ML101320288

From kanterella
Jump to navigation Jump to search
Annual Radioactive Effluent Release Report 2009
ML101320288
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 04/30/2010
From: Weber T
Arizona Public Service Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
102-06184-TNW/KAR
Download: ML101320288 (226)


Text

W1 A subsidiaryof PinnacleWest CapitalCorporation Thomas N. Weber Mail Station 7636 Palo Verde Nuclear Department Leader Tel. 623-393-5764 PO Box 52034 Generating Station Regulatory Affairs Fax 623-393-5442 Phoenix, Arizona 85072-2034 102-06184-TNW/KAR April 30, 2010 ATTN: Document Control Desk U.S. Nuclear I Regulatory Commission Washington, DC 20555-0001

Dear Sir:

Subject:

Palo Verde Nuclear Generating Station (PVNGS)

Units 1, 2, and 3 Docket Nos. STN 50-528/529/530 Annual Radioactive Effluent Release Report 2009 In accordance with PVNGS Technical Specification (TS) 5.6.3, enclosed please find the Annual Radioactive Effluent Release Report for 2009. In accordance with PVNGS TS 5.5.1, the enclosed report also includes Revision 24 of the Offsite Dose Calculation Manual (ODCM), which was implemented in 2009.

No commitments are being made to the NRC in this letter. Should you need further information regarding this submittal, please contact Russell A. Stroud, Licensing Section Leader, at (623)393-5111.

Sincerely, TNW/RAS/KAR/gat

Enclosure:

2009 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT cc: E. E. Collins Jr. NRC Region IV Regional Administrator J. R. Hall NRC NRR Project Manager L. K. Gibson NRC NRR Project Manager R. I. Treadway NRC Senior Resident Inspector for PVNGS A. V. Godwin Arizona Radiation Regulatory Agency (ARRA)

T. Morales Arizona Radiation Regulatory Agency (ARRA AODR A member of the STARS (Strategic Teaming and Resource Sharing) Alliance f§:f-(4~

Callaway

  • Comanche Peak ° Diablo Canyon
  • Palo Verde
  • San Onofre
  • Wolf Creek

ýThU-

ENCLOSURE 2009 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

PALO VERDE NUCLEAR GENERATING STATION UNITS 1, 2 AND 3 2009 ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT USNRC Docket No. STN 50-528/529/530 RCTSAI 1566 Kutner, Kevn il Digitally signed by Kutner, Kevin W (Z5*ool)

\DN: cn=Kutner, Kevin W(Z58001)

Prepared by: Reason: I am the author of this document VV(Z . 0 ,1 { Date: 2010.04.09 18:03:13 -07'00' g

Bun Digitally signed by Bungard, James Reviewed by:

80en1 8 2: /

  • Bn a d 0ame ungard, James P(Z18012)

I have reviewed this document Date: 2010.04.09 18:14:52 -07'00' Gaffney, John (Z36459)

Digitally signed by Gaffney, John P Approved by: O/,

DN: cn=Gaffney, John P(Z36459)

P/Z-49 eason: I am approving this document P( ,.645, . ) Date: 2010.04.13 02:09:58 -07'00'

TABLE OF CONTENTS SECTION PAGE INTRODUCTION ........................................................................................................................................ 5 BIBLIOGRAP HY ......................................................................................................................................... 6 APPENDIX A SOURCE TERMS AND EFFLUENT AND WASTE DISPOSAL REPORTS ..................... 7 APPENDIX B METEOROLOGY .........................................................................  ;...................................... 59 APPENDIX C DOSE CALCULATIONS ................................................................................................ 82 APPENDIX D NEI 07-07 Groundwater Protection Initiative Sampling .................................................. 91 APPENDIX E OFFSITE DOSE CALCULATION MANUAL Revision 24 .................................................. 100 APPENDIX F Changes to the PCP ......................................................................................................... 203 LIST OF TABLES TABLE PAGE 1 Evaporation P ond Data ................................................................................................................................... 16 2 Batch R e lease Data ........................................................................................................................................ 16 3 Units 1, 2 & 3 Gaseous Effluents Average Lower Limit Of Detection ......................................................... 17 4 Unit 1 Gaseous Effluents - Summation Of All Releases ............................................................................. 18 5 Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and lodines .................. 19 6 Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Particulates ........................................ 20 7 Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and lodines ......................... 21 8 Unit 1 Gaseous Effluents - Ground Level Releases - Batch - Particulates ....................... 22 9 Unit 1 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines ........ :............................... 23 10 Unit 1 Gaseous Effluents - Continuous and Batch - Particulates ........................................................... I........ 24 11 Unit 1 Radiation Doses At And Beyond The Site Boundary ....................................................................... 25 2 PVNGS ARERR 2009

LIST OF TABLES TABLE PAGE 12 Unit 2 Gaseous Effluents - Summation Of All Releases .......................................................................... 26 13 Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and lodines ............. 27 14 Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Particulates .............. ;.......................... 28 15 Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and lodines ........................... 29 16 Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Particulates ................................................ 30 17 Unit 2 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines ........................................ 31 18 -Unit 2 Gaseous Effluents - Continuous and Batch - Particulates .................................................................... 32 19 Unit 2 Radiation Doses At And Beyond The Site Boundary ....................................................................... 33 20 Unit 3 Gaseous Effluents - Summ ation Of All Releases .............................................................................. 34 21 Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and lodines ................. 35 22 Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Particulates ........................................ 36 23 Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and lodines .......................... 37 24 Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Particulates ................................................ 38 25 Unit 3 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines ........................................ 39 26 Unit 3 Gaseous Effluents - Continuous and Batch - Particulates ................................................................ 40 27 Unit 3 Radiation Doses At And Beyond The Site Boundary ....................................................................... 41 3 PVNGS ARERR 2009

LIST OF TABLES TABLE PAGE 28 Units 1,2, and 3 Gaseous Effluents - Continuous - Fission Gases and lodines - Total By Quarter ........... 42 29 Units 1, 2, and 3 Gaseous Effluents - Continuous - Particulates - Total By Quarter..' ............................... 43 30 Units 1, 2, and 3 Gaseous Effluents - Batch - Fission Gases and lodines - Total By Quarter ........................ 44 31 Units 1, 2, and 3 Gaseous Effluents - Batch - Particulates - Total By Quarter ........................................... 45

32. Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines - Total By Quarter 46 33 Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Quarter .................. 47 34 Units 1, 2 and 3 Gaseous Effluents- Continuous - Fission Gases and Iodine- Total By Unit ..................... 48 35 Units 1, 2 and 3 Gaseous Effluents- Continuous - Particulates - Total By Unit ........................................... 49 36 Units 1, 2 and 3 Gaseous Effluents- Batch - Fission Gases and Iodine - Total By Unit ............................. 50 37 Units 1, 2 and 3 Gaseous Effluents- Batch - Particulates - Total By Unit .................................................. 51 38 Units 1, 2 and 3 Gaseous Effluents- Continuous and Batch - Fission Gases and Iodine - Total By Unit ........ 52 39 Units 1, 2 and 3 Gaseous Effluents - Continuous and Batch - Particulates - Total By Unit ......................... 53 40 Estim ation of Total Percent E rror .................................................................................................................... 54 41 Effluent Monitoring Instrumentation Out Of Service Greater Than 30 Days ............................................. 55 42 S o lid W a ste S um ma ry ..................................................................................................................................... 56 43 Doses To S pecial Locations For 2009 ............................................................................................................ 85 44 Integrated Population Dose for 2009 .......................................................................................................... 86 45 Sum m ary of Individual Doses for 2009 ..................................................................................................... 90 4 PVNGS ARERR 2009

INTRODUCTION This report summarizes effluent and waste disposal source term data, meteorological data and doses from radioactive effluents for the Palo Verde Nuclear Generating Station (PVNGS) for the period of January through December 2009. The data presented meets the reporting requirements of Regulatory Guide 1.21 (Revision 1, June 1974) of the U.S. Nuclear Regulatory Commission and the PVNGS Technical Specifications.

5 PVNGS ARERR 2009

BIBLIOGRAPHY U.S. Nuclear Regulatory Commission, Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, 1974.

U.S. Nuclear Regulatory Commission, Regulatory Guide 1.23 (Safety Guide 23), "Onsite Meteorological Programs," 1972.

U.S. Nuclear Regulatory Commission, NUREG/CR-2919, "XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations," 1982.

U.S. Nuclear Regulatory Commission, NUREG-0579, "Users Guide to GASPAR Code," June 1980.

U.S. Nuclear Regulatory Commission, Regulatory Guide 1.109, "Calculations of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR 50, Appendix I," Revision 1, 1977.

U.S. Nuclear Regulatory Commission, NUREG-0172, "Age-specific Radiation Dose Commitment Factors for a One-Year Chronic Intake," 1977.

U.S. Nuclear Regulatory Commission, NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants," 1978.

Technical Specifications, Palo Verde Nuclear Generating Station, Units 1, 2 and 3, Docket No. 50-528/529/530.

Bechtel Power Corp., "Cooling Tower Blowdown System Solar Evaporation Pond," Sept. 1980.

Generation Engineering, "Geotechnical Exploration for Evaporation Pond #2," Oct. 1986 Letter No. 212-00789-WFQ/RHM, "1989 PVNGS Evaporation Pan Data," Jan. 1989.

Offsite Dose Calculation Manual Palo Verde Nuclear Generating Station Units 1, 2 and 3, Rev. 23.

NEI 07-07, Nuclear Energy Institute, Industry Ground Water Protection Initiative - Final Guidance Document, August 2007.

6 PVNGS ARERR 2009

APPENDIX A SOURCE TERMS AND EFFLUENT AND WASTE DISPOSAL REPORTS 7 PVNGS ARERR 2009

Supplemental Information 1.0 REGULATORY LIMITS 1.1 Liquid Releases 1.1.1 PVNGS ODCM Requirement 3.2 The concentration of radioactive material discharged from secondary system liquid waste to the circulating water system shall be limited to:

5.OE-07 [tCi/ml for the principal gamma emitters (except Ce-144) 3.OE-06 pCi/ml for Ce-144 1.OE-06 gCi/ml for 1-131.

1.0E-03 ltCi/ml for H-3 The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to:

2.0E-06 ýtCi/ml for Cs-134 2.0E-06 ýtCi/ml for Cs-137 The concentrations specified in 10 CFR Part 20.1001-20.2402, Appendix B, Table 2, Column 2, for all other isotopes 1.1.2 PVNGS ODCM Requirement 4.4 The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited:

a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
b. During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

8 PVNGS ARERR 2009

1.2 Gaseous Releases 1.2.1 PVNGS ODCM Requirement 3.1 The dose rate due to radioactive materials released in gaseous effluents from the site shall be limited to the following:

a. For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
b. For 1-131 and 1-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

1.2.2 PVNGS ODCM Requirement 4.1 The air dose due to noble gases released in gaseous effluents, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

1.2.3 PVNGS ODCM Requirement 4.2 The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
b. During any calendar year: Less than or equal to 15 mrems to any organ.

1.2.4 PVNGS ODCM Requirement 4.3 The GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, from the site, when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY when averaged over 31 days, would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

9 PVNGS ARERR 2009

1.3 Total Dose 1.3.1 PVNGS ODCM Requirement 5.1 The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to direct radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

2.0 MAXIMUM PERMISSIBLE CONCENTRATIONS Air: Release Concentrations are limited to dose rate limits described in section 1.2.1 of this report.

3.0 AVERAGE ENERGY The average energy (E) of the radionuclide mixture in releases of fission and activation gases is not applicable to PVNGS.

4.0 MEASUREMENTS AND APPROXIMATIONS OF TOTAL RADIOACTIVITY IN GASEOUS EFFLUENTS For continuous releases, sampling is in accordance with PVNGS ODCM Table 3-1.

Particulate and iodine radionuclides are sampled continuously at the Plant Vent and Fuel Building exhaust points. The particulate filters and charcoal cartridges are exchanged for analysis at least four times per month. Noble gas and tritium are sampled at least once per 31 days. The hourly average Radiation Monitoring System (RMS) effluent monitor readings are used, when available, to account for increases and decreases in noble gas concentrations between noble gas grab samples. The tritium concentration is assumed constant between sampling periods.

For batch releases, sampling is also in accordance with PVNGS ODCM Table 3-1. For containment purges, the noble gas concentration may be adjusted to account for decreases or increases in concentration during the purge using RMS readings. The volume of air released during the purge is determined using the exhaust fan rated flow rate. For Waste Gas Decay Tank releases, the volume released is corrected to standard pressure.

Effective January 1, 2004, Containment Purge release permits are updated by removing the permit pre-release particulate and iodine activity. This eliminates double accounting for the Containment Purge particulate and iodine activity at the Plant Vent but allows the particulate and iodine activity to be included in the Containment Purge pre-release dose projection.

The Lower Limit of Detection (LLD) of a measurement system is defined in Table 3 - 1 of the PVNGS 1ODCM. An average LLD for each radionuclide is provided in Table 3.

10 PVNGS ARERR 2009

5.0 BATCH RELEASES 5.1 Gaseous.

Batch release durations are presented in Table 2.

5.2 Liquid None.

6.0 ABNORMAL RELEASES None.

7.0 OFFSITE DOSE CALCULATION MANUAL AND PROCESS CONTROL PROGRAM (PCP) REVISIONS 7.1 ODCM, Revision 24, effective September 10, 2009, contains changes associated with the implementation of the Radioactive Environmental Monitoring Program (REMP). The ODCM revision is included as Appendix E.

7.2 There were no revisions to the Process Control Program (PCP) in 2009. However, a change made to procedure 76RP-0RW79, CD-600 System Operation, Revision 4, effective June 24, 2008, was determined to be a reportable change to the PCP (Reference CRAI 3337792) and should have been included in the 2008 ARERR.

76RP-0RW79, Revision 4, is included in Appendix F.

8.0 EFFLUENTS AND SOLID WASTES 8.1 Gaseous Effluents Gaseous effluent information is presented in Table 1 through Table 41. Included in these tables are summaries of the effluents and estimated total error.

8.2 Liquid Effluents There were no liquid effluent releases beyond the Site Boundary from PVNGS.

8.3 Solid Waste Solid waste shipments are summarized in Table 42.

11 PVNGS ARERR 2009

9.0 MISCELLANEOUS INFORMATION 9.1 EVAPORATION PONDS Releases made to the Evaporation Ponds are limited to the concentrations specified in PVNGS ODCM Requirement 3.2. The Evaporation Ponds were monitored in accordance with PVNGS ODCM Requirement 6.1.

The average historical evaporation is approximately 12 inches, per pond, for each of the first and fourth quarters, and 33 inches, per pond, for each of the second and third quarters. Evaporation Pond One is approximately 250 acres. This equates to 3.08E+11 cc evaporated from Pond One for each of the first and fourth quarters and 8.48E+11 cc evaporated from Pond One for each of the second and third quarters. Evaporation Pond Two is approximately 235 acres. The amount evaporated from Pond Two is 2.90E+11 cc for each of the first and fourth quarters and 7.97E+11 cc for each of the second and third quarters.

Evaporation Pond Three is constructed of two smaller ponds of 90 acres each (3A and 3B). The amount evaporated from each section of Pond Three is 1.11E+11 cc for each of the first and fourth quarters and 3.05E+11 cc for each of the second and third quarters.

Evaporation Pond 2 was empty for maintenance for the entire year.

Evaporation Pond 3B was empty during quarters one and two.

Using a site boundary X/Q of 5.OE-05 sec/mi3 for the evaporation ponds and equation4-3 from the ODCM, the dose from the evaporation ponds to a hypothetical individual at the site boundary, for all pathways, is summarized in Table 1.

9.2- RADIATION MONITORING SYSTEM SETPOINT VERIFICATION Current effluent monitor noble gas channel alert alarm setpoints are based on an assumed one per cent failed fuel source term. The current setpoints are more conservative than setpoints calculated using the actual noble gas source term presented in Table 38.

9.3 RCS RADIOIODINE (TRM T5.0.600)

There were no cases where primary coolant specific activity exceeded the Technical Specification 3.4.17 limits during the reporting period.

9.4 INDEPENDENT SPENT FUEL STORAGE INSTALLATION (ISFSI)

There are no radioactive effluents from the NAC-UMS System. Direct dose at the Site Boundary is reported in the Annual Radiological Environmental Operating Report.

12 PVNGS ARERR 2009

9.5 MAJOR CHANGES TO THE RADIOACTIVE WASTE SYSTEMS (liquid, gaseous, and solid).

Licensee-initiated major changes to the radioactive waste systems (liquid, gaseous, and solid) are submitted as part of the FSAR update (TRM T5.0.500.4.a).

9.6 SAMPLES RESULTS FROM GROUNDWATER WELLS THAT ARE NOT DESCRIBED IN THE ODCM AS PART OF THE REMP (NEI 07-07, Industry Groundwater Protection Initiative, August 2007), are included in Appendix D. This initiative provides added assurance that ground water will not be adversely affected by PVNGS operations.

There were no NEI 07-07, reportable leaks or spills.

There were no positive sample results.

9.7 REPORT ADDENDUM Refer to Section 7.2, Change to the Process Control Program (PCP).

9.8 Land Use Census Information (reference CRAI 3339605)

The Offsite Dose Calculation Manual (ODCM), Section 6.2.a, requires identifying location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in ODCM Section 4.2.1, in the next Annual Radioactive Effluent Release Report, pursuant to ODCM, Section 7.1.

There were two locations identified in the 2009 Land Use Census that met this criteria. These are new locations with milk animals. Location 1 is located 2.05 miles NNE of Unit 2. Location 2 is located 1.95 miles ESE of Unit 2.

Location 2 is also the location identified in Table 45 with the highest organ dose.

13 PVNGS ARERR 2009

10.0 DISCUSSION 10.1 Unit One Unit One operated without a refueling outage.

Maintenance outages:

None.

Estimated number of fuel defects (source: INPO, CDE)

Jan Feb Mar Apr May Jun Jul , Aug Sep Oct Nov Dec 0 0 0 0 0 0 0 0 0 0 0 0 10.2 Unit Two Unit Two operated with a refueling outage (U2R15) from October 3, 2009 to December 2, 2009.

Estimated number of fuel defects (source: INPO, CDE)

Jan Feb, Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0 0 0 0 0 0 0 0 0 0 N/A 0 10.3 Unit Three Unit Three operated with a refueling outage (U3R14) from April 4, 2009 to May 28, 2009.

Maintenance outages:

U3M15A, 12-03-09 to 12-09709 Estimated number of fuel defects (source: INPO, CDE)

Jan Feb Mar Apr : May Jun Jul Aug Sep Oct Nov Dec 0 0 0 0 N/A 0 0 0 0 0 0 0 10.4 General PVNGS does not have a liquid release pathway. Removal of tritium is performed by operation of the Boric Acid Concentrator (BAC) in the release mode.

Comparison of PVNGS annual tritium curies released to other utilities should be made only after summing both liquid and gaseous tritium curies released.

14 PVNGS ARERR 2009

10.5 Summary Dose for 2009 was primarily due to the release of tritium. Tritium production is approximately 1000 curies per Reactor Unit per year. In order to control plant tritium concentrations, tritium releases should match tritium production. For 2009, PVNGS released a total of 1590 curies of tritium (see Table 39).

Total dose due to releases from all three Units for the year 2009 were slightly higher than year 2008, primarily due to changes in the Land Use Census identifying a closer resident with milk goats.

15 PVNGS ARERR 2009

T~hI~ I Fv~nnrRtion Pond Data Evaporation Pond I Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year Historical volume of water evaporated 3.08E+1 1 8.48E+11 8.48E+11 3.08E+11 (ml)

Tritium Concentration (uCi/cc) 8.25E-07 9.57E-07 1.22E-06 6.97E-07 Tritium Curies 2.54E-01 8.12E-01 1.04E+00 2.15E-01 2.32E+00 Evaporation Pond 2 Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year Historical volume of water evaporated 2.90E+11 7.97E+11 7.97E+11 2.90E+11 (ml)

Tritium Concentration (uCi/cc) N/A N/A N/A N/A Tritium curies 0.00E+00 O.00E+00 0.00E+00 0.OOE+00 0.OOE+00 Evaporation Pond 3 Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year Historical volume of water evaporated 1.11E+11 3.05E+11 3.05E+11 1.11E+11 (ml) 3A Tritium Concentration (uCi/cc) 9.91E-07 9.89E-07 7.86E-07 6.28E-07 3A Tritium curies 1.10E-01 3.02E-01 2.40E-01 6.97E-02 7.21E-01 3B Tritium Concentration (uCi/cc) N/A N/A 7.07E-07 7.78E-07 3B Tritium curies O.OOE+00 0.OOE+00 2.16E-01 8.64E-02 3.02E-01 Dose (mRem) Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year Pond 1 3.52E-03 1.13E-02 1.44E-02 2.98E-03 3.22E-02 Pond 2 0.OOE+00 O.00E+00 0.00E+00 0.OOE+00 0.OOE+00 Pond 3 1.53E-03 4.18E-03 6.32E-03 2.16E-03 1.42E-02 Total 5.05E-03 I1.54E-02 2.07E-02 5.14E-03 4.63E-02 Table 2: Batch Release Data All times are in hours Unit 1 Unit 2 Unit 3 January - June Number of batch releases 23 29 47 Total time period for batch releases 516.97 69.37 2222.32 Maximum time period for a batch release 162.50 21.00 168.00 Average time period for a batch release 22.48 2.39 47.28 Minimum time period for a batch release 0.90 0.05 0.05 July - December Number of batch releases 21 41 18 Total time period for batch releases 154.83 1979.61 52.23 Maximum time period for a batch release 129.90 168.00 23.12 Average time period for a batch release 7.37 48.28 2.90 Minimum time period for a batch release 0.29 0.1 1.07 January - December Number of batch releases 44 70 65 Total time period for batch releases 671.80 2048.98 2274.55 Maximum time period for a batch release 162.50 168.00 168.00 Average time period for a batch release 15.27 29.27 34.99 Minimum time period for a batch release 0.29 0.05 0.05 16 PVNGS ARERR 2009

Table 3: ,

Units 1, 2 & 3 Gaseous Effluents Average Lower Limit Of Detection RCi/cc Nuclide Continuous Batch Nuclide Continuous Batch Antimony-122 2.20E-13 1.90E-11 Argon-41 4.50E-08 4.50E-08 Antimony-124 8.40E-14 1.70E-11 Krypton-85 7.40E-06 7.40E-06 Barium-140 3.40E-13 5.70E-11 Krypton-85m 2.20E-08 2.20E-08 Bromine-82 3.30E-1 3 1.40E-11 Krypton-87 5.70E-08 5.70E-08 Cerium-141 8.70E-14 3.10E-11 Krypton-88 7.40E-08 7.40E-08 Cerium-144 3.60E-13 6.50E-11 Xenon-125 2.20E-08 2.20E-08 Cesium-134 1.OOE-13 2.60E-11 Xenon-127 2.10E-08 2.1OE-08 Cesium-1 37 8.10E-14 1.70E-1 1 Xenon-1 31 m 9.1 OE-07 9.1 OE-07 Cesium-1 38 5.20E-1 0 7.30E-1 0 Xenon-133 6.30E-08 6.30E-08 Chromium-51 6.90E-13 1.40E-10 Xenon-133m 1.90E-07 1.90E-07 Cobalt-58 8.50E-14 1.70E-11 Xenon-135 2.OOE-08 2.OOE-08 Cobalt-60 1.OOE-13 1.90E-11 Xenon-135m 8.90E-08 8.90E-08 Iron-59 1.70E-13 3.20E-11 Xenon-138 2.OOE-07 2.00E-07 Lanthanum-140 2.80E-13 2.10E-11 lodine-131 8.OOE-14 7.OOE-12 Manganese-54 8.30E-14 1.70E-11 Iodine-132 6.60E-12 1.90E-11 Molybdenum-99 2.40E-13 2.80E-11 Iodine-133 4.70E-1 3 1.10E-11 Niobium-95 8.70E-14 1.80E-11 Iodine-134 5.90E-11 8.20E-11 Rubidium-88 1.90E-08 1.90E-08 lodine-135 7.OOE-12 5.50E-11 Ruthenium-103 7.40E-14 1.50E-11 Strontium-89 2.15E-15 (1)

Strontium-90 5.60E-16 (1)

Tellurium-123m 6.60E-14 1.50E-11 Tritium 3.80E-07 3.80E-07 Zinc-65 1.90E-13 3.80E-11 Zirconium-95 1.80E-13 4.10E-11 Gross Alpha 3.60E-15 (1)

(1) Not required for batch releases.

17 PVNGS ARERR 2009

Table 4:

Unit I Gaseous Effluents - Summation Of All Releases Unit Quarter 1 Quarter 2 Quarter 3 QuarterFor Est. Total Error Year  % (1)

A. Fission & activation gases

1. Total release Ci 3.51 E+00 5.52E+00 7.92E-02 8.19E-01 9.92E+00 3.54E+01
2. Average release rate for period gICi/sec 4.51E-01 7.02E-01 9.96E-03 1.03E-01 3.15E-01
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

B. Iodine 131

1. Total Iodine 131 Ci < LLD < LLD < LLD < LLD < LLD 3.32E+01
2. Average release rate for period ItCi/sec < LLD < LLD < LLD < LLD < LLD
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

C. Particulates

1. Particulates with half- lives > 8 days Ci < LLD < LLD 1.OOE-07 < LLD 1.OOE-07 3.43E+01
2. Average release rate for period gCi/sec < LLD < LLD 1.26E-08 < LLD 3.18E-09
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)
4. Gross Alpha radioactivity Ci < LLD < LLD < LLD < LLD < LLD D. Tritium z

G)

(n, m

1. Total release
2. Average release rate for period
3. Percent of ODCM Requirement limit

{ICi/sec Ci 6.48E+01 8.33E+00 NA (2) 1.21E+02 1.54E+01 NA (2) 1.09E+01 1.37E+00 NA (2) 1.14E+02 1.43E+01 NA (2) 3.11E+02 9.86E+00 NA (2) 3.85E+01 (1) Estimated total error methodology is presented in Table 40.

CD (2) See Table 11 for percent of ODCM Requirement limits.

Table 5:

Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and lodines Nuclides Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total ReleasedI

1. Fission gases Ar-41 Ci 3.22E+00 4.73E+00 < LLD 7.34E-01 8.69E+00 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD <LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD < LLD < LLD Xe-133 Ci < LLD 2.18E-01 < LLD < LLD 2.18E-01 Xe-133m Ci < LLD < LLD < LLD < LLD < LLD Xe-135 Ci 2.30E-01 4.93E-01 < LLD < LLD 7.23E-01 Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 3.45E+00 5.44E+00 < LLD 7.34E-01 9.63E+00
2. lodines 1-131 Ci < LLD < LLD < LLD < LLD < LLD 1-132 Ci < LLD < LLD < LLD < LLD < LLD 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD < LLD < LLD 19 PVNGS ARERR 2009

Table 6:

Unit 1 Gaseous Effluents - Ground Level Releases - Continuous - Particulates Nuclides Released I Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total 3.Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82, Ci < LLD < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD < LLD < LLD < LLD < LLD Co-60 Ci < LLD < LLD < LLD < LLD < LLD Cr-51 Ci < LLD < LLD < LLD < LLD < LLD Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD < LLD < LLD < LLD Os-191 Ci < LLD < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD 7.90E-08 < LLD 7.90E-08 Sr-90 Ci < LLD < LLD 2.13E-08 < LLD 2.13E-08 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD 1.OOE-07 < LLD 1.OOE-07 4.Tritium H-3 Ci 2.11E+01 9.30E+00 1.09E+01 1.78E+01 5.91E+01

'1 20 PVNGS ARERR 2009

Table 7:

Unit I Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 5.35E-02 7.61 E-02 7.92E-02 8.44E-02 2.93E-01 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD < LLD < LLD Xe-133 Ci < LLD 1.76E-04 < LLD 1.93E-04 3.68E-04 Xe-133m Ci < LLD < LLD < LLD < LLD < LLD Xe-135 Ci < LLD < LLD < LLD < LLD < LLD Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 5.35E-02 7.62E-02 7.92E-02 8.46E-02 2.94E-01
2. lodines 1-131 Ci < LLD < LLD < LLD < LLD < LLD 1-132 Ci < LLD < LLD < LLD < LLD < LLD 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD < LLD < LLD 21 PVNGS ARERR 2009

Table 8:

Unit I Gaseous Effluents - Ground Level Releases - Batch - Particulates Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD 3.19E-07 < LLD 3.19E-07 Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD < LLD < LLD < LLD < LLD Co-60 Ci < LLD < LLD < LLD < LLD < LLD Cr-51 Ci < LLD < LLD < LLD < LLD < LLD Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD < LLD < LLD < LLD Os-191 Ci < LLD < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD <LLD < LLD < LLD Sr-89 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Sr-90 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD <LLD Zr-95 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD 3.19E-07 < LLD 3.19E-07 4.Tritium H-3 Ci 4.37E+01 1.11E+02 8.47E-03 9.65E+01 2.51E+02 Note 1 - Not required for batch releases 22 PVNGS ARERR 2009

Table 9:

Unit 1 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 3.28E+00 4.81E+00 7.92E-02 8.19E-01 8.98E+00 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD < LLD < LLD Xe-133 Ci < LLD 2.18E-01 < LLD 1.93E-04 2.18E-01 Xe-133m Ci < LLD < LLD < LLD < LLD < LLD Xe-135 Ci 2.30E-01 4.93E-01 < LLD < LLD 7.23E-01 Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD <LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 3.51E+00 5.52E+00 7.92E-02 8.19E-01 9.92E+00
2. lodines 1-131 Ci < LLD < LLD < LLD < LLD < LLD 1-132 Ci < LLD < LLD < LLD < LLD < LLD 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD <LLD Total Ci < LLD < LLD < LLD < LLD < LLD 23 PVNGS ARERR 2009

Table 10:

Unit I Gaseous Effluents - Continuous and Batch - Particulates Nuclides Released Unit I Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD 3.19E-07 < LLD 3.19E-07 Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD < LLD < LLD < LLD < LLD Co-60 Ci < LLD < LLD < LLD < LLD < LLD Cr-51 Ci < LLD < LLD < LLD < LLD < LLD Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD < LLD < LLD < LLD Os-191 Ci < LLD < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD <LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD 7.90E-08 < LLD 7.90E-08 Sr-90 Ci < LLD < LLD 2.13E-08 < LLD 2.13E-08 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD 4.20E-07 < LLD 4.20E-07 Total > 8 days Ci < LLD < LLD 1.OOE-07 < LLD 1.OOE-07 4.Tritium H-3 Ci 6.48E+01 1.21E+02 1.09E+01 1.14E+02 3.11E+02 24 PVNGS ARERR 2009

Table 11:

Unit 1 Radiation Doses At And Beyond The Site Boundary Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year-total Gamma Air Dose mrad 8.73E-03 1.29E-02 2.08E-04 2.15E-03 2.40E-02 ODCM Req 4.1 Limit mrad 5.OOE+00 5.OOE+00 5.OOE+00 5.OOE+00 1.OOE+01

% ODCM Limit  % 1.75E-01 2.58E-01 4.16E-03 4.30E-02 2.40E-01 Beta Air Dose mrad 3.20E-03 4.86E-03 7.34E-05 7.59E-04 8.89E-03 ODCM Req 4.1 Limit mrad 1.OOE+01 1.OOE+01 1.OOE+01 1.OOE+01 2.OOE+01

% ODCM Limit  % 3.20E-02 4.86E-02 7.34E-04 7.59E-03 4.45E-02 Maximum Organ Dose (excludingsn) Dos mrem 2.32E-02 4.32E-02 3.92E-03 4.1OE-02 1.11E-01 (excluding skin)

Age Teen Teen Teen Teen Teen Organ (1) (1) W Body (1) W Body ODCM Req. 4.2 Limit mrem 7.50E+00 7.50E+00 7.50E+00 7.50E+00 1.50E+01

% ODCM Limit  % 3.09E-01 5.76E-01 5.23E-02 5.47E-01 7.40E-01 Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone.

25 PVNGS ARERR 2009

Table 12:

Unit 2 Gaseous Effluents - Summation Of All Releases Quarter 1 Quarter 2 Quarter 3 QQuarterQ4 Total For Est. Total Error Unit Year  % (1)

A. Fission & activation gases

1. Total release Ci 1.17E-01 1.46E-01 1.41 E-01 1.29E+00 1.69E+00 3.54E+01
2. Average release rate for period jiCi/sec 1.50E-02 1.86E-02 1.77E-02 1.62E-01 5.36E-02
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

B. Iodine 131

1. Total Iodine 131 Ci < LLD < LLD < LLD 2.1OE-05 2.1OE-05 3.32E+01
2. Average release rate for period gCi/sec < LLD < LLD < LLD 2.64E-06 6.66E-07
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

C. Particulates

1. Particulates with half- lives > 8 days Ci < LLD < LLD < LLD 8.02E-05 8.02E-05 3.43E+01
2. Average release rate for period gtCi/sec < LLD < LLD < LLD 1.01E-05 2.54E-06
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)
4. Gross Alpha radioactivity Ci < LLD < LLD < LLD < LLD < LLD D. Tritium z 1. Total release Ci 2.10E+01 2.37E+01 4.71E+02 1.61E+02 6.77E+02 3.85E+01 0)

U,

2. Average release rate for period pCi/sec 2.70E+00 3.01 E+00 5.93E+01 2.03E+01 2.15E+01 m 3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

(1) Estimated total error methodology is presented in Table 40.

C0 C)

CD (2) See Table 19 for percent of ODCM Requirement limits.

Table 13:.

Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci < LLD < LLD < LLD < LLD < LLD Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD < LLD < LLD Xe-133 Ci < LLD < LLD < LLD < LLD < LLD Xe-133m Ci < LLD < LLD < LLD < LLD < LLD Xe-135 Ci < LLD < LLD < LLD < LLD < LLD Xe-135m Ci < LLD < LLD < LLD <LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci, < LLD < LLD < LLD < LLD < LLD
2. lodines 1-131 Ci < LLD < LLD < LLD 1.89E-05 1.89E-05 1-132 Ci < LLD < LLD < LLD 4.85E-05 4.85E-05 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD 6.74E-05 6.74E-05 27 PVNGS ARERR 2009

Table 14:

Unit 2 Gaseous Effluents - Ground Level Releases - Continuous - Particulates Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD < LLD < LLD 5.71 E-05 5.71 E-05 Co-60 Ci < LLD < LLD < LLD 2.23E-06 2.23E-06 Cr-51 Ci < LLD < LLD < LLD 5.32E-06 5.32E-06 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD < LLD < LLD < LLD Os-191 Ci < LLD < LLD < LLD 4.42E-06 4.42E-06 Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD < LLD < LLD < LLD Sr-90 Ci < LLD < LLD < LLD < LLD < LLD Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD 6.90E-05 6.90E-05
4. Tritium H-3 Ci 2.10E+01 2.36E+01 3.86E+01 2.82E+01 1.11E+02 28 PVNGS ARERR 2009

Table 15:

Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 1.14E-01 9.49E-02 1.30E-01 5.76E-01 9.15E-01 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 4.77E-02 7.64E-03 1.13E-01 1.69E-01 Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD 1.89E-03 1.89E-03 Xe-133 Ci 2.38E-03 3.09E-03 3.37E-03 5.98E-01 6.07E-01 Xe-133m Ci < LLD < LLD < LLD 1.56E-03 1.56E-03 Xe-135 Ci < LLD < LLD < LLD < LLD < LLD Xe-1 35m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 1.17E-01 1.46E-01 1.41E-01 1.29E+00 1.69E+00
2. lodines 1-131 Ci < LLD < LLD < LLD 2.12E-06 2.12E-06 1-132 Ci < LLD < LLD < LLD 8.20E-06 8.20E-06 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD 1.03E-05 1.03E-05 29 PVNGS ARERR 2009

Table 16:

Unit 2 Gaseous Effluents - Ground Level Releases - Batch - Particulates Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD 1.55E-05 1.55E-05 Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD < LLD < LLD 9.25E-06 9.25E-06 Co-60 Ci < LLD < LLD < LLD 1.63E-06 1.63E-06 Cr-51 Ci < LLD < LLD < LLD < LLD < LLD Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD 2.91E-07 2.91 E-07 Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD < LLD < LLD < LLD Os-191 Ci < LLD < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Sr-90 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD 2.66E-05 2.66E-05
4. Tritium H-3 Ci 6.67E+01 8.61E-03 4.33E+02 1.33E+02 6.32E+02 Note 1 - Not required for batch releases 30 PVNGS ARERR 2009

Table 17:

Unit 2 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 1.14E-01 9.49E-02 1.30E-01 5.76E-01 9.15E-01 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 4.77E-02 7.64E-03 1.13E-01 1.69E-01 Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD 1.89E-03 1.89E-03 Xe-1 33 Ci 2.38E-03 3.09E-03 3.37E-03 5.98E-01 6.07E-01 Xe-133m Ci < LLD < LLD < LLD 1.56E'03 1.56E-03 Xe-135 Ci < LLD < LLD < LLD < LLD < LLD Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 1.17E-01 1.46E-01 1.41E-01 1.29E+00 1.69E+00
2. lodines 1-131 Ci < LLD < LLD < LLD 2.10E-05 2.10E-05 1-132 Ci < LLD < LLD < LLD 5.67E-05 5.67E-05 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD 7.77E-05 7.77E-05 I

31 PVNGS ARERR 2009

Table 18:

Unit 2 Gaseous Effluents - Continuous and Batch - Particulates Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD 1.55E-05 1.55E-05 Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD < LLD < LLD 6.63E-05 6.63E-05 Co-60 Ci < LLD < LLD < LLD 3.86E-06 3.86E-06 Cr-51 Ci < LLD < LLD < LLD 5.32E-06 5.32E-06 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD '< LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD 2.91 E-07 2.91 E-07 Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD < LLD < LLD < LLD Os-191 Ci < LLD < LLD < LLD 4.42E-06 4.42E-06 Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD < LLD < LLD < LLD Sr-90 Ci < LLD < LLD < LLD < LLD < LLD Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD 9.57E-05 9.57E-05 Total > 8 days Ci < LLD < LLD < LLD 8.02E-05 8.02E-05
4. Tritium H-3 Ci 8.77E+01 2.37E+01 4.71E+02 1.61E+02 7.43E+02 32 PVNGS ARERR 2009

Table 19:

Unit 2 Radiation Doses At And Beyond The Site Boundary Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total Gamma Air Dose mrad 3.OOE-04 2.50E-04 3.41E-04 1.57E-03 2.46E-03 ODCM Req 4.1 Limit mrad 5.OOE+00 5.OOE+00 5.OOE+00 5.OOE+00 1.OOE+01

% ODCM Limit  % 6.OOE-03 5.OOE-03 6.82E-03 3.14E-02 2.46E-02 Beta Air Dose mrad 1.07E-04 1.15E-04 1.25E-04 7.75E-04 1.12E-03 ODCM Req 4.1 Limit mrad 1.00E+01 1.OOE+01 1.OOE+01 1.OOE+01 2.OOE+01

% ODCM Limit  % 1.07E-03 1.15E-03 1.25E-03 7.75E-03 5.60E-03 Maximum Organ Dose (excludingasn) Do mrem 7.52E-03 8.49E-03 1.69E-01 5.80E-02 2.43E-01 (excluding skin)

Age Teen Teen Teen Teen Teen Organ (1) (1) (1) Thyroid Thyroid ODCM Req. 4.2 Limit mrem 7.50E+00 7.50E+00 7.50E+00 7.50E+00 1.50E+01

% ODCM Limit  % 1.00E-01 1.13E-01 - 2.25E+00 7.73E-01 1.62E+00 Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone.

33 PVNGS ARERR 2009

Table 20:

Unit 3 Gaseous Effluents - Summation Of All Releases Quarter 1 Quarter 2 Quarter 3 Quarter 4 eTotalFor Est. Total Error Unit

__ I

__ __ __ __ _ __ __ _ I__ __ __ I __ __ __ Year  % (1)

A. Fission & activation gases

1. Total release Ci 2.67E-01 2.31 E+O1 6.54E-02 5.72E-02 2.34E+01 3.54E+01
2. Average release rate for period gCi/sec 3.43E-02 2.94E+00 8.23E-03 7.20E-03 7.42E-01
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

B. Iodine 131

1. Total Iodine 131 T Ci 2.46E-06 2.70E-05 < LLD < LLD 2.95E-05 3.32E+01
2. Average release rate for period TCi/sec 3.16E-07 3.43E-06 < LLD < LLD 9.35E-07
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

C. Particulates

1. Particulates with half- lives > 8 days Ci 5.48E-07 1.11E-04 1.54E-06 < LLD 1.13E-04 3.43E+01
2. Average release rate for period pCi/sec 7.05E-08 1.42E-05 1.94E-07 < LLD 3.60E-06
3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)
4. Gross Alpha radioactivity Ci < LLD < LLD < LLD < LLD < LLD D. Tritium z
1. Total release Ci 1.57E+02 3.39E+02 2.30E+01 1.57E+01 5.35E+02 3.85E+01
2. Average release rate for period -- iCi/sec 2.02E+01 4.31 E+01 2.89E+00 1.98E+00 1.70E+01 C', 3. Percent of ODCM Requirement limit  % NA (2) NA (2) NA (2) NA (2) NA (2)

Cm (1) Estimated total error methodology is presented in Table 40.

Co (2) See Table 27 for percent of ODCM Requirement limits.

Table 21:

Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci < LLD < LLD < LLD < LLD < LLD Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD <LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci <LLD < LLD < LLD < LLD < LLD Xe-133 Ci < LLD < LLD < LLD < LLD < LLD Xe-133m Ci < LLD < LLD < LLD < LLD < LLD Xe-135 Ci < LLD < LLD < LLD < LLD < LLD Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD < LLD < LLD < LLD < LLD
2. lodines 1-131 Ci 2.46E-06 1.41 E-05 < LLD < LLD 1.66E-05 1-132 Ci < LLD < LLD < LLD < LLD < LLD 1-133 Ci 5.29E-06 < LLD < LLD < LLD 5.29E-06 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 7.75E-06 1.41 E-05 < LLD < LLD 2.19E-05 35 PVNGS ARERR 2009

Table 22:

Unit 3 Gaseous Effluents - Ground Level Releases - Continuous - Particulates Nuclides Released Unit Quarter I Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD 3.49E-07 < LLD 3.49E-07 Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci 5.48E-07 5.88E-05 1.17E-06 < LLD 6.05E-05 Co-60 Ci < LLD 6.50E-06 < LLD < LLD 6.50E-06 Cr-51 Ci < LLD 6.10E-06 < LLD < LLD 6.10E-06 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD 4.97E-06 < LLD < LLD 4.97E-06 Os-191 Ci < LLD 5.03E-06 < LLD < LLD 5.03E-06 Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD < LLD < LLD < LLD Sr-90 Ci < LLD < LLD 1.95E-08 < LLD 1.95E-08 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD 3.27E-06 < LLD < LLD 3.27E-06 Total Ci 5.48E-07 8.47E-05 1.54E-06 < LLD 8.68E-05
4. Tritium H-3 Ci 1.04E+01 2.76E+01 2.30E+01 1.57E+01 7.66E+01 36 PVNGS ARERR 2009

Table 23:

Unit 3 Gaseous Effluents - Ground Level Releases -- Batch - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 2.67E-01 6.72E-01 6.54E-02 5.72E-02 1.06E+00 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD 1.22E-01 < LLD < LLD 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD 1.08E-03 < LLD < LLD 1.08E-03 Xe-133 Ci 1.11E-06 1.64E+01 < LLD < LLD 1.64E+01 Xe-133m Ci < LLD 6.33E-04 < LLD < LLD 6.33E-04 Xe-135 Ci 5.70E-08 5.87E+00 < LLD < LLD 5.87E+00 Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 2.67E-01 2.31E+01 6.54E-02 5.72E-02 2.34E+01
2. lodines 1-131 Ci < LLD 1.29E-05 < LLD < LLD 1.29E-05 1-132 Ci < LLD 2.51 E-05 < LLD < LLD 2.51 E-05 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD 3.79E-05 < LLD < LLD 3.79E-05 37 PVNGS ARERR 2009

Table 24:

Unit 3 Gaseous Effluents - Ground Level Releases - Batch - Particulates Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD 2.23E-05 < LLD < LLD 2.23E-05 Co-60 Ci < LLD 4.49E-07 < LLD < LLD 4.49E-07 Cr-51 Ci < LLD 3.40E-07 < LLD < LLD 3.40E-07 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD 1.13E-06 < LLD < LLD 1.13E-06 Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD 3.1OE-08 < LLD < LLD 3.10E-08 Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD 2.06E-06 < LLD < LLD 2.06E-06 Os-191 Ci < LLD < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Sr-90 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD 3.93E-07 r< LLD < LLD 3.93E-07 Total Ci < LLD 2.67E-05 < LLD < LLD 2.67E-05
4. Tritium H-3 Ci 1.46E+02 3.12E+02 1.21E-02 1.56E-02 4.58E+02 Note 1 - Not required for batch releases 38 PVNGS ARERR 2009

Table 25:,

Unit 3 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 2.67E-01 6.72E-01 6.54E-02 5.72E-02 1.06E+00 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD 1.22E-01 < LLD < LLD 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD 1.08E-03 < LLD < LLD 1.08E-03 Xe-133 Ci 1.11E&06 1.64E+01 < LLD < LLD 1.64E+01 Xe-133m Ci < LLD 6.33E-04 < LLD < LLD 6.33E-04 Xe-135 Ci 5.70E-08 5.87E+00 < LLD < LLD 5.87E+00 Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 2.67E-01 2.31 E+O1 6.54E-02 5.72E-02 2.34E+01
2. lodines 1-131 Ci 2.46E-06 2.70E-05 < LLD < LLD 2.95E-05 1-132 Ci < LLD 2.51 E-05 < LLD < LLD 2.51 E-05 1-133 Ci 5.29E-06 < LLD < LLD < LLD 5.29E-06 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 7.75E-06 5.21E-05 < LLD < LLD 5.98E-05 39 PVNGS ARERR 2009

Table 26:

Unit 3 Gaseous Effluents - Continuous and Batch - Particulates Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD 3.49E-07 < LLD 3.49E-07 Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci 5.48E-07 8.11E-05 1.17E-06 < LLD 8.28E-05 Co-60 Ci < LLD 6.95E-06 < LLD < LLD 6.95E-06 Cr-51 Ci < LLD 6.44E-06 < LLD < LLD 6.44E-06 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD 1.13E-06 < LLD < LLD 1.13E-06 Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD 3.10E-08 < LLD < LLD 3.10E-08 Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD 7.03E-06 < LLD < LLD 7.03E-06 Os-191 Ci < LLD, 5.03E-06 < LLD < LLD 5.03E-06 Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD < LLD < LLD < LLD Sr-90 Ci < LLD < LLD 1.95E-08 < LLD 1.95E-08 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD 3.67E-06 < LLD < LLD 3.67E-06 Total Ci 5.48E-07 1.11E-04 1.54E-06 < LLD 1.13E-04 Total > 8 days Ci 5.48E-07 1.11E-04 1.54E-06 < LLD 1.13E-04
4. Tritium H-3 Ci 1.57E+02 3.39E+02 2.30E+01 1.57E+01 5.35E+02 40 PVNGS ARERR 2009

Table 27:

Unit 3 Radiation Doses At And Beyond The Site Boundary Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total Gamma Air Dose mrad 7.02E-04 6.63E-03 1.72E-04 1.50E-04 7.65E-03 ODCM Req 4.1 Limit mrad 5.OOE+00 5.OOE+00 5.OOE+00 5.OOE+00 1.OOE+01

% ODCM Limit  % 1.40E-02 1.33E-01 3.44E-03 3.OOE-03 7.65E-02 Beta Air Dose mrad 2.48E-04 9.63E-03 6.06E-05 5.30E-05 9.99E-03 ODCM Req 4.1 Limit mrad 1.OOE+01 1.OOE+01 1.OOE+01 1.OOE+01 2.OOE+01

% ODCM Limit  % 2.48E-03 9.63E-02 6.06E-04 5.30E-04 5.OOE-02 Maximum Organ Dose (excludingasn) Do mrem 5.63E-02 1.22E-01 8.25E-03 5.64E-03 1.92E-01 (excluding skin)

Age Teen Teen Teen Teen Teen Organ Thyroid Thyroid Lung (1) Thyroid ODCM Req. 4.2 Limit mrem 7.50E+00 7.50E+00 7.50E+00 7.50E+00 1.50E+01

% ODCM Limit  % 7.51 E-01 1.63E+00 1.10E-01 7.52E-02 1.28E+00 Calculations are based on parameters and methodologies of the ODCM using historical meteorology. Dose is calculated to a hypothetical individual. In contrast, Appendix C dose calculations are based on concurrent meteorology, a real individual, and only the actual pathways present.

Note 1 - All organs except Bone 41 PVNGS ARERR 2009

Table 28:

Units 1, 2, and 3 Gaseous Effluents - Continuous - Fission Gases and lodines -

Total By Quarter Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 3.22E+00 4.73E+00 < LLD 7.34E-01 8.69E+00 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD < LLD < LLD < LLD < LLD Xe-133 Ci < LLD 2.18E-01 < LLD < LLD 2.18E-01 Xe-133m Ci < LLD < LLD < LLD < LLD < LLD Xe-135 Ci 2.30E-01 4.93E-01 < LLD < LLD 7.23E-01 Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 3.45E+00 5.44E+00 < LLD 7.34E-01 9.63E+00
2. lodines 1-131 Ci 2.46E-06 1.41E-05 < LLD 1.89E-05 3.55E-05 1-132 Ci < LLD < LLD < LLD 4.85E-05 4.85E-05 1-133 Ci 5.29E-06 < LLD < LLD < LLD 5.29E-06 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 7.75E-06 1.41E-05 < LLD 6.74E-05 8.93E-05 42 PVNGS ARERR 2009

Table 29:

Units 1, 2, and 3 Gaseous Effluents - Continuous - Particulates -

Total By Quarter Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD 3.49E-07 < LLD 3.49E-07 Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci 5.48E-07 5.88E-05 1.17E-06 5.71E-05 1.18E-04 Co-60 Ci < LLD 6.50E-06 < LLD 2.23E-06 8.73E-06 Cr-51 Ci < LLD 6.1OE-06 < LLD 5.32E-06 1.14E-05 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD 4.97E-06 < LLD < LLD 4.97E-06 Os-191 Ci < LLD 5.03E-06 < LLD 4.42E-06 9.45E-06 Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD 7.90E-08 < LLD 7.90E-08 Sr-90 Ci < LLD < LLD 4.08E-08 < LLD 4.08E-08 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD 3.27E-06 < LLD < LLD 3.27E-06 Total Ci 5.48E-07 8.47E-05 1.64E-06 6.90E-05 1.56E-04
4. Tritium H-3 Ci 5.24E+01 6.05E+01 7.25E+01 6.17E+01 2.47E+02 43 PVNGS ARERR 2009

Table 30:

Units 1, 2, and 3 Gaseous Effluents - Batch - Fission Gases and lodines -

Total By Quarter Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 4.35E-01 8.43E-01 2.74E-01 7.17E-01 2.27E+00 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 4.77E-02 7.64E-03 1.13E-01 1.69E-01 Kr-85m Ci < LLD 1.22E-01 < LLD < LLD 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD 1.08E-03 < LLD 1.89E-03 2.97E-03 Xe-133 Ci 2.38E-03 1.64E+01 3.37E-03 5.98E-01 1.70E+01 Xe-1 33m Ci < LLD 6.33E-04 < LLD 1.56E-03 2.19E-03 Xe-1 35 Ci 5.70E-08 5.87E+00 < LLD < LLD 5.87E+00 Xe-135m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 4.37E-01 2.33E+01 2.85E-01 1.43E+00 2.54E+01
2. lodines 1-131 Ci < LLD 1.29E-05 < LLD 2.12E-06 1.50E-05 1-132 Ci < LLD 2.51 E-05 < LLD 8.20E-06 3.33E-05 1-133 Ci < LLD < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 *Ci < LLD < LLD < LLD < LLD < LLD Total Ci < LLD 3.79E-05 < LLD 1.03E-05 4.83E-05 44 PVNGS ARERR 2009

Table 31:

Units 1, 2, and 3 Gaseous Effluents - Batch - Particulates -

Total By Quarter Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD 3.19E-07 1.55E-05 1.58E-05 Ce-141 Ci < LLD < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci < LLD 2.23E-05 < LLD 9.25E-06 3.15E-05 Co-60 Ci < LLD 4.49E-07 < LLD 1.63E-06 2.08E-06 Cr-51 Ci < LLD 3.40E-07 < LLD < LLD 3.40E-07 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-137 Ci < LLD 1.13E-06 < LLD < LLD 1.13E-06 Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD <.LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD 3.10E-08 < LLD 2.91 E-07 3.22E-07 Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD 2.06E-06 < LLD < LLD 2.06E-06 Os-191 Ci < LLD < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Sr-90 Ci Note 1 Note 1 Note 1 Note 1 Note 1 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD 3.93E-07 < LLD < LLD 3.93E-07 Total Ci < LLD 2.67E-05 3.19E-07 2.66E-05 5.37E-05
4. Tritium H-3 Ci 2.57E+02 4.23E+02 4.33E+02 2.29E+02 1.34E+03 Note 1 - Not required for batch releases 45 PVNGS ARERR 2009

Table 32:

Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Fission Gases and lodines -

Total By Quarter

,Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

1. Fission gases Ar-41 Ci 3.66E+00 5.57E+00 2.74E-01 1.45E+00 1.10E+01 Kr-83m Ci < LLD < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 4.77E-02 7.64E-03 1.13E-01 1.69E-01 Kr-85m Ci < LLD 1.22E-01 < LLD < LLD 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD < LLD Xe-131m Ci < LLD 1.08E-03 < LLD 1.89E-03 2.97E-03 Xe-133 Ci 2.38E-03 1.66E+01 3.37E-03 5.98E-01 1.72E+01 Xe-1 33m Ci < LLD 6.33E-04 < LLD 1.56E-03 2.19E-03 Xe-1 35 Ci 2.30E-01 6.37E+00 < LLD < LLD 6.60E+00 Xe-1 35m Ci < LLD < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD <LLD Xe-138 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 3.89E+00 2.87E+01 2.85E-01 2.17E+00 3.51E+01
2. lodines 1-131 Ci 2.46E-06 2.70E-05 < LLD 2.1OE-05 5.05E-05 1-132 Ci < LLD 2.51 E-05 < LLD 5.67E-05 8.18E-05 1-133 Ci 5.29E-06 < LLD < LLD < LLD 5.29E-06 1-134 Ci < LLD < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD < LLD Total Ci 7.75E-06 5.21 E-05 < LLD 7.77E-05 1.38E-04 46 PVNGS ARERR 2009

Table 33:

Units 1, 2, and 3 Gaseous Effluents - Continuous and Batch - Particulates -

Total By Quarter Nuclides Released Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD 3.19E-07 1.55E-05 1.58E-05 Ce-141 Ci < LLD < LLD 3.49E-07 < LLD 3.49E-07 Ce-144 Ci < LLD < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD < LLD Co-58 Ci 5.48E-07 8.11E-05 1.17E-06 6.63E-05 1.49E-04 Co-60 Ci < LLD 6.95E-06 < LLD 3.86E-06 1.08E-05 Cr-51 Ci < LLD 6.44E-06 < LLD 5.32E-06 1.18E-05 Cs-134 Ci < LLD < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD < LLD Cs-1 37 Ci < LLD 1.13E-06 < LLD < LLD 1.13E-06 Cs-138 Ci < LLD < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD < LLD Mn-54 Ci < LLD 3.10E-08 < LLD 2.91E-07 3.22E-07 Mo-99 Ci < LLD < LLD < LLD < LLD < LLD Nb-95 Ci < LLD 7.03E-06 < LLD < LLD 7.03E-06 Os-191 Ci < LLD 5.03E-06 < LLD 4.42E-06 9.45E-06 Rb-88 Ci < LLD < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD < LLD Sb-124 Ci <'LLD < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD < LLD Sr-89 Ci < LLD < LLD 7.90E-08 < LLD 7.90E-08 Sr-90 Ci < LLD < LLD 4.08E-08 < LLD 4.08E-08 Tc-99m Ci < LLD < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD < LLD Zr-95 Ci < LLD 3.67E-06 < LLD < LLD 3.67E-06 Total Ci 5.48E-07 1.11E-04 1.96E-06 9.57E-05 2.1OE-04 Total > 8 days Ci 5.48E-07 1.11E-04 1.64E-06 8.02E-05 1.94E-04
4. Tritium H-3 Ci I 3.09E+02 4.83E+02 5.05E+02 2.91 E+02 1.59E+03 47 PVNGS ARERR 2009

Table 34:

Units 1, 2 and 3 Gaseous Effluents- Continuous - Fission Gases and Iodine -

Total By Unit Nuclides Released UnitUntI Unit 1 Unit __1_

2 Unit _3 I2and Total 3 1,_[_ Units

1. Fission gases Ar-41 Ci 8.69E+00 < LLD < LLD 8.69E+00 Kr-83m Ci < LLD < LLD < LLD < LLD Kr-85 Ci < LLD < LLD < LLD < LLD Kr-85m Ci < LLD < LLD < LLD < LLD Kr-87 Ci < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD Xe-1 31m Ci < LLD < LLD < LLD < LLD Xe-1 33 Ci 2.18E-01 < LLD < LLD 2.18E-01 Xe-133m Ci < LLD < LLD < LLD < LLD Xe-1 35 Ci 7.23E-01 < LLD < LLD 7.23E-01 Xe-135m Ci < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD Total Ci 9.63E+00 < LLD < LLD 9.63E+00
2. lodines 1-131 Ci < LLD 1.89E-05 1.66E-05 3.55E-05 1-132 Ci < LLD 4.85E-05 < LLD 4.85E-05 1-133 Ci < LLD < LLD 5.29E-06 5.29E-06 1-134 Ci < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD Total Ci < LLD 6.74E-05 2.19E-05 8.93E-05 48 PVNGS ARERR 2009

Table 35:

Units 1, 2 and 3 Gaseous Effluents- Continuous - Particulates -

Total By Unit Units Nuclides Released Unit Unit 1 Unit 2 Unit 3 ITotal 1,2 and 3

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD Br-82 Ci < LLD < LLD < LLD < LLD Ce-141 Ci < LLD < LLD 3.49E-07 3.49E-07 Ce-144 Ci < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD Co-58 Ci < LLD 5.71 E-05 6.05E-05 1.18E-04 Co-60 Ci < LLD 2.23E-06 6.50E-06 8.73E-06 Cr-51 Ci < LLD 5.32E-06 6.1OE-06 1.14E-05 Cs-134 Ci < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD < LLD < LLD Cs-138 Ci < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD Mn-54 Ci < LLD < LLD < LLD < LLD Mo-99 Ci < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD 4.97E-06 4.97E-06 Os-191 Ci < LLD 4.42E-06 5.03E-06 9.45E-06 Rb-88 Ci < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD Sn-113m Ci < LLD <LLD < LLD < LLD Sr-89 Ci 7.90E-08 < LLD < LLD 7.90E-08 Sr-90 Ci 2.13E-08 < LLD 1.95E-08 4.08E-08 Tc-99m Ci < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD 3.27E-06 3.27E-06 Total Ci 1.OOE-07 6.90E-05 8.68E-05 1.56E-04
4. Tritium H-3 Ci 5.91E+01 1.11E+02 7.66E+01 2.47E+02 49 PVNGS ARERR 2009

Table 36:

Units 1, 2 and 3 Gaseous Effluents- Batch - Fission Gases and Iodine -

Total By Unit Unit Unit 1 Unit 2 Unit 3 TotalUnits Nuclides Released

1. Fission gases Ar-41 Ci 2.93E-01 9.15E-01 1.06E+00 2.27E+00 Kr-83m Ci < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 1.69E-01 < LLD 1.69E-01 Kr-85m Ci < LLD < LLD 1.22E-01 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD Xe-131m Ci < LLD 1.89E-03 1.08E-03 2.97E-03 Xe-133 Ci 3.68E-04 6.07E-01 1.64E+01 1.70E+01 Xe-133m Ci < LLD 1.56E-03 6.33E-04 2.19E-03 Xe-135 Ci < LLD < LLD 5.87E+00 5.87E+00 Xe-135m Ci < LLD < LLD < LLD < LLD Xe-137 Ci < LLD < LLD < LLD < LLD Xe-138 Ci < LLD < LLD < LLD < LLD Total Ci 2.94E-01 1.69E+00 2.34E+01 2.54E+01
2. lodines 1-131 Ci < LLD 2.12E-06 1.29E-05 1.50E-05 1-132 Ci < LLD 8.20E-06 2.51 E-05 3.33E-05 1-133 Ci < LLD < LLD < LLD < LLD 1-134 Ci < LLD < LLD < LLD < LLD 1-135 Ci < LLD < LLD < LLD < LLD Total Ci <,LLD 1.03E-05 3.79E-05 4.83E-05 50 PVNGS ARERR 2009

Table 37:

Units 1, 2 and 3 Gaseous Effluents- Batch - Particulates -

Total By Unit Nuclides Released Unit Unit 1 Unit 2 Unit 3 1Total Units

____I I___ ___ _ I___ ___ _ j 1,2 and 3

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD Br-82 Ci 3.19E-07 1.55E-05 < LLD 1.58E-05 Ce-141 Ci < LLD < LLD < LLD < LLD Ce-144 Ci < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD Co-58 Ci < LLD 9.25E-06 2.23E-05 3.15E-05 Co-60 Ci < LLD 1.63E-06 4.49E-07 2.08E-06 Cr-51 Ci < LLD < LLD 3.40E-07 3.40E-07 Cs-134 Ci < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD Cs-137 Ci < LLD < LLD 1.13E-06 1.13E-06 Cs-138 Ci < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD Mn-54 Ci < LLD 2.91 E-07 3.1OE-08 3.22E-07 Mo-99 Ci < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD 2.06E-06 2.06E-06 Os-191 Ci < LLD < LLD < LLD < LLD Rb-88 Ci < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD Sr-89 Ci Note 1 Note 1 Note 1 Note 1 Sr-90 Ci Note 1 Note 1 Note 1 Note 1 Tc-99m Ci < LLD < LLD < LLD <'LLD Te-123m'- Ci < LLD < LLD < LLD <LLD Zn-65 Ci < LLD < LLD < LLD < LLD Zr-95 Ci < LLD < LLD 3.93E-07 3.93E-07 Total Ci 3.19E-07 2.66E 2.67E-05 5.37E-05
4. Tritium H-3 Ci 2.51E+02 6.32E+02 4.58E+02 1.34E+03 Note 1 - Not required for batch releases 51 PVNGS ARERR 2009

Table 38:

Units 1, 2 and 3 Gaseous Effluents- Continuous and Batch - Fission Gases and Iodine -

Total By Unit Nuclides Released Unit 1 UnitUnit Unit 2 Unit 3 Total Units

~~~

_ _ _ ~ __ _I 1 2and 3

1. Fission gases Ar-41 Ci 8.98E+00 9.15E-01 1.06E+00 1.10E+01 Kr-83m Ci < LLD < LLD < LLD < LLD Kr-85 Ci < LLD 1.69E-01 < LLD 1.69E-01 Kr-85m Ci < LLD < LLD 1.22E-01 1.22E-01 Kr-87 Ci < LLD < LLD < LLD < LLD Kr-88 Ci < LLD < LLD < LLD < LLD Kr-89 Ci < LLD < LLD < LLD < LLD Kr-90 Ci < LLD < LLD < LLD < LLD Xe-131m Ci < LLD 1.89E-03 1.08E-03 2.97E-03 Xe-133 Ci 2.18E-01 6.07E-01 1.64E+01 1.72E+01 Xe-133m Ci < LLD 1.56E-03 6.33E-04 2.19E-03 Xe-135 Ci 7.23E-01 < LLD 5.87E+00 6.60E+00 Xe-135m Ci < LLD < LLD < LLD <LLD Xe-1 37 Ci < LLD < LLD < LLD <. LLD Xe-138 Ci < LLD < LLD < LLD < LLD Total Ci 9.92E+00 1.69E+00 2.34E+01 3.51E+01
2. lodines 1-131 Ci < LLD 2.10E-05 2.95E-05 5.05E-05 1-132 Ci < LLD 5.67E-05 2.51E-05 8.18E-05 1-133 Ci < LLD < LLD 5.29E-06 5.29E-06 1-134 Ci < LLD < LLD < LLD < LLD, 1-135 Ci < LLD < LLD < LLD < LLD Total Ci < LLD 7.77E-05 5.98E-05 1.38E-04 52 PVNGS ARERR 2009

Table 39:

Units 1, 2 and 3 Gaseous Effluents - Continuous and Batch - Particulates -

Total By Unit Unit 1 Unit 2 Unit 3 Total Units Nuclides Released I Unit

__ _ _1,2and3

3. Particulates Ag-110m Ci < LLD < LLD < LLD < LLD Ba-140 Ci < LLD < LLD < LLD < LLD Br-82 Ci 3.19E-07 1.55E-05 < LLD 1.58E-05 Ce-141 Ci < LLD < LLD 3.49E-07 3.49E-07 Ce-144 Ci < LLD < LLD < LLD < LLD Co-57 Ci < LLD < LLD < LLD < LLD Co-58 Ci < LLD 6.63E-05 8.28E-05 1.49E-04 Co-60 Ci < LLD 3.86E-06 6.95E-06 1.08E-05 Cr-51 Ci < LLD 5.32E-06 6.44E-06 1.18E-05 Cs-134 Ci < LLD < LLD < LLD < LLD Cs-136 Ci < LLD < LLD < LLD < LLD Cs-1 37 Ci < LLD < LLD 1.13E-06 1.13E-06 Cs-138 Ci < LLD < LLD < LLD < LLD Fe-59 Ci < LLD < LLD < LLD < LLD La-140 Ci < LLD < LLD < LLD < LLD Mn-54 Ci < LLD 2.91 E-07 3.1OE-08 3.22E-07 Mo-99 Ci < LLD < LLD < LLD < LLD Nb-95 Ci < LLD < LLD 7.03E-06 7.03E-06 Os-191 Ci < LLD 4.42E-06 5.03E-06 9.45E-06 Rb-88 Ci < LLD < LLD < LLD < LLD Ru-103 Ci < LLD < LLD < LLD < LLD Ru-106 Ci < LLD < LLD < LLD < LLD Sb-122 Ci < LLD < LLD < LLD < LLD Sb-124 Ci < LLD < LLD < LLD < LLD Sb-125 Ci < LLD < LLD < LLD < LLD Se-75 Ci < LLD < LLD < LLD < LLD Sn-113m Ci < LLD < LLD < LLD < LLD Sr-89 Ci 7.90E-08 < LLD < LLD 7.90E-08 Sr-90 Ci 2.13E-08 < LLD 1.95E-08 4.08E-08 Tc-99m Ci < LLD < LLD < LLD < LLD Te-123m Ci < LLD < LLD < LLD < LLD Zn-65 Ci < LLD < LLD < LLD < LLD
  • Zr-95 Ci < LLD < LLD 3.67E-06 3.67E-06 Total Ci 4.20E-07 9.57E-05 1.13E-04 2.1OE-04 Total > 8 days Ci 1.OOE-07 8.02E-05 1.13E-04 1.94E-04
4. Tritium H-3 Ci 3.11E+02 7.43E+02 5.35E+02 1.59E+03 I

53 PVNGS ARERR 2009

Table 40:

Estimation of Total Percent Error The estimated total error is calculated as follows:

2 2 2 2 Total Percent Error = (E1 + E2 + E3 + ... + En )1/2 Where En = Percent error associated with each contributing parameter.

Parameters contributing to errors in the measurement of gaseous effluents; process flow rates, sample collection, analytical counting and tank volumes.

The following values (%) were used for error calculations.

Fission & Act gases 1-131 Particulates Tritium 25 25 25 25 Sample counting error 10 10 10 10 Counting system calibration error 5 5 5 5 Counting system source error 20 N/A N/A N/A Temperature/volume correction error 10 10 10 10 Process flow measuring device (1)

N/A 15 15 15 Sample flow measuring device N/A 5 N/A N/A Iodine collection efficiency error N/A N/A 10 N/A Plateout error N/A N/A N/A 20 Bubbler collection efficiency error N/A N/A N/A 2 Sample volume transfer error (pipette)

N/A N/A N/A 2 Sample volume error (graduate)

Note 1 - % of full scale 54 PVNGS ARERR 2009

Table 41:

Effluent Monitoring Instrumentation Out Of Service Greater Than 30 Days Unit Instrument Date span of Cause of inoperability inoperability Explanation NONE 55 PVNGS ARERR 2009

Table 42:

Solid Waste Summary A. Solid Waste Shipped Offsite For Burial Or Disposal (not irradiated fuel) 1.0 Type of Waste Unit Jan-Dec estimated total error %

1.a. Spent resin, filters, sludges, evaporator m3 0.OOE+00 N/A bottoms, etc. Ci 0.OOE+00 2.50E+01 1 .b. Dry compressible waste, contaminated m3 7.63E+02 N/A equipment, etc. Ci 2.22E-01 2.50E+01 1.c. Irradiated components, control rods, etc. m3 0.OOE+00 N/A Ci 0.OOE+00 2.50E+01 3

1.d. Other m 0.OOE+00 N/A Ci 0.00E+00 2.50E+01 56 PVNGS ARERR 2009

2.0 Principal Radionuclides 2.a Estimate of major nuclide concentrations for spent resins, filters, sludges, evaporator bottoms, etc.

NONE.

2.b Estimate of major nuclide concentrations for dry compressible waste, contaminated equipment, etc.

Waste Class Nuclide Name Percent , Curies Abundance A Fe-55 5.33E+01 1.18E-01 A Co-58 3.07E+01 6.81E-02 A Co-60 4.49E+00 9.95E-03 A Ni-63 2.45E+00 5.44E-03 A Cr-51 2.40E+00 5.33E-03 A Zr-95 1.47E+00 3.25E-03 A Nb-95 1.46E+00 3.24E-03 A Fe-59 1.46E+00 3.23E-03 A Mn-54 7.01 E-01 1.56E-03 A H-3 5.32E-01 1.18E-03 A C-14 3.61 E-01 8.OOE-04 A Sb-125 1.64E-01 3.64E-04 A Co-57 1.49E-01 3.30E-04 A Sn-113 1.09E-01 2.42E-04 A Sb-124 5.11E-02 1.13E-04 A Ni-59 4.24E-02 9.40E-05 A Ag-110m 3.22E-02 7.15E-05 A Ce-144 2.33E-02 5.18E-05 A Pu-241 1.71E-02 3.79E-05 A Te-123m 1.18E-02 2.62E-05 A Ru-103 1.05E-02 2.33E-05 A Hf-181 4.30E-03 9.55E-06 A Cs-1 37 4.OOE-03 8.87E-06 A Am-241 2.70E-03 5.98E-06 A Ce-141 2.36E-03 5.23E-06 A Pu-239 2.35E-03 5.21 E-06 A Cs-134 2.04E-03 4.52E-06 A Sr-89 1.17E-03 2.60E-06 A Sr-90 1.02E-03 2.27E-06 A Zn-65 7.31 E-04 1.62E-06 Total 2.22E-01 57 PVNGS ARERR 2009

2.c Estimate of major nuclide concentrations for irradiated components, control rods, etc.

None 2.d Other - None 3.0 Solid Waste Disposition 3.a Mode Of Shipments Destination Transportation 19 Truck EnergySolutions, UT (Bulk) 3.b Irradiated Fuel Shipments: None 3.c Supplemental Information:

Number of Container Solidification Containers Volume ft3 Type of Waste Container Type Agent 1 161.6 Dry Active Waste 45 Mil Wrap None 3 1031.3 Dry Active Waste 20' Intermodal None 28 1360 Dry Active Waste 20' Sealand None 58 PVNGS ARERR 2009

APPENDIX B METEOROLOGY 59 PVNGS ARERR 2009

JOINT FREQUENCY DISTRIBUTION TABLES The tables presented in this section are results obtained from processing the hourly meteorological data collected at the Palo Verde Nuclear Generating Station for the period of January - December 2009. The joint frequency distribution (JFD) tables represent the frequency, in terms of the number of observations, that a particular wind speed, wind direction, and stability category occurred simultaneously. On a quarterly, semiannual and annual basis, the JFDs were produced for 35-foot wind speed and wind direction by atmospheric stability class corresponding to the seven Pasquill stability categories, and for wind speed and wind direction for all stability classes combined. Atmospheric stability was classified per Regulatory Guide 1.23, using the 200-foot to 35-foot temperature difference (delta T).

In accordance with NUREG-01 33, the batch releases for the year were considered as "long term,"

since the batch releases are sufficiently random in both time of day and duration. Consequently, the JFDs for the batch releases for all quarters are the same as for the continuous releases.

Discussion A summary of 2009 Joint Frequency Distribution (JFD) shows a somewhat typical, but variable year. Of the 8760 hours0.101 days <br />2.433 hours <br />0.0145 weeks <br />0.00333 months <br /> available, only 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> of data were lost for an effective 100% data recovery.

The average 35 foot wind speed was 6.6 mph. Distribution of directions was spread over the compass with a predominant direction (3 sectors of 22.5 degrees each) centered on southwest.

(34.7%) A secondary maximum of three sectors centered on the north contained 26.4% of the total. Southwesterly flow winds averaged higher speeds with the most frequent speed at 7.5 mph.

With the northerly directions, the highest frequency occurred at 4.0 mph.

Stability class summary:

Stability class E, F, G, (stable categories) 58.1%.

Stability class G, (extremely stable) 25.5%.

Stability class A, B, C, (unstable categories) 24.8%.

Stability class D, (neutral category) 17.1%.

Overall stable conditions (E,F,G) existed for the year.

60 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 3/31/2009

... IST QRTR STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW WNW NW NNW TOTAL CALM

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.51- 5.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5.51- 6.50 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3

6.51- 8.50 0 0 1 0 0 0 0 2 0 4 2 2 0 0 0 14 4

8.51-11.50 0 3 0 0 0 1 0 0 0 4 3 3 2 0 0 20 11.51-14.50 0 0 0 0 0 0 0 0 0 3 6 4 4 5 0 1 23 14.51-20.50 0 0 0 0 0 0 0 0 0 7 0 1 4 0 1 10

,20.50 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 6 TOTAL 0 3 1 0 0 1 0 2 0 15 24 12 10 13 0 2 83 STABILITY CLASS B SPEED (MPH) N *NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.51- 5.50 1 0 0 1 0 0 0 0 4 2 0 4 0 0 0 13 5.51- 6.50 1 3 4 0 0 1 0 0 4 3 2 3 0 0 0 0 21 6.51- 8.50 0 3 5 4 2 5 0 1 3 5 0 3 1 1 1 0 34 8.51-11.50 1 0 1 0 0 0 0 0 0 4 5 1 2 2 1 0 17 11.51-14.50 0 0 0 0 0 0 0 0 2 0 5 2 2 1 0 0 12 14.51-20.50 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1

20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 3 6 10 5 2 6 0 1 10 17 14 9 9 4 2 0 98 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW 9 WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 2 0 0 1 0 o 0 0 2 0 0 0 0 0 5 4.51- 5.50 0 3 0 0 0 1 0 2 0 9 4 2 0 0 0 0 21 5.51- 6.50 1 5 4 0 0 0 0 1 5 6 6 8 0 0 .0 0 36 6.51- 8.50 1 4 9 3 2 1 2 2 6 1 9 2 1 0 0 0 43 8.51-11.50 0 0 2 4 2 1 0 0 1 2 4 1 1 2 2 1 23 11.51-14.50 1 0 0 0 0 0 0 0 1 1 2 0 1 2 0 1 9 14.51-20.50 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 1 4

>20.50 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 TOTAL 3 12 17 7 5 4 2 5 13 19 29 14 3 4 3 3 143 61 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 3/31/2009

... 1ST QRTR ...

STABILITY CLASS D L

STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 2 2 3 1 1 0 3 2 2 4 3 4 1 0 1 29 2.51- 3.50 1 1 5 3 0 6 1 2 7 11 15 9 5 2 5 7 80 3.51- 4.50 4 3 5 0 3 0 4 2 13 17 13 7 4 3 4 5 87 4.51- 5.50 6 3 6 3 0 1 0 1 7 11 9 0 3 2 4 2 58 5.51- 6.50 1 1 4 3 1 0 1 0 4 6 2 6 0 1 3 1 34 6.51- 8.50 2 4 9 5 3 4 5 0 8 3 5 4 1 1 0 1 55 8.51-11.50 0 0 0 5 5 2 3 1 1 1 4 1 1 4 3 0 31 11.51-14.50 0 0 0 9 13 0 0 0 1 3 5 1 1 1 1 0 35 14.51-20.50 0 0 0 1 6 0 0 0 1 4 4 0 0 1 0 2 19

>20.50 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 3 TOTAL 14 14 31 32 32 14 14 9 44 58 61 32 19 16 22 19 431 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 1 o 0 0 0 0 0 0 0 0 2 0 0 0 3 1.51- 2.50 2 0 0 0 0 0 0 1 2 2 2 1 3 2 1 2 18 2.51- 3.50 4 2 0 1 1 0 0 0 1 2 8 3 2 6 8 0 38 3.51- 4.50 1 7 1 1 1 0 0 1 1 4 5 5 2 5 2 4 40 4.51- 5.50 1 3 2 2 0 0 0 0 1 5 4 1 3 0 6 1 29 5.51- 6.50 0 0 3 1 0 0 0 1 3 1 5 2 1 3 0 1 21 6.51- 8.50 1 1 5 2 1 0 1 3 7 5 7 5 1 6 2 2 49 8.51-11.50 2 0 1 4 1 0 0 0 1 10 13 2 1 7 11 0 53 11.51-14.50 0 0 o 2 7 2 0 9 0 6 6 5 2 6 9 2 38 14.51-20.50 0 2 0 1 9 0 0 0 0 3 5 4 0 1 9 5 30

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL ii 15 13 14 20 2 1 6 16 38 55 28 17 36 30 17 319 STABILITY CLASS F SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM

,76- 1.50 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1.51- 2.50 3 2 2 1 0 0 1 0 0 2 1 5 1 3 8 4 33 2.51- 3.50 7 2 3 0 1 0 0 0 1 1 0 6 5 7 8 7 48 3.51- 4.50 6 1 2 2 0 0 0 1 0 4 0 1 10 10 6 12 55 4.51- 5.50 5 0 2 1 0 0 0 0 0 1 6 3 1 3 7 8 37 5.51- 6.50 1 2 2 0 0 0 0 2 0 1 9 5 0 2 3 6 33 6.51- 8.50 1 1 1 1 1 0 0 0 1 8 7 10 3 3 6 9 52 8.51-11.50 0 1 0 0 0 0 0 0 0 1 9 5 1 1 0 2 20 11.51-14.50 3 0 0 0 1 0 0 0 0 0 1 0 0 0 0 3 8 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 26 9 12 5 3 2 18 33 35 21 29 38 51 287 62 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 3/31/2009 1ST QRTR STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SS W SW WSW W WNW NW NNW TOTAL CALM S

.76- 1.50 0 3 0 1 1 0 0 2 0 0 0 1 2 1 0 0 11 1.51- 2.50 8 4 5 2 1 2 1 o 0 2 2 1 13 7 13 16 77 2.51- 3.50 35 17 7 1 1 1 0 o 2 5 4 5 9 18 33 35 173 3.51- 4.50 57 16 4 1 0 0 1 1 3 7 10 30 68 198 4.51- 5.50 56 20 3 3 0 1 0 0 0 1 2 1 0 4 6 49 146 5.51- 6.50 41 21 0 1 0 0 0 0 0 3 4 1 0 6 20 97 6.51- 8.50 26 25 0 S S S S 0 0 5 4 0 0 1 0 7 63 8.51-11.50 19 8 1 S S S S S 0 0 0 o 0 3 31 o o o 0 o 1 21 11.51-14.50 2 0 0 o S S oS 0 0 0 o o 0 0 0 1 1 14.51-20.50 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0

>20.50 0 0 0 o 0 0 0 5 0 0 0 0 0 0 0 0 TOTAL 244 114 20 9 3 4 2 2 2 8 16 15 32 41 88 199 799 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 3 1 1 1 1 0 2 5 0 0 1 4 1 0 0 15 1.51- 2.50 13 8 9 6 2 3 2 4 4 8 9 10 21 13 22 23 157 2,51- 3.50 47 22 15 5 3 7 1 2 11 19 27 23 21 33 54 49 339 3.51- 4.50 68 27 14 4 4 1 5 4 14 25 21 16 23 28 42 89 385 4.51- 5.50 69 29 13 10 0 3 0 3 9 31 27 7 01 10 23 60 305 5.51- 6.50 45 32 17 5 1 1 1 4 16 17 27 29 2 6 12 28 243 6.51- 6.50 31 38 30 15 9 10 8 8 25 25 36 26 9 12 9 19 310 8.51-11.50 22 12 5 13 8 4 3 1 3 22 39 13 9 18 17 6 195 11.51-14.50 6 0 0 11 21 2 0 0 4 13 25 12 10 15 1 8 128 14.51-20.50 0 2 0 2 16 0 0 0 1 12 18 5 1 6 0 9 72

>20.50 0 0 0 0 0 0 0 0 0 1 3 3 0 1 3 0 10 TOTAL 301 173 104 72 65 32 20 28 87 173 232 145 ill 143 183 291 2160 TOTAL NUMBER OF OBSERVATIONS: 2160 TOTAL NUMBER OF VALID OBSERVATIONS: 2160 TOTAL NUMBER OF MISSING OBSERVATIONS: 0 PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 %

MEAN WIND SPEED FOR THIS PERIOD: 6.2 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 3 .84 4.54 6.62 19.95 14.77 13.29 36.99 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW CALM A 0 3 1 0 0 1 0 2 0 15 24 12 10 13 0 2 0 B 3 6 10 5 2 6 0 1 10 17 14 9 9 4 2 0 0 C 3 12 17 7 5 4 2 5 13 19 29 14 3 4 3 3 0 D 14 14 31 32 32 14 14 9 44 58 61 32 19 16 22 19 0 E 11 15 13 14 20 2 1 6 16 38 55 28 17 36 30 17 0 F 26 9 12 5 3 1 1 3 2 18 33 35 21 29 38 51 0 G 244 114 20 9 3 4 2 2 2 8 16 15 32 41 88 199 0 TOTAL 301 173 104 72 65 32 20 28 87 173 232 145 ill 143 183 291 0 63 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2009 TO 6/30/2009

- 2ND QRTR ...

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SFEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.51- 5.50 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 3 5.51- 6.50 0 0 0 0 0 0 2 4 2 11 1 5 1 0 2 0 28 6.51- 8.50 0 0 1 0 1 2 4 5 26 18 33 12 4 1 2 1 110 8.51-11.50 0 0 0 0 2 6 3 4 17 35 40 .-.18 14 2 0 0 141 11.51-14.50 0 0 0 1 0 0 0 0 5 18 33 10 12 4 1 0 84 14.51-20.50 0 0 0 0 0 0 0 0 4 8 14 5 2 4 3 0 40

>20. 50 0 0 0 0 0 0 0 0 0 2 6 1 0 0 0 0 9 TOTAL 0 0 1 1 3 8 9 14 54 92 128 51 33 11 9 1 415 STABILITY CLASS B SFEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 1 0 0 0 0 0 1 1 0 i 0 0 0 0 0 4 4.51- 5.50 0 0 1 0 3 1 0 3 5 3 3 1 0 0 0 0 20 5.51. 6.50 1 0 0 0 2 0 1 12 14 7 8 1 0 2 0 0 48 6.51- 8.50 0 0 2 0 4 1 4 4 14 8 11 , 5 5 0 1 - 2 61 8.51-11.50 1 0 0 2 2 1 0 2 1 0 13 5 2 1 0 0 30 11.51-14.50 0 0 0 0 3 0 0 0 1 0 10 2 1 0 1 0 18 14.51-20.50 0 0 0 0 2 0 0 0 0 4 2 1 2 0 2 0 13

,20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 2 1 3 2 16 3 5 22 36 22 48 15 10 3 4 2 194 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 3 3.51- 4.50 0 1 0 0 1 0 0 1 4 2 2 2 0 0 0 0 13 4.51- 5.50 0 1 1 0 1 2 4 11 9 10 4 0 2 0 0 1 46 5.51- 6.50 0 0 1 0 0 0 1 9 7 3 5 3 2 0 1 0 32 6.51- 8.50 0 0 1 1 0 1 3 1 2 3 6 6 0 0 1 1 26 8.51-11.50 0 1 1 1 1 0 0 0 2 3 11 2 2 3 0 0 27 11.51-14.50 1 0 0 2 1 0 0 0 1 1 4 1 1 0 0 13 14.51-20.50 0 0 0 0 0 0 0 0 0 1 6 0 0 0 0 8

,20.50 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 TOTAL 1 3 4 4 5 3 9 23 25 23 38 15 2 3 170 64 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2009 TO 6/30/2009

... 2ND QRTR STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 1 2 0 1 2 0 1 0 3 0 1 1 0 0 12 2.51- 3.50 0 0 3 1 5 1 2 2 2 4 3 1 3 5 0 0 32 3.51- 4.50 0 1 1 3 2 2 4 7 2 6 3 1 0 0 1 2 35 4.51- 5.50 0 5 0 1 2 2 1 8 9 3 5 0 1 0 1 0 38 5.51- 6.50 0 2 1 0 1 1 0 5 4 3 4 2 1 0 1 0 25 6.51- 8.50 0 0 0 1 0 5 2 1 3 4 7 4 8 1 2 0 3B 8.51-11.50 0 0 1 2 2 1 3 0 3 6 19 12 5 1 0 56 11.51-14.50 0 0 0 1 3 1 0 0 0 4 11 5 4 2 1 34 14.51-20.50 0 0 0 1 2 1 0 0 3 51 9 2 0 0 0 0 29 0

>20.50 0 0 0 1 0 0 0 0 7 0 1 0 0 0 0 9 TOTAL 0 8 13 17 15 14 23 27 48 64 28 23 10 8 3 308 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 3 1.51- 2.50 0 2 1 0 0 0 0 1 0 2 2 2 2 4 1 0 17 2.51- 3.50 7 0 1 0 0 0 1 1 1 0 3 3 0 3 2 4 26 3.51- 4.50 7 6 1 1 0 1 0 1 0 4 3 3 0 5 3 3 38 4.51- 5.50 2 2 1 1 0 0 0 1 1 6 9 4 1 2 0 1 31 5.51- 6.50 1 3 1 1 1 0 1 1 1 8 5 7 2 3 3 1 39 6.51- 8.50 1 3 3 1 2 0 0 0 5 19 16 15 9 5 3 2 84 8.51-11.50 0 1 2 1 0 1 0 3 5 26 37 32 11 2 3 0 124 11.51-14.50 1 0 0 1 3 3 1 0 0 17 14 6 1 2 1 0 so 14.51-20.50 0 0 0 0 1 0 0 0 1 5 3 2 1 5 0 1 19

>20.50 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 TOTAL 20 17 10 6 7 5 3 8 1i 88 92 74 28 31 16 12 432 STABILITY CLASS F SPEED (MPH) N NNE NE ENE ESE SE S6E S 6SW SW WIW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1.51- 2.50 4 0 0 1 0 1 0 0 2 1 2 0 2 2 2 4 21 2.51- 3.50 4 6 3 0 1 2 0 2 5 1 7 7 6 9 5 7 65 3.51- 4.50 1 4 5 2 1 0 0 2 3 5 11 8 5 10 3 4 64 4.51- 5.50 4 4 1 0 0 0 0 0 1 11 20 10 4 3 5 5 68 5.51- 6.50 1 1 1 0 0 0 1 2 0 7 12 7 3 5 2 0 42 6.51- 8.50 2 0 1 0 0 0 0 0 0 25 25 10 12 4 3 2 84 8.51-11.50 0 1 1 0 0 0 0 0 0 12 20 7 0 2 1 0 44 11.51-14.50 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 16 16 12 3 2 3 1 6 11 62 98 49 33 35 21 22 390 65 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 4/01/2009 TO 6/30/2009

... 2ND QRTR ...

STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

,76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 2 1 2 0 2 0 0 1 2 0 0 1 0 4 1 6 22 2.51- 3.50 11 7 0 3 3 0 1 0 0 0 1 4 6 3 3 13 55 3.51- 4.50 24 5 1 1 1 1 0 0 0 0 4 6 2 3 6 19 73 4.51- 5.50 19 13 E 0 0 0 1 0 0 0 1 0 o 1 10 12 58 5.51- 6.50 11 7 1 1 0 0 0 1 0 0 3 0 2 1 0 3 30 6.51- 8B50 7 .4 3 0 0 0 0 0 0 0 2 2 1 0 1 5 25 8.51-11.50 6 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 11.51-14.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 G 0 0 0 0 0 0 0 0 0 0 0 TOTAL 80 40 9 5 6 1 2 2 2 0 11 13 11 12 21 58 273 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 4 1.51- 2.50 6 3 4 3 2 2 2 2 5 3 7 3 5 11 4 10 72 2.51- 3.50 22 13 7 4 9 3 5 6 8 5 14 15 15 20 10 25 181 3.51- 4.50 32 18 8 7 5 4 4 12 10 17 24 20 7 18 13 28 227 4.51- 5.50 25 25 5 2 6 5 6 24 25 33 43 15 8 6 17 19 264 5.51- 6.50 14 13 5 2 4 1 6 34 28 39 38 25 11 11 9 4 244 6.51- 8.50 10 7 11 3 7 9 13 11 50 77 100 54 39 11 13 13 428 8.51-11.50 7 6 6 6 7 9 6 9 28 82 140 76 34 11 5 0 432 11.51-14.50 2 0 0 5 10 4 1 0 7 40 73 24 19 9 5 1 200 14.51-20.50 0 0 0 1 5 1 0 0 8 29 34 10 5 10 5 1 109

>20.50 0 0 0 1 1 0 0 0 0 10 6 3 0 0 0 0 21 TOTAL 119 85 46 34 56 38 43 98 170 335 479 245 145 107 81 101 2182 TOTAL NUMBER OF OBSERVATIONS: 2184 TOTAL NUMBER OF VALID OBSERVATIONS: 2182 TOTAL NUMBER OF MISSING OBSERVATIONS: 2 PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %

MEAN WIND SPEED FOR THIS PERIOD: 7.7 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA: 0 PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 19.02 8.89 7.79 14.12 19.80 17.87 12.51 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW H WNW NW NNW CALM A 0 0 1 1 3 8 9 14 54 92 128 51 33 11 9 1 0 B 2 1 3 2 16 3 5 22 36 22 48 15 10 3 4 2 0 C 1 3 4 4 5 3 9 23 25 23 38 15 7 5 2 3 0 D 0 8 7 13 17 15 14 23 27 48 64 28 23 10 8 3 0 E 20 17 10 6 7 5 3 8 15 88 92 74 28 31 16 12 0 F 16 16 12 3 2 3 1 6 11 62 98 49 33 35 21 22 0 G 80 40 9 5 6 1 2 2 2 0 11 13 11 12 21 58 0 TOTAL 119 85 46 34 56 38 43 98 170 335 479 245 145 107 81 101 0 66 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 6/30/2009 IST SEMI 1..

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNlE NE ENE E ESE SE SSE S SSW SW WSW N WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 00 0 0 0 0 1 0 0 0 0 0 o o 4.51- 5.50 0 0 0 0 0 0 1 0 0 1 0 0 1 0 4 0

5.51- 6.50 0 0 0 0 0 2 4 2 11 1 6 1 2 0 29 0

6.51- 8.50 0 0 2 1 2 4 7 26 21 37 14 6 1 2 1 124 8.51-11.50 0 3 0 7 3 4 17 39 44 21 17 4 0 0 161 11.51-14.50 0 0 0 0 0 0 0 5 21 39 14 16 9 1 1 107 14.51-20.50 0 0 0 0 0 0 0 4 12 21 6 3 3 1 58

>20.50 0 0 0 0 0 0 0 0 3 9 2 0 o 0 15 TOTAL 0 3 2 1 3 9 9 16 54 107 152 03 43 24 9 3 498 STABILITY CLASS B SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0S 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 1 0 0 0 0 0 1 1 0 1 0 0 0 0 4 4.51- 5.50 1 0 1 1 3 1 0 3 6 7 5 1 0 0 0 0 33 4 0 2 1 1 12 18 10 10 4 2 0 0 69 44 5.51- 6.50 2 3" 6.51- 8.50 0 3 7 4 6 6 4 5 17 13 11 8 1 2 2 95 8.51-11.50 2 0 1 2 2 0 2 1 4 18 6 3 0 47 11.51-14.50 0 0 0 0 3 0 0 0 3 0 15 4 3 1 0 30 14.51-20.50 0 0 0 0 2 0 0 0 0 5 2 1 2 0 2 0 14

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 5 7 13 18 9 5 23 46 39 62 24 19 7 6 2 292 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 3 3.51- 4.50 0 1 2 0 1 0 1 4 2 4 2 0 0 0 0 18 4.51- 5.50 0 4 1 0 3 4 13 9 19 8 2 2 0 O 1 67 5.51- 6.50 1 5 5 0 S 1 1 10 12 9 11 11 2 0 1 0 68 6.51- 8.50 1 4 10 4 5 3 8 4 15 8 1 0 1 1 69 1

8.51-11.50 0 1 3 5 0 0 0 3 5 15 3 3 5 2 1 50 11.51-14.50 2 0 0 2 1 0 0 2 2 6 1 2 3 0 1 22 14.51-20.50 0 0 0 0 1 0 0 0 0 1 8 0 0 1 0 1 12

>20.50 0 0 0 0 0 0 0 0 0 2 0 0 1 0 4 10 TOTAL 4 15 21 11 11 28 38 42 67 29 10 9 5 6 313 67 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 6/30/2009

      • 1ST SEMI STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW .W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 2 3 5 1 2 2 3 3 2 7 3 5 2 0 1 41 2.51- 3.50 1 1 8 4 5 7 3 4 9 15 18 L0 8 7 5 7 112 2 8 9 15 23 16 8 4 3 5 7 122 3.51- 4.50 4 4 6 3 5 4.51- 5.50 6 8 6 4 2 3 1 9 16 14 14 0 4 2 5 2 96 5.51- 6.50 1 3 5 3 2 1 1 5 8 9 6 8 1 1 4 1 59 6.51- 8.50 2 4 9 6 3 9 7 1 11 7 12 8 9 2 2 1 93 0 0 1 7 7 3 6 1 4 7 23 13 6 5 4 0 87 8.51-11.50 11.51-14.50 0 0 0 10 16 1 0 I 1 7 16 6 5 3 3 1 69 14.51-20.50 0 0 0 2 8 1 0 0 4 15 13 2 0 1 0 2 48 0 1 0 0 0 0 0 7 0 2 0 0 2 0 12 20 .50 0 0 TOTAL 14 22 38 45 49 29 28 32 71 106 125 ' 60 42 26 30 22 739 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 0 1 0 0 0 0 0 1 0 0 0 3 0 0 0 6 1.51- 2.50 2 2 1 0 0 0 0 2 2 4 4 3 5 6 2 2 35 2.51- 3.50 11 2 1 1 0 1 1 2 2 11 6 2 9 10 4 64 3.51- 4.50 8 13 2 2 1 1 0 2 1 8 8 8 2 10 5 7 78 4.51- 5.50 3 5 3 3 0 0 0 1 2 11 13 5 4 2 6 2 60 5.51-. 6.50 1 3 4 2 1 0 1 2 4 9 10 9 3 6 3 2 60 6,51- 8.50 2 4 8 3 3 0 1 3 12 24 23 20 10 11 5 4 133 8.51-I1.50 2 1 3 5 1 1 0 3 6 36 50 34 12 9 14 0 177 11,51-14.50 1 0 3 10 5 1 0 0 23 20 11 3 8 1 2 88 14.51-20.50 0 2 0 1 10 0 0 0 1 8 8 6 1 6 0 6 49 o

>20. 50 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 TOTAL 31 32 23 20 27 7 14 31 126 147 102 45 67 46 29 751 STABILITY CLASS F SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW w WNW NW NNW TOTAL CALM 0

.76- 1.50 I 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2 1.51- 2.50 7 2 2 2 0 1 1 0 2 3 3 5 3 5 10 8 54 2.51- 3.50 11 8 6 0 2 2 0 2 6 2 7 13 11 16 13 14 113 3.51- 4.50 7 5 7 4 1 0 0 3 3 9 11 9 15 20 9 16 119 4.51- 5.50 9 4 3 1 0 0 0 0 1 12 26 13 5 6 12 13 105 5.51- 6.50 2 3 3 0 0 0 1 4 0 8 21 12 3 7 5 6 75 6.51- 8.50 3 1 2 1 1 0 0 0 1 33 32 20 15 7 9 11 136 8.51-11.50 0 2 1 0 0 0 0 0 0 13 29 12 1 3 1 2 64 11.51-14.50 3 0 0 0 1 0 0 0 0 0 2 0 0 0 0 3 9 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 42 25 24 8 5 4 2 9 13 80 131 84 54 64 59 73 677 68 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 6/30/2009 1ST SEMI 1..

STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED I (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 3 0 1 1 0 0 2 0 0 0 1 2 1 0 0 11 1.51- 2.50 10 5 7 2 3 2 1 1 2 2 2 2 13 11 14 22 99 2.51- 3.50 46 24 7 4 4 1 o 2 5 5 9 15 21 36 48 228 3.51- 4.50 81 21 5 2 1 1 0 0 0 5 9 9 13 36 87 271 4.51- 5.50 75 33 4 3 0 1 0 0 1 3 1 0 5 16 61 204 5.51- 6.50 52 28 1 2 0 0 0 1 0 0 6 4 3 1 6 23 127 6.51- 8.50 33 29 3 0 0 0 0 0 0 0 6 2 1 1 1 12 88 8.51-11.50 25 11 2 0 0 0 0 o 0 0 0 0 0 0 0 3 41 11.51-14.50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 *0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

TOTAL 324 154 29 14 9 5 4 4 8 27 28 43 53 109 257 1072 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM Q

.76- 1.50 1 3 1 1 1 1 0 2 1 0 0 1 6 1 0 0 19 1.51- 2.50 19 11 13 9 4 5 4 6 9 11 16 13 26 24 26 33 229 2.51- 3.50 - 69 35 22 9 12 10 6 8 19 24 41 38 36 53 64 74 520 3.51- 4.50 100 45 22 11 9 5 9 16 24 42 45 36 30 46 55 117 612 4.51- 5.50 94 54 18 12 6 8 6 27 34 64 70 22 19 16 40 79 569 5.51- 6.50 59 45 22 7 5 2 7 38 44 56 65 54 13 17 21 32 487 6.51- 8.50 41 45 41 18 16 19 21 19 75 102 136 80 48 23 22 32 738 8.51-11.50 29 18 11 . 19 15 13 9 10 31 104 179 89 43 29 22 6 627 11.51-14.50 8 0 0 16 31 6 1 0 11 53 98 36 29 24 6 9 328 14.51-20.50 0 2 0 3 21 1 0 0 9 41 52 15 6 16 5 10 181

>20.50 0 0 0 1 1 0 0 0 0 11 9 6 0 1 3 0 32 TOTAL 420 258 150 106 121 70 63 126 257 508 711 390 256 250 264 392 4342 TOTAL NUMBER OF OBSERVATIONS: 4344 TOTAL NUMBER OF VALID OBSERVATIONS: 4342 TOTAL NUMBER OF MISSING OBSERVATIONS: 2 PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 %

MEAN WIND SPEED FOR THIS PERIOD: 6.9 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA: 0 PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 11.47 6.73 7.21 17,02 17.30 15.59 24.69 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW CALM A 5 3 2 1 3 9 9 16 54 107 152 63 43 24 9 3 0 B 5 7 13 7 18 9 5 23 46 39 62 24 19 7 6 2 0 C 4 15 21 11 10 7 11 28 38 42 67 29 10 9 5 6 0 O 14 22 38 45 49 29 28 32 71 106 125 60 42 26 30 22 0

  • 31 32 23 20 27 7 4 14 31 126 147 102 45 67 46 29 0 F 43 25 24 8. 5 4 2 9 13 80 131 84 54 64 59 73 0 O 324 154 29 14 9 5 4 4 4 8 27 28 43 53 109 257 0 TOTAL 420 258 150 106 121 70 63 126 257 508 711 390 256 250 264 392 0 69 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 9/30/2009

- 3RD QRTR STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0- 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4,51- 5.50 0 0 0 0 0 0 0 1 5 2 4 0 2 0 0 0 14 5.51- 6.50 0 3 1 0 1 1 3 7 9 12 6 1 0 1 0 46 6.51- 8.50 0 1 0 5 2 2 4 20 22 50 26 11 1 0 0 144 8,51-11.50 0 1 1 2 4 4 3 0 8 17 34 20 3 0 0 0 97 11.51-14.50 0 0 1 1 1 0 0 0 0 3 24 16 2 4 0 0 52 14.51-20.50 0 o 0 4 0 0 0 0 0 0 7 2 0 1 0 0 14

>20.50 o 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 TOTAL 0 2 6 8 10 7 6 8 40 53 132 70 19 6 1 0 368 STABILITY CLASS B SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 3 1 0 2 1 2 0 0 9 4.51- 5.50 0 3 20 0 0 2 3 5 11 4 7 4 3 0 2 0 44 5.51- 6.50 0 0 0 1 1 0 6 16 8 5 3 2 0 1 0 46 6.51- 8.50 0O I 5 4 5 4 4 5 7 i5 22 12 5 0 0 2 91 8.51-11.50 0 1 0 2 2 3 1 0 0 0 6 9 2 1 0 0 27 11.51-14.50 0 0 0 1 3 0 0 0 0 0 6 2 0 0 0 0 12 14.51-20.50 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 4

>20 .50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 0 5 7 8 12 10 8 16 37 28 46 33 13 3 3 233 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 1 1 1 1 0 1 0 0 1 7 3.51- 4.50 1 0 4 0 0 1 2 0 2 2 4 1 0 1 0 16 4.51- 5.50 4 2 1 0 2 0 0 3 7 5 8 3 2 2 1 0 43 5.51- 6.50 0 1 1 2 1 0 0 10 7 6 1 1 0 1 0 32 6.51- 8.50 0 0 2 1 1 1 3 0 4 0 10 8 1 0 0 1 32 0 1 0 1 1 3 0 1 0 0 14 8.51-11.50 0 0 0 6 0 11.51-14.50 0 0 0. 5 0 0 0 0 0 2 0 0 0 0 0 8 14.51-20.50 0 0 0 2 2 0 0 0 0 0 3 1 0 0 0 0 8

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 4 13 4 8 4 24 15 34 20 7 2 3 2 160 70 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 9/30/2009

... 3RD QRTR STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W NW NNW TOTAL CALM 0

.76- 1.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1.51- 2.50 1 1 1 0 2 1 0 0 2 0 1 1 1 1 1 0 13 2.51- 3.50 3 1 5 4 0 0 0 0 6 5 5 1 2 1 2 1 36 3.51- 4.50 0 4 1 1 0 3 1 3 9 5 6 2 3 2 2 1 43 4.51- 5.50 3 0 4 2 0 1 1 1 4 4 5 B 2 2 2 2 41 5.51- 6.50 0 0 1 2 1 1 1 0 2 2 5 B 6 2 0 0 31 6.51- 8.50 0 2 2 3 0 2 3 1 2 5 12 2 1 1 38 3

8.51-11.50 0 0 0 5 3 4 3 2 3 4 14 7 1 0 50 11.51-14.50 0 0 0 0 4 1 1 1 2 2 17 11 0 0 0 40 14.51-20.50 0 0 1 0 4 1 1 0 4 9 3 0 0 1 26

>20.50 0 1 0 0 G 0 0 0 0 1 0 0 0 0 4 TOTAL 7 10 15 17 14 14 11 a 29 27 58 60 23 10 14 6 323 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM o

.76- 1.50 1 0 0 0 0 0 0 0 0 1 0 0 0 0 o 0 2 1.51- 2.50 4 0 0 0 1 0 1 0 0 3 1 4 6 2 3 26 2.51- 3.50 1 0 0 0 2 0 2 5 1 5 4 2 5 34 3.51- 4.50 51 0 2 1 1 1 0 3 7 5 1 5 1 2 1 32 4.51- 5.50 6 3 0 2 0 0 0 2 2 14 8 4 4 2 1 53 5.51- 6.50 30 2

1 0 2 0 0 0 2 4 7 12 7 1 1 1 43 6.51- 8.50 0 5 3 2 3 3 1 4 12 32 37 10 0 2 2 121 B.51-11.50 0 1 2 5 10 4 3 1 13 23 25 8 0 2 1 99 11.51-14.50 0 4 11 6 2 0 0 8 25 8 2 0 3 0 70 14.51-20.50 0 2 0 10 2 0 0 0 1 7 0 1 1 0 0 25

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o TOTAL 20 17 15 12 33 23 10 7 12 50 121 93 46 17 16 14 506 STABILITY CLASS F SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0- 0 0 0 0 0 0 0 1.51- 2.50 3 2 1 0 0 0 0 0 1 1 2 2 2 2 1 0 17 2.51- 3.50 10 1 1 4 2 0 0 2 1 4 7 6 2 6 10 5 61 3.51- 4.50 5 6 3 0 1 1 0 0 3 7 11 4 10 10 6 8 75 4.51- 5.50 5 B 0 0 0 0 0 0 1 2 10 8 5 5 2 5 51 5.51- 6.50 6 1 0 3 0 0 1 0 1 4 12 3 7 2 3 3 46 6.51- 8.50 2 2 1 0 0 0 1 0 3 21 11 9 1 0 3 57 8.51-11.50 2 3 2 5 0 0 0 1 0 2 6 4 5 0 1 1 32 11.51-14.50 0 3 0 1 0 0 0 1 00 0 1 0 0 0 0 0 6 14.51-20.50 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2

.20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 33 26 8 13 3 1 2 4 10 25 70- 38 40 26 23 25 347 71 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 9/30/2009

- 3RD QRTR STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200,0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD- AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 4 0 1 1 0 1 1 0 0 0 1 1 1 2 2 4 19 2.51- 3.50 14 4 4 1 1 0 0 0 0 0 4 1 4 7 5 8 53 3.51- 4.50 19 7 4 1 2 1 0 0 0 0 3 4 4 3 12 22 82 4.51- 5.50 18 11 2 2 0 0 1 0 1 4 2 2 4 0 10 57 5.51- 6.50 10 4 4 1 0 0 0 0 0 0 1 o 1 1 0 3 25 6.51- 8.50 8 6 4 0 0 0 0 0 0 1 5 1 0 0 0 2 27 8.51-11.50 0 6 0 0 0 0 0 0 0 0 1 0 0 0 0 1 8 11.51-14.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 73 38 19 6 3 2 1 1 0 2 19 9 12 17 19 50 271 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 1.51- 2.50 12 3 4 1 2 3 1 1 3 1 7 5 8 11 6 7 75 2.51- 3.50 32 7 12 10 3 0 0 5 8 12 22 9 14 18 19 20 191 3.51- 4.50 26 18 9 4 4 7 4 3 20 22 29 14 24 18 23 32 257 4.51- 5.50 35 30 13 4 4 3 4 11 30 20 52 33 20 17 9 18 303 5.51- 6.50 19 9 12 9 6 4 3 9 38 34 48 33 25 6 7 7 269 6.51- 8.50 10 16 20 11 13 12 16 11 39 55 145 107 38 3 3 11 510 8.51-11.50 2 13 5 16 15 22 14 6 10 35 74 78 26 2 6 3 327 11.51-14.50 0 3 3 7 24 7 3 2 2 13 75 37 4 4 4 0 188 14.51-20.50 0 1 3 6 17 3 1 0 1 7 26 7 1 3 1 2 79

>20.50 1 1 0 0 0 0 0 0 1 0 2 0 0 0 1 0 6 TOTAL 138 102 81 68 88 61 46 48 152 200 480 323 160 82 79 100 2208 TOTAL NUMBER OF OBSERVATIONS: 2208 TOTAL NUMBER OF VALID OBSERVATIONS: 2208 TOTAL NUMBER OF MISSING OBSERVATIONS: 0 PERCENT DATA RECOVERY FOR THIS PERIOD: 100.0 %

MEAN WIND SPEED FOR THIS PERIOD: 7.2 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA: 0 PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 16.67 10.55 7.25 14.63 22.92 15.72 12.27 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW H WNW NW NNW CALM A 0 2 6 8 10 7 6 8 40 53 132 70 19 6 1 0 0 B 0 5 7 8 12 10 8 16 37 28 46 33 13 4 3 3 0 C 5 4 11 4 13 4 8 4 24 15 34 20 7 2 3 2 0 D 7 10 15 17 14 14 11 8 29 27 58 60 23 10 14 6 0 E 20 17 15 12 33 23 10 7 12 50 121 93 46 17 16 14 0 F 33 26 8 13 3 1 2 4 10 25 70 38 40 26 23 25 0 G 73 38 19 6 3 2 1 1 0 2 19 9 12 17 19 50 0 TOTAL 138 102 81 68 88 61 46 48 152 200 480 323 160 82 79 100 0 72 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2009 TO 12/31/2009

- 4TH QRTR ...

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW . SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.51- 5.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.51- 6.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.51- 8.50 0 0 0 0 0 0 0 0 2 3 1 3 1 0 0 0 10 8.51-11.50 0 0 0 0 0 2 0 0 1 1 4 1 0 4 0 0 13 11.51-14.50 0 0 0 .*0 1 0 0 0 0 0 0 0 1 3 1 0 6 14.51-20.50 0 0 0 0 0 0 0 0 0 2 1 1 2 6 0 0 12

>20.50 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 3 TOTAL 0 0 0 0 1 2 0 0 3 6 8 6 4 13 1 0 44 STABILITY CLASS B SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 1 0 2 0 1 0 0 5 4.51- 5.50 0 0 0 0 8 1 1 2 2 2 2 3 0 1 00 0 14 5.51- 6.50 0 0 2 0 1 2 0 2 6 0 2 1 0 0 0 1 17 6.51- 8.50 0 0 0 1 5 0 0 4 2 5 3 2 0 0 31 8.51-11.50 0 1 0 2 1 0 0 1 4 4 1 1 0 0 17 11.51-14.50 0 0 1 1 3 0 0 0 0 2 0 0 1 0 8 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3

.20.50 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 TOTAL 0 1 3 13 9 1 4 14 9 17 10 4 4 2 1 96 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2.51- 3.50 2 0 0 0 0 0 0 0 0 2 2 0 1 1 0 9 3.51- 4.50 1 2 2 0 1 1 0 3 4 1 4 3 0 0 0 1 23 4.51- 5.50 3 1 3 2 1 5 0 2 7 3 5 1 1 1 1 2 38 5.51- 6.50 2 1 7 1 2 3 0 2 3 2 3 2 3 0 2 1 34 6.51- 8.50 0 1 5 3 3 3 1 1 2 2 3 2 1 2 1 0 30 8.51-11.50 0 1 2 3 2 1 0 0 0 1 2 3 4 0 1 0 20 11.51-14.50 0 0 0 1 1 1 0 0 0 3 2 0 0 1 0 0 9 14.51-20.50 0 0 0 0 3 0 0 0 1 0 1 0 0 0 1 0 6

>20.50 0 0 0 0 0 0 0 0 0 0 0 1 o 0 0 1 TOTAL 8 6 19 10 13 14 1 8 17 14 22 12 5 7 4 171 73 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2009 TO 12/31/2009

... 4TH QRTR ...

STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35,0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 0 0 0 0 .0 0 0 0 0 0 0 I I 0 1 1.51- 2.50 2 3 1 0 1 0 4 3 5 3 5 1 3 0 1 33 2 3 2.51- 3.50 5 6 8 4 4 11 13 13 14 6 4 4 4 109 3.51- 4.50 2 6 4 2 6 7 7 9 8 10 7 6 2 1 6 84 4.51- 5.50 6 3 10 8 4 1 1 8 3 6 3 2 2 1 1 60 5.51- 6.50 2 3 8 1 3 2 1 0 3 1 3 0 4 1 0 2 34 6.51- 8.50 3 2 6 3 4 2 0 1 1 3 13 4 2 1 0 1 46 8.51-11.50 2 0 1 2 4 5 0 1 1 1 6 2 3 5 2 0 35 11.51-14.50 0 0 0 0 4 2 0 0 0 0 3 0 0 2 0 1 12 14.51-20.50 0 0 1 0 2 0 0 0 0 1 3 1 0 4 4 1 17

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 3 TOTAL 14 17 33 27 35 26 13 25 38 35 61 30 25 24 13 18 434 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1.51- 2.50 3 2 0 2 2 1 1 0 3 4 4 6 2 2 1 4 37 2.51- 3.50 3 2 1 0 0 0 1 2 3 1 3 4 2 1 2 4 29 3.51- 4.50 3 2 3 1 1 0 1 1 2 5 4 5 2 4 1 2' 37 4.51- 5.50 0 2 1 1 1 0 0 1 1 4 6 1 3 1 1 1 24 5.51- 6.50 1 I 2 0 0 1 0 0 1 4 3 4 1 2 2 22 6.51- 8.50 0 1 1 2 1 0 0 1 2 8 5 8 8 5 4 0 46 8.51-11.50 0 0 1 1 1 1 0 0 7 9 5 2 5 6 2 41 11.51-14.50 0 0 0 0 0 0 0 0 1 4 1 1 0 7 1 1 16 14.51-20.50 0 0 0 0 I 0 0 0 1 0 0 0 0 2 1 0 4

>20.50 0 0 0 0 0 0 0 0 3 0 1 3 2 0 0 0 9 TOTAL 10 11 6 9 6 2 5 5 16 34 37 36 25 28 19 17 266 STABILITY CLASS F SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 I 0 0 0 0 0 0 0 0 0 1 0 0 o o 1 1.51- 2.50 3 2 2 0 2 0 0 1 2 1 4 3 5 4 8 7 44 2.51- 3.50 13 6 2 1 0 1 0 0 1 1 3 4 7 8 5 15 67 3.51- 4.50 9 4 4 0 1 0 1 1 2 2 3 5 3 6 5 9 55 4.51- 5.50 7 0 2 0 0 1 0 1 0 4 7 6 4 0 8 6 46 5.51- 6.50 4 3 1 0 0 0 0 1 0 1 2 1 5 0 4 6 28 6.51- 8.50 1 4 0 0 0 0 0 0 0 4 6 3 6 6 6 10 46 8.51-11.50 1 0 0 0 0 0 0 0 0 1 1 1 1 2 0 4 11 11.51-14.50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 14.51-20.50 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 39 19 11 1 3 2 1 4 5 14 26 24 31 26 37 59 302 74 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 10/01/2009 TO 12/31/2009 4TH QRTR STABILITY CLASS 0 STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW N WNW NW NNW TOTAL CALM 0 1.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2.91- 2.50 26 19 7 3 3 3 0 3 3 3 4 5 ii 12 8 24 134 2.91- 3.50 70 38 15 1 3 1 0 0 1 0 3 5 7 12 28 62 246 3.91- 4.50 96 48 9 1 1 1 0 0 O 0 1 4 1 3 23 45 233 4.91- 5.50 61 29 5 0 0 1 0 0 0 0 1 0 3 4 6 25 135 5.91- 6.50 22 19 0 0 1 0 0 0 0 0 0 0 1 0 3 9 55 6.51- 8.50 29 22 5 0 0 0 0 0 0 1 0 1 0 0 1 13 72 8.91-11.50 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 12 11.91-14.50 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 2 14.91-20.50 0 0 0 0 0 0 0 0 0 0 0 0 S 0 0 0 0

20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 312 179 41 5 8 6 0 3 4 9 15 23 31 69 183 892 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0
  • 76- 1.50 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 3 6 1.Sl- 2.50 34 24 12 6 7 5 1 8 11 13 15 19 20 21 17 36 249 2.91- 3.50 90 49 23 8 11 6 5 13 18 17 25 21 23 26 40 85 460 3.91- 4.50 110 58 24 6 6 8 9 12 18 16 24 24 13 15 31 63 437 4.91- 5.50 72 38 14 13 10 12 2 7 18 16 27 14 13 9 17 35 317 5.91- 6.50 31 27 18 4 7 7 2 5 12 5 14 7 17 2 11 21 190 6.91- 8.50 33 30 17 9 16 10 1 3 11 23 33 24 20 15 12 24 281 8.51-11.50 9 6 3 8 8 10 1 1 3. 15 26 13 11 17 9 9 149 11.91-14.50 3 0 1 2 9 3 0 0 1 7 8 1 1 14 3 4 57 14.91-20.50 0 0 1 0 5 0 0 0 2 4 5 3 2 12 7 1
  • 42

ý20.50 0 0 0 0 0 0 0 0 3 0 3 6 3 0 1 1 17 TOTAL 383 233 113 56 79 61 21 49 97 116 180 133 123 131 148 282 2205 TOTAL NUMBER OF OBSERVATIONS: 2208 TOTAL NUMBER OF VALID OBSERVATIONS: 2205 TOTAL NUMBER OF MISSING OBSERVATIONS: 3 PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %

MEAN WIND SPEED FOR THIS PERIOD: 5.4 MPN TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA:

PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 2.00 4.35 7.76 19.68 12.06 13.70 40.45 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW CALM A 0 0 0 0 1 2 0 0 3 6 8 6 4 13 1 0 0 B 0 1 3 4 13 9 1 4 14 9 17 10 4 4 2 1 0 C 8 6 19 10 13 14 1 8 17 14 22 12 11 5 7 4 0 D 14 17 33 27 35 26 13 25 38 35 61 30 25 24 13 18 0 E 10 11 6 9 6 2 5 5 16 34 37 36 25 28 19 17 0 F 39 19 11 1 3 2 1 4 5 14 26 24 31 26 37 59 0 G 312 179 41 5 8 6 0 3 4 4 9 15 23 31 69 183 S TOTAL 383 233 113 56 79 61 21 49 97 116 180 133 123 131 148 282 0 75 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 12/31/2009

... 2ND SEMI ...

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.51- 5.50 0 0 0 0 0 0 0 1 5 2 4 0 2 0 0 0 14 5.51- 6.50 0 1 3 1 0 1 1 3 7 9 12 6 1 0 1 0 46 6.51- 8B50 0 0 1 0 5 2 2 4 22 25 51 29 12 1 0 0 154 8.5111.50 0 1 1 2 4 6 3 0 9 18 38 21 3 4 0 0 110 11.51-14.50 0 0 1 1 2 0 0 0 0 3 24 16 3 7 1 0 58 14.51-20.50 0 0 0 4 0 0 0 0 0 2 B 3 2 7 0 0 26

,20,50 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 4 TOTAL 0 2 6 B 11 9 6 8 43 59 140 76 23 19 2 0 412 STABILITY CLASS B SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 4 1 2 2 2 2 1 0 14 4.51- 5.50 0 3 0 0 0 3 4 7 13 6 9 7 3 1 2 0 . 58 5.51- 6.50 0 0 4 1 2 3 0 8 22 8 7 4 2 0 1 1 63 6.51- 8.50 0 1 5 5 13 9 4 5 11 17 27 15 7 1 0 2 122 8.51-11.50 0 2 0 4 3 4 1 0 1 4 10 10 3 2 0 0 44 11.51-14.50 0 0 1 2 6 0 0 0 0 0 8 2 0 1 0 0 20 14.51-20.50 0 0 0 0 1 0 0 0 0 1 0 2 0 1 1 1 7

>20,.50 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 TOTAL 0 6 10 12 25 19 9 20 51 37 63 43 17 B 5 4 329 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2.51- 3.50 2 0 1 0 0 0 0 1 1 3 3 0 2 1 1 1 16 3.51- 4.50 2 2 3 0 1 2 2 3 6 3 8 4 1 0 1 1 39 4.51- 5.50 7 3 7 2 3 5 0 5 14 8 13 4 3 3 2 2 81 5.51- 6.50 2 2 8 2 4 4 0 2 13 9 9 3 4 0 3 1 66 6.51- 8.50 0 1 7 4 4 4 4 1 6 2 13 10 2 2 1 1 62 8.51-11.50 5 2 3 3 3 2 3 0 0 1 2 9 5 0 1 0 34 11.51-14.50 0 0 1 1 6 1 0 0 0 3 4 0 0 1 0 0 17 14.51-20.50 0 0 0 2 5 0 0 0 1 0 4 1 0 0 1 0 14

>20.50 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 TOTAL 13 10 30 14 26 18 9 12 41 29 56 32 18 7 10 6 331 76 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 12/31/2009

... 2ND SEMI ...

STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1.51- 2.50 3 2 4 1 2 2 0 4 5 5 4 6 2 4 1 1 46 2.51- 3.50 5 4 10 10 8 4 4 11 19 18 19 9 8 5 6 5 145 3.51- 4.50 1 6 7 5 2 9 8 10 18 13 16 9 9 4 3 7 127 4.51- 5.50 4 6 7 12 8 5 2 2 12 7 11 11 4 4 3 3 101 5.51- 6.50 2 3 9 3 4 3 2 0 5 3 8 8 10 3 0 2 65 6.51- 8.50 3 4 8 6 4 4 3 2 2 5 18 16 4 2 1 2 84 8.51-11.50 2 0 1 7 7 9 3 3 2 4 10 16 10 6 5 0 85 11.51-14.50 0 0 0 0 8 3 1 1 2 2 20 11 0 2 1 1 52 14.51-20.50 0 0 2 0 6 1 1 0 1 5 12 4 0 4 5 2 43

-20.50 0 1 0 0 0 0 0 0 1 0 1 0 1 0 2 1 7 TOTAL 21 27 48 44 49 40 24 33 67 62 119 90 48 34 27 24 757 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 3 1.51- 2.50 7 2 1 2 2 2 1 1 3 4 7 7 6 8 3 7 63 2.51- 3.50 8 3 2 1 0 0 1 4 3 3 8 5 7 5 4 9 63 3.51- 4.50 4 3 3 3 2 1 2 1 5 12 9 6 7 5 3 3 69 4.51- 5.50 5 8 4 1 3 0 0 1 3 6 20 9 7 5 3 2 77 5.51- 6.50 4 3 1 2 2 0 1 0 2 5 11 15 11 2 3 3 65 6.51- 8.50 0 6 0 5 3 3 3 2 6 20 37 45 18 5 6 2 167 8.51-11.50 0 2 1 3 6 11 5 3 1 20 32 30 10 5 8 3 140 11.51-14.50 0 0 1 4 11 6 2 0 1 12 26 9 2 7 4 1 86 14.51-20.50 0 1 2 0 10 2 0 0 1 3 7 0 1 3 1 0 .29

>20.50 1 0 0 0 0 0 0 0 3 0 1 3 2 0 0 0 10 TOTAL 30 28 21 21 39 25 15 12 28 84 158 129 71 45 35 31 772 STABILITY CLASS F SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1.51- 2.50 6 4 3 0 2 0 0 1 3 2 6 5 7 6 9 7 61 2.51- 3.50 23 7 3 5 2 1 0 2 2 5 10 10 9 14 15 20 128 3.51- 4.50 14 10 7 0 2 1 1 1 5 9 14 9 13 16 11 17 130 4.51- 5.50 12 8 2 0 0 1 0 1 1 6 17 14 9 5 10 11 97 5.51- 6.50 10 4 1 3 0 0 1 1 1 5 14 4 12 2 7 9 74 6.51- 8.50 3 6 1 0 0 0 1 0 3 7 27 14 15 7 6 13 103 8.51-11.50 3 3 2 5 0 0 0 1 0 3 7 5 6 2 1 5 43 11.51-14.50 1 3 0 1 0 0 0 1 0 0 1 0 0 0 1 2 10 14.51-20.50 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 72 45 19 14 6 3 3 8 15 39 96 62 71 52 60 84 649 77 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 7/01/2009 TO 12/31/2009

... 2ND SEMI ...

STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSSW SW WSW H WNW NW NNW TOTAL CALM 0

.76- 1.50 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 1.51- 2.50 30 19 8 4 3 4 1 3 3 3 5 6 12 14 10 28 153 2.51- 3.50 84 42 19 2 4 1 0 0 1 0 7 6 11 19 33 70 299 3.51- 4.50 115 55 13 2 3 "2 0 0 0 0 4 8 5 6 35 67 315 4.51- 5.50 79 40 7 2 0 1 0 1 0 1 5 2 5 8 6 35 192 5.51- 6.50 32 23 4 1 1 0 0 0 0 0 1 O 2 1 3 12 80 6.51- 8.50 37 28 9 0 0 S 0 0 0 2 5 2 0 0 1 15 99 8.51-11.50 6 9 0 0 0 0 0 0 0 0 1 O 0 0 0 4 20 11.51-14.50 2 0 0 0 0 I 0 0 0 0 0 O 0 0 6 0 2 14.51-20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 385 217 60 11 11 8 1 4 4 6 28 24 35 48 80 233 1163 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 2 2 0 0 0 0 0 0 0 1 0 1 0 0 0 3 9 1.51- 2.50 46 27 16 7 9 8 2 9 14 14 22 24 28 32 23 43 324 2.51- 3.50 122 56 35 18 14 6 5 18 26 29 47 30 37 44 59 105 651 3.51- 4.50 136 76 33 10 10 15 13 15 38 38 53 38 37 33 54 95 694 4.51- 5.50 107 68 27 17 14 15 6 18 48 36 79 47 33 26 26 53 620 5.51- 6.50 50 36 30 13 13 11 5 14 50 39 62 40 42 8 18 28 459 6.51- 8.50 43 46 37 20 29 22 17 14 50 78 178 131 58 18 15 35 791 8.51-11.50 11 19 8 24 23 32 15 7 13 50 100 91 37 19 15 12 476 11.51-14.50 3 3 4 9 33 10 3 2 3 20 83 38 5 18 7 4 245 14.51-20.50 0 1 4 6 22 3 1 0 3 11 31 10 3 15 8 3 121

>20.50 1 1 0 0 0 0 0 0 4 0 5 6 3 0 2 1 23 TOTAL 521 335 194 124 167 122 67 97 249 316 660 456 283 213 227 382 4413 TOTAL NUMBER OF OBSERVATIONS: 4416 TOTAL NUMBER OF VALID OBSERVATIONS: 4413 TOTAL NUMBER OF MISSING OBSERVATIONS: 3 PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %

MEAN WIND SPEED FOR THIS PERIOD: 6.3 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA: 0 PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 9.34 7.46 7.50 17.15 17.49 14.71 26.35 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW W H WNW NW NNW CALM A 0 2 6 8 11 9 6 8 43 59 140 76 23 19 2 0 0 B 0 6 10 12 25 19 9 20 51 37 63 43 17 8 5 4 0 C 13 10 30 14 26 18 9 12 41 29 56 32 18 7 10 6 0 D 21 27 48 44 49 40 24 33 67 62 119 90 48 34 27 24 0/

E 30 28 21 21 39 25 15 12 28 84 158 129 71 45 35 31 0 F 72 45 19 14 6 3 3 8 15 39 96 62 71 52 60 84 0 G 385 217 60 11 11 8 1 4 4 6 28 24 35 48 88 233 0 TOTAL 521 335 194 124 167 122 67 97 249 316 660 456 283 213 227 382 0 78 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 12/31/2009

  • .* ANNUAL ...

STABILITY CLASS A STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ElNE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.51- 4.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.51- 5.50 0 0 0 0 0 0 0 2 5 2 5 0 2 1 1 0 18 5.51- 6.50 0 1 3 1 0 1 3 7 9 20 13 12 2 0 3 0 75 6.51- 8.50 0 0 3 0 6 4 6 11 48 46 88 43 18 2 2 1 278 8.51-11.50 0 4 1 2 6 13 6 4 26 57 82 42 20 8 0 0 271 11.51-14.50 0 0 1 2 2 0 0 0 5 24 63 30 19 16 2 1 165 14.51-20.50 0 0 0 4 0 0 0 0 4 14 29 9 5 15 3 1 84

>20.50 0 0 0 0 0 0 0 0 0 3 12 3 0 1 0 0 19 TOTAL S 5 8 9 14 18 15 24 97 166 292 139 66 43 11 3 910 STABILITY CLASS B SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.51- 3.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 3.51- 4.50 0 1 0 0 0 0 0 1 5 1 3 2 2 2 1 0 18 4.51- 5.50 1 3 1 1 3 4 4 10 19 13 14 8 7 1 2 0 91 5.51- 6.50 2 3 8 1 4 4 1 20 40 18 17 8 2 2 1 1 132 6.51- 8.50 0 4 12 9 19 15 8 10 28 30 38 23 13 2 2 4 217 8.51-11.50 2 2 1 6 5 5' 1 2 2 8 28 16 7 5 0 91 11.51-14.50 0 0 1 2 9 0 0 0 3 0 23 6 3 2 0 55 14.51-20.50 0 0 0 0 3 0 0 0 0 6 2 3 2 1 3 1 21

>20.50 0 0 0 0 0 0 0 6 0 0 0 1 0 0 0 0 1 TOTAL 5 13 23 19 43 28 14 43 97 76 125 67 36 15 11 6 621 STABILITY CLASS C SPEED (MPH) N NNE NE ENE E ESE SE SSE S SOW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.51- 2.50 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2.51- 3.50 2 0 1 0 0 0 1 2 1 3 3 0 2 1 1 2 19 3.51- 4.50 2 3 5 0 2 3 2 4 10 5 12 6 1 0 1 1 57 4.51- 5.50 7 7 8 2 4 8 4 18 23 27 21 6 5 3 2 3 148 5.51- 6.50 3 7 13 2 4 4 1 12 25 18 20 14 6 0 4 1 134 6.51- 8.50 1 5 17 8 6 6 9 4 14 6 28 18 3 2 2 2 131 8.51-11.50 0 3 6 8 6 3 3 0 3 6 17 12 8 5 3 1 84 11.51-14.50 2 0 1 3 7 1 0 0 2 5 10 1 2 4 0 1 39 14.51-20.50 0 0 0 2 6 0 0 0 1 1 12 1 0 1 1 1 26

>20.50 0 0 0 0 1 0 0 0 0 0 0 3 0 0 1 0 5 TOTAL 17 25 51 25 36 25 20 40 79 71 123 61 28 16 15 12 644 79 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 12/31/2009

... ANNUAL ...

STABILITY CLASS D STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35.0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 o 2 1.51- 2.50 3 4 7 6 3 4 2 7 8 7 11 9 7 6 1 2 87 2.51- 3.50 6 5 18 14 13 11 7 15 28 33 37 19 16 12 11 12 257 3.51- 4.50 5 I0 13 8 7 11 16 19 33 , 36 32 17 13 7 8 14 249 4.51- 5.50 10 14 13 16 10 8 3 11 28 21 25 11 8 6 8 5 197 5.51- 6.50 3 6 14 6 6 4 3 5 13 12 14 16 11 4 4 3 124 6.51- 8.50 5 8 17 12 7 13 10 3 13 12 30 24 13 4 3 3 177 8.51-11.50 2 0 2 14 14 12 9 4 6 11 33 29 16 11 9 0 172 11,51-14.50 0 0 0 10 24 4 1 1 3 9 36 17 5 5 4 2 121 14.51-20.50 0 0 2 2 14 2 1 0 5 20 25 6 0 5 5 4 91

>20.50 0 1 0 1 0 0 0 0 1 7 1 2 1 0 4 1 19 TOTAL 35 49 86 89 98 69 52 65 138 168 244 150 90 60 57 46 1496 STABILITY CLASS E SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 2 0 1 0 0 0 0 0 1 1 0 0 3 0 0 1 9 1.51- 2.50 9 4 2 2 2 2 1 3 5 8 11 10 11 14 5 9 98 2.51- 3.50 19 5 3 2 1 0 2 5 5 5 19 11 9 14 14 13 127 3.51- 4.50 12 16 5 5 3 2 2 3 6 20 17 14 9 15 8 10 147 4.51- 5.50 8 13 7 4 3 0 0 2 5 17 33 14 11 7 9 4 137 5.51- 6.50 5 6 5 4 3 0 2 2 6 14 21 24 14 8 6 5 125 6.51- 8.50 2 10 14 8 6 3 4 5 18 44 60 65 28 16 11 6 300 8.51-11.50, 2 3 4 8 7 12 5 6 7 56 82 64 22 14 22 3 317 11.51-14.50 1 0 1 7 21 11 3 0 1 35 46 20 5 15 5 3 174 14.51-20.50 0 3 2 1 20 2 0 0 2 9 15 6 2 9 1 6 78

>20.: 50 1 0 0 0 0 0 0 0 3 1 1 3 2 0 0 0 11 TOTAL 61 60 44 41 66 32 19 26 59 210 305 231 116 112 81 60 1523 STABILITY CLASS F SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM

.76- 1.50 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 3 1.51- 2.50 13 6 5 2 2 1 1 1 5 5 9 10 10 11 19 15 115 2.51- 3.50 34 15 9 5 4 3 0 4 8 7 17 23 20 30 28 34 241 3.51- 4.50 21 15 14 4 3 1 1 8 18 25 10 28 36 20 33 249 4.51- 5.50 21 12 5 1 0 1 0 2 18 43 27 14 11 22 24 202 5.51- 6.50 12 7 4 3 0 0 2 5 1 13 35 16 15 9 12 15 149 6.51- 8.50 6 7 3 1 1 0 1 0 4 40 59 34 30 14 15 24 239 8.51-11.50 3 5 3 5 0 0 0 1 0 16 36 17 7 5 2 7 107 11.51-14.50 4 3 0 1 1 0 0 0 0 3 0 0 0 1 5 19 14.51-20.50 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 114 70 43 22 11 7 5 17 28 119 227 146 125 116 119 157 1326 80 PVNGS ARERR 2009

ARIZONA PUBLIC SERVICE CO. - PALO VERDE NUCLEAR GENERATING STATION JOINT FREQUENCY DISTRIBUTION FOR THE PERIOD 1/01/2009 TO 12/31/2009 ANNUAL STABILITY CLASS G STABILITY BASED ON: DELTA T BETWEEN 200.0 AND 35.0 FEET WIND MEASURED AT: 35,0 FEET WIND THRESHOLD AT: .75 MPH JOINT FREQUENCY DISTRIBUTION OF WIND SPEED AND DIRECTION IN HOURS AT 35.00 FEET SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 0 4 0 1 1 0 0 2 0 0 0 1 2 1 0 2 14 1.51- 2.50 40 24 15 6 6 6 2 4 5 5 7 8 25 25 24 50 252 2.51- 3.50 130 66 26 6 8 2 1 0 3 5 12 15 26 40 69 118 527 3.51- 4.50 196 76 18 4 4 3 1 0 0 0 9 17 14 19 71 154 586 4.51- 5.50 154 73 11 5 0 2 1 1 0 2 6 3 5 13 22 96 396 5.51- 6.50 84 51 5 3 1 0 0 1 0 0 7 4 5 2 9 35 207 6.51- 8.50 70 57 12 0 0 0 0 0 0 2 11 4 1 1 2 27 187 8.51-11.50 31 20 2 0 0 0 0 0 0 0 1 0 0 0 0 7 61 11.51-14.50 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .5 14.51-20.50 0 0 0 0 0 0 0 0 0 0 *0 0 0 0 0 0 0

>20.50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TOTAL 709 371 89 25 20 13 5 8 8 14 55 52 78 101 197 490 2235 STABILITY CLASS ALL SPEED (MPH) N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW TOTAL CALM 0

.76- 1.50 3 5 1 1 1 1 0 2 1 1 0 2 6 1 0 3 28 1.51- 2.50 65 38 29 16 13 13 6 15 23 25 38 37 54 56 49 76 553 2.51- 3.50 191 91 57 27 26 16 11 26 45 53 88 68 73 97 123 179 i171 3.51- 4.50 236 121 55 21 19 20 22 31 62 s0 98 74 67 79 109 212 1306 4.51- 5.50 201 122 45 29 20 23 12 45 82 100 149 69 52 42 66 132 1189 5.51- 6.50 109 81 52 20 18 13 12 52 94 95 127 94 55 25 39 60 946 6.51- 8.50 84 91 78 38 45 41 38 33 125 100 314 211 106 41 37 67 1129 8.51-11.50 40 37 19 43 38 45 24 17 44 154 279 180 80 48 37 18 1103 11.51-14.50 11 3 4 25 64 16 4 2 14 73 181 74 34 42 13 13 573 14.51-20.50 0 3 4 9 43 4 1 0 12 52 83 25 9 31 13 13 302

>20.50 1 1 0 1 1 0 0 0 4 11 14 12 3 1 5 1 55 TOTAL 941 593 344 230 288 192 130 223 506 824 1371 846 539 463 491 774 8755 TOTAL NUMBER OF OBSERVATIONS: 8760 TOTAL NUMBER OF VALID OBSERVATIONS: 8755 TOTAL NUSMBEROF MISSING OBSERVATIONS: 5 PERCENT DATA RECOVERY FOR THIS PERIOD: 99.9 %

MEAN WIND SPEED FOR THIS PERIOD: 6.6 MPH TOTAL NUMBER OF OBSERVATIONS WITH BACKUP DATA: 0 PERCENTAGE OCCURRENCE OF STABILITY CLASSES A B C D E F G 10.39 7.09 7.36 17.09 17.40 15.15 25.53 DISTRIBUTION OF WIND DIRECTION VS STABILITY N NNE NE ENE E ESE SE SSE S SSW SW WSW W WNW NW NNW CALM A 0 5 8 9 14 18 15 24 97 166 292 139 66 43 11 3 0 B 5 13 23 19 43 28 14 43 97 76 125 67 36 15 00 6 0 C 17 25 51 25 36 25 20 40 79 71 123 61 20 16 15 12 0 D 35 49 86 89 98 69 52 65 138 168 244 150 90 60 57 46 0 E 61 60 44 41 66 32 19 26 59 210 305 231 116 112 81 60 0 F 114 70 43 22 11 7 5 17 28 119 227 146 125 116 119 157 0 G 709 371 89 25 20 13 5 8 8 14 55 52 78 101 197 490 0 TOTAL 941 593 344 230 268 192 130 223 506 824 1371 846 539 463 491 774 0 8

81 PVNGS ARERR 2009

APPENDIX C DOSE CALCULATIONS 82 PVNGS ARERR 2009

GASEOUS EFFLUENT DOSE CALCULATIONS Doses to the maximum individual and the surrounding population resulting from the release of radioactive material in gaseous effluents from the Palo Verde Nuclear Generating Station were cal-culated using the GASPAR computer program. The radionuclides considered in the dose calcula-tions were Tritium, Iodine-131, Iodine-1 32, Iodine-133, Iodine-1 35, all noble gases, and particulates having a half-life greater than eight days and for which dose factors are contained in NUREG-0172. Locations selected for individual dose calculations included for each sector, the site boundary, and within five miles, if present, the nearest residence, the nearest garden, and the nearest milk animal. GASPAR implements the radiological dose models of Regulatory Guide 1.109 to determine the radiation exposure to man from four principal atmospheric exposure pathways:

plume, ground deposition, inhalation, and ingestion. Doses to the maximum individual and the population were calculated as a function of age group and pathway for significant body organs.

Table 43 presents the doses on a quarterly, semiannual and annual basis for the Energy Informa-tion Center. An occupancy factor of 1.0 (implying continuous occupancy over the entire year) was considered for the Energy Information Center and the exposure pathways considered to calculate its doses were plume, ground deposition, and inhalation.

Table 44 presents the population dose.

Table 45 summarizes the individual doses and compares the result to PVNGS ODCM Require-ment limits, The site boundary and residence locations for which data are presented represent the highest annual doses.

Based on results obtained by placing TLDs on the site boundary in each sector, the net dose for this reporting period, from direct-radiation, (plume and ground deposition) from all three units was indistinguishable from preoperational values of 8 - 14 IR/hr (17 - 30 mR/Std Qtr).

There were no liquid effluents associated with the operation of this facility.

83 PVNGS ARERR 2009

Dose Calculation Models The GASPAR computer code was used to evaluate the radiological consequences of the routine release of gaseous effluents. GASPAR implements the dose calculational methodologies of Regu-latory Guide 1.109, Revision 1.

Source terms for each quarter are combined with station-specific demographic data and each quarter's atmospheric diffusion estimates for gaseous dose calculations.

Atmospheric diffusion estimates are generated by the XOQDOQ computer code using onsite meteorological data as input. Additional input to GASPAR includes the following site-specific data:

0 to 5 mile nearest residence, milk animal and garden in each of the 16 compass sectors, based on the 2009 Land Use Census.

0 to 10 mile population distribution based on the Maricopa County Department of Emergency Management 2009 Population and Special Needs Survey Information.

The 10 to 50 mile population distribution from the PVNGS UFSAR, Figure 2.1-11.

The population distribution of metropolitan Phoenix greater than 50 miles from PVNGS, based on the 1980 federal census results, is conservatively included in the 40 to 50 mile sectors (NE=123; ENE=140,097; E=621,130; ESE=8,392).

Absolute humidity of 6.0 g/m 3 from the PVNGS UFSAR, Table 2.3-16.

The fraction of the year that vegetables are grown (0.667) from the PVNGS ER-OL, Section 2.1.3.4, Table 2.1-8.

The fraction of daily feed derived from pasture while on pasture (0.35) and length of grazing season for milk animals beyond 5 miles (0.75) from the PVNGS ER-OL, Section 2.1.3.4.3.

The fraction of daily feed derived from pasture while on pasture (0.05) and length of grazing season for meat animals (0.25) from the PVNGS ER-OL, Section 2.1.3.4.4.

There were six (6) sectors containing milk animal (goat or cow) locations within five (5) miles. For calculational purposes these milk animals are assumed to be fed 100% on pasture grass during the year.

Other values used for input to GASPAR are default values from Regulatory Guide 1.109, Revision 1.

84 PVNGS ARERR 2009

Table 43:

Doses To Special Locations For 2009 ENERGY INFORMATION CENTER LOCATED ONSITE 0.45 MILE S FROM UNIT 1, 0.29 MILE SSE FROM UNIT 2 AND 0.20 MILE ESE FROM UNIT 3 (MREM) T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN 1ST QUARTER ADULT 2.97E-01 2 .97E-01 1.65E-02 2.97E-01 2. 97E-01 2.97E-01 2. 97E-01 3.07E-01 TEEN 2.98E-01 2.98E-01 1 65E-02 2.98E-01 2.98E-01 2.98E-01 2. 98E-01 3 .08E-01 CHILD 2.65E-01 2. 65E-01 1. 65E-02 2. 65E-01 2. 65E-01 2.65E-01 2. 65E-01 2 .75E-01 INFANT 1.60E-01 1. 60E-01 1.65E-02 1. 60E-01 1.60E-01 1.60E-01 1.60E-01 1.70E-01 2ND QUARTER ADULT 2.20E-01 2. 20E-01 1.42E-02 2. 20E-01 2 .20E-01 2.20E-01 2. 20E-01 2.33E-01 TEEN 2.21E-01 2 .21E-01 1. 42E-02 2. 21E-01 2.21E-01 2.21E-01 2 .21E-01 2.34E-01 CHILD 1.97E-01 1. 97E-01 1.42E-02 1. 97E-01 1.97E-01 1.97E-01 1.97E-01 2. 09E-01 INFANT 1.19E-01 1. 19E-01 1.42E-02 1. 19E-01 1.19E-01 1.19E-01 1. 19E-01 1. 32E-01 1ST SEMI-ANNUAL ADULT 5.16E-01 5. 16E-01 3 . 06E-02 5. 16E-01 5. 16E-01 5.16E-01 5. 16E-01 5.39E-01 TEEN 5.19E-01 5. 19E-01 3 . 06E-02 5.19E-01 5.19E-01 5.19E-01 5. 19E-01 5. 42E-01

-CHILD 4.62E-01 4. 62E-01 3 . 06E-02 4. 62E-01 4. 62E-01 4.62E-01 4. 62E-01 4.85E-01 INFANT 2.79E-01 2. 79E-01 3 . 06E-02 2 .79E-01 2.79E-01 2.79E-01 2 .79E-01 3. 02E-01 3RD QUARTER ADULT 2.04E-01 2. 04E-01 5. 39E-04 2. 04E-01 2. 04E-01 2.04E-01 2. 04E-01 2.05E-01 TEEN 2.06E-01 2. 06E-01 5. 39E-04 2. 06E-01 2.06E-01 2.06E-01 2. 06E-01 2. 07E-01 CHILD 1.82E-01 1. 82E-01 5. 39E-04 1.82E-01 1.82E-01 1.82E-01 1. 82E-01 1.82E-01 INFANT 1.05E-01 1. 05E-01 5. 38E-04 1.05E-01 1. 05E-01 1.05E-01 1. 05E-01 1. 05E-01 4TH QUARTER ADULT 4.06E-01 4. 06E-01 9. 69E-03 4. 06E-01 4.06E-01 4.06E-01 4. 06E-01 4.12E-01 TEEN 4.08E-01 4. 08E-01 9. 69E-03 4. OBE-01 4. 08E-01 4.08E-01 4 . 08E-01 4.14E-01 CHILD 3.62E-01 3. 62E-01 9. 69E-03 3. 62E-01 3. 62E-01 3.62E-01 3. 62E-01 3.68E-01 INFANT 2.12E-01 2. 12E-01 9. 69E-03 2. 12E-01 2.12E-01 2.13E-01 2 . 12E-01 2. 13E-01 2ND SEMI-ANNUAL ADULT 6.10E-01 6. 10E-01 1. 02E-02 6. 10E-01 6. l0E-01 6.10E-01 6. 10E-01 6. 16E-01 TEEN 6.14E-01 6. 14E-01 1.02E-02 6. 14E-01 6. 14E-01 6.14E-01 6. 14E-01 6. 21E-01 CHILD 5.44E-01 5. 44E-01 1. 02E-02 5. 44E-01 5.44E-01 5.44E-01 5. 44E-01 5. 50E-01 INFANT 3.17E-01 3. 17E-01 1.02E-02 3.17E-01 3.17E-01 3.18E-01 3.17E-01 3.19E-01 ANNUAL ADULT 1. 13E+00 1. 13E+00 4.09E-02 1.13E+00 1.13E+00 1.13E+00 1. 13E+00 1. 16E+00 TEEN 1.13E+00 1. 13E+00 4. 09E-02 1. 13E+00 1.13E+00 1.13E+00 1.13E+00 1. 16E+00 CHILD 1. 01E+00 1. 01E+00 4 09E-02 1. 01E+00 1.01E+00 1.01E+00 1. 01E+00 1. 03E+00 INFANT 5. 96E-01 5.96E-01 4 . 09E-02 5.96E-01 5.96E-01 5.97E-01 5. 96E-01 6. 20E-01 85 PVNGS ARERR 2009

Table 44:

Integrated Population Dose for 2009 JAN - MAR PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN

- I - - ------------------- ----

PLUME 1.62E-03 1.62E-03 1.62E-03 1.62E-03 1.62E-03 1.62E-03 1.62E-03 3.17E-03

.03% .03% 99.97% .03% .03% .03% .03% .07%

+- -+ +--- --- --- -------------- +

GROUND 8.45E-08 8.45E-08 8.45E-08 8.45E-08 8.45E-08 8.45E-08 8.45E-08 9.94E-08

.00% I .00% .01% .00% .00% .00% .00% .00%

INHAL l1.33E+00 1.33E+00 J 2.62E-07 1.33E+00 1.33E+00 l1.33E+00 1.33E+00 1.33E+00 27.80% 27.80% .02% 27.80% 27.80% j 27.80% 27.80% 27.79%


+----------------------------+---+---+---+---+-------+/------

VEGET j 2.88E+00 2.88E+00 1.54E-07 j 2.88E+00 2.88E+00 2.88E+00 2.88E+00 2.88E+00 60.21% 60.21% .01% 60.21% 60.21% 60.21% 60.21% 60.19%

+-------------------+---+---+-------+ --- -----------

COW MILK 4.34E-01 4.34E-01 2.08E-08 4.34E-01 4.34E-01 4.34E-01 4.34E-01 4.34E-01 9.05% 9.05% .00% 9.05% 9.05% 9.05% 9.05% 9.05%

MEAT 1.39E-01 1.39E-01 3.19E-i1 1.39E-01 1.39E-01 1.39E-01 1.39E-01 1.39E-01 2.90% 2.90% .00% 2.90% 2.90% 2.90% 2.90% 2.90%

+. -...... .------- ++---------------- - ---

  • TOTAL* I 4.79E+00 I 4.79E+00 I 1.62E-03 I 4:79E+00 I 4.79E+00 I 4.79E+00 I 4.79E+00 I 4.79E+00 I S+------------------------------------------------+---+---+--- +--- +--

(1) 1 I I I I I I 1 PER CAPITAI 2.45E-06 I 2.45E-06 I 8.27E-10 I 2.45E-06 I 2.45E-06 I 2.45E-06 I 2.45E-06 I 2.45E-06 I DOSE (RKM)I I I I I I I I I APR - JUN PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN


-+-------------------------------------+---+---+ --- +--- +--

PLUME 1.OOE-02 1.OOE-02 1.00E-02 J 1.OOE-02 1.OOE-02 1.OOE-02 1.OOE-02 3.OOE-02

.32% j .32% 98.86% .32% .32% .32% .32% .94%

GROUND 1.05E-04 1.05E-04 j 1.05E-04 1.05E-04 1.05E-04 1.05E-04 1.05E-04 1.24E-04

.00% .00% j 1.04% .00% .00% .00% .00% .00%


+----------------------------+---+-------+---+---+ --- +--- +--

INHAL 9.80E-01l 9.80E-01 j 1.96E-06 9.80E-01l 9.80E-01l 9.81E-01l 9.80E-01l 9.80E-01l 31.07% 31.07% .02% 31.07% 31.07% 31.08% 31.08% 30.88%

VEGET l1.80E+00 .80E+00l 6.52E-06 1.80E+00 1.80E+00 1.80E+00 1.80E+00 1.80E+00 56.97% 56.97% .06% 56.97% 56.97% j 56.97% 56.97% 56.61%


-+------------------------------+---+---+---+---+/- --- +--- +--

COW MILK 2.87E-01 2.87E-01 1.85E-06 2.87E-01 2.87E-01 2.88E-01 2.87E-01 2.87E-01 9.11% 9.11% .02% 9.11% 9.11% 9.11% 9.11% 9.05%

MEAT 7.97E-02 7.97E-02 5.34E-08 7.97E-02 7.97E-02 7.97E-02 j 7.97E-02 7.97E-02 2.53% 2.53% .00% I- 2.53% 2.53% j 2.52% 2.52% 2.51%


+ ----------------------------

+---+---+---+---+ --- +--- + +------

  • TOTAL* I 3.15E+00 I 3.15E+00 I 1.01E-02 I 3.15E+00 I 3.15E+00 I 3.16E+00 I 3.15E+00 1 3.17E+00 I

+--------+---+---+---+ --- +--- +--

(1 ) I I I I I I I I 1 PER CAPITAL 1.61E-06 O 1.61E-06O 5.16E-09 I 1.61E-06 O 1.61E-06 O 1.61E-06 I 1.61E-06 O 1.62E-06 O DOSE (R M)I I I I I I I I I


+---+-------+---+ ------- +--

86 PVNGS ARERR 2009

Table 44: (continued)

Integrated Population Dose for 2009 JAN - JUN PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN PLUME 1.16E-02 1.16E-02 j 1.16E-02 1.16E-02 1.16E-02 1.16E-02 1.16E-02 3.31E-02

.15% .15% 99.01% .15% .15% .15% .15% .42%

GROUND 1.06E-04 1.06E-04 1.06E-04 1.06E-04 I 1.06E-04 1.06E-04 1.06E-04 1.24E-04

.00% .00% .90% .00% 1 .00% .00% .00% .00%

INHAL 2.31E+00 2.31E+00 2.22E-06 J 2.31E+00 2.31E+00 2.31E+00 2.31E+00I 2.31E+00 29.10% 29.10% .02% 29.10% 29.10% 29.10% 29.10% 29.02%

VEGET 4.68E+00 4.68E+00 6.67E-06 4.68E+00 4.68E+00 4.68E+00 F 4.68E+00 4.68E+00 58.93% 58.93% .06% 58.93% 58.93% 58.92% 58.92% 58.77%

COW MILK 7.21E-01 7.21E-01 1.87E-06 7.21E-01 7.21E-01 7.21E-01 7.21E-01 7.21E-01 9.08% 9.08% I, .02% 9.08% 9.08% 9.08% 9.08% 9.05%

MEAT 2.19E-01 2.19E-01 5.34E-08 2.19E-01 2.19E-01 2.19E-01 2.19E-01 2.19E-01 2.75% 2.75% .00% 2,75% 2.75% 2.75% 2.75% 2.75%


-+---------------+

  • TOTAL* I 7.94E+00 I 7.94E+00 I 1.17E-02 I 7.94E+00 I 7.94E+00 I7.94E+00 I7.94E+00 I7.96E+00I (1 ) I I I I I I I I I PER CAPITAl 4.05E-06 I 4.0SE-06 j 5.97E-09 I 4.05E-06 I 4.05E-06 DOSE (REM)I I I I I 4.I 0E-06 SI 4.05E-06 I 4.06E-06

-+-------- -...... ------------------------

JUL - SEP PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN

-- - - - - - - - ----- -+ - - ---- - +- - -- - -- - - -- - -

-- - -- --- - - -- - + -- - -

PLUME 1.04E-04 1.04E-04 1.04E-04 1.04E-04 1.04E-04 1.04E-04 1.04E-04 2.02E-04

.00% .00% 84.06% j .00% .00% .00% .00% .01%

...... +--. -- 4- ---------- --- --- ---

GROUND 2.69E-07 2.69E-07 2.69E-07 2.69E-07 2.69E-07 2.69E-07 2.69E-07 3.15E-07

.00% .00% .22% .00% .00% .00% .00% .00%


+----------------------+---+---+---+---+---+


--- +/-----+/--

INHAL 9.99E-01 9.99E-01 J 3.25E-06 9.99E-01 9.99E-01 9.99E-01 9.99E-01 9.99E-01 31.07% 31.07% 2.64% 31.07% 31.07% 31.07% 31.07% 31.07%


+---+---+---+---+---+ ------ ---------

VEGET 1.83E+00 1.83E+00 1.58E-05 1.83E+00 1.83E+00 1.83E+00 1.83E+00 1.83E+00I 56.86% 56.86% 12.80% 56.86% 56.86% j 56.86% 56.86% j 56.86%


+ +---+-------4--------+


--- +--- +--

COW MILK 3.11E-01 3.11E-01 3.22E-07 3.11E-01 3.1E-01 3.11E-01 3.11E-01 3.11E-01 9.66% 9.66% .26% 9.66% 9.66% 9.66% 9.66% 9.66%

S+------------------------------------+-------+---+-------+--- +--- +--

MEAT 7.71E-02 7.71E-02 j 2.71E-08 7.71E-02 7.71E-02 7.71E-02 7.71E-02 7.71E-02 2.40% 2.40% J .02% 2.40% 2.40% 2.40% 2.40% 2.40%

  • TOTAL* I 3.21E+00 I 3.21E+00 I 1.23E-04 I 3.21E+00 I 3.21E+00 I 3.21E+00K 3,21E+00 I 3.21E+00 I

++--- ---- ------- ---------------- +

(*1 I I I I I I I II PER CAPITAL 1.64E-06 I 1.64E-06 I 6.28E-11 I 1.64E-06 I 1.64E-06 I 1.64E-06 I 1.64E-06 I 1.64E-06 I DOSE (REM)l I I I I I I I I

+.......+----..........+.......... -------

+--+-- -- ---

87 PVNGS ARERR 2009

Table 44: (continued)

Integrated Population Dose for 2009 OCT - DEC PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN PLUME 7.77E-04 7.77E-04 7 7.77E-04 7.77E-04 7.77E-04 7.77E-04 2.18E-03

.02% .02% 94.91% .02% .02% .02% .02% .05%

GROUND 3.88E-05 3.88E-05 3.88E-05 3.88E-05 3.88E-05 3.88E-05 3.88E-05 4.56E-05

.00% .00% 4.74% .00% .00% .00% .00% .00%

INHAL 1.01E+00 1.01E+00 1.27E-06 1.01E+00 1.01E+00 1.01E+00 1.01E+00 j 1.01E+00 23.36% 23.36% .16% j 23.36% 23.36% 23.37% 23.36% 23.35%

VEGET 2.86E+00 j 2.86E+00 1.39E-06 2.86E+00 2.86E+00 2.87E+00 2.86E+00 2.86E+00 66.27% 66.27% .17% 66.27% 66.27% 66.26% 66.27% 66.25%

+-----------------------------------+---------------+-------+--- +--

COW MILK j 3.16E-01 3.16E-01 1.84E-07 3.16E-01 I 3.16EK-01 3.16E-01 3.16E-01 3.16E-01 7.30% 7.30% .02% 7.30% 7.30%j 7.30% j 7.30% 7.30%

MEAT 1.32E-01 1.32E-01 2.65E-10 1.32E-01l 1.32E-01 1.32E-01 1.32E-01 j 1.32E-01l 3.05% 3.05% .00% 3.05% 3.05% 3.05% 3.05% 3.05%

  • TOTAL* I 4.32E+00 I 4.32E+00 I 8.18E-04 I 4.32E+00 I 4.32E+00 I 4.32E+00 I 4.32E+00 I 4.32E+00 I (1 ) 1I I I I I I I PER CAPITAj 2.21E-06 I 2.21E-06 I 4.18E-10 I 2.21E-06 I 2.21E-06 I 2.21E-06 I 2.21E-06 I 2.21E-06 I DOSE (RKW)I I I I I I I I I JUL- DEC PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN PLUME 8.80E-04 8.80E-04 8.80E-04 8.80E-04 8.80E-04 8.80E-04 8.80E-04 2.38E-03

.01% I .01% 93.49% .01% .01% .01% .01% .03%

GROUND j 3.91E-05 3.91E-05 3.91E-05 3.91E-05 3.91E-05 3.91E-05 3.91E-05 4.59E-05

.00% .00% 4.15% .00% .00% J .00% .00% .00%

INHAL 2.01E+00 2.01E+00 4.52E-06 j 2.01E+00 2.01E+00 2.01E+00 j 2.01E+00 2.01E+00 26.65% 26.65% .48% 26.65% 26.65% 26.65% 26.65% 26.65%

S+ ++++------+- - -- --- '+ ++------ +

VEGET 4.69E+00 4.69E+00 1.72E-05 j 4.69E+00 4.69E+00 4.69E+00 4.69E+00 4.69E+00 62.26% 62.26% 1.82% 62.26% 62.26% 62.25% 62.26% 62.24%

COW MILK 6.26E-01 6.26E-01 5.06E-07 J 6.26E-01 6.26E-01 6.26E-01 6.26E-01 6.26E-01 8.31% 8.31% .05% 8.31% 8.31% 8.31% 8.31% 8.31%

MEAT 2.09E-01 2.09E-01 2.74E-08 2.09E-01 2.09E-01l 2.09E-01 2.09E-01 2.09E-01 2.77% 2.77% .00% 2.77% 2.77% 2.77% 2.77% 2.77%

  • TOTAL* I 7.54E+00 I 7.54E+00 I 9.41E-04 I 7.54E+00 I 7.54E÷00 I 7.54E+00 I 7.54E+00 j 7.54E+00 I (1 ) I I I I I I I PER CAPITA! 3.85E-06 I 3.85E-06 I 4.80E-10 I 3.85E-06 I 3.85E-06 I 3.85E-06 I 3.85E-06 I 3.85E-06 I DOSE (REM)] I I I I I I I I 88 PVNGS ARERR 2009

Table 44: (continued)

Integrated Population Dose for 2009

,AN - DEC PATHWAY T.BODY GI-TRACT BONE LIVER KIDNEY THYROID LUNG SKIN


+-----------------------------+---*---+---+---+---+ --- +--- +--

PLUME 1.25E-02 I 1.25E-02 1.25E-02 1.25E-02 1.25E-02 1.25E-02 1.25E-02 3.55E-02

.08% .08% 98.60% .08% 08% .08% .08% .23%

GROUND 1.45E-04 1.45E-04 j 1.45E-04 1.45E-04 11.45E-04 1.45E-04 1 l.45E-04 1.70E-04

.00% F .00% 1.14% .00% .00% .00% .00% F .00%

INHAL 4.32E+00 4.32E+00 6.74E-06 4.32E+00 4.32E+00 4.32E+00 4.32E+00 4.32E+00 27.91% j 27.91% .05% 27.91% 27.91% 27.91% 27.91% 27.87%

VEGET 9.37E+00 9.37E+00 2.38E-05 9.37E+00 I 9.37E+00 I 9.37E+00 I 9.37E+00 9.37E+00 60.55% 60.55% .19% 60.55% 60.55% 1 60.55% 1 60.55% 60.46%

COW MILK 1.35E+00 1.35E+00 2.37E-06 1.35E+00 1.35E+00 F 1.35E+00 1.35E+00 1.35E+00 8.70% F 8.70% F .02% F 8.70%o 8.70% F 8.70% F 8.70% F 8.69% F MEAT F 4.28E-01 F 4.28E-01 F 8.08E-08 F 4.28E-01 F 4.28E-01 F 4.28E-01 F 4.28E-01 F 4.28E-01 F S 2.76% 2.76% .00% 2.76% 2.76% 2.76% 2.76% 2.76%

  • TOTAL* I 1.55E+01 F 1.55E+01 I 1.27E-02 I 1.55E+01 I 1.B5E+01 I 1.55E+01 I 1.55E+01 I 1.55E+01 I

- - - - -+----

- - -- -+ - - -- -

(1) F F I I I I I I I PER CAPITAF 7.91E-06 I 7.91E-06 F 6.48E-09 F 7.91E-06 F 7.91E-06 F 7.91E-06 F 7.91E-06 F 7.91E-06 F DOSE (REM) F F F- -

I of ,-----59 0-5--ile+population Note 1: Personrem total divided by 50-mile population of 1,959,000 89 PVNGS ARERR 2009

Table 45:

Summarv of Individual Doses for 20l09 Unit Quarter 1 Quarter 2 Quarter 3 Quarter 4 Year total Gamma Air Dose mrad 8.30E-03 6.43E-03 1.96E-04 3.61E-03 1.74E-02 ODCM Req. 4.1 Limit mrad 5.00E+00 5.00E+00 5.00E+00 5.OOE+00 1.00E+01

% ODCM Limit  % 1.66E-01 1.29E-01 3.92E-03 7.22E-02 1.74E-01 Beta Air Dose mrad 3.05E-03 4.50E-03 7.05E-05 1.53E-03 8.97E-03 ODCM Req. 4.1 Limit mrad 1.00E+01 1.OOE+01 1.00E+01 1.00E+01 2.OOE+01

% ODCM Limit  % 3.05E-02 4.50E-02 7.05E-04 1.53E-02 4.48E-02 Maximum Individual Total Body mrem 5.52E-03 4.23E-03 1.30E-04 2.39E-03 1.15E-02 Skin mrem 8.94E-03 7.67E-03 2.10E-04 3.94E-03 1.98E-02 Site Boundary Location Unit 1 miles 1.70 SSE 1.70 SSE 1.37 NE 1.40 SSW 1.70 SSE Unit 2 miles 1.88 SSE 1.88 SSE 1.58 NE 1.14 SSW 1.88 SSE Unit 3 miles 1.73 SSE 1.73 SSE 1.71 NE 1.00 SSW 1.73 SSE Maximum Organ Dose Age Infant Infant Infant Infant Infant (excluding skin) Organ Thyroid (2) Thyroid (2) Thyroid (2) Thyroid Thyroid mrem 1.97E-01 1.45E-01 1.50E-01 1.55E-01 6.48E-01 ODCM Req. 4.2 Limit mrem 7.50E+00 7.50E+00 7.50E+00 7.50E+00 1.50E+01

% ODCM Limit (1)% 2.63E+00 1.93E+00 2.OOE+00 2.07E+00 4.32E+00 Location Unit 1 miles 1.88 ESE 1.88 ESE 1.88 ESE 1.88 ESE 1.88 ESE Unit 2 miles 1.95 ESE 1.95 ESE 1.95 ESE 1.95 ESE 1.95 ESE Unit 3 miles 1.96 ESE 1.96 ESE 1.96 ESE 1.96 ESE 1.96 ESE Organ dose from tritium only for Unit 2 location mrem 1.96E-01 1.43E-01 1.50E-01 1.54E-01 6.43E-01 above Fraction of organ dose from tritium only for Unit 2  % 99 99 100 99 99 location above (2)

X/Q for Unit 2 location sec/m3 2.77E-06 1.29E-06 1.30E-06 2.29E-06 1.91E-06 above D/Q for Unit 2 location m-2 1.81 E-09 1.34E-09 1.02E-09 1.63E-09 1.45E-09 above m I I Note 1: ODCM Requirement 5.1 has higher limits than ODCM Requirement 4.2, therefore the percent of limits are more conservative based on ODCM Requirement 4.2 than on ODCM Requirement 5.1.

Note 2:.All organs except bone 90 PVNGS ARERR 2009

APPENDIX D NEI 07-07 Groundwater Protection Initiative Sampling 91 PVNGS ARERR 2009

See Inset for location of PV-ZtSR Figure APP Grmjndwatpr Monitorina Locations PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ Conc Piezometer Sample Date/Time Analyte (pCi/L) Comment APP-3 2/18/09 13:17 Cesium-134 <1.9 APP-3 2/18/09 13:17 Cesium-1 37 <1.6 APP-3 2/18/09 13:17 Colbalt-60 <1.9 APP-3 2/18/09 13:17 lodine-131 <3.3 APP-3 2/18/09 13:17 Tritium <323 APP-3 5/28/09 11:36 Cesium-1 34 <1.9 APP-3 5/28/09 11:36 Cesium-137 <1.9 APP-3 5/28/09 11:36 Colbalt-60 <1.8 APP-3 5/28/09 11:36 Iodine-131 <4.5 APP-3 5/28/09 11:36 Tritium <316 APP-3 8/6/09 10:15 Cesium-1 34 <2.2 APP-3 8/6/09 10:15 Cesium-1 37 <1.9 APP-3 8/6/09 10:15 Colbalt-60 <2.3 APP-3 8/6/09 10:15 Iodine-131 <3.4 APP-3 8/6/09 10:15 Tritium <493 APP-3 10/29/09 13:40 Tritium <480 APP-3 11/3/09 14:13 Cesium-1 34 <2.4 APP-3 11/3/09 14:13 Cesium-1 37 <2.2 APP-3 11/3/09 14:13 Colbalt-60 <2.2 APP-3 11/3/09 14:13 Iodine-131 <3.8 APP-4R 2/19/09 12:38 Tritium <323 APP-4R 5/28/09 12:05 Cesium-1 34 <1.9 APP-4R 5/28/09 12:05 Cesium-1 37 <1.8 APP-4R 5/28/09 12:05 Colbalt-60 <2.1 APP-4R 5/28/09 12:05 Iodine-131 <3.5 APP-AR 5/28/09 12:05 Tritium <316 APP-4R 8/6/09 13:00 Tritium <493 APP-4R 10/29/09 13:55 Tritium <480 APP-4R-DUP 8/6/09 13:00 Tritium <493 duplicate sample APP-5 2/27/09 12:27 Tritium <317 APP-5 6/10/09 11:05 Cesium-1 34 <2.2 APP-5 6/10/09 11:05 Cesium-137 <2.2 APP-5 6/10/09 11:05 Colbalt-60 <2.1 APP-5 6/10/09 11:05 Iodine-131 <3.8 APP-5 6/10/09 11:05 Tritium <319 APP-5 9/16/09 9:50 Tritium <467 APP-5 11/5/09 10:58 Tritium <470 APP-6 3/11/09 8:50 Tritium <322 APP-6 6/16/09 7:00 Cesium-1 34 <3.3 APP-6 6/16/09 7:00 Cesium-1 37 <3.2 APP-6 6/16/09 7:00 Colbalt-60 <3.4 APP-6 6/16/09 7:00 Iodine-131 <3.8 APP-6 6/16/09 7:00 Tritium <314 APP-6 9/17/09 9:30 Tritium <467 APP-6 10/22/09 9:06 Tritium <491 APP-7 3/12/09 15:31 Tritium <322 APP-7 6/17/09 7:50 Cesium-1 34 <1.8 APP-7 6/17/09 7:50 Cesium-1 37 <1.8 APP-7 6/17/09 7:50 Colbalt-60 <2.1 APP-7 6/17/09 7:50 Iodine-131 <4.5 PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ ConcN Piezometer Sample Date/Time Analyte (pCi/L) Comment APP-7 6/17/09 7:50 Tritium <314 APP-7 9/30/09 8:50 Tritium <468 APP-7 11/19/09 9:00 Tritium <489 APP-8 1/16/09 9:52 Tritium <320 APP-8 2/10/09 10:43 Tritium <326 APP-8 5/7/09 11:34 Cesium-1 34 <1.8 APP-8 5/7/09 11:34 Cesium-1 37 <1.6 APP-8 5/7/09 11:34 Colbalt-60 <1.9 APP-8 5/7/09 11:34 Iodine-131 <3.2 APP-8 5/7/09 11:34 Tritium <314 APP-8 7/23/09 11:00 Tritium <491 APP-8 10/28/09 9:32 Tritium <480 APP-9 1/15/09 11:38 Tritium <320 APP-9 5/7/09 10:43 Cesium-1 34 <2.1 APP-9 5/7/09 10:43 Cesium-1 37 <2.2 APP-9 5/7/09 10:43 Colbalt-60 <2.4 APP-9 5/7/09 10:43 Iodine-131 <3.9 APP-9 5/7/09 10:43 Tritium <314 APP-9 7/9/09 7:55 Tritium <471 APP-9 10/22/09 11:50 Tritium <491 APP-9 Dupe 10/22/09 11:50 Tritium <491 duplicate sample APP-10 1/15/09 12:20 Tritium <320 APP-10 5/7/09 9:43 Cesium-1 34 <1.9 APP-10 5/7/09 9:43 Cesium-i 37 <1.7 APP-10 5/7/09 9:43 Colbalt-60 <1.9 APP-10 5/7/09 9:43 lodine-131 <3.0 APP-10 5/7/09 9:43 Tritium <314 APP-10 7/9/09 7:40 Tritium <471 APP-10 10/22/09 11:27 Tritium <491 APP-10 Dupe 10/22/09 11:27 Tritium <491 duplicate sample APP-12 1/15/09 13:18 Tritium <320 APP-12 5/7/09 9:10 Cesium-1 34 <2.2 APP-12 5/7/09 9:10 Cesium-1 37 <2.1 APP-12 5/7/09 9:10 Colbalt-60 <2.2 APP-12 5/7/09 9:10 Iodine-131 <3.5 APP-12 5/7/09 9:10 Tritium <314 APP-12 7/9/09 7:15 Tritium <471 APP-12 10/22/09 10:55 Tritium <491 APP-12 Dupe 10/22/09 10:55 Tritium <491 duplicate sample APP-13 1/8/09 14:00 Cesium-1 34 <2.1 Ambient Monitoring APP-13 1/8/09 14:00 Cesium-1 37 <2.2 Ambient Monitoring APP-13 1/8/09 14:00 Colbalt-60 <2.2 Ambient Monitoring APP-13 1/8/09 14:00 lodine-131 <3.4 Ambient Monitoring APP-13 1/8/09 14:00 Tritium <316 Ambient Monitoring APP-13 ' 2/5/09 10:14 Cesium-1 34 <1.9 Ambient Monitoring APP-13 2/5/09 10:14 Cesium-1 37 <1.8 Ambient Monitoring APP-13 2/5/09 10:14 Coibalt-60 <1.9 Ambient Monitoring APP-13 2/5/09 10:14 lodine-131 <2.7 Ambient Monitoring (

APP-13 2/5/09 10:14 Tritium <327 Ambient Monitoring

- APP-13 3/6/09 10:00 Cesium-134 <2.0 Ambient Monitoring PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ Conc Piezometer Sample Date/Time Analyte (pCi/L) Comment APP-13 3/6/09 10:00 Cesium-1 37 <1.7 Ambient Monitoring APP-13 3/6/09 10:00 Colbalt-60 <1.9 Ambient Monitoring APP-13 3/6/09 10:00 Iodine-131 <3.6 Ambient Monitoring APP-13 3/6/09 10:00 Tritium <317 Ambient Monitoring APP-13 4/30/09 10:34 Cesium-134 <1.9 Ambient Monitoring APP-13 4/30/09 10:34 Cesium-1 37 <1.8 Ambient Monitoring APP-13 4/30/09 10:34 Colbalt-60 <2.1 Ambient Monitoring APP-13 4/30/09 10:34 Iodine-131 <4.1 Ambient Monitoring APP-13 4/30/09 10:34 Tritium <317 Ambient Monitoring APP-13 5/21/09 14:14 Cesium-134 <2.2 Ambient Monitoring APP-13 5/21/09 14:14 Cesium-1 37 <2.2 Ambient Monitoring APP-13 5/21/09 14:14 Colbalt-60 <2.2 Ambient Monitoring APP-13 5/21/09 14:14 lodine-131 <3.3 Ambient Monitoring APP-13 5/21/09 14:14 Tritium <321 Ambient Monitoring APP-13 6/5/09 7:55 Cesium-1 34 <1.9 Ambient Monitoring APP-13 6/5/09 7:55 Cesium-1 37 <1.9 Ambient Monitoring APP-13 6/5/09 7:55 Colbalt-60 <2.1 Ambient Monitoring APP-13 6/5/09 7:55 Iodine-131 <3.9 Ambient Monitoring APP-13 6/5/09 7:55 Tritium <315 Ambient Monitoring APP-13 7/15/09 7:45 Cesium-1 34 <2.2 Ambient Monitoring APP-13 7/15/09 7:45 Cesium-1 37 <2.2 Ambient Monitoring APP-13 7/15/09 7:45 Colbalt-60 <2.2 Ambient Monitoring APP-13 7/15/09 7:45 Iodine-131 <2.7 Ambient Monitoring APP-13 7/15/09 7:45 Tritium <492 Ambient Monitoring APP-13 8/20/09 9:15 Cesium-134 <1.8 Ambient Monitoring APP-13 8/20/09 9:15 Cesium-1 37 <1.8 Ambient Monitoring APP-13 8/20/09 9:15 Colbalt-60 <1.9 Ambient Monitoring APP-13 8/20/09 9:15 Iodine-131 <3.4 Ambient Monitoring APP-13 8/20/09 9:15 Tritium <478 Ambient Monitoring APP-13 11/6/09 9:29 Tritium <486 APP-14 1/8/09 13:00 Cesium-134 <1.9 Ambient Monitoring APP-14 1/8/09 13:00 Cesium-137 <1.9 Ambient Monitoring APP-14 1/8/09 13:00 Colbalt-60 <2.0 Ambient Monitoring APP-14 1/8/09 13:00 Iodine-131 <2.9 Ambient Monitoring APP-14 1/8/09 13:00 Tritium <316 Ambient Monitoring APP-14 2/5/09 11:14 Cesium-1 34 <2.2 Ambient Monitoring APP-14 2/5/09 11:14 Cesium-1 37 <2.3 Ambient Monitoring APP-14 2/5/09 11:14 Colbalt-60 <2.1 Ambient Monitoring APP-14 2/5/09 11:14 Iodine-131 <3.4 Ambient Monitoring APP-14 2/5/09 11:14 Tritium <327 Ambient Monitoring APP-14 3/6/09 11:00 Cesium-1 34 <2.4 Ambient Monitoring APP-14 3/6/09 11:00 Cesium-1 37 <2.2 Ambient Monitoring APP-14 3/6/09 11:00 Colbalt-60 <2.1 Ambient Monitoring APP-14 3/6/09 11:00 Iodine-131 <4.2 Ambient Monitoring APP-14 3/6/09 11:00 Tritium <317 Ambient Monitoring APP-14 4/30/09 10:11 Cesium-1 34 <2.3 Ambient Monitoring APP-14 4/30/09 10:11 Cesium-137 <2.1 Ambient Monitoring APP-14 4/30/09 10:11 Colbalt-60 <2.2 Ambient Monitoring APP-14 4/30/09 10:11 Iodine-131 <4.1 Ambient Monitoring APP-14 4/30/09 10:11 Tritium <317 Ambient Monitoring PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ Conc Piezometer Sample Date/Time Analyte (pCi/L) Comment APP-14 5/21/09 14:24 Cesium-134 <1.8 Ambient Monitoring APP-14 5/21/09 14:24 Cesium-1 37 <1.8 Ambient Monitoring APP-14 5/21/09 14:24 Colbalt-60 <1.9 Ambient Monitoring APP-14 5/21/09 14:24 lodine-131 <4.5 Ambient Monitoring APP-14 5/21/09 14:24 Tritium <321 Ambient Monitoring APP-14 6/5/09 8:20 Cesium-1 34 <1.9 Ambient Monitoring APP-14 6/5/09 8:20 Cesium-1 37 <1.8 Ambient Monitoring APP-14 6/5/09 8:20 Colbalt-60 <2.0 Ambient Monitoring APP-14 6/5/09 8:20 Iodine-131 <3.4 Ambient Monitoring APP-14 6/5/09 8:20 Tritium <315 Ambient Monitoring APP-14 7/15/09 8:10 Cesium-1 34 <1.7 Ambient Monitoring APP-14 7/15/09 8:10 Cesium-1 37 <1.8 Ambient Monitoring APP-14 7/15/09 8:10 Colbalt-60 <2.0 Ambient Monitoring APP-14 7/15/09 8:10 lodine-131 <3.3 Ambient Monitoring APP-14 7/15/09 8:10 Tritium <492 Ambient Monitoring APP-14. 8/20/09 9:35 Cesium-134 <1.9 Ambient Monitoring APP-14 8/20/09 9:35 Cesium-1 37 <1.9 Ambient Monitoring APP-14 8/20/09 9:35 Colbalt-60 <1.9 Ambient Monitoring APP-14 8/20/09 9:35 Iodine-131 <2.5 Ambient Monitoring APP-14 8/20/09 9:35 Tritium <478 Ambient Monitoring APP-14 11/10/09 8:50 Tritium <477 APP-15 1/8/09 14:55 Cesium-1 34 <2.4 Ambient Monitoring APP-15 1/8/09 14:55 Cesium-1 37 <2.2 Ambient Monitoring APP-15 1/8/09 14:55 Colbalt-60 <2.2 Ambient Monitoring APP-15 1/8/09 14:55 Iodine-131 <2.9 Ambient Monitoring APP-15 1/8/09 14:55 Tritium <316 Ambient Monitoring APP-15 2/5/09 12:22 Cesium-1 34 <1.8 Ambient Monitoring APP-15 2/5/09 12:22 Cesium-1 37 <1.9 Ambient Monitoring APP-15 2/5/09 12:22 Colbalt-60 <2.0 Ambient Monitoring APP-15 2/5/09 12:22 Iodine-131 <2.7 Ambient Monitoring APP-15 2/5/09 12:22 Tritium <327 Ambient Monitoring APP-15 3/6/09 12:00 Cesium-1 34 <2.3 Ambient Monitoring

  • APP-15 3/6/09 12:00 Cesium-1 37 <2.0 Ambient Monitoring APP-15 3/6/09 12:00 Colbalt-60 <2.3 Ambient Monitoring APP-15 3/6/09 12:00 Iodine-131 <3.8 Ambient Monitoring APP-15 3/6/09 12:00 Tritium <317 Ambient Monitoring APP-15 4/30/09 11:00 Cesium-1 34 <1.9 Ambient Monitoring APP-15 4/30/09 11:00 Cesium-1 37 <1.9 Ambient Monitoring APP-15 4/30/09 11:00 Colbalt-60 <1.9 Ambient Monitoring APP-15 4/30/09 11:00 Iodine-131 <4.9 Ambient Monitoring APP-15 4/30/09 11:00 Tritium <317 Ambient Monitoring APP-15 5/21/09 13:56 Cesium-1 34 <1.8 Ambient Monitoring APP-15 5/21/09 13:56 Cesium-1 37 <1.8 Ambient Monitoring APP-15 5/21/09 13:56 Colbalt-60 <1.8 Ambient Monitoring APP-15 5/21/09 13:56 Iodine-131 <3.8 Ambient Monitoring APP-15 5/21/09 13:56 Tritium <321 Ambient Monitoring APP-1S5 6/5/09 7:20 Cesium-1 34 <2.2 Ambient Monitoring APP-15 6/5/09 7:20 Cesium-1 37 <2.2 Ambient Monitoring APP-I5 6/5/09 7:20 Colbalt-60 <2.3 Ambient Monitoring APP-15 6/5/09 7:20 lodine-131 <3.1 Ambient Monitoring PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ Conc Piezometer Sample Date/Time Analyte (pCi/L) Comment APP-15 6/5/09 7:20 Tritium <315 Ambient Monitoring APP-15 7/16/09 7:40 Cesium-1 34 <1.9 Ambient Monitoring APP-I5 7/16/09 7:40 Cesium-1 37 <1,7 Ambient Monitoring APP-15 7/16/09 7:40 Colbalt-60 <1.9 Ambient Monitoring APP-15 7/16/09 7:40 lodine-131 <2.9 Ambient Monitoring APP-15 7/16/09 7:40 Tritium <492 Ambient Monitoring APP-15 8/20/09 8:50 Cesium-1 34 <2.1 Ambient Monitoring APP-15 8/20/09 8:50 Cesium-1 37, <2.2 Ambient Monitoring APP-15 8/20/09 8:50 Colbalt-60 <2.1 Ambient Monitoring APP-15 8/20/09 8:50 Iodine-131 <2.8 Ambient Monitoring APP-15 8/20/09 8:50 Tritium <478 Ambient Monitoring APP-15 11/10/09 9:07 Tritium <477 PV-14H 3/11/09 10:00 Cesium-1 34 <1.8 PV-14H 3/11/09 10:00 Cesium-1 37 <1.8 PV-14H 3/11/09 10:00 Colbalt-60 <1.8 PV-14H 3/11/09 10:00 Iodine-131 <5.0 PV-14H 3/11/09 10:00 Tritium <322 PV-14H 6/15/09 8:55 Cesium-1 34 <2.1 PV-14H 6/15/09 8:55 Cesium-137 <2.1 PV-14H 6/15/09 8:55 Colbalt-60 <2.2 PV-14H 6/15/09 8:55 Iodine-131 <4.6 PV-14H 6/15/09 8:55 Tritium <314 PV-14H 9/17/09 10:20 Cesium-1 34 <1.9 PV-14H 9/17/09 10:20 Cesium-137 <1.8 PV-14H 9/17/09 10:20 Colbalt-60 <2.0 PV-14H 9/17/09 10:20 Iodine-131 <3.0 PV-14H 9/17/09 10:20 Tritium <467 PV-14H 10/22/09 9:50 Cesium-134 <2.4 PV-14H 10/22/09 9:50 Cesium-1 37 <2.2 PV-14H 10/22/09 9:50 Colbalt-60 <2.2 PV-14H 10/22/09 9:50 Iodine-131, <2.8 PV-14H 10/22/09 9:50 Tritium <491 PV-193A 2/27/09 10:30 Tritium <317 PV-193A 5/28/09 14:37 Cesium-134 <2.1 PV-193A 5/28/09 14:37 Cesium-1 37 <2.3 PV-193A 5/28/09 14:37 Colbalt-60 <2.1 PV-193A 5/28/09 14:37 Iodine-131 <3.2 PV-193A 5/28/09 14:37 Tritium <316 PV-193A 8/4/09 10:17 Tritium <493 PV-193A 10/28/09 14:35 Tritium <480 PV-195A 3/11/09 11:31 Cesium-134 <1.8 PV-195A 3/11/09 11:31 Cesium-1 37 <1.8 PV-195A 3/11/09 11:31 Colbalt-60 <1.9 PV-195A 3/11/09 11:31 lodine-131 <3.9 PV-195A 3/11/09 11:31 Tritium <322 PV-195A 6/10/09 12:00 Cesium-1 34 <1.8 PV-195A 6/10/09 12:00 Cesium-1 37 <1.7 PV-195A 6/10/09 12:00 Colbalt-60 <1.9 PV-195A 6/10/09 12:00 Iodine-131 <4.2 PV-195A 6/10/09 12:00 Tritium <319 PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ Conc Piezometer Sample Date/Time Analyte (pCi/L) Comment PV-195A 9/17/09 14:25 Cesium-1 34 <2.2 PV-195A 9/17/09 14:25 Cesium-137 <1.9 PV-195A 9/17/09 14:25 Colbalt-60 <2.2 PV-195A 9/17/09 14:25 Iodine-131 <3.2 PV-195A 9/17/09 14:25 Tritium <467 PV-195A 11/10/09 9:44 Cesium-134 <2.3 PV-195A 11/10/09 9:44 Cesium-137 <2.3 PV-195A 11/10/09 9:44 Colbalt-60 <2.3 PV-195A 11/10/09 9:44 Iodine-131 <4.1 PV-195A 11/10/09 9:44 Tritium <477 PV-198AR 1/13/09 14:55 Tritium <320 PV-198AR 2/11/09 15:20 Tritium <326 PV-198AR 5/27/09 10:03 Cesium-134 <1.8 PV-198AR 5/27/09 10:03 Cesium-137 <1.8 PV-198AR 5/27/09 10:03 Colbalt-60 <1.9 PV-198AR 5/27/09 10:03 lodine-131 <4.2 PV-198AR 5/27/09 10:03 Tritium <316 PV-198AR 7/22/09 11:20 Tritium <491 PV-198AR 10/15/09 11:40 Tritium <484 PV-198AR 11/4/09 10:06 Tritium <472 PV-198AR 12/1/09 10:55 Tritium <494 PV-206A 2/11/09 10:00 Cesium-134 <2.3 PV-206A 2/11/09 10:00 Cesium-137 <2.3 PV-206A 2/11/09 10:00 Colbalt-60 <2.5 PV-206A 2/11/09 10:00 Iodine-131 <3.5 PV-206A 2/11/09 10:00 Tritium <326 PV-206A 5/21/09 12:26 Cesium-134 <2.2 PV-206A 5/21/09 12:26 Cesium-1 37 <2.2 PV-206A 5/21/09 12:26 Colbalt-60 <2.1 PV-206A 5/21/09 12:26 Iodine-131 <4.1 PV-206A 5/21/09 12:26 Tritium <321 PV-206A 8/4/09 9:35 Cesium-1 34 <1.81 PV-206A 8/4/09 9:35 Cesium-1 37 <1.9 PV-206A 8/4/09 9:35. Colbalt-60 <1.9 PV-206A 8/4/09 9:35 Iodine-131 <3.6 PV-206A 8/4/09 9:35 Tritium <493 PV-206A 10/29/09 9:45 Cesium-1 34 <2.3 PV-206A 10/29/09 9:45 Cesium-1 37 <2.3 PV-206A 10/29/09 9:45 Colbalt-60 <2.1 PV-206A 10/29/09 9:45 Iodine-131 <3.3 PV-206A 10/29/09 9:45 Tritium <480 PV-34H 2/27/09 13:08 Tritium <317 PV-34H 6/10/09 11:30 Cesium-1 34 <1.8 PV-34H 6/10/09 11:30 Cesium-137 <1.7 PV-34H 6/10/09 11:30 Colbalt-60 <1.9 PV-34H 6/10/09 11:30 Iodine-131 <4.8 PV-34H 6/10/09 11:30 Tritium <319 PV-34H 9/17/09 9:05 Tritium <467 PV-34H 11/6/09 9:38 Tritium <470 PV-Q8 2/11/09 16:39 Cesium-134 <2.2 PVNGS ARERR 2009

Onsite Radiological Groundwater Monitoring Data (from the Aquifer Protection Permit Monitoring Program)

Monitoring Well/ Conc Piezometer Sample Date/Time Analyte (pCi/L) Comment PV-Q8 2/11/09 16:39 Cesium-137 <2.1 PV-Q8 2/11/09 16:39 Colbalt-60 <2.1 PV-Q8 2/11/09 16:39 Iodine-131 <4.3 PV-Q8 2/11/09 16:39 Tritium <326 PV-Q8 5/28/09 10:10 Cesium-134 <2.2 PV-Q8 5/28/09 10:10 Cesium-137 <2.1 PV-Q8 5/28/09 10:10 Colbalt-60 <2.0 PV-Q8 5/28/09 10:10 Iodine-131 <4.3 PV-Q8 5/28/09 10:10 Tritium <316 PV-Q8 8/6/09 9:00 Cesium-1 34 <1.9 PV-Q8 8/6/09 9:00 Cesium-137 <2.0 PV-Q8 8/6/09 9:00 Colbalt-60 <2.0 PV-Q8 8/6/09 9:00 lodine-131 <3.0 PV-Q8 8/6/09 9:00 Tritium <493 PV-Q8 10/29/09 12:25 Cesium-1 34 <2.2 PV-Q8 10/29/09 12:25 Cesium-137 <2.3 PV-Q8 10/29/09 12:25 Colbalt-60 <2.2 PV-Q8 10/29/09 12:25 Iodine-131 <3.2 PV-Q8 10/29/09 12:25 Tritium <480 PV-Q8 12/2/09 9:00 Tritium <494 PV-R2AR 3/12/09 14:37 Tritium <322 PV-R2AR 6/17/09 7:10 Cesium-1 34 <2.3 PV-R2AR 6/17/09 7:10 Cesium-137 <2.2 PV-R2AR 6/17/09 7:10 Colbalt-60 <2.2 PV-R2AR 6/17/09 7:10 Iodine-131 <4.9 PV-R2AR 6/17/09 7:10 Tritium <314 PV-R2AR 9/25/09 9:00 Tritium <460 PV-R2AR 11/19/09 8:35 Tritium <489 RPZ-2A 3/20/09 10:05 Tritium <319 RPZ-3B 3/20/09 10:48 Tritium <319 RPZ-6A 3/20/09 11:46 Tritium <319 RPZ-6B 3/20/09 12:13 Tritium <319 RPZ7B 3/20/09 13:00 Iodine-131 <3.0 RPZ7B 3/20/09 13:00 Tritium <319 PVNGS ARERR 2009

APPENDIX E OFFSITE DOSE CALCULATION MANUAL Revision 24 100 PVNGS ARERR 2009

OFFSITE DOSE CALCULATION MANUAL PALO VERDE NUCLEAR GENERATING STATION UNITS 1, 2 AND 3 REVISION 24 Digitally signed by Drinovsky, Louis J Drinovsky, Loui-s J(PZR33:

,DN cn=Drnovsky, Louis J(Z33699)

I am the author of this L o u is ,Date:767 ' f,* docu0ment Dale: 2009.07.17 1),7 14:50:29 -07'00' Originator Digitally signed by Bungard, James P Bungard, James, (Z802)ugr ae

DN
cn=Bungard, James P(Z18012)

P(Z 1801 2) .. Reason: I have reviewed this document Date: 2009.07.17 15:10:52 -07'00' Technical Reviewer Digitally signed by Gaffney, John Gaffney, John PJz3 oP399 DN: cn=Gaffney, John P(Z36459)

Reason: I am approving this P(Z36459 P(Z36 59) durn

6. ,e,nt Date: 2009.07.17 15:47:34 -07'00' Director, Radiation Protection Digitally signed by pete borchert pp DN: cn=pete borchert,

ý;.o=operations, c=US, ou=8201, email=Peter.

Borchert@ apsc.com borchertDate:

,orc""" Reason: I am approving this document 2009.09.02 09:43:55 -0700' PRB Effective Date: 9/10/2009

TABLE OF CONTENTS TITLE PAGE

1.0 INTRODUCTION

1 1.1 Liquid Effluent Pathways 1 1.2 Gaseous Effluent Pathways 2 1.3 Nuisance Pathways 2 1.4 Meteorology 4 2.0 GASEOUS EFFLUENT MONITOR SETPOINTS 5

2.1 Requirements

Gaseous Monitors 5 2.1.1 Surveillance Requirements 5 2.1.2 Implementation of the Requirements 12 2.1.2.1 Equivalent Dose Factor Determination 13 2.1.2.2 Site Release Rate Limit (QsITE) 14 2.1.2.3 Unit Release Rate Limits (QUNIT) 15 2.1.2.4 Setpoint Determination 15 2.1.2.5 Monitor Calibration 16 3.0 GASEOUS AND LIQUID EFFLUENT DOSE RATES 17

3.1 Requirements

Gaseous Effluents 17 3.1.1 Surveillance Requirements 17 3.1.2 Implementation of the Requirements 18

3.2 Requirements

Secondary System Liquid Waste Discharges To Onsite Evaporation Ponds or Circulating Water System - Concentration 26 3.2.1 Surveillance Requirements 26 3.2.2 Implementation of the Requirements 26 4.0 GASEOUS & LIQUID EFFLUENTS - DOSE 31

4.1 Requirements

Noble Gases 31 4.1.1 Surveillance Requirements 31 4.1.2 Implementation of the Requirement: Noble Gas 32

4.2 Requirement

Iodine- 131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days 33 4.2.1 Surveillance Requirements 33 4.2.2 Implementation of the Requirement 34

4.3 Requirements

Gaseous Radwaste Treatment 36 4.3.1 Surveillance Requirements 36 4.3.2 Implementation of the Requirement 37

4.4 Requirements

Liquid Effluents 57 4.4.1 Surveillance Requirements 57 4.4.2 Implementation of the Requirements 57 i ODCM Rev. 24

TABLE OF CONTENTS TITLE PAGE 5.0 TOTAL DOSE AND DOSE TO PUBLIC ONSITE 58

5.1 Requirement

Total Dose 58 5.1.1 Surveillance Requirements 58 5.1.2 Implementation of the Requirement 58 6.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) 62

6.1 Requirement

REMP 62 6.1.1 Surveillance Requirements 63 6.1.2 Implementation of the Requirements 63

6.2 Requirement

Land Use Census 71 6.2.1 Surveillance Requirements 71

.6.2.2 Implementation of the Requirements 71

6.3 Requirement

Interlaboratory Comparison Program 72 6.3.1 Surveillance Requirements 72 6.3.2 Implementation of the Requirements 72 7.0 RADIOLOGICAL REPORTS 83

7.1 Requirement

Annual Radioactive Effluent Release Report 83

7.2 Requirement

Annual Radiological Environmental Operating Report 85 APPENDIX A DETERMINATION OF CONTROLLING LOCATION 86 APPENDIX B BASES FOR REQUIREMENTS 87 2.1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION 87 3.1 GASEOUS EFFLUENT - DOSE RATE 87 3.2 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - CONCENTRATION 88 4.1 GASEOUS EFFLUENT - DOSE, Noble Gases 88 4.2 GASEOUS EFFLUENT - DOSE - Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days89 4.3 GASEOUS RADWASTE TREATMENT 89 4.4 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - DOSE 90 5.1 TOTAL DOSE AND DOSE TO PUBLIC ONSITE 90 6.1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP) 91 6.2 LAND USE CENSUS 91 6.3 INTERLABORATORY COMPARISON PROGRAM 91 APPENDIX C DEFINITIONS 92 APPENDIX D REFERENCES 96 ii ODCM Rev. 24

LIST OF TABLES TABLE TITLE PAGE 1-1 NUISANCE PATHWAYS 3 2-I RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION 6 2-2 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS 10 3-1 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM 20 3-2 DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE SITE BOUNDARY 23 3-3 DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS 24 3-4 Pi VALUES FOR THE INHALATION PATHWAY 25 3-5 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM 27 3-6 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION 30 3-7 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS 30 4-1 Ri DOSE CONVERSION FACTORS FOR THE GROUND PLANE PATHWAY 39 4-2 Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - ADULT RECEPTOR 40 4-3 Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - TEEN RECEPTOR 41 4-4 Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - CHILD RECEPTOR 42 4-5 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - ADULT RECEPTOR 43 4-6 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - TEEN RECEPTOR 44 4-7 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - CHILD RECEPTOR 45 4-8 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - ADULT RECEPTOR 46 4-9 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - TEEN RECEPTOR 47 4-10 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - CHILD RECEPTOR 48 iii ODCM Rev. 24

LIST OF TABLES TABLE TITLE PAGE 4-11 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - INFANT RECEPTOR 49 4-12 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - ADULT RECEPTOR 50 4-13 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - TEEN RECEPTOR 51 4-14 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - CHILD RECEPTOR 52 4-15 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - INFANT RECEPTOR 53 4-16 PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 1  ? 54 4-17 PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 2 55 4-18 PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 3 56 6-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM 64 6-2 REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES 68 6-3 DETECTION CAPABILITIES FOR ENVIRONMIENTAL ANALYSIS 69 6-4 RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS 73 C-1 FREQUENCY NOTATION 95 iv ODCM Rev. 24

LIST OF FIGURES FIGURE TITLE PAGE 6-1 Radiological Environmental Monitoring Program Sample Sites 0 - 10 Miles 77 6-2 Radiological Environmental Monitoring Program Sample Sites 10 - 35 Miles 78 6-3 Radiological Environmental Monitoring Program Sample Sites 35 - 75 Miles DELETED 79 6-4 Site Exclusion Area Boundary DELETED 80 6-5 Gaseous Effluent Release Points 81 6-6 Low Population Zone DELETED 82 V ODCM Rev. 24

1.0 INTRODUCTION

The Offsite Dose Calculation Manual (ODCM) implements the program elements which are required by the Administrative Controls section of the Technical Specifications. The ODCM contains the operational requirements, the surveillance requirements, and actions required if the operational requirements are not met for the Radioactive Effluent Controls Program *and the Radiological Environmental Monitoring Program to assure compliance with 10 CFR 20.1302, 40 CFR Part 190, 10 CFR 50.36a, and Appendix I to 10 CFR Part 50. The Technical Specifications, Section 3.0, also apply to the ODCM. Substitute the word "Requirements" for "Limiting Condition for Operation." It should be noted that the hot and cold shutdown and operability requirements in Technical Specification 3.0.3 and 3.0.4 do not apply to any of the requirements contained in this ODCM. The ODCM also contains descriptions of the information that should be included in the Annual Radiological Environmental Operating Report and the Annual Radioactive Effluent Release Report required by the Technical Specifications.

The ODCM provides the parameters and methodology to be used in calculating offsite doses resulting from radioactive effluents, in the calculation of gaseous effluent monitor Alarm/Trip Setpoints, and in the conduct of the Radiological Environmental Monitoring Program. Included are methods for determining air, whole body, and organ dose at the controlling location due to plant effluents to assure compliance with the regulatory requirements detailed in the ODCM. Methods are included for performing dose projections to assure compliance with the gaseous treatment system operability sections of the ODCM. The ODCM utilizes information from NRC Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," October 1977, and NRC NUREG 0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants,"

October 1978. NUREG 0133 utilizes some of the key information in Regulatory Guide 1.109 to provide methods which were used in the preparation of the radiological effluent Technical Specifications and which have now been transferred to the ODCM in accordance with NRC Generic Letter 89-01, "Implementation of Programmatic Controls for Radiological Effluent Technical Specifications in the Administrative Controls Section of the Technical Specifications and the Relocation of Procedural Details of RETS to the Offsite Dose Calculation Manual or to the Process Control Program," January 31, 1989, and NUREG 1301, "Offsite Dose Calculation Manual Guidance:

Standard Radiological Effluent Controls for Pressurized Water Reactors," Generic Letter 89-01, Supplement No. 1, April 1991. Further guidance for the implementation of the new 10 CFR Part 20, effective January 1, 1994, was obtained from the Federal Register, Vol. 58, December 23, 1993. It is recognized that this is only draft guidance, however, it is the only guidance for referencing the new 10 CFR 20 in the ODCM.

1.1 Liquid Effluent Pathways Dose calculation methodology for radioactive liquid effluents is not included in this manual due to the desert location of the plant, the hydrology of the area, and the fact that there are no liquid releases to areas at or beyond the SITE BOUNDARY during normal operation. All liquid discharges to the onsite evaporation ponds are controlled by Section 3.2. The impact of postulated accidental seepages on the groundwater system, and in particular on the existing wells located in the 5-mile zone around the site area has been calculated and analyzed in Section 2.4.13.3 of the PVNGS FSAR.

If plant operating conditions become such that the likelihood of a liquid effluent pathway is created, then dose calculation methodology for this pathway will be added to this manual.

I ODCM Rev. 24

1.2 Gaseous Effluent Pathways All gaseous effluents are treated as ground level releases and are considered to be "long-term" as discussed in NUREG-0133, "Preparation ofRadiological Effluent Technical Specifications for Nuclear Power Plants." This includes the containment purge and Waste Gas Decay Tank releases as well as the normal ventilation system and condenser vacuum exhaust releases. All releases are either greater than 500 hours0.00579 days <br />0.139 hours <br />8.267196e-4 weeks <br />1.9025e-4 months <br /> in duration or are made at random, not depending upon atmospheric conditions or time of day. The releases are lumped together and calculated as an entity. Historical annual average X/Q values are used throughout this manual for all gaseous effluent setpoint and dose calculations. Airborne releases are further subdivided into two subclasses:

1.2.1 Iodine-131, Iodine-133, Tritium and Radionuclides in Particulate Form with Half-lives Greater than Eight Days In this model, a controlling location is identified for assessing the maximum exposure to a MEMBER OF THE PUBLIC for the various pathways and to critical organs. Infant exposure occurs through inhalation and any actual milk pathway. Child, teenager and adult exposure derives from inhalation, consumed vegetation pathways, and any actual milk and meat pathways. Dose to each of the seven organs listed in Regulatory Guide 1.109 (bone, liver, total body, thyroid, kidney, lung and GI-LLI) are computed from individual nuclide contributions in each sector. The largest of the organ doses in any sector is compared to 10 CFR 50, Appendix I design objectives. The release rates of these nuclides will be converted to instantaneous dose rates for comparison to the limits of 10 CFR 20.

1.2.2 Noble Gases The air dose from both the beta and gamma radiation component of the noble gases will be assessed and compared to the 10 CFR 50, Appendix I design objectives. The noble gas release rate will be converted to instantaneous dose rates for comparison to the limits of 10 CFR 20.

Section 2.0 of this manual discusses the methodology to be used in determining effluent monitor alarm/trip setpoints to assure compliance with the 10 CFR Part 20 limits as implemented in Section 3.0. Section 4.0 discusses the methods to assure releases are As Low As Reasonably Achievable (ALARA) in accordance with Appendix I to 10 CFR Part 50.

Methods are described in Section 5.0 for determining the annual cumulative dose to a MEMBER OF THE PUBLIC from gaseous effluents and direct radiation to assure compliance with 40 CFR Part 190.

The requirements for the Annual Radiological Effluent Release Report and the Radiological Environmental Monitoring Program, including the Annual Land Use Census and the Interlaboratory Comparison Program, and the Annual Environmental Report are described in Sections 6.0 and 7.0 of this manual.

1.3 Nuisance Pathways This section addresses the potential release pathways which should not contribute more than 10% of the doses evaluated in this manual. Table 1-1 lists examples of potential release pathways. The ODCM methodology for calculation of doses will be applied to an applicable release pathway if a likely potential arises for contributing more than 10% of the doses evaluated in this manual.

2 ODCM Rev. 24

TABLE 1-1 NUISANCE PATHWAYS (EXAMPLES)

Evaporation Pond Cooling Towers Laundry/Decon Building Exhaust Unmonitored Secondary System Steam Vents/Reliefs Turbine Building Ventilation Exhaust Unmonitored Tank Atmospheric Vents Dry Active Waste Processing and Storage (DAWPS) Building Respirator Cleaning Facility Secondary Side Decontamination Equipment Low Level Radioactive Material Storage Facility 3 ODCM Rev. 24

1.4 Meteorology Historical annual average atmospheric dispersion (X/Q) and deposition (D/Q) data, based on nine years of meteorological data, and given in Table 3-2 for each of the three nuclear generating units are used to demonstrate compliance with the ODCM Requirements. These Requirements include:

Section 2.0 Gaseous Effluent Monitor Setpoints; Section 3.0 Gaseous and Liquid Effluent - Dose Rate Section 4.0 Gaseous and Liquid Effluent - Dose Section 5.0 Total Dose and Dose to Public Onsite Sections 2.0 and 3.0 specify utilizing the highest X/Q or D/Q meteorological dispersion parameter at the Site Boundary for any of the three units as applicable. Using the highest dispersion parameter for any of the units provides a conservative assumption to assure compliance with the higher 10 CFR Part 20 limits.

Section 4.0 specifies utilizing the highest X/Q at the Site Boundary for the particular unit, from Table 3-2 for noble gases. The highest X/Q and D/Q are utilized for the particular unit's releases as applicable for gases other than noble gases (iodines, particulates, and tritium) for the controlling pathway's location (site boundary using Table 3-2 or other controlling locations using Table 4-16, 4-17, or 4-18).

Section 5.0 specifies utilizing the highest X/Q for the particular unit's releases at the controlling location from Table 4-16, 4-17, or 4-18, for noble gases. The highest X/Q and D/Q are utilized for the particular unit's releases as applicable for gases other than noble gases at the controlling pathway's location using Table 4-16, 4-17, or 4-18.

Section 7.0 requires that the meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses.

4 ODCM Rev. 24

2.0 GASEOUS EFFLUENT MONITOR SETPOINTS

2.1 Requirements

Gaseous Monitors The radioactive gaseous effluent monitoring instrumentation channels shown in Table 2-1 shall be OPERABLE with their alarm/trip setpoints set to ensure that the dose requirements in Section 3.0 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in Section 2.1.2.

Applicability:- As shown in Table 2-1.

Action:

a. With the low range radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Requirement, immediately suspend the release of radioactive gaseous effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.
b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 2-1. Restore the inoperable instrumentation to OPERABLE status within 30 days or, if unsuccessful, explain in the next Annual Radioactive Effluent Release Report why this inoperability was not corrected within the time specified.

2.1.1 Surveillance Requirements

a. Each radioactive gaseous effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 2-2.

5 ODCM Rev. 24

TABLE 2-1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION MINIMUM CHANNELS INSTRUMENT OPERABLE APPLICABILITY ACTION

1. GASEOUS RADWASTE SYSTEM
a. Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release #RU-12 1 35
b. Flow Rate Monitor 1 36
2. NOT USED
3. DELETED
4. PLANT VENT SYSTEM A. Low Range Monitors
a. Noble Gas Activity Monitor #RU-143 1
  • 37
b. Iodine Sampler 1
  • 40
c. Particulate Sampler 1
  • 40
d. Flow Rate Monitor 1
  • 36
e. Sampler Flow Rate Measuring Device 1
  • 36 B. High Range Monitors
a. Noble Gas Activity Monitor #RU-144 1
  • 42"
b. Iodine Sampler 1
  • 42 0 1
c. Particulate Sampler
  • 42
d. Sampler Flow Rate Measuring Device 1
  • 42

TABLE 2-1 (Continued)

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION MINIMUM CHANNELS INSTRUMENT OPERABLE APPLICABILITY ACTION

5. FUEL BUILDING VENTILATION SYSTEM A. Low Range Monitors
a. Noble Gas Activity Monitor #RU- 145 37,41
b. Iodine Sampler 40
c. Particulate Sample 40
d. Flow Rate Monitor 36
e. Sampler Flow Rate Measuring Device 36 B. High Range Monitors
a. Noble Gas Activity Monitor #RU-146 42
b. Iodine Sampler 42
c. Particulate Sample 42
d. Sampler Flow Rate Measuring Device 42 0

(D

Table 2-1 (Continued)

TABLE NOTATION

  • At all times.
    • During GASEOUS RADWASTE SYSTEM operation
      • Whenever the condenser air removal system is in operation, or whenever turbine glands are being supplied with steam from sources other than the auxiliary boiler(s).
  1. During waste gas release.
    1. In MODES 1, 2, 3, and 4 or when irradiated fuel is in the fuel storage pool.

ACTION 35 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, the contents of the tank(s) may be releAsed to the environment provided that prior to initiating the release:

a. At least two independent samples of the tanks contents are analyzed, and
b. At least two technically qualified members of the facility staff independently verify the release rate calculations and discharge valve lineup; Otherwise, suspend release of radioactive effluents via this pathway.

ACTION 36 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the flow rate is estimated at least once per 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

ACTION 37 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the actions of (a) or (b) or (c) are performed:

a. Initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter(s).
b. Place moveable air monitors in-line.
c. Either take grab samples at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, OR obtain gas channel monitor readings locally at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> if the channel is functional locally but inoperable due to loss of communication with the minicomputer. The surveillance requirements of Section 2.1.1 must be performed at the required frequencies for the channel to be functional locally.

ACTION 38 - NOT USED ACTION 39 - NOT USED ACTION 40 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the effected pathway may continue provided samples are continuously collected with auxiliary sampling equipment as required in Table 3-1 within one hour after the channel has been declared inoperable.

ACTION 41 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirements, comply with Technical Requirements Manual TLCO 3.3.108.

8 ODCM Rev. 24

Table 2-1 (Continued)

TABLE NOTATION ACTION 42 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement restore the channel to OPERABLE status within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or:

a. Initiate the Preplanned Alternate Sampling Program to monitor the appropriate parameter(s) when it is needed.
b. Prepare and submit a Special Report to the Commission within 30 days following the event outlining the action(s) taken, the cause of the inoperability, and the plans and schedule for restoring the system to OPERABLE status.

9 ODCM Rev. 24

TABLE 2-2 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS CHANNEL MODE IN WHICH CHANNEL SOURCE CHANNEL FUNCTIONAL SURVEILLANCE INSTRUMENT CHECK CHECK CALIBRATION TEST IS REQUIRED

1. GASEOUS RADWASTE SYSTEM
a. Noble Gas Activity Monitor - Providing Alarm and Automatic Termination of Release RU-12 P P(7) R(3) Q(1),(2),P### #
b. Flow Rate Monitor P N.A. R Q,P### #
2. DELETED
3. DELETED
4. PLANT VENT SYSTEM (RU-143 and RU-144)
a. Noble Gas Activity Monitor D(5) R(3)
  • M(7) Q(2)
b. Iodine Sampler N.A. N.A. N.A. N.A. *
c. Particulate Sampler N.A. N.A. N.A. N.A. *
d. Flow Rate Monitor D(6) R
  • N.A. Q
e. Sampler Flow Rate Measuring Device R
  • D(6) N.A. Q
5. FUEL BUILDING VENTILATION SYSTEM (RU-145 and RU-146)
a. Noble Gas Activity Monitor D(5) M(7) R(3) Q(2)
b. Iodine Sampler N.A. N.A. N.A. N.A.

0 c. Particulate Sample N.A. N.A. N.A. N.A. ##*

d. Flow Rate Monitor D(6) R ##*

N.A. Q

e. Sampler Flow Rate Measuring Device D(6) N.A. R Q

Table 2-2 (Continued)

TABLE NOTATION

  • At all times.
    • During GASEOUS RADWASTE SYSTEM operation
      • Whenever the condenser air removal system is in operation, or whenever turbine glands are being supplied with steam from sources other than the auxiliary boiler(s).
  1. During waste gas release.
    1. In MODES 1, 2, 3, and 4 or when irradiated fuel is in the fuel storage pool.
      1. Functional test should consist of, but not be limited to, a verification of system isolation capability by the insertion of a simulated alarm condition.

(1) The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway occurs if the instrument indicates measured levels above the alarm/trip setpoint.

(2) The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:

1. Instrument indicates measured levels above the alarm setpoint.
2. Circuit failure.
3. Instrument indicates a downscale failure.
4. Instrument controls not set in operate mode.

(3) The initial CHANNEL CALIBRATION shall be performed using one or more of the reference standards certified by the National Institute of Standards and Technology (NIST) or using standards that have been obtained from suppliers that participate in measurement assurance activities with NIST. These standards shall permit calibrating the system over its intended range of energy and measurement range. For subsequent CHANNEL CALIBRATION, sources that have been related to the initial calibration may be used in lieu of the reference standards associated with the initial calibration.

(4) NOT USED (5) The channel check for channels in standby status shall consist of verification that the channel is on-line and reachable.

(6) Daily channel check not required for flow monitors in standby status.

(7) LED may be utilized as the check source in lieu of a source of increased activity.

I1I ODCM Rev. 24

2.1.2 Implementation of the Requirements The general methodology for establishing low range gaseous effluent monitor setpoints is based upon a site release rate limit in gCi/sec derived from site specific meteorological dispersion conditions, radioisotopic distribution, and whole body and skin dose factors. The high alarm of the low range monitors will alarm/trip when the release rate from an individual vent will result in exceeding the limits in Section 3.1. 80% of Section 3.1 limits is considered to be the site release rate limit. The site release rate limit will be allocated among the licensed units' release points. The unit release rate limit will then be utilized for the determination of gaseous effluent monitor setpoints. A fraction of the unit release rate limit is then allotted to each release point and its monitor alert setpoint (4Ci/cc) is derived using actual or fan design flow rates.

Administrative values are used to reduce each setpoint to account for the potential activity in other releases. These administrative values shall be reviewed based on actual release data.

For the purpose of implementation of Section 2.1, the alarm setpoint levels for low range effluent noble gas monitors are established to ensure that personnel are alerted when the noble gas releases are at a rate such that if the releases would continue for the year they would approach the total body dose rate of 500 mrem/yr and 3000 mrem/yr skin dose in Section 3.1.

The equations in Section 3.1 of this manual provide the methodology for calculating the gaseous effluent dose rate.

The evaluation of doses due to releases of radioactive material can be simplified by the use of equivalent dose factors as defined in Section 2.1.2.1.

The equivalent dose factors will be evaluated periodically to assure that the best information on isotopic distribution is being used for the dose equivalent value.

12 ODCM Rev. 24

2.1.2.1 Equivalent Dose Factor Determination The equivalent whole body dose factor is calculated as follows:

Keq = Zi[(Ki)(fi)] (2-1)

Where:

Keq = the equivalent whole body dose factor weighted by historical radionuclide distribution in releases in mrem/yr per pCi/rn3 .

Ki = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per gtCi/m 3 from Table 3-3.

fi -= the fraction of noble gas radionuclide i in the total noble gas radionuclide mix.

The equivalent skin dose factor is calculated as follows:

(L + 1.1M)eq = Zji(Li + 1.1Mi)(fi)] (2-2)

Where:

(L+l.lM)eq = the equivalent skin dose factor due to beta and gamma emissions from all noble gases released, weighted by the historical radionuclide distribution in releases in mrem/yr per liCi/m3 .

Li = the skin dose factor due to the beta emissions for each identified noble gas radionuclide i, in mrem/yr per jiCi/m 3 from Table 3-3.

Mi= the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per gCi/m 3 from Table 3-3.

fi= the fraction of noble gas radionuclide i in the total noble gas radionuclide mix.

1.1 = unit conversion constant of 1.1 mrem/mrad converts air dose to skin dose.

13 ODCM Rev. 24

2.1.2.2 Site Release Rate Limit (QsITE)

The release rates corresponding to 80% of the whole body (QwB) and skin (QSK) dose rate limits are calculated using the equivalent dose factors defined in Section 2.1.2.1.

The site release rate limit (QSITE) is the lower of QWB or QSK, thus assuring that the more restrictive dose rate limit will not be exceeded.

The QSITE is established as follows:

(DwB)(0.8)(23 QSITEWB = (2-3)

(Keq)(X/Q)sITE Where:

QSITE,WB the site release rate, in itCi/sec, that would deliver a dose rate 80% of the whole body dose rate limit, DWB.

DWB = whole body dose rate limit of 500 mrem/yr.

Keq = equivalent whole body dose factor, in mrem/yr per ltCi/m 3 weighted by the historical radionuclide distribution.

(X/Q)SITE 8.9 1E-06, the highest calculated annual average dispersion parameter, in sec/m 3, at the Site Boundary for any of the 3 units, from Table 3-2.

0.8 = administrative factor to compensate for any unexpected variability in the radionuclide mix and to ensure that Site Boundary dose rate limits will not be exceeded.

(DsK)(0' 8 ) (2-4)

QSITE,SK = (L + 1.1 M)eq(X/Q)sITE Where:

QSITE,SK = the site release rate limit, in ltCi/sec, that would deliver a dose rate 80% of the skin dose rate limit, DSK.

DSK = skin dose rate limit of 3000 mrem/yr.

(L+1. lM)eq = equivalent skin dose factor, in mrem/yr per LCi/m 3 , weighted by the radionuclide distribution.

(X/Q)SITE = 8.91E-06, the highest calculated annual average dispersion parameter, in sec/m 3 , at the Site Boundary for any of the three units, from Table 3-2.

0.8 administrative factor to compensate for any unexpected variability in the radionuclide mix and to ensure that Site Boundary dose rate limits will not be exceeded.

After determination of the QSITE whole body and skin dose rates (equations 2-3 and 2-4, respectively), the most conservative result will be used as QSITE, the site release rate limit.

14 ODCM Rev. 24

2.1.2.3 Unit Release Rate Limits (QUNIT)

Typically QSITE will be divided equally among operating units. If operational history dictates a larger fraction of the QSITE be assigned to a specific unit then a weighted average of each unit's contribution to the QSITE will be utilized to determine the QUNIT" QUNIT = (fUNIT) (QSITE) (2-5)

Where:

QUNIT = unit release rate limit, in itCi/sec.

fUNIT = the fraction (< 1) of noble gas historically released from a specific operating unit to the total of all noble gas released from the site.

QSITE = the site release rate limit, in liCi/sec determined in Section 2.1.2.2.

2.1.2.4 Setpoint Determination To comply with the requirements in Section 2.1, the alarm/trip setpoints can now be established using the unit release rate limit (QUNIT) to ensure that the noble gas releases do not exceed the dose rate limits.

To allow for multiple sources of releases from different or common release points, the effluent monitor setpoint includes an administrative factor which allocates a percentage of the unit release rate limit to each of the release sources. Monitor setpoints will also be adjusted in accordance with Nuclear Administrative and Technical Manual procedures to account for monitor-specific characteristics.

Monitors RU-143 and RU-145 The alarm/trip setpoint for Monitors RU-143 and RU-145 is calculated as follows:

Monitor (QUNIT)(a)

Setpoint (472)(Flow Rate)

Where:

Monitor Setpoint = the setpoint for the effluent monitor, in ltCi/cc, which provides a safe margin of assurance that the allowable dose rate limits will not be exceeded.

QUNIT = unit release rate limit, in [tCi/sec, as determined in Section 2.1.2.3.

Flow Rate = the flow rate, in cfm, from flow rate monitors or the fan design flow rate for the release source under consideration.

472 = conversion factor, cubic centimeter/second per cubic feet/minute.

a = fraction of QUNIT allocated for a specific release point. The sum of these administrative values shall be less than or equal to one.

15 ODCM Rev. 24

Monitor RU-12 The alarm/trip setpoint for Monitor RU-12, the Waste Gas Decay Tank Monitor, is calculated as follows:

Monitor [(QUNIT)(a)(0. 9 )-- (H)(PF)(472)]

setpoint (Flow Rate)(472)

Where:

Monitor Setpoint = the setpoint for the monitor, in 4tCi/cc at STP, which provides a safe margin of assurance that the allowable dose rate limits will not be exceeded.

QUNIT = unit release rate limit, in iiCi/sec, as determined in Section 2.1.2.3.

Flow Rate = flow rate, in cfm at STP at which the tank will be released.

PF = the current process flow of the plant vent in CFM.

H = the current plant vent monitor concentration in ltCi/cc.

a = fraction of QUNIT allocated for a specific release point. This administrative value should be equal to or less than the administrative value used for the Plant Vent.

0.9 = an administrative value to account for potential increases in activity from other contributors to the same release point.

472 = conversion factor, cubic centimeter/second per cubic feet/minute.

If there is no release associated with this monitor, the monitor setpoint should be established as close as practical to background to prevent spurious alarms, and yet assure an alarm should an inadvertent release occur.

2.1.2.5 Monitor Calibration The Radiation Level Conversion Factor (RLF) for each monitor is entered into the Radiation Monitoring System Database and may change whenever the monitor is calibrated. Calibration is performed in accordance with Nuclear Administrative and Technical Manual procedures.

16 ODCM Rev. 24

3.0 GASEOUS AND LIQUID EFFLUENT DOSE RATES

3.1 Requirements

Gaseous Effluents The dose rate due to radioactive materials released in gaseous effluents from the site (see Figure 6-4 and Figure 6-5) shall be limited to the following:

a. For noble gases: Less than or equal to 500 mrems/yr to the total body and less than or equal to 3000 mrems/yr to the skin, and
b. For 1-131 and 1-133, for tritium, and for all radionuclides in particulate form with half-lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

Applicability: At all times.

Action:

With the dose rate(s) exceeding the above limits, immediately decrease the release rate to within the above limits(s).

3.1.1 Surveillance Requirements

a. The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methods contained in Section 3.1.2.
b. The dose rate due to 1-131, 1-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methods contained in Section 3.1.2 by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified in Table 3-1.

17 ODCM Rev. 24

3.1.2 Implementation of the Requirements Noble Gases Noble gas activity monitor setpoints are established at release rates which permit corrective action to be taken before exceeding the 10 CFR 20 annual dose limits as described in Section 2.0. The requirements for sampling and analysis of continuous and batch effluent releases are given in Table 3-1. The methods for sampling and analysis of continuous and batch effluent releases are given in the Nuclear Administrative and Technical Manual procedures. The dose rate in unrestricted areas shall be determined using the following equations.

For whole body dose rate:

DWB = Zi[(Ki)(X/Q)sITE(Qi)] (3-1)

For skin dose rate:

DSK = Zi[(Li + l.lMi)(X/Q)sITE(Qi)] (3-2)

Where:

Ki = the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per jtCi/m 3 from Table 3-3.

Qi = the release rate of radionuclide i, in ltCi/sec.

(X/Q)SITE = 8.91E-06, the highest calculated annual average dispersion parameter, in sec/m 3, for any of the three units, from Table 3-2.

DWB = the annual whole body dose rate (mrem/yr.).

Li = the skin dose factor due to the beta emissions for each identified noble gas radionuclide i, in mrem/yr per l[Ci/m 3 from Table 3-3.

Mi = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per lLCi/m 3 from Table 3-3.

DSK = the annual skin dose rate (mrem/yr).

1.1 = unit conversion constant of 1.1 mrem/mrad converts air dose to skin dose.

18 ODCM Rev. 24

1-131.1-133. tritium and radionuclides in particulate form with half-lives greater than 8 days The methods for sampling and analysis of continuous and batch releases for 1-131, 1-133, tritium and radionuclides in particulate form with half-lives greater than 8 days, are given in the applicable Nuclear Administrative and Technical Manual procedures. Additional monthly and quarterly analyses shall be performed in accordance with Table 3-1. The total organ dose rate in unrestricted areas shall be determined by the following equation:

Do= [Ei(Pi)(X/Q)sITE(Qi)] (3-3)

Where:

Pi = the dose factor, in mrem/yr per ptCi/m 3 , for radionuclide i, for the inhalation pathway, from Table 3-4.

(X/Q)SITE = 8.91E-06, the highest calculated annual average dispersion parameter, in sec/m 3 , at the Site Boundary, for any of the three units, Q = the release rate of radionuclide i, in 1.tCi/sec DO = the total organ dose rate (mrem/yr).

19 ODCM Rev. 24

TABLE 3-1 RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM MINIMUM LOWER LIMIT SAMPLING ANALYSIS TYPE OF OF DETECTION GASEOUS RELEASE TYPE FREQUENCY FREQUENCY ACTIVITY ANALYSIS (LLD) (p.Ci/ml)a A. Waste Gas Storage P P Principal Gamma 1.OE-04 Each Tank Grab Each Tank Emittersg Sample B. Containment Purge P P Principal Gamma 1.OE-04 Each Purgeb'c Each Purgeb'c Emittersg Grab Sample H-3 H-3I1.0E-06 C. 1. DELETED Mbe Mb Principal Gamma 1.OE-04

2. Plant Vent Grab Sample Emittersg
3. Fuel Bldg. Exhaust H-3 1OE-06 Continuousf 4/Md 1-131 1.OE-12 Charcoal Sample 1-133 1.OE-10 Continuousf 4 /Md Principal Gamma 1.OE- 11 Particulate Emittersg Sample (1-131, Others)

Continuousf M Gross Alpha 1.OE- 11 Composite Particulate Sample Continuousf Q Sr-89, Sr-90 1.OE-11 Composite Particulate Sample D. All Radwaste Types as Continuousf Noble Gas Noble Gases Gross Beta 1.OE-06 listed in A., B., and C., Monitor or Gamma above.

20 ODCM Rev. 24

Table 3-1 (Continued)

TABLE NOTATION a The LLD is the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a real signal.

For a particular measurement system (which may include radiochemical separation):

LLD = 4.66 Sb E

  • V
  • 2.22E6
  • Y
  • exp(-XAt)

Where:

LLD is the a priori lower limit of detection as defined above (as tCi per unit mass or volume). Current literature defines the LLD as the detection capability for the instrumentation only and the MDC minimum detectable concentration, as the detection capability for a given instrument, procedure and type of sample.

sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting &fficiency (as counts per transformation),

V is the sample size (in units of mass or volume),

2.221E6 is the number of transformations per minute per microcurie, Y is the fractional radiochemical yield (when applicable),

X is the radioactive decay constant for the particular radionuclide, and At is the elapsed time between the midpoint of sample collection and time of counting (for plant effluents, not environmental samples).

The value of sb used in the calculation of the LLD for a detection system shall be based on the actual observed variance of the background counting rate or of the counting rate of the blank samples (as appropriate) rather than on an unverified theoretically predicted variance. In calculating the LLD for a radionuclide determined by gamma-ray spectrometry the background should include the typical contributions of other radionuclides normally present in the samples. Typical values of E, V, Y, and At should be used in the calculation.

It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement.

21 ODCM Rev. 24

Table 3-1 (Continued)

TABLE NOTATION b Analyses shall also be performed following SHUTDOWN, STARTUP, or a THERMAL POWER change exceeding 15% of the RATED THERMAL POWER within a 1-hour period if 1) analysis shows that the DOSE EQUIVALENT l-131 concentration in the primary coolant has increased more than a factor of 3; and 2) the noble gas activity monitor on the plant vent shows that effluent activity has increased by more than a factor of 3. If the associated noble gas vent monitor is inoperable, samples must be obtained as soon as possible. Analyses shall be performed within a four-hour period. This requirement does not apply to the Fuel Building Exhaust.

c Sampling and analyses shall also be performed at least once per 31 days when purging time exceeds 30 days continuous.

d Samples shall be changed at least 4 times a month and analyses shall be completed within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> after changing (or after removal from sampler). When samples collected for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> are analyzed, the corresponding LLDs may be increased by a factor of 10.

e Tritium grab samples shall be taken at least monthly from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool.

f The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance With Requirements 3.1, 4.1 and 4.2 of the ODCM.

g The principal gamma emitters for which the LLD specification applies include the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, Ce-141 and Ce-144 for particulate emissions. This list does not mean that only these nuclides are to be detected and reported. Other peaks which are measurable and identifiable, together with the above nuclides shall also be identified and reported in the Annual Radioactive Effluent Release Report.

22 ODCM Rev. 24

TABLE 3-2 DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE SITE BOUNDARY UNIT 1 UNIT 2 UNIT 3 DISTANCE X/Q D/Q DISTANCE X/Q D/Q DISTANCE X/Q D/Q DIRECTION (METERS) (SEC/m 3) (m"2) (METERS) (SEC/m3 ) (M-2) (METERS) (SEC/m 3) (m"2)

N 1037 4.93E-06 9.24E-09 1318 3.85E-06 6.17E-09 1661 3.54E-06 4.86E-09 NNE 1057 4.14E-06 1.19E-08 1342 3.18E-06 7.93E-09 1693 2.86E-06 6.23E-09 NE 2206 2.84E-06 6.84E-09 2545 2.42E-06 5.34E-09 2756 2.21E-06 4.65E-09 ENE 1967 2.5 1E-06 4.43E-09 2206 2.22E-06 3.64E-09 2337 2.08E-06 3.30E-09 E 1927 2.56E-06 3.24E-09 2163 2.27E-06 2.66E-09 2290 2.14E-06 2.4 1E-09 ESE 1967 2.61E-06 2.46E-09 2067 2.32E-06 2.11E-09 2023 2.37E-06 2. 1OE-09 SE 2049 3.56E-06 2.36E-09 2101 3.47E-06 2.26E-09 2256 3.24E-06 2.OOE-09 SSE 2730 3.80E-06 1.58E-09 3026 3.43E-06 1.32E-09 2786 3.72E-06 1.52E-09 S 3006 5.07E-06 1.78E-09 2699 5.16E-06 1.97E-09 2346 5.90E-06 2.51 E-09 SSW 2258 6.52E-06 3.20E-09 1836 7.90E-06 4.56E-09 1607 8.91E-06 5.73E-09 SW 1487 7.47E-06 5.65E-09 1208 7.72E-06 6.88E-09 1057 8.68E-06 8.6 1E-09 WSW 1251 4.52E-06 5.93E-09 1014 5.55E-06 8.44E-09 889 5.34E-06 8.83E-09 W 1225 4.73E-06 9.49E-09 993 5.86E-06 1.34E-08 871 6.72E-06 1.67E-08 WNW 1244 3.76E-06 6.76E-09 1010 4.67E-06 9.60E-09 885 5.37E-06 1.19E-08 NW 1254 3.43E-06 5.87E-09 1191 3.62E-06 6.40E-09 1045 4.17E-06 7.98E-09 NNW 1069 3.70E-06 7.26E-09 1342 2.85E-06 4.87E-09 1561 2.93E-06 4.58E-09 0

Reference:

Distances are from the PVNGS ER-OL, Table 2.3-33. Dispersion and Deposition parameters are from a September, 1985, calculation by NUS Corporation based on 9 years of meteorological data; NUS Corporation letter NUS-ANPP-1386, dated October 4, 1985.

t'Q

TABLE 3-3 DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS Whole Body Skin Gamma Air Dose Factor Dose Factor Dose Factor Beta Air Dose Li Mi Factor Ni mrem-m 3

mrem-m 3 mrad-m 3 mrad-m 3

yr-ýiCi yr-ýtCi yr-ýtCi yr-ýtCi Radionuclide Kr-83m 7.56E-02 1.93E+01 2.88E+02 Kr-85m 1.17E+03 1.46E+03 1.23E+03 1.97E+03 Kr-85 1.61E+01 1.34E+03 1.72E+01 1.95E+03 Kr-87 5.92E+03 9.73E+03 6.17E+03 1.03E+04 Kr-88 1.47E+04 2.37E+03 1.52E+04 2.93E+03 Kr-89 1.66E+04 1.01E+04 1.73E+04 1.06E+04 Kr-90 1.56E+04 7.29E+03 1.63E+04 7.83E+03 Xe-131m 9.15E+01 4.76E+02 1.56E+02 1.I1E+03 Xe-133m 2.5 1E+02 9.94E+02 3.27E+02 1.48E+03 Xe-133 2.94E+02 3.06E+02 3.53E+02 1.05E+03 Xe-135m 3.12E+03 7.11E+02 3.36E+03 7.39E+02 Xe-135 1.81E+03 1.86E+03 1.92E+03 2.46E+03 Xe- 137 1.42E+03 1.22E+04 1.51E+03 1.27E+04 Xe-138* 8.83E+03 4.13E+03 9.21E+03 4.75E+03 Ar-41 8.84E+03 2.69E+03 9.30E+03 3.28E+03

Reference:

Regulatory Guide 1.109, Table B-1.

24 ODCM Rev. 24

TABLE 3-4 Pi VALUES FOR THE INHALATION PATHWAY (mrem/yr/ýCi/m 3)

NUCLIDE Age Group Organ Pi H-3 TEEN LIVER 1.27E+03 CR-51 TEEN LUNG 2.1OE+04 MN-54 TEEN LUNG 1.98E+06 FE-59 TEEN LUNG 1.53E+06 CO-58 TEEN LUNG 1.34E+06 CO-60 TEEN LUNG 8.72E+06 ZN-65 TEEN LUNG 1.24E+06 SR-89 TEEN LUNG 2.42E+06 SR-90 TEEN BONE 1.08E+08 ZR-95 TEEN LUNG 2.69E+06 SB- 124 TEEN LUNG 3.85E+06 1-131 CHILD THYROID 1.62E+07 1-133 CHILD THYROID 3.85E+06 CS-134 TEEN LIVER 1.13E+06 CS-137 CHILD BONE 9.07E+05 BA-140 TEEN LUNG 2.03E+06 CE-141 TEEN LUNG 6.14E+05 CE-144 TEEN LUNG 1.34E+07 25 ODCM Rev. 24

3.2 Requirements

Secondary System Liquid Waste Discharges To Onsite Evaporation Ponds or Circulating Water System - Concentration The concentration of radioactive material discharged from secondary system liquid waste to the circulating water system shall be limited to:

5.OE-07 jiCi/ml for the principal gamma emitters (except Ce-144) 3.OE-06 lICi/ml for Ce-144 1.OE-06 [tCi/ml for 1-131 1.OE-03 jtCi/ml for H-3 The concentration of radioactive material discharged from secondary system liquid waste to the onsite evaporation ponds shall be limited to:

2.OE-06 ptCi/ml for Cs- 134 2.0E-06 ItCi/ml for Cs- 137 The concentrations specified in 10 CFR Part 20.1001-20.2402, Appendix B, Table 2, Column 2, for all other isotopes Applicability: - At all times.

Action:

When any secondary system liquid waste discharge pathway concentration determined in accordance with the surveillance requirements given below exceeds the above Requirements, divert that discharge pathway to the liquid radwaste system without delay or terminate the discharge.

3.2.1 Surveillance Requirements

a. Secondary system liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 3-5.

3.2.2 Implementation of the Requirements This requirement is implemented by Nuclear Administrative and Technical Manual procedures.

26 ODCM Rev. 24

TABLE 3-5 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM Lower Limit Of Detection Secondary System Liquid Release Sampling & Type Of (LLD)a Pathway Destination Analysis Frequency Notes Activity Analysis ([ICi/ml)

Chemical Waste Neutralizer Retention Tank P Each Batch Principal Gamma Emittersc 5.OE-07 Tank (CWNT)b liquid radwaste N. A;- '" 1-131 1.OE-06

- IH-3 1.OE-05

2. Steam Generator Blowdown circ. water P Each Batch I Principal Gamma Emittersc 5.OE-07 Low TDS Sumpb CWNT -N. A.: 1-131 1.OE-06 H-3 1.OE-05
3. Condensate
a. Condensate Polishing Low circ. water P Each Batch 3 Principal Gamma Emittersc 5.OE-07 TDS Sumpb CWNT "N. A . 1-131 1.OE-06 1H-3 1.OE-05
b. Initial Backwash (low TDS sump) to P Each Discharge Principal Gamma Emittersc 5.OE-07 circ. water 1-131 1.OE-06 (low TDS sump) to N. A. H-3 1.0E-05 CWNT
c. Pre-service rinse effluent Retention Tank P Each Discharge 2 Principal Gamma Emittersc 5.OE-07 through SC-N-V069 1-131 1.OE-06 condenser through .N. A. H-3 1.0E-05 SC-N-UV232 .
d. Overboard condensate circ water through P Each Discharge Principal Gamma Emittersc 5.OE-07 CD-N-V194 1-131 1.OE-06 Retention Tank P Each Discharge 2 H-3 1.0E-05 through SC-N-V079 0 4. Turbine Building Sump' Retention Tank D Grab Sample 3 Principal Gamma Emittersc 5.OE-07 CWNT N. A.- 1-131 1.OE-06 1H-3 1.OE-05 ci i'J

TABLE 3-5 RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM Lower Limit Of Detection Secondary System Liquid Release Sampling & Type Of (LLD)a Pathway Destination Analysis Frequency Notes Activity Analysis (jICi/ml)

5. North & South Condenser Area Retention Tank D Grab Sample 3 Principal Gamma Emittersc 5.OE-07 Sumpsd CWNT N.A. 1-131 1.OE-06 H-3 1.OE-05
6. Steam Generator Blowdown to Retention Tank P Each Discharge 2 Principal Gamma EmittersC 5.OE-07 Retention Tank through SC-N-V064 1-131 1.OE-06 H-3 1.OE-05
7. Retention Tank to Evaporation evaporation pond P Each Batch Principal Gamma Emitters' 5.OE-07 Pond 1-131 1.OE-06 H-3 1.OE-05 00 I Sampling and analysis are required only when concentration for chemical waste neutralizer tank or steam generator activity exceeds the requirement 2 RU-200 shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION, and CHANNEL FUNCTIONAL TEST at the frequencies shown in Table 3-6. The Alarm/Trip setpoints for RU-200 are set to ensure that the concentrations in the Retention Tanks do not exceed the Requirement 3 Sampling and analysis are required only when concentration for chemical waste neutralizer tank or condensate activity exceeds the requirement 0

CD.

Table 3-5 (Continued)

TABLE NOTATION a The LLD is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system which may include radiochemical separation:

LLD -4.66 sb E

  • V
  • 2.22E6
  • Y
  • exp(-XAt)

Where:

LLD is the "a priori" lower limit of detection as defined above as microcuries per unit mass or volume, sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate as counts per minute, E is the counting efficiency as counts per disintegration, V is the sample size in units of mass or volume, 2.22E6 is the number of disintegrations per minute per microcurie, Y is the fractional radiochemical yield when applicable, k is the radioactive decay constant for the particular radionuclide, and At is the elapsed time between midpoint of sample collection and time of counting.

Typical values of E, V, Y, and At should be used in the calculation.

It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement.

b A batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling.

c The principal gamma emitters for which the LLD specification applies include the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Mo-99, Cs-134, Cs-137, and Ce-141. Ce-144 shall also be measured, but with an LLD of 3.OE-06. This list does not mean that only these nuclides are to be considered. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radioactive Effluent Release Report.

d A continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release 29 ODCM Rev. 24

TABLE 3-6 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION Channel Mode in which Channel Source Channel Functional Surveillance is Instrument Check Check Calibration Test Required RU-200 P N.A. R Q See Table 3-7 TABLE 3-7 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS Mode in which Surveillance Secondary System Liquid Release Pathway is Required Action if RU-200 is inoperable Obtain grab sample at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and analyze in accordance Pre-service rinse to Retention Tanks At All Times with section 3.2 Obtain grab sample at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and analyses in accordance Condensate overboard to Retention Tanks 1-4 with section 3.2 Modes 1-4: Suspend the release Steam Generator Blowdown/Drain to Retention At All Times Modes 5,6 & defueled: Obtain grab Tanks sample at least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and analyze in accordance with sec-tion 3.2 30 ODCM Rev. 24

4.0 GASEOUS & LIQUID EFFLUENTS - DOSE

4.1 Requirements

Noble Gases The air dose due to noble gases released in gaseous effluents, from each reactor unit to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) shall be limited to the following:

a. During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

Applicability: At all times.

Action:

With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s)'for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.1.1 Surveillance Requirements

a. Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accordance with the methodology contained in Section 4.1.2 at least once per 31 days.

31 ODCM Rev. 24

4.1.2 Implementation of the Requirement: Noble Gas The air dose in unrestricted areas beyond the site boundary due to noble gases released in gaseous effluents from each unit during any specified time period shall be determined by the following equations:

For gamma radiation:

D 'yu = (3.17E-08) 1i [(Mi) (X/Q)UNIT(Qi)] (4-1)

For beta radiation:

D Pu = (3.17E-08) 1i [(Ni) (X/Q)UNIT(Qi)] (4-2)

Where:

Mi = the air dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrad/yr per [tCi/m 3 from Table 3-3.

N = the air dose factor due to beta emissions for each identified noble gas radionuclide i, in mrad/yr per jtCi/m 3 from Table 3-3.

(XIQ)UNIT = the highest calculated annual average dispersion parameter, in sec/m 3 , at the site boundary for the particular Unit, from Table 3-2. Optionally, the highest value may be used for any Unit calculation.

=7.47E-06 from Unit 1

=7.90E-06 from Unit 2

=8.91E-06 from Unit 3 D y'u = the total gamma air dose, for the particular unit, in mrad, due to noble gases released in gaseous effluents for a specified time period at the SITE BOUNDARY.

D j3u = the total beta air dose, for the particular unit, in mrad, due to noble gases released in gaseous effluents for a specified time period at the SITE BOUNDARY.

Qi = the integrated release, from the particular unit, in LtCi, of each, identified noble gas radionuclide i, in gaseous effluents for a specified time period.

3.17E-08 = the inverse of seconds in a year (yr/sec).

The cumulative gamma air dose and beta air dose for a quarterly or annual evaluation shall be based on the calculated dose contribution from each specified time period occurring during the reporting time period.

32 ODCM Rev. 24

)

4.2 Requirement

Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-

5) shall be limited to the following:
a. During any calendar quarter: Less than or equal to 7.5 mrems to any organ and,
b. During any calendar year: Less than or equal to 15 mrems to any organ.

Applicability: At all times.

Action:

With the calculated dose from the release of iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days, in gaseous effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.2.1 Surveillance Requirements

a. Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days shall be determined in accordance with the methodology and parameters contained in Section 4.2.2 at least once per 31 days.

33 ODCM Rev. 24

4.2.2 Implementation of the Requirement The organ dose to an individual from 1-131, 1-133, tritium, and all radionuclides in particulate form, with half-lives greater than eight days, in gaseous effluents released to unrestricted areas from each reactor unit is calculated using the following expressions:

Dou = (3.17E-08) 1i [Y-k (Rik Wk) (Qi)] (4-3)

Where:

Dou the total accumulated organ dose from gaseous effluents for a particular unit, to a MEMBER OF THE PUBLIC, in mrem, at the SITE BOUNDARY or at the controlling location.

Qi the quantity of radionuclide i, in gtCi, released in gaseous effluents from a particular unit.

Rik = the dose factor for each identified radionuclide i, for pathway k (for the inhalation pathway in mrem/yr per ltCi/m 3 and for the food and ground plane pathways in m2 - mrem/yr per ltCi/sec, except H-3, which has units of mrem/yr per ltCi/m 3) at the controlling location. The Rik's for each age group are given in Tables 4-1 through 4-15.

3.17E-08 = the inverse of seconds per year (yr/sec).

Wk = the highest annual average dispersion or deposition parameter for the particular Unit, used for estimating the dose at the site boundary or to a MEMBER OF THE PUBLIC at the controlling location for the particular Unit. Optionally, the highest value may be used for any Unit calculation.

= (X/Q)UNIT, in sec/m 3 for the inhalation pathway and for all tritium calculations, for organ dose .at the site boundary, from Table 3-2.

=7.47E-06 from Unit I

=7.90E-06 from Unit 2

=8.91E-06 from Unit 3

= (X/Q)UNIT, in sec/m 3 for the inhalation pathway and for all tritium calculations, for organ dose at the controlling location, from Table 4-16, 4-47 or 4-18.

=2.92E-06 from Unit I

=2.19E-06 from Unit 2

=2.31 E-06 from Unit 3

= (D/Q)UNIT, in m- 2, for the food and ground plane pathways, for organ dose at the site boundary, from Table 3-2.

=1.19E-08 from Unit I

=1.34E-08 from Unit 2

=1.67E-08 from Unit 3 34 ODCM Rev. 24

= (D/Q)uNITr, in m-2 , for the food and ground plane pathways, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18.

=3.25E-09 from Unit I

=3.88E-10 from Unit 2

=4.21E-10 from Unit 3 Residences, vegetable gardens and milk animals located within 5 miles of the site will be identified during the annual Iand use census. The controlling pathway and location will be identified and will be used for all MEMBER OF THE PUBLIC dose evaluations.

The Ri values were calculated in accordance with the methodologies in NUREG-0133. The following site specific information was used to calculate Ri:

Value The length of the grazing season for milk animals (Q.

Ref. ER-OL, Section 2.1.3.4.3 0.75 The length of the grazing season for meat animals (Q.).

Ref. ER-OL, Section 2.1.3.4.4 0.25 The fraction of daily feed derived from pasture while on pasture for milk animals (fp).

Ref. ER-OL, Section 2.1.3.4.3 0.35 The fraction of daily feed derived from pasture while on pasture for meat animals (fp).

Ref. ER-OL, Section 2.1.3.4.3 0.05 The fraction of year vegetables are grown, (fl) approximation.

Ref. ER-OL, Section 2.1.3.4, Table 2.1-8. 0.667 The annual absolute humidity (g/m 3), H, Ref. UFSAR, Table 2.3-16 6 35 ODCM Rev. 24

4.3 Requirements

Gaseous Radwaste Treatment The GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, from the site (see Figure 6-4 and Figure 6-5) when averaged over 31 days, would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation. The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY (see Figure 6-4 and Figure 6-5) when averaged over 31 days would exceed 0.3 mrem to any organ of a MEMBER OF THE PUBLIC.

Applicability: At all times:

Action:

With radioactive gaseous waste being discharged without treatment and in excess of the above limits, prepare and submit to the Commission within 30 days, a Special Report which includes the following information:

a. Identification of the inoperable equipment or subsystems and the reason for inoperability,
b. Action(s) taken to restore the inoperable equipment to OPERABLE status, and
c. Summary description of action(s) taken to prevent a recurrence.

4.3.1 Surveillance Requirements

a. Doses due to gaseous releases from the site shall be projected at least once per 31 days, in accordance with the methodology and parameters in Section 4.3.2.

36 ODCM Rev. 24

4.3.2 Implementation of the Requirement Where possible, consideration for expected operational evolutions (i.e., outages, etc.) should be taken in the dose projections.

Dose Projection - Noble Gases The air dose, in mrads is determined using the methodology described in Section 4.1.2 of this manual. This information is used to determine an air dose projection for the next 31 days using the following equations:

For gamma radiation:

31 day y = D7+/- CD7 (4-4)

For beta radiation:

31 day P = DP++/-CDP (4-5)

Where:

D7 = the total gamma air dose in mrads at the site boundary due to noble gases released in gaseous effluents for the previous 31 days.

DP= the total beta air dose in mrads at the site boundary due to noble gases released in gaseous effluents for the previous 31 days.

CD7 = any current or projected change in gamma air dose, in mrads, due to noble gases released in gaseous effluents, which could have a significant impact on 31 day 7.

CDP any current or projected change in beta air dose, in mrads, due to noble gases released in gaseous effluents, which could have-a significant impact on 31 day P3.

When performing the 31 day dose projection using the Gaseous Radioactive Effluent Tracking System (GRETS), D7 and DP will include the dose from any release permits that fall within the selected 31 day time period. As a result, the actual dose projection will often be based on the accumulated dose for a time period greater than 31 days.

37 ODCM Rev. 24

Dose Projection 131. 1-133. tritium, and all radionuclides in particulate form with half-lives greater than eight days The organ dose, in mrem, is determined using the methodology described in Section 4.2.2 of this manual. This information is used to determine an organ dose projection for the next 31 days using the following equation:

31dayo = D++/-CD, (4-6)

Where:

Do = the total organ dose due to 1-131, 1-133, tritium, and all radionuclides in particulate form with half-lives greater than eight days in mrem, released in gaseous effluents for the previous 31 days.

CDo = any current or projected change in organ dose, in mrem, which could have a significant impact on 31 day 0 .

When performing the 31 day dose projection using the Gaseous Radioactive Effluent Tracking System (GRETS), Do will include the dose from any release permits that fall within the selected 31 day time period. As a result, the actual dose projection will often be based on the accumulated dose for a time period greater than 31 days.

38 ODCM Rev. 24

TABLE 4-1 Ri DOSE CONVERSION FACTORS FOR THE GROUND PLANE PATHWAY NUCLIDE T. BODY SKIN H-3 O.OOE+00 0.OOE+00 CR-51 4.66E+06 5.5 1E+06 MN-54 1.39E+09 1.63E+09 FE-59 2.73E+08 3.21E+08 CO-58 3.79E+08 4.44E+08 CO-60 2.15E+10 2.53E+10 ZN-65 7.47E+08 8.59E+08 SR-89 2.16E+04 2.51 E+04 SR-90 0.OOE+00 0.OOE+00 ZR-95 2.45E+08 2.84E+08 SB-124 5.98E+08 6.90E+08 1-131 1.72E+07 2.09E+07 1-133 2.45E+06 2.98E+06 CS-134 6.86E+09 8.00E+09 CS-137 1.03E+10 1.20E+10 BA-140 2.05E+07 2.35E+07 CE-141 1.37E+07 1.54E+07 CE- 144 6.95E+07 8.04E+07 39 ODCM Rev. 24

TABLE 4-2 Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - ADULT RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 2.87E+03 2.87E+03 2.87E+03 2.87E+03 2.87E+03 2.87E+03 CR-51 O.OOE+00 O.OOE+00 4.OOE+04 2.39E+04 8.82E+03 5.31E+04 1.01E+07 MN-54 O.OOE+00 2.97E+08 5.66E+07 O.OOE+00 8.83E+07 O.OOE+00 9.09E+08 FE-59 1.14E+08. 2.68E+08 1.03E+08 O.OOE+00 O.OOE+00 7.49E+07 8.93E+08 CO-58 O.OOE+00 2.84E+07 6.38E+07 O.OOE+00 O.OOE+00 O.OOE+00 5.76E+08 CO-60 O.OOE+00 1.59E+08 3.51E+08 O.OOE+00 O.OOE+00 O.OOE+00 2.99E+09 ZN-65 3.OOE+08 9.56E+08 4.32E+08 O.OOE+00 6.39E+08 O.OOE+00 6.02E+08 SR-89 9.08E+09 O.OOE+00 2.61E+08 O.OOE+00 O.OOE+00 O.OOE+00 1.46E+09 SR-90 5.76E+I 1 O.OOE+00 1.41E+ I O.OOE+00 O.OOE+00 O.OOE+00 1.67E+10 ZR-95 1.08E+06 3.47E+05 2.35E+05 O.OOE+00 5.45E+05 O.OOE+00 1.1OE+09 SB-124 9.53E+07 1.80E+06 3.78E+07 2.31E+05 O.OOE+00 7.42E+07 2.71E+09 1-131 5.49E+07 7.85E+07 4.50E+07 2.57E+10 1.35E+08 O.OOE+00 2.07E+07 1-133 1.39E+06 2.42E+06 7.38E+05 3.56E+08 4.22E+06 O.OOE+00 2.17E+06 CS-134 4.44E+09 1.06E+10 8.64E+09 O.OOE+00 3.42E+09 1.13E+09 1.85E+08 CS-137 6.06E+09 8.29E+09 5.43E+09 O.OOE+00 2.81E+09 9.36E+08 1.60E+08 BA- 140 9.43E+07 1.19E+05 6.18E+06 O.OOE+00 4.03E+04 6.78E+04 1.94E+08 CE- 141 1.73E+05 1.17E+05 1.33E+04 O.OOE+00 5.44E+04 O.OOE+00 4.48E+08 CE- 144 3.12E+07 1.30E+07 1.67E+06 O.OOE+00 7.73E+06 O.OOE+00 1.05E+10 40 ODCM Rev. 24

TABLE 4-3 Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - TEEN RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 0.OOE+00 3.36E+03 3.36E+03 3 .36E+03 3.36E+03 3.36E+03 3.36E+03 CR-51 0.OOE+00 0.OOE+00 5.60E+04 3.11 E+04 1.23E+04 7.99E+04 9.4 1E+06 MN-54 0.OOE+00 4.4 1E+08 8.74E+07 0.OOE+00 1.31E+08 0.00E+00 9.04E+08 FE-59, 1.69E+08 3.94E+08 1.52E+08 0.OOE+00 0.OOE+00 1.24E+08 9.3 1E+08 CO-58 0.OOE+00 4.16E+07 9.59E+07 0.OOE+00 0.00E+00 0.OOEtOO 5.74E+08 CO-60 O.OOE+00 2.42E+08 5.45E+08 O.OOE+00 0.OOE+00 0.OOE+00 3.15E+09 ZN-65 4.11E+08 1.43E+09 6.65E+08 0.OOE+00 9.12E+08 0.OOE+00 6.04E+08 SR-89 1.43E+10 O.OOE+00 4.10E+08 O.OOE+00 0.OOE+00 0.OOE+00 1.70E+09 SR-90 7.30E+1 1 0.OOE+00 1.80E+11 O.OOE+00 0.OOE+00 0.OOE+00 2.05E+10 ZR-95 1.64E+06 5.17E+05 3.56E+05 0.OOE+00 7.60E+05 0.OOE+00 1.19E+09 SB-124 1.47E+08 2.70E+06 5.73E+07 3.33E+05 0.OOE+00 1.28E+08 2.96E+09 1-131 5.29E+07 7.4 1E+07 3.98E+07 2.16E+10 1.28E+08 0.OOE+00 1.47E+07 1-133 1.29E+06 2.19E+06 6.68E+05 3.06E+08 3.84E+06 0.00E+00 1.66E+06 CS-134 6.90E+09 1.62E+10 7.53E+09 0.OOE+00 5.16E+09 I .97E+09 2.02E+08 CS-137 9.86E+09 1.31E+10 4.57E+09 0.OOE+00 4.46E+09 1.73E+09 1.87E+08 BA-140 1.07E+08 1.3]E+05 6.88E+06 0.OOE+O0 4.44E+04 8.80E+04 1.65E+08 CE-141 2.6 1E+05 1.74E+05 2.OOE+04 0.OOE+O0 8.19E+04 0.OOE+00 4.98E+08 CE-144 5.11E+07 2.12E+07 2.75E+06 0.OOE+00 1.26E+07 0.OOE+00 1.29E+10 41 ODCM Rev. 24

TABLE 4-4 Ri DOSE CONVERSION FACTORS FOR THE VEGETATION PATHWAY - CHILD RECEPTOR NUCLIDES BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 5.23E+03 5.23E+03 5.23E+03 5.23E+03 5.23E+03 5.23E+03 CR-51 0.00E+00 0.OOE+00 1.08E+05 6.02E+04 1.64E+04 1.I1OE+05 5.75E+06 MN-54 0.00E+0O 6.49E+08 1.73E+08 O.OOE+00 1.82E+08 0.OOE+00 5.45E+08 FE-59 3.79E+08 6.13E+08 3.05E+08 0.00E+00 O.OOE+00 1.78E+08 6.38E+08 CO-58 0.OOE+0O 6.2 1E+07 1.90E+08 0.00E+00 0.00E+00 0.OOE+00 3.62E+08 CO-60 0.00E+00 3.70E+08 1.09E+09 0.OOE+00 0.OOE+00 0.OOE+00 2.05E+09 ZN-65 7.93E+08 2.11E+09 1.31 E+09 0.OOE+0O 1.33E+09 0.OOE+00 3.7 1E+08 SR-89 3.44E-i-10 O.00E+00 9.83E+08 0.OOE+O0 0.OOE+00 0.OOE+00 1.33E+09 SR-90 1.22E+12 O.OOE+00 3.09E+11 0.OOE+O0 0.OOE+00 0.OOE+00 1.64E+10 ZR-95 3.72E+06 8.17E+05 7.27E+05 O.OOE+OO 1.17E+06 0.OOE+00 8.52E+08 SB-124 3.38E+08 4.39E+06 1.19E+08 7.47E+05 O.OOE+00 1.88E+08 2.12E+09 1-131 9.95E+07 1.00E+08 5.68E+07 3.31 E+10 1.64E+08 O.OOE+00 8.90E+06 1-133 2.36E+06 2.9 1E+06 1.1OE+06 5.4 1IE+08 4.85E+06 0.OOE+00 1.17E+06 CS- 134 1.57E+10 2.57E+10 5.43E+09 O.OOE+00 7.98E+09 2.86E+09 1.39E+08 CS-I137 2.34E+ 10 2.24E+ 10 3.3 1E+09 0.OOE+00 7.31 E+09 2.63E+09 1.40E+08 BA- 140 2.20E+08 1.93E+05 1.28E+07 O.OOE+0O 6.27E+04 1.15E+05 1.11E+08 CE- 141 6.15E+05 3.07E+05 4.55E+04 0.OOE+00 1.34E+05 0.OOE+00 3.83E+08 CE- 144 1.24E+08 3.89E+07 6.62E+06 O.OOE+00 2.15E+07 0.OOE+00 1.01E+10 42 ODCM Rev. 24

TABLE 4-5 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - ADULT RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 0.OOE+00 4.33E+02 4.33E+02 4.33E+02 4.33E+02 4.33E+02 4.33E+02 CR-51 0.OOE+00 O.OOE+00 3.44E+02 2.06E+02 7.58E+01 4.57E+02 8.65E+04 MN-54 0.OOE+00 2.7 1E+06 5.18E+05 0.OOE+00 8.08E+05 0.OOE+00 8.3 1E+06 FE-59 2.60E+07 6.11 E+07 2.34E+07 0.OOE+00 0.OOE+00 1.71 E+07 2.04E+08 CO-58 O.OOE+00 2.84E+06 6.36E+06 0.OOE+0O O.OOE+00 0.OOE+00 5.75E+07 CO-60 O.OOE+00 2.61E+07 5.76E+07 O.OOE+00 O.OOE+00 0,00E+00 4.90E+08 ZN-65 9.97E+07 3.17E+08 1.43E+08 O.OOE+O0 2.12E+08 0.OOE+00 2.OOE+08 SR-89 3.41E+07 0.OOE+00 9.79E+05 O.OOE+O0 O.OOE+00 0.OOE+00 5.47E+06 SR-90 4.43E+09 0.OOE+00 1.09E+09 0.OOE+00 O.OOE+00 0.OOE+00 1.28E+08 ZR-95 2.68E+05 8.58E+04 5.81 E+04 0.OOE+00 1.35E+05 O.OOE+00 2.72E+08 SB-124 2.67E+06 5.05E+04 1.06E+06 6.48E+03 O.OOE+00 2.08E+06 7.59E+07 1-131 1.36E+05 1.94E+05 1.11 E+05 6.37E+07 3.33E+05 O.OOE+O0 5.13E+04 1-133 4.56E-03 7.94E-03 2.42E-03 1. 17E+00 1.39E-02 O.OOE+00 7.14E-03 CS-134 2.17E+08 5.17E+08 4.23E+08 0.OOE+00 1.67E+08 5.56E+07 9.05E+06 CS-137 3.11E+08 4.25E+08 2.78E+08 0.OOE+00 1.44E+08 4.79E+07 8.22E+06 BA-140 4.35E+05 5.46E+02 2.85E+04 0.OOE+O0 1.86E+02 3.13E+02 8.95E+05 CE-141 8.87E+02 6.OOE+02 6.80E+01 0.OOE+O0 2.79E+02 0.OOE+00 2.29E+06 CE-144 4.23E+05 1.77E+05 2.27E+04 O.OOE+00 1.05E+05 0.OOE+00 1.43E+08 43 ODCM Rev. 24

TABLE 4-6 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - TEEN RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI v.vur.-+uu

,, ~ L.-Io

- C~r.A' f~f'~'.f~~

rA-+Vz

~ -..

~TA 0 F-I+UV 2,

'~~OTf~i

/z.Jorz-+V-u

~ , O~, ,A

/-.-)Or,+ /

11 0 AOll L..JO-.1UL CR-51 0.OOE+00 0.OOE+0O 2.75E+02 1.53E+02 6.03E+01 3.93E+02 4.62E+04 MN-54 0.OOE+00 2.07E+06 4.11E+05 0.OOE+0O 6.18E+05 0.OOE+00 4.25E+06 FE-59 2.08E+07 4.85E+07 1.87E+07 0.OOE+00 1.53E+07 1.15E+08 0.OOE+00 CO-58 O.OOE+00 2.19E+06 5.04E+06 O.OOE+O0 0.OOE+00 3.02E+07 0.OOE+00 CO-60 0.OOE+00 2.03E+07 4.56E+07 0.OOE+00 O.OOE+00 2.64E+08 ZN-65 7.01E+07 2.43E+08 1.14E+08 0.OOE+00 1.56E+08 0.OOE+00 1.03E+08 SR-89 2.88E+07 0.OOE+00 8.24E+05 0.OOE+0O 0.OOE+00 O.OOE+00 3.43E+06 SR-90 2.87E+09 O.OOE+00 7.08E+08 O.OOE+00 O.OOE+O0 0.OOE+O0 8.05E+07 ZR-95 2. 14E+05 6.76E+04 4.65E+04 0.OOE+00 9.93E+04 O.OOE+00 1.56E+08 SB-124 2.18E+06 4.02E+04 8.52E+05 4.95E+03 0.OOE+00 1.9 1E+06 4.40E+07 1-131 1.13E+05 1.58E+05 8.49E+04 4.61 E+07 2.72E+05 0.OOE+0O 3.13E+04 1-133 3.82E-03 6.48E-03 1.98E-03 9.04E-01 1. 14E-02 0.OOE+00 4.90E-03 CS- 134 1.73E+08 4.07E+08 1.89E+08 O.OOE+O0 1.29E+08 4.94E+07 5.06E+06 CS-137 2.58E+08 3 .43E+08 1.20E+08 0.OOE+00 1. 17E+08 4.54E+07 4.88E+06 BA- 140 3.59E+05 4.40E+02 2.3 1E+04 0.OOE+00 1.49E+02 2.96E+02 5.54E+05 CE-141 7.45E+02 4.97E+02 5.7 1E+01 0.OOE+00 2.34E+02 0.OOE+00 1.42E+06 CE- 144 3.56E+05 1.47E+05 1.91E+04 O.OOE+00 8.80E+04 O.OOE+00 8.96E+07 44 ODCM Rev. 24

TABLE 4-7 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MEAT PATHWAY - CHILD RECEPTOR NUCLIDES BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 3.12E+02 3.12E+02 3.12E+02 3.12E+02 3.12E+02 3.12E+02 CR-51 O.OOE+00 O.OOE+00 4.29E+02 2.38E+02 6.51 E+O 1 4.35E+02 2.28E+04 MN-54 O.OOE+00 2.37E+06 6.3 1E+05 O.OOE+00 6.64E+05 O.OOE+00 1.99E+06 FE-59 3.68E+07 5.96E+07 2.97E+07 O.OOE+00 O.OOE+00 1.73E+07 6.20E+07 CO-58 O.OOE+00 2.55E+06 7.82E+06 O.OOE+00 O.OOE+00 O.OOE+00 1.49E+07 CO-60 O.OOE+00 2.40E+07 7.09E+07 O.OOE+00 O.OOE+00 O.OOE+00 1.33E+08 ZN-65 1.05E+08 2.80E+08 1.74E+08 O.OOE+00 1.77E+08 O.OOE+00 4.92E+07 SR-89 5.45E+07 O.OOE+00 1.56E+06 O.OOE+00 O.OOE+00 O.OOE+00 2.11 E+06 SR-90 3.70E+09 O.OOE+00 9.39E+08 O.OOE+00 O.OOE+00 O.OOE+00 4.99E+07 ZR-95 3.8 1E+05 8.36E+04 7.45E+04 O.OOE+00 1.20E+05 O.OOE+00 8.73E+07 SB- 124 3.95E+06 5.12E+04 1.38E+06 8.72E+03 O.OOE+00 2.19E+06 2.47E+07 1-131 2.09E+05 2.11E+05 1.20E+05 6.96E+07 3.46E+05 O.OOE+00 1.87E+04 1-133 7.09E-03 8.77E-03 3.32E-03 1.63E+00 1.46E-02 O.OOE+00 3.53E-03 CS-134 3.05E+08 5.OOE+08 1.06E+08 O.OOE+00 1.55E+08 5.56E+07 2.70E+06 CS-137 4.75E+08 4.55E+08 6.7 1E+07 O.OOE+00 1.48E+08 5.33E+07 2.85E+06 BA-140 6.63E+05 5.81E+02 3.87E+04 O.OOE+00 1.89E+02 3.46E+02 3.36E+05 CE-141 1.40E+03 6.99E+02 1.04E+02 O.OOE+00 3.07E+02 O.OOE+00 8.72E+05 CE-144 6.72E+05 2.1I E+05 3.58E+04 O.OOE+00 1.17E+05 O.OOE+00 5.49E+07 45 ODCM Rev. 24

TABLE 4-8 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - ADULT RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 1.02E+03 1.02E+03 1.02E+03 1.02E+03 1.02E+03 1.02E+03 CR-51 0.00E+00 O.OOE+00 8.28E+03 4.95E+03 1.82E+03 1.1 OE+04 2.08E+06 MN-54 0.00E+00 3.99E+06 7.6 1E+05 O.OOE+00 1.19E+06 0.OOE+00 1.22E+07 FE-59 9.69E+06 2.28E+07 8.73E+06 0.OOE+O0 0.OOE+00 6.36E+06 7.59E+07 CO-58 0.00E+00 1.74E+06 3.90E+06 0.OOE+0O 0.OOE+00 0.OOE+00 3.53E+07 CO-60 0.OOE+00 8.41 E+06 1.85E+07 0.OOE+00 O.OOE+00 0.OOE+00 1.58E+08 ZN-65 6.34E+08 2.02E+09 9.12E+08 0.00E+00 1.35E+09 O.OOE+00 1.27E+09 SR-89 4.90E+08 0.OOE+00 1.41E+07 0.OOE+00 0.OOE+00 0.OOE+00 7.86E+07 SR-90 2.43E+10 0.OOE+00 5.96E+09 O.OOE+00 0.OOE+00 0.OOE+00 7.02E+08 ZR-95 3.39E+02 1.09E+02 7.37E+01 O.OOE+00 1.71E+02 0.OOE+00 3.45E+05 SB-124 9.11E+06 1.72E+05 3.61E+06 2.21E+04 0.OOE+00 7.09E+06 2.59E+08 1-131 7.77E+07 1.11E+08 6.37E+07 3.64E+ 10 1.91E+08 0.OOE+00 2.93E+07 1-133 1.02E+06 1.77E+06 5.39E+05 2.60E+08 3.08E+06 0.OOE+00 1.59E+06 CS-134 2.83E+09 6.73E+09 5.50E+09 0.OOE+00 2.18E+09 7.23E+08 1.18E+08 CS- 137 3.83E+09 5.24E+09 3.43E+09 0.OOE+00 1.78E+09 5.91E+08 1.01E+08 BA-140 7.11E+06 8.93E+03 4.66E+05 0.OOE+O0 3.04E+03 5.11 E+03 1.46E+07 CE-141 8.73E+03 5.90E+03 6.70E+02 0.00E+00 2.74E+03 0.OOE+00 2.26E+07 CE- 144 1.0 1E+06 4.21 E+05 5.4 1E+04 0.OOE+00 2.50E+05 0.OOE-i00 3.41E+08 46 ODCM Rev. 24

TABLE 4-9 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - TEEN RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 1.33E+03 1.33E+03 1.33E+03 1.33E+03 1.33E+03 1.33E+03 CR-51 0.OOE+00 0.00o+00 1.45E+04 8 .03E+03 3.17E+03 2.06E+04 2.43E+06 MN-54 0.OOE+00 6.64E+06 1.32E+06 0.OOE+00 1.98E+06 0.OOE+O0 1.36E+07 FE-59 1.69E+07 3.95E+07 1.52E+07 0.OOE+O0 0.OOE+OO 1.24E+07 9.33E+07 CO-58 O.OOE+00 2.93E+06 6.76E+06 0.OOE+00 0.OOE+00 0.OOE+00 4.04E+07 CO-60 0.OOE+00 1.42E+07 3.2 1E+07 0.OOE+00 0.OOE+0O 0.OOE+00 1.86E+08 ZN-65 9.74E+08 3.38E+09 1.58E+09 O.OOE+O0 2.17E+09 0.OOE+00 1.43E+09 SR-89 9.03E+08 0.OOE+00 2.59E+07 O.OOE+0O 0.OOE+00 O.OOE+00 1.08E+08 SR-90 3.43E+10 0.OOE+00 8.48E+09 0.OOE+00 O.OOE+O0 0.OOE+O0 9.64E+08 ZR-95 5.94E+02 1.87E+02 1.29E+02 0.OOE+00 2.75E+02 0.OOE+00 4.32E+05 SB-124 1.62E+07 2.99E+05 6.34E+06 3 .69E+04 0.OOE+00 1.42E+07 3.27E+08 1-131 1.41E+08 1.98E+08 1.06E+08 5.76E+ 10 3.40E+08 0.OOE+00 3.9 1E+07 1-133 1.86E+06 3.15E+06 9.60E+05 4.39E+08 5.52E+06 0.OOE+00 2.38E+06 CS-134 4.91 E+09 1.16E+10 5.36E+09' 0.OOE+00 3.67E+09 1.40E+09 1.44E+08 CS-137 6.95E+09 9.24E+09 3.22E+09 0.OOE+00 3.15E+09 1.22E+09 1.32E+08 BA-140 1.28E+07 1.57E+04 8.27E+05 0.OOE+0O 5.33.E+03 1.06E+04 1.98E+07 CE-141 1.60E+04 1.07E+04 1.23E+03 0.OOE+00 5.03E+03 O.OOE+00 3.06E+07 CE-144 1.86E+06 7.68E+05 9.97E+04 O.OOE+00 4.59E+05 O.OOE+00 4.67E+08 47 ODCM Rev. 24

TABLE 4-10 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - CHILD RECEPTOR N!

NUCLIDES BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 2.09E+03 2.09E+03 2.09E+03 2.09E+03 2.09E+03 2.09E+03 CR-51 O.OOE+00 O.OOE+00 2.95E+04 1.64E+04 4.47E+03 2.99E+04 1.56E+06 MN-54 O.OOE+00 9.94E+06 2.65E+06 O.OOE+00 2.79E+06 O.OOE+00 8.34E+06 FE-59 3.92E+07 6.35E+07 3.16E+07 O.OOE+00 O.OOE+00 1.84E+07 6.6 1E+07 CO-58 O.OOE+00 4.48E+06 1.37E+07 O.OOE+00 O.OOE+00 O.OOE+00 2.6 1E+07 CO-60 O.OOE+00 2.2 1E+07 6.52E+07 O.OOE+00 O.OOE+00 O.OOE+00 1.23E+08 ZN-65 1.91E+09 5.09E+09 3.17E+09 O.OOE+00 3.2 1E+09 O.OOE+00 8.95E+08 SR-89 2.23E+09 O.OOE+00 6.38E+07 O.OOE+00 O.OOE+00 O.OOE+00 8.65E+07 SR-90 5.80E+10 O.OOE+00 1.47E+10 O.OOE+00 O.OOE+00 O.OOE+00 7.81E+08 ZR-95 1.38E+03 3.03E+02 2.70E+02 O.OOE+00 4.34E+02 O.OOE+00 3.16E+05 SB-124 3.84E+07 4.99E+05 1.35E+07 8.49E+04 O.OOE+00 2.13E+07 2.41E+08 1-131 3.42E+08 3.44E+08 1.96E+08 1.14E+1 1 5.65E+08 O.OOE+00 3.06E+07 1-133 4.51E+06 5.57E+06 2.11E+06 1.04E+09 9.29E+06 O.OOE+00 2.25E+06 CS-134 1.13E+10 1.86E+10 3.92E+09 O.OOE+00 5.76E+09 2.07E+09 1.OOE+08 CS-137 1.67E+10 1.60E+10 2.36E+09 O.OOE+00 5.22E+09 1.88E+09 1.00E+08 BA- 140 3.1OE+07 2.71E+04 1.81E+06 O.OOE+00 8.83E+03 1.62E+04 1.57E+07 CE- 141 3.94E+04 1.97E+04 2.92E+03 O.OOE+00 8.62E+03 O.OOE+00 2.45E+07 CE- 144 4.57E+06 1.43E+06 2.44E+05 O.OOE+00 7.94E+05 O.OOE+00 3.74E+08 48 ODCM Rev. 24

TABLE 4-11 Ri DOSE CONVERSION FACTORS FOR THE GRASS-COW-MILK PATHWAY - INFANT RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 3.18E+03 3.18E+03 3.18E+03 3.18E+03 3.18E+03 3.18E+03 CR-51 O.OOE+00 0.OOE+00 4.67E+04 3 .05E+04 6.66E+03 5.93E+04 1.36E+06 MN-54 0.OOE+00 1.85E+07 4.19E+06 0.OOE+00 4. 1OE+06 0.OOE+00 6.79E+06 FE-59 7.32E+07 1.28E+08 5.04E+07 O.OOE+00 0.OOE+00 3.78E+07 6.11 E+07 CO-58 0.OOE+00 8.96E+06 2.23E+07 0.OOE+00 O.OOE+O0 0.OOE+00 2.23E+07 CO-60 0.OOE+00 4.52E+07 1.07E+08 0.OOE+00 0.OOE+00 0.OOE+00 1.07E+08 ZN-65 2.57E+09 8.8 1E+09 4.06E+09 O.OOE+00 4.27E+09 0.OOE+00 7.44E+09 SR-89 4.25E+09 0.OOE+00 1.22E+08 0.OOE+00 O.OOE+00 0.OOE+00 8.74E+07 SR-90 6.31E+10 0.OOE+00 1.61E+10 O.OOE+00 0.OOE+00 0.OOE+O0 7.88E+08 ZR-95 2.45E+03 5.97E+02 4.23E+02 0.OOE+00 6.43E+02 0.OOE+O0 2.97E+05 SB-124 7.41E+07 1.09E+06 2.30E+07 1.97E+05 0.OOE+00 4.64E+07 2.29E+08 1-131 7.14E+08 8.42E+08 3.70E+08 2.77E+1 I 9.83E+08 0.OOE+00 3.OOE+07 1-133 9.52E+06 1.39E+07 4.06E+06 2.52E+09 1.63E+07 0.OOE+00 2.35E+06 CS- 134 1.82E+10 3.40E+ 10 3.44E+09 0.OOE+O0 8.76E+09 3.59E÷09 9.24E+07 CS-137 2.67E+10 3.13E+10 2.22E+09 0.OOE+O0 8.39E+09 3.40E+09 9.78E+07 BA-140 6.37E+07 6.37E+04 3.28E+06 0.OOE+00 1.5 1E+04 3.9 1E+04 1.57E+07 CE-141 7.8 1E+04 4.77E+04 5.61 E+03 0.OOE+O0 1.47E+04 0.OOE+O0 2.46E+07 CE-144 6.55E+06 2.68E+06 3.67E+05 0.OOE+00 1.08E+06 O.OOE+00 3.76E+08 49 ODCM Rev. 24

TABLE 4-12 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - ADULT RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 1.26E+03 1.26E+03 1.26E+03 1.26E+03 1.26E+03 1.26E+03 CR-51 O.OOE+00 O.OOE+00 1.00E+02 5.95E+01 2.28E+01 1.44E+04 3.32E+03 MN-54 O.OOE+00 3.96E+04 6.30E+03 O.OOE+00 9.84E+03 1.40E+06 7.74E+04 FE-59 1.1 8E+04 2.78E+04 1.06E+04 O.OOE+00 O.OOE+00 1.02E+06 1.88E+05 CO-58 O.OOE+00 1.58E+03 2.07E+03 O.OOE+00 O.OOE+00 9.28E+05 1.06E+05 CO-60 O.OOE+00 1.1 5E+04 1.48E+04 O.OOE+00 O.OOE+00 5.97E+06 2:85E+05 ZN-65 3.24E+04 1.03E+05 4.66E+04 O.OOE+00 6.90E+04 8.64E+05 5.34E+04 SR-89 3.04E+05 O.OOE+00 8.72E+03 O.OOE+00 O.OOE+00 1.40E+06 3.50E+05 SR-90 9.92E+07 O.OOE+00 6. 1OE+06 O.OOE+00 O.OOE+00 9.60E+06 7.22E+05 ZR-95 1.07E+05 3.44E+04 2.33E+04 O.OOE+00 5.42E+04 1.77E+06 1.50E+05 SB- 124 3.12E+04 5.89E+02 1.24E+04 7.55E+01 O.OOE+00 2.48E+06 4.06E+05 1-131 2.52E+04 3.58E+04 2.05E+04 1.19E+07 6.13E+04 O.OOE+00 6.28E+03 1-133 8.64E+03 1.48E+04 4.52E+03 2.15E+06 2.58E+04 O.OOE+00 8.88E+03 CS-134 3.73E+05 8.48E+05 7.28E+05 O.OOE+00 2.87E+05 9.76E+04 1.04E+04 CS- 137 4.78E+05 6.21E+05 4.28E+05 O.OOE+00 2.22E+05 7.52E+04 8.40E+03 BA- 140 3.90E+04 4.90E+O1 2.57E+03 O.OOE+00 1.67E+01 1.27E+06 2.18E+05 CE- 141 1.99E+04 1.35E+04 1.53E+03 O.OOE+00 6.26E+03 3.62E+05 1.20E+05 CE- 144 3.43E+06 1.43E+06 1.84E+05 O.OOE+00 8.48E+05 7.78E+06 8.16E+05 50 ODCM Rev. 24

TABLE 4-13 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - TEEN RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 0.OOE+00 1.27E+03 1.27E+03 1.27E+03 1.27E+03 1.27E+03 1.27E+03 CR-51 0.OOE+00 O.OOE+00 1.35E+02 7.50E+01 3.07E+01 2. 1OE+04 3.OOE+03 MN-54 0.OOE+00 5.11E+04 8.40E+03 0.OOE+00 1.27E+04 1.98E+06 6.68E+04 FE-59 1.59E+04 3.70E+04 1.43E+04 0.OOE+00 O.OOE+00 1.53E+06 1.78E+05 CO-58 0.OOE+00 2.07E+03 2.78E+03 O.OOE+0O O.OOE+00 1.34E+06 9.52E+04 CO-60 O.OOE+00 1.5 1E+04 1.98E+04 0.OOE+00 0.OOE+00 8.72E+06 2.59E+05 ZN-65 3.86E+04 1.34E+05 6.24E+04 0.OOE+00 8.64E+04 1.24E+06 4.66E+04 SR-89 4.34E+05 0.OOE+00 1.25E+04 0.OOE+O0 0.OOE+00 2.42E+06 3.7 1E+05 SR-90 1.08E+08 0.OOE+00 6.68E+06 O.OOE+00 O.OOE+00 1.65E+07 7.65E+05 ZR-95 1.46E+05 4.58E+04 3.15E+04 O.OOE+00 6.74E+04 2.69E+06 1.49E+05 SB-124 4.30E+04 7.94E+02 1.68E+04 9.76E+01 0.OOE+00 3.85E+06 3.98E+05 1-131 3.54E+04 4.91E+04 2.64E+04 1.46E+07 8.40E+04 O.OOE+00 6.49E+03 1-133 1.22E+04 2.05E+04 6.22E+03 2.92E+06 3.59E+04 0.OOE+00 1.03E+04 CS-134 5.02E+05 1.13E+06 5.49E+05 O.OOE+00 3.75E+05 1.46E+05 9.76E+03 CS-137 6.70E+05 8.48E+05 3.11 E+05 O.OOE+00 3.04E+05 1.2 1E+05 8.48E+03 BA-140 5.47E+04 6.70E+01 3.52E+03 0.OOE+00 2.28E+01 2.03E+06 2.29E+05 CE-141 2.84E+04 1.90E+04 2.17E+03 O.OOE+00 8.88E+03 6.14E+05 1.26E+05 CE-144 4.89E+06 2.02E+06 2.62E+05 O.OOE+00 1.21E+06 1.34E+07 8.64E+05 51 ODCM Rev. 24

TABLE 4-14 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - CHILD RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 1.12E+03 1.12E+03 1.12E+03 1.12E+03 1.12E+03 1.12E+03 CR-51 0.OOE+00 0.OOE+00 1.54E+02 8.55E+01 2.43E+01 1.70E+04 1.08E+03 MN-54 O.OOE+00 4.29E+04 9.51E+03 0.OOE+00 1.00E+04 1.58E+06 2.29E+04 FE-59 2.07E+04 3.34E+04 1.67E+04 0.OOE+00 0.OOE+00 1.27E+06 7.07E+04 CO-58 0.OOE+00 1.77E+03 3.16E+03 0.OOE+00 0.OOE+00 1.11 E+06 3.44E+04 CO-60 0.OOE+00 1.31 E+04 2.26E+04 0.OOE+00 0.OOE+00 7.07E+06 9.62E+04 ZN-65 4.26E+04 1.13E+05 7.03E+04 0.OOE+00 7.14E+04 9.95E+05 1.63E+04 SR-89 5.99E+05 0.OOE+00 1.72E+04 0.OOE+00 0.OOE+00 2.16E+06 1.67E+05 SR-90 i.01E+08 0.OOE+00 6.44E+06 0.OOE+00 0.OOE+00 1.48E+07 3.43E+05 ZR-95 1.90E+05 4.18E+04 3.70E+04 0.OOE+00 5.96E+04 2.23E+06 6.11E+04 SB-124 5.74E+04 7.40E+02 2.OOE+04 1.26E+02 0.OOE+00 3.24E+06 1.64E+05 1-131 4.8 1E+04 4.8 1E+04 2.73E+04 1.62E+07 7.88E+04 0.OOE+00 2.84E+03 1-133 1.66E+04 2.03E+04 7.70E+03 3.85E+06 3.38E+04 O.OOE+00 5.48E+03 CS-134 6.5 1E+05 1.01E+06 2.25E+05 0.OOE+00 3.30E+05 1.21E+05 3.85E+03 CS-137 9.07E+05 8.25E+05 1.28E+05 0.OOE+00 2.82E+05 1.04E+05 3.62E+03 BA-140 7.40E+04 6.48E+01 4.33E+03 0.OOE+00 2.11E+01 1.74E+06 1.02E+05 CE-141 3.92E+04 1.95E+04 2.90E+03 0.OOE+0O 8.55E+03 5.44E+05 5.66E+04 CE- 144 6.77E+06 2.12E+06 3.61E+05 0.OOE+00 1.17E+06 1.20E+07 3.89E+05 52 ODCM Rev. 24

TABLE 4-15 Ri DOSE CONVERSION FACTORS FOR THE INHALATION PATHWAY - INFANT RECEPTOR NUCLIDE BONE LIVER T.BODY THYROID KIDNEY LUNG GI-LLI H-3 O.OOE+00 6.47E+02 6.47E+02 6.47E+02 6.47E+02 6.47E+02 6.47E+02 CR-51 O.OOE+00 O.OOE+00 8.95E+01 5.75E+01 1.32E+01 1.28E+04 3.57E+02 MN-54 O.OOE+00 2.53E+04 4.98E+03 O.OOE+00 4.98E+03 1.00E+06 7.06E+03 FE-59 1.36E+04 2.35E+04 9.48E+03 O.OOE+00 O.OOE+00 1.02E+06 2.48E+04 CO-58 O.OOE+00 1.22E+03 1.82E+03 O.OOE+00 O.OOE+00 7.77E+05 1.11 E+04 CO-60 O.OOE+00 8.02E+03 1. 18E+04 O.OOE+00 O.OOE+00 4.51E+06 3.19E+04 ZN-65 1.93E+04 6.26E+04 3.11E+04 O.OOE+00 3.25E+04 6.47E+05 j 5.14E+04 SR-89 3.98E+05 O.OOE+00 1.14E+04 O.OOE+00 O.OOE+00 2.03E+06 6.40E+04 SR-90 4.09E+07 O.OOE+00 2.59E+06 O.OOE+00 O.OOE+00 1.12E+07 1.31 E+05 ZR-95 1.15E+05 2.79E+04 2.03E+04 O.OOE+00 3.11 E+04 1.75E+06 2.17E+04 SB-124 3.79E+04 5.56E+02 1.20E+04 1.01E+02 O.OOE+00 2.65E+06 5.91E+04 1-131 3.79E+04 4.44E+04 1.96E+04 1.48E+07 5.18E+04 O.OOE+00 1.06E+03 1-133 1.32E+04 1.92E+04 5.60E+03 3.56E+06 2.24E+04 O.OOE+00 2.16E+03 CS-134 3.96E+05 7.03E+05 7.45E+04 O.OOE+00 1.90E+05 7.97E+04 1.33E+03 CS-137 5.49E+05 6.12E+05 4.55E+04 O.OOE+00 1.72E+05 7.13E+04 1.33E+03 BA-140 5.60E+04 5.60E+01 2.90E+03 O.OOE+00 1.34E+01 1.60E+06 3.84E+04 CE- 141 2.77E+04 1.67E+04 1.99E+03 O.OOE+00 5.25E+03 5.17E+05 2.16E+04 CE-144 3.19E+06 1.21E+06 1.76E+05 O.OOE+00 5.38E+05 9.84E+06 1.48E+05 53 ODCM Rev. 24

TABLE 4-16 PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 1 X/Q RESIDENCE(b) D/Q X/Q GARDEN(b) D/Q X/Q MILK(b) D/Q DIRECTION (Sec/m 3) Dist. Miles (M" 2) (Sec/m 3) Dist. Miles (M" 2) (Sec/m 3) Dist. Miles (m"2)

N 2.92E-06 1.4 3.25E-09 2.92E-06 1.4 3.25E-09 7.03E-07 (a) 3.48E-10 NNE 1.81E-06 1.8 2.88E-09 4.70E-07 (a) 4.04E-10 4.70E-07 (a) 4.04E-10 NE 1.95E-06 1.9 3.85E-09 1.76E-06 2.1 3.29E-09 5.77E-07 (a) 6.51E-10 ENE 1.03E-06 2.7 1.08E-09 1.03E-06 2.7 1.08E-09 3.86E-07 (a) 2.86E-10 E 9.39E-07 2.8 6.68E-10 3.71E-07 (a) 1.87E-10 3.71E-07 (a) 1.87E-10 ESE 6.37E-07 3.7 2.84E-10 4.12E-07 4.6 1.60E-10 4.12E-07 4.6 1.60E-10 goat SE 8.83E-07 4.1 2.61E-10 8.83E-07 4.1 2.61E-10 5.84E-07 (a) 1.52E-10 SSE 1.27E-06 4.7 2.61E-10 1.09E-06 (a) 2.15E-10 1.09E-06 (a) 2.15E-10 S 2.58E-06 4.6 4.85E-10 2.09E-06 5.2 3.59E-10 2.13E-06 5.1 3.71E-10 cow SSW 3.26E-06 3.5 8.26E-10 2.28E-06 (a) 4.53E-10 2.28E-06 (a) 4.53E-10 SW 2.80E-06 2.9 9.10E-10 1.58E-06 (a) 3.56E-10 1.58E-06 (a) 3.56E-10 WSW 1.95E-06 2.6 1.09E-09 8.55E-07 (a) 3.18E-10 8.55E-07 (a) 3.18E-10 W 7.54E-07 (a) 4.44E-10 7.54E-07 (a) 4.44E-10 7.54E-07 (a) 4.44E-10 WNW 6.03E-07 (a) 3.25E-10 6.03E-07 (a) 3.25E-10 6.03E-07 (a) 3.25E-10 NW 8.24E-07 3.8 5.25E-10 7.55E-07 4.1 4.61E-10 6.02E-07 (a) 3.27E-10 NNW 1.46E-06 2.0 1.47E-09 5.20E-07 (a) 3.04E-10 5.20E-07 (a) 3.04E-10 o (a) 5-mile value used since there is no pathway located within the sector up to five miles.

(b) Controlling locations are discussed in Appendix A.

References:

1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

TABLE 4-17 PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 2 X/Q RESIDENCE(b) D/Q X/Q GARDEN(b) D/Q X/Q MILK(b) D/Q DIRECTION (Sec/m 3) Dist. Miles (M"2) (Sec/m 3) Dist. Miles (M"2) (Sec/m 3) Dist. Miles (M" 2)

N 2.73E-06 1.5 2.92E-09 2.39E-06 1.7 2.35E-09 7.03E-07 (a) 3.48E-10 NNE 2.20E-06 1.5 3.87E-09 2.20E-06 1.5 3.87E-09 4.70E-07 (a) 4.04E- 10 NE 1.85E-06 2.0 3.55E-09 1.57E-06 2.3 2.78E-09 5.77E-07 (a) 6.51E-10 ENE 1.03E-06 2.7 1.08E-09 1.03E-06 2.7 1.08E-09 3.86E-07 (a) 2.86E-10 E 8.80E-07 3.0 6.06E- 10 3.7 1E-07 (a) 1.87E-10 3.7 1E-07 (a) 1.87E-10 ESE 6.25E-07 3.7 2.76E-10 3.96E-07 4.7 1.51E-10 3.96E-07 4.7 1.51E-10 goat SE 9.06E-07 4.0 2.72E-10 9.06E-07 4.0 2.72E- 10 5.84E-07 (a) 1.52E-10 Lh SSE 1.34E-06 4.5 2.81E-10 1.09E-06 (a) 2.15E-10 1.09E-06 (a) 2.15E-10 S 2.63E-06 4.5 5.01E-10 2.19E-06 5.0 3.88E-10 2.19E-06 5.0 3.88E-10 cow SSW 3.48E-06 3.2 9.19E-10 2.28E-06 (a) 4.53E-10 2.28E-06 (a) 4.53E-10 SW 2.93E-06 2.7 9.75E-10 1.58E-06 (a) 3.56E- 10 1.58E-06 (a) 3.56E- 10 WSW 2.01 E-06 2.5 1.16E-09 8.55E-07 (a) 3.18E-10 8.55E-07 (a) 3.18E-10 W 7.54E-07 (a) 4.44E- 10 7.54E-07 (a) 4.44E-10 7.54E-07 (a) 4.44E-10 WNW 6.03E-07 (a) 3.25E-10 6.03E-07 (a) 3.25E-10 6.03E-07 (a) 3.25E-10 NW 7.84E-07 4.0 4.88E-10 7.84E-07 4.0 4.88E-10 6.02E-07 (a) 3.27E-10 NNW 1.46E-06 2.0 1.47E-09 5.20E-07 5.0 3.04E- 10 5.20E-07 (a) 3.04E-10 0 (a) 5-mile value used since there is no pathway located within the sector up to five miles.

(b) Controlling locations are discussed in Appendix A.

References:

1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

TABLE 4-18 PALO VERDE NUCLEAR GENERATING STATION DISPERSION AND DEPOSITION PARAMETERS FOR LONG TERM RELEASES AT THE NEAREST PATHWAY LOCATIONS CENTERED ON UNIT 3 X/Q RESIDENCE(b) D/Q X/Q GARDEN(b) D/Q X/Q MILK(b) D/Q DIRECTION (Sec/m 3) Dist. Miles (m"2) (Secdm 3) Dist. Miles (m"2) (Sec/m 3) Dist. Miles (M" 2)

N 2.58E-06 1.8 2.47E-09 2.42E-06 1.9 2.22E-09 7.03E-07 (a) 3.48E-10 NNE 1.85E-06 1.7 2.97E-09 1.85E-06 1.7 2.97E-09 4.70E-07 (a) 4.04E-10 NE 1.66E-06 2.2 3.OOE-09 1.48E-06 2.4 2.54E-09 5.77E-07 (a) 6.51E-10 ENE 8.75E-07 2.9 8.86E-10 8.75E-07 2.9 8.86E-10 3.86E-07 (a) 2.86E-10 E 8.90E-07 3.0 6.17E-10 4.06E-07 4.6 2.15E-10 4.25E-07 4.5 2.31E-10 goat ESE 6.37E-07 3.7 2.84E-10 5.80E-07 4.0 2.46E-10 3.73E-07 (a) 1.37E-10 SE 5.84E-07 (a) 1.52E-10 5.84E-07 (a) 1.52E-10 5.84E-07 (a) 1.52E-10 SSE 1.36E-06 4.4 2.88E-10 1.09E-06 (a) 2.15E-10 1.09E-06 (a) 2.15E-10 S 2.65E-06 4.2 5.25E-10 2.25E-06 4.9 4.06E- 10 2.31E-06 4.8 4.21E-10 cow SSW 3.64E-06 3.1 9.82E-10 2.28E-06 (a) 4.53E-10 2.28E-06 (a) 4.53E-10 SW 3.19E-06 2.5 1.11E-09 1.58E-06 (a) 3.56E-10 1.58E-06 (a) 3.56E-10 WSW 2.12E-06 2.4 1.26E-09 8.55E-07 (a) 3.18E-10 8.55E-07 (a) 3.18E- 10 W 7.54E-07 (a) 4.44E-10 7.54E-07 (a) 4.44E- 10 7.54E- 10 (a) 4.44E- 10 WNW 6.03E-07 (a) 3.25E-10 6.03E-07 (a) 3.25E-10 6.03E-07 (a) 3.25E-10 NW 6.83E-07 4.3 4.05E-10 6.82E-07 4.3 4.05E-10 6.02E-07 (a) 3.27E-10 NNW 1.34E-06 2.2 1.26E-09 5.16E-07 5.0 3.01E-10 5.20E-07 (a) 3.04E-10 o (a) 5-mile value used since there is no pathway located within the sector up to five miles.

¢3 (b) Controlling locations are discussed in Appendix A.

References:

1984 Land Use Census (letter ANPM-21221-JRM/LEB). NUS Corporation letters NUS-ANPP-1385 and NUS-ANPP-1386.

4.4 Requirements

Liquid Effluents The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY (See Figure 6-4 and Figure 6-5) shall be limited:

a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
b. During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

Applicability: At all times.

Action:

With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

4.4.1 Surveillance Requirements Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per 31 days.

4.4.2 Implementation of the Requirements This Requirement does not require implementation guidance. There are no offsite liquid effluent releases.

57 ODCM Rev. 24

5.0 TOTAL DOSE AND DOSE TO PUBLIC ONSITE

5.1 Requirement

Total Dose The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to direct radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

Applicability: At all times.

Action:

With the calculated doses from the release of radioactive materials in liquid and gaseous effluents exceeding twice the limits of Section 4.4ta, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b calculations shall be made including direct radiation contributions from the reactor units (including outside storage tanks, etc.) to determine whether the above limits of Section 5.1 have been exceeded. If such is the case, prepare and submit to the Commission within 30 days, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR 20.2203(a)(4), shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report.

It shall also describe levels of radiation and concentrations of radioactive material involved, and the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits, and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report within 30 days is considered a timely request, and a variance is granted until staff action on the request is complete.

5.1.1 Surveillance Requirements

a. Cumulative dose contributions from the gaseous effluents shall be determined in accordance with the surveillance requirements of Section 4.4.1, 4.1.1 and 4.2.1 and in accordance with the methodology and parameters contained in Section 5.1.2.
b. Cumulative dose contributions from direct radiation from the reactor units and from radwaste storage tanks shall be determined in accordance with the methodology and parameters in Section 5.1.2. This requirement is applicable only under conditions set forth in Section 5.1, Action.

5.1.2 Implementation of the Requirement Since all other uranium fuel cycle sources are greater than 20 miles away, only the PVNGS site need be considered.

The total dose to any MEMBER OF THE PUBLIC will be determined based on a sum of the doses from all three units' releases and doses from direct radiation from PVNGS.

58 5DCM Rev. 24

This dose evaluation is performed annually and submitted with the Annual Radioactive Effluent Release Report to assure compliance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. NUREG-0543, Methods for Demonstrating LWR Compliance With the EPA Uranium Fuel Cycle Standard (40 CFR Part 190), February 1980, provides a discussion on compliance with 40 CFR Part 190 in relation to the Radiological Environmental Technical Specifications for sites of up to four nuclear power reactors. The NUREG concludes that as long as a nuclear plant site operates at a level below the 10 CFR Part 50, Appendix I reporting requirements, and there is no significant source of direct radiation from the site, no extra analysis is required to demonstrate compliance with 40 CFR Part 190. As a result, this dose evaluation will also be performed whenever calculated doses associated with effluent releases exceed twice the limits of Section 4.4a, 4.4b, 4.1a, 4.1b, 4.2a or 4.2b.

Dose Contribution from Liquid and Gaseous Effluents The annual whole body dose accumulated by a MEMBER OF THE PUBLIC for the noble gases released in gaseous effluents is determined by using the following equation:

DWB = (3.17E-08) Y-i [(Ki) (X/Q)UNIT (Qi)] (5-1)

Where:

Ki the whole body dose factor due to gamma emissions for each identified noble gas radionuclide i, in mrem/yr per gCi/m 3 from Table 3-3.

Qi = the integrated release of radionuclide i, in kCi for the previous calendar year.

(X/Q)UNIT = the highest calculated annual average dispersion parameter, in sec/m 3 , for a particular unit, at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=2.92E-06 from Unit 1

=2.19E-06 from Unit 2

=2.31E-06 from Unit 3 DWB = the annual whole body dose in mrem to a MEMBER OF THE PUBLIC at the controlling location due to noble gases released in gaseous effluents.

3.17E-08 = the inverse of seconds in a year (yr/sec).

59 ODCM Rev. 24

The annual dose to any organ accumulated by a MEMBER OF THE PUBLIC for iodine-131, iodine-133, tritium and all radionuclides in particulate form with half-lives greater than 8 days released in gaseous effluents is determined by using the following equation:

Do= (3.17E-08) Xi [Xk(RikWk) (Qi)] (5-2)

Where:

Do the total annual organ dose from gaseous effluents to a MEMBER OF THE PUBLIC, in mrem, at the controlling location.

Qi = the integrated release of radionuclide i, in pCi, for the previous calendar year.

Rik = the dose factor for each identified radionuclide i, for pathway k (for the inhalation pathway in mrem/yr per WCi/m 3 and for the food and ground plane pathways in m2 -mrem/yr per gCi/sec) at the controlling location. The Rik's for each age group are given in Tables 4-1 through 4-15.

WK = the highest annual average dispersion or deposition parameter for the particular unit, used for estimating the total annual organ dose to a MEMBER OF THE PUBLIC at the controlling location for the particular unit.

= (X]Q)UNIT, in sec/m 3 for the inhalation pathway and for all tritium calculations, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=2.92E-06 from Unit 1

=2.19E-06 from Unit 2

=2.31E-06 from Unit 3 -

= (D/Q)UNIT, in m-2 , for the food and ground plane pathways, for organ dose at the controlling location, from Table 4-16, 4-17, or 4-18, or concurrent meteorological data if available.

=3.25E-09 from Unit 1

=3.88E-10 from Unit 2

=4.21E-10 from Unit 3 3.17E-08 = the inverse of seconds in a year (yr/sec).

60 ODCM Rev. 24

Dose Due to Direct Radiation The component of dose to a MEMBER OF THE PUBLIC due to direct radiation will be evaluated by first determining the direct radiation dose at the site boundary in each sector, and then extrapolating the site boundary dose to the controlling location by the inverse square law of distance.

Dose from Radioactive Liquid and Gaseous Effluents to MEMBERS OF THE PUBLIC due to their activities within the SITE BOUNDARY.

These activities have been determined to be limited to the vicinity of the Energy Information Center (EIC) located inside the SITE BOUNDARY. An assumption was made that no MEMBER OF THE PUBLIC would spend more than eight hours per year at this location.

However this calculation has been historically performed assuming an occupancy factor of one (implying continuous occupancy over the entire. year).

A X/Q, determined for the Energy Information Center, will be used for this assessment.

Equations 5-1 and 5-2 in Section 5.1.2 should be used for this assessment.

61 ODCM Rev. 24

6.0 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

6.1 Requirement

REMP The radiological environmental monitoring program shall be conducted as specified in Table 6-1, based on locations determined using data from the pre-operational monitoring period; and/or the operational monitoring period indicating a need to make changes in the program.

Applicability: At all times.

Action:

a. With the radiological environmental monitoring program not being conducted as specified in Table 6-1, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report, as required by Section 7.2, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
b. With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 6-2 when averaged over any calendar quarter, prepare and submit to the Commission within 30 days, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose* to A MEMBER OF THE PUBLIC is less than the calendar year limits of Section 4.4, 4.1 and 4.2. When more than one of the radionuclides in Table 6-2 are detected in the sampling medium, this report shall be submitted if:

concentration (1) + concentration (2) _>1.0 reporting level (1) reporting level (2)

When radionuclides other than those in Table 6-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose* to a MEMBER OF THE PUBLIC is equal to or greater than the calendar year limits of Section 4.4, 4.1 and 4.2. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

c. With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 6-1, identify locations for obtaining replacement samples and add them to the Radiological Environmental Monitoring Program within 30 days. The specific locations from which samples were unavailable may then be deleted from the monitoring program.
  • The methodology and parameters used to estimate the potential annual dose to a MEMBER OF THE PUBLIC shall be indicated in this report.

62 ODCM Rev. 24

6.1.1 Surveillance Requirements

a. The radiological environmental monitoring samples shall be collected pursuant to Table 6-1 from the specific locations given in Table 6-4 and Figure 6-1 and Figure 6-2 and shall be analyzed pursuant to the requirements of Table 6-1, and the detection capabilities required by Table 6-3.

6.1.2 Implementation of the Requirements The results of the radiological environmental monitoring program are intended to supplement the results of the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected based on the effluent measurements and modeling of the environmental exposure pathways.

Thus the specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides which lead to the highest potential radiation exposures to individuals resulting from station operation.

This requirement is implemented by Nuclear Administrative and Technical Manual procedures.

63 ODCM Rev. 24

TABLE 6-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM Exposure Pathway Number of Representative Samples Sampling and Type and Frequency and/or Sample and Sample Locationsa Collection Frequencya of Analysisd Airborne Samples from 5 locations: 4 samples Continuous sampling Gross beta weeklyc, at or near the SITE BOUNDARIES collected weekly, or 1-131 weekly; gamma Radioiodine and (#14A, 15, 29, 40) including 3 more frequently if isotopic analysis of particulates different sectors of the highest required by dust composite (by calculated annual average ground loading, location) quarterly.

level D/Q.*

1 sample (#40) from areas of special interest, which is from the vicinity of a community having the highest calculated annual average D/Q.

1 sample (#6A) from a control location 15-30 km (9-18 mi) distant and in the least prevalent wind direction.e Direct radiationb Forty (40) routine monitoring Quarterly Gamma dose stations (#5-40, #42, #44, #46, #50) quarterly.

either with two or more dosimeters or with one instrument for measuring and recording dose rate continuously, placed as follows:

An inner ring of stations, one in each meteorological sector in the general area of the site boundary (16 locations);

An outer ring of stations, one in each meteorological sector in the 6-8 km (4-5 mi) range from the site (16 locations); and The balance of the stations (8 locations) to be placed in special interest areas such as population centers, nearby residences, schools, and in one or two areas to serve as control stations.

  • D/Q refers to average annual relative ground deposition rate.

64 ODCM Rev. 24

TABLE 6-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM Exposure Pathway Number of Representative Samples Sampling and Type and Frequency and/or Sample and Sample Locationsa Collection Frequencya of Analysisd Waterborne Surface 85 acre Water storage reservoir (#60) Quarterly grab sample Tritium and gamma 45 acre Water storage reservoir (#61) isotopic analysis Evaporation pond #1 (#59) quarterly.

Evaporation pond #2 (#63)

Evaporation pond #3 (#64)

Ground 2 onsite wells' (#57, #58) Quarterly grab sample Tritium and gamma isotopic analysis quarterly.

Drinking (well) 3 wells from surrounding residences Composite sample of 1-131 analysis on each

(#46, #48, #49) that would be weekly grab samples composite when the affected by its discharge. over 2-week period dose calculated for when 1-131 analysis is the consumption of performed, monthly the water is greater composite of weekly than I mrem per grab samples otherwise year.g Composite for gross beta and gamma isotopic analyses monthly. Composite for tritium analysis quarterly.

Ingetion Samples from milking animals in Semimonthly for Gamma isotopic and 3 locations within 5 km (3 mi) distant animals on pasture; 1-131 analysis Milk (#51, #52) having the highest dose otherwise, monthly. semimonthly when I potential. If there are none, 1 sample from milking animals in each of three animals are on pasture or monthly at other areas between 5 and 8 km (3-5 mi) times.

distant where doses are calculated to be greater than I mrem per year.g One sample from milking animals at a control location 15 to 30 km (9-18 mi) distant (#53) and in the least prevalent wind direction.e 65 ODCM Rev. 24

TABLE 6-1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM Exposure Pathway Number of Representative Samples Sampling and Type and Frequency and/or Sample and Sample Locationsa Collection Frequencya of Analysisd I Food Products

  • 2 samples (#47) of,3 types of broad Monthly during Gamma isotopic leaf vegetation (as available) from growing season. analysis.

locations identified per the criteria of Section 6.2b. of this manual.

I control sample (#62) of 3 types of Monthly during Gamma isotopic broad leaf vegetation (as available) growing season. analysis.

grown 15 to 30 km (9-18 mi) distant in the least prevalent wind direction.e When broad leaf vegetation samples are not available, reports from 4 existing supplemental airborne radioiodine sample locations will be substituted.

66 ODCM Rev. 24

TABLE 6-1 (Continued)

TABLE NOTATION a The number, media, frequency, and location of sampling may vary from site to site. It is recognized that, at times, it may not be possible or practical to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question. Actual locations (distance and direction) from the site shall be provided in Table 6-4 and Figure 6-1 or Figure 6-2 in the ODCM. Refer to Regulatory Guide 4.1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants."

b Regulatory Guide 4.13 provides guidance for thermoluminescence dosimetry (TLD) systems used for environmental monitoring. One or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters.

For the purposes of this table, a thermoluminescent dosimeter may be considered to be one phosphor, and two or more phosphors in a packet may be considered as two or more dosimeters. Film badges should not be used for measuring direct radiation.

c Particulate sample filters shall be analyzed for gross beta 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or more after sampling to allow for radon and thoron daughter decay. If gross beta activity in air or water is greater than 10 times the yearly mean of control samples for any medium, gamma isotopic analysis should be performed on the individual samples.

d Gamma isotopic analysis means the identification and quantification of gamma-emitting radionuclides that may be attributable to the effluents from the facility.

e The purpose of this sample is to obtain background information. If it is not practical to establish control locations in accordance with the wind direction and distance criteria, other sites that provide valid background data may be substituted.

f Groundwater samples should be taken when this source is tapped for drinking or irrigation purposes in areas where the hydraulic gradient or recharge properties are suitable for contamination.

g The dose shall be calculated for the maximum organ and age group, using the methodology and parameters in the ODCM.

67 ODCM Rev. 24

TABLE 6-2 REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES Airborne Particulate Fresh Milk Food Products Analysis Water (pCi/l) or Gas (pCi/m 3) (pCi/I) (pCi/kg, wet)

H-3 20,000

  • Mn-54 1,000 Fe-59 400 Co-58 1,000 Co-60 300 Zn-65 300 Zr-Nb-95 400 1-131 2** 0.9 3 100 Cs-134 30 10 60 1,000 Cs-137 50 20 70 2,000 Ba-La-140 200 300 For drinking water samples. This is a 40 CFR 141 value. If no drinking water pathway exists, a value of 30,000 pCi/l may be used.
    • If no drinking water pathway exists, a reporting level of 20 pCi/l may be used.

68 ODCM Rev. 24

TABLE 6-3 a

DETECTION CAPABILITIES FOR ENVIRONMENTAL ANALYSIS Lower Limit of Detection (LLD)b Airborne Particulate Fresh Milk Food Products Analysis Water (pCi/I) or Gas (pCi/m3) (pCi/1) (pCi/kg, wet)

Gross Beta 4 0.01 H-3 2000*

Mn-54 15 Fe-59 30 Co-58, -60 15 Zn-65 30 Zr-95 30 Nb-95 15 1-131 1** 0.07 1 60 Cs-134 15 0.05 15 60 Cs-137 18 0.06 18 80 Ba-140 60 60 La-140 15 15 NOTE: This list does not mean that only these nuclides are to be detected and reported. Other peaks that are measurable and identifiable, together with the above nuclides, shall also be identified and reported.

  • If no drinking water pathway exists, a value of 3000 pCi/l may be used.
    • If no drinking water pathway exists, a value of 15 pCi/l may be used.

69 ODCM Rev. 24

Table 6-3 (Continued)

TABLE NOTATION a Guidance for detection capabilities for thermoluminescent dosimeters used for environmental measurements is given in Regulatory Guide 4.13.

b Table 6-3 indicates acceptable detection capabilities for radioactive materials in environmental samples.

These detection capabilities are tabulated in terms of the lower limits of detection (LLDs). The LLD is defined, for purposes of this guide, as the smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal.

For a particular measurement system (which may include radiochemical separation):

LLD =466Sb E

  • V
  • 2.22
  • Y
  • exp(-XAt)

Where:

LLD is the a priori lower limit of detection as defined above (as pCi per unit mass or volume),

sb is the standard deviation of the background counting rate or of the counting rate of a blank sample as appropriate (as counts per minute),

E is the counting efficiency (as counts per disintegration),

V is the sample size (in units of mass or volume),

2.22 is the number of disintegrations per minute per picocurie, Y is the fractional radiochemical yield (when applicable),

X is the radioactive decay constant for the particular radionuclide, and At for environmental samples is the elapsed time between sample collection (or end of the sample collection period) and time of counting.

In calculating the LLD for a radionuclide determined by gamma-ray spectrometry the background should include the typical contributions of other radionuclides normally present in the samples (e.g.,

potassium-40 in milk samples). Typical values of E, V, Y, and At should be used in the calculation.

It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report.

70 ODCM Rev. 24

6.2 Requirement

Land Use Census A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden* of greater than 50 m2 (500 ft2) producing broad leaf vegetation.

Applicability: At all times.

Action:

a. With a land use census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Section 4.2.1, identify the new location(s) in the next Annual Radioactive Effluent Release Report, pursuant to Section 7.1.
b. With a land use census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) 20% greater than at a location from which samples are currently being obtained in accordance with Section 6.1, add the new location(s) to the radiological environmental monitoring program within 30 days. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may then be deleted from the monitoring program.

6.2.1 Surveillance Requirements

a. The land use census shall be conducted during the growing season annually using that information that will provide the best results, such as by a door-to-door survey, aerial survey, or by consulting local agriculture authorities. The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.2.2 Implementation of the Requirements The above Requirement is implemented by Nuclear Administrative and Technical Manual procedures.

Broad Leaf vegetation sampling of at least three different kinds of vegetation may be performed at the SITE BOUNDARY in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 6-1 shall be followed, including analysis of control samples.

71 ODCM Rev. 24

6.3 Requirement

Interlaboratory Comparison Program Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program that correspond to samples required by Table 6-1, as applicable.

Applicability: At all times.

Action:

a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.3.1 Surveillance Requirements

a. A summary of the results obtained as part of the above required Interlaboratory Comparison Program and in accordance with the methodology and parameters in this manual shall be included in the Annual Radiological Environmental Operating Report pursuant to Section 7.2.

6.3.2 Implementation of the Requirements PVNGS laboratories or contract laboratories which perform analyses for the Radiological Environmental Monitoring Program (REMP) participate in an Interlaboratory Comparison Program. The participation includes all of the determinations (sample medium-radionuclide combinations) that are included in the monitoring program.

If deviation from specified limits is identified an investigation is made to determine the reason for the deviation and corrective actions are taken as necessary. The results of all analyses made under this program are included in the Annual Radiological Environmental Operating Report.

72 ODCM Rev. 24

TABLE 6-4 RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS LOCATION SAMPLE NOTE DESIGNATION SITE SAMPLE TYPE (d) (a) LOCATION DESCRIPTION (c) 1 TLD SUP E30 Goodyear 2 TLD SUP ENE24 Scott-Libby School 3 TLD SUP E21 Liberty School 4 TLD SUP E16 Buckeye 4 Air SUP E16 Same as TLI 5 TLD (b) SP ESE] I Palo Verde School 6 TLD (b) Control SSE31 APS Gila Bend substation 6A Air (b) Control SSE13 Old US 80 7 TLD (b) SP SE7 Old US 80 and Arlington School Rd.

7A Air SUP ESE3 Arlington School 8 TLD (b) OR SSE4 Southern Pacific Pipeline Rd.

9 TLD (b) OR S5 Southern Pacific Pipeline Rd.

10 TLD (b) OR SE5 355th Ave. and Elliot Rd.

11 TLD (b) OR ESE5 339th Ave. and Dobbins Rd.

12 TLD (b) OR E5 339th Ave. and Buckeye-Salome Rd.

13 TLD (b) IR NI N site boundary 14 TLD (b) IR NNE2 NNE site boundary 14A Air (b) NNE2 371st Ave. and Buckeye-Salome Rd.

15 TLD (b) IR NE2 NE site boundary, WRF access road 15 Air (b) NE2 Same as TLD 16 TLD (b) IR ENE2 ENE site boundary 17 TLD (b) IR E2 E site boundary 17A Air SUP E3 351 st Ave.

18 TLD (b) IR ESE2 ESE site boundary 19 TLD (b) IR SE2 SE site boundary 20 TLD (b) IR SSE2 SSE site boundary 73 ODCM Rev. 24

TABLE 6-4 RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS LOCATION SAMPLE NOTE DESIGNATION SITE SAMPLE TYPE (d) (a) LOCATION DESCRIPTION (c) 21 TLD (b) IR S3 S site boundary 21 Air SUP S3 Same as TLD 22 TLD (b) IR SSW3 SSW site boundary 23 TLD (b) OR W5 N of Elliot Rd 24 TLD (b) OR SW4 N of Elliot Rd.

25 TLD (b) OR WSW5 N of Elliot Rd.

26 TLD (b) OR SSW4 Duke Property 27 TLD (b) JR SWi SW site boundary 28 TLD (b) IR WSW1 WSW site boundary 29 TLD (b) IR WI W site boundary 29 Air (b) WI Same as TLD 30 TLD (b) IR WNW1 WNW site boundary 31 TLD (b). IR NW1 NW site boundary 32 TLD (b) IR NNWI NNW site boundary 33 TLD (b) OR NW4 S of Buckeye Rd.

34 TLD (b) OR NNW5 395th Ave. and Van Buren St.

35 TLD (b) SP NNW8 Tonopah 35 Air SUP NNW8 Same as TLD 36 TLD (b) OR N5 Wintersburg Rd. and Van Buren St.

37 TLD (b), OR NNE5 363rd Ave. and Van Buren St.

38 TLD (b) OR NE5 355th Ave. and Buckeye Rd.

39 TLD (b) OR ENE5 343rd Ave. N of Broadway Rd.

40 TLD (b) SP N2 Wintersburg 40 Air (b) N2 Same as TLD 41 TLD SUP ESE3 Arlington School 42 TLD (b) SP N8 Ruth Fisher School 43 TLD SUP NE5 Winters Well School 74 ODCM Rev. 24

TABLE 6-4 RADIOLOGICAL ENVIRONMENTAL MONITORING SAMPLE COLLECTION LOCATIONS LOCATION SAMPLE NOTE DESIGNATION SITE SAMPLE TYPE (d) (a) LOCATION DESCRIPTION (c) 44 TLD (b) Control ENE35 El Mirage SUP Transit 45 TLD Control ONSITE Central lab, lead pig 46 TLD (b) SP ENE30 Litchfield Park School 46 Water (b) WD NNW8 Local residence 47 TLD SUP E35 Littleton School 47 Vegetation (b) NNE2 Local residence 48 TLD SUP E24 Jackrabbit Trail 48 Water (b) WD SW1 Local residence 49 TLD SUP ENE] I Palo Verde Rd.

49 Water (b) WD N2 Local residence 50 TLD (b) OR WNW5 S of Buckeye-Salome Rd.

51 Milk (b) ESE2 Local residence (goats) 52 Milk (b) ENE3 Local residence (goats) 53 Milk (b) Control NE30 Local residence (goats) 54 Milk SUP NNE4 Local residence (goats)

WD 55 Water SUP SW3 Local residence 57 Ground Water (b) WG onsite Well 27ddc 58 Ground Water (b) WG onsite Well 34abb 59 Surface Water (b) WS onsite Evaporation Pond #1 60 Surface Water (b) WS onsite 85 acre Water storage reservoir 61 Surface Water (b) WS onsite 45 acre Water storage reservoir 62 Vegetation (b) Control ENE26 Commercial produce company 63 Surface Water (b) WS onsite Evaporation Pond #2 64 Surface Water (b) WS onsite Evaporation Pond #3 75 ODCM Rev. 24

NOTES: (a) Distance and direction are relative to the Unit 2 containment, rounded to the nearest mile.

(b) These samples fulfill the requirements of the ODCM, Table 6-1.

(c) Refer to Figure 6-1 and Figure 6-2 for relative locations of sample sites.

(d) IR - inner ring OR - outer ring SP - school or population center WS - waterborne surface WG - waterborne ground WD - waterborne drinking SUP -designated supplemental sampling location 76 ODCM Rev. 24

  • "HASSAYAMPA RIVER NNW. NNE.5 ADOTHWY 0IVISION MP 90 33.75' I.

MIJY ARDtO PA T AT 326.25 I R . SUBSTATION INDIAN SCHOOL RD 111, INDIANSCHOOL. RD_______

.080 roT AN Q RU TH FISHER .,,

-1 5ATSCROOL . .:. " '

303.75,*. .... / .... *......... .... ' PIUS  :

ý5425 'LDq

. . 'i./ .,: ~~

  • ~ VORTAC*--  : . ..

.TRUCK STOP,

- M ICOW V MP51

.7

.U"*

WINTER'SB, 51M

)

WINTER L

" RELAYTOWER

, -.r

  • >*;!1* ~MUNICIPAL .. j.

SADDLEMOUNTAN LOANTECCEEN AIRPORT + HL0.PIEVILLE

..... .... .... A f.

PALOVERDEHILLS U 7875 1ST ~ 2 UAOrVV

""'5 4 '3 :2 .0T ALO.-

  • 0,;

VEVRS ' r............. "-s~- L I .........

  • I W:I0o9 8 27T_'NUCLEAR BASLIN RD GENERATIN , .

P 1 O1NT N 05V SSV DOBSINSRD DEVýF S 1& 2

. .. ... 41R _D_ LO.ERR!VA.

25:.*

2DT 24T'ARL NG 20AT TAJL Y AVE " "VFNn IVN3P KL 525 RI, R l R b A ALIGO L U S G01IAR RVE VERDE WsW, 236.25-SW 213..5..

Po . pln . . .R:. ..... . "-*" .. ORE.......

1915 ss Vl y E, t 7GILLESPIE P DAM KEY TO MAP Figure 6-1 Radiological Environmental Monitoring Sample Site OD School 1; A Air Airstrip + Program Sample Sites 0 - 10 Miles V Vegetation W Water T TLD M Milk 77 ODCM Rev. 24

--j 0

(-I

Figure 6-3 Radiological Environmental Monitoring Program Sample Sites 35 - 75 Miles DELETED 79 ODCM Rev. 24

Figure 6-4 Site Exclusion Area Boundary DELETED Refer to UJFSAR Figure 2.1-4 80 ODCM Rev. 24

Offsite Dose Calculation Manual Palo Verde Nuclear Generating Station 0O 0 Elevation of Exhaust Point Figure 6-5 Above Grade Gaseous Effluent Plant Vent/Condenser Vacuum 145' Fuel Building 109'-9" Release Points

Figure 6-6 Low Population Zone DELETED Refer to UFSAR Figure 2.1-15 82 ODCM Rev. 24

7.0 RADIOLOGICAL REPORTS

7.1 Requirement

Annual Radioactive Effluent Release Report

The Annual Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof.

The Annual Radioactive Effluent Release Report shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability**. This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY (Figure 6-4) during the report period. All assumptions used in making these assessments, i.e., specific activity, exposure time and location, shall be included in these reports. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses. The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the ODCM.

The Annual Radioactive Effluent Release Report shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power Operation. Acceptable methods for calculating the dose contributions are given Section 5.0 and Regulatory Guide 1.109 Rev. 1, October 1977.

The Annual Radioactive Effluent Release Report shall also include information required by the Technical Requirements Manual, Section 5.0.600.1.

A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit.

    • In lieu of submission with the Annual Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC upon request.

83 ODCM Rev. 24

The Annual Radioactive Effluent Release Reports shall include the following information for each class of solid waste (as defined by 10 CFR Part 61) shipped offsite during the report period:

a. Container volume,
b. Total curie quantity (specify whether determined by measurement or estimate),
c. Principal radionuclides (specify whether determined by measurement or estimate),
d. Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
f. Solidification agent or absorbent (e.g., cement, urea formaldehyde).

The Annual Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.

Changes to the ODCM shall be submitted in the form of a complete, legible copy as part of or concurrent with the Annual Radioactive Effluent Release Report for the period of the report in which any change in the ODCM was made. Changes made to the Process Control Program shall be submitted with the Annual Radioactive Effluent Release Report for the period of the report in which any change in the Process Control Program was made.

84 ODCM Rev. 24

7.2 Requirement

Annual Radiological Environmental Operating Report

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison with preoperational studies, with operational controls as appropriate, and with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use censuses required by Section 6.2.

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in Table 6-4 and Figure 6-1 and Figure 6-2 as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactor; the results of licensee participation in the Interlaboratory Comparison Program, required by Section 6.3; discussion of all deviations from the sampling schedule of Table 6-1; and discussion of all analyses in which the LLD required by Table 6-3 was not achievable.

  • A single submittal may be made for a multiple unit station.
    • One map shall cover stations near the SITE BOUNDARY; a second shall include the more distant stations.

85 ODCM Rev. 24

APPENDIX A DETERMINATION OF CONTROLLING LOCATION The controlling location is the location of the MEMBER OF THE PUBLIC who receives the highest doses.

The determination of a controlling location for implementation of 10CFR50 for radioiodines and particulates is known to be a function of:

(1) Isotopic release rates (2) Meteorology (3) Exposure pathway (4) Receptor's age The incorporation of these parameters into Equation 5-2 results in the respective equations at the controlling location. The isotopic release rates are based upon the source terms calculated using the PVNGS Environmental Report, Operating License Stage, Table 3.5-12, without carbon.

All of the locations and exposure pathways, identified in the 1984 Land Use Census, have been evaluated. These include cow milk ingestion, goat milk ingestion, vegetable ingestion, inhalation, and ground plane exposure. An infant is assumed to be present at all milk pathway locations. A child is assumed to be present at all vegetable garden locations. The ground plane exposure pathway is only considered to be present where an infant is not present. Naturally, inhalation is present everywhere an individual is present.

For the determination of the controlling locations, the highest X/Q and D/Q values, based on the 9 year meteorological data base, for the vegetable garden, cow milk, and goat milk pathways, are selected for each unit. The receptor organ doses have been calculated at each of these locations. Based upon these calculations, it is determined that the controlling receptor pathway is a function of unit location. For Unit 1, the controlling receptor is a garden-child pathway; for releases from Unit 2 and Unit 3 the controlling receptor is a cow milk-infant pathway. These determinations are based upon Table 4-16, 4-17, or 4-18, which, in turn, is based upon the 1984 Land Use Census. Locations of the nearest residences, gardens and milk animals, as determined in the 1984 Land Use Census, are given in Table 4-16, 4-17, and 4-18.

86 ODCM Rev. 24

APPENDIX B BASES FOR REQUIREMENTS B-2.1 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63, 64 of Appendix A to 10 CFR PART 50.

There are two separate radioactive gaseous effluent monitoring systems: the low range effluent monitors for normal plant radioactive gaseous effluents and the high range effluent monitors for post-accident plant radioactive gaseous effluents. The low range monitors operate at all times until the concentration of radioactivity in the effluent becomes too high during post-accident conditions. The high range monitors only operate when the concentration of radioactivity in the effluent is above the setpoint in the low range monitors.

B-3.1 GASEOUS EFFLUENT - DOSE RATE This requirement provides reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC in an UNRESTRICTED AREA, either at or beyond the SITE BOUNDARY, in excess of the design objectives of Appendix I to 10 CFR part 50. This requirement is provided to ensure that gaseous effluents from all units on the site will be appropriately controlled. It provides operational flexibility for releasing gaseous effluents to satisfy the Section II.A and II.C design objectives of Appendix I to 10 CFR part 50. For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBERS OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM.

The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrems/year to the skin.

These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year. This requirement does not affect the requirement to comply with the annual limitations of 10 CFR 20.1301 (a).

This requirement applies to the release of radioactive materials in gaseous effluents from all reactor units at the site.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLD). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

87 ODCM Rev. 24

B-3.2 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - CONCENTRATION This requirement is provided to ensure that the annual total effective dose equivalent to individual members of the public from the licensed operation does not exceed the requirements of 10 CFR Part 20, due to the accumulated activity in the evaporation ponds from the secondary system discharges.

Restricting the concentrations of the secondary liquid wastes discharged to the onsite evaporation ponds will restrict the quantity of radioactive material that can accumulate in the ponds. This, in turn, provides assurance that in the event of an uncontrolled release of the pond's contents to an UNRESTRICTED AREA, the resulting total effective dose equivalent to individual members of the public at the nearest exclusion area boundary will not exceed the requirements of 10 CFR Part 20.

This requirement applies to the secondary system liquid waste discharges of radioactive materials from all reactor units to the onsite evaporation ponds.

The required detection capabilities for radioactive materials in gaseous waste samples are tabulated in terms of the lower limits of detection (LLD). Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-4.1 GASEOUS EFFLUENT - DOSE, Noble Gases This requirement is provided to implement Sections I.B, III.A and IV.A of Appendix I, 10 CFR Part 50. This requirement implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to, assure that the releases of radioactive material in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

88 ODCM Rev. 24

B-4.2 GASEOUS EFFLUENT - DOSE - Iodine-131, Iodine-133, Tritium, and All Radionuclides in Particulate Form With Half-Lives Greater Than 8 Days This requirement is provided to implement the requirements of Sections II.C, III.A, IV.A of Appendix I, 10 CFR Part 50. This requirement is the guide set forth in Section II.C of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive materials in gaseous effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." The ODCM calculational methods specified in the surveillance requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The ODCM calculational methodology and parameters for calculating the doses due to the actual release rates of the subject materials are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases for Light-Water-Cooled Reactors," Revision 1, July 1977. These equations also provide for determining the actual doses based upon the historical average atmospheric conditions. The release rate specifications for iodine-131, iodine-133, tritium, and radionuclides in particulate form with half-lives greater than 8 days are dependent upon the existing radionuclide pathways to man, in the areas at and beyond the SITE BOUNDARY. The pathways that were examined in the development of these calculations were: (1) individual inhalation of airborne radionuclides, (2) deposition of radionuclides onto green leafy vegetation with subsequent consumption by man, (3) deposition onto grassy areas where milk animals and meat-producing animals graze with consumption of the milk and meat by man, and (4) deposition on the ground with subsequent exposure of man.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

B-4.3 GASEOUS RADWASTE TREATMENT The OPERABILITY of the GASEOUS RADWASTE SYSTEM and the VENTILATION EXHAUST TREATMENT SYSTEM ensures that the systems will be available for use whenever gaseous effluents require treatment prior to release to the environment. The requirement that the appropriate portions of these systems be used, when specified, provides reasonable assurance that the releases of radioactive materials in gaseous effluents will be kept "as low as reasonably achievable." This requirement implements the requirements of 10 CFR 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the systems were specified as a suitable fraction of the dose design objectives set forth in Sections II.B and II.C of Appendix I, 10 CFR Part 50, for gaseous effluents.

This requirement applies to the release of radioactive materials in gaseous effluents from each reactor unit at the site.

The minimum analysis frequency of 4/M (i.e., at least 4 times per month at intervals no greater than 9 days and a minimum of 48 times a year) is used for certain radioactive gaseous waste sampling in Table 3-1. This will eliminate taking double samples when quarterly and weekly samples are required at the same time.

89 ODCM Rev. 24

B-4.4 SECONDARY SYSTEM LIQUID WASTE DISCHARGE TO ONSITE EVAPORATION PONDS - DOSE This requirement is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. This requirement implements the guides set forth in Section II.A of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents to UNRESTRICTED AREAS will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the' facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Dispersion of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

This requirement applies to the release of liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

B-5.1 TOTAL DOSE AND DOSE TO PUBLIC ONSITE This requirement is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR 20.1301(d). The requirement specifies the preparation and submittal of a Special Report whenever the calculated doses due to releases of radioactivity and to radiation from uranium fuel cycle sources exceed 25 mrems to the whole body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems. Even if a site was to contain up to four reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units (including outside storage tanks, etc.)

are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, submittal of the Special Report within 30 days with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.2203(a)(4), is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to other requirements for dose limitation of 10 CFR Part 20, as addressed in Section 3.2 and 3.1 of the ODCM. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cycle. Demonstration of compliance with the limits of 40 CFR Part 190 or with the design objectives of Appendix I to 10 CFR Part 50 will be considered to demonstrate compliance with the 0.1 rem limit of 10 CFR 20.1301.

90 ODCM Rev. 24

B-6.1 RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM (REMP)

The Radiological Environmental Monitoring Program required by this requirement provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the station operation. This monitoring program implementsSection IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Guidance for this monitoring program is provided by the Radiological Assessment Branch Technical Position on Environmental Monitoring. The initially specified monitoring program will be effective for at least the first 3 years of commercial operation. Following this period, program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLD). The LLDs required by Table 6-3 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an a priori (before the fact) limit representing the capability of a measurement system and not as an a posteriori (after the fact) limit for a particular measurement.

Detailed discussion of the LLD and other detection limits can be found in Currie, L. A., "Lower Limit of Detection: Definition and Elaboration of a Proposed Position for Radiological Effluent and Environmental Measurements," NUREG/CR-4007 (September 1984), and in the HASL Procedures Manual, HASL-300 (revised annually).

B-6.2 LAND USE CENSUS This requirement is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the radiological environmental monitoring program are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m2 provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: (1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and (2) a vegetation yield of 2 kg/mi2 B-6.3 INTERLABORATORY COMPARISON PROGRAM The requirement for participation in an Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

91 ODCM Rev. 24

APPENDIX C DEFINITIONS Note:

The following definitions were derived from the Palo Verde Nuclear Generating Station Technical Specifications. These selected definitions support those portions of the Technical Specifications which were transferred to the ODCM and have been incorporated into the Requirements sections of the ODCM.

Definitions:

The defined terms of this section appear in capitalized type and are applicable throughout the Requirements sections of this ODCM.

ACTION ACTION shall be that part of a requirement which prescribes remedial measures required under designated conditions.

CHANNEL CALIBRATION See the Technical Specification definition.

CHANNEL CHECK See the Technical Specification definition.

CHANNEL FUNCTIONAL TEST See the Technical Specification definition.

DOSE EQUIVALENT -131 See the Technical Specification definition.

FREOUENCY NOTATION The FREQUENCY NOTATION specified for the performance of Surveillance Requirements. shall correspond to the intervals defined in Table C-1.

GASEOUS RADWASTE SYSTEM A GASEOUS RADWASTE SYSTEM shall be any system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

MEMBER(S) OF THE PUBLIC MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant.

This category does not include employees of the licensee, its contractors, or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational, or other purposes not associated with the plant.

92 ODCM Rev. 24

APPENDIX C DEFINITIONS (Continued)

OPERABLE-OPERABILITY A system, subsystem, train, component or device shall be OPERABLE or have OPERABILITY when it is capable of performing its specified function(s), and when all necessary attendant instrumentation, controls, electrical power, cooling or seal water, lubrication or other auxiliary equipment that are required for the system, subsystem, train, component or device to perform its function(s) are also capable of performing their related support function(s).

MODE See the Technical Specification definition.

PROCESS CONTROL PROGRAM The PROCESS CONTROL PROGRAM shall contain the current formulas, sampling, analyses, test, and determinations to be made to ensure that processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements, and other requirements governing the disposal of solid radioactive waste.

PURGE-PURGING PURGE or PURGING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is required to purify the confinement.

RATED THERMAL POWER See the Technical Specification definition.

SITE BOUNDARY The SITE BOUNDARY shall be that line beyond which the land is neither owned, nor leased, nor otherwise controlled by the licensee.

SOLIDIFICATION SOLIDIFICATION shall be the conversion of radioactive wastes from liquid systems to a homogeneous (uniformly distributed), monolithic, immobilized solid with definite volume and shape, bounded by a stable surface of distinct outline on all sides (free-standing).

SOURCE CHECK A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a source of increased radioactivity.

THERMAL POWER THERMAL POWER shall be the total reactor core heat transfer rate to the reactor coolant.

93 ODCM Rev. 24

APPENDIX C DEFINITIONS (Continued)

UNRESTRICTED AREA An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by the licensee for the purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and/or recreational purposes.

VENTILATION EXHAUST TREATMENT SYSTEM A VENTILATION EXHAUST TREATMENT SYSTEM shall be any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal adsorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents. Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTINQ VENTING shall be the controlled process of discharging air or gas from a confinement to maintain temperature, pressure, humidity, concentration, or other operating condition, in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

94 ODCM Rev. 24

TABLE C-1 FREQUENCY NOTATION NOTATION FREQUENCY S At least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

D At least once per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

w At least once per 7 days.

At least 4 times per month at intervals no greater than 4/M 9 days and a minimum of 48 times per year.

M At least once per 31 days.

Q At least once per 92 days.

SA At least once per 184 days.

ANNUALLY At least once per 365 days R At least once per 18 months.

P Completed prior to each release.

S/U Prior to reactor startup.

N.A. Not Applicable.

95 ODCM Rev. 24

APPENDIX D REFERENCES 1 Title 10, Code of Federal Regulations, Part 20, "Standards for Protection Against Radiation."

2 Title 10, Code of Federal Regulations, Part 50, "Domestic Licensing of Production and Utilization Facilities."

3 Title 40, Code of Federal Regulations, Part 190, Environmental Radiation Protection Standards for Nuclear Power Operations."

4 Federal Register, Vol. 58, No. 245, Thursday, December 23, 1993, Notices, pages 68170-68179.

5 Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Revision 1, June 1974.

6 Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I,"

Revision 1, October 1977.

7 Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977.

8 Regulatory Guide 4. 1, "Programs for Monitoring Radioactivity in the Environs of Nuclear Power Plants," Revision 1, April 1975.

9 NUREG-0133, Preparation of Radiological Effluent Technical Specifications For Nuclear Power Plants, Oct. 1978.

10 NUREG 0841, "Final Environmental Statement Related to the Operation of Palo Verde Nuclear Generating Station, Units 1, 2, and 3", Section 5.9.1.4, February, 1982.

11 NUREG-1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactor", Arpil 1991.

12 Environmental Report Operating License Stage, Palo Verde Nuclear Generating Station, December 1981.

13 PVNGS Updated Final Safety Analysis Report 14 Calculation 13-NC-ZY-252, "Annual Average Dose from Normal Operation Liquid Discharge from the Evaporation Pond", Rev 0.

15 Calculation 13-NC-ZY-253, "Annual Average Dose from Normal Operation Airborne Direct and Sky Shine from the Evaporation Pond", Rev 0.

16 Calculation 13-NC-ZY-254, "Radiation Dose Due to an Evaporation Pond Dike Failure During a Seismic Event", Rev. 0.

96 ODCM Rev. 24

APPENDIX F Changes to the PCP 203 PVNGS ARERR 2009

Page 1 of 2" CRAI 3337785 Tubman, Christopher bmnZ072 hr Digitally signed by Tubman, Christopher J(Z07290)

O: cn=Tubman, ChrstopherJ(ZO7290)

,., P),'Reason: I am the author of this document

- Date: 2009.09.04 16:49:28 -0700' Evaluator (print/sign) (date)

DESCRIPTION Present the change created by Revision 4 to the Plant Review Board in accordance with 76DP-ORP03, Radwaste Process Control Plan.

EVALUATION 76RP-0RW79, CD-600 System Operations, provides instruction for the Process Control Program (PCP). Revisions to procedures within the scope of the PCP must be evaluated to determine if the revision constitutes a reportable change under 76DP-ORP03, Radwaste Process Control Program. Under section 3.7, 'Process Control Program Revisions',

section 3.7.1.1 1describes a reportable change as, 'Any change in processing parameters that could cause an alteration in the final waste product characteristics...'

76RP-0RW79, revision 4 added section 3.4.5.2, 'Salt Block Discharge' as an alternate waste discharge method, in addition to the 'Dry Discharge' method. The salt block discharge method uses different parameters, and parameter values, to determine when the material is discharged as a final waste form. This is a change to the processing parameters and the change affects the final waste product characteristics. Addition of section 3.4.5.2 is a reportable change in accordance with section 3.7.1.1 of the PCP procedure.

This report highlights the revision 4 change to the 'CD-600 System Operations' procedure as reportable and requires the review and acceptance of the Plant Review Board (PRB) in accordance with PCP procedure.

While the salt block discharge method is an addition to the CD-600 operating procedure, this discharge method has been employed at PVNGS as far back as November 14, 1995 as described in procedure 76CP-9NP3 1, Revision 01, 'CD- 1000 Operation.' The CD- 1000 equipment was used to process evaporator concentrates prior to the use of the CD-600 equipment. The CD-1000, and associated procedures, was evaluated prior to placing into service. The evaluated procedures included the section, salt block discharge, being added

Page 2 of 2 to the CD-600 operating procedure. Company correspondence 11 5-02096-MAF dated July 8, 1996 provides evidence.

The CD-600 was placed in operation in September 2006 and is essentially a smaller version of the CD- 1000. The transition from the CD- 1000 to the CD-600 included new operating procedures. Absent from revision 0 through 3 of the CD-600 operating procedure was the salt block discharge method. This omission was not noted until the Unit 3 evaporator concentrates processing campaign. Revision 4 effectively reintroduced the salt block discharge method, and its processing parameters, into the PCP through the CD-600 procedure. As before, a note in the procedure indicates the dry discharge method is preferred and the use of the salt block discharge method must be approved.

CORRECTIVE ACTIONS & ENHANCEMENTS There are no corrective actions, or enhancements, to implement concerning CRAI 3337785. This assignment is complete.

Radwaste Process Control Program 76DP-ORP03 Revision 6 Appendix A, Page 1 of 1 (Sample)

PCP Revision Notice Date: 09/01/2009 Page 1 of 1 Originator: Chris Tubman Ext.: 4025 Description of Revision:

Added section 3.4.5.2, Salt Block Discharge, to 76RP-0RW79, 'CD-600 System Operations.'

F- Revision is NOT reportable - PRB review, R.P. Director approval, and reporting in the annual Radioactive Effluent Release Report are not required.

- Revision is reportable - Requires PRB review, R.P. Director approval, reporting in the annual Radioactive Effluent Release Report, and a justification for the revision below.

Justification for Revision: (Ensure the following items are addressed)

( UFSAR 13.5.2.2.E)

1. Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change(s), and
2. A determination that the change will maintain the overall conformance of the solidified waste product to existing requirements of Federal, State, or other applicable regulations.

Addition of section 3.4.5.2, Salt Block Discharge, to procedure 76RP-0RW79 corrects the omission of this section during the transition from the CD-1000 operation procedure to the CD-600 system operation procedure. The salt block discharge method, associated parameters, and the requirement for approval have been employed since November, 1995.

Typically, Units 1 and 2 produce a dry granular salt material and is discharged by the dry discharge method. Historically, Unit 3 has a produced a material that requires the salt block discharge method to transfer the material into waste containers.

Company correspondence identification number 115-02096-MAF, dated July 8, 1996,indicates the set up, maintenance, and operating procedure, which includes the salt block discharge, were evaluated along with the EER (#91-SR-015), and 50.59 (#I-90-SR-30) for the CD-1000 equipment.

Revision 4 of 76RP-0RW79 reincorporates a discharge method omitted during the transition from the CD-1000 processing equipment to the CD-600 processing equipment.

P(Z995. :Digitally signod by McDonnell, Jarnes P(Z99501)

Approved By: McDonnell, James 1O )..

  • .M.........,J,0.°, ......

/ Z6: 2009.09.0415:41:40-07W D ate:

RadiologicalServices DepartmentLeader Use additional pages as required. 76DP-ORP03, Appendix-A NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 13 of 13

ELECTRONIC PROCEDURE CHANGE RECORD PROCEDURE NO: 76RP-0RW79 () REVISION NO: 004 CATEGORY 10 2 0 3J1 (OTITLE CD-600 SYSTEM OPERATIONS OPROCEDURE ACTION: REVISIONIo NEW[ SUPERSEDE[] CANCELO El EXPEDITED? YES 0 NO :J 7

( JMRL UPDATE? YES E1 NOJ FULL BASIS CHECK? YES [J NOJ ( LEVEL OF USE IINFORMATION DESCRIPTION OF CHANGE Added section 3.4.5.2 Salt Block Discharge.

The RMC Final Review was performed by P. Donnelly on 06/24/2008.

Donnelly, Patrick()Digitally signed by Donnelly, Patrick T O cn=Donnelly, Patrick T(Z32986),

DN:

T(Z32986) emrail=Patrick.Donnelly@aps.com Date: 2008.06.24 09:17:37 -07'00' TEXT DOES.NOT AUTOMIVATICALLY :ROLL TO, CONTI NUATI'ON SHEET. DSCRilPT)ON - CONTINUATION YES REG. REVIEW @ 10CFR50.59/72.48 REQD? YES[l NO[J 50.59/72.48 DOC NUMBER: (j)

In accordance with 93DP-0LC17, rev 2, steps 2.1.3.1 and 2.2.11, this procedure action does not require further regulatory screening (i.e., 10CFR50.59). These steps exclude administrative changes to non-UFSAR documents that do not affect the way SSCs are designed, operated or controlled and changes to the Radiation Protection Program which is governed by the more specific criteria contained in 10CFR20.

Applicability Determination performed by David Heckman T EXTDOES N AUTOMATICALLY ROLLTO CONTINUATION SHEET QAPPLICABILITY - CONTINUATION YES

-EFFECTIVE DATE REQUIRED PROCEDURE CHANGE RECORD PACKAGE CONTENTS LORPR9'CES"IG *NAD REQUIRED? YES El NOJ NAD PAGE COUNT: _ ___

EFFECTIVE DATE 06/24/2008 OTHER DOCUMENTS, etc...........PAGE ""EPCR, COUNT: 2 EFFECTIVE TIME [OPTIONAL] PROCEDURE PAGE COUNT: 32 TOTAL PAGE COUNT: 34(*--

APPROVALS Bungad .la *-* Digitally z18012)signed by Bungard, James P W illiama s, S.Cott .R(Z01176)

Digitally signed by Williams, Scott Bungard, JameS1,DN: cn=Bungard, James P(Z18012)

-'/ 4 4 l- 17 I-76)

"DN:,cn=Williams,

)

Scott R(Z01176)

Date. 2008.06.24 09:25:28 -07D00' P(Z1 802) */2' Reason: I have reviewed this n

Date: 2008.06.24 11:36:32 -07'00'

( PREPARER - SIGNATURE DENOTES THAT DOCUMENT IS REVIEWER - SIGNATURE DENOTES REVIEW COMPLETION AND READY FOR REVIEW AND APPROVAL QUALIFIED IN SWMS AS PROCEDURE TECHNICAL REVIEWER PRB CONCURRENCE [IF REQUIRED] - SIGNATURE DENOTES PRB CONCURS WITH REVISION ©

--, Digitally signed by Gray, Thomas S G ray, Thom~as*<96o Gray T ho '

Sý(Z99610)

DN: cn=Gray, Thomas S(Z99610),

email=Thomas.Gray @ aps.com S-(Z996 10) R'asý)n, I am approving this document Date: 2008.06.24 12:09:31 -07'00' OWNER/DESIGNEE - DIGITAL SIGNATURE SECURES

(ýNAD REVIEWER [IF REQUIRED] DOCUMENT FOR TRANSMITTAL AND USE PV-E0197 Ver. 12a 01DP-OAP01

CONTINUATION SHEET - PROCEDURE CHANGE RECORD This information is provide as an evaluation against the requirement for PRB review of recordable changes to the PCP. According to 76DP-0RP03, "Radwaste Process Control Program", step 3.7.1 so identifies reportable changes:

3.7.1 Reportable change(s) to the Process Control Program consist of the following: (CRDR 981853-05) 3.7.1.1 Any change in processing parameters that could cause an alteration in the final waste product characteristics (e.g., changing: minimum dewatering/drying times or temperatures, processing time or temperature for concentrate evaporation, vendors, or methods for processing liquid waste, etc.);

3.7.1.2 Any change to the purpose, scope, or intent of the PCP; 3.7.1.3 Any change to the PCP that might cause inconsistencies with the NRC Waste Form Technical Position Paper (Rev. 1, January 1991), or Branch Technical Position - Effluent Treatment Systems Branch 11-3, section II (Rev. 2, July 1981).

In evaluating the impact of these changes, all aspects of what constitutes a recordable change according to 76DP-ORP03 must be examined:

3.7.1.1 - No change has been made to date that could cause an alteration in the final waste product characteristics.

The section added to this procedure provides for the testing of equipment by creating a salt block to simulate a final waste product.

3.7.1'.2 - This change does not resulted in a change to the purpose, scope or intent of the PVNGS PCP. According to 76DP-0RP03, section 1.0, the scope of the PCP is specific to the processing of wet waste. Further, major changes to any (solid, liquid or gaseous) waste treatment system requires PRB review as per UFSAR 13.4.2.6 (h) and may be reportable in meeting the intent of Regulatory Guide 1.143, ""Standard for Low-Level Radioactive Waste Processing Systems." None of these thresholds have been met as a result of this change.

3.7.1.3 - This change has' no impact on meeting the relevant requirements set forth in NUREG 800 - ETSB 11-3 section II,which established the assurance standards for solidification or dewatering. Those standards include impact on PCP (previously discussed) and free liquid detection. Since this change does provides for an equipment test that will not be used to create a waste product, the requirements for waste form and absence of free-standing liquids are not affected.

It is the conclusion of Radiological Engineering that a reportable change has not occurred resulting from this procedure change.

CONTINUATION PAGE NUMBER:

PV-E01 97 Ver. 12a (Continuation) 01DP-OAP01

NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 15 of 32 Revision CD-600 SYSTEM OPERATIONS 76RP-0RW79 4 3.4.5.1.8 Document the time and estimated volume of the waste discharged on ATTACHMENT 9.5 OPERATION LOG SHEET.

3.4.5.1.9 Document the height of the waste in inches from the container top, equivalent volume, weight (from ATTACHMENT 9.6 CONTAINER WASTE HEIGHT/WASTE VOLUME - Conversion Chart), contact dose reading, date capped, and RNC Technician's name on ATTACHMENT 9.5 OPERATION LOG SHEET, once the container is deemed to be full or processing is complete.

NOTE The waste container(s) may be staged in the transfer cart at any time during the processing. ALARA shall be considered when scheduling the staging of the container(s).

3.4.5.2 Salt Block Discharge (SBD) 3.4.5.2.1 Chill water return temperature, TI-2 has decreased to the point that it is equal to +/- 6' F to the supply temperature, TI-1.

3.4.5.2.2 Steam pressure is greater than 25 psig.

3.4.5.2.3 The intervals of the blow down cycles of the vacuum skid are 12 minutes or greater.

3.4.5.2.4 If possible, visual observation shows no free flowing water as seen by camera number one.

3.4.5.2.5 Open DV-1 as required to discharge after step 3.4.5.2.1 through step 3.4.5.2.4 are complete in accordance with step 3.4.6.1 through step 3.4.6.14.

3.4.5.2.6 Document the time and estimated volume of the waste discharged on Attachment 9.5.

3.4.5.2.7 For full containers, document the height of the waste in inches from the container top, the equivalent volume, weight, contact dose reading, date capped, and operator on the waste processing log.

3.4.5.2.8 The drums or liners are to have a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> minimum "cure time" for salt block products prior to moving them into the RCA yards.

PV216-OBNI(4-88)

Radwaste Process Control Program I 76DP-ORP03 I Revision 6 The purpose of this procedure is to describe the Process Control Program (PCP) used at Palo Verde Nuclear Generating Station (PVNGS) to process various radioactive "wet wastes", including resin slurries, evaporator bottoms, and filter cartridges. This procedure also describes the procedural controls governing revisions to the PCP, delineates criteria used to evaluate the reportability of changes made to the PCP, and describes the reporting requirements.

Procedure Level of Use is Information I NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL I Page 1 of 13 1

Radwaste Process Control Program 76DP-ORP03 Revision 6 TABLE OF CONTENTS Section Page Number 1.0 PURPOSE and SCOPE 3 1.1 Purpose 3 1.2 Scope 3 2.0 RESPONSIBILITIES 4 2.1 The Vice President, Nuclear Production 2.2 The Director, Radiation Protection 2.3 Radiological Services Department Leader 3.0 PROCESS CONTROL PROGRAM 3.1 Description 3.2 Precautions and Prerequisites 3.3 Process Parameters 3.4 Vendors 3.5 Waste Sampling 3.6 Stability Requirement 3.7 Process Control Program Revisions 3.8 Record Retention 4.0 DEFINITIONS and ABBREVIATIONS 10 4.1 Definitions 10 4.2 Abbreviations 11

5.0 REFERENCES

11 Implementing 11 5.1 5.2 Developmental 11 6.0 APPENDICES 12 6.1 Appendix A - PCP Revision Notice 13 I NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL ] Page 2 of 13

Radwaste Process Control Program 76DP-ORP03 Revision 6 1.0 PURPOSE and SCOPE 1.1 Purpose (RCTS 032630-01) 1.1.1 This procedure describes the Process Control Program (PCP) at Palo Verde Nuclear Generating Station (PVNGS) for processing radioactive wet waste.

This plant-specific PCP establishes a set of process parameters which provide boundary conditions within which reasonable assurance can be given that the processed waste will contain essentially zero free liquid and have appropriate waste form characteristics. (Branch Technical Position ETSB 11-3)

Technical Requirements Manual, section 5.0.500.17, states, "The purpose of the Process Control Program is to contain the current formulas, sampling, analyses, test, and determinations to be made to ensure that processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Parts 20, 61, and 71, State regulations, burial ground requirements,' and other requirements governing the disposal of solid radioactive waste."

1.1.2 Complete waste processing and absence of free liquid prior to shipment is assured by the implementation of a process control program consistent with the recommendations of Branch Technical Position ETSB 11-3. (UFSAR 11.4.2.3.1) 1.1.3 The program will comply with applicable federal and Arizona state regulations.

Implementation of the PCP will be in accordance with applicable portions of the PVNGS Quality Assurance program.

1.1.4 This PCP should be implemented to maintain any potential radiation exposure to plant personnel to "as low as is reasonably achievable" (ALARA) levels, in accordance with 75DP-ORP03, "ALARA Program Overview."

1.2 Scope 1.2.1 This program applies to processing of radioactive wet waste using plant-installed systems, plant portable processing systems, and vendor provided portable processing systems at PVNGS.

1.2.2 The process control program does not apply to radioactive waste that is shipped off site for additional 'processing prior to disposal.

NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 3 of 13

I 76DP-ORP03 I Radwaste Process Control Program I Revision 6 1

2.0 RESPONSIBILITIES 2.1 The Vice President, Nuclear Production Ensure the performance of a review by a qualified individual/organization of changes to the Process Control Program (PCP).

2.2 The Director, Radiation Protection 2.2.1 Review and approve any reportable changes to the Process Control Program.

(UFSAR 13.5.2.2.E) 2.2.2 Ensure that reportable changes to the PCP are forwarded to the Plant Review Board (PRB) for review and acceptance prior to implementation. (tFSAR 13.4.2.6.h) 2.3 Radiological Services Department Leader (RSDL) 2.3.1 Implement the Radwaste Process Control Program.

2.3.2 Provide an independent review of proposed changes to the Process Control Program.

2.3.3 Make changes to the PCP as necessary to maintain compliance with State and Federal Regulations, Licensing commitments, and burial site requirements.

2.3.4 Report changes to the Process Control Program to the NRC in the Annual Radioactive Effluent Release Report for the period in which they were made.

This submittal should contain: (UJFSAR 13.5.2.2.E)

" Sufficiently detailed information to totally support the rationale for the change without benefit of additional or supplemental information;

" A determination that the change did not reduce the overall conformance of the processed waste product to existing criteria for solid wastes.

2.3.5 Monitoring the activities of vendor personnel to assure vendor compliance with the Process Control Program and the PVNGS Quality Assurance Program.

I NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL I Page 4 of 13 1

Radwaste Process Control Program 76DP-ORP03 Revision 6 2.3.6 Review and approve vendor radioactive waste processing procedures through the PVNGS procedure approval process.

2.3.7 Ensuring personnel under his control are fully aware of, and operate equipment in compliance with, the Process Control Program.

2.3.8 Establish and maintain records documenting the PCP periodic reviews, revision technical reviews, records of the review and evaluation of changes to the PCP, and PCP implementing procedures.

3.0 PROCESS CONTROL PROGRAM 3.1 Description The process control program (PCP) consists of the procedures and processes by which processing and packaging of low-level radioactive wet waste is accomplished and which provide reasonable assurance of compliance with low-level waste requirements. While other procedures may be used in the course of processing and packaging the affected waste types, only those identified in this procedure are considered to be within the scope of the PCP. (CRDR 981853-06) 3.1.1 PCP Procedures:

" 76RP-ORWO5, Packaging and Classification of Radioactive Waste

" 76RP-ORWO8, High Integrity Container Setup and Closure

  • 76RP-ORWO9, Transfer, Storage, and Processing of Radioactive Filters
  • Any vendor procedure used in processing or packaging wet waste 3.1.2 PCP Processes 0 Dehydration (evaporation) or solidification, such as with evaporator concentrates

. Dewatering or drying, such as with bead resin 0 Packaging any radioactive material in a High Integrity Container NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Pa7ge 5 of 13

I1 Radwaste Process Control Program 76DP-ORP03 Revision 6 3.1.3 Wet Waste Types The various wet waste types within the scope of the PCP at PVNGS are:

  • Evaporator concentrates from a forced recirculation evaporator.
  • Radioactive bead resin waste.
  • Radioactive spent filter cartridges.
  • Radioactive sludge.
  • Other miscellaneous wet wastes, as determined by R.P. supervision.

3.2 Precautions and Prerequisites 3.2.1 The radiological requirements necessary for implementing the Process Control Program are contained in 75DP-ORPO1, "RP Program Overview " and the other procedures of the RP program. (RCTS 032648-01) p3.2.2 All radioactive wet waste processing will be accomplished in accordance with approved procedures.

3.2.3 The final waste product of all wet waste processing evolutions must be verified by a PVNGS representative. (IEN 87-07) 3.2.4 Waste generators are allowed to stabilize Class B & C waste by placing waste in a High Integrity Container (HIC) provided there is an associated topical report that has been approved by the NRC or for which a Certificate of Compliance, or other State Approval document, has been issued. (IEN 89-27) 3.2.5 Waste generators who use polyethylene containers for the disposal of Class B and Class C waste should either: (IEN 89-27)

  • Place and ship the polyethylene container in an approved HIC, or
  • obtain assurance and documentation from the disposal site operator that structural stability consistent with Part 61 will be provided at the site.

3.2.6 When packaging wet waste in a HIC, the effects of transportation on the amount of drainable liquid that might be present should be considered. (BTP on Waste Form, Rev. 1, 1/91)

I NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL I Page 6 of 13

Radwaste Process Control Program 76DP-ORP03 I Revision 6 3.3 Process Parameters (CRDR 981853-06) 3.3.1 Proper waste characteristics for Class A wet waste will be assured by adhering to the conditions prescribed in applicable procedure(s).

3.3.2 For Class B and Class C waste, a portable processing system may be used in accordance with approved operating procedures and a 10 CFR 61 Topical Report approved by the NRC, the burial facility, or its regulating agency.

3.3.3 Evaporator Concentrates - complete processing of the waste batch and absence of free liquid is assured by meeting the time and temperature requirements specified in operating procedures for the equipment used to process concentrates for burial.

3.3.4 Ion exchange resins may be dewatered in accordance with the Process Control Program and a 10 CFR 61 Topical Report approved by the NRC, the burial facility, or its regulating agency. The parameters specified in the topical report ensure the final waste product will have appropriate waste form characteristics.

3.3.5 Radioactive spent filters, and other appropriate radioactive material, may be placed in an approved High Integrity Container for disposal, in accordance with approved procedures and the container Certificate of Compliance (C of C).

3.4 Vendors 3.4.1 Vendor operating procedures will undergo the same review and approval process as PVNGS procedures.

3.4.2 Vendor activities will be monitored to assure vendor compliance with the Process Control Program and the PVNGS Quality Assurance Program 3.4.3 If vendor processing is utilized, a PVNGS representative will verify proper processing of the waste product in accordance with the PCP, the vendor's operating procedure, and a 10 CFR 61 Topical Report approved by the NRC, if applicable.

3.5 Waste Sampling 3.5.1 Sampling requirements for the various wet waste streams are contained in 76RP-ORWO3, Waste Stream Sampling and Database Maintenance.

NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 7 of 13

Radwaste Process Control Program 76DP-ORP03 Revision 6 3.6 Stability Requirement The waste class of radioactive wet waste should be evaluated in accordance with 76RP-ORWO5, "Packaging and Classification of Radioactive Waste," prior to packaging to ensure meeting the stability specifications of 10CFR61.56, "Waste characteristics," and the Branch Technical Position ETSB 11-3 (Revision 2, July 1981).

3.7 Process Control Program Revisions 3.7.1 Reportable change(s) to the Process Control Program consist of the following:

(CRDR 981853-05) 3.7.1.1 Any change in processing parameters that could cause an alteration in the final waste product characteristics (e.g., changing: minimum dewatering/drying times or temperatures, processing time or temperature for concentrate evaporation, vendors, or methods for processing liquid waste, etc.);

3.7.1.2 Any change to the purpose, scope, or intent of the PCP; 3.7.1.3 Any change to the PCP that might cause inconsistencies with the NRC Waste Form Technical Position Paper (Rev. 1, January 1991),

or Branch Technical Position - Effluent Treatment Systems Branch 11-3, section II (Rev. 2, July 1981).

3.7.2 The Radiological Services Department Leader will review proposed changes to Process Control Program processes, including the determination of reportability.

3.7.2.1 If the proposed revision does not meet any of the criteria in step 3.7.1, then the change is not reportable. That determination will be documented in one of two ways. Either by:

  • placing a brief description on Appendix A, PCP Revision Notice, marking the appropriate box, and a signature by the RSDL, or
  • annotating in the procedure change record that the change is not reportable. The RSDL signature for approval of the procedure revision will indicate his concurrence that the revision is not reportable.

NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 8 of 13

Radwaste Process Control Program 76DP-ORP03 Revision 6 3.7.2.2 If the proposed revision is reportable, then Appendix A will be completed, with the appropriate box marked, and it will be signed by the RSDL to indicate his approval.

3.7.3 Document the evaluation of reportable changes to any affected process on Appendix A, "PCP Revision Notice," and attach to the change document (e.g.,

procedure, 50.59, etc.). Documentation for reportable changes to the PCP shall include the following:

3.7.3.1 Sufficient details to totally support the rationale for the change; 3.7.3.2 A determination that the change did not reduce the conformance of the final waste product to existing criteria for waste disposal.

3.7.4 For changes that are determined to be reportable, forward the Process Control Program revision package to PRB for review and acceptance. (UFSAR 13.4.2.6.h) 3.7.4.1 After receiving review and acceptance from the PRB, forward the package to the Director, Radiation Protection for approval of the revision. (UFSAR 13.5.2.2.E) 3.7.5 Copies of the following documents should be maintained on file by Radiological Engineering:

  • Appendix A, "PCP Revision Notice"
  • Cross-Discipline Reviews, if applicable
  • Any associated 10 CFR 50.59 reviews and evaluations 3.8 Record Retention 3.8.1 Records of reviews performed for changes made to the PCP shall be retained for the duration of the operating license, or the requirements of the insurer, whichever is greater. (UFSAR 17.2.6.4.1 (A)( 14))

3.8.2 Turnover applicable records to NIRM in 'accordance with the appropriate turnover instructions.

NUCLEAR ADMINISTRATIVE AND TECHNICAL, MANUAL I Page 9 of 13

Radwaste Process Control Program 76DP-ORP03 Revision 6 4.0 DEFINITIONS and ABBREVIATIONS 4.1 Definitions 4.1.1 Approved High Integrity Container - A container used to provide the long-term stability requirement of 10 CFR 61: Approval is verified by reviewing a copy of the "Certificate of Compliance" prior to the container's use and maintaining the C of C on file during and subsequent to the container's use.

4.1.2 Batch - An isolated quantity of waste feed to be processed having essentially constant physical and chemical characteristics.

4.1.3 Certificate of Compliance (C of C) - for containers, an approval document, normally issued by the burial state licensing authority, which approves the listed container for use as a burial container. It also prescribes handling requirements and conditions for use.

4.1.4 Low Level Radioactive Waste (LLW) 4.1.4.1 Those low-level radioactive wastes containing source, special nuclear, or by-product material that are acceptable for disposal in a near surface land disposal facility.

4.1.4.2 Radioactive waste that contains no hazardous materials as defined in RCRA.

4.1.4.3 Radioactive waste not classified as high-level radioactive waste, transuranic waste or spent nuclear fuel.

4.1.5 Process Control Program (PCP) - A program that provides assurance that the methods used for processing wet low-level radioactive waste will result in a waste form that is acceptable for disposal at a licensed land disposal facility in accordance with 10 CFR 61 requirements.

4.1.6 Reportable - For the purposes of this procedure, means that the change meets listed requirements; therefore, PRB review is required and reporting is mandated in the Annual Radioactive Effluent Release Report.

4.1.7 Stability - As used in this document, "stability" means structural stability. A structurally stable waste form will generally maintain its physical dimensions and its form under expected disposal conditions. Stability can be provided by the waste form itself, processing the waste into a stable waste form, or placing the waste into a disposal container or structure that provides stability.

4.1.8 Waste Form - usually refers to the stability of processed waste: stable waste form or unstable waste form. Also applied to physical state of waste (i.e.,

liquid, solid, gas).

I NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL I Page 10 of 13 1

Radwaste Process Control Program 76DP-ORP03 Revision 6 4.2 Abbreviations 4.2.1 ALARA - As Low As Reasonably Achievable 4.2.2 BTP - Branch Technical Position 4.2.3 HIC - High Integrity Container 4.2.4 PCP - Process Control Program 4.2.5 PRB -Plant Review Board 4.2.6 RCRA - Resource Conservation and Recovery Act 4.2.7 RSDL - Radiological Services Department Leader

5.0 REFERENCES

5.1 Implementing 5.1.1 75DP-ORPO1, RP Program Overview 5.1.2 75DP-ORP03, ALARA Program Overview (RCTS 032633-01) 5.1.3 76RP-ORWO5, Packaging and Classification of Radioactive Waste 5.1.4 76RP-0RW03, Waste Stream Sampling and Database Maintenance 5.1.5 Palo Verde Nuclear Generating Station Technical Requirements Manual Section 5.0.500.17.

5.1.6 PaloVerde Nuclear Generating Station updated Final Safety Analysis Report, Sections 11.4, 12.1, 12.3, 13.4, 13.5, and 17.2. (RCTS 032632-01) 5.1.7 USNRC Branch Technical Position ETSB 11-3, Rev 2, July 1981 "Design Guidance for Solid Radioactive Waste Management Systems Installed in Light Water Cooled Nuclear Power Reactor Plants." (RCTS 032636-01) 5.1.8 NRC Technical Position on Waste Form, Rev 1, January 1991.

5.1.9 NRC Information Notice 89-27, "Limitations on the Use of Waste Forms and High Integrity Containers for the Disposal of Low-Level Radioactive Waste,"

March 8, 1989.

5.1.10 NRC Information Notice 87-07, 2/3/87, "Quality Control of Onsite Dewatering

/ Solidification Operations by Outside Contractors."

5.2 Developmental 5.2.1 93DP-OLCO7, 10 CFR 50.59 and 72.48 Screenings and Evaluations 5.2.2 10 CFR 20, "Standards for Protection Against Radiation" NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL I Page I I of 13 1 _/

Radwaste Process Control Program 76DP-ORP03 Revision 6 5.2.3 10 CFR 61, "Licensing Requirements for Land Disposal of Radioactive Waste" (RCTS 032637-01) 5.2.4 10 CFR 71, "Packaging and Transportation of Radioactive Material" 5.2.5 49 CFR Subchapter C, "Hazardous Materials Regulations" 5.2.6 "Quality Assurance During The Operations Phase," UFSAR 17.2 (RCTS 032634-01) 5.2.7 NUREG-0472, Rev 2, July 1979, "Radiological Effluent Technical Specification for PWRs" 5.2.8 NUREG-1301, Rev.0, 4/91, "Offsite Dose Calculation Manual Guidance:

Standard Radiological Effluent Control for Pressurized Water Reactors" 5.2.9 NUREG 0800, Rev 2, July 1981 U.S. NRC Standard Review Plan 11.4, "Solid Waste Management Systems," (RCTS 032635-01) 5.2.10 Reg Guide 1.2.1 - Measuring, Evaluating and Reporting Radioactivity in Solid Waste and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water Nuclear Power Plants, Rev. 1.

5.2.11 IE Circular 80-18, 10 CFR 50.59, Safety Evaluation for Changes to Radioactive Waste Treatment Systems 5.2.12 Commitment Action Tracking System Commitment Action Procedure Partition Number Number Section RCTS 032632 01 5.1.6 RCTS 032633 01 5.1.2 RCTS 032634 01 5.2.6 RCTS 032635 01 5.2.9 RCTS 032636 01 5.1.7 RCTS 032637 01 5.2.3 RCTS 032648 01 3.2.1 CRDR 981853 05 3.7.1 CRDR 981853 06 3.1,3.3 6.0 APPENDICES Appendix A - PCP Revision Notice NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 12 of 13 ]

Radwaste Process Control Program 76DP-ORP03 Revision 6 Appendix A, Page 1 of 1 (Sample)

PCP Revision Notice Date: Page of Originator: Ext.:

Description of Revision:

FD Revision is NOT reportable - PRB review, R.P. Director approval, and reporting in the annual Radioactive Effluent Release Report are not required.

F-1 Revision is reportable - Requires PRB review, R.P. Director approval, reporting in the annual Radioactive Effluent Release Report, and a justification for the revision below.

Justification for Revision: (Ensure the following items are addressed)

( UFSAR 13.5.2.2.E)

1. Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change(s), and
2. A determination that the change will maintain the overall conformance of the solidified waste product to existing requirements of Federal, State, or other applicable regulations.

Approved By: Date:

Radiological Services DepartmentLeader Use additional pages as required. 76DP-ORP03, Appendix-A NUCLEAR ADMINISTRATIVE AND TECHNICAL MANUAL Page 13 of 13

ELECTRONIC PROCEDURE CHANGE RECORD 0 PROCEDURE NO: 76DP-0RP03 0 REVISION NO: 6 CATEGORY 171 2J 3E[@

OTITLE Radwaste Process Control Program PROCEDUREACTION: REVISION NEWS SUPERSEDES0 CANCELS EXPEDITED? YES D NO QMRL UPDATE? YESED NOPI @ FULL BASIS CHECK? YES [ NOE) LEVEL OF USE JINFORMATION DESCIRIPTION OF CHANGE' CD-600 Setup and Operating procedures added to the list of "PCP Procedures" in step 3.1.1. These procedures would have been considered part of the PCP'as vendor procedures as they are "...used in processing or packaging wet waste."

TEXT DOES NOT AUTOMATICALLY ROLL TO'CONTINUATION SHEET (:*1 DESCRIPTION -CONTINUATION Y'ESLU REG. REVIEW> 10CFR50.59/72.48 REQD? YES[J NODJ 50.59172.48 DOC NUMBER: S-06-0462 C4 A 10CFR50.59 Screening was performed lAW 93DP-0LC07, rev.14. It was determined that the use of the CD-600 does not require a full Evaluation per step 4.10.3.

RMC review by Mark Fladager.

Applicability Determination performed by David J. Heckman

'TEXT DOES NOT"AUTMATICALLY ROLL TO CONTINUATION SHEET AFPPL16ABILITY - CONTINUATION, YES' C DT PROCEDURE CHANGE RECORD PACKAGE CONTENTS FOR PROCESSING,

. NAD REQUIRED? YES 71 NO[ NAD PAGE COUNT: (

EFFECTIVE DATE @ ] 1 EPCR, OTHER DOCUMENTS, etc .................. PAGE COUNT:

1 10/19/2006 PROCEDURE PAGE COUNT:

EFFECTIVE TIME [OPTIONAL] @

TOTAL PAGE COUNT: 14 APPROVALS PREPARER - SIGNATURE DENOTES THAT DOCUMENT IS REVIEWER - SIGNATURE DENOTES REVIEW COMPLETION AND READY FOR REVIEW AND APPROVAL QUALIFIED IN SWMS AS PROCEDURE TECHNICAL REVIEWER OWNER/DESIGNEE - DIGITAL SIGNATURE SECURES 3

(ý NAD REVIEWER [IF REQUIRED] DOCUMENT FOR TRANSMITTAL AND USE l 01DOP-0AP01 PV-E0197 Ver. 9 PAGE 1

From: Hautala, Daniel F(Z43874)

Sent: Tuesday, September 22, 2009 3:57 PM To: Tubman, Christopher J(Z07290)

Cc: O'Neill, Edward A(Z98979)

Subject:

Monthly PRB Meeting - September 17, 2009 As an action for CRAI 3337785, Mr. Tubman presented the changes to procedure 76RP-0RW79, "CD-600 System Operation, Rev.4," to the Plant Review Board in accordance with 76DP-0RP03, Radwaste Process Control Plan.

76RP-0RW79, CD-600 System Operations, provides instruction for the Process Control Program (PCP). Revisions to procedures within the scope of the PCP must be evaluated to determine if the revision constitutes a reportable change under 76DP-0RP03, Radwaste Process Control Program. Under section 3.7, 'Process Control Program Revisions', section 3.7.1.1.1 states in part for reportable change as, "...Any change in processing parameters that could cause an alteration in the final waste product characteristics..." 76RP-0RW79, revision 4 added section 3.4.5.2, 'Salt Block Discharge' as an alternate waste discharge method, in addition to the 'Dry Discharge' method. The salt block discharge method uses different parameters, and parameter values, to determine when the material is discharged as a final waste form. This is a change to the processing parameters and the change affects the final waste product characteristics. Addition of section 3.4.5.2 is a reportable change in accordance with section 3.7.1.1 of the PCP procedure.

This report highlights the revision 4 change to the 'CD-600 System Operations' procedure as reportable and requires the review and acceptance of the Plant Review Board (PRB) in accordance with PCP procedure. While the salt block discharge method is an addition to the CD-600 operating procedure, this discharge method has been employed at PVNGS as far back as November 14, 1995 as described in procedure 76CP-9NP31, Revision 01, 'CD-1000 Operation.' The CD-1000 equipment was used to process evaporator concentrates prior to the use of the CD-600 equipment. The CD-1000, and associated procedures, was evaluated prior to placing into service. The evaluated procedures included the section, salt block discharge, being added to the CD-600 operating procedure. Company correspondence 115-02096-MAF dated July 8, 1996 provides evidence. The CD-600 was placed in operation in September 2006 and is essentially a smaller version of the CD-1 000. The transition from the CD-1 000 to the CD-600 included newoplerating procedures. Absent from revision 0 through 3 of the CD-600 operating procedure was the salt block discharge method. This omission was not noted until the Unit 3 evaporator concentrates processing campaign. Revision 4 effectively reintroduced the salt block discharge method, and its processing parameters, into the PCP through the CD-600 procedure. As before, a note in the procedure indicates the dry discharge method is preferred and the use of the salt block discharge method must be approved.

The Plant Review Board evaluated and approved the changes made to Revision 4, of 76RP-0RW79. One action was generated by Mr. Gaffney (PVAR 3380853) to evaluation why the initial procedure changes were misclassified such that the PRB approval was not obtained and to evaluate whether an update is required for the 2008 Palo Verde Annual Effluence Release Report.