ML030660170

From kanterella
Jump to navigation Jump to search

WCAP-16012, Rev. 0, Analysis of Capsule W-83 from Dominion Nuclear Connecticut Millstone Unit 2 Reactor Vessel Radiation Surveillance Program, Appendix a - D
ML030660170
Person / Time
Site: Millstone Dominion icon.png
Issue date: 02/28/2003
From: Conermann J, Gresham J, Ledger J, Wrights G
Westinghouse
To:
Office of Nuclear Reactor Regulation
References
FOIA/PA-2005-0108 WCAP-16012 Rev 0
Download: ML030660170 (154)


Text

A-1 APPENDIX A VALIDATION OF THE RADIATION TRANSPORT MODELS BASED ON NEUTRON DOSIMETRY MEASUREMENTS Millstone Unit 2 Capsule W-83

A-2 A.1 Neutron Dosimetry Comparisons of measured dosimetry results to both the calculated and least squares adjusted values for the surveillance capsules withdrawn from Millstone Unit 2 are described herein. The sensor sets from these capsules have been analyzed in accordance with the current dosimetry evaluation methodology described in Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence.tA'l One of the main purposes for presenting this material is to demonstrate that the overall measurements agree with the calculated and least squares adjusted values to within

+ 20% as specified by Regulatory Guide 1.190, thus serving to validate the calculated neutron exposures previously reported in Section 6.2 of this report. This information may also be useful in the future, in particular, as least squares adjustment techniques become accepted in the regulatory environment.

A.1.1 Sensor Reaction Rate Determinations In this section, the results of the evaluations of three neutron sensor sets withdrawn as part of the Millstone Unit 2 Reactor Vessel Materials Surveillance Program are presented. The capsule designation, location within the reactor, and time of withdrawal of each of these dosimetry sets were as follows:

Capsule ID W-97 W-97 supplemental t W-104 W-83 Equivalent Azimuthal Location 70 70 140 70 Withdrawal Time End of Cycle 3 End of Cycle 10 End of Cycle 10 End of Cycle 14

[I] The W-97 supplemental capsule is a fourth dosimeter set that was first put into service at the beginning of the sixth fuel cycle.

Since the W-97 supplemental capsule dosimetry differed substantially from the W-104 dosimetry measurements jointly described in Reference A-3, the W-97 supplemental capsule was not used to validate the Millstone Unit 2 transport calculations The azimuthal locations included in the above tabulation represent the first octant equivalent azimuthal angle of the geometric center of the respective surveillance capsules.

The passive neutron sensors contained in the W-97, W-104, and W-83 surveillance capsules are summarized as follows:

Sensor Material Copper [Cd]

Iron Nickel [Cd]

Titanium Uranium-238 Uranium-238 [Cd]

Cobalt-Aluminum Cobalt-Aluminum [Cd]

Sulfur Reaction Of Interest 63Cu(n,ct) 6Co

' 4Fe(n,p)'4Mn 58Ni(n,p)58Co "4T'li(n,p)46Sc 238U(n, 137Cs 2 38 U(n,f)13 7Cs 59Co(n,) 60 Co 59 Co(n,6)0Co 32S(n,p)12p Capsule W-97 X

X X

X X

X Sensor Sets Evaluated Capsule W-1 04 X

X X

X Capsule W-83 X

X X

X X

Millstone Unit 2 Capsule W-83 Irradiation Time [EFPY1 3.0 5.0 10.0 15.3

A-3 In regards to the neutron sensors listed above, the cadmium-covered 63Cu sensor reaction was not measured for capsule W-83 since the copper wire amalgamated with the cadmium. Similarly, the capsule W-97 63Cu sensor was also rejected on the basis of sample integrity since melting of the cadmium shield had also occurred. The cadmium-covered 63Cu sensor reaction for capsule W-104 was also rejected based on previous performance issues with cadmium melting in the aforementioned capsules.

The bare uranium sensor measurements for capsules W-97 and W-83 were also excluded from this assessment.

The bare 23$U(n,f) measurement is dominated by contributions from thermal neutron reactions in 23SU impurities. These thermal contributions add significant uncertainty to the determination of the 238U(n,f) reaction rate. The bare 238U(n,f) sensor reactions for capsule W-104 were not reported in Reference A-3.

The cadmium-covered 231U sensor provides greater accuracy in the measurement of this fast neutron reaction and was therefore included in the reevaluation of capsules W-97 and W-104. However, the cadmium-covered 238U sensors for Capsule W-83 were statistically inconsistent (in excess of 3a) with 238U(n,f)137Cs[Cd] measurements from other similar plants; hence, this sensor reaction rate was excluded from this assessment.

The sulfur sensor reaction was not measured for capsule W-83 due to the short half-life of 32p (14.28 days); similarly, these sensors were not reevaluated for capsule W-97. Furthermore, the sulfur sensor reactions for capsule W-104 were not reported in Reference A-3. Therefore, the sulfur reaction was not utilized in the dssessment of these capsules.

Pertinent physical and nuclear characteristics of the passive neutron sensors are listed in Table A-1. The use of passive monitors such as those listed above does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

"* the measured specific activity of each monitor,

"* the physical characteristics of each monitor,

"* the operating history of the reactor,

"* the energy response of each monitor, and

"* the neutron energy spectrum at the monitor location.

The radiometric counting of the neutron sensors from capsule W-97 was reported by Combustion Engineering (C-E)fA-21.

The radiometric counting of the neutron sensors from capsule W-104 was reported by Babcock & Wilcox (B&W)

.A-3J. The radiometric counting of the sensors from capsule W-83 was completed at the Pace Analytical Services Laboratory located at the Westinghouse Waltz Mill Site.

The Pace radiometric counting followed established ASTM procedures. Following sample preparation and weighing, the specific activity of each sensor was determined by means of a high-resolution gamma spectrometer.

For the iron, nickel, titanium, and cobalt-aluminum sensors, these analyses were Millstone Unit 2 Capsule W-83

A-4 performed by direct counting of each of the individual samples. In the case of the uranium fission sensors, the analyses were carried out by direct counting preceded by dissolution and chemical separation of cesium from the sensor material.

The irradiation history of the reactor over the irradiation periods experienced by capsules W-97, W-104, and W-83 was based on the reported monthly power generation of Millstone Unit 2 from initial reactor criticality through the end of the dosimetry evaluation period. For the sensor sets utilized in the surveillance capsules, the half-lives of the product isotopes are long enough that a monthly histogram describing reactor operation has proven to be an adequate representation for use in radioactive decay corrections for the reactions of interest in the exposure evaluations. The irradiation history applicable to capsules W-97, W-104, and W-83 is given in Table A-2.

Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

A R=

No F Y P

Cj [1-e-A'I] [e-*'-d where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pef (rps/nucleus).

A

=

Measured specific activity (dps/gm).

No

=

Number of target element atoms per gram of sensor.

F

=

Weight fraction of the target isotope in the sensor material.

Y

=

Number of product atoms produced per reaction.

Pj

=

Average core power level during irradiation periodj (MW).

Pef =

Maximum or reference power level of the reactor (MW).

Cj

=

Calculated ratio of 4(E > 1.0 MeV) during irradiation period j to the time weighted average 4b(E > 1.0 MeV) over the entire irradiation period.

=

Decay constant of the product isotope (1/sec).

tj

=

Length of irradiation period j (sec).

td

=

Decay time following irradiation periodj (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[Pref] accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The Millstone Unit 2 Capsule W-83

A-5 ratio Cj, which was calculated for each fuel cycle using the transport methodology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single-cycle irradiation, C, is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term should be employed. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to low leakage fuel management. The fuel cycle specific neutron flux values along with the computed values for Cj are listed in Table A-3. These flux values represent the cycle dependent results at the radial and azimuthal center of the respective capsules at the axial elevation of the active fuel midplane.

Calculations for the reactions whose products have short half-lives indicated that Cj factors based on cycle average flux values were appropriate for capsule W-97 but not appropriate for capsules W-104 and W-83 due to the change in the spectra over the life of the surveillance capsules resulting from the removal of the thermal shield at the end of the fifth fuel cycle. The effect of this spectral change was accounted for by determining Cj factors based on individual reaction rates. As a result, the Cj factors that were utilized in the final analyses for capsules W-104 and W-83 are based on individual reaction rates determined from the synthesized transport calculations as reported in Table A-3.

Prior to using the measured reaction rates in the least-squares evaluations of the dosimetry sensor sets, corrections were made to the 238U measurements to account for the presence of 23U impurities in the sensors as well as to adjust for the build-in of plutonium isotopes over the course of the irradiation.

Corrections were also made to the 23SU sensor reaction rates to account for gamma ray induced fission reactions that occurred over the course of the capsule irradiation. The correction factors applied to the Millstone Unit 2 fission sensor reaction rates are summarized as follows:

Correction Capsule W-97 Capsule W-104 Capsule W-83t11 "23'U Impurity/Pu Build-in 0.872 0.848 0.819 238u(y,f) 0.903 0.844 0.846 Net 238U Correction 0.787 0.716 0.693

[1] The cadmium covered U foil from this dosimetry set was not used in the least squares evaluation for the W-83 capsule since it was statistncally inconsistent with comparable measurement data obtained from sirmlar plants.

These factors were applied in a multiplicative fashion to the decay corrected uranium fission sensor reaction rates.

Results of the sensor reaction rate determinations for capsules W-97, W-104 and W-83 are given in Table A-4. In Table A-4, the measured specific activities, decay corrected saturated specific activities, and computed reaction rates for each sensor indexed to the radial center of the capsule are listed. The fission sensor reaction rates are listed both with and without the applied corrections for 238U impurities, plutonium build-in, and gamma ray induced fission effects.

A.1.2 Least Squares Evaluation of Sensor Sets Least squares adjustment methods provide the capability of combining the measurement data with the corresponding neutron transport calculations resulting in a Best Estimate neutron energy spectrum with Millstone Unit 2 Capsule W-83

A-6 associated uncertainties. Best Estimates for key exposure parameters such as ý(E > 1.0 MeV) or dpa/s along with their uncertainties are then easily obtained from the adjusted spectrum. In general, the least squares methods, as applied to surveillance capsule dosimetry evaluations, act to reconcile the measured sensor reaction rate data, dosimetry reaction cross-sections, and the calculated neutron energy spectrum within their respective uncertainties. For example, R.+SR, =

(C

_. (5)(5+/-

)

g relates a set of measured reaction rates, R, to a single neutron spectrum, 4g, through the multigroup dosimeter reaction cross-section, cy,, each with an uncertainty 5. The primary objective of the least squares evaluation is to produce unbiased estimates of the neutron exposure parameters at the location of the measurement.

For the least squares evaluation of the Millstone Unit 2 surveillance capsule dosimetry, the FERRET code (A4] was employed to combine the results of the plant specific neutron transport calculations and sensor set reaction rate measurements to determine best-estimate values of exposure parameters (4*(E > 1.0 MeV) and dpa) along with associated uncertainties for the three in-vessel capsules considered herein.

The application of the least squares methodology requires the following input:

1 - The calculated neutron energy spectrum and associated uncertainties at the measurement location.

2 - The measured reaction rates and associated uncertainty for each sensor contained in the multiple foil set.

3 - The energy dependent dosimetry reaction cross-sections and associated uncertainties for each sensor contained in the multiple foil sensor set.

For the Millstone Unit 2 application, the calculated neutron spectrum was obtained from the results of plant specific neutron transport calculations described in Section 6.2 of this report. The sensor reaction rates were derived from the measured specific activities using the procedures described in Section A. 1.1.

The dosimetry reaction cross-sections and uncertainties were obtained from the Sandia National Laboratory Radiation Metrology Laboratory (SNLRML) dosimeter cross-section library [A-51 The SNLRML library is an evaluated dosimetry reaction cross-section compilation recommended for use in LWR evaluations by ASTM Standard E10 18, "Application of ASTM Evaluated Cross-Section Data File, Matrix E 706 (IB)".

The uncertainties associated with the measured reaction rates, dosimetry cross-sections, and calculated neutron spectrum were input to the least squares procedure in the form of variances and covariances.

The assignment of the input uncertainties followed the guidance provided in ASTM Standard E 944, "Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance."

Millstone Unit 2 Capsule W-83

A-7 The following provides a summary of the uncertainties associated with the least squares evaluation of the Millstone Unit 2 surveillance capsule sensor sets.

Reaction Rate Uncertainties The overall uncertainty associated with the measured reaction rates includes components due to the basic measurement process, irradiation history corrections, and corrections for competing reactions. A high level of accuracy in the reaction rate determinations is assured by utilizing laboratory procedures that conform to the ASTM National Consensus Standards for reaction rate determinations for each sensor type.

After combining all of these uncertainty components, the sensor reaction rates derived from the counting and data evaluation procedures were assigned the following net uncertainties for input to the least squares evaluation:

These uncertainties are given at the la level.

Dosimetry Cross-Section Uncertainties The reaction rate cross-sections used in the least squares evaluations were taken from the SNLRML library.

This data library provides reaction cross-sections and associated uncertainties, including covariances, for 66 dosimetry sensors in common use. Both cross-sections and uncertainties are provided in a fine multigroup structure for use in least squares adjustment applications. These cross-sections were compiled from the most recent cross-section evaluations and they have been tested with respect to their accuracy and consistency for least squares evaluations. Further, the library has been empirically tested for use in fission spectra determination as well as in the fluence and energy characterization of 14 MeV neutron sources.

For sensors included in the Millstone Unit 2 surveillance program, the following uncertainties in the fission spectrum averaged cross-sections are provided in the SNLRML documentation package.

Millstone Unit 2 Capsule W-83 Reaction Uncertainty "63Cu(n,a)c°Co 5%

54Fe(n,p)54Mn 5%

58Ni(n,p)58Co 5%

46Ti(n,p)41Sc 5%

238U(n,f)137Cs 10%

59Co(n,7) 6Co 5%

A-8 These tabulated ranges provide an indication of the dosimetry cross-section uncertainties associated with the sensor sets used in LWR irradiations.

Calculated Neutron Spectrum The neutron spectra input to the least squares adjustment procedure were obtained directly from the results of plant specific transport calculations for each surveillance capsule irradiation period and location. The spectrum for each capsule was input in an absolute sense (rather than as simply a relative spectral shape). Therefore, within the constraints of the assigned uncertainties, the calculated data were treated equally with the measurements.

While the uncertainties associated with the reaction rates were obtained from the measurement procedures and counting benchmarks and the dosimetry cross-section uncertainties were supplied directly with the SNLRML library, the uncertainty matrix for the calculated spectrum was constructed from the following relationship:

Mg.=R2 +Rg *Rg,*Pg, where Rn specifies an overall fractional normalization uncertainty and the fractional uncertainties R.. and Rg. specify additional random groupwise uncertainties that are correlated with a correlation matrix given by:

Pgg = [I-9]5-+

0 e-"

where H

=(g -g

,) 2 272 The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes the short-range correlation's over a group range y (0 specifies the strength of the latter term). The value of 5 is 1.0 when g = g', and is 0.0 otherwise.

The set of parameters defining the input covariance matrix for the Millstone Unit 2 calculated spectra was as follows:

Flux Normalization Uncertainty (Rn) 15%

Flux Group Uncertainties (Rg, Rg)

(E > 0.0055 MeV) 15%

(0.68 eV < E < 0.0055 MeV) 29%

(E < 0.68 eV) 52%

Short Range Correlation (0)

(E > 0.0055 MeV) 0.9 (0.68 eV < E < 0.0055 MeV) 0.5 (E < 0.68 eV) 0.5 Millstone Unit 2 Capsule W-83

A-9 Flux Group Correlation Range (y)

(E > 0.0055 MeV) 6 (0.68 eV < E < 0.0055 MeV) 3 (E < 0.68 eV) 2 A.1.3 Comparisons of Measurements and Calculations Results of the least squares evaluations of the dosimetry from the Millstone Unit 2 surveillance capsules considered herein are provided in Tables A-5 and A-6.

In Table A-5, measured, calculated, and best-estimate values for sensor reaction rates are given for each capsule. Also provided in this tabulation are ratios of the measured reaction rates to both the calculated and least squares adjusted reaction rates.

These ratios of M/C and M/BE illustrate the consistency of the fit of the calculated neutron energy spectra to the measured reaction rates both before and after adjustment. In Table A-6, comparison of the calculated and best estimate values of neutron flux (E > 1.0 MeV) and iron atom displacement rate are tabulated along with the BE/C ratios observed for each of the capsules.

The data comparisons provided in Tables A-5 and A-6 show that the adjustments to the calculated spectra are relatively small and well within the assigned uncertainties for the calculated spectra, measured sensor reaction rates, and dosimetry reaction cross-sections. Further, these results indicate that the use of the least squares evaluation results in a reduction in the uncertainties associated with the exposure of the surveillance capsules.

From Section 6.4 of this report, it may be noted that the uncertainty associated with the unadjusted calculation of neutron fluence (E > 1.0 MeV) and iron atom displacements at the surveillance capsule locations is specified as 12% at the la level. From Table A-6, it is noted that the corresponding uncertainties associated with the least squares adjusted exposure parameters have been reduced to 6-7% for neutron flux (E > 1.0 MeV) and 6% for iron atom displacement rate. Again, the uncertainties from the least-squares evaluation are at the I c level.

Further comparisons of the measurement results with calculations are given in Tables A-7 and A-8.

These comparisons are given on two levels. In Table A-7, calculations of individual threshold sensor reaction rates are compared directly with the corresponding measurements. These threshold reaction rate comparisons provide a good evaluation of the accuracy of the fast neutron portion of the calculated energy spectra. In Table A-8, calculations of fast neutron exposure rates in terms of 4(E > 1.0 MeV) and dpa/s are compared with the best estimate results obtained from the least squares evaluation of the capsule dosimetry results. These two levels of comparison yield consistent and similar results with all measurement-to-calculation comparisons falling well within the 20% limits specified as the acceptance criteria in Regulatory Guide 1.190.

It should be noted that although comparisons between the measured and calculated values for the 46Ti sensors are included in Table A-7, they were not used in determining the average measurement to calculation (M/C) ratios since a bias exists in the SNLRML cross section for the 46Ti(n,p) reaction. This bias may be observed in the data contained in ASTM Standard Practice E261, "Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques."

Specifically, Table 3 of ASTM E261 indicates that the sum in quadrature of the experimental uncertainty and the calculated uncertainty for 46Ti(n,p) 46SC in the 23SU thermal fission field is 6.86%. Also indicated in the same table is the ratio of the calculated cross-section to the experimentally measured cross section (CIE) that is given Millstone Unit 2 Capsule W-83

A-10 as 0.899. Since the difference between the calculated and measured cross-section is greater than the uncertainties involved supports the hypothesis that the calculated cross-section is biased low.

In the case of the direct comparison of measured and calculated sensor reaction rates, the M/C comparisons for fast neutron reactions range from 0.87-1.15 for the 8 samples included in the data set.

The overall average M/C ratio for the entire set of Millstone Unit 2 data is 1.00 with an associated standard deviation of 9.6%.

In the comparisons of best estimate and calculated fast neutron exposure parameters, the corresponding BE/C comparisons for the capsule data sets range from 0.94-1.12 for neutron flux (E > 1.0 MeV) and from 0.93 to 1.10 for iron atom displacement rate.

The overall average BE/C ratios for neutron flux (E > 1.0 MeV) and iron atom displacement rate are 1.02 with a standard deviation of 9.1% and 1.01 with a standard deviation of 8.6%, respectively.

Based on these comparisons, it is concluded that the calculated fast neutron exposures provided in Section 6.2 of this report are validated for use in the assessment of the condition of the materials comprising the beltline region of the Millstone Unit 2 reactor pressure vessel.

Millstone Unit 2 Capsule W-83

A-li Table A-I Nuclear Parameters Used In The Evaluation Of Neutron Sensors Monitor Material Copper Iron Nickel Titanium Uranium-238 Cobalt-Aluminum Reaction of Interest 63Cu(n,a) 14Fe (n,p)

"58Ni (n,p) 46Ti (n,p) 23&u (n,f) 59Co (n,7)

Target Atom Fractionl t1 0.6917 0.0585 0.6808 0.0800 1.0000 0.0015 90% Response Range 21 (MeV) 5.0- 12.0 2.3-8.8 1.9-8.8 4.0-10.5 1.4-8.0 non-threshold

[1] The counting results identified by B&W for the capsule W-l104 reactions were reported in Reference A-3 based on the weight of the target material in the sample rather than the total weight of the dosimeter material. As a result, the target atom fraction used in the analysis of the capsule W-104 sensors was unity.

[2] The 90% response range is defined such that, in the neutron spectrum characteristic of the Millstone Unit 2 surveillance capsules located at 70 and 140 from the core cardinal axes, approximately 90% of the sensor response is due to neutrons in the energy range specified with approximately 5% of the total response due to neutrons with energies below the lower limit and 5% of the total response due to neutrons with energies above the upper limit.

Millstone Unit 2 Capsule W-83 Fission Yield (%)

6.02 Product Half-life

5. 2 71y 312.3 d 70.82 d 83.81 d 30.07 y 5.271 y

A-12 Table A-2 Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor Year 1975 1975 1975 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978

'1978 Month 10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 Thermal Generation (MWt-r)

Year 0

1979 169382 1979 470151 1979 726120 1979 727079 1979 993918 1979 1275861 1979 1161586 1979 1534194 1979 1197834 1979 1373055 1979 1727678 1979 1787608 1980 1740007 1980 910583 1980 1004692 1980 1697538 1980 1849165 1980 1348306 1980 368843 1980 362122 1980 1329348 1980 1885613 1980 1667984 1980 1516798 1981 1205392 1981 0

1981 0

1981 0

1981 0

1981 107169 1981 1596598 1981 1752746 1981 1790474 1981 1806986 1981 1704986 1981 1875411 1839813 1900976 Millstone Unit 2 Capsule W-83 Month 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 Thermal Generation (MWt-hr)

Year 1662527 1982 1692785 1982 539470 1982 0

1982 417578 1982 1230123 1982 1989041 1982 745654 1982 1933841 1982 1991854 1982 0

1982 1613522 1982 2001005 1983 1683788 1983 1740751 1983 1831957 1983 499545 1983 404890 1983 1900317 1983 958023 1983 0

1983 659001 1983 1862268 1983 1995148 1983 782184 1984 1752019 1984 2001106 1984 1934118 1984 987167 1984 1853185 1984 1963023 1984 1904455 1984 1923108 1984 1869618 1984 1942822 1984 267821 1984 Month 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 Thermal Generation (MWt-hr) 0 0

808939.7 1570359 1982946 1935852 1020076 1724588 1703478 1693915 1644259 1938553 1801321 1634909 806911 1921628 1712695 0

0 0

0 0

0 0

809931 1507373 1971567 1935357 1998215 1877970 1903852 1995846 1910948 2001607 1524599 1935523

A-13 Table A-2 cont'd Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor Year 1985 1985 1985 1985 1985 1985 1985 1985 1985 1985 1985 1985 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1986 1987 1987 1987 1987 1987 1987 1987 1987 1987 1987 1987 1987 Month 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 Thermal Generation (MWt-hr) 1994395 900708 0

0 0

0 1247903 1963363 1710661 0

1411904 1990411 1984099 1813645 2000735 1940693 1809751 1799531 2007906 1670198 1121241 0

0 496285 1772860 757661 1990243 1863177 2006240 1942702 1936769 1977157 1792000 2008169 1840647 1879773 Year 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1988 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 1989 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 1990 Millstone Unit 2 Capsule W-83 Month 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 Thermal Generation (MWt-hr)

Year 0

1991 439630 1991 2006818 1991 1494187 1991 956578 1991 1400732 1991 2008427 1991 2008495 1991 1936390 1991 1885985 1991 1943414 1991 2008362 1991 2008467 1992 201767 1992 0

1992 2469 1992 1833467 1992 1938383 1992 2004115 1992 2001979 1992 1842429 1992 1189086 1992 454022 1992 2008374 1992 2008226 1993 1813945 1993 2008300 1993 1870658 1993 455773 1993 945947 1993 2008021 1993 1869028 1993 901501 1993 0

1993 1216781 1993 1822046 1993 Month 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 1

2 3

4 5

6 7

8 9

10 11 12 Thermal Generation (MWt-hr) 1323684 1687526 2008452 1368599 803890 0

1352310 540061 1170466 1708110 342421 160881 1709024 975691 2008454 1940643 1872406 0

0 0

0 0

0 0

968933 1573593 2008013 1870993 1883361 1859045 2008410 1347720 902578 1355882 1848160 1991761

A-14 Table A-2 cont'd Monthly Thermal Generation During The First Fourteen Fuel Cycles of The Millstone Unit 2 Reactor Thermal Thermal Thermal Generation Generation Generation Year Month (MWt-hr)

Year Month (MWt-hr)

Year Month (MWt-hr) 1994 1

1987044 1997 1

0 2000 1

1793229 1994 2

1808654 1997 2

0 2000 2

803563.6 1994 3

2004989 1997 3

0 2000 3

1995614 1994 4

1420483 1997 4

0 2000 4

1353661 1994 5

0 1997 5

0 2000 5

0 1994 6

736521 1997 6

0 2000 6

1640187 1994 7

1715901 1997 7

0 2000 7

2002629 1994 8

0 1997 8

0 2000 8

2003897 1994 9

1743833 1997 9

0 2000 9

1923670 1994 10 8969 1997 10 0

2000 10 1984571 1994 11 0

1997 11 0

2000 11 1936391 1994 12 0

1997 12 0

2000 12 1996304 1995 1

0 1998 1

0 2001 1

2000397 1995 2

0 1998 2

0 2001 2

1809984 1995 3

0 1998 3

0 2001 3

1974906 1995 4

0 1998 4

0 2001 4

1809699 1995 5

0 1998 5

0 2001 5

1537819 1995 6

0 1998 6

0 2001 6

1934469 1995 7

0 1998 7

0 2001 7

1991596 1995 8

1127403 1998 8

0 2001 8

1802924 1995 9

1943543 1998 9

0 2001 9

1941279 1995 10 2008689 1998 10 0

2001 10 2002856 1995 11 1921802 1998 11 0

2001 11 1860739 1995 12 1594145 1998 12 0

2001 12 1976053 1996 1

2007749 1999 1

0 2002 1

1945747 1996 2

1232628 1999 2

0 2002 2

835263.3 1996 3

0 1999 3

0 2002 3

0 1996 4

0 1999 4

0 1996 5

0 1999 5

712321.6 1996 6

0 1999 6

1942647 1996 7

0 1999 7

1989754 1996 8

0 1999 8

1986803 1996 9

0 1999 9

1432859 1996 10 0

1999 10 2004610 1996 11 0

1999 11 1897621 1996 12 0

1999 12 1918186 Millstone Unit 2 Capsule W-83

A-15 Table A-3 Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation

$(E >1.0 MeV) [nc

-s]

Cj Fuel Capsule Capsule Capsule Capsule Capsule Capsule Cycle W-97 W-104 W-83 W-97 W-104 W-83 1

3.OOE+10 2.10E+10 3.OOE+10 0.89 0.70 0.83 2

3.35E+10 2.36E+10 3.35E+10 0.99 0.79 0.93 3

3.97E+10 2.80E+10 3.97E+10 1.18 0.93 1.10 4

2.68E+10 3.84E+10 0.90 1.07 5

2.66E+10 3.79E+10 0.89 1.05 6

3.90E+10 5.45E+10 1.30 1.51 7

4.00E+10 5.58E+10 1.34 1.55 8

4.02E+10 5.59E+10 1.34 1.55 9

3.94E+10 5.48E+10 1.31 1.52 10 1.96E+10 2.46E+10 0.65 0.68 11 2.81E+10 0.78 12 2.33E+10 0.65 13 2.47E+10 0.69 14 2.46E+10 0.68 Average 3.37E+10 2.99E+10 3.60E+10 1.00 1.00 1.00

[1] The Cj factors based on the ratio of the cycle specific fast (E > 1 0 MeV) neutron flux divided by the average flux over the total irradiation period were deemed unsuitable for capsules W-104 and W-83 since individual reaction rates did not vary proportionally with the fast flux due to the removal of the thermal shield at the end of the fifth fuel cycle. As a result of this observation, the Cq terms that were utilized in the final analyses for capsules W-l104 and W-83 were based on the individual reaction rates determined from the synthesized transport calculations. The final q which are based on individual reaction rates, are reported on the following pages of this table.

Millstone Unit 2 Capsule W-83

A-16 Table A-3 cont'd Calculated Ci Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule W-104)

Fuel Cycle Capsule W-104 Reaction Rates [rps/atomL 63Cu (n,0) 54Fe (n,p) 51Ni (n,p) 46Ti (n,p) 23SU (n,f) 1 2.36E-17 2.20E-15 2.92E-15 3.93E-16 8.60E-15 2

2.62E-17 2.46E-15 3.27E-15 4.38E-16 9.65E-15 3

3.07E-17 2.90E-15 3.85E-15 5.14E-16 1.14E-14 4

2.96E-17 2.79E-15 3.70E-15 4.95E-16 1.1OE-14 5

2.94E-17 2.77E-15 3.68E-15 4.92E-16 1.09E-14 6

6.01E-17 5.27E-15 6.85E-15 9.99E-16 1.76E-14 7

6.15E-17 5.40E-15 7.03E-15 1.02E-15 1.80E-14 8

6.17E-17 5.43E-15 7.06E-15 1.03E-15 1.81E-14 9

6.06E-17 5.32E-15 6.92E-15 1.01E-15 1.77E-14 10 3.34E-17 2.77E-15 3.59E-15 5.43E-16 8.95E-15 Average 4.11E-17 3.68E-15 4.81E-15 6.83E-16 1.30E-14 Fuel Cycle Capsule W-104 C 63Cu (n,o,)

54Fe (n,p)

ý'Ni (np) 46T1 (n,p) 211U (n,f) 1 0.57 0.60 0.61 0.58 0.66 2

0.64 0.67 0.68 0.64 0.74 3

0.75 0.79 0.80 0.75 0.88 4

0.72 0.76 0.77 0.72 0.84 5

0.72 0.75 0.76 0.72 0.84 6

1.46 1.43 1.42 1.46 1.35 7

1.50 1.47 1.46 1.50 1.39 8

1.50 1.48 1.47 1.50 1.39 9

1.48 1.45 1.44 1.48 1.37 10 0.81 0.75 0.75 0.79 0.69 Average 1.00 1.00 1.00 1.00 1.00 Millstone Unit 2 Capsule W-83

A-17 Table A-3 cont'd Calculated Cj Factors at the Surveillance Capsule Center Core Midplane Elevation (Capsule W-83)

Fuel Cycle Capsule W-83 Reaction Rates [rps/atom]

-Fe (n,p)

-"Ni (n,p) 46Ti (n,p) 211U (n,f) 59Co (n,y)

'9Co (n,y) Cd 1

3.07E-15 4.07E-15 5.34E-16 1.22E-14 2.90E-12 6.25E-13 2

3.41E-15 4.53E-15 5.92E-16 1.36E-14 3.26E-12 7.03E-13 3

4.01E-15 5.34E-15 6.94E-16 1.61E-14 3.89E-12 8.42E-13 4

3.90E-15 5.18E-15 6.75E-16 1.56E-14 3.77E-12 8.14E-13 5

3.84E-15 5.11E-15 6.65E-16 1.54E-14 3.71E-12 8.02E-13 6

7.17E-15 9.34E-15 1.33E-15 2.44E-14 2.50E-12 5.53E-13 7

7.33E-15 9.55E-15 1.36E-15 2.49E-14 2.56E-12 5.66E-13 8

7.35E-15 9.57E-15 1.36E-15 2.50E-14 2.56E-12 5.68E-13 9

7.21E-15 9.39E-15 1.33E-15 2.45E-14 2.51E-12 5.56E-13 10 3.37E-15 4.37E-15 6.44E-16 1.11E-14 1.07E-12 2.41E-13 11 3.82E-15 4.97E-15 7.28E-16 1.27E-14 1.24E-12 2.77E-13 12 3.19E-15 4.15E-15 6.12E-16 1.05E-14 1.02E-12 2.28E-13 13 3.38E-15 4.40E-15 6.47E-16 1.12E-14 1.08E-12 2.43E-13 14 3.38E-15 4.38E-15 6.46E-16 1.11E-14 1.08E-12 2.42E-13 Average 4.44E-15 5.82E-15 8.17E-16 1.57E-14 2.23E-12 4.89E-13 Fuel Cycle Capsule W-83 Ci 4Fe (n,p)

-"Ni (n,p) 46Tri (n,p) 238U (n,f) 59Co (n,y) 59Co (n,y) Cd 1

0.69 0.70 0.65 0.78 1.30 1.28 2

0.77 0.78 0.72 0.87 1.46 1.44 3

0.90 0.92 0.85 1.03 1.75 1.72 4

0.88 0.89 0.83 0.99 1.69 1.66 5

0.86 0.88 0.81 0.98 1.66 1.64 6

1.61 1.61 1.62 1.55 1.12 1.13 7

1.65 1.64 1.66 1.59 1.15 1.16 8

1.65 1.65 1.66 1.59 1.15 1.16 9

1.62 1.62 1.63 1.56 1.13 1.14 10 0.76 0.75 0.79 0.71 0.48 0.49 11 0.86 0.85 0.89 0.81 0.55 0.57 12 0.72 0.71 0.75 0.67 0.45 0.47 13 0.76 0.76 0.79 0.71 0.49 0.50 14 0.76 0.75 0.79 0.71 0.48 0.49 Average 1.00 1.00 1.00 1.00 1.00 1.00 Millstone Unit 2 Capsule W-83

A-18 Table A-4 Measured Sensor Activities and Reaction Rates Surveillance Capsule W-97 Reaction 63Cu (n,'c) 60Co (Cd)

' 4Fe (np) '4Mn "5tNi (np) 5"Co (Cd) 46Ti (np) 46Sc 23 8U (n,f) 137Cs (Cd) 238U (n,f) '37Cs (Cd) 59Co (n,'y) 60Co 59Co (n,) 60Co (Cd)

Location Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Average Measured Activity P]

(dps/g) 1.12E+05 1.1OE+05 1.27E+05 1.87E+06 1.76E+06 1.86E+06 3.01E+07 2.78E+07 3.05E+07 6.15E+05 5.48E+05 5.70E+05 Saturated Activity (dps/g) 3.78E+05 3.74E+05 4.28E+05 2.60E+06 2.45E+06 2.59E+06 3.70E+07 3.42E+07 3.75E+07 7.60E+05 6.77E+05 7.07E+05 Top 1.77E+05 2.75E+06 Middle 1.92E+05 2.98E+06 Bottom 1.87E+05 2.90E+06 Average Including 235U, 239pu, and y, fission corrections.

Top Middle Bottom Average Top Middle Bottom Average 2.22E+07 2.52E+07 1.70E+07 2.93E+06 3.02E+06 3.07E+06 7.48E+07 8.49E+07 5.73E+07 9.88E+06 1.02E+07 1.04E+07

[1] Measured specific activities are decay corrected to time of reactor shutdown, 1 e., August 17, 1980

[2] The average '2SU (n,f) reaction rate of 1.49E-14 includes a correction factor of 0 872 to account for plutonium build-in and an additional factor of 0.903 to account for photo-fission effects in the sensor.

Millstone Unit 2 Capsule W-83 Reaction Rate (rps/atom) 5.76E-17 5.71E-17 6.53E-17 6.OOE-17 4.13E-15 3.88E-15 4.10E-15 4.04E-15 5.30E-15 4.90E-15 5.37E-15 5.19E-15 7.55E-16 6.73E-16 7.03E-16 7.IOE-16 1.80E-14 1.96E-14 1.91E-14 1.89E-14 1.49E-14 '2' 4.88E-12 5.54E-12 3.74E-12 4.72E-12 6.44E-13 6.64E-13 6.75E-13 6.61E-13

A-19 Table A-4 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule W-104 Reaction 61Cu (n,a) 60Co (Cd) 54Fe (n,p) 54Mn 58Ni (n,p) 5"Co (Cd) 46Ti (n,p) 46SC 23U (n,f) 137Cs (Cd) 13U (n,f) 137Cs (Cd)

Location Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Measured Activity o (dpslg) 3.28E+05 3.34E+05 3.50E+05 3.02E+07 2.85E+07 2.90E+07 3.15E+07 2.65E+07 3.03E+07 6.22E+06 5.47E+06 5.75E+06 4.77E+05 4.77E+05 5.09E+05 Saturated Activity (dps/_)

4.87E+05 4.96E+05 5.20E+05 4.09E+07.

3.86E+07 3.93E+07 5.07E+07 4.27E+07 4.88E+07 9.55E+06 8.40E+06 8.83E+06 2.39E+06 2.39E+06 2.55E+06 Average Including 235U, 239Pu, and y, fission corrections.

[1] Measured specific activities are assumed to be decay corrected to time of reactor shutdown, i e, September 14, 1990.

[2] The average 238U (n,f) reaction rate of 1.15E-14 includes a correction factor of 0 848 to account for plutonium build-in and an additional factor of 0.844 to account for photo-fission effects in the sensor.

Millstone Unit 2 Capsule W-83 Reaction Rate (rps/atom) 5.09E-17 5.18E-17 5.43E-17 5.24E-17 3.67E-15 3.46E-15 3.52E-15 3.55E-15 4.88E-15 4.10E-15 4.69E-15 4.56E-15 7.29E-16 6.41E-16 6.74E-16 6.81E-16 1.57E-14 1.57E-14 1.68E-14 1.61E-14 1.15E-14 '2'

A-20 Table A-4 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule W-83 Reaction 54Fe (n,p) 54Mn 51Ni (np) 58Co (Cd) 46Ti (n,p) 46Sc 2 3 8 U (n,f) 137 Cs (Cd) 238U (n,f) 137Cs (Cd)

"59Co (ny) ">Co 59Co (n,y) 60Co (Cd)

Location Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Average Top Middle Bottom Measured Activity 11 (dps_)

1.21E+06 1.10E+06 1.1OE+06 4.08E+06 3.62E+06 3.80E+06 1.25E+05 1.09E+05 1.1OE+05 1.55E+05 1.80E+05 1.51E+05 Saturated Activity (dys/g) 3.02E+06 2.75E+06 2.75E+06 4.28E+07 3.80E+07 3.99E+07 9.14E+05 7.97E+05 8.04E+05 6.2 1E+05 7.22E+05 6.05E+05 Average Including 235U, 239Pu, and y, fission corrections.

Top Middle Bottom Average Top Middle Bottom Average 1.59E+07 1.69E+07 1.12E+07 1.83E+06 1.84E+06 1.82E+06 5.05E+07 5.36E+07 3.55E+07 5.72E+06 5.76E+06 5.69E+06

[1] Measured specific activities are decay corrected to September 9, 2002.

[2] The average 238U (n,f) reaction rate of 2.96E-15 includes a correction factor of 0.819 to account for plutonium build-in and an additional factor of 0.846 to account for photo-fission effects in the sensor Millstone Unit 2 Capsule W-83 Reaction Rate (rps/atom) 4.79E-15 4.36E-15 4.36E-15 4.50E-15 6.13E-15 5.44E-15 5.71E-15 5.76E-15 9.08E-16 7.92E-16 7.99E-16 8.33E-16 4.08E-15 4.74E-15 3.98E-15 4.27E-15 2.96E-15 121 3.29E-12 3.50E-12 2.32E-12 3.04E-12 3.73E-13 3.76E-13 3.71E-13 3.73E-13

A-21 Table A-5 Comparison of Measured, Calculated, and Best Estimate Reaction Rates At The Surveillance Capsule Center Capsule W-97 Best Reaction Measured Calculated Estimate M/C NM/BE 54Fe(np).4Mn 4.04E-15 3.50E-15 4.03E-15 1.15 1.00 "58Ni(n,p)58Co (Cd) 5.19E-15 4.66E-15 5.30E-15 1.11 0.98 "46Ti(n,p)46Sc 7.10E-16 5.70E-16 6.84E-16 1.25 1.04 238U(n,f)137Cs (Cd) 1.49E-14 1.40E-14 1.56E-14 1.06 0.95 59 Co(n, )60Co 4.72E-12 3.28E-12 4.70E-12 1.44 1.01 59Co(n,,y) Co (Cd) 6.61E-13 6.78E-13 6.65E-13 0.98 0.99 Capsule W-104 Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate M/C NI/BE 54Fe(np)54Mn 3.55E-15 3.76E-15 3.58E-15 0.94 0.99 58Ni(n,p)58Co (Cd) 4.56E-15 4.92E-15 4.65E-15 0.93 0.98 "46Tl(n,p)46Sc 6.81E-16 6.57E-16 6.54E-16 1.04 1.04 238U(n,f)137Cs (Cd) 1.15E-14 1.33E-14 1.23E-14 0.87 0.94 Capsule W-83 Reaction Rate [rps/atom]

Best Reaction Measured Calculated Estimate N/C M/BE

  • 4Fe(n,p)>-Mn 4.50E-15 4.54E-15 4.53E-15 0.99 0.99 5SNi(n,p)58Co (Cd) 5.75E-15 5.95E-15 5.89E-15 0.97 0.98 4rTi(n,p) 46SC 8.33E-16 7.85E-16 8.07E-16 1.06 1.03 59Co(n, )60Co 3.04E-12 2.23E-12 3.02E-12 1.36 1.01 59Co(n,y) Co (Cd) 3.73E-13 4.67E-13 3.77E-13 0.80 0.98 Millstone Unit 2 Capsule W-83 Reaction Rate Fres/atoml

A-22 Table A-6 Comparison of Calculated and Best Estimate Exposure Rates At The Surveillance Capsule Center

_(E > 1.0 MeV) [n/cm2-s]

Best Uncertainty Capsule ID Calculated Estimate (la)

BE/C W-97 3.37E+10 3.76E+10 6%

1.12 W-104 3.00E+10 2.80E+10 6%

0.94 W-83 3.60E+10 3.58E+10 7%

0.99

[I] Calculated results are based on the synthesized transport calculations taken at the core rmdplane following the completion of each respective capsules irradiation period Iron Atom Displacement Rate [dpa/s]

Best Uncertainty Capsule ID Calculated l Estimate (la)

BE/C W-97 5.17E-11 5.70E-11 6%

1.10 W-104 4.46E-1 1 4.15E-1 1 6 %

0.93 W-83 5.32E-11 5.26E-11 6%

0.99

[1] Calculated results are based on the synthesized transport calculations taken at the core midplane following the completion of each respective capsules irradiation period.

Table A-7 Comparison of Measured/Calculated (M/C) Sensor Reaction Rate Ratios Including all Fast Neutron Threshold Reactions MWC Ratio Reaction Capsule W-97 Capsule W-104 Capsule W-83

' 4Fe(n,p)54Mn 1.15 0.94 0.99 "58Ni(n,p)58Co (Cd) 1.11 0.93 0.97 46Ti(n,p)46Sc 1.25 "1 1.04 [1]

1.06 1" 238U(n,p)1 37Cs (Cd) 1.06 0.87 N/A [2]

Average 1.11

[31 0.91 '-'

0.98

[3]

% Standard Deviation 4.1 [3]

4.1 PT' 1.4 13J

[1] The M/C values for the 4Ti sensors are listed but not used in the average M/C ratio due to a bias present in the SNLRML cross-section data as discussed in Section A.1.3 For additional information, these calculations were repeated using the 46Ti dosimetry cross-section from the BUGLE-96 data library set. The results of these calculations were M/C ratios of 1 19, 1.00, and 1.02 for Capsules W-97, W-104, and W-83, respectively

[2] The cadmium-covered uranium measurement from Capsule W-83 was rejected

[3] The overall average M!C ratio for the set of 8 sensor measurements is 1.00 with an associated standard deviation of 9.6%

Millstone Unit 2 Capsule W-83

A-23 Table A-8 Comparison of Best Estimate/Calculated (BE/C) Exposure Rate Ratios BE/C Ratio Capsule ID b(E > 1.0 MeV) dpa/s W-97 1.12 1.10 W-104 0.94 0.93 W-83 0.99 0.99 Average 1.02 1.01

% Standard Deviation 9.1 8.6 Millstone Unit 2 Capsule W-83

A-24 Appendix A References A-1.

Regulatory Guide RG-1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, March 2001.

A-2.

TR-N-MCM-008, "Northeast Utilities Service Company Millstone Nuclear Unit No. 2 Post-Irradiation Evaluation of Reactor Vessel Surveillance Capsule W-97," S. T. Byrne, Combustion Engineering Inc., April 1982.

A-3 BAW-2142, "Analysis of Capsule W-104 Northeast Nuclear Energy Company Millstone Nuclear Power Station, Unit No. 2 - Reactor Vessel Material Surveillance Program," A. L. Lowe, Jr.,

et al., B&W Nuclear Service Company, November 1991.

A-4.

A. Schmittroth, FERRET Data Analysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

A-5.

RSIC Data Library Collection DLC-178, "SNLRML Recommended Dosimetry Cross-Section Compendium", July 1994.

Millstone Unit 2 Capsule W-83

B-1 APPENDIX B INSTRUMENTED CHARPY IMPACT TEST CURVES

[Each of the following plots is titled as "Specimen Number, Test Temperature"]

Millstone Unit 2 Capsule W-83

5000 00.

4000 O00 S3000001 20000 1000O00 000 c oo 200 300 Time-i (ms) 132, O°F 4 00 5 00 0o0 1.00 200 300 400 So0 Time-i (ms) 146, 75°F 6o0 6 00 Millstone Unit 2 Capsule W-83 B-2 1.00 2"

0'7 30001 0..

B-3 5000001 300000 I

200000

100000, 00 000 1 O0 200 300 400 5o0 600 Time-1 (ms) 117, 130-F I

5000 00

-J; 100000 000 000 1 00 200 300 400 500 600 Tmne-I (ins) 13C, 175-F Millstone Unit 2 Capsule W-83

B-4 500000 4000 00 300000 0

2000 00" 100000 0-000 000 100 200 300 400 500 600 Time-1 (ws) 121, 175°F 5000.00 400000 3000001 200000 100000 0 00 An 100 200 300 4fl0 500 6.00 Time-1 (ms) 136, 200°F Millstone Unit 2 Capsule W-83

3 230001 0

2O000 1000{

000 100 200 3.00 400 500 Time-1 (ms) 156, 215°F 500000

400000, 3000 00 2000 00 1000 00.

000 100 200 300 400 500 Time-I (ins) 165, 2250F Millstone Unit 2 Capsule W-83 B-5 2

0

-J 6 00 6 00

B-6 I

50 00 00 T T

4000 00' 2000 00 )

1000 00T 000 000 1 00 200 300 400 500 600 Time-I (ms) 131, 250°F T

5000 00 4000 00 "2 00 1000 00 0 000 000 100 2.00 300 400 5o0 6o0 Time-I (ms) 12K, 300°F Millstone Unit 2 Capsule W-83

000 100 200 300 400 5o0 Time-i (ms) 126, 325-F X0 300 Time-1 (ms) 16D, 350°F 600 6 00 Millstone Unit 2 Capsule W-83 5000 00 4000 00 300001 0

B-7 4000 3000 0

2000

B-8 5000O00}

4000 00 "T 300000

-J 200000 100000.

000 000 1 00 200 300 400 So0 600 Time-i (ms) 224, O°F 5000001 40000 0 300000T CS 2000-00 1000001 0 00 0o0 1 00 200 300 400 5o0 600 Time-i (ms) 231, 75-F Millstone Unit 2 Capsule W-83

3000 0

-J 2000 1000 0

50001 40001 S3000(

-.J 000 1 00 200 300 400 500 Time-1 (ms) 21L, 130°F 000 1 00 200 300 400 500 Time-I (ms) 253, 150°F Millstone Unit 2 Capsule W-83 B-9 600 600

5000 00.

4000 00 3000 00, 200000 100000 0o0 1 00 2-00 300 400 500 Time-i (ms) 213, 150-F 000 1 00 200 300 4.00 500 Time-1 (ms) 245, 175°F Millstone Unit 2 Capsule W-83 B-10

.0 0

-J

.Z 0

-j 6 00 6 00

400000 "7 300000

-- I 200000 100000.

000 1 00 200 300 400 So0 Time-1 (ms) 212, 175-F 5000 00 400000 0

oooo 0

I

--J 000 1 00 200 300 400 5o0 Time-1 (ms) 211, 200°F Millstone Unit 2 Capsule W-83 B-11 600 600

201

)0 300 Time-1 (ws) 23L, 225-F 0

300 T24e-1 (ms) 214, 275°F Millstone Unit 2 Capsule W-83 B-12 5000 00.

4000 00 "7 3000 00' 0

-J 200000 100000.

nnn.

i i

000 1 00 2.0 400 5o0 50001 0 +

400000 300000

-J 200000 100000' 0 c0 6 00 600 000 1 00 4 00 5 00 I

t I

I

B-13 S3000 00 2000.00 100000 0 0 00 000 100 200 300 400 500 600 Time-1 (ms) 24K, 300°F 5000 00 4000O00

'7 300000 0

2000 00 100000 0 00 000 1 00 2.00 300 400 500 600 Time-1 (ins) 22A, 325°F Millstone Unit 2 Capsule W-83

B-14 5000 00 4000.00

`

300000 0

200000 100000 cooo 000-

-r 000 100 200 300 400 500 600 Time-1 (ms) 314, -50°F I

5000 00 4000001 n I S3000.00" "2J 20000 DO 1000 00i 0 00 000 1 00 200 300 400 500 600 TIrne-1 (ms) 33K, O°F Millstone Unit 2 Capsule W-83

5000 00 4000 00 S300000 00 0

.-J 2000 00.

1000.00 0 O 5000 00' 400000

.0 "T 3000 00 2000 00 1000 00-000 1 00 200 300 400 500 Time-1 (ms) 311, 50-F Millstone Unit 2 Capsule W-83 B-15 00 100 200 3-00 400 500 Time-I (ms) 34L, 30-F 6 00 6 00

5000 00.

4000 00

.0.

". 300000 0

-.J 2000 00 100000.

400 5o0 Tine-1 (ws) 32A, 75-F 5000 00 4000001

° I.

-° 0

2000 00 0o0 100 200 300 400 So0 Time-i (mns) 36D, 1000F Millstone Unit 2 Capsule W-83 B-16 6o0 6 00

000 1 00 200 3.00 400 500 Trie-i (ns) 36E, 1250F 000 1 00 200 300 400 5o0 Trne-i (ms) 34C, 150°F Millstone Unit 2 Capsule W-83 B-17 2.0 600 600

B-18 5000001 40000 01 3000001 0

200000' 100000 000 000 1.00 200 3-00 400 5 D0 600 Time-1 (ms) 337, 200°F 5000001 4 0 0 0 00 S300000 2000 00 1000 D00 0 00 0 P,_

n0nn 1 00 2l00 300 400 5o0 600 Time-1 (mns) 323, 225-F Millstone Unit 2 Capsule WV-83

5000 00.

4000 00

'73000 00 0

00 2000 O00!

000 1 00 200 300 400 5o0 Time-1 (ms) 336, 250OF 5000 00' 4000 00 36 30 0 0 0T 0

200000 T

100000, 000-000 1 00 200 300 400 500 Time-1 (ms) 312, 250-F Millstone Umt 2 Capsule W-83 B-19 6 S0 P 00

5000 O0 4000 00 S300000 2000001 1000 00 000 5000 001 4000O00' S300000

-.J 2000 00 1000 00 -

O 100 200 300 400 500 rene-1 (ms) 42T, -75°F 000 1 00 200 300 400 500 Time-1 (ms) 46E, -25°F Millstone Unit 2 Capsule W-83 B-20 6 00 600

S300000 2000 00 100000 0.00 0

5000 00 4000 00 S300000

-. I 2000 00' 1000 D0O 000.

00 1 00 200 300 400 500 Time-I (ms) 421P, O°F 000 100 200 300 400 500 Time-i (ms) 41E, 25°F Millstone Unit 2 Capsule W-83 B-21 6 00 600

B-22 5000 00 j 4000 00...

300000

-J 200000 0

1000.00..

0.00 000 1 00 200 300 4.00 5o0 600 Time-i (ms) 41T, 50°F 5000.00 4000 00 S3000 D0 0

2000 00 1000 00 000 n rn 1fl0 200f 300lf 400 500D 600 Time-1 (ms) 42U, 75°F Millstone Unit 2 Capsule W-83

4000 S3000 2000 000 1 00 200 300 400 500 Time-1 (ms) 427, 100°F 5000 00 400000 I

000 1 00 2.00 300 400 500 Twne-1 (ms) 43K, 150°F Millstone Unit 2 Capsule W-83 B-23 6 S0 6 00

B-24 5000.00 400000 S300000

-JT 2000 00 1 0 0 0 00.

000 000 1 00 2.00 300 400 500 600 Time-I (ms) 41U, 200°F 5000 00 4000 001 S300000 2000 00j 1000 00 000 4 n 5

Soo S n n

")n

  • nn 4flfl 5 00 6 00 Time-I (ms) 46B, 250°F Millstone Unit 2 Capsule W-83

000 100 200 300 400 500 Time-1 (ms) 45K, 300°F 1 00 200 300 400 500 Time-1 (ms) 44C, 325°F Millstone Unit 2 Capsule W-83 B-25 0

-J 5000 00 4000 00 3000 00 200000 1000 00-0

.0 6 00 6 00 000 0--

000

C-1 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOG Millstone Unit 2 Capsule W-83

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 1521:01 on 10-10-2002 Page 1 Coefficients of Curve 1 A = 66.59 B= 64.4 C= 52.79 TO= 7828 Equation is CVN = A + B * [ tanh((T - TO)/C)

Upper Shelf Energy: 131 Fixed Temp. at 30 ft-lbs 442 Temp. at 50 ft-lbs Material: PLATE SA533BI Heat Number. C-567-1 Capsule: UNIRR Total Fluence:

300 Co) 2507

.q 1507 0

00 10.)

0 Tempera

-80

-40 0

40 60 60 60 80 90 643 Lower Shelf Energy: 2.19 Fixed Orientation: LT

-300

-200

-100 0

100 200 300 400 Temperature in Degrees F Data Set(s) Plotted PlantL M12 Cap-- UNIRR Material PLATE SA533BI OrL LT Heat

. C Charpy V-Notch Data ature Input CVN Energy Computed CVN Energy 4.5 7

135 32 455 56 45 77 79.5 2.51 3.64 8.51 26.66 45.15 4515 6869 68.69 80.6 500 600

-5667-1 Differential 198 3.35 4.98 5.33

.34 10.84

-23.69 83 16 SData continued on next page **

C-2

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Input CVN Energy Computed CYN Energy Differential 89 80.66

&33 62.5 80.66

-1816 119 109 9.99 116 109 6.99 124.5 125.42

-.92 134.5 125.42 9.07 130 13012

-12 136.5 13012 6.37 SUM of RESIDUALS = 31.84 C-3 Temperature 90 90 120 120 160 160 210 210

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 152101 on 10-10-2002 Page I Coefficients of Curve 2 A= 4&09 B= 45.9 C= 87.56 T = 146.48 Equation is CVN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy: 94 Fixed Temp. at 30 ft-lbs: 109.9 Temp. at 50 ft-lbs 1501 Lower Shelf Energy: 219 Fixed Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence:

-300

-200

-100 0

100 200 300 400 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap: W-97 Material" PLATE SA53311I Ori-LT Heat F C-5667-1 Temperature 40 80 120 120 160 160 160 200 Charpy V-Notch Data Input CVN Energy Computed CVN Energy II 29 33 36 53 52 48 72 9.61 18.69 34.62 34.62 5512 5512 5512 7311 500 600 Differential 138 103

-162 137

-212

-3.12

-712

-1i.

Data continued on next page C-4 cU C.)

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2 Material PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence Charpy V-Notch Data (Continued) e Input CVN Energy Computed CVN Energy 98 843 97 89.4 92 89B4 90 93.12 SUM of RESIDUALS Differential 13.69 715 Wi5

-312 17.81 C-5 Temperature 240 280 280 350

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

C'GRAPH 41 Hyperbolic Tangent Curve Printed at 1521.:1 on 10-10-2002 Page 1 Coefficients of Curve 3 A = 48.59 B= 46.4 C= 91.59 TO = 170.8 Upper Shelf Energy-Equation is: CVN = A + B

  • I tanh((T - TO)/C) 95 Fixed Temp. at 30 ft-lbs:

131.9 Temp. at 50 ft-lbs 1:

Material: PLATE SA533BI Heat Number. C-5667-1 Capsule: W-104 Total Fluence:

733 Lower Shelf Energy-219 Fixed Orientation: LT 300 250f 20O 150 100 50-

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap-W-104 Material: PLATE SA533BI OrL LT Heat #: C-5667-1 Temperature Charpy V-Notch Data Input CVN Energy Computed CVN Energy 70 90 130 150 175 185 200 240 13 16.5 32 40 43.5 48 74 74.5 Differential 11.44 15.77 2919 3824 50.72 55.73 62.91 7822 1.55

.72 1.75

-722

-7.73 11.08

-3.72

      • Data continued on next page *1 C-6 M

1.0 7!.

4 z--

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

Page 2 PLATE SA533B1 Heat Number C-5667-1 0rientU CapsuIe: W-104 Total Fluence:

Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy 93.5 87.17 95 92.74 92 9428 100 94.97 SI ation: LT Differential 6,2 225

-228 5.02 JM of RESIDUALS = 10.46 C-7 Material:

Temperature 280 340 400 550

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1521.01 on 10-10-2002 Page 1 Coefficients of Curve 4 A = 47D09 B= 44.9 C= 8827 TO = 198.75 Equation is: C`VN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy: 92 Fixed Temp. at 30 ft-lbs 1633 Material: PLATE SA533B1 Capsule: l'-83 U) 0a Temp. at 50 ft-lbs 204A

[eat Number C-5667-1 Ori Lower Shelf Energy: 2.19 Fixed entation LT Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-M112 Cap: T-83 Material" PLATE SA533B1 Ori. LT Heat F C-5667-1 Charpy V-Notch Data Input CVN Energy 3

12 32 35 23 32 67 Computed CYN Energy 318 7.2 17M 353 353 47.73 5527

      • Data continued on next page ****

C-8 Temperature 600 0

75 130 175 175 200 215 Differential

-18 4.67 1417

-.3

-in

-15.73 1L72

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2 Material: PLATE SA533BI Heat Number C-5667-1 Orientation: LT Capsule W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy 1

74 60.07 60 7058 80 83.77 95 87.13 102 8917 SUM of RESIDUALS

)ifferential 13.92

-10.5

-3.77 7.86 12.82

= 22.3 C-9 Temperature 250 300 325 350

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1530-01 on 10-10-2002 Page 1 Coefficients of Curve 1 A = 47.72 B= 46.72 C= 6885 TO= 6421 Equation is: L

= A + B* [ tanh((T - TO)/C) ]

Upper Shelf LE. 94.44 Material. PLATE SA533B1 Temperature at LEK 35:

44.9 Heat Number C-5667-1 Lower Shelf LE: 1 Fixed Orientation: LT Capsule: UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 400 50 Temperature in Degrees F Data Set(s) Plotted Plant1 M12 Cap: UNIER Material: PLATE SA533B1 Charpy V-Notch Data Input Lateral Expansion Co, 3

9 16 33 44 48 42 66 67 Onf: LT Heat f. C-5667-1 Differential nputed LE.

239 5.31 1352 3193 44B6 44B6 5824 5824 64.44

.6 3.68

.47 106

-M8 313

-1624 7.75 255

      • Data continued on next page *.

C-10 600 Temperature

-80

-40 0

40 60 60 80 80 90

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2 hL:

PLATE SA533BI Heat Number C-5667-1 Ori Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE 67 64.44 54 64A4 86 79.01 87 79.01 89 88.99 91 8&99 90 9311 89 9311 ientation: LT Differential 255

-10.44 6.98 7M8 0

2

-3.11

-411 SUM of RESIDUALS = 6.03 C-11 Materia Temperature 90 90 120 120 160 160 210 210

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:3001 on 10-10-2002 Page 1 Coefficients of Curve 2 A = 4328 B = 4228 C= 110.42 TO = 140.91 Equation k LE.

A + B [ tanh((T - TO)/C) ]

Upper Shelf L.E 85.56 Temperature at LK 35:

119 Lower Shelf LE-I Fixed Material-PLATE SA533BI Heat Number. C-56-1 Orientation: LT Capsule: W-97 Total Fluence:

-300

-200

-100 0

100 200 300 400 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap-- W-97 Material: PLATE SA533B1 On:" LT Heat *. C-Charpy V-Notch Data Input Lateral Expansion Computed LE.

II 28 36 36 51 45 45 66 1271 2.06 35.3 35.3 50.51 5051 5051 63.6 500 5667-1 Differential

-1.71 5.93

.63

.63

.48

-551

-551 2.03 SData continued on next page C-12 4U)

°e.-

600 Temperature 40 80 120 120 160 160 160 200

C-13 Temperatur 240 280 280 350 LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2 MateriaL PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued) e Input Lateral Expansion Computed L.R 83 7351 79 7926 78 7926 80 8369 SUM of RESIDUALS Differential 9.48

-26

-126

-369

= 124

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15"3001 on 10-10-2002 Page 1 Coefficients of Curve 3 A = 4378 B = 42.78 C = 1112 TO = 162.89 Equation is:.E. = A + B [ tanh((T - T0)/C) ]

Upper Shelf L.E. 8657 Material: PLATE SA533B1 Temperature at LF, 35:

139.7 Heat Number C-5667-1 Lower Shelf LE. 1 Fixed Orientation: LT Capsule: W-104 Total Fluence:

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant 1112 Cap: W-104 Materialh PLATE SA533BI Ori: LT Heat F C-5667-1 Charpy V-Notch Data Input Lateral Expansion Computed LE.

18 17 34 40 40 46 69 69 14.55 1917 31.48 38S4 48.42 5218 57.55 69A6 1*Data continued on next page *-

C-14 Temperature 70 90 130 150 175 185 200 240 Differential 3.44

-217 2.51 115 4.42

-618 11.44

-.46

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

Page 2 Material: PLATE SA533BI Heat Number C-5667-1 Orientation: LT Capsule: W-104 Total Fluence:

Charpy V-Notch Data (Continued) e Input Lateral Expansion Computed LR Dii 79 7728 84 8317 82 8538 88 86.49 SUM of RESIDUALS =

fferential L71

-3.8 L5 195 C-15 Temperatux 280 340 400 550

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:3K.01 on 10-10-2002 Page 1 Coefficients of Curve 4 A= 43.34 B= 42.34 C = IO32 TO = 215.33 Equation is: LE. = A + B [ tanh((T - TO)/C)]

Upper Shelf LE. 85.68 Material: PLATE SA533BI Temperature at LE. 35:

1913 Heat Number. C-5667-1 Lower Shelf LE. I Fixed Orientation: LT Capsule: W-M3 Total Fluence:

200 150 100 5F-U

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap-- W--83 Material: PLATE SA533B1 Ori: LT Heat F, C-5667-1 Charpy V-Notch Data Input Lateral Expansion 0

7 25 32 20 28 52 Computed LE.

329

&49 17.5 29.65 29.65 3797 4322 IData continued on next page C-16 Cl)

S 600 Temperature 0

75 130 175 175 200 215 Differential

-3.29

-1.49 7.49 2,34

-9L5

-9.97 8.77 I

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W--3 Total Fluence Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed I.E.

[

58 46.73 48 5521 68 6903 72 73.9 80 7752 SUM of RESIDUALS C-17 Temperature 225 250 300 325 350 ifferential 1126

-721

-1.03

-19 2.47

-224

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve I A=50 B=50 C = 67.59 T0 = 65.62 Equation is Shear/. = A + B

  • tanh((T - TO)/C)]

Temperature at 50/ Shear.

65.6 Material: PLATE SA533B1 Heat Number C-5667-1 Orientation: LT Capsule: UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap. UNIRR Material: PLATE SA533B1 OrL LT Heat F, C-5667-1 Charpy V-Notch Data ature Input Percent Shear Computed Percent Shear Dii 0

10 20 35 45 45 45 60 70 132 42 12.54 319 45.84 45.84 60.47 60.47 6728 600 ferential

-132 5.79 7.45 3.09

-B4

-.84

-15.47

-.47 2.71

"*Data continued on next pageI C-18 a)

CD Q) 0D a)

Temper.

-80

-40 0

40 60 60 80 80 90

LOWER SHELL PLATE C-506-1 UNIRR (LONG)

Page 2 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 70 6728 a-71 65 6728

-2,28 90 83.32 6.67 85 83.32 1.67 100 9422 5.77 100 9422 5.77 100 98.62 137 100 9862

£37 SUM of RESIDUALS = 2314 C-19 Temperature 90 90 120 120 160 160 210 210

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve 2 A = 50 B = 50 C = 5822 TO = 177.65 Equation is Shearz = A + B [ tanh((T - TO)/C)

Temperature at 50*. Shear. 177.6 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W-97 Total Fluence:

600

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap: W-97 Material: PLATE SA533BI Ori: LT Heat t C-5667-1 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 0

20 20 20 30 30 30 70

.87 3.37 12.12 12.12 3528 3528 3528 6829 Data continued on next page ***

C-20 0

0 Temperature 40 80 120 120 160 160 160 200 Differential

-.87 16.62 7.87 7.87

-528

-528

-528 17

LOWER SHELL PLATE C-506-1 CAPSULE 97 (LONG)

Page 2 PLATE SA533BI Heat Number. C-5667-1 Oriental Capsule F-97 Total Fluence Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 100 89.48 100 9711 100 9711 100 99.73 SU.

tion: LT Differential 10.51 2B8 2.88 26 M of RESIDUALS = 33B89 C-21 Material Temperature 240 280 280 350

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve 3 A= 50 B= 50 C= 104.92 TO = 172.55 Equation is Shear/.

A + B

  • I tanh((T - T0)/C) I Temperature at W/z Shear 172.5 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: LT Capsule: W-104 Total Fluence:

607 4Go 4(F U

-300

-200

-100 0

100 200 300 400 F

500 600 Data Set(s) Plotted Plant M12 Cap: T'-104 Material: PLATE SA533BI Ori: LT Heat k. C-5667-1 Charpy V-Notch Data Input Percent Shear 20 15 35 40 40 50 75 70 Computed Percent Shear 12.4 1716 30.76 39.41 51.16 55.9 678 78.33

      • Data continued on next page **

C-22 4,.LUUJ CID 00 0

Temperature in Degrees Temperature 70 90 130 150 175 185 200 240 Differential 7.59

-2.16 423 58

-1116

-5.9 1221

-8.33

LOWER SHELL PLATE C-506-1 CAPSULE 104 (LONG)

Page 2 Material: PLATE SA533BI Heat Number C-667-I Orientation: LT Capsule W-104 Total Fluence:

Charpy V-Notch Data (Continued) re Input Percent Shear Computed Percent Shear Di 100 8857 100 96.05 100 98.7 100 99.92 SUM of RESIDUALS :

fferential 1142 3.94 129

.07 138 C-23 Temperatu 280 340 400 550

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 15:36:10 on 10-10-2002 Page 1 Coefficients of Curve 4 A = 50 B = 50 C = 88.42 TO = 196.02 Equation is Shear/ = A + B* [ tanh((T - TO)/C) ]

Temperature at 50,/ Shear.

196 Materialh PLATE SA533B1 Heat Number. C-5667-1 Orientation: LT Capsule: W43 Total fluence nr

1 T

9 1

1

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: M12 Cap-W-8 Material: PLATE SA533B1 400 F

Ori: LT Heat P. C-5667-1 Charpy V-Notch Data Input Percent Shear 2

10 25 35 40 35 65 Computed Percent Shear 1.17 6.08 1824 3823 38.3 5224 60.56 1*Data continued on next pagge I

C-24

  • 1,

.tI.tJ Q) 4-)

a)

C) 807 60F 4(F 2(F L/

5w0 6w0 Temperature 0

75 130 175 175 200 215 Differential

.2 3.91 6.65

-323 1.66

-1724 4.43

'11-ý

LOWER SHELL PLATE C-506-1 CAPSULE 83 (LONG)

Page 2 Materiah PLATE SA533BI Heat Number. C-57-1 Orientation: LT Capsule: W-M3 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 85 65.82 60 7722 100 903 100 94.86 100 97.01 SUIM of RESIDUALS C-25 Temperature 225 250 300 325 350

)ifferential 1917

-1722 8.69 513 2.98 15.68

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1043:52 on 10-14-2002 Page 1 Coefficients of Curve 1 A= 55 09 B= 52.9 C= 80.63 TO= 60 Equation is: CVN = A + B * [ tanh((T - TO)/C) ]

Upper Shelf Energy: 108 Fixed Temp. at 30 ft-lbs:

184 Temp. at 50 ft-lbs:

522 Lower Shelf Energy: 219 Fixed Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant ML2 Cap-UNIRR Material: PLATE SA533B1 Or: TL Heat #: C-5667-1 Charpy V-Notch Data Input CVN Energy Computed CVN Energy 5.38 1037 21.68 2L68 4224 55.09 55.09 61.62 61.62 Differential

-128 512 10.81 14.31

-224

-5.09

-1309

-312 437

      • Data continued on next page *14*

C-26 U)

0 z

C.>

600 Temperature

-80

-40 0

0 40 60 60 70 70 4

155 32.5 36 40 50 42 585 66

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2 Material: PLATE SA533BI Heat Number C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Input CVN Energy 535 665 94.5 915 113 1065 1125 112 96 Computed CVN Energy 6162 67.95 88.51 8851 99.82 99.82 102.86 105.49 105.49 Differential

-8.12

-1.45 5.98 2.98 1317 6.67 9.63 65

-9.49 JM of RESIDUALS = 35.53 C-27 Temperature 70 80 120 120 160 160 180 210 210

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10.43:52 on 10-14-2002 Page I Coefficients of Curve 2 A = 40.59 B= 38.4 C= 85.91 TO0=133.59 Equation is: CVN = A + B* [ tanh((T - TO)/C) I Upper Shelf Energy: 79 Fixed Temp. at 30 ft-lbs" 1092 Material: PLATE SA533BI Temp. at 50 ft-lbs Heat Number. C--5667-1 155 Lower Shelf Energy. 219 Fixed Orientation: TL Capsule: W-97 Total Fluence:

300 2507 2007 150 100 0

0 0-i

-300

-200

-100 0

100 Temperature in Data Set(s) Plotted Plant 1112 Cap-- W-97 Material: PLATE SA533BI 200 300 Degrees 400 F

OriL TL Heat F. C-5667-1 Charpy V-Notch Data Input CVN Energy Computed CVN Energy 10 13 26 30 44 54 64 83 5.47 13.93 26.3 262 52.04 52.04 65.5 73.04 SData continued on next page C-28 U) 10 C) 0

)

I I

Temperature 500 600 0

60 1(0 100 160 160 200 240 Differential 4.52

-93

-3 3.69

-804 195

-15 9.95 00 I

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 Material: PLATE SA533B1 Heat Number: C-5667-1 Orientation: TL Capsule: W-97 Total Fluencm Charpy V-Notch Data (Continued) re Input CVN Energy Computed CVN Energy Di 71 73.04 76 76.53 80 7653 87 78.01 SUM of RESIDUALS :

ifferential

-2.04

-.53 3.46 8.98 1919 C-29 Temperatu 240 280 280 320

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1.43.52 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 43.09 B = 40.9 C = 8151 TO = 19125 Equation is CVN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy:. 84 Fixed Temp. at 30 ft-lbs: 164.1 Material: PLATE SA533B1 Temp. at 50 ft-lbs 205.1 Heat Number. C-5667-1 Ori Lower Shelf Energy: 2.19 Fixed entation: TL Capsule: W-83 Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap-i-63 Material PLATE SA533B1 Ori: TL Heat #: C-5667-1 600 Charpy V-Notch Data Input CVN Energy 5

15 17 24 38 27 32 37 Computed CVN Energy 2.94 6.66 17.08 24 24 35.05 35.05 47.47

        • Data continued on next page ****

C-30 C)

I z r-Temperature 0

75 130 150 150 175 175 200 Differential 2.05 8.&33 p-.06 0

13.99

-.8.05

-3.05

-10.47

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued) re Input CVN Energy Computed CVN Energy Di 65 5912 77 74.7 83 78.9 92 81.03 SUM of RESIDUALS-ifferential 587 229 4.3 10.96 26.14 C-31 Temperatu 275 300 325

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1204C1 on 10-14-2002 Page 1 Coefficients of Curve I A = 442 B= 432 C= 1O2.74 TO = 467 Equation is: LE = A + B* [ tanh((T - TO)/C)]

Upper Shelf L.E. 87.4 Material: PLATE SA533B1 Temperature at LE 35:

24.

Heat Number. C-5667-1 Lower Shelf LEa 1 Fixed Orientation: TL Capsule: UNIRR Total Fluence:

T F

F T

150 100 SWn

_0

[B

-300

-200

-100 0

100 Temperature in Plant ML2 Cap: UNIRR Data Set(s) Plotted Material: PLATE SA533B1 Charpy V-Notch Da Input Lateral Expansion 3

16 31 32 38 46 38 56 58 I

1 1

200 300 400 Degrees F Oni: TL Heat 2-C-5667-1 ta Computed LE 7.74 14.44 25.75 25.75 4121 49.9 49.69 53.76 53.76

      • Data continued on next page ****

C-32

gUu C0)

,,4j 1

500 600 Temperature

--80

-40 0

0 40 60 60 70 70 Differential

-4.74 155 524 624

-331

-369

-1269 223 423

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LK Differential 49 53.76

-4.76 59 57.66 1.33 73 70.63 2.36 76 70.63 5.36 85 78.8 6.19 80 78.8 119 82 8128

.61 82 83.93

-1.93 76 83.93

-7.93 SUM of RESIDUALS = -1.48 C-33 Temperature 70 80 120 120 160 160 180 210 210

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12.04"01 on 10-14-2002 Page 1 Coefficients of Curve 2 A= 39.62 B= 38.62 C= 11069 TO = 135.93 Upper Shelf L.E 7824 Material: PLATE Equation is LE. = A + B * [ tanh((T - TO)/C) I Temperature at L.E. 35: 122.6 Lo SA533BI Heat Number. C-5667-1 Capsule: lT-97 wer Shelf LE& 1 Fixed Orientation: TL Total Fluence

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap: -W-97 Material: PLATE SA533BI Ori: TL Heat j C-5667-1 Charpy V-Notch Data Input Lateral Expansion Computed LF.

9 71 16 16.62 26 275 30 27.5 44 47.88 49 47.88 62 59.77 74 68.01

        • Data continued on next page ***

C-34 CI)

St PC) 600 Temperature 0

60 100 100 160 160 200 240 Differential 1.89

-.62

-1.5 2.49

-3.88 L1 2,22 598

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued) re Input Lateral Expansion Computed LE.

Di 64 6801 72 7291 72 72.91 75 7555 SUM of RESIDUALS :

ifferential

-401

-.91

-.91

-.55 13 C-35 Temperatu:

240 280 280 320

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1V04.01 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 42.61 B = 41.61 C = 1245 TO = 21914 Upper Shelf LEM 8422 Material: PLATE Equation is: LK = A + B* I tanh((T - TO)/C) I Temperature at LK 35:

1968 Lo SA533B1 Heat Number. C-5667-1 200 1507 1007 50f

-300

-200

-100 0

100 Temperature 200 300 in Degrees Capsule: W-83 Total Fluence wer Shelf LE-1 Fixed Orientation" TL 400 F

Data Set(s) Plotted Plant1 M12 Cap: W-83 Material: PLATE SA533BI Charpy V-Notch Data Input Lateral Expansion Co 1

9 14 21 30 23 27 30 Ori: TL Heat #. C-5667-1 rmputed LE.

313 7.96 16.43 2104 21.04 28.01 28.01 36.05

        • Data continued on next page ****

C-36 CI) 0--

500 600 Temperature 0

75 130 150 150 175 175 200 Differential

-213 L03

-2.43

-.04 8.95

-501

-401

-6.05

LOWER SHELL PLATE C-506-1 CAPSULE 83 (TRANS)

Page 2 Material: PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued) re Input Lateral Expansion Computed LE.

D.

52 4463 60 60.63 65 66.99 73 7198 SUM of RESIDUALS:

ifferential 7.36

-.63

-1.99 1.01

-.96 C-37 Temperatu 225 275 300 325

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 121313 on 10-14-2002 Page 1 Coefficients of Curve 1 A= 50 B= 50 C= 76.64 T0 = 59.53 Equation is Shear'/. = A + B* [ tanh((T - TO)/C) ]

Temperature at 50,. Shear.

595 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Degrees F Plant-M2 Cap: UNIRR Data Set(s) Plotted Material: PLATE SA533B1 Charpy V-Notch Data OrL TL Heat P C-5667-1 Input Percent Shear 0

15 25 25 35 45 35 60 65 Computed Percent Shear 2..55 6.93 17.45 17.45 3752 503 503 56.78 56.78

  • Data continued on next page **

C-38 C¢o

-.q 0

Q 0-Temperature

-w0

-40 0

0 40 60 60 70 70 Differential

-255 8.06 7.54 7.54

-252

-52

-153 321 821

LOWER SHELL PLATE C-506-1 UNIRR (TRANS)

Page 2 Material PLATE SA533BI Heat Number. C-5667-1 Orientation: TL Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 50 56.78

-6.78 65 63.04 L95 80 82.89

-2.89 90 82-89 7.1 100 9322 6.77 100 9322 6.77 100 95.86 413 100 98.06 1.93 100 98.06 1.93 SUM of RESIDUALS = 2981 C-39 Temperature 70 80 120 120 160 160 180 210 210

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:13"3 on 10-14-2002 Page 1 Coefficients of Curve 2 A = 50 B= 50 C= 65.94 TO = 165.52 Equation is-Shear/ = A + B * [ tanh((T - TO)/C)]

Temperature at 50". Shear. 165.5 MateriaL PLATE SA533B1 Heat Number. C-5667-1 C

Capsule: W-97 Total Fluence:

)rientation: TL

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant-MI2 Cap: W-97 Material PLATE SA533BI OrL TL Heat Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear 0

0

£5 60 10 391 100 20 12.05 100 20 12.05 160 40 45.81 160 40 45.81 200 70 73.99 240 100 90.54 400 F

k. C-5667-1 500 600 Differential

-£5 6.08 794 7.94

-5.81

-5.81

-3.99 9.45

      • Data continued on next page ***

C-40 0

0*

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 PLATE SA533BI Heat Number. C-5667-1 Orientat Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 100 90.54 100 9698 100 96.98 100 99.08 SuI ion: TL Differential 9.45 3.01 3.01

.91 M of RESIDUALS = 31.55 C-41 Material:

Temperature 240 280 280 320

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:1313 on 10-14-2002 Page 1 Coefficients of Curve 3 1

2]07-~___

______1 0

100 200 300 400 F

0

-300

-200

-100 Temperature in Degrees 500 Data Set(s) Plotted Plant-M12 Cap: Y--3 Material: PLATE SA533BI Ori: TL Heat F,: C-5667-1 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 2

10 15 30 40 35 40 40 524 17.94 26.35 26.35 39.84 39.84 55.08 Data continued on next page ý*

C-42 I

r1 4-,

Temperature 600 0

75 130 150 150 175 175 200 Differential f11 4.65

-2.94 3.64 13.64

-4.84

.15

-1508 S

A =50 B = 50 C = 8312 TO = 191.71 Equation is Shear/ = A + B* [ tanh((T - TO)/C)

Temperature at 50/. Shear. 191.7 Material: PLATE SA533B1 Heat Number. C-5667-1 Orientation: TL Capsule:

-83 Total Fluence:

007 807 4(F

LOWER SHELL PLATE C-506-1 CAPSULE 97 (TRANS)

Page 2 PLATE SA533BI Heat Number. C-5667-1 Orientat Capsule: W-8 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 70 69.41 100 88.6 100 93.5 100 962 Su tion: TL Differential 58 1139 6.49 3.61 M of RESIDUALS = 22.42 C-43 Material:

Temperature 225 275 300 325

UNIRRADIATED (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1150.19 on 10-14-2002 Page 1 Coefficients of Curve I A = 67.09 B = 64.9 C = 52.34 TO = 187 Equation is CVN = A + B

  • tanh((T - TO)/C)]

Upper Shelf Energy: 132 Fixed Temp. at 30 ft-lbs:

-32.1 Temp. at 50 ft-lbs: -122 Lower Shelf Energy. 2.19 Fixed Material. IYELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: UNIRR Total Fluence:

U) z

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant- *112 Cap: UNIRR Material: WELD L 124/0091 Ork H

Charpy V-Notch Data ature Input CVN Energy Computed CVN Energ

-120

-80

-40 0

0 10 10 I0 20 5.5 10 22 34 94.5 77 79 80.5 91 400 500 F

mat # 90136/10137 y

3.42 7.64 24 64.77 64.77 77.09 77.09 77.09 88.71 Differential

        • Data continued on next page
  • C-44 Temper 600 2.07 2.5

-2

-30.77 29.72

-.09 1.9 3.4 2.28

UNIRRADIATED (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Capsule: UNIRR Total Fluencm Charpy V-Notch Data (Continued)

Orientation:

Input CVN Energy 99 115 1345 131.5 132,5 1295 1405 127 Computed CVN Energy 107.46 11929 125.75 125.75 13059 13059 13L69 131.69 Differential

-8.46

-429 U74 5.74 19

-409 8.8

-4.69 TBf of RESIDUAIS = 15.54 C-45 Temperature 40 60 80 80 120 120 160 160

CAPSULE 97 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:11:31 on 11-21-2002 Page 1 Coefficients of Curve 2 A = 5109 B= 48.9 C= 55.76 TO = 59.53 Equation is CVN = A + B* [ tanh((T - TO)/C) ]

Upper Shelf Energy: 100 Fixed Temp. at 30 ft-lbs:

33.7 Temp. at 50 ft-lbs 582 Lower Shelf Energy: 2.19 Fixed Material" WELD L 124/0091 Heat Number-90136/10137 Orientation:

Capsule: W-97 Total Fluence:

co CI 0J

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Sets) Plotted Plant M12 Cap: W-97 Materiah WELD L 124/0091 0r:

He&

Charpy V-Notch Data Input CVN Energy Computed CVN Energy 17 23 47 38 74 80 99 71 400 500 600 F

at F 90136/10137 Differential 4.45

-11.64 12.35

-13.51 5.71 11.71 9.03

-18.96 12.54 34.64 34.64 51.51 6828 6828 89.96 89.96

      • Data continued on next page ***

C-46 Temperature 0

40 40 60 80 80 120 120

CAPSULE 97 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number: 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy Differential 95 97.4

-2.4 105 97.4 7.59 93 99.36

-6.36 106 99.84 6.15 SUI of RESIDUALS = 4.13 C-47 Temperature 160 160 200 240

CAPSULE 104 (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 15CI.19 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 54.59 B = 52.4 C = 7212 TO = 56.71 Equation is: CVN = A + B I tanh((T - TO)/C) ]

Upper Shelf Energy: 107 Fixed Temp. at 30 ft-lbs 19.9 Material: MELD L 124/0091 Temp. at 50 ft-lbs 503 Heat Number. 90136/10137 0

Lower Shelf Energy: 2.19 Fixed

)rientation:

Capsule: WY-104 Total Fluence:

309 250 200 150 1007

-300

-200

-100 0

100 200 300 Temperature in Data Set(s) Plotted Plant M12 Cap-W-104 Material: WELD L 124/0091 Degrees F Ori:

Heat #: 90136/10137 Charpy V-Notch Data Input CMN Energy Computed CVN Energy 135 335 40 59.5 56.5 68 89.5 107 202 30.01 3928 49.73 6414 7415 87.52 99.6

      • Data continued on next page ***

C-48 U) 0 z

C) 50 U

'-4-.'

400 Temperature 500 600 0

20 35 50 70 85 1o 150 Differential

-6.7 3.48

.71 9.76

-7.4

-6.15 197 7.33

CAPSULE 104 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: WY-104 Total Fluence:

Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy Differential 106 105.06

.93 109.5 106.87 2.62 99 106.99

-799 111 106.99 4

SUM of RESIDUALS = 234 C-49 Temperature 200 300 400 550

- CAPSULE 83 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1150-19 on 10-14-2002 Page 1 Coefficients of Curve 4 A = 55.59 B =53.4 C= 97.76 TD= 75 Equation is: CVN = A + B * [ tanh((T - TO)/C) ]

Upper Shelf Energy. 109 Fixed Temp. at 30 ft-lbs:

23.9 Temp. at 50 ft-lbs 64.7 Material WELD L 124/0091 Heat Number: 90136/10137 Capsule: W-83 Total Fluence:

3007 S250

[.0 20f q

1507 4

10oo

-300

-200

-100 0

100 200 300 4

Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap-W-83 Material: WELD L 124/0091 Or:

Heat Temperature Charpy V-Notch Data Input CVN Energy Computed CVN Energy

-50 0

30 50 75 100 125 8

9 27 45 68 76 83 9BB 2114 32-62 4223 55.59 68.96 80.75 Lower Shelf Energy-2.19 Fixed

)rientation:

00 500 600 90136/10137 Differential

-I8

-1214

-5.62 2.76 12.4 7.03 224

""Data continued on next page ""

C-50

CAPSULE 83 (WELD)

Page 2 WELD L 124/0091 Heat Number 90136/10137 Ori Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy 76 90.05 84 10L31 109 10425 101 1061 117 1061 St entation:

Differential

-14.05

-17.1 4.74

-51 10.89 Mof RESIDUAIS =-16.03 C-51 Material' Temperature 150 200 225 250 250

UNIRRADIATED (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:2058 on 10-14-2002 Page 1 Coefficients of Curve 1 47.66 B= 46.66 C= 5a3.5 TO = -966 Equation is-. L. = A + B* [ tanh((T - TO)/C) I Upper Shelf LEL 94.33 Temperature at LE 35:

-24.5 Lower Shelf LE& 1 Fixed Material-WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: UNIRR Total Fluence

-300 Temperature in Degrees Data Set(s) Plotted Plant-M12 Cap: UNIRR Material WELD L 124/0091 Off:

H Charpy V-Notch Data Input Lateral Expansion Computed L.E.

4 10 25 34 69 68 66 65 76 2.46 723 23.66 5603 56.03 6413 6413 6413 7123 600 400 F

eat 1: 90136/10137 Differential

[53 2.76

[33

-22.03 196 3jB L86 S6 4.76

'~Data continued on next page C-52 Temperature

-120

-80

-40 0

0 10 10 10 20 I

.CAPSULE 97 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 120 on 10-14-2002 Page 1 Coefficients of Curve 2 A = 41.86 B= 40.86 C= 67.98 TO= 55.78 Equation is LE. = A + B [ tanh((T - TO)/C)

Upper Shelf LE. 82.72 Temperature at LE. 35:

442 Lower Shelf LE: 1 Fixed Material: WELD L 124/0091 Heat Number: 90136/10137 Capsule: W-97 Total Fluence:

o209--

1507 1007 0

0 0

0/

0 0

)'

/

0

-300

-200

-100 0

100 200 Temperature Data Set(s) Plotted Plant-M12 Cap.: W-97 Material: WELD L 124/0091 300 in Degrees 400 F

500 Oni:

Heat L 90136/10137 Charpy V-Notch Data Input Lateral Expansion Computed LE.

15 24 41 37 57 66 78 59 1426 32.54 32.54 44.39 55.83 5583 71.99 71.99

        • Data continued on next page ****

C-54 Orientation:

4-)

Li Temperature 600 0

40 40 60 80 80 120 120 Differential

.73

-854 8.45

-739 116 1016 6

-12.99 I

CAPSULE 97 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE.

78 79.08 83 7908 79 8156 85 82.36 Orientation:

Differential

-1.08 3.91

-2.56 2.63 SUM of RIEIDUALS = A8 C-55 Temperature 160 160 200 240

CAPSULE 104 (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 12"2058 on 10-14-2002 Page 1 Coefficients of Curve 3 A = 45.77 B= 44.77 C = 8L91 TO = 55.31 Equation is: I

= A + B * [ tanh((T - TO)/C) ]

Upper Shelf LE. 90.54 Temperature at LE. 35:

352 Lower Shelf LE. I Fixed Material: WELD L 124/0091 Heat Number 90136/10137 Orientation Capsule: W-104 Total Fluence:

2019 1507

'007 50F 0--

)0

-200

-100 0

100 200 30o Temperature in Degrees Data Set(s) Plotted Plant ML2 CapN W-104 Material WELD L 124/0091 0r He Charpy V-Notch Da Input Lateral Expansion 13 31 35 50 52 55 71 87 400 F

500 6WO at : 90136/10137 ta Computed L.R 19.42 2758 34B9 42B7 53.71 6132 7189 8247 Differential

-6.42 3.41 7.12

-471

-6.32

-49 4.52 Data continued on next page ****

C-56 4r1

-3:

Temperature 0

20 35 50 70 85 110 150

CAPSULE 104 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Capsule W-104 Total Fluence Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LK 88 88 90 9031 87 90.52 92 90.54 Orientation:

Differential 0

-31

-3.52 1.45 SUM of RSIDUALS =-2.57 C-57 Temperature 200 300 400 550

CAPSULE 83 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1220:58 on 10-14-2002 Page 1 Coefficients of Curve 4 A = 37.89 B = 36.89 C = 71.98 TO = 60.93 Equation is LE. = A + B* [ tanh((T - TO)/C)

Upper Shelf LE: 74.78 Temperature at LE. 35:

552 Lower Shelf L&. I Fixed Material: WELD L 124/0091 Heat Numberi.

90136/10137 Capsule: W-M3 Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant M12 Cap: W-83 MateriaI: WELD L 124/0091 Ori:

Heat #. 90136/10137 Charpy V-Notch Data Input Lateral Expansion Computed LE.

1 6

23 36 50 54 64 423 12.46 22.94 32.32 45 5615 6413

      • Data continued on next page **

C-58 Orientation:

4-)

0*

Temperature 600

-50 0

30 50 75 100 125 Differential

-323

-6.46

.05 3.67 4.99

-215

-13

'CAPSULE 83 (WELD)

Page 2 Materialh WELD L 124/0091 Heat Number. 90136/10137 Capsule: W-83 Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE.

60 69.05 66 7326 80 74.01 73 74.4 84 74.4 Orientation:

Differential

-9.05

-726 598

-1.4 9.59 SUM of RESIDUALS = -5.41 C-59 Temperature 150 200 250 250

UNIRRADIATED (WELD)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 12"254 on 10-14-2002 PageI Coefficients of Curve 1 A= 50 B= 50 C= 61.03 TO = -12A18 Equation is Shear/ = A + B

  • tanh((T - TO)/C)]

Temperature at 50Y Shear -12 Material: WELD L 124/0091 Heat Number. 90136/10137 Capsule UNIRR Total Fluence Orientation:

uu 4(F

-31(

Temperature

-120

-80

-40 0

0 10 10 10 20

)O

-200

-100 0

100 200 300 400 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap: UNIRR Material: WELD L 124/0091 Charpy V-Notch Da Input Percent Shear Comp 0

10 30 40 70 65 75 75 75 0

2.83 9.77 28.67 59B5 59.55 67.41 67.41 6741 7416 500 600 36/10137 Differential

-2,83 22 132

-19B5 1014

-2.41 7.58 758

.83 Data continued on next page

  • C-60 Ori:

Heat f 901*

ta

  • uted Percent Shear

UNIRRADIATED (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 80 84.68

-4.68 90 9L41

-I.41 90 9534

-5.34 100 95.34 4.65 100 987 129 100 987 129 100 9964

.35 100 99.64

.35 SUM of RESIDUALS = -.9 C-61 Temperature 40 60 80 80 120 120 160 160

CAPSULE 97 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:254 on 10-14-2002 Page 1 Coefficients of Curve 2 S A= 50 B= 50 C= 4887 TO = 67.7 Equation is: Shearz = A + B * [ tanh((T - T0)/C) ]

Temperature at 50z Shear.

67.7 Material: WELD L 124/0091 Heat Number. 90136/10137 Capsule: 1-97 Total Fluence:

Orientation:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap.- W-97 Material: WELD L 124/0091 Ori:

Heat *. 90136/10137 Charpy V-Notch Data Input Percent Shear 0

20 30 40 60 70 90 80 Computed Percent Shear 5.89 24.4 24.34 42.18 6232 62.32 89.47 89.47 Data continued on next page **

C-62 0C Q-4 0

0D 0L Temperature 600 0

40 40 60 80 80 120 120 Differential

-5.89

-434 5B5

-2.18

-2.32 7.67

.52

-9.47

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 100 97.76 223 100 97.76 223 100 99.55

.44 100 99.91

.08 SUM of RESIDUALS = -5.35 C-63 Temperature 160 160 200 240

CAPSULE 104 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1228:54 on 10-14-2002 Page 1 Coefficients of Curve 3 I

A = 50 B = 50 C = 73.56 TO = 4921 Equation is: Shear/ = A + B * [ tanh((T - TO)/C) I Temperature at 50%. Shear.

492 Material: WELD L 124/0091 Heat Number. 90136/10137 Capsule: W-104 Total Fluence:

a-4 Zn 09 0..

0 Orientation:

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant M12 Cap-W-104 Material: WELD L 124/0091 Or:

H 400 500 F

eat ý 90136/10137 Charpy V-Notch Data Input Percent Shear Computed Percent Shear 15 20.78 40 312 40 40.45 50 50.53 60 63.76 70 7256 85 8392 100 93.93 Differential

-5.78 8.87

-.45

-.53

-3.76 56 1.07 6.06

      • Data continued on next page C-64 600 Temperature 0

20 35 50 70 85 110 150

CAPSULE 104 (WELD)

Page 2 Material: YLD L 124/0091 Heat Number. 90136/10137 Oriei Capsule: W'-104 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 100 98.36 100 99.89 100 99.99 100 99.99 SU ntation:

Differential 1.63

.1 0

0 M of RESIDUALS = 4.67 C-65 Temperature 200 300 400 550

'CAPSULE 83 (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 12:28:54 on 10-14-2002 Page 1 Coefficients of Curve 4 A = 50 B= 50 C= 70.42 TO = 5812 Equation is: Shear/. = A + B * [ tanh((T - T0)/C) ]

Temperature at 50z Shear.

581 Material WELD L 124/0091 Heat Number. 90136/10137 Capsule: W-3 Total Fluence:

Orientation:

0 CD Q4 09 0

0

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant-1112 Cap: W-83 Materiah WELD L 124/0091 400 500 600 F

Or:

Heat *. 90136/10137 Charpy V-Notch Data Input Percent Shear 10 15 30 40 65 80 90 Computed Percent Shear 4.43 161 31.02 4425 61.75 76.66 86.98 Data continued on next page C-66 Temperature

-50 0

30 50 75 100 125 Differential 5.56

-U

-402

-4.25 324 3.33 3.01

CAPSULE 83 (WELD)

Page 2 Material: WELD L 124/0091 Heat Number. 90136/10137 Orientation:

Capsule: lY-83 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 85 9314

-814 95 9825

-325 100 9913 Z6 100 99.57

.42 100 99.57 A2 SUM of RESIDUALS = -.89 C-67 Temperature 150 200 225 250 250

UNIRRADIATED (HEAT AFFECTED ZONE)

CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09.5729 on 10-15-2002 Page 1 Coefficients of Curve I A= 6559 B= 63.4 C= 5283 TO= 22.03 Equation is CVN = A + B

  • I tanh((T - T0)/C) ]

Upper Shelf Energy 129 Fixed Temp. at 30 ft-lbs

-115 Temp. at 50 ft-lbs Material: HEAT AFFD ZONE SA533BI Heat Number-C-506-1 Capsule: UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant: M12 Cap-- UNIRR Material: HEAT AF"D ZONE SA533BI OrL Charpy V-Notch Data ture Input CVN Energy Computed CVN Energy

-150

-120

-80

-40 0

20 20 30 40 10 16 115 3L5 45 96 31.5 345 625 228 2.78 4.81 1326 40359 63.16 6316 75.08 8626 8.7 Lower Shelf Energy: 2.19 Fixed Orientation:

400 500 600 F

Heat I. C-506-1 Differential 7.61 1321 6.68 1823 4.4 32.83

-31.66

-4058

-23.86 Data continued on next page ***

C.-68 U)

In b0 7

4-,

Tempera

UNIRRADIATED (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input CYN Energy Computed CVN Energy Differential 117.5 86.36 3113 101 86.36 14.63 1115 11628

-4.78 150 11628 33.71 123 125.96

-296 113 128.31

-1531 130 128.31 168 SUM of RESIDUALS = 44.96 C-69 Temperature 40 40 80 80 120 160 160

CAPSULE 97 (HEAT AFFECTED ZONE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0957:39 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 4659 B = 44.4 C = 59.1 T0=8624 Equation i CN = A Upper Shelf Energy, 91 Fixed Temp. at 30 ft-lbs 62.7 Material: HEAT AFFD ZONE SA533BI Capsule: W-97

+ B * [ tanh((T - T0)/C) ]

Temp. at 50 ft-lbs:

908 Heat Number. C-506-1 Total Fluence:

Lower Shelf Energy-2.19 Fixed Orientation:

,.0 0

z CD

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Planh ML2 Cap-- W-97 Material HEAT AFFD ZONE SA533BI Ori:

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy 0

14 6.9 40 19 17.79 40 20 17.79 60 26 2827 80 47 41.97 100 51 5663 100 48 56.63 120 76 6929 Data continued on next page 400 500 600 F

Heat C-506-1 Differential 7.09 12 22

-227 5.02

-5.63

-8.63 6.7 C-70

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Capsule: W-97 Charpy V-Notch Input CVN Energy 92 89 92 92 Heat Number. C-506-1 Total Fluence:

Data (Continued)

Computed CVN Enerq 84.04 89.06 89.06 90.48

)rientation:

gy Differential 7.95

-.06 2.93 151 SUM of RESIDUALS = 18 03 C-71 Temperature 160 200 200 240

CAPSULE 83 (HEAT AFFECTED ZONE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 09:57:39 on 10-15-2002 Page 1 Coefficients of Curve 3 A = 52.59 B =50.4 C= 68.85 TO = 64.9 Equation is CVN = A + B * [ tanh((T - TO)/C) I Upper Shelf Energy: 103 Fixed Temp. at 30 ft-lbs 31.6 Material: HEAT AFFD ZONE SA533B1 Capsule: W-83 Temp. at 50 ft-lbs 613 Heat Number: C-506-1 Total Fluence Lower Shelf Energy: 219 Fixed Orientation:

.)

C.)

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant-MI2 Cap" W-83 Material HKET AFFD ZONE SA533BI Ori:

Heat P C-506-1 Charpy V-Notch Data Input CVN Energy 7

18 13 34 49 24 102 94 Computed CVN Energy 3.9 9.09 15.48 2627 4185 5993 7627 9515

"" Data continued on next page ****

C-72 600 Temperature

-75

-25 0

25 50 75 100 150 Differential 3.09 8.9

-2.48 7.72 7.14

-35.93 25.72

-115

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2 Material-HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: fq-3 Total Fluence:

Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy Differential 1

10104 20.95 95 102.53

-7.53 88 102B89

-14.89 126 1O094 23.05 SUM of RESIDUALS = 3459 C-73 Temperature 200 250 300 32

UNIRRADIATED (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 100L12 on 10-15-2002 Page 1 Coefficients of Curve 1 A = 45.69 B = 44.69 C = 73.87 TO = 18.75 Equation is: LE = A + B* [ tanh((T - TO)/C) ]

Upper Shelf LE-90.9 Temperature at LE. 35:

.7 Lower Shelf LE-1 Fixed Material: HEAT AFF'D ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

-300

-200

-100 0

100 200 300 400 500 600 Temperature in Degrees Data Set(s) Plotted Plant-M12 Cap-UNIRR Material HEAT AFFD ZONE SA533B1 Or:

Charpy V-Notch Data ure Input Lateral Expansion Computed LE.

10 10 7

23 35 60 29 31 53 F

Heat L C-506-1 Differential t91 304 6.77 1613 34.58 46.45 46.45 52.45 5821 8.08 6.95 22 6.86

.41 1354

-17.45

-2L45

-521

      • Data continued on next page **

C-74 4

Temperati

-150

-120

-80

-40 0

20 20 30 40

UNIRRADIATED (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE.

Differential 68 5821 9.78 67 5821 8.78 77 76.09

.9 88 76.09 11.9 86 84.97

[02 81 88.48

-7.48 88 88.48

-.48 SUM of RESIDUALS = 1642 C-75 Temperature 40 40 80 80 120 160 160

CAPSULE 97 (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at I01):12 on 10-15-2002 Page I Coefficients of Curve 2 A = 3867 B= 37.37 C= 79B1 TO= 84.17 Equation is LK = A + B* [ tanh((T - TO)/C)

Upper Shelf LE: 76.34 Temperature at LE. 35:

763 Lower Shelf LE-I Fixed Material HEAT AFFD ZONE SA533BI Capsule: W-97 Heat Number C-506-1 Total Fluence 200F 1507 100 50 Data Set(s) Plotted Plant-ML2 Cap: W-97 Material HEAT AFFD ZONE SA533B1 0

100 400 F

OrL Heat #: C-506-1 Charpy V-Notch Data Input Lateral Expansion 14 18 19 25 43 47 41 51 Computed LE.

915 19.71 19.71 27.59 36.7 46.04 46.04 5452 Differential 484

-1.71

-.71

-2.59 629

.95

-5.04

-352 I

Data continued on next page

  • C-76 Orientation:

C4)

-300

-200

-100 Temperature in 200 300 Degrees Temperature 5W0 600 0

40 40 60 80 100 100 120

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LK Differential 75 66.53 8.46 70 72.42

-2.42 73 72.42 57 72 74.5

-2.85 SUM of RESIDUALS = 226 C-77 Temperature 160 200 200 240

CAPSULE 83 (HEAT AFFECTED ZONE)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10:01"2 on 10-15-2002 Page 1 Coefficients of Curve 3 4

A=34,,5 B= 33.95 C= 81.03 TO= 7529 Equation is LK = A + B * [ tanh((T - TO)/C)

Upper Shelf LE-689 Temperature at LK 35.:

75.4 Lower Shelf L.E I Fixed Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: W-83 Total Fluence:

100 5O-0 U'

300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant-M12 Cap-W-83 Material HEAT AFFD ZONE SA533BI OrL 400 F

500 Heat P C-506-1 Charpy V-Notch Data Input Lateral Expansion Computed LE.

1 2.62 9

626 6

1016 21 1622 31 24.68 17 34B82 57 44.99 56 59.2

        • Data continued on next page **"

C-78 150-CI)

.1 0

'-4 600 Temperature

-75

-25 0

25 50 75 100 150 Differential

-1.62 2.73

-416 4.77 6.31

-17.82 12

-362

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533BI Heat Number. C-506-1 Orientation:

Capsule: IY-83 Total Fluence Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE.

Differential 71 65.91 508 66 68

-2 60 68.64

-8.64 76 68.76 723 SUM of RESIDUALS = 26 C-79 Temperature 200 250 300 325

UNIRRADIATED (HEAT AFFECTED ZONE)

C1,GRAPH 41 Hyperbolic Tangent Curve Printed at 10:0413 on 10-15-2002 Page 1 Coefficients of Curve I A = 50 B= 50 C= 82.38 TO = 7.96

[

Equation is Shear/ = A + B

  • I tanh((T - T'O)/C) Q Temperature at 50Y Shear.

7.9 Material

HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Capsule UNIRR Total Fluence:

q 0.)

(U 0

co Orientation:

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant-ML2 Cap. UNIRR Material-HEAT AFFD ZONE SA533B1 Ori:

Charpy V-Notch Data ature Input Percent Shear Computed Percent Shear

-150

-120

-80

-40 0

20 20 30 40 0

10 10 35 45 65 45 45 70 2.11 428 10.56 23.78 45.17 5725 5725 63.06 68.51 400 500 600 F

Heat // C-506-1 Differential

-211 5.71

-56 H121

-17 7.74

-1225

-18.06 148

""Data continued on next page ***

C-80 Tempera

UNIRRADIATED (HEAT AFFECTED ZOIN Page 2 Material: HEAT AFYD ZONE SA533B1 Heat Number. C-506-1 Orie Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 70 6851 70 68.51 85 8517 100 8517 100 93.81 100 97.56 100 97.56 SU nE) ntation:

Differential L48 148

-17 14.82 618 2.43 2.43 M of RESIDUALS = 2165 C-81 Temperature 40 40 80 80 120 160 1O

CAPSULE 97 (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 100413 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 50 B= 50 C= 67.46 TO = 96.67 Equation is Shear/. = A + B * [ tanh((T - TO)/C) I Temperature at 50,/ Shear.

96.

Materiah HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Capsule: W-97 Total Fluence:

4-)

0 Orientation:

-300

-200

-100 0

100 200 300 Temperature in Degrees Data Set(s) Plotted Plant-M12 Cap-- W-97 Materiah HEAT AFFD ZONE SA533BI Ori:

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear 0

10 5.38 40 20 15.7 40 10 15.7 60 20 2521 80 50 37BB 100 60 52.45 100 40 52.45 120 60 66.62 Data continued on next page ""

400 5

F Heat 1 C-506-

.00 600

-1 Differential 4.61 429

-5.7

-521 122 754

-12.45

-6.62 C-82 P

CAPSULE 97 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533BI Heat Number. C-506-1 Orientation:

Capsule: W-97 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 90 86.72 327 100 95.53 446 100 95.53 4.46 100 9859 1.4 SUM of RESIDUAIS = 12.17 C-83 Temperature 160 200 200 240

CAPSULE 83 (HEAT AFFECTED ZONE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10H04:13 on 10-15-2002 Page 1 Coefficients of Curve 3 A = 50 B1= 50 C= 101.88 TO = 69.37 Equation is Shear/. = A + B [ tanh((T - TO)/C) ]

Temperature at 50*. Shear.

693 Material: HEAT AFFD ZONE SA533BI Capsule W-83 Heat Number. C-506-1 Total Fluence:

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Data Set(s) Plotted Plant: M12 Cap: W-83 Material HEAT AFFD ZONE SA533BI OrL Heat. C-506-1 Charpy V-Notch Data Input Percent Shear 10 15 20 30 45 30 85 80 Computed Percent Shear 5.55 1355 2029 29.5 40.6 52.75 64.59 8M95

      • Data continued on next page C-84 Orientation:

0 cn 0

600 Temperature

-75

-25 0

25 50 75 100 150 Differential 4A4 1.44

-29 A9 429

-22.75 20.4

-2.95

CAPSULE 83 (HEAT AFFECTED ZONE)

Page 2 Material: HEAT AFFD ZONE SA533B1 Heat Number. C-506-1 Orientation:

Capsule: *q-3 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear Differential 90 92-85

-2.85 100 97.19 2.8 100 98.93 106 100 99.34

.65 SUM of RESIDUAIS = 6.76 C-85 Temperature 200 250 300 325

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 100:44 on 10-15-2002 Page 1 Coefficients of Curve I A= 7L59 B= 69.4 C= 6323 T0 = 7529 Equation is: CVN = A + B

  • tanh((T - TO)/C) I Upper Shelf Energy-141 Fixed Temp. at 30 ft-lbs 31.5 Temp. at 50 ft-lbs 54.9 Lower Shelf Energy:. 219 Fixed Material SRM HSSTOI Heat Number: A1008-1 Orientation: LT Capsule: UNIRR Total Fluence 2507 201F 15ff 0

1007f

-300

-200

-100 0

100 Temperature Data Set(s) Plotted Plant-M12 Cap-UNIRR Material: SRM HSST01 200 300 in Degrees 400 F

Ork LT Heat !' A1008-I Charpy V-Notch Data Input CYN Energy Computed CVN Energy 35 55 135 14.5 39 43.5 73.5 695 1145 321 5.72 13.94 13.94 3644 36.44 76.75 76.75 113.84 I* Data continued on next page ****

C-86 or)

I0 C.)

500 600 Temperature

-80

-40 0

0 40 40 80 80 120 Differential 28

-22

-.44

.55 2.55 7.05

-325

-725

.65

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2 SRM HMT01 Heat Number. A1008-1 Orientati Capsule: UNIRR Total Fluence:

,Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy 1145 113.84 138 132.08 1335 132.08 1405 13611 145 139.06 142 139.06 SI on: LT Differential

£.5 5.91 141 438 5.93 293 UM of REIDUAIS = 2114 C-87 Material" Temperature 120 160 160 180 210 210

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:08:44 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 47.09 B= 44.9 C= 74.52 TD = 194.82 Equation is CVN = A + B* [ tanh((T - TO)/C) I Upper Shelf Energy: 92 Fixed Temp. at 30 ft-lbs 164.9 Temp. at 50 ft-lbs 199.6 Lower Shelf Energy: 2.19 Fixed Materiah SRM HSST01 Heat Number:. A1008-1 Orientation: LT Capsule W-104 Total Fluence

-300

-200

-100 0

100 200 300 400 500 Temperature in Dearees F 600 Data Set(s) Plotted Plant ML2 Cap: W-104 Material: SRM HSST01 Ori: LT Heat Lf A1008-1 Charpy V-Notch Data Input CVN Energy 45 21 39 41 46.5 60.5 60 60 Computed CVN Energy 524 22.94 32.67 4121 5021 5611 61.71 7L4

""Data continued on next page

  • C-88 I) 10 Temperature 70 150 170 185 200 210 220 240 Differential

-.74

-494 6.32

-21

-3.71 428

-471

-1A4

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2 Material: SEM HSST01 Heat Number. A1008-1 Orientation: LT Capsule: W-104 Total Fluencm Charpy V-Notch Data (Continued)

Input CVN Energy Computed CVN Energy 945 82.84 905 86.96 96 91M3 87 91.99 SUM of RESIDUAl C-89 Temperature 275 300 400 550 Differential 11.85 3.53 4.36

-4.99 BS= 5.73

STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10.08:44 on 10-15-2002 Results ISE 2.19 2.19 d-ISE USE 0

141 0

92

-300

-200

-100 d-USE T o 30 d-T o 30 T o 50 d-T o 50 0

-49 0

100 3151 164.93 200 0

133.41 300 54.93 199.64 0

144.7 400 500 600 Temperature in Degrees F Curve Legend 10-20-----

Data Set(s) Plotted Material SRM HSM1 SRM HMTO1 C-90 Fluence 0

0 Curve 1

2 I) 0 z

C.)

Curve 1

2 Plant M12 M12 Capsule UNIRR W-104 Ori LT LT Heat#

A1008-1 A1008-1

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at IOI012.

on 10-15-2002 Page I Coefficients of Curve I A = 47.42 B= 46.42 C= 71.51 TO = 60.46 Equation is: LE. = A + B* [ tanh((T - TO)/C)]

Upper Shelf LE: 9384 Material: SRM HSST01 Temperature at L.E. 35:

40.8 Heat Number. A1008-1 Lower Shelf LL. I Fixed Orientation: LT Capsule: UNIRR Total Fluence:

20O 150 100 5

//

-300

-200

-100 0

100 200 300 400 500 Temperature in Data Set(s) Plotted Plant-M12 Cap.: UNIRR Material: SRM HSST01 Charpy V-Notch Da Input Lateral Expansion 3

7 15 16 35 36 60 53 85 Degrees F Ori: LT Heat #: A1008-1 ta Computed LE 2,79 627 15.44 15.44 34.48 34.48 59.79 59.79 7907

  • Data continued on next page ****

C-91 U) r---,4 600 Temperature

-8W

-40 0

0 40 40 80 80 120 Differential 2

.72

-.44 M55

.51 L51 2

-6.79 5992

UNIRRADIATED. (STANDARD REFERENCE MATERIAL)

Page 2 Material: SRM HSSo1 Heat Number. A1008-1 Orientation: LT Capsule: INIRR Total Fluence Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LE 79 79.07 89 88.43 92 88.43 89 90.67 92 9Z44 89 9Z44 SUM of RESIDUALS C-92 Temperature 120 160 160 180 210 210 Differential

-.07

.56 3.5

-167

-.44

-344

=B37

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1012.01 on 10-15-2002 Page I Coefficients of Curve 2 A = 41B3 B= 40B3 C= 8726 TO = 190.72 Equation is: L.E. = A + B I tanh((T - TO)/C)

Upper Shelf LE-82.67 Material: SRM H I01 Temperature at L.E. 35:

175.9 Heat Number-. A1008-1 Lower Shelf LE-1 Fixed Orientation: LT Capsule: W-104 Total Fluence:

.ýuU 150 100

/0 50-V U

0 100 Temperature in Data Set(s) Plotted Plant1 MI2 Cap-W-104 Material: SRM HSST01 200 300 Degrees 400 F

Ori: LT Heat L A1008-1 Charpy V-Notch Data Input Lateral Expansion 8

22 36 38 47 51 54 57 Computed L.E.

513 24.05 32.31 3916 4616 50.71 55.04 62.72

    • " Data continued on next page C-93 U)

P-

-300

-200

-100 Temperature 500 600 70 150 170 185 200 210 220 240 Differential 216

-2.05

&68

-116.83 28

-1.04

-5.72

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2 Material: SRM HSSTM1 Heat Number. A1008-1 Orientation: LT Capsule: W-104 Total Fluence Charpy V-Notch Data (Continued)

Input Lateral Expansion Computed LR Differential 79 7223 6.6 77 765 A9 85 82 2.99 78 82.65

-4.65 SUM of RESIDUALS = 2.5 C-94 Temperature 275 300 400 550

STANDARD REFERENCE MATERIAL CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10,12:01 on 10-15-2002 Pesults Curve Fluence 10 93.84 2

0 82.67 USE d-USE T o LE35 0

40.85

-1117 175.97

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees Curve Legend 10 Curve Plant Capsule 1

2 M12 1112 UNIRR W-104 Data Set(s) Plotted Material SRM HSTOI SRM HMSIO1 Or.

Heat#

LT A1008-1 LT A1008-1 C-95 d-T o LE35 0

135.11 UI)

P-4

&ý F

600 20-----

Curve Fluence

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10-14:42 on 10-15-2002 Page 1 Coefficients of Curve 1 S A= 50 B1= 50 C= 64.08 TO= 8015 Equation is Shear/. = A + B* [ tanh((T - T0)/C)

Temperature at 50;. Shear:

80.1 Material SRM HSSTI1 Heat Number: A1008-1 Orientation: LT Capsule: UNIRR Total Fluence

-300

-200

-100 0

100 200 300 400 500 TemrDerature in Degrees F

-t.

Data Set(s) Plotted PlanLt ML2 Cap: UNIRR Material SRM HSSMI 600 Ori: LT Heat. A1008-1 Charpy V-Notch Data Input Percent Shear 0

0 15 15 20 25 45 45 80 Computed Percent Shear

.67 229 757 7.57 2221 2221 49.87 49.87 77.61

      • Data continued on next page ***

C-96 C) 40 Temperature

-80

-40 0

0 40 40 80 80 120 Differential

-.67

-229 7.42 7.42

-221 2.78

-4.7

-487 2.38

UNIRRADIATED (STANDARD REFERENCE MATERIAL)

Page 2 I: SRM HSSTO1 Heat Number-. A1008-1 Orientatio Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 80 77.61 100 9Z35 90 9235 100 95.75 100 9829 100 9829 Sul n: LT Differential 2.38 7.64

-2.35 424 1.7 1.7 M of RESIDUAIS = 20.41 C-97 Materia Temperature 120 160 160 180 210 210

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10f.14:42 on 10-15-2002 Page 1 Coefficients of Curve 2 A = 50 B= 50 C= 77.3 T0 = 19921 Material SRI Equation is Shear/ = A + B* I tanh((T - T0)/C) I Temperature at 50z Shear:. 1992 M HSST01 Heat Number A1008-1 Ori Capsule: W-104 Total Fluence:

entation: LT C/D 0ý

-300

-200

-100 0

100 200 300 400 Temperature in Degrees F Data Set(s) Plotted Plant-M12 Cap.- W-104 Material: SRM HSST01 Or: LT Heat A

A1008-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear 70 0

3.41 150 20 2L86 170 40 3195 185 40 40.9 200 50 50.5 210 60 56.92 220 60 6312 240 60 74.17 500 600 Differential

-3.41

-186 8.04

-.9

-.5 3.07

-312

-1417

      • Data continued on next page
  • C-98

CAPSULE 104 (STANDARD REFERENCE MATERIAL)

Page 2 1: SRM HSST01 Heat Number. A1008-1 Orientatic Capsule: I-104 Total Fluence:

Charpy V-Notch Data (Continued)

Input Percent Shear Computed Percent Shear 100 87.65 100 93.13 100 99.44 100 99.98 Su,

)n: LT Differential IZ,34 6B6

.55

.01 M of RESIDUAIS = 6.89 C-99 Materia Temperature 275 300 400 550

STANDARD REFERENCE MATERIAL CYGRAPH 41 Hyperbolic Tangent Curve Printed at 10-14:42 on 10-15-2002 Results Curve Fluence 1

0 2

0 0/.

40 Q

T o 50z. Shear d-T o 50. *hear 8015 19921 0

119.06

-300

-200

-100 0

100 200 300 400 500 Temperature in Degrees F Curve Legend 10 Curve Plant Capsule 1

2 MI2 M1~2 UNIRR W-104 Data Set(s) Plotted Material SRM HSSTOI SRM HITOI C-100 600 20 -...----

Ori.

Heatf LT LT A1008-1 A1008-1 Curve Fluence T 0 50Y Shear d-T o 50,/ Sh r

D-1 APPENDIX D MILLSTONE UNIT 2 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS Millstone Unit 2 Capsule W-83

D-2 SURVEILLANCE DATA CREDIBLITY EVALUATION INTRODUCTION:

Regulatory Guide 1.99, Revision 2, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1.99, Revision 2, describes the methodology for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there have been three surveillance capsules removed from Millstone Unit 2. To use these surveillance data sets, they must be shown to be credible. In accordance with Regulatory Guide 1.99, Revision 2, there are five requirements that must be met for the surveillance data to be judged credible. The purpose of this evaluation is to apply these credibility requirements to the reactor vessel surveillance data obtained from Millstone Unit 2 and determine if these surveillance data sets are credible.

EVALUATION Criterion 1:Materials in the capsules should be those judged most likely to be controlling with regard to radiation embrittlement. The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements", December 19, 1995 to be:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."

The Millstone Unit 2 reactor vessel consists of the following beltline region materials:

Intermediate Shell Plate C-506-1, -2, -3 (Heats C-5843-1, -2, -3)

Lower Shell Plate C-506-1, -2, -3 (Heats C-5667-1, -2,-3)

Intermediate to Lower Girth Seam 9-203 (Heats 10137 and 90136)

Intermediate and Lower Shell Longitudinal Seams 2-203 and 3-203 (Heat A-8746)

Millstone Unit 2 Capsule W-83

D-3 The Millstone Unit 2 surveillance programs was based on ASTM E-1 85-70 and utilizes test specimens from Lower Shell Plate C-506-1 and Intermediate to Lower Girth Seam 9-203 Heat # 10137/90136 Flux Type Linde 0091.

At the time when the surveillance program material was selected it was believed that copper and phosphorus were the elements most important to embrittlement of reactor vessel steels. Lower Shell Plate C-506-1 had the highest Copper content (0.15%) and one of the highest Initial RTNDT values and was selected as the surveillance program base metal. It should be noted that the lower shell plate C-506-1 is currently the limiting beltline material on the Millstone Unit 2 Reactor Vessel.

The Intermediate to Lower Girth Seam 9-203 was fabricated from 2 heats of weld wire; Heat # 10137 (OD of weld) and 90136 (ID of weld). The surveillance weld was made from the same heat and the same manner as the Intermediate to Lower Shell Girth Weld, i.e. 2 heats. The average Cu/Ni between the two heats would be 0.25 Cu and 0.06 Ni, which is the highest Cu value of all beltline welds and was therefore selected as the surveillance program weld material.

Since the base metal and weld metal selected for the Millstone Unit 2 Surveillance Program represent the limiting plate and weld in the beltline region, this criterion is met.

Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented in Appendix C of this calcnote.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Millstone Unit 2 surveillance materials unambiguously. Therefore, the Millstone Unit 2 surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNpDr values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 280Ffor welds and 1 70Ffor base metal Even if thefluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values.

Even if the data fail this criterion for use in shift calculations, they may be credible for determining decrease in upper shelf energy if the upper shelf can be clearly determined, following the definition given in ASTME185-82.

The functional form of the least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for this data and to determine if the scatter of these ART,'DT values about this line is less than 28*F for welds and less than 171F for the plate.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2.

Millstone Unit 2 Capsule W-83

D-4 Table D-I Millstone Unit 2 Chemistry Factors Based on Surveillance Data (Reg. Guidel.99, Rev. 2, Position 2.1)

Material Capsule Capsule f FF (b)

ARTNDTC)

FF*ARTNDT FF2 W-97 0.324 0.69 65.75 45.37 0.476 Lower Shell Plate C 506 Longitudinal W-104 0.949 0.99 87.67 86.79 0.98 (Heat # C-5667-1)

W-83 1.74 1.15 119.12 136.99 1.323 Lower Shell Plate C-W-97 0.324 0.69 90.83 62.67 0.476 506 Transverse (Heat # C-5667-1)

W-83 1.74 1.15 145.78 167.65 1.323 Sum =

499.47 4.578 CF = X(FF

  • RTND)

-- I( FF2) = (499.47) (4.578) = 109.1 OF Intermediate to Lower W-97 0.324 069 65.93 45 49 0.476 Girth Seam 9-203 W-104 0.949 0.99 52.12 51.59 0.98 (Heat# 10137 &

90136)

W-83 1.74 1.15 56.09 64.50 1.323 Sum=

161.58 2.779 CF = X(FF

  • RTNr) - 7( FF2) = (161.58) - (2.779) 58.14 OF Notes:

(a) f= best estimate fluence values. (lx l0'9 n/cm2, E > 1.0 MeV).

(b) FF = fluence factor = f(o 2 8s-o

.OIogf).

(c) ARTNDT values are the measured 30 ft-lb shift values taken from App. C The scatter of ARTNDT values about the functional form of a best-fit line drawn as described in Regulatory Position 2.1 is presented in Table B-2.

Millstone Unit 2 Capsule W-83

D-5 Table D-2:

Turkey Point Unit 3 Surveillance Capsule Data Scatter about the Best-Fit Line for Surveillance Forging Materials.

CF(a)

Scatter

<171F (Base Metals)

(Slopebe f-,)

ARTANT (OF) ARTNDT (OF)

<28'F (Weld)

Lower Shell Plate C-506 W-97 109.1 0.69 65.75 75.28 9.53 Yes Longitudinal W-104 109.1 0.99 87.67 108 20.33 No (Heat # C-5667-1)

W-83 109.1 1.15 119.12 125.47 635 Yes Lower Shell Plate C-506 W-97 109.1 0.69 90.83 75.28

-15.55 Yes Transverse (Heat#C-5667-1)

W-83 109.1 1.15 145.78 125.47

-20.31 No Intermediate to Lower W-97 58.14 0.69 65.93 40.12

-25.81 Yes Girth Seam 9-203 W-104 58.14 0.99 52.12 57.55 5.43 Yes (Heat # 10137 & 90136)

W-83 58.14 1.15 56.09 66.86 10.77 Yes Notes:

(a)

(b)

(c) f = Calculated fluence from capsule W-83 dosimetry analysis results (x 1019 n/cm2, E > 1.0 MeV) See Section 6.

FF = fluence factor = f(.2-0 I flog f.

ARTNDT values are the measured 30 ft-lb. shift values (Appendix C) and do not include the adjustment ratio procedure of Reg. Guide 1.99 Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values Best Fit ARTNDT = (Slopebet t) * (Fluence Factor)

CONCLUSION:

Table D-2 indicates that two of the five measured plate ARTNDT values are outside the I a scatter band.

Therefore the plate data is not credible. Table D-2 also indicates that all of the measured weld ARTNDT values are within the Icy scatter band. Therefore the weld data meets this criteria.

Millstone Unit 2 Capsule W-83

D-6 Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25F.

The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°R Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material The Millstone Unit 2 surveillance program does contain correlation monitor material. According to Table 14 of NUREG/CR-6413t1 2, Millstone Unit 2 Correlation Monitor Material for Capsule 104 had a residual value of 10F, which is less than the +/- 34 (2 Sigma) scatter band allowance for plate HSST02 (A533B-1) material (per figure 9 of the NUREG report). Note: The fluence & ARTNDT has been updated since the issue of the NUREG Report, however, these changes would not cause the Correlation Monitor Material to exceed the scatter band.

CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, Section B and 10CFR 50.61, the Millstone Unit 2 surveillance weld data is credible. However due not meeting criterion 3 the Millstone Unit 2 surveillance plate data is not credible.

Millstone Unit 2 Capsule W-83