ML050380127

From kanterella
Jump to navigation Jump to search
License Amendment Request: Appendix K Measurement Uncertainty Recapture - Power Uprate Request
ML050380127
Person / Time
Site: Calvert Cliffs  Constellation icon.png
Issue date: 01/31/2005
From: Nietmann K
Constellation Energy Group
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML050380127 (217)


Text

Kevin J. Nietmann 1650 Calvert Cliffs Parkway Plant General Manager Lusby, Maryland 20657 410.495.4101 410.495.4787 Fax Constellation Energy I Calvert Cliffs Nuclear Power Plant January 31, 2005 U. S.Nuclear Regulatory Commission Washington, DC 20555 ATTENTION: Document Control Desk

SUBJECT:

Calvert Cliffs Nuclear Power Plant Unit Nos. I & 2; Docket Nos. 50-317 & 50-318 License Amendment Request: Appendix K Measurement Uncertainty Recapture

- Power Uprate Request Pursuant to 10 CFR 50.90, the Calvert Cliffs Nuclear Power Plant, Inc. hereby requests an amendment to the Renewed Operating License Nos. DPR-53 and DPR-69 to increase the licensed core power. Calvert Cliffs Nuclear Power Plant, Unit Nos. I and 2 are currently licensed for a Rated Thermal Power of 2700 MWt. Based on the implementation of more accurate feedwater flow measurement instrumentation, approval is sought to increase the core power by 1.38 percent to 2737 MWt.

The approach used in this amendment request follows that outlined in Nuclear Regulatory Commission (NRC) Regulatory Issue Summary (RIS) 2002-03, "Guidance on the Content of Measurement Uncertainty Recapture Power Uprate Applications," dated January 31, 2002. Regulatory Issue Summary 2002-03 provides guidance on the scope and detail of the information that should be provided to the NRC for the review of measurement uncertainty recapture power uprate applications.

The significant hazards discussion and the technical basis for this proposed change are provided in Attachment (1). Attachment (2) provides the information delineated in RIS 2002-03. Marked up pages of the affected Operating Licenses and Technical Specifications are provided in Attachment (3). The Technical Specification Bases will be changed as appropriate to support this information.

Based on expected NRC review timeframes as expressed in SECY-04-0104, Status Report on Power Uprates, we request approval of this proposed change by August 1, 2005. Note that this requested approval date does not impact continued operation of the Units. We also request a 180 day implementation period for the approved amendment to allow sufficient time to implement procedure changes and operator training associated with this change.

Document Control Desk January 31, 2005 Page 2 Should you have questions regarding this matter, we will be pleased to discuss them with you.

Very truly yours, STATE OF MARYLAND

TO WIT:

COUNTY OF CALVERT 1, Kevin J. Nietmann, being duly sworn, state that I am Plant General Manager - Calvert Cliffs Nuclear Power Plant, Inc. (CCNPP), and that I am duly authorized to execute and file this License Amendment Request on behalf of CCNPP. To the best of my knowledge and belief, the statements contained in this document are true and correct. To the extent that these statements are not based on my personal knowledge, they are based upon information provided by other CCNPP employees and/or consultants.

Such information has been reviewed in accordance with company practice and I believe it to be reliable.

Subs ribed and sworn before meA Notary Public in and for th4State of Maryland and County of N /, this 2/ day of 2005.

WITNESS my Hand and Notarial Seal: rA IX 6Mn6CG-Z)

Notary Public tN~\.t C

My Commission Expires:

Date KJN/DJM/bjd -

Attachments: (1) TechnicilBlaiso',N 'Significant Hazards Consideration (2) Summary of daivert Cliffs Nuclear Power Plant Measurement Uncertainty Recapture Evaluation Enclosure (1) CA06494, Revision 0000, Calorimetric Uncertainty Using the AMAG Crossflow Ultrasonic Flowmeter (3) Marked up Technical Specification Pages cc: R. V. Guzman, NRC

[Without Enclosure (1)]

S. L. Miller, Esquire Resident Inspector, NRC J. E. Silberg, Esquire R. I. McLean, DNR S. J. Collins, NRC

ATTACHMENT (1)

TECHNICAL BASIS AND NO SIGNIFICANT HAZARDS CONSIDERATION TABLE OF CONTENTS

1. DESCRIPTION
2. PROPOSED CHANGE
3. BACKGROUND
4. TECHNICAL ANALYSIS
5. NO SIGNIFICANT HAZARDS CONSIDERATION
6. ENVIRONMENTAL CONSIDERATIONS
7. PRECEDENCE Calvert Cliffs Nuclear Power, Inc.

January 31, 2005

ATIACHMENT (1)

TECHNICAL BASIS AND SIGNIFICANT HAZARDS CONSIDERATION

1. DESCRIPTION This letter requests an amendment to Renewed Operating License DPR-53 and DPR-69 for Calvert Cliffs Unit Nos. I and 2, including Appendix A, Technical Specifications (TS), to increase the licensed core power. Calvert Cliffs Units I and 2 are currently licensed for a Rated Thermal Power (RTP) of 2700 MWt. Through the use of more accurate feedwater flow measurement equipment, approval is sought to increase this core power by 1.38 percent to 2737 MWt. The power uprate is based on the use of the CROSSFLOWTM system for determination of main feedwater flow and the associated determination of reactor power through the performance of the power calorimetric calculation currently required by Calvert Cliffs Technical Specifications.
2. PROPOSED CHANGE This proposed license amendment would revise the Calvert Cliffs Nuclear Power Plant Operating Licenses and Technical Specifications to increase the licensed power level to 2737 MWt, or 1.38 percent greater than the current level of 2700 MWt. The proposed changes, which are indicated on the marked up pages in Attachment (3), are described below:
1. Paragraph 2.C.(1) in Renewed Operating License Nos. DPR-53 and DPR-69 is revised to authorize operation at a steady-state reactor core power level not in excess of 2737 megawatts-thermal (100 percent power).
2. The definition of RATED THERMAL POWER (RTP) in Technical Specification 1.1 is revised to reflect the increase from 2700 MWt to 2737 MWt.
3. BACKGROUND Calvert Cliffs Units I and 2 are presently licensed for an RTP of 2700 MWt. Through the use of more accurate feedwater flow measurement equipment, approval is sought to increase this core power by 1.38 percent to 2737 MWt.

The approach used in this amendment request follows that outlined in Nuclear Regulatory Commission (NRC) Regulatory Issue Summary (RIS) 2002-03, "Guidance on the Content of Measurement Uncertainty Recapture Power Uprate Applications," dated January 31, 2002. Regulatory Issue Summary 2002-03 provides guidance on the scope and detail of the information that should be provided to the NRC for the review of measurement uncertainty recapture (MUR) power uprate applications.

The 1.38 percent core power MUR uprate for Calvert Cliffs is based on eliminating unnecessary analytical margin originally required for Emergency Core Cooling System (ECCS) evaluation models performed in accordance with the requirements set forth in the Title 10 Code of Federal Regulations (CFR) Part 50, Appendix K (ECCS). The NRC has approved a change to the requirements of 10 CFR Part 50, Appendix K (Federal Register 65 FR 34913, June 1, 2000). The change provides licensees with the option of maintaining the 2-percent power margin between the licensed power level and the assumed power level for the ECCS evaluation, or applying a reduced margin for ECCS evaluation. For the reduced margin for ECCS evaluation case, the proposed alternative reduced margin must account for uncertainties due to power level instrumentation error. Based on the proposed use of the CROSSFLOWThI instrumentation with a power measurement uncertainty of less than 0.6 percent, it is proposed to reduce the licensed power uncertainty required by 10 CFR Part 50, Appendix K. This results in the proposed increase of 1.38 percent in the Calvert Cliffs licensed power level using the current NRC approved methodologies. The CROSSFLOWTM instrumentation provides a more accurate indication of feedwater flow (and correspondingly reactor thermal power) than assumed during the original development of Appendix K requirements. The improved thermal power measurement accuracy I

ATTACHMENT (1)

TECHNICAL BASIS AND SIGNIFICANT HAZARDS CONSIDERATION eliminates the need for the full 2 percent power margin assumed in Appendix K, thereby increasing the thermal power available for electrical generation.

4. TECHNICAL ANALYSIS The impact of the proposed power uprate on applicable systems, components, and safety analyses has been evaluated. Attachment (2) summarizes the results of the comprehensive engineering review performed to evaluate the increase in the licensed core power from 2700 MWt to 2737 MWt. The results of this evaluation are provided in a format consistent with regulatory guidance provided in RIS 2002-03.

As discussed in Attachment (2), the evaluations and analyses have been completed to support an increase in RTP from 2700 MWt to 2737 MWt. In many cases an RTP of 2746 MWt (or a target power uprate of 1.7 percent) was used in order to provide bounding input for these evaluations. Currently, with the RTP of 2700 MWt, an analytical power level of 2754 MWt (102% of 2700 MWt) is used in the safety analysis.

With a revised RTP of 2737 MWt and a revised uncertainty, the analytical power level is unchanged at 2754 MWt.

5. NO SIGNIFICANT HAZARDS CONSIDERATION Calvert Cliffs Nuclear Power Plant is proposing an amendment to the Facility Operating License and Technical Specifications that will increase the licensed power level from 2700 MWt to 2737 MWt. The proposed changes have been evaluated against the standards in 10 CFR 50.92 and have been determined to not involve a significant hazards consideration in the operation of the facility in accordance with the proposed amendment.
1. Operationof thefacility in accordance with the proposed amendment would not involve a significant increase in the probabilityor consequences of an accidentpreviously evaluated.

In support of this measurement uncertainty recapture (MUR) power uprate, a comprehensive evaluation was performed for Nuclear Steam Supply System (NSSS), balance of plant systems and components, and analyses that could be affected by this change. A power calorimetric uncertainty calculation was performed, and the impact of increasing plant power by 1.38 percent on the plant's design and licensing basis was evaluated. The result of these evaluations is that structures, systems, and components required to mitigate transients will continue to be capable of performing their design function at an uprated core power of 2737 MWt. In addition, an evaluation of the accident analyses demonstrates that applicable analysis acceptance criteria continue to be met. No accident initiators are affected by this uprate and no challenges to any plant safety barriers are created by this change.

Therefore, operation of the facility in accordance with the proposed change will not involve a significant increase in the probability of an accident previously evaluated.

The proposed change does not affect the radiological release paths, the frequency of release, or the source-term for release for any accidents previously evaluated in the Updated Final Safety Analysis Report. Structures, systems, and components required to mitigate transients remain capable of performing their design functions, and thus were found acceptable. The reduced uncertainty in the feedwater flow input to the power calorimetric measurement ensures that applicable accident analyses acceptance criteria continue to be met in support of operation at a core power of 2737 MWt.

Analyses performed to assess the effects of mass and energy remain valid. The source-terms used to assess radiological consequences have been reviewed and determined to bound operation at the uprated condition. Therefore, operation of the facility in accordance with the proposed change will not involve a significant increase in the consequences of an accident previously evaluated.

2

ATTACHMENT (1)

TECHNICAL BASIS AND SIGNIFICANT HAZARDS CONSIDERATION Therefore, the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Operation of the facility in accordance with the proposed amendment would not create the; possibilityof a new or different kind of accidentfrom any accidentpreviously evaluated No new accident scenarios, failure mechanisms, or single-failures are introduced as a result of the proposed changes. The installation of the CROSSFLOWIrN system has been analyzed, and failures of this system will have no adverse effect on any safety-related system or any structures, systems, and components required for transient mitigation. All structures, systems and components previously required for the mitigation of a transient remain capable of fulfilling their intended design functions. The proposed changes have no adverse effects on any safety-related system or component and do not challenge the performance or integrity of any safety-related system.

This change does not adversely affect any current system interfaces or create any new interfaces that could result in an accident or malfunction of a different kind than was previously evaluated.

Operating at a core power level of 2737 MWt does not create any new accident initiators or precursors. The reduced uncertainty in the feedwater flow input to the power calorimetric measurement ensures that applicable accident analyses acceptance criteria continue to be met to support operation at a core power of 2737 MWt. Credible malfunctions continue to be bounded by the current accident analysis of record or evaluations that demonstrate that applicable acceptance criteria continue to be met.

Therefore, the proposed changes do not create the possibility of a new or different kind of accident from any accident previously evaluated.

3. Operation of thefacility in accordancewith theproposed amendment would not involve a significant reduction in a margin ofsafety.

The margins of safety associated with the MUR power uprate are those pertaining to core power.

This includes those associated with the fuel cladding, Reactor Coolant System pressure boundary, and containment barriers. A comprehensive engineering review was performed to evaluate the 1.38 percent increase in the licensed core power from 2700 MWt to 2737 MWt. The 1.38 percent increase required that revised NSSS design thermal and hydraulic parameters be established, which then served as the basis for all of the NSSS analyses and evaluations. This engineering review concluded that no design modifications are required to accommodate the revised NSSS design conditions. The NSSS and components were evaluated and it was concluded that the NSSS equipment has sufficient margin to accommodate the 1.38 percent power uprate. The NSSS accident analyses were evaluated for the 1.38 percent power uprate. In all cases, the evaluations demonstrate that the applicable analyses acceptance criteria continue to be met. As a result, the margins of safety continue to be bounded by the current analyses of record for this change.

Therefore, the proposed change does not involve a significant reduction in the margin of safety.

In summary, based upon the above evaluation, Calvert Cliffs has concluded that the proposed amendment involves no significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of "no significant hazards consideration " is justified.

3

ATTACHMENT (1)

TECHNICAL BASIS AND SIGNIFICANT HAZARDS CONSIDERATION

6. ENVIRONMENTAL CONSIDERATION We have determined that operation with the proposed amendment would not result in any significant change in the types, or significant increases in the amounts, of any effluents that may be released offsite, nor would it result in any significant increase in individual or cumulative occupational radiation exposure.

Therefore, the proposed amendment is eligible for categorical exclusion as set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment is needed in connection with the approval of the proposed amendment.

7. PRECEDENCE Similar amendment requests have been approved for:

Facility Amendment #(s) Approval Date Donald C. Cook Nuclear Plant, Unit 2 259 May 2, 2003 Kewaunee Nuclear Power Plant 168 July 8, 2003 Waterford 3 183 March 29, 2002 4

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Calvert Cliffs Nuclear Power Plant, Inc.

January 31, 2005

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION TABLE OF CONTENTS Page Table of Contents 1 List of Acronyms 2 Introduction 4 Section I Feedwater Flow Measurement Technique and Power Measurement 7 Uncertainty Section II Accidents and Transients for which the Existing Analyses of Record 14 Bound Plant Operation at the Proposed Increased Power Level Section III Accidents and Transients for which the Existing Analyses of Record 21 Do Not Bound Plant Operation at the Proposed Increased Power Level Section IV Mechanical/Structural/Material Component Integrity and Design 23 Section V Electrical Equipment Design 46 Section VI System Design 49 Section VII Other 61 Section VIII Changes to Technical Specifications, Protection System Settings, 68 and Emergency System SettingsSection IX References 70 Enclosure (1) CA06494, Revision 0000, Calorimetric Uncertainty Using the AMAG Crossflow Ultrasonic Flowmeter

-I-

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION LIST OF ACRONYMS ABB Asea Brown Boveri, Inc.

AC Alternating Current AFAS Auxiliary Feedwater Actuation System AFW Auxiliary Feedwater ALARA As Low As Reasonably Achievable ANSI American National Standards Institute AOR Analysis of Record / Analyses of Record AOV Air-Operated Valve ASME American Society of Mechanical Engineers ATWS Anticipated Transients Without SCRAM BLPB Branch Line Pipe Break BOP Balance of Plant Calvert Cliffs Calvert Cliffs Nuclear Power Plant, Inc.

CCW Component Cooling Water CE Combustion Engineering CEA Control Element Assembly CEDM Control Element Drive Mechanism CEOG Combustion Engineering Owners Group CFR Code of Federal Regulations COLR Core Operating Limits Report CUF Cumulative Usage Factor CVCS Chemical and Volume Control System DBA Design Basis Accident DBE Design Basis Event DC Direct Current DNBR Departure from Nucleate Boiling Ratio D/P Differential Pressure ECCS Emergency Core Cooling System EM Evaluation Model EQ Environmental Qualification FAC Flow Accelerated Corrosion gpm gallons per minute HELB High Energy Line Break HVAC Heating, Ventilation, and Air Conditioning lCI Incore Instrumentation 1SI Inservice Inspection IST Inservice Testing Ke plastic strain correction factor LBB Leak Before Break LBLOCA Large Break Loss-of-Coolant Accident LCO Limiting Conditions for Operation LHR Linear Heat Rate LOCA Loss-of-Coolant Accident LOSP Loss of Secondary Pressure LPSI Low Pressure Safety Injection MCLB Main Coolant Loop Break ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION LIST OF ACRONYMS MNSA Mechanical Nozzle Seal Assembly MOV Motor-Operated Valve MSIV Main Steam Isolation Valve MSLB Main Steam Line Break MSS Main Steam System MSSV Main Steam Safety Valve MUR Measurement Uncertainty Recapture MVA MegaVolt Ampere MVAR MegaVolt Ampere Reactive MWt Megawatt Thermal NRC Nuclear Regulatory Commission NSSS Nuclear Steam Supply System OBE Operating Basis Earthquake ODCM Offsite Dose Calculation Manual PLCEDM Part Length Control Element Drive Mechanism PWR Pressurized Water Reactor RCP Reactor Coolant Pump RCS Reactor Coolant System RIS Regulatory Issue Summary RPS Reactor Protective System RTD Resistance Temperature Detector RTP Rated Thermal Power RV Reactor Vessel RVI Reactor Vessel Internals S2M Supplement 2 to CENPD-137 Evaluation Model SBLOCA Small Break Loss-of-Coolant Accident SDC Shutdown Cooling SER Safety Evaluation Report SFPC Spent Fuel Pool Cooling SG Steam Generator Si Safety Injection SIT Safety Injection Tank SRW Service Water Tavg, Tave Vessel Average Coolant Temperature Toold Vessel/Core/Inlet Temperature Thot Vessel Outlet Temperature TM/LP Thermal Margin/Low Pressure UF Usage Factor UFM Ultrasonic Flow Measurement UFSAR Updated Final Safety Analysis Report USE Upper Shelf Energy ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION INTRODUCTION BACKGROUND AND REASON FOR PROPOSED CHANGE Calvert Cliffs Nuclear Power Plant (Calvert Cliffs) Units I and 2 are presently licensed for a Rated Thermal Power (RTP) of 2700 MWt. Through the use of more accurate feedwater flow measurement equipment, approval is sought to increase this core power by 1.38% to 2737 MWt. The impact of a 1.38% core power uprate for applicable systems, components, and safety analyses has been evaluated.

The analyses and evaluations were performed for both Calvert Cliffs Units I and 2. In some cases where cycle specific data is needed, the analyses/evaluations targeted Unit 1 as the lead unit for the Measurement Uncertainty Recapture (MUR) power uprate. Confirmation of the applicability of the analyses and evaluations on future cycles of Unit 2, and subsequent cycles of Unit 1, are performed as part of the normal reload design process.

The approach used in this amendment request follows that outlined in Nuclear Regulatory Commission (NRC) Regulatory Issue Summary (RIS) 2002-03, "Guidance on the Content of Measurement Uncertainty Recapture Power Uprate Applications" dated January 31, 2002.

Regulatory Issue Summary 2002-03 provided guidance on the scope and detail of the information that should be provided to the NRC for the review of MUR power uprate applications.

The 1.38% MUR power uprate for Calvert Cliffs is based on eliminating unnecessary analytical margin originally required for Emergency Core Cooling System (ECCS) evaluation models (EMs) performed in accordance with the requirements set forth in the Code of Federal Regulations (CFR), 10 CFR Part 50, Appendix K (ECCS).

As discussed in Section II, the evaluations and analyses described herein have been completed to support an increase in RTP from 2700 MWt to 2737 MWt. In many cases an RTP of 2746 MWt (or a target power uprate of 1.7%) was used in order to provide bounding input for these evaluations. Currently, with the RTP of 2700 MWt, the analytical power level of 2754 MWt (102% of 2700 MWt) is used in the safety analysis. With a revised RTP of 2737 MWt and a revised uncertainty, the analytical power level is unchanged at 2754 MWt.

The NRC has approved a change to the requirements of 10 CFR Part 50, Appendix K [as revised by the Federal Register 65 FR 34913, June 1, 2000]. The change provides licensees with the option of maintaining the 2-percent power margin between the licensed power level and the assumed power level for the ECCS evaluation, or applying a reduced margin for ECCS evaluation. For the reduced margin for ECCS evaluation case, the proposed alternative reduced margin must account for uncertainties due to power level instrumentation error. Based on the proposed use of the CROSSFLOW'm instrumentation with a power measurement uncertainty of less than 0.6%, it is proposed to reduce the licensed power uncertainty required by 10 CFR Part 50, Appendix K. This results in the proposed increase of 1.38% in the Calvert Cliffs licensed power level using current NRC approved methodologies.

The CROSSFLOWTm instrumentation provides a more accurate indication of feedwater flow (and correspondingly reactor thermal power) than assumed during the development of Appendix K requirements. Complete technical support for this conclusion is discussed in detail in the CROSSFLOWm Topical Report (Reference 1-1). The improved thermal power measurement ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION accuracy eliminates the need for the full 2% power margin assumed in Appendix K, thereby increasing the thermal power available for electrical generation.

The desired power increase of 1.38% will be accomplished by increasing the electrical demand on the turbine-generator. As a result of this demand increase, steam flow will increase and the resultant steam pressure will decrease. The Reactor Coolant System (RCS) nominal cold leg temperature will remain constant and the hot leg temperature will increase in response to the increased steam flow demand. The RCS average temperature will increase slightly.

Procedures for maintenance and calibration of the CROSSFLOW' system will be enhanced per the design control process based on the vendor's recommendations. Should the CROSSFLOWTM system be unavailable, the main steam or feedwater flow venturis can be used to sense flow rate in the feedwater system, as was done prior to the installation of the CROSSFLOWW system. If the CROSSFLOWm system is not operable, the power limit will be administratively controlled at a level consistent with the accuracy of the available instrumentation as described in this amendment request. The power limit reduction requirement for the CROSSFLOW T mout-of-service will be incorporated into the Calvert Cliffs Technical Requirements Manual.

DESCRIPTION OF PROPOSED CHANGE The proposed license amendment would revise the Calvert Cliffs Nuclear Power Plant, Inc.

(Calvert Cliffs) Operating Licenses and Technical Specifications to reflect an increase in core power level by 1.38% to 2737 MWt. The power uprate is based on the use of the CROSSFLOWTM system for determination of main feedwater flow and the associated determination of reactor power through the performance of the power calorimetric calculation currently required by Calvert Cliffs Technical Specifications. The proposed changes are identified on the markups of the current Calvert Cliffs Operating Licenses and Technical Specification pages.

Calvert Cliffs notes that various Combustion Engineering (CE) topical reports that are part of the Calvert Cliffs licensing basis (Technical Specification 5.6.5), consistent with 10 CFR Part 50, Appendix K may have included explicit references to their use of "102% of licensed core power levels." These topical reports describe the NRC approved methodologies which support the Calvert Cliffs safety analyses, including the small break and large break loss-of-coolant accident (LOCA) analyses. Along with the proposal to increase the reactor thermal power to 2737 MWt, Calvert Cliffs requests continued use of these topical reports. Calvert Cliffs does not consider that these topical reports require revision to reflect this requested power uprate. Rather, it will be understood that those statements refer to the Appendix K margin and the original licensed power level. Calvert Cliffs proposes that these topical reports be approved for use consistent with this license amendment request, and further, the NRC acknowledge that the change in the power uncertainty does not constitute a significant change, as defined in 10 CFR 50.46 and 10 CFR Part 50, Appendix K, to these topical reports.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION GENERAL LICENSING APPROACH FOR PLANT ANALYSIS USING PLANT POWER LEVEL The MUR power uprate program for Calvert Cliffs as described herein addresses Nuclear Steam Supply System (NSSS) performance parameters, design transients, systems, components, accidents, and nuclear fuel as well as interfaces between the NSSS and Balance-of-Plant systems. No new analytical techniques have been used to support the MUR power uprate project. The key points include the use of:

  • Well-defined analysis input assumptions/parameter values
  • Currently approved analytical techniques
  • Applicable licensing criteria and standards The evaluations and analyses described herein have been completed in order to bound an increase in RTP from 2700 MWt to 2737 MWt, or a 1.38% increase. The RTP used for many evaluations targeted a bounding power uprate of 1.7% with MUR power uprate, or 2746 MWt.

Currently, with the RTP of 2700 MWt, the analytical power level of 2754 MWt (102% of 2700 MWt) is used in the safety analysis. With a revised RTP of 2737 MWt and a revised uncertainty, the analytical power level is unchanged at 2754 MWt.

Section II provides the results of the accident analyses and evaluations performed for the LOCA and non-LOCA transients.Section II also summarizes the containment accident analyses and evaluations and the radiological consequence evaluations.

Section III provides results for accidents and transients for which the existing analyses of record (AOR) do not bound plant operation at the proposed uprated power level.

Section IV of this report discusses the revised NSSS design thermal and hydraulic parameters that were modified as a result of the MUR power uprate and that serve as the basis for all of the NSSS analyses and evaluations.Section IV also contains the results of the fuel-related analyses.

Section V provides an analysis of the effects of the power uprate on the Calvert Cliffs electrical power systems.

Section VI presents information on the impact of the proposed power uprate on the system design [e.g., safety injection (SI), shutdown cooling (SDC), and control systems] and components [e.g., reactor vessel (RV), pressurizer, Reactor Coolant Pumps (RCPs), steam generator (SG), and NSSS auxiliary equipment] and the evaluations completed for the revised design conditions.Section VI also summarizes the effects of the uprate on the Balance-of-Plant (secondary) systems based upon a heat balance evaluation.

Section VII evaluates the impact of the power uprate on other areas [e.g., Flow Accelerated Corrosion (FAC)].

Section Vil presents information on changes to Technical Specifications, protection system settings, and emergency system settings as a result of the proposed power uprate.

The results of all of the analyses and evaluations performed demonstrate that all acceptance criteria continue to be met.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION

1. FEEDWATER FLOW MEASUREMENT TECHNIQUE AND POWER MEASUREMENT UNCERTAINTY INSTRUMENTATION The feedwater flow measurement system installed at Calvert Cliffs is the CROSSFLOWTM ultrasonic flow measurement (UFM) system. The installation of this system conforms to the requirements of the NRC approved topical report (see Reference 1-1).

1.1 CROSSFLOW h'mSYSTEM The Westinghouse CROSSFLOWW UFM system is used in conjunction with the plant process computer, to support the increase in reactor power. Reactor power is calculated using plant supplied inputs for feedwater temperature, SG pressure, SG moisture carryover, blowdown flow, and feedwater venturi flow that has been corrected to improve its accuracy using the CROSSFLOWm system. The components and information flow paths are shown in Figure 1-1, "Block Diagram of the Calvert Cliffs CROSSFLOWW System."

Figure 1-1 Block Diagram of the Calvert Cliffs CROSSFLOWW System Basic Signal Conditioning Unit Connection Layout 1O0ph SCUMUktfdtc# 1shV SMUXG aro1 MUe Cible 2XferCabMs MOSSFLOW0 COS wCOMW R SLW Sivllotsn tmdibnsInCU* MAbplextr I blod ' nsat CS 15OO CM1000 L1000 _ Us rdcr The CROSSFLOWTM system consists of a set of ultrasonic sensors that are permanently mounted on each of the two feedwater lines, cables, signal conditioning unit, multiplexer and a data processing computer. The ultrasonic sensors for each meter are mounted on a metal support frame that attaches externally to the feedwater pipe.

Signals are passed from the ultrasonic flow sensors through the multiplexer to the signal conditioning unit and data processing computer located in a non-harsh environment area. The functions of the signal conditioning unit and data processing computer are described in Reference 1-1. The multiplexer simply alternates the ultrasonic signal to the signal-conditioning unit between the two loop CROSSFLOWm meters to provide the flow measurements for each loop.

The data processing computer receives values of feedwater flow, temperature, and pressure for each loop from the plant process computer. The data processing computer then calculates a feedwater density and compensates for any thermal growth of the feedwater pipe and frame ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION due to a change in feedwater temperature. It also calculates an instantaneous flow, flow uncertainty and venturi correction factor for the venturi by dividing the feedwater flow measured using CROSSFLOWm by the feedwater flow measured by the plant venturi for the same time period. The instantaneous correction factor is next added to a moving average buffer of venturi correction factors in order to smooth the data. The data processing computer then verifies that the venturi correction factor uncertainty is within the time delay uncertainty specified in the plant specific quality assured uncertainty calculation and passes flow with the smoothed venturi correction factor back to the plant computer along with a quality flag indicating that the correction factor meets the required accuracy for the MUR power uprate.

1.2 COMPLIANCE WITH NUCLEAR REGULATORY COMMISSION SAFETY EVALUATION REPORT The installation of the CROSSFLOWTM flow measurement system at Calvert Cliffs is consistent with the Topical Report (Reference 1-1). In addition to the installation requirements, the NRC identified the following four criteria that must be addressed by licensees requesting a license amendment based on the Topical Report. Calvert Cliffs meets the four criteria as described below.

Criterion I Discuss maintenance and calibration procedures that will be implemented with the incorporation of the CROSSFLOWTM system, including processes and contingencies for inoperable CROSSFLOWW instrumentation and the effect on thermal power measurements and plant operation.

Response to Criterion 1 Installation of the CROSSFLOWTM system was performed by vendor and Calvert Cliffs personnel in accordance with vendor documentation and the Calvert Cliffs maintenance and engineering procedures. Maintenance and calibration are performed using Calvert Cliffs' maintenance and calibration procedures, which will be enhanced using vendor information and Calvert Cliffs specific experience, or will be performed by a combination of vendor and Calvert Cliffs procedure.

Verification of proper CROSSFLOW'm system operation is provided by onboard system diagnostics. CROSSFLOWTM operation will be monitored on a periodic basis using an internal time delay check. The onboard system diagnostics enable verification that the signal conditioning unit, computer, and software remain within the stated accuracy.

A plant specific uncertainty calculation has been performed by Westinghouse for the feedwater mass flow for Calvert Cliffs Units 1 and 2. The mass flow uncertainties based on these calculations is less than 0.45% of full power total feed flow. The uncertainty values will be confirmed after final system set up and prior to an increase in plant power.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The accuracies of all other process input parameters to the core thermal power calculation reflect either vendor or operating data uncertainties for one full fuel cycle. Hence, there is only one condition that requires an explanation for the proposed actions - an inoperable CROSSFLOW' system. Contingency plans for operation of the plant with CROSSFLOWTM out-of-service are described in Section 1.5.

Condition Measurement Uncertainty Power Level With CROSSFLOW'm 0.56% I 2737 MW(th)

Without CROSSFLOWTm 0.85% 2700 MW(th)

As part of the approved amendment implementation process, Calvert Cliffs Nuclear Power Plant will revise the appropriate operating procedures to reflect the above responses to the unavailability of the CROSSFLOWW system, and will include this information in the operator training program.

Criterion 2 For a plant that currently has a CROSSFLOWTM UFM installed, provide an evaluation of the operational and maintenance history of the installed instrumentation and confirmation that the installed instrumentation is representative of the CROSSFLOWT' UFM system and bound the analysis and assumptions set forth in Topical Report (Reference 1-1).

Response to Criterion 2 The CROSSFLOWTM systems at Calvert Cliffs have been in operation since July, 2003.

Reference 1-1 indicates that once the CROSSFLOWm system is installed, properly set up and its functionality confirmed, CROSSFLOWm has proven that it is not prone to system or component failures that force the system off-line. To date, no equipment failures which adversely impact the meters' ability to provide its venturi recalibration function have been experienced at Calvert Cliffs.

The quality of the baseline functionality of the initial CROSSFLOWTM installation at Calvert Cliffs was established through a combination of laboratory tests and in-situ calibration. As a result of recent industry experience, a baseline frequency spectrum analysis was performed to determine if acoustic noise could have an adverse affect of the CROSSFLOW' ultrasonic signal.

Analyses of the results show no effect of noise on flow measurement.

At approximately 100% RTP, the venturi correction factor is relatively stable, varying less than 0.3% from a baseline value. However, correction factor has been observed to increase as power increases on three of the four CROSSFLOWmeter locations based on correction factor trends obtained at steady state power levels between 85% and 100% RTP, indicating that the flow profile may not be stable at all locations. Although bound by the current uncertainty calculations and restrictions imposed on the allowable values for venturi correction factor, this issue must be corrected prior to power uprate to ensure flow meter performance is bound by the more restrictive uncertainty requirements (summarized in the response to Criterion 1), and the analysis and assumptions of the Topical Report (Reference 1-1).

Planned corrective actions and expected impact on uncertainty are further evaluated in the response to Criterion 4.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Criterion 3 Confirm that the methodology used to calculate the uncertainty of the CROSSFLOWTM UFM in comparison to current feedwater instrumentation is based on accepted plant setpoint methodology (with regard to the development of instrument uncertainty). If an alternative approach is used, the application should be justified and applied to both venturi and UFM instrumentation installations for comparison.

Response to Criterion 3 The methodology used to calculate the uncertainty of the CROSSFLOWTm UFM in comparison to the current feedwater flow instrumentation is based on accepted plant setpoint methodology, consistent with Regulatory Guide 1.105 and Instrument Society of America (ISA) S67.04, as described in the Topical Report. An alternative methodology is not used. The Calvert Cliffs CROSSFLOW T muncertainty calculations are consistent with the methodology described in the Topical Report.

Criterion 4 For plants where the ultrasonic meter was not installed and flow elements calibrated to a site-specific piping configuration (flow profiles and meter factors not representative of the plant specific installation), additional justification should be provided for its use. The justification should show that the meter installation is either independent of the plant specific flow profile for the stated accuracy, or that the installation can be shown to be equivalent to known calibrations and plant configurations for the specific installation including the propagation of flow profile effects at higher Reynolds numbers. Additionally, for previously installed calibrated elements, confirm that the piping configuration remains bounding for the original UFM installation and calibration assumptions.

Response to Criterion 4 At Calvert Cliffs, only one of the four feedwater loops, Loop 12 on Unit 1, had a sufficiently long run of straight pipe which satisfied the installation requirements of and were bounded by Topical Report CENPD-357-P-A. The CROSSFLOWTM UFM on Loop 12 is installed sufficiently downstream of the nearest elbow where the flow is fully developed. Because of this situation, CROSSFLOWm meters were installed in identical locations on all four feed flow loops downstream of a flow straightener and upstream of the feed flow venturi; Loop 11 and Loop 12 for Unit 1 and Loop 21 and Loop 22 for Unit 2. The CROSSFLOWm meter installed on Loop 12, which satisfies the Reference 1-1 installation requirements, was used to establish a flow profile correction factor and its associated uncertainty for the flow as measured by the meter located downstream of the flow straightener. The flow profile correction factor was determined by taking the ratio of the flow measurement at this location with the flow measurement of the meter downstream of the flow straightener. Laboratory tests were performed to determine the effect of upstream piping geometry on flow measurement. The results of the laboratory tests indicated that the flow straightener removed any upstream geometry effects which justified use of this flow profile correction factor for the Loop 11, Loop 21, and Loop 22 CROSSFLOWTM meters.

As part of the evaluation, Calvert Cliffs reviewed the operating experience available for this type of system. Frequency spectrum analysis confirmed that acoustic interference from the Calvert Cliffs feedwater system does not effect the CROSSFLOWTM ultrasonic signal. Further, Calvert Cliffs is aware of recent industry experience of CROSSFLOWTM sensitivity to changes in ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION feedwater system configuration following initial installation and setup. Although Calvert Cliffs has no plans to alter the feedwater system configuration during periods in which CROSSFLOWTM is in use, CROSSFLOW'm performance will be closely monitored should any such evolutions be required. Calvert Cliffs Nuclear Power Plant procedures will also describe appropriate actions should the CROSSFLOWTm system identify any problem with the generated venturi correction factor.

However, as noted above, venturi correction factor has been observed to increase as power increases on these three locations based on correction factor trends obtained at steady state power levels between 85% and 100% RTP, indicating that the flow profile may not be stable.

The venturi correction factor for the fourth feedwater loop, Loop 12, does not vary with power, confirming that the flow profile is fully developed at this location.

To address this concern, new X-BEAM ultrasonic transducers will be installed farther downstream from the flow straightener. The X-BEAM ultrasonic transducers are similar to the standard CROSSFLOWTM transducers with the exception that two diametrically offset, independent sets of transducers are located at each site. At the proposed locations, the flow profile is expected to be fully developed. Flow will be confirmed to be fully developed by comparing venturi correction factors obtained at different power levels. In addition to elimination of the power dependency, the trending of flows obtained from the two sets of transducers at each location provides an additional method to identify potential equipment concerns.

The X-BEAM ultrasonic transducers will be initially installed and tested on both Unit I headers.

The installation and testing of the X-BEAM ultrasonic transducers on the Unit 1 headers is currently scheduled to be completed by June 1, 2005. Calvert Cliffs will provide the results of this testing to the NRC staff by July 1, 2005. If successful, the X-BEAM ultrasonic transducers will be installed on Unit 2. Necessary actions to understand and resolve the flow depending issue for each unit must be complete prior to implementation of the power uprate for that unit.

1.3 THERMAL POWER MEASUREMENT UNCERTAINTY The impact of the CROSSFLOWW system on the overall thermal power measurement uncertainty was assessed. Table 1-1 summarizes the core thermal power measurement uncertainty for Calvert Cliffs:

Table 1-1 Calvert Cliffs Process Parameter Inputs to Secondary Calorimetric Calculation Parameter Random Component Bias Component Unit 1 Unit 2 Feedwater Flow 0.32% 0.39%

Blowdown Flow 0.05%

Steam Enthalpy 0.05% 0.02%

Feedwater Enthalpy 0.16% 0%

Calorimetric Constants' 0.07%

Net Uncertainty 0.41% 046% 0.08%

Adjustments for miscellaneous heat addition and heat removal terms from the RCS, such as input from pressurizer heaters.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The parameter uncertainties in Table 1-1 are based upon the instrumentation uncertainties listed in Table 1-2.

Table 1-2 Uncertainties of Instrumentation Used For Secondary Calorimetric Calculation Instrumentation Random Component Bias

_ ._ Component Feedwater Path Unit 1 Unit 2 Flow 1* 34832 Ibm/hr 34210 Ibm/hr (0.56% flow) (0.55% flow) 2** 29234 Ibm/hr 35454 Ibm/hr (0.47% flow) (0.57% flow)

Blowdown Flow 8094 Ibm/hr Feedwater Pressure 27.57 psi 0.16 psi Feedwater Temperature 1.880F Steam Pressure 19.8 psi 3.4 psi Plant Computer Calculation 0.1 Btu/lbm of Enthalpy

  • Unit 1 Loop I1, Unit 2 Loop 21
    • Unit 1 Loop 12, Unit 2, Loop 22 Enclosure (1) provides the detailed calorimetric uncertainty calculation performed for Calvert Cliffs.

1.4 CALIBRATION AND MAINTENANCE The following information addresses specific aspects of calibration and maintenance procedures for the CROSSFLOWTM system.

Calibration and maintenance is performed by Calvert Cliffs maintenance personnel using site procedures. The site procedures will be enhanced using the CROSSFLOWW technical manuals and work instructions. All work is performed in accordance with site work control procedures.

Routine preventive maintenance activities include physical inspections, power supply checks, and internal self tests.

Personnel are trained in the operation of the equipment prior to performing any system calibration.

The CROSSFLOWTM system is designed and manufactured in accordance with Westinghouse's quality assurance program (class 4, considered important to safety) and in accordance with Reference 1-1.

Any needed corrective maintenance is performed by qualified Calvert Cliffs maintenance personnel.

Reliability of the CROSSFLOWTM system is monitored by Calvert Cliffs Systems Engineering personnel. Equipment deficiencies are documented under the site's corrective action process, ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION which includes requirements for the resolution of identified deficiencies. Equipment manufacturers are contacted as required to correct the deficiency.

The CROSSFLOWTM system vendor has established processes for informing utilities of equipment deficiencies. Additionally, Calvert Cliffs has procedures for reviewing incoming Institute of Nuclear Power Operations Operating Experience for applicability. Those deficiencies applicable to Calvert Cliffs are documented under the site's corrective action process.

1.5 OUTAGE TIME The proposed outage time for operation at the increased power level with the CROSSFLOWTM system out-of-service is 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />, provided steady-state conditions exist and the plant computer is available to perform the reactor thermal power calculation. Review of correction factor trends since CROSSFLOWTm has been in use at Calvert Cliffs, indicate that correction factors are relatively constant. Over the course of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />, the actual variation of the correction factor has an uncertainty (two standard deviations from the average) of less than 0.0532%. The net contribution to calorimetric uncertainty is negligible. Furthermore, since only an increase in thermal power above RTP needs to be considered, the random component of uncertainty could be substantially reduced permitting an even greater (-0.24%) variation in correction factor over the 72 hour8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> interval.

If the plant computer is unavailable for greater than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, power level shall be reduced to the pre-uprate power level of 2700 MWt (approximately 98.65%). The 24-hour period is based on the minimum frequency for the calibration of the power range nuclear instrumentation in accordance with Technical Specification Surveillance Requirement 3.3.1.2. Per Technical Specification Surveillance Requirement 3.3.1.2, the power range nuclear instruments are adjusted every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> based on the reactor thermal power calculation. The precision of the plant computer calculation is required to support the increased power level. If CROSSFLOWTM and the plant computer cannot be returned to service within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, Calvert Cliffs proposes that the power level be reduced.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION II. ACCIDENTS AND TRANSIENTS FOR WHICH THE EXISTING ANALYSES OF RECORD BOUND PLANT OPERATION AT THE PROPOSED INCREASED POWER LEEVEL INTRODUCTION The reactor core and/or NSSS thermal power are used as inputs to most plant safety, component, and system analyses. These analyses generally model the core and/or NSSS thermal power in one of three ways.

First, some analyses apply an explicit 2% increase to the initial condition power level to account solely for the power measurement uncertainty. These analyses have not been re-performed for the requested MUR power uprate conditions because the sum of increased core power level and the decreased power measurement uncertainty falls within the previously analyzed conditions.

The power calorimetric uncertainty calculation described in Section I indicates that with the UFM devices installed, the power measurement uncertainty (based on a 95% probability at a 95%

confidence interval) is less than 0.6%. Therefore, these analyses only need to reflect a 0.6%

power measurement uncertainty. Currently with the RTP of 2700 MWt, the analytical power level of 2754 MWt (102% of 2700 MWt) is used in the safety analysis. With a revised RTP of 2737 MWt and a revised uncertainty, the analytical power level is unchanged at 2754 MWt.

Second, some analyses employ a nominal initial condition power level. These analyses have been evaluated for the increased power level with the MUR power uprate. The results demonstrate that the applicable analysis acceptance criteria continue to be met at the MUR power uprate conditions.

Third, some of the analyses are performed at zero power initial conditions or do not actually model the core power level. Consequently, these analyses have not been reperformed since they are unaffected by the core power-level.

11.1 NUCLEAR STEAM SUPPLY SYSTEM ACCIDENT EVALUATION The analyses referenced in Table 11-1 are the AOR for Calvert Cliffs Units 1 and 2. These analyses do not change, that is they continue to remain valid for the MUR power uprate.

The information in the table is organized to comply with Section 11of RIS 2002-03. The first column contains the applicable Updated Final Safety Analysis Report (UFSAR) section. The second column identifies the transient, and columns three through six contain power and uncertainty information from the AOR, as well as confirmation that the AOR remains bounding with the MUR power uprate. Column seven provides the reference for the NRC's previous approval of the AOR, as well as an indication of type of approval. Approval types are either NRC Safety Evaluation Report (SER) or performed under 10 CFR 50.59. The final column elaborates briefly on the impact of the power uprate on the AOR.

The sections that follow provide details of the safety analyses.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION TABLE 11 Impact of Power Uprate on the UFSAR Chapter 14 Accident Analyses ANALYSIS OF RECORD ASSUMPTIONS UFSAR SECTIONIEVENT RTP Uncert. Total Core Bounds Reference/

Method (MWt) (%) Power MUR? (50.59, etc.) NOTES

_ _ _ _ ~(MW t) ___

RIS 2002-03 A BC BC BC BC D Rqmnt_

14.2 Control Element Assembly 2700 +/-2 2754 Yes 11-1/50.59 Re-analyzed for thermal margin credits seen with Withdrawal Event TURBO fuel. MUR has no impact.

14.3 Boron Dilution Event {_ } {_ } {_ {_} {_ Not effected by an increase RTP. Analysis based on boron concentrations and RCS volumes which are unchanged for power uprate.

14.4 Excess Load Event 2700 +/-2 2754 Yes 11-2/50.59 Re-analyzed for thermal margin credits seen with TURBO fuel. MUR has no impact.

14.5 Loss of Load Event 2700 +/-2 2754 Yes 11-1/50.59 Evaluated for impact of MUR. Existing AOR plus uncertainty bounds the MUR total core power.

14.6 Loss of Feedwater Flow 2700 +/-2 2754 Yes 11-3/50.59 Evaluated for impact of MUR. Existing AOR plus Event uncertainty bounds the MUR total core power.

14.7 Excess Feedwater Heat 2700 +/-2 2754 Yes 11-2/50.59 Re-analyzed as a sub-set of the Excess Load Removal Event event. MUR has no impact.

14.8 Reactor Coolant System 2700 +/-2 2754 Yes 11-2/50.59 Evaluated for impact of MUR. Existing AOR plus Depressurization uncertainty bounds the MUR total core power.

14.9 Loss-of-Coolant Flow Event 2700 +/-2 2754 Yes l1-1/50.59 Re-analyzed for thermal margin credits seen with TURBO fuel. MUR has no impact.

14.10 Loss-of-Non-Emergency 2700 + 2 2754 Yes 11-2/50.59 Evaluated for impact of MUR. Existing AOR plus AC Power uncertainty bounds the MUR total core power.

14.11 Control Element Assembly 2700 +/-2 2754 Yes 11-2/50.59 Re-analyzed for thermal margin credits seen with Drop Event TURBO fuel. MUR has no impact.

14.12 Asymmetric Steam 2700 +/-2 2754 Yes 11-2/50.59 Re-analyzed for thermal margin credits seen with Generator Event TURBO fuel. MUR has no impact.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION TABLE 11 Impact of Power Uprate on the UFSAR Chapter 14 Accident Analyses ANALYSIS OF RECORD ASSUMPTIONS UFSAR SECTION/EVENT Total Reference/

RTP Uncert. Core Bounds Method (MWt) (%) Power MUR? (50.59, etc.) NOTES (MWt) _

RIS 2002-03 A BC B.C BC B.C D Rqmnt- _

14.13 Control Element Assembly 2700 +/-2 2754 Yes 11-2/50.59 Evaluated for impact of MUR. Existing AOR plus Election uncertainty bounds the MUR total core power.

14.14 Steam Line Break Event 2700 +/-2 2754 Yes 11-1/50.59 Pre-trip portion re-analyzed for thermal margin credits seen with TURBO fuel. Post-trip re-analyzed for cycle specific credits. MUR has no impact on either portion of the event.

14.15 Steam Generator Tube 2700 +/-2 2754 Yes 11-1/50.59 Evaluated for impact of MUR. Existing AOR plus Rupture Event uncertainty bounds the MUR total core power.

14.16 Seized Rotor Event 2700 +/-2 2754 Yes 11-2/50.59 Re-analyzed for thermal margin credits seen with TURBO fuel. MUR has no impact.

14.17 Loss-of-Coolant Accident 2700 +/-2 2754 Yes 11-4/11-5 Evaluated for impact of MUR. Existing AOR plus uncertainty bounds the MUR total core power.

14.18 Fuel Handling Incident 2700 +/-2 2754 Yes l { _} Evaluated for impact of MUR. Radionuclide inventories based upon 2754 MWt. Existing AOR plus uncertainty bounds the MUR total core power.

14.19 Turbine-Generator {_ } {_} {_ {_} { _} Not effected by power increase. Analysis based Overspeed Incident on pitching turbine blades.

14.20 Containment Response 2700 +/-2 2754 Yes {_ Evaluated for impact of MUR. Existing AOR plus uncertainty bounds the MUR total core power.

14.21 Hydrogen Accumulation in { _} {_} {_} {_ { _) A change to the Calvert Cliffs Technical Containment I Specifications recently removed this incident.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION TABLE 11 Impact of Power Uprate on the UFSAR Chapter 14 Accident Analyses ANALYSIS OF RECORD ASSUMPTIONS UFSAR SECTION/EVENT RTP Uncert. Total Core Bounds Reference/

Method (MWt) (%) Power MUR? (50.59, etc.) NOTES

_ __ _ ___ _ _ _ _ (M W t)

RIS 2002-03 A BC BC BC BC D Rqmnt _

14.22 Waste Gas Incident 2700 +/-2 2754 Yes {U

_ Evaluated for impact of MUR. Radionuclide inventories based upon 2754 MWt. Existing AOR plus uncertainty bounds the MUR total core power.

14.23 Waste Processing System 2700 +/-2 2754 Yes { } Evaluated for impact of MUR. Radionuclide Incident inventories based upon 2754 MWL Existing AOR plus uncertainty bounds the MUR total core power.

14.24 Maximum Hypothetical 2700 +/-2 2754 Yes { }

- Evaluated for impact of MUR. Radionuclide Accident inventories based upon 2754 MWt. Existing AOR plus uncertainty bounds the MUR total core power.

14.25 Excessive Charging Event {_ {_ { _1 {_} { }

- Not effected by power increase. Evaluated to assure that the operator has at least 15 minutes from initiation of high pressure level alarm to take corrective action and terminate the event prior to filling the pressurizer solid.

14.26 Feedline Break Event 2700 +/-2 2754 Yes 11-1/50.59 Evaluated for impact of MUR. Existing AOR plus uncertainty bounds the MUR total core power.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION 11.2 NON-LOSS-OF-COOLANT ACCIDENT/TRANSIENT ANALYSES All of the UFSAR Chapter 14 non-LOCA transient analyses were evaluated for increase in RTP due to the MUR power uprate. While many of the events were reanalyzed for thermal margin credit associated with TURBO fuel, no explicit reanalysis was conducted for the uprated power.

In cases where an evaluation was performed, a target power uprate of 2746 MWt (1.7%) was used, which bounds the proposed change in RTP to 2737 MWt. The uprated RTP with uncertainty is equivalent to the pre-uprate total core power, which is 2754 MWt.

In the evaluation of the remaining events, the existing assumption on core power plus uncertainty bounds the MUR power uprate. No changes to the Reactor Protective System (RPS) or Engineering Safety Features were assumed or necessary.

Table 11-1 summarizes the transient analyses that were determined to bound plant operation at a conservative 1.7% power level increase.

The evaluation of the UFSAR Chapter 14 non-LOCA transient analyses concludes that the current analyses are applicable for Calvert Cliffs with the MUR power uprate.

11.3 EMERGENCY CORE COOLING SYSTEM PERFORMANCE The Calvert Cliffs Units 1 and 2 ECCS performance analysis consists of a large break loss-of-coolant accident (LBLOCA) and a small break loss-of-coolant accident (SBLOCA) analysis.

Both analyses were performed at a core power level of 2754 MWt. Consistent with the original requirement of Paragraph l.A of Appendix K to 10 CFR Part 50, 2754 MWt is equal to 102% of the current licensed core power level, i.e., RTP of 2700 MWt.

The Calvert Cliffs Units 1 and 2 LBLOCA and SBLOCA analyses were performed with the 1999 Evaluation Model (EM) (Reference 11-6) and Supplement 2 to CENPD-137 Evaluation Model (S2M) (Reference 11-7) versions of the Westinghouse ECCS EMs for CE pressurized water reactors (PWRs). The SERs for the 1999 EM (Reference 11-8) and the S2M (Reference 11-9) generically approved the EMs for referencing in licensing applications for CE designed PWRs.

The two EMs were specifically accepted for Calvert Cliffs Units 1 and 2 as allowed analytical methods for use in determining core operating limits in Reference 11-10. A summary of the Calvert Cliffs LBLOCA and SBLOCA analyses using the 1999 EM and the S2M was provided to the NRC in Reference 11-4. Detailed descriptions of the analyses are contained in Calvert Cliffs UFSAR Section 14.17.

As allowed by Paragraph l.A of Appendix K, Calvert Cliffs Nuclear Power Plant proposes to increase the licensed core power level and decrease the power measurement uncertainty such that the analytical core power level, after accounting for the new power measurement uncertainty, remains equal to 2754 MWt. Since the Calvert Cliffs Units 1 and 2 ECCS performance analysis was performed at an analytical core power level of 2754 MWt, it complies with Paragraph l.A of Appendix K for the proposed values for the licensed core power level and power measurement uncertainty.

A review of the impact that the proposed increase in licensed core power level (2737 MWt) has on the Calvert Cliffs Unit 1 values for plant data used in the Calvert Cliffs Units 1 and 2 ECCS performance analyses concluded that the increase in power does not affect the applicability of the analysis to Calvert Cliffs Unit 1 under the MUR power uprate conditions.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The analyses and evaluations were performed for Calvert Cliffs Units 1 and 2. In some cases where cycle specific data is needed the analyses/evaluations targeted Unit 1 as the lead unit for the MUR power uprate. Consequently, for Calvert Cliffs Unit 1, there are no changes to the peak cladding temperature or any other result of the Calvert Cliffs Units 1 and 2 ECCS performance analyses as a consequence of the proposed changes to the licensed core power level and power measurement uncertainty. Confirmation of the applicability of the analyses and evaluations on future cycles of Unit 2, and subsequent cycles of Unit 1, will be performed as part of the normal reload design process.

The 1999 EM and the S2M EMs consist, in part, of topical reports that were written prior to the revision to Paragraph l.A of Appendix K. Some of those earlier topical reports contain statements that the analyses will use 102% of the licensed core power level. For example,Section III.A of CENPD-132P (Reference 11-11) states that The reactor will be assumed to be operating at a power level of 102% of the maximum licensed power." Subsequent to the revision to Paragraph l.A of Appendix K, the topical reports that comprise the LBLOCA and SBLOCA EMs were not amended to reflect the revision to Appendix K; i.e., sentences like the above were not revised. As identified in the Introduction Section, Calvert Cliffs requests that approval of this license amendment request constitutes approval to apply the EMs at the proposed core power level and power measurement uncertainty.

11.4 ANTICIPATED TRANSIENTS WITHOUT SCRAM As noted in Reference 11-12, Calvert Cliffs has installed a diverse scram system. The NRC concluded that the Diverse Scram System met the requirements of 10 CFR 50.62 in Reference 11-13. Reference 11-14 stated that the installation of the diverse scram system, diverse turbine trip, diverse Auxiliary Feedwater Actuation System (AFAS), maintain the probability and consequences of an Anticipated Transients Without Scram (ATWS) as low, and eliminate the need to consider an ATWS as a Design Basis Event (DBE). Therefore, the proposed MUR power uprate does not adversely impact ATWS.

11.5 CONTAINMENT RESPONSE The mass and energy transfer data for the limiting LOCA Design Basis Accident (DBA) is based on three types of LOCA DBAs; hot leg LOCA with minimum Si, cold leg LOCA with minimum SI, and cold leg LOCA with maximum Si. The limiting LOCA DBA is the cold leg LOCA with maximum Si. The limiting LOCA DBA assumes a reactor power of 102% (2754 MWt).

The mass and energy for the Main Steam Line Break (MSLB) DBA includes a spectrum of core power levels to determine the most limiting mass and energy transfer for containment peak pressure and temperature including 0%, 50%, 75%, and 102% power levels. The most limiting for MSLB DBA corresponds to a 75% power level.

Note that all other events that challenge the containment integrity and are mentioned in other UFSAR sections are bounded by the limiting LOCA and MSLB DBA analyzed in Section 14.20 and discussed above.

In conclusion, the proposed MUR power uprate of 1.38% falls within the conservative set of inputs and assumptions used in the Calvert Cliffs containment response analysis.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION 11.6 STATION BLACKOUT EVENT The proposed changes to the licensed core power level and power measurement uncertainty have no impact on the station blackout analysis. The initial portion of the station blackout transient [i.e., loss of alternating current (AC) power] was determined to be unaffected by the proposed MUR power uprate (see Table 11-1). The small increase in decay heat as a result of the proposed MUR power uprate has a negligible impact on post-trip equipment [e.g., opening of main steam safety valves (MSSVs)] or operator response.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION 111. ACCIDENTS AND TRANSIENTS FOR WHICH THE EXISTING ANALYSES OF RECORD DO NOT BOUND PLANT OPERATION AT THE PROPOSED INCREASED POWER LEVEL There are no accidents or transients that are not bounded by the existing AOR (see Table 1-1).

However, other related personnel and equipment concerns need to be addressed. Therefore, the potential effects of the MUR power uprate were evaluated for the following issues:

  • Normal Operational Shielding and Personnel Exposure
  • Radiological Environmental Qualification (EQ)
  • Post-LOCA Access to Vital Areas As discussed in the previous section, no Chapter 14 accidents or transients required additional analysis because the existing AOR remained bounding for plant operation at the proposed increased power level. Discussion on the impact of the proposed MUR power uprate on plant radioactive waste effluents is provided in Section VI under Radioactive Waste Systems.

Normal Operational Shielding and Personnel Exposure The MUR power uprate will cause a 1.38% increase in expected radiation levels. However, these increases will not affect radiation zoning or shielding requirements in the various areas of the plant. Individual worker exposures will be maintained within acceptable limits by the site as low as reasonably achievable (ALARA) program that controls access to radiation areas. In addition, procedural controls may be used to compensate for increased radiation levels.

Radiological Environmental Qualification In accordance with 10 CFR 50.49, safety-related electrical equipment must be qualified to survive the radiation environment at their specific location during normal operation and during an accident.

The Containment and Auxiliary Buildings are divided into various rooms for environmental zoning purposes. The radiological environmental conditions noted for these rooms are the maximum conditions expected to occur. The current normal operation values represent 40 years of operation, while the AOR post-accident radiation exposure levels are determined for a one-year period following an accident using Regulatory Guide 1.89 source term assumptions and a core power level of 2700 MWt.

For the MUR power uprate, the EQ accident source term was reanalyzed for a core power level that bounds the proposed MUR power uprate with the same release assumptions as before.

The increased source term was compared to the AOR to develop integrated energy ratios that were used to adjust the doses from various sources (airborne, sump, iodine filters, etc.) for each Containment and Auxiliary Building room. The normal operation contribution to the EQ dose is based on survey data. It was increased by 1.38% (MUR power uprate), as well as by a factor of 1.5 to account for the extended operation period of 60 years.

Post-LOCA Access to Vital Areas Vital access dose considerations are described in NUREG-0737, Item 1l.B.2. Specifically, the design dose for personnel in a vital area should not exceed 5 rem whole body, or its equivalent to any part of the body, for the duration of DBAs. Updates of the dose analyses were performed to confirm that this requirement was met for a LOCA using Regulatory Guide 1.4 source term ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION assumptions and a core power level of 2737 MWt. The UFSAR time-dependent radiation dose rate maps that cover plant areas and access paths which may require occupancy during post-LOCA recovery operations will be updated to reflect the proposed MUR power uprate. The MUR power uprate will not have an impact on vital area access requirements.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION IV. MECHANICALISTRUCTURALIMATERIAL COMPONENT INTEGRITY AND DESIGN INTRODUCTION The RCS component specifications define the frequency and severity of the design transients that must be considered in the fatigue evaluations of the components in accordance with the American Society of Mechanical Engineers (ASME) code. The design transients in the individual component specifications represent events that are expected to occur, or may occur, during the life of the plant. The design transients are characterized in terms of the type of transients, the frequency of occurrence, the initial design conditions, and the associated thermal-hydraulic conditions experienced by various systems and components as a result of the transients. This information is then used in fatigue evaluations for those systems and components. The design transients defined in the current component specifications were reviewed to determine the effect of the MUR power uprate.

With respect to the type of transients and frequency of occurrence, the implementation of the MUR power uprate will not create new types of transients nor change the original event frequencies for the design transients.

With respect to the initial conditions and the thermal-hydraulic response during the transients, some were found to be affected by the uprate and some were not. The transients which occur in the lower operating modes remain valid because the hot zero power (no load) plant conditions are unaffected by the MUR power uprate. Many of the transient responses remain valid because the original design hot and cold leg temperatures are higher than the increased operating point.

Where necessary, the design transients were re-analyzed quantitatively to assess the impact of the changes on existing design conditions due to the MUR power uprate. In these cases, the analyses simulated the transients under the increased conditions and produced thermal-hydraulic responses (pressures, temperatures, and flow rates) for use in the component-by-component fatigue evaluations described in this section.

This section also provides the results of the structural integrity evaluations for RCS components and supports at MUR power uprate conditions.Section IV.1 discusses RCS LOCA loads in general terms and with respect to the MUR power uprate.Section IV.2 follows with individual discussions of the structural integrity assessments performed for the RCS major components.

Section IV.3 contains a discussion of the effects of small variations in the MUR power uprate operating point data.Section IV.4 discusses RV integrity. Finally,Section IV.5 discusses the impact of the MUR power uprate on nuclear fuel and core thermal hydraulics.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Table IV-1 Current NSSS Design and MUR Power Uprate Nominal Operating Parameters for Calvert Cliffs PrmtrCurrent Normal MUR Power Uprate Percent Parameter l Operating Conditions Normal Operating Change Conditions Cag Core Power MWt (input) 2700 2746 'b ) 1.70% 0b6 No. of Plugged Tubes per SG 5 10% s 10%

Primary Bulk Th, 'F 595.1 595.9 1 0.13%

Primary Tc, 'F 548 548 _

Primary AT, 0F 48.4 13 49.2 "' 1.65%

Primary Flow Rate, gpm (input) 370,000 - 422,250 370,000 - 422,250 -

Core Bypass Flow Rate, % 3.7 3.7 Primary Pressure, psia 2250 2250 _

Feedwater Temperature, 'F 431.5 '5' 433.6 } 0.70%

Feedwater Enthalpy, Btu/lbm (input) 409.2 '(I , 410.8 '-"I 0.39%

Feedwater Flow Rate per SG, Ibm/sec Same as Steam Flow Same as Steam Flow -

(input)

SG Blowdown Flow per SG, Ibm/sec 41.7 (max)tb) 41.7 (max)tb) -

(input) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SG Steam Flow per SG, Mlbm/hr 5.900 t1 5.999 (I. b. b)1.68%

Steam Pressure, psia 888t') 886.5"'( -0.17%

863 (1.3) 860.3 (1.3) -0.31%

SG Total Mass, ibm 138,524",') 138,024" {1 -0.36%

SG Liquid Mass (Ibm) 128,130"'4) 127,636"1') -0.39%

(1)

At 100% Power (2)

No Plugged Tubes (3) 10% Plugged Tubes (4)

SG Level at 35.95 ft (5)

Based on Best Available Data (6)

Bounding Value selected for the evaluation (7)

A large portion of the MUR power uprate evaluation was completed using an estimated temperature increase for Thot of 1.1 'F, conservatively. Further evaluations have since been finalized, predicting an 0.80F increase for Tht. Therefore, the original evaluation performed for MUR power uprate remains bounding.

IV.1 REACTOR COOLANT SYSTEM LOSS-OF-COOLANT ACCIDENT FORCES EVALUATION The purpose of a LOCA hydraulic forces analysis is to generate the hydraulic forcing functions and blowdown loads that occur on RCS components as a result of a postulated LOCA. These forcing functions and loads act on the component's shell and internal structures.

The full set of RCS loadings considered in the structural analysis of a LOCA event consists of the internal forcing functions generated from the hydraulic forces analysis, the pipe tension release, and jet impingement forces acting at the break locations, and, where applicable, the external loads due to subcompartment pressurization effects that act on the components and their supports.

Except for the Thimble Support Plate and selected RV internals components, the faulted loads and stresses in the current AORs are based on Main Coolant Loop Breaks (MCLBs) where thrust loadings were based on simplified (pressure x area) terms and where asymmetric ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION blowdown loadings were calculated using design setpoint parameters for 2700 MWt, where Thot=6040F and Tcld=5480 F. Since the MCLBs have been eliminated by leak before break (LBB) and replaced by Branch Line Pipe Breaks (BLPBs), loads and motions on NSSS components due to pipe breaks are greatly reduced. Furthermore, since the RV blowdown loads are primarily affected by changes in Tcold, and T,,Id remains the same for the MUR power uprate, the effects of BLPBs at the MUR power uprate would not be significantly different from the effects of BLPBs under pre-MUR power uprate conditions. Therefore, the effects on NSSS components of BLPBs at the MUR power uprate are less severe than the effects of pipe breaks currently documented in the AORs.

Based on this conclusion, the DBA for blowdown loads at the MUR power uprate conditions remains the original design basis LOCA analyzed. Except where noted, the following structural evaluation discussions are based on the original DBA, and do not make direct use of the mitigating effects of LBB.

IV.2 REACTOR COOLANT SYSTEM MAJOR COMPONENT ASSESSMENTS As noted in the introduction to this section, the majority of the NSSS design transients are demonstrated to be unaffected by the MUR power uprate. Transients with the potential to adversely affect the AOR results for particular RCS components were evaluated for their effects on the critical stress margins identified for the RCS components. The transients involved are listed below, on a component by component basis:

RV (including original RV Head). RCPs. RCS Piping and Fittings (except Surge Line). and Original Control Rod Drive Mechanism & Part Length Control Rod Drive Mechanisms Reactor Trip - The rate of change in temperature for the MUR power uprate for this transient is slightly greater than that for the design basis.

Surge Line and Fittings Reactor Trip, Loss of Flow, Step Load Increase/Decrease, Plant Loading/Unloading -

The change in temperature for the MUR power uprate for these transients is slightly greater than that for the design basis.

Pressurizer Step Load Increase - The rate of change in temperature for the MUR power uprate is greater than that for the design basis for this transient.

The above observations were used to help determine which MUR power uprate transients needed to be evaluated with respect to their effects on fatigue for limiting RCS components.

Evaluations of these limiting components are discussed in the remainder of this section.

In another assessment, the Calvert Cliffs RCS loads and displacements due to normal operating thermal expansion effects under the MUR power uprate conditions were reconciled with the loads and displacements from the pre-uprate RCS thermal expansion analysis, where Thot was set to 6040 F and Tcold was set to 5500F. It was concluded that MUR power uprate does not cause any significant changes in thermal anchor motions, and that all previously documented thermal anchor motions for Calvert Cliffs remain valid. All RCS loads due to normal operating thermal expansion either decrease or change insignificantly due to the decrease in delta-T between T.1d and Thot of the initial power rating design setpoint temperature and the MUR power ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION uprate conditions stated in Table IV-1. The SG inlet nozzle moment (the moment around the horizontal axis perpendicular to the hot leg axis) increases, but this moment is not a limiting load with respect to stress margins on either the hot leg or the SG inlet nozzle.

Based on the results of this normal operating thermal expansion evaluation, specified normal operating loads on NSSS component supports and nozzles, and the main loop piping, and normal operating displacements on RCS tributary nozzles do not need to be revised for the MUR power uprate. This conclusion is utilized in the AOR stress evaluations discussed in the remainder of this section.

IV.2.1 Reactor Vessel Structural Evaluation This evaluation assesses the effects that the MUR power uprate has on the most limiting locations with regard to ranges of stress intensity and fatigue usage factors (UFs) in each of the vessel regions, as identified in the RV stress reports and addenda.

The nominal vessel outlet temperature increases to 595.90F, and the nominal vessel inlet temperature remains at the current value of 548.0F as a result of the MUR power uprate (see Table IV-1 for a comparison of operating parameters). Therefore, the Thot variation during normal plant loading and plant unloading increases while the Tcold variation remains unchanged.

As noted above, the nominal vessel inlet temperature associated with the MUR power uprate is the same as the nominal temperature for the current fuel cycle. The nominal vessel outlet temperature has increased slightly but is still less than the normal design vessel outlet temperature of 6040 F that was originally used in the analysis of the RV outlet nozzles.

Therefore, the effects of the plant loading and unloading transients on the inlet and outlet nozzles remain bounded by the stress AOR.

The RV main closure flange region and control element drive mechanism (CEDM) housings were originally evaluated for the effects of a higher vessel outlet temperature. Therefore, the effects of the MUR power uprate vessel outlet temperature on these regions are also bounded by the current design basis.

The remaining RV regions, including the inlet nozzles, vessel wall transition, core support guides, bottom head-to-shell juncture, and instrumentation nozzles are affected by the vessel inlet temperature, which is unchanged for the MUR power uprate. Therefore, the previously determined maximum stress intensity ranges and maximum cumulative fatigue UFs for these regions are valid.

The critical stress margin at the closure head studs remains unchanged because it is based on compression due to the bolt-up procedure, which is unchanged by the MUR power uprate. The critical margins at the vessel wall at the core stabilizer lugs remain unchanged because they are based on normal operating pressure and Operating Basis Earthquake (OBE), none of which are changed by the MUR power uprate. The margins on the load capability of the RV cold leg and hot leg horizontal supports due to MCLBs are significantly increased to non-critical margins due to the elimination of the MCLBs by LBB and their replacement with BLPBs.

None of the margins on the Incore Instrumentation (I0C) Flange Assembly for either unit are critical. The lowest margin on stress is 7.7%, which is a margin on the bearing stress at the nut-to-compression collar surface for the Quickloc on Unit 2. This margin is unchanged because ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION the bearing stress is due to design pressure and OBE, neither of which are changed by the MUR power uprate.

None of the margins on the RV vent line are considered to be critical. The lowest margin on stress is for the primary-plus-secondary stress at the J-weld on the RV closure head. The controlling stress range is generated from the loss of secondary pressure (LOSP) and the normal heat-up transients. These specified design transients are not changed by the MUR power uprate. Therefore, the critical stress margins for this component remain valid for MUR power uprate conditions.

The critical stress margins for other RV components are discussed below.

RV Closure Head Instrument Nozzle Bimetallic Weld The critical margin of 5.39% on the stress intensity is due to a design pressure of 2500 psia, and the allowable Sm is based on a design temperature of 6500F. The design pressure and temperature are not changed due to the MUR power uprate. Therefore, the stress margin for this component is unchanged and remains acceptable for the MUR power uprate.

Vessel Wall at RV Outlet Nozzle The critical stress margin of 2.5% is for primary-membrane-plus-local stress. Per the AOR, the calculated stress is a function of design moments and forces on the pipe, and of a design pressure of 2500 psia. The design moments and forces are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is unchanged by the MUR power uprate. Therefore, this stress margin remains acceptable for the MUR power uprate.

RV Outlet Nozzle As above, the critical stress margin for primary-membrane-plus-local stress is a function of design moments and forces on the pipe, and of a design pressure of 2500 psia. Therefore, the stress margin of 0.79% for this component is unchanged and remains acceptable for the MUR power uprate.

Vessel Wall Transition Part of Vessel Support The critical stress margin of 0.64% is for the primary-membrane stress. Per the AOR, the calculated primary-membrane stress is based on a design pressure of 2500 psia. The design pressure of 2500 psia is not changed by the MUR power uprate. Therefore, the stress margin of 0.64% for this component is unchanged and remains acceptable for the MUR power uprate.

Taper between RV Dome and Closure Flanae The critical stress margin of 3.07% is for primary-membrane-plus-local stress. Per the AOR, the calculated stress is due to design pressure, flange bolt-up loads and core (i.e., vessel internals) loads. The specified flange bolt-up loads and core loads are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is not changed by the MUR power uprate. Therefore, this stress margin is unchanged and remains acceptable for the MUR power uprate.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Surveillance Holder and Brackets The critical margin on the alternating stresses (Salt) from peak stresses is 2.33%. Per the AOR, the calculated stress is based on design moments and forces and stress concentration factors. None of these parameters are changed as a result of the MUR power uprate. Therefore, the stress margin for this component is unchanged and remains acceptable for the MUR power uprate.

Vessel Wall at Core Stabilizer Lugs The critical margin on the maximum stress (S,,)due to the lateral load on the shell at the lug attachment is 5.25%. Per the AOR, the calculated stress is a function of the lateral moment and the design pressure. The specified design moments and forces are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is not changed by the MUR power uprate. Therefore, this stress margin is unchanged and remains acceptable for the MUR power uprate.

Vessel Shell and Bottom Head The critical margin on primary-membrane stress is 0.64%. It is noted that the critical location coincides with the vessel wall transition part of vessel support location discussed above. Therefore, the stress margin for this component is unchanged and remains acceptable for the MUR power uprate.

Vessel Head at Core Stop Lugs The critical margin on the maximum stress intensity is 0.24%. Per the AOR, the calculated stress is based on design moments of the retainer (i.e., core stop) lugs. These design moments are not affected by the MUR power uprate. Therefore, this stress margin is unchanged and remains acceptable for the MUR power uprate.

Head Lift Rip This evaluation pertains to the currently installed head lift rigs at Calvert Cliffs Units 1 and 2.

Evaluation of the planned replacement lift rig will be performed prior to its installation after the MUR power uprate.

The vertical link in the head lift rig has a critical margin on stress of 2.3%. This small margin is due to tension stress during closure stud handling, which is not affected by the MUR power uprate. Therefore, this head lift rig subcomponent remains acceptable for the MUR power uprate.

The cooling duct cover plate has a critical margin on stress intensity of 0.9%, which is due to a combination of dead weight, seismic excitation, and flow loads. These flow loads are hot air flow loads across the cover plate for which the operating temperature under the MUR power uprate conditions remains lower than the design temperature. In addition, the dead weight and seismic loads are not affected by the MUR power uprate. Therefore, this critical head lift rig subcomponent also remains acceptable.

The Code version used in the evaluation for the Calvert Cliffs Unit I and 2 RVs is the 1965 Edition of Section III of the ASME Boiler & Pressure Vessel Code through the Winter 1967 Addendum. The Code is the same as the current Code of Record for these components.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Conclusion The RV evaluation for the MUR power uprate demonstrates that the maximum ranges of stress intensity remain within their applicable acceptance criteria, and the maximum cumulative fatigue UFs remain below the acceptance criterion of 1.0.

In addition, the faulted condition stress analyses for the Calvert Cliffs RV do not change as a result of the MUR power uprate, because the seismic loads are unchanged from the AOR, and the pipe break load input remains based on the original MCLBs. Therefore, no changes in the faulted condition RVlreactor internals interface loads or other faulted condition parameters are identified as a result of the MUR power uprate.

IV.2.2 Reactor Vdssel Internals Evaluation The reactor internals support the fuel and control rod assemblies, experience control rod assembly dynamic loads, and transmit these and other loads (e.g., deadweight, seismic vibration) to the RV. The internals also direct flow through the fuel assemblies, provide adequate cooling to various internals structures, and support ICI. The changes in the RCS design parameters identified previously in Table IV-1 produce insignificant changes in the boundary conditions experienced by the reactor internals components. This section describes the evaluation performed to demonstrate that the reactor internals can perform their intended design functions at the MUR power uprate conditions.

IV.2.2.1 Thermal-Hydraulic Systems Evaluations The MUR power uprate can potentially affect such parameters as reactor vessel internal (RVI) component heating rates, coolant temperature levels, and their downstream impacts. A key area in evaluation of core performance is the determination of the hydraulic behavior of coolant flow and its effect within the reactor internals system. The core bypass flows are required to ensure reactor performance and adequate RV head cooling. The hydraulic forces are critical in the assessment of the structural integrity of the reactor internals. The results of the thermal-hydraulic evaluations are provided below.

RVI Component Temperatures The AOR on RVI component temperatures were reviewed to determine the component most affected by the MUR power uprate. The component selected from this review process is the core shroud. Component metal temperatures, and therefore, thermal stresses, are dependent on the core power level and coolant temperatures. Calvert Cliffs Nuclear Power Plant core shroud metal temperatures were re-evaluated for the MUR power uprate level.

The resulting core shroud component temperatures were used to calculate thermal stresses, in order to evaluate the structural margins for the shroud. The structural evaluation demonstrated that there is adequate structural margin for the core shroud for the MUR power uprate; see Section IV.2.2.3.

RVI Component Hydraulic Loads A review of the AOR design hydraulic loads on the RVI components indicated that the current design loads are bounding for the MUR power uprate operation. Small increases in power level, such as the MUR power uprate, have minimal impact on the design hydraulic loads.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Core Bypass Flow Calculation Bypass flow is the total amount of reactor coolant flow bypassing the core region and is, therefore, not considered effective in the core heat transfer process. The design core bypass flow limit is 3.70% of the total RV flow. This value is used in the thermal margin calculations. A lower bound value of 1.6% is used in the calculation of hydraulic loads since the higher core flow results in higher core pressure drops and, therefore, higher uplift and differential pressure (D/P) loads. The best-estimate core bypass flow is 3.43% of the RV flow.

Core bypass flow is negligibly affected by the MUR power uprate. The core pressure drop will tend to increase very slightly, due to the higher power level. This will have the effect of diverting very slightly more bypass flow through the various leakage flow paths. But the margin between the best estimate and design values of core bypass flow will readily accommodate the negligible increase in core bypass flow due to the uprate.

Therefore, the core bypass flow limit of 3.7% remains valid for the MUR power uprate.

Control Element Assembly (CEA) Drop Time Analyses Calvert Cliffs Technical Specification Surveillance Requirement 3.1.4.6 requires that the drop times of all full-length CEAs from a fully withdrawn position, must be verified to be less than or equal to 3.1 seconds prior to the startup of each cycle.

Control element assembly drop times are explicitly confirmed to meet the times assumed in the accident analyses. An evaluation was performed for all CE fleet plants to demonstrate continued compliance with the current Technical Specification requirements based on CE fleet's robust five finger silver tip design, which has not shown any failure to insert at any time in life through the end-of-life core bumup. The MUR power uprate conditions will slightly increase the power level in leading rodded fuel assemblies; however the projected bumup levels and fluences are substantially less than the values assumed in the design calculations. The assembly burnups and fluences are confirmed on a cycle specific bases to be within the values assumed in the CEA design analysis. In addition, the CEA drop time is measured prior to the startup of each reload cycle.

Finally, the fluid density has not increased for the MUR power uprate since Tcod has not changed and Thot has increased slightly. Therefore, CEA drop times are not adversely affected by the MUR power uprate.

Based on the above, the current limiting rod drop time requirements remain valid for the MUR power uprate conditions.

CEA and ICI Cooling Assessment Cooling analyses for CEAs and incore instruments were performed for the MUR power uprate. These analyses indicate that the following design criteria are met:

  • No coolant bulk boiling will prevail inside the CEA and ICI guide tubes.
  • B4C and AgInCd maximum temperatures will stay within the design limits of 2000OF and 14000F, respectively.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION IV.2.2.2 Mechanical Evaluations As discussed previously, the MUR power uprate conditions do not affect the current design bases for seismic and LOCA loads. Therefore, it was not necessary to re-evaluate the structural effects from seismic OBE and Safe Shutdown Earthquake loads, or from the LOCA hydraulic and dynamic loads. Furthermore, it is noted that the LOCA hydraulic and dynamic loads would be less severe if BLPBs were analyzed instead of the original design basis MCLBs.

With regard to flow and pump induced vibration, the current analysis uses a mechanical design flow that does not change for the revised design conditions (see Table IV-1). The revised design conditions alter the Thot fluid density. However, this very small change in the Thotfluid density has a negligible effect on the forces induced by flow. In addition, the MUR power uprate results in a negligible change in Tavg. Therefore, the mechanical loads are not affected by the MUR power uprate conditions.

IV.2.2.3 Structural Evaluations As described in Section IV.2.2.1, the normal operating hydraulic loads used in the AOR for the structural evaluation of the RVI components are bounding for the MUR power uprate. Seismic and LOCA loads on the RVI components are unaffected by the MUR power uprate operation, and the primary stresses calculated in the AOR therefore remain applicable. The MUR power uprate can potentially increase thermal loadings and the resulting thermal stresses in the RVI components. Because this MUR power uprate is relatively small (-1.38%), it was concluded that potential adverse effects on the RVI structures would be confined to the core shroud, which is more sensitive than the other RVI components to minor variations in thermal loading.

To quantify these potential effects, the AOR for the calculation of thermal stresses in the core shroud was reviewed. Because of limitations in this AOR, the applicability of a more recent analysis, performed for a similar core shroud design, was investigated. The applicability of this analysis was confirmed, and the thermal stresses calculated therein were combined with the appropriate primary stress and evaluated against acceptance criteria. Elevated (> 8000 F) temperature effects (reflecting the core shroud maximum temperature of 8850F) were considered in the determination of these acceptance criteria, and a fatigue evaluation was performed.

Under thermal loadings that encompass the MUR power uprate, the core shroud analysis determined that the maximum primary-plus-secondary stress intensity exceeded the allowable value. Therefore, a simplified elastic-plastic analysis with attendant re-evaluation of fatigue usage was performed in accordance with the acceptance criteria.

The resulting maximum primary-plus-secondary stress intensity (excluding thermal bending stresses) was 37,927 psi, which is less than the 43,800 psi allowable. Furthermore, the cumulative usage factor (CUF) for the MUR power uprate conditions was determined to be 0.375, which is significantly less than the 1.00 allowable. Thus, the core shroud satisfies the acceptance criteria.

Increases in core thermal power will slightly increase nuclear heating rates in the RVIs, such as lower core support plate, fuel alignment plate, and core shroud. Evaluations have been performed verifying that the existing thermal-hydraulic AOR will support the MUR power uprate.

Therefore, the calculated component lifetimes will envelop the component lifetimes associated with the MUR power uprate related increases in nuclear heating.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The allowable stress formulae defining the primary stress limits for the core shroud, as specified in the Calvert Cliffs UFSAR, were adopted prior to the establishment, by the ASME Boiler &

Pressure Vessel Code, of specific design criteria for core support structures. Core support structure-specific design criteria were formally introduced as Subsection NG in the Winter 1973 Addendum to Section III of the ASME Boiler & Pressure Vessel Code. Therefore, the core shroud evaluation described above, used allowable stress values defined in Subsection NG of the Winter 1973 Addendum. Rules for the evaluation of core support structures at elevated temperatures have not yet been approved. Subsection NH in the 1998 Edition of Section III of the ASME Code, which provides rules for the design of Class 1 components in elevated temperature service, was therefore used to adjust the allowable stress values defined in Subsection NG of the Winter 1973 Addendum.

IV.2.3 Control Element Drive Mechanisms The CEDMs and part length control element drive mechanisms (PLCEDMs) are mounted on top of the Calvert Cliffs reactor head. These components are affected by the reactor coolant pressure, vessel outlet temperature, and hot leg NSSS design transients. The following evaluation pertains to the currently installed CEDMs and PLCEDMs at Calvert Cliffs Units I and

2. Evaluation of the planned replacement CEDMs will be performed prior to their installation following approval of the MUR power uprate.

According to Table IV-1, the vessel outlet temperature for the MUR power uprate has increased slightly to 595.50F. However, this temperature remains well below the design operating temperature of 604 0F. Therefore, no additional assessments of the impact of thermal loads on the CEDMs and CEDM nozzles are required. The reactor coolant operating pressure (2250 psia) for the MUR power uprate conditions remains the same as originally specified for the CEDMs/PLCEDMs.

The coil stack fasteners on the CEDMs/PLCEDMs were found to be the critical components for Safe Shutdown Earthquake, but seismic loads are not affected by the MUR power uprate. The critical CEDM component for LOCA was the CEDM nozzle, for which the maximum calculated bending load is 170 in-kips vs. an allowable bending moment of 0.7 of the instability load (203 in-kips), for a margin on load of 16.26%. Margins on CEDM components for BLPBs are larger than margins due to LBLOCA.

Since all critical margins on the CEDMs/PLCEDMs are maintained for the MUR power uprate, these components remain acceptable.

IV.2.4 Pressurizer Surge Line Piping Parameters associated with the MUR power uprate were reviewed for their impact on the design basis analysis for the pressurizer surge line piping including the effects of thermal stratification.

Nuclear Steam Supply System design parameters, NSSS design transients, and changes at the reactor coolant loop Auxiliary Class 1 branch nozzle connections due to deadweight, thermal, seismic, and LOCA loading conditions were considered.

Thermal stratification takes place during plant transients (e.g., during plant heatup), and the temperature ranges defined in the stratification AOR were conservatively based on plant operating data. Thot has increased slightly for the MUR power uprate (see Table IV-1). This change has a negligible effect on the stratification AOR, since it only results in a slight reduction ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION in the delta-T between the pressurizer and the hot leg during steady-state normal operation.

Therefore, the stratification temperature ranges developed in the AOR will bound the new operating conditions.

There is no impact on the deadweight analysis due to the MUR power uprate because there is no discernable change in the weight of the Auxiliary Class 1 pressurizer surge line piping systems. Fluid weight changes due to the change in Thot are very small, and their effect on the overall piping weight is insignificant. The seismic response spectra remain unchanged.

Therefore, there is no impact on the seismic analysis. Although BLPBs could be invoked through LBB implementation, continuing to base the RCS structural analyses on the original design basis LOCA events is conservative and valid. Therefore, no change to the LOCA hydraulic forcing functions is required. In conclusion, the MUR power uprate has no impact on Auxiliary Class 1 branch nozzle connection loads resulting from the deadweight, thermal, seismic, or LOCA input loading conditions.

It is noted in the introduction to this section, however, that some of the NSSS calculated thermal transients are affected by the MUR power uprate. The calculated transients refer to thermal transients re-calculated for the MUR power uprate conditions. Reconciliation between the design transients and re-calculated transients for the MUR power uprate was performed for critical locations on the Calvert Cliffs Units I and 2 RCS surge lines and fittings. These reconciliations are summarized below.

Surge Line Piping The critical margin on the maximum primary-plus-secondary stress is 1.78%. Per the AOR, the maximum calculated stress intensity range is based on design pressure, dead weight, seismic loads, and specified normal operating transients for surge line piping.

The design pressure, dead weight, and seismic loads are not affected by the MUR power uprate. Per the AOR, the dominant stresses are from the plant loading transient and the plant unloading transient. The effect of the MUR power uprate on these transients was evaluated. Based on this evaluation, these transients as originally specified for design remain applicable for the MUR power uprate. Therefore, the stresses on the surge nozzle are also unchanged.

The critical CUF of 0.937 in the surge line occurs at the elbow under the pressurizer. This CUF is primarily due to stratified flow and striping, was developed for the Combustion Engineering Owners' Group (CEOG), and represents a bounding case for the combined effects of stratified flow and striping on the maximum CUF of any CE plant surge line.

The report to the CEOG (Reference IV-1) stated the following with respect to the calculated generic CUF of 0.937:

The actual usage factor for each specific plant is expected to be lower because 1) the loadings are generic and very conservative, 2) the assumptions made for material properties are conservative, and 3) the most highly stressed line (elastically) was used as the line for shakedown. The highest contribution to fatigue results from a load set which ranges between a non-stratified load state and a 340 OF stratified flow load state.

Virtually all of the cumulative usage includes load sets with a stratified flow load state.

This indicates that the OBE and full flow thermal stresses contribute very little to the overall fatigue conclusions.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Therefore, there is a much greater margin on the allowable CUF for the Calvert Cliffs surge lines, and the actual margin for the Calvert Cliffs surge lines is not considered critical. As documented in the piping specification, all transients affecting the RCS piping, including the surge line, are unchanged by the MUR power uprate. Consequently, the Calvert Cliffs surge line piping remains acceptable for the MUR power uprate.

Surge Line Temperature Measurement Nozzle The surge line temperature measuring nozzle is a resistance temperature detector (RTD) nozzle that has a pre-uprate CUF of 0.732, and the transient contributing the largest UF (0.333) is the LOSP transient in combination with heatup, neither of which is affected by the MUR power uprate conditions. The design transients contributing to the RTD nozzle fatigue usage that are also affected by the MUR power uprate are reactor trip, loss of flow, step load increase/decrease, and plant unloading. The step load increase/decrease transients under the MUR power uprate conditions will not increase the alternating stresses or UF on the RTD nozzle. Therefore, the delta UF calculation for the MUR power uprate includes only the effects from the reactor trip, loss of flow, and plant unloading transients. Using a conservative 35 years of additional operation to end-of-life in order to envelop plant operation under the MUR power uprate conditions, the CUF is increased by 0.109, from 0.732 to 0.841. This CUF continues to meet the acceptance criterion. The surge line temperature measuring RTD nozzle is therefore considered acceptable for the MUR power uprate.

Surge Line Sampling Nozzle The surge line sampling nozzle has a pre-uprate CUF of 0.996, and the transient contributing the largest UF (0.263) is the LOSP transient in combination with heatup, neither of which is affected by the MUR power uprate conditions. In addition, this UF was very conservatively generated originally using the simplified elastic-plastic analysis (i.e., application of the Ke factor as defined in Paragraph NB-3228.5 of the ASME Code). A full elastic-plastic analysis reduces this UF from 0.263 to 0.044, thereby reducing the pre-uprate CUF to 0.777 (0.996 - 0.263 + 0.044).

The design transients that contribute to the sampling nozzle fatigue usage and that are also affected by the MUR power uprate conditions are reactor trip, loss of flow, step load increase/decrease and plant unloading. The step load increase/decrease transients under the MUR power uprate conditions will not increase the alternating stresses or UF on the sampling nozzle. Therefore, the delta UF calculation for the MUR power uprate includes only the effects from the reactor trip, loss of flow, and plant unloading transients. Using a conservative 35 years of additional operation to end-of-life in order to envelop plant operation under the MUR power uprate conditions, the CUF is increased by 0.207, from 0.777 to 0.984. This CUF continues to meet the acceptance criterion. The surge line sampling nozzle is, therefore, considered acceptable for the MUR power uprate.

Based on the above, the existing pressurizer surge line piping analysis remains valid.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION IV.2.5 Reactor Coolant Pumps and Motors IV.2.5.1 Reactor Coolant Pump Structural Analysis The four RCPs are installed in the cold legs of the reactor coolant loops. The RCPs are affected by the reactor coolant pressure, SG outlet temperature, and primary side cold leg NSSS design transients. The SG outlet temperature affects both the thermal expansion and thermal transient loads on the RCPs.

The nominal SG primary outlet temperature for the MUR power uprate (i.e., Tcold = 548.00 F) is the same as the current nominal and design basis temperature for the SG outlet, RCP suction and discharge and RV inlet. Consequently, RCP thermal expansion loadings for the MUR power uprate are bounded by the design condition.

The Calvert Cliffs RCP supports are designed to carry loads due to normal operating conditions and seismic excitations, neither of which is changed by the MUR power uprate. Under LBLOCA, the RCP nozzles were shown to be capable of carrying the faulted condition loads that the RCP supports were not designed to carry. When LBLOCAs are replaced by BLPBs via LBB considerations, the faulted loads on the RCP supports and nozzles are significantly reduced, and the margin on the nozzle loads is increased.

The AOR also identified a critical margin on the horizontal strut load due to OBE. Since seismic excitations are unaffected by the MUR power uprate, this margin remains unchanged and acceptable.

In addition to the support system, other critical RCP components stress margins were addressed in the MUR power uprate assessments, as follows.

Casing Diffuser Vanes Design Conditions - Critical margins exist for the primary-membrane and the primary-membrane-plus-local stress intensities at Vane 8. These margins are 2.74% and 4.81%,

respectively. Per the AOR, the calculated membrane stress intensity is the average stress in the vane, and the calculated membrane plus local stress intensity represents the largest surface stress intensity, adjusted by removing the discontinuity bending stress. These stresses are a function of design moments and forces on the structure and the design pressure of 2500 psia. The specified design moments and forces are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is unchanged by the MUR power uprate. Therefore, these diffuser vane stress margins are unchanged and remain acceptable for the MUR power uprate.

Suction Nozzle Design Conditions - The critical margin on the primary-membrane stress of the suction nozzle due to the design conditions is 2.0% and is only due to the design pressure 2500 psia. The design pressure, and therefore, primary-membrane stress, is not affected by the MUR power uprate.

Emergency Conditions - The critical margin in the suction nozzle due to emergency conditions involves primary-local stress, which is negative (-11.20%) when compared to the more restrictive limit of 1.2 Sm cited in the AOR. When compared to the less restrictive AOR limit of 1.8 Sm, a large positive margin exists. The AOR noted that although the more restrictive allowable was exceeded by the primary-local membrane stress, the ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION corresponding primary-general-membrane stress, which did not contain local effects, was less than the same allowable. Consequently, the AOR concluded that the conservatism inherent in the more restrictive primary-local stress allowable was unwarranted. This reasoning also applies to stresses for the MUR power uprate conditions.

Furthermore, since the specified external moments and forces, and the operating pressure loads are unchanged for the MUR power uprate conditions, the stress margins are unaffected and the suction nozzle design remains acceptable.

Discharge Nozzle Design Conditions - Critical margins exist for the primary-membrane and the primary-membrane-plus-bending stress intensities in the crotch region of the discharge nozzle.

These margins are 2.20% and 2.67%, respectively. Per the AOR, the acceptable primary-membrane stress margin of 2.20% was obtained after correcting the as-calculated stress analysis results for the as-cast thickness of the discharge nozzle and shell. Regarding the primary-membrane-plus-bending stress, the acceptable margin of 2.67% was obtained by removing the secondary bending stress from the greatest surface stress intensity in the crotch. The specified design moments and forces are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is unchanged by the MUR power uprate. Therefore, the stress margins of 2.20% and 2.67% for the discharge nozzle remain acceptable for the MUR power uprate.

Emergency Conditions - Critical margins exist for the primary-membrane and the primary-local-plus-bending stress intensities in the crotch region of the discharge nozzle. Primary-local-plus-bending results apply to the top half of the nozzle. These margins are 0.10% and 0.87%, respectively. Since the external moments and forces, and the operating pressure loads are unchanged for the MUR power uprate conditions, the stress margins remain acceptable for the MUR power uprate.

Hanger Bracket Design Conditions - The critical margin for this location, 2.67%, is associated with the primary-membrane-plus-bending stress intensity. The membrane stress, which is 1.046 Sm, is classified as primary-local stress, and therefore is well below the limit of 1.5 Sm. The specified design moments and forces are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is unchanged by the MUR power uprate.

Therefore the stress margin of 2.67% for the hanger bracket remains acceptable for the MUR power uprate.

Volute. Lower Flange Design Conditions - The critical margin for this location, 4.70%, is associated with the primary-membrane stress intensity. The AOR also states that no surface stress exceeds the 1.5 Sm limit. Consequently, the primary-membrane-plus-bending limits are also satisfied for this region of the structure. The specified design moments and forces are unchanged due to the MUR power uprate. In addition, the design pressure of 2500 psia is unchanged by the MUR power uprate. Therefore, the stress margin of 4.70% for the voluteflower flange region remains acceptable for the MUR power uprate.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Cover, Region 4 According to the AOR, the critical stress margin for this region of the cover (the inside corner of the cover between cooling holes) occurs under operating conditions (i.e., for operation between steady-state hot and steady-state cold conditions). In this case, the highest stress intensity range was determined from linearized surface stresses and compared to 3 Sm at operating temperature, resulting in the critical margin of 4.96%. Since the heat-up and cooldown transients are not affected for the MUR power uprate, the critical margin of 4.96%

is unchanged for the MUR power uprate conditions.

Based on the above discussions, it can be concluded that the existing RCP stress analyses are bounding and remain applicable for the pressure boundary components.

IV.2.5.2 Reactor Coolant Pump Motor Evaluation Previous analyses determined that the RCP motors are acceptable for continuous operation with limiting hot loop and cold loop conditions under 2700 MWt. The RCP motors were determined to remain acceptable for operation at the MUR power uprate parameters based on the following:

  • No-load Tavg is unchanged by the MUR power uprate. Therefore, the RCP hot start is not affected.
  • Limiting RCP motor starting conditions occur during RCS cold loop conditions that are unchanged, and therefore not impacted by the MUR power uprate (i.e., Tiod remains at the design value of 5480 F).
  • The mechanical loads controlling RCP motor thrust bearing design are associated with seismic and LOCA conditions (i.e., RCP motor peak accelerations). Seismic loads are not affected by the MUR power uprate, and LOCA condition loads are reduced when BLPBs are invoked as the limiting design basis pipe breaks.

IV.2.6 Steam Generators The thermal-hydraulic performance of the SGs was analyzed for the MUR power uprate conditions. Given the new RCS input of 595.9 0F for Thot, with flow, and Tcold remaining the same as at 2700 MWt, the secondary side of the SG experiences a 1.7% flow rate increase with pressure and temperature decreasing 1.5 psi and 0.10 F. There will also be a slight 0.36%

decrease in SG inventory at 100% power. The new conditions were checked against the design, test and Level A, B, C and D stress levels specified in the ASME Code and found to be acceptable. The internals and flow induced vibration effects were found to be negligible.

Structurally there is negligible effect. Therefore, the SGs remain fully qualified to operate at the MUR power uprate.

IV.2.6.1 Steam Generator Upper and Lower Supports Structural Integrity The Calvert Cliffs SG support system consists of the following components at each SG:

  • Lower SG supports - a sliding base, with four vertical pad supports and two lower keys.
  • Upper SG supports - two upper shear key supports and eight directing-acting hydraulic snubbers.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Even though the operating setpoint temperatures (Thot and Tcold) for the MUR power uprate conditions are enveloped by the design setpoint temperatures used in the original design basis structural analyses of the RCS, an assessment was performed to determine the effects of the MUR power uprate condition operating temperatures on the RCS components and supports.

This analysis concluded that the loads on the RCS supports, including the supports on the SGs, either decreased or changed insignificantly due to the decrease in delta-T between Tcod and Thot, relative to the original design basis analyses. Therefore, the effect of RCS thermal expansion on SG support loads due to the MUR power uprate is insignificant.

Since the original seismic and LOCA loads are also unchanged for the MUR power uprate, the SG upper, and lower supports continue to be acceptable under the MUR power uprate conditions.

IV.2.7 Pressurizer The conditions that could affect the primary-plus-secondary stresses, and the primary-plus-secondary-plus-peak stresses, are the changes in the RCS hot leg temperature (ThaO, the RCS cold leg temperature (Tfld), and the pressurizer transients. Table IV-1 indicates that Twod is unchanged, and that the increase in Thot is very small. A Thot change of this magnitude is enveloped by the current stress analysis. Some of the calculated thermal transients, however, were affected by the MUR power uprate. Therefore, critical locations in the pressurizer were re-examined, as discussed below.

Pressurizer Upper. Bottom and Side RTD Nozzles, and Heater Sleeves The maximum CUF for these pressurizer locations, after mechanical nozzle seal assembly (MNSA) repairs, is 0.863. In all cases, the CUFs were entirely due to fatigue usage from plant heatup/cooldown and leak test transients. None of these transients are affected by the MUR power uprate; therefore the CUFs for these components are unchanged, and the components remain acceptable for the MUR power uprate.

Surge Nozzle at the Pressurizer End The surge nozzle at the pressurizer end has a CUF of 0.764. Per the AOR, a UF of 0.716 (or greater than 94% of the CUF) is due to contributions from the normal plant variations at steady-state transient and from the step load increase transient.

The normal plant variations at steady-state transient (defined as +/-100 psi and +/-60F) is unchanged by the MUR power uprate. The effect of the MUR power uprate on the step load increase transient was evaluated by calculating stress factors based on a comparison of the calculated transient based on the MUR power uprate setpoints vs. the originally specified transient. The evaluation showed that while the effect of the MUR power uprate on the step load transient increased the alternating stress significantly (by a factor of 2.5) at the nozzle, the original UF was calculated too conservatively. The number of occurrences used in the AOR to calculate the UF for this transient was 34,470 (which is the number of occurrences for heatup/cooldown) instead of the 2,000 occurrences specified for design for step load increases or decreases. By removing that conservatism and adding the MUR power uprate effect, the UF was reduced from 0.716 (pre-uprate conditions) to 0.333 (the MUR power uprate conditions), and the new CUF was reduced to 0.381.

As a result, this component remains acceptable for the MUR power uprate.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION It is, therefore, concluded that all pressurizer components meet the stress and fatigue analysis requirement of Section III of the ASME Code 1965 Edition, up to and including the Winter 1967 Addenda for plant operation at the MUR power uprate conditions.

IV.2.8 Fuel Assembly The Calvert Cliffs Unit 1, Cycle 17, 14x14 fuel design was evaluated to determine the impact of the MUR power uprate on the fuel assembly design criteria. The evaluation concluded that the Calvert Cliffs fuel design remains acceptable and will continue to satisfy the required design criteria under the operating temperature, operating pressure, and flow rates resulting from the MUR power uprate conditions.

The evaluation methodology compared significant operating parameter values, used in the AOR, with the values of those same parameters proposed for the MUR power uprate. The significant parameters evaluated included inlet temperature, system pressure, core average linear heat rates (LHRs), maximum fuel rod axial average fluence, minimum coolant flow rate, fuel residence time, and peak fuel rod bumup. These parameters affect such important design criteria issues as the fuel rod stress, strain, fatigue, and clad collapse, as well as the fuel assembly hold-down margin and shoulder gap. The evaluation of the comparison of these significant parameter values showed that the proposed MUR power uprate operating and transient values are the same as or bounded by the existing AOR values except for the core average LHR. Sufficient margins exist, however, to allow for the power uprate increase in that parameter. Since the core plate motions for the seismic and LOCA evaluations are not affected by the uprated conditions, there is no impact on the fuel assembly seismic/LOCA structural evaluation.

Therefore, the fuel mechanical performance design criteria will continue to be satisfied under the proposed MUR power uprate conditions.

IV.2.9 Nuclear Steam Supply System Piping and Pipe Whip The reactor coolant main coolant loop piping system (including primary loop piping and pipe whip restraints, and tributary piping nozzles) was assessed for the MUR power uprate effects. It was concluded that these equipment designs remain acceptable and will continue to satisfy design basis requirements in accordance with applicable design basis criteria, which include the criteria associated with the original design basis mechanistic LOCA breaks, when considering the operating temperature, operating pressure, and flow rate effects resulting from the MUR power uprate conditions. The primary piping and tributary nozzles remain within allowable stress limits in accordance with ASME Section IlIl, 1965 Edition, up to and including the Winter 1967 Addendum (and in accordance with ASME Section III, 1986 Edition for components with MNSA).

Reconciliation of a number of critical locations on the Calvert Cliffs Units 1 and 2 RCS piping and fittings under the MUR power uprate conditions is summarized below.

Hot and Cold Leq Piping The critical margins on the maximum primary-local-plus-bending stress intensity at the hot leg and cold leg elbows are 5.80% and 3.26%, respectively. The calculated stresses are based on the design moments from dead weight and seismic excitation, and the design pressure of 2500 psia. The specified design loads do not change for the MUR power ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION uprate. Therefore, the stress margins of 5.80% and 3.26% are unchanged and remain acceptable for the MUR power uprate.

Pump/Pipe Junction at the Discharae Nozzle The critical margin on the maximum primary-bending stress at the pipe-pump discharge nozzle juncture is 4.82%. The stress is a function of the design loads (including loads due to OBE) and the design pressure of 2500 psia. The specified design moments are not changed by the MUR power uprate. In addition, the design pressure is not changed by the MUR power uprate. Therefore the stress margin of 4.82% for the pipe/pump juncture is unchanged and remains acceptable for the MUR power uprate.

Pump/Pipe Junction at the Suction Nozzle The CUF at this location is 0.836 (i.e., a 16.4% margin). Most of the fatigue usage (0.833 of 0.836) is due to the seismic transients. The rest of the fatigue usage (0.003) comes from the heatup transient. The specified normal operating loads and design seismic loads are unaffected by the MUR power uprate. Therefore, the effect of seismic on stress and fatigue is unchanged. The fatigue usage due to the heatup transient is also unchanged because this transient occurs at zero power and is not affected by the MUR power uprate. Therefore, this component remains acceptable for the MUR power uprate.

Safety Iniection Nozzle The critical margin on the maximum primary-plus-secondary stress, (Local Primary Membrane Stress (PL) plus Primary Bending Stress (PB) Secondary Stress (Q)) or the primary plus secondary stress intensity (PL+PB+Q), is 2.24%, and is due to the seismic load and heatup transient and the cooldown transient when combined with the effects of design pressure, dead weight, and seismic loads. The design pressure, dead weight, and seismic loads are not affected by the MUR power uprate. The heatup/cooldown transients occur at zero power and therefore are not affected by the MUR power uprate. Therefore, this critical margin on stress is unchanged for the MUR power uprate.

The highest CUF in the SI nozzle is only 0.1892, and is primarily due to an alternating stress from combinations of plant cooldown/seismic and plant heatup/cooldown transients. The plant heatup/cooldown transients and seismic excitations are not affected by the MUR power uprate. Therefore, the CUF for the SI nozzle is unchanged, and the nozzle remains acceptable for the MUR power uprate.

Hot Leg RTD and Pressure Differential Transmitter Nozzles with a MNSA The critical margin on the maximum primary-plus-secondary stress, PL+PB+Q, is 1.68% for either the hot leg RTD or pressure differential transmitter nozzle with a MNSA installed. This limiting stress is based on the hydrostatic test and LOSP transients. These transients are not altered by the MUR power uprate. Therefore, this component remains acceptable for the MUR power uprate.

Hot Leg Drain Nozzle The critical margin on primary-local-plus-bending stress is 1.25%. The calculated stress range is based on design moments from design pressure, dead weight, thermal and design seismic effects. These effects are changed by the MUR power uprate. Therefore the stress ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION margin of 1.25% for this nozzle is unchanged and the nozzle remains acceptable for the MUR power uprate.

In conclusion, the Calvert Cliffs Units 1 and 2 primary piping and tributary nozzles remain within allowable stress limits in accordance with ASME Section 111, 1965 edition, up to and including the Winter 1967 Addendum (and in accordance with ASME Section 111, 1986 Edition for components with MNSA). Furthermore, no piping or pipe restraint modifications are required as a result of the increased power level, because conservatively determined LOCA loads due to MCLBs were used to design the pipe restraint systems.

IV.3 EFFECTS OF OPERATING POINT DATA VARIATIONS The MUR power uprate operating point values shown in Table IV-1 represent a best estimate.

In all probability, the MUR power uprate operating point will move slightly over time, resulting in small changes in the operating point parameters.

Regardless of these small anticipated changes, particularly in the operating temperatures and the resulting delta-T, the structural AOR performed for the Calvert Cliffs Units 1 and 2 RCS components will remain bounding. The following discussion is based on the fact that the AOR considered Thot and Tcld design values of 6040 F and 548 0F, respectively, with a resulting delta-T of 56 0F.

IV.3.1 Reactor Coolant System Thermal Movements The maximum thermal movements of various locations on the RCS (e.g., tributary nozzle ends) result from the change in RCS temperature from ambient conditions to operating conditions.

The MUR power uprate thermal movements will be enveloped by the AOR results, since AOR results are based on ambient to operating condition nominal temperature ranges that bound the temperature ranges associated with the MUR power uprate conditions. This was demonstrated in an analysis comparing RCS thermal movements due to design operating setpoint temperatures to similar results determined at the MUR power uprate nominal setpoint temperatures. The MUR power uprate condition thermal movements either remained the same or decreased slightly, relative to the movements due to design operating setpoint temperatures.

In general the decreases were on the order of 1 to 2%. Maximum decreases were 4 to 5%.

Furthermore, this conclusion will remain valid if the nominal values of Thot and Tcld vary slightly after the MUR power uprate, because 1) there is sufficient margin between the MUR power uprate nominal Thot value of 595.9 0F and the design Thot of 6040F, and 2) the Tcold value is anticipated to remain at the design value of 5480F, which has been the case for previous plant operation.

IV.3.2 Reactor Coolant System Loads Reactor Coolant System component nozzle and primary piping thermal expansion loads are directly affected by delta-T, the temperature difference between Thot and T.Id. Given the same RCS configuration and operating temperatures that are generally the same, lower delta-T values will result in lower piping and nozzle loads, which in turn will result in proportionally lower loads at intermediate component locations and at the component supports. This conclusion can be drawn because the general RCS characteristics of stiffness, mass and connectivity will not change for the MUR power uprate, thus resulting in an overall RCS load distribution for the ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION MUR power uprate conditions that will be very similar to the load distribution analyzed in the AOR.

The delta-T values associated with current and the MUR power uprate conditions are both less than the delta-T value used in the AOR. Therefore, even though delta-T will increase slightly when going from the current to the MUR power uprate conditions (by -1 OF), the AOR piping, component and component support thermal expansion loads will remain bounding, because they are associated with a higher value of delta-T.

Per Section IV.2, the majority of the AOR design thermal transients remain bounding for the MUR power uprate. Even those that do not remain bounding were demonstrated to have little effect on the AOR stress calculations (see detailed discussions in Section IV.3.3).

Original design basis RCS seismic analysis results are negligibly affected by the MUR power uprate, because small changes in temperature have virtually no effect on the material properties of the structure, and therefore, on the manner in which the structure responds to a given set of input loads. Furthermore,Section IV.1 concludes that it is valid to base the MUR power uprate LOCA evaluations on the original DBEs. Furthermore, since LBB can be implemented to mitigate any adverse effects from the MCLB load contributions, basing the MUR power uprate LOCA evaluations on the original DBEs is both valid and conservative.

Finally, since the RCS structure will respond to the same design input loadings in essentially the same manner under the MUR power uprate conditions, the original design basis structural analysis results will remain valid.

IV.3.3 Reactor Coolant System Stresses and Usage Factors Since the AOR normal operating conditions, seismic, and LOCA structural analysis results remain bounding for the MUR power uprate, the only changes to the AOR design, emergency, and faulted condition load combinations used to calculate the stresses and fatigue UFs of record are related to the design thermal transients. As discussed above and throughout Section IV.2, the CUFs determined in the AOR were insensitive to the effects of the transient input changes associated with the MUR power uprate. It is safe to conclude that any further, even smaller, changes resulting from operating point drift will also be acceptable.

It is also noted that the ASME Code stress allowables used in the AOR are unaffected by small changes in operating temperatures, leading to the conclusion that the bounding stresses determined in the AOR will continue to remain below their corresponding ASME Code allowables. Consequently, the structural integrity of the RCS components is further confirmed for small variations in the MUR power uprate conditions, and the stress margins identified in the AOR calculations remain applicable.

IV.4 REACTOR VESSEL INTEGRITY The factors influencing RV integrity are the initial properties of the materials and the neutron fluence incident on the materials. The MUR power uprate does not affect the initial material properties, but the neutron fluence can change. The effect of neutron fluence changes on vessel integrity are assessed below using 10 CFR Part 50, Appendices G and H, and 10 CFR 50.61.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Pressurized Thermal Shock- The screening criteria in 10 CFR 50.61 are 2700 F for an assumed axial flaw and 300OF for an assumed circumferential flaw. The highest RTP, value for Calvert Cliffs Unit 1 at the end of the extended license was determined to be 261OF which is associated with the RV lower shell course axial weld seams. This is based on a projected fluence of 5.13x1019 n/cm2, E"IMeV. The highest RTPTs value for Calvert Cliffs Unit 2 at the end of the extended license was determined to be 199 0 F which is associated with the RV lower shell course plate D8907-2. This is based on a projected fluence of 5.78xl 019 n/cm2 , E>lMeV. In both cases the projected value of RT,,,is less than the pressurized thermal shock screening criterion of 2700 F such that the planned uprate does not result in exceeding the screening criterion.

Vessel Fluence Evaluation- The vessel fluence is predicted to increase approximately 0.04x1 01' n/cm2 , E>1 MeV, as a result of the planned uprate. This is based on the conservative assumption that a 1.7% uprate in power corresponds to a 1.7% increase in neutron fluence for the time period following the initiation of the uprate.

Heat-up and Cool-down Pressure Temperature Limit Curves and Low Temperature Overpressure Protection- 10 CFR Part 50 Appendix G addresses the limits on pressure and temperature that are placed on heat-up and cool-down during normal operation. There are no significant changes to the values used to establish the Appendix G normal operating limits. The 0.04x1 0'9 n/cm2 increase in fluence results in less than 0.5 0F change to the adjusted reference temperature at the one-quarter thickness location. The low temperature overpressure protection limits for power uprate conditions are unchanged for those same reasons.

Upper Shelf Enermy- 10 CFR Part 50 Appendix G requires that the upper shelf energy (USE) throughout the life of the vessel be no less than 50 ft-lb. Projections were done in accordance with Regulatory Guide 1.99, Revision 2, and were based on the neutron fluence values through the end of the extended license adjusted to represent conditions for power uprate. For Calvert Cliffs Units I and 2, the USE values at the end of the current license were determined to range from 52 ft-lb to 85 ft-lb for the RV beltline plates and welds. This demonstrates that all the beltline materials will exceed the USE screening criteria.

Surveillance Capsule Withdrawal Schedule- 10 CFR Part 50 Appendix H defines the RV surveillance program that is to be used by the licensee to monitor the neutron radiation induced changes in fracture toughness of the vessel during the life of the plant. It includes requirements to establish a surveillance capsule withdrawal schedule. The schedule for Calvert Cliffs Units 1 and 2 has been updated based on the fluence projected for the extended license. The vessel fluence is predicted to increase only 0.04x1 019 n/cm2, E>IMeV, as a result of the planned uprate. Therefore, the updated surveillance capsule withdrawal schedule is also applicable under conditions including the MUR power uprate.

IV.5 NUCLEAR FUEL This section summarizes the evaluations performed to determine the effect of the MUR power uprate on the nuclear fuel. The core design for Calvert Cliffs is performed on a fuel cycle specific basis and varies according to the needs and specifications for each fuel cycle.

However, some fuel-related analyses are not cycle specific. The nuclear fuel review for the MUR power uprate evaluated the fuel core design, thermal-hydraulic design, and fuel rod performance.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION IV.5.1 Fuel Core Design The impact of a bounding 1.7% uprate condition on the fuel core design was evaluated against the data used in the current Calvert Cliffs safety AOR. Since the MUR power uprate is relatively small, the range of parameters used in the current safety AOR are adequate to accommodate the range of parameters expected for future cores that have implemented the MUR power uprate. The core analyses for specific uprate cycles has shown that the implementation of the MUR power uprate does not result in significant changes to the current nuclear design basis for the safety analysis documented in the UFSAR. The impact of the MUR power uprate on peaking factors, rod worths, reactivity coefficients, shutdown margin, and kinetics parameters is either well within normal cycle-to-cycle variation of these values or controlled by the core design and will be addressed on a cycle-specific basis consistent with reload methodology.

The methods and core models used in the MUR power uprate analyses are consistent with those presented in the Calvert Cliffs UFSAR. No changes to the nuclear design philosophy, methods, or models are necessary due to the MUR power uprate. The current range of required cycle specific analysis will be sufficient to verify the applicability of these parameters for future cycles.

IV.5.2 Core Thermal-Hydraulic Design The core thermal-hydraulic design and methodology were evaluated for the MUR power uprate.

The thermal hydraulic design is based on the TORC computer code described in Reference IV-2, the ABB-TV [Asea Brown Boveri, Inc.-Turbo vane] and ABB-NV [non-mixing vane] critical heat flux correlations described in Reference IV-3, the simplified TORC modeling methods described in Reference IV-4, and the CETOP-D code described in Reference IV-5. In addition, the departure from nucleate boiling ratio (DNBR) analysis uses the methodology for determining the limiting fuel assembly or assemblies.

The Extended Statistical Combination of Uncertainties presented in Reference IV-6 and approved in Reference IV-7 was applied to validate the design limit of 1.24 on the ABB-TV and ABB-NV minimum DNBR. This DNBR limit includes the following allowances:

1. NRC specified allowances for TORC code uncertainty.
2. Rod bow penalty equivalent to 0.6% on minimum DNBR as discussed in Reference IV-8.

The core thermal-hydraulic design and methodology remain applicable for Calvert Cliffs with the MUR power uprate.

IV.5.3 Fuel Rod Design The thermal performance of erbia and U0 2 fuel rods for Calvert Cliffs Unit 1 Cycle 17 core with the MUR power uprate were evaluated using the FATES3B version of the fuel EM (References IV-8, IV-9, and IV-1 0), the erbia burnable absorber methodology described in Reference IV-1 1, the maximum pressure methodology described in Reference IV-12, and the ZIRLOW fuel rod cladding methodology described in Reference IV-13. This evaluation included a power history that enveloped the power and burnup levels expected for the peak fuel rod at each bumup interval, from beginning-of-cycle to end-of-cycle burnups, including a reduction in maximum permitted Fr, consistent with implementation of the power uprate. The maximum predicted fuel rod internal pressure for the uprated core remains below the critical pressure for No-Clad-Lift-Off (Reference IV-14).

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The thermal performance of erbia and U0 2 fuel rods for Calvert Cliffs Unit 1 (subsequent to Cycle 17) and Unit 2 (subsequent to Cycle 15) cores with the MUR power uprate is evaluated using the FATES3B version of the fuel EM (References IV-8, IV-9, and IV-10), the erbia burnable absorber methodology described in Reference IV-1 1, the maximum pressure methodology described in Reference IV-12, and the ZIRLOW fuel rod cladding methodology described in Reference IV-13. These evaluations include a power history that envelopes the power and bumup levels expected for the peak fuel rod at each burnup interval, from beginning-of-cycle to end-of-cycle burnups. The maximum predicted fuel rod internal pressure for the uprated conditions will be shown to remain below the critical pressure for No-Clad-Lift-Off (Reference IV-14).

The expected fuel rod corrosion performance for Calvert Cliffs Units I and 2 cores with MUR power uprate was evaluated and found acceptable. This evaluation was conducted consistent with requirements of the NRC SER on the high burnup topical report for 14x14 CE design fuel of Reference IV-15. This evaluation also considered the impact of recent high duty corrosion observations for OPTINTM clad fuel that may be resident in Calvert Cliffs Units 1 and 2 (see also Reference IV-16). The fuel rod corrosion performance of OPTIN'and ZIRLOw clad fuel specifically for the MUR power uprated Calvert Cliffs Unit 1 Cycle 17 core were evaluated (References IV-14, IV-15, and IV-16) and found to be acceptable. The fuel rod corrosion performance for MUR power uprated Calvert Cliffs Unit 1 (subsequent to Cycle 17) and Unit 2 (subsequent to Cycle 15) cores is evaluated using this same methodology.

As noted in previous sections (e.g., 11.3) Calvert Cliffs Unit 1 Cycle 17 was targeted as the lead unit for implementation of the MUR power uprate. Application of the MUR power uprate analyses and evaluations to Unit 2 would be made as part of the normal reload process.

Subsequent to performance of these Unit 1 analyses and evaluations, a fuel design change that implements the use of Zirconium Diboride (ZrB2) integral burnable absorbers was submitted to the NRC (Reference IV-17). Unit 2 Cycle 16 is the lead unit for the fuel design change. The analyses that are being performed to support the transition to ZrB 2 have already included the MUR power uprate as an initial condition. No additional analyses to support both ZrB2 and the MUR power uprate are required.

IV.6 BALANCE OF PLANT PIPING The balance of plant (BOP) piping systems impacted by the uprate (main steam, feedwater, extraction steam, moisture separator drains, reheater drains, condensate, and heater drain piping) have been evaluated by comparing the conditions for the proposed power uprate with the current operating conditions. The design temperatures and pressures used in the analyses continue to bound the uprate conditions. The maximum operating temperatures with the MUR power uprate are within 1% of the existing maximum operating temperatures.

The BOP piping systems remain acceptable for operation at the MUR power uprate conditions, and the proposed 1.38% power uprate will not have adverse effects on the BOP piping.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION V. ELECTRICAL EQUIPMENT DESIGN This section summarizes the evaluations performed to determine the effect of the MUR power uprate on the electrical equipment. The electrical equipment included in the evaluation is presented within each subsection.

V.1 MAIN GENERATOR AND ASSOCIATED SYSTEMS The Unit I Main Generator has a design rating of 1,020 MVA at 25 kV 60 Hz when operated at 0.9 lagging power factor (918 MW) and hydrogen pressure of 60 psig. Unit 2 Main Generator is rated at 1,012 MVA at 22 kV 60 Hz when operated at 0.9 lagging power factor (910.8 MW) and hydrogen pressure of 75 psig. The new operating point corresponding to the MUR power uprate is within the design rating of both machines. The generators are operated to produce power output within the limits of their associated reactive capability curves. If required, the MVAR output of the generator can be adjusted such that the total MVA rating is not exceeded.

No modification to auxiliary or support equipment is required.

Applicable calculations were reviewed and determined no changes are required for generator voltage regulator and associated protective relay settings.

Two unit transformers are connected via an isolated phase bus to the output of each main generator and are designed to carry the maximum generator output and transform generator output voltage to transmission system voltage. Each of the paralleled transformers is rated for 810 MVA at 65 0C rise. The maximum MVA rating of the Unit 1 and Unit 2 generators remain at 1020 and 1012 MVA which is well within the rating of the paralleled transformers.

The associated isolated phase bus and switchyard equipment are also rated for maximum current flow from the generator, thus no modification to this equipment is required. However, the existing unit limitations for conditions when the unit's isophase bus duct cooling is not available or operating at rated capability, or when one of the unit's generator step-up transformers is not available still remain.

V.2 ONSITE DISTRIBUTION SYSTEMS The onsite electrical distribution systems include non-Class I E plant service transformers and associated busses. The 4.16 kV, 480 volt, and 120/208 volt systems include both Class 1E and non-Class 1E equipment. The onsite direct current (DC) distribution system includes both Class 1E and non-Class 1E equipment.

The non-Class 1E AC distribution systems provide power for non-safety-related systems during normal plant conditions. The large non-safety loads powered from these busses include condensate pumps, condensate booster pumps, and heater drain pumps. The MUR power uprate does not result in an increase in mechanical load beyond the design rating of any non-Class 1E equipment. The motors and associated support and protective equipment are sized based on design ratings, thus they are adequately sized for the small load increase resulting from the MUR power uprate.

The Class 1E AC distribution system includes two Class 1E 4.16 kV busses per operating unit, each capable of being powered by an associated Class IE standby emergency diesel generator in the event of a loss of offsite power. A station blackout diesel generator is designed to provide sufficient power to any of the four Class 1E 4.16 kV busses in order to safely shutdown one unit and maintain it in a safe shutdown condition during a station blackout event. Downstream ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION 480 Volt and 120 Volt busses also feed two trains of redundant safety equipment. As referenced in Section 11.1, there is no change to the existing accident analyses and they continue to be valid for the MUR power uprate. The electrical motors and supporting equipment are sized for maximum accident load requirements. Thus, there is no need to upgrade any existing equipment.

The onsite DC distribution system will see minor load variations due to the power uprate; however the resulting electrical loads remain within the ratings of the existing distribution system and no changes are required.

V.3 ENVIRONMENTAL QUALIFICATION OF ELECTRICAL EQUIPMENT In accordance with 10 CFR 50.49, certain electrical equipment must be qualified to operate when exposed to the postulated harsh accident environments of DBAs [i.e., LOCA, MSLB, High Energy Line Breaks (HELBs)]. The qualification includes aging considerations of normal plant operating ambient environments. The effects of the proposed MUR power uprate on the 10 CFR 50.49 Environmental Qualification (EQ) Program is as follows:

V.3.1 Environmental Qualification Accident (Temperature/Pressure) Environments As discussed in Section 11.5, the current UFSAR Chapter 14 Containment LOCA and MSLB temperature/pressure analyses will not be affected (i.e., remain bounding) considering the MUR power uprate. The current EQ accident (temperature/pressure) environments utilize these UFSAR Chapter 14 analyses. Therefore, the current inside-Containment EQ equipment LOCA/MSLB temperature/pressure qualification is unaffected by the MUR power uprate.

As discussed in Section V11.5, the current UFSAR Chapter 10A outside-Containment HELB temperature/pressure analyses will not be affected (i.e., remain bounding) considering the MUR power uprate. The current EQ accident (temperature/pressure) environments utilize these UFSAR Chapter 10A analyses. Therefore, the current outside Containment EQ Equipment HELB temperature/pressure qualification is unaffected by the MUR power uprate.

V.3.2 Environmental Qualification Accident (Radiation) Environments As discussed in Section III, the current accident radiation doses, utilized in the EQ Program, required re-evaluation as a result of the proposed MUR power uprate. Environmental qualification equipment was re-evaluated against these revised accident radiation doses and confirmed to remain environmentally qualified to these revised accident doses.

V.3.3 Environmental Qualification Normal Plant Operating Ambient (Temperature/Humidity) Environments As discussed in Section VI.22, the heating, ventilation, and air conditioning (HVAC) systems, control normal plant operating ambient environments in Containment and Auxiliary Building.

Environmental qualification equipment is located in both the Containment and the Auxiliary Building. These HVAC Systems were reviewed considering the MUR power uprate. The review determined that these existing HVAC systems will continue to maintain the Containment and Auxiliary Buildings within their UFSAR Chapter 9 design ranges. Therefore, the current normal plant operating aging considerations, utilized in the EQ Program, will not be impacted and are bounded by the current design.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION V.3.4 Environmental Qualification Normal Plant Operating Ambient (Radiation)

Environments As discussed in Section III, the current normal operating radiation doses, utilized in the EQ Program, required re-evaluation as a result of the proposed MUR power uprate. Equipment was re-evaluated against these revised normal operating radiation doses and confirmed to remain environmentally qualified to these revised normal operating doses.

V.4 GRID STABILITY The Pennsylvania, New Jersey, Maryland (PJM) Interconnection has preliminarily reviewed the power uprate for impact on grid stability. The proposed increase in plant electrical output will not affect the stability of the grid. No switchyard modifications are required as a result of the MUR power uprate.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION VI. SYSTEM DESIGN This section presents the results of the evaluations and analyses performed in the NSSS area to support the revised conditions provided previously in Table IV-1. The systems addressed in this section include fluid systems and control systems. The results and conclusions of each evaluation and analysis are presented within each subsection.

VI.1 REACTOR COOLANT SYSTEM The purpose of the RCS is to remove heat from the core and transfer it to the secondary side of the SGs. The RCS consists of the reactor pressure vessel, two hot leg pipes, two SGs, four RCPs, four cold leg pipes, and one pressurizer with attendant interfacing piping, valves and instrumentation.

Evaluations were performed to ensure that the RCS design basis functions could still be met at the revised operating conditions. The principal effects of the MUR power uprate on the RCS are a slight increase in Thot and the increase in decay heat. The normal operating pressure of 2250 psia remains unchanged. The results of the evaluation of uprated conditions on the RCS functions are described below.

a. The increase in Thot will increase the total amount of heat transferred to the Main Steam System (MSS). Verification that the major components of the NSSS can support this increase in the normal heat removal function is addressed in this section.
b. The increased thermal power can change the transient response of the RCS to normal and postulated DBEs. The acceptability of the RCS with respect to protection functions is addressed in Section II. The acceptability of the RCS with respect to fatigue evaluations is addressed in Section IV. The setpoints for various control systems will be evaluated for recommended changes prior to plant startup.
c. The cold leg temperature remains unchanged at 548 0F. As a result, the RCS mass flow is not affected by the MUR power uprate.
d. Reactor coolant system design temperature and pressure of 6500 F and 2500 psia continue to remain applicable for the uprate conditions.
e. The pressurizer design temperature and pressure of 7000F and 2500 psia continue to remain applicable for the uprate conditions.
f. The pressurizer relief requirements increased slightly due to an increase in RCS stored energy and decay heat. However, the change is well within the relieving capacity of the pressurizer safety valves for the design transient condition (Section 11.2).

VI.2 SAFETY INJECTION SYSTEM The function of the SI System is to remove the stored energy and fission product decay heat from the reactor core following a LOCA. The system is designed such that fuel rod damage is minimized, facilitating the long-term removal of decay heat. The system also provides injection of negative reactivity (boron) in the RCS cooldown events such as a MSLB.

The active part of the SI System consists of high pressure SI pumps, the refueling water tank, low pressure safety injection (LPSI) pumps, and the associated valves, instrumentation, and piping.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The passive portion of the Si System is the safety injection tanks (SITs) that are connected to each of the RCS cold leg pipes. Each SIT contains borated water under nitrogen pressure and automatically injects into the RCS when the RCS pressure drops below the operating pressure of the SITs. The active portion of the SI System (injection pumps) injects borated water from the refueling water tank into the reactor following a break in either the RCS or steam system piping to cool the core and prevent an uncontrolled return to criticality.

Safety Injection System operation is described in two phases; the injection phase and the recirculation phase. The injection phase provides emergency core cooling and additional negative reactivity immediately following a spectrum of accidents including a LOCA by prompt delivery of borated water to the RV. The recirculation phase provides long-term post-accident cooling by recirculating water from the containment sump.

During normal operation the Si System does not operate and has no design function. Thus, during normal operation, there is no impact on the system due to the MUR power uprate.

However, the slight increase in RCS stored energy and decay heat resulting from the power uprate are well within the capabilities of the Si System to respond to DBAs. The results of the evaluation of a LOCA are presented in Section 11.3. For non-LOCA RCS depressurization events, the Si System is acceptable for power uprate as demonstrated in Section 11.2.

VI.3 CHEMICAL AND VOLUME CONTROL SYSTEM The Chemical and Volume Control System (CVCS) provides for boric acid addition and removal, chemical additions for corrosion control, reactor coolant cleanup and degasification, reactor coolant makeup, and processing of reactor coolant letdown.

During plant operation, reactor coolant letdown is taken from the cold leg on the suction side of the RCP, through the tube side of the regenerative heat exchanger and then through letdown control valves. The regenerative heat exchanger reduces the temperature of the reactor coolant and the control valves reduce the pressure. The letdown is cooled further in the tube side of the letdown heat exchanger and subsequently passes through the purification filter. Flow continues through the purification ion exchangers, where ionic impurities are removed, and enters the volume control tank. The charging pumps take suction from the volume control tank and return the coolant through the shell side of the regenerative heat exchanger to the RCS in the cold leg, downstream of the RCP.

The nominal Tcod for the power uprate remains unchanged at 548 0F. As a result, the temperature of the letdown flow is not changed. Consequently, there is no impact on the thermal performance of the CVCS.

The CVCS provides a source of borated water for post-accident injection. Evaluation of required ECCS water volumes and boric acid concentrations will be performed as part of the normal reload safety evaluation process. The slight increase of N-16 activity at the MUR power uprate conditions has a negligible effect on letdown line decay time requirements. There will be no change to the letdown and makeup requirements as a result of the MUR power uprate.

As previously noted, TCold and the reactor coolant mass flow rate remain unchanged. Increased power is due to a slight increase in Thot and associated increase in Tave. The increase in Tave will cause a small increase in the makeup requirements for coolant shrinkage during cooldown.

However, this effect is considered negligible.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION VI.4 SHUTDOWN COOLING SYSTEM The SDC System is designed to remove sensible and decay heat from the core and to reduce the temperature of the RCS during the second phase of plant cooldown.

The SDC System consists of two electrically aligned trains. Each train consists of one heat exchanger, one LPSI pump, associated valves, and instrumentation. Both trains take suction from a common suction line off one reactor coolant hot leg, and then flow is divided through the LPSI pumps, the tube side of the SDC heat exchangers, and back to the RCS cold legs through a four leg header.

The proposed power uprate will affect the SDC System due to an increased heat load from higher decay heat input. Since decay heat is proportional to plant operating power, any increase in RTP will result in an increase in decay heat load.

The SDC System was previously evaluated to be capable of supporting the decay heat that would be present based on 102% of 2700 MWt, which is 2754 MWt including uncertainty. The analytical power level including revised uncertainty with the MUR power uprate remains 2754 MWt. Therefore the system is capable of supporting the MUR power uprate.

VI.5 AUXILIARY FEEDWATER SYSTEM The purpose of the Auxiliary Feedwater (AFW) System is to provide sufficient feedwater to the SGs for the removal of sensible and decay heat, and to cool the primary system to 300OF in case the condensate or the main feedwater systems are inoperable. An evaluation was performed to determine whether the current design of the AFW System will satisfy its safety functions and support an MUR power uprate.

The AFW and condensate storage tank analyses are based on 102% of 2700 MWt (2754 MWt).

The analytical power level, including revised uncertainty, with the MUR power uprate remains 2754 MWt. Therefore, the evaluation concluded that the AFW System and condensate storage tank system will support Calvert Cliffs Unit 1 and Unit 2 with the MUR power uprate.

VI.6 MAIN STEAM SYSTEM The MSS is designed to transfer steam from the SGs to the turbine throttle stop valves, the reheaters, and the turbine-driven pumps. The MSS also controls SG pressure by means of steam bypass, dump, or safety valves (high pressure) and main steam isolation valves (MSIVs)

(low pressure).

The system is designed to accommodate electrical load changes from 15 to 100% power at a rate of 5% per minute and at greater rates over smaller load change increments, up to a step change of 10%. This is normally accomplished by manual CEA movement and adjustment of RCS soluble boron concentration. The primary impact of the MUR power uprate on the MSS is an increase in main steam flow of about 2%. There is no change in the main steam operating pressure and temperature. Steam flow to the high pressure turbine will increase by 2.07% for Unit I and 2.23% for Unit 2. The MSS and associated components were evaluated for the increased steam flow and found to be acceptable.

However, for Unit 2 there is an economic issue concerning the turbine throttle valves. The Unit 2 turbine throttle valves are currently operating at the valve wide open position, which will be a limiting factor for taking full advantage of the full MUR power uprate. This limitation does ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION not effect the safe operation of the plant and the necessary hardware changes to eliminate this limitation will be addressed as an economic concern.

VI.7 MAIN STEAM SAFETY VALVES Overpressure protection for the shell side of the SGs and the main steam line piping up to the inlet of the turbine stop valve is provided by 16 spring-loaded ASME Code MSSVs which discharge to the atmosphere. Eight of these safety valves are mounted on each of the main steam lines upstream of the steam line isolation valves, but outside the Containment. The MSSVs are designed for full flow relief pressure of 1085 psig, thereby ensuring that the secondary system pressure will be limited to within 110% of its design pressure of 1015 psia during the most severe anticipated system operational transient. The opening pressure of the valves is set in accordance with ASME Code allowances, with the minimum set pressure at 935 psig, and the maximum set pressure at 1050 psig. The total relieving capacity for all valves on both of the steam lines in either unit is 12.26x106 lbs/hr of saturated steam (6.13x10 6 lbs/hr per SG). This relief capacity is larger than the steam flow at the MUR power uprate conditions.

The accident analysis shows there is adequate MSSV capability at 102% power.

Startup and/or power operation is allowable with MSSVs inoperable within the limitations of the Technical Specifications. The number of inoperable MSSVs will determine the necessary level of reduction in secondary system steam flow and thermal power required by the reduced reactor trip settings of the Power Level-High channels. The current Technical Specifications were confirmed to remain applicable for the proposed change in RTP.

VI.8 MAIN STEAM ISOLATION VALVES One MSIV assembly is provided on each main steam line header. The MSIV is a "y"-type, bi-directional, balanced disk globe valve with an American National Standards Institute (ANSI) 600 primary pressure rating; the bonnet closure is of a pressure seal design body and disk seating surfaces, disk guides, and backseat are integrally hardfaced with Stellite 21; limit switches are mounted on the yoke to provide full open, full closed, and intermediate position indication. The valve is capable of shutting against pressure from either side. A motor-operated bypass valve is provided to equalize pressure across the valve before opening. The MSIVs and their actuator systems are designed to Seismic Category I requirements.

Closure of the MSIV, within a maximum of six seconds after a trip signal is initiated, prevents rapid flashing and blowdown of water stored in the shell side of the SG, thus avoiding a rapid uncontrolled cooldown of the RCS. Also, the isolation valves prevent release of the contents of the secondary side of both SGs to the Containment in the event of the rupture of one main steam line inside the Containment Structure.

The MSIVs are not impacted by the MUR power uprate because SG and the MSS operational pressure are not increased. Therefore, the ability of the MSIV to close within the Technical Specification limited closure time following a postulated steam line break event is not affected.

VI.9 STEAM DUMP AND BYPASS SYSTEM The Steam Dump and Bypass System is used to rapidly remove RCS stored energy and to limit secondary steam pressure following a turbine-reactor trip. The atmospheric steam dump system consists of two automatically actuated atmospheric dump valves which exhaust to the atmosphere. The turbine bypass system consists of four turbine bypass valves which exhaust ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION to the main condenser. The power-operated steam dump valves and steam bypass valves obviate opening of the MSSVs following turbine and reactor trips from full power.

The system also provides a means of heat removal during hot standby, startup, and during plant cooldown. The atmospheric steam dump valves are capable of removing reactor decay heat when the condenser is not available.

The total respective capacities of the atmospheric steam dump and turbine bypass valves are nominally 5% and 40% of steam flow with the reactor at full power. This flow is sufficient to control the secondary steam pressure on a turbine trip at the MUR power uprate without necessitating operation of the spring-loaded safety valves.

The system controls are arranged for either automatic operation or remote manual control.

The Steam Dump and Bypass System was confirmed to provide adequate pressure relief and decay heat removal for the proposed MUR power uprate.

VI.10 STEAM GENERATOR BLOWDOWN SYSTEM Each SG has an upper and lower blowdown line which can be used to control the build-up of soluble and particulate concentrations within the SG. The blowdown system will continue to operate normally with no change at a continuous rate of up to 200 gpm per SG. No changes to SG blowdown are required to support the proposed MUR power uprate.

VI.11 FEEDWATER AND CONDENSATE SYSTEMS The Feedwater and Condensate Systems are designed to provide a means for transferring the condensate from the condenser hotwell to the SGs (while at the same time raising the temperature and pressure) and providing a means for controlling the quantity of feedwater into the SGs.

The MUR power uprate results in approximately a 2% increase in condensate flow, due to an increase in extraction steam flow through the feedwater heaters and an increase in the condensate temperature. A hydraulic calculation was performed verifying the condensate systems ability to perform its design function of delivering condensate from the condenser hotwells to the feedwater system at the required flow, pressure, temperature, and quality at the MUR power uprate conditions.

The feedwater flow will increase approximately 2% under the MUR power uprate conditions. A hydraulic calculation was performed to evaluate the feedwater systems ability to provide sufficient flow to the SGs at the MUR power uprate conditions. Results of the calculation found the feedwater system capable of providing sufficient flow to the SGs.

However, one level of the feedwater heaters on Unit 1 and two levels of feedwater heaters on Unit 2 have been identified as having possible limitations for full MUR power uprate conditions.

The feedwater heaters are not a safety critical component and will be further evaluated with the potential for replacement/modification as an economic concern.

VI.12 EXTRACTION STEAM SYSTEMIHEATER DRAINS SYSTEM The extraction steam and heater drain systems provide a means of heating condensate and feedwater, and for returning condensed steam to the condensate system.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The MUR power uprate results in approximately a 2% increase in heater drain flow and a corresponding increase in heater drain temperature, due to the increase in heat load in the feedwater heaters. The system evaluation demonstrated that the equipment can operate at the MUR power uprate conditions, with further action needed to upgrade or evaluate the capability of the Unit 2 heater drain pumps and Unit 2 heater drain tank emergency dump valves. These actions will be treated as economic issues as they are not safety significant.

The MUR power uprate results in an increase in extraction steam flows and pressures. The temperature and pressure ratings for the Unit 1 and Unit 2 bleeder trip valves bound the MUR power uprate service conditions based on the maximum working pressures contained in ANSI B16.34. The design temperature and pressure ratings for Units 1 and 2 extraction steam drain trip air-operated (AOVs) and motor-operated valves (MOVs) bound the MUR power uprate service conditions based on the maximum working pressure contained in ANSI B16.34 and the pressure rating listed on the MOV drawings.

VI.13 CIRCULATING WATER SYSTEM The condensers for both of the electrical generating units have been designed such that the increase in temperature of the Chesapeake Bay water passing through them is not more than 10F at maximum expected, not guaranteed, operating conditions. Under the MUR power uprate conditions, the temperature rise across the condensers will be no more than 11.3 0F. A test program allowing a temperature increase up to 120F has been completed by the State of Maryland. Current limits allow use of a 120 F increase on a permanent basis. The only change in circulating water system operation will be a small increase in temperature rise across the condenser. For Unit 1, the calculated temperature rise will increase from 11.030 F to 11.23 0F.

For Unit 2, it will increase from 11.000F to 11.20 0F. Currently, the actual measured temperature rise is approximately 11.6 0F which would be approximately 11.8 0F after the MUR power uprate.

The licensing basis limit for the temperature rise is 120F, which is met. Condenser vacuum in-balance is not adversely affected by the MUR power uprate. The circulating water system is acceptable for the MUR power uprate.

VI.14 CONDENSER Each unit has one three-shell, single-pass, deaerating-type condenser with divided water boxes.

The condenser is capable of condensing the exhaust steam from the main turbine and the SG feed pump turbines under the MUR power uprate plant load. Two of the three condenser shells are connected to discharge lines from the steam dump and bypass system. The condenser is internally equipped to receive the full flow from this system. The condenser is adequately sized to support the proposed MUR power uprate.

The condenser will operate with approximately 1.9% higher backpressure under the MUR power uprate during summer conditions (< 3.8 in-HgA). This is still well below the backpressure limit (5.5 in-HgA).

VI.15 HEAT BALANCE A plant specific model was developed for each unit for both summer and winter bay temperature limits at both the current and the MUR power uprate conditions. This detailed model was benchmarked to existing plant operating conditions and used to simulate the estimated impact ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION of the proposed uprate. Output from these simulations (pressure, flows, temperatures) were used as an aid in evaluating the impact the MUR power uprate will have on the plant equipment.

VI.16 SERVICE WATER SYSTEM The Service Water (SRW) System is designed to remove heat from the plant's various auxiliary systems. The Saltwater System provides the cooling medium for the SRW heat exchangers.

System components are rated for maximum duty requirements during normal operation and SDC operation, and are also capable of providing heat removal during a LOCA. The SRW System serves as an intermediate barrier between the various auxiliary systems and the Saltwater System.

The SRW System is a closed system and uses plant demineralized water with a corrosion inhibitor added. The system removes heat from turbine plant components, blowdown recovery heat exchangers, containment cooling units, spent fuel pool cooling (SFPC) heat exchangers, and Fairbanks Morse Emergency Diesel Generator heat exchangers.

The turbine plant components cooled by SRW include:

a. Generator isolated 3 phase bus duct coolers
b. Exciter air coolers
c. Generator hydrogen coolers
d. Stator liquid coolers (Unit I only)
e. Circulating Water System priming pump seal water coolers
f. Condenser vacuum pump seal water coolers
g. Feed pump turbine lube oil coolers
h. Condensate booster pump lube oil and seal water coolers
i. Instrument and plant air compressors and aftercoolers
j. Turbine lube oil cooler
k. Electro-hydraulic oil coolers I. Turbine Building sample cooling system
m. Seal oil system coolers (Unit 2 only)
n. Auxiliary feed pump room air cooler The SRW Systems do not see significant impact with the MUR power uprate. The increased decay heat and turbine auxiliary cooling loads will cause a small increase in the cooling water temperature. The heat loads increase slightly for the SFPC in the Auxiliary Building; however, this increase is due to the SDC function, not the MUR power uprate. The impact on the SRW System with the MUR power uprate on the component heat loads has been addressed, some system adjustments may be necessary to ensure proper cooling to the affected heat loads. The SRW System was evaluated to have adequate margin to perform its design functions within its design parameters.

Vl.17 SALTWATER SYSTEM The Saltwater System has three pumps for each unit. The pumps provide the driving head to move saltwater from the intake structure, through the system, and back to the circulating water discharge conduits. The system is designed such that each pump has sufficient head and capacity to provide cooling Water for the SRW and Component Cooling Water (CCW) Systems.

The system also cools the ECCS pump room air coolers. The maximum recommended pump flow for each pump is 25,000 gpm. Although under most conditions this is not a limiting feature, when storm conditions consisting of the lowest expected tide of 4.0 ft below mean sea level and ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION the lowest expected barometric pressure of 26.9 of mercury are considered, sufficient net positive suction head may not be available at flows above 25,000 gpm.

The Saltwater System consists of two subsystems in each unit. Each subsystem provides saltwater to two SRW heat exchangers, a CCW heat exchanger, and the ECCS pump room air cooler in order to transfer heat from those systems to the Chesapeake Bay. Seal water for the circulating water pumps is supplied by both subsystems. A self-cleaning strainer is installed upstream of each SRW heat exchanger.

Operation of the Saltwater System following a LOCA has two phases: before the recirculation actuation signal and after the recirculation actuation signal. Since the LOCA analysis has been performed at 102% of 2700 MWt (2754 MWt) it remains applicable at the MUR power uprate.

Therefore, the cooling requirements for both phases are unchanged.

The MUR power uprate will result in small increases to the heat loads for the CCW and SRW heat exchangers to be transferred to the Saltwater System, corresponding to a slight increase of the saltwater discharge piping temperature. These impacts are negligible on the Saltwater System and component operation. The margins in the system remain essentially the same as for current operating power levels.

VlI.18 COMPONENT COOLING WATER SYSTEM The CCW System is designed to remove heat from the plant's various auxiliary systems. The Saltwater System provides the cooling medium for the CCW heat exchangers. System components are rated for maximum duty requirements during normal and SDC, and are also capable of providing heat removal during a LOCA. The CCW System serves as an intermediate barrier between the various auxiliary systems and the Saltwater System.

The CCW heat exchangers are designed for a CCW supply temperature of 95 0F, with a saltwater cooling supply temperature of 900F, at normal operating conditions. Component cooling water may reach as high as 120OF during a LOCA, and during plant cooldown and cold shutdowns.

The MUR power uprate will result in a change to the CCW System heat loads. The change has a negligible impact on the CCW System. The increased decay heat will have a small impact on the cooling water temperature increase. Calvert Cliffs has evaluated the most limiting mode of operation, the SDC, to the analytical power level of 2754 MWt, therefore, the MUR power uprate has no impact on the CCW System.

Vl.19 TURBINE-GENERATOR The turbine-generator is designed to receive steam from the SGs and convert it into electric energy. The condenser transfers unusable heat to the condenser cooling water and deaerates the condensate. The closed regenerative turbine cycle heats the condensate and returns it to the SGs.

The turbines are 1800 rpm tandem compound, six-flow exhaust, indoor units. Saturated steam is supplied to the turbine throttle from the SGs through four stop valves and four governor control valves. The steam flows through a dual-flow, high-pressure turbine and then through combination moisture separator-reheaters (two in parallel for Unit 1, four in parallel for Unit 2) to three double-flow, low-pressure turbines which exhaust to the main condenser system.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Unit 1 is a General Electric turbine and Unit 2 is a Westinghouse turbine. The two units are similar in construction and type, and have similar performance characteristics and generating capacity.

Each generator has the capability to accept the gross rated output of the turbine at rated steam conditions. The generator shafts are oil-sealed to prevent hydrogen leakage. Each generator has its own shaft-driven excitation equipment.

The turbine-generator and its associated components were reviewed for the MUR power uprate conditions. The turbines were discussed earlier under MSS, (see Section VI.6). Also note that generator rotor rewinds are recommended as purely an economic decision.

VI.20 RADIOACTIVE WASTE SYSTEMS The waste processing systems are designed to provide controlled handling and disposal of radioactive liquid, gaseous, and solid wastes from both units. Design criteria were established to maintain the release of radioactive material from the plant to the environment at levels which are ALARA.

The design of the waste processing systems was based upon processing reactor coolant and miscellaneous waste during operation with 1% failed fuel. The proposed MUR power update is for a small power increase and since the radioactive waste processing system is designed to handle 1% failed fuel, the MUR power uprate does not represent a significant challenge to the liquid or gaseous radwaste processing system.

All releases meet the Offsite Dose Calculation Manual (ODCM) limits. By meeting the ODCM limits, the guidelines of 10 CFR Part 50, Appendix I are met. This is confirmed by the effluent data and doses reported to the NRC in the Radioactive Effluent Release Reports required by the Technical Specifications and 10 CFR 50.36a.

The ODCM is a program governed by requirements described in Technical Specifications. It provides limits for offsite radioactive waste releases, calculational methods to determine those releases, and alternative methods of accounting for and controlling release of radioactive materials. In the event that the radiation monitors used in the release of liquid and gaseous radioactive material are not available, the alternative methods described in the ODCM may be used.

V1.21 HEATING, VENTILATION, AND AIR CONDITIONING SYSTEMS The plant ventilating systems are designed to provide a suitable environment for equipment and personnel with a maximum amount of safety and operating convenience. Potentially contaminated areas are separated from clean areas. Airflow patterns originate in areas of potentially low contamination and progress toward areas of higher activity. Generally, negative pressures are maintained in potentially contaminated areas and positive pressures in clean areas. The ventilating systems in the Containment, waste processing and fuel-handling areas are designed for containment of radioactive particles. The path of the discharge from potentially contaminated areas is directed into the respective plant vent where the radioactivity level is monitored. The equipment in most critical systems is redundant in character.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The heat load from the primary systems increases only marginally as a result of the minor change in Thot. The heat load from the feedwater piping in the Containment, Auxiliary Building (steam tunnel), and Turbine Building were evaluated to account for a < 20F increase in feedwater process fluid temperature to ensure UFSAR Chapter 9 design basis are not impacted. The remaining BOP piping temperatures do not change appreciably.

VI.21.1 Containment The Containment is cooled by the containment air coolers. During the summer the air temperature is expected to remain below the 1200F design limit. The total heat load in the Containment during normal operation is calculated to be -7.44 x 106 Btu/hr. The increase of

<2.0F in feedwater temperature could potentially increase the heat load on the cooling system by -400 Btu/hr, clearly inconsequential given the order of magnitude difference considering the original heat load in the building. This assessment is applicable and valid for both Units.

VI.21.2 Main Steam Penetration Rooms Heat load from the main steam and feedwater piping traversing through these rooms was evaluated previously. The inputs and assumptions used in this calculation are very conservative and the small increase in anticipated feedwater process fluid operating temperature (<20 F) will not have any effect on the calculated or actual overall room temperature. The calculated heat load in the room is already based on 4600 F feedwater design in lieu of lower operating feedwater temperature. This assessment is applicable and valid for both Units.

VI.21.3 Turbine Building Heat load from the main steam and feedwater piping in the Turbine Building was evaluated to account for a < 21F increase in feedwater process fluid temperature. This evaluation indicates that general Turbine Building area air temperatures may increase by less than a fraction of (0.050F) a degree. This is reasonable since the minimal increase in the feedwater temperature as compared to all of the other large heat loads in the Turbine Building has minimal effect on the Turbine Building air temperature rise. This assessment is applicable and valid for both Units.

Based on the above, none of the design, operational or performance requirements of area heat removal capabilities will be affected by the slight increase in feedwater fluid temperature.

VI.21.4 Auxiliary Feedwater Pump Room and 5' Fan Room Heat load from process piping traversing through these two rooms were previously established.

The less than 20F increase in feedwater fluid temperature has no effect on the results of the calculation. A feedwater design temperature of 4600 F was used in the analysis; therefore the calculation predicted room temperatures already bound the room conditions expected as a result of the power uprate. This assessment is applicable and valid for both Units.

VI.21.5 Auxiliary Building There is a minimal amount of piping traversing through the Auxiliary Building to and from the main steam penetration room and the 5' fan room. There is no specific calculation evaluating the heat input from the feedwater piping into this area, given the short run of piping and the minimal increase of feedwater temperature, the effect of air temperature increase in that area is expected to be negligible. This assessment is applicable and valid for both Units.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Based on the above, none of the design, operational, or performance requirements of area heat removal capability will be affected by the slight increase in feedwater fluid temperature.

VI.21.6 Control Room Heating, Ventilation, and Air Conditioning System The Control Room (Elevation 45'0") and the Cable Spreading Room (Elevation 27'0") are incorporated into a single year-round air-conditioning system serving the common Control Room for Units 1 and 2. Therefore, the ambient temperature in the Control Room is expected to be the same as the ambient temperature in the Cable Spreading Room. Air handling and refrigeration equipment are redundant. The Control Room and Cable Spreading Room areas have a third source of cooling, which is not safety-related, in the form of a water chiller supplying a second set of coils in the safety-related air handling systems.

Based on the above, none of the design, operational or performance requirements of area heat removal capabilities will be affected by the slight increase in feedwater fluid temperature.

VI.21.7 Auxiliary Building Ventilation System (Auxiliary Building Charcoal Filters)

Key parameters for the Auxiliary Building Ventilation System charcoal filters are total flow rates, and total charcoal weights. The charcoal is Barnebey-Cheney #727 (or equivalent) impregnated with 5 weight% iodine compounds. The flow velocity through the charcoal bed is 40 fpm in all cases and the corresponding residence time is 0.25 seconds. A typical charcoal filter module is 24-1/4"x25-314"x6-1/4". Each module is designed for an air flow of 333 cfm. Each filter housing contains sufficient modules for the total flow rates. Testing is performed to demonstrate that the installed charcoal absorbers will perform satisfactorily in removing both elemental and organic iodides for design conditions of flow, temperature, and relative humidity. Periodic testing is conducted to ensure filter efficiencies credited in the accident analysis are maintained.

These key parameters remain unaffected by the MUR power uprate and, as such, the MUR power uprate has negligible impact on the Auxiliary Building charcoal filters.

VI.22 SPENT FUEL POOL COOLING The SFPC system is common to both Units. The pool contains water with the proper dissolved concentration of boron and has the capacity to store 1830 fuel assemblies.

The SFPC system is designed to remove the maximum decay heat expected from 1613 fuel assemblies, not including a full core off-load. The maximum pool temperature in this case is 1270F. The system is also capable of being used in conjunction with the SDC system to remove the maximum expected decay heat load from 1830 fuel assemblies, including a full core discharge. The maximum spent fuel pool temperature in this case is 130 0F.

The maximum decay heat load expected from 1613 fuel assemblies, not including a full core off-load, is 19.9xl O6rBtu/hr. The SAS2H/ORIGEN-S sequence of the SCALE code system was utilized to determine decay heat for discharged fuel. The discharged VAP fuel is assumed to have undergone steady-state burnup as a MUR power uprate MWt low leakage core for an average of 1562 days and decay of 5.5 days. The spent fuel pool heat exchangers have the combined capacity to remove 20.2x106 Btu/hr while maintaining the pool at a temperature of 1270F. In the event that one SFPC loop is lost, the remaining loop can remove this heat load while maintaining the pool temperature at 155 0F.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The decay heat source-term used in the evaluation of the SFPC system was determined to be conservative for the proposed MUR power uprate conditions.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION VII. QI1ER VI1.1 OPERATOR ACTIONS Operator actions that are part of the Abnormal Operating Procedures and Emergency Operating Procedures have been reviewed, and it was concluded that the proposed MUR power uprate will not adversely impact the available time for operator actions. The small change in decay heat will have a negligible impact on operator response times.

Any plant hardware modifications potentially required to support the proposed MUR power uprate have been identified. Also, a review of plant systems has indicated that minor modifications are necessary (e.g., software modification that redefines the new 100% RTP, resealing of plant indications to reflect the new 100% RTP). Established engineering procedures are used to install the necessary minor modifications prior to implementing the proposed power uprate.

A review of the plant simulator will be conducted, and necessary changes made, prior to implementing the proposed MUR power uprate. Prior to actual implementation of the proposed MUR power uprate, training will be conducted to instruct the operations staff on impact of the uprate on plant operations (e.g., revised scaling for instrumentation, required actions for CROSSFLOW"m out-of-service).

Currently Calvert Cliffs uses a rolling 8-hour average of secondary calorimetric power in the surveillance of maximum core power under full-power, steady-state conditions. Currently, the maximum deviation of the indicated power does not exceed 2754 MWt (102% of 2700 MWt).

After the proposed MUR power uprate is implemented, the maximum deviation will remain at an upper limit of 2754 MWt.

V1I.2 AFFECTED PLANT PROGRAMS V1I.2.1 Flow Accelerated Corrosion The impact of the proposed the MUR power uprate on the FAC program was evaluated. The evaluation resulted in long-term FAC program impacts and no short-term impacts were identified. The MUR power uprate will result in a slight increase in inspection scope for some specific systems and possibly some additional replacement scope prior to the end-of-plant life expectancy. The corrective action implementation for the long-term impact will be incorporated into the FAC program during the revision of the FAC programs susceptibility analysis.

V1.2.2 Inservice Inspection Program The Inservice Inspection (ISI) program defines the scope and method of examination of Class 1, 2, and 3 components, and also supports the procedures and examination schedule of these components at Calvert Cliffs.

The MUR power uprate does not impact the scope, method of examination, schedule and requirements, or criteria of the ISI program. Additionally, the operating condition changes associated with the MUR power uprate are bounded by the design of the ISI components and supports and do not affect the program scope, selection criteria, or acceptance standards.

Therefore, the ISI program is not affected by the MUR power uprate.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION VII.2.3 Inservice Testing Program The Inservice Testing (IST) program at Calvert Cliffs defines the scope or Class 1, 2, and 3 pumps and valves to be tested, the test method and test schedule.

The MUR power uprate does not impact the scope, test methods, schedule and requirements, or criteria of the IST program. Additionally, the operating condition changes associated with the MUR power uprate are bounded by the design of the IST pumps and valves and do not affect the valve scope, selection criteria, or acceptance standards. Therefore, the IST program is not affected by the MUR power uprate.

V11.2.4 Alloy 600 Program Industry experience in PWRs has shown that Alloy 600 (Inconel 600) components and Alloy 82/182 weld filler metals are susceptible to primary water stress corrosion cracking. The program includes all Alloy 600 components and Alloy 82/182 welds that are part of the RCS pressure boundary, integral attachments to the RCS pressure boundary, or can have a direct or indirect effect on the integrity of the RCS pressure boundary. These components include:

partial penetration welded nozzles and penetrations in the RCS fabricated from Alloy 600 material, welds made with Alloy 82 or 182 filler metal, full-penetration welds made with Alloy 82 and 182 filler metal, and Alloy 600 piping components, non-pressure boundary Alloy 600 components such as welded internal attachments to vessels, and thermal sleeves. Steam generator tubes, and the associated tube-to-tube sheet seal welds, are specifically excluded from this program.

This program has assessed the Alloy 600 components and for each of them has documented the risks of failure. As part of the program, system reliability is evaluated with respect to potential for equipment degradation. The system reliability is in part based on Calvert Cliffs susceptibility modeling of Alloy 600 components. Primary water stress corrosion cracking has been shown to be predominantly temperature and environment dependent. As such, with an increase in RCS temperature, Alloy 600 susceptibility could potentially be challenged.

Therefore, a review was performed on the impact of a temperature increase as a result of a power uprate with regards to Alloy 600 susceptibility.

As part of the MUR power uprate it was determined that the RCS temperature would only increase by 0.8 0F on the hot leg. The RCS pressure, flow, and cold leg temperatures would remain the same. Thus, it is anticipated for the worst case scenario that the overall increase experienced by Alloy 600 materials is a 0.8 0F increase. The review of this increase on the Alloy 600 components concluded that this increase in temperature affects the Alloy 600 component aging but has an insignificant impact on the components' risk of failure.

V11.2.5 Coatings Coatings used within the Containment were specified based on their ability to withstand accident conditions. The Containment is designed to withstand an internal pressure of 50 psig at 2761F including all thermal loads resulting from the temperature associated with this pressure (UFSAR Section 14.20.2). The coatings within the Containment will not be impacted by the MUR power uprate since as the mass and energy values are not changed from previously analyzed conditions.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION VII.2.6 Environmental Protection The Environmental Report, the Final Environmental Statement, and supplements to the Environmental Report were reviewed. The only non-radiological discharge parameter that will be affected by the MUR power uprate is the delta-T across the condenser. The maximum predicted increase in the delta-T across the condensers after the MUR power uprate is described in Section Vi.13. It is within the 120 F (max) limit in our discharge permit.

The Calvert Cliffs discharge permit contains the following requirement:

"All discharges authorized herein shall be consistent with the terms and conditions of this permit. The discharge of any pollutant identified in this permit at a level in excess of that authorized shall constitute a violation of the terms and condition of this permit. Anticipated facility expansions, production increases or decreases, or process modifications, which will result in new, different, or an increased discharge of pollutants, shall be reported by the permittee by submission of a new application or, if such changes will not violate the effluent limitations specified in this permit, by notice to the Department. Following such notice, the permit may be modified by the Department to specify and limit any pollutants not previously limited".

The MUR power uprate does constitute a production increase that will result in an increased discharge of pollutants, thus Calvert Cliffs will need to send a letter to Maryland Department of the Environment describing the change that is made and the impact on the effluents.

The delta-T across the condenser will be closely monitored during implementation of the MUR power uprate to verify accuracy of the predicted temperature increase.

VII.2.7 Steam Generator Program The purpose of the SG program is to ensure tube structural and leakage integrity through the implementation of the following program elements:

  • Assessment of existing degradation mechanisms in the reactor coolant pressure boundary within the SG
  • Steam generator inspection in accordance with the Electric Power Research Institute PWR SG examination guidelines
  • Assessment of tube integrity after each SG inspection to ensure that the performance criteria for the operating period have been met and will continue to be met for the next period
  • Maintenance, plugging, and repairs of SG tubes
  • Primary-to-secondary leakage monitoring
  • Maintenance of SG secondary side integrity
  • Primary Side and Secondary Side Water Chemistry
  • Self-assessment of the SG program
  • Preparation of NRC and industry reports A review of the SG program elements has concluded that the program elements are symptom based, augmented by regular inspections, maintenance and chemistry activities, and industry ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION experiences. At the MUR power uprate conditions, the SG tubes will be exposed to a 0.8 0F increase in temperature. This temperature increase will marginally increase the stress corrosion cracking rate in the SG tubes. The existing plugging margin and inspection program elements are sufficient to ensure tube integrity. The SG program elements are independent of the reactor thermal power and therefore, the SG program elements will not be affected by the MUR power uprate.

VII.2.8 Containment Leak Rate Program The Calvert Cliffs Containment Leak Rate Testing program performs the Type A, B, and C containment leakage testing to verify the integrity of the Containment and those systems and components which penetrate the containment walls.

The MUR power uprate does not impact the scope, requirements or criteria of the Containment Leak Rate Testing program. Additionally, the operating condition changes associated with the MUR power uprate do not affect the Containment or the systems and components which penetrate the containment walls. The containment pressure following a DBA from the MUR power uprate conditions is bounded by the AOR performed at 102% thermal power. Therefore, the Containment Leak Rate Testing program is not affected by the MUR power uprate.

VII.2.9 Radiation Protection The source-terms used in the Radiation Protection program were reviewed and determined to remain applicable for the proposed power uprate.

V1I.3 VALVES V1I.3.1 Motor-Operated Valves The proposed MUR power uprate will not impact the Generic Letter 89-10 Motor-Operated Valve (MOV) program. There are 44 program valves per unit.

1. One valve in the instrument air system,
2. Twenty five valves in the Si system,
3. Two valves in plant drain system,
4. Three valves in primary containment heating and ventilation,
5. Two valves in the containment spray system,
6. Six valves in the CVCS,
7. Three valves in the RCS, and
8. Two valves in the feedwater system.

The variables that could affect MOV performance are increased D/P across the valve, increased effects of pressure locking/thermal binding, and increased temperature experienced by the actuator motor.

Systems 1 through 5 above are not impacted by the MUR power uprate. The 11 valves in groups 6 through 8 could potentially be impacted by the uprate. The DIP calculations for these valves were reviewed and all of them use system design pressures for calculating maximum D/P. Since the system design pressures are not changing there is no effect on the calculated D/Ps across the valves.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION The valves susceptible to pressure locking or thermal binding (Generic Letter 95-07) are the power-operated relief block valves and the SDC return line valves. These valves possess engineered features that preclude pressure locking or thermal binding.

The maximum design temperature of the room in which the motor is located is used to calculate the torque reduction effect of increased temperature. Since the design temperatures are not changing there will be no effect on the MOV motors.

The real impact of this uprate will be increased D/Ps. Although the changes will be small, the overall effect will be a reduction of performance margin. This margin is the difference between the calculated required thrust and the actual thrust developed. There are no program valves that have margins less than 10%. Therefore, there will be no impact on the MOV program due to this power increase.

As identified in Section 11.1, there are no changes to the safety analysis (i.e., existing analysis of the MSLB and LOCA remain bounding). Consequently, there is no impact on our response to Generic Letter 96-06.

V11.3.2 Air-Operated Valves The Air-Operated Valve (AOV) program was evaluated for impact due to the proposed MUR power uprate.

A review considered valves in the main steam, feedwater, and other secondary side systems.

Valves in primary side systems such as SI and CVCS should not be affected since RCS pressure is not changing. From an AOV Program standpoint, the main concern is D/P across the valve and flow through the valve. Thrust calculations to determine required outputs from the air-operators conservatively assume worst case D/P across a valve. The following valves are addressed in the review:

1. Atmospheric Dump Valves
2. Feedwater Regulating Valves
3. Feedwater Regulating Bypass Valves
4. Main Steam to AFW Pumps There is no impact from a thrust standpoint because the calculations assume the highest SG pressure based on pressure limits, MSSV settings and SG feed pumps running at shutoff head.

These are conservatively higher pressures or D/Ps than the MUR power uprate will implement, so there is no impact on actuator capability.

Based on the information that was provided through the heat balance calculation generated using the plant specific model, there is no impact to AOV program valves from an actuator thrust standpoint.

V11.3.3 Non Program Valves Since increases in D/P are minimal and flow rates will only increase about 2% or less, it was determined that the control valves will be able to handle the increased flow due to the MUR power uprate.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION VII.4 FIRE PROTECTION This evaluation has been conducted in order to evaluate the effects of the MUR power uprate on the plant's Fire Protection program.

The plant Fire Protection program is the integrated effort involving systems, structures, components, procedures, and personnel used to carry out all activities of fire protection, fire prevention, and to ensure safe shutdown following a fire event. The Fire Protection program uses a defense in depth concept to prevent fires from starting, to detect, control, and suppress those fires that do occur; and to ensure that fire will not prevent essential plant safety functions from being performed.

Both units are served by a Fire Protection System that provides a reliable fire protection water supply delivering fire protection water in quantities sufficient to satisfy the maximum probable demand; and, automatic and manual Fire Protection Systems and equipment that provide fire suppression capabilities.

The Fire Protection program and fire protection features are described in Calvert Cliffs UFSAR Section 9.9. Fire protection features include the fire water supply; fire pumps and distribution piping; fixed water suppression systems; fixed gaseous suppression systems; manual fire suppression systems; and fire detection and alarm systems. Passive fire protection features include fire barriers and fire rated penetration seals. Fire and emergency response activities are performed by the on site fire brigade.

The changes that will occur as a result of the MUR power uprate which will increase the thermal and electrical power of the plant have been evaluated with respect to their impact on plant fire protection. The results of the evaluation are that the MUR power uprate has no affect on the plant's Fire Protection program.

VII.4.1 Appendix R The goal of 10 CFR Part 50, Appendix R, is to ensure safe shutdown of the reactor following a fire in any plant area, thereby preventing core damage and protecting the public. Appendix R applies to plants licensed prior to January 1, 1979.

Appendix R compliance can be affected by adding heat to plant areas that could affect Appendix R safe shutdown because the higher temperatures could affect Appendix R equipment and plant operators. However, the overall temperature changes in the primary and secondary systems are very small such that the issue of added heat load to the plant is not a concern.

Appendix R can be affected by additional decay heat due to the higher power levels. This additional decay heat associated with the changes from the MUR power uprate was evaluated and found to be negligible.

V1I.5 HIGH ENERGY LINE BREAK The Calvert Cliffs HELB analysis was reviewed in support of the MUR power uprate. The activities, elements, and philosophy that currently constitute the HELB analysis are not affected by the MUR power uprate. In accordance with Calvert Cliffs design change process, the design change package for installing the CROSSFLOWm system was evaluated against the HELB analysis requirements. No new piping was added, no postulated break locations changed, and ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION no changes were made to the assumed blowdown from any currently-postulated breaks; therefore, there is no impact on the current Calvert Cliffs HELB analysis.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Vil. CHANGES TO TECHNICAL SPECIFICATIONS. PROTECTION SYSTEM SETTINGS.

AND EMERGENCY SYSTEM SETTINGS INTRODUCTION This section addresses the impact of the proposed change in RTP on Technical Specifications, Protection System Settings, and Emergency System Settings.

VI11.1 TECHNICAL SPECIFICATIONS Other than the proposed change to the RTP, there are no other changes required to support the increase in RTP.

V11.2 REACTOR PROTECTIVE SYSTEM The RPS at Calvert Cliffs Units 1 and 2 includes three trip functions whose settings could be impacted by the increase in the RTP. The three trip functions, as listed in the Technical Specifications Table 3.3.1-1 are:

  • Power Level - High,
  • Axial Power Distribution - High, and
  • Thermal Margin/Low Pressure (TM/LP).

The setpoints/allowable values for the Power Level - High trip are specified in Technical Specifications Table 3.3.1-1. The setpoints/allowable values for the Axial Power Distribution -

High trip and the TM/LP trip are specified in the Core Operating Limits Report (COLR).

The setpoints/allowable values and coefficients for these three trip functions are calculated and/or verified every cycle using the methodology described in References Vill-1, V1I1-2, and VlII-3. No changes will be required to the methodology as a result of the increase in the RTP.

Therefore, the cycle specific calculation and/or verification of the setpoints/allowable values and coefficients for these trip functions will appropriately reflect the increase in the RTP. No changes to the Variable High Power Trip setpoints/allowable values in Technical Specifications Table 3.3.1-1 or to the Axial Power Distribution or TM/LP trip settings/allowable values in the COLR are expected due to the increase in the RTP.

V11.3 LIMITING CONDITIONS FOR OPERATION Four of the Limiting Conditions for Operation (LCOs) in Technical Specifications Section 3.2 could be impacted by the increase in the RTP. These Technical Specification LCOs are:

3.2.1, Linear Heat Rate (LHR),

3.2.2, Total Planar Radial Peaking Factor (FTy),

3.2.3, Total Integrated Radial Peaking Factor (FT), and

  • 3.2.5, Axial Shape Index (ASI).

The limits for these LCOs are specified in the COLR and are calculated and/or verified every cycle using the methodology described in References VlII-1, V1II-3 and Vil-4. No changes will be required to the methodology as a result of the increase in the RTP. Therefore, the cycle specific calculation and/or verification of the limits for these LCOs will appropriately reflect the increase in the RTP and the COLR will be modified as necessary. In addition, coefficients for ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION the Better Axial Shape Selection System, which is used to establish the limits for the Axial Shape Index LCO, are updated as necessary each cycle. The cycle specific updates will reflect the increase in the RTP.

VIII4 EMERGENCY SAFETY FEATURES ACTUATION SYSTEM AND AUXILIARY FEEDWATER ACTUATION SYSTEM The existing Emergency Safety Features Actuation System and AFAS setpoints and response times were used in the justification of the continued applicability of the safety analysis (see Section 11). No changes were required or necessary to support the proposed change in RTP.

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION IX. REFERENCES Section I 1-1 CENPD-397-P, Revision-01-P-A "Improved Flow Measurement Accuracy Using CROSSFLOWnm Ultrasonic Flow Measurement Technology" for referencing in power uprate license applications in a safety evaluation dated March 20, 2000 (TAC No.

MA6452)

Section II 11-1 Letter from A. W. Dromerick (NRC) to C. H. Cruse (BGE), dated May 23, 1998, Docket Nos. 50-317 and 50-318, "Issuance of Amendments for Calvert Cliffs Nuclear Power Plant Unit No. 1 (TAC No. M97855) and Unit No. 2 (TAC No. M97856)"

11-2 Letter from D. H. Jaffe (Signed by R. A. Clark) (NRC) to A. E. Lundvall, Jr. (BG&E),

dated June 24, 1982, Amendment No. 71 to Facility Operating License No. DPR-53 for Calvert Cliffs Nuclear Power Plant, Unit No. 1 Letter from D. H. Jaffe 'NRC) to A. E. Lundvall, Jr. (BG&E), dated January 10, 1983, Amendment No. 61 to Facility Operating License No. DPR-69 for Calvert Cliffs Nuclear Power Plant, Unit No. 2 11-3 Letter from D. M. Skay (NRC) to C. H. Cruse (Calvert Cliffs), dated February 26, 2002, Docket Nos. 50-317 and 50-318, "Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 -

Amendment RE: Reanalysis of Loss of Feedwater Event (TAC Nos. MB3442 and MB3443)"

11-4 Letter from C. H. Cruse (Calvert Cliffs) to Document Control Desk (NRC), dated May 9, 2002, "Calvert Cliffs Nuclear Power Plant Unit Nos. 1 & 2, Docket Nos. 50-317 & 50-318, 10 CFR 50.46 30-Day Report for Changes to the Calvert Cliffs Nuclear Power Plant Emergency Core Cooling System Performance Analysis" 11-5 Letter from D. M. Skay (NRC) to C. H. Cruse (Calvert Cliffs), dated April 8, 2002, "Calvert Cliffs Nuclear Power Plant, Unit Nos. I and 2 - Amendment Re: Implementation of ZIRLO Clad Fuel Rods (TAC Nos. MB2540 and MB2541)"

11-6 CENPD-1 32, Supplement 4-P-A, "Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model," March 2001 11-7 CENPD-1 37, Supplement 2-P-A, "Calculative Methods for the ABB CE Small Break LOCA Evaluation Model," April 1998 11-8 Letter from S. A. Richards (NRC) to P. W. Richardson (Westinghouse), dated December 15, 2000, "Safety Evaluation of Topical Report CENPD-132, Supplement 4, Revision 1, 'Calculative Methods for the CE Nuclear Power Large Break LOCA Evaluation Model' (TAC No. MA5660)"

11-9 Letter from T. H. Essig (NRC) to 1.C. Rickard (ABB CENP), dated December 16, 1997, "Acceptance for Referencing of the Topical Report CENPD-137(P), Supplement 2,

'Calculative Methods for the C-E Small Break LOCA Evaluation Model' (TAC No.

M95687)"

11-10 Letter from D. M. Skay (NRC) to C. H. Cruse (Calvert Cliffs), dated April 8, 2002, "Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2 - Amendment Re: Implementation of ZIRLO Clad Fuel Rods (TAC Nos. MB2540 and MB2541)"

ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION 11-11 CEN PD- 32P, "Calculative Methods for the C-E Large Break LOCA Evaluation Model,"

August 1974 11-12 Letter from A. W. Dromerick (NRC) to C. H. Cruse (BGE), dated October 2, 1997, "Issuance of Amendments for Calvert Cliffs Nuclear Power Plant Unit 1 (TAC No.

M95181) and Unit No. 2 (TAC No. M95182)"

11-13 Letter from S. A. McNeil (NRC) to J. A. Tiernan (BGE), dated November 2,1988, "Safety Evaluation Concerning Conformance to the ATWS Rule (TACs 59079 and 59080)"

11-14 Letter from C. H. Cruse (BGE) to Document Control Desk (NRC), dated July 31, 1997, "Response to Request for Additional Information Regarding the Technical Specification Change to the Moderator Temperature Coefficient (TAC Nos. M951 81 and M95182)"

Section III None.

Section IV IV-1 CENPD-387-P-A, "ABB Critical Heat Flux Correlations for PWR Fuel," May 2000 IV-2 CENPD-206-P-A, 'TORC Code: Verification and Simplified Modeling Methods,"

June 1981 IV-3 CEN-1 91 (B)-P, "CETOP-D Code Structure and Modeling Methods for Calvert Cliffs Units 1 and 2," December 1981 IV-4 CEN-348(B)-P-A, Supplement 1-P-A, "Extended Statistical Combination of Uncertainties," January 1997 IV-5 Letter from G. M. Holahan (NRC) to S. A. Toelle (ABB), dated August 31, 1994, "Generic Approval of CEN-348(B)-P-A, 'Extended Statistical Combination of Uncertainties' (TAC No. M90019)"

IV-6 CENPD-225-P-A, "Fuel and Poison Rod Bowing," June 1983 IV-7 CEN-161(B)-P Supplement 1-P-A, 'Improvements to Fuel Evaluation Model,"

January 1992 IV-8 CENPD-1 39-P-A, 'Fuel Evaluation Model," July 1974 IV-9 CEN-161(B)-P-A, "Improvements to Fuel Evaluation Model," August 1989 IV-1 0 CENPD-382-P-A, "Methodology for Core Designs Containing Erbium Burnable Absorbers," August 1993 IV-11 CEN-372-P-A, "Fuel Rod Maximum Allowable Gas Pressure," May 1990 IV-12 CENPD-404-P-A, Revision 0, "Implementation of ZIRLOTM Cladding Material in CE Nuclear Power Fuel Assembly Designs," November 2001 IV-1 3 CEN-382(B)-P-A, "Verification of the Acceptability of a 1-Pin Bumup Limit of 60 MWD/kgU for Combustion Engineering 14x14 PWR Fuel," August 1993 IV-14 CENPD-384-P, "Report on the Continued Applicability of 60 MWD/kgU for ABB Combustion Engineering PWR Fuel," September 1995 ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION IV-1 5 Letter from B. S. Montgomery (CCNPP) to document Control Desk (NRC), dated July 15, 2004, "License Amendment Request: Incorporate Methodology References for the Implementation of PHOENIX-P, ANC, PARAGON, and Zirconium Diboride into the Technical Specifications' IV-16 CEN-387-P, Revision I-P-A, "Pressurizer Surge Line Flow Stratification Evaluation,"

May 1994 IV-17 CENPD-161-P-A, 'TORC Code, A Computer Code for Determining the Thermal Margin of a Reactor Core," April 1986 Section V None.

Section VI None.

Section VII None.

Section VIII VIII-1 CENPD-199-P, Revision 1-P-A, "C-E Local Power Density and DNB LSSS and LCO Setpoint Methodology for Analog Protection Systems," January 1986 Vl11-2 CEN-124(B)-P, Statistical Combination of Uncertainties, Part 1," December 1979 Vl11-3 CEN-348(B)-P-A Supplement 1-P-A, "Extended Statistical Combination of Uncertainties," January 1997 VlII-4 CEN-124(B)-P, Statistical Combination of Uncertainties Methodology Part 3, December 1979 ATTACHMENT (2)

SUMMARY

OF CALVERT CLIFFS NUCLEAR POWER PLANT MEASUREMENT UNCERTAINTY RECAPTURE EVALUATION Enclosure (1)

CA06494, Revision 0000, Calorimetric Uncertainty Using the AMAG Crossflow Ultrasonic Flowmeter

ESP No.: ES200300421 Supp No. 000 Rev. No. 0000 Pagel of 132 INITIATION (Control Doc Type - DCALC):.

DCALC No.: CA06494 Revision No.: 0000 Vendor Calculation (Check one): El Yes 0 No Responsible Group: 4A-1 1-08 Responsible Engineer: D. A. Dvorak CALCULATION ENGINEERING DISCIPLINE: [E Civil 0 Instr &Controls E Nuc Engrg El Electrical E Mechanical E Diesel Gen Project E Life Cycle Mngmt El Reliability Engrg El Nuc Fuel Mngmt El Other:

Title:

CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER Unit 0 UNrrI 0 UNrr2 El COMMON Proprietary or Safeguards Calculation El YES 0 NO Comments: -

Vendor Calc No.: NA REVIsION No.:

Vendor Name:

Safety Class (Check one): E SR E AQ 0 NSR There are assumptions that require ES20030042 1, MILESTONE 083 Verification during walkdown: AIT#: (AssuMPnoNs 5.1, 5.2, 5.3)

This calculation SUPERSEDES: NA REVIEWV AND APPROVAL:

Responsible Engineer: 'rK Date:

DA"A'T xjLAIC  ; L- a6- aq Independent Reviewer: JSP .SAE- Date:

JOSEPH A.SUJAREZ..I Approval: ' Wu/01 0,, PI , --- V ",-1 Date:

OR (for Vendor Cakc Owner's Acceptance D.E. LENKER Date:

Reviewer: 4)z V11-/ 0,t . /;~/f1/0

CA06494, Revision 0000 Page 2 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER TABLE OF CONTENTS 1.0 PURPOSE ................. .. 3 2.0 COMPONENT LISTING ................... 3 3.0 METHOD OF ANALYSIS ................... 4 4.0 DESIGN INPUTS ................... 5 5.0 ASSUMPTIONS .................. 10

6.0 REFERENCES

.................. 11 7.0 CALCULATION .................. 12 8.0 RESULTS/

SUMMARY

.................. 22

9.0 CONCLUSION

................... 22 ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES .. 25 ATTACHMENT B, EVALUATION OF BLOWDOWN FLOW ON CALORIMETRIC UNCERTAINTY..129 ATTACHMENT C, EVALUATION OF MOISTURE CARRYOVER ON CALORIMETRIC POWER .132

- 0 .1 7- 11.= 4,--

CA06494, Revision 0000 Page 3 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 1.0 PURPOSE The purpose of this evaluation is to estimate the calorimetric uncertainty using the AMAG CROSSFLOW ultrasonic flowmeters to measure feedwater flow.

2.0 COMPONENT LISTING 2.1. Inputs from the following instrument loops are used by the plant computer to calculate calorimetric power.

1(2)CPUI(2)C209 Unit 1(2) Crossflow Measurement Cabinet Computer 1(2)FTI I 1 11(21) Feedwater Flow 1(2)FT1 121 12(22) Feedwater Flow 1(2)FT4089 Unit 1(2) BD Tank Effluent Flow 1(2)PT4490 11(21) SGFP Discharge Pressure 1(2)PT4495 12(22) SGFP Discharge Pressure 1(2)PTIO13A, B 11(21) SG Pressure 1(2)PT1023A, B 12(22) SG Pressure 1(2)TE4516 11 (21) SG Feedwater Inlet Temperature 1(2)TE4517 12(22) SG Feedwater Inlet Temperature 1(2)PT3991 11 (21) Main Steam Header Pressure 1(2)PT4008 12(22) Main Steam Header Pressure 2.2: The following diagram is a simplified representation of the calorimetric calculation.

Venturi Correction Factor, 1(2)CPUI(2)C209I I Q()TE45 16. r_

I 1(2)TE4517i SteamGenerator Plant computer Pressure B. determination of 1(2)PT1023A. B FW enthalpy

CA06494, Revision 0000 Page 4 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 3.0 METHOD OF ANALYSIS 3.1. This calculation uses the methodology established in ES-028, "Instrument Loop Uncertainty and Setpoint Methodology" (Reference 6.1).

3.2. Sign Convention:

3.2.1. Uncertainties are applied to actual values, as opposed to calculated or indicated values.

3.2.2. Uncertainty is positive when indicated value is greater than actual value.

3.2.3. Uncertainty is negative when indicated value is less than actual value.

3.2.4. If indicated power is less than actual power and the plant is being operated with indicated power near the rated thermal power limit, the rated thermal power limit may be exceeded.

3.2.5. Therefore, only the negative component of calorimetric uncertainty needs to be evaluated.

3.3. Uncertainties will be determined using parametric analysis as follows:

3.3.1. Uncertainty will be evaluated over a range of values for each input using the ASME 1967 steam tables.

3.3.1.1. The results are tabulated in Attachment A.

3.3.1.2. The ASME 1967 steam tables are the current basis for the plant computer determination of thermodynamic properties.

3.3.2. Each input is varied by its uncertainty. The contribution to calorimetric uncertainty is the difference between calorimetric power calculated at the varied input to calorimetric power calculated at the nominal value for the input.

3.3.3. Overall calorimetric uncertainty is determined by statistically combining the contributions to calorimetric uncertainty from each input.

3.4. The computations performed were calculated to several significant digits. Hand verification utilizing the rounded values may result in slightly different results due to round off errors.

3.5. No computer codes were utilized in the performance of this calculation.

CA06494, Revision 0000 Page 5 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 4.0 DESIGN INPUTS 4.1. VENTURI FEEDWATER FLOW CORRECTION 4.1.1. The feedwater flow measured by the CROSSFLOW system is used to determine a correction factor to the venturi flow calculated by the plant computer.

4.1.2. The correction factor is determined by the CROSSFLOW system as the ratio of average CROSSFLOW measured feedwater flow to average venturi flow.

4.1.3. When the correction factor is applied, the net result is setting the flow used in the plant calorimetric calculation equal to the CROSSFLOW measured feedwater flow. Therefore, the application of the CROSSFLOW ultrasonic flowmeter to venturi flow is essentially an in-situ calibration of the venturi flow loop.

4.1.4. Thus, the uncertainty of feedwater flow used for the calorimetric calculation is the same as the uncertainty of the CROSSFLOW measured feedwater flow. Uncertainty of the instrumentation used to determine venturi flow does not need to be considered.

4.2. BOUNDING CONDITIONS FOR CALORIMETRIC UNCERTAINTY 4.2.1. Calorimetric uncertainty is maximized at 100% power.

4.2.1.1. The uncertainty for the CROSSFLOW system's determination of feedwater flow increases as flow and power increases.

4.2.1.2. Feedwater flow is the largest contributor to calorimetric uncertainty, as shown in Attachment A.

4.2.2. Calorimetric uncertainty is maximized with total blowdown flow at maximum allowable with maximum allowable flow through one Steam Generator per References 6.9.1 and 6.9.2.

4.2.2.1. From References 6.9.1 and 6.9.2, total blowdown flow through both steam generators is limited to 180 gpm. Maximum blowdown flow through a single steam generator is limited to 125 gpm.

Using the tables of References 6.9.1 and 6.9.2, these volumetric flowrates equate to mass flowrates of 107000 Ibm/hr for total flow with 91000 Ibm/hr through one steam generator and 16000 Ibm/hr through the second steam generator.

4.2.2.2. Attachment B provides a demonstration that calorimetric uncertainty is maximized at the selected blowdown flows.

4.2.3. Per Reference 6.10, the setpoints for steam quality, 1(2)PAK0001 and 1(2)PAK0002 are set at a value of 1. Therefore, calorimetric uncertainty is only evaluated for no moisture carryover.

4.2.4. The specific values for feedwater flow, feedwater temperature, feedwater pressure and main steam pressure are established in Assumption 5.2.

CA06494, Revision 0000 Page 6 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 4.3. EQUATIONS FOR CALORIMETRIC POWER 4.3.1. Per Reference 6.2, the gross thermal output of one steam generator is computed from the expression QSG = (MFW -MBDX(1-X)hFs +XhGS - hn]+MBD(hFs -hFW) which simplifies to:

QSG = (M F\V (I-X)hFS + XhGS -hFw ]+ (XMBD XhFS -h G) 5 where, MFW is feedwater flow, MBD is blowdown flow, hFS is the fluid component of steam enthalpy, hos is the vapor component of steam enthalpy, how is the feedwater enthalpy (compressed liquid),

X is the steam quality.

4.3.2. For a steam quality of I (no moisture carryover), the above expression is further simplified to QsG = (MFW XhGS -hFW)+(MBDXhFS -hGs) 4.3.3. Calorimetric Constant 4.3.3.1. To determine reactor power from steam generator thermal output, adjustments are made to account for heat additions to the Reactor Coolant System, such as the heat added by the pressurizer heaters, and heat losses from the Reactor Coolant System, such as losses through pipe insulation.

4.3.3.2. These corrections are input as constants to the calorimetric calculation.

4.3.3.3. For convenience, this calculation represents the net adjustment as a single constant.

4.3.4. Calorimetric power is the sum of the gross thermal output of both steam generators and the calorimetric constant.

Q = QSGI + QSG 2 + C 4.4. INPUT UNCERTAINTIES:

4.4.1. Feedwater Flow 4.4.1.1. The uncertainties of the CROSSFLOW ultrasonic flowmeters were determined in References 6.3.1 and 6.3.2.

4.4.1.2. The total uncertainties in Reference 6.3.1 and 6.3.2 are rounded up to the nearest 0.01%. Also, as stated in Reference 6.3.2, the total uncertainty for the Unit 2 flowmeters consists of a dependent term resulting from the method used to evaluate the piping configuration correction factor.

4.4.1.3. Temperature dependency between feedwater flow measurement and calorimetric uncertainty

a. The temperature instrumentation used to determine feedwater enthalpy is also used by CROSSFLOW in the calculation of feedwater flowrate. CROSSFLOW calculates mass flowrate using the following expression:

p(4 where C is a dimensionless correction factor that correlates measured velocity of the flow eddies to bulk velocity of the fluid based on Reynolds number, p is the feedwater density, d is the internal diameter of the feedwater piping L is the spacing between transducers, t is the transit time between the CROSSFLOW transducers.

CA06494, Revision 0000 Page 7 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER

b. Temperature instrumentation is used by CROSSFLOW to correct for all variables with the exception of time. Therefore, there is a dependency between the uncertainty of the flow measurement and the uncertainty of feedwater enthalpy.
c. A decrease in feedwater temperature affects the CROSSFLOW calculation as follows:
  • Feedwater density increases, which tends to increase flow,
  • Pipe diameter decreases due to thermal contraction of the pipe, which tends to decrease flow,
  • Transducer spacing decreases due to thermal contraction of the pipe, which tends to decrease flow,
  • Reynolds number decreases which tends to decrease flow. A decrease in feedwater temperature results in a increase of both density and viscosity. Reynolds number is proportional to the ratio of density to viscosity, which decreases as feedwater temperature increases. There is also a small contribution to Reynolds number from pipe diameter changes; however, this effect is negligible.
  • Since transducer spacing is decreases, the time measurement used by CROSSFLOW to calculate velocity also decreases. However, this is a decrease in the actual time measurement used to calculate velocity and does not affect measurement uncertainty.

CROSSFLOW uses the correct time to calculate velocity.

d. From inspection of the CROSSFLOW uncertainty calculations, References 6.3.1 and 6.3.2, the change in feedwater density resulting from a change in temperature is substantially greater than the changes in the other terms. Therefore, if actual temperature is less than indicated temperature, actual mass flow rate is greater than indicated mass flow rate, resulting in a negative contribution to calorimetric uncertainty.
e. For conservatism, the contribution to CROSSFLOW uncertainty from feedwater density will be used as the basis for the temperature dependent feedwater flow uncertainty. This is conservative since the contribution to CROSSFLOW uncertainty from feedwater density consists of both temperature instrumentation and pressure instrumentation uncertainty.

4.4.1.4. The value of the independent component of uncertainty can be determined from U Nw-rND% = -

-UG., U 2UMFW-TDEP%

where UNfV. ND% is the fully independent component of feedwater flow uncertainty, UMMFW.DE%. is the dependent component of feedwater flow uncertainty resulting from the piping configuration correction factor, UMFWMTMEP/. is the dependent component of feedwater flow uncertainty resulting from the temperature instrumentation dependency.

4.4.1.5. Dependent and independent uncertainties will be rounded to the nearest 0.0001%.

4.4.1.6. Therefore, the uncertainties of the CROSSFLOW ultrasonic flowmeters are Uncertainty, Piping Uncertainty, Configuration Temperature Uncertainty, Dependent Dependent Independent Total Uncertainty, Component, % Flow, Component, % Flow, Component, % Flow, Header Location  % Flow, UtlFw% UMFW.MDEP/. U?.I.NV-TDEP% UMFW-rND%/.

11 Venturi +/- 0.56% 0% +/- 0.1604% +/-0.5365%

12 Pipe-0.47% 0% +/-0.1602% +/-0.4419%

21 Venturi +/- 0.55% +/- 0.2672% +1-0.1649% +/- 0.4516%

22 Venturi +/- 0.57% +/- 0.2672% +/- 0.1652% +/- 0.4756%

CA06494, Revision 0000 Page 8 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 4.4.2. Main Steam Pressure 4.4.2.1. Steam enthalpy is a function of main steam pressure measured downstream of the steam generator by the 1(2) PT3991 and 1(2) PT4008 instrument loops.

4.4.2.2. From Reference 6.4, the uncertainty of the main steam pressure measurement is UPsTNI +/- 19.8 psi (Random Component of Uncertainty) and BpsTmi + 3.4 psi (Bias Component of Uncertainty).

4.4.3. Feedwater Temperature 4.4.3.1. Feedwater enthalpy is a function of feedwater temperature as measured by the 1(2)TE4516, 4517 instrument loops.

4.4.3.2. From Reference 6.6, the uncertainty of the feedwater temperature input is UTrW = +/- 1.88 deg. F.

4.4.4. Feedwater Pressure 4.4.4.1. Feedwater enthalpy is also a function of feedwater pressure as measured by 1(2)PT1O13A, B and 1(2)PT1O23A, B.

4.4.4.2. From Reference 6.7, the uncertainty of the plant computer datapoints is UpFw = +/- 27.57 psi (Random Component of Uncertainty) and Bppw = + 0.04 / -0.16 psi (Bias Component of Uncertainty) 4.4.4.3. Although the feedwater pressure used by the plant computer in the calorimetric calculation is the average of two instruments, which reduces the uncertainty, calorimetric uncertainty is based upon the uncertainty of a single instrument.

4.4.5. Plant Computer Calculation of Enthalpy From Reference 6.2, the uncertainty of the plant computer calculation of enthalpy is UPC.ENTH = +/- 0.1 BTU/lbm.

4.4.6. Blowdown Flow 4.4.6.1. Total blowdown flow uncertainty is evaluated in Reference 6.5 as a function of indicated blowdown flow and power.

4.4.6.2. From a review of Reference 6.5, blowdown flow at 50 gpm indicated flow bounds the uncertainty at higher blowdown flow rates and will be used for this evaluation.

4.4.6.3. Since the sign convention for uncertainties in this reference is not clear, the largest magnitude of uncertainty (positive or negative) for 50 gpm total indicated flow will be used and applied in both the positive and negative directions.

4.4.6.4. For conservatism, the uncertainty ofthe total blowdown flow will be applied to each steam generator.

4.4.6.5. Therefore, the uncertainty of blowdown flow is UMBDT = +/- 8094 Ibm/hr.

4.4.7. Steam Quality From Design Input 4.2.3, steam quality is set at 1. Therefore, uncertainty is not considered, since higher values for steam quality are not possible and a steam quality of I results in a conservative calculation of calorimetric power as shown in Attachment C.

CA06494, Revision 0000 Page 9 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 4.4.8. Calorimetric Constant Biases:

4.4.8.1. Uncertainties of the calorimetric constants Reference 6.8 were reviewed by Reference 6.12. As part of the review, sign conventions of the uncertainties were verified to consistent with Section 3.2. Therefore, only the negative value of uncertainty needs to be considered. As a result of the review, corrections to uncertainties were made by Reference 6.8.1.

4.4.8.2. If the values for the uncertainties of the constants are different between the units, the most conservative value is used to evaluate calorimetric uncertainty.

4.4.8.3. Summary of calorimetric constant uncertainty from References 6.8 as modified by Reference 6.8.1.

a. PAK0021, pressurizer heater input BPAKOO21 = 0 MW
b. PAK0022, RCS heat loss BPAKOO22 = -0.35 MW.
c. PAK0024, Letdown flow heat loss.

BPAKOO24 = -3.19 MBTU/hr

d. Reactor Coolant Pump Heat Addition BPAKOO26 = -0.61 MW 4.4.8.4. Using a conversion of 3.412141 BTU/hr/W, the total bias of the calorimetric constant is given by BCAL-CONST = [BPAK24 + (3.412141 BTU/hr/WXBpAK0oo 2 1+ BPAK 00 22 +BPAK0 0 26 )(106BTUIMBTU)

BCAL-CONST =-6465656BTU/hr

CA06494, Revision 0000 Page 10 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 5.0 ASSUMPTIONS 5.1. Feedwater Flow Uncertainty Performance of the ultrasonic flowmeters at the uprated conditions, including re-evaluation of uncertainty, will be verified at the uprated power of 2737 MW. This evaluation assumes that uncertainty of the ultrasonic flowmeters will be at or below the values established by in Design Input 4.4.1. {THIS ASSUMPTION REQUIRES VERIFICATION) 5.2. Assumed Plant Parameters at 2737 MW (VALUES ASSUMED FOR PLANT PARAMETERS REQUIRE VERIFICATION) 5.2.1. Feed flow:

From an inspection of operating data for Unit I and Unit 2, maximum indicated feedwater flow at 2700 MW is less than 6075 klbm/hr with average values of approximately 5910 klbm/hr (Unit I) and 5975 klbm/hr (Unit 2). Following a 1.40% uprate to 2737 MW the maximum feedwater flow should increase by approximately 1.40%. From Design Input 4.4.1, the maximum uncertainty of feedwater flow is

+1-0.57%.

For conservatism, an additional 20 klbm/hr will be included.

A value of MFW = (6075 klbm/hr)(I+1.40%)(1+0.57%) + 20 klbm/hr= 6220 klbm/hr (rounded up to nearest 10 klbm/hr) is assumed for this evaluation.

5.2.2. Main Steam Pressure:

Main steam pressure is evaluated in 10 psia increments from 770 PSIA to 870 PSIA.

5.2.3. Feedwater Temperature:

Feedwater Temperature is evaluated in 2 degree increments between 428 deg. F and 452 deg. F.

5.2.4. Feedwater Pressure:

Feedwater pressure is evaluated in 10 psia increments from 770 PSIA to 870 PSIA.

5.3. Feedwater Pressure Input This evaluation is based upon the use of steam generator pressure to determine feedwater enthalpy. The current input to feedwater enthalpy is average feedpump discharge pressure. (THIS ASSUMPTION REQUIRES VERIFICATION)

CA06494, Revision 0000 Page 11 of 132 I CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER

6.0 REFERENCES

6.1. ES-028, Instrument Loop Uncertainty And Setpoint Methodolog , Revision 1 6.2. VTM 12138-249, Control Spec. Plant Computer, Revision 25 6.3. AMAG Uncertainty Calculations 6.3.1. DCALC CA06004, Feedwater Flow Measurement Using The CROSSFLOW Ultrasonic Flowmeter At Constellation Nuclear Calvert Cliffs Unit I, Revision 0 6.3.2. DCALC CA06102, Feedwater Flow Measurement Using The CROSSFLOW Ultrasonic Flowmeter At Constellation Nuclear Calvert Cliffs Unit 2, Revision 0 6.4. DCALC 1-93-037, Uncertainty Calculation For The Plant Computer Indication Of Main Steam Pressure, Revision I 6.5. DCALC CA04564, Uncertainty Calculation for the Blowdown Flow Input to the Secondary Heat Balance, Revision 0.

6.6. DCALC CA00470, Loop Uncertainty For Feedwater RTDS, Revision 0 6.7. DCALC CA02092, Uncertainty Calculation For Steam Generator Pressure Instrumentation For Loops AFAS. Remote Shutdown Indication And PAM Indication, Revision 2 6.8. DCALC 1-93-072, Uncertainties Of The Secondary Calorimetric Constants For Unit I & 2, Revision 0 6.8.1. CCN 1-93-072-0001, Revision 0 6.9. Operating Procedures 6.9.1. OI-08A-1, Blowdown System, Revision 35 (Unit 1) 6.9.2. 01-08A-2, Blowdown System, Revision 33 (Unit 2) 6.10. SP 094, System 094 Setpoint File, Revision 9 6.11. ASME Steam Tables, Fifth Edition (1967 ASME Steam Tables) 6.12. ESP ES200400492-000, Reviewv/Revise Calorimetric Constants, Revision 0 6.13. ISA-RP67.04.02-2000, Methodologies for the Determination of Setpoints for Nuclear Safetv Related Instnimentation, 1/1/2000

CA06494, Revision 0000 Page 12 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.0 CALCULATION 7.1. Calorimetric uncertainty is determined by varying each input parameter individually by its uncertainty, determining the resultant calorimetric power, then subtracting the nominal calorimetric power from the resultant power. The difference in calorimetric power resulting from the variation of each parameter represents that parameter's contribution to calorimetric uncertainty.

UcAL-wpu =--AQCAL = (QsGI +QSG2 + C)e - (QSGI + QSG2 +c) 0 where the subscript INPUT represents the parameter being evaluated, the subscript £ represents indicated values, and the subscript 0 represents actual values.

7.2. Net calorimetric uncertainty is the statistical combination of each parameters contribution to uncertainty.

7.3. Feedwater temperature, feedwater pressure, and main steam pressure are evaluated over a range of values.

For simplicity, the subsequent calculation is shown for the following conditions:

Feed water Temperature, T.w = 428 deg. F Feedwater Pressure, PFW = 770 PSIA Main Steam Pressure, PS5 M= 860 PSIA Refer to Attachment I for the calorimetric uncertainty calculation at other values using the methodology developed in Step 7.1.

7.4. From Reference 6.11, the feedwater enthalpy at 428 deg. F and 770 PSIA is hFw = 406.0780 BTU/lbm.

[Attachment A, Table IA]

7.5. From Reference 6.11, at 860 PSIA, the saturated vapor component of main steam enthalpy is hr5 = 1197.7 BTU/lbm, the saturated liquid component of main steam enthalpy is hFS = 520.1 BTU/lbm, and the difference between the saturated vapor and liquid components is hFG = 677.6 BTU/lbm. [Attachment A, Table 2A]

7.6. FEEDWATER FLOW UNCERTAINTY CONTRIBUTION 7.6.1. From Assumption 5.1, the uncertainty of the corrected feedwater flow calculation is bound by the uncertainty of CROSSFLOW measured flow.

7.6.2. General equations:

UCAL-MFW = (QSGI + QSG2 + C)-FW (QSGI + QSG2 + Cj An error in feedwater flow to one steam generator affects only the thermal output of that steam generator. Therefore, for steam generator 11 (21),

UCAL-MFWI = (QSGI )EMFW- (QSGI )o I=[(MFwI XhGSI -hFwl )+(MBDI XhFSI -hGSI)]eNqW

= l-[(M FWXhcs, -hFwl)+(MBDIXhFs1 -hosil)]o J UCAL-NiFWI = [(MFWI-MFWXhGsI hFwl)]- [(MFWI-oXhGS -hFWI)]

UCAL-MFWI =UMFWI(hGS] -hFwl)

Similarly, for steam generator 12 (22)

UCAL-MFW2 =UMFW2(hGS 2 -hF 2) 7.6.3. From inspection of the above equations, a negative calorimetric uncertainty results from a negative feedwater flow uncertainty. (Indicated flow < Actual flow)

CA06494, Revision 0000 Page 13 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.6.4. From Design Input 4.4.1, feedwater uncertainty consists of random uncertainties with a dependent and independent component. The uncertainty, expressed in lbm/hr, is the product of the uncertainty, expressed in % flow, and the nominal flow, 6220 klbm/hr.

7.6.4.1. The piping configuration dependent component is Uncertainty, Piping Uncertainty, Flow Configuration Dependent Dependent Component, % Flow, Componentt, lbm/hr, Header UMMFW-NDEP-, UMFW.MDEP 11 0% +-0 12 0% +/-0 21 +1-0.2672% +/- 16620 22 +/- 0.2672% +/- 16620 7.6.4.2. The temperature dependent component is Uncertainty, Uncertainty, Temperature Temperature Dependent Dependent Component, % Flow, Component, lbmlhr, Header UNIFW-TDEP/. UMFW-TDEP 11 +/-0.1604% +/- 9977 12 +/-0.1602% +/- 9964 21 +/-0.1649% +/-10257 22 +/-0.1652% +/- 10275 7.6.4.3. The independent component is Uncertainty, Uncertainty, Independent Independent Component, % Flow, Component, Ibm/hr, Header UMNWIfNiD%/ UN6FWrND 11 +/-0.5365% +/-33370 12 0.4419% +/-27486 21 +/-0.4516% +/-28090 22 +1-0.4756% +/- 29582 7.6.5. The contributions to calorimetric uncertainty are 7.6.5.1. The independent component is Unit I [Attachment A, Table 3A1]

Unit 2 [Attachment A, Table 3A2]

SG UMiFW, hGs, hFW, UCAL-N1FV-L.D, Ibm/hr BTU/lbm BTU/Ibm BTU/hr I -28090 1197.7000 406.0780 -22236282 2 -29582 1197.7000 406.0780 -23418015

CA06494, Revision 0000 Page 14 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.6.5.2. The piping configuration dependent component is Unit 1 [Attachment A, Table 3BI]

SG U&IFWP hoSt hiw, UCAL-MIFW-MDEP.

Ibm/hr BTU/lbm BTU/lbm BTU/hr I 0 1197.7000 406.0780 0 2 0 1197.7000 406.0780 0 Unit 2 [Attachment A, Table 3B2]

SG 1

t U&IFWP bm./hr

-16620 hGS' BTU/lbm 1197.7000 hFwV.

BTU/lbm 406.0780 UCAL.NIFWV.MDEP.

BTU/hr

-13156631 2 -16620 1197.7000 406.0780 -13156631 7.6.5.3. The temperature dependent component is Unit I [Attachment A, Table 3CI]

SG UNIFW, hGS. hFw, UCAL-M-V.TDEP.

Ibm/hr BTU/lbmn BTU/lbm BTU/hr

-9977 1197.7000 406.0780 -7897918 2 -9964 1197.7000 406.0780 -7888070 Unit 2 [Attachment A, Table 3C2]

SG UNIFW. hGS9 hFw, UCAL.NFWWTDEP, Ibm/hr BTU/lbm BTU/lbm BTU/hr 1 -10257 1197.7000 406.0780 -8119493 2 -10275 1197.7000 406.0780 -8134264 7.7. BLOWDOWN FLOW UNCERTAINTY CONTRIBUTION 7.7.1. General equations:

Since the same bounding conditions are established for feedwater flow, main steam pressure, feedwater temperature and feedwater pressure, the net thermal output of both steam generators, QSGI + QSG2, can be re-written as QSGI +QSG2 =(2MFWXhGS -hFW)+(MBDTXhFS -hGS) where MBDT isthe total blowdown flow.

The contribution to calorimetric uncertainty from total blowdown flow is UCAL-NfDT =(QSGI +QSG2 +C)CMDT (QSGI +QSG2 +C)0 J[(2M FWXhGS -hFV ) + (M BDT Xh FS-h GS ) + C]gtBDT UCAL MBDT = l_ [(2MFWXhGS -hFV)+(MBDTXhFS hGS)+C]o J U CAL-NBDT = (M BDT-ENBDT Xh FS - hGS) - (M BDT-O Xh FS -h GS)

U CAL-NSBDT = U MDT (h FS -h GS)

U CAL-NfDT -U MBDT (h FG )

7.7.2. From inspection of the above equations, a negative calorimetric uncertainty results from a positive total blowdown flow uncertainty since hF5 < has. (Indicated flow > Actual flow)

CA06494, Revision 0000 Page 15 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.7.3. The contribution of total blowdown flow uncertainty to calorimetric uncertainty is [Attachment A, Table 4]

UNBDT, hFG, BTU/lbm UCAL-?IBDT, Ibm/hr BTU/hr 8094 677.60 -5484494 7.8. FEEDWATER ENTHALPY UNCERTAINTY CONTRIBUTION FROM TEMPERATURE MEASUREMENT 7.8.1. General equations:

UCAL-TFW =(QsGi +QSG2 +C)cTFw -(QSI +QSG2 +C) 0 An error in feedwater temperature to one steam generator affects only the thermal output of that steam generator. Therefore, for steam generator 11 (21),

UCAL-TFWI =-(QSGt)£TFw -(QSGI)0

(((MFWIXhGSI -hFWI )+(MBDI XhFSI-hGSI)]CTFw l-(MrFWI XhGsl -hFwl )+(MBDI XhFSI -hosI )]o J UCAL-TFWI [(MFWi XhGS1 -hFw) )]TFw [(M FwI XhGSI -hFWI)]o UCAL-TFWI =MFW1(hFWI- 0 -hFW-ETFW)

Similarly, for steam generator 12 (22).

UCAL-TFW2 ="MFW2(hFW2-0 -hFW2-rTFW) 7.8.2. As feedwater temperature increases, feedwater enthalpy increases. Thus, a negative calorimetric uncertainty results from a positive feedwater temperature uncertainty. (Indicated temperature > Actual temperature).

Therefore, the temperature is varied by adding the uncertainty, 1.88 deg. F.

7.8.3. Since the same feedwater flow, feedwater temperature, and feedwater pressure are applied to both steam generators, the contribution of feedwater enthalpy uncertainty resulting from feedwater temperature measurement is the same for both steam generators.

7.8.4. The contribution of feedwater temperature per steam generator to calorimetric uncertainty is

[Attachment A, Table 5]

l SG I I I I h b............ .. I TT 7.8.5. This uncertainty will be combined with the temperature dependent component of feedwater uncertainty when evaluating calorimetric uncertainty.

CA06494, Revision 0000 Page 16 of 132 CALORIMETRIC UNCERTAINTY USiNG THE AMAG CROSSFLOw ULTRASONIC FLOWMETER 7.9. FEEDWATER ENTHALPY UNCERTAINTY CONTRIBUTION FROM PRESSURE MEASUREMENT 7.9.1. General equations 7.9.1.1. Random Contribution

a. The expression for the contribution of a feedwater pressure error to negative calorimetric uncertainty is similar to the expression for the contribution of a feedwater temperature error.

UCAL-PFWI = M FW (h FwI 0 - hFWI -PFW)

UCAL-PFW2 = MFW2(hFW2-0 -hFW2-EPFW)

b. The same feedwater flow, feedwater temperature, and feedwater pressure are applied to both steam generators. Therefore, the net contribution to calorimetric uncertainty is given by CAL-PFWNET = UCAL-PFW))5GI +(U CAL-PFW )SG 2 }

UCAL-PFWNET =I`5UCAL-PFW)SG} = 5[M FWP(hWFW-O-hrW-£PFW)l 7.9.1.2. Bias Contribution Similarly, B CAL-PFWNET = B CAL-PFW ISGI + B CAL-PFW ISG2 2

BCAL-pFWN 213 BCAL-PFW = 2MFW(hFW-O - hFW-PFW}

7.9.2. As feedwater pressure increases, feedwater enthalpy increases. Thus, a negative calorimetric uncertainty results from a positive feedwater pressure uncertainty. (Indicated pressure > Actual pressure)

Therefore, the pressure is varied by adding the random and positive bias components of uncertainty, 27.57 PSI and 0.04 PSI respectively.

7.9.3. The random contribution of feedwater pressure to calorimetric negative uncertainty is [Attachment A, Table 6A]

hFW4. hFNVh4 PFW UCAL-PFWNET, MFW, klbm/hr PNv., PSIA PFW4 , PSIA BTU/Ibm BTU/lbm BTU/hr 6220 770 797.57 406.0780 406.1001 -194014 7.9.4. The bias contribution of feedwater pressure to calorimetric uncertainty is [Attachment A, Table 6B]

MFW, PEW.o, DEG PEw,, DEG hFW4, hFW-eFWP UCALPFPNET, klbm/hr F F BTU/LBM BTU/LBM BTU/hr 6220 770 770.04 406.0780 406.0780 0

CA06494, Revision 0000 Page 17 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.10. MAIN STEAM ENTHALPY UNCERTAINTY CONTRIBUTION FROM PRESSURE MEASUREMENT 7.10.1. General equations:

7.10.1.1.Random Contribution:

U CAL-PSTM = (QSGI + QSG2 + C)£pSTM (QSGI + QSG2 + C)0 An error in the steam pressure measurement for one steam generator affects only the thermal output of that steam generator. Therefore, for steam generator 11 (21),

UCAL-PSTMI =(QSGI)EPSTM -(QSGI)0

(((M FW XhGS1 -h FWI ) +(M BDI Xh FSI h GS )]EPsTM 1 T [(MFnWXhosl -hFwI)+(MBDIXhFsI -hGsl)]O I

_[(MFW 1 Xh GSI )+ (M BDI 1Xh FS1 -h SI )]EPSTM1 I [(MFWI Xh GS )+(MBDI XhFSI hGS1 )]o f UCAL-PSTMI = (M FWI - MBDI Xh GSI-EPSTM - h G1- )+ (M BDIXhFSl-EPSTM - h FS-O Similarly, for steam generator 12 (22)

U CAL-PSTM 2 = (M F 2 - MBD2 XhGS2-EPSTM - h GS2-0 ) + (M BD2 Xh FS2-CPSTM - h FS2-0) 7.10.1.2.Bias contribution BCAL-STMI (MFW 1 - M DIXhs-EPsTM - hGs- 0 ) + (M BDI XhFS-PSTM - h FSI-O)

BCAL-PSTM 2 =(MF 2 - MBD2 Xh GS2-ePsTM - hGS2-0) + (M BD2 Xh FS2-CPSTM - h FS2-0) 7.10.2. From the above expression, the direction of change in steam pressure resulting in a negative calorimetric uncertainty is not apparent and must be evaluated by applying instrument uncertainty in both directions.

7.10.3. Random Contribution Indicated Steam Pressure > Actual Pressure by UpSm (+19.8 PSI) [Attachment A, Table 7A]

SG MFW, lbm/hr MBD, has5 o, hGs EPSTM, hFso, hFS-tPSTM, UCAL.PSTNI+,

Ibm/hr BTU/lbm BTU/lbm BTU/lbm BTU/lbm BTU/hr 1 6220000 91000 1197.7000 1197.0070 520.1000 523.3670 -3950100 2 6220000 160001 1197.70001 1197.0070 520.1000C 523.3670 -4247100 Indicated Steam Pressure < Actual Pressure by UPSTNI (-19.8 PSI) [Attachment A, Table 7B1]

SG Mnv, Ibm/hr MBD, hGS-O, hGS-1PSTM, hFSo, hFS-EPSTM, UCAL+/-PSnMi, Ibm/hr BTU/lbm BTUlIbm BTU/lbm BTU`Ibm BTU/hr 1 6220000 91000 1197.7000 1198.1950 520.1000 516.7340 2727549 21 6220000 16000 1197.70001 1198.1950 520.1000 516.7340 3017124 Therefore, indicated power is less than actual power when indicated steam pressure is greater than actual pressure.

The net contribution of steam pressure measurement uncertainty to calorimetric uncertainty is given by UCAL-PSTMNET = UCAL-PSTM1 )2 +(UCAL-PSTM 2Y 112 = -5800099 BTU/hr.

CA06494, Revision 0000 Page 18 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.10.4. Bias Contribution The positive bias component (+3.4 PSI) must also be considered. [Attachment A, Table 7C]

SG MFW, Ibm/hr MBD, hG-. 0, hGS5cPSTM, hFS40, hFS-EPSTM, BCAL-PSTM1+.

Ibm/hr BTU/lbm BTU/lbm BTU/lbm BTU/lbm BTU/hr 1 6220000 91000 1197.7000 1197.5640 520.1000 520.6780 -780946 2 6220000 16000 1197.7000 1197.5640, 520.1000 520.6780 -834496 The net bias is given by BcAL-psTM{ = BCAL-PSIMI + BCAL-PSTM2 = -1615442 BTU/hr.

7.11. PLANT COMPUTER UNCERTAINTY CONTRIBUTION 7.11.1. Feedwater Enthalpy 7.11.1.1.General equations:

UCAL-CM((hFW) = (QSGI +QSG 2 +C)Fc(p(hFw) (QSGI +QSG2 +C)0 An error in the enthalpy of steam enthalpy for one steam generator affects only the thermal output of that steam generator.

UCAL-CM(hFw)l= (QSG1 )eC(hFW) (QSGO1)

U[(MFwl Xh GSI -hFw )+ (M BDI Xh FSI hGSeC(hFw) l-[(MFWI XhGI - h FWl )+ (MBDI )h FSI -h GSI )O UCAL-C(h FhFWO U CL-CP~hW)I= MFwl(h FWI-0 h FWj-CCMp(hFW) )

=MFWI UCAL-CMPehFW)1 =~MFAIUPC-ENTH)

Similarly, U CL-CMP~hFW)2= M FW2 (U PC-ETH) 7.11.1.2.Since the same feedwater flow is applied to both steam generators, the net contribution to calorimetric uncertainty is given by:

U CAL-CMP(hFW)NET =X-2[M FW (U C-ENTH )]

7.11.1.3.From inspection of the above equations, a negative calorimetric uncertainty results from a positive plant computer enthalpy uncertainty.

7.11.1.4. The contribution to calorimetric uncertainty is summarized below.

SG MFW, Ibm/hr UPC.ENTH, UCAL-CrOP.W)i UCAL.

BTU/lbm BTU/hr CMP(hFW)NET, 6220000_ -0.10 622000 -_BTU/hr 1 6220000 -0.10 622000 1 2 16220000 1 -0.10 622000 -894

CA06494, Revision 0000 Page 19 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.11.2. Steam Enthalpy, Saturated Vapor 7.11.2.1.General equations:

UCAL-CMP(hGS) =(QSGI +QSG2 +C)hGs _(QSGI +QSG2 +C)0 An error in the enthalpy of steam enthalpy for one steam generator affects only the thermal output of that steam generator. Therefore, for steam generator 11 (21),

UCAL-CMP(hGS)I =(QSGI)EI.GS - (QSGI)O U CAL-CMPFwGl) =XhGS h FWI )+ (M BDI XhFSI -hGsI )]ECMP(hlGS) lj [(MFWI XhUSI -hFW )+ (M BDI XhFsI -hGS )]o l UCLM FWsXW hGSI) + (M BDI X h GSI )]ECMP(hGS) l C [(M FWI XhCGS ) + (M BDI X- hGSl )]

UCAL-CMP(hGS)I (MFW, - MBDIXhGSI-SC&1P(hGS) - hSI-0 )

U CAL-CCM(hGS)I = (MFW1 -M BDI XU PCENTH)

Similarly, for steam generator 12 (22)

U CAL-CP(hGS)2 =(MFW2 - MBD2 XUPC.-ENTH) 7.11.2.2.From inspection of the above equations, a negative calorimetric uncertainty results from a negative plant computer enthalpy uncertainty.

7.11.2.3.The net contribution to calorimetric uncertainty is given by:

UCAL-CMP(hGS)NET =-[(UCAL-CMP(hGS)lIP +(UCAL-CM(hG5)2)21 7.11.2.4. The contribution to calorimetric uncertainty is summarized below.

SG MFW, Ibm/hr MBD, Ibmlhr UPC-ENTH, UCAL.CMPPhGS), UCAL-BTU/lbm BTU/hr CNIP(hGS)NETP

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ B TU /hr 1 6220000 91000 -0.10 -612900 -872091 2 6220000 16000 -0.10 -620400 1 7.11.3. Steam Enthalpy, Saturated Liquid 7.11.3.1.General equations:

UCAL-CMP(hFS) =(QSGI +QSG2 +c)us, - (QsI +QSG2 +C)0 An error in the enthalpy of steam enthalpy for one steam generator affects only the thermal output of that steam generator. Therefore, for steam generator 11 (21),

UCAL-CMN(hFs)1 =(QSGI )cCp(hFS) (QSGI)O U[(MFWI XhGS 0 -hFW )+ (M BDI Xh Fs -h GSI )]ECMP(hFS) l UCACMS () l-[(M FW, Xh Gs, -hFWI ) + (M BDI Xh FS- h GSI )]O l UCAL-CMP(hFS)l = XhFSI-ECMP(hFS))-

EMBDI (MBDIXhFSI-O)I UCAL-CMP(hFS)l = (MBDI XUPC-ENTH)

CA06494, Revision 0000 Page 20 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER Similarly, for steam generator 12 (22)

U CAL-CMP(hFS)2 - (M BD2 XU PC-ENTH )

7.11.3.2.From inspection of the above equations, a negative calorimetric uncertainty results from a negative plant computer enthalpy uncertainty.

7.11.3.3.The net contribution to calorimetric uncertainty is given by:

UCAL-CW(hFS)NET =-(UCAL-CMP(hFS)I) + (U CAL-CMP(hFS)2 112 7.11.3.4. The contribution to calorimetric uncertainty is summarized below.

SG MBD, Ibm/hr UPC-ENTH, UCAL-CMPipFS), UCAL-BTU/lbm BTU/hr CNIP(h)NETt

_ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ _ BT U /hr 1 91000 -0.10 -9100 -9240 2 16000 -0.10 -1600 7.11.4. The net contribution of the plant computer's determination of enthalpy to calorimetric uncertainty is given by [Attachment A, Table 8]

U CAL-CMPNET = CAL-CMP(hFW)NET) +2(UCAL-CMP(hGS)NET )2 + (UCALCMP(hFS)NET) }1 2 UCAL-CWNU= -1238707 BTU/hr 7.12. TOTAL CALORIMETRIC UNCERTAINTY 7.12.1. This section summarizes the total calorimetric uncertainty for-the parameters selected in 7.3 Feedwater Temperature, TFw = 428 deg. F Feedwater Pressure, PF%%' = 770 PSIA Main Steam Pressure, PSTM = 860 PSIA The calorimetric uncertainty for other parameters is summarized in the tables of Attachment A.

7.12.2. Random Component 7.12.2.1.The random component of calorimetric uncertainty is the determined from (U CAL-MFW-nDI + (U CAL- ) +(U.CAL-FW-MDEP+

++W-IND2 + UCAL-W -MDEP2 )

UCAL-RAND = +(UCAL-W-TDEPI +UCALTFWI +(UCAL-MFWTDEP2 +UCAL-TFW2)

+(UCAL-.MDT )2 + (U AL-PFwNET + (U CAL-PSTMNEr ) + (UCAL-CNET )

7.12.2.2.The random component of calorimetric uncertainty is the summarized in the table below. [Unit 1, Attachment A, Table 9A; Unit 2, Attachment A, Table 9B3]

UCAL-MFW-IND, UCAL-MW-NIDEPP UCALIMFVThEPN Unit SG BTU/hr BTU/hr BTU/hr_ UCAL-TFW, BTU/hr I 2 -26416664 0 -7897918 -12792798 2 -21758665 0 -7888070 -12792798 2 1 -22236282 -13156631 -8119493 -12792798 2 -23418015 -13156631 -8134264 -12792798

CA06494, Revision 0000 Page 21 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER UCAL-MBDT, BTU/hr UCALPFWNET, UCAL-PSTMN, UCALCMPNET, Unit BTU/hr BTU/hr BTU/hr UCAL.RAND, BTU/hr 1 -5484494 -194014 -5800099 -1238707 -45742502 2 -54844941 -194014 -5800099 -1238707 -51728156 7.12.3. Bias Component 7.12.3.1.The bias component of calorimetric uncertainty is the determined from UCAL-BIAS = BCAL-PFWNET +BCAL-pSTMNET +BCAL-CONST 7.12.3.2.The bias component of calorimetric uncertainty is the same for both units and is summarized in the table below: [Attachment A, Table 9B]

7.12.4. Total Calorimetric Uncertainty:

7.12.4.1.The total uncertainty is the sum of the random and bias components for calorimetric uncertainty and is summarized in the table below.

U CAL-TOT = U CAL-RAND + U CAL-BIAS 7.12.4.2.Calorimetric uncertainty, expressed in Megawatts, is given by:

U CAL-TOT UCAL.TOT(M\v) = (3.412141 BTU/hr/WX1 E6 W/MW) 7.12.4.3.Based on a Rated Thermal Power (RTP) of 2737 MW(th), calorimetric uncertainty, expressed as percentage of rated thermal power is given by.

UCA-TO(%RP) UCAL-TT.(M) (100-)

(2737 MW) 7.12.4.4.Total Calorimetric Uncertainty is expressed in the table below. Calorimetric uncertainty, expressed in Megawatts, has been rounded up to the nearest 0.01 MW for conservatism.

Calorimetric uncertainty, expressed as a percentage of rated thermal power @ 2737 MW(th), is rounded up to the nearest 0.0001% for conservatism. [Unit 1, Attachment A, Table IOA1; Unit 2, Attachment A, Table 10A2]

UcAL.,AUs, BTU/hr UCAL.TOT, BTU/hr UCALTOT, MW UCAL.TOT, %RTP UCAL-&ND, Unit BTU/hr 1 -45742502 -8081098 -53823600 -15.78 -0.5766%

2 -51728156 -8081098 -59809254 -17.53 -0.6405%

CA06494, Revision 0000 Page 22 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER 7.12.5. Total Calorimetric Uncertainty, Single Side of Interest:

7.12.5.1.Since only negative calorimetric uncertainty is considered to ensure power remains below 2754 MW, the methodology established in Reference 6.13, Section 8.1, "Correction for Setpoints with a Single Side of Interest" may be applied. The calorimetric uncertainty calculated previously is based upon a 95% confidence level (1.96 standard deviations). The random component of calorimetric uncertainty may be reduced by a correction of (1.645/1.96).

UCALTOT(SS) =

( 1I.645 1.96 )UCAL-RAND +UCAL.BIAS 7.12.5.2.Calorimetric uncertainty, with the correction applied, is tabulated below. [Unit 1, Attachment A, Table I IA; Unit 2, Attachment A, Table I IB]

UC UCAL+/-BAS, BTU/hr UCALTOT(SS), UCAL TOT(SS) MW UCAL-TOT(SS), %RTP RAND(SS)' BTU/hr Unit BTU/ir 1 -38391029 -8081098 -46472127 -13.62 -0.4977%

2 -43414703 -8081098 -51495801 -15.10 -0.5517%

8.0 RESULTS/

SUMMARY

8.1. From a review of the tables in Attachment A, the most conservative calorimetric uncertainty for the plant conditions evaluated in this calculation occurs at a steam pressure of 860 PSIA, a feedwater temperature of 428 degrees F and a feedwater pressure of 770 PSIA.

8.2. Total Calorimetric Uncertainty at most limiting conditions UCALTOT, UCAL.TOT, %RTP Unit MW 1 -15.78 -0.5766%

2 -17.53 -0.6405%

8.3. Total Calorimetric Uncertainty, corrected for single side of interest at most limiting conditions UCAL-TOT(SS), UCAL-TOT(SS), %RTP MW Unit MW 1 -13.62 -0.4977%

2 -15.10 -0.5517%

8.4. From a review of the tables in Attachment A, the lowest magnitude of calorimetric uncertainty for the plant conditions evaluated in this calculation occurs at a steam pressure of 840 PSIA, a feedwater temperature of 452 degrees F and a feedwater pressure of 870 PSIA.

Total Calorimetric Uncertainty, corrected for single side of interest at these conditions UCAL-TOTY UCAL-TOT, %RTP Unit MW 1 -13.14 -0.4801%

2 -14.55 -0.5317%

CA06494, Revision 0000 Page 23 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER

9.0 CONCLUSION

9.1. Since the only direction of interest is actual power > indicated power, single side of interest can be applied to calorimetric uncertainty. Therefore, the calorimetric uncertainty of both units is bound by a value of -

15.10 MW (-0.5517% Rated Thermal Power @ 2737 MW(th)) for the following plant conditions:

9.1.1. Actual Feedwater flow < 6220 klbm/hr 9.1.1.1. Since uncertainty is maximized at higher feedwater rates, the indicated feedwater flow at 2737 MW is given by:

M FW-IND =M FW (I - U MWlS./)

9.1.1.2. Indicated feedwater flow shall be less than or equal to the values listed below:

Actual FW flow, Total Uncertainty, Maximum Indicated Header klbm/hr  % Flow, U,.NI,'. Flow, klbm/hr 11 6220 +/- 0.56% 6185.17 12 6220 +/-0.47% 6190.77 21 6220 +/-0.55% 6185.79 22 6220 +/-0.57% 6184.55 9.1.2. Actual Feedwater Temperature between 428 deg. F and 452 deg. F.

9.1.2.1. As shown in Attachment A, calorimetric uncertainty is maximized at lower actual feedwater temperatures. Therefore, the minimum indicated value of feedwater temperature is given by TFW-IND = TFw + UTFW = 4 2 8 deg. F +1.88 deg. F = 429.88 deg. F.

9.1.2.2. As shown in Attachment A, the contribution to calorimetric uncertainty from feedwater temperature measurement uncertainty increases with feedwater temperature. However, a negative calorimetric uncertainty results when indicated temperature is greater than actual temperature.

Therefore, the maximum indicated value of feedwater temperature is the given by the maximum assumed feedwater temperature, 452 deg. F.

[At an indicated temperature of 452 deg. F, actual temperature could be as low as 450.12 deg. F or as high as 453.88 deg. F. Negative uncertainty only results when indicated temperature is greater than actual temperature. Therefore, the uncertainty resulting when actual temperature is greater than indicated temperature does not need to be considered. An actual temperature of 450.12 deg.

F is bound by the assumed temperature range.]

9.1.3. Actual Feedwater Pressure between 770 PSIA and 870 PSIA:

9.1.3.1. As shown in Attachment A, calorimetric uncertainty is maximized at lower actual feedwater pressures. Therefore, the minimum indicated value of feedwater pressure is given by PFW-IND = PFW +UpFW +BpFW ' 770 PSIA +27.57 PSI + 0.04 PSI = 797.61 PSIA 9.1.3.2. If both steam generator inputs are available, the random uncertainty of the average steam generator pressure may be used. Therefore, the minimum indicated value of feedwater pressure is given by PFW-IND = PFW + UPFW-AVE + BPFW = PFW + 2 UPFW + BPFW 2

PFW-1ND= 770 PSIA +19.49 PSI + 0.04 PSI = 789.53 PSIA 9.1.3.3. As shown in Attachment A, the contribution to calorimetric uncertainty from feedwater pressure measurement uncertainty increases with feedwater pressure. However, a negative calorimetric uncertainty results when indicated pressure is greater than actual pressure. Therefore, the maximum indicated value of feedwater pressure is the given by the maximum assumed feedwater pressure, 870 PSIA.

CA06494, Revision 0000 Page 24 of 132 CALORIMETRIC UNCERTAINTY USiNG THE AMAG CROSSFLOW ULTRASONIC FLOWMETER

[At an indicated pressure of 870 PSIA, actual temperature could be as low as 842.43 psia or as high as 897.61 psia. Negative uncertainty only results when indicated pressure is greater than actual pressure. Therefore, the uncertainty resulting when actual pressure is greater than indicated pressure does not need to be considered. An actual pressure of 842.43 psia is bound by the assumed temperature range.]

9.1.4. Actual Main Steam Pressure between 770 PSIA to 870 PSIA.

9.1.4.1. As shown in Attachment A, there is no clear trend between steam pressure and the contribution to calorimetric uncertainty. Therefore, uncertainty will be applied to both minimum and maximum steam pressures when evaluating indicated pressure.

[Unlike other parameters, the contribution to calorimetric uncertainty from main steam pressure does not trend consistently as pressure increases. The most probable cause is round-off errors introduced by using Reference 6.11 as the basis for steam enthalpies. A more consistent trend should be observed if the NIST 1995 steam tables were adopted. Adoption of the NIST 1995 steam tables would require modifications to the plant computer code, which is based on the ASME 1967 tables. Adoption of the NIST 1995 steam tables could also result in a slight decrease in calorimetric uncertainty.]

9.1.4.2. The maximum value of indicated steam pressure is given by PSTM-IND = PSTM -UpSTM = 870 PSIA - 19.8 PSI = 850.2 PSIA 9.1.4.3. The minimum indicated value of steam pressure is given by PSTM-!ND = PSTM + Ups-ml +BpSTM = 770 PSIA +19.8 PSI + 3.4 PSI = 793.2 PSIA

[Note - a negative calorimetric uncertainty results when indicated steam pressure is greater than actual pressure. Therefore, this condition must be evaluated, regardless of the trend between steam pressure and calorimetric uncertainty.]

9.2. Calorimetric uncertainty may be reduced by using the tables in Attachment A for a narrower range of plant conditions.

CA06494, Revision 0000 Page 25 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table IA, Feedwater Enthalpics at Nominal Values (No applied uncertainty)

BOLD values indicate values from Steam Tables. Other values determined through interpolation ITALICIZED values are not used to determine calorimetric uncertainty but are included for interpolation of other values.

Source: ASME Steam Tables, Fifth Edition PFW,PSIA 750 770 780 790 800 810 820 hFWv, hFw, hFw, hFW, hFW, hFW9 hF\v' Trw, DEG F BTU/lbm BTU/Ibm BTUIlbm BTU/lbm BTU/lbm BTU/lbm BTU/lbm 460 441.64 441.6480 441.6520 441.6560 441.66 441.6640 441.6680 452 432.6480 432.6592 432.6648 432.6704 432.6760 432.6816 432.6872 450 430.4000 430.4120 430.4180 430.4240 430.4300 430.4360 430.4420 448 428.1760 428.1880 428.1940 428.2000 428.2060 428.2124 428.2188 446 425.9520 425.9640 425.9700 425.9760 425.9820 425.9888 425.9956 444 423.7280 423.7400 423.7460 423.7520 423.7580 423.7652 423.7724 442 421.5040 421.5160 421.5220 421.5280 421.5340 421.5416 421.5492 440 419.28 419.2920 419.2980 419.3040 419.31 419.3180 419.3260 438 417.0740 417.0868 417.0932 417.0996 417.1060 417.1140 417.1220 436 414.8680 414.8816 414.8884 414.8952 414.9020 414.9100 414.9180 434 412.6620 412.6764 412.6836 412.6908 412.6980 412.7060 412.7140 432 .410.4560 410.4712 410.4788 410.4864 410.4940 410.5020 410.5100 430 408.2500 408.2660 408.2740 408.2820 408.2900 408.2980 408.3060 428 406.0620 406.0780 406.0860 406.0940 406.1020 406.1104 406.1188 420 397.31 397.3260 397.3340 397.3420 397.35 397.3600 397.3700 830 840 850 860 870 880 900 PFw, PSIA hFV. hFWV hFWP hFW, hew, hFW, hFW, BTU/Ibm BTU/Ibm BTU/lbm BTU/Ibm BTU/Ibm BTU/Ibm BTU/Ibm TFW, DEG F 441.6720 441.6760 441.68 441.6840 441.6880 441.6920 441.7 460 432.6928 432.6984 432.70 432.70'96 432.7152 432.7208 432.732 452 430.4480 430.4540 430.46 430.4660 430.4720 430.4780 430.49 450 428.2252 428.2316 428.24 428.2440 428.2500 428.2560 428.268 448 426.0024 426.0092 426.02 426.0220 426.0280 426.0340 426.046 446 423.7796 423.7868 423.79 423.8000 423.8060 423.8120 423.824 444 421.5568 421.5644 421.57 421.5780 421.5840 421.5900 421.602 442 419.3340 419.3420 419.35 419.3560 419.3620 419.3680 419.38 440 417.1300 417.1380 417.15 417.1524 417.1588 417.1652 417.178 438 414.9260 414.9340 414.94 414.9488 414.9556 414.9624 414.976 436 412.7220 412.7300 412.74 412.7452 412.7524 412.7596 412.774 434 410.5180 410.5260 410.53 410.5416 410.5492 410.5568 410.572 432 408.3140 408.3220 408.33 408.3380 408.3460 408.3540 408.37 430 406.1272 406.1356 406.14 406.1524 406.1608 406.1692 406.186 428 397.3800 397.3900 397.40 397.4100 397.4200 397.4300 397.45 420

Page 26 of 132 CA06494, Revision 0000 CALOORIMETRIC UNCERTAINTY USING TIE AMAG CROSSFLOW ULTRASONIC FLOWMETER AWTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table IB, Feedwater Enthalpies with Temperature Uncertainty Applied Determined from interpolation of Table IA 780 1 790 1 800 1 810 1 820 830 840 850 1 860 870 Pmw. PSIA l 770 hFW" hFWc hFvj, hNW,, NM, IIFW. hnw, hm, Tr + Unn. hW, hFWC, hFvt BTU/lbm BTUlbm BTUAbm BTUAbm BTUIbm BTUAbm BTUAbm BTU/lbm BTU/Ibm BTUAbm BTh/Abm T", DEG F DEG F 434.7820 434.7872 434.7925 434.7977 434.8029 434.8081 434.8134 434.8186 434.8238 452 453.88 434.7716 434.7768 432.5300 432.5356 432.5412 432.5469 *432.5525 432.5581 432.5637 432.5694 432.5750 432.5806 450 451.88 432.5244 430.2846 430.2906 430.2966 430.3026 430.3086 430.3146 430.3207 430.3267 430.3327 430.3387 448 449.88 430.2786 428.0666 428.0726 428.0790 428.0854 428.0918 428.0983 428.1047 428.1107 428.1167 446 447.88 428.0546 428.0606 425.8366 425.8426 425.8486 425.8554 425.8622 425.8690 425.8759 425.8827 425.8887 425.8947 444 445.88 425.8306 423.6186 423.6246 423.6318 423.6390 423.6462 423.6535 423.6607 423.6667 423.6727 442 443.88 423.6066 423.6126 421.3946 421.4006 421.4082 421.4158 421.4234 421.4311 421.4387 421.4447 421.4507 440 441.88 421.3826 421.3886 419.1657 419.1717 419.1778 419.1858 419.1938 419.2018 419.2098 419.2178 419.2238 419.2298 438 439.88 419.1597 416.9609 416.9673 416.9738 416.9818 416.9898 416.9978 417.0058 417.0138 417.0202 417.0266 436 437.88 416.9545 414.7561 414.7629 414.7698 414.7778 414.7858 414.7938 414.8018 414.8098 414.8166 414.8234 434 435.88 414.7493 412.5513 412.5585 412.5658 412.5738 412.5818 412.5898 412.5978 412.6058 412.6130 412.6202 432 433.88 412.5441 410.3541 410.3618 410.3698 410.3778 410.3858 410.3938 410.4018 410.4094 410.4170 430 431.88 410.3389 410.3465 408.1507 408.1587 408.1667 408.1748 408.1828 408.1908 408.1988 408.2069 408.2149 428 429.88  ; 408.1347 408.1427

Page 27 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table IC, Feedwater Enthalpies with Pressure Uncertainty Applied Determined from interpolation of Table IA 780 790 800 810 820 830 840 850 860 870 PFw, PSIA 770 PFW + UFFW. 897.57 807.57 817.57 827.57 837.57 847.57 857.57 867.57 877.57 887.57 PSIA 797.57 hFw,, hFwj, hFwg* hFw, hFWe hFw . hFWtl hFw, hFW, hFWt, BTU/Ibm BTU/lbm BTU/Ibm BTUAbm BTUAbm BTU/Ibm BTU/Ibm BTUAbbm BTU/Ibm BTU/Ibm BTU/Ibm TFW, DEG F 432.6858 432.6914 432.6970 432.7026 432.7082 432.7138 432.7194 432.7250 432.7306 452 432.6746 432.6802 430.4405 430.4465 430.4525 430.4585 430.4645 430.4705 430.4765 430.4825 430.4885 450 430.4285 430.4345 428.2173 428.2236 428.2300 428.2364 428.2425 428.2485 428.2545 428.2605 428.2665 448 428.2045 428.2109 425.9873 425.9940 426.0007 426.0075 426.0143 426.0204 426.0265 426.0325 426.0385 426.0445 446 425.9805 423.7636 423.7707 423.7779 423.7851 423.7923 423.7983 423.8044 423.8105 423.8165 423.8225 444 423.7565 421.5400 421.5475 421.5550 421.5626 421.5702 421.5763 421.5824 421.5885 421.5945 421.6005 442 421.5325 419.3242 419.3321 419.3401 419.3481 419.3542 419.3604 419.3665 419.3725 419.3785 440 419.3085 419.3164 417.1202 417.1281 417.1361 417.1441 417.1506 417.1571 417.1636 417.1700 417.1764 438 417.1044 417.1123 414.9162 414.9241 414.9321. 414.9401 414.9470 414.9539 414.9607 414.9675 414.9743 436 414.9003 414.9083 412.7121 412.7201 412.7281 412.7361 412.7433 412.7506 412.7579 412.7651 412.7723 434 412.6963 412.7042 410.5081 410.5161 410.5241 410.5321 410.5397 410.5473 410.5550 410.5626 410.5702 432 410.4922 410.5001 408.2961 408.3041 408.3121 408.3201 408.3281 408.3361 408.3441 408.3521 408.3601 408.3681 430 408.2881 406.1168 406.1252 406.1336 406.1420 406.1504 406.1588 406.1672 406.1756 406.1840 428 406.1001 406.1084

Page 28 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING ThE AMAG CROSSFLOW ULTRASONIC FLOWMEnER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table ID, Feedwater Entlialpies with Pressure Dias Applied Determined from interpolation of Table IA 790 800 810 820 830 840 850 860 870 PFW, PSIA 770 780 Prw + Bpw,_

790.04 800.04 810.04 820.04 830.04 840.04 850.04 860.04 870.04 PSIA 770.04 780.04 hFW E9 hFwt, hFW. F1, NMw, hFW9, hFW1, hFWc, hFWc, hFW,, N, hFW1, BTUAbm BTUAbm BTU/Ibm BTU/lbm BTU/lbm BTU/Ibm BTU/lbm BTU/lbm BTU/lbm TFW, DEG F BTU/lbm BTU/lbm 432.6760 432.6816 432.6872 432.6928 432.6984 432.7040 432.7096 432.7152 452 432.6592 432.6648 432.6704 430.4300 430.4360 430.4420 430.4480 430.4540 430.4600 430.4660 430.4720 450 430.4120 430.4180 430.4240 428.2060 428.2124 428.2188 428.2252 428.2316 428.2380 428.2440 428.2500 448 428.1880 428.1940 428.2000 425.9820 425.9888 425.9956 426.0024 426.0092 426.0160 426.0220 426.0280 446 425.9640 425.9700 425.9760 423.7520 423.7580 423.7652 423.7724 423.7796 423.7868 423.7940 423.8000 423.8060 444 423.7400 423.7460 421.5280 421.5340 421.5416 421.5492 421.5568 421.5644 421.5720 421.5780 421.5840 442 421.5160 421.5220 419.3100 419.3180 419.3260 419.3340 419.3420 419.3500 419.3560 419.3620 440 419.2920 419.2980 419.3040 417.1060 417.1140 417.1220 417.1300 417.1380 417.1460 417.1524 417.1588 438 417.0868 417.0932 417.0996 414.8952 414.9020 414.9100 414.9180 414.9260 414.9340 414.9420 414.9488 414.9556 436 414.8816 414.8884 412.6908 412.6980 412.7060 412.7140 412.7220 412.7300 412.7380 412.7452 412.7524 434 412.6764 412.6836 410.4940 410.5020 410.5100 410.5180 410.5260 410.5340 410.5416 410.5492 432 410.4712 410.4788 410.4864 408.2900 408.2980 408.3060 408.3140 408.3220 408.3300 408.3380 408.3460 430 408.2660 408.2740 408.2820 406.1020 406.1104 406.1188 406.1272 406.1356 406.1524 406.1608 428 406.0780 406.0860 406.0940

CA06494, Revision 0000 Page 29of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 2A, Main Steam Enthalpies at Nominal Values (No applied uncertainty)

ITALICIZED values are not used to determine calorimetric uncertainty but are included for interpolation of other values.

Source: ASME Steam Tables, Fifth Edition Psn1 , PSIA hG, hFO, hFs, BTU/lbm BTU/lbm BTU/lbm 890 1196.7 671.6 525.1 880 1197.0 673.6 523.4 870 1197.3 675.6 521.8 860 1197.7 677.6 520.1 850 _ 1198.0 679.5 518.4 840 1198.2 681.5 516.7 830 1198.5 683.5 515.0 820 1198.8 685.5 513.3 810 1199.1 687.6 511.6 800 1199.4 689.6 509.8 790 1199.7 691.6 508.1 780 1199.9 693.6 506.3 770 1200.2 695.7 504.5 760 1200.4 697.7 502.7 750 1200.7 699.8 500.9 Table 2B, Main Steam Enthalpies with Pressure Uncertainty Applied in Positive Direction Determined from interpolation of Table 2A PFW + UPFW, hGSE+, hFSC+,

PSTM, PSIA PSIA BTU/Ibm BTU/lbm 870 889.8 1196.706 525.067 860 879.8 1197.007 523.367 850 869.8 1197.307 521.766 840 859.8 1197.705 520.066 830 849.8 1198.005 518.366 820 839.8 1198.206 516.666 810 829.8 1198.506 514.966 800 819.8 1198.806 513.265 790 809.8 1199.106 511.565 780 799.8 1199.405 509.765 770 789.8 1199.705 508.064

CA06494, Revision 0000 .

Page 30Of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 2C, Main Steam Enthalpies with Pressure Uncertainty Applied in Negative Direction Determined from interpolation of Table 2A PFW- UPFW, hGSE-9 hFScE Psmi, PSIA PSIA BTU/lbm BTU/lbm 870 850.2 1197.993 518.434 860 840.2 1198.195 516.734 850 830.2 1198.495 515.034 840 820.2 1198.794 513.334 830 810.2 1199.094 511.634 820 800.2 1199.394 509.835 810 790.2 1199.694 508.135 800 780.2 1199.895 506.335 790 770.2 1200.195 504.536 780 760.2 1200.395 502.736 770 750.2 1200.695 500.936 Table 2D, Main Steam Enthalpies with Positive Bias Applied Determined from interpolation of Table 2A PFw+ BPFW, hGsc+, hFSE+1 PSTM{, PSIA PSIA BTII/lbm BTU/lbm 870 873.4 1197.198 522.344 860 863.4 1197.564 520.678 850 853.4 1197.898 518.978 840 843.4 1198.132 517.278 830 833.4 1198.398 515.578 820 823.4 1198.698 513.878 810 813.4 1198.998 512.178 800 803.4 1199.298 510.412 790 793.4 1199.598 508.678 780 783.4 1199.832 506.912 770 773.4 1200.098 505.112

Page 31 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CRoSspLow ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Tables 3A1 through 3C2, Feedwater Flow Contribution to Calorimetric Uncertainty, UCAL-MFW = UMFW(hGs - hFw), Step 7.6.5 Table 3A1, Feedwater Flow Independent Contribution to Calorimetric Uncertainty, Unit 1 f P5,. 1 870 1

_ - _ - STEAM GENERATOR I PW PSIA 770 780 790 800 810 820 830 840 850 860 870 Tr.v. DEG F UMFW . LWFW- UMFWm UM UMFW-FW U-M UMW r UN q- .ND.V UMFW, Ibnm'r Ibtlir Ibmlr lbm'hr Ibmft r lbuwfr fbnvlba Ibm'nir lbm'lw lbm'r Ibm'hr 452 -25516293 -25516106 -25515919 -25515732 -25515545 -25515359 -25515172 -25514985 -25514798 -25514611 -25514424 450 -25591283 -25591082 -25590882 -25590682 -25590482 -25590282 -25590081 -25589881 -25589681 -25589481 -25589280 448 -25665498 -25665298 -25665098 -25664898 -25664684 -25664470 -25664257 -25664043 -25663830 -25663629 -25663429 446 -25739714 -25739513 -25739313 -25739113 -25738886 -25738659 -25738432 -25738205 -25737978 -25737778 -25737578 444 -25813929 -25813729 -25813529 -25813329 -25813088 -25812848 -25812608 -25812368 -25812127 -25811927 -25811727 442 -25888145 -25887945 -25887744 -25887544 -25887291 -25887037 -25886783 -25886530 -25886276 -25886076 -25885876 440 -25962360 -25962160 -25961960 -25961760 -25961493 -25961226 -25960959 -25960692 -25960425 -25960225 -25960024 438 -26035949 -26035735 -26035521 -26035308 -26035041 -26034774 -26034507 -26034240 -26033973 -26033759 -26033546 436 -26109537 -26109310 -26109083 -26108856 -26108589 -26108322 -26108055 -26107788 -26107521 -26107294 -26107067 434 -26183125 -26182885 -26182644 -26182404 -26182137 -26181870 -26181603 -26181336 -26181069 -26180829 -26180589 432 -26256713 -26256459 -26256206 -26255952 -26255685 -26255418 -26255151 -26254884 -26254617 -26254364 -26254110 430 -26330301 -26330034 -26329767 -26329500 -26329233 -26328966 -26328700 -26328433 -26328166 -26327899 -26327632 428 -26403316 -26403049 -26402782 -26402515 -26402234 -26401954 -26401674 -26401393 -26401113 -26400833 -26400552 STEAM GENERATOR 2 _

PFV. PSIA 770 790 780 800 810 820 830 840 850 860 870 Tnv, DEG F UmFw mNr UMFw.l UmFVw.Nj UmwLND, UMFW-CID.NY3, m. UMFWND. UMFW-ND. UMFWI M.) UMFW-, UMFWn Ibnfhr lblr Ibnilnr lhIbr 1bmfr Ibmnlir lbmlhr lbnThr Ibn'hr lbmhr Hnm'h 452 -21017055 -21016901 -21016747 -21016593 -21016439 -21016285 -21016131 -21015977 -21015823 -21015669 -21015515 450 -21078822 -21078657 -21078492 -21078327 -21078162 -21077997 -21077832 -21077667 -21077502 -21077337 -21077172 448 -21139951 -21139786 -21139621 -21139456 -21139280 -21139104 -21138928 -21138752 -21138577 -21138412 -21138247 446 -21201080 -21200915 -21200750 -21200585 -21200398 -21200212 -21200025 -21199838 -21199651 -21199486 -21199321 444 -21262209 -21262044 -21261880 -21261715 -21261517 -21261319 -21261121 -21260923 -21260725 -21260560 -21260395 442 -21323339 -21323174 -21323009 -21322844 -21322635 -21322426 -21322217 -21322008 -21321799 -21321635 -21321470 440 -21384468 -21384303 -21384138 -21383973 -21383753 -21383533 -21383314 -21383094 -21382874 -21382709 -21382544 438 -21445080 -21444905 -21444729 -21444553 -21444333 -21444113 -21443893 -21443673 -21443453 -21443277 -21443101 436 -21505693 -21505506 -21505319 -21505132 -21504912 -21504692 -21504473 -21504253 -21504033 -21503846 -21503659 434 -21566306 -21566108 -21565910 -21565712 -21565492 -21565272 -21565052 -21564832 -21564612 -21564414 -21564217 432 -21626918 -21626709 -21626500 -21626291 -21626071 -21625852 -21625632 -21625412 -21625192 -21624983 -21624774 430 -21687531 -21687311 -21687091 -21686871 -216866SI -21686431 -21686211 -21685991 -21685771 -21685552 -21685332 428 -21747670 -21747450 -21747231 -21747011 -21746780 -21746549 -21746318 -21746087 -21745856 -21745625 -21745394

CA06494, Revision 0000 Page 32 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHIMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Psr1 860 1

. _ _ _STEAM GENERATOR I PFW,, PSIA 770 780 790 800 810 820 830 840 850 860 870 UMFW.IND. UMFW.[NO, UMMIW.ND, UMMW.IND, UMFW-ND. UMFW.,ND, UMFWVIND, UMFW-IND, TFw, DEG F UMFw.,1N UMFWtND, UMFW-rND Ibm/hr Ibm/hr Ibrm/br Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmnhr Ibn/hr Ibm/hr Ibm/hr 452 -25529641 -25529454 -25529267 -25529080 -25528894 -25528707 -25528520 -25528333 -25528146 -25527959 -25527772 450 -25604631 -25604431 -25604230 -25604030 -25603830 -25603630 -25603429 -25603229 -25603029 -25602829 -25602629 448 -25678846 -25678646 -25678446 -25678246 -25678032 -25677818 -25677605 -25677391 -25677178 -25676978 -25676777 446 -25753062 -25752862 -25752661 -25752461 -25752234 -25752007 -25751780 -25751554 -25751327 -25751126 -25750926 444 -25827277 -25827077 -25826877 -25826677 -25826436 -25826196 -25825956 -25825716 -25825475 -25825275 -25825075 442 -25901493 -25901293 -25901092 -25900892 -25900639 -25900385 -25900131 -25899878 -25899624 -25899424 -25899224 440 -25975708 -25975508 -25975308 -25975108 -25974841 -25974574 -25974307 -25974040 -25973773 -25973573 -25973373 438 -26049297 -26049083 -26048870 -26048656 -26048389 -26048122 -26047855 -26047588 -26047321 -26047108 -26046894 436 -26122885 -26122658 -26122431 -26122204 -26121937 -26121670 -26121403 -26121136 -26120869 -26120642 -26120415 434 -26196473 -26196233 -26195993 -26195752 -26195485 -26195218 -26194951 -26194684 -26194417 -26194177 -26193937 432 -26270061 -26269808 -26269554 -26269300 -26269033 -26268766 -26268499 -26268233 -26267966 -26267712 -26267458 430 -26343649 -26343382 -26343115 -26342849 -26342582 -26342315 -26342048 -26341781 -26341514 -26341247 -26340980 428 -26416664 -26416397 -26416130 -26415863 -26415582 -26415302 -26415022 -26414741 -26414461 -26414181 -26413901 STEAM GENERATOR 2 PFw, PSIA 770 790 780 800 810 820 830 840 850 860 870 TIw, DEG F UMw.INID, UMFWtNO, UMIV-.ND, UMMWIND, UMWIND. UMMWND. UMMIND, UMFW-ND. UMFPV-INnD UMMIND, UMFW.IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -21028049 -21027895 -21027741 -21027587 -21027433 -21027280 -21027126 -21026972 -21026818 -21026664 -21026510 450 -21089816 -21089651 -21089486 -21089321 -21089156 -21088991 -21088827 -21088662 -21088497 -21088332 -21088167 448 -21150945 -21150780 -21150616 -21150451 -21150275 -21150099 -21149923 -21149747 -21149571 -21149406 -21149241 446 -21212075 -21211910 -21211745 -21211580 -21211393 -21211206 -21211019 -21210832 -21210645 -21210480 -21210315 444 -21273204 -21273039 -21272874 -21272709 -21272511 -21272313 -21272115 -21271918 -21271720 -21271555 -21271390 442 -21334333 -21334168 -21334003 -21333838 -21333629 -21333421 -21333212 -21333003 -21332794 -21332629 -21332464 440 -21395462 -21395297 -21395133 -21394968 -21394748 -21394528 -21394308 -21394088 -21393868 -21393703 -21393538 438 -21456075 -21455899 -21455723 -21455547 -21455327 -21455107 1 -21454888 -21454668 -21454448 -21454272 -21454096 436 -21516687 -21516501 -21516314 -21516127 -21515907 -21515687 -21515467 -21515247 -21515027 -21514840 -21514653 434 -21577300 -21577102 -21576904 -21576706 -21576486 -21576266 -21576047 -21575827 -21575607 -21575409 -21575211 432 -21637912 -21637704 -21637495 -21637286 -21637066 -21636846 -21636626 -21636406 -21636186 -21635977 -21635769 430 -21698525 -21698305 -21698085 -21697865 -21697645 -21697426 -21697206 -21696986 -21696766 -21696546 -21696326 428 -21758665 -21758445 -21758225 -21758005 -21757774 -21757543 -21757312 -21757082 -21756851 -21756620 -21756389

CA06494, Revision 0000 Page 33 of 132 CA LORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I PS I 850 1 I! __ _ _ STEAM GENERATOR I PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 UMFNV-ND, UMV .ND, UMFA&V-NDO UMFW.1ND, TFw, DEG F UMFV/IND, UMMIWND, UMFW.TND, UMWIND, UMFW.IND, UMIWWJND. UMlWIMFND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -25539652 -25539465 -25539278 -25539091 -25538905 -25538718 -25538531 -25538344 -25538157 -25537970 -25537783 450 -25614642 -25614442 -25614241 -25614041 -25613841 -25613641 -25613441 -25613240 -25613040 -25612840 -25612640 448 -25688857 -25688657 -25688457 -25688257 -25688043 -25687830 -25687616 -25687402 -25687189 -25686989 -25686788 446 -25763073 -25762873 -25762672 -25762472 -25762245 -25762018 -25761792 -25761565 -25761338 -25761137 -25760937 444 -25837288 -25837088 -25836888 -25836688 -25836448 -25836207 -25835967 -25835727 -25835486 -25835286 -25835086 442 -25911504 -25911304 -25911104 -25910903 -25910650 -25910396 -25910143 -25909889 -25909635 -25909435 -25909235 440 -25985720 -25985519 -25985319 -25985119 -25984852 -25984585 -25984318 -25984051 -25983784 -25983584 -25983384 438 -26059308 -26059094 -26058881 -26058667 -26058400 -26058133 -26057866 -26057599 -26057332 -26057119 -26056905 436 -26132896 -26132669 -26132442 -26132215 -26131948 -26131681 -26131414 -26131147 -26130880 -26130653 -26130427 434 -26206484 -26206244 -26206004 -26205763 -26205496 -26205229 -26204962 -26204695 -26204429 -26204188 -26203948 432 -26280072 -26279819 -26279565 -26279311 -26279045 -26278778 -26278511 -26278244 -26277977 -26277723 -26277469 430 -26353661 -26353394 -26353127 -26352860 -26352593 -26352326 -26352059 -26351792 -26351525 -26351258 -26350991 428 -26426675 -26426408 -26426141 -26425874 -26425594 -26425313 -26425033 -26424753 -26424472 -26424192 -26423912 F_ STEAM GENERATOR 2 Pw. PSIA 770 790 780 800 810 . 820 830 840 850 860 870 TFv, DEG F UMFW .N,. UMFWWND, UMFW.TDN UMW.NaN UMM.INN UMFWMNK, UMFVOV-.ND, UMFW.MIND. UM D, UUMNV-LND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmr/hr Ibmn/hr Ibn/hr Ibm/hr Ibn/hr Ibmnhr 452 -21036295 -21036141 -21035987 -21035833 -21035679 -21035525 -21035371 -21035218 -21035064 -21034910 -21034756 450 -21098062 -21097897 -21097732 -21097567 -21097402 -21097237 -21097072 -21096908 -21096743 -21096578 -21096413 448 -21159191 -21159026 -21158861 -21158696 -21158521 -21158345 -21158169 -21157993 -21157817 -21157652 -21157487 446 -21220320 -21220156 -21219991 -21219826 -21219639 -21219452 -21219265 -21219078 -21218891 -21218726 -21218561 444 -21281450 -21281285 -21281120 -21280955 -21280757 -21280559 -21280361 -21280163 -21279965 -21279801 -21279636 442 -21342579 -21342414 -21342249 -21342084 -21341875 -21341666 -21341458 -21341249 -21341040 -21340875 -21340710 440 -21403708 -21403543 -21403378 -21403214 -21402994 -21402774 -21402554 -21402334 -21402114 -21401949 -21401784 438 -21464321 -21464145 -21463969 -21463793 -21463573 -21463353 -21463133 -21462913 -21462694 -21462518 -21462342 436 -21524933 -21524746 -21524559 -21524373 -21524153 -21523933 -21523713 -21523493 -21523273 -21523086 -21522899 434 -21585546 -21585348 -21585150 -21584952 -21584732 -21584512 -21584292 -21584073 -21583853 -21583655 -21583457 432 -21646158 -21645949 -21645741 -21645532 -21645312 -21645092 -21644872 -21644652 -21644432 -21644223 -21644014 430 -21706771 -21706551 -21706331 -21706111 -21705891 -21705671 -21705452 -21705232 -21705012 -21704792 -21704572 428 -21766911 -21766691 -21766471 -21766251 -21766020 -21765789 -21765558 -21765327 -21765097 -21764866 -21764635

Page 34 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES P 1,I 840 1

. _ STEAM GENERATOR I 790 800 810 820 830 840 850 860 870 PFW, PSIA 770 780 UMFW.,No UMIW.MDD UMFW-IND, UMFW-IND. UMFW-IND, UMFIW.ND, TFW, DEG F UMFWND, MFW.IND. UMFW-IND. UMFW-IND. UMFW-IND.

IbnVbr lbm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-25546139 .25545952 -25545766 -25545579 -25545392 -25545205 -25545018 -25544831 -25544644 -25544457 452 -25546326

-25621316 -25621116 -25620915 -25620715 -25620515 -25620315 -25620115 -25619914 -25619714 -25619514 -25619314 450

-25695331 -25695131 -25694931 -25694717 -25694504 -25694290 -25694076 -25693863 -25693663 -25693462 448 -25695531

-25769547 -25769347 -25769146 -25768919 -25768692 -25768466 -25768239 -25768012 -25767812 -25767611 446 -25769747

-25843762 -25843562 -25843362 -25843122 -25842881 -25842641 -25842401 -25842161 -25841960 -25841760 444 -25843963

-25917978 -25917778 -25917577 -25917324 -25917070 -25916817 -25916563 -25916309 -25916109 -25915909 442 -25918178

-25992193 -25991993 -25991793 -25991526 -25991259 -25990992 -25990725 -25990458 -25990258 -25990058 440 -25992394

-26065768 -26065555 -26065341 -26065074 -26064807 -26064540 -26064273 -26064006 -26063793 -26063579 438 -26065982

-26139570 -26139343 -26139116 -26138889 -26138622 -26138355 -2613S088 -26137821 -26137554 -26137328 -26137101 436

-26212678 -26212437 -26212170 -26211903 -26211637 -26211370 -26211103 -26210862 -26210622 434 -26213158 -26212918

-26286493 -26286239 -26285986 -26285719 -26285452 -26285185 -26284918 -26284651 -26284397 -26284143 432 -26286746

-26360335 -26360068 -26359801 -26359534 -26359267 -26359000 -26358733 -26358466 -26358199 -26357932 -26357665 430

-26433082 -26432815 -26432548 -26432268 -26431987 -26431707 -26431427 -26431146 -26430866 -26430586 428 -26433349

__ _ _ _ _ _STEAM GENERATOR 2 790 780 800 810 . 820 830 840 850 860 870 PW PSIA 770 ND UMFW-ND UMWND UMFW-tND- UMFW-N UMFW.IND, Urt UMF-WD.ND, UMV.NIND TFv, DEG F UMFw.tND, UMFW.tNIN UM Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmthr Ibm/hr Ibn/hr

-21041792 -21041638 -21041484 -21041330 -21041177 -21041023 -21040869 -21040715 -21040561 -21040407 -21040253 452

-21103394 -21103229 -21103064 -21102900 -21102735 -21102570 -21102405 -21102240 -21102075 -21101910 450 -21103559

-21164524 -21164359 -21164194 -21164018 -21163842 -21163666 -21163490 -21163314 -21163149 -21162984 448 -21164688

-21225653 -21225488 -21225323 -21225136 -21224949 -21224762 -21224575 -21224388 -21224224 -21224059 446 -21225818

-21286782 -21286617 -21286452 -21286254 -21286056 -21285859 -21285661 -21285463 -21285298 -21285133 444 -21286947

-21347746 -21347581 -21347373 -21347164 -21346955 -21346746 -21346537 -21346372 -21346207 442 -21348076 -21347911

-21408876 -21408711 -21408491 -21408271 -21408051 -21407831 -21407611 -21407446 -21407281 440 -21409205 -21409041

-21469642 -21469466 -21469290 -21469070 -21468851 -21468631 -21468411 -21468191 -21468015 -21467839 438 -21469818

-21530244 -21530057 -21529870 -21529650 -21529430 -21529210 -21528990 -21528770 -21528583 -21528397 436 -21530431

-21590845 -21590647 -21590449 -21590229 -21590010 -21589790 -21589570 -21589350 -21589152 -21588954 434 -21591043

-21651656 -21651447 -21651238 -21651029 -21650809 -21650589 -21650369 -21650149 -21649929 -21649721 -21649512 432

-21712048 -21711828 -21711608 -21711389 -21711169 -21710949 -21710729 -21710509 -21710289 -21710069 430 -21712268

-21772188 -21771968 -21771748 -21771517 -21771286 -21771056 -21770825 -21770594 -21770363 1 -21770132 428 -21772408

CA06494, Revision 0000 Page 35 of 132 CALORIMETRIC UNCERTAINTY USING Tim AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 830 STEAM GENERATORII 790 800 810 820 830 840 850 860 870 Prw, PSIA 770 780 UMW.ND, UMFW.tND, UMIWVrND, UMtV.IND, UMF.IND UMFW.IND, UM'w.,ND, UMPW-NeD, T1 w, DEG F UMpW tNDI., UM.IND, UMFW IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibmnhr Ibm/hr Ibm/hr Ibm/hr

-25555964 .25555777 -25555590 -25555403 -25555216 -25555029 -25554842 -25554655 -25554469 452 -25556337 -25556150

-25630927 .25630726 -25630526 -25630326 -25630126 -25629925 -25629725 -25629525 -25629325 450 -25631327 -25631127

-25705142 -25704942 -25704728 -25704515 -25704301 -25704088 -25703874 -25703674 -25703474 448 -25705543 -25705342

-25779358 -25779157 -25778930 -25778704 -25778477 -25778250 -25778023 -25777823 -25777622 446 -25779758 -25779558

-25853573 .25853373 -25853133 -25852892 -25852652 -25852412 -25852172 -25851971 -25851771 444 -25853974 -25853773

-25927789 -25927589 -25927335 -25927081 -25926828 -25926574 -25926320 -25926120 -25925920 442 -25928189 -25927989

-26002004 -26001804 -26001537 -26001270 -26001003 -26000736 -26000469 -26000269 -26000069 440 -26002405 -26002205

-26075566 -26075352 -26075085 -26074818 -26074551 -26074284 -26074017 -26073804 -26073590 438 -26075993 -26075779

-26149127 -26148900 -26148633 -26148366 -26148099 -26147832 -26147566 -26147339 -26147112 436 -26149581 -26149354

-26222689 -26222448 -26222182 -26221915 -26221648 -26221381 -26221114 -26220873 -26220633 434 -26223169 -26222929

-26296250 -26295997 -26295730 -26295463 -26295196 -26294929 -26294662 -26294408 -26294155 432 -26296757 -26296504

-26369812 -26369545 -26369278 -26369011 -26368744 -26368477 -26368210 -26367943 -26367676 430 -26370346 -26370079

-26442826 -26442559 -26442279 -26441998 -26441718 -26441438 -26441157 -26440877 -26440597 428 -26443360 -26443093 STEAM GENERATOR 2 780 800 810 820 830 840 850 860 870 Prw,PSIA 770 790 UMr UMFVWN IND, V, UMFWND UMFIND UMFW-IND, UMMWIND, UMFW-4ND, UMFW rND, UMV.IND, Tnv,DEG F UM)W.IND, UMMWND, Ibm/hr Ibmlhr Ibm/hr Ibm/hr Ibm/hr Ibmnhr Ibmnhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-21049730 -21049576 -21049422 -21049268 -21049115 -21048961 -21048807 -21048653 -21048499 452 -21050038 -21049884

-21111475 -21111310 -21111145 -21110980 -21110816 -21110651 -21110486 -21110321 -21110156 450 -21111805 -21111640

-21172604 -21172440 -21172264 -21172088 -21171912 -21171736 -21171560 -21171395 -21171230 448 -21172934 -21172769

-21233734 -21233569 -21233382 -21233195 -21233008 -21232821 -21232634 -21232469 -21232304 446 -21234064 -21233899

-21294863 -21294698 -21294500 -21294302 -21294104 -21293906 -21293709 -21293544 -21293379 444 -21295193 -21295028

-21355992 -21355827 -21355618 -21355410 -21355201 -21354992 -21354783 -21354618 -21354453 442 -21356322 -21356157

-21417122 -21416957 -21416737 -21416517 -21416297 -21416077 -21415857 -21415692 -21415527 440 -21417451 -21417286

-21477712 -21477536 -21477316 -21477096 -21476876 -21476657 -21476437 -21476261 -21476085 438 -21478064 -21477888

-21538303 -21538116 -21537896 -21537676 -21537456 -21537236 -21537016 -21536829 -21536642 436 -21538676 -21538489

-21598893 .21598695 -21598475 -21598255 -21598036 -21597816 -21597596 -21597398 -21597200 434 -21599289 -21599091

-21659484 .21659275 -21659055 -21658835 -21658615 -21658395 -21658175 -21657966 -21657758 432 -21659901 -21659693

-21720074 -21719854 -21719634 -21719415 -21719195 -21718975 -21718755 -21718535 -21718315 430 -21720514 -21720294

-21780214 -21779994 -21779763 -21779532 -21779301 -21779071 -21778840 -21778609 -21778378 428 -21780654 -21780434

Page 36 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES FP. M STEAM GENERATOR I PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFW.IND, ULIMFWND, UMFW.IND, UMW.IND, UMW.IND, UMFW.ND, UMFW-IND, UMFW.-ND, TFw. DEG F UMFw.tND, UMFV.IND, UML .IND, Ibm/hr Ibm/hlr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibmn/hr Ibm/hr Ibmn/hr Ibm/hr 452 -25566348 -25566161 -25565975 -25565788 -25565601 -25565414 -25565227 -25565040 -25564853 -25564666 -25564480 450 -25641338 -25641138 -25640938 -25640737 -25640537 -25640337 -25640137 -25639937 -25639736 -25639536 -25639336

-25715554 -25715353 -25715153 -25714953 -25714739 -25714526 -25714312 -25714099 -25713885 -25713685 -25713485 448 446 -25789769 -25789569 -25789369 -25789169 -25788942 -25788715 -25788488 -25788261 -25788034 -25787834 -25787633

-25863985 -25863784 -25863584 -25863384 -25863144 -25862904 -25862663 -25862423 -25862183 -25861983 -25861782 444 442 -25938200 -25938000 -25937800 -25937600 -25937346 -25937092 -25936839 -25936585 -25936332 -25936131 -25935931

-26012416 -26012216 -26012015 -26011815 -26011548 -26011281 -26011014 -26010747 -26010480 -26010280 -26010080 440 438 -26086004 -26085790 -26085577 -26085363 -26085096 -26084829 -26084562 -26084295 -26084028 -26083815 -26083601

-26159592 -26159365 -26159138 -26158911 -26158644 -26158378 -26158111 -26157844 -26157577 -26157350 -26157123 436

-26233180 -26232940 -26232700 -26232460 -26232193 -26231926 -26231659 -26231392 -26231125 -26230884 -26230644 434

-26306769 -26306515 -26306261 -26306008 -26305741 -26305474 -26305207 -26304940 -26304673 -26304419 -26304166 432

-26380357 -26380090 -26379823 -26379556 -26379289 -26379022 -26378755 -26378488 -26378221 -26377954 -26377687 430

-26453371 -26453104 -26452837 1 -26452570 -26452290 -26452009 -26451729 -26451449 -26451169 -26450888 -26450608 428

_ _ _STEAM GENERATOR 2 PFW, PSIA 770 790 780 800 810 820 830. 840 850 860 870 UMIND, UMFV-ND, UMWVNIND, UMFMVNND, UMM UUMFW.!VND, UFWID, UMF!FW-NDt Tnv, DEG F UMFw.tND, UMFW-.ND, UMFIV.IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibmlhr 452 -21058284 -21058130 -21057976 -21057822 -21057668 -21057514 -21057360 -21057206 -21057053 -21056899 -21056745

-21120051 -21119886 -21119721 -21119556 -21119391 -21119226 -21119061 -21118896 -21118732 -21118567 -21118402 450 448 -21181180 -21181015 -21180850 -21180685 -21180509 -21180334 -21180158 -21179982 -21179806 -21179641 -21179476 446 -21242309 -21242144 -21241980 -21241815 -21241628 -21241441 -21241254 -21241067 -21240880 -21240715 -21240550

-21303439 -21303274 -21303109 -21302944 -21302746 -21302548 -21302350 -21302152 -21301954 -21301790 -21301625 444

-21364568 -21364403 -21364238 -21364073 -21363864 -21363655 -21363446 -21363238 -21363029 -21362864 -21362699 442

-21425697 -21425532 -21425367 -21425202 -21424983 -21424763 -21424543 -21424323 -21424103 -21423938 -21423773 440 438 -21486310 -21486134 -21485958 -21485782 -21485562 -21485342 -21485122 -21484902 -21484683 -21484507 -21484331 436 -21546922 -21546735 -21546548 -21546362 -21546142 -21545922 -21545702 -21545482 -21545262 -21545075 -21544888

-21607535 -21607337 -21607139 -21606941 -21606721 -21606501 -21606281 -21606062 -21605842 -21605644 -21605446 434

-21668147 -21667938 -21667730 -21667521 -21667301 -21667081 -21666861 -21666641 -21666421 -21666212 -21666003 432 430 -21728760 -21728540 -21728320 -21728100 -21727880 -21727660 -21727440 -21727221 -21727001 -21726781 -21726561

-21788900 -21788680 -21788460 -21788240 -21788009 -21787778 -21787547 -21787316 -21787085 -21786855 -21786624 428

Page 37 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I P7. 1 810 1 STEAM GENERATOR I 770 790 780 800 810 820 830 840 850 860 870 PFwPSIA UMFWIND, UMMWND, UMFW.IND, UMMWIND, UMFWIND, UMFW-IND. UMFW-.N, UMFW.IND, TFw, DEG F UMFV.ND, UMFWIND, UMFW-.D, Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr ibm/hr

-25576173 .25575986 -25575799 -25575612 -25575425 -25575238 -25575051 -25574864 -25574678 -25574491 452 -25576359

-25651149 -25650949 -25650749 -25650548 -25650348 -25650148 -25649948 -25649747 -25649547 -25649347 450 -25651349

-25725364 -25725164 -25724964 -25724750 -25724537 -25724323 -25724110 -25723896 -25723696 -25723496 448 -25725565

-25799580 -25799380 -25799180 -25798953 -25798726 -25798499 -25798272 -25798045 -25797845 -25797645 446 -25799780

-25873796 -25873595 -25873395 -25873155 -25872915 -25872674 -25872434 -25872194 -25871994 -25871793 444 -25873996

-25948011 -25947811 -25947611 -25947357 -25947103 -25946850 -25946596 -25946343 -25946142 -25945942 442 -25948211

-26022227 -26022026 -26021826 -26021559 -26021292 -26021025 -26020758 --26020491 -26020291 -26020091 440 -26022427

-26095802 .26095588 -26095374 -26095107 -26094840 -26094573 -26094307 -26094040 -26093826 -26093612 438 -26096015

-26169376 -26169149 -26168923 -26168656 -26168389 -26168122 -26167855 -26167588 -26167361 -26167134 436 -26169603

-26242951 -26242711 -26242471 -26242204 -26241937 -26241670 -26241403 -26241136 -26240896 -26240655 434 -26243191

-26316526 -26316272 -26316019 -26315752 -26315485 -26315218 -26314951 -26314684 -26314430 -26314177 432 -26316780

-26390101 -26389834 -26389567 -26389300 -26389033 -- 26388766 -26388499 -26388232 -26387965 -26387698 430 -26390368

-26463115 -26462848 -26462581 -26462301 -26462021 -26461740 -26461460 -26461180 -26460899 -26460619 428 -26463382

_ _ _STEAM GENERATOR 2 770 790 780 800 810 820 830 840 850 860 870 PFW, PSIA UMFW.IND UMFW-ND UMFW- ND, UMFND UMFW.IND, UMWIND, UMW-ND, UMFW WD, TFW. DEG F UMFWIND, UMFW.INDO U-MFW.ND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibrn/hr

-21066376 -21066222 -21066068 -21065914 -21065760 -21065606 -21065452 -21065298 -21065144 -21064991 452 -21066530

-21128132 -21127967 -21127802 -21127637 -21127472 -21127307 -21127142 -21126977 -21126812 -21126648 450 -21128297

-21189261 -21189096 -21188931 -21188755 -21188579 -21188404 -21188228 -21188052 -21187887 -21187722 448 -21189426

-21250390 -21250225 -21250061 -21249874 -21249687 -21249500 -21249313 -21249126 -21248961 -21248796 446 -21250555

-21311520 -21311355 -21311190 -21310992 -21310794 -21310596 -21310398 -21310200 -21310035 -21309870 444 -21311685

-21372649 -21372484 -21372319 -21372110 -21371901 -21371692 -21371483 -21371275 -21371110 -21370945 442 -21372814

-21433778 -21433613 -21433448 -21433228 -21433009 -21432789 -21432569 -21432349 -21432184 -21432019 440 -21433943

-21494380 -21494204 -21494028 -21493808 -21493588 -21493368 -21493148 -21492928 -21492752 -21492577 438 -21494556

-21554981 -21554794 -21554607 -21554387 -21554168 -21553948 -21553728 -21553508 -21553321 -21553134 436 -21555168

-21615583 -21615385 -21615187 -21614967 -21614747 -21614527 -21614307 -21614087 -21613890 -21613692 434 -21615781

-21676184 -21675975 -21675766 -21675547 -21675327 -21675107 -21674887 -21674667 -21674458 -21674249 432 -21676393

-21736786 -21736566 -21736346 -21736126 -21735906 -21735686 -21735466 -21735247 -21735027 -21734807 430 -21737006

-21796926 -21796706 -21796486 -21796255 -21796024 -21795793 -21795562 -21795331 -21795100 -21794870 428 -21797145

Page 38 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I PSTM 800 STEAM GENERATOR I 790 780 800 810 820 830 840 850 860 870 Pm,PSIA 770 UMFV-ND, UMMVW.D, UMFWND, UMFW-ND, UMWND, UMFWIND, UMFVWAND, UMMWjND, Tr, DEG F UMrWv.ID, UMnW-yD, UMFW-IND-Ibnbm/hr Ibm/hr Ibm/lhr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-25586184 -25585997 -25585810 -25585623 -25585436 -25585249 -25585062 -25584876 -25584689 -25584502 452 -2S586371

-25661160 -25660960 -25660760 -25660559 -25660359 -25660159 -25659959 -25659758 -25659558 -25659358 450 -25661360

-25735376 -25735175 -25734975 -25734762 -25734548 -25734334 -25734121 -25733907 -25733707 -25733507 448 -25735576

-25809591 -25809391 -25809191 -25808964 -25808737 -25808510 -25808283 -25808056 -25807856 -25807656 446 -25809791

-25883807 -25883606 -25883406 -25883166 -25882926 -25882685 -25882445 -25882205 -25882005 -25881804 444 -25884007

-25958022 -25957822 -25957622 -25957368 -25957115 -25956861 -25956607 -25956354 -25956153 -25955953 442 -25958222

-26032238 -26032038 -26031837 -26031570 -26031303 -26031036 -26030769 -26030503 -26030302 -26030102 440 -26032438

-26105813 -26105599 -26105385 -26105119 -26104852 -26104585 -26104318 -26104051 -26103837 -26103624 438 -26106026

-26179387 -26179161 -26178934 -26178667 -26178400 -26178133 -26177866 -26177599 -26177372 -26177145 436 -26179614

-26252962 -26252722 -26252482 -26252215 -26251948 -26251681 -26251414 -26251147 -26250907 -26250666 434 -26253203

-26326537 -26326284 -26326030 -26325763 -26325496 -26325229 -26324962 -26324695 -26324441 -26324188 432 -26326791

-26400112 -26399845 -26399578 -26399311 -26399044 -26398777 -26398510 -26398243 -26397976 -26397709 430 -26400379

-26473126 -26472859 1 -26472592 -26472312 -26472032 -26471751 -26471471 -26471191 -26470910 -26470630 428 -26473393

__STEAM GENERATOR 2 790 780 800 810. 820 830 840 850 860 870 PFv,PSIA 770 UM1NW ,D, UMAV.WD, Twa DEG F UMWVND, Ummy-WN.ND,UMF UM UMFW.WN D, MMIND, UMn UMNW.UDN IbmA/r Ibm/hr Ibmnhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hir Ibm/hr Ibm/hr

-21074622 -21074468 -21074314 -21074160 -21074006 -21073852 -21073698 -21073544 -21073390 -21073236 452 -21074776

-21136378 -21136213 -21136048 -21135883 -21135718 -21135553 -21135388 -21135223 -21135058 -21134893 450 -21136543

-21197507 -21197342 -21197177 -21197001 -21196825 -21196649 -21196473 -21196298 -21196133 -21195968 448 -21197672

-21258636 -21258471 -21258306 -21258119 -21257933 -21257746 -21257559 -21257372 -21257207 -21257042 446 -21258801

-21319765 -21319601 -21319436 -21319238 -21319040 -21318842 -21318644 -21318446 -21318281 -21318116 444 -21319930

-21380895 -21380730 -21380565 -21380356 -21380147 -21379938 -21379729 -21379520 -21379355 -21379191 442 -21381060

-21442024 -21441859 -21441694 -21441474 -21441254 -21441034 -21440815 -21440595 -21440430 -21440265 440 -21442189

-21502626 -21502450 -21502274 -21502054 -21501834 -21501614 -21501394 -21501174 -21500998 -21500822 438 -21502801

-21563227 -21563040 -21562853 -21562633 -21562413 -21562194 -21561974 -21561754 -21561567 -21561380 436 -21563414

-21623829 -21623631 -21623433 -21623213 -21622993 -21622773 -21622553 -21622333 -21622135 -21621938 434 -21624026

-21684430 -21684221 -21684012 -21683792 -21683573 -21683353 -21683133 -21682913 -21682704 -21682495 432 -21684639

-21745032 -21744812 -21744592 -21744372 -21744152 -21743932 -21743712 -21743492 -21743273 -21743053 430 -21745252

-21805171 -21804952 -21804732 -21804501 -21804270 -21804039 -21803808 -21803577 -21803346 -21803115 428 -21805391

Page 39 of 132 CA06494, Revision 0000 CALORIMETRIC UNCFRTAINTY USING TSE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I . 1 780 1

_STEAM GENERATOR I 780 800 810 820 830 840 850 860 870 Prw. PSIA 770 790 UMFW.fND. UMFW.TND, UMFW-IND, UMFW-rND, UMMIND, UMFV.IND. UMFW-IND.

TFw. DEG F UMFW.IND, UMFW.tND, UMFW.ND. UMFW.IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hlr Ibm/hr Ibm/hr

-25602682 -25602495 -25602308 -25602121 -25601934 -25601748 -25601561 -25601374 -25601187 452 -25603056 -25602869

-25677645 -25677445 -25677245 -25677044 -25676844 -25676644 -25676444 -25676243 -25676043 450 -25678045 -25677845

-25751861 -25751660 -25751447 -25751233 -25751020 -25750806 -25750592 -25750392 -25750192 448 -25752261 -25752061

-25826076 -25825876 -25825649 -25825422 -25825195 -25824968 -25824741 -25824541 -25824341 446 -25826477 -25826276

-25900292 -25900091 -25899851 -25899611 -25899371 -25899130 -25898890 -25898690 -25898490 444 -25900692 -25900492

-25974507 -25974307 -25974053 -25973800 -25973546 -25973292 -25973039 -25972839 -25972638 442 -25974908 -25974707

-26048723 -26048522 -26048256 -26047989 -26047722 -26047455 -26047188 -26046987 -26046787 440 -26049123 -26048923

-26122284 -26122071 -26121804 -26121537 -26121270 -26121003 -26120736 -26120522 -26120309 438 -26122711 -26122498

-26195846 -26195619 -26195352 -26195085 -26194818 -26194551 -26194284 -26194057 -26193830 436 -26196300 -26196073

-26269407 -26269167 -26268900 -26268633 -26268366 -26268099 -26267832 -26267592 -26267352 434 -26269888 -26269647

-26342969 -26342715 -26342448 -26342181 -26341914 -26341647 -26341380 -26341127 -26340873 432 -26343476 -26343222

-26416530 -26416263 -26415996 -26415729 -26415462 -26415195 -26414928 -26414661 -26414394 430 -26417064 -26416797

-26489544 -26489277 -26488997 -26488717 -26488436 -26488156 -26487876 -26487596 -26487315 428 -26490078 -26489811 STEAM GENERATOR 2 790 780 800 810 820 830 840 850 860 870 PIW.PSIA 770 UMFW-WD UMFW ,D, UMMWID, UMFW.ND, UMFWIND, UMW.IND, UMFW.ND, TFW. DEG F UMFW.IND, UMM-ND, UMFW-WND, UMFW.IND, Ibm/hr Ibm/hr Ibn/hr Ibm/hlr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Iblbhr Ibm/hr Ibm/hr

-21088211 -21088057 -21087903 -21087749 -21087595 -21087441 -21087287 -21087133 -21086980 452 -21088519 -21088365

-21149791 -21149626 -21149461 -21149296 -21149131 -21148966 -21148801 -21148637 450 -21150286 -21150121 -21149956

-21211085 -21210920 -21210744 -21210568 -21210392 -21210217 -21210041 -21209876 -21209711 448 -21211415 -21211250

-21272214 -21272049 -21271863 -21271676 -21271489 -21271302 -21271115 -21270950 -21270785 446 -21272544 -21272379

-21333344 -21333179 -21332981 -21332783 -21332585 -21332387 -21332189 -21332024 -21331859 444 -21333673 -21333509

-21394473 -21394308 -21394099 -21393890 -21393681 -21393472 -21393264 _21393099 -21392934 442 -21394803 -21394638

-21455602 -21455437 -21455217 -21454997 -21454778 -21454558 -21454338 -21454173 -21454008 440 -21455932 -21455767

-21516193 -21516017 -21515797 -21515577 -21515357 -21515137 -21514917 -21514741 -21514566 438 -21516545 -21516369

-21576596 -21576376 -21576157 -21575937 -21575717 -21575497 -21575310 -21575123 436 -21577157 -21576970 -21576783

-21637374 -21637176 -21636956 -21636736 -21636516 -21636296 -21636076 -21635879 -21635681 434 -21637770 -21637572

-21698173 -21697964 -21697755 -21697536 -21697316 -21697096 -21696876 -21696656 -21696447 -21696238 432 -21698382

-21758555 -21758335 -21758115 -21757895 -21757675 -21757455 -21757236 -21757016 -21756796 430 -21758995 -21758775

-21818695 -21818475 -21818244 -21818013 -21817782 -21817551 -21817320 -21817089 -21816859 428 -21819134 -21818914

Page 40 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATrACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 770 I STEAM GENERATOR I PFr. PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFW.nO, UMFWN-D, UMFV.IND' UMFIWND, UMFWMND. UMMYJND, TFW. DEG F UMW-IND. UM4W.,D, UMFW.NID, UMF-IND. UMMIND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-25613067 -25612880 -25612693 -25612506 -25612319 -25612132 -25611946 -25611759 -25611572 -25611385 -25611198 452

-25688056 -25687856 -25687656 -25687456 -25687256 .25687055 -25686855 -25686655 -25686455 -25686255 -25686054 450

-25762272 -25762072 -25761872 -25761671 .25761458 -25761244 -25761031 -25760817 -25760604 -25760403 -25760203 448

-25836488 -25836287 -25836087 -25835887 -25835660 -25835433 -25835206 -25834979 -25834752 -25834552 -25834352 446

-25910703 -25910503 -25910303 -25910102 -25909862 -25909622 -25909382 -25909141 -25908901 -25908701 -25908501 444

-25984718 -25984518 -25984318 -25984064 -25983811 -25983557 -25983304 -25983050 -25982850 -25982650 442 -25984919 440 -26059134 -26058934 -26058734 -26058534 -26058267 -26058000 -26057733 -26057466 -26057199 -26056999 -26056798

-26132722 -26132509 -26132295 -26132082 -26131815 -26131548 -26131281 -26131014 -26130747 -26130533 -26130320 438

-26206084 -26205857 -26205630 -26205363 -26205096 -26204829 -26204562 -26204295 -26204068 -26203841 436 -26206311

-26279659 -26279418 -26279178 -26278911 -26278644 -26278377 -26278110 -26277843 -26277603 -26277363 434 -26279899

-26353233 -26352980 -26352726 -26352459 -26352192 -26351925 -26351658 -26351391 -26351138 -26350884 432 -26353487

-26426808 -26426541 -26426274 -26426007 -26425740 -26425473 -26425206 -26424939 -26424672 -26424406 430 -26427075

-26499822 -26499555 -26499288 -26499008 -26498728 -26498448 -26498167 -26497887 -26497607 -26497326 428 -26500089

. STEAM GENERATOR 2 770 790 780 800 810 820 830 840 850 860 870 Pm, PSIA UMFW.INO, UMFWNVO4, UMFW-D, UMFVW.ND, UMFINED, UMMW.ND, TFV. DEG F UMFIw.VD, UMMIVtND, UMFW.INDW UMMWIND, UMFW-iD' Ibm/hr lbm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/htr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr

-21096611 -21096457 -21096303 -21096149 -21095995 -21095841 -21095687 -21095533 -21095379 -21095225 452 -21096765

-21158367 -21158202 -21158037 -21157872 -21157707 -21157542 -21157377 -21157212 -21157047 -21156882 450 -21158532

-21219496 -21219331 -21219166 -21218990 -21218814 -21218638 -21218462 -21218286 -21218122 -21217957 448 -21219661

-21280625 -21280460 -21280295 -21280108 -21279921 -21279735 -21279548 -21279361 -21279196 -21279031 446 -21280790

-21341754 -21341589 -21341425 -21341227 -21341029 -21340831 -21340633 -21340435 -21340270 -21340105 444 -21341919

-21402884 -21402719 -21402554 -21402345 -21402136 -21401927 -21401718 -21401509 -21401344 -21401180 442 -21403049

-21464178 -21464013 -21463848 -21463683 -21463463 -21463243 -21463023 -21462804 -21462584 -21462419 -21462254 440

-21524790 -21524614 -21524439 -21524263 -21524043 -21523823 -21523603 -21523383 -21523163 -21522987 -21522811 438

-21585403 -21585216 -21585029 -21584842 -21584622 -21584402 -21584183 -21583963 -21583743 -21583556 -21583369 436

-21645818 -21645620 -21645422 -21645202 -21644982 -21644762 -21644542 -21644322 -21644124 -21643926 434 -21646015

-21706419 -21706210 -21706001 -21705781 -21705561 -21705342 -21705122 -21704902 -21704693 -21704484 432 -21706628

-21767240 -21767021 -21766801 -21766581 -21766361 -21766141 -21765921 -21765701 -21765481 -21765261 -21765042 430

-21827380 -21827160 -21826940 -21826721 -21826490 -21826259 -21826028 -21825797 -21825566 -21825335 -21825104 428

Page 41 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 3A2, Feedwater Flow Independent Contribution to Calorimetric Uncertainty, Unit 2 870 I STEAM GENERATOR I 780 790 800 810 820 830 840 850 860 870 PFW, PSIA 770 UMFW.TNO),

U UN UMFW.IND UMFW-WD. UMFNWIND, UMFWIND, UMFW.LND, UMW.IND, TFW. DEG F UMFW.IND, UMFW-OD Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-21478078 -21477921 -21477764 -21477607 -21477449 -21477292 -21477135 -21476977 -21476820 452 -21478393 -21478236

-21541347 -21541179 -21541010 -21540842 -21540673 -21540505 -21540336 -21540168 -21539999 -21539830 450 -21541516

-21603818 -21603650 -21603481 -21603302 -21603122 -21602942 -21602762 -21602582 -21602414 -21602245 448 -21603987

-21666289 -21666121 -21665952 -21665761 -21665570 -21665379 -21665188 -21664997 -21664829 -21664660 446 -21666458

-21728761 -21728592 -21728423 -21728221 -21728019 -21727817 -21727615 -21727412 -21727244 -21727075 444 -21728929

-21791232 -21791063 -21790895 -21790681 -21790468 -21790254 -21790041 -21789827 -21789659 -21789490 442 -21791400

-21853703 -21853534 -21853366 -21853141 -21852916 -21852692 -21852467 -21852242 -21852074 -21851905 440 -21853871

-21915455 -21915275 -21915050 -21914826 -21914601 -21914376 -21914151 -21913972 -21913792 438 -21915814 -21915635

-21977375 -21977184 -21976960 -21976735 -21976510 -21976285 -21976061 -21975870 -21975679 436 -21977757 -21977566

-22039498 -22039296 -22039094 -22038869 -22038644 -22038419 -22038195 -22037970 -22037768 -22037566 434 -22039700

-22101216 -22101003 -22100778 -22100553 -22100329 -22100104 -22099879 -22099666 -22099452 432 -22101643 -22101430

-22163362 -22163137 -22162912 -22162687 -22162463 -22162238 -22162013 -22161789 -22161564 -22161339 430 -22163586

-22224821 -22224597 -22224372 -22224136 -22223900 -22223664 -22223428 -22223192 -22222956 -22222720 428 -22225046

.__ _ _ ._STEAM GENERATOR 2 790 780 800 810 820 830 840 850 860 870 PvWPSIA 770 UMFW.WND, UM.WIND. UMFW.IND, UMFW-WND UMFV.IND, UMFW.MND. UMV-L.ND UMFW-ND. UMFW-IND, Tnv. DEG F UMFW.IND, UMFW.ND, Ibm/hr lbn/fr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmthr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-22619683 -22619518 -22619352 -22619186 -22619021 -22618855 -22618689 -22618524 -22618358 -22618192 452 -22619849

-22686149 -22685971 -22685794 -22685616 -22685439 -22685261 -22685084 -22684906 -22684729 -22684551 450 -22686326

-22751762 -22751585 -22751395 -22751206 -22751017 -22750828 -22750638 -22750461 -22750283 448 -22752117 -22751940

-22817731 -22817553 -22817376 -22817175 -22816974 -22816772 -22816571 -22816370 -22816193 -22816015 446 -22817908

-22883344 -22883167 -22882954 -22882741 -22882528 -22882315 -22882102 -22881925 -22881747 444 -22883699 -22883522

-22949313 -22949136 -22948958 -22948733 -22948508 -22948284 -22948059 -22947834 -22947656 -22947479 442 -22949491

-23015104 -23014927 -23014749 -23014512 -23014276 -23014039 -23013803 -23013566 -23013388 -23013211 440 -23015282

-23080327 -23080138 -23079949 -23079712 -23079475 -23079239 -23079002 -23078765 -23078576 -23078387 438 -23080517

-23145550 -23145349 -23145148 -23144911 -23144675 -23144438 -23144201 -23143965 -23143764 -23143562 436 -23145751

-23210773 -23210560 -23210347 -23210111 -23209874 -23209637 -23209401 -23209164 -23208951 -23208738 434 -23210986

-23275997 -23275772 -23275547 -23275310 -23275074 -23274837 -23274600 -23274364 -23274139 -23273914 432 -23276221

-23341220 -23340983 -23340746 -23340510 -23340273 -23340036 -23339800 -23339563 -23339326 -23339090 430 -23341456

-23405946 -23405709 -23405472 -23405224 -23404975 -23404727 -23404478 -23404230 -23403981 -23403733 428 -23406182

Page 42 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING TimE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PsTM 1 860 1

._ STEAM GENERATOR I 790 800 810 820 830 840 850 860 870 Pr,,PSIA 770 780 TFv. DEG F UMFW.IND , UMPVtN, UMIMYIND, U IN UUMW.D, UMFWINo UM rDN' UM n-IN DN UM UIND, UMWFW.

Ibmh Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibmn/hr Ibm/hr Ibm/hr

-21489314 -21489157 -21489000 -21488842 -21488685 -21488528 -21488370 -21488213 -21488056 452 -21489629 -21489472

-21552246 -21552077 -21551909 -21551740 -21551572 -21551403 -21551235 -21551066 450 -21552752 -21552583 -21552415

-21614886 -21614717 -21614537 -21614358 -21614178 -21613998 -21613818 -21613650 -21613481 448 -21615223 -21615054

-21677357 -21677188 -21676997 -21676806 -21676615 -21676424 -21676233 -21676065 -21675896 446 -21677694 -21677525

-21739828 -21739659 -21739457 -21739255 -21739053 -21738850 -21738648 -21738480 -21738311 444 -21740165 -21739996

-21802299 -21802130 -21801917 -21801703 -21801490 -21801276 -21801063 -21800894 -21800726 442 -21802636 -21802467

-21864770 -21864601 -21864377 -21864152 -21863927 -21863703 -21863478 -21863309 -21863141 440 -21865107 -21864939

-21926691 -21926511 -21926286 -21926061 -21925837 -21925612 -21925387 -21925207 -21925028 438 -21927050 -21926870

-21988802 -21988611 -21988420 -21988195 -21987971 -21987746 -21987521 -21987296 -21987105 -21986914 436 -21988993

-22050532 -22050329 -22050105 -22049880 -22049655 -22049431 -22049206 -22049004 -22048801 434 -22050936 -22050734

-22112666 -22112452 -22112239 -22112014 -22111789 -22111565 -22111340 -22111115 -22110902 -22110688 432 -22112879

-22174373 -22174148 -22173923 -22173699 -22173474 -22173249 -22173024 -22172800 -2217Z575 430 -22174822 -22174597

-22235833 -22235608 -22235372 -22235136 -22234900 -22234664 -22234428 -22234192 -22233956 428 -22236282 -22236057 STEAM GENERATOR 2 780 800 810 820 830 840 850 860 870 Prw, PSIA 770 790 UMI'WIND, UMMwND, UMFW.WNDo UMIWND UMFW.IND.

UNMFVIND, UMPW.IND, UMFaU-IND, Tnv. DEG F UMwVND, UMMW.IND, UMFW.tND, Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-22631350 -22631185 -22631019 -22630853 -22630688 -22630522 -22630356 -22630191 -22630025 452 -22631682 -22631516

-22697804 -22697627 -22697449 -22697272 -22697094 -22696917 -22696739 -22696562 -22696384 450 -22698159 -22697982

-22763595 -22763418 -22763228 -22763039 -22762850 -22762660 -22762471 -22762294. -22762116 448 -22763950 -22763773

-22829386 -22829209 -22829008 -22828807 -22828605 -22828404 -22828203 -22828026 -22827848 446 -22829741 -22829564

-22895177 -22895000 -22894787 -22894574 -22894361 -22894148 -22893935 -22893757 -22893580 444 -22895532 -22895355

-22960968 -22960791 -22960566 -22960341 -22960117 -22959892 -22959667 -22959489 -22959312 442 -22961323 -22961146

-23026760 -23026582 -23026345 -23026109 -23025872 -23025635 -23025399 -23025221 -23025044 440 -23027115 -23026937

-23091971 -23091781 -23091545 -23091308 -23091072 -23090835 -23090598 -23090409 -23090220 438 -23092349 -23092160

-23157182 -23156981 -23156744 -23156508 -23156271 -23156034 -23155798 -23155596 -23155395 436 -23157584 -23157383

-23222393 -23222180 -23221944 -23221707 -23221470 -23221234 -23220997 -23220784 -23220571 434 -23222819 -23222606

-23287605 -23287380 -23287143 -23286906 -23286670 -23286433 -23286197 -23285972 -23285747 432 -23288054 -23287829

-23352816 -23352579 -23352343 -23352106 -23351869 -23351633 -23351396 -23351159 -23350923 430 -23353289 -23353053

-23417542 -23417305 -23417057 -23416808 -23416560 -23416311 -23416063 -23415814 -23415566 428 -23418015 -23417779

Page 43 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING ThE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES F ~P-ZT 850 STEAM GENERATOR I Prw. PSIA 770 780 790 800 810 820 830 840 850 860 870 Tn,, DEG F UMFWINm, UMFW.lND, UMFW.IND. UMFWIND. UMFW.ND, UMFW-ND UMFW-ND, UMFW!ND, UMFW.tD UMAV ND. LMMWND, Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr ibm/hvr Ibm/hr Ibm/hr Ibm/hr 452 -21498056 -21497898 -21497741 -21497584 -21497427 -21497269 -21497112 -21496955 -21496797 -21496640 -21496483

-21561178 -21561010 -21560841 -21560673 -21560504 -21560336 -21560167 -21559999 -21559830 -21559662 -21559493 450

-21623650 -21623481 -21623312 -21623144 -21622964 -21622784 -21622605 -21622425 -21622245 -21622077 -21621908 448

-21686121 -21685952 -21685784 -21685615 -21685424 -21685233 -21685042 -21684851 -21684660 -21684491 -21684323 446

-21748592 -21748423 -21748255 -21748086 -21747884 -21747682 -21747479 -21747277 -21747075 -21746906 -21746738 444

-21811063 -21810894 -21810726 -21810557 -21810344 -21810130 -21809917 -21809703 -21809490 -21809321 -21809153 442 440 -21873534 -21873365 -21873197 -21873028 -21872804 -21872579 -21872354 -21872129 -21871905 -21871736 -21871568

-21935477 -21935297 -21935117 -21934938 -21934713 -21934488 -21934263 -21934039 -21933814 -21933634 -21933455 438

-21997420 -21997229 -21997038 -21996847 -21996622 -21996398 -21996173 -21995948 -21995723 -21995532 -21995341 436

-22059363 -22059161 -22058958 -22058756 -22058532 -22058307 -22058082 -22057857 -22057633 -22057430 -22057228 434 432 -22121306 -22121092 -22120879 -22120666 -22120441 -22120216 -22119991 -22119767 -22119542 -22119328 -22119115

-22183249 -22183024 -22182800 -22182575 -22182350 -22182125 -22181901 -22181676 -22181451 -22181227 -22181002 430

-22244709 -22244484 -22244259 -22244035 -22243799 -22243563 -22243327 -22243091 -22242855 -22242619 -22242383 428 STEAM GENERATOR 2 _

770 790 780 800 810 820 830 840 850 860 870 PnV.PSIA UMFWMND, UMFW.ND. UMFIND. UMFW.ND, UMFWIND, UMFW !ND, TF,, DEG F UMMWIND, UMFWMND. UMFW.tND, UMF.ND. UMFW.IND.

Ibm/hlr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hir Ibm/hr Ibn/hr

-22640556 -22640391 -22640225 -22640059 -22639894 -22639728 -22639562 -22639397 -22639231 -22639066 -22638900 452

-22707034 -22706856 -22706679 -22706501 -22706324 -22706146 -22705969 -22705791 -22705614 -22705436 -22705259 450 448 -22772825 -22772647 -22772470 -22772292 -22772103 -22771914 -22771724 -22771535 -22771346 -22771168 -22770991

-22838616 -22838439 -22838261 -22838084 -22837882 -22837681 -22837480 -22837279 -22837078 -22836900 -22836723 446

-22904407 -22904230 -22904052 -22903875 -22903662 -22903449 -22903236 -22903023 -22902810 -22902632 -22902455 444

-22970198 -22970021 -22969843 -22969666 -22969441 -22969216 -22968991 -22968766 -22968542 -22968364 -22968187 442

-23035989 -23035812 -23035634 -23035457 -23035220 -23034983 -23034747 -23034510 -23034273 -23034096 -23033918 440

-23101224 -23101035 -23100846 -23100656 -23100420 -23100183 -23099946 -23099710 -23099473 -23099284 -23099094 438

-23166459 -23166258 -23166057 -23165856 -23165619 -23165382 -23165146 -23164909 -23164672 -23164471 -23164270 436

-23231694 -23231481 -23231268 -23231055 -23230818 -23230582 -23230345 -23230108 -23229872 -23229659 -23229446 434

-23296929 -23296704 -23296479 -23296254 -23296018 -23295781 -23295545 -23295308 -23295071 -23294846 -23294622 432

-23362164 -23361927 -23361691 -23361454 -23361217 -23360981 -23360744 -23360507 -23360271 -23360034 -23359797 430

-23426890 -23426653 -23426417 -23426180 -23425932 -23425683 -23425435 -23425186 -23424938 -23424689 -23424441 428

CA06494, Revision 0000 Page 44 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Fp..-.

.__ _ _STEAM GENERATOR I PFW,PSIA 770 780 790 800 810 820 830 840 850 860 870 UMFW-IND. UMF-IND, UMFV.IND, UMFW.,ND, UMFW.IND UMFV-IND, Tr,, DEG F UM jW.,

UMFW.WD. UMFW.WND. UMFW-fND. UMFW.jND-Ibmr/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/ir

-21512100 -21511943 -21511786 -21511629 -21511471 -21511314 -21511157 -21510999 -21510842 -21510685 -21510527 452

-21575223 -21575055 -21574886 -21574718 -21574549 -21574381 -21574212 -21574043 -21573875 -21573706 -21573538 450

-21637694 -21637526 -21637357 -21637189 -21637009 -21636829 -21636649 -21636470 -21636290 -21636121 -21635953 448

-21700165 -21699997 -21699828 -21699660 -21699469 -21699278 -21699087 -21698896 -21698705 -21698536 -21698368 446

-21762637 -21762468 -21762299 -21762131 -21761929 -21761726 -21761524 -21761322 -21761120 -21760951 -21760783 444

-21825108 -21824939 -21824771 -21824602 -21824389 -21824175 -21823962 -21823748 -21823535 -21823366 -21823198 442 440 -21887579 -21887410 -21887242 -21887073 -21886848 -21886624 -21886399 -21886174 -21885950 -21885781 -21885612 438 -21949522 -21949342 -21949162 -21948982 -21948758 -21948533 -21948308 -21948084 -21947859 -21947679 -21947499 436 -22011465 -22011274 -22011083 -22010892 -22010667 -22010442 -22010218 -22009993 -22009768 -22009577 -22009386

-22073408 -22073205 -22073003 -22072801 -22072576 -22072352 -22072127 -22071902 -22071677 -22071475 -22071273 434

-22135351 -22135137 -22134924 -22134710 -22134486 -22134261 -22134036 -22133811 -22133587 -22133373 -22133160 432

-22197294 -22197069 -22196844 -22196620 -22196395 -22196170 -22195945 -22195721 -22195496 -22195271 -22195047 430 428 -22258754 -22258529 -22258304 22258079 -22257844 -22257608 -22257372 -22257136 -22256900 -22256664 -22256428

__ STEAM GENERATOR 2 PFWPSIA 770 790 780 800 810 820 830 840. 850 860 870 UMFW SD UMFW-NO, M UM IND. UMFW.TND, UMFW.IND, UMF.ND, UMW-IND.

TFw. DEG F UMFWINO, UMFV-IND, UMnV-NO. UMFW.IND, Ibmnhr Ibn/hr Ibm/hr Ibnmhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-22655348 -22655182 -22655016 -22654851 -22654685 -22654519 -22654354 -22654188 -22654022 -22653857 -22653691 452 450 -22721825 -22721648 -22721470 -22721293 -22721115 -22720938 -22720760 -22720583 -22720405 -22720228 -22720050 448 -22787616 -22787439 -22787261 -22787084 -22786894 -22786705 -22786516 -22786326 -22786137 -22785959 -22785782 446 -22853407 -22853230 -22853052 -22852875 -22852674 -22852472 -22852271 -22852070 -22851869 -22851691 -22851514 444 -22919198 -22919021 -22918843 -22918666 -22918453 -22918240 -22918027 -22917814 -22917601 -22917423 -22917246 442 -22984989 -22984812 -22984634 -22984457 -22984232 -22984007 -22983782 -22983558 -22983333 -22983155 -22982978

-23050780 -23050603 -23050425 -23050248 -23050011 -23049775. -23049538 -23049301 -23049065 -23048887 -23048710 440

-23116015 -23115826 -23115637 -23115447 -23115211 -23114974 -23114737 -23114501 -23114264 -23114075 -23113885 438

-23181250 -23181049 -23180848 -23180647 -23180410 -23180173 -23179937 -23179700 -23179463 -23179262 -23179061 436

-23246485 -23246272 -23246059 -23245846 -23245610 -23245373 -23245136 -23244900 -23244663 -23244450 -23244237 434 432 -23311720 -23311495 -23311270 -23311046 -23310809 -23310572 -23310336 -23310099 -23309862 -23309638 -23309413

-23376955 -23376718 -23376482 -23376245 -23376008 -23375772 -23375535 -23375298 -23375062 -23374825 -23374588 430

-23441445 -23441208 -23440971 -23440723 -23440474 -23440226 -23439977 -23439729 -23439480 -23439232 428 -23441681

CA06494, Revision 0000 Page 45 of 132 CALORIMETRIC UNCERTAINTY USING TuE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 7- 82-0 I-STEAM GENERATOR I 770 790 780 800 810 820 830 840 850 860 870 PFw, PSIA UMFV.ND. UMFMVND, VMFWND UMFW.IND, UMM.ND, UMFWV-N!D, UMFI.ND, TFW. DEG F UMFW.ND UMFI.ND, UMFW-ND, UMFW.ND, Ibmlhr Ibm/hr ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr

-21520370 -21520213 -21520055 -21519898 -21519741 -21519584 -21519426 -21519269 -21519112 -21518954 452 -21520527

-21583482 -21 583313 -21583144 -21582976 -21582807 -21582639 -21582470 -21582302 -21582133 -21581965 450 -21583650

-21645953 -21645784 -21645616 -21645436 -21645256 -21645076 -21644896 -21644717 -21644548 -21644380 448 -21646121

-21708424 -21708255 -21708087 -21707896 -21707705 -21707514 -21707323 -21707132 -21706963 -21706795 446 -21708592

-21770895 -21770726 -21770558 -21770356 -21770153 -21769951 -21769749 -21769547 -21769378 -21769209 444 -21771063

-21833366 -21833197 -21833029 -21832815 -21832602 -21832388 -21832175 -21831961 -21831793 -21831624 442 -21833534

-21895837 -21895668 -21895500 -21895275 -21895051 -21894826 -21894601 -21894376 -21894208 -21894039 440 -21896006

-21957769 -21957589 -21957409 -21957185 -21956960 -21956735 -21956510 -21956286 -21956106 -21955926 438 -21957949

-22019701 -22019510 -22019319 -22019094 -22018869 -22018644 -22018420 -22018195 -22018004 -22017813 436 -22019892

-22081632 -22081430 -22081228 -22081003 -22080778 -22080554 -22080329 -22080104 -22079902 -22079700 434 -22081835

-22143564 -22143351 -22143137 -22142912 -22142688 -22142463 -22142238 -22142014 -22141800 -22141587 432 -22143778

-22205496 -22205271 -22205046 -22204822 -22204597 -22204372 -22204148 -22203923 -22203698 -22203473 430 -22205721

-22266956 -22266731 -22266506 -22266270 -22266034 -22265798 -22265563 -22265327 -22265091 -22264855 428 -22267180 STEAM GENERATOR 2 770 790 780 800 810 820 830 840 850 860 870 PF\,PSIA ND UMFW.ND, UMVW.!ND, U UMF.IND, UMUND, VMFW.ND, UMFW.IND, TFW, DEG F UMFW.,ND, UmMwFWND, UMFWW. UMFWIND,.

Ibmrhr Ibm/hr Ibnmhr Ibm/hr Ibm/hr Ibn/hr Ibn/hr Ibn/hr Ibn/hr Ibn/lr Ibm/hr

-22664057 -22663891 -22663725 -22663560 -22663394 -22663228 -22663063 -22662897 -22662731 -22662566 452 -22664222

-22730522 -22730345 -22730167 -22729990 -22729812 -22729635 -22729457 -22729280 -22729102 -22728925 450 -22730700

-22796313 -22796136 -22795958 -22795769 -22795580 -22795390 -22795201 -22795012 -22794834 -22794657 448 -22796491

-22862104 -22861927 -22861749 -22861548 -22861347 -22861146 -22860945 -22860744 -22860566 -22860389 446 -22862282

-22927895 -22927718 -22927540 -22927327 -22927114 -22926901 -22926688 -22926475 -22926298 -22926121 444 -22928073

-22993687 -22993509 -22993332 -22993107 -22992882 -22992657 -22992432 -22992207 -22992030 -22991852 442 -22993864

-23059478 -23059300 -23059123 -23058886 -23058649 -23058413 -23058176 -23057939 -23057762 -23057584 440 -23059655

-23124701 -23124511 -23124322 -23124085 -23123849 -23123612 -23123375 -23123139 -23122949 -23122760 438 -23124890

-23189924 -23189723 -23189521 -23189285 -23189048 -23188812 -23188575 -23188338 -23188137 -23187936 436 -23190125

-23255147 -23254934 -23254721 -23254484 -23254248 -23254011 -23253774 -23253538 -23253325 -23253112 434 -23255360

-23320370 -23320145 -23319920 -23319684 -23319447 -23319210 -23318974 -23318737 -23318512 -23318287 432 -23320595

-23385593 -23385356 -23385120 -23384883 -23384646 -23384410 -23384173 -23383936 -23383700 -23383463 430 -23385830

-23450319 -23450083 -23449846 -23449597 -23449349 -23449100 -23448852 -23448603 -23448355 -23448106 428 -23450556

CA06494, Revision 0000 Page 46 of 132 CALORIMETRIC UNCERTAINTY USING TUE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I~pllM 810 STEAM GENERATOR I 790 780 800 810 820 830 840 850 860 870 PFW,. PSIA 770 UMFWND, UMFW-IND, MFWIND. UMFW-IND, UMFWV.D, UMFW.ND, UMFWMIND, TFw, DEG F UMFW-N UMFW F-ND- UMFW-IND, UMFW.IND, Ibrn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hlr Ibm/hr Ibm/hr Ibm/hr

-21528954 -21528797 -21528640 -21528482 -21528325 -21528168 -21528010 -21527853 -21527696 -21527538 -21527381 452

-21592077 -21591908 -21591740 -21591571 -21591403 -21591234 -21591066 -21590897 -21590729 -21590560 -21590392 450

-21654548 -21654380 -21654211 -21654042 -21653863 -21653683 -21653503 -21653323 -21653144 -21652975 -21652806 448

-21717019 -21716851 -21716682 -21716514 -21716323 -21716132 -21715940 -21715749 -21715558 -21715390 -21715221 446

-21779490 -21779322 -21779153 -21778985 -21778782 -21778580 -21778378 -21778176 -21777973 -21777805 -21777636 444

-21841961 -21841793 -21841624 -21841456 -21841242 -21841029 -21840815 -21840602 -21840388 -21840220 -21840051 442

-21904432 -21904264 -21904095 -21903927 -21903702 -21903477 -21903253 -21903028 -21902803 -21902635 -21902466 440

-21966375 -21966196 -21966016 -21965836 -21965611 .21965387 -21965162 -21964937 -21964713 -21964533 -21964353 438

-22028318 -22028127 -22027936 -22027745 -22027521 -22027296 -22027071 -22026847 -22026622 -22026431 -22026240 436

-22090261 -22090059 -22089857 -22089655 -22089430 -22089205 -22088981 -22088756 -22088531 -22088329 -22088127 434

-22152204 -22151991 -22151777 -22151564 -22151339 -22151115 -22150890 -22150665 -22150440 -22150227 -22150013 432

-22214147 -22213923 -22213698 -22213473 -22213249 -22213024 -22212799 -22212574 -22212350 -22212125 -22211900 430

-22275607 -22275383 -22275158 -22274933 -22274697 -22274461 -22274225 -22273989 -22273753 -22273517 -22273282 428

-_ STEAM GENERATOR 2 770 790 780 800 810 820 l 830 840 850 860 870 Pr,.PSIA UMFW-tND, UM4FW-WD, UMFW.IND, UMFIND, UMFW.ND, UMFW.WND, UMjFW-W.V UMFWIND, TFW, DEG F UMFW.-ND, UMFW.NDND, UMIND, Ibm/hr Ibm/hr Ibm/lhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmthr Ibm/hr Ibm/hr Ibm/hr

-22673097 -22672931 -22672766 -22672600 -22672434 -22672269 -22672103 -22671937 -22671772 -22671606 -22671440 452

-22739574 -22739397 -22739219 -22739042 -22738864 -22738687 -22738509 -22738332 -22738154 -22737977 -22737799 450

-22805365 -22805188 -22805010 -22804833 -22804644 -22804454 -22804265 -22804076 -22803886 -22803709 -22803531 448

-22871157 -22870979 -22870802 -22870624 -22870423 -22870222 -22870021 -22869819 -22869618 -22869441 -22869263 446

-22936948 -22936770 -22936593 -22936415 -22936202 -22935989 -22935776 -22935563 -22935350 -22935173 -22934995 444

-23002739 -23002561 -23002384 -23002206 -23001981 -23001757 -23001532 -23001307 -23001082 -23000905 -23000727 442

-23068530 -23068352 -23068175 -23067997 -23067761 -23067524 -23067287 -23067051 -23066814 -23066637 -23066459 440

-23133765 -23133575 -23133386 -23133197 -23132960 -23132723 -23132487 -23132250 -23132013 -23131824 -23131635 438

-23199000 -23198798 -23198597 -23198396 -23198160 -23197923 -23197686 -23197450 -23197213 -23197012 -23196811 436

-23264235 -23264022 -23263809 -23263596 -23263359 -23263122 -23262886 -23262649 -23262412 -23262199 -23261986 434

-23329470 -23329245 -23329020 -23328795 -23328558 -23328322 -23328085 -23327848 -23327612 -23327387 -23327162 432

-23394704 -23394468 -23394231 -23393994 -23393758 -23393521 -23393285 -23393048 _-23392811 -23392575 -23392338 430

-23459431 -23459194 -23458957 -23458721 -23458472 -23458224 -23457975 -23457727 -23457478 -23457230 -23456981 428

Page 47 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING TImE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I PsTM 1 800 1

... _ STEAM GENERATOR I 770 790 780 800 810 820 830 840 850 860 870 Prw PSIA UMMWIND, UMMWIND, UMFWIND, UMpW.rND, UMFIWtND, UMFW-IND, UM FW.IND-TFW, DEG F UMFW tND- UMFW.IND, UMFW.tND' UMFWtND, Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm//hr _bmb/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-21537381 -21537224 -21537066 -21536909 -21536752 -21536595 -21536437 -21536280 -21536123 -21535965 -21535808 452

-21600504 -21600335 -21600167 -21599998 -21599830 -21599661 -21599493 -21599324 -21599156 -21598987 -21598818 450

-21662975 -21662806 -21662638 -21662469 -21662290 -21662110 -21661930 -21661750 -21661570 -21661402 -21661233 448

.21725446 -21725277 -21725109 -21724940 -21724749 -21724558 -21724367 -21724176 -21723985 -21723817 -21723648 446

-21787917 -21787749 -21787580 -21787411 -21787209 -21787007 -21786805 -21786602 -21786400 -21786232 -21786063 444

-21850388 -21850220 -21850051 -21849883 -21849669 -21849456 -21849242 -21849029 -21848815 -21848647 -21848478 442

-21912859 -21912691 -21912522 -21912354 -21912129 -21911904 -21911680 -21911455 -21911230 -21911062 -21910893 440

-21974802 -21974623 -21974443 -21974263 -21974038 -21973814 -21973589 -21973364 -21973139 -21972960 -21972780 438

-22036745 -22036554 -22036363 -22036172 -22035948 -22035723 -22035498 -22035273 -22035049 -22034858 -22034667 436

.22098688 -22098486 -22098284 -22098082 -22097857 -22097632 -22097407 -22097183 -22096958 -22096756 -22096553 434

-22160631 -22160418 -22160204 -22159991 -22159766 -22159541 -22159317 -22159092 -22158867 -22158654 -22158440 432

-22222574 -22222350 -22222125 -22221900 -22221675 -22221451 -22221226 -22221001 -22220777 -22220552 -22220327 430

--22284034 -22283809 -22283585 -22283360 -22283124 -22282888 -22282652 -22282416 -22282180 -22281944 -22281708 428

_ _STEAM GENERATOR 2 770 790 780 800 810 - 820 830 840 850 860 870 PFW, PSTA UMW.IND, UMMy.tND, UMFW.IND, UMFWIND, UMMW.,ND, UMMW-oND, Tpw, DEG F UMFW.IND, UMFW-IND[, UMFW.tND' UMMYVlND, UMFWIND-,

Ibm/lhr Ibm/nr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/tr Ibm/hr Ibn/hr Ibm/hr Ibm/hr

-22681972 -22681806 -22681640 -22681475 -22681309 -22681143 -22680978 -22680812 -22680646 -22680481 -22680315 452

-22748449 -22748272 -22748094 -22747917 -22747739 -22747562 -22747384 -22747207 -22747029 -22746852 -22746674 450

-22814063 -22813885 -22813708 -22813518 -22813329 -22813140 -22812950 -22812761 -22812584 -22812406 448 -22814240

-22880031 -22879854 -22879676 -22879499 -22879298 -22879096 -22878895 -22878694 -22878493 -22878315 -22878138 446

-22945645 -22945467 -22945290 -22945077 -22944864 -22944651 -22944438 -22944225 -22944047 -22943870 444 -22945822

-23011436 -23011258 -23011081 -23010856 -23010631 -23010406 -23010182 -23009957 -23009779 -23009602 442 -23011613

-23077227 -23077050 -23076872 -23076635 -23076399 -23076162 -23075925 -23075689 -23075511 -23075334 440 -23077404

-23142450 -23142261 -23142071 -23141835 -23141598 -23141361 -23141125 -23140888 -23140699 -23140509 438 -23142639

-23207673 -23207472 -23207271 -23207034 -23206798 -23206561 -23206324 -23206088 -23205886 -23205685 436 -23207874

-23272896 -23272683 -23272470 -23272234 -23271997 -23271760 -23271524 -23271287 -23271074 -23270861 434 -23273109

-23338344 -23338119 -23337895 -23337670 -23337433 -23337196 -23336960 -23336723 -23336486 -23336262 -23336037 432

-23403342 -23403106 -23402869 -23402633 -23402396 -23402159 -23401923 -23401686 -23401449 -23401213 430 -23403579

-23468305 -23468069 -23467832 -23467595 -23467347 -23467098 -23466850 -23466601 -23466353 -23466104 -23465856 428

CA06494, Revision 0000 Page 48 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSnLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES IPST I 790 1 STEAM GENERATOR I 770 790 780 800 810 820 830 840 850 860 870 Prv PSIA UM IND UM-W.ND, UMnW.FND, UMIW-IND, UMrW.IND, UMTW!IND, UMFW.IND, Trw, DEG F UMFV.IND, UMIWl.IND, UMFW.IND, UMFVIND Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-21545651 -21545493 -21545336 -21545179 -21545021 -21544864 -21544707 -21544549 -21544392 -21544235 452 -21545808

-21608762 -21608594 -21608425 -21608257 -21608088 -21607919 -21607751 -21607582 -21607414 -21607245 450 -21608931

-21671233 -21671065 -21670896 -21670716 -21670537 -21670357 -21670177 -21669997 -21669829 -21669660 448 -21671402

-21733873 -21733704 -21733536 -21733367 -21733176 -21732985 -21732794 -21732603 -21732412 -21732244 -21732075 446

-21796175 -21796007 -21795838 -21795636 -21795434 -21795232 -21795029 -21794827 -21794659 -21794490 444 -21796344

-21858646 -21858478 -21858309 -21858096 -21857882 -21857669 -21857455 -21857242 -21857073 -21856905 442 -21858815

-21921286 -21921118 -21920949 -21920781 -21920556 -21920331 -21920106 -21919882 -21919657 -21919488 -21919320 440

-21983229 -21983049 -21982870 -21982690 -21982465 -21982240 -21982016 -21981791 -21981566 -21981386 -21981207 438

-22044981 -22044790 -22044599 -22044374 -22044150 -22043925 -22043700 -22043476 -22043285 -22043094 436 -22045172

-22107115 -22106913 -22106711 -22106508 -22106284 -22106059 -22105834 -22105610 -22105385 -22105183 -22104980 434

-22169058 -22168845 -22168631 -22168418 -22168193 -22167968 -22167744 -22167519 -22167294 -22167081 -22166867 432

-22230776 -22230552 -22230327 -22230102 -22229878 -22229653 -22229428 -22229203 -22228979 -22228754 430 -22231001

-22292012 -22291787 -22291551 -22291315 -22291079 -22290843 -22290607 -22290371 -22290135 428 -22292461 -22292236

______= STEAM GENERATOR 2 770 790 780 800 810 820 . 830 840 850 860 870 PW,PSIA UMMFWIND, UMFV-ND, UMm-IN.D, UMFIND, UMFWIND, U UM7WV.IND, UMMIND, TFpv, DEG F UMfWItND, UMVW.tNO, U Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-22690681 -22690515 -22690349 -22690184 -22690018 -22689852 -22689687 -22689521 -22689355 -22689190 452 -22690846

-22757146 -22756969 -22756791 -22756614 -22756436 -22756259 -22756081 -22755904 -22755726 -22755549 450 -22757324

-22822937 -22822760 -22822582 -22822393 -22822204 -22822014 -22821825 -22821636 -22821458 -22821281 448 -22823115

-22888728 -22888551 -22888373 -22888172 -22887971 -22887770 -22887569 -22887368 -22887190 -22887013 446 -22888906

-22954520 -22954342 -22954165 -22953952 -22953739 -22953526 -22953313 -22953100 -22952922 -22952745 444 -22954697

-23020311 -23020133 -23019956 -23019731 -23019506 -23019281 -23019056 -23018831 -23018654 -23018477 442 -23020488

-23086279 -23086102 -23085924 -23085747 -23085510 -23085273 -23085037 -23084800 -23084563 -23084386 -23084208 440

-23151514 -23151325 -23151135 -23150946 -23150709 -23150473 -23150236 -23150000 -23149763 -23149574 -23149384 438

-23216548 -23216347 -23216146 -23215909 -23215672 -23215436 -23215199 -23214962 -23214761 -23214560 436 -23216749

-23281771 -23281558 -23281345 -23281108 -23280872 -23280635 -23280398 -23280162 -23279949 -23279736 434 -23281984

-23347219 -23346994 -23346769 -23346544 -23346308 -23346071 -23345834 -23345598 -23345361 -23345136 -23344911 432

-23411981 -23411744 -23411507 -23411271 -23411034 -23410797 -23410561 -23410324 -23410087 430 -23412454 -23412217

-23476707 -23476470 -23476221 -23475973 -23475725 -23475476 -23475228 -23474979 -23474731 428 -23477180 -23476943

CA06494, Revision 0000 Page 49 of 132 CALORIMETRIC UNCERTAINTY USING TIlE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 780 l STEAM GENERATOR I Pm, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw. DEG F NN.

UMFW-IND. UMFW UMFW- UMFWW.IND. UMPW.ND, UMFW.IND. UM ND UMFW.IND, UMFW.ND, UMFW rND, UMFW IND, Ibm/hr Ibm/hr Ibmr/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/tr Ibm/hr lbm/lr 452 -21551426 -21551268 -21551111 -21550954 -21550797 -21550639 -21550482 -21550325 -21550167 -21550010 -21549853 450 -21614549 -21614380 -21614211 -21614043 -21613874 -21613706 -21613537 -21613369 -21613200 -21613032 -21612863 448 -21677020 -21676851 -21676683 -21676514 -21676334 -21676155 -21675975 -21675795 -21675615 -21675447 -21675278 446 -21739491 -21739322 -21739154 -21738985 -21738794 -21738603 -21738412 -21738221 -21738030 -21737862 -21737693 444 -21801962 -21801793 -21801625 -21801456 -21801254 -21801052 -21800849 -21800647 -21800445 -21800276 -21800108 442 -21864433 -21864264 -21864096 -21863927 -21863714 -21863500 -21863287 -21863073 -21862860 -21862691 -21862523 440 -21926904 -21926735 -21926567 -21926398 -21926174 -21925949 -21925724 -21925500 -21925275 -21925106 -21924938 438 -21988847 -21988667 -21988487 -21988308 -21988083 -21987858 -21987634 -21987409 -21987184 -21987004 -21986825 436 -22050790 -22050599 -22050408 -22050217 -22049992 -22049768 -22049543 -22049318 -22049093 -22048902 -22048711 434 -22112733 -22112531 -22112329 -22112126 -22111902 -22111677 -22111452 -22111227 -22111003 -22110800 -22110598 432 -22174676 -22174463 -22174249 -22174036 -22173811. -22173586 -22173361 -22173137 -22172912 -22172699 -22172485 430 -22236619 -22236394 -22236170 -22235945 -22235720 -22235495 -22235271 -22235046 -22234821 -22234597 -22234372 428 -22298079 -22297854 -22297630 -22297405 -22297169 -22296933 -22296697 _-22296461 -22296225 -22295989 -22295753 STEAM GENERATOR 2 PFW.PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW. DEG F UMFW.rND, UMFW-IND, UMFIWIND UMFW-IND, UMFW.IND' UMFW4ND. UMFW-IND, UMFWW-IO, UMFW.tND UMpWWrN1o UMFW.IN, Ibm/hir ibm/thr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/lhr 452 -22696763 -22696597 -22696432 -22696266 -22696100 -22695935 -22695769 -22695603 -22695438 -22695272 -22695106 450 -22763240 -22763063 -22762885 -22762708 -22762530 -22762353 -22762175 -22761998 -22761820 -22761643 -22761465 448 -22829031 -22828854 -22828676 -22828499 -22828310 -22828120 -22827931 -22827742 -22827552 -22827375 -22827197 446 -22894822 -22894645 -22894467 -22894290 -22894089 -22893888 -22893686 -22893485 -22893284 -22893107 -22892929 444 -22960613 -22960436 -22960259 -22960081 -22959868 -22959655 -22959442 -22959229 -22959016 -22958839 -22958661 442 -23026405 -23026227 -23026050 -23025872 -23025647 -23025422 -23025198 -23024973 -23024748 -23024570 -23024393 440 -23092196 -23092018 -23091841 -23091663 -23091427 -23091190 -23090953 -23090717 -23090480 -23090302 -23090125 438 -23157431 -23157241 -23157052 -23156863 -23156626 -23156389 -23156153 -23155916 -23155679 -23155490 -23155301 436 -23222666 -23222464 -23222263 -23222062 -23221825 -23221589 -23221352 -23221115 -23220879 -23220678 -23220476 434 -23287900 -23287687 -23287474 -23287261 -23287025 -23286788 -23286551 -23286315 -23286078 -23285865 -23285652 432 -23353135 -23352911 -23352686 -23352461 -23352224 -23351988 -23351751 -23351514 -23351278 -23351053 -23350828 430 -23418370 -23418134 -23417897 -23417660 -23417424 -23417187 -23416950 -23416714 -23416477 -23416240 -23416004 428 -23483096 -23482860 -23482623 -23482386 -23482138 -23481889 -23481641 -23481392 -23481144 -23480896 -23480647

CA06494, Revision 0000 Page 50 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 770 STEAM GENERATOR I PFW. PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UMFW.IND. UMFW.IND, UMFW. IND. UMFN, UMFW.ND. UMFW-IND, UMFW.ND, UMFN.IND. UM?.V-IND, lbm/hr Ibm/hr Ibm/hr Ibm/ir Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/r 452 -21559853 -21559695 -21559538 -21559381 -21559223 -21559066 -21558909 -21558752 -21558594 -21558437 -21558280 450 -21622975 -21622807 -21622638 -21622470 -21622301 -21622133 -21621964 -21621796 -21621627 -21621459 -21621290 448 -21685447 -21685278 -21685109 -21684941 -21684761 -21684581 -21684402 -21684222 -21684042 -21683874 -21683705 446 -21747918 -21747749 -21747581 -21747412 -21747221 -21747030 -21746839 -21746648 -21746457 -21746288 -21746120 444 -21810389 -21810220 -21810052 -21809883 -21809681 -21809479 -21809276 -21809074 -21808872 -21808703 -21808535 442 -21872860 -21872691 -21872523 -21872354 -21872141 -21871927 -21871714 -21871500 -21871287 -21871118 -21870950 440 -21935331 -21935162 -21934994 -21934825 -21934601 -21934376 -21934151 -21933926 -21933702 -21933533 -21933365 438 -21997274 -21997094 -21996914 -21996735 -21996510 -21996285 -21996060 -21995836 -21995611 -21995431 -21995251 436 -22059217 -22059026 -22058835 -22058644 -22058419 -22058194 -22057970 -22057745 -22057520 -22057329 -22057138 434 -22121160 -22120958 -22120755 -22120553 -22120328 -22120104 -22119879 -22119654 -22119430 -22119227 -22119025 432 -22183103 -22182889 -22182676 -22182462 -22182238 -22182013 -22181788 -22181564 -22181339 -22181125 -22180912 430 -22245046 -22244821 -22244596 -22244372 -22244147 -22243922 -22243698 -22243473 -22243248 -22243023 -22242799 428 -22306506 -22306281 -22306056 -22305832 -22305596 -22305360 -22305124 -22304888 -22304652 -22304416 -22304180 I _ STEAM GENERATOR 2 PW,PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFW.IND, UMIW-IND. UMFW-IND, UMFW-tND, UMFWV-ND. UM FW.IND, UMFW-tND, TF, DEG F UMPW.IND, UMFWIND, UMMFW-IND. UMFW.IND.

Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr 452 -22705638 -22705472 -22705306 -22705141 -22704975 -22704809 -22704644 -22704478 -22704312 -22704147 -22703981 450 -22772115 -22771937 -22771760 -22771582 -22771405 -22771227 -22771050 -22770872 -22770695 -22770518 -22770340 448 -22837906 -22837729 -22837551 -22837374 -22837184 -22836995 -22836806 -22836616 -22836427 -22836249 -22836072 446 -22903697 -22903520 -22903342 -22903165 -22902963 -22902762 -22902561 -22902360 -22902159 -22901981 -22901804 444 -22969488 -22969311 -22969133 -22968956 -22968743 -22968530 -22968317 -22968104 -22967891 -22967713 -22967536 442 -23035279 -23035102 -23034924 -23034747 -23034522 -23034297 -23034072 -23033847 -23033623 -23033445 -23033268 440 -23101070 -23100893 -23100715 -23100538 -23100301 -23100065 -23099828 -23099591 -23099355 -23099177 -23099000 438 -23166305 -23166116 -23165927 -23165737 -23165501 -23165264 -23165027 -23164791 -23164554 -23164365 -23164175 436 -23231540 -23231339 -23231138 -23230937 -23230700 -23230463 -23230227 -23229990 -23229753 -23229552 -23229351 434 -23296775 -23296562 -23296349 -23296136 -23295900 -23295663 -23295426 -23295190 -23294953 -23294740 -23294527 432 -23362010 -23361785 -23361560 -23361336 -23361099 -23360862 -23360626 -23360389 -23360152 -23359927 -23359703 430 -23427245 -23427008 -23426772 -23426535 -23426298 -23426062 -23425825 -23425588 -23425352 -23425115 -23424878 428 -23491971 -23491734 -23491498 -23491261 -23491013 -23490764 -23490516 -23490267 -23490019 -23489770 -23489522

CA06494, Revision 0000 Page 51 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 3B1, Feedwater Flow Piping Configuration Contribution to Calorimetric Uncertainty, Unit 1 All Steam Pressures:

STEAM GENERATOR I PFW.PSIA 770 780 790 800 810 820 830 840 850 860 870 TFw, DEG F UMFW-IND, UMAFWIND, UMFWIND, UMMW-ID, UMFW.VNO, UMFW IND4, UMMWIND, UMFW-IND, UMFWIND, UMF-IND, UMFWIND, Ibmnthr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibn/hr Ibm/hr 452 0 0 0 0 0 0 0 0 0 0 450 0 0 0 0 0 0 0 0 0 0 0 448 0 0 0 0 0 0 0 0 0 0 0 446 0 0 0 0 0 0 0 0 0 444 0 0 0 0 0 0 0 0 0 0 0 442 0 0O 0 0 0 0 0 0 0 440 0 0 0 0 0 0 0 0 0 0 0 438 0 0 0 0 0 0 0 0 0 0 0 436 0 0 0 0 0 0 0 0 00 434 0 0 0 0 0 0 0 0 0 432 0 0 0 0 0 0 0 00 430 0 0 0 0 _ 0 0 0 0 0 0 428 0 0 0 0 0 0 0 0 0 0 .0

._ _STEAM ___ GENERATOR 2 Prw, PSIA 770 790 780 S00 810 820 830 840 850 860 870 TFW. DEG F UMFW.IND, UMfW4tND, UMMWIND, UMFWI.ND, UMFW.IND, UMFW.IND, UMFW IND, UMFW-IND, UMFW IND UMFW.IND, UMMV.ID,

_Ibm/hr IbmVhr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr 452 0 0 0 0 0 0 0 0 0 0 450 0 0 0. 0 0 0 0 0 0 0 0 448 0 0 0 0 0 0 0 0 0 0 446 0 0 0 0 0 0 0 0 0 0 0 444 0 00 442 0 0 0 0 0 0 0 0 0 0 0 440 0 0 0 0 0 0 0 0 0 0 0 438 0 0 0 0 0 0 0 0 00 436 0 0 0 0 0 0 0 0 0 0 0 434 0 0 0 0 0 0 0 0 0 0 0 432 0 0 0 0 0 0 0 0 0 00 430 0 0 0 0 0 0 0 0 0 0 0 428 0 0 0 0 0 0 0 0 0. 0 0

CA06494, Revision 0000 Page 52 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 3B2, Fcedwater Flow Piping Configuration Contribution to Calorimetric Uncertainty, Unit 2 IP , 1 870 1 Il _ ___ _ _70 STEAM GENERATOR I 770 780 790 800 810 820 830 840 850 860 870 PFW, PSIA UMFW.DND. UMMIND, UMFW.IND, UMFW-rD, UMFV.IND, UMFWND, UMFWV-ND, TFw, DEG F UMpw.-o, UMFW.N UMF-ItN, UWD.

Ibm/hT Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr ibmbhr Ibm/hr IbmI/hr IbnVhr Ibm/hr

-12708208 -12708115 -12708022 -12707929 -12707835 -12707742 -12707649 -12707556 -12707463 -12707370 -12707277 452

-12745556 -12745456 -12745356 -12745257 -12745157 -12745057 -12744958 -12744858 -12744758 -12744658 -12744559 450

-12782518 -12782419 -12782319 -12782219 -12782113 -12782006 -12781900 -12781794 -12781687 -12781588 -12781488 448

-12819481 -12819381 -12819281 -12819182 -12819069 -12818956 -12818843 -12818730 -12818617 -12818517 -12818417 446

-12856443 -12856344 -12856244 -12856144 -12856025 -12855905 -12855785 -12855666 -12855546 -12855446 -12855347 444

-12893406 -12893306 -12893207 -12893107 -12892980 -12892854 -12892728 -12892602 -12892475 -12892376 -12892276 442

-12930368 -12930269 -12930169 -12930069 -12929936 -12929803 -12929670 -12929537 -12929405 -12929305 -12929205 440

-12967019 -12966912 -12966806 -12966699 -12966566 -12966434 -12966301 -12966168 -12966035 -12965928 -12965822 438

-13003669 -13003556 -13003443 -13003330 -13003197 -13003064 -13002931 -13002798 -13002665 -13002552 -13002439 436

-13040199 -13040079 -13039960 -13039827 -13039694 -13039561 -13039428 -13039295 -13039175 -13039056 434 -13040319

-13076842 -13076716 -13076590 -13076457 -13076324 -13076191 -13076058 -13075925 -13075799 -13075672 432 -13076969

-13113619 -13113486 -13113353 -13113220 -13113087 -13112954 -13112821 -13112688 -13112555 -13112422 -13112289 430

-13149983 -13149850 1 -13149717 -13149584 -13149445 -13149305 -13149165 -13149026 -13148886 -13148747 -13148607 428

_STEAM GENERATOR 2 _

770 790 _ 780 800 810 820 830 840 850 860 870 PFW. PSIA UMFW.IND, UM IND, UM .IND, UM IND, UMFW-INSD, UMMW-IND, UMUIND UM D, UMVMWIND, TFw, DEG F UMFV.rn- UMFW.4ND, Ibm/r

_ Ibm/hr Ibm/hlr Ibm/hlr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hlr Ibm/hr

-12708208 -12708115 -12708022 -12707929 -12707835 -12707742 -12707649 -12707556 -12707463 -12707370 -12707277 452

-12745556 -12745456 -12745356 -12745257 -12745157 -12745057 -12744958 -12744858 -12744758 -12744658 -12744559 450

-12782518 -12782419 -12782319 -12782219 -12782113 -12782006 -12781900 -12781794 -12781687 -12781588 -12781488 448

-12819381 -12819281 -12819182 -12819069 -12818956 -12818843 -12818730 -12818617 -12818517 -12818417 446 -12819481

-12856443 -12856344 -12856244 -12856144 -12856025 -12855905 -12855785 -12855666 -12855546 -12855446 -12855347 444

-12893306 -12893207 -12893107 -12892980 -12892854 -12892728 -12892602 -12892475 -12892376 -12892276 442 -12893406

-12930368 -12930269 -12930169 -12930069 -12929936 -12929803 -12929670 -12929537 -12929405 -12929305 -12929205 440

-12967019 -12966912 -12966806 -12966699 -12966566 -12966434 -12966301 -12966168 -12966035 -12965928 -12965822 438

-13003669 -13003556 -13003443 -13003330 -13003197 -13003064 -13002931 -13002798 -13002665 -13002552 -13002439 436

-13040079 -13039960 -13039827 -13039694 -13039561 -13039428 -13039295 -13039175 -13039056 434 -13040319 -13040199

-13076969 -13076842 -13076716 -13076590 -13076457 -13076324 -13076191 -13076058 -13075925 -13075799 -13075672 432

-13113619 -13113486 -13113353 -13113220 -13113087 -13112954 -13112821 -13112688 -13112555 -13112422 -13112289 430

-13149850 -13149717 -13149584 -13149445 -13149305 -13149165 -13149026 -13148886 -13148747 -13148607 428 -13149983

CA06494, Revision 0000 Page 53 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Nm 1 860 1 STEAM GENERATOR I l PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 UMjMV.IMD. UMFW-IND, UMW.jND, UMMIVND, UM.IND, UMFW.IND, UMIND. UMWV-IND, Tw, DEG F UMFW.,IND, UM,,.,D. UMFWNl.lYD

. Ibm/hr Ibm/hr Ibm/hr ibnml/r Ibm/hr Ibm/hr Ibm/hr Ibm/lir Ibm/hr Ibm/hr Ibm/hlr 452 -12714856 -12714763 -12714670 -12714576 -12714483 -12714390 -12714297 -12714204 -12714111 -12714018 -12713925 450 -12752204 -12752104 -12752004 -12751905 -12751805 -12751705 -12751605 -12751506 -12751406 -12751306 -12751207 448 -12789166 -12789067 -12788967 -12788867 -12788761 -12788654 -12788548 -12788442 -12788335 -12788236 -12788136 446 -12826129 -12826029 -12825929 -12825830 -12825717 -12825604 -12825491 -12825378 -12825265 -12825165 -12825065 444 -12863091 -12862992 -12862892 -12862792 -12862673 -12862553 -12862433 -12862314 -12862194 -12862094 -12861994 442 -12900054 -12899954 -12899854 -12899755 -12899628 -12899502 -12899376 -12899249 -12899123 -12899023 -12898924 440 -12937016 -12936917 -12936817 -12936717 -12936584 -12936451 -12936318 -12936185 -12936052 -12935953 -12935853 438 -12973666 -12973560 -12973454 -12973347 -12973214 -12973081 -12972949 -12972816 -12972683 -12972576 -12972470 436 -13010317 -13010204 -13010091 -13009978 -13009845 -13009712 -13009579 -13009446 -13009313 -13009200 -13009087 434 -13046967 -13046847 -13046727 -13046608 -13046475 -13046342 -13046209 -13046076 -13045943 -13045823 -13045704 432 -13083617 -13083490 -13083364 -13083238 -13083105 -13082972 -13082839 -13082706 -13082573 -13082447 -13082320 430 -13120267 -13120134 -13120001 -13119868 -13119735. -13119602 -13119469 -13119336 -13119203 -13119070 -13118937 428 -13156631 -13156498 -13156365 -13156232 -13156092 -13155953 -13155813 -13155674 -13155534 -13155394 -13155255

____STEAM GENERATOR 2 PFw,PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFW.IND. UMFW.IND. UMFV.IND UMFN-INfD, UMn-ND.l UMW.IND. UMFW-.DI. UMFW-IND Twv DEG F UMFVI.!ND, UMVW.IND, UMFW.ND,

_Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibnmhr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr 452 -12714856 -12714763 -12714670 -12714576 -12714483 -12714390 -12714297 -12714204 -12714111 -12714018 -12713925 450 -12752204 -12752104 -12752004 -12751905 -12751805 -12751705 -12751605 -12751506 -12751406 -12751306 -12751207 448 -12789166 -12789067 -12788967 -12788867 -12788761 -12788654 -12788548 -12788442 -12788335 -12788236 -12788136 446 -12826129 -12826029 -12825929 -12825830 -12825717 -12825604 -12825491 -12825378 -12825265 -12825165 -12825065 444 -12863091 -12862992 -12862892 -12862792 -12862673 -12862553 -12862433 -12862314 -12862194 -12862094 -12861994 442 -12900054 -12899954 -12899854 -12899755 -12899628 -12899502 -12899376 -12899249 -12899123 -12899023 -12898924 440 -12937016 -12936917 -12936817 -12936717 -12936584 -12936451 -12936318 -12936185 -12936052 -12935953 -12935853 438 -12973666 -12973560 -12973454 -12973347 -12973214 -12973081 -12972949 -12972816 -12972683 -12972576 -12972470 436 -13010317 -13010204 -13010091 -13009978 -13009845 -13009712 -13009579 -13009446 -13009313 -13009200 -13009087 434 1 -13046967 -13046847 -13046727 -13046608 -13046475 -13046342 -13046209 -13046076 -13045943 -13045823 -13045704 432 -13083617 -13083490 -13083364 -13083238 -13083105 -13082972 -13082839 -13082706 -13082573 -13082447 -13082320 430 -13120267 -13120134 -13120001 -13119868 -13119735 -13119602 -13119469 -13119336 -13119203. -13119070 -13118937 428 -13156631 -13156498 -13156365 -13156232 -13156092 -13155953 -13155813 -13155674 -13155534 ; -13155394 -13155255

CA06494, Revision 0000 Page 54 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I P,,I 850 1 STEAM GENERATOR I PFW,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW. DEG F UMFW.D, UMFW-IND, UMFW-WD, UM-FW.IND, UMFW-WND, UMFW-INoD UMFW-ND, UMFW.IND, UMrw-IND, UMFW-WND, UMMIVND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/lir Ibrm/hr 452 -12719842 -12719749 -12719655 -12719562 -12719469 -12719376 -12719283 -12719190 -12719097 -12719004 -12718911 450 -12757190 -12757090 -12756990 -12756891 -12756791 -12756691 -12756591 -12756492 -12756392 -12756292 -12756193 448 -12794152 -12794053 -12793953 -12793853 -12793747 -12793640 -12793534 -12793428 -12793321 -12793222 -12793122 446 -12831115 -12831015 -12830915 -12830816 -12830703 -12830590 -12830477 -12830364 -12830251 -12830151 -12830051 444 -12868077 -12867978 -12867878 -12867778 -12867658 -12867539 -12867419 -12867300 -12867180 -12867080 -12866980 442 -12905040 -12904940 -12904840 -12904741 -12904614 -12904488 -12904362 -12904235 -12904109 -12904009 -12903910 440 -12942002 -12941903 -12941803 -12941703 -12941570 -12941437 -12941304 -12941171 -12941038 -12940939 -12940839 438 -12978652 -12978546 -12978440 -12978333 -12978200 -12978067 -12977934 -12977802 -12977669 -12977562 -12977456 436 -13015303 -13015189 -13015076 -13014963 -13014831 -13014698 -13014565 -13014432 -13014299 -13014186 -13014073 434 -13051953 -13051833 -13051713 -13051594 -13051461 -13051328 -13051195 -13051062 -13050929 -13050809 -13050689 432 -13088603 -13088476 -13088350 -13088224 -13088091 -13087958 -13087825 -13087692 -13087559 -13087433 -13087306 430 -13125253 -13125120 -13124987 -13124854 -13124721 -13124588 -13124455 -13124322 -13124189 -13124056 -13123923 428 -13161617 -13161484 -13161351 -13161218 -13161078 -13160939 -13160799 -13160660 -13160520 -13160380 -13160241 STEAM GENERATOR 2 PW, PSIA 770 790 780 800 810 820. 830 840 850 860 870 Trw, DEG F UMFW.IND, UMFW.IND, UMFW-lD, UMVWIND, UMW.WD, UMFWIND, UMFW-ND, UMFWIND, UMMI.Wn, UMWIND, UMFW.ID, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibn/vlr 452 -12719842 -12719749 -12719655 -12719562 -12719469 -12719376 -12719283 -12719190 -12719097 -12719004 -12718911 450 -12757190 -12757090 -12756990 -12756891 -12756791 -12756691 -12756591 -12756492 -12756392 -12756292 -12756193 448 -12794152 -12794053 -12793953 -12793853 -12793747 -12793640 -12793534 -12793428 -12793321 -12793222 -12793122 446 -12831115 -12831015 -12830915 -12830816 -12830703 -12830590 -12830477 -12830364 -12830251 -12830151 -12830051 444 -12868077 -12867978 -12867878 -12867778 -12867658 -12867539 -12867419 -12867300 -12867180 -12867080 -12866980 442 -12905040 -12904940 -12904840 -12904741 -12904614 -12904488 -12904362 -12904235 -12904109 -12904009 -12903910 440 -12942002 -12941903 -12941803 -12941703 -12941570 -12941437 -12941304 -12941171 -12941038 -12940939 -12940839 438 -12978652 -12978546 -12978440 -12978333 -12978200 -12978067 -12977934 -12977802 -12977669 -12977562 -12977456 436 -13015303 -13015189 -13015076 -13014963 -13014831 -13014698 -13014565 -13014432 -13014299 -13014186 -13014073 434 -13051953 -13051833 -13051713 -13051594 -13051461 -13051328 -13051195 -13051062 -13050929 -13050809 -13050689 432 -13088603 -13088476 -13088350 -13088224 -13088091 -13087958 -13087825 -13087692 -13087559 -13087433 -13087306 430 -13125253 -13125120 -13124987 -13124854 -13124721 -13124588 -13124455 -13124322 -13124189 -13124056 -13123923 428 -13161617 -13161484 -13161351 -13161218 -13161078 -13160939 13160799 -13160660 -13160520 -13160380 -13160241

CA06494, Revision 0000 Page 55 of 132 CALORIMETrITC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I P,, 1 840 1 STEAM GENERATOR I .

PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 Trw. DEG F UMrW-tND. UMFW.tND, UMFW-tNo, UMFW.IND- UMFW.WD- UMMIND. UMMVNO, UMIwND, UMFWtNND- UMFW.IND, UMF%.4IND, Ibmn/hr Ibn/hr Ibm/hr Ibm/tr Ibm/hr Ibm/hr Ibmt/r Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12723166 -12723073 -12722979 -12722886 -12722793 -12722700 -12722607 -12722514 -12722421 -12722328 -12722235 450 -12760514 -12760414 -12760314 -12760215 -12760115 -12760015 -12759915 -12759816 -12759716 -12759616 -12759517 448 -12797476 -12797377 -12797277 -12797177 -12797071 -12796964 -12796858 -12796752 -12796645 -12796546 -12796446 446 -12834439 -12834339 -12834239 -12834140 -12834027 -12833914 -12833801 -12833688 -12833575 -12833475 -12833375 444 -12871401 -12871302 -12871202 -12871102 -12870982 -12870863 -12870743 -12870623 -12870504 -12870404 -12870304 442 -12908364 -12908264 -12908164 -12908065 -12907938 -12907812 -12907686 -12907559 -12907433 -12907333 -12907234 440 -12945326 -12945227 -12945127 -12945027 -12944894 -12944761 -12944628 -12944495 -12944362 -12944263 -12944163 438 -12981976 -12981870 -12981764 -12981657 -12981524 -12981391 -12981258 -12981125 -12980993 -12980886 -12980780 436 -13018626 -13018513 -13018400 -13018287 -13018154 -13018022 -13017889 -13017756 -13017623 -13017510 -13017397 434 -13055277 -13055157 -13055037 -13054918 -13054785 -13054652 -13054519 -13054386 -13054253 -13054133 -13054013 432 -13091927 -13091800 -13091674 -13091548 -13091415 -13091282 -13091149 -13091016 -13090883 -13090757 -13090630 430 -13128577 -13128444 -13128311 -13128178 -13128045 -13127912 -13127779 -13127646 -13127513 -13127380 -13127247 428 -13164941 -13164808 -13164675 -13164542 -13164402 -13164263 -13164123 -13163984 -13163844 -13163704 -13163565

_ __STEAM GENERATOR 2 PFW. PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFIND- UMFW.IND, UMFW.IND. UMFW.IND- UMFW-IND, TFW. DEG F UMFW.IND- UMWOND. UMFW.ND, UMFW.IND UMFW.WND), Umr.tN Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibn/hr Ibm/hr Ibn/hlr 452 -12723166 -12723073 -12722979 -12722886 -12722793 -12722700 -12722607 -12722514 -12722421 -12722328 -12722235 450 -12760514 -12760414 -12760314 -12760215 -12760115 -12760015 -12759915 -12759816 -12759716 -12759616 -12759517 448 -12797476 -12797377 -12797277 -12797177 -12797071 -12796964 -12796858 -12796752 -12796645 -12796546 -12796446 446 -12834439 -12834339 -12834239 -12834140 -12834027 -12833914 -12833801 -12833688 -12833575 -12833475 -12833375 444 -12871401 -12871302 -12871202 -12871102 -12870982 -12870863 -12870743 -12870623 -12870504 -12870404 -12870304 442 -12908364 -12908264 -12908164 -12908065 -12907938 -12907812 -12907686 -12907559 -12907433 -12907333 -12907234 440 -12945326 -12945227 -12945127 -12945027 -12944894 -12944761 -12944628 -12944495 -12944362 -12944263 -12944163 438 -12981976 -12981870 -12981764 -12981657 -12981524 -12981391 -12981258 -12981125 -12980993 -12980886 -12980780 436 -13018626 -13018513 -13018400 -13018287 -13018154 -13018022 -13017889 -13017756 -13017623 -13017510 -13017397 434 -13055277 -13055157 -13055037 -13054918 -13054785 -13054652 -13054519 -13054386 -13054253 -13054133 -13054013 432 -13091927 -13091800 -13091674 -13091548 -13091415 -13091282 -13091149 -13091016 -13090883 -13090757 -13090630 430 -13128577 -13128444 -13128311 -13128178 -13128045 -13127912 -13127779 -13127646 -13127513 -13127380 -13127247 428 -13164941 -13164808 -13164675 -13164542 -13164402 -13164263 -13164123 -13163984 -13163844 -13163704 -13163565

CA06494, Revision 0000 Page 56 of 132 CALORIMETRIC UNCERTAINTY UsING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I PZM 830 I STEAM GENERATOR I Prw, PSIA 770 780 790 800 810 820 830 840 850 860 870 TFvW DEG F UMFw.IND. UMFW.!ND. UMFW-.ND, UMFW.IWD- UMFW.WD, UMFW.ND, UMMVIND, UMFW-IND, UMFW.IN-, UMMIND, UMFW.IND.

Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/lr Ibm/hr Ibm/hr Ibnm/hr 452 -12728152 -12728058 -12727965 -12727872 -12727779 -12727686 -12727593 -12727500 -12727407 -12727314 -12727221 450 -12765500 -12765400 -12765300 -12765201 -12765101 -12765001 -12764901 -12764802 -12764702 -12764602 -12764502 448 -12802462 -12802362 -12802263 -12802163 -12802057 -12801950 -12801844 -12801738 -12801631 .12801531 -12801432 446 -12839425 -12839325 -12839225 -12839126 -12839013 -12838900 -12838787 -12838673 -12838560 -12838461 -12838361 444 -12876387 .12876288 -12876188 -12876088 -12875968 -12875849 -12875729 -12875609 -12875490 -12875390 -12875290 442 -12913350 -12913250 -12913150 -12913051 -12912924 -12912798 -12912672 -12912545 -12912419 -12912319 -12912220 440 -12950312 -12950213 -12950113 -12950013 -12949880 -12949747 -12949614 -12949481 -12949348 -12949249 -12949149 438 -12986962 -12986856 -12986750 -12986643 -12986510 -12986377 -12986244 -12986111 -12985978 -12985872 -12985766 436 -13023612 -13023499 -13023386 -13023273 -13023140 -13023007 -13022875 -13022742 -13022609 -13022496 -13022383 434 -13060263 -13060143 -13060023 -13059904 -13059771 -13059638 -13059505 -13059372 -13059239 -13059119 -13058999 432 -13096913 -13096786 -13096660 -13096534 -13096401 -13096268 -13096135 -13096002 -13095869 -13095743 -13095616 430 -13133563 -13133430 -13133297 -13133164 -13133031 -13132898 -13132765 -13132632 -13132499 -13132366 -13132233 428 -13169927 -13169794 -13169661 -13169528 -13169388 -13169249 -13169109 -13168970 -13168830 -13168690 -13168551 STEAM GENERATOR 2 _ _

PFW, PSTA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UMFW IND. UMFW.ND. UMFWIND, UMFAIVND, UMFW SND' UMFWAND, UMFW.INDO UMFWIND, UMFWWND, UMFWIND, UMFW-WND, Ibmn/hr Ibmnhr Ibm/vhr Ibm/hi Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12728152 -12728058 -12727965 -12727872 -12727779 -12727686 -12727593 -12727500 -12727407 -12727314 -12727221 450 -12765500 -12765400 -12765300 -12765201 -12765101 -12765001 -12764901 -12764802 -12764702 -12764602 -12764502 448 -12802462 -12802362 -12802263 -12802163 -12802057 -12801950 -12801844 -12801738 -12801631 -128OI531 -12801432 446 -12839425 -12839325 -12839225 -12839126 -12839013 -12838900 -12838787 -12838673 -12838560 -12838461 -12838361 444 -12876387 -12876288 -12876188 -12876088 -12875968 -12875849 -12875729 -12875609 -12875490 -12875390 -12875290 442 -12913350 -12913250 -12913150 -12913051 -12912924 -12912798 -12912672 -12912545 -12912419 -12912319 -12912220 440 -12950312 -12950213 -12950113 -12950013 -12949880 -12949747 -12949614 -12949481 -12949348 -12949249 -12949149 438 -12986962 -12986856 -12986750 -12986643 -12986510 -12986377 -12986244 -12986111 -12985978 -12985872 -12985766 436 -13023612 -13023499 -13023386 -13023273 -13023140 -13023007 -13022875 -13022742 -13022609 -13022496 -13022383 434 -13060263 -13060143 -13060023 -13059904 -13059771 -13059638 -13059505 -13059372 -13059239 -13059119 -13058999 432 -13096913 -13096786 -13096660 -13096534 -13096401 -13096268 -13096135 -13096002 -13095869 -13095743 -13095616 430 -13133563 -13133430 -13133297 -13133164 -13133031 -13132898 -13132765 -13132632 -13132499 -13132366 -13132233 428 -13169927 -13169794 -13169661 -13169528 -13169388 -13169249 -13169109 -13168970 -13168830 -13168690 -13168551

CA06494, Revision 0000 Page 57 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 820I STEAM GENERATOR I PFW, PS1A 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UMpW IND, UMFW.IND, UMFW.IND, UMFV.IND, UMMW.IND, UMFWIND, UMFW.ND, UMFW-INDO UMFWIND, UMFW.IND, UMFWMIND, Ibm/hr Ibm/hr Ibm/lr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibrm/hr Ibm/hr 452 -12733138 -12733044 -12732951 -12732858 -12732765 -12732672 -12732579 -12732486 -12732393 -12732300 -12732207 450 -12770486 -12770386 -12770286 -12770186 -12770087 -12769987 -12769887 -12769788 -12769688 -12769588 -12769488 448 -12807448 -12807348 -12807249 -12807149 -12807043 -12806936 -12806830 -12806724 -12806617 -12806517 -12806418 446 -12844411 -12844311 -12844211 -12844112 -12843998 -12843885 -12843772 -12843659 -12843546 -12843447 -12843347 444 -12881373 -12881273 -12881174 -12881074 -12880954 -12880835 -12880715 -12880595 -12880476 -12880376 -12880276 442 -12918336 -12918236 -12918136 -12918037 -12917910 -12917784 -12917658 -12917531 -12917405 -12917305 -12917206 440 -12955298 -12955199 -12955099 -12954999 -12954866 -12954733 -12954600 -12954467 -12954334 -12954235 -12954135 438 -12991948 -12991842 -12991736 -12991629 -12991496 -12991363 -12991230 -12991097 -12990964 -12990858 -12990752 436 -13028598 -13028485 -13028372 -13028259 -13028126 -13027993 -13027860 -13027728 -13027595 -13027482 -13027369 434 .13065248 -13065129 -13065009 -13064889 -13064757 -13064624 -13064491 -13064358 -13064225 -13064105 -13063985 432 -13101899 -13101772 -13101646 -13101520 -13101387 -13101254 -13101121 -13100988 -13100855 -13100728 -13100602 430 -13138549 -13138416 -13138283 -13138150 -13138017 -13137884 -13137751 -13137618 -13137485 -13137352 -13137219 428 -13174913 -13174780 -13174647 -13174514 -13174374 -13174235 -13174095 -13173956 -13173816 -13173676 -13173537 STEAM GENERATOR 2 Pw, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW. DEG F UMFW-IND. UMFW.IND, UMFW.IND, UMFWIND, UMFWV.NI, UMIIND, U U1 NUFW-IND, UMFW.IND. UMFW.IND, UMFW.Nb, Ibm/hr Ibn/hr Ibm/hr Ibmnhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12733138 -12733044 -12732951 -12732858 -12732765 -12732672 -12732579 -12732486 -12732393 -12732300 -12732207 450 -12770486 -12770386 -12770286 -12770186 -12770087 -12769987 -12769887 -12769788 -12769688 -12769588 -12769488 448 -12807448 -12807348 -12807249 -12807149 -12807043 -12806936 -12806830 -12806724 -12806617 -12806517 -12806418 446 -12844411 -12844311 -12844211 -12844112 -12843998 -12843885 -12843772 -12843659 -12843546 -12843447 -12843347 444 -12881373 -12881273 -12881174 -12881074 -12880954 -12880835 -12880715 -12880595 -12880476 -12880376 -12880276 442 -12918336 -12918236 -12918136 -12918037 -12917910 -12917784 -12917658 -12917531 -12917405 -12917305 -12917206 440 -12955298 -12955199 -12955099 -12954999 -12954866 -12954733 -12954600 -12954467 -12954334 -12954235 -12954135 438 -12991948 -12991842 -12991736 -12991629 -12991496 -12991363 -12991230 -12991097 -12990964 -12990858 -12990752 436 -13028598 -13028485 -13028372 -13028259 -13028126 -13027993 -13027860 -13027728 -13027595 -13027482- -13027369 434 -13065248 -13065129 -13065009 -13064889 -13064757 -13064624 -13064491 -13064358 -13064225 -13064105 -13063985 432 -13101899 -13101772 -13101646 -13101520 -13101387 -13101254 -13101121 -13100988 -13100855 -13100728 -13100602 430 -13138549 -13138416 -13138283 -13138150 -13138017 -13137884 -13137751 -13137618 -13137485 -13137352 13137219 428 -13174913 -13174780 -13174647 -13174514 -13174374 -13174235 -13174095 -13173956 -13173816 -13173676 13173537

CA06494, Revision 0000 Page 58 of 132 CALORIMETRIC UNCERTAINTY USING TIM AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 810 L

._. STEAM GENERATOR I PFW, PSIA 770 790 780 g00 810 820 830 840 850 860 870 UMFVFWNDD, UFWNNtD, UMFW-D, UMFW.-ND, TFw, DEG F UMFW.IND, UMFW.IND. UMFW.!ND, UMrWIND, UMW.ND, U Ibbn/hr Ibm/dhr Ibm/hr Ibm/hr Inb/hr Ibnm/h Ibm/hr Ibm/hr .Ibm/hr Ibm/hr Ibm/hr 452 -12738123 -12738030 -12737937 -12737844 -12737751 -12737658 -12737565 -12737472 -12737379 -12737286 -12737193 450 -12775472 -12775372 -12775272 -12775172 -12775073 -12774973 -12774873 .12774774 -12774674 -12774574 -12774474 448 -12812434 -12812334 -12812235 -12812135 -12812029 -12811922 -12811816 -12811709 -12811603 -12811503 -12811404 446 -12849397 -12849297 -12849197 -12849097 -12848984 -12848871 -12848758 -12848645 -12848532 -12848433 -12848333 444 -12886359 -12886259 -12886160 -12886060 -12885940 -12885821 -12885701 -12885581 -12885462 -12885362 -12885262 442 -12923322 -12923222 -12923122 -12923023 -12922896 -12922770 -12922644 -12922517 -12922391 -12922291 -12922192 440 -12960284 -12960184 -12960085 -12959985 -12959852 -12959719 -12959586 -12959453 -12959320 -12959221 -12959121 438 -12996934 -12996828 . -12996722 -12996615 -12996482 -12996349 -12996216 -12996083 -12995950 -12995844 -12995738 436 -13033584 -13033471 -13033358 -13033245 -13033112 -13032979 -13032846 -13032713 -13032580 -13032467 -13032354 434 -13070234 -13070115 -13069995 -13069875 -13069742 -13069609 -13069477 -13069344 -13069211 -13069091 -13068971 432 -13106884 -13106758 -13106632 -13106506 -13106373 -13106240 -13106107 -13105974 -13105841 -13105714 -13105588 430 -13143535 -13143402 -13143269 -13143136 -13143003 -13142870 -13142737 -13142604 -13142471 -13142338 -13142205 428 -13179899 -13179766 -13179633 -13179500 -13179360 -13179221 -13179081 -13178941 -13178802 -13178662 -13178523

-- _ STEAM GENERATOR 2 Pn. PSIA 770 790 780 800 810 820 830 840 850 860 870 UMMIND, UMFW4ND, UMMIND. UMIW.ND, UMrW.Nty UMmrn, TFv, DEG F UMW-IND, UMFW.IND, UMFW.IND, UMrw.ID. UMrW.IND, Ibn/hr Ibmthr Ibmn/hr Ibm/hr Ibmthr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12738123 -12738030 -12737937 -12737844 -12737751 -12737658 -12737565 -12737472 -12737379 -12737286 -12737193 450 -12775472 -12775372 -12775272 -12775172 -12775073 -12774973 -12774873 -12774774 -12774674 -12774574 -12774474 448 -12812434 -12812334 -12812235 -12812135 -12812029 -12811922 -12811816 -12811709 -12811603 -12811503 -12811404 446 -12849397 -12849297 -12849197 -12849097 -12848984 -12848871 -12848758 -12848645 -12848532 -12848433 -12848333 444 -12886359 -12886259 -12886160 -12886060 -12885940 -12885821 -12885701 -12885581 -12885462 -12885362 -12885262 442 -12923322 -12923222 -12923122 -12923023 -12922896 -12922770 -12922644 -12922517 -12922391 -12922291 -12922192 440 -12960284 -12960184 -12960085 -12959985 -12959852 -12959719 -12959586 -12959453 -12959320 -12959221 -12959121 438 -12996934 -12996828 -12996722 -12996615 -12996482 -12996349 -12996216 -12996083 -12995950 -12995844 -12995738 436 -13033584 -13033471 -13033358 -13033245 -13033112 -13032979 -13032846 -13032713 -13032580 -13032467 -13032354 434 -13070234 -13070115 -13069995 -13069875 -13069742 -13069609 -13069477 -13069344 -13069211 -13069091 -13068971 432 -13106884 -13106758 -13106632 -13106506 -13106373 -13106240 -13106107 -13105974 -13105841 -13105714 -13105588 430 -13143535 -13143402 -13143269 -13143136 -13143003 -13142870 -13142737 -13142604 -13142471 -13142338 -13142205 428 -13179899 1 -13179766 -13179633 -13179500 -13179360 -13179221 -13179081 -13 178941 -13178802 -13178662 -13178523

CA06494, Revision 0000 Page 59 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSS FLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 800 STEAM GENERATOR I l Pr, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UMrwF.IN, UMpm-w., UMMIND. UMMIND, UMFWJ.ND. UMFW-IND, UMMW.ND, UMFW.tND, UMFVDIND UMFW.VND, UMFW-IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12743109 -12743016 -12742923 -12742830 -12742737 -12742644 -12742551 -12742458 -12742365 -12742272 -12742179 450 -12780458 -12780358 -12780258 -12780158 -12780059 -12779959 -12779859 -12779759 -12779660 -12779560 -12779460 448 -12817420 -12817320 -12817221 -12817121 -12817015 -12816908 -12816802 -12816695 -12816589 -12816489 -12816390 446 -12854383 -12854283 -12854183 -12854083 -12853970 -12853857 -12853744 -12853631 -12853518 -12853419 -12853319 444 -12891345 -12891245 -12891146 -12891046 -12890926 -12890807 -12890687 -12890567 -12890448 -12890348 -12890248 442 -12928308 -12928208 -12928108 -12928008 -12927882 -12927756 -12927630 -12927503 -12927377 -12927277 -12927177 440 -12965270 -12965170 -12965071 -12964971 -12964838 -12964705 -12964572 -12964439 -12964306 -12964206 -12964107 438 -13001920 -13001814 -13001707 -13001601 -13001468 -13001335 -13001202 -13001069 -13000936 -13000830 -13000724 436 -13038570 -13038457 -13038344 -13038231 -13038098 -13037965 -13037832 -13037699 -13037566 -13037453 -13037340 434 -13075220 -13075101 -13074981 -13074861 -13074728 -13074595 -13074462 -13074330 -13074197 -13074077 -13073957 432 -13111870 -13111744 -13111618 -13111491 -13111359 -13111226 -13111093 -13110960 -13110827 -13110700 -13110574 430 -13148520 -13148388 -13148255 -13148122 -13147989 -13147856 -13147723 -13147590 -13147457 -13147324 -13147191 428 -13184885 -13184752 -13184619 -13184486 -13184346 -13184207 -13184067 -13183927 -13183788 -13183648 -13183509 STEAM GENERATOR 2 PWv PSIA 770 790 780 800 810 820 830 840 850 860 870 TF~v, DEC F UMpw.NND, UMFW.DND. ND.

UMMFIND. UMW.IND, UMF OND, UMFW.ND, UMFW.IND, UMMWIND, UMF-IND, UMMW.IND, Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibn/hr Ibmn/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12743109 -12743016 -12742923 -12742830 -12742737 -12742644 -12742551 -12742458 -12742365 -12742272 -12742179 450 -12780458 -12780358 -12780258 -12780158 -12780059 -12779959 -12779859 -12779759 -12779660 -12779560 -12779460 448 -12817420 -12817320 -12817221 -12817121 -12817015 -12816908 -12816802 -12816695 -12816589 -12816489 -12816390 446 -12854383 -12854283 -12854183 -12854083 -12853970 -12853857 -12853744 -12853631 -12853518 -12853419 -12853319 444 -12891345 -12891245 -12891146 -12891046 -12890926 -12890807 -12890687 -12890567 -12890448 -12890348 -12890248 442 -12928308 -12928208 -12928108 -12928008 -12927882 -12927756 -12927630 -12927503 -12927377 -12927277 -12927177 440 -12965270 -12965170 -12965071 -12964971 -12964838 -129(4705 -12964572 -12964439 -12964306 -12964206 -12964107 438 -13001920 -13001814 -13001707 -13001601 -13001468 -13001335 -13001202 -13001069 -13000936 -13000830 -13000724 436 -13038570 -13038457 -13038344 -13038231 -13038098 -13037965 -13037832 -13037699 -13037566 -13037453 -13037340 434 -13075220 -13075101 -13074981 .13074861 -13074728 -13074595 -13074462 -13074330 -13074197 -13074077 -13073957 432 -13111870 -13111744 -13111618 -13111491 -13111359 -13111226 -13111093 -13110960 -13110827 -13110700 -13110574 430 -13148520 -13148388 -13148255 -13148122 -13147989 -13147856 -13147723 -13147590 -13147457 -13147324 -13147191 428 -13184885 -13184752 -13184619 -13184486 -13184346 -13184207 -13184067 -13183927 -13183788 -13183648 -13183509

CA06494, Revision 0000 Page 60 of 132 CALORIMETRIC UNCERTAINTY USING TlIE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 7

7n90 Inn STEAM GENERATOR I l PrW, PSIA 770 790 780 800 810 820 830 840 850 860 870 Tw, DEG F UMFW.IND. UMFW.-ND. UMW.IND, UMFW.IND, UMFW.IND, UMV.!ND. UMFW.-ND, UMFW.IND. U UMFW.IN, UMFW.IND,

_Ibm/hlr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/lr Ibm/hr 452 -12748095 -12748002 -12747909 - 12747816 -12747723 -12747630 -12747537 -12747444 -12747351 -12747258 -12747165 450 -12785443 -12785344 -12785244 -12785144 -12785045 -12784945 -12784845 -12784745 -12784646 -12784546 -12784446 448 -12822406 -12822306 -12822207 -12822107 -12822000 -12821894 -12821788 -12821681 -12821575 -12821475 -12821376 446 -12859369 -12859269 -12859169 -12859069 -12858956. -12858843 -12858730 -12858617 -12858504 -12858405 -12858305 444 -12896331 -12896231 -12896132 -12896032 -12895912 -12895793 -12895673 -12895553 -12895434 -12895334 -12895234 442 -12933294 -12933194 -12933094 -12932994 -12932868 -12932742 -12932615 -12932489 -12932363 -12932263 -12932163 440 -12970256 -12970156 -12970057 -12969957 -12969824 -12969691 -12969558 -12969425 -12969292 -12969192 -12969093 438 -13006906 -13006800 -13006693 -13006587 -13006454 -13006321 -13006188 -13006055 -13005922 -13005816 -13005710 436 -13043556 -13043443 -13043330 -13043217 -13043084 -13042951 -13042818 -13042685 -13042552 -13042439 -13042326 434 -13080206 -13080087 -13079967 -13079847 -13079714 -13079581 -13079448 -13079315 -13079183 -13079063 -13078943 432 -13116856 -13116730 -13116604 -13116477 -13116344 -13116212 -13116079 -13115946 -13115813 -13115686 -13115560 430 -13153506 -13153373 -13153241 -13153108 -13152975 -13152842 -13152709 -13152576 -13152443 -13152310 -13152177 428 -13189871 -13189738 -13189605 -13189472 -13189332 -13189193 -13189053 -13188913 -13188774 -13188634 -13188495 STEAM GENERATOR 2 PFWPSIA 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UMnV.tND, UMW.IND, UMFW.WD. UMFW.!NDO, UM IND, UMMIND, UMWIND, UMFW-DD, UMFvIND, UMFW.IND. UMFWFW-r.

Ibm/hr Ibmr/ir Ibm/hr Ibm/hr Ibnmhr . lbm/hr' Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibnmlhr 452 -12748095 -12748002 -12747909 -12747816 -12747723 -12747630 -12747537 -12747444 -12747351 -12747258 -12747165 450 -12785443 -12785344 -12785244 -12785144 -12785045 -12784945 -12784845 -12784745 -12784646 -12784546 -12784446 448 -12822406 -12822306 -12822207 -12822107 -12822000 -12821894 -12821788 -12821681 -12821575 -12821475 -12821376 446 -12859369 -12859269 -12859169 -12859069 -12858956 -12858843 -12858730 -12858617 -12858504 -12858405 -12858305 444 -12896331 -12896231 -12896132 -12896032 -12895912 -12895793 -12895673 -12895553 -12895434 -12895334 -12895234 442 -12933294 -12933194 -12933094 -12932994 -12932868 -12932742 -12932615 -12932489 -12932363 -12932263 -12932163 440 -12970256 -12970156 -12970057 -12969957 -12969824 -12969691 -12969558 -12969425 -12969292 -12969192 -12969093 438 -13006906 -13006800 -13006693 -13006587 -13006454 -13006321 -13006188 -13006055 -13005922 -13005816 -13005710 436 -13043556 -13043443 -13043330 -13043217 -13043084 -13042951 -13042818 -13042685 -13042552 -13042439 -13042326 434 -13080206 -13080087 -13079967 -13079847 -13079714 -13079581 -13079448 -13079315 -13079183 -13079063 -13078943 432 -13116856 -13116730 -13116604 -13116477 -13116344 -13116212 -13116079 -13115946 -13115813 -13115686 -13115560 430 13153506 -13153373 -13153241 -13153108 -13152975 -13152842 -13152709 -13152576 -13152443 -13152310 -13152177 428 -13189871 -13189738 -13189605 -13189472 -13189332 -13189193 -13189053 -13188913 -13188774 -13188634 -13188495

CA06494, Revision 0000 Page 61 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROsrFLow ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I-:-- 4 780 I V.ATFAM GFNERATOR I Pr,, PS IA 770 790 780 800 810 820 830 840 850 860 870 Tnw, DEG F UMnIwND, UMMIWND, UM-w.MND, UMnWv-.ND, UMMwJND, UMrFWND, UMPW-.ND, UMMw.nND, UMFV.IND, UMFW.!NDO UMFv.IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr 452 -12751419 -12751326 -12751233 -12751140 -12751047 -12750954 -12750861 -12750768 -12750675 -12750582 -12750489 450 -12788767 -12788668 -12788568 -12788468 -12788369 -12788269 -12788169 -12788069 -12787970 -12787870 -12787770 448 -12825730 -12825630 -12825531 -12825431 -12825324 -12825218 -12825112 -12825005 -12824899 -12824799 -12824700 446 -12862692 -12862593 -12862493 -12862393 -12862280 -12862167 -12862054 -12861941 -12861828 -12861729 -12861629 444 -12899655 -12899555 -12899456 -12899356 -12899236 -12899117 -12898997 -12898877 -12898758 -12898658 -12898558 442 -12936618 -12936518 -12936418 -12936318 -12936192 -12936066 -12935939 -12935813 -12935687 -12935587 -12935487 440 -12973580 -12973480 -12973381 -12973281 -12973148 -12973015 -12972882 -12972749 -12972616 -12972516 -12972417 438 -13010230 -13010124 -13010017 -13009911 -13009778 -13009645 -13009512 -13009379 -13009246 -13009140 -13009034 436 -13046880 -13046767 -13046654 -13046541 -13046408 -13046275 -13046142 -13046009 -13045876 -13045763 -13045650 434 -13083530 -13083411 -13083291 -13083171 -13083038 -13082905 -13082772 -13082639 -13082506 -13082387 -13082267 432 -13120180 -13120054 -13119928 -13119801 -13119668 -13119535 -13119403 -13119270 -13119137 -13119010 -13118884 430 -13156830 -13156697 -13156565 -13156432. -13156299 -13156166 -13156033 -13155900 -13155767 -13155634 -13155501 428 -13193195 -13193062 -13192929 -13192796 1 -13192656 -13192517 -13192377 -13192237 -13192098 -13191958 -13191819

.__ _= _ _ _STEAM GENERATOR 2 _

Prw, PS[A 770 790 780 800 . 810 820 .830 840 850 860 870 Trw, DEG F UMmW.-ND, UMIMWIND, UMIW.IND, UM,%V.IND, UMMINW-D. UMFW.TND, UMI-WND, UMnv.sND, UMMIND., UMWIND, UMIv-IND, Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibnmhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12751419 -12751326 -12751233 -12751140 -12751047 -12750954 -12750861 -12750768 -12750675 -12750582 -12750489 450 -12788767 -12788668 -12788568 -12788468 -12788369 -12788269 -12788169 -12788069 -12787970 -12787870 -12787770 448 -12825730 -12825630 -12825531 -12825431 -12825324 -12825218 -12825112 -12825005 -12824899 -12824799 -12824700 446 -12862692 -12862593 -12862493 -12862393 -12862280 -12862167 -12862054 -12861941 -12861828 -12861729 -12861629 444 -12899655 -12899555 -12899456 -12899356 -12899236 -12899117 -12898997 -12898877 -12898758 -12898658 -12898558 442 -12936618 -12936518 -12936418 -12936318 -12936192 -12936066 -12935939 -12935813 -12935687 -12935587 -12935487 440 -12973580 -12973480 -12973381 -12973281 -12973148 -12973015 -12972882 -12972749 -12972616 -12972516 -12972417 438 -13010230 -13010124 -13010017 -13009911 -13009778 -13009645 -13009512 -13009379 -13009246 -13009140 -13009034 436 -13046880 -13046767 -13046654 -13046541 -13046408 -13046275 -13046142 -13046009 -13045876 -13045763 -13045650 434 -13083530 -13083411 -13083291 -13083171 -13083038 -13082905 -13082772 -13082639 -13082506 -13082387 -13082267 432 -13120180 -13120054 -13119928 -13119801 -13119668 -13119535 -13119403 -13119270 -13119137 -13119010 -13118884 430 -13156830 -13156697 -13156565 -13156432 -13156299 -13156166 -13156033 -13155900 -13155767 -13155634 -13155501 428 -13193195 -13193062 -13192929 -13192796 -13192656 -13192517 -13192377 -13192237 -13192098 -13191958 -13191819 J

CA06494, Revision 0000 Page 62 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 770 I

- STEAM GENERATOR I PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFWIND, VND.

UNIFW TFw. DEG F UMFW.IND. UMW.IND, UMMI.ND, UMFw.vND, UMFW.ND, UMM-ND, UMFW.VND, UMFW. ND, UMFW.TND, Ibm/hr Ibmnhr Ibm/ir Ibm/hr Ibm/hr Ibm/hr Ibm/hr ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12756405 -12756312 -12756219 -12756126 -12756033 -12755940 -12755847 -12755754 -12755661 -12755568 -12755475 450 .12793753 -12793654 -12793554 -12793454 -12793355 -12793255 -12793155 -12793055 -12792956 -12792856 -12792756 448 -12830716 -12830616 -12830516 -12830417 -12830310 -12830204 -12830098 -12829991 -12829885 -12829785 -12829685 446 -12867678 -12867579 -12867479 -12867379 -12867266 -12867153 -12867040 -12866927 -12866814 -12866714 -12866615 444 -12904641 -12904541 -12904442 -12904342 -12904222 -12904102 -12903983 -12903863 -12903743 -12903644 -12903544 442 -12941603 -12941504 -12941404 -12941304 -12941178 -12941052 -12940925 -12940799 -12940673 -12940573 -12940473 440 -12978566 -12978466 -12978367 -12978267 -12978134 -12978001 -12977868 -12977735 -12977602 -12977502 -12977403 438 -13015216 -13015110 -13015003 -13014897 -13014764 -13014631 -13014498 -13014365 -13014232 -13014126 -13014019 436 -13051866 -13051753 -13051640 -13051527 -13051394. -13051261 -13051128 -13050995 -13050862 -13050749 -13050636 434 -13088516 -13088397 -13088277 -13088157 -13088024 -13087891 -13087758 -13087625 -13087492 -13087373 -13087253 432 -13125166 -13125040 -13124914 -13124787 -13124654 -13124521 -13124388 -13124256 -13124123 -13123996 -13123870 430 -13161816 -13161683 -13161550 -13161417 -13161285 -13161152 -13161019 -13160886 -13160753 -13160620 -13160487 428 -13198181 -13198048 -13197915 -13197782 -13197642 -13197502 -13197363 -13197223 -13197084 -13196944 -13196804 STEAM GENERATOR 2 PF,,PSIA 770 790 780 800 810 820 830 840 850 860 870 UMFW.jN, M UMFWDIND, UMYW.tND. UMFW.lND, TFw, DEG F UMFW-INo, UMFW.lND, UMM.IND, UMMWIND, UMFV .ND, U

_Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -12756405 -12756312 -12756219 -12756126 -12756033 -12755940 -12755847 -12755754 -12755661 -12755568 -12755475 450 -12793753 -12793654 -12793554 -12793454 -12793355 -12793255 -12793155 -12793055 -12792956 -12792856 -12792756 448 -12830716 -12830616 -12830516 -12830417 -12830310 -12830204 -12830098 -12829991 -12829885 -12829785 -12829685 446 -12867678 -12867579 -12867479 -12867379 -12867266 -12867153 -12867040 -12866927 -12866814 -12866714 -12866615 444 -12904641 -12904541 -12904442 -12904342 -12904222 -12904102 -12903983 -12903863 -12903743 -12903644 -12903544 442 -12941603 -12941504 -12941404 -12941304 -12941178 -12941052 -12940925 -12940799 -12940673 -12940573 -12940473 440 -12978566 -12978466 -12978367 -12978267 -12978134 -12978001 -12977868 -12977735 -12977602 -12977502 -12977403 438 -13015216 -13015110 -13015003 -13014897 -13014764 -13014631 -13014498 -13014365 -13014232 -13014126 -13014019 436 -13051866 -13051753 -13051640 -13051527 -13051394 -13051261 -13051128 -13050995 -13050862 -13050749 -13050636 434 -13088516 -13088397 -13088277 -13088157 -13088024 -13087891 -13087758 -13087625 -13087492 -13087373 -13087253 432 -13125166 -13125040 -13124914 -13124787 -13124654 -13124521 -13124388 -13124256 -13124123 -13123996 -13123870 430 -13161816 -13161683 -13161550 -13161417 -13161285 -13161152 -13161019 -13160886 -13160753 -13160620 -13160487 428 -13198181 -13198048 -13197915 -13197782 -13197642 -13197502 -13197363 -13197223 -13197084 -13196944 -13196804

CA06494, Revision 0000 Page 63 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 30, Feedwater Flow Temperature Contribution to Calorimetric Uncertainty, Unit 1

. 870 I STEAM GENERATOR I PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F U~jrm tNn, UMVW-,ND, UMFW .VD, UMFW IND UMMW-IND' UMFW.tND, UMMIND, UM rw tND, UMFW-IND, UMIW.IND. UMV.INDD Ibm/hr Ibm/hr Ibmn/hr Ibm-/hlr Ibn/lhr Ibm/tr lbmn/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr 452 -7628730 -7628674 -7628618 -7628562 -7628506 -7628450 -7628394 -7628338 -7628283 -7628227 -7628171 450 -7651150 -7651090 -7651030 -7650970 -7650910 -7650850 -7650790 -7650731 -7650671 -7650611 -7650551 448 -7673338 -7673278 -7673218 -7673159 -7673095 -7673031 -7672967 -7672903 -7672839 -7672779 -7672720 446 -7695527 -7695467 -7695407 -7695347 -7695279 -7695211 -7695144 -7695076 -7695008 -7694948 -7694888 444 -7717715 -7717655 -7717596 -7717536 -7717464 -7717392 -7717320 -7717248 -7717177 -7717117 -7717057 442 -7739904 -7739844 -7739784 -7739724 -7739648 -7739573 -7739497 -7739421 -7739345 -7739285 -7739225 440 -7762092 -7762033 -7761973 -7761913 -7761833 -7761753 -7761673 -7761594 -7761514 -7761454 -7761394 438 -7784093 -7784030 -7783966 -7783902 -7783822 -7783742 -7783662 -7783583 -7783503 -7783439 -7783375 436 -7806094 -7806027 -7805959 -7805891 -7805811 -7805731 -7805652 -7805572 -7805492 -7805424 -7805356 434 -7828096 -7828024 -7827952 -7827880 -7827800- -7827720 -7827641 -7827561 -7827481 -7827409 -7827337 432 -7850097 -7850021 -7849945 -7849869 -7849789 7849709 -7849630 -7849550 -7849470 -7849394 -7849318 430 -7872098 -7872018 -7871938 -7871858 -7871778 -7871698 -7871619 -7871539. -7871459 -7871379 -7871299 428 -7893927 -7893847 -7893767 -7893688 -7893604 -7893520 -7893436 -7893352 -7893268 -7893185 -7893101

__ _ _ _ _ _ STEAM GENERATOR 2 PrwPSIA 770 790 780 800 810 820 830 840 850 860 870

- UMNW.ND, UMFWND UMMWD, UMF.nW tD, Tpw,, DEG F UM.W4ND, UMM7WIND, UMFW-tND, UMFW.ND, UMFW UMFW.INDUMFW.>o, Ibmnhr Ibmf/hlr Ibm/ihr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/ihr IbmAir Ibm/hr Ibn/hr 452 -7619217 -7619162 -7619106 -7619050 -7618994 -7618938 -7618883 -7618827 -7618771 -7618715 -7618659 450 -7641609 -7641550 -7641490 -7641430 -7641370 -7641311 -7641251 -7641191 -7641131 -7641071 -7641012 448 -7663770 -7663711 -7663651 -7663591 -7663527 -7663463 -7663400 -7663336 -7663272 -7663212 -7663153 446 -7685931 -7685872 -7685812 -7685752 -7685684 -7685616 -7685549 -7685481 -7685413 -7685353 -7685294 444 -7708092 -7708032 -7707973 -7707913 -7707841 -7707769 -7707698 -7707626 -7707554 -7707494 -7707435 442 -7730253 -7730193 -7730134 -7730074 -7729998 -7729922 -7729847 -7729771 -7729695 -7729635 -7729576 440 -7752414 -7752354 -7752294 -7752235 -7752155 -7752075 -7751996 -7751916 -7751836 -7751776 -7751717 438 -7774388 -7774324 -7774260 -7774196 -7774117 -7774037 -7773957 -7773877 -7773798 -7773734 -7773670 436 -7796361 -7796293 -7796226 -7796158 -7796078 -7795998 -7795919 -7795839 -7795759 -7795692 -7795624 434 -7818335 -7818263 -7818191 -7818120 -7818040 -7817960 -7817880 -7817801 -7817721 -7817649 -7817577 432 -7840308 -7840233 -7840157 -7840081 -7840001 -7839922 -7839842 -7839762 -7839683 -7839607 -7839531 430 -7862282 -7862202 -7862123 -7862043 -7861963 -7861883 -7861804 -7861724 -7861644 -7861565 -7861485 428 -7884084 -7884004 -7883925 -7883845 -7883761 -7883678 -7883594 -7883510 -7883426 -7883343 -7883259

CA06494, Revision 0000 Page 64 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Pqru 1 860 1 STEAM GENERATOR I _ _ __

PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UMFIND, UMFW-IND, UMFWIND, UMFWIND, UMFW.WD, UMMW.IND, UMFW-IND, UMFW.IND, UMFW-IND, UMFW-ND, UMFW.IND, Ibm/hr Ibm/hr Ibrn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmthr Ibm/hr Ibm/lr 452 -7632720 -7632664 .7632609 -7632553 -7632497 -7632441 -7632385 -7632329 -7632273 -7632217 -7632162 450 -7655140 -7655080 -7655021 -7654961 -7654901 -7654841 -7654781 -7654721 -7654661 -7654602 -7654542 448 -7677329 -7677269 -7677209 -7677149 -7677085 -7677022 -7676958 -7676894 -7676830 -7676770 -7676710 446 -7699517 -7699458 -7699398 -7699338 -7699270 -7699202 .7699134 -7699067 -7698999 -7698939 -7698879 444 -7721706 -7721646 -7721586 -7721526 -7721455 -7721383 -7721311 -7721239 -7721167 -7721107 -7721048 442 -7743895 -7743835 -7743775 -7743715 -7743639 -7743563 - 7743488 -7743412 -7743336 -7743276 -7743216 440 -7766083 -7766023 -7765963 -7765904 -7765824 -7765744 -7765664 -7765584 -7765505 -7765445 -7765385 438 -7788084 -7788020 -7787957 -7787893 -7787813 -7787733 -7787653 -7787573 -7787494 -7787430 -7787366 436 -7810085 -7810017 -7809950 -7809882 -7809802 -7809722 -7809642 -7809562 -7809483 -7809415 -7809347 434 -7832086 -7832014 -7831943 -7831871 -7831791 -7831711 -7831631 -7831551 -7831472 -7831400 -7831328 432 -7854087 -7854011 -7853936 -7853860 -7853780 -7853700 -7853620 -7853541 -7853461 -7853385 -7853309 430 -7876088 -7876008 -7875929 -7875849 -7875769 27875689 -7875609 -7875530 -7875450 -7875370 -7875290 428 -7897918 -7897838 -7897758 -7897678 -7897594 -7897511 -7897427 -7897343 1 -7897259 -7897175 -7897092

.___ _ _STEAM GENERATOR 2 PFw PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UMMWIND, UMF.IND, UMFW-OND, UMFW.WND. UMFW-IND, UMFW-mND, UMMIND, UMWIND, UMW-ND, UMFW.IND, UMFW.IND, Ibm/hr Ibmlhr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibn/hr Ibm/hr Ibn/hr Ibn/hlr 452 -7623203 -7623147 -7623092 -7623036 -7622980 -7622924 -7622868 -7622813 -7622757 -7622701 -7622645 450 -7645595 -7645535 -7645476 -7645416 -7645356 -7645296 -7645237 -7645177 -7645117 -7645057 -7644997 448 -7667756 -7667696 -7667637 -7667577 -7667513 -7667449 -7667385 -7667322 -7667258 -7667198 -7667138 446 -7689917 -7689857 -7689797 -7689738 -7689670 -7689602 -7689534 -7689467 -7689399 -7689339 -7689279 444 -7712078 -7712018 -7711958 -7711899 -7711827 -7711755 -7711683 -7711612 -7711540 -7711480 -7711420 442 -7734239 -7734179 -7734119 -7734060 -7733984 -7733908 -7733832 -7733757 -7733681 -7733621 -7733561 440 -7756400 -7756340 -7756280 -7756220 -7756141 -7756061 -7755981 -7755902 -7755822 -7755762 -7755702 438 -7778373 -7778310 -7778246 -7778182 -7778102 -7778023 -7777943 -7777863 -7777783 -7777720 -7777656 436 -7800347 -7800279 -7800211 -7800144 -7800064 -7799984 -7799905 -7799825 -7799745 -7799677 -7799610 434 -7822321 -7822249 -7822177 -7822105 -7822026 -7821946 -7821866 -7821786 -7821707 -7821635 -7821563 432 -7844294 -7844218 -7844143 -7844067 -7843987 -7843908 -7843828 -7843748 -7843668 -7843593 -7843517 430 -7866268 -7866188 -7866108 -7866029 -7865949 -7865869 -7865789 -7865710 -7865630 -7865550 -7865471 428 -7888070 -7887990 -7887910 -7887831 -7887747 -7887663 -7887580 -7887496 -7887412 -7887329 -7887245

CA06494, Revision 0000 Page 65 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 850 I_ _STEAM GENERATOR I 770 780 790 800 810 820 l 830 840 850 860 870 1 ,PSIA Pnv UMFW-IND, UM.V-IND, UMrW.OD, UMFW-IND, UMFW.ND, TF, DEG F UMnV.IND. UMFWV-ND, UMFW IND) UMFW.IND. UMFW.IND, UMFW-IND,

_Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7635713 -7635657 -7635602 -7635546 -7635490 -7635434 -7635378 -7635322 -7635266 -7635210 -7635155 450 -7658133 -7658074 -7658014 -7657954 -7657894 -7657834 -7657774 -7657714 -7657654 -7657595 -7657535 448 -7680322 -7680262 -7680202 -7680142 -7680079 -7680015 -7679951 -7679887 -7679823 -7679763 -7679703 446 -7702511 -7702451 -7702391 -7702331 -7702263 -7702195 -7702127 -7702060 -7701992 -7701932 -7701872 444 -7724699 -7724639 -7724579 -7724520 -7724448 -7724376 -7724304 -7724232 -7724160 -7724100 -7724041 442 -7746888 -7746828 -7746768 -7746708 -7746632 -7746556 -7746481 -7746405 -7746329 -7746269 -7746209 440 -7769076 -7769016 -7768957 -7768897 -7768817 -7768737 -7768657 -7768577 -7768498 -7768438 -7768378 438 -7791077 -7791013 -7790950 -7790886 -7790806 -7790726 -7790646 -7790566 -7790487 -7790423 -7790359 436 -7813078 -7813010 -7812943 -7812875 -7812795 -7812715 -7812635 -7812556 -7812476 -7812408 -7812340 434 -7835079 -7835007 -7834936 -7834864 -7834784 -7834704 -7834624 -7834545 -7834465 -7834393 -7834321 432 -7857080 -7857005 -7856929 -7856853 -7856773 -7856693 -7856613 -7856534 -7856454 -7856378 -7856302 430 -7879081 -7879002 -7878922 -7878842 -7878762 7878682 -7878602 -7878523 -7878443 -7878363 -7878283 428 -7900911 -7900831 -7900751 -7900671 -7900588 7900504 -7900420 -7900336 -7900252 -7900168 7900085 STEA GENERATOR 2 PFw, PSIA 770 790 780 800 810. 820 830 840 850 860 870 UM FW-IND. UMIMV-IND, UMFW.ND, UMFPW.IND, UM.ND, V-ND UMIW-ND, UM FWWD, UMFW.IND, Tn,DEG F UMFW-tND- UMFW.IND.

Ibrnhr Ibm/hr Ibn/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr ibm/hr Ibn/hr Ibm/hr 452 -7626192 -7626137 -7626081 -7626025 -7625969 -7625913 -7625858 -7625802 -7625746 -7625690 -7625634 450 -7648585 -7648525 -7648465 -7648405 -7648345 -7648286 -7648226 -7648166 -7648106 -7648046 -7647987 448 -7670745 -7670686 -7670626 -7670566 -7670502 -7670439 -7670375 -7670311 -7670247 -7670187 -7670128 446 -7692906 -7692847 -7692787 -7692727 -7692659 -7692592 -7692524 -7692456 -7692388 -7692328 -7692269 444 -7715067 -7715008 -7714948 -7714888 -7714816 -7714744 -7714673 -7714601 -7714529 -7714469 -7714410 442 -7737228 -7737168 -7737109 -7737049 -7736973 -7736897 -7736822 -7736746 -7736670 -7736610 -7736551 440 -7759389 -7759329 -7759270 -7759210 -7759130 -7759050 -7758971 -7758891 -7758811 -7758751 -7758692 438 -7781363 -7781299 -7781235 -7781171 -7781092 -7781012 -7780932 -7780853 -7780773 -7780709 -7780645 436 -7803336 -7803269 -7803201 -7803133 -7803053 -7802974 -7802894 -7802814 -7802734 -7802667 -7802599 434 -7825310 -7825238 -7825166 -7825095 -7825015 -7824935 -7824856 -7824776 -7824696 -7824624 -7824553 432 -7847283 -7847208 -7847132 -7847056 -7846977 -7846897 -7846817 -7846737 -7846658 -7846582 -7846506 430 -7869257 -7869177 -7869098 -7869018 -7868938 -7868858 -7868779 -7868699 -7868619 -7868540 -7868460 428 -7891059 -7890980 -7890900 -7890820 -7890736 -7890653 -7890569 -7890485 -7890402 -7890318 -7890234

CA06494, Revision 0000 Pg 6oof 132 Page 66 3 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLowmETER AT1TACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STE-AM TABLES Psm 1 840 I

_______ _______ ~STEAM GENERATOR I________ ____

PW,,PSIA 770 780 790 800 810 820 830 840 850 860 870 UMPWWIND. Ut4FV.,ND, UMMWND, UMMIND~, UMMWIND, T~w, DEG F UMWTD UMFW.TN, LMIND,UMFWIND, UMMWIND, UMMWND, Ibm/hr Ibm/hr Ibm/hr Ibm/hir Ibm/hr Ibm/hr Ibm/hr ibm/hr Ibm/hr Ibm/hr Ibmi/hr 452 -7637709 -7637653 -7637597 -7637541 -7637485 -7637429 -7637373 -7637318 -7637262 -7637206 -7637 150 450 1-7660129 -7660069 .7660009 -7659949 -7659889 -7659829 -7659770 -7659710 -7659650 -7659590 -7659530 448 -7682317 -7682257 -7682198 -7682138 -7682074 -7682010 -7681946 -7681882 -7681818 -7681759 -7681699 446 -7704506 -7704446 -7704386 -7704326 -7704258 -7704191 -7704123 -7704055 -7703987 -7703927 -7703867 444 -7726694 -7726635 -7726575 -7726515S -7726443 -7726371 -7726299 -7726228 -7726156 -7726096 -7726036 442 .7748883 -7748823 -7748763 -7748703 -7748628 -7748552 -7748476 -7748400 -7748324 -7748264 .7748205 440 -7771072 -7771012 -7770952 -7770892 -7770812 -7770732 -7770653 -7770573 -7770493 -7770433 -7770373 438 1-7793073 -7793009 .7792945 -7792881 -7792801 -7792721 -7792642 -7792562 -7792482 -7792418 -7792354 436 -7 81s5,0714 -7815006 -7814938 -7814870 -7814790 -7814711 -7814631 -7814551 -7814471 -7814403 -7814335 434 -7837075 -7837003 -7836931 -7836859 -7836779 -7836700 -7836620 -7836540 -7836460 -7836388 -7836316 432 -7859076 -7859000 -7858924 -7858848 -7858768 -7858689 -7858609 -7858529 -7858449 -7858373 -7858298 430 -7881077 -7880997 .7880917 -7880837 -7880757 -7880678 -7880598 -7880518 -7880438 -7880358 -7880279 428 -7902906 1-7902826 1-7902747 1-7902667 1-7902583 -7902499 1-7902415 1-7902331 1-7902248 1-7902164 1-7902080

_______ ~STEAM GENERATOR 2 ___

Prw, PSIA 770 790 780 800 810 . 820. . 830 840 . 850 860 870 1

Umfw.,ND, UMMw.ND, UMvW.tND, JMFW-rND. UMFWIND, UMFW.DND, UMFW4ND, Tpw, DEG F UmFw.KNO. UMWID UMIW~VND, UMM~IND.

______ bm/hr Ibnm/hr Ibm/hr Ibm/hr Ibm/hr Ibmi/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7628185 -7628130 -7628074 -7628018 -7627962 -7627906 -7627851 -7627795 -7627739 -7627683 -7627627 450 -7650577 -7650518 -7650458 -7650398 -7650338 -7650279 -7650219 -7650159 -7650099 -7650039 -7649980 448 -7672738 -7672679 -7672619 -7672559 .7672495 -7672431 -7672368 -7672304 -7672240 -7672180 -7672121 446 -7694899 -7694840 -7694780 -7694720 -7694652 -7694584 -7694517 -7694449 -7694381 -7694321 -7694262 444 -7717060 -7717000 -7716941 -7716881 -7716809 -7716737 -7716666 -7716594 -7716522 -7716462 -7716403 442 -7739221 -7739161 -7739102 -7739042 -7738966 -7738890 -7738815 -7738739 -7738663 -7738603 -7738544 440 -7761382 -7761322 -7761262 -7761203 -7761123 -7761043 1-7760964 -7760884 -7760804 -7760744 -7760685 438 -7783356 -7783292 -7783228 -7783164 -7783085 -7783005 -7782925 -7782845 -7782766 -7782702 -7782638 436 -7805329 -7805261 -7805194 -7805126 -7805046 -7804966 -7804887 -7804807 -7804727 -7804660 --7804592 434 -7827303 -7827231 -7827159 -7827088 -7827008 -7826928 -7826848 -7826769 -7826689 -7826617 -7826545 432 -7849276 -7849201 -7849125 -7849049 1-7848969 -7848890 -7848810 -7848730 -7848651 -7848575 -7848499 430 -7871250 -7871170 -7871091 -7871011 -7870931 -7870851 -7870772 -7870692 -7870612 -7870533 -7870453 428 -7893052 -7892972 -7892893 -7892813 -7892729 -7892646 1-7892562 -7892478 -7892394 -7892311 -7892227

CA06494, Revision 0000 Page 67 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES IPT. 1 830 1 STEAM GENERATOR I Pr, PSIA 770 780 790 800 810 820 830 840 850 860 870 Tw.DEG F UMIw.IND. UmFw.ND, UMMIVND, UMrMIND, UMMW.IND, UMFW.WND. UMMWND. UMFW. N D, UMFW.INN, UMV.WD. UMFWMIND, Ibn/hr Ibm/hr Ibm/r Ibbm/hr Ibm/hr Ibn/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7640702 -7640646 -7640590 -7640534 -7640478 -7640422 -7640367 -7640311 -7640255 -7640199 -7640143 450 -7663122 -7663062 -7663002 -7662942 -7662882 -7662822 -7662763 -7662703 -7662643 -7662583 -7662523 448 -7685310 -7685251 -7685191 -7685131 -7685067 -7685003 -7684939 -7684875 -7684812 -7684752 -7684692 446 -7707499 -7707439 -7707379 -7707319 -7707252 -7707184 -7707116 -7707048 -7706980 -7706920 -7706860 444 -7729688 -7729628 -7729568 -7729508 -7729436 -7729364 -7729292 -7729221 -7729149 -7729089 -7729029 442 -7751876 -7751816 -7751756 -7751697 -7751621 -7751545 -7751469 -7751393 -7751317 -7751258 -7751198 440 -7774065 -7774005 -7773945 -7773885 -7773805 -7773725 -7773646 -7773566 -7773486 -7773426 -7773366 438 -7796066 -7796002 -7795938 -7795874 -7795794 -7795715 -7795635 -7795555 -7795475 -7795411 -7795347 436 -7818067 -7817999 -7817931 -7817863 -78177S3 -7817704 -7817624 -7817544 -7817464 -7817396 -7817328 434 -7840068 -7839996 -7839924 -7839852 -7839772 -7839693 -7839613 -7839533 -7839453 -7839381 -7839310 432 -7862069 -7861993 -7861917 -7861841 -7861761 -7861682 -7861602 -7861522 -7861442 -7861366 -7861291 430 -7884070 -7883990 -7883910 -7883830 -7883751 -7883671 -7883591 -7883511 -7883431 -7883351 -7883272 428 -7905899 -7905819 -7905740 -7905660 -7905576 -7905492 -7905408 -7905325 -7905241 -7905157 -7905073 STEAM GENERATOR 2 Pw,PSIA 770 790 780 800 810 820 830 T 840 r 850 860 870 TV.w, DEG F UMFw.ND, UMFWIND, UMFWND. UMFW-ND, UMFWIND, UMFW4ND, UMFW-WD, UMFWWD, UMFW-WED., UMFWMND, UMV.ND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr .Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibmn/hr 452 -7631175 -7631119 -7631063 -7631007 -7630951 -7630896 -7630840 -7630784 -7630728 -7630672 -7630617 450 -7653567 -7653507 -7653447 -7653387 -7653328 -7653268 -7653208 -7653148 -7653088 -7653029 -7652969 448 -7675728 -7675668 -7675608 -7675548 -7675485 -7675421 -7675357 -7675293 -7675229 -7675170 -7675110 446 -7697889 -7697829 -7697769 -7697709 -7697642 -7697574 -7697506 -7697438 -7697370 -7697311 -7697251 444 -7720050 -7719990 -7719930 -7719870 -7719798 -7719727 -7719655 -7719583 -7719511 -7719452 -7719392 442 -7742210 -7742151 -7742091 -7742031 -7741955 -7741880 -7741804 -7741728 -7741652 -7741593 -7741533 440 -7764371 -7764312 -7764252 -7764192 -7764112 -7764033 -7763953 -7763873 -7763793 -7763734 -7763674 438 -7786345 -7786281 -7786217 -7786154 -7786074 -7785994 -7785914 -7785835 -7785755 -7785691 -7785628 436 -7808319 -7808251 -7808183 -7808115 -7808036 -7807956 -7807876 -7807796 -7807717 -7807649 -7807581 434 -7830292 -7830220 -7830149 -7830077 -7829997 -7829917 -7829838 -7829758 -7829678 -7829607 -7829535 432 -7852266 -7852190 -7852114 -7852039 -7851959 -7851879 -7851799 -7851720 -7851640 -7851564 -7851488 430 -7874239 -7874160 -7874080 -7874000 -7873920 -7873841 -7873761 -7873681 -7873602 -7873522 -7873442 428 -7896041 -7895962 -7895882 -7895802 -7895719 -7895635 -7895551 -7895468 -7895384 -7895300 -7895216

CA06494, Revision 0000 Page 68 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I P. I 820 1 STEAM GENERATOR I P,,. PSIA 770 790 780 800 810 820 830 840 850 860 870 T.v, DEG F UMSWIND, UMFW.ND, ULMFW.IND. UMMIWND, UMFW-LND, UMFW-tN UMFW-IND. UMFW.ND, UMMIND. UMFWIND, UMFW-tND Ibm/hr Ibmthr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hlr 452 -7643695 -7643639 -7643583 -7643527 -7643471 -7643415 -7643360 -7643304 -7643248 -7643192 -7643136 450 -7666115 -7666055 -7665995 -7665935 -7665875 -7665816 -7665756 -7665696 -7665636 -7665576 -7665516 448 -7688303 -7688244 -7688184 -7688124 -7688060 -7687996 -7687932 -7687868 -7687805 -7687745 -7687685 446 -7710492 -7710432 -7710372 -7710312 -7710245 -7710177 -7710109 -7710041 -7709973 -7709913 -7709854 444 -7732681 -7732621 -7732561 -7732501 -7732429 -7732357 -7732286 -7732214 -7732142 -7732082 -7732022 442 -7754869 -7754809 -7754749 -7754690 -7754614 -7754538 -7754462 -7754386 -7754310 -7754251 -7754191 440 -7777058 -7776998 -7776938 -7776878 -7776798 -7776719 -7776639 -7776559 -7776479 -7776419 -7776359 438 -7799059 -7798995 -7798931 -7798867 -7798787 -7798708 -7798628 -7798548 -7798468 -7798404 -7798340 436 -7821060 -7820992 -7820924 -7820856 -7820776 -7820697 -7820617 -7820537 -7820457 -7820389 -7820322 434 -7843061 -7842989 -7842917 -7842845 -7842766 -7842686 -7842606 -7842526 -7842446 -7842374 -7842303 432 -7865062 -7864986 -7864910 -7864834 -7864755 -7864675 -7864595 -7864515 -7864435 -7864359 -7864284 430 -7887063 -7886983 -7886903 -7886823 -7886744 -7886664 -7886584 -7886504 -7886424 -7886345 -7886265 428 -7908892 -7908812 -7908733 -7908653 -7908569 -7908485 -7908401 -7908318 -7908234 -7908150 -7908066 STEAM GENERATOR 2 P,,W.PSIA 770 790 780 800 810 1 820 830 1 840 850 860 870 TEw, DEG F UMFW.lND, UMFWIND, UMFYV-INO. UMMNDI UMFW.IND. UMF D UMFW-ND, UMF-Nn UMFWMNDN UMFW.tND, UMM!ND, Ib/v'hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hlr Ibm/hr Ibmthr Ibm/hr Ibm/hr Ibm/ir Ibm/hr 452 -7634164 -7634108 -7634052 -7633997 -7633941 -7633885 -7633829 -7633773 -7633718 -7633662 -7633606 450 -7656556 -7656496 -7656437 -7656377 -7656317 -7656257 -7656197 -7656138 -7656078 -7656018 -7655958 448 -7678717 -7678657 -7678597 -7678538 -7678474 -7678410 -7678346 -7678283 -7678219 -7678159 -7678099 446 -7700878 -7700818 -7700758 -7700699 -7700631 -7700563 -7700495 -7700428 -7700360 -7700300 -7700240 444 -7723039 -7722979 -7722919 -7722860 -7722788 -7722716 -7722644 -7722573 -7722501 -7722441 -7722381 442 -7745200 -7745140 -7745080 -7745020 -7744945 -7744869 -7744793 -7744718 -7744642 -7744582 -7744522 440 -7767361 -7767301 -7767241 -7767181 -7767102 -7767022 -7766942 -7766862 -7766783 -7766723 -7766663 438 -7789334 -7789271 -7789207 -7789143 -7789063 -7788984 -7788904 -7788824 -7788744 -7788681 -7788617 436 -7811308 -7811240 -7811172 -7811105 -7811025 -7810945 -7810865 -7810786 -7810706 -7810638 -7810570 434 -7833281 -7833210 -7833138 -7833066 -7832986 -7832907 -7832827 -7832747 -7832668 -7832596 -7832524 432 -7855255 -7855179 -7855104 -7855028 -7854948 -7854868 -7854789 -7854709 -7854629 -7854554 -7854478 430 -7877229 -7877149 -7877069 -7876989 -7876910 -7876830 -7876750 -7876671 -7876591 -7876511 -7876431 428 -7899031 -7898951 -7898871 -7898792 -7898708 -7898624 -7898541 -7898457 -7898373 -7898289 -7898206

CA06494, Revision 0000 Page 69 of 132 CALORIMETRIC UNCERTAINTY USING TIE AMAG .CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRICUNCERTAINTY USING ASME 1967 STEAM TABLES I I'm I 810 1 STEAM GENERATOR I PFW.PSIA 770 790 780 800 810 820 830 .840 850 860 870 UMIW-ND, UMFW.IND, UMFW.IND. UMFW-tND. UMM.,ND, UMFM;ND, Trw, DEG F UMFW.IND, UMFw ND' UMMWND, UMFW-tNO UMFWW.oD, Ibrm/hr Ibm/hr Ibm/hr Ibm/hr Ibmnhr Ibm/hr Ibm/hr Ibn/hr Ibmthr Ibm/hr Ibm/hr 452 -7646688 -7646632 -7646576 -7646520 -7646464 -7646409 -7646353 -7646297 -7646241 -7646185 -7646129 450 -7669108 -7669048 -7668988 -7668928 -7668868 -7668809 -7668749 -7668689 -7668629 -7668569 -7668509 448 -7691297 -7691237 -7691177 -7691117 -7691053 -7690989 -7690925 -7690862 -7690798 -7690738 -7690678 446 -7713485 -7713425 -7713365 -7713306 -7713238 -7713170 -7713102 -7713034 -7712966 -7712906 -7712847 444 -7735674 -7735614 -7735554 -7735494 -7735422 -7735350 -7735279 -7735207 -7735135 -7735075 -7735015 442 -7757862 -7757802 -7757743 -7757683 -7757607 -7757531 -7757455 -7757379 -7757304 -7757244 -7757184 440 -7780051 -7779991 -7779931 -7779871 -7779791 -7779712 -7779632 -7779552 -7779472 -7779412 -7779352 438 -7802052 -7801988 -7801924 -7801860 -7801780 -7801701 -7801621 -7801541 -7801461 -7801397 -7801334 436 -7824053 -7823985 -7823917 -7823849 -7823770 -7823690 -7823610 -7823530 -7823450 -7823382 -7823315 434 -7846054 -7845982 -7845910 -7845838 -7845759 -7845679 -7845599 -7845519 -7845439 -7845367 -7845296 432 -7868055 -7867979 -7867903 -7867827 -7867748 -7867668 .7867588 -7867508 -7867428 -7867353 -7867277 430 -7890056 -7889976 -7889896 -7889816 -7889737 -7889657 -7889577 -7889497 -7889417 -7889338 -7889258 428 -7911885 -7911806 -7911726 -7911646 -7911562 -7911478 -7911394 -7911311 -7911227 -7911143 -7911059

_ __ STEAM GENERATOR 2 PrwPSTA 770 790 780 800 810 820 830 840 850 860 -870 UMFW.tND, UMFW IND, UMIW.ND, UMFW.IND, UMFW.IND, UMFW.ND, UMFW.!ND, UMW.IND, UMFW.ND.

Trw. DEG F UMFW.ND, UMMIND, Ibm/hr Ibm/hr lbrlir Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr 452 -7637153 -7637098 -7637042 -7636986 -7636930 -7636874 -7636819 -7636763. -7636707 -7636651 -7636595 450 -7659545 -7659486 -7659426 -7659366 -7659306 -7659247 -7659187 -7659127 -7659067 -7659007 -7658948 448 -7681706 -7681647 -7681587 -7681527 -7681463 -7681399 -7681336 -7681272 -7681208 -7681148 -7681089 446 -7703867 -7703807 -7703748 -7703688 -7703620 -7703552 -7703485 -7703417 -7703349 -7703289 -7703230 444 -7726028 -7725968 -7725909 -7725849 -7725777 -7725705 -7725634 -7725562 -7725490 -7725430 -7725371 442 -7748189 -7748129 -7748070 -7748010 -7747934 -7747858 -7747783 -7747707 -7747631 -7747571 -7747512 440 -7770350 -7770290 -7770230 -7770171 -7770091 -7770011 -7769932 -7769852 -7769772 -7769712 -7769653 438 -7792324 -7792260 -7792196 -7792132 -7792053 -7791973 -7791893 -7791813 -7791734 -7791670 -7791606 436 -7814297 -7814229 -7814162 -7814094 -7814014 -7813934 -7813855 -7813775 -7813695 -7813628 -7813560 434 -7836271 -7836199 -7836127 -7836056 -7835976 -7835896 -7835816 -7835737 -7835657 -7835585 -7835513 432 -7858244 -7858169 -7858093 -7858017 -7857937 -7857858 -7857778 -7857698 -7857619 -7857543 -7857467 430 -7880218 -7880138 -7880059 -7879979 -7879899 -7879819 -7879740 -7879660 -7879580 -7879501 -7879421 428 -7902020 -7901940 -7901861 -7901781 -7901697 -7901614 -7901530 -7901446 -7901362 -7901279 -7901195

Page 70 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 800

._ . STEAM GENERATOR I 770 790 780 800 810 820 830 840 850 860 870 PFW. PSIA UMFW.WN.N UDWI, UMWF, -MMW.IND, UM FW.ND, UMFW.IND, UMFIV.IND, TFW. DEG F UMFW.IND, UMFW.IND- UMFW.IND, UMFWMIND, Ibm/hr IbmTir Ibmn/hr Ibm/hr Ibmnhr Ibmnhr Ibm/hr Ibmlhr Ibn/hr ibm/hr Ibm/hr

-7649681 -7649625 -7649569 -7649513 -7649457 -7649402 -7649346 -7649290 -7649234 -7649178 -7649122 452

-7672101 -7672041 -7671981 -7671921 -7671862 -7671802 -7671742 -7671682 -7671622 -7671562 -7671502 450 448 -7694290 -7694230 -7694170 -7694110 -7694046 -7693982 -7693918 -7693855 -7693791 -7693731 -7693671

-7716478 -7716418 -7716358 -7716299 -7716231 -7716163 -7716095 -7716027 -7715959 -7715900 -7715840 446

-7738667 -7738607 -7738547 -7738487 -7738415 -7738343 -7738272 -7738200 -7738128 -7738068 -7738008 444

-7760855 -7760795 -7760736 -7760676 -7760600 -7760524 -7760448 -7760372 -7760297 -7760237 -7760177 442

-7783044 -7782984 -7782924 -7782864 -7782785 -7782705 -7782625 -7782545 -7782465 -7782405 -7782346 440

-7805045 -7804981 -7804917 -7804853 -7804774 -7804694 -7804614 -7804534 -7804454 -7804390 -7804327 438

-7827046 -7826978 -7826910 -7826842 -7826763 -7826683 -7826603 -7826523 -7826443 -7826375 -7826308 436

-7849047 -7848975 -7848903 -7848831 -7848752 -7848672 -7848592 -7848512 -7848432 -7848361 -7848289 434

-7871048 -7870972 -7870896 -7870820 -7870741 -7870661 -7870581 -7870501 -7870421 -7870346 -7870270 432

-7893049 -7892969 -7892889 -7892810 -7892730 -7892650 -7892570 -7892490 -7892410 -7892331 -7892251 430

-7914878 -7914799 -7914719 -7914639 -7914555 -7914471 -7914388 -7914304 --7914220 -7914136 -7914052 428

__ _ - STEAM GENERATOR 2 770 790 780 800 810 820 830 840 850 860 870 PFW,PSIA UMFWIND, UMFW-IND, UMFW-IND, UMFWIND, UMFW.IND, UM7W.!NO, UMFWIND, UMW.IND, UMFWV.rD, TFw, DEG F UMrW-NtD. UMrFW.IND, Ibm/hr Ibm/hr Ibm/lir Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibn/hr Ibn/hr Ibn/hr

-7640143 -7640087 -7640031 -7639975 -7639919 -7639864 -7639808 -7639752 -7639696 -7639640 -7639585 452

-7662535 -7662475 -7662415. -7662355 -7662296 -7662236 -7662176 -7662116 -7662056 -7661997 -7661937 450

-7684696 -7684636 -7684576 -7684516 -7684453 -7684389 -7684325 -7684261 -7684197 -7684138 -7684078 448

-7706857 -7706797 -7706737 -7706677 -7706609 -7706542 -7706474 -7706406 -7706338 -7706279 -7706219 446

-7729018 -7728958 -7728898 -7728838 -7728766 -7728695 -7728623 -7728551 -7728479 -7728420 -7728360 444

-7751178 -7751119 -7751059 -7750999 -7750923 -7750848 -7750772 -7750696 -7750620 -7750561 -7750501 442

-7773339 -7773280 -7773220 -7773160 -7773080 -7773001 -7772921 -7772841 -7772761 -7772702 -7772642 440

-7795313 -7795249 -7795185 -7795122 -7795042 -7794962 -7794882 -7794803 -7794723 -7794659 -7794596 438

-7817287 -7817219 -7817151 -7817083 -7817004 -7816924 -7816844 -7816764 -7816685 -7816617 -7816549 436

-7839260 -7839188 -7839117 -7839045 -7838965 -7838885 -7838806 -7838726 -7838646 -7838575 -7838503 434

-7861234 -7861158 -7861082 -7861007 -7860927 -7860847 -7860767 -7860688 -7860608 -7860532 -7860456 432

-7883207 -7883128 -7883048 -7882968 -7882888 -7882809 -7882729 -7882649 -7882570 -7882490 -7882410 430

-7905009 -7904930 -7904850 -7904770 -7904687 7904603 -7904519 -7904436 7904352 -7904268 -7904184 428

CA06494, Revision 0000 Page 71 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 790 1 STEAM GENERATOR I P,,. PS IA 770 790 780 800 810 820 830 840 850 860 870 Tr,, DEG F UMF\V.WD. UMFW-IND, UMW.IN. UMnvW.ND, UMFIW-ND. UMMV.IND, UMFW.IND, UMFWND, UMFW.IND* UMFW-IND- UMMIND, Ibm/hr Ibm/hr Ibnmlir Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/lhr Ibm/hr Ibmn/hr 452 -7652674 -7652618 -7652562 -7652506 -7652451 -7652395 -7652339 -7652283 -7652227 -7652171 -7652115 450 -7675094 -7675034 -7674974 -7674914 -7674855 -7674795 -7674735 -7674675 -7674615 -7674555 -7674495 448 -7697283 -7697223 -7697163 -7697103 -7697039 -7696975 -7696912 -7696848 -7696784 -7696724 -7696664 446 -7719471 -7719411 -7719352 -7719292 -7719224 -7719156 -7719088 -7719020 -7718952 -7718893 -7718833 444 -7741660 -7741600 -7741540 -7741480 -7741408 -7741337 -7741265 -7741193 -7741121 -7741061 -7741001 442 -7763848 -7763789 -7763729 -7763669 -7763593 -7763517 -7763441 -7763366 -7763290 -7763230 -7763170 440 -7786037 -7785977 -7785917 -7785857 -7785778 -7785698 -7785618 -7785538 -7785458 -7785398 -7785339 438 -7808038 -7807974 -7807910 -7807846 -7807767 -7807687 -7807607 -7807527 -7807447 -7807383 -7807320 436 -7830039 -7829971 -7829903 -7829835 -7829756 -7829676 -7829596 -7829516 -7829436 -7829369 -7829301 434- -7852040 -7851968 -7851896 -7851825 -7851745 -7851665 -7851585 -7851505 -7851425 -7851354 -7851282 432 -7874041 -7873965 -7873889 -7873814 -7873734 -7873654 -7873574 -7873494 -7873414 -7873339 -7873263 430 -7896042 -7895962 -7895882 -7895803 -7895723 -7895643 -7895563 -7895483 -7895404 -7895324 -7895244 428 -7917871 -7917792 -7917712 -7917632 -7917548 -7917464 -7917381 -7917297 -7917213 -7917129 -7917045

_ _STEAM GENERATOR 2 PFW.PSIA 770 790 780 800 810 820 830 840 850 860 870 Trw. DEG F UMFV.IND, UMFV.NDU, UMIND, UM-ND UMFV-tND, UMFW-ND, UMFWtND. UMFWV*ND, UMFIW.ND, UMFIND. UMV.!ND,

_Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/lhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7643132 -7643076 -7643020 -7642965 -7642909 -7642853 -7642797 -7642741 -7642686 -7642630 -7642574 450 -7665524 -7665464 -7665405 -7665345 -7665285 -7665225 -7665165 -7665106 -7665046 -7664986 -7664926 448 -7687685 -7687625 -7687565 -7687506 -7687442 -7687378 -7687314 -7687251 -7687187 -7687127 -7687067 446 -7709846 -7709786 -7709726 -7709667 -7709599 -7709531 -7709463 -7709396 -7709328 -7709268 -7709208 444 -7732007 -7731947 -7731887 -7731828 -7731756 -7731684 -7731612 -7731541 -7731469 -7731409 -7731349 442 -7754168 -7754108 -7754048 -7753988 -7753913 -7753837 -7753761 -7753685 -7753610 -7753550 -7753490 440 -7776329 -7776269 -7776209 -7776149 -7776070 -7775990 -7775910 -7775830 -7775751 -7775691 -7775631 438 -7798302 -7798239 -7798175 -7798111 -7798031 -7797952 -7797872 -7797792 -7797712 -7797649 -7797585 436 -7820276 -7820208 -7820140 -7820073 -7819993 -7819913 -7819833 -7819754 -7819674 -7819606 -7819538 434 -7842249 -7842178 -7842106 -7842034 -7841954 -7841875 -7841795 -7841715 -7841636 -7841564 -7841492 432 -7864223 -7864147 -7864072 -7863996 -7863916 -7863836 -7863757 -7863677 -7863597 -7863522 -7863446 430 -7886197 -7886117 -7886037 -7885957 -7885878 -7885798 -7885718 -7885639 -7885559 -7885479 -7885399 428 -7907999 -7907919 -7907839 -7907760 -7907676 -7907592 -7907509 -7907425 -7907341 -7907257 7907174

CA06494, Revision 0000 Page 72 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES F p 780 _

STEAM GENERATOR I PFWPSIA 770 790 780 800 810 820 830 840 850 860 870 UMFVIND, UMIW. VND, UMIW.ND, UMFW.ND, UMF UMFVV-IN, UMFWdNO. MFIND, UMM..

Trw, DEG F UMFWMIND, UMFW.ND, UMFW-VND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibr/hr Ibn/hr Ibm/hr Ibm/hr Ibmn/hr Ibmn/hr Ibrn/hr 452 -7654669 -7654614 -7654558 -7654502 -7654446 -7654390 -7654334 -7654278 -7654222 -7654167 -7654111 450 -7677089 -7677030 -7676970 -7676910 -7676850 -7676790 -7676730 -7676670 -7676611 -7676551 -7676491 448 -7699278 -7699218 -7699158 -7699098 -7699035 -7698971 -7698907 -7698843 -7698779 -7698719 -7698659 446 -7721467 -7721407 -7721347 -7721287 -7721219 -7721151 -7721083 -7721016 -7720948 -7720888 -7720828 444 -7743655 -7743595 -7743535 -7743476 -7743404 -7743332 -7743260 -7743188 -7743116 -7743057 -7742997 442 -7765844 -7765784 -7765724 -7765664 -7765588 -7765513 -7765437 -7765361 -7765285 -7765225 -7765165 440 -7788032 -7787972 -7787913 -7787853 -7787773 -7787693 -7787613 -7787533 -7787454 -7787394 -7787334 438 -7810033 -7809970 -7809906 -7809842 -7809762 -7809682 -7809602 -7809523 -7809443 -7809379 -7809315 436 -7832034 -7831967 -7831899 -7831831 -7831751 -7831671 -7831591 -7831512 -7831432 -7831364 -7831296 434 -7854035 -7853964 -7853892 -7853820 -7853740 -7853660 -7853580 -7853501 -7853421 -7853349 -7853277 432 -7876036 -7875961 -7875885 -7875809 -7875729 -7875649 -7875569 -7875490 -7875410 -7875334 -7875258 430 -7898037 -7897958 -7897878 -7897798 -7897718 -7897638 -7897559 -7897479 -7897399 -7897319 -7897239 428 -7919867 -7919787 -7919707 -7919627 ; -7919544 -7919460 -7919376 -7919292 -7919208 -7919125 -7919041 STEAM GENERATOR 2 PFWPSIA 770 790 780 800 810 820 830 840 850 860 870 UMFWW.ND, UMFW.IND. UMFWVND.o, UMFW.IND. UMIV.IND. UMFW-IND, UMFW.ND, UMmV.INO, TFW, DEG F UMFW.4ND, UMFWIND, UMFW.IND.

Ibn/lhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7645125 -7645069 -7645013 -7644958 -7644902 -7644846 -7644790 -7644734 -7644679 -7644623 -7644567 450 -7667517 -7667457 -7667397 -7667338 -7667278 -7667218 -7667158 -7667099 -7667039 -7666979 -7666919 448 -7689678 -7689618 -7689558 -7689499 -7689435 -7689371 -7689307 -7689243 -7689180 -7689120 -7689060 446 -7711839 -7711779 -7711719 -7711659 -7711592 -7711524 -7711456 -7711388 -7711321 -7711261 -7711201 444 -7734000 -7733940 -7733880 -7733820 -7733749 -7733677 -7733605 -7733533 -7733462 -7733402 -7733342 442 -7756161 -7756101 -7756041 -7755981 -7755906 -7755830 -7755754 -7755678 -7755603 -7755543 -7755483 440 -7778322 -7778262 -7778202 -7778142 -7778063 -7777983 -7777903 -7777823 -7777744 -7777684 -7777624 438 -7800295 -7800231 -7800168 -7800104 -7800024 -7799944 -7799865 -7799785 -7799705 -7799641 -7799578 436 -7822269 -7822201 -7822133 -7822065 -7821986 -7821906 -7821826 -7821747 -7821667 -7821599 -7821531 434 -7844242 -7844171 -7844099 -7844027 -7843947 -7843868 -7843788 -7843708 -7843629 -7843557 -7843485 432 -7866216 -7866140 -7866064 -7865989 -7865909 -7865829 -7865750 -7865670 -7865590 -7865514 -7865439 430 -7888189 -7888110 -7888030 -7887950 -7887871 -7887791 -7887711 -7887631 -7887552 -7887472 -7887392 428 -7909992 -7909912 -7909832 -7909753 -7909669 -7909585 -7909501 -7909418 -7909334 -7909250 -7909167

CA06494, Revision 0000 Page 73 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A,CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES F 770 I STEAM GENERATOR I 780 800 810 820 830 840 850 860 870 P,,, PSIA 770 790 UMFWAND, UMFW.ND, UMFW.ND, UMVIND, UMMWIND, UMF-IND, UMMW-IND, UMFW-ND, Trw, DEG F UMFwV-IND, UMFW-ND, UMMWIND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr lbffvlir Ibm/hr Ibmn/hr Ibm/hr

-7657662 -7657607 -7657551 -7657495 -7657439 -7657383 -7657327 -7657271 -7657215 -7657160 -7657104 452

-7680083 -7680023 -7679963 -7679903 -7679843 -7679783 -7679723 -7679663 -7679604 -7679544 -7679484 450

-7702271 -7702211 -7702151 -7702091 -7702028 -7701964 .7701900 -7701836 -7701772 -7701712 -7701653 448

-7724460 -7724400 -7724340 -7724280 -7724212 -7724144 -7724077 -7724009 -7723941 -7723881 -7723821 446

-7746648 -7746588 -7746529 -7746469 -7746397 -7746325 -7746253 _7746181 -7746109 -7746050 -7745990 444

-7768837 -7768777 -7768717 -7768657 -7768581 -7768506 -7768430 -7768354 -7768278 -7768218 -7768158 442

-7791025 -7790966 -7790906 -7790846 -7790766 -7790686 -7790606 -7790527 -7790447 -7790387 -7790327 440

-7813026 -7812963 -7812899 -7812835 -7812755 -7812675 -7812595 -7812516 -7812436 -7812372 -7812308 438

-7834960 -7834892 -7834824 -7834744 -7834664 -7834584 -7834505 -7834425 -7834357 -7834289 436 -7835027

-7857028 -7856957 -7856885 -7856813 -7856733 -7856653 -7856574 -7856494 -7856414 -7856342 -7856270 434

-7878954 -7878878 -7878802 -7878722 -7878642 -7878563 -7878483 -7878403 -7878327 -7878251 432 -7879029

-7900951 -7900871 -7900791 -7900711 -7900631 -7900552 -7900472 -7900392 -7900312 -7900232 430 -7901030

-7922780 -7922700 -7922620 -7922537 -7922453. -7922369 -7922285 -7922201 -7922118 -7922034 428 -7922860 STEAM GENERATOR 2 780 800 810 820 830 840 850 860 870 PFW. PSIA 770 790 UMFW.IND, UMFW.IND' UMI W.TND, UMFWTND. UMFWIND, UMFW IND, UMMIW ND, UMFW.IND, TFw, DEG F UMVW.IND. UMFWIND, UMFWMIND, Ibm/hir Ibn/hr Ibm/hr Ibmn/hr Ibm/hr Ibn/hr Ibm/hr Ibm/thr Ibm/hr Ibm/hr Ibm/hr

-7648114 -7648058 -7648003 -7647947 -7647891 -7647835 -7647779 -7647724 -7647668 -7647612 -7647556 452

-7670506 -7670447 -7670387 -7670327 -7670267 -7670207 -7670148 -7670088 -7670028 -7669968 -7669908 450

-7692667 -7692607 -7692548 -7692488 -7692424 -7692360 -7692297 -7692233 -7692169 -7692109 -7692049 448

-7714828 -7714768 -7714709 -7714649 -7714581 -7714513 -7714446 -7714378 -7714310 -7714250 -7714190 446

-7736989 -7736929 -7736870 -7736810 -7736738 -7736666 -7736594 -7736523 -7736451 -7736391 -7736331 444

-7759150 -7759090 -7759030 -7758971 -7758895 -7758819 -7758743 -7758668 -7758592 -7758532 -7758472 442

-7781251 -7781191 -7781132 -7781052 -7780972 -7780892 -7780813 -7780733 -7780673 -7780613 440 -7781311

-7803284 -7803221 -7803157 -7803093 -7803013 -7802934 -7802854 -7802774 -7802695 -7802631 -7802567 438

-7825258 -7825190 -7825123 -7825055 -7824975 -7824895 -7824816 -7824736 -7824656 -7824588 -7824521 436

-7847160 -7847088 -7847016 -7846937 -7846857 -7846777 -7846698 -7846618 -7846546 -7846474 434 -7847232

-7869130 -7869054 -7868978 -7868898 -7868819 -7868739 -7868659 -7868579 -7868504 -7868428 432 -7869205

-7891179 -7891099 -7891019 -7890940 -7890860 -7890780 -7890701 -7890621 -7890541 -7890461 -7890382 430

-7912901 -7912822 -7912742 -7912658 -7912574 -7912491 -7912407 -7912323 -7912240 -7912156 428 -7912981

CA06494, Revision 0000 Page 74 of 132 CALORIMETRIC UNCERTAINTY USING TIE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 3C2, Feediwater Flow Piping Configuration Contribution to Calorimetric Uncertainty, Unit 2 1 PST, 1 870 1 STEAM GENERATOR PFw,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFw, DEG F UMFV.ND, UMFW-IND, UMFW-WNn, UMFW.ftN0, UMFW WD. UMFW.IND, UMFIWND, UMF.ND, UMFV.rND. UMFWND, UMFW.IND, Ibm/hr Ibmmhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/vhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7842752 -7842695 -7842638 -7842580 -7842523 -7842465 -7842408 -7842350 -7842293 -7842236 -7842178 450 -7865802 -7865740 -7865678 -7865617 -7865555 -7865494 -7865432 -7865371 -7865309 -7865248 -7865186 448 -7888613 -7888551 -7888489 -7888428 -7888362 -7888297 -7888231 -7888165 -7888100 -7888038 -7887977 446 -7911424 -7911362 -7911301 -7911239 -7911169 -7911100 -7911030 -7910960 -7910890 -7910829 -7910767 444 -7934235 -7934173 -7934112 -7934050 -7933976 -7933902 -7933829 -7933755 -7933681 -7933619 -7933558 442 -7957046 -7956984 -7956923 -7956861 -7956783 -7956705 -7956627 -7956549 -7956471 -7956410 -7956348 440 -7979857 -7979795 -7979734 -7979672 -7979590 -7979508 -7979426 -7979344 -7979262 -7979200 -7979139 438 - -8002475 -8002410 -8002344 -8002278 -8002196 -8002114 -8002032 -8001950 -8001868 -8001802 -8001737 436 -8025093 -8025024 -8024954 -8024884 -8024802 -8024720 -8024638 -8024556 -8024474 -8024404 -8024334 434 -8047712 -8047638 -8047564 -8047490 -8047408 -8047326 -8047244 -8047162 -8047080 -8047006 -8046932 432 -8070330 -8070252 -8070174 -8070096 -8070014 -8069932 -8069850 -8069768 -8069686 -8069608 -8069530 430 -8092948 -8092866 -8092784 -8092702 -8092620 -8092538 -8092456 -8092374 -8092292 -8092210 -8092128 428 -8115390 -8115308 -8115226 -8115144 -8115058 -8114972 -8114885 -8114799 -8114713 -8114627 1 -8114541

___STEAM GENERATOR 2 PFPSIA 770 790 780 800 810 . 820 830 840 850 - 860 870 TFW. DEG F UMMIND, UMMIND, UMFW.IND- UMMW-ND, UMFW-ND, UMWIND, UMFW.IND UMFV.INO, UMFW-ND, UMFW4.0N UMFrND-Ibm/hr Ibm/hr Ibm/lr Ibrm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibml/hr Ibm/hr Ibm/hr 452 -7857021 -7856963 -7856906 -7856848 -7856790 -7856733 -7856675 -7856618 -7856560 -7856503 -7856445 450 -7880112 -7880050 -7879988 -7879927 -7879865 -7879803 -7879742 -7879680 -7879618 -7879557 -7879495 448 -7902964 -7902903 -7902841 -7902779 -7902713 -7902648 -7902582 -7902516 -7902450 -7902389 -7902327 446 -7925817 -7925755 -7925693 -7925632 -7925562 -7925492 -7925422 -7925352 -7925282 -7925221 -7925159 444 -7948669 -7948608 -7948546 -7948484 -7948410 -7948336 -7948262 -7948188 -7948114 -7948053 -7947991 442 -7971522 -7971460 -7971399 -7971337 -7971259 -7971181 -7971103 -7971025 -7970947 -7970885 -7970823 440 -7994375 -7994313 -7994251 -7994190 -7994107 -7994025 -7993943 -7993861 -7993779 -7993717 -7993655 438 -8017034 -8016968 -8016902 -8016837 -8016754 -8016672 -8016590 -8016508 -8016426 -8016360 -8016294 436 -8039693 -8039623 -8039554 -8039484 .8039402 -8039319 -8039237 -8039155 -8039073 -8039003 -8038933 434 -8062353 -8062279 -8062205 -8062131 -8062049 -8061966 -8061884 -8061802 -8061720 -8061646 -8061572 432 -8085012 -8084934 -8084856 -8084778 -8084696 -8084613 -8084531 -8084449 -8084367 -8084289 -8084211 430 -8107672 -8107589 -8107507 -8107425 -8107343 -8107261 -8107178 -8107096 -8107014 -8106932 -8106849 428 -8130154 -8130072 -8129990 -8129908 -8129821 -8129735 -8129649 -8129562 -8129476 -8129390 -8129303

CA06494, Revision 0000 Page 75 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Pa 1 860 1 STEAM GENERATOR I PFW. PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW DEG F UMF.,IND, UMFNV.ND, UMFW.IND. UMFIVIND, UMFW-IND. UMFW.NDO UMFW.IND, UMV-IND, UMFWrD. UMFW.IND. UMmV.IND, Ibm/hr Ibm/hr Ibmuhr Ibm/lr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7846855 -7846798 -7846740 -7846683 -7846625 -7846568 -7846511 -7846453 -7846396 -7846338 -7846281 450 -7869904 -7869843 -7869781 -7869720 -7869658 -7869597 -7869535 -7869473 -7869412 -7869350 -7869289 448 -7892715 -7892654 -7892592 -7892531 -7892465 -7892399 -7892334 -7892268 -7892202 -7892141 -7892079 446 -7915526 -7915465 -7915403 -7915342 -7915272 -7915202 -7915133 -7915063 -7914993 -7914931 -7914870 444 -7938337 -7938276 -7938214 -7938153 -7938079 -7938005 -7937931 -7937857 -7937784 -7937722 -7937661 442 -7961149 -7961087 -7961025 -7960964 -7960886 -7960808 -7960730 -7960652 -7960574 -7960513 -7960451 440 -7983960 -7983898 -7983837 -7983775 -7983693 -7983611 -7983529 -7983447 -7983365 -7983303 -7983242 438 -8006578 -8006512 -8006447 -8006381 -8006299 -8006217 -8006135 -8006053 -8005971 -8005905 -8005839 436 -8029196 -8029126 -8029057 -8028987 -8028905 -8028823 -8028741 -8028659 -8028577 -8028507 -8028437 434 -8051814 -8051741 -8051667 -8051593 -8051511 -8051429 -8051347 -8051265 -8051183 -8051109 -8051035 432 -8074433 -8074355 -8074277' -8074199 -80741177 -8074035 -8073953 -8073871 -8073788 -8073711 -8073633 430 -8097051 -8096969 -8096887 -8096805 -8096723 -8096641 -8096559 -8096476 -8096394 -8096312 -8096230 428 -8119493 -8119411 -8119329 -8119247 -8119160 -8119074 -8118988 4118902 -8118816 -8118730 -8118643 STEAM GENERATOR 2 Pn. PSIA 770 790 780 800 810 820 830 840 850 860 870 Trw, DEG F UMNW.IND, UMF\V.-ND, UMMW.IND, UMFW.IND, UMFW.IND, UMFW.IND- UMFW-IND- UMFW.IND- UMFW-IND- UMFW-D D UMWOND, Ibm/hr Ibmthr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmlhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7861131 -7861073 -7861016 -7860958 -7860901 -7860843 -7860786 -7860728 -7860670 -7860613 -7860555 450 -7884222 -7884160 -7884099 -7884037 -7883975 -7883914 -7883852 -7883790 -7883729 -7883667 -7883605 448 -7907074 -7907013 -7906951 -7906889 -7906824 -7906758 -7906692 -7906626 -7906561 -7906499 -7906437 446 -7929927 -7929865 -7929804 -7929742 -7929672 -7929602 -7929532 -7929463 -7929393 -7929331 -7929269 444 -7952780 -7952718 -7952656 -7952595 -7952521 -7952447 -7952373 -7952299 -7952225 -7952163 -7952101 442 -7975632 -7975570 -7975509 -7975447 -7975369 :7975291 -7975213 -7975135 -7975057 -7974995 -7974933 440 -7998485 -7998423 -7998361 -7998300 -7998218 -7998135 -7998053 -7997971 -7997889 -7997827 -7997765 438 -8021144 -8021078 -8021013 -8020947 -8020865 -8020782 -8020700 -8020618 -8020536 -8020470 -8020404 436 -8043804 -8043734 -8043664 -8043594 -8043512 -8043429 -8043347 -8043265 -8043183 -8043113 -8043043 434 -8066463 -8066389 -8066315 -8066241 -8066159 -8066077 -8065994 -8065912 -8065830 -8065756 -8065682 432 -8089122 -8089044 -8088966 -8088888 -8088806 -8088724 -8088641 -8088559 -8088477 -8088399 -8088321 430 -8111782 -8111699 -8111617 -8111535 -8111453 -8111371 -8111288 -8111206 -8111124 -8111042 -8110960 428 -8134264 -8134182 -8134100 -8134018 -8133931 -8133845 -8133759 -8133672 -8133586 -8133500 -8133414

CA06494, Revision 0000 Page 76 of 132 CALORIMETRIC UNCERTAINTY USING TtlE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 850 STEAM GENERATOR I PFw, PSIA 770 780 790 800 810 820 830 840 850 860 870 UM D, UMMD, UMWIND, UMV.IND, UMFW.,ND. UMme.D UMFWV.ND, UMFIM.IND, TFW, DEG F UMFW.IND, UMFWPVID, UMPW-.ND, Ibm/nr ibm/hr Ibm/hr ibml/r Ibm/hr Ibri/hr ibn/hlr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7849932 -7849875 -7849817 -7849760 -7849702 .7849645 -7849588 -7849530 -7849473 -7849415 -7849358 450 -7872981 -7872920 -7872858 -7872797 -7872735 -7872674 -7872612 -7872550 -7872489 -7872427 -7872366 448 -7895792 -7895731 -7895669 -7895608 -7895542 -7895476 -7895411 -7895345 -7895279 -7895218 -7895156 446 -7918603 -7918542 -7918480 -7918419 -7918349 -7918279 -7918210 -7918140 -7918070 -7918009 -7917947 444 -7941414 -7941353 -7941291 -7941230 -7941156 -7941082 -7941008 -7940934 -7940861 -7940799 -7940738

-7964226 -7964164 -7964102 -7964041 -7963963 -7963885 -7963807 -7963729 -7963651 -7963590 -7963528 442 440 -7987037 -7986975 -7986914 -7986852 -7986770 -7986688 -7986606 -7986524 -7986442 -7986380 -7986319

-8009655 -8009589 -8009524 -8009458 -8009376 .8009294 -8009212 -8009130 -8009048 -8008982 -8008916 438 436 -8032273 -8032203 -8032134 -8032064 -8031982 -8031900 -8031818 -8031736 -8031654 -8031584 -8031514 434 -8054891 -8054818 -8054744 -8054670 -8054588 -8054506 -8054424 -8054342 -8054260 -8054186 -8054112

-8077510 -8077432 -8077354 -8077276 -8077194 -8077112 -8077030 -8076948 -8076866 -8076788 -8076710 432

-8100128 -8100046 -8099964 -8099882 -8099800 -8099718 -8099636 -8099554 -8099471 -8099389 -8099307 430

-8122570 -8122488 -8122406 -8122324 -8122237 -8122151 -8122065 -8121979 -8121893 -8121807 -8121720 428

- STEAM GENERATOR 2 PF,wPSIA 770 790 780 800 810 820 830 840 850 860 870 UMFW.ND, UMFW-IND, UMFW UMF.I UWD, UMFWIND, UMFW-WD. UMrwD.

Trw,DEG F UMFW-4ND, UMFW.IND, UMFV-IND. UMFWIND, Ibm/hr Ibm/hr Ibmlhr Ibm/hr Ibmn/hr Ibm/hr Ibmnhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-7864213 -7864156 -7864098 -7864041 -7863983 -7863926 -7863868 -7863811 -7863753 -7863696 -7863638 452

-7887304 -7887243 -7887181 -7887119 -7887058 -7886996 -7886935 -7886873 -7886811 -7886750 -7886688 450

-7910157 -7910095 -7910034 -7909972 -7909906 -7909841 -7909775 -7909709 -7909643 -7909582 -7909520 448 446 -7933010 -7932948 -7932886 -7932825 -7932755 -7932685 -7932615 -7932545 -7932475 -7932414 -7932352 444 -7955862 -7955801 -7955739 -7955677 -7955603 -7955529 -7955455 -7955381 -7955307 -7955246 -7955184 442 -7978715 -7978653 -7978591 -7978530 -7978452 -7978374 -7978296 -7978217 -7978139 -7978078 -7978016 440 -8001567 -8001506 -8001444 -8001382 -8001300 -8001218 -8001136 -8001054 -8000971 -8000910 -8000848

-8024227 -8024161 -8024095 -8024029 -8023947 -8023865 -8023783 -8023701 -8023618 -8023553 -8023487 438

-8046886 -8046816 -8046746 -8046677 -8046594 -8046512 -8046430 -8046348 -8046265 -8046196 -8046126 436 434 -8069546 -8069472 -8069398 -8069324 -8069241 -8069159 -8069077 -8068995 -8068913 -8068839 -8068765

-8092205 -8092127 -8092049 -8091971 -8091888 -8091806 -8091724 -8091642 -8091560 -8091482 -8091403 432

-8114864 -8114782 -8114700 -8114618 -8114536 -8114453 -8114371 -8114289 -8114207 -8114125 -8114042 430

-8137347 -8137265 -8137183 -8137100 -8137014 -8136928 -8136841 -8136755 -8136669 -8136583 -8136496 428

CA06494, Revision 0000 Page 77 of 132 CALORIMETRIC UNCERTAINTY USING TnE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PSTM 1 840 1 STEAM GENERATOR I PFW, PSTA 770 780 790 800 810 820 830 840 850 860 870 UMFW.IND, UMFWIND, UMFW-tND, UMFV-ND, UMFWIND Trw, DEG F UMFW.NND, UMNFWND, UMFWMND. UMW.MND, U Ibm/hr Ibm/hr Ibm/hr Ibm/hlr Ibrnm/r Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7851984 -7851926 -7851869 -7851811 -7851754 -7851696 -7851639 -7851582 -7851524 -7851467 -7851409 450 -7875033 -7874971 -7874910 -7874848 -7874786 -7874725 -7874663 -7874602 -7874540 -7874479 -7874417 448 -7897844 -7897782 -7897721 -7897659 -7897593 -7897528 -7897462 -7897396 -7897331 -7897269 -7897208 446 -7920655 -7920593 -7920532 -7920470 -7920400 -7920331 -7920261 -7920191 -7920121 -7920060 -7919998 444 -7943466 -7943404 -7943343 -7943281 -7943207 -7943134 -7943060 -7942986 -7942912 -7942850 -7942789 442 -7966277 -7966215 -7966154 -7966092 -7966014 -7965936 -7965858 -7965780 -7965703 -7965641 -7965579 440 -7989088 -7989026 -7988965 -7988903 -7988821 -7988739 -7988657 -7988575 -7988493 -7988432 -7988370 438 -8011706 -8011641 -8011575 -8011509 -8011427 -8011345 -8011263 -8011181 -8011099 -8011033 -8010968 436 -8034324 -8034255 -8034185 -8034115 -8034033 -8033951 -8033869 -8033787 -8033705 -8033635 -8033565 434 -8056943 -8056869 -8056795 -8056721 -8056639 -8056557 -8056475 -8056393 -8056311 -8056237 -8056163 432 -8079561 -8079483 -8079405 -8079327 -8079245 -8079163 -8079081 -8078999 -8078917 -8078839 -8078761 430 -8102179 -8102097 -8102015 -8101933 -8101851 -8101769 -8101687 -8101605 -8101523 -8101441 -8101359 428 -8124621 -8124539 -8124457 -8124375 -8124289 -8124203 -8124116 -8124030 -8123944 -8123858 -8123772 STEAM GENERATOR 2 PFv, PSIA 770 790 780 800 810 820 830 840 850 860 870 UMMWWND, UMFW.IND, UMFWND, TFW, DEG F UMFW4tND, UMFW-ND- UMFWND, UMMF\ND, UMFW.IND, UMFWIND, UMFWIND, UMFW.tND' Ibm/hr Ibm/hr Ibnm/r Ibm/hr Ibm/hr Ibmnhr Ibn/hr Ibmnhr Ibm/hr Ibm/hr Ibm/hr 452 -7866269 -7866211 -7866153 -7866096 -7866038 -7865981 -7865923 -7865866 -7865808 -7865751 -7865693 450 -7889360 -7889298 -7889236 -7889175 -7889113 -7889051 -7888990 -7888928 -7888866 -7888805 -7888743 448 -7912212 -7912150 -7912089 -7912027 -7911961 -7911896 -7911830 -7911764 -7911698 -7911637 -7911575 446 -7935065 -7935003 -7934941 -7934880 -7934810 -7934740 -7934670 -7934600 -7934530 -7934469 -7934407 444 -7957917 -7957856 -7957794 -7957732 -7957658 -7957584 -7957510 -7957436 -7957362 -7957301 -7957239 442 -7980770 -7980708 .7980647 -7980585 -7980507 -7980429 -7980351 -7980273 -7980194 -7980133 -7980071 440 -8003622 -8003561 -8003499 -8003437 -8003355 -8003273 -8003191 -8003109 -8003026 -8002965 -8002903 438 -8026282 -8026216 -8026150 -8026085 -8026002 -8025920 -8025838 -8025756 -8025674 -8025608 -8025542 436 -8048941 -8048871 -8048801 -8048732 -8048649 -8048567 -8048485 -8048403 -8048321 -8048251 -8048181 434 -8071601 -8071527 -8071453 -8071379 -8071296 -8071214 -8071132 -8071050 -8070968 -8070894 -8070820 432 -8094260 -8094182 -8094104 -8094026 -8093944 -8093861 -8093779 -8093697 -8093615 -8093537 -8093459 430 -8116919 -8116837 -8116755 -8116673 -8116591 -8116508 -8116426 -8116344 -8116262 -8116180 -8116097 428 -8139402 -8139320 -8139238 -8139155 -8139069 -8138983 -8138897 -8138810 -8138724 -8138638 -8138551

CA06494, Revision 0000 Page 78 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 830 I STEAM GENERATOR 1 PFWPSIA 770 780 790 800 810 820 830 840 850 860 870 TW, DEG F UFW I, UMFW.IND, UMFW-IND, UMMW.WD, UMW-IND, UMFW.INt, .UMFWV.ND. UMLWIND, UMF%-INp, UM.jIND, UMMW.IND.

Ibmlhr Ibmlhr Ibm/hr Ibm/hr Ibm/hr Ibnmhr IbmVhr Ibni/hr Ibm/hr Ibm/hr Ibmn/hr 452 -7855061 -7855003 -7854946 -7854888 -7854831 -7854773 -7854716 -7854659 -7854601 -7854544 -7854486 450 -7878110 -7878048 -7877987 -7877925 -7877863 -7877802 -7877740 -7877679 -7877617 -7877556 -7877494 448 -7900921 -7900859 -7900798 -7900736 -7900670 -7900605 -7900539 -7900474 -7900408 -7900346 -7900285 446 -7923732 -7923670 -7923609 -7923547 -7923477 -7923408 -7923338 -7923268 -7923198 -7923137 -7923075 444 -7946543 -7946481 -7946420 -7946358 -7946284 -7946211 -7946137 .7946063 -7945989 -7945927 -7945866 442 -7969354 -7969292 -7969231 -7969169 -7969091 -7969013 -7968935 -7968858 -7968780 -7968718 -7968656 440 -7992165 -7992103 -7992042 -7991980 -7991898 -7991816 -7991734 -7991652 -7991570 -7991509 -7991447 438 -8014783 -8014718 -8014652 -8014586 -8014504 -8014422 -8014340 -8014258 -8014176 -8014110 -8014045 436 -8037402 -8037332 -8037262 -8037192 -8037110 -8037028 -8036946 -8036864 -8036782 -8036712 -8036643 434 -8060020 -8059946 -8059872 -8059798 -8059716 -8059634 -8059552 -8059470 -8059388 -8059314 -8059240 432 -8082638 -8082560 -8082482 -8082404 -8082322 -8082240 -8082158 -8082076 -8081994 -8081916 -8081838 430 -8105256 -8105174 -8105092 -8105010 -8104928 -8104846 -8104764 -8104682 -8104600 -8104518 -8104436 428 -8127698 -8127616 -8127534 -8127452 -8127366 -8127280 -8127193 -8127107 -8127021 -8126935 -8126849 STEAM GENERATOR 2 Pw,PSTA 770 790 780 800 810 .820 830 840 850 860 870 Trw, DEG F UMFW-IND, UMFW.IND, UMFWtND, UMMW.IND, UMFW.ND, UMFW.ND, UMI.IIND, UMFW IND, UMFW. ND, UMFW-ND, UMFW.IND, Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/ir 452 -7869351 -7869294 -7869236 -7869179 -7869121 -7869063 -7869006 -7868948 -7868891 -7868833 -7868776 450 -7892442 -7892381 -7892319 -7892257 -7892196 -7892134 -7892072 -7892011 -7891949 -7891887 -7891826 448 -7915295 -7915233 -7915171 -7915110 -7915044 -7914978 -7914912 -7914847 -7914781 -7914719 -7914658 446 -7938147 -7938086 -7938024 -7937962 -7937892 -7937823 -7937753 -7937683 -7937613 -7937551 -7937490 444 -7961000 -7960938 -7960877 -7960815 -7960741 -7960667 -7960593 -7960519 -7960445 -7960383 -7960322 442 -7983852 -7983791 -7983729 -7983668 -7983589 -7983511 -7983433 -7983355 -7983277 -7983215 -7983154 440 -8006705 -8006643 -8006582 -8006520 -8006438 -8006356 -8006273 -8006191 -8006109 -8006047 -8005986 438 -8029364 -8029299 -8029233 -8029167 -8029085 -8029003 -8028921 -8028838 -8028756 -8028690 -8028625 436 -8052024 -8051954 -8051884 -8051814 -8051732 -8051650 -8051568 -8051485 -8051403 -8051333 -8051263 434 -8074683 -8074609 -8074535 -8074461 -8074379 -8074297 -8074215 -8074132 -8074050 -8073976 -8073902 432 -8097343 -8097265 -8097186 -8097108 -8097026 -8096944 -8096862 -8096780 -8096697 -8096619 -8096541 430 -8120002 -8119920 -8119838 -8119755 -8119673 -8119591 -8119509 -8119427 -8119344 -8119262 -8119180 428 -8142485 -8142403 -8142320 -8142238 -8142152 -8142065 -8141979 -8141893 -8141807 -8141720 -8141634

CA06494, Revision 0000 Page 79 of 132 CALORIMETRIC UNCERTAINTY USrNG THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I ~PZ M 820 I STEAM GENERATOR I PW.PSIA 770 790 780 800 810 820 830 840 850 860 870 TF,, DEG F UMFW.tND. UMF\V.IND, UMFW-tND, UMI\V-IND, UMMWND UMUMFW-NDD U UM-FW-IND UMFW.rNDD UMFWDND, UMFW IND, Ibn/hr Ibtn/hr Ibm/hr Ibmn/hr IbmVhr Ibmnhr Ibm/hr Ibm/hr Ibmlhr Ibmd/hr Ibn/hr 452 -7858138 -7858080 -7858023 -7857965 -7857908 -7857850 -7857793 -7857736 -7857678 -7857621 -7857563 450 -7881187 -7881125 -7881064 -7881002 -7880941 -7880879 -7880817 -7880756 -7880694 -7880633 -7880571 448 -7903998 -7903936 -7903875 -7903813 -7903747 -7903682 -7903616 -7903551 -7903485 -7903423 -7903362 446 -7926809 -7926747 -7926686 -7926624 -7926554 -7926485 -7926415 -7926345 -7926275 -7926214 -7926152 444 -7949620 -7949558 -7949497 -7949435 -7949361 -7949288 -7949214 -7949140 -7949066 -7949005 -7948943 442 -7972431 -7972369 -7972308 -7972246 -7972168 -7972090 -7972013 -7971935 -7971857 -7971795 -7971734 440 -7995242 -7995181 -7995119 -7995057 -7994975 -7994893 -7994811 -7994729 -7994647 -7994586 -7994524 438 -8017860 -8017795 -8017729 -8017663 -8017581 -8017499 -8017417 -8017335 -8017253 -8017187 -8017122 436 -8040479 -8040409 -8040339 -8040269 -8040187 -8040105 -8040023 -8039941 -8039859 -8039789 -8039720 434 -8063097 -8063023 -8062949 -8062875 -8062793 -8062711 -8062629 -8062547 -8062465 -8062391 -8062317 432 -8085715 -8085637 -8085559 -8085481 -8085399 -8085317 -8085235 -8085153 -8085071 -8084993 -8084915 430 -8108333 -8108251 -8108169 -8108087 -8108005 -8107923 -8107841 -8107759 -8107677 -8107595 -8107513 428 -8130775 -8130693 -8130611 -8130529 -8130443 -8130357 -8130271 -8130184 -8130098 -8130012 -8129926 ISTEAM GENERATOR 2 _

Pr,,PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UMpW-ND , UMFW-IND- UMIFW.IND, UMFW-ND., UMMFW-ND- UMFW-.ND, UMFW.IND, UMW.ND. UMFW-IND, UMFW-ND, UMFW-IND.

Ibm/hr Ibm/hr Ibm/hr Ibnthr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7872434 -7872376 -7872319 -7872261 -7872204 -7872146 -7872089 -7872031 -7871973 -7871916 -7871858 450 -7895525 -7895463 -7895401 -7895340 -7895278 -7895217 -7895155 -7895093 -7895032 -7894970 -7894908 448 -7918377 -7918316 -7918254 -7918192 -7918127 -7918061 -7917995 -7917929 -7917864 -7917802 -7917740 446 -7941230 -7941168 -7941107 -7941045 -7940975 -7940905 -7940835 -7940765 -7940696 -7940634 -7940572 444 -7964083 -7964021 -7963959 -7963898 -7963824 -7963750 -7963676 -7963602 -7963528 -7963466 -7963404 442 -7986935 -7986873 -7986812 -7986750 -7986672 -7986594 -7986516 -7986438 -7986360 -7986298 -7986236 440 -8009788 -8009726 -8009664 -8009603 -8009521 -8009438 -8009356 -8009274 -8009192 -8009130 -8009068 438 -8032447 -8032381 -8032316 -8032250 -8032168 -8032085 -8032003 -8031921 -8031839 -8031773 -8031707 436 -8055106 -8055037 -8054967 -8054897 -8054815 -8054732 -8054650 -8054568 -8054486 -8054416 -8054346 434 -8077766 -8077692 -8077618 -8077544 -8077462 -8077380 -8077297 -8077215 -8077133 -8077059 -8076985 432 -8100425 -8100347 -8100269 -8100191 -8100109 -8100027 -8099944 -8099862 -8099780 -8099702 -8099624 430 -8123085 -8123002 -8122920 -8122838 -8122756 -8122674 -8122591 -8122509 -8122427 -8122345 -8122263 428 -8145567 -8145485 -8145403 -8145321 -8145234 -8145148 -8145062 -8144975 -8144889 -8144803 -8144717

CA06494, Revision 0000 Page 80 of 132 CALORIMETRIC UNCERTAINTY USING iEhAMAG CROSSFLOWULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 810 I STEAM GENERATOR I PtW, PSIA 770 790 780 800 810 820 830 840 850 860 870 UMPW.ND, UMFW.tND, UMFV.IND, UMFWtND, UMFV-tND, Tw, DEG F U11V-tD, UMMIND, UMFW.WND, UMnW-tND, UMFWaND, UMFW-ND, Ibm/hr Ibm/hr ibm/br Ibm/hr Ibm/hr Ibm/hr Ibm/thr Ibm/hr Ibm/hr ibm/br Ibm/hr 452 -7861215 -7861157 -7861100 -7861042 -7860985 -7860927 -7860870 -7860813 -7860755 -7860698 -7860640 450 -7884264 -7884202 -7884141 -7884079 -7884018 -7883956 -7883894 -7883833 -7883771 -7883710 -7883648 448 -7907075 -7907013. -7906952 -7906890. -7906825 -7906759 -7906693 -7906628 -7906562 -7906500 -7906439 446 -7929886 -7929824 -7929763 .7929701 -7929631 -7929562 -7929492 -7929422 -7929353 -7929291 -7929229 444 -7952697 -7952635 -7952574 .7952512 -7952438 -7952365 -7952291 -7952217 -7952143 -7952082 -7952020 442 -7975508 -7975446 -7975385 -7975323 -7975245 -7975167 -7975090 -7975012 -7974934 -7974872 -7974811 440 -7998319 -7998258 -7998196 -7998134 -7998052 -7997970 -7997888 -7997806 -7997724 -7997663 -7997601 438 -8020937 -8020872 -8020806 -8020740 -8020658 -8020576 -8020494 -8020412 -8020330 -8020265 -8020199 436 -8043556 -8043486 -8043416 -8043346 -8043264 -8043182 -8043100 -8043018 -8042936 -8042866. -8042797 434 -8066174 -8066100 -8066026 -8065952 -8065870 -8065788 -8065706 -8065624 -8065542 -8065468 -8065394 432 -8088792 -8088714 -8088636 -8088558 -8088476 -8088394 -8088312 -8088230 -8088148 -8088070 -8087992 430 -8111410 -8111328 -8111246 -8111164 -8111082 -8111000 -8110918 -8110836 -8110754 -8130672 -8110590 428 -8133852 -8133770 -8133688 -8133606 -8133520 -8133434 -8133348 -8133261 -8133175 -8133089 -8333003 STEAM GENERATOR 2 PFWPSIA 770 790 780 800 810 820 830 840 . 850 860 870 Tw, DEG F UMFw.IND, UmFwIND, UMFW.tND, UMFW-ND. UPAFW-ND, UMMIND, UMIW.IND. UMFWINO, MIND, UMFWIND, lUMFW.IND, UMFt Ibm/hr Ibm/hr Ibm/hr Ibm/hlr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7875516 -7875459 -7875401 -7875344 -7875286 -7875229 -7875171 -7875114. -7875056 -7874999 -7874941 450 -7898607 -7898546 -7898484 -7898422 -7898361 -7898299 -7898238 -7898176 -7898114 -7898053 -7897991 448 -7921460 -7921398 -7921337 -7921275 -7921209 -7921144 -7921078 -7921012 -7920946 -7920885 -7920823 446 -7944313 -7944251 -7944189 -7944128 -7944058 -7943988 -7943918 -7943848 -7943778 -7943717 -7943655 444 -7967165 -7967104 -7967042 -7966980 -7966906 -7966832 -7966758 -7966684 -7966610 -7966549 -7966487 442 -7990018 -7989956 -7989894 -7989833 -7989755 -7989677 -7989598 -7989520 -7989442 -7989381 -7989319 440 -8012870 -8012809 -8012747 -8012685 -8012603 -8012521 -8012439 -8012357 -8012274 -8012213 -8012151 438 -8035530 -8035464 -8035398 -8035332 -8035250 -8035168 -8035086 -8035004 -8034921 -8034856 -8034790 436 -8058189 -8058119 -8058049 -8057979 -8057897 -8057815 -8057733 -8057651 -8057568 -8057499 -8057429 434 -8080849 -8080775 -8080701 -8080627 -8080544 -8080462 -8080380 -8080298 -8080216 -8080142 -8080068 432 -8103508 -8103430 -8103352 -8103274 -8103191 -8103109 -8103027 -8102945 -8102863 -8102785 -8102706 430 -8126167 -8126085 -8126003 -8125921 -8125839 -8125756 -8125674 -8125592 -8125510 -8125427 -8125345 428 -8148650 -8148568 -8148486 -8148403 -8148317 -8148231 -8148144 -8148058 -8147972 -8147885 -8147799

CA06494, Revision 0000 Page 81 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES STEAM GENERATOR I PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UMFW.IND, UMFW-ND, UMFW.ND, UMFW.ND, UMWND. UMFND UMFW.ND, UMWIND, UMFW.ND, UMFW.IND, UMFW.JND,

_Ibm/hr ibm/thr Ibm/hr _ Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr 452 -7864292 -7864234 -7864177 -7864119 -7864062 -7864005 -7863947 -7863890 -7863832 -7863775 -7863717 450 -7887341 -7887279 -7887218 -7887156 -7887095 -7887033 -7886971 -7886910 -7886848 -7886787 -7886725 448 .7910152 -7910090 -7910029 -7909967 -7909902 -7909836 -7909770 -7909705 -7909639 -7909577 -7909516 446 -7932963 -7932901 -7932840 -7932778 -7932709 -7932639 -7932569 -7932499 -7932430 -7932368 -7932306 444 -7955774 -7955712 -7955651 -7955589 -7955516 -7955442 -7955368 -7955294 -7955220 -7955159 -7955097 442 -7978585 -7978524 -7978462 -7978400 -7978322 -7978245 -7978167 -7978089 -7978011 -7977949 -7977888 440 -8001396 -8001335 -8001273 -8001212 -8001129 -8001047 -8000965 -8000883 -8000801 -8000740 -8000678 438 -8024014 -8023949 -8023883 -8023817 -8023735 -8023653 -8023571 -8023489 -8023407 -8023342. -8023276 436 -8046633 -8046563 -8046493 -8046423 -8046341 -8046259 -8046177 -8046095 -8046013 -8045943 -8045874 434 -8069251 -8069177 -8069103 -8069029 -8068947 -8068865 -8068783 -8068701 -8068619 -8068545 -8068471 432 -8091869 -8091791 -8091713 -8091635 -8091553. -8091471 -8091389 -8091307 -8091225 -8091147 -8091069 430 -8114487 -8114405 -8114323 -8114241 -8114159 -8114077 -8113995 -8113913 -8113831 -8113749 -8113667 428 -8136929 -8136847 -8136765 -8136683 -8136597 -8136511 -8136425 1 -8136338 -8136252 .8136166 -8136080 STEAM GENERATOR 2 PFPSIA 770 790 780 800 810 820 830 840 850 860 870 TFEv. DEG F UMFw.VIND, UMFW.IND, UMFW-ND, UMFW.ND, UMFW.ND, UMFM DN UMMFWND, UMFW.ND, UMFINW, UMNFW.NDO UM1W.IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hru Ibm/hr Ibn/Jhr Ibm/hr Ibm/hr Ibm/hr 452 -7878599 -7878542 -7878484 -7878426 -7878369 -7878311 -7878254 -7878196 -7878139 -7878081 -7878024 450 -7901690 -7901628 -7901567 -7901505 -7901443 -7901382 -7901320 -7901258 -7901197 -7901135 -7901074 448 -7924543 -7924481 -7924419 -7924358 -7924292 -7924226 -7924160 -7924095 -7924029 -7923967 -7923906 446 -7947395 -7947334 -7947272 -7947210 -7947140 -7947071 -7947001 -7946931 -7946861 -7946799 -7946738 444 -7970248 -7970186 -7970124 -7970063 -7969989 -7969915 -7969841 -7969767 -7969693 -7969631 -7969570 442 -7993100 -7993039 -7992977 -7992915 -7992837 -7992759 -7992681 -7992603 -7992525 -7992463 -7992402 440 -8015953 -8015891 -8015830 -8015768 -8015686 -8015604 -8015521 -8015439 -8015357 -8015295 -8015234 438 -8038612 -8038547 -8038481 -8038415 -8038333 -8038251 -8038168 -8038086 -8038004 -8037938 -8037873 436 -8061272 -8061202 -8061132 -8061062 -8060980. -8060898 -8060816 -8060733 -8060651 -8060581 -8060511 434 -8083931 -8083857 -8083783 -8083709 -8083627 -8083545 -8083463 -8083380 -8083298 -8083224 -8083150 432 -8106591 -8106512 -8106434 -8106356 -8106274 -8106192 -8106110 -8106027 -8105945 -8105867 -8105789 430 -8129250 -8129168 -8129086 -8129003 -8128921 -8128839 -8128757 -8128675 -8128592 -8128510 -8128428 428 -8151733 -8151650 -8151568 -8151486 -8151400 -8151313 -8151227 - -8151141 -8151054 -8150968 -8150882

Page 82 of 132 CA06494, Revision 0000 CALORMETRIC UNCERTAINTY USING TIIE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 790

-I.

STEAM GENERATOR I 770 790 780 800 810 820 830 840 850 860 870 Pfw, PSIA UMF-IND. UMFW.IND, UMFW.ND, UMFWIND, UMFW.WD, UMFW-ND, TFw, DEG F UMFW.ND, UMFV IND, UMF'WIND, UMFW.IND, UMFW-ND, Ibm/hr IbnmAr Ibm/hr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-7867311 -7867254 -7867196 -7867139 -7867082 -7867024 -7866967 -7866909 -7866852 -7866794 452 -7867369

-7890418 -7890356 -7890295 -7890233 -7890172 -7890110 -7890049 -7889987 -7889925 -7889864 -7889802 450

-7913229 -7913167 -7913106 .7913044 .7912979 -7912913 -7912847 -7912782 -7912716 -7912654 -7912593 448

-7936040 -7935978 -7935917 -7935855 -7935786 -7935716 -7935646 -7935576 -7935507 -7935445 -7935383 446

-7958851 -7958789 -7958728 -7958666 -7958593 -7958519 -7958445 -7958371 -7958297 -7958236 -7958174 444

-7981601 -7981539 -7981477 -7981400 -7981322 -7981244 -7981166 -7981088 -7981026 -7980965 442 -7981662

-8004350 -8004289 -8004206 -8004124 -8004042 -8003960 -8003878 -8003817 -8003755 440 -8004473 -8004412

-8027026 -8026960 -8026894 -8026812 -8026730 -8026648 -8026566 -8026484 -8026419 -8026353 438 -8027091

-8049640 -8049570 -8049500 -8049418 -8049336 -8049254 -8049172 -8049090 -8049020 -8048951 436 -8049710

-8072328 -8072254 -8072180 -8072106 -8072024 -8071942 -8071860 -8071778 -8071696 -8071622 -8071548 434

-8094790 -8094712 -8094630 -8094548 -8094466 -8094384 8094302 -8094224 -8094146 432 -8094946 -8094868

-8117400 -8117318 -8117236 -8117154 -8117072 -8116990 -8116908 -8116826 -8116744 430 -8117564 -8117482

-8139924 -8139842 -8139760 -8139674 -8139588 -8139502 -8139415. -8139329 -8139243 -8139157 428 -8140006 STEAM GENERATOR 2 770 790 780 800 810 820 830 840 850 860 870 PFW.PSTA UMFW-IND, UMFW-IND. UMFW.IND, UMFW-IND, UMMIv.ND, UMFWIND, UMFWIND.

TFW. DEG F UMFW.TND, UMFW.IND, UMFW TND, UMFW.IND, Ibm/hr Ibnmhr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr

-7881624 -7881567 -7881509 -7881452 -7881394 -7881336 -7881279 -7881221 -7881164 -7881106 452 -7881682

-7904773 -7904711 -7904649 -7904588 -7904526 -7904464 -7904403 -7904341 -7904279 -7904218 -7904156 450

-7927625 -7927564 -7927502 -7927440 -7927375 -7927309 -7927243 -7927177 -7927111 -7927050 -7926988 448

-7950478 -7950416 -7950355 -7950293 -7950223 -7950153 -7950083 -7950013 -7949944 -7949882 -7949820 446

-7973330 -7973269 -7973207 -7973145 -7973071 -7972997 -7972924 -7972850 -7972776 -7972714 -7972652 444

-7996121 -7996060 -7995998 -7995920 -7995842 -7995764 -7995686 -7995608 -7995546 -7995484 442 -7996183

-8018974 -8018912 -8018851 -8018768 -8018686 -8018604 -8018522 -8018440 -8018378 -8018316 440 -8019036

-8041563 -8041498 -8041415 -8041333 -8041251 -8041169 -8041087 -8041021 -8040955 438 -8041695 -8041629

-8064354 -8064285 -8064215 -8064145 -8064063 -8063980 -8063898 -8063816 -8063734 -8063664 -8063594 436

-8086940 -8086866 -8086792 -8086710 -8086627 -8086545 -8086463 -8086381 -8086307 -8086233 434 -8087014

-8109517 -8109439 -8109357 -8109274 -8109192 -8109110 -8109028 -8108950 -8108872 432 -8109673 -8109595

-8132250 -8132168 -8132086 -8132004 -8131922 -8131839 -8131757 -8131675 -8131593 -8131511 430 -8132333

-8154651 -8154569 -8154482 -8154396 -8154310 -8154223 -8154137 -8154051 -8153964 428 -8154815 -8154733

CA06494, Revision 0000 Page 83 of 132 CALORIMETRIC UNCERTAINTY USING TInE AMAG CROSSFLOWULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UJNCERTAINTY USING ASME 1967 STEAM TABLES 780 STEAM GENERATOR I PEWPSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UMFwmND. UMYvIND, UMnV-ND, UM NO, UM ND UMF\V.ND, UMFW-tND. UMnIND, UMIND., UMFWVND, UMFW-tND, Ibm/hr Ibm/hr Ibn/hr Ibmthr Ibm/hr Ibm/hr Ibn/hr Ibm/hr Ibm/hr Ibm/hr Ibn/hr 452 -7869420 -7869363 -7869305 -7869248 -7869190 -7869133 -7869075 -7869018 -7868961 -7868903 -7868846 450 -7892469 -7892408 -7892346 -7892285 -7892223 -7892161 -7892100 -7892038 -7891977 -7891915 -7891854 448 -7915280 -7915219 -7915157 -7915096 -7915030 -7914964  :-7914899 -7914833 -7914767 -7914706 -7914644 446 -7938091 -7938030 -7937968 -7937907 -7937837 -7937767 -7937697 -7937628 -7937558 -7937496 -7937435 444 -7960902 -7960841 -7960779 -7960718 -7960644 -7960570 -7960496 -7960422 -7960348 -7960287 -7960225 442 -7983713 -7983652 -7983590 -7983529 -7983451 -7983373 -7983295 -7983217 -7983139 -7983078 -7983016 440 -8006525 -8006463 -8006401 -8006340 -8006258 -8006176 -8006094 -8006012 -8005930 -8005868 -8005807 438 -8029143 -8029077 -8029011 -8028946 -8028864 -8028782 -8028700 -8028618 -8028536 -8028470 -8028404 436 -8051761 -8051691 -8051622 -8051552 -8051470 -8051388 -8051306 -8051224 -8051142 -8051072 -8051002 434 -8074379 -8074305 -8074232 -8074158 -8074076 -8073994 -8073912 -8073830 -8073747 -8073674 -8073600 432 -8096998 -8096920 -8096842 -8096764 -8096682 -8096600 -8096518 -8096435 -8096353 -8096275 -8096197 430 -8119616 -8119534 -8119452 -8119370 -8119288 -8119206 -8119123 -8119041 -8118959 -8118877 -8118795 428 -8142058 -8141976 -8141894 -8141811 -8141725 -8141639 -8141553 -8141467 .8141381 -8141295 -8141208

__STEAM GENERATOR 2 Pw,PSIA 770 790 780 800 810 820 830 840 850 860 870 Trw, DEG F UMW4ND, UMFW.INDO UMnWIND, UMMI.ND, UMFWnND, UMFW.-ND UMpM. ND, UMFVV-ND. UMFW.ND, UMMWND, UMFW\ND, lbrn/ltr lbmnhr lbm/hr Ibm/hr Ibm/hr ibm/Jhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7883737 -7883679 -7883622 -7883564 -7883507 -7883449 -7883392 -7883334 -7883276 -7883219 -7883161 450 -7906828 -7906766 -7906704 -7906643 -7906581 -7906520 -7906458 -7906396 -7906335 -7906273 -7906211 448 -7929680 -7929619 -7929557 -7929495 -7929430 -7929364 -7929298 -7929232 -7929167 -7929105 -7929043 446 -7952533 -7952471 -7952410 -7952348 -7952278 -7952208 -7952138 -7952068 -7951999 -7951937 -7951875 444 -7975386 -7975324 -7975262 -7975201 -7975127 -7975053 -7974979 -7974905 -7974831 -7974769 -7974707 442 -7998238 -7998176 -7998115 -7998053 -7997975 -7997897 -7997819 -7997741 -7997663 -7997601 -7997539 440 -8021091 -8021029 -8020967 -8020906 -8020824 -8020741 -8020659 -8020577 -8020495 -8020433 -8020371 438 -8043750 -8043684 -8043619 -8043553 -8043471 -8043388 -8043306 -8043224 -8043142 -8043076 -8043010 436 -8066409 -8066340 -8066270 -8066200 -8066118 -8066035 -8065953 -8065871 -8065789 -8065719 -8065649 434 -8089069 -8088995 -8088921 -8088847 -8088765 -8088683 -8088600 -8088518 -8088436 -8088362 -8088288 432 -8111728 -8111650 -8111572 -8111494 -8111412 -8111330 -8111247 -8111165 -8111083 -8111005 -8110927 430 -8134388 -8134305 -8134223 -8134141 -8134059 -8133977 -8133894 -8133812 -8133730 -8133648 -8133566 428 -8156870 -8156788 -8156706 -8156624 -8156537 -8156451 -8156365 -8156278 -8156192 -8156106 -8156020

Page 84 of 132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOwMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 770 [

STEAM GENERATOR I . .

PVW, PSIA 770 790 780 800 810 820 830 840 850 860 870 Trw. DEG F Uw.,O UM UMWW-IND, UMFWWND, UMFV.IND, UMMFWIND, UMFW- UMFWUMW-wNDr UMp-IND, UMPW.ND, UMFW.IND, Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibr/hr Ibm/hr IbnVhr Ibm/hr Ibm/hr Ibm/hr Ibm/hr 452 -7872497 -7872440 -7872382 -7872325 -7872267 -7872210 -7872152 -7872095 -7872038 -7871980 -7871923 450 -7895546 -7895485 -7895423 -7895362 -7895300 -7895238 -7895177 -7895115 -7895054 -7894992 -7894931 448 -7918357 -7918296 1 -7918234 -7918173 -7918107 -7918041 -7917976 -7917910 -7917844 -7917783 -7917721 446 -7941168 -7941107 -7941045 -7940984 -7940914 -7940844 -7940774 -7940705 -7940635 -7940573 -7940512 444 -7963979 -7963918 -7963856 -7963795 -7963721 -7963647 -7963573 -7963499 -7963426 -7963364 -7963302

-7986790 -7986729 -7986667 -7986606 -7986528 -7986450 -7986372 -7986294 -7986216 -7986155 -7986093 442 440 -8009602 -8009540 -8009478 -8009417 -8009335 -8009253 -8009171 -8009089 -8009007 -8008945 -8008884 438 -8032220 -8032154 -8032089 -8032023 -8031941 -8031859 -8031777 -8031695 -8031613 -8031547 -8031481

-8054838 -8054768 -8054699 -8054629 -8054547 -8054465 -8054383 -8054301 -8054219 -8054149 -8054079 436

-8077456 -8077382 -8077309 -8077235 -8077153 -8077071. -8076989 -8076907 -8076824 -8076751 -8076677 434

-8100075 -8099997 -8099919 -8099841 -8099759 -8099677 -8099595 -8099512 -8099430 -8099352 -8099275 432

-8122693 -8122611 -8122529 -8122447 -8122365 -8122283 -8122200 -8122118 -8122036 -8121954 -8121872 430 428 -8145135 -8145053 -8144971 - -8144888 -8144802 -8144716 -8144630 -8144544 -8144458 -8144372 -8144285

. STEAM GENERATOR 2 Pw, PSIA 770 790 780 800 810 820 . 830 840 850 860 870 UMFW.IND UMrW.IND, UMFWIND, UMFW.IND, UMFWajNj UMFW.IND, UMFWIND, UMFW.ND. UMFW.IND, UMFW-IND, UMIVMIND' Trw, DEG F Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibm/hr Ibmn/hr Ibm/hr

-7886819 -7886762 -7886704 -7886647 -7886589 -7886532 -7886474 -7886417 -7886359 -7886302 -7886244 452 450 -7909910 -7909849 -7909787 -7909725 -7909664 -7909602 -7909540 -7909479 -7909417 -7909356 -7909294

-7932763 -7932701 -7932640 -7932578 -7932512 -7932447 -7932381 -7932315 -7932249 -7932188 -7932126 448 446 -7955616 -7955554 -7955492 -7955431 -7955361 -7955291 -7955221 -7955151 -7955081 -7955020 -7954958 444 -7978468 -7978406 -7978345 -7978283 -7978209 -7978135 -7978061 -7977987 -7977913 -7977852 -7977790 442 -8001321 -8001259 -8001197 -8001136 -8001058 -8000980 -8000901 -8000823 -8000745 -8000684 -8000622 440 -8024173 -8024112 -8024050 -8023988 -8023906 -8023824 -8023742 -8023660 -8023577 -8023516 -8023454 438 -8046833 -8046767 -8046701 -8046635 -8046553 -8046471 -8046389 -8046307 -8046224 -8046159 -8046093 436 -8069492 -8069422 -8069352 -8069282 -8069200 -8069118 -8069036 -8068954 -8068871 -8068802 -8068732 434 -8092152 -8092078 -8092004 -8091930 -8091847 -8091765 -8091683 -8091601 -8091519 -8091445 -8091371

-8114811 -8114733 -8114655 -8114577 -8114494 -8114412 -8114330 -8114248 -8114166 -8114088 -8114009 432

-8137470 -8137388 -8137306 -8137224 -8137141 -8137059 -8136977 -8136895 -8136813 -8136730 -8136648 430 428 -8159953 -8159871 -8159789 -8159706 -8159620 -8159534 -8159447 -8159361 -8159275 -8159188 -8159102

CA06494, Revision 0000 Page 85 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 4, Blowdown Flow Contribution to Calorimetric Uncertainty, Step 7.7.3 UCAL MBDT = UMBDT(IhFG)

UCAL.MBDT, PsTM, PSIA BTU/hr 870 -5468306 860 -5484494 850 -5499873 840 -5516061 830 -5532249 820 -5548437 810 -5565434 800 -5581622 790 -5597810 780 -5613998 770 -5630996

CA06494, Revision 0000 Page 86 of 132 CALORIMETRIC UNCERTAINTY USING TIrE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 5, Feedwater Temperature Contribution To Calorimetric Uncertainty, Step 7.8.4 UCAL-TrWNEr = [M FW (h FW-O - h Fw-£TWw Applicable to each steam generators of both units.

PFW,PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL-TFWNErT UCAL TFWNET. UCALTFWNET, UCAL TFVNET. UCAL TFWNET. UCAL-TFWNET, UCAL.TFWNET, UCAL.TFVNET, UCAL.TFWNET, UCAL.TrwNE-, UCAL.TFWNET.

TFW, DEG F BTU/hr BTUA/r BITU/hr BTU/hr BTU/hr BITUI/hr BTU/hr BTUuhr BTUIhr BTU/hr BTU/hr 453.88 -13138929 -13136590 -13134252 -13131913 -13129574 -13127235 -13124897 -13122558 -13120219 -13117880 -13115542 451.88 -13138929 -13136590 -13134252 -13131913 -13129574 -13127235 -13124897 -13122558 -13120219 -13117880 -13115542 449.88 -13003283 -13003283 -13003283 -13003283 -13000944 -12998606 -12996267 -12993928 -12991590 -12991590 -12991590 447.88 -13003283 -13003283 -13003283 -13003283 -13000944 -12998606 -12996267 -12993928 -12991590 -12991590 -12991590 445.88 -13003283 -13003283 -13003283 -13003283 -13000944 -12998606 -12996267 -12993928 -12991590 -12991590 -12991590 443.88 -13003283 -13003283 -13003283 -13003283 -13000944 -12998606 -12996267 -12993928 -12991590 -12991590 -12991590 441.88 -13003283 -13003283 -13003283 -13003283 -13000944 -12998606 -12996267 -12993928 -12991590 -12991590 -12991590 439.88 -12893363 -12891025 -12888686 -12886347 -12886347 -12886347 -12886347 -12886347 -12886347 -12884008 -12881670 437.88 -12893363 -12891025 -12888686 -12886347 -12886347 -12886347 -12886347 -12886347 -12886347 -12884008 -12881670 435.88 -12893363 -12891025 -12888686 -12886347 -12886347 -12886347 -12886347 -12886347 -12886347 -12884008 -12881670 433.88 -12893363 -12891025 -12888686 -12886347 -12886347 -12886347 -12886347 -12886347 -12886347 -12884008 -12881670 431.88 -12893363 -12891025 -12888686 -12886347 -12886347 -12886347 -12886347 -12886347 -12886347 -12884008 -12881670 429.88 -12792798 -12792798 -12792798 -12792798 -12790460 -12788121 -12785782 -12783444 -12781105 -12778766 -12776427

CA06494, Revision 0000 Page 87 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A,CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Tables 6A and 6B, Feedwater Pressure Contribution To Calorimetric Uncertainty, Steps 7.9.3 and 7.9.4 Table 6A, Feedwater Pressure Contribution To Calorimetric Uncertainty, Random Component UCAL-PrFWNET = i[M W (hFw-o -hFw-EpFw )

770 780 790 800 810 820 830 840 850 860 870 PFW, PSIA UCAL-PFWNET, UCALPFWNET, UCALtPFWNET, UCALPFWNET, UCAL-PFWNET. UCAL-PFWNET, UCAL-PwNE, UCAL-PFWN ET-UCAL-PFWNET, UCALPFWNET, UCAL.PpWNT, Tw,DEG F BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr

-135810 -135810 -135810 -135810 -135810 -135810 -135810 -135810 -135810 -135810 -135810 452

-145510 -145510 -145510 -145510 -145510 -145510 -145510 -145510 -145510 -145510 -145510 450

-145510 -148744 -151977 -155211 -155211 -155211 -151977 -148744 -145510 -145510 -145510 448

-145510 -151977 -158444 -164912 -164912 -164912 -158444 -151977 -145510 -145510 -145510 446

-145510 -155211 -164912 -174612 -174612 -174612 -164912 -155211 -145510 -145510 -145510 444

-145510 -158444 -171379 -184313 -184313 -184313 -171379 -158444 -145510 -145510 -145510 442

-161678 -177846 -194014 -194014 -194014 -177846 -161678 -145510 -145510 -145510 440 -145510

-168145 -181079 -194014 -194014 -194014 -181079 -168145 -155211 -155211 -155211 438 -155211

-164912 -174612 -184313 -194014 -194014 -194014 -184313 -174612 -164912 -164912 -164912 436

-174612 -181079 -187546 -194014 -194014 -194014 -187546 -181079 -174612 -174612 -174612 434

-184313 -187546 -190780 -194014 -194014 -194014 -190780 -187546 -184313 -184313 -184313 432

-194014 -194014 -194014 -194014 -194014 -194014 -194014 -194014 -194014 -194014 -194014 430 194014 -197247 -200481 -203714 -203714 -203714 -203714 -203714 -203714 -203714 -203714 428 Table 6B, Feedwater Pressure Contribution To Calorimetric Uncertainty, Bias Component BCAL-pFWNE' = 2MFW(h:w-O - hFw-epFW 770 780 790 800 810 820 830 840 850 860 870 PFV, PSIA 13 BCAL-TFWNET, BCAL.TVWNET. BCAL-TFWNET, BCAL-TFWNET. BCAL.TFWNET, BCALTPWNET, BCALtTFWNET. BC.AL-TFWNET- BCALTFVNLeT, DCAL.TFVNET, CAL-TFWNET, TFw, DEG F BTUA/r BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/Ir BTU/hr BTU/hr 0 0 0 0 0 0 0 0 0 0 0 452 0 0 0 0 0 0 0 0 0 0 0 450 0 0 0. 0 0 0 0 0 0 0 0 448 0 0 0 0 0 0 0 0 0 0 .0 446 0 0 0 0 0 0 0 0 0 0 0 444 0 0 0 0 0 0 0 0 0 0 442 0 0 0 0. 0 0 0 0 0 0 0 0 440 0 0 0 0 0 0 0 0 0 0 0 438 0 0 0 0 0 0 0 0 0 0 436 0 0 0 0 0 0 0 0 0 0 0 0 434 0 0 0 0 0 0 0 0 0 0 0 432 0 0 0 0 0 0 0 0 0 0 430 0 0 0 0 0 0 0 0 0 0 0 0 428

CA06494, Revision 0000 Page 88 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Tables 7A through 7C Main Steam Pressure Contribution To Calorimetric Uncertainty, Steps 7.10.3 and 7.10.4 Table 7A, Main Steam Pressure Contribution To Calorimetric Uncertainty, Random Component, Positive Direction U CAL-PSMI = (M FWI MBDI Xh GsI-EPsTM -h GSI-0)+ (M BDI Xh FSI-EPSTM -hFsI-o)

U CAL-PSTM2 = (M FW2 - MBD2 Xh GS2-EPSTM -h GS2-0)+ (M BD2 Xh FS2-EPSTM -h FS2-0)

UCAL-PSTMNE.T = +UCAL-PSM I) + (UCAL-SM 2 Y 1 2 SGI SG2 COMBINED UCAL-PSTNI+, UCAL-PSThM+, UCAL-BTU/hr BTU/hr PSTM+NET.

PSTM, PSIA BTU/hr 870 -3343329 -3632904 -4937190 860 -3950100 -4247100 -5800099 850 -3941091 -4245516 -5792806 840 -2727549 -3017124 -4067255 830 -2727549 -3017124 -4067255 820 -3334320 -3631320 -4929926 810 -3334320 -3631320 -4929926 800 -3325311 -3629736 -4922670 790 -3325311 -3629736 -4922670 780 -2718540 -3015540 -4060042 770 -2709531 -3013956 -4052837.

Table 7B, Main Steam Pressure Contribution To Calorimetric Uncertainty, Random Component, Negative Direction UCAL-PSTMI =(MFWI -MBDIXhGSI-EPSTM -hGSI-)+(MBDIXhFSI-EPSTM -hFsI-0)

UCALPSTM2 -(MFW2 MBD2 Xh GS2-EPSTM -h GS2-0)+ (M BD2 Xh FS2-EPSTM-h FS2-0)

U CAL-PSTMNET = + CALPSTMI ) + (U CAL-PSTM 2)2 }I2

__ I SGI SG2 ICOMBINED UCAL-PSTNI-, UCAL.PSTM., UCAL-PSTM-PSTNI, PSIA BTU/hr BTU/hr NET, BTU/hr 870 3941091 4245516 5792806 860 2727549 3017124 4067255 850 2727549 3017124 4067255 840 3334320 3631320 4929926 830 3334320 3631320 4929926 820 3325311 3629736 4922670 810 3325311 3629736 4922670 800 2718540 3015540 4060042 790 2709531 3013956 4052837 780 2709531 3013956 4052837 770 2709531 3013956 4052837

CA06494, Revision 0000 Page 89 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY-USING ASME 1967 STEAM TABLES Table 7C, Main Steam Pressure Contribution To Calorimetric Uncertainty, Bias Component BCAL-PSTMI =(MFWI MBDIXh sI-EPsTM hGsI-O)+(M3DI1XhFsl-spsTM -hFsl )

BCAL-PSTM2 =(MFW2 -MBD2XhGS2-CPSTM -hGS2-o)+(MBD2XhFS2-EPSTM -hFS2-0)

BCAL-PsTmNET- = BCAL-PSTMI + BCAL-PSTM 2 SGI SG2 COMBINED BCAL-PSTM+, B CAL-PSTKl+y BCAL-PSTM+,

PsTm, PSIA BTU/hr BTU/hr BTU/hr 870 -575654 -624104 -1199758 860 -780946 -834496 -1615442 850 -572560 -623560 -1196120 840 -364174 -412624 -776798 830 -572560 -623560 -1196120 820 -572560 -623560 -1196120 810 -572560 -623560 -1196120 800 -569466 -623016 -1192482 790 -572560 -623560 -1196120 780 -361080 412080 -773160 770 -569466 -623016 -1192482 Table 8A, Plant Computer Determination Of Enthalpy, Step 7.11.4 Value is not dependent on thermodynamic properties of feedwater or steam. The net contribution to calorimetric uncertainty is the same as calculated in Section 7.

CA06494, Revision 0000 Page 90 of 132 CALORIMETRIC UNCERTAINTY USING TIE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 9A1 through 9B, Uncertainty Summary, Steps 7.12.2 and 7.123 Table 9AI, Summary of Unit 1 Random Uncertainty

)2 ) + (CAL1/2 (UCALMFWINDI ) + (UCAL-MFW-IND2 )2 + UCALMFMDEPI + UCAL-MFW-MDEP2 )2

.UCAL-RAND = +(UCAL-MF\V-TDEPI + UCALTFWI )2 + (UCAL-MFW-TDEP2 + UCALTFW2 )2

+(UCALMDT)2 +(UCALPWNT) 2 + (UCAL-PSTMNET )2 + (UCAL_CMPNET)2 UCAL.PSTMNET, UCAL-MBDT,1 UCAL.CMPNET, SUMSQ BTU/hr BTU/hr BTU/hr PSTM _ _

8701 -493719C -54683061 -12387071 5.5813E+13 P,,PSIA 770 780 790 800 810 820 830 840 850 860 870 TrV. DEG F UCAL-MND, UCALRAND. UCAL-RAND. UCAL-RAND, UCARLAAND UCAL-RANDD U UC,-ND, UCAL-RAND, UCALRAND. U ND! CAAND BTU/hr BTU/hr BTU/hr BITU/hr BTU/hr BTU/hr BTUL/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -44842225 -44839829 44837433 44835038 44832642 -44830247- 44827851 44825456 -44823061 44820667 44818272 450 -44934646 44932235 44929825 44927415 -44925005 44922596 -44920186 -44917776 -44915367 44912958 44910549 448 44900990 44900753 -44900517 44900281 -44897864 -44895447 -44893019 -44890591 44888164 44887917 -44887670 446 44992630 -44992404 -44992179 -44991955 -44989524 .44987092 44984638 44982184 44979732 44979485 44979237 444 -45084311 -45084096 45083883 45083672 45081226 .45078780 45076298 45073818 -45071340 45071092 45070845 442 45176033 -45175829 45175628 45175432 45172971 45170511 45167999 45165492 45162988 45162741 45162493 440 -45267794 -45267602 45267415 -45267233 45264758 .45262283 45259742 45257206 45254676 -45254429 -45254181 438 -45258280 -45255926 45253575 45251228 -45250897 -45250566 -45250182 -45249802 45249425 45247024 45244624 436 45349474 45347095 -45344718 -45342343 45342012 A45341681 -45341310 -45340941 45340574 -45338159 45335743 434 45440708 -45438303 45435899 45433497 45433166 -45432835 45432477 45432119 45431763 -45429333 45426904 432 -45531982 -45529551 -45527119 -45524688 -45524357 .45524026. 45523682 45523337 -45522993 -45520548 -45518104 430 -45623296 -45620837 -45618377 45615918 -45615587 -45615256 45614925 -45614593 45614262 -45611803 -45609344 428 -45622588 -45622271 -45621953 -45621636 -45619167 45616699 -45614230 -45611762 -45609294 -45606826 45604358

CA06494, Revision 0000 Page 91 of 132 CALORIMETRIC UNCERTAINTY USING TIm AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCAL.PSTMNET, UCALMBDtT, UCAtCMPNET, SUMSQ BTU/tr BTU/hr BTU/hr pT_ _ _

8601 -58000991 -54844941 -12387071 6.5255E+13 780 790 800 810 820 830 840 850 860 870 PIw PSIA 770 UCAL-RAND. UCAL-RAND, UCAL-RAND. UCAL.RAND, UCAL-AND, UCAL-RAND, UCALJRAND, UCAL.RAND.

TFv, DEG F UCALARAND, UCALRAND, UCAL-RAND.

BTU/lr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUlhr

-44961403 -44959013 -44956623 44954234 44951844 44949455 -44947066 -44944677 44942288 44939899 452 -44963792 45056005 -45053601 -45051197 -45048793 -45046389 45043985 -45041581 45039178 -45036774 -45034371 -45031968 450 45022457 -45022221 -45021985 -45021749 -45019338 45016927 -45014506 -45012084 -45009663 -45009416 -45009170 448 45113891 -45113666 45113441 -45113218 45110792 45108367 -45105918 45103471 -45101025 45100778 45100531 446 45205153 45204940 45204730 45202290 -45199850 45197373 45194899 45192427 45192181 -45191934 444 45205367

-45296681 45296481 45296285 45293830 45291375 -45288870 45286369 45283871 45283624 45283377 442 -45296884 45388442 -45388250 45388063 -45387882 45385413 45382944 45380409 -45377879 45375356 45375109 45374862 440 45376625 45374280 45371939 45371609 45371279 45370895 -45370516 45370140 45367745 -45365350 438 45378974

-45467592 -45465221 -45462852 45462522 45462192 -45461822 45461453 -45461087 45458678 45456268 436 45469966 45560999 45558600 45556202 -45553805 -45553474 -45553144 45552787 -45552431 -45552075 45549651 45547227 434 45649647 -45647221 45644796 -45644466 45644135 -45643791 45643448 -45643104 45640665 45638227 432 45652072

-45740733 45738279 45735826 -45735495 45735165 45734835 -45734504 -45734174 -45731720 -45729267 430 45743187

-45742502 -45742185 -45741868 -45741552 -45739089 45736627 -45734164 -45731702 -45729240 -45726778 -45724316 428 UCAL.1STMNET, UCALMBDT, UCAL CMPNET, SUMSQ BTU/hr BTU/hr BTU/hr PST,.

850 -5792806 -5499873 -1238707 6.5340E+13 790 800 810 820 830 840 850 860 870 P,W,,PSIA 770 780 UCAL-AND, UCAL-RAND, UCAL.RAND. UCAL.RAND, UCALRAND, UCAtRAND. UCAL-RAND.

TFw, DEG F UCAL-RAND. UCALARAND, UCAL.RAND. UCAL-RAND, BTUAir BTU/hr BTU/hr BTUlir BTU/hr BTU/hr BTU/hr B3TU/hr BTU/hr BTU/hr BTU/hr 44977034 44974645 -44972255 -44969866 44967477 44965088 44962699 44960310 44957921 44955533 44953144 452 45066847 -45064443 -45062039 45059636 45057232 -45054829 45052426 -45050022 -45047619 -45045217 450 -45069251

-45035489 -45035253 -45035018 45032607 -45030196 -45027775 45025353 45022933 -45022686 45022439 448 - 45035725 45126938 45126713 45126490 -45124064 45121639 45119191 -45116744 45114298 45114051 45113804 446 45127163 45218428 45218216 -45218005 -45215565 45213126 45210650 45208176 45205705 45205458 45205211 444 45218643 45309960 -45309760 45309564 -45307109 -45304655 45302150 45299649 45297152 -45296905 -45296658 442 45310163 45401532 45401346 45401165 45398696 45396227 45393692 45391163 45388640 45388393 -45388146 440 45401725

-45389927 -45387582 45385241 -45384911 45384581 45384197 45383818 45383442 -45381047 45378653 438 -45392275 45480897 45478526 45476158 45475828 45475497 45475127 45474759 -45474392 45471983 -45469574 436 -45483271 45571908 45569510 -45567114 -45566783 -45566453 -45566096 -45565740 45565384 45562960 45560537 434 -45574307 45665384 45662958 -45660533 -45658108 45657778 -45657448 45657104 -45656760 45656416 45653978 45651540 432 45756502 45754048 45751595 45749142 45748811 45748481 45748150 -45747820 -45747489 -45745036 45742583 430

-45755517 -45755200 45754883 45752421 -45749959 45747497 -45745035 -45742573 -45740111 45737650 428 45755834

CA06494, Revision 0000 Page 92 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCAL.PSTMNET, UCAL-MBDT UCAL-CMPNET, SUMSQ BTL/hr BTU/hr BTUb/hr

_ _ I-8401 -40672551 -55160611 -12387071 4.8504E+13 P W,PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL-RAND. UCAL-RAND. UCAL-RAND, UCALRAND, UCAL-RAND. UCAL-RAND.

Tr,, DEG F UCALRAND, UCAL.RAND, UCALRN, UCALRND, U BTU/hr BTU/hr BTU/hr BTU/hr BTU/ir BTUl/hr BTUAir BTU/hr BTU/hr BITU/hr BTU/hr 452 -44797721 -44795322 -44792923 -44790523 -44788124 -44785726- -44783327 -44780928 -44778530 44776131 -44773733 450 -44890327 -44887913 -44885500 -44883086 -44880672 -44878259 44875846 -44873433 -44871020 -44868607 -44866194 448 -44856676 -44856439 -44856202 -44855965 -44853545 -44851124 -44848693 -44846262 -44843831 -44843583 -44843336 446 A44948499 -44948272 -44948047 44947822 -44945387 -44942952 44940494 -44938037 -44935581 -44935333 -44935085 444 -45040362 -45040146 45039933 -45039721 -45037272 -45034822 '-45032336 -45029852 -45027371 -45027123 -45026875 442 -45132264 -45132060 A45131859 -45131662 -45129198 -45126733 -45124218 -45121707 -45119200 -45118952 45118704 440 -45224206 -45224013 -45223825 -45223644 -45221165 -45218686 -45216141 -45213602 -45211068 -45210820 45210572 438 -45214730 -45212372 45210017 -45207667 -45207336 -45207004 -45206619 -45206238 -45205861 45203456 -45201052 436 45306102 -45303719 -45301339 -45298960 45298629 -45298298 -45297926 -45297556 -45297188 -45294769 -45292351 434 -45397514 45395105 45392698 -45390292 45389960 -45389628 45389270 45388912 -45388555 -45386121 45383688 432 45488965 45486530 45484095 45481660 45481328 -45480997 -45480651 -45480306 45479961 45477513 45475065 430 45580455 45577992 -45575529 45573066 -45572734 -45572402 -45572070 -45571739 45571407 -45568944 -45566481 428 -45579796 -45579478 -45579159 45578841 45576369 -45573897 -45571425 -45568954 45566482 -45564010 -45561539 UCAL-PMNET. UCAL MODT, UCALtCMPNET. SUMSQ BTU/hr BTU/hr BTU/hr PSTM _

830 4067255 -5532249 -1238707 4.8683E+13 PVW, PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL-RLAND, ULCALRND, LICAL-AND, UCAL-RLAND- UCAL.RAND* UCAL-RAND, UCAL-RAND, TFw, DEGIF UCAL-RAND, UCALARAND, UCAL.UND, LCAL-PAND, BTU/hr BTU/lir BTUI/hr BTU/hr BTU/hrt BTU/hr BTUJ/hr BTU/hr BTU/hr BTU/Lhr BTU/hr 452 -44812073 44809674 44807275 -44804877 44802478 -44800079 -44797681 -44795283 -44792885 -44790487 44788089 450 -44904681 44902267 -44899854 -44897440 -44895027 -44892614 -44890202 -44887789 -44885376 -44882964 -44880551 448 -44871053 -44870816 44870579 44870342 -44867922 -44865502 -44863071 -44860640 -44858210 -44857962 -44857714 446 -44962877 -44962651 44962425 44962201 44959766 -44957331 44954873 -44952417 44949961 -44949713 -44949465 444 -45054741 45054526 -45054312 45054101 45051651 -45049202 -45046717 -45044233 -45041752 45041504 45041256 442 45146645 -45146440 -45146240 45146043 -45143579 -45141115 -45138600 45136089 45133582 45133334 -45133086 440 -45238588 45238395 -45238207 -45238026 45235547 -45233069 45230524 -45227985 -45225452 45225204 45224956 438 45229131 -45226773 -45224419 45222069 -45221737 -45221406 45221021 -45220640 -45220262 -45217859 -45215455 436 45320504 -45318122 -45315741 45313363 -45313032 -45312700 -45312329 -45311959 -45311591 -45309172 45306754 434 -45411917 -45409509 45407102 45404696 45404364 -45404032 -45403674 -45403316 -45402959 45400526 45398093 432 45503369 -45500934 45498500 -45496065 -45495734 -45495402 45495057 -45494711 45494366 -45491919 -45489471 430 -45594860 -45592397 -45589935 -45587472 -45587140 -45586809 -45586477 45586145 45585813 -45583351 45580888 428 45594218 45593900 45593581 45593263 45590792 45588320 -45585848 -45583377 45580906 45578435 45575964

CA06494, Revision 0000 Page 93 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOWULTRASONICFLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 1UCAL.PSMNET BTU/lr UCAL.MBOT, BTU/hr UCALJCMPNMT BTU/hr SUMSQ PrM_

8201 -49299261 -55484371 -12387071 5.6624E+13 770 790 780 800 810 820 830 840 850 860 870 PFW. PSIA UCAL-RAND, U ND UCAL.D U UCALUCAL UCALRAND. J UCAL-RANAND. UCAL-AND, UCAL-RAND, TFW. DEG F UCAL RAND. UCAL-RAND.

BTUAir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAir BTU/hr BTU/hr BTU/hr 452 -44912921 -44910527 -44908133 -44905740 -44903346 -44900952 -44898559 -44896166 -44893773 44891380 -44888987 45005352 -45002944 45000535 -44998127 44995719 44993311 44990903 -44988495 -44986088 -44983680 -44981273 450 448 -44971812 44971575 44971339 44971103 _44968688 -44966273 -44963847 -44961421 -44958996 -44958748 44958501 446 -45063462 -45063236 -45063011 -45062787 -45060357 45057927 45055474 -45053023 45050572 45050325 -45050077 444 -45155152 -45154937 -45154724 -45154513 -45152068 -45149624 -45147144 45144665 -45142189 45141942 45141694 442 -45246882 -45246678 -45246478 -45246281 -45243822 -45241363 -45238854 -45236348 -45233846 -45233599 -45233351 440 -45338652 -45338459 -45338272 45338091 -45335618 45333144 45330605 -45328071 45325543 -45325296 -45325048 438 -45329232 -45326879 -45324529 45322184 -45321853 -45321523 -45321138 -45320758 -45320381 -45317982 45315584 436 -45420433 -45418056 -45415681 45413307 -45412977 -45412646 -45412275 -45411905 45411538 -45409125 45406712 434 -45511676 -45509272 -45506870. 45504469 -45504138 -45503807 45503449 45503092 -45502736 45500308 45497880 45602958 45600528 -45598098 -45595669 -45595338 45595007 -45594662 45594318 45593973 45591530 -45589088 432 430 -45694280 -45691822 -45689364 45686907 -45686575 -45686244 -45685913 -45685582 -45685250 -45682793 -45680336 428 -45693655 -45693338 -45693020 -45692703 -45690236 -45687769 -45685302 -45682836 1 -45680370 -45677903 -45675437 UCAL-PSTMNET, UCALMBDT, UCALJSPNET, SUMSQ BTUA/r BTU/hr BTU/hr P STM _ _ __ .__ _ _

810 -4929926 -5565434 -1238707 5.6813E+13 770 790 780 800 810 820 830 840 850 860 870 PFW, PSIA UCAL-AtND. UCAL-RAND, UCAL-RAND, UCAL-AND, UCALRPAND, UCALRAND, UCAL-ND, UCAL-RAND.

TPV, DEG F UCAL-RAND, UCALRAND; UCA6LAAND, BTUilir BTU/hr BTU/lhr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 44927357* 44924963 -44922569 -44920176 -44917783 44915390 -44912997 44910604 -44908211 -44905818 -44903426 450 -45019789 45017381 -45014973 -45012565 45010157 45007749 -45005342 -45002935 -45000527 -44998120 44995713 448 -44986272 -44986036 -44985799 -44985563 44983148 44980733 44978308 44975882 44973458 44973210 44972963 446 45077923 45077697 -45077472 45077248 45074818 45072389 45069937 45067486 45065035 45064788 -45064541 444 45169614 45169399 -45169186 45168975 45166531 -45164087 45161607 45159129 -45156653 -45156406 45156159 442 45261346 45261142 -45260941 45260744 -45258286 -45255828 -45253318 45250813 -45248312 -45248064 -45247817 440 45353117 45352924 45352737 -45352556 -45350083 45347610r 45345071 -45342537 -45340010 45339762 45339515 438 -45343715 45341362 45339014 45336669 -45336338 -45336007 -45335623 45335242 -45334866 45332467 45330069 436 45434918 45432541 45430166 45427793 -45427462 -45427131. -45426760 -45426391 -45426024 45423611 45421198 434 45526161 -45523758 45521357 45518956 45518625 -45518294 45517936 45517579 45517222 -45514795 45512367 432 45617444 -45615015 -45612585 45610157 -45609826 -45609494 -45609150 45608805 45608461 -45606018 45603576 430 45708767 -45706310 45703852 -45701395 -45701064 45700733 45700401 -45700070 45699739 45697282 -45694825 428 45708160 45707842 45707524 45707207 -45704740 -45702274. A-45699808 -45697342 45694876 45692410 45689944

Page 94 of 132 CA06494, Revision 0000 CALORIM ETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCAL-PSIMNET. UCAL-MBDT, UCAL-CMPNPT, SUMSQ BTU/hr BTU/hr BTU/hr PST, _ _ _ _

8001 .49226701 -55816221 *12387071 S.6922E+13 Pr, PSIA 770 790 780 800 810 820 830 840 850 860 870 UAANDNh. UCAL.RAND, UCALLRAND. UCALPAND, UCAL-RAND, UCALRAND, UCAL-RAND, UCAL-RAND.

TFW, DEG F UCAL.RAND, UCAL.RANO, UCAL BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 44940902 -44938509 -44936115 -44933722 ,44931329 -44928937 -44926544 44924151 44921759 44919367 44916974 45033337 45030929 45028522 450261 14 45023707 45021300 -45018892 -45016485 45014079 -45011672 -45009265 450 448 -44999843 44999607 -44999370 44999134 44996720 -44994305 -44991880 -44989455 -44987030 _44986783 ,44986536 45091497 45091271 -45091046 45090822 ,45088393 -45085964 45083512 -45081061 45078611 -45078364 ,45078116 446 444 45183191 45182976 45182763 45182552 45180109 45177665 45175185 45172708 45170232 -45169985 45169737 45274926 ,45274722 45274521 45274325 45271866 45269408 45266900 45264395 45261894 -45261646 ,45261398 442 440 45366700 45366507 45366320 45366139 45363666 45361193 45358655 45356122 45353595 -45353347 45353099 438 45357317 45354964 -45352616 45350271 45349940 45349610 45349225 45348845 -45348468 -45346070 45343672 45448522 45446145 45443771 45441398 45441068 45440737 45440365 45439996 45439629 45437216 45434804 436 434 45539768 45537366 45534964 45532564 45532233 45531902 45531544 45531187 45530830 45528403 45525976 45631054 45628625 45626196 45623767 45623436 45623105 -45622760 45622416 45622072 45619630 45617188 432 45722380 45719923 -45717466 45715009 45714678 45714346 45714015 45713684 45713353 45710896 45708439 430 45721789 45721471 45721153 45720836 45718370 45715904 45713438 45710972 45708507 45706041 45703576 428 UCAL.PSTMNET, UCAL-MBDT, UCALJ01PNET, SUMSQ BTU/hr BTU/hr BTU/hr PSTM 790 4922670 -5597810 -1238707 5.7103 E+13 770 790 780 800 810 820 830 840 850 860 870 PFW, PSIA UCAL.RAND. UCAL-RAND UCAL-RAND, UCAL.RAND, UCAL-RAND, UCAL.RAND, UCALPRAND.

Trw, DEG F UCAL-RAND, UCAL UCAL.RAND. UCALDRAND, BTU/hr BTUhr BTU1/hr BTU/hr BTU/hr BTUA/r BTU/hr BTU/1r BTU/hr BTU/hr BTUAhr 44952855 44950463 44948070 44945677 44943285 44940893 44938500 44936108 44933716 44931325 452 44955248 450 45047685 45045278. 45042870 45040463 45038056 45035649 45033243 45030836 45028429 45026023 45023617 45013978 45013741 45013505 45011091 45008677 45006252 45003828 45001403 45001156 45000909 448 45014215 45105644 45105419 45105194 45102766 45100337 45097886 45095435 45092986 45092738 45092491 446 45105870 45197565 45197350 45197137 45196926 45194483 45192040 45189560 45187083 45184608 45184361 45184113 444 45289301 45289097 45288897 45288700 45286242 45283784 45281276 45278771 45276271 '45276023 45275776 442 45381077 45380884 45380697 45380515 45378043 45375571 45373032 45370500 45367973 45367725 45367478 440 45369360 45367012 45364667 45364337 45364006 45363622 45363241 45362864 45360467 45358069 438 45371712 45462919 45460542 45458168 45455796 45455465 45455134 45454763 45454394 45454027 45451614 45449202 436 45551764 45549363 45546963 45546632 45546301 45545943 45545585 45545229 45542802 45540375 434 45554166 45645453 45643024 45640596 45638167 45637836 45637505 -45637160 45636816 -45636472 45634030 45631588 432 45734323 45731866 45729410 45729079 45728747 45728416 45728085 45727754 -45725297 45722841 430 45736780 45735888 45735570 45735253 45732787 45730321 45727856 45725390 45722925 -45720460 45717995 428 45736206

CA06494, Revision 0000 Page 95 of 132 CALORIMETRIC UNCERTAINTY USING TiE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCAL-PSTMNET, UCALMBDT. UCAL-OtPNET, SUMSQ IBTU/hr BTU/Iir D3TU/hr PST, ____

7801 40600421 -56139981 -12387071 4.9535E+13 PFWPSIA 770 790 780 800 810 820 830 840 850 860 870 UCAL-RAND. UCAtAND, UCAL-RNND. UCAL-RNND, UCAL-RNND. UCAL-U ND, TFW. DEG F UCAILANo, UCAL.RAND. UCAL.RAND, UCALRAND. UCAL-RAND, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 44879243 44876846 44874449 -44872052 44869655 -44867258 -44864862 -44862465 -44860069 -44857672 44855276 450 -44971857 -44969445 44967033 44964622 44962211 44959799 -44957388 -44954977 44952567 -44950156 -44947745 448 -44938338 -44938101 44937864 -44937628 -44935209 -44932791 -44930361 44927932 44925504 -44925256 -44925008 446 -45030168 45029942 -45029716 -45029492 -45027059 -45024626 -45022170 -45019715 -45017261 45017013 45016765 444 -45122038 -45121822 -45121609 -45121398 -45118950 -45116502 -45114019 -45111537 45109058 45108810 45108562 442 45213947 -45213743 -45213542 -45213345 -45210883 -45208421 -45205908 -45203399 -45200894 -45200646 45200398 440 -45305896 -45305703 -45305515 45305334 -45302857 45300380 45297837 45295300 -45292769 -45292521 45292273 438 -45296526 -45294170 45291818 45289469 -45289138 45288806 45288421 45288040 45287663 -45285261 -45282859 436 45387904 45385524 -45383145 -45380769 -45380437 45380106 -45379734 -45379364 45378996 -45376580 -45374163 434 -45479322 45476916 -45474510 -45472106 45471774 -45471443 -45471084 45470726 -45470369 -45467938 -45465507 432 -45570779 -45568346 45565913 45563481 45563149 -45562817 -45562472 45562126 -45561782 45559336 -45556890 430 45662275 45659814 -45657353 45654892 45654560 45654229 -45653897 -45653565 45653233 -45650772 45648312 428 45661711 -45661393 -45661074 -45660756 -45658286 45655816 -45653346 -45650877 -45648407 45645938 45643468 UCAL-PSIMNET, UCALMLDT, UCAL CMPNET. SUMSQ BTU/hr BTUlhr BTU/hr PS1M 770 4052837 -5630996 -1238707 4.9668E+13 PW. PSIA 770 790 780 800 810 820 830 840 850 860 870 UCAL.RANON ULA.ND, UCAL-.AAN, UCAL-RAND, UCAL-RANN, UCAL-RLAND, UCAL-RNAND UCA-LRAND, TPW DEG F UCAL.RAND, UCALRAND. U I_ BTU/hr BTU/hr . BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -44893078 44890681 44888285 44885888 44883491 -44881095 -44878699 44876303 44873907 44871511 44869115 450 44985695 44983283 44980872 44978461 44976050 44973639 -44971228 44968818 44966407 44963997 44961586 448 44952199 44951962 44951725 44951488 -44949070 -44946652 -44944223 -44941795 44939366 44939119 44938871 446 45044031 -45043805 45043579 45043355 45040922 45038489 45036034 45033579 45031126 45030878 -45030630 444 45135903 45135688 45135474 45135263 45132816 45130369 45127885 45125404 45122925 -45122677 -45122429 442 -45227815 -45227611 45227410 45227213 45224751 45222289 45219777 -45217268 45214763 -45214515 45214267 440 -45319766 45319573 45319385 45319203 45316727 45314251 -45311708 45309172 45306641 45306393 45306144 438 45310415 45308059 45305707 45303359 45303027 45302696 45302311 -45301930 -45301552 45299151 -45296749 436 45401795 -45399415 45397036 45394660 45394329 -45393997 45393626 45393256 45392888 45390472 45388055 434 45493215 45490809 -45488404 45486000 45485668 45485337 45484978 45484620 45484263 45481832 45479401 432 45584674 -45582241 -45579809 45577377 45577045 -45576713 45576368 -45576023 45575678 -45573232 45570786 430 45676172 45673711 45671251 45668790 45668459 45668127 45667795 -45667463 45667131 -45664671 45662210 428 45675625 45675306 45674988 45674670 45672200 1 45669731 45667261 -45664792 45662323 45659853 -45657384

CA06494, Revision 0000 Page 96 of 132 CALORIMETRIC UNCERTAINlY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 9A2, Summary of Unit 2 Random Uncertainty

)2J1/2 (UCAL-MFW-INDI ) + (UCAL-MFW-IND2 )2 + (UCAL-MFW-MDEP1 + UCALMFWMDEP2 UCAL-RAND + (UCAL-MFWTDEPI +UCAL-TFWI)2 +(UCAL-MFW-TDEP2 +UCALTFW2 )2

+(U CAL-PNT )2 + (UCAL-PSTM-NET )+ (UCAL-CMPNET )

UCAL-PSTMNET. UCAL.MBDT. UCAL CMPNeT, SUMSQ BTU/hr BTU/hr BTU/hr STM _ . _ __ _

8701 -49371901 -54683061 -12387071 5.5813E+13 I PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL.-PAND, UCAL-RAND, UCALRALND, UCAL-RAND, UCAL-RAND, UCAtRAND, TFW, DEG F UWAMRAND, UCAL-RAND, UCALRAND, UCAL-RAND, UCAL-RAND, BTU/hr BTU/hr BTUA/r BTU/hr BTU/Ar BTU/hr BTU/hr BTU/hr BTUAir BTU/hr BTU/hr 452 -50555564 -50553340 -50551116 -50548892 -50546668 -50544444 -50542221 -50539998 -50537775 -50535551 -50533329 450 -50668882 -50666640 -50664398 -50662156 -50659914 -50657673 -50655431 -50653190 -50650949 -50648707 -50646466 448 -50668910 -50668617 -50668323 -50668030 -50665778 -50663525 -50661263 -50659002 -50656740 -50656437 -50656134 446 -50781243 -50780959 -50780676 -50780393 -50778123 -50775852 -50773561 -50771271 -50768982 -50768679 -50768376 444 -50893618 -50893344 -50893071 -50892800 -50890511 -50888223 -50885902 -50883583 -50881266 -50880963 -50880659 442 -51006034 -51005769 -51005508 -51005250 -51002943 -51000636 -50998284 -50995936 -50993591 -50993287 -50992984 440 -51118492 -51118237 -51117987 -51117742 -51115417 -51113092 -51110708 -51108330 -51105956 -51105653 -51105349 438 -51140052 -51137857 -51135665 -51133477 -51133072 -51132667 -51132214 -51131765 -51131319 -51129084 -51126848 436 -51251768 -51249546 -51247326 -51245108 -51244703 -51244297 -51243856 -51243417 -51242980 -51240726 -51238472 434 -51363525 -51361275 -51359026 -51356778 -51356372 -51355967 -51355537 -51355109 -51354681 -51352409 -51350137 432 -51475322 -51473043 -51470765 -51468486 -51468081 -51467675 -51467257 -51466840 -51466423 -51464132 -51461842 430 -51587160 -51584851 -51582542 -51580234 -51579828 -51579422 -51579016 -51578611 -51578205 -51575896 -51573588 428 -51616497 -51616104 -51615710 -51615316 -51612995 -51610673 -51608352 -51606030 -51603709 -51601388 -51599067

CA06494, Revision 0000 Page 97 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCAL-PSTMNET, UCAL MBOT' UCAL CMPNET, SUMSQ BTU/hr BTU/hr BTUlhr UCLMDUA.PNET 8601 -58000991 -54844941 -12387071 6.525513+13 PFV, PSIA 770 780 790 800 810 820 830 840 850 860 870 TF,, DEG F UCAL-RAND, UCAL.IANns UCALRAND, RAND UCAL.RAND, UCAL UCALRANND, UCALRRAND, UCAL-ANND, UCAL-RAND, UCAL-RAND, UCAL-RAND, BTU/hr BTU/hr BTU/hr BTUIhr BTU/hr BTU/hr BTU/hr BTUA/r BTU/hr BTU/hr BTU/hr 452 -50668992 -50666772 -50664552 -50662333 -50660114 -50657895 -50655676 -50653457 -50651238 -50649020 -50646801 450 -50782110 -50779872 -50777635 -50775397 -50773160 -50770923 -50768686 -50766449 -50764212 -50761975 -50759739 448 -50782168 -50781875 -50781582 -50781289 -50779041 -50776794 -50774536 -50772279 -50770022 -50769720 -50769417 446 -50894303 -50894020 -50893737 -50893455 -50891189 -50888923 -50886636 -50884351 -50882066 -50881764 -50881461 444 -51006481 -51006207 -51005934 -51005664 -51003380 -51001096 -50998779 -50996465 -50994153 -50993850 -50993547 442 -51118701 -51118436 -51118175 -51117917 -51115615 -51113313 -51110965 -51108622 -51106281 -51105978 -51105676 440 -51230962 -51230708 -51230459 -51230214 -51227894 -51225573 -51223194 -51220820 -51218451 -51218149 -51217846 438 -51252509 -51250318. -51248131 -51245947 -51245543 -51245138 -51244687 -51244238 -51243793 -51241562 -51239331 436 -51364032 -51361814 -51359598 -51357384 -51356980 -51356575 -51356135 -51355697 -51355260 -51353011 -51350761 434 -51475596 -51473350 -51471105 -51468862 -51468457 -51468052 -51467624 -51467196 -51466769 -51464501 -51462233 432 -51587202 -51584927 -51582653 -51580378 -51579974 -51579569 -51579152 -51578735 -51578319 -51576033 -51573747 430 -51698848 -51696544 -51694239 -51691935 -51691530 -51691125 -51690720 -51690315 -51689910 -51687605 -51685301 428 -51728156 -51727763 -51727370 -51726977 -51724660 -51722343 -51720026 -51717709 -51715392 -51713076 -51710759 UCAPWSTMNET, UCAL-MB DT, UCALCM PNET, SUMSQ BTU/hr BTU/lJr BTU/hr PSTM_ _ _ _ _ _ _ _ _ _ _

850 -5792806 -5499873 -1238707 6.534013+13 PFv PSIA 770 780 790 800 810 820 830 840 850 860 870 TF\V DEG F UCAL-RAND, UCAL-RAND, UCAL-RANDO UCALRAND, UCAL-RAND, UCAt.RAND. UCAL-RAND, UCAL-RAND, UCAL-RAND, UCALI RNDJ. UCAL RAND, BTU/hr BTUAlr BTUu/hr BTUl/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAir BTU/hr BTUAir 452 -50684919 -50682700 -50680480 -50678261 -50676043 -50673824 -50671605 -50669387 -50667168 -50664950 -50662732 450 -50798041 -50795804 -50793567 -50791330 -50789093 -50786856 -50784619 -50782382 -50780146 -50777910 -50775673 448 -50798122 -50797829 -50797536 -50797244 -50794996 -50792748 -50790491 -50788234 -50785978 -50785675 -50785373 446 -50910261 -50909978 -50909695 -50909413 -50907147 -50904881 -50902595 -50900310 -50898026 -50897723 -50897421 444 -51022443 -51022169 -51021896 -51021626 -51019342 -51017058 -51014742 -51012428 -51010116 -51009814 -51009511 442 -51134666 -51134402 -51134141 -51133883 -51131581 -51129279 -51126932 -51124589 -51122249 -51121946 -51121643 440 -51246932 -51246678 -51246428 -51246184 -51243864 -51241543 -51239165 -51236791 -51234423 -51234120 -51233817 438 -51268497 -51266307 -51264120 -51261936 -51261532 -51261128 -51260676 -51260227 -51259782 -51257551 -51255320 436 -51380024 -51377806 -51375591 -51373377 -51372973 -51372568 -51372128 -51371689 -51371253 -51369004 -51366755 434 -51491591 -51489346 -51487102 -51484858 -51484453 -51484049 -51483620 -51483192 -51482765 -51480498 -51478230 432 -51603201 -51600926 -51598652 -51596378 -51595974 -51595569 -51595152 -51594735 -51594319 -51592033 -51589747 430 -51714851 -51712547 -51710242 -51707938 -51707533 -51707128 -51706723 -51706318 -51705913 -51703609 -51701305 428 -51744176 51743783 51743390 51742997 -51740680 -51738363 -51736046 -51733730 -51731413 -51729097 -51726781

CA06494, Revision 0000 Page 98 of 132 CALORIMETRIC UNCERTAINTY USING TIIE AMAG CROSSFLOW ULTRASONIC FLOWMr3TER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCALPSTMNET, UCAL.MBDT. UCAL-CMPNET, SUMSQ BTU/hr BTU/hr BTU/hr PSTM_ _ _ __ _ _ _ _

8401 -40672551 -5516061l -12387071 4.8504E+13 PFw, PSIA 770 780 790 800 810 820 830 840 850 860 870 UCULARAND, UCLAND, UCAL-RAND, UCAL.RAND, UCAL-RAND, UCALRAND. UCAL-RAND, TFW, DEG F UCAL-RAND, UCALRAAND, UUCLALRND, UCAL-RAND, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/Ar BTU/hr BTU/hr BTU/hr BTU/hr 452 -50528661 -50526434 -50524208 -50521982 -50519756 -50517530 -50515304 -50513078 -50510853 -50508627 -50506402 450 -50642158 -50639914 -50637670 -50635425 -50633181 -50630937 -50628693 -50626450 -50624206 -50621962 -50619719 448 -50642255 -50641961 -50641667 -50641373 -50639118 -50636864 -50634599 -50632335 -50630072 -50629768 -50629465 446 -50754764 -50754480 -50754196 -50753913 -50751640 -50749367 -50747074 -50744781 -50742490 -50742186 -50741883 444 -50867315 -50867040 -50866767 -50866495 -50864204 -50861913 -50859590 -50857269 -50854949 -50854645 -50854342 442 -50979906 -50979641 -50979379 -50979120 -50976811 -50974501 -50972147 -50969796 -50967449 -50967145 -50966841 440 -51092538 -51092282 -51092032 -51091787 -51089459 -51087132 -51084746 -51082365 -51079989 -51079685 -51079381 438 -51114185 -51111988 -51109794 -51107603 -51107198 -51106792 -51106339 -51105889 -51105442 -51103204 -51100966 436 -51226073 -51223848 -51221626 -51219406 -51219000 -51218594 -51218152 -51217712 -51217274 -51215018 -51212762 434 -51338001 -51335748 -51333497 -51331246 -51330840 -51330434 -51330004 -51329575 -51329147 -51326872 -51324598 432 -51449969 -51447687 -51445406 -51443125 -51442719 -51442313 -51441895 -51441477 -51441059 -51438766 .51436473 430 -51561976 -51559665 -51557354 -51555042 -51554636 -51554230 -51553823 -51553417 -51553011 -51550700 -51548389 428 -51591405 -51591011 -51590617 -51590223 -51587899 -51585574 -51583251 -51580927 -51578603 -51576280 -51573956 UCAL-PSTMNET UCALM9DT-. UCAL-CMPNET SUMSQ BTU/hr BTU/11r BTU/hr P5TM 830 -4067255 -5532249 -1238707 4.8683E+13 PFW, PSIA 770 780 790 _ 800 810 820 830 840 850 860 870 UCALLAND, UCAL-RAND, UCAL-RAND, UCAL-RAND. UCAL-RAND. UCAL-RAND, UCALRAND, UCALIRAND. lUCAL-RAND, TFW, DEG F UCALRAND. UCAL-RAND,

. BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -50545576 -50543350 -50541124 -50538898 -50536672 -50534447 -50532221 -50529996 -50527771 -50525546 -50523321 450 -50659075 -50656831 -50654587 -50652343 -50650099 -50647856 -50645612 1 -50643369 -50641126 -50638882 -50636639 448 -50659194 -50658900 -50658606 -50658313 -50656058 -50653804 -50651540 -50649276 -50647013 -50646709 -50646406 446 -50771706 -50771421 -50771137 -50770854 -50768581 -50766309 -50764016 -50761724 -50759433 -50759129 -50758826 444 -50884258 -50883983 -50883709 -50883438 -50881147 -50878857 -50876534 -50874213 -50871894 -50871590 -50871286 442 -50996850 -50996585 -50996323 -50996064 -50993755 -50991446 -50989093 -50986742 -50984395 -50984091 -50983787 440 -51109483 -51109228 -51108978 -51108733 -51106405 -51104078 -51101692 -51099312 -51096936 -51096632 -51096328 438 -51131149 -51128952 -51126758 -51124568 -51124163 -51123757 -51123304 -51122854 -51122407 -51120170 -51117932 436 -51243038 -51240814 -51238592 -51236372 -51235966 -51235560 -51235119 -51234679 -51234241 -51231985 -51229729 434 -51354968 -51352716 -51350464 -51348214 -51347808 -51347402 -51346972 -51346543 -51346114 -51343840 -51341566 432 -51466937 -51464656 -51462375 -51460095 -51459688 -51459282 -51458864 -51458446 -51458028 -51455736 -51453443 430 -51578946 -51576635 -51574324 -51572013 -51571607 -51571200 -51570794 -51570388 -51569981 -51567671 -51565360 428 -51608391 -51607997 -51607603 -51607208 -51604885 -51602561 -51600237 -51597914 -51595591 -51593268 1 -51590945

CA06494, Revision 0000 Page 99 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCLPSTMNFT- CAL-MOET. UCAL-CMPNETI SUMSQ BTU/hr BTU/hr BTU/1r PSTM 8201 j -49299261 -55484371 -12387071 5.6624E+13 PFW. PSIA 770 790 780 S00 810. 820 830 840 850 860 870 UCAL-RAN, UCAL-PAND, UCALRAND, UCAL-RAND, UCAL.RAND, UCAL-RADNO UCAL-RAND, UCAL-LAND, TF., DEG F UCAL RAND UCAL.RANO, UCAL-RAND, BTU~ir BTUJhr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr l3TU/hr BTUAir 452 -50639190 -50636968 -50634746 -50632523 -50630301 -50628080 -50625858 -50623636 -50621415 -50619194 -50616973 450 -50752520 -50750279 -50748039 -50745799 -50743559 -50741319 -50739079 -50736840 -50734600 -50732361 -50730122

-50752661 -50752368 -50752074 -50751781 -50749530 -50747280 -50745020 -50742760 -50740500 -50740197 -50739894 448 446 -50865005 -50864721 -50864437 -50864155 -50861886 -50859617 -50857328 -50855040 -50852753 -50852449 -50852146 444 -50977390 -50977115 -50976843 -50976572 -50974285 -50971998 -50969679 -50967362 -50965046 -50964743 -50964440 442 -51089816 -51089552 -51089290 -51089032 -51086726 -51084421 -51082071 -51079725 -51077381 -51077078 -51076775 440 -51202284 -51202029 -51201779 -51201534 -51199211 -51196887 -51194505 -51192129 -51189757 -51189454 -51189150

-51223935 -51221742 -51219552 -51217366 -51216960 -51216555 -51216103 -51215653 -51215207 -51212974 -51210740 438 436 -51335661 -51333440 -51331222 -51329006 -51328600 -51328195 -51327754 -51327315 -51326877 -51324625 -51322373 434 -51447427 -51445179 -51442931 -51440685 -51440279 .51439874 -51439444 -51439016 -51438588 -51436317 -51434047 432 -51559234 -51556956 -51554679 -51552403 -51551997 -51551591 -51551174 -51550756 -51550339 -51548050 -51545762 430 -51671081 -51668774 -51666466 -51664159 -51663753 -51663348 -51662942 -51662536 -51662130 -51659823 -51657516 428 -51700500 -51700106 -51699712 -51699318 -51696998 -51694678 -51692359 -51690039 -51687719 -51685400 -51683081 UCALIMSTMNET, UCALMDT UCALMPNE, SUMSQ BTUA/r BTU/hr I3TU/hr PSTM _ _ _ _ _

810 -4929926 -5565434 -1238707 5.6813E+13 PFW. PSIA 770 790 780 800 810 820 830 840 850 860 870 UCAL-RAND, UCAL-RAND, UCAL.RAND. UCALRAND, UCAL.RAND UCALANO, U UCAL RAND, UCAL-PAND, TFW. DEG F UCAL AND, UCAL RAND UCALRAND, BTLJ/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU~ir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr

-50656178 -50653956 -50651734 -50649513 -50647291 -50645069 -50642848 -50640627 -50638406 -50636185 -50633964 452

-50769510 -50767269 -50765030 -50762790 -50760550 -50758311 -50756071 -50753832 -50751593 -50749354 -50747115 450 448 -50769674 -50769380 -50769087 -50768793 -50766543 -50764293 -50762033 -50759773 -50757514 -50757211 -50756908

-50882019 -50881735 -50881451 -50881169 -50878900 -50876632 -50874343 -50872055 -50869768 -50869465 -50869162 446

-50994405 -50994131 -50993858 -50993587 -50991300 -50989014 -50986695 -50984378 -50982063 -50981760 -50981457 444 442 -51106833 -51106568 -51106307 -51106048 -51103743 -51101439 -51099089 -51096743 -51094400 -51094096 -51093793

-51219302 -51219047 -51218797 -51218552 -51216229 -51213906 -51211525 -51209148 -51206777 -51206474 -51206170 440

-51240972 -51238779 -51236589 -51234403 -51233998 -51233593 -51233140 -51232691 -51232245 -51230011 -51227778 438 436 -51352698 -51350478 -51348260 -51346044 -51345639 -51345234 -51344793 -51344353 -51343916 -51341664 -51339413 434 -51464466 -51462218 -51459971 -51457725 -51457319 -51456914 -51456484 -51456056 -51455628 -51453358 -51451088

-51576274 -51573997 -51571720 -51569444 -51569038 -51568633 -51568215 -51567798 -51567380 -51565092 -51562804 432

-51688122 -51685815 -51683508 -51681202 -51680796 -51680390 -51679984 -51679579 -51679173 -51676866 -51674560 430

-51717163 -51716770 -51716376 -51714056 -51711737 -51709417 -51707098 -51704779 -51702460 -51700141 428 -51717557

CA06494, Revision 0000 Page 100 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIc FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 1

UCAL-PSTMNET, UCAL-MBDT, UCALOMPNET, SUMSQ IBTU/hr BTUAir BTU/hr PST, _ _ _ _ _ _ _

8001 4922670 -55816221 -12387071 5.6922E+13 PFW, PSIA 770 790 780 800 810 l 820 l 830 840 850 860 870 UCAL-RAND, UCAL-RAND. UCALRAND, TFW, DEG F UCALp.AND, UCAL-PAND, UCAL-PAND, UCAL-LAND, UCALPRAND, UCALRAND, UCALtRAND, UCAL-RAND, BTUIhr _BTU/hr BTU/ihr BTU/hr BTU/hr BTUIhr BTU/hr BTU/hr BTU/hr BTUlhr BTU/hr 452 -50672377 -50670155 -50667934 -50665712 -50663491 -50661270 -50659049 -50656828 -50654607 -50652387 -50650166 450 -50785712 -50783472 -50781232 .50778993 -50776753 -50774514 -50772275 .50770036 -50767797 -50765559 -50763320 448 -50785898 -50785605 -50785311 -50785018 -50782768 -50780518 -50778259 -50775999 -50773741 -50773437 -50773134 446 -50898247 -50897962 -50897679 .50897396 -50895128 -50892860 -50890572 -50888284 -50885998 -50885694 -50885391 444 -51010637 -51010362 -51010089 -51009818 -51007532 -51005245 -51002927 -51000611 -50998296 -50997993 -50997690 442 -51123068 -51122803 -51122541 -51122283 -51119978 -51117674 -51115324 -51112978 -51110636 -51110332 -51110029 440 -51235540 -51235285 -51235035 -51234790 -51232467 -51230144 -51227763 -51225387 -51223016 -51222713 -51222409 438 -51257228 -51255035 -51252846 -51250660 -51250254 -51249849 -51249397 -51248948 -51248502 -51246268 -51244035 436 -51368957 -51366738 -51364520 -51362304 -51361899 -51361493 -51361052 -51360613 -51360176 -51357924 -51355673 434 -51480728 -51478480 -51476233 -51473987 -51473582 -51473176 -51472747 -51472318 -51471891 -51469621 -51467351 432 -51592539 -51590262 -51587986 -51585710 -51585304 -51584898 -51584481 -51584063 -51583646 -51581358 -51579070 430 -51704390 -51702084 -51699777 -51697470 -51697065 -51696659 -51696253 -51695847 -51695442 -51693135 -51690829 428 -51733842 -51733448 - -51733054 -51732660 -51730341 -51728022 -51725702 -51723383 -51721065 -51718746 -51716427 UCAL-PSYMNErT UCALMDT UCALCMNET SUMSQ BTU/hr BTU/hr BTU/hr PSTM 790 -4922670 -5597810 -1238707 5.7103E+13 PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 UCALRAND UCAL-RANN, UCALLRAND, TFW, DEG F UCAL-RAND, UCAL-PAND, UCAL RANDO UCAL-RAND. UCAL-RAND, UCAL-RLAND, UCAL-AND ALAND, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -50689286 -50687065 -50684843 -50682622 -50680401 -50678181 -50675960 -50673740 -50671519 -50669299 -50667079 450 -50802623 -50800383 -50798144 -50795905 -50793666 -50791427 -50789188 -50786950 -50784711 -50782473 -50780235 448 -50802832 -50802538 -50802245 -50801952 -50799702 -50797452 -50795193 -50792934 -50790676 -50790373 -50790070 446 -50915182 -50914898 -50914614 -50914332 -50912064 -50909796 -50907508 -50905221 -50902935 -50902632 -50902328 444 -51027574 -51027299 -51027026 -51026755 -51024469 -51022183 -51019865 -51017549 -51015235 -51014932 -51014628 442 -51140006 -51139741 -51139480 -51139221 -51136917 -51134613 -51132264 -51129918 -51127576 -51127273 -51126969 440 -51252480 -51252225 -51251975 -51251730 -51249408 -51247085 -51244704 -51242329 -51239958 -51239655 -51239351 438 -51274186 -51271994 -51269805 -51267619 -51267214 -51266809 -51266356 -51265907 -51265461 -51263228 -51260995 436 -51385917 -51383698 -51381480 -51379265 -51378859 -51378454 -51378013 -51377574 -51377137 -51374885 -51372634 434 -51497689 -51495442 -51493195 -51490950 -51490544 -51490139 -51489709 -51489281 -51488853 -51486583 -51484314 432 -51609502 -51607225 -51604949 -51602673 -51602268 -51601862 -51601444 -51601027 -51600610 -51598322 -51596034 430 -51721354 -51719048 -51716742 -51714435 -51714030 -51713624 -51713218 -51712813 -51712407 -51710101 -51707795 428 -51750822 -51750428 -51750034 -51749641 -51747322 -51745003 -51742684 -51740365 -51738046 -51735728 -51733410

CA06494, Revision 0000 Page 101 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES UCAL-PSTMNET. UCAL-MSOT, UCALCMPNET, SUMSQ BTU/hr BTU/hr BTU/hr PST, _ _ _ _ _ _ _ _

7801 -40600421 -56139981 -12387071 4.9535E+13 P,,, PSIA 770 790 780 800 810

  • 820 830 840 850 860 870 TFW. DEG F UcAL-RAND, UCALRAND, UCLRND, U UCAL-RNND, UUCALCAND, UCAL.RAND, UCAL-AND, UCAL-RAND. UCALRANND, UCALL-RAND BTU/hr BTU/lr BTUL/hr BTU/hr BTU/hr BTU/hi BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -50624685 -50622461 -50620236 -50618012 -50615788 -50613564 -50611341 -50609117 -50606894 -50604670 -50602447 450 -50738192 -50735950 -50733708 -50731465 -50729223 -50726981 -50724740 -50722498 -50720256 -50718015 -50715774 448 -50738417 -50738123 -50737829 -50737536 -50735283 -50733030 -50730768 -50728506 -50726244 -50725941 -50725637 446 -50850936 -50850651 -50850367 -50850084 -50847813 -50845542 -50843251 -50840961 -50838671 -50838368 -50838064 444 -50963495 -50963220 -50962947 -50962675 -50960386 -50958097 -50955776 -50953456 -50951139 -50950835 -50950532 442 -51076095 -51075829 -51075567 -51075308 -51073001 -51070694 -51068342 -51065993 -51063647 -51063343 -51063040 440 -51188735 -51188479 -51188229 -51187984 -51185658 -51183332 -51180948 -51178569 -51176196 -51175892 -51175588 438 -51210485 -51208289 -51206097 -51203909 -51203503 -51203097 -51202644 -51202194 -51201747 -51199512 -51197276 436 -51322380 -51320158 -51317937 -51315719 -51315313 -51314907 -51314465 -51314025 -51313587 -51311333 -51309079 434 -51434316 -51432065 -51429816 -51427567 -51427161 -51426755 -51426325 -51425896 -51425467 -51423195 -51420922 432 -51546291 -51544012 -51541732 -51539454 -51539047 -51538641 -51538223 -51537805 -51537387 -51535096 -51532805 430 -51658306 -51655997 -51653687 -51651378 -51650972 -51650565 51650159 -51649753 -51649346 -51647037 -51644728 428 -51687827 -51687432 -51687038 -51686644 -51684322 -51682000 -51679678 -51677356 -51675034 -51672713 -51670391 UCAL-PS.rMNET. UCAL-MDDT, UCAL-CM PNET, SUMSQ BTU/hr BTU/hr BTU/hr PS TM _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _

770 4052837 -5630996 -1238707 4.9668E+13 Pw, PSIA 770 790 780 800 810 820 830 840 850 860 870 TsW, DEG F UCAL-PAND, UCAL-RAND, UCAL-RAND, UCAL RAND, U UCAL-RAND, UCAL-RAND, UCAL-RAND UCAL-RAND, UCAL.RANDO UCALRAND, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -50641142 -50638918 -50636694 -50634471 -50632247 -50630023 -50627800 -50625577 -50623354 -50621131 -50618908 450 -50754652 -50752410 -50750168 -50747926 -50745685 -50743443 -50741202 -50738960 -50736719 -50734478 -50732237 448 -50754900 -50754606 -50754312 -50754018 -50751766 -50749513 -50747251 -50744990 -50742728 -50742425 -50742121 446 -50867421 -50867136 -50866852 -50866569 -50864299 -50862028 -50859737 -50857447 -50855158 -50854855 -50854551 444 -50979983 -50979708 -50979434 -50979163 -50976874 -50974585 -50972264 -50969946 -50967629 -50967325 -50967021 442 -51092585 -51092320 -51092058 -51091799 -51089492 -51087185 -51084833 -51082484 -51080139 -51079835 -51079532 440 -51205227 -51204972 -51204722 -51204476 -51202151 -51199826 -51197442 -51195064 -51192690 -51192386 -51192082 438 -51226996 -51224801 -51222609 -51220421 -51220015 -51219609 -51219156 -51218706 -51218260 -51216024 -51213789 436 -51338894 -51336672 -51334451 -51332233 -51331827 -51331421 -51330980 -51330540 -51330102 -51327848 -51325594 434 -51450832 -51448581 -51446332 -51444084 -51443678 -51443272 -51442842 -51442413 -51441984 -51439712 -51437440 432 -51562809 -51560530 -51558251 -51555973 -51555567 -51555160 -51554742 -51554324 -51553906 -51551616 -51549325 430 -51674827 -51672518 -51670209 -51667900 -51667493 -51667087 -51666681 -51666274 -51665868 -51663559 -51661250 428 -51704364 -51703970 -51703575 -51703181 -51700859 -51698537 -51696216 -51693894 -51691573 -51689252 -51686930

CA06494, Revision 0000 Page 102 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Table 9B, Summary of Bias Uncertainty UCAL-13OAS = BCAL-pFwNEr +BCAL-PSIMNET +BCAL-CONST PsTM 1 870 PFw,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCALI9AS, UCALIAS, UCAL-BAS, UCAL- AS, UCAL-BrAS, UCABLSI UCALBtAS, UCAL.BIAS, UCAL-BAS UCAL.BAS. UCAL-1.DA,

. BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414. -7665414 -7665414 -7665414 -7665414 -7665414 450 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 448 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 446 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 444 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 442 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 440 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 438 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 436 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 434 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 432 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 430 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 428 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414

CA06494, Revision 0000 Page 103 of 132 CALORIMETRIC UNCERTA!NTY USrNG THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PSTM 1 860 P~,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFw,DEG F UCAL-otAS, UCAL-DIAS, UCAL-BtAS- UCAL.n!AS. UCAL.BtAS, UCAL BIAS, UCAL-nA~S UCALBDIAS, UCALtBIAS UCAL BAS, UCAL.BIAS, l BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUA/r BTU/hr BTU/hr 452 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 450 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 448 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 446 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 444 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 442 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 440 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 438 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 436 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 434 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 432 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098. -8081098 -8081098 -8081098 430 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 428 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 -8081098 p_"_ 850 PI,,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFw,DEG F UCAL Bas, UCALBaAS, UCALBMAS' UCALABIAS, UCAL5BEaS, UCAL-BRS' UCAL.8 As, UCALDBtAS, UCAL-WAS, UCAL-BIAS UCAL BAS, BTU/hr lBTUh/r BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUA/r 452 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 450 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 448 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 446 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 444 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 442 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 440 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 438 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 436 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 434 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 432 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 430 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 428 -7665414 -7665414 -7665414 -7665414 -7665414 -7665414 766541 47665414 -7665414 -7665414 -7665414

CA06494, Revision 0000 Page 104 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFI.OW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES P.m- 1 840 PFW,PSIA 770 780 790 800 810 820 830 840 850 860 870 UCL-tS, U -BL UCAL.BIAS, UCAL-OtAS, UCAL-BIAS, UCAL.BtAS, Tiw. DEG F UA. UCAL-BIAS, UCALUIAS, UCALDBIAS, UCALIAS, BTIJ/hr BTUIhr IJ/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUilir BTU/hr 452 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 450 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 448 -7242454 -7242454 -7242454 -7242454 .7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 446 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 444 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 442 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 440 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 438 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 436 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 434 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 432 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 430 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 428 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 -7242454 PM 830 PFw, PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL-DIAS, UCAL-BIAS. UCAL-1IAS, UCAL.BAS. UCAL.BIAS, UCAL.-BLAS, UCAtL5.oAS TFw,.DEG F UCAL-BDIAs, LALDS, UCAL-BLAS, UCALBIAS, BTU/hr BTU/hr BTU/hr BTU/hr BTJ/hr BTU/hr BTU/hr BTU/lr BTU/hr BTU/hr BTU/hr 452 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 450 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 448 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 446 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 444 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 442 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 440 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 438 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 436 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 434 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 432 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 430 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 428 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776

CA06494, Revision 0000 Page 105 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES l PS 1 820 PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 Tr,, DEG F UCAL-BtASS, UCALAS. UCALR-IAS, UCALBIAS' UCALAhAS, UCAL-BIAS, UCAL8BIAS. UCAL BtAS, UCALBtAS, UCALBtAS, UCAL-BIAS, BTU/hr BTU/Ir BTU/hr BTU/br BTUA/r BTU/Ihr BTU/hr BTU/Ihr BTU/hr BTU/hr BTU/hr 452 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 450 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 448 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 446 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 444 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 442 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 440 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 438 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 436 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 434 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 432 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 430 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 428 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 P__ _ 810 . _ ._

Pm, PSIA 770 790 780 800 810 820 830 840 850 860 870 T,,, DEG F UCAL.BAs, UCAL BtAS- UCAL-B.AS- UCAIBIAS, UCALBIAS, UCAL-BIAS, UCAL-BIAS- UCALBtAS5 UCAL.B-L, UCAL BtAS UCAL.BIAS, BTU/hr BTTU/hr BTU/hr BTU/hr

__TU/hr BMW BTU/hr BTU/hr BTU/hTr BTU/hr BTU/hr 452 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 450 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 448 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 446 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 444 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 442 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 440 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 438 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 436 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 434 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 432 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 430 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 428 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776 -7661776

CA06494, Revision 0000 Page 106 of 132 CALORIMETRIC UNCERTAINTY USING TIE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PSTM 1 780 PwPSIA 770 790 780 S00 810 820 830 840 850 860 870 Tr,, DEG F Uc ..... UCAL-DIAS, UCAL.BIAS, UCAL-BtAS, UCALAS, UCAL-DIAS, UCAL-B.AS, UCAL-R!AS, UCALBs.AS UCAL-1AS, UCAL.BIAS, BTU/hr BTUA/r BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr. BTU/hr BTU/hr BTU/hr 452 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 450 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 448 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 446 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 444 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 442 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 440 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 438 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 436 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 434 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 432 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 430 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 428 '-7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 -7238816 P__ _ 770 _

Pw,PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F Ur-ALBIAS, UCAL.BDLA*S UCALBIS, UCAL-OtAS, UCALBactAS, UCAtl.AS, U UC S UCAL 1ALS, UCAL BIAS, UCAL-BAS BTU/hr BTU/hr BTUiJ/r BTU/hr BTUl/hr BTU/ir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 450 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 448 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 446 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 444 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 442 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 440 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 438 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 436 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 434 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 432 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 430 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 428 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138 -7658138

CA06494, Revision 0000 Page 107 of 132 CALORIMETRIC UNCERTAINTY USING TilE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Tables lOA1 and 10A2, Total Calorimetric Uncertainty, Step 7.12.4 UCALTOT = UCAL-RAND + UCAL-BIAS Table 10A1, Total Calorimetric Uncertainty, Unit I NSTM I 870 PFW. PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL.TOT, UCALTOT, UCALTOT. UCALTOT, UCALTOT. UCAL.TOT, UCAL.TOT, UCALtTOT, TpW, DEG F UCAL.TOT, UCALTOT, UCAL-TOT, BTU/hr BTU/hr BTU/hr BTU/lr BTU/hr BTU/hr BTU/hr BTU/br BTU/hr BTU/hr BTU/hr 452 -52507639 -52505243 -52502847 -52500452 -52498056 -52495661 -52493265 -52490870 -52488475 -52486081 -52483686 450 -52600060 -52597649 -52595239 -52592829 -52590419 -52588010 -52585600 -52583190 -52580781 -52578372 -52575963 448 -52566404 -52566167 -52565931 -52565695 -52563278 -52560861 -52558433 -52556005 -52553578 -52553331 -52553084 446 -52658044 -52657818 -52657593 -52657369 -52654938 -52652506 -52650052 -52647598 -52645146 -52644899 -52644651 444 -52749725 -52749510 -52749297 -52749086 -52746640 -52744194 -52741712 -52739232 -52736754 -52736506 -52736259 442 -52841447 -52841243 -52841042 -52840846 -52838385 -52835925 -52833413 -52830906 -52828402 -52828155 -52827907 440 -52933208 -52933016 -52932829 -52932647 -52930172 -52927697 -52925156 -52922620 -52920090 -52919843 -52919595 438 -52923694 -52921340 -52918989 -52916642 -52916311 -52915980 -52915596 -52915216 -52914839 -52912438 -52910038 436 -53014888 -53012509 -53010132 -53007757 -53007426 -53007095 -53006724 -53006355 -53005988 -53003573 -53001157 434 -53106122 -53103717 -53101313 -53098911 -53098580 -53098249 -53097891 -53097533 -53097177 -53094747 -53092318 432 -53197396 -53194965 -53192533 -53190102 -53189771 -53189440 -53189096 -53188751 -53188407 -53185962 -53183518 430 -53288710 -53286251 -53283791 -53281332 -53281001 -53280670 -53280339 -53280007 -53279676 -53277217 -53274758 428 -53288002 -53287685 -53287367 -53287050 -53284581 -5'282113 -53279644 -53277176 -53274708 -53272240 -53269772 PFW. PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCA,.MTO UCAL-TOT, UCAL TO UCAL.TOT, UCAL.TO., UCAL.TOT, UCAL-TOT UCAL.TOT, UCAL.TOT, UCAL.TOT, UCAL-TOT, BTU~hr BTUAir BTU/hr BTU/hr BTU/hr BTU/hr BTUlir BTU/hr BTU/hr BTU/hr BITUIhr 452 -53044890 -53042501 -53040111 -53037721 -53035332 -53032942 -53030553 -53028164 -53025775 -53023386 -53020997 450 -53137103 -53134699 -53132295 -53129891 -53127487 -53125083 -53122679 -53120276 -53117872 -53115469 -53113066 448 -53103555 -53103319 -53103083 -53102847 -53100436 -53098025 -53095604 -53093182 -53090761 -53090514 -53090268 446 -53194989 -53194764 -53194539 -53194316 -53191890 -53189465 -53187016 -53184569 -53182123 -53181876 -53181629 444 -53286465 -53286251 -53286038 -53285828 -53283388 -53280948 -53278471 -53275997 -53273525 -53273279 -53273032 442 -53377982 -53377779 -53377579 -53377383 -53374928 -53372473 -53369968 -53367467 -53364969 -53364722 -53364475 440 -53469540 -53469348 -53469161 -53468980 -53466511 -53464042 -53461507 -53458977 -53456454 -53456207 -53455960 438 -53460072 -53457723 -53455378 -53453037 -53452707 -53452377 -53451993 -53451614 -53451238 -53448843 -53446448 436 -53551064 -53548690 -53546319 -53543950 -53543620 -53543290 -53542920 -53542551 -53542185 -53539776 -53537366 434 -53642097 -53639698 -53637300 -53634903 -53634572 -53634242 -53633885 -53633529 -53633173 -53630749 -53628325 432 -53733170 -53730745 -53728319 -53725894 -53725564 -53725233 -53724889 -53724546 -53724202 -53721763 -53719325 430 -53824285 -53821831 -53819377 -53816924 -53816593 -53816263 -53815933 -53815602 -53815272 -53812818 -53810365 428 -53823600 -53823283 -53822966 -53822650 -53820187 -53817725 -53815262 -53812800 -53810338 -53807876 -53805414

CA06494, Revision 0000 Page 108 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES p"m 1 850 1 PFW, PS IA 770 780 790 800 810 820 830 840 850 860 870 TFw, DEG F UCATOT UCAL.TOT9 UCAL.TOT, UCAL-TOT UCAL TOT UCAL.TOT, UCAL.TOT, UCAL-TOT, UCAL.T, UCAL-TOT, UCALt,.OT, BTULhr BTUIlir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUI/hr BTU/hr 452 -52642448 -52640059 -52637669 -52635280 -52632891 -52630502 -52628113 -52625724 .-52623335 -52620947 -52618558 450 -52734665 -52732261 -52729857 -52727453 -52725050 -52722646 -52720243 -52717840 -52715436 -52713033 -52710631 448 -52701139 -52700903 -52700667 -52700432 -52698021 -52695610 -52693189 -52690767 -52688347 -52688100 -52687853 446 -52792577 -52792352 -52792127 -52791904 -52789478 -52787053 -52784605 -52782158 -52779712 -52779465 -52779218 444 -52884057 -52883842 -52883630 -52883419 -52880979 -52878540 -52876064 -52873590 -52871119 -52870872 -52870625 442 -52975577 -52975374 -52975174 -52974978 -52972523 -52970069 -52967564 -52965063 -52962566 -52962319 -52962072 440 -53067139 -53066946 -53066760 -53066579 -53064110 -53061641 -53059106 .53056577 -53054054 -53053807 -53053560 438 -53057689 -53055341 -53052996 -53050655 -53050325 -53049995 -53049611 -53049232 -53048856 -53046461 -53044067 436 -53148685 -53146311 -53143940 -53141572 -53141242 -53140911 -53140541 -53140173 -53139806 -53137397 -53134988 434 -53239721 -53237322 -53234924 -53232528 -53232197 -53231867 -53231510 -53231154 -53230798 -53228374 -53225951 432 -53330798 -53328372. -53325947 -53323522 -53323192 -53322862 -53322518 -53322174 -53321830 -53319392 -53316954 430 -53421916 -53419462 -53417009 -53414556 -53414225 -53413895 -53413564 -53413234 -53412903 -53410450 -53407997 428 -53421248 -53420931 -53420614 -53420297 -53417835 -53415373 -53412911 -53410449 -53407987 -53405525 -53403064 PSTM 840 _

PF,,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCALOT, UUAA.LTT, UCAtMT, UCALmT, UT.OT, UCAAroT, UCAUAMT, UCALtTOT, UCA&.M, UCAL TOT, UCAL.TOT, BTU/fir BTU/hr BTUJhr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/Iir BTU/hr 452 -52040175 -52037776 -52035377 -52032977 -52030578 -52028180 -52025781 -52023382 -52020984 -52018585 -52016187 450 -52132781 -52130367 -52127954 -52125540 -52123126 -52120713 -52118300 -52115887 -52113474 -52111061 -52108648 448 -52099130 -52098893 -52098656 -52098419 -52095999 -52093578 -52091147 -52088716 -52086285 -52086037 -52085790 446 -52190953 -52190726 -52190501 -52190276 -52187841 -52185406 -52182948 -52180491 -52178035 -52177787 -52177539 444 -52282816 -52282600 -52282387 -52282175 -52279726 -52277276 -52274790 -52272306 -52269825 -52269577 -52269329 442 -52374718 -52374514 -52374313 -52374116 -52371652 -52369187 -52366672 -52364161 -52361654 -52361406 -52361158 440 -52466660 -52466467 -52466279 -52466098 -52463619 -52461140 -52458595 -52456056 -52453522 -52453274 -52453026 438 -52457184 -52454826 -52452471 -52450121 -52449790 -52449458 -52449073 -52448692 -52448315 -52445910 -52443506 436 -52548556 -52546173 -52543793 -52541414 -52541083 -52540752 -52540380 -52540010 -52539642 -52537223 -52534805 434 -52639968 -52637559 -52635152 -52632746 -52632414 -52632082 -52631724 -52631366 -52631009 -52628575 -52626142 432 -52731419 -52728984 -52726549 -52724114 -52723782 -52723451 -52723105 -52722760 -52722415 -52719967 -52717519 430 -52822909 -52820446 -52817983 -52815520 -52815188 -52814856 -52814524 -52814193 -52813861 -52811398 -52808935 428 -52822250 -52821932 -52821613 -52821295 -52818823 -52816351 -52813879 -52811408 -52808936 -52806464 -52803993

CA06494, Revision 0000 Page 109 of 132 CALORIMETRIC UNCERTAINTY USING TIlE AMAG CROSSFLOW ULTRASONIC FLOWMETER AfTTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES IPM 830 Pr,,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCALTOT, UCAL.TOT UCAL.TOT. UCAL.TOT, UICAL-TO UCAL-TOT T, UCAL.T-, UCALMTm. UCALTOTS UCAL.TOT, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -52473849 -52471450 -52469051 -52466653 -52464254 -52461855 -52459457 -52457059 -52454661 -52452263 -52449865 450 -52566457 -52564043 -52561630 -52559216 -52556803 -52554390 -52551978 -52549565 -52547152 -52544740 -52542327 448 -52532829 -52532592 -52532355 -52532118 -52529698 -52527278 -52524847 -52522416 -52519986 -52519738 -52519490 446 -52624653 -52624427 -52624201 -52623977 -52621542 -52619107 -52616649 -52614193 -52611737 -52611489 -52611241 444 -52716517 -52716302 -52716088 -52715877 -52713427 -52710978 -52708493 -52706009 -52703528 -52703280 -52703032 442 -52808421 -52808216 -52808016 -52807819 -52805355 -52802891 -52800376 -52797865 -52795358 -52795110 -52794862 440 -52900364 -52900171 -52899983 -52899802 -52897323 -52894845 -52892300 -52889761 -52887228 -52886980 -52886732 438 -52890907 -52888549 -52886195 -52883845 -52883513 -52883182 -52882797 -52882416 -52882038 -52879635 -52877231 436 -52982280 -52979898 -52977517 -52975139 -52974808 -52974476 -52974105 -52973735 -52973367 -52970948 -52968530 434 -53073693 -53071285 -53068878 -53066472 -53066140 -53065808 -53065450 -53065092 -53064735 -53062302 -53059869 432 -53165145 -53162710 -53160276 -53157841 -53157510 -53157178 -53156833 -53156487 -53156142 -53153695 -53151247 430 -53256636 -53254173 -53251711 -53249248 -53248916 -53248585 -53248253 -53247921 -53247589 -53245127 -53242664 428 -53255994 -53255676 -53255357 -53255039 -53252568 -53250096 -53247624 -53245153 -53242682 -53240211 -53237740 PT_

_ _ 820 PFws PSIA 770 790 780 800 810 820 .830 840 850 860 870 TFw, DEG F UcwTr, UCALAO1., UCALT, UCAkLTOT, UCA-TOT, UcLm, TOT UcArJLT, UcALTOr, UCALTOT, UCAL-OT, BTU/hr BTU/hr BTU/Ir BTU/hr BTU/ir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -52574697 -52572303 -52569909 -52567516 -52565122 -52562728 -52560335 -52557942 -52555549 -52553156 -52550763 450 -52667128 -52664720 -52662311 -52659903 -52657495 -52655087 -52652679 -52650271 -52647864 -52645456 -52643049 448 -52633588 -52633351 -52633115 -52632879 -52630464 -52628049 -52625623 -52623197 -52620772 -52620524 -52620277 446 -52725238 -52725012 -52724787 -52724563 -52722133 -52719703 -52717250 -52714799 -52712348 -52712101 -52711853 444 -52816928 -52816713 -52816500 -52816289 -52813844 -52811400 -52808920 -52806441 -52803965 -52803718 -52803470 442 -52908658 -52908454 -52908254 -52908057 -52905598 -52903139 -52900630 -52898124 -52895622 -52895375 -52895127 440 -53000428 -53000235 -53000048 -52999867 -52997394 -52994920 -52992381 -52989847 -52987319 -52987072 -52986824 438 -52991008 -52988655 -52986305 -52983960 -52983629 -52983299 -52982914 -52982534 -52982157 -52979758 -52977360 436 -53082209 -53079832 -53077457 -53075083 -53074753 -53074422 -53074051 -53073681 -53073314 -53070901 -53068488 434 -53173452 -53171048 -53168646 -53166245 -53165914 -53165583 -53165225 -53164868 -53164512 -53162084 -53159656 432 -53264734 -53262304 -53259874 -53257445 -53257114 -53256783 -53256438 -53256094 -53255749 -53253306 -53250864 430 -53356056 -53353598 -53351140 -53348683 -53348351 -53348020 -53347689 -53347358 -53347026 -53344569 -53342112 428 -53355431 -53355114 -53354796 -53354479 -53352012 -53349545 -53347078 -53344612 -53342146 -53339679 -53337213

CA06494, Revision 0000 Page II10 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES IPTU I 810 1 PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 TW, DEG F UcATOT. UCAL.ToT, UCAL1TOB, UCAL.11T, UcAL.rOT UCAL.TkT, UCAL-TOT, UCALMT, UCAL TMT, UCALTOT, UCALtTOT, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUA/F BTUAir BTU/hr BTU/hr BTU/hr BTU/hr 452 -52589133 -52586739 -52584345 -52581952 -52579559 -52577166 -52574773 -52572380 -52569987 -52567594 -52565202 450 -52681565 -52679157 -52676749 -52674341 -52671933 -52669525 -52667118 -52664711 -52662303 -52659896 -52657489 448 -52648048 -52647812 -52647575 -52647339 -52644924 -52642509 -52640084 -52637658 -52635234 -52634986 -52634739 446 -52739699 .52739473 -52739248 -52739024 -52736594 -52734165 -52731713 -52729262 -52726811 -52726564 -52726317 444 -52831390 -52831175 -52830962 -52830751 -52828307 -52825863 -52823383 -52820905 -52818429 -52818182 -52817935 442 -52923122 -52922918 -52922717 -52922520 -52920062 -52917604 -52915094 -52912589 -52910088 -52909840 -52909593 440 -53014893 -53014700 -53014513 -53014332 -53011859 -53009386 -53006847 -53004313 -53001786 -53001538 -53001291 438 -53005491 -53003138 -53000790 -52998445 -52998114 -52997783 -52997399 -52997018 -52996642 -52994243 -52991845 436 -53096694 -53094317 -53091942 -53089569 -53089238 -53088907 -53088536 -53088167 -53087800 -53085387 -53082974 434 -53187937 -53185534 -53183133 -53180732 -53180401 -53180070 -53179712 -53179355 -53178998 -53176571 -53174143 432 -53279220 -53276791 -53274361 -53271933 -53271602 -53271270 -53270926 -53270581 -53270237 -53267794 -53265352 430 -53370543 -53368086 -53365628 -53363171 -53362840 -53362509 -53362177 -53361846 -53361515 -53359058 -53356601 428 -53369936 -53369618 -53369300 -53368983 -53366516 -53364050 -53361584 -53359118 -53356652 -53354186 -53351720 PM, 800 . _ .

Prw,PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UC AL -mT, UcAtTmT UCAL TOT, UcAtmT, UCAL.TT, UCALTOT. UCAL ,

r TOT UcAL-TmT UCAL-.T, BTU/hr BTU/hr BTU1hr BTU/lir BTU/hr BTU/Ar BTU/hr BTU/hr BTU/hr BTU/hr BTUA1r 452 -52599040 -52596647 -52594253 -52591860 -52589467 -52587075 -52584682 -52582289 -52579897 -52577505 -52575112 450 -52691475 -52689067 -52686660 -52684252 -52681845 -52679438 -52677030 -52674623 -52672217 -52669810 -52667403 448 -52657981 -52657745 -52657508 -52657272 -52654858 -52652443 -52650018 -52647593 -52645168 -52644921 -52644674 446 -52749635 -52749409 -52749184 -52748960 -52746531 -52744102 -52741650 -52739199 -52736749 -52736502 -52736254 444 -52841329 -52841114 -52840901 -52840690 -52838247 -52835803 -52833323 -52830846 -52828370 -52828123 -52827875 442 -52933064 -52932860 -52932659 -52932463 -52930004 -52927546 -52925038 -52922533 -52920032 -52919784 -52919536 440 -53024838 -53024645 -53024458 -53024277 -53021804 -53019331 -53016793 -53014260 -53011733 -53011485 -53011237 438 -53015455 -53013102 -53010754 -53008409 -53008078 -53007748 -53007363 -53006983 -53006606 -53004208 -53001810 436 -53106660 -53104283 -53101909 -53099536 -53099206 -53098875 -53098503 -53098134 -53097767 -53095354 -53092942 434 -53197906 -53195504 -53193102 -53190702 -53190371 -53190040 -53189682 -53189325 -53188968 -53186541 -53184114 432 -53289192 -53286763 -53284334 -53281905 -53281574 -53281243 -53280898 -53280554 -53280210 -53277768 -53275326 430 -53380518 -53378061 -53375604 -53373147 -53372816 -53372484 -53372153 -53371822 -53371491 -53369034 -53366577 428 -53379927 -53379609 -53379291 -53378974 -53376508 -53374042 -53371576 -53369110 -53366645 -53364179 -53361714

CA06494, Revision 0000 Page II11 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A,CALORIMETRIC.UNCERTAINTY USING ASME 1967 STEAM TABLES 1 790 P,vPSIA 770 790 780 800 810 820 830 840 850 860 870 Tpw, DEG F UCAL-1TO, UCAL4mTO UCALToT, UCALurOT, UcAtT, UCALTOT, UCAL.YT7. UALCTOT, UCzAT, UCAL.TOT, UCAL.TOT BTUAir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BT(J/lr BTU/hr BTU/hr BTU/hr BTU/hr 452 -52617024 -52614631 -52612239 -52609846 -52607453 -52605061 -52602669 -52600276 -52597884 -52595492 -52593101 450 -52709461 -52707054 -52704646 -52702239 -52699832 -52697425 -52695019 -52692612 -52690205 -52687799 -52685393 448 -52675991 -52675754 -52675517 -52675281 -52672867 -52670453 -52668028 -52665604 -52663179 -52662932 -52662685 446 -52767646 -52767420 -52767195 -52766970 -52764542 -52762113 -52759662 -52757211 -52754762 -52754514 -52754267 444 -52859341 -52859126 -52858913 -52858702 -52856259 -52853816 -52851336 -52848859 -52846384 -52846137 -52845889 442 -52951077 -52950873 -52950673 -52950476 -52948018 -52945560 -52943052 -52940547 -52938047 -52937799 -52937552 440 -53042853 -53042660 -53042473 -53042291 -53039819 -53037347 -53034808 -53032276 -53029749 -53029501 -53029254 438 -53033488 -53031136 -53028788 -53026443 -53026113 -53025782 -53025398 -53025017 -53024640 -53022243 -53019845 436 -53124695 -53122318 -53119944 -53117572 -53117241 -53116910 -53116539 -53116170 -53115803 -53113390 -53110978 434 -53215942 -53213540 -53211139 -53208739 -53208408 -53208077 -53207719 -53207361 -53207005 -53204578 -53202151 432 -53307229 -53304800 -53302372 -53299943 -53299612 -53299281 -53298936 -53298592 -53298248 -53295806 -53293364 430 -53398556 -53396099 -53393642 -53391186 -53390855 .53390523 -53390192 -53389861 -53389530 -53387073 -53384617 428 -53397982 -53397664 -53397346 -53397029 -53394563 .53392097 -53389632 -53387166 -53384701 -53382236 -53379771 PsM 780 P,, PSIA 770 790 780 800 810 820 830 840 850 860 870 Tv, DEG F UCALtTOT, UCALTOT, T, TOT. UCAL-TOT UCATOT, UCALTO., UCAL.TOT, UCALMTO, UCAL.TOT, UCALTDT-. UCAL-MTO BTU/ir BTU/hr BTU/hr BTU/hr BTU/hr BTLI/hr BTUA/r BTU/hr BTU/hr BTU/hr BTU/hr 452 -52118059 -52115662 -52113265 -52110868 -52108471 -52106074 -52103678 -52101281 -52098885 -52096488 -52094092 450 -52210673 -52208261 -52205849 -52203438 -52201027 -52198615 -52196204 -52193793 -52191383 -52188972 -52186561 448 -52177154 -52176917 -52176680 -52176444 -52174025 -52171607 1 -52169177 -52166748 -52164320 -52164072 -52163824 446 -52268984 -52268758 -52268532 -52268308 -52265875 -52263442 -52260986 -52258531 -52256077 -52255829 -52255581 444 -52360854 -52360638 -52360425 -52360214 -52357766 -52355318 -52352835 -52350353 -52347874 -52347626 -52347378 442 -52452763 -52452559 -52452358 -52452161 -52449699 -52447237 -52444724 -52442215 -52439710 -52439462 -52439214 440 -52544712 -52544519 -52544331 -52544150 -52541673 -52539196 -52536653 -52534116 -52531585 -52531337 -52531089 438 -52535342 -52532986 -52530634 -52528285 -52527954 -52527622 -52527237 -52526856 -52526479 -52524077 -52521675 436 -52626720 -52624340 -52621961 -52619585 -52619253 -52618922 -52618550 -52618180 -52617812 -52615396 -52612979 434 -52718138 -52715732 -52713326 -52710922 -52710590 -52710259 -52709900 -52709542 -52709185 -52706754 -52704323 432 -52809595 -52807162 -52804729 -52802297 -52801965 -52801633 -52801288 -52800942 -52800598 -52798152 -52795706 430 -52901091 -52898630 -52896169 -52893708 -52893376 -52893045 -52892713 -52892381 -52892049 -52889588 -52887128 428 -52900527 -52900209 -52899890 -52899572 -52897102 -52894632 -52892162 -52889693 -52887223 -52884754 -52882284

CA06494, Revision 0000 Page 112 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I P.o 1 770 PFW,PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UCAL.TOT, UCALTOT, UCAL.TOT, UCAL TOT UCL.T-rJ UCAL.TOTOT UCALTOUT. UCAL TOT. UCALTO.jT UCAL-TO BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -52551216 -52548819 -52546423 -52544026 -52541629 -52539233 -52536837 -52534441 -52532045 -52529649 -52527253 450 -52643833 -52641421 -52639010 -52636599 -52634188 -52631777 -52629366 -52626956 -52624545 -52622135 -52619724 448 -52610337 -52610100 -52609863 -52609626 -52607208 -52604790 -52602361 -52599933 -52597504 -52597257 -52597009 446 -52702169 -52701943 -52701717 -52701493 -52699060 -52696627 -52694172 -52691717 -52689264 -52689016 -52688768 444 -52794041 -52793826 -52793612 -52793401 -52790954 -52788507 -52786023 -52783542 -52781063 -52780815 -52780567 442 -52885953 -52885749 -52885548 -52885351 -52882889 -52880427 -52877915 -52875406 -52872901 -52872653 -52872405 440 -52977904 -52977711 -52977523 -52977341 -52974865 -52972389 -52969846 -52967310 -52964779 -52964531 -52964282 438 -52968553 -52966197 -52963845 -52961497 -52961165 -52960834 -52960449 -52960068 -52959690 -52957289 -52954887 436 -53059933 -53057553 -53055174 -53052798 -53052467 -53052135 -53051764 -53051394 -53051026 -53048610 -53046193 434 -53151353 -53148947 -53146542 -53144138 -53143806 -53143475 -53143116 -53142758 -53142401 -53139970 .53137539 432 -53242812 -53240379 -53237947 -53235515 -53235183 -53234851 -53234506 -53234161 -53233816 -53231370 -53228924 430 -53334310 -53331849 -53329389 -53326928 -53326597 -53326265 -53325933 -53325601 -53325269 -53322809 -53320348 428 -53333763 -53333444 -53333126 -53332808 -53330338 -53327869 -53325399 -53322930 -53320461 -53317991 -53315522 Table 10A2, Total Calorimetric Uncertainty, Unit 2 PSTM 870 PFWPSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL-TOT. UCAL-TOT, UCAL.MT, UCAL TOT UCAL.-OT UCAL TOT, TFW DEG F UCALTOT. UCAL.TOT, UCAL-TOT. UCAL.TOT, UCAL-TOT.

BTU/hr BTU/hr BTU/Ir _BTUAhr BTUAIr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTV/hr

-58220978 -58218754 -58216530 -58214306 -58212082 -58209858 -58207635 -58205412 -58203189 -58200965 -58198743 452 450 -58334296 -58332054 -58329812 -58327570 -58325328 -58323087 -58320845 -58318604 -58316363 -58314121 -58311880 448 -58334324 -58334031 -58333737 -58333444 -58331192 -58328939 -58326677 -58324416 -58322154 -58321851 -58321548

-58446657 -58446373 -58446090 -58445807 -58443537 -58441266 -58438975 -58436685 -58434396 -58434093 -58433790 446 444 -58559032 -58558758 -58558485 -58558214 -58555925 -58553637 -58551316 -58548997 -58546680 -58546377 -58546073

-58671448 -58671183 -58670922 -58670664 -58668357 -58666050 -58663698 -58661350 -58659005 -58658701 -58658398 442

-58783906 -58783651 -58783401 -58783156 -58780831 -58778506 -58776122 -58773744 -58771370 -58771067 -58770763 440 438 -58805466 -58803271 -58801079 -58798891 -58798486 -58798081 -58797628 -58797179 -58796733 -58794498 -58792262 436 -58917182 -58914960 -58912740 -58910522 -58910117 -58909711 -58909270 -58908831 -58908394 -58906140 -58903886 434 -59028939 -59026689 -59024440 -59022192 -59021786 -59021381 -59020951 -59020523 -59020095 -59017823 -59015551 432 -59140736 -59138457 -59136179 -59133900 -59133495 -59133089 -59132671 -59132254 -59131837 -59129546 -59127256 430 -59252574 -59250265 -59247956 -59245648 -59245242 -59244836 -59244430 -59244025 -59243619 -59241310 -59239002 428 -59281911 -59281518 -59281124 -59280730 -59278409 -59276087 -59273766 -59271444 -59269123 -59266802 -59264481

CA06494, Revision 0000 Page 113 of 132 CALORIMETRIC UNCERTAINTY USING TiE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I PSTm 1 860 PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 Tfw, DEG F UCAL.TOTr UCALTOT., UCAL.TOT, UCAL.TOT, UCAL TOT, UCALTOT. UCAL TOT, UCAL.TT. UCATOT, UCAL-TOT. UCAL.TOT, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAhr BTU/hr BTUA&r 452 -58750090 -58747870 -58745650 -58743431 -58741212 -58738993 -58736774 -58734555 -58732336 -58730118 -58727899 450 -58863208 -58860970 -58858733 -58856495 -58854258 -58852021 -58849784 -58847547 -58845310 -58843073 -58840837 448 -58863266 -58862973 -58862680 -58862387 -58860139 -58857892 -58855634 -58853377 -58851120 -58850818 -58850515 446 -58975401 -58975118 -58974835 -58974553 -58972287 -58970021 -58967734 -58965449 -58963164 -58962862 -58962559 444 -59087579 -59087305 -59087032 -59086762 -59084478 -59082194 -59079877 -59077563 -59075251 -59074948 -59074645 442 -59199799 -59199534 -59199273 -59199015 -59196713 -59194411 -59192063 -59189720 -59187379 -59187076 -59186774 440 -59312060 -59311806 -59311557 -59311312 -59308992 -59306671 -59304292 -59301918 -59299549 -59299247 -59298944 438 -59333607 -59331416 -59329229 -59327045 -59326641 -59326236 -59325785 -59325336 -59324891 -59322660 -59320429 436 -59445130 -59442912 -59440696 -59438482 -59438078 -59437673 -59437233 -59436795 -59436358 -59434109 -59431859 434 -59556694 -59554448 -59552203 -59549960 -59549555 -59549150 -59548722 -59548294 -59547867 -59545599 -59543331 432 -59668300 -59666025 -59663751 -59661476 -59661072 -59660667 -59660250 -59659833 -59659417 -59657131 -59654845 430 -59779946 -59777642 -59775337 -59773033 -59772628 -59772223 -59771818 -59771413 -59771008 -59768703 -59766399 428 -59809254 -59808861 -59808468 -59808075 -59805758 -59803441 -59801124 -59798807 -59796490 -59794174 -59791857 Psnz 850 ._ *_

  • PFw, PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCALTO, UCAL-TO. UCAbTOT, UCALTOT, UCALmTO. UcAurt, UcAtTOT, UCAL-mTO UCAL-TOT, UCAL.MTO, UCAL.TOT, BTU/hr BTUAhr BTUAhr BTU/hr BTU/hr BTUAhr BTU/hr BTU/Ar BTU/hr BTU/hr BTU/hr 452 -58350333 -58348114 -58345894 -58343675 -58341457 -58339238 -58337019 -58334801 -58332582 -58330364 -58328146 450 -58463455 -58461218 -58458981 -58456744 -58454507 -58452270 -58450033 -58447796 -58445560 -58443324 -58441087 448 -58463536 -58463243 -58462950 -58462658 -58460410 -58458162 -58455905 -58453648 -58451392 -58451089 -58450787 446 -58575675 -58575392 -58575109 -58574827 -58572561 -58570295 -58568009 -58565724 -58563440 -58563137 -58562835 444 -58687857 -58687583 -58687310 -58687040 -58684756 -58682472 -58680156 -58677842 -58675530 -58675228 -58674925 442 -58800080 -58799816 -58799555 -58799297 -58796995 -58794693 -58792346 -58790003 -58787663 -58787360 -58787057 440 -58912346 -58912092 -58911842 -58911598 -58909278 -58906957 -58904579 -58902205 -58899837 -58899534 -58899231 438 -58933911 -58931721 -58929534 -58927350 -58926946 -58926542 -58926090 -58925641 -58925196 -58922965 -58920734 436 -59045438 -59043220 -59041005 -59038791 -59038387 -59037982 -59037542 -59037103 -59036667 -59034418 -59032169 434 -59157005 -59154760 -59152516 -59150272 -59149867 -59149463 -59149034 -59148606 -59148179 -59145912 -59143644 432 _ -59268615 -59266340 -59264066 -59261792 -59261388 -59260983 -59260566 -59260149 -59259733 -59257447 -59255161 430 -59380265 -59377961 -59375656 -59373352 -59372947 -59372542 -59372137 -59371732 -59371327 -59369023 -59366719 428 -59409590 -59409197 -59408804 -59408411 -59406094 -59403777 -59401460 -59399144 -59396827 -59394511 -59392195

CA06494, Revision 0000 Page 114 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES P5STM 1 840 Pw, PSIA 770 780 790 800 810 820 830 840 850 860 870 Tw, DEG F UCAL.TOT, UCALTOT, UCAL.ThT, UcL-rm UcAtToT, UCAL.TOT. UCAL.TOT, UCAL0T,2 UCALT0.I MTT, UCAL UCAL-TOT, BTU/hr BTU/hr BTUAir BTU/hr BTU/hr BTU/hr . BTUhhr BTU/hr BTU/hr BTUIhr BTU/hr 452 -57771115 -57768888 -57766662 -57764436 -57762210 -57759984. -57757758 -57755532 -57753307 -57751081 -57748856 450 -57884612 -57882368 -57880124 -57877879 -57875635 -57873391 -57871147 -57868904 -57866660 -57864416 -57862173 448 -57884709 -57884415 -57884121 -57883827 -57881572 -57879318 -57877053 -57874789 -57872526 -57872222 -57871919 446 -57997218 -57996934 -57996650 -57996367 -57994094 -57991821 -57989528 -57987235 -57984944 -57984640 -57984337 444 -58109769 -58109494 -58109221 -58108949 -58106658 -58104367 -58102044 -58099723 -58097403 -58097099 -58096796 442 -58222360 -58222095 -58221833 -58221574 -58219265 -58216955 -58214601 -58212250 -58209903 -58209599 -58209295 440 -58334992 -58334736 -58334486 -58334241 -58331913 -58329586 -58327200 -58324819 -58322443 -58322139 -58321835 438 -58356639 -58354442 -58352248 -58350057 -58349652 -58349246 -58348793 -58348343 -58347896 -58345658 -58343420 436 -58468527 -58466302 -58464080 -58461860 -58461454 -58461048 -58460606 -58460166 -58459728 -58457472 -58455216 434 -58580455 -58578202 -58575951 -58573700 -58573294 -58572888 -58572458 -58572029 -58571601 -58569326 -58567052 432 -58692423 -58690141 -58687860 -58685579 -58685173 -58684767 -58684349 -58683931 -58683513 -58681220 -58678927 430 -58804430 -58802119 -58799808 -58797496 -58797090 -58796684 -58796277 -58795871 -58795465 -58793154 -58790843 428 -58833859 -58833465 -58833071 -58832677 -58830353 -58828028 -58825705 -58823381 -58821057 -58818734 -58816410

__ _ 830 .

PFN, PSIA 770 780 790 800 810 820 830 840 850 860 870 Tv, DEG F UCAL.TOT, UCAL.OT, UCAL.TT, UAL-TOT, UCAL., UCMT, UCL-T, UCAL.TTO, UCALTXJ1C, UCAL-TOT,

_ BTU/hr BTU/hr BTU/hr BTU/br BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -58207352 -58205126 -58202900 -58200674 -58198448 -58196223 -58193997 -58191772 -58189547 -58187322 -58185097 450 -58320851 -58318607 -58316363 -58314119 -58311875 -58309632 -58307388 -58305145 -58302902 -58300658 -58298415 448 -58320970 -58320676 -58320382 -58320089 -58317834 -58315580 -58313316 -58311052 -58308789 -58308485 -58308182 446 -58433482 -58433197 -58432913 -58432630 -58430357 -58428085 -58425792 -58423500 -58421209 -58420905 -58420602 444 -58546034 -58545759 -58545485 -58545214 -58542923 -58540633 -58538310 -58535989 -58533670 -58533366 -58533062 442 -58658626 -58658361 -58658099 -58657840 -58655531 -58653222 -58650869 -58648518 -58646171 -58645867 -58645563 440 -58771259 -58771004 -58770754 -58770509 -58768181 -58765854 -58763468 -58761088 -58758712 -58758408 -58758104 438 -58792925 -58790728 -58788534 -58786344 -58785939 -58785533 -58785080 -58784630 -58784183 -58781946 -58779708 436 -58904814 -58902590 -58900368 -58898148 -58897742. -58897336 -58896895 -58896455 -58896017 -58893761 -58891505 434 -59016744 -59014492 -59012240 -59009990 -59009584 -59009178 -59008748 -59008319 -59007890 -59005616 -59003342 432 -59128713 -59126432 -59124151 -59121871 -59121464 -59121058 -59120640 -59120222 -59119804 -59117512 -59115219 430 -59240722 -59238411 -59236100 -59233789 -59233383 -59232976 -59232570 -59232164 -59231757 -59229447 -59227136 428 -59270167 -59269773 -59269379 -59268984 -59266661 -59264337 -59262013 -59259690 -59257367 -59255044 -59252721

CA06494, Revision 0000 Page 115 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I PSTM I 820 1 PF,, PSIA 770 790 780 800 810 820 830 840 850 860 870 UCAL-TOT. UCAL.TOT. UCAL.TOT, UCAL.TOT, UCALTOT, TFV,. DEG F UCAL TOT, UCAL.TOT, UcAumY UCAL.TOT, UCALTOT, UCAL.TOT.

BTU/hr BTU/Ir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -58300966 -58298744 -58296522 -58294299 -58292077 -58289856 -58287634 -58285412 -58283191 .58280970 -58278749 450 -58414296 -58412055 -58409815 -58407575 -58405335 -58403095 -58400855 -58398616 -58396376 -58394137 -58391898 448 -58414437 -58414144 -58413850 -58413557 -58411306 -58409056 -58406796 -58404536 -58402276 -58401973 -58401670 446 -58526781 -58526497 -58526213 -58525931 -58523662 -58521393 -58519104 -58516816 -58514529 -58514225 -58513922 444 -58639166 -58638891 -58638619 -58638348 -58636061 -58633774 -58631455 -58629138 -58626822 -58626519 -58626216 442 -58751592 -58751328 -58751066 -58750808 -58748502 -58746197 -58743847 -58741501 -58739157 -58738854 -58738551 440 -58864060 -58863805 -58863555 -58863310 -58860987 -58858663 -58856281 -58853905 -58851533 -58851230 -58850926 438 -58885711 -58883518 -58881328 -58879142 -58878736 -58878331 -58877879 -58877429 -58876983 -58874750 -58872516 436 -58997437 -58995216 -58992998 -58990782 -58990376 -58989971 -58989530 -58989091 -58988653 -58986401 -58984149 434 -59109203 -59106955 -59104707 -59102461 -59102055 -59101650 -59101220 -59100792 -59100364 -59098093 -59095823 432 -59221010 -59218732 -59216455 -59214179 -59213773 -59213367 -59212950 -59212532 -59212115 -59209826 -59207538 430 -59332857 -59330550 -59328242 -59325935 -59325529 -59325124 -59324718 -59324312 -59323906 -59321599 -59319292 428 -59362276 -59361882 -59361488 -59361094 -59358774 -59356454 -59354135 -59351815 -59349495. -59347176 -59344857 PsTM 810 _

Pmw PS IA 770 790 780 800 810 820 830 840 850 860 870 UCA.TOJ, UcAL-mT, UCALTOT. UCAL-TOT, UCALJMTOT UCAL-TOT. UCALTOT, UCAL TOT, TFV; DEG F UCAL rOT. UCAQTMT, UCALuTOT BTU/Ir BTU/hr BTU/hr I BTU/hr TU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/1r BTU/hr 452 -58317954 -58315732 -58313510 -58311289 -58309067 -58306845 -58304624 -58302403 -58300182 -58297961 -58295740 450 -58431286 -58429045 -58426806 -58424566 -58422326 -58420087 -58417847 -58415608 -58413369 -58411130 -58408891 448 -58431450 -58431156 -58430863 -58430569 -58428319 -58426069 -58423809 -58421549 -58419290 -58418987 -58418684 446 -58543795 -58543511 -58543227 -58542945 -58540676 -58538408 -58536119 -58533831 -58531544 -58531241 -58530938 444 -58656181 -58655907 -58655634 -58655363 -58653076 -58650790 -58648471 -58646154 -58643839 -58643536 -58643233 442 -58768609 -58768344 -58768083 -58767824 -58765519 -58763215 -58760865 -58758519 -58756176 -58755872 -58755569 440 -58881078 -58880823 -58880573 -58880328 -58878005 -58875682 -58873301 -58870924 -58868553 -58868250 -58867946 438 -58902748 -58900555 -58898365 -58896179 -58895774 -58895369 -58894916 -58894467 -58894021 -58891787 -58889554 436 -59014474 -59012254 -59010036 -59007820 -59007415 -59007010 -59006569 -59006129 -59005692 -59003440 -59001189 434 -59126242 -59123994 -59121747 -59119501 -59119095 -59118690 -59118260 -59117832 -59117404 -59115134 -59112864 432 -59238050 -59235773 -59233496 -59231220 -59230814 -59230409 -59229991 -59229574 -59229156 -59226868 -59224580 430 -59349898 -59347591 -59345284 -59342978 -59342572 -59342166 -59341760 -59341355 -59340949 -59338642 -59336336 428 -59379333 -59378939 -59378546 -59378152 -59375832 -59373513 -59371193 -59368874 -59366555 -59364236 -59361917

CA06494, Revision 0000 Page II 6of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Psn, 1 800 1 PFw,. PSIA 770 790 780 800 810 820 830 840 850 860 870 1

TFW, DEG F UCAtTOT, UCAL.TOT. UCA-TOT, UCL.TT, UCAL.TOT, UCAL.TOTT UCAL.TTO. CALTTAT. UcAL.roT, UCAL.TOT. UCAL.MTO BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUIhr BTU/hr BTU/hr BTUAir BTU/hr 452 -58330515 -58328293 -58326072 -58323850 -58321629 -58319408 -58317187 -58314966 -58312745 -58310525 -58308304 450 -58443850 -58441610 -58439370 -58437131 -58434891 -58432652 -58430413 -58428174 -58425935 -58423697 -58421458 448 -58444036 -58443743 -58443449 -58443156 -58440906 -58438656 -58436397 -58434137 -58431879 -58431575 -58431272 446 -58556385 -58556100 -58555817 -58555534 -58553266 -58550998 -58548710 -58546422 -58544136 -58543832 -58543529 444 -58668775 -58668500. -58668227 -58667956 -58665670 -58663383 -58661065 -58658749 -58656434 -58656131 -58655828 442 -58781206 -58780941 -58780679 -58780421 -58778116 -58775812 -58773462 -58771116 -58768774 -58768470 -58768167 440 -58893678 -58893423 -58893173 -58892928 -58890605 -58888282 -58885901 -58883525 -58881154 -58880851 -58880547 438 -58915366 -58913173 -58910984 -58908798 -58908392 -58907987 -58907535 -58907086 -58906640 -58904406 -58902173 436 -59027095 -59024876 -59022658 -59020442 -59020037 -59019631 -59019190 -59018751 -59018314 -59016062 -59013811 434 -59138866 -59136618 -59134371 -59132125 -59131720 -59131314 -59130885 -59130456 -59130029 -59127759 -59125489 432 -59250677 -59248400 -59246124 -59243848 -59243442 -59243036 -59242619 -59242201 -59241784 -59239496 -59237208 430 -59362528 -59360222 -59357915 -59355608 -59355203 .59354797 -59354391 -59353985 -59353580 -59351273 -59348967 428 -59391980 -59391586 -59391192 -59390798 -59388479 -59386160 -59383840 -59381521 -59379203 -59376884 -59374565 P~nm 790.

PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFw, DEG F UCAL.TOT, UCALTO, UCAL.TOT, UCATOTw, UCALToT, UCAL TOT, UCAL-TOT, UcA LmTOi, UcAL-TO, UCALTOT, UCAL-TOT BTU/hr BTUAhr BTUJ/r RTU/hr BTUAhr BTU/hr BTU/hr BTU/hr BTU/hr BTUAhr BTU/hr 452 -58351062 -58348841 -58346619 -58344398 -58342177 -58339957 -58337736 -58335516 -58333295 -58331075 -58328855 450 -58464399 -58462159 -58459920 -58457681 -58455442 -58453203 -58450964 -58448726 -58446487 -58444249 -58442011 448 -58464608 -58464314 -58464021 -58463728 -58461478 -58459228 -58456969 -58454710 -58452452 -58452149 -58451846 446 -58576958 -58576674 -58576390 -58576108 -58573840 -58571572 -58569284 -58566997 -58564711 -58564408 -58564104 444 -58689350 -58689075 -58688802 -58688531 -58686245 -58683959 -58681641 -58679325 -58677011 -58676708 -58676404 442 -58801782 I -58801517 -58801256 -58800997 -58798693 -58796389 -58794040 -58791694 -58789352 -58789049 -58788745 440 -58914256 -58914001 -58913751 -58913506 -58911184 -58908861 -58906480 -58904105 -58901734 -58901431 -58901127 438 -58935962 -58933770 -58931581 -58929395 -58928990 -58928585 -58928132 -58927683 -58927237 -58925004 -58922771 436 -59047693 -59045474 -59043256 -59041041 -59040635 -59040230 -59039789 -59039350 -59038913 -59036661 -59034410 434 -59159465 -59157218 -59154971 -59152726 -59152320 -59151915 -59151485 -59151057 -59150629 -59148359 -59146090 432 -59271278 -59269001 -59266725 -59264449 -59264044 -59263638 -59263220 -59262803 -59262386 -59260098 -59257810 430 -59383130 -59380824 -59378518 -59376211 -59375806 -59375400 -59374994 -59374589 -59374183 -59371877 -59369571 428 -59412598 -59412204 -59411810 -59411417 -59409098 -59406779 -59404460 -59402141 -59399822 -59397504 -59395186

CA06494, Revision 0000 Page 117 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PsM 1 780 P .,,PSIA 770 790 780 800 810 820 830 840 850 860 870 U UCAL-TOTU UCACATO UCALTTOTO UCAL-r, UCAL-TOT, UCAL-TOT, Tmv, DEG F UCA-TOT9 UCALtTOT UCALTOT, UCL.ThT, BTUIJhr BTU/hr .3TU/hrI3TU/hrr BTU/hr BTU/hr TTUfhr ITUIhr BTU/hr BTU/hr BTU/hr 452 -57863501 -57861277 -57859052 -57856828 -57854604 -57852380 -57850157 -57847933 -57845710 -57843486 -57841263 450 -57977008 -57974766 -57972524 -57970281 -57968039 -57965797 -57963556 -57961314 -57959072 -57956831 -57954590 448 -57977233 -57976939 -57976645 -57976352 -57974099 -57971846 -57969584 -57967322 -57965060 -57964757 -57964453 446 -58089752 -58089467 -58089183 -58088900 -58086629 -58084358 -58082067 -58079777 -58077487 -58077184 -58076880 444 -58202311 -58202036 -58201763 -58201491 -58199202 -58196913 -58194592 -58192272 -58189955 -58189651 -58189348 442 -58314911 -58314645 -58314383 -58314124 -58311817 -58309510 -58307158 -58304809 -58302463 -58302159 -58301856 440 -58427551 -58427295 -58427045 -58426800 -58424474 .-58422148 -58419764 -58417385 -58415012 -58414708 -58414404 438 -58449301 -58447105 -58444913 -58442725 -58442319 -58441913 -58441460 -58441010 -58440563 -58438328 -58436092 436 -58561196 -58558974 -58556753 -58554535 -58554129 -58553723 -58553281 -58552841 -58552403 -58550149 -58547895 434 -58673132 -58670881 -58668632 -58666383 -58665977 -58665571 -58665141 -58664712 -58664283 -58662011 -58659738 432 -58785107 -58782828 -58780548 -58778270 -58777863 -58777457 -58777039 -58776621 -58776203 -58773912 -58771621 430 -58897122 -58894813 -58892503 -58890194 -58889788 -58889381 -58888975 -58888569 -58888162 -58885853 -58883544 428 -58926643 -58926248 -58925854 -58925460 -58923138 -58920816 -58918494 -58916172 -58913850 -58911529 -58909207 PM 770 _

PW,,PSTA 770 790 780 800 810 820 830 840 850 860 870 TFw. DEG F UcL.TOT. UCALmT. UcALmT, U UCAL-TOT, UCAt.TOTT UCAL.MYJT. UCALTTOT, UCALMT, UT.L..-TT, UCALT.oM, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUI/hr 452 -58299280 -58297056 -58294832 -58292609 -58290385 -58288161 -58285938 -58283715 -58281492 -58279269 -58277046 450 -58412790 -58410548 -58408306 -58406064 -58403823 -58401581 -58399340 -58397098 -58394857 -58392616 -58390375 448 -58413038 -58412744 -58412450 -58412156 -58409904 -58407651 -58405389 -58403128 -58400866 -58400563 -58400259 446 -58525559 -58525274 -58524990 -58524707 -58522437 -58520166 -58517875 -58515585 -58513296 -58512993 -58512689 444 -58638121 -58637846 -58637572 -58637301 -58635012 -58632723 -58630402 -58628084 -58625767 -58625463 -58625159 442 -58750723 -58750458 -58750196 -58749937 -58747630 -58745323 -58742971 -58740622 -58738277 -58737973 -58737670 440 -58863365 -58863110 -58862860 -58862614 -58860289 -58857964 -58855580 -58853202 -58850828 -58850524 -58850220 438 -58885134 -58882939 -58880747 -58878559 -58878153 -58877747 -58877294 -58876844 -58876398 -58874162 -58871927 436 -58997032 -58994810 -58992589 -58990371 -58989965 -58989559 -58989118 -58988678 -58988240 -58985986 -58983732 434 -59108970 -59106719 -59104470 -59102222 -59101816 -59101410 -59100980 -59100551 -59100122 -59097850 -59095578 432 -59220947 -59218668 -59216389 -59214111 -59213705 -59213298 -59212880 -59212462 -59212044 -59209754 -59207463 430 -59332965 -59330656 -59328347 -59326038 -59325631 -59325225 -59324819 -59324412 -59324006 -59321697 -59319388 428 -59362502 -59362108 -59361713 -59361319 -59358997 -59356675 -59354354 -59352032 -59349711 -59347390 -59345068

CA06494, Revision 0000 Page 118 of 132 CALORIMETRIC UNCERTAINTY USrNG THIEAMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES Tables lAl and 11A2, Total Calorimetric Uncertainty, Single Side, Step 7.12.5 UCALTOT(SS) = (I 6UCAL-RAND +UCAL-n!AS Table 11A1, Total Calorimetric Uncertainty, Unit I Pnu 1 870 PF,, PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCAL.TOT. UCALTOT. UCAL-TPT UCAL-TOT, UCAL-OT. UCAL.tOT, UCAL TOT UCALrTOT, UCALTO, UCALTOT, UCAL-T

_ BTU/hr BTU/hr BTU/hr BTUAhr BTU/hr BTU/hr BTU/Ar BTU/hr BTU/hr BTU/hr BTU/hr 452 -45300853 -45298842 45296831 -45294821 -45292810 -45290800 45288789 45286779 -45284769 -45282759 45280749 450 _45378420 -45376397 -45374375 45372352 -45370329 45368307 -45366284 -45364262 45362240 45360218 45358196 448 45350173 -45349975 45349776 45349578 45347550 -45345521 45343483 -45341446 -45339409 -45339202 -45338994 446 45427086 45426896 45426707 45426519 45424479 45422438 -45420378 45418319 45416260 -45416053 45415845 444 45504032 45503852 45503673 45503496 45501443 45499390 45497307 45495225 -45493146 -45492938 45492730 442 45581013 45580842 45580674 45580509 _45578443 45576378 45574271 -45572166 45570065 -45569857 -45569649 440 45658027 -45657865 45657708 45657556 -45655479 45653402 45651269 45649141 45647017 45646810 -45646602 438 45650042 -45648066 45646093 45644123 -45643845 -45643568 45643245 -45642926 -45642610 45640595 45638580 436 45726580 45724583 _45722588 45720595 -45720317 45720039 -45719728 -45719418 45719110 45717083 -45715056 434 45803151 45801133 45799115 45797099 45796821 45796543 45796243 45795943 -45795644 45793605 45791565 432 45879756 45877715 45875675 45873635 45873357 45873079 45872790 45872500 45872211 -45870160 45868108 430 45956395 45954331 45952266 45950202 45949924 45949646 45949368 45949091 45948813 45946749 45944685 428 45955801 45955534 45955267 45955001 45952929 45950858 45948786 45946714 45944643 -45942572 45940500 P8 860 PFWPSTA 770 780 790 800 810 820 830 840 850 860 870 T, UCAL-MT. UCALTOT, UCAL T0Tv UCAL-TOT, UCAL-TOT TF,, DEG F UCAL MTO, UCAL.TOT, UCAL.TOTJ. UCAL.TOJT U UCAL.MT. UCAL BTU/hr BTU/hr BTU/hr BTUAhr BTUAhr BTU/hr BTU/hr BTUAhr BTU/hr BTU/hr BTU/hr 452 45818567 45816561 45814555 45812550 45810544 45808539 45806533 45804528 45802523 45800518 -45798513 450 45895960 -45893942 -45891924 45889906 45887889 45885871 45883854 -45881836 45879819 -45877802 45875785 448 45867803 45867605 45867407 45867209 45865185 45863162 45861129 45859097 45857065 45856858 45856651 446 45944543 45944353 45944165 45943977 _45941942 45939906 45937851 45935797 45933744 45933537 45933329 444 46021317 -46021137 46020958 46020782 46018734 46016686 -46014608 46012531 -46010457 46010250 46010042 442 46098126 46097955 46097787 -46097623 46095562 46093502 -46091400 -46089300 46087204 -46086997 -46086790 440 46174969 46174807 46174651 46174499 46172427 46170354 -46168227 -46166104 -46163986 -46163779 46163571 438 46167023 46165051 46163083 46161118 46160841 46160564 46160242- 46159924 -46159608 -46157598 46155588 436 46243391 46241399 46239409 46237420 -46237143 46236866 46236555 46236246 -46235939 46233917 46231895 434 46319793 -46317780 46315767 46313755 46313478 46313201 46312901 46312602 46312304 46310269 -46308235 432 -46396230 -46394194 46392159 -46390123 46389846 -46389569 46389280 -46388992 -46388703 46386656 46384610 430 -46472701 46470642 46468582 -46466523 46466246 46465969 46465691 46465414 46465137 46463077 46461019 428 46472127 46471861 46471595 46471329 46469262 46467195 46465129 46463062 46460996 -46458929 -46456863

CA06494, Revision 0000 Page 119 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PS- I .850 1 PFW, PSIA 770 780 790 800 810 820 830 840 850 860 870 Trw, DEG F UCAL.TOT. UCAL.TOT, UCAL TOT. U UCAL-MT2 UTALt.T, UCALAL , UCAL-MT, UcAL-ToT, T UCAL.TOT, BTUlir BTU/lr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUA/r BTU/hr BTU/hr BTU/hr 452 -45413996 45411991 45409985 45407980 -45405975 45403970 45401965 -45399960 45397955 45395950 45393946 450 45491393 45489375 45487357 45485340 45483323 45481305 45479288. 45477271 45475254 45473237 45471221 448 45463255 45463056 45462859 45462661 45460638 45458614 45456582 45454550 45452518 45452311 45452104 446 45539997 45539808 45539620 45539432 45537397 45535361 45533307 45531253 45529200 45528993 45528786 444 45616775 45616595 45616416 45616240 45614192. 45612145 45610067 45607990 45605916 -45605709 45605502 442 45693587 45693416 45693248 45693084 -45691024 45688964 45686862 45684762 45682667 45682459 45682252 440 45770433 45770271 45770115 45769963 45767891 45765819 45763691 45761569 45759451 45759244 45759036 438 45762502 45760531 45758563 45756598 45756321 45756044 45755723 45755404 45755088 45753079 45751069 436 45838873 45836881 45834892 45832903 45832626 45832349 45832038 45831729 45831422 45829400 45827378 434 45915279 -45913265 45911253 45909242 -45908964 45908687 45908387 45908088 45907790 45905756 45903722 432 45991718 45989683 -45987647 45985612 45985335 45985058 . 45984769 45984480 45984192 45982146 45980099 430 46068192 46066133 46064074 46062015 46061738 46061460 46061183 46060906 46060628 46058569 46056511 428 46067632 46067366 46067100 46066834 -46064767 46062701 46060634 46058568 46056502 46054436 46052370 PM 840 . . _

PFw, PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW DEG F UCAL TOT UCAL UCALMTTT, UCAL TOT UCALTTOT UCALUCAL.

U UCAL.mT, UCALtmTO UCAL.TOT. UCAL-T, UCALtMT, BTU/hr BTU/hr BTUlhr BTU/hr BTU/hr BTU/lr BTU/hr BTU/hr BTU/hr BTU/iir BTU/hr 452 44840542 44838528 44836514 44834500 44832487 44830474 44828460 44826447 44824434 -44822421 44820408 450 44918264 44916238 44914213 44912187 44910161 44908136 44906110 44904085 44902060 44900035 44898010 448 44890021 44889822 44889624 44889425 44887393 44885362 44883321 44881281 44879241 44879033 -44878825 446 44967087 44966897 44966708 44966519 -44964475 44962432 44960369 44958306 44956245 44956037 44955829 444 45044186 45044005 45043826 45043649 45041593 45039537 45037450 45035366 45033283 45033075 45032867 442 45121319 -45121147 45120978 45120813 45118745 45116677 45114566 45112458 45110354 45110146 45109938 440 45198484 45198322 45198165 45198012 45195932 45193851 45191715 45189584 45187458 45187250 45187041 438 45190531 45188552 45186576 45184603 -45184325 45184047 45183724 45183404 45183087 45181069 45179052 436 45267218 45265218 -45263220 45261224 45260946. 45260668 45260356 45260045 45259737 45257707 45255677 434 45343939 45341917 45339897 45337877 45337599 45337321 45337020 45336719 45336420 45334377 45332335 432 45420692 45418648 45416605 45414562 45414283 45414005 45413715 45413425 45413136 45411081 45409027 430 45497479 -45495411 45493344 45491277 -45490999 45490720 45490442 45490163 45489885 45487818 45485751 428 -45496926 45496658 -45496391 45496124 45494050 45491975 45489900 -45487826 45485751 45483677 -45481603

CA06494, Revision 0000 Page 120 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRICUNCERTAINTY USING ASME 1967 STEAM TABLES I PS.T I 830 PFW,PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCALTOT. UCAL-TOT, UCALtTOT, UCAL.TOT, UCAL-TOT, UCALTOT, UCAL-TOT, UCAL.TOT, UCAL-TOT, UCALMTT, UCAL.TOT, BITU/hr BTU/hr BTUlhr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BITU/hr BTU/hr 452 -45271909 -45269895 -45267882 -45265869 -45263856 -45261843 -45259830 -45257817 -45255804 45253792 -45251779 450 -45349633 -45347607 -45345582 -45343556 -45341531 -45339506 -45337481 -45335456 -45333431 -45331406 -45329382 448 45321410 -45321211 -45321012 -45320813 45318782 45316751 45314710 -45312670 45310631 -45310423 45310215 446 45398476 -45398286 -45398097 45397909 -45395865 -45393822 45391759 -45389697 -45387636 -45387428 -45387220 444 -45475577 -45475396 45475217 45475039 -45472983 -45470928 -45468842 -45466757 45464675 -45464467 45464259 442 -45552710 45552538 45552370 45552205 45550137 -45548069 -45545958 -45543851 45541747 -45541539 45541331 440 45629877 45629714 -45629557 45629405 -45627325 45625244 45623109 45620978 45618852 -45618644 45618436 438 45621939 45619960 45617985 -45616012 45615734 45615456 45615133 45614813 45614496 45612479 45610461 436 -45698627 45696628 45694630 45692635 45692356 45692078 -45691766 45691456 -45691147 -45689117 45687088 434 45775349 45773328 45771308 45769288 45769010 45768732 -45768431 -45768130 -45767831 -45765789 45763747 432 45852103 -45850060 45848017 -45845974 45845695 45845417 -45845127 -45844837 45844548 45842494 45840439 430 45928891 -45926824 -45924757 -45922690 45922412 45922133 -45921855 -45921576 45921298 45919231 45917164 428 45928352 -45928085 45927818 -45927551 45925476 45923402 -45921327 -45919253 45917179 -45915105 45913031 PSTM 820 PWvPSIA 770 790 780 800 .810 820 830 840 850 860 870 TFW DEG F UCAL.TOT. UCALtTOT, UCAL-ToTO UCALT-T, UCAL-TMr. UCALT, UCT TOT. UCAL.TOT, UCAL U UCAL.TOT, BTU/hr BTU/hr BTU/lir BTU/hlr BTU/hr BTUI/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 45356549 -45354540 45352531 -45350522 45348513 45346504 -45344495 -45342487 45340478 -45338470 -45336461 450 45434125 -45432104 -5430082 45428061 45426040 -45424019 45421998 -45419977 -45417957 45415936 45413916 448 45405975 -45405777 45405578 45405380 45403353 45401326 -45399290 -45397254 45395219 45395011 45394804 446 45482896 45482706 45482517 -45482329 45480290 45478251 -45476192 45474134 45472078 -45471870 45471662 444 45559850 -45559669 45559490 -45559313 45557262 -45555211 45553129 -45551049 -45548970 45548763 45548555 442 45636838 45636666 -45636498 45636333 45634269 -45632206 -45630100 -45627997 45625897 -45625689 45625481 440 -45713859 -45713697 -45713540 45713388 45711312 45709236 -45707105 -45704978 -45702857 -45702649 -45702441 438 45705953 -45703978 45702006 45700038 45699760 45699482 45699160 45698841 -45698524 45696511 -45694498 436 -45782497 -45780502 -45778508 45776516 45776239 45775961 -45775649 45775339 45775031 45773006 45770980 434 45859075 -45857058 -45855042 -45853027 -45852749 45852471 -45852171 45851871 -45851572 45849534 45847496 432 45935687 -45933648 45931608 45929570 45929292 -45929014 45928725 45928435 45928146 -45926096 45924046 430 46012332 -46010269 -46008207 -46006144 46005866 -46005588 -46005310 -46005032 -46004754 46002692 -46000629 428 46011808 46011541 -46011275 46011009 46008938 46006868 -46004798 46002728 -46000658 45998588 45996518

CA06494, Revision 0000 Page 121 of 132 CALORIMETRIC UNCERTAINTY USING TIlE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES 770 790 780 800 810 820 830 840 850 860 870 PFW, PSIA UCAL.TOT. UCLUCATOT UCAL.TOT. UCAL.TOT. UCAL-TOTJ UCAL.TOT, UCAL.TOT, TF,, DEG F UCAL-TTT. UCAL-TOT. UCAL.TOT' BTU/hr BTU/hr BTU/hr BTULlr BTUAir BTU/hr BTUAhr BTUAhr BTUAhr BTU/hr BTU/hr 45368665 45366656 45364647 45362638 -45360629 45358621 45356612 -45354604 45352596 45350588 45348580 452 450 45446242 -45444220 45442199 45440179 -45438158 45436137 45434117 45432096 45430076 45428056 -45426035

-45418112 45417913 -45417715 45417516 -45415490 45413463 45411427 -45409392 -45407356 -45407149 -45406941 448 446 -45495033 -45494843 -45494654 -45494466 45492427 -45490388 -45488330 -45486273 -45484216 45484009 -45483801

-45571988 45571807 -45571629 -45571451 45569400 45567349 -45565268 -45563188 455611 10 -45560902 -45560695 444

-45648977 -45648806 -45648637 -45648472 45646409 -45644346 -45642240 -45640137 -45638038 -45637830 45637622 442 45725999 45725837 -45725680 45725528 -45723453 45721377 -45719246 45717120 45714999 45714791 -45714583 440 45716134 45714162 45712194 -45711917 -45711639 -45711317 -45710997 -45710681 45708668 45706655 438 45718108

-45794654 45792658 45790665 -45788674 45788396 45788118 45787807 45787497 -45787189 45785164 45783139 436 45871233 45869216 45867200 -45865185 45864908 45864630 45864329 45864030 45863731 -45861693 45859655 434

-45947845 ;45945806 45943767 -45941729 45941451 45941173 45940884 -45940595 45940306 -45938256 -45936206 432 430 46024491 -46022429 46020366 46018304 46018026 -46017748 46017470 -46017192 46016914 -46014852 46012790 46023981 46023715 46023448 -46023182 46021112 -46019042 46016972 46014902 -46012832 -46010763 -46008693 428 PM 800 770 790 780 800 810 820 - 830 840 850 860 870 PFw. PSIA UCALTOT. UcA!ToT, UcALpTO, UCAL.TO. UCAL.ToT, UCAL.TOT. UCALT.r, UCAL.TT, TF,, DEG F UCAL.TOT, UCAL.TOT. UCAL.TO, BTU/hr BTU/hr BTU/hr BTU/hr .BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 45376395 45374386 45372378 -45370369 45368361 45366353 -45364345 45362336 45360329 45358321 45356313 452

-45453975 45451954 -45449933 -45447912 -45445892 45443872 -45441851 45439831 45437811 45435791 -45433771 450 45425864 45425665 45425467 45425268 45423242 45421216 45419180 45417145 45415110 45414902 -45414695 448

-45502787 45502598 45502409 45502221 45500182 45498143 45496086 45494028 45491972 45491765 45491557 446 45579564 45579386 -45579209 45577158 45575107 45573026 -45570946 45568869 45568661 45568453 444 A45579745 45656565 -45656397 45656232 45654169 45652106 45650000 45647898 45645799 45645591 45645383 442 -45656736

-45733761 -45733599 45733442 45733290 45731215 45729140 45727009 -45724883 45722762 45722554 45722346 440

-45725886 45723912 45721940 -45719973 45719695 45719417 45719095 -45718776 45718459 45716447 45714434 438

-45802434 -45800439 45798446 -45796454 45796177 45795899 45795588 45795278 45794970 45792945 45790920 436 45874983 45872968 -45872691 -45872413 45872112 45871813 45871514 45869476 45867439 434 45879015 45876999

-45953591 45951553 -45949514 -45949236 45948958 -45948669 45948380 45948091 45946041 -45943992 432 -45955630

-46032278 -46030216 46028154 46026092 -46025814 46025536 46025258 46024980 46024702 46022640 46020578 430 46031516 -46031249 46030983 -46028913 46026843 46024773 -46022704 46020635 46018565 46016496 428 46031782

CA06494, Revision 0000 Page 122 of 132 CALORIMETRIC UNCERTAINTY USING niE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PsrM 1 790 PF, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UCAL.TOT, UCALTOT. UCAL.TOT, UCAL.TOT, UCAL TO UCALrTOT, UCAL.TOT, UCAL.TOT, UCALTOT UCAL.TOT, UCAL.TOT, BTU/hr BTUthr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAir BTU/hr 452 -45392074 45390065 -45388057 -45386049 -45384041 -45382033 -45380025 -45378017 -45376010 -45374002 -45371995 450 -45469655 -45467634 -45465614 -45463593 45461573 45459553 -45457533 -45455513 -45453494 -45451474 -45449454 448 45441563 45441365 45441166 -45440968 -45438942 -45436916 45434881 -45432846 45430811 -45430603 -45430396 446 -45518488 -45518298 -45518109 -45517921 -45515883 -45513845 -45511787 -45509730 -45507675 -45507467 -45507259 444 -45595447 45595266 45595087 -45594910 -45592860 -45590809 -45588728 45586649 -45584572 -45584364 -45584157 442 -45672439 45672268 -45672100 -45671935 -45669872 -45667809 45665704 -45663602 -45661503 -45661295 -45661088 440 -45749465 45749304 -45749146 -45748994 -45746919 -45744844 -45742714 -45740588 45738468 -45738260 -45738052 438 -45741606 -45739632 .45737661 -45735693 -45735416 -45735138 -45734816 45734496 -45734180 -45732168 45730155 436 -45818154 -45816160 -45814167 -45812176 -45811898 -45811621 45811309 45810999 45810691 -45808667 45806642 434 45894737 45892721 45890705 -45888691 45888413 45888136 -45887835 45887535 45887236 45885199 45883162 432 45971353 45969314 45967276 45965238 45964960 45964682 45964393 45964104 45963815 45961765 45959716 430 46048002 46045940 -46043878 46041816 46041538 46041260 46040982 46040704 -46040426 46038365 46036303 428 46047520 -46047253 -46046987 46046720 46044651 46042581 46040512 46038443 46036374 46034305 46032236 PS"M 780 Pr,, PSIA 770 790 780 800 810 820 830 840 850 860 870 UCALTO UCAL-TOT. UCALTO, UCAL-TOT, UCAL TtJ UcALTOT UCAL..MT, TFW DEG F UCALTOT, UCALTOT, UCAL.TO, UCAL-TOT BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAir BTU/hr BTU/hr BTU/hr BTU/hr 452 44905324 44903312 44901300 44899288 44897276 44895265 44893253 -44891242 -44889231 -44887220 44885209 450 44983053 44981029 44979005 44976981 44974957 44972933 44970910 44968886 44966863 44964840 -44962817 448 -44954921 44954722 44954523 44954325 44952295 44950265 44948226 44946188 44944150 44943942 -44943734 446 -45031993 45031803 45031614 45031425 45029383 45027341 45025280 45023219 45021160 45020952 45020744 444 45109098 45108917 -45108738 45108560 -45106506 45104452 45102367 45100285 -45098204 45097996 45097787 442 45186236 45186064 45185896 45185730 45183664 45181598 -45179489 45177383 45175280 45175072 45174864 440 -45263407 45263245 45263088 45262935 45260856 45258778 45256644 45254514 45252390 45252182 45251973 438 45255543 45253566 45251591 45249620 -45249342 45249064 45248741 45248421 45248104 45246088 -45244073 436 45332236 -45330238 45328241 45326247 45325969 45325690 45325378 45325068 45324759 45322731 45320703 434 -45408961 -45406942 45404923 -45402905 45402627 -45402348 45402047 45401747 45401447 45399407 45397366 432 45485720 45483678 -45481636 -45479594 -45479316 45479037 45478748 45478458 -45478168 -45476115 45474063 430 -45562511 45560446 45558380 45556315 45556036 45555758 45555479 -45555201 45554922 -45552857 45550792 428 -45562038 45561770 -45561503 45561236 45559163 45557090 45555017 45552945 45550872 45548799 -45546727

CA06494, Revision 0000 Page 123 of 132 CALORIMETRIC UNCERTAINT USING THE-AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PSTM 1 770 Pr,, PSIA 770 790 780 800 810 820 830 840 850 860 870 TF,, DEG F UCAL.TOT, UCAL.TOT. UCAL.TT, UCALtT0T, UCALTSTOT, UUC UCALTOT, OAT, UCAL.TrT, UCAMTr, ULr UA.1LT, BTUAhr BTU/Ar BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAUr 452 -45336257 -45334246 -45332234 45330223 -45328211 -45326200 -45324189 45322178 45320167 45318156 45316145 450 45413989 45411965 -45409941 45407918 -45405894 45403871 -45401847 -45399824 45397801 45395778 _45393755 448 45385876 -45385677 45385478 -45385280 -45383250 45381221 45379182 45377144 45375106 -45374898 45374690 446 45462950 45462760 45462571 45462382 -45460340 45458299 -45456238 -45454178 45452118 45451910 45451702 444 45540057 45539876 45539697 45539519 -45537465 45535412 45533327 -45531245 45529164 45528956 45528748 442 -45617197 45617025 45616857 45616691 -45614625 45612559 45610450 45608345 45606243 45606035 45605826 440 45694370 45694208 45694051 45693898 -45691820 45689741 45687607 45685478 45683354 45683146 45682938 438 45686522 45684545 45682570 45680600 45680322 45680043 -45679720 45679401 45679084 45677068 45675052 436 -45763216 45761218 45759222 45757228 -45756950 45756672 -45756359 45756049 45755740 45753712 -45751685 434 45839943 -45837924 45835905 45833888 45833610 45833331 -45833030 -45832730 45832430 -45830390 45828350 432 45916704 45914662 45912620 45910579 45910301 45910022 45909732 45909443 45909153 45907100 45905048 430 45993497 45991432 45989366 45987301 45987023 45986744 45986466 45986187 45985909 -45983844 45981779 428 45993037 -45992770 45992503 45992236 45990163 45988091 -45986018 45983945 45981873 -45979801 -45977729 Table 11A2, Total Calorimetric Uncertainty, Unit 2 PSTM 870 . .

PFW, PS1A 770 780 790 800 810 I 820 830 840 850 860 870 TFw. DEG F UCAL.TOT, UCAL-TOT, UCAL.TOT, UCALT, UCAL.TOT, UCAL.TOT, UCAL.TOT, UCAL.TO UCL.TT, UCAL.TOT, UCALTOT, BTUAUr BTU/hr l3TUlbr BTUAhr BTU/hr BTU/hr BTIJ/hr BTUAir BTU/hr BTU/hr BTUAir 452 -50095976 -50094110 -50092243 -50090377 -50088510 -50086644 -50084778 -50082912 -50081046 -50079180 -50077315 450 -50191083 -50189201 -50187320 -50185438 -50183556 -50181675 -50179794 -50177913 -50176032 -50174151 -50172270 448 -50191107 -50190860 -50190614 -50190368 -50188477 -50186587 -50184689 -50182790 -50180893 -50180638 -50180384 446 -50285386 -50285148 -50284910 -50284673 -50282767 -50280861 -50278939 -50277017 -50275096 -50274841 -50274587 444 -50379701 -50379470 -50379241 -50379014 -50377093 -50375172 -50373224 -50371278 -50369334 -50369079 -50368825 442 -50474050 -50473828 -50473608 -50473391 -50471455 -50469519 -50467545 -50465574 -50463606 -50463352 -50463097 440 -50568434 -50568220 -50568010 -50567805 -50565853 -50563902 -50561901 -50559905 -50557913 -50557658 -50557404 438 -50586529 -50584687 -50582848 -50581011 -50580671 -50580331 -50579951 -50579574 -50579200 -50577323 -50575447 436 -50680291 -50678426 -50676563 -50674701 -50674361 -50674021 -50673650 -50673282 -50672915 -50671023 -50669132 434 -50774087 -50772198 -50770311 -50768424 -50768083 -50767743 -50767383 -50767023 -50766664 -50764757 -50762850 432 -50867917 -50866004 -50864091 -50862179 -50861839 -50861498 -50861148 -50860798 -50860447 -50858525 -50856603 430 -50961781 -50959843 -50957905 -50955967 -50955627 -50955286 -50954946 -50954605 -50954265 -50952327 -50950389 428 -50986403 -50986072 -50985742 -50985412 -50983463 -50981515 -50979566 -50977618 -50975670 -50973722 50971774

CA06494, Revision 0000 Page 124 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES I5 P1 860 PFW PSIA 770 780 790 800 810 820 830 840 850 860 870 TFW, DEG F UCL-TOT, UCAL.TOT. UCAL-TOT, UCALmTOT, UCAL-TOT. UCAL TOT, UCAL.TOT, UCAL-TOT, UCAL.TMT, UCAL*TOT, UCAL TOT, BTU/hr BTUAhr BTU/hr BTU/hr BTU/hr BTU/hr IBTU/hr BTU/hr BTLJ/hr BTUIhr BTUIhr 452 -50606859 -50604996 -50603133 -50601270 .50599408 -50597545 -50595683 -50593821 -50591959 -50590097 -50588235 450 -50701797 -50699919 -50698041 -50696163 -50694286 -50692408 -50690531 -50688653 -50686776 -50684899 -50683022 448 -50701846 -50701600 -50701354 -50701109 -50699222 -50697335 -50695441 -50693546 -50691652 -50691399 -50691145 446 -50795960 -50795722 -50795484 -50795247 -50793346 -50791444 -50789525 -50787607 -50785689 -50785435 -50785181 444 -50890109 -50889879 -50889650 -50889423 -50887506 -50885589 -50883645 -50881703 -50879762 -50879508 -50879254 442 -50984293 -50984071 -50983852 -50983636 -50981703 -50979771 -50977801 -50975834 -50973870 -50973616 -50973361 440 -51078513 -51078299 -51078090 -51077885 -51075937 -51073990 -51071993 -51070001 -51068013 -51067758 -51067504 438 -51096597 -51094758 -51092922 -51091089 -51090750 -51090411 -51090031 -51089655 -51089281 -51087409 -51085536 436 -51190196 -51188335 -51186475 -51184617 -51184278 -51183938 -51183568 -51183201 -51182834 -51180946 -51179058 434 -51283830 -51281945 -51280061 -51278178 -51277839 -51277499 -51277139 -51276780 -51276422 -51274518 -51272615 432 -51377499 -51375590 -51373681 -51371773 -51371433 -51371093 -51370743 -51370394 -51370044 -51368125. -51366207 430 -51471203 -51469269 -51467334 -51465400 -51465060 -51464721 -51464381 -51464041 -51463701 -51461767 -51459833 428 -51495801 -51495471 -51495141 -51494811 -51492866 -51490922 -51488977 -51487032 -51485088 -51483144 -51481199 P"m 850 PFWPSIA 770 780 790 800 810 820. 830 840 850 860 870 TFW, DEG F UCALTOTl UCAL-TO l UCALTOT, UCALTOT l UCAL..TOT UCALTOT UCAL-TOT, UCALTom, UCAL roT, UCAtrTO, UCATOT, BTU/hr BTU/hr BTU/hr BTUIhr BTU/hir BTU/hr BTU/hr I3TU/br BTUi/r BTU/hr BTU/hr 452 -50204542 -50202680 -50200817 -50198955 -50197093 -50195230 -50193368 -50191506 -50189644 -50187783 -50185921 450 -50299484 -50297607 -50295729 -50293851 -50291974 -50290097 -50288219 -50286342 -50284465 -50282588 -50280711 448 -50299552 -50299306 -50299060 -50298815 -50296928 -50295042 -50293148 -50291254 -50289360 -50289106 -50288852 446 -50393669 -50393431 -50393194 -50392957 -50391055 -50389154 -50387235 -50385317 -50383400 -50383146 -50382892 444 -50487821 -50487591 -50487363 -50487136 -50485219 -50483302 -50481358 -50479416 -50477476 -50477222 -50476968 442 -50582009 -50581787 -50581568 -50581352 -50579420 -50577487 -50575518 -50573551 -50571587 -50571333 -50571079 440 -50676232 -50676018 -50675809 -50675604 -50673657 -50671709 -50669713 -50667721 -50665733 -50665479 -50665224 438 l -50694331l -50692493 -50690658 -50688825 -50688485 -50688146 -50687767 -50687390 -50687017 -50685144 -50683272 436 -50787934 -50786073 -50784213 -50782356 -50782016 -50781676 -50781307 -50780939 -50780572 -50778685 -50776797 434 -50881571 -50879687 -50877803 -50875920 -50875580 -50875240 -50874881 -50874522 -50874163 -50872260 -50870357 432 -50975243 -50973334 -50971426 -50969517 -50969178 -50968838 -50968488 -50968138 -50967789 -50965870 -50963952 430 -51068950 -51067016 -51065082 -51063148 -51062808 -51062468 -51062128 -51061788 -51061448 -51059515 -51057581 428 -51093562 -51093232 -51092902 -51092572 -51090627 -51088683 -51086739 -51084794 -51082850 -51080906 -51078962

CA06494, Revision 0000 Page 125 of 132 CALORIMETRIC UNCERTAINTY USING TIE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PSTM 1 840 PFW,PSIA 770 780 790 800 810 820 830 840 850 860 870 UCAL TOT, UCAL-TOT, UCAL.-TOT. UCAL-MTO, UCAILTOT. UCAL TOT, UCALTOT.

Tlw DEG F UCAL.TOT, UCAL.TOT, UCAL-TOT, UCAL-TOT, BTU/hr BTTUIhr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr ITU/hr BTUIhr 452 -49650437 -49648568 -49646700 -49644832 -49642963 -49641095 49639227 -49637359 49635491 -49633623 49631756 450 49745694 49743810 -49741927 -49740043 49738160 49736276 49734393 49732510 49730627 49728744 49726861 448 -49745775 49745528 49745282 -49745035 49743143 49741250 49739350 49737450 49735550 -49735295 49735040 446 49840203 49839964 -49839726 49839488 49837580 49835673 49833748 -49831824 49829901 -49829646 49829391 444 -49934665 49934434 -49934205 49933977 49932054 49930131 49928181 49926233 49924286 -49924031 49923777 442 -50029161 -50028938 -50028718 -50028501 -50026563 -50024625 -50022649 -50020676 -50018706 -50018451 -50018196 440 -50123691 -50123477 -50123267 -50123061 -50121107 -50119154 -50117151 -50115153 -50113159 -50112904 -50112649 438 -50141859 -50140015 -50138174 -50136335 -50135995 -50135654 -50135274 -50134896 -50134521 -50132643 -50130765 436 -50235765 -50233898 -50232033 -50230169 -50229829 -50229488 -50229117 -50228748 -50228381 -50226487 -50224594 434 -50329705 -50327814 -50325925 -50324036 -50323695 -50323354 -50322993 -50322633 -50322273 -50320365 -50318456 432 -50423678 -50421763 -50419848 -50417934 -50417593 -50417252 -50416901 -50416551 -50416200 -50414276 -50412351 430 -50517684 -50515744 -50513804 -50511865 -50511524 -50511183 -50510842 -50510501 -50510160 -50508220 -50506280 428 -50542384 -50542053 -50541722 -50541391 -50539440 -50537490 -50535539 -50533589 -50531639 -50529689 -50527739

__ _ _830 PFv, PSIA 770 780 790 800 -810 820 830 840 850 860 870 TFw, DEG F UCAL TOT UCAL.TOT. UCAL-TOT. UCCAL-TOT. UCAL-TOT, UCALT-TO UCALTOTO U U Uutyr, UcALTOT.,

BTIl/hr BTU/hr BTU/lr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -50083956 -50082087 -50080219 -50078351 -50076483 -50074615 -50072747 -50070880 -50069012 -50067145 -50065277 450 .50179214 -50177331 -50175447 -50173564 -50171681 -50169798 -50167915 -50166032 -50164149 -50162267 -50160384 448 .50179314 -50179067 -50178821 -50178574 -50176682 -50174790 -50172890 -50170990 -50169090 -50168836 -50168581 446 -50273743 -50273504 -50273266 -50273029 -50271121 -50269214- -50267289 -50265366 -50263443 -50263188 -50262933 444 -50368207 -50367976 -50367746 -50367519 -50365596 -50363673 -50361724 -50359776 -50357830 -50357575 -50357320 442 -50462704 -50462481 -50462261 -50462044 -50460106 -50458169 -50456193 -50454220 -50452250 -50451995 -50451740 440 -50557235 -50557021 -50556811 -50556605 -50554652 -50552699 -50550696 -50548698 -50546705 -50546450 -50546195 438 -50575419 -50573575 -50571734 -50569896 -50569555 -50569215 -50568834 -50568457 -50568082 -50566204 -50564326 436 -50669326 -50667459 -50665594 -50663731 -50663390 -50663050 -50662679 -50662310 -50661942 -50660049 -50658156 434 -50763267 -50761377 -50759487 -50757599 -50757258 -50756917 -50756556 -50756196 -50755836 -50753928 -50752019 432 -50857241 - 50855326 -50853412 -50851498 -50851157 -50850817 -50850465 -50850115 -50849764 -50847840 -50845916 430 -50951249 -50949309 -50947369 -50945430 -50945089 -50944748 -50944407 -50944066 -50943725 -50941785 -50939846 428 -50975962 -50975630 -50975300 -50974969 -50973018 -50971068 -50969118 -50967168 -50965218 -50963268 -50961319

CA06494, Revision 0000 Page 126 of 132 CALORIMETRIC UNCERTAINTY USING TIE AMAG CROSSFLOW ULTRASONIC FLOWMEIER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PSTM 1 820 PFW, PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UCAL.TOT- UCALUTCT, U UCALUCAL- UTOLT UTOT U OT. UCALTOT, UCALTOT., UCAL.TOT, UCAL-TOT, UCAL-TOT, BTU/hIr BTU4hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/nr BTU/hr BTU/hr BTU/hr 452 -50162525 -50160660 -50158795 -50156930 -50155065 -50153200 -50151335 -50149471 -50147606 -50145742 -50143878 450 -50257641 -50255761 -50253880 -50252000 -50250120 -50248240 -50246360 -50244481 -50242601 -50240722 -50238842 448 -50257760 -50257513 -50257267 -50257021 -50255132 -50253243 -50251346 -50249449 -50247553 -50247299 -50247044 446 -50352048 -50351809 -50351572 -50351334 -50349430 -50347526 -50345605 -50343684 -50341765 -50341510 -50341256 444 -50446371 -50446141 -50445912 -50445684 -50443765 -50441846 -50439899 -50437954 -50436011 .50435757 -50435502 442 -50540729 -50540507 -50540287 -50540070 -50538136. -50536201 -50534229 -50532259 -50530292 -50530038 -50529783 440 -50635121 -50634907 -50634698 -50634492 -50632542 -50630592 -50628593 -50626598 -50624608 -50624353 -50624098 438 -50653293 -50651452 -50649614 -50647779 -50647439 -50647099 -50646719 -50646342 -50645968 -50644093 -50642218 436 -50747063 -50745199 -50743337 -50741477 -50741137 -50740797 -50740427 -50740058 -50739691 -50737801 -50735911 434 -50840867 -50838979 -50837093 -50835208 -50834867 -50834527 -50834167 -50833807 -50833448 -50831542 -50829637 432 -50934704 -50932793 -50930882 -50928971 -50928631 -50928290 -50927940 -50927589 -50927239 -50925318 -50923397 430 -51028576 -51026640 -51024703 -51022767 -51022426 -51022086 -51021745 -51021405 -51021064 -51019128 -51017192 428 -51053267 -51052936 -51052606 -51052275 -51050328 -51048381 -51046434 -51044487 -51042540 -51040594 -51038647 P__

__ _ 810 1 PrwPSIA 770 790 780 800 810 820 830 840 850 860 870 TFW DEG F UCAL TOT, UCAL TOT- UCAL-TOT UCAL-TOT, UCAL.Tar, UcLroT, UCATOTT, UCALCTOT, UCALTOT, UCALTOT, UCAL TOT-I nl BTU/hr TU/r BTU/hr BTUAhr 3TU/hr BTTU/hr BTU/hr BTU/nr BTU/hr BTU/hr BTU/hr 452 -50176783 -50174918 -50173053 -50171188 -50169324 -50167459 -50165595 -50163731 -50161867 -50160003 -50158139 450 -50271900 -50270020 -50268140 -50266260 -50264381 -50262501 -50260621 -50258742 -50256863 -50254984 -50253104 448 -50272038 -50271791 -50271545 -50271299 -50269410 -50267522 -50265625 -50263729 -50261833 -50261578 -50261324 446 -50366327 -50366089 -50365851 -50365614 -50363710 -50361806 -50359885 -50357965 -50356046 -50355791 -50355537 444 -50460652 -50460421 -50460192 -50459965 -50458046 -50456127 -50454181 -50452236 -50450293 -50450039 -50449784 442 -50555011 -50554789 -50554569 -50554352 -50552418 -50550483 -50548511 -50546542 -50544576 -50544321 -50544067 440 -50649405 -50649190 -50648981 -50648775 -50646826 -50644876 -50642877 -50640883 -50638892 -50638638 -50638383 438 -50667592 -50665751 -50663913 -50662078 -50661738 -50661398 -50661019 -50660641 -50660267 -50658393 -50656518 436 -50761362 -50759499 -50757637 -50755777 -50755437 -50755097 -50754727 -50754358 -50753991 -50752101 -50750211 434 -50855167 -50853280 -50851394 -50849509. -50849169 -50848829 -50848468 -50848108 -50847749 -50845844 -50843939 432 -50949006 -50947095 -50945184 -50943273 -50942933 -50942593 -50942242 -50941892 -50941542 -50939621 -50937700 430 -51042879 -51040942 -51039006 -51037070 -51036730 -51036389 -51036049 -51035708 -51035368 -51033432 -51031496 428 -51067583 -51067252 -51066922 -51066592 -51064645 -51062698 -51060751 -51058805 -51056858 -51054912 -51052965

CA06494, Revision 0000 Page 127 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES PS 1 800 770 790 780 S00 810 820 830 840 850 860 870 P,wPSIA UCL.TOr, UCAL.OT, UCAL-TTOT UCAL-TOT' UCALT-TT UCAL TJT, UUCLATOT. UCA.LTOT, TFW DEG F UCL.TOT, UCAL.TOTT UCAL-TOTT BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUAir BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 452 -50186740 -50184875 -50183011 -50181146 -50179282 -50177418 -50175554 -50173690 -50171826 -50169962 -50168099 450 -50281860 -50279980 -50278101 -50276221 -50274342 -50272462 -50270583 -50268704 -50266825 -50264946 -50263067

-50281771 -50281524 -50281278 -50279390 -50277501 -50275605 -50273709 -50271813 -50271559 -50271304 448 -50282017

-50376071 -50375833 -50375596 -50373692 -50371789 -50369868 -50367948 -50366029 -50365774 -50365520 446 -50376309 444 -50470637 -50470406 -50470177 -50469950 -50468031 -50466112 -50464166 -50462222 -50460279 -50460025 -50459770

-50564998 -50564776 -50564556 -50564339 -50562405 -50560471 -50558499 -50556530 -50554564 -50554310 -50554055 442 440 -50659394 -50659180 -50658971 -50658765 -50656816 -50654866 -50652868 -50650874 -50648884 -50648629 -50648374

-50675757 -50673919 -50672084 -50671744 -50671404 -50671025 -50670648 -50670273 -50668399 -50666525 438 -50677597

-50769507 -50767646 -50765786 -50765446 -50765106 -50764735 -50764367 -50764000 -50762110 -50760221 436 -50771370 434 -50865177 -50863291 -50861405 -50859520 -50859180 -50858840 -50858479 -50858120 -50857760 -50855856 -50853951

-50959019 -50957108 -50955197 -50953287 -50952947 -50952606 -50952256 -50951905 -50951555 -50949635 -50947715 432

-51050958 -51049022 -51047086 -51046746 -51046405 -51046065 -51045724 -51045384 -51043448 -51041512 430 -51052894

-51077612 -51077282 -51076951 -51076621 -51074674 -51072728 -51070781 -51068835 -51066889 -51064942 -51062996 428 PM 790 . _

790 780 800 810 820. 830 840 850 860 870 PFPSIA 770 UCAL.TOT, UCALTOT UCAL-TOT, UCALTOT, UCAL.TOT UCAL.OT, UCALtTO, UCALrTO TFW. DEG F UCALTOT, UCALTOT, UCALTOT, I3TU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTUA/r

_ BTU/hr

-50204570 -50202705 -50200841 -50198977 -50197113 -50195249 -50193385 -50191522 -50189658 -50187795 -50185931 452

-50299691 -50297812 -50295933 -50294053 -50292174 -50290295 -50288416 -50286537 -50284659 -50282780 -50280901 450

-50299867 -50299621 -50299374 -50299128 -50297240 -50295352 -50293456 -50291560 -50289665 -50289410 -50289156 448

-50393922 -50393684 -50393447 -50391544 -50389641 -50387720 -50385801 -50383882 -50383627 -50383373 446 -50394161 444 -50488489 -50488259 -50488030 -50487803 -50485884 -50483965 -50482020 -50480076 -50478134 -50477879 -50477625

-50582630 -50582411 -50582194 -50580260 -50578326 -50576355 -50574386 -50572420 -50572166 -50571911 442 -50582853

-50677036 -50676826 -50676621 -50674672 -50672722 -50670724 -50668730 -50666741 -50666486 -50666231 440 -50677250

-50693628 -50691791 -50689956 -50689616 -50689276 -50688896 -50688519 -50688145 -50686271 -50684397 438 -50695468

-50789242 -50787379 -50785518 -50783659 -50783319 -50782979 -50782608 -50782240 -50781873 -50779983 -50778094 436

-50883051 -50881165 -50879279 -50877394 -50877054 -50876714 -50876353 -50875994 -50875635 -50873730 -50871825 434 432 -50976893 -50974983 -50973073 -50971163 -50970822 -50970482 -50970131 -50969781 -50969431 -50967511 -50965591

-51068834 -51066898 -51064963 -51064622 -51064282 -51063941 -51063601 -51063260 -51061325 -51059389 430 -51070770

-51094840; -51094510 -51092564 -51090618 -51088671 -51086725 -51084779 -51082833 -51080888 428 -51095502 -51095171

CA06494, Revision 0000 Page 128 of 132 CALORIMETRIC UNCERTAINTY USrNG THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT A, CALORIMETRIC UNCERTAINTY USING ASME 1967 STEAM TABLES IPsT, 1 780 PFwPSIA 770 790 780 800 810 820 830 840 850 860 870 Trw, DEG F UCAL-TOT UCAL-TOT, UCAL.TOT. UCAL.TOT- UCAL TOT, UCAtT, UCA.TOT, UCAL.TOT, UCAL.TOT, UCAL TTO. UCAL.TOT, BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr 13TU/hr BTUhr' TUL/hr BTU/hr BTU/hr 452 -49727391 -49725524 -49723657 -49721791 49719924 -49718058 49716191 49714325 49712459 49710593 49708727 450 -49822656 49820774 49818892 49817010 49815128 49813247 49811365 -49809484 -49807603 -49805721 49803840 448 -49822845 49822598 49822351 49822105 -49820214 49818323 49816425 49814526 49812628 49812373 49812119 446 -49917280 49917041 49916803 49916565 49914659 49912753 49910830 49908908 49906987 49906732 49906477 444 -50011749 -50011518 -50011289 -50011061 -50009140 -50007219 -50005271 -50003324 -50001379 -50001124 -50000869 442 -50106253 -50106030 -50105810 -50105593 -50103656 -50101720 -50099745 -50097774 -50095806 -50095551 -50095296 440 .50200790 -50200575 -50200365 -50200159 -50198207 -50196256 -50194255 -50192258 -50190266 -50190011 -50189756 438 -50219044 -50217202 -50215362 -50213525 -50213184 -50212844 -50212464 -50212086 -50211711 -50209835 -50207958 436 -50312956 -50311091 -50309228 -50307366 -50307025 -50306684 -50306314 -50305944 -50305577 -50303685 -50301793 434 -50406902 -50405014 -50403126 -50401238 -50400898 -50400557 -50400196 -50399836 -50399476 -50397569 -50395662 432 -50500882 -50498969 -50497056 -50495143 -50494802 -50494461 -50494110 -50493759 -50493409 -50491486 -50489563 430 -50594894 -50592956 -50591018 -50589080 -50588739 -50588398 -50588057 -50587716 -50587375 -50585436 -50583498 428 -50619671 -50619340 -50619009 -50618678 -50616729 -50614780 -50612831 -50610883 -50608934 -50606986 -50605037 PSM 770 . . .

PFrW PSIA 770 790 780 800 810 820 830 840 850 860 870 TFW, DEG F UCALTr, UCALTTOT, UcAOTT. UcAt.rj, UCAL.TO, UCAL To, UCALT.IT, UCAL.TOT, UCAL.T. UCATT, UCAL-TOT' BTU/hr BTUI/hr BTU/hr BTUI/hr BTU/hr BTU/hr BTU/hr BTU/hr BTU/hr lBTU/ir BTU/hr 452 -50160525 -50158659 -50156792 -50154926 -50153059 -50151193 -50149327 -50147461 -50145595 -50143730 -50141864 450 -50255793 -50253911 -50252029 -50250148 -50248266 -50246385 -50244504 -50242622 -50240741 -50238860 -50236980 448 -50256000 -50255754 -50255507 -50255260 -50253370 -50251480 -50249581 -50247683 -50245785 -50245530 -50245276 446 -50350438 -50350199 -50349961 -50349723 -50347817 -50345912 -50343989 -50342067 -50340146 -50339891 -50339636 444 -50444909 -50444678 -50444449 -50444221 -50442300 -50440379 -50438431 -50436485 -50434541 -50434286 -50434031 442 -50539415 -50539192 -50538972 -50538755 -50536818 -50534882 -50532908 -50530937 -50528969 -50528714 -50528459 440 -50633954 -50633740 -50633529 -50633324 -50631372 -50629420 -50627420 -50625423 -50623432 -50623176 -50622921 438 -50652224 -50650381 -50648542 -50646705 -50646365 -50646024 -50645644 -50645266 -50644892 -50643015 -50641139 436 -50746138 -50744273 -50742410 -50740548 -50740207 -50739867 -50739496 -50739127 -50738759 -50736868 -50734976 434 -50840086 -50838197 -50836310 -50834423 -50834082 -50833741 -50833380 -50833020 -50832660 -50830753 -50828847 432 -50934067 -50932154 -50930242 -50928330 -50927989 -50927648 -50927297 -50926946 -50926595 -50924673 -50922750 430 -51028082 -51026144 -51024206 -51022268 -51021927 -51021586 -51021245 -51020904 -51020563 -51018625 -51016687 428 -51052872 -51052541_ -51052210 -51051879 -51049930 -51047982 -51046033 -51044085 -51042137 -51040188 -51038240

CA06494, Revision 0000 Page 129 of 132 CALORIMErRIC UNCERTAINTY USiNG THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT B, EVALUATION OF BLOWVDOWN FLOW ON CALORIMETRIC UNCERTAINTY

1. From Section 7.0, CALCULATION, only two terms are dependent upon the blowdown flow from the steam generators.
  • Main steam pressure measurement uncertainty, determined by the expressions 11, 21 Steam Generators U CAL-PSTMI = (M FW1 - MBDI Xh GSI-EPSTM - h GSI )+ (M BDI Xh FSI-CPSTM - h FSI) 12, 22 Steam Generators UCAL-PSTM 2 = (M -2 MBD2XhGS2-EPSTM -hGS2)+(MBD2XhFS2-EPSTM -hFS2)

Total UCAL-PSThi1ET = -UCA-PSTM1y +(UCA-PSTM2y

  • Plant computer uncertainty for the calculation of main steam enthalpy, determined by the expressions II, 21 Steam Generators U CAL-CWC(hGS)I = (MFW1 -MBDI XUPC-ENTH)

U CAL-CMP(hFS)l = (M BDI XU Pc-ENH) 12, 22 Steam Generators UCAL-OAP(hGS)2 =(MFW2 -MBD2XUPc.rH)

U CAL-CQ(hFS)1 = (MBD2 XUPC-ENTH)

Total UCAL-ECMp(hGS)NTT =-(U CAL-CMN(hGS)I ). + (U CAL-CMj(hGS)2 ) 1 UCAL-ECN=(hFS)M =(U CAL-CW(hFS)l) + (UCAL-CN4P(hFS)2) 1/2

2. The change in calorimetric uncertainty as a result of changes in blowdown flow is evaluated by reducing the blowdown flow through the 11 (21) Steam Generators in 5,000 Ibm/hr increments. Blowdown flow through the 12 (22) Steam Generators is raised in 5,000 Ibm/hr increments to maintain total blowdown flow constant. Using the equations above the uncertainty at each set of blowdown flows is calculated and tabulated.
3. As shown in the following tables, the contribution to calorimetric uncertainty for each term is maximized at a flow of 91000 Ibm/hr through one steam generator and 16000 Ibm/hr through the second steam generator.

CA06494, Revision 0000 Page 130 of 132 CALORIMETRIC UNCERTAINTY USING FHE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT B, EVALUATION OF BLOWDOWN FLOW ON CALORIMETRIC UNCERTAINTY SG M FW, MaD, has, hasc, hFS. UCAL.PsTrm+, MFW, M BD, Upc. UCAL. UCAL. M /Dh UPC. UCAL. UCAL.

Ibm/hr Ibm/hr 1BTU/lbmBTU/lbm BTU/Ibm BTU/Ibm BTU/hr Ibm/hr Ibmn/hr EN'rH, lCMP(IGS). CMP(bGS)NET, lbmth r ENTH, CMP(IFS), CM PO FS)NET, I3TU/Ibm BTU/hr BTU/hr .BTU/Ibm BTU/hr BTU/hr

_ 6220000C 910001 1197.701 1197.011 520.10] 523.37 -3950100 _. 6220000( 91000] -0.11 -6129001 872091 = 91000] -0.1t -9100 -9240 21 62200001 160001 1197.701 1197.011 520.10 523.37 -42471001 _ 62200001 160001 -0.11 -620400 11_ 160001 -0.1 -1600 1 I NET *5800099 I I 11 i I i

1

_ _ .. .j 9 g *,__ i_ i_ '00 I_ _ ,_ Ij_

SG M Fw, MBD, has, hast, hFs. hFsc, UCAL.PSTM+, MFW, MBD, UPC. UCAL. UCAL. MBD, UPc. l UCAL. UCAL-Ibm/hr 1 6220000 Ibm/hr 86000 1197.70 j

BTU/Ibm BTU/Ibm BTUIlbm BTUIbm 1197.01 520.10 I

523.37 j

I BTU/hr

-3969900 -

Ibm/hr 6220000 Ibm/hr 86000 ENTH, CMP(bGS), CMP(AGS)NET, BTU/Ibm BTU/hr

-0.11 -613400 IBTU/hr

_872087 Ibm/hr 86000 ENTH,

-0.11 CMP(bFS), CMP(WFS)NET, BTU/lbm BTU/hr

-8600 IBTU/hr 2 6220000 21000 1197.70 1197.01 520.10 523.37 -4227300 - 6220000j 21000 -0.11 -619900 j -872087 21000 -0.11 -2100 -8853 I NET J -57 1 _ I  ! __

lSG MFw,

_ [- _-

MBD,

- _!1 has, t _ _

hGsC, h Fs, hFSt, 4-UCAL-PSTM+l,

_- i MFW,

_ f__ _

MBD,,

UPC.

l UCAL.

UCAL.

M BD l

UPC.

UCAL.

UCAL.

Ibm/hr 6220000 Ibm/hr 81000 1197.70 I

BTUIlbm BTU/lbm BTTU/lbm F3TIbml BTU/hr 1197.01 520.10 N1523.37 I -3989700 _

Ibm/hr 6220000 Ibm/hr 81000 ENTH, IBTU/Ibm BTU/hr CMP(hGS), CMP(bGS)NET

-0.11 -613900 BTU/hr

- 708381000 l Ibm/hr ENTH, BTU/Ibmn CMP(OFS), CMP(hFS)NET, BTU/hr

-0.11 -8100 BTU/hr 2 6220000 26000 1197.70 1197.01 520.10 523.37 -4207500 __ 6220000 26000 -0.1 -619400 __-82083__ 26000 -0.11 -2600 -8507 I I t I INET j -57983411 SG l FW, MBD, has, hGsC, hFs, hFst, UCAL-PSTM+, M FW' MBD, UPC. l UCAL. UCAL- M DD, UPC- UCAL. UCAL.

Ibm/hr Ibm/hr BTU/lbm BTU/Ibm BTU/lbm BTU/hbm lTU/hr Ibm/hr Ibm/hr MENT,CMP(bCS). CMPOGS)NET, Ibm/hr ENTH, CMP(bFS), CMP(hFS)NET, 1 1 11 6220000 2 6220000 I

76000 1197.70 31000 1197.70 t_

1197.01 1197.01 _

520.10 520.10 523.37 523.37

-4009500

-41877001__

- 6220000 6220000 l3TU/Ibml 76000 31000 BTU/hr lBTU/hr

-0.11 -614400

-8 7 2 0 8 1

-0.1 -618900 __8708___31000_

76000 31 0 BTU/lbm BTU/hr lBTU/hr

-0.11 -7600 01 3 0

-0.l1 -3100 82 0 8

_ *8208 j_ _ j_ i__ _ _ _IN ET I -57 j j 1 _ I ..... i SG MFw, l MBD, has, hast, hFS, hFSc, UCAL-PSTM+, MFW, l MBD, UPC. UCAL. UCAL. MBD l UPC- UCAL- UCAL.

Ibm/hr Ibm/hr BTU/Ibm BTU/Ibm BTU/lbm BTU/Ibm BTU/hr Ibm/hr Ibm/hr ENTH, CMP(bGS), CMP(aGS)NET, Ibm/hr ENTII, CMP(MFS). CMP(bFS)NET,

__I I I_ _ _ _ _ _ _ lBTU/Ibml

_ BTU/hr BTU/hr BTU/Ibm BTU/hr BTU/hr 1 62200001 71000 1197.70l 1197.01 520.10 523.37 -4029300 62200001 71000 -0. 1 -614900 l 8 I0l871000 -0.1 -7100 -7961 2 6220000] 36000 1197.70 1197.01 520.10 523.37 -4167900 62200001 36000 -0.11 -618400 -872078 360001 -0.1 -3600 _ -7961 I I I I I lNET -5797124

Pagel1310of132 CA06494, Revision 0000 CALORIMETRIC UNCERTAINT USIrNG TE AMAG CROSSFLOW ULTRASONIC FLOwVMETER ATTACHMENT B, EVALUATION OF BLOWDOWN FLOW ON CALORIMETRIC UNCERTAINTY r . . . . .

hcst. biS, hFs UCASpm+, MBD. UPC-ENnf. UCAL AS lc MOD, UM(ENTH. UCAL l UCAI, SG MeFW MBD, hba. MI'r BTUllbm BTUAbm BTU/lbm BTU/hr Ibmlhr_ Ibm/hr BTUAbm cmpfhas), cmp~w$)NrT. Ibm/hr BTUAbm CMPS); CMPOMS)NET.

lbm/'hr lbm/lhr BTUAbm BTU/hr BTUA/r lBTU/hr BTU/hr

_ 6220000 66000 1197.70 1197.01 520.10 523.37 -4049100 l 62200001 660001 -0.1 -615400 8 207 660001 -0.1 -6600 -7770 523.37 -4148100 1 622000C 410001 -0.1j -617900 -8727 410001 -0.11 -4100 1 _ 7 2 6220000 41000 1197.70 1197.01 520.10 NET -5796718 hcGst, hs hrs, h . UCALrPSTMXl I MFW, MOD, UPO 4 TIMf, UCAt, l UCAL, M 8 D, UPMENniI UCAL. UCAL.

SG MrWl MOD, hGS-Ibm/hr BTUAbm BTUAbm BTU/1bm BTU/lbm BTU~hr Ibm/hr Ibm/hr BTU/Ibm lcmmrGs, l cmpmsET. lIbmlhr lBTUAbm cmpbcm), ClcM(?GS)NETl Ibm/hr

  • L l -l lBTUAlir BTU/hr BTU/hr BTU/hr 61000 1197.70 1197.01 520.10 523.37 -4068900 6220000 61000 -0.1 -615900 1 872075 61000 -*0.1 -6100 I 6220000 1197.70 1197.01 520.10 123.37 -4128300 6220000 46000 -0.1 -617400 727 46000 -0. 1 -4600 I_640 2 6220000 46000 INET -5796448 SG Mrw. MBD, has. hcs hFS, hrs. UCAnS7M4 MFW- MBD- UPC ENM- UCAL. UCAL.

l rMOD.

Ibmlhr IUVC NI. UCALP BTU/Ibm cMPsl) CMPWSGs)NETl UCA1, Ibm/hr Ibm/hr BTUAbm BTUAbm BTUAbm BTUAbm BTU/hr Ibmthr lIbm/hr lBTUAbm cPs). l cmp(ss

- - lBTU/hr BTUlhr I lBTU/hr lBTUlhrl I 6220000 1 56000 1197.70 1197.01 520.10 523.37 -4088700 6220000 *56000( -0.1 -6164001 _72fn7m 1 560001 -0.11 -5600 2 62200001 51000 1197.70 1197.01 520.10 523.37 -4108500 r 62200001 510001 -0.1I-6169001 . I 51000 -0.1 -5100 I_- _ I NET -5796313

CA06494, Revision 0000 Page 132 of 132 CALORIMETRIC UNCERTAINTY USING THE AMAG CROSSFLOW ULTRASONIC FLOWMETER ATTACHMENT C, EVALUATION OF MOISTURE CARRYOVER ON CALORIMETRIC POWER I . Calorimetric power is calculated for a moisture carryover of 1. The indicated gross thermal output of one steam generator and can be represented by QSG =(MFWXhGs -hFw)+(MBDXhFs -hGs)

2. If carryover exists, the following expression applies to the actual gross thermal output of one steam generator.

QSG =(MFwX(1-X)hFs +XhGS-hFwl+(XMBDXhFs -hS)

3. Uncertainty is the difference between the indicated and actual values UQ5G =(MFW -MBDXI-XXhGS -hFs)
4. This expression is always greater than or equal to zero since
  • Feedwater flow is always greater than blowdown flow.
  • Steam quality must be between 0 (wet steam) and 1 (dry steam)
  • The saturated vapor component of steam enthalpy is always greater than the saturated liquid component of steam enthalpy.
5. Therefore, indicated thermal output is always greater than actual thermal output, which is conservative.

ATTACHMENT (3)

MARKED UP TECHNICAL SPECIFICATION PAGES Renewed Operating License Page 3 (Unit 1)

Renewed Operating License Page 3 (Unit 2) 1.1-5 Calvert Cliffs Nuclear Power, Inc.

January 31, 2005

rules, regulations, and orders of the Commission, now or hereafter applicable; and is subject to the additional conditions specified and incorporated below:

(1) Maximum Power Level o k The licensee is authorized to operatt facility at steady-state reactor core power levels not in excess of megawatts-thermal in accordance with the conditions specified herein.

(2) Technical Specifications The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 237 , are hereby incorporated into this license. The licensee shall operate the facility in accordance with the Technical Specifications.

(a) For Surveillance Requirements (SRs) that are new, in Amendment 227 to Facility Operating License No. DPR-53, the first performance is due at the end of the first surveillance interval that begins at implementation of Amendment 227. For SRs that existed prior to Amendment 227, including SRs with modified acceptance criteria and SRs whose frequency of performance is being extended, the first performance is due at the end of the first surveillance interval that begins on the date the Surveillance was last performed prior to implementation of Amendment 227.

(3) Additional Conditions The Additional Conditions contained in Appendix C as revised through Amendment No. 237 are hereby incorporated into this license. Calvert Cliffs Nuclear Power Plant, Inc. shall operate the facility in accordance with the Additional Conditions.

(4) Secondary Water Chemistrv Monitoring Program The Calvert Cliffs Nuclear Power Plant, Inc., shall implement a secondary water chemistry monitoring program to inhibit steam generator tube degradation. This program shall include:

a. Identification of a sampling schedule for the critical parameters and control points for these parameters;
b. Identification of the procedures used to quantify parameters that are critical to control points; Amendment No. 237

C. This license is deemed to contain and is subject to the conditions set forth in 10 CFR Chapter I and is subject to all applicable provisions of the Act, and the rules, regulations, and orders of the Commission, now or hereafter applicable; and is subject to the additional conditions specified and incorporated below:

(1) Maximum Power Level The licensee is authorized to operate t clity at reactor steady-state core power levels not in excess of megawatts-thermal in accordance with the conditions specified herein.

(2) Technical Specifications The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 209, are hereby incorporated into this license. The licensee shall operate the facility in accordance with the Technical Specifications.

(a) For Surveillance Requirements (SRs) that are new, in Amendment 201 to Facility Operating License No. DPR-69, the first performance is due at the end of the first surveillance interval that begins at implementation of Amendment 201. For SRs thatU existed prior to Amendment 201, including SRs with modified acceptance criteria and SRs whose frequency of performance is being extended, the first performance is due at the end of the first surveillance interval that begins on the date the Surveillance was last performed prior to implementation of Amendment 201.

(3) Less Than Four Pump Operation The licensee shall not operate the reactor at power levels in excess of five (5) percent of rated thermal power with less than four (4) reactor coolant pumps in operation. This condition shall remain in effect until the licensee has submitted safety analyses for less than four pump operation, and approval for such operation has been granted by the Commission by amendment of this license.

(4) Environmental Monitoring Program If harmful effects or evidence of irreversible damage are detected by the biological monitoring program, hydrological monitoring program, and the radiological monitoring program specified in the Appendix B Technical Specifications, the licensee will provide to the staff a detailed analysis of the problem and a program of remedial action to be taken to eliminate or significantly reduce the detrimental effects or damage.

Definitions 1.1 1.1 Definitions capable of performing its specified safety function(s) and when all necessary attendant instrumentation, controls, normal or emergency electrical power, cooling and seal water, lubrication, and other auxiliary equipment that are required for the system, subsystem, train, component, or device to perform its specified safety function(s) are also capable of performing their related support function(s).

PHYSICS TESTS PHYSICS TESTS shall be those tests performed to measure the fundamental nuclear characteristics of the reactor core and related instrumentation.

These tests are:

a. Described in Chapter 13, Initial Tests and Operation of the Updated Final Safety Analysis Report;
b. Authorized under the provisions of 10 CFR 50.59; or
c. Otherwise approved by the Nuclear Regulatory Commission.

RATED THERMAL POWER (RTP) RTP shall be a total reactor core heat transfer rate to the reactor coolant of REACTOR PROTECTIVE SYSTEM The RPS RESPONSE TIME shall be that ime nterval (RPS) RESPONSE TIME from when the monitored parameter exceeds its RPS trip setpoint at the channel sensor until electrical power to the CEAs drive mechanism is interrupted. The response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. In lieu of measurement, response time may be verified for selected components provided that the components and methodology for verification have been previously reviewed and approved by the NRC.

CALVERT CLIFFS - UNIT 1 1.1-5 Amendment No. 244 CALVERT CLIFFS - UNIT 2 Amendment No. 218