunities, arise.
Results Exhibit, I summarizes all results from the 3 year monitoring program.
In 1993, barren area transects encountered few SAV beds, and these were i
previously known. The 1993 survey established that most of Basins 1-3 were barren of seagrasses. By 1994, 3 new beds had developed, all north of the Discharge Canal. Two of the 1994 beds could not be found in 1995, but 3 other beds were discovered. These also were north of the Discharge Canal.
The gross increase in new seagrass areas during the 3 year survey period was 6 beds. Two failed to persist to 1995. Compared to 1993 conditions. 4 new beds were added to Basins 1 and 2. There were, in general. no signs.of bed development in the middle or southern areas of the 2 basins closest to the POD. However, one new 1994 Halodule bed was only a few hundred meters from the POD. There was some minor coverage of new seagrass and rhizophytic algae in the southern part of Basin 3.
Twelve of fifteen beds selected for intensive monitoring expanded beyond their 1993 ,perimeters, by 1994. Eight expanded between 1993 and 1995. The majority of intensively studied beds also showed increases in percent cover, both along their edges and within their interiors, from 1993 to 1994. The 1994 to 1995 period saw fewer beds with increased cover.
perhaps owing to the wet summer of 1995. Biomass measurements also depicted declines from 1994 to 1995. although 14 of the 15 intensively studied beds showed increases in daily productivity rates. These responses are consistent with the effects of tropical storm activity and above-average rainfall and river discharges.
Based on data from 1993, 1994, and 1995, the following points are offered.
- 1. "New" SAV beds appeared along barren-area transects.
- 2. Recruitment of new beds into barren areas has not been extensive.
- 3. All of the new beds have formed north of the point of discharge.
in Basins 1 and 2.
- 4. The seaward edges of SAV beds have expanded at 8 of 15 intensively monitored SAV stations.
- 5. Patterns of change in percent cover, from 1993 to 1995. showed decreased coverages (by total vegetation) at 10 of 15 sites.
- 6. Biomass distribution patterns showed a general decline from 1993 to 1995 at 10 of 15 sites irrespective of distance from the POD.
- 7. Shoot densities increased by 1995 for Halodule at 8 of the 10 stations where it was present in 1994.
- 8. SAV production rates showed large increases from 1994 to 1995 in Basins 1. 2 and 3, closest to the point of discharge.
Overall. monitoring revealed spatial as well as temporal patterns in the distribution of sea grasses and rhizophytic algae. Most patterns depicted a system of bed recruitment and expansion that promoted persistence. and for several parameters (Exhibit I), improvements in SAV cover and condition during the three years. No abiotic parameters were measured in this program, so it is not possible to assign causes for the SAV changes observed during the past 3 years. Changes in transects and beds within the 2 mile POD radius were mirrored by changes at more distant sites, indicating the extent of the 1995 wet season on the region. as well as the study area.
ii
Exhibit 1, 1993-1995 Summary data. Crystal River NPDES Monitoring Project.
Basin/SAV1 I -HW II-HW III-SF IV-Mixed V-SF/Other Total Barren Area Results 5 No. Transects 3 3 2 15 No. New Beds 1 1993-1994 1 0 3 1 2 0 0 3 1994-1995 Net New Beds 1 1993-1995 2 1 0 4 Intensive Seagrass Bed Results No. of bedslarea 3 3 3 3 15 No. Beds.Expanding 1993-1994 2' 2 3 3 12 1993-1995 2. 1 12 1 8 No. Beds Increasing Z Cover Interiors 1 1993-1994 2 2 3 8 1994-1995 1 0 02 0 1 Perimeters 1 1993-1994 0 2 3 8 1994-1995 0 02 1 2 No. Beds Increasing Biomass 1994-1995 0 2 0 0 3 No. Beds Increasing Productivity 1994-1995 3 3 3 2 14.
i 1HW, Halodule wriqhtii; SF, Syringodium filiforme; mixed. more than one species was abundant 2 Of two remaining marked beds in this area.
iii
TABLE OF CONTENTS Title Page Executive Summary ..
Table of Contents iv Introduction 1 Available Information I Rationale 2 Methods 4 Positioning 4 Barren Area Transects 4 Intensive SAV Bed Surveys 6 Physical Features 7 Seagrass Observations 7 SAV Condition 8 Seagrass Beds Designations 9 Results 9 Barren Area Studies 9 Transect Completeness 9 Barren Area Transects in 1994 9 Barren Area Transects in 1995 10 Net SAV Changes in Barren Areas, 1993 - 1995 11 Other Changes Observed on Barren Area Transects 12 Seagrass Bed Intensive Studies 12 Physical Characteristics 12 Seagrass Bed Expansion and Contraction 13 Area-wide Bed Expansions 13 Bed Changes in Other Areas 14 Percent Cover 14 Halodule wrichtii 15 Syrinqodium filiforme 15 iv
Halophila engelmannii 15 Thalassia testudinum 15 Total Seagrass Coverage 16 Attached Algae 16 Total SAV Coverage 16 Biomass 16 Halodule wrinhtii 16 Syrincodium fi 1iforme 17 Halophila engelmannii 17 Thalassia testudinum 17 Total Seagrass Biomass 17 Attached Algal Biomass 18 Total SAV Biomass .18 Shoot Density 18 Productivity 18 Discussion 19 Photography 19 Weather in 1995 19 Principal Findings 20 Conclusions 22 Tables Figures Appendix Tables V
INTRODUCTION Florida Power Corporation (FPC) and federal and state regulatory agencies seek to demonstrate that the operation of new helper cooling towers at the FPC Crystal River Station will lead to an expansion in the area.ef-benthic habitat occupied by submerged aquatic vegetation (SAV: seagrasses and rhizophytic macroalgae). A monitoring program was begun in the Fall of 1993 and was completed in the Fall of 1995. The monitoring program emphasizes near-shore waters within a two mile radius from the point of discharge (POD) of the Crystal River Station (Figure 1).
Available Information Early surveys and aerials are described in the 316 Demonstration Report and the 1986 MML report, "Submerged Aquatic Vegetation in the Vicinity of the FPC Crystal River Power Station."
Studies performed in the 1970s by the University of Florida contained a single map by Martin Van Tine of "approximate attached macrophyte standing crop" during the summer of an unknown year (Florida Power Corporation.
1975). The map depicted areas of high and low standing crop, including barren areas. Nothing is known of sampling methods or effort.
Two SAV surveys were performed in the vicinity of the Crystal River Station during the 1980s. The first was conducted under MML supervision as part of the 316 Demonstration Study, in 1983 and 1984. The second was sponsored by FPC and conducted by MML in 1986, to determine the nature of offshore SAV beds closer to the influence of the Withlacoochee River.
The 316 Demonstration Study occupied 50 survey stations. "Thermal" stations fell along four transects between the Barge and Intake Canals. "Control" stations fell along three transects north of the Barge Canal and three transects south of the Intake Canal. (Thirteen of the 50 stations fall within a 2 mile radius from POD. north of the intake canal.) Ten square-meter quadrats were deployed at each station and percent cover of seagrass and algae was determined in each. Nine "intensive" stations were equally divided among Halodule, Thalassia, and Syringodium sites in thermal and control areas. Intensive stations were visited on 6 week intervals.
Biomass and productivity (2-week clip method) was measured at each station.
1
No intensive stations were sampled in November of either year. Aerial photographs were taken in February of'1983 and 1984, and in. October/November of 1983. Only three of eight planned. quarterly overflights produced successful aerial images due to poor water quality. Later ground-truthing resulted in SAV maps drawn at a scale of 1:18,000 on stable acetate.
Dense SAV was mapped south of the Intake Canal and between the Intake and Discharge Canals. Sparse: SAV beds were mapped in Basins 1 and 3. SAV near Fisherman's Cut was seasonally variable,. A large area of SAV in Basin 4 was more persistent. Most of these areas fall within a 2-mile POD radius.
Barren areas were most widespread in Basins 1, 2 and 3. Other results are presented in the 316 Demonstration Report.
In November 1986. MML surveyed 177 stations between the Barge and Intake Canals, west of the POD. Station density was determined through a statistical analysis of previous SAV bed distribution. (Twenty-five stations fell within a 2-mile POD radius.) Original LORAN positions of all stations are still available. At each station., 120 meter dive lines were surveyed for dispersion and abundance of SAV.
The survey, found that most stations west of- the 1983-84 study area contained SAV. SAV (especially sparse, macroalgae) was also found at areas mapped as barren in the earlier studies. Caulerpa species were ubiquitous, but other rhizophytic algae were more common in the southern half of the survey area.
Overall, there were declines in SAV richness and cover toward the north and toward the west, within the 1986 survey area. Extensive areas of drift and lithophytic SarQassum were also observed.
Rationale The major questions to be answered by the monitoring plan were:
- 1) Are barren areas being colonized by SAV?
- 2) Are existing areas of SAV expanding?
To answer Question 1.,it was necessary to design and implement a robust survey program in barren areas. To answer Question 2. selected SAV beds were surveyed at a very fine scale and results were compared between years.
2
Professional aerial photography was to be used to backstop the field measurements. We did not recommend using aerial imagery as a primary source of SAV dispersion data because past experience has shown that turbidity, color, tide. sea surface conditions, and weather are significant impediments to successful photography at this site. On the other hand, when it is successful, aerial photography can reveal changes in SAV that. fix-ed-station methods might miss. Consequently, we sought to fly the siteand examine each year's new imagery prior to commencing field work, where possible.
Important corollary questions included:
- 3) Changes in SAV cover outside of the designated study area (control sites);
- 4) Changes in the relative abundance of macroalgae, compared to seagrasses: and
- 5) Changes in the biomass or productivity of existing SAV beds.
We addressed Question 3 by occupying barren and vegetated sites in control sites, and by including these areas in the flight lines for aerial photography. Where possible, control stations were selected at a variety of depths comparable to stations within the 2-mile POD radius.
We addressed Question 4 by measuring percent cover by species. and percent barren area, at stations within the SAV beds selected for more intensive surveys.
Changes in SAV biomass or productivity (Question 5) were determined by sampling the intensive survey beds during August of each year. The 316 Demonstration Study reported a strong dependence of variation in these parameters, on time. Seagrass biomass and productivity during the Fall are transitional between maxima in August and September, and minima in December and January. Consequently, difficulty was expected in identifying statistically significant differences between years. using November data.
Interannual differences are particularly difficult to detect in beds of mixed species, which are more common than single-species beds near Crystal River Station.
This report summarizes findings for barren area surveys. "perimeter" studies at intensive SAV beds, and the August 1994-95 condition assessment.
3
METHODS Positioning Several independent systems were employed. Approximate station locations were mapped onto charts carried in the field, to depict the orientation of a station to creeks, islands, day marks, levees, and other land marks. LORAN and GPS coordinates of all stations and transects, measured in 1993 and 1994, were also taken into the field. As needed, the end points of transects that were marked on land or in marshes with steel bars, stones.
colored paint. or other permanent material were replaced, In 1995, transect end points and station locations were again measured using a Voyager LORAN Navigator and a ,Magellan NAVPRO global positioning system.
Electronic positions also were measured for NOS benchmarks at. the mouth of the discharge canal, and at the U.S. Geological Survey "Knott" benchmark on Drum Island. Analysis of the electronic data indicates high field accuracy (reproducibility) but relati-vely low map precision (see Discussion).
Barren Area Transects Barren area transects established in 1993 were visited in October 1994 and October 1995. As shown in Figure 2, most effort was directed to Basins 1, 2 and 3, with some effort in the areas of Basins 4 and 5. closest to the POD (e.g, inside the 2-mile radius).
Transects- IN, 1W and 2W covered Basin 1, the shallowest basin in the study area (-0.3 m relative to chart datum). Transects crossed level bottom compri~sed of variously-sized sediment overlying an irregular limestone platform. Sediments to the north 'and east, near Juncus marshes, have an organic component found lacking in sediments to the west and south, where shelly sands dominate. This basin is utilized heavily by the west indian manatee.
Basin 2 is crossed by Transects 3WX 4W, and the northern half of 5W. Basin 2 is deeper than Basin I (mean depth -0.9 m) and has minor tidal channels as deep as 1.8 m. Basin 2 transects run close by or over oyster reefs and 4
mapped SAV beds 1, 6 and 7. Sediments are heterogeneous, and bare limestone occurs on Transects 4W and 5W. The influence of Withlacoochee River discharge is evident in this basin.
Basin 3 is crossed by Transects 6W through lOW. This circular basin has a bowl-shaped profile, deepest near the center (-1.9 m). The basin-is ringed by oyster reefs to the east and west, and by the Intake Canal Levee to the south. Perimeter beds 14 and 15 are located on 2 shelly shoals that have accumulated atop limestone steppes within the basin. This basin presents the most exposed limestone bottom in the study area, as well as the most sediment with a high silt and mud content. Tidal currents are strong near Transect lOW (adjacent to Dog Head Reef).
Basin 4 contains 2 transects, 2N and 11W. The transects begin near ends of the middle bar in the English Shoals, and meet in waters 2.1 m deep. This bottom is shelly and supports Caulerpa, calcareous algae, and the sea-whip.
Leptocorgia. Basin 5 has 1 transect, 12W, that begins on the levee and ends in 2.5 m of water. Solitary corals are present in this basin, which opens directly to the Gulf of Mexico.
Transects lOW, 12 W, and 2N are beyond the 2 mile POD radius, and are treated as background or control sites. Another control site, Transect 13W, lies between the Barge Canal and Withlacoochee River channel. Transect 13W is in 2 m of water over muddy sand. Appendix Table I describes all transect locations.
Barren areas were surveyed by a diver towed behind a shallow draft vessel.
Most transects ran due north or south to pre-determined landmarks. For long transects, tows followed transect lines marked in advance with temporary buoys. Buoys marked end points and way points, as needed. Beginning and end points were permanently positioned and marked. Where needed, tows were made into the current to reduce drift.
If the diver encountered seagrass or rhizophytic algae in barren areas the vessel stopped and marked the site(s). The immediate area was reconnoitered to determine the extent of SAV. If it corresponded to a previously-mapped SAV bed, it was recorded as "mapped" and was discounted as barren area. If new. the area, centroid position, species composition. and percent cover (see below) of the SAV was to be recorded, unless the vegetation was found to be Sarqassum attached to rock outcrops. SAV markers were then recovered.
and the survey of the transect continued.
5
Yearly barren area transect surveys were begun on November 9, 1993, October 13, 1994,. and October 16, .1995.
Intensive SAV BED Surveys In October 1994, GPS and LORAN coordinates and compass sightings were used to relocate the seagrass beds selected for study. All beds were marked by crab trap buoys anchored with screw-in tie down anchors to facilitate site recovery in 1995.
Within each bed, the position Of a "center" marker was determined in 1993 by GPS, LORAN, and compass bearings. Center markers are hemispherical concrete parking lot markers. Each marker was painted with blue anti-fouling paint and anchored to the bottom with screw-in anchors. Center markers were tied to the anchors with 1" diameter nylon rope.
Edges of all 15 sites were marked during November 1993 in order to determine whether the seagrass beds expanded, contracted, or remain unchanged during the duration of the three year study.
Seagrass bed edges were marked with short (<1.0 m) sections of 3/8" steel reinforcement rods driven into the bottom with a small sledge hammer. Each steel stake was allowed to extend about 10 cm upward from the sediment surface. Seagrass bed edges were usually very easy to define, based on the sharp delineations between bare bottom and vegetated bottom.
A surveyor's tape was strung out along the set of edge markers at each site.
In 1993., distances between edge markers and the distance from the center marker to each edge marker were recorded.
In 1994, bed markers were found by wading, snorkeling, or pulling a weighted polypropylene line across the bottom. Center markers and edge markers were relocated or replaced as needed. The majority of markers was relocated, so that only a few needed to be replaced. PVC poles were installed next to each edge marker to simplify working in turbid water. The distance of the actual SAV bed edge was tape-measured from the edge marker. Seaward changes were recorded as expansions. Changes toward the central bed marker were recorded as contractions.
6
The same methods were used to re-locate bed markers in August and October 1995 and the same measurements from edge markers and the center stone were repeated. All markers, including the center stone and bed edge stakes, were missing at Station 4. All other sites were found although various numbers of stakes were missing at several of the 14 re-located sites.
Physical Features To document that bottom profiles or sediment depths did not vary so much near the edges of SAV beds that future lateral growth might be inhibited, additional data were collected at each site in 1993. These measurements were repeated in October 1995 to follow possible changes in physical.
characteristics of the bottom. Water depth and sediment thickness were measured on the edge of each SAV bed and at 1.0 and 2.0 m distances into the barren zone. A marked measuring stick was used to measure water depth.
Sediment thickness was determined by pushing a 1.5 m long. 3/8" diameter iron rod into the bottom. The rod was pushed in to its full length or to the point of refusal. The rod was then withdrawn and the depth of penetration was measured. Measurements of each type were made adjacent to alternate stake markers along the edges of each of the 15 seagrass beds.
Seagrass Observations In 1993, 1994, and 1995 the percentage of bottom covered by SAV on the edge of each bed (from 0.0 to 1.0 m into each bed) and deeper into the bed (at a distance of 2.0 to 3.0 m) was measured. Ten 1.0 m2 quadrat-based estimates of bottom cover were taken along the vegetated edge of each SAV bed: The quadrats were positioned on the vegetated side of a randomly selected subset of the 15 edge markers at each site. Ten 1.0 m2 additional cover estimates were made by flipping the quadrat frame over twice away from the perimeter of each seagrass bed.
Subdivisions (100 cm2) of the 1.0 m2 quadrat were used as the units for the cover estimates. SAV coverage was determined by counting the number of units in which various species of SAV were actually rooted. A barren square was defined as being devoid of any rooted vegetation. Seagrass blades from plants rooted in other units were not counted as cover in the otherwise completely barren units. Four seagrasses (Halodule, Syrincodium, Thalassia, and Halophila) were encountered in the study sites. Two species of the rhizophytic algal genus. Caulerpa. were found at several of the sites.
7
Divers recorded data on slates and the data were transferred to log books for later use.
SAV Condition Condition was defined as SAV shoot count, above-ground biomass,.a~d -
productivity. Methods and effort followed the 316 Demonstration Study (Mattson et al. ,19861) with some variations as noted below. SAV condition was measured at the 15 intensive beds that are used for perimeter measurements in the 1993-95 monitoring program.
At each stat.ion. 6 samples for biomass of seagrasses and rhizophytic macroalgae were collected with a 25x25 cm sampler. The sampler was a PVC frame partially covered by a dive bag. Macrophytes clipped at the sediment surface floated into the upturned bag, which was labelled and'closed. Its contents were then transferred to alabelled plastic bag and stored on ice.
Contents of 6 samples were sorted into seagrasses (by species) and algae (pooled). Sorted samples were dried to constant Weight at 1050 C and weighed.
Seagrass productivity was determined as 14 day regrowth. Six clip rings were deployed at each seagrass bed study site. Losses of one or two rings occurred between deployment and retrieval at a few sites. At least 4. and usually 5 or 6., replicate measurements were made in each bed, using 11.3 cm diameter clip rings for Haloduleý,or 16.7 cm diameter clip rings for other seagrasses. After clip rings were installed,, all SAV was clipped level with the surface of the ring, and discarded. Two weeks later, new growth was harvested, sorted, preserved, and labelled. Samples were dried to constant weight at 1050 C and weighed. Seagrass shoot densities were
.measured by counting the shoots collected in the clip rings after 14 days of regrowth.
1/ Mattson, R., J.A. Derrenbacker, Jr. and R.R. Lewis. 1986. Effects of thermal addition from the Crystal River generating complex on the submerged macrophytic communities in Crystal Bay, Florida, pp. 11-67 in K. Mahadevan et al. (eds.). Proceedings, Southeastern Workshop on Aquatic Ecological Effects of Power Generation, Mote Marine Laboratory Technical Report Number 124.
Sarasota FL.
8
Seagrass Bed Designations Seagrass bed designations were changed for the final report (Figure 3) in order to indicate basin locations and dominant vegetation types. Codes for the new groupings are given in Table 1. Area I-HW, for example, includes the nearly monospecific Halodule beds in Basin I. Area IV-Mix beds contain more than one species of seagrass and algae. Figures for all seagrass bed observations are arranged within each group based on distances from the point of discharge (POD). In Areas I-HW and II-HW and at Station 13 this is a straight-line distance from the POD to the center marker at each station.
For all other stations distances were measured from the POD to the tip of the southern discharge dike and then to the station centers.
RESULTS All data collected from the 1995 sampling effort appear in the tables and appendix tables that follow. Data from 1993 and 1994 were included for comparison to the 1995 data...
BARREN AREA STUDIES Transect Completeness All transects were surveyed in 1993. In 1994, the Withlacoochee control transect (13W) was not run due to the riverine discharge of highly colored waters. In 1995. the northern half of the Basin 5 control transect (12W) was not surveyed due to a layer of mineral turbidity near the bottom. The shallower, southern half of this transect was surveyed. Overall completeness by transect-effort for the 3 year study was 97%.
Barren Area Transects in 1994 Three SAV beds were encountered in 1994 that were not seen when the transects were established in 1993 (Table 2; Figure 2). Two were Halodule 9
beds and the third was a mixed Halodule-Syrincodium bed with small amounts of the green alga. Caulerpa.
One of the "new" beds was found on Transect 1N, which is Basin 1. It was a small (7x10 m),. sparse (5% mean cover) Halodule bed with short (<5 cm) blades. The bed was growing in a silty sand underlain by rock-..any large (10-20 cm) burrows were found in the rock near the bed and elsewhere on the Basin 1 flats crossed by Transects IN. 1W and 2W. The burrows were not seen in 1993.
Another Halodule bed was found on Transect 3W. in Basin 2. The bed covered 40 m of transect on flats southwest of Thumb Island. The north end of the bed was characterized by sparse calcareous green algae and Halodule was the principal SAV at the bed's southern; end. Average percent cover of Halodule near the south end of the bed was 48%.
A third novel bed was found on Transect 5W, which crosses from Basin 2 into Basin 3. The bed was found in the Basin 2 portion of the transect, south of Drum Island. The bed was a mixture of small, dense patches-of either Caulerpa (4% mean cover) or Halodule (14% mean cover), with the two sometimes combined. Syrincodium was present but rare (30% cover in 1 of 10 replicates.
Barren Area Transects in 1995 In 1995. four SAV beds were encountered in 1994 that were not seen when the transects were established in 1993 (Table 3). Three of the 1995 beds were not encountered in 1994. All- of the new beds in 1995 were in Basins,1 and 2, and were dominated by Halodule.
The smallest of the new beds was found on Transect 1W, in Basin 1. It was a irregular (lxl m), sparse (<5%, mean cover, estimated) Halodule bed with short (<5 cm) blades. The bed was growing in-a silty sand.
Another Halodule bed was found on Transect 3W- in Basin 2. The bed covered 35 m of transect on flats northeast of Thumb Island. The bed covered 12 m.
east to west. Average percent cover of Halodule near the center of the bed was 72%. and a single Halophila rosette was found in one quadrat.
10
The third new bed in 1995 was on Transect 4W (Basin 2), close by the southeast corner of Drum Island and an adjacent oyster reef. The bed measured 110 m on a north-south axis. Its east-west borders were irregular and the fringes were dissected by courses of barren bottom, but the east-west width of the bed at its center was 22 m. Halodule was the dominant species (34% mean cover) although 1 quadrat contained .6%Halophil- and 2%
Caulerpa.
The fourth bed was found on Transect 5W, which crosses from Basin 2 into Basin 3. The bed was found in the Basin 2 portion of the transect, south of Drum Island, at the site of its first discovery in 1994. In 1995 the bed was dominated by Syrinqodium (17% mean cover) with a trace of Caulerpa.
This condition differs from 1994, when the bed was a mixture of small, dense patches of either Caulerpa (4% mean cover) or Halodule (14% mean cover),
with the two sometimes combined. Syringodium was present in 1994 but rare (30% cover in 1 of 10 replicates).
Finally, small and sparse amounts of new vegetation were encountered on the southern reaches of Transects 6W and 9W, in Basin 3. On Transect 6W, tufts of Syrinoodium were found among Caulerpa and Sargassum. Caulerpa, alone, was crossed by Transect 9W.
Net SAV Changes in Barren Areas, 1993 - 1995 In 1993, barren area transects encountered few SAV beds, and these were previously known. The 1993 survey established that most of Basins 1-3 were barren of seagrasses. By 1994, 3 new beds had developed, all north of the Discharge Canal. Two of the 1994 beds could not be found in 1995, but 3 other beds were discovered. These also were north of the Discharge Canal.
The gross increase in new seagrass areas during the 3 year survey period was 6 beds. Two failed to persist to 1995. Compared to 1993 conditions. 4 new beds were added to Basins 1 and 2. There were, in general, no signs of bed development in the middle or southern areas of the 2 basins closest to the POD. However, one new 1994 Halodule bed on Transect 1W was only a few hundred meters from the POD. There was some minor coverage of new seagrass and rhizophytic algae in the southern part of Basin 3.
11
Other Changes Observed-on Barren Area Transects In 1994, many large (10-20 cm) burrows were found in exposed rock and in sand on the Basin 1 flats crossed by Transects 1N, 1Wand 2W. The burrows were not seen in 1993, or in 1995. A similar appearance in 1994, of solitary sponges and tunicates, was, observed in Basin 3 (Transects- 6W and 7W). These filter feeding animals were abundant in deeper Basin 3 waters, but were absent in 1995.
SEAGRASS BED INTENSIVE STUDIES General characteristics, derived from field observations made during the 3-year duration of this project, of each of the 15 seagrass stations included in the intensive studies are described in Table 4. Table I lists the GPS and LORAN determined latitudes and longitudes of the center markers at each of the 15 seagrass stations. The seagrass species present at. a site seemed to be highly dependent on the site's degree of exposure to the open Gulf, turbidity at each site, and on sediment thickness asjudged from perceptions based on walking across each seagrass bed. In general Halodule was found adjacent to Juncus marshes and Syringodium was found in open bays adjacent to protective offshore oyster bars.
Physical Features Measurements of water depth at the marked edges of the seagrass beds and at 1.0 and 2.0 m beyond the edges (Figures 4 to 8: Appendix Table II) indicated gradually sloping bottoms at all stations in Area 1-HW, in Area II-HW. in Area III-SF, and in Area V-SF. Stations 14 and 13 in Area IV-Mix contours were less uniform with more rapid changes in depth from the perimeter to 2 m outside of each bed.
In general there was no evidence that changes in bottom topography limited seagrass growth at any of the study sites.
Sediment depth profiles (Figures 9 to 13: Appendix Table II) show an interesting pattern in that most Halodule wrightii beds are situated on soft mud banks with sediment depths reaching 100 cm at 5 of the. 6 Halodule beds 12
(Figures 9 and 10). Station 3 was an exception to this pattern. At Station 3 soft sediments were less deep because the site runs closely parallel to an oyster bar on its shoreward side. Limestone rock outcroppings were also scattered throughout this bed.
Syrinqodium filiforme beds were typically found rooted in shallow-sediment deposits over rocky substrata (Figures 11 and 13). Surface soft sediment layers rarely reached 100 cm depth with the exception of Station 10.
The mixed species beds (Figure 12) were underlain by a complex mosaic of shallow rock and deep soft sediments. Sediments at Station 14 and 15 were soft while rock was encountered at less than 20 cm at Station 15. All of the Syringodium beds seemed to be limited by exposed rock along at least parts of their borders.
Seaqrass Bed Expansion and Contraction Mean changes in grass bed edge positions ranged from -2.06 m to +6.81 m.
Standard deviations usually exceeded means because considerable variation was measured at each site. All data for this effort are presented in Appendix Table I!I. In general more beds expanded or remained unchanged at distances greater than 1.6 miles from the. POD while more beds contracted at locations closer to the POD. All bed edge markers and the center stone were lost at Station 4 during the summer of 1995.
Area-wide Bed Expansions
,No completely consistent basin-wide patterns were seen with the exception of Area IV-Mix where all beds expanded from 1993 to 1995 (Table 5: Figure 14).
In this area, mean bed expansion ranged from 0.58 to 2.07 m. Stations in all other areas showed a mix of expansion and contraction over the study period. Trends toward expansion seen in 1994 were sometimes drastically reversed by 1995. Two of the three stations in this area consistently expanded from 1993 to 1994. Station 13 remained unchanged in 1994 but expanded by 1995. Stations in this group range from 1.77 to 2.05 miles from the POD.
13
Bed Changes in Other Areas Five of the remaining 11 intensively studied SAV beds had positive growth along their margins since 1993, based on the mean change observed at 10 to 16 reference markers per bed (Table,5). Halodule beds in Area I-HW (Figure
- 15) expanded at two stations, following the pattern seen betweenL993 to 1994, and contracted at one station. The I-HW stations are located within 0,.63 to 0.73 statute miles of the point of discharge (POD).
Halodule beds in Area II-HW (Figure 16) expanded at Station 7 and contracted at Stations 5 and 6 (Table 5). The grassbed at Station 5 virtually disappeared as will be described in later sections of this report.
Grassbeds in this area range from 1.23 to 1.67 statute miles from the POD.
Station 5 is the most distant from the POD of these three stations.
Syriniodium beds in Areas III-SF (Figure 17) and V-SF (Figure 18) expanded at two stations, remained unchanged at two stations, and contracted at one station. No distance to edge measurements were possible in 1995 at Station 4 because all markers were lost by the time of the 1995 visits. Area III-SF stations range from 1.63 to 1.82, miles to the POD while Area V-SF stations are located from 2.25 to 2.95 miles from the POD.
Percent Cover The majority of cases in 1993. 1994, and 1995 were such that percent cover measurements were made on algae-free SAV beds (Appendix Table IV). 'Although algae were present in some cases, the cover and changes in cover of seagrass generally represent the same values as data for "total vegetation".
Percent. coverage by all vegetation in area I-HW decreased from a high of 86.1% in 1993 to a low of 56.4% in 1995. Decreases of the same approximate magnitude were seen in all other areas from 1993 to 1995 with the exception of area V-SF (Table 6). A large decrease in percent coverage occurred in these areas between August 1995 and October 1995.
All measurements of percent cover from 1993 to 1995 were combined to produce a series of figures (Figures 19 to 25) which show how bottom coverage by individual seagrass species, algae. and total vegetation (SAV) changed from year to year.
14
Halodule wrightii Halodule followed similar patterns in bed edges and interiors at each of the nine stations where this seagrass was abundant. All but one of these stations showed decreased coverages on their perimeters and within the beds' interiors from 1993 to 1995. The patterns followed between 1994.znd.1995 show a mixture of changes that included both increased and decreased coverage. Halodule (Figure 19) percent coverage fell from nearly 90% in 1993-to less than 10% in 1995 at Station 5 and to 0% at Station 8. Station 5 changed from a nearly uniform carpet of Halodule to a mud flat with only a few tufts of living grass while Station 8 changed from a mixed species bed to a Syringodium bed. The changes seen at other stations were much less pronounced.
Syringodium filiforme Syrincodium (Figure 20) coverage remained approximately constant or increased at stations where it was the only seagrass species. Syrinqodium increased coverage at Station 8 from 0% coverage in 1993 to much higher levels in 1995 as described above. Stations 9. 10, and 11 (in group V-SF),
all control stations, showed no consistent patterns of change. Syrinqodium within bed interiors was usually more dense than on bed perimeters but interior percent coverages paralleled perimeter fluctuations at most stations.
Halophila engelmannii Halophila (Figure 21), never abundant, virtually disappeared at all 15 stations by October1995. It was present in August 1995 biomass samples and in quadrat surveys for percent cover at 4 sites. Its greatest percent coverage, nearly 25% within perimeter quadrats, was seen at Station 9. south of the intake canal, in 1994. By 1995 all traces of this species disappeared. It was never found at 7 stations and never exceeded 10%
coverage at the remaining 7 sites.
Thalassia testudinum Thalassia (Figure 22) was only found within Area IV-Mix's three stations.
Its coverage fluctuated from year to year in patterns unique to each of the three stations.
15
Total Seagrass Coverage Total seagrass coverage (Figure 23) decreased at 9 of the 15 grassbed station study sites. increased at 2 stations, and remained approximately constant at 4 stations. The largest decline in coverage, from 80% to 3%
coverage, was seen at Station 5. Station 3 also showed a large .drop in coverage from 1993 to 1994 but recovered some of the loss by October 1995.
Attached Algae Attached algae (Figure 24), usually'Caulerpa prolifera or C._mexicana, were abundant at only 3 of the 15 stations. No long-term trends were seen at these stations.
Total SAV Coverage Trends in total vegetation coverage (Figure 25) closely followed the site-specific patterns seen in Figure 23 (total seagrass coverage) because of the sporadic algal coverage. Completely barren bottom, with no seagrass or algae for interiors and perimeters of the 15 seagrass stations, can be read in Figure 25 as the white space above the cross-hatched bars. Cross-hatching represents the area covered by SAV. Interiors and exteriors of most sites were very similar in the percent of bottom area covered by SAV.
The largest decrease in SAV coverage was seen at Station 5. This decrease represents the loss of nearly all of the Halodule found at the station in 1993.
Biomass Biomass was evaluated for each seagrass species, all seagrass, and all vegetation (Appendix Table V: Table 7).
Halodule wrightii Halodule biomass declined at 7 of the 12 stations where it was found in 1994 (Figure 26). A general trend of increasing biomass with increased distance from the POD can be seen- in Areas I-HW and II-HW with the exception of 16
Station 5. Halodule disappeared completely in the clip box samples taken at Stations 8 and 12 by 1995. It was replaced by Syrinpodium.
Syrinqodium filiforme Syrinqodium was never collected in Areas I-HW or in I1-HW (Figure-27)..
Syringodium biomass declined at all 7 stations where it was seen in 1994.
The declines were most pronounced in Area V-SF and at Station 12 in Area III-SF. The Area V-SF stations were considered to be controls because Stations 9 and 10 are located south of the intake canal (Figure 3). Station 11 is between the intake and discharge canals well behind the last series of oyster bars in Rocky Cove.
Halophila enqelmannii Halophila occurred sporadically at 7 stations over the 2 years in which biomass was monitored (Figure 28).' It never occurred in area I-HW but it was collected in all other areas but not at all stations.
Thalassia testudinum Thalassia occurred in the clip box samples at only 2 stations (Figure 29).
It was more abundant in 1994 than in 1995 at both of these stations.
Total Seagrass Biomass Combining the biomass of all seagrass species obscured the biomass-density distribution patterns seen for individual species biomass (Figure 30),
although it is evident that stations closest to the POD had much lower mean biomass values than more distant stations. Mean seagrass biomass values for the six stations closest to the POD were considerably lower than mean biomass values for the three more distant stations (9,11, and 12).
Seagrass biomass (Figure 30) declined at 12 of the 15 seagrass stations from 1994 to 1995. The largest declines were seen at Stations 11 and 12. Small increases in seagrass biomass were seen at Stations 6 and 7 in Basin II.
Biomass also increased at Station 14. The overall decline in seagrass biomass was seen both at hot-water impacted and at control stations and was not seagrass species specific.
17
Attached Algal Biomass Attached algal biomass (Figure 31) was distributed across sites in similar patterns in 1994 and 1995. The two stations where algal biomass was greatest in 1994 showed a decline in biomass in 1995.
Total SAV Biomass All vegetation (seagrass plus rhizophytic macroalgae) biomass accentuated the spatial pattern seen for all seagrass species combined (Figure 32).
Distant stations north of the Intake Canal had greater mean biomass values than stations closer to the POD., due largely to the increased abundance of macroalgae.
Shoot Density Mean numbers of Halodule shoots per square meter (Table 8) were generally greater in 1995 at all sites where this seagrass was collected in 1994 (Figure 33). The only exception was Station 8 where Halodule disappeared.
Syrincodium (Figure 34) shoot densities increased greatly in III-SF from 1994 but showed smaller changes in area V-SF. Shoot density data are presented in Appendix Table VI.
Productivity Clip data (Table 8: Appendix Table VI) were normalized for regrowth period and sample size to calculate productivity as mg dry weight per square meter per day.
Halodule productivity increased in areas I-HW and II-HW from 1994 to 1995 (Figure 35). All Halodule disappeared at Station 8. Halodule in area IV-Mix beds exceeded 1994 growth rates at two of the three stations. The growth rate increases seen in Areas I-HW and II-HW suggest that presumed declines in water temperature following the start-up of the helper cooling towers, may have been a factor.
Syringodium growth was also accelerated from 1994 to 1995 in area III-SF (Figure 36). Growth rate differences in area V-SF, at distances exceeding 2.2 miles from the POD, were not as noticeable between years.
18
DISCUSSION Photogra hy Aerial photography scheduled for 1993 was not completed until.spcing.of 1994 because of unsuitable weather and water conditions. Usefulness of 1994 images was marginal due to turbidity fronts in Basins I and 2. equivalent to the study area within a 2 mile POD radius., Photography authorized for fall 1994 was not completed despite extended readiness through 1995. Flight conditions were hampered during winter 1994-95, and unusual tropical storm conditions reduced water clarity during summer and fall, 1995.
Conditions suited for aerial photography of SAV in the vicinity of the FPC power station are less common than elsewhere on the west Florida coast. For example, aerial photography of SAV during favorable conditions in Tampa Bay, by Geonex for the Southwest Florida Water Management District, prompted reconnaissance flights to Crystal River. Transparency at Crystal River was judged unsuitable during the same week that optimal conditions existed in Tampa Bay.
Our plans for field sampling were informed by the record of poor conditions for aerial photography at the site. Lack of contemporaneous aerial photographs prevented the production of digitized SAV maps but did not hamper our ability to monitor barren and vegetated areas throughout the study area. Future attempts at aerial photography should be made, with or without collateral field sampling, as opportunities arise.
Weather in 1995 Effects of 2 hurricanes and a tropical storm were felt along the coasts of Citrus and Levy counties. Storm surges completely inundated coastal Juncus marshes adjacent to the study area. Organic marsh sediments were deposited along the coastal marsh-front -- northern and eastern edges of Basins 1 and 2 were fringed with subtidal deposits of fine organic matter, from August through October. 1995. Inorganic sands also were reworked in parts of every basin. Sand and shell was eroded from levees and islands, and deposited along intertidal oyster reefs.
19
Rainfall and freshwater (Withlacoochee River) discharge also were above average during summer 1995, although 12 month totals matched long-term averages (SWFWMD, 1995). Highly colored water from the Withlacoochee River, Barge Canal. and coastal runoff 'reduced local transparency to less than 0.5 m during low tides, and colored freshwater plumes were discernable 6 km from shore. Compared to 1993 and 1994 survey periods, August and Octobler.1995 had more wind, more westerly onshore wind. rougher seas, and reduced visibility in all basins.
Halophila engelmannii 's disappearance, from August 1995 to October 1995, was probably due to reduced salinities from rainfall and freshwater discharges throughout the study area. Halophila is reported to discolor and to eventually die when exposed to salinities below 10 ppt 2 .
Growth rates (0.15 to 0.91 g dryweight m,2 d1 ) determined for Halodule during 1995 within the study site fall into the range of growth rates (0.1 g in January to 1.7 g dry weight m'2 d-') reported from the Laguna Madre.
Texas 3 . In 1994 several of the growth rate determinations for this species fell below this range. Production rates measured at station 5 in Area II-HW and station 3 in Area I-HW, during August 1994, were 0.073 and 0.083 g dry weight m-2 d-, respectively. The considerable increase in production rates seen at sites closest to the POD niay have been due to presumably decreased water temperatures at the'POD. The highest shoot production rates in the Laguna Madre study occurred when water temperatures ranged from 28 to 29 0C.
Temperatures above and below that level caused decreased shoot production rates.
Principal Findinqs Based on data from 1993, 1994, and 1995, the following points are offered.
- 1. "New" SAV -beds appeared alona barren-area transects.
2Dawes, C.. M. Chan, R. Chinn, E.W. Koch. A. Lazar. and D. Tomasko (1987).
Proximate composition, photosynthetic and respiratory responses of the seagrass Halophila enoelmannii from Florida. Aquat. Bot., 27: 195-201.
3Tomasko, D.A. and K.H. Dunton (1995). Primary productivity in Halodule wrightii: a comparison of techniques based on daily carbon budgets. Estuaries 18: 271-278.
20
Three beds were found in 1994 that were not seen in 1993. Two were small Halodule beds in relatively close proximity (Basins 1 and 2) to the point of discharge. The apparent recruitment of beds into barren areas could have been an artifact of sampling dates (November-December 1993 versus October 1994). especially for ther multiple species bed' on Transect 5 near Drum Island. Beds on transects closer to the point of discharge are more likely to be genuine additions, because the tidal' flats in that area are shallow, easily surveyed, and frequently visited.
In 1995. four SAV beds were encountered in 1994 that were not seen when the transects were established in 1993. Three of the 1995 beds were not encountered in 1994. All of the new beds in 1995 were in Basins 1 and 2.
and were dominated by Halodule. The largest new bed (110 m by 22 m) in 1995 was on Transect 4W (Basin 2), near Drum Island. Another bed found near Drum Island in 1994 was found again in 1995. In 1995 the bed was dominated by Syringodium with a trace of Caulerpa. which condition differs from 1994 when the bed was a mixture of small, dense patches of either Caulerpa or Halodule.
- 2. Recruitment of new beds into barren areas has not been- extensive.
During the 3 years of monitoring, there was no evidence that SAV was colonizing extensive areas of barren sediment. All of the new beds were found in the northern parts of Basins 1 and 2. north of the discharge canal.
In the 3 years of this study, no new beds were found in any part of Basin 3, although in 1995 small and sparse amounts of new vegetation were encountered on the southern reaches of Transects 6W (tufts of Svrinqodium in Caulerpa and Saraassum) and 9W (Caulerpa only). Historical data indicate that losses of SAV along the southern side of Basin 3 were considerable.
- 3. All of the new beds have formed north of the POD, in Basins 1 and 2.
Two of the new beds did not persist, but their appearance conformed with locations of other new beds. Without data on abiotic parameters we cannot attribute this pattern to physical or chemical gradients across the study area. It can be noted, however, that all of the new beds were in the vicinity of stable, persistent beds, and tidal marshes.
21
- 4. The seaward edges of SAV beds have expanded at 7 of 15 SAV stations.
Expansion was seen at 13 of the 15 beds through 1994. All SAV beds in Area IV-Mix expanded over the study period. No basin-wide contractions of seagrass beds were seen from 1993 to 1995. SAV beds in Areas I-HW and II-HW, in the areas most strongly influenced by thermal discharges, expanded at 3 stations and contracted at 3 stations. Stations in Areas III,:$E and V-SF expanded at 2 sites, contracted at I site, and remained unchanged at 2, sites.
- 5. Patterns of change in percent cover from 1993 to 195_ showed decreased coverages (by total vegetation) at 10 of 15 sites. Five of the six Halodule beds in Areas I-HW and II-HW declined in coverage by total vegetation.
Syringodium beds in Areas I117SF and V-SF showed increased coverage at 3 of 6 sites, decreased coverage at 2 sites. and no change at one site.
- 6. Biomass distribution patterns showed a general decline from 1993 to 1995 at 10 of 15 sites irrespective of distance from the POD.
- 7. Shoot densities increased by 1995 for Halodule at 8 of the 10 stations where it was present in 1994.. Syringodium shoot densities increased by 1995 at 4 of 6 stations where it was seen in 1994.
- 8. SAV production rates showed large rate increases from 1994 to 1995 in Areas 1LL II-HWL and III-SF.. All of these sites are within the path of historical thermal discharges from the POD. Smaller production increases were. measured at stations in.Areas IV-Mix and Area V-SF. A decrease in discharge water temperatures may explain part of the increased growth rates seen near the POD, and decreased transparency during the summer of 1995 may also have been a factor.
CONCLUSIONS Visits in 1994 and 1995 to transects and seagrass beds selected for monitoring in 1993 revealed spatial as well as temporal patterns in the distribution of sea grasses and rhizophytic algae. Most patterns depicted a system of bed recruitment and expansion that promoted persistence, and for several parameters (Table 9), improvements in SAV cover and condition during the three years. Six new beds appeared in barren areas, and 3 persisted 22
into 1995. .More than half of the intensively monitored beds had net increases in perimeter. Until the wet summer of 1995, 8 of 15 beds also increased with respect to cover.
Halodule and Syrinoodium were the dominant seagrass species in the vicinity of the study area. Halophila. and to a lesser extent, Thalassia.owere affected adversely by the wet summer, causing shifts in species dominance within beds, and some declines in percent cover. Halodule demonstrated the greatest potential for recruitment into barren areas, having twice colonized Basin 1. the basin closes to the point of thermal discharge.
No abiotic parameters were measured in this program, so it is not possible to assign causes for the SAV changes observed during the past 3 years.
Changes in transects and beds within the 2 mile POD radius were mirrored by changes at more distant sites, indicating the extent of the 1995 wet season on the region, as well as the study area. Biomass was lower and productivity was higher in 1995, than in 1994, consistent with effects of storms and heavy rains.
23
Table 1. Station codes and locations for all seagrass bed intensive studies. The dominant seagrass species is listed for each station.
Area Codes Station Dominant Seaqrass Latitude Longitude Loran (45) Loran (62) Miles from POD I -HW 3 Halodule wrightii 2B 58 03.88 82 43 41.91 45233.61 62882.21 0.63 2 Halodule wrightii 28 58 00.79 82 43 50,00 45234.06 62883.08 0.68 1 Halodule wrightii 2B 57 58.39 82 43 56.35 45234.56 62883.88 0.73 II -HW 7 Halodule wrightii 28 58 25 00 82 44 09 00 45237.91 62884.67 1.23 6 Halodule wrightii 2B 58 24.30 82 44 10.28 45240.33 62885.49 1.29 5 Halodule wrighti i 28 58 35.81 82 44 33.48 45244.78 62888.00 1.67 III-SF 4 Syringodium filiforme 28 57 17.67 82 44 21.52 45232.47 62887.19 1.63 8 Syringodium filiforme 28 57 07.30 82 44 19.26 45230.70 62887.06 1.82 12 Syringodium filiforme 28 57 10.49 82 44 17.21 45230.03 62886.80 1.79 IV-MIX 14 Mixed Species 28 57 04.40 82 44 35.00 45232.39 67889.09 1.79.
15 Mixed Species 28 57 05.90 82 44 39.40 45232.91 62889.56 1.77 13 Mixed Species 28 58 12.34 82 45 15.62 45274.30 67893.40 2.03 V-SF 11 Syringodium filiforme 28 57 23.73 82 43 38.31 45227.68 62882.131 2.23 9 Syri ngodi um filiforme 28 56 49.65 82 43 25.10 45220.91 62880.80 2.71*
10 Syringodium filiforme 28 56 41.19 82 43 14.31 45218.47 62879.68 2.95*
- Located south of the intake canal levees.
Table 2. SAV beds found in October 1994 on 1993 barren area transects.
Bed 1 Bed 2 Bed 3 Transect No. IN 3W 5W Basin No. 1 2 2/3I. .
LORAN 45- 229.16 236.00 240.85 62- 880.75 885.49 888.81 Near to: POD Thumb I. Drum I.
Length, m 7 40 30 Max. Width, m 10 19 31 Mean %Cover Halodule 5 48 14 Syringodium 0 0 3 Caulerpa 0 0 4 Bare 95 52 85 N 10 9 10
Table 3. SAV beds found in October 1995 on 1993 barren area transects.
Bed 3 Bed 4 Bed 5 Bed 6 Transect No. 5W 4W 3W 1W Basin No. 2/3 2 2 1 LORAN 45- 240.85 240.13 238.'21 230.23 62- 888.81 887.22 885.14 88i.30 Near to: Drum I. Thumb I. no name POD Length,. m 20 110 35 1 Max. Width, m 10 45 12 1 Mean %Cover Halodule 0 34 72 <5 Syringodium 17 0 0 0 Caulerpa t t 0 0 Halophila 0 t t 0 Bare 83 66 28 95+
N 10 10 10 10
- t. trace record.
Table 4. Brief descriptions of the 15 seagrass stations included in seagrass bed intensive surveys.-
Area I-HW Stations:
- 1) Adjacent to salttmarsh (Juncus sp); very soft bottom; Halodule was only species present: offshore area bordered byeoyster bars at varying distances.
from the study site.
- 2) same as above
- 3) same as above except that bottom was rocky in some areas; oyster bar limits grassbed growth on shoreward side; station closest to end of discharge canal Area II-HW Stations:
- 5) Saltmarsh bordered by well developed oyster bar at this site. Halodule grassbed reduced, to very widely dispersed, small clumps and patches.
- 6) Site in middle of small embayment away from Juncus marsh; bed bordered by oyster bar on one side.
- 7) Same as #6 except that original grassbed has grown and merged with other grassbeds. Thalassia seen in the area where the grassbeds merged. Very soft bottom except along edge of oyster bar.
Area III-SF Stations:
- 4) Bed on seaward edge of Rocky Cove oyster bars. Very exposed to wind and waves: hard bottom with Sargassum attached to rocky bottom at the seaward edge of the seagrass beds. Lost. all station markers in 1995. Observations on bottom cover, productivity, biomass all done within GPS and LORAN determined station boundaries
- 8) Syrincodium bed on seaward edge of Rocky Cove oyster bars: very exposed to wind and waves; hard bottom with Sargassum attached to rocky bottom at the seaward edge of the seagrass beds.
- 12) Syrincodium in area between parallel oyster bars at south side of Rocky Cove; good current flow throughout area as tides change.
Area IV-Mix Stations:
- 13) Very mixed mosaic of seagrasses (Thalassia/ Syrinqodium/ Halophila!
Halodule) with Caulerpa mexicana and C. orolifera. Oyster bar to west protects this site from heavy chop and waves.
- 14) Site located on rocky bottom near north edge of intake canal. Open to sea and chop = not protected by bars, mix of Syringodium, Halodule. and Thalassia. This bar drops off to deeper water fairly rapidly
- 15) same as #14.
Area V-SF Stations:
- 9) Control site south of the intake 'canal; soft bottom-with luxuriant beds of Syrinqodium: LotS of drift algae and attached algae outside of bed.
- 10) Same as #10 except that in October 95 the grassbed was covered with a thick layer of drift algae .... made it impossible to find stakes; algal layer was 1 m thick over parts of the bed.
- 11) Luxuriant, Syrinqodium growth over a thin layer of very soft. sediment; easily disturbed. Site in protected water, between intake and discharge canals.
Table 5. Seagrass bed expansion or contraction (m) between years.
1993-1994 1993- 1995 I-HW Station 3 Mean -. 38 -1.64 S.D. .93 2.50 Station 2 Mean .98 1.63 S.D. 1.58 1.42 Station 1 Mean 1.90 2.75 S.D. 1.42 2.43 II - HW Station 7 Mean 2.52 6.81 S.D. 1.99 11.73 Station 6 Mean .48 - .90 S.D. .99 1.89 Station 5 Mean - .21 -2.06 S.D. .52 1.42 III-SF Station 4 Mean .06 N/A S.D. .41 N/A Station 8 Mean 6.51 ,.16 S.D. 4.02 1.27 Station 12 Mean .30 1.35 S.D. 1.05 1.18 IV-MIX Station 14 Mean .56 .58 S.D. .59 1.05 Station 15 Mean .56 1.33 S.D. .75 .92 Station 13 Mean .05 2.07 S.D. 3.29 2.85 V-SF Station 11 Mean .58 -. 17 S.D. .27 1.48 Station 9 Mean .83 1.26 S.D. .60 .77 Station 10 Mean .71 -1.63 S.D. .79 2.09
Table 6. Mean percent cover of 1m2 quadrats by rhizophytic algae, seagrass and total vegetation for each station and sampling date.
(P/I) indicates grassbed (P)erimeter or 2 meters (I)nside bed).
Year/Month 1993-12 1994-08 1994-10 1995-08 1995-10 1993-12 1994-08 1994-10 1995-08 1995-10 1993-12 1994-08 1994-10 1995-08 1995-10 Alaae Algae AIQae Algae Algae Total Total Total Total Total
'ýeanrass Seanrass Seanrass Seanrass Seawass I-HW Station 3 I .0 .0. .0 .0 .0 93.7 36.9 45.3 19.5 51.6 93.7 36.9 45.3 19.5 51.6
.0 .0 .0 80.1 42.0 34.7 11.1 40.8 80.1 42.0 34.7 11.1 40.8 2 PI .0 .0 Station .0 .0 .0 .0 .0 96.4 98.9 97.1 94.9 47.1 96.4 98.9 97.1 94.9 47.1 P .0 .0 .0 .0 .0 87.1 99.0 81.5 89.3 44.0 87.1 99.0 81.5 89.3 44.0 Station 1 I .0 .0 .0 .0 .0 80.0 100.0 92.5 99.3 76.5 80.0 100.0 92.5 99.3 76-.5 P .0 .0 .0 .0 79.6 100.0 96.1 100.0 78.4 79.6 100.0 96.1 100.0 78.4 II-HW .0 Station 7 I .0 .2 .0 .0 98.3 86.7 98.4 98.7 94.8 98.3 86.7 98.4 98.7 94.8 P .0 .0 .1 .0 .0 91.5 73.1 91.1 94.0 91.2 91.5 73.1 91.1 94.0 91.2
.0 .0 .0 .0 .0 98.9 92.5 93.0 97.0 70.6 98,9 92.5 93.0 97.0 70.6 Station 6 I .0 P .0 .0 .0 1.0 .1 91.7 85.3 75.1 83.4 56.3 91.7 85.3 75.1 83.8 56.3 Station 5 I .0 .0 .0 .1 .0 83.2 49.7 42.6 6.2 5.7 83.2 49.7 42 7 6.3 5.7 P .0 .0 .0 .0 90.4 58.6 26.1 8;7 3.1 90.4 58.6 26.1 8.8 3.1 III-SF Station 4 I .8 .0 1.3 .0 N/A 85.7 72.5 67.1 97.9 N/A 85.9 72.5 67.2 97.9 N/A N/A 94.8 N/A 77.4 72..9 76.7 N/A P .0 .0 2.8 .0 77.4 72.9 76.5 94.8 Station 81 .0 1.2 .0 .0 .0 91.7 93.7 96.3 64..6 63.9 91.7 93.7 96.3 93:2 64.6 63.9 P .2 .0 .0 .0 93.8 95.8 93.2 48.3 55,0 93.8 95.5 48.3 55.0 Station 12 I 2.9 .0 .5 .0 .2 91.6 95.5 98.3 94.9 94.8 94.5 98.3 94.9 94.8 P 1.4 .0 .5 .0 .1 87.9 98.9 91.0 95.2 86.6 90.3 98.9 91.0 95.2 86.6 IV-MIX Station 14 I .2 .4 .0 .0 .0 91.8 86.9 89.6 93.3 84.8 91.8 86.9 89.6 93.3 84.8 P .0 .0 .1 .0 .0 90.7 84.8 87.5 91.2 71.6 90.7 84.8 87.4 91.2 71.6 Station 15 I .0 .0 12.3 .0 .0 97.7 98.0 91.2 83.9 67.0 97.7 98.0 95.1 83.9 67.0 P 1.5 .3 17.5 .0 .0 84.8 85.7 91.1 84.7 85.0 84.8 85.7 93.8 84.7 85.0 63.2 14.9 65.6 59.1 12.2 47.8 23.1 .7 77.7 82.9 59.4 82.3 59.4 Station 13 I 67.0 63.2 62.8 22.5 82.9 P 46.6 37.2 48.8 22.6 22.5 53.1 30.7 14.6 69.2 72.9 72.6 57.6 V-SF ,0 .0 Station 11 I .0 .0 .0 98.3 100.0 100.0 98.8 98.4 98.3 100.0 100.0 98.8 98.4
.0 .0 .0 .0 .0 98.3 99.8 99.8 99.8 98.3 99.8 99.8 99.8 97.3 P -9 .0 97.3 Station 9 I .0 .2 .0 78.6 95.5 98.5 98.8 96.5 78.6 95.5 98.5 98.8 96.5
.1 -7.1 N2 .0 .0 88.8 92.0 95.6 96.3 88.8 85.4 92.0 95.6 96.3 P 84.6 94.8 Station 10 I 1.2 34.3 N/A 9.7 .0 56.0 84,6 N/A 50.0 55.4 56.2 N/A 59.2 55.4 76.0 N/A 2.9 .0 69.8 38.9 N/A 45.9 41.4 71.4 N/A P 3.3 96.2 48.8 41.4
,
Table 7. Dry Weight biomass (g/m2) Means and standard deviations from six replicate 25x25cm Quadrats.
Syringodium Halophil a Hlal odul e Thalassia Caulerpa Caul erpa filiforme engl emanni i wricihtii testudinum prolifera mexicana Udotea Drift Algae 94 95 94 95 94 95 94 95 94 95 94 95 94 95 94 95 I-HW Station 3 Count (>Og) 6 6 Mean 8.3 6.8 S.D. 5.7 3.9 Station 2 Count (>Og) 6 6 Mean 13.1 5.1 S.D. 2.8 2.7 Station 1 Count (>Og) 6 6 Mean 26.2 12.1 S..D. 17.7 6.7 II -HW Station 7 Count (>Og) 2 1 6 6 3 Mean 2.3 .1 18.3 38.2
.1 2.8 S.D. 4.4 5.7 22.9 3.5 Station 6 Count (>Og) 1 6 6 1 3 Mean .4 15.1 32.9 5.2 4.1 S.D. 1.0 9.5 15.3 12.8 5.5 Station 5 Count (>Og) 6 3 2 Mean 8.5 .6 2.0 S.D. 5.7 .7 1.0 III-SF Station 4 Count (>Og) 6 6 2 2 3 Mean 42.9 35.2 1.2 27.4 2.0 S.D. 15.9 13.1 2.8 42.4 4.0 Station 8 Count (>Og) 5 5 4 5 5 4 Mean 33.4 12.1 1.8 19.9 24.3 56.4 S.D. 34.9 14.9 2.1 12.1 38.1 112.1
Table 7. Continued.
Syri ngodium Hal ophil a Halodule Thalassia Caulerpa Caul erpa fiI i forme enqlemanni i wriqihti i testudinum prolifera mexicana Udotea Drift A1lgae 94 95 94 95 94 95 94 95 94 95 94 95 94 95 94 95 Station 12 Count (>Og) 6 6 1 5 3 1 4 5 Mean 109.2 21.4 13.3 1.6 .6 .1 182.4 15.7 S.D. 72.5 10.8 32.5 1.9 1.1 .3 IV-MIX 198.4 12.7 Station 14 Count (>Og) 4 6 6 5 Mean 13.7 10.6 48.9 50.7 S.D. 24.3 4.0 19.0 60.8 Station 15 Count (>Og) 2 6 6 2 2 1 Mean .i 3 4
.i 69-. 1 31.6 3.3 .1 .2 14.5 13.4 S.D. 51.5 17.1 6.6 .3 .6 29.1 17.0 Station 13 Count (>Og) 2 3 5 1 5 5 4 3 6 Mean 2
.9 8.6 38.4 .-
2 18.3 13.8 171.8 1.6 124.0 1.0 S.D. 1.7 14.7 42.3 .5 15.9 10.7 163.0 2.4 194.2 V-SF 2.4 Station 11 Count (>Og) 6 6 Mean 126.7 43.1 1 S.D. 34.0 7.9 23.2 19.3 Station 9 Count (>Og) 6 6 4 1 1 3 Mean 71.8 3 4 34.5 3.4 .5 .6 .2 4.,9 19.4 S.D. 14.8 16.6 3.6 1.1 1.6 .4 Station 10 8.8 17.8 Count (>Og) 5 6 1 1 6 3 1 2 Mean 54.2 27.8 6
.6 1.3 23.4 8.8 1.6 76 .2 346.9 S.D. 35.1 17.6 1.6 3.2 22. 5 11.7 3.9 .11811 403.9
Table 8. Biomass data and productivity of grass clip samples.
Calculated Productivity Calculated (mg/m2/day) Shoots/m2 Wt./Shoot (jg) 1994 1995 1994 1995 1994 1995 I -HW Station 3 Mean 83.46 907.04 259.22 1096.71 41.43 129.69 S.D. 72.96 210.12 151.20 471.87 13.27 46.60 Station 2 Mean 205.38 596.35 378.86 1116.65 80.85 73.64 S.D. 88.71 197.37 191.78 310.52 28.86 6.93 Station I Mean 529.36 858.85 465.27 1246.26 153.23 94.43 S.D. 208,.60 386.31 102.97 511.30 34.45 15.84 II- HW Station 7 Mean 207.38 908.81 378.86 977.07 87.40 117.30 S.D. 77.47 444.89 204.33 459.06 38.36 30.31 Station 6 Mean 350.38 779.20 382.19 681.29 131.65 145.79 S.D. 149.76 581.42 116.55 298.55 68.40 88.22 Station 5 Mean 73.22 150.70 199.40 332.34 63.26 N/A S.D. 34.33 108.60 126.11 265.04 26.21 N/A III-SF Station 4 Mean 434.44 3417.38 228.31 2213.36 260.30 176.70 S.D. 201.37 900.92 72.20 826.38 86.26 25.03 Station 8 Mean 515.95 1037.04 638.09 1080.09 108.69 105.32 S.D. 213.16 519.14 349.66 342.00 3134 31.82 Station 12 Mean 304.76 1078.28 246.58 951.29 170.07 160.92 S.D. 200.57 272.45 69.25 274.61 113.42 19.51 IV-MIX Station 14 Mean 700.40 713.50 473.58 980.39 208.48 101.36 S.D. 240.72 151.37 274.55 277.85 81.ý66 33.05 Station 15 Mean 522.27 665.85 638.09 867.58 124.78 112.67 S.D. 137.98 359.78 408.65 502.70 59.57 16.73 Station 13 Mean 185.87 269.83 338.98 398.80 69.07 N/A S.D. 149.19 195.32 166.83 209.13 43.35 N/A V-SF Station 11 Mean 375.76 666.12 136.99 266.36 354.75 N/A S.D. 190.44 512.39 91.32 145.59 117.39 N/A Station 9 Mean 807.44 551.05 593.61 304.41 189.27 188.61 S.D. 386.26 700.66 258.30 128.0.7 44.93 140.21 Station 10 Mean 433.14 670.25 575.34 520.55 105.27 168.45 S.D. 203.22 306.73 249.27 245.05 32.41 25.89
Table 9. 1993-1995 Summary data, Crystal River NPDES Monitoring Project.
Basin/SAV' I-HW II-HW III-SF IV-Mixed V-SF Total Barren Area Results No. Transects 3 3 5 2 215 No. New Beds 1993-1994 1 1 1 0 0 3 1994-1995 1 2 0 0 0 3 Net New Beds 1993-1995 1 2 1 0 0 4 Intensive Seagrass Bed Results No. of beds/area 3 3 3 3 3 15 No. Beds Expanding 1993-1994 2 2 3 2 3 12 1993-1995 2 1 12 3 1 8 No. Beds Increasing
%Cover Interiors 1993-1994 2 1 2 0 3 8 1994-1995 1 0 02 0 0 1 Perimeters 1993-1994 1 0 2 2 3 8 1994-1995 1 0 02 0 1 2 No. Beds Increasing Biomass 1994-1995 0 2 0 1 0 3 No. Beds Increasing Productivity 1994-1995 3 3 3 3 2 14
' HW, Halodule wriqhtii; SF, Syrincodium filiforme: mixed, more than one species was abundant 2 Of two remaining marked beds in this area.
K II
.!
J t 0' i.
j Q9DG~?cz~ Cý3c:ý7 N
English Bars\ B4
~1 I
2.0 lz K
82 Drum I.
Ooghead>P '4'
'4 Thumb I B5 I B3 Fisherman's I Gap INTAKE B8 I B7
'If F)
B6 4
.U~-.6W 3
- 2 I -7W I
i -8W
-- 9W I
9~I I'* low f
1I 7< I12W --
/
2N
.0-ý 6
10 N9 6 7 4 8 5
14 15 J
/ 13 q, ,
4 ,
6
I-HW 40 Co Jr30 30 C)
- ° 20 0 10 0 Grassbed Perimeter 1 meter Outside meters Outside 50T a)
.. 0
- 40 ý0 3
30 0 0
20 c 10 03 o Grassbed Perimeter 0
X meter Outside Z meters Outside
. 50
- "* 40
- 30 30 o 0
20 C" 10 r P
- 0) Grassbad Perimeter 1I -eter outside 2 moters outside stations 1, 2, and 3, in Figure 4. Bottom profiles at seagrass on the seagrass bed area I-HW. Water depth measurements were taken seaward of the seagrass perimeters and at 1 m, and 2 m increments bed edges.
11,-HWI
/ * .... 50 Station 7 ... 4 30"co
... ............. ..................................................................
....
I....... ................................. 030
,
0 Grc"sbed Perimeter meter Outside 2 meters O utsid e 50 co Station 6 400 30 0
20 0 10
.. "" 40 0 Grcssbed Perimeter 1 moter Outside 2 nitte.n Outside
- 50 Station 5, 40 ,,
3
.30 0 10 0Giassbed Perimeter I metor Outside 2 meters Outside Figure 5. Bottom profiles at seagrass stations 5, 6., and -7, in Water depth measurements were taken on the seagrass area II-HW.
bed perimeters and at 1 m and 2 m increments seaward of the seagrass bed edges.
F1 - S-F 50 Station 4- 40 0
0 3
306c 20 10 3
0 Grassbed Perimeter
. ...
...m..
2...
iter Outside 2 meters Outeide 40 30 30 co 0
20 0C C
10 C 0 Grassbed Perimeter ter Outside utzide 50 0
40 -
0 3
30 -
0 10 a L0 rassbad Perimeter I meter Outside 2 meters Outside 4, 8, and 12, in Figure 6. Bottom profiles at seagrass stations were taken on the seagrass area III-SF. Water depth1 measurements m and 2 m increments seaward of the bed perimeters and at seagrass bed edges.
100 0
70 80 60 "l 5G-40 0 30 20 10 0 Grav~bed Perimetar Smeter Outside 2 meters Outside 20 o
-50
.Station 15 30 20 a 10 a.
........... .... .....
0o0 0o o, Grossbed mater Outside 2 meters Outside perimeter 50 3 Sto oi tation 4
30 1 20 0C 10 a, S0 Grossbed perimeter mtar o outside 2 meoters Outslide 7
Figue Botom rofles at seagrass- stations 13', 14, and '15, in area IV-Mix. Water depth measurements were taken on the seagrass bed perimeters and at. 1 m and 2 m increments seaward of the seagrass bed edges.
100
-.....Station 11
........ .. - 90 8 0 80 70 30 60 0 40 o c
30 i 10 20 -- "
0Gracsbed Pgrimeter I. eter O.so i 2 meters Outside
- 50 9
Station........................ . 4:0 o.
3 30 o 20 0' 10 3 0rassbed Perimeter 1
meter Outside 2 meters Outside 50
. ..
Station 10
....... .40 0 30 c 0
e20 0 103 0 Grassbedd Perimeter 1 meter Outside 2 meters Outside profiles at seagrass stations 9, 10, and 11., in Figure 8. were taken on the seagrass bed BlottOm area V-SF. Water dept Ihmeasurements seagcrasS mn increments seaward of the perimeters and at 2Im and 2 bed edges.
[-HW Station 3 2 maters Outside 0 I meter- Outside Grc33bed Perimenter (
E U
0.
0 C
C 0
In 100.
Station 2 0
20 E
U 40 60 80 E 100 Station 1 0 20 .-
E 40 60 100 80 E V
Figure 9. Sediment depth profiles at seagrass stations 1, 2, and 3 in Area I-HW during October 1995. Vertical drop bars represent sediment depths, in cms, as determined by probing the bottom on seagrass bed perimeters and at 1 m and 2 m increments seaward of the grassbed edges.
tJ.-HW Station 7
'2 meters Outside 0 I1Lmeler Outside /
Grossbed Perimeter 11A E
40 00 80 E 100 Station 6 E
E 100 E.
E Station 5 I
a M Ua met or Outside = 7 0
Grossbed perfaiker 7 20 40 60 80 100
.................
............................
..................................
.................
..............
Figure 10. Sediment depth profiles at seagrass stations 5, 6, and 7 in Area II-HW during October 1995. Vertical drop bars represent sediment depths, in cms, as determined by probing the bottom on seagrass bed perimeters and at I m and 2 m increments seaward of the grassbed edges.
Il-SFý Station 4 2 meters Outside 0 1 meter Outside /
Graz3bed Perimeter E
0.
Station 8 0
20 -.
E 40 -
0.
60 80 E 100 Station 12 2 meters Outside ,0 I meter Outside , .' " Z 7Z. .. . r" -- - - -
b4 Glrossme ieer : 1 .0 A-.1 ~ .. 1.-
-. I 20 E'
- 40 60 80 E 1) 100
..............................................................................................................................................
./
Figure 11. Sediment depth profiles at seagrass stations 4, 8, and 12 in Area III-SF during October 1995. Vertical drop bars represent sediment depths, in cms, as determined by probing the bottom on seagrass bed perimeters and at 1 m and 2 m increments seaward of the grassbed edges.
IIV-MIX I Station 1 4 2 meters Outside 0 1 meter Outside/
Grazzbed Perimeter ,
20 E
40 CL 60 80 E 1~00 Station 15 2 meters Outside 1 1 1 0
meter Outsid .
1*;ral 121ZZ171 1 1 11 -
Grassbed Perimeter I meter Outs 20 E
U 40 60 60 E
......................... ...................................
................................
100 Station 13 0
20 40 CL 60 80 E 100 Figure 12. Sediment depth profiles at seagrass stations 13, 14, and 15 in Area IV-Mix during October 1995. Vertical drop bars represent sediment depths, in cms, as determined by probing the bottom on seagrass bed perimeters and at 1 m and 2 m increments seaward of the grassbed edges.
IV-SF I Station 1 1 2 meters Outside 0 C~roszbed Perner -
20 E
40 *-
60
...............
........ ,I......... ........... .............
.. ...... I...
................................... ,.
..................
.............. .... ...
80 E 100 Station 1 0 2 meters Outside 0 G ro s I dmeter i Outai e e r. 0 e im....
e.... e. " . 't... ..ii .........
I
...... ........ Ii i ....... " . .P
'. Iii .. - . ....... 1 .. JI-- ........ -. . ......t I... ....... . ..
20 40 60 c3
...... .................................. .' ................ ..........................
600~
lo0
/
Station 9 0 CL 2 meters Outside 1 meter Outside Grasebed Perimoter_.
20 E
40 20 -E 60 1,0 O0 Figure 13. Sediment depth profiles at seagrass stations 11, 10, and 9 in Area V-SF during October 1995. Vertical drop bars represent sediment depths, in cms, as determined by probing the bottom on seagrass bed perimeters and at I m and 2 m increments seaward of the grassbed edges.
Station 14 Station 1 5 Station 13 I I I I I I I I I I I I I 6 6 I 9I I I I 1;993-1994 19.93- 199 4 6 4 4 4 2~ 2 0 :0 0
o -2 -2 -2 0
o -4 -4 -4
,
C 0
-- i I 6--
I! I Ii I I I I I I I I I I I I I -
Q1 2 3 4 5 6 7 8 9 101112131415' 1 2 3 4 5 6 7 8 9 1011121314151 2 3 5 6 7 8 910 1121 345 78 1 2 3 691081121314151 0
66 " 1 1 6 o 1993-1995 1993-1995 1993-1995 4 4 4 LLJ 2 22
-2 -2 -2 (D5 -4 -4 -4
-6 i i i I I i I iI i iI II I-6 I I I -6 1 I I i i i I I I 12 3 4 5 6 7 8 9 101112131415 1 2 3 4 5 6 7 8 9 1011121314 1 2 3 4 5 6 7 8 9 10 Count of Fixed Markers Observed (Rank Order)
Figure 14. Seagrass bed expansion (+ values.) or contraction (- values) from 1993 to 1994 (top row of figures) and from 1993 to 1995 (bottom figures) at Stations 13, 14, and 15 in Area IV-Mix.
Dotted lines across each bar graph represent the mean change for each station.
ji-HW Station 3 Station 2 Station 1 6 6 6 1993-1994 4 4 4 2 2 2 0 0 0
-2 -2 -2 0
-4 -4 -4 0
C) -6 -6 -6 1 2 3 I 6 9 1L I L2 5 0 1 2 3 4 5 6 7 8 9 101112131415 1 2 534 67 8 101112131415 I 2 3 4 5 6 7 8 9 10 11 12 13 0
C 6 6 6 1993-1995 X 4 4 4 0M 2 2 2 0 0 0
-2 -2 -2
-4 -4 1 -4
-6 -6 -6 1 2 3 4 5 6 7 8 9 1011 121314 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 I1 12 Count of Fixed Markers Observed (Rank Order)
Figure 15. Seagrass bed expansion (+ values) or contraction (- values) from 1993 to 1994 (top row of figures) and from 1993 to 1995 (bottom figures) at Stations 1, 2, and 3 in Area I-HW. Dotted lines across each bar graph represent the mean change for each station.
I11-HWl Station 7 Station 6 Station 5 I I I I I I I I I I I 6 6 I I I I I I I I I I I I I I 1993-1994 6 1993-1994 1993-1994 4 4 4 2 2 2 0 0 I I I I I I I I I I I I C 0 0
-2 -2 -2
-4 *:11I * * '* .. ............ ...... .... .. ....
-4 -4 0
-6 -6 Q.o C-)
1I 123 4 5 6 I I 7
8I I I I -6 8 9 101I1 12 0X 1 2 3 4 5 6 7 8 9 10 11 12 1. 2 . 3 . 4 . 5 . 6 . 7 . 8 . .1. 1 . .
9 1011 1213141516
. .1 0
o 40 .__ 1 I" 1 1I III I16 ci 30 1993-1995 6 6 x A LU W
8 4 6
2 4
2 0 CD 0
-2
-2
-4 -4
-6 -6 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 Count of Fixed Markers Observed (Rank Order)
Figure 16. Seagrass bed expansion (+ values) or contraction (- values) from 1993 to 1.994 (top row of figures) and from 1993 to 1995 (bottom figures) at Stations 5, 6, and 7 in Area II-HW. Dotted lines across each bar graph represent the mean change for each station.
HI-SF Station 4 Station 8 Station 12 6
15 ,i aa-..
1993-1994 1993-1994 4
.~dUNHH:
2 4 2 0 2 0
0 0
-2
-2
-2
-4 4-
-4 -4 0 -6 -6 I I I I I I I a I
-6 0) 1 2 3 4 5 6 7 8 9 101-1121314 1 2 3 4 5 6 7 8 9 10 C 1 2 3 4 5 6 7 8 9 1011 121314 0
6 6
() 4 4 V) 2 2 0 0
-2 -2
-4 -4
-6 -6 1 2o3 4 5 6 7O8 9 1 2 3 4 5 6 7 8 9 10 11 12 Count of Fixed Markers Observed (Rank Order)
Figure 17. Seagrass bed expansion (+ values) or contraction (- values) from 1993 to 1994 (top row of figures) and from 1993 to 1995 (bottom figures) at Stations 4, 8, and 12 in Area III-SF. Dotted lines across each bar graph represent the mean change for each station. All markers were lost at Station 4 in 1995.
V-SF1 Station 11 Station 9 Station 10 I1993 1 6 6 1993-1994 6 1993-1994 1993-1994 4 4 2 2, 2
0 0 I I II I I I I I I I I I I 0
-2 --2 -2 0 -4 1- -. 4 -4
-6 -6 I f I I I I IIII -6 L.2 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 1112 1314 1 2 3 4 5 6 7 8 9 10 11 12 13 C:)
0 6 6 CL 1993-1995 4 4 4
-0 2 ý2 2 Q) - ---- Rfil M 0 a en)
-2 -2 -2
-4
-:4 -4,
-6 I I FeI IMarker O R O -6 1 2 3 4 5 6 7 8 9 10 11 12 1 2: 3 4 5 6 7 8 9 10 11 2 3 4 5 6 Count of Fixed. Markers Observed (Ra~nk Order)
Figure 18. Seagrass bed expansion (,+values) or contraction (- values) from 1993 to 1994 (top row of figures) and from 1993 to 1995 (bottom figures) at Stations 9, 10, and 11 in Area V-SF. Dotted lines across each bar graph represent the mean change for each station.
z 80 0
40 0
0 20 o V 3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station thog-coeInterior Qu1drmts O-**-* Perimeter. Quodrmts Figure 19. changes in percent botitom coverage by Halodule wriqhtii from December 1993 through October 1995 for seagrass bed perimeters and interiors.
d) I -1V¥ I r1 V1 I -III-O IV - IVI I A V -- 1.*
0 100 j 80
-o t0* C V 60 U) m 40 0o* 20I 20
()
CL 3 2 1 76 5 4 8 12 14 15 13 11 9 10 Station 0 D-U,-
03< 0<0 v---V Interior Quadrots t Perimeter Quadrots Figure 20. Changes in percent bottom coverage by Syringodium filiforme from December 1993 through October 1995 for seagrass bed perimeters and interiors.
I-- TVl I -I I VT I I1-- 0 1- V -- IVI IA V -- 1 F c 30-C 0
E o 25 C-0 0
1-5 10-0 11 3 2 1 7 6 5 4 8 12 14 15 1.3 11 9 10 Station 0< 0<0 V9-V-* Interior Quadrots
~ Perimeter Quodrmts Figure 21. Changes in percent bottom coverage by Halophila englemanii from December 1993 through October 1995 for seagrass bed perimeters and interiors.
40 C
4-,
(0 a) 4-, 30 0
CO CO 0
0
-c 20 I-1, C) 10 0
C-)
,
C a)
C)
L.
C) 0 LI- 3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station U - 01 4)~ U 3O 0< 0<0 V--V-VV Interior Quodrots S Perimeter Quodrats Figure 22. Changes in percent bottom coverage by Thalassia testudinum from December 1993 through October 1995 for seagrass bed perimeters and interiors.
L. 100
>
0)
V 0
.. ,80
-20 IL 40-0 00 o<0<
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station
-- - - Interior Quadrats o-ee* Perimeter Quadr,ots Figure 23. Changes in percent bottom coveraige by 'all'se-a-grass species .from December 1993 through October 1995 for seagrass bed perimeters and interiors.
100 0
o 80 4-60 ,
1.- 60 cO 40 0~
... , 20 0
F-3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station r w tIto O 0< 0<0 V-- V--* Interior Quadrots
- - Perimeter Quodrots Figure 24. Changes in percent bottom coverage by all attached rhizophytic algae from December 1993 through October 1995 for seagrass bed perimeters and interiors.
PERIMETER QUADRATS 100 0
80 0 60 0~
40 U
0 0- 20 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station INTERIOR QUADRATS 100 0
80 C
60 Q) 40 CA 0
0 20 0
4 8 Station o.0O<'O Figure 25. Bar graphs representing total SAV (seagrass and rhizophytic above algae) coverage (cross-hatched area) vs. bare bottom (white space bars) at 15 seagrass stations from December 1993 through October 1995.
and the The top figure shows SAV coverage on seagrass bed perimeters bottom set shows coverages in bed interiors.
HALODULE WRIGHTII E 100 cn 75 E
-C 50 C) 25 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995
- Figure 26. Dry weight biomass (g m-2 ) of Halodule wrightii at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
SYRINGODIUM FILIFORME 200 175 150 0 125 E
100 75 50 L."
0 25 0 I 3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995 Figure 27. Dry weight biomass (g m-2 ) of SyrinQodium filiforme at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
HALOPHILA ENGLEMANNIl 7
C'J E 6 5
0 E 4 3
2 1
0 3 2 1 7 65 4 8 12 i4 15 13 11 9 10 Station 1994 1995 Figure 28. Dry weight biomass (g m-2 ) of Halophila englemanii at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
THALASSIA TESTUDINUM 100 so 60 40 20 12 E
9 0
M 6
3 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995 Figure 29. Dry weight biomass (g m-2 ) of Thalassia testudinum at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
TOTAL SEAGRASS T
II-HW Ill-SF IV- MIX V-SF I-HW I-HW II-HW IlI-SF IV-mix V-,SF 35 -I t 30 25-20-C71
- 4. 15-4 10 57 Ui
&,L i 3 2 1 i i 7 6 Sý 5
. ----
4
-
L -
8 12 Station
. . -
14 15 13 I
i 11 9 I )OONN 10 I
1994 1995 Figure 30. Dry weight biomass (g m-2 ) of all seagrass species at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
TOTAL ALGAE T I I-HW II-HW III-SF IV-MIX V-SF 60 ---- --- --.- ---
50 40 30
/ /
7 /
N~' 10 E 9 8
7 6
5 4
3 2
1 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995 Figure 31. Dry weight biomass (g m-') of all rhizophytic algae at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
TOTAL VEGETATION 70 60 50 40 N 35 Ec 30 25 20 15 10
.
5 0 i I 3 2 1 7 6 5 4 8 12 14 15 1.3 11 9 10 Station 1994 1995 Figure 32. Dry weight biomass (g m-2 ) of all SAV (= seagrass and rhizophytic algae) at all seagrass stations in August 1994 and 1995. Vertical error bars represent + one standard deviation.
NUMBER OF SHOOTS - HALODULE WRIGHTII I-HW II-HW III-SF IV-MIX V-SF 2000 1800 1600 N 1400 1200 0
1000 0 800
_r__
0' 600 iTI _ _ _
400 200 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1-995 .
Figure 33. Shoot densities (shoots m-2 ) of Halodule wriqhtii in August 1994 and 1995. Error bars represent + one standard deviation.
NUMBER OF SHOOTS - SYRINGODIUM FILIFORME I-HW II-HW III-SF IV-MIX V-SF 3000 2500 2000 1500 0
0 1000 500 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995 Figure 34. Shoot densities (shoots m- 2 ) of Syringodium filiforme in August 1994 and 1995.
Error bars represent + one standard deviation.
GROWTH - HALODULE WRIGHTII I-HW II-HW III-SF IV-MIX V-SF 1400 1200 1000 E
800 E 600 400 200 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995 Figure 35 Dry weight biomass production ( mg d-1 m-2 ) for Halodule wricqhtii in August 1994 and 1995. Error bars represent + one standard deviation.
GROWTH - SYRINGODIUM FILIFORME 4000 3000 2000 E
1500 "0
E 1.000 500 0
3 2 1 7 6 5 4 8 12 14 15 13 11 9 10 Station 1994 1995 Figure 36. Dry weight biomass production ( mg d-1 M-2) for Syringodium filiforme in August 1994 and 1995. Error bars represent + one standard deviation.
Appendix Table I. Coordinates of seagrass survey transects.
Base Base End End Transect Loran (45) Loran (62) Loran (45) Loran (62) 1W 45230.38 62881.46 45230.49 62881.28 2W 45230.18 62883.19 45234.21 62883.08 3W 45232.58 62885.16 45240.93 62884.77 4W 45242.71 62886.86 45242.99 62886.69 5W 45236.43 62888.88 45241.70 62888.66 6W 45236.43 62889.10 45236.80 62889.20 7W 45233.27 62890.86 45233.29 62890.74 8W 45234.63 62892.21 45239.99 62893.91 9W 45236.71 62894.34 45247.41 62894.08 low 45245.29 62896.76 45243.29 62896.82 11W 45254.70 62901.14 45253.71 62900.27 12W 45238.65 62896.69 45241.36 62896.41 13W 45266.69 62906.44 45271.22 62906.49 IN 45228.91 62880.74 45233.15 62884.81 2N 45255.38 62901.73 45253.71 62900.27
Appendix Table II. Water and sediment depths at the seagrass bed perimeters and differences in depths at 0, 1 and 2 meters from the bed edge.
Water Depths,(cm) Sediment Depths (cm)
Year Station Om 1m 2m Om-im Om-2m Om Im . 2m-- Om-im Om-2m 1994 1 88 87 86 -1 -2 82 47 61 -35 -21 1994 1 86 89 85 3 -1 87 79 71 -8 -16 1994 1 89 91 87 2 -2 71 100 100 29 29 1994 1 88 88 88 0 0 100 100 48 0 -52 1994 1 90 90 89 0 -1 100 100 100 0 0 1994 1 91 91 91 0 0 100 100 82 0 -18 1994 1 93 94 95 1 2 28 70 100 42 72 1994 1 94 94 95 0 1 100 58 71 -42 -29 1994 1 90 90 90 0 0 100 100 100 0 0 1994 1 91 '90 90 -1 -1 36 38 36 2 0 1994 1 89 90 89 1 0 20 18 20 -2 0 1994 1 82 80 81 -2 -1 58 60 50 2 -8 1994 1 85 85 .84 0 -1 15 42 20 27 5 1995 1 42 41 42 -1 0 33 48 100 15 67 1995 1 43 48 44 5 1 21 100 64 79 43 1995 1 50 50 50 0 0 80 70 60 -10 -20 1995 1 54 53 50 -1 -4 31 66 100 35 69 1995 1 50 47 49 -3 -1 31 35 33 4 2 1994 2 80 79 80 -1 0 40 40 25 0 -15 1994 2 80 80 80 0 0 25 25 32 0 7 1994 2 80 80 81 0 1 34 33 35 -1 1 1994 2 81 81 81 0 0 26 30 28 4 2 1994 2 85 88 85 3 0 78 74 120 -4 42 1994 2 90 90 90 0 0 120 120 120 0 0 1994 2 90 '90 90 0 0 71 101 71 .30 0 1994 2 91 89 89 -2 -2 120 120 95 0 -25 1994 2 89 90. 94 1 5 120 120 120 0 0 1994 2 90 88 90 -2 0 120 120 126 0 6 1994 2 90 90 90 0 0 90 80 99 -10 9 1994 2 88 89 90 1 2 70 43 82 -27 12 1994 2 90 90 90 0 0 76 71 94 -5 18 1994 2 90 90 89 0 -1 60 73 70 13 10 1994 2 89 89 88 0 -1 55 56 60 1 5 1995 2 82 82 80 0 -2 30 90 30 60 0 1995 2 79 80 81 1 2 76 86 91 10 15 1995 2 83 82 82 -1 -1 100 100 100 0 0 1995 2 83 81 90 -2 7 38 100 100 62 62 1995 2 84 83 85 -1 1 99 100 100 1 1 1994 3 70 70 69 0 -1 5 11 5 6 0 1994 3 68 70 70 2 2 12 8 5 -4 -7 1994 3 70 70 70 0 0 18 11 13 -7 -5 1994 3 75 70 75 -5 0 5 11 5 6 0 1994 3 70 70 70 0 0 5 12 18 7 13 1994 3 71 75 77 4 6 28 18 23 -10 -5 1994 3 70 70 75 0 5 12 12 5 0 -7 1994 3 70 72 70 2 0 3 10 7 7 4 1994 3 65 68 68 3 3 22 30 26 8 4 1995 3 62 63 64 1 2 5 4 9 -1 4 1995 3 61 65 65 4 4 13 7 1 -6 -12 1995 3ý 60 60 61 0 1 6 10 7 4 1
Appendix Table Ii. Continued.
Water Depths (cm) Sediment Depths (cm)
Year Station Om 1m 2m Om-lm Om-2m Om 1m 2m Om-lm Om-2m 1995 3 54 60 64 6 10 10 19 14 9 4 1995 3 55 56 59 1 4 18 11 . 61- -7 43 1994 4 82 80 80 -2 -2 2 1 0 -1 -2 1994 4 94 90 90 -4 -4 22 20 53 -2 31 1994 4 95 95 95 0 0 48 48 36 0 -12 1994 4 85 85 85 0 0 2 3 10 1 8 1994 4 90 90 86 0 -4 8 12 8 4 0 1994 4 85 85 80 0 -5 2 0 1 -2 -1 1994 4 87 80 80 -7 -7 10 0 0 -10 -10 1994 4 80 80 82 0 2 0 0 5 0 5 1994 5 125 125 130 0 5 150 160 150 10 0 1994 5 130 130 132 0 2 70 90 70 20 0 1994 5 130 140 135 10 5 100 100 90 0 -10 1994 5 130 135 135 5 5 100 100 100 0 0 1994 5 135 135 135 0 0 100 70 71 -30 -29 1994 5 130 130 135 0 5 85 65 70 -20 -15 1994 5 130 130 130 0 0 100 100 90 0 -10 1995 5 62 60 60 -2 -2 64 80 53 16 -11 1995 5 69 70 70 1 1 65 76 69 11 4 1995 5 66 65 65 -1 -1 73 73 70 0 -3 1995 5 62 64 63 2 1 87 80 83 -7 -4 1995 5 67 70 70 3 3 98 88 71 -10 -27 1994 6 105 104 105 -1 0 100 100 45 0 -55 1994 6 105 105 105 0 0 100 100 45 0 -55 1994 6 100 100 100 0 0 100 100 20 0 -80 1994 6 95 95 95 0 0 25 25 25 0 0 1994 6 95 95 95 0 0 15 17 15 2 0 1994 6 95 95 94 0 -1 50 40 52 -10 2 1994 6 100 104 100 4 0 N/A N/A N/A 0 0 1994 6 102 100 104 -2 2 25 48 58 23 33 1995 6 39 38 37 -1 -2 88 42 76 -46 -12 1995 6 37 36 37 -1 0 69 48 59 -21 -10 1995 6 36 36 36 0 0 34 17 24 -17 -10 1995 6 30 31 29 1 -1 9 13 4 4 -5 1995 6 34 35 35 1 1 71 20 43 -51 -28 1994 7 70 70 70 0 0 100 25 20 -75 -80 1994 7 70 70 70 0 0 22 15 25 -7 3 1994 7 70 70 70 0 0 45 40 30 -5 -15 1994 7 70 70 70 0 0 40 55 48 15 8 1994 7 100 100 95 0 -5 22 18 10 -4 -12 1994 7 90 90 100 0 10 25 15 12 -10 -13 90 100 10 20 40 50 15 10 -25 1994 7 80 1994 7 90 95 100 5 10 20 29 18 9 -2 1995 7 127 122 120 -5 -7 73 20 19 -53 -54 1995 7 123 120 123 -3 0 24 23 25 -1 1 1995 7 123 120 122 -3 -1 30 23 16 -7 -14 1995 7 122 123 122 1 0 24 25 22 1 -2 1995 7 122 126 123 4 1 23 32 30 9 7 1994 8 150 150 150 0 0 30 20 25 -10 -5 1994 8 150 150 150 0 0 30 30 20 0 -10 1994 8 150 150 150 0 0 23 27 15 4 -8 1994 8 150 150 150 0 0 20 20 15 0 -5
Appendix Table II. Continued.
Water Depths (cm) Sediment Depths (cm)
Year Station Om Im 2m Om-Im Om-2m Om 1m 2m Om-im Om-2m 1994 8 145 140 150 -5 5 17 16 18 -15 1 1994 8 150 150 150 0 0 7 12 - 12- 5 1995 8 72 74 74 2 2 8 8 4 0 -4 1995 8 74 75 80 1 6 18 10 6 -8 -12 1995 8 '73 75 78 2 5 5 21 20 16 15 1995 8 74 74 7.7 0 3 12 16 15 4 3 1995 8 72 71 75 -3 3 14. 15 13 1 -1 1994 9 120 115 115 -5 -5 2 15 2 13 0 1994 9 128 127 125 -1 -3 10 10 18 0 8 1994 9 125 125 120 0 -5 15 2 10 -13 -5 125 122 120 .3 -5 18 17 20 -1 2 1994 9 -5 1994 9 125 120 120 -5 15 20 20 5 5 125 122 122 -3 -3 20 6 10 -14 -10 1994 9 1994 9 130 130 130 0 0 2 2 20 0 18 1994 9 130 132 130 0 13 12 13 -1 0 1995 9 136 137 134 1 -2 10 2 2 -8 -8 1995 9 135 135 132 0 -3 22 17 7 -5 -15 1995 9 130 132 130 2 0 11 7 4 -4 -7 1995 9 130 128 127 -2 -3 18 12 5 -6 -13 1995 9 124 122 121 -2 -3 8 11 4 3 -4 1994 10 105 :105 105 0 0 14 .2 2 -12 -12 1994 10 105 110 110 5 5 14' 163 16 2 2' 1994 10 115 115 115 0 0 5 6 -2 1 1994 10 120 120 120 0 0 25 13 15 -12 -10 125 123 123 -2 -2 15 60 15 45 0 1994 10 1994 10 120 120 122 0 2 20 18 7 -2 -13 1994 10 115 115 115 0 0 77 55 70 -22 -7 1994 10 113 115 115 2 2 115 120 120 5 5 1995 10 154 154 155 0 1 18 9 8 -9 -10 1995 10 158 156 156 -2 -2 28 4 11 -24 -17 1995 10 152 149 156 .3 4 20 32 29 12 9 1995 10 148 150 152 2 4 19 17 15 -2 -4 1995 10 154 152 150 -2 -4 43 100 100 57 57 1994 11 82 80 79 -2 -3 10 10 13 0 3 1994 11 80 75 78 -5 -2 8 3 1 -5 -7 1994 11 80 78 75 -2 -5 5 1 10 -4 5 11 78 78 78 0 '0 5 1 3 -1 1994 8 1994 11 71 71 69 0 -2 4 7 -4 -1 80 79 80, -4 0 20 1 5 -19 -15 1994 11 1994 11 80 79 79 -1 -1 5 2 4 1 79 80 80, 1 5 5, 0 0 1994 11 5 -5 "5 1995 11 163 162 163 -3 5 0 0 5 0 0 -5 -5 1995 11 168 167 163 .3 01 -"5 1995 11 164 160 166 -4 2 2 0 3 -2 1 162 161 165 -1 3 8 0 2 -8 -6 1995 11 .3 1995 11 164 161 166 2 5 ,5 0 0 -5 1994 12 118 115 115 03 -3 5 7 12 2 7 1994 12 115 115 115 0 0 10 12 12 2 2 1994 12 116 120 120 4 4 6 20 10 14 4 120 120 120 0 0 2 7 2 5 0 1994 12 0 1994 12 118 118 115 -3 4 2 1 -2 -3 112 110 110 -2 -2 4 10 8 6 4 1994 12
Appendix Table II. Continued.
Water Depths (cm) Sediment Depths (cm)
Year Station Om Im 2m Om-im Om-2m Om 1m 2m Om-lm Om-2m 1994 12 101 105 101 4 0 9 5 5 -4 -4 1994 12 98 96 95 -2 -3 10 8 . .3- -2 -7 1995 12 108 111 108 3 0 11 6 8 -5 -3 106 110 107 4 1 7 7 13 0 6 1995 12 1 1995 12 111 113 112- 2 11 3 2 -8 -9 1995 12 112 113 113 1 1 6 7 6 1 0 1995 12 108 108 110 0 2 4 8 1 4 -3 1994 13 80 75 80 -5 0 20 25 15 5 -5 1994 13 95 95 95 0 0 50 35 65 -15 15 1994 13 110 110 110 0 0 35 35 45 0 10 1994 13 120 120 120 0 0 22 22 25 0 3 1994 13 120 120 120 0 0 52 31 34 -21 -18 1994 13 115 115 115 0 0 75 55 60 -20 -15 1994 13 120 120 120 0 0 55 55 70 0 15 1994 13 120 120 120 0 0 56 58 65 2 9 1995 13 175 177 176 2 1 48 49 35 1 -13 1995 13 180 180 180 0 0 18 21 8 3 -10 1995 13 175 174 176 -1 1 9 9 12 0 3 1995 13 170 149 171 -21 1 7 ý9 14 2 7 174 173 173 -1 -1 7 9 9 2 2 1995 13 1994 14 80 80 85 0 5 20 110 45 90 25 1994 14 89 95 97 6 8 72 52 90 -20 18 1994 14 115 120 125 5 10 55 76 76 21 21 1994 14 130 140 160 10 30 140 120 130 -20 -10 1994 14 130 140 145 10 15 100 62 42 -38 -58 1994 14 130 140 145 10 15 40 30 35 -10 -5 1994 14 95 100 110 5 15 30 45 55. 15 25 1994 14 80 82 82 2 2 10 5 25 -5 15 1994 14 68 72 75 4 7 19 5 5 -14 -14 1995 14 60 67 70 7 10 12 13 5 1 -7 1995 14 65 74 75 9 10 5 3 15 -2 10 76 80 87 4 11 3 25 14 22 11 1995 14 1995 14 96 103 105 7 9 43 70 35 27 -8 130 138 138 8 8 41 63 38 22 -3 1995 14 1994 15 90 90 95 0 5 5 5 5 0 0 1994 15 90 95 92 5 2 9 3 7 -6 -2 1994 15 90 95 90 5 0 8 11 8 3 0 1994 15 90 90 90 0 0 7 15 12 8 5 1994 15 90 90 90 0 0 5 8 12 3 7 90 90 90 0 0 7 8 7 1 0 1994 15 -5 1994 15 95 90 90 -5 19 8 6 -11 -13 95 95 95 0 0 9 11 7 2 -2 1994 15 0 1995 15 78 80 78 2 5 5 0 0 -5 1995 15 80 81 83 1 3 10 3 1 -7 -9 1995 15 78 78 78 0 0 9 3 9 -6 0 74 77 77 3 3 6 10 10 4 4 1995 15 .4 1995 15 78 77 74 -1 9 7 14 -2 5
Appendix Table III. Expansion or contraction of seagrass beds initially staked in December 1993. The "Perimeter and "Radius" distances identify the marker stakes.
1994 1995 Grass Grass Perimeter Radius Expansion Expansio:n-Station ID ID (m) (m) 1 .0 15.7 3.10 -2.30 1 16.1 12.5 3.35 -1.60 1 27.2 10.2 2.10 3.30 1 40.3 8.7 2.20 4.50 1 54.0 8.5 2.20 3.10 1 73.0 10.3 -1.40 3.80 1 88.0 7.6 well inside bed 1 99.0 7.4 well inside bed 1 114.0 11.1 1.30 1 1130.0 14.0 3.10 5.20 1 138.7 16.6 1.60 5.00 1 149.0 18.9 4.10 4.50 1 166.5 21.5 1.50 2.00 1 184.8 19.3 .60 2.00 1 198.7 15.8 1.00 3.50 2 .0 12.7 .00 1.80 2 11.4 12.9 1.60 .40 2 21.6 14.0 .30 .00 2 32.1 11.5 3.30 .50 2 44.4 8.1 -. 10 1.70 2 60.0 6.4 2.70 3.90 2 71.6 8.2 2.60 3.80 2 79.1 9.7 1.70 3.90 2 90.3 11.8 1.60 .00 2 99.2 13.9 .00 2 105.1 13.8 .00 1,90 2 113.6 11.6 -2.30 .70 2 126.3 14.7 .00 1.20 2 139.4 15.9 .00 1.40 2 147.1 15.9 3.30.
3 .0 13.3 1.40 3 10.7 12.3 -1.50 -1.10 3 22.8 11.1 .00 -1.20 3 34.9 9.1 .00 -3.60 3 43.1 7.3 -1.00 -5.40 3 62.2 8.4 -. 30 -5.60
.00 -4.30 3 83.3 13.7 3 93.0 17.5 .02 -1.30 19.5 -. 60 3 102.3 .10 3 112.6 20.4 -. 40 3 120.2 22.1 00 -. 60 3 132.6 22.6 -2.00 .00 3 141.6 22.7 -1.10 1.10 3 163.0 27.2 -1.10 3.20 3 176.2 31.3 -1.10 -3.20
Appendix Table III. Continued.
1994 1995 Grass Grass Perimeter Radius Expansion Expansion Station ID ID Um5 (m) 4 .0 18.0 .50 4 9.5 15.4 -. 50 NIA N/A 4 20.4 12.5 .60 N/A 4 36.1 7.2 .10 N/A 4 50.5 4.3 -. 60 N/A 4 57.5 2.1 .00 N/A 4 84.2 9.8 -. 40 N/A 4 92.3 9.9 .00 N/A 4 97.8 10.4 .80 N/A 4 103.8 11.8 .40 N/A 4 108.8 12.9 .10 N/A 4 124.5 17.5 .10 N/A 4 132.3 18.4 .00 N/A 4 139.8 19.1 -. 20 5 .0 9.2 .50 .00 5 5.8 8.5 .00 -2.90 5 13.5 .50 -. 90 5 21.6 10.8 .00 -1.40 5 31.6 12.5 -. 20 -. 90 5 38.8 11.4 .00 .90 5 45.4 10.0 -. 80 -2.90 5 52.0 8.4 .60 -1.80 5 57.4 8.0 .30 -3.20 5 63.5 7.3 -4.30 70 -4.30 5 70.8 8.2 -. 60 5 82.3 9.4 -1.00 5 89.0 11.3 .00 5 97.0 12.4 -. 60 5 102.3 14.4 -1.00 -1.20 5 111.2 14.8 .00 6 .0 13.1 .70 -1.20 6 11.1 7.9 -. 50 -5.90 6 18.6 7.9 -. 70 -2.70 6 27.9 7.6 -. 60 -1.40 6 33.4 7.6 2.30 .95 6 40.6 8.1 .00 -1.00 6 54.6 10.7 .30 .00 6 66.4 13.5 2.00 1.10 6 72.8 15.4 .60 .00 6 84.5 18.9 -. 40 -1.50 6 101.2 22.3 .00 .30 6 110.4 20.8 1.10 1.60 6 120.9 27.8 1.40 .00 7 .0 10.6 4.40 27.00 7 7.4 10.8 4.00 38.00 7 16.2 13.0 missing 7 22.1 14.4 1.10 4.00
Appendix Table III. Continued.
1994 1995 Grass Grass Perimeter Radius Expansion Expansion Station ID ID (m)i. . ..*m 7 37.3 8.6 2.50 1.50 7 44.9 9.6 4.50 2.30 7 52.3 10.0 3.00 2.20 7 59.2 11.1 6.00 4.70 7 64.7 10.7 3.00 1.80 7 74.0 9.5 1.50 1.80 7 80.7 11.8 missing; not replaced 7 93.4 14.2 2.30 7 101.0 15.4 .20 .00 7 107.0 1i.9 .00 -1.10 7 116.8 18.4 11.8 .00 4.00 8 .0 14.00 .75 8 5.7 10.9 7.40 2.50 8 10.4 8.8 10.20 .70 8 13.6 N/A 8 22.9 9.9 3.20 -. 45 8 28.3 10.2 4.30 -1.50 8 43.9 9.8 7.20 -. 45 8 48.7 9.2 7.60 -. 60 8 57.6 8.6 8.50 -1.30 8 79.0 11.7 1.30 -1.10 8 86.6 11.9 1.40 s0 25.5 9 11.0 22:.7 .20 9 24.0 1880.0 .50 37.3 15i. 4 .00 9
9 49.6 12.4 found on leaving 9 63.5 13.2 .00 .60 9 78.3 11.8 .60 .60 9 95.1 9.0 1.20 1.70 9 107.1 9.6 2,.30 2.90 9 116.3 12.4 1.30 1.30 9 126.8 14,3 1.10 .90 9 136.9 16.3 .70 .00 9 145 .1 18.1 .80 1.60 9 153.8 20.7 .80 1.80 99 160.4 22.4 1.10 1.10 167.4 24.1 1.00 1.40 10 .0 18.5 .40 .00 10 14.0 15.2 .25 -. 10 10 25.1 12.2 .40 .00 10 36.8 9.0 .80 -2.80 10 48.2 6.3 replaced -1.70 10 63.7 4.0 .10 -5.20 10 75.,8 7.4 .30 10 91.1 11.6 1,.30 101.0 14.1 .00
Appendix Table III. Continued.
1994 1995 Grass Grass Perimeter Radius Expansion Expansion Station ID ID (m) (m) 10 118.8 18.7 .00 10 126.0 20.2 1.20 10 136.7 18.6 2.70 10 149.4 15.1 .70 10 158.0 12.8 .00 10 166.3 10.4 1.80 11 .0 12.8 1.00 .00 11 11.1 11.2 .50 .70 11 21.0 11.1 .40 .00 11 29.6 10.2 .70 -. 40 11 40.6 12.1 .00 -. 95 11 51.1 13.4 .70 -4.50 11 61.0 14.2 .30 -. 25 11 81.0 8.8 70 .50 11 87.6 8.2 .80 .50 11 97.0 8.9 .80 .70 11 104.2 8.8 .50 .80 11 115.0 12.5 .60 .90 12 .0 18.9 .00 .60 12 10.0 19.1 -
12 18.5 20.2 .10 1.10 12 28.1 18.9 .50 .70 12 34.8 17.0 .55 .40 12 42.2 15.9 .40 1.00 12 52.5 14.3 .30 1.10 12 61.6 12.8 .40 .80 12 71.0 12.3 .80 .45 12 76.8 12.4 1.10 .50 12 85.5 12.6 -. 90 3.00 12 92.6 12.6 -1.40 4.00 12 100.6 12.7 -. 70 2.60 12 110.4 11.7 3.10 12 124.3 14.8 .00 13 .0 14.4 .00 .10 13 14.5 13.9 .00 -1.40 13 30.3 12.7 .00 .70 13 48.8 14.7 -1.40 .50 13 56.8 16.9 -4.00 2.10 13 63.9 18.8 -6.00 1.60 13 75.4 17.4 -1.30 1.30 13 80.5 17.9 -1.60 2.20 13 87.0 19.5 -1.50 13 94.9 20.9 2.80 13 105.5 20.6 4.40 13 114.9 23.3 4.60 4.90 13 122.1 24.2 found on leaving 13 127.5 24.9 4.60 8.70
Appendix Table III. Continued.
1994 1995 Grass Grass Perimeter Radius Expansion Expansion Station ID ID (M) -(M 14 .0 17.9 1.00 14 11.9 14.4 .80 1.10 14 22.2 11.3 1.00 i.20 14 31.1 8.9 1.20 1.20 14 41.4 8.6 .80 .80 7.6 -. 40 -1.30 14 50-6 14 59.1 5.0 1.40 1.20 14 69.5 4.2 .90 -. 80 77.9 3.8 .00 .30 14 -. 60 -. 70 14 87.3 6.4 98.1 8. .00 .15 14 .00 14 109.7 10'.4 repl aced 14 119.9 13-. 5 .70 2.70 129.3 161.1 .20 .00 14 1.50 14 139.5 11.3 .70 14 149.2 10.6 .70 1.30 15 .0 19.0 2.70 2.30 15 9.4 17.7 .80 .40 15 19.3 15.3 1.00
.40 .00 15 32.4 11.3 -. 10 15 41.4 9.2 .30 1.30 15 50.3 10.2 2.00
.00 2.00 15 62.0 6.7 1.40 69.8 4.3 .50 15 .10 15 80.2 5.0 .00 15 90 .1 6,2 ,10 3.20 15 102.1 8.7 ,00 1.10 109.4 10.8 .60 1.60 15 15 116.5 12.1 .35 1.40 15 125.0 14.6 .50 .00 15 133.6 17.1 1.30 1.80
Appendix Table IV. Vegetation coverage (percent) in seagrass beds for 1m2 quadrats along bed perimeters and 2 meters inside beds.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Alga Species Cover 1993-12 1 1 I 43 43 0 Haloduli wvrTghtii 43 1993-12 1 2 1 93 93 0 Halodule wrightii 93 1993-12 1 2 P 74 74 0 Halodule wrightii 74 1993-12 1 3 1 85 85 0 Halodule wrightii 85 1993-12 1 3 P 89 89 0 Halodule wrightii 89 1993-12 1 4 1 97 97 0 Halodule wrightii 97 1993-12 1 4 P 79 79 0 Halodule wrightil 79 1993-12 1 5 I 71 71 0 Halodule wrightii 71 1993-12 1 5 P 79 79 0 Halodule wrightii 79 1993-12 1 6 I 96 96 0 Halodule wrightii 96 1993-12 1 6 P 82 82 0 Halodule wrightii 82 1993-12 1 7 I 94 94 0 Halodule wrightii 94 1993-12 1 7 P 87 87 0 Halodule wrightii 87 1993-12 1 8 I 96 96 0 Halodule wrightii 96 1993-12 1 8 P 73 73 0 Halodule wrightii 73 1993-12 1 9 I 90 90 0 Halodule wrightii 90 1993-12 1 9 P 73 73 0 Halodule wrightii 73 1993-12 1 10 I 35 35 0 Halodule wrightii 35 1993-12 1 10 P 80 80 0 Halodule wrightii 80 1994-08 1 1 I 100 100 0 Halodule wrightii 100 1994-08 1 1 P 100 100 0 Halodule wrightii 100 1994-08 1 2 I 100 100 0 Halodule wrightii 100 1994-08 1 2 P 100 100 0 Halodule wrightii 100 1994-08 1 3 I 100 100 0 Halodule wrightii 100 1994-08 1 3 P 100 100 0 Halodule wrightii 100 1994-08 1 4 I 100 100 0 Halodule wrightii 100 1994-08 1 4 P 100 100 0 Halodule wrightii 100 1994-08 1 5 I 100 100 0 Halodule wrightii 100 1994-08 1 5 P 100 100 0 Halodule wrightii 100 1994-08 1 6 I 100 100 0 Halodule wrightii 100 1994-08 1 6 P 100 100 0 Halodule wrightii 100 1994-08 1 7 I 100 100 0 Halodule wrightii 100 1994-08 1 7 P 100 100 0 Halodule wrightii 100 1994-08 1 8 I 100 100 0 Halodule wrightii 100 1994-08 1 8 P i00 100 0 Halodule wrightii 100 1994-08 1 9 I 100 100 0 Halodule wrightii 100 1994-08 1 9 P 100 100 0 Halodule wrightii 100 1994-08 1 10 I 100 100 0 Halodule wrightii 100 1994-08 1 10 P 100 100 0 Halodule wrightii 100 1994-10 1 1 1 54 54 0 Halodule wrightii 54 1994-10 1 1 P 71 71 0 Halodule wrightii 71 1994-10 1 2 I 99 99 0 Halodule wrightil 99 1994-10 1 2 P 100 100 0 Halodule wrightii 100 1994-10 1 3 I 77 77 0 Halodule wrightii 77 1994-10 1 3 P 96 96 0 Halodule wrightii 96 1994-10 1 4 I 97 97 0 Halodule wrightii 97 1994-10 1 4 P 100 100 0 Halodule wrightii 100 1994-10 1 5 I 99 99 0 Halodule wrightii 99 1994-10 1 5 P 99 99 0 Halodule wrightil 99 1994-10 1 6 I 100 100 0 Halodule wrightii 100 1994-10 1 6 P 96 96 0 Halodule wrightii 96 1994-10 1 7 I 100 100 0 Halodule wrightii 100 1994-10 1 7 P 100 100 0 Halodule wrightii 100 1994-10 1 8 I 99 99 0 Halodule wrightii 99 1994-10 1 8 P 99 99 0 Halodule wrightii 99
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Al gae Species Cover 9 I 100 100 Halodule wrightii 100 1994-10 100 100 1994-10 9 P 100 Halodule wrg--htii 10 I 100 100 Haloodule wrightii 100 1994-10 100 1994-10 P 100 Halodule wri'ghtii 100 I 99 l00 99 Halodule wrighti i 99 1995-08 100 1995-08 2 P 100 100 Halodule wrightii I 100 Halodule wrightii 100 1995-08 2 100 100 1995-08 2 P 100 Halodule wrightii I 100 100 Halodule wrightii 100 1995-08 3 100 1995-08 P 1O00 100 Halodule wrightii 4 I 100 100 Halodule wrightii 100 1995-08 100 1995-08 4 P 1O00 100 Halodule wrightii 1O00 100 Halodule wrightii 100 1995-08 5 100 1995-08 5 P 1O00 100 Halodule wrightii I O00 100 100 Halodule wrightii 100 1995-08 6 100 1995-08 6 P 1O00 I00 100 Halodule wrightii I 100 Halodule wrightii 100 1995-08 7 100 100 1995-08 7 P 100 100 Halodule wrightil I 170 100 Hal odul e, wri ghti i 100 1995-08 8 100 1995-08 8 P 100 Hal odul e wri ghti i IP 97 100 97 .Halodule wrightii 97 1995-08 9 100 1995-08 9 P 100 Halodule wrightii I 97 97 Halodule wrightii 97 1995-08 10 100 100 1995-08 10 P 100, Hal odul e wrighti i I 17 Halodule wrightii 17 1995-10 1 65 65 1995-10 P 100 65 Halodule wrightii 2 I 100 Halodule wrightii 100 1995-10 P 100 100 1995-10 2 100 Hal odul e wri ghti i I 99 99 Halodule wrightii 99 1995-10 3 98 98 3 p 98 Halodule wrightii 1995-10 I 98 98 1995-10 4 098 98 Halodule wrightii P 98 Halodule wrightii 98 1995-10 4 100 100 5 I 85 100 Halodule wrightii 1995-10 P 99 Hal odul e wri ghti i 99 1995-10 .5 18 99 I 18 Halodule wrightii 18 1995-10 6 20 20 6 P 20 Halodule wrightii 1995-10 I 82 Halodule wrightii 82 1995-10 7 60 82 60 7 P 60 Halodule wrightii 1995-10 75 75 8 I 75 Halodule wrightii 1995-10 P 85 Halodule wrightii 85 1995-10 8 78: 78 I 78 Hal odule wrightii 1995-10 9 P 72 Halodul e wrighti i 72 1995-10 9 72 98 I 98 98i Halodule wrightili 1995-10 10 87 87 p
96 87 Halodule wrightii 1995-10 10 I Halodule wrightii 96 1993-12 1 94 96 94 P 98 94 Halodule wrightii 1993-12 1 I Halodule wrightii 98 1993-12 2 80 98 80 P 80 Halodule wrightii 1993-12 2 I 98 Halodule wrightii 98 1993-12 3 95 98 .95 P 95 Halodule wrightii 1993-12 3 I 98 Halodule wrightii 98 1993-12 4 100 98 100 P 100 Halodule wrightii 1993-12 4 I 100 100 Halodule wrightii 100 1993-12 5 P 100 Halodule wrightii 100 1993-12 5 97 100 I 97 Halodule wrightii 97 1993-12 6 87 Halodule wrightii 87 1993-12 .6 87
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Lgae Species Cover 7 95 95 0 Halodule wri~qhtii 95 1993-12 93 7 93 93 0 Halodule wHightii 1993-12 96 1993-12 8 96 96 0 Halodule wrightii 8 82 82 0 Halodule wrightii 82 1993-12 Halodule wrightii 92 1993-12 9 92 92 0 9 83 83 0 Halodule wrightii 83 1993-12 94 1993-12 10 94 94 0 Halodule wrightii 10 57 57 0 Halodule wrightii 57 1993-12 1 92 1994-08 92 92 0' Halodule wrightii 1 94 94 0 Halodule wrightii 94 1994-08 100 1994-08 2 100 100 0 Halodule wrightii 2 100 100 0 Halodul e wrighti i 100 1994-08 100 1994-08 3 100 100 0 Halodule wrightii 3 100 100 0 Halodule wrightii 100 1994-08 100 1994-08 4 100 100 0 Halodule wrightii 4 100 100 0 Halodule wrightii 100 1994-08 100 1994-08 5 100 100 0 Halodule wrightii 5 100 100 0 Halodule wrightii 100 1994-08 100 6 100 100 0 Halodule wrightii 1994-08 100 6 100 100 0 Halodule wrightif 1994-08 100 1994-08 7 100 100 0 Halodule wrightii 7 100 100 0 Halodule wrightii 100 1994-08 Halodule wrightii 100 1994-08 8 100 100 0 100 100 0 Halodule wrightii 100 1994-08 8 99 1994-08 9 99 99 '0 Halodule wrightii 9 100 100 0 Halodule wrightii 100 1994-08 98 1994-08 10 98 98 0 Hal odul e wri ghti i 96 96 0 Halodule wrightii 96 1994-08 10 93 1 93 93 0 Halodule wrightii 1994-10 0 Halodule wrightii 85 1994-10 1 85 85 96 96 0 Halodule wrightii 96 1994-10 2 93 1994-10 2 93 93 0 Halodule wrightil 92 92 0 Halodule wrightii 92 1994-10 3 92 1994-10 3 92 92 0 Halodule wrightil 100 100 0 Halodule wrightii 100 1994-10 4 98 4 98 98 0 Hal odul e wri ghti i 1994-10 100 5 100 100 0 Hal odul e wri ghti i 1994-10 96 5 96 96 0 Halodule wrightii 1994-10 99 1994-10 6 99 99 0 Halodule wrightii 65 65 0 Halodule wrightil 65 1994-10 6 99 7 99 99 0 Halodule wrightil 1994-10 0 Halodule wri ghtiJ 81 1994-10 7 81 81 8 100 100 0 Halodule wrightii 100 1994-10 8 0 Halodule wrightii 50 1994-10 50 50 97 0 Halodule wrightii 97 1994-10 9 97 87 1994-10 87 87 0 Halodule wrightil 0 Hal odul e wri ghti i 95 1994-10 10 95 95 68 10 68 68 Halodule wrighti1 1994-10 0 Halodule wrightii 97 1995-08 1 97 97 0 100 Halodule wrightii 100 1995-08 1 100 0 99 2 99 99 Halodule wrlghtii 1995-08 0 Halodule wrightii 100 1995-08 2 100 100 0 100 100 Hal odul e. wri ghti i 100 1995-08 3 100 3 100 100 0 Halodule wrightii 1995-08 Halodule wrightii 100 1995-08 4 100 100 0 1995-08 4 91 91 Halodule wrightii 91
Appendix, Table IV. Continued.
Perimeter(l Interior Total Total Total Date Station ReD. (P/I) Vegetation Seaqrass Algae Species Cover 1994-08 15 2 88 88 0 Halodule wriightii 88 1994-08 15 3 93 93 0 Halodule wrtghtii 93 1994-08 15 3 78 78 0 Halodule wrightii 78 1994-08 15 4 100 100 0 Halodule wrightii 100 1994-08 15 4 71 71 0 Halodule wrightii 71 1994-08 15 5 100 100 0 Halodule wrightii 100 1994-08 115 5 80 80 0 Halodule wrightii 80 1994-08 15 6 99 99 3 Halimeda incrassata 3 1994-08 15 6 99 99 3 Halodule wrightii 99 1994-08 15 6 99 99 3 Caulerpa proli fera 3 1994-08 15 6 99 99 3 Halodule wrightii 99 1994-08 15 7 99 99 2 Hal imeda i ncrassata 2 1994-08 15 7 99 99 2 Halodule wrightii 99 1994-08 15 7 98 98 0 Halodule wrightii 98 1994-08 15 8 100 100 0 Halodule wrightii 100 1994-08 15 8 99 99 0 Halodule wrightii 99 1994-08 15 9 100 100 0 Halodule wrightii 100 1994-08 15 9 56 56 0 Halodule wrightii 56 1994-08 15 10 100 100 0 Halodule wrightii 100 1994-08 15 I0 98 98 0 Halodule wrightii 98 15 87 87 Thal assia testudinum 87 1994-10 1 0 1994-10 15 87 87 0 Thal assi a testudinum 87 1994-10 15 2 84 84 0 Thal assi a testudi num 84 1994-10 15 2 91 91 0 Thalassia testudinum 91 1994-10 15 3 97 97 0 Halodule wrightii 97 1994-10 15 3 86 86 0 Halodule wrightii 86 1994-10 15 4 86 86 0 Halodule wrightii 86 1994-10 15 4 96 96 1 Halodule wrightii 96 1994-10 15 4 96 96 Udotea congl uti nata 1 1994-10 15 5 100 100 0 Halodule wrightii 100 1994-10 15 5 100 100 0 Halodule wrightii 100 1994-10 15 6 100 100 0 Halodule wrightii 100 1994-10 15 6 100. 100 0 Hal ophi 1a engl'emanni i 4 1994-10 15 6 91. 91 0 Halodule wrightii 83 1994-10 15 6 91 91 Halophi la engleemanni i 11 1994-10 15 7 100 96 22 Halimeda incrassata 22 1994-10 15 7 100 96 22 Halodule wrightii 96 1994-10 15 7 94 94 70 Halimeda incrassata 70 1994-10 15 7 94 94 70 Halodule wrightii 94 1994-10 15 8 100 65 98 Hal imeda incrassata 98 1994-10 15 8 100 65 98 Halodule wrightii 65 1994-10 15 96 76 78 Halimeda incrassata 76 96 78 Halodule wrightii 76 1994-10 15 76 96 76 78 Udotea conglutinata 2 1994-10 15 8 100 1994-10 i5 100 3 Halimeda incrassata 3 1994-10 15 9 100 100 3 Halodule wrightii 100 9 19 i994-10 15 9 100 95 23 Caulerpa prolifera 100 95 Hal imeda incrassata 2 1994-10 15 9 23 1994-10 15 100 95 23 Halodule wrightii 95 9 2 1994-10 15 100 95 23 Udotea congl utinata 1994-10 15 10 97 97 0 Halodule wrightii 97 15 10 3 1994-10 10 97 95 3 Caulerpa prolifera 1994-10 15 97 95 3 Halodule wrightii 95 1 58 1995-08 15 1 58 58 0 Halodule wrightii 1995-08 15 92 92 0 Halodule wrightii 92 1995-08 15 2 95. 95 0 Halodule wrightii 95
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Alqae Species Cover 1995-08 15 2 P 86 86 0 Halodule wrightii 86 1995-08 15 3 1 94 94 0 Halodule writhtii 94 1995-08 15 3 P 95 95 0 Halodule wrightii 95 1995-08 15 4 I 100 100 0 Halodule wrightii 100 1995-08 15 4 P 94 94 0 Halodule wrightii 94 1995-08 15 5 I 95 95 0 Halodule wrightii 95 1995-08 15 5 P 94 94 0 Halodule wrightii 94 1995-08 15 6 I 0 0 0 Bare 0 1995-08 15 6 P 21 21 0 Halodule wrightii 21 1995-08 15 7 I 100 100 0 Halodule wrightii 100 1995-08 15 7 P 75 75 0 Halodule wrightii 75 1995-08 15 8 I 100 100 0 Halodule wrightii 100 1995-08 15 8 P 94 94 0 Halodule wrightii 94 1995-08 15 9 I 97 97 0 Halodule wrightii 97 1995-08 15 9 P 98 98 0 Halodule wrightli 98 1995-08 15 10 I 100 100 0 Halodule wrightii 100 1995-08 15 10 P 98 98 0 Halodule wrightii 98 1995-10 15 1 I 42 42 0 Thalassia testudinum 42 1995-10 15 1 P 70 70 0 Thalassia testudinum 70 1995-10 15 2 I 88 88 0 Thalassia testudinum 88 1995-10 15 2 P 90 90 0 Thalassia testudinum 90 1995-10 15 3 I 100 100 0 Halodule wrightii 100 1995-10 15 3 I 100 100 0 Thalassia testudinum 4 1995-10 15 3 P 85 85 0 Halodule wrightii 10 1995-10 15 3 P 85 85 0 Thalassia testudinum 85 1995-10 15 4 I 100 100 0 Halodule wrightii 100 1995-10 15 4 P 100 100 0 Halodule wrightii 100 1995-10 15 5 1 99 99 0 Halodule wrightii 99 1995-10 15 5 P 99 99 0 Halodule wrightii 99 1995-10 15 6 I 98 98 0 Halodule wrightii 98 1995-10 15 6 P 80 80 0 Halodule wrightii 80 1995-10 15 7 I 25 25 0 Halodule wrightil 25 1995-10 15 7 P 93 93 0 Halodule wrightii 93 1995-10 15 8 I 20 20 0 Halodule wrightii 20 1995-10 15 8 P 88 88 0 Halodule wrightii 88 1995-10 15 9 I 0 0 0 Bare 0 1995-10 15 9 P 68 68 0 Halodule wrightii 68 1995-10 15 10 I 98 98 0 Halodule wrightii 98 1995-10 15 10 P 77 77 0 Halodule wrightii 77
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Alqae Species Cover 1995-08 5 88 88 Hal odul e wri ghti i 88 1995-08 5 97 97 Halodule wrý-fghtii 97 1995-08 6 85 85 Halodule wrightii 85 1995-08 6 83 83 Halodule wrightii 83 1995-08 7 5 95 Halodule wrightii 95 1995-08 7 93 93 Halodule wrightii 93 1995-08 8 90 90 Halodule wrightii 90 1995-08 8 65 65 Halodule wrightii 65 1995-08 9 98 98 Hal odul e wrighti i 98 1995-08 9 75 75 Halodul e wri ghti i 75 1995-08 10 97 97 Halodule wrightii 97 1995-08 10 89 89 Halodule wrightii 89 1 35 35 Halodule wrightii 35 1995-10 1 1995-10 48 48 Halodule wrightii 48 1995-10 2 75 75 Halodule wrightii 75 2 8 8 Halodule wrightil 8 1995-10 1995-10 3 22 22 Halodule wrightii 22 1995-10 3 82 82 Halodule wrightii 82 1995-10 4 55 55 Hal'odule wrightii 55 1995-10 4 62 62 Halodulie wrightii 62 1995-10 5 80 80 Halodule wrightii 80 1995-10 5 49 49 Halodule wrightii 49 1995-10 6 2 2 Halodule wrightii 2 1995-10 6 2 2 Halodule wrightii 2 1995-10 7 97 97 Halodule wrightii 97 1995-10 7 99 99 Halodule wrightii 99 1995-10 8 45 45 Halodule wrightii 45 1995-10 8 65 65 Halodule wrightii 65 1995-10 9 45 45 Halodule wrightii 45 1995-10 9 15 15 Halodule wrightii 15 1995-10 10 15 15 Halodule wrightii 15 1995-10 10 10 10 Halodule wrightii 10 1993-12 1 88 88 Halodule wrightii 88 1993-12 1 70 70 Halodule wrightii 70 1993- 12 2 .87 87 Halodule wrightii 87 1993-12 2 84 84 Halodule wrightii 84 1993-12 3 100 100 Halodule wrightii 100
- 92. 92 Halodule wrightii 92 1993-12 3 100 1993-12 4 100 100 Halodule wrightii 94 94 Halodule wrightii 94 1993-12 4 98 1993-12 5 98 98 Halodule wrightii 64 64 Halodule wrightiii 64 1993-12 5 81 1993-12 6 81 81 Halodule wrightii 84 84 Hal odul e wri ghti i 84 1993-12 6 91 1993-12 7 91 91 Halodule wrightii 98 98 Halodule wrightii 98 1993-12 7 100 1993-12 8 100 100 Halodule wrightii 46 46 Halodule wri ghtii 46 1993-12 8 100 1993-12 9 100 I00 Halodule wrightii 93 93 Hal odul e wri ghti i 93 1993-12 9 92 1993-12 10 92 92 Halodule wrightii 76 76 Halodule wrightii 76 1993-12 10 30 1994-08 1 30 30 Halodule wrightii 46 46 Halodule wrightii 46 1994-08 1 25 1994-08 2 25 25 Hal odul e wri ghti i 2 15 15 Halodule wrightii 15 1994-08
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station ReD. (P/I) Veqetation Seaqrass Algqae Species Cover 1994-08 3 81 81 Hal odul e wrighti i 81 1994-08 3 64 64 Hal odul e wrTihti i 64 1994-08 4 36 36 Halodule wrightii 36 1994-08 4 28 28 Halodule wrightii 28 1994-08 5 30 30 Halodule wrightii 30 1994-08 5 54 54 Halodul e wri ghtii 54 1994-08 6 15 15 Halodule wrightii 15 1994-08 6 0 0 Halodule wrightil 0 1994-08 7 15 15 Halodule wrightii 15 1994-08 7 80 80 Halodule wrighti i 80 1994-08 8 90 90 Halodule wrightii 90 1994-08 8 65 65 Halodule wrightii 65 1994-08 9 20 20 Halodule wrightii 20 1994-08 9 42 42 Halodul e wri ghti i 42 1994-08 10 27 27 Halodule wrightii 27 1994-08 10 26 26 Halodule wrightii 26 1994-10 1 26 26 Halodule wrightii 26 1994-10 1 22 22 Halodule wrightii 22 1994-10 2 8 8 Halodule wrightii 8 1994-10 2 6 6 Halodule wrightii 6 1994-10 3 6 6 Halodule wrightii 6 1994-10 3 91 91 Halodul e wri ghti i 91 1994-10 4 12 12 Halodule wrightii 12 1994-10 4 72 72 Halodule wrightii 72 1994-10 5 16 16 Halodule wrightii 16 1994-10 5 17 17 Halodule wrightii 17 1994-10 6 55 55 Halodule wrightii 55 1994-10 6 46 46 Halodule wrightii 46 1994-10 7 96 96 Halodule wrightii 96 1994,10 7 28 28 Halodule wrightii 28 1994-10 8 74 74 Halodule wrightii 74 1994-10 8 4 4 Halodule wrightii 4 1994-10 9 86 86 Halodule wrightii 86 1994-10 9 0 0 Bare 0 1994-10 10 74 74 Halodule wrightii 74 1994-10 10 61 61 Halodule wrightii 61 1995-08 1 45 45 Halodule wrightii 45 1995-08 1 51 51 Halodule wrightii 51 1995-08 2 0 0 Bare 0 1995-08 2 3 3 Halodule wrightii 3 1995-08 3 2 2 Halodule wrightii 2 1995-08 3 26 26 Halodule wrightii 26 1995-08 4 21 21 Halodule wrightii 21 1995-08 4 0 0 Halodule wrightii 0 1995-08 5 13 13 Halodule wrightii 13 1995-08 5 26 26 Halodule wrightii 26 1995-08 6 95 95 Halodule wrightii 95 1995-08 6 4 4 Halodule wrightii 4 1995-08 7 7 7 Halodule wrightii 7 1995-08 7 0 0 Bare 0 1995-08 8 1 1 Halodule wrightii 1 1995-08 8 0 0 Bare 0 1995-08 9 0 0 Bare 0 1995-08 9 1 1 Halodule wrightii 1 11 11 1995-08 10 11 Halodule wrightii 0 0 0 Bare 1995-08 10
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station ReD. (P/I) Vegetation Seacrass Al gae Species Cover 1995-10 3 1 I 0 0 Bare 0 1995-10 3 1 P 2 2 Halodull wrTghtii 2 1995-10 3 2 I 2 2 Halodule wrightii 2 1995-10 3 2 P 0 Halodule wrightil 0 5 5 Halodule wrighti1 5 1995-10 3 3 I 3 3 1 Halodule wrightii 1 1995-10 Halodule wrighti i 1995-10 3 4 93 93 Halodu-e wrightii 93 4 'p 82 82 82 1995-10 3 Halodule wrightii i995-10 3 5 100 100 Halodule wrightii 100 1995-10 3 5 P 94 94 Halodule wrightii 94 1995-10 3 6 P 13 13 Hal odul e wrightil 13 3 6 I 29 29 wrightii 29 1995-10 Halodule 1995-10 3 7 PI 4 4 Halodule wrightii 4 3 7 PI 2 2 wrightil 2 1995-10 Halodule 1995-10 3 8 I 100 100 Halodule wrightil 100 1995-10 3 8 P 100 100 Halodule wrightii 100 1995-10 3 9 I 99 99 Halodule wrightii 99 1995-10 3 9 P 98 98 Halodule wrightii 98 1995-10 3 10 I 100 100 100 1995-10 3 10 P 0 0 Bare 0 1993-12 4 1 I 84 84 Syringodium fil i forme 84 1993-12 4 1 P 92 92 Syringodiuum filiforme 92 1993-12 4 2 I 74 74 Syri ngodi um fi *i forme 74 1993-12 4 2 P 71 71 Syri ngodium fil i forme 71 1993-12 4 3 I 71 71 Syri ngodi um fi Ii forme 71 1993-12 4 3 P 68 68 Syringodi um fil iforme 68 1993-12 4 4 I 87: 87 Syri ngodi um fil iforme 87 1993-12 4 4 66 66 Halophila engleemannii 1 1993-12 4 4 66 66 Syri ngodi um fi Ii forme 65 1993-12 4 5 94 94 Syringodiuum fi-liforme 94 1993-12 4 5 P 73 73 Syringodium filiforme 73 1993-12 4 6 I 96 96 Syringodiuum filiforme 96 1993-12 4 6 I 78 78 Syringodium fili forme 78 1993-12 4 7 p 89 87 Caul erpa prol i fera 2 1993-12 4 7 89 87 Syri ngodi um fi I i forme 87 4 I 70 70 Syringodiuum filiforme 70 1993-12 7 5 1993-12 4 8 PI 95 95 Caul erpa prol i fera 1993-12 4 8 95 95 Syringodiuum filiforme 90 4 8 I 89 89 Syringodinum fi I i forme 89 1993-12 P 4 83 83 Syringodiuum fil iforme 83 1993-12 9 I 90 1993-12 4 9 90 90 Syringodiuum filiforme 4 p 100 100 Syringodium fili forme 100 1994-08 1 I 98 1994-08 '4 98 98 Syringodium fili forme 4 2 P 94 94 Syri ngodi um fil iforme 94 1994-08 73 1994-08 4 2 I 73 73 Syringodiuum fi i forme 4 3 58 58 Syri ngodi um fil iforme 58 1994-08 I 91 1994-08 4 3 91 91 Syringodium fili forme 4 4 P 83 83 Syringodiuum fil iforme 83 1994408 I 70 1994-08 4 4 70 70 Syringodiuum fil iforme 5 P 58 58 Syri ngodi um fil iforme 58 1994-08 4 48 5 I 48 48 Syringodium fil i-forme 1994-08 4 P 84 1994-08 4 6 84 84 Syringodium filiforme I 76 76 Syringodiuum filiforme 76 1994-08 4 6 95 7 p 95 95 Syringodium fil iforme 1994-08 4 I 76 1994-08 4 7 76 76 Syringodium fil iforme 8 18 18 Syri ngodi um fil iforme 18 1994-08 4
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-08 4 8 P 80 80 0 Halophila englemannii 1 1994-08 4 8 P 80 80 0 Syringodium'Tiliforme 80 1994-08 4 9 I 91 91 0 Syringodium filiforme 91 1994-08 4 9 P 96 96 0 Syringodium filiforme 96 1994-08 4 10 1 44 44 0 Syringodium filiforme 44 1994-08 4 10 P 21 21 0 Syringodium filiforme 21 1994-10 4 1 I 99 99 0 Syringodium filiforme 99 1994-10 4 1 P 92 92 8 Halimeda incrassata 3 1994-10 4 1 P 92 92 8 Syringodium filiforme 92 1994-10 4 1 P 92 92 8 Udotea conglutinata 5 1994-10 4 2 I 83 83 9 Halimeda incrassata 3 1994-10 4 2 I 83 83 9 Halophila englemannii 6 1994-10 4 2 I 83 83 9 Syringodium filiforme 83 1994-10 4 2 P 78 78 0 Syringodium filiforme 78 1994-10 4 3 I 87 87 0 Syringodium filiforme 87 1994-10 4 3 P 75 75 0 Syringodium filiforme 75 1994-10 4 4 1 88 88 3 Halimeda incrassata 3 1994-10 4 4 1 88 88 3 Syringodium filiforme 88 1994-10 4 4 P 91 89 2 Caulerpa prolifera 2 1994-10 4 4 P 91 89 2 Syringodium filiforme 89 1994-10 4 ý5 I 2 2 0 Syringodium filiforme 2 1994-10 4 5 P 57 57 0 Syringodium filiforme 57 1994-10 4 6 I 22 22 0 Syringodium filiforme 22 1994-10 4 6 P 13 13 0 Syringodium filiforme 13 1994-10 4 7 I 79 78 1 Caulerpa prolifera 1 1994-10 4 7 I 79 78 1 Syringodium filiforme 78 1994-10 4 7 P 89 89 2 Caulerpa prolifera 2 1994-10 4 7 P 89 89 2 Syringodium filiforme 89 1994-10 4 8 I 88 88 0 Syringodium filiforme 88 1994-10 4 8 P 100 100 14 Caulerpa prolifera 8 1994-10 4 8 P 100 100 14 Penicillus sp. 2 1994-10 4 8 P 100 100 14 Syringodium filiforme 4 1994-10 4 8 P 100 100 14 Syringodium filiforme 100 1994-10 4 9 1 30 30 0 Syringodium filiforme 30 1994-10 4 9 P 80 80 0 Syringodium filiforme 80 1994-10 4 10 I 94 94 0 SYringodium filiforme 94 1994-10 4 10 P 92 92 2 Caulerpa prolifera 1 1994-10 4 10 P 92 92 2 Halimeda incrassata 1 1994-10 4 10 P 92 92 2 Syringodium filiforme 92 1995-08 4 1 I 97 97 0 Syringodium filiforme 97 1995-08 4 1 P 98 98 0 Syringodium filiforme 98 1995-08 4 2 I 93 93 0 Syringodiuum fi 1 i forme 93 1995-08 4 2 P 96 96 0 Syringodiuum filiforme 96 1995-08 4 3 1 98 98 0 Syringodium filiforme 98 1995-08 4 3 P 83 83 0 Syringodium filiforme 83 1995-08 4 4 I 100 100 0 Syringodiumn filiforme 100 1995-08 4 4 P 98 98 0 Syringodium filiforme 98 1995-08 4 5 I 100 100 0 Syringodium filiforme 100 1995-08 4 5 P 97 97 0 Syringodium filiforme 97 1995-08 4 6 I 100 100 0 Syringodium filiforme 100 1995-08 4 6 P 97 97 0 Syringodium filiforme 97 1995-08 4 7 I 98 98 0 Syringodium filiforme 98 1995-08 4 7 P 100 100 0 Syringodium filiforme 100 1995-08 4 8 1 96 96 0 Syringodium filiforme 96 1995-08 4 8 P 97 97 0 Syringodinum fi1iforme 97 1995-08 4 9 I 99 99 1 Caulerpa prolifera 1
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagr-ass Algae Species Cover 1995-08 4 9 99 99 Halodule wrightii 1 1995-08 4 9 99 99 Syri ngodi u"-fli I iforme 99 1995-08 4 9 96 96 Syri ngodi um fi 1i forme 96 1995-08 4 10 98 98 Syringodiuum fil iforme 98 1995-08 4 10 86 86 Syri ngodi um fili forme 86 1993-12 5 1 40 40 Halodule wrightii 40 1993-12 5 1 92 92 Halodule wrightii 92 1993-12 5 2 96 96 Halodul e wri ghti i 96 A1993-12 5 2 93' '93 Halodule wright*i 93 19 3-12 5 3 91 91 Halodule wrightii 91 1993-12 5 3' 93: 93 Halodule wrightii 93 1993-12 5 4 93 93 Halodule wrightil 93 1993-12 5 4 83 83 Halodule wrighti i 83 1993-12 5 5 84 84 Halodule wrightil 84 1993-12 5 5 88 88 Halodule wrightii 88 1993-12 5 6 77 77 Hal odul e wri ghti i 77 1993-12 5 6 89 89 Halodule wrightii 89 1993-12 5 7 80 80 Halodule wrightii 80 1993-12 5 7 88 88 Halodule wrightii 88 1993-12 5 8 79 79 Halodule wrightii 79 1993-12 5 8 100 100 Halodule wrightii 100 1993-12 5 9 96 96 Halodule wrightii 96 1993-12 5 9 88 88 Halodule wrightii 88 1993-12 10 96 96 Halodule wrightii 96 5 90 1993-12 5 10 90 90 Halodule wrightii 1994-08 1 50 50 Halodule wrightii 50 5 56, 56 1994-08 5 1 56 Halodule wrightii 1994-08 2 65 65 Halodule wrightii 65 5 53 1994-08 5 2 53. 53 Halodule wrightii 3 18 Halodule wrightii 18 1994-08 5 3 1994-08 5 3 71 71 Caulerpa prolifera
,3 18,
.71 71 Halodule wrightii 71 1994-08 5 9 1994-08 5 4 98 9 Halodule wrightii 4 48 48 Halodule wrightii 48 1994-08 5 16 1994-08 5 5 16 16 Halodule wrightii 5 37 37 Hal odul e wri ghtii 37 1994-08 5 74 1994-08 5 6 74 74 Halodule wrightii 6 50 50 Halodule wrightii 50 1994-08 5 98 1994-08 5 7 98 98 Hal odul e wri ghtii 7 85 85 Halodule wrightii 85 1994-08 5 85 85 1994-08 5 8 85 Halodule wrightii 8 74 74 Halodule wrightii 74 1994o08 5 4 1994-08 9 4 4 Halodule wrightii 9 55 55 Halodule wrightii 55 1994-08 78 78 1994-08 5 10 78 Halodule wrightii 10 57 57 Halodule wrightii 57 1994-08 5 24 24 1994-10 1 24 Halodule wrightii 5 1 46 46 1994-10 5 46 Halodule wrightii 2 29 Halodule wrightii 29 1994-10 5 52 1994-10 2 52 52 Halodule wrightii 5 60 1994-10 3 60 60 Halodule wrightii 5 14 1994-10 3 14 14 Halodule wrighti i 55 51 Halodule wri ghti i 51 1994-10 4 51 5 15 15 Halodule wrightii 15 1994-10 4 53 1994-10 5 53 53 Halodule wrightii 5 22 1994-10 5 22 22 Halodule wrightii.
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Speci es Cover 1994-10 6 6 5 Halodule wrightii 5 1994-10 6 6 5 Halophila englemannii 1 1994-10 6 73 73 Halodule wrightii 73 1994-10 7 19 19 Halodule wrightii 19 1994-10 7 13 13 Halodule wrightii 13 1994-10 8 15 15 Halodule wrightii 15 1994-10 8 8 8 Halodule wrightii 8 1994-10 9 84 84 Halodule wrightii 84 1994-10 9 12 12 Halodule wrightii 12 1994-10 10 86 86 Halodule wrightii 86 1994-10 10 6 6 Halodule wrightii 6 1995-08 5 5 Halodule wrightii 5 1995- 08 60 60 Halodule wrightii 60 1995-08 2 0 0 Bare 0 1995-08 2 16 16 Halodule wrightii 16 1995-08 3 17 16 Caulerpa mexicana 1 1995-08 3 17 16 Halodul e wrighti.i 16 1995-08 3 2 1 Caulerpa prolifera 1 1995-08 3 2 1 Halodule wrightii 1 1995-08 4 7 7 Halodule wrightii 7 1995-08 4 6 6 Halodule wrightii 6 1995-08 5 3 3 Halodule wrightii 3 1995-08 5 1 1 Halodule wrightii 1 1995-08 6 5 Halodule wrightii 5 1995-08 6 0. 0 Bare 0 1995-08 7 14 14 Halodule wrightii 14 1995-08 7 3 3 Halodule wrightii 3 1995-08 8 5 5 Halodule wrightii 5 1995-08 8 0 0 Bare 0 1995-08 9 4 4 Halodule wrightii 4 1995-08 9 0 0 Bare 0 1995-08 10 3 3 Halodule wrightii 3 1995-08 10 0 0 Bare 0 1995-10 1 1 1 Halodule wrightii 1 I
1995-10 1 3 3 Halodule wrightii 3 1995-10 2 13 13 Hal odule wrightii 13 1995-10 2 0 0 Bare 0 1995-10 3 0 0 Bare 1995-10 3 1 1 Halodule wrightii 0 1995-10 4 0 0 Bare 1995-10 4 2 2 Halodule wrightii 2 1995-10 5 3 3 Halodule wrightii 3 1995-10 5 1 1 Halodule wrightii 1 1995-10 6 0 0 Bare 0 1995-10 6 10 10 Halodule wrightii 10 1995-10 7 4 4 Halodule wrightii 4 1995-10 7 4 4 Halodule wrightii 4 1995-10 8 29 29 Halodule wrightii 29 1995-10 8 3 3 Halodule wrightii 3 1995-10 9 1 1 Halodule wrightii 1 1995-10 9 5 5 Halodule wrightii 5 1995-10 10 6 6 Halodule wrightii 6 1995-10 10 2 2 Halodule wrightii 2 1993-12 1 100 100 Halodule wrightii 100 1993-12 1 100 100 Halodule wrightii 100 1993-12 2 97 97 Halodule wrightii 59
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station R (P/1) Vegetation Seaqrass Algae Speci es Cover 1993-12 I 97 97 Hal ophi 1a engl emanni i 38 1993-12 P 75 75 Halodule wrightii 75 1993-12 99 99 Halodule wrightii 99 1993-12 PI1 99 99 Hal ophi a.engl emanni i 1 1993-12 P 83 83 Halodule wrightii 83 1993-12 P 83 83 Halophil a englemannii 10 1993-12 I 100 100 Halodule wrightii 100 1993-12 P 94 94 Halodule wrightii 92 P 94 94 Hal ophi 1a engl emannii 2 1993-12 P 1993-12 I 99 99 Halodule wrighti i 99 90 90 Halodule wrightii 90 1993-12 99 1993-12 I 99 99 Halodule wrightii 1993-12 P 98 98 Halodule wrightii 97 P
P 98 98 Halophila englemannii 1 1993-12 99 1993-12 I 99, 99 Halodule wrightii 1993-12 P 94 94 Halodule wrighti i 94 1993-12 I 99 99 Halodule wrightii 99 1993-12 98 98 Halodule wrightii 98 1993-12 I 98 98 Halodule wrightii 98 1993-12 P 93 93 Halodule wrightii 93 P 93 93 Hal ophi 1a engl emanni i 15 1993-12 85 1994-08 I 85 85 Halodule wrightii 1994-08 Ip 85 85 Hal ophi 1a engl emanni i 4 P 66 1994-08 P 66 66 Halodule wrightii P 66 66 Halophi la engl emanni i 3 1994-08 81 1994-08 I 81 81 Halodule wrightii I 81 81 Hal ophi la engl emanni i 1 1994-08 63 1994-08 P 63 63 Halodule wrightii P 63 63 Halophila englemannii 1 1994-08 97 1994-08 I 97 97 Hal odule wrightii P 93 93 Halodule wrightii 93 1994-08 7 1994-08 P 93 93 Halophil a englemanni i I 92 92 Hal odule wrightii 92 1994-08 6 1994-08 I 92 92 Halophila engl emannii P 92 92 Halodule wrightii 92 1994-08 P 5 1994-08 92 92 Hal ophi 1a engl emanni i I 91 91 Halodule wrightii 91 1994-08 I 1 1994-08 91 91 Halophila engleemannii p 84 84 Halodule wrightii 84 1994-08 84 6 1994-08 P 84 Halophi 1a englemanni i I 99 99 Halodule wrightii 99 1994-08 P 92 1994-08 92 92 Halodule wrightii I 95 95 Halodule wrightii 95 1994-08 I 5 1994-08 95 95 Halophila englemannii P 94 94 Halodule wrightii 94 1994-08 3 1994-08 P 94 94 Halophila engl emannii I 100 100 Halodule wrightii 100 1994-08 P 98 1994-08 98 98 Halodule wrightii I 90 90 Halodule wrightii 90 1994-10 6 1994-10 I 90 90 Hal ophi 1a engl emanni i P 65 65 Halodule wrightii 65 19.94-10 P Halophila engleemannii 8 1994-10 65 65 I 97 97 Halodule wrightii 97 1994-10 I Halophila englemannii 1 1994-10 97 97 86 86 Hal odul e wri ghti i 86 1994-10 p 4 1994-10 86 86 Halophil a engleemannii
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1994-10 3 100 100 0 Halodul e wri ghti i 100 1994-10 3 100 100 0 Hal ophi 1a engl emanni i 16 1994-10 3 94 94 0 Halodule wri ghtii 94 1994-10 4 100 100 0 Halodule wrightii 100 1994-10 4 100 100 0 Halophil a engleemannii 4 1994-10 4 100 100 0 Halodule wrightii 100 1994-10 5 81 81 0 Halodule wrightii 81 1994-10 5 67 67 0 Halodule wrightii 53 1994-10 5 67 67 0 Hal ophi la engl emannii 16 1994-10 6 97 97 0 Halodule wrightii 97 1994-10 6 71 71 0 Halodule wrighti i 66 1994-10 6 71 71 Hal ophi la englemanni i 8 0
1994-10 7 98 98 0 Halodule wrightii 98 1994-10 7 68 68 0 Halodule wrightii 55 1994-10 7 68 68 0 Halophil a engleemannii 28 1994-10 8 68 68 0 Halodule wrightii 62 1994-10 8 68 68 0 Hal ophi 1a engl emanni i 21 1994-10 8 87 87 0 Halodule wrightii 87 1994-10 8 87 87 0 Halophila engleemannii 7 1994-10 9 99 99 0 Halodule wrightii 99 1994-10 9 70 70 0 Halodule wrightii 70 1994-10 9 70 70 0 Halophil a englemannii 11 1994-10 10 100 100 0 Halodule wrightii 100 1994-10 10 43 43 0 Halodule wrightii 43 1995-08 1 100 100 0 Halodule wrightii 100 1995-08 1 98 98 0 Halodule wrightii 98 1995-08 2 100 100 0 Halodule wrightii 100 1995-08 2 85 85 0 Halodule wrightii 82 1995-08 2 85 85 0 Halophila engleemannii 15 1995-08 3 91 91 0 Halodule wrightii 91 1995-08 3 59 59 0 Halodule wrightii 59 1995-08 3 59 59 0 Halophila engleemannii 1 1995-08 4 93 93 0 Halodule wrightii 93 1995-08 4 73 69 10 Halodule wrightii 69 1995-08 4 73 69 10 Hal ophi I a engl emanni i 1 1995-08 4 73 69 10 Udotea congl utinata 7 1995-08 5 89 89 0 Halodule wrightii 89 1995-08 5 45 45 0 Halodule wrightii 30 1995-08 5 45 45 0 Halophila englemannii 15 1995-08 6 98 98 0 Halodule wrightii 98 1995-08 6 99 99 0 Halodule wrightii 99 1995-08 7 100 100 0 Halodule wrightii 100 1995-08 7 97 97 0 Halodul e wri ghti i 97 1995-08 8 100 100 0 Halodule wrightii 100 1995-08 8 93 93 0 Halodule wrightii 93 1995-08 9 100 100 0 Halodule wrightii 100 1995-08 9 89 89 0 Halodule wrighti1 89 1995-08 10 99 99 0 Halodule wrightii 99 1995-08 10 100 100 0 Halodule wrightii 100 1995-10 I 7 7 0 Halodule wrrightii 7 1995-10 1 3 3 0 Halodule wrightii 3 1995-10 2 78' 78 0 Halodule wrightii 78 1995-10 2 80 80 0 Halodule wrightii 80 1995-10 3 40 40 0 Halodule wrightii 40 1995-10 3 78 78 0 Halodule wrightii 78 1995-10 4 3 3 0 Halodule wrightii 3
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date StationRep. (P/I) VeQetation Seagrass Algae: Species. Cover 1995-10 4 P, 5 5 Halodule wri'ghti i 5 1995-10 5 I 82 82 Halodule wr4ghtii 82 1995-10 5 P 3 3 Halodule wrightii 3 1995-10 6. I 100 100 Halodule wrighti i 100 1995-10 6 P 100 100 Halodule wrighti1 100 1995-10 7 I 100 100 Halodule wrightii 100 1995-10 7 P 97 97 Halodule wrightii 97 1995-10 8 I 96 96 Halodule wrightii 96 1995-10 8 64 64 Halodule wrightii 64 1995-10 9 I 610 100 Halodule wrightii 100 1995-10 9 P 35 35 Halodule wrightii 35 9 p P 35 35 Udotea conglutinata 1 1995-10 P 100 1995-10 10 I 100 100 Halodule wrightii 10 P 98 98 Halodule wrightii 98 1995-10 I 100 1993-12 1 100 100 Halodule wrightii 1 P 93 93 Halodule wrightii 93 1993-12 88 1993-12 2 I 88 88 Halodule wrightii 2 p 86 86 Halodule wrightii 86 1993-12 95 1993-12 3 I 95 95 Hal odul e wri ghti i 3 p 66 66 Halodule wrightii 66 1993-12 100 1993-12 4 I 100 100 Halodule wrightii 4 P 100 100 Hal!odule wrightil 100 1993-12 I 100 1993-12 5 100 100 Halodule wrightii 5 P 90 90 Halodule wrightii 90 1993-12 100 100 1993-12 6 I 100 Halodule wrightii 6 p 94 94 Halodule wrightii 94 1993-12 100 1993-12 7 I 100 100 Halodule wrightil 7 P 96 96 Halodule wrightii 96 1993-12 100 1993-12 8 I 100 100 Halodule wrightii 8 p 100 100 Halodule wrightii 100 1993-12 I 100 1993-12 9 100 100 Halodule wri ghtii 100 100 Halophila engl emannii 2 1993-12 9 p 97 1993-12 9 97 97 Halodule wrightii 10 I 100 100 Halodule wrightii 100 1993-12 P 93 1993-12 10 93 93 Halodule wrightii I 73 73 Caulerpa mexicana 2 1994-08 1 73 1 I 73 73 Hal odule wrightii 1994-08 P 61 1994-08 2 61 61 Hal odul e wri ghti i I 56 56 Halodule wrightii 56 1994-08 2 10 1994-08 2 p 56 56 Halophi I a engl emannii 58 58 Halodule wrightii 58 1994-08 2 90 3 :I 90 90 Halodule wrightii 1994-08 p 49 1994-08 3 49 49 Halodule wrightii I 75 75 Halodule wrightii 75 1994-08 4 3 1994-08 4 I 75 75 Hal ophi 1a engl emann i p 79 79 Halodule wrightii 79 1994-08 4 89 5 I 89 89 Halodule wrightii 1994-08 P 78 5 78 78 Hal odul e wrightii 1994-08 I Halodule wrightii 99 1994-08 6 99 99 I 99 99 Halophi 1a engl emannii 15 1994-08 6 75 6 P 75 75 Halodule wrightii 1994-08 Halodule wrightii 94 1994-08 7 I 94 94 94 Halophila englemanni i 3 1994-08 7 I 94 87 87 Hal odule wrightil 87 1994-08 7 97 8 I 97 97 Halodule wrightii 1994-08 8 P Halodule wrightii 80 1994-08 80 80
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station ReD. (P/I) Vegetation Seagrass Algae Species Cover 1994-08 9 98 98 Halodule wrightii 98 1994-08 9 98 98 Halophila en-glemannii 7 1994-08 9 76 76 Halodule wrightii 76 1994-08 10 96 96 Halodule wrightii 96 1994-08 10 96 96 Halophila englemanni i 7 1994-08 10 88 88 Halodule wrightii 88 1994-10 1 96 96 Halodule wrightii 96 1994-10 1 96 96 Halodule wrightii 96 1994-10 2 97 97 Halodule wrightii 97 1994-10 2 99 99 Halodule wrightil 99 1994-10 3 100 100 Halodule wrightii 100 1994-10 3 73 73 Halodule wrightii 73 1994-10 4 100 100 Halodule wrightii 100 1994-10 4 100 100 Halodule wrightii 100 1994-10 5 98 98 Halodule wrightii 98 1994-10 5 97 97 Halodule wrightii 97 1994-10 6 98 98 Halodule wrightii 98 1994-10 6 76 76 Halodule wrightii 76 1994-10 7 100 100 Halodule wrightil 100 1994-10 7 99 99 Halodule wrightii 99 1994-10 8 96 96 Halodule wrightii 96 1994-10 8 96 96 Hal ophi I a engl emanni i 9 1994-10 8 91 91 Caul erpa prol i fera 1 1994-10 8 91 91 Halodule wrightii 88 1994-10 8 91 91 Halophila engleemannii 16 1994-10 9 100 100 Syri ngodi um fi Ii forme 100 1994-10 9 100 100 Syringodiuum filiforme 100 1994-10 10 99 99 Syringodium fi Ii forme 99 1994-10 10 80 80 Halodule wrightii 80 1995-08 1 100 100 Halodule wrightii 100 1995-08 100 100 Halodule wrightii 100 1995-08 2 95 95 Halodule wrightii 95 1995-08 2 83 83 Halodule wrightii 83 1995-08 3 100 100 Halodule wrightii 100 1995-08 3 100 100 Halodule wrightil 100 1995-08 4 100 100 Halodule wrightil 100 1995-08 4 98 98 Halodule wrightii 98 1995-08 5 100 100 Halodule wrightii 100 1995-08 5 100 100 Halodule wrightii 100 1995-08 6 99 99 Halodule wrightii 99 1995-08 6 96 96 Halodule wrightii 96 1995-08 7 96 96 Halodule wrightil 96 1995-08 7 95 95 Halodule wrightii 95 1995-08 8 100 100 Halodule wrightii 100 93 93 Halodule wrightii 93 1995-08 99 1995-08 9 99 99 Halodule wrightil 83 83 Halodule wrightii 83 1995-08 98 1995-08 10 98 98 Halodule wrightii 10 92 92 Halodule wrightii 92 1995-08 89 1995-10 1 89 89 Halodule wrightii 1 87 87 Halodule wrightii 87 1995-10 97 1995-10 2 97 97 Halodule wrightii 1995-10 2 93 93 Halodule wrightii 93 3 96 96 Halodule wrightii 96 1995-10 90 1995-10 3 90 90 Halodule wrightii 1995-10 4 76 76 Halodule wrightii 76
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station ReD. (P/-) Vegetation Seagrass Algae Species Cover 1995-10 4 88 88 0 Halodule wrightii 88 1995-10 5 100 100 0 Halodule wrnightii 100 1995-10 5 95 95 0 Halodule wrightii 95 1995-10 6 98 98 0 Halodule wrightii 98 1995-10 6 99 99 0 Halodule wrightii 99 1995-10 7 97 97 0 Halodule wrightili 97 1995-10 7 99 99 0 Halodule wrightii 99 1995-10 8 100 100 0 Halodule wrightii 100 1995-10 8 80 80 0 Halodule wrightii 80 1995-10 9 97 97 0 Halodule wrightii 97 1995-10 9 95 95 0 Halodule wrightii 95 1995-10 10 98 98 0 Halodule wrightii 98 1995-10 10 86 86 0 Halodule wrightii 86 1 91 91 0 Halodule wrightii 91 1993-12 1993-12 1 91 91 0 Halophila engleemanni i 6 1993-12 1 99 99 2 Caulerpa prolifera 2 1993-12 1 99 99 2 Halodule wrightii 99 1993-12 99 99 2 Halophil a engleemannii 2 1993-12 2 97 97 0 Halodule wrightii 97 2 97 97 0 Halophila engleemannii 2 1993-12 1993-12 2 94 94 0 Halodule wrightii 94 1993-12 3 98 98 0 Halodule wrightii 98 1993-12 3 98 98 0 Halophila engleemannii 6 1993-12 3 100 100 0 Halodule wrightii 100 1993-12 4 100 100 0 Halodule wrightii 100 4 100 100 0 Halophila englemannii 4 1993-12 95 1993-12 4 95 95 0 Hal odul e wri ghti i 1993-12 5 94 94 0 Hal odul e wri ghti i 94 5 94 94 0 Halodule wrightii 94 1993-12 4 1993-12 5 94 94 0 Hal ophi 1a englemanni i 6 90 90 0 Halodule wrightii 90 1993-12 76 1993-12 6 76 76 0 Halodule wrightii 1993-12 7 75 75 0 Halodule wrightii 75 7 100 100 0 Halodule wrightii 100 1993-12 86 1993-12 8 86 86 0 Halodule wrightii 8 96 96 0 Halodule wrightii 96 1993-12 94 1993-12 9 94 94 0 Halodule wrightii 9 90 90 0 Halodule wrightii 90 1993-12 1. 100 1994-08 100 100 0 Halodule wrightii 1 99 99 0 Halodule wrightii 99 1994-08 96 1994-08 2 96 96 0 Halodule wrightil 2 100 100 0 Halodule wrightii 100 1994-08 60 1994-08 3 60 60 0 Hal odul e wri ghtii 3 60 60 0 Syri ngodi um fi I i forme 6 1994-08 88 1994-08 3 88 88 0 Halodule wrightii 100 100 0 Halodule wrightii 100 1994-08 4 96 1994-08 4 96 96 0 Halodule wrightii 95 95 0 Halodule wrightili 95 1994-08 5 94 1994-08 5 94 94 0 Halodule wrightii 6 99 99 0 Syri ngodi um fi 1i forme 99 1994-08 3 1994-08 6 91 91 0 Halophila engl emannii 91 91 0 Syri ngodi um fi 1i forme 91 1994-08 6 11 1 1994-08 7 96 96 Caulerpa prolifera 96 96 11 Hal odule wrightii 96 1994-08 7 11 11 1994-08 7 96 96 Udotea congl utinata 95 95 0 Halodule wrightii 95 1994-08 7
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Reo. (P/I) Vegetation Seagrass Algqae Speci es Cover 1994-08 7 95 95 Halophila englemannii 11 1994-08 8 92 92 Caulerpa pro:ifera 1994-08 8 92 92 Halodule wrightii 55 1994-08 8 92 92 Syri ngodium fi 1i forme 28 1994-08 8 100 100 Syri ngodi um fil iforme 100 1994-08 9 99 99 Halophila engl emannii 2 1994-08 9 99 99 Syri ngodi um fi1 i forme 98 1994-08 9 98 98 Hal odul e wri ghti i 73 1994-08 9 98 98 Syri ngodi um fi 1i forme 83 1994-08 10 100 100 Syringodiuum filiforme 100 1994-08 10 97 97 Syringodi um fi 1i forme 97 1994-10 1 100 100 Syringodiuum filiforme 100 1994-10 1 86 86 Syri ngodi um fi Ii forme 86 1994-10 2 93 93 Halodule wrightil 40 1994-10 2 93 93 Syri ngodi um fi l i forme 93 1994-10 2 96 96 Syri ngodiuum fil iforme 96 1994-10 3 92 92 Syringodium filiforme 92 1994-10 3 94 94 Halodule wrightii 6 1994-10 3 94 94 Syringodium fil iforme 94 1994-10 4 100 100 Syri ngodi um fil iforme 100 1994-10 4 94 94 Syri ngodi um fi1 I forme 94 1994-10 5 93 93 Halodule wrightii 28 1994-10 5 93 93 Syringodium fi I iforme 93 1994-10 5 92 92 Halodule wrightii 26 1994-10 5 92 92 Syri ngodi um fi Ii forme 92 1994-10 6 100 100 Syringodiuum fil iforme 100 1994-10 6 100 100 Syri ngodium fili forme 100 1994-10 7 100 100 Halodule wrightii 3 1994-10 7 100 100 Syringodium filiforme 100 1994-10 7 95 95 Halodule wrightii 5 1994-10 7 95 95 Syringodi um fil iforme 95 1994-10 8 88 88 Halodule wrightii 3 1994-10 8 88 88 Syri ngodi um fil iforme 88 1994-10 8 75 75 Syringodium fi 1iforme 75 1994-10 9 98 98 Syri ngodi um fi Ii forme 98 1994-10 9 100 100 Syri ngodium fil iforme 100 1994-10 10 99 99 Syringodi um fi iiforme 99 1994-10 10 100 100 Halodule wrightii 2 1994-10 10 100 100 Syri ngodi um fi li forme 100 1995-08 1 38 38 Syringodiuum fiIi forme 38 1995-08 1 2 2 Syringodium fil iforme 2 1995-08 2 94 94 Syringodiuum fil iforme 94 1995-08 2 0 0 Syri ngodi um fi I forme 0 1995-08 3 8 8 Syri ngodi um fi Ii forme 8 1995-08 3 10 10 Syri ngodi um fil iforme 10 1995-08 4 75 75 Syringodiuum fil iforme 75 4 64 64 Syri ngodi um fil iforme 64 1995-08 16 1995-08 5 16 16 Syringodirum filiforme 5 9 9 Syringodiuum filiforme 9 1995-08 61 1995-08 6 61 61 Syringodi um fil iforme 6 86 86 Syringodi umrfil iforme 86 1995-08 95 1995-08 7 95 95 Syri ngodi um fi 1i forme 7 83 83 Syringodiuum filiforme 83 1995-08 71 1995-08 8 71 71 Syringodiuum filiforme 8 52 52 Syringodiuum filiforme 52 1995-08 1995-08 9 89 89 Syri ngodi um fil iforme 89
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) VeQetation Seacrass Alqae Species Cover 1995-08 8 9 P 86 86 0 Syringodium filiforme 86 1995-08 8 10 I 99 99 0 Syringodciumn-f iliforme 99 1995-08 8 10 P 91 91 0 Halodule wrightii 91 1995-08 8 10 P 91 91 0 Syringodium filiforme 13 1995-10 8 1 1 82 82 0 Syringodium filiforme 82 1995-10 8 1 P 87 87 0 Syringodium filiforme 87 1995-10 8 2 1 76 76 0 Syringodium filiforme 76 1995-10 8 2 P 80 80 0 Syringodium filiforme 80 1995-10 8 3 I 98 98 0 Syringodium filiforme 98 1995-10 8 3 P 90 90 0 Syringodium filiforme 90 1995-10 8 4 I 92 92 0 Syringodium filiforme 92 1995-10 8 4 P 91 91 0 Syringodium filiforme 91 1995-10 8 5 I 100 100 0 Syringodium filiforme 100 1995-10 8 5 P 62 62 0 Syringodium filiforme 62 1995-10 8 6 I 10 10 0 Syringodium filiforme 10 1995-10 8 6 P 22 22 0 Syringodium filiforme 22 1995-10 8 7 I 75 75 0 Syringodium filiforme 75 1995-10 8 7 P 92 92 0 Syringodium filiforme 92 1995-10 8 8 1 2 2 0 Syringodium filiforme 2 1995-10 8 8 P 18 18 0 Syringodium filiforme 18 1995-10 8 9 I 36 36 0 Syringodium filiforme 36 1995-10 8 9 P 7 7 0 Syringodium filiforme 7 1995-10 8 10 I 68 68 0 Syringodium filiforme 68 1995-10 8 10 P 1 1 0 Syringodium filiforme 1 1993-12 9 1 I 56 56 0 Syringodium filiforme 56 1993-12 9 1 P 94 94 0 Halophila englemannii 2 1993-12 9 1 P 94 94 0 Syringodium filiforme 94 1993-12 9 2 I 94 94 0 Syringodium filiforme 94 1993-12 9 2 P 96 96 0 Syringodiuum filiforme 96 1993-12 9 3 I 94 94 0 Halodule wrightii 6 1993-12 9 3 I 94 94 0 Syringodium filiforme 94 1993-12 9 3 P 93 93 0 Syringodium filiforme 93 1993-12 9 4 I 85 85 0 Syringodium filiforme 85 1993-12 9 4 P 80 80 1 Caulerpa prolifera 1 1993-12 9 4 P 80 80 1 Halophila englemannii 3 1993-12 9 4 P 80 80 1 Syringodium filiforme 80 1993-12 9 5 1 93 93 0 Syringodium filiforme 93 1993-12 9 5 P 86 86 0 Syringodium filiforme 86 1993-12 9 6 I 84 84 0 Halophila englemannii 2 1993-12 9 6 I 84 84 0 Syringodium filiforme 82 1993-12 9 6 P 92 92 0 Syringodium filiforme 92 1993-12 9 7 I 28 28 0 Syringodium filiforme 28 1993-12 9 7 P 89 89 0 Halophila englemannii 11 1993-12 9 7 P 89 89 0 Syringodium filiforme 78 1993-12 9 8 I 91 91 0 Halophila englemannii 10 1993-12 9 8 I 91 91 0 Syringodium filiforme 91 1993-12 9 8 P 79 79 0 Halophila englemannii 10 1993-12 9 8 P 79 79 0 Syringodiuum filiforme 79 1993-12 9 9 1 67 67 0 Syringodiuum filiforme 67 1993-12 9 9 P 89 89 0 Halophila englemannii 7 1993-12 9 9 P 89 89 0 Syringodium filiforme 89 1993-12 9 10 1 94 94 0 Syringodium filiforme 94 1993-12 9 10 P 90 90 0 Halophila englemannii 3 1993-12 9 10 P 90 90 0 Syringodium filiforme 90 1994-08 9 1 I 73 73 1 Halophila englemannii 3 1994-08 9 1 I 73 73 1 Syringodium filiforme 73
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Al gae Species Cover 1994-08 1 73 73 1 Udotea congl utinata 1 1994-08 1 100 100 4 Caul erpa pral.ifera 4 1994-08 1 100 100 4 Halophi la engl emannii 8 1994-08 1 100 100 4 Syri ngodium fi 1 i forme 100 1994-08 2 100 100 2 Caul erpa prol i fera 2 1994-08 2 100 100 2 Halophila englemannii 8 1994-08 2 100 100 2 Syri ngodi um fi iiforme 100 1994-08 2 11 11 Caul erpa prol i fera 1 1994-08 2 11 11 Syringodiuum fili forme 11 1994-08 3 97 97 0 Halophila engleemannii 2 1994-08 3 97 97 0 Syringodium filiforme 97 1994-08 3 71 71 0 Halophila englemannii 5 1994-08 3 71 71 0 Syringodiuum filiforme 71 1994-08 4 95 95 3 Caul erpa prol i fera 3 1994-08 4 95 95 3 Syri ngodi um fi 1i forme 95 1994-08 4 93 93 0 Syri ngodi um fii forme 93 1994-08 5 100 100 0 Syri ngodium fi 1i forme 100 1994-08 5 96 96 0 Syringodium filiforme 96 1994-08 6 98 98 0 Syringodi um fili forme 98 1994-08 6 100 92 20 Caulerpa proli fera 18 1994-08 6 100 92 20 Halophila engleemannii 38 1994-08 6 100 92 20 Syringodiuum filiforme 92 1994-08 6 100 92 20 Udotea conglutinata 2 1994-08 7 96 96 0 Syringodiuum filiforme 96 1994-08 7 93 93 8 Hal ophi 1a engl emanni i 46 1994-08 7 93 93 8 Syri ngodi um fi 1i forme 88 1994-08 7 93 93 8 Udotea congl utinata 8 1994-08 8 100 100 0 Syri ngodi um fil iforme 100 1994-08 8 96 96 5 Caul erpa prol i fera 5 1994-08 8 96 96 5 Hal ophi 1a engl emannii 60 1994-08 8 96 96 5 Syringodi um fiji forme 81 1994-08 9 100 100 3 Caul erpa prol i fera 3 1994-08 9 100 100 3 Halophil a englemannii 12 1994-08 9 100 100 3 Syri ngodi um fi 1iforme 100 1994-08 9 96 96 20 Caulerpa prol i fera 15 1994-08 9 96 96 20 Halophil a engleemannii 32 1994-08 9 96 96 20 Syri ngodi um f11 i forme 87 1994-08 9 96 96 20 Udotea congl uti nata 5 1994-08 10 96 96 0 Hal ophi 1a engl emanni1 29 1994-08 10 96 96 0 Syringodiuum fi1 iforme 95 1994-08 10 98 98 13 Caulerpa prolifera 9 1994-08 10 98 98 13 Hal ophi 1a engl emanni 42 1994-08 10 98 98 13 Syringodirum filiforme 86 1994-08 10 98 98 13 Udotea congluti nata 4 1994-10 1 98 98 0 Halophi 1a englemanni i 2 1994-10 1 98 98 Syringodiuum fiIi forme 98 0
1994-10 1 92 92 0 Syringodinum filiforme 92 1994-10 2 95 95 0 Hal ophi I a engl emannii 12 1994-10 2 95 95 0 Syri ngodium fili forme 95 1994-10 2 98 98 Halophila englemannii 2 2 0 1994-10 98 98 0 Syringodiuum fil iforme 98 1994-10 3 100 100 0 Halophila englemannii 10 1994-10 3 100 100 0 Syringodium filiforme 100 1994-10 3 97 97 Syringodirum fififorme 97 1994-10 4 98 98 2 Halophila englemannii 8 1994-10 4 98 98 2 Syri ngodi um fil iforme 98
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass A]lgae Species Cover 1994-10 4 98 98 Udotea congl utinata 2 1994-10 4 92 92 Syri ngoai umUfi I i forme 92 1994-10 5 100 100 Halophila engleemannil 8 1994-10 5 100 100 Syri ngodi um fi 1i forme 100 1994-10 5 85 85 Syri ngodi um fi 1i forme 85 1994-10 5 85 85 Udotea conglutinata 2 1994-10 6 100 100 Syri ngodi um fi!i forme 100 1994-10 6 100 100 Halophila engleemannii 14 1994-10 6 100 100 Syringodium filiforme 100 1994-10 7 97 97 Syringodiuum filiforme 97 1994-10 7 95 95 Hal ophi 1a engl emanni i 2 1994-10 7 95 95 Syri ngodi um fi 1i forme 95 1994-10 8 100 100 Hal ophi 1a engl emanni i 4 1994-10 8 100 100 Syri ngodi um fi 1i forme 100 1994-10 8 97 97 Halodule wrightii 5 1994-10 8 97 97 Hal ophi 1a engl emanni i 8 1994-10 8 97 97 Syri ngodi um fil iforme 89 1994-10 9 99 99 Syringodiuum filiforme 99 1994-10 9 80 80 Halophi 1a engl emanni i 1 1994-10 9 80 80 Syringodiuum filiforme 80 1994-10 10 98 98 Syri ngodi um fi 1i forme 98 1994-10 10 84 84 Halophila engleemannii 5 1994-10 10 84 84 Syri ngodi um fil i forme 84 1995-08 1 100 100 Syri ngodi um fi 1i forme 100 1995-08 1 100 100 Syri ngodi um fil iforme 100 1995-08 2 100 100 Syri ngodi um fi I i forme 100 1995-08 2 90 90 Syringodirum filiforme 90 1995-08 3 99 99 Syri ngodi um fil iforme 99 1995-08 3 98 98 Syringodiuum filiforme 98 1995-08 4 98 98 Syringodium fil iforme 98 1995-08 4 92 92 Hal ophila engl emanni i 2 1995-08 4 92 92 Syri ngodi um fili forme 90 1995-08 5 98 98 Syringodiuum filiforme 98 1995-08 6 100 100 Syri ngodi um fi 1i forme 100 1995-08 6 99 99 Syringodirum filiforme 99 1995-08 6 86 86 Syri ngodi um fi Ii forme 86 1995-08 7 100 100 Halodule wrightii 4 1995-08 7 100 100 Syri ngodi um fiIi forme 98 1995-08 7 100 100 Syringodiuum filiforme 100 1995-08 8 97 97 Syringodiuum fil iforme 97 1995-08 8 92 92 Syringodium fil iforme 92 1995-08 9 98 98 Syringodiuum filiforme 98 1995-08 9 98 98 Syri ngodi um fi 1iforme 98 1995-08 10 99 99 Halophila engleemanni i 3 1995-08 10 99 99 Syringodiuum filiforme 96 1995-08 10 100 100 Syringodiuum fil iforme 100 1995-10 1 98 98 Syri ngodi um fil iforme 98 1995-10 92 92 Syringodi um fi Ii forme 92 1995-10 2 100 100 Syringodium fili forme 100 1995-10 2 97 97 Syringodium fili forme 97 1995-10 3 100 100 Syringodiuum filiforme 100 1995-10 3 100 100 Syri ngodi um fil iforme 100 1995-10 4 89 89 Syringodiuum filiforme 89 1995-10 5 100 100 Syringodium filiforme 100 1995-10 5 100 100 Syringodiuum filiforme 100 1995-10 97 97 Syri ngodi um fi 1i forme 97
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/1) Vegetation Seagrass Alqae Species Cover 1995-10 9 6 I 95 95 0 Syringodium filiforme 95 1995-10 9 6 P 96 96 0 Syringodiumnfiliforme 96 1995-10 9 7 1 100 100 0 Syringodiumr filiforme 100 1995-10 9 7 P 96 96 0 Syringodium filiforme 96 1995-10 9 8 I 92 92 0 Syringodium filiforme 92 1995-10 9 8 P 100 100 0 Syringodium filiforme 100 1995-10 9 9 I 100 100 0 Syringodium filiforme 100 1995-10 9 9 P 88 88 0 Syringodium filiforme 88 1995-10 9 10 I 91 91 0 Syringodium filiforme 91 1995-10 9 10 P 97 97 0 Syringodium filiforme 97 1993-12 10 1 I 24 24 0 Halophila englemannii 17 1993-12 10 1 I 24 24 0 Syringodium filiforme 7 1993-12 10 1 P 90 90 4 Caulerpa prolifera 4 1993-12 10 1 P 90 90 4 Syringodium filiforme 90 1993-12 10 2 I 78 78 0 Syringodium filiforme 78 1993-12 10 2 P 77 77 8 Caulerpa prolifera 8 1993-12 10 2 P 77 77 8 Syringodium filiforme 77 1993-12 10 3 I 84 84 4 Caulerpa prolifera 4 1993-12 10 3 I 84 84 4 Syringodium filiforme 84 1993-12 10 3 P 84 68 16 Caulerpa prolifera 16 1993-12 10 3 P 84 68 16 Syringodium filiforme 84 1993-12 10 4 I 59 59 0 Syringodium filiforme 59 1993-12 10 4 P 80 80 0 Syringodium filiforme 80 1993-12 10 5 I 68 68 6 Caulerpa prolifera 6 1993-12 10 5 I 68 68 6 Syringodium filiforme 68 1993-12 10 5 P 77 77 0 Syringodium filiforme 77 1993-12 10 6 1 60 58 2 Caulerpa prolifera 2 1993-12 10 6 I 60 58 2 Syringodium filiforme 58 1993-12 10 6 P 6 6 0 Syringodium filiforme 6 1993-12 10 7 I 0 0 0 Bare 0 1993-12 10 7 P 13 13 0 Syringodium filiforme 13 1993-12 10 8 I 19 19 0 Syringodium filiforme 19 1993-12 10 8 -P 87 87 5 Caulerpa prolifera 5 1993-12 10 8 P 87 87 5 Syringodium filiforme 87 1993-12 10 9 I 76 76 0 Syringodium filiforme 76 1993-12 10 9 P 100 100 0 Halophila englemannii 3 1993-12 10 9 P 100 100 0 Syringodium filiforme 100 1993-12 10 10 I 94 94 0 Syringodium filiforme 94 1993-12 10 10 P 100 100 0 Syringodium filiforme 100 1994-08 10 1 I 52 30 22 Caulerpa prolifera 22 1994-08 10 1 I 52 30 22 Syringodium filiforme 30 1994-08 10 1 P 74 42 32 Caulerpa prolifera 32 1994-08 10 1 P 74 42 32 Syringodium filiforme 42 1994-08 10 2 I 100 100 7 Caulerpa prolifera 7 1994-08 10 2 I 100 100 7 Syringodium filiforme 100 1994-08 10 2 P 92 55 40 Caulerpa prolifera 40 1994-08 10 2 P 92 55 40 Syringodium filiforme 55 1994-08 10 3 I 96 89 9 Caulerpa prolifera 9 1994-08 10 3 I 96 89 9 Syringodium filiforme 89 1994-08 10 3 P 99 6 99 Caulerpa prolifera 99 1994-08 10 3 P 99 6 99 Syringodium filiforme 6 1994-08 10 4 I 100 36 66 Caulerpa prolifera 66 1994-08 10 4 I 100 36 66 Syringodium filiforme 35 1994-08 10 4 P 100 47 96 Caulerpa prolifera 96 1994-08 10 4 P 100 47 96 Syringodium filiforme 47 1994-08 10 5 I 100 100 0 Syringodium filiforme 100
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station R (P/l) Vegetation Seagrass Algae Species Cover 1994-08 10 5 100 64 36 Caulerpa prol ifera 36 1994-08 10 5 100 64 36 Syri ngodi ui'-f i 1i forme 64 1994-08 10 6 100 100 8 Caul erpa prol ifera 8 1994-08 10 6 100 100 8 Syri ngodi um fil iforme 100 1994-08 10 6 100 74 90 Caulerpa prolifera 90 1994-08 10 6 100 74 90 Syri ngodi um fi 1i forme 74 1994-08 10 6 100 74 90 Udotea congl utinata 2 1994-08 10 7 100 100 46 Caulerpa prol ifera 46 1994-08 10 7 100 100 46 Syringodium filiforme 100 1994-08 10 7 100 50 80 Caulerpa prol i fera 80 1994-08 10 7 100 50 80 Syri ngodi um fil iforme 50 1994-08 10 7 100 50 80 Udotea congl utinata 2 1994-08 10 8 100 94 89 Caulerpa prolifera 89 1994-08 10 8 100 94 89 Syri ngodi um fil iforme 94 1994-08 10 8 100 94 89 Udotea congl utinata 5 1994-08 10 8 99 11 99 Caulerpa prolifera 99 1994-08 10 8 99 11 99 Syringodium fi 1iforme 11 1994-08 10 9 100 99 10 Caulerpa proli fera 10 1994-08 10 9 100 99 10 Syri ngodi um fi 1i forme 99 1994-08 10 9 99 0 99 Caulerpa prolifera 99 1994-08 10 10 100 98 86 Caulerpa prol i fera 86 1994-08 10 10 100 98 86 Syri ngodi um fi 1i forme 98 10 10 99 40 89 Caul erpa prol i fera 89 1994-08 40 1994-08 10 10 99 40 89 Syringodi um fil iforme 1995-08 10 1 92 92 0 Syringodiuum filiforme 92 10 1 38 20 18 Caulerpa prolifera 18 1995-08 20 1995-08 10 1 38 20 18 Syringodium fil iforme 10 2 52 52 1 Caulerpa prol i fera 1 1995-08 52 1995-08 10 2 52 52 1 Syringodium fi 1i forme 10 2 40 32 8 Caul erpa prol ifera 8 1995-08 32 1995-08 10 2 40 32 8 Syri ngodi um fi Ii forme 10 3 36 36 0 Syringodiuum filiforme 36 1995-08 3 1995-08 10 3 21 18 3 Caulerpa prolifera 3 21 18 3 Syri ngodi um fi 1i forme 18 1995-08 10 26 1995-08 10 4 26 26 0 Syringodiuum fil iforme 10 4 38 38 0 Syri ngodi um fil iforme 38 1995-08 20 1995-08 10 5 20 20 0 Syri ngodi um fi 1i forme 5 44 44 0 Syringodiuum fil iforme 44 1995-08 10 32 1995-08 10 6 32 32 0 Syri ngodi um fil iforme 6 12 12 Syri ngodi um fil iforme 12 1995-08 10 0 76 1995-08 10 7 76 76 0 Syri ngodi um fil iforme 7 52 52 Syri ngodi um fil iforme 52 1995-08 10 0 96 1995-08 10 8 96 4 96 Caulerpa prolifera 96 4 Halodule wrightii 1 1995-08 10 8 96 1 1995-08 10 8 96 4 96 Hal ophi 1a engl emanni i 60 60 Halodule wrightii 1 1995-08 10 8 0 59 1995-08 10 8 60 60 0 Syri ngodi um fi l i forme 87 87 Halodule wrightii 1 1995-08 10 9 0 87 1995-08 10 9 87 87 0 Syri ngodium fil iforme 88 88 Syri ngodi um fil iforme 88 1995-08 10 9 0 75 1995-08 10 10 75 75 0 Syri ngodi um fil iforme 95 95 Halodule wrightii 1 1995-08 10 10 0 95 1995-08 10 10 95, 95 0 Syri ngodium fil iforme 0 0 Bare 0 1995-10 10 1 0 0 1995-10 10 1 0 0 0 Bare 65 65 0 Syringodium fil ifor-me 65 1995-10 10 2
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station ReD. (P/I) Veqetation Seagrass Algae Species Cover 1995-10 10 2 P 21 21 0 Syringodium filiforme 21 1995-10 10 3 I 53 53 0 Syringodium-filiforme 53 1995-10 10 3 P 45 45 0 Syringodium filiforme 45 1995-10 10 4 I 28 28 0 Syringodium filiforme 28 1995-10 10 4 P 60 60 0 Syringodium filiforme 60 1995-10 10 5 1 58 58 0 Syringodium filiforme 58 1995-10 10 5 P 38 38 0 Syringodium filiforme 38 1995-10 10 6 I 95 95 0 Syringodium filiforme 95 1995-10 10 6 P 50 50 0, Syringodium filiforme 50 1995-10 10 7 I 23 23 0 Syringodium filiforme 23 1995-10 10 7 P 64 64 0 Syringodium fil iforme 64 1995-10 10 8 I 72 72 0 Syringodium filiforme 72 1995-10 10 8 P 95 95 0 Syringodium filiforme 95 1995-10 10 9 I 78 78 0 Syringodium filiforme 78 1995-10 10 9 P 24 24 0 Syringodium filiforme 24 1995-10 10 10 I 82 82 0 Syringodium filiforme 82 1995-10 10 10 P 17 17 0 Syringodium filiforme 17 1993-12 11 1 1 100 100 0 Syringodium filiforme 100 1993-12 11 1 P 99 99 0 Syringodium filiforme 99 1993-12 11 2 I 100 100 0 Syringodium filiforme 100 1993-12 11 2 P 100 100 0 Halophila englemannii 1 1993-12 11 2 P 100 100 0 Syringodium filiforme 100 1993-12 11 3 I 99 99 0 Syringodium filiforme 99 1993-12 11 3 P 97 97 0 Syringodium filiforme 97 1993-12 11 4 I 100 100 0 Syringodium filiforme 100 1993-12 11 4 P 98 98 0 Syringodium filiforme 98 1993-12 11 5 I 94 94 0 Syringodium filiforme 94 1993-12 11 5 P 100 100 0 Syringodium filiforme 100 1993-12 11 6 I 95 95 0 Syringodium filiforme 95 1993-12 11 6 P 93 93 0 Halophila englnemannii 2 1993-12 11 6 P 93 93 0 Syringodium filiforme 93 1993-12 11 7 1 95 95 0 Syringodium filiforme 95 1993-12 11 7 P 100 100 0 Syringodium filiforme 100 1993-12 11 8 1 100 100 0 Syringodium filiforme 100 1993-12 11 8 P 100 100 0 Syringodium filiforme 100 1993-12 11 9 1 100 100 0 Syringodium filiforme 100 1993-12 11 9 P 100 100 0 Syringodium filiforme 100 1993-12 11 10 I 100 100 0 Syringodium filiforme 100 1993-12 11 10 P 96 96 0 Syringodium filiforme 96 1994-08 11 1 I 100 100 0 Syringodium filiforme 100 1994-08 11 1 P 98 98 0 Halophila englemannii 2 1994-08 11 1 P 98 98 0 Syringodium filiforme 98 1994-08 11 2 I 100 100 0 Syringodium filiforme 100 1994-08 11 2 P 100 100 0 Syringodium filiforme 100 1994-08 11 3 I 100 100 0 Syringodium filiforme 100 1994-08 11 3 P 100 100 0 Syringodium filiforme 100 1994-08 11 4 I 100 100 0 Syringodium filiforme 100 1994-08 11 4 P 100 100 0 Syringodium filiforme 100 1994-08 11 5 I 100 100 0 Syringodium filiforme 100 1994-08 11 5 P 100 100 0 Syringodium filiforme 100 1994-08 11 6 I 100 100 0 Syringodium filiforme 100 1994-08 11 6 P 100 100 0 Syringodium filiforme 100 1994-08 11 7 I 100 100 0 Syringodium filiforme 100 1994-08 11 7 P 100 100 0 Syringodium filiforme 100 1994-08 11 8 1 100 100 0 Syringodium filiforme 100 1994-08 11 8 P 100 100 0 Syringodium filiforme 100
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/l) Vegetation Seagrass Algae Species Cover 1994-08 11 9 I 100 100 0 Syringodium filiforme 100 1994-08 11 9 P 100 100 0 Syringodiunvfiliforme 100 1994-08 11 10 I 100 100 0 Syringodium filiforme 100 1994-08 11 10 P 100 100 0 Syringodium filiforme 100 1994-10 11 1 I 100 100 0 Syringodium filiforme 100 1994-10 11 1 P 100 100 0 Syringodium filiforme 100 1994-10 11 2 I 100 100 0 Syringodium filiforme 100 1994-10 11 2 P 100 100 0 Syringodium filiforme 100 1994-10 11 3 1 100 100 0 Syringodium filiforme 100 1994-10 11 3 P 100 100 0 Syringodium filiforme 100 1994-10 11 4 1 100 100 0 Syringodium filiforme 100 1994-10 11 4 P 99 99 0 Syringodium filiforme 99 1994-10 11 5 I 100 100 0 Syringodium filiforme 100 1994-10 11 5 P 100 100 0 Syringodium filiforme 100 1994-10 11 6 I 100 100 0 Syringodium filiforme 100 1994-10 11 6 P 100 100 0 Syringodium filiforme 100 1994-10 11 7 I 100 100 0 Syringodium filiforme 100 1994-10 11 7 P 99 99 0 Syringodium filiforme 99 1994-10 11 8 I 100 100 0 Syringodium filiforme 100 1994-10 11 8 P 100 100 0 Syringodium filiforme 100 1994-10 11 9 I 100 100 0 Syringodium filiforme 100 1994-10 11 9 P 100 100 0 Syringodium filiforme 100 1994-10 11 10 I 100 100 0 Syringodium filiforme 100 1994-10 11 10 P 100 100 0 Syringodiumi filiforme 100 1995-08 11 1 I 90 90 0 Syringodium filiforme 90 1995-08 11 1 P 100 100 0 Syringodium filiforme 100 1995-08 11 2 1 100 100 0 Syringodium filiforme 100 1995-08 11 2 P 100 100 0 Syringodium filiforme 100 1995-08 11 3 I 100 100 0 Syringodium filiforme 100 1995-08 11 3 P 1QO 100 0 Syringodium filiforme 100 1995-08 11 4 I 100 100 0 Syringodium filiforme 100 1995-08 11 4 P 100 100 0 Syringodium filiforme 100 1995-08 11 5 I 100 100 0 Syringodium filiforme 100 1995-08 11 5 P 100 100 0 Syringodium filiforme 100 1995-08 11 6 1 100 100 0 Syringodium filiforme 100 1995-08 11 6 P 99 99 0 Syringodium filiforme 99 1995-08 11 7 I i00 100 0 Syringodium filiforme 100 1995-08 11 7 P 100 100 0 Syringodium filiforme 100 1995-08 11 8 I 98 98 0 Syringodium filiforme 98 1995-08 11 8 P 99 99 0 Syringodium filiforme 99 1995-08 11 9 I 100 100 0 Syringodium filiforme 100 1995-08 11 9 P 100 100 0 Syringodium filiforme 100 1995-08 11 10 I 100 100 0 Syringodium filiforme 100 1995-08 11 10 P 100 100 0 Syringodium filiforme 100 1995-10 11 1 I 95 95 0 Syringodium filiforme 95 1995-10 11 1 P 80 80 0 Syringodium filiforme 80 1995-10 11 2 I 96 96 0 Syringodium filiforme 96 1995-10 11 2 P 100 100 0 Syringodium filiforme 100 1995-10 11 3 I 100 100 0 Syringodium filiforme 100 1995-10 11 3 P 100 100 0 Syringodium filiforme 100 1995-10 11 4 I 100 100 0 Syringodium filiforme 100 1995-10 11 4 P 100 100 0 Syringodium filiforme 100 1995-10 11 5 I 96 96 0 Syringodium filiforme 96 1995-10 11 5 P 100 100 0 Syringodium filiforme 100 1995-10 11 6 1 97 97 0 Syringodium filiforme 97 1995-10 11 6 P 96 96 0 Syringodium filiforme 96
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (PI) ati.n Seagrass Alqae Species Cover 1995-10 11 7 100 100 0 Syri ngodi um fil iforme 100 1995-10 11 7 100 100 0 Syri ngodi uur-fi I i forme 100 1995-10 11 8 100 100 0 Syringodiuum fil iforme 100 1995-10 11 8 100 100 0 Syri ngodi um fi 1i forme 100 1995-10 11 9 100 100 0 Syri ngodi um fi ii forme 100 1995-10 11 9 100 100 0 Syri ngodi um fi Ii forme 100 1995-10 11 10 100 100 0 Syri ngodi um fi 1i forme 100 1995-10 11 10 97 97 0 Syringodiuum filiforme 97 1993-12 12 I 100 100 0 Halodule wrightii 100 1993-12 12 1 100 100 0 Syri ngodi um fi 1i forme 100 1993-12 12 1 88 88 0 Syringodiuum filiforme 88 1993-12 12 2 98 92 6 Caulerpa prolifera 6 1993-12 12 2 98 92 6 Syri ngodi um fifIi forme 92 1993-12 12 2 88 88 0 Syringodiuum fil iforme 88 1993-12 12 3 70 68 2 Caul erpa prol i fera 2 1993-12 12 3 70 68 2 Halodule wrightii 34 1993-12 12 3 70 68 2 Syri ngodi um fi 1i forme 34 1993-12 12 3 89 88 1 Caulerpa prolifera 1 1993-12 12 3 89 88 1 Syri ngodi um fi 1i forme 88 1993-12 12 4 100 80 20 Caulerpa proli fera 20 1993-12 12 4 100 80 20 Syri ngodi um fi 1iforme 80 1993-12 12 4 88 66 12 Caul erpa prol i fera 12 1993-12 12 4 88 66 12 Syri ngodi um fi 1iforme 66 1993-12 12 5 97 97 0 Syringodium filiforme 97 1993-12 12 5 94 93 1 Caul erpa prol i fera 1 1993-12 12 5 94 93 1 Syri ngodium fil iforme 93 1993-12 12 6 100 99 1 Caul erpa prol i fera 1 1993-12 12 6 100 99 1 Syri ngodi um fil iforme 99 1993-12 12 6 96 96 0 Syri ngodi um fil iforme 96 1993-12 12 7 97 97 0 Syri ngodi um ff1 i forme 97 1993-12 12 7 95 95 0 Syringodium fi Ii forme 95 1993-12 12 8 89 89 0 Syri ngodi um fil iforme 89 1993-12 12 8 95 95 0 Syringodiuum filiforme 95 1993-12 12 9 96 96 0 Syringodium filiforme 96 1993-12 12 9 78 78 0 Syringodiuum fil I forme 78 1993-12 12 10 98 98 0 Syri ngodi um fi Ii forme 98 1993-12 12 10 92 92 0 Syri ngodi um fi Ii forme 92 1994-08 12 I 100 100 0 Syri ngodium fil iforme 100 1994-08 12 1 100 100 0 Syri ngodi um fi I iforme 100 1994-08 12 2 100 100 0 Syri ngodi um fi li forme 100 1994-08 12 2 100 100 0 Syringodiuum filiforme 100 1994-08 12 3 99 99 0 Syringodiuum filiforme 99 1994-08 12 3 99 99 0 Syringodiuum fil iforme 99 1994-08 12 4 90 90 0 Syri ngodi um fil iforme 90 1994-08 12 4 90 90 0 Syri ngodi um fil iforme 90 1994-08 12 5 70 70 0 Syri ngodi um fil iforme 70 1994-08 12 5 100 100 0 Syringodiuum fil iforme 100 1994-08 12 6 100 100 0 Syringodiuum fil iforme 100 1994-08 12 6 100 100 0 Syringodiuum fil iforme 100 1994-08 12 7 100 100 0 Syringodium filiforme 100 1994-08 12 7 100 100 0 Syringodirum filiforme 100 1994-08 12 8 100 100 0 Syringodiuum fil i forme 100 1994-08 12 8 100 100 0 Syringodiuum ff11 i forme 100 1994-08 12 9 100 100 0 Syringodiuum filiforme 100 1994-08 12 9 100 100 0 Syri ngodium fil iforme 100 1994-08 12 10 96 96 0 Syringodiuum ff11 iforme 96
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Alqae Species Cover 1994-08 12 10 P 100 100 0 Syringodium filiforme 100 1994-10 12 1 I 100 100 0 Syringodium-fliIiforme 100 1994-10 12 1 P 98- 98 0 Syringodium filiforme 98 1994-10 12 2 I 100 100 0 Syringodium filiforme 100 1994-10 12 2 P 99 99 0 Syringodium filiforme 99 1994-10 12 3 I 93 93 3 Caulerpa prolifera 3 1994-10 12 3 I 93 93 3 Syringodium filiforme 93 1994-10 12 3 P 92 92 2 Caulerpa prolifera 2 1994-10 12 3 P 92 92 2 Halodule wrightii 25 1994-10 12 3 P 92 92 2 Syringodium filiforme 65 1994-10 12 4 I 90 90 0 Syringodium filiforme 90 1994-10 12 4 P 100 100 0 Syringodium filiforme 100 1994-10 12 5 I 100 100 0 Syringodium filiforme 100 1994-10 12 5 P 100 100 0 Syringodium filiforme 100 1994-10 12 6 I 100 100 0 Syringodium filiforme 100 1994-10 12 6 P 100 100 0 Syringodium filiforme 100 1994-10 12 7 I i00 100 2 Caulerpa prolifera 2 1994-10 12 7 I 100 100 2 Syringodium filiforme '100 1994-10 12 7 P 100 100 3 Caulerpa prolifera 3 1994-10 12 7 P 100 100 3 Syringodium filiforme 100 1994-10 12 8 1 100 100 0 Syringodium filiforme 100 1994-10 12 8 P 100 100 0 Syringodium filiforme 100 1994-10 12 9 I 100 100 0 Syringodium filiforme 100 1994-10 12 9 P 21 21 0 Syringodium filiforme 21 1994-10 12 10 I 100 100 0 Syringodium filiforme 100 1994-10 12 10 P 100 100 0 Syringodium filiforme 100 1995-08 12 1 I 81 81 0 Syringodiumnfiliforme 81 1995-08 12 1 P 88 88 0 Syringodium filiforme 88 1995-08 12 2 I 100 100 0 Syringodium filiforme 100 1995-08 12 2 P 92 92 0 Syringodium filiforme 92 1995-08 12 3 I 100 100 0 Syringodium filiforme 100 1995-08 12 3 P 98 98 0 Syringodium filiforme 98 1995-08 12 4 I 98 98 0 Syringodium filiforme 98 1995-08 12 4 P 100 100 0 Syringodium filiforme 100 1995-08 12 5 I 97 ,97 0 Syringodium filiforme 97 1995-08 12 5 P 94 94 0 Syringodium filiforme 94 1995-08 12 6 I 92 92 0 Syringodium filiforme 92 1995-08 12 6 P 94 94 0 Syringodium filiforme 94 1995-08 12 7 I 92 92 0 Syringodium filiforme 92 1995-08 12 7 P 100 100 0 Syringodium filiforme 100 1995-08 12 8 I 97 97 0 Syringodium filiforme 97 1995-08 12 8 P 92 92 0 Syringodium filiforme 92 1995-08 12 9 I 96 96 0 Syringodium filiforme 96 1995-08 12 9 P 97 97 0 Syringodium filiforme 97 1995-08 12 10 I 96 96 0 Syringodium filiforme 96 1995-08 12 10 P 97 97 0 Syringodium filiforme 97 1995-10 12 1 I 90 90 0 Syringodium filiforme 90 1995-10 12 1 P 80 80 0 Syringodium filiforme 80 1995-10 12 2 I 92 92 1 Caulerpa prolifera 1 1995-10 12 2 I 92 92 1 Syringodium filiforme 92 1995-10 12 2 P 30 30 1 Caulerpa prolifera 1 1995-10 12 2 P 30 30 1 Syringodium filiforme 30 1995-10 12 3 I 96 96 1 Caulerpa prolifera 1 1995-10 12 3 I 96 96 1 Syringodiuum fili forme 96 1995-10 12 3 P 100 100 0 Syringodium filiforme 100 1995-10 12 4 I 100 100 0 Syringodium filiforme 100
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Reo. (P/I) Vegetation Seagrass Alae Species Cover 1995-10 12 4 P 100 100 0 Syringodium filiforme 100 1995-10 12 5 1 97 97 0 Syringodium-filiforme 97 1995-10 12 5 P 94 94 0 Syringodium filiforme 94 1995-10 12 6 I 97 97 0 Syringodium filiforme 97 1995-10 12 6 P 100 100 0 Syringodium filiforme 100 1995-10 12 7 I 95 95 0 Syringodium filiforme 95 1995-10 12 7 P 85 85 0 Syringodium filiforme 85 1995-10 12 8 I 88 88 0 Syringodium filiforme 88 1995-10 12 8 P 92 92 0 Syringodium filiforme 92 1995-10 12 9 I 95 95 0 Syringodium filiforme 95 1995-10 12 9 P 94 94 0 Syringodium filiforme 94 1995-10 12 10 I 98 98 0 Syringodium filiforme 98 1995-10 12 10 P 91 91 0 Syringodium filiforme 91 1993-12 13 1 I 96 96 15 Caulerpa prolifera 15 1993-12 13 1 I 96 96 15 Halodule wrightii 96 1993-12 13 1 1 96 96 15 Thalassia testudinum 5 1993-12 13 1 P 82 76 6 Caulerpa prolifera 6 1993-12 13 1 P 82 76 6 Halodule wrightii 78-1993-12 13 2 1 94 10 84 Caulerpa mexicana 78 1993-12 13 2 1 94 10 84 Caulerpa prolifera 6 1993-12 13 - 2 I 94 10 84 Thalassia testudinum 10 1993-12 13 2 P 68 55 13 Caulerpa mexicana 13 1993-12 13 2 P 68 55 13 Halodule wrightii 55 1993-12 13 2 P 68 55 13 Thalassia testudinum 3 1993-12 13 3 I 53 16 37 Caulerpa mexicana 37 1993-12 13 3 1 53 16 37 Thalassia testudinum 16 1993-12 13 3 P 55 0 55 Caulerpa mexicana 55 1993-12 13 4 I 97 0 97 Caulerpa mexicana 27 1993-12 13 4 I 97 0 97 Caulerpa prolifera 70 1993-12 13 4 P 100 0 100 Caulerpa mexicana 20 1993-12 13 4 P 100 0 100 Caulerpa prolifera 80 1993-12 13 5 I 50 0 50 Caulerpa mexicana 30 1993-12 13 5 I 50 0 50 Caulerpa prolifera 20 1993-12 13 5 P 72 0 72 Caulerpa mexicana 72 1993-12 13 6 I 90 0 90 Caulerpa mexicana 10 1993-12 13 6 I 90 0 90 Caulerpa prolifera 80 1993-12 13 6 P 60 0 60 Caulerpa mexicana 60 1993-12 13 7 I 70 0 70 Caulerpa prolifera 70 1993-12 13 7 P 70 0 70 Caulerpa prolifera 70 1993-12 13 8 I 42 0 42 Caulerpa prolifera 42 1993-12 13 8 P 40 0 40 Caulerpa mexicana 40 1993-12 13 9 I 95 0 95 Caulerpa mexicana 95 1993-12 13 9 P 60 20 40 Caulerpa mexicana 40 1993-12 13 9 P 60 20 40 Halodule wrightii 20 1993-12 13 10 I 90 0 90 Caulerpa mexicana 90 1993-12 13 10 P 85 75 10 Caulerpa prolifera 10 1993-12 13 10 P 85 75 10 Halodule wrightii 75 1994-08 13 1 P/I 99 0 99 Caulerpa prolifera 99 1994-08 13 2 P/I 65 1 66 Caulerpa prolifera 65 1994-08 13 2 P/I 65 1 66 Thalassia testudinum 1 1994-08 13 3 P/I 74 74 0 Thalassia testudinum 74 1994-08 13 4 P/I 95 7 88 Caulerpa prolifera 88 1994-08 13 4 P/I 95 7 88 Thalassia testudinum 7 1994-08 13 5 P/I 28 0 28 Caulerpa mexicana 7 1994-08 13 5 P/I 28 0 28 Caulerpa prolifera 21 1994-08 13 6 P/I 65 31 34 Caulerpa mexicana 16
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seaprass Algqae Species Cover 1994-08 13 6 P/I 65 31 34 Caul erpa prol i fera 18 1994-08 13 6 P/I 65 31 34 HalophiTa ehi-lemannii 21 1994-08 13 6 P/I 65 31 34 Thal assi a testudi num 10 1994-08 13 7 P/I 87 0 87 Caulerpa mexicana 87 1994-08 13 8 P/I 56 0 56 Caulerpa mexicana 56 1994-08 13 9 P/I 97 0 97 Caul erpa prolifera 97 1994-08 13 10 P/I 94 0 94 Caul erpa prol i fera 94 1994-08 13 11 P/I 96 96 18 Caulerpa prolifera 18 1994-08 13 11 P/I 96 96 18 Halodule wrightii 41 1994-08 13 11 P/I 96 96 18 Thal assi a testudi num 55 1994-08 13 12 P/I 100 61 65 Caul erpa mexi-cana 8 1994-08 13 12 P/I 100 61 65 Caulerpa prolifera 57 1994-08 13 12 P/I 100 61 65 Thal assi a testudi num 61 1994-08 13 13 P/I 87 67 16 Caul erpa mexicana 9 1994-08 13 13 P/I 87 67 16 Caulerpa proli fera 7 1994-08 13 13 P/I 87 67 16 Halodule wrightii 15 1994-08 13 13 P/I 87 67 16 Thalassia testudinum 42 1994-08 13 14 P/I 100 0 100 Caulerpa mexicana 100 1994-08 13 14 P/I 100 0 100 Caulerpa prol i fera 29 1994-08 13 15 P/I 100 0 100 Caulerpa mexicana 100 1994-08 13 15 P/I 100 0 100 Caul erpa prol i fera 2 1994-10 13 1 I 99 81 18 Caulerpa mexicana 18 1994-10 13 1 I 99 81 18 Halodule wrightii 1 1994-10 13 I 99 81 18 Thalassia testudinum 81 1994-10 13 1 P 99 90 77 Caulerpa prolifera 77 1994-10 13 11 P 99 90 77 Halodule wrightii 90 1994-10 13 2 I 96 96 8 Caulerpa mexicana 8 1994-10 13 2 I 96 96 8 Thalassia testudinum 96 1994-10 13 2 p 96 80 69 Caulerpa mexicana 60 1994-10 13 2 P 96 80 69 Caulerpa prolifera 9 1994-10 13 2 P 96 80 69 Halodule wrightii 8 1994-10 13 2 P 96 80 69 Thalassia testudinum 72 1994-10 13 3 I 72 8 64 Caulerpa mexicana 64 1994-10 13 3 I 72 '8 64 Thal assia testudinum 8 1994-10 13 3 p 94 23 84 Caulerpa mexicana 52 1994-10 13 3 P 94 23 84 Caulerpa prolifera 32 1994-10 13 3 P 94 23 84 Hal odul e wri ghtii 11 1994-10 13 3 P 94 23 84 Thai assia testudinum 12 1994-10 13 4 I 68 57 11 Caulerpa mexicana 1 1994-10 13 4 I 68 57 11 Caulerpa prolifera 10 1994-10 13 4 I 68 57 11 Hal odule wrightii 57 1994-10 13 4 P 92 0 92 Caulerpa mexicana 78 1994-10 13 4 P 92 0 92 Caulerpa proli fera 16 13 5 P 25 25 5 Caulerpa prolifera 5 1994-10 25 1994-10 13 5 P 25 25 5 Halodule wrightii 13 6 P 70 60 19 Caulerpa mexicana 4 1994-10 13 6 P 70 60 19 Caulerpa prol i fera 15 1994-10 59 1994-10 13 6 P 70 60 19 Halodule wrightii 1 1994-10 13 6 P 70 60 19 Hal ophi 1a engl emanni i 1 1994-10 13 7 I 40 40 7 Caulerpa mexicana 13 7 I 40 40 7 Caul erpa prol i fera 6 1994-10 40 1994-10 13 7 I 40 40 7 Halodule wrightii 13 P 70 70 6 Caulerpa mexicana 6 1994-10 7 70 1994-10 13 P 70 70 6 Halodule wrightii 7 Hal ophi 1a engl emanni i 1 1994-10 13 P 70 70 6 1994-10 13 8 I 20 20 10 Caulerpa mexicana 10
Appendix Table IV. Continued..
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Alqae Species Cover 1994-10 13 8 I 20 20 10 Halodule wrightii 20 1994-10 13 8 P 80 80 10 Caulerpa mextcana 5 1994-10 13 8 P 80 80 10 Caulerpa prolifera 5 1994-10 13 8 P 80 80 10 Halodule wrightii 80 1994-10 13 9 I 30 30 0 Halodule wrightii 30 1994-10 13 9 I 30 30 0 Halophila englemannii 5 1994-10 13 9 P 83 83 0 Halodule wrightii 83 1994-10 13 10 1 50 50 1 Caulerpa mexicana 1 1994-10 13 10 I 50 50 1 Halodu e wrightii 40 1994-10 13 10 I 50 50 1 Halophila englemannii 10 1994-10 13 10 P 20 20 10 Caulerpa prolifera 10 1994-10 13 10 P 20 20 10 Halodule wrightii 20 1995-08 13 1 I 100 100 29 Caulerpa mexicana 9 1995-08 13 1 1 100 100 29 Caulerpa prolifera 20 1995-08 13 1 1 100 100 29 Halodule wrightii 100 1995-08 13 1 P 100 100 33 Caulerpan mexicana 8 1995-08 13 1 P 100 100 33 Caulerpa prolifera 29 1995-08 13 1 P 100 100 33 Halodule wrightii 100 1995-08 13 2 I 99 99 21 Caulerpa mexicana 1 1995-08 13 2 I 99 99 21 Caulerpa prolifera 21 1995-08 13 2 I 99 99 21 Halodule wrightii 99 1995-08 13 2 P 86 86 68 Caulerpa mexicana 8 1995-08 13 2 P 86 86 68 Caulerpa prolifera 60 1995-08 13 2 P 86 86 68 Halodule wrightii 86 1995-08 13' 3 I 93 9 93 Caulerpa prolifera 93 1995-08 13 3 I 93 9 93 Halophila englemannii 9 1995-08 13 3 P 51 3 51 Caulerpa prolifera 51 1995-08 13 3 P 51 3 51. Halodule wrightii 3 1995-08 13 4 I 100 3 100 Caulerpa mexicana 2 1995-08 13 4 I 100 3 100 Caulerpa prolifera 100 1995-08 13 4 1 100 3 100 Halodule wrightil 3 1995-08 13 4 P 84 6 84 Caulerpa mexicana 3 1995-08 13 4 P 84 6 84 Caulerpa prolifera 84 1995-08 13 4 P 84 6 84 Halodule wrightii 6 1995-08 13 5 1 87 4 85 Caulerpa prolifera 85 1995-08 13 5 I 87 4 85 Halodule wrightii 4 1995-08 13 5 P 88 9 88 Caulerpa mexicana 14 1995-08 13 5 P 88 9 88 Caulerpa prolifera 88 1995-08 13 5 P 88 9 88 Halodule wrightii 9 1995-08 13 6 I 74 4 70 Caulerpa mexicana 60 1995-08 13 6 I 74 4 70 Caulerpa prolifera 10 1995-08 13 6 I 74 4 70 Halophila englemannii 4 1995-08 13 6 P 90 0 90 Caulerpa prolifera 90 1995-08 13 7 I 66 5 61 Caulerpa prolifera 61 1995-08 13 7 I 66 5 61 Halodule wrightii 5 1995-08 13 7 P 30 5 25 Caulerpa mexicana 5 1995-08 13 7 P 30 5 25 Caulerpa prolifera 20 1995-08 13 7 P 30 5 25 Halodule wrightii 5 1995-08 13 8 1 96 0 96 Caulerpa prolifera, 96 1995-08 13 8 P 90 90 90 Caulerpa prolifera 90 1995-08 13 8 P 90 90 90 Halodul e wrightii go 1995-08 13 9 I 73 2 71 Caulerpa prolifera 71 1995-08 13 9 1 73 2 71 Halodul e wrightii 2 1995-08 13 9 P 41 0 41 Caulerpa mexicana 3 1995-08 13 9 P 41 0 41 Caulerpa prolifera 38 1995-08 13 10 I 35 5 30 Caulerpa mexicana 30
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1995-08 13 10 I 35 5 30 Thalassia testudinum 5 1995-08 13 10 P 66 8 58 Caulerpa meictCana 50 1995-08 13 10 P 66 8 58 Caulerpa prolifera 8 1995-08 13 10 P 66 8 58 Halodule wrightii 5 1995-08 13 10 P 66 8 58 Halophila englemannii 3 1995-10 13 1 I 2 0 2 Caulerpa prolifera 2 1995-10 13 1 P 20 16 4 Caulerpa mexicana 4 1995-10 13 1 P 20 16 4 Halodule wrightii 16 1995-10 13 2 I 18 0 18 Caulerpa mexicana 15 1995-10 13 2 1 18 0 18 Caulerpa prolifera 3 1995-10 13 2 P 40 0 40 Caulerpa mexicana 30 1995-10 13 2 P 40 0 40 Caulerpa prolifera 10 1995-10 13 3 I 74 0 74 Caulerpa prolifera 74 1995-10 13 3 P 30 0 30 Caulerpa prolifera 30 1995-10 13 4 I 79 0 79- Caulerpa mexicana 14 1995-10 13 4 I 79 0 79 Caulerpa prolifera 79 1995-10 13 4 P 20 0 20 Caulerpa prolifera 20 1995-10 13 5 I 85 0 85 Caulerpa mexicana 83 1995-10 13 5 I 85 0 85 Caulerpa prolifera 2 1995-10 13 5 P 96 77 71 Caulerpa prolifera 71 1995-10 13 5 P 96 77 71 Halodule wrightii 77 1995-10 13 6 I 26 3 23 Caulerpa prolifera 23 1995-10 13 6 1 26 3 23 Halodule wrightii 3 1995-10 13 6 P 32 0 32 Caulerpa prolifera 32 1995-10 13 7 I 86 3 86 Caulerpa prolifera 86 1995-10 13 7 I 86 3 86 Halodule wrightii 3 1995-10 13 7 P 90 0 90 Caulerpa prolifera 90 1995-10 13 8 1 89 0 89 Caulerpa prolifera 89 1995-10 13 8 P 90 18 72 Caulerpa prolifera 72 1995-10 13 8 P 90 18- 72 Thalassia testudinum 18 1995-10 13 9 1 76i 0 76 Caulerpa prolifera 76 1995-10 13 9 P 100 20 80 Caulerpanmexicana 2 1995-10 13 9 P 100 20 80 Caulerpa prolifera 80 1995-10 13 9 P 100 20 80 Halodule wrightii 20 1993-12 14 1 I 69 69 0 Halodule wrightii 69 1993-12 14 1 P 100 100 0 Halodule wrightii 100 1993-12 14 2 I 98 98 0 Halodule wrightii 98 1993-12 14 2 P 100 100 0 Halodule wrightii 100 1993-12 14 3 I 95 95 0 Halodule wrightii 95 1993-12 14 3 P 82 82 0 Halodule wrightii 82 1993-12 14 4 I 97 97 0 Halodule wrightii 97 1993-12 14 4 P 73 73 0 Halodule wrightii 73 1993-12 14 5 I 95 95 0 Halodule wrightii 95 1993-12 14 5 P 95 95 0 Halodule wrightii 95 1993-12 14 6 I 93 93 2 Caulerpa prolifera 2 1993-12 14 6 I 93 93 2 HaloduXe wrightii 91 1993-12 14 6 P 97 97 0 Halodule wrightii 97 1993-12 14 7 I 93 93 0 Halodule wrightii 93 1993-12 14 7 P 96 96 0 Halodule wrightii 96 1993-12 14 8 I 95 95 0 Halodule wrightil 95 1993-12 14 8 P 89 89 0 Halodule wrightii 89 1993-12 14 9 I 83 83 0 Halodule wrightii 3 1993-12 14 9 I 83 83 0 Thalassia testudinum 83 1993-12 14 9 P 77 77 0 Thalassia testudinum 77 1993-12 14 10 I 100 100 0 Halodule wrightii 100 1993-12 14 10 P 98 98 0 Halodule wrightii 98
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Al gae Species Cover 1994-08 14 11 97 97 4 Halimeda incrassata 4 1994-08 14 97 97 4 Halodule wr+ghtii 97 1994-08 14 1 91 91 0 Halodule wrightii 89 1994-08 14 1 91 91 0 Thalassia testudinum 2 1994-08 14 2 77 77 0 Hal odul e wrightii 77 1994-08 14 2 92 92 0 Hal odul e wrightii 92 1994-08 14 3 85 85 0 Halodule wrightii 85 1994-08 14 3 90 90 0 Halodule wrightii 90 1994-08 14 4 97 97 0 Halodul e wrightii 97 1994-08 14 4 81 81 0 Halodule wrighti 81 1994-08 14 5 13 13 0 Halodule wrightii 13 1994-08 14 6 93 93 0 Halodule wrightil 93 1994-08 14 6 100 100 0 Halodule wrightii 100 1994-08 14 6 100 100 0 Halodule wrightii 100 1994-08 14 7 100 100 0 Hal odul e wrightii 100 1994-08 14 7 100 100 0 Halodule wrightii 100 1994-08 14 8 100 100 0 Halodule wrightil 100 1994-08 14 8 100 100 0 Halodule wri ghti i 100 1994-08 14 9 100 100 0 Hal odul e wrightil 100 1994-08 14 9 90 90 0 Thal assi a testudi num 90 1994-08 14 10 100 100 0 Halodule wrightii 100 1994-08 14 10 11 11 0 Thalassia testudinum 89 1994-10 14 1 84 84 0 Halodule wrightii 84 1994-10 14 1 96 96 0 Halodule wrightii 96 1994-10 14 2 72 72 0 Halodule wrightii 72 1994-10 14 2 72 72 0 Thal assia testudinum 2 1994-10 14 2 91 91 0 Thal assia testudinum 91 1994-10 14 3 84 84 -0 Halodule wrightii 84 1994-10 14 3 67 67 0 Halodule wrightii 67 1994-10 14 .4 99 99 0 Halodule wrightii 99 1994-10 14 4 96 96 0 Halodule wrightii 96 1994-10 14 5 97 97 0 Halodule wrightii 97 1994-10 14 5 99 99 0 Halodule wrightii 99 1994-10 14 6 98 98 0 Halodule wrightii 98 1994-10 14 6 95 95 0 Halodule wrightii 95 1994-10 14 7 97 97 0 Halodule wrightii 97 1994-10 14 7 76 76 0 Halodule wrightii 76 1994-10 14 8 86 86 0 Halodule wrightii 86 1994-10 14 8 87 88 1 Caul erpa prol i fera 1 14 8 87 88 1 Halodule wrightii 87 1994-10 1994-10 14 9 88 88 0 Halodule wrightii 88 1994-10 14 9 88 88 0 Hal odul e wri ghti i 88 1994-10 14 10 91 91 0 Halodule wrightii 91 1994-10 14 10 79 79 0 Halodule wrightii 79 1995-08 14 1 63 63 0 Halodule wrightii 63 1995-08 14 1 72 72 0 Halodule wrightii 72 1995-08 14 2 99 99 0 Halodule wrightii 99 1995-08 14 2 90 90 0 Halodule wrightii 90 1995-08 14. 3 98 98 0 Halodule wrightii 98 1995-08 14 3 89 89 0 Halodule wrightii 89 1995-08 14 4 100 100 0 Halodule wrightii 100 1995-08 14 4 98 98 0 Halodule wrightii 98 1995-08 14 5 99 99 0 Halodule wrightli 99 1995-08 14 5 100 100 0 Halodule wrightii 100 1995-08 14 6 100 100 0 Halodule wrightii 100 6 86 86 0 Hal odul e wri ghtii 86 1995-08 14
Appendix Table IV. Continued.
Perimeter/
Interior Total Total Total Date Station Rep. (P/I) Vegetation Seagrass Algae Species Cover 1995-08 14 7 96 96 0 Halodule wrightii 96 1995-08 14 7 88 88 0 Halodule wrightii 88 1995-08 14 8 91 91 0 Halodule wrightii 42 1995-08 14 8 91 91 0 Thal assi a testudi num 69 1995-08 14 8 99 99 0 Hal odule wri ghti i 82 1995-08 14 8 99 99 0 Thal assi a testudinum 22 1995-08 14 9 94 94 0 Thal assi a testudi numn 94 1995-08 14 9 95 95 0 Thai assi a testudi num 95 1995-08 14 10 93 93 0 Thalassia testudinum 93 1995-08 14 10 95 95 0 Thalassia testudinum 95 1995-10 14 1 100 100 0 Halodule wrightii 100 1995-10 14 1 100 100 0 Halodule wrighti1 100 1995-10 14 2 98 98 0 Halodule wrightii 98 1995-10 14 2 98 98 0 Thal assia testudinum 1 1995-10 14 2 94 94 0 Halodule wrightii 94 1995-10 14 3 98 98 0 Halodule wrightii 98 1995-10 14 3 100 100 0 Halodule wrightii 100 1995-10 14 4 30 30 0 Halodule wrightii 30 1995-10 14 4 0 0 0 Bare 0 1995-10 14 5 86 86 0 Halodule wrightii 86 1995-10 14 5 20 20 0 Halodule wrightii 20 1995-10 14 6 95 95 0 Halodule wrightii 95 1995-10 14 6 93 93 0 Halodule wrightii 93 1995-10 14 7 93 93 0 Halodule wrightii 93 1995-10 14 7 90 90 0 Halodule wrightii 90 1995-10 14 8 75 75 0 Halodule wrightii 40 1995-10 14 8 75 75 0 Thal assi a testudi num 35 1995-10 14 8 75 75 0 Thal assi a testudi num 75 1995-10 14 9 77 77 0 Halodule wrightii 77 1995-10 14 9 58 58 0 Halodule wrightii 58 1995-10 14 10 96 96 0 Halodule wrightii 96 1995-10 14 1Q 86 86 0 Halodule wrightii 86 1993-12 15 95 95 0 Thal assi a testudi num 95 1993-12 15 1 90 90 0 Thal assi a testudi num 90 1993-12 15 2 95 95 0 Thal assi a testudinum 95 1993-12 15 2 88 88 0 Thal assi a testudinum 88 1993-12 15 3 89 89 0 Halodule wrightii 18 1993-12 15 3 89 89 0 Thal assi a testudi num 86 1993-12 15 3 28 28 0 Thal assi a testudi hum 28 1993-12 15 4 100 100 0 Halodule wri ghtii 100 1993-12 15 4 89 89 0 Hal odul e wri ghti i 89 1993-12 15 5 100 100 0 Hal odul e wri ghti i 100 1993-12 15 5 100 100 0 Hal odul e wri ghti i 100 1993-12 15 6 100 100 0 Hal odul e wri ghti i 100 1993-12 15 6 78 78 0 Hal odul e wri ghti i 78 1993-12 15 7 100 100 0 Hal odul e wrightii 100 1993-12 15 7 100 100 0 Halodule wri ghti i 100 1993-12 15 8 100 100 0 Hal odule wri ghti i 100 1993-12 15 8 75 75 15 Caul erpa prol i fera 15 1993-12 15 8 75 75 15 Hal odule wri ghti i 75 1993-12 15 9 100 100 0 Halodule wri ghti i 100 1993-12 15 9 100 100 0 Hal odul e wrightii 100 1993-12 15 10 98 98 0 Halodule wri ghti i 98 1993-12 15 10 100 100 0 Hal odule wri ghti i 100 1994-08 15 1 90 90 0 Hal odul e wri ghti i 90 1994-08 15 2 94 94 0 Halodule wri ghti i 94
Appendix Table V. Dry weight biomass from .25cmX.25cm quadrats.
Date Station Rep. SPO. Biomass (q) 1994 1 1 Halodule wrightii 1.53 1994 1 2 Halodule wrightii 1.66 1994 1 3 Halodule wrightii ,.55 1994 1 4 Halodule wrightii 1.37 5 Halodule wrightii .98 1994 1 1994 1 6 Halodule wrightii 3.74 1995 1 1 Halodule wrightii .61 2 Halodule wrightii .26 1995 1 1995 1 3 Halodule wrightii 1.05 1995 1 4 Halodule wrightii 1.43 1995 1 5 Halodule wrightii .53 1995 1 6 Halodule wrightil .67 1994 2 1 Halodule wrightii .63 1994 2 2 Halodule wrightii 1.06 1994 2 3 Halodule wrightii .70 1994 2 4 Halodule wrightii .97 1994 2 5 Halodule wrightii .87 1994 2 6 Halodule wrightil .67 1995 2 1 Halodule wrightii .30 1995 2 2 Halodule wrightii .51 1995 2 3 Halodule wrightii .08 1995 2 4 Halodule wrightii .27 1995 2 5 Halodule wrightii .53 1995 2 6 Halodule wrightil .24 1994 3 1 Halodule wrightii .48 1994 3 2 Halodule wrightil .12 1994 3 3 Halodul e wrightii .56 1994 3 4 Hal odul e wri ghtii .40 1994 3 5 Hal odul e wri ghti i 1.18 1994 3 6 Halodule wrightii .39 1995 3 1 Halodule wrightii .73 1995 3 2 Halodule wrightii .19 1995 3 3 Halodule wrightii .43 1995 3 4 Halodule wrightii .61 1995 3 5 Halodule wrightii .09 1995 3 6 Halodule wrightii .49 1994 4" 1 Drift Algae 4.96 1994 4 1 Syringodium fil iforme 4.14 1994 4 2 Syringodiuum fil iforme 1.51 1994 4 3 Syri ngodi um fili forme 1.90 1994 4 4 Drift Algae 5.30 1994 4 4 Syri ngodi um fi Ii forme 2.76 1994 4 5 Syringodi um fi I i forme 2.27 1994 4 6 Syringodiumf Iliforme 3.49 1995 4 1 Hal imeda .43 1995 4 1 Syringodium fil iforme 1.12 1995 4 2 Drift Algae .63 1995 4 2 Syringodium fil iforme 1.84 1995 44 33 Drift Algae .05 1995 Syri ngodi um fil iforme 3.29
Appendix Table V. Continued.
Date Station Rep. Spp. B'iomass (q) 1995 4 4 Syringodium fil iforme 2.47 1995 4 5 Drift Algae .08 1995 4 5 Syringodium filiforme 2,86-1995 4 6 Haliimeda .01 1995 4 6 Syri ngodium fi Ii forme 1.62 1994 5 1 Halodule wrightii .50 5 2 Halodule wrightii .16 1994 1994 5 3 Halodule wrightii 1.13 1994 5 4 Halodule wrightii .29 1994 5 5 Halodule wrightii .35 1994 5 6 Halodule wrightii .75, 1995 5 1 None .00 1995 5 2 Caulerpa mexicana .15 1995 5 3 Caulerpa mexicana .03 1995 5 4 Halodule wrightii .06 1995 5 5 Halodule wrightii .11 1995 5 6 Halodule wrightii .05 1994 6 1 Halodule wrightii 1.15 2
1994 6 Hal odule wrightii .43 1994 6 :3 Drift Algae 1.96 1994 6 3 Halodule wrightii .70 1994 6 4 Halodule wrightii 2.-04 1994 6 5 Halodule wrightii .51 1994 6 6 Halodule wrightii .83 6 1 Drift Algae .23 1995 1995 6 1 Halodule wrightii 1.75 1995 6 2 Halodule wrightii 1.16 1995 6 3 Drift Algae .85 1995 6 3 Halodule wrightii 3.77 1995 6 4 Hal odul e wri ghti i 1.24 1995 6 5 Halodule wrightii 2.22 1995 6 6 Drift Algae .44 1995 6 6 Halodule wrightii 2.18 1995 7 6 Halophila englemannii .15 1994 1 Halodule wrightii ,83 7 I2 1.31 1994 7 HalodUle wrightii 3 Halodule wrightii 1.51 1994 7 1994 7 4 Halodule wrightii 1.55 1994 7 4 Hal ophi 1a engl emanni i .19 1994 7 5 Halodule wrightii .73 1994 7 5 Halophila engleemannii .69 1994 7 6 Halodule wrightii .94 1995 7 1 Halodule wrightii 2.39 1995 7 2 Halodule wrightii 4.40 1995 7 3 Halodule wrightii 1.49 1995 7 4 Drift Algae .51 1995 7 4 Halodule wrightii 1.92 1995 7 4 Halophila engleemannii .02 1995 7 5 Drift Algae .36 1995 5 Halodul e wrightii .48
Appendix Table V. Continued.
Date Station Rep. Spp. Biomass (g) 1995 7 6 Drift Algae .19 1995 7 6 Halodule wrightii 3.64 1994 8 1 Drift Algae 1 .56 1.25 1994 8 Halodule wrightii 1994 8 1 Hal ophi 1a engl emanni i .21 1994 8 1 Syri ngodi um fil iforme 3.66 1994 8 2 Drift Algae .08 1994 8 2 Syringodiuum f I i forme 5.74 1994 8 3 Drift Algae 2.23 1994 8 3 Halodule wrightii 1.18 1994 8 3 Hal ophi Ira engl emanni i .32 1994 8 3 Syringodium fil iforme .73 1994 8 4 Drift Algae .18 1994 8 4 Halodule wrightii 2.03 1994 8 4 Hal ophil a engl emanni i .09 1994 8 5 Drift Algae 6.08 1994 8 5 Halodule wrightii 2.02 1994 8 5 Syringodium fi Ii forme .94 1994 8 6 Halodule wrightii .99 1994 8 6 Halophila englemannii .04 1994 6 Syringodium fil i forme 1.44 8 1 1995 8 Drift Algae 1.05 1995 8 1 Syringodium fil iforme .54 1995 8 2 Drift Algae 1.65 1995 8 2 Syri ngodi um fil iforme 2.00 1995 3 Drift Algae 1.68 1995 3 Syringodiuum filiforme 1.86 8
1995 8 4 None .00 1995 8 5 Syringodiuum fiI iforme .01 1995 8 6 Dri ft Algae 17.77 1995 8 6 Syri ngodi um fi Ii forme .13 1994 9 1 Hal ophi 1a engl emanni i .11 1994 9 1 Syringodiuum fil iforme 3.29 1994 9 2 Drift Algae .11 1994 9 2 Halodule wrightii .17 1994 9 2 Halophil a englemannii .56 1994 9 2 Syri ngodi um fi Ii forme 4.09 1994 9 3 Halophila engleemannii .38 1994 9 3 Syringodium fil iforme 3.85 1994 9 4 Drift Algae 1.40 1994 9 4 Syringodium fil iforme 5.52 1994 9 5 Drift Algae .31 1994 9 5 Syringodiuum fil iforme 5.58 1994 9 6 Halophila englemannii *.21 1994 9 6 Syri ngodi um fil iforme 4.61 1995 9 1 Caulerpa prol ifera .02 1995 9 1 Drift Algae 1.74 1995 9 1 Syringodiuum filiforme 2.05 1995 99 2 Caulerpa prol ifera .06 2.94 1995 2 Drift Algae
Appendix Table V. Continued.
Date Station Rep. Spp. Biomass (q) 1995 9 2 Halodule wrightii .24 1995 9 2 Syringodium filiforme .77 1995 9 3 Caulerpa prolifera ..01 1995 9 3 Drift Algae 1:24 1995 9 3 Syringodium filiforme 1.69 1995 9 4 Syringodium filiforme 1.81 1995 9 5 Drift Algae 1.34 1995 9 5 Syringodium filiforme 3.79 1995 9 6 Syringodium filiforme 2.84 1994 10 1 Caulerpa prolifera .61 1994 10 1 Syringodium filiforme 4.41 1994 10 2 Caulerpa prolifera .78 1994 10 2 Drift. Algae 14.16 1994 10 2 Syringodium filiforme 5.23 1994 10 3 Caulerpa prolifera 2.80 1994 10 3 Syringodium filiforme 5.85 1994 10 4 Caulerpa prolifera .52 1994 10 4 Syringodium filiforme 2.77 1994 10 5 Caulerpa prolifera 3.67 1994 10 5 Drift Algae 14.42 1994 10 5 Halophila englemannii .24 1994 10 6 Caulerpa prolifera .38 1994 10 6 Syringodium filiforme 2.06 1995 10 1 Caulerpa prolifera 1.65 1995 10 1 Drift Algae 5.99 1995 10 1 Halophila englemannii .49 1995 10 1 Syringodium filiforme 1.86 1995 10 1 Udotea .. 59 1995 10 2 Caulerpa prolifera 1.28 1995 10 2 Drift Algae 5.54 1995 10 2 Syringodium filiforme 3.29 1995 10 3 Drift Algae 17.06 1995 10 3 Syringodium filiforme .86 1995 10 4 Drift Algae 19.32 1995 10 4 Syringodium filiforme 2.39 1995 10 5 Drift Algae 71.90 1995 10 5 Syringodium filiforme .19 1995 10 6 Caulerpa prolifera .36 1995 10 6 Drift Algae 10.28 1995 10 6 Syringodium filiforme 1.84 1994 11 1 Syringodium filiforme 9.12 1994 11 2 Syringodium filiforme 7.84 1994 11 3 Syringodium filiforme 6.77 1994 11 4 Syringodium filiforme 11.45 1994 11 5 Syringodium filiforme 6.97 1994 11 6 Syringodium filiforme 5.37 1995 11 1 Syringodium filiforme 3.42 1995 11 2 Syringodium filiforme 4.20 1995 11 3 Syringodium filiforme 3.44 1995 11 4 Drift Algae 2.96
Appendix Table V. Continued.
Date Station Rep. Spp. Biomass (q) 1995 11 4 Syringodium filiforme .65 1995 11 5 Syringodium filiforme 1.10 1995 11 6 Syringodium filiforme 3.36 1994 12 1 Caulerpa prolifera S02 1994 12 1 Syringodium filiforme 5.96 1994 12 2 Caulerpa prolifera .04 1994 12 2 Syringodium filiforme 8.36 1994 12 3 Drift Algae 13.16 1994 12 3 Halodule wrightii 4.97 1994 12 3 Syringodium filiforme 1.45 1994 12 4 Caulerpa prolifera .17 1994 12 4 Drift Algae 32.31 1994 12 4 Syringodium filiforme 9.63 1994 12 5 Caulerpa prolifera .31 1994 12 5 Drift Algae 5.62 1994 12 5 Syringodium filiforme 2.25 1994 12 6 Caulerpa prolifera .06 1994 12 6 Drift Algae 17.30 1994 12 6 Syringodium filiforme 13.30 1995 12 1 Caulerpa prolifera .17 1995 12 1 Drift Algae .66 1995 12 1 Syringodium filiforme 1.31 1995 12 2 Syringodium filiforme .33 1995 12 3 Caulerpa mexicana .04 1995 12 3 Drift Algae 1.40 1995 12 3 Syringodium filiforme 2.10 1995 12 4 Caulerpa prolifera .06 1995 12 4 Drift Algae 1.44 1995 12 4 Syringodium filiforme .77 1995 12 5 Caulerpa prolifera .01 1995 12 5 Drift Algae 2.08 1995 12 5 Syringodium filiforme 1.66 1995 12 6 Drift Algae .29 1995 12 6 Syringodium filiforme 1.86 1994 13 1 Caulerpa prolifera 2.58 1994 13 1 Drift Algae 2.34 1994 13 1 Thalassia testudinum 7.34 1994 13 2 Caulerpa mexicana 20.91 1994 13 2 Drift Algae 2.11 1994 13 3 Caulerpa prolifera 2.15 1994 13 3 Drift Algae 3.19 1994 13 3 Thalassia testudinum 3.14 1994 13 4 Caulerpa mexicana 18.84 1994 13 4 Caulerpa prolifera .86 1994 13 4 Drift Algae 32.43 1994 13 4 Thalassia testudinum 1.70 1994 13 5 Caulerpa mexicana 19.90 1994 13 5 Caulerpa prolifera .70 1994 13 5 Drift Algae 1.74 1994 13 5 Thalassia testudinum 1.56
Appendix Table V. Continued.
Date Station Rep_ Spp. Biomass (ci) 1994 13 6 Caulerpa mexicana 4.78 1994 13 6 Caulerpa prolifera .59 1994 13 6 Drift Algae 4.68 6 Thalassia testudinum ."667" 1994 13 1995 13 1 Caulerpa mexicana .33 1995 13 1 Caulerpa prolifera 1.15 1995 13 1 Drift Algae .37 1995 13 1 Halodule wrightii 2.34 1995 13 1 Halophila englemannii .26 1995 13 2 Caulerpa prolifera .72 1995 13 3 Caulerpa mexicana .02 1995 13 3 Caulerpa prolifera .19 1995 13 4 Caulerpa mexicana .26 1995 13 4 Halodule wrightii .66 1995 13 5 Caulerpa prolifera 1.55 1995 13 5 Halophila englemannii .06 1995 13 6 Caulerpa prolifera 1.55 1995 13 6 Drift Algae 01 1995 13 6 Halodule wrightii .24 1995 13 6 Thalassia testudinum .07 1994 14 1 Drift'Algae 1.34 1994 14 1 Halodule wrightii .85 1994 14 1 Syringodium filiforme .37 1994 14 2 Drift Algae 3.01 1994 14 2 Halodule wrightii .86 1994 14 3 Halodule wrightii .41 1994 14 3 Syringodium filiforme .53 1994 14 4 Drift Algae 4.13 1994 14 4 Halodule wrightii .37 1994 14 4 Syringodium filiforme .30 1994 14 5 Drift Algae .32 1994 14 5 Halodule wrightii .95 1994 14 6 Drift Algae 10.23 1994 14 6 Halodule wrightii .55 1994 14 6 Syringodiuim filiforme 3.92 1995 14 1 Halodule wrightil 2.45 1995 14 2 Halodulewrightil 3.56 1995 14 3 Halodule wrightil 5.16 1995 14 4 Halodule wrightii 2.96 1995 14 5 Halodule wrightii 2.43 1995 14 6 Halodule wrightii 1.78 1994 15 1 Halodule wrightii 1.06 1994 15 1 Thalassia testudinum .21 1994 15 2 Drift Algae .09 1994 15 2 Halodule wrightii 1.39 1994 15 3 Halodule wrightii 8.35 1994 15 4 Drift Algae 4.56 1994 15 4 Halodule wrightii 7.63 1994 15 5 Drift Algae .79 1994 15 5 Halodule wrightii 5.27
Appendix Table V. Continued.
Date Station Rep. Spp. Biomass (q) 1994 15 6 Halodule wrightii 2.20 1994 15 6 Thalassia testudinum 1.03 1995 15 1 Drift Algae .80 1995 15 1 Halodule wrightii 2138 1995 15 1 Syringodium filiforme .01 1995 15 1 Thalassia testudinum .01 1995 15 2 Caulerpa prolifera .09 1995 15 2 Drift Algae 2.87 1995 15 2 Halodule wrightii 3.05 1995 15 2 Thalassia testudinum .04 1995 15 3 Halodule wrightii .65 1995 15 3 Syringodium filiforme .01 1995 15 4 Drift Algae .81 1995 15 4 Halodule wrightii 3.23 1995 15 5 Halodule wrightii 1.07 1995 15 6 Drift Algae .53 1995 15 6 Halodule wrightii 1.47
Appendix Table VI. Biomass data and productivity (mg/m2/day) of grass clip samples.
Productivity Growth Wt./Shoot .Sample Year Station Rep. Species (mg/m2/dav) Shoots/m2 Dayvs .(UL) Wt. (Wig)
.1994 1 1 Halodulle wrightii 196 299 14 92 275 1994 2 Halodule wrightii 543 499 14 152 762 1994 3 Halodule wrightii 604 499 14 170 848 1994 4 Halodule wrightii 627 499 14 176 881 1994 1
5 Halodule wrightii 403 399 14 142 566 1994 6 Hal odule wrighti i 803 598 14 188 1128 1995 1 1 Halodule wrightii 1225 1595 14 108 1720 1995 1 1 2 Halodule wrightii 964 1196 1 14 113 1353 1995 1 3 Halodule wrightii 508 798 14 89 713 1995 1 4 Halodule wrightii 266 499 14 75 374 1995 1 6 Halodule wrightii 1008 1795 14 79 1416 1995 1 6 Halodule wrightii 1182 1595 14 104 1660 1994 2 1 1 Halodule wrightii 274 299 14 128 385 1994 2 1 2 Halodule wrightii 121 199 14 85 170 1994 3 Halodule wrightii 325 698 14 65 456 1994 4 Halodule wrightii 154 299 14 72 216 1994 5 Halodule wrighti i 153 399 14 54 215 1995 2 1 Hal odul e wrighti i 278 598 14 65 390.
1995 2 2 Halodule wrightii 574 1097 14 73 806 1995 3 3 Halodule wrighti i 613 1196 14 72 861.
1995 22 4 Halodule wrightii 781 1296 14 84 1096 1995 2 6 Halodule wrighti i 736 1396 14 74 1034 1994 23 3 1 Halodule wrighti i 55 299 3 14 26 77 1994 23 2 Hal odule wrighti" 64 199 14 45 90 1994 3 3 3 Halodule wrightii 22 14 100 31 31 1994 33 4 Halodule wrighti1 210 499 14 59 295 1994 3 5 Hal odul e wrightil 66 199 14 47 93 1995 3 1 Halodule wrightii. 770 798 14 135 1081 1995 3 2 Halodule wrightii 667 1196 14 78 937 1995 3 Hal odul e wrightil 1102 997 14 155 1548 1995 4 Halodule wrightii 1102 1196 14 129 1547 1995 5 Halodule wrightii 1085 1894 14 80 1524 1995 6 Hal odule wrightii 716 499 14 201 1005
Appendix Table VI. Continued.
Productivity Growth Wt./Shoot Sample Year Station Rep. Species (mg/m2/day) Shoots/m2 Days (jq) Wt. (Iq) 1994 4 1 Syringodium filiforme 466 320 14 204 1428 1994 4 2 Syringodium filiforme 714 274 14 365 2190 1994 4 3 Syringodium filiforme 417 183 14 320 1279 1994 4 4 Syringodium filiforme 428 228 14 262 1312 1994 4 5 Syringodium filiforme 147 137 14 150 451 1995 4 1 Syringodium filiforme 2212 1196 11 203 2441 1995 4 3 Syringodium filiforme 2837 1595 11 196 3130 1995 4 4 Syringodium filiforme 4148 2493 11 183 4577 1995 4 5 Syringodium filiforme 3516 2493 11 155 3879 1995 4 6 Syringodium filiforme 4373 3290 11 146 4825 1994 5 1 Halodule wrightii 86 299 15 43 130 1994 5 2 Halodule wrightii 60 100 15 90 90 1994 5 3 Halodule wrightii 68 100 15 103 103 1994 5 4 Halodule wrightii 33 100 15 49 49 1994 5 5 Halodule wrightii 58 199 15 44 88 1994 5 6 Halodule wrightii 134 399 15 50 201 1995 5 1 Halodule wrightii 266 499 13 69 347 1995 5 2 Halodule wrightii 54 100 13 71 71 1995 5 3 Halodule wrightil 122 199 13 80 159 1995 5 4 None 0 0 13 N/A 0 1995 5 5 Halodule wrightii 230 598 13 50 300 1995 5 6 Halodule wrightii 232 598 13 50 302 1994 6 1 Halodule wrightii 352 499 14 99 494 1994 6 2 Halodule wrightii 571 299 14 267 802 1994 6 3 Halodule wrightii 306 399 14 108 430 1994 6 4 Halodule wrightii. 110 199 14 77 154 1994 6 5 Halodule wrightii 354 399 14 124 497 1994 6 6 Halodule wrightii 409 499 14 115 575 1995 6 1 Halodule wrightii.. 551 698 13 103 719 1995 6 2 Halodule wrightii 1045 1196 13 114 1362 1995 6 3 Halodule wrightii 449 598 13 98 586 1995 6 4 Halodule wrightii 630 399 13 205 821 1995 6 5 Halodule wrightii 1818 798 13 296 2371 1995 6 6 Halodule wrightii 182 399 13 59 237
Appendix Table VI. Continued.
Productivity Growth Wt./Shoot Sample Year Station Rep. Species (mq/m2/day) Shoots/m2 Days (ju) Wt, (ug) 1994 7 Halodule wrightii 216 199 14 152 304 1994 7 Halodule wrightii 111 199 14 78 156 1994 7 Halodule wrightii 324 598 14 76 455 1994 7 Halodule wrightii 210 598 14 49 295 1994 7 Halodule wrightii 175 299 14 82 246 1995 7 Halodule wrightii 847 798 13 138 1105 1995 7 Halodule wrightii 893 798 13 146 1165 1995 7 Halodule wrightii 1251 1496 13 109 1631 1995 7 Halodule wrightii 212 399 13 69 277 1995 7 Halodule wrightii 1340 1396 13 125 1747 1994 8 Halodule wrightii 214 199 12 129 258 1994 8 Halodule wrightii 422 399 12 127 508 1994 8 Halodule wrightii 660 798 12 99 794 1994 8 Halodule wrightii 520 1097 12 57 626 1994 8 Halodule wrightil 764 698 12 131 919 1995 8 Syringodium fili forme 534 499 11 118 589 1995 8 Halodule wrightii 1216 1196 11 112 1342 1995 8 Halodule wrightii 834 1396 11 66 920 1995 8 Syri ngodi um fi Ii forme 1078 1097 11 108 1189 1995 8 Syringodium fil iforme 1951 1396 11 154 2153 1995 8 Halodule wrightii 609 897 11 75 672 1994 9 Syri ngodium fil iforme 1115 776 14 201 3420 1994 9 Syringodium fil iforme 670 411 14 228 2054 1994 9 Syri ngodi um fil iforme 633 411 14 216 1941 1994 9 Syri ngodi um fi 1i forme 1285 959 14 188 3940 1994 9 Syringodium fil iforme 334 411 14 114
- 1023 1995 9 Syringodium fil iforme 198 274 13 94 565 1995 9 Syri ngodi um fil iforme 283 228 13 161 806 1995 9 Syri ngodi um fi 1i forme 1967 548 13 467 5601 1995 9 Syri ngodi um fil iforme 414 320 13 168 13 1178 1995 9 Syringodium fil iforme 314 274 149 894 1995 9 Syringodiuum fil iforme 130 183 13 92 14 369 1994 10 Syri ngodi um fil iforme 348 365 133 1066 1994 10 Syri ngodi um fil iforme 642 822 14 109 1968
Appendix Table VI Continued.
Productivity Growth Wt./Shoot Sample Year Station Rep. Species (mq/m2/day) Shoots/m2 Days .1 L9 Wt. (uOq) 1994 10 Syri ngodi um fi Ii forme 604 868 14 97 1851 1994 10 Syringodium fili forme 141 365 14 54 433 1994 10 Syringodiuum fi liforme 431 457 14 132 1322 1995 10 Syri ngodi um fil iforme 404 274 13 192 1149 1995 10 Syringodi um fi Ii forme 840 548 13 199 2392 1995 10 Syringodium fil i forme 803 685 13 152 2287 1995 10 Syringodium fil i forme 293 274 13 139 834 1995 10 Syringodiuum filiforme 1011 822 13 160 2879 1994 11 Syri ngodi um fi Ii forme 182 91 12 239 478 1994 11 Syringodiuum fil i forme 311 91 12 409 818 1994 .11 Syri ngodi um fi 1i forme 635 274 12 278 1668 1994 12 Syri ngodium fil iforme 375 91 12 493 986 1995 12 Syri ngodiuum fil I forme 479 228 14 294 1469 1995 12 Syri ngodi um fil iforme 1388 320 14 608 4257 1995 11 Syri ngodi um fil iforme 1145 411 14 390 3510 1995 11 Syringodiuum filiforme 386 365 14 148 1183 1995 12 None 0 0 14 N/A 0 1995 12 Syri ngodi um fi iiforme 598 274 14 306 1835 1994 12 Syringodium fil iforme 80 137 14 82 246 1994 12 Syringodiuum fil iforme 575 228 14 353 1764 1994 12 Syri ngodium fil iforme 348 274 14 178 1068 1994 12 Syringodium filiforme 385 320 14 169 1181 1994 12 Syringodium fil iforme 135 274 14 69 413 1995 12 Syringodium fil iforme 1100 822 14 187 3372 1995 12 Syringodirum fil iforme 810 731 14 155 2484 1995 12 Syringodium filiforme 12 1213 1324 14 128 3720 1995 12 Syri ngodi um fil iforme 931 822 14 159 2855 1995 Syri ngodium fil i forme 872 731 14 167 2673 1995 12 Syri ngodi um fil iforme 1543 1279 14 169 4732 1994 13 Halodule wrightii 383 598 14 90 538 1994 13 Halodule wrightii 13 283 299 14 133 398 1994 Halodule wrightii 51 199 14 36 72 1994 13 Halodule wrightii 13 175 399 14 62 246 1994 Halodule wrightii 36 199 14 26 51
Appendix Table VI. Continued.
Productivity Growth Wt./Shoot Sample Year Station Rep. Species (mg/m2/day) Shoots/m2 Days - (Ojq) Wt. (uL) 1995 13 Halodule wrighti i 182 399 13 59 237 1995 13 Halodule wrightil 281 399 13 92 367 1995 13 None 0 0 13 N/A 0 1995 13 Hal odul e wrightii 589 598 13 128 768 1995 13 Halodule wrightii 221 499 13 58 288 1995 13 Halodule wrightii 346 499 13 90 451 1994 14 Halodule wrightii 617 598 12 124 743 1994 14 Halodule wrighti i 714 299 12 286 859 1994 14 Halodule wrightii 1022 798 12 154 1230 1994 14 Hal odul e wrighti i 449 199 12 270 540 1995 14 Halodule wrightii 824 798 13 134 1074 1995 14 Halodule wrightii 826 1196 13 90 1077 1995 14 Halodule wrighti i 557 499 13 145 726 1995 14 Halodule wrightii 864 1097 13 102 1127 1995 14 Halodule wrighti i 703 1196 13 76 916 1995 14 Halodule wri ghti i 508 1097 13 60 662 1994 15 Halodule wrightii 443 299 12 178 533 1994 15 Hal odul e wrighti i 389 598 12 78 468 1994 15 Halodule wrighti i 572 1296 12 53 688 1994 15 Halodule wrightii 739 698 12 127 889 1994 15 Halodule wrightii 469 299 12 188 565 1995 15 Halodule wrightii 352 365 14 135 1078 1995 15 Halodule wrightii 256 274 14 131 785 1995 15 Hal odul e wrightii 1080 1370 14 110 3310 1995 15 Hal odul e wrightii 427 639 14 94 1310 1995 15 Hal odule wrighti i 970 1370 14 99 2974 1995 15 Halodule wrightii 911 1187 14 107 2792 I
U. S. Nuclear Regulatory Commission Response to 3F0410-04 Request for Documents RAI 3-4 Crystal River November 2001 Seagrass Survey
Jfr1NO-L Seagrass Survey: November 2001 Resurvey at the Florida Power Crystal River Generating Facility.
Revisit to Area last surveyed in 1995 by MML.
Finalized March 7, 2002 Mr. David A. Bruzek Natural Resources Specialist Florida Power - a Progress Energy Company P.O. Box 14042 St. Petersburg, Florida 3733-4042 By the Coastal Seas Consortium, Inc.
P.O. Box 20818 Bradenton, Florida 34204-0818 cscmjm@aol.com Michael J. Marshall Principal Investigator
Table of Contents ............................................................................... 2 Introduction ................................................................................. 3 Methods ........................................................................................ 3 Results and Discussion ....................................................................... 4 Summary and Conclusions ................................................................ 6 Literature Cited .............................................................................. 7 Figures ............................................................................................ 8 Appendix - Tables ......................................................................... 13 2
Introduction Mote Marine Laboratory (MML) surveyed seagrasses at the Florida Power Corporation (FPC) Crystal River facility in 1993, 1994 and 1995 (Estevez and Marshall, 1993; 1994; and 1995) in an attempt to determine the effect of newly installed helper cooling towers on the distribution of Submerged Aquatic Vegetation (SAV) in the discharge area and within the adjacent estuarine environment. Earlier Mattson et al. (1988) surveyed seagrasses in the thermally impacted area and found that standing crop, productivity, and growth rates were lower than at sites away from the Point of Discharge (POD). MML found several trends in their 3 years of study; 1) several new beds of SAV appeared along transects which were largely completely barren in 1993; 2) recruitment of seagrass into barren areas was not extensive; 3) 8 of the 15 surveyed beds showed some expansion beyond their original boundaries 4) percent coverage of SAV declined at 10 of 15 sites. FPC contracted the Coastal Seas Consortium, Inc., to resurvey the same area in November 2001 in order to determine if SAV beds have changed since the 1995 MML survey.
Our goal in the 2001 resurvey was not to revisit all of the sites but to select several in the areas considered to be most strongly impacted by the thermal effluent and to compare those to the MML (1993 throughl995) results. Unfavorable weather conditions (rain and strong winds) limited us to surveys of basins 1, 2, and part of 3 (Figure 1). Basin 4 was not surveyed due to poor visibility. Observations were made in areas where visibility allowed and during low tides when we could walk the flats.
Methods Station surveys Our methods were much the same as those used by MML. A recent model Garmin GPS Map 76 was used to relocate the beds from location data given in the MML reports. After arriving at a station we attempted to find the original SAV boundary markers used by MML to delineate the seagrass bed edges in the first year of the MML studies (Estevez and Marshall, 1993). In 2001 we tried to find the markers by dragging a weighted rope through the previously marked beds. MML used the same method in its three years of monitoring. We found no markers at Stations 1 and 3 and two markers at Station 2. We therefore were not able to make the boundary measurements reported by MML. We relied upon MML's recorded GPS location data to find the approximate center of each bed. The Garmin GPS map 76 uses a Wide Area Augmentation System to improve accuracy of measurements and while we tried to find the SAV bed centers we were probably off by some unknown distance as a result of recent changes in the GPS navigational system.
Finding two of the original markers at Station 2 at least confirmed that we had found 3
the original study site. Michael Marshall's (a participant in and co-author of the MML studies) memory of the MML study sites coincided with the GPS-found locations.
We used the GPS unit to locate the shoreward and seaward edges of the study sites. We stopped the width measurements when we reached 100 meters beyond the inside edge of each seagrass bed. The beds at each of the basin 1 sites extended well beyond the 1995 boundaries.
We used a 1-M2 quadrat divided into 100 subunits (1OX1O cm squares) to determine % cover within each bed (Figure 2). Our % cover observations were taken at a series of haphazardly selected points by tossing the quadrat in front of us as we walked or swam through the study sites.
Transect Surveys We used a similar quadrat technique to determine SAV bottom cover percentages along MML transects 1W, IN, 2W, 3W, 4W and 5W. We attempted to do more transects but poor water visibility limited this effort. . Instead of towing divers along the entire length of each transect we used a bounce diving method by which our observation points along each transect were spaced at 100m intervals (see Figure 3, transect 5W as an example of the dive point spacing). Upon arrival at a site a diver would determine SAV cover within 5 replicated 1m2 quadrats and the boat operator would record those observations and depth, bottom type, and GPS determined location data. We used the MML location data again to find the transects.
In most cases there were no markers left from the MML studies but we did find, through GPS navigation, two wooden stakes at the exact MML reported starting location at the northern most point of transect 5.
Results and Discussion The seagrass bed begins at a point 74.6 meters away from the point of discharge (POD) and continues across Basin 1 to the saltmarsh on Basin 1's northern boundary. Transect seagrass observations (Table 1) from Transects iN, 1W,and 2W (Fig.3) which traverse Basin 1 show seagrass % coverages range, as an average of the series of points checked on each transect, from 32% on Transect IN to 39% on Transect 2W. Halodule was found at 50% of the points checked on transect IN, at 62.5% of the points on Transect 2W, 75% of the points on Transect 3W, and at 55.6% of the points on Transect 1W (not including the 2A points). The 2A points were an extension of transect 1W into Rocky Creek. Halodule was found at several points inside the creek on its banks until a point was reached where rocky substrate replaced the soft sediments found at the creek mouth.
MML found a "new" seagrass bed on Transect IN in 1995 with an average percent over of <5% mean cover. The bed was irregularly shaped. By November 2001, percent cover at the 14 spots surveyed on this transect reached 100% based 4
on the mean of bottom coverage from 5, 1 M2 quadrats. Thus on this transect seagrasses are much more widely distributed and bottom coverage is much higher than when last observed in 1995.
The same is true of the other Basin I transects, 1W, 2W, and 3W. No large beds of seagrass were found on these transects in 1993, 1994, or 1995(MML 1993, 1994,1995- see Figure 3). The only seagrass found on these transects in the MML study were centered around the black dot points shown in Figure 3. In our survey, November (2001) we found an extensive bed of seagrass with an overall average for all observed points of 39.19 % for Transect 2W, 38% for Transect 1W and 34.5%
for Transect 3W. Seagrass cover reached 100% (as shown in Figure 1) for several points on these three transects.
Intensive monitoring stations.
Basin 1 Stations.
We visited all three of the Basin I stations (Stations 1, 2, and 3) which were originally located and monitored by MML in 1993. We were not able to find the iron and concrete parking stone markers that were set out in 1993. We relied upon the MML GPS derived latitude and longitude data to find the beds. We searched for but could not find the center point markers at any of the sites we visited. We did find two re-bar edge markers at Station 2. Our bed width measurements were therefore made from the GPS located center of each bed to the outside edge or to a point not exceeding 100 meters past the shoreward point. The 1995 Station I measurements (MML, 1995) showed that the bed width was not much greater than when it had been first measured in 1993: it averaged 2.88 feet wider than the original 1993 measurement of 13.17 feet from the approximate center to the seaward edge. In 2001 we stopped our survey on Station 1 at 217 feet from the approximate position of the center marker. The Halodule in this area continued much further toward the discharge channel.
Halodule coverage in the shoreward side of Station I averaged 88.9%
(Table2). In 2001 seagrass in the outer area beyond the position of the edge in 1995 averaged 97.9%. These % cover data are similar to those reported by MML (1995;). MML reported an interior cover by Halodule of 76.5%. The perimeter seagrass in the MML 1995 report was 78.4%. Halodule wrightii was the only seagrass present in the Station I area in all of the MML reports and in our 2001 survey.
The interior area of Station 2 had a mean of 30% Halodule cover in 2001.
After swimming beyond the southern edge of the vegetated area we found a sandy patch with 0% seagrass cover. Beyond that patch to the south seagrasses started up again and continued toward the discharge channel. Halodule in that area averaged 5
74% cover. MML reported an interior %cover of 47. 1%and a perimeter % cover of 44.0% in 1995. Their 1994 report showed higher percent cover in the interior, 96.4% and perimeter, 89.3% bed areas. The sandy patch seen in 2001 was approximately 114' wide so the seagrass beyond that area should be considered a new bed. The bed was determined to be 136' wide from the north edge to the beginning of the sand patch. This is considerably wider than reported in MML (1995). Halodule u'rightiiwas the only seagrass observed at Station 3 and within the surrounding area. The decline in cover at Station 2 suggests a gradual loss of seagrass over time.
Station 3 SAV followed a similar pattern. Halodule covered an average 89.75% of the bottom near the original center. It covered 89.2% of the bottom in the newly colonized area beyond the edge of the bed where no seagrasses were found in 1995. MML reported a total cover of 51.6% in 1995. Station 3 seagrasses now extend well beyond 100 meters past the center marker. This is much expanded from the dimensions reported by MML (1995). Halodule was the only seagrass species in this area.
We attempted to survey Stations 5,6, and 7 but low visibility in the area at the time of our study, November 13-16, 2001, prevented us from being able to see the bottom and seagrass if it existed.
We did resurvey stations 11 and 12 in Rocky Cove. Station 12 had a mix of Syringodium (11.5% cover) and Halodule (55.5% cover). Estevez and Marshall (see Table 6 in MML 1995;) reported a bottom cover of 94%. Visibility at Station 12 was also very poor. These results are similar to that reported in MML (1995).
The seagrasses at Station 12 are bounded by oyster bars and a deep channel making further expansion of this bed impossible.
Station 11, located deep in Rocky Cove, had 100% in 2001 and 98.8% in 19995,cover by Syringodiumfiliforme. The only other SAV species, the green alga, Halophilaengelmanni was found there in 1993 but was not seen in 1995.
Poor visibility during our 2001 survey prevented us from seeing if the alga was present.
Summary and Conclusions Since the last MML survey (Estevez and Marshall, 1995) The seagrass Halodule wrightii has spread throughout Basin 1 and 2. Our results (Table 1) demonstrate that this species covers most of the area. It is only limited from covering the entirety of these two basins by rocky bars, shelly bottom inappropriate for seagrass growth and water depths considered to be either too shallow or too deep for Halodule. There is such extensive growth that prop scars (Fig.4) are now a 6
problem in some areas. During our survey manatees were seen over the seagrass beds presumably feeding on the seagrass.
Basin 1 is now up to 50% covered by a large bed of relatively dense Halodule bordered by oyster bars, within a mosaic of exposed rock, shallow sandy bars, and a few deep channels. Basin I is probably the area most impacted by the thermal effluent from the discharge canal. Thus it appears that the helper cooling towers have apparently altered the thermal regime to achieve suitable conditions for seagrass survival, bed expansion, and reproduction.
Seagrass beds, in Basin 1, at the last MML survey in 1995 had not expanded more than 2.75 meters from the original boundaries established in 1993. On our survey we found that the boundaries of beds 1, 2, and 3 were now located more than 35 meters from the original approximate center of each site. In fact, the beds have now grown into a more or less continuous bed of seagrass throughout Basin 1.
Only inappropriate substrate types and depths presumably limiting to Halodule growth under the water clarity regime typical of this area break the bed in this area into large patches. There is a barren muddy/sandy band parallel to the discharge channel but it contained small, sparse patches of Halodule on our survey dates.
These patches may indicate that this channel-side area is now being colonized by seagrass.
The large sand patch adjacent to Station 2 is an area that may not yet been colonized by seagrass. Seagrass adjacent to the seaward and shoreward borders of the sand patch is flourishing and the bed has expanded well beyond the limits of the Station 2 seagrass observed by MML.
Our observations in Basin 1 suggest that it might be possible for other seagrass species to grow in this area. Halodule wrightii is generally considered to be a fast growing early colonizer of shallow, barren areas within seagrass beds.
Colonization by Thalassia and Syringodium would be expected to occur at a slower rate. The current mosaic-like arrangement of marsh, seagrass, rocky bars, oyster bars and shallow flats is ideal juvenile habitat for a large number of fish and invertebrate species. Fish can find shelter in the marshes and seagrasses at high tides and feed on the mud flats, oyster bars and rocky outcrops when tides are appropriate. We observed several large schools of small fishes while wading across our transects and at each station. Dolphins were also observed feeding on larger fish at numerous locations around the study site during our fieldwork.
Literature Cited Estevez, E.D. and M. J. Marshall 1993. 1993 Summary Report for Crystal River 3 year NPDES monitoring project. FPC contract S01100. Environmental Service Department Florida Power Corporation.
7
Estevez, E.D. and M. J. Marshall 1994. 1994 Summary Report for Crystal River 3 year NPDES monitoring project (addendum 2). FPC contract SO 1100.
Environmental Service Department Florida Power Corporation.
Estevez, E.D. and M. J. Marshall 1995. 1995 Summary Report for Crystal River 3 year NPDES monitoring project. FPC contract SO 1100 (addendum 1).
Environmental Service Department Florida Power Corporation.
Mattson, R.A., J.R. Derrenbacker, Jr., R. R. Lewis, III. 1986. Effects of thermal addition from the Crystal River generating complex on the submergent macrophyte communities in Crystal Bay, Florida. In Mahadevan, K, Rhoda Evans, Paul Behrens, Thomas Biffar, and Lawrence Olsen (editors) Proceedings of the southeastern workshop on aquatic ecological effects of power generation. MML report 124, Sarasota, Florida.
8
Figures 1-4 9
10 Be 9
BY 6 7 32 A$ 4 8 14 15
,a as J B, 8 13 o.., 1-w l/
Figure 1. Map of basins as defined in Estevez and Marshall (1993) for MML's seagrass studies. Seagrass beds are numbered 1-15. Basins are identified by codes BI-B5.
Figure 2. lm x Im quadrat used for this study. Photo shows the typical density of the seagrass, Halodule, at a location within 100m of the POD.
P I Pe I=
Figure 3. Transects monitored by MML. Black dots are locations where seagrass patches were located during the MML studies. The green area represents the current (November 2001) area which is largely covered by Halodule. Dark green on the south side of the discharge canal represents the distribution of Syrngodium.
- .""a Figure 4. Prop scars in basin I during November 2001.
Appendix Tables 1 and 2 14
Appendix Table 1. November 2001 Transect Data Florida Power Corporation Seagrass Survey Transect Data Florida Power Corporation Seagrass Survey Table 1A Transect IN Mean of 5 quads Date Transect Station Latitude Longitude Depth(Ft.) SAV % Cover Seagrass or Bottom Type 11/15/01 iN 1 N28 57 41.0 W82 43 25.1 0 0 oyster bar 11/15/01 1N 2 N28 57 40.9 W82 43 25.6 0 0 edge of seagrass 11/15/01 iN 3 N28 57 40.9 W82 43 27.2 0.2 100 Halodule 11/15/01 iN 4 N28 57 41.6 W82 43 30.5 2 0 tidal channel 11/15/01 iN 5 N28 57 41.9 W82 43 32.1 0.5 99.4 Halodule 11/15/01 iN 6 N28 57 42.2 W82 43 32.6 0 0" oyster bar 11/15/01 iN 7 N28 57 42.4 W82 43 34.3 0 0 edge of bar 11/15/01 1N 8 N28 5742.7 W82 43 35.8 0.5 83.4 Halodule 11/15/01 iN 9 N28 57 43.3 W82 43 39.6 0.5 8.4 Halodule 11/15/01 iN 10 N28 57 44.0 W82 43 43.4 3.5 36 Halodule 11/15/01 IN 11 N28 57 44.9 W82 43 46.9 3 0 barren 11/15/01 iN 12 N28 57 45.5 W82 43 50.8 3.1 42 Halodule 11/15/01 iN 13 N28 57 46.3 W82 43 55.0 3.5 0 rock 11/15/01 iN 14 N28 57 46.1 W82 43 57.0 3.1 80 Halodule AVERAGE 1.42 32.09 Table I B Transect 2W Date Transect Station Latitude Longitude Depth(Ft.) SAV % Cover Seagrass or Bottom Type 11/15/01 2W 1 N28 58 02.5 W82 43 49.2 1.5 0 sand/mud 11/15/01 2W 2 N28 57 58.6 W82 43 49.1 2.5 86 Halodule 11/15/01 2W 3 N28 57 55.4 W82 43 49.0 2.7 24 Halodule 11/15/01 2W 4 N28 57 52.5 W82 43 49.1 2.7 65.5 Halodule 11/15/01 2W 5a N28 57 49.2 W82 43 49.8 3 0 sand/mud 11/15/01 2W 6 N28 57 46.1 W82 43 49.9 3.3 90 Halodule 11/15/01 2W 7 N28 57 42.5 W82 43 50.8 2.8 48 Halodule 11/15/01 2W 8 N28 57 39.2 W82 43 49.5 2.7 0 sand/mud AVERAGE 2.65 39.19
Table I C Transect 3W Table 1C Date Transect Station Latitude Longitude Transect Depth(Ft.) SAV % Cover Seagrass or Bottom Type 11/15/01 3W 1 N28 57 40.6 W82 44 04.7 2 0 sand/mud 11/15/01 3W 2 N28 58 01.0 W82 44 01.2 2 47 Halodule 11/15/01 3W 3 N28 57 59.7 W82 44 01.3 2.5 2 Halodule 11/15/01 3W 4 N28 57 54.1 W82 44 01.9 2.6 95.4 Halodule 11/15/01 3W 5 N28 57 50.7 W82 44 02.3 3 58 Halodule 11/15/01 3W 6 N28 57 47.9 W82 44 02.3 3 0 rock 11/15/01 3W 7 N28 57 44.1 W82 44 02.7 2.9 37 Halodule 11/15/01 3W 8 N28 57 40.7 W82 44 02.3 2.7 0.8 Halodule 11/15/01 3W 9 N28 58 04.4 W82 44 01.1 2.5 100 Halodule 11/15/01 3W 10 N28 58 06.7 W82 43 59.8 2.6 38 Halodule 11/15/01 3W 11 N28 58 10.6 W82 44 03.2 2.5 36 Halodule 11/15/01 3W 12 N28 58 28.9 W82 44 07.3 2 0 sand/mud AVERAGE . 2.53 34.52 Table 1iD Transect 4w Table 1D Date Transect Station Latitude Longitude Transect Depth(Ft.) SAV % Cover Seagrass or Bottom Type 11/16/01 4w 1 N28 58 32.5 W82 44 19.0 3 0 edge of marsh/soft black mud 11/16/01 4W 2 N 28 58 36.2 W82 44 19.1 4.8 0 muck 11/16101 4W 3 N 28 58 14.0 W82 44 16.9 3.9 0 mud 11/16/01 4W 4 N28 58 03.6 W82 44 16.2 2.9 25 Halodule 11/16/01 4W 5 N28 58 00.4 W82 44 16.6 4.9 1.4 rocky AVERAGE 3.9 5.28 AVERAGE 3.9 5.28
Appendix Table 1 (continued):
Table IE Transect 5w Date Transect Station Latitude Longitude Depth(Ft.) SAV % Cover Seagrass or Bottom Type 11/16/01 5W 1 N28 58 08.5 W82 44 36.3 3.4 2 11/16/01 5W 2 N28 58 04.6 W82 44 37.4 3.6 0 barren 11/16/01 5W 3 N28 58 02.0 W82 44 36.9 4.4 0 barren 11/16/01 5W 4 N28 57 57.9 W82 44 37.0 5.6 0 barren 11/16/01 5W 5 N28 57 55.0 W82 44 36.6 6.6 0 barren 11/16/01 5W 6 N28 57 51.6 W82 44 36.1 6.2 0 barren 11/16/01 5W 7 N28 57 48.8 W82 44 36.1 3 0 shell 11/16/01 5W 8 n28 57 45.8 W82 44 35.3 5.8 0 barren AVERAGE 4.825 0.25 Table 1F Transect 1W (2A stations not in MML surveys) 11114101 1W 1 N28 57 38.0 W82 43 29.5 POD 11/14/01 1W 2 N28 57 38.5 W82 43 29.5 0.1 88 Halodule start 11/14/01 1W 3 N28 57 38.9 W82 43 29.5 0.1 100 Halodule 11/14/01 1W 4 n28 57 40.2 W 82 43 29.5 0.1 100 Halodule 11114/01 1W 5 N28 57 41.2 W 82 43 29.5 0.1 26 Halodule 11/14/01 1W 6 N28 57 41.0 W 82 43 29.5 0.1 0 rocky bar 11/14/01 1W 7 N28 57 42.0 W82 43 29.5 0 0 rocky bar 11/14/01 1W 8 N 28 57 43.6 W82 43 29.5 0 0 rocky bar 11/14/01 1W 9 N28 57 44.5 W82 43 29.5 0.5 100 shallow channel 11/14/01 1W 10 N 28 57 47.1 W82 43 29.5 0.5 0 marsh edge 11/14/01 2A 1 N28 57 45.9 W82 43 28.3 1 0 creek entrance 11/14/01 2A 2 N28 57 45.8 W 82 43 26.4 1 1 Halodule 11/14/01 2A 3 N28 57 45.5 W82 43 24.6 1 80 Halodule 11114/01 2A 4 N28 57 45.5 W 82 43 22.7 0.375 0 rocky bar AVERAGE 38.08
Appendix -Table 2. Intensive monitoring FPC Station Data - 2001 Survey. All location data is given in degrees/minutes/seconds. Center locations are approximations of center positions established by MML.
Station I Center at: N 28 57 58.1 W 82 43 56.6 Quad # % Cover Bed Position Species Quad# Bed Position %Cover Species 1 56.6 Station 1 58.1 57 28 43 N
at:
82 100 interior Halodule W Center 11 outer 100 Halodule 2 97 interior Halodule 12 outer 98 Haloduie 3 95 interior Halodule 13 outer 99 Halodule 4 98 interior Halodule 14 outer 100 Halodule 5 83 interior Halodule 15 outer 96 Halodule 6 89 interior Halodule 16 outer 100 Halodule 7 95 interior Halodule 17 outer 99 Halodule 8 99 interior Halodule 18 outer 98 Halodule 9 34 interior Halodule 19 outer 100 Halodule 10 99 interior Halodule 20 outer 89 Halodule avg 88.9 97.9 S.D. 20.00 3.38 Seaward edge of bed N28 57 56.3 W82 43 57.7 note: Extends beyond 217+ feet from original center.
Station 2 Center at: N28 58 00.8 W82 43 51.0 Quad # %Cover Bed Position Species Quad # .% Cover Bed Position Species i 0 inner sand 2 0 inner sand 18 0 Outer sand patch 3 0 inner sand 19 0 outer sand patch 4 0 inner sand 20 0 outer sand patch 5 14 inner Halodule 21 0 Outer sand patch 6 75 inner Halodule 22 0 outer sand patch 7 7 inner Halodule 23 0 outer sand patch 8 0 inner sand 24 0 Outer sand patch 9 8 inner Halodule 25 0 outer sand patch 10 8 inner Halodule 26 0 outer sand patch 11 35 inner Halodule 27 0 Outer sand patch 12 23 inner Halodule 28 0 outer sand patch 13 95 inner Halodule 29 0 outer sand patch 14 87 inner Halodule 30 0 Outer sand patch 15 95 inner Halodule 31 0 outer sand patch 16 63 inner Halodule 32 0 outer sand patch 17 0 inner Halodule 33 25 Outer Halodule 34 95 outer Halodule 35 90 Halodule 36 86 Halodule Avg. 30.00 15.58 SD 37.11 33.78
Appendix -Table 2. Intensive monitoring FPC Station Data - 2001 Survey. All location data is given in degreeslminuteslseconds. Center locations are approximations of center positions established by MML.
Station I Center at: N 28 57 58.1 W 82 43 56.6 Quad # %Cover E3ed Position Species Quad# Bed Position %Cover Species 100 intenor Halodule 11 outer 100 Halodule 2 97 intenor Halodule 12 outer 98 Halodule 3 95 intenor Halodule 13 outer 99 Halodule 4 98 intenor Halodule 14 outer 100 Halodule 5 83 interior Halodule 15 outer 96 Halodule 6 89 interior Halodule 16 outer 100 Halodule 7 95 innterior Halodule 17 outer 99 Halodule 8 99 innterior Halodule 18 outer 98 Halodule 9 34 innterior Halodule 19 outer 100 Halodule 10 99 innterior Halodule 20 outer 89 Halodule avg 88.9 97.9 S.D. 20.00 3.38 Seaward edge of bed N28 57 56.3 W82 43 57.7 note: Extends beyond 217+ feet from original center.
Station 2 Center at: N28 58 00.8 W82 43 51.0 Quad # %Cover Bed Position Species Quad # %Cover Bed Position Species 1 0 inner sand 2 0 inner sand 18 0 Outer sand patch 3 0 inner sand 19 0 outer sand patch 4 0 inner sand 20 0 outer sand patch 5 14 inner Halodule 21 0 Outer sand patch 6 75 inner Halodule 22 0 outer sand patch 7 7 inner Halodule 23 0 outer sand patch 8 0 inner sand 24 0 Outer sand patch 9 8 inner Halodule 25 0 outer sand patch 10 8 inner Halodule 26 0 outer sand patch 11 35 inner Halodule 27 0 Outer sand patch 12 23 inner Halodule 28 0 outer sand patch 13 95 inner Halodule 29 0 outer sand patch 14 87 inner Halodule 30 0 Outer sand patch 15 95 inner Halodule 31 0 outer sand patch 16 63 inner Halodule 32 0 outer sand patch 17 0 inner Halodule 33 25 Outer Halodule 34 95 outer Halodule 35 90 Halodule 36 86 Halodule Avg. 30.00 15.58 SD 37.11 33.78
U. S. Nuclear Regulatory Commission Response to 3F0410-04 Request for Documents RAI 3-4 Seagrass Quantification Report_4-24-08
Seagrass QuantificationReport for the Area Adjacent to the CrystalRiver Power GenerationFacility,Florida Data collected. Nov-Dec, 2007 Report: Apr 24, 2008 Prepared for:
Progress Energy Florida, Inc.
515 Independence Highway Inverness, FL 34453 Prepared by:
[01ReMeWr 11550 N. Meridian, Suite 600 Carmel, IN 46032 317-428-4591
Table of Contents A . Introduction/Project Goals ............................................................................................ 1 B. Study Area Description ................................................................................................. 1 C. W ater Quality Sam pling .......................................................................................... 2 D . Hydroacoustic M ethodology (Background) ............................................................ 3 E. Species Sam pling M ethodology ............................................................................... 4 Rake Sampling M ethodology ........................................................................... 4 Video Sampling M ethodology ........................................................................ 6 SCUBA Diver Survey M ethodology ............................................................... 7 F. M ethodology Discussion .......................................................................................... 8 G . Data Analysis ....................................................................................................... 9 Continuousand Dot-Density Representations ............................................... 9 Endpoints of Noise Threshold Settings ......................................................... 12 H . Accuracy A ssessm ent of the M odel ..................................................................... 14 I. Vegetation Area Determ ination ............................................................................. 15 J. Com parison to Previous Work ............................................................................... 18 References Cited ............................................................................................................... 22 Appendix ............................................................................................................................ 23
A. Introduction/Project Goals Progress Energy is a power generating facility that discharges coolant water into a marine costal area containing submerged aquatic vegetation (SAV). The purpose of this study was to estimate the area covered by various species of seagrass, various species of macro algae, and areas with no plant cover, and to compare these results, if possible, to the conclusions of previous studies done in the same area from previous years.
To address these goals, ReMetrix employed several methods of data collection including hydroacoustic transect sampling, point-intercept rake sampling, SCUBA diver random point surveys, and several underwater video random samples. Each method had unique advantages and limitations, but each contributed to an accurate overall estimation of SAV.
B. Study Area Description The study area encompassed 3,522 acres although 688 acres were inaccessible due to oyster beds, shoals, or very shallow water. A total of 2,842 acres was analyzed for SAV cover. The area had many challenging navigational obstacles such as, sensitive vegetation and corals, shoals, oyster beds, shallow water areas, and manatee. Other challenges of this study area included tide fluctuations greater than three feet, areas with high winds, and water with low visibility.
During data collection, there were several manatee, dolphin and stingray sightings. The majority of these sightings occurred in the area labeled on the map.
M Inaccessible Areas M Analysis Area Figure 1. The area surrounded by the teal line represents the study area for this project.
I
C. Water Quality Sampling Water quality information was collected at five of the ten diver sites at the same time the diver was in the water. Two sites representative of the average depths found throughout the study area were monitored every other day for the remainder of the study period. Five parameters were collected : water temperature, salinity, turbidity, light transmittance, and water depth.
Water temperature and salinity were measured using a YSI 556 multi-probe system (www.ysilifesciences.com, Figure 2a), turbidity was measured using a LaMotte 2020e portable turbidity meter (www.lamotte.com, Figure 2b); all three measurements were taken 1 foot below the water surface. Light transmittance was measured using a Secchi disk (Figure 2c) and water depth was measured by using a graduated lead line (Figure 2d). Table 1 below shows the breakout of water quality monitoring sites by depth. The full dataset of water quality information can be found in the Appendix.
Table 1. Water Quality Monitoring Sites NNIerdphrwe(ntr 0.5-1.5 NQsie 1 I1pd 1.5-2 1*
2-3 1*
3-4 1*
4-5 1*
Total 5*
- Sites were sampled every other day throughout the data collection period.
Figure 2a. YSI 556 multi-probe system. Figure 2b. LaMotte 2020c turbidity meter.
Figure 2c. Secchi disk Figure 2d. Graduated lead line 2
D. Hydroacoustic Methodology (Background)
Hydroacoustic data is collected using a digital 420kH BioSonics (www.biosonicsinc.com) transducer mounted on a boat actively linked to DGPS. Transects are driven across the study area while the transducer pings the water column approximately five-to-ten times per second.
The data from each ping are linked to a geographic coordinate via the DGPS beacon. Figure 3a depicts this process.
Figure 3b. Figure 3c.
Figures 3a-c. General depiction of the hydroacoustic mapping process. See text for explanations.
The data from each ping contains submerged plant cover and height information as well as the depth to the sediment layer. BioSonics Inc, testing indicates that the hydroacoustic system returns digital samples with greater than 0.013% accuracy every 1.8 centimeters. Figure 3b (above) shows an example of raw acoustic data collected along a sample transect.
Raw acoustic data are processed to filter out noise and calculate statistics, and then exported for viewing in a geographic information system (GIS). Data from all transects is combined in GIS and modeled using a geostatistical GIS extension to produce a vegetative cover estimate, (biocover) maps for the entire study area. Biocover is an estimate of the percentage of the bottom covered with plants. Figure 3c above shows a whole-site biocover model.
ReMetrix collected data from crossing transects oriented WSW to ENE spaced 400-meters apart and SSE to NNW spaced 60-meters apart. This totaled approximately 140 miles of transects collected over the 2,842-acre site. Figure 4 represents the proposed crossing transects used for hydroacoustic sampling of this site.
3
Figure 4. Crossing transects planned for hydroacoustic data collection totaled approximately 140-miles within the 2,842-acre study area. Closely spaced transects (oriented roughly north-south) were 60-meters apart, and widely spaced transects (oriented roughly east-west) were 400-meters apart.
E. Species Sampling Methodology Hydroacoustic vegetation sampling alone cannot currently explicitly determine species by their acoustic signatures. For this reason, supplemental physical sampling must be used in order to determine species. ReMetrix used three methods for collecting physical samples: rake samples, underwater video and SCUBA diver surveys.
Rake Sampling Methodology In areas deeper than three feet, a physical plant sample was collected by throwing a double-sided thatch rake toward the shoreline at each sampling site. A rake tethered to a 25-foot rope was tossed into the water and allowed to sink until it made contact with the bottom. The rake was then slowly dragged along the bottom back toward the boat, (Figure 5a).
In areas shallower than three feet, a rake with a handle was dipped into the water until it made contact with the bottom. Steady pressure was put on the rake handle as it was scraped along the bottom (Figure 5b,c).
rigure oa. rigure .o. rigure ic.
Figures 5a-c. A double-sided thatch rake was used to sample submerged vegetation at 109 sample points.
4
At least two rake samples were taken at each of 109 sample points (Figure 6). Ninety-one point-intercept sites were located at hydroacoustic transect crossings and 18 off-transect sites were selected randomly to facilitate biocover model accuracy assessment. The data recorded about each sample included species name, relative abundance, density, and latitude and longitude (Table 2). If no plant was found, then "no plant" was recorded as the species name. Photos were taken at most sampling sites where vegetation was found.
Figure 6. Rake samples were taken at 109 locations (blue points); 91 points were collected at hydroacoustic transect crossings and 18 points were collected off-transects. Point numbers can be found on the Monitoring Sites map in the Appendix.
Relative abundance Relative abundance is a visual estimation of the proportion of the two rake samples combined for a site that each species represents. For example, if two species were found during a rake sample, one may have represented 75% of the sample and the other may have only represented 25% of the sample. In order to make this estimation quickly in the field, each species' relative abundance was assigned a score placing them in one of five easily discernable ranges. The ranges used in this study are listed in Table 2.
Table 2. Relative abundance scores from two rake samples at each of 109 sample sites were e iscernable ranes tor cover.
I K ý1 VAME1111 --
I IUU% Present as -100)% of sample 2 75% Present as -75% of sample' 3 50% Present as -50% of sample t 4 25% Present as -25% of sample t 5 5% Present as -5% of sampleT or less tsample in this context refers to an aggregate of both samples per physical sample site 5
Density Density is the percent of the immediate sample area represented by each species. For example, if only a few stems of a plant were pulled up by the rake, the density would be considered sparse.
This estimation was made by gently compressing the combined vegetation sample and placing each species onto a one sided garden rake with graduated tines (Figure 7). The relative density of each species was estimated using four categories representative of the percent of the tines each species covered. Table 3 lists the categories and scale used for this estimation.
I I Figure 7. Species density was estimated by gently compressing the sample onto a one-sided garden rake with graduated tines.
The white stripes on the tines mark 20% and 60% of the total tine length.
Table 3. Density scale for species found during rake sampling at each of the 109 sample sites estimated from the ercent of the rake tines each species covered.
D Dense >60% of rake tines C Moderate 20%-60% of rake tines B Minor Up to 20% of rake tines A Sparse 1-5 stems Video Sampling Methodology A video camera specifically designed for underwater use was affixed to a 12-foot long pole and carefully lowered into the water until it was just above the sediment layer. It was then panned around to find vegetation. When vegetation was observed, the camera was maneuvered to a range where the plants could be identified and held stationary for several seconds (Figure 8a).
Thirty-one videos where taken at seventeen different random sampling locations (Figure 8b).
ReMetrix encountered adverse environmental conditions that yielded mixed results when attempting to use video sampling as a reliable physical sampling method at some sample site locations.
6
Figure 8a. When vegetation was found, the video Figure 8b. Thirty-one video clips were made from camera was maneuvered to a range where plant seventeen random sampling locations (black identification was possible. videocamera symbols), all located north of the discharge canal. Site numbers can be found on the Monitoring Sites map in the Appendix.
SCUBA Diver Survey Methodology To verify the plant type and growing conditions, a SCUBA diver survey was used. Prior to the diver entering the water, a hydroacoustic pass was made over the site, a DGPS point was taken over the specific diver entry site and a water quality sample was taken. Divers then entered the water to locate submerged plant beds, identify vegetative species present, measure plant heights, estimate percent bottom cover, and characterize overall bed density. Ten diver sites were surveyed (Figure 9).
Figure 9. Ten randomly selected SCUBA diver survey points (blue symbols) were sampled between 11/15/2007 and 11/16/2007. Site numbers can be found on the Monitoring Sites map in the Appendix.
7
Density Bed density was visually estimated as sparse, low, medium, or high density.
Cover Percent bottom cover and species composition was measured using the quadrat-cell methodology described by Estevez and Marshal (1995). Once a plant bed was found, a 1-mi2 quadrat subdivided into one hundred 100-cm 2 cells was positioned two to three meters inside the bed's edge (Figure 10). Species name and number of 100 cm 2 cells each species occupied was recorded. A cell was considered populated by a species if at least one rooted stem was found within a cell. The number of populated cells out of 100 is the percent bottom cover for the species. An example of a diver site cover table can be found in Table 4.
Table 4. Genus and number of populated 100 cm 2 cells data from a sample diver site.
I Halodule I Thalassia I Caulerpaspp. I total seagrass I total rooted SAV Total count 30 42 27 51 72 Figure 10. A sub-divided 1-m' quadrat assisted divers in estimating species cover.
F. Methodology Discussion The goal for each of these methods was to help determine species type and cover. Although each successfully accomplished the goal of determining species presence/absence, they each had unique strengths and challenges.
The most time effective method to determine vegetation presence/absence was hydroacoustics.
The challenge to using hydroacoustics is that it does not provide species information.
Diver sites were an excellent way to obtain accurate cover and species type without disturbing the vegetation. The drawback to diver sites was time. Diver surveys were too time consuming to sample the entire study area.
Video sample methods were an excellent way to determine if vegetation was growing on the bottom. It had the advantage of providing species identification and the exact latitude and longitude on screen. It was not as time consuming as a diver site, yet seagrass presence/absence could still be confirmed. The primary challenge with this method was determining the exact species due to cloudy or obscured water conditions. Furthermore, since the area the camera could view was small, there were times when the bottom was scanned for several minutes before any plants were detected.
8
The rake sample method could successfully capture the species type, relative density, and estimate relative abundance. Additionally, this method could be employed while collecting the hydroacoustics making this the least time consuming of all the methods. Another advantage was photos could be taken to document the species and abundance, which could be linked back to a precise spatial location. The primary challenge involved while sampling with the rake method was retrieving a plant sample from the sediment. The only way to verify if the rake sample was missing vegetation was to check the hydroacoustics. If the hydroacoustics indicated plant while rake samples showed no plant, additional rake samples were attempted. Certain seagrass species were missed by rake sampling simply due to plant physiology. Long narrow leaf blades, dense root mats and un-branched structure allowed the rake to "comb" through sparsely populated seagrass stands rather than hooking or snagging the vegetation. For sites where this was true, vegetation was typically pulled up by the anchor, which dug into the soil like a shovel (Figure 11). Anchor samples were recorded as rake samples when these situations arose.
Figure 11. The anchor would occasionally capture vegetation samples in seagrass beds when rake sampling did not.
G. Data Analysis In order to calculate the area of the project and define an extent for all the data, a study area polygon was created by tracing the water-land interface. This interface was based on digital ortho-rectified quarter-quadrangle (DOQQ) imagery dated 2004 and obtained from the USGS seamless data website (http://seamless.usgs.gov). Islands and obstructions were also isolated from the analysis area in a similar manor. The hydroacoustic data were processed though software that analyzes the return signature to determine the percent biocover.
Continuous and Dot-Density Representations After processing the hydroacoustic data, spatial data models were made to estimate biocover by interpolating between measured hydroacoustic samples and unsampled areas (Figures 12a and 12b). Both figures communicate slightly different informational contexts about estimated biocover, so both figures are included for discussion. Figure 12a shows the biocover model as a continuous surface, with color gradations indicating the percent biocover at each given location.
A continuous biocover surface is the typical map output because the model estimates biocover 9
values for all geographic space between data transects. However, the seagrass and macroalgae beds within this study area typically occur as patchy cover, not large contiguous beds. For that reason, Figure 12b was created to more intuitively communicate the patchy nature of the beds.
Figure 12b shows the exact same biocover model as seen in Figure 12a, but shows it as a gradational dot-density surface instead. Areas of high percentage biocover (reds and oranges on the map) have dots (a.k.a., "beds") spaced very closely together, as one might expect to naturally observe in a high biocover area. Areas of lower percentage biocover (yellows and greens) have dots (beds) spaced further apart, as one might expect to naturally observe in a low biocover area.
It is important to note that the coverage statistics for both types of maps are the same; only the display techniques are different. Other figures using the dot-density technique are included in the Appendix.
After the model was completed, assessments for model accuracy were conducted by checking the model against rake samples, diver surveys, and video samples to calculate errors of omission and commission (see Section H).
<conlilniedon the next page... >
10
Figure 12a. BioCover model derived from hydroacoustic measures of vegetative cover, displayed as a gradational continuous surface (the legend beside the figure indicates percent biocover at a given location).
00-5 M 5.01 - 10 M 10.01 - 20 M 20.01 - 30 0 30.01 - 40 01 40.01 - 50 M 50.01 - 60 M 60.01 - 70 M 70.01 - 80 M 80.01 - 90 M 90.01 - 100 Figure 12b. BioCover model derived from hydroacoustic measures of vegetative cover, displayed as a gradational dot-density surface (the legend beside the figure indicates percent biocover at a given location).
00-5 M 5.01 - 10 M 10.01 - 20 M 20.01 - 30 0 30.01 - 40 0 40.01 - 50 0 50.01 -60 U 60.01 - 70 M 70.01 - 80 M 80.01 - 90 M 90.01 - 100 II
Endpoints of Noise Threshold Settings A patented software algorithm is used to interpret the amount of submerged vegetation along each hydroacoustic transect. Examples of this process can be seen in the figures labeled "Transect Line 2007x" found in Appendix (these show the raw transect data with corresponding interpretations). Noise threshold settings influence how conservatively the algorithm filters noise within the hydroacoustic signal responses. The noise threshold settings are based on established ranges and can be adjusted by the data analyst during data processing. As processing proceeds, the data analyst compares the amount of submerged vegetation interpreted by the algorithm with visual inspection of raw transect data and other field data types. Noise threshold settings are considered acceptable when the data types are in agreement.
For any project, noise threshold settings can fall within an acceptable range based on a variety of environmental and physical factors related to the data collection (e.g., surface noise during data collection, water depth, physical structure and density of the target vegetation, etc.). The acceptable noise threshold settings in this project fell within a small range primarily due to the short, spindly nature of the seagrass blades. The endpoints of the acceptable range are termed
'conservative' settings and 'less conservative' settings. The data models obtained using results within the acceptable range are considered by ReMetrix to be realistic models of the actual submerged vegetation cover in the project area. For that reason, cover models produced from each endpoint of the acceptable range are provided for comparison in Figures 13a ('conservative' thresholds) and 13b ('less conservative' thresholds).
The total biocover for the conservative noise threshold settings is 7.6%. The total biocover for the less conservative noise threshold settings is 10.4%. Table 7 in Section I provides greater detail of specific biocover types for the threshold endpoints.
The total biocover results obtained by the conservative noise threshold settings are used in the statistical calculations discussed in Section H and elsewhere in this report, unless noted otherwise.
<continuedon the next page...>
12
Figure 13a. Map showing the 'conservative' interpretation of total Figure 13b. Map showing the 'less conservative' interpretation of biocover (7.6%) within the project area. (See above section for total biocover (10.4%) within the project area. (See above section explanation.) for explanation.)
H. Accuracy Assessment of the Model Typical measures for error in models are omission and commission error. These measures estimate how well a model correlates with actual sample data at the same location. For this analysis, ReMetrix compared all three types of physical sampling results (both as a whole and individually) to the biocover model derived from hydroacoustic transect data as a means for determining model correlation.
We used two 'classes' to develop the error estimate: 'plant', for where a rake sample or biocover model indicated plant was present, or 'no plant',where a rake sample or biocover model indicated no plants were present. As a means for explaining a particularly difficult concept we will follow just one comparison through the description, however error was calculated for both
'classes' and both types of error. In the following example, we will use 'plant' rake samples and
'no plant' areas in the model.
Calculating omission error: Of all the physical sampling points indicating plant was found, what proportion of these points lie within a 'no plant' area in the model? In this scenario, a high omission error suggests that the model could be underestimating the amount of plant that is truly present at that location.
Calculating commission error: Of all physical sampling points ('plant' or 'no plant') that lie within a 'no plant' area in the model, what proportion are 'plant' physical sample points? In this scenario, a high commission error suggests that the model could be overestimating the amount of
'no plant' that is truly present at that location.
Table 5 shows omission and commission errors of the model compared to all physical sampling methods combined. The higher 'no plant' omission error would suggest the model may not account for all the non-plant areas that were actually present, however some factors should be taken into consideration. Rake samples were taken from the bow of the boat while the hydroacoustic equipment and GPS antenna were located near the stern of the boat (approximately 18-feet of separation). The typical rake sample was made approximately 20-feet away from the boat. Combining these two distances results in a margin of error up to 38-feet between the nearest hydroacoustic point and the site of rake collection (depending upon the orientation of the boat and the actual rake sample distance at each site). Additionally, the boat may have drifted with currents while video of the bottom was taken so the actual position of the GPS antenna may have not coincided precisely with the location of the video sample or the hydroacoustic sample. Similarly, divers did not necessarily remain directly under the boat (or GPS antenna) while counting plants and therefore diver reference points may not directly relate to hydroacoustic estimates. These positional errors can account for a majority of the error when evaluating the omission and commission statistics (Table 6).
14
Table 5. Study area-wide BioCover model accuracy estimate without consideration of positional error (38-feet) due to GPS antenna location on the boat relative to the physical sampling location.
Raster Classification omission error
- plant no plant plant 17% 62 13 All physical samples no plant 62% 36 22 commission error -- 37% 37%
Table 6. Study area-wide BioCover model accuracy estimate after consideration of positional error (38 feet) due to GPS antenna location on the boat relative to the physical sampling location.
Raster Classification omission error I plant no plant All physical samples plant 0% 75 0 no plant 62% 36 22 commission error -* 32% 0%
The patchiness or randomness of aquatic vegetation beds, and the characteristics of very low-density vegetation might explain the remaining error. A majority of the areas where the model indicated there was "plant" but physical sampling indicated "no plant" occurred in areas of very low-density vegetation (69% in < 5% cover, 86% in < 10%
cover), where the probability of a physical sampling method contacting vegetation was low. No adjustments were made to the model for these areas since the number of hydroacoustic samples (1,116,900) vastly out-numbers the number of physical samples (139 total). After reviewing the hydroacoustic data for many of these areas, ReMetrix confirmed that these zones have low-density plant populations where a limited number of physical samples may have easily missed patchy or sparsely populated plant beds.
Results of additional error estimates comparing each physical sampling method individually can be found in the Appendix.
I. Vegetation Area Determination The overarching goal of this project was to determine the number of acres of seagrass.
Using the physical samples as a guide, ReMetrix separated vegetated areas in the study area into four classes: seagrass, other, mixed and no plant. Sample sites where Halodule spp., Syringodiumfiliforme, Thalassiatestudinum, or Halophila engelmannii were found exclusively were placed in the 'seagrass' class. Sample sites where vegetation other than seagrass, e.g. Caulerpaor Udotea, was found exclusively were classed as 'other'. Sites where both seagrass and other species were found together were classified as 'mixed',
and sites where no plants were collected during the rake sample, diver survey, or video sample, were placed into the 'no plant' class.
The second step in this process was to divide the study area into zones which could be labeled one of the four predefined classes. Zone boundaries were made using a method called Thiessen polygons. Thiessen polygons are mathematically defined by the intersections of perpendicular bisectors of the lines between all the sampling sites (Figure 14). Each zone was assigned the class of its corresponding sample site's classification, and the area of vegetation within that zone was calculated.
15
Figure 14. The study area was divided into Thiessen-polygon-defined zones based upon the spatial location of the sampling sites. * * '2 The percent cover within each zone was calculated from the biocover map derived from the hydroacoustic sampling method. The product of the zone area and the mean percent cover within that zone returns the number of acres of vegetation in that zone. Figure 15 shows an example of one zone with tabulated results.
Acres in Zone 19.77 Class Mixed Mean % Cover 16.6%
Acres in Class 3.28 Figure 15. Acres of vegetation in a class were calculated from the area of the zone and the mean percent biocover from the hydroacoustic model.
Acres of each vegetation class by zone were summed to determine the number of acres of seagrass, other, mixed, and no plant classes (Table 7).
16
Table 7. Vegetation class areas were summed from the acres in class calculated in each zone and percent of the total project acreage was calculated.
Conservative Noise Threshold seagrass 16 0.56%
mixed 81 2.85%
seagrass 46 1.62%
other 35 1.23%
other 65 2.29%
unclassified 58 2.04%
No plant 2622 92.26%
Total Area 2842 Less Conservative Noise Threshold seagrass 27 0.95%
mixed 101 3.55%
seagrass 58 2.04%
other 43 1.51%
other 85 2.99%
unclassified 80 2.81%
no plant 2549 89.70%
Total Area 2842 It was possible to subdivide the 'mixed' class acres into percent 'seagrass' and 'other' since relative abundance of individual species was recorded. The product of the area of a mixed zone and the corresponding relative abundance for each species yielded the acres of each class (seagrass and other). The model indicated plants were present in a number of 'no plant' zones. Acres of vegetation found within a no plant zone were assigned to a new class named 'unclassified'. The unclassified acreage represented 29% of the total vegetated area so it is important to understand where these unclassified zones occurred.
Fifty percent of the unclassified vegetation occurred in just 10% of the no plant classified zones. This means the bulk of the unclassified data occurred in a relatively small number of zones. All six of these zones were surrounded by zones of a defined vegetation type.
Based on the classification of adjoining zones, many were likely mixed stands of seagrass (Figure 16). Most likely, the rake sampling was not representative of the whole zone.
17
Ilgure lb. [he six "no plant' zones showing high vegetative cover were most likely 'mixed' zones where a physical sampling method was unable to locate vegetation.
J. Comparison to Previous Work Broad comparisons were made between 2007 data and the transect data reported in Marshall (2001). The data from 2001 was loaded into a GIS and transects were drawn between the sampling points. Average biocover was calculated from the current model along the 2001 transects in an attempt to compare the same areas. Average cover was tabulated for both 2001 and 2007 (Table 8). There could be several reasons the 2007 results were lower than the 2001 results. First, 2007 data were not sampled along the exact same transects, rather they were based on a segment laid over a model of hydroacoustic data. Both transects 2a and 3w each had two data points that were more than 50 meters from any 2007 sampling locations.
Table 8. Comparisons were made for average cover between 2001 and 2007 along similar transect lines.
-I-I-01Ien 00 Ma 1N 1 32.09 1 6.01 1W 46 1.70 2a 20.25 0.15 2W 39.19 4.90 3W 34.52 4.83 4W 5.28 3.04 5W 0.25 1.66 18
Another concern when comparing these two sample methods is simply the difference in the sampling methodology used to calculate cover. Comparing quadrats sampled along a transect to a model derived from hydroacoustic transect sampling should be done with careful consideration of how each method calculates percent cover. The 2001 quadrat method estimated plant cover as 1% per 100 cm2 , even if it was very sparsely distributed and repeated every 100 meters along the transect. A transect's average biocover was then calculated by averaging over all cover estimates for that transect. Hydroacoustic sampling records 10 pings per second of plant or no plant and computes an average across 10 pings to make one sample estimate of biocover. This equals one sample per second or roughly one sample per 2.5 meters. These samples are then used to create a model, thereby interpolating a 5-meter grid between samples in all directions. As a example, we investigated video point 9992 located less than 300 ft from a 2001 reported sampling location along transect 4w (Figure 17). The 2001 sample listed Halodule at 86% cover, while the 2007 model estimated it at 11% cover.
Figure 17. Screen capture of digital underwater video sample (left) showing sparse vegetative cover, with corresponding sample location (right).
19
The following illustration (Figure 18) may describe why the average cover comparison from 2001 to 2007 differs so greatly. In the following diagram, a green cell represents a
'plant' cell.
1 2 3 4 5 6 7 8 9 10 1
2 3
4 5 Quadrat Sample:
6 86 of 100 cells = 86% cover.
7 8
9 10 5 7.5 0 12.5 2.5 Hydroacoustic pings on 2.5m scale 5 (plant versus no plant):
2 of 5 pings show plant = 40% cover 7.5 Hydroacoustic Sample = 40%
10 12.5 N'* 10 15 20 /
5 4Final percentage calculation is done at a 5m scale.
Average over area = 11%
10 15 20 Figure 18 (whole page). Comparison of 25 scales for different data collection methods.
20
Furthermore, transects 1W, IN, 3W, and 4W don't appear to be sampled on 100-meter intervals. This indicates there may have been some post-directed sampling used for the 2001 data, which may have greatly influenced the average cover for the transect.
21
REFERENCES CITED Estevez, E.D., and Marshal, M. J., 1995. 1995 Summary Reportfor: Crystal River 3 Year NPDES Monitoring Project,Mote Marine Laboratory, Sarasota, FL, 131 p.
Marshall, M.J., 2001. Seagrass Survey: November 2001 Resurvey at the FloridaPower Crystal River GeneratingFacility,Coastal Seas Consortium, Inc., Bradenton, FL, 19 p.
22
Appendix MAmimqpd/
v' 4
-- 4',
-4'-.-
-,A--
A-.
"r
'V P1 44
'-44 218 Acres ea = 62 Acres 3s Area = 100Acres SAV = 58 Acres essible Area Units: Feet c Transects 1 inch equals 0.42 miles ¶~l
- ME BioCover Estimates 0 0.21 0.42 Miles 0.84
A=Mdlqhi/
Vý 7 K
77<7 4
7 kcres 128 Acres Acres Dssible Area acoustic Transects 1 inch equals 0.
BioCover 0 0.21 0.
Transect 20071206115224_parl LTransect 20071204121833 Transect 20071130 092242 Dart Transect 20071202_145701
A 100 300 1000 1100 1200 13-00 1400 1500 1100
/ 1700 1800 1900 2000 2100 2200 2300 2400 2S00 2600 2700 2800 2900 3000 3100 3200 30300 3400 3500 3600 3700 3800 3900 4000 4100 0 200 400
'Ir'L 'kWl'A~l*
7300 71M00 7"00 7"0 77010 7'800 "0 8000 8100 a-0 830 8I0 8800: 8800 8700 9,-
I! i0
, I
/
I
\ V 2' ~EL~
A ow U. U 0.,~B.u4 0~:
Video Sites Diver Site Location Rake Toss 1int 100% Cover
- BioCover Estimates
6
.ooO..o @0 00000 S0 00 o
0 S
0 0 0! 0 0 0O 90 0
0 0ý 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 00 00 00 00.000
- m~mlM'imm 0m~
~- -
0 0000 0
- 0 0 0 0 0 0
0 0 0
0 0
0P 0
0 0 0 0 00 0 0 0 0 0 0 0 0 0
0 0 0 0
0 0 I 0 0 0 0 0
0 0
0 0 0 0 0 0
0 0
e 0
0 0
0 0 Water Oualitv Information 0 0 0 0 Wate (dg TerpC) 22.
0
- 0. 00 Sa-mple Date 11/15/2001 Legend ai 29.1 V Diver Site Location Secch Depth (ft)3. 0 Rake Toss Tide Level L2:25P1Y 0% - 100% Cover
- w ** l0 Hydroacousitc Points Water DeDth (mI 1.1.5rr Bed CharacteristicsI Size Pan-t Height I I N defie; sjatterd R Projection: State Plane Florida West Datum: NAD 83 Bottom overage 22%r Units: Feet Bed DensitySpr Sample Method SC°over Species Present 1 inch equals 59 feet Diver Sampli 22 ells pa wrtulamfdes0 II r-c=r-l MEN&IIIIIIIIIIIII - -iFeet iRae Tosse Me 0% Plan 0 29.5 59 118
- 0819MMUS Hydroacoustic Model 0 %I z
[S7aýMp IEý* 7 t-7oqdr - Ro7omriýýr, S
0 S
00 0 000
- 0 *o 0
O 0Q0 0 00 0
O 00 0
o 0 0
I7 7
0 e
S S
S.-..
~.;, ~
0 0 0 0.
I 0
0@S 0 0.0 0 0 0
0 0
0 0 0 0 S0*
0 0* 0 0 0 NAME DSO ater Tern d C 23.2 mple Date 11115/200 amle Time 4:38PM Turbidity (ntu) 9.37_
Sn t iDethft 29.9 1.5 Legend PhyicalDepth(ft) 1.8 de Level L2:25PM V Diver Site Location Water Depth (m) 0-5-1m 0 Rake Toss SBed Characteristics 0% - 100% Cover Size L an 00Hydroacousitc Point, Plant Height lo BotmCoverage 100%0 BdDensity I HI Projection: State Plane Florda West
___________ ~Species Chart _______ Datum: NAD 83 Sample Method Cover - Species Present Units: Feet Al Diver Sample 86 cells S¶frigodium fifiorme Diver ample24 cells CaulIerparrmexcan Diver Sample 10 cells Graifia tkaha 1 inch equals 59 feet Diver Sample 7 cells Hailmeda incrassata
ý?r Smple4 cells Swargassum ilultans Pi droacusti Mdel 23%, 1_____0 29.5 59 118 I
I
~-~-
0 0
0 0 0 0
- ~ 0 0
0 0 0
0 0
S 0 0
0° 0
- 00
@HBO 0 aw
@0 0 0
0 0
0
-
0 0
O 0 O.OO0 0 *
- S 0 0 0
0 0 0
0 O 0 a, 00 . O 0 0
0 0
o 0 0
NAME DS0006 ater Temp (deg C) 16.
Sample Date 1111612007 Sample Time 1:22PM urbidi (ntu) 2.55 Salinit pt 30.9 Secchi th ft 3.6 PhysicalDepth(ft) 3.6 Legend ide Level L3:20PM aterDepth m 1-1.5m I aBeTCharacteristics V Diver Site Location size ! No defie; sc"tte 7eI
- Rake Toss Plan Heigh 1foo 0% - 100% Cover Beottom Coverage 100 w, *0 Hydroaousitc Points IBe Medium ies Crt Projection: State Plane Florida West Sampe MehodoverSpeces Present Diver Sape2cells Dicy p Datum: NAD 83 Diver Sampl 7 cells HalalmedaIncrassata Units: Feet Diver Sampl 6 cells *Jdbtea cnltnt offigillIMMIM Diver Sampl Iver Sampl ivar Sape47 Diver Sampl Hyroacoustic Model 45 cells Srasmnat.,,.
8coellsetgri rula cellsl~uep mexican.
7 cells I alrasertularoides 8%1 0 1 inch equals 59 feet 29.5 59 IIF-eet 118 WOOMMIND I
0 0* 0 0 0 0 0 S S S
00 SI 0 0 0
0 0 0 0.50o° 0 0
V60.. i w ommmuounsm wammmmuzm
'V 00 0 S 0.
0 0 0 00 I
00 0
Oftw,,*2 *O 0
060 0 -0 0 w 0
Legend V Diver Site Location
- Rake Toss 0% - 100% Cover a
Projection: State Plane Datum: NAD 83 Units: Feet Soecies Chart Cover I SOe S Iesresent I 1 inch equals 59 feet
--
A? ~~~h,,q.ihi
~- *-~-
I ant RJiN I Feet IM% I 0 29.5 59 118
, leI 0 295 5 1
wwi 0@
0D
- 0
@6. *@ 00 9 0 0
o.
--w 0mA 0
0 0
0g 0 o00 00 0 0
- 0 O 0 00 0 0@@ 0 00 0 000 e* 0 d o 004O 0 0 00 Sal 0
0 0 0 0
0 0
0 Legend V Diver Site Location
- Rake Toss 0% - 100% Cover be a*** Hydroacousitc Points Projection: State Plane Florida West Datum: NAD 83 Units: Feet I IN~vvv~lII F, I" Sample Meto ver SameIs I-I" !er Sample Toss ke Toss IHydroacouslic Model Cver 982 cells Seis cell Halodule Sasum lresent bwrghtf flu/tans 5 stems - 20% Halodule wrightil 5 stems - 20% Sam s urn natans 7% 0 1 inch equals 32 feet 16 32
'II "Feet 64
APPENDIX - Calculations of Biocover Model Accuracy BioCover model error estimates for combined physical sampling points and comparisons of the three different physical sampling methods individually.
The total physical sample point count does not match the sum of the individual sampling methods points since there were a number of cases where two or more methods were used for sampling a single location and the results did not match, (one indicated 'plant' the other indicated 'no plant'). In these instances only the sample where 'plant' was found was used in the 'all' analysis since 'plant' was indeed found at the location. See Section H of the reportfor a discussion of interpretingthese tables.
All types Rake only__
without 38 foot without 38 foot margin of error Raster margin of error Raster no no omission error I plant plant omission error I plant plant all plant 17.3% 62 13 plant 14.8% 46 8 Rake no plant 62.1% 36 22 no plant 61.0% 36 23 commission error -- 36.7% 37.1% commission error - 43.9% 25.8%
All types Rake only with 38 foot with 38 foot margin of error Raster margin of error Raster no no omission error , plant plant omission error 4 plant plant all plant 0.0% 75 0 Rake plant 0.0% 54 0 no plant 62.1% 36 22 no plant 61.0% 36 23 commission error , 32.4% 0.0% commission error -- 40.0% 0.0%
APPENDIX - Calculations of Biocover Model Accuracy (continued)
-Diver only _ _ Video only without 38 foot without 38 foot margin of error Raster margin of error Raster no no omission error I plant plant omission error
- plant plant plant 0.0% 9 0 Video plant 41.7% 7 5 Diver no plant 0 0 no plant 80.0% 4 1 commission error -- 0.0% commission error - 36.4% 83.3%
,_Diyer-only .. Video only--
with 38 foot with 38 foot margin of error Raster margin of error Raster no no omission error I plant plant omission error I plant plant Diver plant 0.0% 9 0 Video plant 0.0% 12 0 no plant 0 0 no plant 80.0% 4 1 commission error - 0.0% commission error -- 25.0% 0.0%
APPENDIX - Calculations of Biocover Model Accuracy (continued) off-transect only without 38 foot margin of error Raster no omission error I plant plant off-transect only plant 16.7% 10 2 no plant 60.0% 6 4 commission error - 37.5% 33.3%
off-transect only with 38 foot margin of error Raster no omission error p lant plant off-transect only plant 0.0% 12 0 no plant 60.0% 6 4 commission error - 33.3% 0.0%
Site Name LAT LON WaterTemp (C) Sample Date Sample Time Turbidity (ntu) 3alinity ppn Secchi Depth (ft) Physical Depth (ft) Tide Level Water Depth DS0001 +28.9754524 -82.7532661 22.9 11152007 12:25PM 5.09 25.9 5 5 L2:25PM 1.5-2m DS0002 +28.9661273 -82.7455230 22.9 11152007 1:40PM 3.94 29.1 3.6 3.9 L2:25PM 1-1.5m DS0003 +28.9569691 -82.7355315 22.4 11152007 3:43PM 9.44 29.9 2.7 3.8 L2:25PM 1-1.5m DS0004 +28.9584628 -82.7283993 23.2 11152007 4:38PM 9.37 29.9 1.5 1.8 L2:25PM 0.5-1 m DS0005 +28.9453151 -82.7293885 16.2 11162007 12:05PM 3.62 27.6 0.9 0.9 L3:20PM 0.5-1 m DS0006 +28.9445241 -82.7487268 16.9 11162007 1:22PM 2.55 30.9 3.6 3.6 L3:20PM 1-1.5m DS0007 +28.9500012 -82.7514686 19.3 11162007 2:55PM 4.09 29.8 3.9 5.5 L3:20PM 1.5-2m DS0008 +28.9597790 -82.7380978 18.3 11162007 3:38PM 5.42 27.6 3.9 11.7 L3:20PM 3-4m DS0009 +28.9619191 -82.7292325 26.9 11162007 4:19PM 7.62 31.8 1.8 2 L3:20PM 0.5-1 m DS0010 +28.9658914 -82.7278804 26.5 11162007 5:00PM 13.6 31.9 1.7 1.7 L3:20PM 0.5-1 m DS0002 +28.9661273 -82.7455230 22.1 11282007 3:47PM 2.40 31.6 3.2 4.9 Li:46PM 1-1.5m DS0008 +28.9597790 -82.7380978 23.9 11282007 4:55PM 3.11 33.8 4.1 10.4 L1:46PM 3-4m DS0002 +28.9661273 -82.7455230 23.8 11302007 5:18PM 3.03 31.4 3.2 5 L3:27PM 1-1.5m DS0008 +28.9597790 -82.7380978 25.3 11302007 5:11PM 2.34 31.4 3.6 5.5 L3:27PM 3-4m DS0002 +28.9661273 -82.7455230 23.8 12022007 4:48PM 2.65 32.4 3.8 4.5 L5:12PM 1-1.5m DS0008 +28.9597790 -82.7380978 25.7 12022007 4:40PM 2.22 32.4 3.5 6.5 L5:12PM 3-4m DS0002 +28.9661273 -82.7455230 19.0 12042007 4:38PM 2.10 27.9 3.4 4.1 L6:53PM 1-1.5m DS0008 +28.9597790 -82.7380978 21.7 12042007 5:03PM 2.89 34.1 3.2 3.6 L6:53PM 3-4m DS0002 +28.9661273 -82.7455230 21.9 12062007 4:53PM 2.22 33.8 4.0 4.2 L8:04PM 1-1.5m DS0008 +28.9597790 -82.7380978 23.2 12062007 3:14pm 3.58 33.9 3.2 5.1 L8:04PM 3-4m
Site Scientific Name Common Name:] Date Abundanc Injury IIDensity [ Notes Latitude ILongitude 2 no plant no plant 12/4/2007 28.975850 -82.738910 12 no plant no plant 12/5/2007 na 28.944482 -82.724638 13 no plant no plant 12/6/2007 na 28.944981 -82.722238 14 Gracilariatikvahiae edible drift alga 12/5/2007 2 1 2 na 28.945496 -82.719842 14 Sargassum natans gulfweed drift alga 12/5/2007 2 1 2 na 28.945496 -82.719842 14 Halophila engelmannil stargrass 12/5/2007 5 1 3 na 28.945496 -82.719842 15 Gracilaria tikvahiae edible drift alga 12/5/2007 1 1 4 na 28.945980 -82.717438 16 no plant no plant 12/5/2007 na 28.946479 -82.715038 17 Gracilariatikvahiae edible drift alga 12/5/2007 5 1 1 na 28.946978 -82.712638 25 no plant no plant 11/29/2007 28.944540 -82.742460 26 no plant no plant 11/29/2007. 28.945060 -82.740040 27 Caulerpasertularoides feather caulerpa 12/2/2007 3 2 28.945530 -82.737650 27 Sargassum natans gulfweed drift alga 12/2/2007 2 2 28.945530 -82.737650 27 Sargassumfluitans gulfweed drift alga 12/2/2007 4 2 28.945530 -82.737650 27 Caulerpaprolifera grass caulerpa 12/2/2007 5 0 28.945530 -82.737650 27 Syringodium filiforme manatee grass 12/2/2007 1 4 28.945530 -82.737650 28 Gracilariatikvahiae edible drift alga 12/2/2007 4 1 28.945910 -82.735130 28 Syringodium filiforme manatee grass 12/2/2007 1 1 28.945910 -82.735130 28 Syringodium filiforme manatee grass 12/2/2007 3 0 28.945910 -82.735130 28 Sargassum fluitans gulfweed drift alga 12/2/2007 5 1 28.945910 -82.735130 29 Gracilariatikvahiae edible drift alga 12/2/2007 2 2 28.946510 -82.732750 29 Syringodium filiforme manatee grass 12/2/2007 3 3 28.946510 -82.732750 30 Caulerpamexicana feather calulerpa 12/2/2007 1 2 28.946970 -82.730450 31 Syringodium filiforme manatee grass 12/2/2007 1 1 3 28.947490 -82.727970 32 Gracilariatikvahiae edible drift alga 12/5/2007 1 1 1 na 28.947986 -82.725588 32 Thalassia testudinum turtle grass 12/5/2007 4 1 5 na 28.947986 -82.725588 33 Sargassum natans gulfweed drift alga 12/5/2007 2 1 2 na 28.948486 -82.723188 33 Gracilariatikvahiae edible drift alga 12/5/2007 2 1 2 na 28.948486 -82.723188 33 Sargassum fluitans gulfweed drift alga 12/5/2007 2 1 2 na 28.948486 -82.723188 34 Gracilariatikvahiae edible drift alga 12/5/2007 1 1 4 na 28.948985 -82.720788 35 Syringodium filiforme manatee grass 12/5/2007 2 1 4 na 28.949484 -82.718388 35 Thalassia testudinum turtle grass 12/5/2007 2 1 4 na 28.949484 -82.718388 36 Caulerpaprolifera grass caulerpa 12/5/2007 na 28.949984 -82.715988 36 Gracilariatikvahiae edible drift alga 12/5/2007 na 28.949984 -82.715988 62 no plant no plant 11/28/2007 28.950140 -82.751500 63 no plant no plant 11/28/2007 28.950530 -82.749110 64 Caulerpasertularoides feather caulerpa 11/28/2007 3 2 28.951030 -82.746770 64 Sargassum natans gulfweed drift alga 11/28/2007 3 2 28.951030 -82.746770 64 Sargassumfluitans gulfweed drift alga 11/28/2007 3 0 28.951030 -82.746770 65 Sargassum fluitans gulfweed drift alga 11/28/2007 2 2 28.951540 -82.744190 66 Caulerpasertularoides feather caulerpa 11/28/2007 3 2 28.952040 -82.741770 66 Penicillus sp. fragments shaving brush plant 11/28/2007 3 4 1 28.952040 -82.741770 67 Sargassum natans gulfweed drift alga 11/28/2007 3 2 28.952530 -82.739410 67 Sargassumfluitans gulfweed drift alga 11/28/2007 2 1 28.952530 -82.739410 67 Gracilariatikvahiae edible drift alga 11/28/2007 4 1 28.952530 -82.739410 67 Caulerpamexicana feather calulerpa 11/28/2007 28.952530 -82.739410 69 Penicillus sp. fragments shaving brush plant 12/4/2007 1 2 28.953540 -82.734740 70 Caulerpasertularoides feather caulerpa 12/4/2007 3 1 28.953930 -82.732290 70 Penicillus sp. fragments shaving brush plant 12/4/2007 2 2 28.953930 -82.732290 71 no plant no plant 12/4/2007 28.954500 -82.72992(
72 no plant no plant 12/4/2007 28.954960 -82.727570
Site Scientific Name Common Name Date Abundanc Injury Density [ Notes ! Latitude ILongitude 72 Caulerpa sertularoides feather caulerpa 12/4/2007 3 2 28.954960 -82.727570 73 Gracilariatikvahiae edible drift alga 12/4/2007 4 1 28.955580 -82.725150 73 Syringodium filiforme manatee grass 12/4/2007 5 1 28.955580 -82.725150 73 Sargassum natans gulfweed drift alga 12/4/2007 2 1 28.955580 -82.725150 73 Gracilariatikvahiae edible drift alga 12/4/2007 4 1 28.955580 -82.725150 82 no plant no plant 11/28/2007 28.953610 -82.752540 83 no plant no plant 11/29/2007 28.953950 -82.749940 84 no plant no plant 11/29/2007 28.954440 -82.747680 85 no plant no plant 11/29/2007 28.954940 -82.745200 86 no plant no plant 11/28/2007. 28.955560 -82.742890 87 Caulerpa sertularoides feather caulerpa 11/29/2007 2 2 28.955990 -82.740440 87 Sargassum natans gulfweed drift alga 11/29/2007 5 2 28.955990 -82.740440 87 Caulerpa mexicana feather calulerpa 11/29/2007 4 2 28.955990 -82.740440 89 Gracilariatikvahiae edible drift alga 12/4/2007 2 1 28.956960 -82.735630 89 Caulerpa sertularoides feather caulerpa 12/4/2007 2 1 28.956960 -82.735630 89 Udotea conglutinata Udotea spp 12/4/2007 5 1 28.956960 -82.735630 89 Syringodiurn filiforme manatee grass 12/4/2007 5 2 28.956960 -82.735630 89 Caulerpasertularoides feather caulerpa 12/4/2007 5 1 28.956960 -82.735630 89 Sargassurn natans gulfweed drift alga 12/4/2007 5 1 28.956960 -82.735630 90 Synngodium filiforme manatee grass 12/4/2007 3 2 28.957460 -82.733210 90 Caulerpasertularoides feather caulerpa 12/4/2007 3 3 28.957460 -82.733210 91 Syringodium filiforme manatee grass 12/4/2007 5 1 28.957920 -82.730880 91 Gracilariatikvahiae edible drift alga 12/4/2007 3 2 28.957920 -82.730880 91 Caulerpamexicana feather calulerpa 12/4/2007 3 2 28.957920 -82.730880 93 no plant no plant 12/4/2007. 28.958770 -82.726200 103 no plant no plant 11/29/2007 28.957480 -82.750690 103 no plant no plant 12/4/2007 28.957430 -82.750990 104 no plant no plant 11/29/2007 28.957950 -82.748600 105 no plant no plant 11/29/2007 28.958460 -82.746260 106 Sargassum natans gulfweed drift alga 11/29/2007. 4 28.959010 -82.743640 107 Sargassum natans gulfweed drift alga 11/29/2007 1 4 28.958970 -82.741270 108 no plant no plant 11/29/2007 28.960000 -82.738950 but I couldn't really see bottom to 108 no plant no plant 12/6/2007 verify 28.960083 -82.739000 109 no plant no plant 11/29/2007 28.960600 -82.736490 lot here, but enough to see on 109 Caulerpaprolifera grass caulerpa 12/6/2007 1 1 4 video 28.960583 -82.736583 110 Halodule wrightii shoal grass 11/29/2007 1 3 28.960990 -82.734290 110 Sargassurn natans gulfweed drift alga 11/29/2007 4 4 28.960990 -82.734290 110 Halodule wrightii shoal grass 11/29/2007 1 1 1 28.961000 -82.734400 111 Halodule wrightii shoal grass 11/29/2007 1 4 28.961460 -82.731800 111 Halodule wrightii shoal grass 12/6/2007 2 3 28.961478 -82.731900 111 Sargassurnnatans gulfweed drift alga 12/6/2007 4 8 3 28.961478 -82.731900 111 Gracilariatikvahiae edible drift alga 12/6/2007 4 4 28.961478 -82.731900; 112 Syringodium filiforme manatee grass 11/29/2007 1 3 28.962060 -82.729410
Site II Scientific Name Common Name Date Abundanc Injury I Density Notes Latitude l Longitude mostly manatee or 112 Syringodiurn filiforme manatee grass 12/6/2007 2 2 shoal grass 28.962000 -82.729483 112 Caulerpa sertularoides feather caulerpa 12/6/2007 5 4 28.962000 -82.729483 113 Syringodiurn filiforme manatee grass 12/2/2007 1 4 28.962520 -82.727030 114 Syringodiurn filiforme manatee grass 12/3/2007 1 4 1 28.962980 -82.72460 123 no plant no plant 11/29/2007 28.960860 -82.751770 123 Caulerpasertularoides feather caulerpa 12/4/2007 2 2 28.961010 -82.751990 123. Sargassum natans gulfweed drift alga 12/4/2007 5 2 28.961010 -82.751990 124 Sargassurnnatans gulfweed drift alga 11/29/2007 2 2 28.961512 -82.749540 124 Cladophora spp filamentous algae 11/29/2007 4 1 28.961512 -82.749540 124 Caulerpaprolifera grass caulerpa 11/29/2007 4 1 28.961512 -82.749540 125 no plant no plant 11/29/2007 28.961950 -82.747110 126 no plant no plant 11/28/2007 28.962490 -82.744790 127 no plant no plant 11/30/2007 28.963030 -82.742460 128 no plant no plant 11/29/2007 28.963560 -82.739900 128 no plant no plant 12/6/2007 28.963550 -82.739967 129 Udotea conglutinata Udotea spp 11/29/2007 2 1 28.964040 -82.737530 129 Udotea conglutinata Udotea spp 12/6/2007 2 0 0 28.963950 -82.737500 129 Halodule wrightii shoal grass 12/6/2007 2 0 0 28.963950 -82.737500 129 Sargassum fluitans gulfweed drift alga 12/6/2007 2 0 0 28.963950 -82.737500 131 Halodule wrightii shoal grass 11/29/2007 2 1 28.965040 -82.732800 131 Sargassum fluitans gulfweed drift alga 11/29/2007 2 4 28.965040 -82.732800 site looked to be mostly dominated by shoal grass on 131 Halodule wright/i shoal grass 12/6/2007 1 1 1 video 28.965100 -82.732817 blades of what looked like turtle grass on 131 Thalassia testudinum turtle grass 12/6/2007 4 1 3 video 28.965100 -82.732817 132 Syringodium filiforme manatee grass 11/29/2007 1 3 28.965330 -82.730380 133 Halodule wright/i shoal grass 12/2/2007 3 3 28.966040 -82.727930 133 Sargassurnnatans gulfweed drift alga 12/2/2007 3 4 28.966040 -82.727930 143 Caulerpa sertularoides feather caulerpa 11/29/2007 4 1 28.964550 -82.752890 143 Udotea conglutinata Udotea spp 11/29/2007 4 1 28.964550 -82.752890 143 Caulerpa prolifera grass caulerpa 11/29/2007 4 0 28.964550 -82.752890 143 Sargassurnnatans gulfweed drift alga 11/29/2007 3 1 28.964550 -82.752890 143 Gracilariatikvahiae edible drift alga 11/29/2007 3 1 28.964550 -82.752890 143 Caulerpamexicana feather calulerpa 11/29/2007 3 1 28.964550 -82.752890 143 Caulerpaprolifera grass caulerpa 11/29/2007 4 1 28.964550 -82.752890 144 no plant no plant 11/29/2007 28.964960 -82.750460 145 Sargassumnatans gulfweed drift alga 11/29/2007 1 0 28.965050 -82.747990 146 no plant no plant 11/28/2007 28.966180 -82.74559C 147 no plant no plant 11/29/2007 28.966410 -82.74321(
148 no plant no plant 11/29/2007 28.967030 -82.74082(
149 no plant no plant 11/29/2007 28.967490 -82.73853C 150 Syringodium filiforme manatee grass 12/2/2007 1 1 3 1 28.968020 -82.73610
Site Scientific Name Common Name1 Date iIAbundanc7 Injury Density Notes IILatitude Longitude
, ,uny *,,y plant only one small sprig. Video 152 Caulerpaspp caulerpa 12/6/2007 1 4 point 28.969000 -82.731367 152 no plant no plant 12/6/2007 28.969000 -82.731367 164 Caulerpasertularoides feather caulerpa 11/29/2007 2 1 28.968560 -82.751350 164 Sargassum natans gulfweed drift alga 11/29/2007 3 1 28.968560 -82.751350 164 Gracilariatikvahiae edible drift alga 11/29/2007 3 1 28.968560 -82.751350 164 Gracilariatikvahiae edible drift alga 11/29/2007 4 1 28.968560 -82.751350 165 no plant no plant 11/29/2007 28.968880 -82.749020 166 no plant no plant 11/28/2007 28.969780 -82.746740 166 no plant no plant 11/29/2007 28.969570 -82.74637(
167 no plant no plant 11/29/2007 28.970010 -82.74421(
170 no plant no plant 12/2/2007 28.971320 -82.736980 no plant 172 no plant no plant 12/6/2007 rake toss 28.972518 -82.732240 video sample 172 no plant no plant 12/6/2007 point 28.972483 -82.732200 184 Halophila engelmannil stargrass 11/30/2007 2 3 28.972010 -82.752440 184 Caulerpaprolifera grass caulerpa 11/30/2007 1 3 28.972010 -82.752440 maybe from 184 Halophila engelmannli stargrass 11/20/2007 4 4 video 28.971950 -82.752483 184 Cladophoraspp filamentous algae 11/20/2007 4 4 hairy plant 28.971950 -82.752483 184 Sargassum fluitans gulfweed drift alga 11/20/2007 4 4 28.971950 -82.752483 184 Caulerpaprolifera grass caulerpa 11/20/2007 4 4 28.971950 -82.752483 185 no plant no plant 11/29/2007 28.972280 -82.749930 VlU*U Sample Point 185 Hardly any 185 Udotea conglutinata Udotea spp 12/6/2007 1 1 4 veg at all 28.972250 -82.749967 186 Penicillus sp, fragments shaving brush plant 11/28/2007 1 4 28.973050 -82.747590 189 no plant no plant 12/2/2007 28.974560 -82.740450 191 no plant no plant 12/2/2007 28.975510 -82.735520 204 Caulerpaprolifera grass caulerpa 11/30/2007 1 1 28.975420 -82.753330 205 no plant no plant 11/29/2007 28.975820 -82.750970 207 no plant no plant 12/4/2007 28.977040 -82.746160 210 Cladophora spp filamentous algae 12/2/2007 0 28.978460 -82.738910 211 Cladophora spp filamentous algae 12/2/2007 28.979040 -82.73650(
212 no plant no plant 12/2/2007 28.979530 -82.734150 225 no plant no plant 11/29/2007 28.979400 -82.751850 226 no plant no plant 11/28/2007 28.979930 -82.74952C 227 no plant no plant 11/29/2007 28.980510 -82.74710C 228 no plant no plant 11/29/2007 28.981030 -82.744730 229 no plant no plant 11/29/2007 28.981480 -82.742320 9910 no plant no plant 12/6/2007 na 28.951983 -82.749051 9911 Sargassum fluitans gulfweed drift alga 12/6/2007 na 28.966620 -82.734857 9912 Halodule wrightii shoal grass 12/6/2007 na 28.966114 -82.731204 very sparse 9912 Halodule wrightii shoal grass 1216/2007 1 1 3 vegetation 28.966133 -82.731217 9913 no plant no plant 12/6/2007 Ina 28.961489 -82.72916
Site Scientific Name Common Name Date Abundancl Injury I Density Notes Latitude Longitude 9914 Sargassum fluitans gulfweed drift alga 12/6/2007 na 28.961709 -82.732746 9915 Penicillus sp. fragments shaving brush plant 12/6/2007 na 28.961050 -82.740933 9915 no plant no plant 12/6/2007 28.961050 -82.740933 9916 Cladophora spp filamentous algae 12/6/2007 na 28.971991 -82.747158 9917 no plant no plant 12/6/2007 na 28.976953 -82.751248 9918 no plant no plant 12/6/2007 na 28.979026 -82.750109 9919 no plant no plant 12/6/2007 na 28.981367 -82.74951 no plant 9992 no plant no plant 12/6/2007 video site 28.972970 -82.738483 plant toss 9992 no plant no plant 12/6/2007 0 no plant 28.972970 -82.738483 9993 Caulerpaprolifera grass caulerpa 12/6/2007 28.975756 -82.742440 sample no plant on 9993 Caulerpaprolifera grass caulerpa 12/6/2007 rake 28.956170 -82.742717 9994 Penicillus sp. fragments shaving brush plant 12/6/2007 na 28.966532 -82.749896 9994 Penicillus sp. fragments shaving brush plant 12/6/2007 1 44 28.966567 -82.749850 9995 no plant no plant 12/6/2007 noplant 28.961437 -82.745408 9996 no plant no plant 12/6/2007 na 28.959769 -82.738068 9997 Sargassum natans gulfweed drift alga 12/6/2007. na 28.957730 -82.739777 9997 Udotea conglutinata Udotea spp 12/6/2007 na 28.957730 -82.739777 9997 Caulerpaprolifera grass caulerpa 12/6/2007 na 28.957730 -82.739777 9998 no plant no plant 12/6/2007 na 28.951697 -82.738041 9999 Caulerpaprolifera grass caulerpa 12/6/2007 na 28.951717 -82.740340 dsOO01 Caulerpaprolifera grass caulerpa 11/15/2007 20% 28.975452 -82.753266 dsOO01 Gracilariatikvahiae edible drift alga 11/15/2007. 3% 28.975452 -82.753266 dsOO02 Caulerpasertularoides feather caulerpa 11/15/2007 22% 0.000000 0.000000 dsOO03 Syringodium fiiliforme manatee grass 11/15/2007 68% 28.956969 -82.735532 dsOO03 Gracilariatikvahiae edible drift alga 11/15/2007 51% 28.956969 -82.735532 dsOO04 Syringodium fiiliforme manatee grass 11/15/2007 86% 28.958463 -82.728399 dsOO04 Caulerpamexicana feather caulerpa 11/15/2007. 24% 28.958463 -82.728399 dsOO04 Gracilariatikvahiae edible drift alga 11/15/2007 10% 28.958463 -82.728399 dsOO04 Halimeda incrassata Halimeda spp 11/15/2007 7% 28.958463 -82.728399 dsOO04 Sargassum fluitans gulfweed drift alga 11/15/2007 4% 28.958463 -82.728399 dsOO05 Syringodium fiiliforme manatee grass 11/16/2007 34% 28.945315 -82.729389 dsOO07 Caulerpa mexicana feather calulerpa 11/16/2007 65% 28.950001 -82.751469 dsOO07 Leptogorgia virgulata sea whip 11/16/2007. 2 28.950001 -82.751469 dsOO07 Sargassum natans gulfweed drift alga 11/16/2007 12 28.950001 -82.751469 dsOO08 Halodule wrightii shoal grass 11/16/2007 42% 28.959779 -82.738098 dsO009 Halodule wrightii shoal grass 11/16/2007 100% 28.961919 -82.729233 dsOO10 Halodule wrightii shoal grass 11/16/2007 100% 28.965891 -82.727880 dsOO10 Sargassum fluitans gulfweed drift alga 11/16/2007 2% 28.965891 -82.727880 dsOO05 Gracilariatikvahiae edible drift alga 11/16/2007 .61% 28.945315 -82.729389 dsOO06 Dictyota sp. 11/16/2007 2cells 0.000000 0.000000 dsOO06 Halimeda incrassata Halimeda spp 11/16/2007 7 cells 0.000000 0.000000 dsO006 Udotea conglutinata Udotea spp 11/16/2007 6 cells 0.000000 0.000000 dsOO06 Sargassum natans gulfweed drift alga 11/16/2007 45 cells 0.000000 0.000000 dsOO06 Caulerpamexicana feather caulerpa 11/16/2007 47 cells 0.000000 0.000000 dsOO06 Caulerpasertularoides feather caulerpa 11/16/2007 7 cells 0.000000 0.000000 dsOO06 Leptogorgia virgulata sea whip 11/16/2007 8 cells 0.000000 0.000000