ML020520645

From kanterella
Jump to navigation Jump to search
American Society of Mechanical Engineers (ASME)Section XI, Inservice Inspection - Request for Relief 1-RR-4
ML020520645
Person / Time
Site: Watts Bar 
Issue date: 02/15/2002
From: Pace P
Tennessee Valley Authority
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GL-90-005 N3-PA-091
Download: ML020520645 (26)


Text

Tennessee Valley Authority, Post Office Box 2000, Spring City, Tennessee 37381-2000 FEB 1 5 2002 10 CFR 50.55a U.S. Nuclear Regulatory Commission ATTN:

Document Control Desk Washington, D. C. 20555 Gentlemen:

In the Matter of

)

Docket No.50-390 Tennessee Valley Authority WATTS BAR NUCLEAR PLANT (WBN)

UNIT 1 -

AMERICAN SOCIETY OF MECHANICAL ENGINEERS (ASME)

SECTION XI, INSERVICE INSPECTION REQUEST FOR RELIEF 1-RR-4 The purpose of this letter is to provide NRC the structural integrity evaluation associated with the subject relief request as requested in electronic mail (e-mail) from the WBN Project

Manager, M. Padovan, on January 8, 2002.

This evaluation is provided in the Enclosure.

TVA evaluated a through-wall flaw including a fracture mechanics evaluation.

The calculation did not assume a flaw size or assume a wall thickness of the degraded area.

The calculation used actual data from non-destructive examination (NDE) inspections of twelve locations around the through-wall flaw area to determine a minimum structural wall thickness value for the piping adjacent to the leak and a maximum allowable flaw length.

This criteria is used in the augmented inspections.

TVA considers this method to provide technical assurance of the structural integrity of the piping.

TVA also considers that the enclosed evaluation is consistent with the guidance of Generic Letter 90-05, "Guidance for Performing Temporary Non-Code Repair of ASME Code Class 1, 2, and 3 Piping."

A Printed on recycled paper

U.S. Nuclear Regulatory Commission Page 2 FEB 15 M9 If you have any questions about this change, please contact me at (423) 365-1824.

Sincer ly, P. L. ace Manager, Site Licensing and Industry Affairs Enclosure cc (Enclosure):

NRC Resident Inspector Watts Bar Nuclear Plant 1260 Nuclear Plant Road Spring City, Tennessee 37381 Mr.

L.

Mark Padovan, Senior Project Manager U.S. Nuclear Regulatory Commission MS 08G9 One White Flint North 11555 Rockville Pike Rockville, Maryland 20852-2738 U.S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth St.,

SW, Suite 23T85 Atlanta, Georgia 30303

ENCLOSURE WATTS BAR NUCLEAR PLANT UNIT 1 RELIEF REQUEST 1-RR-4 TEMPORARY NON-CODE REPAIR OF CLASS 3 PIPING

SEP-19-2001 08:54 TUA.JBN ENG 423 7-5 1750 P.02/24 Calculation N3-PA-091 Attachment A Prepared By: (&1J-10(,*1)

Checked By:

30o 6131,/

PURPOSE:

The purpose of this evaluation is to determine the structural adequacy of a location which is leaking. The leaking location is located on ERCW piping at valve 0-ISV-67-528B The leaking pipe is part of Rigorous Analysis Problem N3-67-09A.

REFERENCES:

I. Inspection Report BOP-R-544.

2. Design Standard DS-C1.2.8.
3. Calculation N3-67-09A, Rev 26. RIMS # '1'71 010629 802.
4. Drawing 47W450-209.
5. ASME Code Case N-513.

EVALUATION:

The reference I inspection data provided readings for the leaking location, as well as, axial along the pipe adjacent to the leaking location. This evaluation will be performed in two parts. Part I will evaluate the leaking location using reference 2, including a fracture mechanics evaluation. Part II will determine a mininium structural wall thickness value for the piping adjacent to the leak.

Part I:

Reviewing the reference 4 isometric drawing, the leaking location is between node points S 1 and 53 in the analysis model. The actual piping stresses from the reference 3 analysis will be used in both the structural and fracture mechanics evaluation. The fracture mechanics evaluation will determine a maximum allowable thru-wall flaw based on the existing loadings.

Additionally, based on this allowable thru-wall flaw a structural adequacy evaluation will be performed to ensure structural intLegrity. The maximaum stresses between the above nodc points will be used. No reduction in moment will be made for any modeled SIl:'s of the span in question (conservative - moments will remain intensified). The iollmwing is a list Of mnaximum existing stresses and associated moments node point S I - S3.

= 828 psi as = 1,769 psi

2,957 psi J

4,1 6 psi Cmo = 5,581 psi Ma = 7,999 lb-in M,, = 10,098 lb-in Mh,,r = 19,950 lb-in M,. = 47,439 lb-in Page A. 9 0

423 365 1753 P.03/24 Calculation N3-PA-091.

Attachment A Prepared By: 6WgAlk-o/,h Checked By:,.b.

Using the previously tabulated values, a fracture mechanics and structural integrity evaluation was pertormed in accordance the reference 2 methodology (refer to pages A.qe - A.164).

For the fracture mechanics evaluation, the average wall thickness value (0.243" from NDF data) was reduced by 10%. This 10% value is taken as a projected wear rate for the location. The fracture mechanics evaluation determined the naximurn allowable crack length of 1.0" (circumferentially). This value was based on the input piping stresses / morments developed on the previous page and the actual NDE inspection data provided by reference 1 (leak occurred at point 6 of the inspection data). With the allowable crack length of 2.2" the evaluation also showed that structural integrity will be maintained for all ASME Code equations with the maximum stress ratio being.0.245. For acceptance the existing crack length cannot exceed 2.2" with the avcrage wall thickness not to be less than 0.219".

Part 11:

For this portion of the evaluation the remaining points (I - 12) from the reference I inspection data will he addressed. These points represent the wall thickness values for the piping adjacent to the leak location. Since there is no leak in this portion of the piping only a structural integrity evaluation will be required in accordance with reference 2. The following pages (refer to pages A~qZ - A.1;)

determined a minimum average wall thickness value of 0.051" (360 degrees around the pipe). This value is based on the maximum input bending stresses for the identified locations from the reference 3 piping analysis. From the reference 2 inspecuon data the Collowing is the average wall thickness for points I through 12:

Point 1 0.261" Point 2 0.258 "

Point 3 0.259" Point 4 0.254" Point 5 0.262" Point 6 0.243" (Approximate Leak Location)

Point 7 0.257" Point 8 0.256" Point 9 0.254" Point 10 0.260" Point 11 0.263" Point 12 0.257" For each of the 12 locations inspected, the average minimum wall thickness value exceeds the required value of 0.051". Therefore, the piping adjacent to the leak location is structurally acceptable for the inspected data.

Page A. r1:

SEP-1$-2001 Oe:54 TUP. 1,49.N EN'G

SEP-19-2001 Oe:54 Calculation N3-PA-09 Prepared By: Lqcl

_-_]j Attachment A Checked By:

~3o CONCLUSION:

From the above evaluations, at the location of the leak, the maximumn allowable flaw length is 2.2" with the minimum average wall thickness not to be less than 0.219". This criteria will ensure that the fracture mechanics and structural integrity criteria are maintained.

For the adjacent piping, structural integrity is maintained based on the NDE data exceeding the minimum wall thickness value required by design. No further evaluation is required.

Page A.q;2 423 365 1750 TUA. IJBN ENG P. 04/24

SEP-19-2001 08:54 TVA IU-BJ ENG N3-PA-091 Prepared By:

04%i Checked By:

423 7-5 1750 P.05/24

"- ATTACHMENT A STRUCTURAL INTEGRITY EVALUATION Piping System:

Grid Number:

Analysis Problem No:

Microfiche No.

Member Name:

Node Name:

Isometric:

Flow Diagram:

Pipe Material:

Essential Raw Cooling Water Leak at Valve 0-ISV-67-529B N3-67-09A Rev 26 See Table 8.2-I S2 - S4 Si - S3 47'%N450-209 47W845-2 SA 106 Cir B Page A.33

SEP-19-2001 oe:54 N3-PA-091 Prepared By: (A J.44-% Checked BY:

S-ATTACHMENT A The routine below computes required thickness for a straight pipe (SIF = 1.0) under pressure and moment load using code equations. Seven cases (load combination - allowable stress conditions) are evaluated. Cases 1-4 are primary stress cases (i.e., code equations g, 9u, 9e and 9t). Case 5 is secondary stress (i.e., code equation 1i). Case 6 is sustained primary plus secondary (ie., code equation 11). Also included is the required thickness for pressure design for piping where the longitudinal joint elliciency is no less than 1.0. This routine is not applicable for high energy piping.

I.

Initialize ksi and psi units:

lbf ki:= 1000.-

- 2 In lbf psi:= I.

In

2.

Input Pipe Data - Outside Diameter (Do), Nominal Thickness (t,,,,), Max/Design Pressure (P),

Cold Allowable Stress (Sc) and Hot Allowable Stress (Sh):

Do:= 6.625-i Sc:= 15.0.ksi toi:= 0.280.in Sh:= 15.0.ksi

3.

Tnput Analysx oýf Record Applied Stress (S) Values for 6 Cases:

where:

i= 1: Equation 8 i= 2: Equation 9u i= 3: Equation 9e i - 4: Equation 9f i = 5: Equation 10 i= 6: Equation 11

4.

Compute Analysis of Record Allowable Stress (S.11) Values for 6 Cases:

Sit:= 125-Sc + 0.25-Sh SIll

  • ,ll1=

lx 27 ksi 22,5

ý17 5)

Page A,cql P :=- 160-psi i:= 1.. 6 Si.:

1.769,ksi 2.957,ksi 2 957.k.i 4.116.k.i 5.581.ksi 7.35S0-ksi Sh 1.22. Sh

1. 8. Sh 2.4. 5h Sa S-q + Sh TUA_

W~BN ENG 423' 7-6515 P. 06/24 f)b 3/3/0

SEP-19-2-001 oe:'14T1 bD EfI 2

23 75 2.72 N 3-PA-091 ATTACHMENT A Prepared By: &~&) 4~

Checked By:

1~

5.

Jnitialize ThicIcness Variable (t):

6.

Set Up Inside Diameter (Di), Moment Factor (Fm) and Pressure Factor (Fp) as Functio~ns of Thickn"eq:

Di(Do, 1) =Do t 1-p(Do, Di, t)

Ici(Do 4t)i((,)

[32 Do

7.

Compute Applied Moment (MI) for Equations 8, 9u, 9e. 9f and 101:

I.4 S; - P. Fp(Do, Di, L)

Frn(Do, Di, t) 1 5~07 xI M 1507 x~ 103 t.I 2.329 1O,

ý3 951 x 10'3 R.

Pertfkrin Solve Block Iterations to Determinie Required Thicknesq (tr) for Each Case:

Case 1 (Eciuation 9)

Gi-L-n S,), = Mv.Fm('Dc),Ti,t)-iP.Fp(Do,TDi,L) t =Fiiid(1)

Lr1: L r

tr.

0.033 in Page A.9E T(JIG WDN ENG 42ýý 7-65 1750 R.07z24

4*

Cr?

I<

I:3 C)

-C

-4.

C II

'I C

4.-

-

+

+

-'I 0

0 V

5-'

3'

~C

  • Ii I

C>

Al 0

'-C

-Cl.?

C)

  • Ii

-

C.,

C'.C II C

  • 0

-1 a

C'.?

ii

-

0 t-)

Q

0

(-)

5 4-C--i

(..1 2

3 4-'

4..

p

3 C,.

C C

C)

4 a

2 II a

ZO

+

r1 a

'4+

Cr II

.4.

tJ.

C

'Ii C-..

C-s U-.

SEP-19-2001 00:54 T*,*

WSBN ENG N3-PA-091 Prepared By: 6 %.J,. Z]/2j Checked By:

8.

Perform Stress Check Computation,,:

S:= I.. 3 Sak := Mi-Fm(Do,Ditr1 ) + P-Fp(ODi,trj) - S,1 I

I, ATTACHMENT A S'&

M:= Fm(I)o, Di, tr.) - "%L

$S::= P-.Fp(Do,Di, tr17)

+ Fin(Do,Ditr 6).(MN

+ M ))

If S.

equals zero for all cases, the routine is valid:

-0

--O 0

9i--O

9.

Determine required thickness (try) for hoop stress:

P-Do 2.(Sh + P.0.4) t'.s = 0.035in

10.

Since Equation I I iq governing relative to Equation 10 and, from a required stall thickness perspective, Equation 11 is leqq restrictive than Equation 10, the required thickness from Case 5 may be disregarded in lieu of the required thickness for Case 6:

tr5 if(tr5 > tr;, tr(, tl'5) tr 5 = 0.051 in

!I.

The Controlling Thickness. (trd) is the Maximum Value,f tr:

0.(Y5I tEl Page Aq) trec := m.'Lx.(tr) tu" = 0.051 i1 4231 365 1750 P. 09/24 0-0

ýý 0-ý 31-31fo I

SEF-15-2C Do := 6.625-in tm 0.290-in 6 inch SCH 40 User Defined in out Material Procer'ties F,:= 27.9.1 f6._Ihi in2 of 

p=0 3 Jc=45-I in User Defined inout Pressure (Desian) and Moments In P.-s lr 1f 7999*itn~lbf Mblf:

19950miilbf Mc:

474139*in1-bf Page A~q

~01 08: 55 T')P l)JEH EflG 4 2 -

6S5: 17 570 N3-PA-091 ATTACHMENT A Prepared By: ~

I~2~Checked By:-

b

~o

'Ni-UHS ROUTINE G~TE TH-E ALLOWYABLE FLAWV~ LEN54GTH i N AN ITERAT'VE PROCESS. AD{F.1OM11ALI Y.EAHCLI 8 0.G K ~1-A SA N I NOE:PENID ENT C.HE CK ING R 0U T 3NIE T 0

=NSUR~E ANSWER VALIDITY.

User Defined Units of ksi k~i __ 1000. IVf In2 User Defined Input Nominal Pine Size P. 10/24

-a0vj.re

',Jaii.,4; From l-%,ý"T.v1E Se-etic"I

SE Page A.%c

  • P-19-2001 Oe: 55 T',P WEN EA 4 2

~657 1750a N3-PA091

,K ATTACHMENT A Prepared By:

Checked By:

~

J Do

-t dk S2 2

Ri(Do,t)

DoL tRdu 2

ROT(Do,t) m RmfDo,t)

'R 4

4 Z(Do,t)-

7C Iw;' -

-n-4 32 Do mc PC: 7.(Do,l,)

PC = 5.584 x I 0'Pzii Arn('Du,t) =_-2.02917 + 1.67763.ROT(Do,t) - 0.07987R.ROT(Dco,t)

(),()00176.RF()J L3m(.Du,t) a7.09987 - 4.42394.ROT(Do,t) + 0.2103G.ROT(Dojt)2 0.00463.-R 01(Do,L)~

Cm (Do, 0 7.7 9661.ý 5 16676.-ROT(D~o, t) - 0.24577 -ROT(11o, 0 + 0.00541 -RO f(Du, L)

Ab(Du. t) m-3.26543 + 1.52784.ROT(Do, t) - 0.02698.ROT(Do,t) 2 + 0l.00 160 11 ROT(.Do, t)~

Bb(.Do, )

II13 6322 - 3.91412 ROT(.Do, t) + 0. 18619 ROT(Do, tj2 - 0.0)4099 -R()I(DoL)^,

Cb(Du, t)

-3. 18601) + 3.84763.ROT(Do, t) - 0. 18304 -ROT(Do, t) ý + 0.00403.ROT(Doj)'

TOP(.1,Do,t)=_2x-rI (oQe RaF FmO(,Do,t) =_I + Axn(D~o,t).TOP(1,Do~t)

R m(D~o~t)-TOP(.1 Do~t)2 Crn(Do, 1):rOP(l,1U,l Fb(1,Do,t) aI + Ab(.Do,t)-TOP(1,Do,t) 1.5 B b(Do,t)-TO-(.1,Dojt) 5 + Cb(DoAt)-TOPW1Do,t) 3.

ý'. 11/24

SEP-19-2001 08: 55 TVAJ WBN EflG 423 365 1750 R. 12/24 N3-PA-O91 ATTACHMENT A Prepared By:LJ ~

~

~~ Checked By:

ýIl j KKC.

3 7. 14 41,s - 1"7 User Defined Input Start Data tc Start Iteration Process For Circumferential Flaws lglzý%:=I inýt~il Gt--s Vaiue for fF~w Lc-nri,. As-"n1

~r: 1i tdj :0-219. 1n

t(v~~~v~vinJ, T? cidnf&s Frý J:~£io~~%

ý'fls "he enraok stre-ss i.erqeuakir-l -wit~'h

-jcM ý:i C SFý:.-.2.77 Sulek'Y Faccr ft; or.

i. Fb (I Do v

+ Mbu

+Pe kQr

-ii(~

Rmpo t=I) 2 233 I.......

5 4F.

FbInlu, Do, Ladi), p.Ri(Do.

u r e~

2

(

7.R (Do ta( l)t D o, t~j 2.Ldj S

3-- =3.Ik~. i Page AJ;ý

\\QLV 06ed F~ ~~q

+ vw1

).f~icrq

+

F

~~,G!6 (IA

!?PrV, (Sr ocJ)wH.ui

...~

.~

..........q..

U:)A VIN3VWHOVIV

AS PaMOB1LI3 YOkgf

-a7

A-a padeldd I ý L60Vd-N LI B NEP]

r i

8O TOS -ET-d S UT 01 Ot S

TOW-ST-d3S rE/Z. T

  • d OSýLT zl-'Ev SH3 NEM dOi

z c tv a~ue

"!~~~p I

Z£= 1 El _fvu.

oc~rp ci.

ti' oc(sP~b'owvj>

UA

, ;Ezort/I'LuAcN

.;)J JO4WE>A A44s 0o T=: ¶Zs

('c'U

,szo-

+

+ (WOcrIAyLZýz'o-(1'oa1'0T9;8V9'0 +

I Z-1'1xWvOLu

+

IVODIV I

=oc Tuulit z

-g5

.~ L l454 Ld, 'J ~ V.....................

I PF/

V IN9LNHOVIIV

Sg Pe43eLio(Q/Ef:4~9:A peJedaid

-ion0-Vd-SN t~/tVd S2J 992

£~'

O43 NN Uli.SS:80 TOO&-ET-dBS L

q ý ý. -of VE/VT'd O-SILT S92 ZEt-,

91-13 NEM di^ii

rý(WV abed Ol T+ ~VW -(T -L WO I '0N 5' S~L')[

Z 'Ploc-J78

~(~P~oa~ra

+~~~~~~~~~~

(1I(~

00 L0 L J

~

i )]Y' (nqvN +TN-vT&L0'0 1 0'! O'

(~'roci) z

+r L "C~

~~1A~(.I&&0'01'0~0 1

T LJ I~~ o~>.

~1O+ -.

00091 i

jq1 i nolui pouijo iosfl

-g ~ ~ ~

...............I......

V INýIWHOVIIV Et~l PO)peL a4:0 q, j ~If'(jw :AE pJejdawd L 6-Vd-EN

£JHB NErn Ufr+/-

SS:80 TOOE-6T-dBS5

!sSZ6= riý "Z.ýqz=

1

!"ý zs I -S = 111-0

SEP-19-2001 08:55 N3-PA-091 B

&/hy Prepared By:

ý)30Checked By:

  • .* ~ ~
  • t...'...

Sh Sh 2.Sh S4 :=

2.4. Sh 1 25.(Sc + Sh)

S,,

= max(S)

S1 = 0.166 S2 = 0.151 S1 = 0.208 S4 = 0 144 53 = 0.245

= O.245 ATTACHMENT A 1by7

. 1.0. Th-ve

iC;;<

Page A.) bh TVA-WBN ENG 42' 37655 17570 P. 16/24

SEP-13-2001 08:55 TU' 14BN1 EN1G 4231 365 1750 WALL THINNING MONITORING PROGRAM FOR MIC AND GENERAL CORROSION Page 1 of 1 TECHNICAL EVALUATION OF DEGRADED PIPING If wall loss exceeds acceptance criteria or a through wall leak is detected, and if piping is located in seismic Category I structures, then, SE-Mechanical/Nuclear will transmit UT data to Civil Engineering requesting analysis of the piping at the specific loading condition.

Please evaluate the attached UT data for the E-QF4 leaý upstream of 0-ISV-067-528B. This is part of PER 01-012757-000 and WO 01-012752-000.&,W* '

'-/301-,l Transmitted By:

Date:

07130/2001 Ed Loope SE-Mechanialuclear RIMS Number N/A Civil Engineering will transmit a copy of the affected pages from the calculation with the results for the identified component to SE-Mechanical/Nuclear.

Transmitted By:

Date:

19131 D\\

SE-Civil N IN RIM9 Number Calculation Number If wall loss exceeds acceptance criteria or if a through wall leak is detected, and if the pipir a building other than a seismic Category I structure, THEN SE-Mechanical/Nuclear

'I, structural integrity of piping.

1 ON SE-Mechanical/Nuclear If analysis cannot establish the structural integrity a PER in accordance with SPP-3.1.

PER Number I, then, SE-Mechanical/Nuclear will initiate Date:

SE-Mechanical/Nuclear SPP-9,7-2 108-18-2000]

SiF-E 1ýýjTWPEO KCEpT P. 17/24 "ITVA 40577 [08-2000]

Page I of I

SEP-19-2001 o8:5ss TUVA WR-N Et2.0

.2 PROJECT:

WBN UNIT:

2 PROC.: I N-UT-26 REV./ T.C.: 19/N/A INSTRUMENT I TRANSDUCER DATA INSTRUNENT MANUF.:

KBA SERIAL NO.:

E21 198 DUE TRANSDUCER MANrF.-:

KBA SERIAL NO.:

006X1C SIZE:

.38" CABLE TYPE FIXED SDATE:

12/12/01 REQ:

8 mhz LENGTH 72" A

M P

L I

T u

D E

DISPLAY WIDTH (1)

REF. REFLECTOR

.3" STEP GAIN 70 dB AMPL 80 METAL PATH:.3 inches CALIBRATION DATE 7/30/01 CAL BLOCK NO.:

94-5525 TYPE:

.5" C/S STEP CAL BLK. TEMP.:

72F THERMOMETER S/N:

558273 THER-M. CAL DUE DATE:

12/13/01 COUPLANT:

ULTRAGEL 11 BATCH NO.

00125 INSTRUMENT SETTINGS PROBE:

FH42E THICK CAL.:

1PTC]

RANGE

.75 VELOCITY:

GAIN Mz

.2313 DF1 2PTZ inches in./uS TCG MODE:

SINGLE F]

DUAL Z

RECTIFY:

POSITIVE M]

NEGATIVE

[

FULLE AMPLITUDE:

NORMAL Z

SCALE

[]

CALIBRATION TIMES INITIAL CAL TINE:

1000 FINAL CAL TIME:

11I00 COMPN./GRID(S) EXAMINED I

TEWM PIPING AROUND 70 F LEAK UPSTREAM I

OF 0-ISV-067-0528B

]_

COMMENTS:

W.O. 01-012752-000 TOOK READINGS ON SIAULATED 2 " GRID PATTERN 12" UP AND DOWNSTREAM OF LEAK.

5a REF, PC, 01-o027T 7 SANTII EXAMINER:

(L

~x.,L AE EXAMINER..

DATE:L REVIEWER:

Lv....

PAGE 1

of U

DMS ULTRASONIC TENNESSEE VALLEY CALIBRATION CALMRATION REPORT AUTHORITY DATA SHEET NO.

BOP-R-544 FINALCALTDAE:

1100 m

p N.

4 237 36 5 175 0 P. 18/24

SEP-19-2001 08:56 TUV WBN ENG 4_2__

____4 365 1750 P.19/24 K,!o7

? j 7

1 29 103:3S?

T'4R WIBN ENG Ni &.

nP --02 u

l'ý.

watg 423&512 S

Is.

Pt \\o&

P -20/24

-, o

, I

.4

.-

00 J'27bE 7

SDEP-19-2001 Oe:S8 N :-? -Oq.

File H e

a d

e r

P.C. File Name Gauge File Name :

Description Creation Date Date Last Saved Probe Inspector instrument Type Min. Alarm Val.

% Loss Alarr. Val.

Abs.

Loss Alarr, Val.

Units BOP-544.utm ERCW 2 528B 07/30/2001 07/30/2001 Cal. Stnd.

Company DM5 Instrument S.N.

0.000 0-00 0.000 INCH Max. Alarm Val.

% Growth Alarm Val.

Abs. Growth Alarm VaL.

velocity (in/us) 00700419 0.000 0.00 0.000 C.2213 File Statistics-----------------------------

Number of Readings Number of Obstructs Range Median Minimum Value Minimum value Loc.

Maxmmum Value Maximum value Loc.

Minimum Value Alarms Percent Loss Alarms Absolute Loss Alarms

% and Abs.

Loss Alarms 216 Number of Empties 0

Number of Ascans 0.117 Mean 0.260 Standard Deviation 0.201 4 : J :

0.318

5 : B : I 0

0 0

0 Maximum Value Alarms Percent Growth Alarms Absolute Growth Alarms

% and Abs.

Growth Alarms:

0 0

0.2S8 0.018 0

0 0

0 File Comments ----------------------------

A:

B:

C:

D0:

E:

F:

H:

I J K

L M

N 0

P Header Page 1

- -L7 TVA WEeN Re 42-1 76.5 1750 P. 22/24 IAIý

SEP-19-2001 08:58 TVJA IBN ENG BOP-54,uut_

.A 9

c D

E [

F G

H I

0.0.242 02M 0.2831 0.267 0.281 0.267 0.24 0.2321 2

0271 0-280 0-249 0-271 0-290 0-273 0.272 0.246 0244 0226i 3

0266 0.295 0.225 0.259 0286 0.277 0.278 0247 0.245 0.241T 4

0241 0.295 0.231 0-24 0.259 0.276 0.289 0-238 0.270 0.2011 S

0.267 0.318 0262 0.263 0.270 0276 0.288 0.260 0.256 0.226 6

0-236 0285 0244 0.221 0.265 0289 0.289 0.252 0-25S1 0-2641 0.270 0.300 0233 0-253 0.2si o2Sl 0.292 0.246 025 02211 0265 0-291 0.232 0-230 0235 0

0.28"7 0.255 0246 0-250 7

9 0.278 0.277 0213 0.202 0.246 0.2721 0.270 0.229 0.246

0256, i

10 0.284 0249 0228 0.254 0231 02761 0266 0.255 0.256 0.229; i1 0.281 0.250 0.223 0.254 0254 02751 0.2711 0.2601 0.265 0244 12 0-281 0-227 0.211 0 238, 02761 0.2421 0.286[

0.2531 0262 0.239 Po~~

I ý Is o

CA4 l<

Data Page I

i 7 423' 365755 R. 23/24

.,ý C i N I " "

SEP-19-2001 09:59 TQ.J WEN1' ENG 4~~515 42-Pk@

C7(\\-

ul.

izt BOP-S44.utu K

L MA N

0 P

R 0.251 0o33 0.260

.281 0.270 0.259

.0268 0.2501 1

28 04

.6

.5

.6 0.247 0254 0.2521 3

024 0.24 0.2s01 0.25 0.269 0_267 026 0.2601 4

244 0.25 0.261 0.256 0238 0.264 0.265 0.245l 025 0.246 0.26l 0.257 0.246 025 0.49.

6 0259 0..251 0253 02*7 0.262 0.268 0.264 0.2371 4

0.24 0.24 0.261 0241 0.236 0.255 0.4 0.238 0261 0.255 0.26S 0.2 0.2 0.246

o.

0.2610 0.259 022 0.265 0.252

.268 0.22 0267 0.23 io 0278 0.283 0.259 0.271 0.245 0.257 0.269 0.2851 0.272 0.275 0.262 0-253 0.271 0.2S2 0-259 0.2741 12 0.266 0.2571 0253 0-268 0.250 o.283 0.265 0.263i Data Page 2 TOTAL P.24 4231 765 1750 P. 24/241