ML16167A463

From kanterella
Revision as of 22:54, 6 May 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search

UFSAR, Rev 22, Chap 06 Eng Safety Features - Redacted
ML16167A463
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 09/06/2016
From: Bhalchandra Vaidya
Plant Licensing Branch III
To: Fewell J B
Exelon Generation Co
Vaidya B K
References
TAC MF7633, TAC MF7634
Download: ML16167A463 (559)


Text

{{#Wiki_filter:LaSalle UNITS 1 AND 2 UFSAR, REVISION 22 AND FIRE PROTECTION REPORT (FPR), REVISION 7 THE SECURITY SENSITIVE INFORMATION HAS BEEN REDACTED FROM THE ORIGINAL DOCUMENT. THIS DOCUMENT PROVIDES THE REDACTED VERSION. THE REDACTED INFORMATION WITHIN THIS DOCUMENT IS INDICATED BY SOLID BLACKEDOUT REGIONS. LSCS-UFSAR 6.0-i REV. 22, APRIL 2016 CHAPTER 6.0 - ENGINEERED SAFETY FEATURES TABLE OF CONTENTS

PAGE 6.0 ENGINEERED SAFETY FEATURES 6.0-1

6.1 ENGINEERED SAFETY FEATURE MATERIALS 6.1-1

6.1.1 Metallic Materials 6.1-1 6.1.1.1 Materials Selection and Fabrication 6.1-1 6.1.1.2 Composition, Compatibility and Stability of Containment and Core Spray Coolants 6.1-4 6.1.2 Organic Materials 6.1-4 6.1.3 Postaccident Chemistry 6.1-4 6.2 CONTAINMENT SYSTEMS 6.2-1

6.2.1 Containment Functional Design 6.2-1 6.2.1.1 Containment Structure 6.2-1 6.2.1.1.1 Design Bases 6.2-1 6.2.1.1.2 Design Features 6.2-3 6.2.1.1.3 Design Evaluation 6.2-7 6.2.1.1.3.1 Progression of Analysis Basis 6.2-8 6.2.1.1.3.2 Analysis 6.2-8 6.2.1.1.3.3 Accident Response Analysis 6.2.8 6.2.1.1.3.3.1 Recirculation Line Rupture 6.2-9 6.2.1.1.3.3.2 Main Steamline Break 6.2-18a 6.2.1.1.3.3.3 Intermediate Breaks 6.2-19 6.2.1.1.3.3.4 Small size Breaks 6.2-20 6.2.1.1.3.4 Accident Analysis Models 6.2-22 6.2.1.1.4 Negative Pressure Design Evaluation 6.2-28 6.2.1.1.5 Suppression Pool Bypass Effects 6.2-28 6.2.1.1.6 Suppression Pool Dynamic Loads 6.2-30 6.2.1.1.7 Asymmetric Loading Conditions 6.2-31 6.2.1.1.8 Containment Ventilation System 6.2-31 6.2.1.1.9 Postaccident Monitoring 6.2-31 6.2.1.1.10 Drywell-to-Wetwell Vacuum Breaker Valves Evaluation for LOCA Loads 6.2-31 6.2.1.1.11 Impact of Increased Initial Suppression Pool Temperature 6.2-32

LSCS-UFSAR TABLE OF CONTENTS (Cont'd) PAGE 6.0-ii REV. 20, APRIL 2014 6.2.1.2 Containment Subcompartments 6.2-32 6.2.1.2.1 Design Bases 6.2-32 6.2.1.2.2 Design Features 6.2-34 6.2.1.2.3 Design Evaluation 6.2-36 6.2.1.2.4 Impact of Increased Initial Suppression Pool Tempe rature 6.2-45 6.2.1.3 Mass and Energy Releas e Analyses for Postulated Loss-of-Coolant Accidents 6.2-45 6.2.1.3.1 Mass and Energy Release Data 6.2-45 6.2.1.3.2 Energy Sources 6.2-46 6.2.1.3.3 Effects of Metal-Water Reaction 6.2-46 6.2.1.3.4 Impact of Increased Initial Suppression Pool Te mperature 6.2-46 6.2.1.4 Mass and Energy Releas e Analysis for Postulated Secondary Systems Pipe Ruptures Inside Containment (PWR) 6.2-46 6.2.1.5 Minimum Containment Pressure Analysis for Performance Capability Studies on Emergency Core Cooling System (PWR) 6.2-46 6.2.1.6 Testing and Inspection 6.2-47 6.2.1.7 Instrumentation Requirements 6.2-47 6.2.1.8 Evaluation of 105 °F Suppression Pool Initial Temperature 6.2-47 6.2.2 Containment Heat Removal System 6.2-48 6.2.2.1 Design Bases 6.2-48 6.2.2.2 System Design 6.2-49 6.2.2.3 Design Evaluation 6.2-49 6.2.2.3.1 RHR Containment Cooling Mode 6.2-49 6.2.2.3.2 Summary of Containment Cooling Analysis 6.2-50 6.2.2.3.3 Impact of Increased Initial Suppression Pool Temperature 6.2-50 6.2.2.3.4 Impact of Reduced RH R Suppression Pool Cooling Flow Rate 6.2-50 6.2.2.3.5 Impact of Power Uprate 6.2-51 6.2.2.3.6 Sensitivity of Init iation Time of RHR Containment Cooling Mode 6.2-51 6.2.2.4 Test and Inspections 6.2-51 6.2.2.5 Instrumentation Requirements 6.2-51 6.2.3 Secondary Containment Functional Design 6.2-51 6.2.3.1 Design Bases 6.2-51 6.2.3.2 System Design 6.2-51 6.2.3.3 Design Evaluation 6.2-53 6.2.3.4 Test and Inspections 6.2-53 6.2.3.5 Instrumentation Requirements 6.2-53 6.2.4 Containment Isolation System 6.2-53 LSCS-UFSAR TABLE OF CONTENTS (Cont'd) PAGE 6.0-iii REV. 20, APRIL 2014 6.2.4.1 Design Bases 6.2-54 6.2.4.2 System Design 6.2-55 6.2.4.2.1 Evaluation Against General Design Criterion 55 6.2-55 6.2.4.2.2 Evaluation Against General Design Criterion 56 6.2-59 6.2.4.2.3 Evaluation Against General Design Criterion 57 6.2-61 6.2.4.2.4 Miscellaneous 6.2-64 6.2.4.3 Design Evaluation 6.2-64 6.2.4.4 Tests and Inspections 6.2-65 6.2.5 Combustible Gas Control in Containment 6.2-65 6.2.5.1 Design Bases 6.2-66 6.2.5.2 System Design 6.2-67 6.2.5.3 Design Evaluation 6.2-70 6.2.5.3.1 General 6.2-70 6.2.5.3.2 Sources of Hydrogen 6.2-71 6.2.5.3.3 Accident Description 6.2-72 6.2.5.3.4 Analysis 6.2-72 6.2.5.4 Testing and Inspections 6.2-73 6.2.5.5 Instrumentation Requirements 6.2-73 6.2.6 Containment Leakage Testing 6.2-73 6.2.6.1 Containment Integrated Leakage Rate Test 6.2-74 6.2.6.2 Containment Penetration Leakage Rate Test 6.2-77 6.2.6.3 Containment Isolation Valve Leakage Rate Test 6.2-80 6.2.6.4 Scheduling and Reporting of Periodic Tests 6.2-80 6.2.6.5 Special Testing Requirements 6.2-80 6.2.7 References 6.2-80 6.3 EMERGENCY CORE COOLING SYSTEMS 6.3-1 6.3.1 Design Bases 6.3-1 6.3.1.1 Summary Description of the Emergency Core Cooling System 6.3-1 6.3.1.1.1 Range of Coolant Ruptures and Leaks 6.3-2 6.3.1.1.2 Fission Product Decay Heat 6.3-2 6.3.1.1.3 Reactivity Required for Cold Shutdown 6.3-2 6.3.1.1.4 Steam Flow Induced Process Measurement Error 6.3-2 6.3.1.2 Functional Requirement Design Bases 6.3-2 6.3.1.3 Reliability Requirements Design Bases 6.3-3 6.3.2 System Design 6.3-3 6.3.2.1 Schematic Piping and Instrumentation Diagrams 6.3-4 6.3.2.2 Equipment and Component Descriptions 6.3-4 6.3.2.2.1 High-Pressure Core Spray (HPCS) System 6.3-4 LSCS-UFSAR TABLE OF CONTENTS (Cont'd) PAGE 6.0-iv REV. 20, APRIL 2014 6.3.2.2.2 Automatic Depressurization System (ADS) 6.3-6 6.3.2.2.3 Low-Pressure Core Spray (LPCS) System 6.3-6 6.3.2.2.4 Low-Pressure Coolant Injection (LPCI) Subsystem 6.3-8 6.3.2.2.5 ECCS Discharge Line Fill System 6.3-9 6.3.2.2.6 ECCS Pumps NPSH 6.3-10 6.3.2.2.7 Design Pressures and Temperatures 6.3-11 6.3.2.2.8 Coolant Quantity 6.3-11 6.3.2.2.9 Pump Characteristics 6.3-11 6.3.2.2.10 Heat Exchanger Characteristics 6.3-12 6.3.2.2.11 ECCS Flow Diagrams 6.3-12 6.3.2.2.12 Relief Valves and Vents 6.3-12 6.3.2.2.13 Motor-Operated Valves and Controls (General) 6.3-13 6.3.2.2.14 Process Instrumentation 6.3-14 6.3.2.2.15 Scram Discharge System Pipe Break 6.3-14a 6.3.2.2.16 ECCS Spray Flows Needed for Long Term Core Cooling 6.3-14a 6.3.2.3 Applicable Codes and Classification 6.3-15 6.3.2.4 Materials Specifications and Compatibility 6.3-15 6.3.2.5 System Reliability 6.3-15 6.3.2.6 Protection Provisions 6.3-16 6.3.2.7 Provisions for Performance Testing 6.3-16 6.3.2.8 Manual Actions 6.3-18 6.3.3 ECCS Performance Evaluation 6.3-18 6.3.3.1 ECCS Bases for Technical Specifications 6.3-19 6.3.3.2 Acceptance Criteria for ECCS Performance 6.3-19 6.3.3.3 Single-Failure Considerations 6.3-20 6.3.3.4 System Performance During the Accident 6.3-21 6.3.3.5 Use of Dual Function Components for ECCS 6.3-22 6.3.3.6 Limits on ECCS Parameters 6.3-22 6.3.3.7 ECCS Analysis for LOCA 6.3-22 6.3.3.7.1 LOCA Analysis Procedures and Input Variables 6.3-22 6.3.3.7.1.1 GE LOCA Anal ysis Procedures and Input Variables 6.3-22 6.3.3.7.2 Accident Description 6.3-26 6.3.3.7.3 Break Spectrum Calculations 6.3-27 6.3.3.7.4 Large Recirculation Line Break Calculations 6.3-27 6.3.3.7.4.1 GE LOCA Analys is Large Recirculation Line Break Calculations 6.3-27 6.3.3.7.5 Deleted 6.3.3.7.6 Small Recirculation Line Break Calculations 6.3-28 LSCS-UFSAR TABLE OF CONTENTS (Cont'd) PAGE 6.0-v REV. 20, APRIL 2014 6.3.3.7.6.1 GE LOCA Analys is Small Recirculation Line Break Calculations 6.3-28 6.3.3.7.7 Calculations for Other Break Locations 6.3-29 6.3.3.7.7.1 GE LOCA Anal ysis Calculations for Other Break Locations 6.3-29 6.3.3.7.8 Steamline Break Outside Containment 6.3-29 6.3.3.7.8.1 GE Steamline Break Outside Containment Analysis 6.3-30 6.3.3.8 LOCA Analysis Conclusions 6.3-30 6.3.3.8.1 Errors and Changes Affecting LOCA Analysis 6.3-30 6.3.3.9.1 GE LOCA Analysis Conclusions 6.3-31 6.3.3.10 MSIV Closure Change from Reactor Water Level 2 to Level 1 6.3-31 6.3.4 Tests and Inspections 6.3-32 6.3.5 Instrumentation Requirements 6.3-33 6.3.5.1 HPCS Actuation Instrumentation 6.3-33 6.3.5.2 ADS Actuation Instrumentation 6.3-33 6.3.5.3 LPCS Actuation Instrumentation 6.3-34 6.3.5.4 LPCI Actuation Instrumentation 6.3-34 6.3.6 References 6.3-35 6.4 HABITABILITY SYSTEMS 6.4-1 6.4.1 Design Bases 6.4-1 6.4.2 System Design 6.4-3 6.4.2.1 Definition of Control Room Envelope 6.4-3 6.4.2.2 Ventilation System Design 6.4-3 6.4.2.3 Leaktightness 6.4-3 6.4.2.4 Interaction with Other Zones and Pressure- Containing Equipment 6.4-4 6.4.2.5 Shielding Design 6.4-4 6.4.3 System Operational Procedures 6.4-5 6.4.4 Design Evaluation 6.4-6 6.4.5 Testing and Inspection 6.4-7 6.4.6 Instrumentation Requirements 6.4-8

LSCS-UFSAR TABLE OF CONTENTS (Cont'd) PAGE 6.0-vi REV. 20, APRIL 2014 6.5 FISSION PRODUCT REMOVAL AND CONTROL SYSTEMS 6.5-1 6.5.1 Engineered Safety Feature (ESF) Filter Systems 6.5-1 6.5.1.1 Design Bases 6.5-1 6.5.1.1.1 Standby Gas Treatment System 6.5-1 6.5.1.1.2 Emergency Makeup Air Filter Units 6.5-4 6.5.1.2 System Design 6.5-6 6.5.1.2.1 Standby Gas Treatment System 6.5-6 6.5.1.2.2 Emergency Makeup Air Filter Units 6.5-8 6.5.1.2.3 Supply Air Filter Unit Recirculation Filter 6.5-11 6.5.1.3 Design Evaluation 6.5-11 6.5.1.3.1 Standby Gas Treatment System 6.5-11 6.5.1.3.2 Emergency Makeup Air Filter Units 6.5-12 6.5.1.4 Tests and Inspections 6.5-12 6.5.1.4.1 Standby Gas Treatment System 6.5-12 6.5.1.4.2 Emergency Makeup Air Filter Units 6.5-13 6.5.1.5 Instrumentation Requirements 6.5-15 6.5.1.6 Materials 6.5-16 6.5.2 Containment Spray Systems 6.5-17 6.5.3 Fission Product Control System 6.5-17 6.5.4 Ice Condenser as a Fission Product Cleanup System 6.5-17

6.6 INSERVICE INSPECTION OF ASME CODE CLASS 2 AND 3 COMPONENTS 6.6-1 6.6.1 Components Subject to Examination 6.6-1 6.6.2 Accessibility 6.6-1 6.6.3 Examination Techniques and Procedures 6.6-1 6.6.4 Inspection Intervals 6.6-1 6.6.5 Examination Categories and Requirements 6.6-2 6.6.6 Evaluation of Examination Results 6.6-2 6.6.7 System Pressure Tests 6.6-2 6.6.8 Augmented Inservice Inspection to Protect Against Postulated Piping Failures 6.6-2 6.7 MAIN STEAM ISOLATIO N VALVE LEAKAGE CONTROL SYSTEM (MSIV-LCS) Unit 2 Deleted, Unit 1 Abandoned In Place 6.7-1 LSCS-UFSAR TABLE OF CONTENTS (Cont'd) PAGE 6.0-vii REV. 22, APRIL 2016 6.8 MAIN STEAM ISOLATION VALVE - ISOLATED CONDENSER LEAKAGE TREATMENT METHOD - UNIT 1 6.8.1 Design Bases 6.8-1 6.8.1.1 Safety Criteria 6.8-1 6.8.1.2 Regulatory Acceptance Criteria 6.8-1 6.8.1.3 Leakage Rate Requirements 6.8-1 6.8.2 System Description 6.8-2 6.8.2.1 General Description 6.8-2 6.8.2.2 System Operation 6.8-2 6.8.2.3 Equipment Required 6.8-3 6.8.3 System Evaluation 6.8-3 6.8.4 Instrumentation Requirements 6.8-3 6.8.5 Inspection and Testing 6.8-3 ATTACHMENT 6.A ANNULUS PRESSURIZATION 6.A-i ATTACHMENT 6.B RECIRCULATION SYSTEM SINGLE-LOOP OPERATION 6.B-i ATTACHMENT 6.C HISTORICAL BASE ANALYSIS 6.C-i

LSCS-UFSAR 6.0-viii REV. 22, APRIL 2016 CHAPTER 6.0 - ENGINEERED SAFETY FEATURES LIST OF TABLES

NUMBER TITLE

6.1-1 Principal Pressure-Retaining Material for ESF Components 6.1-2 Organic Materials Within the Primary Containment 6.2-1 Containment Design Parameters 6.2-2 Engineered Safety Systems Informat ion for Containment Response Analyses 6.2-3 Initial Conditions Employed in Containment Response Analyses 6.2-3a DELETED 6.2-4 Mass and Energy Release Data for Analysis of Water Pool Pressure-Suppression Containment Accidents 6.2-5 LOCA Long Term Primary Containment Response Summary 6.2-5a Deleted 6.2-6 Energy Balance for Design-Basis Recirculation Line Break Accident 6.2-7 Accident Chronology Design-Basis Recirculation Line Break Accident 6.2-8 Summary of Accident Results for Containment Response to Recirculation Line and Steamline Breaks 6.2-8a DELETED 6.2-9 Subcompartment Nodal Description Recirculation Outlet Line Break With Shielding Doors 6.2-10 Subcompartment Nodal Description Feedwater Line Break With Shielding Doors 6.2-11 Subcompartment Nodal

Description:

Head Spray Line Break 6.2-12 Subcompartment Nodal

Description:

Recirculation Line Break 6.2-13 Subcompartment Vent Path Description-Head Spray Line Break 6.2-14 Subcompartment Vent Path

Description:

Recirculation Line Break 6.2-15 Simultaneous Break of the Head Spra y Line and RPV Head Vent Line in the Head Cavity Input Data 6.2-16 Recirculation Line Break Input Data 6.2-17 Main Steamline Break Input Data 6.2-18 Reactor Blowdown for Recirculation Line Break 6.2-18a DELETED 6.2-19 Reactor Blowdown Data for Main Steamline Break 6.2-20 Core Decay Heat Following LOCA for Containment Analysis LSCS-UFSAR LIST OF TABLES (Cont'd) NUMBER TITLE 6.0-ix REV. 22, APRIL 2016 6.2-20a DELETED 6.2-21 Summary of Lines Penetrating the Primary Containment 6.2-22 Parameters Used to Dete rmine Hydrogen Concentration 6.2-23 Containment Leakage Testing 6.2-24 Subcompartment Vent Path Description Recirculation Outlet Line Break with Shielding Doors 6.2-25 Subcompartment Vent Path Description Feedwater Line Break with Shielding Doors 6.2-26 Mass and Energy Release Rate Data Recirculation Outlet Line Break 6.2-27 Mass and Energy Release Rate Data Feedwater Line Break 6.2-28 Primary Containment Isolation Valves 6.3-1 DELETED 6.3-2 Significant Input Variables Used in the GE Loss-of-Coolant Accident Analysis 6.3-3 Operational Sequence of Emergency Core Cooling Systems for GE Design-Basis Accident Analysis 6.3-4 Key to Figures and Tables in Section 6.3 6.3-5 ECCS Single Valve Failure Analysis 6.3-6 Single Failures Considered for ECCS Analysis 6.3-7 Sequence of Events for Steamline Break Outside Containment 6.3-8 Summary of LOCA Analysis Results 6.3-9 List of Motor-Operated Valves Having Their Thermal Overload Protection Bypassed During Accident Conditions 6.4-1 Dose Rates in the Control Room and Auxiliary Electric Equipment (AEE) Rooms During Normal Operation 6.4-2 Dose Experienced by Control Room Personnel Following Loss-of-Coolant Accident 6.5-1 Standby Gas Treatment System Components 6.5-2 Standby Gas Treatment System Equipment Failure Analysis 6.7-1 DELETED 6.7-2.1 DELETED 6.8-1 Dose Consequences of MSIV Leakage

LSCS-UFSAR 6.0-x REV. 22, APRIL 2016 CHAPTER 6.0 - ENGINEERED SAFETY FEATURES LIST OF FIGURES AND DRAWINGS FIGURES NUMBER TITLE

6.2-1 Diagram of the Recirculation Line Break Location 6.2-2 Short-term Pressure Response Following a Recirculation Line Break (at 3559 MWt) 6.2-2a DELETED 6.2-3 Short-term Temperature Response Following a Recirculation Line Break (at 3559 MWt) 6.2-3a DELETED 6.2-4 Containment Vent System Flow Rate vs. Time for Recirculation Line Break (at 3434 MWt) 6.2-5 DELETED 6.2-5a Long-Term Containment Pressure Response Following a Recirculation Line Break (at 3559 MWt) - Case C (2 pumps 1 Heat Exchanger Without Continuous Spray) 6.2-5b Long Term Containment Pressure Response Following a Recirculation Line Break (At 3559 MWt) 6.2-6 DELETED 6.2-6a Long-Term Drywell Temperature Response Following a Recirculation Line Break (at 3559 MWt) - Case C (2 pumps 1 Heat Exchanger Without Continuous Spray) 6.2-6b Long Term Drywell Temperature Response Following a Recirculation Line Break (At 3559 MWt) 6.2-7 DELETED 6.2-7a Long-Term Suppression Pool Temperature Response Following a Recirculation Line Break (at 3559 MWt) - Case C (2 pumps 1 Heat Exchanger Without Continuous Spray) 6.2-7b Long Term Suppression Pool Response Following a Recirculation Line Break (At 3559 MWt) 6.2-8 Pressure Response for a Main Steamline Break (at 3434 MWt) 6.2-9 Temperature Response Following a Main Steamline Break (at 3434 MWt) 6.2-10 Pressure Response for 0.1 ft 2 Liquid Line Break (at 3434 MWt) 6.2-11 Temperature Response for 0.1 ft 2 Liquid Line Break (at 3434 MWt) 6.2-12 Schematic of ECCS Loop 6.2-13 Allowable Steam Bypass Leakage Capacity 6.2-14 Containment Response to Large Primary System Breaks 6.2-15 Containment Response to Small Primary System Breaks 6.2-16 Nodalization Schematic For Recirculation Line Break 6.2-17 Nodalization Schematic For Feedwater Line Break 6.2-18 -P vs. Log t About Break - Recirculation Line Break LSCS-UFSAR FIGURES (Cont'd) NUMBER TITLE 6.0-xi REV. 20, APRIL 2014 6.2-19 Head Spray Line Break Nodalization 6.2-20 Recirculation Line Break Nodalization 6.2-21 Pressure Response for Recirculation Line Break 6.2-22 P vs. Log t About Break - Feedwater Line Break 6.2-23 Pressure Response for Feedwater Line Break 6.2-24 Pressure Histories of Nodes for Worst Cases 6.2-25 Pressure Differential for Nodes of the Worst Break Cases 6.2-26 Vessel Liquid Blowdown Rate (at 3434 MWt) 6.2-27 Vessel Steam Blowdown Rate (at 3434 MWt) 6.2-28 Main Steamline Break Response Pa rameters Blowdown Flow (at 3434 MWt) 6.2-29 Temperature Response of Reactor Vessel (at 3434 MWt) 6.2-30 Sensible Energy Transient in the Reactor Vessel and Internal Metals (at 3434 MWt) 6.2-31 Containment Valve Arrangements 6.2-32 Energy Release Rates as a Function of Time 6.2-33 Integrated Energy Release as a Function of Time 6.2-34 Integrated Hydrogen Produc tion as a Function of Time 6.2-35 Uncontrolled Hydrogen and Oxygen Generation 6.2-36 Hydrogen Concentration with 125 SCFM 6.2-37 Nodalization Overlay For Recirculation Line Break 6.2-38 Nodalization Overlay For Feedwater Line Break 6.2-39 Nodalization For Original Recirculation Line Break Analysis 6.2-40 "Equivalent" Nodalization (Case A) 6.2-41 Azimuthal Pressure Distribution (At C Recirculation Outlet Nozzle) Original Data and Case A 6.2-42 Axial Pressure Distribution Original Data and Case A 6.2-43 Simplified Nodalization (Case B) 6.2-44 Azimuthal Pressure Distribution (At C Recirculation Outlet Nozzle) Case A and Case B 6.2-45 Axial Pressure Distribution Case A and Case B 6.2-46 Complex Nodalization (Case C) 6.2-47 Azimuthal Pressure Distribution (At C Recirculation Outlet Nozzle) Case A And Case C 6.2-48 Axial Pressure Distribution (Case A and Case C) 6.2-49 Axial Pressure Distribution at t = 0.500 Seconds 6.2-50 Circumferential Pressure Di stribution at t = 0.500 Seconds 6.2-51 Axial Pressure Distribution at t = 0.500 Seconds (Case C) 6.2-52 Circumferential Pressure Distribution at t = 0.500 Seconds (Case C) 6.3-1 HPCS System Process Diagram 6.3-2 Vessel Pressure vs. HPCS Flow Assumed in GE LOCA Analyses 6.3-3 HPCS Pump Characteristics 6.3-4 LPCS System Process Diagram LSCS-UFSAR FIGURES (Cont'd) NUMBER TITLE 6.0-xii REV. 20, APRIL 2014 6.3-5 Vessel Pressure vs. LPCS Flow Assumed in GE LOCA Analyses 6.3-6 LPCS Pump Characteristics 6.3-7 Vessel Pressure vs. LPCI Flow Assumed in GE LOCA Analyses 6.3-8 Residual Heat Removal System (RHR) 6.3-9 LPCI Pump Characteristics 6.3-10 HPCS Minimum Required Pump Head to Meet LOCA Analysis Assumptions 6.3-11 LPCS Minimum Required Pump Head to Meet LOCA Analysis Assumptions 6.3-12 LPCI Minimum Required Pump Head to Meet LOCA Analysis Assumptions 6.3-13 DELETED 6.3-14 DELETED 6.3-15 DELETED 6.3-16 DELETED 6.3-17 DELETED 6.3-18 DELETED 6.3-19 DELETED 6.3-20 DELETED 6.3-21 DELETED 6.3-22 DELETED 6.3-23 DELETED 6.3-24 DELETED 6.3-25 DELETED 6.3-26 DELETED 6.3-27 DELETED 6.3-28 DELETED 6.3-29 DELETED 6.3-30 DELETED 6.3-31 DELETED 6.3-32 DELETED 6.3-33 DELETED 6.3-34 DELETED 6.3-35 DELETED 6.3-36 DELETED 6.3-37 DELETED 6.3-38 DELETED 6.3-39 DELETED 6.3-40 DELETED 6.3-41 DELETED 6.3-42 DELETED 6.3-43 DELETED 6.3-44 DELETED 6.3-45 DELETED 6.3-46 DELETED LSCS-UFSAR FIGURES (Cont'd) NUMBER TITLE 6.0-xiii REV. 21, JULY 2015 6.3-47 Schematic of the Thermal Overload Bypass Circuitry 6.3-48 DELETED 6.3-49 DELETED 6.3-50 DELETED 6.3-51 DELETED 6.3-52 DELETED 6.3-53 DELETED

6.3-54 DELETED 6.3-55 DELETED 6.3-56 DELETED 6.3-57 DELETED 6.3-58 DELETED 6.3-59 DELETED 6.3-60 DELETED

6.3-61 DELETED 6.3-62 DELETED 6.3-63 DELETED 6.3-64 DELETED 6.3-65 DELETED 6.3-66 DELETED 6.3-67 DELETED

6.3-68 DELETED 6.3-69 DELETED 6.3-70 DELETED 6.3-71 DELETED 6.3-72 DELETED 6.3-73 DELETED 6.3-74 DELETED

6.3-75 DELETED 6.3-76 DELETED 6.3-77 DELETED 6.3-78 DELETED 6.3-79 DELETED 6.3-80 Post-LOCA Time-Pressure in Secondary Containment (Based on One SGTS Equipment Train Operating) 6.3-81-a Water Level in Hot and Average Channels, Limiting Large Recirculation Suction Line Break (DEG). HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.3-81-b Reactor Vessel Dome Pressure, Limiting Large Recirculation Suction Line Break (DEG), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions LSCS-UFSAR FIGURES (Cont'd) NUMBER TITLE 6.0-xiv REV. 21, JULY 2015 6.3-81-c Heat Transfer Coefficients, Limiting Large Recirculation Suction Line Break (DEG), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.3-81-d Peak Cladding Temperature, Limiting Large Recirculation Suction Line Break (DEG), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.3-82-a Water Level in Hot and Average Channels, Limiting Small Recirculation Suction Line Break (0.08 ft 2), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.3-82-b Reactor Vessel Dome Pressure, Limi ting Small Recirculation Suction Line Break (0.08 ft 2), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.3-82-c Heat Transfer Coefficients, Limiti ng Small Recirculation Suction Line Break (0.08 ft 2), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.3-82-d Peak Cladding Temperature, Limiting Small Recirculation Suction Line Break (0.08 ft 2), HPCS-DG Failure, GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix K Assumptions 6.4-1 Control and Auxiliary Electric Equipment Room Layout 6.4-2 Location of Outside Air Intakes 6.4-3 Control Room Shielding Model 6.7-1 DELETED 6.7-2 DELETED 6.7-3 DELETED

LSCS-UFSAR 6.0-xv REV. 21, JULY 2015 DRAWINGS CITED IN THIS CHAPTER*

DRAWING* SUBJECT M-89 P&ID Standby Gas Treatment System, Units 1 and 2 M-94 P&ID Low Pressure Core Spray (LPCS) System, Unit 1 M-95 P&ID High Pressure Core Spray (HPCS) System, Unit 1 M-100 P&ID Control Rod Drive Hydraulic Piping System, Unit 1 M-130 P&ID Containment Combustible Gas Control System M-140 P&ID Low Pressure Core Spray (LPCS) System, Unit 2 M-141 P&ID High Pressure Core Spray (HPCS) System, Unit 2 M-146 P&ID Control Rod Drive Hydraulic Piping System, Unit 2 M-1443 P&ID Control Room Air Conditioning System M-1468 P&ID Refrigerant Piping Control Room HVAC System M-3443 HVAC C&I Details Control Room Air Conditioning System

  • The listed drawings are included as "Gen eral References" only; i.e., refer to the drawings to obtain additional detail or to obtain background information. These drawings are not part of the UFSAR. They are controlled by the Controlled Documents Program.

LSCS-UFSAR 6.0-1 REV. 13 CHAPTER 6.0 - ENGINEERED SAFETY FEATURES The engineered safety features of LaSa lle County Station are those systems whose actions are essential to a safety action required to mitigate the consequences of postulated accidents. The features can be divided into five general groups as follows: containment system s, emergency core cooling systems (ECCS), habitability systems, fission product removal and control systems and other systems. The LSCS engineered safety features, listed by th eir appropriate general grouping, are given below: GROUP SYSTEM Containment Systems

Primary Containment Secondary Containment Containment Heat Removal System Combustible Gas Control System Containment Isolation System Emergency Core Cooling System High-Pressure Core Spray System (HPCS) Low-Pressure Core Spray System (LPCS) Low-Pressure Coolant Injection System (LPCI) Automatic Depressurization System (ADS) Habitability Systems Control Room HVAC Fission Product Removal and Control Systems

Standby Gas Treatment System Emergency Make-Up Air Filter System LSCS-UFSAR 6.0-2 REV. 13 GROUP SYSTEM Other Systems Main Steamline Isolation Valve Isolated Condenser Leakage Treatment Method

LSCS-UFSAR 6.1-1 REV. 13 6.1 ENGINEERED SAFETY FEATURE MATERIALS The materials utilized in the LSCS engineered safety feature systems have been selected on the basis of an engineering review and evaluation for compatibility with:

a. the normal and accident service conditions of the (engineered safety feature) ESF system, b. the normal and accident environmental conditions associated with the ESF system, c. the maximum expected normal and accident radiation levels to which the ESF will be subjected, and
d. other materials to preclude material interactions that could potentially impair the operation of the ESF systems.

The materials selected for the ESF systems ar e expected to function satisfactorily in their intended service without adverse effects on the service, performance or operation of any ESF.

6.1.1 Metallic Materials In general, all metallic materials used in ESF systems comply with the material specifications of Section II of the ASME Boiler and Pressure Vessel Code. Pressure-retaining materials of the ESF systems comply with the stringent quality requirements of their applicable quality group classification and ASME B&PV

Code, Section III classification. Adherence to these requirements assures materials of the highest quality for the ESF systems. In those cases where it is not possible to adhere to the ASME material specifications, metallic materials have been selected in compliance with other nationally recognized standards, e.g., ASTM, where practicable, or chosen in compliance with current industry practice. 6.1.1.1 Materials Selection and Fabrication Metallic materials in ESF systems have, in general, been designed for a service life of 40 years, with due consideration of the effects of the service conditions upon the properties of the material, as required by Section III of the ASME B&PV Code, Article NC-2160. Pressure retaining components of the ECCS have been designed with the following corrosion allowances, in compliance with the general requirement of Section III of the ASME B&PV Code, Article NC-3120:

a. Ferritic Materials LSCS-UFSAR 6.1-2 REV. 18, APRIL 2010 1. water service 0.08 inches
2. steam service 0.120 inches
b. Austenitic Materials 0.0024 inches

For ESF systems other than ECCS, appropriate corrosion allowances, considering the service conditions to which the material will be subjected, have been applied. The metallic materials of the ESF syst ems have been evaluated for their compatibility with core and containment spray solutions. No radiolytic or pyrolytic decomposition of ESF material will occur during accident conditions, and the integrity of the containment or function of any other ESF will not be effected by the action of core or containment spray solutions. Material specification for the principal pressure-retaining ferritic, austenitic, and nonferrous metals in each ESF component ar e listed in Table 6.1-1. Materials that would be exposed to the core cooling water and containment sprays in the event of a loss-of-coolant accident are identified in th is table. Sensitization of austenitic stainless steel is prevented by the following actions:

a. Design specifications for austenitic stainless steel components require that the material be cleaned using halide free cleaning solutions and that special care be exercised in the fabrication, shipment, storage, and construc tion to avoid contaminants.
b. Design specifications call for ASME material, which is to be supplied in the solution annealed condition.
c. Design specifications prohibit the use of materials that have been exposed to sensitizing temperatures in the range of 800° F to 1500° F.

Cold-worked austenitic stainless steels wi th yield strengths greater than 90,000 psi are not utilized in ESF systems. Therefore, there are no compatibility problems with core cooling water or the containment sprays. Metallic reflective thermal insulation is used exclusively inside the primary containment. Premoulded non-hydrophobic Microtherm MPS Insulation enclosed in a 24 gauge stainless steel jacket is installed on the Unit 2 RVWLIS piping, 2NB86A-3/4" and 2NB88A-3/4", and the ma in steam high-flow instrument piping, 2MSC6AD-3/4" inside primary containm ent. Premoulded non-hydrophobic Microtherm MPS insulation enclosed in LSCS-UFSAR 6.1-3 REV. 14, APRIL 2002 24 gauge stainless steel jacket is insta lled on Unit 1 RVWLIS piping 1NB09A-2", 1NB09B-1", 1NB88A-1", 1NB24A-2", and 1NB24B-1", and the main steam high-flow instrument piping, 1MSC6AK-3/4", inside primary containment. The aforementioned Microtherm Insulation is also installed on the Unit 1 main steam high-flow instrument piping, 1MSC6AK-3/4", inside primary containment.

ARMAFLEX insulation is installed on the chilled water system inside primary containment. Outside containment, calcium silicate or an engineering approved alternative thermal insulation is utilized. Design specifications on the nonmetallic insulation require that it be in accordance with Regulatory Guide 1.36, in order to avoid the possibility of chloride induced stress corrosion cracking in austenitic stainless steel in contact with the insulation. To avoid hot cracking (fissuring) during weld fabrication and assembly of austenitic stainless steel components of the ESF, the design specifications require the following:

a. Maximum delta ferrite content for wrought and duplex cast components is 5% - 15%.
b. Chemical analyses are performed on undiluted weld deposits, or alternately, on the wire, consumable insert, etc., to verify the delta ferrite content.
c. Delta ferrite content in weld metal is determined using magnetic measurement devices.
d. Maximum interpass temperatur e shall not exceed 350°F during welding. e. Test results as discussed above are included in the qualification test report.
f. Weld materials meet the re quirements of Section III.
g. Production welds are examined to verify that the specified delta-ferrite levels are met.
h. Welds not meeting these leve ls are unacceptable and must be removed.

LSCS-UFSAR 6.1-4 REV. 14, APRIL 2002 6.1.1.2 Composition, Compatibility and Stability of Containment and Core Spray Coolants The core sprays have two possible sources of coolant. The HPCS system is supplied from either the cycled condensate storage tank or the suppression pool. The normal source of water for HPCS is the suppression pool. The capability remains for the HPCS system to draw a suction on the cycl ed condensate tank because the piping to the tank is installed, but isolated by a b lind flange. Establishment of this flowpath is under administrative control. The LPCS and LPCI are supplied from the suppression pool only. Water quality in both of these sources is maintained at a high level of purity with the possible exception of potentially high soluble-iron metallic impurities. Additional discussion of the water qualities are given in Subsections 6.1.3, 9.2.7, and 9.2.11. Limited corrosion inhibitors or other additives (such as zinc and noble metals) are present in either source. The containment spray utilizes the suppression pool as its source of supply. No radiolytic or pyrolytic decomposition of ESF materials are induced by the containment sprays. The containment sprays should not be a source of stress-corrosion cracking in austenitic stainless steel during a LOCA.

6.1.2 Organic Materials Table 6.1-2 lists all the organic compounds that exist within the containment in significant amounts. All these materials in ESF components have been evaluated with regard to the expected service conditions, and have been found to have no adverse effects on service, performance, or operation.

The dry well liner and coated exposed metal surfaces inside containment are prime coated with an inorganic zinc compound that has been fully qualified in accordance with ANSI standards N101.2, N101.4, an d N512 , with the exception of a small quantity (44 gallons) used on pipe hangers and snubber attachments and recirculating pump motors. Uncoated metal surfaces shall be evaluated for acceptability. No radiolytic or pyrolytic decomposition or interaction with other ESF materials will occur.

6.1.3 Postaccident Chemistry The post-accident chemical environment inside the primary containment will consist of water from the suppression pool and the cycled condensate storage tank, i.e. water sources for the high pressure core spray, low pressure core spray, low pressure core injection, reactor core isolation cooling and containment spray. The

suppression pool may contain trace amounts of corrosion inhibiting chemicals such as hydrogen, zinc and noble metals. Additionally, portions of the Reactor Building Closed Cooling Water (RBCCW) system and the Primary Containment Chilled Water (PCCW) system are inside the containment. Both systems contain limited LSCS-UFSAR 6.1-5 REV. 14, APRIL 2002 amounts of corrosion inhibitors, and have portions of their piping inside containment classified as Seismic Category 2. During a Design Basis Accident (DBA) either or both of these systems can fail and release the corrosion inhibitors to the suppression pool before isolation. Due to the limited quantity (trace amounts) of these chemicals in the secondary systems and the dilution factor as a result of a DBA, the water will be approximately neutral (pH = 7), and there will be no adverse affect to equipment, coatings or other materials during ECCS or RCIC operation. LSCS-UFSAR TABLE 6.1-1 (SHEET 1 OF 5) TABLE 6.1-1 REV. 21, JULY 2015 PRINCIPAL PRESSURE-RETAINING MATERIAL FOR ESF COMPONENTS I. Containment Systems A. Primary Containment 1. Containment Walls 4500 psi Concrete

 *2. Drywell Liner  SA-516, Grade 60 
 *3. Suppression Chamber Liner  SA-240, Type 304 
 *4. Drywell Head  SA-516, Grade 70 
 *5 Penetrations
a. Drywell Penetration Sleeve SA-333, Grade 1 or 6 SA-516, Grade 70 Penetration Head Fitting SA-516, Grade 60 SA-240, Type 304 SA-240, Type 316 SA-350, Grade LF1 b. Suppression Chamber Penetration Sleeve SA-240, Type 304 SA-312, Grade TP 304 Penetration Head Fitting SA-516, Grade 60 SA-240, Type 304 SA-350, Grade LF1 *6. Equipment Hatch SA-516, Grade 70 *7. Personnel Access Hatch a. Drywell SA-516, Grade 70 b. Suppression Chamber SA-240, Type 304 *8. Suppression Vent Downcomers SA-240, Type 304 Note: The materials of the process pipe s associated with primary containment penetrations are addressed separately.
*Indicates that material may be subjected to containment spray or core cooling 

water in the event of a loss-of-coolant accident. LSCS-UFSAR TABLE 6.1-1 (SHEET 2 OF 5) TABLE 6.1-1 REV. 21, JULY 2015

  *9. Vacuum Relief Piping     a. Drywell to Suppression      Chamber Penetration SA-106, Grade B    b. Suppression Chamber     Penetration SA-312, Grade TP 304 (Seamless)     10. Vacuum Relief Valves  SA-105   *11. Pressure Retaining Bolts
a. Drywell SA-320, Grade L43 SA-193, Grade B7 SA-194, Grade 7
b. Suppression Chamber SA-193, Class 2, Grade B8C, Type 347 SA-194, Class 2, Grade 83, Type 347

B. Secondary Containment

1. Ducts A-526
2. Dampers A-285, Grade B A-181, Grade 1 C. Containment Heat Removal System 1. RHR Pumps A-516, Grade 70
2. RHR Heat Exchanger a. Shell Side SA-516, Grade 70 b. Tube Side SA-249, Grade TP 304L
 *3. Piping  SA-106, Grade B 
 *4. Valves  SA-216, Grade WCB or SA-105 
 *5. Pressure-Retaining Bolting  SA-193, Grade B7 
 *6. Welding Material  SFA-5.18E70S-3(F-6, A-1) 

D. Containment Isolation System

 *1. Piping SA-106, Grade B or SA-312, Grade TP 304  *Indicates that material may be subjected to containment spray or core cooling water in the event of a loss-of-coolant accident.

LSCS-UFSAR TABLE 6.1-1 (SHEET 3 OF 5) TABLE 6.1-1 REV. 21, JULY 2015

  *2. Valves  SA-216, Grade WCB or SA-105 or SA-182, Grade 316L or Grade F316 or SA-351, Grade C8FM or SA-351 Grade CF3   *3. Pressure-Retaining Bolting  SA-193, Grade B7   *4. Welding Material  SFA-5.18E70S-3 (F-6, A-1)

E. Combustible Gas Control System 1. Piping SA-106, Grade B

2. Valves SA-216, Grade WCB
3. Recombiner SA-358, Grade 304 4. Blower 5. Pressure-Retaining Bolting SA-193, Grade B7
6. Welding Material SFA-5.18E70S-3 (F-6, A-1)

II. Emergency Core Cooling System A. High-Pressure Core Spray 1. Pump A-516, Grade 70

2. Piping
  *a. Inside Reactor Building  SA-106, Grade B
b. Outside Reactor Building SA-409, Grade TP 304 *3. Valves SA-216, Grade WCB or SA-105
 *4. Pressure-Retaining Bolting  SA-193, Grade B7 
 *5. Welding Materials  SFA-5.18E70S-3 (F-6, A-1)

B. Low-Pressure Core Spray 1. Pump A-516, Grade 70 *2. Piping SA-106, Grade B *3. Valves SA-216, Grade WCB or SA-105

 *Indicates that material may be subjected to containment spray or core cooling water in the event of a loss-of-coolant accident.

LSCS-UFSAR TABLE 6.1-1 (SHEET 4 OF 5) TABLE 6.1-1 REV. 13

  *4. Pressure-Retaining Bolting  SA-193, Grade B7   *5. Welding Materials  SFA-5.18E70S-3 (F-6, A-1)

A. Low-Pressure Coolant Injection 1. RHR Pump A-516, Grade 70 *2. Piping SA-106, Grade B

 *3. Valves  SA-216, Grade WCB or SA-105 
 *4. Pressure-Retaining Bolting  SA-193, Grade B7 
 *5. Welding Materials  SFA-5.18E70S-3 (F-6, A-1) B Automatic Depressurization System    *1. Piping
a. Inlet SA-155, Grade KCF70
b. Outlet SA-106, Grade B
 *2. Valves   

III. Habitability System A. Blowers A-283, A-242 B. Dampers A-285, Grade B A-181, Grade 1 C. Ducts A-526 D. Housing A-36

IV. Fission Product Removal and Control System A. Standby Gas Treatment System 1. a. Piping (Downstream of Filter Unit) SA-106, Grade B b. Piping (Upstream of Filter Unit) A-106, Grade B 2. Housing A-36

*Indicates that material may be subjected to containment spray or core cooling water in the event of a loss-of-coolant accident.

LSCS-UFSAR TABLE 6.1-1 (SHEET 5 OF 5) TABLE 6.1-1 REV. 13

3. Valves SA-216, Grade WCB or SA-105, or SA-516, Grade 7 4. Dampers A-285, Grade B A-181, Grade 1
5. Blowers A-283, A-242
6. Pressure-Retaining Bolting
a. Pressure-Retaining Bolting (Downstream of Filter Unit)

SA-193, Grade B7

b. Pressure-Retaining Bolting (Upstream of Filter Unit)

A-193, Grade B7 7. Welding Materials SFA-5.18E70S-3 (F-6,A-1) B. Emergency Air Filter System

1. Ducts A-526
2. Dampers A-285, Grade B A-181, Grade 1
3. Housing A-36
4. Blower A-283, A-242 V. Other Systems A. Main Steamline Isolation Valve Leakage Control System (Deleted)
 *Indicates that material may be subjected to containment spray or core cooling water in the event of a loss-of-coolant accident.

LSCS-UFSAR TABLE 6.1-2 (SHEET 1 OF 2) TABLE 6.1-2 REV. 18, APRIL 2010 ORGANIC MATERIALS WITHIN THE PRIMARY CONTAINMENT MATERIAL USE QUANTITY Acrylomitrile Butadiene/PVC Foam Rubber ARMAFLEX Insulation on the Chilled Water Piping Throughout Drywell Chlorosulfinated Polyethylene (Hypalon) Low Voltage Electrical Power Cable Jacketing and Insulation Material Throughout Drywell Etylene Propylene Rubber (EPR) Low Voltage Electrical Power Cable Jacketing and Insulation Material Throughout Drywell High Temperature Ethylene Propylene Medium Voltage Electrical Power Cable Jacketing and

Insulation Material Throughout Drywell Hypalon/Hypalon Instrumentation Cable Insulation/Jacketing Material Throughout Drywell EPR/Hypalon Instrumentation Cable Insulation/Jacketing Material Throughout Drywell Cross-Linked Polyolefin/Alkaneimide Polymer Instrumentation Coaxial and Triaxial Insulation/ Jacketing Material Throughout Drywell Modified Phenolic Coating for Exposed Carbon Steel Surfaces 16 ft 3 Modified Phenolic Surfacer Coating for Exposed Concrete Surfaces 17 ft 3 Modified Phenolic Finish Coating for Exposed Concrete Surfaces 5 ft 3 LSCS-UFSAR TABLE 6.1-2 (SHEET 2 OF 2) TABLE 6.1-2 REV. 18, APRIL 2010 MATERIAL USE QUANTITY Alkyd Primer and Finish Pipe hangers and Snubber Attachments

and GE Recirculating Pump 44 gal. Lube Oil Reactor Recirculation Pump Motor (2 motors/unit) 145 gal per unit Silicone Fluid (SF 1147, GE) MSIV Hydraulic Fluid (4 valves within containment) 1 1/2 gal. per valve Non-separating high temperature grease Drywell cooling area coolers < 1 gal. Fyrquel 220/or Fyrquel EHC (stauffer) Recirculation Control Valve Hydraulic Fluid (2 valves) 118 gal. per valve Silicone Fluid Lisega Hydraulic Snubbers < 1 1/2 gal. per snubber Fiberglass Reinforced Silicone Fabric 1 (2) RF01 and 1 (2) RE02 Sump Cover Mat 400 ft 2 per unit Silicone Sealant 1 (2) RF01 and 1 (2) RE02 Sump Cover Mat < 1 gal. per unit

LSCS-UFSAR TABLE 6.5-1 (SHEET 1 OF 4) TABLE 6.5-1 REV. 13 STANDBY GAS TREATMENT SYSTEM COMPONENTS

NAME OF EQUIPMENT TYPE, QUANTITY AND NOMINAL CAPACITY (per component) A. Filter Unit

1. Equipment Numbers 1VG01S, 2VG01S
2. Type Package
3. Quantity 2
4. Components of Each Unit
a. Fan Type Centrifugal

Quantity 1 Drive Direct Capacity (ft 3/min) 4000 (nominal) Static Pressure (in. H 2O) 14.8 b. Demister

Type Impingement Quantity 1 Bank with 4 elements Static resistance

clean (in. H 2O) 0.95 dirty (in. H 2O) 1.7 c. Heater Type Electric, sheathed, single stage

LSCS-UFSAR TABLE 6.5-1 (SHEET 2 OF 4) TABLE 6.5-1 REV. 17, APRIL 2008 NAME OF EQUIPMENT TYPE, QUANTITY AND NOMINAL CAPACITY (per component)

Quantity 1 Capacity (kW) 23

Accessories Overload cutout

d. Prefilter

Type High Efficiency Quantity 1 Bank With 4 Elements Efficiency (per ASHRAE) Dust Spot Test) 90% Static resistance clean (in. H 2O) 0.35 dirty (in. H 2O) 1 e. HEPA Filters

Type Absolute High Efficiency Quantity 4 Elements per Bank. Two Banks per Train Media Glass Fiber, Waterproof, Fire Resistant Bank Efficiency (% with 0.3 micron particles) 99.97 (Purchased) 99.95 (Operational Requirement)

Static Resistance clean (in. H 2O) 0.7 dirty (in. H 2O) 2 LSCS-UFSAR TABLE 6.5-1 (SHEET 3 OF 4) TABLE 6.5-1 REV. 15, APRIL 2004 NAME OF EQUIPMENT TYPE, QUANTITY AND NOMINAL CAPACITY (per component)

f. Charcoal Adsorber Bed Type Vertical gasketless

Quantity 8 - 8 in. thick Media Impregnated Charcoal

Iodine Removal Efficiency (%) 99 (Operational Requirement) 99 (Operational Requirement) Quantity of Media (lb) 5800

Depth of Bed (in.) 8 Residence Time for 8 in. bed (sec) 2.0

Static Resistance (in. H 2O) 4.6

g. Standby Cooling Air Fan Type Centrifugal Quantity 1

Drive Direct Capacity (ft 3/min) 200

Static Pressure (in. H 2O) 5 LSCS-UFSAR TABLE 6.5-1 (SHEET 4 OF 4) TABLE 6.5-1 REV. 13 NAME OF EQUIPMENT TYPE, QUANTITY AND NOMINAL CAPACITY (per component) B. Secondary Containment Isolation Dampers

1. Equipment Numbers 1VQ037, 1VQ038 2VQ037, 2VQ038 1VR04YA&B, 1VR05YA&B 2VR04YA&B, 2VR05YA&B
2. Type Special
3. Quantity 8
4. Operator Air Cylinder
5. Diameter (in.) 72 LSCS-UFSAR TABLE 6.5-2 TABLE 6.5-2 REV. 0 - APRIL 1984 STANDBY GAS TREATMENT SYSTEM EQU1PMENT FAILURE ANALYSIS COMPONENT FAILURE FAILURE DETECTED BY ACTION LSCS-UFSAR 6.6-1 REV. 17 APRIL 2008 6.6 INSERVICE INSPECTION OF ASME CODE CLASS 2 AND 3 COMPONENTS 6.6.1 Components Subject to Examination All ASME Class 2 components (pressure vessels, piping, pumps, and valves) are inservice inspected according to ASME, B&PVC, Section XI, Subsection IWC, with appropriate addendum(s). The main steamlines (four) are inspected from the first outside containment isolation valve to the turbine stop valves. Inspection requirements are the same as for ASME Class 2 components.

All ASME Class 3 components (pressure vessels, piping, and valves) are inservice inspected according to ASME, B&PVC, Section XI, Subsection IWD, with appropriate addendum(s).

6.6.2 Accessibility The design and arrangement of the ASME Class 2 and ASME Class 3 piping, pump, and valve components have been made acce ssible for inspection and examination as follows: Pipe and Equipment Welds Location and clearance envelopes have been established for inspection and examination. Co ntours and surface finish are acceptable for inspection and examination. Insulation Removal

Piping or components to be inspected according to the Section XI code which are insulated, have been designed with removable numbered insulation panels. Shielding Piping or components to be inspected according to the Section XI code and are radiologically shielded have been designed with removable or accessible shields. 6.6.3 Examination Techniques and Procedures Inservice inspection will be in acco rdance with ASME, B&PV Section XI. 6.6.4 Inspection Intervals The initial 10-year inspection program for LaSalle units 1 and 2 was submitted to the NRC on July 13, 1982 and December 21, 1982, respectively. The inservice LSCS-UFSAR 6.6-2 REV. 17 APRIL 2008 inspection program for both units 1 and 2 are based on the requirements of the ASME, Section XI 1980 edition including addenda through winter 1980. The inservice examinations conducted during the second 120 month Inspection Interval will comply with the 1989 Edition of ASME Section XI, except in cases where relief has been granted by the NRC. The inservice examinations conducted during the third 120 month Inspection Interval will comply with the 2001 Edition through the 2003 addenda, including the December of 2003 Erratum of ASME Section XI, except in cases where relief has been granted by the NRC. 6.6.5 Examination Categories and Requirements The inservice inspection categories and requirements for Class 2, and Class 3 components are in agreement with ASME Section XI.

Specific written requests for relief from ASME code requirements determined to be impractical were contained in the initial in service inspection program. Relief from those requirements was granted by the NRC, detailed evaluation is included in Appendix C of NUREG-0519, Supplement No. 5, Safety Evaluation Report related to the operation of LaSalle County Station, Units 1 and 2.

6.6.6 Evaluation of Examination Results The evaluation of Class 2 components ex amination results will comply with the requirements of Section XI. The repair procedures for Class 2 and 3 components comply with the requirements of Section XI.

6.6.7 System Pressure Tests All Class 2 system pressure testing complies with the criteria of Code Section XI, Article IWC-5000. All Class 3 system pres sure tests comply with the criteria of Article IWD-5000.

6.6.8 Augmented Inservice Inspection to Protect Against Postulated Piping Failures This inspection has been adequately cove red by the requirements of Section XI already adhered to previously.

LSCS-UFSAR 6.7-1 REV. 13 6.7 MAIN STEAM ISOLATION VALVE LEAKAGE CONTROL SYSTEM (MSIV-LCS) Unit 2 deleted, Unit 1 abandoned in place The Main Steam Isolation Valve Leakage Control System provided originally has been deleted. The valve leakag es are processed by the Isolated Condenser Leakage Treatment Method as discussed in Section 6.8. LSCS-UFSAR 6.8-1 REV. 13 6.8 Main Steam Isolation Valve - Isolated Condenser Leakage Treatment Method The Main Steam Isolation Valve - Isolated Condenser Leakage Treatment Method (MSIV - ICLTM) (Also called the MSIV Alternate Treatments Leakage Paths) controls and minimizes the release of fiss ion products which could leak through the closed main steam isolation valves (MSIV's) after a LOCA. The system provides this control by processing valve leakage through the main steamlines, main steamline drains, and the main condenser. 6.8.1 Design Bases

6.8.1.1 Safety Criteria The following general and specific design criteria represent system design, safety, and performance requirements imposed upon the MSIV-ICLTM:

a. The safety function of the main steamlines and main steamline drains are described in LSCS-UFSAR Section 10.3.
b. The safety function of the main condenser is described in LSCS-UFSAR Section 10.4.1.

6.8.1.2 Regulatory Acceptance Criteria

The classification of the components and piping of the main steam supply system is listed in Table 3.2-1. All components and piping for the main steam supply system are designed in accordance with the code s and standards listed in Table 3.2-2 for the applicable classification. The classification of the main condenser is described in LSCS-UFSAR Section 10.4.1.3. 6.8.1.3 Leakage Rate Requirements The MSIV-ICLTM has been incorporated as an integral part of the BWR plant design. The design features employed with this systems are established to reduce the leakage rate of radioactive materials to the environment during a postulated LOCA. Leakage control requirements are imposed upon the MSIV-ICLTM in order to:

a. eliminate the possibility of secondary containment bypass leakage of accident induced radioactive releases, b. allow for higher MSIV leakage limits, and LSCS-UFSAR 6.8-2 REV. 21, JULY 2015
c. assure reasonable leakage verification test frequencies (once per fuel cycle).

The design and operational requirements imposed upon the MSIV-ICLTM relative to the foregoing criteria are established to:

a. allow MSIV leakage rates up to a total of 400 scfh for all MSIV valves, b. allow a MSIV leakage rate verification testing frequency compatible with the requirements of plant operating technical specifications, and
c. assure and restrict total pl ant dose impacts below 10 CFR 50.67 guidelines.

6.8.2 System Description

6.8.2.1 General Description The system provides this control by pr ocessing valve leakage through the main steamlines, main steamline drains, and the main condenser. 6.8.2.2 System Operation (U2 MSIV LCS delete, U1 Abandon-in-place) With the deletion of the MSIV-LCS, MSIV leakage will pass from the outboard MSIV, through the main steamlines, main steamline drains and into the condenser. The large wetted volume in the main cond enser plates out inorganic iodine and holds up other fission products that escape through the MSIVs, limiting release to the environment. This alternate pathway is more reliable than the MSIV-LCS since less equipment is employed. The alternate pathway also has a much higher capacity for processing leakage than does the MSIV-LCS, with a capacity of only 100 scfh. In addition, the MSIV-LCS will only operate at less than 35 psig reactor vessel steam dome pressure, whereas the alternate pathway is independent of reactor pressure. To properly align the pathway, in addition to closing the MSIVs and the containment isolation valves, operators will close valves to isolate the leakage pathway from the auxiliary steam supplies. The operating drains will remain open and either one of two startup drains will be opened. All of the remote manually operated valves that need to be moved are powered from Class 1E power supplies. Although these valves and their power supplies (with the exception of the MSIVs) are not maintained as safety-related, design control for all of these valves is maintained with respect to their importance to safety. Appropriate changes to station LSCS-UFSAR 6.8-3 REV. 13 procedures have been made to reflect deletion of the MSIV-LCS and use of the alternate leakage treatment method. 6.8.2.3 Equipment Required

The following equipment components are provided to facilitate system operation:

a. piping - process piping is carbon steel throughout;
b. valves - motor-operated, standard closing speeds;
c. main condenser

6.8.3 System Evaluation

An evaluation of the capability of the MS IV-ICLTM to prevent or control the release of radioactivity from the main steamlin es during and following a LOCA has been conducted. The results of this evaluation are presented in LaSalle County Nuclear Power Stations Units 1 and 2 Application for Amendment of Facility Operating Licenses NPF-11 and NPF-18, Appendix A, Technical Specifications, and Exemption to Appendix J of 10CFR50 Regarding Elim ination of MSIV Leakage Control System and Increased MSIV Leakage Limits, NRC Docket Nos. 50-373 and 50-374. Additionally, Sargent & Lundy performed an evaluation on the piping, condenser and turbine building, to assure they would remain functional during a seismic event to mitigate the radiologically consequenc es of MSIV leakage (Reference Sargent & Lundy Calculation 068078 (EMD), Rev. 2, dated 8/9/95 for Unit 1 and 067927 (EMD), Rev. 2 dated 8/10/95 for Unit 2). See Section 15.6.5.5 for more information in the dose analysis and dose consequences. 6.8.4 Instrumentation Requirements The instrumentation necessary for control and status indication of the MSIV-ICLTM is designed to function under Seis mic Category I and environmental loading conditions appropriate to its installation with the control circuits designed to satisfy separation criteria. MSIV closed indication is powered from Class 1E power and is maintained as safety-related. 6.8.5 Inspection and Testing Preoperational tests for the main steamlines, main steamline drains, and the main condenser are discussed in LSCS-UFSAR Sections 10.3.4 and 10.4.1.4. No additional testing is required to support this operating mode. LSCS-UFSAR TABLE 6.8-1 REV. 13 TABLE 6.8-1 DOSE CONSEQUENCES OF MSIV LEAKAGE LEAKAGE 30 DAYS FO LLOWING LOCA-UNIT 1 (100 SCFH per line) WHOLE BODY DOSE (rem) THYROID DOSE (rem) Exclusion Area (509 meters) 1.451E-3 3.14E-2 Low Population Zone (6400 meters) 3.3E-2 10.47 LSCS-UFSAR REV. 13

ATTACHMENT 6.A ANNULUS PRESSURIZATION

LSCS-UFSAR 6.A-i REV. 18, APRIL 2010 ATTACHMENT 6.A TABLE OF CONTENTS PAGE 6.A ANNULUS PRESSURIZATION 6.A-1 6.A.1 INTRODUCTION 6.A-1 6.A.2 SHORT-TERM MASS ENERGY RELEASE 6.A-1

6.A.2.1 Instantaneous Guillotine Break 6.A-3 6.A.2.2 Break Opening Flow Rate 6.A-4 6.A.2.3 Combined Break Flow 6.A-5 6.A.2.4 Determination of the Mass Flux, G 6.A-5 6.A.2.5 Biological Shield Wall 6.A-5 6.A.2.6 Comparison of the GE Model with the Henry/Fauske Correlation 6.A-6

6.A.3 LOAD DETERMINATION 6.A-10

6.A.3.1 Acoustic Loads 6.A-10 6.A.3.2 Pressure Loads 6.A-10 6.A.3.3 Jet Loads 6.A-11 6.A.3.4 Dynamic and Seismic Analysis (DYSEA) Computer Program 6.A-12 6.A.4 PRESSURE TO FORCE CONVERSION 6.A-14 6.A.5 SACRIFICIAL SHIELD ANNULUS PRESSURIZATION AND RPV LOADING DATA 6.A-16

6.A.6 JET LOAD FORCES 6.A-18 6.A.7 RECIRCULATION AND FEEDWATER LINE BREAK FORCING FUNCTION 6.A-19 6.A.8 REFERENCES 6.A-20

LSCS-UFSAR 6.A-ii REV. 18, APRIL 2010 ATTACHMENT 6.A LIST OF TABLES NUMBER TITLE 6.A-1 Time History for Postulated Recirculation Suction Pipe Rupture 6.A-2 Acoustic Loading on Reactor Pressure Vessel Shroud 6.A-3 RPV Coordinates of Nodal Points 6.A-4 Maximum Member Forces Due to Annulus Pressurization 6.A-5 Maximum Acceleration Due to Annulus Pressurization 6.A-6 RELAP4 Input Data, Recirculation Line Outlet Break 6.A-7 RELAP4 Input Data, Feedwater Line Break 6.A-8 Force Constants and Load Centers For Recirculation Line Outlet Break 6.A-9 Force Constants and Load Centers For Feedwater Line Break 6.A-10 DYSEA01 Program Input For Jet Load Forces LSCS-UFSAR 6.A-iii REV. 13 ATTACHMENT 6.A LIST OF FIGURES NUMBER TITLE 6.A-1 Safe End Break Location 6.A-2 Break Flow Vs. Time - Feedwater Line Break 6.A-3 Geometry 6.A-4 Wave Speed 6.A-5 Mass Flux, Moody Steady Slip Flow 6.A-6 Break Flow Vs. Time 6.A-7 Nomenclature for Time History Computer Printout 6.A-8 Feedwater Line System Nodalization - Leg EA 6.A-9 Feedwater Line System Nodalization - Leg EB 6.A-10 Recirculation Line System Nodalization 6.A-11 Comparison of the GE and RELAP4/MOD5 Methods - Feedwater Line Break, Leg EA 6.A-12 Comparison of the GE and RELAP4/MOD5 Methods - Feedwater Line Break, Leg EB 6.A-13 Comparison of the GE and RELAP4/MOD5 Methods - Recirculation Line Break, Finite Opening Time 6.A-14 Horizontal Model for Annulus Pressurization 6.A-15 Annulus Pressurization Loading Description 6.A-16 Annular Space Nodalization For Recirculation Line Break 6.A-17 Annular Space Nodalization For Feedwater Line Break

LSCS-UFSAR REV. 13 ATTACHMENT 6.B RECIRCULATION SYSTEM SINGLE-LOOP OPERATION

LSCS-UFSAR 6.B-i REV. 15, APRIL 2004 ATTACHMENT 6.B TABLE OF CONTENTS PAGE 6.B RECIRCULATION SYSTEM SINGLE-LOOP OPERATION 6.B-1 6.B.1 INTRODUCTION AND

SUMMARY

6.B-1 6.B.1.1 GE Analysis 6.B.1.2 SPC Analysis 6.B.2 MCPR FUEL CLADDING INTEGRITY SAFETY LIMITS 6.B-1 6.B.2.1 Core Flow Uncertainty 6.B-1 6.B.2.2 Core Flow Measurement During Single-Loop Operation 6.B-1 6.B.2.3 Core Flow Uncertainty Analysis 6.B-2 6.B.2.4 TIP Reading Uncertainty 6.B-3

6.B.3 MCPR OPERATING LIMIT 6.B-4 6.B.3.1 Abnormal Operational Transients 6.B-4 6.B.3.2 Feedwater Controller Failure - Maximum Demand 6.B-5 6.B.3.2.1 Identification of Causes and Frequency Classification 6.B-5 6.B.3.2.2 Sequence of Events and Systems Operation 6.B-5 6.B.3.2.3 Effect of Single Failures and Operator Errors 6.B-6 6.B.3.2.4 Core and System Performance 6.B-6 6.B.3.2.5 Barrier Performance 6.B-7 6.B.3.2.6 Radiological Consequences 6.B-7 6.B.3.3 Generator Load Rejection Without Bypass with RPT 6.B-8 6.B.3.3.1 Identification of Causes and Frequency Classification 6.B-8 6.B.3.3.2 Sequence of Events and System Operation 6.B-8 6.B.3.3.3 Results 6.B-9 6.B.3.3.4 Barrier Performance 6.B-10 6.B.3.3.5 Radiological Consequences 6.B-10 6.B.3.4 Recirculation Pump Seizure Accident 6.B-10 6.B.3.4.1 Identification of Causes and Frequency Classification 6.B-10 6.B.3.4.2 Sequence of Events and Systems Operations 6.B-10 6.B.3.4.3 Systems Operation 6.B-11 6.B.3.4.4 Core and System Performance 6.B-11 6.B.3.4.5 Results 6.B-11 6.B.3.4.6 Barrier Performance 6.B-12 6.B.3.4.7 Radiological Consequences 6.B-12 LSCS-UFSAR 6.B-ii REV. 15, APRIL 2004 6.B.3.5 Summary and Conclusions 6.B-12 6.B.4 OPERATING MCPR LIMIT 6.B-12 6.B.5 STABILITY ANALYSIS 6.B-14 6.B.6 LOSS-OF-COOLANT ACCIDENT ANALYSIS 6.B-14 6.B.6.1 Break Spectrum Analysis 6.B-14 6.B.6.2 Single-Loop MAPLHGR Determination 6.B-14 6.B.6.3 Small Break Peak Cladding Temperature 6.B-15 6.B.7 REFERENCES 6.B-16 LSCS-UFSAR 6.B-iii REV. 13 ATTACHMENT 6.B LIST OF TABLES NUMBER TITLE 6.B-1 Input Parameters and Initial Conditions for Transients and Accidents (Analysis of Initial Core) 6.B-2 Sequence of Events for Figure 6.B-3 (Typical) 6.B-3 Sequence of Events for Figure 6.B-4 (Typical) 6.B-4 Sequence of Events for Figure 6.B-5 (Typical, GE) 6.B-5 Summary of Event Results (Typical) LSCS-UFSAR 6.B-iv REV. 13 ATTACHMENT 6.B LIST OF FIGURES NUMBER TITLE 6.B-1 Illustration of Single Recirculation Loop Operation Flows 6.B-2 Main Turbine Trip With Bypass Manual Flow Control (Typical) 6.B-3 Feedwater CF With One-Pump Operation (Typical) 6.B-4 Load Rejection With One Pump Operation 6.B-5 Seizure of One Recirculation Pump (Typical) 6.B-6 Decay Ratio vs. Power Curve for Two-Loop and Single-Loop Operation (Typical, GE) 6.B-7 Uncovered Time vs. Break Area - LSCS Units 1 and 2 Suction Break LPCS/DG Failure

LSCS-UFSAR TABLE 6.B-1 (SHEET 1 OF 2) TABLE 6.B-1 REV. 13 INPUT PARAMETERS AND INITIAL CONDITIONS FOR ANALYSIS OF INITIAL CORE TRANSIENTS AND ACCIDENTS FOR SINGLE-LOOP OPERATION (INITIAL CORE VALUES)**

1. Thermal Power Level, Analysis Value, % NBR 78 2. Steam Flow, lb/h 10.71 x 10 6 3. Core Flow, lb/h 68.26 x 10 6 4. Feedwater Flow Rate, lb/sec 2976
5. Feedwater Enthalpy, Btu/lb 367.3
6. Vessel Dome Pressure, psig 1001
7. Vessel Core Pressure, psig 1006
8. Turbine Bypass Capacity, % NBR 25
9. Core Coolant Inlet Enthalpy, Btu/lb 516.8
10. Turbine Inlet Pressure, psig 969.3
11. Fuel Lattice 8 x 8
12. Core Average Gap Conductance, Btu/sec-ft 2-°F 0.1662 13. Core Leakage Flow, % 12 14. Required MCPR Operating Limit 1.41
  • 15. MCPR Safety Limit 1.06 16. Doppler Coefficient, -¢/°F Nominal EOC-1 Analysis Data 0.221 0.221 17. Void Coefficient, -¢/% Voids Nominal EOC-1 Analysis Data for Power Increase Events Analysis Data for Power Increase Events 7.429 12.63 7.01 18. Core Average Rated Void Fraction, % 0.414 19. Scram Reactivity, Analysis Data FSAR Figure 15.0-2 20. Control Rod Drive Speed, position versus time FSAR Figure 15.0-2
  • Dual-pump operation operating limit for 63%

core flow, obtained by applying K f-curve to operating limit CPR at rated condition (1.24).

    • For cycle specific inputs, see the transient analysis input parameters.

LSCS-UFSAR TABLE 6.B-1 (SHEET 2 OF 2) TABLE 6.B-1 REV. 13 (INITIAL CORE VALUES)

21. Jet Pump M Ratio 3.20 22. Safety/Relief Valve Capacity, % NBR at 1165 psig Manufacturer Quantity Installed 111.5 Crosby 18 23. Relief Function Delay, sec 0.1 24. Relief Function Response, sec 0.1 25. Setpoints for Safety/Relief Valves Safety Function, psig

Relief Function, psig 1150, 1175, 1185, 1195, 1205 1076, 1086, 1096, 1106, 1116

26. Number of Valve Groupings Simulated Safety Function, No. Relief Function, No.

5 5 27. Vessel Level Trips, Inches above Steam Dryer Skirt Bottom (Instrument Zero) Level 8 - (L8) Level 3 - (L3) Level 2 - (L2) 55.5 12.5 -50 28. RPT Delay, sec 0.14 29. RPT Inertia Time Constant for Analysis, sec 6.0

LSCS-UFSAR TABLE 6.B-2 TABLE 6.B-2 REV. 13 SEQUENCE OF EVENTS FOR FIGURE 6.B-3 (INITIAL CORE RESULTS) TIME (sec) EVENT 0 Initiate simulated failure of 160% upper limit on feedwater flow. 5.46 L8 vessel level setpoint trips main turbine and feedwater pumps.

5.47 Reactor scram trip actuated from main turbine stop valve position switches. 5.47 Recirculation pump (RPT) actuated by turbine stop valve position switches. 5.57 Main turbine stop valves closed and main turbine bypass valves start to open. 8.01, 8.29 Relief valves actuated (groups 1, 2). 11.67, 12.23 Relief valves close (groups 2, 1). 29.32 Main turbine bypass valves closed. 48.35 Main turbine bypass valves start to open.

LSCS-UFSAR TABLE 6.B-3 TABLE 6.B-3 REV. 13 SEQUENCE OF EVENTS FOR FIGURE 6.B-4 (INITIAL CORE RESULTS) TIME (sec) EVENT -0.015 (approx) Turbine-generator dete ction of loss of electrical load 0 Turbine-generator power load unb alance (PLU) devices trip to initiate turbine control valve fast closure 0 Turbine bypass valves fail to operate 0 Fast control valve closure (FCV) initiates scram trip 0 Fast control valve closure (FCV) initiates recirculation pump trip (RPT) 0.039 Turbine control valves closed 0.14 Recirculation pump motor circuit breakers open, causing decrease in core flow to natural circulation 1.98, 2.12, 2.27, 2.45, 2.74 Relief valves actuated (groups 1, 2, 3, 4, 5) 4.58, 4.91, 5.20 (est) Relief valves close (groups 5, 4, 3) 5.30 Vessel level reaches L8 setpoint, feed water pumps tripped (not simulated) 5.50, 5.84 (est) Relief valves close (groups 2, 1) 12.00 Relief valves actuated (group 1) 19.0 (est) Relief valves close (group 1) 33 2 Relief valves actuated (group 1) 38.0 (est) Relief valves close (group 1)

LSCS-UFSAR TABLE 6.B-4 TABLE 6.B-4 REV. 13 SEQUENCE OF EVENTS FOR FIGURE 6.B-5 (INITIAL CORE RESULTS) TIME (sec) EVENT 0 Single pump seizure was initiated, core flow decreases to natural recirculation 1.23 Reverse flow ceases in the idle loop 4.93 High vessel water level (L8) trip initiates main turbine trip 4.93 High vessel water level (L8) trip initiates feedwater turbine trip 4.93 Main turbine trip initiates bypass operation

4.96 Main turbine valves reach 90% open position and initiate reactor scram trip 5.03 Turbine stop valves closed and turbine bypass valves start to open to regulate pressure 10.0 (est) Turbine bypass valves start to close 25.1 Turbine bypass valves closed 38.6 Turbine bypass valves reopen on pressure increase at turbine inlet

LSCS-UFSAR TABLE 6.B-5 TABLE 6.B-5 REV. 13

SUMMARY

OF EVENT RESULTS SINGLE RECIRCULATION LOOP OPERATION (Typical) PARAGRAPH F IGURE DESCRIPTION M AXIMUM N EUTRON F LOW (% NBR) M AXIMUM D OME PRESSURE (psig) M AXIMUM VESSEL PRESSURE (psig) M AXIMUM S TEAMLINE PRESSURE (psig) M AXIMUM C ORE AVERAGE SURFACE HEAT F LUX (% of Initial) MCPR FREQUENCY* C ATEGORY 6.B.3.2 6.B-3 Feedwater flow Controller Failure (Maximum Demand) 119.3 1112 1126 1103 108.8 1.26 a 6.B.3.3 6.B-4 Generator Load Rejection 135.6 1138 1153 1128 103.5 1.29 b 6.B.3.4 6.B-5 Seizure of Active Recirculation Pump 78.0 1021 1031 1018 100.0 1.17 c

__________________________

  • a = incident of moderate frequency; b = infrequent incident; c = limiting faults

' ,-/ . ., c IA. B. c. D. LSCS-UFSAR POINT OF CRITICAL FLOW RECIRCULATION LINE CLEANUP LINE COMBINED AREA OF ALL JET POMP NOZZLES ASSOCIATED WITH TEE BROKEN LOOP BOTTOM HEAD DRAIN REACTOR VESSEL REORCULATION LOOP AECIRCULA TION LOOP --------* PVMP TO REACTOR WATER CLEANuP SYSTEM SCHEMATIC SHOWIN3 COMPOSITION OF TOTAL RECIRCULATION LINE BREAK AREA LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-1 DIAGRAM OF THE RECIRCULATION LINE BREAK LOCATION FIGURE 6.2-1 REV. 11 -APRIL 1996 REV. 22, DECEMBER 2015 REV. 22, APRIL 2016 LL.J t.L.l <n '" (J) "' t.1..1 u.J """"' (\_Cl .. *-' .. J -'-' >: f.' .. CY. UJ "--CJ) Le i fY. en w CJ) ..J lJJ ....I oc <( Q_ VI I-<( z _, 8 0 (0 LSCS-UFSAR


. 0 0 .. "-' VISd 0 .,.. 0 '" 0 (\J (J) 0 z 0 u uJ (f) L1.J 2: 1-1 0 ,_ -< . iii 5l

  • 0 N......, 0 LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-2 SHORT-TERM PRESSURE RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt)

MAY REV. 22, DECEMBER 2015 REV. 22, APRIL 2016 LSCS-UFSAR -*--r------1---il-----i tY. n::

l::l " !h w. UJ t.\. ...J _, <( 1--8 --___ ..___,. ' 0 If) to --* 0 *fl N 0 I.I> -.. .. ... \ N \ I ' () "° . 0 N r:n 0 z 0 u w U) I.I.I :>-: 1-1 .;1--"" ------I I I I ' ' -* .; .* 0 l/) J 3HnlVH3dW31
fi LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-3* SHORT-TERM TEMPERATURE RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt)

J t I .,...N M L SC S-U F SAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-4 CONTAINMENT VENT SYSTEM FLOW RATE VS. TIME FOR RECIRCULATION LINE BREAK (At 3434 MWt) REV. 14, APRIL 2002 I LSCS-UFSAR 5.'to 3.LOG TIME-SEC 27000328 121'\.&LA SALLE , ow PRESSURE.CONT RESPONSE TO 2 WW PRESSURE.LOCA CASE.C SIL 836 I c=:?i II I.2---\, I I---e::::::::: i-!i--i-I1.2.o o'to.60.SA'rLiSS 013002 LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-5a LONG TERM CONTAINMENT PRESSURE RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt)CASE C (2 PUMPS, 1 HEAT EXCHANGER WITHOUT CONTINUOUS SPRAY)FIGURE 6.2-5a REV 15, APRIL 2004 < ...... U"l a_ I w 15 (fl U1 w.J a:: c_ !ll I I I i G O. : I h ,_ .... ... 't(). . . -.... 20. ... -... .... o. r . 10 1 :/fl22C"" n LSCS-UFSAR I I I :ti ! I I *' ,, ' I j I LA. S1\L LE I 't'\Jl.Jf rn j _:)CA C A S E C S CG6 *0 l j I I I I I I I I I -... : I .* -' I , . .--.. I -**-I, ' I I ., I i I ' ' I , I 10 2 10 5 10* L0 5 TIME -SEC LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS RESPORT FIGURE 6.2-5b l,.QNG TERM CONTAINMENT PRESSURE RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt) Case C with GE SC06-01 CONSIDERATION (5 PUMPS, 1 HEAT EXCHANGER WITHOUT CONTINUOUS SPRAY) REV. 18. APRIL 2010 ' '100. 300 I 1 --...... ._ -..__ ....... ----I I I I I I I ' I 1 0 0 l. S A Y LE S 27000329 0 I 300(! l 2 I 't

  • 8 LSCS-UFSAR LA SALLE I I ' OW AIRSPACE TE MP CONT RESPONSE TO LOCA CASE C SIL 636 l I L 2. 3. it. 5. LOG TIME -SEC LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-6a LONG TERM DRYWELL TEMPERATURE RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt) CASE C (2 PUMPS , 1 HEAT EXCHANGER WITHOUT CONTINUOUS SPRAY) FIGURE 6.2-6a REV 15, APRIL 2004 LSCS-UFSAR ! , I , -)h '" -i::: t=I ! : I l_A 9t...:__E. I I **VO f-----------

---1 W l1 2£S Vi'(E .. __ro__l_ ----.. --*-----t---******--------L -*------. t i L GC A CAS E C SC<Jj-0!; ! , 1[ I I; i t-' ' \' i I I I ' 20 0. --r* t----< e r: w L..J I-I-L 100. 10 1 10 1 ! T lMi:. -S EC LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS RESPORT FIGURE 6.2-6b LONG TERM DRYWELL TEMPERATURE RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt) Case C with GE SC06-01 CONSIDERATION (5 PUMPS, l HEAT EXCHANGER WITHOUT CONTINUOUS SPRAY) REV. 18. APRIL 2010 s.*<*L i:'.S G l l ;3 l .; . 8 LSCS-UFSAR LA SALLE CONT RESPONSE TO LOCA CASE C S IL 636 1 SP TEMP '1. $. LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-7a LONG TERM SUPPRESSION POOL RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt) CASE C (2 PUMPS, 1 HEAT EXCHANGER WITHOUT CONTINUOUS SPRAY) FIGURE 6.2-7a REV 15, APRIL 2004 LSCS-UFSAR : ... -Mp I I ii 't" ; A C;\L: E i I ' 1 I ---------LWl>!L-3l:SP-ONSL-1:U+---------------r*-*---*


* .-I L OCA CASt c SC06-0 i 1 I 3)0. r I *-------(.'.) I _; 0 L : 100. r 8S [ L l-o. l____i I I I I ' ' t_I I I 1111 I I I I I I I cu **=-* 10 1 10* TIME. -SEC LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS RESPORT FIGURE 6.2-Th LONG TERM SUPPRESSION POOL RESPONSE FOLLOWING A RECIRCULATION LINE BREAK (At 3559 MWt) Case C with GE SC06-01 CONSIDERATION (5 PUMPS, 1 HEAT EXCHANGER WITHOUT CONTINUOUS SPRAY) REV. 18. APRIL 2010 LSCS-UFSAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-8 PRESSURE RESPONSE FOR A MAIN STEAMLINE BREAK (At 3434 MWt) REV. 14, APRIL 2002 I LS C S-U F SAR ., LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-9 TEMPERATURE RESPONSE FOLLOWING A MAIN STEAMLINE BREAK (At 3434 MWt) REV. 14, APRIL 2002 I LSCS-U FS AR ! LASALLE COUN1Y STATION UPDATED FINAL SAFE1Y ANALYSIS REPORT FIGURE 6.2-10 PRESSURE RESPONSE FOR 0.1 FT 2 LIQUID LINE BREAK (At 3434 MWt) REV. 14, APRIL 2002 i;i/ m:: :'.) t-.. m"' rr:2 .. 10 tf ""Z' ... o """' )( * "' a; c 0 5 2 N :: .... Q LSCS-UFSAR j w ::f LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-11 TEMPERATURE RESPONSE FOR 0.1 FT2 LIQUID LINE BREAK (At 3434 MWt) REV. 14 , APRIL 2002 I meccs PUMP REACTOR VESSEL SUPPRESSION POOL u... hs .. -ws, RHA HEAT EXCHANGER ho = ENTHALPY OF WATER LEAVING REACTOR , Btu/lb mo 0 .. FLOW RATE OUT OF REACTOR, lb/sec hs = ENTHALPY OF WATER IN SUPPRESSION POOL. Btu/lb

  • FLOW OUT OF SUPPRESSION POOL. lb/sec qHx = HEAT REMOVAL RATE OF HEAT EXCHANGER, Btu/sec Mw 5 .. MASS OF WATER IN SUPPRESSION POOL qO = CORE DECAY HEAT RATE, Btu/sec q = STORED ENERGY RELEASE RATE, Btu/sec LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-12 SCHEMATIC OF ECCS LOOP REV. 0 -APRIL 1984 c( 8----c( Q c-f c( w a: <( c( w a: CD w !;; > In > cc <( f -------------

JIN ---Q d Q N d ---+--0 :.' LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-13 ALLOWABLE STEAM BYPASS LEAKAGE CAPACITY REV. 0 -APRIL 1984 l 1100.----------------------------------------------------------------------. 1050 1000 950 :i J 150 w cc ::::> Cl) Cl) w cc Q. 100 50 STEAM FLOW ONLY THROUGH LEAKAGE PATH NO CONDENSATION ON POOL SURFACE PRIMARY SYSTEM ANO DRYWELL ARE BOTH AT CONTAINMENT MAXIMUM ALLOWABLE PRESSURE OF 45 psig AT THE ENO OF BLOWDOWN TIME NOTE: APPLICABLE WHEN THE ALLOWABLE DRYWELL-TO-SUPPRESSION CHAMBER LEAKAGE CAPACITY EXISTS LA SALLE COUNTY STATION UPDATED FINAl SAFETY ANALYSIS REPORT FIGURE 6.2-14 CONTAINMENT RESPONSE TO LARGE PRIMARY SYSTEM BREAKS REV. 0 -APRIL 1984 Ci ! w a: :::::> (I) CJ) w a: Q. I 50 45 40 35 30 25 20 15 10 5 STEAM FLOW ONLY THROUGH LEAKAGE PATH NO CONDENSATION ON POOL SURFACE SUPPRESSION CHAMBER PRESSURE REACHES 30 psig NOTE: APPLICABLE WHEN THE ALLOWABLE ORYWELL-TO-SUPPAESSION CHAMBER LEAKAGE CAPACITY ex ISTS OPERATOR ACTION 10min --......... .--5min LEAKAGE FLOW CEASES o .... ---------------------------------------------------------- ..... ------* TIME LA SALLE COUNTY STATION UPDATED FINAt SAFETY ANALYSIS REPORT FIGURE 6.2-15 CONTAINMENT RESPONSE TO SMALL PRIMARY SYSTEM BREAKS REV. 0 -APRIL 1984 37 38 SOURCE 0 INDICATES NODE Q INDICATES INCOMPRESSIBLE -VENT PATH INDICATES COMPRESSIBLE VENT PATH /""' -VENT PATH TO CONTAINMENT 36 LA SALLE-COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-16 NODALIZATION SCHEMATIC FOR RECIRCULATION LINE BREAK 0 -APRIL 1984 31 32 INDICATES NODE 0 6 INDICATES INCOMPRESSIBLE VENT PATH INDICATES COMPRESSIBLE VENT PATH VENT PATH TO CONTAINMENT 30 LA SALLE*COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-17 NODALIZATION SCHEMATIC FOR FEEDWATER LINE BREAK REV. 0 -APRIL 1984 CD a:> CD CD <"('l')('l')('I') I I I I 11.l*-c.o (1)(1)(1)(1) ...J...J...J...J C!H!)C!:>C!) >>>> 1111 EHl+X 'o -u L&.J N CJ') -er> 'o ...,. 'o -oo; 09£ 00£ ooi OSl oot OS 0 COISdl ddIO -------------------------------- ...... LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-18 VS. LOG t ABOUT BREAK -RECIRCULATION LINE BREAK REV. 0 -APRIL 1984 I I vl v2 V3 SIMULTANEOUS HEAD SPRAY AND RPV HEAD VENT LINE BREAK VALVE OPENING AT A DIFFERENTIAL PRESSURE OF 5.2 PSID Head Cavity Drywell Wetwell 0 Volumes 6 Junctions LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6 . 2-1 9 HEAD SPRAY LINE BREAK NODALIZATION REV. 0 -APRIL 1984 .l < vl v2 V3 0 6 -RECIRCULATION LINE BREAK VALVE OPENING AT A TIME = 0.824 SECONDS Head Cavity Drywell Wetwell Volumes Junctions LA SALLE COUNTY STATION Lli=>DATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-20 RECIRCULATION LINE BREAK NODALIZATION REV. 0 -APRIL 1984 0£. a::ia:>CDCDCJl ('11('f)(l')(l')(Y) I I I II -"'(l') .... l.D " ... . CJ)(/)U'JCJ)(/) _J...J...J...J...J <<> C!) C!H!HO >>>>> I I II I e .. 09 OS 0 LI? 0 IJ) 0 0 * . 0 IJ) <'? 0 0 <'? 0 u w IJ) (/) c-J .._, OW J:: 0 0 I.I) -. 0 0 -. 0 IJ) 0 . 0 0 0 . Ot 0* oz; Ot 0 oF-COISdl jjIO LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT VS.t FOR LOWER REACTOR SKIRT FiGURE 6.2-21 PRESSURE RESPONSE FOR RECIRCULATION LINE BREAK REV. O _ (SHEET l of 9) APRIL 1984 VS. t FOR UPPER REACTOR SKIRT LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-21 PRESSURE RESPONSE FOR RECIRCULATION LINE BREAK REV. o _ (SHEET 2 of 9) APRIL 1984 Cl)O::)CIOQO (f")('l')('l')('I') 1 I I 1 NC">*11> .... _. ....... . . . . (I) Cf.HI) rn -'-'-'-' C)G)S)S) >>>> 1111 E> '4 )( 0 0 to 0 0 .. . 0 tr.I ('I') 0 0 ('I') 0 u w ow :t: -..... 0 N 0 &I) -. 0 0 -0 tr.I 0 0 0 0 OL 09 -OS o* os Ol -0 JJ F-(01Sdl VS. t FOR LOWER RECIRCULATION NOZZLE SE CTI ON LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-21 PRESSURE RESPONSE FOR RECIRCULATION LINE BREAK REV. 0 -(SHEET 3 of 9) APRIL 1984 OS£ 00£ 0 LI) 0 LQ .... . 0 0 '"! 0 LI) ("> C) 0 ("> C) 0 l.IJ l: -t-. 0 LO -. 0 0 -. 0 LO 0 0 0 0 OSI '..0.01 -OS 0 COISdl ddIO LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT VS. t ABOUT BREAK FIGURE 6. 2-21 PRESSURE RESPONSE FOR RECIRCULATION LI NE BREAK REV. 0 _ (SHEET 4 of 9} APRIL 1984 / 1 (f.)(/.)fnfn -'-'-'-' CQC)C)C) >>>> I 111 E>,. +X 0 "? 0 Ill ... . c 0 ... 0 ID (I') . 0 0 (I") 0 u LtJ 14 (/) N-01.tJ I: -...... 0 C"! 0 Ill -. 0 0 -. 0 Ul C? 0 0 0 . OL -09 OS Ot 0£ Di Ot -0 oF-COISd) ddIO VS. t FOR UPPER RECIRCULATION NOZZLE SECTION LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-21 PRESSURE RESPONSE FOR RECIRCULATION LI NE BREAK REV. o _ (SHEET 5 of 9) APRIL 1984 OL (\') "' "' "' "' l I I l) Cf.HI> 0 0 Ct> -'-'-'-'-' C>C>C>C>C> >>>>> l l l I I OS 0 0 In .. 0 0 * . 0 an (\') 0 0 (\') . 0 In (/) CN -Oi.J 5 .... 0 CN . 0 U> -. 0 0 -. 0 an 0 . 0 0 0 . -0£ 01 -0 oP-COISdl LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT VS. t FOR MID SECTION FIGURE 6.2-21 PRESSURE RESPONSE FOR RECIRCULATION LI NE BREAK REV. 0 _ (SHEET 6 of 9) APRIL 1984 J .OL (l')(l')(l')(I') I l I ) Cl) fl) U)q, ...J..J...J..J GE>C>CHD >>>> 09 OS c ID . c ID .. c c .... . c ID (I') . c c (I') c oJ 5 c . c ID -. c c -. c ID c . c c Ot OS .0 l Dfi COISdl LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT 6P VS. t FOR LPCI NOZZLE SECTION FIGURE 6. 2-21 PRESSURE RESPONSE FOR RECIRCULATION LI NE BREAK REV. 0 _ (SHEET 7 of 9) APRIL 1984 -Ol o-c-1(") (J)(J)(f.)CI) ..J..J...J..J CD CD il)G:) >>>> OS O? 0£ OZ 01 0 COISdl 0 0 If.) .... 0 0 ..,. 0 If.) '.Y? 0 0 ('I') 0 u w Ou.J l:: _. ..... 0 '-'t 0 Ill -0 0 -0 In 0 0 0 <=? .oF-VS. t FOR FEEDWATER NOZZLE SECTION LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-21 PRESSURE RESPONSE FOR RECIRCULATION LI NE BREAK REV. o _ (SHEET 8 of 9) APRIL 198 4 <Dt"-Ul t"')('t')('t') ...J..J...J

(!.HD

>> I 11 EJ*)'411 £Z zz tz oz Ct:fISdl I CONTAINMENT PRESSURE RESPONSE 0 0 IJ)

  • 0 0 0 IJ) 0 0 Ct? 0 u w IJ) (/) N....., ow I: ..... 0 N 0 IJ) -0 0 -0 LO 0 . 0 0 0 61 St ll 91 Sl SS3tld {) t\ t:f LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-21 PRESSURE RESPONSE FOR* RECIRCULATION LINE BREAK REV. 0 _ (SHEET 9 of 9) APRIL 1984 000 (r)(W')('I')

l l ) NN Cl)(l)(I) ...J...J...J t!)t!)C!) >>> l I I e,..+ OOt OS£ 00£ 'o w LU N CfJ 'o-LU r: osz osi oot OS 0 (OISd) jjJO p;;.....;;;;.;;;;.;..;;----------------------------. LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-22 VS. LOG t ABOUT BREAK -FEEDWATER LINE BREAK REV. 0 -APRIL / 9£ II.> <.er-GO .... CJ)(Jl(/)(/) ...J ...J_J...J a::><<:>G:>G:> >>>> I! I I 0£ sz oz s l 0 t s (OISdl 0 "? 0 Lf.) 0 0 0 Lf.) (T) 0 0 <'! 0 u w in en N....., ow l:: -I-0 0 tf.) ... . 0 0 -0 tf.) 0 0 0 0 VS. t FOR LOWER REACTOR SKIRT LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. 0 -(SHEET 1 of 8) APRIL -:c..;Ct?"": (f.)(/J(f.)(I.) -1....J...J-I !!:Ja:JISHD >>>> II 11 EH+X VS. t FOR UPPER REACTOR SKIRT L.IJ .... 0 0 .... 0 I/) (Y') 0 0 (Y') 0 u w I/) (/) N......, ow l:: IJ) -0 0 -0 IJ) 0 0 -I-LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. 0 -(SHEET 2 of 8) APRIL J o-N en ........... . . . . II 11 VS. t FOR RECIRCULATION NOZZLE SECTION lf.) ..... 0 0 ..... 0 lf.) (T) . 0 0 (Y') 0 u w IJ) <.n t\I -ow I: 0 t\I . 0 LO -0 0 -. 0 IJ) 0 0 -.... LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. 0 -(SHEET 3 of 8) APRIL 1984 ..................... ('P)(¥')(YJ('l")(f) II I I I ('l')*IJ)(QC"'- ... .............. . . . . . tJ:lU>U:HJ:l(I:) -1..J..J..J..J co Cl) co Cl) a:> >>>>> I 1111 E),.+X* 9£ 0£ si oz 9t lOISdl VS. t FOR MID SECTION 0 Lf.) o* lO .... 0 0 "!' 0 LI) ('I") 0 0 ('I") . 0 u w LI) (f) c-.1 ....... ow l: ..... 0 0 lO -. 0 0 -. 0 LI) 0 . 0 0 0 . Ot 9 0 .:l.:JI a LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. o _ (SHEET 4 of 8) APRIL 198L ...... ............. (t"J('f')(\')C')(\') I I I I I 000>0-N (/) (/l(/)(J) ti) ....J....J...J...J...J CD CD<<HD<D >>>>> 11111 *>'4-t-X* SS OS sz oz St (01Sdl VS. t FOR LPCI NOZZLE SECTION 0 II) 0 IJ) "! 0 0 .... . 0 II) (f') . 0 0 0 u w II) (J) N._ ow l: -I-0 N 0 LI) -. 0 0 -. 0 IJ) 0 . 0 0 C? Ot 9 0 ga .:L:H 0 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. 0 -(SHEET 5 of 8) APRIL 1984 ooo (Y') (T) (Tl I I I g}cr>* tn UHl'J ...J..J....J a:> CD<D >>> I II *)'4 + 09* 00£ osz 00{; COISdl 6P VS. t ABOUT BREAK 0 If.) . 0 ID ..... . 0 0 .... . 0 LI) <"! 0 0 ('f) . 0 u w If.) (/) C'J -ow l:: ..... 0 C'J 0 LO -. 0 0 -. 0 lf.) 0 0 0 0 ost oot 09 0 o!F-d.:HO LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LI NE BREAK REV. O _ (SHEET 6 of 8) APRIL 1984 I SE 0£ 0000 ('l')('l')('l')(t') I I I I (J')t/)CJ)U) ....J....J....J....J I!) C!> I!) C!> >>>> I I 11 sz oz 9 t 0 t s (OISd) ddIO 0 If.) 0 If.) ...,. 0 0 "'!' 0 11.l "? 0 0 "? 0 u w It.) (/) N'-' ow l:: f-0 0 lt.) -. 0 0 -. 0 II) 0 0 0 0 0 t.P VS. t FOR FEEDWATER NOZZLE SEC TI ON LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. 0 -{SHEET 7 of 8\ APRIL 1984 I I I EJ*Hl CONTAINMENT PRESSURE RESPONSE ll 9t . 0 0 ..... 0 II.) ('I') 0 0 ('I") 0 ow l:: 0 C'J 0 Lil ... . 0 0 -. 0 Lil 0 . 0 I-LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-23 PRESSURE RESPONSE FOR FEEDWATER LINE BREAK REV. 0 -(SHEET 8 of 8) APRIL 1984 40 -30 0 en a.. -LU 0::: :::::> en en 20 LU 0::: a.. LU <.!> <t 0::: LU > 10 <t 0 2 HEAD CAVITY RESPONSE FOR BREAK IN THE HEAD CAVHY 3 4 5 6 7 8 TIMECSECONDS) LA SALLE COUNTY STATION UPDATED FINAl SAFETY ANALYSIS REPORT FIGURE 6. 2-24 PRESSURE HISTORIES OF NODES FOR WORST BREAK CASES {SHEET 1 of 4) REV. 0 -APRIL 1984 40 ,..... 0 30 CJ) a.. -l.&J 0:: :::> CJ) CJ) 20 l.&J 0:: a.. w (!) <( 0:: l.&J 10 > <( 0 2 DRYWELL RESPONSE FOR BREAK IN THE HEAD CAVITY 3 4 5 6 7 8 TIME CSECONDS) LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-24 PRESSURE HISTORIES OF NODES FOR WORST BREAK CASES (SHEET 2 Of 4) REVP 0 -APRIL 1984 I ,...... 0 en a.. .._, UJ a:: ::::> en en UJ a:: a.. UJ <.!> <t a:: UJ > <t 60 50 40 30 20 iO 0 o.o DRYWELL RESPONSE FOR RECIRCULATION LINE BREAK IN THE DRYWELL 0.5 1.0 1.5 2.0 TIME <SECONDS) LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-24 PRESSURE HISTORIES OF NODES FOR WORST BREAK CASES (SHEET 3 of 4) REV. 0 -APRIL 1984 60 -0 50 CJ) a.. -LU 40 er :::::> CJ) CJ) 30 LU er a.. LU 20 (.!) I <t er LU > 10 <t 0 o.o I 0.5 HEAD CAVITY RESPONSE FOR RECIRCULATION LINE BREAK IN THE DRYWELL TIME 1.0 1.5 2.0 <SECONDS) LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-24 PRESSURE HISTORIES OF NODES FOR WORST BREAK CASES (SHEET 4 of 4) REV. 0 -APRIL 1984 I 10 9 ,...,, 8 0 en a.. 7 -..J <t I-6 z w 0::: w LL. 5 LL. 0 w 4 0::: :::> en en w 3 0::: a.. 2 0 7.0 PSID PEAK BULKHEAD PLATE DIFFERENTIAL P ES SURE 2 BREAK IN HEAD CAVITY 3 4 5 6 7 8 TIME (SECONDS) LA SALLE COUNTY STATION UPDATED FINAL ANALYSIS REPORT FIGURE 6.2-25 PRESSURE DIFFERENTIAL ACROSS THE BULKHEAD PLATE FOR THE WORST BREAK CASES (SHEET 1 of 2) REV. 0 -APRIL 1984 I 2 0 -I ,...._ 0 CJ) -2 a.. -_J <( -3 ..... z . LLJ a:: -4 LLJ LI.. LI.. 0 -5 LLJ a:: :::> CJ) -6 CJ) LLJ a:: a.. 8 -9 0 0.5 RECIRCULATION LINE BREAK IN THE DRYWELL 1.0 1.5 2.0 TIME <SECONDS) LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-25 PRESSURE DIFFERENTIAL ACROSS THE BULKHEAD PLATE FOR THE WORST BREAK CASES (SHEET 2 of 2) REV. 0 -APRIL 1984 LSCS-UFSAR >> u{ld LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-26 VESSEL LIQUID BLOWDOWN RA TE (At 3434 MWt) REV. 14, APRIL 2002 I LSCS-UFSAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-27 VESSEL STEAM SLOWDOWN RATE (At 3434 MWt) REV. 14, APRIL 2002 I LS CS-UFSAR LASALLE COUN1Y STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-28 MAIN STEAMLINE BREAK RESPONSE PARAMETERS BLOWDOWN FLOW (At 3434 MWt) REV. 14, APRIL 2002 I LSCSUFSAR Note: This figure is extracted from original analysis and is presented here as historical and representative of comparable response as would be expected for current analysis. LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2 29 TEMPERATURE RESPONSE OR REACTOR VESSEL (At 3434 MWt) REV. 22, APRIL 2016 LSC S UFSAR Note: This figure is extracted from original analysis and is p r esented here as historical and representative of comparable response as would be expected for current analysis. LASALL E CO UNTY ST ATION UPDATE D FINA L SAFE TY A NALYSIS RE PO RT FIGURE 6.2-30 SENS IBLE ENERGY TRAN SIEN T IN T HE REACT OR VE SSE L AN D INT ERNAL ME T A L S (At 3434 MWt) REV. 22 , APRIL 2016 I DETAIL {a) DETAIL (b) DETAIL _(c) RPV AO TC so or MO NOTE: TC DESIGNATES TEST CONNECTION. Containment MO TC so LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 1 of 10) REV. 9 -APRIL 1993 LSCS-IJFSAR FIGURE 6.2-31 RPV Note 1 AO CONTAINMENT DETAIL (d) DETAIL (e) DETAIL (f) MO, SO Rt!* MO. SO Note 1: The Air Actuators are removed from Check Valves 2E12-F050A/B. flGURE 6 2-Jt re TC MO. so MO, SO LA SAU..E COUNTY STATION UPOATEO SAFETf ANALTS!S REPORT' f1GUR£ 6.2-31 CONTAINMENT VALVE AAAANCEMENTS (SHEET 2 OF 10) REVISION 20, APRIL 2014 DETAIL (g) DETAIL (h) DETAIL (i) RPV AO LSCS-UFSAR LSCS-UFSAR FIGURE 6.2-31 CONTAINMENT AO so MO MO TC TC TC MO so MO MO MO TC LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VAf.VE ARRANGEMENTS (SHEET 3 OF 10) REV. 15, APRIL 2004 DETAIL ( j) DETAIL (k) DETAIL ( 1 ) ACCUMULATOR SUPP POOL Containment so or M EJ MO LA SALLE.COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 4 of 10) REV. 0 -APRIL 1984 / I DETAIL (m) DETAIL (n) RPV SUPP POOL Containment MO D Ji--------Jl I TC LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 5 of 10) REV. 0 -APRIL 1984 DETAIL (o) DETAIL (p) RPV SUPP POOL RPV SUPP POOL CONTAINMENT CONTAINMENT LSCS-UFSAR FIGURE 6.2-31 SEE DETAIL (p) (UNIT 1 ONLY) SEE DETAIL {p) (UNIT 2 ONLY) SEE DETAIL (o) MO TC LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 6 OF 10) REV. 14, APRIL 2002 DETAIL (q) DETAIL (r) RPV SUPP POOL SUPP POOL LSCS-UFSAR CONTAINMENT MO MO MO MO LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 7 OF 10) REV. 22 , APRIL 2016 DETAIL ( s) DETAIL ( t) DETAIL ( u) RPV RPV I RPV AO or MO Containment AO TC Containment LA SALLE COUNTY STATION UPDATED FINAL "SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 8 of 10) REV. 3 -APRIL 1987 I DETAIL (v) RPV LSCS-UFSAR FIGURE 6.2-31 CONTAINMENT TC INSTRUMENT RPV CONTAINMENT (SEE NOTE 2) I DETAIL (w) DETAIL (x) RPV RESTRICTING ORIFICE NOTE 1 CONTAINMENT RESTRICTING ORIFICE NOTE 1 NOTE 1: IN THOSE CASES WHERE INSTRUMENT LINES ARE DIRECTLY CONNECTED TO THE CONTAINMENT ATMOSPHERE. THE INBOARD PORTION rs BETTER REPRESENTED BY THE INBOARD PORTION IN DETAIL (v); HOWEVER, THE OUTBOARD PORTION REMAINS AS SHOWN HERE. ITE 2: WHERE PROVIDED. SEE CURRENT P & ID. FIGURE 6.2-31 EXCESS FLOW CHECK VALVE EXCESS FLOW CHECK VALVE EXCESS FLOW CHECK VALVE INSTRUMENT INSTRUMENT INSTRUMENT LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 9 OF 10) REVISION 13 DETAIL (y) DETAIL (z) DRYWELL WETWELL Containment Containment TC TC MO LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 10 of 10) REV. 0 -APRIL 1984 Dl1c:y11lgp1 The CLOC repr***nt1

  • r*t .. boWldari** (valve1, flaa9e1, pUlllp aeal1, etc.) which are ao111allJ
      • led cloaed, autcmatlcallJ clo*ed, or are cloeed with a r91110t* *anual operator to acccmpli*b contai .... at l1olation.

Te1t Node l i* repr***nted by 10114 lln*** Tb* ICIC Sr*t .. 11 alivned to take 1uctloo frcm th* coadenaate 1tor1199 teak (CS'l') and tbe full flow te1t return line i* alivned to the CST. Valve* 151-Fll2 aad Flll will beccme prlmarr eoatai ... at i1olatlon valve1. Te1t Node 2 i* repre1eated bf da1hed li**** Th* ICIC Br*t .. i1 alivn*d to take 1uctioa frcm the Suppre11lon Pool (IP) and the flow taet return line l* aligned to the SP. Valve* 151-Fll2 aDd 151-fJIJ will ao loagar be contai ... at leolatloa valvee. Valve* 1s1-ro22 and rost will becoae coatai .... at ieolatioa valve1, and 1pectacle flaage 151-0311 (blind elde) will be a coatal ... at iaolation bouadar7. SUPPRESSION POOL CONTAINMENT PINITllTION H-77 INSIDI OUTSIDE ----------, I I I * ' t ' ' -- ... I I t I . '\ llf1-f1-et I u' ; * * 'r -, _,,.,_Pf.it(} . ' ***. I J f. Lf 1 . w [C'1.oc!' DETAIL AA ,r.----111 Ill DETAIL (AB) DETAIL (AC) RPV RPV LSCS-UFSAR FIGURE 6.2-31 TC (NOTE) CONTAINMENT RESTRICTING ORIFICE CONTAINMENT RESTRICTING ORIFICE EXCESS FLOW CHECK VALVE EXCESS FLOW CHECK VALVE NOTE: WHERE PROVIDED. SEE CURRENT P & ID. FIGURE 6.2-31 INSTRUMENT INSTRUMENT REF. LEG .....___. ___ BACKFILL LINE REF. LEG 1--..-1--BACKFILL LINE LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT *FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENIS (SHEET 108 OF 10) REVISION 13 I DETAIL (AD) RPV REACTOR WELL DRAIN LSCS-UFSAR FIGURE 6.2-31 CONTAINMENT TC M M LC LC NOTE: THIS FIGURE APPLIES TO UNIT 2 ONLY. LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET lOC OF 10) FIGURE 6.2-31 REV. 11 -APRIL 1996 RPV DETAIL (AE) LSCS-UFSAR FIGURE 6.2-31 CONTAINMENT c LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 10D OF 10) REVISION 13 FIGURE 6.2-31 ( I DETAIL (AF) RPV LSCS-UFSAR FIGURE 6.2-31 MO FIGURE 6.2-31 CONTAINMENT RV RV MO LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 10£ OF 10) REVISION 13 DETAIL (AG) RPV SUPP POOL LSCS-UFSAR FIGURE 6.2-31 CONTAINMENT RV FIGURE 6.2-31 VACUUM BREAKER MO MO MO MO MO LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 10F OF 10) REVISION 13 DETAIL (AH) RPV LSCS-UFSAR FIGURE 6.2-31 TC AO OR MO FIGURE 6.2-31 RV CONTAINMENT TC AO OR MO LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 10G OF 10) REVISION 13 DETAIL (AI) RPV LSCS-UFSAR FIGURE 6.2-31 m_ I I UNIT 1 ONLY ANGLE VALVE (TYPICAL) FIGURE 6.2-31 CONTAINMENT M M TC LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 10H OF 10) REV. 13 DETAIL (AJ) RF'V LSCS-UFSAR FIGURE 6.2-31 Note 1 AO CONTAINMENT MO Note 1: The Air Actuators are removed from Check Valves 2E21-F006, 2E22-F005, and 2E12-F041A/B/C. FIGURE 6.2-31 LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31 CONTAINMENT VALVE ARRANGEMENTS (SHEET 101 OF 10) REV. 20, APRIL 2014 LASALLE COUNTY STATIONUPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-31CONTAINMENT VALVE ARRANGEMENTS (SHEET 10J OF 10)RPVCONTAINMENT RV SUPPRESSION POOL DETAIL (AK)DETAIL (AL)DETAIL (AM)RPV Operator (typical)Accumulator (typical)CONTAINMENT AO TC CONTAINMENT SO MO SO MO TC M LC REV. 21, APRIL 2015 JULY 2015 JULY 2015 ,,, 0 IO 0 0 0 IO Q Q 0 "-..c <( (.) 0 ...J a:: w I-LL.. <( w ::E t== (MW) 3J.\1M 3S\1313M AE>M3N3 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-32 ENERGY RELEASE RATES AS A FUNCTION OF TIME REV. 0 -APRIL 1984 .., ----------------------------------.--------------------- 0 <( 1-L&.J CD (OMW} NOl.l:>nom:Jd N 0 -to.. s::. -<( u 0 ...J Q: LaJ -Q u. <( 0 0 LaJ :E I-LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-33 INTEGRATED ENERGY RELEASE AS A FUNCTION-OF TIME REV. 0 -APRIL 1984 ,.., 2 ( c: .2 u fl) c Q) fl) -a: >-= ...J Q) 0 I i3 :::E "-<{ 0 er: -fl) fl) >-...J Q) 0 Q -; <{ er: -... .J: -<( (.) 0 _J a:: 2 w t-lL <( l.LJ I--Q (sa1ow-q1} LA SALLE COUNTY STATION UPDATED FINAl SAFETY ANALYSIS REPORT FIGURE 6.2-34 INTEGRATED HYDROGEN PRODUCTION AS A FUNCTION OF TIME REV. 0 -APRIL 1984 0 (J,) E :J 0 > 12 10 --8 6 4 2 0 0.1 4 -Wetwell Oxygen 3 -Wetwell Hydrogen 2 -Drywall Oxygen 1 -Drywell Hvdro( en ----------1.0 --, I "'2 / 3/J ,I) r . :v """" ..... ,_ " r:v / 4 / ...... ....... .. v --_... ii-..... l...illll , .... ii-_... i.-111"" 10.0 100.0 Time After LOCA (hours) LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-35 UNCONTROLLED HYDROGEN AND OXYGEN GENERATION , 4 1000.0 REV. 14, APRIL 2002 .... Cit E :I 0 > 5 4 3 2 0 0 Rated Power , 6 Hour Start Time 105% Uprate. 5 Hour Start Time __ .. --,.. 10 20 LSCS-UFSAR -...... 30 40 50 60 70 80 90 100 Time After LOCA (hours) Note: The information provide in this figure is historical. The hydrogen recombining function of the hydrogen recombiners is abandoned in place. LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-36 HYDROGEN CONCENTRATION WITH 125 SCFM REV.17, APRIL 2 0 0 8 0 *' I £ l :r-) t i , .... :UI "' " f t* 11 - __ 24 ---------GCm'!J -LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-37 NODALIZATION OVERLAY FOR RECIRCULATION LINE BREAK REV. 0 -APRIL 1984 '-I f. .,.. -----t i j1 :i, "' "" ; .. <<!; ti t "' :: LA SALLE -COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-38 NODALIZATION OVERLAY FOR FEEDWATER LINE BREAK REV. 0 -APRIL 1984 , en It) rt\ ff) N ('4 N <<> v CW) N N rt\ """" N p') N N N 0 .!J rt) "' i'i I I I 0 0 ""> N an --..,... m q-<D (!') <X) l'f') -,.... "' t-N ----.s.> --!!1f\x; (g I I I LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-39 NODALIZATION FOR ORIGINAL RECIRCULATION LINE BREAK ANALYSIS REV. 0 -APRIL 1984 <Tl --0 -<:D t-\o '1"" If) -tr) N -00 CD LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-40 "EQUIVALENT" NODALIZATION (CASE A) REV. 0 -APRIL 1984 fX 0 0 0 "' 0 !C f'} r'1 N ('A Cl-v 0 0 0 g 0 IP 0 II? ,.,, ('? N ..... "'; P-0 0 0 II\ 0 rt\ ,., N --; (l.. ...._. 00 a) -en " 0 N "' -'I.I .,-; f, b 1-' J 0 I") 0 0 00 9 Ill 'b G'S -([) lo !<::'> Ir> -J .. Q 0 V) II' o. 0 .. t-1 .. 0 0 I? 0 0 0 () V1 'b "' -4) 0 .> \\I If) 0 0 0 . 'b +' .a 0 0 0 2 IO LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-41 AZIMUTHAL PRESSURE DISTRIBUTION (AT Q.. RECIRCULATION OUTLET NOZZLE) ORIGINAL DATA AND CASE A so 100 t =-0.01 $<¢, e o*-1s* "ISS,'2! 0 so t !' o.oS' s.-c JOO e o*-1s* ISO *p(.p$.icl..) 0 so /00 t:>O,lOSt"c a:o 0-15* 7SS'. 0 50 100 50 100 t 0,05 .Sec I 9:'15*.30° 1 fSO 'P tplia) 1SS.'29,__ __ __.. ......... ____ 0 50 /DO 150 t=-0.10 S(c: e" 1s*. 30° ? LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-42 AXIAL PRESSURE DISTRIBUTION ORIGINAL DATA AND CASE A REV. 0 -APRIL 1984 I °" ...... 0 ...... -co I I r-""> t..O "' -C\l I -I 0 <:::> Q) -.. 0 I 0 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-43 SIMPLIFIED NODALIZATION (CASE B) 0 -APRIL 1984 b 0 "" 0 -C) .. 'b +' .,!) 'b r--fl) I 0 0 0 fl-;.. " N "' v b c.n40 \) '.!! "" 0 'b 0 CS) .. ...... ,---. I 0 s 0 0 II') u !( -b 0 (7) <5 .. .+J 'b "" 0 0 s 0 0 0 -U\ "' Q..j ... C't LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-44 AZIMUTHAL PRESSURE DISTRIBUTION (AT q_ RECIRCULATION OUTLET NOZZLE) CASE A AND CASE B 90'1.2..3 O SD 1::.0 t:-o,o\ , e: o*-1s* _ ___..____., I I ,__ __ __,__,_I ----'l 802.23

> 5 0 /00 t= 0.01 l 9:-1s*.30* ,...._ __ _...... _______ . -----, I I _______ __,_ --_1* 155'.29 1----...........

--..-------r-----r 755'.29 -----------------...----


.--0 50 ICO I SO 0 SO ICC ISO Pc.p.OCl) t:o,t>S, e*d-rs* P <

t= o.os 1s 0-3ll 0 6b1., *""'"--l----., I I 1-----.----"- ---.... i------L....,_ ___ __, ______ __ 0 50 /DO 15{) 0 S'O I DO ? C.¢16.) t :o.io"' e: 'f\yl.t") 0.1 ()) e: lSt.-30° LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-45 AXIAL PRESSURE DISTRIBUTION CASE A AND CASE B REV. 0 -APRIL 1984 / 0) <'.:() ,.._ \J) ..J) v rt) -N .. -0 ..!} LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-46 COMPLEX NODALIZATION (CASE C) REV. 0 -APRIL 1984 fT 0 8 g P-N "" .._, r;o 0 @ 8 0 ().-0 ,., ('J N N tl b J N Q) -II') 0 () <1l -0 s II -tJ 0 n -0 6 0 0 II) 'b '.2 2 .,., lf) 'b 0 .,, 0 .. 'b ...., 'b "> () 0 () Vt oo .., g a 0 " ,. -tJ 0 -A 0 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-47 AZIMUTHAL PRESSURE DISTRIBUTION (AT q_ RECIRCULATION OUTLET NOZZLE) CASE A AND CASE C REV. 0 -APRIL 1984 153'.'2. .,___.__ __ __.------r-----r---(5S;'i"'t-----------.-----.-------.--- o 50 \00 1 50 0 t = 0,01, e 0°-15° 'P go1.i 1ss.'29 ..__ _ __.._ ____________ ___,,,__ 0 50 100 1 50 t:o.05 J t)-: 0°-ls* °P C.pSf4) --------::=--..l =-jj ------------! 50 JOO t=-0.01Je:1s 0.30* 50 1 00 t .-c.os-J e: 15°.30* -*----------1 150 '"PtpSI*) LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-48 AXIAL PRESSURE DISTRIBUTION (CASE A AND CASE C) REV. 0 -APRIL 1984 TOP-----0 5 TOP I I I ' 0 50 TOP I I I I I I 0 50 SECTION AT BREAK PLANE I 0 I PRESSURE (PSIA) SECTION AT 90° w/r TO BREAK PLANE I I I I I I 100 150 200 PRESSURE (PSIA) SECTION AT 180° w/r TO BREAK PLANE I I I ' I I 100 150 200 PRESSURE (PSIA) LA COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-49_ AXIAL PRESSURE DISTRIBUTION AT t = 0.500 SECONDS REV, 0 -APRIL 1984 / f 900 FEEDWATER NOZZLE SECTION , LPC I NOZZLE SECTION SCALE I I I I I I I I I I I I I I 0 50 100 150 900 MIO-SECTION OC? UPPER RECIRCULATION NOZZLE SECTION 90° LOWER RECIRCULATION NOZZLE SECTION PRESSURE (PSIA) 270° 00180° BREAK PLANE 90° LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-50 CIRCUMFERENTIAL PRESSURE DISTRIBUTION AT t = 0.500 SECONDS (SHEET l of 2) REV. 0 -APRIL 1984 0 .J " 'If , UPPER REACTOR SKI RT SECTION goo LOWER REACTOR SKIRT SECTION I I SCALE I I I I I 50 100 150 PRESSURE (PSIA) LA SALLE COUNTY STATION UPDATED FINAL. SAFETY ANALYSIS REPORT FIGURE 6. 2-50 PRESSURE DISTRIBUTION AT t = 0.500 SECONDS (SHEET 2 of 2) REV. 0 -APRIL 1984 TOP .* , , I I 0 50 TOP I I 0 50 TOP I I 0 50 I I I SECTION AT BREAK PLANE I I I I ' J 100 150 200 PRESSURE (PSIA} SECTION AT 90° w/r TO BREAK PLANE I I I ' ' I 100 150 200 PRESSURE (PSIA) SECTION AT 180° w/r TO BREAK PLANE t I I I I I 100 150 200 PRESSURE (PSI A) LA SALLE. COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6. 2-51 AXIAL PRESSURE DISTRIBUTION AT t = 0.500 SECONDS (CASE C) REV. 0 -APRIL 1984 FEEDWATER NOZZLE SECTION 211 oo BREAK PLANE SECTION oo LPCI NOZZLE SECTION Cl' RECIRCULATION NOZZLE SECTION 00 LOWER REACTOR SKIRT SECTION I Cl' MID-SECTION oo UPPER REACTOR SKIRT SECTJON SCALE I I I I I I I I I I I I I I I I 0 50 100 150 PRESSURE (PSIA) LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.2-52 CIRCUMFERENTIAL PRESSURE DISTRIBUTION AT t = 0.500 SECONDS (CASE C) REV. 0 -APRIL 1984

    • .....*10 I".2-1-...._.r-.I----=----.I----::::--=:=:-::=:-:-::::-:.t.::::::-:-::.-.I----=----.I----=-.---.J---..;z'-

__ __=_..l_.::...__._..l_..L.__..L._L:.:!_ __!..:.:'__-----1-..-l.--II 11.12.APPROXIMATE AND wusr 8£DETERMINED EWiED ON FINAL.S"tSTEJrlI IWUM Al.LOWAEI...£. G IS THE MINIMUM POSS19l£AND MAY 8£INCREASED BY OTHERS"""""""'00. @WILl BE DETERMINED IN PRE-OPERATlOI'W. TEST.1}lE I:1P REQUIREMENTS Of UOOE C.0 AND/OR E.AND TO ullIrr MAXIMUM DIESEl SERVICE WATER PUMP OCCURS IN WODE C AND MUST BE 22 FEU-BWRSJ)SCOPE ME AS NOTED. WOIlES._1 0 Tlf£ESTIMATED UN[SIZES ARE FOR INF0RM4TION

TVRE ANO PRESStmE AND UHf SIZES AS DETERMINED BY OTHERS DIAGRAM HYDRAUlIC REQUlREMENlS.

11.lH MQ()£0 AND WffJf A VESSEl.PRESSURE Of 14.1 PS!A, THE fl.DW StWJ.NOT EXCEED 7175 GPIlL'I, 1liCOffjN,.VE lEU-Fill (2E22-Flll) HAVE BEEN REItOVED PER DCP 0511324 (09lJ25).U,/lIIC,Itw. ..._.....-.......10>-1 (ISIU<.I.lO"l'It**)u M 110'1 SALLE COUNTY FI NAL SAFETY llllJl:S;1. 2. wuc:rMW I: WINlWUM VAlUE Of'PARAMETER FOR THE WOO(SP£CIFIED. J.£UVATlONS ARt MOT INCLUDED IN IJP VAlUES GIVEN.ElEVATIONS SWU BE INClUDED WHEN DETERMINING fIfW" f'Ofit THE EMPTY PRESSURE BUNKS.4.HEAD WIll.NOT EXCEED 34M FT.l$.TOtf'OfFT.AND A VESSEl PRESSURE Of 215 PSIA lliE FLOW WST BE 52ft GP>>.I, MODE: E BASED ON A MMlWUM CONTAINMENT PRESSURE OF 4S PSIG.BWRSD NMEH'T DESICH IS 9o\SEO ON HIGHER PRESSURE THE IMPACT ON THE HIGH 1, (NPSH)AVAILAfU AT THE CENTERlINE Of THE PUMP 1 FT**I.FIGU OOCUMENTS UNDER THE fOU.OW1NG lDENTlTIES <<1'0 I(U5EO IN CONJUNCTION WIlH nus14.7 AM.......PRIMARY MODO.ACCIO£Nr;fIV{;.ICroti' '"",'PP'$UPi'SUCTION J"1i!O'" SUPPII'CSSION PC:ll."S Ii'1 8 g 10" liI!.nJ/"l9lO,. 159 fA 15SO,"" N/fIt, MOOIi:C pc:JlrlON FiOWGPM PR£5S PSI" reMP-,.MODI: 8 POslrlo", FlOWGPM POSITd'N PRESS PSIII TEMP"!'u MODE II Fel,.NOTE ,.TAIl\-'!: 1-TA8l£1'015 19 o VAtVE OPEN C.,ALV.CLOSED VA.LVe fOO'IRlO4if010 roll FOIl jro'S 1/02"1"034 MOD£8C0 CCC 0 C 0 MODE C C 0 C C C 0 C 0 MODE D I C I 0 I C I C c 0 c 0 MODe J" , 0 c CC0C 0 MODIi: G C C CCC000 MODE J'C C IC\C 0 0 C I 0 MOOGC C C C C 0 C 0 PUMP OPERATING ON BYPASS SUCTION fROM SUPPRESSION POOl (4 5..1 IS"""'.,.21 FL.C>>"4 c:..PM ,_,_y-,_lIH.x-x.'><'X'XXX<T Tl':MP"F'ill'%'.'-iO:i'd:-c ..1--1.0_A H K L..o References 51 and 55.GE LOCA ANALYSESREV. 20, APRIL 2014ASSUMED IN GE LOCA ANALYSES..J < t= Z w a: w LL LL C w a: :::l en en-we a:fI) Q.Q. ..J-..J W :: >-a: 0 0 .... ..J W en en w > LSCS-UFSAR 1200 1000 [;;] '800 600 400 200 o 1000 Source: 2000 3000 4000 5000 6000 HPCS FLOW (GPM) LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3*2 VESSEL PRESSURE VS. HPCS FLOW

  • LSCS-UFSAR g ,..§...,!'1!I i I I I r-niI i co!.I-w t+I I I i I I j I 1 i I I--I I I I I_-+-_.......--:...........__"'"--__.........__**LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-3 HPCS PUMP CHARACTERISTICS REV.13 5 I lotA"OOI"'.'618 I.II ,."" I'0'**o c B=fi ,..N'" o[-,., coocc o00CC"CI0C0 o c.p c o00CC....00((oC0C0_0"001 C MO**I..._I.....,-.COHO'liON...-.!."", ,..-;.....;,;:..;,..,-,.T.-OO=."_=.....,...I.",.-__"""1"'WI-'W.a...ma.a too ua mtlll H'.ua*.,**I.UU""__wa.----u,......**1IlIUAI_1AI,,1!'IICM.t.---
      • .en...lUI....lCAt..:.....1ft",.-Ul--....rtf'Z!$la'M lUI 0IIll......""'".......,.-..._."U....___
  • ...",I&M'..............

fI.... ...... ..

r:......=_..".Jt c*-..::=t,,':---',....!FaB.=::'t.....I:.c:-att.u::
  • .::...til"'".u,n_,'I-...II.

..h.=.r.=1t'n

    • "r...._ac..__............

..._,......,.. -.-..._---.., , Cftlllt........,.". =,-v=.-: ....,s.PIlE_DIll:.lIlI: ACllMlII..USDl UlCo'l.WIl_lDh.........CJ****....X x X

r...........','%......'.'........1..........

taOI..................... ,..,...*I*..I*T*, 10" II'1 I II l0'.zoo...Y" iI...'."1 ,.X..,...., t)<'9: I'0,,"'_0*,*..*t"\D'IIf'_*.........,.....,.......... % u>c:-".0,,*..*..*r,__I't/A-_......."....'ttl:rmCia:lt*tOll-",'M.....,......., Yo .*".N Jl'(C f C.,.B o c ,5 t I I..*(,T**10 It" oJ..o'-'*"'All'f QIIIOfC-'WY (tostO'o..n..,.,....-A LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT A...., ,.*>J...." FIGURE 6.3-4 lPCS SYSTEM PROCESS DIAGRAM L-_'--.L._____JL.__-__..*.;:.3....._..2 1 REV.13 LSCS-UFSAR 300 200- -GE.`i 20003000 4000 50006000 LPCS FLOW (GPM) 70000000 0 0 1000 Source: References 51 and 55. LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-5 VESSEL PRESSURE VS. LPCS FLOW ASSUMED IN GE LOCA ANALYSES REV. 20, APRIL 2014 LSCS-UFSAR .J .ffi 250 m is 200 W a: :;) e 150 a.D.; ,.J-ad a: 100 D e uI 50 m > 0 0 .....,; ...... ............ ...... ...... .......... , ...... , ...... , ..... .... '", --GE \ \ \ \ \ \ \ \ 1000 2000 . 3000 40c0 5000 eooo 7000 8000 LPCS FLOW (GPM) Source: References 51 and 55. LASALLE COlJN'1Y STAll0N UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-5 VESSEL PRESSURE VS. LPCS FLOW ASSUMED IN GE LOCA ANALYSES REV. 20, APRIL 2014 LSCS-UFSAR

  • U!

I (%) 0 0 0 0 0 0 0 0 0 0 0)IX)I"-ft)It)l")N--0 0 0 I 0)0 0 I 0 IX)0 0 0 I"-o g--1--__.......--1........-+-,+-.1-0.-___.0 g--g N--8 IX)8 ft)88 N o*LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-6 LPCS PUMP CHARACTERISTICS REV.13 LSCS-UFSAR _ _ GE 10002000300040005000 a w CC 0 0 T000 8000¨N.¨Source: References 51 and 55. i LASA LE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-7 VESSEL PRESSURE VS. LPCI FLOW ASSUMED IN GE LOCA ANALYSES REV. 20, APRIL 2014 LSCS-UFSAR I " fli It: is iii 200, II: i .50 . 8J is a:iiJ Q.E!::, 100 iii @ 50 " " " , , , , ,. , , , "'-, , , , " , ' .. ", j o 1000 Source: References 51 and 55. 3000 4000 5000 6OCIO 7000 , LPCI, F1.0W (GPM) LASALLE COUN'IY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-7 VESSEL PRESSURE VS. LPC! FLOW ASSUMED IN GE LOCA ANAL YSES REV. 20, APRIL 2014 ..**,_.:.'_L-__._.:::.....L 1!l.__.:...

.
;'2:....,**MODEr ,.osJ1IIDNO i',.?4$"..,'1111 ,'o'" 24 1'IDfIf.1iM

-iltoso--so-.-7 I"X IX'"X X IX iX i"><:x-x'X" 14'1 ,....,..--/TJHOU1.----.----'-" Tn fef Ell-'OlO....4.;ltn'lilt'"..".-***,..............:t.....r ,.,.."If'"),,"..'...:",\':, ...I.&U,IUUt'....:,"'*."_r"'****MIll.,..1 fIUifO.,.,.,. \0..-.t>:.c.lJ. J......'. ne ,,_llllllllr.e.--. I".......... u..If\.OllII'\caJllal , ,__CAl,n ,**'"".ali._mao.-..E.......... _.-.-................ ..L cu:_.._1M...t"'II*.....""-'...;.. ..-...'....-....,................."'_...-1**_-....'1.........,..... 'u-.s.-e,a,rlIUlt ...,...1IIlUI,..,.........n..L uat..._,**0"1 (D1Ia_*'-'-"1*..uo.&la-..*uwa."", ,r.I.a:.,-.....,.....10"'_"to'.-....U)-.-Uta....u.-.-..SfttDr Q(S1.'-u.cu**.J..**t na..'"**IU..",ft_U.0* ,..Ua"l_*"eN.Pl"'t-.......... CA4rClt lI(\'IQ."u... _f*,...__...,*-JI........................"........_................** ..llll(QIIlIIlOtJII..a:r.;:;.I._""..-11'1'...--.-, Ot'tMh**....._.\............7n1QI**_....".-.----...1 MODE 8 (NI_1l',."j MOO£,,4-2 4/567/1"10.."a--c-')t(y x*Y'x/i).'-xyX...., 1Wf/If1.""....*...,4?XX--,.-'llQ.'",_I" 0)A!I(nJE S MODEG..",""OS/lD__I'2S 55"..s (, 4}t4 , I Z:s 4 5*45 U ,'8'8*8*8-!ISO--S50 5S0-'ISXXXX X...7..., X x x)(X".1 n:---r-.#44'M4-'"V/.., I m:-LtGI'.'."J MODE.5 (CONT'...$(0 In.J4.JlI (fuI oIV"A.a..'iU......lilA.....lilA AlIA ,....,.,.X X IXxxxxx X IX iX X IX r.--,....--.....'4D:z 7---&.-.---1 it JI..5" I.:':*Cl"'1" I::$0 Q 5'..1111 N-4."'.1"'1...........,.....I-f--....,,-.-lX':)2'>----rx 147 ,x".A/<..'x.x xXX"s.:<>-..tth'S/<'n:--'" 1i'Q/ --- 90/!H1 J4'/..,1uIc_0-*D 1::......Ie JlIlk.....'UIOJ ,.r..M JI':.Wt'IC,I'" I,)ftC'--,'.IL...,....,,,..til" ltfUt_0.._.,..........c.-.I'"_ff ru:Y\'Ia..lJ..caa&I I_UfU___..U.oa."",C&-.Ll&, ,...._.....,...S."IQl ..-."'" ftllftM....,_"-:.I."" ,...**0,............. ......._n............" t.l.....*...,e.....,CAr--....",.,.NIiIt........"".n.11Ill. U...LIe tlu...._11....1If.t... ...:.:.. ..I1.;.;.crs.,8 ea-...'I...,,"'.mJDl'an'DIIl[_,.......,. .....Im__"'.,*.:u...;t>>.....ACNk c.s".-..,.,..;, .-Lt.SI:['D(rt_IllC" (I........... elf.....u:y_Ill (........... 1I. ..':'M\lr fOIIl ,...,.., i.AULO.U-'.D.._".....L" n.Qltt..,......, If""'......*C" l." Ita.a""lUlL 1111 uftCll....""" I.'oc.......y*RFV9-APRil 1993 FIGURE 6.3-8 (SHEET 1 of 3)RESIDUAL HEAT REMOVAL SYSTEM (RHR)LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT lSlJ:sl.llll.S lS4.S 11"" --XiX'0 Ill)6" il)J.I!.,,1.-...-Z,.7.".Z7.2U 2'1"'., iii".7...7W IZSIY x X:X, IlS XiX MSO-10'....II MODEE 7 T4I*I.10....MfA"5 X'XXXXXxxx 155lio1..-Z*,,!*iI*L"** __*_*__L____.....J_L.L...i ____ __.....JL.__.L__..:.......:II.JIL....; ____-!L.__-.JL.__-,j!....:: ..L_-!...:':::*L-..,.HI Lowl L!'(I.Itll{DolIlCllO JIlACTQlIJ alTUllU La_____..I.-__..--l._.......... ..:...=.......... LPCI L'M: I..,.a.a H. 0 ........... ..,--+--...L.---f

  • D..OSIT.O....0

......E.T.......""',.CD L'u&,sIZE..0 0 a'0 , 000" l 0 0 0 0 0,0 Ii Ii S DO 000"*L..IH/*11-7.f\lfSSClliElD S'lAWI/£I u,-lion..o'fiB f9IIJ_f/J!II'I/JII/M 'TOf!N'}%-, ISlllJl-.5IItII_1./lSI 6NJIhI IrU'1MP}".l 16-11 (5JII1114"* OI5f1ltlr.E I IE lfiiiiiiifji;o trmr (r IHJU II'(TISl liNE Ttl Sl/,,,n5lOll11Ja) a*LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORl FIGURE 6.3-8 RESIDUAL HEAT REMOVAL SYSTEM (RHR)(SHEET 2 of 3)REV.9-APRIL 1993 r p m,vr"ArNo+tl:'Nr fll LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT___,-1(l.':l<<r Yfl." Xl"'lOltl1 "".J3A.§t-d r04u, ,.--AllCACf'OR SCt"O/o/0-4Pt'(DN7AU"M"I:AI r r.wn s£PltI'C£"'Arel$Y<$.FIGURE 6.8 RESIDUAL HEAT REMOVAL SYSTEM (RHR)REV.14, APRIL 2002

  • LSCS-UFSARII!

I (%)klullP!lI3 8 co§-8-8.., 8 0 r-/I)U 8;::;" co 1: S u 1!III.:§.!!0 j 00 c: Q"E..GI 0.'C n.!!,.II)a: 8i.§::z: "§iii a:*l;:1::::!c.,.Cl 0!I 0.{!.*..I w Zo.!++I ii tn*..I 8 N LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT*FIGURE 6.3-9 LPCI PUMP CHARACTERISTICS Sheet 1 of 1 REV.13 LSCS-UFSAR ,_....._.-i'"""'"...200 1"00 1200.1000**1000 Source: Reference 26*LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-10 HPCS MINIMUM REQUIRED PUMP HEAD TO MEET LOCA ANALYSES ASSUMPTIONS REV.13 0** ISO 100 LSCS-UFSAR ..:II*.--......;: ".-..*1000 Source: Reference 26 LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-11 LPCS MINIMUM REQUIRED PUMP HEAD TO MEET LOCA ANALYSES ASSUMPTIONS REV.13

  • LSCS-UFSAR I--._._-.,.;r"--._---I I-r-----I I---I'II"'".soo so 450 400 350 ISO 100*1000 2000 3000 4000 FIowCgpm)1000 Source: Reference 26*LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-12 LPCI MINIMUM REQUIRED PUMP HEAD TO MEET LOCA ANALYSES ASSUMPTIONS REV.13 LSCS-UFSAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.347 SCHEMATIC OF THERMAL OVERLOAD BYPASS CIRCUITRY REV.14, APRIL 2002 I (BASED ON ONE SOTS EQUIPMENT TRAIN OPERATINGl SOTS REACHES ,--FULl.CAPAOITY"--,, I I I I I I I LOCA INITIATES!SECONOAIW CONTAINMENT ISOLATION&START OF SOTS

_I I I I I r MINIMUM-+1__I I I I I 0 d:t-0.05 (Il w::r::-0.10 ci z-0.15 a...:5 OJ*0.20 a:: 0 ro-U'-0.25<<w a::-0.30 w a:::::>(Il-0.35 III w a:: II.-0040 100 105 200 I 252.9 300 400 TIME.Se.CONDS(POST-lOCA) NOTE: This figure was used to support original licensing. For current licensing requirements for system pressure-time response, see the Technical Specifications. LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.3-80 POST LOCA TIME-PRESSURE IN SECONDARY CONTAINMENT (BASED ON ONE SGTS EQUIPMENT TRAIN OPERATING) REV.15, APRIL 2004 1-l.L LSCS-UFSAR ' i ! I I i '1 . i ! l ' ;: i ;* J ! p I ! ?' l l I :i ,S I ! : --\ /_;;t: ____________________ r-------****---------1*-**---\-v----*-**-= l I "l i /'.-\;:/ 1\ ! ! 1 1 1v' . *1 1 1 i ------'--, , J" .. *: -'"'{ // i l ,.....,,. t I-! ! , I i I i ' r I ' I' I I I 0. t_L .. L..L..! J __ L._L_;__ _ _l ____ -*-** .. -****--*---********--**


............ _J ____________

                • -***********

... !. .... . , , . GO, '.2 0. J 80. 2 1 10. '*m tHIIJ 2'Cl.1U5 fiS7.6 TI ME. ( SECONDS ) Figure 6.3-81-a Water Level in Hot and Average Channels, Limiting Large Recirculation Suction Line Break !DEG!. HPCS-DG Failure. GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available. Appendix I< Assumptions REV. 21, JULY 2015 LSCS-UFSAR Figure 6.3-8.l-b Reactor Vessel Dome Pressure, Limiting Large Recirculation Suction Line Break (DEG). HPCS-DG Failure. Gf\JF2 Fuel LPCS + 3 LP([ + 6 ADS Availabte, .Appendix I< Assumptions REV. 21, JULY 2015 u 0 ... J (_._) 1.'ilt LSCS-UFSAR j l&2 i : H)I ;i_*::-1 I I , in:: l'(\J IJ':i '!, OtG Sl/,':T . P=>K [.,\ I ' HI'..: HQ[ I : Hf'CSD'JfitJUR. I

  • HAD HI:::

...... +*--*-------___ ......... _._ -*-------.-....... 1 I I ! ! !

  • I l I I I l I I I ! I . I ! 0 --t-' ---------1-----

,------

  • .L
  • I I I . ' i.. ,.1,
  • ' .. '.._'f"'#"'*-1,---

.. ---**---.. ,,,,. .. ........... .. v .,,,..-.:.-:-.. --.-J l. ! tl --f r . i !-r"' I !-

i. ,_ 1 t-t i . ,

.1. !-----! \! _ ! . r..l .. L.f LL.. .. ..L ............. '..L .... _________ ,__. _______________ .. J .... -----------------*---**-------- .. ---(;. GO. !20. !BO. <"10. 7IME (SECONDS! Figure 6.3-81-c HeatTransfer Coefficients, Limiting Large Recirculation Suction Une Break (DEG). HPCS-DG Failure. Gf\JF2 Fuel LPCS + 3 LPCI + 6 ADS Available. Appendix I< Assumptions REV. 21, JULY 2015 f ... . , w i-::l , , i Cl'.'. _) , ... U-1 Q_ i'7-1 i-* LSCS-UFSAR I L.ASALLE H .. 2 '1 . D t: f: S'.JCT *- !"FL L/1 :1. 1 !'U K f[I P C:.T, f!J'i[ !P CSOG , '-! .. _ .... --......... -....... -...... 1 ...................... ______ * -* I **---*I()! I i .. ., ......................... __ ! .. --------...... _ ............. ! ...... --------! I I I I I I I I I I I I :::.1 l I I I ) .,,, *.-'"° ,..........._ i t II/ \' /r ........,_ I I \\ __ .,,,,./ ! 1----*-....... I I. t ,_/ I 1 ------1---- [ I I () . . ...i. ... L.t .. L.J.. ... L.L-1 ..... _ _._. ____ ,,_,_,__ .,,,,_.,_,, ___ , __ J_ ......................... ,, __ . ,,,.,,,_,, ___ ,_, ____ . ____ ,,, G, DO. 120. ) 8(). '7"IME iSE.CONDSl Figure 6.3-81-d Peak Cladding Temperature. Limiting Large Recirculation Suct i on Line Break (DEG). HPC S-DG Failure, GNFZ Fuel LPCS + 3 LPCI + 6 ADS Available. Appendix I< Assumptions REV. 21, JULY 2015 i i< I LSCS-UFSAR i l ! !O T Cl i i ' !.'i[i(A C, l. :; *i N f-H. I I * (;t-l-Ll i.. I I . . - --*---* --*-\..--***--*--*-------*-""*-*---- ---*-----*--* ........................ _,, ____ _ i I I I 'I i J * *. -* **----*---*-**--------- r----*---*****-***

    • ---**--*----*----*-*

-*--*-----

  • --1-.........
I . 1 , ; . J11;.un_. \,J f-----.... ,.-_ .-. ----1 '
  • i I . / 1 r 2 c. . ------.........

*----

!-----***-**-***--***-


* ****--**------------------

, tJ I ' ' I ' i I I i I I I 0. -1 _L._L_L J ............ L L J ______________ ,, ____ *-*-*---*--------*-- L-*-**--*------------------ J.-.. *------*-*---------- 1 Li 0

  • Hi 0 , 3 2 0 . *\ (l 0 , G 1 1 0 . 1 f.:S.'i.,!. T I fJE i 2\l li.:Jji;"; F i gure 6J-82-o Water Level i n Hot and Average Channels, Limit i ng Small Recirculation Suction Line Break (0.08 ft 2), HPCS**DG Failure. GN F2 F uel LPCS + 3 LPCI + 6 ADS Available.

Appendix I< Assumptions REV. 21, JULY 2015 < I 4 !f"1 () w Q } (f) (J) l.d rr,. Cl... I LSCS-UFSAR LASALL..t

&2 C. (:8 Ii? SUCT '!11;\ Hl'(Sl):j I ' 'f l LG S lR .. ! I i l '1, . o L *l i)' I I .. ...................

....... ------------------- ................ r**-.. *----*_ ................. --*-*------- 1 ............................... _ .. _ !.., . I I I ,,:__. /l . ...___ I I '/ I --,\ 1 1 I ! I \ I I I ' I I \ \* \ \ \ I I I I \I ! 0. '1* i \ !:= I \"-, , I! '-, i I r *"-.. , I 1* ! . t *'*t-----'... I 0 .. L .. .LLLL .. 1.. .. L .. J.. .................................................... _ ................... _____ ......... L ... (;. l fiO. (HO. \ 7 TIME CSECGNDSl Flgure 6.3--82-b Reactor Vessel Dome Pressure, Limiting Small Recirculation Suction Line Break I0.08 ft2l, HPCS-DG Failure. GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix 1< Assumptions REV. 21 , JULY 2015 3 I ( \J (.!.) 0 _; I (_) 'i LSCS-UFSAR l1Q o.oert2 suer J?i< H P CSOO F;\l L U*c ************--*-*--*- .. -----* --*--*--*------! " "' iGU .. 3?0. '180. G'tO. v.*a ..x:::c1i.

?;'it::OJO:..

1e.:.1 TIME C SECONDS l Figure 6.3-82-c Heat Transfer Coefficients. Limiting Small Recirculation Suction Line Break I0.08 ft2), HPCS-DG Frnlure. GNF2 Fuel LPCS + 3 LPCI + 6 ADS Available, Appendix I< Assumptions REV. 21, JULY 2015 _,, 'l :!: Jt .1 I I LSCS-UFSAR

  • Fl.l.K l l . I :.. I -************----***--** .. ._ .....................

---*-*-----------------*-***---- .. ********---*-*** ..... *-*--------*-*****

  • 10' I I i i i i I i 2' t-..... -....... .. *-*-****-*-
  • ---...................

_., ______________ _ ! i ' I ! 'Ii :iii , ,/ **v ' '-*--------1 /I \ *. I-l / ***-\ .. ----------- -t _ _;_ ____ A "---'. __ --+_._ ------r-------1 1

o. l 60. 320. '160. t ., .. , 5.!9,i.\

l : M-1 S i:. ) Figure 6J-82-d Peak Cladd i ng Temperature. Limiting Small Recirculation Suction Line Break I0.08 ft 2). HPCS-DG Failure, Gf'.JF2 Fuel LPCS + 3 LPCI + 6 ADS Available. Appendix f< Assumptions REV. 21 , JULY 2015 LSCSlJFSAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.4-1 CONTROL AND AUXILIARY ELECTRIC ROOM LAYOUT (SHEET 1 OF 2)REV.14, APRIL 2002 I \LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS HLPORl F[GlJRE 6.4--I CONTROL AND AUXiLIARY ELECTRIC E'1lJ I PMEN T ROOM LA\'OuT (Silt 1.1 2 nr 2)r<I:V.()--!\l'10L84 LA SALLE COUNTY S1 AllON UPOflTED FINAL SAFETY ANALYSIS REPORT FIGURE 6.4-2 LOCATION OF OUTSIOE AIR INTAKES REV, D APRIL 1984 Airborne Reactor Vessel-6" Iron Reactor Shield 2.5" Iron+21.5" Concrete Plate Out*1000 N*0.250 H*0.005 P Leak Rate of O.005/0ay 6'_0" Concrete*0.250 H*0.005 P a (0.13)Continued on Sheet 2 Plate Out 0.5H+0.5P (0.87)Airborne 10 N+0.5H+0.5P A Continued on Sheet 2 I.OON O.IOH REACTOR BUILDING REACTOR BUILDING I.ON+I.OH+IOP STANDBY GAS TREATMENT REACTOR BLDG.FLOORS 36" Concrete 56" Concrete REACTOR BUILDING WEST WALL LEGENDN-Noble GosesH-HalogenP-Particulates ..-Distribution of fission products immediately following 0 LOCA NOTES I.Flows beyond the primory containment ore fractions of the upstream input.2.The.635%per doy leak rote will increase the downstream sources by approximately 25%[(1-8-.00635t)/(I-e-.005t)125]r------, I CONTROL I: ROOM: I'--J LA SALLe: COU NTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.4-3 CONTROL ROOM SHIELDING MODEL (SHEET 1 of 2)REV.0-APRIL 1984 LSCS-UFSAR LASALLE COUN1Y STATION UPDATED FINAL SAFE1Y ANALYSIS REPORT FIGURE 6.4-3 CONTROL ROOM SHIELDING MODEL (SHEET 2 OF 2)REV.14.APRIL 2002 I REACTOR VESSEL SHIELD WALL SAFE END TO VESSEL""-----.....-......NOZZLE SAFE END TO PIPE WELD LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-l SAFE END BREAK LOCATION REV.0-APRIL 1984

o-.::::t".0>-0::: Z W:J:...:.<:-c(w W:.<: 0:::0 l:Q:J: U tv"I (f)-:::>>-0 OQ-WO en ZO Q c(%:z:....0 zw U C(:.<: l..LJ....(f)en (f):::>-ZC(-u..l..LJ-::E:.....J-Oo/l Q.......en c(...I N W-.0::: 0....-i-.o I I I II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0....-i 00 Lr\N en to tv"I N....-i....-i....-i Zl.:l-J3s/wal LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-2 BREAK FLOW VS.TIME-FEEDWATER LINE BREAK REV.0-APRIL 1984 CD]J eb , L/f P0 2 POI Dr'\.*11AL A BR AL 2 I LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-3 GEOMETRY REV.0-APRIL 1984 -SA UF Al E)N(Dr-FLASHI Nt;WAI ERCJU_f-I i I I'" I RF E(I(IN-I-........I.............. I""'"----------._.SATURA-------.\El2.-.".--I/SATURA"l EO ER.../FLASHIN:;WAT i'....J//.....2, ,/.///'/V a 10 a llJ llJ a..(J)()10 Z o (J)I ()-(J)a..lJ..-...10 100 PRESSURE (PSIA)1000 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-4 WAVE SPEED REV.0-APRIL l':H34 4000 035 00030000 I--.;;;;:a ...... u w Ul I N E-<250 00 r:x.::>.: en H ()CJ x 2000 0

J H r:x.150 a 0 H X10 000 o 200 400 600 800 1000 1200 ENTHALPY h o (BTU/LBM),..------------------.

LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-5 MASS FLUX.MOODY STEADY SLIP FLOW REV.0-APRIL "'--USING PARA.6.A.3 r------------,II......-.,.?"-_..._..._....j\TOTAL (SEE PARA.6.A.4)c;'---------------- ?'7 7:;;-:;.":;;-:;;00" TIME LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-6 BREAK FLOW VS.TIME REV.0-APRIL 1984 RELATIVE DISPLACEME NT OF PIPE END LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT TOTAL DISPL.OF PIPE END=DISPLACEMENT TIMES-/L+L)I2+RELATIVEL I'DISPLACEMENT RECI RCU LATI ON SUCTION LINE DISPLACEMENT OF PIPE AT RESTRAINT, D FIGURE 6.A-7 NOMENCLATURE FOR TIME HISTORY COMPUTER PRINTOUT ORIGINAL t OF PIPE I I ,........,/--OF MOVING PI PE I 1/VESSEL SAFE END\......1 REV.a-APRIL 1984 I e I+,9 20 t 21 14 15+,8 t 23 0-t25 e 0)I@I e C0<0 t26 I@I t 27 I@I t28 f17 18 I@I j 12 t13 0)t29 e.,.leI l 9 t30 10 11 0 I 0 7 8 (0 5 6 0 CD 3 t4 0+1 2 0 CD 31 32 LA SALLE COUNTY.STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-8 FEEDWATER LINE SYSTEM NODALIZATION -LEG EA REV.a-APRIL 1984 I (0 I+19 21 t20 14 15 t16 I G8).23 (0 I (19)l..-.25 I (2:0 I.26@@@8 I@I G.27 I (22)I+28 I (23)I.29 I (24)I+17 30 12+13 G I e j 9+18 10 11 0 0 I 7 8 0 I 5 6 (0 0 3 4 0)I+1 0 0)31 32 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-9 FEEDWATER LINE SYSTEM NODALIZATION -LEG EB REV.0-APRIL 1984 0 STEAM.26*I 0 5 0- FEEDWATER.27 l3 5 I 0)12 114 I 1 7 17 e 16-.....8 0 9!-000-I@0 21......-8....._20-....12@0 t-I.1 I......-......t1S I t 13 e 23 22 G@e (0 I--e 3 LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-10 RECIRCULATION LINE SYSTEM NODALI ZA TI ON REV.0-APRIL 1984 0'" r-ei 8 r-ei 0'"<D d 8 N<D N d u z.., I 0 W It>It>Cl d iii 0-Of>0-0:: 8<<..'"..J N d w U 0:: Z Cl.., Z I 0 iii w It>.3 a..:s: iii d 0-0:t...J....:;)8..J 0.<<..]I-d 0 I-w 0:t'";: '" d 8'" d 0'"'" d 8 N d g d 8 d 0'" 0 d 0 0@...<<...(J)Cl<<w...!!!o o:t:...w:t w'"'" z iii:;)I..J WW>+:t:;)0.o N Jas/wql (£01 X)31.'0'1;1 MOl::!.....----------------.., LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-ll COMPARISON OF THE GE AND RELAP4/MOD5 METHODS-FEEDWATER LINE BREAK.LEG EA REV.0-APRIL 1984 0 tl)....0 8....0 g...'" ri.0 W<t I-..J<t w l-II:'"<.?)-Z...0 0 Vi N N<<::l u N W I Z U......., 0!aI Z tl)..., d 0 0 w I 0..J N LI.W::I:..J Vi 0....0..u;W<<:E:E I-0..8 0::l>W I-0..cr co<.?0<.?Z u;0;:)tl)I.....J 0 W tJ)tJ)w 8>+"I;]0..0:E::>w 0..:::ii 0 i=co"'l 0 8"'l 0 Iii N ci 8 N ci 0 tl)-d 0 0 dd 0 N LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-12 COMPARISON OF THE GE AND RELAP4/MOD5 METHODS-FEEDWATER LINE BREAK, LEG EB REV.0-APRIL 1984 _--.....------:r-------------------., q I7l-d o o J:W:lE w t:l Ul:::l Ul w IX: ""'o o::r:..,.4-:5 w\.....-d i In-d w::r: i=-d-d-d--d LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-13 COMPARISON OF THE GE AND RELAP4/MOD5 METHODS-RECIRCULATION LINE BREAK, FINITE OPENING TIME REV.0-APRIL 1984 HINGES 51 17 2 MASSLESS.....--.53 52 Nodes 50 Elements 3 Springs tttttl+l#Rigid Link LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-14 HORIZONTAL MODEL FOR ANNULUS PRESSURIZATION SHIELD B.RESULTANT FORCES A.PRESSURE DISTRI BUT ION CALCULATION OF FORCE I F.'.....-""'1 FORCE DESCRIPTION (ALL FUNCTIONS OF TIME)I.PRESSURE LOADS 2.PIPE RESTRAINT LOAD 3.JET REACTION FORCE 4.JET IMPINGEMENT FORCE LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.A-15 ANNULUS PRESSURIZATION LOADING DESCRIPTION REV.0-APRIL 1984 EL.755.29'£L.793.42'£L.783 83'EL.777.42 1 EL.77 2.73'EL.760.36'EL.767;8:;, 1 180 0£L.804.00' /'-)/135 0 ,135'/-_.--/.90*I'90*..60*45 0 30*I__1_-_________I I-0'0"31 6(32 33 2-26\)27 2829 e 13-212223 9 2425-16 17 18 19 20'9 Z9 3;',r-..r-(&\..11<3 12'is: 1415---6 7 8 9 10*SJ&G-G 1 G9 2 0 3@4'2Y 5-0 0 r 5ao.c._-;.Br.90"" I I'_1/I 0 0 Upper Levels 1?0*/Indicate Pressure Indicate Pipe Locations Load Centers\," I O*Lower Levels IflO*/,,--[-I ,...I....., I I 1 I k:-W_90*\\i<o c";J::>or:z::z:;;0 c:[Tl mr o(J)();J::>.,>.....;;0;;0.....r ()Vl:z:r c"., f!:fll r;J::>.....;J::>n G">VlO-l m c I.....;;0 I o:z: m I:z: 0 me I 0 0'\ r:l:>.....r:l:>):>-l I z.....I mN-'z-<:l:>m:l:>OJ-l r(J);;0.....-<-l mo;::::>:l:>z;;<:: Vl-l., 0;;0 ,;:gZ);;0)-l.tIl<: o:J::l'1:1H t"1......co ,f;:>.! o'Upper Levels Indicate Pipe Locations-EL.777.42'-EL.767.83'-EL.760.36'-EL.793.42'-EL.783.83'180*-EL.804.00'-EL.755.29'ls'Of/'.Pedestal J US*135 J 90 90*60' O*15'30'I I , , ,:.0....!'X Q<Fl-O@(25 26 27 28 (8;P/Q3)18 19 22.00 c<')(13 14 15 16 17)6<r, tX rg".......C5 r;I',- ,-,.'9 10 11 o 12.'9'5Z X 6(5 6 7 8 (>$8 t?3'9 2 4 (', I)O'"-45'/*90**90*Indicate Pressure Load Centers" 180'I/]180'I-f/'/I f\\"-"-O'Lower Levelso c"):> z;;:j>>z c 0(J)*'"TI):>'"TI>>rn;:0......r rn§;r o VI::::: "'"TI'fIl):>):>.....-in I:i1 U'l()rn rn c;;:;'0 Cl;:0;:0<j Z I"T1....0..........0 0)-<z Z):>/'T1*):>):>-1 J.....I§;-<co N....,;:0):>'-J/'T1-i"):>.......(/)-1;;:0<;:0.....>>:l:z U'l-;::l i'"TI;:0-oj 0 rnO;:0;:0-i I> //W c#TOTALCOREFLOWWA*ACTIVE LOOP FLOW WI&INACTIVE LOOP FLOW LA SALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.8-1 ILLUSTRATION OF SINGLE RECIRCULATION LOOP OPERATION FLOWS REV.0-APRIL 1984 "10 1000"40 0 1120.....<C C a::.....c*"00 II:<C III....!:!i I!1010 100.It;).....!l...=...II: f 5........1010.z:it...2......:>i..z c...II:.....z 1040<C!1020/110 I'lANOE 01'EX"ECTEO----tI""!MA lUMVt\l I l..OOI' O"EAATlON 1:10*10 10 100'OWa1'l LEVEL ,.IfueUAlllOlUl'I"ATIDI NO.....--......1....----'-----'--- ....---.....---....---..o LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.B*2 FEEDWATER CF WITH ONE PUMP OPERATION TYPICAL (GE)REV.13 LSCS-UFSAR

cl*..:--..1;.---....:.:----.....:_1:-.

_..w......."u.c:i§5\--+----+---..;.Jt:+1'----=l2 1l13ll:ftl IJ J.1GJl:l3cI1 LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.B-3 FEEDWATER CF WITH ONE PUMP OPERATION TYPICAL (GE)REV.13 LSCS*UFSAR ...: If'..:--u...."'"VI.......eD CD --J;:::::>-----l:-...::::t-......l..--l;- ....................... ""J,.O gC)CQ31tftl:Jj 1 N3J1:13.1 I LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.B*4 TYPICAL LOAD REJECTION WITH ONE PUMP OPERATION REV.13 ..f;........,.J_1..: "'-""-.4--'.:d!:--,,,, 1-tI.._J..__..:::L.-....._-::. ,..;-.,.. ...i'....,'"_.J-"">._'-1

'v....,
"-_'"'*n--LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.B-5 TYPICAL SEIZURE OF ONE RECIRCULATION PUMP REV.13 r..8cs-lJFSAR 1.2 ,.------.Ul.TIMATE STABILITY l.IMIT 1.0...........___----SINGl.E LOOP.PUMP MINIMUM SPEE'O--BOTH l.00PS.PUMPS MINIMUM SPHD 0.8 o t:<<II:>'l(u...Q 0.6 0..0.2 MIG HEST!'OWEFI ATTAINABl.E FOASINGLE LOOP OPE F1A o
  • For cycle specific decay ratios.SEE the LaSalle Administrative Technical requirements LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.B-6 Typical, GE DECAY RATIO VERSUS POWER CURVE FOR TWO*LOOP AND SINGLE-LOOP OPERATION*

REV.13 LSCS*UFSAR

z::z: 0 0 1=1=<:0:: r.:l r.:l c..c..0 0 c..c..0 0 0 0 lliI 0 ,.,J ,.,J r.:l ,.,J....::I<: 0::>:z: Q til I 0 ,...,;(lliI Q t c li...It C lO: C...It CD

...J....J.-L..J!!a'I LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.B-7 UNCOVERED TIME VS.BREAK AREA-LASALLE 1 AND 2 SUCTION BREAK LPCSlDG F AlLURE REV, 13...'"....g REV. 22, DECEMBER 2015 REV. 22, APRIL 2016 LSCS-UFSA R LASALLE COUN1Y STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.C-1 RECIRCULATION LI NE BREAK PRESSURE RESPONSE REV. 22, DECEMBER 2015 REV. 22, APRIL 2016 LSCS-UFSAR . 2 2 2 10 TIME !SECONDS> 1 DRYWELL TEMP.

  • DEG.F 2 WETWELL TEMP.
  • DEG.F +See Note 1 100 1000 *2 Notes: 1. This point represents the projected suppression pool temperature due to the feedwater coastdown/iniection.

This point is a starting temperature for the assessment of peak long term suppression pool temperature. LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORf FIGURE 6.C-2 TEMPERATURE RESPONSE FOR RECIRCULATION LINE BREAK REV. 22, DECEMBER 2015 REV. 22, APRIL 2016 j I I i f l I I I ! i I I ! ! I I f I ! t I LSCS-UFSAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.C-3 DRY\VELL TEMPERATURE RESPONSE REV. 22, DECEMBER 2015 REV. 22, APRIL 2016 LSCS-UFSAR LASALLE COUNTY STATION UPDATED FINAL SAFETY ANALYSIS REPORT FIGURE 6.C-4 POOL TEMPERATURE RESPONSE-ISOLATIO N/SCRAM. 1 RHR AVAILABLE}}