ML042530049

From kanterella
Jump to navigation Jump to search
9 to Fermi 2 - Technical Requirements Manual, Vol. 1.
ML042530049
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 08/30/2004
From: Myers B
Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML042530049 (27)


Text

DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 08/30/04 To: 00935 US NRC PAGE 1 DOCUMENT CNTRL DESK WASHINGTON, DC 20555 Media: 8 1/2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status TMTRM TRM VOL I 69 11 IR 08/30/04 AFC Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.

Ref: cb2875 (Do0

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 69 dated 8/30/04 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 68 has been inserted prior to inserting these pages.

Location Remove Insert In Front of TRAI Manual Title Page Rev 68 6/29/04 Title Page Rev 69 8/30/04 Immediatcly following List of Effective Pages List of Effective Pages Title Page LEP-l through LEP- 4 Rev 68 6/29/04 LEP-1 through LEP- 4 Rev 69 8/30/04 Core Operating Limits

.Report COLR, Cycle 10, Revision 0 COLR. Cycle 10. Revision 1 END

Fermi 2 Technical Requirements Manual Volume I Detroit Edison ARMS - INFORMATION DTC: TMTRM l File: 1754 l DSN: TRM VOL I I Rev: 69 Date: 08/30/04 l Recipient ?*

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM i Revision 31 TRM 3.3-31 Revision 31 TRM ii Revision 67 TRM 3.3-32 Revision 31 TRM iii Revision 31 TRM 3.3-33 Revision 31 TRM iv Revision 34 TRM 3.3-34 Revision 31 TRM v Revision 67 TRM 3.3-35 Revision 60 TRM vi Revision 31 TRM 3.3-36 Revision 41 TRM 1.0-a Revision 31 TRM 3.3-37 Revision 31 TRM 1.0-1 Revision 31 TRM 3.3-38 Revision 31 TRM 2.0-1 Revision 31 TRM 3.3-39 Revision 31 TRM 3.0-a Revision 31 TRM .3.3-40 Revision 56 TRM 3.0-1 Revision 63 TRM 3.3-41 Revision 56 TRM 3.0-2 Revision 63 TRM 3 .3-42 Revision 45 TRM 3.0-3 Revision 54 TRM 3.3-43 Revision 62 TRM 3.0-4 Revision 31 TRM 3.3-44 Revision 31 TRM 3.1-a Revision 31 TRM 3.3-45 Revision 31 TRM 3.1-1 Revision 31 TRM 3.3-46 Revision 31 TRM 3.2-1 Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-48 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-49 Revision 31 TRM 3.3-c Revision 31 TRM 3.4-a Revision 31 TRM 3.3-d Revision 31 TRM 3.4-1 Revision 36 TRM 3.3-1 Revision 34 TRM 3.4-la Revision 34 TRM 3.3-2 Revision 59 TRM 3.4-lb Revision 34 TRM 3.3-3 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-4 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-5 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-5 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-6 Revision 31.

TRM 3.3-8 Revision 31 TRM 3.4-7 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-8 Revision 31 TRM 3.3-10 Revision 31 TRM 3.4-9 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-10 Revision 31 TRM 3.3-12 Revision 67 TRM 3.5-1 Revision 31 TRM 3.3-13 Revision 67 TRM 3.6-a Revision 31 TRM 3.3-13a Revision 67 TRM 3.6-1 Revision 60 TRM 3.3-14 Revision 67 TRM 3.6-2 Revision 67 TRM 3.3-15 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-16 Revision 31 TRM 3.6-4 Revision 55 TRM 3.3-17 Revision 31 TRM 3.6-5 Revision 31 TRM 3.3-18 Revision 52 TRM 3.6-6 Revision 33 TRM 3.3-19 Revision 31 TRM 3.6-7 Revision 31 TRM 3.3-20 Revision 31 TRM 3.6-8 Revision 31 TRM 3.3-21 Revision 59 TRM 3.6-9 Revision 66 TRM 3.3-22 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-23 Revision 31 TRM 3.6-11 Revision 31 TRM 3.3-24 Revision 31 TRM 3.6-12 Revision 31 TRM 3.3-25 Revision 31 TRM 3.6-13 Revision 31 TRM 3.3-26 Revision 31 TRM 3.6-14 Revision 31 TRM 3.3-27 Revision 31 TRM 3.6-15 Revision 31 TRM 3.3-28 Revision 31 TRM 3.6-16 Revision 31 TRM 3.3-29 Revision 31 TRM 3 .6-17 Revision 31 TRM 3.3-30 Revision 31 TRM 3.6-18 Revision 31 TRM Vol. I LEP-1 REV 69 08/30/04

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE.PAGES Page Revision Page Revision TRM 3.6-19 Revision 31 TRM 3 .8-13 Revision 61 TRM 3 .6-20 Revision 31 TRM 3.8-14 Revision 46 TRM 3 .6-21 Revision 31 TRM 3.8-15 Revision 31 TRM 3.6-22 Revision 31 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision 31 TRM 3.8-17 Revision 43 TRM 3.6-24 Revision 58 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3. 6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 31 TRM 3.6-29 Revision 31 TRM 3.9-4 Revision 31 TRM 3.6-30 Revision 31 TRE 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 60 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 31 TRM 3.7-a Revision 31 TRM 3.12-2 Revision 31 TRM 3.7-b Revision 31 TRM 3 .12-3 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-4 Revision 53 TRM 3.7-2 Revision 31 TRM 3.12-5 Revision 53 TRM 3.7-3 Revision 31 TRM 3.12-6 Revision 53 TRM 3.7-4 Revision 31 TRM 3.12-7 Revision 31 TRM 3.7-5 Revision 31 TRM 3.12-8 Revision 57 TRM 3.7-6 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-7 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-8 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-9 Revision 31 TRM 3.12-12 Revision 31 TRM 3.7-10 Revision 44 TRM 3.12-13 Revision 31 TRM 3.7-11 Revision 31 TRM 3.12-14 Revision 31 TRM 3.7-12 Revision 31 TRM 3.12-15 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-16 Revision 31 TRM 3.7-14 Revision 31 TRM 3.12-17 Revision 31 TRM 3.7-15 Revision 31 TRM 3.12-18 Revision 31 TRM 3.7-16 Revision 31 TRM 3.12-19 Revision 31 TRM 3.7-17 Revision 31 TRM 3.12-20 Revision 31 TRM 3.7-18 Revision 31 TRM 3.12-21 Revision 31 TRM 3.7-19 Revision 31 TRM 3.12-22 Revision 31 TRM 3.7-20 Revision 31 TRM 3.12-23 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-26 Revision 31 TRM 3.8-3 Revision 60 TRM 3.12-27 Revision 31 TRM 3.8-4 Revision 31 TRM 3.12-28 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-29 Revision 31 TRM 3.8-6 Revision 50 TRM 3.12-30 Revision 31 TRM 3.8-7 Revision 50 TRM 4.0-1 Revision 31 TRM 3.8-8 Revision 50 TRM 5.0-a Revision 31 TRM 3.8-9 Revision 50 TRM 5.0-1 Revision 31 TRM 3.8-10 Revision 50 TRM 5.0-2 Revision 31 TRM 3.8-11 Revision 50 TRM 5.0-3 Revision 31 TRM 3.8-12 Revision 31 TRM 5.0-4 Revision 31 TRM Vol. I LEP-2 REV 69 08/30/04

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 5.0-5 Revision 31 TRM B3.5-1 Revision 31 TRM 5.0-6 Revision 31 TRM B3.6.1-1 Revision 31 TRM 5.0-7 Revision 31 TRM B3.6.2-1 Revision 67 TRM 5.0-8 Revision 31 TRM B3.6.3-1 Revision 68 TRM 5.0-9 Revision 31 TRM B3.6.4-1 Revision 31 TRM Bl.0-1 Revision 31 TRM B3.6.5-1 Revision 31 TRM B2.0-1 Revision 31 TRM B3.6.6-1 Revision 31 TRM B3.0-1 Revision 63 TRM B3.6.7-1 Revision 31 TRM B3.0-2 Revision 63 TRM B3.6.8-1 Revision 31 TRM B3.0-2a Revision 63 TRM .B3.7.1-1 Revision 31 TRM B3.0-2b Revision 63 TRM B3.7.2-1 Revision 31 TRM B3.0-3 Revision 31 TRM B3.7.3-1 Revision 31 TRM B3.0-4 Revision 31 TRM B3.7.4-1 Revision 31 TRM B3.0-5 Revision 54 TRM B3.7.4-2 Revision 31 TRM B3.0-6 Revision 54 TRM B3.7.5-1 Revision 31 TRM B3.0-7 Revision 54 TRM B3.7.6-1 Revision 31 TRM B3.1-1 Revision 31 TRM B3.7.7-1 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.1-1 Revision 31 TRM B3.7.9-1 Revision 31 TRM B3.3.1-2 Revision 31 TRM B3.7.9-2 Revision 31 TRM B3.3.2-1 Revision 31 TRM B3.8.1-1 Revision 31 TRM B3.3.2-2 Revision 31 TRM B3.8.2-1 Revision 31 TRM B3.3.3-1 Revision 67 TRM B3.8.3-1 Revision 31 TRM B3.3.4-1 Revision 31 TRM B3.8.4-1 Revision 31 TRM B3.3.4-2 Revision 31 TRM B3.8.5-1 Revision 31 TRM B3.3.5-1 Revision 31 TRM B3.8.6-1 Revision 43 TRM B3.3.5-2 Revision 31 TRM B3.9.1-1 Revision 31 TRM B3.3.6-1 Revision 31 TRM B3.9.2-1 Revision 65 TRM B3.3.6-2 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3.3.6-3 Revision 31 TRM B3.9.4-1 Revision 31 TRM B3.3.6-4 Revision 31 TRM B3.10-1 Revision 31 TRM B3.3.6-5 Revision 31 TRM B3.11.1-1 Revision 31 TRM B3.3.7-1 Revision 31 TRM B3.12.1-1 Revision 31 TRM B3.3.7-2 Revision 31 TRM B3.12.2-1 Revision 44 TRM B3.3.8-1 Revision 31 TRM B3.12.3-1 Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.4-1 Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.5-1 Revision 31 TRM B3.3.11-1 Revision 45 TRM B3.12.6-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.7-1 Revision 31 TRM B3.3.13-1 Revision 31 TRM B3.12.8-1 Revision 31 TRM B3.3.14-1 Revision 31 TRM B3.4.1-1 Revision 31 TRM B3.4.1-2 Revision 34 TRM B3.4.1-3 Revision 34 TRM B3.4.1-4 Revision 34 TRM B3.4.1-5 Revision 34 TRM B3.4.2-1 Revision 31 TRM B3.4.3-1 Revision 31 TRM B3.4.4-1 Revision 31 TRM B3.4.5-1 Revision 31 TRM B3.4.6-1 Revision 31 TRM B3.4.7-1 Revision 31 TRM Vol. I LEP-3 REV 69 08/30/04

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 10, Revision 1 Page Revision Notation Page 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 TRM Vol. I LEP-4 REV 69. 08/30/04

COLR - 10 Revision I Page 1 of 20 FERMI 2 CORE OPERATING LIMITS REPORT CYCLE 10 REVISION 1 Prepared by:

B. L. i~i,Is Date Techni dl Expert - Nuclear Fuel Reviewed by: /zod 41/

T. W. Morrison Date Station Nuclear Engineer P. R. Kiel D/ate COLR Checklist Reviewer Approved by: E~z(W)v-,K Tm-°tJ-0138 2 -Gailliez Date Supervisor - Reactor Engineering August 2004 .

COLR - 10 Revision I Page 2 of 20 TABLE OF CONTENTS

1.0 INTRODUCTION

AND

SUMMARY

................................................ 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ............................................ . 5 2.1 Definition ................................................ 5 2.2 Determination of MAPLHGR Limit ................................................ 5 2.2.1 Calculation of MAPFAC(P) ................................................ 7 2.2.2 Calculation of MAPFAC(F) ................................................ 8 3.0 MINIMUM CRITICAL POWER RATIO ............................................. 9 3.1 Definition .9 3.2 Determination of Operating Limit MCPR .9 3.3 Calculation of MCPR(P) .10 3.3.1 Calculation of Kp .1 3.3.2 Calculation of . 12 3.4 Calculation of MCPR(F) .13 4.0 LINEAR HEAT GENERATION RATE ...................................... 14 4.1 Definition ...................................... . 14 4.2 Determination of LHGR Limit .. .................................... 14 4.2.1 Calculation of LHGRFAC(P) ...................................... 15 4.2.2 Calculation of LHGRFAC(F) ...................................... 17 5.0 CONTROL ROD BLOCK INSTRUMENTATION ...................................... 18 5.1 Definition ...................................... 18

6.0 REFERENCES

............ 19

COLR - 10 Revision I Page 3 of 20 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS .............................. 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS .................................... 8 TABLE 3 OLMCPRlooio 5 AS A FUNCTION OF EXPOSURE AND T.................................. 10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS .......................................... 13 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES ................................ 14 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS .......................................... 17 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER .................................................... 18

COLR - 10 Revision I Page 4 of 20

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 10, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR 11.

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

OPERATING LIMIT TECHNICAL SPECIFICATION APLHGR 3.2.1 I

MCPR 3.2.2 LHGR 3.2.3 RBM 3.3.2.1 APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATION RATE MCPR = MINIMUM CRITICAL POWER RATIO LHGR = LINEAR HEAT GENERATION RATE RBM = ROD BLOCK MONITOR SETPOINTS

COLR - 10 Revision I Page 5 of 20 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR 2.1 Definition The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MIAPLIHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 1 and 2, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in IOCFR50.46(b)(1) and that the fuel design analysis criteria defined in References 1 and 2 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGRUw = MINT (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRs.h MAPLHGR (F) = AMPFAC (F) x MAPLHGRsTD Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGRuLaT = MIN (AMPLHGR (P), AMPLHGR (F), MAPLHGR (SLO))

where:

MAPLHGR (SLO) = 0.73 x MAPLHGR

COLR - 10 Revision I Page 6 of 20 MAPLHGRSTD, the standard MAPLHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table

1. When hand calculations are required, MAPLHGRsTD shall be determined by interpolation from Table 1. MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.1. MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS Exposure MAPLHGR GWD/ST KW/FT 0.0 13.42 19.72 13.42 27.22 12.29 63.50 8.90 This MAPLI1GR Limit Array applies to all Cycle 10 fuel Fuel Types 14= GEl I -P9CUB380-12GZ-lOOT-146-T6 17 = GE] I-P9CUB380-1 IGZ-IOOT-146-T6-2542 15 = GEI 1-P9CUB3784G6/8G5-IOOT-146-T6-3955 18 = GE I I -P9CUB404-12GZ-1 OOT-1 46-T6-2543 16 = GE I -P9CUB396-l3GZ-lOOT-146-T6-3954 19 = GEI I-P9CUB408-12GZ-IOOT-146-T6-2604 20 = GE] I-P9CUB380-12GZ-IOOT-146-T6-2605

COLR - 10 Revision I Page 7 of 20 2.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P), shall be calculated by one of the following equations:

For 0<P<25:

No thermral limits monitoring is required.

For 25 <P <30:

With turbine bypass OPERABLE, For core flow < 50 MIlbs/hr, AMPFAC (P) = 0.606 + 0.0038 (P - 30)

For core flow > 50 Mllbs/hr, MAPFAC (P) = 0.586 + 0.0038 (P - 30)

With turbine bvpass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFA C(P) = 0.490 + 0.0050(P- 30)

For core flow > 50 Mllbs/hr, MAPFAC(P) = 0.438+0.0050(P-30)

For 30<P<100:

MAPFAC(P) = 1.0+0.005224(P-100) where: P = Core power (fraction of rated power times 100).

COLR - 10 Revision I Page 8 of 20 2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F), shall be calculated by the following equation:

MAPFAC(F) = MN(.O, AFX-1O+BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF = Given in Table 2.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF 110 0.67874 0.4358

'As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 10 Revision I Page 9 of 20 3.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR I

3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

3.2 Determination of Operating Limit AMCPR The required Operating Limit MCPR (OLMCPR) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR. Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and 1. t is a measure of scram speed, and is defined in Section 3.3.2.

The OLMCPR shall be calculated by the following equation:

OLMCPR = MAX(AMCPR(P), MCPR(F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR is increased to account for increased uncertainties in core flow measurement and TIP measurement, but the OLMCPR does not change. This is due to the fact that sufficient conservatism exists in the power-dependent MCPR operating limits to allow for the increase in the SLMCPR without requiring a corresponding increase in the OLMCPR.

COLR - 10 Revision I Page IO of 20 3.3 Calculation of MICPR(P)

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated by the following equation:

MCPR(P) = KpXOLMCPRo0 0,o0 5 Kp, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.

OLMCPR100 /10 5 shall be determined by interpolation from Table 3, and t shall be calculated by using Section 3.3.2.

TABLE 3 OLMICPRloo 105 AS A FUNCTION OF EXPOSURE AND T EXPOSURE CONDITION (MWD/ST) OLA1CPRiooio5 Both Turbine Bypass and Moisture Separator Reheater OPERABLE BOC to 8800 T=1 1.30 T =I 1.37 8800 to 10300 T=0 1.32 T= I 1.39 10300 to EOC T=0 1.35 T= I 1.46 Either Turbine Bypass or Moisture Separator Reheater INOPERABLE BOC to EOC 1.40 T= I 1.51 Both Turbine Bypass and Moisture Separator Reheater INOPERABLE BOC to EOC 1.43 T=1 1.54

COLR - 10 Revision I Page II of 20 3.3.1 Calculation of Kr The core power-dependent MCPR operating limit adjustment factor, Kp, shall be calculated by using one of the following equations:

For 0<P<25 No thermal limits monitoring is required.

For 25<P<30 When turbine bypass is OPERABLE, Kp= (KBYP+(O.O26x(30-P)))

OLMCPRoo 0 lo.5 where: KBYP = 1.92 for core flow < 50 Mlbs/hr

= 2.25 for core flow > 50 MIlbs/hr When turbine bypass is INOPERABLE, KP= (KBYP + (0. 055 x(30 - P)))

OLMCPRoo1,os where: KBYP = 2.28 for core flow < 50 Mlbs/hir

- 3.06 for core flow > 50 Mlbs/hr For 30<P<45 Kp = 1.28 + (0.0134 x (45-P))

For 45<P<60:

Kp = 1.15 + (0.00867 x (60-P))

For 60<P<100:

Kp = 1.0 + (0.00375 x (100-P))

where: P = Core power (fraction of rated power times 100).

COLR- 10 Revision 1 Page 12 of 20 3.3.2 Calculation ofT The value of t, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis, shall be calculated by using the following equation:

where: rA = 1.096 seconds rB = 0.830+0.019x 1.65 seconds ZNii ENivi i=2 77 = number of surveillance tests performed to date in cycle, N1 = number of active control rods measured in the ith surveillance test, I = average scram time to notch 36 of all rods measured in the ith surveillance test, and NA = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of t shall be calculated and used to determine the applicable OLMCPR 10011 05 value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4.

Prior to performance of the initial scram time measurements for the cycle, a T value of 1.0 shall be used to determine the applicable OLMCPRjoo' 1 o5 value from Table 3.

COLR - 10 Revision 1 Page 13 of 20 3.4 Calculation of MICPR(F)

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated by using the following equation:

MCPR(F)= MAX(I.21, (AF X 100 + BF))

100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 4.

BF = Given in Table 4.

TABLE 4 FLOWII-DEPENDENT AMCPR LIMIT COEFFICIENTS Maximum Core Flow" (Mlbslhr) AF BF 110 -0.6012 1.743 lAs limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 10 Revision I Page 14 of 20 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 1 and 2, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References I and 2 will be met.

TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES Most Limiting Uranium Only Fuel Rods Gadolinia Bearing Fuel Rods Exposure LHGR Exposure LHGR GWD/ST KW/FT GWD/ST KW/FT 0.0 14.40 0.0 12.30 13.24 14.40 10.32 12.30 27.22 12.29 23.44 10.50 63.50 8.90 57.51 7.60 The LHGR Limit Arrays apply to all Cycle 10 fuel el Types 14 = GEI I-P9CUB380-I2GZ-IOOT-146-T6 17 = GEI I-P9CUB380-1 IGZ-IOOT-146-T6-2542 15 = GEI I-P9CUB378-4G6/8G5-IOOT-146-T6-3955 18 = GEI I -P9CUB404-12GZ- I OOT- I 46-T6-2543 16 = GEI I-P9CUB396-13GZ-IOOT-146-T6-3954 19 = GE 1I-P9CUB408-12GZ-1OOT-146-T6-2604 20 = GEI I-P9CUB380-12GZ-IOOT-I46-T6-2605

COLR - I0 Revision I Page 15 of 20 The LHGR limit during dual loop operation is calculated by the following equation:

LHGRUI = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFA C (P) x LHGRs.D LHGR (F) = LHGRFA C (F) x LHGRS LHGRSTD, the standard LHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and is presented in Table 5.

Table 5 contains only the most limiting Gadolinia LHGR limit for the maximum allowed Gadolinia concentration of the applicable fuel product line. When hand calculations are required, LHGRsTD shall be determined by interpolation from Table 5. LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1.

LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

4.2.1 Calculation of LHGRFAC(P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P), shall be calculated by one of the following equations:

For 0 <P < 25:

No thermal limits monitoring is required.

COLR - 10 Revision I Page 16 of 20 For 25<P<30:

With turbine be pass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC(P) = 0.606 + 0.0038 (P - 30)

For core flow > 50 MIlbs/hr, LHGRFAC OP) = 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 MIlbs/ljr, LHGRFAC(P) = 0.490 + 0.0050(P-30)

For core flow > 50 Mlbs/hr, LHGRFAC(P)=0.438+0.0050(P-30)

For 30<P< 100:

LHGRFAC(P)=1.0 + 0. 005224(P-100)

,where: P = Core power (fraction of rated power times 100).

COLR - 10 Revision I Page 17 of 20 4.2.2 Calculation of L11GRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F), shall be calculated by the following equation:

LHGRFAC(F)= MIN(L.0, AFX100 + BF) 100 where:

WAT = Core flow (Mlbs/hr).

AF = Given in Table 6.

BF = Given in Table 6.

TABLE 6 1FLOW-DEPENDENT L11GR LIMIT COEFFICIENTS Maximum Core Flow (Mlbs/hr) AF BF 110 0.67874 0.4358 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR- 10 Revision I Page 18 of 20 5.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3.3.2.1 RBM 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 6. These values are consistent with the bases of the APRM Rod Block Technical S.pecification Improvement Program (ARTS) and the MCPR operating limits.

TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Sctpoint Trip Setpoint Allowable Value LPSP 27.0 28.4 IPSP 62.0 63.4 HPSP 82.0 83.4 LTSP 117.0 118.9 ITSP 112.2 114.1 HTSP 107.2 109.1 DTSP 94.0 92.3 where:

LPSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint HPSP High power setpoint LTSP Low trip setpoint ITSP Intermediate trip setpoint HTSP High trip setpoint DTSP Downscale trip setpoint

COLR - 10 Revision I Page 19 of 20

6.0 REFERENCES

1. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 14 as amended by Amendment 25
2. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident

- SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984

3. "Fermi-2 SAFER/GESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July 1991, and Errata and Addenda No. 1, April 1992
4. "Fuel Bundle Information Report for Fermi 2 Reload 9 Cycle 10," Global Nuclear Fuel, 0000-0007-4899-FIBR, Revision 0, January 2003
5. "Supplemental Reload Licensing Report for Fermi 2 Reload 9, Cycle 10," Global Nuclear Fuel, 0000-0007-4899-SRLR, Revision 0, January 2003
6. Letter from T. G. Colbum to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," September 9, 1992
7. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No.

NPF-43: (TAC No. 69074)," July 27, 1990

8. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990
9. "Cycle 10 Offrated ARTS Limits" letter TMFR 03-0061 from P. R. Kiel to File dated April 11, 2003
10. "Power Range Neutron Monitoring System," DC-4608, Vol. XI DCD, Rev. B and DC-4608 Vol. I Rev. D.
11. Letter from Andrew J. Kugler (USNRC) to Douglas R. Gipson (Detroit Edison), "Fermi Issuance of Amendment RE: Safety Limit Minimum Critical Power Ratio Limits for Cycle 8 (TAC NO. MA7372)," dated March 30, 2000
12. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A. Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position

COLR - 10 Revision I Page 20 of 20

6.0 REFERENCES

13. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
14. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999
15. R-Factor Calculation Method for GE1 1, GE12, and GE13 Fuel, NEDC-32505P-A, Revision 1, July 1999
16. "Improved LHGR Limits (designated as "GE1 1/13-UPGRADE") for GEl1 Fuel in Fermi,"

Global Nuclear Fuel, GNF-J 1103057-265, August 2001

17. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE - Nuclear Energy, GE-NE-J1 1-03920-07-0 1, October 2001
18. Licensing Topical Report, "Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors," Volume 1, NEDO-24154-A 78NED29OR1, August 1986
19. GE 10 CFR Part 21 Communication SC04-12, "Non-Conservative SLMCPR", August 24, 2004
20. GNF Letter from L. R. Conner to Linda Bugoci, "PRC SC04-12 Impact on Fermi 2 Cycle 10 Safety and Operating Limits", LRC-DTE-KHI-04-067, dated August 24, 2004