ML030660170

From kanterella
Jump to navigation Jump to search
WCAP-16012, Rev. 0, Analysis of Capsule W-83 from Dominion Nuclear Connecticut Millstone Unit 2 Reactor Vessel Radiation Surveillance Program, Appendix a - D
ML030660170
Person / Time
Site: Millstone Dominion icon.png
Issue date: 02/28/2003
From: Conermann J, Gresham J, Ledger J, Wrights G
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
FOIA/PA-2005-0108 WCAP-16012 Rev 0
Download: ML030660170 (154)


Text

A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS Millstone Unit 2 Capsule W-83

A-2 A.1 Neutron Dosimetry Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for the surveillance capsules withdrawn from Millstone Unit 2 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence.tA'l One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within

+ 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. This information may also be useful in the future, in particular, as least squares adjustment techniques become accepted in the regulatory environment.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of three neutron sensor sets withdrawn as part of the Millstone Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Equivalent Withdrawal Irradiation Azimuthal Time Time [EFPY1 Capsule ID Location 70 End of Cycle 3 3.0 W-97 70 End of Cycle 10 5.0 W-97 supplemental t W-104 140 End of Cycle 10 10.0 70 End of Cycle 14 15.3 W-83

[I] The W-97 supplemental capsule is a fourth dosimeter set that was first put into service at the beginning of the sixth fuel cycle.

Since the W-97 supplemental capsule dosimetry differed substantially from the W-104 dosimetry measurements jointly described in Reference A-3, the W-97 supplemental capsule was not used to validate the Millstone Unit 2 transport calculations The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.

The passive neutron sensors contained in the W-97, W-104, and W-83 surveillance capsules are summarized as follows:

Reaction Sensor Sets Evaluated Sensor Material Of Interest Capsule W-97 Capsule W-1 04 Capsule W-83 Copper [Cd] 63Cu(n,ct) 6Co Iron '584Fe(n,p)'4Mn X X X Ni(n,p)58Co X X X Nickel [Cd]

"4T'li(n,p)46Sc X X X Titanium 238U(n, 137Cs Uranium-238 2 38 Uranium-238 [Cd] U(n,f)13 7 Cs X X 59Co(n,) 60 X Cobalt-Aluminum Co X 59 Co(n,6)0Co X X Cobalt-Aluminum [Cd] 32S(n,p)12p Sulfur Millstone Unit 2 Capsule W-83

A-3 In regards to the neutron sensors listed above, the cadmium-covered 63Cu sensor reaction was not measured for capsule W-83 since the copper wire amalgamated with the cadmium. Similarly, the capsule W-97 63Cu sensor was also rejected on the basis of sample integrity since melting of the cadmium shield had also occurred. The cadmium-covered 63Cu sensor reaction for capsule W-104 was also rejected based on previous performance issues with cadmium melting in the aforementioned capsules.

The bare uranium sensor measurements for capsules W-97 and W-83 were also excluded from this assessment. The bare 23$U(n,f) measurement is dominated by contributions from thermal neutron reactions in 23SU impurities. These thermal contributions add significant uncertainty to the determination of the 238U(n,f) reaction rate. The bare 23 8U(n,f) sensor reactions for capsule W-104 were not reported in Reference A-3.

The cadmium-covered 231U sensor provides greater accuracy in the measurement of this fast neutron reaction and was therefore included in the reevaluation of capsules W-97 and W-104. However, the cadmium-covered 3 238U sensors for Capsule W-83 were statistically inconsistent (in excess of a) with 23 8 U(n,f)137Cs[Cd] measurements from other similar plants; hence, this sensor reaction rate was excluded from this assessment.

The sulfur sensor reaction was not measured for capsule W-83 due to the short half-life of 3 2p (14.28 days); similarly, these sensors were not reevaluated for capsule W-97. Furthermore, the sulfur sensor reactions for capsule W-104 were not reported in Reference A-3. Therefore, the sulfur reaction was not utilized in the dssessment of these capsules.

Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-1. The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

"* the measured specific activity of each monitor,

"* the physical characteristics of each monitor,

"* the operating history of the reactor,

"* the energy response of each monitor, and

"* the neutron energy spectrum at the monitor location.

The radiometric counting of the neutron sensors from capsule W-97 was reported by Combustion Engineering (C-E)fA-21. The radiometric counting of the neutron sensors from capsule W-104 was reported by Babcock & Wilcox (B&W) .A-3J.

The radiometric counting of the sensors from capsule W-83 was completed at the Pace Analytical Services Laboratory located at the Westinghouse Waltz Mill Site.

The Pace radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer. For the iron, nickel, titanium, and cobalt-aluminum sensors, these analyses were Millstone Unit 2 Capsule W-83

A-4 performed by direct counting of each of the individual samples. In the case of the uranium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by capsules W-97, W-104, and W-83 was based on the reported monthly power generation of Millstone Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to capsules W-97, W-104, and W-83 is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

R= A No F Y P Cj [1- e-A'I] [e-*'-d where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pef (rps/nucleus).

A = Measured specific activity (dps/gm).

No = Number of target element atoms per gram of sensor.

F = Weight fraction of the target isotope in the sensor material.

Y = Number of product atoms produced per reaction.

Pj = Average core power level during irradiation periodj (MW).

Pef = Maximum or reference power level of the reactor (MW).

Cj = Calculated ratio of 4(E > 1.0 MeV) during irradiation period j to the time weighted average 4b(E > 1.0 MeV) over the entire irradiation period.

. = Decay constant of the product isotope (1/sec).

tj = Length of irradiation period j (sec).

td = Decay time following irradiation periodj (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The Millstone Unit 2 Capsule W-83

A-5 ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, C, is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management. The fuel cycle specific neutron flux values along with the computed values for Cj are listed in Table A-3. These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Calculations for the reactions whose products have short half-lives indicated that Cj factors based on cycle average flux values were appropriate for capsule W-97 but not appropriate for capsules W-104 and W-83 due to the change in the spectra over the life of the surveillance capsules resulting from the removal of the thermal shield at the end of the fifth fuel cycle. The effect of this spectral change was accounted for by determining Cj factors based on individual reaction rates. As a result, the Cj factors that were utilized in the final analyses for capsules W-104 and W-83 are based on individual reaction rates determined from the synthesized transport calculations as reported in Table A-3.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, corrections were made to the 238U measurements to account for the presence of 23U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.

Corrections were also made to the 23SU sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiation. The correction factors applied to the Millstone Unit 2 fission sensor reaction rates are summarized as follows:

Correction Capsule W-97 Capsule W-104 Capsule W-83t1 1 3

2

" 'U Impurity/Pu Build-in 0.872 238 0.848 0.819 u(y,f) 0.903 0.844 0.846 Net 238U Correction 0.787 0.716 0.693

[1] The cadmium covered U foil from this dosimetry set was not used in the least squares evaluation for the W-83 capsule since it was statistncally inconsistent with comparable measurement data obtained from sirmlar plants.

These factors were applied in a multiplicative fashion to the decay corrected uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for capsules W-97, W-104 and W-83 are given in Table A-4. In Table A-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for 238U impurities, plutonium build-in, and gamma ray induced fission effects.

A.1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with Millstone Unit 2 Capsule W-83

A-6 associated uncertainties. Best Estimates for key exposure parameters such as ý(E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, R.+SR, = (C _.(5)(5+/- )

g relates a set of measured reaction rates, R, to a single neutron spectrum, 4g, through the multigroup dosimeter reaction cross-section, cy,, each with an uncertainty 5. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Millstone Unit 2 surveillance capsule dosimetry, the FERRET code(A4] was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (4*(E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules considered herein.

The application of the least squares methodology requires the following input:

1 - The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2 - The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.

3 - The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Millstone Unit 2 application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. 1.1.

The dosimetry reaction cross-sections and uncertainties were obtained from the Sandia National Laboratory Radiation Metrology Laboratory (SNLRML) dosimeter cross-section library [A-51 The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard E10 18, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IB)".

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances.

The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

Millstone Unit 2 Capsule W-83

A-7 The following provides a summary of the uncertainties associated with the least squares evaluation of the Millstone Unit 2 surveillance capsule sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

Reaction Uncertainty 6"3Cu(n,a)c°Co 5%

54 54 Fe(n,p) Mn 5%

58Ni(n,p) 58Co 5%

46Ti(n,p)41Sc 5%

238U(n,f)137Cs 10%

59Co(n,7) 6Co 5%

These uncertainties are given at the la level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library. This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Millstone Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Millstone Unit 2 Capsule W-83

A-8 These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

Mg.=R2 +Rg *Rg,*Pg, where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties R.. and Rg. specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Pgg = [I-9]5-+ 0 e-"

where H =(g -g ,)2 272 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlation's over a group range y (0 specifies the strength of the latter term). The value of 5 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Millstone Unit 2 calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (Rg, Rg)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 29%

(E < 0.68 eV) 52%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Millstone Unit 2 Capsule W-83

A-9 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Millstone Unit 2 surveillance capsules considered herein are provided in Tables A-5 and A-6. In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of M/C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules. From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the la level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6-7% for neutron flux (E > 1.0 MeV) and 6% for iron atom displacement rate. Again, the uncertainties from the least-squares evaluation are at the I c level.

Further comparisons of the measurement results with calculations are given in Tables A-7 and A-8.

These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of 4(E > 1.0 MeV) and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

It should be noted that although comparisons between the measured and calculated values for the 46Ti sensors are included in Table A-7, they were not used in determining the average measurement to calculation (M/C) ratios since a bias exists in the SNLRML cross section for the 46Ti(n,p) reaction. This bias may be observed in the data contained in ASTM Standard Practice E261, "Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques." Specifically, Table 3 of ASTM E261 indicates that the sum in quadrature of the experimental uncertainty and the calculated uncertainty for 46Ti(n,p) 46SC in the 23SU thermal fission field is 6.86%. Also indicated in the same table is the ratio of the calculated cross-section to the experimentally measured cross section (CIE) that is given Millstone Unit 2 Capsule W-83

A-10 as 0.899. Since the difference between the calculated and measured cross-section is greater than the uncertainties involved supports the hypothesis that the calculated cross-section is biased low.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.87-1.15 for the 8 samples included in the data set.

The overall average M/C ratio for the entire set of Millstone Unit 2 data is 1.00 with an associated standard deviation of 9.6%.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.94-1.12 for neutron flux (E > 1.0 MeV) and from 0.93 to 1.10 for iron atom displacement rate. The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 1.02 with a standard deviation of 9.1% and 1.01 with a standard deviation of 8.6%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Millstone Unit 2 reactor pressure vessel.

Millstone Unit 2 Capsule W-83

A-li Table A-I Nuclear Parameters Used In The Evaluation Of Neutron Sensors Target Atom 90% Response 21 Fission t1 Monitor Reaction of Fractionl Range Product Yield (%)

Material Interest (MeV) Half-life 63 Copper Cu(n,a) 0.6917 5.0- 12.0 5. 2 71y 14Fe (n,p)

Iron 0.0585 2.3-8.8 312.3 d Nickel "58Ni (n,p) 0.6808 1.9-8.8 70.82 d 46 Titanium Ti (n,p) 0.0800 4.0-10.5 83.81 d 23&u (n,f)

Uranium-238 1.0000 1.4-8.0 30.07 y 6.02 Cobalt-Aluminum 59Co (n,7) 0.0015 non-threshold 5.271 y

[1] The counting results identified by B&W for the capsule W-l104 reactions were reported in Reference A-3 based on the weight of the target material in the sample rather than the total weight of the dosimeter material. As a result, the target atom fraction used in the analysis of the capsule W-104 sensors was unity.

[2] The 90% response range is defined such that, in the neutron spectrum characteristic of the Millstone Unit 2 surveillance capsules located at 70 and 140 from the core cardinal axes, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

Millstone Unit 2 Capsule W-83

A-12 Table A-2 Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor Thermal Thermal Thermal Generation Generation Generation (MWt-hr) Year Month (MWt-hr)

Year Month (MWt-r) Year Month 1979 1 1662527 1982 1 0 1975 10 0 2 1692785 1982 2 0 1975 11 169382 1979 1979 3 539470 1982 3 808939.7 1975 12 470151 1979 4 0 1982 4 1570359 1976 1 726120 5 417578 1982 5 1982946 1976 2 727079 1979 1979 6 1230123 1982 6 1935852 1976 3 993918 1979 7 1989041 1982 7 1020076 1976 4 1275861 8 745654 1982 8 1724588 1976 5 1161586 1979 9 1933841 1982 9 1703478 1976 6 1534194 1979 10 1991854 1982 10 1693915 1976 7 1197834 1979 11 0 1982 11 1644259 1976 8 1373055 1979 1979 12 1613522 1982 12 1938553 1976 9 1727678 1980 1 2001005 1983 1 1801321 1976 10 1787608 1980 2 1683788 1983 2 1634909 1976 11 1740007 1980 3 1740751 1983 3 806911 1976 12 910583 4 1831957 1983 4 1921628 1977 1 1004692 1980 5 499545 1983 5 1712695 1977 2 1697538 1980 6 404890 1983 6 0 1977 3 1849165 1980 7 1900317 1983 7 0 1977 4 1348306 1980 8 958023 1983 8 0 1977 5 368843 1980 9 0 1983 9 0 1977 6 362122 1980 10 659001 1983 10 0 1977 7 1329348 1980 11 1862268 1983 11 0 1977 8 1885613 1980 12 1995148 1983 12 0 1977 9 1667984 1980 1 782184 1984 1 809931 1977 10 1516798 1981 2 1752019 1984 2 1507373 1977 11 1205392 1981 1981 3 2001106 1984 3 1971567 1977 12 0 1981 4 1934118 1984 4 1935357 1978 1 0 1981 5 987167 1984 5 1998215 1978 2 0 6 1853185 1984 6 1877970 1978 3 0 1981 1981 7 1963023 1984 7 1903852 1978 4 107169 8 1904455 1984 8 1995846 1978 5 1596598 1981 9 1923108 1984 9 1910948 1978 6 1752746 1981 10 1869618 1984 10 2001607 1978 7 1790474 1981 11 1942822 1984 11 1524599 1978 8 1806986 1981 12 267821 1984 12 1935523 1978 9 1704986 1981 1978 10 1875411 1978 11 1839813

'1978 12 1900976 Millstone Unit 2 Capsule W-83

A-13 Table A-2 cont'd Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr) Year Month (MWt-hr) Year Month (MWt-hr) 1985 1 1994395 1988 1 0 1991 1 1323684 1985 2 900708 1988 2 439630 1991 2 1687526 1985 3 0 1988 3 2006818 1991 3 2008452 1985 4 0 1988 4 1494187 1991 4 1368599 1985 5 0 1988 5 956578 1991 5 803890 1985 6 0 1988 6 1400732 1991 6 0 1985 7 1247903 1988 7 2008427 1991 7 1352310 1985 8 1963363 1988 8 2008495 1991 8 540061 1985 9 1710661 1988 9 1936390 1991 9 1170466 1985 10 0 1988 10 1885985 1991 10 1708110 1985 11 1411904 1988 11 1943414 1991 11 342421 1985 12 1990411 1988 12 2008362 1991 12 160881 1986 1 1984099 1989 1 2008467 1992 1 1709024 1986 2 1813645 1989 2 201767 1992 2 975691 1986 3 2000735 1989 3 0 1992 3 2008454 1986 4 1940693 1989 4 2469 1992 4 1940643 1986 5 1809751 1989 5 1833467 1992 5 1872406 1986 6 1799531 1989 6 1938383 1992 6 0 1986 7 2007906 1989 7 2004115 1992 7 0 1986 8 1670198 1989 8 2001979 1992 8 0 1986 9 1121241 1989 9 1842429 1992 9 0 1986 10 0 1989 10 1189086 1992 10 0 1986 11 0 1989 11 454022 1992 11 0 1986 12 496285 1989 12 2008374 1992 12 0 1987 1 1772860 1990 1 2008226 1993 1 968933 1987 2 757661 1990 2 1813945 1993 2 1573593 1987 3 1990243 1990 3 2008300 1993 3 2008013 1987 4 1863177 1990 4 1870658 1993 4 1870993 1987 5 2006240 1990 5 455773 1993 5 1883361 1987 6 1942702 1990 6 945947 1993 6 1859045 1987 7 1936769 1990 7 2008021 1993 7 2008410 1987 8 1977157 1990 8 1869028 1993 8 1347720 1987 9 1792000 1990 9 901501 1993 9 902578 1987 10 2008169 1990 10 0 1993 10 1355882 1987 11 1840647 1990 11 1216781 1993 11 1848160 1987 12 1879773 1990 12 1822046 1993 12 1991761 Millstone Unit 2 Capsule W-83

A-14 Table A-2 cont'd Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr) Year Month (MWt-hr) Year Month (MWt-hr) 1994 1 1987044 1997 1 0 2000 1 1793229 1994 2 1808654 1997 2 0 2000 2 803563.6 1994 3 2004989 1997 3 0 2000 3 1995614 1994 4 1420483 1997 4 0 2000 4 1353661 1994 5 0 1997 5 0 2000 5 0 1994 6 736521 1997 6 0 2000 6 1640187 1994 7 1715901 1997 7 0 2000 7 2002629 1994 8 0 1997 8 0 2000 8 2003897 1994 9 1743833 1997 9 0 2000 9 1923670 1994 10 8969 1997 10 0 2000 10 1984571 1994 11 0 1997 11 0 2000 11 1936391 1994 12 0 1997 12 0 2000 12 1996304 1995 1 0 1998 1 0 2001 1 2000397 1995 2 0 1998 2 0 2001 2 1809984 1995 3 0 1998 3 0 2001 3 1974906 1995 4 0 1998 4 0 2001 4 1809699 1995 5 0 1998 5 0 2001 5 1537819 1995 6 0 1998 6 0 2001 6 1934469 1995 7 0 1998 7 0 2001 7 1991596 1995 8 1127403 1998 8 0 2001 8 1802924 1995 9 1943543 1998 9 0 2001 9 1941279 1995 10 2008689 1998 10 0 2001 10 2002856 1995 11 1921802 1998 11 0 2001 11 1860739 1995 12 1594145 1998 12 0 2001 12 1976053 1996 1 2007749 1999 1 0 2002 1 1945747 1996 2 1232628 1999 2 0 2002 2 835263.3 1996 3 0 1999 3 0 2002 3 0 1996 4 0 1999 4 0 1996 5 0 1999 5 712321.6 1996 6 0 1999 6 1942647 1996 7 0 1999 7 1989754 1996 8 0 1999 8 1986803 1996 9 0 1999 9 1432859 1996 10 0 1999 10 2004610 1996 11 0 1999 11 1897621 1996 12 0 1999 12 1918186 Millstone Unit 2 Capsule W-83

A-15 Table A-3 Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation

$(E >1.0 MeV) [nc -s] Cj Fuel Capsule Capsule Capsule Capsule Capsule Capsule Cycle W-97 W-104 W-83 W-97 W-104 W-83 1 3.OOE+10 2.10E+10 3.OOE+10 0.89 0.70 0.83 2 3.35E+10 2.36E+10 3.35E+10 0.99 0.79 0.93 3 3.97E+10 2.80E+10 3.97E+10 1.18 0.93 1.10 4 2.68E+10 3.84E+10 0.90 1.07 5 2.66E+10 3.79E+10 0.89 1.05 6 3.90E+10 5.45E+10 1.30 1.51 7 4.00E+10 5.58E+10 1.34 1.55 8 4.02E+10 5.59E+10 1.34 1.55 9 3.94E+10 5.48E+10 1.31 1.52 10 1.96E+10 2.46E+10 0.65 0.68 11 2.81E+10 0.78 12 2.33E+10 0.65 13 2.47E+10 0.69 14 2.46E+10 0.68 Average 3.37E+10 2.99E+10 3.60E+10 1.00 1.00 1.00

[1] The Cj factors based on the ratio of the cycle specific fast (E > 1 0 MeV) neutron flux divided by the average flux over the total irradiation period were deemed unsuitable for capsules W- 104 and W-83 since individual reaction rates did not vary proportionally with the fast flux due to the removal of the thermal shield at the end of the fifth fuel cycle. As a result of this observation, the Cq terms that were utilized in the final analyses for capsules W-l104 and W-83 were based on the individual reaction rates determined from the synthesized transport calculations. The final q which are based on individual reaction rates, are reported on the following pages of this table.

Millstone Unit 2 Capsule W-83

A-16 Table A-3 cont'd Calculated Ci Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule W-104)

Fuel Cycle 63Cu Capsule W-104 Reaction Rates [rps/atomL (n,0) 54Fe (n,p) 51Ni (n,p) 46Ti (n,p) 23SU (n,f) 1 2.36E-17 2.20E-15 2.92E-15 3.93E-16 8.60E-15 2 2.62E-17 2.46E-15 3.27E-15 4.38E-16 9.65E-15 3 3.07E-17 2.90E-15 3.85E-15 5.14E-16 1.14E-14 4 2.96E-17 2.79E-15 3.70E-15 4.95E-16 1.1OE-14 5 2.94E-17 2.77E-15 3.68E-15 4.92E-16 1.09E-14 6 6.01E-17 5.27E-15 6.85E-15 9.99E-16 1.76E-14 7 6.15E-17 5.40E-15 7.03E-15 1.02E-15 1.80E-14 8 6.17E-17 5.43E-15 7.06E-15 1.03E-15 1.81E-14 9 6.06E-17 5.32E-15 6.92E-15 1.01E-15 1.77E-14 10 3.34E-17 2.77E-15 3.59E-15 5.43E-16 8.95E-15 Average 4.11E-17 3.68E-15 4.81E-15 6.83E-16 1.30E-14 Fuel Cycle 63Cu Capsule W-104 C _

(n,o,) 54Fe (n,p) ý'Ni (np) 46T1 (n,p) 211U (n,f) 1 0.57 0.60 0.61 0.58 0.66 2 0.64 0.67 0.68 0.64 0.74 3 0.75 0.79 0.80 0.75 0.88 4 0.72 0.76 0.77 0.72 0.84 5 0.72 0.75 0.76 0.72 0.84 6 1.46 1.43 1.42 1.46 1.35 7 1.50 1.47 1.46 1.50 1.39 8 1.50 1.48 1.47 1.50 1.39 9 1.48 1.45 1.44 1.48 1.37 10 0.81 0.75 0.75 0.79 0.69 Average 1.00 1.00 1.00 1.00 1.00 Millstone Unit 2 Capsule W-83

A-17 Table A-3 cont'd Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule W-83)

Fuel Cycle Capsule W-83 Reaction Rates [rps/atom]

59Co (n,y) ' 9Co (n,y) Cd

-Fe (n,p) -"Ni (n,p) 46Ti (n,p) 211U (n,f) 1 3.07E-15 4.07E-15 5.34E-16 1.22E-14 2.90E-12 6.25E-13 2 3.41E-15 4.53E-15 5.92E-16 1.36E-14 3.26E-12 7.03E-13 3 4.01E-15 5.34E-15 6.94E-16 1.61E-14 3.89E-12 8.42E-13 4 3.90E-15 5.18E-15 6.75E-16 1.56E-14 3.77E-12 8.14E-13 5 3.84E-15 5.11E-15 6.65E-16 1.54E-14 3.71E-12 8.02E-13 6 7.17E-15 9.34E-15 1.33E-15 2.44E-14 2.50E-12 5.53E-13 7 7.33E-15 9.55E-15 1.36E-15 2.49E-14 2.56E-12 5.66E-13 8 7.35E-15 9.57E-15 1.36E-15 2.50E-14 2.56E-12 5.68E-13 9 7.21E-15 9.39E-15 1.33E-15 2.45E-14 2.51E-12 5.56E-13 10 3.37E-15 4.37E-15 6.44E-16 1.11E-14 1.07E-12 2.41E-13 11 3.82E-15 4.97E-15 7.28E-16 1.27E-14 1.24E-12 2.77E-13 12 3.19E-15 4.15E-15 6.12E-16 1.05E-14 1.02E-12 2.28E-13 13 3.38E-15 4.40E-15 6.47E-16 1.12E-14 1.08E-12 2.43E-13 14 3.38E-15 4.38E-15 6.46E-16 1.11E-14 1.08E-12 2.42E-13 Average 4.44E-15 5.82E-15 8.17E-16 1.57E-14 2.23E-12 4.89E-13 Fuel Cycle Capsule W-83 Ci 4Fe (n,p) -"Ni(n,p) 46Tri (n,p) 238U (n,f) 59Co (n,y) 59Co (n,y) Cd 1 0.69 0.70 0.65 0.78 1.30 1.28 2 0.77 0.78 0.72 0.87 1.46 1.44 3 0.90 0.92 0.85 1.03 1.75 1.72 4 0.88 0.89 0.83 0.99 1.69 1.66 5 0.86 0.88 0.81 0.98 1.66 1.64 6 1.61 1.61 1.62 1.55 1.12 1.13 7 1.65 1.64 1.66 1.59 1.15 1.16 8 1.65 1.65 1.66 1.59 1.15 1.16 9 1.62 1.62 1.63 1.56 1.13 1.14 10 0.76 0.75 0.79 0.71 0.48 0.49 11 0.86 0.85 0.89 0.81 0.55 0.57 12 0.72 0.71 0.75 0.67 0.45 0.47 13 0.76 0.76 0.79 0.71 0.49 0.50 14 0.76 0.75 0.79 0.71 0.48 0.49 Average 1.00 1.00 1.00 1.00 1.00 1.00 Millstone Unit 2 Capsule W-83

A-18 Table A-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule W-97 Measured Saturated Reaction Activity P] Activity Rate Location (dps/g) (dps/g) (rps/atom)

Reaction 63 60 3.78E+05 5.76E-17 Cu (n,'c) Co (Cd) Top 1.12E+05 Middle 1.1OE+05 3.74E+05 5.71E-17 Bottom 1.27E+05 4.28E+05 6.53E-17 Average 6.OOE-17 Top 1.87E+06 2.60E+06 4.13E-15 4

' Fe (np) ' 4Mn Middle 1.76E+06 2.45E+06 3.88E-15 Bottom 1.86E+06 2.59E+06 4.10E-15 Average 4.04E-15 5"tNi 5 Top 3.01E+07 3.70E+07 5.30E-15 (np) "Co (Cd)

Middle 2.78E+07 3.42E+07 4.90E-15 Bottom 3.05E+07 3.75E+07 5.37E-15 Average 5.19E-15 46 7.60E+05 7.55E-16 Ti (np) 46Sc Top 6.15E+05 Middle 5.48E+05 6.77E+05 6.73E-16 Bottom 5.70E+05 7.07E+05 7.03E-16 Average 7.IOE-16 23 8 U (n,f) 137Cs (Cd) Top 1.77E+05 2.75E+06 1.80E-14 Middle 1.92E+05 2.98E+06 1.96E-14 Bottom 1.87E+05 2.90E+06 1.91E-14 Average 1.89E-14 238 1.49E-14 '2' U (n,f) '37Cs (Cd) Including 235 U, 239pu, and y, fission corrections.

59 Co (n,'y) 60 Top 2.22E+07 7.48E+07 4.88E-12 Co Middle 2.52E+07 8.49E+07 5.54E-12 Bottom 1.70E+07 5.73E+07 3.74E-12 Average 4.72E-12 59Co 60Co 2.93E+06 9.88E+06 6.44E-13 (n,) (Cd) Top Middle 3.02E+06 1.02E+07 6.64E-13 Bottom 3.07E+06 1.04E+07 6.75E-13 Average 6.61E-13

[1] Measured specific activities are decay corrected to time of reactor shutdown, 1 e., August 17, 1980

[2] The average '2SU (n,f) reaction rate of 1.49E-14 includes a correction factor of 0 872 to account for plutonium build-in and an additional factor of 0.903 to account for photo-fission effects in the sensor.

Millstone Unit 2 Capsule W-83

A-19 Table A-4 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule W-104 Measured Saturated Reaction Activity o Activity Rate Reaction Location (dpslg) (dps/_) (rps/atom) 61Cu (n,a) 60Co (Cd) Top 3.28E+05 4.87E+05 5.09E-17 Middle 3.34E+05 4.96E+05 5.18E-17 Bottom 3.50E+05 5.20E+05 5.43E-17 Average 5.24E-17 54 Fe (n,p) 54 Mn Top 3.02E+07 4.09E+07. 3.67E-15 Middle 2.85E+07 3.86E+07 3.46E-15 Bottom 2.90E+07 3.93E+07 3.52E-15 Average 3.55E-15 58Ni (n,p) 5"Co (Cd) Top 3.15E+07 5.07E+07 4.88E-15 Middle 2.65E+07 4.27E+07 4.10E-15 Bottom 3.03E+07 4.88E+07 4.69E-15 Average 4.56E-15 46 Ti (n,p) 46SC Top 6.22E+06 9.55E+06 7.29E-16 Middle 5.47E+06 8.40E+06 6.41E-16 Bottom 5.75E+06 8.83E+06 6.74E- 16 Average 6.81E-16 23U (n,f) 137Cs (Cd) Top 4.77E+05 2.39E+06 1.57E-14 Middle 4.77E+05 2.39E+06 1.57E-14 Bottom 5.09E+05 2.55E+06 1.68E-14 Average 1.61E-14 13U (n,f) 137Cs (Cd) Including 235U, 239Pu, and y, fission corrections. 1.15E-14 '2'

[1] Measured specific activities are assumed to be decay corrected to time of reactor shutdown, i e , September 14, 1990.

[2] The average 238 U (n,f) reaction rate of 1.15E-14 includes a correction factor of 0 848 to account for plutonium build-in and an additional factor of 0.844 to account for photo-fission effects in the sensor.

Millstone Unit 2 Capsule W-83

A-20 Table A-4 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule W-83 Measured Saturated Reaction Activity 11 Activity Rate Reaction Location (dps_) (dys/g) (rps/atom) 54 Fe (n,p) 54Mn Top 1.21E+06 3.02E+06 4.79E-15 Middle 1.10E+06 2.75E+06 4.36E-15 Bottom 1.1OE+06 2.75E+06 4.36E-15 Average 4.50E-15 51Ni (np) 58Co (Cd) Top 4.08E+06 4.28E+07 6.13E-15 Middle 3.62E+06 3.80E+07 5.44E-15 Bottom 3.80E+06 3.99E+07 5.71E-15 Average 5.76E-15 46 1.25E+05 9.14E+05 9.08E-16 Ti (n,p) 46Sc Top Middle 1.09E+05 7.97E+05 7.92E-16 Bottom 1.1OE+05 8.04E+05 7.99E-16 Average 8.33E-16 238 7 U (n,f) 13 Cs (Cd) Top 1.55E+05 6.2 1E+05 4.08E-15 Middle 1.80E+05 7.22E+05 4.74E-15 Bottom 1.51E+05 6.05E+05 3.98E-15 Average 4.27E-15 238 U (n,f) 137Cs (Cd) Including 235U, 23 9Pu, and y, fission corrections. 2.96E-15 121 "59Co (ny) ">Co Top 1.59E+07 5.05E+07 3.29E-12 Middle 1.69E+07 5.36E+07 3.50E-12 Bottom 1.12E+07 3.55E+07 2.32E-12 Average 3.04E-12 59 5.72E+06 3.73E-13 Co (n,y) 60Co (Cd) Top 1.83E+06 Middle 1.84E+06 5.76E+06 3.76E-13 Bottom 1.82E+06 5.69E+06 3.71E-13 Average 3.73E-13

[1] Measured specific activities are decay corrected to September 9, 2002.

[2] The average 238 U (n,f) reaction rate of 2.96E-15 includes a correction factor of 0.819 to account for plutonium build-in and an additional factor of 0.846 to account for photo-fission effects in the sensor Millstone Unit 2 Capsule W-83

A-21 Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center Capsule W-97 Reaction Rate Fres/atoml Best Reaction Measured Calculated Estimate M/C NM/BE 54Fe(np). 4Mn 4.04E-15 3.50E-15 4.03E-15 1.15 1.00 5"8Ni(n,p)5 8 Co (Cd) 5.19E-15 4.66E-15 5.30E-15 1.11 0.98 "46Ti(n,p)46Sc 7.10E-16 5.70E-16 6.84E-16 1.25 1.04 238U(n,f)137Cs (Cd) 1.49E-14 1.40E-14 1.56E-14 1.06 59 Co(n, 0.95

)60Co 4.72E-12 3.28E-12 4.70E-12 1.44 1.01 59Co(n,,y)

Co (Cd) 6.61E-13 6.78E-13 6.65E-13 0.98 0.99 Capsule W-104 Reaction Rate [rps/atom]

Best Reaction 54Fe(np) 54 Measured Calculated Estimate M/C NI/BE Mn 3.55E-15 3.76E-15 3.58E-15 0.94 0.99 58Ni(n,p) 58 Co (Cd) 4.56E-15 4.92E-15 4.65E-15 0.93 0.98 "46Tl(n,p)46Sc 6.81E-16 6.57E-16 6.54E-16 1.04 1.04 23 8U(n,f)137Cs (Cd) 1.15E-14 1.33E-14 1.23E-14 0.87 0.94 Capsule W-83 Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate N/C M/BE 4

  • Fe(n,p)>-Mn 4.50E-15 4.54E-15 4.53E-15 0.99 0.99 5SNi(n,p) 58 Co (Cd) 5.75E-15 5.95E-15 5.89E-15 0.97 0.98 4rTi(n,p) 46SC 8.33E-16 7.85E-16 8.07E-16 1.06 1.03 59Co(n,

)60Co 3.04E-12 2.23E-12 3.02E-12 1.36 1.01 59Co(n,y) Co (Cd) 3.73E-13 4.67E-13 3.77E-13 0.80 0.98 Millstone Unit 2 Capsule W-83

A-22 Table A-6 Comparison of Calculated and Best Estimate Exposure Rates At The Surveillance Capsule Center

_(E > 1.0 MeV) [n/cm2-s]

Best Uncertainty Capsule ID Calculated Estimate (la) BE/C W-97 3.37E+10 3.76E+10 6% 1.12 W-104 3.00E+10 2.80E+10 6% 0.94 W-83 3.60E+10 3.58E+10 7% 0.99

[I] Calculated results are based on the synthesized transport calculations taken at the core rmdplane following the completion of each respective capsules irradiation period Iron Atom Displacement Rate [dpa/s]

Best Uncertainty Capsule ID Calculated l Estimate (la) BE/C W-97 5.17E-11 5.70E-11 6% 1.10 W-104 4.46E-1 1 4.15E-1 1 6% 0.93 W-83 5.32E-11 5.26E-11 6% 0.99

[1] Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions MWC Ratio Reaction Capsule W-97 Capsule W-104 Capsule W-83

' Fe(n,p)5 4Mn 4 1.15 0.94 0.99 58

" Ni(n,p) 58 (Cd) 1.11 0.93 0.97 46Ti(n,p)Co 46 Sc 1.25 "1 1.04 [1] 1.06 1" 1.06 0.87 N/A [2]

238U(n,p)1 37Cs (Cd)

Average 1.11 [31 0.91 '-' 0.98 [3]

% Standard Deviation 4.1 [3] 4.1 PT' 1.4 13J

[1] The M/C values for the 4Ti sensors are listed but not used in the average M/C ratio due to a bias present in the SNLRML 46 cross-section data as discussed in Section A.1.3 For additional information, these calculations were repeated using the Ti dosimetry cross-section from the BUGLE-96 data library set. The results of these calculations were M/C ratios of 1 19, 1.00, and 1.02 for Capsules W-97, W-104, and W-83, respectively

[2] The cadmium-covered uranium measurement from Capsule W-83 was rejected

[3] The overall average M!C ratio for the set of 8 sensor measurements is 1.00 with an associated standard deviation of 9.6%

Millstone Unit 2 Capsule W-83

A-23 Table A-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios BE/C Ratio Capsule ID b(E > 1.0 MeV) dpa/s W-97 1.12 1.10 W-104 0.94 0.93 W-83 0.99 0.99 Average 1.02 1.01

% Standard Deviation 9.1 8.6 Millstone Unit 2 Capsule W-83

A-24 Appendix A References A-1. Regulatory Guide RG-1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

A-2. TR-N-MCM-008, "Northeast Utilities Service Company Millstone Nuclear Unit No. 2 Post-Irradiation Evaluation of Reactor Vessel Surveillance Capsule W-97," S. T. Byrne, Combustion Engineering Inc., April 1982.

A-3 BAW-2142, "Analysis of Capsule W-104 Northeast Nuclear Energy Company Millstone Nuclear Power Station, Unit No. 2 - Reactor Vessel Material Surveillance Program," A. L. Lowe, Jr.,

et al., B&W Nuclear Service Company, November 1991.

A-4. A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-5. RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.

Millstone Unit 2 Capsule W-83

B-1 APPENDIX B INSTRUMENTED CHARPY IMPACT TEST CURVES

[Each of the following plots is titled as "Specimen Number, Test Temperature"]

Millstone Unit 2 Capsule W-83

B-2 5000 00.

4000 O00 S3000001 20000 1000O00 000 c oo 1.00 200 300 4 00 5 00 6o0 Time-i (ms) 132, O°F 2"

0'7 30001 0..

0o0 1.00 200 300 400 So0 6 00 Time-i (ms) 146, 75°F Millstone Unit 2 Capsule W-83

B-3 5000001

- 300000 I

200000 100000, 00 000 1 O0 200 300 400 5o0 600 Time-1 (ms) 117, 130-F I

5000 00

-J; 100000 000 000 1 00 200 300 400 500 600 Tmne-I (ins) 13C, 175-F Millstone Unit 2 Capsule W-83

B-4 500000 4000 00

' 300000 0

2000 00" 1000000-000 000 100 200 300 400 500 600 Time-1 (ws) 121, 175°F 5000.00 400000 3000001 200000 100000 0 00 An 100 200 300 4fl0 500 6.00 Time-1 (ms) 136, 200°F Millstone Unit 2 Capsule W-83

B-5 3

230001 0

2O000 1000{

000 100 200 3.00 400 500 6 00 Time-1 (ms) 156, 215°F 500000 400000, 2

3000 00 0

-J 2000 00 1000 00.

000 100 200 300 400 500 6 00 Time-I (ins) 165, 225 0 F Millstone Unit 2 Capsule W-83

B-6 50 00 00 IT T

4000 00' 2000 00) 1000 00T 000 000 1 00 200 300 400 500 600 Time-I (ms) 131, 250°F T

5000 00 4000 00 "2 00 1000 000 000 000 100 2.00 300 400 5o0 6o0 Time-I (ms) 12K, 300°F Millstone Unit 2 Capsule W-83

B-7 5000 00 4000 00 300001 0

000 100 200 300 400 5o0 600 Time-i (ms) 126, 325-F 4000

' 3000 0

2000 X0 300 6 00 Time-1 (ms) 16D, 350°F Millstone Unit 2 Capsule W-83

B-8 5000O00}

4000 00 "T300000

-J 200000 100000.

000 000 1 00 200 300 400 So0 600 Time-i (ms) 224, O°F 5000001 40000 0 300000T CS 2000-00 1000001 0 00 0o0 1 00 200 300 400 5o0 600 Time-i (ms) 231, 75-F Millstone Unit 2 Capsule W-83

B-9 3000 0

-J 2000 1000 0

000 1 00 200 300 400 500 600 Time-1 (ms) 21L, 130°F 50001 40001 S3000(

-.J 000 1 00 200 300 400 500 600 Time-I (ms) 253, 150°F Millstone Unit 2 Capsule W-83

B-10 5000 00.

4000 00

.0 3000 00, 0

-J 200000 100000 0o0 1 00 2-00 300 400 500 6 00 Time-i (ms) 213, 150-F

.Z 0

-j 000 1 00 200 300 4.00 500 6 00 Time-1 (ms) 245, 175°F Millstone Unit 2 Capsule W-83

B-11 400000 "7 300000

-- I 200000 100000.

000 1 00 200 300 400 So0 600 Time-1 (ms) 212, 175-F 5000 00 400000 0 oooo 0 I

--J 000 1 00 200 300 400 5o0 600 Time-1 (ms) 211, 200°F Millstone Unit 2 Capsule W-83

B-12 5000 00.

4000 00 "7 3000 00' 0

-J 200000 100000.

I nnn . i i 000 1 00 2.0)0 300 400 5o0 6 00 Time-1 (ws) 23L, 225-F 500010 +

400000

. 300000

-J 200000 100000' 0c0 t I I 000 1 00 2010 300 4 00 5 00 600 T24e-1 (ms) 214, 275°F Millstone Unit 2 Capsule W-83

B-13 S3000 00 2000.00 1000000 0 00 000 100 200 300 400 500 600 Time-1 (ms) 24K, 300°F 5000 00 4000O00

'7 300000 0

2000 00 100000 0 00 000 1 00 2.00 300 400 500 600 Time-1 (ins) 22A, 325°F Millstone Unit 2 Capsule W-83

B-14 5000 00 4000.00

` 300000 cooo 0

200000 100000 000- -r * -* ** -*

000 100 200 300 400 500 600 Time-1 (ms) 314, -50°F I

5000 00 n

4000001 S3000.00" I

"2J20000DO 1000 00i 0 00 000 1 00 200 300 400 500 600 TIrne-1 (ms) 33K, O°F Millstone Unit 2 Capsule W-83

B-15 5000 00 4000 00 S300000 00

.-J0 1000.00 0O 00 100 200 3-00 400 500 6 00 2000 00. Time-I (ms) 34L, 30-F 5000 00' 400000

.0 "T 3000 00 2000 00 1000 00-000 1 00 200 300 400 500 6 00 Time-1 (ms) 311, 50-F Millstone Unit 2 Capsule W-83

B-16 5000 00.

4000 00

.0.

". 300000 0

-.J 2000 00 100000.

400 5o0 6o0 Tine-1 (ws) 32A, 75-F 5000 00 S

° I.

4000001

-° 2000 000 0o0 100 200 300 400 So0 6 00 Time-i (mns) 36D, 1000 F Millstone Unit 2 Capsule W-83

B-17

.0 2

000 1 00 200 3.00 400 500 600 Trie-i (ns) 36E, 1250 F 000 1 00 200 300 400 5o0 600 Trne-i (ms) 34C, 150°F Millstone Unit 2 Capsule W-83

B-18 5000001 40000 01

' 3000001 0

200000' 100000 000 , , " ' '

000 1.00 200 3-00 400 5 D0 600 Time-1 (ms) 337, 200°F 5000001 4 0 0 0 00 S300000 2000 00 1000 D00 0 000 P,_

n0nn 1 00 2l00 300 400 5o0 600 Time-1 (mns) 323, 225-F Millstone Unit 2 Capsule WV-83

B-19 5000 00.

4000 00

'73000 00 0 00 2000 O00!

000 1 00 200 300 400 5o0 6S0 Time-1 (ms) 336, 250OF 5000 00' 4000 00 30 0 00 36 T 0

200000 T

100000, 000-000 1 00 200 300 400 500 P 00 Time-1 (ms) 312, 250-F Millstone Umt 2 Capsule W-83

B-20 5000 O0 4000 00 S300000 2000001 1000 00 000 O 100 200 300 400 500 6 00 rene-1 (ms) 42T, -75°F 5000 001 4000O00' S300000

-.J 2000 00 1000 00 -

000 1 00 200 300 400 500 600 Time-1 (ms) 46E, -25°F Millstone Unit 2 Capsule W-83

B-21 S300000 2000 00 100000 0.00 0 00 1 00 200 300 400 500 6 00 Time-I (ms) 421P, O°F 5000 00 4000 00 S300000

-. I 2000 00' 1000 D0O 000.

000 100 200 300 400 500 600 Time-i (ms) 41E, 25°F Millstone Unit 2 Capsule W-83

B-22 5000 00 j 4000 00 ... .. .

. 300000

-J 2000000 1000.00..

0.00 000 1 00 200 300 4.00 5o0 600 Time-i (ms) 41T, 50°F 5000.00 4000 00 S3000 D0 0

2000 00 1000 00 000 n rn 1fl0 200f 300lf 400 500D 600 Time-1 (ms) 42U, 75°F Millstone Unit 2 Capsule W-83

B-23 4000 S3000 2000 000 1 00 200 300 400 500 6S0 Time-1 (ms) 427, 100°F 5000 00 400000

- I 000 1 00 2.00 300 400 500 6 00 Twne-1 (ms) 43K, 150°F Millstone Unit 2 Capsule W-83

B-24 5000.00 400000 S300000

-JT 2000 00 1 0 0 0 00 000 000 1 00 2.00 300 400 500 600 Time-I (ms) 41U, 200°F 5000 00 4000 001 S300000 2000 00j 1000 00 000 Sn4 n n , ")n, , *nn 4flfl 55 00 Soo 6 00 Time-I (ms) 46B, 250°F Millstone Unit 2 Capsule W-83

B-25 5000 00 4000 00 3000 00 0

-J 200000 1000 00-0 000 100 200 300 400 500 6 00 Time-1 (ms) 45K, 300°F

.0 0000--

000 1 00 200 300 400 500 6 00 Time-1 (ms) 44C, 325°F Millstone Unit 2 Capsule W-83

C-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOG Millstone Unit 2 Capsule W-83

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 1521:01 on 10-10-2002 Page 1 Coefficients of Curve 1 A = 66.59 B= 64.4 C= 52.79 TO= 7828 Equation is CVN = A + B * [ tanh((T - TO)/C)

Upper Shelf Energy: 131 Fixed Temp. at 30 ft-lbs 442 Temp. at 50 ft-lbs 643 Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533BI Heat Number. C-567-1 Orientation: LT Capsule: UNIRR Total Fluence:

300 Co) 2507

.q 1507 0 00 10.) 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted PlantLM12 Cap-- UNIRR Material PLATE SA533BI OrL LT Heat . C-5667-1 Charpy V-Notch Data Temperaature Input CVN Energy Computed CVN Energy Differential

-80 4.5 2.51 198

-40 7 3.64 3.35 0 135 8.51 4.98 40 32 26.66 5.33 60 455 45.15 .34 60 56 4515 10.84 60 45 6869 -23.69 80 77 68.69 83 90 79.5 80.6 16 SData continued on next page **

C-2

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CYN Energy Differential 90 89 80.66 &33 90 62.5 80.66 -1816 120 119 109 9.99 120 116 109 6.99 160 124.5 125.42 -.92 160 134.5 125.42 9.07 210 130 13012 -12 210 136.5 13012 6.37 SUM of RESIDUALS = 31.84 C-3

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 152101 on 10-10-2002 Page I Coefficients of Curve 2 A= 4&09 B= 45.9 C= 87.56 T = 146.48 Equation is CVN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy: 94 Fixed Temp. at 30 ft-lbs: 109.9 Temp. at 50 ft-lbs 1501 Lower Shelf Energy: 219 Fixed Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence:

cU C.)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap: W-97 Material" PLATE SA53311I Ori- LT Heat F C-5667-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 40 II 9.61 138 80 29 18.69 103 120 33 34.62 -162 120 36 34.62 137 160 53 5512 -212 160 52 5512 -3.12 160 48 5512 -712 200 72 7311 -1i.

Data continued on next page C-4

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2 Material PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence Charpy V-Notch Data (Continued)

Temperaturee Input CVN Energy Computed CVN Energy Differential 240 98 843 13.69 280 97 89.4 715 280 92 89B4 Wi5 350 90 93.12 -312 SUM of RESIDUALS 17.81 C-5

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

C'GRAPH 41 Hyperbolic Tangent Curve Printed at 1521.:1 on 10-10-2002 Page 1 Coefficients of Curve 3 A = 48.59 B= 46.4 C= 91.59 TO = 170.8 Equation is: CVN = A + B

  • I tanh((T - TO)/C)

Upper Shelf Energy- 95 Fixed Temp. at 30 ft-lbs: 131.9 Temp. at 50 ft-lbs 1:733 Lower Shelf Energy- 219 Fixed Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W-104 Total Fluence:

300 M 250f 1.0 20O 7!.

4 150 z-- 100 50-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap- W-104 Material: PLATE SA533BI OrL LT Heat #: C-5667-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 70 13 11.44 1.55 90 16.5 15.77 .72 130 32 2919 150 40 3824 1.75 175 43.5 50.72 -722 185 48 55.73 -7.73 200 74 62.91 11.08 240 74.5 7822 -3.72

      • Data continued on next page *1 C-6

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

Page 2 Material: PLATE SA533B1 Heat Number C-5667-1 0rientUation: LT CapsuIe: W-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy 280 Differential 93.5 87.17 6,2 340 95 92.74 400 225 92 9428 -228 550 100 94.97 5.02 SIJM of RESIDUALS = 10.46 C-7

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1521.01 on 10-10-2002 Page 1 Coefficients of Curve 4 A = 47D09 B= 44.9 C= 8827 TO = 198.75 Equation is: C`VN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy: 92 Fixed Temp. at 30 ft-lbs 1633 Temp. at 50 ft-lbs 204A Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533B1 [eat Number C-5667-1 Ori entation LT Capsule: l'-83 Total Fluence:

U) 0a

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M112 Cap: T-83 Material" PLATE SA533B1 Ori. LT Heat F C-5667-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CYN Energy Differential 0 3 318 -18 75 12 7.2 4.67 130 32 17M 1417 175 35 353 -.3 175 23 353 -in 200 32 47.73 -15.73 215 67 5527 1L72

      • Data continued on next page ****

C-8

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2 Material: PLATE SA533BI Heat Number C-5667-1 Orientation: LT Capsule W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy 1)ifferential 74 60.07 13.92 250 60 7058 -10.5 300 80 83.77 -3.77 325 95 87.13 7.86 350 102 8917 12.82 SUM of RESIDUALS = 22.3 C-9

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1530-01 on 10-10-2002 Page 1 Coefficients of Curve 1 A = 47.72 B= 46.72 C= 6885 TO= 6421 Equation is: L = A + B* [ tanh((T - TO)/C) ]

Upper Shelf LE. 94.44 Temperature at LEK 35: 44.9 Lower Shelf LE: 1 Fixed Material. PLATE SA533B1 Heat Number C-5667-1 Orientation: LT Capsule: UNIRR Total Fluence:

-300 -200 -100 0 100 200 300 400 50 600 Temperature in Degrees F Data Set(s) Plotted Plant1M12 Cap: UNIER Material: PLATE SA533B1 Onf: LT Heat f. C-5667-1 Charpy V-Notch Data Temperature Input Lateral Expansion Co, nputed LE. Differential

-80 3 239 .6

-40 9 5.31 3.68 0 16 1352 .47 40 33 3193 106 60 44 44B6 -M8 60 48 44B6 313 80 42 5824 -1624 80 66 5824 7.75 90 67 64.44 255

      • Data continued on next page *.

C-10

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2 Materia hL:

PLATE SA533BI Heat Number C-5667-1 Oriientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 90 67 64.44 255 90 54 64A4 -10.44 120 86 79.01 6.98 120 87 79.01 7M8 160 89 88.99 0 160 91 8&99 2 210 210 90 9311 -3.11 89 9311 -411 SUM of RESIDUALS = 6.03 C-11

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:3001 on 10-10-2002 Page 1 Coefficients of Curve 2 A = 4328 B = 4228 C= 110.42 TO = 140.91 Equation k LE. A+ B [ tanh((T - TO)/C) ]

Upper Shelf L.E 85.56 Temperature at LK 35: 119 Lower Shelf LE- I Fixed Material- PLATE SA533BI Heat Number. C-56-1 Orientation: LT Capsule: W-97 Total Fluence:

°e.-

4U)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap-- W-97 Material: PLATE SA533B1 On:" LT Heat *. C-5667-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 40 II 1271 -1.71 80 28 2.06 5.93 120 36 35.3 .63 120 36 35.3 .63 160 51 50.51 .48 160 45 5051 -551 160 45 5051 -551 200 66 63.6 2.03 SData continued on next page C-12

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2 MateriaL PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperatur e Input Lateral Expansion Computed L.R Differential 240 83 7351 9.48 280 79 7926 -26 280 78 7926 -126 350 80 8369 -369 SUM of RESIDUALS = 124 C-13

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15"3001 on 10-10-2002 Page 1 Coefficients of Curve 3 A = 4378 B = 42.78 C = 1112 TO = 162.89 Equation is: .E. = A + B [ tanh((T - T0)/C) ]

Upper Shelf L.E. 8657 Temperature at LF, 35: 139.7 Lower Shelf LE. 1 Fixed Material: PLATE SA533B1 Heat Number C-5667-1 Orientation: LT Capsule: W-104 Total Fluence:

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant 1112 Cap: W-104 Materialh PLATE SA533BI Ori: LT Heat F C-5667-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 70 18 14.55 3.44 90 17 1917 -217 130 34 31.48 2.51 150 40 38S4 115 175 40 48.42 4.42 185 46 5218 -618 200 69 57.55 11.44 240 69 69A6 -.46 1*Data continued on next page *-

C-14

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

Page 2 Material: PLATE SA533BI Heat Number C-5667-1 Orientation: LT Capsule: W-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperatux e Input Lateral Expansion Computed LR Dii fferential 280 79 7728 L71 340 84 8317 400 82 8538 -3.8 550 88 86.49 L5 SUM of RESIDUALS = 195 C-15

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:3K.01 on 10-10-2002 Page 1 Coefficients of Curve 4 A= 43.34 B= 42.34 C = IO32 TO = 215.33 Equation is: LE. = A + B [ tanh((T - TO)/C)]

Upper Shelf LE. 85.68 Temperature at LE. 35: 1913 Lower Shelf LE. I Fixed Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W-M3 Total Fluence:

200 Cl) 150 S

100 5F-U I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap-- W--83 Material: PLATE SA533B1 Ori: LT Heat F, C-5667-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 0 0 329 -3.29 75 7 &49 -1.49 130 25 17.5 7.49 175 32 29.65 2,34 175 20 29.65 -9L5 200 28 3797 -9.97 215 52 4322 8.77 IData continued on next page C-16

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W--3 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed I.E. [ ifferential 225 58 46.73 1126 250 48 5521 -721 300 68 6903 -1.03 325 72 73.9 -19 350 80 7752 2.47 SUM of RESIDUALS -224 C-17

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve I A=50 B=50 C = 67.59 T0 = 65.62 Equation is Shear/. = A+ B

  • tanh((T - TO)/C)]

Temperature at 50/ Shear. 65.6 Material: PLATE SA533B1 Heat Number C-5667-1 Orientation: LT Capsule: UNIRR Total Fluence:

a)

CD Q) 0D a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap. UNIRR Material: PLATE SA533B1 OrL LT Heat F, C-5667-1 Charpy V-Notch Data Temper.ature Input Percent Shear Computed Percent Shear Dii ferential

-80 0 132 -132

-40 10 42 5.79 0 20 12.54 7.45 40 35 319 3.09 60 45 45.84 -B4 60 45 45.84 -.84 80 45 60.47 -15.47 80 60 60.47 -.47 90 70 6728 2.71

"*Data continued on next pageI C-18

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 90 70 6728 a-71 90 65 6728 -2,28 120 90 83.32 6.67 120 85 83.32 1.67 160 100 9422 5.77 160 100 9422 5.77 210 100 98.62 137 210 100 9862 £37 SUM of RESIDUALS = 2314 C-19

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve 2 A = 50 B = 50 C= 5822 TO = 177.65 Equation is Shearz = A + B [ tanh((T - TO)/C)

Temperature at 50*. Shear. 177.6 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence:

0 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap: W-97 Material: PLATE SA533BI Ori: LT Heat t C-5667-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 40 0 .87 -.87 80 20 3.37 16.62 20 12.12 7.87 120 120 20 12.12 7.87 160 30 3528 -528 160 30 3528 -528 160 30 3528 -528 200 70 6829 17

    • Data continued on next page ***

C-20

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientaltion: LT Capsule F-97 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 240 100 89.48 10.51 280 100 9711 2B8 280 100 9711 2.88 350 100 99.73 26 SU.Mof RESIDUALS = 33B89 C-21

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve 3 A= 50 B= 50 C= 104.92 TO = 172.55 Equation is Shear/. A + B

  • I tanh((T - T0)/C) I Temperature at W/z Shear 172.5 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W-104 Total Fluence:

4,

.LUUJ CID 607 4Go 00 0

4(F U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap: T'-104 Material: PLATE SA533BI Ori: LT Heat k. C-5667-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 70 20 12.4 7.59 90 15 1716 -2.16 130 35 30.76 423 150 40 39.41 58 175 40 51.16 -1116 185 50 55.9 -5.9 200 75 678 1221 240 70 78.33 -8.33

      • Data continued on next page **

C-22

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

Page 2 Material: PLATE SA533BI Heat Number C-667-I Orientation: LT Capsule W-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperatu re Input Percent Shear Computed Percent Shear Differential 280 100 8857 1142 340 100 96.05 3.94 400 100 98.7 129 550 100 99.92 .07 SUM of RESIDUALS : 138 C-23

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve 4 A = 50 B = 50 C = 88.42 TO = 196.02 Equation is Shear/ = A + B* [ tanh((T - TO)/C) ]

Temperature at 50,/ Shear. 196 Materialh PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W43 Total fluence nr

  • 1, 1 T 9 1 1

.tI.tJ

'11-ý 807 Q) 60F a) 4-)

C) 4(F 2(F L/

-300 -200 -100 0 100 200 300 400 5w0 6w0 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap- W-8 Material: PLATE SA533B1 Ori: LT Heat P. C-5667-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 2 1.17 .2 75 10 6.08 3.91 130 25 1824 6.65 175 35 3823 -323 175 40 38.3 1.66 200 35 5224 -1724 215 65 60.56 4.43 1*Data continued on next pagge I C-24

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2 Materiah PLATE SA533BI Heat Number. C-57-1 Orientation: LT Capsule: W-M3 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear )ifferential 225 85 65.82 1917 250 60 7722 -1722 300 100 903 8.69 325 100 94.86 513 350 100 97.01 2.98 SUIM of RESIDUALS 15.68 C-25

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1043:52 on 10-14-2002 Page 1 Coefficients of Curve 1 A= 55 09 B= 52.9 C= 80.63 TO= 60 Equation is: CVN = A + B * [ tanh((T - TO)/C) ]

Upper Shelf Energy: 108 Fixed Temp. at 30 ft-lbs: 184 Temp. at 50 ft-lbs: 522 Lower Shelf Energy: 219 Fixed Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

U) 0 zC.>

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant ML2 Cap- UNIRR Material: PLATE SA533B1 Or: TL Heat #:C-5667-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-80 4 5.38 -128

-40 155 1037 512 0 32.5 21.68 10.81 0 36 2L68 14.31 40 40 4224 -224 60 50 55.09 -5.09 60 42 55.09 -1309 70 585 61.62 -312 70 66 61.62 437

      • Data continued on next page *14*

C-26

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2 Material: PLATE SA533BI Heat Number C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 70 535 6162 -8.12 80 665 67.95 -1.45 120 94.5 88.51 5.98 120 915 8851 2.98 160 113 99.82 1317 160 1065 99.82 6.67 180 1125 102.86 9.63 210 112 105.49 65 210 96 105.49 -9.49 JM of RESIDUALS = 35.53 C-27

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10.43:52 on 10-14-2002 Page I Coefficients of Curve 2 A = 40.59 B= 38.4 C= 85.91 TO0=133.59 Equation is: CVN = A + B* [ tanh((T - TO)/C) I Upper Shelf Energy: 79 Fixed Temp. at 30 ft-lbs" 1092 Temp. at 50 ft-lbs 155 Lower Shelf Energy. 219 Fixed Material: PLATE SA533BI Heat Number. C--5667-1 Orientation: TL Capsule: W-97 Total Fluence:

300 U) 2507 10 2007 150 100 0 0 C) 00 0

I)

I I 0-i

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant 1112 Cap-- W-97 Material: PLATE SA533BI OriL TL Heat F.C-5667-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 10 5.47 4.52 60 13 13.93 -93 1(0 26 26.3 -3 100 30 262 3.69 160 44 52.04 -804 160 54 52.04 195 200 64 65.5 -15 240 83 73.04 9.95 SData continued on next page C-28

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 Material: PLATE SA533B1 Heat Number: C-5667-1 Orientation: TL Capsule: W-97 Total Fluencm Charpy V-Notch Data (Continued)

Temperatu re Input CVN Energy Computed CVN Energy Diifferential 240 71 73.04 -2.04 280 76 76.53 -.3.46 53 280 80 7653 320 87 78.01 8.98 SUM of RESIDUALS : 1919 C-29

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1.43.52 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 43.09 B = 40.9 C = 8151 TO = 19125 Equation is CVN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy:. 84 Fixed Temp. at 30 ft-lbs: 164.1 Temp. at 50 ft-lbs 205.1 Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533B1 Heat Number. C-5667-1 Ori entation: TL Capsule: W-83 Total Fluence:

C)

I zr-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap- i-63 Material PLATE SA533B1 Ori: TL Heat #: C-5667-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 5 2.94 2.05 75 15 6.66 8.&33 130 17 17.08 p-.06 150 24 24 0 150 38 24 13.99 175 27 35.05 -.8.05 175 32 35.05 -3.05 200 37 47.47 -10.47

        • Data continued on next page ****

C-30

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Temperatu re Input CVN Energy Computed CVN Energy Diifferential 65 5912 587 275 77 74.7 229 300 325 83 78.9 4.3 92 81.03 10.96 SUM of RESIDUALS- 26.14 C-31

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1204C1 on 10-14-2002 Page 1 Coefficients of Curve I A = 442 B= 432 C=1O2.74 TO = 467 Equation is: LE = A + B* [ tanh((T - TO)/C)]

Upper Shelf L.E. 87.4 Temperature at LE 35: 24. Lower Shelf LEa 1 Fixed Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

- - T F F T

gUu C0) 150

,,4j 100

_0 SWn

[B 1 I 1 1

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant ML2 Cap: UNIRR Material: PLATE SA533B1 Oni: TL Heat 2- C-5667-1 Charpy V-Notch Da ta Temperature Input Lateral Expansion Computed LE Differential

--80 3 7.74 -4.74 16 14.44 155

-40 524 0 31 25.75 32 25.75 624 0 -331 40 38 4121 46 49.9 -369 60 -1269 60 38 49.69 53.76 223 70 56 423 70 58 53.76

      • Data continued on next page ****

C-32

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 70 49 53.76 -4.76 80 59 57.66 1.33 120 73 70.63 2.36 120 76 70.63 5.36 160 85 78.8 6.19 160 80 78.8 119 180 82 8128 .61 210 82 83.93 -1.93 210 76 83.93 -7.93 SUM of RESIDUALS = -1.48 C-33

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12.04"01 on 10-14-2002 Page 1 Coefficients of Curve 2 A= 39.62 B= 38.62 C= 11069 TO = 135.93 Equation is LE. = A + B * [ tanh((T - TO)/C) I Upper Shelf L.E 7824 Temperature at L.E. 35: 122.6 Lower Shelf LE&1 Fixed Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: lT-97 Total Fluence CI)

St PC)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap:-W-97 Material: PLATE SA533BI Ori: TL Heat j C-5667-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LF. Differential 0 9 71 1.89 16 16.62 -.62 60 -1.5 100 26 275 30 27.5 2.49 100 -3.88 160 44 47.88 49 47.88 L1 160 2,22 200 62 59.77 68.01 598 240 74

        • Data continued on next page ***

C-34

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperatu:re Input Lateral Expansion Computed LE. Diifferential 240 64 6801 -401 280 72 7291 -.91 280 72 72.91 -.91 320 75 7555 -.55 SUM of RESIDUALS : 13 C-35

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1V04.01 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 42.61 B = 41.61 C =1245 TO = 21914 Equation is: LK = A + B* I tanh((T - TO)/C) I Upper Shelf LEM8422 Temperature at LK 35: 1968 Lower Shelf LE- 1 Fixed Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation" TL Capsule: W-83 Total Fluence 200 CI) 1507 0--

1007 50f

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant1M12 Cap: W-83 Material: PLATE SA533BI Ori: TL Heat #. C-5667-1 Charpy V-Notch Data Temperature Input Lateral Expansion Cormputed LE. Differential 0 1 313 -213 9 7.96 L03 75 16.43 -2.43 130 14 -.04 150 21 2104 30 21.04 8.95 150 28.01 -501 175 23 27 28.01 -401 175 36.05 -6.05 200 30

        • Data continued on next page ****

C-36

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Temperatu re Input Lateral Expansion Computed LE. D.ifferential 225 52 4463 7.36 275 60 60.63 -.63 300 65 66.99 -1.99 325 73 7198 1.01 SUM of RESIDUALS: -.96 C-37

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 121313 on 10-14-2002 Page 1 Coefficients of Curve 1 A= 50 B= 50 C= 76.64 T0 = 59.53 Equation is Shear'/. = A+ B* [ tanh((T - TO)/C) ]

Temperature at 50,. Shear. 595 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

C¢o

-.q 0

Q 0-

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M2 Cap: UNIRR Material: PLATE SA533B1 OrL TL Heat P C-5667-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-w0 0 2..55 -255

-40 15 6.93 8.06 0 25 17.45 7.54 0 25 17.45 7.54 40 35 3752 -252 60 45 503 -52 60 35 503 -153 70 60 56.78 321 70 65 56.78 821

  • Data continued on next page **

C-38

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 70 50 56.78 -6.78 80 65 63.04 L95 120 80 82.89 -2.89 120 90 82-89 7.1 160 100 9322 6.77 160 100 9322 6.77 180 100 95.86 413 210 100 98.06 1.93 210 100 98.06 1.93 SUM of RESIDUALS = 2981 C-39

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:13"3 on 10-14-2002 Page 1 Coefficients of Curve 2 A = 50 B= 50 C= 65.94 TO = 165.52 Equation is- Shear/ = A + B * [ tanh((T - TO)/C)]

Temperature at 50". Shear. 165.5 MateriaL PLATE SA533B1 Heat Number. C-5667-1 C)rientation: TL Capsule: W-97 Total Fluence:

0*

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- MI2 Cap: W-97 Material PLATE SA533BI OrL TL Heat k. C-5667-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 0 £5 -£5 60 10 391 6.08 100 20 12.05 794 100 20 12.05 7.94 160 40 45.81 -5.81 160 40 45.81 -5.81 200 70 73.99 -3.99 240 100 90.54 9.45

      • Data continued on next page ***

C-40

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientat ion: TL Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 240 100 90.54 9.45 280 100 9698 3.01 280 100 96.98 3.01 320 100 99.08 .91 SuIMof RESIDUALS = 31.55 C-41

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:1313 on 10-14-2002 Page 1 Coefficients of Curve 3 S A =50 B = 50 C = 8312 TO = 191.71 Equation is Shear/ = A + B* [ tanh((T - TO)/C)

Temperature at 50/. Shear. 191.7 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: TL Capsule: -83 Total Fluence:

1 I007 807 r1 4-,

4(F 2]07-~___ ______1 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap: Y--3 Material: PLATE SA533BI Ori: TL Heat F,: C-5667-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 2 f11 75 10 524 4.65 130 15 17.94 -2.94 150 30 26.35 3.64 150 40 26.35 13.64 175 35 39.84 -4.84 175 40 39.84 .15 200 40 55.08 -1508

    • Data continued on next page ý*

C-42

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientat tion: TL Capsule: W-8 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 225 70 69.41 58 275 100 88.6 1139 300 100 93.5 6.49 325 100 962 3.61 SuMof RESIDUALS = 22.42 C-43

UNIRRADIATED (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1150.19 on 10-14-2002 Page 1 Coefficients of Curve I A = 67.09 B = 64.9 C =52.34 TO = 187 Equation is CVN = A + B

  • tanh((T - TO)/C)]

Upper Shelf Energy: 132 Fixed Temp. at 30 ft-lbs: -32.1 Temp. at 50 ft-lbs: -122 Lower Shelf Energy. 2.19 Fixed Material. IYELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: UNIRR Total Fluence:

U) z

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- *112 Cap: UNIRR Material: WELD L 124/0091 Ork Hmat # 90136/10137 Charpy V-Notch Data Temper ature Input CVN Energy Computed CVN Energ y Differential

-120 5.5 3.42 2.07

-80 2.5 10 7.64

-40 22 24 -2 0 34 64.77 -30.77 0 94.5 64.77 29.72 10 77 77.09 -.09 10 79 77.09 1.9 I0 80.5 77.09 3.4 20 91 88.71 2.28

        • Data continued on next page
  • C-44

UNIRRADIATED (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: UNIRR Total Fluencm Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 40 99 107.46 -8.46 60 115 11929 -429 80 1345 125.75 U74 80 131.5 125.75 5.74 120 132,5 13059 19 120 1295 13059 -409 160 1405 13L69 8.8 160 127 131.69 -4.69 TBf of RESIDUAIS = 15.54 C-45

CAPSULE 97 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:11:31 on 11-21-2002 Page 1 Coefficients of Curve 2 A = 5109 B= 48.9 C= 55.76 TO = 59.53 Equation is CVN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy: 100 Fixed Temp. at 30 ft-lbs: 33.7 Temp. at 50 ft-lbs 582 Lower Shelf Energy: 2.19 Fixed Material" WELD L 124/0091 Heat Number- 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

co CI 0J

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Sets) Plotted Plant M12 Cap: W-97 Materiah WELD L 124/0091 0r: He&at F 90136/10137 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 17 12.54 4.45 40 23 34.64 -11.64 40 47 34.64 12.35 60 38 51.51 -13.51 80 74 6828 5.71 80 80 6828 11.71 120 99 89.96 9.03 120 71 89.96 -18.96

      • Data continued on next page ***

C-46

CAPSULE 97 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number: 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 160 95 97.4 -2.4 160 105 97.4 7.59 200 93 99.36 -6.36 240 106 99.84 6.15 SUI of RESIDUALS = 4.13 C-47

CAPSULE 104 (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 15CI.19 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 54.59 B = 52.4 C = 7212 TO = 56.71 Equation is: CVN = A + B I tanh((T - TO)/C) ]

Upper Shelf Energy: 107 Fixed Temp. at 30 ft-lbs 19.9 Temp. at 50 ft-lbs 503 Lower Shelf Energy: 2.19 Fixed Material: MELD L 124/0091 Heat Number. 90136/10137 0)rientation:

Capsule: WY-104 Total Fluence:

309 U) 250 200 150 0

1007 z

C) 50

'-4-.'

U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap- W-104 Material: WELD L 124/0091 Ori: Heat #: 90136/10137 Charpy V-Notch Data Temperature Input CMN Energy Computed CVN Energy Differential 0 135 202 -6.7 20 335 30.01 3.48 35 40 3928 .71 50 59.5 49.73 9.76 70 56.5 6414 -7.4 85 68 7415 -6.15 1o 89.5 87.52 197 150 107 99.6 7.33

      • Data continued on next page ***

C-48

CAPSULE 104 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: WY-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 200 106 105.06 .93 300 109.5 106.87 2.62 400 99 106.99 -799 550 111 106.99 4 SUM of RESIDUALS = 234 C-49

- CAPSULE 83 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1150-19 on 10-14-2002 Page 1 Coefficients of Curve 4 A = 55.59 B =53.4 C= 97.76 TD= 75 Equation is: CVN = A + B * [ tanh((T - TO)/C) ]

Upper Shelf Energy. 109 Fixed Temp. at 30 ft-lbs: 23.9 Temp. at 50 ft-lbs 64.7 Lower Shelf Energy- 2.19 Fixed Material WELD L 124/0091 Heat Number: 90136/10137 )rientation:

Capsule: W-83 Total Fluence:

3007 S250

[.0 20f q 1507 4

10oo

-300 -200 -100 0 100 200 300 4 00 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap- W-83 Material: WELD L 124/0091 Or: Heat 90136/10137 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-50 8 9BB -I8 0 9 2114 -1214 30 27 32-62 -5.62 50 45 4223 2.76 75 68 55.59 12.4 100 76 68.96 7.03 125 83 80.75 224

""Data continued on next page ""

C-50

CAPSULE 83 (WELD)

Page 2 Material' WELD L 124/0091 Heat Number 90136/10137 Ori entation:

Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 150 76 90.05 -14.05 200 84 10L31 -17.1 225 109 10425 4.74 250 101 1061 -51 250 117 1061 10.89 StMof RESIDUAIS =-16.03 C-51

UNIRRADIATED (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:2058 on 10-14-2002 Page 1 Coefficients of Curve 1 C= 5a3.5 TO = -966 47.66 B= 46.66 Equation is-. L. = A+ B* [ tanh((T - TO)/C) I Temperature at LE 35: -24.5 Lower Shelf LE& 1 Fixed Upper Shelf LEL 94.33 Heat Number. 90136/10137 Orientation:

Material- WELD L 124/0091 Capsule: UNIRR Total Fluence 400 600

-300 F Temperature in Degrees Data Set(s) Plotted Material WELD L 124/0091 Off: Heat 1: 90136/10137 Plant- M12 Cap: UNIRR Charpy V-Notch Data Computed L.E. Differential Temperature Input Lateral Expansion [53 4 2.46 723 2.76

-120 [33

-80 10 23.66 25 5603 -22.03

-40 196 0 34 56.03 0 69 6413 3jB 10 68 6413 L86 S6 10 66 6413 65 7123 4.76 10 20 76

'~Data continued on next page I C-52

.CAPSULE 97 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 120 on 10-14-2002 Page 1 Coefficients of Curve 2 A = 41.86 B= 40.86 C= 67.98 TO= 55.78 Equation is LE. = A + B [ tanh((T - TO)/C)

Upper Shelf LE. 82.72 Temperature at LE. 35: 442 Lower Shelf LE: 1 Fixed Material: WELD L 124/0091 Heat Number: 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

4-)

1507 o209--

1007 0 0 0

0/

)' 0 / 0 0

Li I

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap.: W-97 Material: WELD L 124/0091 Oni: Heat L 90136/10137 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 0 15 1426 .73 40 24 32.54 -854 40 41 32.54 8.45 60 37 44.39 -739 80 57 55.83 116 80 66 5583 1016 120 78 71.99 6 120 59 71.99 -12.99

        • Data continued on next page ****

C-54

CAPSULE 97 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 160 78 79.08 -1.08 160 83 7908 3.91 200 79 8156 -2.56 240 85 82.36 2.63 SUM of RIEIDUALS = A8 C-55

CAPSULE 104 (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12"2058 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 45.77 B= 44.77 C =8L91 TO = 55.31 Equation is: I = A + B * [ tanh((T - TO)/C) ]

Upper Shelf LE. 90.54 Temperature at LE. 35: 352 Lower Shelf LE. I Fixed Material: WELD L 124/0091 Heat Number 90136/10137 Orientation Capsule: W-104 Total Fluence:

2019 1507 4r1

'007 50F 0--

-3: )0 -200 -100 0 100 200 30o 400 500 6WO Temperature in Degrees F Data Set(s) Plotted Plant ML2 CapN W-104 Material WELD L 124/0091 0r Heat  : 90136/10137 Charpy V-Notch Data Temperature Input Lateral Expansion Computed L.R Differential 0 13 19.42 -6.42 20 31 2758 3.41 35 35 34B9 .

50 50 42B7 7.12 70 52 53.71 -471 85 55 6132 -6.32 110 71 7189 -49 150 87 8247 4.52

"* Data continued on next page ****

C-56

CAPSULE 104 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule W-104 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 200 88 88 0 300 90 9031 -31 400 87 90.52 -3.52 550 92 90.54 1.45 SUM of RSIDUALS =-2.57 C-57

CAPSULE 83 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1220:58 on 10-14-2002 Page 1 Coefficients of Curve 4 A = 37.89 B = 36.89 C = 71.98 TO = 60.93 Equation is LE. = A + B* [ tanh((T - TO)/C)

Upper Shelf LE: 74.78 Temperature at LE. 35: 552 Lower Shelf L&. I Fixed Material: WELD L 124/0091 Heat Numberi. 90136/10137 Orientation:

Capsule: W-M3 Total Fluence:

4-)

0*

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap: W-83 MateriaI: WELD L 124/0091 Ori: Heat #. 90136/10137 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential

-50 1 423 -323 0 6 12.46 -6.46 30 23 22.94 .05 50 36 32.32 3.67 75 50 45 4.99 100 54 5615 -215 125 64 6413 -13

      • Data continued on next page **

C-58

'CAPSULE 83 (WELD)

Page 2 Materialh WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 150 60 69.05 -9.05 200 66 7326 -726 80 74.01 598 250 73 74.4 -1.4 250 84 74.4 9.59 SUM of RESIDUALS = -5.41 C-59

UNIRRADIATED (WELD)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 12"254 on 10-14-2002 PageI Coefficients of Curve 1 A= 50 B= 50 C= 61.03 TO = -12A18 Equation is Shear/ = A + B

  • tanh((T - TO)/C)]

Temperature at 50Y Shear -12 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule UNIRR Total Fluence uu 4(F 0

-31( )O -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap: UNIRR Material: WELD L 124/0091 Ori: Heat f 901*36/10137 Charpy V-Notch Data Temperature Input Percent Shear Comp*uted Percent Shear Differential

-120 0 2.83 -2,83

-80 10 9.77 22

-40 30 28.67 132 0 40 59B5 59.55 -19B5 0 70 1014 10 65 67.41 -2.41 10 75 67.41 7.58 10 75 6741 758 20 75 7416 .83

    • Data continued on next page
  • C-60

UNIRRADIATED (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 40 80 84.68 -4.68 60 90 9L41 -I.41 80 90 9534 -5.34 80 100 95.34 4.65 120 100 987 129 120 100 987 129 160 100 9964 .35 160 100 99.64 .35 SUM of RESIDUALS = -.9 C-61

CAPSULE 97 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:254 on 10-14-2002 Page 1 Coefficients of Curve 2 A= 50 S B= 50 C= 4887 TO = 67.7 Equation is: Shearz = A + B * [ tanh((T - T0)/C) ]

Temperature at 50z Shear. 67.7 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: 1-97 Total Fluence:

0C Q-4 0

0D 0L

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap.- W-97 Material: WELD L 124/0091 Ori: Heat *. 90136/10137 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 0 5.89 -5.89 40 20 24.4 -434 40 30 24.34 5B5 60 40 42.18 -2.18 80 60 6232 -2.32 80 70 62.32 7.67 120 90 89.47 .52 120 80 89.47 -9.47

    • Data continued on next page **

C-62

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 160 100 97.76 223 160 100 97.76 223 200 100 99.55 .44 240 100 99.91 .08 SUM of RESIDUALS = -5.35 C-63

CAPSULE 104 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1228:54 on 10-14-2002 Page 1 Coefficients of Curve 3 I A= 50 B = 50 C = 73.56 TO = 4921 Equation is: Shear/ = A + B * [ tanh((T - TO)/C) I Temperature at 50%. Shear. 492 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: W-104 Total Fluence:

a-4 Zn 09 0..

0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap- W-104 Material: WELD L 124/0091 Or: Heat ý 90136/10137 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 15 20.78 -5.78 20 40 312 8.87 35 40 40.45 -.45 50 50 50.53 -.53 70 60 63.76 -3.76 85 70 7256 56 110 85 8392 1.07 150 100 93.93 6.06

      • Data continued on next page C-64

CAPSULE 104 (WELD)

Page 2 Material: YLD L 124/0091 Heat Number. 90136/10137 Orieintation:

Capsule: W'-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 200 100 98.36 1.63 300 100 99.89 .1 400 100 99.99 0 550 100 99.99 0 SUM of RESIDUALS = 4.67 C-65

'CAPSULE 83 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:28:54 on 10-14-2002 Page 1 Coefficients of Curve 4 A = 50 B= 50 C= 70.42 TO = 5812 Equation is: Shear/. = A + B * [ tanh((T - T0)/C) ]

Temperature at 50z Shear. 581 Material WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: W-3 Total Fluence:

0 CD 09 0

Q4 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- 1112 Cap: W-83 Materiah WELD L 124/0091 Or: Heat *. 90136/10137 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-50 10 4.43 5.56 0 15 161 -U 30 30 31.02 -402 50 40 4425 -4.25 75 65 61.75 324 100 80 76.66 3.33 125 90 86.98 3.01 Data continued on next page C-66

CAPSULE 83 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: lY-83 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 150 85 9314 -814 200 95 9825 -325 225 100 9913 Z6 250 100 99.57 .42 250 100 99.57 A2 SUM of RESIDUALS = -.89 C-67

UNIRRADIATED (HEAT AFFECTED ZONE)

CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09.5729 on 10-15-2002 Page 1 Coefficients of Curve I A= 6559 B= 63.4 C= 5283 TO= 22.03 Equation is CVN = A + B

  • I tanh((T - T0)/C) ]

Upper Shelf Energy 129 Fixed Temp. at 30 ft-lbs -115 Temp. at 50 ft-lbs 8.7 Lower Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE SA533BI Heat Number- C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

U)

In 7b0 4-,

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap-- UNIRR Material: HEAT AF"D ZONE SA533BI OrL Heat I. C-506-1 Charpy V-Notch Data Tempera ture Input CVN Energy Computed CVN Energy Differential

-150 10 228 7.61

-120 16 2.78 1321

-80 115 4.81 6.68

-40 3L5 1326 1823 0 45 40359 4.4 20 96 63.16 32.83 20 31.5 6316 -31.66 30 345 75.08 -4058 40 625 8626 -23.86

-** Data continued on next page ***

C.-68

UNIRRADIATED (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CYN Energy Computed CVN Energy Differential 40 117.5 86.36 3113 40 101 86.36 14.63 80 1115 11628 -4.78 80 150 11628 33.71 120 123 125.96 -296 160 113 128.31 -1531 160 130 128.31 168 SUM of RESIDUALS = 44.96 C-69

CAPSULE 97 (HEAT AFFECTED ZONE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0957:39 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 4659 B = 44.4 C = 59.1 T0=8624 Equation i CN = A + B * [ tanh((T - T0)/C) ]

Upper Shelf Energy, 91 Fixed Temp. at 30 ft-lbs 62.7 Temp. at 50 ft-lbs: 908 Lower Shelf Energy- 2.19 Fixed Material: HEAT AFFD ZONE SA533BI Heat Number. C-506-1 Orientation:

Capsule: W-97 Total Fluence:

,.0 0

z CD

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Planh ML2 Cap-- W-97 Material HEAT AFFD ZONE SA533BI Ori: Heat C-506-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 14 6.9 7.09 40 19 17.79 12 40 20 17.79 22 60 26 2827 -227 80 47 41.97 5.02 100 51 5663 -5.63 100 48 56.63 -8.63 120 76 6929 6.7

"- Data continued on next page -*

C-70

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 )rientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Enerqgy Differential 160 92 84.04 7.95 200 89 89.06 -.06 200 92 89.06 2.93 240 92 90.48 151 SUM of RESIDUALS = 18 03 C-71

CAPSULE 83 (HEAT AFFECTED ZONE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09:57:39 on 10-15-2002 Page 1 Coefficients of Curve 3 A = 52.59 B =50.4 C= 68.85 TO = 64.9 Equation is CVN = A + B * [ tanh((T - TO)/C) I Upper Shelf Energy: 103 Fixed Temp. at 30 ft-lbs 31.6 Temp. at 50 ft-lbs 613 Lower Shelf Energy: 219 Fixed Material: HEAT AFFD ZONE SA533B1 Heat Number: C-506-1 Orientation:

Capsule: W-83 Total Fluence

.)

C.)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- MI2 Cap" W-83 Material HKET AFFD ZONE SA533BI Ori: Heat P C-506-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-75 7 3.9 3.09

-25 18 9.09 8.9 0 13 15.48 -2.48 25 34 2627 7.72 50 49 4185 7.14 75 24 5993 -35.93 100 102 7627 25.72 150 94 9515 -115

"" Data continued on next page ****

C-72

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2 Material- HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: fq-3 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 200 1 10104 20.95 250 95 102.53 -7.53 300 88 102B89 -14.89 32 126 1O094 23.05 SUM of RESIDUALS = 3459 C-73

UNIRRADIATED (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 100L12 on 10-15-2002 Page 1 Coefficients of Curve 1 A = 45.69 B = 44.69 C = 73.87 TO = 18.75 Equation is: LE = A + B* [ tanh((T - TO)/C) ]

Upper Shelf LE- 90.9 Temperature at LE. 35: .7 Lower Shelf LE- 1 Fixed Material: HEAT AFF'D ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap- UNIRR Material HEAT AFFD ZONE SA533B1 Or: Heat L C-506-1 Charpy V-Notch Data Temperatiure Input Lateral Expansion Computed LE. Differential

-150 10 t91 8.08

-120 10 304 6.95

-80 7 6.77 22

-40 23 1613 6.86 0 35 34.58 .41 20 60 46.45 1354 20 29 46.45 -17.45 30 31 52.45 -2L45 40 53 5821 -521

      • Data continued on next page **

C-74

UNIRRADIATED (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 40 68 5821 9.78 40 67 5821 8.78 80 77 76.09 .9 80 88 76.09 11.9 120 86 84.97 [02 160 81 88.48 -7.48 160 88 88.48 -.48 SUM of RESIDUALS = 1642 C-75

CAPSULE 97 (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at I01):12 on 10-15-2002 Page I Coefficients of Curve 2 A = 3867 B= 37.37 C= 79B1 TO= 84.17 Equation is LK = A + B* [ tanh((T - TO)/C)

Upper Shelf LE: 76.34 Temperature at LE. 35: 763 Lower Shelf LE- I Fixed Material HEAT AFFD ZONE SA533BI Heat Number C-506-1 Orientation:

Capsule: W-97 Total Fluence 200F 1507 100 C4) 50

-300 -200 -100 0 100 200 300 400 5W0 600 Temperature in Degrees F Data Set(s) Plotted Plant- ML2 Cap: W-97 Material HEAT AFFD ZONE SA533B1 OrL Heat #: C-506-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 0 14 915 484 40 18 19.71 -1.71 40 19 19.71 -.71 60 25 27.59 -2.59 80 43 36.7 629 100 47 46.04 .95 100 41 46.04 -5.04 120 51 5452 -352 I Data continued on next page

  • C-76

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 160 75 66.53 8.46 200 70 72.42 -2.42 200 73 72.42 57 240 72 74.5 -2.85 SUM of RESIDUALS = 226 C-77

CAPSULE 83 (HEAT AFFECTED ZONE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10:01"2 on 10-15-2002 Page 1 Coefficients of Curve 3 A=34,,54 B= 33.95 C= 81.03 TO= 7529 Equation is LK = A + B * [ tanh((T - TO)/C)

Upper Shelf LE- 689 Temperature at LK 35.: 75.4 Lower Shelf L.E I Fixed Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: W-83 Total Fluence:

CI)

.1 150-100 0

5O-0

'-4 U'

300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap- W-83 Material HEAT AFFD ZONE SA533BI OrL Heat P C-506-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential

-75 1 2.62 -1.62

-25 9 626 2.73 0 6 1016 -416 25 21 1622 4.77 50 31 24.68 6.31 75 17 34B82 -17.82 100 57 44.99 12 150 56 59.2 -362

        • Data continued on next page **"

C-78

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533BI Heat Number. C-506-1 Orientation:

Capsule: IY-83 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 200 71 65.91 508 250 66 68 -2 300 60 68.64 -8.64 325 76 68.76 723 SUM of RESIDUALS = 26 C-79

UNIRRADIATED (HEAT AFFECTED ZONE)

C1,GRAPH 41 Hyperbolic Tangent Curve Printed at 10:0413 on 10-15-2002 Page 1 Coefficients of Curve I A = 50 B= 50 C= 82.38 TO = 7.96 [

Equation is Shear/ = A + B

  • I tanh((T - T'O)/C) Q Temperature at 50Y Shear. 7.9 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule UNIRR Total Fluence:

q 0(U 0.)

co

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- ML2 Cap. UNIRR Material- HEAT AFFD ZONE SA533B1 Ori: Heat // C-506-1 Charpy V-Notch Data Temperaature Input Percent Shear Computed Percent Shear Differential

-150 0 2.11 -211

-120 10 428 5.71

-80 10 10.56 -56

-40 35 23.78 H121 0 45 45.17 -17 20 65 5725 7.74 20 45 5725 -1225 30 45 63.06 -18.06 40 70 68.51 148

""Data continued on next page ***

C-80

UNIRRADIATED (HEAT AFFECTED ZOINnE)

Page 2 Material: HEAT AFYD ZONE SA533B1 Heat Number. C-506-1 Orie ntation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 40 70 6851 L48 40 70 68.51 148 80 85 8517 -17 80 100 8517 14.82 120 100 93.81 618 160 100 97.56 2.43 1O 100 97.56 2.43 SUM of RESIDUALS = 2165 C-81

CAPSULE 97 (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 100413 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 50 B= 50 C= 67.46 TO = 96.67 P

Equation is Shear/. = A + B * [ tanh((T - TO)/C) I Temperature at 50,/ Shear. 96.

Materiah HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: W-97 Total Fluence:

0 4-)

-300 -200 -100 0 100 200 300 400 5.00 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap-- W-97 Materiah HEAT AFFD ZONE SA533BI Ori: Heat 1 C-506--1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 10 5.38 4.61 40 20 15.7 429 40 10 15.7 -5.7 60 20 2521 -521 80 50 37BB 122 100 60 52.45 754 100 40 52.45 -12.45 120 60 66.62 -6.62

  • ' Data continued on next page ""

C-82

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533BI Heat Number. C-506-1 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 160 90 86.72 327 200 100 95.53 446 200 100 95.53 4.46 240 100 9859 1.4 SUM of RESIDUAIS = 12.17 C-83

CAPSULE 83 (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10H04:13 on 10-15-2002 Page 1 Coefficients of Curve 3 A = 50 B1= 50 C= 101.88 TO = 69.37 Equation is Shear/. = A + B [ tanh((T - TO)/C) ]

Temperature at 50*. Shear. 693 Material: HEAT AFFD ZONE SA533BI Heat Number. C-506-1 Orientation:

Capsule W-83 Total Fluence:

0 cn 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap: W-83 Material HEAT AFFD ZONE SA533BI OrL Heat . C-506-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75 10 5.55 4A4

-25 15 1355 1.44 0 20 2029 -29 25 30 29.5 A9 50 45 40.6 429 75 30 52.75 -22.75 100 85 64.59 20.4 150 80 8M95 -2.95

      • Data continued on next page
  • C-84

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: *q-3 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 200 90 92-85 -2.85 250 100 97.19 2.8 300 100 98.93 106 325 100 99.34 .65 SUM of RESIDUAIS = 6.76 C-85

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 100:44 on 10-15-2002 Page 1 Coefficients of Curve I A= 7L59 B= 69.4 C= 6323 T0 = 7529 Equation is: CVN = A + B

  • tanh((T - TO)/C) I Upper Shelf Energy- 141 Fixed Temp. at 30 ft-lbs 31.5 Temp. at 50 ft-lbs 54.9 Lower Shelf Energy:. 219 Fixed Material SRM HSSTOI Heat Number: A1008-1 Orientation: LT Capsule: UNIRR Total Fluence or) 2507 I0 201F 15ff 0 1007f C.)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap- UNIRR Material: SRM HSST01 Ork LT Heat !' A1008-I Charpy V-Notch Data Temperature Input CYN Energy Computed CVN Energy Differential

-80 35 321 28

-40 55 5.72 -22 0 135 13.94 -.44 0 14.5 13.94 .55 40 39 3644 2.55 40 43.5 36.44 7.05 80 73.5 76.75 -325 80 695 76.75 -725 120 1145 113.84 .65 I* Data continued on next page ****

C-86

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2 Material" SRM HMT01 Heat Number. A1008-1 Orientati on: LT Capsule: UNIRR Total Fluence:

,Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 120 1145 113.84 £.5 160 138 132.08 5.91 160 1335 132.08 141 180 1405 13611 438 210 145 139.06 5.93 210 142 139.06 293 SIUM of REIDUAIS = 2114 C-87

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:08:44 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 47.09 B= 44.9 C= 74.52 TD = 194.82 Equation is CVN = A + B* [ tanh((T - TO)/C) I Upper Shelf Energy: 92 Fixed Temp. at 30 ft-lbs 164.9 Temp. at 50 ft-lbs 199.6 Lower Shelf Energy: 2.19 Fixed Materiah SRM HSST01 Heat Number:. A1008-1 Orientation: LT Capsule W-104 Total Fluence I) 10

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Dearees F Data Set(s) Plotted Plant ML2 Cap: W-104 Material: SRM HSST01 Ori: LT Heat LfA1008-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 70 45 524 -.74 150 21 22.94 -494 170 39 32.67 6.32 185 41 4121 -21 200 46.5 5021 -3.71 210 60.5 5611 428 220 60 61.71 -471 240 60 7L4 -1A4

""Data continued on next page

  • C-88

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2 Material: SEM HSST01 Heat Number. A1008-1 Orientation: LT Capsule: W-104 Total Fluencm Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 275 945 82.84 11.85 300 905 86.96 3.53 400 96 91M3 4.36 550 87 91.99 -4.99 SUM of RESIDUAl BS= 5.73 C-89

STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10.08:44 on 10-15-2002 Results Curve Fluence ISE d-ISE USE d-USE T o 30 d-T o 30 T o 50 d-T o 50 1 0 2.19 0 141 0 3151 0 54.93 0 2 0 2.19 0 92 -49 164.93 133.41 199.64 144.7 I) 0 z

C.)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 10- 20-----

Data Set(s) Plotted Curve Plant Capsule Material Ori Heat#

1 M12 UNIRR SRM HSM1 LT A1008-1 2 M12 W-104 SRM HMTO1 LT A1008-1 C-90

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at IOI012. on 10-15-2002 Page I Coefficients of Curve I A = 47.42 B= 46.42 C= 71.51 TO = 60.46 Equation is: LE. = A + B* [ tanh((T - TO)/C)]

Upper Shelf LE: 9384 Temperature at L.E. 35: 40.8 Lower Shelf LL. I Fixed Material: SRM HSST01 Heat Number. A1008-1 Orientation: LT Capsule: UNIRR Total Fluence:

20O U) r---,4 150 100 5 //

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap.: UNIRR Material: SRM HSST01 Ori: LT Heat #: A1008-1 Charpy V-Notch Da ta Temperature Input Lateral Expansion Computed LE Differential

-8W 3 2,79 2

-40 7 627 .72 0 15 15.44 -.44 0 16 15.44 M55 40 35 34.48 .51 40 36 34.48 L51 80 60 59.79 2 80 53 59.79 -6.79 120 85 7907 5992

  • Data continued on next page ****

C-91

UNIRRADIATED. (STANDARD REFERENCE MATERIAL)

Page 2 Material: SRM HSSo1 Heat Number. A1008-1 Orientation: LT Capsule: INIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 120 79 79.07 -.07 160 89 88.43 160 92 88.43 3.5

.56 180 89 90.67 -167 210 92 9Z44 -.44 210 89 9Z44 -344 SUM of RESIDUALS =B37 C-92

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1012.01 on 10-15-2002 Page I Coefficients of Curve 2 A = 41B3 B= 40B3 C= 8726 TO = 190.72 Equation is: L.E. = A + B I tanh((T - TO)/C)

Upper Shelf LE- 82.67 Temperature at L.E. 35: 175.9 Lower Shelf LE- 1 Fixed Material: SRM H I01 Heat Number-. A1008-1 Orientation: LT Capsule: W-104 Total Fluence:

.ýuU U)

P- 150 100

/0 50- V U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant1MI2 Cap- W-104 Material: SRM HSST01 Ori: LT Heat L A1008-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed L.E. Differential 70 8 513 216 150 22 24.05 -2.05 170 36 32.31 &68 185 38 3916 -116 200 47 4616 .83 210 51 50.71 28 220 54 55.04 -1.04 240 57 62.72 -5.72

    • " Data continued on next page C-93

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2 Material: SRM HSSTM1 Heat Number. A1008-1 Orientation: LT Capsule: W-104 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LR Differential 275 79 7223 6.6 300 77 765 A9 400 85 82 2.99 550 78 82.65 -4.65 SUM of RESIDUALS = 2.5 C-94

STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10,12:01 on 10-15-2002 Pesults Curve Fluence USE d-USE T o LE35 d-T o LE35 Curve Fluence 10 93.84 0 40.85 0 2 0 82.67 -1117 175.97 135.11 UI)

P-4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 10 20-----

Data Set(s) Plotted Curve Plant Capsule Material Or. Heat#

1 M12 UNIRR SRM HSTOI LT A1008-1 2 1112 W-104 SRM HMSIO1 LT A1008-1 C-95

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10-14:42 on 10-15-2002 Page 1 Coefficients of Curve 1 SA= 50 B1= 50 C= 64.08 TO= 8015 Equation is Shear/. = A + B* [ tanh((T - T0)/C)

Temperature at 50;. Shear: 80.1 Material SRM HSSTI1 Heat Number: A1008-1 Orientation: LT Capsule: UNIRR Total Fluence 40 C)

-300 -200 -100 0 100 200 300 400 500 600 TemrDerature in Degrees F

-t.

Data Set(s) Plotted PlanLt ML2 Cap: UNIRR Material SRM HSSMI Ori: LT Heat . A1008-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-80 0 .67 -.67

-40 0 229 -229 0 15 757 7.42 0 15 7.57 7.42 40 20 2221 40 -221 25 2221 2.78 80 45 49.87 -4.7 80 45 49.87 -487 120 80 77.61 2.38

      • Data continued on next page ***

C-96

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2 Materia I: SRM HSSTO1 Heat Number-. A1008-1 Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 120 80 77.61 2.38 160 100 9Z35 7.64 160 90 9235 -2.35 180 100 95.75 424 210 100 9829 1.7 210 100 9829 1.7 SulMof RESIDUAIS = 20.41 C-97

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10f.14:42 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 50 B= 50 C= 77.3 T0 = 19921 Equation is Shear/ = A + B* I tanh((T - T0)/C) I Temperature at 50z Shear:. 1992 Material SRIMHSST01 Heat Number A1008-1 Ori entation: LT Capsule: W-104 Total Fluence:

C/D 0ý

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- M12 Cap.- W-104 Material: SRM HSST01 Or: LT Heat A1008-1 A

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 70 0 3.41 -3.41 150 20 2L86 -186 170 40 3195 8.04 185 40 40.9 -.9 200 50 50.5 -.5 210 60 56.92 3.07 220 60 6312 -312 240 60 74.17 -1417

      • Data continued on next page
  • C-98

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2 Materia 1:SRM HSST01 Heat Number. A1008-1 Orientatic)n: LT Capsule: I-104 Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 87.65 IZ,34 275 100 300 100 93.13 6B6 400 100 99.44 .55 550 100 99.98 .01 Su,Mof RESIDUAIS = 6.89 C-99

STANDARD REFERENCE MATERIAL CYGRAPH 41 Hyperbolic Tangent Curve Printed at 10-14:42 on 10-15-2002 Results Curve Fluence T o 50z. Shear d-T o 50. *hearr Curve Fluence T 0 50Y Shear d-T o 50,/ Sh 1 0 8015 0 2 0 19921 119.06 0/.

40 Q

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 10 20 -...----

Data Set(s) Plotted Curve Plant Capsule Material Ori. Heatf 1 MI2 UNIRR SRM HSSTOI LT A1008-1 2 M1~2 W-104 SRM HITOI LT A1008-1 C-100

D-1 APPENDIX D MILLSTONE UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS Millstone Unit 2 Capsule W-83

D-2 SURVEILLANCE DATA CREDIBLITY EVALUATION INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the methodology for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been three surveillance capsules removed from Millstone Unit 2. To use these surveillance data sets, they must be shown to be credible. In accordance with Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible. The purpose of this evaluation is to apply these credibility requirements to the reactor vessel surveillance data obtained from Millstone Unit 2 and determine if these surveillance data sets are credible.

EVALUATION Criterion 1:Materialsin the capsules should be thosejudged most likely to be controllingwith regardto radiationembrittlement. The beltline region of the reactorvessel is defined in Appendix G to 10 CFR Part50, "FractureToughness Requirements",December 19, 1995 to be:

"the reactorvessel (shell materialincluding welds, heat affected zones, andplates or forgings) that directly surroundsthe effective height of the active core and adjacentregions of the reactor vessel that arepredictedto experience sufficient neutron radiationdamage to be consideredin the selection of the most limiting materialwith regard to radiation damage."

The Millstone Unit 2 reactor vessel consists of the following beltline region materials:

- Intermediate Shell Plate C-506-1, -2, -3 (Heats C-5843-1, -2, -3)

- Lower Shell Plate C-506-1, -2, -3 (Heats C-5667-1, -2 ,-3)

- Intermediate to Lower Girth Seam 9-203 (Heats 10137 and 90136)

- Intermediate and Lower Shell Longitudinal Seams 2-203 and 3-203 (Heat A-8746)

Millstone Unit 2 Capsule W-83

D-3 The Millstone Unit 2 surveillance programs was based on ASTM E-1 85-70 and utilizes test specimens from Lower Shell Plate C-506-1 and Intermediate to Lower Girth Seam 9-203 Heat # 10137/90136 Flux Type Linde 0091.

At the time when the surveillance program material was selected it was believed that copper and phosphorus were the elements most important to embrittlement of reactor vessel steels. Lower Shell Plate C-506-1 had the highest Copper content (0.15%) and one of the highest Initial RTNDT values and was selected as the surveillance program base metal. It should be noted that the lower shell plate C-506-1 is currently the limiting beltline material on the Millstone Unit 2 Reactor Vessel.

The Intermediate to Lower Girth Seam 9-203 was fabricated from 2 heats of weld wire; Heat # 10137 (OD of weld) and 90136 (ID of weld). The surveillance weld was made from the same heat and the same manner as the Intermediate to Lower Shell Girth Weld, i.e. 2 heats. The average Cu/Ni between the two heats would be 0.25 Cu and 0.06 Ni, which is the highest Cu value of all beltline welds and was therefore selected as the surveillance program weld material.

Since the base metal and weld metal selected for the Millstone Unit 2 Surveillance Program represent the limiting plate and weld in the beltline region, this criterion is met.

Criterion2: Scatter in theplots of Charpy energy versus temperaturefor the irradiatedand unirradiatedconditions should be small enough to permit the determinationof the 30 ft-lb temperatureand uppershelf energy unambiguously.

Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in Appendix C of this calcnote.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Millstone Unit 2 surveillance materials unambiguously. Therefore, the Millstone Unit 2 surveillance program meets this criterion.

Criterion 3: When there are two or more sets ofsurveillance datafrom one reactor,the scatterof ARTNpDr values about a best-fit line drawn as describedin RegulatoryPosition2.1 normally should be less than 280Ffor welds and 1 70Ffor base metal Even if thefluence range is large(two or more orders of magnitude), the scattershould not exceed twice those values.

Even if the datafail this criterionfor use in shift calculations,they may be crediblefor determiningdecrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTME185-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ART,'DT values about this line is less than 28*F for welds and less than 171F for the plate.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2.

Millstone Unit 2 Capsule W-83

D-4 Table D-I Millstone Unit 2 Chemistry Factors Based on Surveillance Data (Reg. Guidel.99, Rev. 2, Position 2.1)

Material Capsule Capsule f FF (b) ARTNDTC) FF*ARTNDT FF2 W-97 0.324 0.69 65.75 45.37 0.476 Lower Shell Plate C 506 Longitudinal W-104 0.949 0.99 87.67 86.79 0.98 (Heat # C-5667-1) W-83 1.74 1.15 119.12 136.99 1.323 Lower Shell Plate C- W-97 0.324 0.69 90.83 62.67 0.476 506 Transverse (Heat # C-5667-1) W-83 1.74 1.15 145.78 167.65 1.323 Sum = 499.47 4.578 CF = X(FF

  • RTND) -- I( FF2) = (499.47) (4.578) = 109.1 OF Intermediate to Lower W-97 0.324 069 65.93 45 49 0.476 Girth Seam 9-203 W-104 0.949 0.99 52.12 51.59 0.98 (Heat# 10137 &

90136) W-83 1.74 1.15 56.09 64.50 1.323 Sum= 161.58 2.779 CF = X(FF

  • RTNr) - 7( FF2) = (161.58) - (2.779) 58.14 OF Notes:

(a) f= best estimate fluence values. (lx l0'9 n/cm 2, E > 1.0 MeV).

(b) FF = fluence factor = f(o2 s-o 8

.OIogf).

(c) ARTNDT values are the measured 30 ft-lb shift values taken from App. C The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table B-2.

Millstone Unit 2 Capsule W-83

D-5 Table D-2:

Turkey Point Unit 3 Surveillance Capsule Data Scatter about the Best-Fit Line for Surveillance Forging Materials.

CF(a) Scatter <171F (Base Metals)

(Slopebe, f-,) ARTANT (OF) ARTNDT (OF) <28'F (Weld)

W-97 109.1 0.69 65.75 75.28 9.53 Yes Lower Shell Plate C-506 Longitudinal W-104 109.1 0.99 87.67 108 20.33 No (Heat # C-5667-1) W-83 109.1 1.15 119.12 125.47 635 Yes Lower Shell Plate C-506 W-97 109.1 0.69 90.83 75.28 -15.55 Yes Transverse (Heat#C-5667-1) W-83 109.1 1.15 145.78 125.47 -20.31 No W-97 58.14 0.69 65.93 40.12 -25.81 Yes Intermediate to Lower Girth Seam 9-203 W-104 58.14 0.99 52.12 57.55 5.43 Yes (Heat # 10137 & 90136) W-83 58.14 1.15 56.09 66.86 10.77 Yes Notes:

2 (a) f = Calculated fluence from capsule W-83 dosimetry analysis results (x 1019 n/cm , E > 1.0 MeV) See Section 6.

(b) FF = fluence factor = f(.2-0 Iflog f.

(c) ARTNDT values are the measured 30 ft-lb. shift values (Appendix C) and do not include the adjustment ratio procedure of Reg. Guide 1.99 Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values Best Fit ARTNDT = (Slopebet t) * (Fluence Factor)

CONCLUSION:

Table D-2 indicates that two of the five measured plate ARTNDT values are outside the I a scatter band.

Therefore the plate data is not credible. Table D-2 also indicates that all of the measured weld ARTNDT values are within the Icy scatter band. Therefore the weld data meets this criteria.

Millstone Unit 2 Capsule W-83

D-6 Criterion4: The irradiationtemperatureof the Charpy specimens in the capsule shouldmatch the vessel wall temperatureat the cladding/basemetal interface within +/- 25F.

The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°R Criterion5: The surveillance datafor the correlationmonitormaterialin the capsule shouldfall within the scatterband of the databasefor that material The Millstone Unit 2 surveillance program does contain correlation monitor material. According to Table 14 of NUREG/CR-6413t1 2 , Millstone Unit 2 Correlation Monitor Material for Capsule 104 had a residual value of 10F, which is less than the +/- 34 (2 Sigma) scatter band allowance for plate HSST02 (A533B-1) material (per figure 9 of the NUREG report). Note: The fluence & ARTNDT has been updated since the issue of the NUREG Report, however, these changes would not cause the Correlation Monitor Material to exceed the scatter band.

CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B and 10CFR 50.61, the Millstone Unit 2 surveillance weld data is credible. However due not meeting criterion 3 the Millstone Unit 2 surveillance plate data is not credible.

Millstone Unit 2 Capsule W-83