ML003724403

From kanterella
Jump to navigation Jump to search

Attachment to Memorandum, Proposed License Change for Cycle 14 Risk-Informed Operation, MA8418
ML003724403
Person / Time
Site: Arkansas Nuclear Entergy icon.png
Issue date: 06/15/2000
From: Alexion T
NRC/NRR/DLPM
To:
Alexion T, NRR/DLPM, 415-1326
References
-RFPFR, TAC MA8418
Download: ML003724403 (112)


Text

{{#Wiki_filter:ARKANSAS NUCLEAR ONE No.: HES-28 SENGINEERING STANDARD Rev. No.: 11 ENTERGY SCN No.: 1 ANO-2 STEAM GENERATOR EDDY CURRENT Page: 59 EXAMINATION GUIDELINES 10.4.2 ATTACHMENT II - ETSS #2 RPC Examination (Pancake, Ax, and Circ) Examination Technique Specification Sheet ETSS # 2 - PANCAKE COIL (axial and circ. Directed coils) 7!Page: 1 of 5 Site: Entergy Operation Inc. Arkansas Nuclear One Unit #2 F-xamninafinn qr-nen, Applicability: Tubesheet examinations. Diagnostic testing and/or to confirm bobbin indications. Detection of IGA/ODSCC or PWSCC. Instrument Tubing Manufacturer/Model: Zetec MIZ-30A/30-8 Material Type: Inconel 600 Data Recording Equipment ODPAall (inch): 0.750" OD X 0.048" Wall Manuf.iMedia: HP HD 2.6GbOptical or Equiv. 1 Calibration Standard Software Type: RPC EDM Notch Standard Manufacturer: Zetec Analog Signal Path Version/Revision: EN98 1.30 Probe Extension Manuf.: Zetec Examination Procedure Extension Type & Length: Universal 945-1760, 75 ft. Number/Revision: HES-28 Rev. 11 Slip Ring Model Number: 508-2052 Scan Parameters Scan Direction: Push or Pull Digitization Rate, Samples Per Inch (minimum): Axial Direction Ž_25 Circ. Direction _30 Probe Speed Sample Rate RPM Set RPM Min RPM Max 0.45 in/sec. j 1280 900 j 810 1086 Probe/Motor Unit Descriction (Model/Diameter/Coil Dimensions) I Length Motor Units 810-4090-000 -,610 (.1151 MRPC 3C-52PH 50' or 83' 700-4055-071 -. 510 9D-MRPC-52MU D" 2551-2-A - 580 (115) MPRC 3C-52PH 50' or 83" 810-4050-001 - 560 9D-MRPC-52MU I D#3414-13-A -. 600 TTS extension shaft +2"-2 Data Acquisition Calibration 0.115 Coil Channels (Dual Probes) Channel& Ch. 1 & 4 Ch. 7 & 10 Ch. 13 & 17 Ch. 23 &24 Frequencv 300 kHz 200 kHz 100 kHz 20 kHz Phase Rotation 20% IDAX Notch 20% ID AX Notch 20% ID AX Notch Tube Support Ring Up I-N 12 deorees I 12 degrees (D 12 degrees P, 90 decrees Span Setting 40% OD Axial Notch 40% 00 Axial Notch 40% 0D Axial Notch Tube Support Ring S 2 divisio ns 2 sion 2 divisions I , 3 Divisions Calibration Axial Sensitive Coil and Trn ger Channels (Dual Probes) Channel& Ch. 2 & 5 Ch. 8 & 11 Ch. 15 & 19 Ch. 14 & 18 Frequency 300 kHz 200 kHz 100 kHz 100 kHz Phase Rotation 20% ID AX Notch 20% ID AX Notch 20% ID AX Notcn Large pulse up, Q 12 decrees ( 12 degrees (5 12 degrees small pulse horizontal Span Setting 40% CD Axial Notch 40% 0D Axial Notch 40% OD Axial Notch Large Pulse (p) 2 divisio I

  • 2 divisions- (?. 2 divisions 0_ 4 divisions Calibration Circumferential Sensitive Coil (Dual Probes)

Channel& Ch. 3 & O Ch. 9 & 12 Ch. 16 & 20 Ch. 21 & 22

  .- reuencv                  300 kHz                     200 kHz          1          100 kHz                     100 kHz (optional)

Phase Rotation 2 0% ID Circ. Notch 20% ID Circ. Notch 20% ID Circ- Notch I Pulse L 12 dearees 12 dearees 1 2 dearees Q 90degrees Span Sertng 40% OD Circ. Notch 40% OD Circ. N-'c::n 40%00D Circ. Notch Pulse 5 2 civions If 2 divisions D 2 divisions . D 4 divisions

ARKANSAS NUCLEAR ONE No.: HES-28 SENGINEERING STANDARD Rev. No.: 11 SENTERGY SCN No.: 1 ANO-2 STEAM GENERATOR EDDY CURRENT Page: 60 EXAMINATION GUIDELINES Examination Technique Specification Sheet ETSS # 2 - PANCAKE COIL (axial and circ. directed coils) I Page: 2 of 5 Configuration Board Settings tri off down Confouration #: Name: 3-Coil tester = samDies / sec : 1280 rec. media = Hard

                                                    -board 1              lboard 4 2                 board 3                  board # 4             boardS 5               board #` 6              board # 7             boar
          ,ofchannels=            24       _    I                 1 1robeS      obeo                      robe 2                  robe S 2              robe 1                 robe # 1              probe 0 1               ¢ob DRIVE                     DRIVE                    DRIVE                    DRIVE                  DRIVE                 DRIVE                   DRIVE A D 3               C    A DS               C IA          O 8        C      A     O          C A OD                C A          D 8 CA                 D B CA O0rive Polarit                           NI                  NN                 NNN
         ýGrouo Number                                                                                                   NI               N    N                II                    IIIIfIII I        II        1     11          1             211
        'CoilNumber                            Il           i          4851 221               2    2              i i1 1 7811                           45                 7    8        1                                       i FREQ #I        Time Slot # 1                                    D            D             0 D                        0          D 300kHz       G:x2 12.0V FREO 92        Time Slot - 2            0                       0            0 20OkHz !G:x2                                                                              0                        0           0 12.0VI FRE OS3      { Tim eS lot s3              0                  0     0           0           D                          0          0 200 kHz      G:x2      1n 12.0V FREO #4         Time Slot         4                                                                                                   0 100kHz      _G:x2 1 12.0V FREQ i;55      Time Slot ;;5            0                                                  0 20k0-kz     IG:x4 112.0 V FREQ 45        Time Slot 5 6 FREQ X7        Time SlotS 7 FREO       =8 Time Slot1         8 END Loc CH :                  1                      DRIVE A: 0= A1-A2. P                       dr:A1 puA2.DP               dr: D0&D2 pu: Al.&A.2 THRESHOLD:              off         off              DRIVE B: 0 = B1.82. A = A1-82 ad       ,

(P) GAIN: x6 P dr:B1 pu:32. DP = dr:C1&C2 pu:B1&B2" ACTIVE PROBES 2 DRIVE C: D= CI-C2. A = D1-C2 ten DRIVE 0: = 01-D2

1. --later a messaae at the beninnin a of- each cal-.-'h'l, Special Instructions
                                       -                                                         ; .- io*;,-- il.d_ we oia i                   n a           e           i          nl          u         oa                         e zr, being used state which   -.. -=~. ~calibration
                                                    .~.* . ~  .. . . ~. is
                                                            . group      .~. the
                                                                               . ~. primary
                                                                                     ~,ý u'.. p probe
                                                                                                   ,, , u *and k nu       . n g which th a t th eis dthe a tasecondary is b e in g a cprobe.

q u ire d The w -ith e ith e r s in g le o rinclude d u a l p ro be s . If d u a l p r o b e r message shall whether the data is acquired on the push or pull. 2 When acquiring data with a single probe delete boards 3 & 4. The Coil 1 (.1 15 Panc) channels will then 7=100 kHz, Ch 12=20 kHz. The Coil 4 (Trigger) channel will be Ch8=100 be Ch 1=300 kHz, Ch 4=200 kHz. Ch kHz. The Coil 5 (Axial) channels will be Ch 2=300 kHz. Ch 5=200 kHz, 9=100 kHz. The Coil 7 (Circ) channels will be Ch 3=300 kHz. Ch 6=200 C; kHz. Ch 10=100 kHz. Coil #8 will be Ch 11 100 kHz.

3. Examine each location and record a run-out. Run-out record not required for tubesheet intersection scans.
4. The TSH expansion transition shall be acquired by pushing the probe through transition and shall be adequate to cover the target location.

snail normally be from 2.0' below the transition to 2.0' above the top The scan of the tubesheet. In the event that the probe stalls on the push. the acquired by pulling the probe through the transition. This will require data may be the operator to message the event pnor to acquiring the data.

5. Other locations may be scanned on the PULL or PUSH and shall be adequate to cover the target location. For special interest indications within a structure, the data shall be acquired +/ from the center of the located structure. All other locations shall be acquired from structure to structure unless encoders are used, in which case the scan may include one structure. In these location is scanned with adequate data past the target location (recommend-5-inches) instances, care siould be taken to insure that the proper to account for any variations in probe speed or axial scaling.
6. One calibration standard may be recorded at the beginning and end of each cal group provided it is a successful scan of the standards complete length.

7 Tubes which have been mis-encoced should be corrected by entering a message to void that entry and re-examining the tube with the proper encode This is required to maintain an accurate DSR database. Encoder is to be used for all soecial interest examinations When not used. activate timeslo! as usual. and rPosetuo is reouired.

ARKANSAS NUCLEAR ONE No.: HES-28 __ENGINEERING STANDARD Rev. No.: 11

     ..          ENTERGY                                                                                                                                          SCN No.: 1 ANO-2 STEAM GENERATOR EDDY CURRENT                                                                          Page: 61 EXAMINATION GUIDELINES Examination Technique Specification Sheet ETSS # 2 - PANCAKE COIL (axial and circ. directed coils)

Page: I 3 of 5 Data Analysis Channel & Frequency Pancake Q m~l Ch 1 Ch 4 Ch 7 Ch 12 (Locator) 300 kHz 200 kHz 100 kHz Phase Rotation 20% I1 Ax. Notch 20 kHz 20% ID Ax. Notch 20% ID Ax. Notch Tube Support Ring Up I6 12 derees ,12 dearees Span Setting e1sdDre 90 degrees 40% OD Ax. Notch 40% OD Ax. Notch 40% OD Ax. Notch Minimum Tube Support Ring 2 divisbons t. 2 divisions 0 2 divisions C 3 Divisions nxa Channel & Frequency / Ch 2 Sesii: j Coil & TigeChnnels Ch 5/ Ch 9 Ch 8 (Trigger) 300 kHz 200 kHz 1C0 kHz 100 kHz Phase Rotation 20% 10Ax. Notch 20% ID Ax. Notch 2 % 1 x oc ag us p

                                          ,6 12 dearees                             6 12 decrees                       6)12 dearees                            Small Pulse Horiz.

Span Setting 40% 00 Axial Notch 40% 00 Axial Notch 40% 00 Axial Notch Large Pulse Minimum @ 2 divisions @ 2 divisions @ 2 divisions @ 4 divisions Circumferential Sensitive Channels & Encoder Channel chnannel & Frequency ICh 3 0h 65 Chl10 Ch il 300 kHz 200 kHz 100 kHz 1 C00kHz (encoder} Phase Rotation 20% tDCirc. Notch 20% ID Circ. Notch 20% tOCiro. Notch Pulse

                                             £)1 2 dearees                        @ 12 dearees                         6 12 de rees                              *.90ddrees Span Setting             40% 003Circ. Notch                        40% 00 Circ. Notch                 40% 00 Circ. Notch                                    Pulse Minim um                     .6 2 divisions                            6b2 divisions                       6=2divi sions,                            # 4. di,,;inn, Channel & Frequency nnels Ch P1                                  Ch P2 (See Note 5)                                                                                                    Ch P3                                        N/A 300/100 kHz Panc                 .          00/100 kHz Axial Phase Rotation              20% ID Ax. Notch                                                              300,' 00 kHz Circ 20% IO Ax. Notch 20% t0 Circ. Notch
                                       ,tD 12 decrees                            6 12 decrees Span Setting                                                                                               0 12 decrees 40% O Ax Notch                           .40% 0D Axial Notch Minimum                          , 2 divisions                        fD 2 divisions        ]      40% 00 Circ. Notch 0 2 divisions Voltage Normalization                                                                              Calibration Curves CH       Signal Note 13)            Set                     Normalize                                   Tvoe                          I r.H I (Reso) P noseType 1        100%oAx notch         20Vp-0                    Ch. 4,7 & P1                                                                     H                                  s ha~se Curve /Nnt*

(Curv* 1"21 I 1 I 4i"1 F*I'] 'I* *.v t"*r"* * .*,.. (Note 12) 2 100%Ax notch 20Vp- I Ch. 5, 9&PT , , (11 v .f nn 3 100% circ. nnotchh 220 Vp-p Ch. 6 , 10& P3 (RslPnas* *Ul%#1*_ fNrlh= 1"7i I 1 I 413 Rf') 1131"1("'ir.'-. nn .^,., hase Curve (Note 12) anni in ir Vf Data Screening Left Strio Chart rignht Strip Cnart Lissaious P1 Lissaious Chn 6 I Ch P1 i,..n 0 Oh P1 Reporting Requirements Condition/Region Report- Ln4.Note 16) Comment Single Axial Indication on mnComnt Multiple Axial Indication MAt i MAI 1 1 or or P1P1 amplitude- - ReDort Any amplitude Reoort on volts peak peak- - peak peak(TSR(TBR in in Util Util 2) 2) Single Circumferential Indication Multiple Circumferential Indication SMCI 1 1 or P1 Arw amolitude - Report on voltsoeak- peak(TR in Util 2) Single Volumetric Indication

                                                   ,VI                 1-or1 P1 Mixed Mode Indication                                                             Or~i        Any amplitude    - Reoort, on volts oeak - peak (T@R in [Itil 2)
                                                    ,M II --
                                                  ! Mrl                11 or o P1 H            Any amplitude - Reoort on volts peak - peak (T-3R in Util 2)

Possible Loose Part . -- I I i-I*LV 17 "Volumetric VOL I 1 or P1 12 Any indica-tion o~f Srndr, Sid4 Fnrein Prts Loose Part Indication I or~1 Anv amplitude - Reoort on volts oeak - oeak Lr'l P1 Any Indication of tube degradation associated w/ PLP (see Notel5) (TSR in Util 2) I',utoe Vo!urnetric ln:ý 1 Ior P1 I MVI Anl amoli'lide - Reo--on volts oeak-oeak (TER in Util 2)

ARKANSAS NUCLEAR ONE No.: HES-28 ENGINEERING STANDARD Rev. No.: 11 SENTERGY ANO-2 STEAM GENERATOR EDDY SCN No.: I CURRENT Page: 62 EXAMINATION GUIDELINES Examination Technique Specification Sheet ETSS # 2 - PANCAKE COIL (axial and circ. directed coils) Page: 4 of 5 Special Instructions

1. Refer to Appendix II additional instructions regarding the data screening and evaluation of RPC Probe data.
2. All phase rotation settings are set with indications going up
3. Rotate data using "Data Slew Menu' so coils 5 and 7 are aligned with coil 1.
4. Span, Phase, and Volts are to be set using the center of the notch.
5. Process Channel P1, P2 and P3 shall be created to aid in the evaluation of indications that may be deposits. Suppress the tube support ring on the masked calibration standard using the signal response from complete revolution of the support ring. After suppression one check the standard to make sure all flaws are not distorted by the suppression process.
6. Evaluate the full length of the recorded data.
7. Plot tubesheet interfaces with Channels 1, 2 and 3 as a minimum.
8. Volumetric (MBM) calls at the top of the tubesheet may represent mixed mode cracking. Indications should t investigated to determine that cracking is not present prior to accepting a MBM call.
9. Monitor the configuration widget for proper data sampling. Set the warning dialog to trigger at 25 samples and 30 circumferential samples. When axial these requirements are not met in the area of interest, reject the data and notify the Lead.
10. When the c-scan plot area is set to +/-1.0" there should be a minimum of 50 scan lines and 72 data points per scan line.
1. Label channels 1,4, 7 and P1 "Panc'. Label channels 2, 5, 9 and P2 as 'Axial". Label channels 3, 6, 10 P3 as 'Circ". Label channel 8 as 'Trigg'. Label and channel 11 as "AxEn". Label channel 12 as "Loc".
12. Resolution as required will size, on best effort basis, each reported curves will be required. One for axial indications indication. Two phase angle calibration and one for circumferential indications. These calibration curves will be developed inside the RPC c-scan window.
13. When the 100% EDM notch saturates on specific channels, use the 60% ID notch and set to 7.0 volts for thes(

channels.

14. This configuration can be used with a single pancake coil.
15. Any bobbin PLP call shall be rotated and compared to the previous outage inspection. If the PLP was last outage, the bobbin signal shall be compared called and apny change >10 degrees phase angle on P1 shall be reported as an LPI and repaired.
16. Reporting from the directed coils (axial, circ) is allowable when the pancake coil does not produce a good signal.

ARKANSAS NUCLEAR ONE No.: HES-28 SENGINEERING STANDARD Rev. No.: 11

     -'-ENTERGYiýýISCN                                                                                               SNN. No.: I ANO-2 STEAM GENERATOR EDDY CURRENT                                            Page: 63 EXAMINATION GUIDELINES Examination Technique Specification Sheet ETSS # 2 - PANCAKE COIL (axial and circ. directed coils)

Page: 5 of 5 Resolution Sizinq Methodologqy of Indications for Enqineerinq Evaluation SG ROW COL VOLTS DEG PCT CHAN LOCATION FROM TO EXTENT UTIL1 UTIL2 UTIL2 TO EXTENT UTILl Circumferential Indication (SCI, MCI) Volumetric Indication (SVI, MVI, "-I, LPI) I The Location shall be recorded as The voltage shall be the The Depth shall be the the distance from the center of the maximum voltage deepest or most nearest structure to the first Hit of response of the representative estimate, the indications. All Line Entries indication. shall have the same Locations. Indications OMS w e Measured us:n;  :-he 300 kHz pancake coil. :f other frezuencies or coils give a Dotter zeoresenzazion of the incication say be use-.' eptn will

                                                                                                                     -easurenen1s be estimated from the ,hase ancloe Calibration curve using Zhe deeoest h.,t or the most reoresentat:-e         estimate.      The most representative estimate is that derived from multiole hits, which d;solay close Correlation, and on,'..

one hit is greatly different. Linear (cr:ak'-like) indications require a length measurement. The measurenent will be taken from the C-SZ;C. stris ohart using the To/From measurement feature. Muitisle scan lines shall be reviewed to insure a conservative measure. 3 Volumetric :ndications require lent:zh and width measurement. Set the thresnold just above baseline an= 35just the box to the siZe of the positive image. Set the 0D '.50") for tube diameter in :-SCAN "users select".

   .:n the Cir:        and Axial    Liss windows of       tho C-SA:.  "-set '.*olts units'"    to  "    muse
                                                                                                        'asn     eddy 5 o 1 toa    ".

S ?eoort- '.317'.':.'. -. .rr. Lsa esr  :: r'.za s:

ZJO 1 ,IU U7, ¶!!!2 7/ia) AS~J~ (P03J87a 91-OV9U_~~~~~Oi9 (~Y.' v~; BMWO S101:19 MIOI'V0 x wo -0 *x01OOy if-d__ T

                                                                                     <i7ZZZ2ZZZZ7;-
                                                                                        -  .+/-                                                                            O O  VTh
                                                                                      -Y                                                      14,51 -             'ON          3" 1~             MRI
                                                                 -lý                                  3Z1                                II3.Ll    m-Ook3rI nO=P1vis

___ _,)-I__ __ __ __ ___ _--___-__ FllCQ __ __ io-i'vw 13,. 7e 0r *09 o011 'il I N

                            ------------ MVIO                                                                        V              I Rot x fttfm3 w m n 13 133I2a                                                            -vs            vl7  M!a M ;XI     IWM SY.11i        3 Vii)A
                                                                   -7"--        ,.                                                              V31131ON        EJSWd 1
   'VCD      ~                      I~              r           *~                ~T                                 V-*
               ~lt7 ~e  a'                  ~-w                  On DOj~~                                                          ~     EO      YIATVIA
     )I Dug            iO-11           )(                              fu31                                           a            vNC0yO

]U1IIII LJJ~~ SJJICIA~~lI

                                                  -            ~

LYO 00~ 1Y L . rjJJ ji4 -. N31 ldW 0O - IU

1 A. I" NoTE iS EE

                - --.U-tl n I--C'CPLA~Im 2 -4iSj EN I     II Z Z Z 3~                ~31   M    STA 3'Sek OFCH IDSvL   l g   DA l      TEi DI i          DESCA PI" 4 ...

oi F nO.E W 11n J tsik -Oks A B ~ c E - LOCAIhJN soi L ie% o105 tn  : r-. iLJ PHYSICALLY ImiEAs. DEPTH

                                                                                                                                             .~*                t~.~a~
                                                                                 --              -2&~          ~.               ~
                                          -3A7'         Ai-DEPTH IN % OFVIL                                                                                                                                                                        USZ 3.02-               l      3   2 E.T. rnHASE ANJGLE MvEAS.81.51-'1                                         5    j .750                              ri-0
                        ................                15 0~                                     .- =DFEC-003130...I.....

3ALL -- -- 1 A~ ---00 ---V- *- 6 -5 100 UXTAE ~ 06 Oa gC11 L(P ICDh o P ALIE11 ELECTRO-ETCH 3laZA3 0 600% a &x&l L - L~ OG I. t . . % W SA R % .AR t v x 10- ce0

                                           " ,coW                    tM AND      am~xJVES LOO      1                                 WEAR Sf 50 .13 I.C F                ,  '(0 z T.            (f & 4 6 J%

07 0) LG lees A IS 5I L o w F.4 TERIAL Al0 IU I SIOW 51 A WEA MSCAR 1 )

                                                                @3<

ILfE ArLO WA 1t -a wFSr FREI). U5JSfl -km

  • 1I.RI ~ ~ uDArEZ .. TE uhtLI~aI*U' P.O. NO ~ 94 14- r-
                                                                                             . IEMI(

EL. NO. IiuCiS a IrLIOI~ DUAL 0UIDIE TUBE~ 510. jut A11RE A~LY W~L. 14U 1114 nLI IrIE81319 CIJ.IAI Wt MISC. DEFECT S DATE* MFO. 0.A. ~ ~.ooi0 LIES F6I3I9~ CLJS TttMEA -V.0I¶4ý RECCMlED -4'15-10'15 1,Ut 1 - PW A _____ IRMUSED

     *'IEVI6ED    S     3yn_________

WesWflim aq worE- SEE 2.Li,3-o0o4 rai PLAC4EWNI OF NYL(Y'i SLEEVE WL...2 V S t-1 URII LIRDmE TT~1~ DDDOliIrr~ FOR SEE. YIEWS .I1i D E F 0HI I ttk~IUNA piiYSCALLY MCAS. DEPVH IS?c. -klp -ill DIEPTH t4J % CF WALL E.T. PFHASE 3JI'L UIDt 3t'4-27 UNýý I-LJ 01A Or* DEFECT o,003 Q~~':;

                                                     /~
                                                   't250 a-.50-5     ~--         1.650   j
                                                                                                           .50 B

h0 '--3.02

                                                                                                                                                       .    . .        . -- ,.     .        ALL W....-.

ALI3N ELECTRO-FTC LOCA

                                         .0msgaxlox Or         LOGC         MOM         &0 C.LO                                                                                               1.0
          ,AND     GRCOOVES LCE 0                                               LIE 1                              30% WEAR SCAR tuL&

062.5 TI J WJALL 4X01320% .a ()WX-LWF LOHLI SC DcA RAEA x LO 150% WE AR SCAR WALL TI-i< .ca6 0',I5wrc AL14AVERNSE MEAS ao

                                             ., 3 13s 4O~fP                  uiu2w~i70                                                  065.)I NUiA

[E3AT LUI O. 1. ( m)OI~Ao ogo K JES-7 FWfli. USEDim-_- 1*-A SHO Aii . .. L

                                                                                       ...    *50A.                                    --        I             f3' PDN NO

_____NO_______ SPRFITOEa M E TE _ _ _ L82A9 110114c,;;3 OI90 "11-1 NOTE: )1II AREP1IItlgES 0 MAIlELICII 24JAt.ITY REL. 1J0. - R6.Iz.~---- 9A30E MFO. A~jia.J41*11KR5 $C1c 1LEDA UD UESD afr-S 081330194 u Ul UD UE50 A H SP..~----- =X1=CEG

                                                                                      .130.4 @83 im   ;1st a

5516, -,- W/ MISC. DJEFECTS U M ___.00.1L

                                                                                                                                                                   ~      IWI 1                                  )

ICORDJED - 1ULIA Pi *VD. (A 0 AhI(IS 1)8/31194 UviT111 24 15 -1HI OF2 2

 'fl(XE USED0 .tIGI~i2~                                                                WK

revl.jiEl~rls UN DAIF NOEE.2-LIS-0OO FOR PLACEmEHI .7 AOnncED MIFIIATIMIlFOR SE . vials ~(NOLTt'SLSEE .V D LOCAT IONA 2~+/-fl m Uw-~ i- la :pmos 1? Q!- fUii2 ... J p-w:3KCALLY MEAS DEPTH ___a

                 ~CF WALL               IR~A        .A7               -

DEPjHiNj0 501 Il.3/ -2 11115 2 E .I. pI-IASE ANGLE 14EAS. .863p

                                                                                               *.b90 90-[Oýo.                 A001 01A OF IFEcr               0      1300
                                                                                                                                                                  .........     'm~VF.VSg D    F
                                             -4r ALVI)N ELECTAO-T I              A                                      "lw - otC
                                                                                                       *T-JLL                    -       4.X 031~6 20%4 tune2 I                                                                 IC J lth(       _

LCJClt 60% MEA R SC A F 7/ SUL MA M MR A L~ - wlow I u wo AVERAOF' MFA5 VIALL. TII.Q~c

                  -LVC'~

1 O4 0 g-UT Ar "W SCM~ A WEAR SiCARt

   .0. No.               111Q-Imallm        IFs      -R~f           D-tZETEC UALI NOL. M) -Ac ccilpt 11ar0. 1 1116         U             -             DUAL GUIlDE TUBE STD.

ATr 08130/09, W IC DiE v ME II~~~~~I

                                                                                                                         .XZIES IS .DIF(E T
     .A.INcP    -
                                                                                                                                                            "__ol-1                       1 CJ C~~i~USI 4E 11AIKINS 0 /19             -i       ~j 11              i j~

IVU~t~JI~~--- IF-QEV USED

4 N .F. 2-z15-OOD FOIR IPLACEMr

                                                                               -       I         (    AED URIENTATION FOR SEE. VIEWS 14IYLO14 CLEEVE L    92.50           12aI itH                  mkml            r1 .o
                                                                                                                         &aCL              2~2

'ALLY MEAS Q&yI I t4 % OF VIALL 2W1 1., AQ1..Z-3S2 US H-ASE A14GLE b4E161-r.. ...- I~2 ff DEFECI .003 IOV 1.25n1 jl.501 N.C14V& T-.... A c1 i -E4 Ftc----- ... .......- 4..... A- r - LO U~ K

  • w ItA Cal~ D %I~

A IIG GROOVEM AIM ( flOrr,. w tou t ' Al 0RDE I(w,~Ž Lm ,iiL 3%WARSA 2f AxI0VL.(31 %820% SOO0 I AGE.U5 WWALL TIMS 165061 it5% 60% WEAR

                                                                                                                                                  .5110  LO     SCAR %7 cflLuc"          JI ev I - CM A %c! WL AEM                     VXfal.
                                                 .In-M       U it                Ifok B loo
                  .~~~
                    ~       ~ ~           IA      AL1HlO-)f   cct                                   LOC-JLK 00IIV                                 olSHOW          A WEAR SCAR LOT
                                                                                           --        toIAAX.i
                                                                                                  ,!i~                                      T" M.,NO
                                                                                                                 '1 olEIE/9          ZETE-                ptlfl 64l U! 4 1IME0IA swal 41-11 NO.

D(II/3O lIR DUAL GUIDE DEFECTS TUBlE STD. I'E j~ O Oro L nia w/ Misc. Ex -. I-. IMF tOD."

                                                                                         -     ~          0A~I~hIS   083119          S2-415-1015F it'llSOF 3FUED)~

4 AWED DRIAIUIi F011 -SE. VE NTE: SCEE 2-705OOO4 FOR pLAMHIE1I1I- ________ KLL OF MYLON~ SLEEVE DEP~t 1 1-9) 314-27 UiMS.24ý;:- E.I. rnIASE ANGLE- MEAS635 Ell O OFE~

                        *031.2150                                        .r(  .7. ?-    'r5 12-           .    .. Dooo-r             -_-3
                                                                                                                                              .0 ALl SWIMUvkq f        *-

ALIGN ELEC 'R p -- I I I V M1 0 4 1 Co.cL tit c3 L rI 0I Iin4 C 2/1 0 0 k RS A Olt)O) oR M E 00

                                                                                                  '11 "~ VI A L L                 O       4          200
                                                                                         ~~3
                                                                                           .02
                                                                                                                                                           .All 10 "OOL     o p c A AVEIlAGE MEAS WAILL             Tm.~m10                                                       00           LM0 J IO K AL W.AiIL TS                                                                                   SjlC-0,/A           (50%G%

ARL E InS N ,4 tNAL WALL~TW (ii)LCB. 511CM A WEAR SCAR tEAT LU! NO. TEST FREc SD.

                                                               &A LXI                                          T~O)

ViU- M A. l - FTI P.O. NO. 4-it INI~.mAlEI PiI: 0 12 419 ZETEC ut" " nt

                             -L. NO, AIKEC S                               -              ruf1LE   D U A L G U ID E TU B ý SI D .

ECTS

        .A IT 01ATE        RE . N       - MULE            It1O                                  MALt, ALAA(I.

aDjl XIII 1116 ac10/z BixTS0IUU W IC II .911 DE9II_____________ A. tINSP. i ~r~1~cf I-ctI U ~ ~ ~ ~ ~

I .* E- SEE 7-1154=4U rM~ PLACEI't1141  ::[in ýr srmus L~ OA1fl;R1D EF~ NYO t.EVADDE OR ENTATIO1l FOR SEC. VIEWS A C E r C H I i CCATVJN

                                                   +/-!ls--                          Qi.               o~~-.      .ntLý+/-m2                                       22=~

IYSCALLY MEM, DEP1iF .0

PT" N %CF WPLI. .. 4L 4W ~tA131,alŽ ~?

NE P SA E6OE 0 3- .. 5a .6s0 I lI-I 314-27 UN S 2 (A LF DEFECT a.003 1.5 .5020oo-30

                                                                                              ..    ,,..;   -   -     -   - ~~~~~~~.

I~EC t AT K~LL 0EAEMA.WLr.0o~75 LI 5CWARSA ;tAmt

04. Cm 1-mO I LOIU A1j LODR I DWER A fl~~O OMX --- 4101--- -

I: 1* IERAE M EAS. WALLJJ t5 Cie mg x FRAWl 0/6460 MIDUA LSTDK GUIDE TUBE I I JW 0.E W/MIC DFET ATCO TU DI o AG *1IVA.7V D l A W AR S A IsJ roEUSEG V-tk"'--I

                                 ---                                                                          D                       ~2415j1 JL7   R:EL. NO____                        11111                                Ma     W                . MATFLNS     08/1UI94ZE            E       N           110T

I I t ?OE-"B-0(1(14 Fml PLACEMLI OIF HYLCII SLtEVE F II j LOCATI ON A 8 dQiSSQ FIIYSCAI.I.Y 1416A. DEPill .-zxo2I 51% too jq"- - DFrpiII 1

          .A    Er %WA~L.               tV.       AI
                                                                                        -AlL                   __iiw E.T. P'dASE AIMJE MIEAS.

DIA or OhFCi 1.1.103

         *ALIGN FLEIt1RO-ET1C~

AWL) ITEVES MATEWVAL. I I D. /AvErtAI3I- ME AS. WALL tUMI4AL WALL 1t.~\.~ bD I CIL - r 7--7 NA 111301 t.. SERIAL NO. 7-1__--1__5__ .501 MAX-- t'( -

                                                                                                                            "C    11*OF14&

Im 64 4O 3W* IOLtflAKES DUALITY nEL NO FRAO. a itIM Vr E!xtIV 711LE DU ALGUIDE TUBE Sit). ullit~ AIMISC. DEFECTS C'4 I :1i;. Cos TtaIEh1l kiQLl~ t~. IO fl 2--415-1015, PPW@E US50O

-ý;VIEWEV r!            i     ~       ~     -   -

L',f

      -014CG05     002 WIDE X 500 LtW(i K          L      M         N 8       C   D        E    F        a         H          I      J                                                   SHOWS I A

LOCATION LOC N4 PHYSICALLY FAEAS DEPIII

                                         \oo?.-

DEPTH III % OF WALL II N n B U

                                                                                                                                                -3/1-27
                                                                                                                                                -HEAVY UNS-2A
                                                                                                                                                                .1 DEBURF!

SORIENTATION

                                                                                                                                                  .7/.55,m32        IOF    ALL FLAWS SHIOWS 00% ID            SHOWS 60% 0..        SIHOWS L4% ID.        SHOWS 40% O.D.          . SHOWS     20% I.D SHOWS 100%                                                                        AXIAL FLAW                CIRC. FLAW 0,0521'003 IN SD0.              75 DIA.                AXIAL FLAW    CIRC. FLAW               AXIAL FLAW           CIRC. FLAW                                          LOC L
                                    .75 DIA.                                                                                 LOC.H                  LOC.J 0.0671.003 IN STD                                          LOC B         LOC D                    LOCF MATERIAL ._              L.
4. L AVERAGE MEAS WALL TH1K..-01I NOMINAL WALL THK .m-'

HEAT LOT NO "-2*1-'i LOC.K LOC M LOC0 LOCI _l-,1N -- LOC A LOC C LOC.E SHOWS 40% 0D. SHOWS 209& I 0 TEST FREO USED SNIOWS 100% SIIOWS 100% SHOWS 60% 0D. SHOWS 40% I.D. AXIAL FLAW SIHOWS 60% I D AXIAL FLAW CIRC. FLAW SERIAL NO *il5- \ C1. TI-iRU HOLE CIRC FLAW AXIAL FLAW CIRC FLAW PD NO PE!. NO ____ _ NOTE )1 3ARE III I NC I1LERAIJEES HES K ZEO KE hEC" 1210 3195 Z E T EC ILE I ,NC. 1P, ,A1.0 4 13CU32 -3 DUALITY REL NO ._ t. CH K

                                                                                 !!(IIIAL     FRAT ,1116                                       1.T. CALIBRATION STANDARD A-TE  MFG.               \._1"1 VIA-                                                   irxxx ,.oo                  TO DELL      12110196 Dao~ LO A    P   u3/43
                   ..       ý_.-                                                  xxx 015                      s lot, FE                                        WoNO 0 A INSP     _                                                                                                    8.J     12010/16g   S*I.LAt; xx ,

CUSTOMER r ' l--A]*

                                                                                                      ,03                                                          2 - 4 15-1059 RECORDED _                l1,.                                                                                                                              2 O.A        =12/1o/96   St-TE NTS PROBE USED           _                                                                          . 000 RPEVIWED 1-              "

ALL AXIAL AND CIRC FLAWS 500 LONG ARE EDMt 005 a 002 WIDE X N SHows 10oO K L M 1HRU HOLE 0 E F 0j 0 B C LOC1N A LOCATION PH.(SIC/ALLY M1EAS DEPTH plmg s DEPTH INI % OF WALL J L N F II SHOWS to% ID. CIRC. FLAW SHOWS 40% O.D. AXIAL FLAW SHOWS CIRC 20% I.D FLAW LOc.L SHOWS 100% SHOWSFLAW60% I 0. SHOWS 60% 00. LOCH LOC.J CIRC. AXIAL FLAW 0.052t.003 IN STD. -. .75 DIA. AXIAL FLAW

                                   .75 DIA.                              LOCG                   LOC F
        .00 7 1.003 IN STD.                                LOCG MATERIAL _             jEL     ,

D

                                       .o0l  (

AVERAGE MEAS WALL TI-IK LOC LOC I LOG.K NIc4ANAL WALL 1HK. SHOWS M0% OD. SHOWS '20% I.D LOC.E LOCG SHOWS 40%,I.D. AXIAL FLAW HEAT LOT NO OCA LOCC AXIAL FLAW CIRC. FLAW

                                .Ib-- ---      LWS 100% SHOWS 100%  SHOWS r0% I D          SHOWS 60% 0 TEST FP.EO USED                                                                           CIRC. FLAW SERtAL N,O      -~-                        SHO UHOLE CIRC. FLAW    AXIAL FLAW P0       NO              I           LTHR P 0 NO -              5_~I rEL NO 13LERANCES OUALITY REL NO     10 DAT=- I'FO             "__-___-_______

O.A INS? *-=' GUST Ory,;-ER 0 003 ppýR2E USED REVIEE_________Y____

A rEvisvCis Iý) I--i12O UNA ALL1. AXIAlL ANID C,'RC FLAWS 5003 U1f10 "hsll;jwi IIu Iinjnsnh 7 r.vSI!. O I ES S1111.01. uRAZIk ARE EONI 005 ~C,2 WID)E y f; mn 1091 F 7 1 119 I I J K L I m N A D3 E F TI-IRU liM.E LOCATIONJ FNIVISICALLY MEAS DE-:[IIl DJEPTH uIH56 0: VALL 11 j L III 13 0 UINS-2A W33 ORIENTATION OF ALL FLAWS

                                                                                                                                                            .2

__ __ __ _ __ __ _8 00 . 8 20. & 8.40 SHOWS 6096 00D. SHOWS 10% IDU. SH*OWS ZO% O.D. SHOWS 20% ID 00052, 003 INSTO s. 75 DIA. SHIOWS 10096 SIHOWS 6096 I D. AXIAL FLAW CIRCO FLAWY CIRC FLAW AXIAL FLAW CIRO. FLAW 0ii067t 003 IN SID) > 75 DIA. AXIAL PLAY/ LOC.H LOC.J LOO L 1_00tD LOGO .LOCF MATERIAL . ht~ AVERAGE MEAS WALL TIII --' NOM~~INAL WALL THK H-EAT LOT NO -15 LOC I LOC.K LOC M TEST FREO USCO -4t LOC C L OGE LOGO6 SHOWS 20% 1ID. LOC A SH!OWS 60% O0 51-OWS 40% ID S1HOWS 40% 00). __ SI IO'dS 11009 SI-OWS 1UO~% SI IOWS 60% ID CIRC. FLAW AXIAL ;:!..AW SERIAL NO CHIIC FLAWN AXIAL FLAWV CIRC FLAW AXIAL FLAW, TIIRUII OLE p 0 [JO 1I L a-dQ 7T wc uugg~5 REL NO J ~ NOT N~~tE ARE III IIKIIES liii)11 DRAWN K ZECKE T4-IECK DATE 12/03/96 LZ TITLE E,114eU I I

                                                                                                                                                                                          &,UEdld ill DUALITY REL NJC                                                                                        13LERAIK(ES
(HtFRAHA .1116121/e OT DATE MFG_____ ___

1x0,03TDELL 1109 . CALIBRATION STANDARD DutESIGN n33' xxx 1 013 XX1050 Bi 12/10/O-16 D N Pu3C3 CUST OME= E RECORDED - tIb. .001 xx a I~ J AP'lOA 1?I10~6 S14.Afl OWO N 2--415-1059 1___

                                                                                              *.cGtLAR    .3'        ___

B. zt~o~uir "oa~ PROBE UIS.ED ~~~~jJ)~~~~'W '~~0 RPEVIEWED By _w

                                  -J
                                                                                                                                           ~FEVISICSI A                                                Dl                                   ESCq;PTNYI                           AND CK  O ALAIAL AND CIPC FLAWS                                              5425P1        SttSUR 3                                       6-E01108197 nEv.siII.v2               No CHANGES St01.o.        DRAFT. ERROR ~-             K I

AREED'!C05 DO2 WIlDE X 500 LONO j K L -M N SHOWS 1004~ r 0 E F 0 I*I 1 A TH4RU HCtE LODCAT ION C Lie-, JjjA=x '01 en

                                                       .03,112- --02-cl-D ýP-1,25       019-'L L929v- 0C'               10                            010!C PHYSICALLY ILEAS DEPIH                                                                                                                                                             LOC N
                                                         &                                         -,-1&         42%. sg,.

DEPTH IN4% OF WALL II J L N4 13 D LINS-2A 003 ORIENTATION OF ALL FLAWS SH-OWS 40% 0.0. SHOWS 20% 10 SHOWS 60% ID. SI-IOWS 60% 00D. SHOWS 40% AXIAL FLAW CIRC FLAW 0-0D52 1003 IN 5 1D 5. .75 DIA. SHOWS 100%6 CIRC FLAW LOCL 75 IlA, AXIAL FLAW CIRC FLAW AXIAL FLAW LOC. J Lii057t003 IN S1I) > n La.Jr,L fLOD LUOCF LOC.1-L MAT ERIAL &-'I' AVEPAI3E MEAS WALL TII( NWMINAL WALL Till< obin1 HEAT LOT NO -1qVinI. LOC 0 LOC.I( FPEO-Nb r-EST LOC A 1.oc C LOC E HOWS 40% IR.0 SHDW3 40% 00. SHOWS 20% 1.0 SHIOWS 13003 00. SI AXIAL FLAW SH-OWS 100910 SHIOWS 100% 5i-lOWS 6U% ID A-MIAL FLAV CIRC. FLAW SER-IAL NO Zi2~~ THRU HOLE CIRC FLAW AxIAL FLAW CIRC FLAWI P.0 NO 5gLjq _ DArE

                                                                                          ¶UMTIMEr           IMttFT    11""W FEL. NO                t~ l                 NOTE                                     CIIIi ARE III tIJ(I'ES             K ZEGKE       .21031g95                  ~~INC DUALITY REL NO               w                                                                13LERAIJ(ES AMCBAL        FRAUt ,1116       CH0 E      LK 12/10o/96 DATE MFG       _______
                                                                                     *F1xx 1.003TODL                                                    G.T. CALIBRATION STANDARD 0OA INS?                                                                               xxx      01                    DE S:ON                                                 DaIOLO-i-A PtJ31-3 11     050                           B81                       sJwILHU               2-415-1059 CUSTOMAER
                                                                                          *003                          P     O       121101g6 RE CCPOE 0N                                                                          014GUL$;C   t3-                    'V S~s~~       'S -       S'~IlO3 Prr.(VE USED                                                                               F~~q           Or00.A                                                                                 I REVIEWVED By
                                                   -  - -    C     l7 mi~V                    I'     DI
                                                                                                                                                                   .IApv3IcFLm J.        11              Eii1i4/mt        IAWJOEOWIDfTUU-EAUUI LOC. A-I-E-F                           lIHM-#f KZ LOCATIONF                             A             1                                                                                                                 1<

MIYSICALLY MEAS DEPTIH L2Q201

                                                .p2-OS                             .&In                          .l-h T        ta-V              gLa       .s         oA LJEP111 114% OF WALL                 AP-3       AQ7.1     --          -            -- t&.          -1wi          -=2x         SSp,     -!R-%             -m-t-    -w&

VIA Cr- DEFECIT sUU31 0.975 JiMOIOUES MIDI~iAL .jIflai&l (am %VEflAnE 14EAS WVALL.1T~.D UIOINAL WALL 111K. - 2-oke* lIEAr* LOT NQ -- 12q-k LOC J AtK f~7j-~,,\5110W A W/EARI SCAR~ L 7-7 7--7-X--AT1HOI

                                                                                                  .500NAK    -J                        I IILIt. EL. NO.-'~- W                    q0I E.-                        R)J. 4IitUII     VJIVIIi Ec                              HIL           " V&A %ip 0a W461 %4 MAE NFO.            2.- 1 -A fig   AREIII KQ IDREI.MRS                   0. pilEs   06/30/94
                                                                                                                                 ~IIXE DU&L GUIDE TUBE STD.

VON*.1 t I Wt MISC. DEFECTS SULAR ROBfE UJSED MEVlYFD HY. 12 AMv. 0A

8. AiXLIS I ows All 2-415-1015 N.fl5
  - ---   --              .     -  -     L.*..                             __    _  _  __   _   _   _  .1 UG1%1Jri5eIfDL L

P"-gg.

                                                                                                                                                      ~IJaIuum1nni9111 nr 1-12

L 1 J K F ( Hl C D E LOC A1 11-1 A .234-0 f 2.Oio tunAs -T-%- S.... '-n-, L" I

                              .. I PI IYSICAI .LY MEAS. OII-'ill 61:1
                                                                .       ..*                                                                                                           !__?-:-%-7.%.----c\7.                          ýj DEPTII It 1,1 %. r  NFWA5..A+/-°4'                                               - . 6-j~Y o*. --

c~~~~~o%*I

                                                                                                      -7501-     -_12:?.-2
                                                                                                                               -j                -5 7.

100* _ -. , .......................... ... ....3.02- 3.02

                                                                                                                                                                                                    ".. . . . . . .    *........... 'i   ..... UNS-2A TID 3/4-27
                                                                                                                      . *.     ....                .. .1.. .. .. .. ... .                   '                                               .

DIA OF IEE C15 00

                                                                                                         .-.- .7
                                     '.   . 003
                                                 ..    . 1.... 0    ..      ..            7'-f
                                                              .........                                                                                                     6
                                        "*' *'fl .~~~.......... .**:l-7 ALC         c                        L      -----             -.....

ALIGN ELECIRO-ETCII/C%CAO A3 LXC". CoSOo w 4 X .OV

                                                                                                                                                                                                                                                '"LOG K C* .V51 tO K                                                           KW0%E ,002 wX  0KO.t       4 t.
                                                                      ',                                  o$        w A1,D OROOVES                     DOS 1~o                                     30% WEAR rv'       fl MAIERIAL .. "*tWC_.9_                               a-oc AVERAGE MEAS. WALL Tilt0                                 w xto% De.

NOMINAL WALL TIIK.C__._____ 1IEAT LOT NO.. 5--] TEST FREO. USED Ifl SERIAL NO. P.O. NO. _-9 REL. NO.. OUALITY REL. NO..---* " -- OT E: IOULP*jmES ZýETEýC U"LE DUAL GUIDE " < TUBE ""! STD. DATE MFO. _ ,_ -I-q_5" WI MISC. DEFECTS 0 A. INSP. CUST OmE C-0 .-- -- ' RECOFDED _L_ 4 .001 _-_-_r "_"r n Ito 2-415-1015 m-nnnd fil I OF 2 PROBE USED _ .1A,- REVIEWEDBy~ii~~~

z J0 I IHS POC-0-517-Z

                                    -a-NQý SIN air            y1611EI 10     SNIXIV *0                        -   HSINQ                                                             All Q3m3lj VO *OAdV                    'El UVIIA9111                                                             03b-f-l 38(

GýM-GýY-Z CIN 011AG. dv-Tws roo-W I DO" XX, N0630 SID' I XXX, 83HOIS S103J30 *OSIN /M foo'l XXXX,

  '01S 39n-L             3oino -ivna                          y MUM          S3N3r 9 X33H3 91JI. w '43YU IVW133C S3)NVd3lOL ds" OAN 31 stw4c win W"m falopmNa r*VNM an vsA c"ww" so Iwo   Amd ON  331.3z           'I 76/M/90 31V      1 H31131vpi 'a          S31,13111 III 38Y wil 41411:14C 4qlMH'f.'A1Q    '111                       :RION                          "ON -138 AIJIV
                                                                                                                                                                       *izS55-aw          ION L                                                                                                                                       0N WR GNM ive                                       0-3Sn '038:1 IS 0 30-j I    CC                        -F-UV;7.St- - ON 10-1 IN
                                                                                                                                                                            'AHl IIVM IVNIP x W sir ainy aj ýZ-5--Ajj lWtK -SV31q 30Vtj:

8001

                                                                                                                                                 -. LL COO"* 133330 -10 V TW-z           44,t*            r4o---z       Zq--ro         cb-F-        -45QA           Wý-                      -         -4%-V       '0-4-0-1ý7          llVM 30 % N1 Hid:

svild; Z§ro-. F,0%0- CaW. <Vaw--L cv"I. uV--zQ - -- - QVZO. i;m--o - HId3Q SV3W AlIV31Sk I 0 =1 3 a a El v NOILVO zw LaWs I -J-3-9-v '301 LA0,11Y3 H101A a3M h 0 3 L U0 I ý10ý 31VO INL 11 SaiA'7AS NOWSM30 Es

I -t. I my. situs DAT Ln

3. K E F H
                                                               '3              C             0

-AfI0N A D

                                                            .O2AQ                                                                                            L&Lls2p tnt-vt,      I (StC/A .LLY  H~EAS. uLII
                                                                                                                                             .j'                              ... 2.Q07-             ~

Z.. -- All ~ Pfi-I IN\ % OF WALL 7. _O _ TI-1 /42DU S2

                                                                        - .863       --                                                                               3.025 130~           1.25         -                    .75         -l

\or- DEF-ECT 1.003 . . . . A A ir.........fl C E 0 II

                                                                                                                                     )        ...........

LOLOIF ALIGN ELECT11O-ETcI, LIZ A ,0 LO C I1 30 %. WE A Rl 0 o rU. OO W . x A otis. 003 1 w P -0 A R NO V Sbs. ERAGE IAiE AS. WALL TI.1K .oRS ý1 CEE .' MINAL WALL 0II(.___D__ L OC J ?. K ATrLOT NO. J52i.~- @ 0xliýot S5 IOW A WEAR SCARl STFRED. USED .AS--- NO. 1.A I - .500 1AAX. NOTE: JALITY REL. NO..A . 08/30/94 D AL GUIDE TUBE STD. N1 MISC. DEFECTS IECIIIAt FnA(I. M& JCNES5 MFGr-.__ rkTE _ _ _ _ _ _ _ xxxK S.00j flES'UI A.INSP. .XKx 1.015 S t LA Rh i XX 6..O,5 102-415-1015

CORDED ~t'---- vKUL AA Y* APvg. CA if IS- G15- OO~il" I OF 2 Ii~ij (0. AllOW(#s]06/3i/9 4~

10GEUSED WE BY,

JUN-13-00 16:35 From:ANO GS8 1 T-099 P-01 Job-727 14488S. R. 3a RuftuvIlla, AR 72502 ARKNSA NUCLEAR ON FAX~ 5014M5B489S ENTRGYOPEATION Fax A.- bAt Ph fI rh inng 0 Per Review 0Plawm Coummon 0 Pleau* Rap3 03 Please neacylo

  • caImmof

JUN-13-00 16:35 From:ANO GSB I T-099 P.02 Job-727 2CAN060012 Page 1 of 19 Additional Information in Support of Risk-informed License Change

1. Provide a description of the plant changes required to support the new depressurization procedure.

The Emergency Core Cooling System (ECCS) vent valves are used to depressurize the Reactor Coolant System (RCS) in the event that the RCS heat sink is lost. This would occur during a loss of all feedwater to the steam generators. Under these conditions, the RCS would continue to heat up and increase pressure until the pressurizer safeties lifted. The RCS pressure would be greater than the shutoff head for the Safety Injection System pumps and no makeup would be available to replenish the water going out the safeties. Eventually the core would boil dry. The ECCS vent valves are used to reduce the RCS pressure below the shutoff head of the Safety Injection pumps. With the RCS depressurized, water from the Safety Injection Pumps can then enter the RCS to provide core cooling. The water heated by the core will exit out the ECCS vent valve providing once through cooling for the core. The ECCS vent valves consist of 2CV-4740-2 and 2CV-4698-1, Both valves are Rmit= tAA'TTlUU* / SM 2W 4741 A MUW¶Mg controlled from 2C-09 and are powered from opposite train 125 volt vital DC, making them available during a Station Blackout. The cabinets with breakers for these valves are both located in the 2B53 room (room 2091).

JUN-13-00 16:35 From:ANO GSB I T-099 P.03 Job-727 2CAN060012 Page 2 of 19 When actuated, the ECCS vent path provides a 2.624 inch diameter vent path to the quench tank. During accident scenarios with a loss of one emergency train (both AC and DC), the RCS cannot be depressurized using either ECCS vent or LTOP valves. The modification provides for the installation of equipment to facilitate temporary power to the ECCS vent valves. The modification provides a simple means for both ECCS vent valves to be energized from the opposite DC bus using a temporary connection to permanently mounted twist-lock plugs. The permanently mounted twist lock plugs will be connected to the load sides of 2D26 breaker 2D26-A2 and 2D27 breaker 2D27-A2. I222 2DO1.21

                                        )=2264A2               ) 2D27.A2 ZD226.A3              ) ZP2T-A3 2CV.47o4               2cv-4691-1 When loss of a DC bus occurs, the procedures direct the control room to dispatch the Emergency DC Crossconnect Watch to the 2B53 room to STANDBY for further instruction. When the need to depressurize the RCS is identified, procedure guide the control room operator to open the ECCS vent valve on the still energized bus. The Crossconnect Watch then opens the DC bus supply breaker to the do-energized MCC as directed by the control room operator (2D26 or 2D27). Next, the Crossconnect Watch will open the upstream feeder breakers to both ECCS vent valves, The Crossconnect Watch will then connect the extension cable. Once the cable connectors are locked in place, the feeder breaker to the ECCS vent valve on the energized bus is closed sending DC power to the opposite train vent valve. The second ECCS vent valve is then opened from the control room commencing depressurization of the RCS.

JUN-13-00 16:36 From:ANO GSB 1 T-099 P.04 Jobb-727 2CAN060012 Page 3 of 19 Female Pkg Male Plug Male Plug Female Plug 202d^2 RD R MD T SS -8KBK -22A 2D26A2 (o) BK 2027A2 (.) Connected In oebiewt 2D26 Stored OUwlae Room 2051 RD 2D27A2 Cable is 31C 08 Wlh Conneted in cabInet 2D27 While Cmoductor Spared The connection cable will be stored in a cabinet located outside the 2B53 room and labeled as follows:

                                              "FOR EMERGENCY USE ONLY" "USE PER SAMG Developed Strategy (SDS-02y' The cables connected to each breaker will be identified with the same label. These cables will be found in the raceway between the Row "A" and "B" breakers in each cabinet.

Additional information on the use of this modification is included in the response to Questions 3 through 6.

2. Based on a description of each of the dominant scenarios that contribute to the high/dry portion of your core damage frequency, provide a description of the timing, and in particular timing of cues relative to plant state. Similarly, provide a description of the cues and what instrumentation is needed to provide those cues.

The primary cues to the operator to identify whcn to dcpressurizm the RCS are as follows:

  • Level in either SO is less than 70" Wide Range.

Monitoring of this parameter is initiated by Annunciator Corrective Action 2K04 F(G)I "EFAS A(B) S/G ACT" in which EFAS actuates at 23% Narrow Range which is around 300" Wide Range. e No Main Feedwater (MFW) as alarmed on Annunciator Corrective Action Windows 2K03 AS/ I - "FEED PUMP TRIP"

  • Emergency Feedwater (HFW) as alarmed on Annunciator Corrective Action Windows 2K05-A9 "2P-7A TURB OVERSPEED TRIP" and 2K07-A9 '2P-7B FAILURE ON EFAS"

JUN-13-00 16:36 From:ANO GSB 1 T-099 P 05 Job-727 2CAN060012 Page 4 of 19

                          "* No Auxiliary Feedwater (AFW) available as alarmed on Annunciator Corrective Action Window 2K03-J10 "2P75 TRIP"
                          " At least five (5) Core Exit Thermocouples (CETs) are reading above 800*F. Monitoring of this parameter is initiated by Annunciator Corrective Action 2K01 A.10/11 "CONT CENTER 2D01(2)

UNDERVOLT" OR 2K06 D8 "CET TEMP M" (driven from 2TI 4793) All cues are alarmed in the Control Room directly or indirectly Estimates for the time of CET high temperature cue, the mean hot leg failure, and the mean SG tube failure after time of core uncovery were calculated by MAAP and PROBFAIL. These estimates are provided in the table, below.

                                                   . I.

Time After Core Uncovery (sec) Accident Scenario Hottest CETS Median Hot Mean SG 1,&IR1_o i*1iva rr.uA. lV-h1* HighbDry/Low: both SGs 263 3163 2902 depressurized (base) Hi/Dry/High: both SGs 219 3227 3233 pressurized base Medium/Dry/Low: both SGs 312 3622 3989 depressurized (midbase) High/Dry/Medium: both 245 3170 3201 SGs at medium pressure (baseS High/Dry/High: both SGs 243 5124 6034 pressurized with one RCP loop seal cleared Cpelr) High/Dry/High, Low: one 231 4825 5238 SO pressurized and other depressurized, RCP loop seal cleared in the pressurized SO loop (c!lru)

              '1;n/~e/~,*          y .............

LJO 4598 3290 SO pressurized and other depressurized, RCP loop seal cleared in the depressurized SO loop (cIr) I

JUN-13-00 16:36 From:ANO GSB I T-099 P.06 Job-727 2CAN060012 Page 5 of 19 A list of the instrumentation associated with each of the RCS depressurization cues follows. (a) SG level cue: 2LIS 1079 and 2LIS-1 179 (SG WR level), (b) Main Feedwater (MEW), Emergency Feedwater (EFW), Auxiliary Feedwater (AFW) (alarms listed previously) (c) CETS, Safety Parameter Display System (SPDS), Reactor Vessel Level Monitoring System (RVLMS), 2D01/02 undervoltage (u/v). Entry conditions warranting RCS depressurization are: (a) loss of all feedwater, (b) level on either SG < 70" WR, and (c) five or more CETS > OOTF Two scenarios and their respective response follow: (a) If undervoltage (u/v) relays on either DC bus 2D01 or 2D02 indicate an undervoltage condition, annunciator 2K01 will activate and ACA 2203.012A (2K0I annunciator corrective action) will direct the dedicated cross-tie operator (DXO) to proceed to 2B53 room access to obtain SDS-02 and then proceed to corridor 340 to prepare to open the ECCS vent valves by either powering 2CV-4698-1 from vital bus 2D26 or 2CV-4740-2 from vital bus 2D27. In addition, operators are instructed to monitor steam generator feed to identify whether a sustained loss of all feedwater has occurred, to monitor steam generator level to determine if SG is less than 70" WR, and to monitor the CETS to detarmine if the five highest CET indications are above 1100T. If all of these conditions are satisfied, then the ECCS vent valves will be opened. (b) If either of two core exit thermocouples (CETS) indicate a temperature greater than variable alarm setpoint (2TI-4793), i.e., greater than 7000 F, annunciator 2K07 will activate Window D-8 and ACA 2203.012G (2K07 annunciator corrective action) will direct operator action. Specifically, operators are instructed to monitor steam generator feed to identify whether a sustained loss of all feedwater has occurred, to monitor steam generator level to determine if SG is less than 70" WR, and to monitor the CETS to determine if the five highest CET indications are above 800"F. If all of these conditions are satisfied, then the ECCS vent valves will be opened. An Alert Emergency Class is declared using Emergency Action Level 9.2 (which mans the Emergency Response Organization) and the operator is directed to implement Functional Recovery EOP.

JUN-13-00 16:36 From:ANO GSB I T-O09 P-07 Job-727 2CANo60012 Page 6 of 19

3. Provide a copy of the procedures leading to and including the depressurization action, indicating the entry conditions.

The associated portions of draft procedures 2203.012A, 2203.012G and SDS-02 are attached.

4. Provide a discussion of the trainins on the new depressurization procedure.

Attached are drafts of the Emergency DC Crossconnect Watch Study Guide and qual card used to train personnel on performing SDS-02.

5. Provide a description of the actions necessary to perform the task, including an identification of who performs the actions, and where.

The associated portions of draft procedures SDS-02, 1015.001, 1015.016 and 2202.006 are attached.

6. Provide a rough estimate of the time required to perform the task.

The tasks discussed in SDS-02 can be performed in less than 15 minutes, An actual walk down of these actions was completed in less than 10 minutes. With both 2D0I and 2D02 available, the ECCS vent valves can be opened in two minutes.

7. Provide an estimate of the interval of time required after occurrence of the depressurization procedure initiation cues in order to achieve a probability of 0.25 or less that the human actions needed for depressurization are not yet completed.

The time interval available for successfUl initiation of RCS depressurization following the last cue calling for depressurization which results in a failure probability of 0.25 or less is estimated to be about 23 minutes. This estimate is based on the use of Htrman Reliability Analysis quantification methods documented in the ANO-2 Individual Plant Examination and in updates to this risk analysis. It assumes that the time interval between when the highest five CETs read 800°F and the mean time for a steam generator tube failure prior to hot leg failure is about 43 minutes. This time interval is based on PROBFAIL caloulations.

JUN-13-00 16:37 From:ANO GSB1 T-099 P.08 Job-727 2CAN060012 Page 7 of 19

8. Provide the correlation for the Larson-Miller creep damage parameter used for the stainless steel surge line in your thermal-hydraulic analyses with the Modular Accident Analysis Program (MAAP) computer code.

The majority of the ANO-2 surge line is composed of Stainless Steel SA-351 Gr. CF8M. However, the surge line nozzle, which connects the surge line with the hot leg, is composed of carbon steel SA-105 Gr 2. Entergy does not have a correlation for the Larson-Miller creep damage parameter for SA-351 Gr CF8M since the surge line was not modeled as a contributor to RCS failure in the ANO-2 PROBFAIL calculations. Rather, the ANO-2 Steam Generator Tube Rupture (SGTR) risk analysis conservatively assumed that the hot leg was the only RCS piping subject to creep failure as a means of reducing RCS pressure prior to SG tube creep. Since the hottest region of the surge line is expected to be in the vicinity of its nozzle, since the nozzle base metal is SA-105 Gr. 2 (carbon steel), and since the nozzle wall thickness near its safe end is about the same as that as the rest of the surge line, the surge line nozzle is expected to be the point of its creep failure. The Larson-Miller Parameter (LMP) for carbon steel was previously provided. If desired, the LMP for stainless steel 304 can also be provided.

JUN-13-00 16:37 From:ANO GSB I T-099 P. 09 Job-727 2CAN060012 Page 8 of 19

9. Provide the fraction of tubes currently plugged in each steam generator. If sleeves are currently Installed, Include their effect on net flow rate as its equivalent in number of plugged tubes.

After completion of 2P99, the repairs to the ANO-2 SGs are as follows: SGA SGB REPAIRED TO DATE PLUGS 1487 1460 REPAIRED TO DATE SLEEVES B&W 285 48 ABB-CE 376 146 TOTAL 661 194 EQUIVALENT PLUGGED

  • 1511.379 1465.985 EQUIVALENT PERCENT PLUGGED 17.97% 17.430%

AVERAGE 17.70%

  • Based on 18 sleeves per plug for B&W and 44 sleeves per plug for ABB-CE
10. Provide any other parameter changes from the conditions specified in your previously submitted document titled Calc No. 99-E-0019-02, "ANO-2 MAAP and PROBFAIL Calculations."

No changes to the subject calculation have been made. The revised SGTR risk analysis presented at ANO's June 8, 2000, meeting with the NRC Staff continues to use the results of the MAAP calculations as input. However. the revised SGTR risk analysis no longer uses the results of the PROBFAIL calculations in 99-E-0019-02. Instead, the PROBFAIL analysis has been revised to utilize defect m and mp distributions rather than SG 'Tragility distributions" and these new PROBFAIL calculations are documented in the revised SGTR risk calculation. The mn and in distributions were calculated for and applied at the "ame burnup conditions as were the SG fragility distributions, i.e., at the Beginning of Period (BOP), just after 2P99, at Middle of Period on 6/15/00, assuming _no SG inspection/repair (MOP-NR), and at End of Period on 9/15/00, assuming no SG inspection/repair (EOP-NR). Ninety-three (93) defects were assumed to be present in each SG after each inspection and repair.

JUN-13-00 16:37 From:ANO GSB 1 T-099 P-10/41 Job-727 2CAN060012 Page 9 of 19

11. Using the most recently provided esIMates of flaw growth rates and the probability of detection as a function of flaw size during your most recent inspection (2P99), provide the probability distributions for the stress magnification factors for partial through-wall cracks (mp) and through-wall cracks (m) for each of these 3 points in time during your current operating interval: 1) start-up the fall of 1999, 2) June 15, 2000 without inspection, and
3) September 15, 2000, without inspection.

The following four tables of data are the Mp and/or M values for the fbllowing predicted conditions:

                "* (TABLE 1) Mp for beginning of period following 2P99 (Case 1)
                "* (TABLE 2) Mp for conditions at the middle of period 2P00 (Case 2') which is June 15, 2000
                "* (TABLE 3) Mp for conditions at the end of period 2R14 (Case 3') which is September 15, 2000
                "* (TABLE 4) M for all three conditions. There is not a separate M table for each condition since M is based on lengths and the lengths are kept constant through out the intervals This data was generated using the most recent model that was submitted based on use of the following:

o Bi-variant probability of detection (POD) using peak depth and bobbin volts

  • Five independent POD curves used probabilistically
  • Probabilistic growth based on ANO specific data
  • Sizing uncertainty of 12.7%
  • Depth based on profiled data Also attached are the probability distribution graphs for the data listed above.

JUN-13-O0 16:38 From:ANO GSB 1 T-099 P-11/41 Job-727 2CAN060012 Page 10 of 19 TABLE 1 Mp Values for Case 1' Beginning of Cycle Conditions _ CDD_ MP CDF _ M _ _ 1.1 0.06777 4.1 0.99920 7.1 0.99985 1.2 0.47099 4.2 0.99932 7.2 0.99985 1.3 0.71055 4.3 0.99935 7.3 0.99985 1.4 0.82756 4.4 0.99942 7.4 0.99985 1.5 0.89105 4.5 0.99948 7.5 0.99986 1.6 0.92681 4.6 0.99953 7.6 0,99986 1.7 0.94922 4.7 0.99954 7.7 0.99987 1.8 0.96363 4.8 0.99959 7.8 0.99988 1.9 0.97313 4.9 0.99961 7.9 0.99988 2.0 0.97940 5.0 0.99964 8.0 0.99988 2.1 0.98441 5.1 0.99968 8.1 0.99988 2.2 0.98805 5.2 0.99970 8.2 0.99988 2.3 0.99067 5.3 0.99973 8.3 0.99988 2.4 0.99240 5.4 0.99973 8.4 0.99988 2.5 0,99382 5.5 0.9997.3 8.5 0.99988 2.6 0.99489 5.6 0.99974 8.6 0.99988 2.7 0.99566 5.7 0.99975 8.7 0.99988 2.8 0.99634 5.8 0.99976 8.8 0.99988 2.9 0.99690 5.9 0.99976 8.9 0.99988 3.0 0.99727 6.0 0.99976 9.0 0.99988 3.1 0.99759 6.1 0.99977 9.1 0.99991 3.2 0.99791 6.2 0.99980 9.2 0.99991 3.3 0.99815 6.3 0.99980 9.3 0.99991 3.4 0.99835 6.4 0.99982 9.4 0.99991 3.5 0.99851 6.5 0.99983 9.5 0.99991 3.6 0.99866 6.6 0.99983 9.6 0.99991 3.7 0.99881 6.7 0.99983 9.7 0.99991 3.8 0.99889 6.8 0.99983 9.8 0.99991 3.9 0.99902 6.9 0.99984 9.9 0.99991 4.0 0.99914 7.0 0.99985 10.0 0.99991

JUN-13-00 16:38 From:ANO GSB 1 T-099 P.12/41 Job-?27 2CAN060012 Page 11 of 19 TABLE 2 Mp Values for Case 2' Conditions at 2P00 _OF MP MIP Mr 1.1 0.03814 4.1 0.99820 7.3 1.2 0.37440 4.2 0.9990 0.99960 7.9 0.99960 1.3 0.64070 4.3 0.99840 7.3 0.99960 1.4 0.78230 4.4 0.99860 7.4 0.99960 1.5 0.986100 4.5 0.99860 7.5 0.99960 1.6 0.90720 4.6 0.99880 7.63 0.99960

                  .7      0.93490       4.7      0.99880    7.7       0.99960 1.8      0.95270      4.iT998 0.99 90      7._8. 0.99960 1.9      0.96470      4.9      0.99900     7.9       0.99960 2.0       0.97260      5.0      0.99910     8.0       0.99970 2.1       0.97850      5.1      0.99910     8.1       0.99970 2.2       0.98270      5.2      0.99920     8.2       0.99970 2.3       0.99590      5.3      0.99920     8.3       0.99970 2.4       0.98840      5.4      0.99920    9.4        0.99970 2.5       0.99020      55.      0.99930     8.5       0.99970 2.6       0.99180      5.6      0.99930    9.3        0.99970 2.7       0.99310      5.7      0.99930    8.7        0.99970 2.8       0.99390      5.8      0.99940    8.8        0.99970 2.9       0.99470      5.9      0.99940    9.9       0.99970 3.0      0,99510      6.0      0.99940     9.0       0.99970 3.7      0.99580      6.7      0.99940     9.1       0.99970 3.2       0.99620      6.2      0,99940     9.2       0.99980 3.3       0.99650      6.3      0.99950     9.3       0.99980 3.4       0.99680      6.4      0.99950     9.4       0.99980 3.5 3.6       0.99720      6.5      0.99950     9.5 0.99750      6.6      0.99950    9.6        0.99980 0.99980 3.7       0.99770      6.7      0.99950    9.7        0.99980 3.8       0.99780      6.8      0.99950    9.8        0.99980 3.9       0.99790      6.9      0.99950    9.9 r0.99980 4.0       0.990        7.0      0.99960    10.0 10.99980

JUN-13-00 16:38 From:ANO GS8 I T-099 P.13/41 Job-727 2CAN060012 Page 12 of 19 TABLE 3 Mp Values for Case 3' Conditions at 2R14 MP CDFMP CDF 1.1 0.03414 4.1 0.99754 7.1 0.99917 1.2 0.33176 4.2 0.99768 7.2 0.99917 1.3 0.60255 4.3 0.99783 7.3 0.99917 1.4 0.75443 4.4 0.99798 7.4 0.99920 1.5 0.83988 4.5 0.99808 7.5 0.99921 1.6 0.89146 4.6 0.99815 7.6 0.99921 1.7 0.92253 4.7 0.99820 ___7.7 0.99924 1.8 0.94238 4.8 0.99830 7.8 0.99925 1.9 0.95614 4.9 0.99838 7.9 0.999273 2.0 0.96561 5.0 0.99849 8.0 0.99927 2.1 0.97261 5.1 0.99850 8.1 _ 0.99929 2.2 0.97792 5.7 0.99856 8.2 0.99930 2.3 0.98169 5.3 0.99861 8.3 0.99931 2.4 0.99432 5.4 0.99863 8.4 0.99931 2.5 0.99676 5.5 0.99868 8.5 0.99932 2.6 0.99882 . 0.99874 _,6 1 0.99933 2.7 0.99033 5.7 0.99875 8.7 1 0.99937

                                                                                   ,92 238       0.99148      5.8     0.99980              9.8 2.9       0,99257      5.9     0.99882              8.9       0.99935 0 n,9993 3.0 3.1       0.99351 0.99419       6.0     0.99885              9.0       0.99936
6. 1 0.99888 9.1 0.99936 3.2 0.99470 6.2 0,99892 9.2 0 .9993 3.3 o.99518 6.3 0.99895 93 0.99937 3.4 0.99566 6.4 0.99901 9.4 0.99939 3.5 0.990 6.5 0.99904 9.5 0,99940 3.6 0.99643 6.6 0.99909 9.6 0.99940 3.7 0.99679 6.7 0.99911 9.7 0.99941 3.8 0.99699 6.8 0.99914 9.8 0.99941 6.9 0.99916 9.9 0.9004I 4.0 10,99743 9.999916--

7.0 099916 90.9 0 99941~ 099 70 610.0 094

JUN-13-00 16:38 From:ANO GSB I T-o09 P.14/41 Job-727 2CAN060012 Page 13 of 19 TABLE 4 M Values for All Operating Intervals M CDF _M CDF _M _____ 1.0 0.00002 4.1 0.97530 7.2 1.00000 1.1 0.00002 4.2 0.97530 7.3 1.00000 1.2 0.00002 4.3 0.98160 7.4 1.00000 1.3 0,00486 4.4 0.98160 7.5 1.00000 1.4 0.01795 4.5 0,98568 7.6 1.00000 1.5 0.02815 4.6 0.98568 7.7 1.00000 1.6 0.07344 4.7 0.98568 7.8 1.00000 1.7 0.12220 4.8 0.98568 7.9 1.00000 1.8 0.16248 4.9 0.98568 8.0 1.00000 1.9 0.22495 5.0 0.98568 8.1 1.00000 2.0 0.29096 5.1 0.98568 8.2 1.00000 2.1 0.35963 5.2 0.98568 8.3 1.00000 2.2 0.43818 5.3 0.98568 8.4 1.00000 2.3 0.46410 5.4 0.99795 8.5 1.00000 2.4 0.48550 5.5 0.99795 8.6 1.00000 2.5 0.52196 . 5.6 0.99795 8.7 1,00000 2.6 0.56015 5.7 0.99795 8.8 1.00000 2.7 0.65145 5.8 0,99795 8.9 1.00000

               .2.8       0,68932            5.9       0.99979        9.0      1.00000 2.9      0.73285            6.0       1.00000        9.1      1.00000 3.0       0.74418            6.1       1.00000       9.2       1.00000 3.1       0.75898            6.2       1.00000       9.3       1.00000 3.2       0.80621            6.3       1.00000       9.4       1,00000 3.3       0.83554            6.4       1.00000       9.5       1.00000 3.4       0.87185            6.5       1.00000       9.6       1.00000 3.5       0.89144  _6.6                1.00000       9.7       1.00000 3.6      0.89308             6.7       1.00000       9.8       1.00000 3.7      0.91485             6.8       1.00000       9.9       1.00000 3.8      0.93504             6.9       1.00000       10.0     1.00000 3.9      0.95144             7,0       1.00000 4.0      0.97302             7.1       1.00000

p

                                                 " 0 IZI-;Or WSI'd 660-1 I qsD ONY:wol, ,:si oo-st-Nnr

IZI-qOr IV/St'd 660-1 i SSO ONV:WOJI wat oo-si-Nnr IZ2-qOr IV/it'd 660-1 1 950 ONY:Woli GS:91 00-81-Nnr Cal Frequency 1.0* 2.0 C 2.5 3.0 3.5 4.0 0 4.0 5.0 6.0 I 6.5 7.0 8.0 8.5 9.0 9.5 10.0~ T,

                                   '0 IZI-qcr L?/8L'd 660-1                     I MSON:C ONY:WOJý  66:91 00-El-Nnr 5SL    C-tfl

JUN-13-00 16:39 From:ANO GSB I T-099 P.19/41 Job-727

      ^LWtLUMUL LU 2CAN060012 Page 18 of 19
12. During the meeting between Entergy and NRC on June 8, 2000, Entergy staff stated that an improved eddy current testing calibration standard had been used for inspections conducted during the 2P99 outage. They also indicated that they had performed a study in which the eddy current testing data taken with the new and improved calibration standard was compared to data taken with the previously used calibration standard for 30 some indications. Please provide the referenced eddy current data for review by the staff. Also, provide bobbin probe eddy current data for a random sample of 12 tubes covering the full length of the tubes and the rotating pancake coil eddy current data for a random sample of 12 tube/tube support plate intersections.

These latter data should be those taken with the calibration standard of record, Le., the new and improved standard, for the examinations. During the latter part of the most recent mid-cycle outage (2P99) it was noticed that most distorted support indications (DSI) were being called at a consistent higher voltage than in the previous outages. Many possibilities were discussed and one identified change in equipment setup from previous outages was the use of toolhead calibration standards that had been borrowed from another plant. These calibration standards were used to improve inspection efficiency due to changes in the robotic manipulators used during the mid-cycle outage. To determine the impact of the calibration standards, a test was conducted. Due to the inspection/plugging schedule of the two steam generators it was determined that a complete acquisition station with an "outage" eddy current bobbin probe was still available on the "A Cold Leg" platform. A "clean" calibration standard from the lot that had been used the previous two outages was taken to the "A Cold Leg" platform and a number of calibration standard "pulls" were accomplished using bobbin probe S/N 296917. These calibration standard "pulls" were then setup according to the current Examination Technique Specification Sheet #1 (ETSS fI) and used to compare the voltages using the 2P99 calibration standard setup. Note: voltage normalization was set at 4.00 volts on the 4 - 20% holes on each calibration standard. Eddy current data for twelve tubes was collected and compared using the two calibration setups from the "A" SG. Data for these twelve tubes was collected previously with the same bobbin probe, s/n 296917, as the ANO calibration standard. An increased reported voltage on all DSIs were found when using the 2P99 standard versus the ANO calibration standard setup. Approximately thirty DSI3 were analyzed using both calibration standard setups and again the reported voltage was consistently greater when using the 2P99 setup compared to the ANO calibration standard setup.

JUN-13-00 16:39 From:ANO GSB I T-099 P-20/41 Job-727 A,.TarflmM1L LU 2CAN060012 Page 19 of 19 ANO personnel have compared an additional forty two DSIs from the "B" SG and all of the reported voltages are greater when using the 2P99 standards compared to the ANO standard. The following data is being provided to the NRC on an optical disk: Side A

1. ANO calstnd/SG10CCAL00052 - the previous cal standard from 2R13 and a setup that meets ANO Examination Technique Specification Sheet #1 (ETSS # 1).
2. Raw - 32 tubes of 2P99 confirmed bobbin DSIs from the "B" SO.
3. Resolution - Setups for 2P99 using 2P99S cal standards.

Side B

1. 12 random confirmed bobbin DSIs and 12 random RPC Single Axial Indications (SAI) from the "B" SO.

In addition, drawings of the calibration standards and ANO-2 ETSS;01 have been provided to support the data on the optical disk.

JUN-13-00 16:40 From:ANO GSB I T-099 P-21/41 Job-T72 ARKANSAS NUCLEAR ONE No.: HES-28 ENGINEERING STANDARD Rev. No.: 11 EG ENTERGY ANO-2 STEAM GENERATOR EDDY CURRENT SCN No.: 1 Page: 55 EXAMINATION GUIDELINES 10.4.1 ATTACHMENT I - ETSS #1 Bobbin Examination Examination Technique Specification Sheet ETSS # 1 - BOBBIN PROBE 7i Page: l of 4 Site: Entergy Operation Inc. Arkansas Nuclear One Unit #2 Examination Scope Applicability: Standard ASME Code Examination. Use for detection of IGAIODU C at non-a.ene drilled and eggcrate support structures, in freeaspan tubing and within sludge pile region. This technique includes the detection and sizing of wear at diagonal and vertical straps using differential AAY111l ftUUliy11# *wflmv Instrument Tubing Manufacturer/Model: Zetec MIZ-30A or Equiv. Material Type: Inconel 600 Data Recording Equipment OD/Wall (inch): 0.750" OD X 0.048" Wall Manuf./Medla: HP HD 2.6 Gb Optical or Equiv. Calibration Standard Software Type: ASME with Fan Bar Wear and EDM Manufacturer: Zetee Analog Si"nal Path Vcrsion/Reviaion: EN 98, 1.30 Probe Extension Manuf.: Zetec Examination Procedure Extension Type & Length: Universal 945-1760, 75 ft. Number/Revision: HES-28 Rev. 11 Slip Ring Model Number: 508-2092 Scan Parameters Scan Direction: Pull Digitismtion Rae., Samples Par Inch (minimum): Axial Direction 30 Cire. Direction N/A Probe Speed Sample Rame RPM Set RPM Min RPM Max

4811S 1777 N/A N/A N/A
      !24 IPS      ,I00                                     . N/A                                N/A                         N/A Probe Manufacturer/Part Number                               Length Description (Model/Diameter/Coil Dimensions)

A-600-M/ULC Zebec 700-1192-061 110 ft. A-540-SF/RM / A-560 SF/RM / A-580-SF/RM Zetee 7S4.4402-00I/D#2121-10-B/700-0402-OSI/D#2121-9-B 110 ft. A-600-MIULC (500 nose) Zetec D# 2120-S-G 110 ft. 600-MIULC Replaceable Foot Bobbin Probe 760-2112-001 110 ft. Data Acquisition Calibration Differential Channels Channel & Ch. 1 &3 Ch.S&7 Ch. 9 & 12 Ch. 15 & 17 Frequency 400Hz 200 kiz 100 k-z 20 kHz Phase Rotation 100% TWH 100% TWH 100% TWH Tube Support Ring 40 dearers 40 degrees 40 demrees 90 Degrees Span Setting 100% TWH 100% TWH 100% TWH Tube Support Ring 6 diviaions 1 divitlons 6 divisions 5 divisions Calibration Absolute Channels Channel & Ch.2&4 Ch.6&8 Ch. 10 iti Ch. 16 & 18 Cb. 11 & 14 Frequency 400 kHz 200 kHz 100 kHz 20 kHz 100 kHz Encoder Phase Probe Motion Hari. Probe Motion Horiz. Probe Motion Horiz. Tube Support Ring Encoder Pulse Rotation Flaws up first Flaws up first Flaws up first 90 Degrees @90 Degrees Span selung 60% TWH 60% TWI4 60% TWH Tube Support Ring Eaeoder Pulse 5 divisions 5 divisions 2 divisions 4 divisions @)4 divisions

JUN-13-00 16:40 From:ANO G$B I T-0S9 P.22/41 Job-727 ARKANSAS NUCLEAR ONE SENGINEERING STANDARD No.: HES-28 ENTERGY Rev.No.: 11 AND-2 STEAM GENERATOR EDDY CURRENT SCN No.: I EXAMINATION GUIDELINES Page: 56 Examination Technique Specification Sheet ETSS # I - BOBBIN PROBE r Page: 2 of 4 Configuration Board Settings tria: off Idown IConfiouratJon  : Name: Bobbin is mplasc See P l1of4 re, media= ___ar_= ,board 1#i board # 2 _boa rd # Frd#4 b~oard 0 5 board 0 6 board # 7 boa

   #of cannels =                            1       robe # 1 pebed                              rob#2       probeSISbel    r WtEm       probe1i D 6  A DRIVE               DRIVEA D B DRIVE           DRIVE D. 8 O A DRIVE A DRIVE            O R  -A DRIVE                  D      C                    C A  B D          6 C A Coii, Polrit                       N     N IlI   In          Ni     I    I NI   I         lI I                                       I FREQ-           Ti Me Slot !4 400
  • 1: 12.0V DD AA
    -FREO #12 Time Slot # 2                       r 200kHz G,;.x2 12.0V D                 A                       D         A FREQ #3 Time Slo 9 1.

100 kMZ a'x 712.0 V ID AD D A FREQ 20 kHz 04Tm So Do A 0

                                                                                                                                     /i FREO 06          Time Slot 6 1 FRE-oai         Timne Slot a I I

FRF.Q 07 Time ,51ot 0 7 FREQ $;8 Time Slot a8 END LOOCH I1S DRIVE A: D AI.A2. P dFAlpuA2.DP dr D10D2 p:l &A2 THRESHOLD: Off off DRIVE B: 5¶1-O. A Al-D2 (P) GAIN: X P =dr: B1 pu:B2, DP =Idr: CI&C2 pu: B0&12 ACTIVE PROBES: 2 DRIVE C; D C1-C2, A = D1-C2 DRIVE D: D D1-02 Special Instructions

1. The A-600-M/ULC probe is the primary use probe for the bobbin examination, The A-S500bl/Km sno A-311IRE/M are used to test low row tubes.
2. The A-S50-SFRM probe can be used in tubes reported as RRT with the .600" probe as directed by the FTI Level III and Entergy approval. If needed, a 0.560 SFI/RM probe, or a 0.D40 SF/RM can be used as direfted by the FTl Level I1l and Entergy approval.
3. Enter a message at the beginning of each calibration group indicating that the data is being acquired with either single or dual probes. If dual probes are being used state which calibration group is the primary probe and which Is the secondary probe.

S. When acquiring data with a single probe Coil I (differential) channels will be Chl1400 kHz, Ch3=200 ki-z, ChS-100 kHz, Ch820k.Hz and the Coil S (absolute) channels will be Ch2-400 kIz, Ch4-=200 kHz, Ch6I 00 kHz, Ch9-20 kHz.

6. Slower speeds (24 IPS) are recommended in the smaller radius U-bend tubes (row S and below) duo to probe snapping through the U-bend.
7. Three recordings of the calibration standard should bc performed at the beginning and and of each calibration group.
6. As a minimum, a position verification and a message will be entered once per calibration group.
9. Tubes, which havv been mie-eneoded, should be aorrected by entering a message to void that entry and re-examining the tube with the oroner encode. This is reaulred to maintain an accurate DSR database.

JUN-13-00 16:40 From:ANO GSB I T-099 P.23/41 Job-727 ARKANSAS NUCLEAR ONE ENGINEERING STANDARD No.: HES-28 ANO-2 STEAM GENERATOR EDDY CURRENT SCN No.: I EXAMINATION GUIDELINES Page: 57 Examination Technique Specification Sheet ETSS # 1- BOBBIN PROBE Page; 3 of 4 Data Analysis Calibration Differential Channels Channel & Ch I { Ch 3 Ch S Cho Frequency 400 kHz 200 kHz , 100 kHz 20 kHz Phase Rotation 100% TWH 108% TWH 100% TWH Tube Support Ring A 40 degrees ( 40 degrees j 40 degrees & 90 Degrees Span Sftting 100% TWH 100% TWH 100% TWH Tube Support Ring Minimum I 75% FSH Q 75% FSH ( 75% FSH A 50% FSH Calibration Absolute Channels Channel & Ch 2 Ch 4 Ch 6 Ch 9 Frequency 400 kHz 200 kHz 100 kHz 20 kHz Phase Rotation 100% TWH 100% TWH 100% TWH Tube Support Ring

                             & 32 Degrees                2 32 Derees             1%40 Degrees                 Q 270 deurees Span Setting               60% TWH                      60% TWH                 60% TWH                 Tube Support Ring Minimum                      0%FSH                    250% FSH          1     A20% FSH                     64 40% FSH Calibration Process and Other Channels Cbannel &                 P1 (Ch 1/5)            P2 (Ch 1/3/5 turbo)                                           Ch 7 Fregquency             400/100 kH-z Diff        400/200/100 kHz Diff                                          100 kHz Configure & Adjust              Suppress                Save 100, 60, 20                                             N/A Parameters               Support Ring          Suppress TSP & TSH Phase Rotation         Probe Motion Horiz.        Probe Motion Horio.                                    Encoder Pulse @90 Flaws start down           Flaws start down                                            Degrees Span Setting               100% TWH                     100% TWH                                         Encoder Pulse C 4 Minimum                  £ 75% FSH                   A0% PFSH                                               Divisions Voltage Normalization                                               Calibration Curves CH            Signal     4       Set       I Normalize               Type                   CH                  Set Points I     4X20% F1H           4 Vp-p             All                Phase               I 3. 5, P-          100, 60.20 FBH Data Screening Left Strip Chart                          Right Strip Chart                                  Lissaious PI                                          Ch 6                                      Ch P1 porting Requirements Condition/Region                  Report     Ch.                                 Comment Absolute Drift                              ADI         6       Vert-Max (Low Row U-bend)

Freespan DFI -- Use "Free Span Bobbin Coil Indication Flow Chart" Enacrates DSI PI See Note 6 Tubesbeet DTI P2 See Note 4 Dents DNT P1 AlU Dent Indications > 3 volts located anywhere. Indication Not Reportable INR Indications detected are not reportable by guidelines Indication Not Found INF Resolution is require to research and resolve per I euidelines Possible Loose Part PLP 9 Any Indication of Secondary Side Foreign Parts, See Note 9 SludRe Pile MQI PI In the Sludge Pile

JUN-13-O0 16:41 From:ANO GSS 1 T-099 P.24/41 Job-727 ARKANSAS NUCLEAR ONE No.: -{ES-28 ENGINEERING STANDARD Rev. No.:I I I SCN No.: ENEG ENTERGY ANO-2 STEAM GENERATOR EDDY CURRENT Page: 58 EXAMINATION GUIDELINES Examination Technique Specification Sheet ETSS # 1- BOBBIN PROBE Sial Instructions IPage: 4 of 4 SI IiPage:trc4ion

1. Refer to Appendix I additional instructions regarding the data screening and evaluation of Bobbin Probe data. (The required extent to be analyzed for all bobbin examination is to be TEH-07H
    +1.0"; data acquired outside this extent does not require analysis.)
2. Zoom the strip chart to a maximum value of 8 to Increase visibility of small amplitude indications.
3. All areas of the tubing should be examined with both P1 and Ch6 for indications and/ or drifts that may be indicative of cracking.
4. Review tubesheet data for indications of degradation, distortion and drifts indicative of axial or circumferential cracking. Indications may be confirmed by using ChS, Ch6 or P2. Evaluation is typical in PI or Chl. Based upon experience at ANO-2, take care to examine the entire tubesheet entry signal at the setup span on Chl and Ch3 for distorted signals Indicative of cracking. Also observe the response of P2. The requirement to screen the entire tubesheet entry signal is critically Important in both the hot leg and cold leg. Distorted signals, which may be indicative of a flaw on the bobbin, shall be flagged for RPC examination by reporting as DTI in the % column.

If the indication is not in the expansion transition, the indication should be evaluated and reported from P1. S. In the presence of deposits at the top of the tubesheet, if the signal has the characteristics of a flaw on P1, report these indications as an "NQI" code and test with an RPC examination.

6. Evaluate each support on the PI process channel. Eggerates typically have three signals representing the two edges and the center of the eggcrate. Indications can be confirmed with Chi, 3, or 5 when deposit influence is not present. Indications that are phased in the ID plane on PI should confirm on Ch3 and/or ChS. Indications may not always display an expected counter clockwise rotation.
7. When using Auto Calibration features, make sure that you are using the file that matches the Standard being used.
8. Monitor the configuration widget for proper data sampling. Set the warning dialog to trigger at 30 axial samples.
9. Observe the stripehart and Lissajous presentations for indications occurring anywhere along the tube but especially on top of the tubesheet and supports. Possible loose parts shall be screened and reported as a Possible Loose Part (PLP) on 20 kHz absolute. This will signify the need for further characterization with a rotating probe technique.

JUN-13-00 16:42 From:ANO GSS 1 T-099 P.27/41 Job-727 L 1fKUC-JWKM. P0LAN Pau. PKx;UUUK~IvwuftjK M'AN I II L3:: rMI.; -ow I 91 2203.012A ANNUNCIATOR 2Ki 01 CORRECTIVE ACTION CHANGE: 021-03-0 i 0denotes reflash capability

JUN-13-00 16:43 From:ANO GSB 1 T-099 P.28/41 Job-727 1rK%~.uuavv ,n ruftau mo. r.r&ufg wtiw r ~jaw v maa.%Ebi.. WW wo I G1Y 2203.01 2A ANNUNCIATOR 2K01 CORRECTIVE ACTION CHANGE: 021-03-0 ANNUNCIATOR 2K01 A-10 CONT CENTER 2D01 UNDERVOLT 1.0 CAUSES 1.1 2D01 bus voltage :110 VDC (relay 27-2D01). 2.0 ACTION REQUIRED 2.1 Check 2D01 voltage on Computer Point (E2DO0). 2.2 Check Battery Bank (2D-11) amps and voltage. 2.3 Check 2Dli Battery Charger (2D-31A or 2D-31B) amps and voltage. 2.4 IF battery charger amps are high AND 2DII is discharging, THEN secure unnecessary 2D01 loads. 2.5 Refer to Loss of 125 VDC (2203.037). 2.6 Check for overloads or multiple grounds (both positive and negative). 2.7 Refer to Tech Specs 3.8.2.3 and 3.8.2.4. 2.8 IF BOTH of the following occur: a 2D01 Bus Undervoltage alarm valid 1 Original Steam Generators (OSGs) installed THEN direct the Dedicated Cxoss-tie Operator (DXO) to obtain SDS02, EMERGENCY POWER FOR UNIT 2 ECCS VENT VALVES AND proceed to Corridor 340. 2.9 IF ALL of the following occur:

                     "* 2D01 Bus Undervoltage alarm valid
                     "* Original Steam Generators (OSGs) installed
                     "* EITHER SG less than 70" WR
                     "* At least 5 available CETs above 800F
                     "* A sustained Loss of ALL Feedwater has occurred THEN Control Room Staff implement SDS02,       Section 2 - " Powering 2CV-4698-1 from Vital Bus 2D26".

3.0 TO CLEAR ALARM 3.1 Raise bus 2D01 voltage above setpoint.

4.0 REFERENCES

4.1 E-2451-2A

JUN-13-00 16:43 From:ANO GSB 1 oJWKm.i T-099 P.29/41 Job-727 rJi#m 1W. . 1KfWCWK WVVLIK^ ri-sr. I 1 I.C; 66, W - 'I' S2203.012A ANNUNCIATOR 2K01 CORRECTIVE ACTION CHNGE: 021403-0 ANNUNCIATOR 2K01 A-.1 CONT CENTER 2D02 UNDERVOLT 1.0 CAUSES 1.1 2D02 bus voltage 5110 VDC (relay 27-2D02). 2.0 ACTION REQUIRED 2.1 Check 2D02 voltage on Computer Point (E2D02). 2.2 Check Battery Bank (2D-12) amps and voltage. 2.3 Check 2D12 Battery Charger (2D-32A or 2D-32B) amps and voltage. 2.4 IF battery charger amps are high AJD ZD-12 Is dzscharging, THEN secure unnecessary 2D02 loads. 2.5 Refer to Loss of 125 VDC (2203.037). 2.6 Check for overloads or multiple grounds (both positive and negative). 2.7 Refer to Tech Specs 3.8.2.3 and 3.8.2.4. 2.8 IF BOTH of the following occur:

  • 2D02 Bus Undervoltage alarm valid 0 Original Steam Generatorz (OSGs) installed THEN direct the Dedicated Cro0s-tie Operator (DXO) to obtain SDS02, EMERGENCY POWER FOR UNIT 2 ECCS VENT VALVES AND proceed to Corridor 340.

2.9 IF ALL of the following occur:

                   "*    2D02 Bus Undervoltage alarm valid
                   "*    Original Steam Generators (OSGs) installed
                   "*    EITHER SG less than 70" WR
                   "*    At least 5 available CETs above 8004F
                   "*    A sustained Loss of ALL Feedwater has occurred THEN Control Room Staff implement SDS02,              Section I  - "  Powering 2CV-4740-2 from Vital Bus 2D27".

3.0 TO CLEAR ALARM 3.1 Raise bus 2D02 voltage above setpoint.

4.0 REFERENCES

4.1 E-2451-2A

JUN-13-00 16:43 From:ANO GSB 1 T-099 P.30/41 Job-727 [ PROCJWODK PLAN NO. I PROG EDUK/WWK PLAN TITLE: r,*. r: 2203.0120 ANNUNCIATOR 2K'07 CORRECTIVE ACTION CHANGE: 023-01-0 I SHUTDOWN COOLING LOSS OF RCS SDC LEVEL SUCTION HI/LO Paqe 41 Page 45

JUN-13-00 16:44 From:ANO GSB 1 T-099 P.31/41 PRQ.JWORK PLAN NU. Job-727 I ftWi*rUUKtWU"ip PLAN I1 66 i., .. , 2203.012G ANNUNCIATOR 2K07 CORRECTIVE ACTION CHANGE: 023-01-0 ANINUNCIATOR 2K07 D-8 CET TEMP HI NOTE This alarm set at 7006F with Original Steam Generators (OSGs) installed. 1.0 CAUSES 1.1 CET temperature greater than variable alarm setpoint (2TI-4793). 2.0 ACTION REQUIRED 2.1 Verify temperature being controlled within desired band. 2.2 Use SPDS CET Display to verify temperature. 2g3 IF ALL of the following conditions existi 0 Original Steam Generators (OSGs) installed a At least 5 available CUTs above 8000 F

  • A sustained Loss of ALL reedwater has occurred THEN perform thegfollowing 2,3.1 0pen ECCS Vent Valves
  • 2CV-4740-2 2.3.2 Declare Alert based on EAL 9.2 usincL I 3 . 1, Aert EmeraencM Direot4iO and Control Cheokliat - Shift Superintendent.

2.3.3 4M 2202.009, Functional Recovery 2.4 IF due to SDC failure, THEN GO TO Loss of Shutdown Cooling (2203.029). 2.5 Adjust variable alarm setpoints as necessary. 3.0 TO CLEAR ALAWM 3.1 Lower CET temperature below- variable alarm setpoint (2TI-4793).

4.0 REFERENCES

4.1 E-2455-4

JUN-13-00 16:44 From:ANO GSB I T-09S P.32/41 Job-727 SAMG DEVELOPED SAMO DEVELOPED STRATEGY TITLE: PAGE: 1 of 3 STATEGY SAMG DEVELOPED STRATEGY 02 SDS-02 EMERGENCY POWER FOR UNIT 2 ECCS VENT VALVES TABLE OF CONTENTS SECTION PAGE

1. Powering 2CV-4740-2 from Vital Bus 2D27 ..............................

2

2. Powering 2CV-4698-1 from Vital Bus 2D26 .............................. 3 Reference ER002624N201

JUN-13-00 16:45 From:ANO GSB 1 T-099 P.33/41 Job-T27 SSAMG DEVELOPED SAMW DEVELOPED STRATEGY TITLE: PAG15: 20of3 STRATEGY SAMO DEVELOPED STRATEGY 02 SDS-02 EMERGENCY POWER FOR UNIT 2 ECCS VENT VALVES SECTION 1 Powering 2CV-4740-2 from Vital Bus 2D27 Page I of 1 NOTES Operator actions should NOT he delayed for Health Physios, security, or any other concerns. Elevators should NOT be used when performing this procedure. Prompt completion of these actions overrides all other procedures, technical specifications, or verbal directions other than those from Operations Management. Co*munications to DXO should use radio or telephone (extension 6091 for Corridor 340 and 6093 for 2B53 Room). 1.0 Entry

  • Performance of thin attachment in directed by TSC or Control Room 2.0 ACTIONS 2.1 Open Valve 2CV-4696-1 (ECCS Vent Valve) from Control Room.

2.2 Open Breaker 2D02-21 (2D26 MCC Supply). 2.3 -Reriv C Bu concincbe- -bielo - -- - - b--ox--- - A--- - Room and proceed to 2B53 Room (Door 257). 2.3 Open Breaker 2D27-A2 (Upstream Feeder Breaker to 2CV-4698-1). m L CAUTION Breaker 2D26-A2 (Upstream Feeder Breaker to 2CV-4740-2) MUST be opened to prevent energi2ing the entire 2D26 Bus. 2.4 Open Breaker 2D26-A2. I 2.5 Open raceway between rows I and 2 of the following MCCs:

                        *MCC cabinet 2D26
                        *MCC cabinet 2D27.

2.6 Connect DC Bus connection cable to plugs in each raceway. 2.7 Close Breaker 2D27-A2. 2.8 Inform Control Room power restored to 2CV-4740-2. 2.9 Open valve 2CV-4740-2 from Control Room.

JUN-13-00 16:45 From:ANO GSB 1 T-099 P.34/41 Job-72T SAMO DEVELOPED SAMG DEVWLOPED 5TRATEGY TMILE: PAGE: 3 of 3 STRATEGY SAMG DEVELOPED STRATEGY 02 808-02 EMERGENCY POWER FOR UNIT 2 ECCS VENT VALVES SECTION 2 Powering 2CV-4698-1 from Vital Bus 2D26 Page 1 of* NOTES Operator actions should NOT be delayed for Health Physics, Security, or any otherz eoncerTs.

  • Elevators should NOT be used when performing this procedure.
  • PmProt Co=Wletion of these actions overrides all other procedures, technical specifications, or verbal directions other than those from Operations Management.

Coz*mnications to DXO should use radio or telephone (extension 6091 for Corridor 340 and 6093 for 2853 Room). 1.0 Entry 0 Perfozmance of this attachment ie directed by TSC or Control Room 2.0 ACTIONS 2.1 Open Valve 2CV-4?40-2 (ECCS Vent Valve) from Control Room. 2.2 Open Breaker 2D01-21 (2D27 MCC Supply) 2.3 Retrieve DC Bus connection cable from cabinet/job box outside 2B53 Room and proceed to 2B53 Room (Door 257). 2.3 Open Breaker 2D26-A2 (Upstream Feeder Breaker to 2CV-4740-2). IU CAUTION L 2.4 Breaker 2D27-A2 (Upstream Feeder Breaker to 2Cv-4698-1) to prevent energizing the entire 2D27 Bus. Open Breaker 2D27-A2. MUST be opened I 2.5 Open raceway between rows 1 and 2 of the following MCCs: 9MCC cabinet 2D26

                    *MCC cabinet 2D27.

2.6 Connect DC Bus connection cable to plugs in each raceway. 2.7 Close Breaker 2D26-A2. 2.8 Inform Control Room power restored to 2CV-4740-2. 2.9 Open valve 2CV-4698-1 from Control Room.

JUN-13-00 16:45 From:ANO GSB 1 T-099 P.35/41 Job-727 Emergency DC Croasconnect Watch Study Guide In the event of a loss of a total loss of foedwater, it may become necessary to depressurize the RCS to initiate feed and bleed cooling. Additionally, if high pressure safety injection and low pressure safety injection are unavailable in conjunction with a total loss of feedwater, it is critical that the RCS be depressurized to avoid the potential of steam generator tube failure due to the aevore accident condition. The ECCS vent valves can be used to depressurize the RCS. These valves relieve steam from the pressurizer to the quench tank. The ECCS vent path has two DC powered valves in series, so they may be operated with a complete loss of AC power. The ECCS vent valves are powered from opposite 125 volt vital DC power. A problem exists, looking at single failure criteria, if one train of DC power is lost. A contingency action has been developed to deal with the loss of one train of vital 125 volt DC. Pigtails with female connectors will be connected to the 2D26 and 2D27 buses and hung in the raceway next to the affected valves. Outside the 2B-53 room will be a locked JOBOX with a procedure and a 30' connecting wire with male connectors on each end. When a loss of a DC bus occurs, the annunciator corrective action procedure will direct the control room to dispatch the Emergency DC Crossconnect Watch to the access to 2B-53 room to obtain instructions sheet and then to STANDBY in the ESF SwitchRear corridor (corridor 340) for further instruction. When the control room gives the order, the Crossconnect Watch will verify he is using the correct section of the procedure and proceed to completion. To accomplish this task the procedure guides the control room operator to open the ECCS vent valve on the still energized bus prior to electrically isolating the pigtails. The Crossconnect Watch will then open the DC bus supply breaker to the deenergized MCC as directed by the control room operator (21)26 or 2D27) and proceed to the 2B53 room-. The Crossconnect Watch will then open the upstream feeder breakers to both ECCS vent valves. The Crossconnect Watch will then connect the extension cable. Once the cable connectors are locked in place, the feeder breaker to the ECCS vent valve on the energized bus is closed sending DC power to the opposite train vent valve. The second ECCS vent valve is then opened from the control room commencing depressurization of the RCS. THE OPERATOR MUST REMAIN ON STATION AND IN CONSTANT COMMUNICATION WITH THE CONTROL ROOM. The evolution is expected to take less than 15 minutes (and has been time-validated at less than 10 minutes), but the need for proper self-checking can not be ignored, This evolution is considered vital for plant operation. DO NOT STOP for anyone (including HP and security) unless the operator's life or health is at immediate risk. Since the response needs to be timely, the Emergency DC Crossconnect Watch shall carry a radio, flashlight, and set of spare AO keys with them at all times. The AO keys will be tracked using the key log in the shifty's office. Proper tumrover needs to include the updating of the key log. The qual card for this watch will be given to RO's, NLO's, and trainees. It is the shift manager's responsibility to ensure that he has a qualified person available each shift. The person manning the Emergency DC Crossconnect Watch (DXO) is entered on the Shift Turnover Checklist. Attached are sections of resources that may be helpful.

JUN-13-00 16:45 From:ANO GSB 1 T-099 P-36/41 Job-727 Naml SSN Emergency DC Crossconnect Watch Objective: The objective of the Unit 2 Emergency DC Crossconnect Watch qualification card is to ensure that operators possess the knowledge and skills necessary to independently perform the assigned duty in a safe and offlojient manner.

1.0 Refereces

1.1 STM 2-3, Reactor Coolant System 1.2 STM 2-32-5, 125 Vdc Electrical Distribution System 1.3 COPDO01, Self-Verification/Additional Verification 1.4 COPD-15, Communication Standards 1.5 SDS-02, SAMG Developed Strategy 02 2.0 *nowledge Requirements: 2.1 Discuss the function and importanee of ECCS vent valves during Severe Accident Mitigation. 2.2 Discuss the type of valve ECCS vents are and where their controls are located. 2.3 Discuss the affect of a loss of 2D01 or 2D02 on the ECCS vent valves. 2.4 Discuss the duties and responsibilities of the Erxnrge--y DC Crossconnc-t Watch. 2.4.1 What actions are required 2.4.2 Use of self-verification 2.4.3 Operation of a DC breaker 2.4.4 Operation of a molded case breaker 2.4.5 Response tim required 2.4.6 Expectation to remain on station 2.5 Equipment required for watchstanding. 2.6 Purpose and use of key log. 2.7 Proper communication and radio use. 2.8 Turnover of watchstanding duties.

                                                                                    /

OPS Supervisor 3.0 Performance Tasks: 3.1 Crossconnect 2D26 and 2D27 to power 2CV-4740-2 from 2D27 (SDS-02, Section 1) T / E / OPS Supervisor OPS Supervisor 3.2 Crossconnect 2D26 and 2D27 to power 2CV-4698-1 from 2D26 (SDS-02, Section 2) T / E / OPS Supervisor OPS Supervisor 4.0 Final Certification: Shift Suporintendent

JUN-13-00 16:46 From:ANO GSB 1 PROWJWORK PLAN NO. PROCEDURE/WORK PLAN TITLE: T-099 P.37/41 ink-727 PAGE: 21 of 60 1016.001 CONDUCT OF OPERATIONS CHANGE: 052-03-0 6.7 Auxillary Operator 6.7.1 The AUXiliary operator reports to the CRS of their respective Unit and is responsible for all operational activities executed outside the Control Room associated with secondary auxiliary components and systems. 6.7.2 Specific responsibilities and authorities assigned to the Auxiliary operator are the same as those stated in 6.6.2 and 6.6.3 for the waste Control Operator. Section CAUTION Dedicated Cross-tie SHALL be manned when Operator (DXO) is Steam Unit 2 original a UnitGenerators 2 specific(OSGs) watchstation and are installed. 6.8 Dedicated Cross-tie Operator (DXO) 6.8.1 The Dedicated Cross-tie Operator (when manned) reports to the CRS of Unit 2 and is responsible for implementation of Severe Accident Management Guideline (SAMG) Developed Strategy 02 (SDS02), "EMERGENCY POWER FOR UNIT 2 ECCS VENT VALVES". 6.8.2 Specific responsibilities and authority assigned to the Dedicated Cross-tie Operator include the following:

                                  "* Maintain manned status when Original Steam Generators (OSGs)  are installed on Unit 2.
                                  "* Maintain response capability with appropriate equipment
                                      -    Radio
                                      -    Flashlight
                                      -    Key to Door 257   (Room 2091 AKA 2Z53 Room)
                                 "* Implement SDS02 when directed by the CRS or the Technical Support Center (TSC).       A copy of SDS02 is housed with the DC Bus connection cable at cabinet/job box outside Door 257.

6.9 Shift Engineer (SE)/Shift Technical Advisor (STA) 6.9.1 The SE/STA is responsible to be within operable communication range and available to the Control Room within ten minutes of call by the Control Room (3.3453) personnel. 6.9.2 The SE/STA is responsible to maintain respirator qualifications, and if corrective eyewear is nozmlaly needed, maintain appropriate SCEA eyewear (spectacles contact lenses) readily available. or

JUN-13-00 16:46 From:ANO GSB 1 T-099 P.38/41 Job-727 SHIFT TURNOVER CHECKLIST MODES 1 - 4 PAGE 1 OF 12 INSTRUCTIONS: 1.0 Circle YES, NO or N/A for each item in any desired order. 2.0 N/A items not applicable due to mode or being aligned to other train. 3.0 If NO Is circled, then explain In the RemarXs section. 4.0 If NO is circled on a Tech apec (T0) required component, then refer to associated Tech Spec Action Statement and notify opposite unit, as applicable. Mode: Date: Time: A. SDBCS ALIGNMENT (2CO2)

1. 2CV-1002 (A S/G Upstream ADV Isol) closed YES NO
2. 20V-1052 (B S/G Upstream ADV Isol) closed YES NO
3. 2CV-l0Ol (Upstream ADV) closed, HIC in Manual, permissive In Orr YES NO
4. 2CV-1051 (Upstream ADV) closed, HIC in Manual, permissive in Off YES NO
5. 2CV-0301 (DDV) closed, HIC in Auto and permissive HS in Auto YES NO
6. 2CV-0305 (DDV) closed, HIC in Auto and permissive HS in Auto YES NO
7. 2CV-0302 (Bypass Vlv) closed, HIC in Auto, permissive HS in Auto YES NO
8. 2CV-0303 (Bypass Vlv) closed, HIC in Auto, permissive HS in Auto YES NO
9. 2CV-0306 (Bypass Vlv) closed, HIC in Auto, permissive HS in Auto YES NO B. SHUTDOWN COOLING (2C04)

Two independent ECCS subsytems required operable in Mode 1, 2 4 3 with PZR pressure Z1700 psia. (TS 3.5.2)

1. 2CV-5091 (LPSI Disch Header) open. YES NO N/A
2. 2HS-S091 in ESF with the key removed- YES NO N/A
3. 2FIC-5091 (LPSI Disch Hdr Flow) in Auto & set at -2500 gpm.

YES NO N/A

4. IF 2TI-4793 NOT in use for SDC, YES NO N/A THEN 2TI-4793 energized AND CET alarms set at 7000F Iform tit~le:- form no. change no..

LSHIFT TURNOVER CHECKLIST MODES 1 - 4 1015.016 B 021-02-0

JUN-13-00 16:46 From:ANO GSB 1 T-099 P.39/41 Job-727 SHIFT TURNOVER CHECKLIST MODES 1 - 4 PAGE 12 OF 12

w. MSIs
1. IF a MSIS actuation channel becomes inoperable in 2C39 or 2C40, THEN restore the actuation channel within one hour or be in Hot Standby within 6 hours.
2. IF a component required for MFW isolation becomes inoperable (i.e., a Condensate, MFW, or Heater Drain pump will not trip on MSIS),

THEN restore the component within 48 hours or place it in its MSIS actuated state. Otherwise be in Hot Standby in 6 hours. COMM4ENTS: If position manned, then list on shift personnel: S/S ,. TWO CRSA TRO CBOR CBOT wcO AO ZQ P SE DXO*

      -IFOriginal Steam Generators (OSGs) installed, THEN Dedicated Cross-tie Operator (DXO) manned.

PERFORMED BY; REVIEWED BY: I form title: r nha SHIFT TURNOVER CHECKLIST MODES 1 - 4 1015.016 B 021-02

JUN-13-00 16:46i From:ANO GS8 I T-099 P.40/41 Job-727 INSTRUCTIONS CONTINGENCYACTIONUS 111941F EITHER of the following conditions exist: A. EITHER SG with level less than 70 inches. B. RCS TC rising in an uncontrolled manner. THEN establish Heat Removal via Once Through Cooling as follows: A. Close MS1Vs from Control Room. B. Manually actuate SIAS and CCAS. C. Verify ALL HPSI Cold Leg Injection MOVe open. D. Verify ALL available Charging pumps running. E. Check 41 60v Vital buses 2A3 and 2A4 E. Perform the following: energized from offsite power.

1) IF EITHER 41 60v Vital bus energized from offsite power, THEN perform the following:

a) Commence aligning third HPSI pump to associated bus. b) WHEN third HPSI pump alignment complete, THEN verify third HPSI pump running.

2) IF ANY 41 60v Vital bus energized from DG, THEN perform the following:

a) Verify ONE HPSI pump running on train supplied by DG. b) GO TO Step 1G.G. (Step 19 continued on next page) PROC NO TITLE REV DATE PAGE 2202.008 LOSS OF FEEDWATER 004-02-0 6/13100 18 of 33

JUN-13-00 16:47 From:ANO GSB I T-099 P.41/41 Job-727 INSTRUCTIONS CONTINGENCY ACTIONS

19. (continued)

F. Verify three HPSI pumps running,

          *G. Verify at least ONE HPSI pump                 *G. IF NO HPSI pumps running, THEN running.                                        perform the following:

11 Verify MSIVs closed

2) GO TO step 19.J.

H. Open ECCS PZR Vent valve H. Open LTOP Relief Isolation valve (2CV-4698-1). (2CV-4741 -1). I. Open LTOP/ECCS Relief Isolation valve I. Perform the following! (2CV-4740-2).

1) Open LTOP Relief Isolation valve (2CV-4731-2).
2) Open LTOP Relief Isolation valve (2CV-4730-1).

J. Maintain BOTH SG pressures 950-1050 psia using upstream ADVs or upstream ADV isolation MOVs. K. GO TO 2202.009, Functional Recovery.

 "*20. Check FW flow restored to at least ONE "20, IF FW flow NOT restored, THEN RETURN SG by ANY of the following;                       TO Step 11.
        "* EFW
        " AFW
        "* MFW
        "* Condensate "21. Maintain SG pressure less than 1050 psle:

A. Control SG pressure using SDBCS Bypass valves or ADVs. B. Cheek at least ONE Condensate pump B. Start ONE Condensate pump using running. 2106.016, Condensate and Feedwater Operations. (Step 21 continued on next page) PROC NO TITLE REV - DATE PAGE 2202.006 LOSS OF FEEDWATER 004-02-0 6/13/00 17 of 33

  ..  . -      rFI IIWT- P~IlV U,ý Ip 1440 S. ILa                                                                   M-S1    o-1 RumMyu., AR 72802 FAX: 501 .58.4u68                                        ARKNSS NULAR               ONE Fax PhM.

ofw 13..Feu uww 0tkPiesmo aonmn 13 pie.. Reply . 1 Piesmo Recycle

      -1 //          pe 5eg

JUN-14-UU UH:U] From:ANO GSB I T-096 P.02 Job-7l$ Additional Mp Dgta for ANO2 Rcvision 2 June 12, 2000 The attached four tables of data are the Mp and/or M values for the following predicted conditions:

       "*  (TABLE 1) Mp for beginning of cycle following 2P99 (Case 1')
       "*  (TABLE 2) Mp for conditions at 2P00 (Case 2) which is June 15th, 2000
       "*  (TABLE 3) Mp for conditions at 2R14 (Case 3) which is September 15th, 2000
       "*  (TABLE 4) M for all three conditions. There Is not a separate M table for each condition since M is based on lengths and the lengths are kept constant through out the intervals This data was generated using the most recent model that was submitted based on use of the following:
       "*  Bi-variant probability of detection (POD) using peak depth and bobbin volts
       "*  Five independent POD curves used probabilistically
       "*  Probabilistic growth based on ANO specific data
       "*  Sizing uncertainty of 12.7%
       "*  Depth based on profiled data Also attached are the probability distribution graphs for the data listed above.
      -- ----I  II-. -I.- ... I T-D96 P.03 Job-719 6/12/2000                           Mp Values for Case 1' Beginning of Cycle Conditions MP          CDE            ME        cDF             MP      C2DF 1.1      0.06777          4.1      0.00920           7.1   0.99985 1.2      0.47099          4.2      0.99932           7.2   0.99985 1.3      0.71055          4.3      0.99935           7.3   0.99985 1.4      0.82756          4.4      0.99942           7.4   0.99985 1.5      0.89105          4.5      0.99948           7.5  0.99986 1.6     0.92681           4.6      0.99953          7.6   0.99986 1.7     0.94922           4.7      0.99954          7.7   0.99987 1.8     0.96363           4.8      0.99959          7.8   0.99988 1.9      0.97313           4.9      0.99961          7.9   0.99988 2.0      0.97940           5.0      0.99964          8.0   0.99988 2.1      0.98441           5.1      0.99968          8.1   0.99988 2.2      0.98805           6.2     0.99970           8.2   0.99988 2.3      0.99067           5.3     0.99973           8.3   0.99988 2.4      0.99240           5.4     0.99973           8.4   0.99988 2.5      0.99382           5.5     0.99973           8.5   0.99988 2.6     0.99489           5.6      0.99974          8.6    0.99988 2.7     0.99550           5.7      0.99975          8.7    0.99988 2.8     0.99634           5.8      0.99976          8.8    0.99988 2.9     0.99690           5.9      0.99976          8.9   0.99988 3.0     0.99727           6.0      0.99976          9.0   0.99988 3.1      0.99759           6.1      0.99977          9.1   0.99991 3.2      0.99791           6.2      0.99980          9.2   0.99991 3.3      0.90815           6.3      0.99980          9.3   0.99991 3.4      0.99835           6.4      0.99982          9.4   0.99991 3.5      0.99851           6.5      0.99983          9.5   0.99991 3.6     0.99868            6.6     0.99983           9.6   0.99991 3.7     0.99881            6.7     0.99983           9.7   0.99991 3.8     0.99889            6.8     0.99983           9.8   0.99991 3.9     0.99902           6.9      0.99984           9.9   0.99991 4.0     0.99914           7.0      0.99985          10.0   0.99991 TABLE I

.IufflauIw UO:yJ rrom:ArNU Ub I T-096 P.04/10 Job-719 6/12/2000 Mp Values for Case 2' Conditions at 2P00 MP CDF MP CDF MP COF 1.1 0.03814 4.1 0.99820 7.1 0.99960 1.2 0.37440 4.2 0.99830 7.2 0.99960 1.3 0.64070 4.3 0.99840 7.3 0.99960 1.4 0.78230 4.4 0.99860 7.4 0.99060 1.5 0.86100 4.5 0.99860 7.5 0.99960 1.6 0.90720 4.6 0.99880 7.6 0.99960 1.7 0.93490 4.7 0.99880 7.7 0.99960 1.8 0.95270 4.8 0.99890 7.8 0.99960 1.9 0.96470 4.9 0.99900 7.9 0.99960 2.0 0.97260 5.0 0.99910 8.0 0.99970 2.1 0.97850 5.1 0.99910 8.1 0.99970 2.2 0.98270 5.2 0.99920 8.2 0.99970 2.3 0.98590 5.3 0.99920 8.3 0.99970 2.4 0.98840 5.4 0.99920 8.4 0.99970 2.5 0.99020 5.5 0.99930 8.5 0.99970 2.6 0.99180 5.6 0.99930 8.6 0.99970 2.7 0.99310 5.7 0.99930 8.7 0.99970 2.8 0.99390 5.8 0.99940 8.8 0.99970 2.9 0.99470 5.9 0.99940 8.9 0.99970 3.0 0.99510 8.0 0.99940 9.0 0.99970 3.1 0.99580 6.1 0.99940 9.1 0.99970 3.2 0.99620 6.2 0.99940 9.2 0.99980 3.3 0.99650 6.3 0.09950 9.3 0.99980 3.4 0.99680 6.4 0.99950 9.4 0.99980 3.5 0.99720 6.5 0.99950 9.5 0.99980 3.6 0.99750 6.6 0.99950 9.6 0.99980 3.7 0.99770 6.7 0.99950 9.7 0.99980 3.8 0.99780 6.8 0.99950 9.8 0.99980 3.9 0.99790 6.9 0.99950 9.9 0.99980 4.0 0.99810 7.0 0.99960 10.0 0.99980 TABLE 2

I-U~b ý Ub/IU Tob-hv 6112/20D0 Mp Values for Case 3' Conditions at 2R14 MP CDF MP CDF MP cDF 1.1 0.03414 4.1 0.99764 7.1 0.99917 1.2 0.33176 4.2 0.99768 7.2 0.99917 1.3 0.60255 4.3 0.99783 7.3 0.99917 1.4 0-75443 4.4 0.99798 7.4 0.99920 1.5 0.83988 4.5 0.99808 7.5 0.99921 1.6 0.89146 4.6 0.99815 7.6 0.99921 1.7 0.92253 4.7 0.99820 7.7 0.99924 1.8 0.94238 4.8 0.99830 7.8 0.99925 1.9 0.95614 4.9 0.99838 7.9 0.99927 2.0 0.96561 5.0 0.99849 8.0 0.99927 2.1 0.97261 5.1 0.99850 8.1 0.99929 2.2 0.97792 5.2 0,99866 8.2 0.90930 2.3 0.98169 5.3 0.99861 8.3 0.99931 2.4 0,98432 5.4 0.99863 8.4 0.99931 2.5 0.98676 5.5 0.99868 8.5 0.99932 2.6 0.98882 5.6 0.99874 8.6 0.99933 2.7 0.99033 5.7 0.99875 8.7 0.99933 2.8 0.99148 5.8 0.99880 8.8 0.99935 2.9 0.99257 5.9 0.99882 8.9 0.99936 3.0 0.99351 6.0 0.99885 9.0 0.99936 3.1 0.99419 6.1 0.99888 9.1 0.99936 3.2 0.99470 6.2 0.99892 9.2 0.99937 3.3 0.99618 6.3 0.99896 9.3 0.99937 3.4 0.99566 6.4 0.99901 9.4 0.99938 3.5 0,99602 6.5 0.99904 9.5 0.99940 3.6 0.99643 6.6 0.99909 9.6 0.99940 3.7 0.99679 6.7 0.99911 9.7 0.99941 3.8 0.99699 6.8 0.99914 9.8 0.99941 3.9 0.99720 6.9 0.99916 9.9 0.99941 4.0 0.99743 7.0 0.99916 10.0 0.99941 TABLE 3

8/12/2000 MValues for All Operating Intervals M CDF M M 1.0 0.00002 4.1 0.97530 7.2 1.00000 1.1 0.00002 4.2 0.97530 7.3 1.00000 1.2 0.00002 4.3 0.98160 7.4 1.00000 1.3 0.00486 4.4 0.98160 7.5 1.00000 1.4 0.01795 4.5 0.98568 7.6 1.00000 1.5 0.02815 4.6 0.98568 7.7 1.00000 1.6 0.07344 4.7 0.98568 7.8 1.00000 1.7 0.12220 4.8 0.98568 7.9 1.00000 1.8 0.16248 4.9 0.98568 8.0 1.00000 1.9 0.22495 5.0 0.98568 8.1 1.00000 2.0 0.29096 5.1 0.98568 8.2 1.00000 2.1 0.35963 5.2 0.98568 8.3 1.00000 2.2 0.43818 5.3 0.98568 8.4 1.00000 2.3 0.46410 5.4 0.99795 8.5 1.00000 2.4 0.48550 5.5 0.99795 8.6 1.00000 2.5 0.52196 5.6 0.99795 8.7 1.00000 2.6 0.56015 5.7 0.99795 8.8 1.00000 2.7 0.65145 5.8 0.99795 8.9 1.00000 2.8 0.68932 5.9 0.99979 9.0 1.00000 2.9 0.73285 6.0 1.00000 9.1 1.00000 3.0 0.74418 6.1 1.00000 9.2 1.00000 3.1 0.75898 6.2 1.00000 9.3 1.00000 3.2 0.80621 6.3 1.00000 9.4 1.00000 3.3 0.83664 6.4 1.00000 9.6 1.00000 3.4 0.87185 6.5 1.00000 9.6 1.00000 3.5 0.89144 6.6 1.00000 9.7 1.00000 3.6 0.89308 6.7 1.00000 9.8 1.00000 3.7 0.91485 6.8 1.00000 9.9 1.00000 3.8 0.93504 6.9 1.00000 10.0 1.00000 3.9 0.95144 7.0 1.00000 4.0 0.97302 7.1 1.00000 TABLE 4

CDF of Mp Values at Beginning of Cycle Conditions for ANO2 (Case I') 1.2 1 1.0 0.8 a 0.6 [-a-- CD U. 0.4 0.2 0.0 i II IlII I I'II IIIII I ~~ II l 'i IllII I. I If II I II ,,, I Ti , II ,. .l.,,,.,. , , , . . . . . . . . CO 0) LC) t-.. O) , 3) U) '- N C') 0) U) Ai c6 NtCcO0i Mp

Frequency o 0 0 0 0 --*- Si . bo b i 1.7 *fl 2.3 - 2.9 K 3.5 4.1 4.7 0' 5.3 -- 4 5.9 6.5 o 7.1 C 7.7 0 8.3 8.9 0 9.5 --- _ 0

                               -                                       IJ T

C-) iL*-qOr 01/80'd 9S0-L SSS ONYV:wJ* ZO:Me n O-EL-Nnr

Frequency o 0a 0 00 0 1.1 = -C'-,- 1.7"' 2.3 0 2.9:: "go 3.5 4.1 C 0 4.7 X5.3 Im h "05.9 . 0mb;a 6.5 C') 0 7.1 0. 7.7 0 8.3 8.9 -. 9.5 -_ _0 TC) 11 sL -qor o0/60[d 96-.-i IM ONV:WOA4 pn:gn nn-N-Unr

sti-qor 01/01*d 960-1 i ess owwojý som oo-Ei-Nnr 1448S. R. 333 RumdMIllo, AR 72802 ARANA NUCEA ONE FAX: $01-886-4885 ENEG OPERATION Fax~

                 ---iT        IL/AA ram                                        all Mh"m
                   @onwnunt_ /)J 13 Lhgett      D For Review  D Plulag Comuwiott   13 Plane Reply     0 Pleas. Recyria
-     - - I I   I I -T, -11. ... I r-or r IJfU UDID Additional MR Dat* for ANO2 R.eig*ipo I June 6, 2000 The attached table of data was previously submitted that contained an error. The original table had the M values instead of Mp values listed under MP50. The attached table has been corrected. The following is an explanation of the data:

I. Uses the 185 indications identified in 2P99 by individual flaws.

2. The bobbin volts ar based on the mix channel responsc.
3. The Mp data is the median value.
4. The POD is the average of the 5 curves using both maximum depth and bobbin voltage as inputs.
5. Maximum depth is based on the RPC profile data
6. Length is based on the RPC raw data measurement.

The following are descriptions of the titles: ROW Tube Row COL Tube Column TSP Tube Support Plate POS Tube Position AVG DEP Average Depth MAX DEP Maximum Depth Bobbin Volts Bobbin Volts LENGTH Length MP50 Mp (median value) PODAV Average POD Value

616000 Mp Values , th Corresponding Bobbin Bolts and POD Revision I ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MP50 PODAV 1 72 72 02H 0.27 80.95 92 0.99 1.34 3.6790 0.99767 2 102 110 02H 0.06 82.66 99 0.68 1.55 3.4272 0.99300 3 8 134 01H 0.48 90.09 100 2.49 0.56 3.4206 1.00000 4 102 98 02H 0.24 79.61 94 0.23 0.6 2.8097 0.90719 5 53 83 01H 0.1 78.23 98 0.71 0.64 2.6026 0.99363 6 17 49 06H 0.58 74.39 87 0.44 0.77 2.5952 0.95502 7 1 51 04H 0.49 71.94 86 0.6 0.95 2.4899 0.97883 8 32 108 01H -0.18 65.06 81 1.66 0.55 2.4328 0.99977 9 32 108 01H -0.61 57.71 98 1.66 0.68 2.4119 0.99991 10 23 55 02H 0.29 63.74 79 0.3 1.39 2.3588 0.86605 11 47 91 01H 0.49 67.57 79 1.1 0.91 2.2752 0.99707 12 26 40 02H 0.63 75.14 92 0.19 0.64 2.2517 0.87526 13 36 36 02H 0.33 62.88 73 0.42 1.03 2.1836 0.89927 14 9 115 01H -0.66 68.15 88 0.43 0.49 2.1749 0.95506 15 36 116 01H 0.57 54.60 67 0.7 0.78 2.1581 0.96380 16 16 140 03H -0.39 57.05 69 0.89 0.71 2.1224 0.98660 17 48 52 01H 0.72 59.18 71.5 0.49 0.66 2.1156 0.92232 18 33 71 01H 0.46 70.58 82 0.34 0.69 2.0945 0.90435 19 28 36 02H 0.35 62.52 90 0.34 0.49 2.0823 0.93567 20 32 100 01H 0.16 73.49 97 1.82 0.52 2.0667 0.99995 21 32 46 02H 0.7 68.32 82 0.82 0.62 2.0612 0.99096 22 4 156 02H 0.72 59.06 70 0.41 0.5 2.0299 0.87798 23 5 153 07H 0.37 89.07 97 0.62 0.59 1.9862 0.98944 24 10 150 01H 0.41 75.57 85.5 0.66 0.38 1.9768 0.98384 25 68 44 03H 0.54 56.22 85 0.19 0.98 1.9719 0.82881 26 33 109 01H -0.41 61.34 68 0.32 0.81 1.9381 0.79940 27 33 71 01H -0.53 64.38 91 0.34 0.42 1.9155 0.93884 28 58 106 01H -0.52 64.01 91 0.41 0.55 1.9152 0.95737 29 37 95 01H -0.55 56.73 72 0.51 0.99 1.9004 0.93118 Page 1 of 7

6/6/00 Mp Values with Corresponding Bobbin Bolts and POD Revision I ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPS0 PODAV 30 32 108 01H 0.19 64.82 82.5 1.49 0.49 1.8991 0.99957 31 67 57 01H 0.79 75.65 85 0.66 0.43 1.8785 0.98339 32 106 90 02H 0.54 67.85 91.5 0.41 0.71 1.8737 0.95846 33 84 76 01H 0.63 72.09 91 0.48 0.49 1.8684 0.97026 34 10 16 02H 0.38 55.83 74 0.49 0.94 1.8577 0.93155 35 77 113 01H 0.39 60.17 79 0.71 0.56 1.8490 0.98195 36 9 127 01H 0.75 67.60 84 0.37 0.39 1.8351 0.92534 37 77 125 02H 0.36 62.31 89 0.3 0.82 1.8334 0.91709 38 47 93 01H -0.6 57.64 69.5 0.29 0.76 1.8323 0.78587 39 12 106 01H 0.61 54.73 65 0.39 0.78 1.8273 0.83150 40 16 118 01H 0.49 54.41 69 0.35 0.81 1.8119 0.83184 41 9 115 01H 0.49 70.92 96 0.43 0.78 1.7990 0.97040 42 95 45 02H 0.64 63.85 86 0.43 0.43 1.7911 0.95017 43 29 123 04H 0.52 69.31 77 0.39 0.84 1.7854 0.90433 44 48 96 01H -0.12 53.30 67 0.41 0.96 1.7844 0.85945 45 7 61 02H 0.62 59.73 96 0.37 0.46 1.7768 0.95947 46 13 31 02H -0.05 56.73 90 0.6 0.85 1.7688 0.98294 47 60 44 02H 0.43 54.26 72 0.25 0.9 1.7677 0.77126 48 49 77 01H 0.78 85.14 97.5 0.52 0.39 1.7615 0.98288 49 4 20 01H -0.11 59.06 68.5 1.55 0.71 1.7440 0.99926 50 68 112 02H -0.03 58.36 69 0.55 0.69 1.7416 0.93375 51 20 52 01H 0.75 62.59 79 0.53 0.51 1.7396 0.95652 52 52 36 01H 0.58 54.22 73 0.32 0.75 1.7358 0.83922 53 1 51 03H 0.58 56.91 69 0.63 0.62 1.7352 0.95469 54 65 97 02H -0.5 55.51 69 0.55 0.58 1.7288 0.93375 55 47 93 01H -0.31 52.57 65 0.29 0.97 1.7214 0.74218 56 63 115 01H 0.05 66.35 78 0.44 0.64 1.7144 0.92868 57 8 148 01H 0.6 54.82 72 0.49 0.65 1.6857 0.92425 58 12 106 01H -0.39 51.75 63 0.47 0.85 1.6670 0.87078 Page 2 of 7

6/6/00 Mp Values with Corresponding Bobbin Bolts and POD Revision 1 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MP50 PODAV 59 65 125 02H -0.71 63.46 72 0.52 0.46 1.6612 0.93441 60 36 116 01H 0.62 63.02 75 0.7 0.39 1.6478 0.97646 61 42 38 01H 0.52 51.38 72 0.41 0.39 1.6461 0.88913 62 28 44 01H -0.01 51.47 93 0.69 1.58 1.6457 0.99074 63 63 123 02H 0.4 81.83 93 0.31 0.59 1.6417 0.93542 64 48 52 01H 0.66 72.17 84 0.49 0.51 1.6344 0.95916 65 60 108 01H 0.13 52.86 62 0.41 1.14 1.6291 0.82343 66 77 83 02H -0.33 68.27 85 0.22 0.38 1.6230 0.85132 67 60 108 01H 0.63 57.33 67 0.41 1.08 1.6218 0.85945 68 12 62 01H 0.3 51.19 69 0.37 0.44 1.6193 0.84633 69 10 150 03H 0.37 78.14 97 1.32 0.59 1.6162 0.99961 70 4 28 01H -0.46 51.26 64 0.67 0.72 1.6080 0.95118 71 11 143 01H 0.69 79.25 86.5 0.33 0.33 1.5848 0.91940 72 16 140 03H 0.46 66.39 76 0.89 0.72 1.5833 0.99092 73 38 110 01H 0.69 44.81 73 0.36 0.89 1.5809 0.86632 74 42 38 01H 0.04 80.03 92 0.41 0.7 1.5796 0.95953 75 13 55 01H 0.12 51.43 68 0.87 0.59 1.5772 0.98447 76 75 89 02H 0.75 77.66 92 0.77 0.49 1.5690 0.99339 77 11 155 02H 0.76 60.39 79 0.58 0.4 1.5662 0.96600 78 11 13 03H 0.13 65.54 82 0.24 0.54 1.5648 0.84505 79 104 116 01H -0.58 68.75 83 0.2 0.23 1.5572 0.82154 80 89 73 02H 0.55 52.38 74 0.24 0.67 1.5429 0.78035 81 4 156 02H -0.44 65.18 82 0.41 0.83 1.5428 0.93240 82 115 65 02H 0.4 54.06 66 0.55 0.41 1.5422 0.92284 83 75 85 03H 0.56 57.52 69 0.49 0.67 1.5368 0.91198 84 92 102 02H 0.62 68.08 81 0.24 0.35 1.5315 0.83792 85 38 144 03H -0.59 72.77 85 0.3 0.36 1.5292 0.89925 86 65 119 01H -0.57 45.86 68 0.3 0.53 1.5253 0.78140 87 36 116 01H 0.17 61.93 81 0.7 0.72 1.5237 0.98301 Page 3 of 7

616/O0 IMp Values Wth Corresponding Bobbin Bolts and POD Revision 1 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPS0 PODAV 88 67 111 011H -0.48 56.96 73 0.52 0.59 1.5233 0.93768 89 84 112 02H 0.51 59.16 98 0.44 0.79 1.5196 0.97472 90 106 90 02H -0.24 62.79 92 0.41 0.61 1.5115 0.95953 91 14 112 04H 0.56 47.13 67 0.22 0.59 1.4994 0.68584 92 40 116 01111 0.53 57.66 84 0.83 0.46 1.4988 0.99228 93 23 143 01H -0.33 34.03 47 0.38 0.27 1.4891 0.63873 94 10 150 01H 0.66 55.20 69 0.66 0.46 1.4876 0.96070 95 2 34 02H 0.1 60.78 86 0.2 0.94 1.4832 0.84374 96 28 36 02H -0.19 53.76 75 0.34 0.44 1.4811 0.86633 97 12 56 02H 0.69 56.10 89 0.5 0.54 1.4732 0.97015 98 32 148 03H 0.53 68.59 79 0.36 0.56 1.4668 0.89963 99 67 119 01H -0.1 79.31 93 0.26 0.31 1.4624 0.91644 100 33 117 05H 0.64 46.95 58 0.25 0.42 1.4552 0.61279 101 16 140 02H 0.68 52.12 61 0.62 0.23 1.4524 0.92814 102 52 82 01H 0.52 42.18 64 0.31 0.67 1.4460 0.75253 103 21 109 01H 0.55 66.42 78 0.32 0.52 1.4447 0.87236 104 104 116 OIH 0.34 59.29 80 0.2 0.29 1.4364 0.79689 105 45 89 01H 0.64 56.67 65 0.33 0.39 1.4347 0.78153 105 6 116 01H -0.21 42.64 56 0.4 0.55 1.4326 0.76174 107 75 91 02H 0.11 63.89 85 0.3 0.56 1.4316 0.89925 108 49 19 04H 0.8 55.72 68.5 0.54 0.34 1.4308 0.92874 109 24 24 01H 0.53 38.77 74.5 0.18 0.26 1.4171 0.72352 110 117 89 01H -0.48 52.58 62.5 0.59 0.42 1.4145 0.92354 111 38 110 01H 0.57 51.90 70 0.36 0.54 1.4107 0.84639 112 53 109 01H -0.65 45.74 60 0.56 0.57 1.4042 0.90064 113 47 145 02H 0.6 61.02 88 0.39 0.41 1.4036 0.94488 114 12 148 02H 0.18 54.98 78 0.43 0.53 1.4013 0.92509 115 35 33 03H 0.48 80.71 99 0.24 0.18 1.3850 0.93097 116 40 56 03H 0.68 61.88 74 0.59 0.39 1.3846 0.95782 Page 4 of 7

616/00 Mp Values wth Corresponding Bobbin Bolts and POD Revision 1 ROW COL TSP POS "AVG DEP MAX DEP Bobbin Volts LENGTH MP50 PODAV 117 31 49 01H 0.75 40.81 69 0.22 0.77 1.3676 0.70858 118 7 119 01H -0.13 52.23 73 0.48 0.29 1.3661 0.92443 119 119 65 04H 0.56 56.07 73 0.24 0.57 1.3582 0.77101 120 3 57 01H -0.71 40.06 68 0.14 0.59 1.3575 0.59673 121 83 109 01H 0.65 45.98 65 0.64 0.3 1.3511 0.94671 122 102 98 01H 0.4 48.91 77 0.26 0.35 1.3436 0.82334 123 31 125 01H -0.47 35.89 57 0.41 0.59 1.3432 0.78059 124 46 126 011H 0.6 49.03 62.5 0.25 0.44 1.3401 0.66885 125 45 69 02H -0.56 50.45 60.5 0.45 0.44 1.3362 0.84135 126 40 116 01H 0.62 53.50 65.5 0.83 0.59 1.3329 0.97857 127 121 113 01H -0.65 45.24 73 0.75 0.25 1.3315 0.97932 128 89 51 01H 0.05 50.59 61.5 0.59 0.38 1.3302 0.91958 129 23 143 02H -0.21 42.15 64 0.37 0.8 1.3270 0.80776 130 86 118 01H 0.39 38.84 60.5 0.41 0.52 1.3256 0.81131 131 39 111 01H 0.61 48.30 75 0.51 0.29 1.3249 0.94097 132 24 136 03H 0.21 60.43 83 0.29 0.31 1.3147 0.88355 133 58 106 01H 0.35 43.07 64 0.41 0.55 1.3102 0.83864 134 32 24 01H 0.59 58.84 68.5 0.31 0.28 1.3091 0.79499 135 18 126 01H 0.62 40.18 52 0.48 0.56 1.3059 0.79634 138 83 109 01H -0.33 47.22 63 0.64 0.45 1.3027 0.94087 137 20 132 02H -0.07 44.10 51 0.24 0.46 1.2960 0.50564 138 34 52 06H 0.89 41.01 55 0.62 0.43 1.2891 0.90292 139 9 125 01H 0.35 50.99 61 0.27 0.46 1.2821 0.67516 140 27 127 04H 0.62 33.29 50 0.36 0.62 1.2748 0.65128 141 6 138 01H 0.61 43.40 53 0.55 0.28 1.2736 0.85488 142 75 45 02H -0.38 52.71 61 0.31 0.4 1.2709 0.72110 143 4 150 01H -0.48 28.90 56 0.26 0.75 1.2692 0.60000 144 5 3 01H 0.61 43.34 52 0.43 0.87 1.2621 0.75103 145 12 30 01H 0.73 44.94 52 0.53 0.44 1.2569 0.83459 Page 5 of 7

6/6/00 Mp Values with Corresponding Bobbin Bolts and POD Revision 1 ROW COL TSP POS "AVG DEP MAX DEP Bobbin Volt LENGTH MP50 PODAV 146 55 95 01H 0.69 35.66 60 0.29 0.75 1.2545 0.68716 147 84 112 02H -0.72 58.54 71 0.44 0.37 1.2530 0.89899 148 44 72 01H 0.07 53.64 95 0.29 0.45 1.2522 0.93518 149 7 113 01H 0,6 65.75 92 0.87 0.33 1.2498 0.99591 150 26 144 01H -0.3 46.27 58 0.37 0.31 1.2472 0.75230 151  ! 137 01H -0.36 33.71 61 0.44 0.59 1.2452 0.83797 152 27 127 02H 0.51 22.58 34 0.36 0.82 1.2265 0.44032 153 3 141 01H 0.33 42.42 56.5 0.3 0.45 1.2252 0.65741 154 52 82 01H 0.05 31.62 56.5 0.31 0.34 1.2225 0.66957 155 6 140 02H -0.52 42.86 57 0.22 0.36 1.2186 0.55948 156 61 115 02H 0.55 33.79 45 0.33 0.62 1.2140 0.54771 157 8 128 01H 0.7 41.54 65 0.55 0.52 1.2126 0.91886 158 42 78 01H -0.72 56.03 68 0.36 0.72 1.2055 0.83180 159 16 116 05H 0.43 32.45 50.5 0.33 0.65 1.2052 0.62003 160 42 142 01H 0.54 49.59 61 0.33 0.41 1.2040 0.74236 161 136 88 01H 0,36 37.79 70 0.33 0.44 1.1976 0.82416 162 6 136 01H -0.39 48.81 64 0.37 0.38 1.1923 0.80776 163 120 114 03H 0.81 57.03 67 0.56 0.28 1.1835 0.93002 164 123 99 01H -0.34 31.70 53 0.27 0.59 1.1776 0.57379 165 11 143 01H -0.15 50.78 69 0.33 0.39 1.1750 0.81619 166 74 66 01H 0.79 39.47 69 0.68 0.65 1.1736 0.96425 167 34 130 02H 0.47 23.67 44 0.44 0.48 1.1686 0.67392 168 7 119 01H 0.14 48.16 67 0.48 0.29 1.1580 0.89819 169 104 100 02H 0.36 66.75 81.5 0.29 0.85 1.1540 0.87500 170 86 104 01H -0.49 35.29 54 0.37 0.42 1.1535 0.70983 171 10 148 01H 0.8 46.19 56 0.35 0.33 1.1456 0.71003 172 13 57 01H 0.71 40.11 58 0.75 0.39 1.1432 0.95367 173 38 114 02H -0.11 47.70 63 0.32 0.42 1.1349 0.75257 174 92 100 02H 0.63 48.80 67 0.46 0.68 1.1320 0.88628 Page 6 of 7

61610D Mp Values with Corresponding Bobbin Bolts and POD Revision I ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPSO PODAV 175 66 28 02H -0.56 50.50 66 0.27 0.36 1.1275 0.73144 176 9 127 01H -0.48 24.13 33 0.37 0.36 1.1193 0.44057 177 6 138 0111 0.73 28.68 41.5 0.55 0.4 1.1171 0.76038 178 62 36 03H 0.35 17.96 61 0.34 0.59 1.1136 0.75255 179 5 21 03H 0.15 56.10 72 0.32 0.43 1.1020 0.83181 180 23 143 01H 0.81 30.46 52.5 0.38 0.25 1.0964 0.70409 181 11 135 03H -0.28 33.88 47 0.22 0.33 1.0764 0.42365 182 4 150 01H 0.68 45.95 66 0.26 0.43 1.0680 0.72053 183 84 116 02H 0.65 33.46 56.5 0.36 0.82 1.0621 0.72637 184 53 109 01H -0.02 24.88 47 0.56 0.15 1.0478 0.81748 185 57 83 01H 0.46 35.93 53 0.27 0.49 1.0470 0.57379 Page 7 of 7

1448 S. R.33 ARKANSAS NULARN RuasWivll, AR 72802 EN G OPERATION FAX: 501 8&56-4W85 Fax C77 I)A I. mm cci gUurvem FoPr Review 0 Plums. Commuuent 13 Plum Reply El PluSes RecYcle

      .comum~et
          /erY               -4                               1ýak Cýae-,;Mzý

iIw r.uI. v..U hair Descrhption of the Growth Rafte Distribton Curycs Used Ln the AN02 Steam Generator Operation Assessment An extensive growth rate evaluation was performed following the 2P99 mid-cycle outage. Indications confirmed by MRPC were evaluated in the previous mid-cycle outage (2P98) to evaluate growth over a full operating interval The results were consistent with those developed in prior years as well as with industry data. The main purpose of this document is to identify the amount of variance that is contained in the distributions of growth used in the model. This particular operational assessment (OA) utilized a probabilistic approach to determining the growth rate of a flaw in a simulation. Listed below is a histogram of the apparent growth. The large amount of negative growth is symptomatic of eddy current (EC) uncertainties mixed with actual physical growth. AppemAtAiW (Mu DeptD)Gron. Rat (ANO-2: 2PgS4MPga) 36 -120.00,% 100,00% 25

         .20 I                                                                                             50,00%

116j 10 0 .0016 42,5 .27.6 -2.S .17,6 -i2h -7.6 -25 2. 7U 12.5 17. 22,6 27S 32, q 3r.6 425 Met co& Cmwu, 1h b %TWiIPPY Pulled tube data was evaluated to determine the amount of uncertainty associated with sizing by EC. Once this was applied it was evident that the actual growth was being masked by the uncertainties. A statistical optimization process was performed to determine the true growth. This was then used to devclop the growth rate curves used in the model. In an attempt to graphically display the variance in the distributions the following figures were developed: I

.IW JA J LIJ..J I IWTII-FIIV U.J6J IF I w1w r Wý 4wý VII

                 -                                                                         I     1 I

4.'a# 1.200 ____________________________ 4 . .x-.v-.U1 1,000 I 0.600 -1 I Bmt-E*mme:

                                                   &d-Edmole:       ----------

Mug:1.50 Sigma: 0.7a8 OA4O 4-. - 0.200 0.00 0,500 2.S00 0.00O0 1.000 1.500 2.000 Mu This scatter plot represents the variables associated with each distribution curve. The arrow points to the best estimate value. Biwnate Histogram (PARFFT7.STA 4vOOOOc)

f J~R~-IJZ-UU zu:jr rrum:Aiu uý, i I-Ufý r.U41]* JOD- /ff This three-dimemional histogram is another way to graphically display the various distributions. Onm again the data is plotted using the two variables that describe the individual curves (sigma and mu). Finally, listed below are three bownding curves that are based on 10000 converged iterations. This represents the following estimates in an effort to bound the distributions: S Least Limiting S Best estimate 9 Most Limiting ANO-2 Axial Cracks a Eggcrau SuppoR' (10,000 Conver ad NteeioriMn Ff 200006041139.dS) CU mu IMU V& Pr ob 15 20 2 3 45 Thim (Um WpU*) Guwik R.al %rEFP Previous to this process, the bobbin phase angle was used to estimate the change in growth. The values used for growth were based on a mean of- 7 %TW /EFPY with a maximum value of 40 %TW/EFPY. This dat is consistent with other CE plants. This is listed in the graph below: 3

I.Urn UI/. 1 JpDD-p COMPARISON OF ANO-2 GROWTH RATE DISTRIBUTION [BEST ESTIMATE) WITH OTHER PLANTS 1.0 0.8 0.6 -J 0 0.4 IL 0.2 "o..ANOý2 SPLANTA 0.0 3 PLANT._C 30 "", .PLA N T _C 0 5 10 15 20 25 GROWTH RATE - %THRUWALLUEFPY 4

JUR-UO-UU £u:j rrom:Anu u I i-ura r-uvij joo-b(r DescrlDtion of the Bi-Variant Probb0ilitY of Detection Curves Used in the ANO2 Onerational Assessment June 5,2000 Following the 2P99 mid-cycle outage, a probabilistic operational assessment was performed to provide input into a risk evaluation. Historically, a probability of detection (POD) curve was used based on peak depth. This had provided the necessary information based on detection of flaws with bobbin. An extensive test program was performed using pulled tubes and ANO2 specific data. Five teams of analysts were used and five separate curves were developed. This was presented to the Staff following 2R13. During the 2P99 outage however, different calibration standards were used. These standards produced signals with higher amplitudes than the previous standards. A study performed during 2P99 on approximately 30 flaws confirmed the new standards gave significantly larger amplitude signals for the same indication. Figure I 1 eq 0.0 0.5 1.0 1.5 L5 Voht, 2P99Standard This resulted in a significant increase in the number of indications identified in 2P99. This is demonstrated in Figure 2:

                                                                               -uw r.uri JOb-brr Figure 2 EGGCRATE AXIAL CRACK HISTORY 0

S300 250 200 150 0 zN U- N M . (N (NNN N N (I OLIfAGE This inspection transient can be explained by a change in equipment and training. Special emphasis was placed on the identification of low amplitude flaws and their corresponding signal response. There were no other adverse changes made during the most recent operating periods. Therefore, a new POD function was developed to take into account this improvement to the process. Since the improvement was due to a change in voltage, a bi-variant curve was developed using both peak depth and voltage. The data from the five teams of analysts from the SSPD was used with the following equation: POD= 1.0/( .0+EXP(A+ B*DEPTH+C*VOLTS)) TEAM A B C 1 4.254 -0.0473 -8.475 2 3.943 -0.0635 -4.407 S 4.044 -0.0565 -3.976 4 4.284 -0.0566 -6.361 5 4.388 -0,0548 -8.069 2

IV'WVLIJ-09 V4 rlvm~nnv 4ac I uio r uoji JUOI( Using this bi-variant function creates a method by which both parameters are considered when determining the probability of detection. Attached are graphics for each analyst teams that were developed from the SSPD. Each is a family of POD verses peak depth curves for signal voltages from 0.1 to 1.0 volts. 3

         &WQ I will, ivll WaPil  I RAtIahmentI RESO-1 BIVARIATE POD FUNCTION 1.1 0.9 0.7 0.5 0

a_ 0 v2=.1 0.3 A v2=.2 v2=.3 A 0 0.1 U v2=.6 v2=.7 4- V2=.8 v2=.9

  -0.1                                                                   v2=1.0 0            20              40          60         80 100 120 DEPTH Team 1 Results 4

4uI1-U;;-UU cuz rrumn.Arn Lo I I-Ufa r.IU/I.1 .100-Dff RESO-2 BIVARIATE POD FUNCTION 1.1 0.9 0.7 0.5 0 a_ 0 v2=.1 13 v2=.2 0.3 0 v2=.3 A 0& v2=.4 v2=.5 U v2-.6 0.1 v2=.7 A v2=.8

                                                                            +   v2=.g v2=1.0
     -0.1                                                          120 0           20         40          60          80 100 DEPTH Team 2 Results 5

I vu I Uw 4151 RESO-3 BIVARIATE POD FUNCTION 1.1 0.9 0.7 I 0.5 0.3 0 v2=.1 v2=.2 v2=.3 A v2=.4 V2=.5 0.1 v2=.6 v2=.7 v2=.8

 -0.1                                                  v2=.9 0 20     40          60         80 100 120     w v2-1.0 DEPTH Team 3 Results 6

L. H.Ld3d O0L=Z^ W 02 L. 001L 09 09 0U ( 6"=.A + L0 8"=9A V

                  ,o
                                       .                               . .                           .                                 0 I,0
  • 0 0 0
/.'=,A   V C'=mA    0 i.........                                                                     ....             '...

Z,"=,A a 0  ? o0 V * -v 0 9.0 o

                                            -.                       E       .                ...... 9 o.,E...        ..........

0 .+ 0 £I

  • j +i El 4: t + L'o
                                                    ....... ...... o           ............. ........... T                         ." .,"
                                                                                                                   . . . ...........       ..................... . 6"0 itI          t; i V1.

NOI.ONn=I cOd i.LVIuIVAIg tpoS9

))q-qor FI121"*   RID-I                                                                                                  I   aQiM    muw~wm       j         L-A      AM  ý, 11

RESO-5 BIVARIATE POD FUNCTION 1.1 0.9 0.7 U, a.; 0.5 0 0 v2=.1 v2=.2 0.3 0 v2=.3 U: V2=.4 A v2=.5 0.1 A

                                                     +

v2=.6 v2=.7 v2=.8 v2=.9

   -0.1                                                 v2=1.0 0 20      40         60           80 100 120 DEPTH Team 5 Results 8

1448 5. R.333 RumWMIls. AR 72802 ARANA NUCEA ON FAX 501.858.4885 EN E R Y P E A T O N , Faix ffi  :;m 2 na-

                                               -yp OUrgen      13 Per Review 3 Piesmo Comm*n     03 Plmu Reply     0 Plumo Recycle
      *Canevintu                         I

,dW" W4 WV 1".46 FIWIII.MIIV WOW I fWI I r -4 Lj-J~ Lj iLUpf AdditiouWa Mp Data for AN02 The attached table of data is being provided at your request. The following is an explanation of the data:

1. Uses the 185 indications identified in 2P99 by individual flaws.
2. The bobbin volts are based on the mix channel response.
3. The Mp data is the median value.
4. The POD is the average of the 5 curves using both maximum depth and bobbin voltage as inputs.
5. Maximum depth is based on the RPC profile data
6. Length is based on the RPC raw data measurement.

The following are descriptions of the titles: ROW Tube Row COL Tube Column TSP Tube Support Plate POS Tube Position AVG DEP Average Depth MAX DEP Maximum Depth Bobbin Volts Bobbin Volts LENGTH Length MP50 Mp (median value) PODAV Average POD Value

6/3/00 Median Mp Values with Correspording Voltage and POD forANO2 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPSO PODAV 1 102 110 02H 0.06 82.66 99 0.68 1.55 4.51 0.99300 2 48 96 01H -0.12 53.30 67 0.41 0.96 4.41 0.85945 3 23 55 02H 0.29 63.74 79 0.3 1.39 4.30 0.86605 4 28 36 02H 0.35 62.52 9D 0.34 0.49 3.82 0.93567 5 72 72 02H 0.27 80.95 92 0.99 1.34 3.65 0.99767 6 36 36 02H 0.33 62.88 73 0.42 1.03 3.55 0.89927 7 1 51 04H 0.49 71.94 86 0.6 0.95 3.37 0.97883 8 23 143 02H -0.21 42.15 64 0.37 0.8 3.36 0.80776 9 37 95 01H -0.55 56.73 72 0.51 0.99 3.36 0.93118 10 10 16 02H 0.38 55.83 74 0.49 0.94 3.35 0.93155 11 47 93 OIH -0.6 57.64 70 0.29 0.76 3.13 0.78587 12 28 44 01H -0.01 51.47 93 0.69 1.58 3.10 0.99074 13 13 31 02H -0.05 56.73 90 0.6 0.85 3.08 0.98294 14 36 116 01H 0.62 63.02 75 0.7 0.39 3.07 0.97646 15 12 106 OIH 0.61 54.73 65 0.39 0.78 3.03 0.83150 16 17 49 06H 0.58 74.39 87 0.44 0.77 2.95 0.95502 17 32 108 01H 0.19 64.82 83 1.49 0.49 2.94 0.99957 18 47 91 OIH 0.49 67.57 79 1.1 0.91 2.92 0.99707 19 33 109 OIH -0.41 61.34 68 0.32 0.81 2.92 0.79940 20 9 115 O1H 0.49 70.92 96 0.43 0.78 2.91 0.97040 21 1 51 03H 0.58 56.91 69 0.63 0.62 2.88 0.95469 22 65 119 01H -0.57 45.86 68 0.3 0.53 2.87 0.78140 23 16 118 OIH 0.49 54.41 69 0.35 0.81 2.86 0.83184 24 102 98 02H 0.24 79.61 94 0.23 0.6 2.83 0.90719 25 106 90 02H -0.24 62.79 92 0.41 0.61 2.81 0.95953 26 12 62 01H 0.3 51.19 69 0.37 0.44 2.81 0.84633 27 47 93 OIH -0.31 52.57 65 0.29 0.97 2.81 0.74218 28 4 156 02H 0.72 59.06 7O 0.41 0.5 2.75 0.87798 Page 1 of 7

6/3/00 Median Mp Valueswith Corresponding Voltage and POD for ANO2 COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPSO PODAV ROW 0.52 42.18 64 0.31 0.67 2.75 0.75253 29 52 82 OIH OIH 0.13 52.86 62 0.41 1.14 2.75 0.82343 30 60 108

                        -0.33         34.03             47             0.38         0.27  2.73   0.63873 31   23   143  OIH 02H     0.43         54.26             72             0.25          0.9  2.69   0.77126 32   60   44 03H     0.46         66.39             76             0.89         0.72  2.69   0.99092 33   16   140
                        -0.39         51.75             63             0.47         0.85  2.67   0.87078 34   12   106  OIH OIH     0.58         54.22             73             0.32         0.75  2.67   0.83922 35   52    36 01H    -0.48         28.90             56             0.26         0.75  2.63   0.60000 36    4   150 0.62         54.60             67              0.7         0.78   2.63  0.96380 37   36   116  01H 01H      0.1         78.23             98             0.71         0.64   2.59  0.99363 38   53    83 02H     0.51         22.58             34             0.36         0.82   2.59  0.44032 39   27   127
                        -0.53         64.38             91             0.34         0.42   2.58  0.93884 40   33    71  OIH O1H    -0.52         64.01             91             0.41         0.55   2.52  0.95737 41   58   106 OIH     0.57         51.90             70             0.36         0.54   2.47  0.84639 42   38   110
                        -0.11         59.05             69             1.55         0.71   2.45  0.99926 43    4    20  OIH 02H     -0.5         55.51             69             0.55         0.58   2.38  0.93375 44   65    97 0.56         47.13             67             0.22         0.59   2.37  0.68584 45   14   112  04H 0.62         59.73              96            0.37         0.46   2.36  0.95947 46    7    61   02H 0.39         60.17              79            0.71         0.56   2.36  0.98195 47   77   113   01H
                         -0.71        40.06              68            0.14          0.59  2.34  0.59673 48    3    57   OIH 0.12         51.43              68            0.87          0.59  2.34  0.98447 49    13   55   01H 01H     0.6         54.82              72            0.49          0.65  2.31  0.92425 50    8   148
                         -0.46        51.26              64            0.67          0.72  2.30  0.95118 51    4   28   OIH 02H     0.63        75.14              92            0.19          0.64  2.30   0.87526 52   26   40 02H     0.68        52.12              61            0.62          0.23  2.29   0.92814 53   16   140
                         -0.21        42.64              56              0.4         0.55  2.28   0.76174 54    6   116  01H O1H     0.52        51.38              72             0.41         0.39  2.28   0.88913 55   42    38                                                                                          C 01H    -0.18        65.06              81             1.66         0.55   2.27  0.99977 .1 56   32   108 0.46         70.58             82             0.34         0.69   2.25  0.90435 57   33    71  01H                                                                                     C C

Page 2 of 7

6/3100 Median Mp Values with Corresponding Voltage and POD for ANO2 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPSO PODAV 58 32 46 02H 0.7 68.32 82 0.82 0.62 2.21 0.99096 59 24 24 OIH 0.53 38.77 75 0.18 0.26 2.21 0.72352 60 31 49 OIH 0.75 40.81 69 0.22 0.77 2.20 0.70858 61 8 134 01H 0.48 90.09 100 2.49 0.56 2.16 1.00000 62 68 44 03H 0.54 56.22 85 0.19 0.98 2.16 0.82881 63 33 117 OSH 0.64 46.95 58 0.25 0.42 2.15 0.61279 64 68 112 02H -0.03 58.36 69 0.55 0.69 2.11 0.93375 65 40 116 01H 0.62 53.50 66 0.83 0.59 2.08 0.97857 65 60 108 OIH 0.63 57.33 67 0.41 1.08 2.07 0.85945 67 86 118 01H 0.39 38.84 61 0.41 0.52 2.07 0.81131 68 34 130 02H 0.47 23.67 44 0.44 0.48 2.06 0.67392 69 38 110 OIH 0.69 44.81 73 0.36 0.89 2.05 0.86632 70 20 52 OIH 0.75 62.59 79 0.53 0.51 2.05 0.95652 71 48 52 01H 0.66 72.17 84 0.49 0.51 2.03 0.95916 72 77 125 02H 0.36 62.31 89 0.3 0.82 1.99 0.91709 73 89 73 02H 0.55 52.38 74 0.24 0.67 1.99 0.78035 74 18 126 OIH 0.62 40.18 52 0.48 0.56 1.99 0.79634 75 53 109 OIH -0.65 45.74 60 0.56 0.57 1.98 0.90064 76 1 137 01H -0.36 33.71 61 0.44 0.59 1.95 0.83797 77 31 125 01H -0.47 35.89 57 0.41 0.59 1.93 0.78059 78 27 127 04H 0.62 33.29 50 0.36 0.62 1.93 0,65128 79 32 108 01H -0.61 57.71 98 1.66 0.68 1.92 0.99991 80 95 45 02H 0.64 63.85 86 0.43 0.43 1.92 0.95017 81 115 65 02H 0.4 54.06 66 0.55 0.41 1.91 0.92284 82 58 106 01H 0.35 43.07 64 0.41 0.55 1.90 0.83864 83 62 36 03H 0.35 17.96 61 0.34 0.59 1.89 0.75255 84 9 115 OIH -0.66 68.15 88 0.43 0.49 1.89 0.95506 85 55 95 OIH 0.69 35.66 60 0.29 D.75 1.88 0.68716 86 34 52 06H 0.89 41.01 55 0.62 0.43 1.87 0.90292 Page 3 of 7

6/3/00 Median Mp Valueswith Corresponding Voltage and POD for ANO2 COL TSP PO$ AVG DEP MAX DEP Bobbin Volts LENGTH MP50 PODAV ROW 0.46 1.86 0.96070 150 01H 0.66 55.20 69 0.66 87 10 0.34 1.86 0.66957 82 011-1 0.05 31.62 57 0.31 J 88 52 0.59 1.86 0.99961 C 150 03H 0.37 78.14 97 1.32 89 10 0.66 1.85 0.92232 52 01H 0.72 59.18 72 0.49 90 48 0.67 1.83 0.91198 85 03H 0.56 57.52 69 0.49 91 75 1.83 0.89899

                           -0.72         58.54             71             0.44         0.37 92    84    112  02H                                                                        1.81   0.86633
                           -0.19         53.76             75             0.34         0.44 93    28     36  02H                                                                        1.81   0.97026 0.63         72.09             91             0.48         0.49 94    84     76    IH                                                                       1.81   0.97015 0.69         56.10             89              0.5         0.54 95    12     56  02H                                                                        1.79   0.54771 33.79             45             0.33         0.62 96    61    115  02H      0.55 73             0.52         0.59   1.78   0.93768 97    67    111  O1H     -0.48         56.96 0.58          0.4   1.77   0.96600 11    155  02H      0.76         60.39             79 98                                                                                   0.84   1.77   0.90433 04H      0.52         69.31             77              0.39 99    29    123                                                                             1.74   0.92534 0.75         67.60             84              D.37        0.39 100     9    127 01H                                                                        1.73   0.93441
                            -0.71        63.46             72              0.52        0.46 101   65     125 02H                                                                               0.92868 78              0.44        0.64   1.72 102    63    115  01H     0.05         66.35 63              0.64        0.45    1.72  0.94087 103    83    109  OIH     -0.33        47.22 65              0.64         0.3    1.71   0.94671 104    83    109  011H     0.65        45.96 85             0.22         0.38   1.70   0.85132 105    77    83   02H     -0.33         88.27 63              0.59         0.42   1.70   0.92354 106   117     89  01H     -0.48         52.58 53             0.27         0.59   1.70   0.57379 107   123     99  01H     -0.34         31.70 51             0.33         0.65   1.68   0.62003 108    16    116  05H      0.43         32.45 69             0.89         0.71   1.65   0.98660 109    16    140  03H     -0.39         57.05 78             0.43         0.53   1.63   0.92509 110   12    148  02H      0.18         54.98 77             0.26         0.35   1.63   0.82334 111  102     98  01H       0.4         48.91 51             0.24         0.46   1.63   0.50564 112   20    132  02H     -0.07         44.10 82             0.41         0.83   1.62   0.93240 113    4    156  02H      -0.44        65.18 53             0.55         0.28   1.62   0.85488 114    6    138  0IH      0.61         43.40 65             0.33         0.39    1.62  0.78153 115    45    89  01H       0.64        56.67 Page 4 of 7

613/00 Median Mp Values with Corresponding Voltage and POD for ANO2 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MPSO PODAV 45.24 73 0.75 0.25 1.62 0.97932 116 121 113 01H -0.65 49.03 63 0.25 0.44 1.61 0.66885 117 46 126 01H 0.6 75.65 85 0.66 0.43 1.61 0.98339 118 67 57 01H 0.79 61.93 81 0.7 0.72 1.60 0.98301 119 36 116 OIH 0.17 60.78 86 0.2 0.94 1.59 0.84374 120 2 34 02H 0.1 50.59 62 0.59 0.38 1.59 0.91958 121 89 51 DIH 0.05 52.23 73 0.48 0.29 1.58 0.92443 122 7 119 D1H -0.13 43.34 52 0.43 0.87 1.57 0.75103 123 5 3 01H 0.61 55.72 69 0.54 0.34 1.56 0.92874 124 49 19 04H 0.8 59.29 80 0.2 0.29 1.53 0.79689 125 104 116 OIH 0.34 50.45 61 0.45 0.44 1.52 0.84135 126 45 69 02H -0.56 24.13 33 0.37 0.36 1.51 0.44057 127 9 127 01H -0.48 48.30 75 0.51 0.29 1.51 0.94097 128 39 111 01H 0.61 44.94 52 0.53 0.44 1.50 0.83459 129 12 30 OIH 0.73 73.49 97 1.82 0.52 1.50 0.99995 130 32 100 01H 0.16 37.79 70 0.33 0.44 1.49 0.82416 131 136 88 01H 0.36 42.86 57 0.22 0.36 .1.48 0.55948 132 6 140 02H -0.52 41.54 65 0.55 0.52 1.48 0.91886 133 8 128 01H 0.7 92 0.41 0.71 1.48 0.95846 134 106 90 02H 0.54 67.85 80.03 92 0.41 0.7 1.48 0.95953 135 42 38 01H 0.04 82 0.24 0.54 1.47 0.84505 136 11 13 03H 0.13 65.54 73 0.24 0.57 1.47 0.77101 137 119 65 04H 0.56 56.07 68.75 83 0.2 0.23 1.47 0.82154 138 104 116 01H -0.58 46.27 58 0.37 0.31 1.46 0.75230 139 26 144 OIH -0.3 61.02 88 0.39 0.41 1.46 0.94488 140 47 145 02H 0.6 42.42 57 0.3 0.45 1.45 0.65741 141 3 141 01H 0.33 85 0.3 0.56 1.45 0.89925 142 75 91 02H 0.11 63.89 75.57 86 0.66 0.3B 1.45 0.98384 143 10 150 01H 0.41 97 0.62 0.59 1.45 0.98944 144 5 153 07H 0.37 89.07 Page 5 of 7

63/300 Median Mp Values with Corresponding Voltage and POD for AN02 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MP50 PODAV 145 92 102 02H 0.62 68.08 81 0.24 0.35 1.45 0.83792 146 74 66 01H 0.79 39.47 69 0.68 0.65 1.44 0.96425 86 104 01H -0.49 35.29 54 0.37 0.42 1.43 0.70983 147 24 01H 0.59 58.84 69 0.31 0.28 1.42 0.79499 148 32 9 125 01H 0.35 50.99 61 0.27 0.46 1.41 0.67516 149 32 148 03H 0.53 68.59 79 0.36 0.56 1.41 0.89963 150 40 116 0IH 0.53 57.66 84 0.83 0.46 1.41 0.99228 151 21 109 01H 0.55 66.42 78 0.32 0.52 1.40 0.87236 152 38 144 03H -0.59 72.77 85 0.3 0.36 1.40 0.89925 153 6 138 01H 0.73 28.68 42 0.55 0.4 1.38 0,76038 154 40 56 03H 0.68 61.88 74 0.59 0.39 1.37 0.95782 155 75 89 02H 0.75 77.68 92 0.77 0.49 1.36 0.99339 156 75 45 02H -0.38 52.71 61 0.31 0.4 1.36 0.72110 157 136 03H 0.21 60.43 83 0.29 0.31 1.35 0.88355 158 24 159 6 136 01H -0.39 48.81 64 0.37 0.38 1.34 0.80776 42 142 01H 0.54 49.59 61 0.33 0.41 1.34 0.74236 160 161 44 72 01H 0.07 53.64 95 0.29 0.45 1.33 0.93518 84 112 02H 0.51 59.16 98 0.44 0.79 1.33 0.97472 162 49 77 01H 0.78 85.14 98 0.52 0.39 1.33 0.98288 163 63 123 02H 0.4 81.83 93 0.31 0.59 1.33 0.93542 164 143 01H 0.69 79.25 87 0.33 0.33 1.32 0.91940 165 11 23 143 01H 0.81 30.46 53 0.38 0.25 1.30 0.70409 166 57 01H 0.71 40.11 58 0.75 0.39 1.30 0.95367 167 13 11 143 01H -0.15 50.78 69 0.33 0.39 1.2T 0.81619 168 42 78 01H -0.72 56.03 68 0.36 0.72 1.26 0.83180 169 33 03H 0.48 80.71 99 0.24 0.18 1.26 0.93097 170 35 67 119 OiH -0.1 79.31 93 0.26 0.31 1.25 0.91644 171 7 119 01H 0.14 48.16 67 0.48 0.29 1.24 0.89819 172 10 148 01H 0.8 46.19 56 0.35 0.33 1.24 0.71003 173 Page 6 of 7

6/3=0 Median Mp Values with Corresponding Voltage and POD for ANO2 ROW COL TSP POS AVG DEP MAX DEP Bobbin Volts LENGTH MP5O PODAV 174 7 113 0111 0.6 65.75 92 0.87 0.33 1.23 0.99591 175 38 114 02H -0.11 47.70 63 0.32 0.42 1.22 0.75257 176 120 114 03H 0.81 57.03 67 0.56 0.28 1.22 0.93002 177 92 100 02H 0.63 48.80 67 0.46 0.68 1.20 0.88828 178 11 135 03H -0.28 33.88 47 0.22 0.33 1.18 0.42365 179 53 109 01H -0.02 24.88 47 0.56 0.15 1.18 0.81748 180 66 28 02H -0.56 50.50 66 0.27 0.36 1.18 0.73144 181 84 116 02H 0.65 33.46 57 0.36 0.82 1.15 0.72637 182 104 100 02H 0.36 66.75 82 0.29 0.85 1.13 0.87500 183 4 150 01H 0.68 45.95 66 0.26 0.43 1.11 0.72053 184 5 21 03H 0.15 56.10 72 0.32 0.43 1.11 0.83181 185 57 83 01H 0.46 35.93 53 0.27 0.49 1.11 0.57379 Page 7 of 7

mm -W ~I 14- Z r-wI.~Y 1 ~ 1446 S. R. 333 ARKNSA NULA ONE Rusotvi~ll, AR 72802 ENEG OPERTION FAX 50 1-8848854 Faxc T. fM-77ý/§s DUvgnt 13 For Rvmtw 13 Plese Comment 03 Plows. Reply D Plean" Recycle

Mp Values Based on Best Estimate Calculations For ANO2 The attached sheets (CASES 1-3) are a listing of the Mp calculations based on the best estimate conditions for the ANO2 steam generators. The analysis is based on the following inputs to the model:

1. Probabilistic growth rate as determined from the ANO2 data randomly assigned to the value.
2. Conservative depth measurements based on profiling the 2P99 data set per the Westinghouse methodology.
3. Using a POD based on a site specific performance demonstration using pulled tube data and an improved POD beginning in 2P99. The improved POD reflects the use of a new calibration standard, which results in improved flaw detection.
4. Using the following operational runtimes:

Actual Temperature Corrected 2R13 to 2P99 0.69 0.72 2P99 to 2P00 (June 15) 0.54 0.56 2P99 to 2R14 (Sept. 15) 0.80 0.83 Case 1 is the beginning of cycle for conditions for cycle 14 Case 2 is based on operating from 2P99 to the proposed tri-cycle 2P00 (June 15th) Case 3 is based on operating from 2P99 to the proposed refueling outage 2R14 (June 15th) Both the tabulated data as well as a graphic is attached for each case.

5. The following arm outputs from the operational assessment:

2R13 2P99 2P00 2R14

  1. Of intersections 69 154 56 with detected flaws
  2. of undetected flaws 72 82
  3. of initiated flaws 112 87 42 The number of initiated flaws is based on 156 per EFPY.

The above numbers are based on intersections. This is because the bobbin coil is used for detection and can typically identify only one flaw per intersection. The total number of flaws in 2P99 was 185 in 154 intersections. The 185 were determined from RPC analysis of each intersection. The tables are categorized by the Mp and CDF values in ascending order. The following is an index of the titles: Mp Tearing Modulus CDF Cumulative Distribution Function

Cumulative Distribution for Mp at Beginning of Cycle Conditions for ANO2 (CASE 1) 100 90 80 70 60 50 EýCFLý 40 30 20 10 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Cumulative Distribution for Mp at Mid-Cycle Conditions for ANO2 (CASE 2) 100 90 80 70 60 50 [-CF 40 30 20 10 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Cumulative Distribution for Mp at End of Cycle Conditions for ANO2 (CASE 3) 100 90 80 70 60 50 40 E-7iDF1 30 20 10 0 1 2 3 4 5 6 7 8 9 10 7 8 9 10

I -wIv r - v If11ý 4UWJ

                                                                               . Ujv Mp and CDF Values for the Beginning of Cycle Conditions for ANO2 (CASE 1)

Mp CDF Mp CDF Mp CDF 1.0 0.00000 5.1 0.99968 9.2 0.99991 1.1 0.06777 5.2 0.99970 9.3 0.99991 1.2 0.47099 5.3 0.99973 9.4 0.99991 1.3 0.71055 5.4 0.99973 9.5 0.99991 1.4 0.82756 6.5 0.99073 9.6 0.99991 1.5 0.89105 5.6 0.99974 9.7 0.99991 1.6 0.92681 5.7 0.99975 9.8 0.99991 1.7 0.94922 5.8 0.99976 9.9 0.99991 1.8 0.96363 5.9 0.99976 10.0 0.99991 1.9 0.97313 6.0 0.99976 2.0 0.97940 6.1 0.99977 2.1 0.98441 6.2 0.99980 2.2 0.98805 6.3 0.99980 2.3 0.99067 6.4 0.99982 2.4 0.99240 6.5 0.99983 2.5 0.99382 6.6 0.99983 2.6 0.99489 6.7 0.99983 2.7 0.99566 6.8 0.99983 2.8 0.99634 6.9 0.99984 2.9 0.99690 7.0 0.99985 3.0 0.99727 7.1 0.99985 3.1 0.99759 7.2 0.99985 3.2 0.99791 7.3 0.99985 3.3 0.99815 7.4 0.99985 3.4 0.99835 7.5 0.99986 3.5 0.99851 7.6 0.99986 3.6 0.99866 7.7 0.99087 3.7 0.99881 7.8 0.99988 3.8 0.99889 7.9 0.99988 3.9 0.99902 8.0 0.99988 4.0 0.99914 8.1 0.99988 4.1 0.99920 8.2 0.99988 4.2 0.99932 8.3 0.99988 4.3 0.99935 8.4 0.99988 4.4 0.99942 8.5 0.99988 4.5 0.99948 8.6 0.99988 4.6 0.99953 8.7 0.99988 4.7 0.99954 8.8 0.99988 4.8 0.99959 8.9 0.99988 4.9 0.99961 9.0 0.99988 5.0 0.99964 9.1 0.99991

MT.Ip fIj.LY FIWII.J-flv U.) I Mp and CDF Values for Mid-Cycle Conditions for ANO2 (CASE 2) Mp CDF Mp CDF Mp CDF 1.0 0.00000 5.1 0.99911 9.2 0.99975 1.1 0.03814 5.2 0.99918 9.3 0.99975 1.2 0.37439 5.3 0.99922 9.4 0.99976 1.3 0.64071 5.4 0.99923 9.5 0.99977 1.4 0.78234 5.5 0.99926 9.6 0.99978 1.5 0.86098 6.6 0.99020 9.7 0.99978 1.6 0.90716 5.7 0.99932 9.8 0.99979 1.7 0.93485 5.8 0.99936 9.9 0.99980 1.8 0.95272 5.9 0.99938 10.0 0.99981 1.9 0.96468 6.0 0.99940 2.0 0.97263 6.1 0.99942 2.1 0.97850 6.2 0.99944 2.2 0.98273 6.3 0.99945 2.3 0.98593 0.4 0.99946 2.4 0.98840 6.5 0.99947 2.5 0.99016 6.6 0.99949 2.6 0.99182 6.7 0.99951 2.7 0.99308 6.8 0.99952 2.8 0.99392 6.9 0.99954 2.9 0.99469 7.0 0.99955 3.0 0.99512 7.1 0.99957 3.1 0.99577 7.2 0.99959 3.2 0.99621 7.3 0.99959 3.3 0.99646 7.4 0.99961 3.4 0.99082 7.5 0.99981 3.5 0.99716 7.6 0.99962 3.6 0.99749 7.7 0.99962 3.7 0.99767 7.8 0.99963 3.8 0.99779 7.9 0.99964 3.9 0.99792 8.0 0.99966 4.0 0.99808 8.1 0.99967 4.1 0.99820 8.2 0.99967 4.2 0.99833 8.3 0.99967 4.3 0.99844 8.4 0.99969 4.4 0.99859 8.5 0.99969 4.5 0.99864 8.6 0.99971 4.6 0.99877 8.7 0.99971 4.7 0.99882 8.8 0.99973 4.8 0.99892 8.9 0.99973 4.9 0.99899 9.0 0.99973 5.0 0.99905 9.1 0.99974

MAY-1I-UU It:4U ýrom:ANU U5 I ]-Ulu rUz/Uz JUD-000 Mp and CDF Values for End of Cycle Conditions for ANO2 (CASE 3) Mp CDF Mp CDF Mp CDF 1.0 0.00000 5.1 0.99843 9.2 0.99934 1.1 0.03554 5.2 0.99850 9.3 0.99935 1.2 0.33866 5.3 0.99857 9.4 0.99936 1.3 0.60814 5.4 0.99864 9.5 0.99937 1.4 0.75898 5.5 0.99870 9.6 0.99938 1.5 0.84297 5.6 0.99873 9.7 0.09038 1.6 0.89274 5.7 0.99875 9.8 0.99940 1.7 0.92393 5.8 0.99881 9.9 0.99940 1.8 0.94408 6.9 0.99884 10.0 0.99941 1.9 0.95741 6.0 0.99887 2.0 0.96648 6.1 0.99888 2.1 0.97288 6.2 0.99892 2.2 0.97781 6.3 0,99892 2.3 0.98165 6.4 0.99898 2.4 0.98469 6.5 0.99899 2.5 0.98684 6.6 0.99901 2.6 0.98851 6.7 0.99903 2.7 0.99004 6.8 0.99904 2.8 0.99140 6.9 0.99906 2.9 0.99233 7.0 0.99908 3.0 0.99320 7.1 0.99911 3.1 0.99387 7.2 0.99913 3.2 0.99454 7.3 0.99916 3.3 0.99495 7.4 0.99916 3.4 0.99549 7.5 0.99916 3.5 0.99579 7.6 0,99917 3.6 0.99615 7.7 0.99918 3.7 0.99640 7.8 0.99919 3.8 0,99669 7.9 0.99920 3.9 0.99695 8.0 0.99921 4.0 0.09711 8.1 0.99922 4.1 0.99731 8.2 0.99924 4.2 0.99743 8.3 0.99926 4.3 0.99760 8.4 0.99928 4.4 0.99776 8.5 0.99929 4.5 0.99786 8.6 0.99930 4.6 0.99794 8.7 0.99930 4.7 0.99805 8.8 0.99930 4.8 0.99819 8.9 0.99932 4.9 0.99831 9.0 0.99933 5.0 0.99837 9.1 0.99934}}