ML20141F595: Difference between revisions

From kanterella
Jump to navigation Jump to search
StriderTol Bot insert
 
StriderTol Bot change
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:. . .
{{#Wiki_filter:...
(y
~'
                                                                                      ~'
* n (y
* n u en,,,,
u en,,,,
hW                        SHAW, PITTMAN, PoTTs & TROWEbRIDGE ac-A PARTNE ASMep OF PROFr$$aONAL CORPORAfiONS 1800 M STREET. N. W.     '86 JMt -8 N0:27 WASHINGTON. D. C. 20036                               tt ttcopia n sacan saa eoes & saa-nee QGCL;$lha& ?ifi             tetta 33/.NCd     es-aeos isMAwtAw wswi Casts -sMAWLAW" JAY C. SILDERO, P C.                                                                     saca saa Oes January 6, 1986 Alan S. Rosenthal, Chairman Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commiccion Washington, D. C. 20555 Dr. W. Reed Johnson Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Mr. Howard A. Wilber Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Re: The Cleveland Electric Illuminating Company (Perry Nuclear Power Plant, Units 1 and 2)
h ac-W SHAW, PITTMAN, PoTTs & TROWEbRIDGE A PARTNE ASMep OF PROFr$$aONAL CORPORAfiONS
'86 JMt -8 N0:27 1800 M STREET. N. W.
WASHINGTON. D. C. 20036 tt ttcopia n sacan saa eoes & saa-nee QGCL;$lha& ?ifi tetta 33/.NCd es-aeos isMAwtAw wswi Casts -sMAWLAW" JAY C. SILDERO, P C.
saca saa Oes January 6, 1986 Alan S. Rosenthal, Chairman Atomic Safety and Licensing Appeal Board U.
S. Nuclear Regulatory Commiccion Washington, D. C.
20555 Dr. W. Reed Johnson Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commission Washington, D. C.
20555 Mr. Howard A. Wilber Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Re:
The Cleveland Electric Illuminating Company (Perry Nuclear Power Plant, Units 1 and 2)
Docket Nos. 50-440 and 50-441 O b Gentlemen:
Docket Nos. 50-440 and 50-441 O b Gentlemen:
As requested, I am enclosing the following two articles cited in the Atomic Safety Licensing Board's Memorandum and Order (Summary Disposition of Turbine Missile Issue),
As requested, I am enclosing the following two articles cited in the Atomic Safety Licensing Board's Memorandum and Order (Summary Disposition of Turbine Missile Issue),
LBP-83-48, 18 NRC 218 (1983):
LBP-83-48, 18 NRC 218 (1983):
: 1. S. H. Bush, "A Reassessment of Turbine-Generator Failure Probability," 19 Nuclear Safety 681 (1978);
1.
n G      (     ~]
S. H. Bush, "A Reassessment of Turbine-Generator Failure Probability," 19 Nuclear Safety 681 (1978);
pejP %8an Be8ajho
n
                                                                      }J o
(
~]
G}J pejP %8an Be8ajho o


h SHAW, PITTMAN. PoTTs & TROWBRIDGE A pantstmSM89 Or enor tssiONAL CompO1AfiCNs January 6, 1986 Page Two
h SHAW, PITTMAN. PoTTs & TROWBRIDGE A pantstmSM89 Or enor tssiONAL CompO1AfiCNs January 6, 1986 Page Two 2.
: 2.       Patrick G. Heasler, " Missile Generation Rates From Historical Data," presented at Electric Power Research Institute Seminar on Turbine Missile Effects in Nuclear Power Plants (October 25-26, 1982).
Patrick G. Heasler, " Missile Generation Rates From Historical Data," presented at Electric Power Research Institute Seminar on Turbine Missile Effects in Nuclear Power Plants (October 25-26, 1982).
Very truly yqurs, f f, 1
Very truly yqurs, f,
                                                    ,            ,  G U, L1(
G U, L1(
E ', Silberg     >
1 f
o nsol for Applicants JES L Enclosures cc:     Service List (Enclosures only to (Ms. Woodhead and Ms. Hiatt) l 4
E ', Silberg o nsol for Applicants JES L Enclosures cc:
l l
Service List (Enclosures only to (Ms. Woodhead and Ms. Hiatt) 4


\
\\
UNITED STATES OF AMERICA                             '
UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION BEFORE THE ATOMIC SAFETY AND LICENSING APPEAL BOARD In the Matter of
NUCLEAR REGULATORY COMMISSION BEFORE THE ATOMIC SAFETY AND LICENSING APPEAL BOARD In the Matter of                           )
)
                                              )
)
TNE CLEVELAND ELECTRIC                     )         Docket Nos. 50-440 ILLUMINATING COMPANY, ET AL.               )                     50-441
TNE CLEVELAND ELECTRIC
                                              )
)
(Perry Nuclear Power Plant,               )
Docket Nos. 50-440 ILLUMINATING COMPANY, ET AL.
Units 1 and 2)                             )
)
SERVICE LIST Alan S. Rosenthal, Chairman               Atomic Safety and Licensing Atomic Safety and Licensing                 Appeal Board Panel Appeal Board                           U. S. Nuclear Regulatory Comm4ssion U. S. Nuclear Regulatory Commission       Washington, D. C. 20555 washington, D. C. 20555 Dr. W. Reed Johnson                       Docketing and Service Section Atomic Safety and Licensing               Office of the Secretary Appeal Board                           U. S. Nuclear Regulatory Commission
50-441
  'U. S. Nuclear Regulatory Commission       Washington, D. C. 20555 Washington, D. C. 20555 Mr. Howard A. Wilber                       Colleen Woodhead, Esquire Atomic Safety and Licensing               Office of the Executive Legal Appeal Board                             Director U. S. Nuclear Regulatory Commission       U. S. Nuclear Regulatory Commission Washington, D. C. 20555                   Washington, D. C. 20555 James P. Gleason, Chairman                 Terry Lodge, Esquire 513 Gilmoure Drive                         Suite 105 Silver Spring, Maryland 20901             618 N. Michigan Street Toledo, Ohio 43624 Jerry R. Kline                             Ms. Susan L. Hiatt Atomic Safety and Licensing Board         8275 Munson Avenue U.S. Nuclear Regulatory Commission         Mentor, Ohio   44060 Washington, D.C. 20555 Glenn O. Bright                           Donald T. Ezzone, Esquire
)
  . Atomic Safety and Licensing Board         Assistant Prosecuting Attorney U.S. Nuclear Regulatory Commission         Lake County Administration Center Washington, D.C. 20555                 105 center Street Painesville, Ohio 44077 Atomic Safety and Licensing               Atomic Safety and Licensing Appeal Board                                 Board Panel U.S. Nuclear Regulatory Commission         U. S. Nuclear Regulatory Commission Washington, D.C. 20555                 Washington, D.C. 20555 John G. Cardinal, Esquire Prosecuting Attorney Ashtabula County Courthouse Jefferson, Ohio 44047
(Perry Nuclear Power Plant,
)
Units 1 and 2)
)
SERVICE LIST Alan S. Rosenthal, Chairman Atomic Safety and Licensing Atomic Safety and Licensing Appeal Board Panel Appeal Board U. S. Nuclear Regulatory Comm4ssion U. S. Nuclear Regulatory Commission Washington, D. C. 20555 washington, D. C. 20555 Dr. W. Reed Johnson Docketing and Service Section Atomic Safety and Licensing Office of the Secretary Appeal Board U. S. Nuclear Regulatory Commission
'U.
S. Nuclear Regulatory Commission Washington, D. C. 20555 Washington, D. C. 20555 Mr. Howard A. Wilber Colleen Woodhead, Esquire Atomic Safety and Licensing Office of the Executive Legal Appeal Board Director U. S. Nuclear Regulatory Commission U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Washington, D. C. 20555 James P. Gleason, Chairman Terry Lodge, Esquire 513 Gilmoure Drive Suite 105 Silver Spring, Maryland 20901 618 N. Michigan Street Toledo, Ohio 43624 Jerry R. Kline Ms. Susan L. Hiatt Atomic Safety and Licensing Board 8275 Munson Avenue U.S. Nuclear Regulatory Commission Mentor, Ohio 44060 Washington, D.C.
20555 Glenn O. Bright Donald T. Ezzone, Esquire
. Atomic Safety and Licensing Board Assistant Prosecuting Attorney U.S. Nuclear Regulatory Commission Lake County Administration Center Washington, D.C.
20555 105 center Street Painesville, Ohio 44077 Atomic Safety and Licensing Atomic Safety and Licensing Appeal Board Board Panel U.S. Nuclear Regulatory Commission U. S. Nuclear Regulatory Commission Washington, D.C.
20555 Washington, D.C. 20555 John G. Cardinal, Esquire Prosecuting Attorney Ashtabula County Courthouse Jefferson, Ohio 44047


I
I jZl 681 1
#                                                                                                                                        jZl 681 1
. ~......
                    ..-                    . ~ ..... .           . .    ..r g.ugg                ...    .e _ ,       . . .    . . _
..r g g
r ~
.e _,
Accident                             -
.ug r
86 'm a N :27   ~
Accident
Analysis                           :
~
Edited by P. M. Haas
86 'm a N :27
                }.
~
h A Reassessment of Turbine-Generator                                                                                     i Failure Probability                                                                             i By S. H. Bush'                                                                 '
Analysis
Abstras.t: A prewous article' sn Nuclear Safety assessed the           pertained to the assumptions used in the developmei.t overall probabahty (P.I of nuclear plant damage due to turbine         of the failure probability (Pn) pertinent to nuclear fadures as a function of the combined probabdities of turbine fadure and elecnon of an energette massule (P,). a mistsle and disagreements, it was decided to expand on the strukmg a crttical component EP,). and srgmficant damaer occurring to the component IP,I. Due to questions raired               items relevant to P , including experience since 1972.
}.
concernmg the methodology used. the ralue of P, has been               In essence, this article is limited to an assessment of Pi .
Edited by P. M. Haas h
reassessed, usmg a somewhat broader data base and other                       Failure probability in terms of Pn is defined as the methods of data analysts. The range ofinstantaneous turbine           statistically determined probability of the generation             .
A Reassessment of Turbine-Generator i
fadure rates consnJered relevant to nuclear systems is                 of one or more missiles that penetrate the turbine 3.3 x 10** to 3.1 x 10-* per turbine year in the current article Compared to a Value of l % $0~' pe! tu!bine year in the       SEiOg sob h3YO Sh0 pU$eOlbSi O               AM3g ng Col $cS1     {
Failure Probability i
previous article                                                       reactor coniponents if the missiles strike them.                   t On the basis of the information available, the instantaneous hazard function Z/T) at any time Twill A previous article' considered the general problem of be calculated rather than Pi . Depending on the data damage to nuclear reactor components critical to available, an alternative is to determine the cumulative safety due to the failure of the large turbine generator.
By S. H. Bush' Abstras.t: A prewous article' sn Nuclear Safety assessed the pertained to the assumptions used in the developmei.t overall probabahty (P.I of nuclear plant damage due to turbine of the failure probability (Pn) pertinent to nuclear fadures as a function of the combined probabdities of turbine fadure and elecnon of an energette massule (P,). a mistsle and disagreements, it was decided to expand on the strukmg a crttical component EP,). and srgmficant damaer occurring to the component IP,I. Due to questions raired items relevant to P, including experience since 1972.
The damage probability (Pa) was determined from the                   hazard function #/T). The function 2/T) can be combined probabilities of turbine failure (P ),a missile i
concernmg the methodology used. the ralue of P, has been In essence, this article is limited to an assessment of P.
obtained by differentiating #/T), or #fT) is the sinking a structure containing components entical to                   integral of 2/T). The value of 2/T)is derived from a safety (P:), and penetration or significant damage                     collection of those reported turbine generator failures considered relevant to nuclear reactor operation condi.
i reassessed, usmg a somewhat broader data base and other Failure probability in terms of Pn is defined as the methods of data analysts. The range ofinstantaneous turbine statistically determined probability of the generation fadure rates consnJered relevant to nuclear systems is of one or more missiles that penetrate the turbine 3.3 x 10** to 3.1 x 10-* per turbine year in the current article Compared to a Value of l % $0~' pe! tu!bine year in the SEiOg sob h3YO Sh0 pU$eOlbSi O AM3g ng Col $cS1
occurring to the structure and component (P3 ),or tions divided by the turbine years of operating turbine generators. As indicated later, the hazard value is Pa = Pi x P2 x Ps Since the publication of the previous article' in
{
* Spencer H. Bush is a senior staff consultant at Battelle 1973, several studies have been completed which agree                 Pacific Northwest Laboratories. Ite was a member of the with the ballistics missile strike probab,lity model used               Adytsory Committee on Reactor Safeguards from 1966-1977 8                                                        and served as chairman in 1971, ite has had considerable previously '* in calculating P3 . With regard to the                   "penente in the reactor Geld. including work in the physicat damage probability Pa, any further modification awaits                 and mechanical metatturgy of nucleas materlats, effects of completion of jet sled missile tests, sponsored by the                 irradiation on metals and alloys, and stress corrosion. Ite is Electric Power Research Institute (EPRI).                               active on severat national and international committees devel-The misunderstandings or disagreements arising                   opins safety codes and standards. He has done substantial werk on failure mechanisms of components in pressurised systems.
previous article reactor coniponents if the missiles strike them.
from the original article' have almost exclusively NUCLE AR SAFETY, Voi.19, No. 6. November-December 1978 J C.                                                                                                                                           .-
t On the basis of the information available, the instantaneous hazard function Z/T) at any time Twill A previous article' considered the general problem of damage to nuclear reactor components critical to be calculated rather than P. Depending on the data i
available, an alternative is to determine the cumulative safety due to the failure of the large turbine generator.
The damage probability (Pa) was determined from the hazard function #/T). The function 2/T) can be combined probabilities of turbine failure (P ),a missile obtained by differentiating #/T), or #fT) is the i
sinking a structure containing components entical to integral of 2/T). The value of 2/T)is derived from a safety (P:), and penetration or significant damage collection of those reported turbine generator failures occurring to the structure and component (P ),or considered relevant to nuclear reactor operation condi.
3 tions divided by the turbine years of operating turbine Pa = P x P x Ps generators. As indicated later, the hazard value is i
2 Since the publication of the previous article' in
* Spencer H. Bush is a senior staff consultant at Battelle 1973, several studies have been completed which agree Pacific Northwest Laboratories. Ite was a member of the with the ballistics missile strike probab,lity model used Adytsory Committee on Reactor Safeguards from 1966-1977 and served as chairman in 1971, ite has had considerable previously '* in calculating P. With regard to the "penente in the reactor Geld. including work in the physicat 8
3 damage probability Pa, any further modification awaits and mechanical metatturgy of nucleas materlats, effects of completion of jet sled missile tests, sponsored by the irradiation on metals and alloys, and stress corrosion. Ite is Electric Power Research Institute (EPRI).
active on severat national and international committees devel-The misunderstandings or disagreements arising opins safety codes and standards. He has done substantial werk from the original article' have almost exclusively on failure mechanisms of components in pressurised systems.
NUCLE AR SAFETY, Voi.19, No. 6. November-December 1978 J C.


3s2                                                 ACCIDENT A**ALYSIS essentially equal to the failure rate, and therefore the             The second option-confining the analysis to terms " hazard value," or " hazard rate" and " failure           nuclear turbines or to nuclear turbines for light. water rate,"are used interchangeably here.                             reactors (LWRs)-results in a small population in                 <
3s2 ACCIDENT A**ALYSIS essentially equal to the failure rate, and therefore the The second option-confining the analysis to terms " hazard value," or " hazard rate" and " failure nuclear turbines or to nuclear turbines for light. water rate,"are used interchangeably here.
The Nuclear Regalatory Commission (NRC) has                 terms of units and turbine years of operation,particu.
reactors (LWRs)-results in a small population in The Nuclear Regalatory Commission (NRC) has terms of units and turbine years of operation,particu.
not issued a "probabilistic" standard for turbine-               larly if the population is limited to reactors within the generator failure. flowever, there is a greater goal of         United States. The following data illustrate how few 10 ' as the probability for any specific major accident         data exist.
not issued a "probabilistic" standard for turbine-larly if the population is limited to reactors within the generator failure. flowever, there is a greater goal of United States. The following data illustrate how few 10 ' as the probability for any specific major accident data exist.
during any year. This implies that 2/T) should not be greater than 10-* per turbine year. The three ap-                     For the United States proaches available to the utility are:                               Number of operating 1.WRs through 1977               63
during any year. This implies that 2/T) should not be greater than 10-* per turbine year. The three ap-For the United States proaches available to the utility are:
: 1. Orientation and placement of the turbine genera-             Number of turbines                                   63 tor (s) to minimize Ps (e.g., peninsular orientation).               Total turbine years                                 367
Number of operating 1.WRs through 1977 63
: 2. Installation of missile barriers where protective             Range of turbine sizes MW(e)                   50-1200 orientation is not feasible, as is the case with platform-           For other countries exclusive of Russia and satellites
: 1. Orientation and placement of the turbine genera-Number of turbines 63 tor (s) to minimize Ps (e.g., peninsular orientation).
* mounted nuclear plants.                                                                                                         -
Total turbine years 367
Number of operating reactors                          30
: 2. Installation of missile barriers where protective Range of turbine sizes MW(e) 50-1200 orientation is not feasible, as is the case with platform-For other countries exclusive of Russia and satellites
: 3. Justification that the failure rate from all causes Number of turbines                                   123 is sufficiently low. Such an approach has been reviewed               Total turtine years                             ~1200 by NRC for acceptance of other types of failure.                     Range of turbine sizes. MW(e)                   30-1200 Several new plants have oriented the turbine                         ,Eluninated due to tack of data on turbines.
* mounted nuclear plants.
generators to minimize the possibility of missile strike on the critical components. The second and third approaches also have been investigated; however, the                 With regard to the first option-the one developed NRC has not accepted the third, namely, the proba.               further in this report-it should be recognized that bility approach for turbine failures at this time. The           there are factors that could bias the statistical analysis:
: 3. Justification that the failure rate from all causes Number of operating reactors 30 Number of turbines 123 is sufficiently low. Such an approach has been reviewed Total turtine years
importance NRC places on the turbine failure issue is                 1. The turbines listed represent a large spectrum of apparent if one examines the development of their               ages, sizes, and operating conditions.
~1200 by NRC for acceptance of other types of failure.
positions pertinent to turbine generators.' The posi-                 2.The data from some manufacturers concerning tion of the Advisory Committee on Reactor Safeguards             turbine operating histories were inadequate or non.
Range of turbine sizes. MW(e) 30-1200 Several new plants have oriented the turbine
,Eluninated due to tack of data on turbines.
generators to minimize the possibility of missile strike on the critical components. The second and third approaches also have been investigated; however, the With regard to the first option-the one developed NRC has not accepted the third, namely, the proba.
further in this report-it should be recognized that bility approach for turbine failures at this time. The there are factors that could bias the statistical analysis:
importance NRC places on the turbine failure issue is
: 1. The turbines listed represent a large spectrum of apparent if one examines the development of their ages, sizes, and operating conditions.
positions pertinent to turbine generators.' The posi-2.The data from some manufacturers concerning tion of the Advisory Committee on Reactor Safeguards turbine operating histories were inadequate or non.
(ACRS) was given in a letter
(ACRS) was given in a letter
* dated Apr. 18,1973,to             existent.
* dated Apr. 18,1973,to existent.
Dixy Lee Ray, who was then Chairman of the Atomic                     3. In the list, there is a mixture of both nuclear and Energy Commission.                                             nonnuclear turbines with a spectrum of operating conditions.
Dixy Lee Ray, who was then Chairman of the Atomic
STATISTICAL ANALYSIS: PROBLEMS AND                               failu ALTERNATIVES                                                         5.There is no assurance that the list of turbine llaving determined that a statistical analysis was         failures is all. inclusive.
: 3. In the list, there is a mixture of both nuclear and Energy Commission.
the most effective approach available, at least three                 6.There is considerable subjectivity in deciding options existed:                                                 whether or not a particular nonnuclear failure is I. Use as much data as possible in the statistical         relevant to nuclear reactors; there is similar subjectivity analysis, recognizing that there are a number of                 concerning the applicability of degraded components limitations as noted iater.                                     in nuclear turbines where severe cracking, but not
nonnuclear turbines with a spectrum of operating conditions.
: 2. Limit the analysis to turbines in nuclear plants,         failure, has occurred.
STATISTICAL ANALYSIS: PROBLEMS AND failu ALTERNATIVES 5.There is no assurance that the list of turbine llaving determined that a statistical analysis was failures is all. inclusive.
recognizing the very small population and consequent                 Recognizing the above limitations, an effort was increase in the widths of confidence interval estimates.         made to establish the turbine population (nuclear as
the most effective approach available, at least three 6.There is considerable subjectivity in deciding options existed:
whether or not a particular nonnuclear failure is I. Use as much data as possible in the statistical relevant to nuclear reactors; there is similar subjectivity analysis, recognizing that there are a number of concerning the applicability of degraded components limitations as noted iater.
in nuclear turbines where severe cracking, but not
: 2. Limit the analysis to turbines in nuclear plants, failure, has occurred.
recognizing the very small population and consequent Recognizing the above limitations, an effort was increase in the widths of confidence interval estimates.
made to establish the turbine population (nuclear as
: 3. Apply extreme value theory to specific compo.
: 3. Apply extreme value theory to specific compo.
well as nonnuclear) and to document failures.
well as nonnuclear) and to document failures.
nents of large steam turbines to assess the probability of generation oflarge missiles.
nents of large steam turbines to assess the probability of generation oflarge missiles.
Although the third option appears quite attractive, TURBINE YEARS OF OPERATION probabilities based on as built quality do not cover                 it was necessary to make the following assumptions degradation mechanisms, such as environmentally in-             when developing the body of data pertinent to turbine duced stress corrosion or malfunction of turbine valves.         years of operation:
TURBINE YEARS OF OPERATION Although the third option appears quite attractive, probabilities based on as built quality do not cover it was necessary to make the following assumptions degradation mechanisms, such as environmentally in-when developing the body of data pertinent to turbine duced stress corrosion or malfunction of turbine valves.
years of operation:
NUCLE AH S AFETY, Vol.19. No. 6, Novemte-December 1978
NUCLE AH S AFETY, Vol.19. No. 6, Novemte-December 1978


ACCITENT ANALYSIS                                                 643
ACCITENT ANALYSIS 643
: l. In a few instances, data on operating years were         Table I contains data that tend to substantiate available both before and after 1950. Such data were         several of the assumptions made in inferring trends. In used with or without suitable modifications to cover         this instance the number of units and the service years retirement of units.                                         were known. Twenty.seven new units were assumed to
: l. In a few instances, data on operating years were Table I contains data that tend to substantiate available both before and after 1950. Such data were several of the assumptions made in inferring trends. In used with or without suitable modifications to cover this instance the number of units and the service years retirement of units.
        ,2.It was recognized that a substantial fraction of     come on.line every year based on summing total new units and. dividing by the number of years. Retirement turhgie. generator units produced by some manufae.
were known. Twenty.seven new units were assumed to
turers were less than 50 MW(e). No attempt was made         data are compared on the basis of arbitrarily retiring to eliminate such smaller units from the data.               units after 30 years or assuming that 5 units per year 3.In some cases the number of units fabricated         are retired. Figure I presents the data in Table I both before 1950 was known, but not the operating years.         with and without retirement of units. In general, the The pre.1950 data were obtained by extrapolation of         assumptions used appear to result in reasonably good trends in these cases.                                       agreement with the actual data. All data were from one     i 4.Where data were limited to total units and total     manufacturer.
,2.It was recognized that a substantial fraction of come on.line every year based on summing total new turhgie. generator units produced by some manufae.
operating years, an attempt was made to infer turbine             Table 2 illustrates another trend in the data.
units and. dividing by the number of years. Retirement turers were less than 50 MW(e). No attempt was made data are compared on the basis of arbitrarily retiring to eliminate such smaller units from the data.
years per year, using trends observed in other data sets. Manufacturer B produces turbine generators over the S. Arbitrary reductions in numbers of turbines         entire range of sizes from < 10 MW(e) to the largest were made on the basis of an assumed turbine life of         available. The data are presented in terms of units 30 years.                                                   larger than 100 MW(e) as well as all units, regardless of
units after 30 years or assuming that 5 units per year 3.In some cases the number of units fabricated are retired. Figure I presents the data in Table I both before 1950 was known, but not the operating years.
: 6. Data available before 1972 were used to infer       size. In addition, new units are incorporated into.the turbine years of operation during the period 1972 to         data set on the assumption that they operated either 6 1977.                                                       months or 12 months in the first year. It appears, for
with and without retirement of units. In general, the The pre.1950 data were obtained by extrapolation of assumptions used appear to result in reasonably good trends in these cases.
: 7. In the absence of knowledge relevant to turbine     manufacturer B, that about 457 of the units are generators manufactured before 1950, the turbine             >toogw(e),
agreement with the actual data. All data were from one i
years began with operation of the first known unit (s).           Tables 3 and 4 represent a synthesis of the available 8.Where there was a clear delineatien between the       information for new turbine generators and for cum t.
4.Where data were limited to total units and total manufacturer.
number of large turbines [> 50 MW(e) or > 100 MW(e)]         lative turbine years of operation. Table 3 covers the and small turbines for a given manufacturer, the data       case of no units retired, whereas Table 4 assumes were examined,but the total population was used.             retirement after 30 years. Without re tiremen t, the
operating years, an attempt was made to infer turbine Table 2 illustrates another trend in the data.
: 9. For those turbine manufacturers where data on       population is about I x 10' turbine years. Assuming turbine years were totally absent, some arbitrary           retirement, the total population represents almost               -
years per year, using trends observed in other data sets.
assumptions were made to expand the turbine years             8 x 10' turbine years. An obvious consequence of                 !
Manufacturer B produces turbine generators over the S. Arbitrary reductions in numbers of turbines entire range of sizes from < 10 MW(e) to the largest were made on the basis of an assumed turbine life of available. The data are presented in terms of units 30 years.
and to factor in failures of units produced by these         such a lirmted population is the broadening of confi.
larger than 100 MW(e) as well as all units, regardless of
manufacturers. Specifically,it was assumed that known       dence interval estimates. These data are multiplied by manufacturers produced three. fourths of the units and       1.33 to include other turbine manufacturers. This that "other" manufacturers produced the rest; thus the       figure may be too large or too small;however,it is felt turbine. years curve for known manufacturers was             that the error is not too great. The maximum number multiplied by 1.33.                                         of turbine years without retirement by the end of 1977 10.Certain simplifying assumptions were made           is about 1.33 x 10' years and with retirement about concerning new units operating in a given year and the       1.1 x 10' years.
: 6. Data available before 1972 were used to infer size. In addition, new units are incorporated into.the turbine years of operation during the period 1972 to data set on the assumption that they operated either 6 1977.
fraction of a year assigned to such new units during             One other trend is considered significant-the their first year of operation. These trends were             increase in size of turbine generators with year of generally validated on the basis of deliberately synthe. geration or order. Table 5 illustrates the change in sizing such data for manufacturers with known his.           size for all commercia! LWRs in the United States.         4 tories for new units.                                             It should be recognized that there are inherent limitations in the turbine population given in Tables 3 ll. Data varying substantially in degree of com.                                                                   ,
months or 12 months in the first year. It appears, for
pleteness were available from the following turbine         and 4. An obvious trend is the increase in size of manufacturers: Allis Chalmers, Brown Boveri Com.             turbine generators with time. Units produced through.
: 7. In the absence of knowledge relevant to turbine manufacturer B, that about 457 of the units are generators manufactured before 1950, the turbine
out the period 1930 to 1950 were relatively small, with    o pany, G.E.C. Turbine Generators, Ltd. (formerly En.
>toogw(e),
glish Electric), General Electric Company, Kraftwerk         newer units being larger. A second limitation was the         .
years began with operation of the first known unit (s).
Union (originally A.E.G. and Siemens), and Westing-           degree of interpolation or extrapolation in the popula-house Electric Corp. No data were available for other         tion of turbine generators. A third limitation was the turbine manufacturers.                                       lack ofinformation relevant to retirement of units.          .
Tables 3 and 4 represent a synthesis of the available 8.Where there was a clear delineatien between the information for new turbine generators and for cum t.
NUCLE AR SMETY, Vol. 19. No. 6. Novemt>er-December 1978         .g j
number of large turbines [> 50 MW(e) or > 100 MW(e)]
lative turbine years of operation. Table 3 covers the and small turbines for a given manufacturer, the data case of no units retired, whereas Table 4 assumes were examined,but the total population was used.
retirement after 30 years. Without re tiremen t, the
: 9. For those turbine manufacturers where data on population is about I x 10' turbine years. Assuming turbine years were totally absent, some arbitrary retirement, the total population represents almost assumptions were made to expand the turbine years 8 x 10' turbine years. An obvious consequence of and to factor in failures of units produced by these such a lirmted population is the broadening of confi.
manufacturers. Specifically,it was assumed that known dence interval estimates. These data are multiplied by manufacturers produced three. fourths of the units and 1.33 to include other turbine manufacturers. This that "other" manufacturers produced the rest; thus the figure may be too large or too small;however,it is felt turbine. years curve for known manufacturers was that the error is not too great. The maximum number multiplied by 1.33.
of turbine years without retirement by the end of 1977 10.Certain simplifying assumptions were made is about 1.33 x 10' years and with retirement about concerning new units operating in a given year and the 1.1 x 10' years.
fraction of a year assigned to such new units during One other trend is considered significant-the their first year of operation. These trends were increase in size of turbine generators with year of generally validated on the basis of deliberately synthe.
geration or order. Table 5 illustrates the change in sizing such data for manufacturers with known his.
size for all commercia! LWRs in the United States.
4 tories for new units.
It should be recognized that there are inherent ll. Data varying substantially in degree of com.
limitations in the turbine population given in Tables 3 pleteness were available from the following turbine and 4. An obvious trend is the increase in size of manufacturers: Allis Chalmers, Brown Boveri Com.
turbine generators with time. Units produced through.
pany, G.E.C. Turbine Generators, Ltd. (formerly En.
out the period 1930 to 1950 were relatively small, with o
glish Electric), General Electric Company, Kraftwerk newer units being larger. A second limitation was the Union (originally A.E.G. and Siemens), and Westing-degree of interpolation or extrapolation in the popula-house Electric Corp. No data were available for other tion of turbine generators. A third limitation was the turbine manufacturers.
lack ofinformation relevant to retirement of units.
NUCLE AR SMETY, Vol. 19. No. 6. Novemt>er-December 1978
.g j


g4                                                       ACCIDENT ANALYSIS                             ,
g4 ACCIDENT ANALYSIS Table I Compag of Actual, Interpolated, and Extrapolated Turbine Years for Manufacturer A Assumes 27 new w-Assumes 27 new Actu al e xpe rience, Actual experience, units per year, Actual experience, units per year, with retirement with retirement of retirement of without retirement without retirement after 30 years 5 units per year 5 units per year No, Service No.
Table I Compag of Actual, Interpolated, and Extrapolated Turbine Years for Manufacturer A w-                                                                                  Assumes 27 new Assumes 27 new           Actu al e xpe rience,   Actual experience,   units per year, Actual experience,         units per year,           with retirement         with retirement of   retirement of without retirement       without retirement           after 30 years           5 units per year   5 units per year   ,
Service No, Service No, Service No, Service
No,     Service           No. Service           No,     Service         No,     Service   No,     Service 'Y Year         units     years           units     years           units years             units     years   units     years Pre 1950         166     2,012           166       2,012           166       2,012         166       2,012   166       2,012 k   1950             186     2,198           193       2,205           182       2,194         181       2,193   188       2,200 1951             224     2,422           220       2,425           220       2,414         214       2,407   210       2,410 1952             249     2,671           247       2,672           245       2,659         234       2,641   232       2,642 1953             293     2,964           274       2,946           289       2,948         273       2.914   254       2.896 1954             348       3,312           301       3,247           340       3,288         323       3,237   276       3,172 1955             385       3,697           328       3,575           372       3,660         355       1,592   298       3,470 1956             410     4,107           355       3,930           390       4,05 0         375       3,967   320       3,790 1957             445     4,552           382       4,312           418       4,468         405       4,372   342       4,132 1958'           494     5,046           409       4.721           464       4,932         449       4,821   364       4,496       i l
'Y Year units years units years units years units years units years Pre 1950 166 2,012 166 2,012 166 2,012 166 2,012 166 2,012 k
1959             526     5,572           436       5,157           484       5,416         476       5,297   386       4,882 1960             562     6,134           463       5,620           506       5,922         507       5,804   408       5,290       1 1961             576     6,710           490       6,110           518       6,440         516       6.320   430       5,720       '
1950 186 2,198 193 2,205 182 2,194 181 2,193 188 2,200 1951 224 2,422 220 2,425 220 2,414 214 2,407 210 2,410 1952 249 2,671 247 2,672 245 2,659 234 2,641 232 2,642 1953 293 2,964 274 2,946 289 2,948 273 2.914 254 2.896 1954 348 3,312 301 3,247 340 3,288 323 3,237 276 3,172 1955 385 3,697 328 3,575 372 3,660 355 1,592 298 3,470 1956 410 4,107 355 3,930 390 4,05 0 375 3,967 320 3,790 1957 445 4,552 382 4,312 418 4,468 405 4,372 342 4,132 1958' 494 5,046 409 4.721 464 4,932 449 4,821 364 4,496 i
1962             593     7,303           517       6,627           533       6,973         528       6,848   452       6,172 1963             612       7,915           544       7.171           551       7,524         542       7,390   474       6,646 1964             637       8,552           571       7,742           576       8,100         562       7,952   496       7,142 1965             652       9,204           598       8,340           591       8,691         $72       8,524   518       7,660 1966             671     9,875           625       8,965           608       9,299         586       9,110   540       8,200 1967             687     10,562           652       9,617           621       9,920         597       9,707   $62       8,762 1968             710     1I,272           679     10,296           638     10,558         615     10,322   584       9,346 1969             729     12,001           7')6     11,002           652     11,210         629     10,951   606       9,952 1970             747     12,74H           ' 13     11,735           664     11,874         642     11,593   628     10,580 1971             765     13,513           ' 50 12,495           673     12.547         655     12.248   650     11,230
l 1959 526 5,572 436 5,157 484 5,416 476 5,297 386 4,882 1960 562 6,134 463 5,620 506 5,922 507 5,804 408 5,290 1
    *1972             785     14.298           787     13,272           680     13,227         670     12,918   672     11,902 1973             805     15,103           814     14,086           690     13,917         680     13,603   694     12,596 1974             825     15,928           841     14,927           711     14,628         705     14,308   716     13,312 1975             845     16,773           868     15,795           732     15,360         725     15.033   738     14,050 1976             865     17,638           895     16,690           756     16,116         745     15,778     760     14,800 1977             885     18.523           922     17.612           780     16,896         765     16.543     788     15,588
1961 576 6,710 490 6,110 518 6,440 516 6.320 430 5,720 1962 593 7,303 517 6,627 533 6,973 528 6,848 452 6,172 1963 612 7,915 544 7.171 551 7,524 542 7,390 474 6,646 1964 637 8,552 571 7,742 576 8,100 562 7,952 496 7,142 1965 652 9,204 598 8,340 591 8,691
$72 8,524 518 7,660 1966 671 9,875 625 8,965 608 9,299 586 9,110 540 8,200 1967 687 10,562 652 9,617 621 9,920 597 9,707
$62 8,762 1968 710 1I,272 679 10,296 638 10,558 615 10,322 584 9,346 1969 729 12,001 7')6 11,002 652 11,210 629 10,951 606 9,952 1970 747 12,74H
' 13 11,735 664 11,874 642 11,593 628 10,580 1971 765 13,513
' 50 12,495 673 12.547 655 12.248 650 11,230
*1972 785 14.298 787 13,272 680 13,227 670 12,918 672 11,902 1973 805 15,103 814 14,086 690 13,917 680 13,603 694 12,596 1974 825 15,928 841 14,927 711 14,628 705 14,308 716 13,312 1975 845 16,773 868 15,795 732 15,360 725 15.033 738 14,050 1976 865 17,638 895 16,690 756 16,116 745 15,778 760 14,800 1977 885 18.523 922 17.612 780 16,896 765 16.543 788 15,588
* Extrapolated below line. To correct for partial years of sersice, subtract 357 turbine years.
* Extrapolated below line. To correct for partial years of sersice, subtract 357 turbine years.
In the case of manufacturer A,the data on number                     2 and Fig. I to permit extrapolation. In essence, the of units and years of operation were quite good. In                       data available censisted of a given number of units with addition, the set was more homogeneous in size since                       the cumulatise turbine years cited at one point in time; all units were larger than 50 MW(e). The quality of                       theafore it was necessary to extrapolate both back.
In the case of manufacturer A,the data on number 2 and Fig. I to permit extrapolation. In essence, the of units and years of operation were quite good. In data available censisted of a given number of units with addition, the set was more homogeneous in size since the cumulatise turbine years cited at one point in time; all units were larger than 50 MW(e). The quality of theafore it was necessary to extrapolate both back.
data for manufacturer B is similar to that for manu.                       ward and forward to develop the data given in Tables 3 facturer A; however, the unit sizes include both small                     and 4,
data for manufacturer B is similar to that for manu.
[-10 MW(e)] and la ge [>$0 MW(e)], The same is true for manufacturers D and F. Manufacturer C FAILURES AND FAILURE MECHANISMS discontinued manufacturing turbine generators in 1968; however, the data set for C is similar to A in                           Turbine generator failures during the past 25 years quality, Data from manufacturer E was quite poor,                           are presented in Tables 6 and 7. Table 6 covers failures necessitating the procedures developed in Tables I and                     of large and medium steam turbines at or near NUCLE AR SAFETY, Vol.19. No. 6, November- December 1978 E
ward and forward to develop the data given in Tables 3 facturer A; however, the unit sizes include both small and 4,
[-10 MW(e)] and la ge [>$0 MW(e)], The same is true for manufacturers D and F. Manufacturer C FAILURES AND FAILURE MECHANISMS discontinued manufacturing turbine generators in 1968; however, the data set for C is similar to A in Turbine generator failures during the past 25 years quality, Data from manufacturer E was quite poor, are presented in Tables 6 and 7. Table 6 covers failures necessitating the procedures developed in Tables I and of large and medium steam turbines at or near NUCLE AR SAFETY, Vol.19. No. 6, November-December 1978 E


.                                                                    ;-                                                                    M; ACCIDENT ANALYSIS                                                                   805 1&MO       , , , , , , ,                    , , , , , , , , ,                          , , , , ,            , ,        , ,
M; ACCIDENT ANALYSIS 805 1&MO Actu.i espo,6ence, udthout todroment
Actu.i espo,6ence, udthout todroment 14.C10   -
/
                                                                                                                                                    /,( :.,
14.C10
                                  - . . -      Assume. 27 new units per ve.r. without retirement
.,(
                          -                                                                                                              ,,fl, * ,/   e4
Assume. 27 new units per ve.r. without retirement
                                  ---          w.i .x,o_. ,ee,em.nt .n., m ,o-
,,fl, *,/ e4 w.i.x,o_.,ee,em.nt.n., m,o-
                                                                                                                                      /
/
3,
3,
                                  -___        Ac,u.,es,.,_       ee,em ,so,. - . - ,es,.                                     #.jp    -            -
#.jp Ac,u.,es,.,_
ee,em,so,. -. -,es,.
p/
/
j
j
            ,, 12,000   -
,, 12,000 Assumes 27 new unats per yo.r, retirement of 5 units per ye.r
                                  = * - -      Assumes 27 new unats per yo.r, retirement of 5 units per ye.r               p//*     /              -
= * - -
8                                                                                                               ,/
/*
                          ~                                                                                               /                          -
8
3                                                                                                         ./
,/
y tcLo00     -
/
f hooaa      -                                                                  $f,/j-/ /*
~
                                                                                                                                                      ~
3
                                                                                                                                                      ~
./
            !      0000
y tcLo00
                                                                              . .: gk
$f,/j-f
* 4000 -
/ /*
                                                      ,M gI                                                    . f Entreporated
~
                        .                  /                                                                                                         ~
hooaa -
g              I   I   I   f     1   I   t   i   I   i i     t   1   I     i   t     I t     i i   f     I   t     i te6o     '52     '54       '56       '58       to       12     14       to         18     70     72         74           78 YEAR Fig. I Comparison of actual, interpolated, and estrspolated turbine years with and without retirement of units for rnanufuturer A.
gk
operating speeds. Table 7 covers cases of turbine                             heat. treatment procedures so that failures due to this overspeed with and without failure.
~
0000 gI
. f Entreporated 4000 -
,M
/
~
I I
I f
1 I
t i
I i i t
1 I
i t
I t
i i f
I t
i g
te6o
'52
'54
'56
'58 to 12 14 to 18 70 72 74 78 YEAR Fig. I Comparison of actual, interpolated, and estrspolated turbine years with and without retirement of units for rnanufuturer A.
operating speeds. Table 7 covers cases of turbine heat. treatment procedures so that failures due to this overspeed with and without failure.
mechanism are less likely to occur in modem plants.
mechanism are less likely to occur in modem plants.
Although there are several failures cited in Tables 6 Several failures elsewhere in the turbine have and 7, the critical question is how many are relevant to occurred because of some aspect of generator failure.
Although there are several failures cited in Tables 6 Several failures elsewhere in the turbine have and 7, the critical question is how many are relevant to occurred because of some aspect of generator failure.
turbine generators used in nuclear power plants. Any                           Events such as abrupt braking, running of the generator decision concerning relevance will be subjective. As                           as an induction motor, and out.of. phase have caused indicated in Tables 6 and 7, such a subjective judgment severe damage to turbine generators, but only rarely placed the minority of the failures in the relevant                           have missiles been generated extemally. This has been category. The following discussion develops the ratio-due to the massiveness of the stator and the shell of the nale for division into relevant and irrelevant failures.                     genera tor.
turbine generators used in nuclear power plants. Any Events such as abrupt braking, running of the generator decision concerning relevance will be subjective. As as an induction motor, and out.of. phase have caused indicated in Tables 6 and 7, such a subjective judgment severe damage to turbine generators, but only rarely placed the minority of the failures in the relevant have missiles been generated extemally. This has been category. The following discussion develops the ratio-due to the massiveness of the stator and the shell of the nale for division into relevant and irrelevant failures.
An additional subset pertinent to relevant failures A number of failures have occurred in the test pit covers those failures generating energetic external                           or preoperationally. Considering the causes of such missiles-the only condition of significance in assess-                         preoperational failures, it is improbable that these ing the damage probability,                                                   turbine generators would have survived the tests and then failed in service.
genera tor.
Failures irrelevant to Nuclear Units or Not Capable of Major Missile Generation Failures Flefevant to Nuclear Units One class of failures occurring 20 to 25 years ago                             The remaining turbine generator failures can be was the brittle fracture of turbine or generator rotors.                       considered marginally or directly relevant to nuclear Seven such failures occurred over a relatively short                           p' ants. The Tanners Creek stress rupture and the time. All were characterized by high nil ductility                             Gillatin creep fatigue failures are considered to be temperatures and hydrogen present as fisheyes, etc.                           marginal, since nuclear service conditions are below the These failures led to changes in melt, fabrication, and                       range considered relevant for stress rupture.
An additional subset pertinent to relevant failures A number of failures have occurred in the test pit covers those failures generating energetic external or preoperationally. Considering the causes of such missiles-the only condition of significance in assess-preoperational failures, it is improbable that these ing the damage probability, turbine generators would have survived the tests and then failed in service.
Failures irrelevant to Nuclear Units or Not Capable of Major Missile Generation Failures Flefevant to Nuclear Units One class of failures occurring 20 to 25 years ago The remaining turbine generator failures can be was the brittle fracture of turbine or generator rotors.
considered marginally or directly relevant to nuclear Seven such failures occurred over a relatively short p' ants. The Tanners Creek stress rupture and the time. All were characterized by high nil ductility Gillatin creep fatigue failures are considered to be temperatures and hydrogen present as fisheyes, etc.
marginal, since nuclear service conditions are below the These failures led to changes in melt, fabrication, and range considered relevant for stress rupture.
NUCLE AR SAFETY. Vol.19. No. 6, November-December 1978
NUCLE AR SAFETY. Vol.19. No. 6, November-December 1978


1*
1*
000                                                   ACCIOGNT ANALYSIS Table 2 Tuebine Years foe Two Casesocies of Turbine Generatoes foe Manufacturer 3 g'
000 ACCIOGNT ANALYSIS Table 2 Tuebine Years foe Two Casesocies of Turbine Generatoes foe Manufacturer 3 TurWne pnerators larps than g'
TurWne pnerators larps than 100 MW(e)                                                 All turWne pnerstors TurWne years                                                   TurWne years
100 MW(e)
                                      **                                                            ""*              Assumes         Aansmes Asasmes            Assumes Cume.     % mewin             all new                   Cume.           % new in         all new Year         No.     lathe     first year         one year           No.     lative         nest year       one year Pro.1950           1         1               2                 2                         56             500 1950               2         3               4                 5           39             95             575               595 4         7               9               12           31         126               686               721 1951 14             19               26           26         152               825               873 1952              7 28             40               54           33         185               993             1,058 1953            14 24         52             80               106           49         234             1,203             1,292 1954 73           143               179           35         269             1,455             1,561 1955            21 12         85           222                 264           15         284             1,732             1,845 1956 92           310               356           26           310             2.019             2,155 1957              7 14       106           409                 462           32           342             2,345             2,497 1958 127           525                 589           30           372           2,702             2,869 1959            21 658               728           24           396           3,086             3,265 1960            12'      139 157           806               885           26           422             3,495             3,687 1961            18 174           972             1,059             28           450           3,931             4,137 1962              17 184         1,151             1,243             19           469           4,390             4,606 1963              10, 192         1,339             1,435             18           487           4,868             5.093 1964              8 1,537             1,639             25           512           5,367             5,605 1965            12      204 1,747             1,854             28           540           5,893             6,145 1966            11      215 234         1,971             2,088             31           571           6,450             6,716 1967            19 252         2,214             2,340             26           597           7,034             7,313 1968            18 2,485             2,611             23           620           7,643             7,933 1969            19      271 2,757             2,904             22           642           8,274             8,575 1970            22      293 3,058             3,2 0 8 _ __ . 20           662             8,926             9,237 1971            11      304
All turWne pnerstors TurWne years TurWne years Asasmes Assumes Assumes Aansmes Cume.
* 318         3,369             3,526 1           23           685           9.599             9.922
% mewin all new Cume.
                *1972              14 10,627 3,694             3,858             20           705         10,294 1973            14       332 4,033             4,204             25           730         11,012           11,357 1974            14       346 4,386             4,564             25           755         11,754           12,112 1975            14       360 4,753             4,938             25           780         12,522           12,892 1976            14       374 5,134             5,326             25           805         13,314           13,697 1977            14      388 d
% new in all new Year No.
* Extrapolated below hne, This leaves the following failures as relevant:                               2 The overspeed incidents leading to failure               ,
lathe first year one year No.
l.The initial liinkley Point A brittle. stress.                         (liskmouth, Calder Hall, and Bold) are considered               ,
lative nest year one year Pro.1950 1
corrosion failure and the Duquesne Shippingport fall.                         relevant even though Calder Itall occurred during the           ,
1 2
ure are both relevant and directly applicable to nuclear                     startup phase, ne possibility exists for a mechanism,           g units since both plants are nuclear. The other two                           such as the occurrence of foreign bodies in a system,           ,
2 56 500 1950 2
Ilinkley Point failures occurred during pit testing;                         which could prevent valve operation, it should be hence they are marginal at best and probably should                           noted that several nuclear plants have overspeeded             f not be used in the body of statistics. The Oak Creek                         without damage. The reasons advanced by Splitt.                 ,
3 4
failure is considered a relevant brittle failure The disk                     gerber,' lluppman,' and Carson et al.' are considered           j relevant to nuclear turbines. Carson et al.' cite,but do       ,
5 39 95 575 595 1951 4
cracking at Rancho Seco and Arkansas Nuclear One were not failures, but such cracking should be con.                           not identify, cases of modern turbine generators going
7 9
    '    sidered a waming that mechanisms exist which, if                               into overspeed due to rust in valves resulting frorn           ,
12 31 126 686 721 1952 7
undetected, could lead to failure.                                             water in the hydraulic fluid. Other causes may lead to         k NUCLE AR 8AFETY, Vol.19, No. 6, Novemtwr-Decomtwe 19FJ
14 19 26 26 152 825 873 1953 14 28 40 54 33 185 993 1,058 1954 24 52 80 106 49 234 1,203 1,292 1955 21 73 143 179 35 269 1,455 1,561 1956 12 85 222 264 15 284 1,732 1,845 1957 7
92 310 356 26 310 2.019 2,155 1958 14 106 409 462 32 342 2,345 2,497 1959 21 127 525 589 30 372 2,702 2,869 1960 12' 139 658 728 24 396 3,086 3,265 1961 18 157 806 885 26 422 3,495 3,687 1962 17 174 972 1,059 28 450 3,931 4,137 1963 10, 184 1,151 1,243 19 469 4,390 4,606 1964 8
192 1,339 1,435 18 487 4,868 5.093 1965 12 204 1,537 1,639 25 512 5,367 5,605 1966 11 215 1,747 1,854 28 540 5,893 6,145 1967 19 234 1,971 2,088 31 571 6,450 6,716 1968 18 252 2,214 2,340 26 597 7,034 7,313 1969 19 271 2,485 2,611 23 620 7,643 7,933 1970 22 293 2,757 2,904 22 642 8,274 8,575 1971 11 304 3,058 3,2 0 8 _ __.
20 662 8,926 9,237
*1972 14 318 3,369 3,526 1 23 685 9.599 9.922 1973 14 332 3,694 3,858 20 705 10,294 10,627 1974 14 346 4,033 4,204 25 730 11,012 11,357 1975 14 360 4,386 4,564 25 755 11,754 12,112 1976 14 374 4,753 4,938 25 780 12,522 12,892 1977 14 388 5,134 5,326 25 805 13,314 13,697 d
* Extrapolated below hne, This leaves the following failures as relevant:
2 The overspeed incidents leading to failure l.The initial liinkley Point A brittle. stress.
(liskmouth, Calder Hall, and Bold) are considered corrosion failure and the Duquesne Shippingport fall.
relevant even though Calder Itall occurred during the ure are both relevant and directly applicable to nuclear startup phase, ne possibility exists for a mechanism, g
units since both plants are nuclear. The other two such as the occurrence of foreign bodies in a system, Ilinkley Point failures occurred during pit testing; which could prevent valve operation, it should be hence they are marginal at best and probably should noted that several nuclear plants have overspeeded f
not be used in the body of statistics. The Oak Creek without damage. The reasons advanced by Splitt.
failure is considered a relevant brittle failure The disk gerber,' lluppman,' and Carson et al.' are considered j
cracking at Rancho Seco and Arkansas Nuclear One relevant to nuclear turbines. Carson et al.' cite,but do were not failures, but such cracking should be con.
not identify, cases of modern turbine generators going sidered a waming that mechanisms exist which, if into overspeed due to rust in valves resulting frorn undetected, could lead to failure.
water in the hydraulic fluid. Other causes may lead to k
NUCLE AR 8AFETY, Vol.19, No. 6, Novemtwr-Decomtwe 19FJ


ACCs00887 A8 sat,Y888                                                       es?
ACCs00887 A8 sat,Y888 es?
Table 3 Total Years Synthesised-No Cervecsion fee Iteelseauet of TurWae43enerosses*
Table 3 Total Years Synthesised-No Cervecsion fee Iteelseauet of TurWae43enerosses*
teamm8menen A                   B                   C                 D               E               F               Teset Year     Unies Yeass         Unem     Veen Unem veen Unem Yeen Unie                             veen   Unem     Yean   Unie     Yeen j
teamm8menen A
Fw.1990       166     2,012       $6       300     40         160             I,$07                           2,400 1,247 233                ISO    l.000    600                      7J79     i 1950         184     2,198       93         393     48         200   23 3       I,760   173     1,173           3,012 412            1.349     8,948 19$1         224     2,422     126         721     $6         264   281       2,048   200     1,373           3,632 1,307 620                      10,433 1932         249     2,671     132         873     el         32$   303       2,34 6   223     1,600   H2     4,274   1,634   12.089 1953           293     2.964     183     1,038       78         396   329       2.673   250   1,850   639     4,933   1,787   13,876 1954           Me       3,312     2 34     1.292       78         474   M0         3,033   273   2,125   689     3,422 1,9H     13.860 1953           38$     3,697     269     IJ61       87         $68   349       3,424   300   2,423     fl0   6,332 2,144     18,004 1956         410       4,107     2H       I,M $       to         637   408       3,832   123   2,750   732     7,084 2,276     19.280 1957         44$       4,$32     310     2,0$$     102         739   443       4.277     350   3,100   791     7,873 2,444   22,728 1958           494     3,046     342     2,497     122         881   466       4,H 3     373   3,473   823     0,700 2,423     23,34 3 1939         $26       SJ72       372     2,849     130       1,018   494       3.237   400     3,873   831     9J31   2,774   28,123   ,
B C
1960          $62       6,134     396     3,245     148       1,152   312       3,749   430     4,303   844 10,433 2,926       31,049 1961         376       6,710     422       3.687     131       1,303   $37       6,286   460     4,743   904 11.339 3,031       34,100 1962         $93       7,303     430       4.137     134       1,459   343       6,849   490     3,233   9H 12,373 3,187         37,287 1963         612       7,913     469       4,604     168       1,620   393       7,444   320     3,77$   953 13,228 3,313 40,600 1964         637     SJ32       487     5,093     167       I,787   424       8,070   $4$     6,320   976   14,204 3,445   44,043 196$         652     9,204     312     3,603     168       1,933   633       8,723   $70     6,890   997 13,204 3Js3 47J83 1964           471     9,873     340     6,145     148       2,123   677       9.402   600     7,490 1,018 16,219 3,673       31,263 1947           687 10J62           $75     6,716     168       2.191   699       10,101   623     8,113 1,0$ $   17,274 3,406 33,081 1968           710 11.272         $97     7,313     164       2,459   719       10,820   630     8,763 1,002   18,336 3,927 60,013 1969           729     12,001     620     7,933     168       2,627   73')     11J70     673     9,440 1,113   19,471 4,058 64,063 1970           747     12,748     642     8,375     ist       2,795   774       12,344   710   10,155 1,139   20,610 4.181     64,244 1971           763 13J13           642     9,237     168       2.943   798       13,142   740   10,890 1,150   21,764 4,292     72,334 1972           785     14,298     685     9,922     168       3.138   829       13,978   770   11,640   1.180 22,948             77,054 4.418 1973         ISOS     43,103     703     10,627     168       3,299   H4       14,813   000   12,460 1,210 24,158 4J33 81J90 1974         825     13,928     730     11.337     168       3.447   868       13,433   830   13,270   1,240 23,398 4J47 86,104 1975         MS       16,773     735     12.112     let       3.433   890       16,373   860   14,130   1,270 26,648 4,703 90.883
D E
* 1976         MS       17,638     780     12,892     168       3,803   890 17J45           900           1,300 27,948 4,831 13.030                            95.786 1977         885 18J23           803     13,697     168       3,971   090       18,433   930   13.980 1,330 29,298 3,000 99.924
F Teset Year Unies Yeass Unem Veen Unem veen Unem Yeen Unie veen Unem Yean Unie Yeen j
              *To correct ror time of startup in a year, subtract tels trom turbine years.
Fw.1990 166 2,012
$6 300 40 160 233 I,$07 ISO l.000 600 2,400 1,247 7J79 i
1950 184 2,198 93 393 48 200 23 3 I,760 173 1,173 412 3,012 1.349 8,948 19$1 224 2,422 126 721
$6 264 281 2,048 200 1,373 620 3,632 1,307 10,433 1932 249 2,671 132 873 el 32$
303 2,34 6 223 1,600 H2 4,274 1,634 12.089 1953 293 2.964 183 1,038 78 396 329 2.673 250 1,850 639 4,933 1,787 13,876 1954 Me 3,312 2 34 1.292 78 474 M0 3,033 273 2,125 689 3,422 1,9H 13.860 1953 38$
3,697 269 IJ61 87
$68 349 3,424 300 2,423 fl0 6,332 2,144 18,004 1956 410 4,107 2H I,M $
to 637 408 3,832 123 2,750 732 7,084 2,276 19.280 1957 44$
4,$32 310 2,0$$
102 739 443 4.277 350 3,100 791 7,873 2,444 22,728 1958 494 3,046 342 2,497 122 881 466 4,H 3 373 3,473 823 0,700 2,423 23,34 3 1939
$26 SJ72 372 2,849 130 1,018 494 3.237 400 3,873 831 9J31 2,774 28,123 1960
$62 6,134 396 3,245 148 1,152 312 3,749 430 4,303 844 10,433 2,926 31,049 1961 376 6,710 422 3.687 131 1,303
$37 6,286 460 4,743 904 11.339 3,031 34,100 1962
$93 7,303 430 4.137 134 1,459 343 6,849 490 3,233 9H 12,373 3,187 37,287 1963 612 7,913 469 4,604 168 1,620 393 7,444 320 3,77$
953 13,228 3,313 40,600 1964 637 SJ32 487 5,093 167 I,787 424 8,070
$4$
6,320 976 14,204 3,445 44,043 196$
652 9,204 312 3,603 168 1,933 633 8,723
$70 6,890 997 13,204 3Js3 47J83 1964 471 9,873 340 6,145 148 2,123 677 9.402 600 7,490 1,018 16,219 3,673 31,263 1947 687 10J62
$75 6,716 168 2.191 699 10,101 623 8,113 1,0$ $
17,274 3,406 33,081 1968 710 11.272
$97 7,313 164 2,459 719 10,820 630 8,763 1,002 18,336 3,927 60,013 1969 729 12,001 620 7,933 168 2,627 73')
11J70 673 9,440 1,113 19,471 4,058 64,063 1970 747 12,748 642 8,375 ist 2,795 774 12,344 710 10,155 1,139 20,610 4.181 64,244 1971 763 13J13 642 9,237 168 2.943 798 13,142 740 10,890 1,150 21,764 4,292 72,334 1972 785 14,298 685 9,922 168 3.138 829 13,978 770 11,640 1.180 22,948 4.418 77,054 1973 ISOS 43,103 703 10,627 168 3,299 H4 14,813 000 12,460 1,210 24,158 4J33 81J90 1974 825 13,928 730 11.337 168 3.447 868 13,433 830 13,270 1,240 23,398 4J47 86,104 1975 MS 16,773 735 12.112 let 3.433 890 16,373 860 14,130 1,270 26,648 4,703 90.883 1976 MS 17,638 780 12,892 168 3,803 890 17J45 900 13.030 1,300 27,948 4,831 95.786 1977 885 18J23 803 13,697 168 3,971 090 18,433 930 13.980 1,330 29,298 3,000 99.924
*To correct ror time of startup in a year, subtract tels trom turbine years.
tEntr*904*i+4 6*Ia lm.
tEntr*904*i+4 6*Ia lm.
,        failure of valves to close with the potential of                                   Electric Corp., etc.), ne second covers failures for             ,l destructive owrspeed.                                                             which operating histories are not known (Charles A, If one assesses the relevant cases in Tables 6 and 7,                         Parsons, etc.),IUustrating the reason for expanding the         ;
failure of valves to close with the potential of Electric Corp., etc.), ne second covers failures for
one note $ two cases at or near operating speed where I '*I d''' '' '''
,l destructive owrspeed.
failure extemal missues were generated. Both occurred within                                                                                                   l tidered the past to years. Dere were Aw overspeed event 8                                 umhauene ln Fanum ha ng the   resulting in extemal missiles, and all occurred more anism, An assessment of the failure deta in Tables 6 and 7         y than 10 years ago. However, several cases of overspeed                           reveals several problems with their use in terms of their         -
which operating histories are not known (Charles A, If one assesses the relevant cases in Tables 6 and 7, Parsons, etc.),IUustrating the reason for expanding the I '*I d''' '' '''
ystem,   without damage have occurred, and all were within the                             relevance to failures in nuclear plants, nree of the             '
one note $ two cases at or near operating speed where failure extemal missues were generated. Both occurred within
ild be   past 10 years. Additionally, two nuclear plants have                             more obvious are (1) there may be a significant number             >
! l tidered umhauene ln Fanum ha the past to years. Dere were Aw overspeed event 8 ng the resulting in extemal missiles, and all occurred more An assessment of the failure deta in Tables 6 and 7 y
m oed   experienced phosphate buildup on the turbine valves,                             of failures in units produced by manufacturers other             o splitt. which could influence closure and result in overspeed,                           than those included in Table 3;(2)the unit si2es are             ;
: anism, than 10 years ago. However, several cases of overspeed reveals several problems with their use in terms of their
dened   A8 noted in Table 7, there were other causes of valve                             sometimes much smauer than units uwd in nuclear but do malfunction.
: ystem, without damage have occurred, and all were within the relevance to failures in nuclear plants, nree of the ild be past 10 years. Additionally, two nuclear plants have more obvious are (1) there may be a significant number m oed experienced phosphate buildup on the turbine valves, of failures in units produced by manufacturers other o
plants; and (3) operating pressures and temperatures s going       Table 8 presents failures within two sets. De first                         are not always typical of LWRs.
splitt.
I'*I    co wr8 failures where turbine operating times are                                     A further limitation 18 that the ilsting is not lead to known (General Electric Company, Westinghouse                                     complete. Additional failures are known by hearsay; NUCLE AR SAF87Y, Vol.19, No, 6, November-Deeenter 197e                   '
which could influence closure and result in overspeed, than those included in Table 3;(2)the unit si2es are dened A8 noted in Table 7, there were other causes of valve sometimes much smauer than units uwd in nuclear but do malfunction.
plants; and (3) operating pressures and temperatures s going Table 8 presents failures within two sets. De first are not always typical of LWRs.
I I'*
co wr8 failures where turbine operating times are A further limitation 18 that the ilsting is not lead to known (General Electric Company, Westinghouse complete. Additional failures are known by hearsay; NUCLE AR SAF87Y, Vol.19, No, 6, November-Deeenter 197e


l
l ACCIDCT AAALYS88 egg s
        '  egg                         s   .s                     ACCIDCT AAALYS88
.s
                                                ?
?
bTable 4 Total Years Synthesized: Corrected for Retirement of Turbine Generators
bTable 4 Total Years Synthesized: Corrected for Retirement of Turbine Generators
* i Manufacturers Year           A           B       C         D         E         F       years 2,012         500     160     1,507     1,000       2,400     7,579 Pre-1953 2,193         591     207     1,760     1,170       2.992     8,913 1950 2,407         709     262     2,041     1.361       3,572   10,351 1951 2,641         849     320     2,346     1,570       4,154   11,880 1952 1953           2,914       1,019       387     2,675     1,800       4,733   13.358 3,237     1,233     460     3,035     2,050       5,322   15,337 1954 3,592     1,478       541     3,424     2,320       5,912   17,267 1955 3,967     1,734       630     3,832     2,610       6J22   19,395 1956 4,372     2,012       724     4,277     2,920       7,153   21,458 1957 4,821     2,318       837     4,743     3,250       7,798   23,767 1958 5,297     2,650       937     5.237     3,600       8,449   26,170 1959 5,304     3,002     1,087     5,749     3,975       9,113   28,730 1960 1961             6,310     3,378     1,226     6,286     4.375       9,777   30.362 6,848     3,776     1.369     6,839     4,800     10,451   34,082 1962 7,390     4,184     1,516     7,414     5,250     11,126   36,880 1963 7,952     4,716     1,668     8,010     5,720     11,802   39,918 1964 8,524     5,164     1,820     8,625     6,210     12,479   42,222 1965 9,110     5,636     1,971     9,252     6,725     13,157   45,851 1966 9,707     6,135     2,121     9,821     7,260     13,852   48,966 1967 10,322     6,656     2,270   10.540       7,815     14,554   52,157 1968 10,951     7,196     2,418   11,210       8,390     15,269   55,434 1969 11,593     7.754     2,565   11,894       8,995     15,988   58,789 1970 12,248       8,328   2,711   12,592       9,625     16,706   62,210 1971 12,918       8,921   2,856   13,311     10,280     17,426   65,712 1972 13,603     9,530     3,000   14,035     10,960     18,156   70,284 1973 14,308     10,160     3,143   14,773     11,665     18,896   72,945 1974 15,033     10,811     3,285     15,525     12,395     19,646   76,695 1975 15,778     11,483     3,426     16,291     13,150     20,406   80,534 1976 1977           16,543     12,176     3,566     17,071     13,940     21,176   84,472
* i Manufacturers Year A
                                          *These data were obtained from Table 3 by utilizing actual experience and retiring units after 30 years when such data were available. When the data were not available, the trends from earlier years were used to estimate retirement.
B C
however, the racessary data to permit their use are                     resulting from a combination of material properties and environment such as corrosion fatigue. In recogni   Beet lacking.
D E
A less apparent limitation has to do witti the                     tion of these limitations, one should question the       data absolute validity of the failure probabilities.         extr-heterogeneity of the failure set,which should influence the validity of the statistical techniques used.The two methods that were examined,i.e., the Duane leaming-                                                                               estir curve model and the Weibull failure model, probably
F years Pre-1953 2,012 500 160 1,507 1,000 2,400 7,579 1950 2,193 591 207 1,760 1,170 2.992 8,913 1951 2,407 709 262 2,041 1.361 3,572 10,351 1952 2,641 849 320 2,346 1,570 4,154 11,880 1953 2,914 1,019 387 2,675 1,800 4,733 13.358 1954 3,237 1,233 460 3,035 2,050 5,322 15,337 1955 3,592 1,478 541 3,424 2,320 5,912 17,267 1956 3,967 1,734 630 3,832 2,610 6J22 19,395 1957 4,372 2,012 724 4,277 2,920 7,153 21,458 1958 4,821 2,318 837 4,743 3,250 7,798 23,767 1959 5,297 2,650 937 5.237 3,600 8,449 26,170 1960 5,304 3,002 1,087 5,749 3,975 9,113 28,730 1961 6,310 3,378 1,226 6,286 4.375 9,777 30.362 1962 6,848 3,776 1.369 6,839 4,800 10,451 34,082 1963 7,390 4,184 1,516 7,414 5,250 11,126 36,880 1964 7,952 4,716 1,668 8,010 5,720 11,802 39,918 1965 8,524 5,164 1,820 8,625 6,210 12,479 42,222 1966 9,110 5,636 1,971 9,252 6,725 13,157 45,851 1967 9,707 6,135 2,121 9,821 7,260 13,852 48,966 1968 10,322 6,656 2,270 10.540 7,815 14,554 52,157 1969 10,951 7,196 2,418 11,210 8,390 15,269 55,434 1970 11,593 7.754 2,565 11,894 8,995 15,988 58,789 1971 12,248 8,328 2,711 12,592 9,625 16,706 62,210 1972 12,918 8,921 2,856 13,311 10,280 17,426 65,712 1973 13,603 9,530 3,000 14,035 10,960 18,156 70,284 1974 14,308 10,160 3,143 14,773 11,665 18,896 72,945 1975 15,033 10,811 3,285 15,525 12,395 19,646 76,695 1976 15,778 11,483 3,426 16,291 13,150 20,406 80,534 1977 16,543 12,176 3,566 17,071 13,940 21,176 84,472
* STATISTICAL EVALUATION OF FAILURE                       Pres, are valid for subsets of failures but not for the total                 RATES                                                   popt population. Some clear-cut failure subsets include                                                                       8 brittle fractures due to meh practice (1953-1956),                           The approach used in the previous article in       exar overspeed failures due to valve malfunction                             determining the cumulative and current failure rates mari (1956-1960), and generator failures due to field                       utilized the Duane growth model.8' Questions were lunit
*These data were obtained from Table 3 by utilizing actual experience and retiring units after 30 years when such data were available. When the data were not available, the trends from earlier years were used to estimate retirement.
      '      failures, etc. Another subset includes high. temperature               raised conceming the use of the model, selection of tech creep fatigue, This leaves a residuum of failures, usually             data points, and the lack of standard error values,8 8 PainI NUCLE AR SAFETY, Vol.19, Now 6. November-December 1978 i
however, the racessary data to permit their use are resulting from a combination of material properties and environment such as corrosion fatigue. In recogni Beet lacking.
A less apparent limitation has to do witti the tion of these limitations, one should question the data heterogeneity of the failure set,which should influence absolute validity of the failure probabilities.
extr-the validity of the statistical techniques used.The two estir methods that were examined,i.e., the Duane leaming-curve model and the Weibull failure model, probably STATISTICAL EVALUATION OF FAILURE
: Pres, are valid for subsets of failures but not for the total RATES population. Some clear-cut failure subsets include popt 8
brittle fractures due to meh practice (1953-1956),
The approach used in the previous article in exar overspeed failures due to valve malfunction determining the cumulative and current failure rates mari (1956-1960), and generator failures due to field utilized the Duane growth model.8' Questions were lunit failures, etc. Another subset includes high. temperature raised conceming the use of the model, selection of tech creep fatigue, This leaves a residuum of failures, usually data points, and the lack of standard error values,8 8 PainI NUCLE AR SAFETY, Vol.19, Now 6. November-December 1978 i


          ,                                                            ACCIDE!T ANALYSIS                                                       ggg Table $ Exemple of Increase la Turbine 4enerstoe Output [MW(e)]
ACCIDE!T ANALYSIS ggg Table $ Exemple of Increase la Turbine 4enerstoe Output [MW(e)]
          )                                         with Time Based on Evaluation of U. S. Commercial Nuclear Power Plants and on Year of Initial Operation size, uw(e)                                                       -
)
Year       <100           101-200 201-300 301-500 501-800 801-1000 >t000                                           !
with Time Based on Evaluation of U. S. Commercial Nuclear Power Plants and on Year of Initial Operation size, uw(e)
6 1957                           1                                                                                       I 1958 1959                           1 1960                           1 1961 1962           1                         1 1963           1 1964 1965 1966 1967           I                                         I                   I 1968 1969                                                     1                   2 1970                                                     1                   3   1 1971                                                                             3 1972                                                                         4                                           '
Year
1                        2 1973                                                     1                   2   4           4 1974                                                     1                   6   5           2 1975                                                                             2           2 1976                                                                             5           2 1977                                                                             6           1 1978                                                                         1   4           2                       n.
<100 101-200 201-300 301-500 501-800 801-1000 >t000 6
1979                                                                             1           7 1980                                                                             2
1957 1
                                                                                                                                                      }
I 1958 1959 1
12                       :: ,
1960 1
1981                                                                             1           1 1982
1961 1962 1
                                                                                                                                                        .{
1 1963 1
1983                                                                         1   3           8                       j 1984                                                                             1           2                       -
1964 1965 1966 1967 I
1985                                                                             1           4 1986                                                                             i                                     e 1987                                                                             2           1                       't 1988                                                                             1 1989                                                                                           4                       'l
I I
                                                                                                                                                        'l.
1968 1969 1
nrties cogni. Beeth and Hobbs,8 8 by appropriate selection of the                                 ne approach discussed by Nelson'* has been used         .l
2 1970 1
.1 the     data, obtained higher values of alpha and lowr                                 in the plotting of data. Nelson points out that the             I extrapolated failure rates.                                                   cumulative probability value F(T) and the cumulative         -l A logical starting point is to calculate the global                       hazard function H(T) are essentially equal                   '
3 1
estimates of failure rate using the total turbine years or                     [F(T)a'H/T)] for small probabilities (<!%), and the IRE       the total population of turbines. Dese data are                               hazard function 2/T) can be described as the instanta.       ll presented in Table 9. He need for an expanded                                 neous failure rate at time T for these small proba.         ,
1971 3
population of turbines should be apparent after an                             bilities.
1972 1
e' in     examination of Table 8. Rese data serve as bench                                   The failure model believed to yield the most rates   marks for the time. dependent analyses. Reir value is                         meaningful values of reliability, cumulative failure rate   :
4 2
were    limited in that neither improvement in manufacturing                           [H/T)], and instantaneous failure rate [2(T)] is the on cf     techniques nor in operation are apparent from such                             Weibull. It has been used extensively in the evaluation         <
1973 1
ses.' '   Point values.                                                                 of both large and small populations of pressure                 l NUCLE AR SAFETY, Vol 19, No. 6, Nowmtw-Oecember 1978
2 4
4 1974 1
6 5
2 1975 2
2 1976 5
2 1977 6
1 1978 1
4 2
n.
1979 1
7
}
1980 2
12 1981 1
1 1982
.{
1983 1
3 8
j 1984 1
2 1985 1
4 1986 i
e 1987 2
1
't 1988 1
1989 4
' l'l nrties cogni.
Beeth and Hobbs,8 8 by appropriate selection of the ne approach discussed by Nelson'* has been used
.l
.1 the data, obtained higher values of alpha and lowr in the plotting of data. Nelson points out that the I
extrapolated failure rates.
cumulative probability value F(T) and the cumulative
-l A logical starting point is to calculate the global hazard function H(T) are essentially equal estimates of failure rate using the total turbine years or
[F(T)a'H/T)] for small probabilities (<!%), and the IRE the total population of turbines. Dese data are hazard function 2/T) can be described as the instanta.
ll presented in Table 9. He need for an expanded neous failure rate at time T for these small proba.
population of turbines should be apparent after an bilities.
e' in examination of Table 8. Rese data serve as bench The failure model believed to yield the most rates marks for the time. dependent analyses. Reir value is meaningful values of reliability, cumulative failure rate limited in that neither improvement in manufacturing
[H/T)], and instantaneous failure rate [2(T)] is the were on cf techniques nor in operation are apparent from such Weibull. It has been used extensively in the evaluation ses.' '
Point values.
of both large and small populations of pressure NUCLE AR SAFETY, Vol 19, No. 6, Nowmtw-Oecember 1978


1 l
ese ACCIDENT ANALYSIS
* 1 1
ese                                                           ACCIDENT ANALYSIS                                                                         l
.f' Table 6 Known Fauures et or Near Operating Speeds (Medium or large Stearn Turt>lnes)
.f' Table 6 Known Fauures et or Near Operating Speeds (Medium or large Stearn Turt>lnes)
Amoeg Manufacturer             Sise, Year of                                                   Eaternal                   manufactusers (if known)             MW(e) failure       Type of faawa         Cause of fadure*     missues     Comments         A-F
Amoeg Manufacturer
: l. Semens                                 63   1958 Low pressure turbine       Bnttle fauvre (M)         Yes     Factory test           Yes retor burst
: Sise, Year of Eaternal manufactusers (if known)
: 2. Eacher Wyss (ElectricitJ               $0   1911                                                     Yes                           Yes de France Dieppedalle)                     (54?)
MW(e) failure Type of faawa Cause of fadure*
: 3. General Doctric                       100   1953 First-stage disk broke     Hist > temperature       No                             Yes (Tanners Creek 1)                                                           rupture (M)
missues Comments A-F
: 4. General Electric ( Arnona             100   1954 Rotor burst               Bnetle fadure (M)         Yes     Factory test           Yes Public Services)
: l. Semens 63 1958 Low pressure turbine Bnttle fauvre (M)
: 5. General Electric                     150   1954 Rotor burst               Brittle frseture through No                             Yes I
Yes Factory test Yes retor burst
(Cromby l)                                                                 repair (M)
: 2. Eacher Wyss (ElectricitJ
: 6. All*Chalmers(Common-                 150     1954 Spindle burst             Brittle fracture (M)       Yes                           Yes westrh Edison)
$0 1911 Yes Yes de France Dieppedalle)
: 7. Charles A. Parsons                   100     1954 Generator retaining       Brittle fatture through   Yes   umited missiles       No (Hearn 1)                                           nas burst               vent holes (M)                                                       ;
(54?)
: 8. Charles A. Parsons                   100     1954 Generator retaining       Bnttle fauure through     Yes                           No             i (Hearn 2)                                           ring burst             vent holes (M)
: 3. General Doctric 100 1953 First-stage disk broke Hist > temperature No Yes (Tanners Creek 1) rupture (M)
: 9. General Dectric                       125     1956 Generator rotor burst     Brittle fracture (M)       No                           Yes (Pittsburg 1. Pacaric Gas & Electric)
: 4. General Electric ( Arnona 100 1954 Rotor burst Bnetle fadure (M)
: 10. Escher.Wyss (Pegun.                     45   1959 Rotor fanure             Brittle fracture (M)       Yes                           Yes Utrecht)
Yes Factory test Yes Public Services)
: 18. General Dectric (Cutler 6             125   1969 Generator field           Out of step (0)           No                           Yes florida Power & Light)                             windmg
: 5. General Electric 150 1954 Rotor burst Brittle frseture through No Yes (Cromby l) repair (M)
: 12. G.E.C. Turbme Generstors.               87   1969 Duk fadure               Brir'te fauure (M.E)       Yes   Nuclear               Yes Ltd.(Hmkley Point A 5)
: 6. All*Chalmers(Common-150 1954 Spindle burst Brittle fracture (M)
: 13. G.LC. Turbme Generstors.               87   1969 Disk faGure               Brittie fanure (M.E)       Yes   Factory test           Yes Ltd. (H nkley Pant A4)
Yes Yes westrh Edison)
: 14. G.E.C. Turbine Generators.             87   1970 Disk faGure               Bnttle failure (M.E)       Yes   Factory test           Yes Ltd.(Hinkley Point A4)
: 7. Charles A. Parsons 100 1954 Generator retaining Brittle fatture through Yes umited missiles No (Hearn 1) nas burst vent holes (M)
: 15. Mstsubisha (ENES A)                   330     1970 Rotor fauure             Flawed? (M)               Yes   Factory test           No 86 General Electric (Northers               63   1971 Generstor fadute         Braking (O)               No                           Yes States Power)
: 8. Charles A. Parsons 100 1954 Generator retaining Bnttle fauure through Yes No i
: 17. General Electric (Essez 1.             105   1972 Generator field fauure Abrupt braking               Yes   Coupling as misage     Yes Public Service Doctric
(Hearn 2) ring burst vent holes (M)
          & Cas)
: 9. General Dectric 125 1956 Generator rotor burst Brittle fracture (M)
: 18. General Doctric (Sendai)                     1972 Generator                                           No                           Yes
No Yes (Pittsburg 1. Pacaric Gas & Electric)
: 19. Mitsubishi(Kainan)                   600     1972 Generator rotor faDure Design?                       No     Preoperational         No
: 10. Escher.Wyss (Pegun.
: 20. Charles A. Parsons                   500     1974 Generator ring           Plastic strain plus       No                             No (Nanticoke)                                                                 hydrogen                                                           .
45 1959 Rotor fanure Brittle fracture (M)
: 21. Westinghouse (Duquesne                 150   1974 Disk failure             Brittle fagure stress     No     Nuclear               Yes Shippesport)                                                                 corrosion (M.E)
Yes Yes Utrecht)
: 22. Westinghouse (TVA Gallatin)                   1974 Rotor fsDure             Fatigue (M)               Yes                           Yes
: 18. General Dectric (Cutler 6 125 1969 Generator field Out of step (0)
: 23. Bro ==Boven Co,                               1975 Generator failure         (0)                       No                             Yes
No Yes florida Power & Light) windmg
: 12. G.E.C. Turbme Generstors.
87 1969 Duk fadure Brir'te fauure (M.E)
Yes Nuclear Yes Ltd.(Hmkley Point A 5)
: 13. G.LC. Turbme Generstors.
87 1969 Disk faGure Brittie fanure (M.E)
Yes Factory test Yes Ltd. (H nkley Pant A4)
: 14. G.E.C. Turbine Generators.
87 1970 Disk faGure Bnttle failure (M.E)
Yes Factory test Yes Ltd.(Hinkley Point A4)
: 15. Mstsubisha (ENES A) 330 1970 Rotor fauure Flawed? (M)
Yes Factory test No 86 General Electric (Northers 63 1971 Generstor fadute Braking (O)
No Yes States Power)
: 17. General Electric (Essez 1.
105 1972 Generator field fauure Abrupt braking Yes Coupling as misage Yes Public Service Doctric
& Cas)
: 18. General Doctric (Sendai) 1972 Generator No Yes
: 19. Mitsubishi(Kainan) 600 1972 Generator rotor faDure Design?
No Preoperational No
: 20. Charles A. Parsons 500 1974 Generator ring Plastic strain plus No No (Nanticoke) hydrogen
: 21. Westinghouse (Duquesne 150 1974 Disk failure Brittle fagure stress No Nuclear Yes Shippesport) corrosion (M.E)
: 22. Westinghouse (TVA Gallatin) 1974 Rotor fsDure Fatigue (M)
Yes Yes
: 23. Bro==Boven Co, 1975 Generator failure (0)
No Yes
($kserbaek. Denmark)
($kserbaek. Denmark)
: 24. General Electric (Utah                       1976 Gensrator failure         Ran sa induction           No                             Ye:
: 24. General Electric (Utah 1976 Gensrator failure Ran sa induction No Ye:
Power & Light)                                                               sector; operator ener                                                             W
Power & Light) sector; operator W
: 25. AttieChalmers(Oak Creek               130   1977 Last-stage disk. low-     Probebly brittle faaure   Yes     Twe large places       Yes       g'v Power Co. 3. Wisconsin                               pressure turbine 51 Dectric)
ener
: 26. Alstrom-Rateau (Dectricite             600   1977 Generator rotor locked Abrupt braking               Yes     Only couplings         No       ca de Francs, Porchev9le,                               during no load over-                                                                   g France)                                             speed test Westinshouse ($ MUD, Rancho Seco)t 900           1975 Cracking turbine disks Stress corros6on (M.E)         No     Nuclear                         fo A.E.G. (Wurgassen)t                       670   1976 Cracking shaft           Fatigue plus stress         No     Nucles'                         las corrosion (M.E) 900   1977 Cracking disks           Stresa corrosion (M.E)     No     Nuclear Westinghouse AN,01. Na, it a1
: 25. AttieChalmers(Oak Creek 130 1977 Last-stage disk. low-Probebly brittle faaure Yes Twe large places Yes g'v Power Co. 3. Wisconsin pressure turbine 51 Dectric)
        *(M) = metallurgical;(E) = environmental; and (0)
: 26. Alstrom-Rateau (Dectricite 600 1977 Generator rotor locked Abrupt braking Yes Only couplings No ca de Francs, Porchev9le, during no load over-g France) speed test fo Westinshouse ($ MUD, Rancho Seco)t 900 1975 Cracking turbine disks Stress corros6on (M.E)
* operational                                                                               Of 1 Cracking only; not considered fsDure, fa.
No Nuclear A.E.G. (Wurgassen)t 670 1976 Cracking shaft Fatigue plus stress No Nucles' las corrosion (M.E)
Westinghouse AN,01. Na, it 900 1977 Cracking disks Stresa corrosion (M.E)
No Nuclear a1
*(M) = metallurgical;(E) = environmental; and (0)
* operational Of 1 Cracking only; not considered fsDure, fa.
Of Wt NUCLEAR SAFETY, Vol.19. No. 6. Nowmber-December 1978
Of Wt NUCLEAR SAFETY, Vol.19. No. 6. Nowmber-December 1978


ACCIDCT ANAL.YSIS                                                                                                                 tel e
ACCIDCT ANAL.YSIS tel e
Table 7 IncWests of Oeuropeed ConsWered Italewet to Nuclest Plants with or Without Fallwe*
Table 7 IncWests of Oeuropeed ConsWered Italewet to Nuclest Plants with or Without Fallwe*
Asmoeg
Asmoeg Monstecturert
: -                          Monstecturert                Shee,           Yeme of                                                                   Cause of                   Emterunt                                   unanufacsueers
: Shee, Yeme of Cause of Emterunt unanufacsueers
;g                             (if known)               MW(e)             faamse                                               oveespeed fauere                                 missSes             Comments                   A-F
;g (if known)
MW(e) faamse oveespeed fauere missSes Comments A-F
. asus Ovesarmed with Pasues
. asus Ovesarmed with Pasues
' ~
' ~
Fraser and Dalmers (CEGB,             60               1956 stuck valves;magneute buedup                                                                     Yes                                           No j                     Uskmouth)
Fraser and Dalmers (CEGB, 60 1956 stuck valves;magneute buedup Yes No j
Charle: A. Persons (UKAEA,             23             1958 Valves pf40ged with foreign                                                                       Yes                                         No Calder Hau)                                                                 material; shot f'om shot blasting Unknown                               100               1958 Valves stuck                                                                                     No                                           No Unknown                               16               1958 Operation                                                                                         Yes                                         No Generel Doctric (Morenci 3)           12               1959 Out of phase                                                                                     Yes   150% overspeed                       Not GEC-CEGB (Bold)                       30               1960 Stuck walves; salt bulldup                                                                       Yes   >l50% overspeed                       Yes Owrapeed Without Failure Westmshouse (Now Castle)             100               1952                                                                                                         <!30% overspeed                       Yes Obrigheim                             320               1952                                                                                                         <l50% overspeed nuclear               ?
Uskmouth)
SEN A, Chaos                         200               1952                                                                                                         <l50% overspead, nuclear             ?
Charle: A. Persons (UKAEA, 23 1958 Valves pf40ged with foreign Yes No Calder Hau) material; shot f'om shot blasting Unknown 100 1958 Valves stuck No No Unknown 16 1958 Operation Yes No Generel Doctric (Morenci 3) 12 1959 Out of phase Yes 150% overspeed Not GEC-CEGB (Bold) 30 1960 Stuck walves; salt bulldup Yes
Wesunghouse (San Onofre 1)                             1952                                                                                                         <l50% overspeed, nuclear             Yes FsMure of Valve to Function with or Without Overspeed Westir shouse (Turkey Point)                           1974                                                                                                         Phosphate bugdup; two stop valves faBed
>l50% overspeed Yes Owrapeed Without Failure Westmshouse (Now Castle) 100 1952
;i                   Westinghouse (H. B. Robinson)                           1974                                                                                                         Phosphate buildup;stop valve failed
<!30% overspeed Yes Obrigheim 320 1952
;s                 Westinghouse (ladian Pomt)                             1974                                                                                                         Operator error; stop valve faBed
<l50% overspeed nuclear
-s                 Westinghouse (Pomt Beach 2)                         .1975                                                                                                           Packms too tight; stop valve faded s               General Destric (oyster Creek)                         1970                                                                                                         Power transient; control valve failed s               General Doctric (Mdletone 1)                           1971                                                                                                         Defective control volve General Doctric (Dresden 2)                             1972                                                                                                         Faulty solenoid; two control
?
-a                                                                                                                                                                                         valves faded a               General Dectric (Dresden 2)                             1974                                                                                                         Controlvalve faded Westinghouse (Turkey Point 4)                           1974                                                                                                         Spring bolt faced;controi
SEN A, Chaos 200 1952
:s                                                                                                                                                                                       valve faaed General Cases of Overspeed with oe Without Fatures 4
<l50% overspead, nuclear
ss                                                                         17 cases                                                                                     1951-1961 e                                                                         11 cases 21 of 29 are German 1961-1965
?
'o                                                                             I case                                                                                     1965-1970
Wesunghouse (San Onofre 1) 1952
- es                   eData are primardy from Raft 7 and 8.
<l50% overspeed, nuclear Yes FsMure of Valve to Function with or Without Overspeed Westir shouse (Turkey Point) 1974 Phosphate bugdup; two stop valves faBed
;i Westinghouse (H. B. Robinson) 1974 Phosphate buildup;stop valve failed
; s Westinghouse (ladian Pomt) 1974 Operator error; stop valve faBed
- s Westinghouse (Pomt Beach 2)
.1975 Packms too tight; stop valve faded s
General Destric (oyster Creek) 1970 Power transient; control valve failed s
General Doctric (Mdletone 1) 1971 Defective control volve General Doctric (Dresden 2) 1972 Faulty solenoid; two control
- a valves faded a
General Dectric (Dresden 2) 1974 Controlvalve faded Westinghouse (Turkey Point 4) 1974 Spring bolt faced;controi
:s valve faaed General Cases of Overspeed with oe Without Fatures 4
ss 17 cases 1951-1961 e
11 cases 21 of 29 are German 1961-1965
' o I case 1965-1970
- es eData are primardy from Raft 7 and 8.
tCEGB, Central Dectrietty Generating Board;GEC, G E.C. Turbine Generators, Ltd.;UKAEA, United Kingdom Atomic Energy Authority.
tCEGB, Central Dectrietty Generating Board;GEC, G E.C. Turbine Generators, Ltd.;UKAEA, United Kingdom Atomic Energy Authority.
' fee                 iNot in General Dectric large steem turbme data.
' fee iNot in General Dectric large steem turbme data.
fes fee vessels.e s-is Other time.to. failure models, such as                                                                                                 cumulative hazard function H/T), and time to failure
fes fee vessels.e s-is Other time.to. failure models, such as cumulative hazard function H/T), and time to failure
-fas           exponential, gamma, and log-normal, are more re.                                                                                                     77#). 'the failure rate at any time Tis given by:
-fas exponential, gamma, and log-normal, are more re.
stricted. Unlike the exponential model, the Weibull is
77#). 'the failure rate at any time Tis given by:
: 4.           capable of representing hazard rates that vary with time. It was necessary to place the equation in linear 2(TJ =1 T8-8 a8 form to permit a regression analysis. 'Ih3 procedure used is cited elsewhere.''                                                                                                                               This equation permits one to determine the time-Table 10 contains all the data necessary to conduct                                                                                             dependent failure rate for any time during operation a linear regression analysis for any specific combination                                                                                             and to extrapolate to end oflife. Figure 3 covers the of failures, e.g., all failures, all missiles, relevant                                                                                               two cases of all failurel and failures with missiles. On failures,'and relevant missiles (Fig. 2). The terminology                                                                                             the basis of these curves, there is noindication of wear of Ref.12 is used in this table. Table 10 includes the                                                                                               out near end of life. Using the equation in Table 10.
stricted. Unlike the exponential model, the Weibull is 4.
Weibull functions for reliability R(T), failure rate 2(T),                                                                                           2(T)= 1.79 x 10-' T-o.se, the instantaneous (time-NUCLEAR SAFETY, Vol.19, Na 8, Novernber-Decorrd>er 1970
capable of representing hazard rates that vary with 2(TJ =1 8-8 T
time. It was necessary to place the equation in linear a8 form to permit a regression analysis. 'Ih3 procedure used is cited elsewhere.''
This equation permits one to determine the time-Table 10 contains all the data necessary to conduct dependent failure rate for any time during operation a linear regression analysis for any specific combination and to extrapolate to end oflife. Figure 3 covers the of failures, e.g., all failures, all missiles, relevant two cases of all failurel and failures with missiles. On failures,'and relevant missiles (Fig. 2). The terminology the basis of these curves, there is noindication of wear of Ref.12 is used in this table. Table 10 includes the out near end of life. Using the equation in Table 10.
Weibull functions for reliability R(T), failure rate 2(T),
2(T)= 1.79 x 10-' T-o.se, the instantaneous (time-NUCLEAR SAFETY, Vol.19, Na 8, Novernber-Decorrd>er 1970


g33                                                        ACCIDENT ANALYCS Table 8 IJeting of Turbine-Generator FaBures Divided into Manufacturers for
ACCIDENT ANALYCS g33 Table 8 IJeting of Turbine-Generator FaBures Divided into Manufacturers for
                              'Whom Operating Experience Is Known and Those for Whom Operating Experience is Not Known* (Failures Relevant to Nuclear Operation Are Noted)
'Whom Operating Experience Is Known and Those for Whom Operating Experience is Not Known* (Failures Relevant to Nuclear Operation Are Noted)
Experience known                     Experience not known                   Total Extemal                             External                       External No.         I       missiles       z   No.     I     missiles   E   No. E       missiles   I Year 1951         1           1         1           1                                     1-     1       1       1 1       2 1953        1           2 3     2         2       2       2     5     7         4       5 1954        3           5        2 3      1*       3     2     9         1       6 1956        1          6                           It 6      23       5     3     12         2       8 1958                                                3t 9
Experience known Experience not known Total Extemal External External Year No.
1959                                               It       7       1*       6     1     13         1 4                                     1     14         1       10 1960        It        7        12 6                                     3     17         2       12           -
I missiles z
1969        3t        10        23 7     1         8       1       7     2     19         2       14 1970        1         11        1 1    20 1971         1         12 2                                     1         9                     3     23 1972                  14 8           10                       3   26         1     15 1974        2t        16          1                1 1    27 1975         1       17 1   28 1976         1       18 9             11                       2     30         1     16 1977        2t        19          13                1
No.
                          'Above does not include cases of disk or shaft cracking without failure (Rancho Seco,Wurgassen,and ANO I No.1) or overspeed without failure (New Castle, Obrigheim, SENA, and San Onofre 1).
I missiles E
No.
E missiles I
1951 1
1 1
1 1-1 1
1 1953 1
2 1
2 1954 3
5 2
3 2
2 2
2 5
7 4
5 1956 1
6 It 3
1*
3 2
9 1
6 1958 3t 6
23 5
3 12 2
8 1959 It 7
1*
6 1
13 1
9 1960 It 7
12 4
1 14 1
10 1969 3t 10 23 6
3 17 2
12 1970 1
11 1
7 1
8 1
7 2
19 2
14 1
20 1971 1
12 1972 2
14 1
9 3
23 1974 2t 16 1
8 1
10 3
26 1
15 1975 1
17 1
27 1976 1
18 1
28 1977 2t 19 13 9
1 11 2
30 1
16
'Above does not include cases of disk or shaft cracking without failure (Rancho Seco,Wurgassen,and ANO I No.1) or overspeed without failure (New Castle, Obrigheim, SENA, and San Onofre 1).
tFailure considered relevant to nuclear operation.
tFailure considered relevant to nuclear operation.
                          $ Relevant failure, e xternal missiles.
$ Relevant failure, e xternal missiles.
dependent) failure rate 2/T) for the relevant missile                     two. thirds for failures early in life and approximately case varies from about 1.5 x 10-3 to I.S x 10-2 per                       one. half for failures later in life to eliminate smaller turbine year. Since these are expressed in percent, a                     units and those with different operating conditions conversion to rate yields 1.5 x 10-s to 1.5 x 10-*                       than experienced by nuclear turbines. Again, this per turbine year.                                                         approach is quite arbitrary, but it does have the effect of shifting the regression line t'o higher values of H and Table 10 includes Weibull distributions covering changing the slope 1/0. The relevant missile case, relevant missiles in the context of relevance to nuclear                  corrected for turbine population as defined in reactors. This relevance, as cited earlier, is a highly Table 11, yields failure rates [2/T)/100] varying from subjective judgment. (Because of the subjectivity in 3.3 x 10-s to 3.1 x 10-* per turbine year compared selecting data points,it was not considered appropriate to values of 1.5 x 10-s to 1.5 x 10-* per turbine to provide estimates of the confidence intervals for the year for the relevant missile case without correction for Weibull parameters a and 0.) Even if the selection is accepted, a valid question can be raised conceming the turbine population.
dependent) failure rate 2/T) for the relevant missile two. thirds for failures early in life and approximately case varies from about 1.5 x 10-3 to I.S x 10-2 per one. half for failures later in life to eliminate smaller turbine year. Since these are expressed in percent, a units and those with different operating conditions conversion to rate yields 1.5 x 10-s to 1.5 x 10-*
than experienced by nuclear turbines. Again, this per turbine year.
approach is quite arbitrary, but it does have the effect Table 10 includes Weibull distributions covering of shifting the regression line t'o higher values of H and relevant missiles in the context of relevance to nuclear changing the slope 1/0. The relevant missile case, corrected for turbine population as defined in reactors. This relevance, as cited earlier, is a highly Table 11, yields failure rates [2/T)/100] varying from subjective judgment. (Because of the subjectivity in 3.3 x 10-s to 3.1 x 10-* per turbine year compared selecting data points,it was not considered appropriate to values of 1.5 x 10-s to 1.5 x 10-* per turbine to provide estimates of the confidence intervals for the Weibull parameters a and 0.) Even if the selection is year for the relevant missile case without correction for accepted, a valid question can be raised conceming the turbine population.
number of turbines used as a denominator in calcu.
number of turbines used as a denominator in calcu.
lating the hazard function in Table 10. If one is                         CALCULATION OF FAILURE RATES selective in the numerator values, it follows that one                     BY TURBINE MANUFACTURERS may need to be selective in the denominator. This approach of adjusting the denominator to reduce the                           Reports concerning the probability of turbine.
lating the hazard function in Table 10. If one is CALCULATION OF FAILURE RATES selective in the numerator values, it follows that one BY TURBINE MANUFACTURERS may need to be selective in the denominator. This approach of adjusting the denominator to reduce the Reports concerning the probability of turbine.
effect of the nontelevant portion of the population was                   generator failure at design speed and overspeed have explored for the relevant missiles case. These revised                     been prepared by turbine manufacturers and are often data are presented in Table 11. The population after                       incorporated in utility safety. analysis reports for retirement was considered as a base line, and then                       licensing purposes. The Allis Chalmers-Kraftwerk expanded by 1.33 to cover those failures outside the                       Union reports are proprietary and will not be discussed known population. This population was reduced by                           other than to note that the approaches used in NUCLE AR SAFETY, Vol.19. No. 6. November-December 1978 L _ _ -
effect of the nontelevant portion of the population was generator failure at design speed and overspeed have explored for the relevant missiles case. These revised been prepared by turbine manufacturers and are often data are presented in Table 11. The population after incorporated in utility safety. analysis reports for retirement was considered as a base line, and then licensing purposes. The Allis Chalmers-Kraftwerk expanded by 1.33 to cover those failures outside the Union reports are proprietary and will not be discussed known population. This population was reduced by other than to note that the approaches used in NUCLE AR SAFETY, Vol.19. No. 6. November-December 1978 L


ACCIDENT ANALYSIS                                                     693 Table 9 Global Estimates of Failure Rates for                                     .
ACCIDENT ANALYSIS 693 Table 9 Global Estimates of Failure Rates for Various Assumptions as of the End of 1977 g
Various Assumptions as of the End of 1977                                       g i
i Number Total Total f
Number       Total     Total of       turbine   units in                                       f failures     years     service   Failure rate, A Cases considered All available information.                                                         '*
of turbine units in Cases considered failures years service Failure rate, A All available information.
population x 1.33 without retirement 30       133,000     6680     2.3 x 10-* *
population x 1.33 without retirement All failures 30 133,000 6680 2.3 x 10-* *
    ,h                                   All failures 4.5 x 10-'t 16       133,000     6680     1,2 x 10-*
,h 4.5 x 10-'t All missile-generating failures 16 133,000 6680 1,2 x 10-*
All missile-generating failures 2.4 x 10-8 Relevant failures                     9     133,000     6680     6.8 x 10-'
2.4 x 10-8 Relevant failures 9
l.3 x 10-8 Relevant missiles                     7     133,000     6680     5.3 x 10-8 1.0 x 10-8 All available information, population x I.33 with retirement All failures                         30       112,600     5250     2.7 x 10-*
133,000 6680 6.8 x 10-'
5.7 x 10-s All missiles                         16       112,600     5250     1.4 x 10-*
l.3 x 10-8 Relevant missiles 7
3.0 x 10-s Relevant failures                     9       112,600     5250     8.0 x 10-8 1.7 x 10-s Relevant missiles                     7     112,600     5250     6.2 x 10-'
133,000 6680 5.3 x 10-8 1.0 x 10-8 All available information, population x I.33 with retirement All failures 30 112,600 5250 2.7 x 10-*
5.7 x 10-s All missiles 16 112,600 5250 1.4 x 10-*
3.0 x 10-s Relevant failures 9
112,600 5250 8.0 x 10-8 1.7 x 10-s Relevant missiles 7
112,600 5250 6.2 x 10-'
l.3 x 10-'
l.3 x 10-'
Available in data set without retirement All data set failures               19       100,000     5008     1.9 x 10-*
Available in data set without retirement All data set failures 19 100,000 5008 1.9 x 10-*
3.8 x 10-'
3.8 x 10-'
Data set missiles                     9     100.000     5008     9.1 x 10-s lately                                                                                                           1.8 x 10-8 I"                                       Relevant data set failures             4       100,000     5008     4.0 x 10-8 tions                                                                                                         8.0 x 10-*
Data set missiles 9
Relevant data set missiles             3     100,000     5008     3.0 x 10-8 this 6.0 x 10-*
100.000 5008 9.1 x 10-s lately 1.8 x 10-8 I"
Relevant data set failures 4
100,000 5008 4.0 x 10-8 tions 8.0 x 10-*
this Relevant data set missiles 3
100,000 5008 3.0 x 10-8 6.0 x 10-*
ffect Available in data set with
ffect Available in data set with
:fand                                     retirement E**#'                                   All data set failures                 19       84,470     3938     2.2 x 10-*
:fand retirement E**#'
d in                                                                                                           4.8 x 10-'
All data set failures 19 84,470 3938 2.2 x 10-*
Data set missiles                     9       84,470     3938     1.1 x 10-*
d in 4.8 x 10-'
from                                                                                                          2.3 x 10-'
from Data set missiles 9
pared                                                                             4       84,470     3938     4.7 x 10-'
84,470 3938 1.1 x 10-*
Relevant data set failures t
2.3 x 10-'
!rbine                                                                                                           1.0 x 10-8 3" IO'                                     Relevant data set missiles             3     84,470     3938     3.6 x 10-8 7.6 x 10-*
pared Relevant data set failures 4
                                              *Per turbine year.           tPer turbine unit.
84,470 3938 4.7 x 10-'
developing overspeed probabilities were quite similar to                 similar approach was used for brittle failure near rbine-                                                                               operating speed. Values were obtained by either Monte the approach of General Electric'' and Westing-I have                                                                                 Carlo or importance sampling.
!rbine 1.0 x 10-8 t
house.8 '
3" IO' Relevant data set missiles 3
cftes             Both General Electric and Westinghouse used a                           Basically, the General Electric model of the event is ts f;r fault tree approach utilizing the available data on                     a sequence of simple events using failure rates from
84,470 3938 3.6 x 10-8 7.6 x 10-*
: ftwerk                                                                                 electronic components, control valves, stop valves.
*Per turbine year.
functional reliability of components to calculate proba-cussed                                                                                  overspeed trips, etc. Additionally, the sensitivity of bility of overspeed in nuclear turbine generators. A td in NUCLEAR SAFETY, Vol 19, No. 6 November-Decernber 1978 Imm                                                                                                                   ___
tPer turbine unit.
developing overspeed probabilities were quite similar to similar approach was used for brittle failure near rbine-the approach of General Electric'' and Westing-operating speed. Values were obtained by either Monte I have house.8 '
Carlo or importance sampling.
cftes Both General Electric and Westinghouse used a Basically, the General Electric model of the event is ts f;r fault tree approach utilizing the available data on a sequence of simple events using failure rates from
: ftwerk functional reliability of components to calculate proba-electronic components, control valves, stop valves.
cussed bility of overspeed in nuclear turbine generators. A overspeed trips, etc. Additionally, the sensitivity of td in NUCLEAR SAFETY, Vol 19, No. 6 November-Decernber 1978 Imm


[                               .
[
l 5
5
\                 P                                                                                                                                                                                   I
\\
                  $m                                                                   Table 10 Data Arranged for Regression Analysis in Calculating Weibull y                                                                   Distribution (Maximum Population Assumed Without Retirement x 1.33) m
P I
                  -4
l
                                                                    "    *              ''' "8
$m Table 10 Data Arranged for Regression Analysis in Calculating Weibull y
                                                                        ,"; ,                g              Failures                         llazard, %                   Cumulative harard, %
Distribution (Maximum Population Assumed Without Retirement x 1.33) m
r-greater than       failed unit     All         Relevant Relevant All               Relevant Relevant All           Relevant Relevant j;;                     Failure, year failure time before failure failures Missiles failures missiles failures Missiles failures missiles failures Misiles failures missiles z
-4
9 Arizona Public
''' "8 Failures llazard, %
                ?                   Service (1954)               6675                 0.08         1                           0.015                             0.015 z Calder 11211 (1958)                             6675                 0.08         I     I       I       I     0.015 0.015       0.015   0.015   0.030 0.015     0.015. 0.015     ,
Cumulative harard, %
3 Siemens(1951)                                   6650                 0.17         1     1                     0.015 0.015                       0.045 0.030                         '
g r-greater than failed unit All Relevant Relevant All Relevant Relevant All Relevant Relevant j;;
3 Cromby I (1951)                                 6625                 0.25         1                           0.015                             0.060 f Ridgeland (1954)                                6575
Failure, year failure time before failure failures Missiles failures missiles failures Missiles failures missiles failures Misiles failures missiles z9 Arizona Public
?
Service (1954) 6675 0.08 1
0.015 0.015 z Calder 11211 (1958) 6675 0.08 I
I I
I 0.015 0.015 0.015 0.015 0.030 0.015 0.015.
0.015 3 Siemens(1951) 6650 0.17 1
1 0.015 0.015 0.045 0.030 3 Cromby I (1951) 6625 0.25 1
0.015 0.060
(
(
0.42         1     1                     0.015 0.015                       0.075 0.045 2
f Ridgeland (1954) 6575 0.42 1
2 Uskmouth (1956)                                 6525                 0.58         1     1       1       1     0.015 0.015       0.015   0.015   0.090 0.060     0.030     0.030   ,
1 0.015 0.015 0.075 0.045 2 Uskmouth (1956) 6525 0.58 1
Kainan (1972)*                   6500                 0.67       1                             0.015                             0.105 k Unknown (1958)*                                   6475                 0.75                                     0.015 0.015 g  l 1    1        1      1                        0.015   0.015   0.120 0.075     0.045     0.045 -
1 1
I
1 0.015 0.015 0.015 0.015 0.090 0.060 0.030 0.030 2
                ' ENESA (1970)*
Kainan (1972)*
                .                                                  6450                 0.83         1     1                     0.016 0.016                       0.136 0.091                       E ,
6500 0.67 1
y Brown-Boveri Co.,                                                                                                                                                                     2, Denmark (1975)               6375                 1.30         1                           0.016                             0.152                             >
0.015 0.105 g
Utah Power (1976)               6350                 1.50                                                                                                           E 1                             0.016                             0.168                             >
k Unknown (1958)*
Tanners Creek (1953)             6325                 1.70       1                             0.016                             0.184                             E Nanticoke (1974)*               6325                 1.70                                     0.016 Pittsburg I (1956)               6315 1                                                                0.200                            g 1.80       1                             0.016                             0.216 IIcarn 1 (1954)*                 6225                 2.30       1     1                     0.016 0.016                       0.232 0.107 IIcarn 2 (1954)*                 6150                 2.70       1     1                     0.016 0.016                       0.248 0.123 Alstrom-Rateau (1977)*           6125                 2.80       1                             0.017                             0.265 Ihnkley Point A-5 (1969)         6000                 3.40       1     1                     0.017 0.017       0.017   0.017   0.282 0.140     0.062 1      1                                                                    0.062 Ilinkley Point A-6 (1970)       6000                 3.40       1     1                     0.017 0.017                       0.299 0.157 Ilinkley Point A-4 (1969)       5925                 3.80       1     1                     0.017 0.017                       0.316 0.174 Unknown (1958)*                 5800                 4.50       1     1       1             0.017 0.017       0.017           0.333 0.191     0.079 Bold (1960)                     5725                 5.90       1     1       1       1     0.017 0.017       0.017   0.017   0.350 0.208     0.096     0.079 Cutler 6 (1969)                 5250                 9.50       1                             0.019                             0.369 Sendai(1972)                     4500               13.5         1                             0.022                             0.391 Northern States (1971)           4350               14.5         1                             0.023                             0.414 Shippingport (1974)             4150               15.5         I                             0.024             0.024 1                                                0.438           0.120 Gallatin (1974)                 3850               17.5         1     1                     0.026 0.026                         0.464   0.234 Morenci 3 (1959)                 3870               17.8         1     1                     0.026 0.026                       0.490 0.260 Oak Creek (1977)                 2875               22.0                                 I     0.035 0.035       0.035           0.525 0.295 1      1        1                                        0.035                    0.155     0.!!4 Essex 1 (1972)                   2075               25.5         1                             0.048                             0.573
l 6475 0.75 1
1 1
1 0.015 0.015 0.015 0.015 0.120 0.075 0.045 0.045 I
' ENESA (1970)*
6450 0.83 1
1 0.016 0.016 0.136 0.091 E
y Brown-Boveri Co.,
2, Denmark (1975) 6375 1.30 1
0.016 0.152
>E Utah Power (1976) 6350 1.50 1
0.016 0.168 Tanners Creek (1953) 6325 1.70 1
0.016 0.184 E
Nanticoke (1974)*
6325 1.70 1
0.016 0.200 g
Pittsburg I (1956) 6315 1.80 1
0.016 0.216 IIcarn 1 (1954)*
6225 2.30 1
1 0.016 0.016 0.232 0.107 IIcarn 2 (1954)*
6150 2.70 1
1 0.016 0.016 0.248 0.123 Alstrom-Rateau (1977)*
6125 2.80 1
0.017 0.265 Ihnkley Point A-5 (1969) 6000 3.40 1
1 1
1 0.017 0.017 0.017 0.017 0.282 0.140 0.062 0.062 Ilinkley Point A-6 (1970) 6000 3.40 1
1 0.017 0.017 0.299 0.157 Ilinkley Point A-4 (1969) 5925 3.80 1
1 0.017 0.017 0.316 0.174 Unknown (1958)*
5800 4.50 1
1 1
0.017 0.017 0.017 0.333 0.191 0.079 Bold (1960) 5725 5.90 1
1 1
1 0.017 0.017 0.017 0.017 0.350 0.208 0.096 0.079 Cutler 6 (1969) 5250 9.50 1
0.019 0.369 Sendai(1972) 4500 13.5 1
0.022 0.391 Northern States (1971) 4350 14.5 1
0.023 0.414 Shippingport (1974) 4150 15.5 I
1 0.024 0.024 0.438 0.120 Gallatin (1974) 3850 17.5 1
1 0.026 0.026 0.464 0.234 Morenci 3 (1959) 3870 17.8 1
1 0.026 0.026 0.490 0.260 Oak Creek (1977) 2875 22.0 1
1 1
I 0.035 0.035 0.035 0.035 0.525 0.295 0.155 0.!!4 Essex 1 (1972) 2075 25.5 1
0.048 0.573
(
(
3                                                                                                                                                 -
3


f Table 10 (Continued) Pertinent Equations for Weibull Distributions Covering All Known Turbine Fagures, Failures Generating Missiles, Relevant Failures, and Relevant Failures Generating Missues All failures                                     Relevant failures Equations                 All failuses               generating missiles         Relevant failures     generating missiles R(T)t =exp     -          exp (-1.2 x 10-8 7* ") exp (-7.36 x 10-* 7*.s :) exp (-4.36 x 10-* P * * ) exp (-4.02 x 10-* P ")
f Table 10 (Continued) Pertinent Equations for Weibull Distributions Covering All Known Turbine Fagures, Failures Generating Missiles, Relevant Failures, and Relevant Failures Generating Missues All failures Relevant failures Equations All failuses generating missiles Relevant failures generating missiles R(T)t =exp exp (-1.2 x 10-8 7* ") exp (-7.36 x 10-* 7*.s :) exp (-4.36 x 10-* P * * ) exp (-4.02 x 10-* P ")
4           6.18 x 10-8 T-* *
Z(T) = h* 2 -'
4 6.18 x 10-8 T-* *
* 3.8 3 x 10-' T-* *
* 3.8 3 x 10-' T-* *
* 1.79 x 10-* T-* "       1.49 x 10-8 T-* *
* 1.79 x 10-* T-* "
* Z(T) = h* 2 -'                                                                                                                                    t 0.119 7* "                   7.36 x 10-* 7* "           4.36 x 10-* T* * '     4.02 x 10-8 7* "
1.49 x 10-8 T-* *
              #(T) =
* t
41.9 #' "                   15i N' "                   2076 N' "               5900 N' "
#(T) =
T(#) = a N'14
0.119 7* "
                  *Not in known population.                   tR(T) multiplied exponent by 10-* to get value.
7.36 x 10-* 7* "
4.36 x 10-* T* * '
4.02 x 10-8 7* "
T(#) = a N'14 41.9 #' "
15i N' "
2076 N' "
5900 N' "
*Not in known population.
tR(T) multiplied exponent by 10-* to get value.
A 6
A 6
E M
E M
2 Table 11 Sensitivity Study Varying Turbine Population to Determine                                               $
8 Table 11 Sensitivity Study Varying Turbine Population to Determine 2
8                                                                                                                                                        $
Effect on WeibuB Distribution for Relevant Missiles
m                                                  Effect on WeibuB Distribution for Relevant Missiles
* m 5
* 5                                                                               Hazard     Cumulative               Hazard Cumulative                   E on                                               Time to      Turbine                                    Revisedt failure,   population     value,2(T)     hazard       turbine   value,             hazard, Failure cause           years     (Table 10)     (Table 10)   (Table 10)   population 0.08         6675           0.015       0.015         3400     0.036             0.030 g              Overspeed 0.58         6525           0.015       0.030         3200     0.030             0.060
Time to Turbine Hazard Cumulative Revisedt Hazard Cumulative E
    '-              Overspeed 0.75         6475           0.015       0.045         3100     0.031             0.091 j5              Overspeed 2                Stress-corrosion crackinal 3.4         6000           0.017       0.062         2700     0.037             0.128 P                   brittle 5.9         5725           0.017       0.079         2500     0.040             0.168 P                Overspeed 22.0           2875           0.035       0.114         1250     0.080             0.248 z              Brittle ?
on
3 3
: failure, population value,2(T) hazard turbine
: value, hazard, Failure cause years (Table 10)
(Table 10)
(Table 10) population g
Overspeed 0.08 6675 0.015 0.015 3400 0.036 0.030 Overspeed 0.58 6525 0.015 0.030 3200 0.030 0.060 j5 Overspeed 0.75 6475 0.015 0.045 3100 0.031 0.091 Stress-corrosion crackinal P
brittle 3.4 6000 0.017 0.062 2700 0.037 0.128 2
P Overspeed 5.9 5725 0.017 0.079 2500 0.040 0.168 z
Brittle ?
22.0 2875 0.035 0.114 1250 0.080 0.248 3
3
* Parameter used in calculating the values in the table:
* Parameter used in calculating the values in the table:
fp              a = 651; 1/d = 2.59; A = 0.386;r8 = 0.98 R(T) = cxp (-8 x 10-* 7* ")
f a = 651; 1/d = 2.59; A = 0.386;r = 0.98 8
g                   Z(T) = 3.1 x 10-8 T-* **
p R(T) = cxp (-8 x 10-* 7* ")
g Z(T) = 3.1 x 10-8 T-* **
* f
* f
                          #(T) = 8 x 10-8 7* "
#(T) = 8 x 10-8 7* "
T(#1 = 651 #' "
T(#1 = 651 #' "
* e i$                  tRevision based on using population with retirement x 1.33,which removes many smaller units, then takmg % to % of I
tRevision based on using population with retirement x 1.33,which removes many smaller units, then takmg % to % of e
ii$             this population as being t'e levant to nuclear.                                                                                 N,,
i$
I ii$
this population as being t' levant to nuclear.
N,,
e


l ses                                                              ACCIDE%T ANALYSIS 14       .        .    .        .    .        .  .
ACCIDE%T ANALYSIS l
electrohydraulic systems to common-mode failure due to sitting or rusting comparable to that occurring at                                                     p,ii ,, ,,,, ,,,oci.,,, ,,,, ,
ses 14 electrohydraulic systems to common-mode failure due to sitting or rusting comparable to that occurring at p,ii,,,,,,,,,oci.,,,,,,,,
                                                                                  $12                           w.6nuit nive di.iribution           -
Uskmouth is examined in relation to the mechanical-
Uskmouth is examined in relation to the mechanical-hydraulic systems used at Uskmouth. Some rates used                         _I g                                   zm =ht*-8                      -
$12 w.6nuit nive di.iribution
in the General Electric study8 ' are shown in Table 12.                     gj 'O '
_I zm =ht*-8 hydraulic systems used at Uskmouth. Some rates used g
General Electric believes that the preceding ap-                       Et; a                                                               -
in the General Electric study ' are shown in Table 12.
proach permits an evaluation without the limitation of                     M the extremely small nuclear turbine populatlan being a                     !E I * '                                                             ~
gj 'O '
factor and without the need to base the evaluation on                       CE overall fossil turbine experience which General Electric                   $5                               xii ,,,,,,,,
8 General Electric believes that the preceding ap-Et; a proach permits an evaluation without the limitation of M
judges to be not applicable to nuclear turbines. In the EU ,                                                                 -
the extremely small nuclear turbine populatlan being a
appendix to their report,8' they point out that                           '! , ~
!E I * '
                                                                                  ~
~
                                                                                                                                                    ~
factor and without the need to base the evaluation on CE overall fossil turbine experience which General Electric
probability values much higher than those in Table 13 (and near the values appearing in the summary of this                             ,        ,        ,    ,        ,      ,        ,    ,
$5 xii,,,,,,,,
o      5        to    is      20    25        30  35      40 article) are inherent in the use of direct statistical methods based on past experience with alarge number                                                     OPERATING YEARS of fossil units whether zero or six failures are assumed.
judges to be not applicable to nuclear turbines. In the EU,
The application of a Duane growth model to these                           Fis. 3 Typical weibutt failure rate = 2fr/ bathtub curve for statistics does not substantially change the results.                     turbine generator failures and failures with inissiles.
'!, ~
The General Electric report develops several con-vincing arguments as to why the sequence of simple events using nuclear data is preferred to a direct                                 Table 12 General Electric Failure Rate Data statistical estimation. For example, older fossil units Failures, Confidence, differ markedly from nuclear units with regard to                                                                                           %
~
Nuclear turbines                       108 hr material properties, stresses, rotor design, and control systems, in this vein the report dismisses the Hinkley                     Experience Sticking rates, control valves             0.42             50 Sticking rates, stop valves                 0.26             50 CONDITIONAL pro 8 ABILITY (%)                           All turbines 1.0             10       Failure rates, overspeed trips             0.0087           50 0 01 o            at 100  ;
appendix to their report,8' they point out that
                  , , ,    ,,o,       .
~
                                                  ,'' 'i           '
probability values much higher than those in Table 13 (and near the values appearing in the summary of this article) are inherent in the use of direct statistical o
                                                                    '''''i     Domestic turbines, electrohydraulic Failure rate, valve silting                 0.00036           50
5 to is 20 25 30 35 40 methods based on past experience with alarge number OPERATING YEARS of fossil units whether zero or six failures are assumed.
              }                                                            }
The application of a Duane growth model to these Fis. 3 Typical weibutt failure rate = 2fr/ bathtub curve for statistics does not substantially change the results.
                                                                          -        Failure rate, valve rusting                 0.0008           50 o           a     8                      -
turbine generator failures and failures with inissiles.
                                          +y j 10    -
The General Electric report develops several con-vincing arguments as to why the sequence of simple events using nuclear data is preferred to a direct Table 12 General Electric Failure Rate Data statistical estimation. For example, older fossil units Failures, Confidence, differ markedly from nuclear units with regard to Nuclear turbines 108 hr material properties, stresses, rotor design, and control systems, in this vein the report dismisses the Hinkley Experience Sticking rates, control valves 0.42 50 Sticking rates, stop valves 0.26 50 CONDITIONAL pro 8 ABILITY (%)
o i                                                          l     Point and Mitsubishi.ENESA failure as due to material g
All turbines 0 01 o at 1.0 10 Failure rates, overspeed trips 0.0087 50
w
,,o,
                                                                          -    properties not typical of General Electric fabrication j                              *8j                                  :    practice.
,'' 'i
3 g~
'''''i Domestic turbines, electrohydraulic 100
                                                                            -          Although the General Electric arguments are per-suasive (and the same may be said of Allis.Chalmers o
}
and Westinghouse), it is the author's opinion that k '' [                  .a oo o Alt failures, T(H) = 41.9 H .77 :
}
1
Failure rate, valve silting 0.00036 50 Failure rate, valve rusting 0.0008 50 8
                                                                          ]
o a+y i
factors not yet revealed during the limited experience N
l Point and Mitsubishi.ENESA failure as due to material j 10 o
a All missiles, TtH) = 151 H .92 :
g w
1          with nuclear turbines to date may not be properly
properties not typical of General Electric fabrication
:                                                                accounted for in the General Electrie and Westinghouse 0 Relevant failures.                    .
*8 practice.
                                                              "                  models and therefore will cause their projections to be
j j
  ,                                ,      , ,,,,,[,,
3 g
ai                                      TlH) = 5900 H 2.70         3 over]y optimistic. Even though the statistical estimate i
Although the General Electric arguments are per-
:    contained herein is not truly representative of nuclear
~
                    . .  ,,,...t         . . , , , ,    a   . . .....
suasive (and the same may be said of Allis.Chalmers o
noi                at                        i.o                io    practice, it includes conservatisms based on long.temi CUMULATIVE HAZARo t%)
k '' [
experience, and values of 2/T) in the range of 3.3 x 10-s to 3.1 x 10-* per turbine year (for a Fig. 2 Reyession analyses, Weibull hazard plots of turbine.
.a o
turbine population relevant to nuclear reactors) are generator failure data,                                                     more realistic.
]
NUCLEAR SAFETY, Vol 19. No. 6, November-December 1978
and Westinghouse), it is the author's opinion that o
                                                                                                    . .,                                                  Q
N Alt failures, T(H) = 41.9 H.77 :
factors not yet revealed during the limited experience 1
o All missiles, TtH) = 151 H.92 :
with nuclear turbines to date may not be properly 1
a 0 Relevant failures.
accounted for in the General Electrie and Westinghouse
,,,,,,[,,
models and therefore will cause their projections to be i
TlH) = 5900 H.70 3
over]y optimistic. Even though the statistical estimate 2
ai contained herein is not truly representative of nuclear
,,,...t a
practice, it includes conservatisms based on long.temi noi at i.o io experience, and values of 2/T) in the range of CUMULATIVE HAZARo t%)
3.3 x 10-s to 3.1 x 10-* per turbine year (for a turbine population relevant to nuclear reactors) are Fig. 2 Reyession analyses, Weibull hazard plots of turbine.
more realistic.
generator failure data, NUCLEAR SAFETY, Vol 19. No. 6, November-December 1978 Q


r t
r t
Table 13 Probability of Wheel Burst (1800 rpm TC6F,43 in.)*
Table 13 Probability of Wheel Burst (1800 rpm TC6F,43 in.)*
Operating Mode A (Start-up)                         B (Overspeed testing)                 C (l.oss of load)
Operating Mode A (Start-up)
Start-up                         Set / check emergency trip (2)t           Generating (3)t Condition lead                                                   Unloaded                         Unloaded                                   Fullload Unsynchronized                   Unsynchronized                             Synchronized Electrical status Initial rotational speed,%                             100 (11t                         i10 (4)t                                   100 Worst wheel-temperature condition                     Cold = 40*F                       llot = 100*F                               Hot = 100*F Probabilities for Three Ranges of Speed Al             A2               A3               Bl           B2             Cl           C2               C3 Running speed. percent of normal 0-100                   100-112       Il2-runaway 110-112             Il2-runaway 109-119       119-127           127-runaway     k Lifetime speed-Icvel probability         1               3.5 x 10-8     3.2 x 10-8 8       1.4 x 10-8     1.3 x 10-' 8   1.0 x 10-' 9.3 x 10-'       1.5 x 10-'     g Single-wheel-failure probability       2.3 x 10-'       3.0 x 10-*     I                 5.5 x 10-'     I             9.7 x 10-' 6.6 x 10-'       I               g 6                                                              6          6                1              -e Number-of-wheels factor               6                               1               '6               1
B (Overspeed testing)
    $      Wheel-failure probability given                                                                                                                                       g speed                                 1.4 x 10-'     l.8 x 10-*     I                 3.3 x 10-'     I             5.8 x 10-' 4.0 x 10-*       I               y P                                                                                                                                          3.7 x 10-'
C (l.oss of load)
Condition Start-up Set / check emergency trip (2)t Generating (3)t lead Unloaded Unloaded Fullload Electrical status Unsynchronized Unsynchronized Synchronized Initial rotational speed,%
100 (11t i10 (4)t 100 Worst wheel-temperature condition Cold = 40*F llot = 100*F Hot = 100*F Probabilities for Three Ranges of Speed Al A2 A3 Bl B2 Cl C2 C3 k
Running speed. percent of normal 0-100 100-112 Il2-runaway 110-112 Il2-runaway 109-119 119-127 127-runaway Lifetime speed-Icvel probability 1
3.5 x 10-8 3.2 x 10-8 8 1.4 x 10-8 1.3 x 10-' 8 1.0 x 10-'
9.3 x 10-'
1.5 x 10-'
g Single-wheel-failure probability 2.3 x 10-'
3.0 x 10-*
I 5.5 x 10-'
I 9.7 x 10-'
6.6 x 10-'
I g
Number-of-wheels factor 6
6 1
'6 1
6 6
1
-e Wheel-failure probability given g
P speed 1.4 x 10-'
l.8 x 10-*
I 3.3 x 10-'
I 5.8 x 10-'
4.0 x 10-*
I y
9 Lifetime-wheel-failure probability 1.4 x 10-'
6.3 x 10-*
3.2 x 10-' 8 4.6 x 10-' ' l.3 x 10-*
* 5.8 x 10-8 3.7 x 10-'
* 1.5 x 10-'
* 1.5 x 10-'
Lifetime-wheel-failure probability      1.4 x 10-'      6.3 x 10-*    3.2 x 10-' 8      4.6 x 10-' ' l.3 x 10-*
G
* 5.8 x 10-8                                  G 9
)
    )>                                                                            Probabaity of Wheel Failure
Probabaity of Wheel Failure Total lifetime-wheel-failure probability
    ;      Total lifetime-wheel-failure probability low 4 peed (brittle) failure = sum of cases Al, A2, B1, Cl, and C2 = 2.6 x 10-' (last-stage wheel only)
*Q low 4 peed (brittle) failure = sum of cases Al, A2, B1, Cl, and C2 = 2.6 x 10-' (last-stage wheel only)
    *Q          Runaway failure             = sum of cases A3, B2,and C3             = 1.5 x 10-' (any wheel, equal probability)
Runaway failure
E-         Total                                                                 = 4.1 x 10-'
= sum of cases A3, B2,and C3
    .E     Average annual-wheel-failure probability = totallifetime probability /hfetime (= 30) = 1.4 E-8 2
= 1.5 x 10-' (any wheel, equal probability)
E-Total
= 4.1 x 10-'
.E Average annual-wheel-failure probability = totallifetime probability /hfetime (= 30) = 1.4 E-8 2
* Source: Ref.16.
* Source: Ref.16.
t(1) F00 start-ups assurned over 30-year lifetime; duration of each, I hr; 100 = 3 per year + 10 extra the first year; 3 per year allows for start-up following i refueling-and-insper; ten shutdown,1 loss of externalload, and I forced outage of plant.
t(1) F00 start-ups assurned over 30-year lifetime; duration of each, I hr; 100 = 3 per year + 10 extra the first year; 3 per year allows for start-up following i refueling-and-insper; ten shutdown,1 loss of externalload, and I forced outage of plant.
(2) 40 tests at 100% speed assumed over hfetime; duration of each, I hr;40 = 1 per year + 10 extra the first year.
(2) 40 tests at 100% speed assumed over hfetime; duration of each, I hr;40 = 1 per year + 10 extra the first year.
3 g          (3) 30 full-load losses assumed over lifetime; 30 = 1 per year.
3g (3) 30 full-load losses assumed over lifetime; 30 = 1 per year.
(4) Debberate operation with cold whccis at i10% speed disallowed by operating instructions.
(4) Debberate operation with cold whccis at i10% speed disallowed by operating instructions.
R h,                                                                                                                             .
R h,
E                                                                                                                                                                         E.
E E.


6                                                                                                                                                                                                 .
6 O
O                                                                                                              ACCIDENT ANALYS48 ges                                                                                                                                                                                         i Honorable Dimy lee Ray, AEC Chairman, Report on SWERY                                                                                                                     Turbine Missiles Apr. 18,1973.
ACCIDENT ANALYS48 ges i
7.E. Splittaerber Overspeed Damage to Steam Turbines,
Honorable Dimy lee Ray, AEC Chairman, Report on SWERY Turbine Missiles Apr. 18,1973.
                                                                                                                                                                                                      )
)
Data ate presented and methods of analyses are                                                                     M''#^'"'"''h'd'n. 35(1/2): 1 18 (February 1962).
7.E. Splittaerber Overspeed Damage to Steam Turbines, Data ate presented and methods of analyses are M''#^'"'"''h'd'n. 35(1/2): 1 18 (February 1962).
given to permit the calculation of turbine. generator                                                                 8. H. Huppmann, Frequency and Causes of Failure to cumulative reliability and time-dependent failure rate.                                                                   Components of large Steam Turbines, in hoceedingr, CREST Meeting on the Reliabihty of Mechanical Compo-The Weibull distribution clearly delineates the failures                                                                  nents and Systems for Nuclear Reactor Safety. Riso, early in life as well as permitting determination of                                                                     Denmark, Sept. 24- 26. 1969. Danish Report RISO-214 failure rates once conditions approximating steady                                                                         pp.171187,1970. NTIS: also published in Maschinen.
given to permit the calculation of turbine. generator
state are achieved.                                                                                                       schaden. 43(l): 16 (1970).
: 8. H. Huppmann, Frequency and Causes of Failure to cumulative reliability and time-dependent failure rate.
: 9. R. L. Carson, C. A. Bucci, and R. J. Airhart Periodic A study limited to missile failures considered Operational Tests Help Keep Unit Availability at High relevant to nuclear reactors yields values of 2/T) of                                                                     Levels. Power, 120(7): 5944 (July 1976).
Components of large Steam Turbines, in hoceedingr, The Weibull distribution clearly delineates the failures CREST Meeting on the Reliabihty of Mechanical Compo-nents and Systems for Nuclear Reactor Safety. Riso, early in life as well as permitting determination of Denmark, Sept. 24-26. 1969. Danish Report RISO-214 failure rates once conditions approximating steady pp.171187,1970. NTIS: also published in Maschinen.
1.5 x 10-* to 1.5 x 10-s per turbine year for the                                                                     10.E. O. Codier, Reliability Growth in Real 1.ife, in Pro.               -
state are achieved.
total turbine population and 3.3 x 10-s to                                                                               endings IEEE Annual Symposium on Reliability, Boston.               * :
schaden. 43(l): 16 (1970).
3.1 x 10-* per turbine year for a turbine population                                                                     Jan.16-18,1968, pp.458469, Institute of Electricaland Electronics Engineers, New York,1968.
A study limited to missile failures considered
corrected to be relevant to nuclear reactors.                                                                        11. D. R. Beeth and S. H. Hobbs. Analysis of Bush Approach The preceding values using more sophisticated                                                                        to Turbine Missile Generation Probability, Brown and Root techniques compare favorably to the value predicted                                                                       Technical Memosandum. Brown and Root inc., December for 1977 in the earlier report,8 namely, a failure rate                                                                   1976.
: 9. R. L. Carson, C. A. Bucci, and R. J. Airhart Periodic relevant to nuclear reactors yields values of 2/T) of Operational Tests Help Keep Unit Availability at High Levels. Power, 120(7): 5944 (July 1976).
2/T)of about 7 x 10-s per turbine year.                                                                               12.W. Nelson, Hazard Plotting for incomplete Failure Data,J.
1.5 x 10-* to 1.5 x 10-s per turbine year for the 10.E. O. Codier, Reliability Growth in Real 1.ife, in Pro.
total turbine population and 3.3 x 10-s to endings IEEE Annual Symposium on Reliability, Boston.
3.1 x 10-* per turbine year for a turbine population Jan.16-18,1968, pp.458469, Institute of Electricaland corrected to be relevant to nuclear reactors.
Electronics Engineers, New York,1968.
The preceding values using more sophisticated
: 11. D. R. Beeth and S. H. Hobbs. Analysis of Bush Approach to Turbine Missile Generation Probability, Brown and Root techniques compare favorably to the value predicted Technical Memosandum. Brown and Root inc., December for 1977 in the earlier report,8 namely, a failure rate 1976.
2/T)of about 7 x 10-s per turbine year.
12.W. Nelson, Hazard Plotting for incomplete Failure Data,J.
Quality Technol., (1): 27-52 (January 1969).
Quality Technol., (1): 27-52 (January 1969).
: 13. S. H. Bush, Pressure Vessel Reliability, J. Pressure Vessel Technol. Inant ASME, Ser. //, 97(1): 54-70 (February REFERENCES                                                                                                               1975).
: 13. S. H. Bush, Pressure Vessel Reliability, J. Pressure Vessel Technol. Inant ASME, Ser. //, 97(1): 54-70 (February REFERENCES 1975).
14.0. A. Kellerman et al., Progress and Results of the
: l. S. II. Bush Probability of Damage to Nuclear Components 14.0. A. Kellerman et al., Progress and Results of the Due to Turbine Failure Nuct Safety,14(3): 187-201 Reliability Study of Pressure Vessels, in Performaner of Nuclear Power Reactor Components. Symposium Pro-(May-June 1973).
: l. S. II. Bush Probability of Damage to Nuclear Components Reliability Study of Pressure Vessels, in Performaner of Due to Turbine Failure Nuct Safety,14(3): 187-201 Nuclear Power Reactor Components. Symposium Pro-(May-June 1973).                                                                                                     ceedings, Pngue, Nov. 10-14,1969, pp. 391-403, Inter-
: 2. A. K. Bhattacharya and S. K. Chaudhuri,'the Probability ceedings, Pngue, Nov. 10-14,1969, pp. 391-403, Inter-of a Turbine Missile Hitting a Particular Region of a national Atomic Energy Agency, Vienna, 1970 (ST!/
: 2. A. K. Bhattacharya and S. K. Chaudhuri,'the Probability                                                              national Atomic Energy Agency, Vienna, 1970 (ST!/
Nuclear Power Plant, Nuct Technol., 28(2): 194 198 PUB /240).
of a Turbine Missile Hitting a Particular Region of a Nuclear Power Plant, Nuct Technol., 28(2): 194 198                                                                   PUB /240).
15.G. Slopianka and G. Mieze, Failure Rates of Pressure (Fek..aary 1976).
15.G. Slopianka and G. Mieze, Failure Rates of Pressure (Fek..aary 1976).                                                                                                     Vessels, Part I: Evaluation of VdTUV Statistics, Getman
Vessels, Part I: Evaluation of VdTUV Statistics, Getman
: 3. B. Johnson et al., Analysis of the Turbine Missile Hazard to Report IRS-I 34, Institut fGr Reaktorsicherheit, Cologne, the Nuclear Thermal Power Plant at Pebble Springs.
: 3. B. Johnson et al., Analysis of the Turbine Missile Hazard to Report IRS-I 34, Institut fGr Reaktorsicherheit, Cologne, the Nuclear Thermal Power Plant at Pebble Springs.
Federal Republic of Germany,1968.
Federal Republic of Germany,1968.
Oregon, Report PGE.2012 Portland General Electric                                                               16. General Electric Company, Hypothetical 7hrbine Mis-Company, January 1976 (prepared by Sciena Applica-                                                                   sites-Probability of Occurrence, General Electric Memo tions, Inc.).                                                                                                       Report, Mar. 14,1973.
Oregon, Report PGE.2012 Portland General Electric
4.S. W. Swan and M. Meleis A Method of Calculating                                                                 17. Houston Lighting and Power Co., Analysis of the Proba-Turbine Missile Strike and Damage Probabilities, Nucl.                                                               bility of the Generation and Strike of Missiles from a Safety, 16(4): 443451 (July- August 1975).                                                                           Nuclear Turbine, Section 3.5 in Amendment 27 to the
: 16. General Electric Company, Hypothetical 7hrbine Mis-Company, January 1976 (prepared by Sciena Applica-sites-Probability of Occurrence, General Electric Memo tions, Inc.).
: 5. Nuclear Regulatory Commission, Regulatory Guide                                                                       Preliminary Safety Analysis Report, South Texas Project RG-1.115, Rev.1, Protection Against Lownalectory Units 1 and 2, July 18, 1975. NRC Docket Turbine Missiles. July 1977.                                                                                         STN 50-498-116, pp. 3.51 through 3.510b.
Report, Mar. 14,1973.
4.S. W. Swan and M. Meleis A Method of Calculating
: 17. Houston Lighting and Power Co., Analysis of the Proba-Turbine Missile Strike and Damage Probabilities, Nucl.
bility of the Generation and Strike of Missiles from a Safety, 16(4): 443451 (July-August 1975).
Nuclear Turbine, Section 3.5 in Amendment 27 to the
: 5. Nuclear Regulatory Commission, Regulatory Guide Preliminary Safety Analysis Report, South Texas Project RG-1.115, Rev.1, Protection Against Lownalectory Units 1 and 2,
July 18, 1975. NRC Docket Turbine Missiles. July 1977.
STN 50-498-116, pp. 3.51 through 3.510b.
: 6. Letter from H. G. Mangelsdorf, ACRS Chairman, to NUCLE AR SAFETY, Vol.19, No. 6, November-December 1978 m
: 6. Letter from H. G. Mangelsdorf, ACRS Chairman, to NUCLE AR SAFETY, Vol.19, No. 6, November-December 1978 m


    .y s-
.y s-C%WID
              ,                                          C%WID
'86 JM!-8 DO :28 p?l.Q.725;f ELECTRIC POWER RESEARCH INSTITUTE '"
                                                    '86 JM!-8 DO :28 p?l.Q.725;f   ~'
~'
ELECTRIC POWER RESEARCH INSTITUTE '"1     "
1 SEMINAR ON TURBINE MISSILE EFFECTS IN NUCLEAR POWER PLANTS C
SEMINAR ON TURBINE MISSILE EFFECTS IN NUCLEAR POWER PLANTS C%
HOLIDAY INN PALO ALTO, CALIFORNIA OCTOBER 25-26, 1982 f.
HOLIDAY INN PALO ALTO, CALIFORNIA OCTOBER 25-26, 1982 f .


Jm m page 1 e
Jm m
page 1 e
i MISSILE GENERATION RATES FROM HISTORICAL DATA PATRICK G. HEASLER PACIFIC NORTHWEST LABORATORY
i MISSILE GENERATION RATES FROM HISTORICAL DATA PATRICK G. HEASLER PACIFIC NORTHWEST LABORATORY
        -ee*
-ee*


s page 2 OBJECTIVE:
s page 2 OBJECTIVE:
TO ESTIMATE ROTATING COMPONENT FAILURE AND MISSIL3 GENERATING RATES FROM                                                                                 ,
TO ESTIMATE ROTATING COMPONENT FAILURE AND MISSIL3 GENERATING RATES FROM HISTORICAL DATA r
;                                                        HISTORICAL DATA r


pnge 3 ROTATING COMPONENT FAILURE TYPES:
pnge 3 ROTATING COMPONENT FAILURE TYPES:
overspeed failure operating speed failure burn-in failure s.,
overspeed failure operating speed failure burn-in failure s.,
missile generating event s
missile generating event s
        .c V..
.c V..
J
J


page 3.1         .
page 3.1 There were several types of failures that were found to be
                                  ~
~
There were several types of failures that were found to be important while reviewing the historical data. These failure types are listed on the opposite page and defined below:
important while reviewing the historical data. These failure types are listed on the opposite page and defined below:
ROTATING COMPONENT FAILURE - One of the major rotating components (Discs or Rotor) breaks apart during turbine operation. It should be emphasized that generator failures are not included in this failure type.
ROTATING COMPONENT FAILURE - One of the major rotating components (Discs or Rotor) breaks apart during turbine operation. It should be emphasized that generator failures are not included in this failure type.
OVERSPEED FAILURE - A rotating component failure that occurs when the turbine speed.is greater than 110 percent.
OVERSPEED FAILURE - A rotating component failure that occurs when the turbine speed.is greater than 110 percent.
OPERATING SPEED FAILURE - A rotating component failure that occurs when the turbine speed is less than 110 percent.                                                               ,
OPERATING SPEED FAILURE - A rotating component failure that occurs when the turbine speed is less than 110 percent.
BURN-IN FAILURE - A failure that occurs in the first year of turbine operation.
BURN-IN FAILURE - A failure that occurs in the first year of turbine operation.
MISSILE GENERATING EVENT - A rotating component failure that results in the production of missiles. (The turbine housing is penetrated.)
MISSILE GENERATING EVENT - A rotating component failure that results in the production of missiles. (The turbine housing is penetrated.)
i i
i i
          -.e.           ,_    _  , . . . . , , _ _ , _ , _ _ _ . _ . , _ . . . _ _ _ _ . _ . _  _ __ ,_        ._. ,
-.e.


o page 4 EVENT DIAGRAM FOR ROTATING COMPONENT FAILURES                   .
o page 4 EVENT DIAGRAM FOR ROTATING COMPONENT FAILURES t
t
,p.
    ,p.
BOP EVENT:
BOP EVENT:                                             BOV EVENT:
BOV EVENT:
R.C. Failure c; curs                                     R.C. Failure occurs at operating speed                                       in overspeed during during ' Burn-in'                                         ' Burn-in' Period Period. (1st Year)                                       (1st Year) l 1
R.C. Failure c; curs R.C. Failure occurs at operating speed in overspeed during during ' Burn-in'
OP EVENT:                                                 OV EVENT:
' Burn-in' Period Period. (1st Year)
R.C Failure occurs                   FRAGMENT           R.C. Failure occurs at operating speed        --    ? PENETRATES           in overspeed during   ;
(1st Year)
during remainder of                   TURBINE             remainder of turb-turbine lifetime.                     HOUSING             ine lifetime.         l i
OP EVENT:
NO                   YES S
OV EVENT:
R.C Failure occurs FRAGMENT R.C. Failure occurs
?
PENETRATES in overspeed during at operating speed during remainder of TURBINE remainder of turb-turbine lifetime.
HOUSING ine lifetime.
i NO YES S
M EVENT:
M EVENT:
Missile generating incident occurs dur-         l ing turbine lifetime l
Missile generating incident occurs dur-ing turbine lifetime l
l l
t 9
t 9


Line 529: Line 952:
O j
O j
e
e
        . . _ _ , . - - . , . , _ . . . ~   - - -
.. _ _,. - -.,., _... ~


Ptge 5 s                                                                           i FORMULA FOR THE AVERAGE MISSILE GENERATING RATE                       ,
Ptge 5 s
l l
i FORMULA FOR THE AVERAGE MISSILE GENERATING RATE R,y(M) = Pr(M/OP)*R,y(OP) + Pr (M/OV) *R,y (OV) where:
R,y(M) = Pr(M/OP)*R,y(OP) + Pr (M/OV) *R,y (OV)           .
R,y(M) = Average rate of occurrence for Missile Generating Incidents.
where:                                                       !
i R
R,y(M) = Average rate of occurrence for Missile Generating Incidents.               l i
(OP) = Average operatin~g speed failure rate.
(OP) = Average operatin~g speed failure rate.
R y(OV) = Average overspeed failure rate.
R y(OV) = Average overspeed failure rate.
1 Pr(M/OP) = Probability of a missile during an operating speed failure.
1 Pr(M/OP) = Probability of a missile during an operating speed failure.
Pr(M/OV) = Probability of a missile during an overspeed failure.
Pr(M/OV) = Probability of a missile during an overspeed failure.
(All rates are measured in incidents / year) l i
(All rates are measured in incidents / year) i M..
M..
1


page 5.1 4
page 5.1 4
Line 548: Line 968:


page 6 4
page 6 4
FORMULAS FOR AVERAGE OPERATING AND OVERSPEED FAILURE RATES 1               29 R,y(OP)                   =                R(BOP) +                R(OP) 30               30 and 1               29 R,y(OV)                     =                R(BOV) +                  R(OV) 30               30                                                                                         %
FORMULAS FOR AVERAGE OPERATING AND OVERSPEED FAILURE RATES 1
where:
29 R(BOP) +
R(BOP)                =    The burn-in operating speed failure rate.
R(OP)
R(BOV)                 =     The burn-in overspeed failure rate.
R,y(OP)
=
30 30 and 1
29 R(BOV) +
R(OV)
R,y(OV)
=
30 30 where:
The burn-in operating speed failure rate.
R(BOP)
=
The burn-in overspeed failure rate.
R(BOV)
=
R(OP) = The operating speed failure rate excluding the first year of operation.
R(OP) = The operating speed failure rate excluding the first year of operation.
R(OV) = The overspeed failure rate excluding the first year of operation.
R(OV) = The overspeed failure rate excluding the first year of operation.
30 = Assumed length of the turbine lifetime.
30 = Assumed length of the turbine lifetime.
(in years)
(in years)
          ~.
~.
  , - .              - _ _ - . - . _ . _  ,  m._  . _ . . .    , , . . _ - ,  ,      . , _ , _ _ . - . . ,  , _ _ _ . _  .__-.-,7.m._.r.,       ._y,   .,-m_. -,_ y   ,_,_...
m.
.__-.-,7.m._.r.,
._y,
.,-m_.
y


ptge 6.1 a
ptge 6.1 a
The average operating and overspeed failure rates (for a particular turbine lifetime) should not be calculated directly from the data, because the failure rate is not constant over lifetime. The formulas on the opposite page show the relationship between the average failure rates and the Burn-in rates. It should be emphasized that the average failure rates are the most relevant quantities to use for safety calculations. However, it is extremely important to recognize the existence of a Burn-in period when considering other aspects of turbine operation such as inspection and maintenance strategies.                                                                                                                                                   ,
The average operating and overspeed failure rates (for a particular turbine lifetime) should not be calculated directly from the data, because the failure rate is not constant over lifetime. The formulas on the opposite page show the relationship between the average failure rates and the Burn-in rates. It should be emphasized that the average failure rates are the most relevant quantities to use for safety calculations. However, it is extremely important to recognize the existence of a Burn-in period when considering other aspects of turbine operation such as inspection and maintenance strategies.
i
i
                                                                                                                                                                                          )
)
i l
i l
l l
l
l


PEgo 7 i
PEgo 7 i
TURBINE POPULATION USED FOR NON BURN-IN OPERATING AND OVERSPEED FAILURE RATE CALCULATIONS Relevant Non Burn-in Failures Year                                                                                                           Operating Years             Operating                                                     Over Comm.                   NN Size                                                                       Burn-in                   Remaining   speed                                                       speed     Total 22621       1                                                           1         2 1950                  30 to 100                                                                                               900 to 521     12575       3                                                           0         3 1960                 100 & up 7532                                                                   0         1 1960                30 to 100                                                                                               524                  1 to 2219         23113       3                                                         1         4 1980                100 & up 4164       65841     8+17                                                     -
TURBINE POPULATION USED FOR NON BURN-IN OPERATING AND OVERSPEED FAILURE RATE CALCULATIONS Relevant Non Burn-in Failures Year Operating Years Operating Over Comm.
2        11 Total
NN Size Burn-in Remaining speed speed Total 1950 30 to 100 900 22621 1
* These catagories also include any Nuclear tubines smaller                                                                                                                                                                 i than 30MN.
1 2
                                ? Incidents that can not be assigned to a cell because of missing information.
to 1960 100 & up 521 12575 3
0 3
1960 30 to 100 524 7532 1
0 1
to 1980 100 & up 2219 23113 3
1 4
Total 4164 65841 8+17 2
11 i
* These catagories also include any Nuclear tubines smaller than 30MN.
? Incidents that can not be assigned to a cell because of missing information.
I
I
      - . - . . . -  . . - , , - ,        ,--n-- , - - . . . . _ , - - __ . - , _ _ , . . _ - , , , . _ _ , _ , _ , . , _ , - , , _ - _ _ , , - - . , -                        . _ _ _ _ _ , , , - . . , - . .. - - _ ,---, - .._.
,--n--


ptge 7.1 l
ptge 7.1 1
1 l
The non burn-in operating and overspeed failure rates were calculated from the data presented on the opposite page. This data was gathered from 10 turbine manufacturers and represents essentially all turbines in operation in the designated cata-gories. The turbine failures were divided into those that were considered to be relevant to nuclear plant operation and those that were not. For example, about 80 percent of the overspeed failures were not considered to be relevant to a nuclear plant operating environment. This catagorization allowed us to compute failure rates that were relevant to nuclear power plant operation.
The non burn-in operating and overspeed failure rates were calculated from the data presented on the opposite page. This data was gathered from 10 turbine manufacturers and represents essentially all turbines in operation in the designated cata-gories. The turbine failures were divided into those that were considered to be relevant to nuclear plant operation and those that were not. For example, about 80 percent of the overspeed                                                                                                                                                 -        -
One of the most important conclusions to be drawn from this table is that there does not seem to be any st'rong relation between these failure rates and year of commission or megawatt size.
failures were not considered to be relevant to a nuclear plant operating environment. This catagorization allowed us to compute failure rates that were relevant to nuclear power plant                                                                                                                                                         ,
operation.
One of the most important conclusions to be drawn from this table is that there does not seem to be any st'rong relation between these failure rates and year of commission or megawatt size.                                                                                                                                                 '
Because no strong relationship exists, it is most reasonable to pool the data together and compute failure races for the total turbine population.
Because no strong relationship exists, it is most reasonable to pool the data together and compute failure races for the total turbine population.
l
l


paga 8 x
paga 8 x
v/Y' LIST OF RELEVANT NON BURN-IN FAILURES M'   Mg
v/Y' LIST OF RELEVANT NON BURN-IN FAILURES M'
                                                                        ,r'         ,gs" &
Mg
Plant                 Missiles           r Plant Name                     Type             Date produced       Failure Cause Operating Speed Failures:
,r'
Rinkley Point               Nuclear             1969     yes   Brittle Fracture Shippingport                 Nuclear             1974     no   Cracking Fossil               1974     yes   Cracking       h'gC6 1     Gallatin Oak Creek                   Fossil               1977     yes   Cracking Porcheville                 Fossil               1977     yes   Other, Generator Rotor locked.
,gs" &
Aberthaw                     Fossil             1972     yes   Other, Water induction.
Plant Missiles r
Yankee Rowe                   Nuclear             1980     no   Cracking 40R Wangi 42                     Fossil             1357     yes   Operator Error Pittsburgh                   Fossil             1968     no   Other Overspeed Failures:
Plant Name Type Date produced Failure Cause Operating Speed Failures:
Bold                          Fossil              1960    yes  Control Sy' stem Mountain Creek                Fossil             1977    no    Control Systeme("~ g W- % $ $ W & jLad 4
Rinkley Point Nuclear 1969 yes Brittle Fracture h'gC6 Shippingport Nuclear 1974 no Cracking Gallatin Fossil 1974 yes Cracking 1
9
Oak Creek Fossil 1977 yes Cracking Porcheville Fossil 1977 yes Other, Generator Rotor locked.
Aberthaw Fossil 1972 yes Other, Water induction.
Yankee Rowe Nuclear 1980 no Cracking 40R Wangi 42 Fossil 1357 yes Operator Error Pittsburgh Fossil 1968 no Other Overspeed Failures:
Control Sy' stem Bold Fossil 1960 yes
% $ $ W & jLad Control Systeme("~ g Mountain Creek Fossil 1977 no W-4 9


page 8.1 a
page 8.1 a
All the failures used to calculate non burn-in operating and overspeed failure rates are listed on the opposite page along with a few details of the failures including its cause. Notice that the cause of failure has been divided into the 5 categories Brittle Fracture, Cracking, Operator Error, Control System and other.
All the failures used to calculate non burn-in operating and overspeed failure rates are listed on the opposite page along with a few details of the failures including its cause. Notice that the cause of failure has been divided into the 5 categories Brittle Fracture, Cracking, Operator Error, Control System and other.
                                                                                                                        /
/


page 9 ESTIMATES OF NON BURN-IN PAILURE RATES FROM RELEVANT TURBINE FAILURES
page 9 ESTIMATES OF NON BURN-IN PAILURE RATES FROM RELEVANT TURBINE FAILURES 4
                                      ~
~
4 R(OP) = 9/65841 = 1.37 X 10           Failures / Year
R(OP) = 9/65841 = 1.37 X 10 Failures / Year
                                                    -4 95 Percent Conf. = [0.61, 2.60] X 10 withs 11 percent of rate due to Brittle Fracture.
-4 95 Percent Conf. = [0.61, 2.60] X 10 withs 11 percent of rate due to Brittle Fracture.
percent of rate due to Cracking.gc6 11 percent of rate due to Operator Error.
percent of rate due to Cracking.gc6 11 percent of rate due to Operator Error.
33 percent of rate due to Other.
33 percent of rate due to Other.
  ~..                                   ~ 4 R(OV) = 2/65841 = 0.30 X 10           Failures / Year
~..
                                                    -4 95 Percent Conf. = [0.03, 1.09] X 10 With 100 percent of rate due to Control System [
4
                ---      , _ _ . ,n. -      -    -    - - - , , - - - - - - - - - - -  - - - - - -        - - -
~
R(OV) = 2/65841 = 0.30 X 10 Failures / Year
-4 95 Percent Conf. = [0.03, 1.09] X 10 With 100 percent of rate due to Control System [
.--,e
,n.
w --
w --


ptge 9.1                           ,
ptge 9.1 The calculations on the opposite page use the data discussed in previous tables to calculate the relevant non burn-in failure rates. These failure rates could also be divided up by failure cause. For example, the operating speed failure rate due to 4
The calculations on the opposite page use the data discussed in previous tables to calculate the relevant non burn-in failure rates. These failure rates could also be divided up by failure cause. For example, the operating speed failure rate due to 4
cracking is 0.62 x 10 failures / year.
cracking is 0.62 x 10             failures / year.
~
                                                                                                                                                                                                  ~
S l
S l
O
O
    . , - - -~   , -
-~
                      --,,--,n,.     - - , , , - . , , . - - - - , -
--,,--,n,.


page 10 LIST OF RELEVANT BURN-IN FAILURES
page 10 LIST OF RELEVANT BURN-IN FAILURES
                ,[h Plant                 Missiles Plant Name                   Type       Date       produced         Failure Cause Operating Speed Failures:
,[h Plant Missiles Plant Name Type Date produced Failure Cause Operating Speed Failures:
Siemens                       Fossil       1951         yes         Brittle Fracture Ridgeland                     Fossil       1954         yes         Brittle Fracture yes comfostilla                   Fossil       1970                       Brittle Fracture 2            Kainan                       Fossil       1972         yes         Other, Missassembly of turbine bearings.
Siemens Fossil 1951 yes Brittle Fracture Ridgeland Fossil 1954 yes Brittle Fracture comfostilla Fossil 1970 yes Brittle Fracture Kainan Fossil 1972 yes Other, Missassembly 2
of turbine bearings.
Overspeed Failures:
Overspeed Failures:
Uskmouth                     Fossil         1956       yes         Control System, Oxide buildup on valves.
Uskmouth Fossil 1956 yes Control System, Oxide buildup on valves.
Calder Hall                 Nuclear         1958       yes         Control System, valves plugged with shot.
Calder Hall Nuclear 1958 yes Control System, valves plugged with shot.
Tavazzano                   Fossil         1961         ??         Brittle Fracture.
Tavazzano Fossil 1961
??
Brittle Fracture.
4164 = Total number of Burn-in years of operation in population.
4164 = Total number of Burn-in years of operation in population.
CALCULATION OF BURN-IN FAILURE RATES
CALCULATION OF BURN-IN FAILURE RATES
                                                                  ~4                                                       #
~4
R(BOP) = 4/4164 = 9.61 X 10                 Failures / Year.                     ygd
+(yy#{#
                                                                                                        +(yy#{#
gd R(BOP) = 4/4164 = 9.61 X 10 Failures / Year.
                                                                                  -4         -
y
95 Percent Conf. = [2.40, 24.5] X 10 g@Y
-4 g@Y 95 Percent Conf. = [2.40, 24.5] X 10
                                                                  ~4 R(BOV) = 3/4164 = 7.20 X 10                 Failures / Year.
~4 R(BOV) = 3/4164 = 7.20 X 10 Failures / Year.
                                                                                  ~4 95 Percent Conf. = [1.44, 21.1] X 10 s
~4 95 Percent Conf. = [1.44, 21.1] X 10 s
h h'
h h'


t paga 10.1 The opposite page outlines the calculations necessary to estimate the burn-in failure probabilities. All burn-in failures in the table are considered relevant to nuclear plants. These probab-111 ties indicate that there is approximately one in a thousand chance of a new turbine in a plant failing soon after it goes into operation.
t paga 10.1 The opposite page outlines the calculations necessary to estimate the burn-in failure probabilities. All burn-in failures in the table are considered relevant to nuclear plants.
These probab-111 ties indicate that there is approximately one in a thousand chance of a new turbine in a plant failing soon after it goes into operation.
o i
o i
l 1
l 1


paga 11 CALCULATION OF THE PROBABILITY OF MISSILES / FAILURE Missiles Yes       No     ?? Total                           ;
paga 11 CALCULATION OF THE PROBABILITY OF MISSILES / FAILURE Missiles Yes No
OP. Speed         10       3     0   13
??
                    ,Overspeed           3       1     1   5 V                                                                         .
Total OP. Speed 10 3
0 13
,Overspeed 3
1 1
5 V
p.,
p.,
L     /       Total       13         4     1   18
L
                                                                ~
/
            \Y[
Total 13 4
1 18
\\Y[
~
Probability of a Missile / Operating Speed Failure:
Probability of a Missile / Operating Speed Failure:
Pr(M/OP) = 10/13 = 0.77 95 Percent conf. = [.47,.94]
Pr(M/OP) = 10/13 = 0.77 95 Percent conf. = [.47,.94]
Probability of a                 'N         L.   (
Probability of a
Missile /Overspeed Failure                           g,,
'N L.
i                                                       6 Pr(M/OV) = 3/4 = .75                   5 d 95 Percent Conf. = [.20,.98]                               !
(
                                's.. 'A "me
Missile /Overspeed Failure g,,
i 6d Pr(M/OV) = 3/4 =.75 5
95 Percent Conf. = [.20,.98]
's..
'A "me


1 s
s 1
page 11.1               1 The failure data also provide some information concerning the effects of a rotating component failure. The table on the opposite page shows how many relevant failures produced missiles.
page 11.1 1
The failure data also provide some information concerning the effects of a rotating component failure. The table on the opposite page shows how many relevant failures produced missiles.
The information in the table can be used to calculate the conditional probability of a missile given a failure and these calculations are detailed below the table.
The information in the table can be used to calculate the conditional probability of a missile given a failure and these calculations are detailed below the table.
For one of the failures, it was not possible to determine whether missiles were produced or not. It is listed under the ?? column in the table and is not used in the probability calculations.
For one of the failures, it was not possible to determine whether missiles were produced or not. It is listed under the ?? column in the table and is not used in the probability calculations.
5 o
5 o
    - , - - - - n---.-  - --- - - .- -          -
n---.-
                                                  .,  - , - , , , ..n-- , , - . , . , , , - - . . .  +.- -, ,- , -,  . - - - - , , , - - .,  , - -
..n--
+.-


s PEgo 12 i
s PEgo 12 i
ESTIMATES FOR THE AVERAGE MISSILE GENERATING EVENT RATE USING THE FORMULAS:
ESTIMATES FOR THE AVERAGE MISSILE GENERATING EVENT RATE USING THE FORMULAS:
1                                 29                                 -4 R**(OP) =[
1 29
9.61 +                               1.37] X 10 30                                   30
-4 R**(OP) =[
                                                              ~#
9.61 +
                          = 1.64 X 10                             Failures / Year with 36 percent of the rate due to cracking.
1.37] X 10 30 30
1                                 29                                 ~4
~#
                          =[       7.20 + - 0.30] X 10 Rav(OV)            30                                   30
= 1.64 X 10 Failures / Year with 36 percent of the rate due to cracking.
                                                              ~4
1 29
                          = 0.53 X 10                             Failures / Year
~4 Rav(OV) =[
                                                                                -4 R,,(M) = t.77*1.64 + .75*.53] X 10
7.20 + - 0.30] X 10 30 30
                        = 1.66 X 10 ~4 Incidents / Year Due to overspeed failures: 0.40 x 10~4/ year
~4
                                                                                            -4 Due to operating speed failures: J.26x10 / year with 36 percent due to cracking.'
= 0.53 X 10 Failures / Year
-4 R,,(M) = t.77*1.64 +.75*.53] X 10
~4
= 1.66 X 10 Incidents / Year Due to overspeed failures: 0.40 x 10~4/ year
-4 Due to operating speed failures: J.26x10 / year with 36 percent due to cracking.'
DIRECT CALCULATION FROM NUCLEAR DATA:
DIRECT CALCULATION FROM NUCLEAR DATA:
                                                                        -4 R,y(M) = 2/2467 = 8.11 X 10                                                         ~4 95 Percent Conf. = [0.80,29.20] X 10 (There are 2467 nuclear turbine-years of operation in the population.)
-4 R,y(M) = 2/2467 = 8.11 X 10
~4 95 Percent Conf. = [0.80,29.20] X 10 (There are 2467 nuclear turbine-years of operation in the population.)
4
4
                                                                                , , - _ - . . , - - -                    , , - - - , . ,m,  - ,,
,m,


4 pagt 12.1 f
4 pagt 12.1 f
r All the failure rates calculated on previous pages can now be combined to produce an estimate for the rate of major concern, R,y(M), the average missile generating event rate for a 30-year turbine lifetime. The calcula-tions on the opposite page present two different ways to make this estimate.
r All the failure rates calculated on previous pages can now be combined to produce an estimate for the rate of major concern, R,y(M), the average missile generating event rate for a 30-year turbine lifetime. The calcula-tions on the opposite page present two different ways to make this estimate.
The first calculation plugs the estimates into the formula obtained pre-viously, while the second uses data from nuclear turbines only and estimates the. rate directly.                                                                                                                            .
The first calculation plugs the estimates into the formula obtained pre-viously, while the second uses data from nuclear turbines only and estimates the. rate directly.
The first estimate is lower than the last but since the error bounds on the last estimate are relatively large, the two calculations do not necessarily contradict each other. The last estimate does show that adding fossil fuel experience to nuclear experience does not unjustly inflate nuclear failure rates; if anything, it deflates them.
The first estimate is lower than the last but since the error bounds on the last estimate are relatively large, the two calculations do not necessarily contradict each other. The last estimate does show that adding fossil fuel experience to nuclear experience does not unjustly inflate nuclear failure rates; if anything, it deflates them.
(
(
          , _ _ - _ . . ,._-_ _ ,,-- - . , _ _ . _ _ _ . , . _ _ , . _ . . _ . - - - _ _ _ , , - - , _ , , _ . _ _ _          ._____-_., ..,.,_._.e-}}
..,.,_._.e-}}

Latest revision as of 15:15, 11 December 2024

Forwards Articles Re Turbine Missiles Cited in Memorandum & Order LBP-83-48,per Request.Related Correspondence
ML20141F595
Person / Time
Site: Perry  
Issue date: 01/06/1986
From: Silberg J
CLEVELAND ELECTRIC ILLUMINATING CO., SHAW, PITTMAN, POTTS & TROWBRIDGE
To: Johnson W, Rosenthal A, Wilber H
NRC ATOMIC SAFETY & LICENSING APPEAL PANEL (ASLAP)
References
CON-#186-683 LBP-83-48, OL, NUDOCS 8601090456
Download: ML20141F595 (44)


Text

...

~'

  • n (y

u en,,,,

h ac-W SHAW, PITTMAN, PoTTs & TROWEbRIDGE A PARTNE ASMep OF PROFr$$aONAL CORPORAfiONS

'86 JMt -8 N0:27 1800 M STREET. N. W.

WASHINGTON. D. C. 20036 tt ttcopia n sacan saa eoes & saa-nee QGCL;$lha& ?ifi tetta 33/.NCd es-aeos isMAwtAw wswi Casts -sMAWLAW" JAY C. SILDERO, P C.

saca saa Oes January 6, 1986 Alan S. Rosenthal, Chairman Atomic Safety and Licensing Appeal Board U.

S. Nuclear Regulatory Commiccion Washington, D. C.

20555 Dr. W. Reed Johnson Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commission Washington, D. C.

20555 Mr. Howard A. Wilber Atomic Safety and Licensing Appeal Board U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Re:

The Cleveland Electric Illuminating Company (Perry Nuclear Power Plant, Units 1 and 2)

Docket Nos. 50-440 and 50-441 O b Gentlemen:

As requested, I am enclosing the following two articles cited in the Atomic Safety Licensing Board's Memorandum and Order (Summary Disposition of Turbine Missile Issue),

LBP-83-48, 18 NRC 218 (1983):

1.

S. H. Bush, "A Reassessment of Turbine-Generator Failure Probability," 19 Nuclear Safety 681 (1978);

n

(

~]

G}J pejP %8an Be8ajho o

h SHAW, PITTMAN. PoTTs & TROWBRIDGE A pantstmSM89 Or enor tssiONAL CompO1AfiCNs January 6, 1986 Page Two 2.

Patrick G. Heasler, " Missile Generation Rates From Historical Data," presented at Electric Power Research Institute Seminar on Turbine Missile Effects in Nuclear Power Plants (October 25-26, 1982).

Very truly yqurs, f,

G U, L1(

1 f

E ', Silberg o nsol for Applicants JES L Enclosures cc:

Service List (Enclosures only to (Ms. Woodhead and Ms. Hiatt) 4

\\

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION BEFORE THE ATOMIC SAFETY AND LICENSING APPEAL BOARD In the Matter of

)

)

TNE CLEVELAND ELECTRIC

)

Docket Nos. 50-440 ILLUMINATING COMPANY, ET AL.

)

50-441

)

(Perry Nuclear Power Plant,

)

Units 1 and 2)

)

SERVICE LIST Alan S. Rosenthal, Chairman Atomic Safety and Licensing Atomic Safety and Licensing Appeal Board Panel Appeal Board U. S. Nuclear Regulatory Comm4ssion U. S. Nuclear Regulatory Commission Washington, D. C. 20555 washington, D. C. 20555 Dr. W. Reed Johnson Docketing and Service Section Atomic Safety and Licensing Office of the Secretary Appeal Board U. S. Nuclear Regulatory Commission

'U.

S. Nuclear Regulatory Commission Washington, D. C. 20555 Washington, D. C. 20555 Mr. Howard A. Wilber Colleen Woodhead, Esquire Atomic Safety and Licensing Office of the Executive Legal Appeal Board Director U. S. Nuclear Regulatory Commission U. S. Nuclear Regulatory Commission Washington, D. C. 20555 Washington, D. C. 20555 James P. Gleason, Chairman Terry Lodge, Esquire 513 Gilmoure Drive Suite 105 Silver Spring, Maryland 20901 618 N. Michigan Street Toledo, Ohio 43624 Jerry R. Kline Ms. Susan L. Hiatt Atomic Safety and Licensing Board 8275 Munson Avenue U.S. Nuclear Regulatory Commission Mentor, Ohio 44060 Washington, D.C.

20555 Glenn O. Bright Donald T. Ezzone, Esquire

. Atomic Safety and Licensing Board Assistant Prosecuting Attorney U.S. Nuclear Regulatory Commission Lake County Administration Center Washington, D.C.

20555 105 center Street Painesville, Ohio 44077 Atomic Safety and Licensing Atomic Safety and Licensing Appeal Board Board Panel U.S. Nuclear Regulatory Commission U. S. Nuclear Regulatory Commission Washington, D.C.

20555 Washington, D.C. 20555 John G. Cardinal, Esquire Prosecuting Attorney Ashtabula County Courthouse Jefferson, Ohio 44047

I jZl 681 1

. ~......

..r g g

.e _,

.ug r

Accident

~

86 'm a N :27

~

Analysis

}.

Edited by P. M. Haas h

A Reassessment of Turbine-Generator i

Failure Probability i

By S. H. Bush' Abstras.t: A prewous article' sn Nuclear Safety assessed the pertained to the assumptions used in the developmei.t overall probabahty (P.I of nuclear plant damage due to turbine of the failure probability (Pn) pertinent to nuclear fadures as a function of the combined probabdities of turbine fadure and elecnon of an energette massule (P,). a mistsle and disagreements, it was decided to expand on the strukmg a crttical component EP,). and srgmficant damaer occurring to the component IP,I. Due to questions raired items relevant to P, including experience since 1972.

concernmg the methodology used. the ralue of P, has been In essence, this article is limited to an assessment of P.

i reassessed, usmg a somewhat broader data base and other Failure probability in terms of Pn is defined as the methods of data analysts. The range ofinstantaneous turbine statistically determined probability of the generation fadure rates consnJered relevant to nuclear systems is of one or more missiles that penetrate the turbine 3.3 x 10** to 3.1 x 10-* per turbine year in the current article Compared to a Value of l % $0~' pe! tu!bine year in the SEiOg sob h3YO Sh0 pU$eOlbSi O AM3g ng Col $cS1

{

previous article reactor coniponents if the missiles strike them.

t On the basis of the information available, the instantaneous hazard function Z/T) at any time Twill A previous article' considered the general problem of damage to nuclear reactor components critical to be calculated rather than P. Depending on the data i

available, an alternative is to determine the cumulative safety due to the failure of the large turbine generator.

The damage probability (Pa) was determined from the hazard function #/T). The function 2/T) can be combined probabilities of turbine failure (P ),a missile obtained by differentiating #/T), or #fT) is the i

sinking a structure containing components entical to integral of 2/T). The value of 2/T)is derived from a safety (P:), and penetration or significant damage collection of those reported turbine generator failures occurring to the structure and component (P ),or considered relevant to nuclear reactor operation condi.

3 tions divided by the turbine years of operating turbine Pa = P x P x Ps generators. As indicated later, the hazard value is i

2 Since the publication of the previous article' in

  • Spencer H. Bush is a senior staff consultant at Battelle 1973, several studies have been completed which agree Pacific Northwest Laboratories. Ite was a member of the with the ballistics missile strike probab,lity model used Adytsory Committee on Reactor Safeguards from 1966-1977 and served as chairman in 1971, ite has had considerable previously '* in calculating P. With regard to the "penente in the reactor Geld. including work in the physicat 8

3 damage probability Pa, any further modification awaits and mechanical metatturgy of nucleas materlats, effects of completion of jet sled missile tests, sponsored by the irradiation on metals and alloys, and stress corrosion. Ite is Electric Power Research Institute (EPRI).

active on severat national and international committees devel-The misunderstandings or disagreements arising opins safety codes and standards. He has done substantial werk from the original article' have almost exclusively on failure mechanisms of components in pressurised systems.

NUCLE AR SAFETY, Voi.19, No. 6. November-December 1978 J C.

3s2 ACCIDENT A**ALYSIS essentially equal to the failure rate, and therefore the The second option-confining the analysis to terms " hazard value," or " hazard rate" and " failure nuclear turbines or to nuclear turbines for light. water rate,"are used interchangeably here.

reactors (LWRs)-results in a small population in The Nuclear Regalatory Commission (NRC) has terms of units and turbine years of operation,particu.

not issued a "probabilistic" standard for turbine-larly if the population is limited to reactors within the generator failure. flowever, there is a greater goal of United States. The following data illustrate how few 10 ' as the probability for any specific major accident data exist.

during any year. This implies that 2/T) should not be greater than 10-* per turbine year. The three ap-For the United States proaches available to the utility are:

Number of operating 1.WRs through 1977 63

1. Orientation and placement of the turbine genera-Number of turbines 63 tor (s) to minimize Ps (e.g., peninsular orientation).

Total turbine years 367

2. Installation of missile barriers where protective Range of turbine sizes MW(e) 50-1200 orientation is not feasible, as is the case with platform-For other countries exclusive of Russia and satellites
  • mounted nuclear plants.
3. Justification that the failure rate from all causes Number of operating reactors 30 Number of turbines 123 is sufficiently low. Such an approach has been reviewed Total turtine years

~1200 by NRC for acceptance of other types of failure.

Range of turbine sizes. MW(e) 30-1200 Several new plants have oriented the turbine

,Eluninated due to tack of data on turbines.

generators to minimize the possibility of missile strike on the critical components. The second and third approaches also have been investigated; however, the With regard to the first option-the one developed NRC has not accepted the third, namely, the proba.

further in this report-it should be recognized that bility approach for turbine failures at this time. The there are factors that could bias the statistical analysis:

importance NRC places on the turbine failure issue is

1. The turbines listed represent a large spectrum of apparent if one examines the development of their ages, sizes, and operating conditions.

positions pertinent to turbine generators.' The posi-2.The data from some manufacturers concerning tion of the Advisory Committee on Reactor Safeguards turbine operating histories were inadequate or non.

(ACRS) was given in a letter

  • dated Apr. 18,1973,to existent.

Dixy Lee Ray, who was then Chairman of the Atomic

3. In the list, there is a mixture of both nuclear and Energy Commission.

nonnuclear turbines with a spectrum of operating conditions.

STATISTICAL ANALYSIS: PROBLEMS AND failu ALTERNATIVES 5.There is no assurance that the list of turbine llaving determined that a statistical analysis was failures is all. inclusive.

the most effective approach available, at least three 6.There is considerable subjectivity in deciding options existed:

whether or not a particular nonnuclear failure is I. Use as much data as possible in the statistical relevant to nuclear reactors; there is similar subjectivity analysis, recognizing that there are a number of concerning the applicability of degraded components limitations as noted iater.

in nuclear turbines where severe cracking, but not

2. Limit the analysis to turbines in nuclear plants, failure, has occurred.

recognizing the very small population and consequent Recognizing the above limitations, an effort was increase in the widths of confidence interval estimates.

made to establish the turbine population (nuclear as

3. Apply extreme value theory to specific compo.

well as nonnuclear) and to document failures.

nents of large steam turbines to assess the probability of generation oflarge missiles.

TURBINE YEARS OF OPERATION Although the third option appears quite attractive, probabilities based on as built quality do not cover it was necessary to make the following assumptions degradation mechanisms, such as environmentally in-when developing the body of data pertinent to turbine duced stress corrosion or malfunction of turbine valves.

years of operation:

NUCLE AH S AFETY, Vol.19. No. 6, Novemte-December 1978

ACCITENT ANALYSIS 643

l. In a few instances, data on operating years were Table I contains data that tend to substantiate available both before and after 1950. Such data were several of the assumptions made in inferring trends. In used with or without suitable modifications to cover this instance the number of units and the service years retirement of units.

were known. Twenty.seven new units were assumed to

,2.It was recognized that a substantial fraction of come on.line every year based on summing total new turhgie. generator units produced by some manufae.

units and. dividing by the number of years. Retirement turers were less than 50 MW(e). No attempt was made data are compared on the basis of arbitrarily retiring to eliminate such smaller units from the data.

units after 30 years or assuming that 5 units per year 3.In some cases the number of units fabricated are retired. Figure I presents the data in Table I both before 1950 was known, but not the operating years.

with and without retirement of units. In general, the The pre.1950 data were obtained by extrapolation of assumptions used appear to result in reasonably good trends in these cases.

agreement with the actual data. All data were from one i

4.Where data were limited to total units and total manufacturer.

operating years, an attempt was made to infer turbine Table 2 illustrates another trend in the data.

years per year, using trends observed in other data sets.

Manufacturer B produces turbine generators over the S. Arbitrary reductions in numbers of turbines entire range of sizes from < 10 MW(e) to the largest were made on the basis of an assumed turbine life of available. The data are presented in terms of units 30 years.

larger than 100 MW(e) as well as all units, regardless of

6. Data available before 1972 were used to infer size. In addition, new units are incorporated into.the turbine years of operation during the period 1972 to data set on the assumption that they operated either 6 1977.

months or 12 months in the first year. It appears, for

7. In the absence of knowledge relevant to turbine manufacturer B, that about 457 of the units are generators manufactured before 1950, the turbine

>toogw(e),

years began with operation of the first known unit (s).

Tables 3 and 4 represent a synthesis of the available 8.Where there was a clear delineatien between the information for new turbine generators and for cum t.

number of large turbines [> 50 MW(e) or > 100 MW(e)]

lative turbine years of operation. Table 3 covers the and small turbines for a given manufacturer, the data case of no units retired, whereas Table 4 assumes were examined,but the total population was used.

retirement after 30 years. Without re tiremen t, the

9. For those turbine manufacturers where data on population is about I x 10' turbine years. Assuming turbine years were totally absent, some arbitrary retirement, the total population represents almost assumptions were made to expand the turbine years 8 x 10' turbine years. An obvious consequence of and to factor in failures of units produced by these such a lirmted population is the broadening of confi.

manufacturers. Specifically,it was assumed that known dence interval estimates. These data are multiplied by manufacturers produced three. fourths of the units and 1.33 to include other turbine manufacturers. This that "other" manufacturers produced the rest; thus the figure may be too large or too small;however,it is felt turbine. years curve for known manufacturers was that the error is not too great. The maximum number multiplied by 1.33.

of turbine years without retirement by the end of 1977 10.Certain simplifying assumptions were made is about 1.33 x 10' years and with retirement about concerning new units operating in a given year and the 1.1 x 10' years.

fraction of a year assigned to such new units during One other trend is considered significant-the their first year of operation. These trends were increase in size of turbine generators with year of generally validated on the basis of deliberately synthe.

geration or order. Table 5 illustrates the change in sizing such data for manufacturers with known his.

size for all commercia! LWRs in the United States.

4 tories for new units.

It should be recognized that there are inherent ll. Data varying substantially in degree of com.

limitations in the turbine population given in Tables 3 pleteness were available from the following turbine and 4. An obvious trend is the increase in size of manufacturers: Allis Chalmers, Brown Boveri Com.

turbine generators with time. Units produced through.

pany, G.E.C. Turbine Generators, Ltd. (formerly En.

out the period 1930 to 1950 were relatively small, with o

glish Electric), General Electric Company, Kraftwerk newer units being larger. A second limitation was the Union (originally A.E.G. and Siemens), and Westing-degree of interpolation or extrapolation in the popula-house Electric Corp. No data were available for other tion of turbine generators. A third limitation was the turbine manufacturers.

lack ofinformation relevant to retirement of units.

NUCLE AR SMETY, Vol. 19. No. 6. Novemt>er-December 1978

.g j

g4 ACCIDENT ANALYSIS Table I Compag of Actual, Interpolated, and Extrapolated Turbine Years for Manufacturer A Assumes 27 new w-Assumes 27 new Actu al e xpe rience, Actual experience, units per year, Actual experience, units per year, with retirement with retirement of retirement of without retirement without retirement after 30 years 5 units per year 5 units per year No, Service No.

Service No, Service No, Service No, Service

'Y Year units years units years units years units years units years Pre 1950 166 2,012 166 2,012 166 2,012 166 2,012 166 2,012 k

1950 186 2,198 193 2,205 182 2,194 181 2,193 188 2,200 1951 224 2,422 220 2,425 220 2,414 214 2,407 210 2,410 1952 249 2,671 247 2,672 245 2,659 234 2,641 232 2,642 1953 293 2,964 274 2,946 289 2,948 273 2.914 254 2.896 1954 348 3,312 301 3,247 340 3,288 323 3,237 276 3,172 1955 385 3,697 328 3,575 372 3,660 355 1,592 298 3,470 1956 410 4,107 355 3,930 390 4,05 0 375 3,967 320 3,790 1957 445 4,552 382 4,312 418 4,468 405 4,372 342 4,132 1958' 494 5,046 409 4.721 464 4,932 449 4,821 364 4,496 i

l 1959 526 5,572 436 5,157 484 5,416 476 5,297 386 4,882 1960 562 6,134 463 5,620 506 5,922 507 5,804 408 5,290 1

1961 576 6,710 490 6,110 518 6,440 516 6.320 430 5,720 1962 593 7,303 517 6,627 533 6,973 528 6,848 452 6,172 1963 612 7,915 544 7.171 551 7,524 542 7,390 474 6,646 1964 637 8,552 571 7,742 576 8,100 562 7,952 496 7,142 1965 652 9,204 598 8,340 591 8,691

$72 8,524 518 7,660 1966 671 9,875 625 8,965 608 9,299 586 9,110 540 8,200 1967 687 10,562 652 9,617 621 9,920 597 9,707

$62 8,762 1968 710 1I,272 679 10,296 638 10,558 615 10,322 584 9,346 1969 729 12,001 7')6 11,002 652 11,210 629 10,951 606 9,952 1970 747 12,74H

' 13 11,735 664 11,874 642 11,593 628 10,580 1971 765 13,513

' 50 12,495 673 12.547 655 12.248 650 11,230

  • 1972 785 14.298 787 13,272 680 13,227 670 12,918 672 11,902 1973 805 15,103 814 14,086 690 13,917 680 13,603 694 12,596 1974 825 15,928 841 14,927 711 14,628 705 14,308 716 13,312 1975 845 16,773 868 15,795 732 15,360 725 15.033 738 14,050 1976 865 17,638 895 16,690 756 16,116 745 15,778 760 14,800 1977 885 18.523 922 17.612 780 16,896 765 16.543 788 15,588
  • Extrapolated below line. To correct for partial years of sersice, subtract 357 turbine years.

In the case of manufacturer A,the data on number 2 and Fig. I to permit extrapolation. In essence, the of units and years of operation were quite good. In data available censisted of a given number of units with addition, the set was more homogeneous in size since the cumulatise turbine years cited at one point in time; all units were larger than 50 MW(e). The quality of theafore it was necessary to extrapolate both back.

data for manufacturer B is similar to that for manu.

ward and forward to develop the data given in Tables 3 facturer A; however, the unit sizes include both small and 4,

[-10 MW(e)] and la ge [>$0 MW(e)], The same is true for manufacturers D and F. Manufacturer C FAILURES AND FAILURE MECHANISMS discontinued manufacturing turbine generators in 1968; however, the data set for C is similar to A in Turbine generator failures during the past 25 years quality, Data from manufacturer E was quite poor, are presented in Tables 6 and 7. Table 6 covers failures necessitating the procedures developed in Tables I and of large and medium steam turbines at or near NUCLE AR SAFETY, Vol.19. No. 6, November-December 1978 E

M; ACCIDENT ANALYSIS 805 1&MO Actu.i espo,6ence, udthout todroment

/

14.C10

.,(

Assume. 27 new units per ve.r. without retirement

,,fl, *,/ e4 w.i.x,o_.,ee,em.nt.n., m,o-

/

3,

  1. .jp Ac,u.,es,.,_

ee,em,so,. -. -,es,.

p/

/

j

,, 12,000 Assumes 27 new unats per yo.r, retirement of 5 units per ye.r

= * - -

/*

8

,/

/

~

3

./

y tcLo00

$f,/j-f

/ /*

~

hooaa -

gk

~

0000 gI

. f Entreporated 4000 -

,M

/

~

I I

I f

1 I

t i

I i i t

1 I

i t

I t

i i f

I t

i g

te6o

'52

'54

'56

'58 to 12 14 to 18 70 72 74 78 YEAR Fig. I Comparison of actual, interpolated, and estrspolated turbine years with and without retirement of units for rnanufuturer A.

operating speeds. Table 7 covers cases of turbine heat. treatment procedures so that failures due to this overspeed with and without failure.

mechanism are less likely to occur in modem plants.

Although there are several failures cited in Tables 6 Several failures elsewhere in the turbine have and 7, the critical question is how many are relevant to occurred because of some aspect of generator failure.

turbine generators used in nuclear power plants. Any Events such as abrupt braking, running of the generator decision concerning relevance will be subjective. As as an induction motor, and out.of. phase have caused indicated in Tables 6 and 7, such a subjective judgment severe damage to turbine generators, but only rarely placed the minority of the failures in the relevant have missiles been generated extemally. This has been category. The following discussion develops the ratio-due to the massiveness of the stator and the shell of the nale for division into relevant and irrelevant failures.

genera tor.

An additional subset pertinent to relevant failures A number of failures have occurred in the test pit covers those failures generating energetic external or preoperationally. Considering the causes of such missiles-the only condition of significance in assess-preoperational failures, it is improbable that these ing the damage probability, turbine generators would have survived the tests and then failed in service.

Failures irrelevant to Nuclear Units or Not Capable of Major Missile Generation Failures Flefevant to Nuclear Units One class of failures occurring 20 to 25 years ago The remaining turbine generator failures can be was the brittle fracture of turbine or generator rotors.

considered marginally or directly relevant to nuclear Seven such failures occurred over a relatively short p' ants. The Tanners Creek stress rupture and the time. All were characterized by high nil ductility Gillatin creep fatigue failures are considered to be temperatures and hydrogen present as fisheyes, etc.

marginal, since nuclear service conditions are below the These failures led to changes in melt, fabrication, and range considered relevant for stress rupture.

NUCLE AR SAFETY. Vol.19. No. 6, November-December 1978

1*

000 ACCIOGNT ANALYSIS Table 2 Tuebine Years foe Two Casesocies of Turbine Generatoes foe Manufacturer 3 TurWne pnerators larps than g'

100 MW(e)

All turWne pnerstors TurWne years TurWne years Asasmes Assumes Assumes Aansmes Cume.

% mewin all new Cume.

% new in all new Year No.

lathe first year one year No.

lative nest year one year Pro.1950 1

1 2

2 56 500 1950 2

3 4

5 39 95 575 595 1951 4

7 9

12 31 126 686 721 1952 7

14 19 26 26 152 825 873 1953 14 28 40 54 33 185 993 1,058 1954 24 52 80 106 49 234 1,203 1,292 1955 21 73 143 179 35 269 1,455 1,561 1956 12 85 222 264 15 284 1,732 1,845 1957 7

92 310 356 26 310 2.019 2,155 1958 14 106 409 462 32 342 2,345 2,497 1959 21 127 525 589 30 372 2,702 2,869 1960 12' 139 658 728 24 396 3,086 3,265 1961 18 157 806 885 26 422 3,495 3,687 1962 17 174 972 1,059 28 450 3,931 4,137 1963 10, 184 1,151 1,243 19 469 4,390 4,606 1964 8

192 1,339 1,435 18 487 4,868 5.093 1965 12 204 1,537 1,639 25 512 5,367 5,605 1966 11 215 1,747 1,854 28 540 5,893 6,145 1967 19 234 1,971 2,088 31 571 6,450 6,716 1968 18 252 2,214 2,340 26 597 7,034 7,313 1969 19 271 2,485 2,611 23 620 7,643 7,933 1970 22 293 2,757 2,904 22 642 8,274 8,575 1971 11 304 3,058 3,2 0 8 _ __.

20 662 8,926 9,237

  • 1972 14 318 3,369 3,526 1 23 685 9.599 9.922 1973 14 332 3,694 3,858 20 705 10,294 10,627 1974 14 346 4,033 4,204 25 730 11,012 11,357 1975 14 360 4,386 4,564 25 755 11,754 12,112 1976 14 374 4,753 4,938 25 780 12,522 12,892 1977 14 388 5,134 5,326 25 805 13,314 13,697 d
  • Extrapolated below hne, This leaves the following failures as relevant:

2 The overspeed incidents leading to failure l.The initial liinkley Point A brittle. stress.

(liskmouth, Calder Hall, and Bold) are considered corrosion failure and the Duquesne Shippingport fall.

relevant even though Calder Itall occurred during the ure are both relevant and directly applicable to nuclear startup phase, ne possibility exists for a mechanism, g

units since both plants are nuclear. The other two such as the occurrence of foreign bodies in a system, Ilinkley Point failures occurred during pit testing; which could prevent valve operation, it should be hence they are marginal at best and probably should noted that several nuclear plants have overspeeded f

not be used in the body of statistics. The Oak Creek without damage. The reasons advanced by Splitt.

failure is considered a relevant brittle failure The disk gerber,' lluppman,' and Carson et al.' are considered j

cracking at Rancho Seco and Arkansas Nuclear One relevant to nuclear turbines. Carson et al.' cite,but do were not failures, but such cracking should be con.

not identify, cases of modern turbine generators going sidered a waming that mechanisms exist which, if into overspeed due to rust in valves resulting frorn undetected, could lead to failure.

water in the hydraulic fluid. Other causes may lead to k

NUCLE AR 8AFETY, Vol.19, No. 6, Novemtwr-Decomtwe 19FJ

ACCs00887 A8 sat,Y888 es?

Table 3 Total Years Synthesised-No Cervecsion fee Iteelseauet of TurWae43enerosses*

teamm8menen A

B C

D E

F Teset Year Unies Yeass Unem Veen Unem veen Unem Yeen Unie veen Unem Yean Unie Yeen j

Fw.1990 166 2,012

$6 300 40 160 233 I,$07 ISO l.000 600 2,400 1,247 7J79 i

1950 184 2,198 93 393 48 200 23 3 I,760 173 1,173 412 3,012 1.349 8,948 19$1 224 2,422 126 721

$6 264 281 2,048 200 1,373 620 3,632 1,307 10,433 1932 249 2,671 132 873 el 32$

303 2,34 6 223 1,600 H2 4,274 1,634 12.089 1953 293 2.964 183 1,038 78 396 329 2.673 250 1,850 639 4,933 1,787 13,876 1954 Me 3,312 2 34 1.292 78 474 M0 3,033 273 2,125 689 3,422 1,9H 13.860 1953 38$

3,697 269 IJ61 87

$68 349 3,424 300 2,423 fl0 6,332 2,144 18,004 1956 410 4,107 2H I,M $

to 637 408 3,832 123 2,750 732 7,084 2,276 19.280 1957 44$

4,$32 310 2,0$$

102 739 443 4.277 350 3,100 791 7,873 2,444 22,728 1958 494 3,046 342 2,497 122 881 466 4,H 3 373 3,473 823 0,700 2,423 23,34 3 1939

$26 SJ72 372 2,849 130 1,018 494 3.237 400 3,873 831 9J31 2,774 28,123 1960

$62 6,134 396 3,245 148 1,152 312 3,749 430 4,303 844 10,433 2,926 31,049 1961 376 6,710 422 3.687 131 1,303

$37 6,286 460 4,743 904 11.339 3,031 34,100 1962

$93 7,303 430 4.137 134 1,459 343 6,849 490 3,233 9H 12,373 3,187 37,287 1963 612 7,913 469 4,604 168 1,620 393 7,444 320 3,77$

953 13,228 3,313 40,600 1964 637 SJ32 487 5,093 167 I,787 424 8,070

$4$

6,320 976 14,204 3,445 44,043 196$

652 9,204 312 3,603 168 1,933 633 8,723

$70 6,890 997 13,204 3Js3 47J83 1964 471 9,873 340 6,145 148 2,123 677 9.402 600 7,490 1,018 16,219 3,673 31,263 1947 687 10J62

$75 6,716 168 2.191 699 10,101 623 8,113 1,0$ $

17,274 3,406 33,081 1968 710 11.272

$97 7,313 164 2,459 719 10,820 630 8,763 1,002 18,336 3,927 60,013 1969 729 12,001 620 7,933 168 2,627 73')

11J70 673 9,440 1,113 19,471 4,058 64,063 1970 747 12,748 642 8,375 ist 2,795 774 12,344 710 10,155 1,139 20,610 4.181 64,244 1971 763 13J13 642 9,237 168 2.943 798 13,142 740 10,890 1,150 21,764 4,292 72,334 1972 785 14,298 685 9,922 168 3.138 829 13,978 770 11,640 1.180 22,948 4.418 77,054 1973 ISOS 43,103 703 10,627 168 3,299 H4 14,813 000 12,460 1,210 24,158 4J33 81J90 1974 825 13,928 730 11.337 168 3.447 868 13,433 830 13,270 1,240 23,398 4J47 86,104 1975 MS 16,773 735 12.112 let 3.433 890 16,373 860 14,130 1,270 26,648 4,703 90.883 1976 MS 17,638 780 12,892 168 3,803 890 17J45 900 13.030 1,300 27,948 4,831 95.786 1977 885 18J23 803 13,697 168 3,971 090 18,433 930 13.980 1,330 29,298 3,000 99.924

  • To correct ror time of startup in a year, subtract tels trom turbine years.

tEntr*904*i+4 6*Ia lm.

failure of valves to close with the potential of Electric Corp., etc.), ne second covers failures for

,l destructive owrspeed.

which operating histories are not known (Charles A, If one assesses the relevant cases in Tables 6 and 7, Parsons, etc.),IUustrating the reason for expanding the I '*I d

one note $ two cases at or near operating speed where failure extemal missues were generated. Both occurred within

! l tidered umhauene ln Fanum ha the past to years. Dere were Aw overspeed event 8 ng the resulting in extemal missiles, and all occurred more An assessment of the failure deta in Tables 6 and 7 y

anism, than 10 years ago. However, several cases of overspeed reveals several problems with their use in terms of their
ystem, without damage have occurred, and all were within the relevance to failures in nuclear plants, nree of the ild be past 10 years. Additionally, two nuclear plants have more obvious are (1) there may be a significant number m oed experienced phosphate buildup on the turbine valves, of failures in units produced by manufacturers other o

splitt.

which could influence closure and result in overspeed, than those included in Table 3;(2)the unit si2es are dened A8 noted in Table 7, there were other causes of valve sometimes much smauer than units uwd in nuclear but do malfunction.

plants; and (3) operating pressures and temperatures s going Table 8 presents failures within two sets. De first are not always typical of LWRs.

I I'*

co wr8 failures where turbine operating times are A further limitation 18 that the ilsting is not lead to known (General Electric Company, Westinghouse complete. Additional failures are known by hearsay; NUCLE AR SAF87Y, Vol.19, No, 6, November-Deeenter 197e

l ACCIDCT AAALYS88 egg s

.s

?

bTable 4 Total Years Synthesized: Corrected for Retirement of Turbine Generators

  • i Manufacturers Year A

B C

D E

F years Pre-1953 2,012 500 160 1,507 1,000 2,400 7,579 1950 2,193 591 207 1,760 1,170 2.992 8,913 1951 2,407 709 262 2,041 1.361 3,572 10,351 1952 2,641 849 320 2,346 1,570 4,154 11,880 1953 2,914 1,019 387 2,675 1,800 4,733 13.358 1954 3,237 1,233 460 3,035 2,050 5,322 15,337 1955 3,592 1,478 541 3,424 2,320 5,912 17,267 1956 3,967 1,734 630 3,832 2,610 6J22 19,395 1957 4,372 2,012 724 4,277 2,920 7,153 21,458 1958 4,821 2,318 837 4,743 3,250 7,798 23,767 1959 5,297 2,650 937 5.237 3,600 8,449 26,170 1960 5,304 3,002 1,087 5,749 3,975 9,113 28,730 1961 6,310 3,378 1,226 6,286 4.375 9,777 30.362 1962 6,848 3,776 1.369 6,839 4,800 10,451 34,082 1963 7,390 4,184 1,516 7,414 5,250 11,126 36,880 1964 7,952 4,716 1,668 8,010 5,720 11,802 39,918 1965 8,524 5,164 1,820 8,625 6,210 12,479 42,222 1966 9,110 5,636 1,971 9,252 6,725 13,157 45,851 1967 9,707 6,135 2,121 9,821 7,260 13,852 48,966 1968 10,322 6,656 2,270 10.540 7,815 14,554 52,157 1969 10,951 7,196 2,418 11,210 8,390 15,269 55,434 1970 11,593 7.754 2,565 11,894 8,995 15,988 58,789 1971 12,248 8,328 2,711 12,592 9,625 16,706 62,210 1972 12,918 8,921 2,856 13,311 10,280 17,426 65,712 1973 13,603 9,530 3,000 14,035 10,960 18,156 70,284 1974 14,308 10,160 3,143 14,773 11,665 18,896 72,945 1975 15,033 10,811 3,285 15,525 12,395 19,646 76,695 1976 15,778 11,483 3,426 16,291 13,150 20,406 80,534 1977 16,543 12,176 3,566 17,071 13,940 21,176 84,472

  • These data were obtained from Table 3 by utilizing actual experience and retiring units after 30 years when such data were available. When the data were not available, the trends from earlier years were used to estimate retirement.

however, the racessary data to permit their use are resulting from a combination of material properties and environment such as corrosion fatigue. In recogni Beet lacking.

A less apparent limitation has to do witti the tion of these limitations, one should question the data heterogeneity of the failure set,which should influence absolute validity of the failure probabilities.

extr-the validity of the statistical techniques used.The two estir methods that were examined,i.e., the Duane leaming-curve model and the Weibull failure model, probably STATISTICAL EVALUATION OF FAILURE

Pres, are valid for subsets of failures but not for the total RATES population. Some clear-cut failure subsets include popt 8

brittle fractures due to meh practice (1953-1956),

The approach used in the previous article in exar overspeed failures due to valve malfunction determining the cumulative and current failure rates mari (1956-1960), and generator failures due to field utilized the Duane growth model.8' Questions were lunit failures, etc. Another subset includes high. temperature raised conceming the use of the model, selection of tech creep fatigue, This leaves a residuum of failures, usually data points, and the lack of standard error values,8 8 PainI NUCLE AR SAFETY, Vol.19, Now 6. November-December 1978 i

ACCIDE!T ANALYSIS ggg Table $ Exemple of Increase la Turbine 4enerstoe Output [MW(e)]

)

with Time Based on Evaluation of U. S. Commercial Nuclear Power Plants and on Year of Initial Operation size, uw(e)

Year

<100 101-200 201-300 301-500 501-800 801-1000 >t000 6

1957 1

I 1958 1959 1

1960 1

1961 1962 1

1 1963 1

1964 1965 1966 1967 I

I I

1968 1969 1

2 1970 1

3 1

1971 3

1972 1

4 2

1973 1

2 4

4 1974 1

6 5

2 1975 2

2 1976 5

2 1977 6

1 1978 1

4 2

n.

1979 1

7

}

1980 2

12 1981 1

1 1982

.{

1983 1

3 8

j 1984 1

2 1985 1

4 1986 i

e 1987 2

1

't 1988 1

1989 4

' l'l nrties cogni.

Beeth and Hobbs,8 8 by appropriate selection of the ne approach discussed by Nelson'* has been used

.l

.1 the data, obtained higher values of alpha and lowr in the plotting of data. Nelson points out that the I

extrapolated failure rates.

cumulative probability value F(T) and the cumulative

-l A logical starting point is to calculate the global hazard function H(T) are essentially equal estimates of failure rate using the total turbine years or

[F(T)a'H/T)] for small probabilities (<!%), and the IRE the total population of turbines. Dese data are hazard function 2/T) can be described as the instanta.

ll presented in Table 9. He need for an expanded neous failure rate at time T for these small proba.

population of turbines should be apparent after an bilities.

e' in examination of Table 8. Rese data serve as bench The failure model believed to yield the most rates marks for the time. dependent analyses. Reir value is meaningful values of reliability, cumulative failure rate limited in that neither improvement in manufacturing

[H/T)], and instantaneous failure rate [2(T)] is the were on cf techniques nor in operation are apparent from such Weibull. It has been used extensively in the evaluation ses.' '

Point values.

of both large and small populations of pressure NUCLE AR SAFETY, Vol 19, No. 6, Nowmtw-Oecember 1978

ese ACCIDENT ANALYSIS

.f' Table 6 Known Fauures et or Near Operating Speeds (Medium or large Stearn Turt>lnes)

Amoeg Manufacturer

Sise, Year of Eaternal manufactusers (if known)

MW(e) failure Type of faawa Cause of fadure*

missues Comments A-F

l. Semens 63 1958 Low pressure turbine Bnttle fauvre (M)

Yes Factory test Yes retor burst

2. Eacher Wyss (ElectricitJ

$0 1911 Yes Yes de France Dieppedalle)

(54?)

3. General Doctric 100 1953 First-stage disk broke Hist > temperature No Yes (Tanners Creek 1) rupture (M)
4. General Electric ( Arnona 100 1954 Rotor burst Bnetle fadure (M)

Yes Factory test Yes Public Services)

5. General Electric 150 1954 Rotor burst Brittle frseture through No Yes (Cromby l) repair (M)
6. All*Chalmers(Common-150 1954 Spindle burst Brittle fracture (M)

Yes Yes westrh Edison)

7. Charles A. Parsons 100 1954 Generator retaining Brittle fatture through Yes umited missiles No (Hearn 1) nas burst vent holes (M)
8. Charles A. Parsons 100 1954 Generator retaining Bnttle fauure through Yes No i

(Hearn 2) ring burst vent holes (M)

9. General Dectric 125 1956 Generator rotor burst Brittle fracture (M)

No Yes (Pittsburg 1. Pacaric Gas & Electric)

10. Escher.Wyss (Pegun.

45 1959 Rotor fanure Brittle fracture (M)

Yes Yes Utrecht)

18. General Dectric (Cutler 6 125 1969 Generator field Out of step (0)

No Yes florida Power & Light) windmg

12. G.E.C. Turbme Generstors.

87 1969 Duk fadure Brir'te fauure (M.E)

Yes Nuclear Yes Ltd.(Hmkley Point A 5)

13. G.LC. Turbme Generstors.

87 1969 Disk faGure Brittie fanure (M.E)

Yes Factory test Yes Ltd. (H nkley Pant A4)

14. G.E.C. Turbine Generators.

87 1970 Disk faGure Bnttle failure (M.E)

Yes Factory test Yes Ltd.(Hinkley Point A4)

15. Mstsubisha (ENES A) 330 1970 Rotor fauure Flawed? (M)

Yes Factory test No 86 General Electric (Northers 63 1971 Generstor fadute Braking (O)

No Yes States Power)

17. General Electric (Essez 1.

105 1972 Generator field fauure Abrupt braking Yes Coupling as misage Yes Public Service Doctric

& Cas)

18. General Doctric (Sendai) 1972 Generator No Yes
19. Mitsubishi(Kainan) 600 1972 Generator rotor faDure Design?

No Preoperational No

20. Charles A. Parsons 500 1974 Generator ring Plastic strain plus No No (Nanticoke) hydrogen
21. Westinghouse (Duquesne 150 1974 Disk failure Brittle fagure stress No Nuclear Yes Shippesport) corrosion (M.E)
22. Westinghouse (TVA Gallatin) 1974 Rotor fsDure Fatigue (M)

Yes Yes

23. Bro==Boven Co, 1975 Generator failure (0)

No Yes

($kserbaek. Denmark)

24. General Electric (Utah 1976 Gensrator failure Ran sa induction No Ye:

Power & Light) sector; operator W

ener

25. AttieChalmers(Oak Creek 130 1977 Last-stage disk. low-Probebly brittle faaure Yes Twe large places Yes g'v Power Co. 3. Wisconsin pressure turbine 51 Dectric)
26. Alstrom-Rateau (Dectricite 600 1977 Generator rotor locked Abrupt braking Yes Only couplings No ca de Francs, Porchev9le, during no load over-g France) speed test fo Westinshouse ($ MUD, Rancho Seco)t 900 1975 Cracking turbine disks Stress corros6on (M.E)

No Nuclear A.E.G. (Wurgassen)t 670 1976 Cracking shaft Fatigue plus stress No Nucles' las corrosion (M.E)

Westinghouse AN,01. Na, it 900 1977 Cracking disks Stresa corrosion (M.E)

No Nuclear a1

  • (M) = metallurgical;(E) = environmental; and (0)
  • operational Of 1 Cracking only; not considered fsDure, fa.

Of Wt NUCLEAR SAFETY, Vol.19. No. 6. Nowmber-December 1978

ACCIDCT ANAL.YSIS tel e

Table 7 IncWests of Oeuropeed ConsWered Italewet to Nuclest Plants with or Without Fallwe*

Asmoeg Monstecturert

Shee, Yeme of Cause of Emterunt unanufacsueers
g (if known)

MW(e) faamse oveespeed fauere missSes Comments A-F

. asus Ovesarmed with Pasues

' ~

Fraser and Dalmers (CEGB, 60 1956 stuck valves;magneute buedup Yes No j

Uskmouth)

Charle: A. Persons (UKAEA, 23 1958 Valves pf40ged with foreign Yes No Calder Hau) material; shot f'om shot blasting Unknown 100 1958 Valves stuck No No Unknown 16 1958 Operation Yes No Generel Doctric (Morenci 3) 12 1959 Out of phase Yes 150% overspeed Not GEC-CEGB (Bold) 30 1960 Stuck walves; salt bulldup Yes

>l50% overspeed Yes Owrapeed Without Failure Westmshouse (Now Castle) 100 1952

<!30% overspeed Yes Obrigheim 320 1952

<l50% overspeed nuclear

?

SEN A, Chaos 200 1952

<l50% overspead, nuclear

?

Wesunghouse (San Onofre 1) 1952

<l50% overspeed, nuclear Yes FsMure of Valve to Function with or Without Overspeed Westir shouse (Turkey Point) 1974 Phosphate bugdup; two stop valves faBed

i Westinghouse (H. B. Robinson) 1974 Phosphate buildup;stop valve failed
s Westinghouse (ladian Pomt) 1974 Operator error; stop valve faBed

- s Westinghouse (Pomt Beach 2)

.1975 Packms too tight; stop valve faded s

General Destric (oyster Creek) 1970 Power transient; control valve failed s

General Doctric (Mdletone 1) 1971 Defective control volve General Doctric (Dresden 2) 1972 Faulty solenoid; two control

- a valves faded a

General Dectric (Dresden 2) 1974 Controlvalve faded Westinghouse (Turkey Point 4) 1974 Spring bolt faced;controi

s valve faaed General Cases of Overspeed with oe Without Fatures 4

ss 17 cases 1951-1961 e

11 cases 21 of 29 are German 1961-1965

' o I case 1965-1970

- es eData are primardy from Raft 7 and 8.

tCEGB, Central Dectrietty Generating Board;GEC, G E.C. Turbine Generators, Ltd.;UKAEA, United Kingdom Atomic Energy Authority.

' fee iNot in General Dectric large steem turbme data.

fes fee vessels.e s-is Other time.to. failure models, such as cumulative hazard function H/T), and time to failure

-fas exponential, gamma, and log-normal, are more re.

77#). 'the failure rate at any time Tis given by:

stricted. Unlike the exponential model, the Weibull is 4.

capable of representing hazard rates that vary with 2(TJ =1 8-8 T

time. It was necessary to place the equation in linear a8 form to permit a regression analysis. 'Ih3 procedure used is cited elsewhere.

This equation permits one to determine the time-Table 10 contains all the data necessary to conduct dependent failure rate for any time during operation a linear regression analysis for any specific combination and to extrapolate to end oflife. Figure 3 covers the of failures, e.g., all failures, all missiles, relevant two cases of all failurel and failures with missiles. On failures,'and relevant missiles (Fig. 2). The terminology the basis of these curves, there is noindication of wear of Ref.12 is used in this table. Table 10 includes the out near end of life. Using the equation in Table 10.

Weibull functions for reliability R(T), failure rate 2(T),

2(T)= 1.79 x 10-' T-o.se, the instantaneous (time-NUCLEAR SAFETY, Vol.19, Na 8, Novernber-Decorrd>er 1970

ACCIDENT ANALYCS g33 Table 8 IJeting of Turbine-Generator FaBures Divided into Manufacturers for

'Whom Operating Experience Is Known and Those for Whom Operating Experience is Not Known* (Failures Relevant to Nuclear Operation Are Noted)

Experience known Experience not known Total Extemal External External Year No.

I missiles z

No.

I missiles E

No.

E missiles I

1951 1

1 1

1 1-1 1

1 1953 1

2 1

2 1954 3

5 2

3 2

2 2

2 5

7 4

5 1956 1

6 It 3

1*

3 2

9 1

6 1958 3t 6

23 5

3 12 2

8 1959 It 7

1*

6 1

13 1

9 1960 It 7

12 4

1 14 1

10 1969 3t 10 23 6

3 17 2

12 1970 1

11 1

7 1

8 1

7 2

19 2

14 1

20 1971 1

12 1972 2

14 1

9 3

23 1974 2t 16 1

8 1

10 3

26 1

15 1975 1

17 1

27 1976 1

18 1

28 1977 2t 19 13 9

1 11 2

30 1

16

'Above does not include cases of disk or shaft cracking without failure (Rancho Seco,Wurgassen,and ANO I No.1) or overspeed without failure (New Castle, Obrigheim, SENA, and San Onofre 1).

tFailure considered relevant to nuclear operation.

$ Relevant failure, e xternal missiles.

dependent) failure rate 2/T) for the relevant missile two. thirds for failures early in life and approximately case varies from about 1.5 x 10-3 to I.S x 10-2 per one. half for failures later in life to eliminate smaller turbine year. Since these are expressed in percent, a units and those with different operating conditions conversion to rate yields 1.5 x 10-s to 1.5 x 10-*

than experienced by nuclear turbines. Again, this per turbine year.

approach is quite arbitrary, but it does have the effect Table 10 includes Weibull distributions covering of shifting the regression line t'o higher values of H and relevant missiles in the context of relevance to nuclear changing the slope 1/0. The relevant missile case, corrected for turbine population as defined in reactors. This relevance, as cited earlier, is a highly Table 11, yields failure rates [2/T)/100] varying from subjective judgment. (Because of the subjectivity in 3.3 x 10-s to 3.1 x 10-* per turbine year compared selecting data points,it was not considered appropriate to values of 1.5 x 10-s to 1.5 x 10-* per turbine to provide estimates of the confidence intervals for the Weibull parameters a and 0.) Even if the selection is year for the relevant missile case without correction for accepted, a valid question can be raised conceming the turbine population.

number of turbines used as a denominator in calcu.

lating the hazard function in Table 10. If one is CALCULATION OF FAILURE RATES selective in the numerator values, it follows that one BY TURBINE MANUFACTURERS may need to be selective in the denominator. This approach of adjusting the denominator to reduce the Reports concerning the probability of turbine.

effect of the nontelevant portion of the population was generator failure at design speed and overspeed have explored for the relevant missiles case. These revised been prepared by turbine manufacturers and are often data are presented in Table 11. The population after incorporated in utility safety. analysis reports for retirement was considered as a base line, and then licensing purposes. The Allis Chalmers-Kraftwerk expanded by 1.33 to cover those failures outside the Union reports are proprietary and will not be discussed known population. This population was reduced by other than to note that the approaches used in NUCLE AR SAFETY, Vol.19. No. 6. November-December 1978 L

ACCIDENT ANALYSIS 693 Table 9 Global Estimates of Failure Rates for Various Assumptions as of the End of 1977 g

i Number Total Total f

of turbine units in Cases considered failures years service Failure rate, A All available information.

population x 1.33 without retirement All failures 30 133,000 6680 2.3 x 10-* *

,h 4.5 x 10-'t All missile-generating failures 16 133,000 6680 1,2 x 10-*

2.4 x 10-8 Relevant failures 9

133,000 6680 6.8 x 10-'

l.3 x 10-8 Relevant missiles 7

133,000 6680 5.3 x 10-8 1.0 x 10-8 All available information, population x I.33 with retirement All failures 30 112,600 5250 2.7 x 10-*

5.7 x 10-s All missiles 16 112,600 5250 1.4 x 10-*

3.0 x 10-s Relevant failures 9

112,600 5250 8.0 x 10-8 1.7 x 10-s Relevant missiles 7

112,600 5250 6.2 x 10-'

l.3 x 10-'

Available in data set without retirement All data set failures 19 100,000 5008 1.9 x 10-*

3.8 x 10-'

Data set missiles 9

100.000 5008 9.1 x 10-s lately 1.8 x 10-8 I"

Relevant data set failures 4

100,000 5008 4.0 x 10-8 tions 8.0 x 10-*

this Relevant data set missiles 3

100,000 5008 3.0 x 10-8 6.0 x 10-*

ffect Available in data set with

fand retirement E**#'

All data set failures 19 84,470 3938 2.2 x 10-*

d in 4.8 x 10-'

from Data set missiles 9

84,470 3938 1.1 x 10-*

2.3 x 10-'

pared Relevant data set failures 4

84,470 3938 4.7 x 10-'

!rbine 1.0 x 10-8 t

3" IO' Relevant data set missiles 3

84,470 3938 3.6 x 10-8 7.6 x 10-*

  • Per turbine year.

tPer turbine unit.

developing overspeed probabilities were quite similar to similar approach was used for brittle failure near rbine-the approach of General Electric and Westing-operating speed. Values were obtained by either Monte I have house.8 '

Carlo or importance sampling.

cftes Both General Electric and Westinghouse used a Basically, the General Electric model of the event is ts f;r fault tree approach utilizing the available data on a sequence of simple events using failure rates from

ftwerk functional reliability of components to calculate proba-electronic components, control valves, stop valves.

cussed bility of overspeed in nuclear turbine generators. A overspeed trips, etc. Additionally, the sensitivity of td in NUCLEAR SAFETY, Vol 19, No. 6 November-Decernber 1978 Imm

[

5

\\

P I

l

$m Table 10 Data Arranged for Regression Analysis in Calculating Weibull y

Distribution (Maximum Population Assumed Without Retirement x 1.33) m

-4

"8 Failures llazard, %

Cumulative harard, %

g r-greater than failed unit All Relevant Relevant All Relevant Relevant All Relevant Relevant j;;

Failure, year failure time before failure failures Missiles failures missiles failures Missiles failures missiles failures Misiles failures missiles z9 Arizona Public

?

Service (1954) 6675 0.08 1

0.015 0.015 z Calder 11211 (1958) 6675 0.08 I

I I

I 0.015 0.015 0.015 0.015 0.030 0.015 0.015.

0.015 3 Siemens(1951) 6650 0.17 1

1 0.015 0.015 0.045 0.030 3 Cromby I (1951) 6625 0.25 1

0.015 0.060

(

f Ridgeland (1954) 6575 0.42 1

1 0.015 0.015 0.075 0.045 2 Uskmouth (1956) 6525 0.58 1

1 1

1 0.015 0.015 0.015 0.015 0.090 0.060 0.030 0.030 2

Kainan (1972)*

6500 0.67 1

0.015 0.105 g

k Unknown (1958)*

l 6475 0.75 1

1 1

1 0.015 0.015 0.015 0.015 0.120 0.075 0.045 0.045 I

' ENESA (1970)*

6450 0.83 1

1 0.016 0.016 0.136 0.091 E

y Brown-Boveri Co.,

2, Denmark (1975) 6375 1.30 1

0.016 0.152

>E Utah Power (1976) 6350 1.50 1

0.016 0.168 Tanners Creek (1953) 6325 1.70 1

0.016 0.184 E

Nanticoke (1974)*

6325 1.70 1

0.016 0.200 g

Pittsburg I (1956) 6315 1.80 1

0.016 0.216 IIcarn 1 (1954)*

6225 2.30 1

1 0.016 0.016 0.232 0.107 IIcarn 2 (1954)*

6150 2.70 1

1 0.016 0.016 0.248 0.123 Alstrom-Rateau (1977)*

6125 2.80 1

0.017 0.265 Ihnkley Point A-5 (1969) 6000 3.40 1

1 1

1 0.017 0.017 0.017 0.017 0.282 0.140 0.062 0.062 Ilinkley Point A-6 (1970) 6000 3.40 1

1 0.017 0.017 0.299 0.157 Ilinkley Point A-4 (1969) 5925 3.80 1

1 0.017 0.017 0.316 0.174 Unknown (1958)*

5800 4.50 1

1 1

0.017 0.017 0.017 0.333 0.191 0.079 Bold (1960) 5725 5.90 1

1 1

1 0.017 0.017 0.017 0.017 0.350 0.208 0.096 0.079 Cutler 6 (1969) 5250 9.50 1

0.019 0.369 Sendai(1972) 4500 13.5 1

0.022 0.391 Northern States (1971) 4350 14.5 1

0.023 0.414 Shippingport (1974) 4150 15.5 I

1 0.024 0.024 0.438 0.120 Gallatin (1974) 3850 17.5 1

1 0.026 0.026 0.464 0.234 Morenci 3 (1959) 3870 17.8 1

1 0.026 0.026 0.490 0.260 Oak Creek (1977) 2875 22.0 1

1 1

I 0.035 0.035 0.035 0.035 0.525 0.295 0.155 0.!!4 Essex 1 (1972) 2075 25.5 1

0.048 0.573

(

3

f Table 10 (Continued) Pertinent Equations for Weibull Distributions Covering All Known Turbine Fagures, Failures Generating Missiles, Relevant Failures, and Relevant Failures Generating Missues All failures Relevant failures Equations All failuses generating missiles Relevant failures generating missiles R(T)t =exp exp (-1.2 x 10-8 7* ") exp (-7.36 x 10-* 7*.s :) exp (-4.36 x 10-* P * * ) exp (-4.02 x 10-* P ")

Z(T) = h* 2 -'

4 6.18 x 10-8 T-* *

  • 3.8 3 x 10-' T-* *
  • 1.79 x 10-* T-* "

1.49 x 10-8 T-* *

  • t
  1. (T) =

0.119 7* "

7.36 x 10-* 7* "

4.36 x 10-* T* * '

4.02 x 10-8 7* "

T(#) = a N'14 41.9 #' "

15i N' "

2076 N' "

5900 N' "

  • Not in known population.

tR(T) multiplied exponent by 10-* to get value.

A 6

E M

8 Table 11 Sensitivity Study Varying Turbine Population to Determine 2

Effect on WeibuB Distribution for Relevant Missiles

  • m 5

Time to Turbine Hazard Cumulative Revisedt Hazard Cumulative E

on

failure, population value,2(T) hazard turbine
value, hazard, Failure cause years (Table 10)

(Table 10)

(Table 10) population g

Overspeed 0.08 6675 0.015 0.015 3400 0.036 0.030 Overspeed 0.58 6525 0.015 0.030 3200 0.030 0.060 j5 Overspeed 0.75 6475 0.015 0.045 3100 0.031 0.091 Stress-corrosion crackinal P

brittle 3.4 6000 0.017 0.062 2700 0.037 0.128 2

P Overspeed 5.9 5725 0.017 0.079 2500 0.040 0.168 z

Brittle ?

22.0 2875 0.035 0.114 1250 0.080 0.248 3

3

  • Parameter used in calculating the values in the table:

f a = 651; 1/d = 2.59; A = 0.386;r = 0.98 8

p R(T) = cxp (-8 x 10-* 7* ")

g Z(T) = 3.1 x 10-8 T-* **

  • f
  1. (T) = 8 x 10-8 7* "

T(#1 = 651 #' "

tRevision based on using population with retirement x 1.33,which removes many smaller units, then takmg % to % of e

i$

I ii$

this population as being t' levant to nuclear.

N,,

e

ACCIDE%T ANALYSIS l

ses 14 electrohydraulic systems to common-mode failure due to sitting or rusting comparable to that occurring at p,ii,,,,,,,,,oci.,,,,,,,,

Uskmouth is examined in relation to the mechanical-

$12 w.6nuit nive di.iribution

_I zm =ht*-8 hydraulic systems used at Uskmouth. Some rates used g

in the General Electric study ' are shown in Table 12.

gj 'O '

8 General Electric believes that the preceding ap-Et; a proach permits an evaluation without the limitation of M

the extremely small nuclear turbine populatlan being a

!E I * '

~

factor and without the need to base the evaluation on CE overall fossil turbine experience which General Electric

$5 xii,,,,,,,,

judges to be not applicable to nuclear turbines. In the EU,

'!, ~

~

appendix to their report,8' they point out that

~

probability values much higher than those in Table 13 (and near the values appearing in the summary of this article) are inherent in the use of direct statistical o

5 to is 20 25 30 35 40 methods based on past experience with alarge number OPERATING YEARS of fossil units whether zero or six failures are assumed.

The application of a Duane growth model to these Fis. 3 Typical weibutt failure rate = 2fr/ bathtub curve for statistics does not substantially change the results.

turbine generator failures and failures with inissiles.

The General Electric report develops several con-vincing arguments as to why the sequence of simple events using nuclear data is preferred to a direct Table 12 General Electric Failure Rate Data statistical estimation. For example, older fossil units Failures, Confidence, differ markedly from nuclear units with regard to Nuclear turbines 108 hr material properties, stresses, rotor design, and control systems, in this vein the report dismisses the Hinkley Experience Sticking rates, control valves 0.42 50 Sticking rates, stop valves 0.26 50 CONDITIONAL pro 8 ABILITY (%)

All turbines 0 01 o at 1.0 10 Failure rates, overspeed trips 0.0087 50

,,o,

, 'i

i Domestic turbines, electrohydraulic 100

}

}

Failure rate, valve silting 0.00036 50 Failure rate, valve rusting 0.0008 50 8

o a+y i

l Point and Mitsubishi.ENESA failure as due to material j 10 o

g w

properties not typical of General Electric fabrication

  • 8 practice.

j j

3 g

Although the General Electric arguments are per-

~

suasive (and the same may be said of Allis.Chalmers o

k [

.a o

]

and Westinghouse), it is the author's opinion that o

N Alt failures, T(H) = 41.9 H.77 :

factors not yet revealed during the limited experience 1

o All missiles, TtH) = 151 H.92 :

with nuclear turbines to date may not be properly 1

a 0 Relevant failures.

accounted for in the General Electrie and Westinghouse

,,,,,,[,,

models and therefore will cause their projections to be i

TlH) = 5900 H.70 3

over]y optimistic. Even though the statistical estimate 2

ai contained herein is not truly representative of nuclear

,,,...t a

practice, it includes conservatisms based on long.temi noi at i.o io experience, and values of 2/T) in the range of CUMULATIVE HAZARo t%)

3.3 x 10-s to 3.1 x 10-* per turbine year (for a turbine population relevant to nuclear reactors) are Fig. 2 Reyession analyses, Weibull hazard plots of turbine.

more realistic.

generator failure data, NUCLEAR SAFETY, Vol 19. No. 6, November-December 1978 Q

r t

Table 13 Probability of Wheel Burst (1800 rpm TC6F,43 in.)*

Operating Mode A (Start-up)

B (Overspeed testing)

C (l.oss of load)

Condition Start-up Set / check emergency trip (2)t Generating (3)t lead Unloaded Unloaded Fullload Electrical status Unsynchronized Unsynchronized Synchronized Initial rotational speed,%

100 (11t i10 (4)t 100 Worst wheel-temperature condition Cold = 40*F llot = 100*F Hot = 100*F Probabilities for Three Ranges of Speed Al A2 A3 Bl B2 Cl C2 C3 k

Running speed. percent of normal 0-100 100-112 Il2-runaway 110-112 Il2-runaway 109-119 119-127 127-runaway Lifetime speed-Icvel probability 1

3.5 x 10-8 3.2 x 10-8 8 1.4 x 10-8 1.3 x 10-' 8 1.0 x 10-'

9.3 x 10-'

1.5 x 10-'

g Single-wheel-failure probability 2.3 x 10-'

3.0 x 10-*

I 5.5 x 10-'

I 9.7 x 10-'

6.6 x 10-'

I g

Number-of-wheels factor 6

6 1

'6 1

6 6

1

-e Wheel-failure probability given g

P speed 1.4 x 10-'

l.8 x 10-*

I 3.3 x 10-'

I 5.8 x 10-'

4.0 x 10-*

I y

9 Lifetime-wheel-failure probability 1.4 x 10-'

6.3 x 10-*

3.2 x 10-' 8 4.6 x 10-' ' l.3 x 10-*

  • 5.8 x 10-8 3.7 x 10-'
  • 1.5 x 10-'

G

)

Probabaity of Wheel Failure Total lifetime-wheel-failure probability

  • Q low 4 peed (brittle) failure = sum of cases Al, A2, B1, Cl, and C2 = 2.6 x 10-' (last-stage wheel only)

Runaway failure

= sum of cases A3, B2,and C3

= 1.5 x 10-' (any wheel, equal probability)

E-Total

= 4.1 x 10-'

.E Average annual-wheel-failure probability = totallifetime probability /hfetime (= 30) = 1.4 E-8 2

  • Source: Ref.16.

t(1) F00 start-ups assurned over 30-year lifetime; duration of each, I hr; 100 = 3 per year + 10 extra the first year; 3 per year allows for start-up following i refueling-and-insper; ten shutdown,1 loss of externalload, and I forced outage of plant.

(2) 40 tests at 100% speed assumed over hfetime; duration of each, I hr;40 = 1 per year + 10 extra the first year.

3g (3) 30 full-load losses assumed over lifetime; 30 = 1 per year.

(4) Debberate operation with cold whccis at i10% speed disallowed by operating instructions.

R h,

E E.

6 O

ACCIDENT ANALYS48 ges i

Honorable Dimy lee Ray, AEC Chairman, Report on SWERY Turbine Missiles Apr. 18,1973.

)

7.E. Splittaerber Overspeed Damage to Steam Turbines, Data ate presented and methods of analyses are M#^'"'"h'd'n. 35(1/2): 1 18 (February 1962).

given to permit the calculation of turbine. generator

8. H. Huppmann, Frequency and Causes of Failure to cumulative reliability and time-dependent failure rate.

Components of large Steam Turbines, in hoceedingr, The Weibull distribution clearly delineates the failures CREST Meeting on the Reliabihty of Mechanical Compo-nents and Systems for Nuclear Reactor Safety. Riso, early in life as well as permitting determination of Denmark, Sept. 24-26. 1969. Danish Report RISO-214 failure rates once conditions approximating steady pp.171187,1970. NTIS: also published in Maschinen.

state are achieved.

schaden. 43(l): 16 (1970).

A study limited to missile failures considered

9. R. L. Carson, C. A. Bucci, and R. J. Airhart Periodic relevant to nuclear reactors yields values of 2/T) of Operational Tests Help Keep Unit Availability at High Levels. Power, 120(7): 5944 (July 1976).

1.5 x 10-* to 1.5 x 10-s per turbine year for the 10.E. O. Codier, Reliability Growth in Real 1.ife, in Pro.

total turbine population and 3.3 x 10-s to endings IEEE Annual Symposium on Reliability, Boston.

3.1 x 10-* per turbine year for a turbine population Jan.16-18,1968, pp.458469, Institute of Electricaland corrected to be relevant to nuclear reactors.

Electronics Engineers, New York,1968.

The preceding values using more sophisticated

11. D. R. Beeth and S. H. Hobbs. Analysis of Bush Approach to Turbine Missile Generation Probability, Brown and Root techniques compare favorably to the value predicted Technical Memosandum. Brown and Root inc., December for 1977 in the earlier report,8 namely, a failure rate 1976.

2/T)of about 7 x 10-s per turbine year.

12.W. Nelson, Hazard Plotting for incomplete Failure Data,J.

Quality Technol., (1): 27-52 (January 1969).

13. S. H. Bush, Pressure Vessel Reliability, J. Pressure Vessel Technol. Inant ASME, Ser. //, 97(1): 54-70 (February REFERENCES 1975).
l. S. II. Bush Probability of Damage to Nuclear Components 14.0. A. Kellerman et al., Progress and Results of the Due to Turbine Failure Nuct Safety,14(3): 187-201 Reliability Study of Pressure Vessels, in Performaner of Nuclear Power Reactor Components. Symposium Pro-(May-June 1973).
2. A. K. Bhattacharya and S. K. Chaudhuri,'the Probability ceedings, Pngue, Nov. 10-14,1969, pp. 391-403, Inter-of a Turbine Missile Hitting a Particular Region of a national Atomic Energy Agency, Vienna, 1970 (ST!/

Nuclear Power Plant, Nuct Technol., 28(2): 194 198 PUB /240).

15.G. Slopianka and G. Mieze, Failure Rates of Pressure (Fek..aary 1976).

Vessels, Part I: Evaluation of VdTUV Statistics, Getman

3. B. Johnson et al., Analysis of the Turbine Missile Hazard to Report IRS-I 34, Institut fGr Reaktorsicherheit, Cologne, the Nuclear Thermal Power Plant at Pebble Springs.

Federal Republic of Germany,1968.

Oregon, Report PGE.2012 Portland General Electric

16. General Electric Company, Hypothetical 7hrbine Mis-Company, January 1976 (prepared by Sciena Applica-sites-Probability of Occurrence, General Electric Memo tions, Inc.).

Report, Mar. 14,1973.

4.S. W. Swan and M. Meleis A Method of Calculating

17. Houston Lighting and Power Co., Analysis of the Proba-Turbine Missile Strike and Damage Probabilities, Nucl.

bility of the Generation and Strike of Missiles from a Safety, 16(4): 443451 (July-August 1975).

Nuclear Turbine, Section 3.5 in Amendment 27 to the

5. Nuclear Regulatory Commission, Regulatory Guide Preliminary Safety Analysis Report, South Texas Project RG-1.115, Rev.1, Protection Against Lownalectory Units 1 and 2,

July 18, 1975. NRC Docket Turbine Missiles. July 1977.

STN 50-498-116, pp. 3.51 through 3.510b.

6. Letter from H. G. Mangelsdorf, ACRS Chairman, to NUCLE AR SAFETY, Vol.19, No. 6, November-December 1978 m

.y s-C%WID

'86 JM!-8 DO :28 p?l.Q.725;f ELECTRIC POWER RESEARCH INSTITUTE '"

~'

1 SEMINAR ON TURBINE MISSILE EFFECTS IN NUCLEAR POWER PLANTS C

HOLIDAY INN PALO ALTO, CALIFORNIA OCTOBER 25-26, 1982 f.

Jm m

page 1 e

i MISSILE GENERATION RATES FROM HISTORICAL DATA PATRICK G. HEASLER PACIFIC NORTHWEST LABORATORY

-ee*

s page 2 OBJECTIVE:

TO ESTIMATE ROTATING COMPONENT FAILURE AND MISSIL3 GENERATING RATES FROM HISTORICAL DATA r

pnge 3 ROTATING COMPONENT FAILURE TYPES:

overspeed failure operating speed failure burn-in failure s.,

missile generating event s

.c V..

J

page 3.1 There were several types of failures that were found to be

~

important while reviewing the historical data. These failure types are listed on the opposite page and defined below:

ROTATING COMPONENT FAILURE - One of the major rotating components (Discs or Rotor) breaks apart during turbine operation. It should be emphasized that generator failures are not included in this failure type.

OVERSPEED FAILURE - A rotating component failure that occurs when the turbine speed.is greater than 110 percent.

OPERATING SPEED FAILURE - A rotating component failure that occurs when the turbine speed is less than 110 percent.

BURN-IN FAILURE - A failure that occurs in the first year of turbine operation.

MISSILE GENERATING EVENT - A rotating component failure that results in the production of missiles. (The turbine housing is penetrated.)

i i

-.e.

o page 4 EVENT DIAGRAM FOR ROTATING COMPONENT FAILURES t

,p.

BOP EVENT:

BOV EVENT:

R.C. Failure c; curs R.C. Failure occurs at operating speed in overspeed during during ' Burn-in'

' Burn-in' Period Period. (1st Year)

(1st Year)

OP EVENT:

OV EVENT:

R.C Failure occurs FRAGMENT R.C. Failure occurs

?

PENETRATES in overspeed during at operating speed during remainder of TURBINE remainder of turb-turbine lifetime.

HOUSING ine lifetime.

i NO YES S

M EVENT:

Missile generating incident occurs dur-ing turbine lifetime l

t 9

page 4.1 l

The relationship between the different types of rotating compo-nent failures and a missile generating event are illustrated by the event diagram on the opposite page. Burn-in failures are distinguished from failures occuring later in turbine life because the failure rate at the begining of turbine life is much higher than that for the remainder. Most burn-in failures can be attributed to deficiencies in design or construction, therefore the causes of burn-in failures can be considered to be different also.

O j

e

.. _ _,. - -.,., _... ~

Ptge 5 s

i FORMULA FOR THE AVERAGE MISSILE GENERATING RATE R,y(M) = Pr(M/OP)*R,y(OP) + Pr (M/OV) *R,y (OV) where:

R,y(M) = Average rate of occurrence for Missile Generating Incidents.

i R

(OP) = Average operatin~g speed failure rate.

R y(OV) = Average overspeed failure rate.

1 Pr(M/OP) = Probability of a missile during an operating speed failure.

Pr(M/OV) = Probability of a missile during an overspeed failure.

(All rates are measured in incidents / year) i M..

page 5.1 4

The relationship described in the event diagram can also be expressed as a simple rate-of-occurrence equation as illustrated on the opposite page. This equation will be used to estimate the average missile generating event rate. The terms on the right-hand side of the equation will be estimated from the historical data.

page 6 4

FORMULAS FOR AVERAGE OPERATING AND OVERSPEED FAILURE RATES 1

29 R(BOP) +

R(OP)

R,y(OP)

=

30 30 and 1

29 R(BOV) +

R(OV)

R,y(OV)

=

30 30 where:

The burn-in operating speed failure rate.

R(BOP)

=

The burn-in overspeed failure rate.

R(BOV)

=

R(OP) = The operating speed failure rate excluding the first year of operation.

R(OV) = The overspeed failure rate excluding the first year of operation.

30 = Assumed length of the turbine lifetime.

(in years)

~.

m.

.__-.-,7.m._.r.,

._y,

.,-m_.

y

ptge 6.1 a

The average operating and overspeed failure rates (for a particular turbine lifetime) should not be calculated directly from the data, because the failure rate is not constant over lifetime. The formulas on the opposite page show the relationship between the average failure rates and the Burn-in rates. It should be emphasized that the average failure rates are the most relevant quantities to use for safety calculations. However, it is extremely important to recognize the existence of a Burn-in period when considering other aspects of turbine operation such as inspection and maintenance strategies.

i

)

i l

l

PEgo 7 i

TURBINE POPULATION USED FOR NON BURN-IN OPERATING AND OVERSPEED FAILURE RATE CALCULATIONS Relevant Non Burn-in Failures Year Operating Years Operating Over Comm.

NN Size Burn-in Remaining speed speed Total 1950 30 to 100 900 22621 1

1 2

to 1960 100 & up 521 12575 3

0 3

1960 30 to 100 524 7532 1

0 1

to 1980 100 & up 2219 23113 3

1 4

Total 4164 65841 8+17 2

11 i

  • These catagories also include any Nuclear tubines smaller than 30MN.

? Incidents that can not be assigned to a cell because of missing information.

I

,--n--

ptge 7.1 1

The non burn-in operating and overspeed failure rates were calculated from the data presented on the opposite page. This data was gathered from 10 turbine manufacturers and represents essentially all turbines in operation in the designated cata-gories. The turbine failures were divided into those that were considered to be relevant to nuclear plant operation and those that were not. For example, about 80 percent of the overspeed failures were not considered to be relevant to a nuclear plant operating environment. This catagorization allowed us to compute failure rates that were relevant to nuclear power plant operation.

One of the most important conclusions to be drawn from this table is that there does not seem to be any st'rong relation between these failure rates and year of commission or megawatt size.

Because no strong relationship exists, it is most reasonable to pool the data together and compute failure races for the total turbine population.

l

paga 8 x

v/Y' LIST OF RELEVANT NON BURN-IN FAILURES M'

Mg

,r'

,gs" &

Plant Missiles r

Plant Name Type Date produced Failure Cause Operating Speed Failures:

Rinkley Point Nuclear 1969 yes Brittle Fracture h'gC6 Shippingport Nuclear 1974 no Cracking Gallatin Fossil 1974 yes Cracking 1

Oak Creek Fossil 1977 yes Cracking Porcheville Fossil 1977 yes Other, Generator Rotor locked.

Aberthaw Fossil 1972 yes Other, Water induction.

Yankee Rowe Nuclear 1980 no Cracking 40R Wangi 42 Fossil 1357 yes Operator Error Pittsburgh Fossil 1968 no Other Overspeed Failures:

Control Sy' stem Bold Fossil 1960 yes

% $ $ W & jLad Control Systeme("~ g Mountain Creek Fossil 1977 no W-4 9

page 8.1 a

All the failures used to calculate non burn-in operating and overspeed failure rates are listed on the opposite page along with a few details of the failures including its cause. Notice that the cause of failure has been divided into the 5 categories Brittle Fracture, Cracking, Operator Error, Control System and other.

/

page 9 ESTIMATES OF NON BURN-IN PAILURE RATES FROM RELEVANT TURBINE FAILURES 4

~

R(OP) = 9/65841 = 1.37 X 10 Failures / Year

-4 95 Percent Conf. = [0.61, 2.60] X 10 withs 11 percent of rate due to Brittle Fracture.

percent of rate due to Cracking.gc6 11 percent of rate due to Operator Error.

33 percent of rate due to Other.

~..

4

~

R(OV) = 2/65841 = 0.30 X 10 Failures / Year

-4 95 Percent Conf. = [0.03, 1.09] X 10 With 100 percent of rate due to Control System [

.--,e

,n.

w --

ptge 9.1 The calculations on the opposite page use the data discussed in previous tables to calculate the relevant non burn-in failure rates. These failure rates could also be divided up by failure cause. For example, the operating speed failure rate due to 4

cracking is 0.62 x 10 failures / year.

~

S l

O

-~

--,,--,n,.

page 10 LIST OF RELEVANT BURN-IN FAILURES

,[h Plant Missiles Plant Name Type Date produced Failure Cause Operating Speed Failures:

Siemens Fossil 1951 yes Brittle Fracture Ridgeland Fossil 1954 yes Brittle Fracture comfostilla Fossil 1970 yes Brittle Fracture Kainan Fossil 1972 yes Other, Missassembly 2

of turbine bearings.

Overspeed Failures:

Uskmouth Fossil 1956 yes Control System, Oxide buildup on valves.

Calder Hall Nuclear 1958 yes Control System, valves plugged with shot.

Tavazzano Fossil 1961

??

Brittle Fracture.

4164 = Total number of Burn-in years of operation in population.

CALCULATION OF BURN-IN FAILURE RATES

~4

+(yy#{#

gd R(BOP) = 4/4164 = 9.61 X 10 Failures / Year.

y

-4 g@Y 95 Percent Conf. = [2.40, 24.5] X 10

~4 R(BOV) = 3/4164 = 7.20 X 10 Failures / Year.

~4 95 Percent Conf. = [1.44, 21.1] X 10 s

h h'

t paga 10.1 The opposite page outlines the calculations necessary to estimate the burn-in failure probabilities. All burn-in failures in the table are considered relevant to nuclear plants.

These probab-111 ties indicate that there is approximately one in a thousand chance of a new turbine in a plant failing soon after it goes into operation.

o i

l 1

paga 11 CALCULATION OF THE PROBABILITY OF MISSILES / FAILURE Missiles Yes No

??

Total OP. Speed 10 3

0 13

,Overspeed 3

1 1

5 V

p.,

L

/

Total 13 4

1 18

\\Y[

~

Probability of a Missile / Operating Speed Failure:

Pr(M/OP) = 10/13 = 0.77 95 Percent conf. = [.47,.94]

Probability of a

'N L.

(

Missile /Overspeed Failure g,,

i 6d Pr(M/OV) = 3/4 =.75 5

95 Percent Conf. = [.20,.98]

's..

'A "me

s 1

page 11.1 1

The failure data also provide some information concerning the effects of a rotating component failure. The table on the opposite page shows how many relevant failures produced missiles.

The information in the table can be used to calculate the conditional probability of a missile given a failure and these calculations are detailed below the table.

For one of the failures, it was not possible to determine whether missiles were produced or not. It is listed under the ?? column in the table and is not used in the probability calculations.

5 o

n---.-

..n--

+.-

s PEgo 12 i

ESTIMATES FOR THE AVERAGE MISSILE GENERATING EVENT RATE USING THE FORMULAS:

1 29

-4 R**(OP) =[

9.61 +

1.37] X 10 30 30

~#

= 1.64 X 10 Failures / Year with 36 percent of the rate due to cracking.

1 29

~4 Rav(OV) =[

7.20 + - 0.30] X 10 30 30

~4

= 0.53 X 10 Failures / Year

-4 R,,(M) = t.77*1.64 +.75*.53] X 10

~4

= 1.66 X 10 Incidents / Year Due to overspeed failures: 0.40 x 10~4/ year

-4 Due to operating speed failures: J.26x10 / year with 36 percent due to cracking.'

DIRECT CALCULATION FROM NUCLEAR DATA:

-4 R,y(M) = 2/2467 = 8.11 X 10

~4 95 Percent Conf. = [0.80,29.20] X 10 (There are 2467 nuclear turbine-years of operation in the population.)

4

,m,

4 pagt 12.1 f

r All the failure rates calculated on previous pages can now be combined to produce an estimate for the rate of major concern, R,y(M), the average missile generating event rate for a 30-year turbine lifetime. The calcula-tions on the opposite page present two different ways to make this estimate.

The first calculation plugs the estimates into the formula obtained pre-viously, while the second uses data from nuclear turbines only and estimates the. rate directly.

The first estimate is lower than the last but since the error bounds on the last estimate are relatively large, the two calculations do not necessarily contradict each other. The last estimate does show that adding fossil fuel experience to nuclear experience does not unjustly inflate nuclear failure rates; if anything, it deflates them.

(

..,.,_._.e-