3F0793-02, Forwards SG Tube Pull Results.Recommends Meeting W/Nrc to Discuss Results & Util Plans for Refuel 9

From kanterella
Revision as of 10:06, 19 December 2024 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Forwards SG Tube Pull Results.Recommends Meeting W/Nrc to Discuss Results & Util Plans for Refuel 9
ML20046B585
Person / Time
Site: Crystal River Duke Energy icon.png
Issue date: 07/29/1993
From: Beard P
FLORIDA POWER CORP.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
3F0793-02, 3F793-2, NUDOCS 9308050193
Download: ML20046B585 (48)


Text

W

~

~

+

h Florida Power CORPORATION E 7mT July 29,1993 3F0793-02 U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555

Subject:

Steam Generator Tube Pull Results

References:

A.

FPC to NRC, letter dated July 10, 1992 (3F0792-02)

B.

FPC to NRC, letter dated June 7, 1993 (3F0693-02)

Dear Sir:

The attachments to this letter, in conjunction with the informatic;i in Reference A, provide the complete results of the inservice inspectiori performed on the once through steam generators (OTSG) tubes during Crystal Pivar Unit 3's (CR-3) Refuel 8 as well as subsequent analysis of the tube samples removed from the "B" 0TSG. This submittal satisfies the reporting requirement of Technical Specification 4.4.5.b.

Reference B explained the need to delay submittal of this report to allow sufficient progress on our evaluation of the test and analysis results.

Eddy current (ECT) inspection results from the CR-3 OTSG's since the early 1980's have included indications below the threshold of a clear signal.

These indications were believed to be caused by tube deposits, tube diameter distortions or other phenomena of no structural significance. Such indications were classified as S/Ns (low signal to noise ratio). Tubes with such indications were noted for future reinspection. Industry experience and regulatory concerns related to U-tube steam generator tube integrity prompted Florida Power Corporation (FPC) to re-evaluate this practice.

FPC determined it was prudent to extract tubes from the OTSG's at CR-3 in order to better understand the source of the indications.

03007S CRYSTAL RIVER NUCLEAR PLANT: Powerline Road e P.O. Box 219 + Crystal River. Florida 344234219 * (904) 7956486

.g l

  1. " " F'" " "

9308050193 930729 lP gJ l

DR ADOCK 05000302 [

l PDR Ly

N s

U. S. Nuclear Regulatory Commission 3F0793-02 Page 2 FPC extracted six tubes from the lower span of the "P/ CISG and performed chemical and metallurgical analysis of these tubes. FPC focused on this region because it best represented the population of S/N inc'ications.

The physical appearance of the degradation found was small pit-like 'ntergranular attack (IGA) with no crackina. The results of the analyses lead to the conclusion that the degradation mechanism of the first span S/N indications in the "B" 0TSG is sulfur induced IGA.

The attack appears to have occurred early in the operational history of the OTSG and then arrested. The most likely source of the sulfur was a breakthrough of condensate pJisher resin which subsequently decomposed in the sludge pile.

Burst tests were performed on two tube samples with multiple indications to determine the structural significance of the degradation.

Burst pressures obtained from those tests demonstrated structural integrity of the tube samples at pressures exceeding the Regulatory Guide 1.121 limits.

Further, the damage mechanism is not likely to grow nor produce leaking tubes. Thus, the indications have minimal safety significance.

The cause, characteristics and sign.ificance of such degradation are substantially different than experienced in the U-tube steam generators.

FPC plans to leave tubes with similar indications in-service. FPC will inspect 100% of tubes with S/N indications (first span region) of the "B" OTSG during the next refueling outage scheduled for April 1994 in addition to the technical specification required ECT inspection. Tubes will also be pulled from the 7th span of the "B" OTSG in April 1994. This second tube pull project is part of CR-3's ongoing tube integrity program.

FPC will integrate the results of our program with the ongoing B&W Owners Group (BWOG) tube pull / analysis program which has recently been endorred by the BWOG Executive Committee.

FPC recommends a meeting with the NRC staff to discuss these results and our plans for Refuel 9.

The meeting should take place as soon as practical to allow for effective cutage planning.

Si cerely, sW)Y

. M. Beard, Jr.

Senior Vice President Nuclear Operations Attachments xt:

Regional Administrator, Region II NRR Project Manager Senior Resident Inspector

ATTACHMENT 1 CRYSTAL RIVER UNIT 3 t

P TUBE PULL PROJECT

SUMMARY

REPORT i

a i

b F

1

-i

t 3F0793-02 Page 1 BACKGROUND FPC's plans to address industry experience with S/Ns and the evolving understanding of low volume steam generator tube degradation mechanisms consisted of an aggressive approach which included expanded and enhanced inspections as well as tube pulls during Refuel Outage 8.

Goals of this approach were to better characterize indications below the threshold of a clear signal, to determine ECT's capability to detect and differentiate between actual flaws and signals due to other factors, and to bound any problems identified.

FPC's actions to accomplish the goals stated above included:

Inspecting all tubes in both the "A"

and "B" OTSG's which had not been previously inspected (43% in "A" and 62% in "B").

Additionally, all tubes in both OTSG's which were previously noted to contain S/Ns were i

reinspected. Table I contains a list of all tubes with S/Ns as documented during the Refuel 8 field inspection. The table shows that there are 122 S/Ns in the "A" 0TSG and 458 in "B".

The number of indications represent less than 0.8% and 3% of the total population of tubes inservice in each OTSG respectively.

The approximate longitudinal location of the indications are also provided.

Motorized Rotating Pancake Coil (MRPC) inspection was performed on a representative sample of 39% of the S/Ns identified in the "A" 0TSG and 28.3% of the S/Ns identified in the "B" 0TSG to confirm that S/Ns were volumetric in nature and did NOT exhibit " crack-like" characteristics.

Portions of seven tubes were pulled from the "B" 0TSG for purposes of performing chemical and metallurgical analyses (Tube Pull Project). Six of the tube sections contained multiple S/Ns from the first span region (the free span between the lower tube sheet and the first tube support plate).

An attempt was made to obtain a sample S/N from the 7th Tube Support Plate region. However, the tube section containing the S/N became stuck in the lower tube sheet of the OTSG and could not be fully removed.

l

t 3F0793-02 Page 2 TUBE PULL PROJECT As noted above, six tubes were selected for removal and examination to provide a representative sample of the first span indications. The tubes were selected based upon a review of ECT records with particular emphasis on identifying candidate tubes with both multiple S/Ns and tubes with multiple inspection history. Over 120 indications were metallurgically examined as part of the destructive examination performed on the CR-3 pulled tubes. The signal amplitude and phase angle of ECT signals generated by indications examined were compared to indications still in service in the first span of the "B" steam generator.

They were found to adequately represent this population.

The analyses of the tube samples were performed by BWNS Research Division under contract by the Electric Power Research Institute (EPRI). The results will be documented in the final report for Tailored Collaboration Agreement TSC413-10922-01 and are summarized herein.

The tube pull project analysis plan called for non-destructive examination (NDE) of all tube sections via field and laboratory ECT (bobbin and MRPC), and a limited amount of UT prior to removal of the sections from the steam generator.

A plan for destructive examinations including metallography and burst tests was also included.

Figure 1 shows the destructive exarrination outline used as an analysis guideline.

The analysis plan for the tube pull project had the following main objectives:

1.

Physically characterize any tube degradation associated with S/N indications.

2.

Identify the damage mechanism, if any, of S/N indications.

3.

Evaluate the structural integrity of the tubing.

m

i l

t 3F0793-02 Page 3 ANALYSIS RESULTS Non-Destructive Examinations Prior to destructive examination, each tube section was subjected to ECT examination using bobbin and MRPC probes in a laboratory setting for purposes of comparison with field ECT data.

Ultrasonic examinations were also performed.

In general the laboratory and field ECT results were in agreement.

The MRPC probe terrain maps indicated signals typical of pits in the free span region above the lower tubesheet (Figure 2). The majority of indications detected were located between 5 to 18 inches above the lower tube sheet secondary face (LTSF) in the free span (Figure 3). Ultrasonic examination was not found to be accurate at detecting indications which were identified by both bobbin and MRPC due to the nature of the degradation mechanism.

Destructive Examinations Visual examination of the tubes revealed non-uniform areas of deposits in the area above the tubesheet.

The deposits were observed to be approximately 1-2 mils thick.

No degradation was initially visible on tube sections.

Two tube sections were chemically descaled, then reexamined to determine the affect cf deposits on ECT indications. No change in indications was noted as a result of deposit removal.

Two additional tube sections were hydraulically expanded to spall off deposits for analysis and open up any degradation present on the tubes.

Visual examination of the hydraulic expanded tube sections revealed light colored stains over much of the OD surface.

Visual examination revealed degradation within tonle of these light stains. Most of the degradation was in the form of patches of IGA.

Metallurgical Examinations Sections from the first span area of four (4) tubes were selected for metallography to further characterize the degradation and correlate information to NDE results. Metallography revealed the morphology to be pit-like IGA, with grains still intact. Degradation depths ranged from 1% through wall (TW) to one defect of 62% TW.

Axial length of the pit-like IGA ranged from 0.0001 to 0.1 inches with an average length of 0.04 inches. The circumferential extent of the pit-like IGA ranged from 0.1 to 15 degrees with an average extent of 3 degrees 4

(.015 inches).

The average volume was less than 6 x 10 cubic inches.

Detailed results are provided in Table II.

ECT Correlation Information obtained by metallography was used to evaluate the ability of ECT to detect the degradation. Figures 4 and 5 show the distribution of pit-like IGA with respect to percent TW as determined by metallography. These figures also provide the number of indications detected by field ECT (bobbin and MRPC) for each percent through wall category. Defects of 40% TW or more were detected 48%

of the time during the initial analysis of field inspection data.

However, subsequent reanalysis of field data increased the detection rate to 70%.

This increase in detection rate is believed to be a function of analyst documentation practice.

Past analyst practice considered it acceptable to document only the largest amplitude indications on a single tube.

Therefore, all indications detected were not necessarily documented at the time the field inspection was performed.

3F0793-02 Page 4 ANALYSIS RESULTS:

(continued)

Figures 6 and 7 present an evaluation of the bobbin and MRPC detection rate showing both field and adjusted data.

Both bobbin and MRPC provided reliable detection considering the very small volume of the indications.

Figure 8 shows the accuracy of bobbin coil eddy current in sizino the percent through wall of the indications it detected.

The diagonal line is the "100%

accuracy" line, i.e.,

all points would be on this line if sizing was 100%

accurate. As can be seen from the distribution of the plotted data, these small volume indications cannot be accurately sized by the bobbin coil phase angle analysis method.

Chemical Analysis FPC is continuing to evaluate chemical analysis data.

Energy Dispersive Spectrometer (EDS) analysis was performed on the grain facets of two defect surfaces. Significant levels of sulfur were detected. EDS analysis of the grain boundary corrosion products in another section revealed sulfur enrichment at the grain boundaries.

X-ray photoelectron spectroscopy (XPS) was performed on two degradation specimens and revealed slight nickel depletion at the grain boundary.

XPS results also indicated that the sulfur in the grain boundary films were predominantly sulfates, but with appreciable amount of sulfides. The presence of sulfur and nickel depletion at the grain boundaries suggests intergranular attack (IGA) by sulfur oxyanions as the cause of degradation.

The CR-3 OTSGs were subjected to a post-fabrication full steam generator stress relief at 1100-1150 degrees Fahrenheit for 10-20 hours which produced a sensitized microstructure in the tubing.

Sensitized Alloy 600 tubing is known to be susceptible to attack by sulfur oxyanions.

Laboratory studies and field experience with this type of attack have been documented in technical literature.

Laboratory tests have shown that this attack can occur at low temperatures, typical of shutdown conditions, in acidic, oxidizing conditions and in the presence of reduced sulfur ions.

Under these conditions, nickel is preferentially dissolved at the grain boundaries, thus producing the IGA.

4 3F0793-02 Page 5 HISTORICAL REVIEW ECT Data FPC reviewed historical ECT data to help develop an understanding of origination and potential growth of the pit-like IGA.

Additionally, The EPRI NDE Center performed an independent review of CR-3's 1989,1990 and 1992 data for the pulled tubes.

Both FPC and EPRI independent reviews agree that the S/N indications were present prior to the 1989 inspection. New indications were not observed in subsequent inspections. Comparison of signal characteristics for the existing indications determined that deviation of signals for consecutive inspections was within the ECT analysis error band. Therefore, no evidence of growth between inspections was found.

Chemistry and Maintenance Three potential sources of sulfur to the steam generator have been identified:

condenser salt leaks, secondary side makeup water, and resin intrusion.

Condenser salt leaks and secondary side makeup water were eliminated as the primary sources of sulfur. A review of historical chemistry data is in progress.

Preliminary results of this review did not revealed a specific source. Feedwater sulfate values have not been observed at high enough levels to be considered a problem.

Review of CR-3 maintenance records did indicate that a significant amount of maintenance activities were performed on condensate demineralizer resin strainers due to resin breakthrough in the years prior to 1983.

Reference 1 also documented the presence of resin in condensate demineralizer effluent.

This resin intrusion prior to 1982 is considered the most likely source of sulfur in the CR-3 OTSGs.

If the sulfur was carried to the steam generator via resin beads, this would explain why review of historical data taken from feedwater samples (at lower temperatures) did not reveal a period in time when sulfur levels in solution were noticeably higher than normal.

Resins would not have l

released sulfur until they decomposed in the sludge pile on the lower tube sheet secondary face. Additionally, CR-3 maintenance records show that all condensate demineralizer resin screens were repaired or replaced in 1982, with very little maintenance noted after that period.

Operational The review of CR-3 operational history, revealed several reactor trips in the early 1980s where main feedwater was lost and steam generator levels decreased significantly.

Automatic emergency feedwater initiation control was not available at this time, so emergency feedwater had to be initiated manually following loss of main feedwater.

Manual initiation was less effective in preventing OTSG dry-out.

Thus, it is likely that the secondary side reached levels where the sludge began to splatter as any highly viscous fluid subjected to high temperatures. The splattering distributed patches of sludge on the tubes faces which would dry out leaving a high sulfur environment on limited portions of the tubes face.

l 1

3F0793-02 Page 6 STRUCTURAL INTEGRITY EVALUATION Tube burst pressure testing was performed as part of NUREG/CR-5117, Reference 4.

The objective of these burst tests was to provide validated information to determine the remaining integrity of service-degraded tubing.

Degradation simulated as part of the project included wastage / pitting which could be considered similar in physical characteristics to the pit-like IGA identified at CR-3.

Data from burst pressure tests were used to develop empirical relationships between burst pressure, defect length, and defect depth. A burst pressure parameter curve was produced to facilitate comparison of these relationships (Figure 9). Tubes pulled from the Surry 2A steam generator were used to experimentally verify the empirical models.

Burst tests have been performed on two CR-3 tube sections to further verify the structural acceptability of leaving tubes with multiple pit-like IGA in service.

The two sections selected for burst testing contained a combined total of 82 pit-like IGA indications.

One tube section burst at 12,400 psi and the other tube section burst at 11,400 psi.

Both burst pressures far exceeded the Regulatory Guide 1.121 requirement of 3 times operating differential pressure (4050) and 1.4 times the differential pressure under faulted conditions (3500).

BWNS produced (Reference 5) a curve similar to the one produced by Reference 4.

The curve is based on a normalized axial length indication and can be used to project burst pressure for degradation of any through wall depth.

As shown on Figure 10, the projected burst pressure for a 40% TW defect would be greater than 85% of the virgin tube burst pressure. As stated above, actual burst of a CR-3 tube section with a 40% TW pit-like IGA defect occurred at 11,400 psi or 87% of virgin tube burst pressure (13,000 psi).

Therefore, burst tests performed on actual CR-3 tube sections with pit-like IGA further demonstrates the accuracy of the burst pressure parameter curve for projecting burst pressures based on a normalized defect axial length.

It is also very important to note, as shown on Figure 10, that the CR-3 tubes fall into the region of the burst pressure parameter curve where burst pressure is not_ related to the depth of the degradation. Even a 100% through wall defect would be expected to burst at a pressure above 70% of the virgin tube pressure (and more than seven times the operating differential pressure).

The effects of circumferential degradation on tube integrity was addressed in Reference 2.

Figure 1 of that reference shows degradation such as small cracks of circumferential lengths up to 0.50 inch at TW depths up to 100% do not affect the tubes capability to maintain structural integrity under differential expansion loads such as those encountered following a MSLB. Although no cracks were observed on CR-3 tube sections, the figure may be used to conservatively demonstrate that the very small circumferential size (less than 0.08 inches) of the CR-3 pit like IGA does not present a tube structural integrity concern.

3F0793-02 Page 7 RELATED INDUSTRY EXPERIENCE FPC has reviewed industry experience regarding detection and sizing of pit-like IGA.

Reference 3 presented a detailed ECT qualification program performed for Palisades Nuclear Power Plant.

One objective of the Palisades study was to determine the detection capabilities of all eddy current techniques, including bobbin probe examination.

Degradation examined included laboratory samples of intergranular attack both with and without associated denting. Each IGA sample was examined several times with different bobbin probes to identify detection limits.

Detection limits were established for bobbin probes by reviewing the..

eddy current results for the most shallow indications which were consistently detected. For IGA indications with no dents, a 100% assurance of detection was achieved for standardized "2

inch axial and.588 inch circumferential" indications with as low as 25% through wall penetration.

For penetrations greater than 25% we concluded that even smaller axial and circumferential indications will be detectable.

If a qualification program similar to the Palisades qualification program was carried out on CR-3 steam generator tubes, under eddy current conditions similar to those used for the Refuel 8 field inspection it would likely result in a 100%

assurance of detection for indications of smaller volume than the Palisades indications.

This is based on comparison of eddy current fill factors, inspection probe frequencies and indications' location.

Fill factor is a measure of the degree to which a bobbin coil physically fills a tube (higher fill factors provide better detection rates). The fill factor used during Palisades examination of IGA samples was 0.78 while the fill factor for CR-3 was 0.85.

Additionally, a mixed frequency was used during examination of IGA samples at Palisades to suppress tube support plates and possible associated denting. CR-3 inspection of the area of interest in the B generator was accomplished using the 600 Khz frequency channel for the freespan area with no mix for suppression because the indications of interest at CR-3 are located at midspan. This indicates that larger volume IGA defects can be reliably detected with existing ECT technollgy.

The NDE Committee of the B&W Owners Group (BWOG) has initiated a project to evaluate non-destructive testing capabilities for detection and characterization of IGA in OTSG tubes.

OTSG tube samples with laboratory grown IGA have been produced. The project includes ECT examination of the samples during 1993. Also the BWOG Executive Committee has endorsed an ongoing tube pull / analysis program.

Results of those efforts will be reviewed by FPC to better understand IGA and other OTSG degradation mechanisms.

4 3F0793-02 Page 8 CONCLUSIONS:

FPC has identified the damage mechanism that affected tubes with S/N indications in the first span of the B OTSG to be sulfur related pit-like IGA.

Results of I

ECT, chemistry, maintenance and operational historic data support FPC's rationale that a boil down of the generator occurred during loss of mainfeedwater and the sludge pile was allowed to heat up such that deposits in the sludge pile were randomly splattered onto tubes. The deposits dried out on impact with the hot tubes, concentrating the sulfur and creating conditions conducive to initiation of the pit-like IGA.

Several changes have been made which alleviate problems with resin breakthrough. These changes appear to have significantly reduced the

)

amount of sulfur introduced to the sludge pile. Sludge lancing performed on both OTSGs in 1987 should have removed most sulfur present from resin which entered the steam generator prior to 1982.

The Emergency Feedwater Initiation and Control System has also been installed which provides automatic initiation of emergency feedwater upon decreasing OTSG levels. Elimination of previous delays in getting feedwater to the steam generators would reduce the likelihood of boil downs which could result in " deposit splatter" on tubes.

The structural integrity evaluation has shown burst pressures of defective tube samples obtained through CR-3's tube pull project to be sianificantly higher than 1

the limits established by Regulatory Guide 1.121. FPC concludes that this type l

of degradation has very small detrimental effect on the structural integrity of i

the tubes and therefore, does not present a safety concern.

1

)

i 3F0793-02 1

Page 9 REFERENCES 1.

EPRI Report NP-2981, April 1983 2.

GPU Topical Report 008, Revision 2, March 29,1983 2

3.

Palisades MIZ-18 Qualification Program, August 1989 4.

NUREG/CR-5117, Steam Generator Tube Integrity Program / Steam Generator Group Project, May 1990 5.

BWNS Report 51-1218868-00 (In development) 9 k

{

I

.3F0793-02 TABLE I j

"A" OTSG S/N INDICATIONS

~

TElf a3d COL IND STV LOCAfl0N 8068tN 2 6 ODI $/N 121N TSP + 0.61 806 BIN 4 18 co! 5/N 340 TSP + 9.82 80651N 6 29 ODI $/N ist TSP + 1.71 6068tN 7 28 Axl 5/N 15tN TSP + 10.66T0* 16.60 8068tN 001 5/M 15tN 15P+ 26.90 80681N 8 33 Axl S/N 15TN 15P+ 6.C210+ 16.30 BC481N CDI $/N 9fN 15P + 5.61 60681N CCI $/N 6TH 15P + 19.75 8068tM Col S/W LY17

+ 20.31.

60681N 9 34 CD1 $/N 121N TSP + 0.57 806818 10 6 008 $/N 12in 15P+ 0.71 50881N 11 7 (21 $/N 12iN 15P+ 0.75 806 BIN 12 7 001 $/N TIN 157 - 0.62 Boellu 12 8 001 $/N LTPF

+ 11.92 80681N 14 8 ODI $/N 7TN 15P - 0.82 80681N 15 30 001 $/N 6TN ISP + 0.67 80681N 16 6 ODI $/N 8tN 157 - 0.71 80681N 16 41 Col $/M 11TN 15P+ 16.09 BOSBIN 18 25 001 $/N 91N 157 + 0.75 80881N 18 74 Col $/N 6tN 15P + 0.68 60881N 19 3 CD15/N 12TN ISP+ 0.64 80681N 22 59 ODI S/N 10TN ISP+ 0.51 BostlN 23 91 Col S/N BIN 157 - 0.77 80881N 24 7 001 $/N 121N TSP + 0.81 80881N 24 86 001 $/N 81N TSP

  • 30.30 30881N 24 88 001 $/W 10TN TSP + 3.T2 BoeBlu 24 89 CDI $/N 13fN 15P+ 34.22 80681M 25 95 ODI $/N BTN 157 - 0.64 80681N 26 4 Col $/N SYN 15P - 0.71 80681N 26 90 COI $/N 15tu 15P+ 43.38 800stu Col 5/N 15fN 15P+ 22.62 80881N 26 91 Col s/M 15tu 15P+ 24.38 BOSSIN CCI $/N 9fu 157 - 0.76 80881N WAR 1/8 8tN 157 + 0.00 80881N WAR $/N TTN ISP + 0.00 80E81N Col S/W 3RD 157 + 16.02 SC481N 001 1/N CTHE8 + 0.00 80681N ODI $/N 151 ISP + 16.88 60681N Col 1/N 12fH 15P+ 9.34 BDBBlu 26 95 001 1/N BTN 157 - 0.67 60ES1N 26 96 COI $/N BTN 15P - 0.60 806BlN 27 4 Col 5/W STN 15P - 0.69 80eBIN 27 89 Col $/N LTPF

+ 4.16 totBIN Col $/N LTPF

+ 6.84 80881N Col 1/N 4TN 157 - 0.44 808818 Col S/N 151N 11P+ 34.53 8068lN 27 91 Cc! $/N LTSF

  • 36.31 60881N 001 $/N 2ND 157 + 19.13 500llu CDI S/W 6TN 157 + 34.79 506 BIN Col $/N T1u ist + 7.01 806815 (Cl 1/N TTN 15P + 16.00 TIN 157 + 26.36 S** SIN CCI S/W 6 80681N Cet $/W e

. 8tu 157

  • 31.74 808815 001 $/N 111N 15P* 22.23 80683N 27 92 CDI S/W LTPF
  • 5.80 8088IN CD1 $/N 6TN ISP + 4.79 50ttlN ODI $/N 6fR 15P + 5.75 B0681N 001 5/N 6TN 157
  • 6.03 SO68!N ODI 5/M 6tM TSP + 24.05 806 BIN Col $/N 9fu 157 - 0.75 80881N 001 S/W 11TN 15P+ 18.41 80681N Col $/N 1TN 15P+ 18.97 80681N 27 93 001 $/W 31N 15P
  • 11.97 50681N 28 7 001 $/N BTN 15P - 0.70 80681N 28 92 001 $/N BIN ISP + 15.43 BOSSIN 28 93 CD1 1/N 81N 15P + 0.68 BOBBIN 29 5 001 $/W 8tN 15P - 0.71 50es!N 29 73 tal s/W 3t0 TSP + 11.67 60681N 31 11 001 $/M 9tu TSP + 0.56 1

3F0793-02 TABLE I "A" OTSG S/N INDICATIONS TEST eCW COL lu0 ETV LOCAtlC*

80881u 34 72 001 t/m 2WD i5m + 14.64 80881u 35 59 col S/u 12fu TSP + 12.43 Bottle 37113 Col $/s 11Tu TSP + 0.65 80881u 39 81 CDI 1/u 10fu 15P+ 28.74 80881u 40 69 001 1/u 101u TSP + 28.60 80881m 40117 ODI $/s 13tu tsp 31,87 Bossin 41 116 CDI 1/u 12tu 11P+ 0.53 508815 0D1 1/u 11Tu 11P* 0.72 80881 42 64 001 1/u 11Tu 1$P* 4.03 8088tu 42 69 CCI 5/u 9fu 157 + 25.56 80881u 47 58 CCI t/u icin 15P+ 14.65 8088tu 52 11 CDI 1/u 320 117

  • 0.73 -

508815 56 3 CDI $/5 10fu tsp + 0.72 80881u 56 5 CDI 5/s 9fu itP + 0.63 80881u 57 2 Col 5/u Siu 157 + 0.85 808812 57 127 WAu t/u 10Tu T1**

0.00 808815 60 1 COI S/W ictu 11P* 0.82 80881m 60 65 CDI S/W 12tu Tsp + 9.08 808815 60 103 001 $/s 47s TSP + 0.68 50881m 61 1 CDI $/u 9fu TSP + 0.55 80881u 61 88 ODI 5/u tofu TSP + 8.84 80888u 61 124 CDI $/s 8tu 11P

  • 0.66 80881u 62 4 0D1 $/u TTu iSP
  • 0.83 Bottle 62 5 001 t/s 9f u 1$P
  • 0.70 808815 62 128 WAR $/u 10tu flP* 0.00 808815 ODI $/u Stu TSP
  • 0.44 8088tu 65 87 CDI t/s Afu itP
  • 0.59 80881u 64 130 CDI $/u 1275 11P* 0.68 508815 67 73 CCI 1/u 12fs ISP* 24.44 808815 64 22 CDI 5/5 12fs isP* 0.&T 50881u 68130 (CI 1/u 11tu tsp. 0.75 80881u 69 5 ODI 1/u 11Tu TSP + 0.47 8088!u 73 41 001 5/u 12fu TSP
  • 0.49 808815 73 178 WA8 t/s Siu TSP
  • 0.00 Bottlu 75 29 CDI $/u 7Tu TSP
  • 0.88 tottle T7 5 WA8 5/u 15fu ISP- 0.78 80881u 77 17 CDI $/u TTu 15P - 0.84 806Blu 77 $3 CD1 t/u LT17

+ 36.90 80881u 79 19 CDI 5/u stu 157 + 0.58 80881u 79 28 001 t/m icin isP- 0.74 80881u 77125 CDI $/u 10fu 75P+ 0.54 80881m 82 45 CCI 1/u Ictu isP+ 0.59 50881u 52 53 CDI 5/s 10fu isP+ 0.73 80881u 82 58 CCI s/s ieta 15P+ 0.69 8088!u 85 9 001 $/s 8tu T57 - 0.74 8088tu 86 7( CDI 5/u tifu tsp + 17.10 808815 88 53 001 1/u

'f u 7 57

  • 0.75 80681u 90 72 Col $/u 12fu TSP + 15.44 i

Boettu 92 16 001 t/u 6Tu ISP + 0.64 80881u 94129 CDI S/u Stu 157 - 0.41 50881u 96 70 (Cl S/E 4tu 157

  • 0.55 808815 96 83 W I t/m 67u isP
  • 27.37 808Blu
  1. 8 5/5 67u 157
  • 3.13 808815 101 84 3 8 S/W Sin 15P
  • 0.80 80881u 107 31istSM 9fu TSP
  • 0.70 808Blu S I 8/3 3at isP
  • 0.66 8"$51u 104 70 SI S4 life 157* 32.13 808815 114109 (CI 5/u 775 TSP - 1.00 80881u 120 77 CDI t/u 4tu Tsp
  • 2.32 80881u 121 32 COI 1/u Stu Tsp - 0.76 808815 121 106 (Cl 5/u 10fu 137- 0.72 80888u 125 63 CDI t/u

-8tu 117 + 0.74 80881u 125 80 00I t/s stu 157

  • 0.58 808815 126 92 WA8 $/u Tim 15P
  • 0.00 80881s 127 60 CDI S/W 9fu TSP
  • 0.69 808Blu 135 71 (CI 5/u 9tu 157 - 0.80 l

808815 136 49 001 1/u 101u tsp 33.22

{

80801u CCI t/m 10fu TSP

  • 13.22 80881u 136 80 CDI t/u tis Tsp - 0.76 80881u 139 10 Axl s/u

,167s 18P+ 23.4470+ 15.40 2

i

=

1 3F0793-02 TABLE I "A" OTSG S/N INDICATIONS i

i 1(17 R3d COL two Etw LOCAflou 8088tu 143 48 (DI $/s TIN 157 - 0.83 80881u t'6 7 COI 5/u 8td TSP + 0.69 80881u W I $/s afu isP - 0.85 806815 14 22 001 s/u 71N Tsr - 0.80 600Blu 146 26 CCI $/u 77N 11P - 0.78 S0ttle 146 34 001 5/u 81u Tsp - 0.79 80831u ite 50 Col Stu 10tu tsp. 0.62 00081N 147 31 00I t/N 81u TSP - 0.82 50881u 144 1 001 $/W Blu tsp - 0.T7 60681u 144 3 001 $/u 11Tu tsp + 0.65 tottle 168 34 Cet $/u tofu Tsp. 0.62 B00slu 149 11 Col s/s 8tu TSP - 0.83 00selu 149 19 Col s/u 12tu Tse- 0.83 80881u ODI S/u 10fu TSP- 0.72 508815 149 20 CDI S/u tofu 15P. 0.67 SOS 81u 149 21 001 s/n 10tu tsp. 0.72 800sta 149 25 WAR S/u 10fu tsp + 0.00

.i Booglu 149 28 bAR 1/u 101u f5P+ 0.00 00eslu 150 15 ODI s/u totu 157 0.75 j

TOTAL TUS(5 FOUND e

122 TOTAL luolCAfloss FQue = 159 10fAL Tutts la luPUT FILE e 15531 j

-f i

i I

i h

i 3

e 3

)

l-

~

. - 3F0793-02 TABLE I "B" OTSG S/N-INDICATIONS 83681N 2 20 003 5/N 10TN isP- 0.71 BD68tN 2 21 001 5/N 10fN isP-
0. 73 83681N 3 24 001 1/N 10iN isP- 0.87 6068 t N 4 16 001 $/N STN 1sP -
0. 77 SD6 Blu 4 19 001 5/N 91N isP + 0.61 BDB8tN 4 24 001 3/N 91M isP - 0.84 BD6Blu 5 38 ODI $/N 91N ISP
  • 0.84 BDeBIN 6 31 001 s/N 10fN isP- 0.84 B0681N 6 44 001 5/M 9f M 157 - 0.73 BD681M 6 to 001 1/N 81N TSP - 0.79 83681N 6 49 ODI $/N 9fN isp - 0.83 BD68tN 7 20 001 s/W 71N isP + 0.69 BDBBIN 7 26 001 5/N 12TN 1sP- 0.85 SD681N 7 30 001 s/N 91N ISP - 0.84 8068 lN ODI $/M 8tN tsp - 0.80 BD681w 9 55 ODI 5/K TTN isp - 0.84 BDe81N 10 12 003 5/N 9fN 157
  • 0.00 80681N 10 27 001 5/N 91N isp -
0. 75 BDBBIN to 35 001 5/N 91N isP - 0.86 80881N 11 67 AXI s/M 13f M isp.19.421D* 24.70 SD68tu 13 9 001 5/N SYN 15P - 0.80 BD881K 13 27 col 5/W 3a0 ISP - 0.74 BD681N 14 7 001 $/M 91N TSP - 0.79 BD88tM 14 34 001 1/N TTN 157 - 0.88 SD68tN 15 3 001 s/N 9fN isP - 0.85 BD68tN 15 5 001 t/N

. Bin ist - 0.77 BD6 BIN 1$ 35 001 S/N 9fM TSP - 0.73 80681N 15 64 001 $/N 9fN isp - 0.82 80681N 15 69 ODI $/M TTN ISP + 0.71 BDBBlu 16 38 001 s/W 71N 157 - 0.84 BD681N 17 45 001 5/N 9f N ISP - 0.85 Bostlu 17 65 ODI $/N 9f u 157 - 0.81 -

80681N 17 74 001 $/N TTN 157

  • 0.79 BDe81N 19 6 ODI $/N 9f M 157 - 0.88 Bost!N 19 30 001 t/N TTN isp + 0.70 BD681M 19 46 001 5/N 91N 15P - 0.84 BD881N 20 38 ODI s/N 9f N T LP
  • 0.85 BDB81 N 21 34 001 $/N TTN ISP - 0.90 SD681N 21 40 00] $/N 9fN isP - 0.82 BDB81N 001 s/M 71N ISP - 0.83 BD68th 22 10 001 5/N BfM 15P - 0.76 80881N 22 35 001 5/N 71N TSP - 0.71 BD681N 22 36 001 5/N 91N isP - 0.76 8368tN 23 12 001 5/N BTN isp - 0.79 BDe8 lN 23 36 001 1/N 3RD 157 - 0.71 BD681N 23 50 col s/N TIN isp - 0.83 BD6Blu 25 4 001 1/N LisF

+ 24.50 SD681N 001 $/N BfN ISP - 0.79 BD681N 25 9 001 1/N 41N isP + 12.67 BD6Blu 25 10 001 s/N 15fM 15P+ 25.45 8068 tN 001 $/N 151N ISP+ 24.13 BD681N 26 10 WAA 5/M 91N ISP + 0.00 B0681N WAA $/N 81N ISP + 0.00 SDBBlu 001 t/N L1PF

+ 5.09 50681N 26 26 001 S/N TIN ISP

  • 0.89 BDG81N 27 5 001 s/N FIN isp - 0.80 BDes t M 27 53 001 s/N

.L1PF

+ 21. 75 SDsSIN 27 92 col s/N 15fN isp+ 22.92 SDB8tN ODI 1/5 15fN isP+ 22.57 S D68!N 27 94 001 s/W 12IN 1sP+ 10.99 BD681N 001 $/d 9fN 157 + 0.66 BD681N 001 5/W 8lu T57 + 0.63 BDB81N 28 6 001 1/N 9fu 15P - 0.83 BDB81N 26 94 001 $/N UlsF 0.86 8068!N 29 7 001 S/N TIN TLP + 0.79 BDB8!N 29 42 001 $/N 3E0157 - 0.72 BDOBIN 30 14 ODI s/N 97N isP - 0.84 BDE8tN 30 41 001 5/N 9fN15P- 0.82 BDSBIN 31 7 001 5/W 87N iSP - 0.80 E3681N 31 52 DDI s/N

' 14TN isp+ 13.18 4

3F0793-02 TABLE I "B" OTSG S/N INDICATIONS I

80881N 32 71 001 $/W 6fM TSP

  • 0.82 BOBBIN 33 8 COI $/g 77N ISP + 0.70 BOB 81N 34 8 COI 1/N

'97# ISP

  • 0.92 BOB 8IN 34 70 CD1 $/N 13fM TSP + 18.98 8088!N 35 38 CD1 $/N LisF

+ 27.24 8088tN ODI $/W (157

+ 13.77 8088tw 35 42 CCI $/N 9fM 157 - 0.63 80881N 36 40 CDI $/N LT5F

+ 10.33 80681N 36 44 001 $/N LISF

+

7.88 8068tN 36 47 ODI 5/N TTN 157 - 0.91 8088!N 37 12 (Cl 5/N 9fN 1$P

  • 0.90

=

80881N 37 40 001 S/M LISF

+ 9.14 B068!N 001 $/N LISF

  • 5.58 80881N 37 41 Col S/N LTSF

+

6.78 80681N 37 44 Col S/N List

+ 5.51 8088tN 37 48 CDI $/N

, TIN 15P - 0.79 8068tN 38 41 001 1/N LTSF

  • 6.78 80681N 39 8 CDI S/N TTN 15P + 0.76 8088th 39 41 CCI $/N LisF

+ 30.30 80881N 001 $/N LT$F

  • 26.25 BOBBIN 001 1/N

.LTSF

+ 22.04 80681N CCI $/N ALTSF

+ 12.32 80881N 21 $/N

. 17$7

+ 11.00 80681N 001 $/N i LitF

  • 9.30 80881N 39 42 001 $/N ILi$7

+ 9.76 B0881N 39 45 001 $/N

. List

  • 7.82 80681N 39 49 Col 1/N 340 TSP - 0.74 8088tN 39 61 m l s/N

'9tN tsp - 0.85 80681N 40 8 Col t/N

' TfN tsp + 0.68 8008]N 40 47 Col $/W List

+ 13.16 BOBBIN 001 $/W LTSF

+ 8.48 80681N 40 49 CDI 5/N 77N TSP - 0.76 BOBBIN 40 52 001 $/W TTN isp - 0.85 80681N 41 41 COI $/W List

+ 12.66 80881N 41 44 001 s/N LisF

+ 15.53 80881N ODI 5/N LisF

+ 6.86 80681N CDI $/N L11F

+ 12.06 80681N 41 47 001 $/N Lf57

+ 14.00 8088lN CCI 5/W Li$f

+ 9.08 8068!N 41 53 Col 5/N 3ap TSP. 0.71 8068!N 41 56 COI 5/N 320 TSP

  • 0.71 80881N 42 39 Col s/N L15F
  • 7.67 8088th 42 41 CD1 5/>

LISF

+ 8.19 BOBBIN 42 48 ODI $/N L157

  • 8.95 80881N 42 69 Col S/W 3RD ISP - 0.80 BOBBIN 43 42 CDI $/N tt$F

+ 8.85 8088tu 43 80 001 $/N 12fM 11P+ 6.84 80881N 44 46 001 5/N L15F

+ 11.96 80081N 00] $/N LTSF

+ 8.40 80681N 45 7 001 s/N TTN TSP + 0.71 80883N 45 37 CDI $/N LitF

+ 10.52 BOBBIN 45 46 CDI $/N LisF

+ 13.74 80681N 46 37 001 S/N LisF

+ 5.89 BOBBIN 46 44 CCI 1/N L15F

+ 12.93 80881N CDI $/N LYSF

  • 7.32 8088tN 46 46 001 $/N Li&F

+ 7.93 8088tN 44 79 001 $/N 81N TSP + 37.47 80881N 47 7 Cel S/W 7TN f5P + 0.68 80881N 48 7 Cel s/h 77N Tsp + 1.32 BOBBIN 48 38 Col $/N Lilf

+ 10.86 8088!N 48 470015/N List

  • 7.62 BOBBIN 001 t/N Litf

+ 7.03 8088tt 49 35 001 1/N List

+ 6.93 80681N 49 38 001 $/N tt&F

+ 9.80 80681N 49 41 001 $/N List

+ 12.05 BOSSIN 49 42 (Cl $/N Li$F

  • 8.46 80081N CDI S/W L11F

+ 8.54 80881N 49 47 WI 5/N LTSF

+ 9.97 808813 49 48 col $/N LIST

+'14.43 80681N Col S/N LTSF. + 10.70 5

l

.3F0793-02 TABLE I "B" OTSG S/N INDICATIONS j

~

l TE 57 ROW COL INO %tW LOCA110N

-J 8068tN 001 $/m Lt$F

+ 7.63

]

80681u 49 49 CD1 5/N LTSF

+ 13.18 B0681N 49 50 CD15/N LTSF

+ 10.73 9.54 Boe8IN 50 48 001 s/W t LisF

+

8.45 LisF

+

1 8068tu 51 39 CDI $/N 806Blu 51 42 a01 5/m 1.f sf

  • 7.89 9.17 Bosals 51 48 ODI 5/W LisF

+

B0681u CDI 5/N

'.f 5F

+ 6.71 B0681u 51 49 CD1 $/N LisF

+ 14.14 80681u 52 30 CD1 $/N 10fM TSP. 0.80 80681m 52 36 CD1 $/N LisF

+ 10.22 8068tN CD1 S/W List

+ 7.05 B0881N 52 40 CDI S/N L1$F

  • 12.12 7.01 80681W 52 41 ODI $/W List

+

B0681N 52 43 001 S/N LisF

+ 8.26 8068tN 52 51 001 $/W LisF

+ 10.12 I

9.22 80881N 001 5/N tisF

+

806Blu (DI 5/W LtSF

+ B.03 5.79 80881N 001 $/N LisF

+

80681u 52 81 001 $/N Lisr

+ 11.93 BOBBIN 53 39 CDI $/W LISF

+ 11.17 8068tN CD1 $/N LTSF

+ 12.44 BOBBIN 53 81 CD1 s/N LisF

+ 15.58 80081N CDI $/N LisF

+ 14.59 i

BOBBIN 54 6 001 5/W TTN isP + 0.66 BOBBIN 54 37 001 $/W

.iSF

  • 8.12 80651N 54 51 00I $/N TTH TSP - 0.73 SOB 8lu 54 98 CD1 s/N SYN isP - 0.31 i

80681u

$4 124 001 $/N

  • 9tN TSP - 0.74 80GBlu 55 37 001 S/u List

+ 14.35 80881u CDI $/N Lt$F

+ 7.84 80681N 55 41 ODI S/u LisF

+ 14.81 80681N CDI $/N LisF

+ 12.79

. BOB 8tN 001 $/u L1SF

  • 10.13 7.88 80681u 56 44 001 $/M LT5F 80681N

$6 51 001 t/m tist

+ 7.94 131M isP+ 16.07 BOG 81N 56 53 Col S/W

~ LTSF

  • 6.82 B068th 56 82 CDI $/m 806Blu 57 38 001 5/N L1SF

+ 12.00 B06Blu 57 39 CD1 $/N TIN ISP - 0.86 6.13

{

80BBlu 57 40 CDI $/w LTSF

+

80681N 57 44 001 $/N L1SF

  • 9.64 6.74 60681N 57 52 CDI $/u List

+

9.47 80081u 57 96 CDI 5/u Lisf

+

9.99 80681N 58 27CDI 5/N L15F

+

B0081N 58 41 CDI $/N List

+ 10.97 806elu 58 44 Col 5/u List

+ 8.34 9.93 BOB 8IN 58 45 001 $/u List

+

80881u 58 83 001 $/u List

+ 5.41 806Blu 59 1 CDI s/n 9tM 15P. 0.80 80881u 59 25 CDI Stu LisF

+ 11.01

+ 8.09 80681u 59 26 0011/u LisF i

Bost!N 59 32 ODI s/u LisF

+ 12.70 808Blu 59 39 001 5/N L15F

+ 10.94 80881N 001 $/5 L15F

  • 12.44 80681u 59 49 001 $/u LisF

+ 8.17 80681m 59113 CD1 $/u TTu TSP - 0.72 BOBBIN 60117 col s/u TIN tsp - 0.69 60681u 60119 001 s/N TTN T$P - 0.69 B0881N 61 26 001 $/N List

+ 14.51 r

BOBBIN 001 s/u List

+ 12.04 806 BIN 61 29CD1 $/N

  • LisF

+ 10.00 90681N 61 38 ODI 5/W LTSF

+ 9.04

~

806815 61 42 001 s/n 7tN tsp

  • O.05 e

B0881u 62 7 ODI s/u 15f W tsp + 9.41 506515 62 13 001 s/u 38tD isP - 0.73 808Blu 62 27 001 t/N LTSF

  • 9.85 80881u 62 33 CDI $/N LisF

+ 12.87 BOSSIN 63 5 ODI s/s 15tN tsp + 6.93 80883u 63 27 0015/u LisF

+ 8.21 6

1

.l3F0793-02 1

TABLE I I

"B" 0TSG S/N INDICATIONS itst aDW CDL luD %fW L W ilDN 60681N 63 29 Col S/N L15F

+ 11.93 6%81u Col 5/N LilF

+ 11.04 8%81M 001 t/m Lf5F

+ 7.80 6%81N 63 30 Col 5/N Li$F

+ 6.27 BM8 t N 63 34 001 5/N TfM TSP - 0.77 W 8tN 63 39 Col $/W List

+ 15.19 7.07 M 81N 63 45 CDI S/W Lisf

+

G 8tM 63 69 ODI S/N 7tM isP - 0.72 8 % 818 64 3 COI $/N i$7N ISP. 0.87 B0681N 64 39 001 $/N Li$7

+ 6.75 B%81N CD1 5/N

.LTSF

+ 12.19 60681N 64 46 001 s/N LTSF

+ 9.18 E%81N COI $/N Lf5F

+ 11.35 i

BM BIN 64 68 Col S/N 71H isP - 0.76 -

W 81N 64 121 001 $/N 4TN 15P + 0.75 l

6%81W 65 28 ODI $/W L11F

+ 9.70 8068tM 65115 Col 1/N 4tM isP +

0. 72 8%81N 65 119 001 5/N STN ist + 0.66

}

B0681N 65 121 001 5/W SYN ise + 0.69 BOSSIN 65 122 CDI 1/N SYN tsp + 0.68 6068tN 66 28 COI $/N LTSF

+ 8.51 5%51N 66 58 CDI S/W

. TTN 1sP - 0.75 80641N 66111 CDI $/M SIN TSP + 0.70 SDsalu 66126 CDI $/N 4TN 1$P + 0.58 8068 tN 67 33 CDI $/N TTN TSP - 0.77 80881N 67 43 CDI $/N LT57

  • 14.33 8068tN 67 52 Col s/N TT N 15P - 0.77 8381N 67111 CDI s/N SiH tsp + 0.60 80681N 67112 CDI 1/N SIN isP + 0.69 tos81N 68 21 001 s/N Bin isp - 0.79 B0681N 68 35 001 s/N 71N 1$P
  • 0.69 DOSSIN ODI $/N Li$F

+ 11.68 BCE8tN 68 38 008 $/N 9fM isp

  • 0.62 80683N 68 42 COI $/N 91N 7$P + 0.70 60681N 68 46 CDI $/N 9fN TSP + 0.70 838 t N 001 $/N TTN i$P - 0.66 BOBBlu 68 48 ODI $/M 9fu t$P + 0.67 1381N 68 49 COI 5/W 9tu 11P
  • 0.68 BJEllN 68 64 CCI $/N 91N TSP + 0.67 8381N 68125 CDI 5/N 5fM isP - 0.55 M SIN 69 45 COI s/N 9fu TSP + 0.67 EDE8!N 69 46 CDI $/N 9fu 15P + 0.75 8088tN 69 47 CDI 5/N 9fM tsp + 0.74 2 81N 69 56 Col 5/N 9fM isP - 0.63 8381N Col $/N 71u isP - 0.81 5%81N 69 99 Col $/N LTSF

+ 10.61 8%81N 70 42 CDI s/N LTSF

+ 15.45 W 8tN ODI S/W LT5F

+ 14.48 M 81N 70 58 Col s/N 9tM ISP

  • 0.68 638 tN 70 59 001 5/W 91N 75P + 0.70 606818 70 61 Col s/N 9tn 157 + 0.64 SO68tN 70 68 ODI 1/N TfN T$P
  • 0.79 M 8tN 70 125 CCI $/N 12TN isP+ 0.35 BOSalN 71 43 CDI $/N 91N 157 + 0.70 SONBlu T2 29 ODI 5/W 9fN ISP + 3.01 u t!N 72 49 ODI t/N Tfu 1sp - 0.81 E088tN 001 S/N 9fu TSP + 0.74 60881N 72 58 ODI s/W 9tN ise + 0.64 80681N 77 &6 Col S/W 10fN T$P- 0.71 638 t u Tl 65 001 5/11 Tiu 157 - 0.61 B06818 72 67 001 S/W 3t0 ISP - 0.62 E0651N 73 1 Cc! s/W 137u tsp + 28.98 80681M 73 19 Col S/N UtsF

+ 10.13 60681N 73 26 001 5/N 1st 15P + 34.95 80681N 73 39 001 $/N L11F

+ 13.22 60681N 73 56 CDI 5/N 71N tsp - 0.68 i

D 835 73 58 001 $/W TTN isP - 0.68 50681N 73 66 CDI $/N SIN 157 - 0.63 L0tt!N ODI $/M 6TN isp - 0.65 80881N 73 74 CDI $/N 3RD 11P + 27.41

+

7

3F0793-02 TABLE I "B" OTSG S/N INDICATIONS YL$7

  1. 0W COL IND ITW LOCATICW 60981N 74 22 DDI $/W uf5F

+ 0.97 60681N 74 24 CDI $/N 9fM TSP + 10.55 BOBBIN 74 25 Col S/W 2ko 1$P + 27.56 8068!N CCl $/N 2hD iSP + 33.56 BOBBIN 001 1/N UTSF

+ 0.83 BOB 8IN 74 45 COI $/N LISF

+ 24.15 BOBBIN 76 M 008 $/N TTN 7$P - 0.80 BOBBIN 77 12 CD1 $/N U11F

+ 18.36 BOBBIN 79 21 Col $/N TTN f $P

  • 0.71 80881N 79 39 Col S/W 10TM ISP- 0.68 l

80881N 001 $/W 12fM TSP- 0.68 8068tN 79 62 Col $/N 9fM isp - 0.68 6068tN 79 66 (c1 $/N TIN ISP - 0.72 B0881N 79 123 001 $/N 6fH ISP

  • 0.77 800 BIN 79 124 001 $/N 67N 15P
  • 0.92 80eBIN 80 21 Col S/N Utsf

+ 0.61 BOBBIN 80 41 Col $/W 14TN TSP + 11.86 BOEl!N 80 42 Col $/N 14TN T1P+ 3.08 800slN 80 65 Ces s/N 10TN tsp. 0.70 80681u 80 70 003 1/N 71N 15P - 0.57 808 BIN 80 127 001 5/N 71N 157 - 0.77 80681N 81 62 CD1 $/N 91N TSP + 0.64 BOBBIN 81 64 CDI $/N 10tN TSP- 0.67 80081N 81 95 Col $/N LTSF

+ 11.81 BOBBIN 81 122 001 $/N TIN 1$P

  • 0.77 BOBBIN 82 6 CDI S/N 91N TSP - 0.61 800Blu 82 38 CCI $/N 91N TSP - 0.85 BOBBIN IL3 56 Col $/N 157 TSP + 31.38 BOB 8IN 83131 CEI 5/N 9fN 1$P - 0.75 BoeslN 84 39 Cc! s/N 11TN isP+ 8.90 80e81N Cc! $/N TTN isp - 0.79 80E8tN 84 75 COI $/N TTN TLP - 0.80 50681u 84 95 CDI $/N L11F

+ 9.01 80881N COI $/N LTSF

+

7.89 BOBBIN 85 38 Col s/N 380 iSP - 0.84 60681u 65 72 col $/N 6TN 15P - 0.84 806 BIN 85 124 ut s/N 81N TSP + 0.73 BOBBIN 86 6 COI $/N 9fM TSP + 0.66 SOBBIN 86 31 001 $/W Li$F

+ 11.87 BOB 81N Col $/s' LisF

+ 8.46 B0681N 86 32 001 1/N (157

+ 10.15 BOBBlu 86 53 Cc! s/-

71N TSP -

0. TT BOBBIN 86 94 COI $/k Li$F

+ 7.44 BOSSIN 86108 COI $/N 6TN T1P - 0.82 BOB 81N 87 49 C0! $/N 6TH 15P -

0. 72 60681N 87 112 001 $/N 77N ISP + 0.42 BOBBIN BS 12 Col $/N TTN ISP
  • 0.71 8088tk 89 43 Cel $/N List

+ 7.10 BO6 BIN CD) $/N LisF

+ 5.52 80683N 89 95 COI t/N LTSF

+ 14.91 60881N 001 $/N List

+ 13.25 8088th 89 96 CCI 5/N Li$F

+ 13.08 BOBBIN 001 $/N Lf5F

+ 7.97 BOBSIN 90 28 Col s/N Li&F

+ 10.35 606Blk CCI $/N LTSF

+ 6.38 SOsBIN 90 43 ODI s/N List

+ 8.34 806B1N Col S/N LisF

+ 6.63 BOBBIN Col 1/N List

+ 10.63 80GBIN 90 44 Cc s/N LisF

+ 8.25 80881N 90 60 00I $/Ir -

TfN Tsp - 0.86 B0681N 90 94 Col s/N tisF

+ 14.28 BOBBIN 92 28 ODI $/W LISF

+ 11.00 BOBBlk CCI $/N lisF

+ 8.82 B06 BIN CDI 1/N LISF

+ 8.16 80BBlu 001 5/N LTSF

+ 6.88 BOBBIN 92 29 001 5/N TTN isP - 0.79 BOBBIN 001 S/N LT$F

  • 29.11 BOB 81N Col s/N L15F

+ 14.58 806Blu Col s/N LisF

+ 8.85 808815 92 36 Col s/N TTN 157 - 0.84 8

..=

3F0793-02 TABLE I "B" OTSG S/N INDICATIONS i

I 1157 30W COL tu0 TfW' LOCAftou

= - -

r BD6 Blu 001 5/W 6TSF

+ 14.34 60681u 106 38 (D1 s/N TTu tsp - 0.70 9 99 B06Blu 106 47 001 s/N LisF BOElls 107 50 (DI 5/N LisF

+ 8.80 80681u Col S/u 8LisF

+ 5.19 B0681u 108 33 Col 5/N List

+ 12.50 80681u ODI s/N tisF

+ 12.15 Boe81u (DI s/W List

+ 10.00 8068tN (DI S/N LTSF

  • 7.79

+ 7.09 00681u Col s/N List B0681N (D1 1/N LISF

+ 5.82 Bosslu 109 30 001 s/N LisF

+ 9.78 9.22 B0681N Col S/N LisF 80681N CD1 $/N LisF

+ 5.66 806Blu 109 32 Col $/N LisF

+ 8.95

?

BC6Blu 109 45 00! s/u LisF

+ 14.90 B06818 109 52 001 s/u 71u isP - 0.81 80681u 109 84 CDI s/W TTu isP - 0.T7 60681u 110 45 (DI 5/u LisF

+ 11.64 6068tu CDI s/N LisF

+ 10.99 8068tN 001 S/N LisF

+ 10.69 80681u Col S/W List

+ 7.25

$088tN 111 41 001 s/N LisF

  • 8.97 808818 111 71 CD1 $/N 340 TSP
  • 0.71 Bottlu 112 40 001 s/N LisF

+ 9.82 Bost!N ODI s/N LisF

  • 9.06 80681N CDI s/N LisF

+ 6.38 80641N 112 82 (DI s/N TTN isP - 0.83 606Blu 113 39 001 s/N LisF

+ 10.30 sosslu 113 48 Col s/W List

+ 17.03 L1sF

+ 14.09 80681N 001 s/W B0881N 113 114 ODI s/N 10TH isP+ 23.55 E0681u 114 70 001 s/N TTN 157 - 0.76 80681N 115 43 001 s/N 71N isP - 0.92 B0681N 115100 Col S/h 71N isP ' O.78 80681u 116 49 ODI s/6 71N tsp - 0.87 B06Blu 116 61 001 5/N TT u T SP - 0.93 B0681u 116 70 (DI s/M 3RD isP + 34.61 8xBlu 116 80 col s/N 71u 15P

  • 0.91 SMBlu 117 44 CDI s/N Lisf

+ 7.43 80681N 117 71 (DI s/N 71N 157 - 0.81 80681N 117 73 Col s/N 71N isP - 0.85 80681u 118 40 Col S/W LisF

+ 7.97 i,

80681u col s/N L157

+ 5.67 8*E81N 001 s/N tisF

+ 23.05 80681N 118 66 Col s/N 71N isP - 0.78 Boeltu col s/N 3t0 1sP - 0.75 5%81u 118 99 001 s/u 71N 1sP - 0.81 TIN isP - 0.76 806515 119 48 001 s/N 80 Ells 119 63 008 s/N 71N isP - 0.77 B%Blu 119 66 001 5/N TTN isP - 0.84

?

80681N 119 80 001 s/N TIN isP - 0.81 i

7tN isP - 0.78 80681N 120 63 CDI $/N Bosslu 120 97 001 $/N TTN 1sp - 0.75 806 BIN 120102 001 S/W 71N TSP - 0.13 i

testin 121 1 001 $/N 137N ist+ 18.22 SM8 th 121 48 Col s/N 7TN Tsp - 0.85 80681N 121 78 CD1 $/N 3t0 157 - 0.82 60681u 122 102 001 s/N TTN isp - 0.75 80681N 123 10 001 s/N Tfu tsp + 6.54 50681M 001 s/N 77N 157 + 5.59 60681u 123 74 cDI s/N 71N 1sP - 0.85 SDSEIN 124 8 Col s/N 9tN isP + 12.29 80681u 125 89 001 5/N 71N isP - 0.81 60681N 125 98 001 s/N 10TN tsp- 0.87 6068tN 126 43 001 s/h 71N tsp - 0.80 60681N 126 53 001 s/N 7TN TSP

  • 0.74 6068lN 127 58 ODI s/N 71N isp - 0.80 50681u 127 96 001 s/N 10TN isP- 0.83 506Blu 128 53 001 S/W 13fu TSP- 0.87 s

9

. -. - =

?

3F0793-02 4

TABLE I "B" OTSG S/N INDICATIONS E

TE51 80W COL IWO %fW LOCAi!DN

. +---.............

BOBBIN 129 34 col s/N 7tu tsp. 0.90 BOBBIN 129 52 COI $/W 71N TSP - 0.76 BOSBIN Col s/N 3ag Tsp. 0.72 BOBBIN 130 14 001 5/N 9fu 15P - 0.83 80881N 130 23 col s/N 7tM t$p. 0.76 I

800Blu 130 40 00I s/W 7tN ISP - 0.87 80881N 130 47 Cc! s/N 71k isP - 0.87 BOBBIN 130 57 Col s/N MN tsp + 28.47 8088]N 131 50 Col $/N TTN TSP

  • 0.86 80881N 132 30 (Cl S/W TTu 157 - 0.84 80881N 132 36 00] $/N TTN ISP
  • 0.87 8088lN 132 37 001 s/N 7tM isp - 0.84 BOB 8IN 132 45 col s/N 7tN isP - 0.82 BOBBIN 132 58 ODI $/N TfN isp - 0.78 8068 t h 132 63 CCI $/N TT H T SP - 0.85 r

~ BOBBIN 133 35 CDI s/N TfM 1SP - 0.83 BO6 BIN 134 29 CCI $/N TTN ISP - 0.82 BOBBIN 134 39 ODI $/N TTN ISP - 0.90 B0681N 134 44 CDI $/N 8tu TSP + 16.57 BOBBIN 134 63 CDI $/N 7TN ISP - 0.83 8088!N 134 78 001 $/N TIN ISP

  • 0.88 BOBBIN 135 29 001 $/N 77N ISP
  • 0.74 80881N 135 43 001 $/N 9fM TSP - 0.83 8088lN 135 47 001 $/N 77M isP - 0.82 80881N 136 32 001 $/N TfN TSP. 0.76 80881N 136 49 CDI s/N TIN ISP - 0.85 80881N 138 20 COI S/N 7TH TSP -
0. 75 80881u 138 30 001 s/N Tim TSP - 0.83 80881N 138 38 ODI s/N 7tM is? - 0.83 80881N 139 21 001 $/W TTN TSP - 0.70 80881N 139 35 001 $/N TTN TSP - 0.89 i

80883N 139 49 001 $/N 7tM TSP - 0.83 80881N 139 74 001 s/N.

77u tsp - 0.86 L

BOBBIN 140 15 Col s/N 7TN isP - 0.84 BO6 BIN 140 21 001 $/N TfM 1SP - 0.88 8OBBIN 140 32 Col s/N TTN isP - 0.94 BOBBIN 140 42 Col S/W 7t h T SP - 0.85 80881N 141 29 001 S/W 13fN TSP- 0.82 80681N CX)! $/N TIN TSP - 0.87 8088tN 141 57 Col S/N 71N TSP - 0.82 8OBBIN 142 11 CDI 5/N 7TH 157 - 0.81 BOBBIN 142 12 COI S/W TIN ISP - 0.94 BOBBIN 142 14 COI s/N 77N TSP - 0.85 80E8lu 142 24 001 $/N FIN isP - 0.87 l

BO9 BIN 142 38 CD1 s/N TfM TSP - 0.76 BOBBIN Col $/N 380 isP - 0.84 80681N 142 57 001 s/W 77N isP - 0.88 B088!N 143 31 00] $/N 77N ISP - 0.84 80681M CD1 $/N TfN f$P - 0.79 B0681N '

144 12 CD1 s/N 77N TSP - 0.92 80881N 144 13 001 s/N TfN 157

  • 0.72 BDEBIN 144 15 (Di $/N 7TN TSP - 0.82 Boe8tN 144 22 Col S/N TfN 157 - 0.84 BOB 81N 144 24 001 5/N Tiu 757 - 0.92 80881N 144 49 Col s/N TIN ISP
  • 0.85 80881N 144 56 001 $/N TTN 15P
  • 0.00 80881N 001 s/N 7TN 15P - 0.82 80881N 144 57 001 5/N 13fN 15P- 0.84 BOBBIN Col 1/N 77N T$P - 0.84 808Blu 145 8 Col s/N 77N isp

'O.85 8OBBIN 145 21 001 S/N 71N isP - 0.81 8088tN 145 28 Col s/N 71N ISP -' O.84 80681N 145 34 Cc! I/W TTN 15P - 0.78 BOBBIN 146 14 001.$/M TIN I$P - 0.82 BOBBIN 146 26 001 $/N 9fN isp - 0.88 B088!N Col 5/N 81H 15P -

0. 73 BOBBIN 001 s/W 9fM TSP - 0.87 8088tN CDI $/N BTN isP - 0.84 80881N 146 30 001 5/N TTM isp - 0.88 80881N 146 47 ODI $/N 77N TSP. 0.90 10

3F0793-02 TABLE I "B" 0TSG S/N INDICATIONS l

t list 40W COL thD %fW LOCATION

[

BOcelu 146 50 00! 5/w 13fM f$P. 0.86 80631m 147 12 ODI $/w Tin isP. 0.73 BOEglu 147 23 001 $/W Tin 1sp. 0.86 j

B06 BIN 147 24 001 $/N 71M isp. 0.79 B0681u 147 44 Col 5/W 7TN 15P - 0.84 80681N 147 45 001 5/u ilta isP. 0.79 BOestu 148 38 001 5/W TTN isp + 0.97 Bosalm 149 30 COI $/W 101N Tsp. 0.63 BosBIN 149 32 (DI S/W 10tM 15P+ 0.71 90E81N 1$0 15 001 5/N 77n 15P + 0.76 80681N 151 3 001 $/u totM isP. 0.65 B0681N 151 13 ODI $/W 10TN ISP- 0.74 806Blu 001 S/N 10fH ISP. 0.62 T OT Al. TUBES FOUWD 458

=

TOTAL INDICATIONS FOUND

=

5 73 TOTAL TUBE 5 th thPUT FILE = 15531 l

l 1

l l

11 1

3F07 93-02

~

TABLE II (NOTE 1)

DESTRUCTIVE EXAM RESULTS FOR TUBE No. 52-51 Tube Position Extent Section No.

LTSF +(")

Axigl Circ.

Depth Vg1 in-3 Degrees

% TW ino 28-1

(-)

1.4 11.8 0.8 38 3.47E-7 2B-2

(-)

1.27 9.6 1.0 38 3.52E-7 2B-3

(-)

1.27 38.6 38 2B-4

(-)

1.15 19.1 8.0 38 5.63E-6 2B-5

(-)

1.02 6.1 2.6 38 5.83E-7 2D-6 6.16 60.9 8.4 34 1.69E-5 2F-7 8.47 82.4 6.5 2G-3 8.73 36.9 1.6 34 2.61E-6 211-9 9.73 52.9 3.0 28 4.30E-6 2I2-10 9.73 47.5 5.0 52 1.20E-5 2K1-11 10.60 42.7 2.0 45 3.72E-6 2K2-12 10.73 27.3 2.1 19 1.05E-6 2L-13 11.10 33.5 1.4 13 5.92E-7 2N1-14 11.98 35.8 1.0 40 1.38E-6 2N2-15 12.16 31.4 2.6 19 1.50E-6 2P-16 12.79 43.9 5.3 33 7.45E-6 2R-17 13.79 38.9 3.7 18 2.51E-6 2S-18 14.35 63.7 8.3 33 1.69E-5 2U-19 15.04 32.7 4.8 26 3.96E-6 2V-20 15.54 Bent open; no depth available

      • Utilized for SEM/EDS & SAM /XPS Note 1:

All data in Table II is preliminary.

Final data will be in the EPRI Report.

I

3F07 93-02

~

TABLE II DESTRUCTIVE EXAM RESULTS FOR TUBE No. 52-51 Tube Position Extent Section No.

LTSF +(")

Axigl Circ.

Depth Vgl in-3 Degrees

% TW ina 2X-21 16.23 40.3 2.0 32 2.50E-6 2Z-22 18.16 5.4

  • No apparent defect i

2

'l

~

3F07 93-02 TABLE II DESTRUCTIVE EXAM RESULTS FOR TUBE No. 90-28 Tube Position Extent Section No.

LTSF +(")

Axigl Circ.

Depth Vg1 in-3 Degrees

% TW ino 28-1 6.26 63.0 4.1 12 3.01E-6 2C-2 6.39 53.2 2.0 12 5.77E-6 2E-3 8.01 70.9 7.9 50 2.71E-5 2G-4 10.33 79.1 8.1 53 3.29E-5 2H-5 10.39 58.7 4.5 37 9.47E-6 21-6 10.58 62.5 4.7 46 1.31E-6 2K-7 10.95 31.8 3.6 18 1.99E-6 2M-8 11.58 58.1 8.7 27 1.32E-5 2N-9 11.76 60.8 4.3 20-10 11.95 51.7 1.5 45 3.38E-6 2Q-11 12.45 59.2 3.1 45 7.99E-6 251-12 13.01 27.8 1.5 23 9.28E-7 2S2-13 13.14 39.9 1.7 28 1.84E-6 2T1-14 13.39 28.5 0.1 46 1.26E-7 2T2-15 13.39 44.0 7.6 53 1.72E-5 2V1-16 14.20 51.9 4.4 49 1.08E-6 2V2-17 14.26 55.5 3.1 46 7.58E-6 2X1-18 14.58 53.1 0.7 62 2.23E-6 2X2-19 14.76 38.0 2.0 24 1.77E-6 2Z-20 15.26 38.2 1.3 30 1.44E-6 Utilized for SEM/EDS & SAM /XPS 3

3F07 93-02 TABLE II DESTRUCTIVE EXAM RESULTS FOR TUBE No, 90-28 Tube Position Extent Section No.

LTSF +(")

Axigl Circ.

Depth ingl V

in-Degrees

% TW 2AB-21 15.70 54.4 8.3 30 1.31E-5 J

2ADI-22 16.26 49 2AD2-23 16.33 52.4 3.5 24 4.26E-6 2AF-24 17.39 28.9 2.0 51 2.86E-6 i

  • Utilized for SEM/EDS & SAM /XPS 4

I

~

3F07 93-02 TABLE II

[

DESTRUCTIVE EXAM RESULTS FOR TUBE No. 97-91 Tube Position Extent Section No.

LTSF +(")

Axigl Circ.

Depth Vg1 in 3 Degrees

% TW ino 2B-1 8.63 16.3 2.5 6

2.37E-7 2D-2 2.83 27.8 1.3 8

2.80E-7 2El-3 3.01 10.1 3.3 5

1.61E-7 2E2-4 3.01 2.6 1.1 5

1.33E-8 2G-5 3.51 13.1 0.7 5

4.39E-8 21-6 5.83 6.7 2.4 4

6.24E-8 2K-7 6.83 49.8 3.8 29 5.32E-6 2M-8 7.33 19.7 3.3 16 1.00E-6 20-9 8.33 75.6 5.5 54 2.17E-5 2P-10 8.58 73.2 15.2 46 4.96E-5 2R1-11 9.51 11.0 6.1 4

2.60E-7 L

2S-12 11.58 11.2 0.1 1

1.08E-9 2T-13 11.70 61.0 4.1 44 1.07E-5 2U-14 11.76 54.1 0.3 48 7.54E-7 2W-15 14.26 60.6 9.6 54 3.05E-5 2Y-16 16.70 5.9 0.7 2AA-17 18.33 9.1 0.4 t

  • To small to be isolated for measurement 5

o if07 93-02 TABLE II DESTRUCTIVE EXAM RESULTS FOR TUBE No. 106-32 First Span Indications Only Tube Position Extent Section No.

LTSF +(")

Axigi Circ.

Depth ingl V

in-Degrees

% TW j

2R-19 0.10 2T-20 4.23 2V1-21 5.29 2V2-22 5.35 40.8 2.1 14 1.16E-6 2X1-23 6.41 0.1 7.8 27 2.00E-8 2X2-24 6.41 70.8 3.0 49 1.00E-5 2Y-25 6.54 14.5 2.1 8

2.35E-7 2Z-26 6.98 52.4 3.9 51 1.01E-5 2AA-27 7.23 40.0 4.3 17 2.83E-6 2AB-28 7.41 53.9 2.0 18 1.86E-6 2AC1-29 7.60 53.0 5.6 i

18 5.17E-6 2AC2-30 7.66 97.9 3.1 22 6.46E-6 2AD-31 7.79 26.0 2.3 25 1.45E-6 2AE-32 8.04 63.7 5.3 24 7.85E-6 2AG1-33 8.78 9.8 1.5 2AG2-34 8.79 62.3 0.0 40 2.17E-7 2AH-35 9.04 55.9 1.1 29 1.73E-6 2AJ-36 9.79 58.4 2.5 38 5.37E-6 2AK-37 10.1 63.2 1.7 40 4.16E-6 6

3F07 93-02

-Attachment 1 TABLE II DESTRUCTIVE EXAM RESULTS FOR TUBE No. 106-32 I

Tube Position Extent i

Section No.

LTSF +(")

Axigi Circ.

Depth Vgl in-3 Degrees

% TW ina 2Alla-38 10.54 16.0 0.7 10 1.08E-7 i

2Allb-39 10.54 19.1 1.6 8

2.35E-7 2AL2-40 10.60 48.1 3.9 16 2.91E-6 2AMla-41 10.79 26.0 2.8 16 1.13E-6 2AM1b-42 10.79 14.6 0.0 16 2.00E-8 2AM1c-43 10.79 25.8 1.0 14 3.48E-7 2AMid-44 10.79 16.6 0.6 12 1.16E-7 2AM2a-45 10.85 15.8 2.6 22 8.74E-7 2AM2b-46 10.85 16.1 1.0 11 1.70E-7 2AM3-47 10.96 29.2 1.4 25 9.89E-7 2AN-48 11.04 32.4 1.6 36 1.81E-6 2AO-49 11.16 25.3 5.4 12 1.58E-6 2AP-50 11.35 70.6 3.2 42 9.19E-6 2AQ1-51 11.73 29.4 3.0 24 2.05E-6 2AQ2-52 11.85 46.7 2.7 46 5.61E-6 2AR-53 12.41 44.9 12.8 19 1.06E-5 2AY-54 13.29 59.8 2.8 31 5.03E-6 2AU-55 13.54 47.2 4.4 39 7.85E-6 2AV-56 13.66 39.8 3.5 29 2.93E-6 2AX-57 14.41 39.9 9.6 32 1.19E-5 i

7

' 3F07 93-02 TABLE II DESTRUCTIVE EXAM RESULTS FOR TUBE No. 106-32 Tube Position Extent Section No.

LTSF +(")

Axigl Circ.

Depth Vg1 in-a Degrees

% TW ina 2AY-58 14.73 55.3 16.1 36 3.11E-5 2AZ-59 14.91 32.4 3.8 22 2.62E-6 2BA-60 14.98 43.2 3.4 20 2.85E-6 2BB-61 15.10 30.4 3.1 17 1.56E-6 2BC-62 15.60 31.3 2.9 30 2.63E-6 2BD-63 15.73 32.2 3.4 31 3.29E-6 2BF-64 16.60 34.6 4.8 17 2.74E-6 2BG-65 16.73 29.5 3.1 11 9.74E-7 h

b 6

i

.l 9

i i

L 8

3F0793-02 FIGURE 1 EXAMINATION OUTLINE TASK 1: NONDESTRUCT!YE PHASE F.eceipt Inspection

  • Visual Inspection & Qotography, Eddy Current Testig Ultrasonic Testing,g X-Ray Radiography TASK 2: DESTRUCTIVE PHASE Tube Sections Description 97-91-2 52-51-2 52-51-4 133-33-3 of Task 106-32-2 90-28-2 109-30-2 41-44-2 90-28-5 133-33-9 133 33 2 Hand-Pull ECT X

X X

X*

00 Descaling X

Post-Clean ECT X

Liquid Penetrant X

X X

X Tube Sectioning Tube Swelling X

X X

X Burst Testing X

X X

X X

DepositSamplingl Stereovisual X

X X

X X

X Tube Sectioning '

X X

X X

X SEM/EOS X

X X

X Meta 11ography X

X X

X X

< SAM /XPS X

i Deposit Analyses:

SEM/EOS (flakes)

X X

X X

SAM /XPS (flakes)

X X

X TCP X

X X

X XRD X

X X

X Total Carbon X

X X

X Total Sulfur X

X X

X FTIR X

X X

Laser Raman X

X X

XRF (1.TSF dep.)

X X(10)

Mossbauer Spec.

X X

X Hg Porosimetry.

X X

X X(ID) y Spectroscopy' X

l

, All tube segments.Only tube segments with field reported ECT indications and th TSP intersections.

3F0793-02

(

Babcock & Wilcox

)

. 0TSG r1 l

l

.. i' 1;, l'ap' i

l y lii!;ii.':.

hUnf,IL. Il h : Eiff 1.:c"il

[ $;i5.;

f.!: 'h 4 1

().ii,( ;jj S

~]

.,,s. : j o

f ' 7'.)

t-(

ou i

. J

.i.d.%

l

[ ;tf ?AP,,j.3

,.. rj

  • )(?ff'((.ldl l ; e '.c.4

.,.$L1 :]

, 1st Tube Support Plate

.I

( ~ h Y^-

k@ MI Lower Tubesheet First Span Secondary Face r)

Lower Tubesheet i

9 m

~

3F0793-02 FIGURE 3 DISTRIBUTION OF FIRST SPAN INDICATIONS CR-3 B-OTSG 5/92 OUTAGE ALL ODI. OSN. & OD S/N: FIELD BOBBIN ECT

,g 140 s'2 x

8 4*

8gm

>-ea sge E

20 O

~..i 0-5 5-10 10-15 15 20 20-25 25-30 30-35 35-40 40-45 gg o"

ELEVATION ABOVE LTSF, INCHES 25 03 O

~

3F0793-02 FIGURE 4 DISTRIBUTION OF IGA PATCH DEPTHS, CR-3 TUBES 52-51, 90-28, 97-91, & 106-32 5/92 FIELD BOBBIN EC VS. DESTRUCTIVE EXAM 30 b

25 g

Z FIRST SPAN INDICATIONS ONLY

@ 20 8

8 15 5

.;; 3o N2 l

3 5

z i"i

'i O

-i i

i t

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79

%TW FROM DESTRUCTIVE EXAM y,

37 ag "3

M CALLED BY BOBBIN l

l TOTAL BY DEST. EXAM a,

l l

FIGURE 5 3F0793-02 DISTRIBUTION OF IGA PATCH DEPTHS, CR-3 i

TUBES 52-51, 90-28, 97-91, & 106-32 5/92 FIELD MPRC VS. DESTRUCTIVE EXAM 30

$ 25 FIRST SPAN INDICATIONS ONLY

@ 20 8

I I

8 15 b

g 10 ca23 5

Z s'

0 i

"' r

~i i

i i

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79

%TW FROM DESTRUCTIVE EXAM y,

37 o;

4 0j CALLED BY MRPC l

l TOTAL BY DEST. EXAM Om o

@O

1 3F0793-02 FIGURE 6 DETECTION RATE, BOBBIN EC TUBES 52-51, 90-28, 97-91, & 106-32 5/92 FIRST SPAN INDICATIONS Or(l,Y

,gg 9d Z

Ei 80 ca87

[7.

g 60 O

50 e

/ /

4 8

//

E

//

2 n

JJ

~'~'

0 2O 4O 6O 8O 100

%TW FROM DESTRUCTIVE EXAM NOTE: VALUE FOR 60 - 70% TW IS BASED

)$

ON ONE DATA POINT.

i

'S $

C FIELD DATA

-*- FIELD AND LAB DATA l

Ey i

.:8 i

3F0793-02 FIGURE 7 DETECTION RATE, MRPC TUBES 52-51, 90-28, 97-91, & 106-32 5/92 FIRST SPAN INDICATIONS ONt,Y

, gg 2

70

/

r.

oo 60 O

S

/ /

O 40 W

/ /

u.

30 o

20 j

10 O

2O 4O

$O

$O 100

%TW FROM DESTRUCTIVE EXAM

,o a NOTE: VALUE FOR 00 -70% TW IS BASED y

ON ONE DATA POINT.

e 53 O

FIELD DATA

-++- FIELD AND LAB DATA RE 4

m m

.u-

+

m. -.

.

  • s m-4..

r.w--s

~3-w

..m-.--ee.

e.

3F0793-02 FIGURE 8 BOBBIN EDDY CURRENT ACCURACY TUBES 52-51, 90-28, 97-91, & 106-32

!NCLUDES BOTH FIELD AND LAB DATA 100 Z

OVERSIZED BY BOBBIN EC B*

/

=

m 8

/

a

_a m_.

60 a

8:

[O @%

/

g 20 8 ua un ensizEo BY soeBIN EC g

=

m,-go a

10 f a

a m

0 2'O 4O do do 100

%TW FROM DESTRUCTIVE EXAM s' $

%4 m

=

FIELD DATA O LAB DATA Om o

03 O

m 3F0793-02 FIGURE 9 R

9..

3 1.00 m

g NN w

0.80 N

s N

g N-

>25%

~

~

.]

x e

x s

a_ O.60 N

N

+>

"50%

'l

%~~~---

5

\\

y x

2 0.40 E

>75%

g g

N-__

g 0.20 -


Elliptical Wastage S

Uniform Thinning EOM Slots 0.00 I

I O.O O.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Defect length, in.

m

~

3 FIGURE 1.10.

Comparison of Burst Pressure Equations for Elliptical Wastage, Uniform Thinning, and EDM Slots N

iii e

T b

b 3F0793-02 FIGURE 10

12. *
  • 9' ' 5 " BURST PRESSURE PARAMETER CURVES

( " ' " "' * * '"

EDM SLOT MODEL, SGTIP 1-m 11.400 psi. 40% TW p

CR3 P't-tike 16A g 0.9-0.8-M. 2s 3

M O.7-CD s

11J M = Ao C

O.6-O

$ o.s-g 0.4-

~~

M.co g

b 0.3-Reg. Guide 1.121 Umit (3 x dP) u w

M.so 0.2-41 E O 1-O M - 1.0 hj,;

6 1o 12 14

'l l

0 2

4 1s 1s 20 ORMAllZED LENGTH (l/sqrt(Rt))

O'5.)

?$

cRo Tuses L. = Pl*D MAX t.ENGm g3 55 A SURRY DATA o$

"'7 8

i

--x


~

u

~-ew--

a-w-

n-,, -

w v-

-r

'--w-

--u--

+v vv

)

3-ATTACHMENT 2 CRYSTAL RIVER UNIT 3 REFUEL 8 ECT INSPECTION

)

i l

3F0793-02 "A" 0TSG TUBES WITH INDICATIONS 1-19 TWD filt eN COL tu0 stW LOCAflok 808814 22 79 u t 12 111# f 9+

0.53f0+ 1.00 80881w 57 1 ml 19 10fu ft#- 0.47 8 688u 71 67 Col 11 lifu f5P+ 26.35 808Bth 77 5 wAt 16 151N ftp+ 0.00 80681N 91 98 Col 14 131p 11P+ 22.49 1

80881N Col 16 ilin itP+ 4.04 80881u 113 64 ut 14 6fn f1P + 18.9110+ 1.90 808814 122 103 W 12 10Tu 15P- 0.08 101At 19915 FOUW e

T TOT AL INDICAflohl FOUNO e

8 TOTAL fusil lu luput FILE = 15531 1

~

s 3F0793-02 "A" OTSG TUBES WITli INDICATIONS 20 TO 29 TWD 115f e34 COL Ik0171f LOCAftou 80681m 71 90 ml 20 titu 157. 6,44 80881s T3 128 was 27 10tu tsp. 0,00 8068tM 134 3 Ciu 29 12Tu tsp. 0.M 8:Ailtu 150 16 Col 26 101M 15p. 0.83 TCTAL TL8tl fouMO e

4 70fAL inDitAt!Okt FOUNO e

TOTAL TL8($ la ImPVT FIL[ e 15531 I

J 2

U 3F0793-02 i

"A" OTSG l

TUBES WITH INDICATIONS 30 TO 39 TWD l

tilf R W COL luO ITW LOCAf!ON' 8281u 31 32 tel 34 131# 1p' O.H 50481u T3 128 WLt 34 91m 19 0.C8 scattu 109 T2 0$u 30 3 0 fu. 18.61 3

total tustl scuuo 8

3 TOTAL INDICAtl0Mt imA8 TOTAL futt$ la lhPJ" fitt = 15531 l

l i

)

i J

s l

1 3

3F0793-02 "B" OTSG TUBES WITH INDICATIONS 1 TO 19 TWD list A N COL !@ %fW L OC A t l 38 l'881u 66 L3 Col 6 tilf

  • 1.84 8084In 55 32 a01 14 List
  • 13.82 0.72 50e81s 59122 col a ein 157 40481u 62 7 05u 11 1$fu 11P* 24.3$

5088tu 60 58 c$u 12 Tfu fis

  • 0.63 9.42 8088!m 64 M C5u $

tfsf e

80stiu 66 31 oss 16 List

. 12.06

  • 10.60 80681u 92 64 COI 13 List 40681u 96 116 Col 15 151m 15P+ 24.29 50041u 103 37 CDI 12 L1$7
  • 9.56 13.60 80881m 112 to oss 16 List 15.37 80ellu til 39 col 4 List 40681u (cl 14 tist

+ 11.09 80 ells 122 93 cci T

13fu 157 26.44 80881u 138 53 IDI 15

. efs 11P + 10.47

  • CTAL TLS(5 FOUkg a

f4 TOTAL tholCAf!Cas fouu0 e

11 10f AL TL8f 5 f u thPut fitt o 15531 i

f 1

s

v d

3F0793-02 "B" OTSG TUBES WITH INDICATIONS 20 TO 29 TWD 1E51 atw COL th0 11W kWIM 6Malu 51 49 Co l 26 Llif

  • 7.07 60&81u 56 50 Col 22 t?st
  • 11.37 7.59 6*BBlu 58 38 Col 27 (158 5.92 60631s 65 28 Osu 28 (15F 60681 u 67 36 Col 26 SfM 15P
  • 19. 72 8:431s 79 22 Osu 25 itin 15P- 0.53 80681s 79 57 Oss 29 Tfu 157 - 0.71 63Ellu 81 65 Col 28 10fn 15P.

0.69 BDe t t u 89 85 101 13 ictu 15P+ 22.52 BDettu IDI 20 9fu 157 + 2.09 9068 t u 93 32 (ci 23 List

+ 8.02 5:451u 102 95 C5u 28 Tin T57 0.75 8.64 806Blu 103 93 CD1 25 Lilf 606slu 113 39 Oss 28 List

+ 12.05 saslu 136 65 Osu 29 71u 157 - 0.81 80661s 149 11 Osu 26 71N 157 - 0.68 15 101AL 1U6($ F M D TOTAL IkDICA110ml FOUkD 16 TOTAL TU8tl la INPUT FILE e 15531 2

e 3F0793-02 "B" OTSG TUBES WITH INDICATIONS 30 TO 39 TWD 1(17 a0W COL luo tig LOCATION 800Blu

$0 35 css 12 List 8.66 Bostle 55 81 C5m 31 LISF

  • 6.16 80681u 69 112 001 33

'YN ts> + 0.67 80881u 76 64 cal 35 MM isp

  • 0,82 80681u TB 123 003 37 97# 75P
  • 0.62 80881W 89 34 ODI 35 Lisi

+ 12.30 808815 92 93 001 32 LilF

+ 9.91 80881N 98 95 El 37 LtEF

  • 6.45 80681N 101 91 001 32 (137
8. 4.6 80881s 109 30 Osu 30 ttst

+ y.99 80881s 109 71 Osu 3T FTN ISP

  • 0.63 8088tN 117 82 otN 37 TTN f$P
  • 0.80 80881m 125 8 ut 31 8Tn TSP
  • 0.03 So881m 132 48 05u 34 TT u T sp - 0.82 80881u 136 26 csu M 71N 157 - 0.71 80881N 139 45 COI 33 Tin 117 - 0.78 80stis 149 13 col 33 10Tu 15P+ 0.68 total TUS($ FOUuo a

17 70f AL lholCAflohl 70A0 e

17 TOTAL fuBES IN thPuf FILE e 15531 L

l l

3 l

l t

-