L-76-243, Letter Regarding Conditions of License and Requesting That Authorization for Operation Beyond June 30, 1976 Be Granted
| ML18098A044 | |
| Person / Time | |
|---|---|
| Site: | Saint Lucie |
| Issue date: | 06/30/1976 |
| From: | Robert E. Uhrig Florida Power & Light Co |
| To: | Ziemann D Office of Nuclear Reactor Regulation |
| References | |
| L-76-243 | |
| Download: ML18098A044 (58) | |
Text
NRC FORM 195 U.S. NUCLEAR REGULATORY C
<<SSION 12 Vs)
NRC DISTRIBUTION FoR PART 60 DOCKET MATERIAL DOCKET NUMBER 50-335 FILE NUM8ER Mri D. L. Ziemann,',
FROM; FPL Miami, Fla.
R.E Uhrig DATE OF DOCUMENT 6 30-76 DATE RECEIVEb 7-6>>76 SLETTER QORIGINAL QCOPY
'NOTORIZED tBUNC LASS IF I E 0 PROP INPUT FORM NUMBER OF COPIES RECEIVED r
1'igned DESCRIPTION Ltr r'e their 6-22-76lltr. ~ ~ ~ trans th following!
ENGLosURE /Addi info on ".Reactor Containment Fan Cooler Motor General Design Philosophy" (1 cy encl rec'd)
PLANT NAME:
St, Lucie Unit 1 Algi05I. @gF SAFETY ASSIGNED AD!
BRANCH CHIEF:
PROJECT MANAGER!
LIC~
ASST'
FOR ACTION/INFORMATION ASS NFD AD'RO F. T tfAN
~
E'G FIL NRC PDR I &E OELD gl GOSSXCK & STAFF HXPC CASF.
HANAUER A
ES INTERNALD SYSTEMS SAFETY HEINEMAN SCHROEDER ENGXNEERXNG MACCARRY KNIGHT SI}WEIL PACILIC KI ISTRI BUTION BENAROYA IPPOLITO KIR100OOD OPERAT NG REACTORS SITE SA F.NV RO N
PROJECT.t fANAGEtfEN BOYD P
COLLINS HOUSTON PETERSON HELTZ lIELTEa~iES SKOVHOLT LPDR!
P TIC:
NSX
~
ASLB ACRS CYS HOLDING REACTOR SAFEIIY ROSS NOVAK ROSZTOCZY CHECK AT&X SALTZIfAN RUTBERG EXTERNALDISTRIBUTION NAT LAB!
REG VIE LA PDR COtlSULTANTS OPERA N
C EISENll SHAO BAER BUTLER GRIMES BR OKIIAVEti NA ULRIKSON ORNL S
. A CONTROL NUMBER 6694
'BC FORM 196 (2-2G
~
~
~ ~ ~ ~
AIM/j~
FLORIDA POWER 5 LIGHT COMPANY June 30, 1976 L-76-243
~
gogIIlatory Docket File Office of Nuclear Reactor Regulation Attn:
Mr. Dennis L. Ziemann, Chief Operating Reactors Branch I2 Division of Operating Reactors U.
S. Nuclear Regulatory Commission Washington, D.
C.
20555
Dear Mr. Ziemann:
Re:
St. Lucie Unit No.
1 (Docket 50-335)
Conditions of License My letter L-76-233 to you dated June 22, 1976, provided in-formation pertaining to demonstration that the requirements of Conditions of License E.l and E.2 have been satisfied.
My letter L-76-239 to you dated June 28, 1976, provided a
commitment to remove the temporary earthen construction dike associated with construction of the permanent, ultimate heat sink (UHS) barrier dam required by Condition of License E.2 by July 31, 1976.
i Information concerning FPL compliance with Condition of License E.3 was forwarded to you by my letter L-76-227 of June 14, 1976.
Information concerning Condition of License E.4 was forwarded to you by my letters L-76-208 and L-76-222, dated June 14,
- 1976, respectively.
A commitment to modify the St. Lucie Plant Security Plan to address the items transmitted to FPL by Mr. R.
D. Silver of your office by telecon on June 23,
- 1976, was provided in my letter L-76-237 to you dated June 25, 1976.
On June 29,
- 1976, a meeting was held between Florida Power 6
Light Company and the Nuclear Regulatory Commission Staff in Bethesda to review the status of St. Lucie Unit No.
1 Condi-tions of License, E.l, E.2 and E.3.
As indicated
- above, the requisite information concerning UHS erosion protection (Condition E.l) and the UHS permanent barrier dam (Condition E.2) has al'ready been supplied which, we believe, fulfillsour June 30, 1976, requirement to satisfy these two license conditions.
We also agree to provide, by August 31,
- 1976, the additional information concerning flanking 86M HELPING BUILD FLORIDA
l
~A r
To:
Dennis L. Ziemann Re:
St. Lucie Unit No.
1 Conditions of License June 30, 1976 Page of the sheetpile groins and bulkheads requested by the Staff in the June 29, 1976 meeting.
Until this supple-mentary information is provided and reviewed by the Staff, the following interim operational action will be established:
If a hurricane or a tropical cyclone landfall is predicted for eastern and southern Florida, FPL will notify the Nuclear Regulatory Commission.
The Facility Review Group will assess whether or not power operation of St. Lucie Unit No.
1 is to be continued.
Continued power operation will be with the concurrence of the Company Nuclear Review Board.
The requisite information concerning the balance of plant electrical equipment QA audit (Condition E.3) has been supplied as indicated
- above, thus fulfillingour June 30, 1976, requirement on this condition of license.
Additional information regarding containment fan cooler motor qualifi-cation presented to the Staff in the June 29, 1976, meeting at their request is also enclosed.
We intend to also pro-vide the Staff with further information regarding the ana-lytical techniques employed in the seismic analysis of the containment fan cooler units by August 31, 1976.
On the basis of the above, FPL believes that it has satisfied all of the conditions contained in Section E of Enclosure 1
to the St. Lucie Unit No.
1 Operating License, and hereby requests that Section E be deleted and that authorization for operation beyond June 30,
- 1976, be granted.
Yours very truly, PAit m~p'p Robert E. Uhrig Vice President REU/LLL/hlc Attachment, (Responses to NRC Staff Questions 1-4 on Condition of License E.3) cc:
Norman C. Moseley, Region II Jack R.
- Newman, Esq.
O~
n
regulatory Docket File REACTOR CONTAINMENT FAN COOLER MOTOR GENERAL DESIGN PHILOSOPHY The design of the Reactor Containment Fan Cooler Motor results from a series of'equirement and selection processes which begins with a selection of the "overall" Reactor Containment Fan Cooling System Design.
Once the overall system has been identified, the main cooling coil heat exchanger requirements are established.
These requirements are based on containment temperature requirements for normal, accident and/or post accident conditions, whichever is limiting.
Following the establishment of the main cooling coil requirements, a fan design is chosen to be coupled to the main coil.
At this point the fan blading and fan speed are selected as part of the overall fan design.
Based on the selection of fan design and'ontainment cooling requirements, the fan horsepower motor requirements are determined for all three operating conditions (normal, accident and post accident).
The motor designer then selects an adequate motor frame for the intended load application.
The motor. designer calculates the motor losses including the steady heat loss which must be removed to maintain normal winding temperature:
This total kilowatt loss taken together with the shaft driven fan pressure-volume curve and cooling water temperature establishes the motor heat exchanger design.
Electrical motor characteristics,'uch as efficiency, are then calculated and verified after the windings have been selected to meet specified horsepower, rise and torque valves.
In specifying the design features of the motor, the checklist provided in response to question 1 below is utilized to insure MCAP?829 applicability.
Specific motor heat exchanger requirements for St. Lucie's an cooler motors are provided in response to question 3 below.
~
~
Westinghouse has stated the motors qualified by WCAP 7829 had a
NEHA frame 588.5.
PSL-1 has a frame size 5010L.
Provide motor characteristics changes, if'ny, for PSL over motor qualified by Westinghouse due.to frame changes.
~Res onse:
Table 3 is a listing of the specific electrical motor characteristics associated with PSL-1 Frame 5010L and WCAP Frame 588.5.
It should be noted that WCAP Frame 588.5 has an ultimate 600 HP 2 or 4 pole capability and has been used up to a 300 HP capability for containment fan coolers in various plants (see Table of FPL Submittal of 6/14/76).
The PSL-1 5010L Frame has an ultimate 700 HP 2 pole capability and is used at St. Lucie to a 150 HP maximum design basis profile, thus being applied considerably more conservatively.
The PSL-1 design features shown in attached Table 1 list the motor design features required to comply with motor post accident WCAP 7829 qualification profile and are noted with references to document their conculsion in the design of the PSL-1 motor.
As noted in Table 1, these design features are qualified per Table 2 of WCAP 7829.
(Page 10).
Current, efficiency, power factor and other electrical characteristics (see Table 3) are calculated and verified after frame/winding/horsepower/temp.
rise/torques are chosen for the specific application.
Calculations are based upon commonly known motor. design expression which have been specifically verified by actual complete factory tests for the PSL-1 machine.
Results of these tests are shown on attached Westinghouse 9/21/73 Factory Test Data.
r'!
r I
1 C
(I oject ST.
LUCIE File No. XARN 80010 Date Ju
~
CONTAINMENT MOTOR CHECKLIST DESIGN FEATURES REQUIRED TO COMPLY HITH MOTOR POST ACCIDENT STEAN TEST LICAP 7829 REFERENCE DOCUYiENT
~
Heat exchanger supplied by others and mounted under motor.
DMG 8223025 Rev. l.
Labyrinth sealed anti friction bearings.
(Bearings heat stabilized. )
a.
Rear bearing sepl assembly similar to MLAC Ovg.
58C1636.
b.
Inner bearing seal similar to llLAC D(g. 58C1636..
c.
Outer seal per sketch sheet signed by J.
Boyd on 4-7-70.
One bearing must be locked.
Buffalo letter of
Aug. 1; 1973 by A. F. Pierpaoli DSF 02717 Bearing looseness
- 0.0012 to 0.0023 in.
Grease"drain for vertically mounted motors shall be horizontal; for horizontally mounted motors drains shall be vertical.-
Lubricant shall b'e M S8773A773-G05 grease.
Thermalastic epoxy Class F insulation with one class above N.P.
rating i.e.
2300 volt insulation using hand layed mica for a 460 volt motor.
'pace heaters required.--
Yibraswi tch required.
Ground pad.
Oversized conduit box.
Lead length to extend to center of conduit box.
Dwg. 4198A48 OSF 02717 Dwg. 8232016 Evg.
8232D16 Rev.
5 Rev.
5 Rev.
5 Dwg. 8232D16 Ovtg. 8232016 Rv.5 Dwg. 8232016 Rev.
5
.- Dwg. 8223025 Rev.
1 DSF 02717 Flexible leads and
<661118 lead cable'ilicone rubber insulated DSF 02717
- l. 'ead seals and other holes in frame to be sealed with Ecobond 0787 1.15 service factor - 70'C rise by resistance
- 40'C air 60'C rise by resistance
- 50 C air Spring loaded, tip grounded bearing thermocouple if required. ---
Six 10 ohm stator RTD's if',required.
Owg. 4198A33 Dwg. 8232D16 N/A Rev.,
1 Rev.
5
.0 TABLI (Continued)
.=.,REFER" HCE DOCUMEHT 8.
Hotor lifting lugs.
9.
Mater drain fittings required on motors without heat exchangers
',0.
Ho aluminum or zinc rotors-only brazed copper rotors. -
Alkyd primer removed from all brackets, frames and conduit boxes
'by sand or shot blasting.
The first coat over bare natal to be epoxy WPDS53841FD.
Normal process coatings applied to stator also to be applied to other exposed metal parts.
Others will-.--
apply subsequent final coats.
Rotor shaft shall be unpainted.
!2.
Omit internal paint finishes.
!3.
Windings can be single or dual.
!4.
Insulation hot spot in steam to be 200'C.-
Dwg. 8232D16 Rev-.
5 H/A E-Spec.
G-677107 Rev.
2, Dwg. 8232D16 Rev.
5 D/H 005189 Dwg. 8232D16 Rev.
5
!5.
Any motor mounting configuration is satisfactory
!6.
equality control PCS-1 is required.-
'!7.. Parallelism between
.frame feet and air duct flanges to
'e + 0.020 inches.
P.O.
546-CXF-162747
'I r I
Dwg. 8232D16 Rev..l
~
~
~
~
)e
~
~
e
~
~
~
& L.Vc,)L=
" $ C~eCA-p TYPICA1 HOTOlt'ESIGH PARAMETERS COYPARED TO TEST BACllIHE Ope rat ionj Statu Hnca nl D.P.,
Event St.'ucie Pnat I:.vr.nt Hoz)0al De Pe.
Event Pont Event Hozeal Deh.
Event Post Event lloznal.
D.G ~
Event Teat Yacc)ire Post Event
~ Zg~)e o: u r
Ho. nf )Iotozs cr lant Frar.e Site (IIFIIA)
Franc uc.
~
RcarlnC Rtrc 'C' ieeles~ee~
'r.
Risc. of 1n.
'8 taLJr "~
Vnlcnrc +
107.
Frc s)rncy
+
5X II))rsc Pnucr Poles 501 O-T.
2G20 15 39.1
- 32. 3 71.4 i) 6)0 60 75 12 62.3 32.3->>i23 105. 8 7].rr)0'5 4)60 460 60 60 150 100 12 12 2ie 20 2li20 9
9-15
- 43. 5 391<)') ')
ceo c
3300 76 16 9')
460 60 2O
]') p 460
~ ee
~ ~>>
e 10 I
~ e) e
~ 0 F )11 Lnnd R.P.H.
596.
592 594 1 7'I 1 Servlrr Factor L.15 1.15 1.15
- l. 15
- l. 1.5
~ '
Flel l
! noel n.l')s
~
138 203 157 St(re!)gi
~ 'Cnr ue 7.
')I> J Jy)d Tn~>>
Pollnnc Tor
))e
.'r.
1 fftrlrncv F.L..
Pnurr Fartnr F.l..
I') cr I'nrcnr Lot~cd
<* Mr1ze
.':or!err of ulndlr.ts 194
)G0.5.
1'.S l3. 9 26.1 1055 3 055 14")
1330 24i) 36)7
- 91. 5 91.4 66.8 74).8 26.1 26.1 58 59 Sn. r
- 72. 3 88 "3 5.
87e7 02 7
g7 4
- 28. 5
- 33. 6 llGe 0 144. 3 e ) ~ 3' 1
oS
~\\
87.4 33eo 5 c n r c s Ih r n t a r.l),
Scarc
. nt rnccrl tocal tc)o eeocof lenaGcs err).1RCD I I.C11.1hII IF~
llcac Lac'.)anCcr 4
4)7:
Ic.i ~ac.&
148Nr 4>c
- 6. 7K@
4 3597 2116 2116
(!1 I:i < r) 'nr ee Idio In n)r)cal con!itic))
~
~
O'. Al'I\\.T 01 Tgg~"1'~Tg
I I
a l
~
~
Tabla 3 (Continued)
~
~
TYPXCAI NOTOR DESIGN PARAMETERS COMPARED TO TEST MACHINE' r
Oporniinn In(un St. Luc'ia 1'lanta 1'.,
F Plant C
Teat Machine Normal D. ll.
Event Pont Event ttorsaal D.B.
Event Post Event ttornal D+Do Event Poat Event homal D.D ~
Event Post Evcn-ACCESSORY KQUIPtlEhT Bcartn T.C.
Bearing Vfbrasuftch Stator R.T.D.
4 APPLICATIOtt NO YES NO Fan Cooler Air Recirculation
~
Fan Cooler YES YES ES Any
~
~
~
~
~
~
~
( ~
~,
~
~
~
~
~ ~
~ ~ 0
~
~
~
~
r
~ N t,(
~
0(
~ ~
~
~
~
~
~
~
~
~
~
I
~
~
~
~
~
~
~
~
~O
~
~
't
~ i v
~~
~
~ ~
~
~
~
~
~
~
l, ~
~
I
~
~
~
~
~
I
~
~
~
~
~
~
t
~
~ ~
~l
.1
)
h
~
~
~
d Date X. l 9~ 21/73 72F90923 Stock Order No.
BUFFAI 0, N.Y.
ht
~
l hhhh-hh 'hathi o o N
546-CXF-162747 t 7 N.P.
75 YlhMM Ph ~CI estinghouse Eiectric CorpoOlon Apparatus 50I fISM IIP Amperes Per Terminol ot no load 460 Volts Watts Input at no load Stator Res. (T-T) at 75'
~ ohms Starting Winding Res. at 75'C ohms
- Rotor Res. (bet rings) at 75' ohms LOSSES IN WATTS AT FULL LOAD 150 112 6
3650 0 05 75 ht.dh,.dL
$9/
chhl SO I
c 0 uid s rd t 5 Di
'Stroy Load I oss Stotor g2 R Loss Rotor 2R Loss Core Loss Friction and Windage I oss
,C Efliciency Full f oad I Load
- 5 Load 8
815 807 2311 1553 378 2119 2119 257 260
.4 '0.5 91.5 '8.9 90.5 '5.3 Stator R s a
.0593 hh 5
.05935 Stat r Bore-
% Power Foctor Full Load
'- Yi Load
- 5 I oad 66.8 44.6 3.
33.2 V b RPM at Full Load Amperes Per Term. ot full load KW input at full leod Amperes per Term-Rotor locked
'KW input - Rotor locked Mox. Sec. Volts between rings Sec. Amps per ring ot full load Full I ood Torque (F.L.T.) in lb. ft.
122. 46 1055 262
- 61. 835 660.6 207.6 143.9 F-Max. Torque'in
<<d~r of F.L. T.
Storting Torque in
<<d ~ of F.L.T.
End Play Tested h
Bolonce Tested Stator Ins Tested 2QQQ V
6Q Sec. 250 O.K
.K O.K 487 232 Rotor Ins Tested TEMPERATURE TESTS
'I.ength of Test in hours
'Volts Sec.
5.5 5.5 Stator Capper by ReS
~
Temp. Rise kn degrees C Stator iron Rotor Copper Rotor Iron Rhett)4rt(dAatisvd js C
ddhd IF IIL ddd, 100 62.3 55 34i
.3 Yhs die-<< is a true and correct record of data obtained from tests made at the w i s o
~ s in use Electric Carporation.
i::POIIT OF TESTS ON INDtlCTIONMOTORS rah'dd 2g'ASK Signed
/~'l~/Pad ~d r
~
Engineer
Qaoo so/0
/J"o/rs-i/g 540 Yyc.~s 3 @ 6'~ pz /D/ ouch z g g< poqv3
~
geo
/000 Q,S~~<c>>
937&3 /
Cus 7 ~jraces 7' gag p 3 o o.
75 0
/ago goo
+0 0
~y p
/0 0 QS'D p~e~
gP g CP.
es
/
QO p'l c;
to Coo 80 IS49'>>
~O
~0. $0 /30 goo
/00 p d 0 VDL~$ 3 p 0
~
pe-.
I l J
rS
~
~
~ fo Pgc'p 9o /O"
O IJ L1D0 I-n
~Q0,
- Ql CP0
~
~ ~
I
$ 00 I
I
.'* /00
~
~
I
=
~
~
~
~
~
~
~ t" I', I I
~
~
~ ~,
~
~
~
~
~
):
~
~
. I l '
~
~
~
~
I ~
~
~
.:I...
~
.\\
l
~ I I
~
I
~
~
~ ~ ~ ~
l I
I
~ l
~ ~
~
~
~ I I
~ )
I I",
.: "!";.-" -:::I': i I
I
~
~
~
" ~
i.'.".l.!
I II
~', ~
~ ')
~
~,'~
~
~ ~
..'I
)
~ ~
~
~
~
(
~
I AI
~ ~
l
" I -".=
~
)
.le I
~
I
~
~
I ~"
~ t
'l
~o/P uF-
~
~
~
G "t9n<s POV p.o o
)oo
/Qadi
/00 0
/POD<
/Pi o
/4'o O 9"oo
/Zoo
/4~o Q~oo P 9'p g QFo0 3000
VFESTIN~TIOUSE ELECTRIC CORPORA~N
~OTOR DIVISloiV~ BUFFhLO~ N Y REPORT OF COMMERC(AL TESTS INDUCTION MOTOR DATC 9/18/73 5TYCC HO ~
5 ~ O.HOe 72F90923 C,O,HO, 546-CXF-162747-L7 tVACHASC+ 5 G+GC t Ho,
~ VIICHASCA LJNES - Florida Power E Liaht NAME PL ATE DAT A HE P, SPEED PHASE FREQ.
VOLTS AMPS.
TYPE F RAME
- TEMP, RISE TIME RATING OESIGN OCHCO KvA ILETTERI cooc LcTTce 75 596 60 460 138 HStJ2 5010L 60'C Cont.
TEST CHARACTERISTICS SERIAL NO ~
YGLT5
- rHco, NO LOAO 5 ~ CCD ANtS.
VOLTS rHCO.
AHts ~
Yibra ion LOCKED ROTOR OtsH CIICVIT YOLTACC (WOVHO AOTOIII OIELECTRIC T ST 460 60 600 110.6 3680 112 452 60 850 F-.OO 1
R-.OO 06 2000 113 Stato Pes.
at 26 5'C -.0603
.06 A-.OO 05 3 -
603 Heater 120 2.03 460 60 600 112 '
3920 452 60 850 F-.OO 15 2000 113.6 R-.OO 17 113.6 Stato Res. at 31 5'C -.0608
.06 A-.OO 1
8-. 608 Heater 120 2.05 1240 460 60 600 114 3600 460 60 890 F-.OO 22 116 R- 00 114 A-Heater 120 State Res.
at 29 2.05 C-605-06n5 06 5
TESTS ON THIS MOTOR OUPLICATE APPROVED BY CHC IHCCA
WESTI SPOUSE ELECTRIC CORPOILfON
~lOTOR DlVlslON, BUFFALO, N.Y.
REPORT OF COMMERCIAL TESTS INDUCTION MOTOR DATE 9/25/73 5TVL C NO ~
5 ~ 0 ~ HO ~
73F56688 0,0. AO ~
546-CX F-162747-L7
~ URCHASCR'5 OROCR h0.
PURCHASER WiNES NAME PL ATE OAT A HE P.
SPEED PHASE FREO.
VOLTS
- AMPS, TYPE FRAME TEMP.
RISE TIME RATING DESIGN
{LETTER)
Ii, OCR EO AVA COOE L 'ET TC R 75 596 3
60 460 138 HSW2 5010L 60'C Cont.
TEST CHARACTERISTICS SERIAL NOe VOLT5 NO LOAD FREON SREEO ALIRS ~
Watts VOL T5
- FREO, Vibra ion 1 Phase LocKED R0T0R OR ~ ii CIRCUIT VOL TAOE (ROUHO ROTORI DIELECTRIC TEST 460 60 600 118 4000 400 60 747 F-116.2 Stato Res. at 26 5C-Heater 120 2.09 Wa er T Wat r Tem 0
- 25 Ins 1.
Re in Ins 1
Re in at r Oie ectri Test in Wa Ins 1
Re in 1
Ins 1
Re TESTS ON THI S MOTOR
'UPLICATE APPROVED IIY r'
)V//z."~
CiiC tiiCCR C)
OAT f'.
G.O.
8546-CXF-162747-L7 S;0.8 72F90923 MATER TEST Ins u
~ ~
Pll s ~ in Air -
1 Min.
SERIAL //
Water Temp. 'C Insul.
Res. in Air -
1 Min.
Insul. Res. in Water -
1 Min.
Dielectric tes t in water 500V -
1 Min.
Insul.
Res. in Water -
1 Min.
21.1 2
~
3 25 25 6000 2500 2500 5000 2000 1800 O.K.
O.K-O.K.
5000 2000 1700 10000 5000 5000 25.6 5000 3000 0.K.
4000
.10000
~
~
~ ~
r
~
~
I
~
~ I
./M If j;'J e
I A. C.'fOTOR ItgSi"ECTION TAC WEITINCIIIIUlCSOIIII 50353 ASSEilIBLY.
.S.O
~
~~
~ >
S..
Outlin'e Dwg~
, Eyebolt tight and correct lengtl l Winding neat and free from dama
\\
- Indde of frame cican ar'.d frcc from cuttings Stator bor 6r 9 Rotor bor
~ Ia 7
'earing SP Fron
~4 Bearing S-"
Rear 1 Rotor fan for correct rotatio I
Assembly std ~
Opp. std
~ Oil or grease pipe fittings o.
'Oil ring Oil Leve
~
~
'I
~ End play
'l;aft extension pcr outlin Sliaft run nu Pace run ou
- Fit run ou
" Collector rings eccentricity I Bn'.shes S~
( Brtsshes line up with rin j Receiving and bearing seal o I'nsulation tcs
! Lubrication ok l Docs information call for thcrmoguard.
brake adapt-
'er, speed switch, ctc.
- Remarks
I
Following itcrrrs as pcr irrforrrration:
Nameplate Frame Shaft Ext.
Connectors Lead Ext.
Keys Finish Grcaac pipes and fittint;s
'ustonrer mounting dimensions Docs information call for:
Coupling Fan Dowel pins Shunts Rotation plate Brake adapter Nameplate stamping Covers Conduit Box Eye Bolt
~ Assembly Nuts and IVashcrs Conn. Plate Shims Thcrmomctcrs Air shield Shaft guard Thermoguard Exp. proof plate h inside of maclrine frcc from cutting and foreign material?
Arc atacttiacd parts slushcst?
Tcstcd by:
55G1 correctly fittest out aud st"acd Rcmari'st Taspcctor Date
S.O.
o 'X3 471754-755 Flex lead-out szr
..c rs P'"ebake Heater 1st Vac.
turn 2nd Va".
'6 Therm.
4 hrs at 3.5C 4 hrs at 150 tu"n 3rd Vac.,-.ur:;
s at 1>C~
4 "-s a 3 hrs at 350~ or hrs at 135'ven Date Pg/pg Out Jg~g/~
Tank g 3 Oven 5 7 Date Pg//
Out gy I~~/~
Tank 8
3 Oven g
Date +jjZ Out I'.IgyPA Tank 8
Oven 8 5
! Date@//3 Out pJgy yegg Tank r". ~
Oven Date fP~
OuV/,'m Send to MT BU-910-8 Passed-Dry Out 3 hrs. at 3.50~
or 4 hrs. at 1350
'ven 8 >
~g/+~~~
Out I Open Epoxy 8;-:r
~ at
.150'2440-2 /~~
2 s 92-QP/jap +
Notes
~
Pa'rt
~
~
~
~
r A. C.
)>IOTOR INSPKT10tl TAG WCSTIHCHOULC )rureai $0$ 9$
~ gXSSI'.iXIDI.Y Outline Dwg~~~~~>
Eyebolt tight and correct length Winding neat and free from damag Inside of frame e)ean and fr~rom en)r)ngs-Stator bor
/.
Rotor bore M+
~
) Bearing S 'ron
- , Bca:ing S~~ Rear
- Rotor fan for correct rotatio I Assembly std Opp. std
'ilor measc pipe fittings o I'il ring Oil Levc
~ End, play I Shaft Clearanc 7
l Shdt extension per outlin Shaft run ou
', Face run ou
', Fit run ou I Collector rings eccentricity I Brushes S~
,'Brushes line up with ring l Revolving and bearing seal o
s Insulation tes 3 ~u'Dk Lubrication o Does information call for thcrmoguard.
brake adapt-
) er, speed switch, etc i
I
. Remarks'
Following items as per inform)ation:
Nameplate Frame Shaft Ext.
Connectors Lead Ext.
Keys Finish Grease pipes and fittings Customer mounting dimensions Nameplate stamping Covers Conduit Box t
Byo Bolt Assembly Nuts and EVashcrs Conn. Plate Docs information call for:
Coupling Fan Dowel pins Shunts Rotation plate 3rake adapter Shims Thcrmomcters Air shield Shaft guard Thcimoguard Exp. proof plate Is inside of machine frcc from cuttings and foreign material?
'rc machined parts slushcd?
Tested by>
5501 correctly lillcd out and si ncd RcmarLst I
l Inspector Date
~ ~
S.O.
4 ( 2754-755 8/-
cr Se J
I Qiz S rr0 Flex lead-."v"; st.;;
Prahake Heater 6, Therm.
1s t Vac.
hrs at 15(
I turn 2nd Vac.
tu=n 3rd uk sat150~'4hrsat sa 3 hrs at 1500 or 0
.t hrs at 135o Oven 5
1I Date PP/7~
gl Out p~~
Tank g ~
Oven g 7 Date &'<<i'~~
Out g~Iogr Tank 8
Oven g P Date Out p i~/m Tank 8 ~
Oven gW Date E/i'~
Out pg~gm Tank t'~
Oven Da.sg/jZ Send to MT grsr7>
BU-910 A Passed-Dry Out 3 hrs. at 150~
or 0 hrs. at 1350 0-n r '/
Out Open Epoxy 8 H:
at.150>
12<~0-2 l~~
2692-6 P/p/gg Notes Paint
~
~
~
A. C.
MOTOR INSC'!XClOH TAG WCSTINtsHOVSC rottN 5035S c7dc-~
/ksas ~" W7 ASSERTEDLY S. 0 s~
Outline Dwg~~~
- Eyebolt tight and correct lengt IVipding neat and frcc from dama, Inside oi frame cioan mtd iree from cuttings
- Stator tsar~<"
'otor bor e
~ Bearing Sg Fron
, Bearing S~~ Rear i Rotor fan for correct rotatio
~ Assembly std.
Opp. std
~ Oil or grcasc "pipe fittings o
- Oil ring 'ilLcvc
'End play S!iaft Clearanc
- Shaft extension pe outlin I Shaft run ou s
Face run ou s.Fit run ou t Collector rings eccentricity I
. Brushes S~
Brushes line up with ring Revolving and bearing seal o
. Insulation tcs
, Lubrication o Explosion proof, leads spaced and scaled
.Docs information call lor thcrmoguard.
brake ad:ipt-
- er, speed switch. ctc.
'ctnarks:~+
<C~.
c 5'j
~
~
r a,
) ~)
~
((
. P SH II'I'IXG s
~
Pottoirin'g ltcnn as~par lnl rntatlon:
Nameplate
. Frame Shaft Ext.
Connectors Lead Eat.~
Keys Finish Grease pipes and fittin~
Customer mounting dhncnsions Namcplatc stampind Covers Conduit Box Eye Bolt Assembly Nuts and AVachcrs Conn. Plato Docs information call for:
Coupling Fan DoNel pins Shunts Rotation plate Brake adapter Shims Thermometers
Air shield Shaft guard Thermoguard Exp. proof plate Xs inside of machine frcc from cutting and foreign material.
Are tnacblncd parts s!ushcd?
,Tcstcd by:
5501 correctly filled out and si ncd Remarks:
~ 7 I:LiPCt.'tile l)atc
S.O.
'g 3 Ger.
472754-755 Pz'ebakq 3 hrs at Oo or 4 hrs at 135o Heater 6 Therm-Llt.x 'cad-cu't." '.-,".rs 1st Qc.
'turn 2nd Yac. '.tu"n 3rc. 7:.:.
t 4hrsat 15( 4h.sat150
'4hrsat 15I. 'i..
a Tank
.-"3 Oven Qa op+
Out/p@/g Oven /
Date /gg73 Out yp/~+g l
Send to HT gA/~3 BU-910-8 Tank Oven gP Date /jr'/73 Out Pdd~
Passed-Dry Out 3 hrs. at 150~
or 4 hrs. at 135o Oven
$ /
g7/P/P J Out
/you/W Tank P. 3 Oven gP'ateg7/2 Out P/sy f Open epoxy 8 Hr at 150o 12440-2 grip~
""'i~i~j Tank 8 3 Oven g~
Date g//SOS Out p,lgpPf Notes Paint
A.
C.
MOTOR )NSPECTtQN TAG WCOTlfdteHOUCfe frCtRfd 00330
~/ camus ASSEiHi~iLY. ~
s L
Name S. 0 Outline Dw
'tyiYidind neat and free from damatf Inside of frame clean and free from castings Stator bo r
Rotor bor Hearing S~ Fron Bearing S~ Rear Rotor fan for correct rotatio reassembly std. ~
Opp. std Oil or grcasc 'pipe fittings ok Oil rings Oil Level
'nd play Shaft Clcarancc Shaft extension pcr outline Shaft run ou Face run out Fit run ou Collector rings ccccntricity Brushes S~
Brushes line up with rinf;s Revolving and bearing seal ok Insulation tcs Lubrication ok Explosion proof, leads spaced and sealed Docs information call for thcrmoguard.
brake adapt-er, spccd switch, etc.
Remarks:
- k~
=57
a
~
~
SHIPPIib G Following items as pcr information:
Natnaptata Frame Shaft Ext.
Connectors Lead Ext.
Keys Finish Grcasc pipes and fittings Customer mounting dimensions 1
Docs information call for:
Coupling Fan Dowel pins Shunts Rotation plate Brake adapter Nameplate stamping Covers Conduit ltox Eye Bolt Assembly Nuts and EVashcrs Conn. Plate Shiins Thcnnomctcrs Air shield Shaft guard Thcrmoguard Exp. proof plate h inside of niachine frcc from cuttings and foreign material?
I I
Are machined parts slushcd?
II Tcstcd by:
5501 correctly filled out and si ncd Rcinarks:
Inspector l)atc
/~z
S.O.
4'f275'-755 Flex leac-
~w~c7 Pl"ebake pea ter g,Therm.
1st Vac.
'i h:s at 15(
~f s~at
<<QQ i 4 rs at 1
~ s
~
e rs
~ 3 hrs at 1500 or 4 hxs at 1350 Oven +
Oate Pl/~
Out g,'@g~
Tank " 3 Oven g$
Date F/ig/? ~
Outg~~~
I Tank P; 3 Oven Ã7 Date F//>t~~
- Out, p i'/M Tank 8 /
, Oven 8 P Date gP/Q) ~
Out Tank i~3 Oven,. 7 Da-.eggs
. Outg/~
Send to HT gygP>
BU-910 8
~R I Passed-Dry Out 3 hrs. at 150 or 0 hrs. at 135~
o,pg'7zJ7>~
Out jpgcg Open Epoxy 8 Hr at 150o 12440-2 2692-6
}lotes Paint
'U
,r
A. C.
VgOTOrt 1'.ISPECl'l".N TAC WCIFIIItgNOusg. FOIIid 3033S
/ r1 7.~~/ 0 +
Ac/om ~
K C A.')SLt',J.ÃiLY.
S. 0 gy h/
Outline Dwg Pycbolt tight and correct length
'h'inding neat and free from damag Inside ef frame clean and free from cuttings Stator bor
/
Cf Rotor bor Bearing S~ Fran~~
~
rr Bearing S"-'ear~~~
c-a r
Rotor fan for correct~rated Assembly std.'pp.
std Oil or grease pipe littings ok Oil ring Oil Level End play Shaft Clcaranc C
Shaft extension per outlin
~
5 Shaft run ou Face run ou Fit run ou Collector rings eccentricity Brushes S~
Qt'ushes line up,with rings Revolving and bearing seal ok Insulation tcs Lubrication ok Explosion proof,'eads spaced and scaled Docs information call for thcrmoguard, brake adapt-er, spccd switch, etc.
Remarks' r7
Following items as per informauont Namcplatc ~
Frame Shaft Ext.
Connectors Lead Ext.
Keys Finish "Orcase pipes and fittings Customer mounting dimensions Nameplate stamping Covers Conduit Box Eye Bolt Assembly Nuts and IVashcrs Conn. Plate ~~
Docs information call for:
Coupling Fan Dowel pins Shunts Rotation plate Brake adapter Shims Thcrmomctcrs Air shield Shaft guard Tllertnogllard Exp. proof plate
'Is inside of machine free from cuttings and foreign matcrialP Arc machined parts slushed?~
Tcstcd by:
5501 correctly filled out and signed Rcmarhs:
Inspector
-0
1 S.O.
g t~f 7J/ + /FAN
.472V54-SS Scr. ~
Si e Za/O
/ Flex lead-cu:
t."...-.~or=
.Px ebake 3 hrs at 1504 or 4 hrs at 1354 il Oven g2
!1 Date FP~
il Out Q'Joe Hca:er g Therm.
zd Uac.
a-150o I
Tank "3'ven
< 8 Date g/Y Outg,'6'eP~".
Tank P:
Oven g g Date gj/S Out ggg<g~
1st Vac.
turn 2.
4 hrs at 15(
4 rs tu"n 3rc.'::c.!
4 nrs at 1504 Tank a i Oven
~ <<$
Ou" p4d/W u%%+ 4Z ms Tank ".3 Oven Datey7yg Outg~g~~
Send to HT BU-910-8 Passed-Dry Out 3 hrs. at 1504 or 4 hrs. at 1354 Oven S
Out /O~/~
Open Epoxy 8 H:
at.1504 12440-2 g~/~
2692-6 ~gag Notes Faint
- 2. 'estinghouse has stated in HCAP 7829, the intent of report is to show environmental qualifications.
IEEE-334-71 requires seismic qualifications.
Provide seismic test qualification program.
~Res onse In response to HRC'question 14 contained in D. B. Yassallo's letter of June 11, 1975, concerning MCAP 7829, ttestinghouse indicated that the "....report is intended to address only the environmental qualification of the motors...."
The seismic qualification of the
~
fan cooler unit supplied to St. Lucie is attached.
The qualification was performed by analysis as allowed by IEEE 344-1971, Section 3.1
{IEEE 344-1971 is referenced by IEEE 334-1971 in Section 4.3.2)
~1
~l W
SEISHIC AlQLYSIS
~
~
t~
REACTOR CO:FATA I:<;!E'.iT:AN COO ERS ST. LUCIE Pl HUTCHINSON ISL<'fD, FLA..
WZSTItiGHOUSE 'PJCLEAR ENERGY SYST~~lS
~ ~~
~
ORDER tO. 546-GZr-17564l-Bt t (M) STURTE".A'. T ORDER NO. PHY-2063
~
< ~~ ~
~
DATE: 5-16-74 h
PREPAR D BY:
CHECKED BY:
G. A. Balciuii~s
. Engineer B. V. Shaw
. Engineer APPROVED:
R.
L'. Carlson,
.'tanager Industrial 6 Co-...~. Prod.
,. Registered Profess'onal Engr.
COKR of aGss r,i/ ~Z.'
~
~
CERTIFICATE OF. COl tPLIAL<CE Xn accordance with WNES purchase order 8546-GXF-175641-B>f, I'certify that the Reactor Containment Fan Cooler System,'xcept Enclosure, is designed to conrorm to the "Seismic Criteria" portions of the applicable specifications and that the calculations presented in the Seismic Analysis PHY-2063 a'dequately verify this compliance.
4.P~
R.
C.. Car ikon Registered Professional En"ineer Commonwealth or '.massachusetts
~ P
~
~
Pape 1 Of 7
~
~
1 PIIY-2063 SEISIIIC O'LYSIS OF R"ACTOR CG:lTAIllllEllTOlilCOOLERS OBJECT l
C I
I The purpose of this analysis is to verify the structural integrity of I
I the reactor fan coolers when subjected to seismic loads.
IIETHOD The fan motor system spring constants and natural frequencies were calculated (see Table 1).
All frequencies except fan rotor are above the rigid range (33 cps).
The rotor (24.6 cps) is close to rigid range H
and its second natural frequency (153.5 cps) is very high.
Therefore
.its response in characteristics is one made dominant.
From the acceleration spectra curves for period
.041 sec it is assembly has the same frequency as in the rigid zone.
are in the region of zero amplification the fan motor seen that the rotor Because all frequencies system was analyzed using seismic equi valent s tati c 1 oads.
The coils and coil ban..s are also rigid and were analyzed as such.
. The seismic load levels. were established using the defined seismic criteria for. Hutchinson Island.
The folio.zing DBE accele'ration values were used:
I Vertical Sei smi c 0.8 g
Horizontal Seismi c Elev.44'lev.
60'.2 g
- 1.2 g
The vertical and horizontal seismic loads were applied simultaneously in the worst possible manner.
In addition the coils were subjected to a
differential pressure of 2 psi to represent the blowdown transient pressure di fference,
I I
Stresses and deflectior s were calcuIated using elastic'relations for the worst combination of operating loads, horizontal seismic (DBE),
I vertical seismic (DBE), and accident pressure (coils arid coil banks).
Limit valu s used were in. accordance with the elastic provisions in'
~
the AISC-69 and ASHE Sec. VIII Pressure Vessels Specifications (latter primarily for coil tube and fin material).
RESULTS The calculated and limit behavior along with factor of safety values for different modes of failure are given in Table 2.
OBE seismic loads were used f'r calculated values in Table 2.
Since the elastic limits, associates with an OBE event, were not exceeded when OBE seismic 'ievels were used is not necessary to perform an OBE seismic analysis.
COI)CLUSI 0!(S Based upon the seismic analysis the fan system, cooling coils arid coil ll banks can more than support the maximum earthquake (DBE) loads in combination with operating and accident loads called for in the specifications.
The a ove>>ill remain elastic under specified maximum loads.
The desi gn, there fore, i s adequate.
The'enclosure seismic analysis was prepared by Shaffer Engineering and is given in a separate report.
TABLE 1 NATURAL FREQUENCIl:S 2 ~
DESCRIPTION Bearing Baoe.
Bearing Base llori.,".ontal Vcrtic11 FRFQUFNCY (CPS) 106
'426 BEllAVIOl' Rigid Rj.gid L
T r~
0 "]
I
~I ~
0 3 ~
4 ~
Motor Base and Motor Coil Motor Base with Motor & Coil llori"o>>ta1 Ilo';.onto.l 86.09 67.80 Rigid Rigid 6:
7 ~
Rotor hosy on Brg Base
& Bearings 1st Rotor hosy on Brg Base
& Bcaringo 2n.l llotor Shaft on Hotor Brg. Brackets 24.6 153.5*
54.65 Rigid Pl l1A Wg 0
Near Rigid Regi in>+
z Ripid
- Approximate Cantilever Beam Rcf.
Dcn llartog, Hechanical Vibrations P. 432, HcGraw-Nill Book Co.
4th Ed.
00 0
0
~ ~
~
le
~
I
~
I
~
i II I
c '
i i
I l
I TABl,E 2 - SI:I, IIIC A'.IAI'YSI. OF l;I'.'
TOB CONTAII'I'.NT FAN COOL! R 2 ~
3 ~
4 ~
5 ~
7 ~
10 ~
12.
13 ~
14.
15 ~
16.
17.
POSTULATED FAILURE 1 fODE DESCRIPTION I
l Deflection ',of fan wlieel'
!ious'inc to cau.,c rubbinp I%eel Sliaft Attuel>ment Max fan s'tiaft stress - combined I
Hotor coil hold down~bolts (shear)
I lfotor coil.support stress I
I Hotor>> Ifot;or Base Bolts (tension-2 bolt. )
I Motor - ffotor ba.,e bolts (shear-4 bolts)
I 4
i fotor base '- Sub base l>olts (tens ion-1.0 bolts) tfotor base - Sub base bolts (shear-20hol t s) i Bearing bolts fxd brp '(slicar).
!!carin@ bolts fxd br'tension)
I Dcarinp bolts f1 tg br@.
(Sliear)
I tfotor coil tube stress I
I I
Motor coil end frame stress Hotor coi 1 nozzle stress Hotor rotor dcflection (air pap)
Hotor aha ft s tress combined I
I UNITS Kn ~
lb.
psi ps i psi ps i psi psi psi ps'si I
psi psi in.
psi CALCUI.ATEI)
!IEIIA"IOR
~ 0239 175 5 ~
584i 4 5865 1534 2785 2228 2148 1300 86i8 736 1 152 3001 230 1029
~ 00745 4'44i 3 I.I'. IIT DI'.IIAVIOUR
~ 125 2600 24 1 800 10000 22000 20000 10000 20000 10000 10000 20000
'10000 6000
-22000 6000
~ 0395 22000 HARGIN OF STPJ;NGTH +
5 ~ 2J 1,48
. 4 ~ 28 1.70 14 ~ 30 7
~ 18 4.49 9 ~ 31 7 ~ 69 11.51 27 ~ 16
- 8. 67 2 ~ 00 96 ~ 0 5 ~ 83 5 ~ 30 4 ~ 95 z0 0
IJ)
<1 Pl I
~10 0
002 0
0 5 cn l~f
~ ~
fJ, C cn' i
0 i
4t e
I I
Iafc 5 of 7
TAlILE.2 SEISIIIC A:IALYSLS el r:.;.:Tt>R CONTAIII,nNT FAN COOI,EI; PACE 't.'I0 ITI'.M I
'POSTULATED FAILURE NODE DESCRIPTION I
~
~
UNITS CAl.CUI,ATHD BEIIAVIOUR LIIIIT BEIIAVIOUI'AC'lQII OF SA1:l. fY
~
~
18.
19.
20.
21.
22.
'lotor shaft!stress shear I
IIotor Bearings fxd brg B10 I
Hotor Bearings fits'rg B10 I
Fan Bearings fxd
& fl'tg B10 (See FliC registered brg anal.
73618)
Coupling psi 4<236 188000**
293000 **
llr
- 200,000+**
BIIP 154 14500 405 3.42 2.63 zox0C ta
<:I 23.
Coil Bank chil tub<
end (shear) psi 51.6 3406 65.97 24 ~
25.
26.
27.
28.
29, 30.
31.
32.
Coil Bank coil tubt. stress I
Coil Bank coil fin stress (vert.-load)
I Coil Bank coil top
& bottom pit stress Coil Bank cdil fin stress 8 fin suppt Fin Support <Bolts (i center (Shear)
Fin Support Bolts C center (Shear)
Coil Top
& Bottom end bolts'(Sltear)
Coil llcader Nozzle Stress Coil - Coil Bank Frame Bolts (Shear) psi.
~
1353 psi 598 psi 6906 psi psi.
4577 1433 psi 419 psi 1298 psi 3899 psi 97 4
5900 1345 13200 1952 10000 10000 10000 5900 10000 3<. 51 13.8 9.75
- 3. 2C) 1.45
- 2. 18 6.98 14.05 7.7 I2r<
6 nf 7
TABLE 2 - SEIS IIC h:ANALYSIS OF REACTOR CONTAIN111'.NT FAN COOLER-Page Three ITEM POSTULATED FAILURE MODE DESCRIPTXON UNITS CAI.CULATED HEIIAVIOUR I,IMIr DKIIAVIOUR ltATIO OF LIMIT TO CALCUI.ATED 131'.IIAVIOlt 33.
34.
'.35.
36, 37.
38.
39.
40.
41, 42.
43.
4ii.
45.
46.
Coil Trough - Coil Bank Frame Bolts (Slic:ir)
Coil Bank Frame - Top Bolts'Slienr)
Coil Bank Coil-Hank Coil Bank Frame Bottom Bolts (Tension)
Enclosure Attncliment (Tcnsinn)
- Enclosure Attaclimcnt(slic::r)
Coil Dank Base>>
Enclosiirc Attachment. ('hear)
Coil Bnnk Base Enclosure Attachment (tension)
Ifotor Base Piping Brace 1'an llousing Ass'y Piping Brace Bearing Base Piping Brnce RCFC Roof Ass',y Piping 13racc RCFC Manifold Pipe Support RCFC Hanifold "U" Clamp Stress (Shear)
RCFC Manifold Lower Pipe Support psi psi psi psi GG37 584i 2 10384 64i 43 psi 1326 psi 77G psi 1054i psi 4i838 psi 726 psi
. Gll psii 3900 psi 4i892 psi 1770 psi 16764 10000 10000 20000
~ 20000 10000 10000 20000 22000 22000 22000 22000 22000 10000 22000 1.50 1.71 1.93 3.10 7.53 12.87 18.97 4.55 30.29 3G.01 5.64 4.50 5.65 1.31 O0 g0
- Seismic Effect has No Effect on BRG Life lafi! 7 of 7
~
C 3.
A letter from J.
Irons of dune 14, 1976, states that the table "Typical Motor Design Parameters Compared to Test Machine" shows an insulation peak temperature of 105.8 C for worst case DBA conditions.
Heat which must be removed from PSL-1 fan cooler motor windings is 1.) added heat from outside DBA 'conditions 2) added heat generated internal to winding due to fan cooler load.
The motor in MCAP 7829 demonstrates only that the heat from outside DBA conditions plus the heat resulting from current o'f 26.1 Amps can be removed by the heat exchanger.
Provide results of heat exchanger analysis to demonstrate the PSL-1 motor insulation temperature W.71 remain within 105.8'C for worst case DBA conditions plus full load current of 200 amperes.
~Res onse Due to the number of variables for each plant (i.e. cooling water temperatures, containment temperatures, motor losses, etc.) the heat exchanger must be specifically sized for its particular application.
This is accomplished by use of a computer code developed for this purpose.
Copies of the computer print out for the heat exchangers used in the St. Lucie motors are listed as'tem 1 thru 6.
Items 1
and 2 ar' for normal operation, 3 and 4 for DBE operation and 5 and 6 for post DBE operation.
s Additionally, Figures 1, 2, and 3 show the air flow pattern through the motor and heat exchanger indicating the heat exchanger inlet and exhaust temperatures for normal (Figure 1),
DBE (Figure 2), and Post DBE (Figure 3) operation.
Performance of the heat exchanger is predicted by a computer program.
It has been verified by standard ARI coil certification tests.
Heat and mass transfer occuring on the surface of base enclosure and motor are based on standard 'correlation for free convection heat transfer and "COLBURN ANALOGY" between heat and mass transfer.
Heat transfer of the interior of base enclosure is based on the standard "COLBURN RELATIONSHIP" for turbulent forced convection in an enclosed space.
Heat transfer between the outside of the motor frame and air passing through the motor is based on a computer program developed to predict the heat transfer performance for electric motors of this type.
The attached print outs are computer out put for normal and POST LOCA operation of heat exchanger for PSL-l. It should be noted that the heat exchanger is suitable for the worst environment of, DBA condition, (Items 3 and 4), which includes the maximum heat losses of the motor associated with its increased horsepower requirements during DBA operation.
Under normal and POST DBA operation, performance of the heat exchanger greatly exceeds the heat removal requirements.
STATOR BLOVlER ROTOR
'5.
COOL AIR RETUPPJ
"'Lh I lj L~ i
'lj
'HEAT EXCHRl/GER
'COlL..
39.1
.Figure 1 - Air F1ow Temperature Distribution Schematic Normal Operation (Temperature in 'C).
'LOWER ROTOR COOL AIR RETU/N "
~
~
1j
~ ~
~
~
I
'-LETUP=
REQQ (jfj P 1I L
lt::~y,':
lli~I)
I I
l"
~ I
! fj Il
~l
~ g I;1II
'HEAT EXCHAlIGER
'COIL "J UUHJ 1" 43.
Figure 2 - Air Floor Temperature Distribution Schematic Design Basis Event Operation (Temperature in 'C}
. BLOVJER ROTOR 9
COOL AfR RETU/N "
rqq ti d
I I fi LI J.l.
( i)l
~-
',. HEAT EXCHAftGER
'COfL 42.
Figure 3 - Air Floe Temperature Distribution Schematic Post Design Basis Event Operation (Temperature in 'C)
11:38:49 OCTOBER 31
~
1973 ITEM 1
.tl Eh I. EXCHQNGERMESLG~OGRA T ~
J ~
FAGAN 501 2Y29 EXT -7306 OPT IHI ZING F IN BLOCK ONLY STURTEVAN) 'AATER C IRCUI TING I ~ 00 VE40CI1Y ttATER CIRCUI TING I
NEtt F IN PATTFRtt ALL COPPER HOTOR COOLING SYSTEH PARAHETERS HOTOR.DIAHETE~S..aa1!I(HE~ENGI.
8 2'le VO INCHES (
6U ~ 75 INCHES 0
53 F 00 INCHES E
30 F 00 INCHES IT.
LOSSES 5'0 KILOS!ATTS CORER.T CLIENT TEIIPERATURE l20 Oll OES P
PIIE55URE l'l,700 PSIA
.PART lhl.. I'.RESSVRES~1~3. OQ~SL~ALQ~AM 0+IIEET IES ~kO ~ OA HOTOR CASE
.Tf!'PEP!ATUREMI3 83!tEG~MURFACE~REA PART I AL PRESSURES AIR 13 ~ 277PS I A trhTER VAPOR I ~ 'l23PSI A
.DENS IT IES.AIR 0 06249~88/CU FT.YrAJZlLdlhRD 0 9Q'l~B (OttVE!.IION(OEFF I(IENT 0 ~ 2555 BTU/HR-SQ FT-OEGF QCONV HASS TRhttSEO~EEELCL~BM3~~t~HAS COtlOENSATION RATE 0'8 LBtl/HR
'le 98TU/HN INSIDE (ONVE(T ION COEFF l(IENT 6 ~ 0000 BTU/HR SQ FT DEG F
BASE-ENCLOSUR TEHPLPIATURE 118 '91 OEG F.
SURfACE AREA 78 '5 SQ FT PARTIAL PRESSUR~~3 95ELZS.LAM'utLERXAROIL OEttS IT IES AIR 0 '6092 LBH/CU FT ttATEtt VAPOR 0 F 00'!80 I.BH/CU FT COUIECTIOII COEEP LET EUJ 0&522 BIUTHJLSB&D OE~TCO JL Ll HASS TRANSPORT COEFFICIENT 22 '2'l9 fT/HH QHASS 248 ~ BBTU/HR (ONDEt!ShI ION RATE 952SMBHLH INSIDE (ONVt(TION(OEFFI(IENT 0.2057 BTu/HR-SQ FT-DEG F
EX I T TEHPERATUNE 103 ~ 10 DEG F
FBS 8 ~ 50 FINS/IN(H TFTR 0000tt0 INCHES DBEE 0 ~ 6250 IN(HES DTO+
0 ~ 6437 IN(HES 3U ~ 00 I tt(ttES HEE 24 ~ OU I NCHE 5
'I ROWS V(F 55 69 ~ 'l 3 FPtl VHTE I 0 303 F PS A IR ANU VAATER INLET AtlO EX I T (OND I T IONS
.Hl J.50~24 ILEliM~U~E<01.00~MhlR D..MBQ~II
ITEM 2 Thl ~
IUO ~ 00 OEG F
nnATER 2.5110 iO'I LB/HR I 50 ~ 82 GPH')
T A E
..I.Q.R.3 SOLG..F&.ttK MOD 6.6DE~
OGATI.K I ~ bSBAI ~
O'I BTU/HR OHTF I
658'IMAGO'I BTU/HR RHOA 0 '6991 LB/CU FT AIR SLOE PRESSURE DROP ARF>>
0'32 ART>>
0'60 PDA>> OBOII IIICHES OF ttATER PDR>>10 F 000 INCHES OF ttATER AX~I.OF ZBESSII~O NRE. 3 2,36
+.O'I~Dttt.. ~7S.E IIO PSJ MEAI T.RAttSEKR PAfIAHEIERB AT.I >>
23 0O~.Z~IIL>>~~~M~CQI AF I tt>>
36'/t ~ 85 Su F T AAIK>>
390 ~ 6 I Stt FT Ill 1144 54 IIIUCHR 50 ET-OELJ~ I
.0 QQQSALJU!
KT 115 OU 5 TU/IIII F I-OEG F
HC 15110 00 BTU/HR SG FT DEG F
-KF - AIS OD-BKU/NK.ES:DLG-F MA ~ EIJ BEU/IIILSILF2 0 U>>
2'I BTU/HR SO FT OEG F
K.~3 GB6B.TU/WR~Q ~ACE DC~CO R
HA AUGHENTED BY F 00 PERCENT ETAF>>
0 '67 THERHAL IHPEOANCES BASED ON TOTAL AIR SIDE AREA 0
t*AIR/tRTOT-IJRI HT tt ILEIllLSM tUUE SIDE.FOIILING.Q.,OQBSS~R-GO~DES E/ILTAI~
TUBE NET>I CONOUCLIDH 0 IIOO2~R=S~T=OC~~
COLLAR,.CONDIICTJQN 0
OOOO~SR=. ISLJ=T~0~
LJLLJJIJECIJI A I R,S I OE. COtt YECT.IO~RMLh2 HR.DU~I.=O~LEIII~lLa2'~ICKtt AND F IN EFF IC IENCY
TOIAL AIAA~ILJ.'!K~KGEJIL SPOILEK HEIGHT 0 ~ 0000 INCHES
.CORRUGATIONS.PE~I.TCH.
tsA AU(SHEttTf.U BT 0 ~ 00 PKRCEttT DAAULHEtt?CD-BZ
'IS~CkCC GRATZ NUHBER 0 F 00
~SI EARAtlE.T EB S T~UQ~
S
Oll~-39 OCO R
~
HEAT EXCHANGER 0 SIGN PROGRAH T
J F AGAN 501-2Y29 EXT 7306 OP TIHIZING FIN BLOCK ONL I
STlzRTEVANT MATER CIRCUIT NG 1.00 VELOCITY MATER" CIRCUTTIN NEM FIN PATT RN ALL COPEZER NOTOR CDDEZHG 57STE~TIZBETERS roTOR D:AHETER 34.00INcHES LEt GTH 41 jooINCHES A 56.00 QNCHES B
24 ~ 00 INCHES C 60 ~ 75 INCHF S 0 53'0 IttCHE~~~OMHCH II LOSSES fU."S X iAXYT".,
CONTAINHENT TEHPERATURE 264.00 OEG F-PRESSURE 53:700 P
PARTIAL PRESSURES AIR 1~04 PS A
MAT R
VAPOR t~96 PSIA CENSIT ES AIR C 05894 LBH/CU FT MATER VAPOR 0 09035 LBtE/CU FT HDTD~JPi.z TEt'PERATURE 257 05OEG F
"URFACE AREA 1 ISO FT PAQT AL PRESSURES 'IR" 2D 004PSIA MAT R VAPOR
$3 696PSIA CENSIT ES AIR 6 07533 LB'H/CU FT MATER VAPOR 0 G3095 LBH/CU FT CONV CTIGNCO F: ICIENT 1 "01 4 "BTU/HR=SO FT" DEGF 7CONV 223 ~ 9 rASS TRANSPORT COEFFIC ENT 26 '574 FT/HR CHASS 22120o5 BTU/HR IISZCE CCHVECTZGR CCEFFZCZENT I
0000'OTU/HII'-SO" FT-D G
F BASE ENCLOSURE TEHPERATURE 26 "71 DEG F" SIIRFACE ARE~8 75 SO Fl PARTIAL PRESSUQES AIR 16U613 PSIA MATERVAPOR 37~087 PSIA DEhsIT Ii7 AIR 0 ~ 06'207 LBR/CO FT lÃITEFE VTIPO~UDT((tomR7tP CottVECT ON COE. FICILPNT 0 ~ 5899 0
~ U/HR-SO FT-DEG F Ocot'V 59 8
BTU/HR HASS TRAI(SPORT COEFFZCZEIIT 15 12 8
FT/HR OIIASS'679 ZBTU/RR COND t'SATION RATE 7
13 LBH/HR INSIDE CONVECTIONCOE FFICIEt<T" oo 5713'BTU'/HR-SQ 'FT-'DEC EXIT Tc,NPERATlA~~~EG~
COIL OESTGtt PARAHETERS 8'50'INS/
NCH TF"-'
0030 TNCHE5"08="'0 6250~etc'HES
'DTO- 0 6%INCHES'I=
0,5451 INCHES TT= 0 0490 IhCHES PT=
1 500D INCHES PL=
1 2990 IhCHES
'M=
30 00 INCH. S H=
2't 00 INCHES'""
V ROMS VCF=
'73 23 FP'1 VW=
4 303 FPS AIR At'0 li 'TER INLET AND EXIT CbtRITI Cits TAI= 162 87 3EG F
PAIR= 53 700 PSI MAIR= 5 1388 ~ +03 LD/HR l 1141 96 SCFH7
ITEN 4 TT
= lail'OG DC/
F IIIIAIEA= 2,5f10 ~78'~
BGY~P
~ TAE 110'9 905 f TME 102 ~ 59 OEG. F OAIR 6 4976m+04 BTU/HR OMATER=
6 ~ 5046i+04 BTU/HR OHTF=
6 5052m 04 BTU/ffg RHOA= '0'4'37~M/CU Ft
. I I
AIR SIDE PRESSURE ORO>
I ARF'-" 0 32 ART 0 560 PDA= 0 040 INCHES O~AfER FOR"-1FHOD~NES 0
AT.R
~ ~
MATER SIDE PRESSURE DROP i
MATER TEtIP ERATURE 201 DEG F
l NRE= 3 ~ 236 ~ +04 PDM= 1+775 ~ +00 PST HEAT TRANSFER PARAHETERS
~
~
I ATI=
23 00 SO FT ATO=
26 97 SO FT ACOL=
25 76 SQ FT AFIN=
364 85 SO FT AAIR"-350 ff SO F
HI= 116
~
6 ETU/ttR-SO FT-'EG F
FI=
0 00050 HR-SO FT-OEG F/BTU
}(T=
213 00 BTU/HR-FT~OEG F
HC= 1'500 00 BTU'/BR=Sf FT=OE'0 KF=
215~00 BTU/HR-FTrOEG F, ltA=
7 ~ 8GR BTU/HR-SO FT-OEG F
U=
5 89 BTU/HR-SO FT-DEG F
115 Ol BTU/H"-SO FT FACE-OEC HED-RCM HA AUGHENT D'Y 0 ~ 00 PERCEAT ETA'F= 0M+22 THERHAL IHPEOAMCE BASED'N"TOTAL 'AIR SIDE ARE'A Q= l AAIRIRTOT)~ LHTO I
TUBE SIDE FOULING 0.00849 HR-SO FT-OEG F/BTU TU 0 HETAL CON "UCTION 0 ~ OG02 HR.-SO FT-OEG F/BTU 5 00 PERCENT 0 ~ 17 PERCENT 5 69 PERCENT 0'3 PERCEttT CONTACT IHPEOANCE 0 00966 HR-SO FT-0 G F/BTU COLLAR CCNDUCTION
. 0 00004 HR-SO FT-OEG F/BTU
~ 'I AIR SIDE CONVECTION ANO FIN EFF CIENCY TOTAt.
0 23677 HR-SO FT-D 0 F/BTU.
80 54 PERCENT 0 16982 HR-SO FT-DEG F/BTU TUBE SIDE COttVECTION 0 ~ 014 6
HR-SO FT-OEG F/BTU 8
57 PERCENT SPOILER H ZGHr 0;0425-INCHES CORRUGATIONS PER PITCH 3
HA AUGHENTED 4Y
'17 ~ 71 PERCEQ POA AUGHENTEO BY 45 ~ 75 PERCENT GRATZ tlUHGER i2a9o COST PARAHETERS COSTAL=
0 394 S/LB COSTCU Oa651 5/LB
~
~
~
~
11.13 '13 CCTOBER 31 ~ 1973
- HEAT-EXCHANGER DESIGN PROGRAH T
Ji FAGAN 501-ZY29 EXT 7306 OPTZHZZIWG FIW BLOct<
OWLY I
STURTEVANT MATER CIRCUZTING 1UDO VELOCITY MATER CZRCUITING WEM FIN PATTERN ALL COPPER HOTOR COOLING SYSTEH PARAHETERS
.-HOTOR OZAHETER 34 00 N "HE LENGTH 41 OOINCH~M A..56 OO.INCH~
8 24.OO ZwCHES C eO.75 I~CHES O 53.OO I~C~ES E 3O.OO IWCHES LOSSES 6U70 HZLOMATTS CONTAINHEWT.
TEH?ERATURE 240 ~ 00 OEG F ?RESSURE 40 700 PSIA PARTIAL PRESSURES AIR. 15 731 PSIA.MATER. VAPOR 24 ~ 969.PEA CENSSSTE~ATILJ) 06060-LB../CU-FT.'JILSEII MAPJIR~ 06136-LBN/J:~
HOTOR CASE
. TEH?ERATURE 231 '90EG F.
SURFACE AREA.
31N62 SO FT.
PARTIAL PRESSURES AIR 19 175PSTA MATER VAPOR 21 ~ 525PSIA
-'c.tt 5" TIE S
~ AZR 0 07484 LBH/CU FT MATER. VAPOR. 0 05327. LBH/CU..FI CCt!VECT Ot CCEFFICIENT 0 9369 BTU/HR-50 FT-DEGF OCONV 240 1BTU/HR HASS-TRANSPORT-COEF.. ICIENT ~ 32 1705-FT/HR--OHASS-..18047.
4 BTlLCK cowDEwsATIow RATE 18.84 Ler/HQ IttsloE ~ CottVECTION CO FFZCIENT 6 ~ 0000 8TU/HR-$0 FT-OEG F
BASE ENCLOSURE TEH?ERATURE 238'9 0
G F
SURFAC AREA 78 75 SO FT PARTTAL-PRESSURES IITR -16 316
~ PS A.!IATERVAPUR-BA,3BA.FSSA,
~ N" TT-ATR 0 06306 LB I/CU FT MATER VAPUR 0 05565 LBI./"0 T
. CGt! VECI Ow COEFF C
ENT 0.
250 BTU/HR-SO FT-OEG F
OCOWV 54 ~I.,BTU/HR..
HASS TRANSPORT COEFFICIENT 17 '3351 FT/HR 9HASS 4553UZBTU/HR cor:CEt;SATIOt; RATE 4.78 LSr/HR INSIDE COWVECTZONCO"FFZC EVT 0 4589 BTU/HQ-$9 FT-EG EXIT TEHPERATURE 113.60 OEG F
COII DESIGN PAR ARE TER S 8.50 F:ws/zwcH TF= O.uoan:Ncttcs os= o.ez5o It;cw s oTG='n.6437 I't;cttES
.OT
.=
0 5491 Zwct< 5.TT"-0 0490 Ittc!! S PT=.
1 5000 TWCH S PL=, 1 ~990~ttCHES M=
30 00 INCHES H=
24 ~ no IWCHE 4
ROMS VCF=
73 52 FPH Vl'= 4 ~ 303 FPS AIR At/9 MATER It<LET AND ~XZT CONDITIONS TA
= 157 ~ 33 0 G.F
. PAIR=..EBO ~ 700 PSI MAIR=..:3 9100 ~ +03. LBlHR.T.
868 8
.. SCFHT..
NF
ITEM 6 TMZ-100NOO Oc G F MMATER-2N51100+04 LB/HR f 50'2 GP.l)
TAc.. 108 71 OEG F. TME= 101 82 DEC.. F OAZR=.
Et 57129 +Oct BTU/H OMATER=
4 5761 ~ +04 BTU/HR OHTF"-
4 5768 ~ r04 BTV/HTt RHOA= 0 18487 LB/CU FT i
~
}
ATR SZOE PRESSURE DROP
. ARF= 0'32 ART= 0 56'0 PbA= 0'30 INCH S
OF MATER PDR=10 000 INCHES OF MATER
.i~..
MATER..SIDE..PRESSURE DROP I
I MATER ZEHPERATURC
.101 DEG F
'--NRE -3i2360t04 PDM=~Iil75 ~ r00 PSI HEAT. TRANSFER.l!ARAHETERS 91= 1 ElT=
KF~
l'-
23 00-SQM~TO= 26 97-SQ-FD~COt ~~$-
AFZt;=
364 85 SO FT AAIR"-
390 61 SO FT
'6o ~ 56 BTV/HR-SO FT-CEG.F.
SI 0 00050. HR-.SO.FT.-DEG,F/BX11 215 00 BTV/HR-FTrQEG F
'C= 1500 00 BTU/HR SO FT DEG F
215 ~ 00 BTU/HR-FT~3EG F....
HA"-.... 5 796.8TU/HR-SQ. FT-DEG F
U=
4'4 BTU/HR-SO FT"BEG F
.K
... 90 52 BTU/HR-.SQ FT.FACE,DEG..HED ROM HA AVG)EENTEO 6Y 0 F 00 PERCENT ETAF"-0'41 THERHAL Ztt? EOANC S
BASED ON TOTAL'IR SIDE A+EA O={AAXR/RTGT)GLHTD..
.TilGE..SIOE..FOULING..- -....0 OLGG,NR-SG.FT OEG F/B.-.TU.--.I9
.LEPCRE IN Till CONGO..MION 0000-29~9.-.SOLI"-CEG-F/BTU.0 13 PERCE-/I.I P
CGNILC~NPEOBNCC 0
GLBGG NIL-.SG-FI=.OE~/BTIL.
II GG-P RCEl/I 1
CCLL AR. CONDUCTICN -- -DN00004.. HR-.SO -FT.-DEG F/BTU ---0 002 PERCENT.
A R. IDE..CCtiVECTION..D;18263 tlRrSO FTrOEG.X/BTU... 84.68. PE?CENT AND F N EFFICIENCY
~G,GL.
0-21SGT IIR-SG-FT.-.CEG.E/BTU SPOILER HEICHT ON0425 INCHES
., CQRRl OAT ONS Pc.R PITCH.
3 HA AUGlLENTEO Y
3 t)8 PERCEtJT "A.AV"HENTED.QY.
45 ~ 7.5..?ERCEto'.
GRATZ NVHBER 9.86 COUL PARAHETEPS COASTAL=..0 334. $ /LB..COSTCV..0 651 S/LB
From data given in table "Typical tlotor Design Parameters Compared to Test t'lachind" explain apparent discrepancy'of inlet air temperature to insulation ('F) under item 5 for the test machine, and the inlet air ('C) under item fl, motor parameter s (e.g.,
100'F r 76'C).
In addition please justify variation between motor parameters:
inlet air 'C rise of insulation 'C total temperature horsepower full load amperes starting torque
~Res oose During normal plant operation the heat exchanger output to the fan cooler motor unit is in the order of 100'F (~38'C).
- However, the test plan for the motor called for producing realistic total temperature rise (inlet air + insulation rise) by varying inlet air temperature to the motor and/or varying motor loading.
Since the test machine had a fixed blading (loading) configuration inlet air temperature to the motor insulation was increased.
This was performed by circulating heated water through the heat exchanger.
For example, in a test under normal room conditions the fan load raised the winding temperature only 16'C; consequently, the heat exchanger water temperature was increased until the heat exchanger output (motor intake) was 76'C giving a total temperature rise of 92'C, i.e. inlet air (76'C) plus loading (16'C).
As previously mentioned in normal applications the heat exchanger output (air inlet to the motor ) is of the order of 100'F (~ 38'C).
This allows for a motor temperature (winding) rise on the order of 60'C during normal operation (Class A application of Class F insulation).
The variation in motor parameters as shown in the previously submitted Table, "Typical Motor Design Parameters Compared to Test thachine" result from the individual motor design application requirements.
- However, as indicated in response to guestion 1 above, specific conditions, requirements which the motor design must provide in order to have
>ICAP 7829 applicability have been included in the fan cooler motors supplied to St. Lucie.
lIore specifically the motor thermal design for the individual application is first established then the electrical characteristics follow.
Motor design requires calculation of 5 separate losses which account for internal rise of the motor and a steady heat loss which must be removed.
This total kilowatt loss taken together wi th the shaft driven fan P-V curve and coo'ling'"water temperature permit the heat exchanger designer to arrive at an air outlet (motor inlet} temperature.
The motor internal rise plus the inlet air gives the total temperature at any horsepower.
Current, efficiency, power factor and other electrical characteristics can be calculated and verified as soon as. windings have been selected to meet specified horsepower, rise and torque values.