NL-12-0868, Request to Revise Technical Specifications Associated with the Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot change)
(StriderTol Bot change)
 
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:Mark J. Ajluni, P.E.          Southern Nuclear Nuclear Licensing Director    Operating Company, Inc.
{{#Wiki_filter:}}
40 Inverness Center Parkway Post Office Box 1295 Birmingham. Alabama 35201 Tel 205 .992.7673 August 15, 2012                Fax 205.992.7885 SOUTHERN'\'
Docket Nos.: 50-348              50-364                    NL-12-0868          COMPANY U. S. Nuclear Regulatory Commission AnN: Document Control Desk Washington, D. C. 20555-0001 Joseph M. Farley Nuclear Plant - Units 1 & 2 Request to Revise Technical Specifications Associated with the Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report Ladies and Gentlemen:
In accordance with the provisions of Section 50.90 of Title 10 of the Code of Federal Regulations (10 CFR), Southern Nuclear Operating Company (SNC) is submitting a request for an amendment to the Technical Specifications (TS) associated with the Low Temperature Overpressure Protection (LTOP) System and the Pressure and Temperature Limits Report (PTLR) for Joseph M. Farley Nuclear Plant (FNP) .
Additionally, revised PTLRs for FNP Unit 1 and Unit 2 are provided in accordance with the reporting requirements of FNP TS 5.6.6, "Reactor Coolant System (RCS)
Pressure and Temperature Limits Report."
The PTLRs for FNP Unit 1 and Unit 2 were revised to implement new 54 Effective Full Power Years (EFPY) pressure and temperature limit curves. The revised pressure and temperature limits were determined in accordance with the NRC approved methodology in WCAP-14040-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," Revision 4, May 2004.
Based on the implementation of new 54 EFPY pressure and temperature limit curves discussed above, the following changes to the FNP TS are proposed:
* TS 3.4.12, "Low Temperature Overpressure Protection (LTOP) System,"
Mode 4 applicability temperature (:::; 325°F) below which the LTOP System must be operable would be revised to:::; 275°F (this revised value will be located in the PTLR, as discussed below).
* The methodology used to determine the RCS pressure and temperature limits identified in Specification 5.6.6, "Reactor Coolant System (RCS)
Pressure and Temperature Limits Report (PTLR): would be revised to reference WCAP-14D40-A, "Methodology Used to Develop Cold
 
U. S. Nuclear Regulatory Commission Nl-12-0868 2
WCAP-14040-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and                Heatup and Cooldown limit Curves," Revision May 2004.
In addition,      following PTlR and lTOP System                  changes to the FNP TS are        proposed:
It  The l TOP applicability temperature would be relocated from                FNP to the PTlR.          relocation of      l TOP System applicability temperature is based on NRC approved changes                            431, "Standard                Specifications Westinghouse Plants." These changes were approved by              NRC        TS      Force (TSTF) Traveler number TSTF-233-A,                    l TOP Arming Temperature to PTlR,"
Revision 0, by                  July 1 1998. The changes proposed in TSTF-233 were subsequently incorporated into Revision 2 1431. Consistent with TSTF-233, the relocation of the                  System arming temperature (Le., the FNP l TOP applicability temperature) to the PTlR would              the following TS sections:
              >>        definition of the          in Section 1.1, "Definitions,"
              >>        3.4.6, "RCS loops - MODE 4,"
              >>  TS 3.4.7,          loops - MODE 5, loops              "
              >>  TS 3.4.10,                  Safety Valves,"
              >>        3.4.1 "low Temperature Overpressure Protection (lTOP)
System,"
              >>  Specification 5.6.6, "Reactor Coolant                (RCS) Pressure and Temperature limits Report (PTlR)."
It  The definition of the PTlR in          Section 1.1, "Definitions," and Specification            "Reactor Coolant System (RCS) Pressure and limits Report (PTlR)," would be revised in accordance with TSTF-419-A, "Revise PTlR Definition and References in ISTS                    RCS
                " Revision O. Traveler                9, Revision 0 was approved by the NRC by            dated March ,2002. The changes proposed in TSTF 9 have subsequently been incorporated into Revision 3 of NUREG 1431.
    ..        lCO, Actions, and Surveillance Requirements of                  12, "low Temperature Overpressure Protection (lTOP) System," would be revised to address a maximum of two charging pumps capable of injecting into the RCS clarify the TS requirements to preserve the applicable safety analysis.
Appropriate            changes would also be made consistent with the discussed above.
Enclosure 1 provides the              for the proposed change to          FNP TS.
Enclosure 2 provides          FNP      and          markup pages showing proposed changes. Enclosure 3 provides the FNP TS clean typed showing the proposed changes. Enclosure 4 provides the revised Unit 1 and Unit
 
U. S. Nuclear Regulatory Commission NL-12-0868 Page 3 2 PTLRs. Enclosure 5 provides WCAP-17122-NP, "J. M. Farley Unit 1 Heatup and Cooldown Limit Curves for Normal Operation," which contains the methodology and results of the development of the new 54 EFPY heatup and cooldown pressure and temperature limit curves for FNP Unit 1. Enclosure 6 provides WCAP-17123-NP, "J. M. Farley Unit 2 Heatup and Cooldown Limit Curves for Normal Operation," which contains the methodology and results of the development of the new 54 EFPY heatup and cooldown pressure and temperature limit curves for FNP Unit 2.
SNC requests approval of the proposed license amendment by August 6, 2013.
The proposed changes would be implemented within 60 days of issuance of the amendments.
In accordance with 10 CFR 50.91 (b)(1), "State Consultation," a copy of this application and its reasoned analysis about no significant hazards considerations is being provided to the designated Alabama officials.
This letter contains no NRC commitments. If you have any questions, please contact Jack Stringfellow at (205) 992-7037.
Mr. M. J. Ajluni states he is Nuclear Licensing Director of Southern Nuclear Operating Company, is authorized to execute this oath on behalf of Southern Nuclear Operating Company and to the best of his knowledge and belief, the facts set forth in this letter are true.
Respectfully submitted, M. J. Ajluni Nuclear Licensing Director
                                                            """"'-~=.:.--_ _, 2012.
My commission expires:        J l-- 07.-10t3 MJA/RMJ/lac
 
S. Nuclear Regulatory Commission NL-12-0868 4
 
==Enclosures:==
: 1. Basis for Proposed Change Technical Specifications and Bases Markup Pages Technical Specifications Clean Typed Joseph M. Farley Nuclear Plant Unit 1 and Unit 2 Pressure Temperature Limits Report
: 5. WCAP-17122-NP, Revision 0, "J. M. Farley Unit 1 Heatup Cooldown Limit Curves for Normal Operation," October 2009
: 6. WCAP-1 23-NP, Revision 1, "J. M. Farley Unit 2 Heatup and Cooldown Limit Curves for Normal Operation," July 2011 cc:
Mr.      Kuczynski, Chairman, President &
Mr. D. G. Bost,                  President & Chief Nuclear Officer Mr. T. A. Lynch, Vice President - Farley Mr. B. L. Ivey, Vice President - Regulatory Affairs Mr. J. Adams, Vice President - Fleet Operations RTYPE: CFA04.054 U. S. Nuclear Regulatory Commission Mr. V. M. McCree, Regional Administrator Mr. R. Martin, NRR Project Manager - Farley Mr. L. Crowe, Senior Resident Inspector Farley
 
Joseph M. Farley Nuclear Plant Request to Revise Technical Specifications Associated with the Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report Enclosure 1 Basis for Proposed Change to NL-12-0868 Basis for Proposed Change Table of Contents
: 1. Summary Description
: 2. Detailed Description
: 3. Technical Evaluation
: 4. Regulatory Evaluation 4.1 Significant Hazards Consideration 4.2 Applicable Regulatory Requirements/Criteria 4.3 Conclusions
: 5. Environmental Consideration
: 6. References E1-2 NL-12-0868 Basis for Proposed Change
: 1. Summary Description This evaluation supports a request to amend Appendix A of Operating Licenses NPF-2 and NPF-8 for the Joseph M. Farley Nuclear Plant (FNP) Unit 1 and Unit 2, respectively.
The Pressure and Temperature Limits Reports (PTLRs) for FNP Unit 1 and Unit 2 were revised to implement new 54 Effective Full Power Years                  pressure and temperature limit curves. The revised pressure and temperature limits were determined in accordance with the NRC approved methodology in WCAP-14040-A, "Methodology Used to Develop Cold                        Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," Revision              (Reference 1).        revised are provided in Enclosure 4.
WCAP-17122-NP, "J. M. Farley Unit 1 Heatup and Cooldown Limit                      for Normal Operation," (Reference 2) contains the methodology and results of the development of        new 54          heatup and cooldown pressure and temperature limit curves for FNP Unit 1. WCAP-171              is provided in Enclosure      WCAP 17123-NP,        M. Farley Unit 2 Heatup and Cooldown Limit Curves for Normal Operation," (Reference 3) contains the methodology and results of the development of the new 54          heatup and cooldown pressure and temperature limit curves for FNP Unit 2. WCAP-17123-NP is provided in Enclosure 6.
Based on the implementation of new 54                pressure and temperature limit curves the following changes to        FNP Technical Specifications (TS) are proposed:
III  TS 3.4.1 "Low Temperature Overpressure Protection (LTOP) System," Mode 4 applicability temperature 325°F), below which the LTOP                  must operable, would be revised::::;          (this revised value will be located in the PTLR, as discussed below).
III  The methodology used to determine the              pressure and temperature limits identified in Specification 5.6.6, "Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)," would be revised to reference WCAP 14040-A, "Methodology            to Develop Cold                  Mitigating System Setpoints and RCS Heatup and Cool down Limit Curves," Revision 4.
In addition, the following PTLR and LTOP System related changes to the FNP TS are also proposed:
III      LTOP System applicability temperature would be relocated from the FNP to the PTLR. The relocation of the LTOP System applicability temperature is based on NRC approved changes to NUREG-1431, "Standard Technical Specifications - Westinghouse Plants" (Reference 4). These changes were approved by        NRC via TS                (TSTF) Traveler number TSTF-233-A, "Relocate LTOP Arming                    to PTLR," Revision 0 (Reference 5) by letter dated July 16, 1998 (Reference 6). The                proposed in TSTF-233 have subsequently been incorporated into NUREG-1431. Consistent with TSTF relocation of the LTOP System arming temperature (I.e., the FNP LTOP applicability temperature) to the PTLR would affect the following          sections:
E1 to NL-12-0868 Basis for Proposed Change
        >>    The definition of          in Section 1.1 "Definitions,"
        >>        3.4.6, "RCS Loops - MODE "
        >>        3.4.7,        Loops MODE Loops                  "
        >>    TS        0, "Pressurizer Safety Valves,"
        >>    TS        1 "Low Temperature Overpressure Protection (LTOP) System,"
        >>    Specification 5.6.6, "Reactor Coolant              (RCS) Pressure and Temperature Limits              (PTLR)"
* The definition of the          in TS Section 1.1 and Specification 5.6.6 would be revised in accordance with TSTF-419-A, "Revise PTLR Definition and References in ISTS                    PTLR," (Reference 7) to eliminate redundant references to the applicable TS. Traveler                  9, Revision 0 was approved by      NRC by letter dated March , 2002 (Reference 8). The proposed in              9 have subsequently been incorporated into NUREG-1
* The LCO, Actions, and Surveillance Requirements (SRs) of                3.4.12 would be revised to address a maximum two charging pumps capable of injecting into RCS to clarify the      requirements to preserve the applicable safety analysis.
Appropriate Bases changes would also              made consistent with the        changes discussed above.
Detailed Description Due to        number of changes proposed in this license amendment request, changes are categorized by type. Each type of proposed change has a different for the change and is discussed separately from the other types of changes.
Combining          discussion of different types of changes is minimized in order avoid confusion.          overall        of the combination of changes can        viewed on the TS markups included in Enclosure Revised PTlR and LTOP Applicability Temperature.
Consistent with the revised                and temperature limits, a new LTOP applicability temperature (Le.,        temperature below which        LTOP          is required operable) was calculated. As a result, the LTOP applicability temperature will be revised from:::;          to :::;            revised value will located in the            as discussed in Section 2.2.
use WCAP-14040-A, Revision 4, in determining the new pressure and temperature limits and LTOP System Applicability temperature results in a I"'n'~nr.c to the methodology identified in Specification          "Reactor Coolant System (RCS)                      Temperature          Report (PTLR)." FNP Specification          contains the reporting requirements applicable to the Specification 5.6.6.b currently states:
            'The analytical methods used to determine the                        and temperature limits          be those previously reviewed and approved by specifically        described in the NRC letters dated March 31, 1998 and April 3, 1      "
                                                  -4 to I\IL-12-0868 for            Change NRC letters, dated March        ,1998 and April      1998, are References 9 and 10, respectively.
The proposed change would revise Specification                to "The analytical methods used to determine the RCS pressure and temperature limits shall be          previously reviewed and approved by the NRC, specifically those described in WCAP-14040-A,                    4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004."
2.2. Relocation of L TOP Applicability Temperature to the PTLR (TSTF-233-A)
The          System applicability temperature would        relocated from the FNP to the              relocation the LTOP System applicability temperature is based on NRC approved changes                          . These changes were approved by the NRC via TSTF Traveler number TSTF-233-A by letter dated July 16, 1      The changes proposed in                  were subsequently incorporated into Revision 2 of NUREG-1431.
FNP LTOP System design does not include an "arming" feature, and LTOP TS only specifies an applicability temperature (Le., the temperature below which the LTOP System is required operable). As                    in TSTF-233, change provides an option for replacing the explicit temperature below which the LTOP system must be operable with a                  to the temperature as specified in the PTLR."                      on to          "The temperature defines the LCO 3.4.1 LTOP, Applicability in MODE 4." As such, the arming temperature referred to in TSTF-233 is        same as the applicability              re for the LTOP System. Therefore, the changes contained in                    apply to the        LTOP System applicability temperature.
The changes to the LTOP System applicability temperature included in 233 affect numerous        sections. Consistent with TSTF-233, the LTOP System applicability temperature is used in the TS to identify the applicability of the LTOP System TS and                  Safety Valve TS in Mode 4. In addition, the LTOP System applicability                is used in the TS as a low temperature limit for starting an        pump. In some cases, where the LTOP System applicability temperature is high enough to affect the Mode 4 to Mode 3 transition temperature (Le., 350°F), the LTOP System applicability temperature is used in a note to modify the requirements of LCO              "ECCS - Operating." The FNP LTOP System applicability temperature is below            Mode 4 to Mode 3 transition temperature and does not impact the requirements of LCO 3.5.2. Therefore, a change to the FNP LTOP System applicability temperature only affects the FNP TS for      RCS loops, the LTOP System, the                      Safety Valves, the PTLR definition and PTLR reporting requirements. As such,              implementation of            to relocate the LTOP System applicability temperature would revise the FNP      as follows:
                                                -5 to NL-12-0868 Basis for Proposed Change
* TS Section 1.1 contains the definition of the PTLR. The first sentence of the current FNP PTLR definition "The PTLR is the unit specific document that provides the reactor vessel pressure and temperature limits, including                and cooldown rates, for the current reactor vessel fluence period."
The proposed change would                the first sentence of the FNP PTLR definition as follows:
                "The          is the unit specific document that provides the reactor vessel pressure and temperature limits, including heatup and cooldown and the Low Temperature Overpressure Protection System applicability temperature, for the current reactor vessel fluence period."
* TS 3.4.6 specifies the          loop operability requirements in Mode 4, including a note pertaining to the start of an RCS pump. LCO 3.4.6 Note 2                  in part:
                "No RCP shall        started with any RCS cold leg temperature      ~
The proposed change would revise Note 2 as follows:
                "No RCP shall be started with any RCS cold leg temperature ~ the Low Temperature Overpressure Protection (LTOP) System applicability temperature                in the PTLR              "
* TS 3.4.7              the RCS loop operability requirements in Mode 5 with RCS loops filled, including a note pertaining to          start of an ReS pump. LCO 3.4.7 Note 3          in part:
                  "No Reactor coolant pump shall be started with one or more RCS cold leg temperatures ~ 325°F unless: ... "
proposed change would                Note 3 as follows:
                  "No Reactor coolant pump shall be started with one or more RCS cold leg temperatures ~ the Low Temperature Overpressure Protection (LTOP)
System applicability temperature                  in the PTLR unless: .. ,"
* TS 3.4.10              the                safety valve operability requirements including the Mode 4 applicability. The Mode 4 applicability for LCO 3.4.10 states:
                  "MODE 4 with all          cold leg temperatures> 325°F."
E1-6
 
1 to NL-12-0868 Basis for Proposed Change The proposed change would revise the Mode 4 applicability as follows:
                "MODE 4 with all RCS cold        temperatures> the Low Temperature Protection (LTOP) System applicability temperature specified in the PTLR."
  'I      3.4.10 specifies the Required Actions for the pressurizer safety valves which refer to the Mode 4 applicability of LCO 3.4.10 discussed            Specifically, Required Action        which in MODE 4 with any RCS cold leg temperatures s 325°F."
The proposed change would revise Required Action            as follows:
in MODE 4 with any RCS cold        temperatures s the LTOP System applicability temperature specified in the PTLR."
  'I  TS      12 specifies the operability requirements for the LTOP System including the Mode 4 applicability. The Mode 4 applicability      LCO 3.4.12 "MODE 4 when the temperature of one or more RCS cold legs is s 325°F."
The proposed change would revise the Mode 4 applicability as follows:
                "MODE 4 when the temperature of one or more RCS cold legs is s the L TOP System applicability temperature specified in the PTLR."
    'I  TS      12 contains the Required Actions for the LTOP System which refer to the Mode 4 applicability temperature requirement discussed above. Specifically, Required Action C.1 which ",t~i'o",'
                "Increase        cold leg temperatures to > 325°F."
The proposed change would revise Required Action C.1 as follows:
                  "Increase RCS cold leg temperatures to > the LTOP System applicability temperature specified in the PTLR."
    'I  Specification        contains the requirements for the PTLR report. Specification states in "The reactor coolant system pressure and temperature limits, including heatup and cooldown rates, shall be established and documented in the
                                                -7
 
1 to Nl-12-0868 Basis for Proposed Change The proposed change would                Specification 5.6.6.a as follows:
                  "The reactor coolant system              and temperature limits, including heatup and cooldown rates and the l TOP System applicability temperature, shall be established and documented in the PTlR ... "
Revision of PTLR Definition and References in the PTLR Report (TSTF-41 A) 9-A, Revision 0, was approved by the NRC by letter dated March 2002. The changes proposed in                  9 have subsequently been incorporated into I\IUREG-1431. Due to other changes made to NUREG-1                      ,
the PTlR requirements in NUREG-1              are in Section 5.6.4. In              9, as well as the FNP TS, the PTlR requirements are in Section 5.6.6 of the TS. This difference is noted only to avoid any potential confusion regarding the different numbering system used in          later versions of NUREG-1431 and does not represent a technical change from the NRC approved                      9 and NUREG 1431.
TSTF-419 contains two changes. One change simply eliminates the duplication of      lCOs identified in the PTlR definition and in Section              of the      The lCOs identified in these two      locations would commonly include lCO 3.4.3, "RCS Pressure and Temperature (PfT) limits," to address the heatup and cooldown curves moved to the              and lCO 3.4.12 to address the lTOP System applicability temperature moved to the PTlR. This                      deletes the lCO referenced in the PTlR definition while leaving the            referenced in Section 5.6.6 of      TS.      details of this change to the FNP TS are . . . o"',...ron below.
The second change in              9 added a bracketed description to part b of
::;elcncm 5.6.6 in the TS. The bracketed text describes how            methodology used to determine the pressure and temperature limits should              referenced in Section 5.6.6 of      TS.      change would allow        revision number and approval date of the referenced methodology to be contained in                PTlR instead of in Section 5.6.6.b of the        However, in                  with the NRC letter to the TSTF, dated August 2011 (Reference 11), in order to approve amendment requests implementing                        full topical report or methodology citation (Le., WCAP-14040-A,                "Methodology Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004) must            included in            5.6.6.b of the TS and not in the PTLR. Therefore, as described in Section 2.1 above, the proposed              the methodology          in Section          of      FNP includes the complete citation of WCAP-14040-A, including the revision number and such,    implementation of TSTF-419 results in        following proposed changes to the FNP
* TS Section 1.1 contains the definition of the PTLR.          last sentence of the current FNP PTlR definition sta1tes:
                                                  -8 to NL-12-0868 Basis for Proposed Change "Plant operation within these operating limits is addressed in LCO 3.4.3, "RCS                and Temperature (PfT) Limits."
The proposed change would delete this last                    from the FNP PTLR definition.
* Specification 5.6.6 contains the reporting requirements applicable to the FNP Specification 5.6.6.a states in part:
                " ... shall    established and documented in the PTLR for LCO 3.4.3."
The proposed change would                  this part of the FNP Specification        as follows:
                " ... shall be established and documented in the PTLR for the following:
LCO 3.4.3, "RCS                and Temperature (PfT) Limits," and LCO 3.4.1    "Low Temperature Over                Protection (LTOP)
System.""
The addition of LCO 3.4.12 to Specification 5.6.6.a is consistent with relocation of the LTOP System applicability temperature to the PTLR, discussed in Section 2.2 above.              relocated applicability temperature is associated with the LTOP System, and LCO                  2 contains the requirements for the LTOP System.
2.4. Revision of            3.4.12 to Incorporate the Requirement for Two Charging Pumps.
The current          3.4.12 LCO, Actions and SRs only address a maximum of one charging pump capable of injecting into the                TS      12 is currently applicable in Mode 4 when one or more RCS cold leg temperatures are s However, TS            12 Note 1, which modifies the LCO requirement,              in part that:
            "The requirement to have only one charging pump capable of injecting into RCS is only applicable when one or more of the RCS cold legs is s 180°F; ...".
The current TS            12      not clearly address the requirement for a maximum of two RCS charging pumps capable of injecting into the RCS when all                RCS cold leg temperatures are> 180°F and one or more                  cold leg temperatures are s            In order to incorporate      requirement for a maximum of two charging pumps capable of injecting into the              when all cold leg are> 180°F, the proposed change would                  the following elements of TS 3.4.1
* The current LCO 3.4.12 states in part:
                                                    -9 to NL-12-0868 for Proposed Change "An LTOP System shall be                          with a maximum one charging pump capable of injecting into the RCS                the accumulators isolated and either a or b below."
proposed change would revise the                statement as follows:
                "An LTOP System shall be OPERABLE with a maximum of one charging pump                of injecting into the RCS when one or more of the RCS cold      is :::; 180°F        a maximum of two charging pumps capable of injecting into the RCS when all the              cold legs are> 180°F        the accumulators isolated and either a or b below."
III  The two notes modifying              LCD requirements would        moved from the Applicability statement to below            LCD statement, consistent with the position of the similar Notes in the standard            3.4.12 in NUREG-1431, Revision 4. The Notes modify the LCD, not the applicability. The change in the location the Notes addresses a                format        and is not technical In addition, Note 1 would be revised as follows:
Note 1 currently              in "The requirement to have only one charging pump capable of injecting into the          is only applicable when one or more of the            cold legs is
                ~ 180°F; however,              in this condition, two charging pumps may capable of injecting into the RCS during pump swap operations for a period of no more than 15 minutes .... "
the proposed change to the LCD (discussed above), which clarifies the cold      temperatures and associated maximum required charging pumps, the proposed change to Note 1 would clarify                Note to state:
                'With one or more RCS cold legs ~ 180°F, two charging pumps may be capable of injecting into the RCS during pump swap operations for a period of no more than 15 minutes ...."
III The current Action Condition A "Two or more charging pumps capable of injecting into the                "
proposed change would revise Condition A be applicable for either charging pump condition (a maximum of one ~ 1                  or a maximum of two>
180°F), as            in the revised LCD discussion above. The proposed Condition A would read as follows:
                "More than the maximum required charging pump(s) capable of injecting into    RCS."
III  The current            modifying Required Action A.1 "Two charging pumps may be capable of injecting                the      during pump swap operation for:::; 15 minutes."
                                                      -10 to NL*12*0868 Basis for Proposed Change the LCO is already modified by a similar, but more detailed Note (including the applicable temperature of ::; 180°F), Required Action A.1 would not applicable while complying with the Note, as the LCO (as modified by the Note) is still met. Therefore, the Note modifying Required Action Ai is not needed and would be deleted.
* The current Required Action A.1 "Initiate action to verify a maximum of one charging pump is capable of injecting into the RCS."
Similar to the changes proposed for Actions Condition A, Required Action Ai would        revised to provide the appropriate Required Action for either charging pump condition (a maximum of one::; 180°F or a maximum of two
          > 180°F) as stated in the revised LCO discussion above. The proposed Required Action Ai would state:
                "Initiate action to verify s    maximum required charging pump(s) capable of injecting into the RCS."
* current SR      1 1 states:
                "Verify a maximum        one charging pump is capable of injecting into the The proposed change would                SR 3.4.1 1 to be applicable when a maximum of one charging pump is capable of injection into the RCS
::; 180°F).        such, the proposed SR      1    would "Verify a maximum of one charging pump is capable of injecting into the when one or more RCS cold legs is::; 180°F."
In order to address the proposed LCO condition of a maximum of two charging pumps capable of injecting into          RCS (when all RCS cold leg temperatures are> 180"F), a new SR is proposed. The new SR would state:
                  "Verify a maximum of two charging pumps are ca[)aOile of injecting into the RCS when all          cold legs are> 180"F."
The Frequency of proposed            3.4.1    would be the same as existing SR 3.4.12.1 (12 hours).
As a result of introducing a new SR, all the subsequent        (existing SR 3.4.12.2 through SR 3.4.1          would    renumbered accordingly.
E1-11 to NL-12-0868 for Proposed Change
: 3. Technical Analysis 3.1. Revised PTLR and LTOP Applicability Temperature.
The PTLR contains pressure and temperature related limits that are plant specific, vary with          fluence, and can be revised without NRC approval provided that they are calculated using an NRC approved methodology.
FNP Specification 5.6.6 contains the requirements applicable to the FNP Unit 1 and Unit 2          including the methodology          to determine the pressure and temperature limits. Specifically, FNP Specification 5.6.6.b currently states:
            "The analytical methods used determine the RCS                    and temperature limits shall be those previously reviewed and approved by the NRC, specifically those described in the NRC letters dated March 31, 1998 and April 3, 1998."
This TS license amendment request would change the NRC approved methodology currently cited in FNP Specification 5.6.6.b to the latest NRC approved methodology (Le., WCAP-14040-A, Rev. 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cool down Limit Curves," May 2004). WCAP-14040-A                been approved by the NRC.
The proposed change in methodology is acceptable as it meets the requirement of FNP Specification 5.6.6 part b. Part b of Specification          requires the NRC approved methodology used for determining the RCS pressure and temperature limits to              in the TS. Therefore, consistent with        requirements of Specification 5.6.6, any future changes to the FNP pressure and temperature limits contained in the PTLR will      determined in accordance with this NRC approved methodology.
In addition, based on the revised FNP pressure and temperature limits (for EFPY), a new LTOP System applicability temperature was calculated. As a result, the        applicability temperature would be revised from s;          to s 275°F.
LCO 3.4.12 contains the TS requirements for the LTOP System. The LTOP controls      pressure at low temperatures, so the integrity of the reactor coolant pressure boundary (RCPS) is not compromised by violating the pressure and temperature limits of 10 CFR 50, Appendix          "Fracture Toughness Requirements." The reactor vessel is the limiting            component for demonstrating such protection. The reactor vessel material is less tough at low temperatures than normal operating temperature. Therefore, RCS pressure is maintained low at low temperatures and is increased only as temperature is increased. The LTOP applicability temperature is          limiting RCS cold temperature below which the reactor vessel may              damage from a cold overpressure event. Fracture mechanics analyses establish the applicability temperature.      such, the LTOP applicability temperature is the temperature below which the LTOP System is required to            operable.
E1-12 to NL-12-0868 Basis for Proposed Change In addition to identifying the applicability of the LTOP System in Mode 4, the LTOP System applicability temperature is            used in the FNP TS identify the applicability of LCO 3.4.10 in Mode 4. Above the LTOP System applicability temperature, the Pressurizer safety              are required operable to provide the required overpressure protection. Additionally, the LTOP applicability temperature is used in the FNP TS for a low temperature limit when starting an RCS pump in LCO 3.4.6            LCO 3.4.7. The temperature limit for starting an RCS pump prevents a heat input transient due temperature asymmetry within the RCS or between the RCS and steam generators. The heat input transient that may result from      start of an RCS pump could cause a cold overpressure event. As such, the LTOP applicability temperature is included in several FNP TS.
revised        applicability temperatures for        Units 1 and 2 were calculated in accordance with ASME                    N-641 , "Alternative Pressure-Temperature Relationship and Low                      Overpressure Protection System Requirements Section XI, Division 1," January 17, 2000 (Reference 12).
ASME Code Case N-641 presents alternative procedures for calculating pressure temperature relationships and LTOP System effective temperatures and allowable pressures.          procedures provided in Code Case N-641 take into account alternative fracture toughness properties, circumferential and axial reference flaws, and plant-specific LTOP applicability temperature calculations.
ASME Code Case N-641 was first accepted by the NRC without conditions in Regulatory          1.147, "Inservice Inspection Code            Acceptability, ASME Section XI, Division 1, Revision 1 June 2003," (Reference 13). ASME Code Case N-641 continues to be identified as accepted without conditions in the current version of Regulatory Guide 1.147, Revision 16, October 2010, (Reference 14). Regulatory Guide 1.147, Revision 1 is identified in 1 50.55a(b), "Standards approved for Incorporation by Reference," (Reference 15).
WCAP-14040-A, Revision 4, also utilizes the use of ASME Code Case N-641 for the calculation of the LTOP applicability temperature.          such,    proposed FNP Unit 1 and Unit 2 LTOP applicability temperatures were calculated in accordance with ASME Code              N-641 , consistent with the Simplified equation provided in Section          WCAP-14040-A for a three loop plant. The calculated LTOP applicability temperatures for          Units 1 and 2 for the new pressure and temperature limit curves are              (Unit 1) and 251°F (Unit revised LTOP System applicability temperature value that would be specified in the PTLR includes an allowance for temperature measurement uncertainty, which is OF. Accounting for instrument uncertainty ensures that the LTOP System is operable at the temperatures where it is required to be operable. The uncertainty used for the          LTOP System applicability temperature is the same measurement uncertainty previously used for this purpose and approved in NRC Letter, "Joseph M. Farley Nuclear Plant, Units 1 and 2, Acceptance for Referencing of Pressure Temperature Limits Report" dated March 31, 1998 (Safety Evaluation Section 3.3.1 in Reference In addition, consistent with the current FNP        and in order to minimize unit differences, the highest (most limiting) calculated temperature for FNP Unit 2 was chosen for both units. Thus,        proposed LTOP applicability temperature for
                                                -13 to NL-12-0868 Basis for Proposed Change inclusion in the Unit 1 and Unit 2 PTLRs is ::; 275°F (i.e., 251°F calculated Unit 2 temperature + 21°F measurement uncertainty = 272°F conservatively rounded up to 275°F).
The relocation of the revised LTOP applicability temperature from the TS to the PTLR is discussed below in Section 3.2.
3.2. Relocation of LTOP Applicability Temperature to the PTLR (TSTF-233-A)
In many LTOP System designs, a plant specific arming feature exists that places the LTOP system in operation at the applicability temperature. The arming design feature is typically associated with plants that use power operated relief valves in the LTOP System. In plants with the arming design feature, the LTOP applicability temperature is often referred to as the "LTOP arming temperature."
The FNP LTOP System design does not include power operated relief valves and the associated "arming feature." The FNP LTOP System pressure relief capability consists of two redundant RHR relief valves or a depressurized RCS with an RCS vent of sufficient size. Therefore, the changes contained in TSTF 233 are applicable to the FNP LTOP applicability temperature and not the plant specific term of "LTOP arming temperature."
The specific value for the LTOP applicability temperature is reactor vessel plant specific and varies with vessel fluence. The use of a plant specific value in the TS, which will require periodic amendments, is not consistent with the PTLR philosophy. Reference to the PTLR for other plant specific values (e.g., LCO 3.4.3, "RCS Pressure and Temperature (PfT) limits") has been found to be acceptable, and results in simplifying the revision process when the values change with reactor fluence. Similar to the PfT limits, periodic updates to the LTOP applicability temperature can also be made without going through the license amendment process, as the methodology used to determine the limiting temperature is controlled by TS and requires NRC approval for changes. WCAP 14040-A, Revision 4, is the NRC approved methodology being proposed in the FNP TS Section 5.6.6.b, for the calculation of the LTOP applicability temperature.
As such, future changes to the LTOP applicability temperature will be made in accordance with the NRC approved methodology specified in the TS.
Based on the discussion above, the implementation of TSTF-233 in the TS for FNP Units 1 and 2 is acceptable.
3.3. Revision of PTLR Definition and References in the PTLR Report (TSTF-419 A)
TSTF-419-A, "Revise PTLR Definition and References in ISTS 5.6.6, RCS PTLR," Revision 0 was approved by the NRC by letter dated March 21, 2002.
The changes proposed in TSTF-419 have subsequently been incorporated into NUREG-1431.
TSTF-419 contains two changes, as discussed in Section 2.3 above. The only change being proposed for the FNP TS from TSTF-419 is the change that eliminates the duplication of TS LCOs identified in the PTLR definition and in Section 5.6.6 of the TS. The TS LCOs identified in these two TS locations E1-14 to I\IL-12-0868 Basis for Proposed Change include LCO 3.4.3 to                  the heatup and cooldown curves moved to the PTLR and LCO 3.4.12 to address the LTOP System temperature moved to the PTLR. This change deletes the TS referenced in the PTLR definition while leaving the TS LCOs referenced in Section 5.6.6 of the TS. The proposed change is administrative in nature and serves to eliminate duplication of information in the          In addition, the proposed change was approved in 419. Therefore, the proposed change the FI\IP Unit 1 and 2                  is acceptable.
3.4. Revision of TS 3.4.12 to Incorporate                Requirement for Two Charging Pumps.
The FNP LTOP System pressure relief capability consists of two redundant RHR relief valves or a                          with a RCS vent of sufficient        One RHR relief valve or the open RCS vent is sufficient to terminate an increasing pressure event. During cooldown operation, the LTOP System must                    operable to mitigate overpressure transients starting at an RCS cold leg temperature equal to            3.4.12 applicabiiity temperature in Mode 4 until the reactor vessel head is          in Mode 6. Once          reactor vessel head is raised, a sufficient RCS vent is created to mitigate any overpressure event transient. During heatup operation, the LTOP System is required operable                the reactor vessel head is seated on the vessel up to when all RCS cold leg temperatures exceed the LTOP system applicability temperature. The current RHR suction relief valve setpolnt of .:s 450 psig and RCS vent of 2.85 square inches remain valid for              new 54 pressure and temperature limit curves and the                LTOP System applicability temperature.
current TS 3.4.12 LCO only                  a single charging pump capable of injecting into the RCS when one or more RCS cold leg temperatures is:S: 180°F. it is silent regarding the condition when all RCS cold leg temperatures are> 180°F but still below the TS 3.4.12 applicability temperature.
In addition,        current    LCO is modified by Note 1 that states:
requirement to have only one charging pump capable of injecting into the RCS is only applicable when one or more of the RCS cold legs is
::; 180°F;"
The current          3.4.12 Bases explains Note 1 as:
              "Note 1          that the              to have only one charging pump capable of injecting into the RCS is only applicable when one or more of the RCS cold legs is s 180°F. This Note permits more than one charging pump to capable o'f injecting into the RCS in MODE 4 at temperatures> 180°F and specifies that the charging pump surveillance requirement need only be performed at temperatures :s: 180"F."
Instead relying on the explanation of Note 1 in              Bases,      proposed change would modify the TS 3.4.12 LCO and                to clarify the requirements as follows:
        "    Adding an LCO requirement for a maximum of two charging pumps capable of injecting into the RCS when all cold        temperatures are> 180°F to E1-15 to NL-12-0868 Basis for Proposed Change complement the existing requirement for a single charging pump capable of injecting into the RCS when any cold leg temperature is s 180°F,
      .. Modifying existing            12.1, which verifies a maximum of one charging pump is capable of injecting into the RCS, to clarify that this        is required when one or more RCS cold leg temperatures is "S 1
      .. Adding new SR          12.2, which would verify a maximum of two charging pumps are capable of injecting into        RCS when all the          cold leg temperatures are > 180°F with a Frequency in accordance with the Surveillance Frequency Control Program (the same as SR                12.1).
The proposed change also includes changes to the              3.4.12 Actions, and to accommodate          clarifications described above. All the related changes are described in detail in Section        above.
The applicable aspect of the FNP LTOP System design (I.e., the RHR relief capacity) is discussed in the                for TS 3.4.12 as follows:
            "During LTOP MODES, the RHR System is operated for decay heat removal and low pressure letdown control. Therefore, the RHR suction isolation valves are open in        piping from the        hot legs to the inlets of the RHR pumps. While                    are open and the RHR suction valves are open, the RHR suction relief valves are exposed to the RCS and are able to relieve pressure transients in the RCS.
The RHR suction isolation valves and the RHR suction valves must              open to make      RHR suction          valves OPERABLE for RCS overpressure mitigation. The RHR suction relief valves are spring loaded, bellows type water relief valves with pressure tolerances and accumulation limits established by Section III of the American Society of Mechanical Engineers (ASME) Code (Ref. 3) for Class 2 relief valves. Each              valve capacity to mitigate over pressurization in        worst case of inadvertent startup of three charging pumps injecting into a solid RCS."
The applicable              transient analysis for the LTOP System is discussed in FI\lP UFSAR                        "Pressure Transient Analyses" (Reference 16).
This UFSAR section                  the high-head safety injection pumps whiCh, for FNP design, are the same as the charging pumps. Regarding the capability the LTOP System to mitigate an overpressure tranSient due to the inadvertent operation of charging pumps, FNP UFSAR Section 5.2.2.4.3 Section III, Appendix      establishes guidelines for RCS pressure during low temperature operation (~350&deg;F). The relief system discussed in paragraph          1 serves to mitigate overpressure excursions to within these allowable limits. The worst-case mass input event was assumed to be the inadvertent operation of three high-head safety injection pumps with a maximum total flowrate of 1000 gal/min at 0 psig backpressure at RCS temperatures ~ 180&deg;F. Due to Technical Specification restrictions that allow only one operable charging pump at            temperatures < 180&deg;F,        worst
                                                  -16 to NL-12-0868 Basis for Proposed Change case mass injection is limited to the start of a single charging pump at temperatures < 180&deg;F."
Although the analysis described in            Bases and UFSAR (quoted above) conservatively assumes the capacity of three charging pumps, the plant design limits the number of charging pumps that can be in service one time to two.
Based on the discussions above, the proposed change provides a clarification of the TS 3.4.12 requirements that is consistent with the intent of      existing Bases, and the FNP design. It preserves the applicable FNP UFSAR pressure transient analysis for the LTOP System. Therefore, the proposed change will not adversely affect the FNP LTOP System capability to perform required safety function.
                                                -17 to          2~0868 for Proposed Change
: 4. Regulatory Safety Analysis 4.1. Significant Hazards Consideration proposed Amendment would              the J. M.        Nuclear Plant (FNP)
Technical Specifications (TS) based on the implementation of new 54 Effective Full Power Years              pressure and temperature limit curves. The proposed changes would also revise the TS 3.4.1 "Low Temperature Overpressure Protection (LTOP) System," Mode 4 applicability temperature and the methodology used to determine the RCS pressure and temperature limits identified in Specification        "Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)."
In addition, the proposed amendment would relocate            Low Temperature Overpressure Protection (LTOP) applicability temperature from              FNP  to the          The relocation of the LTOP System applicability temperature is based on NRC approved changes to                  431, "Standard Technical Specifications
        - Westinghouse Plants," (i.e.,        Task        (TSTF) Traveler number 233~A, "Relocate LTOP Arming Temperature            PTLR," Revision 0).
relocation of the FNP LTOP System applicability temperature to the PTLR would the following
* definition of PTLR in Section 1.1, "Definitions,"
* TS        "RCS Loops - MODE 4,"
* 3.4.7, "RCS Loops      MODE 5, Loops Filled,"
* TS      10,              Safety Valves,"
            ..      3.4.12, "Low Temperature Overpressure Protection (LTOP)
            .. Specification 5.6.6, "Reactor Coolant System (RCS) Pressure and Temperature                  (PTLR)"
The proposed amendment would also                the definition of the PTLR in TS Section 1.1, "Definitions," and Specification 5.6.6, "Reactor Coolant System (RCS) Pressure and Temperature Limits Report (PTLR)," to eliminate redundant references to the applicable        This change is consistent with NRC approved changes to NUREG~1431 (I.e.,                    "Revise          Definition and References in          5.6.6, RCS PTLR," Revision 0).
Additionally, the proposed amendment would revise            3.4.12, "Low Temperature Overpressure Protection (LTOP) System," to more clearly state the requirement for a maximum of two charging pumps being capable of injecting into the        to preserve the applicable        analysis.
As required by 10 CFR 50.91 (a), Southern Nuclear Operating Company (SNC) has evaluated the proposed changes to the FNP TS using the criteria in 10 50.92 and has determined that the proposed changes do not involve a significant consideration. An analysis of the        of no significant hazards consideration is              below:
E1-18 NL-12-0868 Basis for Proposed Change
: 1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?
Response: No proposed amendment involves changes to the TS requirements to incorporate new                  and              limit curves      were determined with an NRC approved methodology for the LTOP system, as well as incorporating that methodology into the                  pressure and temperature limit curves preserve the integrity of the reactor                  The LTOP System provides overpressure protection during operation                  low RCS temperatures. In addition,            amendment proposes to adopt the NRC approved                      and TSTF-419-A Adoption of these will relocate the LTOP applicability temperature from              TS to the PTLR and will eliminate redundant references in Sections 1.1 and 5.6.6 of the TS. Lastly, the proposed change includes clarifications to the LTOP System TS requirements that are consistent with the FNP design and n~""(>"'''\1''' the applicable safety analyses. The proposed changes are based on NRC approved methods, and NRC approved changes to the Standard            for Westinghouse Plants.
The proposed change to the            does not affect the initiators of any analyzed accident. In addition, operation in accordance with the proposed TS change ensures that              previously evaluated accidents will continue to be mitigated as analyzed. Thus, the proposed change does not adversely affect the design function or operation of any structures, systems, and components important to safety.
Therefore, it is concluded that the proposed                      not involve a significant increase in the probability or consequences of an accident previously evaluated.
Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?
Response: No The proposed amendment involves changes to the TS requirements to incorporate new pressure and                      limit curves that were determined with an NRC approved methodology for the LTOP system, as well as incorporating that methodology into            TS. The            and temperature limit curves                the integrity of the reactor vessel. The LTOP System provides overpressure protection during operation at low temperatures. In addition, this amendment proposes to adopt the NRC approved TSTF-233-A and TSTF-419-A Adoption of these TSTFs will relocate the LTOP applicability temperature from the            to the PTLR and will eliminate redundant references in Sections 1.1 and                of the TS. Lastly, the proposed change includes clarifications to the System TS requirements that are consistent with the FNP design and the applicable safety analyses. The proposed changes are E1-19 to NL-12-0868 Basis for Proposed Change based on NRC approved methods and NRC approved changes to the Standard TS for Westinghouse Plants.
proposed change does not involve a physical alteration of the plant (no new or different type of equipment will      installed). The proposed change        not create any new failure modes for existing equipment or any new limiting single failures. Additionally the proposed change does not involve a change in the methods governing normal plant operation and all safety functions will continue to perform as previously assumed in accident analyses. The pressure and temperature limit curves will continue to            the integrity of the reactor vessel. The System will continue to ensure that the appropriate fracture toughness margins are maintained to protect against reactor vessel failure during low temperature operation. Thus, the proposed change does not adversely affect the design function or operation of any structures, systems, and components important to safety.
Therefore, it is concluded that      proposed change does not                    the possibility of a new or different kind of accident from any previously evaluated.
Does the proposed amendment involve a significant reduction in a margin of safety?
Response: No proposed amendment involves                to the      requirements to incorporate new pressure and temperature limit curves that were determined with an NRC approved methodology for the LTOP system, as well as incorporating that methodology into the          The pressure and temperature limit curves preserve the integrity of        reactor \J"'C;;~<:!"'I LTOP System provides overpressure protection during operation at low RCS temperatures. In addition, this amendment proposes to adopt the NRC approved                  and TSTF-419-A. Adoption of these will relocate the LTOP applicabiiity temperature from          TS to the and will eliminate redundant references in Sections 1.1 and 5.6.6 of the TS. Lastly, the proposed change includes clarifications to the LTOP System TS requirements that are consistent with the FNP design and preserve the applicable safety analyses. The proposed changes are based on NRC approved methods and NRC approved changes to Standard      for Westinghouse Plants.
The proposed change will not adversely affect the operation of plant equipment or        function equipment                in the accident analysis.
pressure-temperature limit curves and            System applicability temperature have          determined in accordance with NRC approved methodologies. The proposed changes to the LTOP System requirements remain consistent with        applicable LTOP System design, and preserve        applicable safety analYSis assumptions. Additionally, no are made to the          System function as assumed in the applicable safety analysis.
                                              -20 to NL-12-0868 for Proposed Change Therefore, it is concluded that        proposed change does not involve a significant reduction in a margin of safety.
Based upon the above analysis, SNC concludes that the proposed amendment does not involve a significant hazards consideration, under            standards forth in 10        50.92(c), "Issuance of Amendment," and accordingly, a finding of "no significant hazards consideration" is justified.
4.2. Applicable Regulatory Requirements/Criteria The proposed amendment involves changes to                      requirements for the pressure        temperature limits, and LTOP System. LCO 3.4.3, "RCS and Temperature (PfT)              " contains      TS requirements for the pressure limits.      pressure and temperature limit curves preserve the vessel. LCO 3.4.1 "Low Temperature Overpressure Protection (LTOP)              " contains the      requirements for the LTOP System.
The LTOP System controls RCS                    at low temperatures so the integrity of the reactor coolant pressure boundary (RCPB) is not compromised by violating pressure        temperature limits of 10 CFR 50, Appendix G, "Fracture Toughness Requirements."              reactor        is the limiting RCPB component for demonstrating          protection. The reactor vessel material is          tough at low temperatures than at normal operating temperature.                  pressure, therefore, is maintained low at low temperatures and is                    only as temperature is increased. The following regulatory criteria are applicable to proposed amendment to            PfT limits and LTOP        requirements:
            .. 10 CFR 50.55a(b), "Standards approved for incorporation by reference,"
which states in part:
                "(b) Standards approved for incorporation by reference.                    and components of boiling and                    water cooled nuclear power reactors        meet the requirements of the following standards referenced in paragraphs (b}(1), (b)(2), (b)(3), (b)(4), (b)(5), and (b)(6) of section: The ASME Boiler and Pressure Vessel                Section III, Division 1 (excluding Non-mandatory Appendices), and                    XI, Division 1; the ASME Code for Operation and Maintenance of Nuclear Power            NRC Regulatory Guide (RG) 1            Revision    "DeSign, Fabrication, and              Code        Acceptability, ASME Section III" (July 2010), RG 1.1        Revision 1 "Inservice Inspection Code Acceptability, ASME Section XI, Division 1" (July 2010), and ... "
            .. 10        50.61, "Fracture toughness requirements for protection against pressurized thermal            events," provides protection            an event or transient in pressurized water              (PWRs) that could cause severe overcooling (thermal shock) concurrent with or followed by significant            in the          vessel.
            .. 10            Appendix A, "General Design                for Nuclear Power Plants," Criterion 31, "Fracture prevention of              coolant pressure boundary," which states:
                                                  -21 to NL-12-0868 Basis for Proposed Change "The reactor coolant pressure boundary shall be designed with sufficient margin to assure that when stressed under operating, maintenance, testing, and postulated accident conditions (1) the boundary behaves in a non brittle manner and (2) the probability of rapidly propagating fracture is minimized. The design shall reflect consideration of service temperatures and other conditions of the boundary material under operating, maintenance, testing, and postulated accident conditions and the uncertainties in determining (1) material properties, (2) the effects of irradiation on material properties, (3) residual, steady state and transient stresses, and (4) size of flaws."
* 10 CFR 50, Appendix G, "Fracture Toughness Requirements," which states in part:
              "This appendix specifies fracture toughness requirements for ferritic materials of pressure-retaining components of the reactor coolant pressure boundary of light water nuclear power reactors to provide adequate margins of safety during any condition of normal operation, including anticipated operational occurrences and system hydrostatic tests, to which the pressure boundary may be subjected over its service lifetime.
The ASME Code forms the basis for the requirements of this appendix.
              "ASME Code" means the American Society of Mechanical Engineers Boiler and Pressure Vessel Code. If no section is specified, the reference is to Section III, Division 1, "Rules for Construction of Nuclear Power Plant Components." "Section XI" means Section XI, Division 1, "Rules for Inservice Inspection of Nuclear Power Plant Components." If no edition or addenda are specified, the ASME Code edition and addenda and any limitations and modifications thereof, which are specified in &sect; 50.55a, are applicable.
The sections, editions and addenda of the ASME Boiler and Pressure Vessel Code specified in &sect; 50.55a have been approved for incorporation by reference by the Director of the Federal Register. A notice of any changes made to the material incorporated by reference will be published in the Federal Register."
* Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, October 2010, which states in part:
                "General Design Criterion (GDC) 1, "Quality Standards and Records," of Appendix A, "General Design Criteria for Nuclear Power Plants," to Title 10, Part 50, of the Code of Federal Regulations (10 CFR Part 50),
                "Domestic licensing of Production and Utilization Facilities" (Ref. 1),
requires, in part, that structures, systems, and components important to safety be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. Where generally recognized codes and standards are used, E1-22 NL-12-0868 for Proposed Change Criterion 1 requires that they be identified and evaluated determine their applicability, adequacy, and sufficiency and be supplemented or modified as necessary to ensure a quality product in keeping with the required          function."
The proposed amendment is acceptable, since the PfT limits were determined using NRC approved methodologies, and the design and function of                    LTOP system and associated applicability                    are maintained consistent with the assumptions the applicable safety analyses, the design basis of                  unit, and the FI\lP compliance with        regulatory criteria cited above.
4.3. Conclusions In conclusion, based on the considerations discussed above, (1) there is reasonable assurance          the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will conducted in compliance with the Commission's regulations,                  (3) the issuance of the amendment will not be inimical to the common                      and security or to the health and          of the public.
: 5. Environmental Consideration A review        determined that the proposed amendment would change a requirement with respect to installation or use a facility component located within                restricted area, as defined in 10                20, and would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant consideration, (ii) a significant change in      types or significant increase in the amounts of any effluents          may be            offsite, or (iii) a significant            in individual or cumulative occupational radiation exposure. Accordingly, the proposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR
  .22(c)(9). Therefore, pursuant to 10 CFR 51                no environmental impact statement or environmental assessment need be prepared in connection with proposed amendment.
: 6. References
: 1.      WCAP-14040-A, "Methodology Used to Develop Cold Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves,"
Revision May WCAP-1 22-NP, "J. M. Farley Unit 1 Heatup and Cooldown Limit                            for Normal Operation," Revision 0, October 2009.
: 3.      WCAP-17123-NP, "J. M. Farley Unit 2 Heatup and Cooldown Limit                          for Normal Operation," Revision 1, July 2004.
: 4.      NUREG-1431, Standard Technical Specifications Westinghouse Plants, Revision 4.0.
: 5.      TSTF-233-A, "Relocate LTOP Arming Temperature to PTLR," Revision 0, July 16, 1998.
                                                  -23 to NL-12-0868 for Proposed Change
: 6.      NRC          to James          (NEI) from William D. Beckner, dated July 16, 1998.
9-A,          PTLR Definition and                      5.6.6, PTLR," March 21, 2002.
: 8.      NRC          to Anthony R. Pietrangelo (NEI) from William D. Beckner, dated
                    ,2002 (ML020800488).
: 9.      NRC letter, to    N. Morey (SNC) from Herbert N. Berkow, "Joseph M. Farley Nuclear Plant, Units 1 and 2, Acceptance for Referencing of Pressure Temperature          Report," dated March 31,1998 (TAC Nos. M99338 and M99339).
: 10. NRC Letter, to D. N. Morey (SNC) from Jacob I. Zimmerman, "Joseph M.
Farley Nuclear Plant, Units 1 and 2, Correction to Acceptance Letter for Referencing of Pressure Temperature Limits Report," dated April        1998 (TAC Nos. M99338 and M99339).
: 11. NRC letter to    TSTF from John R. Jolicoeur, "Implementation of Travelers TSTF-363, Revision 0, "Revise Topical Report References in ITS COLR [Core Operating Limits Report],"                Revision 1, "Relocation Of LTOP [Low Temperature Overpressure Protection] Enable Temperature and PORV [Power-Operated Relief Valve] Lift            to the      [Pressure-Temperature Limits Report]," and TSTF-419, Revision 0, "Revise PTLR Definition and References in          [Improved Standard Technical Specification] 5.6.6, RCS [Reactor Coolant System] PTLR," dated August 4, 1.
1      ASME Code Case N-641 , "Alternative Pressure-Temperature Relationship Low Temperature Overpressure Protection System Requirements Section XI, Division 1 ," January 1 2000.
1        Regulatory Guide 1.147, "Inservice Inspection Code          Acceptability, ASME Section XI, Division 1," Revision 13, June 2003.
: 14.      Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability, ASME Section XI, Division 1," Revision 16, October 2010.
: 15.      10 CFR 50.55a(b), "Standards approved for Incorporation by    ""OTorOnl"'O 1        FNP Unit 1 and Unit 2 UFSAR, Section                "Pressure Transient Analyses," Revision 24, March 2012.
E1
 
Joseph M. Farley Nuclear Plant Request to Revise Technical Specifications Associated with    Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report Enclosure 2 Technical Specifications and Bases Markup Pages
 
and the Low Temperature                      Definitions Overpressure Protection                              1.1 System applicability temperature 1.1                                                    I PRESSURE AND          The PTLR is the unit speci c document that provides the TEMPERATURE LIMITS    reactor vessel pressure an                          limits, including (PTLR)      heatup and cooldown                for the current reactor vessel fluence period. These pressure and temperature limits shall be determined for each fluence period in accordance with Specification            Pial it operation \tw'ithin these cperatiflg limits is addressed 11'1 LCO 3.4.3, "RCS Pressure and Telilpelature (PIT) limits."
QUADRANT POWER TILT  QPTR shall be the ratio of the maximum                      excore RATIO (QPTR)          detector calibrated output to the                  of the upper excore detector              outputs, or the ratio of the maximum lower excore detector calibrated output to the average                the lower excore detector calibrated outputs. whichever is greater.
RATED THERMAL POWER    RTP          be a total reactor core heat transfer rate to the (RTP)                reactor coolant of 2175 MWt.
REACTOR TRIP          The RTS RESPONSE TIME shall be that time interval from SYSTEM (RTS) RESPONSE  when the monitored parameter exceeds its RTS trip setpoint TIME                  at the channel sensor until loss of stationary gripper coil response time may be measured by means of any series of sequential, overlapping, or total steps so that the entire response time is measured. In lieu of measurement, response time may              verified for selected components provided that the components and the methodology for verification have been previously reviewed and approved by the SHUTDOWN MARGIN (SDM)  SDM shall be the instantaneous amount of reactivity by which the reactor is subcritical or would be suberitical from its present condition assuming:
: a. All rod cluster control assemblies (RCCAs) are fully inserted          for the single RCCA of nll'1nA':::J reactivity worth. which is                to be fully withdrawn.
With any RCCA not capable of being fully                      the worth of the RCCA must be accounted for in the determination of SDM; and Farley Units 1 and 2            1.1-5                      Amendment No. t.ffl' (Unit 1)
Amendment No. t>tt (Unit 2)
 
RCS Loops-                4 3.4.6 3.4 REACTOR COOLANT SYSTEM (RCS) the Low Temperature Overpressure Protection 3.4.6 RCS Loops-MODE 4                                        (LTOP) System applicability temperature specified in the PTLR LCO 3.4.6            Two loops consisting of any combination of RCS loops              "'..,,,...."" heat removal (RHR) loops shall be OPERABLE. and one loop shall operation.
: 1. All reactor coolant pumps (RCPs) and RHR pumps may not be in operation for::;; 2 hours per 8 hour period provided:
: a. No operations are permitted that would cause reduction of the RCS boron concentration; and
: b. Core outlet temperature is maintained at least 10&deg;F below saturation temperature.
: 2. No RCP shall be started with any RCS              leg temperature ::;;
: a. The secondary side water temperature each steam generator (SG) is < 50&deg;F above each of the RCS cold leg temperatures; or
: b. The                water volume is less than 770 cubic            (24 %
of wide range, cold, pressurizer level indication).
APPLICABILITY:              4.
CONDITION                          REQUIRED ACTION                    COMPLETION TIME A. One          RCS loop        A.1        Initiate action to restore a    Immediately inoperable.                                second loop to OPERABLE status.
TwoRHR Inoperable.
Units 1 and 2                            3.4.6-1                  Amendment No. f46' (Unit 1)
Amendment No. t9T (Unit
 
RCS Loops - MODE 5,              Filled 3.4.7 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.7 RCS Loops      MODE 5, Loops Filled 3.4.7              residual heat removal (RHR) loop shall be OPERABLE and in operation. and either:
: a. One additional RHR          shall be OPERABLE; or
: b. The secondary side water level of at          two steam generators (SGs) shall be 2: 75&deg;10 (wide range).
: 1. The RHR pump of the loop in operation            not be in operation for
::; 2 hours    8 hour period provided:
: a.      No operations are permitted that would cause reduction of the RCS boron concentration; and
: b.      Core outlet temperature is maintained at least 1Q&deg;F below saturation temperature.
: 2. One required RHR loop may be inoperable for::; 2 hours for surveillance testing provided that the other RHR          is OPERABLE and!n
: 3. No reactor coolant pump shall be started with one or more            cold leg temperatures S          unless:
The secondary side water temperature of each SG is < 50&deg;F above each of the            leg                  or
: b. The pressurizer water volume is less than 770 cubic feet (24%
of wide range, cold,              level indication).
: 4. All RHR loops may be removed from operation during planned heatup to MODE 4 when at least one RCS loop is in operation.
: 5. The number of operating Reactor Coolant Pumps is limited to one at RCS temperatures < 110"F with the exception that a second pump may be started for the purpose of maintaining continuous flow while taking the operating pump out of service.
Units 1 and 2                          3.4.7-1                Amendment No. t4T- (Unit 1)
Amendment No. 1"51t (Unit 2)
 
Pressurizer Safety Valves 3.4.10 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.10 Pressurizer Safety Valves LCO 3.4.10          Three pressurizer safety valves shall be OPERABLE with lift settings
                    ~ 2460 psig and ~ 2510 psig.      the Low Temperature Overpressure Protection (L TOP) System applicability temperature specified in the PTLR APPLICABILITY:      MODES 1, 2, and 3, MODE 4 with all RCS cold leg temperatures>
                                    -------------NOTE-------------------------
The lift settings are not required to be within the LCO limits during MODES 3 and 4 for the purpose of setting the pressurizer safety valves under ambient (hot) conditions. This exception is allowed for 54 hours following entry into MODE 3 provided a preliminary cold setting was made prior to heatup.
ACTIONS CONDITION                          REQUIRED ACTION                COMPLETION TIME A. One pressurizer safety          A.1        Restore valve to            15 minutes valve inoperable.                          OPERABLE status.
B. Required Action and            B.1        Be in MODE 3.              6 hours associated Completion Time not met.                  AND OR                              B.2        Be in MODE 4 with any      12 hours Res cold leg Two or more pressurizer                    temperatures s;.~
safety valves inoperable.
                                                              /
I~he LTOP System applicability temperature speCified in I the PTLR Farley Units 1 and 2                          3.4.10-1                Amendment No. 1-4& (U nit 1)
Amendment No. 43T- (Unit 2)
 
LTOP System 3.4.12 3.4 REACTOR COOLANT SYSTEM                                              when one or more of the RCS cold legs is S 180&deg;F and a maximum two charging pumps capable of 3.4.12 Low Temperature Overpressure Protection (lTOP) System            injecting into the RCS when all of the RCS cold legs are:> 180&deg;F LCO 3.4.12            An LTOP System shall be OPERABLE th a maximum of one charging pump capable of injecting into the RCS nd the accumulators isolated and either a or b below.
--------NOTES-------
: 1. With one or mora of the RCS cold  a. Two residual heat removal (RHR) suction          valves with setpoints legs S 180&deg;F, two                      s450 2.
The RCS depressurized and an RCS vent of ? 2.85 square inches.
MODE 4 when the temperature of one or more RCS cold Ie s is s ':t.,,~~~
MODE 5,                                                  the LTOP System MODE 6 when the reactor vessel head is on.                applicability temperature specified in the PTLR 1.
c argmg pumps may e capa eo Injectmg Into t e                  unng pump swap operations for a period of no more than 15 minutes provided that the      is in a non-water solid condition and both RHR relief valves are              or the RCS is vented via an opening of no less than 5.7          inches in area.
Accumulator isolation is only required when accumulator pressure is than or equal to the maximum RCS pressure for the existing RCS cold leg temperature allowed by        PIT limit curves provided in the PTlR.
Farley Units 1 and 2                      3.4.12-1                  Amendment No.            (Unit 1)
Amendment No.            (Unit 2)
 
LTOP System 3.4.12 ACTIONS
  --------------------------------------------------------NOTE---------------------------------------
LCO 3.0.4b is not applicable when entering MODE 4.
CONDITION                      REQUIRED ACTION              COMPLETION TIME A.  ::r'NO or more charging          A.1        ----------- NOTE----
pump apable of                            T I      injecti RCS.
into the (s)
IMore than the maximum requiredl B. An accumulator not              B.1        Isolate affected          1 hour isolated when the                        accumulator.
accumulator pressure is the L TOP System greater than or equal to applicability temperature the maximum RCS pressure for existing cold                                                specified in the PTLR leg temperature allowed in the PTLR.
C. Required Action and            C.1                                  12 hours associated Completion                    temperature to >
Time of Condition B not        OR met.
C.2        Depressurize affected    12 hours accumulator to less than the maximum RCS pressure for existing cold leg temperature allowed in the PTLR.
Farley Units 1 and 2                      3.4.12-2                  Amendment No. 1T&- (Unit 1)
Amendment No. 1 (Unit 2)
 
LTOP System 3.4.12 SURVEILLANCE                                      FREQUENCY Verify a maximum of one charging pump is                In accordance with the Surveillance Frequency Control Program 3.4.12x ~ Verify each accumulator is isolated.                        In accordance with the Frequency Control Program 2."5-    Verify RHR suction isolation valves are open for each  In accordance with RHR suction relief valve.                      the Surveillance Frequency Control Program SR 3.4.12:4-~
                ~ Only          to LCO 3.4.12.b.
Verify RCS vent ~ 2.85 square          open.            In accordance with the Surveillance
                                                                        . Frequency Control
                                                                        . Program SR 3.4.12:5"'    Verify each required RHR suction relief valve          In accordance with
              ~setPoint.                                                  the Inservice Testing Program Program Farley Units 1 and 2                    3.4.124                  Amendment No. 485- (Unit 1)
Amendment No. -t6tt (Unit 2)
 
Reporting Requirements 5.6 5.6 5.6.5          CORE OPERATING LIMITS REPORT (COLR) (continued)
: c.      The core operating limits shall be determined such that all applicable limits (e.g., fuel thermal mechanical limits, core thermal hydraulic limits, Core Cooling            (ECCS) limits. nuclear limits such as SDM, transient analysis limits, and accident analysis limits) of the safety are met.
: d.      The COLR, including any midcycle revisions or supplements, shall be provided upon issuance for each reload cycle to the NRC.
5.6.6 LCO 3.4.3,
: b.      The analytical methods used to determine the RCS                  and temperature limits shall be those              fHVIHVlIHn and approved by the NRC. specifically those aAs '''pril a, 1998.
: c.      The          shall be provided to the NRC upon issuance for each reactor fluence period and for any revision or supplement thereto.
WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and 5.6.7 Heatup and Cooldown limit            .. May 2004 If an individual emergency diesel generator (EDG) experiences four or more valid failures in the last 25 demands, these failures shall be reported within 30 days.
Reports on EDG failures shall include a description of the failures, underlying causes,          corrective actions taken per the Emergency Diesel Generator Reliability Monitoring Program.
When a report is required by Condition B or F of LCO 3.3.3, "Post Accident Monitoring (PAM) Instrumentation," a report shall be submitted within following 14 days. The report shall outline the preplanned alternate method of monitoring, the cause of the inoperability, and the plans and schedule for ro.,cYlowonn the instrumentation channels of the Function to OPERABLE status.
Farley Units 1 and 2                            5.6-5                    Amendment No. -t&4- (Unit 1)
Amendment No. -t=f8- (Unit 2)
 
INSERT 1:
SR 3.4.12.2 Verify a maximum of two charging pumps are capable of        In accordance with injecting into the RCS when all RCS cold legs are:> 180"F. the Surveillance Frequency Control I Program
 
RCS      limits B 3.4.3 BASES SURVEILLANCE Verification that operation is within the PTLR limits is        when RCS pressure and temperature conditions are undergoing planned changes. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
Surveillance for heatup, cooldown. or ISLH testing may be discontinued when the definition given in the relevant plant procedure for ending the activity is satisfied.
This      is modified by a Note that only requires this SR to performed during system heatup. cooldown. and ISlH testing. No is given for criticality operations because lCO 3.4.2 contains a more restrictive requirement.
: 2. 10 CFR 50, Appendix G.
: 3. ASME, Boiler and Pressure Vessel Code, Section XI, Appendix G.
: 4. ASTM E 1              July 1982.
: 5. 10 CFR 50, Appendix H.
: 6. Regulatory Guide 1.99, Revision 2, May 1988.
: 7. ASME,            and Pressure          Code, Section XI. Appendix E.
Farley Units 1 and 2                  B 3.4.3-7                                    Revision
 
RCS Loops - MODE 4 B 3.4.6 LCO              .... nn'<::.<::f of any combination of RCS loops and RHR loops. Anyone (continued)  loop in operation provides enough flow to remove                      decay heat from the core with                  circulation. An additional        is required to be OPERABLE to provide redundancy for                        removal.
Note 1 permits all RCPs or RHR pumps to not be in operation for
                  ~    2 hours per 8 hour                  The purpose of the Note is to permit tests that are deSigned to validate various accident analyses values.
One of the tests performed during the startup testing program is the validation of rod drop times during cold conditions, both with and without flow. The no flow test                  be performed in MODE 3, 4, or 5 and                    that the          be stopped      a short period of time.
Note permits the stopping of the pumps in order to perform this test and validate the assumed analysis values. If changes are made to the              that would cause a change to the flow characteristics of the                the input values must be                by conducting          test again.              2 hour time period is adequate to perform the test, and operating experience has shown that boron stratification is not a problem during this short period with no forced flow.
Utilization of Note 1 is permitted provided the following conditions are met along with any other conditions imposed by initial startup test procedures:
: a. No operations are permitted that would dilute the                      boron concentration, therefore maintaining the                to criticality.
Boron reduction is prohibited because a uniform concentration distribution throughout the RCS cannot be ensured when in natural circulation; and
: b. Core outlet temperature is maintained at least 10 F below      Q saturation temperature, so that no vapor bubble may                  and possibly cause a natural circulation flow obstruction.
side water temperature of each above each of the        cold      temperatures or that water volume is less than        cub1c feet          of wide range, cold,                      level indication) before the start of an RCP with            RCS cold leg temperature :s          o . This restraint is to prevent a low temperature overpressure vent due to a thermal transient when an RCP is started.
the LoW Temperature Overpressure Protection (LTOP)          applicability temperature specified in PTLR Farley Units 1 2                          B                                                  Revision t1"
 
RCS Loops    MODE 5, Loops Filled B 3.4.7 BASES LCO                      distribution throughout the RCS cannot be ensured when in (continued)            natural circulation; and
: b. Core outlet temperature is maintained at least 10&deg;F below saturation temperature, so that no vapor bubble may form and possibly cause a natural circulation flow obstruction.
Note 2 allows one RHR loop to be inoperable for a period of up to 2 hours, provided that the other RHR loop is                    and in operation. This permits periodic surveillance tests to be performed on the inoperable loop during the only time when such testing is          and Note 3            that the secondary        water temperature of each be < 50&deg;F above each of          RCS cold leg temperatures or that the pressurizer water volume is          than 770 cubic feet (24% of wide range, cold, pressurizer level indication) before the start of a reactor coolant pump (Rep) with an RCS cold leg temperature ~              0    This restriction is to prevent a low temperature overpressure event          to a thermal transient when an Rep is started.
Note 4 provides for an orderly transition from MODE 5 to MODE 4 during a planned heatup by permitting removal of RHR loops from operation when at least one            loop is in operation. This Note provides for the transition to MODE 4 where an RCS loop is permitt to be in operation and replaces the ReS circulation function provided by the RHR loops.
Note 5 restricts the number of operating reactor coolant pumps at ReS temperatures less than 110&deg;F. Only one reactor coolant pump is allowed to be in operation below 110&deg;F (except during pump swap operations) consistent with the assumptions the prr Limits Curve.
RHR pumps are                    if they are capable of being powered and are able to provide flow if required. A SG can perform as a heat sink via natural circulation when it has an adequate water level and is OPERABLE.
the Low Temperature Overpressure Protection (LTOP) System applicability temperature speCified in the PTLR Units 1 and 2                  B 3.4.7-3                                      Revision -24'"
 
Pressurizer Safety Valves B 3.4.10 B                  COOLANT                    (RCS) 83.4.10 Pressurizer Safety Valves BACKGROUND              The pressurizer safety valves provide, in conjunction with the Reactor Protection System, overpressure protection for the RCS. The pressurizer safety valves are totally                        pop type, spring Ivau"" .. ,
valves with                    compensation. The safety valves are designed to prevent the system pressure from exceeding the system Safety Limit (SL), 2735 psig, which is 110% of the design pressure.
OI;:'....aLI;)1;: the safety valves are totally enclosed and self actuating. they are considered independent components. The relief capacity for each valve, 345,000 Ib/hr, is based on postulated overpressure transient conditions resulting from a complete loss of steam flow to the turbine.
This event results in the maximum                    rate into the which                    the minimum relief capacity for the            valves. The discharge flow from the                          safety valves is directed to the pressurizer relief tank. This discharge flow is indicated by an increase in temperature downstream of the pressurizer safety valves or the Low Temperature              increase in the pressurizer relief tank temperature or level.
Protection (LTOP) System applicability                              protection is required in MODES 1, 2, 3,4, and 5; temperature speCified in the          wever, in MODE 4, with one or more                      cold leg temperatures o ,and MODE 5 and MODE 6 with the reactor vessel head on,
,PTLR overpressure protection is provided by operating procedures and by meeting the requirements of LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System."
The upper              lower              limits are        on the +/- 1% tolerance requirement                1) for lifting pressures above 1000 pSig. The lift setting is for          ambient conditions associated with MODES 1, 2, and 3. This requires either that the valves be set hot or that a correlation between hot and cold settings be established.
The pressurizer safety valves are part of the primary success path and mitigate the effects of postulated accidents. OPERABILITY of the safety valves ensures that                      pressure will be limited to 110% of design pressure. The consequences of exceeding the Farley Units 1 and 2                          B 3.4.10-1                                            Revision1t
 
Pressurizer Safety Valves B 3.4.10 BASES LCO                    is the reactor coolant pressure boundary (RCPB) SL of 110% of (continued)        design pressure. Inoperability of one or more valves could result in exceeding the SL if a transient were to occur. The consequences of exceeding the ASME pressure limit could include damage to one or more RCS components, increased leakage. or additional stress analysis being required prior to resumption of reactor 0 eration.
when all RCS cold leg temperatures are>
APPLICABILITY          In MODES 1 , and 3, and portions of MODE 4 aOOve the L TO temperature        0 , OPERABILITY of three valves is required because the combined capacity is required to keep reactor coolant pressure below 110% of its design value during certain accidents.
the LTOP System MODE 3 and portions of MODE 4 are conservatively included, applicability ough the listed accidents may not require the safety valves for temperature specified in prote .                                              one or more the PTLR icable in MODE 4 when      RCS cold leg temperatures are =s      0  or in MODE 5 because LTOP is provided.
Overpressure protection is not required in MODE 6 with reactor vessel head detensioned.
Normally demonstration of the safety valves' lift settings will occur during shutdown and will be performed in accordance with the provisions of Section XI of the ASME Boiler and Pressure Vessel Code.
The Note allows entry into MODES 3 and 4 with the lift settings outside the LCO limits. This permits testing and examination of the safety valves at high pressure and temperature near their normal operating range, but only after the valves have had a preliminary cold setting. The cold setting gives assurance that the valves are OPERABLE near their design condition. Only one valve at a time will be removed from service for testing. The 54 hour exception is based on 18 hour outage time for each of the three valves. The 18 hour period is derived from operating experience that hot testing can be performed in this timeframe.
Farley Units 1 and 2                B 3.4 .10-3                                      Revision "6
 
Pressurizer Safety Valves B 3.4.10 BASES ACTIONS With one pressurizer safety valve inoperable, restoration must take place within    minutes. The Completion Time of 15 minutes rOT""""""
the importance      maintaining the        Overpressure Protection System. An inoperable safety valve coincident with an RCS overpressure event could challenge the integrity of the pressure boundary.
applicability temperature specified in the PTlR If the Required Action of A.1 cannot b      et within the required Completion Time or if two or more p s              safety valves are inoperable,      plant must      brou t t a MODE in which the requirement does not apply. To hie e this status, the plant must be brought to at least MODE 3 wit* 6 h urs and to MODE 4 with any RCS cold leg temperatures .s        ., w thin 12 hours. The allowed Completion Times are reasonable, b ed on operating experience, to the          plant conditions fr m full power conditions in an orderly manner and without challen . g plant systems. With any RCS cold leg temperatures at or below        ." overpressure protection is provided by the l TOP System. The change from MODE 1, 2, or 3 to MODE 4 reduces the RCS energy (core power and pressure), lowers the potential for large pressurizer insurges, and thereby removes the need for overpressure protection by three pressurizer safety valves.
SURVEILLANCE          SR 3.4.10.1 REQUIREMENTS Pressurizer safety valves are to be tested in accordance with the requirements of Section XI of the ASME Code (Ref. 4), which provides the activities and Frequencies necessary to satisfy the SRs.
No additional requirements are specified.
The                      valve setpoint is +/- 1% for OPERABILITY.
Farley Units 1 and 2                B 3.4.10-4                                        Revision"*
 
LTOP System B 3.4.12 B 3.4 REACTOR COOLANT SYSTEM (RCS)
B 3.4.12 Low Temperature Overpressure Protection (LTOP) System BASES BACKGROUND                  LTOP System controls RCS pressure at low temperatures so the integrity of the reactor coolant pressure boundary (RCPB) is not by violating the pressure and temperature (PIT) limits 10 CFR 50, Appendix G (Ref. 1). The reactor vessel is the limiting RCPB component for demonstrating such protection. This Technical Specification provides the maximum allowable actuation setpoints for the RHR rellef valves and the                      the maximum RCS pressure for the existing RCS cold            temperature during cooldown.
shutdown, and heatup to meet the Ref r nc 1 re ire                ts durin the LTOP MODES.                                                    the LTOP System The reactor            material is normal operating temperature. As the vessel neutron exposure accumulates, the material toughness decreases and becomes less resistant to pressure stress at low temperatures (Ref. 2). RCS pressure, therefore, is maintained low at low temperatures and is in""A:::"~AI1 only as              is increased.
The potential for vessel overpressurization is most acute when is water solid, occurring only while shutdown; a pressure fluctuation can occur more quickly than an operator can react to relieve the condition. Exceeding the            PIT limits by a significant amount could cause brittle              of the reactor vessel. LeO "RCS                and Temperature (PIT) limits,"            administrative control of RCS pressure and temperature during heatup and
: a. A maximum of one              cooldown to prevent exceeding the PTLR limits.
charging pump            of injecting into the RCS when      ThiS LCO provides RCS overpressure protection by aving a one or more RCS cold leg          minimum coolant input capability and haVing adeq te pressure relief temperatures are s 180"F:        capacity. Limiting coolant input capability
* y                    &  *
: b. A maximum of two charging pumps capable of injecting        aooumulators. The pressure relief capacity requires either two into the RCS when all the RCS    redundant RHR relief valves or a depressurized RCS and an RCS cold leg temperatures are        vent sufficient size. One RHR relief valve or the open RCS vent is
>180"F;and                        the overpressure protection device that acts to terminate an event.
: c. Isolating the accumulators.
Farley Units 1 and 2                    83.4.12-1                                          Revision
 
LTOP System B3.4.12 BASES BACKGROUND                                            (continued)
LTOP mass or heat input transient, and maintaining pressure below the PIT limits. The required vent capacity may be provided by one or more vent paths. The vent path(s) must be above the level of reactor LTOP System applicability    coolant, so as not to              RCS when temperature              in the PTLR APPLICABLE                    analyses (Ref. 4) demonstrate that th reactor vessel is SAFETY ANALYSES                  ely protected against exceeding t                    1 PIT limits. In r;;;"]
MODES          2. and 3,      in MODE 4 with          cold leg temperature~L!J exceeding          ", the              safety valves will prevent RCS With one or more        cold leg  pressure from exceeding the Reference 1 limits. l\t abeut 326"F and temperatures s the LTOP System ""'""'tl~w. overpressure prevention falls to two OPERABLE RHR relief applicabifity temperature                  or to a                        and a sufficient sized      vent.
specified in the PTLR              Each of these means has a limited overpressure relief capability.
The actual temperature at which the pressure in the PIT limit curve falls below the pressurizer safety valve setpoint increases as the reactor vessel material toughness                  due to neutron embrittlement.            time the PTLR curves are              the L TOP System must be                    to ensure its functional requirements can still be met using the RHR relief valve method or the depressurized and vented RCS condition.
The PTLR contains            acceptance limits that define the LTOP requirements. Any              to the      must      evaluated          the Reference 4 analyses to determine the impact the LTOP acceptance limits.
Transients that are capable of overpressurizing the RCS are categorized as either mass or heat input transients. examples of which follow:
: a. Inadvertent safety InU"'rTu,n or
: b. Charginglletdown flow mismatch.
Farley Units 1 and 2                  B                                                Revision -e
 
LTOP System B 3.4.12 BASES APPLICABLE                Heat Input Type Transients SAFETY ANALYSES (continued)          a. Inadvertent actuation of
: b. Loss of RHR cooling; or A maximum of one charging          c.            coolant pump (RCP)              with temperature asymmetry p          of injecting into    within the RCS or between the RCS and steam generators.
e RCS when one or more RCS cold leg temperatures are      The following are required during the LTOP MODES to ensure that s 180&deg;F and a maximum of two        mass and heat input transients do not occur. which            of the LTOP charging pumps capable of                          protection means cannot handle:
injecting into the RCS when all the              leg                    Rendering all but one oharging pump inoapable of injootion; are >180&deg;F.
: b. Deactivating the accumulator discharge isolation valves in their closed positions; and In the Reference 4 analyses, the worst case mass input          c. Disallowing start of an RCP if secondary temperature is more than event was assumed to be                50"F above primary temperature in anyone loop except as inadvertent operation of three        provided for in LCO 3.4.6, "RCS            - MODE 4," and high-head safety injection            LCO            "RCS Loops-MODE 5, Loops Filled."
pumps          charging with a maximum total flowrate of 1000 gal/min at 0 psig          maintain RCS pressure bele'.... limits '''''hen enly one oharging pump is at RCS          actuated. Thl:ls. the LCO allows only one Gharging pump OPI!!RA8bl!!
                  ~ 180&deg;F. The      Gti1FlfKHfle-t::-H:.H-'-IM\:;~~ Since one RHR relief valve has not been analysis conservatively            demonstrated to be able to handle the                          need from assumes the operation of three    accumulator injection, when RCS temperature is low, the LCO also charging pumps although the        requires the accumulators isolated when accumulator pressure is plant design limits the total      greater than or equal to the maximum RCS pressure for the eXisting number of operating charging      RCS cold        temperature allowed in the PTLR.
pumps to two pumps at a time.
Additionally. Reference 4        The isolated accumulators must have their discharge valves closed states that due to the            and the valve power supply breakers fixed in their open                  ,..-;:----:-,---,
Technical Specification restrictions that allow only one  Fracture mechanics analyses establishe4 the temperature charging pump capable of injecting into the RCS at RCS temperatures <180&deg;F. the          The                    of a small break loss of coolant accident (LOCA) worst case mass injection is      in LTOP MODE 4 conform to 10 CFR 50.46 and 10 CFR 50, limited to the start of a single  Appendix K (Refs. 5 and 6), requirements by having a maximum of charging pump.                    one charging pump Farley Units 1 and 2                      B 3.4.12-4                                      Revisioni7
 
LTOP ....\/." ........
B 3.4.12 BASES LCO                      This                            that      L TOP          is OPERABLE.            LTOP System is OPERABLE when the minimum coolant input and pressure
: a. A maximum of one                relief capabilities are OPERABLE. Violation of this LCO could                            to charging pump """~JaUlv                  loss of low temperature overpressure mitigation and violation of of injecting into the RCS          the Reference 1 limits as a result of an operational T"<>in""J"~~'frill;:;;;;;;:;;;:---]
when one or more RCS cold      temperatures              To limit the coolant input capability, the LCO are s 180"F;                    ~9F*~*IFij:f-l*:IFfII:.-s;:.tI*II':}H:t-eHfltet;Q*~-lAiEHl!'-l&-~~af'H~      accumulator
: b. A maximum of two                discharge isolation valves closed and immobilized when accumulator charging pumps                      pressure is greater than or equal to the maximum RCS pressure for of injecting into the              the existing RCS cold leg temperature allowed in the PTLR.
when all the        cold leg temperatures are                The                          the        that provide low              overpressure
>180"F;and                          mitigation through pressure relief are:
: c. All
: a. Two      ............ "'"'"" .... RHR suction relief valves; or An RHR suction                      valve is OPERABLE for LTOP when its RHR suction isolation valve and its RHR suction valve are open, its setpoint is :s 450                  and testing      proven its ability to open at this setpoint.
: b. A depressurized RCS                        an RCS vent.
An        vent is OPERABLE when open with an area of ~ 2.85 square inches.
prevention is            of vessel head is on                    fuUy seated on the reactor vessel flange, with or without studs). The pressurizer safety valves provide overpressure protection that meets the Reference 1 prr limits                            0
* When the reactor vessel head is raised, such that a total ven rea of ~ 2.85 square inches is created. seated on blocks providing an equivalent vent area, or off, overpressurization cannot occur.
when all the RCS cold leg temperatures are> the System applicability                            in the PTLR Farley Units 1 and 2                          B 3.4.12-6                                              Revision -(t
 
when all the      cold leg temperatures are>
System applicability temperature specified in the PTLR BASES
        /
APPLICABILITY        LCO        provides the operational PfT limits      all MODES.
(continued)      LCO 3.4.10, *Pressurizer Safety Valves," req . es the OPERABILITY of the pressurizer safety valves that provide verpressure protection during MODES 1, 2. and 3, and MODE 4                      0 Low temperature overpressure prevention is most critical during shutdown when the RCS is water solid, and a mass or heat input transient can cause a very rapid increase in RCS pressure with little or no time allowed for operator        to mitigate the event.
soal. Particles in the RCS vlater May Gause '/loar on tho soal surfaces and IOS6 of seal injection pressure May Gause the seal Rot to fully reseat whon pressure is reapplied. Note 2 states that aOGuMtllatoF iselation is enly required *....he" tho aOGumulator pressure performed only under these pressure and tomperetuFO conditions.
Farley Units 1 and 2                B 3.4.1                                        Revision
 
LTOP System B 3.4.12 ACTIONS            A Note prohibits the application of LCO 3.0.4b to an inoperable LTOP system when              MODE 4. There is an                risk associated with entering MODE 4 from MODE 5 with LTOP inoperable and the provisions of LCO 3.0.4b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment inoperable systems and components, should not be applied in this circumstance.
To immediately initiate action to restore restricted coolant input capability to the        reflects the urgency of removing the RCS from this condition.
8.1. C.1. and C.2 unisolated accumulator requires isolation within 1 hour. This is only required when the accumulator pressure is at or more than the maximum RCS                                      erature allowed b the PIT limit curves.                                  the LTOP System aoolicabilitv temoerature soecified in the PTLR If isolation is needed and cannot e accomplished in 1 hour, Required Action C.1 and Required Actio            provide two options, either of which must be performed            next 12 hours. By              the RCS temperature                  an accumulator pressure of 600 650 psig cannot exceed the LTOP limits if the accumulators are fully injected. Depressurizing the accumulators below the LTOP limit from the PTLR also gives this protection.
The Completion Times are based on                                that these activities can be accomplished in these time              and on engineering evaluations indicating that an event requiring            is not likely in the allowed times.
Units 1 and 2                  B 3.4.1                                        Revision~
 
LTOP System B 3.4.12 BASES the LTOP System applicability temperature specified in the ACTIONS              D.1! D.2. and D.3 L.P....:..T=LRO-:--_
                                          .:. .            _ _ _ _ _ _.."..-_ _ _ _ _ _ _ _---.J (continued)
In MODE 4 when any RCS cold leg temperature is ~~, with one required RHR relief valve inoperable, the pressurizer level must be reduced to ~ 30% (cold calibrated) and a dedicated operator must be assigned for RCS pressure monitoring and control within 24 hours.
These actions provide additional assurance that an RCS pressure transient will be rapidly identified and operator action taken to limit the transient. The RHR relief valve must be restored to OPERABLE status within a Completion Time of 7 days. Two RHR relief valves are required to provide low temperature overpressure mitigation while withstanding a single failure of an active component.
The 7 day Completion Time considers the facts that only one of the RHR relief valves is required to mitigate an overpressure transient, the actions taken to reduce pressurizer level and monitor RCS pressure, and that the likelihood of an active failure of the remaining valve path during this time period is very low.
The RCS must be depressurized and a vent must be established within 8 hours when:
: a. Both required RHR relief valves are inoperable; or
: b. A Required Action and associated Completion Time of Condition A, C, or D is not met; or
: c. The L TOP System is inoperable for any reason other than Condition A, B, C, or D.
The vent must be sized ~ 2.85 square inches to ensure that the flow capacity is greater than that required for the worst case mass input transient reasonable during the applicable MODES. This action is needed to protect the RCPB from a low temperature overpressure event and a possible brittle failure of the reactor vessel.
The Completion Time considers the time required to place the plant in this Condition and the relatively low probability of an overpressure event during this time period due to increased operator awareness of administrative control reqU irements.
Farley Units 1 and 2                B 3.4.12-9                                    Revision~
 
LTOPSystem B 3.4.12 REQUIREMENTS To                                    potential for a limiting the mass input capability, H-f~i(tffitHl'H*"ef1I&Elf'\efeHrte-Btif'fl&i9-verified capable of iMjeeting ifllo ttle Res end the eceuffil::Jlator
: a. A maximum of one charging pump capable of        The charging pumps are rendered incapable of injecting into the RCS injecting into the ReS          through removing the power from the pumps by racking the breakers when one or more RCS            out under administrative control. An alternate method of LTOP control cold                    are      may be employed using at least two independent means to                                            a s 180&deg;F;                        pump start such that a                                failure or single action will not result in
: b. A maximum of two              an injection into the                              This may be accomplished through the Hot pumps capable        Shutdown Panel Local/Remote and pump control switches being of injecting into the RCS        placed in the Local and Stop positions, respectively. and at least one when all the        cold leg    valve in the discharge flow path being closed with the position of temperatures are >180&deg;F;                ..........,., ... ,......."'....t., controlled administratively.
and
: c. The accumulator              The Surveillance Frequency is controlled under the Surveillance discharge isolation valves        Frequency Control Program.
are verified closed and locked out.
Each required RHR suction relief valve shall                              demonstrated OPERABLE by verifying its RHR suction isolation valves (8701A, 8701 B, 8702A and 8702B) are open. This Surveillance is only required to be performed if the RHR suction relief valve is being used to meet this LCO.
The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
The RCS vent of 2: 2.85 square inches is proven OPERABLE by verifying its open condition.
The Surveillance Frequency is controlled under the Frequency Control Program.
Farley Units 1 and 2                                B 3.4.12-10                                            Revision '52"'"
 
LTOP System B 3.4.12 REQUIREMENTS
                          '''''''~''V''' vent              must only be        to be OPERABLE.
Surveillance is required to be performed if the vent is being used to satisfy the pressure relief requirements of the LCO 3.4.12b.
RHR relief valves are verified OPERABLE by testing the relief setpoint. The setpoint verification ensures proper relief valve mechanical motion as well as verifying the setpoint. Testing is performed in accordance with the Inservice Testing                      which is based on the requirements of the ASME Code. Section XI (Ref. 7).
The RHR                valve setpoints are verified in accordance with the Surveillance Frequency Control Program. Per the Inservice Testing Program. if the scheduled valve                  the relief setpoint    3% or the                    shall          tested. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.
REFERENCES            1. 10 CFR 50. Appendix G.
: 2. Generic Letter 88-11.
: 3. ASME,                  and                  Code,            III.
: 4.              Chapter 5.2.2.4.
: 5. 10 CFR 50, Section 50.46.
: 6. 10 CFR 50. Appendix K.
: 7. ASME. Boiler and Pressure Vessel Code. Section XI.
Farley Units 1 and 2                      B 3.4.12-11                                      Revision~
 
INSERT The                is modified by two        Note 1 allows for two charging pumps to be capable injecting into the ReS during pump swap operations, when one or more of the ReS cold                  is :s; 180&deg;F, for a period of no more than 15 minutes provided that the ReS is in a non water solid condition and both RHR reHef valves are OPERABLE or the              is vented via an opening of no      than 5.7 square inches in area. A 5.7 square inch opening is equivalent to the throat size area of two RHR relief valves. This allows seal injection flow to be continually maintained. thus                      the          for      number one seal t1<>."<> ...,,,,, by                              on the      and by preventing                water from          the seal.            in the water                cause wear on the seal          and      of seal injection pressure may cause the seal not to fully reseat when pressure is reapplied. Note 2 states that accumulator isolation is only required when the accumulator pressure is more than or at the maximum pressure for the existing temperature, as allowed by the PIT limit curves. This Note permits the accumulator discharge isolation valve Surveillance to            performed only under these              and temperature conditions.
 
Joseph M. Farley Nuclear Plant Request to Revise Technical Specifications Associated with the Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report Enclosure 3 Technical Specifications Clean Typed Pages
 
Definitions 1.1 1.1 Definitions AND      The PTLR is the unit specific document that provides the TEMPERATURE LIMITS    reactor vessel              and temperature limits, including REPORT (PTLR)        heatup and cooldown rates and          Low Temperature Overpressure Protection System applicability temperature, for the current reactor vessel fluence period. These pressure and temperature limits shall      determined for each period in accordance with Specification 5.6.6.
QUADRANT POWER TI    QPTR shall be the ratio of the maximum upper excore RATIO (QPTR)          detector calibrated output the average the upper excore detector calibrated outputs, or the ratio of      maximum lower excore detector calibrated output to the average of the lower excore detector calibrated outputs, whichever is greater.
RATED THERMAL POWER  RTP shall be a total reactor core        transfer      to the (RTP)                reactor coolant of        MWt.
REACTOR TRI P        The RTS RESPONSE TIME shall              that time interval from SYSTEM (RTS)          when the monitored parameter exceeds            RTS trip setpoint TIME                  at the channel sensor until loss of stationary gripper coil voltage. The response time may be measured by means of any          of sequential, overlapping, or total steps so that entire response time is measured. In lieu of measurement, response time may            verified for selected components provided that the components and the methodology for verification have been previously reviewed and approved by the NRC.
SHUTDOWN MARGIN (SDM) SDM shall be the instantaneous amount of reactivity by which the reactor is subcritical or would be subcritical from its present condition assuming:
: a. All rod cluster control assemblies (RCCAs) are fully inserted except for the single RCCA of highest reactivity worth, which is assumed to be fully withdrawn.
With any RCCA not capable of being fully inserted, the reactivity worth of the RCCA must be accounted for in determination of SDM; and Farley Units 1 and 2            1.1                        Amendment No.          (Unit 1)
Amendment No.            (Unit
 
RCS Loops -    MODE 4 3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.6 RCS Loops      MODE 4 LCO 3.4.6            Two loops consisting of any combination of RCS loops and residual heat removal (RHR) loops shall be OPERABLE, and one loop shall              in operation.
: 1. All reactor coolant pumps (RCPs) and RHR pumps may not be in operation for ::; 2 hours per 8 hour period provided:
: a. No operations are permitted that would cause reduction of the RCS boron concentration; and
: b. Core outlet temperature is maintained at least 10&deg;F below saturation temperature.
: 2. No RCP shall be              with any RCS cold leg temperature::; the Low Temperature Overpressure Protection (LTOP) System applicability temperature specified in the            unless:
: a. The secondary          water temperature of        steam generator (SG) is <          above        of the RCS cold leg temperatures; or
: b. The pressurizer water volume is less than 770 cubic            (24%
of wide range, cold, pressurizer level indication).
APPLICABILITY:      MODE ACTIONS CONDITION                          REQUI RED ACTION A.        required RCS loop        A.1        Initiate action  ..estore a    Immediately inoperable.                              second loop to OPERABLE status.
Two RHR loops inoperable.
Farley Units 1 and 2                          3.4.6-1                  Amendment No.          (Unit 1)
Amendment No.          (Unit 2)
 
RCS Loops      MODE    Loops Filled 3.4 REACTOR COOLANT SYSTEM (RCS)
RCS Loops - MODE        Loops Filled LCO 3.4.7            One residual heat removal (RHR) loop shall be OPERABLE and in operation, and either:
: a.        additional RHR loop shall be                or
: b. The secondary side water level of at least two steam generators (SGs) shall be ~ 75% (wide range).
: 1. The RHR pump of the loop in operation may not be in operation for S 2 hours per 8 hour period provided:
: a. No operations are permitted that would cause reduction of the RCS boron concentration; and
: b. Core outlet temperature is maintained at saturation temperature.
: 2. One required RHR loop may        inoperable for S 2 hours for surveillance testing provided that the other RHR loop is OPERABLE and in operation.
No reactor coolant pump shall      started with one or more RCS cold leg temperatures S the Low Temperature Overpressure Protection (LTOP) System applicability temperature specified in the PTLR unless:
: a. The secondary side water temperature of          SG is < 50&deg;F above each of      ReS cold leg temperatures; or
: b. The              water volume is      than 770 cubic      (24%
of wide range, cold, pressurizer level indication).
: 4. All RHR loops may be removed from operation during planned heatup to          4 when at least one RCS loop is in operation.
number of operating Reactor Coolant Pumps is limited to one at temperatures < 110&deg;F with the exception that a second pump may      started for the purpose of maintaining continuous flow while taking the operating pump out of service.
Farley Units 1 and 2                          3.4.7-1                Amendment No.        (Unit 1)
Amendment No.        (Unit 2)
 
Safety 3.4.10 3.4              COOLANT 3.4.10 Pressurizer Safety Valves LCO 3.4.10            Three                safety valves          OPERABLE with lift settings
                      ~2460                    o psig.
APPLICABILITY:
cold leg temperatures> the Low Temperature Overpressure Protection              System applicability temperature specified in the PTLR.
within the LCO limits during MODES 3 purpose of setting                    safety valves under ambient (hot) conditions.        exception is allowed for 54 hours following entry into MODE 3 provided a preliminary cold setting was made prior to heatup.
ACTIONS CONDITION                            REQUIRED                      COMPLETION TIME A. One                safety        A.i        Restore valve to            15 minutes valve inoperable.                            OPE B. Required Action and                                                      6 as~;ociatE~d Completion not met.
Be in MODE 4 with any        12 hours RCS cold Two or more pressurizer                    temperatures:::; the safety        inoperable.                  LTOP ..."eTern applicability temperature specified in Farley Units 1      2                          3.4.10-1                    Amendment No.    (Unit 1)
Amendment No.    (Unit 2)
 
3.4 REACTOR COOLANT SYSTEM (RCS) 3.4.12 Low Temperature Overpressure Protection (LTOP) System LCO 3.4.12          An LTOP System shall be OPERABLE with a maximum of one charging pump                of injecting into the RCS when one or more of the RCS cold legs is ;5; 1        and a maximum of two charging pumps capable of injecting into the RCS when all of the              cold      are> 180&deg;F and accumulators isolated and                a or b below.
: a. Two                heat removal (RHR) suction relief valves with setpoints
                          ;5; 450 psig.
: b. The RCS                          and an RCS vent of ~ 2.85 square inches.
: 1.      With one or more of the RCS cold legs ::s; 180&deg;F, two charging pumps may be capable of injecting into the            during pump swap operations for a period of no more than 15 minutes provided that the RCS is in a non-water solid condition and both RHR relief valves are OPERABLE or the RCS is vented via an opening of no              than 5.7 square inches in area.
: 2.      Accumulator isolation is only required when accumulator                is greater than or equal to          maximum RCS pressure for the existing RCS cold leg temperature allowed by the PtT lirnit curves provided in PTLR.
APPLICABILITY:      MODE 4 when the temperature of one or more RCS cold legs is s the
_U'''TOlrn applicability              specified in    PTLR, 6 when the reactor vessel head is on.
Farley Units 1 and 2                          3.4.1                      Amendment No.        (Unit 1)
Amendment No.        (Unit
 
LTOP System 3.4.12 ACTIONS LCO 3.0.4b is not applicable when entering MODE CONDITION                      REQLlI        ACTION            COMPLETION TIME A. More than the maximum        A.i        Initiate action to verify s Immediately charging                    the maximum required pump(s) capable of                    charging pump(s) injecting into the                    capable of injecting into RCS.                                  the RCS.
B. An accumulator not          B.1      Isolate affected            1 hour isolated when the                      accumulator.
accumulator pressure is greater than or equal to the maximum RCS pressure for existing cold leg temperature allowed in the PTLR.
C. Required Action and.        C.1      Increase RCS cold leg        12 hours Completion                temperature to > the Time of Condition B not                LTOP System met.                                  applicability temperature in the PTLR.
C.2      Depressurize affected        12 hours accumulator            than the maximum ReS pressure for existing cold leg temperature allowed in the PTLR.
Farley Units 1 and 2                  3.4.1                        Amendment No.    (Unit 1)
Amendment No.    (Unit 2)
 
LTOP System 3.4.12 SURVEILLANCE REQUIREMENTS SURVEILLANCE                                    FREQUENCY SR    12.1      Verify a maximum of one charging pump is              In accordance with capable of injecting into the RCS when one or more    the Surveillance RCS cold legs is s 180"F.                              Frequency Control Program SR 3.4.12.2      Verify a maximum of two charging pumps are            In accordance with capable of injecting into the RCS when all RCS cold    the Surveillance legs are> 180&deg;F.                                    . Frequency Control Program SR 3.4.1        Verify each accumulator is isolated.                  In accordance with the Surveillance Frequency Control Program Verify RHR suction isolation valves are open for      In accordance with required      suction        valve.                  the Surveillance Frequency Control
: Program SR 3.4.1 Only required to be performed when complying with LCO 3.4.1 Verify RCS vent;::: 2.85 square inches open.          In accordance with the Surveillance Frequency Control Program SR 3.4.1          Verify each required RHR suction relief valve        In accordance with setpoint.                                              the I nservice Testing Program In accordance with the Surveillance Frequency Control Program Units 1 and 2                        12-4                Amendment No.        (Unit 1)
Amendment No.        (Unit 2)
 
Reporting Requirements 5.6 5.6 Reporting Requirements 5.6.5          CORE OPERATING LIMITS REPORT (COLR) (continued)
: c. The core operating limits shall be determined such that all applicable limits (e.g., fuel thermal mechanical limits, core thermal hydraulic limits, Emergency Core Cooling Systems (ECCS) limits, nuclear limits such as SDM, transient analysis limits, and accident analysis limits) of the safety analysis are met.
: d. The COLR, including any midcycle revisions or supplements, shall be provided upon issuance for each reload cycle to the NRC.
5.6.6          Reactor Coolant System (RCS) PRESSURE AND TEMPERATURE LIMITS REPORT (PTLR)
: a. The reactor coolant system pressure and temperature limits, including heatup and cooldown rates and the LTOP System applicability temperature, shall be established and documented in the PTLR for the following:
LCO 3.4.3, "RCS Pressure and Temperature (PIT) Limits," and LCO 3.4.12, "Low Temperature Overpressure Protection (LTOP) System."
: b. The analytical methods used to determine the RCS pressure and temperature limits shall be those previously reviewed and approved by the NRC, specifically those described in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," May 2004.
: c. The PTLR shall be provided to the NRC upon issuance for each reactor fluence period and for any revision or supplement thereto.
5.6.7          EDG Failure Report If an individual emergency diesel generator (EDG) experiences four or more valid failures in the last 25 demands, these failures shall be reported within 30 days.
Reports on EDG failures shall include a description of the failures, underlying causes, and corrective actions taken per the Emergency Diesel Generator Reliability Monitoring Program.
(continued)
Farley Units 1 and 2                        5.6-5                      Amendment No.          (Unit 1)
Amendment No.          (Unit 2)
 
Joseph M. Farley Nuclear Plant          to Revise Technical Specifications Associated with the low Temperature Overpressure Protection System and the Pressure and Temperature limits Report Enclosure 4 Joseph M. Farley Nuclear Plant Unit 1 and Unit 2          Temperature limits Report
 
SOUTHERN'\'
COMPANY Energy to SeNle Your World*
Joseph Mil Farley Nuclear Plant Pressure Temperature Limits Report Unit 1 Revision 5 MONTH YEAR
 
Unit 1 Table of Contents List of                          ............................................................................................. 2 List of                                      .................................................................................3 1.0          Pressure Temperature Limits Report (PTLR) ............................................... 5 Operating Limits ...................................................................................................5 RCS Pressureffemperature (Pff) Limits (LCO                                                                          5 RCP Operation Limits ....................................................................................... 5 LTOP System Applicability Temperature (LCO -                                12)................................... 5 3.0    Reactor Vessel Material Surveillance Program ................................................... 12 4.0                      Surveillance                Credibility ...................................................... 13 5.0    Supplemental Data                                        .......................................................... 13 6.0    References .........................................................................................................21
 
PTLR for FNP Unit 1 list of Tables 2*1 Farley Unit 1    EFPY Heatup Curve Data Points ..................................................8 Farley Unit 1 54      Cooldown Curve Data Points ............................................ 10 3-1 Surveillance Capsule Withdrawal Schedule .......................................................... 12 1 Comparison of Surveillance Material 30 ft-Ib Transition Temperature Shifts and Upper Shelf Energy                    with Regulatory Guide 1.99, Revision 2, Predictions ......................................................................................... 14 5-2 Calculation of Chemistry Factors Using Surveillance Capsule Data...................... 15 5-3 Reactor Vessel Toughness Table (Unirradiated) .................................................. 16 Reactor Vessel Fluence Projections at 54 EFPY .................................................. 17 Summary of ART Values for the Reactor Vessel Materials at the 1/4-T and 3/4-T Locations for            EFPY....................................................... 18 5-6 Calculation of Adjusted Reference Temperature Values at 54 EFPY for the Limiting Reactor Vessel Material .......................................................................... 19 Pressurized Thermal Shock (RTPTs) Values for 54 EFPY ..................................... 20
 
PTLR for FNP Unit 1 List of Figures 2-1 Farley Unit 1 Reactor Coolant System Heatup                                                6 2-2 Farley Unit 1 Reactor Coolant System Cooldown Limitations .................................7
 
PTLR for FNP Unit 1 This intentionally blank.
 
PTLR for FNP Unit 1 1.0 ReS Pressure Temperature limits Report. (PTlR)
This PTLR for Farley Nuclear Plant* Unit 1 has been prepared in accordance with the requirement of Technical Specification (TS) 5.S.S. Revisions to the PTLR shall be provided to the NRC after issuance.
This report affects      3.4.3,    PressurelTemperature Limits (PIT) Limits. All TS requirements associated with low temperature overpressure protection (LTOP) are contained in TS 3.4.12, RCS Overpressure Protection Systems.
2.0 Operating limits The limits for TS 3.4.3 are presented in the subsection which follows and were developed using the methodologies specified in              The methodologies are contained in WCAP*14040-A, Revision 4[1]. The operability requirements associated with LTOP are specified in        LCO 3.4.12 and were determined to adequately protect the RCS against brittle fracture in the event of an LTOP transient. The limitation on the number of operating reactor coolant pumps (RCPs) is necessary to assure operation consistent with        pressure corrections incorporated in the PIT limits for flow losses associated with the RCPs.
2.1  RCS PressurelTemperature (PIT) Limits (LCO - 3.4.3) 2.1.1    The minimum boltup temperature is
              .2  The RCS temperature rate-of-change limits are:
: a. A maximum heatup of 100&deg;F in anyone hour period.
: b. A maximum cooldown of 100&deg;F in anyone hour period.
: c. A maximum temperature change of less than or equal to 1QaF in anyone hour period during inservice hydrostatic and      testing operations above the heatup and cooldown limit curves.
2.1.3    The RCS PIT limits for heatup and cool down are specified by Figures 2-1 and respectively.
RCP Operation 2.2.1    The number of operating Reps is limited to one at        temperatures less than 11 oaF with the exception that a second pump may        started for the purpose of maintaining continuous flow while taking the operating        out of service.
LTOP System Applicability Temperature (LCO - 3.4.12) 2.3.1    The Low Temperature Overpressure Protection (LTOP) System applicability temperature is
 
PTLR for FNP Unit 1 Revision 5                                                                                                                    Page 6 of 22
* Figure 2-1 Farley Unit 1 Reactor Coolant System Heatup Limitations[21 (Heatup Rates up to 1OO&deg;F/hr) Applicable to 54 EFPY (adjusted to include 60 psi ~P at RCS temperatures ~ 110&deg;F and 27 psi ~P at RCS temperatures < 110&deg;F), Includes vessel flange requirements per 10 CFR 50, Appendix Gf3f.
Limiting Material:                  Lower Shell Plate 86919-1 with non-credible surveillance data Limiting ART Values at 54 EFPY:                              1/4T = 191&deg;F                3/4T = 166&deg;F 2500  ...----      -:-
1  - -- ---j--I I                      !        I 2250              -\i
__I__
2000    . .--J~            --    !-
I 1--- - .
I 1750                ,        , *. I I
Q I                                                                            .-,,
(J)
Q. 1500      ----- - -      -.
( \)
  ~
I
(/)
(/)
(\)  1250 1
                          -"t -." - +.
                                          !                                                        I 1-I
                                                                                                          ***1 Q.                                                                                                                    .[
I
~                                                                                        I
(\)
(U I                                                          I i        I "5                                                                                  - .-:-. _ _ - L - _ :
(J 1000                                                                                        I (ij                                                                                                I 0                                                                                                  i!        ,          I 760                                                      -- -  -_..        - -,    .--~-
i
                                                                                                        - I --  --
I I
i I
I 500                                                            - - - Criticality Limit based    on inservice hydrostatic test
                              ,                                              temperatu re 1247"F) for the
:1 service eriod u to 54 EFPY 250                                                      -
j 1
f I                                          l I          I I
0 0          50          100      150          200    250      300      350        400    450          500 550 Moderator Temperature (Oeg. F)
 
PTLR for FNP Unit 1 Revision 5                                                                                                                                            Page 7 of 22 Figure 2*2 Farley Unit 1 Reactor Coolant System Cooldown Limitations[2]
(Cooldown Rates up to 100&deg;F/hr) Applicable to 54 EFPY (adjusted to include 60 psi 6P at RCS temperatures ~ 110&deg;F and 27 psi 6P at RCS temperatures < 110&deg;F), Includes vessel flange requirements per 10 CFR 50, Appendix G[3f.
Limiting Material:        Lower Shell Plate 86919-1 with non-credible surveillance data Limiting ART Values at 54 EFPY:                  1/4T =191&deg;F                              3/4T = 166&deg;F 2500 ~--~--~--~--~--~----~--~--~--~-------,
2250        '1    J!      -'-!                1*!        .i I                                  I i                                    j
                                                                                                        --+-
I 2000  --_.+ "---1
                          ,      I
                                      - '--r-I
                                                        .'  - j  _ .
I                            l                                          '1!
I                I,                                                ,I 1750    . -+ __ . ~__ . L___ . ~+- _.._
I      i            ;
i_      I
                                                                                  . ._...l-. - - "i      . -* ~* t    . - --'---1
                          ;      :          I                I                      I            '
G'                  I      I          I                  !
      ~ 1500 I
                      . .- i
                              "'-1                                                            - .. ~ - , ..                            --- !  .- . ..
      ...:J
      ~                          ;
I
(/J
      ...~  1250 I            i
                                          ..... _-                          I I
r .
a.
      "0
      .Q)                        I                                        Acceptable
      ~                                                                    Operation
      ~    1000      "-r '                                                                                      i- -      -  j' -'
I Ii u                                                                                                            i i
750                              . ' -. '    ..  ~- .. - .                                        -r --
500                                                                                                  1- -    .  . ~
250                                                                                                      --- -.-- - .- -i-"
j o      50    100      150                  200          250      300      350              400            450      500            550 Moderator Temperature (Oeg. F)
 
PTLR for FNP Unit 1 Revision 5                                                                            Page 8 of 22 Table 2-1 Farley Unit 1 - 54 EFPY Heatup Curve Data Points[2j (adjusted to include 60 psi dP at RCS temperatures ~ 110&deg;F and 27 psi dP at RCS temperatures < 110&deg;F) 60&deg;Flhr.            60&deg;F/hr.        100&deg;F/hr.          100&deg;Flhr.
Leak Test Limit        Heatup            Criticality        Heatup            Criticality T    P (psig)  T  (OF)      P        T          P      T        P        T          P eF)                        (psi g)    co F)    (psig)  eF)    (psig)    (OF)      (psig) 229      2000        60        0      247          0    60        0      247          0 247      2485        60      594      247        561    60      574      247        541 65      594      247        561    65      574      247        541 70      594      247        561    70      574      247        542 75      594      247        561    75      574      247        542 80      594      247        561    80      574      247        545 85      594      247        561    85      574      247        545 90      594      247        561    90      574      247        549 95      594      247        561    95      574      247        550 100      594      247        561    100      574      247        554 105      594      247        561    105      574      247        556 110      594      247        561    110      574      247        561 110      561      247        561    110      541      247        561 115      561      247        561    115      541      247        561 120      561      247        561    120      542      247        561 125      561      247        561    125      545      247        561 130      561      247        561    130      549      247        561 135      561      247        561    135      554      247        561 140      561      247        561    140      561      247        561 145      561      247        561    145      561      247        561 150      561      247        561    150      561      247        561 155      561      247        561    155      561      247        561 160      561      247        561    160      561      247        561 165      561      247        561    165      561      247        561 170      561      247        561    170      561      247        561 175      561      247        822    175      561      247        670 180      561      247        855    180      561      247        693 180      561      247        892    180      561      247        718 180      822      247        932    180      670      247        746 185      855      247        977    185      693      247        777 190      892      247      1049    190      718      247        826
 
Table 2-1 (continued)
Farley Unit 1 - 54        Heatup Curve Data POints[2]
AP at RCS temperatures ~ 110&deg;F RCS temperatures < 110&deg;F) 60&deg;Flhr.
6O&deg;Flhr. Heatup Criticality p      T                    T (psig)  (OF)                  f'F}
195        932 200        977                  1143              777    255 205        1027                  1210    205      811    260 210        1082                          210      849    265 215        1143                  1365      215      891  270 220        1210      275        1455      220      938  275 225        1284      280        1552    225        990  280 230        1365      285        1638    230      1046  285 235        1455      290        1734      235      1109  290 240        1552      295        1839    240      1179  295 245        1638      300        1955    245      1255  300 250        1734                  2084      250      1340  305 255        1839                                    1433  310 260        1955                                    1536  315 265        2084                            265      1650  320 270      2225                            270      1775  325 275      2382                            275      1913  330 280      2066 285      2234 290      2419
 
PTLR for FNP Unit 1 Table 2-2 Farley Unit 1 - 54 EFPY Cooldown Curve Data Pointsl2]
(adjusted to include 60 psi AP at RCS temperatures ~ 110&deg;F and 27 psi    at RCS temperatures < 110&deg;F) r-------------~------------~--                                          ----~-----
20" F/h r.
 
PTlR for FNP Unit 1 Table 2-2 (continued)
Unit 1 - 54 EFPY Cooldown          Data Points[2]
(adjusted to include 60 psi AP at RCS temperatures ~ 110&deg;F and    psi AP at RCS temperatures < 110&deg;F)
Steady State T (oF)                                    T (OF)  P (psig)  T (OF)  P (psig) T eF} P (psig)
                                                                        ~~~~~~~~~
220                                                                                  1293 1368 1879                1879                1879              1879 255      2016      255      2016                2016    255      2016 260      2167      260      2167      260      2167    260      2167    260    2167
                    --~---+--
265      2334                2334    265      2334    265    2334
 
Unit 1 3.0 Reactor Vessel Material Surveillance Program The reactor            material surveillance program is in compliance with 10 CFR 50, Appendix H[4J, and is described in            5.4.3.6 of the Farley FSAR. Surveillance capsules are tested and the results reported in accordance with ASTM E185-82!51. The removal schedule is provided in Table 3-1.
neutron transport and                  evaluation                      used follow the guidance and meet requirements of Regulatory                1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence,,[6J. The results of the                      Z examination rNCAP*16964-NP, Revision 0 111 ) were        to produce                  and 2-2.
Table 3-1 SUrveillance Capsule Withdrawal Schedule (al Capsule                lead                Removal Capsule          location                Factor                EFPY  (b) 343 107 287 110 340 a)  Data from Table 7-1, WCAP-16964-NP. Revision 0 rn b)  Effective Fu" Power Years            from      startup.
c)  Plant-specific evaluation.
d)  This fluance is not less than once or greater than twice the peak EOL lIuence for the initial40-year license term.
e)  This fluence is not less than once or greater than twice the peak EOl fluence for a license renewal term 10 60 years.
f)  This lIuence Is not less than once or greater than twice the      EOl fluence for an additional          license renewal term to 80 years.
 
PTLR for FNP Unit 1 4.0 Reactor Vessel Surveillance Data Credibility Regulatory Guide 1.99, Revision 2[81, describes general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position C.2 of Regulatory Guide 1                  Revision 2, describes the methodology for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. The methods of Position C.2 can only be applied when two or more credible surveillance data                    become available from the reactor in question.
Per WCAP-881 019). the Unit 1 surveillance program was based on ASTM E185-73110I* All six surveillance capsules (Y [I1 J, U [121, X [131, W [141, V 115J, and Z [7]) have been removed from Unit 1 reactor vessel and analyzed. In accordance with the discussion of Regulatory Guide 1.99, ReviSion 2, there are five requirements that must be met for the surveillance data to be judged credible.
credibility conclusions for the Farley Unit 1 surveillance plate and weld are described below:
credibility evaluation of the Farley Unit 1 Lower Shell Plate 86919-1 surveillance material is documented in Appendix 0 of WCAP:"16964-NPI7l. The credibility evaluation concluded that the surveillance data for Lower Shell Plate 86919-1 is '-""'-:..:....;::==:::..
The credibility evaluation for weld Heat # 33A277 surveillance data is documented in Appendix 0 of WCAP-17365-NP[161* The evaluation                  into account                  data from Calvert Cliffs Unit 1 and Farley Unit 1. The credibility evaluation concluded that the surveillance data for weld Heat # 33A2n is credible.
5.0    Supplemental Data Tables 5-1 contains a comparison of                    surveillance material 30 ft-Ib transition temperature shifts and upper shelf energy                    with Regulatory Guide 1.99, Revision 2, predictions.
Table 5-2 shows the calculation of the surveillance material chemistry factors using surveillance capsule data.
Table 5-3 provides the unirradiated Farley Unit 1 reactor vessel toughness data.
Table 5-4 provides a summary of the reactor vessel fluence values at 54 Table 5-5 provides a summary of the ART values of                  Farley Unit 1 reactor vessel materials at 1/4-T and 314*T locations for 54 EFPY.
Table 5-6 shows the calculation of the ART values at 54 EFPY for the limiting Farley Unit 1 reactor vessel material (lower shell plate B6919-1).
5-7 provides AT PTS values for Farley Unit 1 for 54 EFPY.
 
PTLR for FNP Unit 1 Table Comparison      Surveillance Material 30 fHb Transition Temperature Shift and Upper Shelf Decrease with Regulatory Guide 1            Revision 2,        (a) 30 ft-Ib Transition      Upper Shelf Energy Temperature Shift              Decrease fluence Predicted        Measured Predicted  Measured Material        Capsule      (1019 n/cm2 *
(OF)            (Of)      (%)        (%)
E> 1.0 MeV) y            0.612 U              1.73 Lower Shell X              3.06        126.7 Plate B6919*1 4.75        136.2 (Longltudinal) 143.4                                  21 29 1
Lower Shell X              3.06        126.7          110.8      30          12 Plate B6919-1 W              4.75        136.2          150.5      35          17 (Transverse)
V              7.14        143.4          161.7      39          21 Z              8.47        145.9          178.3      40          23 3
22 Surveillance 15 Program W              4.75 Weld Metal V              7.14        114.5          117.5      44 Z              8.47        116.5          113.5      46 Heat Affected Zone Material 7.14 Z              8.47 Data from Table 5-10 of WCAp*16964-NP, Revision 0[71.
 
PTLR for FNP Unit 1 Revision 5                                                                                                  Page 15 of 22 Table 5-2 Calculation of Chemistry Factors Using Surveillance Capsule Data Capsule f Material          Capsule                  19 (10 n/cm 2 ,      Fpa)          .1RTNDT        FF"'.1RTNDT        FF2 (OF)              (OF)
E> 1.0 MeV)
Y                  0.612      0.862              64.6              55.7        0.744 U                  1.73      1.151            110.0            126.6        1.324 Lower Shell X                  3.06      1.295            129.2            167.1        1.678 Plate 86919-1 W                    4.75      1.392            145.3            202.3        1.938 (Longitudinal)(b)
V                  7.14      1.466            177.7            260.5        2.149 Z                  8.47      1.492            202.2            301.6        2.225 Y                  0.612      0.862              70.1              60.5        0.744 U                  1.73      1.151            100.4            115.5        1.324 Lower Shell X                  3.06      1.295            110.8            143.5        1.678 Plate 86919-1 W                    4.75      1.392            150.5            209.5        1.938 (Transverse)(b)
V                  7.14      1.466            161.7            237.1          2.149 Z                  8.47      1.492            178.3            266.0          2.225 SUM:      2146.20        20.118 CFB69,9.,    =I(FF
* ATNOT)  + I( FF2) =(2146.20) +    (20.118)  = 106PF Y                  0.612      0.862      108.38 (66 .9)(d)      93.47        0.744 Farley Unit 1              U                  1.73      1.151      121.66 (75.1)(d)      140.00        1.324 Surveillance Weld            X                  3.06      1.295      141.59 (87.4)(d)      183.42        1.678 Material              W                    4.75      1.392      159.25 (98.3)(d)      221.69        1.938 (Heat # 33A277)(C)
V                  7.14      1.466      190.35 (117.5)(d)      279.07        2.149 Z                  8.47      1.492      183.87 (113.5)(d)      274.30        2.225 Calvert Cliffs Unit 1      263&deg;                  0.505      0.809      81.97 (50.4)(d)        66.34        0.655 Surveillance Weld 9]0                  1.94      1.181      156.63 (1 04.5)(d)      185.00        1.395 Material (Heat # 33A277)(C)        284&deg;                  2.33      1.228      120.06 (78.0)(d)      147.49        1.509 SUM:      1590.78        13.618 CF    Surv. Weld =I(FF
* ATNOT)  + L( FF2) :;: (1590.78)  + (13.618)  = 116.8&deg;F NOTES:
(a) FF = fluence factor = f (026* 0.' log(I)).
(b) Information pertaining to Lower Shell Plate 86919-1 is taken from Table 0-1 of WCAP-16964-NP(7].
(c) Information pertaining to weld Heat # 33A277 is taken from Table 6.1-1 of WCAP-17506-NP[17J .
(d) To calculate the best fit chemistry factor (CF) as provided by Reg. Guide 1.99, Rev. 2, Position 2.1, the surveillance weld flRTNOT values have been adjusted to account for chemistry differences between the reactor vessel weld and the surveillance weld. For the Calvert Cliffs Unit 1 data, the surveillance weld flRTNOT values have also been adjusted to account for the temperature difference between the Farley Unit 1 and Calvert Cliffs Unit 1 reactor vessels. Pre-adjusted values are in parentheses. See Table 6.1-1 of WCAP-17506-NP[17/ for all details pertaining to the chemistry factor calculation for weld Heat # 33A277.
 
PTLR for FNP Unit 1 Revision 5                                                                                                Page 16 of 22 Table 5-3 Reactor Vessel Toughness Table (Unirradiated) (a) 8eltline Material                            Cu Weight      Ni Weight        IRTNDT
                                                                      %              %              (OF)
Closure Head Flange                                  --            --            -50(d)
Vessel Flange                                  --            --              60 Inlet Nozzle 86917-1                              0.16            0.83              60 Inlet Nozzle 86917-2                              0.16            0.80              60 Inlet Nozzle 86917-3                              0.16            0.87              60 Outlet Nozzle 86916-1                              0.16            0.77              60 Outlet Nozzle 86916-2                              0.16          0.78              60 Outlet Nozzle 86916-3                              0.16          0.78              60 Upper Shell Forging 86914                              0.16          0.684              30 Intermediate Shell Plate 86903-2                        0.13            0.60              0 Intermediate Shell Plate 86903-3                          0.12          0.56              10 Lower Shell Plate 86919-1                            0.14          0.55              15 Lower Shell Plate 86919-2                            0.14          0.56              5 Inlet/Outlet Nozzle to Upper Shell Girth Seams                                                    lO(e) 0.04          1.08 1-897 A--F Upper Shell to Intermediate Shell Circumferential                                                  -56(1) 0.197          0.06 Weld Seam 10-894 (Heat # 90099) (b)
Intermediate Shell Longitudinal Weld Seams                                                      -56(1) 19-894 A & 8 (Heat # 33A277) (b)                        0.258          0.165 Surveillance Weld    (e)                          0.14          0.19              -
Intennediate Shell to Lower Shell Circumferential                                                  -56(1) 0.205          0.105 Weld Seam 11-894 (Heat # 6329637) (b)
Lower Shell Longitudinal Weld Seams 20-894                                                      -56(1)
A & 8 (Heat # 90099) (b)                            0.197          0.060 NOTES; (a) From Table 4.1-1 of WCAP-17506-Np ll 7J.
8 (b) Best-estimate copper and nickel from CE NPSD-1 039 11 ,.
(c) The surveillance weld is representative of intermediate shell longitudinal welds 19-894 A & B. Best-estimate copper and nickel values represent a single chemical analysis documented in WCAP-881 0, ReVision 0 191.
(d) Replacement closure head initial RT NOT value was taken from MHI-SNC-019S[19,.
(e) An estimation method using measured data was used to determine this initial RT NOT value. Therefore, a conservative value of 17&deg;F is used for O'u and 0'1 in margin calculations.
(f) These initial RT NOT values are generic and taken from 10 CFR 50.61 paragraph (c)(l)(ii) of the 1-1-07 edition.
 
PTLR for FNP Unit 1 Table 5-4 Reactor VA!~~I Ruence Projections at 54 EFPY (a)
(10 19 n/cm 2, E> 1.0 MeV)
                                                      ,                            I 54 Reactor Vessel Location                        Material Neutron Fluence
            ......---~--
Inlet Nozzle                        86917-1                    0.0349 Inlet Nozzle                        86917-2                    0.0190 Inlet Nozzle                        86917-3                    0.0139 Outlet Nozzle                        86916-1                  0.00922 Outlet Nozzle                        86916-2                    0.0126 I
Outlet Nozzle                        86916-3                    0.0231 Upper Shell Forging                      86914                      1.02 86903-2 Intermediate Shell Plates                                                5.93
                                                                & 86903-3            i 86919-1 l
Lower Shell Plates                                                  5.81
                                                                & 86919-2 i
InleVOutlet Nozzle to Upper Shell 1-897 A-F                  0.0349 Girth Seams Upper Shell to Intermediate Shell                10-894 1.02 Circumferential Weld Seam                  (Heat # 90099)
I                            I 1
Intermediate Shell Longitudinal Weld i          19-894 A & 8 1.83 Seams                        (Heat # 33A277)
Intermediate Shell to Lower Shell                11-894 5.81 Circumferential Weld Seam          I    (Heat # 6329637)
Lower Shell Longitudinal Weld        I      20-894 A & 8 1.79 Seams                          (Heat # 90099)
NOTE:
(a) From Table 5.1-1 01 WCAP-1              . These values are also summarized in Table 2-1 of Attachment A of ALA-09 116[20J*
 
PTLR for FNP Unit 1 Revision 5                                                                                                  Page 18 of 22 Table 5-5 Summary of ART Values for the Reactor Vessel Materials at the 1/4T and 3/4T Locations for 54 EFPY            (a) 1/4 T                    3/4 T Material (oF)                      (OF)
Inlet Nozzle 86917-1                                105                        84 Inlet Nozzle 86917-2                                  90                        76 Inlet Nozzle 86917-3                                  85                        72 Outlet Nozzle 86916-1                                  78                        69 Outlet Nozzle 86916-2                                  83                        71 Outlet Nozzle 86916-3                                  94                        78 Upper Shell Forging 86914                                169                      139 Intermediate Shell Plate 86903-2                            156                      134 Intermediate Shell Plate 86903-3                            154                      134 Lower Shell Plate 86919-1                              179                      156 LowerShell Plate 86919-1 Using non-credible SIC Data                            191 (b)                  166(b)
Lower Shell Plate 86919-2                              170                      147 Inlet/Outlet Nozzle to Upper Shell Girth Seams 55                        50 1-897 A->F Upper Shell to Intermediate Shell Circumferential 89                        66 Weld Seam 10-894 (Heat # 90099)
Intermediate Shell Longitudinal Weld Seams 140                      107 19-894 A & 8 (Heat # 33A277)
Intermediate Shell Longitudinal Weld Seams 19-894 A & 8 (Heat # 33A277)                              111                      80 Using credible SIC Data Intermediate Shell to Lower Shell Circumferential Weld Seam 11-894 (Heat # 6329637)                              141                      117 Lower Shell Longitudinal Weld Seams 20-894 104                      80 A & 8 (Heat # 90099)
NOTES:
(a) The ART values presented here are based on the reactor vessel surface lIuence values summarized in Table 5-4.
The values for the belt line materials are from Tables 4-10 and 4-11 of WCAP-17122-Np I2 1. The values for the extended beltline materials are summarized along with the values for the beilline materials in Tables 3-3 and 3-4 of Attachment A of ALA-09_116120I .
(b) Limiting 1/4T and 3/4T ART values. The PIT limit curves are based on these limiting ART values of 191 of and 166&deg;F.
 
Unit 1 Table 5-6 Calculation of Adjusted Reference Temperature Values at                                EFPY for the Limiting Reactor              Material - Lower Shell Plate                9-1
~                          Parameter                                                        Value I
rating Period                                                                    54 EFPY location                                                                    1/4 T                      3/4 T
* Chemistry Factor,              eF)(a)                                      106.7                        106.7 Fluence, f (10 19  n/cm 2) (b)                                            3.622                        1.408 Fluence Factor, FF :::; f      (O.2S*0.1"log(l)                          1.3343                      1.0949
              =    l( FF                                                      142.4                        116.8 Initial RT NOT. I COF) (e)                                                      15                        15 Margin. M eF) (dJ                                                              34                        34 I
Adjusted Reference Temperature (ART), (OF) per Revision 2 (e) 191                        166 Regulatory Guide 1 NOTES:
(a) Chemistry factor is taken from Table 5-2.
(b) Fluence is based on fsur! == 5.81 )( 10 19            (E,> 1.0 MeV), from Table 4*1 of WCAP*17122-NP, Revision 0[21. Farley Unil1 reactor vessel wall thickness is 7.875 inches in the beilline region.
(e) Initial RT NOT value is taken from Table 5-3.
(d) Margin =          + <1/\2) o.S,        for the lower shell plate 86919-1, <11 O"F and <1/\:::: 17&deg;F.
(e) Per Regulatory Guide 1.99, Revision 2: ART (OF)::: LlRTNOT + I + M.
 
PTLR for FNP Unit 1 Revision 5                                                                                                  Page 20 of 22 Table 5-7 Pressurized Thermal Shock (RTpTs) Values for 54 EFPY (a)
Surface l\RTNDT Fluence                                            I      M      .RTpTS Material                    CF                              FF        (CF x FF)
(10 19 n/cm 2 ,                                  (OF)    (OF)      (OF)
(OF)
E > 1.0 MeV)
Inlet Nozzle 86917-1              123.3        0.0349          0.2397          29.6          60      29.6        119 Inlet Nozzle 86917-2              123          0.0190          0.1666          20.5          60      20.5        101 Inlet Nozzle 86917-3              123.7        0.0139          0.1365          16.9          60      16.9        94 Outlet Nozzle 86916-1              122.3        0.00922          0.1037          12.7          60      12.7        85 Outlet Nozzle 86916-2              122.5        0.0126          0.1280          15.7          60      15.7        91 Outlet Nozzle 86916-3              122.5        0.0231          0.1879          23.0          60      23.0        106 Upper Shell Forging 86914            120.1          1.02          1.0055          120.8          30      34.0        185 Intermediate Shell Plate 86903-2          91.0          5.93          1.4345          130.5            0      34.0        165 Intermediate Shell Plate 86903-3          82.2          5.93          1.4345          117.9            10    34.0        162 Lower Shell Plate 86919-1            97.8          5.81          1.4308          139.9            15    34.0        189 Lower Shell Plate 86919-1                                                                                            202b )
106.7          5.81          1.4308          152.7            15    34.0 Using non-credible SIC Data Lower Shell Plate 86919-2            98.2          5.81          1.4308          140.5            5    34.0        180 InleVOutiet Nozzle to Upper Shell 54          0.0349          0.2397          12.9            10    36.4        59 Girth Seams 1-897 A-F Upper Shell to Intermediate Shell Circumferential Weld Seam 10-894            91.4          1.02          1.0055          91 .9          -56    65.5        101 (Heat # 90099)
Intermediate Shell Longitudinal Weld Seams 19-894 A & B              126.3          1.83          1.1657          147.2          -56    65.5        157 (Heat # 33A277)
Intermediate Shell Longitudinal Weld Seams 19-894 A & 8 116.8            1.83        1.1657          136.2          -56    44.0        124 (Heat # 33A277)
Using credible SIC Data Intermediate Shell to Lower Shell Circumferential Weld Seam 11-894            98.4            5.81        1.4308          140.8          -56    65.5        150 (Heat # 6329637)
Lower Shell Longitudinal Weld Seams 20-894 A & 8                91 .4          1.79        1.1599          106.0          -56    65.5        116 (Heat # 90099)
NOTES:
(a) From Table 7.1-1 of WCAP-17506-NP(17].
(b) This limiting AT PTS value was calculated using the CF from the surveillance data and a full all margin of 17&deg;F, since this surveillance data is not credible.
 
PTLR for FNP Unit 1 6.0 References
: 1. WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Umit                    " May 2004.
: 2. WCAP-17122-NP, Revision 0, "J. M. Farley Unit 1 Heatup and Cooldown Limit Curves for Normal Operation," A.      Leicht and      C. Heinecke, October 2009.
: 3. 10 CFR 50, Appendix          "Fracture Toughness Requirements," Federal Register, Volume 60, No. 243, December 1        1
: 4. 10        50 Appendix H, "Reactor Vessel Material Surveillance Program Requirements," Federal Register, Volume 60, No. 243, December 19,1995.
: 5. ASTM        85-82, "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels," in ASTM Standards, Section 3, American Society for Testing and Materials, 1982.
: 6. NRC Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence," March 2001.
: 7. WCAP-16964-NP, Revision 0,                    of Capsule Z from the Southern Nuclear Operating Company Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program,"
J. M. Conermann and M. A. Hunter. October 2008.
: 8. Regulatory Guide 1.99, ReviSion 2, "Radiation Embrittlement of Reactor                Materials,"
May 1
: 9. WCAP-8810, Revision 0, "Southern Alabama Power Company Joseph M.                        Nuclear Plant Unit NO.1 Reactor Vessel Radiation Surveillance Program," J. A. Davidson, et. aI.,
December 1976.
85-73, "Standard Recommended Practice for Surveillance              for Nuclear Reactor
      'essets," American Society for Testing and Materials, 1973.
: 11. WCAP-9717, Revision 0, "Analysis of Capsule Y from the Alabama Power Company Farley Unit No.1 Reactor Vessel Radiation Surveillance Program,"            Yanichko, et. aI., June 1980.
1    WCAP-10474, Revision 0, "Analysis of Capsule U from the Alabama Power Company Joseph M.        Unit 1 Reactor Vessel Radiation Surveillance Program," R.        Boggs, et aI.,
February 1984.
: 13. WCAP-11563, Revision 1, "Analysis of Capsule X from the Alabama Power Company Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program," R. P. Shogan, et. aI.,
September 1987.
: 14. WCAP-14196, ReviSion O,"Analysis of Capsule W from the Alabama Power Company Farley Unit 1 Reactor Vessel Radiation Surveillance Program," P. A.            et. aI., February 1995.
: 15. WCAp*16221-NP,                0, "Analysis of Capsule V from the Southern Nuclear Operating Company, Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program, K. G. Knight, et. aL, March 2004.
: 16. WCAP-17365-NP, ReviSion 0, "Analysis of                      from the Calvert Cliffs Unit No.1 Reactor Vessel Radiation Surveillance Program,"        J. Long and J. I. Duo, March 2011.
: 17. WCAP-17506-NP, Revision 0, "Farley Units 1 and 2 Pressurized Thermal Shock Evaluations,"
B. A.          December 2011.
: 18. CE NPSO-1039, Revision 2, "Best            Copper and Nickel Values in CE Fabricated Reactor Vessel Welds," Combustion Engineering Owners Group, June 1997.
: 19. Mitsublshi Heavy Industries, LTD, Kobe Shipyard & Machinery Works (MHI). MHI-SNC-01 Reactor Vessel Closure Head for Farley-1, "Certified Material Test Report," August 22,2003.
: 20. Westinghouse Letter ALA-09-116, "P-T Limit Curves with Margins for Instrumentation Errors and Extended Beltline Material Information," John M. Robinson, October 20, 2009.
 
SOUTHERN COMPANY Joseph Mil Farley Nuclear Plant Pressure Tem  rature Limits Report Unit 2 Revision 5 MONTH YEAR
 
PTLR for FNP Unit 2 Table of Contents List of Tables ................................................................................................................... 2 List of          ................................................................................................................. 3 1.0                        Temperature Limits Report (PTLR) ............................................... 5 Operating Limits ................................................................................................... 5 2.1          Pressurerremperature (prr) Limits (LCO - 3.4.3) ................................... 5 RCP Operation                    ....................................................................................... 5 LTOP System Applicability Temperature (LCO - 3.4.12) .................................. 5 Reactor Vessel Material Surveillance Program ................................................... 12 4.0    Reactor Vessel Surveillance Data Credibility ...................................................... 13 5.0    Supplemental                          ................................................................................. 13 6.0                                      ...................................................................................... 21
 
PTLR for FNP Unit 2 of Tables Farley Unit 2    EFPY Heatup Curve Data Points ................................................ 8 Unit 2          Cooldown Curve Data                                    ................................ 10 3~ 1  Surveillance Capsule Withdrawal Schedule .......... '" ........................................... 12 5-1  Comparison of Surveillance Material 30                    Transition Temperature Shifts and Upper Shelf                            with Regulatory Guide 1.99, Revision 2, Predictions ....................................................................................... 14 5-2  Calculation of Chemistry              Using Surveillance Capsule Data ................... 15 5-3  Reactor Vessel Toughness Table (Un irradiated) ................................................ 16 Fluence Projections at              EFPY ................................................ 17 5-5  Summary of        Values for          Reactor                  Materials at the 1/4-T and 3/4-T Locations for 54                        ................................................ 18 Calculation of Adjusted Reference Temperature Values at                                      for the Limiting                  Material ........................................................................ 19 5-7                Thermal Shock (RT PTS)                    for 54              ................................... 20
 
list of Figures Farley Unit 2 Reactor Coolant System Heatup Limitations .................................... 6 Farley Unit 2 Reactor Coolant System Cooldown Limitations ............................... 7
 
ThiS page intentionally blank.
1.0 Res Pressure Temperature Limits Report (PTLR)
This PTLR for Farley Nuclear Plant - Unit 2 has                prepared in accordance with the requirement of Technical Specification (TS) 5.6.6. Revisions to the                    shall provided to the NRC after This report affects TS              RCS PressurefTemperature            Limits. All TS requirements associated with low temperature                          protection (LTOP) are contained in TS            12, RCS Overpressure Protection Systems.
2.0 Operating Limits The limits for                are presented in the subsection which follows and were developed using              NRC-approved methodologies specified in TS 5.6.6. The methodologies are contained in WCAP-14040-A, Revision 411 ]. The operability
        ",'omonte:: associated with              are          in          3.4.12 and were determined to adequately protect              RCS against brittle fracture in the event of an LTOP transient. The limitation on              number operating reactor coolant pumps (RCPs) is                    to assure operation consistent with the pressure corrections incorporated in the PfT limits for flow              associated with the RCPs.
RCS PressurefTemperature (PfT) Limits (LCO - 3.4.3) 2.1.1    The minimum boltup temperature is 60&deg;F.
2.1.2    The RCS temperature rate-ot-change limits are:
: a. A maximum heatup of 1              in anyone hour period.
: b. A maximum cooldown of 100&deg;F in anyone hour period.
: c. A maximum temperature                    of      than or        to 1    in anyone hour period during inservice hydrostatic            leak testing operations above          heatup and cooldown limit curves.
2.1.3    The            PfT limits for        and cooldown are                  Figures 2-1 and          respectively.
2.2    RCP Operation 2.2.1          number of operating Reps is limited to one at Res temperatures less than 11          with the exception      a second pump          be started for the purpose of maintaining continuous flow while taking operating pump out of service.
2.3    LTOP ....\1"',"',." Applicability Temperature (LeO - 3.4.12)
Low Temperature Overpressure Protection (LTOP) applicability temperature is
 
PTLR for FN P Unit 2 Revision 5                                                                            Page 6 of 22 Figure 2-1 Farley Unit 2 Reactor Coolant System Heatup limitations[2]
(Heatup Rates up to 1OO&deg;F/hr) Applicable to 54 EFPY (adjusted to include 60 psi l1P at RCS temperatures ~ 110&deg;F and 27 psi l1P at RCS temperatures < 110&deg;F). Includes vessel flange requirements per 10 CFR 50, Appendix G.
limiting Material:    Intermediate Shell Plate B7212-1 with credible surveillance data limiting ART Values at 54 EFPY:        1/4T  =200&deg;F              3/4T  = 165&deg;F 2500 ~---------------------~--------------~------~
Ileak Test limit I 2250 2000                                                      ; ..
1750 8'
~
-Q1
:::J 1500 Unacceptable Operation II>
~
-. 1250 a..
"'0                                                        Critical Limit ;
Q1
: 60 Deg. FIHr
~
"5 o
1000                                                                Acceptable c;;                                                                          Operation U
760 600                                              Criticality limit based on inservice hydrostatic test
                                                    +--- temperature (256 C F) for th e service period up to 54 EFPY 250                                            ,.
o    50    100    150    200      250  300      350    400    450    500  550 Moderator Temperature (Deg. F)
 
PTLR for FNP Unit 2 Revision 5                                                                        Page 7 of 22 Figure 2-2 Farley Unit 2 Reactor Coolant System Cooldown Limitations[2]
(Cooldown Rates up to 100&deg;F/hr) Applicable to 54 EFPY (adjusted to include 60 psi llP at RCS temperatures;:: 110&deg;F and 27 psi llP at RCS temperatures < 110&deg;F). Includes vessel flange requirements per 10 CFR 50, Appendix G.
Limiting Material:        Intermediate Shell Plate B7212-1 with credible surveillance data Limiting ART Values at 54 EFPY:          1/4T = 200&deg;F        3/4T = 165&deg;F 2500 ~--------------------------------------------~
2250
__ I 2000 1750
-en
( !)
1500
  ---c.....
Q)
  ~
en II)
Q) c..
1250 1J
  ....1'0 Q)
:; 1000
(.)
jij 0
750 o    50    100    150  200    250  300    350    400    450    500  550 Moderator Temperature (Deg. F)
 
PTLR for FNP Unit 2 Revision 5                                                                    Page 8 of 22 Table 2-1 Farley Unit 2 - 54 EFPY Heatup Curve Data Points[2]
(adjusted to include 60 psi dP at RCS temperatures    ~ 110&deg;F and 27 psi dP at RCS temperatures < 11 O&deg;F) 60&deg;F/hr.            60&deg;F/hr.          1OO&deg;F/hr.          1OO&deg;F/hr.
Leak Test Limit          Heatup            Criticality          Heatup            Criticality T      P (psig)  T (OF)      P        T          P        T        P        T          P
,  (OF)                          (psig)    (OF)      (psig)    eF)    (psjg)    (OF)      (psig) 238      2000        60        0      256          0        60        0      256          0 256      2485        60      594      256        561      60      575    256          542 65      594      256        561      65      575      256        542 70      594      256        561      70      575    256          544 75      594      256        561      75      575      256        544 80      594      256        561      80      575      256        546 85      594      256        561      85      575      256        547 90      594      256        561      90      575      256        551 95      594      256        561      95      575      256        551 100      594      256        561      100      575      256        556 105      594      256        561      105      575      256        557 110      594      256        561      110      575      256        561 110      561      256        561      110      542      256        561 115      561      256        561      115      542      256        561 120      561      256        561      120      544      256        561 i
I                        125      561      256        561      125      547      256        561 I
I 130      561      256        561      130      551      256        561 135      561      256        561      135      556      256        561 I
140      561      256        561      140      561      256        561 I                      145      561      256        561      145      561      256        561 150      561      256        561      150      561      256        561 155      561      256        561      155      561      256        561 160      561      256        561      160      561      256        561 165      561      256        561      165      561      256        561 170      561      256        561      170      561      256        561 175      561      256        561      175      561      256        561 180      561      256        828      180      561      256        675 180      561      256        862      180      561      256        698 180      828      256        900      180      675      256        724 185      862      256        941      185      698      256        752 190      900      256        987      190      724      256        784
 
PTlR for FNP Unit 2 Revision 5                                                                Page 9 of 22 Table 2-1 (continued)
Farley Unit 2 - 54 EFPY Heatup Curve Data Points[2]
(adjusted to include 60 psi LlP at RCS temperatures ~ 110&deg;F and 27 psi LlP at RCS temperatures < 110&deg;F)
Leak Test                                  60&deg;F/hr.                              100&deg;F/hr.
60&deg;F/hr. Heatup                          100&deg;Flhr. Heatup Limit                                  Criticality                            Criticality T        p        T                      T                  T                  T          P P (psi g)            P (psig)          P (psig)
(OF)    (psig)    co F)                  (OF)                CF)              (OF)      (psig) 195        941        256        1038    195      752      256        819 200          979      256        1094    200      784      256        858 205        1021      256        1130    205      819      256        910 210        1067      260        1175    210      858      260        949 215        1119      265        1237    215      901      265        1001 220        1175      270        1291    220      949      270        1059 225        1237      275        1350    225      1001      275        1123 230        1291      280        1416    230      1059      280        1194 235        1350      285        1488    235      1123      285        1272 240        1416      290        1568    240      1194      290        1359 245        1488      295        1656    245      1272      295        1454 250        1568      300        1753    250      1359      300        1559 255        1656      305        1861    255      1454      305        1675 260        1753      310        1979    260      1559      310        1803 265        1861      315        2110    265      1675      315        1944 270        1979        320      2254    270      1803      320        2099 275        2110        325      2414    275      1944      325        2250 280        2254                          280      2099      330        2399 285        2414                          285      2250 290      2399
 
PTLR for FNP Unit 2 Revision 5                                                                Page 10 of 22 Table 2-2 Farley Unit 2 - 54 EFPY Cooldown Curve Data Points[2]
(adjusted to include 60 psi ~P at RCS temperatures ~ 110&deg;F and 27 psi ~P at RCS temperatures < 110&deg;F)
Steady State              20&deg;F/hr.            40&deg;F/hr.        60&deg;F/hr.          100&deg;F/hr.
T(OF)    P (psig)      T(OF)    P (psig)  T(OF)    P (psig) T(OF)  P (psig)  T(OF)  P (psig) ,
60          0          60          0      60          0    60        0      60        0 60        594          60      594        60        553    60      509      60      420 65        594          65      594        65      555      65      512      65      423 70          594          70      594        70        558    70      515      70      426 75        594          75      594        75      561      75      518      75      430 80        594          80        594      80        565    80      522      80      434 85        594          85      594        85      569      85      527      85      439 90        594          90      594        90      574      90      531      90      445 95        594          95      594        95        579    95      537      95      451 100        594        100      594      100        585    100      543      100      458 105        594        105      594      105      591    105      550      105      465 110        594        110      594      110        594    110      557      110      474 110        561        110        561      110        561    110      524      110      441 115        561        115        561      115        561    115      532      115      451 120        561        120        561      120      561    120      542      120      461 125        561        125        561      125        561    125      552      125      473 130        561        130        561      130        561    130      561      130      487 135        561        135        561      135        561    135      561      135      502 140        561        140        561      140        561    140      561      140      519 145        561        145        561      145        561    145      561      145      537 150        561        150        561      150        561    150      561      150      558 155        561        155        561      155        561    155      561      155      561 160        561        160        561      160        561    160      561      160      561 165        561        165        561      165        561    165      561      165      561 170        561        170        561      170        561    170      561      170      561 175        561        175        561      175        561    175      561      175      561 180        561        180        561      180        561    180      561      180      561 180        561        180        561      180        561    180      561      180      561 180        847        180        823      180        799    180      778      180      741 185        875        185        853      185        832    185      814      185      785 190        906        190        887      190        869    190      854      190      833 195        941        195        924      195        910    195      898      195      886 200        979        200        966      200        955    200      948      200      945 205        1021        205      1011      205      1005    205      1002      205      1002 210        1067        210      1062      210      1060    210      1060      210      1060 215        1119        215      1118      215      1118    215      1118      215      1118
 
PTLR tor FNP Unit 2 Table 2*2 (continued)
Farley Unit 2 - 54      Cooldown Curve Data Points[21 (adjusted to include 60 psi    at RCS temperatures ~ 11 oaF and 27 psi at RCS temperatures < 110&deg;F) 40&deg;F/hr.            60&deg;F/hr.
T (OF)  P (psi g)  T (OF)  P (psig) 220      1175 225      1238 230                                      230      1307                      1307 235                                      235      1384                      1384 240      1468                            240      1468                      1468 1562                            245      1562                      1562 250      1665                      1665 255      1779      255              1779 260      1906                      1906 265                                      265      2045                      2045 270                                                2199 275                                                2370
 
PTLR for FNP Unit 2 3.0 Reactor Vessel Material Surveillance Program The reactor vessel material surveillance program is in compliance with 10 CFR 50, Appendix H, and is described in Section 5.4.3.6 of the Farley FSAR. Surveillance are                the          reported in accordance with ASTM E185-82 131
* The removal schedule is provided in Table 3~1. Consistent with specific requirements for Farley Unit 2                      with the grantinQ of an exemption to Appendix H of 10            50 documented in NUREG-0117[4~ Figures 2-1 and 2-2 are based on the greater, or limiting value, of the following: (1) the actual shift in reference temperature for plate 8721              as determined by impact testing, or (2) predicted shift in reference temperature for weld seam 11-923 as determined by Regulatory Guide 1            Revision 2[51. The neutron transport and dosimetry evaluation methodologies used follow                guidance        meet the requirements of Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence"161. Results from the reactor                        surveillance program will        used to update Figures 2-1 and 2-2 if the results indicate                  the adjusted reference temperature (ART) for the limiting beltline material exceeds the ART used to generate the prr limits shown in Figures                  and 2~2 for the specified fluence period.
Table SURVEILLANCE CAPSULE WITHDRAWAL SCHEDULE                        (a)
Capsule        Capsule Location              Lead                Removal                Fluence (e)                                                          EFPY ib)
(Degree)                Factor                                        (n/cm2)
U                  343                  3.26                  1.11                6.05 x 1018        I W                  110                  2.84                  3.96                1.73 x 1 19 X                  287                  3.38                  6.43                2.98 x 10 Z                340                  2.98                13.85              4.92 x 10 19 (d)
Y                290                  3.12                19.01              6.79 x 10 19 (e)
V                107                  3.58          i    21.82              8.73 x 1019 if)
Notes:
a) Data from Table 7-1, WCAP-16918-NP, Revision 1111 b) Effective Full Power Years          from plant startup.
c) Plant-specific evaluation.
d) This fluence is no! less than once or greater than twice the peak EOL fluence for the inilial40'year license term.
e) This fluence is not less than once or greater than twice the peak EOL fluence for a 20'year license renewal term to 60 years.
f) This fluence is not less than once or        than twice the      EOL fluence for an additional license renewal term to 80 years.
 
PTLR for FNP Unit 2 4.0 Reactor Vessel Surveillance Data Credibility Regulatory Guide 1        Revision 2, describes general procedures NRC staff for calculating the effects of neutron radiation embrittlement of alloy steels currently used for light-water-cooled reactor vessels. Position            of Regulatory Guide 1.99, Revision                    the methodology for calculating adjusted            temperature and Charpy upper*shelf energy of reactor vessel beltline materials        surveillance capsule data. The methods Position C.2 can only be applied when two or more credible surveillance              sets become from the reactor in question.
Per WCAP-8956[SJ, the Unit 2 surveillance                was based on              E185-73[9J.
At! six surveillance capsules (U [101, WillI, X ,Z i 131, Y [14 1, and V [71) have been removed from the Farley Unit 2 reactor vessel and analyzed. In accordance with the discussion of Regulatory Guide 1.99, Revision there are five requirements that must      met    the surveillance data to      judged credible.
The credibility              for the        Unit 2 surveillance              weld are described below:
The credibility evaluation of      Farley Unit 2                materials is documented in WCAP-16918-NP, Revision 1[7l.            credibility evaluation concluded that the surveillance data for Intermediate Shell            B721      is                credibility evaluation concluded that the surveillance            for weld Heat # BOLA is 5.0 Supplemental Data Tables Table      contains a comparison of measured surveillance material              ft-Ib transition temperature shifts and upper shelf energy decreases with Regulatory Guide 1.99,                2, predictions.
Table      shows the calculation of the                  material chemistry factors using surveillance capsule data.
Table 5-3 provides the unirradiated Farley Unit 2 reactor                toughness data.
Table 5-4 provides a summary of          reactor vessel fluence values at 54 EFPY.
Table        provides a summary of the          values of the          Unit 2 reactor materials at the 1      and 3/4-T locations for 54 Table 5-6 shows the calculation of the ART values at 54 EFPY for the limiting Farley Unit 2 reactor vessel material.
Table 5*7 provides          values for Farley Unit 2 for 54
 
PTLR for FNP Unit 2 Revision 5                                                                              Page 14 of 22 Table 5-1 Comparison of Surveillance Material 30 ft-Ib Transition Temperature Shift and Upper Shelf Energy Decrease with Regulatory Guide 1.99, Revision 2, Predictions (a) 30 ft-Ib Transition          Upper Shelf Energy Temperature Shift                  Decrease Material            Capsul      Fluence(e)      Predicted      Measure      Predicted    Measure e          (x 1019          (OF) (b)      d (OF) (c)      (%) (b)    d (%)(d) n/cm 2 , E>
1.0 MeV)
Intermediate Shell          U          0.605            128.0          105.5          26          27 Plate B7212-1              W            1.73            171.5          167.7            33          22 (Longitudinal)              X            2.98            192.1          164.8            37          26 Z            4.92            208 .5        200.1            42          28 Y            6.79            217.2          214.2            45          36 V            8.73            222.9          218.3            48          34 Intermediate Shell          U          0.605            128.0          124.0            26          27 Plate B7212-1              W            1.73            171.5          168.5          33          21 (Transverse)                X            2.98            192.1          200.1            37          28 Z            4.92            208.5          195.8            42          29 Y            6.79            217.2          231.0            45          42 V            8.73            222.9          215.3            48          27 SUNeillance                  U          0.605              32.8          -28.4          17          8 Program                    W            1.73              44.0            7.0          22          0 Weld Metal                  X            2.98              49.2          -15.6          24          0 Z            4.92              53.4            10.2          27          8 Y            6.79              55.7            69.1          30          5 V            8.73              57.1            56.5          32          14 Heat Affected Zone          U          0.605              ---          219.8          ---          30 Material                    W            1.73              ---          268.8          ---          20 X            2.98              -- -          230.5          ---          19 Z            4.92              ---          263.8          ---          20 Y            6.79              --            269.6          ---          35 V            8.73              --            322.4          ---          25 NOTES:
(a) Data from Table 5-10, WCAP-16918-NP, Revision 1 17]
(b) Based on Reg. Guide 1.99, Rev. 2 methodology using the mean weight percent values of copper and nickel of the surveillance material.
(c) Calculated using measured Charpy data plotted using CVGRAPH, Version 5.3.
(d) Values are based on the definition of upper shelf energy given in ASTM E185-82.
(e) The fluence values presented here are the calculated values, not the best estimate values.
 
PTLR for FNP Unit 2 Revision 5                                                                                      Page 15 of 22 Table 5*2 Calculation of Chemistry Factors Using Surveillance Capsule Data Capsule f (10 19 n/em2 ,    FF (8)    aRTNDT      FF*aRTNDT Material          Capsule                                                                          FF2 E> 1.0 MeV)                    (OF)            CF)
U            0.605          0.859      105.5            90.7          0.738 Intermediate Shell Plate 87212-1                W              1.73        1.151      167.7          193.0          1.324 (Longitudinal)              X              2.98          1.289      164.8          212.4            1.662 Z              4.92          1.399      200.1          280.0            1.958 Y              6.79          1.458      214.2          312.3            2.125 V              8.73          1.496      218.3          326.6            2.238 Intermediate Shell              U            0.605          0.859      124.0          106.5          0.738 Plate 87212-1                W              1.73        1.151      168.5          193.9          1.324 (Transverse)                X              2.98          1.289      200 .1        258.0            1.662 Z              4.92        1.399      195.8          274.0            1.958 Y              6.79          1.458      231.0          336.8            2.125 V              8.73        1.496      215.3          322.1            2.238 SUM:          2906.13          20.091 CF  =t(FF
* 6RT NDT) + t(FF2) =144.6 OF Weld Metal                U              0.605        0.859      0.0  (c)          0.0          0.738 W              1.73        1.151        7.0 (b)          8.1          1.324 X              2.98        1.289        0.0 (c)          0.0          1.662 Z              4.92          1.399      10.2 (b)        14.3          1.958 Y              6.79          1.458      69.1  (b)      100.7          2.125 V              8.73          1.496      56.5 (b)        84.5          2.238 SUM:          207.59          10.046 CF  =t{FF
* 6RTNOT) + t(FF2) =20.7 OF NOTES:    (a) FF = Fluence Factor = F (0.28*0.1log f)
(b) 6RTNOT values from Table 4-1 were not multiplied by the ratio of 0.96 (from WCAP-14689, Rev. 6(15J Table 4, CF vessel + CFsurv weld = 36.8 + 38.2 = 0.96) to calculate the best fit chemistry factor (CF) as provided by Reg. Guide 1.99, Rev. 2, Position 2.1, since the ratio is less than one. This is a conservative approach.
(c) Actual measured 6RTNOT values are less than zero. Since physically a reduction should not occur, a value of zero is conservatively used.
 
PTLR for FNP Unit 2 Revision 5                                                                              Page 16 of 22 Table 5-3 Reactor Vessel Toughness Table (Unirradiated) (a)
Beltline Material                          Cu Weight      Ni Weight %        IRTNDT (OF)
Closure Head Flange                                -                -            -60(d}
Vessel Flange                                -              -                60 Inlet Nozzle B7218-1                            0.16            0.71                32 Inlet Nozzle B7218-2                            0.16            0.68                50 Inlet Nozzle B7218-3                            0.16            0.72                60 Outlet Nozzle B7217-1                              0.16            0.73                60 Outlet Nozzle B7217-2                            0.16            0.72                  6 Outlet Nozzle B7217-3                            0.16            0.72                48 Upper Shell Forging B7216-1                          0.16          0.724                30 Intermediate Shell Plate B7203-1                        0.14            0.60                15 Intermediate Shell Plate B7212-1                        0.20            0.60                -10 Lower Shell Plate B721 0-1                          0.13            0.56                18 Lower Shell Plate B7210-2                          0.14            0.57                10 Inlet/Outlet Nozzle to Upper Shell Girth Seams                                                    10(0) 0.07            1.04 1-926 A-F Upper Shell to Intermediate Shell Circumferential 0.153            0.077              -40 Weld Seam 10-923 (b) (Heat # 5P5622)
Upper Shell to Intermediate Shell Circumferential                                                    -56(1) 0.05              1.0 Weld Seam 10-923 (Heat # 51922)
Upper Shell to Intermediate Shell Circumferential                                                    -56(1) 0.09            0.06 Weld Seam 10-923 (Heat # 3P4767)
Intermediate Shell Longitudinal Weld Seam                                                        -56(1) 0.027            0.947 19-923 A (b) (Heat # HODA)
Intermediate Shell Longitudinal Weld Seam 0.027            0.913              -60 19-923 B (b) (Heat # BOLA)
Surveillance Weld  (e)                        0.028            0.89                -
Intermediate Shell to Lower Shell Circumferential                                                    -40 0.153            0.077 Weld Seam 11-923 (b) (Heat # 5P5622)
Lower Shell Longitudinal Weld Seams                                                          -70 0.051            0.096 20-923 A & B (b) (Heat # 83640)
NOTES:
(a) From Table 4.2-1 of WCAP-17506-NP(161.
(b) Best-estimate copper and nickel from CE NPSD-1039 1171.
(c) The best-estimate copper and nickel value represents the average of two chemistry measurements performed on the surveillance weld and documented in WCAP-8956 181 and WCAP-11438 [III. The surveillance weld is representative of intermediate shell longitudinal weld 19-923B.
(d) Replacement closure head initial RT NOT value was taken from MHI-SNC-0455F2[181.
(e) An estimation method using measured data was used to determine this initial AT NOT value. Therefore, a conservative value of 17&deg;F is used for Ou and OJ in margin calculations.
(f) These initial ATNOT values are generic and taken from 10 CFA 50.61 paragraph (c)(1 Hii) of the 1-1-07 edition.
 
PTLR for FNP Unit 2 Revision 5                                                                          Page 17 of 22 Table 5-4 Reactor Vessel Fluence Projections at 54 EFPY        (a)
(10 19 n/cm 2 , E> 1.0 MeV)
Reactor Vessel Location                Material        54 EFPY Neutron Fluence Inlet Nozzle                  87218-1                      0.0449 Inlet Nozzle                  87218-2                      0.0254 i              Inlet Nozzle                  87218-3                      0.0186 Outlet Nozzle                  87217-1                      0.0126 Outlet Nozzle                  87217-2                      0.0172 Outlet Nozzle                  87217-3                      0.0304 Upper Shell Forging                87216-1                        1.09 87203-1 &
Intermediate Shell Plates                                            5.76 87212-1 87210-1 &
Lower Shell Plates                                              5.75 87210-2 Inlet/Outlet Nozzle to Upper Shell 1-926 A-+F                    0.0449 Girth Seams Upper Shell to Intermediate Shell 10-923                        1.09 Circumferential Weld Seam Intermediate Shell Longitudinal 19-923 A & 8                    1.83 Weld Seams Intermediate Shell to Lower Shell 11-923                        5.75 Circumferential Weld Seam Lower Shell Longitudinal Weld 20-923 A & 8                      1.83 Seams i
NOTE:
(a) From Table 5.2-1 of WCAP-17506-NP(l61* These values are also summarized in Table 2-1 of Attachment B of ALA-09-116(191*
 
PTLR for FNP Unit 2 Revision 5                                                                                  Page 18 of 22 Table 5-5 Summary of ART Values for the Reactor Vessel Materials at the 1/4-T and 3/4-T Locations for 54 EFPY (a)
Material                              1/4-T (OF)                3/4-T (oF)
Inlet Nozzle 87218-1                              83                        60 Inlet Nozzle 87218-2                              86                        69 Inlet Nozzle 87218-3                              89                        75 Outlet Nozzle 87217-1                              83                        71 Outlet Nozzle 87217-2                              34                        20 Outlet Nozzle 87217-3                              88                      69 Upper Shell Forging 87216-1                            172                      141 Intermediate Shell Plate 87203-1                        182                      158 Intermediate Shell Plate 87212-1                        223                      187 Intermediate Shell Plate 87212-1                      200(b)                    16S(b)
Using credible SIC Data Lower Shell Plate 87210-1                            172                      150 Lower Shell Plate 87210-2                            175                      152 InleVOutlet Nozzle to Upper Shell Girth Seams 69                        57 1-926 A .....F Upper Shell to Intermediate Shell Circumferential 82                      55 Weld Seam 10-923 (Heat # 5P5622)
Upper Shell to Intermediate Shell Circumferential 70                      42 Weld Seam 10-923 (Heat # 51922)
Upper Shell to Intermediate Shell Circumferential 39                      19 Weld Seam 10-923 (Heat # 3P4767)
Intermediate Shell Longitudinal Weld Seam 33                        17 19-923 A (Heat # HODA)
Intermediate Shell Longitudinal Weld Seam 16                        -3 19-923 B (Heat # 80LA)
Intermediate Shell Longitudinal Weld Seam 19-923 B (Heat # 80LA)                              -17                      -28 Using non-credible SIC Data Intermediate Shell to Lower Shell Circumferential 115                        97 Weld Seam 11-923 (Heat # 5P5622)
Lower Shell Longitudinal Weld Seams                                                  -12 7
20-923 A & 8 (Heat # 83640)
NOTES:
(a) The ART values presented here are based on the reactor vessel surface fluence values summarized in Table 5-4.
The values for the beltline materials are from Tables 4-10 and 4-11 of WCAP-17123-NP, Revision 1(21. The values for the extended beltline materials are summarized along with the values for the belt/ine materials in Tables 3-3 and 3-4 of Attachment 8 of ALA-09-116(191.
(b) Limiting 1/4-T and 3/4-T ART values. The Pff limit curves are based on these limiting ART values of 200&deg;F and 165&deg;F.
 
PTLR for FNP Unit 2 Revision 5                                                                                  Page 19 of 22 Table 5-6 Calculation of Adjusted Reference Temperature Values at 54 EFPY for the Limiting Reactor Vessel Material (a)
Parameter                      Intermediate Shell Plate 67212-1 Operating Period                                      54 EFPY Location                                            %-T          %-T Chemistry Factor, CF (OF)                          144.6        144.6 Fluence, f (10 19 n/cm 2)  (h)                    3.591        1.396 Fluence Factor, FF                                1.3324        1.0926 LlRT NOT = CF x FF (OF)                            192.7        158.1 Initial RT NOT , I (OF)                            -10          -10 Margin, M (OF)      (c)                              17            17 Adjusted Reference Temperature                    200(d)        165(d)
(ART), (oF) per Regulatory Guide 1.99, Revision 2 NOTES:
(a) From Tables 4-10 and 4-11 ~using credible surveillance capsule data) of WCAP-17123*NP, Revision 1 121.
2
                                                        =
(b) Fluence is based on fsurt (10 9 n/cm , E> 1.0 MeV) 5.76. The Farley Unit 2 reactor vessel wall thickness is 7.875 inches in the beltline region.
                                =
(c) Margin is calculated as M 2(0;2 + 0/) o.s. The standard deviation for the initial RT NOT margin term, 01, is OaF since the initial RTNOT is a measured value. The standard deviation for the 6RTNOT term, 06, is 1]oF for the plate, except that 0/1 need not exceed 0.5 times the mean value of 6RTNOT. In accordance with Regulatory Guide 1.99, Revision 2, Position 2.1, values of 0d may be cut in half when based on credible surveillance data.
(d) Limiting !/.I-T and %-T ART values.
 
PTLR for FNP Unit 2 Revision 5                                                                                Page 20 of 22 Table 5-7 Pressurized Thermal Shock (RTpts) Values for S4 EFPY              (a)
Surface Fluence                  ARTNDT Material                                                    FF      (CF x FF)          I    M    RT pTS CF        (10 19 n/cm2 ,
(OF)        (OF)  (OF)    (OF)
E> 1.0 MeV)
Inlet Nozzle 87218-1                  120.75          0.0449      0.2760        33.3        32  33.3      99 Inlet Nozzle 87218-2                    120          0.0254      0.1990        23.9        50  23.9      98 Inlet Nozzle 87218-3                    121          0.0186      0.1644        19.9        60    19.9    100 Outlet Nozzle 87217-1                  121.25          0.0126      0.1280        15.5        60    15.5    91 Outlet Nozzle 87217-2                    121          0.0172      0.1565        18.9          6  18.9      44 Outlet Nozzle B7217-3                    121          0.0304      0.2213        26.8        48  26.8      102 Upper Shell Forging 87216-1                121.1            1.09      1.0241      124.0        30  34.0    188 Intermediate Shell Plate B7203-1              100.0            5.76      1.4292      142.9          15  34.0      192 Intermediate Shell Plate 87212-1              149.0            5.76      1.4292      213.0        -10  34.0    237 Intermediate Shell Plate B7212-1                                                                                214(b) 144.6            5.76      1.4292      206.7        -10  17.0 Using credible SIC Data Lower Shell Plate B7210-1                  89.8            5.75      1.4289      128.3          18  34.0      180 Lower Shell Plate B721 0-2                98.7            5.75      1.4289      141.0          10  34.0      185 Inlet/Outlet Nozzle to Upper Shell 95          0.0449      0.2760        26.2          10  42.9      79 Girth Seams 1-926 A->F Upper Shell to Intermediate Shell Circumferential Weld Seam 10-923                74.1            1.09      1.0241        75.9        -40  56.0      92 (Heat # 5P5622)
Upper Shell to Intermediate Shell Circumferential Weld Seam 10-923                68            1.09      1.0241        69.6        -56  65.5    79 (Heat # 51922)
Upper Shell to Intermediate Shell Circumferential Weld Seam 10-923                46.3            1.09      1.0241        47.4        -56  58.3      50 (Heat # 3P4767)
Intermediate Shell Longitudinal Weld                                                                  -56  54.7      42 36.8            1.83      1.1657        42.9 Seam 19-923 A (Heat # HODA)
Intermediate Shell Longitudinal Weld                                                                                  26 36.8            1.83      1.1657        42.9        -60  42.9 Seam 19-923 B (Heat # BOLA)
Intermediate Shell Longitudinal Weld Seam 19-923 B (Heat # BOLA)                  20.7            1.83      1.1657        24.1        -60  24.1    -12 Using non-credible SIC Data Intermediate Shell to Lower Shell Circumferential Weld Seam 11-923                74.1            5.75      1.4289      105.9        -40  56.0    122 (Heat # 5P5622)
Lower Shell Longitudinal Weld                                                                    -70  43.5      17 37.3            1.83    1.1657        43.5 Seams 20-923 A & 8 (Heat # 83640)
NOTES:
(a) From Table 7.2-1 of WCAP-17506-NP!161*
(b) This limiting RTpTs value was calculated using the CF from the surveillance data and a reduced  06 margin of 8.5&deg;F, since this surveillance data is credible.
 
PTLR for Ft\IP Unit 2 6.0 References
: 1. WCAP-14040-A, Revision 4, Methodology Used to Develop Mitigating System                                                      RCS Heatup and Cooldown Umit Curves, May 2004 .
: 2.  .:...:...:::::..:....::!--!..!....!..!::..::::..!..!.!-' Revision 1, J. M. Farley Unit 2 Heatup      Cool down Umit for Normal Operation, July 2011.
: 3. ASTM E185-82, "Standard Practice for Conducting Surveillance Tests for Light-Water Cooled Nuclear Power Reactor Vessels," in ASTM Standards, 3,                                      Society              Testing      Materials, 1982.
: 4. NUREG-0117, Supplement 5 to                                                Safety Evaluation Report (NUREG-75/034),
Office of Nuclear Reactor Regulation, U. S.                                                Regulatory Commission in matter of                                              Power Company            M. Farley Nuclear Plant Unit 2, Docket No. 50-364., March 19,1981.
: 5.  ~~~;L.:::!.!.l~~~~..!.:..:::r.:':"                                  Revision 2. "Radiation Embrittlement of Reactor "May 1988.
: 6. NRC Regulatory Guide 1.190, "Calculational                                                Dosimetry Methods for Determining Pressure                                                Neutron Fluence," March, 2001.
        ~~-...:...x.:::..~~'                                    Revision 1. Analysis of          V from the Southern Nuclear Operating                                                Joseph M. Farley Unit 2 Reactor Vessel Radiation Surveillance Program, April 2008.
: 8. WCAP-8956, Alabama Power Company Joseph M. Farley Nuclear                                                        Unit No.2 Reactor Vessel Radiation Surveillance Program, J. A. Davidson, et al., August 1977.
: 9. ASTM E185-73, Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels, American Society for Testing and Materials, 1973.
: 10.                                                Analysis of Capsule U from            Alabama        Company          M.
Farley                            2 Reactor                      Radiation Surveillance Program,    E. Yanichko, et October 1983.
: 11.                                                Analysis of                W from the Alabama Power Company Joseph Farley Unit 2 Reactor Vessel Radiation Surveillance                                          S. E. Yanichko. et 1
Capsule X from the            Power Company Joseph M.
Radiation Surveillance Program, E.        et aI.,
: 13.                                                Revision 1,                of Capsule Z from              Power Company Farley Unit 2 Reactor Vessel Radiation Surveillance Program,                          2000.
: 14.                                                          Revision 1, Analysis of Capsule Y from the Southern Nuclear Operating Company Joseph M. Farley Unit 2 Reactor                                                  Radiation Surveillance Program, June 2008.
: 15.                          Revision 6, Farley Units 1 and 2 Heatup and Cooldown Limit Curves Normal Operation and PTlR Support Documentation, T. J. laubham, April 2001.
: 16. WCAP-17506-NP, Revision 0, Farley Units 1 and 2 Pressurized Thermal Shock Evaluations,              A. Rosier, December      1.
: 17. CE NPSD-1039, Revision 2,                              Copper and Nickel Values In CE Fabricated Reactor Vessel Welds, Combustion Engineering Owners Group, June 1997.
: 18. Mitsubishi Heavy Industries, lTD, Kobe Shipyard & Machinery Works (MHI).
    !.!!!..~~~!.i:Li::i:.!....!i:., Reactor Vessel Closure      for Farley-2, Certified Material June 2004.
: 19. Westinghouse letter ALA-09-116, P-T limit Curves with Margins for Instrumentation Errors and Extended Beltline Material Information, John M.
Robinson, October 20,
 
Joseph M. Farley Nuclear Plant Request to Revise Technical Specifications Associated with the Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report Enclosure 5 WCAP-17122-NP, Revision 0, "J. M. Farley Unit 1 Heatup and Cool down limit Curves for Normal Operation," October 2009
 
Westinghouse Non-Proprietary Class 3 WCAP-17122-NP                                      October 2009 Revision 0 J. M. Farley Unit 1 Heatup and Cooldown Limit Curves for Normal Operation (8 Westinghouse
 
NON-PROPRIETARY CLASS 3 WCAP-17122-NP Revision 0 J. M. Farley Unit 1 Heatup and Cooldown Limit Curves for Normal Operation A.E.
C. C. Heinecke*
Aging          "PT'n"",t and License Renewal Services October 2009 Reviewer:      B. A. Rosier*
Aging Management and License Renewal Services Approved:
*Electronically approved records are authenticated in the electronic document management system.
Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355
                                  &#xa9; 2009 Westinghouse Electric Company LLC All        Reserved
 
ii RECORD OF REVISION Revision 0: Original Issue WCAP-17122-NP Revision 0
 
TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iv LIST OF FIGURES ..................................................................................................................................... vi EXECUTIVE                                                                                                                                            Vll INTRODUCTION ........................................................................................................................ 1-1 2      FRACTURE TOUGHNESS PROPERTlES ................................................................................. 2-1 3    CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS ................ 3-1 3.1  OVERALL APPROACH ................................................................................................. 3-1 3.2  METHODOLOGY FOR PRESSURE-TEMPERATURE LIMIT CURVE DEVELOPMENT ............................................................................................................ 3-1 3.3  CLOSURE HEADNESSEL FLANGE REQUIREMENTS ........................................... 3-S 4      CALCULATION OF ADJUSTED REFERENCE TEMPERATURE ......................................... .4-1 S      HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES....................... S-I 6      REFERENCES ............................................................................................................................. 6-1 APPENDIX A              Thermal Stress un"",,,,,,] Factors WCAP-17I 22-NP Revision 0
 
LIST OF TABLES Table 2-1                of the Best Estimate Cu and Ni Weight Percent and Initial                                                    Values for the Unit I Reactor Vessel Beltline Materials ..................................................... 2-2 Table 2-2    Summary of the Initial RT NOT Values for the 1. M. Farley Unit I Closure Head and Vessel Flange ........................................ ,............. , ........................... ,., ......................................... 2-3 Table 2-3    Summary of the 1. M.                      Unit I Reactor Vessel Beltline Material                                                Factors Per Regulatory Guide 1.99, Revision 2 ........................................................................... 2-3 Table 4-1    Fluence Values            the J. M. Farley Unit I Reactor Vessel Beltline Materials ............... .4-2 Table 4-2    Fluence Values for the Vessel Surface, 1/4T and 3/4T Locations for the J. M. Farley Unit I Reactor Vessel Beltline Materials at 36 EFPY .............................................................. 4-3 Table 4-3    Fluence Values for the Vessel Surface. 1I4T and 3/4T Locations for the J. M.                                                          Unit 1 Reactor Vessel Beltline Materials at 54 EFPY .............................................................. 4-3 Table 4-4    Fluence Values for the Vessel                              1I4T and 3/4T Locations for the J. M.                                      Unit I Reactor Vessel Beltline Materials at 72 EFPY .............................................................. 4-3 Table 4-5    Fluence Factor Values at the il4T and 3/4T Locations for the 1. M.                                                    Unit I Reactor Vessel Bel tline Materials at 36 EFPY ............. ,............................................................... .4-4 Table 4-6    Fluence Factor Values at the 1/4T and 3/4T Locations for the j, M, Farley Unit I Reactor Vessel BeltEne Materials at 54 EFPY ........ ".".. " .... " ............................... " .. " ............. ".,,4-4 Table 4-7    Fluence Factor Values at the 1/4T and 3/4T Locations for the 1. M.                                                    Unit 1 Reactor Vessel Beltline Materials at 72 EFPY ..... "."" .." ........... " ......... , .............................. " ....... 4-4 Table 4-8    Adjusted Reference                                Evaluation for the 1. M. Farley Unit I Reactor Vessel Beltline Materials through 36 EFPY at the 1I4T Location ..... " .., ........................... " ...... .4-5 Table 4-9    Adjusted Reference                                Evaluation for the 1. M,                              Unit I Reactor Vessel Beltline Materials                    36 EFPYat the 3/4T Location Table 4-10  Adjusted Reference                                Evaluation for the j, M. Farley Unit I Reactor Vessel Beltline Materials through 54 EFPY at the 1/4T Location ............................... "." ........ ..4-7 Table 4-11              Reference                              Evaluation for the 1. M,                              Unit 1 Reactor Vessel Beltline Materials through 54 EFPY at the 3/4T Location ............... " ...... " ...... "" ........".4-8 Table 4-12  Adjusted Reference                                Evaluation for the 1. M. Farley Unit 1 Reactor Vessel Beltline Materials                    72 EFPYat the 1/4T Location ........ " ...... , ... " .."."",,............. 4-9 Table 4-13  Adjusted Reference Temperature Evaluation for the J, M. Farley Unit I Reactor Vessel Beltline Materials through 72 EFPY at the 3/4T Location " ...."""."..."".. "" ............ ",,4-10 Table 4-14  Summary of the Limiting ART Values Used in the Generation of the 1. M. Farley Unit I Heatup/Cooldown Curves ........ " .. " ... ,..... " ........ " ... " .......... ""., ...,""'" ..... "., ......... , ... ,.... 4-11 WCAP-17122-NP                                                                                                                            October Revision 0
 
                                                                    .... r"'~rl""'ru Class 3                                                          v Table 5-1    36 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI                wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation                                                                              ........................................ 5-9 Table 5-2    36 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App.
G Methodology {wI                  wI              Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation                    ............................................................................................ 5-11 Table 5-3    54 EFPY Heatup Curve Data Points                                  the 1998 through the 2000 Addenda App. G Methodology (wI K1c
* wi Flange Notch, wi Pressure Correction and w/o Uncertainties for Instrumentation                                                                                                                          3 Table 5-4    54 EFPY Cooldown Curve Data Points                                    the 1998 through the 2000 Addenda App.
G Methodology (wI                  wi Flange Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation                    ............................................................................................ 5-15 Table 5-5    72 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI K1e
* wi Flange Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation Errors) .................................................................................................. 5-17 Table 5-6    72 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App.
G Methodology (wi K lc, wI Flange                                wI Pressure Correction and wlo Uncertainties for Instrumentation Errors) ............................................................................................ 5-19 Table A-I        Values for 36,            and 72 EFPY 100&deg;FIhr Heatup Curves (w/o Margins for Instrument Errors) ............................................................................................................................. A-2 Table A-2    Kif Values for 36, 54, and 72 EFPY I OO&deg;F/hr Cooldown Curves (w/o Margins for I nstrumen tErrors) ..
WCAP-17122-NP Revision 0
 
LIST OF FIGURES Figure 5-1  J. M. Farley Unit 1 Reactor Coolant System                                      Limitations (Heatup Rates of 60 and lOO&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure                      Using the 1998 through the 2000 Addenda App. G Methodology (wIKlc) .............................................................................................................................. 5-3 5-2  J. M. Farley Unit I Reactor Coolant                                Cooldown Limitations (Cooldown Rates up to 1OO&deg;Flhr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction)                        the J998 through the 2000 Addenda App. G Methodology (wIKle) ....................................................................................................... 5-4 J. M.            Unit I Reactor Coolant System                                Limitations (Heatup Rates of 60 and 100&deg;F/hr) Applicable                54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (w/K 1c) ..............................................................................................................................5-5 Figure 5-4  J. M.            Unit J Reactor Coolant                            Cooldown Limitations (Cool down Rates up to IOO&deg;F/hr) Applicable for 54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction)                        the 1998 through the 2000 Addenda                                G Methodology (WIKle) ....................................................................................................... 5-6 5-5  J. M. Farley Unit I Reactor Coolant System Heatup Limitations (Heatup Rates of60 and 100&deg;F/hr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure                                the I          through the 2000 Addenda App. G Methodology (wIKle) .............................................................................................................................. 5-7 5-6  J. M. Farley Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100&deg;FIhr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda                                                  G Methodology (w/Kl~)
WCAP-17122-NP Revision 0
 
EXECUTIVE
 
==SUMMARY==
 
This report provides the                and results of the generation of heatup and cooldown pressure temperature (P-T) limit curves for normal operation of the 1. M. Farley Unit I reactor vessel. The heatup and cooldown p.T limit curves were              using the highest adjusted reference temperature (ART) values pertaining to J. M.          Unit I . The highest ART values pertaining to an axial weld or a plate/forging were those of lower shell plate B6919-1 (using surveillance data) at both 114 thickness (I/4T) and 3/4 thickness (3/4T) locations. The P-T curves made use of the K1c methodology detailed in the 1998 through the 2000 Addenda Edition of the ASME Code, Section XI, Appendix G, and ASME Code Case N-641.
The P-T limit curves were            for    54 and 72              heatup rates of 60 and 100&deg;F/hr, and cooldown rates of 0, 20, 40, 60 and 100 &deg;Flhr. The curves were developed without margins for instrumentation errors. The curves include a pressure correction for the static and dynamic head loss between the reactor vessel beltline        and the Residual Heat Removal (RHR) relief valves. These curves can be found in          5-1 through 5-6. Appendix A contains the thermal stress intensity factors for the maximum heatup and cooldown rates for each EFPY term.
WCAP-17122-NP Revision 0
 
1        INTRODUCTION Heatup and cool down P- T limit curves are calculated              the adjusted RTNDT (reference nil-ductility temperature)                  to the limiting beltline          material of the reactor vesseL The RT NDT of the limiting material in the core region of the reactor vessel is detennined by using the unirradiated reactor vessel material fracture toughness properties, estimating the radiation-induced ART NDT, and adding a              The unirradiated          is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 ft-Ib of impact energy and 35-mil lateral expansion (normal to the                working direction) minus 60&deg;F.
increases as the material is exposed to fast-neutron radiation.              to find the most limiting RT NDT at any time period in the reactor's life, ART NDT due to the radiation exposure associated with that time          must be added to the unirradiated RT NDT (IRT NDT). The extent of the shi ft in                is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99, Revision 2, "Radiation Embriulement of Reactor Vessel Materials"                      I],
Regulatory Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature (ART) values (IRT NOT + ART NDT + margins for uncertainties) at the              114T and 3/4T locations, where T is the thickness of the vessel at the beltline        measured from the clad/base metal interface.
The heatup and cooldown poT limit curves documented in this report were generated using the most limiting ART values and the NRC approved methodology documented in WCAP-14040-A, Revision 4
[Reference 2J, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves." Specifically, the              methodology of the 1998 through the 2000 Addenda Edition of ASME              Section      Appendix G              3] was used.
The calculated ART values for 36,          and 72 EFPY are documented in Tables 4-8                4-13 of this report. The          basis fluence projections are based on the values verified by Westinghouse in letter LTR-REA-09-112, Revision I (Reference 4].
The purpose of this report is to present the calculations and the development of the 1. M. Farley Unit heatup and cooldown P-T limit curves for 36, 54 and 72 EFPY. This report documents tlte calculated ART values and the development of the P- T limit curves for nonnal operation. The P-T curves herein were generated without instrumentation errors. The P-T curves contain a pressure correction for the static and dynamic head loss between the reactor vessel beltline                and the RHR relief values. The P- T curves include                          limits for the vessel                per the              of IO CFR Part    Appendix G [Reference 5J.
WCAP-17122-NP                                                                                    October Revision 0
 
3 2      FRACTURE TOUGHNESS PROPERTIES The fracture-toughness properties of the ferritic materials in the J. M. Farley Unit I reactor vessel are in Table 2-1. The unirradiated RTNOT values for the closure head and vessel                are documented in Table 2-2.
The Regulatory Guide I      Revision 2 methodology used to            the heatup and cooldown P-T limit curves documented in this report is the same as that documented in WCAP-14040-A, Revision 4
[Reference      The chemistry factors (CFs) were calculated using Regulatory Guide 1.99 Revision 2, Position 1.1 and 2.1. Position 1.1 uses the tables from the Regulatory Guide along with the best estimate copper and nickel weight            which are presented in Table 2-1. Position 2.1 CFs are calculated based on the Charpy testing of irradiated surveillance capsule specimens. Table 2-3 summarizes the Position 1.1 and 2.1 CFs determined for the J. M Farley Unit I beltline materials.
WCAP-17122*NP Revision 0
 
Westinghouse Non-Proprietary Class 3                                      2-2 Table 2-1    Summary of the Best Estimate Cu and Ni Weight Percent and Initial RT NDT Values for the J. M. Farley Unit 1 Reactor Vessel Beltllne Materials Fracture Material Description (1 )                        Chemical Composition (1)            Toughness Propertyc,)
Cu                Ni          Initial RT NDT Reactor Vessel Location            Material ID #
wI. 0/0          wt. %                CF)
Intermediate Shell (IS) Plate            86903-2                0.13              0.60                  0 Intennediate Shell Plate              86903-3                0.12              0.56                10 Lower Shell (LS) Plate              86919-1                0.14              0.55                IS Lower Shell Plate                  86919-2                0. 14            0.56                  5 19-894 A & 8                                                    _56<<)
IS Longitudinal Weld Seams                                      0.258            0.165 (Heat # 33 A277)
Surveillance Program Weld Metal(o)
(Heat # 33A277)                0.14              0.19                --
11-894                                                      _56<<)
IS to LS Circ. Weld Seam                                      0.205            0.105 (Heat # 6329637)
LS Longitudinal Weld              20-894 A& 8                                                    _56<<)
0.197              0.06 Seams                    (Heat # 90099)
Notes for Table 2-1 :
(a) Information source for these. material properties is ALA-08-7S, Revision  &deg; [Reference 61.
(b) Surveillance weld is representative of intermediate shelliongirudinal welds 19-894 A & B. Best estimate copper and nickel values represent a single chemical analysis documented in WCAP-88I 0, Revision  &deg; [Reference 7] .
(c) Per ALA-08-75, Revision 0, all weld initial RT NOT values are generic, and are taken from 10 CFR 50.61 paragraph (c)(I)(ii) of the \-1-07 edition.
WCAP-17122-NP                                                                                          October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                      2-3 Table 2-2  Summary of the Initial RT NDT Values for the J. M. Farley Unit 1 Closure Head and Vessel Flange (a)
Material Identification                          Initial RT NDT Closure Head Flange                                  -50 of Vessel Flange                                    60 OF Notes for Table 2-2:
(a) Infonnation source for the initial RT NDT values is ALA-08-75, Revision 0 [Reference 6).
Table 2-3  Summary of the J. M. Farley Unit 1 Reactor Vessel Beltline Material Chemistry Factors Per Regulatory Guide 1.99, Revision 2 CFper          CFper Vessel Material                    Material        Position 1.1    Position 2.1 CF)            CF)
Intennediate Shell Plate              B6903-2              91              ---
Intennediate Shell Plate              B6903-3              82.2            --
Lower Shell Plate                  B6919-1              97.8          106.7 Lower Shell Plate                  B6919-2              98.2            --
IS Longitudinal Weld Seams              19-894 A & B          126.3          118.5 SUlveillanee Program Weld Metal            19-894A& B            78.1            --
IS to LS Cire. Weld Seam                11-894              98.4            --
LS Longitudinal Weld Seams              20-894 A& B            91.4            --
WCAP-17122-NP                                                                                      October 2009 Revision 0
 
3        CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS 3.1      OVERALL APPROACH The ASME                for calculating the allowable limit curves for various heatup and cooldown rates that the total stress intensity factor,      for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be                than the reference stress intensity        KJc. for the metal temperature at that time. K,c is obtained from the reference fracture toughness curve, defined in the 1998 Edition through the 2000 Addenda of Section              Appendix G of the ASME Code [Reference 3].
The      curve is given by the following equation:
K[c =33.2+20.734                                              (1)
: where, reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT This      curve is based on the lower bound of static critical KI values measured as a function of temperature on              of SA-533 Grade B Class I, SA-508-1, SA-508-2, and SA-508-3 steeL 3.2      METHODOLOGY FOR PRESSURE-TEMPERATURE LIMIT CURVE DEVELOPMENT The            equation for the heatup-cooldown              is defined in Appendix G of the ASME Code as follows:
stress intensity factor caused by membrane (pressure) stress KII          stress intensity factor caused by the thermal reference stress          factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT C            2.0 for Level A and Level B service limits C            1.5 for hydrostatic and leak test conditions during which the reactor core is not critical WCAP-17122-NP Revision 0
 
For membrane tension, the corresponding Kr for the postulated defect is:
K 1m == Mm X (pRi I t)                                                      (3) where, Mm for an inside surface flaw is Mm              1.85 for      Ji    2, Mm                              for 2:::; Ji : :; 3.464 ,
Mm              3.21 for      Ji  > 3.464 Similarly, Mm for an outside surface flaw is given by:
1.77 for          < 2, 0.893    Ji    for 2 S;      :::; 3.464, Mm              3.09 for      Ji > 3.464 and p = internal pressure (ksi), Ri := vessel inner radius (in.), and t          vessel wall thickness (in.).
For U""'UHI'l'. stress, the ",,,,,,,,p,,nont1,      for the postulated defect is:
Klb    =  Mb
* Maximum Stress, where Mb is two-thirds of Mm                                            (4)
The maximum Kr produced                  radial thermal gradient for the postulated inside surface defect of 0-2120 is:
O.953xIO* 3 x CR x      r's                                                                                (5) where CR is the cooldown rate in                    or for a postulated outside surface defect (6) where HU is the heatup rate in &deg;Flhr.
The through-wall                          difference associated with the maximum thermal              can be determined from ASME Code, Section XI,                            G,        0-22]4-1. The temperature at any radial distance from the vessel surface can be determined from ASME                          Section Xl, Appendix 0,        0-2214-2 for the maximum thermal Kr.
WCAP-17122-NP                                                                                              October 2009 Revision 0
 
(a)      The maximum thermal KI relationship and the                          relationship in      G-2214-1 are applicable only for the conditions            in G-2214.3(a)(l) and (2).
(b)      Alternatively, the K for radial thermal gradient can be calculated for any thermal stress distribution and at any specified time              cooldown for a Y4-thickness inside surface defect using the relationship:
Kit      (1.0359Co + 0.63220 + 0.4753C2 + 0.3855CJ) *                                    (7) or similarly, Kit during heatup for a Y4-thickness outside surface defect using the relationship:
Kif::::  (1.043Co + O.630Cl + 0.48                                                      (8) where the coefficients Co, C 1,      and    are determined from the thermal stress distribution at any time          the heatup or cooldown          the form:
(9) and x is a variable that                  the radial distance (in.) from the              (Le., inside or outside) surface to any point on the crack front, and a is the maximum crack depth (in.).
Luual,IVI'" 3, 7, and 8 were implemented in the OPERLIM computer                  which is the program used to            the pressure-temperature (P-T) limit curves. The P-T curve methodology is the same as that described in WCAP-14040-A, Revision 4 "Methodology Used to Develop Cold Overpressure and RCS Heatup and Cooldown Limit Curves"                      2] Section 2.6 (equations 2.6.2-4 and 2.6.3-\).
At any time during the heatup or cooldown                        is determined by the metal temperature at the tip of a postulated flaw (the postulated flaw has a depth of 1I4 of the section thickness and a length of 1.5 times the section thickness per ASME Code, Section XI, paragraph G-2120), the appropriate value for and the reference fracture toughness curve (Equation I). The thermal stresses resulting from the through the vessel wall are calculated and then the                  (thermal) stress intensity          Kit, for the reference flaw are computed, From Equation 2, the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.
For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference 114T flaw                  G to Section XI of the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the vessel wall because the thermal gradients, which increase with                    cooldown rates, produce tensile stresses at the inside surface that would tend to open (propagate) the existing flaw. Allowable pressure-temperature curves are                  for steady-state (zero-rate) and each finite cooldown rate specified. From these curves,                limit curves are constructed as the minimum of the steady-state or finite rate curve for each cooldown rate specified.
WCAP-17122-NP                                                                                        October 2009 Revision 0
 
The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is on the material              at the tip of the assumed flaw. During cooldown, the 1/4T vessel location is at a          temperature than the fluid adjacent to the vessel inner diameter. This condition, of course, is not true for the steady-state situation. It follows        at any        reactor coolant the L'1T              across the vessel wall developed during cooldown results in a higher value of Kit at the 1/4T location for finite cooldown rates than for                  operation.                if conditions exist so that the increase in K lc exceeds Klb the calculated aJIowable pressure will be          than the              value.
The above procedures are needed because there is no direct control on t"",,,,,,r,,h          at the l/4T location and,            allowable pressures could be lower if the rate of cooling is decreased at various intervals a cooldown ramp. The use of the composite curve eliminates this                            and ensures conservative operation of the system for the entire cooldown period.
Three            calculations are required to detennine the limit curves for finite          rates. As is done in the cooldown analysis, allowable                                relationships are developed for conditions as well as finite heatup rate conditions assuming the presence of a 1/4T defect at the inside of the wall. The heatup results in                stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal                      at the crack lip        the coolant temperature; therefore, the      for the inside 1/4T flaw during heatup is lower than the Kic for the flaw during steady state conditions at the same coolant temperature. During heatup, especially at the end of the transient, conditions may exist so that the effects of                thennal stresses and lower      values do not offset each other, and the                          curve based on                  conditions no                      a lower bound of all similar curves for finite heatup rates when the 114T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that al any coolant                        the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.
The third portion of the heatup analysis concerns the calculation of the                              limitations for the case in which a 1J4T flaw located at the 1I4T location from the outside surface is assumed. Unlike the situation at the vessel inside surface, the thermal                established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are                    on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be              on an individual basis.
Following the generation of                              curves for the steady-state and finite heatup rate situations, the fmal limit curves are produced      constructing a composite curve based on a of the steady-state and finite heatup rate data. At any given                        the allowable pressure is taken to be the least of the three values taken from the curves under consideration, The use of the composite curve is necessary to set conservative heat up limitations because it is possible for conditions to exist            over the course of the          ramp. the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.
WCAP-17122-NP                                                                                        October Revision 0
 
II 3
3.3      CLOSURE HEAD/VESSEL FLANGE REQUIREMENTS 10 CFR Part 50, Appendix G [Reference 5J addresses the metal temperature of the closure head and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material unirradiated RTNDT by at least 120&deg;F for normal operation when the pressure exceeds 20 percent of the              hydrostatic test pressure (3107      for J. M. Farley Unit I), which is calculated to be 621      The limiting unirradiated RTNOT of 60&deg;F occurs in the vessel flange of the J. M.
Unit I reactor        so the minimum allowable temperature of this          is 180&deg;F at pressures greater than 621      (without instrument uncertainties). This limit is shown in Figures 5-1 through 5-6 wherever applicable.
WCAP-17122-NP Revision 0
 
4        CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99, Revision 2, the adjusted reference renmeranLlre (ART) for each material in the beltline region is given by tbe following expression:
ART =: Initial RTNDT + LlRTNOT +                                    (10)
Initial RTNOT is the reference temperature for the unirradiated material as defined in paragraph NB-233I of Section III of the AS ME Boiler and Pressure Vessel Code                      8]. If measured values of the initial RTNDT for the material in question are not available, generic mean values for that class of material may be used, provided if there are sufficient test results to establish a mean and standard deviation for the class.
MTNOT is the mean value of the adjustment in reference temperature caused            irradiation and should be calculated as follows:
LlRTNOT=CF*      r028.0.10Iogf)                              (11)
To calculate LlRTNDT at any depth            al 114T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.
* e (*0.24.)                              (12) where x inches (vessel beltline thickness is 7.875 inches) is the depth into the vessel wall measured from the vessel cladfbase metal interface. The resultant fluence is then placed in Equation I I to calculate the LlRT NOT at the          depth.
The                  Radiation Analysis Group evaluated the vessel fluence projections in LTR-REA-09 112, Revision I              4], and the results are            in Table 4-1. The evaluation methods used in Reference 4 are consistent with the methods presented in WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Selpoints and RCS                    and Cooldown Limit Curves" [Reference        Tables 4-2            4-4 provide a summary of the vessel flucnce projections at the 1/4T and 3/4T locations for 36, 54 and 72 EFPY. Tables 4-5 through 4-7 contain the 1I4T and 3/4T calculated fluences and fluence factors, per Regulatory Guide 1.99, Revision 2, used to calculate the 36, 54 and 72 EFPY ART values for all beltline materials in the J. M. Farley Unit 1 reactor vessel.
Margin is calculated as M  = 2            . The standard deviation for the initial RT NDT margin term (O'i) is O"F when the initial RTNDT is a measured value, and 17&deg;F when a generic value is available. The standard deviation for the LlRTNOT margin term, 0'"" is 17&deg;F for            or          and 8.5&deg;F for plates or when credible surveillance data is used. For welds, O't. is equal to 28&deg;F when surveillance capsule data is not used, and is 14&deg;F (half the          when credible surveillance capsule data is used. The value for O't.
need not exceed 0.5 times the mean value of LlRTNOT.
Contained in Tables 4-8 through 4-13 are the 36, 54 and 72 EFPY ART calculations at the 1I4T and 3/4T locations for            of the J. M. Farley Unit I heatup and cooldown curves.
WCAP-17122-NP                                                                                      October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                            4-2 Table 4-1      Fluence Values for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials Neutron Fluence (n/cm2, E > 1.0 MeV1 Reactor Vessel Location          Material 36 EFPY        54 EFPY      72 EFPY B6903-2 Intermediate Shell Plates                      4.02E+19      5.93E+19      7.84E+19
                                        & B6903-3 B6919-1 Lower Shell Plates                          3.98E+19      5.81E+19      7.65E+19
                                        & B6919-2 19-894 IS Longitudinal Weld Seams                          1.23E+l9      1.83E+19      2.42E+19 A&B IS to LS Cire. Weld Seam          11-894        3.98E+19      5.81E+19      7.65E+19 20-894 LS Longitudinal Weld Seams                          1.21E+19      1.79E+19      2.36E+19 A&B WCAP-17122-NP                                                                            October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                              4-3 Table 4-2      Fluence Values for the Vessel Surface, 1I4T and 3/4T Locations for the J. M. Farley Unit 1 Reactor Vessel 8eltline Materials at 36 EFPY Fluence, f              1I4T f              3/4 T f Region                (xlO l9 nlcm 2,      (xlO '9 nlcm l ,    (x 10 19 n/cm 2 ,
E> 1.0 MeV)          E> 1.0 MeV)        E> 1.0 MeV)
Intennediate Shell Plates          4.02                  2.506              0.974 Lower Shell Plates                3.98                2.481              0.964 IS Longitudinal Weld Seams              1.23                0.767              0.298 IS to LS Cire. Weld Seam            3.98                  20481              0.964 LS Longitudinal Weld Seams              1.21                0.754              0.293 Table 4-3      FJuence Values for the Vessel Surface, 1/4T and 3/4T Locations for the J. M. Farley Unit I Reactor Vessel 8eltJine Materials at 54 EFPY Fluence, f              114 T f            3/4 T f Region                (xl0 19 nlcm 2,      (xl0 19 n/cm 2,    (x10 19 n/cm 2, E> 1.0 MeV)          E> 1.0 MeV)        E> 1.0 MeV)
Intennediate Shell Plates          5.93                  3.697              10437 Lower Shell Plates                5.81                3.622              10408 IS Longitudinal Weld Seams              1.83                1.I4l              0.443 IS to LS Cire. Weld Seam            5 .81                3.622              10408 LS Longitudinal Weld Seams              1.79                1.116              00434 Table 4-4      Fluence Values for the Vessel Surface, 1/4T and 3/4T Locations for the J. M. Farley Unit I Reactor Vessel Beltline Materials at 72 EFPY Fluence, f            1/4 T f            3/4 T f Region                (X10 19 n/cm 2,      (xl0 19 n/cm2,      (xl0 19 n/cm 2, E > 1.0 MeV)          E> 1.0 MeV)        E> 1.0 MeV)
Intennediate Shell Plates            7.84                4.888              1.900 Lower Shell Plates              7.65                4.769              1.854 IS Longitudinal Weld Seams            2042                  1.509              0.586 1S to LS Cire. Weld Seam              7.65                4.769              1.854 I
  , LS Longitudinal Weld Seams              2 .36                1.471              0.572 WCAP-17122-NP                                                                                October 2009 Revision 0
 
Table 4-5      Fluence Factor Values at tbe 1/4T and 3/4T Locations for tbe J. M. Farley Unit 1 Reactor Vessel Beltline Materials at 36 EFPY 114 T f                            3/4 Tf Region                (Xl0 19 n/cml,        1I4T FF      (XlO I9 n/cm",      3/4TFF E> 1.0 MeV)                        E> 1.0 MeV)
Intennediate Shell Plates          2.506            1.2468  .      0.974            0.99",
I Lower Shell Plates      I      2.481            1.2443          0.964            0.9899
                    '" Id Seams I      0.767            0.9255          0.298            0.6686 IS to LS Circ. Weld Seam      I      2.481            1.2443          0.964      I    0.9899 LS f .onDihl{iinlll Weld Seams  I      0.754            0.9209          0.293      i    0.6644 Table 4-6      FlueDce Factor Values at the 1I4T and 3/4T Locations for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials at 54 EFPY 114 T f                            3/4T f Region                (xl0 19 n/cm z,      l/4TFF      (d0 19 nlem1,        3/4TFF E > 1.0 MeV)                      E> 1.0 MeV)
Intennediate Shell Plates          3.697            1.3389          1.437            1.1005 Lower Shell Plates              3.622                                              1.0949 IS                                                                                        0.7738 Table 4-7      FJuence Factor Values at the 1I4T and 3/4T Locations for the J. M.        Unit 1 Reactor Vessel Beltline Materials at 72 EFPY 1I4Tf                              3/4Tf Region                (d0 19 D/cml,        1/4TFF        (dO l9 n/cml,      3/4T F.F E> 1.0 MeV)                        E> 1.0 MeV)
Intennediate Shell Plates          4.888            1.3979          1.900            1.1756 Lower Shell Plates              4.769            1.3930            1.854            I 1691 1.1138          0.586            0.8506 1.3930          t .854          1.1691 1.1070          0.572            0.8436 WCAP*17122-NP Revision 0
 
Westinghouse Non-Proprietary Class 3                                                          4-5 Table 4-8      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials through 36 EFPY at the 1I4T Location 1I4T f Material            CF          (E+19        1I4T    ARTNDT      RTNDT(lJ)      0'1    O'A  M      ART Reactor Vessel Location (OF)      n/cmI, E >        FF        (DF)        (DF)      (oF)    (DF)  eF)      eF) 1.0 MeV)
Intermediate Shell Plate                  B6903-2            91          2.506        1.2468    113.5          0          0      17    34      147 Intermediate Shell Plate                  B6903-3            82.2        2.506        1.2468    102.5          10          0      17    34      146 Lower Shell Plate B6919-1            97.8        2.481        1.2443      121.7        15          0      17    34      171 without surveillance data Lower Shell Plate B6919-1            106.7        2.481        1.2443    132.8          15          0      17    34      182 with non-credible surveillance data(a)                                                                                                                          I Lower Shell Plate                      B6919-2            98.2        2.481        1.2443    122.2          5          0      17    34      161 Intennediate Shell Longitudinal Weld          19-894A& B 126.3        0.767        0.9255    116.9        -56          17      28  65.5      126 Seams without surveillance data            Heat # 33A277 Intermediate Shell Longitudinal Weld          19-894A& B                                                                                  14(')
118.5        0.767        0.9255    109.7        -56          17          44.0      98 Seams with credible surveillance data(')      Heat # 33A277 Intermediate to Lower Shell                  11-894 98.4        2.481        1.2443    122.4        -56          17      28  65.5      132 Circumferential Weld                Heat # 6329637 20-894 A & B Lower Shell Longitudinal Weld Seams                                  91.4        0.754        0.9209      84.2        -56          17      28  65.5      94 Heat # 90099 Notes for Table 4-8:
(a) Per Appendix D of WCAP-16964-NP, Revision 0 [Reference 9], the surveillance data of the plate was deemed not credible and the surveillance data of the weld material was deemed credible. Since the surveillance data of the weld material was deemed credible, a reduced at. value is used.
WCAP-17122-NP                                                                                                                                  October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                            4-6 Table 4-9      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials througb 36 EFPY at the 3/4T Location 3/4T f Material              CF        (E+19        3/4T    ARTNDT      RTNDT(U)      0'1    (Jt.. M      ART Reactor Vessel Location                                                      2 (oF)    n/cm , E >        FF        (oF)        COF)      (OF)    COF)  (OF)      (oF) 1.0 MeV)
Intermediate Shell Plate                B6903-2              91        0.974        0.9927      90.3          0          0      17    34      124 Intermediate Shell Plate                B6903-3            82.2        0.974        0.9927      81.6          10          0      17    34      126 Lower Shell Plate B6919-1            97.8        0.964        0.9899      96.8          15          0      17    34      146 without surveillance dab!
Lower ShelJ Plate B6919-1            106.7      0.964        0.9899    105.6          15          0      17    34      155  I with non-credible surveillance data(a)                                                                                                                          I Lower Shell Plate                    B6919-2            98.2        0.964        0.9899      97.2          5          0      17    34      136 Intermediate Shell Longitudinal Weld          19-894 A & B 126.3      0.298        0.6686      84.4        -56        17      28    65.5      94 Seams without surveiUance data            Heat # 33A277 Intermediate Shell Longitudinal Weld          19-894A & B                                                                                14(3) 118.5      0.298        0.6686      79.2        -56        17            44.0      67 Seams with credible surveillance dab!(a)      Heat # 33A277 Intermediate to Lower Shell                  11-894 98.4        0.964        0.9899      97.4        -56        17      28    65.5      107 Circumferential Weld                Heat # 6329637 20-894A& B Lower Shell Longitudinal Weld Seams                                  91.4        0.293        0.6644      60.7        -56        17      28    65.5      70 Heat # 90099 Notes for Table 4-9:
(a) Per Appendix D ofWCAP-16964-NP, Revision 0 [Reference 9J, the surveillance data of the plate was deemed not credible and the surveillance data of the weld material was deemed credible. Since the surveillance data of the weld material was deemed credible, a reduced 06 value is used.
WCAP-17122-NP                                                                                                                                  October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                            4-7 Table 4-10      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials through S4 EFPY at the 1I4T Location 1I4T f Material            CF        (E+19        1I4T    ARTNDT      RTNDT(U)        al      a",  M      ART Reactor Vessel Location (OF)    niemI, E >        FF        (DF)        (OF)      (OF)    (DF)  (OF)      (DF) 1.0 MeV)
Intennediate Shell Plate                B6903-2              91        3.697        1.3389    121.8          0          0      17    34        156 Intennediate Shell Plate                B6903-3            82.2          3.697      1.3389      110.1        10          0      17    34        154 Lower Shell Plate B6919-1            97.8        3.622        1.3343      130.5        15          0      17    34      179 without surveiUance data Lower Shell Plate B6919-1            106.7        3.622      1.3343    142.4          15          0      17    34      191 with non-credible surveillance data(a)
Lower Shell Plate                    B6919-2            98.2        3.622        1.3343    131.0          5          0      17    34      170 Intennediate Shell Longitudinal Weld        19-894 A& B 126.3        1.141      1.0368    130.9        -56          17      28  65.5      140 Seams without surveillance data          Heat # 33A277 Intennediate Shell Longitudinal Weld        19-894A& B                                                                                  14(')
118.5        1.141      1.0368    122.9        -56          17          44.0      III Seams with credible surveillance data(a)      Heat # 33A277 Intennediate to Lower Shell                11-894 98.4        3.622        1.3343    131.3        -56          17      28  65.5      141 Circumferential Weld                Heat # 6329637 20-894A& B Lower Shell Longitudinal Weld Seams                                  91.4          1.116      1.0307      94 .2        -56          17      28  65.5      104 Heat # 90099 Notes for Table 4- \0:
(a) Per Appendix D of WCAP-16964-NP, Revision 0 [Reference 9], the surveillance data of the plate was deemed not credible and the surveillance data of the weld material was deemed credible. Since the surveillance data of the weld material was deemed credible, a reduced ali value is used.
WCAP-17122-NP                                                                                                                                  October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                            4-8 Table 4-11      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials through 54 EFPY at the 3/4T Location 3/4T f Material            CF          (E+l9        3/4T    ARTNDT      RTNDT(U)        al      a.1  M      ART Reactor Vessel Location (OF)      n/cm 2, E >    FF        (OF)        eF)        (OF)    (OF)  (oF)      (oF) 1.0 MeV)
Intennediate Shell Plate                B6903-2              91          1.437      1.1005    100.1          0            0      17    34        134 Intennediate Shell Plate                B6903-3            82.2          1.437      1.1005      90.5          10            0      17    34        134 Lower Shell Plate B6919-1            97.8          10408      1.0949    107. 1        15            0      17    34      156 without surveillance data                                                                                                                                  I Lower Shell Plate B6919-1            106.7          10408      1.0949    116.8          15          0      17    34      166 with non-credible surveillance data(a)
I Lower Shell Plate                    B6919-2            98.2          10408      1.0949    107.5          5            0      17    34      147 Intennediate Shell Longitudinal Weld          19-894 A& B 126.3        00443      0.7738      97.7        -56          17      28  65.5      107 Seams without surveillance data          Heat # 33A277 Intermediate Shell Longitudinal Weld          19-894 A& B                                                                                  14(')
118.5        0.443      0.7738      91.7        -56          17          44.0      80 Seams with credible surveillance data(>>          Heat # 33A277 Intennediate to Lower Shell                  11-894 9804          10408      1.0949    107.7        -56          17      28  65.5      117 Circumferential Weld                Heat # 6329637 20-894A& B Lower Shell Longitudinal Weld Seams                                  91.4          00434      0.7678      70.2        -56          17      28  65.5      80 Heat # 90099 L..---                                                                        -    -    - --        - ~ -      -
Notes for Table 4-11:
(a) Per Appendix D ofWCAP-16964-NP, Revision 0 [Reference 9], the surveillance data of the plate was deemed not credible and the surveillance data of the weld material was deemed credible. Since the surveillance data of the weld material was deemed credible, a reduced crt> value is used.
WCAP-17122-NP                                                                                                                                    October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                            4-9 Table 4-12      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 1 Reactor Vessel BeItline Materials through 72 EFPY at the 1I4T Location 1I4T f Material            CF          (E+19        1I4T    l1RT1mT      RTNDT(L')      <1.    <1A  M      ART Reactor Vessel Location                                                      1 (OF)      n/cm ,  E>      FF        (OF)        (OF)        (OF)    (oF)  (OF)      (OF) 1.0 MeV)
Intennediate Shell Plate                B6903-2            91          4.888        1.3979      127.2          0            0      17    34        161 Intennediate Shell Plate                B6903-3            82.2        4.888        1.3979      114.9        10            0      17    34        159 Lower Shell Plate B6919-1            97.8        4.769        1.3930      136.2        15            0      17    34        185 without surveillance data Lower Shell Plate B6919-1            106.7        4.769        1.3930      148.6        15            0      17    34      198 with non-<:redible surveillance data(a)
Lower Shell Plate                    B6919-2            98.2        4.769        1.3930      136.8          5            0      17    34      176 Intennediate Shell Longitudinal Weld          19-894 A & B 126.3        1.509      1.1 138    140.7        -56          17      28  65.5      150 Seams without surveillance data          Heat # 33A277 I
Intennediate Shell Longitudinal Weld        19-894 A & B                                                                                  14(a) 118.5        1.509      1.1138      132.0        -56          17          44.0      120 Seams with credible surveillance data(a)      Heat # 33A277 Intennediate to Lower Shell                11-894 98.4        4.769        1.3930      137.1        -56          17      28  65.5      147 Circumferential Weld                Heat # 6329637 20-894 A& B Lower Shell Longitudinal Weld Seams                                91.4        1.471        1.1070      101.2        -56          17      28  65.5      111 Heat # 90099 Notes for Table 4-12:
(a) Per Appendix D ofWCAP-16964-NP, Revision 0 [Reference 9], the surveillance data of the plate was deemed not credible and the surveillance data of the weld material was deemed credible. Since the surveillance data of the weld material was deemed credible, a reduced crt. value is used.
WCAP-17122-NP                                                                                                                                    October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                                    4-10 Table 4-13      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 1 Reactor Vessel Beltline Materials through 72 EFPY at the 3/4T Location 3/4T f Material            CF          (E+19        3/4T    ARTNDT      RTNDT(U)      0'[      0'.<1.      M          ART Reactor Vessel Location                                                        1 (OF)      nlcm , E>        FF        (oF)        (OF)        (oF)    (oF)      (oF)          (oF) 1.0 MeV)
Intermediate Shell Plate                  86903-2            91          1.900      1.1756    107.0          0          0      17          34            141 Intermediate Shell Plate                  B6903-3            82.2          1.900      l.l756      96.6          10          0      17          34          141 Lower Shell Plate B6919-1            97.8          1.854      1.1691      114.3        15          0        17          34          163 without surveillance data Lower Shell Plate B6919-1            106.7        1.854      I.l691    124.7          15          0        17        34            174 with non~redible surveillance data(a)
I Lower Shell Plate                      B6919-2            98.2          1.854      1.1691      114.8          5          0        17        34            154 Intermediate Shell Longitudinal Weld          19-894 A& B 126.3        0.586        0.8506    107.4        -56          17      28        65.5          117 Seams without surveillance data            Heat # 33A277 Intermediate Shell Longitudinal Weld          19-894A& B                                                                                    14(a) 118.5        0.586        0.8506    100.8        -56          17                44 .0          89 Seams with credible surveillance data(a)      Heat # 33A277 Intermediate to Lower Shell                  11-894 98.4          1.854      1.1691    115.0        -56          17      28        65.5          125 Circumferential Weld                Heat # 6329637 20-894 A& B Lower Shell Longitudinal Weld Seams                                  91.4        0.572        0.8436      77.1        -56          17      28        65.5            87 Heat # 90099 Notes for Table 4-13:
(a) Per Appendix D ofWCAP-16964-NP, Revision 0 [Reference 9], the surveillance data of the plate was deemed not credible and the surveillance data of the weld material was deemed credible. Since the surveillance data of the weld material was deemed credible, a reduced at> value is used .
WCAP-17122-NP                                                                                                                                          October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                              4-11 Contained in Table 4-14 is a summary of the limiting ART values used in the generation of the 1. M.
Farley Unit I reactor vessel poT limit curves. The limiting material for both the 1/4T location and the 3/4T location at 36, 54, and 72 EFPY is lower shell plate 86919-1 using non-credible surveillance data .
Table 4-14    Summary of the Limiting ART Values Used in the Generation of the J. M. Farley Unit 1 Heatup/Cooldown Curves Limiting ART (OF)
Lower Shell Plate B6919-1 with non-EFPY credible surveillance data 1I4T                3/4T 36                  182                  155 54                  191                  166 72                  198                  174 WCAP-17122-NP                                                                                October 2009 Revision 0
 
5          HEATUP AND COOLDOWN PRESSURE~TEMPERATURE LIMIT CURVES limit curves for normal heatup and cooldown of the primary reactor coolant system have been calculated for the pressure and temperature in the reactor vessel beltline                          using the methods discussed in Sections 3 and 4 of this report. This approved methodology is also presented in WCAP-14040-A, Revision 4.
Figures 5-1, 5-3 and 5-5                the            heatup curves without              for possible instrumentation errors using heatup rates of 60 and 100"F/hr applicable for 36, 54 and 72 EFPY, respectively, with the "Flange-Notch" requirement and using the "Axial-flaw" methodology.                                  5-4 and 5-6 present the            cooldown curves without                  for          instrumentation errors using cool down rates of 0, 20, 40, 60 and 100&deg;F/hr applicable for 36, 54 and 72 EFPY, respectively, with the "Flange-Notch" and using the "Axial-flaw"                        The heatup and cooldown curves were """pn,tpti the 1998 through the 2000 Addenda ASME Code Section XI, Appendix G Also, a pressure correction for the static and dynamic head loss between the reactor vessel belt line region and the RHR relief valves is included for both the                and cooldown curves at each EFPY. These curves incorporate a pressure correction of 27 psi for                        less than llOoP, and 60 psi for temperatures            than or equal to llO'F, associated with operation of one and three reactor coolant pumps, respectively
  .. tp,rp""", 10].
Allowable combinations of temperature and pressure for specific                                    rates are below and to the right of the limit lines shown in                  5-1 througb 5-6. Tbis is in addition to other            which must be met before the reactor is made critical, as discussed below in the following paragraphs.
The reactor must not be made critical until pressure-temperature combinations are to the right of the criticality limit line shown in Figures 5-1, 5-3 and 5-5 (heatup curves only). The straight-line portion of the criticality limit is at the minimum permissible                        for the 2485      inservice hydrostatic test as              by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic test is defined in the 1998 through the 2000 Addenda ASME Code Section XI, Appendix G as follows:
where, Kim  is the stress            factor covered by membrane                  stress,
                =  33.2 + 20.734 e[002 (T - RTNllTll, T is the minimum                  metal  tt>",nprll    and RT NDT is the metal reference nil-ductility temperature.
The criticality limit curve                                            limits for core operation in order to provide additional                      actual power production. The pressure-temperature limits for core operation (except for low power physics tests) are that: I) the reactor vessel must be at a                          equal to or higher than the minimum temperature required for the inservice hydrostatic test, and 2) the reactor vessel WCAP-17122-NP Revision 0
 
must be at least 4Q"F          than the minimum permissible                  in the                pressure temperature curve for heatup and cooldown calculated as described in Section 4 of this report. For the and cooldown curves without            for instrumentation errors, the minimum                for the inservice hydrostatic leak tests for the 1. M. Farley Unit I reactor vessel at 36 EFPY is 238"F. The criticality limits for 54 and 72 EFPY are 247&deg;F and 254&deg;F, respectively. The vertical line drawn from these          on the                        curve,              a curve 4Q"F higher than the pressure temperature limit curve, constitutes the limit for core operation for the reactor vessel.
Figures 5-1 through 5-6 define all of the above limits for ensuring              of non-ductile failure for the
: 1. M. Farley Unit I reactor vessel for 36, 54 and 72 EFPY with the "Flange-Notch" requirement, without instrumentation                and with pressure correction. The data points used for                      the heatup and cool down pressure-temperature limit curves shown in Figures 5*1 through 5-6 are presented in Tables 5-1 through 5-6.
WCAP*17122*NP Revision 0
 
Westinghouse Non-Proprietary Class 3                                    5-3 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Lower Shell Plate B6919-1 with non-credible surveillance data LIMITING ART VALUES AT 36 EFPY:                            114T, 182&deg;F 3/4T, 155&deg;F Figure 5-1        J. M. Farley Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 100&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wiKle) 2250                  ..~- ._-j --- : ..                                      I ILeak Test Limit Vi
                                                                            * *..* 1 * -      ~ .
I I
2000 . . ' --                            .+                                " 1""
                                                                                          "I I
I 1750              '
I
-Cl
~                                                            . . ->----.J.--                ~.
r 1500                                                          I
                                                                                                      -j-'
I    Acceptable C1I
  ~
OperatIon I/)
i              I        I I/)
e 1250                                                        .. ...L-_ ~  -+- ,.. I    --
Il.                                                                  I              ;        ,
  "C C1I I    Critical limit CI:I                                                      ~--":'.-1100 Oeg. F/Hr i
u 1000 - -              -r
* r
  ~
U 750            +'' - ',----t- ...
I I
500 - . _.-            r - * * ***                      Criticality Limit based on inservice hydrostatic test temperature (238&deg;F) for the service period up to 36 EFPY 250 o
o          50    100        150    200    250      300          350      400    450 500  550 Moderator Temperature (Deg. F)
WCAP-17122-NP                                                                                                October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                          5-4 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Lower Shell Plate B69l9-l with non-credible surveillance data LIMITING ART VALUES AT 36 EFPY;                              1/4T,      182&deg;F 3/4T,      155&deg;F Figure 5-2      J. M. Farley Unit 1 Reactor Coolant System Cool down Limitations (Cooldown Rates up to 100&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wIKle) 2500 Operlim Version:5,2 Run:31175 Operlim ,x1s Version: 5.2
                                                                                                                  ~
I 2250 . -                                                                                                '- j--- - -    ~
f I
2000                            -- i ---
t,                                        - f I                                                                                            i 1750            1- ,--    f - - .,-,-                                                                              , -j ,
&sect;'
                                                          ' r
-~f! 1500                      -I Unacceptable -',
Operation
                                                                                            ", L ,
I
:::s 1/1 1/1                                                        I                                ,
t f! 1250              ;-    +- ----.                    --I-    - - , "" " -  r "
I
                                                                                            " 1 - ---,
: a.                              i        :                  !                    ,I 1:1 CI.I
  ,g                    I
                , **-- i-'-
i i Acceptable Operation I
I
  ~    1000            ,    ----4----. -
i        '
iii o                                I j                                                      _ __ ...L... _ _ ,, _ _
750    ---    ' j-'  T-',-
I                  '
I I R::7.L-~+~-.l,                                                                          I          !
500                                                                      . \ .                      ... ~-- -. "~'-l-
                                                                                                                  ;          I 250                                                        ' --: - " .. , I                .. -~ ... ,- ~ - ....
                                                -100 o        50      100      150      200        250        300      350        400                450          500  550 Moderator Temperature (Oe9. F)
WCAP-17122-NP                                                                                                                    October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                              5-5 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Lower Shell Plate B6919-1 with non-credible surveillance data LIMITING ART VALUES AT 54 EFPY:                          1/4T, 191&deg;F 3/4T, 166&deg;F Figure 5-3    J. M. Farley Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and lOOOF/hr) Applicable for 54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (WIKle) 2500 Openim Version:5.2 Run:32550 Operlim.xls Version: 5.2 2250          -"'-    . - ---_. -d--._ .._ .        ~- .                          ,
ILeak Test Llmit~
I 2000        .-;- --- . - - +
                                  . I
                                  ;      I 1750          . ., .          -~  :----1" .. -'.                                              .. .. ~ '-~-'"
Unacceptable
&sect;'                                        Operation en                          ..r
: c. 1500 -
  ~
::J
                                  \
i
                                    -. T- ' "    . /_ .                r=-":-:-:---:-:-:--::- ...... 'j I/)
I/)                            .
                              --j- .-
I: . . .,                                          -_. , --, .
  ~  1250
: c.                              I      I                                                                I "tJ                              I
  ~
B 1000  .
I
                              .. j                                                                        ~ ...
  ~
o 750 500      -,      ..                                        Criticality Limit based on                          . . 1._.. ...
inservice hydrostatic test temperature (247&deg;F) for the service period up to 54 EFPY 250                                                        " 1-              *!*                            .. *t o
o        50          100    150      200      250      300    350        400          450              500          550 Moderator Temperature (Deg. F)
WCAP-17122-NP                                                                                                                        October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                                5-6 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Lower Shell Plate B6919-1 with non-credible surveillance data LIMITING ART VALUES AT 54 EFPY:                            1I4T,          191&deg;F 3/4T,          166&deg;F Figure 5-4      J. M. Farley Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100&deg;F/hr) Applicable for 54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wiKle) 2500 Operlim Version:5.2 Run:32550 Opertim .xls Version: 5.2 L. _.. I 2250 -          I        T.
                                                                        --I      *- -i 2000                                                                                      . ..L...
I I            1 I                      ,
i                                      I                      t 1
1750                  .. ----+-- - i                    .' * ~t- *    - -t-.                  --.!
&sect;'
~    1500 I    u~accePt~ble Operation                      .j    . --.J I
1 E                  ;          1
::s II)                            I
                                      -- ,.                                                                  -r II)                                                                                                            t
                            --.I.                            j --      ..1~~.~          ..-          :
E 1250 a..
  "0 t,          I i
I I
                                                                                    ..  ~            -I ' .                  - ,----
  .!                  .          I                        Acceptable J!!                  I          1                        Operation
::s 1000    . - -.. !- -~                                                            -
  ~                                                                                      !
CO o                    I 750 II r                                  +I . --+.            ... -!---    '
                                                                                                ... '--~-.  -    .
1
                                                              !                                                  iI 500                                                                                      _.+- -        .!--- ..
250 -  --- .--i-                                                -            ,
                                                                                          + - - ..,-                    .~ -
o      50      100      150    200        250        300            350          400      450          500      550 Moderator Temperature (Oeg. F)
WCAP-17122-NP                                                                                                                        October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                                    5-7 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Lower Shell Plate B6919-1 with non-credible surveillance data LIMITING ART VALUES AT 72 EFPY:                                          1/4T, 198&deg;F 3/4T, 174&deg;F Figure 5-5    J. M. Farley Unit 1 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 100&deg;F/hr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (WIKle) 2500 2250      . ... 1* ..,,--_.. ~          "              I .
                                                        ..*.--    "- ' ....--- . . L.-  .- ~-l~'--- '    'r' - ~ . -!
I I            I ILeak Test Li~it              t-+ i                              i
                                    !              j          :          I i            I                                                                  I 2000            I--r                        I
                                                              .-t-._ .- .. .
I I
I I
                                                                                        + .. ---1---1'"          J
                                                                                                                          '-1 I
i          I                                                I
                                                                                                        . Critical Limit :
1750        .J.              i 1-I
                                              ..*.** 1                                              ...-H. 60 Oe9. F/Hr ~_
                                                                                              + t - .-
1
                                                                                                        ,        I          I I
S                      I                                                                          Acceptable                I i
en              ...1                                                                              Operation                I Q.
CI)
:J 1500                        -                                                                                    -l I/)                  I            i              ;
I/)
CI)
Q.
1250      -l _.f-_.
I j..
I            I
~
  '0 CI) u 1000
:J          -- . -
I            I I
i ~-' -" - t.
I I
I                                                                    .--1 CIS                                              !
u 750                                                              -!                                      r*
500 . --.                                                                  ... Criticality Limit based on in service hydrostatic test temperature (254&deg;F) for the service period up to 72 EFPY                  I 250 *                                                                                                                  .. .. L.. ..... . ..
i o        50          100            150          200      250            300        350        400        450  500                550 Moderator Temperature (Oeg. F)
WCAP*17122-NP                                                                                                                                        October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                                                                          5-8 MATERJAL PROPERTY BASIS LIMITING MATERJAL: Lower Shell Plate 86919-1 with non-credible surveillance data LIMITING ART VALUES AT 72 EFPY:                                      1/4T,          198&deg;F 3/4T,          174&deg;F Figure 5-6      J. M. Farley Unit 1 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100&deg;F/hr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wlK lc )
2500 Operlim Version :5.2 Run :30026 Operlim.xJs Version : 5.2 I
i i... , _1I 2250            -.,.\......
I
                                    . ~~
                                                                -t              --
j              ,._... .. -.,                                  I "t ',- .' -- -- ,
i 2000                                                        -+
I
                                                                                                -+.i                                  i I
1750                ,--      _I              ..~ -                                    .. I,-
I
-en C)
I e:- 1500              .'  ,                        ~-  ~ .. . ,.              .j'          .. \          - ~ .
Unacceptable
  ...:l II)
Operation 1/1 1/1                                                  !                                                                                          ,
II) 0-1250                              ,-
                                            ,      .. -t                                      --I.
I
                                                                                                                    , _ _ 'H ""
  'C                                                                                                :
  ....co II)
                                            , __ J I
Acceptable                    I                                  i Operation "3 1000          ... .... j          .....,-- '                                          ._L ..__..
I i
                                                                                                                . ... _ .. . -I I
(.)
co (J                                                                                I
                                            ,            i                          ,i              i I
                                                        !              ,            f              \
                        - r-- ' ..- -~ . -                            . . ' _ _' --1.-._ ' ..._ , ~
750                ,
_ 1. _
I                          ,                          ...-- '        .. --"j  *.*
I I
500  .---'-1i                                                        '- 1        .....  -/ _ .
l __
                                                                                                                                  --i-          -- 4**- ----
250        . '"                                                                                                        ' .  ,        -,
I                                                                                                        i            I 0
0          50            100        150        200  250        300            350            400                450            500          550 Moderator Temperature (Oeg. F)
WCAP-17122-NP                                                                                                                                                October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                              5-9 Table 5-1    36 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App.
G Methodology (wI Kl<, wI Flange Notch, wI Pressure Correction and w/o Uncertainties for Instrumentation Errors)
Leak Test          60&deg;F/hr            60&deg;F/hr              10O&deg;F/hr      100&deg;F/hr Limit          Heatup            Criticality            Heatup      C riticaUty T        P      T          P        T          P          T        P    T          P eF)    (psig)  (oF)      (psig)    (OF)      (psig)      (OF)    (psig) eF)      (psig) 220      2000    60        0      238        0        60        0  238          0 238      2485    60      594      238        561        60      591  238        558 65      594      238        561        65      591  238        559 70      594      238        561        70      591  238        560 75      594      238        561        75      591  238        560 80      594      238        561        80      591  238        561 85      594      238        561        85      591  238        561 90      594      238        561        90      591  238        561 95      594      238        561        95      591  238        561 100      594      238        561        100    591  238        561
                        \05      594      238        561        105    591  238        561 110      594      238        561        110    591  238        561 110      561      238        561        110    558  238        561 115      561      238        561        115    560  238        561 120      561      238        561        120    561  238        561 125      561      238        561        125    561  238        561 130        561      238        561        130    561  238        561 135      561      238        561        135    561  238        561 140        561      238        561        140    561  238        561 145        561      238        561        145    561  238        561 150      561      238        561        150      561  238        561 155      561      238        561        155      561  238        561 160      561      238        561        160      561  238        561 165      561      238        561        165      561  238        561 170      561      238        561        170      561  238        561 175      561      238        902        175      561  238        730 180      561      238        944        180      561  238        758 180      561      238        990        180      561  238        790 180      902      238        1075      180      730  238        848 185      944      240        1097      185      758  240        864 190      990      245        1159      190      790  245        907 195      1041      250        1228      195      825  250        955 200      \097      255        1304      200      864  255      1008 WCAP-17122-NP                                                                            October 2009 Revision 0
 
NoY,.f"Y".....rll'l!lrv Class 3                              5-10 Leak Test
                  ,    60 0Flhr          60&deg;Flhr                      1000F/hr        lOO&deg;Flhr Limit          Heatup            Criticality                    Heatup        Criticality T        p        T          P      T            P                T        P    T          P (OF)    (psig)  (OF)    (psig)  (OF)      (psig)            (OF)    (psig) (OF)      (psig)
I 205      1159    260        1387              20            2          1066
                      "'v      , ....u  265        \458              21                        1130 215      1304    270        1535              215            270        1201
                                                                                          ~
220      1387    275        1620              220    I      275 225      1458    280        1714              225    1130  280        367 230      1535    285        1818              230    1201  285        1462
                  !  235      1620    290        1932              235    1280  290        1568 I
240      1714    295        2058              240    1367  295        1685  ,
245      1818    3          2197              245    1462  300  =[    1813 1932    305        2351          I  250    1568  305        1955 255      2058                                  255    J685  310        2111 260      2197                                *1813            315      2283 265      2351                                          1955  320        2473 270    2111 275    2283 2473 WCAP-17122-NP Revision 0
 
Westinghouse Non-Proprietary Class 3                              5-11 Table 5-2    36 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wi K. u wi Flange Notch, wi Pressure Correction and w/o Uncertainties for Instrumentation Errors)
Steady State            20&deg; F/h r.          40&deg;F/hr.              60 o F/hr.          lOOoF/hr.
T(0F)      P (psig)    T(&deg;F)      P (psig)  T(&deg;F)    P (psig)    T(&deg;F)      P (psig) T(&deg;F)      P (psig) 60            0        60            0      60          0        60            0    60            0 60          594        60          594      60        565        60          523    60          436 65          594        65          594      65        569        65          527    65          441 70          594        70          594      70        573        70          531    70          446 75          594        75          594      75        578        75          537    75          452 80          594        80          594      80        584        80          542    80          458 85        594        85          594      85        590        85          549    85          465 90          594        90          594      90        594        90          556    90          474 95          594        95          594      95          594        95          564    95          483
  ]00          594        ]00        594      100        594        100        573    100        493 105          594        105        594      105        594        105        583    105        505 110          594        110        594      110        594        110        594    110        517 110          561        110        561      110        56]        110          561    110        484 115          561        115        561      115        561        115          561    115        499 120          561        120        561      120        561        120        561    120        515 125          561        125        561      125        561        125          561    125        532 130          561        130        561      130        561        130          561    130          552 135          561        135        561      135        561        135          561    135          561 140          561        140        561      140        561        140          561    140          561 145          561        145        561      145        561        145          561    145          561 150          561        150        561      150        561        150          561    150          561 155          561        155          561    155        561        155          561    155          561 160        561        160          561    160        561        160          561    160          561 165        561        165          561    165        561        165          561    165          561 170        561        170          561    170        561        170          561    170          561 175        561        175          561    175        561        175          561    175          561 180        561        180          561    180        561        180          561    180          561 180        561        180          561    180        561        180          561    180          561 180        963        180          949    180        937        180          928    180          921 185        1004      185          993    185        985        185          980    185          980 190        1048        190        1041    190        1038      190          1038  190        1038 195        1097        195        1095    195        1095      195          1095  195        1095 WCAP-17122-NP                                                                              October 2009 Revision 0
 
3 200 205 1212 205 1212  205 1212 205 210 1279 210 1279  210 1279 215 1352 215 1352  215 220 1434 220 1434  220 1523 225 1523 225 1523  225 230 1623 230                            1623 235 1732 2                              1732 1854 240 1854 240 1988 245 1988 245 1988  245 2136 250 2136 250 2136  250 255        2299 255 2299 255 2299  255 2299 255        2299 260      2480 260 2480 260 2480  260 2480 260      2480 WCAP-17122-NP Revision 0
 
Westinghouse Non-Proprietary Class 3                                5-13 Table 5-3      54 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App.
G Methodology (wi K le , wi Flange Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation Errors)
Leak Test          60&deg;Flhr            60&deg;Flhr            100&deg;F/hr          100&deg;F/hr Limit          Heatup            Criticality          I-ieatup        Criticality T        P      T        P        T          P        T          P    T          P (OF)    (psig)  (DF)    (psig)    (OF)      (psig)    (OF)      (psig) (OF)      (psig) 229      2000    60        0        247          0      60          0    247          0 247      2485    60      594      247        561      60        574    247        541 65      594      247        561      65        574    247        541 70      594      247        56J      70        574    247        542 75      594      247        561      75        574    247        542 80      594      247        561      80        574  247        545 85      594      247        561      85        574    247        545 90      594      247        561      90        574    247        549 95      594      247        561      95        574    247        550 100      594      247        561      100      574    247        554 105      594      247        561      105      574    247        556 110      594      247        561      110      574    247        561 110      561      247        561      110      541    247        561 115      561      247        561      115      541    247        561 120      561      247        561      120      542    247        561 125      561      247        561      125      545    247        561 130      561      247        561      130      549    247        561 135      561      247        561      135      554    247        561 140      561      247        561      140        561  247        561 145      561      247        561      145        561  247        561 150      561      247        561      150        561  247        561 155      561      247        561      155        561  247        561 160      561      247        561      160        561  247        561 165      561      247        561      165        561  247        561 170      561      247        561      170        561  247        561 175      561      247        822      175        561  247        670 180      561      247        855      180        561  247        693 180      561      247        892      180        561  247        718 180      822      247        932      180        670  247        746 185      855      247        977      J85        693  247        777 190      892      247        1049      190        71 8  247        826 195      932      250        1082      195        746  250        849 200      977      255        1143      200        777  255        891 WCAP-17122-NP                                                                                October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                          5-14 Leak Test      60&deg;F/hr            60&deg;F/hr            lOO&deg;F/hr      lOO&deg;F/hr Limit        Heatup            Criticality          Heatup      Criticality T      p      T      P        T          P        T        P    T        P (OF)    (psig) (DF)    (psig)    (DF)      (psig)      eF)    (psig) (DF)    (psig) 205    1027      260        1210      205      811  260      938 210    1082      265        1284      210      849  265      990 215    1143      270        1365      215      891  270      1046 220    1210      275        1455      220      938  275      1109 225    1284      280        1552      225      990  280      1179 230    1365      285        1638      230    ]046  285      1255 235    1455      290        1734      235    ]109  290      1340 240    1552      295        1839      240    1179  295      1433 245    1638      300        1955      245    1255  300      1536 250    1734      305      2084      250    1340  305      1650 255    1839      310      2225      255    1433  3\0      1775 260    1955      315      2382      260    1536  315      ]913 265    2084                          265    1650  320      2066 270    2225                          270    ]775  325      2234 275    2382                          275    1913  330      2419 280    2066 285    2234 290    2419 WCAP-17122-NP                                                                      October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                            5-15 Table 5-4      54 EFPY Coo/down Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI K le , wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation Errors)
Steady State            20oF/hr.            40&deg;F/hr.                60&deg;F/hr.          100oFlhr.
T(OF)      P (psig)  . T(OF)    P (psig)  T(&deg;F)    P (psig)    T(OF)    P (psig) T(OF)      P (psig) 60          0          60          0      60          0          60          0      60          0 60        594          60        594      60        558          60        515      60        427 65        594          65        594      65        561          65        519      65        431 70        594          70        594      70        565          70        522      70        435 75        594          75        594      75        569          75        527      75        440 80        594          80        594      80        574          80        531      80        445 85        594          85        594      85        578          85        537      85        451
,    90        594          90        594      90        584          90        543      90        458 I
95        594          95        594      95        590          95        549      95        465 100        594        100        594      100        594        100        556    100        474 105        594        105        594      105        594        105        565    105        483 110        594        110        594      110        594        110        574    110        494 110        561        110        561      110        561        110        541    110        461 115        561          115        561      115        561        115        551    115        473 I
120          561        120        561      120        561        120        561    120        486 125          561        125        561      125        561        125        561    125        500 130          561        130        561      130        561        130        561    130        517 135        561        135        561      135        561        135        561    135        535 140          561        140        561      140        561        140        561    140        555 145        561        145        561      145        561        145        561    145        561 150        561        150        561      150        561        150        561    150        561 155        561        155        561      155        561        155        561    155        561 160        561        160        561      160        561        160        561    160        561 165        561        165        561      165        561        165        561    165        561 170        561        170        561      170        561        170        561    170        561 175        561        175        561      175        561        175        561    175          561 180        561        180        561      180        561        180        561    180        561 180        561        180        561      180        561        180        561    180        561 180        900        180        880      180        862        180        846    180        823 185        934        185        917      185        902        185        890    185        875 190        971        190        957      190        946        190        938    190        933 195        1012        195      1002      195        995        195        991    195        991 WCAP-17122-NP                                                                            October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                          5-16 Steady State        20&deg;Flhr.            40&deg;F/hr.              60&deg;F/hr.        lOO&deg;Flhr.
i
!  TeF)      P (psig) TeF)    P (psig)    T(&deg;F)    P (psig)    T(&deg;F)    P (psig) TeF)      P (psig) 200        1058    200      1051      200        1049        200      1049    200        1049 205        1108    205      1106      205        1106        205      1106    205        1106 210        1164    210      1164      210        1164        210      1164    210        1164 I  215        1225    215      1225      215        1225        215      1225    215        1225 220        1293    220      1293      220        1293        220      1293    220        1293 225        1368    225      1368      225        1368        225      1368    225        1368 230        1451    230      1451      230        1451        230      1451    230        1451 235        1542    235      1542      235        1542        235      1542    235        1542 240        1644    240      1644      240        1644        240      1644    240        1644 245        1756    245      1756      245        1756        245      1756    245        1756 250        1879    250      1879      250        1879        250      1879    250        1879 255        2016    255      2016      255        2016        255      2016    255        2016 260        2167    260      2167      260        2167        260      2167    260        2167 265        2334    265      2334      265        2334        265      2334    265        2334 WCAP-17122-NP                                                                      October 2009 Revision 0
 
Westinghouse Non-Proprielary Class 3                            5-17 Table 5-5    72 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App.
G Methodology (wi Kit, wi Flange Notch, wi Pressure Correction and w/o Uncertainties for Instrumentation Errors)
Leak Test          60&deg;F/hr            60&deg;F/hr              100&deg;Flhr        100&deg;F/hr Limit          Heatup            Criticality            Heatup      Criticality T        P      T        P        T          P        T        P    T        P eF)    (psig)  eF)      (psig)    eF)      (psig)      (OF)    (psig) (OF)    (pslg) 236      2000    60        0      254          0        60        0    254        0 254      2485    60      594      254        561        60      563    254      530 65      594      254        561        65      563    254      530 70      594      254        561        70      563    254      530 75      594      254        561        75      563    254      532 80      594      254        561        80      563    254      533 85      594      254        561        85      563    254      534 90      594      254        561        90      563    254      536 95      594      254        561        95      563    254      538 100      594      254        561        100    563    254      541    ,
105      594      254        561        105    563    254      544 110      594      254        561        110    563    254      548 110      561      254        561        110    530    254      550 115      561      254        561        115    530    254      556 120      561      254        561        120    530    254      558 125      561      254        561        125      532  254      561
[30      561      254        561        130      534  254      561 135      561      254        561        135      538  254      561 140      561      254        561        140      544  254      561 145      561      254        561        145      550  254      561 150      561      254        561        150      558  254      561 155      561      254        561      155      561  254      561 160      561      254        561        160      561  254      561 165      561      254        561      165      561  254      561 170      561      254        561      170      561  254      561 175      561      254        773        175      561  254      634 180      561      254        801      180      561  254      653 180      561      254        833      180      561  254      675 180      773      254        867      180      634  254      698 185      801      254        905      185      653  254      725 190      833      254        948      190      675  254      754 195      867      254        1036      195      698  254      815 200      905      255        1046      200      725  255      822 WCAP-17122-NP                                                                            October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                            5-18 Leak Test      60&deg;F/hr            60&deg;F/hr              lOO&deg;F/hr        lOO&deg;F/hr Limit          Heatup          Criticality            Heatup      Criticality T        p      T        P        T          P          T        P    T          P (OF)    (psig) (OF)    (pslg)    (OF)      (psig)      (OF)    (pslg) (OF)      (psig) 205    948      260        1103      205      754  260        861 210    995      265        1166      210      786  265      905 215    1046      270        1236      215      822  270      953 220    1103      275        1312      220      861  275      1007 225    1166      280        1397      225      905  280      1066 230    1236      285        1490      230      953  285      1131 235    1312      290        1594      235    1007  290      1203 240    1397      295        1694      240    1066  295      1282 245    1490      300        1795      245    1131  300      1370 250    1594      305        1907      250    1203  305      1467 255    1694      310      2030        255    1282  310      1573 260    1795      315      2166        260    1370  315      1691 265    1907      320      2316        265    1467  320      1820 270    2030      325      2482        270    1573  325      1963 275    2166                            275    1691  330      2121 280    2316                            280    1820  335      2295 285    2482                            285    1963  340 290    2121 295    2295 WCAP-17122-NP                                                                        October 2009 Revision 0
 
Westinghouse Non-Proprietary Class 3                          5-19 Table 5-6    72 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI Kle , wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation Errors)
Steady State            20&deg;F/hr.            40&deg;F/hr.                60&deg;F/hr.        lOO&deg;F/hr.
T(OF)      P (psig)    T(OF)    P (psig)    T(&deg;F)    P (psig)      T(&deg;F)    P(psig) T(&deg;F)    P (psig) 60          0        60          0        60          0          60          0    60          0 60        594        60        594        60        554          60        511    60        422 65        594        65        594        65        557          65        513    65        425 70        594        70        594        70        560          70        517    70        428 75        594        75        594        75        563          75        520    75        432 80        594        80        594        80        567          80        524    80        437 85        594        85        594      85        571          85        529    85        442 90        594        90        594        90          576        90        534    90        447 95        594        95        594      95        581          95        539    95        454 100        594        100        594      100        587        100      546    100        461 105        594        105        594      105        594        105      553    105        469 110        594        110        594      110        594        110      560    110        478 110          561        110        561      110        561        110      527    1\0        445 115          561        115        561      115        561        115      536    115        455 120          561        120        561      120        561        120      546    120        466 125          561        125        561      125        561        125      557    125        479 i  130          561        130        561      130        561        130      561    130        493 135        561        135        561      135        561        135      561    135        509 140          561        140        561      140        561        140      561    140        526 145        561        145        561      145        561        145      561    145        546 150        561        150        561      150        561        150      561    150        561 155        561        155        561      155        561        155      561    155        561 160        561        160        561      160        561        160      561    160        561 165        561        165        561      165        561        165      561    165        561 170        561        170        561      170        561        170      561    170        561 175        561        175        561      175        561        175      561    175        561 180        561        180        561      180        561        180      561    180        561 180        561        180        561      180        561        180      561    180        561 180        858        180        834      180        812        180      792    180        758 185        887        185        866      185        847        185      830    185        803 190        920        190        901      190        885        190      871    190        853 195        956        195        940      195        927        195      918    195        909 WCAP-17122-NP                                                                          October 2009 Revision 0
 
                              "r('\I~rlpt"r\l Class 3 lOO&deg;F/br.
P(psig) T(&deg;F)    P (psig) 969    200        969 205                    1026        205  1026    205        1026 210 1084 210            1084        210                    1084 1141 215 1141 215            1141        215 220        1200 220 1200 220            1200 225        1265 225 1265 225            1265 230        1337 230 1337 230            1337 235        1417 235 1417 235            1417        235 240        1505 240 1505 240            1505        240 1602 245 1602 245            1602        245                    1602 1710 250 1710 250            1710        250                    1710 1828 255 1828 255            1828        255                    1828 1960 260 1960 260            1960        260 265            2105        265 2443 WCAP- I7122-NP                                                      October Revision 0
 
6      REFERENCES
: 1. Regulatory Guide I      Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U. S.
Nuclear Regulatory Commission, May 1988.
: 2. WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," 1. D. Andrachek, et aI., May 2004.
: 3. Appendix G to the 1998 through the 2000 Addenda Edition of the ASME Boiler and Pressure Vessel (B&PV) Code, Section XI, Division I, "Fracture Toughness Criteria for Protection Against Failure."
: 4. Westinghouse Letter L1'R-REA-09-112, Revision 1, "]. M. Farley Units I and 2 Updated BeltHne Fluence," B. W.                      21,2009.
: 5. Code of Federal Regulations, 10 CFR Part            Appendix    "Fracture Toughness Requirements,"
U.S. Nuclear Regulatory                    Washington, D.      Federal          Volume 60, No.
dated December \9, 1995.
: 6. Westinghouse Letter ru.... n.-'vu-    Revision 0, "Southern Nuclear Operating            Joseph M.
Farley Nuclear Plant Unit          Transmittal of Pressure Temperature Limits Report," E. C. Arnold, October 2, 2008.
: 7. WCAP-88 10, Revision 0, "Southern Alabama Power Company Joseph M.                  Nuclear Plant Unit No. I Reactor Vessel Radiation Surveillance Program," ]. A. Davidson, et. ai., December 1976.
: 8. ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NB, Section NB-2300, "Fracture                Requirements for Material."
: 9. WCAP-16964-NP, Revision 0, "Analysis of Capsule Z from the Southern Nuclear Company Joseph M. Farley Unit 1 Reactor Vessel Radiation Surveillance Program," J. M.
Conermann and M. A. Hunter, October 2008,
: 10. WCAP*14689, Revision 6, "Farley Units I and 2 Heatup and Cooldown Limit Curves for Normal Operation and PTLR Support Documentation," T. 1. Laubham, April 2001.
WCAP.. 17122-NP Revision 0
 
_l-'r",nnpt~Ml  Class 3 APPENDIX A THERMAL STRESS INTENSITY FACTORS (KIT)
The following pages contain the thennal stress intensity          (KI!) for the maximum and cooldown rates. The vessel radii to the 1/4T and 3/4T locations are as follows:
..      114T Radius  80.625"
..      3/4T Radius"" 84.562" WCAP-17122-NP Revision 0
 
3 Table A-I  KII Values for 36, 54, and 72 EFPY 100&deg;FIhr Hestup Curves (w/o Margins for Instrument Errors)
Vessel Temperature                        Vessel Temperature Water                          1/4T Thermal Stress                    J/4T Thermal Stress
            @ 1I4T Location for                        @ J/4T Location for Temp.                            Intensity Factor                        Intensity Factor (oF)    lOOoF/hr Heatup                          lOO"F/hr Heatup (KSI SQ. RT. IN.)                      (KSI SQ. RT. IN.)
("F)                                      ("F) 60          56.130                -0.987              55.065              0.493 65          58.927                -2.377              55.425              1.455 70          62.129                -3.521            56.315              2.377 75          65.562                  -4.586            57.748              3.208 on          69.262                -5.475              59.641              3.929 85          73.079                -6.273              61.944              4.558 90          71.089                  -6.948            64.601              5.101 95          81.193                -7.553              67.562              5.578 100          85.435                -8.069            70.788              5.991 89.755                -8.531            74.238              6.353 94.171                -8.928            77.881              6.671 98.650                -9.285            81.690              6.951 103.196                -9.594            85.642              7.198 107.790                -9.875            89.717              7.418 110        I PAll                -10.118              93.898              7.612 11"        117.114              -10.341              98.171              7.785
                  ~
140                              -10.535              102.523            7.940
                                        -10.715              106.944            8.080 150                              -10.873              111.424            8.206 155                              -11.020              115.955            8.320 160        140.945              -I Ll51              120.529            8.423 165        145.773                -11.275            125.142            8.519 170        150.613                -11.385            129.788            8.606 155.467              -11.491              134.462            8.687 180          160.330              -11.586            139.161            8.762          i 185          165.204              -11.678            143.881            8.833 190          170.083              -11.763            148.620            8.899 195          174.972              -11.845            153.374            8.961 200          179.864              -11.920            158.143            9.020 205          184.764                11.995            162.923            9.077 210          189.666              -12.064            167.713            9.131 WCAP-17122-NP Revision 0
 
Westinghouse Non-Proprietary Class 3                      A-3 Table A-2  KII Values for 36,54, and 72 EFPY 100&deg;F/hr Cooldown Curves (w/o Margins for Instrument Errors)
Vessel Temperature      lOOoF/hr Cooldown Water      @ 1/4T Location for    1/4T Thermal Stress Temp.      lOO&deg;F/hr Cooldown        Intensity Factor eF)              eF)            (KSI SQ. RT. IN.)
210            232.426                  13.510 205            227.352                  13.454 200            222.278                  13.398 195            217.204                  13.342 190            212. 131                13.286 185            207.057                  13.230 I
I    180            201.983                  13.175 175            196.909                13.119 170            191.836                13.063 165            186.762                13 .008 160            181.688                12.952 155            176.615                12.897 150            171.541                12.842 145            166.468                12.786 J40            161.395                12.731 135            156.322                12.676 130            151.249                12.622      [
125            146.176                12.567 120            141.103                12.5J2 115            \36 .031                12.457 110            130.958                12.403 i    105            125 .886                12.349 100            120.813                12.295 95            115.741                12.240 90            110.669                12. 187 I    85            105 .597                12.133 80            100.526                12.079 75            95.454                12.025 70            90.382                  J 1.972 65            85 .311                J 1.919 60            80.241                11.865 WCAP-17122-NP                                                                  October 2009 Revision 0
 
Joseph M. Farley Nuclear Plant Request to Revise Technical Specifications Associated with the Low Temperature                Protection System and the Pressure and Temperature Limits Report EnclosureS WCAP-17123-NP, Revision 1, "J. M. Farley Unit 2 Heatup and Cool down Limit Curves for Normal Operation," July 2011
 
Westinghouse Non-Proprietary Class 3 WCAP-17123-NP                                      July 2011 Revision 1 J. M. Farley Unit 2 Heatup and Cooldown Limit Curves for Normal Operation (e Westinghouse
 
WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-17123-NP Revision 1 J. M. Farley Unit 2 Heatup and Cooldown Limit Curves for Normal Operation E.J.Long*
Aging Management and License Renewal Services July 2011 Reviewer:      B. A. Rosier*
Aging Management and License Renewal Services Approved:      A. E. L1oyd*. Acting Manager and License Renewal Services "Electronically approved records are authenticated in the electronic document management system.
Westinghouse Electric Company LLC 1000                Drive
:r"nh"nrv Township, PA 16066
                                  &#xa9; 2011                  Electric Company LLC All Rights Reserved
 
Class 3                                II RECORD OF REVISION Revision 0:          Issue Revision I: Revision 0 of this          incorrectly documents the heat number        the Lower Shell Longitudinal Weld Seams 20-923 A & B as 83649. The correct heat number for this material is 83640. This typographical error was documented in the Westinghouse Corrective Actions Process (CAPs) as Issue            (IR) # 11-165-C017. This Revision makes the correction to this material's heat number to        this CAPs YR.
WCAP-17123-NP Revision I
 
P''''''MP''''''' Class 3                                                          iii TABLE OF CONTENTS LIST OF TABLES ....................................................................................................................................... iv LIST OF FIGURES ..................................................................................................................................... vi EXECUTIVE
 
==SUMMARY==
......................................................................................................................... vii INTRODUCTION ........................................................................................................................ J-l 2    FRACTURE TOUGHNESS PROPERTIES ................................................................................. 2-1 3      CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS ................ 3-1 3.l  OVERALL APPROACH ................................................................................................. 3-1 3.2  METHODOLOGY FOR PRESSURE-TEMPERATURE LIMIT CURVE DEVELOPMENT ............................................................................................................ 3-1 3.3  CLOSURE HEADNESSEL FLANGE REQUIREMENTS ........................................... 3-5 4    CALCULATION OF ADJUSTED REFERENCE TEMPERATURE ......................................... .4-1 5      HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES ....................... 5-1 6      REFERENCES ............................................................................................................................. 6-1 APPENDIX A              Thermal Stress Intensity Factors (Kit) ....................................................... A-l WCAP-17123-NP Revision I
 
LIST OF TABLES Table 2-1  Summary of the Best Estimate Cu and Ni                                    Percent and Initial RT NOT Values for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials ..................................................... 2-2 Table 2-2  Summary of the Initial RT NDT Values for the J. M.                                      Unit 2 Closure Head and Vessel Flange .............................................................................................................................. 2-3 Table 2-3  Summary of the J. M.                      Unit 2 Reactor Vessel Beltline Material Chemistry Factors per Regulatory Guide 1.99, Revision 2 [Reference I] ..................................................... 2-3 Table 4-1  Fluence Values for the J. M.                        Unit 2 Reactor Vessel Beltline Materials .............. ..4-2 Table 4-2  Fluence Values for the Vessel Surface, 114T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 36 EFPY............................................................ ..4-3 Table 4-3  Fluence Values at the Vessel                            1/4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 54 EFPY................................................................ .4-3 Table 4-4  Fluence Values at the Vessel Surface, 1/4T and 3/4T Locations for the 1. M. Farley Unit 2 Reactor Vessel Beltline Materials at 72 EFPY................................................................ .4-3 Table 4-5  Fluence Factor Values at the 1I4T and 3J4T Locations for the 1. M. Farley Unit 2 Reactor Vessel Beltline Materials at 36 EFPY ............................................................................. .4-4 Table 4-6    Fluence Factor Values at the 1/4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 54 EFPY ............................................................................. .4-4 Table 4-7  Fluence Factor Values at the 1/4T and 3/4T Locations for the 1. M.                                                Unit 2 Reactor Vessel Beltline Materials at. 72 EFPY Table 4-8              Reference Temperature Evaluation for the 1. M.                                          Unit 2 Reactor Vessel Beltline Materials through 36 EFPY at the 1/4T Location ............................................ ..4-5 Table 4-9    Adjusted Reference Temperature Evaluation for the 1. M. Farley Unit 2 Reactor Vessel Beltline Materials through 36 EFPYat the 3/4T Location ............................................. .4-6 Table 4-10  Adjusted Reference Temperature Evaluation for the 1. M.                                            Unit 2 Reactor Vessel BeltHne Materials                      54 EFPYat the 1/4T Location ............................................. .4-7 Table 4-11  Adjusted Reference                              Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials through 54 EFPY at the 3/4T Location ............................................. .4-8 Table 4-12  Adjusted Reference                              Evaluation for the 1. M.                          Unit 2 Reactor Vessel Beltline Materials through 72 EFPY at the 1/4T Location .............................................. 4-9 Table 4-13  Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials                    72 EFPY at the 3/4T Location ........................................... .4- JO Table 4-14  Summary of the                      ART Values Used in the Generation of the J. M. Farley Unit 2 Heatup/Cooldown Curves ......................................................................... ,.................. ,.4-11 WCAP-17123-NP                                                                                                                            July 2011 Revision I
 
Class 3                                                          v Table 5-1    36 EFPY            Curve Data Points                  the 1998 through the 2000 Addenda                                  G Methodology (wI Klc. wi              Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation Errors) .................................................................................................... 5-9 Table 5-2    36 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App.
G Methodology (wi Kle , wi                Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation Errors) ............................................................................................ 5-11 Table 5-3    54 EFPY            Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI K le , wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation                                .......................................................................... 5-13 Table 5-4    54 EFPY Cooldown Curve Data Points                          the 1998                    the 2000 Addenda App.
G Methodology (wI KIc. wI                Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation          ............................................................................................ 5-\5 Table 5-5    72 EFPY Heatup Curve Data Points                      the 1998 through the 2000 Addenda App. G Methodology (wi K Ic , wI              Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation                                                                                                  ....... 5-17 Table 5-6    72 EFPY Cooldown Curve Data Points                        the 1998                    the 2000 Addenda G Methodology (wi        wI Flange Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation          ............................................................................................ 5-19 Table A-I    Kit  Values for    54 and 72 EFPY 100&deg;F/hr Heatup Curves (w/o Margins for Instrument Table A-2    KI! Values for 36,54 and 72 EFPY IOO&deg;F/hr Cooldown Curves (w/o                                              for Instrument                                                                        ........................................ A-3 WCAP-17123-NP Revision I
 
3 LIST OF FIGURES 5-1  J. M. Farley Unit 2 Reactor Coolant System                                      Limitations (Hearup Rates of 60 and 1OO&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction)                    the 1998 through the 2000 Addenda App. G Methodology (wIK,e) .............................................................................................................................. 5-3 Figure 5-2  J. M. Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to WO&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction)                        the 1998 through the 2000 Addenda App. G Methodology (WIKle) ....................................................................................................... 5-4 Figure 5-3  J. M.            Unit 2 Reactor Coolant System Hearup Limitations (Hearup Rates of 60 and IOO&deg;F/hr)                    for 54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wlKre) .............................................................................................................................. 5-5 5-4  J. M.            Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to WO&deg;F/hr) Applicable for 54 EFPY (without                                        for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wIKle) ....................................................................................................... 5-6 Figure 5-5  J. M. Farley Unit 2 Reactor Coolant System Hearup Limitations                                                    Rates of 60 and 100&deg;F/hr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology Figure 5-6    I. M. Farley Unit 2 Reactor Coolant System Cool down Limitations (Cooldown Rates up to JOO&deg;F/hr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction)                      the 1998 through the 2000 Addenda                                  G Methodology (WIKle) ....................................................................................................... 5-8 WCAP-17 J23-NP                                                                                                                            July 2011 Revision I
 
N"".l'rnnn(,j'lIl'V Class 3                            vii EXECUTIVE
 
==SUMMARY==
 
This report provides the methodology and results of the generation of heatup and cooldown pressure temperature (P-T) limit curves for normal operation of the 1. M. Farley Unit 2 reactor vessel. The heatup and cooldown PoT limit curves were              using the              adjusted reference          (ART) values pertaining to 1. M. Farley Unit 2. The highest ART values pertaining to an axial weld or a were those of intermediate shell plate B7212-1 (using surveillance            at both 1/4 thickness (1I4T) and 3/4 thickness (3/4T) locations. The poT curves              use of the  methodology detailed in the 1998 through the 2000 Addenda Edition of the ASME Code, Section XI, Appendix          and ASME Code Case N -641.
The P-T limit curves were generated for 36, 54 and 72 EFPY using heatup rates of 60 and 100&deg;F/hr and cooldown rates of 0,        40, 60 and lOO&deg;F/hr. The curves were developed without margins for instrumentation errors. The curves include a pressure correction for the static and dynamic head loss between the reactor vessel beltline region and the Residual Heat Removal (RJIR) relief valves. These curves can be found in Figures 5-1 through 5-6. Appendix A contains the thermal stress            factors for the maximum heatup and cooldown rates for each EFPY term.
WCAP-17123-NP
 
3 1        INTRODUCTION Heatup and cooldown PoT limit curves are calculated using the adjusted RTNDT (reference nil-ductility temperature) corresponding to the limiting beltline              material    the reactor vessel. The adjusted RTNDT        the limiting material in the core            of the reactor vessel is detennined by using the unirradiated reactor vessel material fracture toughness properties,                      the radiation-induced t.RTNDT, and adding a margin. The un irradiated RTNDT is designated as the higher of either the drop nil-ductility transition              (NDTT) or the temperature at which the material exhibits at least 50 ft-Ib of impact energy and 35-mB lateral                    (nonnal to the major              direction) minus 60&deg;F.
RTNDT increases as the material is exposed to fast-neutron radiation.                  to find the most limiting at any time period in the reactor's        t.RTNDT due to the radiation exposure associated with that time period must be added to the un irradiated                (IRTNDT). The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel)                  in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials" [Reference I].
Guide 1.99, Revision 2, is used for the calculation of Adjusted Reference Temperature values (IRT NDT + t.RTNDT + margins for uncertainties) at the surface, 1/4T and 3/4T locations, where T is the thickness of the vessel at the belt line        measured from the clad/base metal interface.
The heatup and cooldown poT limit curves documented in this report were generated using the most limiting ART values and the NRC approved methodology documented in WCAP-14040-A, Revision 4 "Methodology Used to                Cold              Mitigating          Setpolnts and ReS Heatup and Cooldown Limit Curves."                        the K10 methodology of the 1998 through the 2000 Addenda Edition of ASME              Section Xl, Appendix G [Reference 3] was used.
The calculated ART values for          54 and 72 EFPY are documented in Tables 4-8 through 4-13 of this report. The design basis fluence projections are based on the values verified by Westinghouse in letter LTR-REA-09-112, Revision I [Reference 4].
The purpose of this            is to present the calculations and the development of the J. M.            Unit 2 heatup and cooldown poT limit curves for 36, 54 and 72 EFPY. This report documents the calculated ART values and the developmel'it of the P-T limit curves for nonnal operation. The P-T curves herein were generated without instrumentation errors. The P-T curves contain a pressure correction for the static and dynamic head loss between the reactor vessel beltline region and the RRR relief valves. The poT curves include                            limits for the vessel flange        per the requirements of 10 CFR Part 50, Appendix G WCAP-17123-NP                                                                                          July2011 Revision I
 
Prnnr;,.I".v Class 3                              2-1 2      FRACTURE TOUGHNESS PROPERTIES The fracture-toughness properties of the ferritic materials in the J. M. Farley Unit 2 reactor vessel are in Tab Ie 2*1. The unirradiated RTNDT values for the closure head and vessel flange are documented in Table 2-2.
The Regulatory Guide 1.99, Revision 2 methodology used to develop the                and cooldown P-T limit curves documented in this            is the same as that documented in WCAP*14040-A, Revision 4
[Reference 2]. The chemistry factors (CFs) were calculated using Regulatory Guide 1.99 Revision 2, Position 1.1 and 2.1. Position 1.1 uses the tables from the Regulatory Guide along with the best estimate copper and nickel weight            which are              in Table 2-1. Position 2.1 CFs are calculated based on the Charpy testing of irradiated surveillance capsule                  Table 2*3 summarizes the Position 1.1 and 2.1 CFs determined for the J. M.        Unit 2 beltline materials.
WCAP-17123-NP Revision I
 
Westinghouse Non-Proprietary Class 3                                    2-2 Table 2-1      Summary of the Best Estimate Cu and Ni Weight Percent and Initial RTI'iDT Values for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials Fracture Chemical Material Description(a)                                                Toughness Composition(a)
Property(a)
Cu          Ni        Initial RT NDT Reactor Vessel Location            Material ID #
wt. %    wt. %              CF)
Intermediate Shell (IS) Plate            B7203-1              0. 14      0.60              15 Intermediate Shell Plate              B7212-l              0.20      0.60              -10 Lower Shell (LS) Plate                B7210-1              0.13      0.56              18 Lower Shell Plate                  B7210-2              0.14      0.57              10 19-923 A                                        _56(b)
IS Longitudinal Weld Seam                                    0.027      0 .947 (Heat # HODA) 19-923 B IS Longitudinal Weld Seam                                    0.027      0.913              -60 (Heat # BOLA) 19-923 B
          -?Surveillance Data (Heat # BOLA) 0.028      0.89              -60 I
11-923 IS to LS Circ. Weld Seam                                    0.153      0.077              -40 (Heat # 5P5622) 20-923 A&B LS Longitudinal Weld Seams                                    0.051      0.096              -70 (Heat # 83640)
Notes for Table 2-1 :
(a) Information source for these material properties is WCAP-14689, Revision 6 [Reference 6). unless otherwise noted.
(b) Estimated per 10CFR 50.61 [Reference 8].
WCAP-17123-NP                                                                                          July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                  2-3 Table 2-2      Summary of the Initial RT I\OT Values for the J. M. Farley Unit 2 Closure Head and Vessel Flange Material Identification                        Initial RTNDT Closure Head Flange(a)                              -60&deg;F Vessel Flange(b)                                60&deg;F Notes for Table 2-2 :
(a) Original J. M. Farley Closure Head was replaced. New material properties are contained in MHI SNC-0455F2 [Reference 7].
(b) Initial RT NOT for the Vessel Flange is taken from WCAP-14689. Revision 6 [Reference 6].
Table 2-3      Summary or the J. M. Farley Unit 2 Reactor Vessel Beltline Material Chemistry Factors per Regulatory Guide 1.99, Revision 2 [Rererence I)
CFper      CFper Material Vessel Material                                      Position  Position lD#
1.1 ('F)    2.1 CF)
Intermediate Shell Plate                B7203-1            100.0        -
Intermediate Shell Plate                B7212-1            149.0      144.6 I          Lower Shell Plate                    B72IO-1            89.8        -
I Lower Shell Plate                    B7210-2            98.7        -
19-923 A IS Longitudinal Weld Seam (Heat # HODA) 36.8        -
J 9-923 IJ IS Longitudinal Weld Seam                                    36.8      20.7 (Heat # BOLA) 19-923 B
                      ~Surveillanee    Data (Heat # BOLA) 38.2        -
1 L-923 IS to LS eire. Weld Seam (Heat # 5P5622) 74.1        -
20-923 A&B LS Longitudinal Weld Seam (Heat # 83640) 37.3        -
WCAP-17123-NP                                                                                          July 20]1 Revision I
 
3        CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS 3.1      OVERALL APPROACH The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates that the total stress intensity factor,      for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be greater than the reference stress intensity                  K1e
* for the metal temperature at that time.        is obtained from the reference            toughness curve, defined in the 1998 through the 2000 Addenda                  of Section XI, Appendix G of the ASME Code                      3].
The Kic curve is given by the following equation:
K IC  33.2 + 20.734 *e[002(T -RT,mr))                            (I)
: where, (ksivin.)        reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT This K 1c curve is based on the lower bound of static critical Kr values measured as a function of temperature on specimens of SA-533 Grade B Class 1, SA-508-1,                      and SA-508-3 steel.
3.2      METHODOLOGY FOR PRESSURE-TEMPERATURE LIMIT CURVE DEVELOPMENT The ITlH,prnilna equation for the heatup-cooldown ,m""v",,, is defined in Appendix G of the ASME Code as follows:
(2)
KIm          stress            factor caused by membrane (pressure) stress stress intensity factor caused by the thermal gradients reference stress intensity factor as a function ofthe metal tenl0erature T and the metal reference nil-ductility temperature RTNDT C            2.0 for Level A and Level B service limits C            1.5 for hydrostatic and leak test conditions            which the reactor core is not critical WCAP-17123-NP
 
For membrane tension, the corresponding                        for the postulated defect is:
Kim        M", X (pR; II)                                                        (3) where, Mm for an inside surface flaw is                          by:
Mm              1.85 for              < 2, Mm              0.926.fi          for  2:::;.fi :::; 3.464, 3.21 for              > 3.464 Similarly, Mm for an outside surface flaw is given by:
Mm              1.77 for        .fi < 2, Mm              0.893.fi for 2'5...Ji '5. 3.464, Mm              3.09 for        .fi  > 3.464 and p    internal pressure (ksi), Ri              vessel inner radius (in.), and t    vessel wall thickness (in.).
For h",r,ti .."" stress, the ('(If'''f''':,,Clnl1. K j for the postulated defect is:
where Mb is two-thirds ofM m                                      (4)
The maximum K, produced                      radial thermal gradient for the postulated inside surface defect of G-2120 is:
:= 0.953x 10-3 x CR x                                                                                                (5) where CR is the cooldown rate in &deg;Flhr., or for a postulated outside surface defect Kit    O.753xlO* 3 X HU x                                                                                                (6) where HU is the heat up rate in &deg;Flhr.
The through-wall temperature difference associated with the maximum thermal KI can be detennined from ASME Code, Section XI, Appendix G,                              G-2214-1. The temperature at any radial distance from the vessel surface can be determined from ASME Code, Section Xl, Appendix G, Fig. G-2214-2 for the maximum thenna! K,.
WCAP-17123-NP                                                                                                          July 2011 Revision L
 
(a)            maximum thermal            relationship and the temperature relationship in Fig. G-2214-1 are applicable only for the conditions                  in G-2214.3(a)( I) and (b)      Alternatively, the Kl for radial thermal gradient can be calculated for any thermal stress distribution and at any "'''~'VU,,,,y time                cooldown for a V4-thickness inside surface defect the relationship:
                    == (L0359Co + v.v..., ...... .....,  +          +0.38550)*                                (7) or similarly, Kit during              for a Y4-thickness outside surface defect          the relationship:
                                    +O.630C! +OA8IC2 + OAOIC,) >10                                              (8) where the coefficients        Ch          and C) are determined from the thermal stress distribution at any specified time during the heatup or cooldown using the form:
Co + CI(X / a) +                                                                  (9) and x is a variable that    rl''''irl'~'l'nlt<: the radial distance (in.) from the appropriate (Le., inside or outside) surface to any            on the crack front and a is the maximum crack Note that Equations 3, 7, and 8 were implemented in the OPERLIM                            code, which is the program used to            the pressure-temperature (P-T) limit curves. The P-T curve methodology is the same as that described in WCAP-14040-A, Revision 4 "Methodology Used to                                    Cold Overpressure Mitigating            Setpoints and RCS Heatup and Cooldown Limit Curves"                                2] Section 2.6 (equations 2.6.2-4 and 2.6.3-1).
At any time during the heatup or cooldown                              is determined    the metal              at the tip of a postulated flaw          postulated flaw has a depth of 1/4 of the section thickness and a length of 1.5 times the section thickness per ASME Code, Section Xl, paragraph G-2(20), the appropriate value for and the reference fracture toughness curve (Equation I). The thermal stresses resulting from the through the vessel wall are calculated and then the corresponding (thermal) stress for the reference flaw are computed. From Equation 2, the pressure stress intensity from these, the allowable pressures are calculated.
For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference 1/4T flaw of Appendix G to Section XI of the ASME Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the vessel wall because the thermal gradients, which increase with increasing cooldown rates, produce tensile stresses at the inside surface that would tend to open (propagate) the                      flaw. Allowable curves are                for steady-state                      and each finite cooldown rate curves, composite limit curves are constructed as the minimum of the steady-state or finite rate curve for each cooldown rate specified.
WCAP-17123-NP                                                                                                  July 2011 Revision 1
 
Class 3 The use of the composite curve in the cooldown                    is necessary because control of the cooldown procedure is            on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw. During cooldown, the 114T vessel location is at a            temperature than the fluid adjacent to the vessel inner diameter. This condition, of course, is not true for the steady-state situation. It follows that, at any          reactor coolant temperature, the AT (temperature) across the vessel wall developed during cooldown results in a higher value of      at the l/4T location for finite cooldown rates than for                  operation. Furthermore, if conditions exist so that the increase in KIc exceeds Kit. the calculated allowable pressure during cooldown will be          than the steady-state value.
The above procedures are needed because there is no direct control on temperature at the 1/4T location and, therefore, allowable pressures could be lower if the rate of cooling is decreased at various intervals a cooldown ramp. The use of the                          curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.
Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowable pressure-temperature relationships are developed for steady-state conditions as weH as finite heatup rate conditions assuming the presence of a 114T defect at the inside of the wall. The heatup results in compressive stresses at the inside surface that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant temperature; therefore, the      for the inside 1/4T flaw during          is lower than the K 1c for the flaw during steady-state conditions at the same coolant                    During heatup, especially at the end of the conditions may exist so that the effects of compressive thermal stresses and lower K1c values do not offset each other, and the                            curve based on                  conditions no lower bound of all similar curves for finite heatup rates when the 114T flaw is considered.
cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for                  and finite        rates is obtained.
The third portion of the heatup analysis concerns the calculation of the pressure~temperature limitations for the case in which a 114T flaw located at the 1/4T location from the outside surface is assumed. Unlike the situation at the vessel inside            the thermal              established at the outside surface during heatup            stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heat up and the time                    coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are tensile and increase with rates, each heatup rate must be            on an individual basis.
Following the generation of                              curves for the steady-state and finite heatup rate U""'V"~. the final limit curves are produced by constructing a                curve based on a DOIm~nV*DOI comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the least of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.
WCAP-17123-NP Revision I
 
Class 3                                3-5 3.3      CLOSURE HEADNESSEL FLANGE REQUIREMENTS 10 CFR Part 50, Appendix G [Reference 5] addresses the metal temperature of the closure head and vessel flange regions. This rule states that the metal temperature of the closure flange        must exceed the material unirradiated        by at least 120&deg;F for normal operation when the pressure exceeds 20          of the            hydrostatic test pressure (3107      for J. M.        Unit 2), which is calculated to be 621 psig. The limiting unirradiated        of60"F occurs in the vessel      of the J. M.
Farley Unit 2 reactor vessel, so the minimum allowable temperature of this region is 180&deg;F at pressures than 621      (without instrument                  This limit is shown in        5-1 through 5-6 wherever applicable.
WCAP-17123-NP Revision 1
 
4        CALCULATION OF ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide I            Revision 2, the adjusted reference temperature (ART) for each material in the beltline          is      by the following ART    Initial RT NDT + L\RTNDT + Margin                                      (10)
Initial RT NDT is the reference temperature for the unirradiated material as defined in paragraph NB-2331 of Section IU of the ASME Boiler and Pressure Vessel Code [Reference 9]. If measured values of the initial        for the material in question are not                                mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.
is the mean value of the adjustment in reference temperature caused                    irradiation and should be calculated as follows:
                                                        =  CF '"    r028-0101ogl)                                (II)
To calculate L\RT NDT at any depth (e.g., at 1I4T or 3/4T), the following formula must first be used to attenuate the fluence at the            depth.
                                            "t(dcplh xl --  "'''''"CC t,u I~ '"  e (.IU4x)                                ( 12) where x inches            belt line thickness is 7.875 inches) is the depth into the vessel wall measured from the vessel c1adlbase metal interface. The resultant tluence is then                        in Equation 11 to calculate the L\RTNDT at the specific depth.
The Westinghouse Radiation                      and Analysis Group evaluated the vessel fluence projections in LTR-REA J 12, Revision I [Reference 4], and the results are presented in Table 4-1. The evaluation methods used in Reference 4 are consistent with the methods presented in WCAP-14040-A. Revision 4, "Methodology Used to                  Cold                                                Setpoints and ReS Beatup and Cooldown Limit Curves" [Reference 2]. Tables 4-2                              4-4 provide a summary of the vessel fluence projections at the 1I4T and 3/4T locations for 36, 54 and 72 EFPY. Tables 4-5 through 4-7 contain the 1/4T and 3/4T calculated fluences and tluence factors, per Regulatory Guide 1                          Revision 2. used to calculate the 36, 54 and 72 EFPY ART values for all beltline materials in the J. M. Farley Unit 2 reactor vessel.
Margin is calculated as M        2              . The standard deviation for the initial RTNOT margin term            (Oi) is OaF when the initial RTNOT is a measured value and 17&deg;F when a generic value is available. The standard deviation for the L\RT NOT            term, Ot., is 17&deg;F for plates or                    and 8.5&deg;F for plates or when credible surveillance data is used. For welds, 06 is equal to 28&deg;F when surveillance capsule data is not used, and is 14&deg;F (hal f the value) when credible surveillance                        data is used. The value for Ot.
need not exceed 0.5 times the mean value of L\RT NDT.
Contained in Tables 4-8 through 4-13 are the                54 and 72 EFPY ART calculations at the 114T and 3/4T locations for            of the 1. M.          Unit 2                and cooldown curves.
WCAP-17123-NP                                                                                                    July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                  4-2 Table 4-1      FJuence Values for the J. M. Farley Unit 2 Reactor Vessel BeItline Materials Neutron Fluenee [nIemI, E > 1.0 MeV)
Reactor Vessel Location            Material 36EFPY        54 EFPY          72 EFPY Intennediate Shell Plate          87203-1          3.90E+19      5.76E+19          7.63E+19 Intennediate Shell Plate          B7212-1          3.90E+19      5.76E+ 19        7.63E+19 19-923 A IS Longitudinal Weld Seam                            1.24 E+ I 9    1.83E+19        2.42E+19 (Heat # HODA) 19-9238 IS Longitudinal Weld Seam                            1.24E+19      1.83E+19        2.42E+19 (Heat # BOLA) 11-923 IS to LS Cire. Weld Seam                            3.89E+19      5.75E+19          7.61E+19 (Heat # 5P5622)
Lower Shell Plate            B7210-1          3.89E+19      5.75E+19          7.6IE+19 Lower Shell Plate              B7210-2          3.89E+ 19    5.75E+19          7.6IE+19 LS Longitudinal              20-923A
: 1. 24E+19      1.83E+19        2.4IE+19 Weld Seam                (Heat # 83640)
LS Longitudinal              20-9238 I. 24E+19      1.83E+19        2.41E+19 Weld Seam                (Heat # 83640)
WCAP-17123-NP                                                                                        July 20 II Revision I
 
Westinghouse Non-Proprietary Class 3                                  4-3 Table 4-2      Fluence Values for the Vessel Surface, 1I4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 36 EFPY Fluenee, f (Xl0 19 nlem l ,    114 T f(xlO l9 nlem l ,    3/4 T f (dO* 9 nleml, Region E> 1.0 MeV)                  E> 1.0 MeV)                E> 1.0 MeV)
Intermediate Shell Plates                      3.90                        2.431                      0.945
  ~Surveillance    Data                          3.90                        2.431                      0.945 Lower Shell Plates                            3.89                        2.425                      0.943 IS Longitudinal Weld Seams                      1.24                        0.773                      0.300
  ~ Surveillance  Data                          1.24                        0.773                      0.300 IS to LS Circ. Weld Seam                      3.89                        2.425                      0.943 LS Longitudinal Weld Seams                      1.24                        0.773                      0.300 Table 4-3      Fluence Values at the Vessel Surface, \/4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 54 EFPY Fluenee, f(x10 19 nlem l ,    114 T f (xlO* 9 nlem 2,    3/4 T f (xlo* 9 niemI, Region E> 1.0 MeV)                  E> 1.0 MeV)                E> 1.0 MeV)
Intermediate Shell Plates                      5.76                        3.591                      1.396
  ~Surveillance    Data                          5.76                        3.591                      1.396 I
Lower Shell Plates                              5.75                        3.585                      1.393 IS Longitudinal Weld Seams                      1.83                        1.141                    0.443
  ~Surveillance    Data                          1.83                        1.141                    0.443 IS to LS Circ. Weld Seam                        5.75                        3.585                      1.393 LS Longitudinal Weld Seams                      1.83                        1.141                    0.443 Table 4-4      Fluencc Values at the Vessel Surface, 1/4T and 3/4T Locations for theJ. M. Farley Unit 2 Reactor Vessel Beltline Materials at 72 EFPY Fluenee, f (xlo '9 niemI,    114 T f (x 10 19 nlemZ,    3/4 T f (xlO* 9 nlem 2, Region E> 1.0 MeV)                  E> 1.0 MeV)                E> 1.0 MeV)
Intermediate Shell Plates                      7.63                        4.757                      1.849
  ~Surveillance  Data                          7.63                        4.757                      1.849 Lower Shell Plates                            7.61                        4.744                      1.844 IS Longitudinal Weld Seams                    2.42                        1.509                    0.586
  ~Surveillance  Data                          2.42                        1.509                    0.586 IS to LS Circ. Weld Seam                      7.61                        4.744                      1.844 LS Longitudinal Weld Seams                    2.41                        1.502                    0.584 WCAP-17123-NP                                                                                        July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                  4-4 Table 4-5      Fluence Factor Values at the l/4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 36 EFPY 1I4T f (xl01~ niemI,                    3/4T f (x101~ niemI, Region                                              1I4T FF                                    3/4T FF E> 1.0 MeV)                              E> 1.0 MeV)
Intennediate Shell Plates                        2.431            1.2392              0.945                  0.9842
~Surveillanee    Data                            2.431            1.2392              0.945                  0.9842  I Lower Shell Plates                              2.425            l.2386              0.943                  0.9834 IS Longitudinal Weld Seams                      0.773            0.9278              0.300                  0.6707
~Surveillanee    Data                            0.773            0.9278              0.300                  0.6707 IS to LS eire. Weld Seam                        2.425            1.2386              0.943                  0.9834 LS Longitudinal Weld Seams                      0.773            0.9278              0.300                  0.6707 Table 4-6      Fluence Factor Values at the 1/4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 54 EFPY 1I4T f(xl01~nleml,                          3/4T f (xlO '9 n/em 1, Region                                              1I4T FF                                    3/4T FF E> 1.0 MeV)                                E> 1.0 MeV)
Intennediate Shell Plates                    3.591                1.3324                1.396                1.0926
~Surveillanee    Data                        3.591                1.3324                1.396                1.0926 Lower Shell Plates                            3.585                1.3320                1.393                1.0921 IS Longitudinal Weld Seams                    1.141              1.0368                0.443                0.7738
~Surveil1anee    Data                          1.141              1.0368                0.443                0.7738 IS to LS eire. Weld Seam                      3.585              1.3320                1.393                1.0921 LS Longitudinal Weld Seams                    \.141              1.0368                0.443                0.7738 Table 4-7      Fluence Factor Values at the 1/4T and 3/4T Locations for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials at 72 EFPY 1/4T f (x10 19 nlem\                        3/4T f (xIOI~ nlcml, Region                                              1I4T FF                                    3/4T FF E> 1.0 MeV)                                E> 1.0 MeV)
Intennediate Shell Plates                    4.757              1.3924                1.849                1.1685
~Surveillanee  Data                          4.757              1.3924                1.849                1.1685 Lower Shell Plates                            4.744                1.3919                1.844                1.1678 IS Longitudinal Weld Seams                    1.509                1.1138                0.586                0.8506
~Surveillanee  Data                          1.509                1.1138                0.586                0.8506 IS to LS eire. Weld Seam                      4.744                1.3919                1.844                1.1678 LS Longitudinal Weld Seams                    1.502                1.1127                0.584                0.8494 WCAP-17l23-NP                                                                                        July 20 II Revision I
 
Westinghouse Non-Proprietary Class 3                                                  4-5 Table 4-8      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials through 36 EFPY at the 1I4T Location 1I4T f Material        CF                          1I4T    RTNDT(U) ~RTNDT      0,      04      M    ART Reactor Vessel Location                                        (XlO I9 n/cm 2, (OF)                          FF        (oF)      (oF)    (oF)    (OF)    (OF)  (OF)
E> 1.0 MeV)
Intermediate Shell Plate          B7203-1        100.0          2.431        1.2392        [5    [23.9      0      17    34.0    173 Intermediate Shell Plate          B7212-1        149.0          2.431        1.2392      -[0    [84.6      0      17    34.0    209
      -7 Surveillance Data            B7212-1        144.6          2.431        1.2392      -10      179.2      0    8.5(' ) 17.0    186 Lower Shell Plate            B7210-1        89.8          2.425        1.2386        18    111.3      0      17    34.0    163 Lower Shell Plate            B7210-2        98.7          2.425        1.2386        10    122.3      0      17    34.0    166 Inter. Shell Longitudina[          [9-923 A 36.8          0.773        0.9278      -56      34 .1    17    17.1    48.2    26 Weld Seam              (Heat # HODA)
Inter. Shell Longitudinal          19-923 B 36.8          0.773        0.9278      -60      34. 1      0      17. 1  34.1      8 Weld Seam              (Heat # BOLA) 19-923 B
        -7 Surveillance Data                            20.7          0.773        0.9278      -60      19.2      0      9.6    19.2    -22 (Heat # BOLA)
IS to LS Circumferential            11-923 74.1          2.425        1.2386      -40      91.8      0      28    56.0    108 Weld                (Heat # 5P5622)
Lower Shell Longitudinal          20-923 A&B 37.3          0.773          0.9278      -70      34.6      0      17.3    34.6    -I Weld Seams              (Heat # 83640)
Note:
(a)    Per WCAP-16918-NP, Revision 1 [Reference 10], the intermediate shell plate B7212-1 surveillance data was deemed credible. Therefore, a reduced all value is used.
WCAP-17123- NP                                                                                                                            Ju[y 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                                    4-6 Table 4-9      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials through 36 EFPY at the 3/4T Location 3/4T f Material    CF                            3/4T    RTNDT(U)  ARTNDT      (JI    (JA    M      ART Reactor Vessel Location                                      (xlO"n/cm 2 ,
CO F)                          FF        COF)      (oF)    (oF)    COF)    (oF)    (oF)
E> 1.0 MeV)
Intermediate Shell Plate            B7203-1    100.0          0.945        0.9842        15        98.4      0      17    34.0      147 Intermediate Shell Plate            B7212-1    149.0        0.945          0.9842      -10      146.6      0      17    34.0      171
      -7Surveillance Data                B72l2-1    144.6        0.945          0.9842      -10      142.3      0    8.5(a)  17.0    149 Lower Shell Plate                B72I0-1    89.8          0.943          0.9834        18      88.3        0      17    34.0    140 Lower Shell Plate                B72IO-2    98.7          0.943          0.9834        10      97.1        0      17    34.0    141 Inter. Shell Longitudinal Weld Seam 19-923 A (Heat # HODA) 36.8          0.300          0.6707      -56      24.7      17    12.3    42.0      II  l Inter. Shell Longitudinal            19-923 B 36.8          0.300          0.6707      -60      24.7      0      12.3    24.7    -11 Weld Seam                (Heat # BOLA) 19-923 B
      -7 Surveillance Data                          20.7          0.300          0.6707      -60        13.9      0      6.9    13.9    -32 (Heat # BOLA)
IS to LS Circumferential              11-923
: 74. 1        0.943          0.9834      -40      72.9      0      28    56.0      89 Weld                  (Heat # 5P5622)
Lower Shell Longitudinal            20-923 A&B 37.3          0.300          0.6707      -70      25.0      0      12.5    25.0    -20 Weld Seams                (Heat # 83640)
Note:
(a)    PerWCAP-16918-NP, Revision I [Reference 10], the intermediate shell plate B7212-1 surveillance data was deemed credible. Therefore, a reduced crt. value is used.
WCAP-17123-NP                                                                                                                            July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                                      4-7 Table 4-10      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials through 54 EFPY at the 1I4T Location 1I4T f Material    CF                            l!4T    RTNDT(U)    ARTNDT      0"1      O"A    M      ART Reactor Vessel Location                                      (xtO I ' n/cm 2, (oF)                            FF        (OF)        eF)      eF)      (oF)    eF)      eF)
E> 1.0 MeV)
Intennediate Shell Plate            B7203-1    100.0            3.591        1.3324        15        133.2      0      17    34.0    182 Intennediate Shell Plate            B7212-1    149.0            3.591        1.3324      -10        198.5      0      17    34.0    223
      -7Surveillance Data                87212-1    144.6          3.591        1.3324      -10        192.7      0    8.5(8)  17.0    200  I Lower Shell Plate                B721O-1    89.8            3.585        1.3320        18        119.6      0        17    34.0      172 I
Lower Shell Plate                B7210-2    98.7            3.585        1.3320        10        131.4      0        17    34.0      175  I Inter. Shell Longitudinal            19-923 A 36.8            l.141        1.0368      -56          38.1      17      19.1  51.1      33 Weld Seam              (Heat # HODA)
Inter. Shell Longitudinal            19-923 B 36.8            1.141        1.0368      -60          38 .1    0      19.1  38. 1      16 Weld Seam                (Heat # BOLA) 19-923 B
        -7 Surveillance Data                        20.7            1.141        1.0368      -60          21.5      0      10.7  21.5      -17 (Heat # BOLA)
IS to LS Circumferential              11-923 74 .1          3.585        1.3320      -40        98 .7      0        28    56.0      115 Weld                  (Heat # 5P5622)
Lower Shell Longitudinal            20-923 A&B 37.3            1.141        1.0368      -70          38.7      0      19.3  38.7      7 Weld Seams                (Heat # 83640)
Note:
(a)  Per WCAP-16918-NP, Revision I [Reference 10], the intennediate shell plate B7212-1 surveillance data was deemed credible. Therefore, a reduced CJt; value is used.
WCAP-17123-NP                                                                                                                              July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                                        4-8 Table 4-11    Adjusted Reference Temperature Evaluation for tbe J. M. Farley Unit 2 Reactor Vessel Beltline Materials tbrougb 54 EFPY at the 3/4T Location 3/4T f Material    CF                            3/4T    RTNUT{U)    ARTNUT                0'&    M      ART Reactor Vessel Location                                    (xlO l9 D/cm z,                                      0'1 (OF)
(OF)                              FF      eF)          (oF)              (OF)    (OF)      (OF)
E> 1.0 MeV)
Intermediate Shell Plate          B7203- 1    100.0            1.396        1.0926        15        109.3        0        17    34.0      158  !
I Intermediate Shell Plate          B7212- 1    149.0            1.396        1.0926      -10        162.9        0        17    34.0      187  I
    -?SurveiUance Data                B7212-1    144.6            1.396        1.0926      -10        158.1        0      8.5(a)  17.0      165 Lower Shell Plate              B72IO-1    89.8            1.393        \.0921        18          98.0        0        17    34.0      150 Lower Shell Plate              B72IO-2    98.7            1.393        1.0921        10        107.7        0        17    34.0      152 Inter. SheIl Longitudinal          19-923 A 36.8            0.443        0.7738        -56        28.5        17      14.2    44.3      17 Weld Seam              (Heat # HODA)
Inter. Shell Longitudinal          19-923 B 36.8            0.443        0.7738        -60        28.5        0      14.2    28.5      -3 Weld Seam                (Heat # BOLA) 19-923 B
    -? Surveillance Data                        20.7            0.443        0.7738        -60          16.0        0      8.0    16.0      -28 (Heat # BOLA)
IS to LS Circumferential            11-923 74.1            1.393        1.0921      -40        80.9        0      28    56.0      97 Weld                (Heat # 5P5622)
Lower Shell Longitudinal          20-923A&B 37.3            0.443        0.7738        -70        28.9        0      14.4    28.9      -12 Weld Seams              (Heat # 83640)
Note:
(a)  Per WCAP-16918-NP, Revision I [Reference 10], the intermediate sheIl plate B7212-1 surveillance data was deemed credible. Therefore, a reduced all value is used.
WCAP-17123-NP                                                                                                                            July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                                        4-9 Table 4-12    Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials through 72 EFPY at the 1I4T Location 1I4T f Material    CF                              l!4T    RTNOT(U)    dRTNOT        (1,      (16    M      ART Reactor Vessel Location                                      (Xl0 19 n/cm 2, (OF)                              FF      (OF)          (oF)    (oF)      (OF)    (OF)      (OF)
E> 1.0 MeV)
Intennediate Shell Plate            B7203-1    100.0          4.757          1.3924        15        139.2        0        17  34.0        188 Intennediate Shell Plate            B7212-1    149.0          4.757          1.3924      -10        207.5        0        17  34.0      231
  -7SurveiUance Data                B7212- 1    144.6          4.757          1.3924      -10        201.3        0      8.5(0)  17.0      208 Lower Shell Plate              B72IO-1    89.8          4.744          1.3919        18        125.0        0      17    34 .0      177 Lower Shell Plate              B72IO-2    98.7          4.744          1.3919        10        137.4        0      17    34.0      181  I Inter. Shell Longitudinal            19-923 A 36.8            1.509          l.\138      -56        41.0        17      20.5  53.3        38 Weld Seam                (Heat # HODA)                                                                                                      I Inter. Shell Longitudinal            19-923 B 36.8            1.509          1.\ 138      -60        41.0        0      20.5  41.0        22  I Weld Seam                (Heat # BOLA) 19-923 B
    -7 Surveillance Data                          20.7            1.509          1.1138      -60          23. 1      0      11.5  23.1      -14 (Heat # BOLA)
IS to LS Circumferential              11-923 74.1          4.744          1.3919      -40          103.1      0        28    56.0      119 Weld                  (Heat # 5P5622)
Lower Shell Longitudinal            20-923A&B 37.3            1.502        1.1127      -70          41.5        0      20.8  41.5        13 Weld Seams                (Heat # 83640)
Note:
(a)  Per WCAP-16918-NP, Revision I [Reference 10], the intennediate shell plate B7212-1 surveillance data was deemed credible. Therefore ,
a reduced (JA value is used.
WCAP-17123-NP                                                                                                                            July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                                        4-10 Table 4-13      Adjusted Reference Temperature Evaluation for the J. M. Farley Unit 2 Reactor Vessel Beltline Materials through 72 EFPY at the 3/4T Location 3/4T f Material      CF                            3/4T      RTNDT(U)    ARTNDT        0")      O"d    M        ART Reactor Vessel Location                                  (xl0 19 n/cm\ E >
(oF)                            FF        (oF)          (oF)      (oF)      (oF)    (oF)      (oF) 1.0 MeV)
Intennediate Shell Plate          B7203-1      100.0          1.849        1.1685        15        116.8        0        17    34.0      166 Intennediate Shell Plate          B7212-1      149.0          1.849        1.1685        -10        174.1        0        17    34.0      198
    ~SurveiUance    Data            B7212-1    144.6            1.849        1.1685      -10          169.0        0      8.5(0)  17.0      176 Lower Shell Plate              B7210-1      89 .8          1.844        1.1678        18        104.9        0        17    34.0      157 Lower Shell Plate              B72IO-2      98.7            1.844        1.1678        10        115.3        0        17    34.0      159 Inter. Shell Longitudinal Weld        19-923 A 36.8          0.586          0.8506      -56          31.3        17      15.7    46.2        22 Seam                (Heat # HODA)                                                                                                        I Inter. Shell Longitudinal Weld        19-923 B 36.8          0.586          0.8506      -60          31.3        0      15.7    31.3          3 Seam                  (Heat # BOLA) 19-923 B
      ~  Surveillance Data                          20.7          0.586          0.8506      -60          17.6        0      8.8    17.6      -25 (Heat # BOLA) 11-923 IS to LS Circumferential Weld                      74.1            1.844        1.1678      -40          86.5        0        28    56.0      103 (Heat # 5P5622)
Lower Shell Longitudinal          20-923A&B 37.3          0.584          0.8494      -70          31.7        0      15.8    31.7        -7 Weld Seams                (Heat # 83640)
Note:
(a)  Per WCAP-16918-NP, Revision 1 [Reference 10J, the intennediate shell plate B7212-1 surveillance data was deemed credible. Therefore, a reduced (JA value is used.
WCAP-17123-NP                                                                                                                              July 2011 Revision 1
 
_l'r"nrllP!l1rv Class 3                                4-11 Contained in Table 4-14 is a summary of the limiting ART values used in the                        of the 1. M.
Farley Unit 2 reactor vessel poT limit curves. The limiting material for both the 1I4T location and the 3/4T location at 36, 54, and 72 EFPY is Intermediate Shell Plate B7212-1. Note that Regulatory Guide 1.99 Revision 2                I] allows the use of a lower                  factor, when credible surveillance vaL'i>Uj,,, data is          to calculate ART. The values listed in Table 4-14 are based on credible surveillance capsule data.
Table 4-14        Summary of the Limiting ART Values Used in the Generation of the J. M.            Unit 2 Heatup/Cooldown Curves Limiting ART (oF)
Intermediate Shell Plate B7212-1 EFPY with credible surveiUance data            Ii 1/4T                      3/4T        I 36                  186                        149 II 54                  200                        165          1 72                  208                        176 WCAP-17123-NP Revision I
 
5        HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES Pressure-temperature limit curves for normal                and cooldown of the primary reactor coolant have been calcu tated          the pressure and temperature in the reactor vessel beltline region using the methods discussed in Sections 3 and 4 of this report. This approved methodology is also presented in WCAP-14040-A, Revision 4.
5-1,5-3 and 5-5              the limiting                                                  instrumentation errors using heatup rates of 60 and lOO&deg;F/hr                        for 36, 54 and 72          respectively, with the "Flange-Notch"                    and using the "Axial-flaw" methodology.                  5-2, 5-4 and 5-6 the limiting cooldown curves without                  for            instrumentation errors        cooldown rates of 0, 20, 40, 60 and lOO&deg;F/hr applicable for              54 and 72                        with the "Flange-Notch" and using the "Axial-flaw" methodology. The heatup and cool down curves were generated the 1998              the 2000 Addenda ASME Code Section XI,                          G. Also, a pressure correction for the static and dynamic head loss between the reactor vessel beltline                    and the RHR relief valves is included for both the heatup and cooldown curves at each EFPY. These curves incorporate a pressure correction of 27        for temperatures less than IIO*F and 60        for                greater than or equal to IIO*F, associated with operation of one and three reactor coolant pumps, respectively 6].
Allowable combinations of temperature and pressure for specific                                  rates are below and to the right of the limit lines shown in              5-1 through 5-6. This is in addition to other criteria, which must be met before the reactor is made                as discussed in the following paragraphs.
The reactor must not be made critical until pressure-temperature combinations are to the                        of the limit tine shown in              5-1, 5-3 and 5-5 (heatup curves only). The straight-line portion of the criticality limit is at the minimum permissible temperature for the 2485 psig inservice hydrostatic test, as required by Appendix G to 10 CFR Part 50. The governing equation for the hydrostatic testis defined in the 1998 through the 2000 Addenda ASME Code Section                    Appendix G as follows:
: where, is the stress            factor covered by membrane (pressure) stress, IT. RTNDT)]
Kic == 33.2 + 20.734 T is the minimum permissible metal temperature, and is the      reference nil-ductility 'I-"nnne'r",
The criticality limit curve                pressure-temperature limits for core operation in order to provide additional margin during actual power production. The                                    limits for core operation for low power physics              are that: I) the reactor vessel must be at a temperature            to or higher than the minimum temperature required for the inservice hydrostatic test, and 2) the reactor vessel WCAP-17123-NP                                                                                              July 2011 Revision I
 
                                                        .PTj~nr;i"'I"rv Class 3                                5-2 must be at least 40&deg;F          than the minimum permissible temperature in the corresponding pressure curve for          and cooldown calculated as described in Section 4 of this                  For the and cooldown curves without margins for instrumentation errors, the minimum                          for the inservice hydrostatic leak test for the J. M.            Unit 2 reactor vessel at 36 EFPY is 242&deg;F. The limits for 54 and 72 EFPY are 256&deg;F and 264&deg;F,                          The vertical line drawn from these        on the                          curve, intersecting a curve 40&deg;F              than the pressure-limit curve, constitutes the limit for core operation for the reactor vessel.
5-1          5-6 define all of the above limits for              prevention of non-ductile failure for the J. M. Farley Unit 2 reactor vessel for 36, 54 and 72 EFPY WiUl the "Flange-Notch" requirement, without instrumentation                  and with pressure correction. The data points used for                        the heatup and cool down                          limit curves shown in            5-1 through 5-6 are            in Tables 5-1          5-6.
WCAP-17123-NP Revision 1
 
Westinghouse Non-Proprietary Class 3                                    5-3 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Intennediate Shell Plate B7212-1 with credible surveillance data LIMITING ART VALUES AT 36 EFPY:                            1/4T, 186&deg;F 3/4T, 149&deg;F Figure 5-1        J. M. Farley Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 100&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wiKle) 2500 2250        ~,.~.
ILeak Test limit I -.
2000                            ,I 1750      Unacceptable
                                          . --i
    -!:2                  Operation I
(I)
D. 1500      ~ .. t .__
I 1--  -t- ... - ;
Q)
:::I en en
                                                                                          ~-"
Q)
D.
1250            I'" .                                                              ..
I "C
Q)
:::I (J
1000 iij U
750 I
                          -r---~-          -,-i
                                                    "' r ----  r 500                                          " ..... - Criticality Limit based on I      Inservlce hydrostatic test
:+- temperature (242'F) for the service period up to 36 EFPY 250 O-~~++~~~~~~+r~~~~~~~~~~~~~~~
o      50      100    150      200      250        300      350    400    450 500 550 Moderator Temperature (Oe9. F)
WCAP-17123-NP                                                                                                  July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                                                5-4 MATERIAL PROPERTY BASIS LIMITING MATERIAL : Intennediate Shell Plate B7212-1 with credible surveillance data LIMITING ART VALUES AT 36 EFPY:                                              1I4T,            186&deg;F 3/4T,            149&deg;F Figure 5-2        J. M. Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100&deg;F/hr) Applicable for 36 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (w/KI<)
2500Tr===========C=~======~------:------:-----~-------~
Operllm Version:5.2 Run:30256 Operlim. x1s Version: 5.2 i
2250          I        .~    . ...-'----.    .I                    ,,.
                                                                              ....        _I              . ,    . ~-.    +
2000        . , -, ~                                                            , '
i
                                                                                                .... -  .. ~ {, .    ,-1 I
1750      ..-    .
I
                                                                . -~ .                                                            ' -- " :
(!)
(i)
I                                  :
    !:. 1500                                                                                                                            1-I Q)
II
:::J 1/1 1/1
        .... 1250 Q) a..
      't:J
                                ..- . ~ -, +--
                                                                                                                      ... .., I .        I Q)
I
      ~                        I    --1.,                                                                                            _L_
:::J 1000        ,
U "iij U
                                                                    ,                                          i 750                                                  *r ~* * .-      ;.. . .                    L.
                                                                                                                ,            i,* *  - \
Cooldown 500                                                          Rates
                                                                          'F/Hr 250 I
_ ,. J . _. .          .          .
o          50          100            150      200          250          300              350          400        450    500 550 Moderator Temperature (Deg. F)
WCAP.. 17123..NP                                                                                                                                      July 201 1 Revision 1
 
Westinghouse Non-Proprietary Class 3                                                  5-5 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Intennediate Shell Plate 872) 2-1 with credible surveillance data UMITING ART VALUES AT 54 EFPY:                                    1I4T, 200&deg;F 3/4T,      165&deg;F Figure 5-3      J. M. Farley Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 100&deg;F/hr) Applicable for 54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wiKle) 2500rr=============~========,----'------------~--,
Ope~ im Version:5.2 Run:1180  Ope~im . x1s Version: 5,2 ILeak Test"r Limit..."I                        ,
I 2250                          " . 'V    **
T        "T--        r-I, 2000                                                                            r-
                            }  - ..                                                                                  "
1750                                    --'r, '                              .. ~
* 1** **
* I
    &sect;'
    ~ 1500                                                                                          1---
                                                    ...__J
                                                                                          ' r-- "
CD
      ~
:::J In In 1250                                                                                                ,t CD
      ~
a.
    "'0 CD
    ~
:::J 1000 nI U
750 500                                                            ,- Criticality limit based on inservlce hydrostatic test
                                                                          + - temperature (256*F) for the i                                                    service period up to 54 EFPY ,
250
                      - : '~l' ~~~u: I
                                                                                    .~-- ~-,
I                I o
o        50      100        150    200        250      300          350      400        450  500  550 Moderator Temperature (Deg. F)
WCAP-17123-N P                                                                                                                July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                        5-6 MATERIAL PROPERTY BASIS LIMITING MATERlAL: Intermediate Shell Plate B7212-1 with credible surveillance data LIMITING ART VALUES AT 54 EFPY:                                  1/4T,      200&deg;F 3/4T,      165&deg;F Figure 5-4      J. M. Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100&deg;F/hr) Applicable for 54 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (w/K 1<)
2500~~~~~~~~~~~~r-'---~------~--~---,
Oper1im Version :5.2 Run:llBO Oper1im .xls Version: 5 .2 I
2250 -
                                              -'r --f I
I 2000                                                                                  ,,;"
1750                      .~ ,,- "
6' ena..                                                                                                I Q)
::J 1500 -                                                          "i      -- . i III III Q) a..
1250                                                            J        i
                                                                                -~ !.
                                                                                          - I        i
                                                                                                -. -j.. 4 -1._
I "C
n; Q)
    .!l!
::J
(.)  1000 .      - ,                                                                  ---~
U 750            .I* .
I                                                    "i      i ' r' 1
500        *' - 1' "                              Cooldown            . ~
steady-state 1._ -20 250
                                                              -40
                                                              -60
                                                              -100 0
0        50      100        150    200        250      300    350      400    450    500  550 Moderator Temperature (Oe9. F)
WCAP-17123-NP                                                                                                        July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                    5-7 MATERIAL PROPERTY BASIS LIMITING MATERIAL: Intennediate Shell Plate B7212-1 with credible surveillance data LIMITING ART VALUES AT 72 EFPY:                                      1/4T, 208&deg;F 3/4T, 176&deg;F Figure 5-5        J. M. Farley Unit 2 Reactor Coolant System Heatup Limitations (Heatup Rates of 60 and 1000F/hr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (wIKle) 2500 Operlim Version:5.2 Run:1720 Operlim.xls Version: 5.2 2250          -I 2000 1750 C)
      ~    1500          .,1,                          __ R , \ ,
l!!
:::l en en l!! 1250                                  . _L
(
a..
      "C CII 1'0
      'S u 1000                              --      -! ~
U 750                                                                    '.---- . .. :-
Criticality limit based on I I===+-~.....J                              ~    inservice hydros~atic test 500*    _ .... J,                                            ,    temperature (264 F) for the service period up to 72 EFPY I
250 - -        _ L..
I
                                    ~ .. ,
I        i
                                ,  ~            Boltup  I I            I  Tem9' o        50            100      150        200    250    300    350        400    450  500 550 Moderator Temperature (Deg. F)
WCAP-17123-NP                                                                                                        July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                                  5-8 MATERIAL PROPERTY BASIS LIMITING MATERlAL: Intennediate Shell Plate B7212-1 with credible surveillance data LIMITING ART VALUES AT 72 EFPY:                                  1I4T,  208&deg;F 3/4T,  176&deg;F Figure 5-6    J. M. Farley Unit 2 Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100&deg;Flbr) Applicable for 72 EFPY (without Margins for Instrumentation Errors and with Pressure Correction) Using the 1998 through the 2000 Addenda App. G Methodology (WIKle) 2500 Opertim Version:5.2 Run:1720 Opertim.>ds Version: 5.2 I
I    i 2250
                                                                  -t-I
                                                                        ~
I 2000
                                                              -___1 I
                                                                                            ,  ~- ..,,...
                                                                                                            ~r I
1750 - ... --+.- .--.          ___1      . --"    - ---t..        . " . ~-
I      I        I i
6'
    ~    1500                        ,-,,--,.. - ,..
                                    .r:-:--..L-,--;-:--,'
e
      ~
III III                  i                                                      l            -L          _I ~
e 1250 11.
                      .---.i _ __
t--
    -B "C
Q) iii 1000 I
                                                                                      .... ~  . _. I
                                                                                                              +
u I
750                                                                      f*- -            f'  ---r-I 500      .._.j                                  . Cooldown          .t ..
I 250 o        50      100      150        200        250  300    350              400        450  500 550 Moderator Temperature (Oeg. F)
WCAP-17123-NP                                                                                                              July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                5-9 Table 5-1    36 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI KIt> wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation Errors) 60&deg;Flhr              lOO&deg;Flhr        lOO&deg;Flhr Leak Test Limit        60&deg;F/hr Heatup Criticality            Heatup        Criticality T                        T                      T          P          T        P      T          P P (psig)                  P (pslg)
(OF)                    eF)                    (oF)      (psig)      (oF)    (psig)  (oF)      (psig) 224        2000          60          0        242        0        60        0      242          0 242        2485          60          594        242        561        60      594      242        561 65          594        242        561        65      594      242        561 70          594        242        561        70      594      242        561 75          594        242        561        75      594      242        561 80          594        242        561        80      594      242        561 85          594        242        561        85      594    242          561 90          594        242        561        90      594      242        561 95          594        242        561        95      594      242        561 100        594        242        561        100    594      242        561 105        594        242        561        105    594      242        561 110        594        242        561        110    594      242        561 110        561        242        561        110    561      242        561 115        561        242        561        115    561      242        561 120        561        242        561        120    561      242        561 125        561        242        561        125    561      242        561 130        561        242        561        DO      561      242        561
                          \35        561        242        561        135    561      242        561 140        561        242        561        140    561      242        561 145        561        242        561        145    561      242        561 150        561        242        561        150    561      242        561 155        561        242        561        155    561      242        561 160        56!        242        561        160    56!      242        561 165        561        242        561        165    561      242        561 170        561        242        561        170    561      242        561 175        561        242        561        175    561      242        561 180        561        242        955        180    561      242        768 180        561        242        1002      180      561    242        801 180        934        242        1054      180      768    242        836 185        971        242        1095      185      801    242        876 190        1012      242        1130      190      836    242        940 195        1058      245        1164      195      876    245        969 200        1108      250        1225      200      920    250        1023 WCAP-17123-NP                                                                                    July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                            5-10 60&deg;Flhr              IOO&deg;F/hr        IOO&deg;F/hr Leak Test Limit  60&deg;F/hr Heatup Criticality            Heatup      Criticality T                  T                    T          P          T        P    T        P (oF)
P (pslg)          P (psig)
(OF)                (oF)      (psig)      (OF)    (psig) (oF)      (psig) 205      1164      255        1279      205    969    255      1083 210      1225      260        1338      210    1023  260      1148 215      1279      265        1402      215    1083  265      1221 220      1338      270        1473      220    1148  270      1302 225      1402      275        1552      225    1221  275      1390 230      1473      280        1638      230    1302  280      1488 235      1552      285        1734      235    1390  285      1596 240      1638      290        1839      240    1488  290      1715 245      1734      295        1956      245    1596  295      1847 250      1839      300        2084      250    1715  300      1973 255      1956      305        2226      255    1847  305      2093 II 260      2084        310        2383      260    1973  310      2225 265      2226                              265    2093  315      2371 270      2383                            270    2225
,                                                                275    2371 WCAP-17123-NP                                                                        July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                5-11 Table 5-2    36 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wi K. c, wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation Errors)
Steady State            20&deg;F/hr.              40&deg;F/hr.                60&deg;F/hr.            lOO&deg;F/hr.
T(&deg;F)      P (psig)    T(&deg;F)      P (psig)    T(&deg;F)    P (psig)    T(OF)    P (psig)  T(&deg;F)      P (psig) 60          0          60          0        60          0          60          0        60            0 60          594          60        594        60        562          60        519        60          432 i    65        594          65        594        65        565          65        523        65          436 70        594          70        594        70        569          70        527        70          441  i 75        594          75        594        75        574          75        532        75          446 I
i    80        594          80        594        80        579          80        537        80          452 85        594          85        594        85        584          85        543        85          459 90          594          90        594        90        591          90        550        90          466 95        594          95        594        95        594          95        557        95          475 100        594        100        594        100        594        100        565      100          484 105          594        105        594        105        594        105        574      105          495 110        594        110        594        110        594        110        584      110          506 110          561        110        561        110        561        110        551      110          473 115          561        115        561        115        561        115        561      115          487 120          561        120          561      120        561        120        561      120          501 125          561        125        561        125        561        125        561      125          517 130          561        130          561      130        561        130        561      130          536 135          561        135        561      135        561        135        561      135          556 140          561        140          561      140        561        140        561      140          561 145          561        145        561      145        561        145        561      145          561 150          561        150        561      150        561        150        561      150          561 155          561        155        561      155        561        155        561      155          561 160          561        160        561      160        561        160        561      160          561 165        561        165        561      165        561        165        561      165          561 170        561        170        561      170        561        170        561      170          561 175        561        175        561      175        561        175        561      175          561 180        561        180        561      180        561        180        561      180          561 180        561        180        561      180        561        180        561      180          561 180        934        180        917      180        902        180        890      180          876 185        971        185        957      185        946        185        938      185          933 190        1012        190        1002      190        995        190      991      190          991 195        1058        195        1051      195        1049        195        1049      195        1049 WCAP-17123-NP                                                                                    July2011 Revision I
 
Westinghouse Non-Proprietary Class 3                            5-12 Steady State        20&deg;F/hr.            40&deg;Flhr.              60&deg;Flhr.        100&deg;F/hr.
;  T(OF)    P (psig) TeF)    P (psig)  TeF)      P (psi g)    T(OF)    P (psig) T(OF)      P (psig) 200        1108    200      1106      200        1106        200      1106    200        1106 205        1164    205      1164      205        1164        205      1164    205        1164 210        1225    210      1225      210        1225        210      1225    210        1225 215        1293    215      1293      215        1293        215      1293    215        1293 220        1368    220      1368      220        1368        220      1368    220        1368 225        1451    225      1451      225        1451        225      1451    225        1451 230        1542    230      1542      230        1542        230      1542    230        1542 235        1644    235      1644      235        1644        235      1644    235        1644 240        1756    240      1756      240        1756        240      1756    240        1756 245        1879    245      1879      245        1879        245      1879    245        1879  I 250        2016    250      2016      250        2016        250      2016    250        2016 255        2167    255      2167      255        2167        255      2167    255        2167 260        2334    260      2334      260        2334        260      2334    260        2334 WCAP-17123-NP                                                                        July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                5-13 Table 5-3    54 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI Krc> wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation Errors) 60&deg;F/hr              IOO&deg;F/hr          IOO&deg;F/hr Leak Test Limit      60&deg;F/hr Heatup Criticality            Heatup        Criticality T                        T                    T          P        T        P      T          P P (psig)                P (psig)
(oF)                    (OF)                (oF)      (psi g)    (oF)    (psig)  (oF)      (psi g) 238        2000          60          0        256          0        60        0      256          0 256        2485          60        594        256        561        60      575    256          542 65        594        256        561        65      575      256        542 70        594        256        561        70      575      256        544 75        594        256        561        75      575      256        544 80        594        256        561        80    575      256        546 85        594        256        561        85    575      256        547 90        594        256        561        90      575      256        551 95        594      256        561        95      575      256        551 100      594        256        561        100    575      256        556 105      594        256        561        105    575      256        557 110      594        256        561        110    575      256        561 110        561      256        561        110    542      256        561 115        561      256        561        115    542      256        561 120        561      256        561        120    544      256        561 125        561      256        561        125    547      256        561 130        561      256        561        130    551      256        561 135        561      256        561        135    556      256        561 140        561      256        561        140    561      256        561 145        561      256        561        145    561      256        561 150        561      256        561        150    561      256        561 155        561      256        561        155      561    256        561 160        561      256        561        160      561    256        561 165        561      256        561        165      561    256        561 170        561      256        561        170      561    256        561 175        561      256        561        175    561      256        561 180        561      256        828        180      561    256        675 180        561      256        862      180      561    256        698 180        828      256        900      180      675    256        724 185        862      256        941        185      698    256        752 190        900      256        987      190      724    256        784 195        941      256        1038        195    752    256        819 200        979      256        1094      200      784    256        858 WCAP-17 I 23-NP                                                                                  july 201 I Revision 1
 
Westinghouse Non*Proprietary Class 3                          5*14 60&deg;Flhr              lOO&deg;Flhr      lOO&deg;F/hr Leak Test Limit  60&deg;F/hr Heatup Criticality            Heatup      Criticality T                  T                    T          P          T      P    T        P P (psig)          P (psig)
(oF)              eF)                e F)      (psig)      (oF)    (psig) eF)    (pslg)
I                    205      1021      256        1130      205      819  256      910 210      1067      260        1175      210    858  260      949 215      1I 19      265        1237      215      901  265      1001 220      1175      270        1291      220    949  270      1059 225      1237      275        1350      225    1001  275      1123 230      1291      280        1416      230      1059  280      1194 235      1350      285        1488      235    1123  285      1272 I
240      1416      290        1568      240    1194  290      1359 245      1488      295        1656      245    1272  295      1454 250      1568      300        1753      250    1359  300      1559 255      1656      305        1861      255      1454  305      1675 260      1753      310        1979      260    1559  310      1803 265      1861      315      2110        265    1675  315      1944 270      1979      320      2254        270    1803  320      2099 275      2110      325        2414      275    1944  325      2250 280      2254                            280    2099  330      2399 285      2414                            285    2250 290    2399 WCAP*17123*NP                                                                        July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                              5-15 Table 5-4      54 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wI Kin wI Flange Notch, wI Pressure Correction and wlo Uncertainties for Instrumentation Errors)
Steady State            20&deg;Ffhr.            40&deg;F/hr.              6O&deg;F/hr.            lOO&deg;Ffhr.
,I T(OF)      P (psig)    T(&deg;F)      P (psig)    TeF)      P (psig)    T(&deg;F)    P (pslg)  T(&deg;F)        P (psig) 60            0          60          0        60          0        60          0      60            0 60          594          60        594        60        553        60        509      60          420 65          594          65        594        65        555        65        512      65          423 70        594          70        594        70          558        70        515        70          426 75        594          75        594        75          561        75        518        75          430 80        594          80        594        80        565        80        522        80          434 85        594          85        594        85        569        85        527        85          439 90        594          90        594        90        574        90        531        90          445 95        594          95        594        95          579        95        537        95          451 100        594        100        594        100        585        100      543      100          45 8 105        594        105        594        105        591        105      550      105          465 110        594 .      110        594        110        594        110      557      110          474 110        561        110        561        110        561        110      524      110          441    :
115        561        115        561        115        561        115      532      115          451 120        561        120        561      120        561        120      542      120          461 125        561        125        561        125        561        125      552      125          473 130        561        130        561      130        561        130      561      130          487 135        561        135        561      135        561        135      561      135          502 140          561        140        561      140        561        140      561      140          519 145          561        145        561      145        561        145      561      145          537 150          561        150        561      150        561        150      561      150          558 155          561        155        561      155        561        155        561      155          561 160          561        160        561      160        561        160      561      160          561 165        561        165        561      165        561        165        561      165          561 170        561        170        561      170        561        170      561      170          561 175        561        175        561      175        561        175        561      175          561 180        561        180        561      180        561        180        561      180          561 180        561        180        561      180        561        180        561      180          561 180        847        180        823      180        799        180        778      180          741 185        875        185        853      185        832        185        814      185          785 190        906        190        887      190        869        190        854      190          833 195        941        195        924      195        910        195        898      195          886 WCAP-17123-NP                                                                                  July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                            5-16 Steady State        20&deg;F/hr.            40&deg;F/hr.              60&deg;F/hr.          IOO&deg;F/hr.
T(OF)    P (psig) T(&deg;F)    P (psig)  T(&deg;F)    P (psig)    T(0F)    P (psig) T(&deg;F)      P (psig) 200        979    200      966      200        955        200      948    200          945 205        1021    205      1011      205        1005        205      1002    205          1002 210        1067    210      1062      210        1060        210      1060    210          1060 215        1119    215      1118      215        1118        215      1118    215          1118 220        1175    220      1175      220        1175        220      1175    220          1175 225        1238    225      1238      225        1238        225      1238    225          1238 230        1307    230      1307      230        1307        230      1307    230          1307 235        1384    235      1384      235        1384        235      1384    235          1384 240        1468    240      1468      240        1468        240      1468    240          1468 245        1562    245      1562      245        1562        245      1562    245          1562 250        1665    250      1665      250        1665        250      1665    250          1665 255        1779    255      1779      255        1779        255      1779    255          1779 260        1906    260      1906      260        1906        260      1906    260          1906 265        2045    265      2045      265        2045        265      2045    265          2045
,  270        2199    270      2199      270        2199        270      2199    270          2199 275        2370    275      2370      275        2370        275      2370    275          2370 WCAP-17123-NP                                                                          July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                                5-17 Table 5-5      72 EFPY Heatup Curve Data Points Using the 1998 through the 2000 Addenda App. G Methodology (wi K le , wi Flange Notch, wi Pressure Correction and wlo Uncertainties for Instrumentation Errors) 60&deg;F/hr              lOO&deg;F/hr          lOO&deg;F/hr Leak Test Limit      60&deg;F/hr Heatup Criticality            Heatup        Criticality T                        T                      T          P          T      P        T          P P (psig)                  P (psig)
(oF)                    (oF)                  (OF)      (pslg)    (oF)    (psig)  (OF)      (psig) 246        2000          60            0        264        0        60      0      264          0 264        2485          60          594        264        561        60      560      264        527 65          594        264        561        65      560      264        527 70          594        264        561        70      560      264        528 I,                            75          594        264        561        75      560      264        529
~                            80 85 594 594 264 264 561 561 80 85 560 560 264 264 530 531 90          594-      264        561        90      560      264        534 95          594        264        561        95      560      264        535 100        594        264        561        100    560      264        539 105        594        264        561        105    560      264        540 110        594        264        561        110    560      264        546 110        561        264        561        110    527      264        546 115        561        264        561        115    527      264        546 120        561        264        561        120    527      264        553 125        561        264        561        125    529      264        554 130        561        264        561        130    531      264        561 135        561        264        561        135    535      264        561 140        561        264        561        140    540      264        561 145        561        264        561        145    546      264        561 150        561        264        561        150    553      264        561 155        561        264        561        155    561      264        561 160        561        264        561        160    561      264        561 165        561        264        561        165    561      264        561 170        561        264        561        170    561      264        561 175          561      264        561        175    561      264        561 180        561        264        762        180    561      264        626 180          561      264        789        180    561      264        645 180          762      264        819        180    626      264        665 185          789      264        852        185    645      264        688 190          819      264        889        190    665      264        713 195          852      264        930        195    688      264        74l
,i 200          889      264        975        200    713      264        772 WCAP-17123-NP                                                                                    July 20ll Revision I
 
Westinghouse Non-Proprietary Class 3                            5-18 60&deg;F/hr              lOO&deg;Flhr        lOO&deg;F/hr Leak Test Limit 60&deg;F/hr Heatup Criticality            Heatup      Criticality T                  T                  T          P        T      P      T        P P (psig)        P (psig)
(oF)              eF)                (oF)      (psig)    eF)    (psig) (oF)    (psig) 205      930        264        1024      205      741    264      806 210      975        264        1127      210    772    264      878 I
I 215      1024      265        1139      215      806    265      886 220      1079      270        1200      220      844    270      932 i                    225      1139      275        1258      225      886    275      984 i                    230      1200      280        1314      230    932    280      1040 235      1258      285        1376      235    984    285      1103 240      1314      290        1444      240    1040  290      1172 245      1376      295        1519      245    1103  295      1248 I                    250      1444      300        1602      250      1172  300      1332 I
255      1519      305        1694      255    1248  305      1425 260      1602      310        1795      260    1332  310      1528  !
265      1694      315        1906      265    1425  315      1641 270      1795      320        2029      270    1528  320      1765 275      1906      325        2165      275    1641  325      1902 280      2029      330        2315      280    1765  330      2054 285      2165      335        2481      285    1902  335      2221 290      2315                            290    2054  340      2405 295      2481                            295    2221 300    2405 WCAP-17123-NP                                                                        July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                                5-19 Table 5-6    72 EFPY Cooldown Curve Data Points Using the 1998 through the 2000 Addenda App_ G Methodology (wI KIt> wI Flange Notch, wI Pressure Correction and wlo Uncertainties for InstrumentatIon Errors)
Steady State            20&deg;Flhr.            40&deg;F/hr.              60&deg;F/hr.              lOO&deg;Flhr.
T(OF)      P (psig)    T(&deg;F)      P (psig)  T(&deg;F)      P (psig)    T(&deg;F)    P (psig)  T(&deg;F)        P (psig) 60            0        60          0        60          0        60          0        60            0 60          594          60        591        60        548        60        505        60          415 65        594          65        593        65        551        65        507        65          417 70        594          70        594        70        553        70        509        70          420 75        594          75        594        75        556        75        512        75          423 80        594          80        594        80        559        80        515        80          426 85        594          85        594        85        562        85        519        85          430 90        594          90        594        90        566        90        523        90          435 95        594          95        594        95        570        95        528        95          440 100        594        100        594        100        575        100      533        100          445 105        594        105        594        105        581        105      538        105          452 110        594        110        594        110        586        110      545        110          459 110        561        110        561        110        553        110      512        110          426 115        561        115        561        115        560        115      519        115          434 120          561        120        561      120        561        120      526        120          443 125        561        [25        561        125        561        125      535        125          453 130        561        130        561        130        561        130      545        130          465 135        561        135        561      135        561        135      556        135          477 I  140          561        140        561      140        561        140      561        140          491 145          561        145        561      145        561        145      561        145          507 150          561        150        561      150        561        150      561        150          525 155          561        155        561      155        561        155      561        155          544 160          561        160        561      160        561        160        561      160          561 165        561        165        561      165        561        165      561        165          561 170        561        170        561      170        561        170      561        170          561 175        561        175        561      175        561        175      561        175          561 180        561        180        561      180        561        180        561      180          561 180        561        180        561      180        561        180        561      180          561 180        808        180        779      180        752        180        726      180          680 185        832        185        805      185        781        185        757        185          717 190        858        190        834      190        812        190        791        190          757 195        887        195        866      195        846        195        829        195          803 WCAP-17123-NP                                                                                    July 2011 Revision 1
 
Westinghouse Non-Proprietary Class 3                            5-20 Steady State        20&deg;F/hr.            40&deg;F/hr.              60&deg;F/hr.          lOO&deg;F/hr.
TeF)      P (psig) T(OF)    P (psi g)  T(OF)    P (psig)    T(OF)    P (psig) T(&deg;F)      P (psig) 200        920    200      901        200        885        200      871    200          853 205        956    205      940        205        927        205      917    205          908 210        995    210      983        210        974        210      969    210          969 215        1039    215      1031      215        1026        215      1025    215          1025 220        1087    220      1083      220        1083        220      1083    220          1083 225        1141    225      1141      225        1141        225      1141    225          1141 230        1200    230      1200      230        1200        230      1200    230          1200 235        1265    235      1265      235        1265        235      1265    235          1265 240        1337    240      1337      240        1337        240      1337    240          1337 245        1417    245      1417      245        1417        245      1417    245          1417 250        1505    250      1505      250        1505        250      1505    250          1505 255        1602    255      1602      255        1602        255      1602    255          1602 260        1710    260      1710      260        1710        260      1710    260          1710 265        1828    265      1828      265        1828        265      1828    265          1828 270        1960    270      1960      270        1960        270      1960    270          1960 275        2105    275      2105      275        2105        275      2105    275          2105 280        2265    280      2265      280        2265        280      2265    280          2265 285        2443    285      2443      285        2443        285      2443    285          2443 WCAP-17123-NP                                                                          July 2011 Revision)
 
Westinghouse Non-Proprietary Class 3                            6-1 6        REFERENCES I. Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U. S.
Nuclear Regulatory Commission, May 1988.
: 2. WCAP-14040-A, Revision 4, "Methodology Used to Develop Cold Overpressure Mitigating System Set points and RCS Heatup and Cooldown Limit Curves," J. D. Andrachek, et aI., May 2004.
: 3. Appendix G to the 1998 through the 2000 Addenda Edition of the ASME Boiler and Pressure Vessel (B&PV) Code, Section XI, Division I, "Fracture Toughness Criteria for Protection Against Failure."
: 4. Westinghouse Letter LTR-REA-09-112, Revision I, "J. M . Farley Units I and 2 Updated Beltline Fluence," B. W. Amiri, dated September 21,2009.
: 5. Code of Federal Regulations, 10 CFR Part 50, Appendix G, "Fracture Toughness Requirements,"
U.S. Nuclear Regulatory Commission, Washington, D. C., Federal Register, Volume 60, No. 243, dated December 19, 1995.
: 6. WCAP-14689, Revision 6, "Farley Units I and 2 Heatup and Cooldown Limit Curves for Nonnal Operation and PTLR Support Documentation," T. 1. Laubham, April 200 I.
: 7. MHI-SNC-0455F2, "Certified Material Test Report - Reactor Vessel Closure Head for Joseph M.
Farley Nuclear Plant-2," June 2004.
: 8. 10 CFR Part 50.61, "Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events", Federal Register, Volume 60, No . 243, dated December 19, 1995, effective January 18,1996.
: 9. ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NB, Section NB-2300, "Fracture Toughness Requirements for Material."
: 10. WCAP-16918-NP, Revision I, "Analysis of Capsule V from the Southern Nuclear Operating Company Joseph M. Farley Unit 2 Reactor Vessel Radiation Surveillance Program," N. R. Jurcevich and G. A. Fischer, April 2008 .
WCAP-17123-NP                                                                                July 2011 Revision 1
 
I\lnrl.iJrAnrIPI,,'r'\J Class 3                  A-I APPENDIX A THERMAL STRESS INTENSITY FACTORS (KIT)
The following pages contain the thermal stress intensity factors (KII ) for the maximum heatup and cooldown rates. The vessel radii to the 1I4T and 3/4T locations are as follows:
* 1/4T Radius = 80.625"
* 3/4T Radius  84.562" WCAP-17123-NP
 
Westinghouse Non-Proprietary Class 3                              A-2 Table A-I  Kit Values for 36, 54 and 72 EFPY lOO&deg;F/hr "eatup Curves (w/o Margins for Instrument Errors)
Vessel Temperature                            Vessel Temperature Water                          1I4T Thermal Stress                      3/4T Thermal Stress
            @ 1I4T Location for                          @ 3/4T Location for Temp.                            Intensity Factor                          Intensity Factor lOO&deg;F/hr "eatup                              lOO&deg;F/hr Heatup (OF)                          (KSI SQ. RT. IN.)                        (KSI SQ. RT. IN.)
(OF)                                          (OF) 60          56.130                  -0.987                55.065              0.493 65          58.927                  -2.377              55.425              1.455 70          62. 129                -3.521                56.315              2.377 75          65.562                  -4.586                57.748              3.208 80          69.262                  -5.475              59.641              3.929 85          73.079                  -6.273              61.944              4.558 90          77.089                  -6.948              64.601              5.101 95          8l.l93                  -7.553              67.562              5.578 100          85.435                  -8.069              70.788              5.991 105          89.755                  -8.531              74.238              6.353 110          94.171                  -8.928              77.881              6.671 115          98.650                  -9.285              81.690              6.951 120        103.196                  -9.594              85.642              7.198 125        107.790                  -9.875              89.717              7.418 130        112.433                -10.118                93.898              7.612 135        117.114                -10.341                98.171              7.785 140        121.829                -10.535                102.523              7.940 145        126.574                -10.715                106.944              8.080 150        131.343                -10.873                111.424              8.206 155        136. 136              -11.020                115.955              8.320 160        140.945                -1l.l51                120.529              8.423 165        145.773                -11.275                125.142              8.519 170        150.613                -11.385              129.788              8.606 175        155.467                -11.491              134.462              8.687 180        160.330                -11.586              139.161              8.762 185        165.204                -11.678              143.881              8.833 190        170.083                -11.763              148.620              8.899 195        174.972                -11.845              153 .374            8.961 200          179.864                -11.920              158.143              9.020 205          184.764                -11.995              162.923              9.077 210          189.666                -12.064              167.713              9.131 WCAP-I7123-NP                                                                                July 2011 Revision I
 
Westinghouse Non-Proprietary Class 3                            A-3 Table A-2  KIf Values for 36, 54 and 72 EFPY lOO&deg;F/hr Cooldown Curves (w/o Margins for Instrument Errors)
Vessel Temperature      IOO&deg;F/hr Cooldown Water      @ 1I4T Location for    1I4T Thermal Stress I Temp.      IOO&deg;F/hr Cooldown        Intensity Factor eF)                eF)            (KSI SQ. RT. IN.)
210            232.426                  13.510 205            227.352                  13.454 200            222.278                  13.398 195            217.204                  13.342 190            212.131                  13 .286 185            207.057                  13.230 180            201.983                  13.175 175              196.909                13.119 170              191.836                13.063 165              186.762                13.008 160              181.688                12.952 155              176.615                12.897 150              171.541                12.842 145              166.468                12.786 140              161.395                12.731 135              156.322                12.676 130              151.249                12.622 125              146.176                12.567 120              141.103                12.512 115              136.031                12.457 110              130.958                12.403 105              125.886                12.349 100              120.813                12.295 95              115.741                12.240 90              110.669                12.187 85              105.597                12.133 80              100.526                  12.079 75              95.454                  12.025 70              90.382                  11.972 65              85.311                  11.919 60              80.241                  11.865 WCAP-17123-NP                                                                              July 2011 Revision 1}}

Latest revision as of 22:55, 11 January 2025

Request to Revise Technical Specifications Associated with the Low Temperature Overpressure Protection System and the Pressure and Temperature Limits Report
ML12229A521
Person / Time
Site: Farley  Southern Nuclear icon.png
Issue date: 08/15/2012
From: Ajluni M
Southern Co, Southern Nuclear Operating Co
To:
Office of Nuclear Reactor Regulation, Document Control Desk
References
NL-12-0868
Download: ML12229A521 (216)


Text