ML20065Q391

From kanterella
Revision as of 05:46, 21 March 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Concept 5 - User Manual.
ML20065Q391
Person / Time
Site: Clinch River
Issue date: 01/31/1979
From: Hudson C
OAK RIDGE NATIONAL LABORATORY
To:
Shared Package
ML20065Q355 List:
References
ORNL-5470, NUDOCS 8210270052
Download: ML20065Q391 (191)


Text

_ . -- ---

i 0?

[" . ORNL-5470

's q--

~

$." l CONCEPT-5 User's Manual C. R. Hudson ll f@'4< ' . -

M i

l 1

)!.--._,...-...

.m

~

\. -

W <

1, 3- .

3

, . y. .' -

q

' ~

jij' ' gg .s

*t

..I .

- _ ,,;i 3

3g. --

  • "L . v

, 4

-  ; ,h s it- . -

-i #k pgt_1s.. h .IBI D U l. - (k. ~7k, il-,

n_ , . - - - =

ADN . -

E I

~

&Jil]'J3:dI:I ' illlIl}llI E)'4:lill h t i)*4 W iilO ll th fJJ :1 filSil:el'(151:lllllMlll'46 ' ,,

hf7 Mr

~

[

pf .

l .

W ,

8210270052 8210 '2 '

Dak-?M PDR ADOCK 05000537 U --  :- *"?& s-s

w. - -

G #DR

3 J ^*

sc I

l Printed in the United States of America. Available from National Technical information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Pnce: Printed Copy $9.25; Microfiche $3.00 This report was prepared as an account of wora sponsored by an agency of tne United States Govemment. Neitnerthe United States Govemment not any agency thereof, not any of tneer employees, contractors subcontracters, or their employees. maaes any warranty, espress or emplied, nor assumes any legal fiatility or responsioility for any .'

third party's use or the results of sucn use of any information, apparatus. product or procesa disclosed in this report, nor represents that sts use Dy sucn third part/ would not 6ntnnge pnvetesy owned ngnts.

/

e O

e

. -- a

L

- r s

. ORNI.-5470 Dist. Category UC-13 and UC-80 Contract No. W-7405-eng-26 Engineering Technology Division CONCEPT-5 USER'S MANUAL C. R. Hudson II l .

[,

Date Published: January 1979 l

l I

i Prepared by

,, OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY l

iii

. CONTENTS

. Page ACKNOWLEDGMENTS . .. . ..... .. .. .. . . ..... . ix ABSTRACT . . . . . .. . . . . ... . ... .. . . ... . 1

1. INTRODUCTION . . . . . . . . . . . . . . .. . . . . . . 1
2. GENERAL DESCRIPTION OF THE CONCEPT-5 CODE . . . ... . 5
3. COST MODELS FOR REFERENCE PLANTS . . . . . . . . . . . . 11 4 COST INDEX DATA . ... . . .. ... . . . . ... . . 17
5. CONCEPT METHODOLOGY . . .... . .. . . . ... .. . 19 5.1 Cash Flow Curve Modifications . .. .. . .. . .. 19 5.2 Cost Index Generation and Alteration . . .. . . . 21 5.3 Adjustments to the Reference Costs . . . . .. .. 24 5.4 Escalation During Construction . . . . . .... . 27 5.5 Interest During Construction .. . . . . . .. . . 28 5.6 Multiunit Cost Summation . . . .. . . . . .. . . 29
6. DESCRIPTION OF CONCEPT-5 MAIN PROGRAM AND 4

SUBPROGRAMS . .. . . .. .. . . ... . . . .. . . . 32 6.1 MAIN Program . . .. ... . .. . . . . . .. . . 32 6.2 Subprograms . . .. ... . . . . . . . . . ... . 34 6.2.1 SCAN . . .. . . . . .. . ... ... . . 34 6.2.2 COST . .. . . .. . ... . .. . . . . . 36 6.2.3 MODLAM . . . ... . . .. . . . . .. . . 36 6.2.4 DELOF . .. . . . . ... . . . .... . 36 6.2.5 CONIV . .. ... . .. . . . . . ... . 36 6.2.6 FITS . . . . ... . . .. .. . . .. . . 39 i 6.2.7 INDUSE .. . ... . ... . . . . .. . . 39 l 6.2.8 CLA3 . . .. . . . . ... . . . ... . . 39 I 6.2.9 SUM . . . . . .. . . .. . . . . . .. . . 39 6.2.10 DELIN . . . . . .. . . .. . . . ... . . 40 6.2.11 OUTPUT . .. . . . . .... . . . .. . . 42 6.2.12 HEADS . . . . . . . . . . . . . . ... . . 42 6.2.13 TAILS . . . . . . . . . . . .. . . .. . . 42 6.2.14 PLOT . . . . . .. . . .. . . . . . .. . 42 l 6.2.15 ADYR . .. . . . . . .. . . .. . .. . . 42 1

! 7. LATA INPUT . ........... ... .. . . ... . 44 5 7.1 Standard Input Data . .. . . . .. . . . . .. . . 44 7.2 Nonstandard Input Data .. . . . . . . . . .. . . 46 7.3 Time-dependent Escalation Data . . . . . . .. . . 50

iv P.aSe .' e

8. EXAMPLE PROBLEMS . . . . . . . . . . .. . . . . .. . . 52' Appendix A. CONTAC AUXILIARY PROGRAM . . . . .. . . . . . 59 Appendix B. CONLAM AUXILIARY PROGRAM . . . . . . . . . . . 95 Appendix C. CONCEPT-5 PROGRAM LISTING . . . . .. . .. . . 111 Appendix D. EXAMPLE PROBLEMS LISTING .. .. . . . . . . . 147 Appendix E. INSTRUCTIONS FOR LOADING THE PROCPM.S INTO THE COMPUTER ... .. . .. . ... . . . . . 185 REFERENCES . . . ... . .. .. . . . . .. . .. . .. .. 191 O

9

(

o . -

y LIST OF FIGURES Figure -

Pm 1.1 CONCEPT-5 package . ................. 2 2.1 Method used to adjust base costs in CONCEPT . . . . . 6 2.2 General flow of calculations in CONCEPT 5 . . . . . . 7 3.1 Typical cumulative cash flow curves for major direct cost accounts -- nuclear power plants . . .. . ... 15 3.2 Typical cumulative cash flow curves for major direct cost accounts -- coal-fired plants . . . ....... 16 4.1 Cities for which historical equipment, labor, and materials cost data are stored in CONCEPT . . . ... 17 5.1 Alteration of project's cash flow . . . ... .. .. 20 5.2 Transformation of cash flow data . . . ... .. .. 21 5.3 Effects of sustained overtime on productivity of site labor . . . . . ............. . .. 25 5.4 Time lines for cash flow additions . . ..... .. 30 6.1 First-call sequence of CONCEPT-5 subprograms . ... 33 6.2 CONCEPT-5 MAIN program . ........... ... 34 6.3 Subprogram SCAN . . . . ... . . . . . ..... .. 35 6.4 Subprogram COST . . . ... . . . . . . . ..... . 37 6.5 Subprogram MODLAM . . ...... . . . . .... .. 38 6.6 Subprogram CONIV . . .. . . . . . . . . .. . . .. 40 6.7 Subprogram INDUSE . . ...... . . . ....... 41 6.8 Subprogram OUTPUT . . . . . . . . . . . . .. .... 43 i

j,- 7.1 Time-dependent escalation input format .... ... 51 8.1 Data input for exa=ple problems . . . . . ... .. . 5}-57

l l ,

vii LIST OF TABLES

. , Table Page 1.1 Evolution of the CONCEPT code .. . . . . . . . . . . 3 3.1 Cost-model data sets available in CONCEPT-5 '. . . . . 12 3.2 Scaling coefficients for unit-size adjustments . . . . 13 E.1 Example IBM job control language instructions . . . . 188 6

e i i um . #

ix ACKNOWLEDGMENTS The development of the CONCEPT-5 computer code was jointly sponsored by the Department of Energy and the Nuclear Regulatory Commission. The author acknowledges the work of H. I. Bowers, R. J. Barnard, R. C. DeLozier, and L. D. Reynolds in previous versions of the CONCEPT code as well as the technical assistance of B. H. Fitzgerald, M. L. Myers, and R. D. Sharp.

i l

I i-

CONCEPT-5 USER'S MANUAL C. R. Hudson II ABSTRACT The CONCEPT computer code package was developed to pro-vide conceptual capital cost estimates for nuclear-fueled and fossil-fired power plants. Cost estimates can be made as a function of plant type, size, location, and date of initial operation. The output includes a detailed breakdown of the estimate into direct and indirect costs similar to the ac-counting system described in document NUS-531.

Cost models are currently provided in CONCEPT 5 for sin-gle- and multiunit pressurized-water reactors, boiling-water reactors, and coal-fired plants with and without flue gas de-sulfurization equipment.

Keywords: capital costs, power costs, power plant eco-Domics.

1. INTRODUCTION ,

Three computer programs, which are referred to as the CONCEPT package, have been developed by the Engineering Technology Division of the Oak

~

Ridge National Laboratory (ORNL). This computer package is designed to provide a rapid means of estimating future capital costs of different types of plants under various sets of economic and technical ground rules. The use of the CONCEPT code requires an understanding of trends in contributing costs factors, such as labor rates, labor productivity, and materials and equipment prices, as a function of location and time. For application in project evaluation studies, these cost factors should be based on the specific location and design and construction dates being considered. Cost estimates produced by the CONCEPT code are not intended as substitutes for detailed cost estimates for specific projects; however, the CONCEPT esti-mates should be useful as a rough check of the detailed estimates or for preliminary studies prior to completion of detailed estimates.

This report describes the fifth generation in the development of the f

  • l CONCEPT package, which consists of three separate computer programs as Previous work is documented in Refs. 1 to 5.

2 illustrated in Fig. 1.1. At the preoperational level the CONTAC auxiliary -

program, described in Appendix A, is used to read cost-model data (i.e. ,

detailed cost breakdowns for reference plants) for the various types of .,

plants from punched cards and to generate the cost-model data file, COMO, on a magnetic storage device. The CONLAM auxiliary program, described in Appendix B, is used to read historical cost data for factory equipment, labor, and site-related materials at various locations from punched cards and to generate the data file, LAMA, on a second magnetic storage device.

The two auxiliary programs, CONTAC and CONLAM, are important parts of the Odet OuS 70.e0443 4L

- f f

/ EQUtMstNT LAe0R Als0

/ -

COST MODEL ST Daf Mt0PER Af anal LEVEL ConLAM ConfAC AUX 1LIAAY AuxitAAV ROGaAW j N0 GRAM j

t t a

__L_________________

1 i _ _ _ _ _ _ _ .

1 V

f EQUIMeOIT ~ COST LAscit Aa0 g uo0CL HAiER1ALS 40RMaL DATA COST DATA supVT FILE FILE (LAMA) OATA j ICO W03 CPER AT10 MAL LEvtL L.f -

C,,Cg,, 3 M 0GA A48 OUTPUT mteCo$f ESTlasAfts ir Fig. 1.1. CONCEP'T-5 package.

se

. ~

~

3 total CONCEPT package and must be used to generate, update, and modify the data files. The main body of this' report is devoted to the operational level CONCEPT-5 program, which retrieves cost-model data and historical cost data from the two.previously prepared data files and uses them to

~

generate cost estimates based on the ground rules specified bf the user -

g at program execution titae. The major features in the evolution of the CONCEPT code are summarized in, Table 1.1. _

-. ~

Table 1.1. Evolution of the CONCEPT code Version Itajor features Phase 1 Experimental version, which included only a preliminary cost model for a single-unit pressurized-water reactor (PWR) plant Phase 2 Added cost modvis for the first unit of PWR, boiling-water reactor (BWR), coal, and oil plants based on VASH-1230

.--- , (vola. I-IV)

Added historical craft labor and materials cost data for the generation of cost in' dices and escalation rates Phase 3 Updated the first-unit cost models for PWR, BWR, coal, and oil plants to account for more stringent environmen-tal and safety regulations batveen 1971 and 1973 Added cost models for coal- and oil-fired plants with wet limestone scrubber 50; removal systems Added cost models for gas-fired plants Added cost models for the second unit of two-unit plants Phase 4 Added cost models for high-temperature gas-cooled reactor (HTGR) plants Modified all second-unit cost models '

l ' Nodified code to simplify data input for optional calculations, I

to accept time-dependent escalation races, and to calculate L' allowances for interest during construction and escalation i during construction based on cash flow curves modified for a specified receipt-of-construction-permit date Phase $ Updated cost models for PWR, BWR, and coal plants with and without flue gas desulfurization (FGD) and expanded cost models to include coal-fired plants with cross-compound (as well as tandem-compound) turbine generators Added historical factory equipment cost data for the generation of cost indices and escalation rates Modified indirect costs to be calculated as a function of unit size in the same manner as direct costs, rather than calculated as a function of direct costs Established an indirect cost account for owner's costs Improved time-dependent escalation feature

_m g -

,_f _ _ -<y- . - . - _ . _

l 4

The three programs are written for batch processing in FORTRAN IV , .

for the IBM 360 and 370 class of machines. Instructions for executing the programs on an IBM machine, as well as sample job control language (JCL) ,

statements, are presented in Appendix E. Previous versions of the programs have been implemented on other computers by various users. Less than 270K (bytes) of computer core are required for any one of the three pro-grams. Computer time required for a single cost calculation is dependent on the complexity of the case but averages only a few seconds.

The CONCEPT-5 package, including auxiliary programs and cost-model and historical cost data sets', will be available from the Argonne Code Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439.

4 4

4 C

l I

i

i e . . [

i 4

i l 5

i j , 2. GENERAL DESCRIPTION OF THE CONCEPT-3 CODE I

! The procedures used in the CONCEPT code are based on the assumption P

that any central station power plant of the same type involves approxi-

{ mately the same major cost components, regardless of location or date of l

l initial operation. Therefore, if the trends of these major cost com- l i

ponents can be established as a function of time, location, and plant size, l

i a cost estimate for a reference case can be adjusted to fit any case of -

interest.

The application of this approach requires a detailed cost model j for each plant type at a reference condition and the determination of the

cost trend relationships. The generation and updating of these data sets

! comprise a large effort in the continuing development of the code.

! The cost model for each type of plant is based on a detailed cost estimate for a reference plant at a designated time and location. Each l l

estimate includes a detailed breakdown of each cost account into costs I for equipment, labor, and site-related materials. The cost models are stored on a magnetic storage device (the COMO data file) by the auxiliary i program, CONTAC, which is described in Appendix A.

~, Data that reflect hi.*'rical trends in equipment costs, labor rates, t and prices of site-related materials for 23 locations are stored on a i

second magnetic storage device (the LAMA data file) by the auxiliary program, CONLAM, which is described in Appendix B. CONCEPT uses the historical equipment, labor, and materials cost data to calculate cost indices for translating the cost-m6 del data from the base (or reference) time and location to the specified time and location.

The input to CONCEPT consists of the plant net electrical capacity, plant type, plant location, date of purchase of nuclear steam supply system (NSSS) or fossil-fired steam generator, date of receipt of con-struction permit, date of initial commercial operation, and interest rate.

Specific constants, variables, and cost arrays, which are listed in Chap. 7 of this report, can be altered by input option. In addition, the escalation rates calculated by the code from data stored in the historical cost data file (LAMA file) can be overridden by input option. Contingency cases can be examined with a minimum of effort, and the cost-model data

l 1

i l

6 can be altered temporarily at execution time to take into account known .

costs or factors that affect the design of the plant.

As an example of the procedures described above, suppose a cost , ,

estimate for the year 1977 is available for a 1100-MWe PWR plant located on a site near Middletown, and a cost estimate for 1986 is desired for a corresponding plant located on a similar site but near another city.

The new estimate is obtained by adjusting factory and site-related costs for the Middletown plant by the ratios of the projected 19536 cost indices for the new city to the 1977 cost indices for Middlecewn.

The technique of separating the plant cost into individual components, applying appropriate cost indices, and summing the adjusted components is the basic tool used in CONCEPT. A schematic illustration of this technique is presented in Fig. 2.1. Three sets of cost indices as functions of OSNet. peg F1.ee33 RETRIEVE BASE PLANT g COST MODELDATA EQUIPMEmi COST LABOR COST MATERIAL C0$f A0JUST SY APMOMtATE A0JUST SV APm0MiaTE A0Ju17 8v APMONIATE COST m0ExRAtl0 COST m0EX R ATio COST MDEX R ATIO Suu 70 ADJUSTED TOTAL COST Fig. 2.1. Method used to adjust base costs in CONCEPT.

time and location are required. These indices are used to adjust the costs of equipment, labor, and site-related materials. The equipment cost indices are calculated from Bureau of Labor Statistics data, and the labor -

cost indices are calculated from basic parameters, which include wage Middletown represents the standard hv Commercial Electric Power Cost Studies.64gothetical site described in the

7 rates for the various crafts, labor productivity, and overtime considera-tions. The materials cost indices are calculated from unit costs for site-related materials, which include structural steel, reinforcing steel, concrete, and lumber. A detailed breakdown of the equipment, labor, and materials categories is included in Appendix B.

Figure 2.2 indicates the general flow of calculations in CONCEPT 5.

The computer code follows this procedure closely; however, the illustration is not a detailed computer program flowchart. An important feature of this arrangement is that the second block of the diagram utilizes the cost-model data stored in the COMO file for different types of pcwer ORNL.OWG TS-4433s 1 RE A0 IN DATA DEstNING CALCULATIONS o 8 SUM ALL DIRECT AND INDIRECT COSTS 2 RETRIEVE REFERENCE PLANT COST MODEL FROM COMO DATA FILE o

9 CALCULATE CONTsNGENCIES 3 RE AD IN DATA OVERRIDING 8ASE PLANT COST mot *L ANO DEF8NING vtARS FOR ANALisa or HISTRORICAL EQUIPMENT, LA80R AND MATERIALS ST DATA (OPTIONAL WITH USER) 10 CALCULATE ESCALATION OURING CONSTRUCTION 4 RETRIEVE HISTORICAL EOuiPMENT, LA80R AND MATERIALS COST DATA FROM LAMA DATA FILE AND FIT DATA

11. CALCULATE INTEREST DURING o CONSTRUCTION 5 RE AD IN DATA OVERRIDING CALCULATED ESCALATION R ATES (OPTIONAL WITH USE R) 12 SUM ALL COSTS
6. ADJUST 3. 4. AND S-OlGIT LEVEL RE F.

ERENCE PLANT COSTS TO SPECIF EO PL ANT SIZE. LOCATION. DATE. OVER.

TIME, AND PRODUCTivtTY 13 DEVELOP CASH FLOW INFORMA TION

\f RE COSTSAD INALDATA (OPTION WITH USE RIOVERRIDING j CALCULATED [

ii 1

1 14 PRINT REPORT OF COST ESTIMATE I. 40ETAIL CPTIONAL WITH USERI Fig. 2.2. General flow of calculations in CONCEPT 5.

l

l i

l 4

8 plants, and the fourth block utilizes the historical equipment, labor, -

I and asterials cost data stored in the LAMA file for different locations.

Therefore, when other types of plants or other cities are studied, only , .

the cost-model data set for the reference plant or the historical cost data set for the new location need be provided.

4

' Block 1 refers to the input data stream. This input is read from punched cards and, for each case, must include the net electrical capacity, plant type, plant location (one of 23 cities), and design and construction period. The code will make the following assumptions if they are not overridden by input data: (1) costs are referenced to the date of purchase of the steam supply system, (2) 40-hr workweek with no overtime, and (3) constant 8* per year simple interest for calculating interest '

during construction. Cases of interest may differ from these hypothetical cases, and input options have been included to allow modifications to plant cost-model data, to escalation data, and to calculated costs at the time of program execution (blocks 3, 5, and 7).

In block 2, the cost-model data for the type of plant specified by the input data are retrieved from the CDMO data file. If a cost-model -

data set for the type of plant specified is not found, a diagnostic ,

message will be printed, and the code will select the last plant type on the COMO file as a default.

In block 3, the user has the option to read in, at program execution time, values that replace most of the constants or factors in the cost-model data set and in the MAIN program. The unadjusted reference costs stored in the cost model data set may be modified at this point, if de-sired. This option is also used to specify the time period from which historical equipment, labor, and materials cost data are to be used in calculating escalation rates for cost indices. A list of the variables capable of adjustment is given in Chap. 7.

In block 4, the historical equipment, labor, and materials cost data for the specified city are retrieved from the LAMA data file, and escala- -

tion rates are calculated for use in adjusting costs to the specified location and for projecting costs to the specified dates. This calculation of escalation rates utilizes the historical data previously generated by the CONLAM auxiliary program, data from the reference plant cost model,

- m-~ - - - ---

9 and data stored by the MAIN program. If the specified city is not found, a diagnostic message will be printed, and the code will select the last city on the LAMA file as a default.

In block 5, the user has the option to read in, at program execution time, values that override the equipment, labor, and materials escalation rates previously calculated in block 4 It is also possible to specify time-dependent equipment, labor, and materials escalation rates at this

( point. Data read in at this point continue in effect only for the current case unless retrieved as described in Chap. 7.

In block 6, the three components of each account in the plant cost model (equipment, labor, and materials at the three , four , or five-digit account level) are scaled to the specified plant size, escalated and adjusted to the date of purchase of the NSSS (or fossil-fired steam generator), adjusted to the specified city, and adjusted for craf t-la~uor overtime and productivity. Component costs are scaled by using mathe-matical models that define each two-digit account cost in the plant cost model as a function of size. Component costs are escalated and adjusted to the specified city by cost indices calculated from the data developed in block 4 and specified in block 5. If overtime is specified, labor costs are adjusted for premium pay and for changes in productivity; the labor costs are also adjusted for changes in straight-time productivity, if specified.

In block 7, the user has the option to read in, at program execution time, values that override the adjusted equipment, labor, and materials costs at the most detailed three , four , or five-digit account levels which have been calculated in block 6 for the specified plant. These data changes continue in effect only for the current case.

In block 8, the adjusted three , four , and five-digit account costs from blocks 6 and 7 are summed to the two-digit account level.

In bleck 9, allowances for contingencies are calculated for each two-digit cost account as percentages of corresponding two-digit account costs.

In block 10, an allowance for escalation during construction is calculated. This step utilizes the cost indices generated in blocks 4 and 5 as well as the two-digit-level cash flow curves provided in each plant cost model.

10 In block 11, an allowance for interest during construction is calculated. This step utilizes a total cumulative cash flow curve and includes the effect of interest on escalation during construction.

In block 12, all costs are summed to give the total capital cost of '

the specified plant.

In block 13, additional cumulative cash flow information is developed for use in block 14.

In block 14, the final cost report is printed. The amount of detail is optional with the user, allowing either a one-page summary at the two-digit account level, a one page summary and a total cumulative cash flow curve and table, or a multipage detailed listing at the three ,

four , and five-digit subaccount levels and a total cumulative cash flow curve and table.

+

e

-4

11

. 3. COST MODELS FOR REFERENCE PLANTS Cost-model data sets are provided in CONCEPT 5 for single- and multiunic PWR and BWR nuclear plants and coal-fired plants with and without FGD equipment. Following the practice that the first unit of a multiunit plant bears the cost of shared facilities, a cost model is provide'd for a single-unit station, while a separate cost model de-scribes the first of a multiunit plant. A distinction has also been made.for coal-fired plants with respect to size. Large coal-fired plants (generally above 1000 MWe) may use cross-compound turbine generators,

, whereas the smaller plants would operate with tandem-compound turbine generators. Models for either possibility are provided. First- and second-unit models exist for all plant types, and, for the smaller reference-size coal plants, a third-unit model is provided to reflect further facility sharing. As an illustrative example, the complete data set for the first-unit PWR plant cost model is listed in Appendix A. In the previous version of the CONCEPT code, a distinction among cooling systems was made resulting in separate plant models for differ-ent cooling systess. It has been shown by United Engineers and Con-structors Inc. (UE&C) that the direct and indirect capital costs of l

l plants utilizing either once-through, natural-draf t tower, or mechani-cal-draft tower cooling differ by less than 4%.11 As this is well

( within the variance that should be attributed to conceptual estimates, such as made by this code, cost models depicting various cooling sys-tems have not been included. The models herein describe plants with mechanical-draft tower cooling but may be used for any conventional cooling system. The cost-model data sets available in CONCEPT 5 are defined in Table 3.1.

The present cost models were developed using data presented in a l series of investment cost studies for hypothetical plants by UE&C.6-11 The hypothetical plants are assumed to be located at the tiiddletown site, which is described in considerable detail in the UE&C studies. This site is favorable in all respects, including an adequate supply of cooling water, low population density, satisfactory transportation facilities, i

l

12 Table 3.1. Cost-model data sets available in CONCEPT-5 ..

Cost-model name Definition PWKKET Pressurized-water reactor; single unit (stand-alone plant)

PWR1 MET Pressurized-water reactor; first unit of multiunit plants PWR1 MET Pressurized-water reactor; second unit BWRMIT Boiling-water reactor; single unit (stand-alone plant)

BWR1 MET Boiling-water reactor; first unit of multiunit plant BWR2 MET Soiling-water reactor; second unic COALMET Coal-fired without SO: removal system; using tandem-compound turbine; single unit (stand-alone plant)

COALIMET Coal-fired without 50: removal system; using candem-compound turbine; first unit of multiunit plant COAL 2 MET Coal-fired without 502 removal system; using tandem-compound turbine; second unit COAL 3 MET Coal-fired without S02 removal system; using candem-compound turbine; third unit COALSMET Coal-fired with SO2 removal system; using tandem-

  • compound turbine; single unit (stand-alone plant)

C0ALISMT Coal-fired with 502 removal system; using tandem-compound turbine; first unit of multiunit plant ~

COAL 2SMT Coal-fired with S02 removal system; using candem-compound turbine; second unit COAL 3SMT Coal-fired with SO: removal system; using tanden-compound turbine; third unit CBICMET Coal-fired without S02 removal system; using cross-compound turbine; single unit (stand-alone plant)

CBIClMET Coal-fired without SO: removal system; using cross-compound turbine; first unit of multiunit plant CBIC2 MET Coal-fired without SO: removal system; using cross-compound turbine; second unic CBICSMET Coal-fired with SO2 removal system; using cross-compound turbine; single unit (stand-alone plant) ,

CBIGISMT Coal-fired with 502 removal system; using cross-compound turbine; first unit of multiunit plant CBIC2SMT Coal-fired with SO2 removal system; using cross-compound turbine; second unit

13 and sufficient labor supply for a 40-hr workweek. The cost estimates exclude costs for the main transformer, switchyard and transmission facility, waste disposal, and initial fuel supply.

i The actual costs stored in the cost-model data sets are subdivided into equipment, labor, and site-related materials at the detailed sub-account level (three , four , or five-digit level) and are identified ,

I by account numbers to facilitate making modifications through the optional  !

I input data stream.

In addition to detailed reference cost data, each cost model l contains scaling coefficients for each two-digit account to adjust the l costs from the reference size to the size of the specific case. This l 1s done through a classical exponential scaling relation of the form

! *new Factor = a + b l

k#* base /

i These scaling coefficients, rounded to one significant digit, are shown in Table 3.2. It is estimated that the scaling equations are representa-tive of capital cost trends for unit sizes in the range from 500 to Table 3.2. Scaling coefficients for i unic-size adjustments Account a b c (nuclear) c (coal) 20 1.0 0.0 0.0 0.0 21 0.0 1.0 0.5 0.5 22 0.0 1.0 0.6 0.8 23 0.0 1.0 0.8 0.8 24 0.0 1.0 0.4 0.3 25 0.0 1.0 0.3 0.3 26 0.0 1.0 0.8 0.6 91 0.0 1.0 0.4 0.7 92 0.0 1.0 0.2 0.7 93 0.0 1.0 0.4 0.6 94 0.0 1.0 0.4 0.4

14 1500 MWe and may be used outside this range at the risk of greater uncer- .

tainty. As there are differences of opinion regarding appropriate values for these scaling exponents, the user can readily make changes, either permanently by modifying the cost-model data or temporarily through the optional input data stream.

The calculation of allowances for interest and escalacion during construction requires a cash flow curve for each two-digit direct and indirect cost account. A set of cash flow curves is provided with each cost-model data set. Typical cash flow curves for nuclear-fueled and fossil-fired plants are illustrated in Figs. 3.1 and 3.2. These cash flow curves are assumed to be approximately the same for all similar types of power plants. The curves are normalized so that the range for both axes is from zero to one. The time zero corresponds to the date of placing the order for the steam supply system. The times 0.25 and 0.12' correspond to the date of issuance of the construction permit and start of actual construction for nuclear plants and fossil plants, respectively, and the time 1.0 corresponds to the date of initial commercial operation.

These three dates purchase of steam supply system, issuance of construc-tion permit (or start of onsite construction), and commercial operation -

are part of the standard input data specified by the program user. The .

CONCEPT-5 code remaps the cash flow curves over the specified time periods, as discussed in Chap. 5.

The cost model for each type of plant includes relative distributions of equipment, labor, and materials, which are used as weighting factors in calculating weighted-average cost indices for adjusting reference plant costs to other locations and for projecting future costs. Each cost model also includes equipment, labor, and materials rates for the reference-plant cost estimate; arrays defining the number of accounts; and tables of account headings.

Specific data in the cost-model data sets can be altered temporarily at program execution time through the optional input feature. This important feature is discussed in greater detail later in Chap. 7 and is illustrated in Chap. 8. Permanent. modification of cost-model data is accomplished through use of the CONTACT auxiliary program described in Appendix A.

15 CRNL-0WG 78-18492 10 -

95 "-

a9-MJCLEAR PO E PLANTS ca -

91 T

E7 "

3 6 i

g 25 8 24

a os -

8 l

l 3:

o as- 25

\.

g Bi l <

\- U as.

=

ns. 22 i

U-l l

al - 21 OD , . . . .

CD Q.2 a4 0A 0A to DESGN AtO CONSTRUCDON PERIOD (fraction)

Fig. 3.1. Typical cumulative cash flow curves for major direct cost accounts - nuclear power plants.

16 ORNL-OwG 78- tS493 tD -

ACCOUNT-94

~

93 COAL 6 92 PLANTS as-91 T 26 h "I '

' 25 o

24 5

g u- ,

a 3 23 o as-h o a4-h as-d ,

22 a2-2:

00 , , , , ,

GD 02 a4 02 02 1D -

DESIGN Ato CONSTRUCTION PER00 (fraction)

Fig. 3.2. Typical cumulative cash flow curves for eajor direct cost accounts - coal-fired plants.

17

4. COST INDEX DATA Historical cost data for equipment, labor, and site-related materials for 20 U.S. cities, two Canadian cities, and the hypothetical Middletown site are stored in the LAMA data file by the CONLAM auxiliary program described in Appendix B. These locations are identified and illustrated on the map in Fig. 4.1. The file contains cost data for the past 15 years in six-month intervals.

The data used to generate factory equipment cost indices consist of the wholesale price index for steel mill products, SIC Code 10-13; the hourly earnings index in the electrical equipment and supplies industry, SIC Code 36; and the hourly earnings index in the steam engine and 0*NL-DaG 72-43375 s .

'M )T \,' @ .

r 4

'S

, [ _, I to -

f M 7 +6

[ I' y \____

/

- 2 -

e' e

'x '

./ .

(ie

.N(. ~

./

~

r ~~~ C) /- c

  • N.b- I' i

/ .

L . _. .F eie' gu _1=

,i -

g $4 j t ATLANTA 7 CLEVELAND 13 MINNEAPOLIS 19 SAN FRANCISCO 2 BALTIMORE 8 OALLAS to NEW ORLEANS 20 SEATTLE 3 BIRMNGHAM 9 DENVER 15 NEW YORM 21 MONTREAL 4 BOSTCW to DETROIT 16 8'HILADELPHIA 22 TORONTO 5 CHtCAGO tt KANSAS CITY 17 PITTSBURGH 23 M100LETCWN 6 CINCNNATI 12 LOS ANGELES 18 ST. Louts Fig. 4.1. Cities for which historical equipment, labor, and materials cost data are stored in CONCEPT.

1 l

l l

)

18 turbine industry, SIC Code 3511. This data is obtained from U.S.

Department of Labor, Bureau of Labor Statistics publications.12-14 Un-like the labor and site-related materials data, the equipment data is .

the same for all cities. This is done in recognition of the limited number of possible equipment suppliers.

A white-collar wage index is also stored in the LAMA data file. It is obtained from white-collar wage escalation data presented in the Bureau of Labor Statistics publication " National Survey of Professional, Administrative, Technical, and Clerical Pay."15 Like factory equipment data, it is the same for all cities and is used to adjust all noneraf t labor costs.

The craf t labor cost data consist of hourly rates (including union-negotiated fringe benefits, but not including employers' contributions for social security and workmen's compensation insurance) for 16 classi-fications of craf t labor listed in Appendix B. The materials cost data consist of market quotations for seven classifications of site-materials.

The craft labor and materials data for all locations except Middletown are obtained from Engineer ing Jeus-Record.16 The Middletown location -

represents a composite of Boston, New York, and Philadelphia data in equal proportions. -

The cost data in the LAMA file are retrieved by the CONCEPT program and are used with data on the relative distribution of equipment, labor, and materials included in the cost model for each plant type to calculate indices for adjusting capital costs at the reference (Middletown) site to costs at any of the other 22 cities and to calculate escalacion rates.

-- _ - ~ - _ _ _ . _

i. . . ,

1 19

5. CONCEPT METHODOLOGY .

This section is devoted to the description of the analytical methods used in the CONCEPT-5 code. The treatment is presented for the program

, user who wishes to modify internal and calculated coefficients using the special input options and who therefore must understand the implications of each change.

) 3.1 Cash Flow Curve Modifications The shape of the cash flow curves used in the CONCEPT program is dependent upon the construction permit date. This is due to the assumption that only after the construction permit is received does the majority of work and, therefore, expenditures begin. The DELOF subroutine adjusts the reference cash flow curves to reflect the construction schedule of the j specific case. To do so, the fraction of the total design and construction period that is prior to the receipt of the construction permit is determined to be t

p , YRPER - YRSSS (y)

YRCOP - YRSSS '

where YRPER is the date of the construction permit, YRSSS is the date of the steam supply order, and YRCOP is the date of commercial operation.

A reference fraction, defined by the variable PO, is either 0.25 or 0.12 for nuclear-fueled or coal-fired plants, respectively. Should P be different from PO, subroutine DELOF compresses or expands the cash flow data such that, at the construction permit date of the specific case, the fraction of total expenditures will be the same as the reference model.

Further, the cash flow curve for each two-digit-level cost account is modeled by 50 data points with equal temporal variation. The program, in adjusting for the specific design and construction schedule, maintains the level of expenditures at the steam supply order date, the construction permit date, and the commercial operation date the same. The other data points are mapped linearly to achieve a modified curve as shown in Fig. 5.1.

20 ORNL- 0WG 78-10482 i

b -

a w

c 4

B A

/ b/

-- q-U o

z 9

0 a

E YRSSS NEW BASE YRCOP YRPER YRPER TIME Fig. 5.1. Alteration of project's cash flow.

The procedure for mapping divides the reference array into two sections, one containing data before the construction permit date and the other after that date. Two straight lines with different slopes define the transformation as shown in Fig. 5.2. The units on the ordinate (L) and abscissa (I) are the subscript or index numbers of the reference cash flow array and the cash flow array for the particular case, respectively.

There are 50 x P elements of the array prier to and including the construction permit. The reference model assumes 50 = PO elements prior to and including the construction permit. (All of these values are rounded to an integer format.) By taking the ratio of the number of elements in the reference case to the number of elements in the specific case in each of the two sections described above and requiring the P x 50 element in the new array be equated to the PO x 50 element in the reference array, -

a linear equation of the form L = a + bI (2)

'is generated. From this, the Ich element of the adjusted array is defined by the Lth element of the reference array.

21 ORN L-DWG 78-10481 (50,50)

.J s'

IE 2

M a

w

$ pox 50 ,.

Y 0

w a:

1 1 P450 50 ADJUSTED DATA POINT,I Fig. 5.2. Transformation of cash flow data.

( 5.2 Cost Index Ceneration and Alteration The ability to adjust the reference cost data to various points in time comes from an analysis of historical equipment, labor, and materials unit costs and cost indices. The LAMA file contains 15 years of cost data on which a regression analysis provides escalation rates for each two-digit account. A separate escalation rate is developed for equipment, labor, and materials within each two-digit account.

i As there are several equipment items, labor types, and types of materials in the LAMA file, the CONIV subroutine establishes a weighted average unit cost for each point in time in the LAMA file for equipment, 1

labor, and materials. For each of the three categories, a weighted average unit cost can be represented by k k max max C = fC I (3) kn k, k=1 k=1

I I

i l

22

)

I where i is the weighting factor for item k of the mix and C is the k kn ,

historical cost data for item k at time n. The weighting factors are stored in the cost models and represent the relative amount of item k used in construction. The weighted average data can be expressed as a '

function of time according to C

n

=C o (1 + c)* . (4)

Taking the logarithm of both sides, the linear equation in C, = In C, + t in (1 + c) (5) results which is of the form Y = a + Xb. The values for C and the corresponding e are known such that a linear regression can be performed on the data to find in C, and in (1 + c). The average unit cost at the cost-model reference date and the rate of escalation (1 + c) are obtained by taking the exponent of in C, and in (1 + c), respectively.

An additional feature of CONCEPT allows a combination of cities to be used in establishing a composite site. The above regression pro .

cedure is then performed for each city selected. The resulting escalation

}

and the average unit cost at the reference date are combinations of data from each city weighted by proportions (summing to one) specified by the user.

Once the races of escalation are determined for the categories of equipment, labor, and materials in the various two-digit accounts, the design and construction period is divided into 50 elements, each representing a particular point in time. Using Eq. (4), cost indices for equipment, labor, and materials in each two-digit account are assigned to the 50 elements. The cost indices are used by the code to adjust the reference costs to the steam supply order date and to determine escalacion during construction,.as described later.

Many times it is useful to modify the cost indices and/or rate of escalation at various points during or before the design and construction period. This is accomplished through the use of time-dependent escalation input data. The INDUSE subroutine reads this data and manipulates the

L 23 cost indices. As will be further explained in Chap. 7, should the cose index at a particular point in time (A) and the rate of escalation at a particular point in time (B) both be zero for a portion of the time-dependent escalation data input, then no changes will be made to that portion of the cost index array.

Changes in the cost indices representing a given design and con-

, struction period can be made using input data corresponding to dates prior to the steam supply order date. This is useful when the design and construction period is well into the future and cost index input data on hand is current. When time-de' pendent escalation data are input with an effective date prior to the steam supply order date, the INDUSE subroutine adjusts the input data to represent data at the steam supply order date. For example, if A and B are both nonzero, the adjustment is of the form A = A = B YRSSS-YRIN 6) sss IN IL where sss and IN represent the steam supply date and the input values, respectively. An initial set of cost indices is present when the program enters INDUSE, and, if A or B should be zero, the initial A and B values will be used. If the input for A is nonzero and the input for B is zero, then the equation is A = YRSSS-YRIN A x B 7) sss IN OLD where OLD represents the initial A and B values. If the input for A is zero and B is nonzero, the expression

~

A = A =

(8) sss OLD (BIN

/ BOLD) discounts back in time at the old rate of escalation and escalates forward in time at the new rate. Once all the input data are for dates during the design and construction period, a substitution process is used to construct a modified array of cost indices.

24  !

I l

The escalacion race (B) will be the same for all 50 time periods unless specifically changed with time-dependent escalation input data.

Likewise, a change in B holds until additional data, if any, are entered to change it again.

As part of the output produced by the program, the adjusted cost indices and escalation rates are listed. In view of the characteristics of B as explained in the previous paragraph, only the data at the steam supply order date are printed when there are no time-dependent escalation input data or when the effective date of such data is on or before the steam supply order date. If the effective date is after the steam supply order date, then the entire array is printed.

5.3 Adjustments to the Reference Costs At the heart of the CONCEPT method are the adjustments to the base or reference costs to reflect a specific plant estimate. The goal is to take a reference plant cost estimate at reference conditions, to modify the estimate to reflect the specific characteristics of a par-ticular case, and to express the estimate in dollars current to the steam supply order date. The cost data for the particular plant type i

selected from the COMO file are adjusted for size, time, location, over-time, productivity, and overhead burden, as shown in Eq. (9). These ad-justments will be discussed in the order in which the COST subroutine considers them.

Adjusted cost = #* *#*"

g *"**ffff 24 56* (9)

The CONCEPT code uses 40 hr as a reference workweek. Should over-time be utilized, two factors influence the costs. First is an overtime ef ficiency relationship shown in Fig. 5.3. This represents the effects of sustained overtime on the efficiency or productivity of craf t labor and can be expressed mathematically as ft = 1 - n(ERS - 40) , (10)

  • 25 ORNL-DWG 70-13323 A R 55 w

it

>- 50 45 a

a /

7 40 0

35 x t.0 oW W w!O.9

=

>- 8, O.8 O

za d6 ES0.7 it zo 0.6 40 50 60 70 WORKWEEK (br)

. Fig. 5.3. Effects of sustained overtime on productivity of site labor.

l where ft is an overtime efficiency factor, n is the incremental efficiency loss, and HRS is the number of hours in the workweek. The second cost influence is that of the overtime wage premium, which is assumed to be double time for craft labor and time and one-half for white collar workers.

These assumptions can be altered temporarily through the NAMELIST feature or permanently by modification of the !!AIN program if desired. The wage premium can be expressed mathematically as a weighted average wage rate factor or f2= [40 + OTP(HRS - 40)]/ HRS , (11) where OTP is the overt 1=e wage premium.

The productivity of craft labor is difficult to define and, in practice, varies significantly, not only country-wide, but within a single l

l

1 1

26 locale, depending on factors such as the general economy, project manage- ,

ment, labor relations, job conditions, availability of equipment, and weather conditions. No attempt was made to include productivity factors ,

for the normal 40-hr workweek, either as a function of location or as a function of time. However, an equation of the form f3 = a + b(YRSSS - YBC) (12) is included in the program, where YRSSS is the steam supply' order date and YBC is the year of the reference costs. Coefficients a and b have default values of 1 and 0, respectively, in the program but can be modified by the user through the NAMELIST feature.

In many instances a contractor will apply a percentage to the direct labor costs to cover overhead burden such as insurance, taxes, and other labor-related costs of a general nature. Although the current cost models stored in the COMO file explicitly account for such overhead, provisions are in the CONCEPT program to adjust the reference labor costs by a factor s expressed as -

fu = (1 + C05)/(1 + COB) , (13) .

where COS is the decimal amount of overhead burden in the specific case and COB is the decimal amount of overhead burden in the reference model.

Because overhead burden is explicitly considered in the CONCEPT-5 cost models, COS'and COB have zero as their default values.

Adjusting the reference costs for time and location utilizes the f unction subprogram CLAB. Essentially, CLAB returns the ratio of the cost index for a specific location and time (as developed by the CONIV subroutine discussed in Sect. 5.2) to the reference cost index stored in the cost model (representing a reference time and location). To adjust for a specific site at the steam supply order dats, the reference costs

  • are multiplied by A

g ,

LOC,53SS '

(14)

  • BASE,YBC '

i 27 where g y333 represents the cost index at the specific location and at the steam supply order date and A represents the cost index BASE,YBC at the reference location (Middletown) and at the reference date (1976.5).

The reference model must also be adjusted for size. This is done through a classical exponential scaling relation of the form I new \

f6=a+bI I . (15) f* base) i Each two-digit account has its own scaling coefficients (a, b, and c) stored in the cost models.

All of the factors discussed above are developed and applied to the reference costs in the COST subroutine.

5.4 Escalation During Construction Escalation during construction is calculated in the COST subroutine

. utilizing the cost indices for the design and construction period generated earlier. Taking the ratio of the cost index at a certain point in time to the index at the steam supply order date produces the change in cost over that interval. By use of the altered cash flow data discussed in Sect. 5.1, an escalation factor can be generated as 50 g"

! factor =

3 (CFg - CFg ,1) , (16) t., sss where Ag represents the cost index at time e, A,,, represents the cost

index at the steam supply order date, and CF represents the no M zed t

cumulative cash expenditure up to and including time t.

The utility of this procedure can better be seen by observing that this factor is multiplied by total costs that are expressed in dollars current to the steam supply order date, or O

A*

escalated costs = D g (CFg - CF t_y) , (lD sss t.2

- , - , , y

28 where D is the total unescalated cost in the year of the steam supply order date. ,

As explained in Chap. 7, the CONCEPT code produces a cost estimate with escalation during construction either broken out as a separate line item or included implicitly in the direct and indirect costs. Either way, the escalation is calculated in the manner described above.

5.5 Interest During construction As mentioned earlier, the design and construction period is divided into 50 elements. Associated with each element is a point in time and a cumulative expenditure to date. This cumulative expenditure is developed in the MAIN program using the total costs from the SUM subroutine, the cash flow data from the cost models, and, when escalation is present, the cost indices from the COST subroutine. When escalation is present, the cumula-tive costs to data during the design and construction period are derived from the equation C

T y, A .

escalated cumulative costs to date =,,Dg*}ssa (CF ~

t t-1} ' ( }

which is very similar to Eq. (17) except that the summation goes to T where T varies from 2 to 50. The cumulative cash flow in the first element (T = 1) is zero corresponding to time zero. When escalatioa is not considered, cumulative costs are derived from the more simple equation, T

unescalated cumulative costs to date = D (19)

(CFg - CF g_1) ,

t=2 where D is the total unescalated cost.

When escalation is broken out as a separate line item, interest due .

solely to escalation is calculated separately from interest on direct and indirect costs. To do so requires a cumulative cost of escalation to date which is obtained by subtracting each element of Eq. (19) from the '

corresponding element of Eq. (18).

1 I

l e

29 Regardless of whether the interest is being calculated on the escalated costs [Eq. (18)], the unescalated costs [Eq. (19)], or the escalacion itself [Eq. (18) -- Eq. (19)], subroutine DELIN uses whichever cumulative cash flow array is provided to calculate the interest during construction.

In addition to the cumulative expenditure to date, the subroutine is given the interest rate, the date associated with each expenditure element, and an indication whether the interest is to be simple or compound.

Subroutine DELIN first ensures that if compound interest has been specified the interest rate is on an annual basis. This must be done because the frequency of compounding for the 50-element cost stray is generally more than once per year. Interest during construction is then calculated using either a simple or compound method as follows:

50 interest = <

cash expended up to and including period i i=1 ,

+ interest charges to date (if compounding) (20) x (interest rate) = (length of period 1) >

s 5.6 Multiunit Cost Summation As multiunit plants may have different design and construction schedules, the dates associated with each 50-element cash flow array will differ, as will the time interval between elements. To obtain the total plant cash flow, a means for summing cash flows having dissimilar schedules must be provided. The ADYR subroutine does this by establishing an all-inclusive time line starting with the earliest steam supply order date and ending with the latest commercial operation date. Such a time line is shown as the lower line in Fig. 5.4. The upper line reflects l the schedule of a specific unit. At each element (date) of the overall time line, subroutine ADYR checks the unit line in an effort to have two elements of the unit line straddle a single element of the overall line.

As shown in Fig. 5.4, elements 24 and 25 of the unit line straddle l element 17 of the overall time line. When this occurs, a linear inter-polation of the unit cash expenditures for those two elements provides the l

l l

ORNL-DWG 78-10480 UNIT LINE l l SSS DATE 24 I 25 C/O DATE FOR I FOR SPECIFIC UNIT l I SPECIFIC UNIT I i 8

I I f 16 17 l OVERALL LINE l >

j E ARLIE S T TIME %

SSS DATE LATEST C/O DATE Fig. 5.4. Time lines for casti flow additions.

e

.L

31

_ cash expenditure at the time associated with the element on the overall time line. ,

Any previous overall time line and cash flow (resulting from previous units already calculated) must also be scanned in the same manner as the unit line to fit it to the new overall line. Summing the costs of the new unit and the previous total at each element (date) of the new total cash flow array provides the total plant cash flow.

l

32

6. DESCRIPTION OF CONCEPT-5 MAIN PROGRAM .

I AND SUBPROGRANG A brief description of the functions of the CONCEPT-5 MAIN program and subprograms is presented here. The auxiliary programs, CONTAC and CONLAM, are described in Appendices A and B, respectively.

All programs and subprograms that make up the CONCEPT-5 package are written in FORTRAN IV for the IBM 360 and 370 class of computers.

The CONCEPT-5 program consists of a MAIN program and 15 subprograms and requires about 240K of computer core for execution. Primary input data are read from punched cards, support data are read from direct access devices (COMO and LAMA), and the output report is listed by the system printer. Listings of the CONCEPT-5 MAIN program and subprograms are included in Appendix C, and several examples of output l!. stings are included in Appendix D. A first-call sequence of the subprograms is illustrated in Fig. 6.1. This figure is intended only to indicate sub-program interactions and should not be considered a program flowchart.

For simplicity, some of the calls to minor subprograms are not shown in the following individual flowcharts. The MAIN program and all subprograms are described in the following paragraphs. ~

6.1 MAIN Program The MAIN program exercises control over all logical flews and decisions concerning the input data, calculations, and output. The first step in executing a case is concerned with data input; the MAIN program utilizes three on-line direct access devices to manipulate, pass, and save input data used throughout the calculations. The flowchart for MAIN is shown in Fig. 6.2. The upper portion of the diagram is concerned with manipu-lacing standard and nonstandard input data, and the lower portion' indicates the logic required for escalation options, multiple-unit plants, and output control.

6 ww t

d a

t )

S 4

4 s ev P &

G a e

D et t

(

f o

)

s m

4 r

o t

a r

e g

) ) o

_ r

( p s s b o = u

_ a 4 v s w 5

) (: T

(: P E

r C u

e l

N 4  !

r u O o C f

( o e

c n

e u

) q e

s a l 4 t

) ) l u ) ) a

) ) c

) -

u t

( w s c

s u

s a

o u s u s r a w t en n r

o c i

t l o w o u c F o

u ( (

) ( (  :  : .

( (  :

(  : '

1 6

s .

6 o g c

i F

(

) )

u a

e

r. .

o i4 a c

7_ e r s m

4 a

_ ( (

e

  • 34 cas. pas 't.e.pge

- -  ;;;;:l', ..

\ =- /

a h. = \,/ \./

s ... /

M .

i

., s.. .. /

v .

. 37

\./-.. f v

,o C

Eg' "'

,dE.,0.

\

O. .',. , / \ a.

g -- i f

/

o, .uf A

v .

,L v

"3 ?a

) w M . .

o.

- ( " "' )

i

( . -. .==

.A===..

\.

1 O _,, ... -.

,- Tu'

= = ' = -

74l,%. -

"J'"."

w I

\  ::;, / ( ..,'w )

\ . .'1. /

, . . . .u-" ,

/

~ N.. . . .

/ "*. /6'he

\ =., e..-

    • f
  • ' - o,i ,

. s ..,

& yy,* = ..u n.

s ..,

l '3. l NE=**E",7 ^ "'

(=) ..

N /.

be.taggg og

(~u~ ..;2.9 &

Fig. 6.2. CONCEPT-5 MAIN program.

35 6.2 Subprograms The CONCEPT approach is extremely general and easily extends to include other types of power plants or any large construction project.

The result of this philosophy is that all subprograms are applicable to the most generalized calculations. Estimates for any type of project can S>e produced by adding a new cost-model data set to the COMO file, and any city can be studied by adding historical equipment, labor, and materials cost data to the LAMA file.

6.2.1 SCAN The subprogram SCAN scans the COMO and LAMA data files at the start of a job an( provides the user with a listing of the available cost models and site locations. This listing is included in Appendix D. The flow diagram for SCAN is shown in Fig. 6.3.

OR%+ 0*G 75-44404

( ENTER SCAN )

m READ RECORD FROM HISTORICAL EQUIPMENT LABOR AND MATERIALS ===== '#""

COST DATA FILE FILE v

A v

READ RECORO$

FROM COST COMO MODEL DATA pggg FILE V

LIST ALL AVAILABLE LOCATIONS AND COST MODEL PLANT TYPES

( RETUPN

}

Fig. 6.3. Subprogram SCAN.

l 36 I 6.2.2 COST The subprogram COST alters the reference plant costs as described in Sects. 5.3 and 5.4, controls logic associated with nonstandard input, -

and keeps track of the cost accounting structure. This subprogram exer-cises control over all cost index projections, escalation calculations, and cost summations. The flow diagram for COST is shown in Fig. 6.4 6.2.3 MODLAM The subprogram MODLAM is called by subprogram COST and retrieves the cost-model data set for the specified plant type from the COMO file. It initiates adjustments to the reference cash flow data to reflect the specific design and construction schedule. It also checks for the specified location in the LAMA file and determines the date of the latest entry in that file. The flow diagram for MODLAM is shown in Fig. 6.5.

6.2.4 DELOF The subprogram DELOF is called by subprogram MODLAM and maps the .

specified plant type reference cash flow curves (shown previously in Fig. 3.1) into those specified by the user's design and construction dates. _

6.2.5 CONIV The subprogram CONIV esiculates the escalation coefficients. CONIV is called by subprogram COST when regression analysis of historical equipment, labor, and materials cost data is required. The regression analysis can be specified to calculate weighted-average escalation rates for a multilocational environment. Up to 20 locations can be combined with independent weighting factors for each location. The selection and weighting of locations is accomplished by reading in data through the NAMELIST option. Weighting coefficients for the individual equipment, labor, and materials types are stored as part of each cost model. The raw cost data are selected from the LAMA file for the time period YFIRST to YLAST, as specified by the user. The CONIV subprogram generates a separate escalation rate for equipment, labor, and material for each two-digit-level cost account. The time-dependent escalation arrays are

37

~ ~ . . -

( ;;;;' )

. I

. m.

ni N.

A

. \

a a .

y s.

a' . .

G, ..

. V-W

,g v

W.e

.i .e...

.... w. .

m. .

.... e - .m ,_.

. . .. .m.

,. / m,,,

. , . s m a.

ai I l

_ .l .g... _. _

... m. m. .

?!!,."r = -

1.".*..ti-

'".M......

A

" v

. <i ,, .\

  • g ..... ..

\ /. .

\.~.::

O

. -- --.\ . . /ai .

v ,

{

T l

..u..

. . . .n.

I l

(m i

)

i

( w. )

Fig. 6.4. Subprogram COST.

I

38 Oss-eas vs.eeste

=*

thTER C MOOLAM V

REA0 RECORD PROM COsf . . . . . COMO M00tL FILE F 8LE v

yC WS g ,,,7gg,,,,

--g

/

97 .0 s

  1. etCT PLAuf TYpt

?

MS CALLOtLOF C0en8UTE CAlat

( Flow Cimvts RtAO *f LAan4 riLa

( ntfunn

) _

VES atA0 etcon0 FeOns .~

Nt3TORICAL E0uerMtmT LAsa mme naATutALS ..... LARAA COST OATA FIL: F8La v

0F \ weift peen 047 x w ssAct no etCT LOCA,T o vt3 0.,.-

as0ST atCGT 04ta tany .

m LAasa riLa .

l

( .tT .

)

Fig. 6.5. Subprogram MODLAM.

39 developed after returning to the calling subprogram COST. The flow diagram for CONIV is shown in Fig. 6.6.

6.2.6 FITS The subprogram FITS is called by subprogram CONIV and performs a linear least-squares fit on the logarithmic data set generated by CONIV. The A and B coefficients are returned for each 'two-digit account and specified location.

6.2.7 INDUSE The subprogram INDUSE is called by subprogram COST and is a data input routine designed to read the coefficients and dates specified by the user for changes to the time-dependent escalation arrays. This routine reads data card input and stores it on an on-line direct access device for subsequent cases. The flow diagram for INDUSE is shown in Fig. 6.7.

6.2.8 CLAB The function subprogram CLAB is called by subprogram COST and is

~

used to calculate cost indices for adjusting base plant costs to the specified site and time and for escalating costs to the year of com-mercial operation. The coefficients necessary to evaluate the cost

! indices are either calculated in CONIV or are input via INDUSE.

6.2.9 SUM The subprogram SUM is called by subprogram COST and sums all the detailed direct and indirect costs, which have been calculated in COST, to the two-digit level. These costs are in terms of the specified plant type, size, location, and date. SUM also calculates direct labor manhours and allowances for contingencies.

4 6.2.10 DELIN The subprogram DELIN evaluates the cost of interest during I

construction.

i l

l l

l l

40 1

onNL*0wG ?S 4 44 3m ,

ENTER CONIV m

READ RECORD FROM HISTORICAL EQUIPMENT LABOR AND MATERIALS ____ LAMA COST DATA FILE FILE O '

o N0 1 RED LOCATION

?

YES o

DEVELOP WElGHTED AVER AG E OF COST DATA CALL FIT S:

CALCULATE COEFFICIENTS o

WEIGHT CALCULATED COEFFICIENTS i,

ALL NO DESIRED LOCATICNS COMBINED

?

~

YES (RETURN Fig. 6.6. Subprogract CONIV.

41 CecL-DaC78-6433 GTIR mouse

\ .uS / .. .ua Data $70s te Os,fa

\ CA805 l m v

10 3 ves , 'I's g &

e p l03

  1. FILS RE40 0af a
  1. F80u l03 l' v ru

\ .mr ura /

\'On 103 /

C0=.ters I"'

T a0JUSTulef 'II

("U#" J .OF.C05,7 47 n0EX 04,A l

me Safa OAft suma =0

$ttan Sup*Lv OATE vt3 I

a0Just m8vf

( Data to

$TEau SUPPtv Daft a0Julf COST A00 astavl OIS no 0F ast, avl vts 1

( ettwa 1

Fig. 6.7. Subprogram INDUSE.

l

42 6.2.11 OUTPUT The subprogram OUTPUT always gives a one-page summary of the cost estimate for the specified plant. Two-digit-account direct and indirect costs are listed, along with contingency, escalation (when applicabla),

interest, and the total plant capital investment. The two-digic-account direct costs are also broken down into equipment, labor, and materials components.

If a full report is requested, the three , four , and five-digit account costs are printed on subsequent pages, following a format similar to that presented in TUS-531.17 These costs are also broken down into equip-ment, labor, and materials components. The flow diagram for OUTPUT is shown in Fig. 6.8. Examples of output listings are included in Appendix D.

6.2.12 HEADS The subprogram HEADS is called by subprogram OUTPUT to generate headings for the summary page of the output listing.

6.2.13 TAILS .

The subprogram TAILS is called by subprogram OUTPUT to generate .

headings for the detailed output listings.

6.2.14 PLOT The subprogram PLOT uses the system printer to plot the cumulative expenditures from date of purchase of steam supply system to date of commercial operation. The output consists of a one-page graphical representation of cash flow during this period. The original PLOT subprogram was obtained from the IBM Corporationl8 and was modified to meet the needs of CONCEPT.

6.2.15 ADYR The subprogram ADYR sums the individual-unit cumulative cash flow curves for a multiple-unit plant. The cash flow curves are adjusted to the earliest date of purchase of steam supply system and to the latest date of co=mercial operation.

  • e 43 ORNL-OwG 75-4444R ENTER C QUTPUT

<r DETERMIN E WElGHTED AVERAGE ESCALATION RATES PRINT A ONE-PAGE

SUMMARY

REPORT LISTING THE TWO-DIGIT DIRECT AND INDIRECT COSTS , CONTINGENCY, ESCALATION , INT ER EST ,

AND TOTAL PLANT INVESTMENT o

i.

OETAILED NO REPORT N REQUESTED

?

YES PRINT A COMPLETE THREE ,

FOUR , AND FivE-DIGli ACCOUNT COST ESTIMATE o

O RETURN Fig. 6.8. Subprogram OUTPUT.

i . . _ -

44

7. DATA INPUT i

Preceding the first data card of any case, any number of comment cards can be included by placing a "C" in column 1 of each card. The

program will print these comments at the top of the first output page if space is available or on a separate page if more than a few lines of comments are read in.

Coding forms are illustrated on example problems in Chap. S.

7.1 Standard Input Data The first card contains the standard input data for a case and the optional output and nonstandard input flags. Any number of cases can be processed in one run, subject to time and output limitations. The entries on this card are the following:

Variable Column name Description 1-4 MWE The net capacity of the desired unit in MWe. .right justified in the field. Format I4 -

6-13 . TYPE Type of power plant (see Table 3.1), lef t justified '

in the field. Format A8 15-30 CITY The city where the plant is to be located (see Fig. 4.1), lef t justified in the field. Characters are stored in LOC (l) and LOC (2). Format 2A8 32-39 IDENT Any alphanumeric data. Characters are stored in LOC (3). Format A8 41-47 YRSSS Date steam supply system is purchased. Format F7.3 48-54 YRPER Date construction permit is issued. Format F7.3 55-61 YRCOP Date of initial commercial operation. Format F7.3 62-66 RIB Average anr.ual interest rate for interest during construction (in percent). If not input, 8%/ year will be used. Format FS.3 .

68 ILAZ Flag for saving and retrieving optional NAMELIST input data for use in subsequent cases (IFLAG>0):

0 - NAMELIST input data are neither saved nor retrieved 1 - Save NAMELIST input data for use in subsequent cases J

45 Varia51.

Column name Description I

2 - Retrieve NAMELIST input data that have been saved in a previous case 3 -- Retrieve NAMELIST input data that have been

, saved in a previous case and read additional NAMELIST input data 70 IFLAG Flag for reading optional NAMELIST input data:

0 - No NAMELIST input 1 - Permits changing YFIRST and YLAST prior to the analysis of historical equipment, labor, and materials cost data and permits overriding cer-tain data stored in the cost models and in the MAIN program prior to the detailed cost calculations 2 -- Permits overriding calculated direct and indirect costs after adjustment for size, time, location, and escalation to date of purchase of steam supply system 3 -- Two NAMELIST calls. The first is identical to IFLAG=1, and the second is identical to IFLAG=2 72 IOF Flag for optional output:

0 - Two-digit-level summary output only 1 - Two-digit-level summary output with cumulative cash flow plot and table 2 - Complete cost breakdown with cumulative cash flow plot and table 74 IESC Flag for escalation during construction:

0 -- All cost accounts are escalated from date of reference case to date of purchase of steam supply system, and escalation during construction is shown as a separate lump-sum item l 1 - All cost accounts include implicitly both escalation from date of reference case to date of purchase of steam supply system and escalation during construction 2 -- All cost accounts are escalated from date of reference case to date of purchase of steam l supply system, with no allowance for escalation during construction 76 IBS Flag to specify time-dependent escalation data:

0 -- No input data are expected i

i l

46 3 Variable

  • 1 Column name )

Description i

1 -- Input data are expected and will be saved for .

subsequent cases 2 -- Retrieve data used when IBS was 1 78 IAC Flag to specify type of interest:

0 - Simple interest 1 - Compound interest 80 ISTACK Flag to specify total number of units for a multiple-unit plant:

1 - Single-unit plant

>l -- Total number of units for a multiple-unit plant.

The total number of units must be entered on the standard input data card for the first unit only blank - Entry for second, third, fourth units, etc.,

for a multiple-unit plant Each subsequent unit for a multiple-unit plant must be provided with .

a standard input data card similar to the card for the first unit, except that column 80 must be blank. The standard input data for a second unit, ..

or subsequent units, can be identical to the data for the first unit, or it can be different in size, construction dates, interest rate, and even -

location. Multiunit plants should be of the same type (e.g. , COALISMT, COAL 2SMT, COAL 3SMT) to prevent incorrect addition of costs for the total plant.

7.2 Nonstandard Input Data Specific data stored in the cost-model data sets and the MAIN program and certain calculated costs can be changed at program execution time for one case or for a series of cases by setting the flags, IFLAG and ILAZ, on the standard input data card. These changes are effective for the current case only unless indicated By the ILAZ variable. The NAMELIST cards have

47 the fo11 9wing form:

Card Column Description 2 2-8 &CONOPT- This identifies the following as a BMMELIST named CONOPT that contains optional data 2 10-80 Data changes start with this card in column 10; data items are separated by commas. The form of the data may be (1) variable name = constant, where the variable name l may be a subscripted array name or a single variable name; (2) array name = set of constants (separated by commas). The array name is not subscripted. The number of constants must be less than or equal to the number of elements in the array. Successive occurrences of the same constant can be represented in the form k* constant.

The last data entry is followed by a comma 3 or 2-80 If required, columns 2-80 of additional cards can be used more with each data item separated by commas Lane 2-5 &END must be the last card for each set of NAMELIST data Lists and descriptions of the variables and arrays that can be changed by the NAMELIST input option for the various values of IFLAG follow.

Examples of the use of this option and the save-and-retrieve option (ILAZ>0) are presented in Chap. 8 on example problems. The following variables may be changed when IFLAG-1 and in the first NAMELIST call when IFLAG=3:

Variable name Description AA(I,J) Scaling coefficients for adjusting the direct and indirect costs as a function of size according to the relation a + b (MW 1/MWC )

for each two-digit account. The first dimension, I, varies from 1 to 3 representing a, b, and c, respectively.

l The second dimension, J, defines the two-digit account such that J-1,ll for accounts 20 through 94 AMAN The direct labor manhours per kilowatt for the specific case being run APC(I) Initial productivity of labor at input location at the reference year of the cost model [ coefficient a in Eq. (12)], for each two-digit direct and indirect cost account such that I=1,11 for accounts 20-94

i 1

48 Variable name Description BPC(I) Change in productivity of site labor at input location per unit of time [ coefficient b in Eq. (12)], for each two- -

digit direct and indirect cost account such that I-1,ll for accounts 20-94 CFCA(I,J) Cash flow data for each two-digit direct and indirect cost account (I=2,12) in each of the 50 time periods be-tween the steam supply date and commercial operation date (J-1,50). The values when I=1 are the fraction of the design and construction period COB (I) Contractor's overhead burden factor for each two-digit COS(I) direct and indirect cost account in the base model (COB) and the specific case (COS). I-1,11 for accounts 20-94 CONTL(I) Contingency percentage for labor, materials, and equipment, CONTM(I) respectively, for each two-digit direct and indirect CONTE (I) cost account. I-1,ll for accounts 20-94 D(I,J) Array containing lowest-digit-account direct and indirect costs divided into equipment, labor, and materials components (I-1,3) for a given account (J-1,380) in the base plant cost model DEOT(I) Coefficient n in Eq. (10) for calculating the overall ,

efficiency of an overtime workweek for each two-digit direct and indirect cost account. I-1,11 for accounts 20-94 FACSl(I,J) Weighting factors for labor, materials, and equipment, .

FACS2(I,J) respectively, for each two-digit direct and indirect FACS3(I,J) cost account. I=1,ll for accounts 20-94 The second dimension, J, correlates a weighting factor to a specific labor, materials, or equipment index in the CONLAM file FILS(J) Weighting factors for combining up to 20 specified locations in a composite site (J-1,20) 20

)[ FILS(J) must equal 1 J=1 HWI(J) The number of hours worked per week for each two-digit HW direct and indirect cost account (J=1,11) for accounts 20-94, or, alternatively, the number of hours worked per week in all the accounts ISITE(J) Array for site combinations up to J-20. If nonzero, the ISITE value indicates site (or city) number (see Fig. 4.1) used in conjunction with weighting factor, FILS. For example, sites 12 and 16 might be combined by setting ISITE=12,16 and FILS=0.4,0.6 for 40 and 60%

weighting of the respective sites l

49 Variable name . Description OTP(I) Overtime premium paid to labor (multiplier of straight-time rate) for time worked in excess of 40-hr workweek for each two-digit direct and indirect cost account (I-1,ll) for accounts 20-94 OVERS (I) Overall efficiency of a nonstandard workweek for each two-digit direct and indirect cost account (I=1,11) for accounts 20-94. Use of this variable overrides the calculations in Eq. (10)

RINT(J) Interest rate expressed as a decimal number for each of the fifty time periods between the steam supply date and commercial operation date (J=1,50)

YFIRST The first date to be considered in performing a linear regression on the historical equipment, labor, and materials file YLAST The last date to be considered in performing a linear regression on the historical equipment, labor, and materials file The following variables may be changed when IFLAG=1,2, or 3 (either NAMELIST call)

Variable name Description CONTL(I) Contingency percentage for labor, materials, and factory CONTM(I) equipment, respectively, for each two-digit direct and CONTE (I) indirect cost account (I=1,ll) for accounts 20-94 D(I,J) Lowest-digit account direct and indirect costs divided into equipment, labor, and materials (I=1,3) for a given account (J-1,350). When IFLAG=1 and in the first NAMELIST call when IFLAG=3, the costs in the D array represent the reference cost model. When IFLAG=2 or in the second NAMELIST call when IFLAG=3, the costs in the

! D array are the costs adjusted for size and location and expressed in dollars current to the steam supply date RINT(J) Interest rate expressed as a decimal number for each of the 50 time periods between the steam supply date and commercial operation date (J-1,50)

50 7.3 Time-dependenc Escalation Data Time-dependent escalation input can be used to alter the escalation rates and cost indices for equipment, labor, and materials. To do so requires a set of six input cards which follows after the standard input and NAMELIST cards (when used). Figure 7.1 shows the form of the six cards. The first two are for factory equipment direct and indirect cost accounts, respectively. Labor and materials are treated in the same fashion. The "A" field in each of the two-digit accounts represents a cost index at a given point in time. The "B" field represents the escalation rate in the (1 + c) form at a given point in time. If fields are left blank on the data cards, the current escalation coefficients in these fields will not be altered. The last field on the sixth card is for a date written in decimal notation. This is the "ef fective" date for the data being input. These data may be during or before the design and construction period.

Additional sets of six cards may be used in a sequential fashion with different dates in chronological order to change escalation parameters ~

with time. However, following the last set a card with -1. in the last field must be input. This is true even if there is only one set of six -

cards being input.

As described in Sect. 7.1, the time-dependent escalation data input may be saved for subsequent cases.

Examples of this feature are given in Chap. 8.

?

ORNL-OwG F8- 3494 TIME-DEPENDENT ESCALATION COEFFICIENTS ACCT. 20/91 ACCT. 21/92 ACCT. 22/93 ACCT. 23/94 ACCT.24 ACCT.25 ACCT.28 YEAR A B A 8 A a A B A B A B A B i

13 . .. . . . i. n ., .. .. ., ., ... ,. ,,,i,. na u,.i.. n u n i.. . ., . . .. .,

.., . si,,u =is .u = wn...,.....s u i... .. ,, n .. n .. ...

E QUIPME NT 4

D -.--- -

LABOR

, I 0

MATERIAL i

1 9 x x . x x O' D ~

E QUIPME NT 8

SECOND OR MORE SEIS p IF DESIRED OR 1

D MATERIAL i

1 9 x x . x 0 -l.,CAHD MUST ,BE 1,NQUDED

' i i

IIllllllllllllll Fig. 7.1. Time-dependent escalation input format.

l

52

8. EXAMPLE PROBLEMS This section illustrates the preparation of input data for the -

CONCEPT-5 program. Eight examples are presented which are designed to help clarify previous discussion concerning the various options, the use of the NAMELIST input feature, and the input of time-dependent escalation data. Input data for all examples are shown in Fig. 8.1, and complete output listings for problems 3, 6, and 7 are included in Appendix D.

Example problems 1 and 2 are simple cases of single- and multiunit plants. The IOF output variable is set to produce a two-digit-level summary only.

Example problem 3 illustrates the use of the NAMELIST feature for a single-unit plant. As determined by the value of IFLAG, the direct labor manhours per kilowatt and the cost of the site land will be set to the values in the NAMELIST prior to the detailed cost calculations. The output option has been set to produce a two-digit-level summary and a cash flow plot and table.

  • Example problem 4 is a three-unit coal plant using NAMELIST to modify '

the starting date for the LAMA file linear regression analysis. For the second and third units, ILAZ-2 to retrieve NAMELIST data used for the first '

unit, ISTACK is left blank signifying the multiunit case.

Example problem 5 is a single-unit illustration of the time-dependent escalacion data input option. Variable IBS is set to 1, which causes the escalation data cards to be read and saved internally, should a subsequent case need the same escalacion input. The " effective" date for data input is allowed to be earlier than the steam supply order date. The effect of the time-dependent escalation data is to cause escalation of equipment and materials to occur at a rate of 6% per year and escalation of labor at 8%

per year starting in 1977.

Example problem 6 demonstrates the time-dependent escalacion data input feature for multiunit plants. By setting IBS=2 for the second unit, " -

the data input for the first unit is retrieved and applied to the second unit. The escalation option variable, IESC, has been set such that the _

escalation during congtruction is expressed implicitly within the direct

""-*"-* "-' ~ CONCEPT (PHASE V) l oA A SHtti nas ortioses

= nu IR ses Pttat tvrt MT IH8a nm um s I .

Ill C0 mite.gfan Cant aOat $

a a.a w Ese w mist car"" affatit -

f -

3

. u. a u. ..

evacmaus

.. n.

etamt a n.

eriassias

.. u.

ears a n.

I ] E' I  ;

'.if_ _i . . . . .. .. .,.> .; .,i, . . . . J. . ,.;,. .. ,. n a,, ,. ',. _; dow  ;

Toi..f w ..

..'.4.h. ,, u ,6.

dd. .. c.>-.. _.7 _._ . G__E-; _ ;~ ; ._

~

hM._ l: , .

. _l 1 ,. _

C. l, ; . Ea

  1. f E f Odi EN i j , _ ; l , l, 1

'e ren t,s.s.o.

r . o oot e , ,s t w o,c _ ty r , s e. r s.s z.,s o rgnso 9 ecc a. v _v ..v _

- t i

_ c_ o i rln l# E ll

,ij _

l _. .

..A f{I

(

C. l l st rp, i v(

e 2 i .- ! _

,  ; _ _i _ ,

t .z,0.0 3;n T c :c t.ff7sp o I,tpo se 2 "E 1 f

.c cn 4 -

9 app,i c2 _ ... o,9,82 s,c_. ada.e sa .

1,000 _ t . o.. F_c -

2 1 - Ea 64 rt t i _ t'h79ist _ tf,8sst_ t 1 If pas'c _

1,0co ..a_ o o .

C I l , _ j _

}jo _ ,! , _ a

.l

. l _ _

t ,, _

l , _ .a _ , - _ _ _

eg g.e e g- t eoet ry 3 i ,

.t v.

c1,1\o' __

l

.c 4 s ,ver ._c i e vei asr a .v es t 3 r 11,00 r fespo 987.0c

_ t u t _

o

a. s oo_ 0- 1  ! _o_ o I t

.tc p c ., ( 3 , 1 )

4 d4 4 39 .

i 5'00 .

i _

4 _ , _ .

.I _ _ _ .. _ _ _

J;E a  : . _ _ _ .

l . . .l _. - _ _ _

,' l _ _ .

.1 _ , . . _l _ - _ _ _ ._ _. -

C; ,I t r a ae rt e z eost s., y

_ _ _ , _ .i _

'8'O l' C 0 41 1 Sm 1 w! PDL ETOwk E E 4 Al ft (4 lf ff,00 lf f00 f8g03

_ _ _ _ l _. $ f ([_ /_ l _,

O _ f. O _

o

_ J 4?C'Cha t' l v s'i t.i T z i f6 7 . ,

4 d EN D

~]

sof cc os i zsx i l s o ve er a n e 1t n a, .r _ri e r  : 19 79 tsc : t tls vi t f 87}e c  :

M v h :t tl c c 1 os r

a s u .ri c ci e ro n u s t t _

E x ampi .

i t 7 toc _

i 9,e y ce t rasco _ s ooo z- l C_ t_ F i l80'o e

- _ _ _ j.. _ _ _ _ ._ _ _ _

q _ _ i, . ._ , ,

F - d Fig. 8,1. Data input for example problems.

H

54 uu, i g i  % i ' ' ' t ' ' ' ' t

=l , i

. . f V '  !

awe e. a s .- 4

.j s. . M ' , s

- .=, . .

4 s ,

I Jire !e O [_ . e i o

e tet e  ! e a noe >>, N e t

  • 1ee i e , i e . , i seis 4zi a '

4 *  %+

ggi .

, i e =

c' ce  %, t y, u *! -w 2 -

, s. s s .-

31 i - 1 4 ,- ,  ;

3 .Q w ,

".; -Q Y ,

^

W 2 4 I.g-

" .a

  • E 2

'a 8

! . i M. - M* t %!

t t e i v, w a:

Y gg.lR y S 2 <

s.

t

'gei ,

, s. s.

yl3- E- = >

O

  • e e

3 N  :

~ , ,

'2 ' ! I i 4 i g 2 h~. a t

.. . w. , m. . < . . , i 3 3 N e s w. c. nr

  • . I *a s -% .

$*- T-T

^

u .m.%. n . . . ,

e-a E >.

2, s s. s

=2 g

! I i ? . I  !

  • I 3 g M "Y e -

i t . c

> 3 - -

9 I -

3 r M w

W

!E :: t kt>. ww

v i

i 4 w. . ,. e . % . 4 C

o 4- - .

e s %i a- Q, ci %. c u 4 a= * .

! y j'

Zg IE 1

1

!,t I- I "

, s.  % s- s s s .

Q. 3 e c

- . g e v' W w 1 p< gg g -- - - g - -- {. f

n. . . . - =

mo "3 ,4- - -

g . _

  • ' 4 %. . % +%

Q g"

E 2 5- - v 3= - W

;

i

, + w '. m o s v. e N w

at 1 ' ' '

O al g

I i i 1 g a s. s s.  %. si s Q -

  • U

~

.L . . . . . .

I  : -

^ , ,

1 f l = n' . .

A 4 4 go , ab 4 , w l = 3 *

; e
  • C' Qt CQ.Q.G t t G 2 e .

s- a . s. ~ s s s g qys - s i e g ,

. w w s.

l p y* *

  • AT

} f C% g

- e am m...

I21 1 %J t i I

. 4 4 w

- . . q- y2 c c e c 2

~

2 -y . - - -- % s s

{.

y  %- S *

. ,3 . 4. w- - 0 e s

--Sy.

C" *

, q g--- e . e - e . e . e . e .

g l*I '

. i e g g a 3 g ti

  • 1Ch I E 5 a 8*

8 { W Ia E g $j s ".[ 6 O , "

5 e

l g

  • 5m 1*.y F. ' *C g g e

g 3 ,.- w -- --m-- m=

we+ =*-* ^ ' ' -

CONCEPT (PHASE V) _ _ . . _ _ _

l OAI A SHEtt FLAGoettoMS 84 vtan seas vtam s l .

en ese ate la , ,M,te

, a as t l ) b

  • 7% {. } sla 1. ! .). 4 f.i y.s).hr idi, selv n n 1. n iJnhe 41m, ne uln u n = u ish.Y a n .Jn Ir.e'e5 u o u se au she'u.e .e u .a 1

.i y.~i sy = 3 is s. n = $I.'Is.)

C E,X,A,se P L E E 8 L 'E 6e', 6 '

l R'OlL

/ top _

P'w Q s ,6s E T

., _ A,I A,N I' A.  ; _. Ejy A.N P,L E 6 _. I j? 7.8,$,0_ / ,'f,8 2 ,$0_ / f 8&50 . 9 00 0_ O_ o_ C.. I _

/ _

/ . . .2

//OO P t/ 9 2ft,E I A 1 L ANTA ,, EX A'N PL (6 _ ff f ffj0_ /,fg y,50, /.1? $0_ f,ooo _

O,. 0 , O._ 1

_ 2_ / .,

.6 e

. t.l _ _ _ _

4 . _ _ _ . _ _ _ _ _ .. .. -

i.i _  ! l . .. - 1 ._ ]. <1- _

_ _ _ l ilmE-DEPENDENT ESCAL AllON COEFFICIEN15 ACCf.N ti aCCf.II93 ACCf.3393 ACCf. 33 94 ACCT. 34 ACCf. 25 ACCI. J6 TEAa A 8 A 0 4 3 4 0 A B A 3 4 5

.i. . . - , , , . . . , , ,, .. - . . , . , ,. .. . .. ... .. . .. .. . w , ,, ,, . ... ~ , ., ,, .. .. . .. , , . y .

e I eomrwei . . ... ..

g g o.  ! .: M! ' Mf ' - 63 5 1

63) .

l .

f 8 5 . .  !.: (3  ? .

/

N e .. .

I . C8 5 1 . 6BS l .

CB.S_ /.

..( S. $.

e matt mat - - - - - - - - - - - - -

I 78 5 1 9 .

,,,,e e

.. . -. /._. ..

s 8

e saltaa - - - - - - ---- - - ---- - - - - - - ----- - - -- - -- - ---- - - --- - - - -- -

9 Fig. 8.1. (continued)

e

  • 56
u. a. . . ~ a - i - '  ! o * ' -  !

, l= , 6 , f i i i i **

.F Q I ' '

I*E _Jti "'

4:1 '

+ I e

- e

.[

  • " . s

! "l 3 1 .

g I EW iJ' C - 4 , , ,

[ 4

$ Ifl ' i

? r i t

. ... ~ ,

!Kt 1 P Sol e ia  % 1 w. 16 .

mz i

__ l.[ , , , e 1  %* w! wt I Tvle i3i C 2 i  ! I 1 'a i  ! . I g ,-

a c w ,

?

w4 0 O ,

~a ^

,=3 = =

g

,2

. So

.  ! i . ,

4 1 l 3 ' I i i i $ 4i  % T, .

O Ig .1  : O 2

  1. 9 e

%i w3 %i swaa T  : N l ey 4

' - ~  %-

33= 0.

- i

,s E - ,  % . y ,

+ i * .

= sw .

g g _ s yy -  : f f e l t t g a c-  ; , . .

a.. 2 _ MQ g, gg

, ff syE:.

g- .

m 'e '- "

,' + ' o o' b *

  • C h  %.  %.  %

2  % o a J <

621  ! l l uf I

  • 1 i e 9 U.

! t m .

e 3

g aK

, . c

> 3

=

3 - % ?_ -o u

W EE E  : WC $

w '  ! ' '

m -

2 _wv z

  • w' ?' S t Si ' ' '

g em g  % ,, E ,. e e Q> v. %i _%4 9'  %.  %

? 4 y

u .

EE ,,

III E 8 I i I j " } ,

r  %. N< N. N.  %.  % I #

Az  : "a . - -

w w s W 1 .

g w.

  • M

- 4

. , i ,

-  : 4 . . -

b $$ j- 2 %Q g A . ,

, M A4 g ,m! = g =

=

wa - 2 ,% - g .

o E a .. . . .

r + 4. v . m. m1 m $

g  :: n- g ;te

-- ,. u-Qi % Q. w. %

t - '

C; I 1., 1. 6 IH I ** 4  %,%.  %

t '

o 2 A -

e. w M t i

%.  %, w W -

I 3 4 * -

,  ! , i 2 0 -

2 V E *

  • i i a

t k e 4 4  %. %t %i W g

3 % t W a e

  • Go Q.Q- Q. Qe Q. +

i a ::* a g

A o.

. A, m .

. g % c. - '

i 0 '

%.% . y , _

? n. 4 e t '

44

}- =

o% Q

= * - -

+

lTF

. + %, . . - * ..

IW- I %i 1 . . . 4, a;y ac,,

1 *.k. P .

OI  %. * < N .  % .%'. w.  %  %  %

{ -

me. BT d

  • 4_ e v 0* - +

gg.3

. a o, 1 r

d4 - M % A "

=

M D Q.

.. w9O e . e . e . e . e . e .

  • I al i I p .g d.' 3 I w g 3 e g

-# 4Q< 5 a i a fkI N! 2!

e o-

,,, h .,  !

- - - - - - - CONCEPT (PHASE V) naga sugg, . _ . - _

l , t a. .,,,o ac naar I.'s mv  : aa .,.,., .

, , , ,,,c. , . . , , ,, ,, , , . . , , , , , , , , , , , i ,

    • =n a.m an=o a.e an massiricuim

_n .... .... ..

cumcmaire naar enaatuin aus 3 ;y I l 0,  :

g

. f i t 1" L'

"" 5'"*" "" ""'"" "" " "

EEH *f"" " " "" "'" " dM""""5 " * "I" " " " " " " "

r 5 *.' ? " '

?

'?

"25

?

i

._ o p

c. uoe . .

E s n s A;n o t e r E l,g _ _.1 .

4 Co d 'L e e r loa L L A S 8 g q E,3 AMP.L E I '9 74$0_ 11'0 7 50 i 9 06d o._ 9 00 0- I 3 0 o I(.5.0 3

_ l i Cp NOP Y Y r I RS T t 'f -

6 7 . , 1 s e rE- 8 , 7 ,f/4 5f = 2 6 _ ,', _

__m _ .

%qN 11

.t cp nop i u s n 1 3 t e s . 09 , 2 0s ,

ff 0,85 , I o i

s. os ,

.l$ .

.d;E N D .

_ - . 4 _. . _o 8j50 _C OA,L &ME DA 1 _

t L A S _ Ejy 4MPL E 8  ; l;1 78,5 _. ( <J,6 L 50 . / 9 0  ? (00_. 2_ 5_ l _C._ l _.0.

COAT I LAS ?l8fj$

,8j5,0 3 E DA L (g)AlM PL E 8 V m 5 0_ f g

f f! 7po5;o_ 19;8 6.815 0_. .7d00_ 2_, 3_ r ._C_ 2._,o_

TahE DEPENDENT E5CalaTio e COEFFICIENil acct. as 98 aCCI.2492 ACCT.2291 aCCf. 33 te aCCI. 34 aCCf. 25 ACCT. 28 TEAR a e a e a a a e a e a e a a

. , . . . . . . , s . . . , ,, n ,. c -, . . . . , s .. . .. .. , - ... . . s,s s . .- .. ., s .,- , s

, , . , ~..

g t@nrate r

' * '  ? -

? ? ' '

? ? * ' '

1 . 05 5 s . CS $ 1 . 0 $ $ 1 . C 6S

( ) ()

l -

1 . I . C 7 i t, 7 / C / 0 7 i n 7

?. .

t asoa -

l . t' 7 I . 0 7 I . C 9 I . c 7 8 06 I 06 06

,,,,,g 1 .

1 . I .

C.b. .

I .

. n.f_ _

I . C h I .

04 8 l . 06 / 0(> I D(, I D (,

1 978 . 5 e I Cl.

. af 1 . Di> l . 1 . il l, l . ob I . of l . 04 E@nrara 8 I . Ol> .

I . 06 I . CL I . C.l, . _

9 l . 0 8. f . {8 1 . 08 f . I . C S 1 D e 1 DS gm C.A ._ .

8 1 . 0 8 f . 08 1 . 08 i . h8

  • I I 08 f

,y,,,

[h. .

. . f!\ f . c 8 I .

t; 8 f . 0 8_ f oe l . 0A l C8 f C8 D8

. . l .

l9A7 . 6 e

,- / .

I@mret ut _

- . . _ _ . ~ _ _ _ . - _ . .

Fig. 8.1. (continued)

58 and indirect costs. Only the labor component is to be adjusted through

  • the escalation data input. However, the number of cards in the input sequence must remain the same. Also, the time-dependent escalation input .

cards must follow the standard input data card for the first unit (i.e.,

the standard input data card for the second unit will be the final card in the input stream).

Example problem 7 makes use of both the NAMELIST and time-dependent escalation input features. The NAMELIST option variables have been set to call the NAMELIST input only after the costs have undergone size, time, and location adjustment (IFLAG=2). As contingency factors represent the NAMELIST input, this is perfectly acceptable. Again the effective date for escalation input data is before the steam supply order date.

Example problem 8 combines the NAMELIST and time-dependent escalation data input features in determining the capital cost of a three-unit coal-fired plant. The IFLAG variable is set to 3 so that there will be two NAMELIST calls; one before the detailed cost adjustments and one after. Because the interest is not calculated until the reference costs -

have been adjusted for size, time, and location, modifying RINT at the second NAMELIST call is acceptable. The time-dependent escalation data .

consist of two sets, one effective at 1978.5 and the second at 1982.5. This causes the escalation rates to change in 1982.5. The -1. card occurs only after all the sets are input. The NAMELIST and escalation data are used in the second and third units through the retrieval features of the ILAZ and IBS variables.

l

.\

- mi l

l i

i f * ,

59 r

I Appendix A CONTAC AUXILIARY PROGRAM

)

l 1

l

[

l

}

l i

i I

t

}

Y

61 CONTAC AUXILIARY PROGRAM Auxiliary program CONTAC is used to maintain the reference plant cost-model data file, COMO, by converting a card image cost-model data set to a single unformatted binary record. Each record is 50,148 bytes in length and contains all data relating to the cost model for a power plant type at some base location and base time. The CONTAC program can be used to create new records, update existing records, delete unwanted records, and list records that are on the updated file. Written in FORTRAN IV, CONTAC has approximately the same machine requirements as the CONCEPT program. CONTACT consists of only a main program, which exercises control over the option list. The data are entered on punched cards and are listed on the system printer. l l

Each set of data consists of about 800 cards, depending on the model.

These cost-model data sets are defined as logical unit 4 (FT04F001) in the program and are read in sequentially. Each cost model has a control card which specifies the numerical position of the record on the file and a command instruction for the program. This control card is such that a new record may be added by specifying the number of the record preceding the one to be added and the letter A. A record may be changed, deleted, or listed by specifying the desired record nu=ber and C, D, or L, respectively, on the control card.

In addition to the control card for each model, there is an overall control card read from logical unit 5 (FT05F001) that instructs the program whether a co=pletely new file is being built or whether an unfor-matted binary file already exists which is to be modified. A value of zero indicates the absence of an existing binary cost model file. A nonzero value indicates the existence of such a file. A new unformatted cost-model file is created on logical unit 9 (FT09F001) for each com-puter run regardless of the operations performed during that run.

Af ter all records have been read in and an unformatted binary file created, an output table is listed showing the new cost-model file record sequence with the appropriate plant type.

A description of the input cards is tabulated below, followed by a FORTRAN listing of the program and a listing of the cost model for a PWR

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . _ __ . _ _ - - _ , _ _ ___ _ _ _ _ . _ . _ . _ . ~ - - . _ . _ . - _ _ . . .

1 62

) '

plant. The CONTAC program uses a local subroutine to obtain the date of *-

the run in .*.8 format. CALL IDAY(DATE) is found at CONT 1210 and initializes the variable DATE to the current date. A modification to ,

reflect the specific local computer environment may have to be made to assign DATE the date-of-run.

i i

4

{ . .

r 1

l l

l l

G I

I CONTAC program input card description

, No. of cards Variable in each type Column name Description CONTAC control card read from unit FT05F001 1 1 ITAPE Input file control. Format 11 0 -- No existing binary file 1 - Existing unformatted binary file 1 #

Each CONTAC cost model card deck read from unit FT04F001 is assembled as follows:

1 1-2 IREC Cost model record number on binary file.

Format 12

, 3 DOREC Record control. Format Al

'A' Add (Use IREC number of plant preceding g one to be added)

'C' Change'

'D' Delete Use IREC number of specific model

'L' List of interest 1 1-16 TYPEl(I) Plant type and date of origin (I=1.2). Format 2A8 17-23 BWE Plant capcity, HWe, Format F7.0 24-30 YBC Year of reference case costs. Format F7.2 .

31-34 PO Fraction of time expended up to date of contruc-tion permit. Format F4.2 1 1-80 TITLE Comment card. Format 20A4 .

I l-4 NAA Number of cards to read for AA array. Format 14 5-8 NIAR4 Number of cards to read for IAR4 array.

Format I4

9-12 NIARS Number of cards to read for IAR5 array. Format I4 13-16 NCCD Neinber of cards to read for D array. Format I4 i

I

'l I r CONTAC program input card description (continued)

No. of cards Variable in each type Column name Description 17-20 IAC2 Number of cards to read for AC2 array. Format I4 1

21-24 IAC3 Number of cards to read for AC3 array. Format 14 25-28 IAC4 Number of cards to read for AC4 array. Format 14 29-32 IACS Number of cards to read for ACS array. Format I4 1 1-3 IAR1 Number of one-digit accounts. Format 13 1 1-3 IAR2(I2) Number of two-digit accounts in each one-digit 4-6 account (I2=1,5). Format 513 7-9 10-12 i 13-15 1 1-3 IAR3(13) Number of three-digit accounts in each two-digit account (13-1,15). Format 1513 43-45 NIAR4 1-3 IAR4(I4) Number of four-digit accounts in each three-digit

. account (14=1,20*NIAR4). Format 20I3 58-60 73-80 IA4D(I) Identification field. Format A8. (I=1, NIAR4)

NIAR5 1-3 IAR5(IS) Number of five-digit accounts in each four-digit

. account (15=1,20*NIARS). Format 2013 58-60 1 .

CONTAC program input card description (continued)

No. of cards Variable in each type Column name Description 73-80 IASD(1) Identification field. Format A8. (I=1,NIARS)

I l-8 Plant Type Used only for plant identification on this card 12-16 HitT Total craft labor in thousands of man-hours for direct cost accounts for reference plant.

Format 15 17-20 HllP(I) Craft labor in thousands of man-hours for each

. direct cost account (l= 1,7) . Format 714 41-44 1 1-7 COB (I) Contractor's overhead burden factor for craft o-labor in each two-digit account (I-1,11) for '"

. accounts 20-94. Format llF7.3 i

71-77 1 1-7 AEB(I) Coefficient used for reference factory equipment rate in each two-digit account.(I-1,11).

. Format IlF7.3 71-77 1 1-7 ALB(I) Coefficient used for base craft wage rate in each two-digit account (I-1,11). Format IIF7.3 t

i 71-77

CONTAC program input card description (continued)

No. of cards Variable in each type Column name Description 1 1-7 AMB(I) Coefficient used for reference site-related

. materials rate for each two-digit account

. (I=1,11). Format 11F7.3 71-77 11 1-15 AA(J,1) Size-scaling coefficients for two-digit accounts 16-30 (J-1,3, and I-1,NAA). Format 3F15.0 31-45 65-66 NAC(I) Two-digit account number (I=1,11). Format 12 73-80 AAD(1) Identification field (I-1,ll). Format AB NCCD 1-15 D(J,1) Array containing costs at lowest-level accounts @

16-30 (J-1,3 and I=1,NCCD). Format 3F15.4 31-45 64-71 IDD(I) Account number (I=1,NCCD). Format A8 73-80 IDN(I) .

Card identification field (I-1,NCCD). Format A8 50 1-6 CFCA(J,1) Array containing cash flow curves for each two-7-12 digit cost account (J-1,12 and I-1,50).

. Format 12F6.3 67-72 16 1-6 FACSl (J ,1) Weighting factors for site labor (J-1,ll and

. I-1,16). Format llF6.2 61-66 t

g . . .

  • ' o o,
  • CONTAC program input card description (continued)

No. of cards Variable in each type Column name Description 16 1-6 FACS2(J,1) Weighting factors for site material (J-1,ll and

. 1=1,16). Format IlF6.2 61-66 8 1-6 FACS3 (J, I) Weighting factors for factory equipment (J-1, ll

. and l=1,8). Format 11F6.2 61-66 IAC2 1-64 AC2(J,1) Alphabetic description of two-digit accounts (J-1,8 and I=1,IAC2). Format 8A8 ,

IAC3 "

1-64 AC3(J I) Alphabetic description of three-digit accounts (J-1,8 and I=1,IAC3). Format 8A8 IAC4 1-64 AC4 (J ,1) Alphabetic description of four-digit accounts (J=1,8 and I=1,IAC4). Format 8A8 IACS 1-64 AC5 (J ,1) Alphabetic description of five-digit accounts (J-1,8 and I-1,IACS). Format 8A8

o 68 I

C **** C0WT4C **** CONT 10  !

C ** ** PHA 5E 5**** CONT 20 C PROGRA5 TO PRODUCE A MASTER COST 50 DEL DATA SET FOR INPUT To THE CONT 30 C CONCEPT PR AS E 5 PROGRA M. CONT 40 C B Y R. J. BARNARD HAT 1975 CONT 50 .

C 50DIFIED BY : C. R. RUDSON OCTOBER 1977 CONT 60 C CAK RIDGE NATION AL LABORATORY CONT 70 C OAK RIDGE TN. 37830 CONT 80 C l====================================================================lCONT 90 C l l CONT 100 Cl NEITTE3 NITE STMBOLIC INPUT /CUTPUT ADDRESSING TO FACILITATE USE l CONT 110 C l OF THE PROGRAM QN C08PUT!PS IN GENERAL. I CONT 120 C I B EA D (5) CHANGED TO READ (INPT) l CONT 130 C1 NRIT E (6) CH ANGED TO NRITE (IQ UT) ICONT 140 Cl NOTE THAT THERE IS STILL ONE STATEMENT To READ (5) PER SE TO READ ICONT 150 Cl A CONTFOL CARD NMICH IS NOT INCLUDED AS P ART OF THE COST 50 DEL l CONT 160 C l DATA SETS ON THE CONCEPT SYSTE5 5 ASTER TAPE. THEFEF0PE, THE CONT-l CONT 170 C l R OL C A R C IS R EA D FR OM NEATETER SYSIN FILE IS NUMBERED AND THE C057 t CONT 180 C l MODELS ARE Fdon A DIRECT ACCESS DETICE STSDA PRESENTLY ASSIGNED l CONT 190 Cl TO FT0a F001 FOR UPDATING THE EFTIRE COST RCDEL LIBR AR Y. =INPT= ICONT 200 Cl M AY BE ALTERED FOR READING SINGLE CO5T 50DELS IN CARD FOR5 FROM l CONT 210 C l SYSIN A! DESIRED. NMEN USING ALL COST 50DELS FR05 THE M ASTER I CONT 220 C l CONCEPT SYSTER TAPI, THE CONTAC OLD 5 ASTER IS NOT NEEDED So A CARDICONT 230 Cl G O. FT08 F001 DD DU MET IS US ED. l CONT 240 C I l CONT 250 Cl====================================================================lCONT260 REAL*8 IAD1, IAD2, IADS, IDD (380) , IDN (3 80) , D AT E, CONT 270 1 AC2(8,12) , A C3 (8,60) , A C 4 (8,18 0) , AC5 (8,320) , B ECT AB(50) , CONT 280 1 TY PE1 (2) , FACEQP(2,8), F ACL AB (2,16 ) , FA C5 A T (2,16) , CONT 290 1 A A D (12) , Ine D (3) , IASD(9), Dan i, D 05 2, D053 CONT 300 REAL*s 773 (7) , 573 (7) , F760 (5) , M760 ( 12) , F213(m , CONT 310 1 F222 (7) , A aB (12) , A La (12) , AEB(12), D (3, 380 ) , CONT 320 1 3DLT2(12) , R ULT 3 (12) , FnT1 (22) , CONT 330 1 F 5T2 (25) , F5T 3 (27) , FnTa (26) , A 4 (3,12 ) , CFCA (12,50) , COB (12) , CONT 340 1 F ACS1 (12,16) , F ACS 2 ( 12,16) , FACS3(12,8) , TITL E (20) CONT 350 INTEGER W AC (121/1280/, HM P ( 12) /12* 0/, IAR1, IAR 2 (5) , IA R3 (15) , CONT 360 1 IAR4(6@ , I A R 5 (180) CONT 370

~

DATA ADC/'A'/, DEL ETE /' D '/, CEA NG E/' C'/, ALIST/'L'/ CONT 380 D AT A A E, AL, AR,I AD1,I AD2,I AD3/' A EB', ' ALB',' AMB', CONT 390 1'IAR1 1','IAR2 1','IAR3 1'/ CONT a00 DATA F760/ CONT a10 1 ' ( 15 ' , ' , T7, ' , ' 6 (I' , ' 2,7 2' ,8 ) ) '/ CONT 820 D AT A 5 76 0/

  • 1 (I' , ' 2 (I' , ' 3 (I' ,' a (I' , ' 5 (I' ,' 6 (I' , ' 7 (I' , CONT e30 1 ' 8 (I ', ' 9 (I', ' 10 (I' , 811 (I', 812 (I'/ CONT se0 DATA F5T1/ CONT #50 1' (12 5' ,' CO N' , ' 5T. ',' ',',8I,',' 7(I ' , ' 3,5I' , ') ,11' , ' ,a nC' , CONT e60 1 ' A R D/' , ' 13 5 ' , ' PERI' , ' 0D 0 8 , '-1. 0 ' , ' ,T10 ' , '6,6 H ' , ' NU 5 8' , ' ER/1' , CONT #70 1 ' H + ,1 ' , ' 2 0 ( 18, ' H.) /' , ' ) '/ CONT a80 DATA BUIT2/', 1(',', 2(',', 3 (' , ' , a (' , ' , 5(',', 6(',', 7 (' , CONT a90 1 ', 8 (' , ' , 9 (' , ' ,10 ( ' , 8 ,11 ( ' , ',12 ( ' / CONT 500 DATA FET2 / CONT 510 1'(1RO',',5I,','20RM','AN-N','00RS',' $IT' , ' E L A' , ' BO R/', ' 601, ' , CONT 520 1 '7 5 AC ' , 'COU N ' , ' T/5 2 ' , ' , 7 (' ,
  • I2, 7' , ' I) ,5 ' , ' NL A B ' , ' OR ,1 ' , ' 21,1 ' , CONT 530 1 ' 1RC A' ,' RD N ' , ' U5 B E' , ' R/18' , ' *,13' , ' 0 ( 1 H' , ' ) /) ' / CONT Sa0 DATA fat 3 / CONT 550 1 ' ( 18 0' , ' ,5I, ' , ' 2 0s ' , ' o rI T' , ' S SI ' , 'TE M' , ' ATER' , ' I A L/' , ' 601,' , CONT 560 CONT 570 18 7E AC 1' ',' ' , 'CO UN ' , ' T/,5

',' CARD',' ' , ,' 'TBER/'

NU M' , 7' , ,' (I 2, ' ,' ,' '71)

' 15+, , '(', ' 2 13 0 ' 18R.)

R s' , ,,/) ' AT'/E RCONT

  • , 'I A580 L' ,

DATA 50LT3 / 'I, l','I, 2','I, 3','I, s','I, 5','r, 6','I, 7', CONT 590 1 ' I , 8 ' , ' I , 9 ' , ' I ,10 ' , ' I,118 , 'I ,12 '/ CONT 600 DATA FETt/ CONT 610 1 ' ( 15 0 ' , ', 5 I, ' , ' 17 BP ' , ' ACTO' , ' R Y E ' , ' Q 7I P ' , ' = ENT' , ' /6 0 Z ' , ' ,7 E A ' , CONT 620 1 'CCOU ' , ' NT/5 8 , 'I , 7 ' , ' (I2, ' , ' 77 ) , ' , ' 11 R E' , ' Q UIP ' , ' . IT','EM,6', CONT 630

69 1 ' I,11 ' , ' HC AR' , ' D NU ' , ' 5 BE R ' , ' /1 H + ' , ' ,13 0 ' , ' ( 15_' , ' ) /) '/ CONT 640 DATA F213 / CONT 650 1 ' ( 18 ' , ' , F 10 ' , ' . 5,2 ' , ' I, 7 * , ' F8. 3 ' , ' ,710 ' , '5, A 8 ' , ') '/ CONT 660 DATA F222 / CONT 670 1'( 3 I ' , ' , 7 ( ' , ' F6.1 ' , ' , 3I) ' , ' , 2 A 8 ' , ' , 7% , ' , ' A 8 ) '/ CONT 680 DATA F73/ CONT 690 1 ' (9 5 ' , ' TO T A ' , ' t ' , ' ,6I , * , ' 6 (I 2 ', ' , eI) ' , ') '/ CONT 700 DATA 573/ CORT 110 1 ' 1(I 2 ' , '2 (I2', ' 3 (I2 ' , ' 4 (I2' ,' 5 (I2 ' , ' 6 (I2 ' ,'7 (I2 ' / CONT 720 DATA FACLAB / CONT 730 1' BUILDING',' LABOR ' , CONT 7a0 1' HEATT L A' ,'BOR '

, CONT 750 1'BRICKLAT','ERS' '

, CONT 760 1 'CA RP ENTE ' , 'R S '

, CONT 770 1'STRUCT. ' , ' IRON '

, CONT 780 1 ' PL A ST E BE' ,' RS '

, CONT 790 1' ELECT. W','ORK!RS '

, CONT 800 1' STEAM FI' ,' TTER S '

, CONT 810 1'0PER. EN ' , ' GR S. '

, , CONT 820 1'55. TRAC','. C P. '

, CONT 830 1 ' LG. TRAC','. OP. * , CONT 8a0 1 ' CR A N E OP' , ' ER S. '

, CONT 850 1' AIR CCHP' ,' . OPER S. ' , CONT 860 1' TRUCK DR 8, 'ITERS '

, CONT 870 1'50ILER n','AKERS '

, CONT 880 1'OTHER CR','AFTS * / CONT 890 DATA FACHAT / CONT 900 1'CBANNELS',' '

, CONT 910 1'I BEAMS ' , ' '

, CONT 920 1 'W FLANGE','S '

, CONT 930 1'RE-BARS ',' '

, CONT 940 1 ' R EDIM II ' , ' CO NCR ET!' , CONT 950 1'PLYFOR5 ',' '

, CONT 960 1' LUMBER ',' '

, CONT 970 1' LAND ',' '

, CONT 980 1 ' UN A SS IG N' , ' ED 8

, CONT 990 1'UNASSIGN','ED '

, CONT 1000 1' UN A SS IGW' ,' ZD '

, CONT 1010 1'UNASSIGN','ED '

, CONT 1020 i l'UNASSIGN','ED '

, CONT 1030

1 ' UN A SSIGN' ,' ZD '

, CONT 10a0 1'UNASSIGN','!D '

, CONT 1050 1 ' UN A SS IGN ' , ' ED ' / CONT 1060 D ATA F ACEQP / CON T1070 1'NOT ASSI','GNABLE e , CONT 1080 1'STEZL HI','LL PROD ' , CONT 1090 1 1' ELEC EQP' ,'T 5 SUP ' , CONT 1100 1 1'ST5 ENG 8,'S TURB ' , CONT 1110 l 1'WEITE-C08,'LLAR '

, CONT 1120 l 1'UNASSIGN','ED '

, CONT 1130 1 ' U N ASSIGN' , ' ZD '

, CONT 11a 0 1 ' UN A SSIGN' , ' ED '/ CONT 1150 C INPT = 5 CONT 1160 C IF RE ADING COST MODELS FROM CARDS BERIND DECK OR STEPLIB, US E INPT CONT 1170 C CTRERNISE READ INPUT FR05 INPT = a FOR INDIRECT DATA SOURCES. CONT 1180 INPT = a CONT 1190 IOUT = 6 CONT 1200 CALL IDAY (D A TE) CON T1210 C USE LOCAL ROUTINE OR READ DATE IN ON NEIT CARD CONT 1220 C READ (5,500) IT APE, DAT E CONT 1230 C CONT 1240 C ITAPr=0 - NO IIISTING INPUT FILE CONT 1250 C 1 - ZZISTING INPUT FILE CO N T1260 l C CONT 1270 l R E AD (5,500) ITAPE CON T1280

) IF (IT A P E. N E. 0 ) REWIND 8 CO NT1290 l

hO mNmH2O e U0mfemO0 mOmH0 a O U0aEv4 m e0 HbM40 e O U0mtemN0 e mM40 eabf mO *o e

  • Mm03 eO m= HMNO=O0MNU U0m6emM0 4

Hb *HHdhNeMOeO ee U0mHeme0 eO Hb w g aWUoNOsP.m 00 NO 00 HOeN U0mSemO0 4

mNW o w e. Hm OO e e O. U0mfemW0 v HHmNe HnO* HHtd

  • No NmUa mm Ns dWe a HMme. HCmN. HMmm= U0mEemh0 4

e Hdmo= Hdmn o UbUd* bdUM e o .

bdUM Nm bCUMM* dMa* U0m5eme0 4

v Wma. dMm o O* DUN

  • dU me uOe s a

dUm= 4Um= DO*

e U0mEemm0 4

e mmt.

  • emb* mCW+ mH4mW* mH #mm
  • m0UA= mdU. HduN= U0m6eeO0 4

r HdUm m HdUe e H4Um U0m6eee0 4

mOMHO s mOmNU + e U0mfesN0 HbMdO e e U0mEeem0 eN Hb wH= Md mNe mOMNUe U0* fO e# U0mGese0 4

Hb wO0mNpeNOed4HMt=

  • 0O HO we U0m6e4 sm0 Hb wO0mNpeMOed0O= 0O H0 06 U0mteec0 Hb wD0 mNuemMeUmWMON*4 mDe00aND*mNo OHANfNm
  • OO HO ee U0mtesh0 mOMNU 3 mOmNu t e U0mEeee0 4

HbMdG e O U0m6eam0 4

Hb *OOm NU e NQe U md MON = OO HO .ee U0m9emo0 4

uO HO e U0mEeme0 4

E ee mNUtMmwm0mNO e HMSNe*e=

eh U0m6emN0 4

HbMdU e 0 U0m5emM0 4

smMHN wem U0m4eme0 4

e HHmNe m HAOm NHtMNa >mUes maNm dWe Hdme. H4mN. Hd m m =

  • U0m6emm0 4

r Hdmo e Hdm m

  • UbUd* btUMe* bdUMNe b*UMM* 4Na* U0mtemW0 r dme. dJm* Oe DUN = dUm
  • oUm m dUm= O0=

s uOa s U0mGemh0 4

e e mmt. . mMb* mtdn mH"mm o mH4m== muUA= n4O. HduN= U0m6eme0 4

w HdUm m HdUa= HdUn U0m6eem0 4

pQ iO

  • eO U0mtewO0 eh H dOaO U0m$e@e0 4

re UOmbHnpN U0m1e@N0 Mdme s o U0mGv@M0 4

OONHg e m eeO "

U0m64 ewe 0 Hb wHepNeee HdmN wHn u O U0mErwm0 4

e Hb wH.aNe me HdmmwH= E O U0mtewW0 o

E Hb wHoaNo eOm Mdme wH= O U0mfrWh0 N MdmmwH- g O U0mteWe0 o

OOeHg e

=MO U0m64 rem 0 DO e omea- eN U0m6eho0 4

e UbUd wn.N B O*O U0mEehw0 4

f mNdOwHmAtoo mONa

  • Ne
  • m nN
  • HmU
  • hO m HHto AN U0mtehN0 o

muHtNwHDpt 4 eo mOse tHSNe

  • eh
  • odEM=tHedM
  • e e U0m6ehm0 4

mmHHNwHObs4*mOem OMe

  • man *>mU HM NUs OmNU s U0m6ehe0 4

U mMW E =pemNm Ob UdmOM Hm HmN dW dma*k U0m6ehm0 4

U mHWme p sOmmNm a 0b UdmOM Hm $mN 4 Hdm* WmmdN U0 mte o h@0 U hH4mm g aDmmNm s 0b UdmOM Hm tmN

  • Mda* WmmdN U0m6ehN0 4

U muUO g apmmNm 0b UMmuM Hm SmN 4 O d*mWH U0mEehe0 4

a U HdUN e mommNm Ob uCmOM Hm e0N dmm4> U0mHehm0 U HdUM e mpmmNm Ob ugmDM Hm d0M dmm4>

o U0m6eeo0 4

U HdUe a mpmmNm Ob uq, MOM Hm d0e dmm4> U0mteee0 o

U HdUm s aomm Ob ugmOM Hm d0m emm4> U0m6emN0 4

mNdO *H nht.

  • m e N- mMds aH4mem mH4mm mUUO* HMUN H4UM* HdUe*H4Um U0mEemm0 4

mNdO u a *meo Hdee U0m6eee0 4

mN<O wHmhH* mvma wHdaN wH. = Hg eom- U0mtemm0 mom 8 Hde N w ee UpmEeeW0 4

mDp e e adC*t e Upm6emh0 4

m Nd n w H =hge*mee- wHWmmwH.. Hsee em. U0m6eme0 4

43 C U0m6eem0 4

0O NO H g e m mH4me U0mtemO0 o

M9 4.r U0m6eee0 4

Ms W. em U0m5emN0 4

M No O "H mhte*mNOa *H4mewM..nsu e M = H4eOwN U0mEeem0 4

NO UOmtHmoN UOaErme0 4

ME O UOmEeem0

71 Do 22 I = 1,NIAPS CONT 1960 K= L+1 CONT 1970 L= K + 19 CO N T1980 P EA D (INPT,520 ) (I A R5 (J) ,J= K, L) , I A5D (I) CON T1990 22 CONTINUE CONT 2000 READ (INPT 50M 5HT, (MHP (I) ,I=1,NUM) CONT 2010 RE AD (I N PT,510) (CO B (I) ,I= 1, N A A) CONT 2020 R EAD (I N FT ,510) ( A ES (I) , I= 1, N A A) CON T2030 R EA D (INPT,510 ) ( A LB (I) ,I= 1, N A A) CON T20a 0 RYAD (INPT,510) (A 5B (I) ,I=1,NA A) CON T2050 DO 26 I = 1,N A A CONT 2060 R!A D (I N PT,52a) ( A A (J,1) , J= 1, 3) , N AC (I), AR D (I) CONT 2070 26 CONTINUE CO NT2080 NRITE (IOUT,526 ) NAA,NIARa,NIAR5,NCCD,IAC2,IAC3,IAC4,IAC5 CON T2090 vPITE (IOUT,532) BWE CONT 2100 DO 3 0 I = 1,N A A CONT 2110 WRITE (ICUT,53a) ( A A (J, I) ,J= 1, 3) , R AC (I) , A A D (I) CONT 2120 30 CONTINUE CONT 2130 F73 (5) = M73 (NUM) CONT 21a0 st ITE (IOUT,536) CON T2150 WPITE(IOUT,538) CON T2160 WRITE (ICUT, F73) (N AC (I) ,I= 1, NUa) CONT 2170 W RITE (I CUT ,5a 015HT, (MR P (I) , I= 1, N U5) CO NT2180 WRITE (IOUT,5a 2) CONT 2190 WRITE (200T,538) CONT 2200 F760(3) = 4760 (NA A) CONT 2210 VRITE(ICUT,F760) (N AC(I) ,I=1, N A A) CONT 2220 3 RITE (ICUT,5am) ( AEB(I) ,I= 1, N A A) , AZ C ON T2230 WRITE (IOUT,50s) (A LB (I) ,I= 1, N A A) , A L CO N T22a 0 WRITE (IOUT,5aal ( A MS (I) ,I=1, N A A) , A M CONT 2250 WRITE (IQUT,543) CONT 2260 WRITE (ICUT ,538) CONT 2270 WRITE (ICUT , F76 0 ) (N AC (I) , I= 1, N A A) COW T2280 WRITE (IOUT,5a 5) (COB (I) ,I= 1, N A A) CO N T2290 WR ITE (IO UT,50s) TTP!1, DAIZ, TITLE CON T2300 WRITE (IOUT,546) IAB1, IAD1 CON T2310 WRITE (ICUT,5a8) (I AR2 (I) , I= 1,5) , I A D2 COR;2320 WRITE (ICUT ,550) (IAR3(I), I= 1,15) , IAD3 CON T2330 WRITE (IoOT,552) CONT 23 0 L=0 CONT 2350 Do 32 I = 1, NIARs CONT 2360 K= L+ 1 CONT 2370 L= K + 19 CO NT2380 WRITE (IO UT,554 ) (I A R a ( J) , J= K, L) , I n aD(I) CO N T2390 32 CONTINUE CON T2a 00 WRITE (IOUT,556) CONT 2s10 L=0 CONT 2s20 DO 3 a I = 1, NIAR5 CON T2a 30 K=L *1 CON T2:40

[ L=K

  • 19 CONT 2a50 I W RITE (IO UT, 554) (IA R 5 (J) , J=K ,L) , I A5D (I) CONT 2a60 l 3a CONTINUE CONT 2s70 l N22 = 0 CON T2 a 80 N32 = 0 CON T2a 90 Na2 = 0 CONT 2500 WRIT E (ICUT ,558) IAR1 CONT 2510 WRITE (ICUT,56 8) CO N T2520 DO 40 I1 = 1,IAR1 CO N T2530 WRITE (IOUT,560) I AR 2 (I1) CO NT2 54 0 WRITE (IOUT,56 8) CONT 2550 52 = I AR2(I1) CONT 2560 IF (N2.EO.0) Go To a0 CON T2570 N21 = N22 + 1 CONT 2580 N22 = N21
  • N2 - 1 CONT 2590 Do 38 I2 = N21 N22 CONT 2600 WRITE (ICUT,562) I AR3 (I2) CONT 2610

72 UNITE (ICUT ,56 8) CONT 2620 N3 = I AR3 (I2) CON T2630 IF ( 5 3. EQ . 0) GO TO 38 CON T2 64 0 N31 = N32 + 1 CONT 2650 532 = N31 + N3 -1 CONT 2660 Do 36 I3 = N31,N32 CONT 2670 WR ITE (IOUT,564 ) I AB 8 (I 3) CON T2680 WR ITE (IO UT,56 8) CO N T2690 Na = I AR4(I3) CONT 2700 IF (54.20 0) GO TO 36 CONT 2710 Ns1 = Na2 + 1 CO NT2720 Na2 = not + Na - 1 CONT 2730 WRITE (IOUT,566) (IA R 5 (I4) ,I a = Ne i , Na 2) CO N T27a 0 WRITE (IOUT,56 8) CON T2750 ERITE (ICUT ,570) CONT 2760 36 CONTINUE CONT 2770 38 CONTINUE CON T2780 40 CONTINUE CONT 2790 WRITE (IOUT,572) CONTI800 W= 51 CONT 2810 Do a 6 I = 1,5CCD CO*4T2820 R EA D (INPT,574 ) (D (J,I) ,J= 1,3) , ID D (I) ,IDN (I) CON T2830 IF (N . LE. 5 0) GO To es CON T28a 0 WRITE (IO UT,50 s) TYP!1, D A TE, TITLE CONT 2850 BRITE(ICUT,576) CONT 2860 N= 1 CO N T2870 as WRITE (IOUT,578) (D (J,I) ,J=1,3) ,IDD (I) ,ID N(I) CONT 2880 N=M +1 CONT 2890 a6 CONTINUE CONT 2900 W WITE (IOUT,50s ) TYPE 1, DATE, TITLE CONT 2910 WRITE (Io0T,580) P0 CONT 2920 FsT1(6) = M760(NA A) CONT 2930 -

WPITE (IO UT, F3T1) (N AC (I) ,I=1, N A A ) CONT 2940 .

F213 (a) = NULT3 (N A A) CONT 2950 DO 8 8 I = 1,50 CONT 2960 R E A D (INPT,582) (C FCA (J ,I) , J= 1, NU 31) , DU52 CON T2970 WRITE (IO UT, F213) (CFC4 (J,I) , J= 1, NUM 1) , D052 CON T2980 -

48 CONTINUE CONT 2990 WRITE (ICUT,50s) TY P E1, D A TE, TITLE CONT 3000 F5T2 (13) = EULT2 (N A A) CONT 3010 WRITE (IOUT,FMT2) (N AC (I) /I= 1, N A A) CONT 3020 F222(2) = N ULT 2 (NA A) CONT 3030 Do 50 I = 1,16 CONT 30eo READ (INPT,588) (F ACS 1 (J, I) , J= 1, N A A) , DU53 CONT 3050 WRITE (ICUT, F222) (FACS 1 (J , I) ,Jm 1, N A A) , ( F A CL A 8 (J ,I) ,J = 1,2) ,D U53 CONT 3060 50 CONTINUE CO NT3070 F5T3(13) = H ULT 3 (N A A ) CONT 3080 WRITE (IOUT,75T3) (N AC (I) ,I=1, N A A) CONT 3090 DO 52 I = 1,16 CONT 3100 EZ A D (INPT ,58a ) (F AC3 2 (J,I) ,J= 1, N A A) , DUM 3 CONT 3110 WRITE (IOUT,F222) (FACS 2 (J,I) , Js 1, N A A) , ( F A CM AT(J,I) ,J= 1,2) ,3 053 CONT 3120 52 CONTINUE CONT 3130 FMT e (12) = BULT3 (N AA) CONT 3140 WRITE (ICUT, F MTu) (N AC (I) , I= 1, N A A) CONT 3150 DO 53 I=1,8 CONT 3160 R EA D (INPT,588 ) (FAC5 3 (J,I) , J= 1, N A A) , DUs 3 CONT 3170 WRITE (IO UT, F222) (FAC 53 (J,I) ,J=1, NA A) ,(F A CEQP(J,I) ,Ja 1,2) ,DUM3 CONT 3180 53 CONTINUE CONT 3190 WRITE (ICUT,5 Cal TYPE 1, DATE, TITLE CONT 3200 WRITE (IOUT ,586 ) CONT 3210 Do 5a I = 1,IAC2 CONT 3220 R EA D (INPT,58 8) ( AC2 (J,I) ,J=1,8) , DUM1, DU52 CONT 3230 W RITT (IOUT,590) (AC2 (J ,I) ,J=1,9) , D U 51, D U52 CO N T3240 5a CONTINUE CONT 3250 N= 51 CONT 3260 DO 58 I = 1,IAC3 CONT 3270

73 l

IF (N.LE.50) GO TO 56 CONT 3280 WRITE (ICUT,50s) TYP!1, DATE, TITLE CONT 3290 WRITE (ICUT,59 2) CONT 3300 3= 1 CO NT3310 56 R EAD(INPT,588) ( AC3 (J,I) ,J=1,8) , DUM1, DUs2 CONT 3320 WRITE (IOUT,590) (AC3 (J ,I) ,J=1,8 ) , DU51, DOS 2 CONT 3330 N= N+1 CONT 33s0 58 CONTINUE CONT 3350 W = 51 CONT 3360 DO 62 I = 1,IACs CONT 3370 IF (N.LE.50) Go TO 60 CONT 3380 WEITE(IOUT,500) TY P E1, DATE, TITLE CONT 3390 l WRIT! (ICUT ,594 ) CONT 3000 N= 1 CONT 3810 60 READ (INPT,588) ( Aca (J,I) ,J 1,8) , Dant , DUH2 CONT 3a20 W RIT E (10 UT,590) (Aca (J,I) ,J 1,8) , D 0 51, DU n2 CONT 3a30 5= N+ 1 CONT 3as0 62 CONTINUE CONT 3s50 N = 51 CONT 3060 DO 66 I = 1,IAC5 CONT 3s70 IF (N.LE.50) Go TO 6a C04T3a80 WRITE (IOUT,500) TY PE1, DATE. TITLE CONT 3s90 WRITE (ICUT,596 ) CONT 3500 5= 1 CONT 3510 6a READ (INPT,588) ( AC5 (J ,I) ,J=1,8) , DUni, DUs2 CON T3 520 l WRITE (IOUT,590) ( AC5 (J ,I) ,J=1,8) , DU 51, DUM2 CONT 3530 N= N* 1 CONT 35a0 66 CONTINUE CONT 3550 77 CONTINUE CON T3560 IF (IFL AG. !Q .1) RECTAB (NORIC) = TYP!1(1)

CON T3 570 T RITE ( 9) CONT 3580 1 TYPE 1, IDD, TITL E, YBC, BW E, AA, IAR1, IAR2, IAR3, CONT 3590 1 IARa, IARS, CFCA, FA CS 1, FACS2, FACS3, A!B, CO NT3600 1 A38, ALB, D, AC2, AC3, ACs, ACS, Po, COB, CONT 3610 1 5HT, 5HP, NAA, NIApa, NI A RS, NCCD, NAC, IAC2, CONT 3620 1 IAC3, IACs, IACS CONT 3630 IF (DO REC. EC. ADD. AND. I TL AG. EQ.1) GO TO 17 CONT 36a0 NOREC = NOSEC + 1 CONT 3650 IF (IFLAG.EQ.0) R ECT A B (NOREC)

  • TYPE 1(1) CONT 3660 GO TO 8 CONT 3670 68 CONTINUE CONT 3680 BRITE(IOUT,50s) TY PE1, D AT E, TITLE CONT 3690 WRITE (IOUT,506) TYPE 1,2W E,IBC,IR EC, DOREC CONT 3700 WR ITE (IOUT,526) N A A,NI ara,NI ARS, NCCD,IAC2,I AC3,I Act,IACS CONT 3710 NUM = I AR2 (1) CON T372 0 NU51 = NAA +1 CONT 3730 WRITE (ICUT,532) BW E CONT 37s0 l DO 72 I= 1,NAA CON T3750 l

WR ITE (IOUT,535 ) ( A A (J ,I) , J= 1, 3) , N A C (I) , I CON T3760 72 CONTINUE CONT 3770 F73 ( 5) = 573 (N05) CONT 3780 WRITE (IOUT,5 3 6) CONT 3790 W RITE (ICUT ,5 38 ) CO NT3800 WRITE (IOUT, F73) (N AC (I) ,I= 1, NU 5) CONT 3810 W RITE (IOUT,50 0) 5HT, (MR P (I) ,I= 1, NU5) CONT 3820 BRITE(IOUT,5a2) CONT 3830 WRITE (ICUT,538) CONT 3840 l- F760 (3 ) = 5760 (N A A) CONT 3850 TR ITE (IOUT, F76 0) (N AC (I) ,I= 1, N A A) CONT 3860 l WRITE (IOUT,5ss) (AEB (I) ,I=1,N A A) , AE CONT 3870 l WRITE (IOUT,5an) (ALB (I) ,I=1,N A A) , AL CONT 3880 l WRITE (ICUT,5ta) ( AMB (I) ,Is 1, N A A) , A5 CONT 3890 WRIT! (IOUT ,5a 3) CONT 3900 WR ITE (IOUT,538 ) CONT 3910 BRITE (IOUT, F76 0) (N AC (I) ,I=1, N A A) CONT 3920 WRIT E (IOUT,5a 5) (COB (I) ,I=1,5 A A ) CON T3930

. a l

74 {

WRITE (ICUT ,50 s) TT P!1, D AT E,TITL E CONT 3980 WRITE (ICUT,5a6) IAR1,IAD1 CONT 3950 i

t WRITE (IOUT,5a s) (IA R 2 (I) , I= 1,5) ,I AD 2 CONT 3960 WRITE (IOUT,550) (IA R 3 (I) , I=1,15) ,I AD3 CONT 3970 WRITE (IO UT,552) CONT 3980 L=0 CONT 3990 DO 74 I = 1, rI ARE CONT 4000 K=L+1 CON T8010 L=K + 19 CONT 4020 W RITE (IOUT,555) (IAR4 (J) ,J= K, L) , I CONT 4030 7a CONTINUE CONTuo40 WRITE (ICUT,556) CON Te 050 L=0 CON Ts 060 DO 76 I = 1,NIAR5 CONT 4070 K= L*1 CONT 4080

. L = K + 19 CO N T4 093 NRITE (IOUT,555) (I A R5 (J) , Ja K, L) ,I CO NIu 100 76 CONTINUE CONTE 110 522 = 0 CONTE 120 532 = 0 CONT 4130 Na2 = 0 CO N Te 1a 0 WPITE (IOUT,558) IAR1 CONTS150 WRITE (IOUT,568) CON Te 160 DO 82 Il = 1,I AR1 CONT 4170 WRITE (ICUT,560) IAR2(I1) CO N Te 180 WRITE (IOUT,568) CONTs190 N2 = IAR2(I1) CONTs200 IF (N 2. EQ. 0) GO TO 82 CONTE 210 N21 = N22 + 1 CONTt220 F22 = N21

  • N2 - 1 CONTs 230 DO 80 I2 = N21,N22 CONTt240 ER ITE (IOUT,562) IA R 3 (I2) CONTE 250 WRITE (ICUT,568) CONT 4260 N3 = I AR3 (I2) CONT 4270 IF ( 53. E C. 0) GO TO 80 CON Tu 280 N31 = N32 + 1 CO N Tu 290 5 32 = N 31 + N 3 - 1 CONTE 300 -

Do 78 I3 = N31, N32 CONTs310 WRITE (ICUT,56a) I A34 (I3) CONT 8320 WRITE (ICUT,56 8 ) CONTs330 W8 = IARa (I3) CONIt380 IF ( N 4. ZQ. 0) GO TO 78 CONT 4350 N#1 = N42 + 1 CONT 4360 Ws2 = Nat + We - 1 CONTE 370 WRITE (ICUT,566 ) (I A R5 (I4) , Ia=N a t,N a 2) CO N Ts 380 WRITE (IOUT,568) CONTu390 WRITE (IOUT,570) CONTES 00 78 COWTIN CE CONTs410 80 CONTINUE CONTt420 82 CONTINCE CONTE #30 WRITE (IOUT,572) CON Tema 0 N=51 CONT 4450 DO 84 I = 1,NCCD CONTae60 IF (N.LE.50) GO To 83 CONTES 70 WRITE (IccT ,508) TIPE1, D AT E, TITLE CO N Te a 80 WRITE (IOUT,576 ) CON Tus 90 N=1 CONTE 500 83 WRITE (ICUT,598) (D (J , I) ,J= 1, 3) , IDD (I) , I CONTE 510 .

W= 5+ 1 CON T2520 84 CONTIN UE CON Te 530 WRITE (IO UT,50s) TYPE 1, D A TE, TITLE CONTE 5a0 W RITE (IOUT,5 80) Po CONTE 550 F5T1(6) =

5760 (N A A) CONT 4560 WRITE (ICUT,F ET11 (N AC(I) ,I=1, N A A) CO N Tu S70 F213 (4) = 3 CLT3 (N A A) CO N Tu S80 DO 86 I = 1,50 CONTE 590

75 WRITE (ICUT ,7213) (CFC A (J,I) ,J=1, NU51) CONT 4600 86 CONTINUE CONTE 610 W RITE (IOUT,50s) TYPZ1, DATE, TITLE -

CO N Tu620 FsT2(13) = RULT2 (N AA) CONTt630 WRITE (IOUT, FMT2) (N AC (I) ,2=1, N A A) CONT 4640 F222 (2) = CONTE 650 50LT 2 (N A A)

DO 8 8 I = 1,16 CONTa660 WRITE (IO UT,F222)' (FACS 1 (J ,I) , Ja 1, NA A) , ( FA CL AB (J,I) ,J=1,2) CO NTe 670 88 CONTINUE CONT 4680

  • FsT3 (13) = EULT3 (N A A) CONT 4690 WRITE (ICUT, F sT3) (N AC (I) ,I= 1, N A A) CONTE 700 DO 90 I = 1,16 CONTE 710 WRITE (IOUT,F222) (FAC S2 (J,I) ,Js1, N A A) ,(FA CHAT (J,I) ,J= 1,2) CONTs720 90 CONTINUE CONTu730 FMTR (12) = SULT3 (N A A) CONTa7a0 WRITE (ICUT, F 5TB) (N AC (I) ,I= 1, N A A) CONTu 750 DO 91 I=1,8 CONTs760 WR ITE (IO UT, F222) (FAC S3 (J ,I) ,J=1, NA A) ,(F ACEQP(J,I) ,J= 1,2) CONT 4770 91 CONTINUE CONTs780 WRITE (ICUT,500) TYPE 1, DATE, TITLE CONT 4790 WPITE(ICUT,586) CON Tn 800 DO 92 I = 1,I AC2 CONTE 810 WFITE (IO UT,600) (AC2 (J,I) ,J=1,8) , I CONTu820 92 CONTINUE CONT 4830 5 = 51 CONTR840 DO 96 I = 1,I AC3 CONTE 850 IF (N .LE.5 0 ) Go To go CONTu860 WRITE (IO UT,50s) TYPE 1, D A TT , TITLE CONT 4870 WPITE (ICUT ,59 2) CONT 4880 N= 1 CON;a 890 9e WPITE (ICUT,602) ( AC3 (J,I) , J=1,8) , I CCNTG900 N= N*1 CONT 4910 96 CONTINUE CONTE 920 N = 51 CONTs930 D0 100 I = 1,IACE CONTE 940 IF (N . L E. 5 0) CO TO 98 CONT 4950

- WRITE (ICUT ,50 s) TYPE 1, DATE, TITLE CONT 4960 NRITE (ICUT,59a) CON Te 970 N= 1 CO NTs 980 98 WRITE (100T,604) ( AC4 (J ,I) ,J=1,8) , I CONTs990 N= N +1 CONT 5000 100 CONTINUE CON T5010 N=51 CONT 5020 D0 102 I=1,IAC5 CONT 5030 IF [N . L E. 5 01 GO TO 101 CONT 50u0 WRITE (2007,504) TYPE 1, DATE, TITLE CONT 5050 WRITE (ICUT ,596 ) CON T5060 N=1 CO N T5070 101 WRITE (IOUT,606) (AC5 (J,I) , J=1,8) , I CONT 5080 N= N +1 CONT 5090 102 CONTINUE CONT 5100 R FCT A3 (NO R EC) = TYPE 1(1) CONTS110 IFL A G = 0 CONT 5120 WRITE ( 9) CONT 5130 1 TYP!1, IDD, TITL E, T B C, BW E, AA, IAR1, IAR2, IAR3, CONT 5140 1 IARe, IAR5, CFCA, FACS1, FACS 2, FACS3, AEB, CONT 5150 1 AMB, ALB, D, AC2, AC 3, ACs, ACS, Po, COB, CONI 5160 1 HRT, ENP, NAA, NIARE, NI ARS, NCCD, NAC, IAC2, CONT 5170 1 IAC3, IAC4, IACS CONT 5180 GOTO8 CONT 5190 103 IF (IT A f!. !Q. 0) GO TO 110 CONT 5200 l IF (IFLAG.!Q.1) GO TO 108 CONT 5210 106 READ (8,!ND=110) CONT 5220 1 TYPI1, IDD, TITLE, T3 C , BWE, AA, IAR1, IAR2, IAR3, CONT 5230 1 IARe, IARS, CFCA, FACS1, FACS2, FACS3, AEB, CONT 52a0 1 A5B, ALB, D, AC2, AC3, ACs, ACS, PC, COB, CON T5250 l

76 1 MHT, MEP, NAA, NIARa, NI A P 5, NCCD, NAC, IAC2, CO N T5260 .;

1 I AC 3, IAC#, IACS CONT 5270 l NOREC = NOREC + 1 CONT 5280 108 BECTA B ( NOR EC) = TYP!1(1) CONT 5290 WRITE (9) CO N T5300 1 TYPE 1, IDD, TITL!, YBC, B U E, AA, IAR1, IA P 2, IA R 3, I AR B, CO NT5310 1 IAR5, CFCA, FACS1, FACS2, FACS3, A E B, CONT 5320 1 A58, ALB, D, AC2, AC3, AC4, A C5, PC, COB, CONT 5330 1 RMT, MMP, WAA, NIARs, NIAR5, NCCD, NAC, IAC2, IAC3, CONT 5340 1 IACs, IACS CO N T5350 00 To 106 CO NT5360 110 END FILE 9 CONT 5370 REWIND 9 CONT 5380 I=1 CONT 5390 WRITE (ICOT,608)

CON T5a 00 112 READ (9,IND=118) CON T5a10 1 TYPE 1, IDD, TITLE, TB C , SWE, AA, I A R1, IAR2, IAR3, CONT 5a20 1 I A R 4, IAR5, CPCA, F A CS 1', FACS2, FACS3, AEB, AMB, CONT 5430 1 ALB, D, AC2, AC3, A cu , ACS, PD, COS, MMT, CONT 5eso 1 3MP, N A A, NIARs, NIARS, NCCD, NAC, IAC2, CO N T5a50 1 IAC3, IACE, IAC5 CO N T5a60 WR ITE (IO UT,610) I, TIP!1 (1) , TYPE 1 (2) , (TITLE (J) ,J= 1,20) CONT 5470 I=I+1 CONT 5480 GO To 112 CONT 5e90 11e STOP CON T5500 C USE THE NEIT FORM AT IF D ATE IS READ IN FROM UNIT 5 CONT 5510 C500 FORM AT(I1,3I, A S) CONT 5520 500 FORsAT(I1) CONT 5530 501 FORMAT (I2,41)

CO N T55a 0 502 FORM AT (2 A8, F7. 0,F7. 2,F#. 2/20 A G) CO NT5550 50s FORM AT (' 1' ,301, A 8,2I, A 8,10%,' D A T? ' , A8/'0 ',2 0 Aal CONT 5560 506 FORM AT('O C 0 S T 50DE L DE5CRIPTION '/ CONT 5570 180 POWER PLANT TYPE ,= ' A8,5%,' DATE MODIFIED = ,' A8,51, CONT 5580 1' B A SE 50D EL MUE = ', F6.0,5%, ' T E AR BASE MODEL COSTS = ',F9.2/

CO N T5590 1'0 RECORD No. = ',I2,8 FU NCTION = ,' All CONT 5600 508 FORM AT (11I,I5,7It) CONT 5610 510 FORM AT (11F7.3) CONT 5620 512 FORMAT (8It) CONT 5630 518 FOR 5 AT (15I3) CONT 5640 520 FORM AT (20I3,12I, A8) CON T5650 52s FORM AT(3F15.0,T65,I2,T73, A8) CONT 5660 526 FORM AT ('0 INDICES FOR ARRAYS: AA IARE IAR5 NCCD ICONT5670 1AC2 IAC3 IAca IAC5'/' ' , T21,8(I81/1 CO N T5680 532 FORM AT ('OTABLE A A CONT AINS CO NST A NTS FOR THE EQUATION'/ CONT 5690 1 ' 0' ,101, ' T = A + B * (I / B ASE) **C'/ CONT 5700 1

1 '

'09 RICH DESCRIBES THE COST (IN THOUS ANDS OF DOLLA RS) '/ CONT 5710 LESS CONTINCENCY OF ZACM 2-DIGIT ACCOUNT AS A FUNCTION'/

1 ' 0F PCUER LEVEL EAS E SITE = ' ,F7.2/

CONT 5720 CON T5730 1 ' O' ,11I,' A ' ,1 s t ,' B ' , t er , 'C',151, ' ACCOUN T ',8I, ' CAR D N U3B ER ' / CONT 57a0 1 '+' , 8 4 (',') ) CONT 5750 53a FORMAT (' ',3F15.e,15%,I2,5%,A8) CONT 5760 535 FORMAT (' ' ,3 F15. a ,15 %, I2,151, I2) CONT 5770 536 FORM AT ('O THOUS ANDS OF M AN/ HOURS IN EACH 2-DIGIT DIR ECT COST ' CONT 5780 1' ACCOUNT'/) CON T5790 538 FORMAT (* ' ,74 0, ' ACCO UN T'/' + ' ,10 0 (', ') ) CONT 5800 540 FOR5 AT ('0',I5,T12,7I6, T73,' 5A NMOURS' //) CON T5810 542 FOR5AT('O COEFFICIENTS USED FOR CALCULATING BASE R ATE A ND ESCA LATCONT5820 1 TO N' ) CONT 5830 .

Sa3 r085 AT(/'OCONTRACTORS OVERMEAD BURDEN ( FR ACTIO N I5PLICIT IN ' CONT 5840 l' D- ARR AY L ABOR ACCOUNTS)') CO NT5850 San FORM AT ('O',11F9.3,T103, Ae) CONT 5860 5a5 FOR M AT ('O ',11F9. 3) CONT 5870 Sa6 FORB AT ('0I AR1 DESCRIBES THE NU5B ER OF 1 DIGIT ACCOUNTS', 15%, CO N T5880 1 ' CARD NUSBER'/ ' + ' ,7 3 ('_ ') / ' 0 ', I 3, 5 9%, A 8 /) CO N T589G 548 FOR5 AT('0I AR2 DESCRIB ES T53 N05BER OF 2 DIGIT ACCOUNTS', 15I, CONT 5900 1 'CA RD NUM B ER '/ ' +',7 3 (',') /' 0' ,5I3,a 7I, A 8/) CONT 5910

77 550 FOR5 AT('0I AR3 DESCRIBES iHE NU5BER OF 3 DIGIT ACCOUNTS', 15I, C0pT5920 1 ' CARD BU 5 B ER '/' + ',7 3 (' _') / ' 0 ',15I3,17%,4 8/) CON T5930 552 FOR 5 AT ('0I ARG DESCRIBES THE NU5BER Or a DIGIT ACCOUNTS', 152, CONT 5940 1 ' CA R D NUM B!R ' / ' * ' ,73 (' ') ) CONT 5950 554 FOR5AT(' ',20I3,21,A8) CONT 5960 555 FORM AT(' ' ,20 I3,7% , I 2) CONT 5970 556 FORM AT ('0I AR5 DESCRIBES THE NU5BER OF 5 DIGIT A: COUNTS', 15I, CO NT5980 1 ' C ARD NUMB ER'/ ' + ',7 3 (8_') ) CO N T5990 558 FORM AT (' 0' ,30I,' ACCO UNT I NDICES * /'+ ' ,120 ( '_') /' lIAR1 1 IAR2 l CONT 6000 1IAR3 I IARE l IA R 5 ' ,7 91,

  • l ' /' + ' ,120 (' _' ) /' ' , I3/ ' + ',7 (' _') ) CONT 6010 560 FORM AT (10I,I3/'+ ',6I,10 ('_')) CONT 6020 562 FOR M AT (19I,I3/' + ' ,15I,10 (' ') ) CO NT6030 56u FOR 5 4T (28I,I3/' + ' ,2s t ,10 ('_') ) CONT 60a 0 566 FORMAT (37I,40I2) CONT 6050 5 68 FOR 5 AT ( ' + 1 ' ,5 I, ' t ' ,81, ' t ' ,8I, ' I ' , 8I, ' I ' , 8 5I, ' l ') CONT 6060 570 FORM AT (' +' ,33I,87 ('_') ) CONT 6070 572 FORM AT (' +' ,120 ('_')) CO NT6 080 574 FO RM A T (3F15. 0,T64, A 8,12, A 8) CONT 6090 576 FORM AT('0D-ARR AY SPLITS B ASE COST INTO LOUEST LEYEL COST C05PONENTCONT6100 13 (THOUS AFDS OF DOLL ARS) '/'O', T9,' T FACTORT',T2a,'! SITE ' , Ta 0, CONI 6110 1 '! SITE' ,T75,' C ARD'/1I,T11, ' COST ',T2 5, 'L A BOR ',T39, ' 5 A TER IA L' , CONT 6120 1T6 3, ' ACCO UN T' ,T7 4, ' N U5B ER '/' + ',8 6 (', ') //) CONT 6130 578 FORMAT (' ',3F15.e,T64,2A8) CONT 61a0 5 60 FOR M AT ('0 ',T30,'CU 5UL ATITE CO NST ANT DOLL AR CASM FLOW'/' ',!20, CONT 6150 1'?RACTICN OF TOT AL CONSTRUCTION PERIOD EIPENDED UP TO RECIPIT OF CCONT6160 10NSTRUCTION PERMIT = ' ,F5.2/'0 FRACTION OF ' ,T60,' ACCOUNT') CONT 6170 582 FORM AT (12F6.3, A 8) CONT 6180 See FOR5 AT(11(76.2) ,6I,4 8) CONT 6190 Se6 FORM AT('0 AC2 DESCRIBES THE 2-DIGIT ACCOUNT NUMBERS AND ALPH ABETIC CONT 6200 1 ACCOUNT INFL3MATION'/'0 ACC No ALPRABETIC IN FOR5 ATION',3 9I, CON T6210 1' CARD NUM B ER '/ ' + ' ,8 0 (' _') /) CON T6220 588 FORM AT(1048) CONT 6230 590 FORMAT (' ',10A8) CONT 6200 592 FOR5 AT('0 AC3 DESCRIBES THE 3-DIGIT ACCOUNT NUMBERS AND ALPH ABETIC CONT 6250 1 ACCOU NT INFORM ATION'/'01CC NO ALP H AB ETIC IN FO R M A TIO N ' ,3 9 %, CO N T6260 1 ' CA R D NUMB ER'/' + ' ,80 (',') /) CON T6270 594 FORE AT (8 0 AC4 DESCRIBES THE 4-DIGIT ACCOUNT NUMBERS AND ALPH ABETIC CONT 6280 1 ACCOUNT IN FORM ATION'/' 0ACC No ALPR ABETIC INFOR5ATION',39I, CONT 6290 1' CARD IU BB ER '/ ' + ' ,80 (',') /) CONT 6300 596 FORM AT ('0 ACS DESCRIBES THE 5-DIGIT ACCOUNT NU5BEa5 AND ALPH ABETIC CONI 6310 1 ACCOUNT IN FORM ATION'/'0 ACC No ALPH AB E!IC IN FOR5 ATIO N ',3 91, CONI 6320 1' CARD NUM B ER' /' + ' ,8 0 (',') /) CONT 6330 598 FORM AT (' ' ,3F15. e ,15I, A 8,5I, ' D ' ,11,I3) CONT 63a0 600 FORMAT (' ' ,8 A8,6% ,' AC2',22,I3) CONT 6350 602 FORM AT (' '

,8 A8,61, ' AC3 ',21, I3) CO NT6360

[ 60s FOR5 AT (' ' ,8 A S ,61,' AC G ' ,21,I3) CONT 6370 i 606 FORM AT(' ' ,8 A 8,6I,' AC 5 ' ,21,I3 ) CONT 6380 l 608 FORM AT ('1N EN H ASTER LIST') CONT 6390 l 610 FOR MAT ('O RECORD No ',I2,' IS PL ANT TYPE ' ,218,2I,2044) CONT 6000 t END CO NT6410 l

t

1 78 01A P VR5ET 05-02-78 1139.1976.500.250.0 '

PWP8ET H0 DEL FOR CONTACT 5 / CONCEPT 5 11 3 8 369 11 52 161 30 6 2 IAR1 1 7 4 IAR2 1 2 7 9 6 6 a 2 a 3 a 5 IAR3 1 0 0 3 2 2 2 2 2 1a 2 2 1 a 3 3 7 5 3 5 5 IAme 1 4 6 3 2 2 3 2 5 3 5 1 4 2 6 4 1 2 3 a 1 IARs 2 5 a e a 6 a a IARs 3 7 5 1 2 3 2 5 2 a 2 a 2 3 2 2 2 2 2 1 2 IAR5 1 2 2 2 1 1 2 1 1 0 a 1 5 6 6 7 5 8 1 2 3 IAR5 2 1 # 1 6 2 1 2 3 4 6 0 7 3 0 3 0 3 2 1 6 IA85 3 2 5 1 7 1 1 0 0 5 e 6 2 1 7 0 0 5 1 0 0 IAR5 e 3 2 3 2 3 3 3 2 2 2 0 0 0 0 2 0 0 1 2 0 IAR5 5 0 0 e 2 3 8 2 2 2 1 2 1 1 5 1 2 2 2 1 e IAR5 6 3 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IAR5 7 0 0 0 0 0 0 0 0 0 0 0 0 2 IAR5 8 P vastT 10819 0 4716214618271450 308 372 0 0 0 0 0 0 0 0 0 0 0 C08 179.6 179.6 179.6 179.6 179.6 179.6 179.6 179.6 17s.8 174.8 174.8 AEB 11.809 11.809 12.940 12.773 12.272 12.863 12.314 12.68 13. 24 13.2s 13.24 ALB 1000. 20.58 20.58 20.58 20.58 20.58 20.58 20.50 20. 58 20. 58 20.58 A38 1.00000 0.0 0.0 20 AA 1 0.0 1.00000 0.50000 21 AA 2 0.0 1.00000 0.60000 22 AA 3 0.0 1.00000 0.80000 23 AA 4 0.0 1.00000 0.40000 24 AA 5 0.0 1.00000 0.30000 25 AA 6 0.0 1.00000 0.80000 26 AA 7 0.0 1. 0 0.a28 91 AA 8 0.0 1.0 0.208 92 AA 9 -

0.0 1.0 0.406 93 AA 10 0.0 1.0 0. a 9a AA 11 O. O. 2000. 20 1. D 1

0. O. O. 20 2. D 2
0. 155. 211 211.11 D 3 O. 170. 509, 211.12 D a
0. Sa. 59. 211.1a D 5 169. 94 67. 211.15 D 6
0. 178. a87. 211.16 D 7
0. 258. 210. 211.17 D 8
0. 63. 104 211.19 D 9
0. 10. 13. 211.41 D 10
0. 5. 12. 211.a2 D 11
0. 775. 817. 211.83 D 12
0. 1s. 22. 211.45 D 13
0. a. 3. 211.46 D 14
0. 2730. 208a. 211.71 D 15
0. 1250. 1029. 212.13 D 16 1300. 17305. 12308. 212.1e D 17 1a52. 6s8. 151, 212.22 D 18
0. 72. 7s. 212.2a D 19
50. 29. 7. 212.25 D 20
0. 1169. 721. 213.13 D 21
0. 282s. 5582. 213.1a D 22 122. 216, 51. -

213.21 D 23 253. 183. 27. 213.22 D 2a 78 146. 20. 213.23 D 25

0. 258. 126, 213.24 D 26
50. 23. 2. 213.25 D 27
0. 338. 197. 215.13 D 28
0. 3808. 2301. 215.14 D 29

79 24 61. 11. 215.21 D 30 55s. 688. 205. 215.22 D 31

3. 19. 5. 215.23 D 32
0. 156. 81. 215.2s D 33
0. 206. 179. 216.13 D 34

. O. s i31. 2367 216.1a D 35

23. e5. 8. 216.21 D 36 98 253. 98. 216.22 D 37
0. 18s. 100. 216.24 D 38
50. 23, 2. 216.25 D 39
0. 957. 666. 217.13 D 40
0. 1855. 832. 217.14 D 41
22. a 3. 8. 217.21' D 42 306. 96. 30. 217.22 D m3
0. 52. 25. 217.24 D sa
0. e454 2567. 218A.1 D 45 755. 1112. 311.
  • 218A.2 D 46
0. 1170. 1a98 2188.1 D a7 517. 1152. 301 2188.2 D a8
0. 101. 72. 218D.1 D 49
17. 2a. 6. 218D.2 D 50
0. 1a35. 532. 218E.1 D 51
22. es. 1s. 218E.2 D 52
0. 339. 142. 218F.1 D 53
2. 17. 9. 218F.2 D 54
3. 5. 3. 218G.2 D 55 O. 145. 112. 2185.1 D 56
10. 23. 10. , 218R.2 D 57
0. 1872. 1010. 218J.1 D 58
7. 29. 13. 218J.2 D 59
0. 177. 76. 218K.1 D 60
0. 20. 11. 218K.2 D 61
0. 57. as. 2188.1 D 62
0. 3. 3. 2185.2 D 63
0. 102. 32. 218P.1 D 64
0. 78. 33. 2185.1 D 65 O. 2213. 1091. 218?.1 D 66
25. 8. 1. 218T.2 D 67
0. 102. 43. 2187.1 D 68 65000. O. O. 220A.1 D 69 C. O. O. 2208. D 70 t' a75. 33. 3. 221.11 D 71 O. 763. 86. 221.12 D 72
0. 183. 19. 221.13 D 73
0. O. 1800. 221.14 D 74
0. 168. 38. 221.21 D 75 l 775. 379. 34 222.11 D 76 735. 363a. 397. 222.12 D 77 1850. 777. 82. 222.13 D 78 100. 81. 8. 222.14 D 79 a90, so. s. 222.15 D 80
0. 26. 2. 223.11 D B1
0. 13. 1. 223.12 D 82 625. 1707 189. 223.15 D 83 l 8. O. O. 223.16 D 8e
20. O. O. 223.17 D 85 l 26. 2. O. 223.18 D 86
15. 30. 3. 223.31 D 87
0. 161. 231. 223.33 D 88 569. 1803. 248. 223.35 D 89 178. O. O. 223.36 D 90
22. O. O. 223.37 D 91 54 5. O. 223.38 D 92 150. 33. 3. 223.41 D 93 151. 13. 1. 223.42 D 94
86. 3. O. 223.a3 D 95

80 799. 2092. 216. 223.e5 D 96 563. 3. C. 223.46 D 97 27 O. O. 223.a7 D 98

36. 4. C. 223.48 D 99
20. 39. s. 223.55 0 100
7. O. C. 223.56 D 101
2. O. O. 223.57 0 102
10. 1. O. 223.58 D 103 750. 52. 5. 223.59 D 10s 70s. S a 3. 118. 22a.11 D 105 705. 40. a. 224.12 D 106 342. 20. 2. 22a.13 D 107
6. 1. O. 224.1a D 108 20s. 312. 93. 224.15 D 109 1076. 310. 110, 224.16 D 110
45. 12. 1. 22a.17 D 111 6a. 6. 1. 22s.18 D 112 805. 509. 129. 224.21 D 113 793. 111a. 285. 224.31 D 11e 900. 327. 33, 224.32 D 115 s82. 63. 6. 225.11 D 116 900. 5. O. 225.12 D 117 120. 100. 10. 225.13 D 118
65. 13. 1. 225.32 D 119 183. 67 7 225.41 D 120 183. 67 7. 225.a2 D 121 495. 413. 68. 225.43 D 122
15. 2. O. 225.48 0 123
57. 79. 8. 226.11 D 12e
6. 3. O. 226.31 D 125
0. 71. 158. 226.33 D 126
76. 200. 26. 226.35 D 127
40. O. O. 226.36 D 128 .
a. O. O. 226.37 D 129
5. 1. O. 226.38 D 130 1053. 1s28. 267. 226.41 D 131 1358. 2 a0 5. 920. 226.42 D 132 -
95. 2. O. 226.68 D 133 1365. 1995. 949. 226.71 D 13a 2653. 2810. 281. 226.72 D 135 O. O. 200. 226.86 D 136
0. O. 60. 226.87 D 137
0. O. 5. 226.88 D 138
0. a7. 15. 226.95 D 139
17. O. O. 226.96 D 140
1. O. O. 226.97 D 1a1 200. 18. 1. 226.98 D 142 615. 52. 3. 227.11 D 143 100. 10. 1. 227.14 D 184
50. 5. O. 227.15 D 1a5 209. 21. 1. 227.16 D 186 200. 20, 1. 227.17 D 147 26a. 36. 2. 227.18 D 148 1722. 508. 51. 227.2 D 1s9 550. 56. 3. 227.31 D 150 662. 34 2. 227.32 D 151
80. O. C. 227.33 D 152 263. 27. 1. 227.34 D 153 .

120. 12. 1. 227.35 D 15a

60. 6. 1. 227.36 D 155 Sa. 6. 1. 227.37 D 156 500. 25. 3. 227.s1 D 157 600. 31. 3. 227.42 D 158 350. 20. 2. 227.43 D 159 117. 38. a. 227.5 D 160
0. 86a. 55. 228.11 D 161 l

l l -

81

0. 239. 105. 228.12 D 162
0. . 98. a5. 228.13 D 163 1500. O. O. 228.2 D 16s O. 358. 7 a 3. 228.31 D 165 O. 66. 230. 228.32 D 166
0. 209. 7a6. 228.33 D 167 53217. O. O. 231.11 D 168
0. 2566. 2 a 5. 231.12 D 169
0. 1337. 83a. 231.21 D 170
0. a. 23. 231.43 D 171
3. 21. a. 231.e5 D 172 2a. O. O. 231.a6 D 173 1 O. O. 231.47 D 17s
10. 1. O. 231.s8 D 175 109. Sa. 60. 231.s9 D 176
97. 81. 8. 231.51 D 177
63. 55. 5. 231.52 D 178
91. 16. 2. 231.63 D 179 507 1058. 106. 231.65 D 180 62a. O. O. 231.66 D 181 102. O. O. 231.67 D 182
27. 2. D. 231.68 D 183 5939. 1325. 133. 233.12 D 18e 829. 88. 9. 233.21 D 185 23a. 120. 12. 233.23 D 186 725. 1505. 151. 233.25 D 187 506. O. O. 233.26 D 188 1a5. O. O. 233.27 D 189 a9. 5. O. 233.28 D 190
0. 287. 23a. 233.29 D 191 32a. 11a. 12. 233.31 D 192 150. O. O. 233.a1 D 193 150s. 5ea. Sa. 233.5 D 19a 2023. 628. 63. 23a.1 D 195 1739. 221. 22. 23a.21 D 196 1601. 35s1. 355. 234.25 D 197 15a8. O. O. 23a.26 D 198 310. O. O. 23a.27 D 199
59. 6. O. 23a.28 D 200 29a. 611. 61. 23a.35 D 201 398. O. O. 23a.36 D 202
59. O. O. 23a.37 D 203 3a. 3. D. 23a.38 D 20s 199. 2a. 2. 23a.a1 D 205 l 0. 16. 79. 23a.s3 D 206 l 239. s95. 50. 23a.a5 D 207 211. O. O. 23a.a6 D 208 l

a8. O. O. 23a.s7 D 209 a7. a. O. 23a.se D 210 a283. 62sa. 62a. 235.11 D 211 1000. 81. 6. 235.1a D 212

s. 20. a. 235.21 D 213
32. 16. 2. 235.31 D 21s 296. 10. 1. 235.32 D 215
1. 1 O. 235.33 D 216 210. a s 2. 45. 235.35 D 217 376. O. O. 235.36 D 218 a2. O. O. 235.37 D 219
18. 2. O. 235.38 D 220 1053. 157. 22. 235.a D 221
35. 8. 2. 23 5. 5 D 222
15. 5. 1. 235.61 D 223 a0. 3. O. 235.63 D 22e
2. a. O. 235.65 D 225
0. O. O. 235.66 D 226 l 0. O. O. 235.67 D 227 l

l i

82 l 996. 136. 12. 236.11 D 228  :

0. C. O. 236.2 D 229 139. 35. 3. 236.3 D 230
0. 99. 88. 237.11 D 231
0. 399. 180. 237.12 D 232
0. 98. 30. 237.13 D 233
0. 634 1329. 237.31 D 234
0. 209. 440. 237.32 D 235 735. 56. 6. 241.11 D 236
0. 42. 4 2a1.12 D 237
0. 7. 1. 241.13 D 238 2870. 437. 44 241.21 D 239 856. 256. 26. 241.22 D 240 50s. 70. 7. 242.11 D 241 968. 83. 6. 242.12 D 222
0. 154 St. 242.13 D 243 128s. 27 1. 27. 2s2.21 D 248 as2. 197. 20. 282.22 D 2a5
15. 11. 1 2a2.23 D 2s6 196. 58. 6. 2s2.31 0 247 3693. a s 1. 70. 2s2.32 D 2e8 130. 22. 2. 2a2.3a D 2m9 200. 46. 5. 243.11 D 250 150. 35. 3. 243.14 D 251
22. 7. 1. 2e3.21 D 252
88. 40. 52. 243.22 D 253
0. 288. 126. 284.11 0 25a
0. 273. 65. 248.12 0 255 0, 102. 52. 204.2 D 256
0. 25. 80. 2as.3 D 257 0, 129. 150, 2sa.s D 258
0. 221. 100. 244.5 D 259
0. a16. 195. 245.11 D 260 -
0. 185. 87. 2a5.12 D 261
0. 2766. 1112. 245.2 D 262
0. 3as3. 788. '245.3 D 263 m35. 189. 19. 246.11 D 26a
0. 211, 759. 2a6.21 D 265 O. 763. 334 2e6.22 D 266
0. 3305. 2799. 246.3 D 267
0. 29 s a. 1520. 246.4 D 268 506. 300. 30. 246.5 D 269 713. 100. 10. 251.11 D 270 1183. 220. 22. 251.12 D 271
0. 39. 84, 251.16 D 272
43. 8. 1. 251.17 D 273 146. 253. 87. 252.11 D 27a 577. 54 7 252.12 D 275 838 896. 90. 252.21 D 276 10s6. 1688. 171. 252.22 D 277
69. 76. 10. 252.24 D 278 541 95. 10, 252.31 D 279
29. 13. 1. 252.32 D 280
6. 9. 2. 252.33 D 281
28. 15. 1. 252.34 D 282
11. 7. 2. 252.35 D 283 1s. 19. 2. 252.36 0 28s
9. 3. O. 252.38 D 285
85. 8. O. 252.39 D 286
40. 47. 5. 252.43 D 287
0. 33. 11. 252.49 D 288
0. 37. 35. 253.11 D 289
0. 154. 108. 253.15 D 290 242. 24 2. 253.21 D 291 726. 73. - 7 253.22 D 292
0. 2. 9. 25a.11 D 293

~- - - - - - - - - - -

83

50. 2. O. 254.22 D 29s 100.
  • 9. 1. 254.23 D 295 111. O. O. 254.31 D 296
18. 1. O. 254.a1 D 297 178. 9. 1. 254.51 D 298

. 97 10. 1. 254.52 D 299

50. 5. 1. 254.53 D 300
30. 3. O. 254.54 D 301
40. 4 O. 254.55 D 302 184 45. 5. 254.61 D 303
5. 251. 167. 261.11 D 304
0. 8. 8. 261.12 D 305
0. 591. 276. 261.21 D 306
56. 53. 16. 261.22 D 307
0. 238. 296. 261.31 D 308
36. 6a. 17. 261.32 D 309
0. 5. 4 261.a1 D 310 165. 68. 8. 262.11 D 311 a228. 1115. 229. 262.12 D 312 9729. 1623. 162. 262.13 D 313 1a84 570. 118. 262.15 D 31a
0. 1121. 1250. 911.11 D 315
0. 1309. 150. 911.12 D 316
0. 2065. 150. 911.13 D 317
0. 1538. 750. 911.21 D 318
0. 3075. 3300. 911.22 D 319
0. 2590. 1500. 911.23 D 320
0. 660. 600. 911.24 D 321
0. a 0 21. 200. 911.26 D 322
0. O. 10000. 912.11 D 323 C. 3075. 1700. 912.13 D 324
0. C. a00. 912.1a D 325
0. O. 2750. 912.3 D 326
0. C. 2750. 912.4 D 327
0. 8588. O. 913.1 D 328 1, O. 5s65. O. 913.2 D 329 1 0. 6246. D. 913.3 D 330
0. 781. C. 913.s D 331
0. O. 4000. 914.1 D 332 20050. O. O. 921.1 D 333 l 3000. O. O. 921.2 D 334 5010. O. O. 921.3 D 335 138a0. O. O. 921.4 D 336 3890. O. O. 921.6 D 337 945. O. O. 922.1 D 338 235. O. O. 922.2 D 339 6!0. O. O. 922.3 D 340 l

350. O. O. 922.s D 3a1 l 600, 0. O. 923.1 D 342 l

150. O. O. 923.2 D 343 a 10. O. O. 923.3 D 3sa l 90. O. O. 923.4 D 3a5 1

0. O. 200. 931.1 D 346
0. O. 650. 931.2 D 3a7 O. O. 2000. 931.3 D 3a8 I 0. O. 150. 931.4 D 309 I 5501. O. O. 932.1 D 350 1 5501. O. O. 932.2 D 351 2750. O. O. 932.3 D 352 2063. O. O. 932.s D 353 800. O. O. 932.5 D 35a 120. O. O. 932.61 D 355 1661. C. O. 932.62 D 356 3020. O. O. 933.1 D 357 755. O. O. 933.2 D 358 565. O. O. 933.3 D 359 l

4 I

s4 l l

150. O. O. 933.s D 360 .,

1312. O. O. 934.1 D 361 328. C. O. 93a.2 D 362 900. C. O. 934.3 D 363 195. O. O. 934.4 D 364 6000. C. O. 941. D 365 14000. O. O. 942. D 366 6000. O. O. 9e3. D 367 s000. O. O. 9as. D 368 12000. O. C. 945. D 369 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 CFCA 1 0.020 1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.003 0.004 0.0 0.008CFCA 2

0. 0s 0 1.000 0.0 0.0 0.0 0.0 0.0 0. 0 0.005 0.008 3.001 0.008CFCA 3 0.060 1.000 0.0 0.307 0.0 0.0 0.0 0. 0 0.007 0.011 0.002 0.01acFC A a 0.000 1.000 0.0 0.011 0.0 0.0 0.0 0.0 0.010 0.014 3.004 0.021CFCA 5 0.100 1.000 0.0 0.015 0.0 0.0 0.0 0.0 0.012 0.038 3.005 0.030CFCA 6 0.120 1.000 0.0 0.019 0.0 0.0 0.0 0.0 0.01a 0.C68 3.00 7 0.041CFC A 7 0.180 1.000 0.0 0.022 0.0 0.0 0.0 0. 0 0.029 0.103 0.008 0.054CFCA 8 0.160 1.000 0.0 0.025 0.0 0.0 0.0 0.0 0.On7 0.141 0.009 0.070CFCA 9
0. 180 1.000 0.0 0.027 0.0 0.0 0.0 0.0 0.073 0.18 3 3.011 0.387CFC A 10
0. 200 1.000 0.001 0.032 0.005 0.001 0.00 7 0. 005 0.096 0.226 0.013 0.106CFC A 11 0.220 1.000 0.002 0.038 0.014 0.004 0.025 0. 014 0.125 0.271 0.017 0.127CFCA 12 0.2eo 1.000 0.004 0.0e7 0.023 0.007 0.0s9 0.023 0.159 0.316 0.0210.189CFCA 13 0.260 1.000 0.006 0.057 0.034 0.011 0.077 0.03 s 0.195 0.361 3.027 0.173CFCA 14
0. 280 1.000 0.009 0.067 0.On6 0.016 0.111 0.0a6 0.233 0.s 05 0.033 0.198CFCA 15
0. 30 0 1.000 0.022 0.078 0.058 0.027 0.144 0.058 0.27s 0.449 0.0a4 0.225CFCA 16 0.320 1. 00 0 0.052 0.088 0.069 0.0e8 0.173 0.06 9 0.315 0.s90 0.06 3 0. 252CFCA 17 0.340 1.000 0.090 0.098 0.080 0.072 0 202 0.000 0.358 0.530 0.086 0.281CFC A 18 0.360 1. 000 0.136 0.108 0.092 0.10 2 0. 233 0.092 0.a01 0.56 8 0.113 0.310CFC A 19 0.380 1.000 0.190 0.118 0.103 0.136 0.264 0.103 0.e43 0.60 3 0.1a5 0. 339CFCA 20
0. n00 1.000 0.234 0.128 0.115 0.167 0.29a 0.115 0.486 0.637 3.175 0. 369CFCA 21 0.820 1.000 0.260 0.137 0.125 0.189 0. 322 0.12 5 0.527 0.667 0. 20 3 0.399CFCA 22
0. ma 0 1. 0 00 0. 290 0.18 7 0.15 5 0. 210 0. 35 0 0.15 5 0. 567 0. 6 95 0. 231 0.a29CFCA 23 -

0.460 1.000 0.326 0.203 0.196 0.273 0.s23 0.196 0.606 0.7213.28 3 0.e59CFCA 2a 0.e80 1.000 0.386 0.265 0.250 0.358 0.521 0.250 0.643 0.744 0.350 0.s89CFCA 25 0.500 1.000 0.ss 3 0.323 0. 301 0. 439 0. 603 0.301 0.677 0.76 5 3. 811 0. 519C7C A 26 0.520 1.000 0.s85 0.365 0.327 0.s87 0.620 0.327 0.709 0.784 0.a50 0.549CFCA 27 -

0.540 1.000 0.520 0.a04 0.352 0.520 0.627 0.352 0.739 0.8010.479 0.578CFCA 25

0. 560 1.000 0.566 0. e43 0.383 0.561 0.633 0.3 83 0.767 0.817 0.520 0.607CFCA 29 0.580 1.000 0.61a 0.484 0. s 24 0. 601 0. 6a5 0.4 2 s 0.792 0.8 31 0. 56 5 0. 63 5CFC A 30 0.60 0 1. 000 0. 6 6 0 0. 5 26 0. s66 0. 6 50 0. 66 5 0. a 6 6 0. 814 0.8a3 0.732 0.663CFC A 31 0.620 1.000 0.700 0.571 0.511 0.690 0.695 0.511 0.835 0.855 0.786 0.69: CFCA 32 0.640 1.000 0.750 0.615 0.555 0.750 0.720 0.555 0.853 0.866 0.817 0.710cFCA 33 0.660 1.000 0.800 0.662 0.6 39 0.798 0.757 0.63 9 0.869 0.876 0.843 0.744CFCA 3e 0.6 80 1. 0 00 0. 8 37 0.711 0. 7 26 0. 8 30 0. 80 3 0. 726 0. 8 8a 0. 8 8 5 0. 861 0.770CFCA 35 0.700 1.030 0.865 0.758 0.811 0.852 0.844 0. 811 0. 8 97 0. 8 9 5 0. 87 6 0. 79 6 CFC A 36 0.720 1.0J0 0.891 0.000 0.868 0.870 0.862 0.868 0.908 0.904 0.890 0.821CFCA 37 C. 7s 0 1.900 0. 910 0. 8a0 0.915 0. 880 0. 870 0. 915 0.919 0.913 0.901 0.845CFC A 38 0.760 1. 300 0.919 0.859 0.956 0.895 0. 885 0. 956 0.929 0.921 0.90 8 0.869CFCA 39 0.780 1.000 0.920 0.877 0.960 0.910 0.900 0.960 0.939 0.930 3.912 0.892CFCA a0 0.800 '.000 0.950 0.897 0.965 0.945 0.919 0.965 0.948 0.939 0.947 0.913CFCA #1 0.820 1.000 0.95s 0.916 0.969 0.950 0.936 0.969 0.956 0.948 3.954 0.93eCFCA 42 0.880 1.000 0.957 0.931 0.972 0.95 8 0.950 0. 972 0.965 0.956 0.95 9 0.952CFC A m3 0.860 1.000 0.964 0.944 0. 991 0.966 0.966 0. 991 0.973 0. 964 0. 96 6 0. 96 9CFCA sa
0. 880 1.000 0.965 0.958 0.995 0.988 0.982 0.995 0.980 0.972 0.970 0.98ECFCA e5 0.900 1.000 0.974 0.961 0.998 1.000 0.994 0.998 0.987 0.980 0.977 0.996CFCA e6 0.920 1.000 0.982 0.962 1.000 1.000 1.000 1.000 0.99s 0.986 0.984 0.997CFCA a7 *

~

0.940 1.000 0.990 0.962 1.000 1.000 1.000 1.000 0.998 0.992 0.991 0. 998C FCA s8 -

0.960 1.000 0.995 1.000 1.000 1.000 1.000 1.000 0.999 0.996 0.99 6 0.999CFCA 49 1.00 0 1.0 0 0 1.0 0 0 1.0 0 0 1.0 0 0 1. 0 0 0 1. 000 1. 00 0 1.0 00 1.3 0 0 1. 00 0 1.00 0CFC A 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FACS1 1

, 96180 96180 5026 77a9 7032 ga67 a9592 96180 0 0 0 FACS1 2 -

j 10052 10052 270 747 135 1080 8350 10052 0 0 0 FACS1 3 116800116800 0.0 5960 263s 5702 33951116800 0 0 0 FACS1 4 106162106162 268a 71a2 e612 2952 25925106162 0 0 0 FACS1 5 l

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. 0.0 FACS1 6 I

l 85 15128 15128 17158 1006412a616 41327 31950 15128 0 0 0 FACS1 7 17509 175091a3121101698 107920625a155027 17509 0 0 00 FACS1 8 aja07 sta07 16313 12726 a6a8 22297 37793 41a07 0 0 0 FACS1 9 FACS1 10

. FACS1 11 FACS1 12 FACS1 13 1551 1551 766a 5214 67 10820 9187 1551 0 0 0 FACS1 It a0187 40184 12549 9364 123 5206 8512 40184 0 0 0 FACS1 15 26654 26654 980s 22038 48 2722 12060 2665a 1.0 1. 0 1.0 FACS1 16 0.0 72813 72813 72813 72813 72813 72813 72813 72813 72813 72913 FACS2 1 0.0 72813 72813 72813 72813 72813 72813 72813 72813 72813 72813 FACS2 2 0.0 72813 72813 72813 72813 72813 72813 72813 72813 72813 72813 FACS2 3

0. 0 a 19 e a0 019 t a 0019 s a 0 s 19 s a ce 19a o 0a 19 a s 0419 a s o s 19 a 40419440a 19 as o FACS2 4 0.0 16591 a 16 591 a 16591 a 16591 u 16591 a 16 591 a 165 91416 591416591416 5914 FACS2 5 0.0 1660 1660 1660 1660 1660 1660 1660 1660 1660 1660 FACS2 6 0.0 2888 2888 2888 2888 2988 2888 2888 2888 2888 2888 FACS2 7 1.0 FACS2 8 FACS2 9 F AC S2 10 FACS2 11 FACS2 12 FACS2 13 FACS2 la FACS2 15 FACS2 16 FACS3 1 500 500 500 500 500 500 500 500 0.0 0.0 0.0 FACS3 2 250 250 250 250 250 250 250 250 0. O. O. FACS3 3 l 250 250 250 250 250 250 250 250 0. O. O. FACS3 a 1.0 1.0 1.0 FACS3 5 l-FACS3 6 FACS3 7 FACS3 8 20 . L AND AND LAND RIGHTS AC2 1 21 . STRUCTURES
  • IMPROV E8ENTS AC2 2 22 . REACTOR PLANT EQUIP 5ENT AC2 3 23 . TURBINE PLANT EQUIPMENT AC2 a 24 . ELECTRIC PLANT EQUIPRENT AC2 5 25 . HISCELLANECUS PLANT !QUIPT AC2 6 26 . MAIN COND HEAT REJECT SYS AC2 7 91 . CONSTEDCTION SERTICES AC2 8 92 . HOME OFFICE ENGRG.6SERTICE AC2 9 93 . FIELD OFFICE ENGRGESIRTICE AC2 10 9a. CWNER' S COSTS AC2 11 201. LAND AND PRITILEGE ACQUISITION AC3 1 202. RELOCATION OF BUILDINGS, UTILITIES, ETC. AC3 2 211. YARDVORK AC3 3 212. REACTOR CONTAINMENT BLDG AC3 s 213. TURBINE RC05 + HEATER BAY AC3 5 215. PRIH AUI BLDG + TUNNELS AC3 6 216. WASTE PROCESS EUILDING AC3 7 217. FUEL STORAGE BLDG AC3 8 218. OTHER STR UCTUR ES AC3 9 220. NUCLEAR STEAM SUPPLY SYSTZs AC3 10 221. RE ACTOR EQUIPMENT AC3 11 222. MAIN REAT IFER IPORT SYS. AC3 12 223. SAFZGUARDS SYSTE5 AC3 13 i

224 RADWASTE PROCESSING AC3 1a i 225. FUEL B A NDLING

  • STOR AGE AC3 15 l 226. OTHER REACTOR PLANT EQUIP AC3 16 l

227. RI INSTRUMENTATION + CONTROL AC3 17 229. RE AC*CR PL ANT MISC ITEM S AC3 18 231. TURBINE GENER ATOR AC3 19 233. CONDENSING SYS!!!S AC3 20 23a. FEED REATING SYSTEs AC3 21 l

i

86 235. OTHER TURBINE PLANT EQUIP. ACJ 22 236. IN STIU5 ENTATION + CONTROL AC3 23 237. TURBINE PLANT RISC ITE55 AC3 2s 241. SWITCHGEAR AC3 25 242. STATION SERTICE EQUIPRENT AC3 26 243. SWITCBBOARDS AC3 27 2aa. PRCTECTITE EQUIPMENT AC3 28 2a5. ELECT.5TRUC

  • WIRING CONTNR AC3 29 246. POWER & CONTROL WIRING AC3 30 251. TR AN!PORTATION & LIFT EQPT AC3 31 252. AIR, W ATER
  • STEA R SER VICE SY AC3 32 253. ConnUNICATIONS EQUIP 5ENT AC3 33 254 FURNISRINGS
  • FIITURES ACJ 3a 261. STR UCTUR ES AC3 35 262. RECHANICAL EQUIPMENT AC3 36 911 TE5P03ARY CONSTRUCTION FAC AC3 37 912. CONSTRUCTION TOOLS S EQUIP AC3 38 913. PAYROLL INSUR ANCE 5 TAIES AC3 39 914 P E RF IT S,IN S. 6 LOC A L TA IE S AC3 a0 921. EC5E CFFICE SIRTICES AC3 41 9 22. ROME OFFICE Q/A AC3 a2 9 23. HOME OFFICE CONSTRCTN BGMT AC3 #3 931 FIELD OFFICE EIPENSES AC3 na 932. FIELD JOB SUPtRTISION . AC3 e5 933. FIELD QA/QC AC3 46 934 PLANT STARTUP S TEST AC3 a7 941. ENGINEERING & QA AC3 48 9e2. TAIES & INSURANCE AC3 49 983. SP ARE PARTS AC3 50 9as. STAFF TRAINING AC3 51 945. 0WNER'S GSA AC3 52 211.1 GENER AL Y ARDWORK Ac4 1 211.8 RAILECADS Act 2 -

211.7 STRUCTURE ASSOCIATED TDNK ACs 3 212.1 S UIL DING STR UCTUR E ACS a 212.2 SUILDING SER VICES ACs 5 213.1 BUILDING STRUCTU R E AC# 6 -

213.2 BUILDING SER TICES Act 7 215.1 BUIL DING STR UCTURE ACs 8 215.2 BUILtING SERTICES ACE 9 216.1 BUILDING STRUCTURE ACs 10 216.2 BUILDING SERVICES ACs 11 217.1 BLDG STRUCTURE ACs 12 217.2 BUILDING SERTICES Act 13 2184. CCNTRCL 35/D-G EUILDING Act 14 2185. AD5!NISTR ATIOM*5ESTICE BLG ACs 15 215D. FI3E PU5P HOOSE,INC FNDTNS ACE 16 218E. E5ERCINCY FEED POSP BLDG ACs 17 218F. MANWAT TUNNELS (RCA TUNLS) ACS 18 218G. ELEC. TUNNELS ACs 19 218R. NON-!$5EN. SWGR BLDG. ACs 20 218J. MN S TEAM + FW PIPE ENC. ACS 21 218K. PIPE TUNN ELS .

ACE 22 2185 HYDRCGEN RECOMBINER STRUCT Act 23 2187. CONTAIN EQ RATC5 55LE SHLD ACE 24 2185. BOLDING POND ACs 25 218T. ULTTM ATE HEAT SINK SIRDCT Act 26 218 T. CONTE BR ENG AIR INTK STR Act 27 -

2201. NUCLEAR STEAR SUPPLT(N555) ACs 28 2208. 5555 OPTIONS AC8 29 221.1 RE ACTOR TESSEL + ACCESSORY Act 30 221.2 RE ACTCB CCNTROL DETICES Act 31 222.1 RE ACTOR CORE COOLANT SYS. ACE 32 223.1 E!SIDOAL BEAT RE50TAL 4t3 ACs 33 223.3 SAFETT INJECTION SYST!5 ACE 38 223.s CONT AIN5ENT SPR AY SYSTER Ace 35 l

i

87 223.5 C058US IBLE CAS CONTROL SY AC4 36 2 24.1 LIQUID WASTE SYST!5 AC4 37 224.2 RAD GAS WASTE PROCESSING Act 38 224.3 SOLID W ASTE SYSTE5 ACs 39 225.1 FUEL MANDIG TOOLS + E QUIP - ACS 40

- 225.3 SEPTICE PLATFORMS AC4 41 225.4 FUEL STOR,CLNG,*INSPEC 30 ACS 42 226.1 INERT G AS SYS AC4 43 226.3 REACTCR RAKEUP W ATER SYS ACE 44 226.4 COOLANT TREATHENTCP! CYCLE ACE 45 226.6 FLUID LEAK DETECTION SYS ACS 46 226.7 AUI COOL SYS ACS 47 226.9 MAINTENANCE EQUIPMENT AC4 48 226.9 SAMPLING EQUIP AC4 49 227.1 BENCHBOARD, PANELS + RACKS ACs 50 227.2 PROCESS COMPUTER Act 51 227.3 MONITORING SYSTEMS ACS 52 227.4 PL ANT CONTsOL SYSTERS ACs 53 227.5 RI PLANT I+C TUBING *FITTNG AC4 54 228.1 BISC SUSPENSE ITEMS ACO 55 228.2 STANDARD NSSS TALTE PKG ACE 56 228.3 REACTOR PLANT INSULATION ACE 57 231.1 TURBINE GENER ATOR + ACCSSBY ACS 58 231.2 FOUNDATICFS ACS 59 231.4 LUBRICATING OIL SYSTE5 ACE 60 231.5 CAS SYSTEMS ACE 61 2 31.6 S STR SEPPTR/REHTR DR AINSYS AC4 62 233.1 CCNDENSER EQUIP 5ENT AC4 63 2 33.2 CONDENSATE SYSTE5 ACS 64 233.3 G AS RE50TAL SYSTEM ACs 65 233.4 TURBINE BYPA SS SYSTZ5 ACs 66 233.5 CONDINSATE POLISHING AC4 67 234.1 FIEDW ATER REATERS ACE 68 234.2 FEEDWA!!R SYS!!5 Act 69 234.3 EXTR ACTION STEAR SYSTZ5 ACE 70 234.4 FWR TENT + DRAIN SYSTEM ACE 71 235.1 MAIN TAPOR PIPING SYSTE5 ACE 72 235.2 TURBINE AUZILIARIES AC4 73 235.3 TB CLOSED CLG WATER SYS Act 74 235.4 DEMIN. WATER HAKZ-UP SYST!5 AC4 75 235.5 CBERICAL TREATMENT SYSTEM ACS 76 235.6 N EUTR ALIZ ATION SYSTE5 AC4 77 236.1 PROCESS I+C EQUIP 5ENT AC4 78 236.2 PROCESS COMPUTER ACE 79 236.3 TURB PLT I+C TUBING AC4 80 237.1 HISC SUSPENSE ITEMS ACE 81 l 237.3 TURBINE PLANT INSULATION ACS 82 l 241.1 GEN EQPT SWITCHGEAR AC4 83 241.2 STATION SERVICE SWITCHGEAR ACE 84 242.1 ST ATION SERTCSTARTO P IFER AC4 85 242.2 UNIT SUBSTATIONS ACE 86 242.3 AUZILIAR Y POWER SO URCES Act 87 243.1 CCNTRCL PANELS ACE 88 243.2 AUI. FCWER C SIGN AL BO AR DS ACS 99 244.1 GENRL STATION GROUND SYS ACE 90 244.2 FIRE DETECTION +SUPRRESSION ACs 91 244.3 LIG5TNING PROTECTION AC4 92

[ 244.4 CATHODIC FROTECTION AC4 93 i 244.5 HEAT TRACING + FREEZE PROT ACS 94 245.1 UNDERGROUND DUCT RUNS ACS 95 245.2 CABLE TR AY AC4 96 245.3 CONDUIT ACS 97 246.1 GENER ATOR CIRCUITS WIBING ACS 98 246.2 STATION SERTICE PWR WIRING ACS 99 246.3 CONTROL CABLE ACE 100 246.4 IN STRUEENT WIRE AC4 -101 _'27 i e

)

)

I 88  !

2a6.5 CONT AINMENT P!NETR ATIONS 251.1 CRANES S HOISTS Aca 102 .,

252.1 AIR SYST!55 Act 103 '

252.2 #ATER SYST!SS Aca 104 252.3 AC4 105 AUZILIARY STIAM SYSTEM Act 106 252.s PLANT FUEL CIL SYSTE5 253.1 Aca 107 LOCA L CC550NICATIONS SYS ACs 108 253.2 SIGNAL SYSTEMS 254.1 SA FETT EQUIP 5ENT Act 109 254.2 ACE 110 CHEMICAL LAB

  • ISSTR SHOP AC# 111 258.3 0FFICE EQUIP +FURNISEINGS 2 5a.s ACE 112 CHANGE ROOM EQUIP 5ENT ACu 113 254.5 ENVIRONMENT MONIT EQUIP 254.6 Act 114 DINING F ACILITIES ACE 115 261.1 M A KEUP WTR INT + DISCH STR 261.2 AC4 116 CIRC UAT!R PUMP MOUSE AC# 117 261.3 5 AKEUP UTE PRETREATMNT BLG 261.P CRLO RIN ATION BUILDIgG ACE 118 262.1 ACE 119 RIAT REJECTION SYSTEM AC4 120 911.1 TE5FORARY BUILDINGS 911.2 TEMPOR ARY FACILITIES ACb 121 9 12.1 M AJOR EQUIP 5EVT ACE 122 9 12.3 AC4 123 PURCHASE OF SMALL TOOLS AC4 124 912.a EIPE3DABLE SUPPLIES 913.1 ACu 125 SOCIAL SECUR. TAI .055 I L ACs 126 9 13.2 STATE + FED.ONEMPLOY.035 I L 9 13.3 Act 127 30RKnENS COMP. INS .040 I L -

ACs 128 913.E P. L. + F. D. INS. .005 I L 91a.1 ACs 129 BUILDERS ALL RISK INS ACs 130 9 21.1 SALARIES 921.2 ACE 131 EIPENSES - 154 0F SALARIES ACs 132 921.3 DIRECT P AFROLL COST 25% -

921.4 OTERRIAD LOADING 554 Aca 133 9 21.6 1 ACE 134 ,

FIE FOR H/O SERTICES 104 Aca 135 922.1 SALARIES 9 22.2 DIRECT P ATROLL COST AC4 136 254 -

ACs 137 922.3 OT!FREAD LOADING 35%

922.s EXPENSES ACs 138 -

9 23.1 SALARIES ACs 139 923.2 Act 140 DIRECT P A TROLL COST 25% Act 141 9 23.3 CTERMIAD LOADING $55 923.s Act 142 EXPENSES - 15 4 0F S ALARIES ACE 143 9 31.1 0FFICE FURNITURE & EQUIP.

931.2 Aca tea TELEPHON! 6 COMMUNICATIONS ACE 145 931.3 0FFICE SUPPLIES 931.s ACE 146 FIRST AID G MEDICAL EIP. AC# 147 9 32.1 SALARIES 932.2 SALARIES ACs 108 932.3 ACE 149 DIRECT P A TROLL COST 254 ACs 150 932.8 OTERREAD LOADING 1$4 9 32.5 ACs 151 RELOCATION EXPENSE- A LLW NCE ACE 152 1

932.6 FEE FOR CONSTR SR TCS 104 9 33.1 SALARIES ACE 153 9 33.2 AC4 154 DIRECT PAYROLL COST 254 ACs 155 933.3 OTER BEA D LO A DING 15%

933.4 EIPENSES ACs 156 54 Act 157 934.1 SALARIES 9 3a.2 ACE 158 DIRECT PAYROLL COST 25%

ACs 159 938.3 OT!RREAD LOADING 551 9 34.4 ACs 160 EIPENSES - 154 07 SALARIES ACE 161 211.11 GENERAL CUT + FILL ACS 1 211.12 ROADS. WALKS + PARKING ARE ACS 2 211.1 a FENCING + GATES ,

AC5 3 211.15 SANITART SE9ER FACILITY ACS a 211.16 YARD ERAINAGE STORM SE9ERS ACS 5 211.17 RO ADERY + YARD LIGHTING ACS 6

\

89 211.19 SETTLING BASINS AC5 7 211.41 CUT + FILL AC5 8 211.42 GRADING ACS 9 211.43 TRACE (BALLAST, TIES, RAIL AC5 10 211.45 SWITCHES *EUMPERS AC5 11 211.46 RIP RAP (2a IN. THIC K) ACS 12 211.71 CUT + FILL ACS 13 212.13 SUBSTRUCTURE CONCRETE ACS is 212.1s SU PE PSTRUCTU RE AC5 15 212.22 5 EATING, TENT + AIR COND ACS 16 212.22 LIGHTING +5ERTICE PowtR AC5 17 212.25 EL ET A TOR AC5 18 213.13 SUBSIRUCTURE CONCRETE AC5 19 213.1 a SU PERSTRUCTU R E AC5 20 213.21 PLU5BING + DRAINS AC5 21 213.22 BEATING, TENT, + AIR COND. AC5 22 213.23 FIRE PROTECTION AC5 23 213.24 LIGHTING + SER VICE POWER AC5 24 213.25 ELETATOR AC5 25 215.13 SUBSTR UCTURE CONCRETE ACS 26 215.1a SUPERSTRUCTURE ACS 27 215.21 PLUMEING + DRAINS ACS 28 215.22 REATING, TENT, + AIR CO ND AC5 29 215.23 FIRE PROTECTION AC5 30 215.2a LIGHTING & SERVICE POWER AC5 31 216.13 SUBSTRUCTURE CONCRETE AC5 32 2 16.14 SUP ER S TR UCTUR E AC5 23 216.21 PLUMBING + DRAINS AC5 34 216.22 REATING, TENT + AIR COND AC5 35 216.2a LIGMTING S SERTICE PCUER ACS 36 216.25 ELETAtos ACS 37 217.13 SUBSTRUCTURE CONCRETE AC5 38 217.1 a SU PERSTRUCTU R E AC5 39 217.21 PLUMBING + DRAINS ACS #0 217.22 BEATING, TENT, + AIR COND ACS 41 217.24 LIGHTING & SERTICE POWER AC5 a2 218 A.1 BUILEING !!R UCTUR E ACS 43 218 A.2 BUILDING SERVICES AC5 44 2182.1 BUILDING STRUC. ACS 45 218B.2 BLDG. SERVICES AC5 46 218 E.1 BLDG. STRUC. ACS a7 219D.2 BUILDING SER VIC ES AC5 48 2182.1 BLDG. STRUCTURE ACS 49 218 E. 2 BUILDING SERTICES ACS 50 218 F.1 BUILDING STR UCTURE ACS 51 218 F. 2 B UIL DING SER VICE S ACS 52 218G. 2 BUILUING STR TICES i AC5 53 218R. V BISC. STRUCT. AC5 54 2 185.2 BUILIING SERVICES ACS 55 21 PJ.1 BLDG. S TR UCT. ACS 56 218J. 2 SLDT. SERT. ACS 57 218 K.1 BLDG. STRUCT ACS 58 218K.2 BLOG. SERT. ACS 59 2185.1 BLDG. STR UCTURES , ACS 60

, 2185.2 BULLUING SERVICES ' ACS 61 7187.1 SRIELD $7RUCTURE AC5 62 2185.1 POND STTUCTURE <

ACS 63 218T.1 BL DG. !TRUCT ACS 64 218T.2 BUILDING SERVICES ACS 65 2187.1 BLDC. CTRUCTURE ACS 66 2 204.1, QUC!tD 1553 PRICE ACS 67 221.11 R E A C TO R SUPPORT ACS 68 2 21.12 TESSEL STPUCTURE ACS 69 221.13 YESSEL INTERNALS ACS 70 2 21.1a TR ANfPORT TO SITE ACS 71 221.21 CONITOL ROD SYST!5 ACS 72 6

. =

90 222.11 FLUIE CIRCULATION DR. SYS. AC5 73 1 222.12 REACT. COOLANT PIPING SYS. AC5 7e 2 22.13 STEAR GENEPATCP EQUIP 5ENT ACS 75 1 222.18 PRESSURIZING SYSTEM ACS 76 222.15 PRI COOL PIPE TRIP RESTRNT AC5 77 223.11 ROTATING MACHINERY AC5 78 223.12 BE AT TRANSFER EQUIP 5ENT AC5 79 223.15 PIPING AC5 80 223.16 RER TALTES AC5 81 223.17 PIPING - SISC. ITZ55 ACS 82 223.18 I NST RU ME NT ATION

  • CONTROL AC5 83 223.31 ROTATING BACHINERY ACS Sa 223.33 TANKS AND PRESSURE YESSELS AC5 85 223.35 PIPING AC5 86 223.36 YALTES AC3 87 223.37 PIPI NG - HISC. ITE55 ACS 88 223.38 INSTRUMENTATION + CONTROL AC5 89 223.41 ROTATING BACHINERY AC5 90 223.42 BEAT TRANFER EQUIPM ENT ACS 91 223.43 TA5KS AND PPESSURE YESS ELS ACS 92 223.45 PIPING ACS 93 223.46 YALTES + FITTINGS AC5 9a 223.47 PIPING - RISC. ITE55 AC5 95 223.s8 INSTRUMENTATICW + CONTROL ACS 96 223.55 PI PI NG AC5 97 223.56 YALTES AC5 98 223.57 PIPING - BISC ITEMS AC5 99 223.58 INSTPUnENTATICW + CONTROL ACS 100 223.59 FCUNDATIONS / SKIDS ACS 101 224.11 EQUIPMENT DRAIN TRAIN ACS 102 224.12 HISC 9ASTE TRAIN AC5 103 224.13 DETERGZWT W ASTE TRAIN AC5 los -

2 24.1 a CHEMICAL BASTE TRAIN ACS 105 -

224.19 ST5 GEN RLOUDOWN AC5 106 224.16 REGEN CHEM WASTE TRAIN AC5 107 224.17 MISC RADWASTE EQUIP ACS 108 224.18 INSTRUMENTATION

  • CONTROL ACS 109 -

22a.21 RAD GAS BASTE PROCESS SYS ACS 110 224.31 SOLID W ASTE PROCESSING SYS AC5 111 224.32 TOLUBE REDUCTIQW AC5 112 225.11 CRANES + E0ISTS AC5 113 225.12 FU!L BANCLING TOOLS ACS 11e 2 25.13 TRANSFER SYSTERS ACS 115 225.32 FUEL STOR PGQ'. SERT P LATF M AC5 116 2 25. e1 NET FUEL bTOsAGE R ACKS AC5 117 22!.42 SPE3T FUEL STORAGE R ACKS AC5 118 225.43 SPENT FUEL POCL CLG*PURIF ACS 119 2 25.a 8 IySTPU5ENTATION

  • CONTROL ACS 120 226.11 52/N2 GAS SUPPLY SYS ACS 121 226.31 ROTATING HACHINERY AC5 122 226.33 TANKS AND PRESSURE TESSELS ACS 123 226.35 PIPI NG ACS 124 226.36 TALTES ACS 125 226.37 PIPING-RISC ITE55 AC5 126 226.38 IN STRUMENTATION + CONTROL AC5 127 226.41 CH E5 6 TOLUBE CONTROL AC5 128 2 26. a2 50R05 RECYCLE SYSTEM AC5 129
  • 226.68 I 3 ST RU 5E NTATIO N* CO NT ROL ACS 130 .

226.71 NUC !ERY WTR SYS ACS 131 226.72 PRI C5PWT COOLING WTR AC5 132 226.86 DEC3NTASINATION EQ UIP 5E NT ACS 133 226.87 LAUNCRY ECUIPMENT ACS 13a 226.58 50T CHANGE AREA AC5 135 226.95 PIPING AC5 136 226.96 SAMPLE SYSTER TALTES ACS 137 226.97 PIPING-5ISC ITEss ACS 138

l

. . 1 l

91 226.99 I N ST RUMENT ATIO N* CONT ROL -

. ACS 139 227.11 NSS CCNTROL BOARD AC5 1a0 2 27.1 a R EMOTE SMUTDOWN PANELS AC5 1st 227.15 RfAC PANELS AC5 1a2 227.16 R ADU ASTE P AN ELS

  • RACKS ACS 143 1 - 227.17 LOCAL P ANELS + C ABIN ETS AC5 tem 227.18 INSTPUBENT R ACKS AC5 1a5 227.31 RADIOLOGICAL HON + DATA H NG AC5 1a6 227.32 NEUTRON MONITORING SYSTE5 AC5 1a7 227.33 POST ACCIDENT MONITOR ACS 188 227.3a RE ACTCR DIAC JOSTIC SYSTES ACS 149 227.35 CO NT AINME NT 'TMOSPHERE MON ACS 150 227.36 CONTAINMENT LEAK MONITOR ACS 151 227.37 FAILED FUEL DETECTION ACS 1 52 227.41 REACTOR POWER CONTROL ACS 153 2 27.a 2 RE ACTCR PROTECTION SYSTER ACS 15s 227.e3 ENGR SAFETY FEATURE ACTU AT AC5 155 228.11 FIN AL ALIGNMENT + CHECKING AC5 156 228.12 FIELD PAINTING ACS 157 228,13 QU ALIFICATION OF # ELDERS AC5 158 228.31 PIPE INSULATION ACS 159 228.32 EQUIPBENT INSULATION AC5 160 228.33 NSSS INSULATION AC5 161 231.11 TURBINE FACTORY COST AC5 162 231.12 OTHER TURBINE COSTS ACS 163 231.21 T-G FEDESTAL AC5 164 231.83 TANKS + PRESSURE YESSELS AC5 165 231.85 PIPING AC5 166 231.a6 YALTES AC5 167 2 31.a 7 PIPING-MISC, ITEs5 AC5 168 231.a8 I NSTRUMENT ATION + CO NTROL AC5 169 231.a9 SKID! / FOUNDATIONS ACS 170 231.51 MYDROGEN STORAGE SYSTEM ACS 171 231.52 CARBON DICIIDE STORA GE SYS AC5 172 231.63 TANKS
  • PRESS. T ESS ELS AC5 173 231.65 PIPING ACS 17e

. 231.66 YALTES ACS 175 231.67 PI PI N G-M ISC. ITEMS AC5 176 231.68 INSTRUMENT ATION + CONTROL ACS 177 233.12 BEAT TRANSFER EQUIPMENT AC5 178 233.21 ROTATING MACHINEPY ACS 179 233.23 TANKS S PPESSURE YESSELS AC5 180 233.25 PIPING ACS 181 233.26 YALT!S ACS 182 233.27 PI PI NG-MIS C. ITEMS AC5 183 l 233.28 IN STRUMENTATION + CO NTROL AC5 18e i

233.29 FO UN D A TIO N S ACS 185

! 233.31 CONDENSER GAS RE50TAL SYS. ACS 186 l

2 33.a 1 TURBINE BYPASS SYS. ECPT. ACS 187 l

2 3a.21 ROTATING MACHINERY AC5 188 2 3a.25 PIPING AC5 189 23a.26 YALTES ACS 190 2 3a.27 PIPING-MISC. IT!ss AC5 191 23a.28 INSTPUMENTATION + CONTROL ACS 192 23a.35 PIPING AC5 193 2 3a.3 6 YALTES ACS 19s 23a.37 PIPING-5ISCELLANEOUS ACS 195 23a.38 INSTRUMENTATION + CONTROL AC5 196 2 3a.s1 ROTATING 5 ACHIW!RY ACS 197 2 3a.a3 TANKS

  • PRESSURE YESS ELS ACS 199 2 3a.a5 PIPING ACS 199 2 3a.a6 TALTES ACS 200 2 3a.87 PIPING-MISC. ITEMS ACS 201 23a.a8 INSTPU5ENT ATION + CONTROL ACS 202 235.11 a AIN STE AM SYSTEs AC5 203 2 35.t a 5AIN TAPOR PIPE WHIP RES. ACS 20s

. =

92 235.21 MN STM/ REHEAT TENTS

  • DRNS ACS 205 235.31 ROTATING M ACHINERY ACS 206 "

235.32 RE AT TRANSFER EQUIP 5 INT ACS 207 235.33 TANKS

  • PRESSUPE TESSELS ACS 208 235.35 PIPING ACS 209 235.36 TALTES ACS 210 235.37 PIPING-RISC. IT!MS ACS 211 235.39 INSTPUMENT ATION + CONTROL ACS 212 235.61 ROTATING 5ACHINERY ACS 213 235.63 TANKS AND PRESSURE TESSELS ACS 218 235.65 PIPING ACS 215 235.66 TALTIS ACS 216 235.67 PIPING - RISC ITEMS ACS 217 236.11 BENCBBOARD, P A N ELS + PACKS 2 37.11 PIPE ACS 218 ACS 219 237.12 FIELD PAINTING ACS 220 2 37.13 QUALIFICATION OF WELDERS ACS 221 237.31 PIPE INSULATION ACS 222 237.32 ! QUIP 5ENT INSULATION ACS 223 241.11 GEN LOAD BR!AK SWITCH ACS 224 241.12 G EN NEUTRAL GROUNDING EQPT ACS 225 2a1.13 GEN CUPRE NT+ POT!rFI AL Z FMR ACS 226 241.21 MEDIUM VOLTAGE ME" AL CL AD AC5 227 241.22 STATION MOTOR CONTROL CNTR ACS 228 242.11 UNIT AUZILIARY TRANSFOR9ER AC5 229 202.12 RESERTE AUZILIARY IF5R ACS 230 2 a 2.13 F CU N D ATIO NS FOP IFMRS ACS 231 2a2.21 LOAD CENTER SWITCHGEAR ACS 232 242.22 LOAD CINTEF TRANSFORMERS ACS 233 242.23 3ISCELLANE005 IFERS ACS 232 282.31 BATTIRY SYSTEMS ACS 235 282.32 !MERGENCY DIES EL GEN SYS ACS 236 282.3h INTERTERS ACS 237 243.11 GEN
  • ADI POWER SYS CTRL PNL ACS 238 243.14 GEN PROTECTIVE RELA Y PA NEL ACS 239 243.21 POWER DISTRIBUTION PANEL ACS 240 243.22 BATTERY CNTELS DC DIST PNL 244.11 EQUIPMENT GROUNDING SYSTEM AC5 241 ACS 2s2 2au.12 YARD + STRUCTURE GROUNDING ACS 2a3 245.11 NON= CLASS 1E DDCT BA NKS ACS 254 2 e5.12 CL ASS 1E DUCT B ANKS ACS 245 2a6.11 BAIN CENZI ATOR BUS DUCT ACS 246 2a6.21 EIGH TOLTAGE EUS+ CABLE ACS 2a7 246.22 LOW TOLTAGE BUS + CABLE AC5 288 251.11 TURBINE BUILDING CRA NE ACS 249 251.12 BEACTOR CONTNMT BLDG CFANE Aci 250 251.16 EISC. CR A NIS,80ISTS + 50NO RLS ACS 251 251.17 DIESEL BUILDING CRANES ACS 252 252.11 COMPRESSED AIR SYST!s ACS 253 252.12 CONTAIN BLDG INST AIR SYS ACS 25e 252.21 SERTICE WATER SYSTEs ACS 255 i

252.22 YARD FIRE PROT!CTION ACS 256 l 252.2a ?0 TABLE WATER SYSTZ5 ACS 257 252.31 AUIILIARY BOILER SYSTEM AC5 258 252.32 AUI BOILER FEEDWATER SYS ACS 259 252.33 AUI IDEL CIL SYSTEn AC5 260 252.3a ADI DEAR + BAKEUP SYSTES ACS 261 252.35 AUI CEEM FEED SYST!3 AC5 262 ',

252.36 ADI. STEA.1+ CONDENSATE RETEN AC5 263 252.38 AUI BOILER BLONDOWN ACS 26s 252.39 40% STEAR SYS COMPLETE I+C AC5 265 252.43 TANKS AND PRESSURE T ESS ELS ACS 266 2 52.o g FCUNDATIONs/ SKIDS ACS 267 '

253.11 GEN. PURPOSE TELEPHONE SYS ACS 268 253.15 PA + INTERC05 SYS. ACS 269 253.21 FIRE DETECTION SYST!s AC5~ 270

93 253.22 SECURITY SYSTEM

  • ACS 271 254.11 POSTABLE FIRE EITINGUISHRS AC5 272 25a.22 INSTRU5ENT SHOP APPARATUS AC5 273 255.23 SPEC LAB FURNITURE *FIITURE ACS 27a 2 54.31 OFFICE FURNITURE AC5 275 2 54.a1 LOCK E R$+ B ENCHES AC5 276 254.51 0FF SITE RADIOLOGICAL 50NT ACS 277 254.52 RETEOROLOGICAL 80 NIT. EQUIP ACS 278 254.53 W ATER QUALITY MONITORING ACS 279 25s.5a THEREAL EFFLUENT MONITOR ACS 280 2 5a.55 SEISEIC MCNITORING ACS 281 254.61 CAFEIERIA EQUIP 5ENT ACS 282 261.11 INTAKE STRUCTURE ACS 283 261.12 DISCHARGE STRUCTURE AC5 284 261.21 BUILEING STRU CTUR E AC5 285 261.22 BUILCING SERVICE ACS 286 261.31 B UIL DING STR UCTURE ACS 287 261.32 BUILDING S ER VICE S ACS 288 261.41 BUILEING STR UCTURE ACS 289 262.11 W ATER INTAKE EQUIPMENT ACS 290 262.12 CIRCULATING W ATER SYSTEM AC5 291 262.13 COOL ING TOWERS AC5 292 262.15 MAIN CT. MAKEUP +BLOWDN SYS. AC5 293 9 11.11 FI EL D O F FICE. S HOP S, W H SE . ACS 294 9 11.12 JANITCR SERTICES AC5 295 911.13 GUARDS - SECURITY ACS 296 911.21 RO AD!,P ARKING,LAYDOW N ARE A ACS 297 9 11.22 TEMPORARY ELECTRICAL SUCE ACS 298 911.23 T!5POR ARY EECH. 5 PIPING ACS 299 9 11.2s TEMFCRARY HEAT ACS 300 911.26 GENERAL CLEANUP ACS 301 9 12.11 POPCHASE MAJOR EQUIPMENT ACS 302

.- 912.13 EQUIP 5ENT MAINTENANCE ACS 303 9 12.14 FUEL + LUBRICANTS ACS 30s 932.61 RC5E CFFICE AC5 305 932.62 FIELD ACS 306 I

l l

s l

95 Appendix B CONIAM AUXILIARY PROCPAM l

l l

i

(.

97 CONLAM AUXILIARY PROGRAM Auxiliary program CONLAM is used to generate the data file, LAMA, containing information on historical factory equipment, craft and white collar labor, and site-related materials costs for the 23 cities shown previously in Fig. 4.1. Data for other locations can also be entered through this program as they become available. However, normal applica-tion of CONLAM will be limited to updating cost data for the existing 23 cities at regular time intervals. Six-month intervals have been used; however, other time intervals are acceptable. The LAMA file currently contains 15 years of historical data.

Factory equipment data are obtained from the U.S. Department of Iabor, Bureau of Labor Statistics, and are the same for all locations, reflecting the limited market. The items used are given on the following page. Craft labor and site materials data for the 22 actual cities are obtained from D2gineering lleus-Record. The hypothetical Middletown site is a composite of Boston, New York, and Philadelphia weighted equally.

The craft labor and materials items are listed on the following page.

Data can be read for a maximum of 30 time periods, as specified by

, the user, for each of the 22 actual locations. The hypothetical Middle-l town site is generated internally by the CONLAM program. At the user's

'ption, data can be read either from cards alone when initially generat-l ing a file (variable IRMOLD=1) or from an existing file in card images with update cards when updating or modifying an existing file (IRMOLD=0).

In either case, one new file is produced in card images and another file is written in unformatted binary records. It is the unformatted binary record file (LAMA) that is used by the CONCEPT program. Options also exist for punching card decks of the data stored on the file and for producing the following listings: (1) card image output and (2) tabular output for equipment, labor, and materials for each site in the file.

The program is designed to eliminate automatically the oldest time period as each new period is introduced, or it will add a new period if there are less than 30 total periods.

The program uses two wage duplications, as follows, by option of the user: (1) boilermaker wages are duplicated from steamfitter wages, and l

l l

l

98 (2) other crafts' wages are dupl'icated from bricklayer wages. This is done since D.'gineering lleus-Record 16 does not include boilermaker wages or a combination of other craf ts' wages. An option flag for both labor categories permits using data punched into standard input cards.

The remainder of this Appendix consists of a description of the input data requirer.r.ats and a FORTRAN listing of the CONLAM program.

(*dhen updating an acisting file, Card 2 is not used; hence, the update card deck order must correspond to the city order of the old card image file.)

G

CONIRI input card description Variable Card Column name Description 1 1-5 NOPER Number of actual data points stored on file, less than or equal to MAXREC. Format 15 6-10 ftAXREC tiaximum number of t ime periods on file for each location, not to exceed 30. Format 15 11-15 NCITY Humber of locations on file, presently 23.

Format 15.

16-20 IRN01.D Flag for type of input. Format 15 0 - Update existing master files 1 - Establish new master files from card input 21-25 IPUNCII Flag for card output. Format 15 0 - Omits card output 1 - Produces card deck $

26-30 NOLIST Flag for listing card images. Format 15 0 - Produces list 1 - Omits list 31-35 NOREF Flag for table output. Format 15 0 - Produces table 1 - Omits table 36-40 IBlJtKR Flag for boilermakers' wages. Format 15 0 - Uses steamfitters' wages 1 - Bo11ermakers' wages must be supplied in B(15) 41-45 10CRFT Flag for other crafts' wages. Format 15 0 - Uses bricklayers' wages 1 - Other crafts' wages must be supplied, in B(16) 2 3-4 IC City number (see Fig. 4.1). Format 12 7-8 IS Site number (not used by CONCEPT). Format 12 11-12 IR Region number (not used by CONCEPT). Format 12 I

i

CONLAH it put card description (continued)

Variable Card Column name Description 17-48 LOC Location (alphabetic) (see Fig. 4.1). Format BA4 3 1-10 A(1) Date (e.g., 1978.5). Format F10.2 11-20 A(2) Wholesale price index for steel mill products, Code 10-13 Steel Hill Products, "Honthly Labor Review," bureau of Labor Statistics. Format F10.2 21-30 A(3) Hourly earnings index in the electrical equipment and supplies industry. Data from " Employment and Earnings," Bureau of Labor Statistics SIC Code 36 Electrical Equipment and Supplies. Thf3 number has been normalized so that the index for 1967 is 100. This was done by multiplying the s BLS data by 100/2.70. Format F10.2 8 31-40 A(4) Hourly earnings index in the steam engine and tur-bine industry. Data from " Employment and Earn-ings," BLS, SIC code 3511 Steam Engines and Turbines. This has also been normalized by multiplying the BLS number by 100/3.50 so that the index for 1967 is 100. Format F10.2 41-50 A(5) White collar wage index. Data from " National Survey of Professional, Administrative Techni-cal, and Clerical Pay," BLS. This data has been converted from a percent annual increase to an index based on 1967=100. Format F10.2 The following cards use a format of 8F10.2 4 1-10 B(1) Hourly rate for building labor 11-20 B(2) Hourly rate for heavy construction labor

.l 1

a

CONIJul input card description (continued)

Variable Card Column name Description 21-30 B(3) Ilourly rate for bricklayers 31-40 B(4) llourly rate for carpenters 41-50 B(5) llourly rate for structural tronworkers 51-60 B(6) llourly rate for plasterers 61-70 B(7) llourly rate for electrical workers 71-80 B(8) llourly rate for steamfttters 5 1-10 B(9) llourly rate for operating engineers 11-20 B(10) llourly rate for small tractor operators 21-30 B(ll) llourly rate for scraper operators 31-40 B(12) llourly rate for crane operators

  • P 41-50 B(13) llourly rate for air compressor operators 51-60 B(14) liourly rate for truck drivers (<4 yd 3) 61-70 B(15) llourly rate for boilermakers. Steamfitters' wages used 71-80 B(16) llourly rate for all other crafts. Bricklayers' wages used 6 1-10 C(l) Platerial costs for channels, $/100 lb 11-20 C(2) Haterial costs for I-beams, $/100 lb 21-30 C(3) Haterial costs for W-flanges, $/100 lb 31-40 C(4) Haterial costs for re-bars, $/100 lb 41-50 C(5) }L1terial costs for 3000-psi Redimix concrete, '

$/yd 3

l I

CONLAN input card description (continued)

Variable Card Column name Description 51-60 C(6) Haterial costs for 3/4-in. B-B plyform, $/1000 ft2 61-70 C(7) Haterial costs for 2 x 4 fir or pine lumber, i

$/1000 bd ft l

71-80 C(8) Land coefficient, Input 1000.00 7 1-80 C(9-16) Unassigned o

i

~

)

i 9

3 4 4

103 C CLAM 10 C======================================================================CLA5 20 C l lCLAs 30 C1 C0NLA 5 PR0G RA 5 ICLA5 40 Cl PHASE 5 ICLAs 50 C l l CLAM 60 C1 (CONSTRUCTION 50 DEL EQUIP 5ENT,L ABOR, AND B ATERIAL COSTS) I CLA M 70 C l AUTHOR: R. J. BARNARD ICLAM 80 C I J ULY 1972 - R EVISED SEPT. 1975 ICLAM 90 C l 50DIFIZE BT : C. P HUDSON 3 CTOB ER 1977 ICLAM 100 Cl OAK RIDGE N ATION AL L ABORATORY lCLAs 110 C l lCLA5 120 C====================================================================== CLAM 130 C1 ICLAs 140 C I COST DATA ARE T AKEN FROM THE 5 AG AZINE " ENGINEERING NESS RECORD" (CLAM 150 Cl ( EN R) EVERY JULY AND JANU ARY FOR SELECTED L ABOR AND BATERIALS. ICLAn 160 C I EQUIPMENT D ATA ARE OBTAINED FROM U.S. DEPT. OF LABOR, BU R EAD OF lCLAs 170 C l L ABOR STATISTICS. A HYPCTHETICAL CITY C ALLED =MIDDLET09N = H AS l CLAM 180 Cl BEEN GENEBATED FROM AN EQU AL WEIGRTED MII 0F BOSTON, NE2 YORK, ANDICLAs 190 C l PHILADELPHIA DATA TO APPPOIIMATE A TYPICAL NORTHEA STERN CITY. ICLAs 200 Cl lCLAB 210 C====================================================================== CLAM 220 C CLAM 230 C====================================================================== CLAM 240 CI ICLAs 250 C I ' =* N.B. SINCE THE COST DA TA IS POSITIONALLY DEPENDENT FOR ICLAs 260 C l COPRECT PP0 CESSING AND SINCE THERE IS NO IDENTIFICATION PUNCHED INICLAN 270 C 1 THE D AT A CA RDS, AN OLD CARD IMAGE FILE (MOLD) AND A NEW CARD I5AGEICLAM 280 C i FILE (NEW) ARE M AINT AIN ED IN THE CORR ECT CARD SEQUENCE UMICH WILL l CLAM 290 Cl P ER5IT REPUNCHING A MASTER CARD FILE IN TH E EVENT THE ORIGIN AL lCLAs 300 C l C ARD FILE IS COMPR05ISED. *** lCLAs 310 C1 lCLAs 320 C======================================================================CLAs330 C CLAs 340 DIMENSION LOC ( 8) , D (30,8) , F (30,16) , F(30,16) CLAM 350 DIM EN SION DI(3 0,8) ,E Y ( 30,16) , F I (3 0,16 ) , MI DDLE (8) CLAR 360 DATA I,J.K/0,0,0/ CLAs 370 DATA MIDDLE /' USA ',' ',' ', ' ' , ' nID D' , ' L ETO ' , ' U N '

, CLAM 380 1 * '/ CLAs 390 C CLAM #00 C======================================================================CLA5 410 C1 lCLA5 620 C l FILE N AMES ICLAs a30 C1 (CLAa ma0 C l M ASCON = CONLA M UNFORM ATTED MASTER COST FILE I CL An a50 C1 INP = SYSTEM INPUT FILE l CL A s 460 C I IOPT = SYSTEM OUTPUT FILE lCLAs 470 C l IPON = SYSTEM PONCH FIL E l CLAM a80 Cl N EW = UPDATED FORMATTED EQUIP L ABOR & M ATLS MA STER l CLAN a90 C I MOLD = OLD FORMATTED EQUIP LABOR S MATLS MASTER ICLAs 500 C l lCLAH 510 C ============================'========================================= CLAM 520 C CLA5 530 MASCON =9 CLAM Sa0 INP = 5 CLAM 550 IOPT = 6 CLAs 560 IPUN = 7 CLA5 570 NEW = 8 CLA 5 580 MOLD = 4 CLAs 590 C CLAs 600 T======================================================================CLA5610 C1 (CLAs 620 C l PR0CR A 5 0PTION 5 & I NPOT T A RIA BL ES l CLAM 630 l

1 I

I l

l ICM ,

1 C l NOPER FOR BAT I5 IN COL. 1-5 ICLAs 640 C1 l CLAM 650 C I NCPER = NUMBER OF TI5Z-PERIODS FOR 95 ICE DATA IS AT BAND lCLAs 660 Cl INCLUDING THE UPDATE TIME-PEEIOD. ICLAN 670 C1 CLAM 680 C=====================================================================l CLA5 690 C1 ICLAN 700 REWIND NET CLA s 710 C

C======================================================================CLAs720 CLA5 730 C I ICLAR 740 C I MAIREC FORMAT IS IN COL. 6-10 ICLAs 750 CI HAIREC = ARSITRARY NUMBER OF TI5E-PERIODS IN THE C3ST DATA ARRAT. ICLAs 760 C l C======================================================================ICLAs770 CLA5 780 C

CLAs 790 REWIND ROLD CLAs 800 C

C======================-=============================================CLAs810 CLA5 820 C I (CLAR 830 CI WCITY FO R M AT I5 IN COL. 11-15 ICLAs Sa0 CI l CLAN 850 C l NCITY = NUMBER OF CITIES IN THE CITY SET WHICE IS CURREN2LT LIMITEDI CLAs 860 C I TO THOSE CITI!S NAMED IN THE ENR DATA PLUS THE C05FUTED T ALU ES FOR I CL A N 870 C l HIDDLETCBN, US A, R AKING A TOT AL O F 23 SETS. ICLAs 880 C1 CLAN 890 C======================================================================l CLA5 900 C CLAs 910 REWIND HASCON CLAN 920 C

CI====================================================================lC C1 CLA5 9eO ICLAH 950 C I IRHOLD FOR5AT I5 IN COL 16-20 (CLA5 960 C1 lCL As 970 -

C l IRHOLD DETER 5INES WEETHER AN OLD FORM ATTED HASTER FILE IS USED l CLAN 980 Cl FOR INPUT OR A BASTER CARD FILE DECK IS USED. ALL M ASTER FILES OB ICLAs 990 '

C I ?5E FILE NEEDED TO WRITE EASCON FILE 5057 BE CREATED FR05 A H AST- l CLA51000 C l ER CARD CECK TILE. ICLA51010 C l IRMOLD = 0 UPDATE EXISTING M ASTER FILES ICLA51020 Cl IR50LD = 1 EST ABLIS E N EW 5 ASTER FILJS ICLA51030 CI lCLA510n0 C===================== ============================================CL451050 C CLA51060 READ fI NP,500) NOPER,5 AIR EC, NCITY, IR50 LD,IF UNCH, NO LIST,50 B EF , CLA51070 1 IBL5KB,IOCRFT CLA51080 C CLA51090 l C=-=-===--=-======-===-======-=======-=====================CLA51100 C1 lCLA51110  ;

C I ' IPUNCE FORR AT 15 IN COL. 21- 25 1CLA51120 '

C1 ICLA51130 C l OPTION TO PUNCE AN ALTERED CARD DECK CF COST TALUES WHEN AN OLD lCLAsttu0 1 C I DATA SET IS USED FOR INP UT A ND A NEW DATA SET IS TO =E GENERATED lCLA51150 J C 1 WITH CORRECTIONS FOR A NEW TERSION OR RETISION OF THE MODEL. ICIA 51160

( C1 lCLA51170 CI IPUNCE = 0 SKIPS THE PU NCEING OF NEW CARDS . ICLA51180 C I IPUNCE = 1 PRODUCES A NEW DECK OF CITY COST D ATA CARDS AS ALTER ED I CL A51190 C ( BT THE PROGR AS LOGIC. ICLA51200 C1 CLA51210 C======================-==============================================(CLA51 C

CLA51230 C

CL A 512a 0 C======================================================================CLA51250 Cl lCLA51260 -

C1 NCLIST FOR5AT I5 IN COL. 26- 30 ICLA51270 i CI NOLIST = 0 PRODUCES NORBAL CARD LIST FOR E ACE CITY ICLA51280 l C l NCLIST = 1 50 CITY CARD LIST IS PPODUC2D. I CL A51290 l

105 C I I'CLAR1300 C 1. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ I C L A M 1310 C I NOREF FORMAT IS IN COL. 31-35 (CLA51320 C l NOPEF = 0 PRODUCES NOR5AL COST REFERENCE T ABLES FOR EACH CITY lCLA51330 C 1 NCREF = 1 REFER ENCE TABLES ARE 05ITTED. ICLA51340 C l C======================================================================lCLA51350 CLA51360 C CLA51370 WR ITE (IOPT, 502) NOPER ,5 A IREC, NCITY,I R MOLD ,IPU NCH, NOLIST, N OREF, CLAM 1380 1 I5L5KR, IO CR FT CLA51390 00 3 I=1,MAIREC CLA 51400 Do 3 J=1,16 CLAnla10 IF (J . L T. 9 ) DI (I,J) = 0.0 CLA51a20 EI(I,J) = 0.0 CLAsta30 FI(I,J) = 0.0 CLAstau0 3 CONTIN 0E CLAsioSO

! IF (I R ECLD. GT. 0) GO TO 20 CLAN 1860 WRITE (IOPT,504 ) CLA51a70 C CLAN 1a80 C======================================================================CLA51490 C1 ICLA51500 C I THE FOLLOUING ROUTINES UPDATE AN OLD M ASTER TAPE WITH AN INPUT FILEICLAM1510 C( CARD DECK OF RECYNT COST DATA FOR EQUIP.,L ABOR, & EATERIAL. I C LA R1520 C1 C======================================================================lCLA51530 CLAM 1540 C CLA51550 Do 18 K = 1,NCITY CLA51560 t

C======================================================================CLA51570

( C l l CLAN 1580 C l FOR UPDATING AFTEP NOPER REACHES MAIREC, THE D, E. AND F ARR AIS ICLA51590

  • C I ARE KEPT THE SAME SIZE BY DROPPING THE EARLIEST COST PERIOD FOR A lCLA51600 C l MAIIMUM OF THIRTY (30) PERIODS. THIS IS DONE IN THE =DO LOOPa CLA51610 C l STAPTING WITM CARD #CLA M1870 THRU CARD 8 CL A51960, A ROUTINE CLA51620 C l WRICH POSITIONS THE SECOND AND FOLLOVING PERIODS OF OLD DAT A IN l CL A 51630 i C I TRE FIRST AND FOLLOWING ARR1Y LOCATIONS AND ZERCES THE MAIREC ICLA51640 l- C l LOCATICP FOR STORAGE OF THE kJE PERIOD DAT A TO BE ADDED. ICLAM1650 l

1 C I C======================================================================lCLAR1660 CLA51670 C CLA51680 C CLA51690 C======================================================================CL451700 C l lCLAs1710 C7 C l R EAD IN ONE CITT DATA SET FROM OLD 5 ASTER FILE ICLAB1720 T I CLAM 1730 C======================================================================l CLAM 1740 C CLA51750 R EA D (50LD,510) IC, IS, IR, LOC CLAR1760 U RITE (N EW , 510) IC, IS, IR, LOC CL A n 1770 l

U RITE (ICPT,512) IC, IS, IR, LOC C LA M1780 Do 2 I = 1,MAIREC CLAM 1790 l R EAD (MOLD,508) (D (I,J) ,J=1,8) CLAB1800 l

R EA D (MOLD,500) (E (I,J) ,J=1,16) CL A M1810 RE A D (McLD,508) (F (I,J) ,J=1,16) CL A M 1820 l

F (I,8) = 1000. CLA M1830 IF (I. GT. N O PER) F (I,8) = 0.0 CLA518a0 2 CONTINUE CLA51850 IF (N O P E R .LT. 3 0) GO TO 8 CLAs1860 DO 6 I = 2,n AIR EC CLAM 1870 l Do a J = 1,16 CLAM 1880 l

IF (J. LT. 9 ) D (I-1, J) = D(I, J) CLA51890 E (I- 1, J ) = E (I,J) CLA51900 F (I- 1, J) = F (I, J)

CLA51910 IF (I. IQ.M AIR EC. AND.J. LT. 9) D g , J) = 0.0 CLA51920 IF (I. !C. M AIR EC) Z(I,J) = 0.0 CLA51930 IF (I. EC. 5 AIREC) F (I, J) = 0.0 CLA51980 l

4 CON TIN UE CLA51950 l

I i

i

106 6 CONTINUE C CLA51960 CLA51970

======================================================================cLAg19g0 C1 (CLA51990 C l N0TICE NOTICE N0TICE NOTICE N O ! I C ECLAs2000 l

C I ICLA52010 C l BEGIN THE UPDATE FOR A CITY IF IT IS NOT MIDDLETONN lCLAE2020 \

C1 C======================================================================ICLA52030 CLAs20a0 C

CLA52050 8 IF (K.EC.23) GO TO 10 CLAE2060 C

C======================================================================CLAs2070 CLAs2080 C1 lCLA52090 Cl S ARPLE UPDATE DECK INPUT FORs AT l CLA 52100 Ci (FIRST CITY IN UPDATE DECK) I CLA s2110 C

C 1975.5 CLAs2120 195.50 170.74 162.57 168.70 0.0 0.0 0.0 C 5.95 5.95 9.s6 9.12 9.19 9.02 11.27 9.94 C 8.97 8.52 8.87 8.87 6.95 5.85 9.9a 9.m6 C 19.25 18.55 19.25 17. 0 0 23.25 3a9. Isa. 1000.00 C 0. O. O. O. O. O. 0.0 C=======================================================O. ===============CLA52180 C1 lCLAs2190 CI ( A BLANK CARD IS USED WsERE ONLY ZERCES ARE TO BE PUNCRED SINCE ICLAE2200 C i H ATERIAL COSTS ARE NOT TET BEING STORED IB F(I,J) ,J=9,16) ) I CL As2210 C1 C======================================================================ICLAs2220 CLA52230 CC======================================================================CLA52240 CLA52250 C l ($ZCOND CITY IN UPDATE DECK) ICLA52260 Cl ICLA52270 '

C 1975.5 195.50 170.7a 162.57 168.70 0.0 0.0 0.0 7.12 C 7.14 10. 57 10. 24 11.16 9.20 10.50 11.13 C 9.63 9.63

  • 9.63 10.18 8.22 7.99 11.13 10.57 C 19.85 19.75 19.15 17.50 30.10 325. 165. 1000.00 C 0. O. O. Q. O. O. O. 0.0 C1 CLAE2330 C======================================================================lCL C

CLA52350 RE AD (INP,5 08) (D (NOPER ,J) ,Jm1,8) CLAs2360 WEITE (ICPT,522) (D (NOP ER ,J) , J= 1, 8) CLAs2370 READ (I NP,5 08) (E (NO PER.J) ,J- 1,16) CLA52380 IF (IO CE FT.LT.1) E (50 P ER ,16) = E(NCPER,3) CLA52390 IF (IB LsKR .LT.1) E (50 P ER,15) = E (NOPER,8) CLAs2800 WRITE (IOPT,522) (Z (30PER ,J) ,J= 1,8) CL AE 2410 WRITE (ICPT,5 22) (E (NOP ER,J) ,J=9,16) CLA52420 READ (I NP,508) (F (50PER,J) ,J= 1,16) CLA52s30 F ( NOPER,8) = 10 0 0. CLAE2aa0 l

WRITE (IOPT,522) (F (NOP ER ,J) ,J= 1,8) CLAs2s50 WRITE (IOPT,522) (F (NOPER,J) ,J=9,16) CLAs2460 IF ( K. 3E. a. A ND. K. NE.15. AN D. K. NE.16) GO TO 14 CLA52470 DO 9 J=1,16 CLA52a80 IF (J . LT . 9 ) D I (50P ER ,J) = DI (NOPER,J) + D(50PER,J)/1. CLA s2890 ET (NOP !R,J) = EI(NCPER ,J) + E (NC PER ,J) /3. CLAs2500 FT (NOP ER ,J) = FI(NOPER ,J) + F (50PER,J) /3. CLA52510 9 CONTINUE CLA52520 GO To is CLAs2530 -

C C CLAs25a0 CLA52550 C=====================================================s================CLAs2560 C I ICLA52570 -

C I SEGIN UPD ATE FOR HIDDLETOW N USING PR ETIQUS PERIOD D ATA A ND dOST (CLAs2580 Cl P ROJ ECTION F ACTOR S. ICLAs2590 C1 CLAs2600 C=====================================================================lCLAa f

107 C CLA52620 10 CONTINUE CLAE2630 Do 12 J=1,16 CLAN 26a0 IF (J.LT.9) D(NOPER,J) = DI(30PE R,J) CLA52650 E(50PER,J) = EI(50PER,J) CLA52660 F ( NO P E R ,J) = FI(50PER,J) C LA 52670 12 CONTIN 0! CLA52680 WRITE (IOPT,522) (D (NO PER , J) , J= 1, 8) CLAM 2690 WR IT!(IOPT,522) (E (N0PER,J) ,J=1,8) CLAR2700 WPITE(IOPT,522) (E (NO P E R ,J) ,J=9,16) CLA52710 WR ITE (IOPT,522) (F (NO P ER , J) , Ja 1, 8) CLA M2720 WRITE (IOPT,522) (F (30PER ,J) ,J=9,16) CLA52730 C CL A 527a 0 j C====================================================================== CLAN 2750 CI ICLA52760 C I COMPLETED CITT UPDATE NOW STORED ON NEW FORsATTED MASTER FILE. ICLAM2770 C i I CL A 52780 C======================================================================CLAR2790 C CLA52800 la Do 16 I = 1, M A IR EC CL A52810 WRITE (N EV,508) (D (I,J) ,J=1, 8) CLAM 2820 WPITE ( N EW ,50 8) (E (I,J) ,J= 1,16) CLA52830 WRITE (NEW ,508) (F (I,J) ,J= 1,16) CLA s28a 0 16 CONTINUE CLAM 2850 18 CONTINUE CLA52860 GO To 32 CLAs2870 C=======================================================================CLA52880 C l ICLA52890

[

Cl START RERE FOR READING ENTIRE CARD FILE lCLA52900 C l lCLA52910 C=======================================================================CLAM 2920 20 NC = NCITI - 1 CLAM 2930 DO 30 K=1, NC CLA52920 R EA D (INP,510) IC, IS, IR, LCC CLA M2950 C CLA52960

. C l lCLA52970 C======================================================================CLA52980 C1 lCLA52990 C l R EAD IN ONE CITY DATA SET FROM A B ASTER CARD DECK INPUT FILE l CL As3000 C l lCLA53010 C======================================================================CLA53020 C CLAs3030 W RITE ( N EW , 510) IC,IS,IP, LOC CLAN 3050 WPITE(ICPT,512) IC, IS, IR, LOC CLAs3050 Do 22 I = 1,50PER CLAH3060 R E A D (I NP,5 0 8) (D (I,J) ,J= 1,8) CLAE3070 R EA D (IN P,5 0 8) (E (I,J) ,J= 1,16) CLAH3080 IF (IBLMKR.LT.1) Z (I,15) = E (I,8) CLAs3090 IF (IOCRFT.LT.1) E(I,16) = E (I,3) CLAs3100 RE AD (I NT,5 0 8) (F (I,J) , J= 1,16) CLAs3110 FfI,8)=1000. CLAM 3120 22 CONTINUE CLA53130 IF (M AIREC.EQ.NOPER) GO TO 26 CLAM 31a0 NE = NOPER + 1 CLAs3150 DC 2 a I = NZ,5 AIREC CLA53160 Do 2a J = 1,16 CLAN 3170 CLAM 3180 IF (J . L E . 8 ) D (I,J) = 0.0 E(I,J) = 0.0 CLA53190 Y (I, J) = 0.0 CLA53200 2a CONTINUE C LA 33210 26 Do 28 I = 1,5AIREC CLA53220 WRITE (N EW ,509) (D (I,J) ,J= 1, 8) CLAN 3230 WPITE (N EW,508) (E (I,J) ,J=1,16) CLA532a0 WRI?!(N Zv,508) (F (I,J) ,J=1,16) CL A 53250 28 CONTINUE CLAs3260 Cl D ATA GENERATION FOR HIDDLETOWN lCLA53270

108 IF (K. N!.4. AN D. K. NE.15. A ND. K. NE.16) GO TO 30 C LA 53280 *;

Do 29 I=1,5AERIC Do 29 J=1,16 CLAM 3290 IF (J. LT. 9) DI(I,J) = Et (I,J) + D (I,J) /3.

CLA53300 CLA53310 EI[I,J) = EI (I,J) + E (I,J) /3. j CLAM 3320 FI(I,J) = FI II J) + F (I,J) /3.

29 CONTINUE C LA M3330 -

30 CONTINUE CLA53340 CLAM 3350 C l 5IDDLETCWN GENERATION l CLAM 3360 IC = 2 3 CLA53370 IS = 1 '

IR = 1 CLAM 3380 CLAM 3390 WRITE (N EW,510) IC, IS, IR , HIDDLE CLAH3400 WRITE (IC PT,512) IC, IS, IR, MIDDLE CLAM 3410 Do 31 I=1,HAIREC CLA53a20 WRITE (NEW,508) (D I (I ,J) ,J= 1, 8) CLAMJo30 WRITE (NEW,508) (E I (I,J) ,J=1,16) CLA53as0 WiITE(NEW,500 ( FI (I, J) ,J= 1,16) CLAM 3450 31 CONTINUE C C LA M3460 CLAs3a70 C====================================================================== CLAM 3480 C 1 ICLAM3a90 C I WRITE NEW FORS ATTED 5 ASTER FILE HERE TO ORIGINAT! A TAPE RASTER l CLAM 3500 C l C======================================================================ICLAs3510 C CLAM 3520 C CLAM 3530 CL A M35a 0 C====================================================================CLA53550 C l l CLAM 3560 C I BOTH UPD ATE NETHODS, FROM TAPE OR FROM CARD, CONWERGE AT THIS ICLA53570 Cl POINT AND FOLLOW -THE S A EE PATH OF WRITING AN UN FDR M ATTED M A STER ICLAE3580 C l USED IN THE MODELING PROGR AM WITHOUT CONTINUALLI ENDA NGERING THE lCLA53590 C I T APES USED FOR UPDATING THE COST DATA. SINCE THE COST DAT A CARDS ICLA53600 Ci NOR THE TAPE E! CORDS ARE IDENTIFIED UNIQUELI, BUT ARE IN UNIQUI lCLA53610 C

C1I POSITIONS IN THE DATA SET AND IN EACH CITI RECDRD IN EACH PERIOD. ICLA53620 CLAN 3630 C======================================================================l CLAM 3680 C

CLA53650 32 END FILZ NEW CLA53660 REWIND NEW WRITE (IOPT,516) CLAH3670 C CL A H3680 CLA53690 C====================================================================== CLAM 3700 C1 (CLA53710 C ll C READFILE NEW FORMATTED 3 ASTER FILE A ND WRITE NEW UNFORM ATTED 5 AST ER l CLAM 3720 Cl lCLAs3730 C======================================================================ICLAM3740 C CLA 53750 Do 38 K = 1, NCITI CLAN 3760 CLA53770 READ (NEW,510,END=40) IC, IS, IR, LOC CLAM 3780 IF (IPUNCE.CT.0) W R r!E (IPUN,510) IC, IS, IR, LOC CLAM 3790 WRITE (ICFT,518)

CLAN 3800 WRITE (ICPT,520 ) IC, IS, IR, LOC CLAN 3810 DO 36 I = 1,5 A IR EC CL A53820 REA D (N EW,5 0 m (D (I,J) ,J=1,8) CLA53830 REA D (NEW,503) (! (I,J) , J= 1,8) CLA53840 R EAD (NEW ,508) (E (I,J) ,Ja9,16) CLA53850 R EA D (N EW,508) (F (I,J) , J= 1,8) CLAN 3860 R EA D (N !W,50 8) (F (I,J) ,J=9,16) CLA53870 C

CL A M 3880 ,

C======================================================================CLAnJ890 C1 j

- lCLAE3900 l C l DO IOU WANT A NEW DECK PUNCHED WITH A CH ANGED DATA SET 7??? IF So I CL A 53910 C l M AKE CHANGES BEFORE BUT PUNCH THE CARDS HERE. ICLA53920 CI lCLA33930 1

l

109 C======================================================================CLAE3940 i- C CLAK3950 IF (I.GT.NOPER) GO TO 34 CLAs3960 IF (IP UNCH. GT. 0) WRITE (IPUN,508) (D (I ,J) ,J=1,8) CLAs3970 IF (IP U 3CB. GT. 0) W RIT E (IPUN,508) (!(I,J) ,J=1,8) CLAH3980 IF (IPU NCH. GT. 0) WRIT E (IPUN,508) (!(I,J) ,J=9,16) CLA R3990 IF (IPUNCH.GT.0) WRIT E (IPU N,508) (F(I,J) ,J = 1,8) CLAna000 IF (IP UNCH .GT. 0) VRITE (IPUN,508) (F (I,J) ,J=9,16) CL Ase010 34 IF (NO LIST . GT. 0) GO TO 36 CLAH4020 BRITE (ICPT,522) ( D (I, J) , J= 1, 8) CLA54030 WRITE (IOPT,522) ( E (I, J) , J= 1, 8) CLAEp0a0 WRITE (IOPT,522) (E (I,J) , J= 9,16) CLAsa050 WRITE (IOPT,522) (F (I,J) , J= 1,8) CLAMe060 W PITE (ICPT,522) ( F (I, J) , Ja 9,16) CLAue070 36 CONTINUE CLAse080 WPITE (5 A SCON) IC, IS, IR, LOC, D, E, F CLAse090 38 CONTINUE CLAs4100 40 REVIND NEW CL A58110 END FILE MASCON C LA st 120 REWIND HASCON CLA M4130 C CLANS 180 C======================================================================CLAne150 C l l CL A M4160 C 1 P EAD NEW UNFORM ATTED MASTER FILE TO PRODUCE COST RE?ERENTE TABLES lCLA p4170 Cl FOR ZACH CITY AND ALSO PROTE TH AT DAT A IS ON THE DATA SET. ICLAMt180 C I ICLAM4190 C====================================================================== class 200 C CLA54210 IF (NOREF.GT.0) GO TO 52 clasp 220 DO 50 K=1,NCITY . CLAMa230 R EAD (M A SCON) IC IS, IR, LOC, D, E, F CLAM 4240 BRITE(IOPT,514) IC, IS, IR, LOI CLAM 4250 DO So I=1, N0PER CLAs4260 Sa WRITE (I0pT,532) ( D (I, J) , J= 1, 5) CLA5e270 WPITE (IOPT,524 ) IC, IS, IR, LOC CLAme280 DO 40 I=1,NOPER CLAM 4290 TR = D (I,1) -

1900. class 300 at WRITE (ICPT,326) (E (I, J) ,J= 1,16) , f R CLAM 4310 W RITE (ICPT,528 ) IC, IS, IR, L OC CLAM 4320 DO u8 I=1,NOPER CLAsu330 48 WRITI(IOPT,530) (F (I,J) ,J=1,8) ,D (I,1) CLAs#3a0 50 CONTINUE CLAM 4350 52 STOP CLAM 4360 500 FORM AT (9IS) class 370 502 FOR5 AT (* 1' ,T20,'O P T I 0 N S S E L E C T E D e,/ class 380 1' 0' , T20,' D ATA NOW AYAILAB LE FOR (NO PER) PERIODS = ' ,IS,/ CLAs4390 1'O', T20,'H AZI50M P ERIOD S POSSISLE (MAIREC) = ',IS,/ CLAsse00 1'0',T20,'MAII50M CITY GROUPS (NCITY) = ' , IS, / CLA M4410 1'0' ,T20,'IR50LD = 0 US ES T APE OLD H ASTER: = 1 CARD DECK MASTER =', CLAsus20 1I5,/ CLAnna30 1' 0' , T2 0,'IPUNCM = 0 NO CA RDS PUNCHED : =1 CARD DECK PUNCR ED =',IS,/CL AManu 0 1 '0 ', T20, 'NOLIST = 0 STA ND A RD LIST OF DAT A BY CITY =',IS,/ CLAN #450 1 '0 ',T20,'NOREF = 0 ST A NDARD COST TABLES BY CITY = ',IS,/ CLANse60 1 ' 0 8 , T2 0, ' I B L5 K R= 0 BOILERM AKER = STIAMFITT!R WAGES =',IS,/ CLA Mu a 70 1' 0' ,T2 0,'IOCRFT = 0 OTHEPCRA FTS = BRICKL AYER W AGES =, ' I5,/T1,' 1' ) CLA ssa80 504 FORM AT (' 1' ,T20,' LISTED CITY N AMES FP05 "McLD= T APE AND C ARDS FROM CLAnna90 1THS UPD ATE CECK',/) CLAMS 500

  • 508 FOR M AI(S F10. 2) CLAsa510 510 FOR M AT (3 (II,I2) , aI,8 As) CLAstS20
512 FORM AT (' ',3I5,7I,84u) CLA Me 530 l 51a FORM AT('1 CITY ' ,I2,T15, ' STA TE 8,I2,T2 a , ' R!GION 8 ,I4, CLAne540 l 1T60,9Aa/* ',T50,'F A C T 0 R Y EQUI PMENT D A T A',101,CLAse550 l 1 '19 67= 100 '/ ' + ', T50, a 3 ('_' ) /' ', T16, ' W ROLESALE PRICE INDEI 8,747, CLA Me560 l 1 'HOU3LY EARNINGS INDEI ',T77,' HOURLY EARNINGS INDEI 8,T107, CLA Mu S70 l 1 ' SALARY IND!I-'/' ',TS,' DATE ' , T16, ' STEEL BILL PRO DUCTS' ,T87, CLAse580 1 ' EL EC .! QUIP S SUPPLIIS' , T77,'ST3.Z NG. & TUR 5INES ' ,T 107, ' PROFESSIO CL A M4 590 l

l

. =

110 l

1NAL 5 CL !? ICAL '/' * ', T5,6 (',') ,T15,21 (' .' ) ,T t6,24 (' _') ,T7 6,21 (' _') , CL A se60 0 1 T106,25(*_ ') ) CLA no610 516 FOR5 AT ('15 AST!R RECORDS') CLAse620 518 FOR5 4T (T1,'18,'SINCE CARDS ARE NOT IDENTIFI!D AND M AY GE T OUT OF OCLAna630 1RDER ***** 5A YZ THIS L I S T ******,/T1,' ' ,131 (' _') , /) CLA546a0 520 FORM AT ('0',2I2,Is,844) CLAsu650 522 FOR54T(' ',8F10.2) CLA54660 52s FOR34T(T1,'1 CITY ',I2,T15,' STATE ',I2,T24,' REGION ',Is, CLAaA670 1 T60,8A4,/T1,' ', T50,'c R A FT LAB 0R R A T E S',/T1,'+',CLAno680 1 T50, 3 2 ('_') ,/T1, ' B LDG REAYY BRICK CARPEN- STRUCT. P L AST- CL A Ns690 1 ELECT. STEAM O P ER ATING T? ACTOR OPRTERS CR A N E AIR C5 P TRUCK BCLAna700 1CILER CTH ER Y E A R ' , /T 1, 8 LABOR LABOR LATER TER IRON WKR CLAM 4710 1ERER WORKER FITTER ENGINEER SMALL LARGE OPER ATOR OPRATOR CLA ne720 1 DRIT ER MAKER CR A FTS ' ,/T 1, ' + ' ,7 2,131 ( ', ') ) class 730 526 FOR54T(T1,' ' , T2,16 (F 5. 2,3 I) , Ft .1) CLAas70 528 FORMAT (T1,'1 CITT- ' ,I2,T15,' STATE ' ,I2,T2 4. ' REGIO N ', I4, CL A 34750 1 T60,8 Aa ,/T1, ', ' T50,'5 A T E R IAL C 0 S T S',/T1,'+', CLAse760 1 50,27(*,' CLAne770 1),/T1,' CHANNEL SERNS I-BEAMS VIDE-FLANGE BEAMS REINFOCLAM4780 1 RCIN G EARS R ZADY-5II CONCRETE PLTFOR5 LUMBER LAND TEAR',CLAsa790 1/T1, ' + ' ,T2,131 (' _') ) CLAnt800 530 FORE AT (T1,' ' T7,, F6. 2, T 23, F6. 2, T 50, F6. 2, T 5 8, F6. 2, T78, F6. 2, T92, F 6. 2CL A Mu S 10 1, T10m , F6.2, T112, F6.1,T 120,F6.1) CLAsa820

$32 FOR54T(15 , T E, F 7. 2,T2 4, F6. 2,7 54 , F 6. 2 ,79 4, F6. 2, T114, F6. 2) Ctanus30 EM D CLA54840 O

e e

111 Appendix C CONCEPT-5 PROGRAM LISTING I

(

l l

l l

1 l

l i

l l

l

=

113 C

' l====================================================================l5AIN 10 CI 15 AI N 20 C1 -C0NCEPT- 15AIN 30 C l C05PUTERIZED CONCEPTUAL COST ESTIMATE 15AIN 40 C l FOR STEA5/ZLECTRIC POWER PLANTS 15AIN 50 C1 15AIN 60 C1 PHASE 5 15 AI N 70 C 1 80 C !====================================================================15AIN ggAIN 90 C l 15AIN 100 Cl BY: R. C. DELOIIER l C05PUTING APPLICATIONS 15AIN 110 C l R. J. BARNARD 1 DEP A RT5 ENT l 5AIN 120 C I l COMPUTER SCIENCES DIVISION 15AIN 130 C I l K-25 SITE l5AIN 140 C1 I UNION CARBIDE CORP. 15 AI N 150 C l l OAK RIDGE, TENN. 37830 15AIN 160 Cl l HAIN 170 C I 50DIFIED ST : C. R. RUDSON l ENGINEERING ANALYSIS SECTION 15AIN 180 C I DATE : O CTOB !R 1977 I ENGINEERING TECHNOLOGY DITISION l MAIN 190 C1 I O AK RIDGE NATION AL LABOR ATORT 15AIN 200 C I l O AK RIDGE, TN. 37830 15AIN 210 Cl .

15AIN 220 C l THE CONCEPT COMPUTER CODE PACKAGE PROYIEES CONCEPTUAL 15AIN 230 C I CAPITAL CO ST ESTIMATE FOR NUCLEAR AND FOSSIL-FUELED POWER IMAIN 20 C I PL A NTS. COST ESTIM AT ES ARE MADE AS A FUNCTION OF PLANF TYPE, 15AIN 250 Cl SIZE, L OC ATIO N, AND D ATE OF CONSTRUCTION AND OPERATION. l5AIN 260 C l CUTPUT INCLUDES A DETAILED BRE AKDOWN OF THE ESTI5 ATE INTO 15AIN 270 C I DIRECT AND INDIRECT COSTS ACCORDING TO THE U.S. A. E. C. 15AIN 280 C l ACCOUN*ING SYSTEM DESCRIBED IN DOCUMENT NUS-531. 15AIN 290 C I COST 50DELS CURRENTLY AV AILABLE ARE: lHAIN 300 C l INITI AL- AND ADDITION AL-UNIT 50DELS FOR HIZED MULTI-UNIT PO WER l M AI N 310 C l PLANTS. NUCLEAR PLANTS INCLUDE PRESSURIZED AND BOILING UATER l MAIN 320 C l R E A CTO R S. FOSSIL PLANTS INCLUDE COAL-FIRED UNITS l MAIN 330 C l WITH AND WITHOUT SULFUB REBOYAL SYSTE55. l5AIN 340 C l 15AIN 350, C 1 -------------------------------- 15AIN 360 Cl THIS UCRK WAS PERFORMED BT RE5BERS OF THE ENGINEERING 15AIN 370 C I ANALYSIS SECTION OF THE CA K RTDGE N ATIO N AL L ABOR ATO RT 15AIN 380 C l ENGINEERING TECHNOLOGY DIVISION AND THE 15AIN 390 C I COMPUTING APPLICATIONS DEP ART 5 ENT, K-25 SITE, OF TdE 15AIN a00 C1 COMPUTER SCIENCES DIVISION 15AIN a10 C I I MAIN a20 l C l 15AIN 830 l

C l PPOGRA5 DOCUM ENTA TIO N: lHAIN as0 C l CONCEPT-5 USER'S B ANU AL (OR NL-5470) 154IN e50 C I C l====================================================================l15AIN 5AIN a70 P EAL* 8 AC2, AC3, ACa , AC5, CI TY, DATE, LOC '5AIN s80 REAL

  • 8 TYPE (2) TYPE 1 (2) ,LOCIN (s) , SPACE HAIN s90 DIBENSICN IC ARD(80), C5 (50) , C51 (50) , CI C50) RAIN 500 l

l DIMENSION CSI (a, a00) , CaI(a,18 0) , C3X (a,60) ,C2%(a,12) ,C2CI (a,12) 5AIN 510 DIMENSION C2TI(a ,12) ,55SI(7) MAIN 520 DIMENSION C5 0(50) ,C5ES (50) , TCodB (50) 5AIN 53 0 DATA ICOM /'C'/, IA5END /' GE ND' /,SP ACE /' '/ BAIN Sa0

! C0550N/5D5AIN/ ISTSIG BAIN 550 1

C055CN /500T/DIDCI, ES CI BAIN 560 C0550N / FOR5 / BAIN $70 l' . 1 TYPE, TYPE 1, LOCIN, AC2 (8,12) , AC3 ( 8,60) , Ace (8,1801, BAIN 580 1 AC5 ( 8,3 20) , DA TE, D (3,3 80) , ?ITLE(20), 5AIN 590 1 IAR1, I A R2 (5) , I AR3 (15) , IAR n (60) , I AR5 (10 0) , IST, IGO, BAIN 600 1 NI N , NOUT, ID1, ID2, ID3, ICO N , C050, LABA, ISD J (3) HAI N 610 CC550N / PROG / 5AIN 620 1 LOC (3) , CITT (25) , CFCA (12,50) , TPSSS, TRP!R, Y R CO P, I!N, 5AIN 630 l

114 1 SWE, IBS MAIN 640 COMMON / OUT / MAIN 650 1 1 BWE, C2 (a ,12) , C3 (a ,60) , Cu(a,1801, C5( a, n 00) , C2: (a,12) ,

1 C2 T (4,12 ) , ESCL, S F MC, S S MC, SSLC, 5AIN 660 SCONT, STDC, TIT , HAIN 670 1 TDA, H M S ( 7) , MMRS, IAC, I PG , 52 MAIN 680 ,

CORMON / NABL / MAIN 690 1 AEB (12) , ALB (12) , A 5 5 ( 12) , A FC( 12,50) , ALS(12,50), MAIN 700 1 A5 S (12,50) , BFC (12,50) , B LS ( 12,50) , BM S ( 12,5 0) , A P: (12) , MAI N 710 1 B PC (12) , YES (50) , A A (3,12) , CCB (12) , C05 (12) , CO N!L (12) , RAIN 720 1 CONT 5(1D , CON TE (12) , DECT (12) , FACS1 (12,16) , F A CS 2 ( 12,16) , MAIN 730 1 F ACS3 (12,8) , RIB, RIBA, R IN T (50) , PO, TBC, YFIRS!, I LA S T, 1 FILS (20) , F A CE (3,12) , AMAN, AMANB, MW, ISITE (20) , NUMSL, MAIN 740 5AIN 750 1 OTP (12) , O TP P (12) , CT E RS ( 13 , MMT, 9 MP ( 12) , MUI(12) MAIN 760 NAMELIST /CONOPT/ MAIN 770 1 AA, APC, BPC, CO B, CCS, CONTL, C3NT5, C3NTE, DECT, OT P, MAIN 700 1 FACS1, FACS2, FACS3, FILS, ISITY, O VER S, RINT, YFIR ST, 1 YLAST, BU, AMAN, CFCA, D, MAIN 790 HBI 5AIN 800 INTEGER C050 INTEGIF W ANT (9) /2,1,7=0/ M AIN 810 CALL MAIN 820 IDAY (D AT E) RAIN 830 ISDJ(1) = 1 MAIN Su0 ISDJ(2) = 1 MAIN 850 ISDJ (3) =2 MAIN 860 ICON = 2 IU1 = 3 MAIN 870 ID3 = a MAIN 880 NIN = 5 MAIN 890 NOUT = 6 MAIN 900 LAMA = 8 hAIN 910 COMO = 9 MAIN 920 ID2 = 11 MAIN 930

. IRE = =0 5AIN 9a0 .

C 5AIN 950 C l!====================================================================tMAIN960 l 5AIN 970 C l READ AND LIST ALL INPUT DATA PRIOR TO PROCESSING l MAIN 980 C1 ,

C i==============================================================IMAIN990 2 READ (NIN,506, END=a) ICARD lMAIN1000 M AI N1010 WRITE (NCUT,508) ICAR D MAIN 1020 GO TO 2 4 REWIND WIN MAIN 1030 C MAIN 1040 C ll====================================================================15AIN1050 l M AI N1060 C l SEARCH AND LIST ALL COST 50DELS AND ALL CITT LAB 38, EQUIPMENT, l MAIN 1070 Cl AND H ATERIALS COST HISTORIES. l MAI N1080 C1 C

l====================================================================ll5A CALL SCAN 5AIN1100 BRITE (NCUT,50 s) HAI N1110 C H AI N1120 C Il====================================================================l MAIN 1130 15AIN1140 C I BEGIN TBE INITIAL LOOP THROUGH THE PROGRA5 IMAIN1150 C l C 15AIN1160 l====================================================================15AIN1170 10 CON *INUE Do 12 I = 1,I55 HAIN1180 RAIN 1190 C51 (I) = 0.0 5AIN1200 IF(I .12. 20) FILS (I) = 0. H AI N1210

  • IF (I . LE. 20) ISITE (I) =0 MAIN 1220 12 CONTINUE B AI N1230 FIL S (1) = 1.0 SAIN1240 IBIN =0 ISTSIC = 0 5AIN1250 *4 IPG = 0 M AI N1260 l IAC = MAI N1270 1

IGO =

5 AI N1280 1

5AIN1290

115 IS = 1 5AIN1300 i - Is? = 0 BAIN1310 i YRS = 9999.0 B AI N1320 THE = 0000.0 5AIW1330 REWIND ID2 5AIN1340 C t====================================================================lHAIN1350 C l 15 AI N1360 i

C l CONTINQ ATICN LOOP THROUGH M AIN PROGRA5 FOR BULTI-UNIT PLA NTS l 5AI N1370 C1 15AIN1380 C l====================================================================l5AIN1390 16 CONTINUE BAIN1400 D0 t o I = 1,12 5AIN1410 APC (I) = 1.0 BAI W1 20 BPC (I) = 0.0 5AI31430 IF (I .L E. 8) O TP (I) = 2.0 RAIN 1850 IF (I . GT. 8) O TP (I) = 1.5 BAIN1450 OVER S (I) = 0.0 M AI N1460 DEOT (I) = 0.01 MAIN 1a70 COS(I) = 0.0 B AI N1480 MUI (I) = 40.0 HAIN1890 l CONT E (I) = 10.0 5AIN1500 CONTL(I) = 10.0 54IN1510 j CO NT E (I) = 10.0 BAIN1520 14 CO NTIN UE MAIN 1530 CON TE ( 1) = 0.0 5AIN1540

, CON TL ( 1) = 0.0 MAIN 1550 CO N1 M ( 1) = 0.0 5AIN1560 I YFIRST = 1963.5 . B AI N1570 YLAST = 2000.0 BAI N1580 AMAN = 0. 0 MAIN 1590 89 = 40.0 RAIN 1600

r. DO 15 I=1,IMM MAIN 1610 RINT (I) = .08 54131620 15 CONTINUE B AI N1630 W RIT E (NO UT, 504) RAIN 1640 18 READ (NIN,506, END=82) ICARD 5AIN1650 IF (IC A P D(1) . N!. IC05) GO TO 20 5AIN1660 W RIT E ( NCUT ,508 ) ICARD MAIN 1670 C l====================================================================15AIN1680 C l 15AIN1690 C1 CC5MENTS PRINTED BUT NOT STORED ON ANY DTTICE 15AIN1700 C l l M AI N1710 C i====================================================================15AIN1720 C0 TO 18 MAIN 1730 20 REVIND ID1 BAIN17a0 C l====================================================================15AIN1750 C l 15AIN1760 C I S!LECTICN CARDS STORED ON ID1 15AIN1770 C l 15 AI N1780 l

e i =. = . == . a . = = == . = . . . . .= == = = = .= . = = . . . . = = . . . .= . . = = = = = . = . . . . . . . . . . = . . = = = . i n A I N 1 7 9 0 WPITE(Ici,506) ICARD HAIN1800 REWIND It1 M AI N1810 C 1====..=======================...===.............========..====.===j5AIN1820 CI l 5AI N1830 C l (5AIN18u0 C l DESCRIPTION OF STANDARD INPUT CARD. 15AIN1850 C i 15AI N1860 eg . .....,........................-

15AI N1870 CI 15AI N1880 C l COLUMN VARIABLE FUNCTION AND FORMAT 15AIN1890 C I __ IMAIN1900 C l *.a nWE N05IN AL MEGAW ATTS OUTPUT OF THE PLA NT UNIT 15 AI N1910 Cl 6-13 TYPE POWER PL A NT SY STE5 TYPE, A8 FOB 54 T 15 AI N1920 C l 15-30 LOC (I) ,I=1,2 CI TY, BEGIN IN COLUMN 15. 15 AIN1930 C l 32-39 LOC (I) , I= 3 ZITRA IDENTIFICATION BEGIN IN COLD 5N 32. 15AIN1940 C l 41.a7 YRSSS c A;! S. S. S. PURCHASED : F7.3 IMAIN1950

! ~

1 i

. a 116 C l 48-5a YRPER DATE CONSTRUCTI3N PERMIT ISSUED: F7.3 15AIN1960 .

C1 55-61 YRCOP DATE CF CC55!RCI AL OPER ATION : F7.3 15AIN1970 C l 62-66 RIE INT!BEST DURING CONSTRUCTION IN 4, (FS.3) 15 A IN1980 C I 68 ILAZ IF = 0 NA RELIST DATA NEITHER S ATED NOR RETRIETED l MAIN 1990 Cl IF = 1 FLAG FOR STORING CONOPT DATA FOR REPET- l5AIN2000 Cl ITIVE USE OF DATA FROM THE ICON FILE l MAI N2010 Cl FOR SIMILI AR PROBL E55. l HAI N2020 C l IF = 2 PERSITS READING ONLY PRETIQUSLY STORED l 5 A IN203 0 C l CONOPT REPETITITE DATA. lHAIN2040 C l ------------------------------ --

15AIW2050 Cl -------------------------------- 15AIN2060 Cl 15AIN2070 C l * *

  • WO OTHER CONOPT DATA WILL BE ACCEPTED WHEN ILAZ = 2*** l M AIN2080 C1 --------------- --------------- -- 15AIN2090 C 1 ------------------------------ -- 15AIN2100 CI 15 AI N2110 Cl IF = 3 REPETITIVE CONOPT DATA IS READ IN FROM 15AIN2120 C l ICON FILE AND THEN PR OG R A M EX P EC* S O T ER- 15AIN2130 C l RIDING OR SUPPLEMENTAL CONOPT DAT A INPUT l MAIN 2140 C i 15AIN2150 C1 15AIN2160 C1 N.B. ICON FILE (CONTROLLED BY IL AI) , IF PERSITTED B Y 15AI N2170 C1 IFLAG CONTROLS IS ALWAYS REA D FIRST SO T ATI ABLES 15AIN2180 C l STORED 05 ID1 (CONTROLLED BY IFLAG) MAY BE READ 15AIN2190 Cl LAST AND OYER-RIDE TEMPORARILY DATA FR05 ICON. 15AIN2200 Cl THIS LEATES ICON INTACT FOR FURTEIR USE BUT iMAIN2210 C1 PEREITS FLEXI3ILITY IN ALTERING T ARIABLES 15AIN2220 C1 INTER 5ITTENTLY DURING A DATA RU N. 15AIN2230 C i ICON FILE IS WRITTEN ONLY WHEN ILAE = 1 BUT IS NOT 15AI12240 C l READ AT ALL NEEE CONTROL IS SET FOR WRITING. 15AIN2250 C1 15AIN2260 CI 70 IFLAG FLAG FOR OPTION AL NARELIST INPUT; CALLS MADE { 5AIN2270 Cl 15AIN2280 C l 0 - NO WARELIST CALLS 3ADE 15AIN2290 C I 1 - PERSITS CHANGING YFIRST AND YLAST PRIOR TO THE 1 15AIN2300 Cl ANALYSIS OF EISTORICAL EQUIP. LABOR AND H ATLS. l5AIN2310 CI '

COST DAT A AND PERMITS CTERRIDING ALL NA5ELIST 15AIN2320 CI TARIABLES PRIOR TO THE DETAILED COST 15AIN2330 Cl CALCULA TIONS. 15AIN2340 C1 15AIN2350 C1 2 - PERRITS OTERRIDING CALCULATED COSTS, ONLY, 1 15AIN2360 Cl AFTER ESCA LATION TO YEAR OF PURCH ASE OF SSS IF 15 AI N2370 C I IESC=0 OR 2; AND PEREITS OVERRIDING CALCULATED 15 AIN2380 C l COSTS, ONLY, AFTER ESCALATION TO COMMERCIAL l MAIN 2390 C l OPER ATION IF IESC = 1. 15AIN2400 Cl 3 - THE FIRST NARELIST CALL IS IDENTICAL TO FLAG =1 2 15AIN2410 I C l AND THE SECOND IS IDENTICAL TO IFLAG=2. 15AIN2420 '

C1 IMAIN2430 I C1 72 IOF OUTPUT FLAG: 0 = 2-DIGIT SU55ARY PAGE l54IN2na0 CI 1 = 2-DIGIT SU55 ARY $ CASH FLOW INFO. 15AI N2t 50

)

C l 2 = DETAILED ACCOUNT BRE AKDOW N l M AIN2460 C1 74 IISC FLAG FOR ESCALATION DURING CONSTRUC* ION; 15AIN2470 CI O = ESCALATION STATED SEPAR ATELY 15AIN2480 CI 1 = ESCALATION INCLUDED I5PLICITLY 15 AI N2 e 90 Cl 2 = NO ESCAL ATION 15AIN2500 i C1 76 IBS FLAG USED TO CHANGE ESCALATION AS A 15AIN2510 l C l FUNCTION OF TIME BY CALL TO THE 15AIN2520 1 C1 INDUSE SUBROUTINE. 15AIN2530 Cl 0 - INOPER ATITE 15AI N25a0 Cl 1 - ESCALATION D ATA EXPECTED IN INPUT. 15AI N2550 C I 2 - RETRIETE D ATA USED W5EN IBS W AS 1 15AIN2560 C1 l5AIN2570 -

C I 78 IAC FLAG USED TO C05PUTE TYPE OF INTEREST 15AIN2580 Cl 0 - STRAIGHT INTEREST 15AIN2590 C I 1 - C05 POUND INTEREST l5AIN2600 C l 15AIN2610

-m,----- , - - - - - - - - - ~ - - ' ' ---~ r - ' " ' ' ' ' ' ' '

117 Cl 80 ISTACK* NUMBER 0F UNITS TO BE C3NSIDERED ONE 15 AI N2620 Cl PLANT SITE. I M AI N2630 C1 15AIN2650 C l C l===================================================================l5AIN2650 Cl===================================================================llBAIN C1 BAIN2670 15AIN2680 C I SELECTION DATA CARD READ BACK INTO CORE 15AIN2690 C 1 C l====================================================================l15A 5AIN2710 R EAD (ID1,510) HWE, TYPE (1) , (LOC (I) , I = 1,3) , YR SS S, YR P ER ,YR COP ,RI S , HAIN2720 1ILAZ,IFLAG,IOF, IESC,IE S,IAC,ISTACK MAIW2730 IW ANT = W ANT (IESC + 1) BAIN2740 RIBA = RIB BAIN2750 BRITE ( NCUT,512) 5AIN2760 WRITE (N0 0T,518) M BE,T YPE (1) , (LOC (I) ,I= 1, 3) ,TR SSS, YRP ER ,fR COP , RIB A , BAIN2770 1IL AZ,IFLAG,IOF, IE SC,IB S,IAC,IST ACK MAIN 2780 TYPE (2) = SP ACE MAIN 2790 IF ( T R S. GT. T RS SS) TRS = TRSSS BAIN2800 IF (TR E. LT. YRCO P) Y RE = T RCC P 5AIN2810 PEWIND ICON BAIN2820 RdWIND ID1 BAIN2830 RIB = RIS / 100.0 MAIN 2840 IF (RIE.LE.0.) GO TO 22 BAIN2850 DO 21 I=1,IB5 MAIN 2860 s 21 RIN T (I) = RIB RAI N2870 C l====================================================================lMAIN2880 C l 15AIN2890 C l READY TC PICK UP CONOPT D ATA DEPENDING ON IFLAG TALUE O TERU 3 15AIN2900 C l C !====================================================================15AIN2910 lMAIN2920 22 IF (IFL AG.EQ.0) Go TO 40 BAIN2930

' IF (ILAZ.EQ.2) GO TO 28 HAIW2940 IPE = ISDJ (IFLAG) 5AI N2950 DO 26 IJK = 1, IRE MAI N2960

. C !====================================================================lBAIN2970 C I IBAIN2980

! C1 READ ADEITIONAL CARDS DEPENDING ON IFLAG > 0 15AIW2990 C l l

C l====================================================================15AIN3000 l B AIN3 010 24 RE AD (NIN,516) (ICA RD (KK) ,KK=1,20) 5AIN3020 WRITE ( NCUT ,518) (IC AR D (K K) , KK= 1, 20) BAIN3030 WRITE (ID1,516) (ICARD(KK) , KK= 1,20) 54I N3080 IF (IL AZ.ZQ.1) WRITE (ICON,516) (IC AR D(KK) , KK = 1,20) RAIN 3050 IF (IC ARD (1) .N E.IA NEND) GO TO 24 5AIN3060 l cg====================================================================lBAIN3070

! C l lBAIN3080 l C l FIRST GRCUP CF CONOPT STORED ON ID1 AND ICON FOR REPETITIVE READ 15AIN3090 Cl 15 AI N3100 C l====================================================================lBAIN3110 26 CONTINUI MAIN 3120 28 CONTINDE HAIN3130 REWIND ID1 5 AI N31a 0 R EW IND ICO N HAIN3150 IF (IIAI.!Q.4 GO To to 5AIN3160 vaITE(N00T,500) MAIN 3170

? g====================================================================15AIN3180

.cl 15AIN3190 C l READ ICON TO LIST REPETITIVE CONOPT D AT A WITE EACE PROBLE5 15 AI N3200 C i 15AIN3210 C l=======r============================================================lMAIN3220 30 READ (ICCN,516, END= 32) (ICARD (KK) , KK=1,20) B AI N3230 WRITE (N CUT,518 ) (IC ARD ( KK) , KK= 1, 20) H AI N32 0 GO TO 30 BAIN3250 32 REWIND ICON BAIN3260 IF (IL A .EQ.3) GO TO 3a 5AIN3270 I

l

'N .

m 7 l

118 ,. v N,

.::'.. I GO To a0 M AI N3280 . i 3a WFITE (NCUT,502)

  • MAIN 3290 ~

C (====================================================================15AIN3300 "

C1 15AIN3310 C l READ IE1 TO LIST THE OYER-RIDING CONOPT DAT A VITs TAC 5 PROBLEM l5AIN3320 C i 15AIN3330 .-

C l===================================================4================15AIN33a0 36 READ (Ici,516,END=38) (ICAPD(KK), KK=1,20) 5AIN3350 '

TRITE (NOUT,518) (ICARD (KK) ,KK= 1,20) HAIN3360 f ,

Go To 26 5AIN3370

38 REWIND ID1 MAIN 3380' - s 40 CONTINUE BAIN3390 ^,

IST = IST+1 B AI N3 aOO CALL MIADS (D ATE,IST,5WE,TYP!, LOC ,TRSSS,Y P PER ,IRCO P,IW AN!, RAIN 3410 1 NO UT, IP G) 5AIN3420 ,

IST = IST-1 B AI N3a30 .

ESCL = 0. M AI N3sa 0 3

INANTS = IVANT H AI N3 a50 ."

IF (IW A NT. EQ .2) IBANTS = -1 RAIN 3a60 KONTEL = 1 BAIN3a70 e CALL CCST(IW ANTS,IFL AG,KONTEL,IL AZ) HAIN3080 .

IST = IST + 1 RAIN 3a90

  • Do 35 I=1,I55 5AI N3500 C5U (I) = 0. M A IN3 510 35 C5 (I) = 0. MAIN 3520 C5T = 0. R AI N3530 se IF (IW A NT. EC.0 ) GO To a2 B AI N35u 0 sj Do 3 9 I=2,I55 5AIN3550 Y1D = IES(I) 5AIN3560 C5E=0. 5AIN3570 DO 37 J=1, N2 F AI N3E90  %

CFFAT = CFC A (J+1,I) - CFC A (J + 1, I- 1) M AI N3590 '

DO 37 K=1,3 BAIN3600 CFFAC = CFFAT/CLAB (J,K, TRSSS) RAIN 361V-CBE = C5E + CFFAC*CLA B (J, K,Y1D) *C2T (K,J) / FACE (K, J) '5A5#3620 37 CONTINUE M4133630 <

C5 (I) = CEE + C5T 3AIN36a0 CET = C5(I) 5A173650 39 CONTIN UE HAIW3660 ,

Go TO 63 MAIN 3670

'r 42 Do 41 I=2,I55 5AIN3680+ "'

CHE=0. 5ATN3690 '

Do a9 J=1,N2 SAIN3f00

CFFAC = CFC A (J+1,I) - C FC A (J + 1, I- 1) 1AI N3710 .

DO 49 K=1,3 hAIN7720 /

CBE = CHE

  • CFFAC*C2T (K,J) 'M AIF113 0
  • 49 CONTINUE 5A?t3740 C5 (I) = C5E
  • CRT HAID3750 CBT = C5 (I) BAIN;760 -

41 CONTIN UE 5 AI N3770 w. [ - os 43 RIBA = 0. 5AIN3780 .

RUC5 = 0. MAIN 3790

  • DO 48 J=1,I55 MAIN 3800' -#

RIBA = RIBA

  • RINT (J) = C5 (J)

PUCH = RUC5 + C5(J) 5 AI N3 810 , [.

5AIN3820

  • 48 CONTINUE 5 AIN3830 RIBA = RIBA/RUC5=100. BAIN38a0 /

IF (IW A NT. LT. 2) CALL DELIN(RINT,C5,C FTA,TRSSS,TRCDP,DIDCI,I55,I AC) 5AI N3850 -

IF (IW A NT. LT. 2) GO To se 5AIN3860 C (====================================================================15AI5J870 C l 15AIN3880 C1 BREAK OUT ESCALATION 15AIN3890 .

C I 15 AI N3900

. C I================================================:====================IBAIN3910 ITANTS = 0 5AI N3920

^

STIC = TDA 5&IN3930

  • I

119 -

KONTRL = 2 N 84IN3940

-- C ALL CCBT(IW ANTS,IFLAG, KONTRL,IL AI) B AI N3950 ESCLD = STIC - TD A BAIN3960 CMT=0. HAIN3970 DO 47 I=2,I55 5AIN3980 CME = 0. BAIN3990 DO a5 J=1,N2 5AIN4000 CFF AC = CFC A (J+1,I) - CFCA (J + 1, I- V 5AIpa010 Do a5 K=1,3 5AINa020 CHE = CHE

  • CFFAC=C2T (K,J) HAIN4030 a5 CONTINUE BAINs040

_.' CMU (I) = CNE + C"T HAINa050

_ CMT = CMU (I) MAINE 060 f' 47 CONTINUE MAI N# 070 I DO e6 I=1,I55 MAIN 4080

'i C5ES (I) = CH(I) - C30 (I) -

HAIN4090 a6 CONTINUE MAINE 100 C ALL DELIN (RINT,CM ES.CFCA , YRS SS , Y PC00, ESCI,I55,I AC) BAI N#110 CALL DELIN(RINT,CMU,CFCA,YSSSS,TRCOP,DIDCI,I55,IAC)' 5AIN#120 DO 50 I=1,IMM MAIN #130 50 C5(I) = CMES (I) + CMU(I) '

H AI N# 140 au CONTIMUE -

BAINs150

, C l=======a============================================================15AIps160

~~- C I l MAIN #170 f C l URITE OUTPUT FOR A SINGLE UNIT 15AIN4180

^- -- ~

' C1 15 AI N#190

_ cl==========================-e - - = = = = = = == = = = = = == = = = = = = = = = = = = = === = = = l B A I N a 2 0 0

' - CALL 00!PUT (ICF,IV ANT,Er EAIpe210 C l========================== = = = = = = == = = = = = = = = = = = = = = = = = = = = = == = == 1 5 A I N a 2 2 0

- C l ,

15AINe230 C I GENER ATE PROJECT C ASH FLOW IMAINa2a0 s C. Cl 15AIpe250

.- C l=============================================**=====================l5AIN4260 IF (IOf.ZQ.0) Go TO 5e . BAIN#270

, CALL T AILS (D ATE,IST,MW E, TYPE. LOC,YRSSS,YRPER ,YRCDP,IV ANT, M AI N4280 1 NOUT,ITG) EAI N4290 l -

CALL PLO T (YR S S S , Y RCO P, C M,I R S) MAI Na 300 CALL TAILS (D ATE,IST,59E, TYPE, LOO,YRSSS,YRPER,YRCOP,IS ANI, MAIN 4310 1 NO UT, IP G) 5AIN4320 DO 55 I=1,I55 M AI N# 330 55 CI(I) = C5 (I)/1000. BAIW43a0 URITE (N00T,520 ) MAI N# 350

-, VRITE(NOUT,522) (YE S (I) ,C I(I) ~,I = 1,I M E) BAINs360 l - WPITE(N00T,504) MAIN 4370

,. 5m CONTINUE . MAINa380 IF (IST AC K. E Q.1) C0 TO 10 -

MAIva390 C ALL A DYR (Y ES, YC 05B ,C 3,C M 1,Y RS,Y RE, C FCA, I5 5, IBIN) MAIyou00 I2%

IBIN = 1 BAINas10 5AINa420 IF (I S T ACK . GT.1) IS = ISTACK - 1 IGO = IGO - 1 + ISTACK 5AINea30 IF (IG C. GT.1) W RIT E (ID2) C5, C a, C 3, C 2, C2C , C 2T,5 H S,555 5, SF 5C, S SLC , MAIpasa0

';f '

1 S S M C , M W E , E SCLD ,5 CONT , TIC , D I DCI , ESCI M AI Ne e 50 r- -

IF (IGO.GT.1) GO TO 16 MAIN 4460 P REWIND ID2 MAINea70 l

, DO 56 II = 1,IS MAINaa80

~

RE AD (I D2) C5 I, Ca r , CJ K , C 2% , C2 CI, C 2TI , 5 85 I, 55 H SI, SF 5C I , S SLC I, M AI Na n 90

,, > 1 SS MCI,5 9EI, E SCLD I,5CO NTI ,TICI, DIDCII, ESCII 54INa500

- DO 57 J = 1,N2 M AIN a 510

, DO 58 I = 1,a 5AINa520 C2 (I,J) = C2 (I,J) + C2I (I,J) MAIva530 C2C (I , J) = C2C (I,J)
  • C2CI(I,J) M AI N# 54 0 C2T (I, J) = C2T (I,J) + C 2TI (I, J) MAIWa550

, 58 CONTINDE MAINa560 IF (J.1T.8) ME S (J) = 5 HS (J) + 5 HSI(J) M AI Na 570 57 CONTINUE B AI Na 580 M5HS = 55HS + 55HSI 5 AI Na 590 l , ,"-

h

  • . m ,

/

t3 g/ *

.-r

)

r i i l

i 13J I F

l; \

SFBC = SF5C + SFRCI BAINe600 '

SSLC = SSLC

  • SSLCI MAIN #610 SSBC = SSEC + SSBCI HAINe620 59E = BWE
  • BWEI BAINa630 ESCLD = ISCLD + ESCLDI MAIW46a0 SCONT = SCONT + SCONTI BAIN#650 TIC = TIC + TICT HAIN4660 DIDCI = DIDCI + DIDCII HAINe670 ISCI = ISCI + ESCII BAIN#680 IF (IDF.LT.M GO TO $6 HAIN4690 Do 59 I=1,5 NAIN4700 DO 6 0 J = 1,40 0 RAIN #710 50 C5 (I,J) = C5 (I,J) + CSI(I,J) BAINs720 DO 61 J=1,180 5 AIN#73 0 61 C4(I,J) = C5 (I,J) + C t I (I,J) 5AIN4740 Do 6 2 Jm 1,60 MAIN #750 62 C3(I,J) = C3. (I,J) + C3I (I,J) 5AINa760 59 CONTINUE MAINa770 56 CONTINUE BAIN4780 TRSSS = TRS MAIN #790 TRCOP = TIE BAINs000 ISTSIG = 1 MAIN 4810 C t===================================================================15AIN#820 Cl l MAIN #830 C l WRITE CUTPUT FOR CORBINED UNITS l5AIN#8a0 Cl l MAIN 8850 C l=================== _ = == == = = == = = = = = = == = = = == = = = = = = = = = = = = = = = = == = = = l n 4 I p s 0 6 0 CALL OUTPUT (ID F,ITANT,ESCLD) 5AINa870 IF (I07.E0 0) GO TO 76 BAIN4880 CALL TAILS (D ATE,IST, MN E. TYPE, LOC,TRSSS.TRPER ,TR CDP,IN ANT, M AI NE 890 1 NO UT, IPG) HAINe900 CALL PLOT (TRSSS,TRCOP ,C51,I55) MAIN 4910 CALL T AILS (D ATE,IST,5NE, TYPE , LOC,TES SS,T RPER ,IRCOP,IW ANT, RAIN 4920 1 500T,IPG) 5AIN4930 DO 70 I=1,I55 MAINS 940 70 CI(I) = C51 (I) /1000. RAINS 950 TRITE (N00T,520) MAIN 4960 WRITE ( NCUT,522) (T Con 8 (I) , CI (I) , I=1, IM5) 5AIN4970 WRITE (50GT,50s ) RAIss980 76 CONTINUE RAIN #990 Ct==================== ===== = = == = === == == = = = = = = = = = = = = = = = = = = = = = == = = = l M A I N 5 0 0 0 C i 15AIN5010 Cl RETURN TO IFITIAL PLANT PROGRAE LOOP START lMAIW5020 Cl l MAI N5030 C l==================-=============================================15AIN5040 GO TO 10 RAIN 5050 82 STOP HAIN5060 500 FORM AT ('O LIST OF BIPEATED CONOPT D ATA FR05 IC3 N FILE' /) BAIp5070 502 FORE AT ('O LIST OF OVER-RIDING CONOPT DATA FROM ID1 FILE '/) 5AIN5080 504 FORR AT (' 1') 5AIN5090 506 FORR AT(8041) 5AIW5100 508 70RRAT(' ',80 A1/) 5AIN5110 510 FORE \T (Is ,11, A8,11,2 A8,1%, A8, TI,3F7. 3, FS. 3,7I2) 5AIN5120 512 FORM AT ('O' ,720,'D A T A CARD C0LU5NS U S E D' 5AI N5130 1 /' + ' ,T20,s 2 ('.') /' 0 1--a 6 -----13 15 ------------3 0 3 2-- 5 A IN 51 s 0 1--39 41----47 48----54 55----61 62--66 68 70 72 74 76 5AIN5150 1 78 80' 5AI N5160 1 /' RBI 50 DEL',T22,'CITT',T35,'EITR A ID TN5 AIW5170 -

1 SSS TR PER TR CDP 1 INT ILAZ IFL AG IDF IESC IBS IAC BAIN5180 1 ISTACI'/) 5AIN5190 514 FORR AT ('0 ',T3,I4, T9, A 8,T18,2 A 8, T3 5, A S ,Te a ,F8.3,I53, F8. 3.T62, FS. 3, 5 AIN5 200 1 T71, F6. 3 ,T 80, I 1,TS 6 ,I 1, T9 2, I I ,

  • 97, I1, T103 , I1, T10 8 , I I ,7115, I 1 ) 5AIN5210 .

516 FORB AT (1I,19 As, A3) MAIN 5220 518 FORS AT (* ' ,Ts ,20 As) BAIN5230 520 FORE AT (' O' ,Ts6,'c U 5 OLA TITE CAS5 F L 0 5'/ 5AIN5250 1 'O',T32,' DOTE THE CASE FLOW CURTE SECWN ABOYE AND IEE FOLLOWING '5AIN5250

121 1 ,'C ASM FLOW T ABLE'/' ',*32,'PATE COSTS EIPRESSED AS TOTAL COST ' MAIN 5260 1 ,'I NCURRED TO D ATE (IN CLUDING INTEREST CH ARGES TO D A TT) .'/ BAIN5270 1 ' 0' ,Ts6,' D ATE' ,T66,'CCST TO D AT E (5ILLIO N S OF DOLL A R S) ' /) MAIN 5280 522 FORM AT(15 , Ten,F8.3,T75,F8.3) BAIN5290 EN D SAIN5300 SUBROUTINE SCAN SCAN 10 C l========================================..............======lSCAN 20 C1 ISCAN 30 C l SCA N SUBPROGRA5 ITEMIIES TME CONTENTS OF THE COMO FILE FOR ALL' I SCAN a0

- C1 COST 50DELS AND *ME LABA FILE FOR ALL CITY NAMES ISCAN 50 C1 ISCAN 60 C 1 -------------------------------- ISCAN 70 C1 ISCAN 80 C l BY R. J. B ARNARD, M AY 1975 ISCAN 90 C1 ISCAN 100 C 1 .............. ...................... ..........................lSCAN 110 R E AL* 8 AC2, AC3, ACa AC5, CITY, D ATE, LOC SC A N 120 REAL

  • 8 TYPE (2) , TYPE 1 (2) ,10CIN (t) ,IDD(3 8 0) SCAN 130 DIM EN SION AT ( 3 0,8) , B L ( 30,16) ,CMT (30,16) , N AC (12 ) SCAN 1s0 COMMON / FONM / SCAN 150 1 TYPE, TYPE 1, LCCI N, AC2(8,12), AC3 ( 8,60) , Acs(8,180), SCAN 160 1 AC5 (8,320) , DAT2, D(3,380), TI TLE (2?) , SCA N 170 1 I A R 1, I A R 2 (5) , I AR3 (15) , I A Ra (60) , I AR5 (18 0) , IST, IGO, SCAN 180 1 NIN, MOUT, ID1, ID2, ID3, ICON, COMO, LABA, IS DJ (3) SCAN 190 COMMCN / fBOG / SCAN 200 i LOC (3 ) , CI*T (25) , C FC A ( 12, 50) , YRSSS, YRPER, YR CO P , 155, SCA N 210 1 MWE, IBS SCA N 220 COMMON / 00T / SCAN 230 1 But, C2(4,12), C3 (4,60) , C4(4,180), C5(e,000), C2C (e ,12) , SCAN 2eo 1 C2*(e,12) ,  !$CL, SFMC, SSMC, SSLC, SCONT, STD C, TIC, SCAN 250 1 *DA, MMS (7) , MHHS, IAC, IPG, N2 SCAN 260 CCP.MCW / NAML / SCAN 270 1 AEB (12) , ALB (12) , A MB (12) , AFC (12,50) , ALS(12,50), SCAN 280 1 A5S(12.50), B FC (12,50) , B LS (12,50) , BMS (12,50) , APC (12) , SCAN 290 1 BPC (12) , Y ES (50) , AA(3,12), CO B (12) , CO S (12) , CON!L (12) , SCAN 300 1 CO NTM (12) , CONT E (12) , DECT (12) , F AC S 1 ( 12,16) , F ACS2 (12,16 k r SCA N 310 1 FACS3 (12,8) , RIB, RIBL, RINT (50) , PC, YBC, tFIRST, TLA$t, SCAN 320 1 FIL S ( 20) , F ACE (3,12) , AMAN, AMANB, N W, ISIT E (20) , NUMSL, SCAN 330 1 OT P ( 12) , 0 *P P (12) , C T!R S (12) , MM*, H M P (12) , HW I (12) SCAN 3a0 INTEGER COMO SCAN 350 RE9IND COMO SCAN 360 REWIND LAMA SCAN 370 IND8 = 0 SCAN 380 LIN = 0 SCAN 390 IND9 = 0 SCAs 100 NU MS L = 0 SCA N 810 WRITE (N00T,500) SCAP m20 C l='==================================================================ISCANa30 C1 ISCAN an0 T I READ TME CONLAM PRODUCED L ABOR EQUIP & M A*L FILE "L AB A= A ND ISCAN e50 C1 S*0RE AND DISPLAY *ME CITY NAMES ATAILABLE. I SCAN e60 C1 ISCAN a70 C l====================================================================l5CAN480 00 16 I = 1,100 SCA N 090 IF (INES) 6,2,6 SCAN 500 2 R EA D (L A M A , EN D= e) II,IS ,IT,10CI N, AT, BL, C3T SCAN 510 CITY (I) = LOCIN (3) SCAN 520 NUM SL = NU9 5L
  • 1 SCAN 530 GO TO 6 SCAN Su0 a IND8 = 1 SCAN 550 6 IF (IN D9) 12,8,12 SCAN 560 C l====================================================================lSCAN570 C i ISCAN 580 CI RE AD TH E CONT AC PRODUCED FILE *COM0= CONTAINING *BE COST MODELS I SCA N 590 C1 AND DISPLAY TME COST MODEL TYPES AVAILABLE. I SCAN 600 C I I SCAN 610

I i

l l

122 C l===================================================================lSCAN620 .

8 REA D(CCEO,END= 10) SCAN 630 1 TYPE 1, IDD, TITLE, TBC, 85 2, AA, IAR1, IAR2, IAR3, SCAN 640 1 IAta, IAR5, CFCA, F A CS 1, FACS2, FACS3, 4!B, SCAN 650 1 ASB, ALB, D, AC2, AC3, ACE, A C5, PC, COS, SCAN 660 1 RET, BRP, WAA, NIAR4, NIARS, NCCD, NAC, IAC2, SCAN 670 1 IAC3, IACs, IAC5 SCAN 680 GO TO 12 SCAN 690 10 IND9 = 1 SCAN 700 12 IF (I N D8. G*. 0. A N D. IN D9. GT. 0) GO TO 18 SCAN 710 LI N = LIN

  • 1 SC A N 720 IF (LIN.LE.50) GO TO 14 SCAN 730 WRITE (N00T,500) SCAN 7s0 LIN = 1 SCAN 750 1e IF (I N DS. E 3. 0. A ND. IN D9. EQ.0) WR ITE (NO UT,5 02) I,TTPSCAN 760 1 E1 (1) , TTPE 1 (2) ,I, CITY (I) , LOCIN ( a) ,LOCIN ( *) , LCCIN ( 2) SCA N 770 I

IF (IN D8.EO.0. AND. IND9.CT.0) W RITE ( N007,50 s) I, CITY (I) , LOCIN (s) ,LOSCA N 780 1CIN ( 1) ,LOCIN (2) SCAN 790 IF (IND8.GT.O. AND. IND9. ZQ.0) WR ITE (NOUT,5 06) I. T YP E1 ( 1) , T YP E 1 ( 2) SCAN 800 16 CONTINU! SCA N 810 18 REWIND CORO SCAN 820 PEWIND LAM A SCAN 830 WRITE (500T,508) SCAN 840 RETURN SCAN 850 500 FORE AT ('1',Ta t,'c 0 N C E P T FRASE 5 DATA 3 E T S SC A N 860 1 '/' +' , Ta t ,52 (' ') /'0 ' ,T21, ' P 0 W ER PLANT TTPE C 0 SC A N 870 1D I S' ,T84,'C I T T 5A3E C 0 D E S '/' + ',T21,4 3 ('_') ,T8 a,29 (SCA N 880 1 '.') //) SCAN 890 502 FORMAT (' ' ,T3 2,I2,2 (2E , A8) ,781, I2,2 (2E,2 A 8) ) SCAN 900 50s FORs AT t' ' ,T81,I2,2(2E,2A81) SCA N 910 506 FO R M AT (' ' ,T32,I2,2 ( 2I, A S) I SCAN 920 508 FO R E AT (' O' ,Ta t ,' IF THE PLA NT TYPE OR CITY SELECTE3 W AS NOT USSCAN 930 1ED'/' ',TG1,'IN C05PUTATIONS, CRECK SPELLING AND FIELD JUSTIFICATISCAN 940 10 5 '/ ' ' Tti,'WITE , THE AFAIL ABLE PLANT TYPE AND CITT NAME CODES ') SCAN 950 END SCA N 960 SUBROUTINE COST (IWANT,IFLAG, EONTEL,IL AZ) COST 10 C

i====================================================================lC05T 20 C l l COST 30 Cl THE COST SUBTROGRAN PROCESSES ONLY THE LOWEST LETEL ACCOUNT (C0ST a0 Cl IN A SYSTER BY THE CONCEPT ALGORITHM. ICOST 50 C l l COST 60 C 1 -------------------------------- l COST 70 C1 ICOST 80 CI E. C. DE L0EIER AN D R. J. BARNARD IN APRIL 1975 ICOST 90 C1 l COST 100 C l 50DIFIED BY C. R. RUDSON IN OCTOBER 1977 I COST 110 C1 l COST 120 C

l=======================================is============================lC05T130 Cl====================================================================lC0ST180 C1 l COST 150 C l LIST OF NOMENCLATURE l COST 160 C i fARIABLE ICOST 170 C l NARE D ESCRIPTION ICOST 180 Ci . . . ICOST 190 C l C2 2-DIGIT COST ACCOUNTS ICOST 200 CI C3 3-DIGIT COST ACCOUNTS l COST 210

{ Cl Cs a-DIGIT COST ACCOUNTS ICOST 220 CI C5 5-DIGIT COST ACCOUNTS l COST 230 -

CI C2C CONTINGENCY FOR 2-DIGIT ACCOUNTS l COST 240 CI C 2T TOTAL COSTS FOR 2-DIGIT ACCOUNTS l COST 250 C l SUBSCRIPTS FOR C ARRAYS l COST 260 Cl 1 -

F A CTORY l COST 270 C1 2 - LABOR (COST 280 C1 3 - RATERIAL l COST 290 Cl e - TOTAL OF FACTORY, L ABO R AND S A*! RIAL l COST 300 l

Cl CONT!(I) EQUIP CONTINGENCY AS PERCENT AGE OF 2-DIGIT SUBTOT AL l COST 310 l

123 Cl CON TL (I)

Cl CO NTM (I)

LABOR CONTINGENCY AS PFRCENT AGE OF 2-DIGIT SUBTOT AL ICOST 320 C l MTL CONTINGINCY AS P!aCENTAGE OF 2-DIGIT SUBTOTALS l COST 330 Cl====================================================================ICOST340 lC0ST 350 R!AL = 8 TYPE (2) ,TTPE1 (2) ,LOCIN (8) COST 360 R! AL*8 AC2, AC3, Act, AC5, CITY, DATE, LOC COST 370 DIM!NSICN B LSS (12) , BMSS (12) , B FCC (12) , ALSS (12), AM SS (12) , A FCC (12) COST 380 DIMENSICN F A0(3,12), OT ER (12)

COST 390 COMMON / FORM / COST 500 1 TYPE, TYPE 1, LOCIN, A C2 (8,12) , AC3 (8,63) , AC4(8,180),

1 AC5(8,320) , DATE, COST sto 1 IAR1, D (3,3 80 ) , TITLE (20) , COST 820 I A R2 (5) , ' I AR 3 (15) , IA P e (60) , I AR5 (180) , IST, IGo, i NI N, NOUT, ID1, ID2, COST #30 ID3, ICON, COMO, LAMA, ISD J (3) COST aa0 COMMON / PROG / COST e50 1 LOC (3), CITY (25) , CFCA (12,50) , YRSSS, YRPER, 1 =WY, Y RCO P, IMM, COST e60 ISS COST 470 COMMON / 007 / COST ESO 1 But, C2 (o ,12) , C3(a,60), Ca(8,1801, C 5 ( 4, a 00) , C2: (a ,12) ,

1 C2 T ta ,12) , ESCL, S F MC, SS MC, SSLC, COST 490 SCONT, STDC, TIC, COST 500 1 TDA, H M S ( 7) , MMMS, IAC, IPG , N2 COST 510 COMMON / NAML / COST 520 1 AEB (12) , ALB (12) , A M B (12) , A FC (12,5 0) , ALS (12,50) , COST 530 1 A MS (12,50) , B FC (12, 50) , BLS ( 12,50) , BM S ( 12,50) , APC (12) , COST Sa0 1 BPC(12), YE S (50) , A A (3,12) , C OB ( 13 , CO S ( 12) , CON TL (12) , COST 550 1 CO N TM ( 12) , CONTE (12) , DECT (12) , F ACS1 (12,16) , F A CS 2 (12,16) , COST 560 1 F ACS 3 (12, 8) , RIB, R IB A , BINT (50) , PO, YBC, YFIRST, TLAST, COST 570 1 FILS ( 20) , F A CZ (3,12) , AMAN, AMANB, H W, ISITE (20) , NUMSL, COST 580 1 OT P (12 ) , OT P P (12) , CV ERS (12) , MMT, M M P ( 12) , M UI (12) COST 590 NAMELIST /CONOPT/ COST 600 1 AA, AFC, BPC, COB, COS, CONTL, CO N TM, CONTE, DECT, CTP, COST 610 1 FACS1, FACS2, FACS3, FILS, ISIT!, O V ER S, RINT, f ?IR ST, 1 YLAST, 59, AMAN, CFCA, D, HUI COST 620 INTEGER COMO COST 630 N2 = 0 COST 6s0 DO 4 I = 1,IART COST 650 COST 660 0 N2 = N2 + I AR2 (I) COST 670

.. CALL MODLA M (KONTR L) COST 680 IF (IFLAG.EQ.0) GO TO 8 COST 690 IF (IFI AG. EO. 2) GO TO 8 C g====================================================================l COST 700 COST 710 C1 C l ICOST 720 IF IFLAG = 1 READ CONOPT ONE TIME ONLY HERE ICOST 730 Cl IF IFL AG = 3 READ CONOPT FOR TME FIRST TIME HERE ICOST 740 Cl l COST 150 C

l====================================================================lC0ST760 IF (IL AI.GT.1) R E A D (ICCN,C050 PT, E ND=6) COST 770 6 CONTINUE COST 780 IF (IL AI. ZQ. 2) GOTO8 COST 790 IF (IFLAG. NE. 2) R E AD (ID1,CONOPT, EN D= Q COST 800 8 CONTINUE COST 810 IF (K0 N TRL . EQ . 2) GO TO 1e COST 820 C ALL CONIY ( A FCC,B FCC , A LSS ,B LSS, A MSS, B =55,ISITE, F ACS 1, FACS 2, COST 830 1 F ACS 3, FILS, f FIRST , f L AST, f BC, N 2, LA M A ) COST 840 DO 12 JJ = 1,IMM COST 850 YES (JJ ) = TRSSS + (CFC A (1,JJ) *

(TPCCP-Y R SSS) ) COST 860 l

YTIME = YES(JJ) - TBC COST 870 I Do 10 JI = 1,N2 COST 880 i'

' IF (B L SS (JI) . L!. 0. 0) BLSS (JI) = 1.0 COST 890 IF (BM SS (JI) . LE. 0. 0) B MSS (JI) = 1.0 COST 900 IF (BFCC(JI) .LE.0.0) B FCC (JI) = 1.0 COST 910 AL S (JI,JJ) = ALSS (JI)

  • BLSS (JI) ** YTIME COST 920 B LS ( JI , JJ) =

B LSS (JI)

A MS (JI,JJ) =

COST 930 A MSS (JI)

  • BMS S (J I) ** YTIM E COST 9a0 BMS (JI,JJ) = BMSS (JI) COST 950 A FC (JI,JJ) = A FCC (JI)
  • BFCC(JI) == ITI EE COST 960 BFC(JI,JJ) =

BFCC (JI) COST 970

124 10 corti 5UE Cost 980 12 CONTINUE COST 990 IF (IE S.GT.0) CALL INDU5E ( N 2) Cost 1000 14 CONTINUE COST 1010 IVANT = IAB5(IWANT) COST 1020 .

Do 18 I = 1,s cost 1030 Do 16 J = 1,a00 COS T10a 0 IF (J . LT.13) C2 (I,J) = 0.0 Cost 1050 IF (J.LT. 61) C 3 (I,J) = 0.0 Cost 1060 IF (J.LT.181) Cs (I,J) = 0.0 COST 1070 C5 (I,J) = 0.0 COST 1080 16 CONTIEUE COS T1090 18 CONTINUE Cost 1100 IF (HW.EQ.40.) GO TO 22 COST 1110 DO 21 J=1,32 COST 1120 HWI(J) = MW COST 1130 21 Co3TINUE cost 1140 22 Do 19 J=1,52 COST 1150 CVER (J) = 1.0 - DECT (J) * (BWI(J) - a0. 0) C05T1160 IF (0 Y ER 5 (J) . G T. C . 001) OV ER (J) = OVERS (J) COST 1170 QTPP (J) = (a0. + OTP (J) * (H VI (J) - 40.l ) /RWI(J) COST 1180 19 CONTINUE COST 1190 Do 20 I = 1,3 COST 1200 DO 20 J = 1,12 COST 1210 FACI (I,J) = 1.0 COST 1220 IF (IW A N T.ZO .1) F A CI (I,J) = 0. COST 1230 20 CONTINUE cost 1240 IF (IW A NT. EC.0) Go To 30 Cost 1250 Do 28 K = 1,2 COST 1260 DO 26 J = 1,N2 COS T1270 DO 24 I = 2, IRS Cost 1280 Y1D = TRSSS * ((Y1 COP - TRSSS) = CFC A (1,I) ) COS T1290 CFFAC = CFC A (J+1,I) - CFCA (J + 1, I-1) COST 1300 CFFAC = CFF A C/CL A B (J, K , T RS S S) Cost 1310 F ACI (K ,J) = FA CE (K, J) + CLAB (J K,Y1D)

  • CFFAC C05T1320 ,

24 CONTINUE C05T1330 IF (FACI (K,J) .LE.0.) F ACE (K,J) = 1.0 COST 1340 26 CosTINUE COST 1350 28 COETINUE COST 1360 30 DO 5 2 I = 1,3 COST 1370 IC = 1 COST 1380 532 = 0 COS T1390 542 = 0 Cost 1400 552 = 0 Cost 1a10 DO 50 I2 = 1,52 COST 1a20 PRATIO = 1.0 COST 1430 CRATIO = 1.0 COST 1440 IF (I. BE. 2) GO TO 32 Cost 1850 PRATIO = APC (I2)

  • BPC (I2) * (YESSS - f BC) COST 1260 ORATIO = OTPP (I2) / OYER (I2) * (1. + COS (I21 ) / (1. + COB (I2)) C05T1a70 32 C05?INUE COST 1480 FAD (I,I2) = CLAB(I2,I,TRSSI) COST 1490 C l=================================================================l COST 1500 CI l COST 1510 C l COST LETELIEG FROB BASE POWER OUTPUT TO PROBLE5 !EG AW ATT LET EL l COST 1520 C l l COST 1530 C I====================================================================lC05T1520 FACs = 1.0 COST 1550 FAC1 = AA (1,I2) + AA (2,I2) * (5 WE/B WE) ** A A (3,I2) COST 1560 IF ( AB AN.GT.O.) FACs = AMAN /ABA NB / FAC1 85s? COST 1570 COBBF = F AC1* FAD (I, I2) /PR ATIO*0 R ATIO C05T1500 IF (I A R3 (I2) . EO. 0 ) GO To e6 COST 1590 531 = N32 + 1 COS T1600 M 32 = N 31 + IAR 3 (f 21 - 1 COST 1610 Do to I3 = N31,N32 COST 1620 IF (I A Bs (I3) . ZO.0) GO To a2 Cost 1630

= .

1 25 541 = W42 + 1 COST 16a0 Na2 = Na1 + IARa(I3) -

1 COST 1650 DO 40 It = N41,542 COS T1660 IF (I A P5(I4) .EQ.C) Go TO 38 COST 1670 N51 = 552 + 1 COST 1680 N52 = N51 + IA25(In) - 1 COST 1690 Do 36 I5 = 351,552 COST 1700 D (I, IC) = D (I,IC)

  • C058F COST 1710 IF (I. EQ. 2. AND. AH A N.GT.O.) D (I,IC) = D (I , IC)
  • FACM COST 1720 IC = IC + 1 COST 1730 36 CONTINCE COST 1740 GO To a0 COST 1750 38 CONTINUs COST 1760 D (I, IC) = D (I,IC)
  • COMBF COST 1770 IF (I. EQ. 2. AN D. An AN. GT. 0. ) D (I, IC) = D (I, IC)
  • FACs COST 1780 IC = IC + 1 COST 1790 40 CONTINCE COS T1800 GO To es COST 1810 42 CONTIN UE COST 1820 D (I ,IC) = D (I, IC)
  • COMBF COST 1830 IF (I. IQ. 2. AND. AH AN.GT. 0. ) D (I, IC) = D(I,IC)
  • FACS COST 16a0 IC = IC + 1 COST 1850 44 CONTINCE COST 1860 GO TO 48 COST 1870 a6 CONTINUE COST 188C D (I , IC) = D (I, IC)
  • COMBF COST 1890 IF (I. EQ.2. AND. A H A N.GT.O. ) D (I, IC) = D(I, IC)
  • FACH COST 1900 IC = IC + 1 CO ST1910 48 CONTINCE COST 1920 53 CONTINUE COST 1930 52 CONTINUE COST 19a0 IF (IFLAG.LT.2) GO TO 62 COST 1950 C t====================================================================lCOST1960 C1 l COST 1970 C1 IF IFLAG=2 READ CONOPT OWE TI5E ONLY HERE l COST 1980

. CI IF IFLAG = 3 READ CONOPT FOR IRE SECOND TIME HERE I COST 1990 C I l COST 2000 C l====================e===============================================lCOST2010 IF (IL AZ. GT.1) R E A D (I CO N, CO NO PT, EN D= 60) COST 2020 60 CONTINUE COS T2030 IF (IL A Z. EQ. 2) GO TO 6 2 COS T2040 R E A D (ID 1,CO NOP T, E N D = 6 2) COST 2050 62 CONTIN 0! COST 2060 l PEVIND ID1 COST 2070 I EERIND ICON COS T2080 DO 82 I = 1,3 COS T2090 IC = 1 COST 2100 N32 = 0 COST 2110 Na2 = 0 COST 2120 352 = 0 COST 2130 DO 80 I2 = 1,N2 COST 21a0 IF (I A R 3 (12) . EQ . 0) GO TO 7e CO ST2150 N31 = N32

  • 1 COST 2160 N32 = N31
  • I A R3 (I2) - 1 COST 2170 DO 72 I3 = N31,332 COS T2180 IF (IA3 4 (I3) .!Q .0) GO TO 70 COST 2190 N#1 = N#2 + 1 COST 2200 Na2 = Na1 + I AR4 (I3) - 1 COST 2210 DO 68 Is = No1,Na2 COS T2220 IF (I A R5 (Is) . ZQ. 0) GO TO 66 COST 2230 N51 = N52 + 1 COST 22a0 N52 = N51 + IAR5(I4) - 1 COST 2250 DO 6a I5 = M51, N 5 2 COST 2260 C5 (I,I5 ) = D (I, IC)
  • FACE (I,I2) COST 2270 IC = IC + 1 COS T2280 64 CO N T!N DE COST 2290

126 GO TO E8 COST 2300 66 CONTINUE COST 2310 Cs(I,Ia) = D (I, IC)

  • FACE (I,I2) COST 2320 IC = IC + 1 C05T2330 68 CONTINUE CO S T230 Go TO 72 COST 2350 70 CONTINUE COST 2360 C3 (I,I3) = D (I,IC)
  • FACE (I,I2) COS T2370 IC = IC + 1 COS T2380 72 CONTINUE COST 2390 GO TO 76 CO ST2 s00 74 CONTINUE COS*2a10 C2 (I,I2) = D (I, IC)
  • F ACE (I,I2) COS T2a 20 IC = IC + 1 COS T2430 76 CONTINUE COST 2amo 80 CCNTINUE CO ST2450 82 CONTINUE COST 2460 CALL sun (FAD) COS T2a 70 RETURN COS T2 a 80 END COST 2a90 SUBROUTINE 50DLA5 (KONTRL) 50DL 10 C

C l=======================================================,============180DL BODL 20 30 C1 150D L a0 C i ST R. J. BARNARD NOT 1974 150DL 50 C1 -------------

_ 180DL 60 C1 180DL 70 C l _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1 5 0D L 80 Cl BOOL AB SU5PROGRA5 CONTROLS THE ENTE! 0F COST 50 DEL DATA FR05 180DL 90 C I *BE COMO FILE AND THE LABOR EQUIP S EATL DATA FR05 LA5A FILE. IBODL 100 C l EACH FILE BUST BE SEANCHED FOR SPECIFIC DATA RECOPDS THEN 150DL 110 C l PROC!SSING CONTINUES WITE PROPER DATA IF FO UN D O R T53 LAST 150D L 120 C l RECORD ON EITHER FILE IS USED IF I5 PROPER SELETTION S BA TE BEEN 150DL 130 C l REQUE!TED IN THE INPUT DATA CARDS. ( BCD L 1 0 C1 C l====================================================================la0DL150 l50DL 160 REAL*8 AC2, AC3, Ace, AC5, CITY, DATE, LOC 50DL 170 RE AL

  • 8 TYPE (2) ,TTPE1 (2) ,LOCIN (4) ,IDD( 380) 50DL 180 DIBENSION AT (30,8 ) ,B L ( 30,16) , C5; ( 30,16) , N AC( 12) 50DL 190 DIBENSION F(50) 50DL 200 COMMON / FORB / BODL 210 1 TYPE, TY P E1, 10CIN, A C2 (8,12) , AC3 (8,6 0), ACs(8,1801, BCDL 220 1 AC5 (8,320) , DATE, D (3,3 8 0) , TI TLE (20) , BOOL 230 1 IAR1, IAR2 (5) , IA R 3 (15) , I A Re (60) , I AR5 (180) , IST, IGo, 20DL 2a0 1 NIN, NOUT, ID1, ID2, ID3, ICON, C050, LA5A, IS DJ (3) BODL 250 C0550W / PROG / 50DL 260 1 LOC (3) , CITT (25) , CFCA (12,50) , TRSSS, TRPER, IRCOP, 155, =0DL 270 1 59E, IBS 50DL 280 C0550N / OUT / 50DL 290 1 BWE, C2(4,12), C3 (a ,60) , C4(4,1801 , C5 (4, s 00) , C2C (4,12) , 50DL 300 1 C2T ( a ,12) , ES CL , SF5C, SS=C, S S LC, SCO NT, STDC, TIC, 50DL 310 1 TDA, 55S(7), 2555, IAC, LP G, 52 50DL 320 C05505 / NABL / 50DL 330 1 AEB (12) , ALB (12) , A 55 (12) , AFC(12,50) , AL S (12,5 0) , BODL 3a0 1 ABS (12,50), BFC(12,50), BLS(12,50) , 85S(12,50) , APC (12) , 50DL 350 1 BPC(12) , TES (50) , A A (3,12) , C05(12), COS (12) , CO N;L (12) , 50DL 360 1 CONT 5 (1h , CONTE (12) , DE0T (12) , F ACS1 (12,16) , F A CS 2 (12,16) , BODL 370 1 FAC33 (12,8) , RIE, RIBA, R INT (50) , P0, T3C, TFIRST, TLA ST, 500L 380 1 FILS (20) , F ACE (3,12) , ABAN, ASAN8, BW, ISITE(20), NU5SL, 50DL 390 1 OTP (12) , C TP P (12) , OYERS(12 , BET, 55P(12), EsI(12) 50DL a00 INTEGER C050 50DL 410 REWIND C050 50DL 420 REWIND LABA C

C1 1====================================================================l5 500L aa0 180DL a50 C i IF K05TRL = 1 20T5 THE COST 50 DEL FILE (C05Q AND THE 150DL 460

127 C l EQUIP L ABOR 6 MATL COST FILE (LA M A) WILL BE READ IN. . 150DL 470 Cl..._______________________________ls0DL480 C l IF KCFTRL = 2 THE COST MODEL FILE (C050) Is RE AD IN A ND THE 150DL #90 C1  ! QUIP LABOR & BATL COST FILE (LAMA) WILL BE SKIPPED. l a00L 500

.C i 150DL 510

. C l====================================================================150DL520 2 PE AE(CCEO, END=a) BODL 530 1 TYPE 1, IDD, TITLE, Y B C, BW E, AA, IAR1, IAR2, IAR3, BODL 540 1 IAP8, IAR5, CFCA, FACS1, FACS2, FACS3, AEB, 50DL 550 1 AMB, ALB, D, AC2, AC3, A CS , A C5, PC, COB, BODL 560 1 RRT, MRP, NAA, NInga, NIAR5, NCCD, NAC, IAC2, 50DL 570 1 IAC3, IAct, IACS BODL 500 IF (TY PZ1 (1) . ZQ. TYPE (1) ) GOTO8 BODL 590 GO TO 2 50DL 600 a WRITE ( NCUT,500) TYPE (1) BODL 610 DO 6 L = 1,20 a0DL 620 6 WRITE (5007,502) 50DL 630 8 CONTINUE MODL 640 AM ANB = MHT 500L 650 REWIND COMO BODL 660 TYPE (1) = TYPE 1(1) 50DL 670 1 TYP E (2) = TYPE 1(2) 50DL 680 P= (TRPER - YRSSS) / (YRCOP - TRSSS) 50DL 690 NI = N 2 + 1 50DL 700 DO is I=2,NI MODL 710 DO 10 R = 1, Ins BOOL 720 10 F (K) = C PC A (I, K) MODL 730 CALL D ELO F (F , P, P O ,IE M) 50DL 780 Do 12 K = 1,IMM 80DL 750 CFCA (I, R) = F (K) 50DL 760 12 CONTINUE BODL 770 1e CONTINUE ECDL 780

. IF ( K O N TEL . EQ . 2) RETURN 50DL 790 C l====================================================================150DL800 C I 1500L 810 Cl CHICK =0R LOCATION IN GEOGR APHIC TABLE 180DL 820 C I == NO DEFAULT OPERATIONS - ERRORS DTILIZE THE LAST LOCATION FOR IMODL 830 C I CONTINUING EXECUTION WITN ERROR NOTICE GIVEN. 150DL 840 C1 150DL 850 C !====================================================================l50DL860 Do 16 J = 1, NU 5S L BODL 870 R EA D (L AM A, END=18) IR I S,IT,LOCIN , AT, BL,C ET MODL 880 IF (LOC (1) . NE. LOCIN (31 ) CO 10 16 50DL 890 GO TO 22 50DL 900 16 CONTIN UE MODL 910 18 REWIND LAM A MODL 920 WRITE (NOUT,50s) n,0C (I) , I=1,3) 50DL 930 DO 20 L = 1,20 500L 940 20 *dRITE (N00T,502) 50DL 950 l

J = N U M SL BODL 960 C MODL 970 C !====================================================================l50DL980 CI i n0DL 990 Cl DETERMINE LATEST TEAR OF LABOR AND MAT!RI AL COSTS FOR THIS 150D L1000 C 1 LOCATION. 150DL1010 C i 150DL1020 C l====================================================================lMODL1030

i. C 50D L10a 0 1 22 ISITE(1) = J 50DL1050 i RAT = 0.0 50DL1060 Do 28 I = 1,30 mod L1070 2n IF ( AT (I,1) .GT. B AT) HAT = AT (I,1) MOD L1080 YLAST = HAT 50D L1090 RETURN 50DL1100 500 FORM AT ('1',T12. A 8,' TYPE OF PLA NT NOT FOUND 05 COST 50 DEL T APE, C550DL1110 1 ECK REQUESTED TYPE FOR SPELLING AND CARD POSITION'//) 20D L1120 l

l

128.

502 FOR5 AT (' ' ,T20,50 (8 <>')) 50D L1130 504 FO N5 AT (' 1' ,3 48,' WAS NOT FOU ND IN T ABLE O F CITIES- CHECK CITY NA5E50DL1140

  • 1 FOR SPELLING AND CARD POSITION'//) 50DL1150 END 50DL1160 SUB BCUTINE DELCF(F, P,PO,I5) DLOF 10 Cl====================================================================lDLOF 20 C l l DLO F 30 C1 T5IS SUBPROGRA5 5APS THE FUNCTION F(Y,PO) l DLO F 30 CI INTO A N ET FU N CTION F(T,P), NEERE BOTH FUNCTIONS lDLOF 50 Cl BATE THE S AME END POINTS (YS AND TE) BUT S35E lDLOF 60 CI ARBITARY POINT Y5 IS CH ANGED - IDLOF 70 Cl NEERE P =(YB-Y3) /(TE-YS) USED FOR ADJUSTI NG CASE FLON CU RTES. l DLOF 80 C l DLOF 90 C l . . . . - - - - . . .

C1

. - - - - - - - - . . . . . . . - _ . _ llDLOF 100 lDLOF 110 C l BY: R . C. DEL 0ZIER DATE: AUGUST 5, 1974 I DLOF 120 C l 50DIFIEE Bf: C. R . EUD505 DATE: O CTOB ER 17, 1977 lDLOF 130 C l C l==================================================================== DL0F 150 DI5INSION F (IB) ,G (50) DLOF 160 151 = PO=I5 * .5 DLOF 170 L52 = P *I5 + .5 DLOF 180 IF (L52.LT.2) L52 = 2 DLOF 190 IF (151. EQ. L52) RETU RN DLOF 200 Do 3 I=1,I5 DLOF 210 3 G(I) = F (I) DLOF 220 51 = L51-1 DLOF 230

=

B1 51 / (L5 2-1) DLOF 250 A1 = L51 - 51* L52 DLOF 250 52 = 15 - L51 DLOF 260 52 = B 2 / (IM-L52) DLOF 270 A2 = L51 - E2*L52 DLOF 280

  • DO 2 I=1,152 DLOF 290 L = A1 + B1*I *.5 DLOF 300 IF [L .LT.1) L=1 DLOF 310 IF (L.GT.L51) L=L51 DLOF 320 -

F(I) =

G (L) DLOF 330 2 CONTINU E DLOF 340 LI = LE2 + 1 DLQF 350 Do # I=LI,IE DLOF 360 L = A 2 + B 2* I + . 5 DLOF 370 IF (L.LT.L51) L=L51 DLOF 380 I F (L. GT. I5) L=I5 DLOF 390 F(I) =

G (L) DLOF a00 4 CON TINUE DLOF a10 RETUEN DLOF a20 END DLOF #30 SUBROUTINE CONIY ( AE. BE, AL, BL, A3,85,IL, FL,75, FE,FIL,TFIRST,TLAST, CONI 10 1 YBC,52,LA5A) CONI 20 C

l====================================================================lC0NI 30 C l l CONI a0 j C l CONIT IS CALLED FR05 COST SUBROUTINE FOR ETALUATION OF I CONI 50 CI ESCA LATICN CORPONENTS. ICONI 60 C1 I C0 EI* 70 C 1,_ _ _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ICONI 80 C1 I CON I 90 C1 BY R. C. DELOIITE AND B. E. SEITE 01/01/72 ICONI 100 C1 l CONI 110 CI BODIFIED BY C. R. EUD505 10-17-77 l CONI 120 C1 ICONI 130 C l=============__

C l=============

===========================================lC0NI180

===============================================lC0NI-150 Cl l CONI 160 C1 AE EQUIP 5ENT COST IN TBC ICONI 170 Cl BE ESCALATION RATE FOR EQUIP 5ENT ICONI 180 C I AL LABOR B A TE IN TBC l CONI 190 d

.t-

129 C I BL ISCALATION RATE FOR LABOR , ICONI 200 C l A5 MATERI AL COST IN YBC l CONI 210 C l 55 ESCALATION RATE For N ATERIAL l CONI 220 CI IL LOCATIONS To BE STUDIED l CONI 230 C t FE FACTOR FOR EQUIPRENT TIPE I CONI 2:0 C l FL FACTOR FOR LABOR TYPE ICONI 250 C i FM FACTOR FOR H AT ERIAL TYPE l CONI 260 C l FIL FACTOR FOR LOCATION l CONI 270 C l YFIRST FIRST YEAR PERTAINING TO LAR A FILE DATA ICONI 280 C I YLAST LAST YEAR PERTAINING TO LABA FILE DATA l CONI 290 C I N2 NUMBER OF 2-DIGIT ACCOUNTS (DIRECTS & INDIRECTS) I CONI 300 CI TBC Y!AR OF R ASE HODEL COSTS ICONI 310 CI l CONI 320 Cl====================================================================lC0NI330 C CONI 340 DI5ENSION A!(12) ,B E (12) , A L (12) , B L (12) , A M (12) , B R (12) , FL (12,16) , CONI 350 1 FM(12,16) , FE (12,8) , FIL (20) , A (30,8) ,5 (3 0,16) ,C (30,16) , TR (30) , CopI 360 2 EE (3 0) , R s (3 0) , RL (30) CCNI 370 DIRENSION IL (20) ,S AE (12) ,S A 5( 12) , S AL (12) , SB E(12) , SBR (12) ,SB L (12) CONI 380 DIMENSION LOCIN (8) CONI 390 RETINJ L AM A CONI 400 Do 2 I = 1,20 CONI 410 IF (II (I) . EQ. 0 ) GoToa CONI m20 2 CONTINUE CONI a30 I = 21 CONI sao 4 CONTINUE CONI 450 IMI = IL (I-1) CONI 460 DO 6 I = 1,N2 CONI a70 S A E (I) = 0.0 CONI a80 SB E (I) = 0.0 CONI a90 S AM (I) = 0.0 CONI 500 SB5 (I) = 0.0 CONI 510 S A L (I) = 0.0 CONI 520 SBL(I) = 0. 0 CONI 530 6 CONTINUE CON I 5a 0 l- C CONI 550 C l====================================================================lCONI560 Cl ICONI 570 C l SEARCH FOR 5AI!5CM OF 20 LOCATIONS WHICS CAN BE CCMBINED FOR l CONI 580 C 1 REGIONAL PROJECTIONS. l CONI 590 C l l CONI 600 C l====================================================================l CONI 610 C CONI 620 IC = 1 CONI 630 Do 18 I = 1,Ist CONI 640 R E A D (L A B A , E N D= 22) II, IS, IT, LOCIN, A, B, C CONI 650 IF (I L (IC) . NE. I) CD TO 18 CONI 660 WRITE (6,500) LOCIN CONI 670 IC = IC + 1 CONI 680 C CONI 690 C l====================================================================l CONI 700 Cl l CONI 710 C I PROCESS THE 2-DIGIT ACCOUNTS l CONI 720 C l l CONI 730 C l======================================================a=============lCONI7a0 C CONI 750 Do 16 J = 1,N2 CONI 760

- DO 8 K = 1,30 CONI 770 RE (K) = 0.0 CONI 780 RL (K) = 0.0 CONI 750 RM (K) = 0.0 CONI 800 8 CONTINU! CONI 810 KK = 0 CONI 820 Do 12 K = 1,30 CONI 830 IF ( A (K,1) .!Q. 0.0) GO TO 14 CONI 840 IF ( A ( K,1) . GT. YL AST) GO To in CONI 850

130 IF (TFIRST.GT. A (K,1)) GO TO 12 CONI 860 '

SUBEQT = 0. CONI 810 SURLAB = 0. CONI 880 SU5 BAT = 0. CONI 890 EK = KK + 1 CONI 900 Do 10 L = 1,16 CONI 910 SU55AT = SU55 A T+ F 5 (J, L) CONI 920 SUNLAB = SURLA B +F L (J, L) CONI 930 IF ( L. LT. 9) SUBEQT = SUREQT + FE (J,L) CONI 9s0 IF (L.LT.9) RE (KK)

  • R E(K K) + A(K L)
  • FE (J, L) CONI 950 BL (KK) = R L (KK) + B(K,L)
  • FL(J,L) CONI 960 R5(KK) = R5 (KK) + C ( K ,1)
  • F 5 (J, L) CONI 970 10 CONTINUE CONI 980 IF ( SU R E CT. N E. 0. ) RE(KK) = R E [KK) /SU M EQT CONI 990 IF (SU 3 LAB. NE. 0. ) RL (K K) = R L(K K) /SUR L A B CONIt000 IF (SU 55A T. NE. O. ) R5 (KK) =

R5(KK)/SU35AT ComI1010 IY(R E (KK) .GT.O.) RE (KK) = ALOG(RE (KK)) CO N I102 0 IF (RL (KK) .GT.O.) R L (K K) =

A LOG (R L (KK)) CON I1030 IF (R5 (KM . GT. 0. ) 35 (K K) =

ALOG(R5(KK)) CONI 1040 TR(KK) = A (K,1) - TBC CONIt050 12 CONTINUE CONIt 060 14 CONTIN UE CON It 070 CALL FITS ( TR , R E , KK, AE1, BE1) CO N I1080 CALL FITS (TE, R L, KK, AL1, BL1) CONI 1090 CALL FITS (TR, R5, KK, A51, 55 1) CONI 1100 S A E (J) = S A E (J) + FIL (IC- 1)

  • AE1 CONI 1110 S AL (J) = SA L (J) + FIL(IC-1)
  • AL1 CONI 1120 S A5 (J) =

SA5(J) + FIL (IC-1)

  • A51 CO N I1130 SBE (J) = SBE(J)=
  • FIL (IC-1) e B E1 CONI 1140 SBL (J) SBL (J) + FIL (IC- 1)
  • BL1 CONI 1150 SB5 (J) =

SB 5 (J) + FIL(IC- 1)

  • EH1 CONI 1160 .

16 CONTINUE CON I1170 18 CONTINUE CON I1180 DO 20 J = 1,32 CONI 1190 AE (J) = S A E (J) CONI 1200 B E (J) = SB E (J) CONI 1210 AL (J) =

SAL (J) CO N I1220 BL (J) = SB L (J) CON I1230 A B(J) =

S AR (J) CONI 1240 55(J) =

SB5(J) CONI 1250 20 CONTINUE CONI 1260 22 RETURN CON I1270 500 FOR5 AT('0CONIT CALLED - DATA FIT DONE ON ' ,8 A4 ) CONI 1280 END CONI 1290 SUBROUTINE FITS (I,T,3, A,5) FITS 10 C

C FITS 20

)====================================================================lFITS 30 C1 I FIT S 40 C l ETALUATE COEFFICIENTS A AND 8 0F LN(T) = LN ( A) + B LN (I)

C 1 -------------------------------- l FITS 50 l FITS 60 C l LINEAR FIT .... R.C. DELCIIER ..... 5/17 /72 l FITS 70 C1 FITS 80 l

Cl===========================================================ll C

FITS 90 FITS 100 REAL I(N) ,T(N) FITS 110 R = W FITS 120 SI = 0. FITS 130 SI2 = 0. FITS 140 ~

ST = 0. FITS 1$0 SIT = 0. FIT S 160 Do 2 I = 1,5 FITS 170 SI =

SI + I(I) FITS 180 -

SI2 =

SI2+ I(I) **2 FITS 190 ST = ST + T (I) FITS 200 SZY =

SZY + T (I)

  • I (I) Fr!S 210 2 CONTINUE FITS 220

l 131 I

l B =

(SY

  • S I-S IY
  • R) / (SI* SI-SI2
  • R) FITS 230 l- A 1 =

=

(ST-B*SII/R FITS 240 l EIP (1) FITS 250 P =

EIP (B) FITS 260 PETUPN

, END FITS 270 FITS 280 SUBROUTINE INDUSE(N2 INDU 10 C

C l l============================)==================================== 20 C l IINDU 30 THIS SUBPROGR AM USES WOR 5 AL INPUT CARDS IINDU 40 CI TO ALTE3 THE ESCLATION RATES TO FOR5 A lINDU 50 i

C l TIME DEPENDENT WONLINEAR FUNCTIONAL SYSTEM. lINDU 60 C1 lINDU 70 l C i -------------------------------- lINDU 80 i C l IINDU 90 Cl EY: R. C. DELOZIER DATE: S EPT. 12, 1974 lINDU 100

, C1 - - - - - - - - - - - - - - --- -------

IINDU 110 l

Cl MODIFIED !T : C. R. MODSON OCT. 6, 1977 IINDU 120 C I IINDU 130 C

C

!===============c====================================================lINDU140 INDU 150 DI=ENSION IC AR D (20) , A (12,3) , B (12,3) , AI(12,3) , BI (12,3) INDU 160 DI.9ENSICH FMT (7) , FCH (4) INDU 170 RE AL

  • 8 TYPE (2) , TYPE 1 (2) ,LOCIN (4) INDU 180 REAL*8 AC2, AC3, Act, ACS, CITY, DATE, LOC INDU 190

,i COMMON / FORM / INDU 200 1 TYPE, TYPE 1, L OCI N, A C2 (8,12) , A C3 (8,6 0) , AC4 (8,18 0) , INDU 210 1 AC5 (8,320) , DATE, D (3,3 8 0) , TITLE (20) , INDU 220 1 IAR1, I A R2 (5 ) , IAR3 (15) , I AP 4 (6 0) , I AR5 (18 0) , IST, IGO, INDU 230 1 NIN, NOU T, ID 1, ID2, ID3, ICON, COMO, LAMA, ISDJ (3) INDU 240 COMMON / PROG / INDU 250 1 LOC (3), CITT (2 5) , CFCA (12,50) , TRSSS, TRPER, TECOP, IMM, INDU 260 1 M*E, IES INDU 270 COMMON / NA5L / INDU 280 1 A EB (12) , ALB (12) , A M B (12) , AFC ( 12,50) , ALS (12,50) , INDU 290 1 A M S (12,50) , BFC ( 12,50) , BLS (12,5 0) , BMS(12,50), APC (12) , INDU 300 1 BPC (12) , TES (50) , A A (3,12) , COB (12) , COS (12) , CONTL (12) , INDU 310 1 CONTM (12) , CON TE (12) , DECT (12) , F ACS1 (12,16) , F A CS2 (12,16) , INDU 320 1 FACS3 (12,8) , RIB, RIBA, RINT (50) , Po , TBC, TFIRST, YLAST, INDU 330 1 FILS (20) , FA CZ (3,12) , AMAN, AMANB, HW, ISITE(20), NUESL, INDU 340 1 CTP(12), OTP P ( 12) , 09E1S (12) , MBT, MH P (12) , H EI (12) INDU 350 COMMON /T!LPRT/ IS ET INDU 360 DATA FMT/ ' (4 F5 ' , ' . 3, T ' , ' 71, F ' , ' 10. 2 ' , ' ,T 1, ' , ' 2014 ' , ' ) '/ INDU 370 DATA FCH/' (2F5 ', ' (4F 5 8, ' (6F5 ' , ' (8F5 8/ INDU 380 ISET = 0 INDU 390 IN =

=

1 INDU 400 I 1 INDU 410 RETIND ID3 INDU 420 N = N2 - 7 INDU 430 FMT (1) = FCH (N) INDU 440 NOW = NIN INDU 450 IF (IES. NE.1) NOW = ID3 INDU 460 WPITE (50UT,500) INDU 470 2 CONTINUE INDU 480 IC = 0 INDU 490 DO 4 J=1,3 INDU $00 R EAD (N OW ,504) ( A (K,J) , B (K,J) ,K= 1,7) ,T,ICA R D INDU 510 WRITE (500T,502) ICARD INDU 520 IF (IB S. EQ.1) WRITE (ID3,508) ICARD INDU 530 IF (T.LE.-1.) GO TO 6 INDU 540 l RE A D ( NCW, F5T) ( A (K,J) , B (K,J) , K= 8, N2) , T,IC AR D INDU 550 l WRITE (NOUT,502) ICARD INDU 560 IF (IB S. EQ .1) WRITE (ID3,50 8) ICARD INDU 570 4 CONTINUE INDU 580 IF (T. G!. YES (1) ) GO TO 6 INDU 590 DO 20 K=1,32 INDU 600

i 1

l i

132 j AI(K,1) = AFC (K,1) INDU 610 .

AI (K ,2) = ALS (K,1) INDU 620 AZ(K,3) = A BS ( K,1) INDU 630 BI (K ,1) = EFC ( K,1) INDU 640 BI(K,2) = BLS (K,1) INDU 650 BI(K,3) = BBS (K,1) INDU 660 20 CONTINUE INDU 670 IF = 1 INDU 680 I=1 INDU 690 TM = TES(1) -T INDU 700 T = TES(1) INDU 710 IC = 1 INDU 720 Do 30 J=1,3 INDU 730 Do 30 K=1,N2 INDU 740 IF ( A (K,J) .LE. 0. AND. h 'K.J) .LE.O. ) Go TO 30 INDO 750 IF ( B ( 5,J) . LE. 0. ) B (K, ") = BI (K,J) INDU 760 IF (& (K,J) .GT. 0. ) GD 12 15 INDU 770 A(K,J) = AI (K, J) * (B (K,Ji/BZ (K,J)) **T5 INDU 780 Go TO 30 INDU 790 15 A (K,J) = A(K,J)

  • B (K, J) * **in INDU 800 30 CONTINUE INDU 810 6 CONTINUE INDU 820 IF (I. N E.1) IN=I-1 INDU 830 III = 1 INDU 840 IF (I.GT.I55) RETURN INDU 850 Do 10 II = I,IRM INDU 860 IF (II. N E.1) IN1=II-1 INDU 870 DY =

YES (II)-TES (IN) INDU 880 00 8 KK = 1,52 INDU 890 A FC (KK,II) = AFC (KK,15) *SFC (KK,IN) **DY INDU 900 A LS (KK , II) = ALS (KK,IN) *BLS (KK,IN) **DY INDU 910 .

15 S (KK, II) = AMS (KK,IN) *BCS (KK,IN) **DY INDU 920 BFC (KK,II) = B FC (K K ,II) INDU 930 BLS (KK, II) = B LS (KK,I N) INDU 940 5 5S (KK,II) = B3S(KK,IN) INDU 950 8 COETINCE INDU 960 IF (T.GZ.YES CIN1) . AND.T.LE. (YES (II) *. 001) ) GO To 14 INDU 970 10 CONTI3UE INDU 980 RETURE INDU 990 14 CO NTINUE IND 01000 I = II INDU1010 DO 16 K = 1,52 INDU1020 IF ( A (K ,1) . GT. O. ) AFC(K,II) = A (K,1) IND01030 IF (1 (K ,2) . GT. O. ) ALS (K,II) =1 (K,2) IEDU1040 IF ( A (K ,3) . GT. 0.) A5S (K,II) = A (K,3) INDU1050 IF (B(K,1).GT.O.) BFC (K,II) = B (K,1) INDU1060 IF (B (K,2) . CT. 0.) BLS (K,II) =B (K,2) 13D01070 IF (B(K,3).GT.O.) E nS (K,II) = B (K,3) INDU1080 16 CONTIEUE INDU1090 IF (T.NE.YES (1)) ISET=1 INDU1100 TES (II) = T INDU1110 IF (IC. IO.1) Go TO 2 INDU1120 I= I

  • 1 IND U1130 GO TO 2 INDU1140 500 FORR AT('0 INPUT CARDS TO PRODUCE TIME DEPENDEET ESCALATION R ATES' INDU1150 1 /,' + ' ,60 ('_') ) IND U116 0 502 Fons1T (11,T10,20 A4) INDU1170 504 F0EMAT ( 14F5. 3, F 10. 2,T 1,2 0 A 4) INDU1180 -

508 F015 AT (20&4) IND U1190 F3D INDU1200 FUNCTION CLAE(K,ITTP,Y) CLAB 10 C CLAS 20 -

C l====================================================================lCL&B 30 Cl lCLAB 4'O

l 133

' C I ETALUATE PROJECTED INDEIIS FOR LABOR OR M ATERI AL QCLAI 50 C1 lCLAB 60 C I K = ACCOUNT INDE ICLAN 70 CI ITYP = ACCOUNT COST TY PE WHERE: 1 = FACTOR Y CO STS lCLAL 80 C l 2 = SITE L ABOR COSTS lCLAB 90 C l 3 = SITE B ATERIAL COSTS lCLAB 100 C I T = YEAR OF COST INDEI PROJECTION lCLAB 110 Cl lCLAB 120 C1 --------------------------------

ICLAB 130 C I . ICLAB 1s0 C l BY R. C. DE LOZIER AND B. E. SRIT! NOT. 1972 ICLAB 150 C l lCLAB 160 C l====================================================================lCLAB170 C CLAB 190 REAL*8 LOC, CITY CLAB 190 C0550N / NAML / CLAB 200 1 AE B (12) , ALB (12) , A M B (12) , A FC (12,5 0) , ALS(12,50), CLAB 210 1 A MS (12,50) , BFC(12,50), BLS(12,50), BB S ( 12,50) , AP: (12) , CLAB 220 1 BPC (12) , TES (50) , AA(3,12), COB ( 13 , CO S ( 12) , CON TL (12) , CLAB 230 1 CO N TM ( 12) , CONTE (12) , DECT (12) , F ACS1 (12,16) , F A CS2 (12,16) , CL A B 20 1 F ACS 3 (12,8) , RIB, R IB A , RINT (50) , Po, TBC, YFIRST, YLAST, CLAB 250 1 FILS ( 20) , FACE (3,12), ABAN, ABANE, B U, ISITZ (20) , NURSL, CLAB 260 1 OTP (12) , CT P P (12) , CVERS(13 , B RT, 5 HP ( 14 , B WI (12)

CLAB 270 COMMON / PROG / CLAB 280 1 LOC (3) ,- CITY (25) , CFCA (12,50) , YRSSS, T RPER, Y R CO P, Iss, CLAB 290 1 MWE, IBS CLAB 300 IM1 = IBM - 1 CLAB 310 Do 2 J = 1,I51 CLAB 320 IF (T. GE.YES (J) . A ND.Y .LE. YES (J+ 1) ) GO TO e CL A B 330 2 CONTINUE CLAB 340 J = I55 CLAB 350

. a CONTINUE CLAB 360 IF (f .LE. YES (1) ) J= 1 CLAB 370 IID = Y - TES(J) CLAB 380 GO To (6,8,12) ,ITTP CLAB 390 6 CONTINUE CLAB 400

- CLA B= 4 FC (K,J)

  • BFC(K,J) ** IID / AES(K) CLAB 410 RETURN CLAB m20 8 CONTINUE CL A B 430 10 CL A B = AL S (K ,J)
  • BLS (K,J) ** IID / ALB (K) CLAB 440 PETURN CLAB 450 12 CONTINUE CLAB 460 14 CL A B = A5 S (k,J)
  • BMS (K,J) *= IID / AMB(K) CLAB a70 RETURN CL A B a 80 END CL AB 490 SUBR OUTINE ADY R (T ES, T C05B, C5,C51,TRS ,TH E, CFC A, I5 5,IBIN) ADTR 10
!===================================================================2: 4DYR 20 Cl ;ADTR 30 C I ADYR SUBPROGR AM ADDS THE MULTIPLE UNIT'S CASHFLO3 CURT!S TOGET3tR I ADYR 80 C l lADYR 50 C I BY C. R. BU DS ON OCTOBER 1977 lADYR 60 Cl lADTR 70 C l====================================================================lADTR 80 DISENSION T ES (50) , YC0 5B (50) ,C M (50) ,C51 (50 ) ,C52 (50 ) ,CH3 (50) ADYR 90 DIME NSION TI(50) ,CFCA (12,50) ADYR 100 TI M = YHE - TRS ADTR 110 DO 1a I=1,IM5 ADTR 120 CM 2 (I) = 0. ADYR 130 to CH3 (I) = 0. ADYR 140 J=2 ADTR 150 K= 2 ADTR 160 DO 15 I=1,I55 ADTR 170 YI(I) = TRS + CFCA (1,I)
  • TIM ADYR 180 IF (IBIN. 20 0) GO TO 30 ADYR 190 45 IF (J . GT. I M 5) CM2 (I) = C51(Ism ADYR 200 IF (J . CT. I5 M) GO TO 30 ADYR 210

134 IF (YC05B (J-1) .GT.YI(I)) Go TO 30 ADYR 220 IF ( YC C 55 ( J) . LT. YI (II ) GO To 25 ADYR 230 C52 (I) = CM1 (J-1) + (YI (I) - YC053(J-11 ) /(YC05B(J)-YCORB (J-1)) ADYR 280 1 * (C51 (J)-C51 (J-1)) ADYR 250 GO TO 30 ADYR 260 25 J = J +1 ADYR 270 Go TO 45 ADYR 280 30 IF (K.GT.I55) C33 (I) =

C5 (I55) ADYR 290 IF (K . G T. I55 ) GO TO 15 ADYR 300 IF (YES (K-1) .GT.YI(I)) GO TO 15 ADYR 310 IF (YES(K) .LT.YI(I)) GO TO 35 ADYR 320 C53 (I) = C5 (K-1) + (YI (I) -Y ES (K-1) ) / (TES (K) - YES (K- 1))

ADYR 330 1 * (CH (K) - C5 (K-1) ) ADYR 3s0 Go TO 15 ADYR 350 35 K= K + 1 ADYR 360 GO TO 30 ADYR 370 15 CONTINUE ADYR 380 DO 50 I=1,I55 ADYR 390 C51 (I) = C32 CE) + CH3 (I) ADYR 400 50 YC055(I) = YZ(I) ADYR 810 RETURN ADYR 420 END ADYR m30 SUBROUTINE SUR (FAD) 505 10 C S05 20 C l====================================================================1305 30 Cl 1505 40 C1 3 05 SUBTROGR AE SUBS ALL THE LOWEST LITEL COSTS TO THEIR HIG5EST 1505 50 CI LITEL. 1505 60 C i 1505 70 C I BY R. C. DE LOZIER AND R. J. B ARNARD APRIL 1975 ISUR 80 CI 1505 90 .

C1 50DIFIED BY : C. R. BUD 505 OCTOB E2 1977 1505 100 Cl 11C C l====================================================================l15 505 120 RE AL

  • 8 TYPZ(2) , TYPE 1 (2) ,LOCIN (4) SUN 130 RE AL*8 AC2. AC3, Aca, ACS, DATE SUR 140 DIRENSICN FAD (3,12) SUS 150 C0550N / FOR5 / SUR 160 1 TYPE, TYPE 1, LOCIN, AC2 (8,12) , AC3 (8,60) , AC4 (8,18 0) , 505 170 1 AC5(8,320), DATE, D (3,3 8 0) , TITL E ( 20) , SUB 180 1 IAR1, I AR2 (5) , I AR3 (15) , IAR 8 (60) , I AR5 (180) , IST, IGO, 505 190 1 FI N , NOUT, ID1, ID2, ID3, ICON, Coso, LABA, ISD J (3) SUB 200 C0550N / OUT / SUN 210 1 BTE, C2(4,121, C3 (e ,60) , Ca (4,18 01, C5 (e ,40 0) , C2C (a ,12) , 505 220 1 C2T(4,13 , ESCL, SF 5C , S S HC , S S LC, SCorf, STDC, TIC, 5U5 230 1 TDA, 55S(7) , 5555, IAC, IP G, 32 SUS 200 C05505 / NABL / SUB 250 1 AZ3 (12), ALB (12) , ARS(12), AFC( 12,50) , AL S(12,50) , 505 260 1 A53(12,50) , BFC (12,5 0) , BLS(12,50) , 85S(12,50), APC (12) , 505 270 1 B PC ( 12) , Y!S (50) , A A (3,12) , Cos (12) , COS(12), CO NY L (12) , SUM 280 1 CONTH (12) , CO NT E (12) , D 20T (12) , FACS1 (12,16) , F ACS 2 (12,16) , SUB 290 1 FACS3 (12,8) , RIB, RIBA, RINT ( 50) , Po, YBC, YFIRST, YLA ST, 5U5 300 1 FIL S (2 0) , FACI (3,12) , A5AN, A 5 A N B, 5W, ISIT!(20) , NURSL, SUN 310 1 QTP (12) , O TP P (12) , O TER S (12) , 55T, 55P(12) , 55I(12) 505 320 INTEGER C050 505 330 C l========== ====================================================lSU5 340 C i 15U5 350 C I CLEAR ALL COST COLLECTING ARR AYS ISUB 360 C l 15U5 370 C  !====================================================================lSUB 380 Do 18 I = 1,3 SUR 390 332 = 0 SUR a00 Na2 =,0 SU5 a10 352 = 0 SUB 420 D0 16 I2 = 1, N2 505 430 IF (I A R3 (I2) . E Q. 0) Go To 12 SUB as0 i

l

1 15 N31 = N32 + 1 sus 450 N32 m,531 + IAR3 (I2) -1 sus 460 C0 10 I3 = W31,532 sus 470 IF (IAB4(I3).EO.0) Go TO 8 sus 480 Wat = Na2 + 1 sus a90

. Na2 = No1 + IA3m (I3) -

1 50s 500 DO 6~I4 = N41,N42 Sus 510 IF (I A p 5 (I4) . EQ .0) GO TO 4 sus 520 N51 = N52+ 1 ses 530 N52 = N51 + I AR5 (In) - 1 sus Sa0 DO 2 I5= N51,552 50s 550 C 5 ( 4, I!) = 0. SUN 560 Ca(T Is) = 0. 30s 570 Ca (6,Is) = 0. sus $80 C3 (I,I3) = 0. SUB 590 C 3 ( 4, I 3) = 0. SUB 600 C2(I,I2) = 0. 505 610 C2 (a ,I2) = 0. sus 620 2 CONTINUE sus 630 GO TO 14 SUB 64 0 8 CONTINUZ sus 650 Ca ge ,Is) = 0. sus 660 C3 (I,I3) = 0. 50s 670 C3 (a,I3) = 0. sus 680 C2(I,I2) = 0. SUM 690 C2 (a ,I 2) = 0. SUN 700 6 CONTINUE sus 710 GO TO 1a 50s 720 8 CONTINUE SUN 730 C 3 ( 4, I 2) = 0. SUN 740 C2 (I ,I2) = 0.* sus 750

- C2 (a ,I2) = 0. sus 760 10 CONTINUE 505 770 GO To in 50s 780 12 CONTINUE sus 790 C2 (a ,I2) = 0. SUN 800 14 CONTINUE SUN 810 C2C(4,ID =0. 305 820 C2T(a,I2) = 0. SUN 830 IF (I2. LE. I A R2 (1) ) ass (I2) =0 50s 8a0 16 CONTINUE sus 850 18 CONTINUE sus 860 SFH C = 0. SUB 870 SSLC = 0. 5U5 880 SSuc = 0. sus 890 TIC = 0. sus 900 TICT=0. 505 910 SCONT = 0. SUN 920 STDC = 0. SUB 930 5555 = 0 50s 9s0 C l====================================================================15U5 950 C1 150s 960 C l SUN ALL ACCOUNTS TO THE NEIT ACCU 50L ATITE LETIL ISUs 970 C l l sus 980 C l====================================================================1505 990 DO 38 I = 1,3 sus 1000 N32 = 0 SUN 1010 pe2 = 0 sus 1020 N52 = 0 50s 1010 DO 36 I2 = 1,N2 sus 1040 IF (I A B3 (I2) . EO. 0) GO TO 30 sus 1050 N31 = N32 + 1 50s 1060 N32 = N31

  • IAR3(T2) - 1 SUN 1070 Do 28 I3 = N31,N32 sus 1080 IF (I A B E (I 3) . EQ .0) Go TO 26 505 1090 Na1 = Na2 + 1 SUE 1100

. =

136 58 2 =

Na1 + IARs(I3) - 1 SUR 1110 ,

Do 2a In = Na 1, Na 2 sus 1120 IF (IAR5(Io) .EQ.0) GO TO 22 sus 1130 551 = N52 + 1 sus 1140 552 = N51 + IAR5(Ia) - 1 sus 1150 Do 20 25 = 351,552 sus 1160 C5 (a ,I5) = C5 (a,I5) + C5(I,I5) sus 1170 Ca(I,Ia) = Ca(I,Is) + C5 (I,IS) sus 1180 C4(4,Ia) = Cs (4,Is) + C5 (I,I5) sus 1190 C3 (I,I3) = C3 (I,I3) + C5(I,I5) sus 1200 C3 (e ,I3 ) = C3 (t,I3) + C5(I,IS) sus 1210 C2 (I,I2) = C2 (I,I2) + C5(I,I5) sus 1220 C2(e,I2? = C2(e,I2) + C5 (I,I5) sus 1230 20 CONTINUE sus 1240 GO TO 28 sus 1250 22 CONTINUE SUN 1260 Ca(a,Is) = Ca(a,Is) + Ca (I,Ia) SDs 1270 C3(I,I2) = C3(I,I3) + Ce(I,Is) sus 1280 C3(a,I3) = C3 (4,I3) + C# (I,IG) sus 1290 C2 (I ,I2) = C2(I,I2) + Ct (I,Is) sus 1300 C2 (e ,I2) = C2 (a,I2) + C5(I,Is)

Sus 1310 24 CON TIN UE SUB 1320 GO TO 28 sus 1330 26 CONTINUE sus 13a0 C3 (4 ,I3) = C3 (a,I3) + C3(I,I3) sus 1350 C2 (I,I2) = C2 (I,I2) + C3 (I, I3) SUR 1360 C2 (a ,I2) = C2 (a,I2) + C3(I,I3) sus 1370 28 CONTINUE SUR 1380 GO To 32 50s 1390 30 CONTINUE 50s 1400 C2 (a ,I2) = C2 (4,I2) + C2(I,I2) sus 1810 32 CONTINUE sus ta20 IF (I. EQ.2. AND.I2.LE.I AR2 (1)) as s (I2) = C2 (2,I21 / ALB(I2) Sus 1830 1 / FACE (2,I2) / FAD (2,I2) / OT7P (I2) / (1. + COS (I2) ) sus 1440 IF (I. EC.2. AND. I2. LE. I AR2 (1) ) 5555 = Rss5 + ssS(I2) SUR 1850 IF (I. E Q.1 ) C2 C (I,I2) = CONTE (I2)

  • C2(I,Ia / 100. Sus 1860 -

IF (I.ZQ.2) C2C (I,I2) = CONTL(I2)

  • C2(I,Ia / 100. sus ta70 IF (I.EQ.3) C2C (I,I2) = CO NTR (I2)
  • C2(I,I21 / 100. sus ta80 C2C ( a,I2) = C2C (4,I2) + C2C (I,I2) sus ta90 C2T (I,I2) = C2 (I, I2) + C2C(I, I2) SUN 1500 C2T (4,I2) = C2T(a,I2) + C 2 (I,I2) 50s 1510 IF (I. ZQ.1. AND. I2. LE. I A2 2 (1) ) SFRC = SFsC + C2(1,I2) sus 1520 IF (I.EQ.2. AND.I2.LE.I AR2 (1)) SSLC = SSLC + C2 (2,I2) SUN 1530 IF (I. EQ. 3. AN D.I2.LE.IAR2 (1) ) $5sc = S$sc + C2 (3,I2) sus 1540 36 CONTINUE San 1550 38 ccWTINUE SUR 1560 II = I AR2 (1) sus 1570 Do 34 I2 = 1,II sus 1580 SCONT = SCONT + C2C (4,I2) 505 1590 STDC = STDC + C2T (a,I2) SUR 1600 3a CONTINUE sus 1610 I = IAR2 (1) + 1 Sus 1620 Do 35 I2 = I,N2 sus 1630 TIC = TIC
  • C2 (e,I2) sus 1640 TICT e TICT
  • C2T (a,I2) Ses 1650 SCONT = SCCNT + C2C(4,I2) SDs 1660 35 CONTINUE sus 1670 TDA = STDC + TICT sus 1680 -

RETURN sus 1690 END 505 1700 SUBROUTINE DELIN (R,C,G ,IS ,IE,CI,5,I AC) D LI N 10 C DLIN 20 .

C l====================================================================IDLIN 30 C1 I D LI N 40 C l THIS SUBPROGRAs ET ALUATES Tst INTEREST AND l D LI N 50 C1 ISCALATION INTEREST DURING CONSTRUCTION I D LI N 60

137 C1 IDLIN 70 C 1 -------------------------------- lDLIN 80 C1 I D LI N 90 C l BY R. C. DELOZIER DATE: JULY 21,1975 I DLIN 100 C1 -------------- ------------

l DLIN 110 C l lDLIN 120 C i 50DIFIED BY : C. 1. HUDSON OCTOS22 1977 IDLIN 130 C1 lDLIN 140 C i====================================================================lDLIN150 DIB EN SION R (50) ,C (50) ,G t 12,50) D LI N 160 DY = YZ-YS DLIN 170 CA= (5 - 1) / (YE- YS) DLIN 180 CI = 1./CA D LI N 190 CI = 0. DLIN 200 DC = 0. DLIN 210 DO 4 I = 2,5 DLIN 220 C R1 ADJUSTS INTEREST RATE TO REFLECT FREQ. OF COMPOUNDING DLIN 230 R1 = R (I) DLIN 240 IF (I AC. EQ.1) R1 = CA= ( (1. + R (I) ) *

  • CI - 1.) DLIN 250 FAC = R 1* (G (1,I) -G ( 1,I- 1) )
  • DY DLIN 260 CI = CI+ (C (I) +DC) mF AC DLIN 270 IF (I A C. !Q .1) DC = CI DLIN 280 C (Il = C(I) + CI DLIN 290 a CO NTI NU E DLIN 300 RETURN DLIN 310 END DLIN 320 SUBRO UTINE OUTPUT (IDF,IWA NT,E SCLD) 00TP 10 C l====================================================================100TP 20 C l l00TP 30 CI ROUTINE To GENER ATE OUTPUT REPORTS 10UTP 40 C l 10DTP 50

. C 1 -------------------------------- 100TP 60 Ci 100TP 70 C i 100TP 80 CI BY : 100TP 90

,, C l R.C.DELOZIER 100TP 100 l C1 R. J. BARNARD 100TP 110 i

I C l l00TP 120 C I 50DIFIED BY : C. R. HUDSON SEPTE5 B ER 1977 100TP 130 CI ENGINEERIN TECHNOLOGY DIVISION 100TP 140 C l OAK RIDGE NATION AL LABORATORY 100TP 150 C i 100TP 160 el====.....====...........=====........===============================100TP170 C OUTP 180 REAL

  • 8 TYPE (2) , TYPE 1 (2) ,LOCIN (8) CUTP 190 l

REAL

  • 8 SIMP /'SI5PLE ' /,C05P/'C05 POUND'/, TINT 00TP 200 REAL*8 AC2, AC3, ACa, ACS, CITY, D ATE, LOC OUTP 210 RE AL*a AL(12)/12* ' A * /, BL ( 12) /12* ' B '/ 00TP 220 DIMENSION IC29 (12) ,F5HS (7) ,IC2(a,12) , NI(12) 00TP 230 C05 HON /MO UT/DIDCI,ESCI 00TP 2a0 C05505 /HD5AIN/ ISTSIG OUTP 250 COMMON / FORM / 00TP 260 1 *YPE, "YPE1, LCCIN, AC2 (8,12) , AC3( 8,60) , A ca (8,18 0) , OUTP 270 1 AC5 (8,320) , DATE, D (3,3 8 0) , TI TLE (20) , 00TP 280 1 IAR1, I AR 2 (5) , IA R 3 (15) , I art (60) , I AR5 (18 01, IST, IGO, 00TP 290 1 NIN, NOUT, ID1, ID2, ID3, ICON, COBO, LABA, IS DJ (3) 00TP 300 C0550N / PROG / OUTP 310 1 LOC (3 ) , CI*T (25) , CFCA (12,50) , YRSSS, YRPER, YR CO P , I55, OUTP 320 1 59E, IBS 00TP 330 COMMON / OUT / CUTP 350 1 B9E, C2(4,121, C3 (4,60) , Cs(a,180), C5(e,000), C2C (0,12) , 00TP 350 1 C2T (a ,12) , ESCL, S F5C, SSEC, SSLC, SCONT, STDC, TI , OUTP 360 1 TDA, MHS (7) , 5555, IAC, IPG, N2 00TP 370 l

C0550N / NAML / 00TP 380 1 AES ( 12) , ALB (12) , ABB(12) , AFC(12,50) , ALS (12,50) , CUTP 390 1 A5S(12,50) , B FC (12,5 0) , B LS (12,50) , 85S (12,50), APC (12) , OUTP #00 l-

138 1 BPC (12) , TES (50) , A A (3,12) , COB ( 13 , C05(12), C03 TL (12) , 00TP uto ,

1 CONT 5 (12) , CO N TE (12) , DEOT (12) , F AC51 (12.16) , F A CS2 (12,16) , 00TP #20 1 FAC33(12,8), P IR , R IB A , RINT (50) , PC, IBC, YFIRSI, TLAST, 00TP 430 1 TILS ( 20) , F ACE (3,12) , AMAN, 45ANB, BV, ISITE (20 ) , NUBSL, OUTP 440 1 OTP (12) , CTP F (12) , CV E E5 ( 13 , M RT, 3 5P(1D , RBI (12) 00TP #50 C0550N /TBLPRT/ ISET 00TP 460 INTEGER C050 00TP 470 IR ND (I) = I*1.E-3 + .5 00TP 480 IF (I AC. !Q. 0) TINT = SIMP 00TP #90 IF (I A C. EQ .1) TINT = CORP 00TP 500 IR = I AR 2 ( 1) CUTP 510 Do e I=1,IR OUTP 520 m NI(I) = 19 +I CUTP 530 IR = I AR2 (2) 00TP Sa0 Do 5 I=1,IR 00TP 550 II = IAR2(1) *I OUTP $60 5 II(II) = 90 + I 00TP 570 Do 10 I = 1,12 00TP 580 DO 8 J = 1,4 00TP 590 IC 2 (J, I) = C2 (J,I) / 1000. 00TP 600 8 CONTINUE QUTP 610 IC2 R (I) = IC2 (a,I) +.5 00TP 620 10 CONTINUE .

00TP 630 IF (ISTSIG.GT.0) Go TO 16 00TP 6a0 IF (ISITE(2) .GT.0) vaITE (N00T,50 0) ISITE, FILS CUTP 650 BRITE ( NCUT,50 2) YFIRST, f LAST 00TP 660 WRITE (5007,50 s ) (NI(I) ,Is 1, N 2) 00TP 670 WRIT! (NOUT,506) (A L (I) ,8 L (I) ,I= 1, 52) 00TP 680 Do 14 K=1,IHR 00TP 690 WRITE (5007,308) Y ES (K) OUTP 700 WRITE (NCUT,510 ) ( AFC (J , K) , 8FC fJ, K) , Jm 1,5 2) CUTP 710 BRITE (NOUT,512) (A LS (J , K) ,5L3 (J, K) ,J- 1,5 2) 00TP 720 BRITE (30 GT,514) (A 5 5 (J , K) ,8 BS (J, K) ,J= 1,52) 00TP 730 IF (IS S.IQ . 0) GO TO 16 00TP 740 IF (IS ET. E C. 0) GO TO 16 00TP 750 18 CONTINUE OUTP 760 16 CONTINUE 00TP 770 CALL RIADS(DATE,IST,MWE, TYPE, LOC,TR553,f RPER,f RCOP,IR ANT, 00TP 780 1 500T, IPG) CUTP 790 WRITE (NCUT ,516 ) OUTP 800 WRIT!(300T,518) 00TP 810 521 =

IAR2 (1) 00TP 820 N22 =

IAR2 (2) OUTP 830 ISTDCS = 0 OUTP 840 Do 18 I2 = 1,521 00TP 850 FM R5 (I2) = HM5(I2) 00TP 860 IF (FRES(I2) .GT.O.) F MR 5 (12) = F 555 (I2) / 1000. 00?P 870 ISTDCS = ISTDCS + IC2R (I2) 00TP 880 WRITE ( NCUT,5 22) ( AC2 (J,I2) ,J= 1,8) , IC2 R (I2) ,IC2 (1,I2) ,FM H3 (I2) , OUTP 890 1IC2 (2,I2) ,IC2 (3,I2) 00TP 900 18 CONTINUE OUTP 910 WRITE (N00T,52e) 00TP 920 FRERS = 5555 00TP 930 FBBMS = F55R$ / 1000. 00TP 940 TF5C = SF5C / 1000. OUTP 950 TSLC = ESLC / 1000. 00TP 960 TSRC = SSRC / 1000. 00TP 970 WRITE ( NCUT,5 26 ) IST DCs, T FMC, FM5 HS, TS LC, T55C OUTP 980 -

I5 CONT = IRWD(5 CONT) CUTP 990 F55E = 5WE 00TP1000 F35KW =F5583 /F5VE

  • 1000 00TP1010 WPITE (500T,528) F55KW 00TP1020 -

12 = N21 00fP1030 DO 20 I = 1,522 OUTP10a0 T2 = I2 + 1 00TP1050 WRITE (N00T,534) (AC2 (J,I2) , J=1,8) ,IC2R (I2) 00TP1060

= .

139 20 CONTINUE OUTP1070 WRITE (NCUT,52a) OUTP1080 ITIC = IRND (TIC) OUTP1090 WRITE (300T,530 ) ITIC OUTP1100 ITPCSC = ISTDCS + ITIC OUTP1110 ICKW = 1007.

  • FLOAT (ITPC SC) /HWE + 0.5 CUTP1120 BRITE ( NCUT,531) ICKW,ITPCSC OUTP1130 BRITE(N00T,532) ISCONT CUTP1180 WRITE (N00T,536 ) 00TP1150 ITPCSC = ITPCSC + ISCONT 00TP1160 ICSU = 1000.
  • FLCAT(ITPCSC) / HWE + .5 0UTP1170 WRIT!( NCUT,538) ICSW,IT PCS C OUTP1180 ITPCOP = ITPCSC CUTP1190 l

IF (IWANT.NE.2) GO TO 28 00TP1200 WRITE (NO UT,53 9) CUTP1210 INU MTR = 0. 00TP1220 IDEN05 =0. 00TP1230 IN1 = 0. 00TP1240 IN2 = 0. OUTP1250 IN3 = 0. CUTP1260 ID1 = 0. 00TP1270 ID2 = 0. OUTP1280 ID3 = 0. OUTP1290 00 21 I2 = 2,N2 OUTP1J00 INU MER = INUMER + IC2 (1,I2)

  • BFC (I2,1) + IC2 (2,I2) *BLS (I2,1) + 00TP1310 1 IC2 (3,I2)* BMS (I2,1) 00TP1320 IDEN05 = IDENOM + IC2 (4,I2) OUTP1330 IN1 = IN1 + IC2 (1,I2)
  • BFC (I2,1) OUTP13e 0 IN 2 = IN 2
  • IC2 (2,I2) *B LS (I2,1) OUTP1350 IN3 = IN3 + IC2 (3,I2) = ERS (I2,1) OUT P1360 101 = ID1 + IC2 (1,I2) 00TP1370 ID2 = ID2 + IC2 (2,I2) OUTP1380 ID3 = ID3
  • IC2(3,I2) OUTP1390 21 CONTINUE 00TP1400 PES = (INUMER/IDENOM -1.)
  • 100. 00T P1410 P1 = (IN1/ID1 - 1. )
  • 10 0. 00TPla20 P2 = (IN2/ID2 - 1. )
  • 10 0. OUTP1030 P3 = (IN 3/ID3 - 1.)
  • 100. 00TPtaa0 IESCL = IR ND(ESCLD) OUTP1450 ITPCOP = ITPCSC + IESCL 00TP1460 WRITT (NCUT,5a0 ) PES, I ES CL . P 1, P 2, P 3 OUT P1 u70 ICKW = 1000.
  • FLOAT (ITPCOP) / MW E + .5 00TP1880 WRITE (500T,524) 00TP1890

! W RIT E (NO UT,542) ICK W,IT PC CP OUTP1500 l WRIT E ( NCUT ,536) CUTP1510 l 28 CONTINUE OUTP1520 l

IDIDCI = IRND (DIDCI) OUTP1530 WoITE (NOUT,544) TINT, RIB A 00T P1540 IF (IW ANT. N E. 2) GO TO 26 00TP1550 IESCI = IRND(ESCI) 00TP1560

WRITE ( NCUT,546 ) IDIDCI OUTP1570 FRITE (NOUT,54 8) IESCI OUTP1580 WR I!!(N007,524) 00TP1590 26 CONTINUE 00TP1600 IF (IW A NT . NE. 2) IESCI = 0 00TP1610 ITIDC = IDIDCI + IESCI OUT P1620 l INKW = 1000. = FLOA!(ITIDC) / 35E + .5 00TP1630 WRITE (N00T,550) IN K W,I TIDC 00TP16a 0 W RITE (NO UT,536) OUTP1650 ITPCIT = ITICOP + ITIDC 00TP1660 ICKET = 1000.
  • FLO AT (ITPCIT) / 59E + .5 00TP1670 WRITE (NO UT,552) ICKWT,ITPCIT 00TP1680 l IF (IOF.LT.2) GO TO 62 00TP1690 1

I2 = 0 00TP1700 l

I3 = 0 00TP1710 In = 0 00TP1720 l

140 I5 = 0 OUTP1730 J DO 5 8 J = 1,N2 OUTP1740 l I2 = I2 + 1 00TP1750 1 53 = IAR3(I2) 00TP1760 CALL TA ILS (D ATE,IST ,55 E , TYPE, LOC, T R5 55, YPP ER ,f R C3P ,IW A N T, 00TP1770 l 1 NOUT,IPG) CUTP1780 WRITE (500T,554) 00TP1790 LI N = 0 OUTP1800 WRITE (500T,558 ) (AC2(LL,I2), LL = 1,8) OUTP1910 l IF (53 . EQ . 0 ) Go TO 50 CUTP1820 DO 50 K = 1,N3 CUTP1830 I3 = I3 + 1 OUTP1840 54 = I AR4 (I3) 00TP1850 IF (34.EQ.0) GO TO 80 00TP1860 WRITE (30UT,560) (AC3 (LL,I3) , LL = 1,8) CUTP1870 LIN = LIN + 1 CUTP1880 Do 38 L = 1,34 00TP1890 It = It +1 00TP1900 55 = IAR5 (I4) 00TP1910 IF (N 5.ZO . 0) GO TO 36 00T P192 0 WRITE (N00T,562) (AC4 (LL,Is) , LL=1,8) CUTP1930 LIN = LIN + 1 00TP1940 DO 34 e = 1,55 00TP1950 15 = I5 + 1 00T P1960 WRITE (NO UT,562) (AC5 (LL,I5) ,LL=1,8) , C5 (1,I5) , C5 (2,I5) , 00TP1970 1 C5 ( 3, I!) , C5(4,I5) CUTP1980 LIN = LIB + 1 00TP1990 IF (5.EQ.1) WRITE (500T,564) 00TP2000 34 CONTINUE CUT P2010 WRITE (NO UT,566) C4 (1,I4) , C4 (2,I4) , C4( 3,I4) , C4(4,I4) 00TP2020 LIE = LIN + 1 00TP2030 GO TO 37 OUTP2040 36 CONTINUE 00TP2050 WRITE (50GT,56 2) (AC4 (LL,I4) , L L= 1, 8) , C4 ( 1,I4) , C4 (2,I4) , 00TP2060 1C4(3,I4) , C4 (4,I4) 00TP2070 LIN = LIN + 1 CUTP2080 37 IF (LIR. LT.45) GO TO 38 CUTP2090 CALL T AILS (D ATE,IST,5N E,TTP E, LOC, Y1555, f RPER ,YRC3P ,IW ANT, 00TP2100 1 WO UT, IPG) OUTP2110 WRITE (30 0T,554) CUT P2120 LIN=0 00TP2130 38 CONTIEUE 00TP2140 WRITE (N00T,566) C3 (1,I3) , C3(2,I3), C3( 3,I3 , C3 (4,I3) 00TP2150 LII = LIN + 1 00TP2160 GO TO 44 00T P2170 40 COWTINUE OUTP2180 WRITE (3007,560) ( AC3 (LL,I3) , LL=1,8) , C3 (1,I3) , C3 (2,I3) , 00TP2190 1C3 (3,I3), C3 (4,I3) OUTP2200 LIV = LIN + 1 00TP2210 WRITE (50GT,564) CUTP2220 as IF (LIN.LT.45) CO TO 50 00TP2230 CALL T AILS (D ATE,IST,5W E.T YP E, LOC, f RSSS, f RP!S ,YRC3 P ,IW A NT , OUTP2240 1 NOUT,IPG) 00TP2250 WRITE (3007,554) 00T P2260 LIV =0 CUTP2270 50 CONTINUE OUTP2280 WRITE (NOUT,570) C2 (1, I 2) , C2 (2, I2) , C2 (3, I2) , C2 (4,I2) CUTP2290 WRITE (NOUT,572) CO NTE (I2) , CO N TL (I2) , CONT 5 (I2) ,C2T (1,I2) ,C2C (2,I2) ,00T P2300 1 C2C (3,I2), C2C (4,I2) 00TP2310 WRITE (NOUT,576) CUTP2320 WRITE (500T,582) AC2 (1,I2) , C2T(1,I2) , C2T (2,I2) , C2T (3, I2) , OUTP2330 1 C2T (4,I2) OgTo2340 -

5G CONTI5UE 00T P2350 62 RETUR3 00TP2360 500 FOR5 AT('O OP TIONAL C0KBINED COSTS BT CITY AND WEIGHTING F ACTORS'00TP2370 1/'0 CITY ',2 0 (2I,I4) /' +' ,T10,2 0 f2I,4 (' _ ' ) ) /'O F ACTO R ' ,23 F6. 2/ 00TP2380 l

__ ___ _- -m_

l l

I l

l 141 i

i 1 * * * ,T10,20 (2I, m ('_')) /) 00TP2390 502 FORMAT ('OSITE R ATE AND ESCALATION USED IN COST PB0JEC TT3 NS' ,10 2 00TP2500 i 1 ' T FIR ST = ' , F7. 2, ' YLAST = ' , F 7. 2/) 00TP2010 50s FORM A;(' O',11(' ACC1 ',21,I2,1%)) 00TP2 20 l , 506 FORMAT (' ',11(3I,A4,11,A4)) CUTP2430 508 FORM AT(' ',10('* ') ,5 % , F8. 3, 5I,10 ( ')) 00T P2840 510 FORM AT (' E' ,10 (F5.1,1I, F5. 3, tI) , F5.1,1I, F 5. 3) 00T P2450 512 FOR M AT (' L' ,10 (F5. 2,11 F5. 3,1I) , F5. 2,11, F 5. 3) 03TP2460 510 FORM AT (' M ' ,F5. 0,1I.F 5.3,11,9 (F 5. 2,1I,F5. 3,1 %) ,F5. 2,1I, F5. 3) CUT P2 a 70 516 FORM AT ( 'O ACCO UN T' ,T67, ' TOTA L ' ,79 0,' EQUI PM ENT LABOR M AT E00TP2480 j 1 RIAL') 00TP2490 l

518 FOR M AT (' NUMBER',T19,' A C C 0 0 NT T I T L E' ,T67,'00 STS',T92,' 00TP2500 1 COSTS MANMOURS COSTS COSTS '/'+ ',6 2 ('_') ,2I,0 8 (',') , T90,36 (',' 00TP2 510 1)) OUTP2520 522 FORM AT ( '0' ,8 A 8,I8,T89, F9.3,11,' (' ,F7.3,' ) ' , F8. 3, F8. 3) 00TP2530 528 FOR M AT ('+ ' ,T6 6,8 ('_') ) 00TP2540 l

5 26 FOR M AT (' + ' ,T90,36 ('_') ,/' 0 ',T 56, ' SUBTOT AL 8, OUTP2550 1766 ,I S ,T8 9, F9. 3,11, ' (' , F 7. 3, ') ', F8. 3, F 8. 3) 00TP2560 5 28 FOR M AT (' 0' ,T97, F10.3, ' M A NM O UR S/KW ') 00TP2570

530 FORM AT ('O ',T56, ' SUBTOTAL' ,T65 ,' 8,I7) CUTP2580

[ 531 FO RM AT ( '0 ',T10, ' DIRECT 5 INDIRECT COSTS' , T52,' (f ' ,I6, '/KW) ' ,766, OUTP2590 1 IS) 00TP2600

( 532 FORM AT ('0' ,TIO ,' CONTINGENCY ALLOW ANCE',T66,IB) OUT P2610 l 534 FO RM AT (' 0' ,8 A 8,11,I7) CUTP2620 536 FORM AT (T66,8 ('=')) OUTP2630 538 FOR M AT ( 'O ',81, ' TOTAL DIRECT G INDIR ECT CO STS',T52,' (!',I6,'/KW) ', OUT P2640 1T66,I8) 00TP2650 539 FORM AT (' +' ,790,'WEI:MTED ATER AGE ESC ALATION (%/TR) ' , / 00TP2660 1 ' ' , T 90,' EQUIPME NT LABOR MAT ERI AL') CUT P2670 Sa0 FORMAT (' ',8%, '!SC A LA TION D URI N: CONSTRUCTION ' ,T52, ' (', F6. 3, 00TP2680 1 ' 4/YRI ', T6 5, ' ' ,I8, T9 0, F6. 3,8I, F6. 3,71, F6. 3) 00TP2690 502 FOR M AT (' 0' ,T10,' TOT AL ESC AL AT ED DIRECT C INDIRECT COSTS' ,75 2, OUTP2700

. I ' (f ' ,I6, ' /KW) ' ,T66,I8) 00TP2710 Sus FORM AT (' O' ,8I,'INTERE ST D URI NG CONSTRUCTION' ,T39, AS,T52, 00TP2720 1 ' ( ', F6. 3, ' t/TR) ') 00TP2730 5a6 FORM AT ('O',101,'ON DIR ECT & INDIR ECT COSTS',T66,IS) OUT P2740 Sa8 FOR14T ('0',10I,8 0N ESCAL ATION DURING CONSTPUCTI3N' ,T66,IS) 00T P2750 550 FORM AT ('O* ,8I,' TOTAL INTEREST DURING ConSTRUCTI38',T52, OUTP2760 1' ( f' , I E, ' /K W) ' ,T6 6,I S) CUTP2770 552 FOPM AT ('0',8I,' TOTAL PLANT C A PIT AL INVESTMENT',T52, 00TP2780 1 ' (f ',I6, '/KT) ',T66,I8) 00TP2790 55a FORMAT ( 00TP2800 1 ' 0 ACCO UNT' ,T7 0, ' FACTO RY ' ,T8 7, ' SIT!', T101, ' SITE' /' NUMBER',T13, 00TP2810 1 ' ACCO UN T TITLE' ,T70, ' EQUI PME NT' ,T87, ' L A B OR ' ,7101, ' M AT ERI ALS ' , 00T P282 0 1 T120, ' TOT AL ' /' + ',8 ('_ ') ,2I,5 5 (' _') ,3I,9 (' _' ) ,8 I,5 (' _ ') ,9I, 00TP2830 1 9 ( '_ ') ,10I,5 ('_') ) CUTP28u0 558 FORM AT (' ',AB,2I,7A8,/) CUTP2850 560 FORM AT (' ' , A 8,2I,7 A 8,2 %,a (F 8. 0, 8%) ) 00T P2860 562 FORM AT (' ' , A 8,2I,74 8,2 I,0 (F 8. 0,8 %)) 00T P2 870 564 FORM AT ( '+ ' , T69,3 (' !',15I) ) CUTP2880 566 FOR M AT ( '+ ' ,T70, e (9 (',' ) ,7I) /T20, ' SU BTOTAL ' ,2 0 (' . ') ,11,4 (* f ' ,F 8. 0,00T P289 0 1 71)) OUTP2900 570 FORMAT (* ' ,12 4 (',') ,/T20, ' S CS T0TA L FOR ACCCO NT' ,14 (' . '), 1I, OUTP2910 1 a ('I ', F 8. 0,7 %) ) OUTP2920 572 FORM AT(T20,' CONTINGENCY (' , Fe.1, ' 4EQ P ' , F 4.1, ' %L A 508 8 ,F 4.1, ' % 5;Ll 00T P2930 1 ' ,3 (' . ' ) ,21,3 (F8. 0,81) , F8. 0) 00TP2980 l, 576 POR M A T (' +' ,T70,4 (8 ('_') ,81) ) 00TP2950

!. 5 82 FORM A T (' +' , T70, a ( 8 ('_') ,8I) ,/T20,' TOTAL FOR ACCOUNT ', A P ,11 (' . ' ) 00TP2960 l 1,1I,4 ( '!', F8. 0,71) , /' + ' ,T70,4 (9 (',' ) ,7I) , /T7 0,4 (9 (' ' ) ,7 %) ) OUTP2970 END OUTP2980 SUS B00 TINE RE ADS (D ATE, IST,5N E,TT P!, LOC, TR $55,YRPER , TR COP ,IW A NT, HEAD 10 l READ 20 l

1 NOUT,IPG)

C HEA D 30 C I====================================================================lMEAD 40 C1 l HEAD 50 C I BY R. J. BARNARD OCT 197a IHEAD 60

I I

I I

142 C l -------------

l HEAD 70 l C l l BEA D 80 C I -------------------------------- l HEA D 90 C I lHEAD 100 C I SUBPROGRAH HEADS PREPARES THE HEADING LINES FOR ALL OF THE l HEA D 110 C l SURBARY PAGE COTPUT OF CONCEPT. IREAD 120 C I HEAD 130 C l==================================================================ll HEAD 1u0 C HEAD 150 RE AL* 8 TYP! (2) , LOC (3) , D AT E HEAD 160 REAL*8 NUT (9)/' UNIT 1 ' , ' U NIT 2 ',' UNIT 3 ' ,' UNIT a 8,' UNIT 5 HE AD 170 1 ',' UNIT 6 ' ,' UNIT 7 8,' UNIT 8 ',' UNIT 9 '/, ALL/' TOT AL '/, HEA D 180 1I5700T HEAD 190 REAL e a SCE(9) ,EDC(9) HEAD 200 DATA SCE/ H EA D 210 1' TEAR',' 0F ','STEA','N SU','PPLI',' SYS','TE3 ', 'PURC' , ' HA SE' / HEAD 220 DATA EDC/ HEAD 230 1 'YE A R ', ' 0 F ', 'COR H' ,

  • ERCI' ,' AL O' ,' PER A' ,' TION' , ' ', ' '/ HEAD 2 0 C0HRON/HDRAIN/ ISTSIG HEAD 250 ISTOUT = NUT (IST) HEAD 260 IF (IST.LT.1) IST0UT = NUT (1) HEAD 270 IF (ISTSIG.GT.0) ISTOUT = ALL REA D 280 IPG = IPG + 1 READ 290 BRITE(NCUT,500) D ATE,IPG HEAD 300 WRITE (NCUT,502)IST00T HEAD 310 WRITE (NO UT,50a } H WE, TYPE (1) ,TY PE ( 2) , (LOC (II) ,II=1,3) HEAD 320 IF (IN A NT. EQ.1) GO TO 2 READ 330 WRITE (NOUT,506) SCE HEAD 3a0 GO To a HEAD 350 2 WRITE (NCUT,506) EDC READ 360 a CONTINUE HEAD 370 WRITE (500T,512) TR $55 HEAD 380
  • WRITE (NOUT,51a) TRP E3 HEAD 390 WRITE ( NCUT,516) TECOP HEAD a00 RETURN .

HEAD a10 500 FORR AT ('1 DATE 8,A8,' C0NC3PT C03T E S T I 5 A THEAD #20 1ES (PHA SE 5) ',T125,'PAGE 8,I3) READ m30 502 FORR AT(' ',AS, ' CAPITAL INTESTRENT SURR ARY (HILLIONS OF HEA D sa0 1 DCLL AR S1 ') HEAD e50 50s FORH AT (SI,I5,' HW E ', A8,12,8 (', A 8,') ',11,' P09ER P L A N T A T ' ,34 8) HEAD #60 506 FORR AT (5I,' COST B ASIS: ',7t,9 As) HEAD #70 512 FORR AT(SI,' DESIGN & CONSTRUCTION PERIOD:',Ta0,'STE AR SUPPLY SYSTER HEA D a 80 1 PURCHASI: ',T71,F8.3) HEAD 490 51a FORRAT(* ',To0, ' CONST RU CTIO N P ER RIT:' , T71, F 8. 3) HEAD 500 516 FOR R AT (' ' ,To0, 'COBHEECI AL OPER ATION:' ,T71, F8. 3) H E A D 510 IND BEAD 520 SUBROUTINE TAILS (D ATE,IST, HEE , TYPE, LOC,TRSSS,T RPER,TRCOP,IW ANT, TAIL 10 1 NO UT, IPG) TAIL 20 C T AI L 30 7 g===========================================================-=======lTAIL a0 CI I TAI L 50 C l BY R. J. BARNARD SEPT 1974 l TAIL 60 C l ------- =---

l TAIL 70 C1 I TAI L 80 C I -------------------------------- I TAIL 90 C l l TAIL 100 C I SUBPROGRAE TAILS PREPARES THE HEADINGS FOR THE DET AILED I T AIL 110 C I ACCOUNT OUTPUT OF CO NCEPT P90 GRAM. ITAIL 120 C l ITAIL 130 C l=================================================================lTAIL1a0 C TAIL 150 REAL*8 TYPE (2) , LOC (3) ,DATE . TAIL 160 ,

REAL=8 NUT (9) /' UNIT 1 ' , ' UNIT 2 ',' UNIT 3 ' ' UNIT a ',' UNIT 5 TAIL 170 1 ',' UNIT 6 e,' UNIT 7 ' ,' UNIT 8 ' , ' UNIT 9 '/, ALL/' TOTAL ' /, TAIL 180 1IST00T TAIL 190 REAL

  • a ECE (9) ,EDC(9) TAIL 200

143 DATA SCE/ TAIL 210 18 Y E A R ' , ' 0 F ' , 'STEA ' , ' 8 SU' , ' PPLY' , ' SYS' ,' T EM ' ,' PU R C', ' H AS E'/ TAIL 220 DATA EDC/ TAIL 230 1' YEAR',' 0F ',8 CCM5', ' ZRCIs , e gL o e , e p gg g e , e ;I3p e , e e,e e/ TAIL 2a0 COMMON /HD5AIN/ ISTSIG TAIL 250 ISTOUT = N UT(!$T) TAIL 260 IF (IST.LT.1) IST0UT = NOT (1) TAIL 270 IF (ISTSIG. GT. 0) ISTOUT = ALL TAIL 280 IPG = IFG + 1 TAIL 290 WRITE (N00T,500 ) D A TE,IPG TAIL 300 SRITE(N007,502)IST00T,TESSS TAIL 310 BRITE (NOUT,50s) s W E,TYP E (1) .T TPE (2) , (LOC (I) ,I=1,3 ) , Y RPER TAIL 320 IF (IWANT.EC.1) GO TO 2 TAIL 330 l

WPITE (NCUT,506) SCE,T RCOP TAIL 380

( GO To a TAIL 350 2 WRITE (N00T,506) EDC,YRCOP TAIL 360 a RETURN TAIL 370 500 FORM AT('1D ATE ',A8,' C0NCEPT C0 ST E S T I 5 A T E S TAIL 380 1 (PM ASE 5) ' T12

, 2, ' P A G E ', Is) TAIL 390 502 PORMAT(* 8,AS, ' CAPITAL INVEST 5ENT DETAIL COSTS (THOUSANDS OTAIL a00 1 F DOLL A R S' ' ,T8 2, ' STEA M SUPPLY S YSTER PURCH AS E:',7113,F8. 3) TAIL #10 50s FORMAT (' 8,IS,' HWE ',A8,'(',AS,') POWER PLANT AT: ',3A8, TAIL #20 1 T82, 'CCNSTRUCTION PERMIT:',T113, F8.3) TAIL #30 5 06 FORM AT (' COST BASIS: 8,9 Aa ,T9 2, 'COMM ERCI AL OPER ATION : ',T113,FS.3) TAIL 440 END TAIL #50 SUBROUTINE PLOT (IFYR, ILYR, SOST, I5m PLOT 10 C PLOT 20 C  !====================================================================lPLOT 30 C l l PLOT a0 C1 GEN ERATE PRINTER PLOT OF PROJECT CASM FLOW l PLOT 50 Cl*==**** D ATID B ER N S TTIN * ** * * = =* *

  • 0 5 / 2 0 /7 2 * * * * * * * * *
  • l PLOT 60 C l l PLOT 70 C l====================================================================lPLOT 80 C PLOT 90 LOGICAL
  • 1 ITERT(521/' ' ,' ','C','A','P','I','T*,'A','L',' ','C', PLOT 100 1 'O','S','T',' '

, '(','M','I','L','L','I','0','N',85',8 ','O','F', PLOT 110 1 e e , e g e , e o e , e te , e Le , e a s , e y e , e s e , e ) e ,16 8 8 '/ PLOT 120 DIMENSICN COST (100), IOUT (101) , YR ( 5) , SO ST (IMS) PLOT 130 NOUT = 6 PLOT 1a0 DATA ISTAR// PLOT 150 C PLOT 160 C l====================================================================l PLOT 170 CI l PLOT 180 C l FIND I (TEAR) AIIS DITISIONS. l PLOT 190 C l l PLOT 200 C l====================================================================l PLOT 210 C PLOT 220 TST = 2.0 PLOT 23 0 DIF = ILTR - IFYR PLOT 2a0 FF1 = 100.0 PLOT 250 FF2 = I55 PLOT 250 DFF = FF2 / FF1 PLOT 270 DII = 1.0 PLOT 280 II = 1 PLOT 290 III = 2 PLOT 300 Do 2 I = 1,100 PLOT 310 CO ST (I) =

(SOST (II) + (DII - II) * (S OST (III) - SCSI (II))) PLOT 320 1 /1000.0 PLOT 330 DII = DII

  • DFF PLOT 340 II = DII PLOT 350 IF (II.GT.IMM) II = I5M PLOT 360 IF (III + 1. LE . I M M) III = II + 1 PLOT 370 2 CONTINUE PLOT 380 m IF (TST.GT.DIF) GO TO 6 PLOT 390 TST = 2.0 + TST Pto; a00 GO 70 a PLOT s10

l l

fu C PLOT 820 '

C l == = == = = == == = = == == == === = = = = = = = = = = = = = = = = = = = = = 1 P L O T e 3 0 C l l PLOT 840 C I FIND Y (C0ST) AIIS DITI3 IONS. IPLOT e50 CI IPLOT a60 C l====================================================================lPLO;a70 C PLOT #80 6 ICST= (C0ST (100) + 100.0) /100 PLOT 490 ICST = ICST PLOT 500 350 = ((E:ST + 50.) / 50.) PLOT 510 150 = tu50 + 1)

  • 50 PLOT 520 IF (ICST. LT.1) ICST = 1 PLOT 530 l I SO LT = 1 PLOT 5a0 ISPACE = (ISULT
  • 150) / (ICST
  • 2) TLOT 550 IF (ISPACE .LT. 1) ISPACE = 1 PLOT 560 IDITS = (IBULT = ISO) / ISPACE PLOT 570 IITR A = 50-ISP ACE *IDITS PLOT 580 CST =IC ST= 100. 0 PLOT 590 RANGE = 150
  • I5 ULT PLOT 600 DIY = BANGE / ISPACE PLOT 610 8 ITEAR = IFYB PLOT 620 YEDIF = IFYR - ITIAR PLOT 630 YR(1) = ITIAR PLOT 680 Do 10 I=2,5 PLOT 650 10 TR(I) = Y R (I- 1)
  • TST / s.O PLOT 660 C PLOT 670 Cl================================================================l PLOT 680 C l l PLOT 690 C l WRITE TOP LEGEND. IPLOT 700 Cl l PLOT 710 C l=.===-==========================================-===========IPLOT720 C PLOT 730

~

WRITE (N00T,500) (YR (W) , W=1,5) PLOT 7a 0 WRITE (30GT,502) PLOT 750 C PLOT 760 C!====================================================================lPLOT770 Cl l PLOT 780 C l C ALCULATIONS TO FIND START OF SHADED AREA. IPLOT 790 C l C l=====-================================-================lPLOT300 l PLOT 810 C PLOT 820 LSTCOL =

(DIF / TST)

  • 100.0 + (YRDIF/TST)
  • 100 . 0 PLOT 830 IF (LSTCOL.GT.101) LSTCOL = 101 PLOT 8#0 C PLOT 850

[

C l====================================================================l PLOT 860 C1 l PLOT 870 C 1 SLAEK OUTPUT ARRAY. I PLOT 880 C l PLOT 890 C l==============-====u=============================================ll PLOT 900 C PLOT 910 Do 12 I = 1,101 PLOT 920 12 IOUT(I) = 0 PLOT 930 NU R = CST PLOT 940 IF (IITR A. IQ. 0 ) GO TO 16 PLOT 950 Do la a=1,IITRA PLOT 960 14 WRITE (NOUT,504) PLOT 970 16 WRITE (ECUT,506) res, see PLOT 980 I

1 I

""' ~ -- - --

145 C PLOT 990 C 1====================================================================lPLOT1000 C1 l PLOT 1010 C l PRINT GRAPH WITH TERTICAL BARGINS. IPLOT1020 C l l PLOT 1030 C l == = = = = = = = == === = = = == = = == = = = == = = = = = = = = a = = = == = = = = = == = = = == = = == = == = = == = = = l P L O T1 0 a 0 C PLOT 1050 DO 32 I = 1,IDITS PLOT 1060 Do 30 J = 1,ISPACE PLOT 1070 KK = ( (I-1)

  • ISPACE) +J PLOT 1080 ID = J - 1 PLOT 1090 PRCOST = NUR - ID
  • DIT PLOT 1100 DPRC = PRCOST - DIY PLOT 1110 IF (COST (100).LT.DPRC) CO TO 28 PLOT 1120 Do 18 K = 1,100 PLOT 1130 IN = K PLOT 1180 IF (C0 ST (IM).LE. PRCOST. AND. COST (I5) .GE.DP RC) Go TO 20 PLOT 1150 18 CONTINUE PLOT 1160 GO TO 26 PLOT 1170 20 I = I5 PLOT 1180 IFRCOL = ( ( ( (I /100. 0)
  • DIF) + YRDIF) / T ST)
  • 100.0 PLOT 1190 IF (IFR COL . GT.101) IFRCOL = 101 PLOT 1200 22 Do 2a LL = IFRCOL, LSTCOL PLOT 1210 2a ICUT(LL) = ISTAR PLOT 1220 26 CONTINUE PLOT 1230 IF (J. EC. IS P AC E) GO TO 30 PLOT 1250 WRITE (N00T,508) ITERT ( K K) , (I OUT (J P) , J P= 1,101) , ITERT(KK) PLOT 1250 GO TO 30 PLOT 1260 28 WRITE (N00T,50s) ITERT (KK) , ITERT (KK) PLOT 1270 30 CONTINUE . PLOT 1280 NU 5 = CST - I * (ISO
  • IMULT) PLOT 1290 IF (N OR.L T. 0 ) Go To 32 PLOT 1300 WRITE (N00T,510) ITER T (I*I SP ACE) , NU E, (I OUT ( JPI , J P= 1,101) , N05, PLOT 1310 1ITERT (I*ISP ACE) PLOT 1320 IF ( NU E. LE. 0) Go TO 34 PLOT 1330 32 CONTINUE PLOT 13a0 3a CONTINUE PLOT 1350 C PLOT 1360 l

C l====================================================================lPLOT1370 C1 l PLOT 1380 C l P RINT BCTTON SC ALES. IPLOT1390

Cl lPLOTia00 C l====================================================================lPLOT1810 C PLOT 1820 WRITE (N00T ,502) PLOT 1 a30 SRIT!(NOUT,500) (TR (N) , N= 1, 5) PLOT 1an 0 RETURN PLOT 1 s 50 500 FORM AT ('0 ',111,4 (F6.1,19%) ,F6.1) PLOT 1860 502 FORMAT (' ' ,161, a ( ' + . . . . . . . . . . . . . . . . . . . . . . . . ' ) , ' + ' ) PLOT 1870 5De FOPMAT (' ',21,A1,111,'- ' ,1011, ' ' ,101, A 1) PLOT 1 a80 506 FORMAT (' ' ,61,I6,31, ' + ' ,10 2I, ' + ' ,I 6) PLOT 1a90 508 FORMAT (' ' ,22,A1,11I,'- ' ,10141, * - 8 ,10 I, A1) PLOT 1500 310 FORM AT (' ' ,2I, A 1,3I,I6,3 I, s . e ,101 A 1,' +',I6,3I,A1) PLOT 1510 END PLOT 1520 e
  • s' _ ,

A E

e 147 -

^

~ ,~

Appendix D i

EXAMPLE PROBLEMS LISTING s

{'

}'

l f

l t

,=

=

k

  • 81r e

(

s

-j A ,

3 i

,4 9

/ s

  • e f

%- 4 v

di p -s F ,

149 1 .

e

  • e E

of 4

  • e l s o

. N \

j ' e. * ,,

g -

4 s

/ w  %

s qS ',.: }

4

+ * .

e

  • w en s \

4 yV ,=.m -

e~,*

  1. 4

^ ~

v

/

  • e

~<

--e

/, y

  • w  %

/ s e

e M @ e p 9 e

-- e en e em as en e e . * = 9 e 0 e- em O e, , 9 M = P g em

'en en em O e= 0 9 M a= O e O N

,aO e e e e G e S' O 3 O O

, e e o e O O em O O ** en **

O O e en e#t O 3 m e 9 *P, e e 6 em O S O .

e e eaO te e e a- em m e O < e em -

O '

O O e no e P 9- e e e e e esa em #*S e en en em A

wy ee,_

88 , em #

  • um ,

ep em l hs e

e e

" e. +

e o mo o

m e

ee e e6

.\% g e e em e

en p e Se @

  • e e e l ,

en em e #% en an e g O O i # 4 e

  • e e e e

% 8e t J O em O O E en en em J *-r S en e o se

"

  • e e e m l g/, . A%, ==

p a , em e

-a em Q Q. .e .e

'a em - - m u. s f- e d 'g

->~e r an . ~

e e e o

e ha *~ A e e e o e .

, ad mn O

e e a.

en 4 oe e eo e e O oa en .

e e a

,.#. R em en en en en te en en en en en em g- #; er a a e **

.. es se es me e se es se F #

08 g

  • D- as M' s 6'* < m., _

! *nny '

  • O c ep 4 /

's . i O

O e e' es e e e e e t 7

g am O O*

M O O O '&e i

! #4' 4 a=

e en e

O e o O. O. A e 4 g- = g a en e om .. as t, 'g == *

  • + ",.

' te e - 3 e . e em  % "g e' e se '

I .e - * . O. s.a es . e c - - O W

es to e a e 4 et O e

s se ed e

en o

e e O O G . *s O h e G l

e s.e

.e O O e e e e l .es e o e. .e en a. e, e .e - em .e s.a -,e ,e g

!* Q e . * = . +

t u o es p gg ge ge , e>

l e.s .e es

=

  • e8 e '4 ,

, e r Q s H em @ em g W M Q t

-0" g u e e s ce e e' Ot8 O e Oe e e.e to e o O e .ue se + o o

  • a w. 3 e e a S en e o e a e =

y C en en e* h O O en em en em om og e A = 0 g O O W O O O *W 'M O LJ as O O O y ,e

!

  • e, . es ** em ce og .e,s a l en en en em l
  • t uO N

A U' u .

Y A

3 V

O Q

u -

$ 6

E_9_E_LE t_I_._E_LLI.I_ L__t_ A_I_A___LLLI__

t_9_E.2_R t_L_A.E.I___I_L E_L__E_9_R_I_I E_1_I T I A.E_I C 9_R_E_I 1 fuBnET 05-02-78 9 aTLaPfa CroFGla 2 Pesint? 03-21-78 2 BALTInort naattaus 3 tus2nt? 03-31-7e 3 entstrGuns ataeaga e Subst? c 5- 16-7 8 e postos gassacuestTTs 5 austatt 04-05-1e 5 CascaGo attisons 6 sus 2nt? on-os-7s 6 CanC:ngatt onto 1 Ca:Gsat? 05-16-7e 1 Carvttans onto O CBICass? 04-10-78 8 entLas TEtas 9 CBIG2se? 04-10-78 9 DerTEP COLORADO 80 Con L u t? 05-19-78 10 pt? sos? nicu! Gas in Costigt? 04-11-1e 11 sausas CITv sausas 12 Coat 29t? co-te-7e 12 Los anGetts Cattroosta 13 Coal 11ET Oe-12-75 13 RIsutaPoLis giustsofa to Coatsatt 04-25-7e to ute ostraus toerstaun 15 Coatiset o e- t o- 7e 15 are font ueu rons 16 Coal 2s97 04-14-78 16 ratta9ttrata truustLTanta 17 Coatis 1T Oe-to-78 17 PI TTs80?Gu PressTLTarla to C s:Ga tt Oo-2e-7s to st. s oma s utssons:

19 CsIGint? co-13-7s 19 san rearcisCo cattrosasa 20 C9tG25tt Oe-91-18 20 stetti t wasutuGToe 21 nouTRFat Canada 22 TotorTo CataDa 23 ntDpterous esa tr Tut PLaPT TTPE og CITT stLECTED Was mot Usth [*

In C04Puf aTIois, CutCE srtLLluG a5D FIFLS JSsTIFICaTIon C)

WITu fut aTAILaBLE PLaPT TIPr aut CITT mant Codas i

e I . 4

s .

naT A g_1_E.R C 9_1 0 R I_2._ 2_2.E.8-

. g... 6..._. 3 3 is ..._ _..... -- 3 0 3 2---- 39 e l---- e 7 e s---- s e 55---- 61 6 2 -- 66 se 70 72 7e 76 7e a0 est RODEL CITT EITBA 10 13 SSS IB P ER TB COP 5 IET ILAE IPLAG IOP I tsC IBS IRC 15 FACE 1800 CBIG5Ref CLETEL&BB EI19tL t 3 1979.0 00 1983.000 1987.000 0.500 0 1 1 0 0 1 1 SCOBOPT 1885=0.0, O(3,1)=1500.,

8 tBD Daft 11-10-78 C03CEFT C05T E 57IaATE5 (PBASE SI 0*IT 1 CAPITAL IBitSTREET SUR9AET (RILLICES OF BOLL 4 BS) 1100 852 CBIG55tf ( ) POBBB PL AST AT CLRTELABB EIABrit3 COST BASIS: TRAB OP 57245 $UPPLY SISTts PSBCB15e DESIGB S COBSTSOCTIOB PtBIOD: STRAB SOPPLT Sf5fte FORCBA5et 1979.000 COB 5TSDCTIOB PIBBITs 1983.000 C04BtBCIAL OrtBATICBI 1987.000 COBIT CALLPD - DATE PAT DOst OB 0810 CLtt tL A BD SITS B ATE ABD ESCALATIOB O5ED 15 COST P80JECTIOB5 TPIBST = 1964.00 TLas?

  • 1978.50 -.

U ACCT 20 ACCT 21 ACCT 22 ACCT 23 ACCF 24 ACCT 25 ACCT 26 8CCT 91 ACCT 92 ACCT 93 ACCT 94

& B A B & B 4 5 A B & B A a a p & B & 8 A B

  • **** ***** 1979.000 **********

E218.6 1.067 210.6 1.067 210.6 1.067 288.6 1.067 288.6 1.067 288.6 1.067 288.6 1.067 210.6 1.067 206.4 1.061 206.4 1.061 206.4 1.061 L 15. 4 0 1.086 15.40 1.066 16.29 1.080 16.17 1. 09 9 16.0 2 1.0 0 7 16. le 1.00 9 15.67 1.000 15.25 1.006 16.54 1.007 16.58 1.007 16.58 1.007 91000. 1.000 23.76 1.000 23.76 1.000 23.76 1.080 23.76 1.080 23.16 1.0SC 23.76 1.000 23.76 1.000 23.76 1.000 21.76 1.000 23.76 1.000

34TP 11-10-78 C0 5 (" tPT C0$7 t STI A &TES (PNASt 5) gil? I C APITAL Inf tSTnte? Sunga4T (NILLICES OP DOLLatSl 1100 tur CSIGS RPT (05-i6-IG) PoutB PL ANT AT CLtttL&BD TIEMPLtl COST BASIS 1848 OP 57244 54PPLT SYSTti PORCESSE DESIG4 E C01STRUCTION PFSIOD3 STE19 SOPPLT STSTE1 Ps*CatSE: 1979.000 CONSTROCTION PSBqITs 1983.000 connTSCItL Orteaflos 1987.000 aCCon=T TOTAL PQUItatwT Lason anfteIAL 12!!!It LE.E.9.5 I.I.  !.1 I.LI. -- .E9112.. _.C92II _ RAEE9'192..C9112 ..G91II.__

20 . Lass AfD Laud SIGNTS 2 0.0 ( 0.0 3 0.0 9.500 21 . StasCTeatS e IntsottateTS SI 2.943 ( t.474) 22.706 31.106 22 . Bolttr Plat? SQUIPNtu? 196 IIT.644 ( 3.6563 59.560 18.388 23 . TeeBlet PLauf EQoIPntet 126 90.290 ( t .8 0 0) 30.404 5.776 24 . ELECTRIC PL4tf EQetrate? 41 10.557 I t .261) 20.2C1 10.648 25 . RISCELLaut005 PLauf 200EPT 12 6.736 ( 0.262) 4.242 0.937 26 nals CosD stav etJECT Sv5 Jg __1L922.L 9.261L___1.116. J.312 SesTOTat 452 241.26o ( e.7983 149.26e 69.54s 7.998 na nnoses/t b 91 . CONSTPOCTIOg StevlCES 57 g n

92 . NOHf OPPICE ENGSG.ES ERVICE 21 93 . PIELD OPPICE E4GBGLSte ICE IS 94 . QuergeS COSTS 39 SOST0TAL 134 DIRECT $ IBOIntCT COSTS (S 533/ss) 586 C05?IuGEBCf ALloutuct 58

.s.essee TOTAL DIttCT & INDIttCT COSTS ($ 585/EU) 644 WEIGHTED Af t3&CE ESCAL& TION (1/IB) 200lPRtut L&BOR G AT ERI nt.

ESCAI&T W 9 DORING CouSTOUCTIos ( 7.4 354/sp) 22] 6.542 0.735 0.014 TOTAL t;f AL ATED DIRECT & INDIBBCT COSTS El 8%5/te) .... 941 .

INTEREST DetING CorsteoCTIon Conroque ( 9.5005/ts) 05 DIt tCT E leDIRECT COSTS

  • 166 09 ESCALATION DUBING CONSTRUCTION [2 TOT AL IgTestST DORING CouSTRUCTIOB El 294/ ssp 235

..sesse.

TOTAL PLauf CAPITAL InftSTntut (3 1069/Rs3 1876 2

I g 3 .

e e i 15 3 umamped UOm> *Emadmote Oh OOddehm-O O O O O O O O O O O O O O O O O O O O O O O O O e N,

=

, O, P C M @ c e es N

  • 000 e o e * * * * *
  • e o e o GOO 9 0 0 9 $ 0 I l l 8 0 0 0 9 9 0 0 0 l l 9 0 0 0 E l l $ $ $ I 9 9 0 0 5 OOO De
  • O e e e e e e e Sme ee e @

Mee ee e e

@@@ @e e @

e' e w e e e e o e e a w e o m e e m e e e e e a e a U e o e e e n e e h = e e we o e EPO e e Mmm e e km> e e mee e e mum e cesteeceset oeet eee# # **** S eG ee4 4 4 4 0 e6 e4 O se seeeet e e mhu o eeeeeeeeeeeeeeeeeeeeeeeeeeseeeee eeeeeeeeeeeeee e e 6 e seee eeeeseeeeeeeeeeeeeeeseeeeeseeeseeeeeeeecee e

>mo me **** *ee*** eeeeO ****o** ee******o**eeeeee***e**** e JO e * * *e********e***********e**************e****** e

  • ee ee ocee eeeeee oe eeeeeeee see eeeeseeeeeeeeeeeeee e d h

hema. d e e ce ceseeeeeeesecesee**eeeeeeeeeeeeeese eeeeeee o e num ee eeeeeeeeeeeoe******e*******eeeeeeeeeeeeeeee e e mDu e e eee eeeeeeeeoe eeeeeeee eeeseeeeeeeee se eeee*** e =

mm o seeeseeeeeee*****e *e**e**eeeeee eoeese**eee e EMM e eeeeeeeeeoeeeeeeeeeeeeeeeeeeeeeeeeseseese e amt e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e une e cese see e eeseeeeeee***eeeeeeeeeeoseeseeee e MOO e *** **e*e*******e**************eee**e***

  • msu e oseeeeeeoeeeeseeseeeeeeeeeeese seee*** e o eeeeeeeeeeee*****eeeeeeeseeseeeee**e e o eseeeeeee se eeeeeeeeeeeseo eseseee ee e e e eeeeeeeeeeeeee eeeeweeeee ee eeeeeee o e ee eeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e eeeeeeeeoeeeeeeeeeeeeeeeeeeee e e eeee eeeeeeee eee ee ee eeeeeee e e eeeeee eeeeeeeeeeeeeeeeee e e e eeeeeeeeeeeeeeeeeeeeeee o m

e eeeeeeeeeeeeeee eeeeee e e e eeeeeeeeee seeeeee **

  • e a m o eeeeeseeeeeeeeeeee e e e a e eeeeeeeeeeeeeeeee e b Oe eeeeeeeee eeeees** O N E e e eeeeeeeeeeeee e e m a oe eeeeeeeeeee e e m
  • mm e e eeeeeeeeeeee e o umM ee seeeeeeeee e e he e e seesesee e w we e eeeee e e
  • d e eeeeee e d e seeee e MO e eeee e a e eeee e M e see e he e se e WQa e ee e a e ee e ema e e e e em e oe e zum o eo e WM e ee e medM e ee e WUmg e ee o NO . ee e awe e se e akku o ee a wem e ee e m a me ** W mph e e e e e em e e e e
  • meE O e e e m HowM * * * *
  • Wh> w e e *
  • m a e e e dem o e o Omum e e e

== e o e UNOW * *

  • med e *
  • G & e e e h e e e

>>=a e

  • e men e *
  • hwm o e e ae W e *
  • mkee o e o Mom a e
  • umik men e e e e e o ame o e e wwh e e e O HQ e e e du Se ee O Uew* * * *
  • e s e e e e o e * *
  • e km*
  • 9 0 0 9 0 t $ $ $ $ $ $ l l 8 t i l 9 0 e t l l e t l $ $ 1 0 9 4 0 9 I #

muu m N ShMm @ P M me P O O O O O O O O O O O O O P O UWw O O O O O O O O O O O O O m N

  • O F 6 N 4 f O @ N
  • w Hm e 9 e e em e me pp G S

MkOk

>="" udb=>dd WOne "EmddmOma Oh OOddemm=

  • mwO Ga u

a e '

15 4 e

COO e OOO ai.

OOO M e e e em 55 en N se e* e e O e e em om ema= 0 em se M es as M U as e e E e O E 8

m W

Se se Se se a en M P>Q on to e eis se e es a.

De E Go as 95 tm WB e me to > a

' me H e a no WD Go es e se ad am Q ad e D* P Q ee O C ad O ha 2 O em se ad ee a e as BO hm O Q og ME Q MSQ e ==

S. e Q4 M F: k et B B se M e e sie o es ta E 3 R ** ==

8* U O em .d MWQ Q 3 An ed e e en e s OP 8== e pe eme N ee't O O@so 8"tmem en e *=

eS e Nene== e e*=rmce ee O P=e eme ** fut

  • ==en W*eNenO as e **8*

es*eeee e4art enees es em ee=e=e e e s= e e en e en e 89 em ed ed an se e e O O O es en en N e= et e ==f4 et e een Oe ==

Pm e tet et St e se et m e m N m ** N e e e e e o e o e o e e o e e o e o e o fut e en o eme8m e fw e eese em e eN e N e s"et o 9 eO e N oOe e=

o ee em eO ee e e e 8"ee o e e e e to O me O as O O O N N N N N 884 m 8"I m e e e e e G* Gb e O O e e ef* m e e e N @ e m 4 e r= e N e e e e @* On e e s= N e e to 98 N N et e9 m m ** m e et -=* * *= O e e N e e eo et tw e vs e - e e art e e em he an *

  • N N d't 8'9 e 40 ep e Pm F* e e e Sh O O O O e **
  • E BO 4 e en om on an e em

>*e M e C t

8'B A eB Oe > .

B E

@am e4 4QW Se em E

W M su e

es se o tr>

as = es e W Q S*

E M As aos sa eft an e eO af D Q

  • eh F ma me 3 ed MC O ne r3 Os a 9=

M MC to a me to 9e U e 68 e ed so WD e M ed at as O h5 E* W EFe as M g QO as OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO me M ed hl 3 tft 80 O e ce e e O e ce e e S e ce e e O e N e e O e ce e e o e N e e O e ce e e O e ce e e O e ce e e O e es e O O em a e e e e em M e e Pm e O re e e en e O Pe 8st en e e O es m e e e e e es e e rm ga g N e en em e O N m qp e O eeen*e*e

  • en*eten
  • ee eO O e OeOeO*==* a= em e en o e.e e*cee ce* ce eo ce e eneoe,emeanemoese e s=t o es= om ,e ,,e e e o e e e e e o e e e e e *
  • 5 O ** 5 49 >

>C as 0.d as se y se 3 Q to e G em en an en re see ce e gp e e e e e e e e e e et g e e e e e e e e e e g e e e e e ett art c enie er e e e e e e e e e e e e e e g e g e e e e e**

M Go $* O As op as a y se e enesus St 64 ameSh aoeem Obome Gb St On se sese aneomSt eeem eteseen We e=e Steme se emenenasete een@t et Shen e em 5%e-dese open se e e = ee=e eeas enan e asan e etS* et se e se @ en teneee et seetse@t 9 4*

e em omOn en on a=

te W em M M pe es se

&B WM M en E 6e ta Q um M M 99 9 ee e aO M ta O M .a en me C a= *n M z es eo en am Q 0* O em o as et es ud e en aa as se k aim a e a wt

& te em W 9 W G8 k e a we e= es QM9 >

e en en WeO se om to uat*

  • . aa 9* M a5 e me U ee e se ao se f* as e 8 U U e*

O w*

e he ee e aM Ee es s'n en e a

M 9= &

.- oo - M as L

  • O Oe u -

m

4 I LI A-- E A I E E 21 E E I S E1ED 1--e 6 ----- 13 15------------3 0 3 2---- 39 e l---- 4 7 4 e ---- 5 e 55---- 61 6 2-- 6 6 6e 70 72 7e 76 7e es set RODat CITT EITRA ID 18 SSS t a t ra TR CDP S Ist Itat IFLAs 10F I rSC ISS IRC 15? ACE 1900 ret 14tf ATLABT4 titRPLt6 1978.500 8982.500 1988.500 9.000 0 0 0 1 1 1 2 DATE 11-10-74 C0BC EFT C0ST ESTIE &TES (FRAss 5)

BEIT t C APITAL IgTESTRIBT SOBR&Bf (RILLICES OF DOLLits) 1100 RWE Pettat? ( ) P0589 FLauf AT ATL& ETA ttagetE6 COST 845I5: TE45 OF CORREBCI AL OPE 94 TION DESICE S CONSTBBCTIOR FEth00 Sfr4R SWFFLT STStre resCBASta 197s.500 COBST80CT105 PatSIT: 19 e 2. 500 COEREBCIAL OrtRATIDst 19es.500 .

Coste Cat tes - paTa rIT cost os stoscIn aftasta 1Ef2LEARE212 II222CR TI9LDIfEf9fEI IIC111I12! I&III t.0e5 t.025 1.0e5 1.0e5 1. 0e 5 1.oss t.0e5 1.005 1.0e5 s.085 t. 0e 5 g

um 197e.5

- 1.

SITE P ATE SED ESCALATION ESED 15 COST PROJECTIGES TFIRST = 1964.00 TLaST = 197e.50 ACCT 20 ACCT 29 ACCT 22 ACCT 23 ACCT 2e ACCT 25 ACCT 26 ACCT 9t ACCT 92 93 a 8 ACCT ACCT 94

& B 4 B & B & B & 8 & B & B b e ee oe eeoe* & a 8 & B 197e.500 * *********

E 218.6 1.067 213.6 1.067 211.6 1.067 291.6 1.067 289.6 1.067 218.6 1.067 211.6 1.067 211.6 1.067 200.4 1.061 200.4 1.061 200.4 1.061 L 10. 65 1.085 10.65 1.005 12.25 1.005 11.96 1.005 13.19 1.055 12.27 1.005 18.43 1.085 30.65 1.005 19.46 1.005 11.46 1.005 18.46 1.005 a1000. 1.000 22.21 t.072 22.28 9.072 22.21 a.CT2 22.28 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.21 1.072

SATP 11-10-18 C0uCEP7 C0ST ESTIa&Tt 5 (PRASE 5)

USIT 1 C APITAL IgitsfitET SDRMAOf (i!LLICES OF DOLLA GSl 1100 Rut P et 1R ET (03-21-781 PDFEB PLAST AT ATLA 5TA RIAMPLt6 COST B ASIS: Teat OF COR4t9CIAL OPERATIOE DFSIGN $ CopSTpgCTIDs PtBIODs STran SUPPLT SYSTER PesCHASts 1978.500 CONSTRUCTIOR PttsITA 1982.500 ConstsCIAL Ort 1&TIO3s 1980.500 ACCong?

TOTAL POGIPRENT LAPOS FATERIAL

!!!!EE t E_E.9_R.E_2.._f.1.T_L.e

_E0112.. E92II_fif E 2911_C9113.__E9EII...

20 . 1850

  • 1850 SIGNTS(COBRONI 2 0.0 ( 0.0 3 0.0 2.000 21 . ST90CTes ts
  • Ierset tetsTS 159 10.267 ( 4.7171 83.174 65.798 22 . DEACTOR PLauf EQoIPatu? 232 171.915 ( 2.14 13 44.501 15.678 23 . 75BBInt PLANT EQuitutu? 189 144.156 ( I.7763 36.161 8.762 24 . ELECTRIC PLABT SQUIPNt1T 68 22.028 ( t. 4 29) 31.196 14.007 25 . n!SCELLABE005 PLAuf EQeIPT 19 12.329 ( u.304) 6.085 1.046 26 . a&In ConD arAT esatCT Sr$ 32 __22.121_1__9 JZJL L262 2.219._

SBOTOTAL 706 389.128 ( 10.740) 200.579 109.550 9.76e mannounS/sv 91 . COUSTROCTIOB SERVICES 97 g 0-92 . M092 OPPICE RWGBG.ESEnv!CR 14 93 . PIELD OPPICE SgG3G8 statics

  • 47 9e. Osera*S COSTS 12 SUBTOTAL 285 DIttCT E INDIRECT COSTS ($ 908/Eup 991 CouTIWGEBCT ALLotAsCE 99 TOTAL DIBBCT & INDIRECT COSTS (t 991/sul 1090 INTFBIST SUBIBG CONSTRUCTIC1 CORPOGED ( 9.0005/ts)

TOTAL IETR9tST DonIBG CONSTRUCTION ($

402/su) .... 4.42 TOTAL PLANT CAPITAL INftstatRT (8 % )9 3/uul 1532 i

i e

0 6 . . 9

2_ LI_L_S_A _I_ R___C_9.L _I_3_I_3__D_E _ E 8 1--4 6-----11 15 ----------- 3 0 32----39 41----47 48-- - 54 55----61 62--66 68 70 72 74 16 18 80 958 RODEL CITT IITRA ID TR 555 TR Pre 13 CCP 9 197 ILAZ IFLAG IDF I tsC I PS IAC ISTACE 1800 P532R87 ATLABTA EIinPLt6 1978.500 1984.500 1990.500 9.000 0 0 0 1 2 1 0 6

DATE 11-10-70 C0 BCEPT C0$T E 5TI AA TES (PHASE 5)

D*IT 2 C APITAL INVBSTRENT SOM4 ABT (RILLI005 0F 00LL ASS) 1100 998 PEB2Rtf ( ) POEtt PLAST AT ATLASTA EIARPLE6 COST B ASIS: TEAS OF ConntpCI AL Ott0 ATION DESICE C CouSTROCTIDE PERIOD: STEAN SUPPLT $15T29 'ORCHASta 1978.500 COBSTBurTION Pt9 NIT 1984.500 CORREBCIAL OrtBATIOut 1990.500 CONIT CALLED - D AT A PIT Dost on GEORGI A ATLANTA 15f 21_CAER1_ILt1922CE_I131_REEIt93HLIIClL AII9LIAIII

  • 1.085 1.085 1.085 1.005 1.085 1.085 1.085 1.085 1.085 1.085 1.085 _

an 1978.5 "

-1.

SITE RATE AND ESCALATInu DSED 13 COST PROJECTIOBS TFIRST = 1964.00 TLAST = 1978.50 ACCT 20 ACCT 21 ACCT 22 ACCT 23 ACCT 24 ACCT 25 ACCT 26 ACCT 91 ACCT 92 ACCT 93 ACCT 94 A B A 8 4 5 A B A B A 8 A B A B & 9 A B A B e oe eoe e e e e 1978.500 ***** *** *

  • 9211.6 1.067 211.6 1.067 211.6 1.067 213.6 1.067 211.6 1.067 211.6 1.067 211.6 1.067 211.6 1.067 200.4 1.068 200.4 1.061 200.4 1.00 1 L 10.65 1.085 10.65 1.085 12.21 1.085 11.96 1.085 11.19 1.005 12.27 1.085 11.43 1.095 10.65 1.085 ll.46 1.095 11.46 1.085 11.46 1.085 R1000. 1.000 22.21 1.072 22.25 1.072 22.24 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.21 1.072 22.28 1.072

DRTE 11-lS-79 C03C EPT C0ST 9 STI N &TFS (*BtSt 53 911T 2 CAPITAL IPTRSTRRET SBRRAET (MILLIONS OF DOLLARS l 1100 ist P902527 (03-31-78) Pou tt PLas? &T STL ANT 4 EFA4 plt 6 COST 8&SISt TRAR OF Coe9tSCIAL OPIB& TION DESIGN 8 CCESTRUCTION PEBIODs STRA4 SUPPLT SYSTER PUSCNtSta 1978.500 C083TtsCTIOP PtasIT 1984.500 Coast 9CIAL Otte&TIOut 1990.503 A CCou97 TnTAL EguitgrPT LtBOB naTPPI&t teEME

_ LE_S_9.9_3 7 1.1_I_L_I _ED111__ __EDEII _313RD9E2__E92I2____EERIl___

20 . L4tB

  • L APD SIGNTS (C09n09) 0 0.0 ( 0.0 1 0.0 0.0 23 . STRUCTSSES
  • I R Phot te t1TS 149 9.506 ( 3.782) 78.146 61.145 22 . PERCTOS PLAST SQUIPgts? 21% 176.469 ( l.000) 43.732 14.489 23 . TERPlut Plat? EQUIPRtWT 213 161.418 ( 42.072 t.7653 9.980 24 . EL ECTRIC PLA WT 300Itatu? 74 24.50% ( 1. 3 2 0l 33.973 15.017 25 . itSctLLast095 Plast 305IPT 16 10.391 ( 0.207) 4.858 0.941 26 . nats Cons uta? etatCT Sus gg _ _29.2 n_ L_ g } nt__2. 6}t ___2.12 t_

SetT3TAL 727 412.500 ( 9.209) 230.420 803.697 4.372 r.a uuousS/t u 91 . COPST30CTION S8991085 69 g

92 . most OPPICE E1GBG.5324tIct as 28 93 . PIELD CPPICE REGRGRSttTICE 16 94 . 04 9 E 9 8 3 COST S jj S UBT1TA L 169 DIDtCT S IuDIRECT COSTS ($ $25/NT) 908 CONTINGEBCT ALLOuaNCE 95 TOT 4L sterCT P. luotstCT COST 9 (s 908/4*) 999 INTEREST DURING COPSTRUCTION 009 POUND l 9.0009/T?)

TOTAL IEf t9tST DURI5G CouSTRUCTIO4 (B 162/5b) 398 TOTAL PLRET C4PITAL INTESTNER? (I 1270/Kul 1397 h

O e

Daft t 1 7 8 C0 BC EFT C03T E STIE &TES (PNASE 5)

TOTAL CAPITAL IsttSTRENT SORSABf (RILLIOR$ OF DOLLARS) 2200 net res 25 t? 803-31-78) Pou rt PL A BT AT ATL A NTA IIARPLE6 COST BASIS: TEAR OF COMMERCI AL OPER ATIOE DE SIGs & Con 3T30CTION PEBIOD: STEAR SUPPLT STSTER Peatu1SE: 1978.500 CONST8DCTIon PRORIT 1984.500 CORRt3CIAL OPERATIos 1990.500 ACCOUNT TOTAL EQUIPREBT LABOB RATPRIAL ERHIE A_g_C_g_g_3 T T 1_I_LE _E92I2__ __C92I2 51H9H2__C92T2____C9212___

20 . Land

  • L ABO SIGBTS(CORRou) 2 0.0 ( 0.0 l Q. 0 2.00 0 7

21 . STeoCTURES

  • IRPROVERENTS 308 19.774 ( 8.499) 168.320 126.944 22 . SPACTOR PLAST EQUIPRENT 467 348.376 ( 3.941) 88.233 30.167 7J. TUSBIBE PL AUT EQUIP 8EST 403 305.573 ( ).541) 78.233 10.742 24 . ELECTRIC PLABT EQUIPRENT 142 47.734 ( 2.749) 65.370 29.024 25 . RISCELLANEOUS PLANT EQUIPT 36 22.789 ( 0.511) 10.943 1.987 26 M AIR CORD NE AT REJECT STS 7] __jlal3LL_9d99L _31.193.__9 JBi_

SUBTOTAL 1935 802.021 ( 19.949) 418.999 213.247 9.068 NARH00BS/tu 91 . CouSTRUCTIon Sta f!CES 166 g e

92 . NCRE OPPICE ENG9G.SSERVICE 10 2 93 . PitLD OPPICE IBGSGESEBf!CE 83 94 . OEBIB'S COSTS _ J 13 SOOTOTAL 466 DIRECT $ INDIRECT COSTS ($ 864/EW) 1901 CouTINGtsCT ALLoua4CE 19 0 TOTAL DIRECT S INDIRECT COSTS (8 950/Re) 2091 IRTE8EST DURING CotSTBOCTICS CORPOUND ( 9.0005/rel TOT AL INTEREST DUBI BG CONSTSGCTION (S 382/EB) 840 TOTAL PLANT CAPITAL IITESTRENT (l 1332/E3) 2931

  • e OOO e e mee Fe OOO e e e www

& Ne@

U epp Q4 W e e e Ode NPN SCO M wee Sh OOO e e o woe e & M@d

> m Q eMe OM Um e e e em e Ofe MpN DOS U N dem em O Pe OOO mm o e e wee M

> New de Q eMP Mm um e o e e Ode MmN D

eM OOO MM O

  • pe wee

= OOO O e e e f mee Nb o MO N e k Nae

  • W G eM9 O e 9 Um n e o en o e e en e G e8 MwM Om m e

&& N O DOS h = b e wee m M Nm OOO e o e e d opp eM >

94 O N NO4 d OOO @ e W y ede m OOO O O O um M e e OOO e e e D e ofe d O e M

  • e e * *
  • O Men ek @ @ M OMM e De M M MGO e OOO tm e W b 999 4 9 wee N e M M *** O Ne COO WF e e e o e e e m one

- O b b w d e e e e e

  • M O O O > N@@

th O M e e e > Q eoO gp m e

M e

  • P M Qe > e e tw M e a wee 0 e e U M NmN es e MM e h a cp
  • me W l > OOD 1 kee h a 4 e dee M e o DOM we a e Me e O e edgWMmm MEMO 3 M e Oe e Oe O. O.

Om O e O O N O ***

OM ed EmdskEM > le o e e m th Me Sunee M WP e

  • k Ned e es wher>Me d M u e em eo O=eMhm e M um m e s= . e.

g ek **

e

> W mh mmo h e m

4 m

e em@e Nem I m O e MakedQ m e M e a e OO Ommmme m a OOO 1 GM Os Mm Ph>W OW@@eee O m egee q eM o gP dbMSum =O00000 m Ne COO s 4M @@ de>MSU Me o e e e e & e e e e m e me men as apew**= y opp 6 *e *O Prd EMM d M e d op eQ wh>mMn M q p Mpq 4

  • M MMmW u O u e eOe me m e Meh>OO W e Qd M e e mm Me OmMhMVu M h = e-de B de eDB l NPN te he UNOM >M@eeme k gm m@ mb WOOOOOO M OOD ek em W E e Me e
  • e e e O N wee W Nm M e Mme M DP***** W Ne OOO e MM M e & M" W W O e e e W O P Me 4 m O***

i O e he MO E N m O 4 m o M m OM k eNed a e > me he a e y e e sp e Wl e m O QMM M OM h

M a

e WWdeece M

W ummm e ende e e 9 Q e O MOOOOOO O

  • nan e m o Em*WF e we e e e o e 4

I

  • m e Om a ec Om>>m M Wa****

v a

O =

SCO ese M > km M > w M m Ne O00 t m Me UdB U h M N e e e n U MO eM 9 m a www l l So MU e e G W e M i ee uw & M OS 4 5 MNd c w e she M e awdesee u y e see w FO Mey a e hCOOOOO M Q4 m e o e sY =O ee e e e e e M e emee M km o MQ $ OF***** nan e Mk

  • wm H e e 9 mm 0 WMe M t e OOD ed MO
  • me M W e O edee eM UU ** e9 & G Ne OOD ge m O O d el M e e e o 8 0 mp MMOkm e 4 > ==*

de Wh emMMM & W e e o dw=OM e m > NN e me Or We >

m M u e are e OOm o Um > se t M OUM M > d e*@@

f3 New O Fl

  • Nwo
  • E
  • Q H M euda

6 DATE 11-10-70 C0mCEPT C0ST ESTI a&TtS (PNASE 5) 8 SIT l CAPITAL IEttSTAINT SOMMAtf 89tLLIONS OF DOLLARS) 1200 Ret CSICSRtf (05-16-78) Pos ta PL ABT AT RIDDL ETOS B EIARPLS1 COST B ASIS: 1848 OF STRAN SUPPLT STSTri PGBCNRSB DESIGE E CONST38CTION PERIOD: STERR SUPPLT SIST EM PUeCutS ta 1979.000 CouSTRUCTIOS PttsIT: 1903.000

  • ConstaCIAL OPERATIOut 1987.000 A CCous ? TOTAL EQUIPnts? Lagos RATP314L EMME _1_E_E_2_9.R T I_I_2. LI _C91I2__ _CQ1I2__Bif892tI__f91TI____C93II___

20 . L A BD AND 1850 $IGRTS 2 0.0 ( 0.0 1 0.0 2.160 21 . STBBCTet ts

  • ISP80tEREETS 59 3.052 ( 1.4343 22.815 34.185 22 . Bottle PLANT EQGIPRENT 202 124.861 ( 3.5333 56.200 20.633 23 . entBlut PLauf EQUIPatut 132 96.189 ( t.el5p 29.057 6.506 24 . ELECTOIC PLar? EQSIPRENT 42 10.002 ( t. 2 3 2) 19.914 11.519 25 . nISCELLautoes PLauf 200!PT 12 6.867 ( 0.2573 4.129 1.010 26 . nals CosD staf statCT Sr$ J2 _.JJ.IJa_1._9.221L___h 912___3.J2J__

SO8 TOTAL 468 25S.52? i 8.528) 135.435 77.266 7.107 NANHOURS/EW 91 . CouSTmeCTIos StevtCES Se

{

92 . RCMR OftICE E8GRG.tSteflCE 23 93 . PIBLD OPPICE REGBGS$taTICE 16 94 Ovutt'$ COSTS 32 SUOTOTAL 139 DIRECT & INDIRECT COSTS (t 506/ Esp 607 CONTIgGt4CT ALLosAuct

. . . . . 9. 5 TOTRL DIRECT 6 18 DIRECT COSTS (1 582/EU) 690 REIGRTED Af tB AGE ESCALATIDs (1/10) 200lPnruf Lagon M&ttaIAL ESCALATIOS DORING CONSTBDCTIOS ( 6.0945/19) 221 6.000 1.000 0.000 TOTAL ESCALATED DISECT & INDIRECT COSTS ($

827/E53 .... 9.92 11TEREST DOPIBG ConSTBOCTION SINPLE ( 8. 3505/TB) 05 DIRECT S INDIntCT COSTS 161 05 ESCALATION DURING CONSTRUCTION 62 TOTAL INTEREST DOSIBG COBSTSOCTION ($ 196/Eul

.....223 TOTAL PL ANT CAPIT AL Inf tSTMENT ($ 1013/Eu) 1215 a

162 e

80 e e ie d 4e ame OO 10 OGQ45 et e 4 We weg 64 en a mee Ol N N N0 OOO be 10 000 le OOO le e o e es e 9 @ 9e MeO m@@

po se a=

es to l9 MS e e e 4 4g M ad OO O Of 00 3 as 09 e e 4e9 m og se so seg a b e4 N N M49 m M em i B > 04 4 as se me ass 3 ao a M st et es es es a De Q es me me k n D*

et a se

> 45 s M Go all

& ll

>aO e e e d d9 ee Q OO O OG Os 6

e. e=e ad eII e em to as Am Od B Bum p sa g M&W m est 8 me M ad 0 E k em 0 am M P en m e e Mae

>0C 09 % Q M e e . . J:

OO O O O..

es F1 9 O ens e p eae t U 59 0 Po e Of I ama to M e .es d to es en et 0

a.

N m

  • wt as e o e se se a M es e e o em es

= as e o e as an e ed a me e et O >

e er o at a e en a eO e 9800 *

a. ** *

..t.; e. e aae o es me Q eO e me vi e as ee at M e se e

> 30 e' em e ma a es e o ee e M k ee U M O was e as e e as a se O M k So k e 9= h a se e o el 0 .d o em to O .as a 4 as ==== koO Q en k se se a te N W #9 em W m WB

.a a a= Wl OO>

C m as M . y em l ea eM QOm i QHO> Oe e C es es ed Um to Q O em M e me e u S. Se O k k s a a ns au O. es e l W M WB U U me ya i h as Po se he W 4 ea O ee F m ad a eB O em I 80 to e as est me se a M e= es maa se en Q se ed QWe De g=q m me Q go $e e

> ert ev me e a se a to e4 m O M ed ea eOO se " to B

s

    • e m ==

O MQb O .a e*s O ri m s ee Qeae Di na as an o se et = we u seu es ge en eO S em se se e se e We m ase am as as as I Q W es god og a e M a= M se 0

e=

  • e M l E se $m 5 se se S. r al O E kJi es se O te O se e e e g= e= N wt W rs u* es as a e= g Q mec OO ep Q as agN NN p

~

l

_ _ _ _ - - - ~ - - - - - - '

.DATE 11-10-78 C0sCEFT C0ST I37Ia&TES tranSE 53 OsIT 1 CSPITAL InfESTnEET DETAIL COSTS (TMDOSAEDS OF DOLLARS) STE&R SOFFLT STSTER FORCutSE 1979.000 1200 EBB CBIGSsET(05-16-783 Fonts PLABT att a IDDL ETO s s EstarLE7 CosStasCTI0s *EnnITs 1983.000 COST BASIS 1813 0F STERB SOrfLT SISTER PD3CE AS E CORRE9CIAL OPERAT10s: 1981.000 ACC00s? FACTORT SITE SITE E untie __ _ACCG9ff.fLILI.___ 19912515I Lif98 EAII!IALI letal 24 . SttBCTORES

  • IRPROTEREsTS 211. TASDeott 211.1 GE5851L ISBDeGas 211.11 GEsE94L COT
  • FILL s 0. s 29 1. T 332. 623.

213.12 ROADS, etLES*FASEIsc 49BA 0. 268. 752. 1020.

211.14 FraCING

  • G4 TIS 106. 152.
0. 258.

213.15 5881TAtt SEEER FACILITT 130. 65. 40. 243.

211.16 TABB DBAISAGE STotM SEsEES 0. 129.

213.17 scaDuar e va:D LIGuT!sG

97. 226.

g ,_ ____11g,_ ____159=_ ___J 19 6_

Seat 0 Tat. . . . . . . . . . . ......... s 138. s 1037. s 15 3. s 2688.

211.4 343L304DS 8

211.41 CUT

  • FILL s 0. s 19. s 25. 44 211.42 GRADIs0 6. 10. 22. 33.

211.43 TB 8CE(BALL AST. TIES.9sIL) O. 1593. 1611. 3204 211.45 Su1TCnES

  • sonet S g ._ ____ _ }g s.

SSBTOTAL. . . . . . . . . . . ......... s 42 ___._l26.

0. s 1652. s 1702. s 3354.

211.7 STpnCTORE ASSOCIATED 108E.

211.71 Caf

  • rItL s _g_ s____2tf ,_ s____jgg _ 411._

SorTotat. . . . . . . . . . . ......... s g ,_ s ___ Zig._ s____153,_

SasTOTat. . . . . . . . . . . ......... s 13a.

s____t]It_

212.

s 2957. s 315s. s 6453, Stras GEsEsatos sottDIsG 212.1 soltDIsG StsoCTuaB 212.13 Sos $1toCTORE CosCBETE s 0. s 926. s 1003. 1928.

212. t 4 SoFEsSTsocroat k 500 TOTAL, . . . . . . . . . . ......... s 9 ._

0. s

___62126 1918. s

__1I362a_

88371.

__29]Ilt.

212.2 s 26289.

SOILDIBG SEstICES 212.21 PLO5BIsG

  • DB81s$ s 149, 15.

212.22 REATIsG,fte?

  • Alt CosD
98. s s 261.

212.24 442. 344 50. 835.

LIGHTIEG

  • SEtt!CE POSER 0. 296. 139. 415.

212.25 ELEf4708 84 41.

212.26 4. 129.

FIRE PSOTECTIOB STSTER I 0 SeeTOTat. . . . . . . . . . . ......... s____t]gg_1_ _4g _ _1}g.

s____gjs,_ s____2gl.3. s___lilla.

SosT0TaL. . . . . . .. . . . ......... s 633. s 8752. s ta578._ s 27963.

213. Tesels t.sESTES.COstgot BED 213.1 BUILDING STROCTott 213.13 SOBSTs DCTOaB ConcaETE s 0. s 155.

2 13.14 $UPER STR DCTop t s 901. 1656.

95_ ___271gs. ___19963_ ___91135.

SOBTOTAL. . . . . .. . . . . ......... s 0. s 3503. s 6707.

213.2 s 10280.

SOILDIBG SERTICES 213.21 FLs301BG

  • Drats $ s 109. s 167.

213.22 s 16. 292.

NEATIsG.IIst

  • AIR C090 300. 235. 33. 568.

213.24 LIGHT!sG

  • SElf!CE PosEn O s_ ____1915. ____11ga. ____{g3 6_
  • SanTotat. . . . . . . . . . . ......... s____39g _ s____gg2,_ s____25ga.

SonTotat. . . . . . . . . . . ......... s 400, 8___196)._

2 18.

s 4310. s 6955. s 11673.

OTBER STRUCTOBES 2188. ADNIsISTRAT100*SEttICE SLD 2 109.1 BOILDIBG Sta DCTURE s s 2 188.2

0. 5 15. s 895. 1409.

BUILDIEG SEttICES ____2 } } s. ____3]26_ ____j 2 f t_

50stotaL. . . . . . . . . . . ......... s ____112a_

257. s 9 27. s 1022. s 2206.

DATE It-10-78 C0NCEFT C0ST ESTIeaT ES (PetsE 5)

SNIT 1 CAPIT AL INVESTREET DETAIL COSTS (Tsoss4505 0F DOLLABS) STE&n!s5PPLT SYSTER PG9 CEASE: 1979.000 1200 nur CBIGSMET(05-16-781 FouRB PLauf AT: MIDDLETOug EIANPLE7 CONSTRUCTION PE391Tt 1983.000 i

t COST 94515: TElk OF STEat SUPPLT SYSTEs Pescanst consPECIAL OPIn&TIout 1987.000 l ACCOUNT PACT 09T SITE SITE E g!' H!__ _ACCEf57_fifL5 IQfitH8EI 2180. F19E Pensa0eSE LAR98 541181411 19tAL

0. O. O. O.

2181. ELICTRICAL SWITCNGS BLOG s 2181.1 sottDIsG STapCTast s 16. s si, s 29. 97.

2 181.2 soILetsG stavlCE5 SonTOTat. . .................. s 12a_

27.

liu 22._ 16..

2185 s 109. s 57. s 193.

CORL C4R TRA9 SRED 218 n. esILDIBG ST90CT825 j)u seeTOTat. . . . . . . . . . . . . . . . . . . .

s 9_ s ]9 _ s .

g} _

2183.

s 0. s 10 s 15. s es.

BOT ART Can D' IMP BLDG *TOUBL 218p.1 soILDIsG STasCtant s 0, s 5 26 s te6. 972, 218 u. 2 totteInG sEnv!CEs Seat 0TaL. . . . . . . . . . . . . . . . . . . . s Sa_

e.

12s s_ _ !se,_

II._

e6 3.

$1u s s ____526 1

2 t oo. Coat saEarna souse 21eo.s sottDIsG STeoctasr s 0. s 256 S 413. 669.

2180.2 poILotsG Sta: ICES Sent0 Tat.  :

is,_

6e.

II._

s_ _'i2s.

15._ _ _ l*fa_

218P. COAL CgpSWEB NOUSE

. . . . . . . . . . . . . . . . . . . s =26 s ele.

218 P.1 esILDInG stauCTont s 0. s 356, s 233. 3e9.

218P.2 SOILDIBG SEPTICES 9)a. lju Sta_ ____293 _

SOBTOTAL. . . . . . . . . . . . . . . . . . .. s 95. s 251. s 247. s 593.

2180. BOILER NOGSE TRANSPB TOWER 2100.1 sultDIuG stauCTest s 0, s 92. s 16 2. 25e.

2100.2 seILDIsG sBa: ICES 3_ 5_ j._

SasTOTaL. . . . . . . . . . . . . . . . . . . .

.19._ _.

s o. s 97. s 16 e . s 264 t 2182. 50 TART PLou RAIuTWCE SEPD 218e.1 SUILDIEG ST90CTURE s O. s 1330. s 982. 2382.

i 2 188.2 SOILDIBG SERTICES Ja_ 6a_ _. l a_ }fu 2187.

Se TOTAL. . . . . . . . ... . . . . . . . . . s i. s 7 117. s 983. s___1127.

LOCoa0TIVE REPSIR Git &GE 218T. 9 PGILDING STSOCTOBE s 0. s 54. s 74 129.

2187.2 BOILDIse SEstICES J g s. 2j._  !]g, la.

SOBTOTAL. . . . . . . . . . . . . . . . . . . . s 14 s 75. s St. s 170.

2180 R4TEBIBL R&BDLeSEETICE BLD 2185.1 BUILDING STROCT03E t O. s 137. s 169. 298.

2189.2 BUILDIWG SEttICES 2]a. ]9% $1g_

SeBTOTat. . . . . . . . . . . . . . . . . . . .

Ja_

s 21. s 167. s 169. s 357 2187 WASTE WATES TREAT 9Eu? BLDG 218 T.1 UASTE 94TER EQGIPREET BLDG s 6. s 49. s 46. 101.

218 t. 2 vaSTE satta SEfttInG enSIs 0. 312. 62. sie.

218f.3 API CIL SEPAS4 TOR g._ gu j_ Jgu

$5BTOTAL. . . . . . .. . . . . . . . . . . . .

s 6. s 169. s 116. s 292.

218E. MISC CO AL BA NDLING STROCT 2189.1 CostETom GALLERIES s 0. s 522. s $115. 1638, 2188.2 901481 PLOW ACCESS TUEEEL 0. 101. 41. 142.

218u.3 Co AL PILE RER894NE DABBIES 179. 309. 47, 5 3%.

2 184.4 LOYERING WELLS 0. 114. 43. 157.

2 18s.5 BSILDIso SEpTICES 9._ _.g._

SOBTOTat. . . . . . . . . . . . . . . . . . . .

_] _ _ ___j,_

s 179. s 1048. s 1248. s 24IS.

i b

e s , g

D ATE 11-10-18 CoeCEFT C0ST ESTIN &TES trutSt 5)

ORIT I CAPITAL InftSTRest DETAIL COSTS (TuouS4BDS oF DoLLABS) 1200 not CSICSatT(05-16-79) Pouts Ptaaf 4T: nipptatous STtan SUPPLT STStra PORCuaSE: 1979.000 stanPLt7 CONSTRUCTION FranIT 1993.000 COST B ASIS: Trap or STRAN SutPLI SISTte rescanst CogetSCIAL oFE04TIos 1987.000 ACCons? FACTORT SITE SITE E MH -- _A[if2tI_Ilfit I2glf3ERI .14t91.

Sottofat. . . . . . . . . . . ......... S 5095.

HII 14LI. ..IQI AL_

619. S S 4998. 8 1076e.

219. STACE SfacCTott 219.1 STSDCTURE 219.19 EtCatATIce 8083 3 0. 21.

219.13 SRPSTSOCTott Conc 3tTE

$ S 6. 27.

219. t e

0. 141. 227. 368.

SorenSfacCTout _ jjgg._ _ ggg,_ g_ __,2933,_

Sestorat. . . . . . . . . . . ......... $ 1:9e. 1002. 233.

219.2 cmIns:T Stav!CES S $ S 2e29.

_ ____g __ __.g _ g, _g Sestofat. . . . . . . . . . . ......... $ st9e. S 1e02.

  • 233. $_ 2e29.

Suet 5taL Fon ACCoeuf. . . . . ......... S 3052. $ 22115. S 34I15. S 5920h CosTIncenCT c 15. 0s E0 r- 15. 0$ La so n-is . O sn TL) . . . ___ gig, __._] J n. ___5 U I. ___ttfla Totat ros aCCoas? 21 . . . .........

$__ J.53.g,_

... . .. s ...

_.211.J.2,_

. .. S._3

.... 22

. 2 2.,_. $__gg122.,_.

&.muS i

e e 166 e

t 9 0 t I I i I I f I t d d e e e d e o e o e 4d e d e e de d e d e e d e e d e o w me e e de e

One o eme e m e m ===m mee mesm one oc me emec NNo m m me eem N mao wee m* one ese e mm e mme e s ee M m ee e = == mee me m Ne me e me os cene j mN e nc er4e a se o00 M mee e e i me e e 1 000 4 4 0 ooo ae e 0

e 1 1 0 0 t a

e e e emm Me a iem m e a e

m e

a i

e e

a noe eee paw

= I M W 0 t dee e ee f I t e e g a e t M d mm-e o ene w o = ao mma e e e e d d a d e e e. J.

  • e e Je d o e . . de e es OO amN aC NN = *te o NNO e m Nm m ad esmM mem et Nem mm me N eee e m me O ml mm* mim mm e ese m Mu l l e kw i

& = m es 4 I

ee n Mm m e. m m e e um um e a em em a w we e e>O m Mmm PEk Mme NMe M&M

& 1 I e I

mmo dJ. . . Jo I 1 I t 9 0 e a wes e o one e s e o pme e . . e ed e d e e Je de d e e de e Jo e o . Je do hmJ W eme me mnN

  • mN m em o neo m a em e@e m @ M eso emm me *Ne MNw o m M@

hke M Of NPJ N NNe me @@ MMe M me DLM > Kd  %>eet 9 Mem Peet MDu me w 9

(g mm Md g FHM e I eMr eme e a e em em e e up WW m a Me e 1

p MBE VCO MUM M JJe mmm o e e Je a e .

.e eneme-JJ. Jo e Jo meJo~~ eJe . J.e J.e e . J.

ooc N mn ~n -~m -N e e+o c o om e Ft oNM m em p**e e mee We e mm e mee CM mee mme e im e Nme me *Ne m*

MM mew I lat" m* NN l M

Um mee $

mm M

e4 gj l m hM i e

@ d ##m a W m he me e e MM t

mm e mm m h M W M E e M e e o e o e e e e e e emm o e BMW e o e e e e e e e e bh o e

  • e a e e o e o e e e e e

& e J e e o e o e o e o e e e MO a e e e e e o e o e e e o e e b5 e e e o e e e e e o e koo e eMg e e o e o e e e e e o e Ad e o e e e e e e o e o Ese e em o e e e e e o e e o e e mMmM EM e o e e e e e e e o P e e e a=m o e e e o e o e o e e MPkW o wem o e e o e e o e o e o M m e Mkh o e o e o e o e o e e NE e Mer e o e e e *

  • e e o e podM o M

Gh>M e o e e e e e e e e e e DEN EE MM

>> M WM M Om M e e En e a e e a e me ed EMU e e ed OmMM >> MO & > Om M > G O B e

em MM e oEEM M e M e e r skWO en eMe e E e om Om UNOW H >> M&M P M e E O M Ok = b hCM o

med a MM e e>=M m o M e a h eME eMM e== & em O h M Mpure > E EME pa bh e

=

o 50m o h 9 >> e enOUMF e 0 oho Mkm3 epm e e D ehMk e e een e & e eQ h m e

, 6 da MMeke wh m M Mk 50 me Fem m thM e o M eMMS M e e e *WW es eHM seP hMM e M **Mkee e eT E lC uO hhQddGOOWOMMMD Edd MBdOMWMBEddMWSe d E d QQhOd BWmmeBSEMmeMFM Mme EmeMemeMmembeGM e M eBmD Mbee Mb MMskkumm e>>mM WHH mek M&Mekh Pak N e WOweQ3p 34 M*M QM ik d 600kkbH OMuM moc EsOmkaOMmO*OOkM C = C=M emOO

>@M He er MB beweeMMk um kHPOOMMMhkeekEm>V H NkNeo hk EBo e4MememmekBOeh Uhhme She eh schece e UmseMom a He bMMSprMM&MBr3 mop >ESSMOED Gree 5Ge 3 MMDHbbmp3 wwh Id MMMMMamm>MMm a mMMM MMBEmMShMkkM Q dmto Mb MMb MMuse sue 3 >GP WOm me M M mmMaomehM M 900 O r. e e MEe mQ ee WM 90 OEM Me Ek ed Mmk Mkupe WWFS 95 dde me am eMe mM > WM> M me mum a MMe QM mmM WWEMm h>Mmma PPE U~O eeham MGM MB he ah3 M mm mem4 E WW MMk meedd PeMmpm he MMS M mu = > pmW MEQF ehm> um MMO MMhmm OMEhdh WPM edE FS MW mBQ MDeus met t uua egi OOD hmo kheQO MMMme OCemem Makh>h com Gee MmQ E=Q em pe ud hM

==O hee who ema phM huamm mhete e M e Mm e bM l *

  • me F u we e s ev = wN .med> e nm = m o BM WNNN

. -N .we Mbok O rt e tem e e

  • *e mmMemm We NNN mm we @@@ @MM Seeee e o e e e e e e e e o e e e o e a e e e e e o e e a e e a kmNM WD SQo ***** ****** NNN NNN NN NN NNN NNN espo u t eN NNN NNNNN NNNNNN NNNNN NNM NNN NN NN NNN NNN NNNNN Se W e WN NNN NNNNN NNNNNN NNN NNN NN NN NNN NNN MNNNM

o

.D ATE 11-10-78 C0WCEPT C0$T ESTI4AT E5 (FRASE 5)

Out? I CAPITAL IBftSTSENT DETAIL COSTS lTMOUSANDS OF DOLLASS) STERN SUPPLY SYSTER PORCHASE: 1979.000 1200 att C8IGSa tf (05-16-18) POWER PLABT AT HIDDLETOUM EIARPLE7 COBSTRUCTIOB PEB83T3 1983.000 COST BASIS Itat OF STEAS SUPPLT STSTER PURCNASE CORS ERCI A L OPER ATION: 1987.000 ACC0017 FACTORT SITE SITE E 23 hit _ . Aff99ff.IIn t I2VitattI _1129t___ HIIttiLE. _T9fth__

50870TAL. . . . . . . . . . . . . . . . . . . . S 15023. S 6659 5 2096. S 23178.

223. 455

  • DOST R AIDLING SYSTER 223.1 ASE
  • DUST 54 5DLI BG EQUIP 5335. 1828. 241. 7404 223.2 RISC ASH *DOST RABDLIBG E0 223.21 ROTATING HACAIEEST S 43. S 5. S 0. 48.

223.25 FIttas 85. 141. 20. 246.

223.26 TALTES _,._ jja. gg. 94. jja.

SonTOTAL. . . . . . . . . . . . . . . . . . . . $___ jets. S 20i 397 SonTOTAL. . . . . . .. . . . . . . . . . . . . $__5476.331,_

S S 1914 S 26 1._ $

S __ U l t. _

224 POEL HANDLISG SICTERS $ 0136. S 2340. S 763. 11239.

225. Pter G AS DeSoLPea SteuCT 225.1 L3nt SLARING BUILDING 225.11 BGILDING ST80CTURE 5 0. S 288. S 490. 778.

225.12 BUILDIuG Stav!CES 2] g, gja, j]._ 1]fg_

SUBTOTAL. . . . . . . . . . . . . . . . . . . . S 23. S 371. S 521. t 914 225.2 LIRE SLARIBG SERTICE BLDG 225.21 PGILDING STRUCToet S 92. S 29._ $ Sga_

S 0 870T2 5 .

tta.

. . . . . .. . . . . . . . . . . . . S 0. S 36. S 50. S 86 225.3 DESULPUR CTRL *SUTCNGR BLDG 225.31 BUILDING STsoCTost f 0. S 84 8 144 220.

225.32 BUILDING Srtf1CES 15a Jg , is. Sgs.

SoeTOTAL. . . . . . ... . . . . . . . . . . . 8 H ._ S_ _ 113. 8___150. s___578.

225.5 PacCESS*St&L uRTts PostnSt --

225.51 BUILDIsG StacCTont 225.52 RUILDIuG StavlCES S 0.

6._

S 14 S 9.

J,_

22. $

JQ u )) _

SO970TAL. . . . . . .. . . . . . . . . . . . . S 6. S 24. $ 10. S 39.

225.6 TNICarsta EQUItatu? BLDG 225.61 BUILDIEG ST80CTest S 0. 8 33. S 25. 58.

225.62 BUILDING Stef!CES .7a_ }{a_ $s_ 20s_

55870TAL. . . . . . .. . . . . . . . . . . . . S 1. S 50. S 30. S 86.

225.7 SLUDGE ST A BILIZATIOu BLDG 225.71 NAuGERS AuD SorronTS $ 0. 9 156. S 214. 370.

225.72 BUILDING SERVICES 44 g, SUBTOTAL. . . . . . .. . . . . . . . . . . . . 2 {J4{t. _ _1991.

S 44 S S ___3}33.Ia_ S 510.

225.8 SLnDGE POMP MOU$t 225.01 BUILDIBG STRUCTORE 5 0. S 19. S 23. 42.

225.82 BOILDInG StavICES g_ Jg,_ 2,_ 236, SO8 TOTAL. . . . . . .. . . . . . . . . . . . . S 8. S 32. S 26. S 66.

225.9 List eNLOADING BLDG *T4pptL 225.91 BUILDIuG STRUCTopt S 0. S 165. $ 153. 317.

225.92 BGILDIEG StBf!CES j a, t}g_

SueTOTAt. . . . . . . . . . . . . . . . . . . .

ja. J!t_

SU8 TOTAL. . . . . . .. . . . . . . . . . . . .

8 _2 $___J12._ S.___116._ $ 316t_

S 106. 5 1036. S 1975. S 2317.

226. DESULFORI3ATION SQUIPNtu?

226.1 Lint RANDLIBG SYSTEM 1067. 1547. 438. 3052.

l

0472 11-10-78 C0FCEPT C0ST ESTIa&T ES (PR&St 53 BEIT 1 CAPITAL IETESTRt4T DETAIL CUSTS (T500SAB03 0F DOLL 8BS) 57t44 SSPPLY STSTim Pescs&SBs 1979.000 4200 net CSICSetT (05-16-78) Poute PLABT AT: B IDDL ETov a EIanPLE7 CosSTeuCTIos PtenIT:

COST DASIS Test OP STE11 SOPPLT SYSTER PWPCutS t 1983.000 ComitBCIAL OPER1980s: 1987.000 a CConWT P kCTO MT SITF SITE E!5 226.2 tit __ _ SCC 99ff 11n t - - 199I2518I L&tSt IEILL PEID PatPAB& Tion STStre 8&IIllill 226.23 90T& TING R&CNINtti 226.22 TanES SgD PatSSGBR ftSSELS S 329. S 64. S 6. 399.

226.25 PIPIs4

0. 169. 239. 407.

leg. 255. 26.

226.26 T&Itts 23 469.

226.27 PIPIsG-nISC ITts$ O. O. 28.

226.29 is. O. O.

70aNDATI0sS/SSIDS .g _ is.

$5870TAL. . .................. 8 583 22._

510.

} }u __ ]l ,

226.1 S 9 286 S 1379.

Set 010t198 SCBGBBIDG STS 19424. 6564 22f.4 GAS 54sDLleG STSTER 4103. 22091.

226.49 30T&TIaG ESCMistRt 2127 226.45 FI BIBG,DOCTS. IIP 4pSION JTS S S 334 S 33. 2494 226.46 3056 3335. 1349. 7711.

valets e Danreas 474 Sa.

226.49 P00904TIOES/38tDS 6. 539,

_ _ __9a, _ ,99f u _ _1]9 _

SeaToTat. . .................. S 5657 4133. __))]}u 2 26.5 SLDDGE E41DLING STSTRA S S 2260. 5 12059.

226.51 acTafinG naCutstat 226.53 Tap 55 450 PPES$998 TESSELS S ISIS. S 230. $ 23. 1769 0 1068 1641. 2709.

226.55 PIPIsG 5006 226.56 TALits 6774. 673. 12454 166 O. O. 166 226.57 PtsIsG-gISC ITEns 226.59 Foe 80tTIous/58tDS 0. 91. 124 27 0 _.jl3)._

SesT074t. . .................. 5__,EE s1.% 2116 .. 4%58.,

226.6 S 990s. S_ 5312 . , S 219 H.

4ISC DESOLFORIt&TIos E0eIP 226.6% ROT & TING RSCMistat $--

226.63 TABES sup PBtS5033 TESSELS S 55. S 39. 5 2. 76

  • 226.64 PuglPICATICB+PILTR ATIOE 20 17. 22. 15. 54, 9 1. O.

226.6% PIPING 824 II.

226.66 14tLES 223. 34 382.

36 O. O.

226.67 PIPIBG - RISC. ITER $ 36 226.69 25. O. O. 25.

70neDaTIOus/$ SIPS g_

,___)),_ 123, ]g ,

226.7 SUST0 Tat. . .................. $

INST 39EEET&TIONoCOETROL

_266 5 282. S 64 S 612.

%25u 109 SanT0Tal. .. . . . . . . . . ......... $_IE30s. S_31a H.. .

S ~1H 41.3a_ t 227. ITSTSORTET&TIOW e CouTROL

. 8 ..Elad'*a..

227.1 simCanoanD, Pa sti $ e sacss 227.11 BOILES - TG CONTROL P ANEL $ 285.

227.17 S 99. S 5 388 85tILI4ST P45tLS*CABIstTS 134 62.

227.10 INSTBGstu? 34CES 4 200 SonTOTAL. . .................. b __2 4 } % 9)._ 23, ___21}a, 227.2 667 5 204 S 18. 083 Pl auf ConPUTrA SISTre 711. 455.

S 227.1 ST4C5 G4S ROEIT08I4G SIS 46. 1282 227.4 0. O. O. O.

PLABT CouTDOL SYSTtm 227.43 C00sDIsaTED C04Tp0L STSTen S.__ ))],_ S_ ]3,_ S }, ,,_))]g, Se BT074L. .. . . . . . . . . ......... S 711 74 S S 7. S 793.

y 9

D ATE 11-10-70 C03CEFT C0ST E5TI N 4?ES (PRR53 SI UNIT l C APITAL IstESTRtu? 8tTAIL COST 5 ETHOUSANDS Or 00LLER$1 STERR SGPPL1 SISTER FitCR&SE: 1919.000 1200 Re t CSIGSR ET (05-16-78) POWEB PLSBT ATI RIODLETOEB EIRRPLt? COgSTRUCTIOB PEERIT: 1983.000 COST BASI 53 ft&R O' STE45 58PPL1 SISTER PORCH AS E CORRE9CIAL CPERATION: 1987.000 4 C000 s ? PACToat SITE SITE

  • I tnitit __ _lCC09ff_ TITLE __ IQ91255EI L1998 221.5 Is57 pones? TORIuG*

PITTINGS

__1 } } u ____g)) _ 511IE1111 19fik SUOTOTAL. . . . . ... . ........... S 2223. $ 1157.

}ja_ ____3)) _

220. POILES PL1UT AISC ITtR5 S 85. 1 3465.

228.1 RISC 505PERSE ITERS 228.11 Plutt ALIGUREst

  • CNECEtuG 2 28. 12 FIllD PRINTIsG S 0. s 801. S 62. 862.

228,11 0. 593. 246 839.

osattrICATIon or uttDEas g a, SGBTOTAL. . . . . . .. . ........... S

_ _ 32a_ lla_ 5ta_

228.3 0. S 8436. S 320. S 4156, BOILEa PLANT INSULATION O. 556.

228.4 SARPLING EQOtrRRET 1540. 2095.

228.7 202. 21. l. 224.

RISC PIPE 8tIDGe 228.79 EICASATIOg 903E

$ 0. S 0. $ 0. O.

228.7s suasfaoctost CoscaET ______ga_

sseTOTat. . . . . .. . . ........... t 15 _ 22 _ ____132 _

sonTOTaL. 0_ s____ Isa_ s 53._ s.___1))a_

. . . . . . . . ........... s 202, s 2007. s is20. s e208.

susfotat ros aCC0 ant. . . ........... s 12486s. s 56208. 1 20633. s 2ii6ii!

~

CouTIsGEnct (15.0stoP-15.0 stas 0s.15.0tRTLt. . . J fl22. _ t521. J 222. 39221.

TOTAL ron aCCoas? 22 . ...........

s_13 J.22.2.a_

.. . . s...

__6.h.i]2.a_

.. . S__2_]I23.,._.

__ ... s.231221a._.

I

i D ATE 11-10-70 C0PCEPT COST ESTI 1 4?: S (PutSr 5)

UNIT I C APITRL IBf tSTRENT DETAIL CCSTS (TuoWSitBS OF DOLLAR $1 $7E49 SUP2LT SYSTER P1PC u t S ta 1579.000 1200 nut CPIGSgt?(95-le-78) P0vre Pla97 att mIDDLttoes Pla nPLt1 C01STSDC?IOS P2PRITs 1983.000 COST 245353 188B 0F STEAR SOPPLT STS?fi P3BCuaSt C01159CIAL OPTB4 TION: 1947.000 A CC0417 . F ACTot t SITM SITE O n 33:3__ _gttggjr_II;tg_______ . ggggg3gy; taggg gggggInts ggigt

2) . Tessist Plast toutrnts?

231. *ssolut GturesToe 233.1 799 TIN E GE utR ATOR *ACCSSRT 233.11 TasaInt ractos: COST  : 532n8. 5 O. s 0. 532e8.

231.12 Otute TopeIst COSTS _ q ._ ___Ittli. __221a. 22 219.2 FonsonTIous Suet 0TaL. . . . . . . . . ......... . . $__il _2 8 s . s 2S68. s 295. t - 565}!..

44 231.21 T-G PROSST AL f ga. 8__.1322._

S48?OTAL. . . . . . . . . .. ......... 8 0. 5 1922. I___ j13 4 )2 7.ll 6. S _._3'952s, 449 239.4 LetBICATING OIL SISTE1 231.43 f4sts e PPES$9At vtS$tL9 $ 0. 1 5. 8 28. 33 231.45 PIfleG 4 16 4 23.

231.46 TALTIS 6. 9. O. f.

231.47 PIPI4G-11SC. Itt45 1. O. O. 1.

231.48 IPSTeentrT4? Ion e CouTROL 12. 1. O. 13.

231.49 SRIOS / FOUSDATIO45 __ jl) _  !@g, ,____]4,_ ,,,,26}g.

SetTOTat. . . . . . . . . .. ......... $ 852. B 88. S 106. S 34(.

2 35.5 Gas SYSTtus 231.59 NTORCGEN ST094Gt STSTts 5 116. 5 92. 1 10. 2 18 213.52 CARDON DIGIIOR STOR&GE STS ,_ '9s 6,5 igjg, SonT0TaL. . . . . . . . . .. ......... __.. 2 9____)))1._ s____152 s.____][,_

SorTOTaL. . . . . . . . . ...........

s____J52._

231.

Sie30. s 5121.. s 1944 s 6069t. --

CorotaSIwG Sv5 Tens El 233.1 condenser TQelPatu?

233.12 Mtaf TpapSFtp 204Irnr4T 5__.))21 _

SUBTOTAL. . . . . . . . . ........... S 7129.

5 S

j'_1] g.

1561.

8,___]}$s, I 156 5

.. 0016..

8846 213.2 Cop 0E554TE SYSTER 213.21 301ATI1G MACNIMtet 3 571. 8 93. S 10. 676 233.23 Tatts s Pars $ sat vtSSets 118. 101 lo. 238 233.25 PIIIBG 452, 6 89. 65. 1836 233.26 Tattts 446. O. O. 446 213.27 PIIING-ilSC. ITE9s 72. O. O. 72.

. 213.29 TestemitNTATIO1

  • CONTROL 58 6. O. 64 231.29 F0nBD4? ICES ,,, _ _ , g g, lla, gg, _,,_ ))g, SOBTOTAL. . . . . . . . . .. ......... $ 1721. 432.

9 8 91. 5 2644 213.3 Ca3 atmot4L STSTP1 233.3% Conorn$rn Ca5 asnovat 5:5. s___ sjl . s___ 1g3,, s 12,_ ____5)p,_

SooTOTat. . . . . . . . . .. ......... s 437, s 109. s 12. s 55s.

211.5 CORDI15tTF POLISNIPG __ j j]Q s, _,__))$g, ))s_ ,_ ))]$g, SGBTotaL. . 9 2 8 2t. $ $ 13824 234 F RE D Bt473 3G SYSTt9 . . . . . . . .. ......... $ 10706 ' 291.

2 34.1 FttDu41tB NEATERS 5814. 161. le. 5991 214.2 PFIDukTtt SISTti 234.21 POTA1tNG RACNIstRT S 4933. 8 523. 3 53. 5509 234.27 MFAT T141SFft EQGIPRENT 580. 9. 1. 590.

234 75 FIPIsc 2165. 2910. 293. 5367 214.26 TAttts 888. O. O. 808 234.27 FIIING-RISC. ITEss 504 O. O. 504 234.28 Instaungsf atIOu . ComTaot ___ __ g j ._ 3,_ _g,_ .,___12 S9870741. . . . . . . . . .. ......... S 9158. $ 3a50. 1 34 7. 8 12948.

I ATR 11-10-78 C0mCEFT C0ST ESTIa&T ES (PERSE 5) 0517 1 CAPITAL 15ftSTntBT ORTAIL COSTS (TROUS&WOS OF DOLL 4BSI STE&n SUPPLT SYSTER PutCA ASta 1979.000 1200 se t CSIGSn tT 10 5-16-18) Pouts PLaut AT: nI DDLtto e s

+

SIARPLE7 COBSTBBCTIOB PranIT 1981.000 COST 84515 3 1843 0F STIAR SUPPLT STSTts PUSCsASE C01stPCIAL OPERATIDs: 1987.000 ACCODET PACTORT SITE SITE E fit tt __ _lif99?I_IIILE .

3221t331I Ett98 DLIt!!1La IQI!L 2 34.3 EttsacTIos STIan STStan 234.3% PIPING $ 818. 8 1097. S tll. 2026.

2 34.36 TALTES 444 O. O. 444 234.37 FIPISG-RISCELL452005 163. O. O. 163.

234.38 IsSteentstaTIon

  • Costa 0L 3} _ _ j g_ gg, }gg.

SO970TAL. . . . . . . . . ........... $ 1971. $ 1102. $ til. $ 2683.

2 34.4 Pen its?

  • 03118 SYSTBn 2 34.4% BOT & TING R&CHINERT $ II. S 7. $ 1. 25.

234.43 T& BES + P925503E ftS$tLS 20. 1. O. 21.

234.45 FIPIu3 *195. 264 27. 486.

214.46 vatsts 178. O. O. 178.

234.47 PIPING-nISC. ITInS 32. O. O. 32.

234.48 IuSTBontuTATIOS

  • CouTBOL __7 gg_ 7 } g.

___ }glg_

g2 _

SanT0 Tat. . . . . .. . . ........... s___ $____222 _ s_ 2g3, s____g11g_

SasTOTat. . . . . . .. . ........... s 16945. s 4992. s 502. s 22439.

235. OTNIS TDRBIBE PLRET EQUIP.

2 35.1 mais varon PIPING SISTIn 235.18 nEIE STtAn S!57tn S 5956. S 7079. 3 114 13750, 235.12 u0t test 47 SISTen 4727. 5645. 568. 10940.

235.13 C0tp stutif STSten 0175. 1219. 123. 2517.

235.15 ATTentretTING SISTE4 ]7 g ,$}g. j g_ j)]s.

SonTOTaL. . . . . ... . ........... s ___1]974..

1 s~1_4008. $___1414 s__57398.

2 35.2 Teaglut autILIa IES --

235.21 nats STn/ nut stsTS s osals 8 12Ig_ s g}g_ s If SUBTOTAL. . . . . ... . .. ......... S 2 2 a_ ____213 _

107. t 85. $ 22. $ 293.

235.3 TP CLosto CLG entre STS 235.31 3014TIEG saculutat $ 46. $ 22. $ 2. ft.

235.32 at&T TBauSPER EQOIPnBUT 422. 12. 1. 435.

235.31 Tasa$

  • PatsseRE TESSELS 1. t. O. 2.

235.35 FIPIss 282. 386. 41. 708.

235.36 Tattes 195. O. O. 195.

245.37 PIPING-RISC. ITtnS 57. O. O. 57.

235.38 InstsentsTATIon

  • Confa0L 19 2a_ 9t_

SOBTOTAL. . . .. . .. . ........... $___10 3 ) g_ 32s_

. $ 424 S 44 s_ __15 0 s .

2 35.4 otnis.satta n&RE-er SYSTEs 1001. 78. 7. 1096.

2 35.5 CarnICat Tat 1Tntut SYSTts 41. 7. 2. 51.

235.6 stefanLIERTIDs SYSTra 235.69 30TATInc naculateT S IB. 8 6. $ 1. 25.

235.63 TatKS 450 PSPSSont TESSELS 47. 4 O. St.

235.65 PIIIeG 2. 4 O. 6.

235.66 TALTES 0. O. O. O.

235.67 FIPIBG - MISC ITens 0. O. O. G.

235.68 IuSTsentsT& TION

  • CONTROL 50BTOTAL. . . . . ... . ...........

_____26 _i s_ Og_ ]25.

$_____]3 _ $ 296 8 ja_ $____l]3._

SOBTOTAL. . . . . .. . . ........... S 14250. S 84622. $ 1998. $ 30364

s 172 se e o Je mocm o o e ee 4e

-.p=

I d .i. .

a.a .. . - o .N..P= e.P N.

  • 84 Pm P* Pm M Fm 8".O @. P

. .m rhe.@... .

... I- -

. 1

. -.r . ...

. ..i.

~.

. . J J

M

.e .. .J ... J. -.~- ~ , . ,.o- .J..e .e a e.e -~ - . Pe .o e P..,.

O m. angPg g g a

. Mm I

-m M. . .e . . .

s=,

. .0 .e O te a De M m ao e

s.r.Go M MM an ,

.mO O

.e m.

-f <. .O e

- .e Je Je Pe . ~..O, --

~

e J..

e* . 8".P= .

a.n > as a.s.C.

. . - .OP... -.

u m k' M Pe .

mM .

me M -

M MMe

>OO

.i u v M Jo. J .o e J J .o e M -,

m,

.e .e .o .-.J.I O . . .

k . . . .

O r. . en e= = = . .

F* at CM . .

em Elm aag g c .M. e.I e. et 9. en e. e.

Am Se m M ao i e e e e e e e e aus se a M 99 9 e e e e e e

&a

  • P es e e e ed e e e e ed an e e e e e ad e MO e= ' ,

O e e o e eae M M at Am S ,e e e o eo e be O O e to e o e o ee e as M M s=

a .e o e o e e5 e aae as se S e e o e e0 e ao M me M S aBM e e o e ee o kO as =4 m se a e e e e e un e M to @U .

== es a e e o e e AB B tl.'e M Go en e e e e e **

EB b.

.r as a . e e e o e e es to O ed as to Om Q em to e a e o m as ce M M M Eh na a s= d as e e e e O e to 0-MM C u M M a ueu a a me e ee a eoe u er. p U 9.s Oe De 0= as e os at s= 0 M Ge ma m 9. es e e te eun u O Go Ome to a.A e e aDe o a Q As QM e O e M M e e.s S e o De a5 Se Se m.m D aM a UM m W Go Q meM e & ad se e M te eM E SN en ee eas a ma == to b .a m .ea M asp.f r.=

p

. me E a O as as as e e a ao O me og an .a es Je O.

c > es as e a m.mme es as O eaO C > oes se enBaO se b > O me .4 UMg. s.e .= as H ee to en Q > as M me O 9. Bk to O k #* as em @ M ogee y ess - e e as a p= es a se e e .e en aaO a>eea se w he eggio

.a as e aae MO wme e. e en.a asen en an v. em M e o O.

Mu6 O kO ea es Hee as se > M =e U M .4 48 e en me as y as Mea me ru.O D eO A M en aM hs 3 g Oes as a as O me to -

yee Q u ya ao, s y te ma ed a

. seen o en a.to W.M C m Qm a wt en me me a em as e a a as aO 3 am ** me p O W Q e* am.We Em SGo $* De a St Gb O $*

M

&s se s.e s

3M g= {

g s'm a= y as o

M > O De

.e a me. so-OM o et, e em MM s= ce sus s= em se em e e e o e m

o be e= N M .e .e P* P=

es n ** O u s2.s.e W D =. 4e set #8e .edet 8"5 P=dut m m M, f" em, e fue 8".

OO Q 4 M P$ M P. N M Pe M M Po P.

I I

l 1

\

l

a D ATE 11-10-70 C0 3CEFT C0$7 ESTIR &T ES (PN4SE 53 BRIT I CAPIT4L IgTESTREET DETAIL COSTS (TNOUSANDS OP 00LLatSt STERR SSPPLT STSTER PGRCHASEt 1979.000 1200 Rut CSIGSR ET (05-16-78) Pouta plant att nioDLETOWN BIARPLE7 COWSTRUCT305 PEDRIT 1s03.000 COST 84 SIS 3 TEAR OF STE4R SUPPLT STSTER P03 CHASE CORRESCI AL OPEB1TIOu s 1987.000 4CCourt PRCTOAT SITE SITE IUnft!__ _11C095I_IIILE________._ K291t3tfI 18098 51I1311L3 ISILL 24 EttCTRIC PLABT EQUIPRENT 241. SWITCNGEAR 243.1 GES EQPT SWITCMGEAR 241.12 GEs NE3TR AL GROUuDIPG EQPT s 0. s 10.

249.13

97. 4 107.

GES C09tENTePOTENTI AL IFRB g s_ . 17s 1 6 19 5 SOSTOTAL. ................... s _0. s _Ill.. s 11.. s___.125..

24 t.2 STATION SERTICE Su tTCMGEnt 241.21 REDION TOLTAGE RETA L CL AD s 4:40. s $17. 50.

249.22 STATION ROTOR COETROL CETR s 4707.

SosT0 fat. . . . . . . . . ...........

___] t 96 t_ _1916 493, 26,_

. '11s. Suet 0TaL. . . . s ___114 6._ s.__J294 t s_ s_._6 test.

                                               . . . . . ........... s               5546,        s     titi._      s          107.       s      67)t.

242. STAT 105 SERTICE EQUIPREs? 242.s STATION SERTSSTasTDP IF.9R 242.11 ONIT 45t!LitBT T34pSFORMER s 800. s 137. 242.12 stStaTE aonattaat arRe s 14 950. ets. 42. T. 935, 242.33 FounDaftous Poa arRe$ __g Suet 0 Tat. . . . . . . . . .. . . . . . . . .. ___.125._ ..__jg).. . _2]g.. s 1645. t 345. s 126. s 2415. 242.2 09tf SSBST&TIONS 242.21 tone CEuTEn $sITCuGEne s 1404. s 257. 242.22 tone CEuTEs Taas$rDastsS s 25, 1686. 659. 252. 24 935. 242.21 RISCEttasE0a$ Pga$ _____13 SUBTOTAL. .. . t} ,_ 1._ 32._ 242.3

                                              . . .. . ........... s                2084.         s      522.      s            50.       s      2653.

40EIL11BT POWEB SOURCES Ej-- 242.31 88TTEST SYSTE15 s 97. s 26. 242.3? ERISCENCT DIESEL CEB STS s 2. 126. 242.34 170. 33. 4 207. IN T EET ER S tQ g. _} g_ 3g_ Igg _ SasTOTAL. ................... s____J21 s s SonTotaL. ................... s 4053. ig._ I,_ s 49) _ s 9 35. 4 isi. s 5970. 243. SUITCN801903 243.1 C0gTp0L Pa nELS 243.11 GEPenUI poser STS CTRL PNL s 300. s 13. s T. 360, 243.14 .GEB Pa0TECTITE SEL4T PastL 20 g 6. SOBTOTAL. . . . . . . . . ........... _ 66 6 6t. ]t? 243.2 AGI.P0uta s SIGunL DotpDS S___.581 s ___141.. s 14. s. 74)s_ 243.21 POWER DISTRIsOTION P& EELS s 8. s 3. s 0. II. 243.22 PATTER T Cu1RL* DC DIST PBL SonTotat. ................... s __, ] } g_ 26 g_ 6]s_ __ _}14 SooTOrat. . . . . . .. . .. . . . . . . . ..

  • _j3 _ s 2}a_ S 62.. 4. __125a.

244 P30TICTITE EQ9tPRENT 628. s 170. s 76 s $67.. 2 4 4. t GEspL STiftop GB0080 STS 244.11 EQUIPREET GROGNDING STSTER TARD + STp DCTUGE GROONDING s 0. s 352. s 157. 509. 244.12 SOBTOTAL. . . . g g, ___.jjja, ___.jjja. .,__g!!,, 244.2

                                               . . . . . ........... s                    0.      s      689.      s           294.       s       983.

FIRE DETEC110E*SSPORES$10s O. 86. 44 130. 244.3 LIGHTNING PROTECTIOR 6. 21. 31. 244.4 CATHODIC PROTECTION 52.

0. 305. 373. 679.

D 4tt 19-10-78 COWCEPT C0$T ESTIN &T ES IPN4SE 5) 5037 1 CAPI?4L 19923T5t37 DETAIL COSTS ITuD4SAUDS OF DOLL 4RSl STttr 59 ppt 1 SYSTER P9BCHtSE2 1939.000 1200 ert CBICSaffl05-16-185 POWER PLaut ATs MIDDLTTOE9 21ARPLt7 COEStanCTIO* P!Fult 1983.000 COST DRSIS Trat OF STRAN SOPPLY Sf5725 P1RCR4St C014tpC14L OPFT ATIOut 1987.000 4 0C044 7 FAC?O t t SIT

  • SI?t E f TEE! .1((C851_IITLE_ _ E221E5E EI Ll!CE EAItfliL3 244.5 NEAT TRACING
  • FBettt tp07 g,_ ICTIL SOBTOTAL. . . . . . . . . . . . . . . . . . . . s

____2)),_ 1375.

1) _ ____j{g,_

245 EL ECT. STROC e tIRIPG CorTWB

0. s t 035. s 2210.

245.1 mett9GR00s0 05CT 9083 245.11 Doct san:S s______g SosTOTat. .. . . . . . . . . . . . . . . . . . s 0. _ s __jegt._ s 1009 s ___tlls_ .__ Jet 9 _ 245.2 Cart Tsar t 6s s, t 1650. 245.3 Coup 0IT O. 3210. it?6. 46es. SerTOTAL. . . . . . . . . . . . . . . . . . . . ___ ___ g s. ___4ggf._ ___j21g,_ ___glg[g, 246. P0uts : COPT90L WISING s 0 S 9107. S 3345. S 12452. 246.1 C t u t 9 A TOR CISCO!?S #10184 246.11 gals Gastratos sos poCT s____1RI,_ Snat0 Tat. . . . . . . . . . . . . . . . . . . . s ___262.. s 25._ ....etti. 246.2 5787801 SthTICE Put vittuG t set, s }62. s 25. s e65. 246.25 MIGB WOLTAGE BGSoCABLE 246.2? S 0 t 563. 3 1629. 2192. Lou TOLT6GE eos Casts ___j199 _

                       $ set 0 Tat. . . . . . . . . . . . . . . . . . . .               95.                           ____692._          ___1Z12..

246.3 Cort 50L CABLE t O. s st67. s 2236 s 3903. 0 3692. 391%. 7507. 246.4 restessen? vInt g ,_ Sg87074L. .. . . . . . . . . . . . . . . . . . ___jigt,_ ____gge,_ ___2ffla. s 583 s 7210. 6973. t 14164 55BTOTAL FOR ACC0047. . . . . . . . . . . . . . S 10902. s 19914 18549 CORTINGENCT (15.01tQt-15.01L430s.15.05mTL). ___jf29 S~ s 422347 Tot 4L roe aCC0unt 24 . ___2201. ___j]23. ___t))}. --

                                                    . . . . . . . . . . .                       s__22221       _                                      M s._j

_.. 25

                                                                                   . 2._2_t_
                                                                                           .       .. ... ..       s...._

_jj2_5f._ ___ s._9

                                                                                                                                        ......fit.2i_

e

a .

 .DATE 11-10-70 C03CEFT                   C0ST       ESTIa&T ES (FR ASE 5)

UNIT 1 CAPIT4L IBtBSTREST DETAIL COSTS (TROGSBNDS OF DOLLARS) STE AR SUPPLT SYSTE1 PUSCN4SE: 1979.000 1200 Ret CBIGSE ET (05-16-78) Posta Plast at nIDDLEToes EtnaPLE7 COustauCTIos PEPRIT 1993.000 COST 2 ASIS: IRAS OF STEAR SOPPLt SYSTER FORCMASE ConnERCI A L OPER ATION: 1987.000 A CC004 T PACTORT SITE SITE E2MEMEI 18t9E H IIII!LI 19IAL If 25 3tII_

      . _ICC99ff    IlfLE-___Plast RISCELLaptC05          _ __I_PT EQU _

251. T B a s StonT A TION & LIPT EQPT 254.1 Csants s 801575 251.11 ToBBINE BGILDING CBAER S 456. 8 66. S 6. 528. 211.16 RISC.C84NES,ROIST$encrotLS 0. 48. 105, 153. 251.17 DIESEL BUILDieG CeautS J2s_ j._ g}g_ SOBTOTAL. . . . . . . . . . . ......... S ___$}08. 2% 8 127. S 112. S____346. 251.2 stIteat EQUItatut 251.21 DIESEL LOCom0Titt 8___ 50g _ $ 1._ S_ g._ ___4 t l _ SUBTOTAL. . . . . . . . . . . ......... S 480. S l. S 0. S ESI. 251.3 3040unt EQUIPnts? 251.34 00LLDOZERS $___3 f gu 8 t. a S ga_ 4tja. SosTOTat. . . . . . . . . . . ......... $ egg,_ S j_ $ g,_ $___ggj._ sooTOTat. . . . . . . . . . .......... 5 196s. $ 129. $ 112. 8 1709. 252. AIs,untraeSTEam SEttICE ST 252.1 413 SISTEMS 252.11 ContaESSED Ala SISTER $___ j!},_ $___2]ga. S }9 u __3 } g . SG BTOT AL. . . . . . . . . . .......... $ 475. 5 216. S 59. S 450. 252.2 WATER SISTESS 252.21 SEstICE snTER SISTEn S 389. 8 183. S 20. 591. 252.22 18R0 FIRE PROTECTIOR 1799. 2155. 216. 4169. 252.24 POTABLE ESTER SISTER gjs, JQa_ j -. SusTOTaL. . . . . . . . . . . ......... S __21}40.)s_ 8__7198. S__24 5. 5 ___E8.j4 j u N 252.3 AUIILinst steam SISTER 252.31 toIILItar DOILEa SYSTER S 1841. 9 185. $ 20. 1346. 252.32 AUI POILBa PEEDUATER SIS 13. 7. 1. 22. 252.33 801 POEL OIL SISTER 19. 16. 2. 30. 252.34 AUI DEAR

  • RARESP SISTE4 31. 26. 2. 60.

252.35 101 CN EN PEED SISTER 37. 7. 2. 47. 252.36 ADI.STERReCONDESSATE BETBR 24. 16. 1. 41. 252.38 tot 30118a BLouDoes 6. 4. 1. St. 252.39 ADI STEAR St$ CORPLETE I*C __ _jgZt_ JQa_ g,_ ____j j 2 u SoBTOTAL. . . . . . . . .. . ......... $ 1374. S 272. S 31. S 1677. 252.4 PLauf PUEL OIL SISTER 252.41 ROTATIuG R&Culatat 8 1. $ 1. 8 0. 2. 252.43 TABES AND PRESSOtt TESSELS 0. 31. 22. 53. 252.45 FIPluG 1. 2. O. 4. 252.46 intyEs 2. O. O. 2. 252.47 FIPIEG-MISC ITERS 0. O. O. O. 252.49 PouuDaTIosS/SIIDS Ou SOBTOTAL. . . . . . . . . . . ......... _ja_ 19

                                                                                                                      ]1,_             27u j),_

S $ $)2. a_ $ ],_ $ SUBTOTAL. . . . . . . . . . . ......... S 3795. $ 2940. S 366. S 7101. 253. ConnonICATIos5 EQnIPREu? 253.1 Locat COnnonICATIous STS 253.11 GEN.PonPOSE TELEPHOWE STS S 0. S 46. S 44. 90. 253.15 P4

  • INTERCOR STS. gg_ ,__j j j g ___JJ}g_ _ ,,j2gg_

SUBTOTAL. . . . . . . . . . . ......... S 0. S 237. S 178. S 415. i

                                                                                                                                         'e g                  },[.
                                                                                                                                                                                                                                                   ^

e I t. E '- l', e j N pa

                                                                                                                                          %                          /                            ,

176 i a a? a , 1 w.Q -

                                                                                                                      ,                                                w
  • t t i f 1 I t ' f 6 3 dde de e d e de se e e e e de edo e de 4 e o e e . as e 4

e og e 0 -% sf ma OeOI e ese ce .9esep 8 medui O em O Otr- ea## ee 4 8*e e F* O e O O em Ole in c'ee act meete pies e mee m"em tem eeN a= 4 y eseh ete'*e Q sema= N - emce-eq

                      $d eeN*e e                                   s'e==          estem
  • e 8'4t es esce N N WIS e en J9 e C6 e i t s=f**

OOO 04 i } e COO 8 e t 000 0 0  % , e e e et et et 1 4 * ' - et et et er O m em et et te , a et _e on c e pee e= e e= d .o

      =                                                               I g                       '

0 t I L t t i es wt eis mal ad9 seeiNs= Je ve e Je O me== de es e ceO Oto = = O OtM e e . de t t el se e e ae e eter e e e e e e O O 4 O O Pe Oed'n

                                                                                                                                                                                                 " Je   t e ee
                                                                                                                                                                                                                   ** 8h8 0 1

C. %s as set s= tee p e==t m et@le"s e a sel ** e e ein == - N

                                                                                                                                                                                                ^

lee O EB8 " . es e ese  ? D 9804 l m Se se co ast l .. 4 se st W as en et et et e en et et et et et et e et en et at en et et to we m e= 0 as me me De E to ' GPI am se em M e WB & M /* to y O h l l l l 0 0 $ $ t I I dde de e 4e de et e e e o es e se 4 e e d e o e e e e e de t e es e " ed Q canets'9 eg fe es a=t e 000 **ta= a= t(e e esen de@ee *= f*4 cm es me ed af etele 89 p em ** es sa se e seeO e cae 5" tee tOctrit @ M 8"' M *= 999 @t@ em to me M Ce sat *9m 8"I m B U me b eat 9 Meu so me 9 e sE M mal j C he M i se M E es a g* et et et et et et et e et et et et et et et et et et en et et et 9e C C MQW d JJo J.O . Je Jo .J.ee N e e . . J JJe e . . e e . J. Oe .J,ee

                  - ee, 5 E4 NeNees Deceo                            O e.O me este me889        estes O e e..e
                                                                                                           @ tap 8"t f** tee m.o.,e Nteus e
                                                                                                                                                        .e .J.           O e N e e o e,c e Ne e                      es                 sie              etup C ed       ==9e=t e*                            pte=           p9s*

lee Peteegen e e t 0* ==8 41 1 1 4 4 6 9 3 4 U et t em se Q eB em all I. eamm et et et et et et et et et et te et et et 3-ed. g et en et et et et et e6 A-er E M as I e o e e o e e e o e as m ee o e aMM e e e e e e e e o e em es e e was e e e e e e e e e e ed e e ed o e o e e e e o e e o e MO S e e e o e e w as a e e e o e e *- es B e e e e o e e e e e e e se O O t= . e e . e e e e e 1 af et et . e e e ed oe e e e e e o e e o e aaO as e e e e e o e o e e e o e me M me as e o e e e e o e o e De 8 F e9 o e a e. as a e e o e e e e e e o e e el 0= te U

   = se a                          e e                o                  e              e           o                       e            e o                      e                    a M           D                                                                                                                                                                                              e                  e M Ge e.                         e e                o                  e              e           e                       e            e o                      e 0= m                                                                                                                                                                                                    e                  e wt as a                         e e                e                  o              e           o                       e            o e                      e                                        o                  e to O =a M U en to                         e o                e                  e              e           o                       e            e e                      e                                        e                  e H           M                                  M                  80                                       as                                                        M ad a se                         e e De                                        es .

es e Go M a e e o se o e e en e ed a e o O == es vi se as E oem M eee O es w e Q 9e Q es e e M e a to 9- eG e e en O a Q e e o et e Wt 8m Se he e o W9 me M as me a me es se 9a G M 4 m hB es me E e eM S e a me e me e 0= eo e e me a e e e to e hb ha se t- e e en es as o e as n. a se 0 9e o es == a en - es U P e em to e ee a e H en e eM e es e as me fe C a e b e oM e 3 en e o e De $eem O M to se Eft h hp aus 3 m em 3 Q m E as te ge ne k me a O se a e el me o e se ge e a se es ea e Se e Se O at M e et M e e to e e es er ese a go Q &; a e se M en WI ed ad no 9e se ed te B e4 m M ed ese ed a e 3 Q Se me ed el e:ma ed me me e g a 4 S se to ame se e4 ,ea E t a as as he B tb es em te em O S as S M as a a a W9 se en en se e as a me M $eas es se erp e e se M P. %D as eWM a De $= M a me 09 e* *B De e Q me $= en D > O t' to O ma se O > to se D- 9e e se 9= M <= U ed Se a es k U as e > a=e D 5 OgeO ges me p O. En e s"esMb Oe eM Et s eOen * >seQpM m Vp O. E u asseedM e a toes C se OCkOtoO >ua OenoameaQ>O es u O en e6 M see e e e M se me & as up e as er e a a e to me se e as >ea O e == a s= p ad e p ob Me ad as e a aseg en $dM Q O 3 U eD ts O en to ha p D E O O M D E O ad en g. 3Q e se asp3Me e e a me a es se 3 3hme* e"e 8e seEW 9e e ed D los M M M M O M a wt O e M C e erb ea Q e es se M as as wt M to e til O ed e a M E O kO 0*M p en me e es en ae E na e as me me es e == m o e se a to til Me M-ed es at as == ese a.sse E se er M a O Q ua me a a et me se se a ma b u u w se et M e Q as 3 m Ofed O M em e Q O en M es ed AB Ce eW @ es me y es me en M si Oem

   > M as            wise               == > se          == a               u tee         u me         a o es E O se e=                        es to se em           Me            M e o a en a                        se me O es           ble e$             e M to           E De Q ** me                     B as         so h6 ee 5              em M            9= as O O             as Q ed           M en M se                 a e sose se             beQ g              en en a          M M es             en une        as Q         es ee to ed e a em                      MMQO                  m e a me es me u                         me.

e sewe N as e acene me op as o a e se h en aO m M as a en me se me C a a se e == s. se a es a se e i W Q eo le% en em M es Q on M QQ Q e4 Gd E D M al OQ m GE Q U e ab a= se W M h Gm en N Pe O M em M me e 3M i e= y as to 5 em om en ' y at a= = ce m en em ce dat e e em p mie en ene som e en go == a= % O m haece N e= en et N es dut fut ee q$ Wi W1 en en @W se se e* fut m m d'9 m m due s'9 qdiIn 4D M 9e O 9- Q ant e e e e e e e e e e e e e e e e e e e o e e o e o e e e e e e e e e b me N M W re 8"' eee eee ee ee eeeee ee 46 tr4to en e e art en ap to eft up as *

  • O u sa"t n art vs en en its e e e en in en art in vs en e se en in e e en in tas in iri vs en in ett te in en
                                                                                                                                                                                                              + e ei GB           y    e meet N              Pe N N            N Pe N             NN            Pe ce        NNNNN                  NN               es N ee M            N es es N N N N Pe                        Fe N N
                                                                                                                                                                                 ==

e I i 90 e e 4e de ie ede safet te Ged te a=eP=4 e aseen e=t= enee O C000 g H #9tn O edel0 08 f e" N O OOO M i is" I 000 1 90 OOO I e e e M 9e e e.l e O set Pm 969 9 F@ Ge en a es u i 1 ft as M0 e do el e e al 4 4 m edO OIO Ote O Nteet i me are erw= a= ort @t e W *se f8"9 O e"t**t I u ed a= 0 O M MI e D te H 4 as se es aul t0 es a M Eg ge en I. e e. en EkO es me me NE to Mee h ad a M en W em 0 0 8i se. e Je o Oa g O O.O a,s.ee .e .d a4 e e

                                                                                   . . e- . ..
                                                      .-                         .N               ..

s.e e.

                          . .e.

M o . ..

                       ** ael                                                                            g 44 .D U. M .,                                                                              .

E0 I

a. e.s e.,= . .e .
e. .

D* O O Muu M. .J o .J,o o e d

                       -. e e.a, s

so,.. .N,0 . O,s,.J., O .e

                        .e O, ..

e u . e .

       .s. N.        .                                                                                .

M ., M e.d. .E. e e . e .

              .-                             e                 e                      . e e S. M
       --                                    .                e                       e o e
           .8                                e                 e                      o es e WO                                                                                t=

O e o eE o te a se to a e e ee e to 0 0 e p- e e e em o se M es e= O es e e ee o aeo me e a o e eO e me M es M e e o e se e De 8 E M e ed a se a e a e se e M te > U e e== as a e o e e op 3 em M N en e o e em De a e e em a e o e en kOsBy e. es e e

                                                                                    >Oe a en N M                                                                D WE M a a es                              e                 e                    OOk O se 88 M                                                                    u*a an a                              e                 e                    u en e y se                                                                         am *= 0 asO. se a ma                          e                 e                         wu O       en                  M                                            M       W Ge                  to e                    e                    O es se to toen D                        e                                          es O 9GM                      MC *Q e                                              WE as W Pe                      E . est               sa                        ma M O E e W                   N es as e se                                    e t.9 ee M De W e                     De D k                 De                       te a M e= M           em se M O se O                                          O se Q es    f D*

an en M pt > > l 9* 9. as

                                                                               ,e a p.

se ad UOeae SSO $9 M S D ee D WOO se = he I seeW>M tm Q go N e e

  . o .s uNO             me       e em a y se sa a            E9 De M e          0,M  es S a ese       as se U es                              to e me ** se           Wi.m4 me 4.4      ah Oa      M P* as es             anpas se se         as 0 W W **               l> en E          F O           M
   ,   e=      M on e      3M em      Ee       Se ul ep          E     F F9          em O         y had Pa Pm            e te se O te        Q me e e e                 e
       $84          00  M EM M M               @

as a'Ee= N 0 Q Dean en 46 to Oy Q asMAN N N N

Datt 13-10-70 COECEFT C0 $T tSTIR 4? ES (PutSt 51 SWIT 1 C APIT AL IPTESTREET DETAIL COSTS (TNOSS AEDS OF DOLL ABS) STram SUPPLT SYSTER PGPCNAst 1979.000 1200 nut CBIGSAET(05 16-783 Porta PLAST AT2 MIDDLE 70BE RI A MPL E7 C9BST90CTION PERMIT 1983.000 COST P4SIss it&B OP STE44 SWPPt f STSTER P46 Cuts B CoritoCI AL OPPRRTIOE 1987.000 4 Cronw

  • PACTORT SITP SI't 9 95 tit _ _

E221tSEET 11295 5115tilL2 1911L 2 e. . _lcC ntis CosD H uf_IITLI____E man? stJ C _T SsS _ 261. S199CTOtts 269.1 NARESP WTB 11T

  • DISC 4 STS 261.11 IET4EE STSBCTdRE s 6. s 183. s 163 26s.s2 oISCuamat STaeCTest 352.

g._ Ig _ Ig._ 29 _ SeafoTaL. . . . . . . . . . . . . . . . . . .. s 6. s ist. s 373. s it s. 261.2 CIPC 4ATIS PUNP uoust 248.21 PGILDI91 Sta DCTopt s 0. S 453. s 353 807 26s.2' Pattotes SEnvIra 65,_ SSBTOTAL. . . . . . . . . . . . . . . . . . .. $2._ jf._ ____1}i _ 261.3 S 65. s_ _306. s 312. s 943. P4EEUP WTt PRETBERTRUT PEG . 261.3: settDIns STesCTset s s60.

0. s s 267. e27 26t.32 seILDIso See ICES ita_ 5ta_ 11.. ____191._

, Sost0 tat. . . . . . . . . . . . . . . . . . .. s 36. s 26 s 28 3. m 535 I 261.4 CHICBIB4TIOP B'fILDIRG 261.41 PPILDIS". STRUCTURE s 8 SesTOTat. . . . . . . . . . . . . . . . . . .. 9a_ 8- __.5,_ 19 _ s h_ s_____$"s_ ,_ s 5,_ s.____]g,i_ SsS70TAL. . . . . . . . . . . . . . .. . . .. s 107. s 999. s 832. S 4859 262. 9tCNARICAL EQUIPRENT 262.1 NEAT SEJECTION STSTre 2f 2.11 WA1tB IRTAtt EQGIPREET s 118. 1 St. 8 9. 268 2 t 2.12 CIPCuLaffra matts 5:S7:1 35ss. sie, s93. 262.33 COCalso toutes 4622. e501. sets, s e 7. 10:30 M-- 262.35 nals CT.nass9PestonDs Sys. SonTotat. . . . . . . . . . . . . . . . . . .. _ JJff._ __.655._ ___192a_ __.2111._ s_jjgjg,_ s__jgg),_ s____ggg,, s__3221!.. Su970 Tat. . . . . . . . . . . . . . .. . . .. s 13630. s 3093. s 490. s 17214. Si ~et5 tie r5n ICC5517. . . . . . . . . . . . ..  : 11H8. 1 =0U. s 11H. ~1951 f CONTI1GruCT (15.0tECP-15.0tL1809-15.081TL). .. 2g6], f Ifg, 2861 TOTat roe aCCons? 26 . s ] 5123,_ s___,_33> ___ 13 . g2. s _ j521., s__))i)).,_ 9 g .g g

D

                                                ,                    ei                     ,          i                   e            i                e.

e m e dd e ao e d

                            -           ,.e~e
                                           --- ~.--...
                                                        .o .e~ .e ---              .o    .e-~~~e
                                                                                   .-~ ---

o e e M e oce de

                                                                                                                                              .-~.4 le d
                            -          .-~.
                                       ---.             -~-o-~..
                                                              ~-- .
                                                                                                                 ~ -. ~.
                                                                                                                 .                   a...     ,--a..
                                                                                                                                               -~ .

2 --

                                                                                   .. -~~.
                                                                                                                                               ..~.

e ..

                                                                                                                                        .I e .                           .                    .I.                  I.          l cM             .           .
  • Je e . . JJo e . Je j e e e e Jo '
                                           ~~.
                                                           . ~...
                                                                                      .--~.e
                                                                                      ..---o aaa    Je           --

e

                                                                                                                                               ~ AA.:
m. - --~ -~ ..-
                                                                   -~.
                                                                                  .m. .-.         ~~. .
                                                                                                                                     ..        . ~.. .

o m M.

                            -         -         -          --        i.                                                                       --..
                                                                                                                                              ~       ~

O PH i. s h a l.

                 -m     m M e.

l g e>O M

             *Em m.

Mme

             -M.

WhM

             .m3                        e   o  Je             e o   JJ                    Jo .e      J .o - Je j                                       J:
                                      . ...-. . .~..       .e-~..e
                                                                                                                                     ..e MO                            ---                                    .e - . ~                                                    .e hmd hoe
             .um        M
                        . .a
                                           - - - -~~
                                                           .-~-
                                                                   ~ ..
                                                                                      ~
                                                                                      ~ n
                                                                                           .n
                                                                                                        ~
                                                                                                        . . -~.
                                                                                                        ~ -..
                                                                                                                --.--   -                     ~.
                                                                                                                                              -~,.

e M=v e m -

l. e n. ,.

EmM M

i. .

e M M. E NOC MUU M .e .e .J.e JJ J mm

                                                          .e       ..             .e .e .J .e.J.o               .e      . .e          J.o .e         .J.i 9

OM NW 9 . Q. .

                ~       eq M       hM                                                                                                                                g
    .    .a     d                    .          . .                  ..          .         .           .                   .           .     .       .s M      E M      e                                 e                    e e                    e           e                  e             e   o e e emm mMM                                      e                    e e                    o           e he                                                                                                                  e            e    e e e we                                       o                    e e                    e           o                  e            e    e e e
 ,          d d                                                                                                                                     m o                    e o                    e           e                  e             e MO                                                                                                                                    ed a e                                                                                                                                     k M      m e                   o e                     o          e                   e            e    em    o p

be e o e e e o e eO e MOO e to e o e e e o e e en e eMM

  • Od o e e e e e e e, EmQ e me o m

e e o e e o eO e mMwM SEM e o e e VO e e e e o e se e zum o a e o e e e e eM e MPHu O wem o e e e o e M o o e e Mkb e o e o e o e km e e."e M4E e e e e e o e eh MOdM NO* Qhk e e e e e e e M M O e h dddd M m .M F 9 de> e e MM e s om e eM ou e 004 OmMM h e sue m > MMMMM M uem em M men a OkOp e M e Mm e eO M M eM eM.e em e u m Mhd M C 3 a e EM eO d ep

                                                                                                                  .O.           >            e*O O      &          M = m e

Mad = e o -eo e M e *u M hu O 000o da mQ h W NM

  • eMOeb e e um eMM ou e e o e sem o Ohm Nkan 'm UUM MOW M De M > u hu m > meh r

\ & EMenB lm amoMHauem

                                             * *N>mM
  • o 440 ad OmM od= *MMOM MMHadddUeda
                                                                                                                            *CM
  • e d M a* dMC me IM HQEMmeddk e heeOP pseehamphm a me eUh M M .e e MM MdMUmkm *WakphkpemmekEhPe a e eMemp km MP H d am emDOUGMuenOO UM m

H M Hz OOM>uNeedMM4HemEMe=H MomuoMOOmMenesEnk embMO ode O Omd Hke amO MO UnummehmMEzManObeEmmh eMpOOmeMdm mee Hm MMMD M JDDumE BOOMmmueQ meep 500 m=b O JM HQ HU IN

                                >>hM.Mmm>>>WMMpp mmh                 mamme                  UOMad koM Me JMwMQ M.MO eMm em M      MQM SIS   e40m                ehemed                 SMMM                 Me          d     mm e         MN Deem              om    em       OM         e ommme                m    W Ee            me          ad*Mb              km MMe            up    OOOpe               OMucom
           =gM            un    heden               hohhhu pamh                 zu          Gemme              me shm>              um    WEmme                                      MOOmd                VM          EMMM
  • Ed EMEEEm m9mpM mh MUemd am em eO MMmen MCMMMM Qemon om
n. WWm SW Mkh9Q empkHG QEhMb hM 40poe hMMah MD he O M um
e. mm
  • E4 > fl op e RM =~- w~~.. p-.

O DM **** No~~~N **** -, poM. - Mbok OMe e e e e e o e o e e e e o e e o e e e e e e o p=NM wa ===== ====== ~~~~~ NN ----- .e .e en*O U ts* ***** ****** ***** ** ***** ** aB W m.P P. FPS @FFFFF .SFPP .F P.P.P PP

o 180

                                          . e e         Je                   e   J      e  , . . J:
                                                                    .e         -           ,e
                                               ~ ~ . .

ae, n. ~~ . ., Q.

                                        . ~ .
                                        - - ~ . ,. .
e. n. .~e,
                                                                                             .n
                                                                                             ~            .
                           .<           -                 .~                                 ~         a...

I.1 . e . .

          .e --

4. M M., .e .e .e .J..e.e .e .e .e .e .. J. se 0 m me.9 5 O Ad . m GA SAI . D N 64 . En es em aal

               == m 5 0e Q M mi                               es                        et      th       .I es ans me to a to Mee en te e M en M
                  &                                                              .                       le
                                       .e...

B

          >rQ                                * * *
e. Q 4e E.
                                                         . .e .e .a .e .4.e                .e .d . e.

ee. .

          .u M.-          .M
                       ..e.

mW M e. 8 m.Mto 88 a .D . MMS

         ** C O MQu t              e e e          J                   e
                       .t.,

a mg

                                       ~~~            -            .e .o~      J.          .e        ..J.      .I
  • Pee W .te e M . ele 6 Q ad . m . en -e en e sse
  • a.rt-ete.t eg De eg amem M e e-ge p es piggeti g u Of p M M NI.

Pm am a le m to ad II en .M a et 44 et et en til E M se o e o e e as e en M M es e e e o e en an e as e e o e e ase

         .ed 4                                                e                         e       o es e MC                                                                                          t*

A e o e5 o M m e to a 8= 0 c e e e .s e e se e o e w's e at M ta ** Oe 5md se a o e e e9 e e e *O e me M es as e to8mM e e e e as e ed M se B e e eW e MPkU . w as ab o e e e es e em M Ge Se e e e se to a e e M as E e e e to b Q ad es e o ee Q Go to e e a ad e M M 90 M 98 9* W M e 95 eu 88 eft ea en as

  • O >

O .ed

  • teasweto ese == es a ce se uea se a im a e5 m e u em o D 9e Q be em e as se a O es en .a get me a Es amt e *Qy
        $        an          lyn  M        as        M         go             se          a en          lt. GA      M 9e       <G    eu         le      M e         Q to as De toaim e               ee po u        R. O M
                                                     %#        a      M                   hu su e M
    & 65 Pm                  im e.

D

                                                     . e>         O       t. e          ae Q W G > ad M               Q t) Q og           ud as Q W t E                60   m               a e se a                a       at      me O to N 9e         as      401 3    to      WR .I as ha 9e Q            ami me OR De        De a M ** to          mete     M       en en G M Q W               es G e t'l          O *= ed Q as a p.            M                em O af        f*           O as e* t*          0* Gaas en e am.nM                metGB    GE          & Q Q & 95              $Q         m        a a to Desu     U        9mem%DU                    toad I W            9OO De == en             toe  me          se     M M ==           se         M        M Q 9e O         to O                                              to ad ha            Dest.e mia      t.o 4 to Mas M to O er a         6. M as GmasOas   M Q at E AB            DiQ      O ** M P 88 o O = P to M                                                               ,

t Qt e a U m as AB Q m a eo OM as me uses to as as e as e en me so wee te a adas eh.aas*eese te m .e a se to Pm e e agou Q as es en p te Q as se > es im M M 60 0 Q to a M S Q GS

   .t Q Q es     M e"        Am se e        aM             ls                                                                                          ,

8* m ao S

  . ep**

te se o 0

            .a        & sad O GJt O me o        e
  • ePee eM e. .
  • M .ut e e e * *e ge em ce M ya e= es em se e see se, ese ese m sue au se
  • O u pH'e m m m es M es a n n ce a GW y ait use eeeeee e e gt gn p i

1 1

DATE 11-10-78 C0BCEFT C0ST ESTIA 47ES (PNASE St Gulf 1 L*4PITAL IuttSTRENT DETAIL COSTS (TROSS ABDS OF DOLL ARS) STRAN $8PPLY SISTE1 PG8CN45t 1979.000 1209 au t CBIGSM RT t35-16-788 Posta PLauf ATs MIDDLETous ETASPLET ConSTPUCTION Pt3RIT COST P4SIst trat OF $T249 SOPPLT SfSTER FORCE &SR 1983.000 CORRtBCIAL OrtB4 TION: 1987.000 4 CCOUN T FACTORT SITE SITE E93151 _liS9211_IIT L E _. 93 . FItLD OFFICE ENG9GEstRf!CE IQ21tEIRI Lif98 51I111111 19IAL 911. FIILD OFFICE EIPEBSES 938.9 OFFICE F005tTSBE 5 EQUIP. O. O. 66. 86 9 31.2 T288P3052 $ CORSGOICATIOuS 9 11.3 0FFICE SUPPLIES

0. O. 259 259 931.4 0. O. 428. 828.

FIRST SID & REDICAL RIP. ga_ SSBTOTAL. .. . . . . . . . . . . . . . . . .. O_g __.j 2 _ gig _ 9 32. FIELD JOB SutttTISION

                                                                                         $           0.      S           0. 1      1235.         S     1235 912.9            SaLARIts 9 32.3           DIRECT PAT ROLL COST 8638.                   O.                O.             B6 3 8 255                                               2151 932.4           CTrant4D LO4 DING                                                                                        O.               O.              2157.

155 1619. 9 32.5 set 0CATIDs stPrust-ALLeuCE O. O. 1619 624 O. O. 624 932.6 Ftt roe COsSTsoCT10s SavCS SoaTOTat. .. . . . . . . . . . . . .. . . .. - J252 Da_ 9._ . _1212a. 933. S 142 3. S 0 S 0. 5 14273. FIELD Q&/QC 933.1 $4taatts 933.2 169. O. O. 169. DIstCT PatsOLL COST 255 43. O. 933.3 Ofttut4D LO40 tug 155 31 O. 43. 9 31.4 ttPruSts 55 O. O. 31 jla_ gg_ gi_ jla_ SaBTOTAL. .. . . . . . . . . . . . . . . . .. S 255. 5 934 Plant Staster 8 TEST 0. 5 0. $ 255. 9 34.1 54Laatt$ 288 O. O. 241. 934.2 DistCT PATROLL COST 255 70. O. O. 30. g 9 34.3 of tautt0 Loa ctsG 555 9 34.4 52. O. O. 52. cartsSES - 1st OF SaLastes _____jg g,_ SusTOTAL. .. . . . . . . . . . . . . . . . .. S 448 _ 0_ Jg _ S 0. S 0. S 441 SUBTOTAL FOR ACCOGBT. . . . . . . . . . .. .. 5 19969 S 0. S 1235. S 1620E CONTIAGENCT ( 3 5. 05 tQ P- 15. 0 SL A BOR-15. 0 SeTL) . .. TOT 4L ron acC0os? 93 . _ 2243 .9. 115. ___24)3s

                                                            . . . . . . . . . ..        $__j2231 _          S          _ g ,_
                                                                                          .... ..              .........      S. _1. 3 2.).,._    $.._ .1.36.].)

saft so-iO-7s eoaetPT eoST ESTIaaTES (PunSt 5: [ 94t? 9 CAPITAL IEftsfatu? DETAIL COSTS (TN04StBDS OF DOLL 8959 STEAR SUPPLT STSTER P'tecutSE: 1979.000 1 1200 PWS CPICSNET(05 16 783 toute PLauf ATI RIDDLt70sp tsaaPLt? CONSteeCTIOp PEPRITs 1903.000 COST P ASIS: 1949 0F STram SuPPLT SISTts PetCMASE COMMtpCIAL Ort 3&TI0tt 1997.000 4 r0098 9 PACTORT SITE SI't t!BEf3 .4CCC982_IIME IQ91t!!EI LitSt R&IERIALI 19fAL 94 . Op e r p

  • S CO ST S 141. PuCIstERIgG & QA S 5565. S 0. t 6. 5565.

947. T AIES 8 1955B AECE $ 19086. S 0. 8 0. 18086. , 941. $Past PatTS S 6957. $ 0. S 0. 6957. 4 944. STaPP TRAIBIgG $ 2702. S 0. 5 0. 2702. 945. Caste *S csa s site. s c. s 0. e34P. SesTOTaL POR SCC 085T. . . ........... S #1738. $ 0 S 0. # ~ 41}}$! C0etInstsCT (15.0stoe.15.0stason.35. naTLt. . . _.6261. *s 9a 12616 TOTit Poe aCCous? 94 s..... 52129 . 8

                                                                                                       ......9....

S ..

                                                                                                                        ...... .. 9... s_.32.2
                                                                                                                                            ... .. . 2 h..

emmD

            .            g                                                      ,                                                                      ,   ,

e 183 i 4 umbaked uOne -mmdd=Onm Oh SOddamna O O O O O O e e o e O O O O o e O O O O O O O O O O O M N w O e e P e e e M N *

    ,a                                       e       e          e           m OOO                    e       e          e           o        e         e               e      e       e         o             e       e       o         e 900                        0 0        0 B                9 0      0 0        0 I            I t    I I     O9        08             0 0    0 t     G I Ooo ee e9-
  • O e e e e o e s e F =
                      @mk         me                                                                                                                                                e  e Mee         eo                                                                                                                                                e  O OOO         9e                                                                                                                                                e  e me-         e e                                                                                                                                               e e
  • e w e e

u o e e M e o e e e E e e u e e e i o e e e o

                      &      =         e e

um o e FbQ e e wwm e e HEk e e MSm e pum o seeseoet eeeeeeeeeesceseeeeeeeeeeeeees e Whm o seseeeeeeeeeeee Geeeee 9 9 9 9 00 eeeeeeeeet a h e eeet eeeeeeeeeeseeece et eeeeeeeeeeeeee e WBQ de eeeeO @ eeceete6 6 0 0 0 eeeeeeeeO seeeeeeseeeeeeee e e e e e e e e e e. d. JO s e eeseeeeeeseeeseeeee d hmd @e oet eeeeeeeeeeeeG G G o eeet eeeeeee@ eeG G e e hem eo eeeseeeeseeeeteese eeeeeeeeeeeeeeee e e euw ee seeeeeeeseeoeseeeeeseeseeeeeeeeeee e e MOQ W e seeeeet eeeeeeG G G ee eeet eeeeeeeeet ee e em o seG eeeeesee eG eeseseee*G oG G 6 4 eG eee e t>m o eeeeeeeeeeeeeeee eeeeeeeeeeeeeeee e mum o eeeeeeseeeseeese seeeseseeeeeeeee o 99 E e eeeeeeeet e eeeeee eeeeeeeeeeeeeeee e NOC e eeeeeseeoseeese eseeseeeeeeseeeeeeeeeeeeeeeee eeeeseeeeeeeeees o o muu e e seseeeeeeeseseeeeeeeeeeeeooe e e eeeeee eeeeee et eeeeeeeeeee eee e e 6 eeeeeeeee eeeeeeO O eeeeeeee o e eeee et eeee seeemeeeeeeeeeee e e t o 4 6eeeeGeeeeeeeeeeeeeee e o ee6 44 ee eG eG 4eeeeeeeO G ee e e eeeee eeeeeeeeeeeeeeee e o eeee seeeseeeeeeeseee o e SeGeeeeeeeeeeeeeee e e seseeeeeeeeeeeeeee e P e seeeG G eeee@ @ eeee e m e Oeseeeeeeeeeeee e

                   @-     d             e                                                                                             seeeeOeoeeO O ee e h       De                                                                                                     seee G eeeee4 eee                             O m      E                                                                                                                             eeeeeeeeee e                      e M      =         ee ee      e                                                                                                           eeeeeeeeGe e                    e e

emm ea Seeeeeeet e emu O e G eG eeeee e O t ocoee a w he

  • e eG ees e we e d e eseee e
                      &                 e                                                                                                                             eeGe e 90                   e                                                                                                                             eeO O e e                e                                                                                                                                eee e a m                  o                                                                                                                                see e km               o                                                                                                                                     se e MOO                  e                                                                                                                                     se e H             e                                                                                                                                     ee e mMn                  e                                                                                                                                     ee e Od               e                                                                                                                                     e6 e eBe                  o                                                                                                                                     t o e me               e                                                                                                                                     se e MMWm                 o                                                                                                                                     te e mEM              e                                                                                                                                        e e HQ        =          e                                                                                                                                        e e mas              e                                                                                                                                        e e WMNu                 e                                                                                                                                        e e
                       ===              e                                                                                                                                        e e o         e me                                                                                                                                                se     e Mkh           ee                                                                                                                                          e e      e en         e e                                                                                                                                            e e    -

men eo e e e kode ee e e e e e o Wh> W e e e e e e de> e e e Owun e o e

                       ==               ,                                                                                                                                        e  e upon                 e                                                                                                                                        e  e uhd              e                                                                                                                                        e  e a e              e                                                                                                                                        o  e h         e                                                                                                                                        e  e
                   >>=e                 e                                                                                                                                        e e men              o                                                                                                                                        e  e em>                  e                                                                                                                                        o  e aee              e                                                                                                                                        e  e meem                 e                                                                                                                                        e o

e e nom e umt > e o e eem o e e see o e e i ==h e e O PO e e

                                                                                                                                                                                 .e i

du De i Omes *

  • e o e o e e e o e e e e o.
                       >"a         e              ea         ee         t t     ee       ee e e                    ee     t o       ea      ee             ee     ee      ee            e wom         m e

eh== c Mme - e e o o O e o e o O O o e O = suu= e o o o o o e o o e o o o e o m n e o e e n e e e M n e e um e p = w e om e ea em a O m>Op kwNm umhmead OOne "swddMOsm Oh aOddeem. me=o em u

                                .                     ,,,,.       -y,-            --        ,.       _ _ _ _ .                   -.-m       . - - . ---                    --

e

                                                                                                                                                                                                                   $N e

OOO eoO .e. OOO e6

  • e e e to em m n a em e e e et e e a= a e o W
                                                               *e                                                  M te                                                    es M                                                      e as                                                     es a                                                     se U                                                      "a
  • W e

se so De se e af et E>Q me de as me as ee .s. j De E Se as af et M e se kb am se es as a se M em se 9 en ad en O =a he e o ed e o ed O en E G es me G3 as en > as Ea to a U me MS Q MeQ d se as QW M W to N b; h me M a U == O ( es a W e m == ee t ' >oo se e j Muu o W at me ok m e

                                                                                                                                                        *ee       se e e e e e onmewom   e e e e e es es se em se es m m e m e c gr.N em e y e e e i

we - e e e em e e ce e e e en e ce o i \ me Q *e . e. .oeeeope.neeec. . e e e w en e . m-e em e e e o e e o e e o eeeoe*eNeee e .e ee,e. e.e~ e e .e -e-we e r e n n me.ecoweespee..cm nmeNnne=e*Nero

a. o, o o o co ce n e m e e e e e e e o o pe re m *e a o ~~eeeeeeeeeeesmee 1

l to en Go

                                                                                                                                                                                                             -- m m m m m        e em ememeeee oeeecee.oeeeee oemeeme       eeeerm ee  o reeacee e e e e o e o e e o
                                                                                                                                                                                                                                                                                           ~. m a~eo=m .s e =e e e e e 33         as a Me            e                                                                                                                   em se es es ce m e e ett ett e en e e e O O e e se en om em ce                  \

to ht em se se om er se e e se 1 M a O ) ase en en an ae mE

                                                                                                                      >                                                                                                                                                                                                       i tfl                                                ed                               e5 W       9e 6                         U         m      M as a                                                                               u se       o
                          #9                                                e                                en         Q se == me                                                                           OM a M es                                                                       as e et E6 e                                                                               as Q w as                                                                         en        y
                                                 .a                                                         a m3                                                    es    D m8 et C                                                                                O es a                                                     >    W to es e                                                                                 em 0 to e                                                   af       to 9e O O                                                                               to to                            Ga   en M es et as                                                                             a se o ma                                                    9    O Ema                                                                                 ye se a                                                     E        es e M ee as e m et mM         es    e e ce e e e e ce e e e o es e e O e m e e o e ce e em o eoeeeeeeeoeeeeeoeeoeeoeeeeoeoeeoeeeOeeeOOOOOOOeOOO 3    QM         se                                                                                                        e to O a se a y es           w          as    ee=eeem sh             e e e e e o= ecee ee ne                          e er=   eeoo   ee n e e or. ee eo om m rt e. e. e eo.

eeee. ece en -eee e e ee eoeee eemet e eeeeoee Oeeeoe es re en e oe eOmec ce e e e e e o ee eee e o e es e O G. eet a em em et e.n e 66 et e S e e O O = ** a= = = en es ce N ee ce ce m m m m m son m e e e e y y e e e c erg c e e e e e pm M > es u en om eeem

                                             == as a                                                        a se en           enene e em                             ce         eme-   em moeem e eoemese e om       e en e ,en s eesee e e cse e   e eee e eme eec e e eee e e eee eese e cson e eeeneeee eeene s= e cee ee eeeiee e e meee   eeeeeeee M                                                                         W            Me                                                                                  e == se se en em as em en en en om se en en en se M k en                                                          as                                                                                                                                     seense seen en en e en om emem o em en se en as e e em se a                                                            yM M se W                                                               k t= 0 ed te                                                                              ha et O em De                                                           aO M                                                                          M             >Q oa e on O ce es M                                                                                3e es a                                                             to em Ce O>                      asOse.se                                               4          ea e                                                  ob 9
                 > 0* en a e e et G> Se em C e E 80 f* e se W1 en es U S0 9 >

en art wt aeO ese == to C' >Q e8 8e O se W es se em as . me 0 es e se se se rhas e 9 W D e* O et am et so O e6M e 3 as . en e* e O 80> O >

 *         > == ee wt as n ** g aE                                                                         Q

l I l l 185 Appendix E INSTRUCTIONS FOR LOADING THE PROGRAMS INTO THE COMPUTER f i I l i 4 I l l t i i

187 LOADING THE PROGRAMS INTO THE COMPUTER The CONCEPT package is generally transmitted to a user on a nine-track magnetic tape in extended binary coded decimal interchange code (EBCDIC). The tape contains the following files: File 1 The CONCEPT-5 source program File 2 The CONTAC-5 source program File 3 The CONLAM-5 source program File 4 The sample cases for testing CONCEPT-5 File 5 The cost models to be processed by CONTAC-5 File 6 The equipment, labor, and materials cost history data used by CONLAM-5 , The source programs are compiled at ORNL using an IBM Level H FORTRAN compiler and are executed on an IBM 360/95 machine with RASP-MVT. The core requirements for execution of any of the three programs on the IBM 360 is less than 270K (bytes). Example IBM job control language (JCL) instructions are given in Table E.1 to assist users in preparing JCL cards. Those using other than IBM equipment may find some help in converting IBM JCL to other systems by consulting the IBM System /360 Job Control Language Reference.I9 As shown in Fig.1.1, the CONTAC and CONLAM programs must be compiled and executed prior to execution of the CONCEPT program. Steps 1 through 4 do this and establish two files named COSTMOD.LIBR and CONLAM.LIBR on a permanent system direct access device identified as SYSTM1. A temporary direct access device is also needed and is identified in this JCL as SYSDA. Steps 2 and 3 employ the IBM OS utility program IEBGENER. It is described in the IBM OS Utility Reference.20 In Step 4, FT08F001 defines a formatted master file which should be saved on some device (not necessarily direct access) for periodic updating of the equipment, labor, and materials file. Step 5 compiles and link edits the CONCEPT-5 program to create a stored load module for use in Step 7. Step 6 again uses the IBM OS utility program IEBCENER to read input data for the CONCEPT program.

l

                                                                                                                 . l l

188 Table E.1. Example IBM Job control language instructions

           //ST!P1 EI!C FCETHCLG. REGION =270K
            // FORT.STSIN DD DSN=CONTAC5,0 NIT =TA P!9,70L =S!R= E12 3s,                                               l
            // LA S EL= ( 2, NL) , DISP = (OLD ,P A S F' , DC B= (R ECF 5=F 5, LRICL= 90,8LKSIZ E= 3 200 )             l
           //GO.FT06F001 DD SYSOUT=A l
           //??08FC01 DD D5 p=C05T!0DS, U NIT =T AP E9,70L =S!R=I123 4,
           // LA B EL= (5, NL) , DIS P= (OLD, P A35) , DC9= (R ECF5=FS, LR ECL=80,8 LK 5IZE=3 200)
           //FT00 F001 DD DUMMY
           // FT09 7001 D D D SN =C05T50D.LI53,70L= 55 3= SYST 51,5 NIT =3 330,
            // DI S P= ( BEW ,C ATLG) ,$ P ACEm (CTL, (5,1) , RLSE) ,
           // DC 8= (R EC F P=T B 5, LB ECL= E , B LK5 IZ E= 130 30)
           //FT05F001 DD
  • 0 '
           /=
           //STZP2 EIEC PGR=IE5GENER
           //ST5 PRINT DD SY500T= A
           //5YSIN DD DUH5T
           //STSUT2 DD C5 p= SETERP1, UNIT =SYS D A, DIS P = (N ET, P A SS) ,
          // DC 5= (R ECFM* F S , LR ECL= 80,8 LK5 IZ E = 6e 0 C) , 5 P ACE = ( T3 K, ( 1,1) , P LSE )
          //SYSUT1 DD
  • 30 30 23 1 0 0 0 0 0
          /*
          //37!P3 EIEC PGN=I!5GENER
          //SYSPRINT DD ST500T= A
          //5YSIN DD D055Y
          //5 T5U T2 DD C5 p= 6sTERP2,U NIT =575 D A. DISP = (N EW. P A SS) ,
          // D: 8 = (R EC FM= FB ,LR ECL= 80, B LK5IZ E= 6e 0 0) , S P ACg= ( CTL, (2,1) , F LSE)
          //SYSUT1 DO CSN= ELED ATA ,0 NIT =TA PE9,TOL= 5ER=I12 3 a ,L AB EL= (6, NL) ,
          // DI SP= (CL C.P AS S) , CC8= (R ECF5=F8, LR ECL=8 0,8LK5ITE=3 20 0 )
          // STEPS ZIEC FCETRCLG,RIGION=270K
          // FORT.SYSIN DD D 5N=CO WLA n 5,0 NIT =T A PE 9, V OL =55 R=112 38, L A B EL = (3. N L) ,
          // DI SP= (0L D,P A 5 51,0C5= (R EC F5= F9, LR EC L=80,8 LKSIZE=3 200)
          //G0.FT06F001 CD SY300T=A
          //?T05 F001 DD D5 N=6ST!MP1, DIS P= (OLD, DEL ET E)
          //                 DD DS B=65 TEMP 2, DIS P= (OLD, D EL ET A
         //FT09 F001 D D 05N=CONLA B. LI BR,TOL= 5E9=SYST51, UN IT=33 30,
      ,// DISP = (NEW CATLG) , $ PACE = (;3 K, (9,1) , RLsg) ,
         // DC S= ( R EC F5= T 85, LB ECL=u S6 0,5 LK 5I ZE = 1303 0)
         //7T09F001 DD DSB=NEveASTE,YCL=1EP= ----- ,0 NIT                        = -----                   *
         // DISP = (N E N, KEEP) ,SP ACE = ----- 278,0 00 SYTES,
         // DC 8= ( R EC FM = FB , LR ECL= 80,8 LK5I2E = 64 00)
         //FT0aF001 DD DUR5T
         // STEP S EXEC FORTMcL, REGION = 270K
         // FORT.STSIN DD D5N= CONCEPT 5,3 NIT =T A PE9,70L=SER= I123s , L A B EL= (1, NL) ,
         // DI S P= (O L C,P A S S) , CCB = (R ECFM=F8, LREC L=8 0. 8 LK5I:Z=3 20 0 )
        //L KED. STSLSCD DD DS p= CONCTFT5. LO A D (CO NCEPTS) , VOL= 53R= STSta t,
        // UNIT = 3 3 3 0, DIS P= (NEW , CAT LG) , SP AC E* (TRK, ( 13,1,11,R L SE) ,
        // DC 5= (R EC F5=0,8LKSIZE= 130 30)
        //5?tP 6 EI!C PGM=IZ8GENER
        //SYSP RINT DD SYSCUT= A
         //5YSIN DD DUREY
        //S YSUT2 D D DS p= SCTEM P,U NIT =5fS D A, DIS P= (N EW, P A S S) ,
        // SP ACEa (8 00, (8.1) ,P LS E) , DC8= (RECF5= FB, LR ECL= 80, BLKSIZ E= 8 00)
        //5T5071 DD 055= EIAMPLE,0 NIT =TA ?!9,70L=5ER=I123 4 LABEL = (a, NL) ,
        // DI S P= (O L C, K E EP) , CCB = (R EC F5=FB , LR EC L=8 0 ,5 LK5 I:!=3 20 0 )
        //ST!P7 EXEC IGR=CONCIFT5, REGION = 270K, P AR5='CK=-5'
        // STEP LIB DD DS N= CONCEPTS. LO AD, DISP =S ER
        // FT06 F001 DD SY30GT=A
        // FT0e F001 D D UNIT =SYSD A,5P A CE= (CTL, (1,1) , RLSE) ,
        //         DC 9= ( R ECFR= F, LR ECL=8 0,5 LK SI22 = 80 ) , DIS P= (5!W D ELET E)
        //?T02 F001 DD UNIT =5fSD A,5 P ACI= (CTL, (1,1) , RLSE) ,
        // DC B= (R ECF N= F, LR ECL= 80,8L KSIZ 2= 80) , DISP = (N E N . D ELET!)                                ,
       //FT03 F001 DD 05IT= (STSDA ,3!P=FT0 2F001) ,$P ACZ= ( CTL, (1,1) ,R LSE) ,
        // D 8= (R ECF5=F, LRECL=80,8LKSIZE=80)
       //?T117001 DC UNIT =(5YSD A,S EP= (FT02F001, FT03F001)),
       // SP ACZ= (CTL, (1,1) , R LS E) , CCB= (R EC F5 =f s, LR ECL = 109 00, BLK 5I:E=7 29a)                    ,
       //FT08F001 D D DSN=CONLA 5. LIB R . DIS P= SN R                                                              *
       //FT09 F001 DD DSN= COST 500.LIBR,JISP=SNP
       //FT05 F001 DD DS N= *. 5;Ef 6. S Y30T 2, DI5P= (0L D, DELETE)
       //
                                                                                        ^

__ _ _ --. -- . . I

189 Input to the CONCEPT program must be read in Step 6, and the state-ment PARM='CK=-5' must be included in Step 7 when using HASP spooling s systems. This is due to a HASP limitation on rewinding the input file during execution of the CONCEPT program. Users with ASP systems should not have this problem and may omit Step 6 and replace the FT05F001 card in Step 7 with

                            //PTM F001 DD DS N=EI AMPLE,0 NIT =T APE 9,70L=SER=I123u,L ABEL= (3,NL) ,
                             //    DI SP= (OL D, KEEP) , DCB= (RECFM= FB, LRECL=8 0, BLK SIZE =3 20 0)

PARM='CK=-5' uay also be omitted for those with ASP control. As given in Table E.1, the example inpit data will be used. Sub-sequent runs of CONCEPT may now be made by using only the cards in Steps 6 and 7. The SYSUTl card in Step 6 should be changed to

                                  //SYSUT1 DD
  • followed by the input data and a /* card. Again this applies for machines with HASP spooling. Those having ASP control should replace the FTOSF001 card in Step 7 with
                                  //FT05F001 DD
  • followed by the input data and a /* card.

As an additional note, the CONCEPT MAIN program and CONTAC auxiliary program utilize a local subroutine called IDAY for obtaining the date-of-run in A8 format. Your current date subroutine should be substituted where a call to IDAY occurs. CALL IDAY (DATE) is used in CONCEPT-5 at MAIN 830 and in CONTAC at CONT 1210. The variable DATE should be set to the current date-of-run in A8 format. Failure to modify this will result in an unresolved external reference. l l l

                                      -    -        - -                   r - - -          - - - - - -   w --s - - - - - - - - -

191

                   .                 REFERENCES
 ,     1. U.S. Atomic Energy Commission, CONCIPT, A Computer Code for Con-ceptual Cos: Estimtes of Steam-Electric Pouer Plants - Status Report, WASH-11SO, April 1971.
2. R. C. DeLozier, L. D. Reynolds, and H. I. Bowers, CONCEPT - Com-puterized Conceptual Cost Estimates for Steam-Electric Pouer Plants -

Phase I User's Manual, ORNL/TM-3276, October 1971.

3. H. 1. Bauers et al., CONCEPT - Computerized Conceptual Cos: Estimates For Steam-Electric Power Plants - Phase II User's Hanual, ORNL-4809, April 1973.
4. U.S. Energy Research and Development Administration, CONCEPT - A Computer Code for Conceptual Cost Estimates of Steam-Electric Power Plants - ?hase IV User's ohnual, ERDA-108, June 1975.
5. C. R. Hudson, User's Instruction for Preliminary Version of the CONCEPI-5 Computer Code, ORNL/n!-6230, February 1978.
6. U.S. Nuclear Regulatory Commission, Comercial Electric Pouer Cos Studies - Capital Cos : Pressurized Water Reactor Plant, NUREG-0241, June 1977.
7. U.S. Nuclear Regulatory Commission, Comercial Electric Power Cos:

Studies - Capital Cost: Boiling Water Reactor Plant, NUREG-0242, June 1977.

8. U.S. Nuclear Regulatory Commission, Comercial Electric Pouer Cost Studies - Capital Cost: High and Lou Sulfur Coat Plants - 1200 ?Ne, NUREG-0243, June 1977.
9. U.S. Nuclear Regulatory Commission, Comercial Electric Power Cost Studies - Capital Cost: Lou and High Sulfur Coal Plants - 800 bSe, NUREG-0244, June 1977.
10. U.S. Nuclear Regulatory Commission, Co=crefal E!actric Power Cos Studies - Capital Cost Addendum: &?alti-Unit Coal and Nuclear Stations, NUREG-0245, September 1978.

I 192

11. U.S. Nuclear Regulae.ory Commission Comercial Electric Power Cos: -

Studies - Cooling Systems Addend:en: Capital and Total Generating Cost Studies, NUREG-0247, September 1978. .

12. U.S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Revieu, published. monthly.
13. U.S. Department of Labor, Bureau of Labor Statistics, E :ployment and Ecrnings, published monthly.
14. U.S. Department of Labor, Bureau of Labor Statistics, Producer Prices and Price Indices, Washington, D.C. (nonthly publication).
15. U.S. Department of Labor Bureau of Labor Statistics, #ctional Survey of Professional, Ad=instrative, Technical, and Clerical Pay, Washington, D.C. (annual publication).
16. Engi.neering Faus-Record, McGraw-Hill, New York, published weekly.
17. NUS Corporation, Guide for Econorric Evaluation of Nuclear Reactor Plant Designs, USAEC Report NUS-531, January 1969.

, 18. IBM Corporation, PLOT: A Subroutine for Plotting on a Printer, Contributed Program Library, 360D-08.6.003 (October 1967).

19. IBM System /360 Operating System: Job Control Language Reference, Order No. GC28-7604-3.
20. IBM System /360 Operating System: Utilities, Order No. GC28-6586-15.

1

193 .

  • ORNL-5470 Dist. Category UC-13 and UC-80 P

Internal Distribution

1. T. D. Anderson 215. H. Postma
2. R. J. Barnard 216. T. H. Row
3. S. Baron 217. R. D. Sharp 4-103. H. I. Bowers 218. Myrtleen Sheldon 104. H. G. Delene 219. R. L. Simard 105. R. C. DeLozier 220. G. R. Smolen 106. B. H. Fitzgerald 221. I. Spiewak 107. L. C. Fuller 222. R. L. Spore 108. J. F. Harvey 223. T. K. Stovall 109. N. E. Hinkle 224. H. E. Trammell 110-209. C. R. Hudson II 225. D. B. Trauger 210. M. A. Kuliasha 226-227. Central Research Library 211. M. Levenson 228. Document Reference Section 212. B. Maskewicz 229-230. Laboratory Records Department 213. L. G. Medley 231. Laboratory Records, ORNL RC 214. M. L. Myers 232. ORNL Patent Office External Distribution 233. L. L. Bennett, International Atomic Energy Agency, Kartner Ring II, P. O. Box 590, A-1011 Vienna, Austria.

234. S. T. Brewer, Energy Technology-Nuclear, Department of Energy, , Washington, D.C. 20545. 235. John Crowley, United Engineers and Constructors, Inc. , 30 South 17th Street, P. O. Box 8223, Philadelphia, PA 19101. 236. Director, Nuclear Research and Development Division, DOE-ORO 237. Director, Energy Technology-Nuclear, Department of Energy, Washington, D.C. 20545 238. Assistant Manager for Energy Research and Development, DOE-ORO 239. John Emami, Federal Energy Regulatory commission, Room 5305, 825 N. Capitol St. NE, Washington, D.C. 20426. 240. Paul Fine, Technical Assistant, Environmental Projects Division, Nuclear Regulatory Commission, Washington, D.C. 20555. 241. R. Tabor Jenkins, Tennessee Valley Authority, 133 CBB-C, Chattanooga, TN 37401. 242 M. L. Karlowicz, Financial Analysis Staff, Nuclear Regulatory Commission, Washington, D.C. 20555. 243-246. M. W. Koelinger, Energy Technology-Nuclear, Department of Energy, l Washington, D.C. 20545. 247. D. E. Mathes, Energy Technology-Nuclear, Department of Energy, Washington, D.C. 20545. l

l l l 194 1 248. A. H. Maltz, Financial Analysis Staff, Room 340, Nuclear Regulatory ' Commission, Washington, D.C. 20555. 249. Darrel Nash, Cost Benefit Analysis Branch, Nuclear Regulatory Commission, Washington, D.C. 20555, 250. Doan Phung, Institute for Energy Analysis, Oak Ridge Associated ' Universities, Oak Ridge, TN 37830. 251-255. J. O. Roberts, Cost Benefit Analysis Branch, Nuclear Regulatory Commission, Washington, D.C. 20555. 256. Fred C. Sherrod, Tennessee Valley Authority, OEDC-40 E SB 60 C-K, Knoxville, TN 37902. 257. G. Woite, International Atomic Energy Agency, Kartner Ring II, P. O. Box 590 A-10ll, Vienna, Austria. ' 258. E. J. Zeigler, United Engineers and Constructors, 30 South 17th Street, P." 0. Box 8223, Philadelphia, PA 19101. 259-463. For distribution as shown in TID-4500 under category UC-13 (General, Miscellaneous, and Progress Reports) and category UC-80 (General Reactor Technology). 0

 .ua noe.eseit mwns c omer::wmtseem
                  .-    __-                             -   _-.       .-    .-. .    -- -  . _ _ _ -}}