L-2005-103, Cycle 15 Startup Physics Testing Report

From kanterella
Jump to navigation Jump to search
Cycle 15 Startup Physics Testing Report
ML051310197
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 05/02/2005
From: Jefferson W
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2005-103
Download: ML051310197 (20)


Text

0 F=PL Florida Power & Light Company, 6501 S. Ocean Drive, Jensen Beach, FL 34957 May 2, 2005 L-2005-103 10 CFR 50.36 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 Re: St. Lucie Unit 2 Docket No. 50-389 Cycle 15 Startup Physics Testing Report Pursuant to St. Lucie Unit 2 Technical Specification 6.9.1.1, the enclosed summary report of plant startup and power escalation testing for Cycle 15 is hereby submitted.

Please contact us should you have any questions.

Very truly yours, wililiamn ffe fn, Jr. J Vice Preside St. Lucie Plant WJ/spt

Enclosure:

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report

~" 72')(c2 an FPL Group company

FLORIDA POWER & LIGHT COMPANY ST. LUCIE UNIT 2 CYCLE 15 STARTUP PHYSICS TESTING REPORT FPL NUCLEAR DIVISION

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Table of Contents Section Title Page I

Introduction 4

II Cycle 15 Fuel Design 5

III CEA Drop Time Testing 6

IV Approach to Criticality 7

V Zero Power Physics Testing 8

VI Power Ascension Program 9

VII Summary 10 VIII References 11 List of Figures Figure Title Page 1

Cycle 15 Core Loading Pattern 12 2

Inverse Count Ratio Plot-Channel B 13 3

Inverse Count Ratio Plot-Channel D 13 4

Power Distribution Comparison with Design - 30% Power 14 5

Power Distribution Comparison with Design - 45% Power 15 6

Power Distribution Comparison with Design - 98% Power 16 2

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Table of Contents (cont)

List of Tables Table Title Page 1

Cycle 15 Reload Sub-Batch ID 17 2

Approach to Criticality 18 3

CEA Group Worth Summary 19 3

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report I. Introduction The purpose of this report is to provide a description of the fuel design and core load, and to summarize the startup testing performed at St. Lucie Unit 2 following the Cycle 15 refueling.

The startup testing verifies that key core and plant parameters are as predicted. The major parts of this testing program include:

1) Initial criticality following refueling,
2) Zero power physics testing, and
3) Power ascension testing.

This Cycle 15 Startup Report is being submitted in accordance with Technical Specification 6.9.1.1 due to a modification (Steam Generator Tube Plugging) that may have significantly altered the nuclear, thermal, or hydraulic performance of the plant.

The test data satisfied acceptance criteria, or was satisfactorily dispositioned in accordance with the corrective action program, and demonstrated general conformance to predicted performance.

4

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report II. Cycle 15 Fuel Design The Cycle 15 reload consists entirely of fuel manufactured by Westinghouse Electric Company (WEC). The primary design change to the core for Cycle 15 is the replacement of 72 irradiated fuel assemblies (1 Region K assembly, 68 Region P assemblies, and 3 Region S assemblies) with 68 fresh Region T fuel assemblies and 4 irradiated Region P assemblies residing in the spent fuel pool.

The fuel in the Cycle 15 core is arranged in a low leakage pattern. The mechanical design of Region T fuel is essentially the same as that of Region S fuel, and consists of "value-added" fuel pellets and "guardian grid" design, first introduced in Cycle 11. Table 1 provides enrichment information for the Cycle 15 reload sub-batches.

The Cycle 15 reload is based on the Westinghouse WCAP-9272, Westinghouse Reload Safety Evaluation Methodology, first introduced this cycle for St. Lucie Unit 2. This approach uses a checklist format to assess cycle-specific core design, and plant parameters for compliance with the existing safety analysis. Implementation of WCAP-9272 methods and 30% Steam Generator Tube Plugging (SGTP) resulted in certain Core Operating Limits Report (COLR) changes, including elimination of the Fxy peaking factor, a reduction in peak Linear Heat Rate (LHR) from 13 to 12.5 kw/ft, and the introduction of the W(z) function for LHR monitoring using the excore detector system. Technical Specification changes and the safety analysis, supporting the implementation of WCAP-9272, were submitted to the NRC and approved in the Reference 9 safety evaluation report (SER).

The Cycle 15 reload analysis supports a maximum Steam Generator tube plugging level of 2520 tubes/SG with an asymmetry of 600 tubes between the two steam generators. This level of Steam Generator tube plugging requires a reduction in the minimum required Reactor Coolant System (RCS) flow from 355,000 gpm to 335,000 gpm. This reduction in RCS flow is supported by the Cycle 15 reload analysis and the implementation of this flow reduction was approved by the NRC in Reference 9. The actual Steam Generator tube plugging level for Cycle 15 was 18.9%, up from the Cycle 14 value of 9.2%.

The Cycle 15 core map is represented in Figure 1. The assembly serial numbers and control element assembly (CEA) serial numbers are given for each core location.

5

I St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report III. CEA Drop Time Testin2 Following the core reload and prior to the approach to criticality, CEA drop time testing was performed. The objective of this test is to measure the time of insertion from the fully withdrawn position (upper electrical limit) to the 90% inserted position under hot, full flow conditions. The average CEA drop time was found to be 2.76 seconds with maximum and minimum times of 2.98 seconds and 2.52 seconds, respectively (Reference 7). All drop times were within the 3.1 second requirement of Technical Specification 3.1.3.4 and within the safety analysis requirements supporting the reload PC/M 04078 requirements (Reference 6).

6

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report IV. Approach to Criticality The approach to criticality involved diluting from a non-critical boron concentration of 1670 ppm to a predicted critical boron concentration of 1470 ppm. Inverse Count Rate Ratio (ICRR) plots were maintained during the dilution process using wide range channels B and D. Refer to Figures 2 and 3 for ICRR information. Table 2 summarizes the dilution rates and times, as well as beginning and ending boron concentrations.

Initial criticality for St. Lucie Unit 2, Cycle 15, was achieved on February 14, 2005 at 12:18 with CEA group 5 at 120 inches withdrawn and all other CEAs at the all-rods-out (ARO) position.

The actual critical concentration was measured to be 1479 ppm (Reference 1).

7

4 St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report V. Zero Power Physics Testing To ensure that the operating characteristics of the Cycle 15 core were consistent with the design predictions, the following tests were performed:

1) Reactivity Computer Checkout;
2) All Rods Out Critical Boron Concentration;
3) Isothermal Temperature Coefficient Measurement; and

'4) CEA Group Rod Worth Measurements.

Proper operation of the reactivity computer is ensured by performing the "Reactivity Computer Checkout." This part of the testing determines the appropriate testing range and checks that reactivity changes are being correctly calculated by the reactivity computer's internal algorithms.

The testing range is selected such that the signal to noise ratio is maximized and that testing is performed below the point of adding nuclear heat. The reactivity calculation is checked by performing a positive and negative reactor period test through respective introduction of a known amount of positive and negative reactivity. The results of the reactivity computer checkout were compared to the appropriate predictions supplied in the reload PC/M 04078 (Reference 6).

Satisfactory agreement was obtained.

The measurement of the all-rods-out (ARO) critical boron concentration was performed. The measured value was 1482 ppm which compared favorably with the design value of 1474 ppm (Reference 2). This was within the acceptance limits of+ 50 PPM.

The measurement of the isothermal temperature coefficient was performed and the resulting moderator temperature coefficient (MTC) was derived. The MTC was determined to be -0.403 pcm/IF which fell well within the'acceptance criteria of + 2.0 pcm/IF of the design MTC of

-0.209 pcm/IF (corrected). This complies with Unit 2 Technical Specification 3.1.1.4 requirements that the maximum upper limit shall be +5 pcm/IF at <70% of RATED THERMAL POWER..

Rod worth measurements were performed i'ising the rod swap methodology.

This method involves exchanging a reference group,' which is measured by the boration dilution technique, with each of the remaining test groups.

A comparison of the measured and design CEA reactivity worths is provided in Table 3. The following acceptance criteria apply to the measurements made:

1)

The measured value of each test group, or supergroup measured, is within +15% or +100 pcm of its corresponding design CEA worths, whichever is greater and,

2)

The measured worth of the reference group and the total worth for all the CEA groups measured is within + 10% of the total design worth.

All acceptance criteria were met.

8

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report VI. Power Ascension Program During power ascension, the fixed incore detector system is utilized to verify that the core is loaded properly and there are no abnormalities occurring in various core parameters (core peaking factors, linear heat rate, and tilt) for power plateaus at 30%, 45%, and greater than 98%

rated thermal power. A shape annealing factor (SAF) (Reference 5) test was performed in conjunction with the power ascension (Reference 3). This test was required due to the replacement of the "B" and "C" Linear Range nuclear instrument channel detectors, and Control Channel 9 & 10 nuclear instrument detectors. The replaced excore detectors for channels B,C, and 9 were of a new detector design. The SAF measurement data for all the replaced excore detectors showed a good statistical correlation coefficient and agreement with the trend of the other RPS channels indicating that the calculated SAFs are valid and acceptable for use.

The measured SAFs for Channels B and C exceeded their upper acceptance criteria limits and the SAF for Control Channel 9 was below its lower acceptance criteria limit. Condition Report (CR) 2005-5446 was generated to assess the SAF data and evaluate the impact of Channels B, C, and 9 SAFs upon the Cycle 15 Safety Analysis. The disposition to CR 2005-5446 concluded that the measurement data for excore detector Channels B, C and 9 was valid and the SAFs were acceptable with no adverse affect on the safety analysis. In addition, Control Channel 10 was declared out of service at low powers when it was found that there was insufficient gain adjustment on the upper detector chamber during the initial calibration at 30% power.

The detector was successfully calibrated at 98% power, the impact on the SAF measurement was reviewed under CR 2005-5251, and the use of the existing minimum installed value (MIV) for Channel 10 was found to be acceptable.

A summary of the flux maps at the 30%, 45% and 98% power levels is provided in Figures 4, 5 and 6. These flux maps are used for comparing the measured power distribution with the predicted power distribution. For the purposes of power ascension, the acceptance criteria require the root mean square (RMS) value of the power deviation to be less than or equal to 5%. The individual assembly powers should be within 10% of the predicted power for assembly powers greater than or equal to 0.9 (30% and 98% plateaus). In addition, for the 30% plateau the relative power density (RPD) should be within 0.1 RPD units of predicted for assembly powers less than or equal to 0.9. These criteria were satisfied.

Additionally, calorimetric, nuclear, and delta T power calibrations were performed at each power plateau prior to advancing reactor power to the next higher level specified by procedure.

A determination of RCS flow by calorimetric parameters (Reference 8) was performed and the measured result of 376,662 gpm met the minimum acceptance criteria of 349,500 gpm (Technical Specification required flow of 335,000 gpm + uncertainties).

9

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report VII. Summary Compliance with the applicable Unit 2 Technical Specifications was satisfactory. The acceptance criteria for all the startup testing parameters were met, or were satisfactorily dispositioned in accordance with the corrective action program.

10

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report VIII. References

1) "Unit 2 Initial Criticality Following Refueling," Pre-Operational Procedure 2-3200088, Rev. 24.
2)

"Reload Startup Physics Testing, "Pre-Operational Procedure 3200091, Rev. 24A

3)

"Reactor Engineering Power Ascension Program," Pre-Operational Procedure 3200092, Rev. 30.

4)

St. Lucie Unit 2 Technical Specifications, Amendment 138.

5) "Shape Annealing Factor Test," Pre-Operational Test Procedure 3200093, Rev. 11 B.
6)

St. Lucie Unit 2 Cycle 15 Reload PC/M #04078, Rev 2.

7)

"Periodic Rod Drop Time and CEA Position Functional Test," Operating Procedure 2-0110054, Rev. 24.

8)

"RCS Flow Determination by Calorimetric, " Operating Procedure 2-0120051, Rev.

14.

9) Letter B. T. Moroney (USNRC) to J. A. Stall (FPL), "St. Lucie Plant, Unit No. 2 -

Issuance Of Amendment Regarding Change in Reload Methodology And Increase in Steam Generator Tub Plugging Limit (TAC No. MC1566), " January 31, 2005.

11

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report I,

FIGURE 1 CYCLE 15 CORE LOADING PATTERN Nf y

R38 R14 R30 R46 x

w V

T S

P M

K H

R ! N ! L ! J ! G I

~

I I

I I

! F

' ! I lR41 I R11 I R181l R431 F

E D

C B

A F -

I -

Y -

F -

Y -

F -

R15 T34 RI 9 R51 S56 R60 R15 T31 III T46 T34 116 R19 R51 I

I I

I I

9 _____________-----21 6 853

~--r-*-a-- ---

20 2 R66 I R231 119 I -

19 R06 R68 60 T36 T55 49 T07 R37 210 T10 T60 106 T4; T49 R16 R01 T48 205 T62 S70 120 R26 S48

-103 S35 S38 101 R27 S41 53 T68 T49 200 R16 I

S68 R65 T69 S60 S24 T22 S04 S14 SOB T24 S16 S46 T54 R63 S58 24 121 46 75 100 50 52 R54 T43 S69 S01 S17 S67 T12 R21 T18 S65 S19 S23 S42 T30 R67 43 38 114 6

107 58 R28 T72 R34 T25 S71 R40 S32 S43 S28 R49 S47 T26 R31 T56 R25 59 113 203 51 204 36 42 T44 T19 S45 S09 T06 S29 P60 T65 P49 S26 T20 S13 S52 T08 T32 56 105 127 39 9

25 126 T50 R48 S36 S15 R20 S73 T66 S80 T63 S75 R32 S10 S25 R52 T51 202 27 67 78 124 117 209 T39 T15 S57 S03 T16 S31 P54 T64 P64 S33 T13 S02 S37 T14 T40 73 125 72 55 108 5

35 R29 T59 R24 T27 S54 R39 S30 S50 S34 R47 S44 T21 R03 T61 R09 62 54 207 122 208 118 104 R59 T37 S51 S22 S18 S74 T09 R13 T1I S63 S20 S06 S59 T38 R55 112 61 109 102 45 115 S49 R58 T53 S61 S12 T28 S07 S05 S11 T23 S21 S55 T67 R61 S62 29 19 48 110 68 123 64

_----17

- -.- ---16 R1-- 15 R08 R35 R45

-14

--13 12

-- 11


1O

-- 9


8

-. 7 R07 T45 206 T58 S64 41 R17 S40 26 S27 S39 37 R33 S76 30 T57 T52 211 R36 F

F I

F F

F -

F I -

F F

F -

F R22 R64 128 T33 T71 13 T05 R42 201 T17 T70 65 T35 R57 63 R12 S72 R53 R05 T29 66 T47 T41 57 R02 R62 S66 I -

L b -

b d

A I

I 3

R4 I RI_..__.

I Assembly Serial #

XXX Insert Serial #

0 ##

12

A

^

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Figure 2. Wide Range Channel B Boron Dilution 1.0 0.9 0.8 0.7 a

0.6 C 0.5 2

0.4 0.3 0.2 0.1 0.0 0

1000 2000 3000 4000 5000 6000 7000 Gallons Diluted Figure 3. Wide Range Channel D Boron Dilution 1.0 0.9 0.8 0.7 I

0.6 tU 0.5 0.4 0.3 0.2 0.1 0.0 0

1000 2000 3000 4000 5000 6000 7000 Gallons Diluted 13

St. Lucie Unit 2, Cycle 15

'Sta'rtup Physics Testing Rep ort Figure 4 Unit 2

Power D istribution Comparison With Design -30%

Measured:

BEACON Design:

source Set 021005 0210.Lou PCM O407O,2Rev. I Powesr Level 20.1%

30%

Esposurs 1.0 EFPH IS EFPII CEA Position 5041 2r7wd 644122'wld Boron Conic.

l3O9pjMu 1307 lipin r

Y T 2171 H~IS I"a t-,

lU1 I 4 0~

4.0 ~ 0 IerI.

03 2 22003

-2A0 20.00 20A" 0

1.10 220

.220 0.4 0

.40 0.7 I

I6 IV 213 4L260

-4.020 212 03800 0.410 40.630 I22 0.04 URN8

.&M4 210 L120 LIDO

.0.00 2"

1.210 1.270 4A60 2"

L120 LIPS

.4.060 207 9-M 0.580

.0.040

-1.

206

.410

A40

-4.030

-11 205 41.270 0190 4.020 0

0 0

0 I

20 0-i00 Mil0

.0.020 47 203 (0500 a.620.4. on

.4'I 202 1.2160 1.200

.0.040

.01A 201

.154 200 L2300 2.290 4.0. 30

.7 A 2.020 Sim5 4.030 I90 2270 22300 4.030

.7.4i 19~7 I.220 40.040

.55 196 I1270 4.05 105 4.520 42.610 4.,030

-.93 194

.4A IS 103 1192 0.220 10-.07

.0.010~l I

.030 191 L230 L4O.020 4.010 109 1.060 1.070

.&0.00 t00 207 2086 205 104 1103 1112 liII Is04 2.4

".0

.4 9

11.260 1.7 0.300 LI"0 I.23 L2200 L.es0 2.210 Q.0

.00 0320 0.00 0.02 0.00 0.00 4.0 4.030 430 0 4.020 135 0.200 0.210 4.0.20 0.360 4.030G 0.3660

-0.030 84.3 04" 0.310

.4.020

.49 Soo 270 170 177 176 175 274 173 172 1271 170 169 100 267 1I" 0.270 0.50 1.260 1.270 1.370 1.20 2350 2.38 1.00 1.300 LI20 1.270 t.23 0.60 0.260 0.290 0.610 1.260 1.270 USC5 1.270 I-IL" I2.350 1.260 1.200 1.370 1.270 1.250 a.620 0.200

.4.020 40.010 4.020 0.000 0.020 0.020 0.020 0.30 0.30 0.2020 0.020 0.000

.4020 4.020 4.0.20

-. 4

-1 L i' 0

'.5 f

.95 I I

-7 I it 24 440 L

__3 7

26s 264 163 262 262 260 259 200l 157 156 250 250 153 252 tiI 0.420 1.200 1.210 1.400 2.370 tin4 1.320 4.070 1330 1.230 a.370 1.270 1.20 1.206 0.30

0. 440 1.220 1.210 L370 L.33 2.200 1.9 0.050 1.290 12n0 I"33 1.350 1.29 1.200 0.410

.4.020 40.020 0.000 0.030 0.040 0.040 0.030 01.020 0.040 0.030 0.040 01.020 0.010

-4.020 40.020 4 J 1.j 2 1 9

It 1

'21 00 1

4 J 445 an

.17 1SO 240 240 247 246 245 244 143 142 141 240 139 230 237 136 0.550 2.20 2.09 22320 2.240 I41i02 L1.40 1.130 1.04O 2.0201 2.240 2.300 Lo0se

.31) 0.550-0,530 la"6 2.000 live 1.200 0.370 1.200 I."0 1.200 0.070 t.200 1270 SAM7 2.2.0 0.5001

-4.0303 40.010 0.020

.0.040 0.040 0.040 0.040 0.05 MO04 0.040 0.040 01.030 0.020 40.020 40.030

0. 292 133 232 132 130 229 1220 127 226 125 224 223 222 121 120 229 0.322 1.240 1.29 2220

.400 L.340 1.050 1.06 2.300 1.060 1.240 t.i3 L370 1.210 2.2100 1.140 1.100 2.300 1.200 U360 2.29 2.100 1.020 Jim240 z

1.02 0 1.200 2.9 L30 L.29 1.290 1.104

.6

.4.040 4.0200 0.020

.0.040 0.050 0.050 01.040 Si06 0.040 0.040 01.040 M.04 0.020 4.0200

-4.0.40

-as U

29 7

45 36 3

19 3j 3.4 2-9 71

.091 11 27 226 its H24 213 Si2 222 220 to, 190 207 206 205 20 20 02 0.01 2.220 2.04 2.25 1.0 0.00 2130 1.300 0.02 1.290

.1230 0.00 390 2.5

.040 2.23 1.270 L.0s0 2.23 L30 50 0

.600 1.240 0.730 1.240 2.000 2.050 2.350 t.23 S.0M 1.270

.9

-4.050 4.0200 0.020

.0.040 0.040 0.050 0.6160 0.03 0.0410 0.050 01.030 01.040 0.020 4.0200 40.040 0.372 0

90 97 96 95 4

93 92 92 90 00 607 00 050.1 ISO01.0 2.20 L370 1.344 1.140 2.06 1.200 SAM6 1.240 2.340 SAM0 I'll" L290 1.144 I1.242 2.29 A.29 2330 2290 200

1.

020SA 2.240 1.020 1.200 2.200 2.36 2.40 00 2.21.

.9 4.0150 4.0200 0.020 0.040 0.050 0..04 0

04.0 a"05 4.0,40 0.040 A.050 0.0441 0.020 4.0200 48.040 IS02 0

70 70 77 7

is7 74 73 72 i2 l0 69 60 0.314

,. me2.2 1.000 ULI 2.20 2.010 L1.40 1.220 L1.30 2.000 2.240 2.320 L.9 L.24O 0.550 I.0 2.2O Me0 1270 2.20 0.070 LIDO0 Less0 LIDO 0.070 2.200 1.280 LOGO0 1.260 (1.530

.449 4.030 40.030 0020 0.040 0Lose 0.040 M.04 0.40 0.030 0.030 0.040 0.030 01.020 4).020 40030

-.79 14 1

4~0 4j0 20 2

17 20 2

2 9

-14

.4 7 66 3

64 63 42 62 60 50 540 57 M60 54 0

0.0

.170 LIDO0 IJSO 2370 2.240 US30 0.970 Siz20 1240 2.370 2.390 2.2 LI"9 0.420 0.40 2.200 LIDO L350 I.330 Jim0 1.290 0.040 1.290 1.200 a.3 2.370 I.220 1.220 044

.4.020 40030 0.000 0.030 0.040 0.040 0.0410 0.020 0.030 0.040 0.040 0.020 0.000 40.030 40.020 92 9299 0

4 7

4 45 44 4,2I24 03 0.260

".60

.20 I'.270 I.30 1.30 2290 Is"8 1.354 I.9 2.6

.270

.24 059 0.27 0.20

.20 2.2I90 1.7

.370 I.9 226 2.390 USC0 1.270 2.350 2.70 2.260 0.610 GI2" 4.02 0.

0 i

4.42

-4."

0.00 00 0020 AM3 0030 0.020

0. 020 0.020 0.000 4.020

.4.020

.4.020 7.77

.5L-40 0'

11. 41.

-3.4 L 4_

00420

.22 0.020

.1 1

I 0

0.020

.2.

37 0.J00 0.320

-4.020 li7t123 220

.0 20

.4 1320 12906 1282 1.27 10.07 Is3 a36 130 34 133 132 132 j1 120.

2017 jl27 126 1

LOW0 I L260 11.210 2.00.,11.200 ie23 s19 S207 So00 1.

11.0 1 0.3 0 2

_2394 di 94 4

140 1.070 1.10

.5 t-40.030 4.030 4.016 0.00

.0 0.9 0.01

-. 01

-co1

-.0,30

-km

.02 24

.94.0.20 23 0.0900 L1.40

.4.030

.0.5 02 2.180 2.22 4.0.40

.5-'

12 4.030

.5.A 20 1.270 L300 41.030

.2.4 I9 1.030 LV05 41.020

.1.0 290

-4.020 27 1.210 2.250 40.040

.53 26 2.2SO 2.200

.4.3 4.A20

.4.03 24 0.300 9.320 04020 4.7 13 1.270

.4.020 22 2.440 40.030 2.080 20 L1.30 4.050" IS.2 1.270 4.05 I.030 40.050 7'

1.390 2.e1 4.020

.. I IL26 11100 4.620

.7,I RMS Devtatlon:

3.08%

4 1

2 1

0. 2l 0
0. 0 0.3 9 0 1 0. 3 1 4.0 20 1.330&

4.020 1-. 9

.05-,

.49*

Key:

14

I St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Figure 5 Unit 2

Power Distribution Comparison With Design -45%

Measured:

BEACON Design:

Sotort NOa 021600 1740 PCM 04070. Rev. I Poweor Layel 65.0%

45%

Exposure

£.7 EFPH4 I0 EFPHO CEAPFashiCon 012r wid 5411rwid Boron Cone.

1201.4 ppm 1228 ppmr Y

t f

t Y

317 0 r

214 i, 213 211 I.c "to3 8.39 0.39 0.33

.0.0120 A.120

.0.1120

.0.l" I

.4 IA

.40A

.6*

I I

N Iv 213 11.70

.0.020 212 0.390 0.420

.0.030 4.550 0.0.30 230 3.20 3.170

.4.500 209 1.210 4.55 l0g 1.32 11.,00

.4.060 207 0.530 0-54,

.0.030 1.

0.54 0.u0 00 1 I. 0.0.2

.2 205 0.270 4.290

.6.020 1 A I

0 -

0 0

0 4

0-. -

0 0

f 2041 (L2.0.02Is

.1 I 203 DAN0 o.630.4.030

.40 202 3.160 3.210

.0.0,40

.34 203 3.210 3.2,40 4.0,10

.3q4 2300 1.290 4.0200 I"

1.040 40.020

.20 I"0 3.260 L290.

41.030

.2 A 397 I.220 3.250

.0.402

.25 3.170 3.210 40.040

.3.4 I""IS" 1.20 43.020 10.3.1

.0...302 la.06.020 I

S 393 32 3191 It"0 it" 305 30t7 316 103s 30i4 it" 1302 303 0.320 0.500

3.

130 11,070 31

.060 I.0L0" 3.230 LI". il,0 1.070 11.190 1.20 0o.10 10.310 0J.34 Lo0w 3240 13.110 3.070 LI"9

.23 3.200 3.100 3.200 3.250 L.ow 0.320

.0.20

.020"

.4.03 I

.0.010

..-. 010 0.000 0.000 4.030*

4.030 4s-.53.00 4...020) 1-.0.020 4-1..010 I

.12.

I 335 0.300 0.310 40.010

-3.3 0.370

.0.020 303 0.370

,~41.020 04 0.290 0.330

.4.020 Ise 370 370 377 376 137 374 I73 372 171 370 36030 367 31 020 0.000 3.240 1.270 3.60 3.2150 3.L340 -

.360 3.370 1.30 3.370 3.260 L.23 0.30 0.270 020 0.620 3.250 L3200 I 3.35 3.270 3.330 3.40 LIM0 1.200 3.36 t.260 1.240 0.630 0.241 4.0300 40.020 4.0300 0.010 0.030 0.030 0.103

. 0.020 0.020 0.020 0.030 0.00

-4.010

.0 20

.0.020 3

I53" 163 362 363 300 159 130 357 106 355 54 35.3 352 351 0.3

.20 I20 L.39 L3.60

.230 3.320 0.90 3.53 3.30 3.64 3.360 I.0o 3.300 0.400 0.440 3.230 3.200 3.36 3.33 3.200 3.210 CM9 1.290 1.200 1.330 3.350 a.300 3.200 0.420 4.0300

.4.010e 0.030 1.0130 0.030 0.030 0.030 0.030 0.040 0.030 0.030 0.530 0.000 40.020 40.020

-0.

O

?1 I~ 1 0

3 3

0f

.4J

'1 (O7 090

.3.7

.09 ISO 349 3in 347 34" 345 3U4 143 142 341 3 40 III9 133 337 13.1 0.560 3.2.0 LO"9 3.10 3240 3.030 L140 1.130 1.3O 3.030 3.240 3.300 a.070 3.3 (1.560 0.500 3.250 1.000 3.200 1.200 413.90 1.33 3.090 1.310 0.900 3.2D8 3.270 3.070 3.240 emu0 4.020

-4.010 0.330 0.030 0.040 41.030 0.030 4.040 01.464 0.030 0.040 0.030 0.000

.4.030 48.020 133 332 1310 330 329 320 327 126 125 124 323 322 323 320 339 0.333

.340 3.290 3.210 Li"9 1.340 3.300 0.070 1.310 1.070 1.350 1.330 3.36 3.20 3.200 1.140 3.3010 1.290 3200 33510 1.290 3.030 3.0130 3.250 1.030 1.310 3.290 3.330 3.390 3.290 1.170

.4.00 0.000 0.030 0.040 0.050 01.040 0.1044 0.000 0.040 0.040 0.040 0.03) 40.010 40.010

-.0330 Jq O a J

7 4 4 5 7

'4qf 71 04 IIC 37 31 333 134 13 12313 II3II 5

3 09 300 107 306 305 304 303 102 0.3w 3220 3.040 LI2M9 LOW5 0.990 3.340 3.330 0.02 L1.30 1.130 3.90014 3.300 3.2410 3.040 3.230 LI"6 3.040 L.23 3.340 0.9"O

'A09 L250 0.7010 3250 1.090 43.950 3.340 L.230 3.040 3.2601 40.040 0.000 0.320 0.040 0.040 0.050 0.060 0,030 0.1060 0.040 0.030 0.040 0.0t0 0.000 4O0.30 1130.

USJ t0 A

3-J A

4j

3.

2 9 0

J

.2.

300 0.371 99 o9 97 96 11 4

93 92 931 90 89 Bs 07 06 5

0.3!

3.340 3.200 1.210 3.360 13.40 L1350 3.070 law0 3.070 3.130 LIAO0 1.390 3.210 3.200 3.340 3.370 3.290 LI"9 3.330 1.290 1.110 1.030 3.250 3.030 3.330 3.290 1.350 1.200 3.290 3.1300

'O,630

.4.010 0.020 0.030 0.05 0.040 0.040 0.050 0.040 0.040 0.050 0.040 0.030

.4.030 AM64 02 el 30 79 78 77 76 75 74 73 72 71 70 69 6

.3 0.560 3.230 3.000 LOW0 3.240 1.030 1.350 L1330 3.140 LAW0 3.230 3.330 Lim9 3.240 056-0.500 LIAO0 3070

.270 3.200 "SO3 1.030 3.090 3.130 LIDO 20 I.2204 3.000 3.50 0.0 40.020 4.0300 0.010 0.030 41.040 0.030 0.040 0.040 0.030 0.020 0.030 0.030 0030e

-41.830

.3'

,r,

'5 2

I 9

4 4

0-

'90 4

13 43, 40 J

.3 6 67 66 5

6 63 62 61 0

3 50 S7 56 05 04 53 1.0

.370 I.0 3.30 60 03 3.23 3130 0.970 3.320 KIM3 1.350 J3.34 3.200 3.31 0.20-0.20 3.200

'.'0 3.35 3.330 1.200 1.290 0.05 3.29 3.200 3.330 3.360 3.200 ti20 044 4.,020

.4.020 0.000 0.030 0.030 0.030 0O"4 0.020 0.030 0.030 0.020 0.020 0.000 4.020 40.020

,07 0

7

_40 32 2 A2I

4.

1 IO 0

7 52 S3 so 4

40 147 4

45 44 43 42 43 40 39 3

0.270 0.600 3.230 3.60 370 1.300 1.370 LIAO 3.340 1.200 LIM.4 L.26 3.22 0.0 0.2000 0.290 0630 320 31.2 3.360 3.2204 J.50 L3.40 3.330 1.270 3.35 1.260 320 02

.9

.4.020

.0004.030 0.000 000 0020 I0.20 0.020 0.010 0.030 000 060 400 43

.3

,1

.4

-O's4 7

10

.1

-I, i-LA 0.030 IL2 3I il.

0.020 11 0.020

.L 3

0 0.30.2 37 0.300 0.320

.4.020 36 0.970 1.000 40.030 48.020 34 4~.0300 93

.0370 3.0110 4.0301 32 3.200 LIDO0 0,060 33 L320 0.00 30 3.390 3.390 0.000 29 20l 127 26 2

3.060 130 11.220 0.970 0.2 1.070 11.170 1114l.00 9.4 4.070 4030 Lu402 4030

-4.02

.0.

.04 14 2

.196.0 4.420 I

' +

1. I-

.1 I 4.-

.4.

I 4 - I

+- -

4 24 0.320 0.3140

.4.020

.4 3 13 1.590 1.020 40.030

.93I 32 3.300

.0.030

.24A 3.220 3.7 3.O5 1.290

.74.0.30 4-.6 0.20

'9 Is I"

324 L.040 3-.29 4.030i

-as"0 7?

.210 3.240 4.0,30

.7.

16

.160 40.040 3.4 40.030

.0.0 34

.300 3.320

.0.020 4.7 13 3.270 1.290 4.0. 20

.1 32 1.420 1.440 4.0.20

.i0 1330 40.030

.4 4 30.300 1.10.0

.4.0e 3.22 3.240 4.8.40 1~1 3.330 3.370

.0.040 1 4 3.550 4 4

~390 3.420 40.030 7-,

I3.27 3.290

-4.. 020 RMS Deviation:

2.68%

0.2 00 0.13 3 70 10 37

.2I 0.330 0.390 10.390 oils0

.0.2

.0.0120 Jo4.120 40-.020 16,9 0 44

.4.

49 Fe.0 15

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Figure 6 Power Distribution Comparison With Design -98%

Unit 2

Measured:

BEACON Design:

Source 112 021105 0840 012 021805 0400 Poer Lawvl 97%

07%

ELposuro 32.? EFPH 32.7 EFPH CEAPosiion 50125'wid SM25'wtd Boron Coc.

1 06 ppm on05 3pprun I

N i

r 1' I t T ( r ?

217 2

06 1213 214 P

0.324 0A04 0404 0.325

-0Ju 40.03-4 4-04

.4.025

_9 9

4.2

-.3 _

I" 213 lon 0

4.19

.0.0 12 0.410 0.430 40.020 200 4.029 200

.8m 200

.2"44.054 20.

-O."7

-s I 207 MS 206 e.30 CAMJ

-0,.2 2.S 0190 1.

0.067 6.500 0.454 0304 4.057 4.030

-0.024

.0.004 4

4 '-

4 0

0 0 

0 0

0 I'

20 0.320 OJ.0 0*It 203 4.420 OA39 41.019 202 L150 Li" 1.0

.09 201 10230 4.030 200 L272

.4. 032 I"

0.114

.,02X I2" 1.277 0.037 197 0.200 0.240

.4.040 090

I6O 0.100 0.204 4.041 "95
A00 A.r26 43.02 094 0.330 0.349 40.019 02-

4 4.

4. 2-4-

4 

4 0 '-

0 i.0

4 A.

4 40

.9 0-x 093 0.340 0.349 4.609

-2.4 192 O."0 I.n l.2202L012

.M 11232 40.002 160 Lllo 4.002 1.0.12 I.n 109 0s0 007l s

118 113 I0 002 111 060 1.170 0.0 l

.0 0rt20

.064O I0.0I0 I223 1.190 1.076 0.11 1.230 32 0.

4.04 0.004 4.003 O K.00 4.1006 t 4.20 4 02 4.030 4 AM0 04

.0 lO 0

0

.07I

.99 A

.1

.Al II 1,

I i

135 0.300 0.325..1 4.015 11.40 40.024 000-(0.404 4.024 z1004 0.3 4OOw J.24 40.024 nPI ISO 170 070 077 074 175 074 073 072 170 070 009 048 007 064 0.9 040 l.23 0.25 0.3.40 I.25 0.33 035 0.360 0.200 L350 0.24U.0

.2

.0 (00

.24 0.230 0.4 0.320 L.5

.0 33 030 12601 0.3.4 1.244 0.232 00.39 0299 4.004 4006

.4.000 0.006 0.002 0.A21 0.014 6.17 64020 0.002 0.004 40.004

,.0On 4.009 4.009

.44 O 9 0.9 0

0.2 0(9 04 a 41.~

045 06 003 002 040 060 159 15e 057 094 055 054 I53 132 050

.4

.09 0.200 0.370 0.5 L240 0.20 0.990 0.230 0.23 1.3510 0.35 1.170 0.00 A.40O 0.240304 0.I9 035.4 0.17 0303 0.207 0.9 0.292 01.090 L307 1.320 1.172 0.00 0.4130 4.8.

0.4

-124.014 0.A0,00 0.0C24 04.033

6. 037 6A

.033 2

0.6127 190,030 0.9 1032 240.033 0.0 O22 AT.0402 4.690,09 4~4.020 so0 149 140 04 4

45 044 103 042 041 040 139 030 137 I3 0.-7O 0230 0.9 30 0240 0.030 0.070 0.6

.170 0.030 0.40 0390 I.7 0.00 057 0.5.

0.240 0.074 1.263 1.090 0.994 LI020 0.09 0.024 0.994 0203 0.239 0.04 0.230 20

.O" 4.0100

- 94.00 6.04

, 60.32 340.042 J

0.03 4

40.50 0.051M 0.646 0.036 36.0037 6.631 O.004

- 741.02

_34.009 03 133 032 0it 030 029 n2 027 120 125 124 023 022 121 1201 I09 0.124

0.

.270

II0 0.30 0J.0 I.0 0.00 0340 0.000 0.070 0.24 0350 0.20 1.6

.20

.4 0.04,7 1.277 0.050 1.340 0.292 0.0240 0.047 0.274 0.47 0.0 20 0.2307 0.314 1.06 0.272 0.163 0

-334.037 406..007 0.64.20 2

0.040 0.650M 6.7050%

0.053 6-.106 4

- 0.053 0.A IO6t

.033 0.0 134 L 0.014 4.6a0.82 4.045 1

04 00s 104 113 002 00 Il0 00" 100 107 006 005 004 003 002 (0.404

.20 0.040 0.240 0.300 1Lot 0.70 034 0."4 040

.60

.00

.370 0.240

.0.30 0.200

.4 1.244 LOU4 022 1.3303 0.943 0.1099

.274 0.122 0.274 0.00.

0.943

33.

03231 0.044 0244

-34 0.034 4A..00

.4 0.017 6.00147 0.047 510.061 I

,0.04 4 0.4030 6.04o"4 A 6.050 0.037

.70.037 1

0.007

-14.014 431.644 W

99 90 97 9

95 94 93 92 91 IC 09 M0 07 045 0.404 0.030 0.260 0.210 0.34 1.340 1.070 1.000 0330 0.4190 0.070 0.240 0.3001 0.200 0.260 LI0(

.4 0.065 0372 0.046 1310 0.207 0.020 0.047 0374 0.047 0.2 0.292

03.

0.09 I.7

.7

'4015 4.0.02 20

.024 0.040. 0 05am 6.0 6.053e

4.

0.036 3- 0.043.0 0.046 09.640 69.040 6.00 4.07 4.3

-11 a

-0.310 02 00 0

79 70 77 74 75 74 73 72 70 70 69 6

0.325 (0.570 0.2

.0 0390 0.25 0.30 0.170 0.5

.6

.60 030 0

.5 000.222

(.70 (0.559 1.230 01.04 Li239 0.203 0.99 1.124 1.100 L.020 0.994 LI"9 0323 0.076 0.20

(.S30 0-4.0.09

-4.00o 6.004

.0631 0.047 0.036 0.044 0.040 30.040 I

.3 0

A

.032 0.022 CAN0 40.020 48.006 67 4

43 64 63 62 61 60 59 50 57 56 35 34 -

53 0.40 0.040 0.70 LIM(

0.35 I.2J0 033(

0.099 0.320 Am5 04 1.36 0.090 0.00 (040 L.3

.0

.7 320 1137 0.091 0.29 0.943 1.57 0.0 It30 1.344 0.90 M.0

(.54 40.020 4O.020

.0. 002 0.022 0033

,6.32 0.030 6.027 6.033 0.027 6.023 0.004 0.000 40.024 4.024

.49 17q

~

2

-2 6

2 9

'7 2_

I 97 I.?

I

.fl 52 50 so 4

40 7

44 40 443.

142I 40 0

3 0Olga

0. 20 II20 0.40 0.50 00 0.340 L30 0330 0.`70 0.3

.I"020

.00 09 0.299 0.639 0.3

.0

.44.2240 L.34 0.3 034

.29 0I2 0.4 020

.2 0.3o6 40.009 4.009 4.622 Ac004

.004 O.00 6.020 0II7 0.0 0.000 0.02 4.0.004 403.4 41.00 IO1

-1A_

~

5 4

93

9.

%0.4

'99j K7 0024 L.02 0.-2 0.005

.12.

11

-k

-L n n 37 0.320 0-305 e.0s5 j IF 34 0.970 4.1..040

.00 0133

-4.023

.9-I 04 1.070 0.090

.4.020

.07Y 03 0.070 1.076 4.006 a04 12 LI"00. 000 I s 11 100 L220

.0n03 A

9 30 0."

I.04 AMo0

.04 20 0.064

.4.014

..1I Zsl

,10 0.172

.0.02 27 0.200 0.232

.0.032 26 4L970 4.0 10

.4.00 AIJI is 049@

.4.69

.90A 24 0349 4.00 03 0.626

.0O2U 02 0.060 0.204 4.044 all

]0 0300

1240

.4.040 0.277 4.027 I?2 It 1420 144 4.624 00 1.220 41.03 17 LI"O tDO04 04 0.040 40.049 Iras 100

.0.039 4.020 04 (0.320 0.335 4.0015 toIU20 OJXJ 44.815

(..£

4. (
4. (.£
4. (ft
4. 00
4. ft
4. 60 4 £.£ 4 £.
4. (.

4 i

13 0.290 4.004 9-9 02

.1C 4 A 1l 1.00 L 4.020

,.0

0 0.120 1.567 4-,

l IXP 0300

.1.2"

-4,4 1 2 I,000 Lb6S

-0.055 7

40.029

.01 6

(0.400 (0.030

.4. 030

.74-9 03994.009fi 400A RMS Deviation:

3.05%

4 5o 2

0 0.325 "U

2IU4 4.025 4.024 0.024 4.024 110-x --

.59 41

.1

.0 K.

I 16

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Table I Cycle 15 Reload Sub-Batch ID*

Sub-Batch Number of Assemblies P5 4

RI 36 R2 20 R3 12 S2 8

S3 12 S4 40 S5 1

T2 8

T3 16 T4 8

T5 20

  • Reference 6 17

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Table 2 Approach to Criticality Dilution Rate Initial Boron Final Boron Approximate Dilution Concentration (ppm)

Concentration (ppm)

Time (minutes) 132 gpm 1670 1620 14 88 gpm 1620 1520 60 44 gpm 1520 1470 107 18

St. Lucie Unit 2, Cycle 15 Startup Physics Testing Report Table 3 CEA Group Worth Summary CEA Group Measured Worth Design Worth

  • Percent Difference (pcm)

(pcm)

Reference Group B 1724.24 1723

-0.07 1,3,&5 1232.39 1246

+1.10 2&4 1454.54 1374

-5.54 A

1592.28 1630

+2.37 Total 6003.44 5973

-0.51

  • Reference 6.

Percent difference = (Design - Measured)/(Measured)

  • 100 19