ML022910396
| ML022910396 | |
| Person / Time | |
|---|---|
| Site: | Salem |
| Issue date: | 10/10/2002 |
| From: | Salamon G Public Service Enterprise Group |
| To: | Document Control Desk, Office of Nuclear Reactor Regulation |
| References | |
| LCR S02-03, LRN-02-0354 | |
| Download: ML022910396 (63) | |
Text
PSEG Nuclear LLC P 0 Box 236, Hancocks Bndge, New Jersey 08038-0236 OCT 10 2002 o PSEG Nuclear LLC LRN-02-0354 LCR S02-03 United States Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Gentlemen:
NON-PROPRIETARY CRITICAL SOFTWARE DOCUMENT FOR CROSSTIE COMPUTER PROGRAM SALEM GENERATING STATION, UNIT NOS. I AND 2 FACILITY OPERATING LICENSE NOS. DPR-70 AND DPR-75 DOCKET NOS. 50-272 AND 50-311 By letter dated October 2, 2002 (LR-N02-0331), PSEG Nuclear LLC (PSEG) provided additional information in support of our request for license amendment submitted on June 28, 2002 (LR-N02-0231). Attachment 3 to our October 2, 2002 letter contained a proprietary Critical Software Document for the Crosstie computer program.
Enclosed herein as Attachment 1 is the redacted, non-proprietary version of the proprietary document submitted with our letter of October 2, 2002.
Should you have any questions regarding this transmittal, please contact Mr. William McTigue at (856) 339-1033.
Sincerely, G. Salamon V Manager - Nuclear Safety and Licensir Attachment Aho I 95-2168 REV 7/99 9g
Document Control Desk
-2 LRN-02-0354 C
Mr. H. J. Miller, Administrator - Region I U. S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406 U. S. Nuclear Regulatory Commission Attn: Mr. R. Fretz Licensing Project Manager - Salem Mail Stop 08B2 Washington, D.C. 20555-0001 USNRC Senior Resident Inspector - Salem (X24)
Mr. K. Tosch, Manager IV Bureau of Nuclear Engineering P.O. Box 415 Trenton, NJ 08625 vu
£U (Uf
LRN-02-0354 ATTACHMENT I Non-Proprietary Version Critical Software Document for CROSSTIE
nflflT 1
n ^
HOLTEC INTERNATIONAL Holtec Center, 555 Lincoln Drive West, Marlton, NJ 08053 Telephone (856) 797-0900 Fax (856) 797-0909 VERIFICATION AND VALIDATION FOR COMPUTER PROGRAM CROSSTIE for PUBLIC SERVICE ELECTRIC AND GAS COMPANY by Yu Wang, Ph.D.
Holtec Intemational Holtec Project 20890 Holtec Report HII-931099 Safety Related Report Category: A NON-PROPRIETARY VERSION I
4 HOLTEC I NTERNATIO NAL REVIEW AND CERTIFICATION LOG DOCUMENT NAME:
Verification and Validation Documentation for Computer Program CROSSTIE HOLTEC DOCUMENT I.D. NUMBER.
EI-931099 HOLTEC PROJECT NUMBER:
20890 CUSTOMER/CLIENT:
Public Service Electric and Gas Company REVISION BLOCK ISSUE AUTHOR &
REVIEWER &
QA mAPPROVED NUMEER DATE DATE MANAGER
& DATE
&DATE ORIGINKAL
-3 REVISION 1 REVISION 2 REVISION 3 REVISION 4 REVISION 5 REVISION 6 This document confoms to the requirements of the design speciffcation and the applicable sections of the governing codes.
Note:
Signatures and printed names are required in the review blockL
- Must be Project Manager ornis designee.
TABLE OF CONTENTS 1-2 2.0 DESIGN........
2.1 Heat Exchanger Data.................
2.2 Decay Heat Calculations................
2.3 Heat Loss CalcUlation.................
2.4 Inital Temperatures.....-..........
2.5 Exchanger Isolation Condition...........
2.6 Program Acceptance Criteria............
2-1 2-2 2-2 2-4 S.......
2-5 2-5 2-6 3.0 MIPIEN=ATION...........
4.0 EXPERIEN 4.1 Test Setup.........
4.2 Test:Results 5.0 PROGRAM.VALIDATION...
5.1 npiit Da a
...a...........
5.2-Prgra Veificion Appendix A.
Test Data Appendix B:
Test Instrumient Calibration
- -k "
4
3-1 4-1 4-1 4-8 5-1 5-8 (224 pages)
(19.pages) 1.0 REQU1RT hf N S................................
@l@O O1@
.O
1.0 REQUIREMENTS Program CROSSTIE is developed for Salem Generating Station Units 1 and 2. This report provides the necessary verification and validation for the program in compliance with the applicable Holtec QA requirements.
The prime verification approach will be the experimentation. The program will be verified against the site measurements obtained during Salem 1R1l outage.
The principal objectives of this program are summarized in four points:
(i)
Predict the refueling cycle.when the cross-tie operation is not possible with 120°F maximum operating"temperature limit (ii)
Develop a predictive tool which enables PSE&G to adjust the system variable to extend the cross-tie operation further into the futur'e without upgrading the system.
(iii)
Provide the plant reactor eng'ineering a user friendly code to predict spent fuel pool water temperatures and to manage the cross-tie operation-with mihimum input data requirements.
(iv)
Provide the plant mechanical engineering group wih the necessary software "capability to quantify system changes which might be required in the future to.
deal with cross-tie operation.
This computer program will have the following features:
Holtee Intern ational Proprietary Information 1:
2.0 DESIGN To meet the requirements described in Section 1.0, the following analytical components need to be developed for the program:
a)
Decay heat calculations.
b)
Heat loss calculations.
c)
Heat exchanger performance.
d)
Numerical algorithm for the non-linear differential equations.
Lioltee Internationai Proprietary Information
HOLTEC PROPRIETARY INFORMATION 2-2
HOLTEC PROPRIETARY INFORMATION 2-3
-I HOLTEC PROPRIETARY INFORMATION 2-4
HOLTEC PROPRIETARY INFORMATION 2-5
2.6 Program Acceptance Criteria Program CROSSTIE will be validated by comparing runs with experimental data.
Experimental data is to be collected from both Salem spent fuel pools and Unit 2 spent fuel pool cooling system during the scheduled iRli outage. Calculated water temperatures from program CROSSTIE will be compared to experimental data water temperatures over a defined time.period.
The acceptability of the program will be determined through engineering judgement based on the percent deviation between the measurements and the calculated results.
Ifoltec International Proprietary Informa tion 2-6 '
3.0 LIMPLEMENTATION The program CROSSTIE is developed using FORTRAN.
The Salem specific heat exchanger parameters and the spent fuel pool geometry are built into the program. The program requires the following input data files:
UNIT1.DCY:
Burnup and discharge data for the Unit 1 spent fuel inventory.
UNrI2.DCY:
Burnup and discharge data for the Unit 2 spent fuel inventory.
RFILE:
Name will be specified by the user. The file contains input parameters for a specific outage.
Note: RFILE contains data for a specific outage and the fuel inventory data inputted in files UNIT1.DCY AND UNIT2.DCY should cover all prior discharges.
A sample of the input files is attached.
The program also requires the following inputs during the execution of the program:
RFILE Name TAVC:
Time after-reactor-shutdown to start crosstie, hrs.
TL:
Pool water temperature limit for switchover, °F.
TI:
CCW.c6olant temperature, OF
-TEND:---..Ending time for integrationhrs.
CROSSTIE will generate the following output files':..
RESULT.TEM:
Hard copy of input and.output results.
PLOT.DAT:
Containingtime coordinates, Units 1 arid 2 pool te peratures for plottincg.
UNITLHTh:
Decay heat results fromUnit 1 sj"nt fuel nventoxy UNIT2.HTL:
Decay beat results from Unit 2 spIent fuel miiventoiry'.
3-1
INPUT FILE #1 & #2 BURNUP FOR THE FUEL IN THE SFP SALEM UNIT 1 & 2 File Name:
Note: Batch Power Discharge Date-
"Unitl.dcy" "Unit2.dcy" Group of assemblies having same burnup. It is numbered sequantialy from 1 for each cycle.
Reactor power in NEW(t).
Enter in the format of MM,DD,YY. Example: 09,22,93 3-2 Cycle Discharge Batch No. of Wt. Assy Exposure Power No.
Date No.
FAS KgU MWD/MTU MW(t)
EXAMAPE DATA HLE:
1 2
2 2
3 3
4 4
4 4
56 461.0 12 461.0 09 52 07 461.0 461.0 461.0 01,21,83 01,21,83 10,04,84 10,04,84 10,04,84 10,02,86 10,02,86 08,31,88 08,31,88 08,31,88 08,31,88 03,31,90 03,31,90 03,31,90
-3,31,90 03,31,90 11,09,91 11,09,91 11,09,91 03,16,93 03,16,93 0ý3,16,93 03,16,93
-03916,93
".03,16.93
-03916.,93.
1 2
1 2
3 1
2 1
2 3
4 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.o
--461.0 461.0 461.0 53 461.0 04 461.0 5
5 5
5 6
6 6
7 7
7 7
_7 02 30 42 03 09 08 12 01' 45 33 28 08 08
.08 01
- 01.
-04 1
2 3
4 5
1 2
3 1
2
" :6 18400 19700 20700 23900 21600 33400 21600 32200 37000 37400 38500 36000 29700 41500 25300 36500 42400 36400 32300 34800
.39600
-29300 43100
-3990o 36400 30400 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411 3411
-.3411 3411 3411 3-3
INPUT FILE #3 SALEM UNITS 1&2 CROSS-TIE EVALUATION INPUT INSTRUCTION LINE 1:
FIN:
DESCRIPTION OF YOUR JOB LINE 2:
MTD(3):
REACTOR SHUTDOWN DATE.
MTD(2)=DAY, MTID(3) = YEAR.
MTD(1) =MONTH, UNIT WHICH IS GOING TO BE IN OUTAGE Wt: -
SPENTFUEL POOL COOLINGHEATEXCHANGER COOLANT (CCW) FLOW RATE, GPM (DESIGN=3000 GPM)
Ws:
-SPENT FUEL POOL WATER.FLOW RATE, GPM (DESIGN=2280GPt.M; 1RilMEASUREMENT: UNIT1=2400 GPM, UNIT=26000 GAM V:
NET WATER VOLUME IN THE SPENT FUEL POOL AND THE TRANSFER POOL LINE 5:
Nl:-
- -N:
NOOF FAS IN; 'THE BATCH 1 OF THE,DISC HARGE N2:
NO.OF FAS IN THE BATCH 2 OF THE-DISCHARGE N3:
NO OFFAS IN_ THE BATCH 3 OF THE DISCHARGE
- TAO:
DECAY ¶TUME BEFORE -TRANSFER FOR.THEitbDISCHARGE HRS..
TAOS:
TOTAL FUEL'TRANSFER T[ME FOR THE DISCHARGE, HRS 3-4 LINE 3:
ND:
LINE 4:
REACTOR RATED POWER, MW(t)
CAPACITY FACTOR OF THE LAST 4 MONTHS BEFORE THE LATEST SHUTDOWN AVERAGE BURNUP FOR THE ASSEMBLIES IN BATCH 1 AVERAGE BURNUP FOR THE ASSEMBLIES IN BATCH 2 AVERAGE BURNUP FOR THE ASSEMBLIES IN BATCH 3 ASSEMBLY AVERAGE URANIUM WEIGHT AMBIENT AIR TEMPERATURE (DRY BULB) IN THE FUEL HANDLING BUILDING, F RELATIVE HUMIDITY IN THE FUEL HANDLING BUILDING, FRACTION 3-5 LINE 6:
RP:
CF:
BP1:
BP2:
BP3:
UW:
LINE 7:
TDRY:
WR:
k.
EXAMPLE INPUT:
Salem cross-tie for Unit 1 outage, 10/2/93 10,02,93 1
2100, 2040, 59000 0,0,0,240.,60.
3411., 1.0,40300.,43200.,40000.,461.0 74., 0.33 3-6
4.0 EXPERIMENT An experimental program to calibrate program CROSSTIE was jointly undertaken by PSE&G and Holtec International. Data was collected at both Salem spent fuel pools and Unit 2 spent fuel pool cooling system during the scheduled 1Rl outage in the timeframe October-November, 1993. The test instruments were installed by the Research and Testing Laboratory of PSE&G. The instrument calibration data is attached in Appendix B of this report.
4.1 Test Setup Measurements are connected to four data acquisition computers. The corresponding data collected are named "DB1", "DB2", "DB3", and "DB4", respectively. DB1 contains all the measurement channels from the Unit 1 pool; DB2 contains all the measurement channels from Unit 2 pool; DB3 contains measurement channels for the Unit 2 SFHX; and DB4 contains the measurement channels for both Unit 1 and Unit 2 spent fuel water flows. The readings on the ambient air temperature and the relative humidity of the Fuel Handling Building are done manually. The instrument locati-ons in the spent fuel pool and the "associated dat* acquisition channels are described below and shown in Figures 4.1 -to 4.4.
The instrument locations for the fuel pool cooling systemns are shown in Figure 4.5a.
- a.
Unit 1 Spent Fuel Pool Temperature Suction from pool (DB1, CH -1,2)
Discharge to pool (DB1, CH 3,4)
Grid location CC-14, 5'- aiovee fuel rack (DB1, CH 5,6)
Grid location CC-14, 2' below water surface (DB1, C 7,8) 7 Grid location A-35, 5' above fuel rack (DB1, CH 9,10)
Grid location A-35, 2' below water surface (DB1, CH 11,12)
--- Near e is-ting-mjaitoxhp 651_-('R - --
)
11 4-1
- b.
Unit 2 Spent Fuel Pool Temperature 0
Suction from pool (DB2, CH 1, 2)
Discharge to pool (DB2, CH 3,4) a Grid location D-36, 5' above fuel rack (DB2, CH 5,6) a Grid location D-36, 2' below water surface (DB2, CH 7,8)
Grid location DD-10, 5' above fuel rack (DB2, CH 9,10) 0 Grid location DD-10, 2' below water surface (DB2, CH 11,12)
Near existing station monitor probe (TIC-651) (DB2, CH 13)
Air near water surface (DB2, CH 14)
C.'
Spent Fuel Temperature at Inlet of Unit 2 SFHX Used a surface style thermocouple with a range of 32-200'F near inlet to SFHX. (DB3, CH 1)
- d.
Spent Fuel Temperature at Outlet of Unit 2 SFHX Temporarily removed local temperature indicator at instrument location TI 653:.-Installed a the.rlnco, ple xrith a range of 32-200°F. (DB3, CH 7)
- Installed a strface style thermocouple with a range of 32-200°F near outlet fromSFHX(DB3, CH 2)
-". -Unit 1 Speiit FuelFlow
-..... Ij-sta-d a Pana dtr e-Sistemn Flow Meter, or.e quivalent, n8" lie 1-SF-50 (DB4,.-CH 1)
- f.
Unit 2 Sp.ent Fuel Flow Installed a Panametric System Flow Meter, or equivalent, on 8" line 2-SF-59
-(DB4.CH
- 2) 7
-Pilrformfied a zero fl6w calibration'on the flow mneter.)
- g.
Component Cooling Inlet Temperature 'toUnit 2 SFHX 4-2
- 1) 21CCHX Outlet Temperature Installed a thermocouple with a range of 32-200°F, at location TA9286, along with existing instrumentation (DB3, CH 5)
- 2) 22CCHX Outlet Temperature Installed a thermocouple with a range of 32-200°F, at location TAS264, along with existing instrumentation (DB3, CH 6)
- 3)
Installed a surface style thermocouple with a range of 32-200' near inlet to SFHX (DB3, CH 3)
- h.
Component Cooling Outlet Temperature from Unit 2 SFHX Temporarily removed local temperature indicator at instrument location TI 604. Installed a thermocouple with a range of 32-2000F.
Installed a surface style thermocouple with a range of 32-200°F near outlet from SF-HX (DB3, CH 4) j
- i.
Component Cooling Flow through SF-X Installed a Differential Pressure Transmitter, 4-20 mA, in parallel with FE 603, at outlet of Unit 2 SFHX (DB3, CH 9,10)
- j.
Service Walter Temperature Installed a thermocouple with-a range.of 32-200*F, at location TT-14726 (DB3;.CH 19,20) kL Unit 1 Fuel H1an,dling Buildifig Tem-perature/Relative Huniadit*y I.stallid ie`Siomaii
'tem
'aiir6/relativelmiidity jfiobes, -or equiv'alent, with a range of 32-2000°F/10-90%, in the'area arbuid the Unit 1 Spent Fuel Pool (nianual readig)
.Unit2 Fuel Handling Buildfig Temperature/Rlative Humidity IistlleýA three Soloiat _ttmperature/relative humidity probes or equivalent, withý:i*range 9-32-20 0 bF/10-90% in the zrea around the Unit'2 Spefiit Fuel Poo (&1ai
ýig) 4-3
.I I
I SUCTION STRAINER j1.*
T
C S.
,1'*
"7
(
I,.
11 II ___ __
47 FIGURE 4-1 I,
'ISOMF-,TRI-CV.'YIEW TOf
`TEMPERATURE PIPOBE LOCATIONS SALEM UNIT I
I I
,I I,
I, I
I, I.
I Ii I -
I,
-I I,
I
,.IC
-2
C I,
-C C-
-C.
'1'
-C 1,1 I,
j I-'
.1 I
I,
- .~~STATION PROBE:
-13 9,1'0 11,512 DISCHARGE LINE
- STRA]INER" 5,'6..7:8
- ~q&
~
i-
- ~~~YU GURE 4-2
~~-OF.,-" l'1 SWI~PIRATURE PROBE LOCATIONS SALEMf UNIT 1 S
.4 354
I 1
I, I
I 1,
I NN
'DISCARG WATE Si'i*STRAINER k
N1N N
', 'F I G U R E 4-.3 TEWPEOATUE:PROBE LOCATIONS SALEM UNIT 2 j
N N
S.'..
,N
,N
I, I,
a a a
1,3 4.
I 9,10,11,12 A'
4 SFIGURE 4.4 Pu....
"'IE"FITEMPERATURE PROBE LOCATIONS SALEM UNIT 2 a.
'a
-
I, a
4'
--DI'SCHARGE
,LIN-EI I,
I'I 1 1 I,',
STATION PROBE 13 G
5,6,7,8 SUCTION STRAINER
.,,3 i,
tt
! i i
i
! t U,
cc N
POL" sp s
-l I M o i
.*11
,11 I,
51, t UNIT f-1 Cx 4-5, "ISRMN bIU~
OAIN O
B CIIANN
4.2 Test Results The original plan for the test was to measure the pool temperatures, and other parameters, when the Unit 1 SFHX was out of service and the Unit 2 SFHX was cycled between the Unit 1 and Unit 2 pools, utilizing the cross-tie for the 1Rl outage. Heatup and cooldown data could then be obtained for both pools. However, due to a high heatload with the Unit 1 core unload, the Unit 1 pool could not be isolated from cooling. Therefore, during the cross-tie the Unit I SFHX was out of service, the Unit 1 pool was being cooled by Unit 2 SFHX via the cross-tie, and the Unit 2 pool was heating up. The Unit 2 pool was allowed to heat up to 140" F, at which time.the Unit I SFHX was returned to service, and normal cooling restored to both pools.
The theory was developed based on the overall average bulk temperature, and the operation was controlled based on the station monitor probe reading. Observations were made on the pool water temperature distribution during different phases of the cross-tie, namely, steady state cooling, heating up without cooling, and cooling down when resuming cooling.
A close perusal of the pool temperature data shows that.(i) during the heating up the maximum temperature difference between'differentmeasurement points in spent'fuel pool is less than 1'F; (ii) during the steady state co6ling, the femjeratu-re differen'es between different locations are less than 1TF.
S.
V After resuming forced coolg, the Unit 2 pool t mp erat e c e d shmarply from 1400F to 80oF, at about 2.50Fihr. As a'result: (i)'the maxi-m um t6mperar re difference between the'bulk water temperature ard the station' probe is ln`creased 'to about 50F; (ii) the temperature difference between water suriacean-d the b6ttomis less th'in 25°F. The surface is higher, "since coolant has bigber density *nd tends to "sin"'. -
4-8
The SFP bulk temperatures were calculated individually by taking nodal averages of temperature:
T, T= i-1 n
where:
n =
number of the measurement points T= temperature value at the measurement point i (i = 1,2,3...n except for the discharge location)
Average pool surface/bottom/station temperature was calculated by iT T
=
where:
m = number of local measurement points Ti = test value at surface/bottom/station location i,i 1,2... m Hard copy of all raw test data and the processed bulk temperatures at surface, bottom, and station-probe loeations-ae-atched-in -Appendix- -
The bulk temperatures for both Units 1 anid Unit 2 are ploed.vs. time aftei reactor shutdown in Figuires 4.5 through 4.12. The fuel hahdlingbiuilding amnbient air temperitire and relative..humdity ratiode cross-tie.are als plotted vs. te in Figures 413 to
,gheros-ier "~ jýe t° e. in 13 to 4.16.
4-9
HOLTEC INTERNATIONAL U
SALEM OUTAGE,1:Rll, UNIT 1 FUEL POOL WATER TEMPERATURE tL wK w
0 120 100 Bo, I'
I,
HOLTEC INTERNATIONAL SALEM OUTAGE IRIl, UNIT I POOL BULK WATER/DISCHARGE FLOW TEMPERATURS (During-Cross-Tie Initiation) 120 (LL wI It],
H!
ED 100 2i K
4 (o 610 IEAFE ECTRSUDON R
HOLTEC INTRN"A~TIONAL SALEM OUTAGE.' I R1 1, UNIT* I POOL WATER/UNIT 2 CCW INLET TEMPERATURES (Dur-Lng Crpooo-1ltt)
V "F 161 ) 9zc 4. -1 LL,
~100 w
Z-
HOLTEC INTERN4,TIONAL SALEM OUTAGE i.
- RiI, UNIT 2 POOL BULK WATER-TEMPERATURE
-I II, I-I-
1 30~
11 r-1616a t3-:
4+.8 U
I..
I,
-2.
624 HOLTEC INTERNAýIONAL SALEM OUTAGE iiii, UNIT 2 POOL BULK WATER TEMPERATURE (During Cross-Tie Heating Up and After Cross-Tie Cooling Down)
'130 LL
<,I110 Ii
",90 II ii544 584 I TIME AFTER REACTOR SHUTDOWN, HRS
- 61u1) 4*.
504
-X
HOLTEC INTERNA+IONAL SALEM OUTAGE 3iil, UNIT 2 POOL BULK WATER/CCW TEMPERATURES (Post Cross-Ti6 Cooling Down and Steady State)
-I
<'I 10
- .W I
Ld 90 S,
,7'1 0 F....,
576 -
- 626 676:
726
'IM
~E'AFTER REACTORSHTON R
1= V°Z-
.-j
- I, I
I.
L [
HOLTEC INTERNA TIONAL SALEM OUTAGE 11R11.
UNIT 2 POOL BULK WATER/CCW TEMPERATURES
( STEADY STATE)!
90
-II IiI ii'1 7,5 70 "312' 3 3 2 1 352 372 392 412
- TIME AFTER REACTOR SHUTDOWN, HRS cA 5C-,k L.
w
.w IL, w
w 2,
HOLTEC INTERNATIONAL SALEM OUTAGEIlRll UNIT'2 POOL-BULK WATER/CCW TEMPERATURES
(.STEADY STATE)l 664 704 TIME AFTER REACTOR SHUTDOWN.
HRS RI61 cR-
,.I1..
I,
-1:
000 -10:.00
'20'e
'.'1 0-'22-93
'18:00' I..
I I
IIIIIIIIII......
i II 0' 30.,,00 40.00 50.00 600 0 70.00 80.00
- TIME FIGURE 4.13 1'
zT
-NHOLTEC NERNPTIONAL "SALEM-UNIT' :iFUl. HANDLING BUILDING', RELATIVE HUMIDITY RATIO 780 00,-":
50.00
-I 70.00-1,
- 30. 00;:_
I.
I ~
5 0
- .0 0#..
IIIIIIIiI JJ II1 I ]I i
i,
",HOLTEC INTERNI "SALEM,
-ll 70 6 900
.d 66."'00',
~65.00 I~k L-i,
- UNIT I "FUEL-HANDLING BUILDING' AMBIENT AIR TEMPERATURE
÷.
VA,,j
.1, "1.0-22-93 18I:0 II OQ A
2111,1 "TIME FIGURE 4.14
_I IIII
,TONAL
/
HOLTE 90..001 I
80;00 70.00."
H6.,00"
- 2. F..
F,. F0 F
I
,,j,.
C INTERN TIMONAL "SALEM' UNIT" 2 FUIEL HANDLING BUILDING RELATIVE' HUMIDITY RATIO o
3 F
'.'F, I'
F F '
I o F
- F "F
'JF, F'II F:'
'It FTIME Fir F F~
'.'FIGURE 4.15.
F F F F F
'F)
F F F F F
F F
a 0b F "
",HOLTEC INTERNATIONAL "0
'*'SALEM":u'N'IT::"2"'!E[:",;HAi, NDLiNG BUILDING: AMBIENT AIR TEMPERATURE 1 77.00 w
D2 II w75'"00 00 -
o
-Ue
.0.0 "0"
6-007.00o0 LLI *: 8 0- 0 I'*'
TI NG*
, I"...*,,'..
- . 0,,,,-10.. 0
.- * *.¢ " '
1' '*'"' *
"....,.v.,.. g,'0;:0 i* 00 E0 0 6. 0 0 00 Be 0
HOLTEC PROPRIETARY INFORMATION 5-1
HOLTEC PROPRIETARY INFORMATION 5-2
HOLTEC PROPRIETARY INFORMATION 5-3
HOLTEC PROPRIETARY INFORMATION 5-4
SALEM UNIT 1 SPENT FUEL POOL SPENT FUEL INVENTORY BURNUP DATA ( MOVIV'T P
iy P5*6,[*
CYCLE DISCHARGE DATE BATCH
- FAs U-kg 1 1 1
2 2
3 3
4 4
5 5
5 5
5 5 6
6 6
6 6
6 7
10,02,87 7
10,02,87
-7 10,02,87 7
10,02,87 1
2 3
1 2
1 2
1 1
04,03,79 04,03,79 04,03,79 09,19,80 09,19,80 01,01,82 01,01,82 10,15,82 10,15,82 02,20,84 02,20,84 02,20,84 02,20,84 02,20,784 02,20,84 03,21,86 03,21,86 03,21,86 03,21,86
-03,21,86 03,21,86 28 04 06 461.0 461.0 461.0 36 461.0 28 461.0 32 461.0 24 461.0 33 01 01 39 28 03 01 01 8
03,23,89 1
08 8
03,23,89 2
04 8
03,23,89 3
01 8
03,23,89 4
"04
-8 03,23,89 5
"47 8
--03'23,89 6
08- "
8 031'23,89, 7
02
..02,09,91 1
Q,07 9
02,09,91 2 '-101 9
02,09,91 3
-04 9
02,09,91
-4 29 9
02,09,91 5
41 9
02,09,91 6
01 9
02,09,91 7
02 461.0 461.0 461.0 461.0 461.0 461.0 461.0 461.0 17000 17500 12000 24100 26100 34100 32400 36200 23600 26800 32500 26700 26600 17200 12200 3338 3338 3338 3338 3338 3338 3338 3338 3338 3338 3338 3338 3338 3338
"-3338 461.0 30300 3338 461.0 34500
.3338 461.0 41900 3338 461.0
-33500 3338 461.0
.31100
-3338 461.0
-36900
-3338 461.0 43600,0 3411 461.0 36400
-3411' 461.0
-4050b 3411 461.9 36900
'3411
-341 461.0 9800 3
-. 3411
-461.0 '
337900 o
"3411 461.'0 40600
- ?3411 46i.0-
-34900.-
3411
ý461.0 35000.,
.3411,.,,
- 461;0
'37800 3411i'"
461.0 16300
-3411 461;0
- -31500."-
-'3411.
461.0
-3 18 0 0 "461.0
-37000
-,,3411:
.461.0.,
42700- --
3411-.
- 461.0" 33500,--
-3
- i.
461.0
-3350-3411 461.0 19300
--3411 461.0 195600 3411-MWD/MTU R-POWER MW(t) 1 2
3 4
5 "6
1 2
3 4
5 6
1 2
3 45
10 04,03,92 1
08 461.0 26600 3411 10 04,03,92 2
07 461.0 33200 3411 10 04,03,92 3
04 461.0 36600 3411 10 04,03,92 4
02 461.0 41100 3411 10 04,03,92 5
08 461.0 39500 3411 10 04,03,92 6
15 461.0 40100 3411 10 04,03,92 7
25 461.0 39300 3411 10 04,03,92 8
01 461.0 25700 3411 10 04,03,92 9
08 461.0 38600 3411 10 04,03,92 10 08 461.0 48100 3411 10 04,03,92 11 01 461.0 43700 3411 10 04,03,92 12 01 461.0 31500 3411 10 04,03,92 13 01 461.0 48700 3411 10 04,03,92 14 01 461.0 49400 3411 10 04,03,92 15 01 461.0 43600 3411 10 04,03,92 16 01 461.0 42200 3411 10 04,03,92 17 01 461.0 48200 3411
.5-6
SALEM UNIT 2 SPENT FUEL POOL SPENT FUEL INVENTORY BURNUP DATA ( KOWDVI" By P"660i CYCLE DISCHARGE BATCH
- FAs U-kg MWD/MTU R-POWER DATE MW (t) 1 01,21,83 1
56 461.0 18400 3411 1
01,21,83 2
12 461.0 19700 3411 2
10,04,84 1
09 461.0 20700 3411 2
10,04,84 2
52 461.0 23900 3411 2
10,04,84 3
07 461.0 21600 3411 3
10,02,86 1
-53 461.0 33400 3411 3
10,02,86 2
04 461.0 21600 3411 4
08,31,88 1
02 461.0 32200 3411 4
.08,31,88 2
30 461.0 37000 3411 4
08,31,88 3
42 461.0 37400 3411 4
'08,31,88 4
03 461.0 38500 3411 5
03,31,90 1
09 461.0 36000 3411 5
03,31,90 2
08 461.0 29700 3411 5
D3,31-9D 3
12 461.0 41500 3411 5
03,31,90 4
01 461.0 25300 3411 5
03,31,90 5
45 461.0 36500 3411 6
11,09,91 1
33 461.0 42400 3411 6
11,09,91 2
28 461.0 36400 3411 6
11,09,91 3
08 461.0 32300
-3411 7
03,16,93 1
08 461.0 34800 3411 7
03,16,93
-2 08 461.0 39600 3411 7
03,16,93 3
01 461.0
-29300 3411 7
'03,16,93 4
01 461.0 43100
.3411 7
03,16,93 5
08 A 461.0 39900 3411 7
03,16;93
'7 04 461.0 46800 3411 5-7
5.2 Proram Verification Input from Measurement:
Verification Case 1 - Unit 2 Steady State Before Cross-Tie CCW inlet temperature, OF:
77 CCW flow rate, gpm:
2100 SFP flow, gpm:
2040 Time after reactor shutdown, hr.:
336-408 (about 15-17 days after reactor shutdown)
Ambient air temperature, *F:
74 Relative humidity ratio, %:
33 Verification Case 2 - Unit 2 Steady State After Cross-Tie CCW inlet temperature, 0:
73.2 CCW flow rate, gpm:
3050 SFP flow,. gpm:
2040
_Time.after shutdown, hr.:
_624-744 Ambient air temperature,
.F:
75.5 Relative humidiy ratio, %:
50 Verification Case 3 - Unit 2 Pool Heating Up During IR1l Cross-Tie Before HX isolation:
"cCW inlet temperature,"-9F:
77 SCCW flowfate;,gpm:
2100 SFP flow-rate,-
In.
2040 TARS* io itart exchanger isolation, hrs:': 496---_
A, mpbient
-ai-
-tei-perat, F:
.75.
Reliative~i-ihidity-i~atip,6% 9c`-`60' VerificationCase-4 -IUnit 2 Pool CoolingDownAfter IR11 Cross-Tie C.CWinlet temp*erature T 73, CCW flow rote,-gpm
-050
~.:SEP ýflow rate, gpm~.
-2040 TARS-t.
o reinitiatie echanger,-
.:.k 580.27 "til *tm t
'perature, "F--'
t " 140.3
" Ambient temperature, 7F:
.75 Relaýti live idhu iatio,%:
60 "5-8 41,
Verification Case 5 - Unit 1 Pool Cooled by Unit 2 Exchanger During IR1l Outage CCW inlet temperature, 'F:
77.5 CCW flow rate, gpm:
2100 SFP flow rate, gpm:
2460 TARS to start cooling, hrs.:
505 Initial bulk water temperature, TF:
123.6 TARS to end, hrs.:
514.6 Average burnup of 61 assemblies, MWVD/MTU 41,300 Average burnup of 64 assemblies, MWD/MTU 27,760 Average burnup of 68 assemblies, MWD/MTU 15,240 Capacity factor:
0.9 Ambient air temperature, 'F:
68.5 Relative humidity, %:
55 Verification Case 6 - Unit 1 Pool Cooled by Unit 2 Exchanger During 1R1l Outage CCW inlet temperature, *F:
70 CCW flow rate, gpm:
3050 SFP flow rate, gpm:
2460 TARS to start cooling, hrs.:
515.13 Initial bulk water temperature, TF:
118.9 TARS to end, hrs.:
579.7 Average burnup of 61 assemblies, MWD/ITU 41,300 Average burnup of 64 assemblies, MWD/MTU 27,160 Aierage burnup of 68 assemblies, MWD/MTU 15,240 Capacity fatpr:
0.9 Ambient ai temperature, oF:.
-67.5 Relative humidity," %:
-55 For -each verification case,;
e calculated temperature is plotted with the measurement (see Figures 5.1 to 5.6). It is shown thatthe inmxiinum mean error in all cases is less than 1.0%
of the measured vilues, which is well within the experimentai error.
Hard copy of all cases of runs are attached.-
5-9
I L
I -.g avolgl=L ok SL 08.3 u M"
7 S(3',
SNH dNMOoinHS N013V3NN3-UV,,3Wj.L,,,ý,,,
ZZE.
EW LL-I I 11,111 11 I
I.
ý=-Ivm -lQQ8 Nr i
31.L-SSOHO LLNL 3NOA3G NOIIIGNOO MVIS ý,CIVIS -100d Z' IINn 3SVO NOIIVOIAIN3A MISSOND WVNDONd
-IVNOIIVNN31NI. 031-10H
.j Li
11
-Z *_9 -97j()jqt:i, M-L-SSOND LLNL N31AV NOIIIGNOO 3-LYiS AGVqIS-'-lOOcA Z IINn E 3SVO NOI.LVDIJId3A M. 7ssodo..
Wagodd r
-IVNOIJ.'(NZA31NI, 031-10H
,Jj HOLTEC INTERNA,TIONAL
',,PROGRAM'CROSSTIE'VERIFICATION CASE 3
-,UNIT 2 POOL, H ATING UPMDURING iRll CROSS-TIE 52T :
56O TIME AFTER REACTOR SHUTDOWN, HRS
,J)
LL.
Li w
SIL rE.
wL
,TIONAL IEVERIFICATION CASE 4 IOLINGDONN'DURING 1Rll CROSS-TIE 596 606 AFTER REACTOR SHUTDOWN.
':0
SNH 'NmooinHS N01OV3M i
ý,E-9 LO MiSSOND LLNL 0NiNnci'3NfliVN3dW.
9 GNV S S3SV3 NOUVOIJI.NAKOI.
-iVNOID Ný131NI-031710H-!,,
INPUT DATA FILES FOR ALL VERIFICATION CASES CASE1. DAT PROGRAM CROSSTIE VERIFICATION CASE 1 10,02,93 1
- 2100, 2040, 60000 0,0,0,240.,60.
3411.,1.0,0.,0.,0.,461.0 74.,
0.33 CASE2.DAT PROGRAM CROSSTIE VERIFICATION CASE 2 10,02,93 1
- 3050, 2040, 60000 0,0,0,240.,60.
3411.,1.0,0.,0., 0.,461.0 75.5, 0.50 CAsE3.DAT PROGRAM CROSSTIE VERIFICATION CASE 3 10,02,93 1
- 2100, 2040, 60000 0,0,0,240.,60.
3411-.
-1.
,0.
,' 0,461.0 75.5, 0.60 CASE4.DiT"
.PROGRAM CROSSTIE VERIFICATION CASE 4 10,02,93 "o.-',
3050,.2040,.60000 "
-,0,0,240, 60÷ o
3 3411.,1;0,0.0 0., 0.,461.0 75.,
0.60 iJ.LI 3
CASES.DAT PROGRAM CROSSTIE VERIFICATION CASE 5 10,02,93 1
- 2100, 2460, 59000 61,64,68,240.,60.
3411.,0.9,41300.,27760.,15240.,461.0 68.5, 0.55 CASE6.DAT PROGRAM CROSSTIE VERIFICATION CASE 6 10,02,93 1
3050, 2460, 59000 61,64,68,240.,60.
3411.,0.9,41300.,27760.,15240.,461.0 67.5, 0.55 5-16
OUTPUT FILES FOR ALL VERIFICATION CASES FILE: CASE1.TEM
- HOLTEC INTERNATIONAL*****
- COMPUTER CODE CROSSTIE********
$Revision:
1.0
$Date:
17 Dec 1993 23:30:18 C:/RACKHEAT/CONTROL/CROSSTIE.FOV THIS PROGRAM WAS VERIFIED BY THE TEST PERFORMED DURING SALEM IRIl OUTAGE, OCTOBER 1993 DESCRIPTION OF YOUR JOB PROGRAM CROSSTIE VERIFICATION CASE 1 REACTOR SHUTDOWN DATE:
10 2
93 OUTAGE UNIT, TIME TO START CROSS-TIE (HR),
AND TEMP 1
412.00 140.30 CCW FLOW(GPM),SFP FLOW(GPM),CCW TEMP(F),& NET WATER 2100.00 2040.00 77.00 60000.00 NI,N2,N3,Tao(HR),TaoS(HR) 0 0
CF, BP1(MWD/MTU),
- BP2, BP3, UW(Kg) 3411.0 1.0
.00
.00
.00 461.00 FH BUILDING AMBIENT TEMP (F),
RELATIVE HUMIDITY(%)
74.00
.33 THE ENDING TIME(HR) 412.00 Heat Exchanger Temperature effectiveness p=.4489 LIMIT (F)
VOLUME (ft-3)
UNIT 1 (POOL)
(HT-TO-HX)
Ti Q1 (F)
(BTU/HR) 81.7
.2196E+07 81.7
.2196E+07 (HT-LOSS)
Qlsl (BTU/HR)
.83E+05
.83E+05 UNIT 2 (POOL) (HT-TO-HX)
HXI T2 Q2 (F)
(BTU/HR) 1 83.2
.2912E+07 1
83.2
.2912E+07 (HT-LOSS)
Qls2 HX2 (BTU/HR)
.96E+05 1
.96E+05 0
5-17
$Logfile:
TIME (HR)
.00 411.50
-I FILE: CASE2.TEM
- HOLTEC INTERNATIONAL*****
- COMPUTER CODE CROSSTIE********
$Revision:
1.0
$Date:
17 Dec 1993 23:30:18 C:/RACKHEAT/CONTROL/CROSSTIE.FOV THIS PROGRAM WAS VERIFIED BY THE TEST PERFORMED DURING SALEM IRiI OUTAGE, OCTOBER 1993 DESCRIPTION OF YOUR JOB PROGRAM CROSSTIE VERIFICATION CASE 2 REACTOR SHUTDOWN DATE:
10 2
93 OUTAGE UNIT, TIME TO START CROSS-TIE (HR),
AND TEMP 1
744.00 140.30 CCW FLOW(GPM), SFP FLOW(GPM), CCW TEMP(F), & NET WATER 3050.00 2040.00 73.20 60000.00 NI,N2,N3,Tao(HR),TaoS(HR) 0 0
CF, BPI(MWD/MTU),
- BP2, BP3, UW(Kg) 3411.0 1.0
.00
.00
.00 461.00 FH BUILDING AMBIENT TEMP(F),
RELATIVE HUMIDITY(%)
75.50
.50 THE ENDING TIME (HR) 744.00 Heat-Exchanger Temperature ef-fectiveness-p=-.3473 LIMIT (F)
VOLUME (ft^3)
UNIT 1 (POOL)
(HT-TO-HX)
Ti Qi (F)
(BTU/HR) 77.4
.2219E+07 77.4
.2219E+07 (HT-LOSS)
Qlsl (BTU/HR)
.29E+05
.29E+05 UNIT 2 (POOL) (HT-TO-HX)
HX1 T2 Q2 (F)
(BTU/HR) 1 78.7
.2860E+07 1
78.7
.2860E+07 (HT-LOSS)
Qls2 HX2 (BTU/HR)
.39E+05 1
.39E+05 0
5-18
$Logfile:
TIME (HR)
.00 743.50
-J FILE: CASE3.TEM
- HOLTEC INTERNATIONAL*****
- COMPUTER CODE CROSSTIE********
$Revision:
1.0
$Date:
17 Dec 1993 23:30:18 C:/RACKHEAT/CONTROL/CROSSTIE.FOV THIS PROGRAM WAS VERIFIED BY THE TEST PERFORMED DURING SALEM IRIl OUTAGE, OCTOBER 1993 DESCRIPTION OF YOUR JOB PROGRAM CROSSTIE VERIFICATION CASE 3 REACTOR SHUTDOWN DATE:
10 2
93 OUTAGE UNIT, TIME TO START CROSS-TIE (HR),
AND TEMP 1
496.00 140.30 CCW FLOW(GPM),SFP FLOW(GPM),CCW TEMP(F),& NET WATER 2100.00 2040.00 77.00 60000.00 NI,N2,N3,Tao(HR),TaoS(HR) 0 0
CF, BPI(MWD/MTU),
- BP2, BP3, UW(Kg) 3411.0 1.0
.00
.00
.00 461.00 FH BUILDING AMBIENT TEMP(F),
RELATIVE HUMIDITY(%)
75.50
.60 THE ENDING TIME(HR) 600.00 Heat-Exchanger Temperature effectiveness--p=-.4489 -.....
LIMIT (F)
VOLUME (ft-3)
UNIT I (POOL)
(HT-TO-HX)
TI Qi (F)
(BTU/HR) 81.8
.2215E+07 81.8
.2215E+07 81.8
.2215E+07 (HT-LOSS)
Qlsl (BTU/HR)
.57E+05
.57E+05
.57E+05 (POOL)
HXI T2 (F) 1 83.2 1
83.2 0 140.3 NIT 2 (HT-TO-HX)
Q2 (BTU/HR)
.2911E+07
.2911E+07
.1720E+07 (HT-LOSS)
Qls2 HX2 (BTU/HR)
.68E+05 1
.68E+05 0
.13E+07 1
5-19
$Logfile:
TIME (HR)
.00 495.50 580.31
j~
FILE: CASE4.TEM
- HOLTEC INTERNATIONAL*****
- COMPUTER CODE CROSSTIE********
$Revision:
1.0
$Date:
17 Dec 1993 23:30:18 C:/RACKHEAT/CONTROL/CROSSTIE.FOV THIS PROGRAM WAS VERIFIED BY THE TEST PERFORMED DURING SALEM IRlI
- OUTAGE, OCTOBER 1993 DESCRIPTION OF YOUR JOB PROGRAM CROSSTIE VERIFICATION CASE 4 REACTOR SHUTDOWN DATE:
10 2
93 OUTAGE UNIT, TIME TO START CROSS-TIE (HR),
AND TEMP 1
490.30 140.30 CCW FLOW(GPM), SFP FLOW(GPM),CCW TEMP(F), & NET WATER 3050.00 2040.00 73.00 60000.00 N1,N2,N3,Tao(HR),TaoS(HR) 0 0
CF, BP1(MWD/MTU),
- BP2, BP3, UW(Kg) 3411.0 1.0
.00
.00
.00 461.00 FH BUILDING AMBIENT TEMP (F),
RELATIVE HUMIDITY(%)
75.00
.60 THE ENDING TIME(HR) 624.00 HeatExchanger Temperature effectiveness p=-.3473-LIMIT (F)
VOLUME (ft-3)
UNIT I (POOL)
(HT-TO-HX)
T1 Qi (F)
(BTU/HR) 77.3
.2245E+07 77.3
.2245E+07 77.3
.2245E+07 (HT-LOSS)
Qlsl (BTUIHR)
.27E+05
.27E+05
.27E+05 UNIT 2 (POOL) (HT-TO-HX)
HX1 T2 Q2 (F)
(BTU/HR) 1 78.6
.2945E+07 1
78.6
.2945E+07 0 140.3
.1716E+07 (HT-LOSS)
Qls2 HX2 (BTU/HR)
.37E+05 1
.37E+05 0
.13E+07 1
5-20
$Logfile:
TIME (HR)
.00 490.00 580.58
FILE: CASE5.TEM
- HOLTEC INTERNATIONAL*****
- COMPUTER CODE CROSSTIE********
$Revision:
1.0
$Date:
17 Dec 1993 23:30:18 C:/RACKHEAT/CONTROL/CROSSTIE.FOV THIS PROGRAM WAS VERIFIED BY THE TEST PERFORMED DURING SALEM IRII OUTAGE, OCTOBER 1993 DESCRIPTION OF YOUR JOB PROGRAM CROSSTIE VERIFICATION CASE 5 REACTOR SHUTDOWN DATE:
10 2
93 OUTAGE UNIT, TIME TO START CROSS-TIE (HR),
AND TEMP 1
448.50 123.50 CCW FLOW(GPM),SFP FLOW(GPM),CCW TEMP(F),& NET WATER 2100.00 2460.00 77.50 59000.00 NI,N2,N3,Tao(HR),TaoS(HR) 61 64 68 240.00 60.00 RP(MW),
CF, BP1(MWD/MTU),
- BP2, BP3, UW(Kg) 3411.0
.9 41300.00 27760.00 15240.00 461.00 FH BUILDING AMBIENT TEMP(F),
RELATIVE HUMIDITY(%)
68.50
.55 THE ENDING TIME(HR) 520.00
-Heat-Exchanger-Temperature effectiveness-p= -. 4824-LIMIT (F)
VOLUME (ft^3)
UNIT I (POOL)
(HT-TO-HX)
TI Q1 (F)
(BTU/HR) 81.8
.2173E+07 81.8
.2173E+07 81.9
.2358E+07 120.4
.2148E+08 120.4
.2148E+08 120.4
.2148E+08 115.5
.1892E+08 113.8
.1808E+08 123.7
.1781E+08 114.4
.1781E+08 (HT-LOSS)
Qlsl (BTU/HR)
.10E+06
.1OE+06
.10E+06
.67E+06
.67E+06
.67E+06
.56E+06
.53E+06
.76E+06
.54E+06 UNIT 2 (POOL) (HT-TO-HX)
HXI T2 (F) 1 83.2 1
83.3 1
83.3 1
83.3 1
83.3 1
83.3 1
83.3 0 123.5 1 113.5 0 123.5 Q2 (BTU/HR)
.2881E+07
.2881E+07
.2881E+07
.2881E+07
.2881E+07
.2881E+07
.2881E+07
.2244E+07
.2476E+07
.2244E+07 (HT-LOSS)
Qls2 HX2 (BTU/HR)
.11E+06 1
".11E+06 1
".11E+06 1
".11E+06 1
".11E+06 1
".I1E+06 1
".11E+06 0
.75E+06 1
.52E+06 0
.75E+06 1
5-21
$Logfile:
TIME (HR)
.00 240.00 240.50 317.46 317.59 317.72 448.39 502.95 504.98 519.91
FILE: CASE6.TEM
- HOLTEC INTERNATIONAL*****
- COMPUTER CODE CROSSTIE********
$Revision:
1.0
$Date:
17 Dec 1993 23:30:18
$Logfile:
C: /RACKHEAT/CONTROL/CROSSTIE.
FOV THIS PROGRAM WAS VERIFIED BY THE TEST PERFORMED DURING SALEM IRI1
- OUTAGE, OCTOBER 1993 DESCRIPTION OF YOUR JOB PROGRAM CROSSTIE VERIFICATION CASE 6 REACTOR SHUTDOWN DATE:
10 2
93 OUTAGE UNIT, TIME TO START CROSS-TIE (HR),
AND TEMP 1
454.50 118.90 CCW FLOW(GPM),SFP FLOW(GPM),CCW TEMP(F),& NET WATER 3050.00 2460.00 70.00 59000.00 N1, N2, N3, Tao (HR), TaoS (HR) 61 64 68 240.00 60.00 RP(MW),
CF, BPI(MWD/MTU),
- BP2, BP3, UW(Kg) 3411.0
.9 41300.00 27760.00 15240.00 461.00 FH BUILDING AMBIENT TEMP(F),
RELATIVE HUMIDITY(%)
67.50
.55 THE ENDING TIME (HR) 600.00 Heat Exchanger Temperature effectiveness p=.3773 LIMIT (F)
VOLUME (ft^3)
UNIT 1
_(POOL)
(HT-TO-HX)
Ti Qi (F)
(BTU/HR) 73.9
.2225E+07 73.9
.2225E+07 73.9
.2410E+07 108.3
.2177E+08 108.3
.2176E+08 108.3
.2175E+08 103.6
.1903E+08 102.0
.1814E+08 118.9
.1777E+08 101.6
.1772E+08 118.9
.1735E+08 100.8
.1732E+08 118.8
.1694E+08 (HT7LOSS)__
Qlsl (BTU/HR)
.50E+05
.50E+05
.50E+05
.43E+06
.43E+06
.43E+06
.36E+06
.33E+06
.64E+06
.32E+06
.64E+06
.31E+06
.64E+06 (POOL)
HX1 T2 (F) 1 75.2 1
75.2 1
75.2 1
75.2 1
75.2 1
75.2 1
75.2 0 118.9 1 100.5 0 118.9 1
99.8 0 118.9 1
98.9 NIT 2 (HT!TO-HX)
Q2 (BTU/HR)
.2935E+07
.2935E+07
.2935E+07
.2935E+07
.2935E+07
.2935E+07
.2935E+07
.2349E+07
.2683E+07
.2349E+07
.2693E+07
.2349E+07
.2705E+07 (HT-LOSS)..
).
Qls2 HX2 (BTU/HR)
.58E+05 1
.58E+05 1
.58E+05 1
.58E+05 1
.58E+05 1
.58E+05 1
.58E+05 0
.64E+06 1
.31E+06 0
.64E+06 1
.30E+06 0
.64E+06 1
.29E+06 0
5-22 TIME (HIR)
.00 240.00 240.50 315.50 316.00 316.50 454.00 511.87 515.19 540.88 544.37 570.99 574.72