L-2017-072, Submittal of Cycle 23 Startup Report
ML17117A348 | |
Person / Time | |
---|---|
Site: | Saint Lucie |
Issue date: | 04/27/2017 |
From: | Synder M Florida Power & Light Co |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
L-2017-072 | |
Download: ML17117A348 (16) | |
Text
APR 2 7 2017 L-2017-072 10 CFR 50.36 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555 Re: St. Lucie Plant Unit 2 Docket No. 50-389 Cycle 23 Startup Report Pursuant to St. Lucie Unit 2 Technical Specification (TS) 6.9.1.1, Florida Power & Light Company (FPL) is submitting the Unit 2 Cycle 23 Startup Report. This report was requited due to the approved used of AREVA fuel.
Should you have any questions regarding this submittal, please contact Mr. Ken Frehafer 772-467-7748.
Sincerely, Michael J. Snyder Licensing Manager St. Lucie Plant Attachment cc: USNRC Regional Administrator, Region II USNRC Senior Resident Inspector, St. Lucie Nuclear Plant Florida Power & Light Company 6501 S. Ocean Drive, Jensen Beach, FL 34957
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 1 of 15 St. Lucie Unit 2 -Cycle 23 Power Ascension Testing Summary Revision 0
St. Lucie. Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 2 of15 Table of Content
- 1. Introduction ...........................................................................................................................................................3
- 2. Cycle 23 Fuel Design ..............................................................................................................................................3
- 3. CEA Drop Time Testing ..........................................................................................................................................5
- 4. Approach to Criticality ...........................................................................................................................................5
- 5. Zero Power Physics Testing ............................................................................................................................. ;....... 5 5.1 Reactivity Computer Checkout .....................................................................................................................5 5.2 All-Rods-Out Critical Boron Concentration ..................................................................................................5 5.3 Isothermal Temperature Coefficient Measurement .................................................. ,................................. 6 5.4 Measurement of Rod Worth ........................................................................................................................6
- 6. Power Ascension Test Program .............................................................................................................................6 6.1 Fixed In core Detectors Operability, Tilt and Peaking Factors ...................................................................... 7 6.2 Fixed lncore Detectors Alarm Setpoints .......................................................................................................7 6.3 Nuclear & 8T Power Calibration ...................................................................................................................7 6.4 Linear Power Range Channel Calibration .....................................................................................................7 6.5 Core Power Distribution Monitoring ............................................................................................................8 6.6 Hot Full Power (HFP) Boron Check ...............................................................................................................8
- 6. 7 RCS Flow Determination ..............................................................................................................................8
- 7. Summary ................................................................................................................................................................8
- 8. References .............................................................................................................................................................9
- 9. Figures ...................................................................................................................................................................9
St. Lucie Unit2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Sfartup Report Page 3 of 15
- 1. Introduction The purpose of this Startup Report is to provide a summary description of the plant startup and power ascension testing performed at St. Lucie Unit 2 following Cycle 23 refueling which implemented the transition from Westinghouse fuel design to AREVA High Thermal Performance (HTP} fuel design. The fuel transition License Amendment Request (LAR} was submitted by Florida Power and Light Company (FPL} to NRC via Reference 1. The NRC Commission approved and issued St. Lucie Unit 2 Technical Specification Amendment No. 182 to FPL via Reference 2. Thi? Cycle 23 Startup Report is being submitted in accordance with St. Lucie Unit 2 Technical Specification 6.9.1.1, item (3}, which requires submission of a report following installation of fuel that has a different design or has been manufactured by a different fuel supplier.
The plant startup and power escalation testing verifies that key core and plant parameters are operating as predicted. The major parts of this testing program include:
- 1. Initial criticality following refueling,
- 2. Zero power physics testing, and
- 3. Power ascension testing.
The test data collected during the startup and power ascension, and summarized in this report, conclude that all major systems, structures, and components (SSCs} performed as predicted and there was no adverse impact to the performance of the unit. The startup and power ascension test data satisfied all acceptance criteria and demonstrated conformance to predicted performance. Copies of the completed startup and power ascension test procedures are available on site for review.
- 2. Cycle 23 Fuel Desi~n The primary design change to the core for Cycle 23 was the replacement of 101 irradiated Westinghouse assemblies from Cycle 22 with 100 fresh AREVA fuel assemblies and one irradiated Westinghouse assembly from the spent fuel pool. The St. Lucie Unit 2 Cycle 23 reload is thus composed of 100 fresh fuel assemblies (Region DD} manufactured by AREVA-NP, Inc. (AREVA}, 88 once-burned assemblies (Region CC}, 28 twice-burned assemblies (Region BB} and one twice-burned assembly (Region AA} manufactured by Westinghouse. Cycle 23 is the first cycle to introduce AREVA fuel of High Thermal Performance (HTP} grid design in St. Lucie Unit 2 core.
St. Lucie Unit 2 has experienced grid to rod fretting (GTRF} fuel failures on the core peripheral locations in the Westinghouse fuel design for the last three cycles, including Cycle 22. AREVA HTP grid design has good operating experience in the industry, including operation at St. Lucie Unit 1 for more than 8 cycles with no fuel failures. AREVA GTRF resistant HTP grid design is expected to perform equally well at St.
Lucie Unit 2.
To ensure no failed fuel from Cycle 22 is inserted in Cycle 23, all fuel assemblies were sipped during offload of Cycle 22 fuel to identify the failed fuel. To avoid Westinghouse fuel in the core periphery, the Cycle 23 core is designed, and subsequently redesigned during the outage to eliminate failed assemblies from the Cycle 23 core, with all48 peripheral locations containing AREVA HTP fuel.
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 4 of 15 The transition to AREVA fuel for St. Lucie Unit 2 was approved by the NRC in Amendment# 182
{Reference 2). The AREVA fuel is neutronically similar to the Westinghouse fuel with the same fuel rod characteristics and includes MONOBLOC' corner guide tubes, MS fuel rod cladding, FUELGUARD lower tie plate and HTP grids. Additional details about the new AREVA design and comparison of mechanical design features to the Westinghouse fuel design are found in the fuel transition license amendment request {LAR) of Reference 1.
The reload analyses for Cycle 23 addressed both the AREVA fuel and the Westinghouse fuel consistent with the NRC approved methodologies as described in the fuel transition LAR {Reference 1). These included neutronics, thermal hydraulics, fuel performance, non-LOCA and LOCA analyses. The Cycle 23 reload design was determined to meet all the analysis requirements including the fuel rod corrosion and fuel rod design criteria.
The Cycle 23 core map is represented in Figure 1, which shows the assembly locations by region and the locations of control element assemblies {CEAs) in the core. The Cycle 23 reload sub-batch identifications are provided in Table 2-1 below.
Table 2-1. U2 Cycle 23- Reload Sub-Batch ID Sub-Batch Number of Assemblies AA3 1 883 4 884 12 885 8 886 4 CC1 12 CC2 16 CC3 16 CC4 4 CC5 16 CC6 16 CC7 8 DD1 8 DD2 40 DD3 4 DD4 12 DDS 28 DD6 8 Total 217
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 5 of 15
- 3. CEA Drop Time Testin~
Following the core reload and prior to the approach to criticality, CEA Drop Time testing was performed.
The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.81 seconds with maximum and minimum times of 3.00 seconds and 2.69 seconds respectively. All drop time were within the 3.25 seconds requirement of Technical Specification 3.1.3.4.
- 4. Approach to Criticality Initial criticality was achieved by the dilution method on March 23, 2017 at 20:09 with CEA Group 5 at 119 inches withdrawn and all other CEAs at the all-rods-out (ARO) position. The approach to criticality involved diluting from a non-critical boron concentration of 1814 ppm to a measured critical boron concentration of 1613 ppm. Critical boron was predicted to be 1609 ppm with no significant change
(<1 ppm) when corrected for temperature and boron. Therefore, the critical variance was -28.39 pcm, which is well within the acceptance criteria of 1000 pcm.
Inverse Count Rate Ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D and startup channels 1 and 2. Refer to Figures 2 and 3 for ICRR information.
- 5. Zero Power Physics Testin~
To verify that the St. Lucie Unit 2 Cycle 23 core operating characteristics are consistent with the design predictions and to provide assurance that the core can be operated as designed, the following tests were performed:
- 1) Reactivity Computer Checkout,
- 2) All-Rods-Out Critical Boron Concentration,
- 3) Isothermal Temperature Coefficient Measurement, and
- 4) Measurement of Rod Worth.
5.1 Reactivity Computer Checkout Proper operation of the reactivity computer is ensured by performing the {(Reactivity Computer Checkout." This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms. The testing range is selected such that the signal-to-noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is checked by performing a positive and negative reactor period test through introduction of a known amount of positive and negative reactivity. The results of the reactivity computer checkout were compared to predictions provided in the reload engineering change package. Satisfactory agreement was obtained.
5.2 All-Rods-Out Critical Boron Concentration The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1618.9 ppm which compared favorably with the predicted design value of 1613 ppm. This was well within the acceptance limits of+/- SO ppm.
St. Lucie Unit 2 L-2017-072 Attachment Docket No . 50-389 Cycle 23 Startup Report Page 6 of 15 5.3 Isothermal Temperature Coefficient Measurement The measurement of the isothermal temperature coefficient {lTC) was performed and the resulting moderator temperature coefficient {MTC) was derived. The lTC was determined to be -0.076 pcm;oF.
The predicted lTC was -0.179 pcm;oF. The lTC and MTC measured-to-predicted difference was 0.103 pcm;oF which is well within the acceptance criteria of+/- 1.6 pcm;oF.
The measured MTC was calculated to be 1.644 pcm;oF. This complies with the St. Lucie Unit 2 Technical Specification 3.1.1.4 requirements that the MTC maximum upper limit shall be~ +5 pcm;oF at~ 70% of RATED THERMAL POWER.
5.4 Measurement of Rod Worth Rod worth measurements were performed using the rod swap methodology. This method involves exchanging a reference group, which is measured by the boration-dilution technique, with each of the remaining test groups, or Supergroup. A comparison of the measured and design CEA reactivity worths is provided in Table 5-1. The following acceptance criteria apply to the measurements made:
- 1) The measured value of each test group, or Supergroup, measured, is within +15% or +100 pcm of its corresponding design CEA worths, whichever is greater and,
- 2) The worth of the reference group is within+ 10% of the total design worth, and
- 3) The total worth for all the CEA groups measured is within+ 10% of the total design worth.
Table S-1. CEA Group Worth Summary CEAGroup Measured Worth (pcm) Design Worth (pcm) Percent Difference Reference Group 8 1979.656 1909 3.7 1 424.130 460 -7.80 2&4 987.479 895 10.33 3&5 1164.131 1072 8.59 A 1467.142 1381 6.24 Total 6022.538 5717 5.34 Percent difference= (Measured- Design)/(Measured) *100 The measured value of each test group, or Supergroup measured, is within +/-15% or +/-100 pcm of its corresponding design CEA worths, whichever is greater. The worth of the reference group is within
+/-10% of the total design worth. The total worth for all the CEA groups measured is within +/-10% of the total design worth. Therefore, all acceptance criteria are met.
- 6. Power Ascension Test Program The power ascension test program consists in slowly and deliberately increasing power to pre-determined power plateaus (test plateaus) at which steady-state data are gathered and evaluated against the acceptance criteria and predicted design values for these parameters. The test plateaus occur at 30%, 45%, 80% (optional) and 100%. The core is considered to perform as designed when the test data satisfies the acceptance criteria and predicted design values. Once it is verified that all parameters meet their acceptance criteria, the power can be increased to the next power plateau.
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page. 7 of 15 In addition to the surveillance testing performed at the test plateaus, the following parameters are also gathered hourly during the ascension between the test plateaus, to validate the overall stability of the plant and the accuracy of the plant model used in the core monitoring software (BEACON}:
Table 6-1. Parameters monitored hourly during ascension From the RPS From a BEACON Fluxmap
- Power
- ASI
- Powers (calorimetric, nuclear and Delta-T), - EFPH
- AS I, - Lead Group rod position,
- Hot and cold legs temperatures, - Boron concentration,
- PRCASI. - Peaking factor (Fr),
- Tilt,
- Cold leg temperature.
6.1 Fixed Incore Detectors Operability, Tilt and Peaking Factors During power ascension, the fixed incore detector system is utilized to verify there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt} which could indicate improper loading of the core. ASI and tilt are recorded every hour and incore operability, core peaking factors, linear heat rate, tilt, and power distribution are monitored at the following power plateaus: 30%, 45%, 100%.
lncore operability was demonstrated throughout the power ascension at the 30%, 45%, and 100%
power plateaus. The percentage of detectors operable is 93.75% which is far above the required 50%.
Core peaking factors, linear heat rate and tilt were found satisfactory at the various plateaus.
6.2 Fixed Incore Detectors Alarm Setpoints lncore alarm set-points were programmed into the plant computer at the following intervals: 30%, 45%,
80% and 100%. No incore alarms were received following these changes and during the power ascension.
6.3 Nuclear & l1 T Power Calibration Nuclear power and delta-T power calibrations were performed at approximately 30%, 45%, 80%, 98%
power plateaus. The appropriate calibrations were performed prior to advancing reactor power to the next higher power level as specified by procedure. These calibrations were performed by the control room operating crews. All calibrations were determined to be satisfactory for each of the reactor protection system (RPS} channels.
6.4 Linear Power Range Channel Calibration Linear range excore nuclear instruments (safety channels} were calibrated against the incore detectors at the 30% and 100% power plateaus. No issue was encountered during the calibration of the safety channels.
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50_-389 Cycle 23 Startup Report Page B-of 15 6.5 Core Power Distribution Monitoring Following the St. Lucie Unit 2 plant startup, power distribution flux maps were produced at power levels of 30%, 45%, and 100% (Figures 4, 5 and 6) to monitor core performance at these power levels. These flux maps were used to compare the measured power distribution with the predicted power distribution. For the purposes of power ascension, the acceptance criterion requires the root mean square (RM5_) value of the power deviation to be less_than or equal to 5%. The individual assembly powers should be within 10% of the predicted power for assembly relative powers greater than or equal to 0.9, and with 0.1 Radial Power Distribution units of predicted power for assembly relative powers greater less than 0.9 (at the 30% test plateau power). The acceptance criteria were satisfied for all cases.
6.6 Hot Full Power (HFP) Boron Check The hot full power boron check is performed once the new core power level has been raised to 100%
and has been at that power level for a time sufficient to establish equilibrium poison conditions. The reactor coolant system is sampled and the value of the equilibrium boron concentration is adjusted by other sources of reactivity to determine a final value of the Hot Full Power (HFP) boron concentration.
The functional criterion is that the absolute difference between the measured-to-predicted deltas at Hot Zero Power (HZP) and Hot Full Power (HFP) is less than or equal to 100 ppm:
HFP
~ [Boron] HZP I ~ 100 ppm, with ~[Boron]i= [Boron]m- [Boron]d I~[Boron] -
where: [Boron]m : measured boron concentration
[Boron]d : design boron concentration The hot full power boron was measured after the full power equilibrium conditions were established at 122.11 EFPH, assuming B-10 depletion effects are negligible. The measured-to-predicted boron difference was calculated to be -7.68 ppm. The absolute delta between HFP and HZP measured-to-predicted boron concentrations was determined to be 13.58 ppm, well below the 100 ppm functional criteria.
- 6. 7 RCS Flow Determination A determination of RCS flow by calorimetric parameters was performed in Mode 1 at "'100% power. The measured RCS flow was 400,932 gpm. The measured RCS flow met the minimum Technical Specification acceptance criteria of 390,000 gpm, including uncertainties.
- 7. Summary The test data collected during startup and power ascension and summarized in this report concludes that all major systems, structures, and components (SSCs) performed as predicted and there was no adverse impact to the performance of the unit. The startup and power ascension test data satisfied all acceptance criteria and demonstrated conformance to predicted performance. Copies of the completed startup and power ascension test procedures are available on site for review.
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 9 of 15
- s. References
- 1. FPL Letter, L-2014-366, J. Jensen (FPL) to U.S. Nuclear Regulatory Commission, St. Lucie Unit 2 Docket No. 50-389, ((Application for Technical Specification Change and Exemption Request Regarding the Transitioning to AREVA Fuel, December 30, 2014, (Accession No. ML15002A091}.
- 2. P. H. Buckberg (NRC) toM. Nazar (FPL), ((St. Lucie Plant, Unit No.2 -Issuance of Amendment Regarding Transitioning to Areva Fuel (CAC No. MF5495}", April19, 2016 (Accession No.
M L16063A121).
- 9. List of Figures Figure 1- Core Loading Pattern Figure 2- Boron Dilution Curve (Channels B & D)
Figure 3- Boron Dilution Curve (Startup Channels 1 & 2)
Figure 4- Power Distribution Comparison- 30% Power Figure 5- Power Distribution Comparison- 45% Power Figure 6- Power Distribution Comparison- 100% Power
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 10 of 15 St. Lucie Unit 2, Cycle 23 Figure 0.1 Rev. 0 Reactor Core Map (Present Cycle) p M K H Nj I
y X w v T 5 R N L J G F E D c B A
_. _. ~. _. _i-. _. ~.* _. __ i_. _. -~- _. _. ~. _. -
I I I I I I I I I I I I I I I I I 0011 OD42I 0044 0018 21 I
I I I I I I 1 1 1 I
- I
. I I
. I I I I 0021 0031 0002 CC26 0049 CC14 0004 0032 0010 I I I I 20 I I I I I I I I - *~- * - * -1. - * - *~- *- * -~* -
- 147 143 I I I I I I I I I 0039 OOS4 CC62 0094 0067 88S2 0072 0096 CC64 OOS6 0013 _J_,_,J,_ , _ , L,_
19 I I 133 124 87 169 19S I I I I 0026 0061 CC80 CC08 8872 CC36 CC22 CC31 8867 CC03 CC78 0062 0027 I I I I 189 162 138 1S6 86
- *~- . - . -~* - . 18 8S I I I 0023 OOS7 CC83 CC11 8864 0074 CC73 CC3S CC74 0083 8887 CC09 CC77 OOS8 0024 - , I _ . -
17 I 129 1SO 173 188 18S 126 131 I I 0017 CC6S CC06 8877 CC41 88S7 0084 CC86 0066 88S8 CC48 8863 ccos CC66 0020 - **-.- I I I 16 146 149 171 194 187 136 I I ooos 0097 8870 0087 88S4 0089 CCS3 CC92 CCS9 0090 88S6 0068 8869 0098 0006 15 0009 160 164 90 174 9S 186 161 0030 14 CC1S 0078 CC34 CC70 0079 cess CC49 CC20 ccso CC60 007S CC72 CC37 0076 CC18
-. 13 004S 190 170 134 167 16S 137 130 0046 12 ooso 884S CC23 CC40 CC91 CC8S CC28 AA39 CC24 CC89 CC90 CC29 CC16 8849 OOS1
-0047 91 1S3 176 139 1S8 1S7 88 0041
-. 11 10
- CC13 0016 1S2 0071 CC33 184 CC76 0073 CCS6 CCS1 142 CC19 CCS2 13S CCS4 006S CC71 123 CC32 0082 CC2S 1S1 140 001S
-. 9 8
0007 0099 886S 0070 8860 0091 CCS8 CC88 CCS7 0092 88SS 0069 8871 0093 0001
- 1S9 193 84 191 89 128 12S 7
0037 CC67 CC01 8862 CC44 88S9 0086 CC87 008S 88S3 CC4S 8886 CC07 CC61 003S
- .- .- 6 182 166 100 1SS 177 17S 0029 OOS9 CC81 CC12 8882 0081 CC7S CC30 CC69 0088 8861 CC10 CC82 OOS3 0040
- .-.- 5 116 180 181 178 172 163 148 0028 0063 CC79 CC02 8866 CC39 CC27 CC38 8868 CC04 CC84 0064 002S 93 183 14S 144 192 94
-*-*- *-*-* 4 0034 0060 CC68 0010( 0080 8848 0077 009S CC63 ooss 0014
-*-*- * -*-*-*-*-* - 3 141 179 92 132 168 0038 0012 0008 CC21 OOS2 CC17 0003 0019 0033 127 1S4
-*-*-*-*-*-*- *-*-*-* 2 I 0022 0048 0043 0036 _. _. _. _. _. _. _. _. _. _. _. _. _. _._. _._.- 1 1 1 1 1 Assembly Serial #----+ ~-~
Insert Serial # _ . ABC f
Figure 1. Cycle 23 Core Loading Pattern
OUJ 0 ;>'
or
- o;-c
~(')
z iii' 0 c CH._K__ RED CH._fl_ BLK (n ~-
o-0_,N Cb + 150 Mode2 Cb+50 Cb -50 secure ())
Cb dilution !D BBgpm Entry 44gpm 1.00
"'Tl 0.90 0.90 ce*
c CD 0.80 0.80 N
OJ 0
0.70 0.70 0
- J 0
c,....,..
- J 0.60 0.60 0 c::: .._ -
(.) 0.50 0.50 c
~
<CD -t- -
-(/)
0
=:I' 0.40 0.40 D.>
- J 0.30 0.30
- J CD
(/)
OJ 0.20 0.20 Qo
-0 0.10 0.10 0.00 0.00 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 BODO 8500 9000 9500 10000 10500
.----__,Gallons Diluted
.______.I Minutes Diluted Axis used: Gallons Diluted or Minutes of Dilution (circle one) Substitute form: Unit 2 Cycle 23 specific
OUJ 0 :-
() r A"c
~()
z 1'5" 0
c
wr-v
())
Cb +50 Cb - 50 secure (0 Cb + 150 Mode2 Cb 44gpm dilution 88 gpm Entry 1.00 1.00 f--.-
0.90 0.90 f--.-
....__ f - -
1--- f--
0.80 0.80 0.70 0.70
~
0.60 0.60 0::: 0.50
(.) 0.50 -
~
0.40 0.40 0.30 0.30 0.20 0.20 0.10 0.10 0.00 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500
.----_,Gallons Diluted
.____ ___.!Minutes Diluted Substitute form: Unit 2 Cycle 23 specific Axis used: Gallons Diluted or Minutes of Dilution (circle one)
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 13 of 15 Data Sheet 6 Unit 2 Power Distribution Comparison With Design lN R p N M L K J H G I I I I I I I I T s 217 0.440 216 0.620 215 0.630 214 0.450 r f 21 I I 0.479
-8.1
-0.039 0.672
-7.7
-0.052 0.672
-6.3
-0.042 0.480
-6.2
-0.030 I I v 213 212 211 210 209 208 207 206 205 ID 0.480 0.690 0.810 0.930 1.280 0.950 0.840 0.730 0.500 20 0.523 0.755 0.867 0.981 1.325 0.983 0.870 0.759 0.526 I -8.2
-0.043
-8.6
-0.065
-6.6
-0.057
-5.2
-0.051
-3.4
-0.045 -0.033 o3.4
-0.030
-3.4
-0 .029
-3.8
-0.026
-4 .9 I w 197 196 195 194 204 0.570 203 1.060 202 1.170 201 1.160 200 1.190 199 0.900 198 1.210 1.217 1.190 1.209 1.210 1.240 1.090 1.133 0.590 0.619 f 19 0.617 1.128 ] .233 1.204 1.215 0.911 I -7.6
-0.047
-6.0
-0.068
-5.1
-0.063
-3 .7
-0.044
-2.1
-0.025
-1.2
-0.011
-0.6
-0.007
-1.6
-0.019
-2.4
-0.030
-3 .8
-0.043
-4.7
-0.029 I
187 186 185 184 183 182 181 X 193 0.580 192 1.100 191 1.190 190 1.010 189 0.870 188 1.120 1.100 1.130 0.880 1.030 1.210 1.120 0.590 f 11 0.619 1.158 1.236 1.030 0.876 1.118 1.088 1.120 0.883 1.042 1.242 1.158 0.617 I -6 3
-0.039 -5.0 -0.058
-3 .7
-0.046
-1.9
-0.020
-0.7
-0.006 0.2 0.002 1.1 0.012 0.9 0.010
-0.~
-0.003
-1.2
-0.012
-2.6
-0.032
-3.3
-0.038
-4.4
-0.027 I
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 0.490 1.080 1.200 1.010 0.830 1.150 1.160 1.220 1.160 1.170 0.880 1.010 1.210 1.080 0.490 17 0.526 1.133 1.242 1.023 0.833 1.134 1.123 1.178 1.127 1.145 0.871 1.023 ] .236 1.128 0.523
-0.036 -0.053 -0.042 -0.013 -0.003 0.016 0.037 0.042 0.033 0.025 0.009 -0.013 -0.026 -0.048 -0.033
-6.8 -4 .7 -3.4 -U -0 4 11.4 IB 3.6 2.9 2.2 1.0 -I,~ -2.1 -4 .3 - 6.~
165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 1.200 1.030 0.870 1.130 0.930 1.320 1.100 1.320 0.940 1.130 0.840 1.020 1.200 0.720 _16 0.720 0.759 1.240 1.042 0.871 1.104 0.901 1.257 1.048 1.256 0.903 1.104 0.833 1.030 1.233 0.755 0.064 0.037 0.026 0.007 -0.010 -0.033 -0.035 i
-0.039 -0.040 -0.012 -0.001 0.026 0.029 0.063 0.052
-5.1 -3.2 -1.2 -0.1 2.4 3.2 5.0 5.0 5.1 4.1 2.4 0.8 -1.0 -2.7 -4.6 y 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 0.840 1.190 0.880 1.170 0.940 1.280 1.220 1.090 1.220 1.270 0.930 1.150 0.870 1.180 0.830 15 I 0.870 1.209 0.883 1.145 0.903 1.210 1.149 1.017 1.147 1.210 0.901 1.134 0.876 1.204 0.867
-0.030 -0.019 -0.003 O.OZ5 0.037 0.070 0.071 0.073 0.073 0.060 0.029 0.016 -0.006 -0.024 -0.037 135 -~-4 -1.6 -0.3 2.2 41 'i.8 6.2 7 .2 6.4 5.0 '~-2 11 .4 -0.7 -2 .0 -4.3 134 0.450 0.450 ~
0.480 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 0.479
-0.030 0.950 1.200 1.130 1.160 1.320 1.220 1.240 1.140 1.230 1.220 1.310 1.150 1.120 1.200 0.950 -0.029 n
-6.2 0.983 1.217 1.120 1.127 1.256 1.147 1.150 1.055 1.150 1.149 1.257 1.123 1.118 1.215 0.981 -6.1
-0.033 -0.017 0.010 0.033 0.064 0.073 0.090 0.085 0.080 0.071 0.053 0.027 0.002 -0.015 -0.031 11H -3 .4 -1.4 0.9 2.9 5.1 6.4 7.8 8.1 ~ 7.0 6.2 4.2 2.4 0.2 -1.2 -3 .2 117 0.640 0.640 ..R 0.672 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 0.672
-0.032 1.290 0.910 1.100 1.220 1.100 1.090 1.140 0.890 1.130 1.080 1.100 1.210 1.100 0.900 1.280 -0.032 ___!!
-4 .8 1.325 0.911 1.088 1.178 1.048 1.017 1.055 0.826 1.055 1.017 1.048 1.178 1.088 6.911 1.325 -4 .8
-0.035 -0.001 0.012 0.042 0.052 0.073 0.085 0.064 0.075 0.063 0.052 0.032 0.012 -0.011 -0.045 l UI -2.6 -0 .1 Ll 3.6 50 17.2 18.1 17.7 17.1 6.2 15.o 2.7 1.1 -1.2 -34 lUU 0.640 0.640 ~
0.672 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 0.672 1.210 1.130 1.160 1.320 1.220 1.230 1.140 1.230 1.220 1.310 1.160 1.120 1.200 0.950 -0.032 ___J!
-0.032 0.960
-4.8 0.981 1.215 1.118 1.123 1.257 1.149 1.150 1.055 1.150 1.147 1.256 1.127 1.120 1.217 0.983 -4 .8
-0.021 -0.005 0.012 0.037 0.063 0.071 0.080 0.085 0.080 0.073 0.054 0.033 0.000 -0.017 -0.033 84 -2.1 -0.4 1.1 3.3 5.0 6.2 7.0 8.1 17.0 6.4 4.3 2.9 0.0 -1.4 -3 .4 H3 0.460 0.450 __!!
0.479 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 0.480 0.840 1.190 0.880 1.160 0.940 1.280 1.220 1.090 1.220 1.270 0.940 1.170 0.880 1.180 0.840 -0.030 ...J_
-0.019
-4.0 0.867 1.204 0.876 1.134 0.901 1.210 1, 147 1.017 1.149 1.210 0.903 1.145 0.883 1.209 0.870 -6.2
-0.027 -0 .014 0.004 0.026 0.039 0.070 0.073 0.073 0.071 0.060 0.037 0.025 -0.003 -0.029 -0.030
-3 .1 -1.2 0.5 2.3 4.3 5.R 6.4 17.2 6.2 5.0 4.1 2.2 -0 3 -2 .4 -3 .4 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 0.730 1.200 1.020 0.840 1.130 0.940 1-320 1.100 1.320 0.940 1.130 0.870 1.030 1.210 0.730 6 0.755 1.233 1.030 0.833 1.104 0.903 1.256 1.048 1.257 0.901 1.104 0.871 1.042 1.240 0.759
-0.025 -0.033 -0.010 0.007 0.026 0.037 0.064 0.052 0.063 0.039 0.026 -0.001 -0.012 -0.030 -0.029
-3.3 -2.7 -1.0 0.8 2.4 4.1 5.1 5.0 5.0 4.3 2.4 -0.1 -1.2 -2.4 -3 .8 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 0.500 1.090 1.210 1.020 0.880 1.170 1.160 1.220 1.160 1.160 0.840 1.010 1.210 1.090 0.500 5 0.523 1.128 1.236 1.023 0.871 1.145 1.127 1.178 1.123 1.134 0.833 1.023 1.242 1.133 0.526
-0.023 -0.038 -0.026 -0.003 0.009 0.025 0.033 0.042 0.037 0.026 0.007 -0.013 -0.032 -0.043 -0.026
-4 .4 -3.4 -2 .1 -0.3 '1.0 2.2 2.9 3.6 3~ 2.3 0.8 -13 -2 .6 -3.8 -4.9 37 36 35 34 33 32 31 30 29 28 27 26 25 0.590 1.120 1.210 1.030 0.880 1.130 1.100 1.130 0.870 1.020 1.200 1.110 0.590 0.617 1.158 1.242 1.042 0.883 1.120 1.088 1.118 0.876 1.030 1.236 1.158 0.619
-0.027 -0.038 -0.032 -0.012 -0.003 0.010 0.012 0.012 -0.006 -0.010 -0.036 -0.048 -0.029
-4.4 -3.3 -2.6 -1.2 -0 ~ 0.9 1.1 11.1 -0 .7 -1.0 -2.9 -4 .] -4 .7 24 23 22 21 20 19 18 17 16 15 14 0.590 1.090 1.210 1.190 1.200 0.900 1.200 1.180 1.200 1.080 0.590 3 0.619 1.133 1.240 1.209 1.217 0.911 1.215 1.204 1.233 1.128 0.617
-0.029 -0.043 -0.030 -0.019 -0.017 -0.011 -0.015 -0.024 -0.033 -0.048 -0.027
-4.7 -3.8 -2.4 -1.6 -1.4 -1.2 -1.2 -2.0 -2.7 -4.3 -4.4 13 12 11 10 9 8 7 6 5 0.500 0.730 0.840 0.960 1.290 0.950 0.840 0.720 0.500 0.526 0.759 0.870 0.983 1.325 0.981 0.867 0.755 0.523
-0.026 -0.029 -0.030 -0.023 -0.035 -0.031 -0.027 -0.635 -0.023
-4.9 -3.8 cJA -23 -2 6 -U -31 -46 -4.4 4 3 2 I 0.460 0.640 0.640 0.460 Substitute Data Sheet 6 0.480 0.672 0.672 0.479
-0.020 -0.032 -0.032 -0.019
-4.2 -4.8 -4.8 -4.0 Key: Box#
RMS Deviation: 3.91% Measured Design Delta The incore detection svstem is ooerable oer Aooendix A. RMS deviation should be less than or eaual to 5.0% and %01ff.
meet the reauirements of 4.6.1 if oerformed at the 30 and 98 oercent oower test olateaus durina the oower ascension test oroaram.
Figure 4. Power Distribution at 30°/o Rated Thermal Power 16
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 14 of 15 Data Sheet 6 Unit 2 Power Distribution Comparison With Design rN R p N M L K J H G I I I I I I I I T s 217 216 215 214 0.460 0.492 0.650 0.687 0.650 0.687 0.470 0.493 I f 21 I I -6 .5
-0.032
-54
-0.037
-5 .4
-0.037
-4.7
-0.023 I I v 213 0.500 0.533 212 0.720 0.767 211 0.840 0.880 210 0.960 0.991 209 1.290 1.332 208 0.960 0.992 207 0.850 0.882 206 0.730 0.770 205 0.500 0.536 t 20 I -6.2
-0.033
-6.1
-0.047
-4 .5
-0.040
-3 .1
-0.031
-3 .2
-0.042 -0.032 c3 .2
-0.032
-3 .6
-0.040
-5.2
-0.036
-6.7 I w 204 203 202 201 200 199 198 197 196 195 194 lc 0.590 1.070 1.190 1.180 1.200 0.910 1.200 1.190 1.200 1.090 0.590 19 0.627 1.133 1.236 1.207 1.218 0.917 1.218 1.212 1.242 1.138 0.628 I -5.9
-0 .037
-5.6
-0.063
-3.7
-0.046
-2.2
-0.027
-1.5
-0.018
-0.8
-0.007
-1.5
-0.018
-1.8
-0.022
-3.4
-0.042
-4 .2
-0.048
-6.1
-0.038 I
X 193 192 191 190 189 188 187 186 185 184 183 182 181 0.590 1.110 1.190 1.010 0.870 1.120 1.100 1.120 0.880 1.030 1.042 1.210 1.120 0.590 f 0.628 1.165 1.236 1.031 0.877 1.113 1.084 1.115 0.884 1.242 1.165 0.627 I -6 .1
-0.038
-4 .7
-0.055
-3 .7
-0.046
-2.0
-0.021 0.8
-0.007 lo.6 0.007 1.5 0.016 0.4 0.005
-0 <;
-0.004
-1.2
-0.012
-2 .6
-0.032
-3 .9
-0.045
-5.9
-0.037 I
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 0.500 1.080 1.200 1.010 0.830 1.150 1.140 1.200 1.150 1.160 0.870 1.010 1.200 1.080 0.500 17 0.536 1.138 1.242 1.024 0.834 1.129 1.113 1.166 1.117 1.140 0.871 1.024 1.236 1.133 0.533
-0.036 -0.058 -0.042 -0.014 -0.004 0.021 0.027 0.034 0.033 0.020 -0.001 -0.014 -0.036 -0.053 -0.033
-6.7 -5 .1 -~.4 -1.4 -0.5 1.9 2.4 2.9 3.0 11.8 -0.1 -1.4 -2.9 -4 .7 -6.2 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 0.730 1.200 1.020 0.870 1.120 0.930 1.300 1.090 1.300 0.930 1.120 0.840 1.020 1.200 0.730 0.770 1.242 1.042 0.871 1.099 0.895 1.242 1.038 1.241 0.897 1.099 0.834 1.031 1.236 0.767
-0.040 -0.042 -0.022 -0.001 0.021 0.035 0.058 0.052 0.059 0.033 0.021 0.006 -0.011 -0.036 -0.037 y
I
-5.2 ISO 0.840 0.882
-0.042
-3.4 149 1.180 1.212
-0.032
-2.1 148 0.880 0.884
-0.004
-0.1 147 1.160 1.140 0.020 1.9 146 0.930 0.897 0.033 3.9 145 1.260 1.199 0.061 4.7 144 1.210 1.132 O.D78 5.0 143 1.070 1.005 0.065 4.8 142 1.200 1.130 0.070 3.7 141 1.260 1.199 0.061 1.9 140 0.930 0.895 0.035 0.7 139 1.150 1.129 0.021
-1.1 138 0.870 0.877
-0.007
-2.9 137 1.180 1.207
-0.027
-4.8 136 0.840 0.880
-0.040 i 15 135 -4 .8 -2.6 -0.5 u 3.7 5.1 6.9 6.5 6.2 lc;.1 3.9 1.9 -0.8 -2.2 -4 .<; 134 0.460 0.460 ,..!.1 0.493 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 0.492
-6.7
-0.033 0.960 0.992 1.200 1.218 1.130 1.115 1.150 1.117 1.300 1.241 1.210 1.130 1.220 1.130 1.120 1.038 1.210 1.130 1.200 1.132 1.300 1.242 1.140 1.113 1.120 1.113 1.200 1.218 0.960 0.991 -6.5
-0.032 In
-0.032 -0.018 0.015 0.033 0.059 0.080 0.090 0.082 0.080 0.068 0.058 0.027 0.007 -0.018 -0.031 118 -3.2 -1.5 1.3 3.0 4.8 7.1 8.0 17.9 7.1 6.0 4.7 2.4 0.6 -1.5 -3.1 117 0.650 0.650 ...1l 0.687 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 0.687
-0.037 1.290 0.910 1.100 1.210 1.100 1.080 1.120 0.880 1.120 1.070 1.090 1.200 1.100 0.910 1.290 -0.037 ~
-5.4 1.332 0.917 1.084 1.166 1.038 1.005 1.038 0.815 1.038 1.005 1.038 1.166 1.084 0.917 1.332 -5.4
-0.042 -0.007 0.016 0.044 0.062 O.D75 0.082 0.065 0.082 0.065 0.052 0.034 0.016 -0.007 -0.042 lUI -:1.2 -0.8 1.5 3.8 6.0 7.5 7.9 18.0 7.9 6.5 5.0 2.9 1.5 -0.8 -3 .2 IUU 0.650 0.650 I...!Q 0.687 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 0.687
-0.037 0.960 1.210 1.130 1.150 1.310 1.210 1.220 1.120 1.220 1.200 1.300 1.150 1.120 1.200 0.960 -0.037 l_l!
-5 .4 0.991 1.218 1.113 1.113 1.242 1.132 1.130 1.038 1.130 1.130 1.241 1.117 1.115 1.218 0.992 -5.4
-0.031 -0.008 0.017 0.037 0.068 0.078 0.090 0.082 0.090 0.070 0.059 0.033 0.005 -0.018 -0.032 84 -3 .1 -0.7 1.5 3.3 5.5 6.9 8.0 7.9 8.0 6.2 4.8 3.0 0.4 -1.5 -3.2 83 0.470 0.470 I...!
0.492 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 0.493
-0.022 0.850 1.190 0.880 1.160 0.930 1.270 1.210 1.080 1.210 1.270 0.930 1.160 0.880 1.190 0.850 -0.023 l.....z
-4.5 0.880 1.207 0.877 1.129 0.895 1.199 1.130 1.005 1.132 1.199 0.897 1.140 0.884 1.212 0.882 -4.7
-0.030 -0.017 0.003 0.031 0.035 0.071 0.080 0.075 O.D78 0.071 0.033 0.020 -0.004 -0.022 -0.032
-3.4 -1.4 0.3 2.7 3.9 5,9 7.1 17.5 6.9 5.9 3.7 1.8 -O .<; -1.8 -3 .6 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 0.730 1.200 1.020 0.840 1.130 0.930 1.310 1.100 1.310 0.930 1.120 0.880 1.030 1.210 0.740 6 0.767 1.236 1.031 0.834 1.099 0.897 1.241 1.038 1.242 0.895 1.099 0.871 1.042 1.242 0.770
-0.037 -0.036 -0.011 0.006 0.031 0.033 0.069 0.062 0.068 0.035 0.021 0.009 -0.012 -0.032 -0.030
-4 .8 -2.9 -1.1 0.7 2.8 3.7 5.6 6.0 5.5 3.9 1.9 1.0 -1.2 -2.6 -3 .9 52 51 so 49 48 47 46 45 44 43 42 41 40 39 38 0.500 1.090 1.210 1.020 0.880 1.160 1.150 1.210 1.150 1.150 0.840 1.010 1.210 1.090 0.510 5 0.533 1.133 1.236 1.024 0.871 1.140 1.117 1.166 1.113 1.129 0.834 1.024 1.242 1.138 0.536
-0.033 -0.043 -0.026 -0.004 0.009 0.020 0.033 0.044 0.037 0.021 0.006 -0.014 -0.032 -0.048 -0.026
-6.2 -3 .8 -2.1 -0.4 1.0 1.8 3.0 lu 3.1 1.9 0.7 -1.4 -2.6 -4 .2 -4 .9 37 36 35 34 33 32 31 30 29 28 27 26 25 0.590 1.120 1.210 1.030 0.880 1.130 1.100 1.120 0.870 1.010 1.200 1.120 0.590 _4 0.627 1.165 1.242 1.042 0.884 1.115 1.084 1.113 0.877 1.031 1.236 1.165 0.628
-0.037 -0.045 -0.032 -0.012 -0.004 0.015 0.016 0.007 .8-0.007 -0.021 -0.036 -0.045 -0.038
-5.9 -3.9 -2.6 -1.2 -0.5 1.3 11.5 0.6 -0 -2 .0 -2.9 -3.9 -6.1 24 23 22 21 20 19 18 17 16 IS 14 0.600 1.090 1.210 1.190 1.200 0.910 1.200 1.180 1.190 1.080 0.590 0.628 1.138 1.242 1.212 1.218 0.917 1.218 1.207 1.236 1.133 0.627
-0.028 -0.048 -0.032 -0.022 -0.018 -0.007 -0.018 -0.027 -0.046 -0.053 -0.037
-4.5 -4.2 -2.6 -1.8 -1.5 -0.8 -1.5 -2.2 -3.7 -4.7 -5.9 13 12 11 10 9 8 7 6 5 0.510 0.740 0.850 0.960 1.290 0.960 0.850 0.730 0.500 0.536 0.770 0.882 0.992 1.332 0.991 0.880 0.767 0.533
-0.026 -0.030 -0.032 -0.032 -0.042 -0.031 -0.030 -0.037 -0.033
-4.9 -3 .9 -3 .6 -U oJ.2 -1.1 -34 -4.8 -6.2 4 3 2 1 0.470 0.650 0.650 0.470 Subs1itute Data Sheet 6 0.493 0.687 0.687 0.492
-0.023 -0.037 -0.037 -0.022
-4 .7 -5.4 -5.4 -4.5 Key: Box#
RMS Deviation: 4.02% Measured Design Delta The incore detection svstem is ocerable cer Accendix A. RMS deviation should be less than or eaual to 5.0% and %011!.
meet the reauirements of 4.6.1 if cerformed at the 30 and 98 cercent cower test clateaus durina the cower ascension test croaram.
Figure 5. Power Distribution at 45% Rated Thermal Power 16
St. Lucie Unit 2 L-2017-072 Attachment Docket No. 50-389 Cycle 23 Startup Report Page 15 of 15-Data Sheet 6 Unit 2 Power Distribution Comparison With Design rN R p N M L K J H G I I I I I I I I T s 217 0.480 0.513 216 0.670 0.706 215 0.670 0.706 214 0.490 0.514 r ~ 21 I I -6.4
-0.033
-5.1
-0.036
,5.1
-0.036
-4 .7
-0.024 I I v 213 212 211 210 209 208 207 206 205 ID 0.510 0.740 0.860 0.960 1.270 0.960 0.860 0.740 0.510 20 0.544 0.779 0.893 0.993 1.315 0.994 0.895 0.782 0.546 I -6.3
-0.034
-5.0
-0.039
-3.7
-0.033
-3.3
-0.033
-3.4
-0.045 -0.034
-3 4
-O.o35
-3 .9
-0.042
-5.4
-0.036
-6.6 I w 201 200 199 198 197 196 195 194 204 0.590 203 1.060 202 1.170 1.160 1.180 0.910 1.190 1.170 1.180 1.070 0.600 f 19 0.631 1.113 1.214 1.191 1.202 0.921 1.203 1.195 1.219 1.117 0.632 I -6.5
-0.041
-4.8
-0.053
-3.6
-0.044
-2.6
-0.031
-1.8
-0.022
-1.2
-0.011
-1.1
-0.013
-2.1
-0.025 3.2
-0.039
-4.2
-0.047
-5.1
-0.032 I
189 188 187 186 185 184 183 182 181 X 193 0.590 192 1.090 191 1.170 190 1.000 0.870 1.110 1.105 1.090 1.110 0.880 0.883 1.020 1.032 1.180 1.213 1.100 1.146 D.600 0.631 f 18 0.632 1.146 1.208 1.022 0.877 1.079 1.106 I -6.6
-0.042
-4.9
-0.056
-3.1
-0 .038
-2.2
-0.022
-0.8
-0.007 05 0.005 1.0 0.011 0.4 0.004
-0.3
-0.003
-1.2
-0.012
-2 .7
-0.033
-4 .0
-0.046
-4 .9
-0.031 I
180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 0.510 1.070 1.180 1.000 0.840 1.140 1.140 1.200 1.140 1.150 0.870 1.000 1.170 1.070 0.510 17 0.546 1.117 1.213 1.015 0.838 1.125 1.108 1.162 1.111 1.134 0.873 1.015 1.208 1.113 0.544
-0.036 -0 .047 -0.033 -0 .015 0.002 0.015 0.032 0.038 0.029 0.016 -0.003 -0.015 -0.038 -0.043 -0.034
-6.6 -4.2 -2.7 -1.5 0.2 13 12.9 3.3 2.6 1.4 -0 3 -I." -3.1 -1 .9 -6 3 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 1.180 0.880 1.120 0.930 1.300 1.100 1.300 0.930 1.120 0.840 1.010 1.180 0.740 11 0.740 1.020 0.782 1.219 1.032 0.873 1.100 0.903 1.242 1.054 1.241 0.905 1.100 0.838 1.022 1.214 0.779 0.020 0.027 0.058 0.046 0.059 0.025 0.020 0.002 -0.012 -0.034 -0.039 i
-0.042 -0.039 -0.012 0.007
-5.4 -3.2 -1.2 0.8 1.8 3.0 4.7 4.4 4.8 2.8 1.H 0.2 -1.2 -2.8 -5.0 y 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 I 0.860 0.895 1.170 1.195 0.880 0.883 1.150 1.134 0.940 0.905 1.270 1.211 1.210 1.144 1.100 1.031 1.210 1.142 1.270 1.211 0.059 0.930 0.903 0.027 1.140 1.125 0.015 0.880 0.877 0.003 1.170 1.191
-0.021 0.860 0.893
-0.033 15
-0.035 -0.025 -0.003 0.016 O.o35 0.059 0.066 0.069 0.068 135 -3 .9 -2.1 -0.3 1.4 3.9 4.9 15.8 6.7 6.0 4.9 '3.0 13 03 -1.8 -3.7 134 0.490 0.480 ..11 0.514 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 0.513
-0.024 0.960 1.190 1.120 1.140 1.300 1.210 1.230 1.140 1.230 1.210 1.300 1.140 1.110 1.190 0.960 -0.033 ..u
-4.7 0.994 1.203 1.106 1.111 1.241 1.142 1.147 1.063 1.147 1.144 1.242 1.108 1.105 1.202 0.993 -6.4
-0.034 -0.013 0.014 0.029 0.059 0.068 0.083 0.077 0.083 0.066 0.058 0.032 0.005 -0.012 -0.033 11M -3.4 -1.1 1.3 2.6 4.8 6.0 7.2 7.2 7.2 5.8 4.7 2.9 0.5 -1.0 -3.3 117 0.670 0.670 ...R 0.706 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 0.706
-0.036 1.280 0.910 1.090 1.200 1.110 1.100 1.140 0.910 1.140 1.100 1.110 1.200 1.090 0.910 1.280 -0.036 ...!.!
-5.1 1.315 0.921 1.079 1.162 1.054 1.031 1.063 0.844 1.063 1.031 1.054 1.162 1.079 0.921 1.315 -5.1
-0.035 -0.011 0.011 0.038 0.056 0.069 0.077 0.066 0.077 0.069 0.056 0.038 0.011 -0.011 -0.035 lUI -2.7 -1.2 1.0 3.3 5.3 6.7 17.2 7.8 7.2 6.1 5.1 31 1.0 -1.2 -2.7 IUU 0.670 0.670 ..!!!.
0.706 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 0.706
-0.036 0.970 1.190 1.120 . 1.140 1.300 1.220 1.230 1.140 1.230 1.210 1.300 1.140 1.120 1.190 0.960 -0.036 I~
-51 0.993 1.202 1.105 1.108 1.242 1.144 1.147 1.063 1.147 1.142 1.241 1.111 1.106 1.203 0.994 -".1
-0.023 -0.012 0.015 0.032 0.058 0.076 0.083 0.077 0.083 0.068 0.059 0.029 0.014 -0.013 -0.034 114 -2.3 -1.0 1.4 2.9 4.7 6.6 7.2 7.2 7.2 6.0 4.8 2.6 1.3 -1.1 -3.4 H3 0.490 0.490 I_!
0.513 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 0.514
-0.023 0.870 1.180 0.880 1.150 0.940 1.280 1.220 1.100 1.220 1.270 0.940 1.160 0.880 1.180 0.870 -0.024 i_r
-4.5 0.893 1.191 0.877 1.125 0.903 1.211 1.142 1.031 1.144 1.211 0.905 1.134 0.883 1.195 0.895 -4 .7
-0.023 -0.011 0.003 O.D25 0.037 0.069 0.078 0.069 0.076 0.059 0.035 0.026 -0.003 -0.015 -0.025
-2 6 -0 9 0.3 2.2 4.1 5.7 6.8 6.7 6.6 4.9 3.9 n -01 -1 .3 -2.8 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 0.750 1.190 1.020 0.850 1.130 0.940 1.300 1.110 1.300 0.940 1.120 0.880 1.020 1.190 0.750 6 0.779 1.214 1.022 0.838 1.100 0.905 1.241 1.054 1.242 0.903 1.100 0.873 1.032 1.219 0.782
-0.029 -0.024 -0.002 0.012 0.030 0.035 0.059 0.056 0.058 0.037 0.020 0.007 -0.012 -0.029 -0.032
-3.7 -2.0 -0.2 1.4 2.7 3.9 4.8 5.3 4.7 4.1 1.8 0.8 -1.2 -2.4 -4.1 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 0.520 1.070 1.180 1.010 0.880 1.160 1.150 1.200 1.140 1.150 0.840 1.000 1.180 1.070 0.520 5 0.544 1.113 1.208 1.015 0.873 1.134 1.111 1.162 1.108 1.125 0.838 1.015 1.213 1.117 0.546
-0.024 -0.043 -0.028 -0.005 0.007 0.026 0.039 0.038 0.032 0.025 0.002 -0.015 -0.033 -0.047 -0.026
-4.4 -3 .9 -2.3 -0.5 0.8 2.3 3.5 3.3 2.9 2.2 0.2 -I." -2.7 -42 -4 .8 37 36 35 34 33 32 31 30 29 28 27 26 25 0.600 1.100 1.190 1.020 0.890 1.120 1.090 1.110 0.870 1.010 1.170 1.100 0.600 0.631 1.146 1.213 1.032 0.883 1.106 1.079 1.105 0.877 1.022 1.208 1.146 0.632
-0.031 -0.046 -0.023 -0.012 0.007 0.014 0.011 0.005 -0.007 -0.012 -0.038 -0.046 -0.032
-4.9 -4.0 -1.9 -1.2 0.8 lu 1.0 05 -0.8 -1.2 -1.1 -4 .0 -51 24 23 22 21 20 19 18 17 16 15 14 0.600 1.080 1.190 1.180 1.190 0.910 1.190 1.170 1.170 1.060 0.600 3 0.632 1.117 1.219 1.195 1.203 0.921 1.202 1.191 1.214 1.113 0.631
-0.032 -0.037 -0.029 -0.015 -0.013 -0.011 -0.012 -0.021 -0.044 -0.053 -0.031
-5.1 -3.3 -2.4 -1.3 -1.1 -1.2 -1.0 -1.8 -3.6 -4.8 -4 .9 13 12 11 10 9 8 7 6 5 0.520 0.750 0.870 0.960 1.280 0.960 0.860 0.740 0.510 0.546 0.782 0.895 0.994 1.315 0.993 0.893 0.779 0.544
-0.026 -0.032 -0.025 -0.034 -0.035 -0.033 -0.033 -0.039 -0.034
-4.8 -4.1 -2.8 -1.4 -2.7 -3.3 -3.7 -5.0 -61 4 3 2 1 0.490 0.670 0.670 0.490 Substitute Data Sheet 6 0.514 0.706 0.706 0.513
-0 .024 -0.036 -0.036 -0.023
-4.7 -5.1 -5.1 -4 .5 Key: Box#
RMS Deviation: 3.80% Measured Design Delta The incore detection svstem is ooerable oer Aooendix A. RMS deviation should be less than or eaual to 5.0% and %Diff.
meet the reauirements of 4.6.1 if oerformed at the 30 and 98 oercent oower test olateaus durina the oower ascension test oroaram.
Figure 6. Power Distribution at 100% Rated Thermal Power 16