ML17334A898

From kanterella
Revision as of 23:55, 3 February 2020 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Requests Changes to Analysis of Record,Supporting Current Tech Specs.Proposed Revised Analysis for 3,250 Mwt Large Break LOCA Analysis Encl.Fee Paid
ML17334A898
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 07/23/1985
From: Alexich M
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To: Harold Denton
Office of Nuclear Reactor Regulation
References
AEP:NRC:0941, AEP:NRC:941, NUDOCS 8507310028
Download: ML17334A898 (114)


Text

REGULATOR INFORMATION DISTRIBUTION i TEM (RIDS)

ACCESSION NBR:8507310028 DOC ~ DATE; 85/07/23 NOTARIZED: NO DOCKET ¹ FACIL:50-315 Donald C. Cook Nuclear Poser Planti Unit AUTH, NAME, AUTt/OR AFFILIATION li Indiana ~ 05000315 ALEXICHiM,P, Indiana 8 Michigan Electric Co, REC IP NAME. RECIPIENT AFFILIATION DENTONiH ~ RE Office of Nuclear Reactor Regulationi Director

SUBJECT:

Requests changes to analysis of recordisupporting current Tech Specs. Proposed revised analysis for 3i250 MYt large break LOCA analysis encl'ee paid.

DISTRIBUTION CODE: A001D COPIES RECEIVED:LTR ENCL SIZE':

TITLE:,OR Submittal: General Distribution NaiES:5~- ~@P~7~

OL;10/25/74 05000315 RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL' NRR ORB1 BC 01 7 7 INTERNAL; ACRS 09 6 6 ADM/LFMB 0 ELD/HDS3 1 0' NRR/DE/MTEB 1 1 NRR/DL D IR 1 NRR/DL/ORAB 1 0 NRR/DL/TSRG 1 1 N METB 1 1 NRR/DSI/RAB 1 1 G F IL 04 1 1 RGN3 1 EXTERNAL: 24X 1 1 EGtIG BRUSKEiS 1 1 LPDR 03 1 1 NRC PDR 02 1 1 NSIC 05 1 1 TOTAL NUMBER OF COPIES REQUIRED: LTTR 28 ENCL 25

~ 1 I 7,

~ H W 'W V"" H I

"I I qC IH I

~ &

'"W C.

I ~ I' I

INDIANA 8 MICHIGAN ELECTRIC COMPANY P.O. BOX I6631 COLUMBUS, OHIO 43216 July 23, 1985 AEP:NRC:0941 Donald C. Cook Nuclear Plant Unit No. 1 Docket No, 50-315 License No. DPR-58

,CHANGE TO ANALYSIS OF RECORD SUPPORTING F LIMITS FOR NESTINGHOUSE FUEL Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission l1ashington, D. C, 20555

Dear Mr. Denton:

By this letter and its attachment, we request changes to the analysis of record, which supports=the current Technical Specifications for the Donald C.

Cook Nuclear Plant Unit No. 1. This revised analysis is submitted in.

accordance with May 28, a 1985 telephone call with members of your staff concerning the Slestinghouse BART-MREFLOOD interface revision, the details of which have been reported to your staff by tlestinghouse Electric Corporation.

Our review indicates that no change is required to the= Technical Specifications for the Donald C. Cook Nuclear -Plant Unit No. 1 as a result of this analysis.

The proposed revised analysis is contained in the attachment, and is of the same format as Attachment D to letter AEP:NRC:0745M, dated August 23, 1984 '

Review of this analysis is =needed prior to initial entry- into Mode 1 for the Donald C. Cook Unit 1 Cycle 9 startup. This is currently scheduled to occur on August 18, 1985.

These proposed changes to the analysis and their interaction with the current Technical Specifications will-be-=reviewed by the Plant Nuclear Safety Review Committee (PNSRC) and by the Nuclear Safety and Design Review Committee (NSDRC) prior to Unit 1 entry into Mode 1, In compliance with the requirements of 10 CFR 50.91(b)(1), a copy of this letter and its attachments have been transmitted to Mr, R. C. Callen of the Michigan Public Service Commission.

Pursuant to 10 CFR 170.12(c), we have enclosed an application fee of 4150.00 for the review of the attached analysis.

85073i0028 850723 05000315

! PDR ADDCK p PDR.

1 t

1

~

P

~

Mr. Harold R. Denton AEP:NRC:0941 This document has been prepared following Corporate procedures which incorporate a reasonable set of controls to insure its accuracy and completeness prior to signature by the undersigned.

Very truly yours, M. P. Alexich Vice President"l

I d

k F

Hr. Harold R. Denton w3w AEP:NRC:0941

Attachment:

"D. C. Cook Unit 1 3250 K/t Large Break LOCA Analysis",

llestinghouse Electric Corporation, July, 1985.

cc: John E. Dolan M. G. Smith, Jr. - Bridgman R. C. Callen G. Bruchmann G. Charnoff NRC Resident Inspector - Bridgman

1 I ~ y 4

k 4 ~

lf t

II 0

l 1'l

ATTACHMENT TO AEP:NRC:0941 "D C. COOK UNIT 1 3250 MWt LARGE BREAK LOCA ANALYSIS",

WESTINGHOUSE ELECTRIC CORPORATION, JULY, 1985.

'I 1

f

') i f

WESTINGHOUSE PROPRIETARY CLASS 3 14.0.1 Major LOCA Analyses Applicable to Westinghouse Fuel Identification of Causes and Fre uenc Classification A loss-of-coolant accident (LOCA) is the result of a pipe rupture of the RCS pressure boundary. For the analyses reported here, a major pipe break (large break) is defined as a rupture with a total cross-sectional area equal to or greater than 1.0 ft2 . This event is considered an ANS Condition IV event, a limiting fault, in that it is not expected to occur during the lifetime of D. C. Cook Unit 1, but is postulated as a conservative design basis.

r The Acceptance Criteria for the are described in 10 50.46 (10 50,46 and Appendix K of 10 CFR LOCA 50 1974)((1)'s follows:

CFR CFR

1. The calculated peak fuel element clad temperature is below the requirement of 2,200'F.
2. The amount of fuel element cladding that reacts chemically with water or steam does not exceed 1 percent of the total amount of Zircaloy in the reactor.
3. The clad temperature transient is terminated at a time when the core geometry is still amenable to cooling. The localized cladding

~

oxidation limit of 17 percent is not exceeded during or after quenching.

4. The core remains amenable to cooling during and after the break.
5. The core temperature is reduced and decay heat is removed for an extended period of time, as required by the long-lived radioactivity remaining in the core.

These criteria were established to provide significant margin in emergency core cooling system (ECCS) performance following a LOCA. WASH-1400 (USNRC 1975) (10) presents a recent study in regards to the probability of occurrence of RCS pipe ruptures 3132LS-011865

14. D-1

WESTINGHOUSE PROPRIETARY CLASS 3 Se uence of Events and S stems 0 erations Should a major break occur, depressurization'of the RCS results in a pressure decrease in the pressurizer. The reactor trip signal subsequently occurs when the pressurizer low pressure trip setpoint is reached. A safety injection signal is generated when the appropriate setpoint is reached. These counter-measures will limit the consequences of the accident in two ways:

1. Reactor trip and borated water injection supplement void formation in causing rapid reduction of power to a residual level corresponding to fission product decay heat. However, no credit is taken in the LOCA analysis for the boron content of the injection water. In addition, the insertion of control rods to shut down the reactor is neglected in the large break analysis.
2. Injection of borated water provides for heat transfer from the core and prevents excessive clad temperatures.

The time sequence of events following a large break LOCA is presented in Table 14.0-6.

Before the break occurs, the unit is in an equilibrium condition; that is, the heat generated in the core is being removed via the secondary system. During blowdown, heat from fission product decay, hot internals and the vessel, continues to be transferred to the reactor coolant. At the beginning of the blowdown phase, the entire RCS contains subcooled liquid which transfers heat from the core by forced convection with some fully developed nucleate'oiling.

After the break develops, the time to departure from nucleate boiling is calculated, consistent with Appendix K of 10 CFR 50. Thereafter, the'1) core heat transfer is unstable, with both nucleate boiling and film boiling occurring. As the core becomes uncovered, both turbulent and laminar forced convection and radiation are considered as core heat transfer mechanisms.

The heat transfer between the RCS and the secondary system may be in either direction, depending on the relative temperatures. In the case of continued heat addition to the secondary system, the secondary system pressure increases 14.0-2

1 C

WESTINGHOUSE PROPRIETARY CLASS 3 and the main steam safety valves may actuate to limit the pressure. Makeup water to the secondary side is automatically provided by the emergency feedwater system. The safety injection signal actuates a feedwater isolation signal which isolates normal feedwater flow by closing the main feedwater isolation valves, and also initiates emergency feedwaker flow by starting the emergency feedwater pumps. The secondary flow aids in the reduction of RCS pressure.

When the RCS depressurizes to 600 psia, -the accumulators begin to inject borated water into the reactor coolant loops. The conservative assumption is made that accumulator water injected bypasses the core and goes out through the break until the termination of bypass. This conservatism is again consistent with Appendix K of 10 CFR 50. Since loss of offsite power (LOOP) is assumed, the RCPs are assumed to trip at the inception of the accident.

The effects of pump coastdown are included in the blowdown analysis.

The blowdown phase of the transient ends when the RCS pressure (initially assumed at 2280 psia) falls to a value approaching that of the containment atmosphere, Prior to or at the end of the blowdown, the mechanisms that are responsible for the emergency core cooling water injected into the RCS bypassing the core are calculated not to be effective. At this time (called end-of-bypass) refill of the reactor vessel lower plenum begins. Refill is completed when emergency core cooling water has filled the lower plenum of the reactor vessel, which is bounded by the bottom of the fuel rods (called bottom-of-core recovery time).

The reflood phase of the transient is defined as the time period lasting from the end-of-refill until the reactor vessel has been filled with water to the extent that the core temperature rise has been terminated. From the latter stage of blowdown and then the beginning-of-reflood, the safety injection accumulator tanks rapidly discharge borated cooling water into the RCS, contributing to the filling of the reactor vessel downcomer. The downcomer water elevation head provides the driving force required for the reflooding of the reactor core. The low head and high head safety injection pumps aid in the filling of the downcomer and, subsequently, supply water to maintain a full downcomer and complete the reflooding process.

tl 3tL6-071MS 14.0-3

WESTINGHOUSE PROPRIETARY CLASS 3 Continued operation of the ECCS pumps supplies water during longterm cooling.

Core temperatures have been reduced to longterm steady state levels associated with dissipation of residual heat generation. After the water level of the residual water storage tank (RHST) reaches a minimum allowable value, coolant for long-term cooling of the core is obtained by switching to the cold recirculation phase of operation in which spilled borated water is drawn from the engineered safety features (ESF) containment sumps by ihe low head safety injection (residual heat removal) pumps and returned to the RCS cold legs.

The containment spray system continues to operate to further reduce containment pressure.

Approximately 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after initiation of the LOCA, the ECCS is realigned to supply water to the RCS hot legs in order to control the boric acid concentra-tion in the reactor vessel.

Core and S stem Performance Mathematical Model:

The requirements of an acceptable ECCS evaluation model are presented in Appendix K of 10 CFR 50 (Federal Register 1974).

Large Break LOCA Evaluation Model The analysis of a large break LOCA transient is divided into three phases:

(1) blowdown, (2) refill, and (3) reflood. There are three distinct tran-sients analyzed in each phase, including the thermal-hydraulic transient in the RCS, the pressure and temperature transient within the containment, and the fuel and clad temperature transient of the hottest fuel rod in the core.

Based on these considerations, a system of interrelated computer codes has been developed for the analysis of the LOCA.

A description of the various aspects of the LOCA analysis methodology is given by Bordelon, Massie, and Zordan (1974) . This document describes the major phenomena modeled, the interfaces among the computer codes, and the features of the codes which ensure compliance with the Acceptance Criteria.

14.0-4

WESTINGHOUSE PROPRIETARY CLASS 3 The SATAN-VI, WREFLOOD, BART and LOCTA-IV codes, which are used in the LOCA analysis, are described in detail by Bordelon, et al. (1974) (5).; Kelly, et al.

(1974) (9).; Young, et al. (1980)((16).

'; Bordelon and Murphy (1974)((41'; and Bordelon, et al. (1974) (6) . Code modifications are specified in References 2, 7, 13, and 17, These codes assess the core heat transfer geometry and determine if the core remains amenable to cooling throughout and subsequent to the blow-down, refill, and reflood phases of the LOCA. The SATAN-VI computer code analyzes the thermal-hydraulic transient in the RCS during blowdown and the WREFLOOD computer code calculates this transient during the refill and reflood phases of the accident. The LOTIC computer code, described by Hsieh and Raymund in WCAP-8355 (1975) and WCAP-8345 (1974) , calculates the contain-ment pressure transient. The containment pressure transient is input to WREFLOOD for the purpose of calculating the reflood transient. The LOCTA-IV computer code calculates the thermal transient of the hottest fuel rod during the three phases. The Revised Pad Fuel Thermal Safety Model, described in Reference 15, generates the initial fuel rod conditions input to LOCTA-IV.

SATAN-VI calculates the RCS pressure, enthalpy, density, and the mass and energy flow rates in the RCS, as well as steam generator energy transfer between the primary and secondary systems as a function of time during the blowdown phase of the LOCA. SATAN-VI also calculates the accumulator water mass and internal pressure and the pipe break mass and energy flow rates that are assumed to be vented to the containment during blowdown. At the end of the.blowdown phase, these data are transferred to the WREFLOOD code. Also, at the end-of-blowdown, the mass end energy release rates during blowdown are input to the LOTIC code for use in the determination of the containment pressure response during this first phase of the LOCA. Additional SATAN-VI output data from the end-of-blowdown, including the core inlet flow rate and enthalpy, the core pressure, and the core power decay transient, are input to the LOCTA-IV code.

With input from the SATAN-VI code, WREFLOOD uses a system thermal-hydraulic model to determine the core flooding rate (that is, the rate at which coolant enters the bottom of the core), the coolant pressure and temperature, and the quench front height during the reflood phase of the LOCA. WREFLOOD also calculates the mass and energy flow addition to the containment through the

14. D-5

WESTINGHOUSE PROPRIETARY CLASS 3 break. Reflood conditions are supplied to the BART . code which performs the heat transfer Calculation for the average fuel channel in the hot assembly using a mechanistic core heat transfer model. This information is then used by LOCTA-IV to calculate the fuel clad temperature and metal-water reaction of the hottest rod in the core.

The large break analysis was performed with the December 1981 version of the Evaluation Model modified to incorporate the BART computer code.

Input Parameters and Initial Conditions:

The analysis presented in this section was performed with a reactor vessel upp'er head temperature equal to the RCS hot leg temperature.

The bases used to select the numerical values that are input parameters to the analysis have been conservatively determined from extensive sensitivity studies (Westinghouse 1974 (1Z).; Salvatori 1974((11)'; Johnson, Massie, and Thompson 1975 (8) ). In addition, the requirements of Appendix K regarding specific model features were met by selecting models which provide a significant overall conservatism in the analysis. The assumptions which were made pertain to the conditions of the reactor and associated safety system equipment at the time that the LOCA occurs, and include such items hs the core peaking factors, the containment pressure, and the performance of the ECCS. Decay heat generated throughout the transient is also conservatively calculated.

A meeting was held at the Westinghouse Licensing Office in Bethesda on December 17, 1981 between members of the U. S. Nuclear Regulatory Commission and members of the Westinghouse Nuclear Safety Department to discuss the impact of maximum safety injection on the large break ECCS analysis on a generic basis. Further discussion of this issue is provided in a letter from E. P. Rahe, Manager of Westinghouse Nuclear Safety Department, to Robert L.

Tedesco of the U. S, Nuclear Regulatory Commission (14) . A brief description of this issue is given below.

Westinghouse ECCS analyses currently assume minimum safeguards for the safety injection flow, which minimizes the amount of flow to the RCS by assuming 14.0-6

d

~

'ESTINGHOUSE PROPRIETARY CLASS 3 maximum injection line resistances, degraded ECCS pump performance, and the loss of one residual heat removal (RHR) pump as the most limiting single fai lure. This is the limiting single failure assumption when offsite power is unavailable for most Westinghouse plants. However, for some Westinghouse plants, including D. C. Cook Unit 1, the current nature of the Appendix K ECCS evaluation models is such that it may be more limiting to assume the maximum possible ECCS flow delivery. In that case, maximum safeguards, which assume minimum injection line resistances, enhanced ECCS pump performance, and no single failure, result in the highest amount of flow delivered to the RCS.

Current LOCA analysis for D. C. Cook Unit 1 has demonstrated that maximum safeguards assumptions result in the highest peak clad temperature.

Therefore, the worst break for 0. C. Cook Unit 1 (CD = 0.6) was reanalyzed, assuming maximum safeguards.

Results:

Based on the results of the LOCA sensitivity studies (Westinghouse 1974 Salvatori 1974 '; Johnson, Massie, and Thompson 1975 ) the limiting (11).

large break was found to be the double ended cold leg guillotine (DECLG).

Therefore, only the DECLG break is considered in the large break ECCS performance analysis. Calculations were performed for a range of Moody break discharge coefficients. The results of these calculations are summarized in Tables 14.0-5 and 14.D-6.

The containment data used to generate the LOTIC backpressure transient are shown in Table 14.D-l. The mass and energy release data for the minimum and maximum safeguards cases are shown in Tables 14.0-2 and 14.0-3, respectively.

Nitrogen release rates to the containment are given in Table 14.0-4.

Figures 14.D-1 through 14.0-64 present the transients for the principal parameters for the break sizes analyzed. The following items are noted:

~2

~di .

1 1 1 1 temperature),

d both 11 on d<<

  • dd the hottest fuel rod (hot rod):

14.0-7

1 I e

WESTINGHOUSE PROPRIETARY CLASS 3

1. fluid quality,
2. mass velocity;
3. heat transfer coefficient.

The heat transfer coefficient shown is calculated by the LOCTA-IV code.

Fi ures 14.0-13 The system pressure shown is the calculated pressure in throu h 14.0.24 the core. The flow rate from the break is plotted as the sum of both ends for the guillotine break cases. The core pressure drop shown is from the lower plenum, near the core, to the upper plenum at the core outlet.

Fi ures 14.0-25 These figures show the hot sp'ot clad temperature transient throu h 14.0-36 and the clad temperature transient at the burst location.

The fluid temperature shown is also for the hot spot and burst location. The core flow (top and bottom) is also shown.

th

~h 7

Fi ures 14.D-45 These figures show the Emergency Core Cooling System flow throu h 14.0-52 for all of the cases analyzed. As described earlier, the accumulator delivery during blowdown is discarded until the end of bypass is calculated. Accumulator flow, however, is established in the refill and the reflood calculations.

The accumulator flow assumed is the sum of that injected in the intact cold legs.

Fi ures 14.D-53 The containment pressure transient used in the analysis throu h 14,0-54 is also provided for the minimum and maximum SI cases, Fi ures 14.0-55 These figures show the heat removal rates of the heat and 14.0-60 sinks found in the lower compartment and the heat removal by the lower containment drain, and the heat removal by the sump and LC sprays (minimum and maximum SI cases).

14.0-8

WESTINGHOUSE PROPRIETARY CLASS 3 Fi ures 14.D-61 These figures show the temperature transients in both the throu h 14.0-64 upper and lower compartments of the containment and flow from the upper to lower compartments. Total heat removal in the lower compartment is the sum of all the heat removal rates shown (for minimum and maximum SI cases).

The maximum clad temperature calculated for a large break is 2154'F, which is less than the Acceptance Criteria limit of 2200'F. The maximum local metal-water reaction is 6.46 percent; which is well below the embrittlement limit of 17 percent as required by 10 CFR 50.46. The total core metal-water reaction is less than 0.3 percent for all breaks, as compared with the 1 percent criterion of 10 CFR 50.46. The clad temperature transient is terminated at a time when the core geometry is still amenable tb cooling. As a result, the core temperature will continue to drop and the ability to remove decay heat generated in the fuel for an extended period of time will be provided.

3l32L:5 071665 14.0-9

WESTINGHOUSE PROPRIETARY CLASS 3 References for Section 14.0-1

1. "Acceptance Criteria for Emergency Core Cooling System for Light Water Cooled NuclIear Power Reactors," 10 CFR 50.46 and Appendix K of 10 CFR 50, Federal Re ister 1974, Volume 39, Number 3.
2. Rahe, E. P. (Westinghouse), letter to J. R. Miller (USNRC), Letter No.

NS-EPRS-2679, November 1982.

3. Hsieh, T., and Raymund, M., "Long Term Ice Condenser Containment LOTIC Code Supplement 1," WCAP-8355, Supplement 1, May 1975, WCAP-8345 (Proprietary), July 1974.
4. Bordelon, F. M. et al., "LOCTA-IV Program: Loss-of-Coolant Transient Analysis," WCAP-8301 (Proprietary) and WCAP-8305 (Non-proprietary), 1974.
5. Bordelon, F. M. et al., "SATAN-VI Program: Comprehensive Space, Time Dependent Analysis of Loss-of-Coolant," WCAP-8302 (Proprietary) and WCAP-8306 (Non-proprietary), 1974.
6. Bordelon, F, M.; Massie, H. W.; and Zordan, T. A., "Westinghouse ECCS Evaluation Model - Summary," WCAP-8339, 1974.
7. Rahe, E. P., "Westinghouse ECCS Evaluation Model, 1981 Version,"

WCAP-9220-P-A (Proprietary Version), WCAP-9221-P-A (Non-proprietary version), Revision 1, 1981.

8. Johnson, W. J.; Massie, H. W.; and Thompson, C. M., "Westinghouse ECCS-Four Loop Plant (17x17) Sensitivity Studies," WCAP-8565-P-A (Proprietary) and WCAP-8566-A (Non-proprietary), 1975.
9. Kelly, R. D. et al., "Calculational Model for Core Reflooding After a Loss-of-Coolant Accident (WREFLOOD Code)," WCAP-8170 (Proprietary) and WCAP-8171 (Non-proprietary), 1974.
14. D-10

I WESTINGHOUSE PROPRIETARY CLASS 3

10. U. S. Nuc1ear Regulatory Commission 1975, "Reactor Safety Study - An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants,"

HASH-1400, NUREG-75/014.

11. Salvatori, R., "Hestinghouse ECCS - Plant Sensitivity Studies," HCAP-8340 (Proprietary) and WCAP-8356 (Non-proprietary), 1974.
12. "Westinghouse ECCS - Evaluation Model Sensitivity Studies," WCAP-8341 (Proprietary) and MCAP-8342 (Non-proprietary), 1974.
13. Bordelon, F. M., et al., "Westinghouse ECCS Evaluation Model-Supplementary Information," WCAP-8471 (Proprietary) and HCAP-8472 (Non-proprietary), 1975.
14. Rahe, E. P. (Westinghouse). Letter to Robert L. Tedesco (USNRC), Letter No. NS-EPR-2538, December 1981.
15. "Westinghouse Revised PAD Code Thermal Safety Model," MCAP-8720, Addendum 2 (Proprietary) and HCAP-8785 (Non-proprietary).
16. Young, M. Y. et al., "BART-Al: A Computer Code for the Best Estimate Analysis of Reflood Transients," MCAP-9561-PLA (Proprietary) and HCAP-9695-A (Non-proprietary) January 1980.
17. Thomas, C. 0., (NRC) "Acceptance for Referencing of Licensing Topical Report HCAP-10484(P)/10485(NP), 'Spacer Grid Heat Transfer Effects During Reflood,'" Letter to E. P. Rahe (Westinghouse), June 21, 1984.
18. Special Report NS-NRC-85-3025 (NP),"BART-HREFLOOD Input Revision".

3132L5 07'I885

14. D-11

WESTINGHOUSE PROPRIETARY CLASS 3 TABLE 14.D-l LARGE BREAK CONTAINMENT DATA

( ICE CONDENSER CONTAINMENT)

NET FREE VOLUME

( Includes Distribution Between Upper, Lower. UC 746,829f t and Dead-Ended Compartments) LC 249,446 DE, 116, 168 IC 122,400 Initial Conditions Pressure 14.7 psia Temperature for the Upper, Lower and UC 100'F Dead-Ended Compartments LC 120'F DE 120'F RHST Temperature 70'F Service Hater Temperature 40'F Temperature Outside Containment -7'F Initial Spray Temperature 70'F Spray System Runout Flow for a Spray Pump 3600 gpm Number of Spray Pumps Operating 2 Post-Accident Initiation of Spray System 40 secs Distribution of the Spray Flow to the LC 2835 gpm Upper and Lower Compartments UC 4365 gpm Deck Fan Post-Accident Initiation of Deck Fans 600 secs Flow Rate Per Fan 39,000 cfm per fan Hydrogen Skimmer System Flow Rate 2,800 cfm per fan Assumed Spray Efficiency of Hater from 100%

Ice Condenser Drains 14.0-12

I 1

e

WESTINGHOUSE PROPRIETARY CLASS 3 TABLE 14.D-1 (continued)

STRUCTURAL HEAT SINKS Com artment Area ft2 Thickness ft Material

1. LC 12, 105 0.0469/2.0 steel/concrete
2. LC 11,700 2.0 concrete
3. LC 65,980 1.35 concrete
4. LC 5,481 0.0833 steel
5. LC 4,735 0.01147 steel
6. LC 289 0.25 lead
7. LC 14,690 0.0079 steel
8. LC 3,439 0.1561 steel
9. LC 5,775 0.009 s tee'.
10. LC. 4,966 0.0096 steel
11. LC 7,013 0.037 steel
12. LC 2,457 0.0334 steel
13. UC 378 .1667/.0365 steel/concrete
14. UC 29,772 .0092 steel
15. UC 8,033 ,0209 steel
16. UC 420 .0052 steel
17. UC 29,330 1.47 concrete
18. UC 34,125 0,0469/2.0 steel/concrete
19. UC 210 .0052 steel UC: Upper Compartment LC: Lower Compartment OE: Dead-Ended Compartment IC: Ice Condenser Compartment 3132LO-07'I6$ 5 14.0-13

A<

WESTINGHOUSE PROPRIETARY CLASS 2

TABLE 14.0-2 MASS ANO ENERGY RELEASE RATES MINIMUM SI TIME MASS ENERGY (sec) (tb/sec)

(BTU/sec)

O.

~ 2000~7 4CCOK~>

.$ $ 2$ f~

. $ 000K

. $ 0COt~1

. Iaaat 02

~ 1

~"

. 2$ 0$

.2T4TK~

t~

4$ 4$ C CO< .20$ 2E~

.24$ 5E~

.3$ $ 1K~

.2221K~

12~

.1400K'2

'..-".20$ '$ 'tt~1$ K CIS

~

~ 145$ EW$

1207 1125K~

f~

~

. 1$ 00KM2 " 1700&05 ~

t~

1022K 4CO

. 1$ 00K~2

. 1700K~

3500~

~

. 1$ 04t 05.

14$

. 12T 0K~

1t~

~

<<$ $ 2$

<$ 24$ f~

.$ 7$ 2KN)7

~

252K~ CK~

.2OQC~ ~

'I

.$ 1$

Wlaaf ~. '<

i"-.; 104 $

%107%~ ~ . T5$ 0C~T

$ $42&N77

.220OC

.2200K

.2400K 02 "

~

02 ~." < $ 742C~

.$ 25$ EM E~

~

. $ 277K~

  • <$ $$ 4fwP

.250~

.;~~ 2$ 00~ '. ~';$

~ 77$ $

25~ <

.5524K~

4$ $ 0f

,4502K~

- 2$

~

422K~ $ 7 &07' a$

1~.

~

.2500K

.2$

..2000K 02 00t~ CC >-; $2$ $

. 7$ $$

47K~

K~

<22$ $ EN7T

~ 2415K

..22$ $ C~

~

-.2400f OZ

.2$ 00K 02

, 74$ 4C~

$ $ 3$ $

4140K~

2225K~

~ . 217$ f~7

. 2$ 0$ C'<OT

. 21$ '2 fK7T

..1420K~

.2$ 50C 02 K~

~

.2$ $ $ .$ $$ 0E~

. 4500K 02 . 7805K 402 .$ 74$ E~

~~f~ 4$ $OC CO . 1$ 72E~

f40

~~

~

12 '.-. ' 4$ $ OK~ .2505K~

~ $

5$ 02C~

2E~ '

g'<.'.~4$ $

4%'5TZ~

OCM"

&45

.5422K 02

,4$ 17f~ ~ 22$ $ f 4$ 17K 02 .2254K~

$ $ 22C 02

~

1$ K~

K~ .22$ 2EM5

~ %1$

.$$ 42K 02 2f~  :.";,

. 4$ 1$

N1$ %%R

.2274K%75

.2272K %75 7002C 45

. 1045KM2

. 124$ K02

.14$ $

1$ $

.2525K~

~

2E~

~ $ 7$

.$ $ 24C~

. 5012K~2

.$0$ $ K~

$ 22 t 02" 7K~ <2272K 0$

.2252K

.2225K~

. 22$ 2f 0%

2~~$ POC 0%

.222CEND .$ 25$ K~

~

. 2102K~

.2$ 25C~ .$ 50TK~2 .1$ 7 K OC

.$ $ $ 2K~ ~ 1$ 2TC OC

. 1775K~

3133L b 071661 14.0-14

WESTINGHOUSE PROPRIETARY CLASS 3 TABLE 14.D-3 MASS ANO ENERGY RELEASE RATES MAXIMUM SI T(eE E'IvEfC 6 Y (sr c] (it ~is rc) (sru/srr)

.6935E+05 .3691Ei08

. 200OE +01 . 5708 E F05 ~ 2$ 86f+08

. 4003E i01 .397 $ E i05 .2$ $ 7E+08

. 6000E +01 .3076E405 702E i08

.8003f i0$ . 279 1f F05 ~ 1568E ~08

. $ 000E~02 2437E+05 ~ $ 405 E +08

. $ 200E s02 . 1956E F05 .$ $ 6$ E+nd

. 1240E+02 . $ 749E~05 s 1051f ~08

. $ 400E+02 . 1546f +05 .9504f+07

. 1500E ~02 . $ 37df s05 .8649fi07

. 1600E s02 .$ 225E+05 . 7896E F07

. 1700f ~02 . 105 I E+05 .7056E+07

. $ 800E+02 .$ 591E+04 .6565fs07

. $ $ 00E i02 .8509fs04 .589$ E+07

. 200OE+02 .7006fs04 .50$ 8E+07

. 2100E ~02 .4979E+04 . 3701E+07

.2200E+02 .4677fs04 .2909E+07

~ 230i3E~02 .6867E+04 . 3176f +07

.2400Es02 .735 If+04 . 2906E s07

.250OE+02 .6629fi04 .2235fs07

.2600E i02 .5302E~04 .$ 5$ $ E+07

. 2700E i02 . 4580E F04 . 1166E +07

. 2800E+02 .3860E+04 . 9 $ 56E~06

.2893E+02 .3672E+04 .7425E+06

.308efs02 .2539E+04 .3709fs06

.3500fi02 .2867E~03 . 1091E~05

.400OE~02 .2867E~03 . 1091E~05

.4344E+02

.4394fi02

.2867fi03 . 109 If +05

.2909E~03 .$ 633fi05

.4464E+02 .2944E~03 .2092E405

.4 ~ 92E ~02 .2908EK)3 . 1623Ei05

.4553E402 .2956E~03 . 2244 f ~05

.4$ 77E+02 . 31b6Es03 .5222E~OS

.5$ 88E+02 .3249fs03 .6043E+05

. 537 1E+02 .4579E+04 .4290fs06

.6333E+02 .$ 098fi04 .2085fi06

.7408fi02 . 1 $ 05E~04 .2076fs06

.93$ 0E~02 . 111 $ E~04 .2055E+06

. 1032 f ~03 . 1035f ~04 .$ $ 0$ E+06

. 12 ~ 3f ~03 1038E~04 898E ~06

.$ 379E+03

.$ $ 99E~04 i

2 182 f 06

. 1463E i03 .104 If+04 ". 1895E ~06

. $ 578fi03 . 105QE +04 . 1909E s06

. 1706E ~03 . 106 4 E +04 . $ $ 3$ E~06

. 18 sdf ~03 . 1072E F04 . 1$ 40E +06

. $ 949E+03 . 1152E +04 .2079E~06

. 2 164 f ~03 . 1 $ 57f+04 .2072fi06 lllltcd 011SS5 14.0-15

1, ~

WESTINGMOUSE PROPRIETARY CLASS 3 TABLE 14.0-4 NITROGEN MASS AND ENERGY RELEASE RATES TIME FLOWRATE (sec) (lb/sec) 37.5 71.9 39.5 60.7 45.5 37.2 47.5 31.6 53.5 18.8 55.5 15.6 57.5 12.8 60.2 266.6 66.2 159.9 68.2 135.9 74.2 83.3 76.2 70.3 78.2 59.0 80.2 49.1 82.2 40.6 84.2 33.3 90.2 18.5 92.2 15.7 106.2 6.9 108.2 6.3 122.2 3.0 124.2 2.7 138.2 1.3 140.2 1,2 154.2 0,52 156.2 0.47 166.2 0.28 14.0-16

e

~)

)

WESTINGHOUSE PROPRIETARY CLASS 3 TABLE 14.0-5 LARGE BREAK DECLG DECLG DECLG DECLG CD=0.8 CD=0.6 C,=0,4 CD=0.6 Results Min SI Min SI Min SI Max SI Peak Clad Temp., 'F 1873 1937 1885 2154.

Peak Clad Location, ft 6.25 6.0 7.50 6.25 Local Zr/H20 Reaction (Max), 2.81 5.11 2.83 6.46 Local Zr/H20 Location, ft 6.00 6.25 5.75 6.25 Total Zr/H20 Reaction, % <0.3 <0.3 <0.3 <0.3 Hot Rod Burst Time, sec 51.0 43.2 54.60 43.20 Hot Rod Burst Location, ft 6.0 6.25 5.75 5.75 Calculation Licensed Core Power (MHT) 102% of 3250 Peak Linear Power (kw/ft) 102% of 14.098 Peaking Factor (at License Rating) 2.10 Accumulator Hater Volume (ft ) per Accumulator 950 Cycle Analyzed Cycle 8 3'I32L6-071645 14.0-17

J I 4'

WESTINGHOUSE PROPRIETARY CLASS 3 TABLE 14.0-6 LARGE BREAK TIME SEQUENCE OF EVENTS Min SI Min SI Min SI Max SI DECLG DECLG DECLG DECLG CD=0.8 'D=o CD=0.4 CD=0.6 (sec) (sec) (sec) (sec)

I START 0.00 0.00 '0.00 0.00 ,

Reactor Trip Signal 0.62 0.63 0.64 0.63 Safety Injection Signal 3.82 3.94 4.20 3.93 Accumulator Injection 13.0 15.6 20.80 15.7 End of Blowdown 27.32 30.35 38.49 30.85 Bottom of Core Recovery 40.00 43.38 52.64 43.44 Accumulator Empty 56.27 59.29 65.65 60.29 Pump Injection 28.82 28.94 29.20 28.93 3I32L:6 07l685

14. 0-18

e e

1.4000 COON uull1 I1ltl 0.0 OCCLC HlVSl 3250 HVT CCCS LICOC1 Vl>V I101 1VO IIKV t10 lQ<g,10 ou1lllr ot flulo ~ u0$ > ~ C ~ 00 Nil l tK1% ~ Ceg5 1Tl>l 1.8500 1.0000 0

0 O.noo 0

oo 0.50lI 0.2500 0.0 0

I0 kmm@m 0 00000

~ ~ ~ ~ ~ ~

I I mmmmll i i sis=i8 5 1 . 15-18 TlHK lSKC'I FIGURE 14.D -1 FLUID QUALITY, DECLG (C 0.8) 51IN SI

1. 4000 SURSUM COOK UH)11 IAK,P) 0.6 OCCLG HIHS1 3250 HV1 ECCS LSLOCA V11H BAR1 AHO Hf V PAO FOr2 10 ou*cll~ 0F Fculo ~ 6 ~ 25 Fll 'I PC AK ~ 6 ~ 00 F>t ~ l 1.2500 I

O 1.0000 0

~ 0.)SOO O.SUOO 0.2S00 0.0 8 8 g 888SQs 8 8 8 8SSSOS 8 g 0 8SSSSS 8 8 8 88888 ~

w r rl Pp e corlo 8 8 S 8 ooSo Q 0 0 0h OOOOO

~

SSSSS 8rl 8r lA pro 0 0 0 0 0000>>

~ ~ ~ ~ ~ ~ ~ ~

all sO

~ ~ ~

w Crdl>>

~

0 ~

~ ~ ~

<<4>rl >> 8Ai lp l CIA>>

11HC iSCC)

FIGURE 14.D. -2 FLUID QUALITY, DECLG (C M0.6) MIN SI

l; ~ 00il COOK UHlll <ACP) O.A OfCLC HIHSI 3250 HM1 f'CCS LBLOCA Mlle BARl AHO Nf M PAO CO=2, l0 ouAilt~ 0~ ffulO BURST ~ 5 ~ >5 <>< > Pf AK ~ 1 ~ 50 Pl( ~ l l . i2500 X

l.0000

~ 0.>500 0.5v00 0.2500 Ct O

~ eO O OOOO O Cl o ooono nCl eoG @OOOO O O O

O O

O O'OO) Cl O

DCO Cn=a O O Cl m

0 O ~ '~CCl 4 E4PO O O~ O G CI GOO OOOO O O o ooo ~

O C' Oo~~

Cl n w one

~ ~ ~

o o

~ ~

oooo-

~ ~

~

'l le~ t APL

~

~

~ v O

Pl 0 O O ~GOGO v'1 % Cll ITI ~ ~l P vvgl T lHf < Sf C I FIGURE 14.D -3 FLUID QUALITY DECLG (CD 0.4) MIN SI

~ < ~

~

COOK UNIT 1 (AEP) 0.6 DECLG MAXSI 3250 MW1 UPRATING:

,ECCS LBLOCA WITH BART AND NEW PAD FQ 2.10 QUALITY OF FLUID BURST, 5 ~ 75 FT( ) PEAK, 6.25 FT(*)

1.4000 1.2500 1.0000

0. 7500 O

I~

cC 0.5000 . l 0.2500 0.0000 o o oooone8ooo CI o 8O O n OOOI.~

O O Oo io 8c. Oo 8 o0 oggo O n 8 8 8 O88O.

C O OOOOO c

~

O

~ ~ ~

OOOO>>

cp

~

~

~ ~

CI O 0 OO

~

O

~

0 OC.iC

~

~ ~

lOO ~

gl u > O>1'>>

~

OOO

~

rt\ O O 0 Gogo

~ ~

nCI O O

m O O OOOOC 0 0 O OOOC

't(Mf iaaf(e FIGURE 14.9 -4 FLUID QUALITY, DECLG (C ~0.6) MAX SI

(00$ ueltl ~itfi 0. ~ 05CiC $ $ laSl 5ZSO <<Of CCC5 L ~ LOCA VI5$$ OAO5 4%0 f$5V W40 f0<2 l0

~$ Ass v(loclf$ OOST ~ C.OO fll l Pf1% ~ O.gS fTlol le o- 0.0

.S0.000 Ct Vl l00.00 5

-'ISO.OO

-500.00 I I l IIII5. I I I5 SStIB IIISH $ ~ ~ ~ ~ $ $$

5 55555

~

0 0 0~

~

0D4W

~ ~ ~ ~ ~ ~

g. N 5 5l$ $ 5 tS(cl FIGURE 14.D -5 kfASS VELOCITY, DECLG (C ~0.8) HIN SI

(664 'hll l <>(P: 0.6 GfiLC <Ik~l 3.'SO <vl li(~ w' LO(h kith RA~1 kkD k(v VAO iQig. lu Ha g~ii ITv ( RCI ~ h. $ C'i s P(Aa ~ c,.(iQ f f, ~ l 0C 0 O 0 0 OOOQ D O COOO 00 C O OOOOO ConOO 0 00 00 0oo O OOOO 0 cooo 0 8 8SS S O 0 O~;0 O G QtCOOO 00 CO C

0 OOGOO 0 0 0 C'OOC 0 00 OOOO 0 00 lD

~ ~

Pl QPQ OOOO 0 ~

0 O

~

0 ~

0 r0000

~ ~ 0~

0 0 0r I'1

~

OOOO O 0 0 0 000>>

~ ~ ~ ~ ~ ~

r~

v>

~ ~ ~

ul w c)IP>> Al m rw V men>> As Pl > EOCh<<

l 1 H( l SL( >

FIGURE 14.D -6 MASS VELOCITY, DECLG (CD 0.6) MIN SI

~ ~ ~ I N ~

0

C>>04 UNIT T I<f Pl U.o Of f Lti Hl>>ST 3250 Hs T fi'.5 iOiOCA VITH eaRT ARO >>f V Pa0 f0 Z. T0 Hi >'. f V LO( I T < f>URST ~ 5 T5 f TI l P f AK ~ 7 >0 FTI ~ )

~ - c'>0.'>0

l!0. <>'>

f>

X

~ lp!i. >;I

~,'e ll> . I r >

00 o oooo 0 nOOQQQ 0 00 0 00 o0 OOOO oooo 0 0 o 0 n 0000 oooo 00 00 Qno'0 Cl Cl Q Q Q vOQQQ e <>>eo Cl 0 0 0 0o 0 00 0OOQQ Cl 0 00 0 Cl 0 0000 0CQ'5 0o orna

~

<v ~v OOOO O 0~

0 ~ ~ ~

OOOO Cl 0 o OQQ 0 0 OOOO Ill A Iv COOl Q Cl v1 l>l > 4l~

~ ~ ~ ~ ~ ~ ~ ~ ~ C. ~

Cl Al m e A lD v OIOl

~

TTHf ~SfCi FIGURE 14 D -7 MASS VELOCITY>

DECLG (CD 0.4) MIN SI

COOK UNIT 1 (AEP) 0.6 DECLG MAXSI ECCS LBLOCA. WITH BART FQ~2e10 MASS VELOCITY BURST, 5.75 FT( ) PEAK, 6.00 FT(*)

50.0000 CJ I

0.0000

-50.0000 ~ ~ ~ s t ~ tl t ~ ~ t ~ ~ ~ 4 I4

-100.0000 ~ - ~ ~ ~ t t .4 ~ t l'4 f ~" t - -4' ~ 4 tt~ t. < t- t-

~ '

I I

-150.0000 I; ~

e e ~

t-e ~

e 4 p e t L..-- ~ 4.

e j

j i

~

I

~

~

e e

e e

(, ~

e I

I e

e I I

~ f e e

j e I e I

I I e I I I I I,

e I e

~

I ~ e I e e j I e I ~ e "200.0000 e':." ~e'2 'ea

~ ~ ~

cee o'.%~ O )e%

0 A

~ e>>

0aoa e.

ee~ W ~ eeet o~ +a J7o QCW ceaaa a Je et' FIGURE 14.D -8 MASS VELOCITY, TIME (SEC)

DECLG (CD~0.6) MAX SI

0 500.00 500.00 COoa Valfl ~~tti ~ .0 KCLC frlaSl aCSe tCC5 LOLK0 itlTN IAIDO 100 KV til flfit<<elI'tlw IClT 10115 ~ CKfflfltd 0005fo C 00 C~ ll ~ L,f% filo!

~ 00.00

$ Xe.oo

~ NO+00

. f8

~ 0+000 50.000 N

5.000

$ .0000 4.0000 I F0000 f.0000

$ .0000 8

TINC l5tt)

FIGURE 14.D -9 HEAT TRANSFER COEFFICIENT DECLG (C ~0.8) MIN SI

I I

Cooa UH111 (AKP) 0.6 OKClt HIHSI 3250 HV1 ECCS LBLOCA VI1H BAR1 AHO HCV PAO f0<2.10 60u.oo HCA1 1RAHS.CO(ff)CICN1 BURST e 6.25 f11 I PCAx ~ 6.00 f1' I 5oo.no F 00.00 300.00 200.00 60.000 50.000 10.000 30.000 20.000 6.0000 5.oooo i.0000 3.0000 2.nono 1.0000 o CI CI O

1)HK <SEC'I FIGURE 14.D -10 ))EAT TRANSFER COEFFICIENT DECLG (CD 0.6) NIN SI

I Y

COOK UHI I I <ACP> 0. ~ Of CLG HIHSI 32/0 H)<T fCCS LBLOCA MITH BART AHD HCM PAO f0 Z. IO f,on.oo TRAHS.COffflCICHT S.15 f J<

SOO.OO

><CAT BURST ~ > Pf AX-. 7.50 fI< ~ >

<<QO 00 xI TOO.<<<)

e00.00 I>'!)(I

-" <n'.ot<<)

" sn.ono i0.0<)0 30.000 5;"u. u<)0.

I"Il<<)

. L>'><)<

L,.O<)ov

$ . <<<)<<0 I . O(<<.<0 3.0')o c . 0')oo I.oov<)

n Cl Cl Cl Cl n Cl Cl Cl Cl IIHf <SfC>

FIGURE 14.D -11 IIEAT TRANSFER COEFFICIENT DECLG (CD 0.4) MIN SI

)>"nLi (OIIK Uh)) l ~ Af P O.f OL(LC <A ' C ) 50 HVf

nrr )aAhr.(pffft' tl(:. iBl0).A Vlf~ BAat Ah0 hl V f AD f0=<, f0 fii)ls .,lil Hf Al )f'hf P )fi': ~ 5./5 fl P1 AA, fi.g'ft.i

':i)0. )0 sr)r). il)

~

!nl).ilii

00.<)0 fr).unn

~n,n0i)

O ~ ii.l)00 CJ

39. i)nl) txl b 00rf0

$ .!)i)nh b.f):>Ill)

t. i)i)lln r . rrrrrr'r

) ~ pig) )

CI C)

O Ci Ve O e>

)IMf FIGURE 14.D -12 HEAT TRANSFER COEFFICIENT DECLG (C ~0 D

~ 6) MAX SI

I I P

>EP EPiPCW P.B OE(<C B&Eka Hlk ',l VllH Babel WHO HEv PAO ISI lS Oi a,'VS vblC Bit.atilt S PCl SClP PAE SSVRE CORE BPllUI4 I l 1UP g I~ I

~ p Ip ~ 0 la l~PO.P 1PUU.U

,ca qP U.p CI

~ ~

C'I lIHE USE(>

FIGURE 14.D -13 CORE PRESSURE'ECLG CD 0.8) MIN SI

2500.0 AEP LBLOCA .ANALYSIS WZTN gART AND Hplj.pin f5X f5 OFA 2.5 PSIG BACKFfLL 5 PCT SCTP tf:fI OECLC BREAK HfK"f PRESSURE CORE BOTTOH l f TOP ~ l~ )

2000.0 VI f500.0 1000.0 500.00 0.0 CI ED CI CI O CI CI CI Al m TTHE lSEC)

FIGURE 14.D -14 CORE PRESSURE DECLG (CD=0.6) MIN SI

2500.0

>EP LBLOCA ANALYSIS 'MITII BART I5X I5 OFA 215 PSIC BACRTILL 5 PCT SGTP O.a OECLG BREWER HINSI PRESSURE CORE BOTTOII I I TOP ~ I~ I 2000.0 I500.0 Il.

l000.0

'500.00 0.0 Cl CI CI Cl Cl CI m In Cl TIHE {5EC I FIGURE 14.D .-15 CORE PRESSURE DECLG (C =0.4) MIN SI D

8500.0 f LBLOC A ANALYSIS WITII MRT AND A P NEW PAD.

ISI I5 OFA 815 PSIG BACKFILl 5 PCI SGIP Oo6 OECLG BRf AK PRf SSURE CORE BOllOH < > TOP ~ l~ l 8000.0 a

I500.0 a

CL I000.0 500.00 0.0 CI O CI AJ m tIHf <Sf C>

I FIGURE 14 D 16 CORE PRESSURE DECLG (CD 0 6) MAX S I

1.00E+05 AEP L'BLOCA 0.8 DECI.G BRFAK MIN SI WITll BAUNT AND NEW PAD 15xl5 OFA 275 PSIG BACKFILL 5 PCT SCTP BRE FLOW 8.00E+04 6.00E+04 4.00E+04 2.00E+04 0.0' CD CD o O O

CD CD o

CD CD O CD CD CD CD o O C4 CD o CD TINE (sec)

FIGURE 14.D -17 BREAK FLOW RATE, DECLG (C =0.8) MIN SI

I.OOEK)5 AEP LBLOCA ANALYSIS 'WITIL.BART AND NEW PAD 15K I5 OfA 215 PSIG BACKfILL 5 PCT SGTP 0 ~ 6 OECLC BREAK HINSI ORE AK fLOU cn B.OOE+Ol 6.00ERi CD CC le CL CD 4.00E Oi 2.00E+04 0.0 CD CD CD CD CD CD CD CD CD CD CD CD m T I HE (SE C)

FIGURE 14.D -18 BREAK FLOW RATE, DECLG (C =0.6) MIN SI

1.00EWS AEP LBLOCA ANALYSIS WITH BART 15>15 OFA 215 PSIC BACKFILL 5 PCT SCOP O.l OECLC BREAK HIRSI BREAK FLOV LI an 8 OOEcOl CO 6 ~ OOEN)a 1.00E<a

2. OOE+OA 0.0 CD CD CD ~ D CD CD CD CD CD

~ D CD CD CD m

FIHE (SEC >

FIGURE >4-D -I9 BREAK FLOW RATE ~ ~

(GD 0.4) MIN SI

'ECLG

I.OOEN)5 ggP LBLPgA ANALYSIS WITH BART AND NEW PAD IS< l5 OCA F15 PSIG BACl<ILL 5 PCT SCJP 0.6 OICLC BR/AK BRCAK fLOM EJ d.OAK)a

~5 C.OOEN)i 1.00f oOo P.OM Rl 0.0 CI CI CI TIHK <Sf Cl FIGURE 14.D -20; BI'I'.% FLOW RATE, DECLG (C D

0.6) MAX SI

10.000 AEP LBhOCA 0. DECLG BREAK MIN . 1TH Bike D 15xl5 OFA 2r75 PSIG BACKFILL 5 PCT SGTP CORE PR.DROP 50.000

~ 2$ .000 le

'LI 0.0

-25.000

-50.000 0.OOO o CD CD O O O O

CD O

O CD O O CD CD O O O CD TIME (sec)

FIGURE 14.D .-21 CORE PRESSURE DROP, DECLG (C =Or8) MIN SI

70.000 AEP LBLPCA ANAT.YSIS WITH BART AND NEW PAD ISX I5 OFA 275 PSIC BACKFILL 5,PCT SGTP 0.6 OECLG BREAK HINSI CORE PR.OROP 50.000 EL 25.000 CC 0.0

-25.000

-50.000

-70.000 CI ED C) 0 C)

TINE ISE C)

FIGURE 14.D -22 CORE PRESSURE DROP DECLG (C 0.6) MIN SI

10.000 AEP LSLOCA ANALYSIS WITH BART lSx15 OEA 215 PSIG BACKEILL 5 rCT SCYP 0.1 OECLC OREAD xlNSl CORE PR.OROP 50.000 25.000 0.0

-25.000

-50.000

-70.000 CI Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl hl m tlHE <SEC>

FIGURE 14.D -23 CORE PRESSURE DROP DECLG (C ~0 4) MIN D

SI

ACP LBLOCA ~WALYSIS WITll B~T AND llE l5a l5 OFi 2~5 BASIC 84CRFILL 5 R(f 56lR 0.6 OCCCG QR(aa COR[ I'R.OROR 50.000 a 25.000 E.

0.0

<<25.000

-50.000

->0.000 CI CI CI m

tlat( rSCCs FIGURE 14.D -24 CORE PRESSURE DROP DECLG (CD-0.6) ~MX SI

2SOO.O COOK UtlTT fiCP) O.t PCCLC HliSl 32SO HVT CCCS ltlOC1 VlTff tlAT iffP VCV tiP fp'2.'IO CLIP iVC ~ TCfff ffOT 100 tUkST ~ C ~ 00 fTI 1 1CAN ~ C ~ 2S fTf+f

~ n 2NN.O Ci 1SOO.O X

4.

t n 1000.0 lJ S00.00 0.0 8 8 8 8

~ n 8 In 8 C At TIH( fSCCf FIGURE 14.D -25 PEAK CLAD TEMPERATURE, DECLG (CD 0.8) MIN SI

2500 0 COOK UHlTT. lAf.P) 0.6 OECLG HIHSI 3250 HMT CCCS LBLOCA MlTH BART AHO HCQ PAO COc2 ~ lO CLIO AVC.TfHP.HOT ROO BVRST. 6.25 TTi i PRAT. 6.00 fT< i 2000.0 CI CI TS00.0 0

~ J

~,.iu0.0

'500.JO a.n CI CI C'I CI CI CI CI CI CI ~ ~

CI C3 CI Ifl CI III CI VI CI TII4C- IS(C)

FIGURE 14.D .-26 PEAK CLAD TEMPERATURE, DECLG (CD 0.6) MIN SI

2500.0 COOK UHI4l lACP1 0.1 OCCLG IIIH5l 3250 HuT CCCS CBlOCA vllH BART AHO HfV PAO F0=2..10 CCAO AVC.TCNP.HOT ROO BUF51 ~ 5.15 Fl( 1 PCAa ~ 1,50 Clt ~ )

2000.0 n

CC l500.0 Z

o l000.0 500.00 0.0 n

Cl n

flHC t5(C)

FIGURE 14.D -27 PEAK CLAD TEMPERATURE, DECLG (C 0.4) MIN SI D

2500.0 (OINK Vklll '>f Pi O.b Of((G HA a', f 3,'58 Hvf

( (('. t8lO(A vlr~ 8/Rr 1HO Hf v ~AO F0=8.10

()AO AVC ff HP.HO> ROO 8VP > ~ S 7$ ff<

~ s f f Aa ~ Q, "y i1 ~ ~

i.

8 2000.0 CI W j" o 1500.0 1000.0 500.0 0.0 c

< l~f if( )

~

FIGURE 14.D -28 PEAK CLAD TEMPERATURE DECLG (CD 0.6) MAX SI

f000.0 f'flail COOL u~lf) i1ttf 0.0 OtttC lflasl st50 XVT ttCS tOLOCA Mlle Ii1f laD ht'lf taO fOsr l0 flUlO ftNttIJ>VIt BURST ~ i ~ OC fft i ttlN ~ Cof5 l 1 50.0 ak o l500.0 1750.0 P

l000.0 X

f50.00 ls

?50.00

= 0.0 8 8 S 3 C S

'tlat I Sttl FIGURE 14 .D -29 FLUID TEMPERATURE DECLG (CD. 0.8) HZN SI

2OOO.O COOA L:Rill LA(Pi 0.6 OECLG :4IRSl 3250 Her CCCS LSLOCA MllH 8ARl AHO RCU PAO F0~2. LQ f LUlo lCHP(RAFURK OURSl. C.25 Fll I PCAR. 6.00 fll~)

! 150. C a

l500.0 l250.0 4X l000.0 O.

x I

750.00 sno.oo 25c.oo 0.0 a)

C)

CI C7 C3 C)

CI

u. a ~ ll llHC lsf Cl FIGURE 14.D .-30 FLUID TEMPERATURE DECLG (CD"0.6) MIN SI

2OOO.O COOK UHITI TAEPI 0 ~ ~ CECEC HIRSI 3250 HVT ECCS iSEOCA VITR eART ANO NEV PAO F0*2.10 FLUIO TEHPERATURE 6URST. 5.75 FTt, ) PEA@, 7.$ 0 FTI ~ )

IT50.0 lD ISOO.O

.":O.O C7 TSO.OO S00.00 2SO.OO U.o CD CI CD CD CI CD ~ Il TIHE <SECi FIGURE 14.D -31 FLUID TEMPERATURE DECLG CD '4) MIN SI

,'r,sir'. 0 Corer vHltl .iver i 0.6 OE(iC Has'. I 3:SO Hvf I CCN LBiOCA sir~ Birrr WHO H( v r ip rp=&. lp r(plP fg MPf RATIJrrI Bgegc i ~  %. >') rr: ~

a f la ~ 6.pc r rs ~ .

l>>.s. g CQ ~ ~

rp l l)rip, .r i/ X.

i;rr.irp aH

.IIcy,'if) s') 0.0'!

i ~

rlHf <Sf(>

FIGURE 14.D -32 FLUID TEMPERATURE DECLG (Cg0.6) MAX SI

7000.0 AEP LBLOCA 0.8 DECLG BREAK MIN SX

'l FLOWRATE CORE BOTTOM ( ) TOP, (*)

5(}00.0 2500.0

(

'I (.

0.0 I

I

-2500.0 -h I

a

)

(

-5000.0

-7000.0 O O O O O O O O O O O O O O O O O O 0.-33 flH( IS(C(

FIGURE 14. CORE FLOW (TOP AND BOTTOM)

DECLG (C =0.8) MIN SI D

)000.0 . "-

AEP LBLOCA ANALYSIS WITH BART AND NEW PAD

)SX15 OEA 2TS,PSlG BACKElLL 5 PCT SGTP 0 G OECLG BREAK MlNSl 2-FLOVRATE CORL BOTTOM 1 ) TOP 1 ~ )

5000.0 LJ Cfl CD 2500.0 CD I

~ v 0.0

-2500.0

-5000.0

-)000:0 CD CD ID ID CD CD CD CD CD CD CD CD CD CV TIME {SEC)

FIGURE 14.D .-34 CORE FLOW (TOP AND BOTTOM)

DECLG (CD=0.6) MIN SI

1000.0 AEf'SLOCA ANALYSIS WITH BART lsx l5 OfA 275 PslC SACrfll.L 5 PCI 5Clp 0. ~ OECLC SREAr Hlk5I 7-fLOVRAfE CORE 607EOH l I lOR ~

5000.0 2500.0 tv 0.0

-2500.0

-5000.0

-l000. 0 Cl CI Cl CI f lHE <<5E C >

FIGURE 14.Q -35 CORE FLOW (TOP AND SOTTQY)

DECLG (C 0.4) MIN SI

g ~ 4>

t004.0 ifP teLOCi FOR )atl MVt VPRAtlkG AgilV5I5 Vlth SiRt ik0 kfV Pl0 t5a]5 Oti ?t5 P5IC Si(atl<a 5 Ptt 5GtP 0.6 Oft<I; Bifid 7-tLQVRAtf f QRf 80ttOH < I tQP ~ l~ )

5000.0 LJ lao DI 8500. 0 CD 0.0

.}500.0

-5000.0

- t 000.0 CD CI Cl m

tIHf tsf CI FIGURE 14.D -36 CORE FLOM (TOP AND BOTTOM)

DECLG (C ~0.6) MAX SI D

20.0 l AEP LBLOCA 0.8 DECLG BREAK MIN SI 15xl3 OFA 275 PSIG BACKFILL 5 PCT SGTP 17.5 gATER LEVE~IE~P DOWNCOMER

'% Y ' ~ W' I 15.0 12.5 10.0 7.5 5.0 CORE 2.5 0.0 C) O Ul TIME (sec)

FIGURE 14.0 -37 REFLOOD TRANSIENT CORE & DOWNCOMER WATER LEVELS DECLG (CD 0.8) MIN SI

zo.coo AEP Coco.C OEC.C Ag MI'%$l 84RI-RfCLOOO IIV oAO ZPS 84<ILL l'4E$ $ U4( IS ~ IS 0<<

'gAtf 4 Lf Vf L(FTI Ir.saa DOWNCOMER ls.ooa

!z.soa Ic oaa Lo

1. saaa s.oica CORE z.scoa 0.0 CI Cl CI C7 CI C7 Ifl Vl C7 li MIMI ($ ( Cl FIGURE 14.D .

.38 REFLOOD TRANSIENT CORE & DOWNCOMER WATER LEVELS DECLG (CD=0.6) MIN SI

ZO.COG Afc'oto.c ZcS 8<<c,th t'<<f$

0f t.C 8<<ctl'tSI 8i4: >fcl003 5t'tcf lSa lS Ocg li<cf tc Lf Vf lic<c lc.SOO DowNLDMER l$ .000 lZ.S00 lO.OOO c.SOOO

~C S.0000 C.o RG Z.SOOG O.O C7 CJ C7 C7 CP Ct Ct llccf cSf Cl FIGURE 14.D -'39 RFPLOOD TRANSIENT - CORF. & DOWNCOMER WATER LEVELS DECLG (CD 0.4) MIN SI

20.>NO AKP 3250 HVT C0*0a6 OIClG 8K HA!51 BAR1-RKit000 215 Sa~lLL PttK55uttK ttIv Pi0 15i15 OCA vatf tt t.I vfti11i DOWNCOMER 11.'LOO 15a000 12.'500 10.000

>. 5000 5.0000 CORE 2.5000 0.0 Cl 8

o CI 8 O an 1IHI {5EC)

I FIGURE 14.D -40 REFLOOD TRANSIENT CORE & DOWNCOMER WATER LEVELS DECI.G (C>=0.6) MAX SI

2.0 ARP LHLOCA 0.8 DECLG BREAK MIN SI FLOOD RATE (fn/sec) 1.75 1.5 1.25 1.0 0.75 A

O 0.5 0.25 0.0 o o o o o o o o o o o

CV TIME (sec)

FIGURE 14.D -41 REFLOOD TRANSIENT, CORE INLET VELOCITY DECLG (C =0.8) MIN SI

hg4h L) ~ ~ V4 AEl'O)0 ~ 0 Of CaC 8K M aS! BAR>.-~i<l 000

~

Wl'v oA3 .?~5 84tlia Pa(SSuef fba tb "r4

<L000 RA Ellh/S[C)

!.?500 1.."3."3 Vl

0. 1533 IX n

n C) 0 gh(IQ 0  ?'N 0.0 n nn C)

C) r)

O r'

n C ~

n

<! >E l Sf' I FIGURE 14.D -42 REFLOOD TRANSIENT, CORE INLET VELOCITY DECLG (C =0.6) NIN SI

Z.OCTO AEP co*o. ~ 0( .c e~ >>lhsl ei~>-~t>oooo Z15 0<> ILL >'>>l SS>>>>E l'll IS 0>A

>looo CAT(tlh/SEC)

l. >SCO 1 ~ SOOO ~

1.ZMO I.CCOO

~ e

0. >SOO CI CI 0.$ 000 O.ZSOO 0.0 n E3 C7 nCP C7 C7 C7 C7 C7 C7 ci Al f I >>f >S(C>

FIGURE 14.D .-43 REFLOOD TRANSIENT, CORE INLET VELOCITY DECLG (C =0.4) HIN SI

4f <: 3'59 Hv (0=6.6 Of i< flh H< I -'4<<1-f(f j< QC

) /It<]g'<<f55<.<<$ <f v < A( ) I< ]+ i<4

< L in ~ 4 < 't f' << < '5 E ( <

CI Cl CI ID FIGURE 10,D '-44 REFLOOD< TRANSIENTS CORE INLET YEAN/n" B~r,ir, (En=A.t ) Fhx hl

PUMPED ECCS FLOW REFLOOD DECLG (CD = D.B)

MINIMUM Sl 7.5 7.0 8.5 4J

~ e.o t- 5.5

') 5.0 h.5 h.0 ~ ~

C) 8.5 C3 Lal 3.0 K 2.5 2.0

~ ~

1.5 1.0

.5 0 SO 100 150 200 TIME (sec)

FIQQRE 14 ~ D 45 PlJMPED ECCS FLOW (REFLOOD) DECLG (CD 0 ~ 8) MIN S I

PUMPED ECCS FLOW REFLOOD DECLG (CD = 0.6)

MINIMUM Sl 8.0 7.5 7.0 CD e.s M

V7 Q s.s 5.0 4.5 4.0 C) 8.5 CD LLI 3.0 K 2.5 Q7 Sos 1.0 50 1 0 150 200 TIME(sec)

FIGURE 14. D-46 PUMPED ECCS FLOW (REFLOOD) DECLG QC ~0.6) MIN SI D

i0 000 PUMPED ECCS FLOW LBEFLOOD). OECLG (CD 0 i) HlN S1 m

t e.aeo c) 8.0000

~ a.oooa I-2.0000 0.0 CI C7 FIGURE 14.D -47 PUMPED ECCS FLOW (REFLOOD)

DECLG,(C =0.4) MIN SI

P U MP ED ECCS ELOW REFLOOD DECI G (CO = O.6)

MAXIMUM Sl

50. i00 , isO 200 250 TINE (sec)

FIGURE 14.0-48 PUHPEO ECCS FLOW (REFLOOD) OECLG (CD=0.6) MAX SI

1000b. Floes atf ieiOCi O.e .I.i.tr, Be[ A~ MIN :,I vlIH BA&l AiiO Hf v ri0 IS~ ls < 2>s pslc Bkaalli,i. s pal sr.tp l((i>4.

8000.

6000.

4000.

2000.

0.

(

lIM( <5['

FIGURE 14.D -49 ACCUNJLATOR FLOW (BLOWDOWN)

DECLG (CD=0.8) MIN SI

I.OOErt)i AEP LBLOCA ANALYSIS WITH BART AND NEW PAD ISx l5 Ol'4 215 PSIC BACKFILL 5 PCT KCTP 0.6 OECLG BREAK HINSI ACCUH. FLOM LJ 8000.0 x 6000.0 LJ EJ F000.0 2000.0 0.0 CD CD CD CD CD CD CD CD CD CD CD CD CD CD Al ~ I TINE <SEC)

FIGURE 14.D -50 ACCUMULATOR FLOW (BLOWDOWN)

DECLG (C =0.6) MIN SI D

I.QQE Wi AEP LBLOCA ANALYSIS WITH BART ISX IS OFA 21S PSIG BACKFILL S PCF SCOP O.a OECLC BBEAh Hlk5I ACCVH. FLOV LJ v BQQQ.Q O

< oooo.o LJ looo. 0 2000.0 0.0 O O O CI CI O Cl O CI CI CI CI CI FIHE ISECI FICIIRE 14.D -51 ACCUMIJLATOR FLOW (BI.OWDOWN)

DECLG (CD 0 4) MIN ."I

I I) ~g

l.00f N)4 AIP IBIOTA 'ANALYSTS:WITII BART AND NEW PAD .

lSl lS OCA Z>S PSIG BACKClll S PCl SCTP 0 ~ C Of CCG bbf Aa ACCVH ~ KLOV I000.0 EBB o

IA C000.0 lJ E

1000.0 Z000.0 0.0 o o o

flHf <Sf C I FIGURE 14.D -52 ACCUMULATOR FLOW (BLOWDOWN)

DECLG (CD 0.6) MAX SI

Ih e" aIE Sil."s - ) f'e! 4 )

~ I C rr I

\

J I .iKI

- -)-r+

j., I I

+g V H

p .J I

)'T

~

V I

+ Ln 4J 3 ~ I T. l

) r g . I j3:.

3:g~ 3 )

)

"I + .qt )>~~

~) 'w~

R A <

3c

<<r ~ ~

I I s I I D 'I i M ~ I g. 4 -r~).i .<<..)

I I-

~ ~

+~~-:-t+ 7 3 f,Ol I

~

I+

l 'f Te I

. +])-

)

'Qj 3 yCI ~ F-, ,.)p p:.fs c JJ I I f- l~~L. I

-imp, +'

I l l

-'i-." V.-::-I--.'!-)'

~ ~

5gled'-'i'3 I I i I

8.0000 D.C.COOK MAX-Sl 7.0000 6.0000 5.0000 tD

~ 4.0000

~~ 3.0000 2.0000 1.0000 CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD tA CD CD lA CU m TlHE (SECONDS)

FIGURE 14.D -54 CONTAINMENT PRESSURE, MAXIMUM SI

0' LI l i j +

I I I 1 I I 1G T

c 1G a ~ ~

~ C 1G 1G

'00.0 200.0 TtRE (SEC)

)00.0 ~ oo.o %00 0 FIGURE 14. D -55 LOWER COMPARTMENT STRUCTURAL HEAT REMOVAL RATE, MINIMUM SI

S ~ i IiOC iti to ~ IHo ~ fttal TINE CtEC) pZG~ g4,g" 56 L OIIE h CONt ANT NEST STNU CTUNAL IIE AT hE NOVA L hAT E MAXIMM SX

I 0

~

I ~

~ t ~ ~ I e I l $ I I t i s i I I I I I i I I

~ 4

~ al 10 0>>

C jo jo '.C l00.0 PCO.C )CC.C %04. 1 ttnE I SKt)

FIGURE 14.D -57 HEAT REMOVAL BY LC DRAIN MINIMUM SI

10 10

~ ol 1Ho ~ AH+ ~

T1IIE C SE C)

FIGURE 14.D -58 HEAT kEll4YAL ~ Y LC ORAL%

':MAXIM'I.

200. 0 1'ing ( 5Et! )

FIGURE 14.D -59 HEAT REMOVAL BY SUMP AND LC SPRAY MINIMJM SI

FIGURE 14.D <<60 HEAT REMOUAL BY SUMP AND LC SPRAY MAXIMUM SI

LI

)V I '<0. 0 2GO.O 100.0

~ T! ICE { SCC )

FIGURE 14. D .-61 COMPARTMENT TEMPERATURE, MINIMUM SI

300.00 O.C.COOK HAX-Sl TEHPERATURE 250.00 200.00 HER COMPARTMENT 150.00

~~ 100.00 PPER COMPARTM

~ 50.000 0.0 CD CD CD CD CD CD CD CD CD CD Q

CD CD CD. CD CD CD CD CD CD CD tlat CD CD EU CU m TtHE (SECONOS)

FIGURE 14.D -62 COMPARTMENT TEMPERATURE>>

MAXIMUM SI

~ I~ '

~ ,e ~ ~ ~ ~ ~ e ( ~ ~ ~~ e ~ ~ ~

(J 1 ( I O l I

(

I I

I I

e e

( ~

I e

(

~

~

I

~ ~ . e ~ e

(

e-e 'I,'. ~ I ~ ~

(

~ 4 Cej ~ I

~e

.I .'..

e

~ '.

V ;e(

~

(

e

'lr ( 'i I .

~' I

~ ~

(

.I~ Ie

(

I :I,: I I

.O 5u(j l 'I'I ' '.

~ ~

~ ~

~ ~

lll e,

e ~ ~ ~ e I (

e

.:(

~ ~

e

~ ~ ~

1

~ .I e

I'((P ~

'" I e

e I

ee I

pfie J I e

~ (~ e I i e

I I

I I~

I I I

I I I I

ly I I I (

e I e

(

I I

1 I I I l I' 0 I 0 I 0 0 20,. P ('1 1

I e I I I e

~ ~

SE e

I I i I e I

FIGURE 14.D. -63 FLOW FROM UPPER e

I I TO LOWER COMPARTMENT MTMTMI(M eelT

590.00 D.C.COOK MAX-Sl UPPf. R TO LOWER COMP ARTME NT FLOW

<<t)0.00 300.00 x 200.00 I

100. 00 la 0.0 CD CD n CD CD CD CD n CD CD CD C)

CD CD CD CD CD CD CD CD CD CD CD AJ TlHE (SE.CONOS>

p o pzGURE >4,D -64 pLOW TO LOWER COMPARTHENT Q 'f$

l 4 4e