ML18040A362: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:(Enclosure 1 consists of Calculation No.A10.1-AD-003, titled"Pressure Locking Evaluation of MOVs." Enclosure 1 has 137 pages, which are numbered from 1 to E4) 0 GARA U MOHAWK NUCLEAR ENGINEERING
{{#Wiki_filter:(Enclosure 1 consists of Calculation No. A10.1-AD-003, titled "Pressure Locking Evaluation of MOVs." Enclosure 1 has 137 pages, which are numbered from 1 to E4)
~CA'L''C.UL'AT:.lON.',C,OV;ER'SHEET".,"" Page 1 (Next Z)Tetai/s7 Last C'4 NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Discipline:
MECHANICAL Title PRESSURE LOCKING EVALUATION OF MOV'S Calculation No.A10.1-AD-003 (Sub)system(s)
VARIOUS Building Floor Elev.Index No.NA NA NA Originator(s)
DOMINGO A CRUZ~.A e l (K Checker(s)
I Approver(s) ldll/Cg IC.Ze tee Rev Descri tion Design Prep'd'han e No.B Date Chk Date A Date 01 COMPLETE REVISION TO NA INCORPORATE DISP.00A AND TO USE MOST CURRENT INDUSTRY INF.DAc a 8-25-yg Computer Output/Microfilm Filed Separately (Yes/No/NA): NO'.: Safety Class (SR/NSR I Qxx): SR Superseded Document(s):
A10.1-AD@03, REV.00,.~+c</I/e(9', e DOCument CrOSS ReferenCe(S)
-FOr additianal referenCeS See page(S):46NE
'b<C.O)tits''rS%tg.~&eg4bO 4-GRef SEE SECTION 4.0 Document No.Doc T e Index Sheet Rev General Reference(s):
NONE Remarks: NONE Confirmation Required (Yes/No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO/VOI): APP (Cele I Hold): Gale Required (Yes I No): No Evaluation Number(s)I Revision: NA Copy of Applicability Review Attached (Yes/N/R)7NR Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7 Component ID(s)(As shown ln MEL): 2CSH'MOV101,2CSL'MOV107,2ICS MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,1 8A,B,21 A,B,66A,B,67A,B,94A,B
'gl'gl04300086 9'gI042i PDR ADQCK 050004i0 P PDR FORMAT&#xb9;NEP-DES-08, Rev.02 (F01)
GARR::::!e': '-'!:.::: '-': ':: ': '::.:-f-:.::" Page 1 (Next P l CALCULATION COVER SHEET Total I a 7 NUOLEAR ENGINEERING NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Disci pline: MECHANICAL Title PRESSURE LOCKING EVALUATION OF MOV'S Calculation No.A10.1-AD-003 (Sub)system(s)
VARIOUS Building NA Floor Elev.Index No.NA NA Originator(s)
DOMINGO A.CRUZ Checker(s)
/Approver(s)
@~i~r~S.Z~~,~A ('(~Rev Descri tion Design Prep'd Chan e No.B Date Chk Date A Date 01 COMPLETE REVISION TO NA INCORPORATE DISP.00A AND TO USE MOST CURRENT INDUSTRY INF.Dhce tll-25-yg Computer Output/Microfilm Filed Separately (Yes/No/NA): NO.Safety Class (SR I NSR I Qxx): SR Superseded Document(s):
A10.1&D403, REV.00,.ts+~I//6/pg Document Cross Reference(s)
-For additional references see page(s):4QNE
><Ca lild'rS%8,<G acket>"r i.+Ref SEE SECTION 4.0 Document No.Doc T Index Sheet Rev General Reference(s):
NONE Remarks: NONE Confirmation Required (Yes/No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO I VOI): APP (Cele/Hold): Cele Required (Yes/No): No Evaluation Number(s)I Revision: NA Copy of Applicability Review Attached (Yes I N/R)?NR Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7 Component ID(s)(As shown in MEL): 2CSH'MOV101,2CSL'MOV107,2ICS'MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,18A,841 A,B,66A,B,67A,B,94A,B FORMAT&#xb9;NEP-DES48, Rev.02 (FOI)  


N%NIAGARA U MOHAWK NUCLEAR ENGINEERING CAL'CULATION'CONTINUATION SHEET v Page<@ext ra Nine Mile Point Nuclear Station Originator/Date 3c rn ow A.C,~//8/Ls'/rg ef.Unit: 2 Checker/Date
0 GARA                                                                                      Page 1 ( Next Z              )
~JP.JH7 A10.1-AD-003 Disposition:
U MOHAWK ~CA'L''C.UL'AT:.lON.',C,OV;ER'SHEET".,""                                                    Tetai      /s7 NUCLEAR ENGINEERING                                                                                            Last      C'4 NINE MILE POINT NUCLEAR STATION                        Unit (1, 2 or 0=Both): 2 Discipline:          MECHANICAL Title                                                                Calculation No.
NA Revision 01 1.0 PURPOSE: The purpose of this evaluation is to assess the capability of various motor operated valves to open against potential pressure locking conditions as described in NUREG 1275, Operating Feedback Report-Pressure Locking and Thermal Binding of Gate Valves, and to address GL89-10, Supplement 6 and GL95-07.The following valves have been identified as potentially susceptible to pressure locking per NER-2M-007, Rev.1,"Pressure Locking I Thermal Binding of Safety Related Power Operated Valves".This evaluation uses the current design basis to determine the acceptability of these valves.2.0 SCOPE: High Pressure Core Spray System-2CSH'MOV101 Low Pressure Core Spray System-2CSL MOV107 Reactor Core Isolation Cooling System-2ICS'MOV121, 2ICS" MOV1 22, 2ICS*MOV1 28 and 2ICS'MOV129 Residual Heat Removal System-2RHS'MOV115, 2RHS'MOV116, 2RHS*MOV4A, 2RHS*MOV4B and 2RHS'MOV4C Service Water System-2SWP*MOV17A, 2SWP'MOV17B, 2SWP'MOV1 8A, 2SWP'MOV18B, 2SWP"MOV21A, 2SWP'MOV21B, 2SWP'MOV66A, 2SWP'MOV66B, 2SWP*MOV67A.
PRESSURE LOCKING EVALUATIONOF MOV'S                                  A10.1-AD-003 (Sub)system(s)                Building      Floor Elev. Index No.
2SWP'MOV67B, 2SWP'MOV94A and 2SWP MOV94B I 3.0 METHODOLOGY:
VARIOUS                        NA            NA            NA Originator(s)
For each of the valve groups, the most limiting pressure locking j conditions will be identified.
DOMINGO A CRUZ Checker(s) I Approver(s)
Utilizing the formulas derived from the Commonwealth Edison ,'ethod, the required thrust to open the valve subject to pressure locking is determined (Ref.'), and adjusted with the Kalsi Engineering Enhanced Pressure Locking Methodology (Ref.31).
                          ~. A l    e  (K ldll/Cg IC. Ze tee Design          Prep'd Rev                  Descri tion            'han    e No.        B            Date        Chk          Date        A            Date 01            COMPLETE REVISION TO              NA                DAc a        8-25-yg INCORPORATE DISP.
00A AND TO USE MOST CURRENT INDUSTRY INF.
Computer Output/Microfilm Filed Separately (Yes / No / NA): NO                  '.:  Safety Class (SR / NSR I Qxx): SR Superseded Document(s): A10.1-AD@03, REV. 00,                .                      ~+c</I /e(9',
e DOCument CrOSS ReferenCe(S) - FOr additianal referenCeS See page(S):46NE 'b<C.O                  )tits''rS    %    tg. ~  & eg4bO        4- G Ref                                                                                            Doc Document No.                                          T e            Index        Sheet        Rev SEE SECTION 4.0 General Reference(s):
NONE Remarks:
NONE Confirmation Required (Yes / No): No          Final Issue Status                  File Location              Operations Acceptance See Page(s): NA                                ( APP  I FIO/  VOI ):  APP        ( Cele I Hold ): Gale      Required ( Yes I No ): No Evaluation Number(s) I Revision: NA                                    Component ID(s) (As shown ln MEL):
                                                  /                    2CSH'MOV101,2CSL'MOV107,2ICS        MOV121,122,128,129,2RHS'MOV Copy of Applicability      Review  Attached (Yes    N/R)7NR 115,116,4A,B,C,2SWP'MOV17A,B,1 8A,B,21 A,B,66A,B,67A,B,94A,B Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7
'gl'gl04300086 9'gI042i                                                                                          &#xb9; FORMAT NEP-DES-08, Rev. 02 (F01)
PDR        ADQCK      050004i0 P                            PDR
 
GARR::::!        e':  '-'!:.::: '-': '::        ':    '::.: -f-:          .::"              Page      1  ( Next Ia 7 P    l CALCULATIONCOVER SHEET                                                        Total NUOLEAR ENGINEERING NINE MILE POINT NUCLEAR STATION                          Unit (1, 2 or 0=Both): 2 Disci pline:          MECHANICAL Title                                                                    Calculation No.
PRESSURE LOCKING EVALUATIONOF MOV'S                                      A10.1-AD-003 (Sub)system(s)                Building        Floor Elev. Index No.
VARIOUS                        NA              NA            NA Originator(s)
DOMINGO A. CRUZ                    A ('(~
Checker(s)  / Approver(s)
@~i~r~ S.Z~~,~
Design          Prep'd Rev                    Descri tion                Chan e No.            B            Date        Chk          Date          A            Date 01            COMPLETE REVISION TO                NA                  Dhce          tll-25-yg INCORPORATE DISP.
00A AND TO USE MOST CURRENT INDUSTRY INF.
Computer Output/Microfilm Filed Separately (Yes / No / NA): NO                      .      Safety Class (SR I NSR I Qxx): SR Superseded Document(s): A10.1&D403, REV. 00,                    .                        ts+~I //6/pg Document Cross Reference(s) - For additional references see page(s):4QNE ><Ca                        lild'rS %          8,  <  G acket>"r i. +
Ref                                                                                                Doc Document No.                                                T              Index          Sheet        Rev SEE SECTION 4.0 General Reference(s):
NONE Remarks:
NONE Confirmation Required (Yes / No): No              Final Issue Status                  File Location              Operations Acceptance See Page(s): NA                                  (APP    I FIO I  VOI  ): APP        ( Cele/  Hold ): Cele      Required ( Yes / No ): No Evaluation Number(s) I Revision: NA                                        Component ID(s) (As shown in MEL):
Copy of Applicability Review Attached (Yes I N/R)? NR                      2CSH'MOV101,2CSL'MOV107,2ICS'MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,18A,841 A,B,66A,B,67A,B,94A,B Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7
                                                                                                                      &#xb9; FORMAT NEP-DES48, Rev. 02 (FOI)
 
        %NIAGARA N U MOHAWK                       CAL'CULATION'CONTINUATIONSHEET                                  Page
                                                                                                    <@ext ra NUCLEAR ENGINEERING                                              v Nine Mile Point Nuclear Station                   Unit: 2                                Disposition:  NA Originator/Date 3c ef.
rn ow     A.C,~ // 8/Ls'/rg               ~
Checker/Date JP.JH7           A10.1-AD-003 Revision 01
 
==1.0 PURPOSE==
The purpose       of this evaluation is to assess the capability of various motor operated valves to open against potential pressure locking conditions as described in NUREG 1275, Operating Feedback Report - Pressure Locking and Thermal Binding of Gate Valves, and to address GL89-10, Supplement 6 and GL95-07.
The following valves have been identified as potentially susceptible to pressure locking per NER-2M-007, Rev. 1, "Pressure Locking I Thermal Binding of Safety Related Power Operated Valves". This evaluation uses the current design basis to determine the acceptability of these valves.
 
==2.0 SCOPE==
High Pressure Core Spray System - 2CSH'MOV101 Low Pressure Core Spray System - 2CSL MOV107 Reactor Core Isolation Cooling System - 2ICS'MOV121, 2ICS" MOV1 22, 2ICS*MOV128 and 2ICS'MOV129 Residual Heat Removal System - 2RHS'MOV115, 2RHS'MOV116, 2RHS*MOV4A, 2RHS*MOV4B and 2RHS'MOV4C Service Water System - 2SWP*MOV17A, 2SWP'MOV17B, 2SWP'MOV1 8A, 2SWP'MOV18B, 2SWP"MOV21A, 2SWP'MOV21B, 2SWP'MOV66A, 2SWP'MOV66B, 2SWP*MOV67A.
2SWP'MOV67B, 2SWP'MOV94A and 2SWP MOV94B I
 
==3.0 METHODOLOGY==
For each of the valve groups, the most limiting pressure locking               j conditions will be identified. Utilizing the formulas derived from the Commonwealth Edison the required thrust to open the valve subject to pressure locking is determined (Ref.           ,'ethod, and adjusted with the Kalsi Engineering Enhanced Pressure Locking Methodology (Ref. 31).             '),


==4.0 REFERENCES==
==4.0 REFERENCES==
I NOTES:
: 1. NMPC Telecon    with Anchor Darling, dated 8l22l95, (Attachment A)
                                                                                    '.
MPR-1691, "Nine Mile Point Unit 2 Gate Valve Pressure Locking Due to Bonnet Heatup", dated November 1995
: 3. Limitorque Manual, NMPC File No. N2L20000VALVE003, Rev. 0., and EPRI Application Guide to MOVs, Doc. No. NP-6660-D, Section 3.3.3.
FORMAT  &#xb9; NEP-DES-08,  Rev. 01 (F02)
V NIAGARA N 4 MOHAWK NUCLEAR ENGINEERING CALCULATIONCONTINUATION SHEET Nine Mile Point Nuclear Stat/on                  Unit: 2                        Disposition:  NA Originator/Date ef.
      ,,. 4,. C.n  ~letzshg              ~
Checker/Date
                                                    /o-/H7      A10.1-AD-003 Rension 01
: 4. Velan Report DM-0050, page A4, (Attachment 8)
: 5. NUREG  I CP-0152, page 3C-9 through 3C-34, "Commonwealth Edison Company Pressure
            ,Locking Test Report", (Attachment C)
: 6. NUREG I CR-5807, page 5 through 11, "Improvement in Motor Operated Gate Valve Design and Prediction Models for Nuclear Power Plant Systems" (Attachment D)
: 7. For 2CSH'MOV101 DBR-CSH-MOV101, Rev. 1, and MOV sizing calculation No. A10.1-G-048, Rev. 0
: 8. For 2CSL MOV107 DBR-CSL-MOV107, Rev. 1, and MOV sizing calculation No. A10.1-F-032, Rev. 0
: 9. For 2ICS MOV121 DBR-ICS-MOV121, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
: 10. For 2ICS MOV122 DBR-ICS-MOV122, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
: 11. For 2ICS'MOV128 DBR-ICS-MOV128, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
: 12. For 2ICS'MOV129 DBR-ICS-MOV129, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
: 13. For 2RHS*MOV4A DBR-RHS-MOV4A, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
: 14. For RHS'MOV48 DBR-RHS-MOV48, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
: 15. For 2RHS MOV4C FORMAT &#xb9; NEP-DES-OS,  Rev. 01 (F02)
Y NIAGARA 0 MOHAWK NUCLEAR ENG1NEERING CAL'CULATIONCONTINUATION SHEET                            Page (Next ~S 4
Nine Mile Point Nuclear Station              Unit: 2                            Disposition:  NA Originator/Date                Checker/Date                                                      Revision Qv  m'en<.c A,. C-aux /8/Zt A7                    /0 ./4'~    A10.1-AD-003                      01 ef.
DBR-RHS-MOV4C, Rev. 1, and MOY sizing calculation No. A10,1-E-139, Rev. 0
: 16. For 2RHS" MOV115 DBR-RHS-MOV115, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
: 17. For 2RHS" MOV116 DBR-RHS-MOV116, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
: 18. For 2SWP*MOV17A DBR-SWP-MOV17A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev, 0
: 19. For 2SWP'MOV17A DBR-SWP-MOV17A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 20. For 2SWP"MOV18A DBR-SWP-MOV18A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 21. For 2SWP'MOV18B DBR-SWP-MOV18B, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 22. For 2SWP'MOV21A DBR-SWP-MOV21A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 23. For 2SWP'MOV21B t                                                      e DBR-SWP-MOV21B, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 24. For 2SWP'MOV66A DBR-SWP-MOV66A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 25. For 2SWP'MOV66B DBR-SWP-MOV66B, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0 FORMAT &#xb9; NEP-DES-08,  Rev. 01 (F02)
V NAGARA N U MOHAWK NUCLEAR ENGINEERING CALCULATIONCONTINUATIONSHEET                          Page (Next ~ee Nine Mile Point Nuclear Station                        Unit: 2                        Disposition:  NA Originator/Date DC')e) >'l )e, i>  I ~ C. Recta / 8/2C /5'7 Checker/Da y -/rt/-f7 A10.1-AD-003 Revision 01 ef.
: 26. For SWP*MOV67A DBR-SWP-MOV67A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0 2?. For 2SWP'MOV678 DBR-SWP-MOV678, Rev. 1, and MOV sizing calculation No. A10.1-NQ08, Rev. 0
: 28. For 2SWP'MOV94A DBR-SWP-MOV94A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 29. For 2SWP'MOV948 DBR-SWP-MOV948, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
: 30. Roark's Formulas for Stress and Strain, Sixth Edition 1989, pages 398,399,404,405,408.409 444 and 445, (Attachment E)
: 31. ENHANCED PRESSURE LOCKING METHODOLOGY, Kalsi Engineering, inc. (1997) 5.0 CALCULATION RESULTS: As documented as the bottom of the last page for each valve evaluated, the thrust margin is either positive or negative. A positive thrust margin indicates that the valve and actuator is likely to overcome applicable theoretical pressure locking phenomena. A negative thrust margin indicates that the valve and actuator may not be able to overcome the applicable theoretical locking phenomena. Of the valves evaluated, valves 2CSH'MOV101, 2CSL MOV107, 2ICS'MOV121, 2ICS MOV129, 2RHS'MOV115, 2RHS MOV116, 2RHS'MOV4A, 2RHS'MOV48) 2RHS MOV4C) 2SWP'MOV21A, 2SWP'MOV218, 2SWP*MOV66A, x
2SWP'MOV668, 2SWP'MOV678 and 2SWP'MOV948 yielded a negative thrust margin.
However, an evaluation of plant configuration, normal and accident, and system function for each of the valves analytically susceptible to pressure locking indicates no operability concerns and the valves will operate under postulated accident scenarious.
A detail evaluation of the results of this calculation for the valves identified as susceptible to pressure locking phenomena is included in NER-2M07, Rev. 02.
CHECKERS NOTE: This calculation was hand checked, therefore the MATHCAD commonly used commercial program does not required validation for this application.
FORMAT &#xb9; NEP-DES-08, Rev. 01 (F02)
Niagara Mohawk Power Corporation Nuctear Engineering NMP 2 Calculation Cont. Sheet Page Qt  /37 A10.1-AtM03, Rev. 01 Origina torl Date                                      Checker/Date o harms y  ~  a. C  w  ~/,s/y>
Valve ID no: 2CSH'MOV101 Re uired          0 enin      Force Deternmination under Pressure Lockin Conditions COINED Method DESIGN INPUTS:
Design Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),            P>.=55          Valve Bonnet pressure (psig), Pboggct              2477 ryP.
Downstream pressure (psig),              Pdo~'                                                                          4 II Valve Disk Geometry:                                                                        r hub radius,          b:=2            mean seat radius, a:=6.125 average disk thickness, t:= 1.66 hub length, L:=0.094                  seat angle,      a:= 6              e:=-'"        e  =o.o52 2 180 Valve Disk Material Properties:                                                      e  is half disk anglect modulus of elasticity, E:=29400000                  Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter,          D  ~.-- LS        Static Unseating Thrust, F ~'.=4385
( reference: Test &#xb9; 8, 4/18/96 )
Valve Factor          VF:= 0.5                  ( reference: NER-2M410 )
CALCULATIONS:
cope)
Coefficient of friction between disk and seat, It'.=
                                                                      '- a~(e)        It =0.513    ( reference &#xb9;6 )
P~+Pdo~              gives,'P AverageDPAcrossDisk,                  DPavg  Pbo~<-                                            avg    2 45'10 2
Disk StNnes Constants,              D:=    Et            and        G:=    E 12  1-v                          2 (1+v) which gives, D        1.232 10        and          G =1.131 ~ 10 Geometry Factors,        C2  '.=-1 1-4 I+2 ln              C3 '=  +          I In  +  1 C8.'=- 1+v+(1 1
2 v) b a
C 9.--b a
1-1+v ln 2
a b
                                                                                              +
1-v 4
b a
2 which gives,      C2    0.164            C 3 =0.028 C8    0'68            C 9 =0.289 COMED PL Evaluation                          Valve ID: 2CSH'MOV1 01                                              page  1 PCSH101A.MCD
I Niagara Mohawk Power Corporation                                  NMP 2                                                Page  fo( t S t Nuciear Engineering                                      Calculation Cont. Sheet A1 0.1-AD403, Rev. 01 Onginatorloate                                                  Checker/Date o~      ~)~    4-<~        ~~tnhq Additional Geometry Factors,              .                  fp'=b 2                4              2              2 I          fp fp 4          fp              fp In-I+4          5                              2+            ~
64          a                a            a                a        rp L17.=- I -I 4
I-U I -
4            a 0
4
a 0
2
                                                            ~
I+(I+Y) In      a fp
            ,
which gives,          L I I =0.006                    and              L17 ~0/141 Moment Factors, 2
M fb'=
DPavg'a        C9        /2
                                                      '0)2                            ob:=      '"'(*- 0*)
C8        2ab                                                      2b which gives, Mfb =-3.389          10  and            Q b ~2.052'10 Deflection from pressure/bending, 3
4 2+ Q b C 3 -
a                  a                avga y bq:=M fb'                                                  L 11 D                  D                D which gives,                  yb q ~i).008 Deflection from pressure I shear, 2                                                    2 K ~:=-0.3 2    In a
I +          rp I-2 rp in-b              ysq'=
m'DP avg  a b                a which gives,                K sa    &.404              and              y    ~%.002 Deflection from pressure I hub stretch,
                                                                                        -P fotee L
                                -b
                        '=
ofee tt (a          ) DP avg                          y stretch
                                                                                      'tb    2E which gives,                P fo~ =2.579. 10              and        y ~      =-3.281 ~ 10 COMED PL Evaluation                                Valve ID: 2CSH'MOV1 01                                              page 2 PCS H101A.MCD
I 0


I NOTES: 1.NMPC Telecon with Anchor Darling, dated 8l22l95, (Attachment A)'.MPR-1691,"Nine Mile Point Unit 2 Gate Valve Pressure Locking Due to Bonnet Heatup", dated November 1995 3.Limitorque Manual, NMPC File No.N2L20000VALVE003, Rev.0., and EPRI Application Guide to MOVs, Doc.No.NP-6660-D, Section 3.3.3.FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)
Niagara Mohawk Power Corporation                          NMP 2                                                          Page ~of  (3 I Nuorear Engineering                              Celcutation Cont. Sheet A1 0.1-AD403, Rev. 01 Onginatorloate                                        Checkerloate
~~a+>            k~  C C4>4    <(tet l~r)                     Q      Io  I-r<
Total Deflection due to pressure,                       yq:=ybq+ysq+yg            t h which gives,           yq =<.OI Additional Geometry Factors r0'.= a L3  '.=ro 4.a ro a
2
                              + I In  +a ro ro -


N V NIAGARA 4 MOHAWK NUCLEAR ENGINEERING CALCULATION CONTINUATION SHEET Nine Mile Point Nuclear Stat/on Originator/Date
a 2
,,.4,.C.n~letzshg ef.Unit: 2 Checker/Date
I ro L9,= I+v In a
~/o-/H7 A10.1-AD-003 Disposition:
NA Rension 01 4.Velan Report DM-0050, page A4, (Attachment 8)5.NUREG I CP-0152, page 3C-9 through 3C-34,"Commonwealth Edison Company Pressure ,Locking Test Report", (Attachment C)6.NUREG I CR-5807, page 5 through 11,"Improvement in Motor Operated Gate Valve Design and Prediction Models for Nuclear Power Plant Systems" (Attachment D)7.For 2CSH'MOV101 DBR-CSH-MOV101, Rev.1, and MOV sizing calculation No.A10.1-G-048, Rev.0 8.For 2CSL MOV107 DBR-CSL-MOV107, Rev.1, and MOV sizing calculation No.A10.1-F-032, Rev.0 9.For 2ICS MOV121 DBR-ICS-MOV121, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 10.For 2ICS MOV122 DBR-ICS-MOV122, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 11.For 2ICS'MOV128 DBR-ICS-MOV128, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 12.For 2ICS'MOV129 DBR-ICS-MOV129, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 13.For 2RHS*MOV4A DBR-RHS-MOV4A, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 14.For RHS'MOV48 DBR-RHS-MOV48, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 15.For 2RHS MOV4C FORMAT&#xb9;NEP-DES-OS, Rev.01 (F02)


Y NIAGARA 0 MOHAWK NUCLEAR ENG1NEERING CAL'CULATION CONTINUATION SHEET Page 4 (Next~S Nine Mile Point Nuclear Station Unit: 2 Originator/Date Checker/Date Qv m'en<.c A,.C-aux/8/Zt A7/0./4'~ef.A10.1-AD-003 Disposition:
2
NA Revision 01DBR-RHS-MOV4C, Rev.1, and MOY sizing calculation No.A10,1-E-139, Rev.0 16.For 2RHS" MOV115 DBR-RHS-MOV115, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 17.For 2RHS" MOV116 DBR-RHS-MOV116, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 18.For 2SWP*MOV17A DBR-SWP-MOV17A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev, 0 19.For 2SWP'MOV17A DBR-SWP-MOV17A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 20.For 2SWP"MOV18A DBR-SWP-MOV18A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 21.For 2SWP'MOV18B DBR-SWP-MOV18B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 22.For 2SWP'MOV21A DBR-SWP-MOV21A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 23.For 2SWP'MOV21B t e DBR-SWP-MOV21B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 24.For 2SWP'MOV66A DBR-SWP-MOV66A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 25.For 2SWP'MOV66B DBR-SWP-MOV66B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)
                                                                                        + I-v a
ro                4 1-ro a
2 which gives,           L3 ~0               and           L9=0                   P Deflection from seat load/bending,                   w:= I y bw'.=
O C2 ro C9 CS      b L9  ro C3 b
                                                          + L3      which gives,         ybw                2317    10 6
Deflection from seat load I shear, Ksa:=-1.2 ro ro


N V NAGARA U MOHAWK NUCLEAR ENGINEERING CALCULATION CONTINUATION SHEET Page (Next~ee Nine Mile Point Nuclear Station Originator/Date Checker/Da DC')e)>'l)e, i>I~C.Recta/8/2C/5'7 ef.26.For SWP*MOV67A Unit: 2 y-/rt/-f7 A10.1-AD-003 Disposition:
a In-  b y ~:= Ksa tG which gives,             Ksa            -1.343 y~ ~-4.383                10 Deflection from seat load I hub compression, L
NA Revision 01 DBR-SWP-MOV67A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 2?.For 2SWP'MOV678 DBR-SWP-MOV678, Rev.1, and MOV sizing calculation No.A10.1-NQ08, Rev.0 28.For 2SWP'MOV94A DBR-SWP-MOV94A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 29.For 2SWP'MOV948 DBR-SWP-MOV948, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 30.Roark's Formulas for Stress and Strain, Sixth Edition 1989, pages 398,399,404,405,408.409 444 and 445, (Attachment E)31.ENHANCED PRESSURE LOCKING METHODOLOGY, Kalsi Engineering, inc.(1997)5.0 CALCULATION RESULTS: As documented as the bottom of the last page for each valve evaluated, the thrust margin is either positive or negative.A positive thrust margin indicates that the valve and actuator is likely to overcome applicable theoretical pressure locking phenomena.
                        -2 tta    2 y'ompr    'tb                    which gives,               ycom r Total Deflection from unit seat load, y w:=ybw+ysw+ycompr                        which gives,             yw    2'76 10 contact load distribution,                                               10'quilibrium w equilibrium '=
A negative thrust margin indicates that the valve and actuator may not be able to overcome the applicable theoretical locking phenomena.
yq          ~hi~h gi~es,                           3.517 wequilibn~
Of the valves evaluated, valves 2CSH'MOV101, 2CSL MOV107, 2ICS'MOV121, 2ICS MOV129, 2RHS'MOV115, 2RHS MOV116, 2RHS'MOV4A, 2RHS'MOV48) 2RHS x MOV4C)2SWP'MOV21A, 2SWP'MOV218, 2SWP*MOV66A, 2SWP'MOV668, 2SWP'MOV678 and 2SWP'MOV948 yielded a negative thrust margin.However, an evaluation of plant configuration, normal and accident, and system function for each of the valves analytically susceptible to pressure locking indicates no operability concerns and the valves will operate under postulated accident scenarious.
yw Load per seat =        2.tt a yq =1.354 I0 yw Pressure Locking Force, COMED PL Evaluation                          Valve ID: 2CSH'MOV101                                                         page 3 PCSH101A.MCD
A detail evaluation of the results of this calculation for the valves identified as susceptible to pressure locking phenomena is included in NER-2M07, Rev.02.CHECKERS NOTE: This calculation was hand checked, therefore the MATHCAD commonly used commercial program does not required validation for this application.
FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)


Niagara Mohawk Power Corporation Nuctear Engineering Origina torl Date~a.C w~/,s/y>o harms y NMP 2 Calculation Cont.Sheet Checker/Date Page Qt/37 A10.1-AtM03, Rev.01 Valve ID no: 2CSH'MOV101 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COINED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=2 hub length, L:=0.094 r mean seat radius, a:=6.125 average disk thickness, t:=1.66 seat angle, a:=6 e:=-'" e=o.o52 2 180 e is half disk anglect Valve Disk Material Properties:
Niagara Mohatttrk Power orporatton                        NMP 2                                             Page 1 o(/37 Nuciear Engineering                             Catctglation Cont. Sheet A10.1-AD403, Rev. 01 Checker/Date gag ///-(0<
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
Fpres lock:= 2m a
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>.=55 Valve Bonnet pressure (psig), Pboggct 2477 Downstream pressure (psig), Pdo~'ryP.4 II Valve Stem Diameter, D~.--LS Static Unseating Thrust, F~'.=4385 (reference:
Test&#xb9;8, 4/18/96)Valve Factor VF:=0.5 (reference:
NER-2M410)CALCULATIONS:
Coefficient of friction between disk and seat, It'.=cope)-'-a~(e)It=0.513 (reference&#xb9;6)gives,'P avg 2 45'10 P~+Pdo~AverageDPAcrossDisk, DPavg Pbo~<-2 Disk StNnes Constants, D:=and G:=Et E 12 1-v 2 (1+v)which gives, D 1.232 10 Geometry Factors, C 2'.=-1-1 4 and G=1.131~10 I+2 ln-C3'=--+I In-+--1 1 b C8.'=-1+v+(1-v)2 a b 1+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.164 C 8 0'68 C 3=0.028 C 9=0.289 COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV1 01 page 1 I
Niagara Mohawk Power Corporation Nuciear Engineering Onginatorloate o~~)~4-<~~~tnhq NMP 2 Calculation Cont.Sheet Checker/Date Page fo(t S t A1 0.1-AD403, Rev.01 Additional Geometry Factors,.fp'=b I 64 2 4 2 2 fp fp fp fp I+4--5--4-2+-~In-a a a a rp I L17.=-4 4 2 I-U 0 0 a I--I----~I+(I+Y)In-4 a a fp , which gives, L I I=0.006 and L17~0/141 Moment Factors, M fb'=2 DPavg'a C9/2 2'0)C8 2ab ob:='"'(*-0*)2b which gives, Mfb=-3.389 10 and Q b~2.052'10 Deflection from pressure/bending, a a avga 3 4 y bq:=M fb'2+Q b-C 3-L 11 D D D which gives, yb~i).008 q Deflection from pressure I shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 in-b a b 2 m'DP avg a ysq'=which gives, K sa&.404 and y~%.002 Deflection from pressure I hub stretch, ofee'=tt (a-b)DP avg-P fotee L y stretch'tb 2E which gives, P fo~=2.579.10 and y~=-3.281~10 COMED PL Evaluation PCS H101A.MCD Valve ID: 2CSH'MOV1 01 page 2 I0 Niagara Mohawk Power Corporation Nuorear Engineering Onginatorloate
~~a+>k~C C4>4<(tet l~r)NMP 2 Celcutation Cont.Sheet Checkerloate Q Io I-r<Page~of (3 I A1 0.1-AD403, Rev.01 Total Deflection due to pressure, yq:=ybq+ysq+yg t h Additional Geometry Factors which gives, r0'.=a yq=<.OI ro L3'.=-4.a 2 2 ro a ro+I In-+--I a ro a ro L9,=-a 2 I+v a I-v ro-In-+-1-2 ro 4 a which gives, L3~0 and L9=0 P Deflection from seat load/bending, w:=I C2 ro C9 ro C3 y bw'.=L9--+L3 which gives, O CS b b ybw 2317 10 6 Deflection from seat load I shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, Ksa-1.343 tG y~~-4.383 10 Deflection from seat load I hub compression,-2 tta y'ompr'tb L 2 which gives, ycom r Total Deflection from unit seat load, y w:=ybw+ysw+ycompr which gives, y w 2'76 10~hi~h gi~es, wequilibn~
3.517 10'quilibrium contact load distribution, yq w equilibrium
'=yw Load per seat=2.tt a-=1.354 I0 yq yw Pressure Locking Force, COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV101 page 3


Niagara Mohatttrk Power orporatton Nuciear Engineering NMP 2 Catctglation Cont.Sheet Checker/Date gag///-(0<Page 1 o(/37 A10.1-AD403, Rev.01 Yq Fpres lock:=2m a-'PM<e)-sm(e))2 which glvm.Fpres lock=1245'los Jw Piston Effect Force, P an',=0 piston street''tem
Yq
'[bonnet ann)which gives, F;1ff t=4.377'10"Reverse Piston Effect" Force, F vert.'=(t a 2 P bonnet up down'sin(0)which gives, F~=3.022 10 Total Force R ulred to Overcome Pressure Lockln"total'res lock+"po+vert piston effect F to~1'546805 ACTUATOR CAPABILITY:
                                    'PM<e)-     sm(e)) 2           which glvm. Fpres lock=1245'los Jw Piston Effect Force,                       P an',=0 piston   street''tem '[       bonnet       ann)         which gives,   F;   1  ff t =4.377'10 "Reverse Piston Effect" Force, F vert .'= (t a 2 P bonnet up     down     'sin(0)         which gives,     F ~ = 3.022 10 Total Force R       ulred to Overcome Pressure Lockln "total   'res     lock+ "po+ vert       piston effect F to~       1'546805 ACTUATOR CAPABILITY:
Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficienc:
Actuator Model ISize:                                                                 = SMB-00-10 Motor Torque Output:                                                            TQm:= 9.3           tt- lbs Gear Ratio:                                                                    OGR:=72 Application Factor.                                                              Af:=0.9 Pullout Efficienc:                                                              Eff:=0.4 Reduced Voltage:                                                                RV:= 1.0 Torque Output:                TQout:= TQm RV .OGR.Af Eff                      TQout ~ 241.056       tt- lbs Stem Factor.
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
Thrust Capability:              THcap: =
TQout:=TQm RV.OGR.Af Eff TQout THcap:=-Sf=SMB-00-10 TQm:=9.3 OGR:=72 Af:=0.9 Eff:=0.4 RV:=1.0 TQout~241.056 Sf:=0.018919 THcap=1.274 10 tt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
TQout Sf Sf:= 0.018919 THcap =1.274 10         lbs NOTE: RV IS SQUARE IF ACTUATORIS AC.
KEI:=1.20 a Thrust Margin:=THeap-(p tomt KEI)Thrust Margin~-1.729'10 lbs
ENHANCED PRESSURE LOCIQNG METHODOLOGY:                                       KEI:= 1.20 a
Thrust Margin:= THeap (p tomt KEI)
Thrust Margin ~ -1.729'10       lbs


== Conclusion:==
== Conclusion:==
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                        Valve ID: 2CSH'MOV1 01                                          page 4 PCSH101A.MCD
Niagara Mohawk Power Corporation Nucteer Engineering NMP 2 Calcutation Cont Sheet Page /OH    /+7
                                                            ~
A1 0.1-AD403, R et/. 01 w e~ ~/i~bp Originator/Date                                            Checker/Date
                                                                      >-i17 Valve ID no: 2CSL'MOV107 Re uired        0    enin    Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Design Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),          Pp.=500                Valve Bonnet pressure(psig),            Pboggat =8931 Downstream pressure (psig)              P dp~
Disk Geometry:                        'alve hub radius,          b:=1.25        mean seat radius, a:= 1.879 average disk thickness, t:=0.626 hub length, L:=0.25                  seat angle,            a:= lo            e:=-a tt 2 180 e =0.087 Valve Disk Material Properties:                                                              e  is half disk anglea modulus of elasticity, E:=29400000                        Poisson's Ratio, v.=0.3 Other Valve Parameters:
Valve Stem Diameter,          D <~.'=1.375            Static Unseating Thr'ust, Fpo              3399
                                                                              &#xb9;
( reference: Test 4, 6/3/96 )
( reference: NER-2M410 )
CALCULATIONS:
                                                                            ~ge)
Coefficient of friction between disk and seat, It:=
                                                                        '- sa(e)            It =0.521    ( reference &#xb9;6 )
Pup+Pdo~
Average DP Across Disk, DP avg:=P bomct-                                                gives      DP avg    8 681 1(P 2
Disk Stittnas Constants,          D:=      Et                  and      G:=        E l2  t-v      2                        2 (I+ v) which gives, D =6.605          10        and                G =1.131 ~ 10 Geometry Factors,        C2.=-I 4
I-b
a I+2 In    a b
C3'.=. b 4a b
                                                                                            +
a I In a b
                                                                                                            +
b a
I C8.'=-I 2
I+v+(I-v)              b a
2 C
a
                                                                                        -
9.--b I+v ln 2
a b
                                                                                                      +
I v 4
I b
a 2
which gives,        C2    0.049                  C3      0.005 C 8 =0.805                    C 9 =0.241 COMED PL Evaluation                          Valve ID: 2CSL MOV107                                                    page      1 PCSL1 07A.MCD
Niagara Mohawk Power CorPorat/on                                      NMP 2                                                Page /r of /p7 Nuclear Engineering                                          Calculation Cont. Sheet A10.1-AD403, Rw. 01 Originate rloate Qcwr~ g        4 @Ace      C Jr P/$    7                            ~
Checker/Date
                                                                                  ~-i-17 Additional Geometry Factors,                                      rp  .'=b 2              4                2                2 I
I+4    rp 5
rp 4
rp 2+    rp In-  a 64            a              a                                a          rp L17 4
I I- I-v 4
I-    rp a
4 rp a
2
                                                                ~
I+(I+v) ln-rp which gives,              L I I =4.463      10            and                L i7 =0.046 Moment Factors, 2
Mrb '=-
DP avg a          C9 a  -rp -L17                                          '"'(*- 0')
C8            2ab                                                          2b which gives, Mrb -2.113            10  and            Qb      6.834-10 Deflection from pressure/bending, 4
a y b '.=M rb.C 2+ Q b                  -
a C
avg L 11 D                    D 3              D which gh/es,                  yb q ~-2.798'10 Defiectlon from pressure I shear, 2                                                        2 K:=-0.3                  a 2 in  I+
b
rp      ~
I  21n-  rp b
sa t.G avg a a
which gives,                K sa =%.077                    and                y sq =-3.348'10 Deflet%ion from pressure              I hub stretch,
                                                                                              -P force L Pf        lt (a      b ) DP g                        ystretch-ttb 2E which gives,                P f0~0 =5.368.10
                                                                              -
and        y ~~      -4.649 10 COMED PL Evaluation                                  Valve ID: 2CSL MOV107                                                  page 2 PCSL1 07A.MCD                                                                            4


Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
0 Niagara MotunNk Power Corporation                                NMP 2                                              Page/2d  /ST Nuclear Engineering                                      Calculation Cont. Sheet A
COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV1 01 page 4  
A10.1-AD403, Rev. 01 Originator/Date                                              Checker/Date Qo~p~ A.C~P                    r  /ralph                                    ~  ~-<7 Total Deflection due to pressure,                              yq    y bq+ y sq+ y stretch which gives,          y q =<.611 ~ 10 Additional Geometry Factors r:=a L3    =
ro
                .
4-a ro a
2
                                + I ln  +  - I a
ro ro a
2 ro L9.I+v In a


Niagara Mohawk Power Corporation Nucteer Engineering Originator/Date w e~~/i~bp NMP 2 Calcutation Cont Sheet Checker/Date
2
~>-i17 Page/OH/+7 A1 0.1-AD403, R et/.01 Valve ID no: 2CSL'MOV107 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=500 Valve Bonnet pressure(psig), Pboggat=8931 Downstream pressure (psig)P dp~'alve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.879 average disk thickness, t:=0.626 seat angle, a:=lo e:=--e=0.087 a tt 2 180 Valve Disk Material Properties:
                                                                                              + I-v I-a ro      4 ro a
modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters:
2 which gives,               L3 0                 and          L9 ~0 Deflection from seat load I bending,                         w:= I II ybw.
e is half disk anglea Valve Stem Diameter, D<~.'=1.375 Static Unseating Thr'ust, Fpo 3399 (reference:
O C2 roC9 CS      b L9      .
Test&#xb9;4, 6/3/96)(reference:
                                                    - roC3' b
NER-2M410)CALCULATIONS:
                                                                  + L3      which gives,         bw =-1.458 10 Deflection from seat load I shear, Ksa '=-1.2    In-                     y ~!=Ksa-      a which gives,         Ksa  <.489 a        b                              tG y sw =-1.298'10 Deflection from seat load I hub compression,                         '
Coefficient of friction between disk and seat, It:=~ge)-'-sa(e)It=0.521 (reference&#xb9;6)gives DP avg 8 681 1(P G:=E 2 (I+v)which gives, D=6.605 10 and G=1.131~10 Pup+Pdo~Average DP Across Disk, DP avg:=P bomct-2 Disk Stittnas Constants, D:=and Et l2 t-v 2 I b a.b b a b Geometry Factors, C2.=-I--I+2 In-C3'.=--+I In-+--I 4 a b 4a a b a I b 2 b I+v a I-v b 2 C8.'=-I+v+(I-v)-C 9.---ln-+-I--2 a a 2 b 4 a which gives, C 2 0.049 C 8=0.805 C 3 0.005 C 9=0.241 COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 page 1
L 2'll'a                                                                      h y compr  "'=                       which gives,                 y compr    1023 10 ttb      E Total Deflection from unit seat load, yw:=ybw+ysw+ycompr                              which gives,           yw -2.85810 Equilibrium contact load distribution, w equilibrium '
yq            which gives,          w equilibrium ~
Load per seat=           2 tt a yq yw
                                                        ~
2.731 ~ 10 4
Pressure Locking Force, COMED PL Evaluation                               Valve ID: 2CSL MOV107                                             page 3 PCSL1 07A.MCD


Niagara Mohawk Power CorPorat/on Nuclear Engineering Originate rloate Qcwr~g 4@Ace C Jr P/$7 NMP 2 Calculation Cont.Sheet Checker/Date
8 4 l
~~-i-17 Page/r of/p7 A10.1-AD403, Rw.01 Additional Geometry Factors, rp.'=b I 64 2 4 rp rp I+4--5--4 a a 2 rp 2 rp a 2+-In-a rp I L17 4 I-v I--I-4 4 rp rp a a 2~I+(I+v)ln-rp which gives, Moment Factors, L I I=4.463 10 and L i7=0.046 Mrb'=-2 DP avg a C8 C9 a-rp-L17 2ab'"'(*-0')2b which gives, Mrb-2.113 10 and Q b 6.834-10 Deflection from pressure/bending, 4 a a avg y b'.=M rb.-C 2+Q b-C 3-L 11 D D D which gh/es, yb~-2.798'10 q Defiectlon from pressure I shear, 2 a rp rp K:=-0.3 2 in--I+-~I-21n-b a b 2 sa avg a t.G which gives, K sa=%.077 and y=-3.348'10 sq Def let%ion from pressure I hub stretch, Pf lt (a b)DP g-P force L ystretch-ttb 2E which gives, P f0~0=5.368.10-and y~~-4.649 10 COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 4 page 2 0
Niagara MotunNk Power Corporation Nuclear Engineering Originator/Date Qo~p~A.C~P r/ralph NMP 2 Calculation Cont.Sheet Checker/Date A~~-<7 Page/2d/ST A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors y q y bq+y sq+y stretch which gives, y q=<.611~10 r:=a ro L3=-.4-a 2 2 ro a ro+I ln-+--I a ro a ro L9.--a 2 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3 0 and L9~0 Deflection from seat load I bending, w:=I II C2 roC9 roC3 ybw.-L9--.+L3 which gives, O CS b b'bw=-1.458 10 Deflection from seat load I shear, Ksa'=-1.2-In-a b a y~!=Ksa-tG which gives, Ksa<.489 y sw=-1.298'10 Deflection from seat load I hub compression,'2'll'a y compr"'=ttb L h which gives, y compr 1023 10 E Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, yw-2.85810 which gives, w equilibrium
~Load per seat=2 tt a-2.731~10 yq~4 yw Equilibrium contact load distribution, yq w equilibrium
'Pressure Locking Force, COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 page 3 8 4 l Niagara Mohawk Power Corporation Nigciesr Enpineeriny Onpinstor/Date 4 C esc>//tike!r gr NMP 2 Calculation Cont.Sheet Checker/Date
/)./i)/4 Pat/e/>of r 3bT A10.1-ADO03, Rev.01 F p]k 2 n a-(it cos(e)-sin(0))2'Yq W which g/vesa F Piston Effect Force, P a~."=0 2 piston street'stem'(bonnet atm)which ganesa Fp,ston cffcct=1326'10"Reverse Piston Effect" Force, 2 vmt[s'e'('onnet up deum)j'smigi Total Force Re uired to Overcome Pressure Lockin which gives, F v~=1.678'10 F total l=F pres lock+F po+F'vert-F'piston cffcct which gives F total 3 049697 10 ACTUATOR CAPABILITY:
Actuator Motor/Size:
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output Stem Factor: Thrust Capability:
TQout:=TQI RV OGR Af Eff TQout THcap:=-Sf=SMB-00S-15 TQm:=14.18 OGR:=23 Af:=0.9 Eff.s=0.45 RV:=0.8848 TQout=103.407 Sf':=0.017861'IHcap 5.79 10 ft-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Thrust Margin:=THoap-'(pmmt KEI)e Thrust Margin-3.081~10 lbs


== Conclusion:==
Niagara Mohawk Power Corporation                              NMP 2                                              Pat/e/> of r 3bT Nigciesr Enpineeriny                                  Calculation Cont. Sheet A10.1-ADO03, Rev. 01 Onpinstor/Date                                            Checker/Date 4    C esc>  //tike!r      gr
                                                                      /)./i)/4 F
p    ]    k    2 n a  (it
                                  'Yq cos(e) sin(0)) 2          which g/vesa    F W
Piston Effect Force,                              P  a~."=0 2
piston street '        stem  '(  bonnet      atm)          which ganesa    Fp,ston cffcct =1326'10 "Reverse Piston Effect" Force, 2
vmt    [s'e  '( 'onnet                deum)j'smigi              which gives,      F v~ = 1.678'10 up Total Force Re uired to Overcome Pressure Lockin F total l=F pres lock+ F po + F'vert- F'piston cffcct which gives            F total    3 049697 10 ACTUATOR CAPABILITY:
Actuator Motor/Size:                                                                      = SMB-00S-15 Motor Torque Output:                                                                    TQm:= 14.18            ft- lbs Gear Ratio:                                                                            OGR:= 23 Application Factor:                                                                      Af:=0.9 Pullout Efficiency:                                                                     Eff .s= 0.45 Reduced Voltage:                                                                        RV: = 0.8848 Torque Output                        TQout: = TQI RV OGR            AfEff            TQout = 103.407          ft- lbs Stem Factor:                                                                              Sf': = 0.017861 TQout Thrust Capability:                  THcap:=                                        'IHcap    5.79 10        1bs Sf NOTE: RV IS SQUARE IF ACTUATORIS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                            KEI:= 1.20 Thrust    Margin:= THoap '(pmmt KEI) e Thrust    Margin      -3.081 ~ 10      lbs


==
Conclusion:==
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PCSL107A.MCD Valve ID: 2CSL'MOV107 page 4  
COMED PL Evaluation                               Valve ID: 2CSL'MOV107                                             page 4 PCSL107A.MCD


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date 6/itlF7 NMP 2 Calculation Cont.Sheet Checker/Date W v-i~7 Page/Q/I'3 7 A10.1-AtM03, Rev.01 Valve IDno: 2ICS MOV121 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPlJTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>..=1200 Valve Bonnet pressure (psig), P bonnet 1200 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=3.063 hub length, L:=0.188 mean seat radius, a.'=4.45 average disk thickness, t:=1.012 a rt seat angle, u.=10 6:=--0 0.087 2 180 Valve Disk Material Properties:
Niagara Mohawk Power Corporation                                     NMP 2                                                   Page/Q/I'3 7 Nuclear Engineering                                          Calculation Cont. Sheet A10.1-AtM03, Rev. 01 Originator/Date 6/itlF7                          W v-i~7 Checker/Date Valve IDno: 2ICS MOV121 Re uired                   0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPlJTS'esign Basis Conditions at time of Pressure Locking Event:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
Upstream pressure (psig),                     P>>   ..= 1200     Valve Bonnet pressure (psig), P bonnet               1200 Downstream pressure (psig), P down                         0 Valve Disk Geometry:
e ishalfdiskangle a Valve Stem Diameter, D<.=2.5 Valve Factor VF:=0.6 Static Unseating Thrust, F>>.=27694 (raference:
hub radius,                     b:= 3.063       mean seat radius,           a.'=4.45     average disk thickness,       t:=1.012 hub length,                  L:=0.188          seat angle,       u.=10             6:=-a rt 2 180 0   0.087 Valve Disk Material Properties:                                                                   e  ishalfdiskangle a modulus of elasticity,                   E:=29400000           Poisson's Ratio, v:=0.3 Other Valve Parameters:
Test&#xb9;7, 1/9/96)(reference:
Valve Stem Diameter,                   D<     .=2.5         Static Unseating Thrust, F>>.=27694
NER-2M-010)
                                                                                  &#xb9; (raference: Test 7, 1/9/96)
Valve Factor                    VF:=0.6                  (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of fnction between disk and seat, lt:=~ge)-sin(e)It=0.631 (reference
Coefficient               of fnction between disk and seat,         lt:=       ~ge)
&#xb9;6)Average DP Across Disk, Disk Stitfnes Constants, up~down avg'onnet 2 glvesr DP avg 600 D:=and G:=Et E 12(i-')2 (1+v)which gives, D=2.79 10 and G=1.131~10 GeometryFactors, C2'.=-I--I+2 1n-C3.'=--+I In-+--I I b a.b b a b 4 a b 4a a b a I b C8.'=-I+v+(I-v)-2 a 2 b I+v a I-v b C 9.---In-+-I-a 2 b 4 a which gives, C 2 0.043 C 8 0.816 C 3=0.004 C 9=0.23 COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS MOV121 page 1 n
                                                                                  - sin(e)           It = 0.631     (reference   &#xb9; 6) up~    down Average DP Across Disk,                           avg 'onnet                   2 glvesr     DP avg     600 Disk Stitfnes Constants,                    D:=       Et            and         G:=       E 12(i-')                             2 (1+v) which gives,                 D =2.79   10         and           G = 1.131 ~ 10 GeometryFactors,                     C2'.=-I 4
Niagara Mohawk Power Corgoration Nuclear Engin<<ring Originator/Date Wa~4.C~~~/rPl~NMP 2 Catcutation Cont.Sh<<t Checker/Date czf85>-i r7 Pager+o//P7 A10.1-AD403, Rev.01 Add/t/onal Geometry'actors, rp=b I 64 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-ln-a rp 4 2 I I-v 0 fp a L17.=-I--I----I+(I+v)In-4 4 a a rp which gives, Moment Factors, L I I~3.398 10 and L17=0.04 M rb.'=-2 DP avg a C8 9 a-rp-L17 2ab DP avg Qb.'=(a-ro j 2b which gives, M rb-698.979 and Q b 1.021'10 Deflection from pressurelbend/ng, 4 a a avg a yb.'=M*-C2+Qb-C3-LII D D D which gives, yb-1.078 10 q Deflection fmm pressure/sheer, 2 a rp rp K sa.'=-0.3 2 In--I+-~I-2 In-b a b 2 sa'vg a ysq which gives, K sa~%.066 end y~=W.877'10 Deflecflon from pressure/hub stretch, force'=tt (a-b)DP avg P fofoo'L ystretch-ttb 2E which gives, P f 1.964-10 end y~t,>-2.131~10 COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS'MOV121 page 2 f
I-   b
Niagara Mohawk Power CorPoratlon Nuclear Engineertng originator/Date Qc~r~rg.Q~p NMP 2 Calculation Cont.Sheet Checker/Date
 
~~-i-e7 Page Aaf/3P A1 0.1-AD403, Rev.01 Total Deflection due to pressure, y q'bq+-" sq+y stretch Additional Geometry Factors which gives, ro,'=a y=-1.787 10 q ro L3.'=-.4a 2 2 ro a ro+1 ln-+--1 a ro a ro L9--.a III 2 lyv a 1-v ro-ln-+-1-2 ro 4 a which gives, L3 0 and L9 0 Deflection from seat load/bending, w:=1 a3.w C 2 ro.C 9 roC3'bw'9--+L3 which g/ves, D C8 b b ybw~-3.67 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b a y sw i=Ksa-tG which gives, Ksa-0.448 y~~-1.743'10 Deflection from seat load/hub compression,-2 tta y compr'=ttb L 2 which gives, y=-3.033 10 Total Deflection from unit seat load, yw:=ybw+ysw+
a I+2 1n   a b
ycompr which gives, y-5.443 10 which gives, weq~brium 328415 Equilibrium contact load distribution, yq equilibrium
                                                                                      .
'w Load per seat=2 tt a-9.183 1(P yq yw Pressure Locking Force, COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS'MOV121 page 3  
C3.'=   b 4a b
                                                                                                  +
a I In a b
b
                                                                                                                    + - I a
C8.'=
I 2
I + v+(I -   v) b a
C a
I-9.--b I+v In 2
a b
                                                                                                            +
I-v 4
b a
2 which gives,                   C2  0.043             C 3 =0.004 C8  0.816              C 9 =0.23 COMED PL Evaluation                                     Valve ID: 2ICS MOV121                                                 page   1 PICS121A.MCD
 
n Niagara Mohawk Power Corgoration                                   NMP 2                                              Pager+o//P7 Nuclear Engin<<ring                                       Catcutation Cont. Sh<<t A10.1-AD403, Rev. 01 Originator/Date                                                Checker/Date Wa~             4.C~~ ~/rPl~                                         czf85 >-i r7 Add/t/onal Geometry'actors,                                   rp =b 2             4                 2              2 fp         fp               fp             rp I
I+4             5           -4                  2+            ln- a 64            a           a               a               a         rp L17.=-   I 4
I- I-v 4
I- a  0 4
                                              -     fp
 
a 2
I+(I+v) In       a rp which gives,           L I I ~3.398       10             and             L17 =0.04 Moment Factors, 2
DP avg a          9                                                    DP avg M rb.'=-                           a   -rp -L17                             Qb.'=         (a ro j
C8        2ab                                                        2b which gives, M rb -698.979               and           Qb    1.021'10 Deflection from pressurelbend/ng, 4
avg a yb .'=M*C2+Qb C3-a                    a D                   D               D LII which gives,               yb q -1.078           10 Deflection fmm pressure/sheer, 2                                                     2 K sa .'=-0.3 2 In a
                                      - I+     rp      ~
I - 2 In-rp                      sa'vg     a b              a                     b ysq which gives,             K sa ~%.066                     end               y ~ =W.877'10 Deflecflon from pressure /hub stretch, P fofoo'L force '=tt (a
                                  - b ) DP avg                             ystretch-ttb 2E which gives,             P f             1.964-10           end       y ~t,>   -2.131 ~ 10 COMED PL Evaluation                               Valve ID: 2ICS'MOV121                                               page 2 PICS121A.MCD
 
f Niagara Mohawk Power CorPoratlon                               NMP 2                                                Page  Aaf /3P
                                                                    ~
Nuclear Engineertng                                   Calculation Cont. Sheet A1 0.1-AD403, Rev. 01 originator/Date                                            Checker/Date Qc~r~           rg. Q~p                                                     ~-i-e7 Total Deflection due to pressure,                           yq  '   bq+ -" sq + y stretch which gives,           y q =-1.787 10 Additional Geometry Factors ro,'=a L3 .'=
ro
                .
4a ro a
2
                                +1   ln +
a ro ro a
2
                                                        -1            L9     .
a
 
ro lyv a 2
ln +
ro 1-v 4
III 1-ro a
2
        'bw    '9 Ksa: =- 1.2 a3.w D
which gives, Deflection from seat load/bending, ro ro
 
a C2 C8 Deflection from seat load/shear, ln-  b ro.C 9 b
y sw L3 0
 
roC3 i=Ksa b
w:=1 a
tG
                                                              + L3 and which g/ves, which gives, L9    0 ybw ~-3.67 Ksa -0.448 10 y ~ ~ -1.743'10 Deflection from seat load/hub compression, L
                          -2 tta 2 y compr '=                         which gives,               y         =-3.033   10 ttb Total Deflection from unit seat load, yw:=ybw+ysw+ ycompr                           which gives,           y     -5.443 10 Equilibrium contact load distribution, yq equilibrium   'w             which gives,        weq~brium 328415 Load per seat =           2 tt a yq    9.183 1(P yw Pressure Locking Force, COMED PL Evaluation                               Valve ID: 2ICS'MOV121                                               page 3 PICS121A.MCD


Niagara Mohawk Povtter Corporation N uctear Engineering Originator/Date
Niagara Mohawk Povtter Corporation                         NMP 2                                                Pager 7of /P7 N uctear Engineering                               Catculation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date                                        Checker/Date
@capri@A~C.~/tr/Z5ly7 NMP 2 Catculation Cont.Sheet Checker/Date IO.W P Pager 7of/P7 A10.1-AD403.
@capri@         A ~
Rev.01 Yq Fp~lock'tt'a-(Itcos(8)-
C.~/ tr/Z5ly7                           IO.W P Fp~ lock'tt'a           (Itcos(8)-
sin(0))2 whichgives, Fpr s lock 9938 10~'w Piston EN'ect Force, P au:=0 piston street'stem'(bonnet, stm)F 1st"Reverse Piston Effect" Force, F crt.=rt a 2pbonnct up down Total Force Re uired to Overcome Pressure Lockin wh/ch g/ves F ycrt 6 506 I 0 F<<taI:=F pres lock+F po+F ycrt-F piston affec which gives,.F<<~=3.824814 10 ACTUATOR CAPABILITY:
Yq
Actuator Model I Sizer Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                                  ~'w sin(0)) 2         whichgives,     Fpr     s lock 9938 10 Piston EN'ect Force,                           P au:=0 piston street
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
                        '
TQout THcap:=-SE TQout:=TQm RV OGR Af Eff=SB-2-60 TQm:=51.63 OGR:=101.52 Af:=0.9 EK:=0.35 RV:=0.8627 TQout~1.229'10 Sf:=0.029481 THcap~4.168 10 ft-Ibs ft-Ibs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
stem '( bonnet,     stm)                           F   1st "Reverse Piston Effect" Force, F crt.= rt a     2pbonnct             down                       wh/ch g/ves         F ycrt 6 506 I 0 up Total Force Re uired to Overcome Pressure Lockin F <<taI:=F pres lock+ F po+ F ycrt- F piston affec which gives,       . F <<~ = 3.824814         10 ACTUATOR CAPABILITY:
KEI:=1.20 Tbtnst Mssipn:=THeep-(F tomt KEI)Thrust Margin~-4.216 10 Ibs
Actuator Model ISizer                                                                  = SB-2-60 Motor Torque Output:                                                            TQm:= 51.63             ft- Ibs Gear Ratio:                                                                      OGR:= 101.52 Application Factor:                                                                Af:=0.9 Pullout Efficiency:                                                                EK:=0.35 Reduced Voltage:                                                                  RV:= 0.8627 Torque Output:                TQout: = TQm RV OGR          AfEff              TQout ~ 1.229'10         ft- Ibs Stem Factor:                                                                      Sf: = 0.029481 TQout Thrust Capability:              THcap:=                                    THcap ~4.168 10             lbs SE NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCIQNG METHODOLOGY:                                         KEI:= 1.20 Tbtnst Mssipn:= THeep (F tomt KEI)
Thrust Margin ~-4.216 10           Ibs


== Conclusion:==
== Conclusion:==
Open, Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Open, Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS MOV121 page 4  
COMED PL Evaluation                           Valve ID: 2ICS MOV121                                             page 4 PICS121A.MCD


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Durga A~C49 t)pljrr NMP 2 Calculation Cont.Sheet Checker/Date Page/got/'37 A10.1-AD403, Rev.01 Valve ID no: 2ICS MOV122 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=160 Valve Bonnet pressure (psig), P bonnet,.=160 Downstream pressure (psig), P d.=0 Valve Disk Geometry: e ishalfdiskangle a hub radius, b:=4.94 mean seat radius, a=5.75 average disk thickness, t:=0.789 a tt seat angle, a:=7 e:=--e=o.o61 2 180 Valve Disk Material Properties:
Niagara Mohawk Power Corporation                                 NMP 2                                                   Page/got /'37 Nuclear Engineering                                    Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date                                              Checker/Date Durga                    A ~ C49  t )pljrr Valve ID no: 2ICS MOV122 Re uired                 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
Upstream pressure (psig),               P>>   .= 160       Valve Bonnet pressure (psig), P bonnet,.=160 Downstream pressure (psig), P d                     .=0 Valve Disk Geometry:
Valve Stem Diameter, D~.=2 Valve Factor VF:=0.5 Static Unseating Thrust F po 9730 (reference:
hub radius,               b:=4.94       mean seat radius,           a = 5.75     average disk thickness,         t:=0.789 seat angle,         a:=7               e:=- a  tt 2 180 e =o.o61 Valve Disk Material Properties:                                                                 e    ishalfdiskangle a modulus of elasticity,             E:=29400000           Poisson's Ratio, v:=0.3 Other Valve Parameters:
Test&#xb9;30, 10/27/93)(reference:
Valve Stem Diameter,               D ~.=2             Static Unseating Thrust             F po     9730
NER-2M-010)
                                                                            &#xb9; (reference: Test 30, 10/27/93)
Valve Factor                VF:=0.5                  (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, it:=~ge)-'-~(e)lt=0.515 (referece&#xb9;6)Average DP Across Disk, Disk Stiffnes Constants, up+down DP avg'bonnet 2 gives, DP avg, 80 3 Et and G.E 12 1-v 2 (1+v)which gives, D=1.322 10 and G=1.131~10 Geometry Factors, C 2.'=-1--1+2 ln-C 3'.=--+1 ln-+-.-1 1 b 2 C8.=-1++2 a C 9.---ln-+-1--which gives, C 2 0.009 C 8=0.908 C 3=4.316'10 C 9=0.124 COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS MOV122 page 1 0
                                                                          ~ge)
h Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date
Coefficient of friction between disk and seat,                 it:=
+~~~Ai O~y 4/jpl+T NMP 2 Calculation Cont.Sheet Checker/Date 7-1+7 Page/f ol~T A10.1-AD403, RW.01 Additional Geometry Factors, rp.=b I 64 hh 2 4 2 0 0 0 I+4--5--4 a a a rp a 2 1--In-a rp I L17 4 4 2 I-U'0 a I--I----I+(I+Y)In-"4 a a rp which gives, Moment Factors, L I I=1.545 10 and L 17 0.009 Mrb'=-2 DP avg a C8 C9 a-rp-L17 2ab'(0)2b'hich gives, Mrb-28.505 and Q b=70.113 Deflection from pressurelbending, 4 a a avg yb'=Mrb-C2+Qb'C3-LII D D D h which gives, yb~3398'10 q Deflect/on from pressure l shear, 2 a rp rp K~:=-0.3 2'In--I+-~I-2 In-b a b 2 m'vg a tG" which gives, Ksa~%.013 and ysq 3 715 10 hh Deflection from pressure//hub stretch, orce'=tt (a-b)DP avg-P force.L y stretch ttb.2E which gives, P force 2 176 l(P andy stretch 6 034 10 COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS'MOV122 page 2
                                                                      '- ~(e)                     lt = 0.515   (referece   &#xb9;6) up+ down Average DP Across Disk,                 DP       'bonnet                                 gives,       DP avg,   80 avg                            2 Disk Stiffnes Constants, Et 3           and         G.       E 12   1-v                             2 (1+v) which gives,           D =1.322   10         and         G =1.131 ~ 10 Geometry Factors,             C 2.'= 1+ 2 ln                       C 3 '.= +               1 ln +   . - 1 C8.=- 1+
1 2
                                                +
b a
2 C 9.--     1- ln   +
which gives,             C2    0.009             C 3 =4.316'10 C 8 =0.908              C 9 =0.124 COMED PL Evaluation                                 Valve ID: 2ICS MOV122                                                 page     1 PICS122A.MCD
 
0 h
Niagara Mohawk Power Corporation                                       NMP 2                                                Page /fol ~T Nuctear Engineering                                           Calculation Cont. Sheet A10.1-AD403, RW. 01 Originator/Date                                                      Checker/Date
+~~ ~ Ai O~y                   4 /jpl+T                                                     7-1+7 Additional Geometry Factors,                                       rp.=b hh 2             4               2 I
I+4         -5 -4 0            0                0 2 1- rp In- a 64                a            a               a               a         rp L17 I
4 I- "4 I-U I -'
a 4


Niagara Mohawk Power Corporation Nuotear Engineering Originatorloate
a 0
'Dao r~po JP r~M i</r 5~f 7 NMP 2 CatoLrlation Cont.Sheet ChN'kar/Ost Iggp Page~i>~A10.1-AD403, Rw.01 Total Deflection due to pressure, y q'bq+y sq+y stretch which gives, y=-7.174 10 Addilional Geometry Factors ro.'=a ro L3.=-.4a 2 2 ro a ro+I ln-+--I a ro a ro L9.'=-a 2 I+v a I-v ro-In-+-I--2 ro 4 a which gives, L3=0 and L9=0 P Deflection from seat load/bending, w'-]C2 rpC9 foC3 ybw'~L9--+L3 D C8 b b which gives, y bw=-1.43~o Deflection from seat load/shear, Ksa:=-1.2-ln-a b y:=Ksa-which gives, Ksa.182 tG y~-1.174'10 Deflection from seat load/hub compression,-2'1t a y compr ttb L 2 which gives, y~mpr=-I 002'10 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, yw 2621 10 which gives, Equilibrium contact load distribution, yq w equilibrium
2 I+(I+Y) In rp a
'Load per seat=2 tt a-988.835 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS'MOV122 page 3
which gives,                 L I I =1.545      10             and              L 17 0.009 Moment Factors, 2
DP avg a             C9 Mrb '=-                                   a   -rp -L17                                              '(    0)
C8            2ab                                                          2b
              'hich gives, Mrb -28.505                and             Q b =70.113 Deflection from pressurelbending, 4
                                  '=Mrb C2+Qb' C3-                               avg a                  a yb D                  D                D LII h
which gives,                     yb q ~ 3398'10 Deflect/on from pressure              lshear, K~:=-0.3 2'In              a I+    rp 2
I-2 rp In-b                            m'vg a     2 b             a
                                                              ~
tG" which gives,                 Ksa ~%.013                      and                ysq      3 715 10 hh Deflection from pressure//hub stretch,
                                                                                              -P force.L orce '=tt (a
                                        - b ) DP avg                            y stretch ttb.2E which gives,                   P force        2 176 l(P          and        y stretch    6 034 10 COMED PL Evaluation                                     Valve ID: 2ICS'MOV122                                                 page 2 PICS122A.MCD


Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date WC ms>c/A~~/g//25'lf 7 NMP 2 Catculation Cont.Sheet Checker/Date Pagegl ot i>7 A10.1-AO403.
Niagara Mohawk Power Corporation                          NMP 2                                                Page~i>~
Rev.01 Vq F pres Iock 2+a (p cos(e)-sin(e))2 which gives, F pres lock=895.433 Yw 1'iston Effect Force, P au:=0 2 F pistcn street'D stem'(P hcnnet-Penn}which give, pistcn efreet=502655"Reverse Piston Effect" Force, F vert.'=n a 2 P bonnet up down-sin(e)which gives.Total Force Re uired to Overcome Pressure Lockin F~1.015'10 F total:=F pres lock+Fpo+F vert-F piston effect which gives, F><=1.113735 10 TQout THcap:=-Sf ACTUATOR CAPA8ILITYt Actuator Model/Size:
Nuotear Engineering                              CatoLrlation Cont. Sheet A10.1-AD403, Rw. 01 Originatorloate
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
'Dao r~po JP r ~M </r 5 ~f7i                            ChN'kar/Ost Iggp Total Deflection due to pressure,                        yq  '    bq+ y sq+ y stretch which gives,           y  = -7.174 10 Addilional Geometry Factors ro.'=a L3 .=
Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor: Thrust Capability:
ro
=SMB-0-25 TQm:=25.0 OGR:=43.69 Af:=0.9 Eff:=0.4 RV:=0.806 TQout=316.927 Sf:=0.019627 THcap Is615 10 ft-lbs ft-Ibs Ibs ENHANCED PRESSURE LOCNNG METHODOLOGY:
                .
KEI:=1.20 Thrust Mtutpn:=THcsp-(Fmmi KHI}Thrust Margin~2.783~10 Ibs
4a ro a
2
                                + I ln a
ro ro
                                        +  - I a
2 L9 .'=
a
                                                                                -
ro I+v 2
In  + I-v a
ro      4 I
ro a
2 which gives,           L3 =0                and          L9 =0 P
Deflection from seat load/bending,                      w'- ]
ybw' D
C2 rpC9 C8
                                ~
b L9   
                                                - foC3 +L3 b
which gives,        y bw =-1.43
                                                                                                            ~
o Deflection from seat load/shear, Ksa:=-1.2    ln-a        b y:= Ksa    tG which gives,          Ksa  . 182 y ~    -1.174'10 Deflection from seat load/hub compression, L
                          -2'1t a  2 y compr                          which gives,                y~mpr =-I 002'10 ttb Total Deflection from unit seat load, y w:=y bw+y sway compr                      which gives,            yw      2621 10 Equilibrium contact load distribution, w equilibrium ' yq              which gives,            equilibrium Load per seat =         2 tt a yq    988.835 yw Pressure Locking Force, COMED PL Evaluation                            Valve ID: 2ICS'MOV122                                              page 3 PICS122A.MCD


== Conclusion:==
Niagara Mohawk Power CorPoration                                NMP 2                                                Pagegl ot i >7 Nuctear Engineering                                    Catculation Cont. Sheet
                          ~
A10.1-AO403. Rev. 01 Originator/Date                                            Checker/Date WC ms>c/              A ~        /g//25'lf7 Vq F pres Iock            2 +a        (p cos(e)  sin(e)) 2          which gives,    F pres lock = 895.433 Yw Effect Force,                                au:=0 1'iston P
F pistcn street        'D    stem 2
                                            '(P hcnnet- Penn}            which give,        pistcn efreet =502655 "Reverse Piston Effect" Force, F vert.'= n a          2 P bonnet up    down
                                                              -
sin(e)        which gives.      F ~    1.015'10 Total Force Re uired to Overcome Pressure Lockin F total:=F pres lock+ Fpo+ F            vert- F piston    effect which gives,        F >< =1.113735 10 ACTUATOR CAPA8ILITYt Actuator Model/Size:                                                                        = SMB-0-25 Motor Torque Output:                                                                  TQm:= 25.0              ft- lbs Gear Ratio:                                                                          OGR:= 43.69 Application Factor:                                                                    Af:=0.9 Pullout Efficiency:                                                                    Eff:=0.4 Reduced Voltage:                                                                        RV:=0.806 Torque Output:                    TQout:= TQm RV OGR            AfEff                TQout = 316.927          ft- Ibs Stem Factor:
Thrust Capability:                  THcap:    =
TQout Sf                              THcap Sf:= 0.019627 Is615 10        Ibs ENHANCED PRESSURE LOCNNG METHODOLOGY:                                              KEI:=1.20 Thrust Mtutpn:= THcsp- (Fmmi KHI}
Thrust Margin ~ 2.783 ~ 10      Ibs


==
Conclusion:==
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PICS122A.MCD Valve lD: 2lCS MOV122 page 4  
COMED PL Evaluation                                 Valve lD: 2lCS MOV122                                           page 4 PICS122A.MCD


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
Niagara Mohawk Power Corporation                           NMP 2                                                  PagegZof/3 ~
~,~, A'.~c./,];ZPP NMP 2 Calculation Cont.Sheet Checker/Date
                                                            +
+"r-i+7 PagegZof/3
Nuclear Engineering                               Calculation Cont. Sheet
~Ato.t-AD403.
                      ~
Rev.01 Valve ID no: 2ICS MOV128 Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure(psig), Pp.=1200 Valve Bonnet pressure(psig),Pbonnet
Ato.t-AD403. Rev. 01 Originator/Date                                        Checker/Date
'=1200 Downstream pressure (psig), P do.=0 Valve Disk Geometry: hub radius, b:=3.063 hub length, L:=0.188 r mean seatradius, a:=4.45 average disk thickness, t:=1.012 a ft seat angle, a:=10 0:=--8 0.087 2 180 Valve Disk Material Properties:
      ~,~,       A'.         c./,];ZPP                               "r-i+7 Valve ID no: 2ICS MOV128 Re uired         0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
modulus of elasticity, E:=29400000 Other Valve Parameters:
Design Basis Conditions at time of Pressure Locking Event:
Poisson's Ratio, v:=0.3 8 ishalfdiskangle u Valve Stem Diameter, D~.=2.5 Valve Factor VF:=0.6 Static Unseating Thrust, F po 17995 (reference:
Upstream pressure(psig),               Pp.=1200       Valve Bonnet pressure(psig),Pbonnet             '=1200 Downstream pressure (psig), P do               .=0 Valve Disk Geometry:                                                                           r hub radius,         b:= 3.063       mean seatradius,         a:=4.45 average disk thickness,             t:=1.012 hub length,        L:= 0.188          seat angle,       a:=   10         0:=-a ft 2 180 8   0.087 Valve Disk Material Properties:                                                           8  ishalfdiskangle u modulus of elasticity,       E:=29400000             Poisson's Ratio, v:=0.3 Other Valve Parameters:
Test&#xb9;10, 5f4N5)(reference:
Valve Stem Diameter,         D   ~.= 2.5           Static Unseating Thrust,         F po 17995
NER-2M-010)
                                                                          &#xb9; (reference: Test 10, 5f4N5)
Valve Factor          VF:=0.6                      (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of fnct/on between disk and seat, It:=cue)-sin(6)It=0.631 (reference
Coefficient     of fnct/on between disk and seat,         It: =     cue) sin(6)
&#xb9;6)Average DP Across Disk, Disk Sfiffnes Constants, up+down DP avg.'=P bonnet 2 gives, DP avg 600 D:=and G:=Et El2(1-')2 (1+v)which gives, D=2.79 10 and G=1.131~10 I b a.b b a b Geometry Factors, C2'.=-I--I+2 In-C3'.=--+I In-+--I 4 a b 4a, a b a I b C8:=-I++2 b I+v a I-v b 2 C 9'=--In-+-I-a 2 b 4 a which gives, C 2 0.043 C8 08'6 C 3~0.004 C 9~0.23 COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS MOV128 page 1  
It =0.631   (reference   &#xb9;6) up+    down Average DP Across Disk,             DP avg .'=P bonnet                             gives,     DP avg   600 2
Disk Sfiffnes Constants,          D:=     Et            and       G:=         E l2(1-')                           2 (1+v) which gives,       D =2.79     10         and         G =1.131 ~ 10 Geometry Factors,         C2'.=-I 4
I - b
 
a I+2 In   a b
C3
                                                                            .'.=
b 4a, b
                                                                                        +
a I In a
 
b
                                                                                                        +
b a
I C8:=-I I+
2
                                            +
b C9 a
 
                                                                                '=-b I+v In 2
a b
                                                                                                  +
I-v 4
I b a
2 which gives,        C2    0.043            C 3 ~0.004 C8    08'6              C 9 ~0.23 COMED PL Evaluation                            Valve ID: 2ICS MOV128                                                page  1 PICS128A.MCD
 
Niagara Mohawk Power Corporation                                      NMP 2                                            Page Zgofi S Nuclear Engineering                                          Calculation Cont. Sheet Rev. 01    7'10.1-AD403, Origina! or/Date                                                  Checkor/Da! e 2 c/is Jap                                                  p- j-f7 Addit/onal Geomet/y Factors,                                    rp '.=b 2              4                2                2 I+4        fp -           fp -4.        fp                fp L 11 '=                          5                            ~
2+              ln 64            a              a              a                  a          rp L17.'=-I I -
4 I-Y -
4 I
a 0
4
 
a 0
2 I+(I+Y) ln          a rp which gives,              L I I =3.398      10              and                L17 ~0.04      ~
Moment Factors, DPavga            C9 (
Mrb'                        2ab 2
                                                        'pj            1(                  ~b:=
2b
                                                                                                        .'"'( *-    0*)
C8 which gives, M rb -<98.979                and            Qb    I 021  Ip k
Deflection from pressure(bending, 4
3 avg a yb  '=M*C2+Qb' a                    a C3-                      LII o                    o                  o which gives,                 yb q =-1.078-10 Deflection from pressure          Ishear, 2                                                          2 r'p                      K m'DP avg I+
rp                                                            a 21n  -                                21n-a K~:=-0.3                                      ~
I b              a                      b                              t.G III which gives,                K sa      %.066                  and                y sq ~%.877 10 Deflection from pressure          lhub stretch, P fpfee  't  (a      b ) DP avg                              y stretch '=
P fpfce'L ttb 2E which gives,                P fp~ =1.964            10        and        y ~h =-2.131        10 COMED PL Evaluation                                   Valve ID: 2ICS'MOV128                                             page 2 PICS128A.MCD
 
Niagara Mohawk Power Corporation                                NMP 2 Nuctear Engineering                                    Calculation Cont. Sheet A10,1.AD403, Rev. 01 Originator/Date                                            Checker/Date uo~r~~ <-d~ p                  c/~Vpp Total Deflection due to pressure,                            yq: ybq~ysq+y~~h which gives,          y =-1.787    10 Additional Geometry Factors ro.'=a L3,-    ro 4a ro a
2
                                +I    In  +
a ro ro
                                                  -
a 2
I          L9 -'=
a
 
ro I+v 2
In a
ro
                                                                                                +
I-v I-4 ro a
21 ybw Ksa:=-
              '9  a3.w 1.2 D
which gives, Deflection from seat load/bending, ro ro
 
a C2 ro C9 C8 Deflection from seat load!shear, In-b b
L3 =0 ro.c3 y ~.'=Ksa b
w:= I


Niagara Mohawk Power Corporation Nuclear Engineering Origina!or/Date 2 c/is Jap NMP 2 Calculation Cont.Sheet Checkor/Da!
tG
e p-j-f7 Page Zgofi S 7'10.1-AD403, Rev.01 Addit/onal Geomet/y Factors, rp'.=b 2 4 2 2 fp fp fp fp L 11'=-I+4--5--4.-~2+-ln-64 a a a a rp I L17.'=-4 4 2 I-Y 0 0 a I--I----I+(I+Y)ln-4 a a rp which gives, L I I=3.398 10 and Moment Factors, L17~0.04~Mrb'DPavga C9 (2'pj 1(C8 2ab~b:=.'"'(*-0*)2b which gives, M rb-<98.979 and Q b I 021 Ip k Deflection from pressure(bending, a a avg a 3 4 yb'=M*-C2+Qb'C3-LII o o o which gives, yb=-1.078-10 q Deflection from pressure I shear, 2 a rp r'p K~:=-0.3 21n--I+-~I-21n-b a b 2 K m'DP avg a t.G which gives, K sa%.066 and III y~%.877 10 sq Deflection from pressure l hub stretch, P fpfee't (a b)DP avg P fpfce'L y stretch'=ttb 2E which gives, P fp~=1.964 10 and y~h=-2.131 10 COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS'MOV128 page 2
                                                                + L3 and which gives,
                                                                                    'L9 which gives, 0
y bw =-3.67 Ksa  W.448 10 y ~ ~-,1.743  10 Deflection from seat load/hub compression, L
                          - 2'tt'a   2 y compr
                      'tb                        which gives,               y compr    3'033 10 Total Deflection from unit seat load, y w:=y bw+y ~+y compr                          which gives,           y w =-5.443 10 Equilibrium contact load distnbut/on, w equiIibrium        yq          which givest          w cqtulibzum    328.415 yw Load per seat =           2 tt a yq  =9.183 ~ 10 yw Pressure Locking Force, COMED PL Evaluation                               Valve ID: 2ICS'MOV128                                           page 3 PICS128A.MCD


Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date uo~r~~<-d~p c/~Vpp NMP 2 Calculation Cont.Sheet Checker/Date A10,1.AD403, Rev.01 Total Deflection due to pressure, yq: ybq~ysq+y~~h which gives, y=-1.787 10 Additional Geometry Factors ro.'=a ro L3,--4a 2 2 ro a ro+I In-+--I a ro a ro L9-'=-a 21 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3=0 and'L9 0 Deflection from seat load/bending, w:=I a3.w C2 ro C9 ro.c3 ybw'9--+L3 D C8 bb which gives, y bw=-3.67 10 Deflection from seat load!shear, ro ro Ksa:=-1.2-In-a b y~.'=Ksa-which gives, Ksa W.448 tG y~~-,1.743 10 Deflection from seat load/hub compression,-2'tt'a y compr'tb L 2 which gives, y compr 3'033 10 Total Deflection from unit seat load, y w:=y bw+y~+y compr which gives, y w=-5.443 10 which givest w cqtulibzum 328.415 Equilibrium contact load distnbut/on, yq w equiIibrium yw Load per seat=2 tt a-=9.183~10 yq yw Pressure Locking Force, COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS'MOV128 page 3 It Niagara Mohawk Power CorPoration Nuctear Engineenng Originator/Date Z c Xs~~v A.~/P'/t,r Zzlpp NMP 2 Catculation Cont.Sheet Checker/Date
It Niagara Mohawk Power CorPoration                          NMP 2                                                Pagano/ /97 Nuctear Engineenng                                Catculation Cont. Sheet
~re tr'I" Pagano//97 A10.1.AD403, Rev.01 Yq 3 F pres lock 2 tt a-(p cos(1)-sin(e))2 which gives, F pres lock=9.938'0 Vw Piston Effect Force, Pau'.=0 tt Fpinon Wmt''Dm'(Phoner Penn)r which g/ves, F piston effec"Reverse Piston Effect" Force, Frets.=[as (2Phonnet up-Pttoten)]sin(S)
                  ~
Total Force Re uired to Overcome Pressure Lockin which gives, F v~6 506 10 F total l=F pres lock+F po+F vert-F piston which gives, F>~2.854914.10 ACTUATOR CAPABILITY:
A10.1.AD403, Rev. 01 Originator/Date                                        Checker/Date Z c Xs ~ ~ v A.           /P'/t,r Zzlpp                       ~re tr 'I" F pres lock       2 tt a   (p Yq cos(1) - sin(e))   2       which gives,     F pres lock = 9.938'0 3
Actuator Mode!I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Vw Piston Effect Force,                         Pau   '.=0 r
Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor: Thrust Capability:
tt Fpinon     Wmt''Dm             '(Phoner     Penn)           which g/ves,     F piston effec "Reverse Piston Effect" Force, Pttoten)]sin(S)            which gives,      F v~    6 506 10 Frets.=[as (2Phonnet               up Total Force Re uired to Overcome Pressure Lockin F total l= F pres lock+ F po+ F vert - F piston which gives,       F >~       2.854914.10 ACTUATOR CAPABILITY:
THcap:=-TQout Sf=SB-2-60 TQm.'=58.37 OGR:=72.01 Af:=0.9 Eff:=0.4 RV:=0.8703 TQout=1.146 10 Sf:=0.029481 THcap~3.888 10 ft-1bs ft-1bs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURELOCIQNG METHODOLOGY:
Actuator Mode! ISize:                                                                 = SB-2-60 Motor Torque Output:                                                            TQm .'=58.37           ft- 1bs Gear Ratio:                                                                      OGR: = 72.01 Application Factor:                                                              Af:=0.9 Pullout Efficiency:                                                              Eff:=0.4 Reduced Voltage:                                                                  RV: = 0.8703 Torque Output:                TQout:= TQm RV OGR          AfEff              TQout = 1.146 10         ft- 1bs Stem Factor:                                                                      Sf:= 0.029481 TQout Thrust Capability:              THcap:=                                    THcap ~3.888 10           1bs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC.
KEI:=1.20 Thrust Mtntpn:=THoap-(F n,uu KE!)Thrust Margin 4.617'10 1bs
ENHANCED PRESSURELOCIQNG METHODOLOGY:                                         KEI:=1.20 Thrust Mtntpn:= THoap (F n,uu KE!)
Thrust Margin       4.617'10     1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS MOV128 page 4  
COMED PL Evaluation                           Valve ID: 2ICS MOV128                                           page 4 PICS128A.MCD


Niagara Mohawk Power Corgoration Nuoiear Engineering NMP 2 Calculation Cont.Sheet cheekerioste~
Niagara Mohawk Power Corgoration                           NMP 2 Calculation Cont. Sheet Pageant/'0 7 Nuoiear Engineering A10.1-AD403, Rev. 01 cheekerioste~ r/</r7 Valve ID no: 2ICS'MOV129 Re uired         0 enin       Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS:
r/</r7 Pageant/'0 7 A10.1-AD403, Rev.01 Valve ID no: 2ICS'MOV129 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Valve Disk Geometry: hub radius, b:=2.25 mean seat radius, a:=3 average disk thickness, t:=0.378 e:=-'" e=o.o61 2 180 e ishalfdiskangle a hub length, L:=0.125 seat angle, u:=7 Valve Disk Material Properties:
Design Basis Conditions at time of Pressure Locking Event:
modulus of elasticitY, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=76 Valve Bonnet pressure (psig), P bonn<<=2799 Downstream pressure (psig), P do~0 Other Valve Parameters:
Upstream pressure (psig),            P      .=76        Valve Bonnet pressure (psig), P bonn<<          = 2799 p
Valve Stem Diameter, D<~.=1.5 Valve Factor VF:=0.65 Static Unseating Thrust, F~.=5924 (reference:
Downstream pressure (psig), P do~                0 Valve Disk Geometry:
Test&#xb9;12, 6/QM3)(reference:
hub radius,         b:= 2.25       mean seat radius,           a:= 3     average disk thickness,       t:=0.378 hub length,       L:=0.125         seat angle,         u:=7               e:=-'"          e =o.o61 2 180 Valve Disk Material Properties:                                                         e  ishalfdiskangle      a modulus of elasticitY,       E:=29400000             Poisson's Ratio, v:=0.3 Other Valve Parameters:
NER-2M-010)
Valve Stem Diameter,         D <~.=     1.5       Static Unseating Thrust,       F~.=5924 (reference: Test 12,  &#xb9;     6/QM3)
Valve Factor          VF:=0.65                      (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, It.,=cue)-sin(e)It 0.676 (reference
Coefficient of friction between disk and seat,             It.,=     cue)
&#xb9;6)Average DP Across Disk, Disk Stlffnes Constants, avg'onnet Pup+Pdo~gives;DP av<=2.761~10 2 D:=and G:=Et E u (1-.*j 2 (1+v)which gives, D=1.454 10 and G=1.131~10 1 b a, b b a b GeometryFactors, C2.'=-I--I+2.1n-C3'.=--+1 ln-+--I 4 a b 4a a b a 1 b 2 C8.=-1+v+(1-v)-2 a b I+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.028 C 8~0.847 C 3~0.002 C 9~0.198 COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS'MOV129 page 1
It 0.676     (reference     &#xb9;6)
                                                                      - sin(e)
Pup+Pdo~
Average DP Across Disk,                 avg 'onnet                 2 gives;     DP av< =2.761 ~ 10 Disk Stlffnes Constants,          D:=       Et            and       G:=     E u (1 .*j                         2 (1+v) which gives, GeometryFactors, D =1.454 C2.'=- 1 4
10 I - b
 
a and I+2.1n     a, G =1.131 ~ 10 b
C3'.= b 4a b
 
a a
                                                                                            +1 ln +
b b
a
                                                                                                                -  I C8.=- 1 2
1+   v+(1- v)     b a
2 C
a 1-9.--b I+v ln 2
a b
                                                                                                +
1 4
v       b a
2 which gives,        C2    0.028              C 3 ~0.002 C 8 ~0.847                C 9 ~0.198 COMED PL Evaluation                            Valve ID: 2ICS'MOV129                                              page    1 PICS129A.MCD
 
Niagara Mohawk Power CorPoration                                    NMP 2                                              PageMot  tp T Nuctear Engineering                                        Catcutation Cont Sheet A10.1-AD403, Rw. 01 Onginator/Date                                                    Checker/Date Wc,~~a, A'.Quar S          c./ip~
Additional Geomet/y Factors,                                    rp .'=b 2            4              2              2 fp              fp 11 I
I+ 4 rp
                                      -5    rp
                                                    -4            ~
2+          ln-64              a              a            a                a        rp L 17 I
            '.=-.
4 I- -
I v 4
I rO a
4
 
rO a
2 I +(I+ v)    In a rp which gives,               L I I =1.453      10            and            L 17 =0.027
 
Moment Factors, Mg:=-
DP avg cs a
2 C9 2ab., (
 
0 j-"I7                      ~b:=
2b
                                                                                                  '"'('-      0')
which gives, Mrb =%03.057              and          Qb ~2.416    10 Detiection from pressureIbend/ng, 4
3              avg.a yb '.=Mrb- C2+Qb a                  C3-a LII o                  o                o which gives,                    yb q --8.049        10 Deflection from pressure            Ishear, 2                                                    2 K:=-0.3         2 In a
I+    'o I-21n-            'o                        sa'vg      a sa' a                    b                            tG which gives,                  Ksa      041              'nd                y sq ~-2.404    10 Deflection from pressure /hub stretch,
                                                                                        -P force L P fore'0   Tt (a      b ) DP avg                          y stretch '=
ttb 2E which gives,                  P force      3 415 10          and      y stretch    -4.565 10 COMED PL Evaluation                                   Valve ID: 2ICS MOV129                                              page 2 PICS129A.MCD
 
Niagara Mohawk Power CorPoration                                NMP 2                                            Page gd Nuotear Engineering                                    Calcutatton Cont. Sheet                                          oflVV'10.1-ADOOS, Rev. 01 Ortginatorioate                                            checker/Dmto~          p/j/rp Woe~-. 4.Cavy c/~/pp Total Deflection due to pressure,                            yq'=ybq+ysq+yst        tch which gives            y q =~001 Addilional Geometry'actors ro.'=a L3    = ro 4a ro a
2
                                +1    1n r
a    ro
                                                +  -1 a
2 L9 .'.
a
 
ro 1+v 2
ln a
ro
                                                                                                +
1 v 4
1-ro a
which gives,              L3 =0              and          L9 =0 Deflechon fram seat load/bending,                          w:= I
                                          -L9 -
IP
              '.=-
as.w    C2 ro C9                  roC3 yb                                                      +L3      which gives,      y bw =-1.088  10 D      C8        b                  b Deflection from seat load/shear, ro ro
 
Ksa: =-1.2 a
In-b                y~'.=Ksa-a tG which gives,          Ksa  <.345 y sw ~-2.423 10 Deflection from seat load/hub compression, L
                          -2 rta    2 y compr '=                          which gives,              y compr =-252'10 rtb 7otal Deflection from unit seat load, y w:=y bw+y sw+y compr                        which gives,            yw    1332 10 Equilibrium contact load distribution, yq            which gives,        w cqtttTtbrtttm 787.968 cqttitibrtttm w
Load per seat =            2 rt a yq  = 1.485 10 yw Pressure Locking Force, COMED PL Evaluation                              Valve ID: 2ICS MOV129                                         page 3 PICS129A.MCD


Niagara Mohawk Power CorPoration Nuctear Engineering Onginator/Date Wc,~~a, A'.Quar S c./ip~NMP 2 Catcutation Cont Sheet Checker/Date PageMot tp T A10.1-AD403, Rw.01 Additional Geomet/y Factors, rp.'=b I 11 64 2 4 2 2 rp rp fp fp I+4--5--4-~2+-ln-a a a a rp I L 17'.=-.4 4 2 I-v rO rO a I--I----I+(I+v)In-4 a a rp which gives, Moment Factors, L I I=1.453 10 and L 17=0.027 Mg:=-2 DP avg a cs C9-(-0 j-"I7 2ab.,~b:=-'"'('-0')2b which gives, Mrb=%03.057 and Qb~2.416 10 Detiection from pressureIbend/ng, a a avg.a 3 4 yb'.=Mrb-C2+Qb-C3-LII o o o which gives, yb--8.049 10 q Deflection from pressure I shear, 2 a'o'o K:=-0.3 2 In--I+-I-21n-sa'a b 2 sa'vg a tG which gives, Ksa 041'nd y~-2.404 10 sq Deflection from pressure/hub stretch, P fore'0 Tt (a b)DP avg-P force L y stretch'=ttb 2E which gives, P force 3 415 10 and y stretch-4.565 10 COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 2
lg Fy


Niagara Mohawk Power CorPoration Nuotear Engineering Ortginatorioate Woe~-.4.Cavy c/~/pp NMP 2 Calcutatton Cont.Sheet checker/Dmto~
Niagara Mohavttk Povtrer Corporation                                NMP 2                                               Page2 lot I 7 7 Nuclear Engineering                                      Calculation Cont. Sheet A10.1.AD403, Rev. 01 Originatorloate
p/j/r p Page gd oflVV'10.1-ADOOS, Rev.01 Total Deflection due to pressure, Addilional Geometry'actors yq'=ybq+ysq+yst tch which gives y q=~001 ro.'=a ro L3=-4a 2 2 ro a ro+1 1n-+--1 a r a ro L9.'--.a r 1+v a 1-v o-ln-+-1-2 ro 4 a which gives, L3=0 and L9=0 Deflechon fram seat load/bending, w:=I IP as.w C2 ro C9 roC3 yb'.=-----L9--+L3 D C8 b b which gives, y bw=-1.088 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b a y~'.=Ksa-tG which gives, Ksa<.345 y sw~-2.423 10 Deflection from seat load/hub compression,-2 rta y compr'=rtb L 2 which gives, y compr=-252'10 7otal Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, yw 1332 10 Equilibrium contact load distribution, cqttitibrtttm which gives, yq w Load per seat=2 rt a-=1.485 10 yq yw w cqtttTtbrtttm 787.968 Pressure Locking Force, COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 3 lg Fy Niagara Mohavttk Povtrer Corporation Nuclear Engineering Originatorloate
'Qp~r y>>       <. Cecq /gQ           j /F7                       Checker/Date
'Qp~r y>><.Cecq/gQ j/F7 NMP 2 Calculation Cont.Sheet Checker/Date ,g HII Page2 lot I 7 7 A10.1.AD403, Rev.01 Vq F p 1 o c k 2 1 t a (p co s (0)s in (8))2 w hi c h gi v e s, F p, 1 o c 1'w Piston Effect Force, P au:=0 1t 2 I"piston street''tem'i bonnet atm)piston effect"Reverse Piston Effect" Force, F vett tt a 2 P bonnet P up P tlown stn()which gives F vert 9 532 1 0 Total Force Re ulred to Overcome Pressure Lockln F total: F pres 1ock+F po t F>crt F pisto which gives, F<<~=2.872746 10 ACTUATOR CAPABILITY:
                                                                              ,g HII Vq F
Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
p     1 oc k     2 ta 1
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
1'w
TQout THcap'.=-, Sf TQout:=TQm RV OGR.Af Eff ft-lbs ft-Ibs=SMB-00-10 TQm:=10.0 OGR:=36.2 Af:=0.9 Eff:=0.4 RV:=0.8252 TQout 107.54 Sf:=0.015334 THcap=7.013 10'bs ENHANCED PRESSURE LOCNNG METHODOLOGY:
( p co s ( 0 )   s in ( 8 ) ) 2     whi ch gi ve s,   F p,   1 oc Piston Effect Force,                                 P au:=0 "piston     street''tem'i2 I 1t bonnet           atm)                             piston effect "Reverse Piston Effect" Force, F vett       tt a   2 P bonnet     P         P tlown         stn( )       which gives         F vert   9 532 1 0 up Total Force Re ulred to Overcome Pressure Lockln F total: F pres 1ock+ F po t F >crt             F pisto which gives,             F <<~ =2.872746         10 ACTUATOR CAPABILITY:
KEI:=1.20 Tbrnst Margin:=THoap-(F>>mt KEI)Thrust Margin~-2.746 10 1bs
Actuator Model /Size:                                                                           = SMB-00-10 Motor Torque Output:                                                                        TQm:= 10.0             ft- lbs Gear Ratio:                                                                                OGR:=36.2 Application Factor.                                                                          Af:=0.9 Pullout Efficiency:                                                                          Eff:=0.4 Reduced Voltage:                                                                            RV: = 0.8252 Torque Output:                  TQout:= TQm RV OGR.Af Eff                                TQout    107.54         ft- Ibs Stem Factor.
Thrust Capability:                THcap '.=  ,
TQout Sf Sf:= 0.015334 THcap =7.013 10         'bs ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                 KEI:= 1.20 Tbrnst Margin: = THoap (F >>mt KEI)
Thrust Margin ~ -2.746 10                 1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                                  Valve ID: 2ICS MOV129                                                page 4 PICS129A.MCD
0 Niagara Mohawk Power Corporation                                      NMP 2                                                    Page QO/  /P 7 Nuclear Engineering                                          Calculation Cont. Sheet A10.1 AD403. Rev. 01 Originator/Date                                                  Checker/Date
                                          ~/i~/vr Valve ID no: 2RHS MOV115 Re uiredO enin                        ForceDeternminafionunderPressureiockin                                            Condifions COMED Method DESIGN Design Basis Conditions at time of Pressure Locking Event:
                                                .= 85            Valve Bonnet pressure (psig), P bonnet '= 7105 INPUTS'alve Upstream pressure (psig),                    P Downstream pressure (psig), P do~                          0 Disk Geometry:
hub radius,                  b:=5.75        mean seat radius,            a:=7.703 average disk thickness,              t;=1.644 hub length,                L:=0.25          seat angle,          a '= 10            0:=-'"                0 -0.087 2 180 Valve Disk Material Properties:                                                                      0    ishalfdiskangle a modulus of elasticity,                E:=29400000              Poisson's Ratio, v:=0.3 Other VaNe Parameters:
Valve Stem Diameter,                  D ~.= 2.375'tatic Unseating Thrust,                      F po 12604
                                                                                    &#xb9; (reference: Test 4, 6/24/93)
Valve Factor                  VF:= 0.5                      (reference: NER-2M-010) 1 CALC ULATIONS:
Coefficient              of fnction between disk and seat,          It:=      ~<0) sin(0)
It 0.521    (reference    &#xb9;6)
P~+Pdo~
Average DP Across Disk,                          avg  'onnet                  2 gives,        DP ag =7.063 10 Disk St/ffnes Constants, Et 3          and        G:=
12  I-v                              2 (1+v) which gives,              D =1.196    10          and          G    1.131 ~ 10 Geometry Factors,                  C 2'.=-I 4
I  -  b
a
                                                          ~
I + 2 In a
b
                                                                                      ".
C 3 ',=  b 4a b
                                                                                                    +I a
In a
b
                                                                                                                      +
b a
                                                                                                                              - I C8  I 2
                                                '+ v+(I - v)        b a
2 C9.--      I-    In    +
2 which gives,                  C 2 ~0.029                C 3 ~0.002 C 8 ~0.845                C9 =02 COMED PL Evaluation                                      Valve ID: 2RHS MOV115                                                  page    1 PRHS115A.MCD
0 Niagara Mohawk Power Corporation                                  NMP 2                                                    Pagea/of/'3T Nuclear Engineering                                      Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date Wc~i~~ W.imp                c.gp/pp Chaclterllhte e
                                                                                      ~Q g/~
Additional Geometry Factors,                                  rp"=b 2              4                2                    2 L II '=  I 1 +4    0 -
5 - 4 0                0 2+
rp ln- a 64          a              a                a                      a        rp L17 I
4 I-  I-I-v 4            a 0
4 rp a
2 I+(I+v) In-              a rp which gives,          L I I =1.535      10            and                    L17 ~0.028 Moment Factors, Mrb '.=-
DPavga C8 2
                                ~  -
C9 /
2ab      ~a      rp,i - L17                                        2b
                                                                                                            '(    Oi which gives, Mrb =-1.57            10    and                  Qb    1.614 10 Deflection from pressureibending, 4
                            'rb'C2+Qb'C3 a
D                . D a              "avg'b D
                                                                                            'Lll which gives,                yb q =W.OOI Detiecfion from pressure /shear, K~:=-0.3 21n        a -
I+    rp 2
                                                        ~  1-21n-    rp                              stt'vg a2 b  -'
b                                t.G which gives,            K aa =%.043                            and              y~ = %.605'O Defie&#xc3;on from pressure lhub stretch,
                                                                                                -P forciL Pforca't  (a      b ) DPavg                                    ystretch-ttb 2E which gives,              P  f0~        5.829 10                  and        y ~t h    -2.386 10 CQMED PL Evaluation                                Valve ID: 2RHS'MOV115                                                      page 2 PRHS115A.MCD
                                                                          ~
Niagara Mohawk Power Corporation                              NMP 2                                                Page32of  r&7 Nuotear Engineering                                  Calculation Cont. Sheet A10.1-AtM03, Rev. 01 Originatorloate                                          Checker/DIt ~
p/1)gg Vo~rvp e 4.Qm a              c  /(s lp 7 Total Deflection due to pressure,                          yq: ybq+ysq+y~~h which gives,,          y q =%.002 Additional Geometry Factors r "=a L3    ro 4a ro a
2
                              +I    In +  - I r
a      ro a
2 L9.=
a
rp I+v 2
                                                                                      ~
In a
rp
                                                                                                  +
I- I-4 v        ro a
2 which gives,            L3 =0                and            L9 =0 Detlection from seat load/bending,                      w:= I ybw'9      D C2 rpC9 C8      b


Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
fpC3 b
COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 4 0
                                                              + L3      which gives,         ybw =-2.338      10 Deflection from seat load/shear, Ksa: =-1.2   In-                   y sw  '=~'Ga              which gives,           Ksa    -0.351 a      b y'w      -1.454'10 Deflection from seat load/hub compression, L
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
                        -2'tt'a 2 y compr
~/i~/vr NMP 2 Calculation Cont.Sheet Checker/Date Page QO//P 7 A10.1 AD403.Rev.01 Valve ID no: 2RHS MOV115 Re uiredO enin ForceDeternminafionunderPressureiockin Condifions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=5.75 hub length, L:=0.25 mean seat radius, a:=7.703 average disk thickness, t;=1.644 seat angle, a'=10 0:=-'" 0-0.087 2 180 0 ishalfdiskangle a Valve Disk Material Properties:
                      'tb                      which gives,               y~    r =-1.981
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other VaNe Parameters:
                                                                                              ~
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P.=85 Valve Bonnet pressure (psig), P bonnet'=7105 Downstream pressure (psig), P do~0 It 0.521 (reference
10 Total Deflection from unit seat load, y w:=y bw+y sw+y eompr                        which gives,           yw      3'811 10 Equilibrium contact load distnbution, w equiiibritm:=
&#xb9;6)Valve Stem Diameter, D~.=2.375'tatic Unseating Thrust, F po 12604 (reference:
yq          which gives,           w equilibrium 5'6N        IP yw Load per seat ~         2 tt a yq  = 2.712 10 yw Pressure Locking Force, COMED PL Evaluation                           Valve ID: 2RHS'MOV115                                                 page 3 PRHS115A.MCD
Test&#xb9;4, 6/24/93)Valve Factor VF:=0.5 (reference:
NER-2M-010) 1 CAL C ULA TIONS: Coefficient of fnction between disk and seat, It:=~<0)-sin(0)Average DP Across Disk, Disk St/ffnes Constants, gives, DP ag=7.063 10 and G:=2 (1+v)P~+Pdo~avg'onnet 2 Et 3 12 I-v which gives, D=1.196 10 and G 1.131~10 I b a".b b a b Geometry Factors, C 2'.=-I--~I+2 In-C 3',=--+I In-+--I 4 a b 4a a b a I b 2 C8-'+v+(I-v)-2 a 2 C9.---In-+-I-which gives, C 2~0.029 C 8~0.845 C 3~0.002 C9=02 COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS MOV115 page 1 0
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Wc~i~~W.imp c.gp/pp NMP 2 Calculation Cont.Sheet Chaclterllhte
~Q g/~e Pagea/of/'3T A10.1-AD403, Rev.01 Additional Geometry Factors, rp"=b 2 4 2 I 0 0 0 L II'=-1+4--5--4 64 a a a 2 rp a 2+-ln-a rp I L17 4 4 I-v 0 I--I--4 a 2 rp a I+(I+v)In-a rp which gives, L I I=1.535 10 and Moment Factors, 2 DPavga C9/Mrb'.=-~-~a-rp,i-L17 C8 2ab L17~0.028'(Oi 2b which gives, Mrb=-1.57 10 and Q b 1.614 10 Deflection from pressureibending, 4 a a"avg'b'rb'C2+Qb'C3
'Lll D.D D which gives, yb=W.OOI q Detiecfion from pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-~1-21n-b-'b 2 stt'vg a t.G which gives, K aa=%.043 and y~=%.605'O Defie&#xc3;on from pressure lhub stretch, Pforca't (a b)DPavg-P forciL ystretch-ttb 2E which gives, P f0~5.829 10 and y~t h-2.386 10 CQMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 2


Niagara Mohawk Power Corporation Nuotear Engineering Originatorloate Vo~rvp e 4.Qm a c/(s lp 7 NMP 2 Calculation Cont.Sheet Checker/DIt
0 Niagara Mohawk Power Corporation                             NMP2                                                Page&of  /3'7 Nuoiear Engineering                                Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originatot/Date                                          Checker/Date z~~g~g; A. 4 ~ 8/zHs7 lock'= 2   11 a "
~~p/1)gg Page32of r&7 A10.1-AtM03, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq: ybq+ysq+y~~h which gives,, y q=%.002 r"=a ro L3--4a 2 2 ro a ro+I In-+--I a r a rp L9.=-a 2 I+v a I-v ro-~In-+-I-2 rp 4 a which gives, L3=0 and L9=0 Detlection from seat load/bending, w:=I C2 rpC9 fpC3 ybw'9--+L3 which gives, D C8 b b ybw=-2.338 10 Deflection from seat load/shear, Ksa:=-1.2-In-a b a y sw'=~'G which gives, Ksa-0.351 y'w-1.454'10 Deflection from seat load/hub compression,-2'tt'a y compr'tb L 2 which gives, y~r=-1.981~10 Total Deflection from unit seat load, y w:=y bw+y sw+y eompr which gives, y w 3'811 10 Equilibrium contact load distnbution, yq w equiiibritm:=
Yq (p'cos(e)- sin(e)) 2       "
-which gives, yw Load per seat~2 tt a-=2.712 10 yq yw w equilibrium 5'6N IP Pressure Locking Force, COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 3 0
whichg/ves,     F pres loci; pres Yw Piston Effect Force, piston etreot
Niagara Mohawk Power Corporation Nuoiear Engineering Originatot/Date z~~g~g;A.4~8/zHs7 NMP2 Calculation Cont.Sheet Checker/Date Page&of/3'7 A10.1-AD403, Rev.01 Yq pres lock'=2 11 a-" (p'cos(e)-
                          '=   'tem '(   bonnet       atm)         whicl gives,     F piston egect "Reverse Piston Effect" Force,
sin(e))2" whichg/ves, F pres loci;Yw Piston Effect Force, piston etreot'='tem'(bonnet atm)whicl gives, F piston egect"Reverse Piston Effect" Force,.I Pont/=[a a (2 P bonnet np Pttonn)]sin(g)Total Force Re uired to Overcome Pressure Lockin which gives, F~=2.295 10 F totd:=F p~I~k+Fpo+F v~-Fpi~n erect which gives, F to d 4.447654 10 ACTUATOR CAPABIUTY'Qout THcap:=-Sf Actuator Model I SIze: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                . I Pont/=[a       a (2 P bonnet     np   Pttonn)] sin(g)             which gives,       F~ =2.295     10 Total Force Re uired to Overcome Pressure Lockin F totd:=F p~ I~k+Fpo+F v~- Fpi~n                 erect which gives,       F to d     4.447654 10 ACTUATOR Actuator Model ISIze:                                                                     = SMB-0-25 Motor TorqueCAPABIUTY'Qout Output:                                                      TQm .'= 24.67           ft- lbs Gear Ratio:                                                                        OGR:=58.13 Application Factor:                                                                  Af:=0.9 Pullout Efficiency:                                                                  Eff:=0.4 Reduced Voltage:                                                                    RV:= 0.8767 Torque Output:                  TQout."= TQm RV -OGR        AfEff                TQout = 396.802         ft- lbs Stem Factoi:
Reduced Voltage: Torque Output: TQout."=TQm RV-OGR Af Eff Stem Factoi: Thrust Capability:
Thrust Capability:                THcap: =  Sf                                THcap Sf: = 0.023664 1.677 10       lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
=SMB-0-25 TQm.'=24.67 OGR:=58.13 Af:=0.9 Eff:=0.4 RV:=0.8767 TQout=396.802 Sf:=0.023664 THcap 1.677 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.Jt ENHANCED PRESSURE LOCIQNG METHODOLOGY:
Jt ENHANCED PRESSURE LOCIQNG METHODOLOGY:                                         KEI:= 1.20 Tbrnst Margin:= THoap (pmmt KBI)
KEI:=1.20 Tbrnst Margin:=THoap-(pmmt KBI)Thrust Margin~-5.17 10 1bs
Thrust Margin ~ -5.17 10         1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 4  
COMED PL Evaluation                           Valve ID: 2RHS'MOV115                                             page 4 PRHS115A.MCD


Niagara Mohawk Power Corporation Nuotear Engineering Originator/Date
                                                                                      ~
<</c'r/r 7 NMP 2 Calcutation Cont.Sheet Ch<<kerlD le~>//~Pageggf 1 37 A10.1.AD403.
Niagara Mohawk Power Corporation Nuotear Engineering NMP 2 Calcutation Cont. Sheet Pageggf 1 37 A10.1.AD403. Rev. 01 Originator/Date
Rev.01 Valve IDno: 2RHS'MOV116 Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=5.75 mean seat radius, a.'=7.703 average disk thickness, t:=1.644 a tt seat angle, a.=10 0:=--0=0.087 2 180 0 ishalfdiskangle a hub length, L:=0.25 Valve Disk Material Properties:
                                            <</c'r/r 7 Ch<<kerlD le
modulus ofelas&#xc3;city, E:=29400000 Poisson's Ratio,''.=0.3 Other Valve Parameters:
                                                                                                >// ~
Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), Pp.=133 Valve Bonnet pressure (psig), P bonnet=1868 Downstream pressure (psig), P down 0 Valve Factor VF:=0.5 Valve Stem Diameter, D~..=2.375 Static Unseating Thrust F po 16894 (reference:
Valve IDno: 2RHS'MOV116 Re uiredO enin                         ForceDeternminationunderPressureLockin                                           Conditions COMED Method DESIGN Design Basis Conditions at tIme of Pressure Locking Event:
Test&#xb9;10, 7/10195)(reference:
INPUTS'alve Upstream pressure (psig),                    P    .= 133          Valve Bonnet pressure (psig), P bonnet              = 1868 p
NER-2M-010)
Downstream pressure (psig), P down                          0 Disk Geometry:
hub radius,                   b:= 5.75         mean seat radius,               a.'=7.703 average disk thickness,           t:= 1.644 hub length,                L:=0.25            seat angle,           a.=10 0:=-a tt 2 180 0 =0.087 Valve Disk Material Properties:                                                                       0  ishalfdiskangle a modulus ofelas&#xc3;city,                   E:=29400000               Poisson's Ratio, ''.=0.3 Other Valve Parameters:
Valve Stem Diameter,                   D ~   ..=2.375       Static Unseating Thrust (reference: Test         &#xb9; 10, F
po 7/10195) 16894 Valve Factor                    VF:= 0.5                      (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk end seat, it:=cos(0)--sin(0)I VF p 0.521 (reference
cos(0)
&#xb9;6)Average DP Across Disk, Disk StNnes Constants, up+"down DP avg'.=P bonnet 2 glvesr D;=and G:=i2.(1-')2 (1+v)DP av I 802 10 which gives, D 1.196 10 and G=1.131~10 I b a b b a b GeometiyFactors, C2.=-I--1+2 ln-C3'.=--+I ln-+--I 4 a b 4a a b a I b 2 b I+v a I-v b 2 C8:=-'+v+(I-v)C 9,---In-+-I--2 a a 2 b 4 a which gives, C 2 0.029 C 8 0.845 C 3=0.002 C 9=0.2 COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 1 0 w}
Coefficient             of friction between disk end seat,             it:=
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date
                                                                                -
+~~ape+-OW2 r Xp(gp NMP 2 Calculation Cont.Sheet Checkerloate
VF I
~g~/p Page'PS of~>>Ato.t-AD403, Rev.01 Additional Geometry Factors, rp.'=b 2 4 2 2 I fP rP rP fP L 1 1'.=-1+4--5--4-~2+-In-64 a a a a rp I L 17-=-.4 2 I-v rp rp a I--I----I+(I 1-v)In-4 a a rp which gives, L 1,1=1.535 10 and Moment Factors, 2 DPavga C9/~(a-rp (-L17 C8 2ab L17=0.028'rib.-'"'.(a'-r,*j 2b which gives, M~=-4.005 10 and 3 Qb=4 116 IO Defiedion from pressure/bending, a a avg.a 3 4 yb'=Mrb-C2+Qb-C3-LII D D D which gives, yb~-2.937 10 q Detiection from pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 In-b a b 2 m Pavg a ysq which gives, K~~&.043 and y-245 10 sq DefieBion from pressure/hub stretch, P f"'(a b)DP g-P force L y stretch'v nb 2E which gives, P fo~1.487'10 and y stretch%.087'10 COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 2 lI I, Nktgara Mohawk Povrer Corporation Nuclear Engineering Ortginatorloate
sin(0) p   0.521     (reference   &#xb9;6) up+ "down Average DP Across Disk,                       DP avg   '.= P bonnet                               glvesr    DP av      I 802 10 2
~~~~y~~.8~al~s/j~NMP 2 Calculation Cont.Sheet Checker/Date
Disk StNnes Constants,                      D;=                         and         G:=
~le/e~Page/cot r>W A10.1-AD403.
i2. (1     ')                           2 (1+v) which gives,                 D   1.196 10           and           G =1.131 ~ 10 GeometiyFactors,                   C2.=-I 4
Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq+ysq+yst t h which gives, y q 5 448 10 ro;=a ro L3--.4a 2 2 ro a ro e-I In-+--I a ro a ro L9.'=-a 2 I+v a I-v ro-In-~-I-2 ro 4 a which gives, L3=0 and L9~0 Deflection from seat load/bending, w:=I as.w C2 ro C9 roC3 ybw-L9--+L3 which gives, D C8 b b y bw"2.338'10 Deflection from seat load/sheer, ro ro Ksa.'=-1.2-In-a b y sw.'=Ksa-which gives, tG Ksa~<.351 y sw~-1.454'10 Deflection from seat load/hub compression, L--2'tt'a 2 ycompr'=2'ttb E which gives, y~-1.981~10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w~-3.81I 10 which gives, w equilibrium
I-   b
~1.429 10 Equilibrium contact load distribution, yq w equilibrium
 
'=yw Load per seat=2 tt a-6.918 10 yq 4 yw Pressure Locking Force, COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 3  
a 1+2     ln a b
C3'.= b 4a b
                                                                                                      +
a I ln  a b
                                                                                                                        +
b a
I C8:=-'+I 2
v+(I- v)         b a
2 C
a
                                                                                                  -
9,--b I+v In 2
a b
                                                                                                                +
I v 4
I b
a 2
which gives,                   C2    0.029               C 3 =0.002 C8    0.845                C 9 =0.2 COMED PL Evaluation                                     Valve ID: 2RHS'MOV116                                                   page   1 PRHS116A.MCD
 
0 w}
 
Niagara Mohawk Power Corporation                                       NMP 2                                                  Page'PS of ~>>
Nuctear Engineering                                         Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Originator/Date                                                   Checkerloate
+~~ape +-OW2 r Xp(gp                                                                     ~g~ /p Additional Geometry Factors,                                     rp .'=b 2               4               2               2 L 1 1
            '.= I 1 +4   - -4 fP 5
rP            rP
                                                                      ~
2+   In fP 64           a               a             a                 a           rp L 17   -=-.I I  I- v I -
4 rp a
4
                                                    -  rp a
2 I + (I 1- v) In a rp which gives,             L 1,1 =1.535       10             and               L17 =0.028 Moment Factors, 2
DPavga           C9 / ~
(a   -rp (-L17                           'rib.-       '"'. (a'- r,*j C8          2ab                                                          2b which gives, 3
M~ =-4.005             10   and             Qb =4   116 IO Defiedion from pressure/bending, 4
3 avg.a
                              '=Mrb           C2+ Qb C3-a                  a yb D                   D                 D LII which gives,                   yb q ~-2.937         10 Detiection from pressure/shear, 2                                                         2 K ~:=-0.3 2 In         a b
                                          - I+
rp a
I-2 rp In-b                 ysq m Pavg     a which gives,                 K ~ ~&.043                     and               y sq -245     10 DefieBion from pressure /hub stretch,
                      "
                                                                                              -P force L P f     '   (a       b ) DP g                       y stretch   '
nb 2E v
which gives,                 P fo~       1.487'10             and         y stretch   %.087'10 COMED PL Evaluation                                   Valve ID: 2RHS'MOV116                                                   page 2 PRHS116A.MCD
 
lI I,
 
Nktgara Mohawk Povrer Corporation                                 NMP 2                                            Page/cot  r> W Nuclear Engineering                                       Calculation Cont. Sheet A10.1-AD403. Rev. 01 Ortginatorloate                                               Checker/Date
~~~~y~         ~. 8~           al~s/j~                                             ~le/e~
Total Deflection due to pressure,                               yq:=ybq+ysq+yst         t h which gives,           yq    5 448 10 Additional Geometry Factors ro;=a L3 ro
                .
4a ro a
2 e- I In + - I a
ro ro a
2 L9 .'=
a
 
ro I+v 2
In  ~ I-v I-a ro     4 ro a
2 which gives,               L3 =0               and           L9 ~0 Deflection from seat load/bending,                             w:= I ybw
                -  as.w D
C2 ro C9 C8        b L9 roC3 b
                                                                    +L3 which gives,             y bw "2.338'10 Deflection from seat load/sheer, Ksa .'=-1.2 ro ro
 
a In-b                 y sw .'= Ksa tG which gives,         Ksa ~ <.351 y sw ~-1.454'10 Deflection from seat load/hub compression, L
                            - 2'tt'a ycompr'=               ' 2           which gives,               y       ~-1.981 ~ 10 2
ttb E Total Deflection from unit seat load, y w:=y bw+y sw+y compr                             which gives,           y w ~-3.81I 10 Equilibrium contact load distribution, w equilibrium '=
yq          which gives,           w equilibrium ~ 1.429   10 yw Load per seat =             2 tt a yq      6.918 10 4
yw Pressure Locking Force, COMED PL Evaluation                                 Valve ID: 2RHS'MOV116                                           page 3 PRHS116A.MCD


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qc,~/~aug tie g/Z)l57 NMP 2 Calculation Cont.Sheet Checker/Date
Niagara Mohawk Power Corporation                                 NMP 2                                                     >>geN<</3 7 Nuclear Engineering                                      Calculation Cont. Sheet A10.1-AO403, Rev. 01 Originator/Date                                              Checker/Date Qc,~/~aug            tie g/Z)l57 pres lock
>>geN<</3 7 A10.1-AO403, Rev.01 pres lock''"'a'(>')())''v'res lock Yq~4 Yw Piston Effect Force, P~,=0 piston effect''Dstem'i bonnet atm)which gives, F p,st,n effect=8.275 10'Reverse Piston Effect" Force, Frets.'=[s a (2 Fbonnet-Pp-Pgo~)]
                      ''"'a'(>' Yq Yw
sin(g)Total Force Re uired to Overcome Pressure Lockin whichgives, F~=5.854 10 F total'F pres lock+F pp+F vert-F piston effect which gives, F>~=.1.26883~10 ACTUATOR CAPABILITY:
                                                      )     ( ))''v 'res                           lock
'ctuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                                                                                                                ~
Reduced Voltage: Torque Output: 'Stem Factor.Thrust Capability:
4 Piston Effect Force,                                 P ~,=0 effect''Dstem'i               bonnet     atm) which gives,   F p,st,n effect = 8.275 piston 10'Reverse Piston Effect" Force, Frets.'=[s   a (2 Fbonnet-Pp-Pgo~)]                     sin(g)         whichgives,     F   ~=5.854     10 Total Force Re uired to Overcome Pressure Lockin F total ' F pres lock+ F pp + vert F     - F piston   effect which gives,                 F >~ =.1.26883 ~ 10 ACTUATOR CAPABILITY:
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-0-25 TQm'=24.67 OGR:=58.13 Af:=0.9 Eff:=0.4 RV:=0.8731 TQout~393.55 Sf:=0.023664 THcap~1.663~10 ft-lbs ft-lbs lbs NOTE: RVIS SQUAREIF ACTUATORIS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
Model /Size:         'ctuator                                                  = SMB-0-25 Motor Torque Output:                                                                  TQm '= 24.67           ft- lbs Gear Ratio:                                                                            OGR:= 58.13 Application Factor:                                                                    Af:=0.9 Pullout Efficiency:                                                                    Eff:=0.4 Reduced Voltage:                                                                        RV: = 0.8731 Torque Output:              TQout: = TQm RV OGR AfEff                                TQout ~ 393.55         ft- lbs
KEI:=1.20 Thrust Margin--THcap-(F toM KEi)Thrust Margin~-1.356'10 lbs
'Stem Factor.
Thrust Capability:            THcap:          =
TQout Sf Sf: = 0.023664 THcap ~ 1.663 ~ 10       lbs NOTE: RVIS SQUAREIF ACTUATORISAC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                 KEI:= 1.20 Thrust Margin         - THcap (F toM KEi)
Thrust Margin ~-1.356'10               lbs


== Conclusion:==
== Conclusion:==
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                                Valve ID: 2RHS'MOV116                                                  page 4 PRHS116A.MCD


Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
0 Niagara Mohawk Power Corporation Nuctear Engineering NMP2 Calculation Cont. Sheet Paggtrtri /P 7 A10.1.AD403, Rev. 01 Originator/Date                                          Checirer/Date Valve ID no: 2RHS MOV4A Re uired         0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 4 0
Design BasIs Conditions at time of Pressure Locking Event:
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date NMP2 Calculation Cont.Sheet Checirer/Date Paggtrtri/P 7 A10.1.AD403, Rev.01 Valve ID no: 2RHS MOV4A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=2.25 hub length, L:=0.125 r average disk thickness, t:=0.378 e:=-''-o.o61 2 180 e ishalfdiskangle a 4 mean seat radius, a:=3 seat angle, a:=7 Valve Disk Materfal Properties:
e Upstream pressure (psig),          P =325              Valve Bonnet pressure (psig), P bo                <<  = 9677 Downstream pressure (psig), P down              0 Valve Disk Geometry:                                                                             r 4
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design BasIs Conditions at time of Pressure Locking Event: e Upstream pressure (psig), P=325 Valve Bonnet pressure (psig), P bo<<=9677 Downstream pressure (psig), P down 0 Other Valve Parameters:
hub radius,         b:=2.25         mean seat radius,           a:=3        average disk thickness,           t:=0.378 hub length,        L:= 0.125        seat angle,          a:=7              e:=-'   '             -o.o61 2 180 Valve Disk Materfal Properties:                                                           e    ishalfdiskangle a modulus     of elasticity, E:=29400000             Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter, D<~'.=1.5 Valve Factor VF:=0.5 Static Unseating Thrust F po 6341 (reference:
Valve Stem Diameter,         D <~ '.= 1.5           Static Unseating Thrust F po                 6341 (reference: Test &#xb9; 5, t/7/97)
Test&#xb9;5, t/7/97)(reference:
Valve Factor          VF:=0.5                    (reference: NER-2M-010)
NER-2M-010)
CALCULA77ONS:
CALCULA77ONS:
Coefficient of fiiction between disk and seat, lt:=cope)--sin(e)I VF It 0.515 (reference
Coefficient of fiiction between disk and seat,             lt:=       cope)
&#xb9;6)Average DP Across Disk, Disk Stlffnes Constants, gives, DP avg 9 515 10 and G'=2 (I+v)up~down avg'onnet 2 E.t 3 u (i-.*j which gives, D 1.454 10 and G 1.131~10 b 1+v a I-v b 2 C9---In-+-I--a 2 b 4 a I b a.b b a b Geometry Factors, C2'.=-,I--~I+2 In-C 3'=--+I In-+--I 4 a b 4a a b a I b C8.=-2 a which gives, C 2 0.028 C 8=0.847 C 3=0.002 C 9=0.198 COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS'MOV4A page 1 lj Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date Wo+.~~-4.Ce g~/~g/.~NMP2 Calculation Cont.Sheet Checker/Date Page5&f~>>A10.1-AtM03, Rev.01 Additional Geometry'actors, rp'.=b I 64 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-~In-, a rp 1 L17 4 4 2 1-v rP rP a I--I----I+(I+v)ln-4 a a rp which gives, Moment Factors, L I I=1.453 10 and L17=0.027 Mrb'DP avg a C8 a-rp-L17 2.a b<b:-.'"'(*-"*j 2b which gives, Mrb=-3.112 10 and Q b~8.325 10 Deflection from pressureibending, 4 a a avg yb'=Mrb-C2+Qb-C3-L11 o o o which gives, yb=<.003 q Deflection from pressure/shear, 2 a rp rp K:=-0.3 2 In--I+-I-21n-Sa'b b 2 sa'vg ysq'=which gives, K sa=%.041 and y'8.286 10 sq Deflection from pressure lhub stretch, P f0~tt (a b)DPavg.-Pto~'L y stretch'=ttb 2E which gives, P to~=1.177 10 and y~~~-1.573 10 COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS'MOV4A page 2 Ih I~
I VF
Niagara Mohawk Power Corporation Nuclear Engineering Originatorloate Qomrap.g.@goy/gy/<NMP2 Calculation Cont.Sheet Pagegoof is T A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq+ysq+yg etch which gives, y q=.004 r.'=a ro L3'=-4a 2 2 ro a ro+I In-~--I a r'0 a ro L9,'=-a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I C2 ro C9 ro C3 ybw-L9--+L3 which gives, D C8 b b ybw=-1.088 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, tG Ksa<.345 y sw~-2.423 10 Deflection from seat load/hub compression,.-2na y compr'b L 2 E which gives, y compr 2 52 10 9 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, y w=-1.332 10 Equilibrium contact load distribution, w equii;brium.'=
                                                                        - sin(e)
-which gives w equilibriu
It     0.515     (reference   &#xb9;6) up ~    down avg 'onnet Average DP Across Disk,                                                               gives,     DP avg       9 515 10 2
=2.715 10 yq yw Load perseat=2 n a-=5.118 10 yq yw Pressure Locldng Force, COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS MOV4A page 3  
E.t 3 Disk Stlffnes Constants,                                  and        G'=
u (i .*j                             2  (I+ v) which gives,       D   1.454 10           and         G     1.131 ~ 10 Geometry Factors,         C2 I
                                '.=-,I 4
b a
                                                ~
I+2 In   a b
C 3 .'=
4a b    b
                                                                                          +
a I In   a b
                                                                                                              +
b a
I C8.=-I 2
b a
C9    --b a
                                                                                      -
1+v In 2
a b
                                                                                                      +
I v 4
I b
a 2
which gives,         C2    0.028             C 3 =0.002 C 8 =0.847              C 9 = 0.198 COMED PL Evaluation                           Valve ID: 2RHS'MOV4A                                                       page   1 PRHS4AA.MCD
 
lj Niagara Mohawk Power CorPoration                                     NMP2                                                Page5&f ~>>
Nuctear Engineering                                       Calculation Cont. Sheet A10.1-AtM03, Rev. 01 Originator/Date                                                Checker/Date Wo+.~~-4.Ce g ~/~g/.~
Additional Geometry'actors,                                   rp '.=b 2             4             2                2 I            fp fp
                                              -4          fp               rp In ,        a I+4               5                           2+            ~
64              a             a             a                 a           rp L17 4
1 I -
1 v 4
I -    rP a
4 rP a
2 I+(I+v) ln         a rp which gives,               L I I =1.453     10           and                 L17 =0.027 Moment Factors, DP avg a Mrb '                         2.a b a   -rp -L17                             <b:-
2b
                                                                                                      .'"'(*-"*j C8 which gives, Mrb =-3.112       10   and             Q b ~8.325 10 Deflection from pressureibending, 4
                              '=Mrb C2+Qb C3-                               avg a                a yb                                                            L11 o                 o                 o which gives,                 yb q =<.003 Deflection from pressure/shear, 2                                                     2 K:=-0.3 Sa'          2 In a
I+
rp I   21n-   rp ysq'=
sa'vg b                                  b which gives,                 K sa =%.041                   and                   '8.286 y sq      10 Deflection from pressure           lhub stretch,
                                                                                        .
                                                                                            -Pto~'L P f0~     tt (a       b ) DPavg                           y stretch '=
ttb 2E which gives,                 P to~ =1.177         10         and           y ~~ ~-1.573   10 COMED PL Evaluation                                   Valve ID: 2RHS'MOV4A                                               page 2 PRHS4AA.MCD
 
Ih I~
 
Niagara Mohawk Power Corporation                           NMP2                                              Pagegoof  is T Nuclear Engineering                               Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originatorloate Qomrap        . g. @goy      /gy/<
Total Deflection due to pressure,                         yq:=ybq+ysq+yg         etch which gives,           y q =.004 Additional Geometry Factors r   .'=a L3 '=
ro 4a ro a
2
                                + I In ~ - I a
r'0 ro a
2 ro a
 
L9,'= I+v ln 2
                                                                                        + I-v a
ro       4 I
ro a
2 which gives,         L3 =0               and           L9 =0 Deflection from seat load/bending,                     w:= I ybw
                -
D C2 ro C9 C8    b L9    ro C3 b
                                                            + L3     which gives,       ybw =-1.088   10 Deflection from seat load/shear, Ksa:=-     1.2 ro ro
 
a In-b           y ~:= Ksa tG which gives,         Ksa   <.345 y sw ~-2.423   10 Deflection from seat load/hub compression, L
y compr   'b
                        .  -2na E
2 which gives,               y compr   2 52 10 9
Total Deflection from unit seat load, y w:=y bw+y sway compr                     which gives,           y w =-1.332     10 Equilibrium contact load distribution, w equii;brium.'= yq          which gives         w equilibriu =2.715     10 yw Load perseat= 2           na yq  =5.118 10 yw Pressure Locldng Force, COMED PL Evaluation                           Valve ID: 2RHS MOV4A                                             page 3 PRHS4AA.MCD


Niagara Mohawk Power CorPoration Nuclear Engineering Originator/Date
Niagara Mohawk Power CorPoration                           NMP2                                                  Page 'flor>> 7 Nuclear Engineering                               Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Checker/Date Originator/Date
'Dc,mrs''3 8~>s/S/l567 NMP2 Calculation Cont.Sheet Checker/Date
'Dc,mrs''3       8   ~>       s/ S/l567                         ~,e trr1 F pres look         2 a a Yq (1 cos(e) - sin(e))     2
~,e trr1 Page'flor>>7 Ato.t-AD403, Rev.01 F pres look 2 a a-(1 cos(e)-sin(e))2 which gives, F pros 1001=4.635 10 Yq~~~4 W Piston Effect Force, P a~'.=0 P Pinon W~t:=S D n~(Phoner-Pet
                                                                          ~    ~
)"Reverse Piston Effect" Force, Frets~.'=[s e~(2 P honnet up P dorm)j'etn(tt).I Total Force Re uired to Overcome Pressure Lockin which give~, F piston which gives, F y~3 285 10 F total l=F pros look+F po+F yurt-F piston 0@00 which gives, F<<~=6.843527 10 ACTUATOR CAPABILITY:
which gives,     F pros 1001
Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                                                                                                    = 4.635 ~ 10 4 W
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
Piston Effect Force,                           P a~'.=0 P Pinon     W~t:=S D n~ (Phoner-Pet                         which give~,    F piston
TQout THcap:=-Sf TQout:=TQm RV OGR.Af Eff=SB-OOS-15 TQm:=14.18 OGR:=36.2 Af:=0.9 EQ':=0.45 RV:"-0.8538 TQout~151.549 Sf:=0.018919 THcap=8.01 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
                                                            )
KEI:=1.20 Thrust Meripn:=THoep-(p n,~KEI)Thrust Margin=-7.411~10 lbs
Frets "Reverse Piston Effect" Force, I
                .
                .'=[s e ~
(2 P honnet         P dorm) j'etn(tt)           which gives,     F y~   3 285 10 up Total Force Re uired to Overcome Pressure Lockin F total l = F pros look + F po + F yurt - F piston     0@00 which gives,       F <<~ =6.843527         10 ACTUATOR CAPABILITY:
Actuator Model ISize:                                                                   = SB-OOS-15 Motor Torque Output:                                                              TQm:= 14.18           ft- lbs Gear Ratio:                                                                      OGR:= 36.2 Application Factor:                                                                Af:=0.9 Pullout Efficiency:                                                                EQ':=0.45 Reduced Voltage:                                                                  RV:"-0.8538 Torque Output:                TQout:= TQm RV OGR.Af Eff                        TQout ~ 151.549         ft- lbs Stem Factor.
Thrust Capability:                THcap: =
TQout Sf Sf:= 0.018919 THcap = 8.01 10         lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                           KEI:= 1.20 Thrust Meripn:= THoep (p n,~ KEI)
Thrust Margin =-7.411 ~ 10       lbs


== Conclusion:==
== Conclusion:==
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                          Valve ID: 2RHS MOV4A                                                page 4 PRHS4AA.MCD
fp 0
Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calculation Cont. Sheet Page/Zof  /$ 7 A10.1-AD4ta, Rev. 01 Orlglnalor/Date
~z/v r>p ~ 8                    ~      4/2'3/Y7 Checker/Date
                                                                                ~z/z/rg Valve ID no: 2RHS MOV4B Re uired                  0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),                      P    .= 325      Valve Bonnet pressure (psig), P bo~<<                = 9677 p
Downstream pressure (psig), P do                        .=0 Valve Disk Geometry:                                                                                        r hub radius,                    b:= 2.25        mean seat radius,          a:= 3        average disk thickness,          t:=0.378 hub length,                  L:=0.125          seat angle,        a '.=7            e:=-'    '            =o.o61 2 180 Valve Disk Material Properties:                                                                      e    ishalfdisk angle a modulus of elasticity,                  E:=29400000            Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter,                    D st    .= 1.5        Static Unseating Thrust,          F po 7324
                                                                                  &#xb9; (reference: Test 5, 6/16/96)
Valve Factor                    VF:=0.5                    (reference: NER-2M-010) .
CALCULAnONS:
cope>
Coefficient              of friction between disk and seat,        it:=
                                                                            ~(e)
I VF p    0.515    (reference  &#xb9;6) up      down Average DP Across Disk                        DP avg                                            gives,      DP av< = 9.515 10 2
Et3 Disk SfNnes Constants,                      D:=                    and        G:=
n.(i-')                              2 (1+v) which gives,                  D    1.454 10        and          G    1.131 ~ 10 GeometlyFactors,                    C2.'=-I 4
I-    b
a I+2 1n    a b
C3'.= . b 4a b
                                                                                                    +I a
In a b
                                                                                                                      +
b a
                                                                                                                              -I c8:=-I 1+v+
2                      a 2
C9      --b a
I-1+v 2
In a
b
                                                                                                                +
I v 4
b a
2 which gives,                    C2    0.028            C 3  =0.002 C 8 =0.847              C 9  =0.198 COMED PL Evaluation                                      Valve ID: 2RHS MOV4B                                                    page    1 PRHS4BA.MCD
, )pf Niagara Mohawk Power Corgoration                                    NMP2                                              Pager/3of/3 7 Nuctear Engineering                                      Calculation Cont. Sheet A10.1-AD003, Rev. 01 N.<~ i er.abp Originator/Date                                                  Checker/Date
        -~p-Additional Geometry Factors,                                    rp '=b 2            4                2            2
                              -5  -4                                      '0
64 1
                      ]+4 a
0 a
0 a
0 2+
a ln-L]7 4
1
1- 1-U 1-4
a 0
4 a
0 2
I+(]+Y) ln rp a
which gives,            L  ll =1.453    10            and              L]7    0.027 Moment Factors, Mrb '=-
DP avg a C8 2
C9 2ab a  -rp -L]7 which gives, Mrb -3.112            10  and            Qb =8.325 ]0 Deflection from pressureIbending, 4
3 avga
                              '.=Mrb C2+Qb' C3-a                  a yb                                                            L]1 o                  o                o which gives,                yb q ~      0.003 Deflection from pressure /shear, K ~:=-0.3        2 ]n'  - ] +
a
rp 2
                                                        ~
1  - 2 ]n- rp ysq'=
m'vg      a 2
a                    b which gives,              K sa ~%.04]                  and              y'-8.286 sq 10 Deflection from pressure          Ihub stretch, P force'L P force  tt (a      b~) DP                              y stretch avg ttb 2E which gives,              p force        ] ] 77 ] p        and      y stretch  -].573    ]p COMED PL Evaluation                                Valve ID: 2RHS'MOV4B                                                page 2 PRHS4BA.MCD
1 Niagara Mohawk Power Corporation                              NMP2                                            Peg~  Af/j7 Nuclear Engineering                                  Calculation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date                                            Checker/Date
      . >oA.e~z Qzz/sy                                            ~rWrZ Total Deflection due to pressure,                          yq:=ybq~ysq+yst        etch which gives,          yq    0 004 Additional Geometry Factors                          =a ro L3 .=
ro
                .
4a ro a
2
                              + I In    +  - I a
ro ro a
2 L9 -
a
ro I+v  I-v 2
In a
ro
                                                                                              +
4 I
ro a
2 which gives,            L3 =0                and          L9~0 Deflection from seat load/bending,                      w:= I ybw:-
a  w C2 rDC9 D C8            b L9  fpC3 b
                                                              +L3 whichgives,            y bw -1.088    10 Deflection from seat load/sheer, ro ro
Ksa:=-1.2 a
In-b                y:=Ksa-      a tG which gives,        Ksa ~ <.345 y~~-2.423    10 Deflection from seat load/hub compression, L
                          - 2'll'a 2 y compr
                      'tb                      which gives,              y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr                        which gives,          y  =-1.332 10 Equilibrium contact load distribution, equiiibn~: =    yq          which gives,            equilibrium yw LOad per Seat        a-    2 ft a yq    5.118 10 4
yw Pressure Locking Force, COMED PL Evaluation                              Valve ID: 2RHS'MOV4B                                          page 3 PRHS4BA.MOD


Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
1 Niagara Mohawk Powir Corporation                               NMP2                                               Pagett+of W7
COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS MOV4A page 4 fp 0 Niagara Mohawk Power Corporation Nuclear Engineering Orlglnalor/Date
'uclear  Engineering                                   Catculatlon Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date
~z/v r>p~8~4/2'3/Y7 NMP2 Calculation Cont.Sheet Checker/Date
'3cmr wag A'-     ~       &/isls7 Checker/Date Fpr   s lock''           '(l' Vq W
~z/z/rg Page/Zof/$7 A10.1-AD4ta, Rev.01 Valve ID no: 2RHS MOV4B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=325 Valve Bonnet pressure (psig), P bo~<<=9677 Downstream pressure (psig), P do.=0 Valve Disk Geometry: hub radius, b:=2.25 r average disk thickness, t:=0.378 e:=-''=o.o61 2 180 e ishalfdisk angle a mean seat radius, a:=3 seat angle, a'.=7 hub length, L:=0.125 Poisson's Ratio, v:=0.3 Valve Disk Material Properties:
                                                    )     ( ))                   g         pfe loctu
modulus of elasticity, E:=29400000 Other Valve Parameters:
                                                                                                              ~
Valve Stem Diameter, D st.=1.5 Valve Factor VF:=0.5 Static Unseating Thrust, F po 7324 (reference:
4 Piston Etect Force,                               P   ~'.=0 F piston         '= ttu'D     2/'(P                           which gives, etrtmt          stem      bonnet     Perm)
Test&#xb9;5, 6/16/96)(reference:
    "Reverse Piston Effect" Force, Fyett.'=   rt a   2 P bonnet               gown     .sin(0)         which gives,      F y~  3 285 10 up 1
NER-2M-010)
Total Force Re uired to Overcome Pressure Lockin F total: = F pres toed p F po + F yett - F piston effect r
.CALCULAnONS:
which gives,         F <<~ =6.941827         10 ACTUATOR CAPABILITY:
Coefficient of friction between disk and seat, it:=cope>I--~(e)VF p 0.515 (reference
Actuator Model ISize:                                                                       = SB-OOS-15 Motor Torque Output:                                                                  TQm:= 14.18           ft- lbs Gear Ratio:                                                                          OGR:= 36.2 Application Factor.                                                                    Af:=0.9 Pullout Efficienc:                                                                    Eff:=0.45 Reduced Voltage:                                                                      RV:=0.8741 Torque Output:                  TQout:= TQm RV OGR            AfEff                TQout ~ 158.841       ft- 1bs Stem Factor.                                                                          Sf: = 0.018919 TQout Thrust Cap'ability:              THcap:=                                          THcap ~ 8.396'10       Ibs Sf NOTE: RV IS SQUAREIF ACTUATORIS AC.
&#xb9;6)Average DP Across Disk DP avg up down gives, DP av<=9.515 10 2 Et3 Disk SfNnes Constants, D:=and G:=n.(i-')2 (1+v)which gives, D 1.454 10 and G 1.131~10 I b a.b b a b GeometlyFactors, C2.'=-I--I+2 1n-C3'.=--+I In-+--I 4 a b 4a a b a I 2 c8:=-1+v+2 a b 1+v a I-v b 2 C9---In-+-I--a 2 b 4 a which gives, C 2 0.028 C 8=0.847 C 3=0.002 C 9=0.198 COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS MOV4B page 1
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                               KEI:= 1.20 Thrust Margin:= THcsp (F mmt KEt)
,)pf Niagara Mohawk Power Corgoration Nuctear Engineering Originator/Date
Thtust Margin = -7.491 ~ 10         1bs
-~p-N.<~i er.abp NMP2 Calculation Cont.Sheet Checker/Date Pager/3of/3 7 A10.1-AD003, Rev.01 Additional Geometry Factors, rp'=b 1 64 2 4 2 0 0 0]+4--5--4 a a a 2'0 2+-ln-a 1 L]7 4 4 2 1-U 0 0 a 1--1----I+(]+Y)ln-4 a a rp which gives, Moment Factors, L ll=1.453 10 and L]7 0.027 Mrb'=-2 DP avg a C8 C9-a-rp-L]7 2ab which gives, Mrb-3.112 10 and Qb=8.325]0 Deflection from pressureIbending, a a avga 3 4 yb'.=Mrb-C2+Qb'C3-L]1 o o o which gives, yb~0.003 q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2]n--]+-~1-2]n-'a b 2 m'vg a ysq'=which gives, K sa~%.04]and y'-8.286 10 sq Deflection from pressure I hub stretch, P force tt (a b~)DP avg P force'L y stretch ttb 2E which gives, p force]]77]p and y stretch-].573]p COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS'MOV4B page 2 1
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
.>oA.e~z Qzz/sy NMP2 Calculation Cont.Sheet Checker/Date
~rWrZ Peg~Af/j7 A10.1-AD403.
Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq~ysq+yst etch which gives, y q 0 004 ro=a ro L3.=-.4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3=0 and L9~0 Deflection from seat load/bending, w:=I a w C2 rDC9 fpC3 ybw:-L9--+L3 whichgives, D C8 b b y bw-1.088 10 Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b a y:=Ksa-tG which gives, Ksa~<.345 y~~-2.423 10 Deflection from seat load/hub compression,-2'll'a y compr'tb L 2 which gives, y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y=-1.332 10 Equilibrium contact load distribution, yq equiiibn~:
=-which gives, yw LOad per Seat a-2 ft a-5.118 10 yq 4 yw equilibrium Pressure Locking Force, COMED PL Evaluation PRHS4BA.MOD Valve ID: 2RHS'MOV4B page 3 1
Niagara Mohawk Powir Corporation
'uclear Engineering Originator/Date
'3cmr wag A'-~&/isls7 NMP2 Catculatlon Cont.Sheet Checker/Date Pagett+of W7 A10.1-AD403, Rev.01 Fpr s lock'''(l')())g pfe loctu Vq~4 W Piston Etect Force, P~'.=0 tt 2/F piston etrtmt'=u'D stem'(P bonnet Perm)which gives,"Reverse Piston Effect" Force, Fyett.'=rt a 2 P bonnet up gown.sin(0)1 Total Force Re uired to Overcome Pressure Lockin which gives, F y~3 285 10 r F total:=F pres toed p F po+F yett-F piston effect which gives, F<<~=6.941827 10 ACTUATOR CAPABILITY:
Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficienc:
Reduced Voltage: Torque Output: Stem Factor.Thrust Cap'ability:
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SB-OOS-15 TQm:=14.18 OGR:=36.2 Af:=0.9 Eff:=0.45 RV:=0.8741 TQout~158.841 Sf:=0.018919 THcap~8.396'10 ft-lbs ft-1bs Ibs NOTE: RV IS SQUAREIF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Thrust Margin:=THcsp-(F mmt KEt)Thtust Margin=-7.491~10 1bs


== Conclusion:==
== Conclusion:==
Open Thrust Marginis negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                              Valve ID: 2RHS MOV4B                                              page 4 PRHS4BA.MCD


Open Thrust Marginis negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
U Niagara Mohawk Power Corporation                                           NMP2                                                        Pagefrcpf/3 7 Nuclear Fngineering                                               Calcuhtion Cont. Sheet A10.1-AD403, Rev. 01 Checker/Date
COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS MOV4B page 4 U
          .~. ZA Originator/Date c/zylsp Valve ID no: 2RHS'MOV4C Re uiredO enin                         ForceDeternminationunderPressureiockin                                                 Conditions COMED Method DESIGN Design Basis Conditions at time of Pressure Locking Event:
Niagara Mohawk Power Corporation Nuclear Fngineering Originator/Date
INPUTS'alve Upstream pressure (psig),                      P            325        Valve Bonnet pressure (psig), P bonn<<                = 9677 np Downstream pressure (psig), P down                              0 Disk Geometry:
.~.ZA c/zylsp NMP2 Calcuhtion Cont.Sheet Checker/Date Pagefrcpf/3 7 A10.1-AD403, Rev.01 Valve ID no: 2RHS'MOV4C Re uiredO enin ForceDeternminationunderPressureiockin Conditions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=2.25 mean seat radius, a:=3 seat angle, a'.=7 average disk thickness, t:=0.378 e:=-''-0.06I 2 180 6 ishalfdisk angle a hub length, L:=0.125 Valve Disk Material Propertie:
hub radius,                 b:= 2.25         mean seat radius,                 a:= 3       average disk thickness,           t:=0.378 hub length,                L:=0.125          seat angle,              a '.=7            e:=-'   '           -0.06I 2 180 Valve Disk Material Propertie:                                                                             6  ishalfdisk angle        a modulus of elasticity,               E:=29400000                   Poisson's Ratio, v:=0.3 Other Valve Parameters:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter,                 D st~       1.5         >
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 325 Valve Bonnet pressure (psig), P bonn<<=9677 Downstream pressure (psig), P down 0 Valve Factor VF'=0.5 Valve Stem Diameter, D st~1.5>Static Unseating Thrust, F po 3798 (reference:
Static Unseating Thrust,           F po 3798
Test&#xb9;21, Tlt8/g5)(reference:
                                                                                      &#xb9; (reference: Test 21, Tlt8/g5)
NER-2M-010)
Valve Factor                  VF '=0.5                        (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coeftic/ent of frict/on between disk and seat, lt.=coge)I--sin(6)VF It=0.515 (reference
coge)
&#xb9;6)Average DP Across Disk, Disk SNfnes Constants, gives,'P<<g=9.515~10 G:=E 2.(1+v)up~down<<g'bonnet Et'':='nd u(i-')which gives, D=1.454 10 and G~I.I31~10 I b a.b b a b Geomet/y Factors, C 2.'=-I--I+2 In-C 3'.=--+I h-+--I 4 a b 4.a a b a I b 2 C8.=-1+v+(I-v)2 a b 1+v a 1-v b 2 C 9'.=--In-+-I--a 2 b 4 a which gives, C 2=0.028 C 8=0.847 C 3~0.002 C 9=0.198 COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 1
Coeftic/ent             of frict/on between disk and seat,               lt.=
                                                                                                                                          &#xb9;6)
I VF sin(6)
It = 0.515     (reference up ~    down gives,'P <<g = 9.515 Average DP Across Disk,                          <<g'bonnet                                                                         ~
10 Disk SNfnes Constants, Et'':=
                                                                        'nd             G:=      E u(i-')                                    2.(1 + v) which gives,               D =1.454     10               and         G ~ I.I31 ~ 10 Geomet/y Factors,                   C2  .'=-I I -
4 b
a I + 2 In a
b
                                                                                            .
C 3 '.=   +I b
4.a b
a h
b a
                                                                                                                            +  -I b
a C8.=-I 1+ v+(I- v) 2 b
a 2
C a
                                                                                                      -
9'.=-b 1+v In 2
a b
                                                                                                                    +
1-v 4
I b
a 2
which gives,                  C 2 =0.028                    C 3 ~0.002 C 8 =0.847                    C 9 =0.198 COMED PL Evaluation                                          Valve ID: 2RHS'MOV4C                                                      page  1 PRHS4CA.MCD
 
Niagara Mohawk Power Corporation                                          NMP2                                              Pagegkfl~ 7 f
Nuclear ngineering                                            Calculation Cont. Sheet A10.1-AD403, Relr. 01 Checker/Date Originator/Date Ww~ g~ N.            8~      WiP/P'P                                                        r/    r7 Additional Geometry Factors,                                          rp '.=b 2              4                  2            2 fp              fp              fp              fp I+ 4                -5            -4                                In
                                                      .
LII    =                                                            2+          ~
64            a              a                a                a        rp L17 .-- I-4 I      I-Y I-4                a 0
4 a
0 2
                                                                  ~
I+(I+Y) In-      a rp which gives,               L I I =1.453      10              and              L17 =0.027 Moment Factors, 2
Dpavga            C9      I 2- f (a        0 )
2h  - L I7                            avg  2        2 C8            2ab                                                        2b which gives, Mrb -3.112              10  and            Qb    8.325 10 Deflection from pressureIbending, 4
3 avg a yb .'=Mrb C2+Qb C3-a                    a D                    D                D LII which gives,                    yb q ~%.003 Deflection from pressure            Ishear, 2                                                      2 K sa DP 'avg I+  I-21n-a
                                          -          rp                      rp                                  a K~'=-0.3 21n                                    ~
ysq'=
b              a                      b which gives,                  K sa ~%.041                      and              y sq =-8.286  10 DefleiWon from pressure            Ihub stretch, P force'L P force    tt'(a      b  j DP avg                            ystrctch-ttb 2E which gives,                  P fo~- 1.177            10'nd              y ~etch = 1573'10 COMED PL Evaluation                                     Valve ID: 2RHS MOV4C                                                 page 2 PRHS4CA.MCD
 
>E
    ~
g


Niagara Mohawk Power Corporation Nuclear f ngineering Originator/Date Ww~g~N.8~WiP/P'P NMP2 Calculation Cont.Sheet Checker/Date r/r7 Pagegkfl~7 A10.1-AD403, Relr.01 Additional Geometry Factors, rp'.=b 2 4 2 2 fp fp.fp fp LII=-I+4--5--4-2+-~In-64 a a a a rp I L17.--4 4 I-Y 0 0 I--I-4 a a 2~I+(I+Y)In-a rp which gives, L I I=1.453 10 and Moment Factors, 2 Dpavga C9 I 2 2h (a-f 0)-L I7 C8 2ab L17=0.027 avg 2 2 2b which gives, Mrb-3.112 10 and Q b 8.325 10 Deflection from pressureIbending, a a avg a 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, yb~%.003 q Deflection from pressure I shear, 2 a rp rp K~'=-0.3 21n--I+-~I-21n-b a b 2 K sa DP'avg a ysq'=which gives, K sa~%.041 and y=-8.286 10 sq DefleiWon from pressure Ihub stretch, P force tt'(a b j DP avg P force'L ystrctch-ttb 2E which gives, P fo~-1.177 10'nd y~etch=1573'10 COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS MOV4C page 2
Niagara Mohawk Power Corporation                               NMP2                                              Psge4<ot / 3 >
>E g~
Nuclear Engineering                                  Calculation Cont. Sheet A10.1.AD403, Rev. 01 Onginatorloate                                             Checker/Date w   t"~ Qgp$ p Total Deflection due to pressure,                           yq'bq+ysq+ystretch which gives,           y q =%.004 Additional Geometry Factors ro.'=a L3 '=
Niagara Mohawk Power Corporation Nuclear Engineering Onginatorloate w t"~Qgp$p NMP2 Calculation Cont.Sheet Checker/Date Psge4<ot/3>A10.1.AD403, Rev.01 Total Deflection due to pressure, yq'bq+ysq+ystretch Additional Geometry Factors which gives, ro.'=a y=%.004 q ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9'.=-a r)-ln-+-I-2 ro 4 a which gives, L3 0 and Deflection from seat load/bending, w:=I asw C2 ro'Cg ro'C 3 ybw.-L9--+L3 which gives, D C8 b b y bw-1.088'10 Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b a y sw:=KsR-tG which gives, Ksa=%.345 y sw=-2.423 10 Deflection from seat load/hub compression, L ,-2tta 2 compr 2'tt b which gives,~9 y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w=-1.332 10 Equilibnum contact load distribution, w equilibrium
ro 4a ro a
'yq which gives, wequilibrium
2
=2.715 10 yw Load per seat=2 tt a-5.118 10 yq 4 yw Pressure LocMng Force, COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 3  
                                +I   In + - I a
ro ro a
2 L9 '.=
ro a
I-2 ln ro
                                                                                                +
4 r
a
                                                                                                                )
which gives,             L3 0                 and Deflection from seat load/bending,                       w:= I ybw.-
asw C2 ro'Cg D      C8      b L9     
                                                  - ro'C 3 + L3 b
which gives,       y bw -1.088'10 Deflection from seat load/sheer, ro ro Ksa: =-   1.2     In-b               y sw:= KsR a
which gives,         Ksa = %.345 a                                    tG y sw =-2.423 10 Deflection from seat load/hub compression, L
                      ,   -2tta 2 which gives,                             ~
9 compr            2 y compr tt b Total Deflection from unit seat load, y w:=y bw+y sw+y compr                         which gives,           y w =-1.332   10 Equilibnum contact load distribution, w equilibrium     'yq           which gives,         wequilibrium =2.715 10 yw Load per seat =           2 tt a yq yw 5.118 10 4
Pressure LocMng Force, COMED PL Evaluation                             Valve ID: 2RHS'MOV4C                                             page 3 PRHS4CA.MCD


Niagara Mohawk Power Corporation Nuclear Engineering
Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calculation Cont. Sheet Page+of/ + f A10.1-AtM03. Rev. Ot Checker/Date
/PD$lp7 NMP2 Calculation Cont.Sheet Checker/Date Page+of/+f A10.1-AtM03.
                                          /PD $ lp7 F pres ]ock . = 2 tt a           (
Rev.Ot Yq~~-~4 F pres]ock.=2 tt a-(lt cos(t))-sin(0))2 which gives, F pres]oc]=4.63 5]0 Yw Piston Effect Force, Pat:=0 piston eg'act'='tem'(honnet aun)"'o" tg" piston street"Reverse Piston Effect" Force,.I 2 Poets's'a'(g'Phennet Pup Pttosan)j'stn(g)
Yq lt cos( t)) sin( 0) ) 2
Total Force Re uired to Overcome Pressure Lockin which gives, F ycrt 3 285 10 F tpta]:=F pres]ock+F pp+F ycrt-F piston cffcct which gives, F<<~=6.589227 10 ACTUATOR CAPABILITY'ctuator Model I SIze: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                                                                                      ~      ~
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
which gives,     F pres ]oc]
TQout THcap:=-Sf TQout:=TQm RV OGR.Af Eff=SB-OOS.15 TQm:=14.18 OGR:=36.2 Af:=0.9 Eff:=0.45 RV:=0.8727 TQout~158.332 Sf:=0.018919 , THcap 8.369~]0 ft-1bs ft-lbs Ibs.NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
                                                                                                                  = 4.63 5- ~ ] 0 4 Yw Piston Effect Force,                                     Pat:=0 piston eg'act'=             'tem '(     honnet       aun)
KE]:=1.20 Thrust Margin:=THcap-(F>og KE1)Thrust Margin=-7.07'10 1bs
                                                                                    "'o" tg"         piston street "Reverse Piston Effect" Force, Poets
                's'a 2'(g'Phennet
                . I Pup       Pttosan)j'stn(g)           which gives,      F ycrt  3 285 10 Total Force Re uired to Overcome Pressure Lockin F tpta]: = F pres ]ock+ F pp+ F ycrt               - F piston   cffcct which gives,         F <<~ =6.589227           10 ACTUATOR Model ISIze:
CAPABILITY'ctuator
                                                                                                    = SB-OOS.15 Motor Torque Output:                                                                          TQm: = 14.18           ft- 1bs Gear Ratio:                                                                                  OGR:= 36.2 Application Factor:                                                                            Af:=0.9 Pullout Efficiency:                                                                            Eff:= 0.45 Reduced Voltage:                                                                              RV: = 0.8727 Torque Output:                        TQout:= TQm RV OGR.Af Eff                            TQout ~ 158.332         ft- lbs Stem Factor:
Thrust Capability:                      THcap:  =TQout Sf                                ,
Sf:= 0.018919 THcap   8.369 ~ ]0       Ibs
. NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                       KE]:= 1.20 Thrust Margin:= THcap (F>og KE1)
Thrust Margin =-7.07'10         1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking under conditions evaluated.
Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking under conditions evaluated.
COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 4  
COMED PL Evaluation                                     Valve ID: 2RHS'MOV4C                                                     page 4 PRHS4CA.MCD


Niagara Mohawk Prrrrer CorPoration Nuclear Engineering Originatorloate ga w~'$r/a3/6 NMP2 Calculation Cont.Sheet Page jabot/Q7 A10.1-AD403, Rev.01 Valve ID no: 2SWP MOV17A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Valve Disk Geometry: hub radius, b:=4.94 mean seat radius, a:=5.75 average disk thickness, t:=0.789 seat angle, a,'=7 0:=--0-0.061 a tt 2 180 0 ishalfdisk angle a hub length, L:=0.125 Valve Disk Material Properties:
Niagara Mohawk Prrrrer CorPoration                         NMP2                                                Page jabot/Q7 Nuclear Engineering                               Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originatorloate ga w~'                $ r/a3/6 Valve ID no: 2SWP MOV17A Re uired         0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
modulus of elasticity, E:=29400000 Poisson's Ratio, v.--0.3 Upstream pressure (psig), P>>.=123 Valve Bonnet pressure (psig), P bonn<<=86 Downstream pressure (psig), P down 0 Other Valve Parameters:
Design Basis Conditions at time of Pressure Locking Event:
Valve Stem Diameter, D~.=2 Valve Factor VF:=0.6 Static Unseating Thrust, F po 6219 (reference:
Upstream pressure (psig),            P>>  .= 123      Valve Bonnet pressure (psig), P bonn<<          = 86 Downstream pressure (psig), P down              0 Valve Disk Geometry:
Test&#xb9;25, 3ttM5)(reference:
hub radius,         b:=4.94           mean seat radius,         a:=5.75 average disk thickness,           t:=0.789 hub length,        L:=0.125            seat angle,       a,'=7 0:=-a tt 2 180 0-0.061 Valve Disk Material Properties:                                                         0  ishalfdisk angle a modulus of elasticity,       E:=29400000           Poisson's Ratio, v.--0.3 Other Valve Parameters:
NER-2M-010)
Valve Stem Diameter,         D   ~.=2             Static Unseating Thrust,       F po     6219
                                                                        &#xb9; (reference: Test 25, 3ttM5)
Valve Factor          VF:=0.6                    (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of fnction between disk and seat, tt:=cos(0)--sin(0)tt=0.622 (reference
cos(0)
&#xb9;6)Average DP Across Disk, Disk Stifl'nes Constants, gives, DP av 24 5 and G=E 2 (1+v)up+down DP avg.'=Pbonnet 2 Et 3 u (i-')which gives, D 1.322 10 and G 1.131~10 GeometryFactors, C2.'=-1--1+2 ln-C3.'=--+1 1n-+--1 1 b C 8.--1+v+(1-v)2 a b I+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.009 C 8~0.908 C 3=4.316'10 C 9~0.124 COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP'MOV17A page 1  
Coefficient     of fnction between disk and seat,         tt:=
.~
                                                                  -     sin(0) tt =0.622   (reference   &#xb9;6) up+    down Average DP Across Disk,               DP avg .'=Pbonnet                            gives,     DP av     24 5 2
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Woevppw 4 Cw p cfg3/9)NMP2 Calculation Cont.Sheet Checker/Date z/z/H7 Page5lofr3 ar A10.1-AD403.
Disk Stifl'nes Constants, Et 3          and       G =
Rev.01 Additional Geometry Factors, rp'.=b I ll'4 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-In-a rp I L17'=-.4 4 2 I-U 0 0 a I--I----~I+(I+Y)In-4 a a rp which gives, L 11=1.545'10 and Moment Factors, L17=0.009 Mg:=-2 DP avg a C9~-a-rp-L17 C8 2ab avg 2b which gives, Mrb-8.73 end Qb=21.472 Deflection from pressure%ending, 4 a a avg a yb'.=Mrb-C2+Qb-C3-.LII D O D which gives, yb~-1.041~10 q Deflection from pressure/sheer, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 I'vg a ysq'=which gives, K sa%.013 and y'sq=-1.138 10 Deflection from pressure/hub stretch, Pra~.--a (a-b)DPaa<P force'L y stretch'=ttb 2E which gives, P fp~666.467 and y~~-1.848 10 COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP MOV17A page 2 II Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Z~~p S.e~~/i slsp NMP2 Calculation Cont.Sheet Checker/Date
E u (i - ')                        2 (1+ v) which gives,       D     1.322 10       and           G   1.131 ~ 10 GeometryFactors,         C2.'= 1+2               ln         C3.'=   +1             1n +       -1 C8    .-
~/zr~Page5'Zof r%T A10.1-AtM03, Rev.Ot Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q 2 197 10 ro.'=a ro L3'.=-4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a w C2 ro'C9 fo'C3 ybw'=-----L9--+L3 which gives, D C8 b b y b I 437'10"7 Deflection from seat load l shear, ro ro Ksa:=-1.2-ln-a b a y~:=Ksa-tG which gives, Ksa~%.182 y=-1.174 10 Deflection from seat load!hub compression,-2'lr a y'compf'ib L 2 which gives, y compr Total Deflection f/om unit seat load, y w:=y bw+y sw+y compr which gives, yw~2621'10 Equilibnum contact load distribution, yq w equilibrium
1 2
'w which gives, Load per seat~2 tt a-302.831 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP MOV17A page 3  
1+ v+ (1   v) b a
C a
 
9.--b I+v ln 2
a b
                                                                                                  +
1-v 1-4 b
a 2
which gives,         C2      0.009           C3  =4.316'10 C 8 ~0.908               C 9 ~0.124 COMED PL Evaluation                           Valve ID: 2SWP'MOV17A                                               page   1 PSWP17AA.MCD
 
. ~
Niagara Mohawk Power Corporation                                 NMP2                                              Page5lofr3 ar Nuctear Engineering                                   Calculation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date                                                Checker/Date Woevppw       4   Cw p cfg3/9)                                                     z/z/H7 Additional Geometry Factors,                                 rp '.=b 2            4                2              2 ll '4   I I+4 fp 5  4    fp             fp 2+   rp In- a a           a             a                 a         rp L17   '=-.I 4
I I-I-U 4            a 0
4
 
a 0
2
                                                          ~
I+ (I + Y) In   a rp which gives,           L 11 = 1.545'10                 and             L17 =0.009 Moment Factors, Mg:=-
DP avg a C8 2
                                ~ -rp C9 2ab a               -L17 2b avg which gives, Mrb -8.73                 end           Qb =21.472 Deflection from pressure%ending, 4
avg a
                            '.=Mrb C2+Qb C3 a                  a yb                                                          .LII D                 O                 D which gives,             yb q ~-1.041 ~ 10 Deflection from pressure/sheer, K ~:=-0.3     2 In a
I+
rp 2
                                                      ~
I-2 rp In-b             ysq '=
I'vg     a 2
b            a which gives,           K sa   %.013                 and               y'sq =-1.138 10 Deflection from pressure/hub stretch, P force'L Pra~.--a   (a b ) DPaa<                               y stretch '=
ttb 2E which gives,             P fp~         666.467             and       y ~~       -1.848 10 COMED PL Evaluation                             Valve ID: 2SWP MOV17A                                                 page 2 PSWP17AA.MCD
 
II Niagara Mohawk Power Corporation                               NMP2                                            Page5'Zof  r%T Nuclear Engineering                                   Calculation Cont. Sheet A10.1-AtM03, Rev. Ot Originator/Date                                            Checker/Date Z   ~ ~p         S. e~~/i           slsp                                       ~/zr~
Total Deflection due to pressure,                           yq'bq+ysq+ystretch which gives,             yq    2 197 10 Additional Geometry Factors ro.'=a L3 '.=
ro 4a ro a
2
                              + I In   + - I ro a     ro a
2 L9   -
a
 
ro I+v 2
ln + I-v I-a ro     4 ro a
2 which gives,             L3 =0               and           L9 =0 Deflection from seat load/bending,                       w:= I ybw          -
              '=- a w C2 D C8 ro'C9 b
L9 fo'C3 b
                                                              + L3     which gives,       yb      I 437'10 "7
Deflection from seat load shear, l ro ro Ksa:=-     1.2 a
ln- b y ~:=Ksa-tG a
which gives,         Ksa ~ %.182 y   =-1.174   10 Deflection from seat load!hub compression, L
                          -2'lr a 2 y'compf   'ib                     which gives,               y compr Total Deflection f/om unit seat load, y w:=y bw+y sw+y compr                       which gives,           yw~ 2621'10 Equilibnum contact load distribution, yq w equilibrium
                              'w             which gives,             equilibrium Load per seat ~         2 tt a yq    302.831 yw Pressure Locking Force, COMED PL Evaluation                             Valve ID: 2SWP MOV17A                                           page 3 PSWP17AA.MCD


Niagara Mohawk Power Corporation Nuclear Engineering
Niagara Mohawk Power Corporation                             NMP2 Calculation Cont. Sheet Page5$ of /37 Nuclear Engineering               ~ s A10.1-ADO03, Rey. 01 Qflglnatof/Date                                          Checker/Date
~s Qflglnatof/Date
        ,. A. ~in/~ff/P 7                                               gtg rstg+
,.A.~in/~ff/P 7 NMP2 Calculation Cont.Sheet Checker/Date gtg rstg+Page5$of/37 A10.1-ADO03, Rey.01 Yq F pres look 2 s a-(p cos(8)-sin(8))2 which gives, F pres look 338 833/w Piston Effect Force, P au:=0 2"piston cffect'stem'(bonnet atm)""tp"'iston effect"Reverse Piston Eh'ect" Force, F v~',=rt a 2 P bonnet up down sin(8)which gives, Fert=310.711 Total Force Re uired to Overcome Pressure Lockin s F total:=F pres look+F po+F vert-F ptston effec which gives, F>ud~6.598367 10 ACTUATOR CAPABILITY:
F pres look       2 s a Yq (p   cos(8) - sin(8)) 2         which gives,     F pres look     338 833
Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                                  /w Piston Effect Force,                             P au:=0 "piston cffect   '
Reduced Voltage: Torque Output: 'tem Factor: Thrust Capability:
stem 2
TQout IHcap:=-Sf TQout:=TQm RV OGR AfEff=SMB-0-25 TQm:=23.52 OGR;=39.11 Af:=0.9 Eff:=0.4 RV:=0.8785 TQout=255.571 Sf:=0.019627 THcap~1.302'10 tt-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
                                          '( bonnet     atm)
KEI:=1.20 Thrust Margin:=THcap-(F mmt KEI)Thrust Margin=5.103'10 1bs
                                                                          " "tp"     'iston       effect "Reverse Piston Eh'ect" Force, F v~',=     rt a 2 P bonnet               down       sin(8)         which gives,     F ert = 310.711 up Total Force Re uired to Overcome Pressure Lockin s
F total:=F pres look+ F po + F vert F ptston effec which gives,         F >ud ~6.598367 10 ACTUATOR CAPABILITY:
Actuator Model /Size:                                                                     = SMB-0-25 Motor Torque Output:                                                                TQm:= 23.52             tt- lbs Gear Ratio:                                                                        OGR;= 39.11 Application Factor:                                                                  Af:=0.9 Pullout Efficiency:                                                                  Eff:=0.4 Reduced Voltage:                                                                      RV: = 0.8785 Torque Output:                TQout:= TQm RV OGR            AfEff                TQout = 255.571         ft- lbs
'tem Factor:                                  TQout Sf:= 0.019627 Thrust Capability:              IHcap:=                                        THcap ~ 1.302'10         1bs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                             KEI:= 1.20 Thrust Margin:= THcap (F mmt KEI)
Thrust Margin = 5.103'10           1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                            Valve ID: 2SWP'MOV17A                                              page 4 PSWP17AA.MCD


Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
0 Niagara Mohawk Povver Corporation Nuclear Engineertng NMP2 Calculation Cont. Sheet Page'574 / 97 A10.1 AD403. Rev. 01 Checker/Date 7/Z/gp Valve ID no: 2SWPMOV17B I
COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP'MOV17A page 4 0
Re uired         0 enin       Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Niagara Mohawk Povver Corporation Nuclear Engineertng NMP2 Calculation Cont.Sheet Checker/Date 7/Z/gp Page'574/97 A10.1 AD403.Rev.01 Valve ID no: 2SWPMOV17B I Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=4.94 r mean seat radius, a'.=5.75 average disk thickness, t:=0.789 seat angle, a:=7 e:=-'" e=o.o61 2 180.e ishalfdiskangle u hub length, L:=0.125 Valve Disk Materfal Properties:
Design Basis Conditions at time of Pressure Locking Event:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P:=123 Valve Bonnet pressure (psig), P bonnet'=86 Downstream pressure (psig), P doggy 0 Other Valve Parameters:
Upstream pressure (psig),            P  := 123          Valve Bonnet pressure (psig), P bonnet '= 86 Downstream pressure (psig), P doggy                0 Valve Disk Geometry:                                                                                 r hub radius,         b:=4.94         mean seat radius,             a '.=5.75     average disk thickness,         t:=0.789 hub length,        L:=0.125          seat angle,           a:=7               e:=-'"             e =o.o61 2 180.
Valve Stem Diameter," D<<~.=2 Valve Factor VF:=0.6 Static Unseating Thrust F po 5862 (reference:
Valve Disk Materfal Properties:                                                               e  ishalfdiskangle u modulus of elasticity,       E:=29400000               Poisson's Ratio, v:=0.3 Other Valve Parameters:
Test&#xb9;6, 8/2M4)(reference:
Valve Stem Diameter, " D <<~.= 2                     Static Unseating Thrust F po                 5862 (reference: Test 6, 8/2M4) &#xb9; Valve Factor          VF:=0.6                    (reference: NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
CoeNicient of friction between disk and seat, p.'=cos(e)I--sin(e)VF It 0.622 (reference
cos(e)
&#xb9;6)Average DP Across Disk, Disk SNfnes Constants, Pup+P down avg'onnet 2 gives, DP av<24.5 3 D:=and G:=i2.(1-')2 (1+v)which gives, D 1.322 10 and G=1.131~10 I b a.b b a b Geometry Factors, C2'.=-I--~1+2.ln-C3.=--+I In-+--I 4 a b 4a a b a I b C8.--I+v+(I-v)2 a C9---In-+-I--which gives, C 2 0.009 C 8>0.908 C 3=4.316'10 C 9=0.124 COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP MOV17B page 1 e
CoeNicient   of friction between disk and seat,             p .'=
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date W~~c rP-Q~~gybe NMP2 Calculation Cont.Sheet Checker/Date
 
~7/i/F7 A10.1 AD403, Rev.01 Additional Geometry Factors, rp=b I 64 2 4 2 0 0 0 I+4--5--4 a a a 2 rp a 2+-In-a rp I L17 4 4 2 I-U 0 0 a I--I----I+(I+Y)In-4 a a rp which gives, L I I=1.545 10 and Moment Factors, 2 avg'a 9/2 p-rp C8 2ab L17=0.009 DP avg~b=-(-Oj 2b which gives, M rb-8.73 and Q b 21.472 Deflection from pressure/bending, a2 a3 DP avg'a yb'.=Mrb-C2+Qb'C3-LII D D D which gives, y b-1.041 10 Deflection from pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-I-21n-b a b J ysq:=.2 m.D avg a tG which gives, K sa~%.013 and y'-1.138'10 sq 0 Deflection from pressure/hub stretch,:='(a'-b')DP,,-P forca.L y stretch.ttb 2E which gives, P f0~0=666.467 and y search 848 10 COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP'MOV17B page 2  
VF I
'C Niagara Mohawk Power Corgoration Nuciear Engineering OriginatorlOate W~~~>4.C'mg+~sky NMP2 Calcuhrtion Con!.Sheet Page5cof/9 9 A10.1-AD403, Rev.01 Total Deflection due to pressure, AddNonal Geometry Factors y q:=ybq<<ysq+
sin(e)
y stretch which givesr y q 2 197 10 r'.=a ro L3--.4a 2 ro a+I In-+a ro 2 r0-I a ro L9=-a r 2 I+v a I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9~0~Deflection from seat load/bending, w:=I~.a w C2 roC9 rpC3 ybw',=L9'-+L3 which gives, D C8 b b y b I 437'10 Deflection from seat loadl shear, ro ro Ksa:=-1.2-In-a b a y~:=Ksa'-tG which gives, Ksa=-0.182 y sw=-1.174'10 Deflection from seat load/hub compression,-2'tt a y compr'.b L 2 which gives, y p-1.002'10 Total Deflectio from unit seat load, y w:=y bw+y sw+y compr which gives, y w 2 621'10 Equilibrium contact load distribution, yq equilibrium
It 0.622     (reference   &#xb9;6)
'hich gives, yw Load per seat=2 tt a-=302.831 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP MOV17B page 3 e
P down Pup +
Niagara Mohawk Power Co/Poration Nuclear Engineering Originator/Date Thorn.ep-.
Average DP Across Disk,                 avg 'onnet                     2 gives,     DP av<   24.5 3
At+/Flzglpp NMP2 Calculation Cont.Sheet Checker/Date
Disk SNfnes Constants,            D:=                       and         G:=
~rs-rr&#xc3;7 Page&ot/7 7 A10.1-AD403.
i2. (1   ')                           2 (1+v) which gives,       D     1.322 10           and           G =1.131 ~ 10 Geometry Factors,       C2'.=-I 4
Rev.01 F pres loclt 2 a a-(p cos(0)-sin(0))2 which gives, F pres loci'338.833 Vq/w Piston Effect Force, P at:=0 piston street'=O'tem'<bonnet p atm)which gives, F iston effect 270.177"Reverse Piston Effect" Force, F vert"'a''P bonnet P up P down Total Force Re uired to Overcome Pressure Lockin which gives, F~=310.711 F total:=F pres tock+F po+F 1/ert-F piston effect which gives, F<<<=6.241367 10 ACTUATOR CAPABlLITYt Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
-   b
Reduced Voltage: Torque Output: TQout:=TQm RV OGR.Af Eff Stem Factor.TQout Thrust Capability:
 
THcap'.=Sf tt-'bs tt-lbs=SMB-0-25 TQm:=23.52 OGR:=39.11 Af:=0.9 Eff:-"0.4 RV:=0.8834 TQout=258.43 Sf:=0.019627 THcap=1.317'10 lbs NOTE: RV lS SQUARE/F ACTUATOR lS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
a
KEI:=1.20 Thrust Margin:=THeap-(F tong KBI)Thust Margin~5.677 10 1bs
                                                  ~
1+2.ln     a b
C3.=.
b 4a b
                                                                                              +
a I In a
 
b
                                                                                                              +
b a
I C8.--I I+ v+(I - v) 2 b
a C9     --   -   In +           I which gives,       C2      0.009               C3  =4.316'10 C 8 >0.908                   C 9 = 0.124 COMED PL Evaluation                             Valve ID: 2SWP MOV17B                                                   page   1 PSWP17BA.MCD
 
e Niagara Mohawk Power Corporation                               NMP2 Nuclear Engineering                                   Calculation Cont. Sheet A10.1 AD403, Rev. 01 Originator/Date                                            Checker/Date W~ ~c rP-Q~ ~gybe                                                       ~7/i/F7 Additional Geometry Factors,                               rp =b 2           4               2              2 I
I+4    5 0           0 4
0 2+
rp In- a 64          a           a             a               a         rp L17 I
4 I-I-U 4
I a
0 4
a 0
2 I+ (I+ Y) In a
rp which gives,         L I I =1.545     10           and               L17 =0.009 Moment Factors, avg'a C8 2
9 2ab p
                                          /2 -rp                               ~b=
DP avg 2b      (
 
Oj which gives, M rb -8.73               and           Qb      21.472 Deflection from pressure/bending, a2                 a3         DP avg'a yb '.=Mrb C2+Qb' D C3-                           D LII D
which gives,             yb      -1.041 10 Deflection from pressure /shear, 2
rp                          m.D avg .2 a K~:=-0.3             a 21n   I+           I-21n-b rp ysq:=
tG b            a J
which gives,           K sa ~%.013                 and               y'     -1.138'10 sq 0
Deflection from pressure/hub stretch,
                                                                                      -P forca.L
:='(a'- b') DP,,                             y stretch .
ttb 2E which gives,             P f0~0 =666.467                 and         y search       848 10 COMED PL Evaluation                             Valve ID: 2SWP'MOV17B                                                 page 2 PSWP17BA.MCD
 
'C Niagara Mohawk Power Corgoration                               NMP2                                                Page5cof/9 9 Nuciear Engineering                                   Calcuhrtion Con!. Sheet A10.1-AD403, Rev. 01 OriginatorlOate W~~       ~ >     4. C'mg +~sky Total Deflection due to pressure,                           y q:=ybq<<ysq+ y stretch which givesr           yq      2 197 10 AddNonal Geometry Factors                            '.=a r
L3 - .
ro 4a ro a
2
                                + I In   +
a ro r0 a
2
                                                        -I           L9   =
a I-ro I+v a 2
In +
ro I v 4
r0 a
2 which gives,             L3 =0               and           L9 ~0   ~
Deflection from seat load/bending,                       w:= I
        ~
ybw ',=
              . a w C2 D C8 roC9 b
L9'   rpC3 b
                                                                + L3     which gives,         yb        I 437'10 Deflection from seat         loadl shear, ro ro Ksa:=-1.2         In-               y ~:=Ksa' a
which gives,           Ksa =-0.182 a        b                          tG y sw =-1.174'10 Deflection from seat load/hub compression, L
                          -2'tt a   2 y compr
                        '.b                     which gives,               y     p
                                                                                      -1.002'10 Total Deflectio from unit seat load, y w:=y bw+y sw+y compr                         which gives,           yw    2 621'10 Equilibrium contact load distribution, equilibrium   'hich yq yw gives,           equilibrium Load per seat =           2 tt a yq  =302.831 yw Pressure Locking Force, COMED PL Evaluation                             Valve ID: 2SWP MOV17B                                               page 3 PSWP17BA.MCD
 
e Niagara Mohawk Power Co/Poration                           NMP2                                              Page&ot/ 7 7 Nuclear Engineering                               Calculation Cont. Sheet
                                                              ~
A10.1-AD403. Rev. 01 Originator/Date Thorn.ep-. At           +       /Flzglpp Checker/Date rs-rr&#xc3;7 F pres loclt       2 a a Vq (p   cos(0) - sin(0)) 2         which gives,     F pres loci' 338.833
                                /w Piston Effect Force,                           P at:=0 piston street
                          '= O'tem '< bonnet         p atm)         which gives,     F iston effect   270.177 "Reverse Piston Effect" Force, F vert     "'a ''P bonnet     P up P down                     which gives,     F ~ = 310.711 Total Force Re uired to Overcome Pressure Lockin F total: = F pres tock+ F po+ F 1/ert F piston effect which gives,         F <<< =6.241367         10 ACTUATOR CAPABlLITYt Actuator Model /Size:                                                                   = SMB-0-25 Motor Torque Output:                                                             TQm:= 23.52            tt-'bs Gear Ratio:                                                                       OGR:= 39.11 Application Factor:                                                                Af:=0.9 Pullout Efficiency:                                                                Eff:-"0.4 Reduced Voltage:                                                                    RV:= 0.8834 Torque Output:                TQout:= TQm RV OGR.Af Eff                          TQout = 258.43         tt- lbs Stem Factor.                                                                        Sf:=0.019627 TQout Thrust Capability:              THcap  '.=
Sf                                THcap = 1.317'10         lbs NOTE: RV lS SQUARE/F ACTUATORlS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                         KEI:= 1.20 Thrust Margin: = THeap (F tong KBI)
Thust Margin ~ 5.677       10     1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locklngconditions evaluated.
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locklngconditions evaluated.
COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP'MOV17B page 4  
COMED PL Evaluation                           Valve ID: 2SWP'MOV17B                                           page 4 PSWP17BA.MCD


Niagara Mohawk Power Corporation Nuciear Engineering Originator/Oate
Niagara Mohawk Power Corporation                         NMP2                                                  Page5$ br /%T Nuciear Engineering                             Calcutation Cont. Sheet At0,1-AD403. Rev. Ot Originator/Oate                                       Checkedoate
'uow pro/I~Q 0 (p3/v NMP2 Calcutation Cont.Sheet Checkedoate
'uow pro       /I Q 0 (p3/v
~e/z/r7 Page5$br/%T At0,1-AD403.
                    ~
Rev.Ot ValvelDno:
                                                                    ~e/z/r7 ValvelDno: 2SWPMOV18A Re uired         0 enin       Force Defernmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
2SWPMOV18A Re uired 0 enin Force Defernmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=4.94 mean sestrsdius, a:=5.75 average diskthickness, t:=0.789 seat angle, a.'=7 0:=--0=0.061 2 180 0 ishstfdisksngle a hub length, L:=0.125 Valve'isk Matertal Properties:
Design Basis Conditions at time of Pressure Locking Event:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.--108 Valve Bonnet pressure (psig), P bonnet=125 Downstream pressure (psig), P do~.=0 Other Valve Parameters:
Upstream pressure (psig),          Pp.--108        Valve Bonnet pressure (psig), P bonnet =125 Downstream pressure (psig), P do~.=0 Valve Disk Geometry:
Valve Stem Diameter, D at~.--2 Valve Factor VF:=0.6 Static Unseating Thrust F po 8635 (reference:
hub radius,         b:=4.94         mean sestrsdius,         a:=5.75 average diskthickness,             t:=0.789 hub length,        L:= 0.125        seat angle,       a .'=7             0:=-
Test&#xb9;8, 3/17>95)(reference:
2 180 0 =0.061 Valve'isk Matertal Properties:                                                       0  ishstfdisksngle a modulus of elasticity,       E:=29400000           Poisson's Ratio, v:=0.3 Other Valve Parameters:
NER-2M-010)
Valve Stem Diameter,       D at~.--2           Static Unseating Thrust         F po     8635
                                                                      &#xb9; (reference: Test 8, 3/17>95)
Valve Factor          VF:= 0.6                (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefticient of fnction between disk and seat,~<0)--sm(0)I VF it=0.622 (reference
Coefticient of fnction between disk and seat,                     ~<0)
&#xb9;6)Average DP Across Disk, Disk Sfiffnes Constants, gives, DP av<~71 and G:=E 2 (I+v)up+down DP avg'=P bonnet" 2 Et iz(i-v')which gives, D~1.322 10 and G~1.131~10 2 GeometryFsctors, C2.'=-I--I+21n-C3.=--+I In-I b C 8'=-I+v+(I-v)-2 a b I+v a I-v b C9---In-+-I--a 2 b 4 a which gives, C 2 0.009 C 8=0.908 C3~4.316 10 C 9=0.124 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP'MOV18A page 1
                                                                -
I VF sm(0) it =0.622     (reference   &#xb9;6) up+    down Average DP Across Disk,             DP avg '= P bonnet"                          gives,     DP av< ~71 2
Disk Sfiffnes Constants,                  Et            and       G:=     E iz(i-v')                         2 (I+ v) which gives,       D ~1.322   10       and         G ~1.131 ~ 10 GeometryFsctors,         C2.'=-     I-       I+21n             C3.=     +I In                       2 C8  '=-I 2
I+ v+ ( I - v) b a
C9    --b a
 
I+v In 2        b a
                                                                                                +
I-v -
4 I
b a
which gives,        C2    0.009            C3 ~4.316      10 C 8 =0.908              C 9 = 0.124 COMED PL Evaluation                        Valve ID: 2SWP'MOV18A                                                page  1 PSWP18AA.MCD
 
Peg<~ref/V Niagara Mohawk Power Corporation                                      NMP2                                                            7 Nuclear Engineering                                        Calculation Cont. Sheet A10.1&D003, Rw. 01 Orit/lnatorloate                                                  Checker/Date Wc ~~p        t,  N. des y cP~/pg                                                          r/s/f7 Additional Geomehy Factors,                                      rp.'=b 2            4              2              2 L11    .'=  1+4.
fp - rp 5    4            rp 2+
rp      ~
In 64            a            a                a                a          rp L17.=-
4 I- I-4 ro a
4
 
rp
 
a 2
                                                                . 1~(1+v)      In rp a
which gives,             L I I =1.545      10            and                L17 ~0.009 Moment Factors, Mg:=-
DPavga CS which gives, 2
C9 2ab    (a  -ro )-L lq                            o:=    -")
DP avg 2b  (
Mrb =-25.298              and              Q b ~62.225 Deflection fiom pressure/bending, DP avg a a2 yb '=Mrb C2+Qb D C3-a3 D
LII D
which gives,                y bq        3.016.10 Deflection fiom pressure/shear, 2                                                      2 rp K~:=-0.3        21n a
I+
rp    ~     1-21n-b avg'o b              a which gives,                K sa =%.013                  and                y'-3.297'10 sq t
Deflection from pressure /hub stretch, P force L P f    .'= ll (a  - b ) DP      vg                      y stretch ttb 2E and        y ~<h    -5.355 10 which gives,              P  f0~ ~1.931          10 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP           MOV18A'age                                          2


Niagara Mohawk Power Corporation Nuclear Engineering Orit/lnatorloate Wc~~p t, N.des y cP~/pg NMP2 Calculation Cont.Sheet Checker/Date r/s/f7 Peg<~ref/V 7 A10.1&D003, Rw.01 Additional Geomehy Factors, rp.'=b 2 4 2 2 fp rp rp rp L 1 1.'=-1+4.--5--4-2+-~In-64 a a a a rp 4 2 ro rp a L17.=-I--I----.1~(1+v)In-4 4 a a rp which gives, L I I=1.545 10 and Moment Factors, L17~0.009 Mg:=-2 DPavga C9--(a-ro)-L lq CS 2ab DP avg o:=-(-")2b which gives, Mrb=-25.298 and Q b~62.225 Deflection fiom pressure/bending, a2 a3 DP avg a yb'=Mrb-C2+Qb-C3-LII D D D which gives, y b 3.016.10 q Deflection fiom pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-~1-21n-b a b 2 avg'o which gives, K sa=%.013 and y'-3.297'10 sq t Deflection from pressure/hub stretch, P f.'=ll (a-b)DP vg P force L y stretch ttb 2E which gives, P f0~~1.931 10 and y~<h-5.355 10 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP MOV18A'age 2
Niagara Mohawk Power Corporation                           NMP2                                            Pag~W      7 Nuclear Engineering                               Calculation Cont. Sheet A10.1-AD403, Rev. Ot CSginatorlDate                                          Checkerloate Q~~ apy 4e          @AD  k-  /g3/py                                          r/rr'6 Total Deflection due to pressure,                         yq '
bq+ y sq+ y stretch which gives,           yq    H.367  10 Additional Geometry Factors ro:=a L3 -
ro 4a ro a
2
                              + I In  +
a ro ro a
2 I          L9 a


Niagara Mohawk Power Corporation Nuclear Engineering CSginatorlDate Q~~apy 4e@AD k-/g3/py NMP2 Calculation Cont.Sheet Checkerloate r/rr'6 Pag~W 7 A10.1-AD403, Rev.Ot Total Deflection due to pressure, Additional Geometry Factors y q'bq+y sq+y stretch which gives, y q H.367 10 ro:=a ro L3--4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-In-+-I--2 ro 4 a which gives, L3 0 and L9=0, Deflection from seat loadlbending, w.'=I asw C2 roC9 roC3 ybw'-L9--+L3 which gives, D C8 b b y b-I 437'10 Deflection from seat load l shear, ro ro Ksa'.=-1.2-In-'b a y~:=Ksa'G which gives, Ksa~-0.182 y<-I;174 10 Deflection from seat load/hub compression, L 2'll'a 2 y compr'E ttb which gives, y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w=-2.621~10 Equilibrium contact load distnbution, w eqtniib.tm,.=
ro I+v 2
-which gives, yq w Load per seat-"2 tt a-877.591 yq yw w eqttitibritm
In a
=24.291 Pressure Locking Force,, COMED PL Evaluation PSWP'I 8AA.MCD Valve ID 2SWP MOV18A page 3
ro
                                                                                            +
I-v 4
I ro a
2 which gives,           L3 0                 and           L9 =0, Deflection from seat loadlbending,                     w.'= I ybw'-
asw C2 roC9 D    C8      b L9 roC3 b
                                                            +L3 which gives,             yb    -I 437'10 Deflection from seat load shear, l ro     ro
                    ' In-b a
Ksa '.=- 1.2                       y ~:=Ksa'G               which gives,         Ksa ~-0.182 y   <-I;174 10 Deflection from seat load/hub compression, L
2'll'a 2 y compr'                         which gives,               y compr ttb E Total Deflection from unit seat load, y w:=y bw+y sw+y compr                       which gives,           y w =-2.621 ~ 10 Equilibrium contact load distnbution, w eqtniib.tm,.= yq            which gives,         w eqttitibritm = 24.291 w
Load per seat -     "2   tt a yq    877.591 yw Pressure Locking Force,,
COMED PL Evaluation                         Valve ID 2SWP MOV18A                                            page 3 PSWP'I 8AA.MCD


Niagara Mohawk Power Corporation Nuclear Engineering Orig inatorloate m--;-A+lsPg/~p NMP2 Calculation Cont.Sheet Checker/Date
Niagara Mohawk Power Corporation                           NMP2                                                      Paged/of  /7 Nuclear Engineering                               Calculation Cont. Sheet A10.1-AtHSS, Rev. 01 Orig inatorloate                                       Checker/Date m--;-A +lsPg/~p                                             /is       r<<.
/is r<<.Paged/of/7 A10.1-AtHSS, Rev.01 F pres iocle:=2 rt a-" (tt cos(0)-sin(6))2 which gives, F pres loci=98 1.925 Yq W Piston Effect Force, Pat:=0 ft"piston street,a'D stem'(phonnet peon)which gives, F piston effect"Reverse Piston Effect" Force, F vert'.=ft a~2 P bonnet up-P do1tfn sin(e)Total Force Re uired to Overcome Pressure Lockin whichgives, Fy~900428 total'res lock+po+vert piston effect whichgives, F<<~1.012465 10'CTUATOR CAPABILITY:
F pres iocle: = 2 rt a "
Actuator Model/SIze:
Yq
Motor Torque Output: Gear Ratio: Application Factor.Pullout ENciency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor.Thrust Capability:, THcap.'=-T out Sf=SMB-0-25 TQm.'=23.21 OGR:=39.11 Af:=0.9 Eff:=0.4 RV'-=0.8789 TQout=252.432 , Sf:=0.019627 THcap=1 286 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
( tt cos( 0) - sin( 6) ) 2       which gives,           F pres loci = 98 1 . 925 W
KEI:=1.20 Thrust Margin:=THoap-(F to%KEI)Thrust Margin 711.881 Ibs sl
Piston Effect Force,                           Pat:=0 ft which gives,            F piston effect "piston street,a'D stem '(phonnet           peon)
  "Reverse Piston Effect" Force, F vert'.= ft a ~
2 P bonnet       up
                                            - P do1tfn     sin(e)         whichgives,              Fy~    900428 Total Force Re uired to Overcome Pressure Lockin total 'res     lock+ po+         vert     piston effect whichgives,         F<<~         1.012465 10
                                                                              'CTUATOR CAPABILITY:
Actuator Model/SIze:                                                                           = SMB-0-25 Motor Torque Output:                                                                    TQm   .'= 23.21       ft- lbs Gear Ratio:                                                                            OGR:= 39.11 Application Factor.                                                                        Af:=0.9 Pullout ENciency:                                                                          Eff:= 0.4 Reduced Voltage:                                                                          RV '-= 0.8789 Torque Output:              TQout:= TQm RV OGR AfEff                                  TQout = 252.432         ft- lbs Stem Factor.                                                                            , Sf:=0.019627 Thrust Capability:, THcap            .'=T out Sf                                      THcap =1 286 10             lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                 KEI:= 1.20 Thrust Margin:= THoap (F to% KEI)
Thrust Margin     711.881         Ibs sl


== Conclusion:==
== Conclusion:==
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED Pl.Evaluation PSWP18AA.MCD Valve ID: 2SWP'MOV18A page 4  
COMED Pl. Evaluation                         Valve ID: 2SWP'MOV18A                                                     page 4 PSWP18AA.MCD


Niagara Mohawk Power Corporatton Nuclear Engineertng Originato/Date
Niagara Mohawk Power Corporatton                           NMP2                                                    Pape  scut  I PT Nuclear Engineertng                               Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originato/Date
,-.w.e;-E~/~NMP2 Calculation Cont.Sheet Checker/Date gled f>/i/~7 Pape scut I PT A10.1-AD403, Rev.01 Valve ID no: 2SWP'MOV18B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp,=108 Valve Bonnet pressure (psig), P bonnet.--125 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=4.94 meanseatradius, a:=5.75 averagediskthickness, t:=0.789 hub length, L:=0.125 seat angle, a:=7 1:=--" e 0.061 a tt 2 180 Valve Disk Material Properties:
          ,-.w. e; -E~/~
0 ishalfdisk'angle a modulus of elasticity, E:=29400000 Other Valve Parameters:
Checker/Date gled   f >/i/~7 Valve ID no: 2SWP'MOV18B Re uired         0 enin       Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Valve Stem Diameter, D<~.--2 Valve Factor VF:=0.6 Poisson's Ratio, v.=0.3 Static Unseating Thrust, F po 2129 (reference:
Design Basis Conditions at time of Pressure Locking Event:
Test&#xb9;11.SS96)(reference:
Upstream pressure (psig),           P p,=108         Valve Bonnet pressure (psig), P bonnet.--125 Downstream pressure (psig), P down             0 Valve Disk Geometry:
NER-2M-010)
hub radius,         b:=4.94         meanseatradius,           a:=5.75 averagediskthickness,               t:=0.789 hub length,       L:= 0.125         seat angle,       a:= 7             1:= "
a tt 2 180 e 0.061 Valve Disk Material Properties:                                                           0 ishalfdisk'angle a modulus of elasticity,     E:=29400000             Poisson's Ratio, v.=0.3 Other Valve Parameters:
Valve Stem Diameter,       D <~.--2             Static Unseating Thrust,           F po     2129
                                                                      &#xb9; (reference: Test 11. SS96)
Valve Factor        VF:=0.6                  (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, p:=cos(e)-'-s~(e)p 0.622 (reference
cos(e)
&#xb9;6)Average DP Across Disk, Disk SINnes Constants, gives, DP=71 Bed G:=-E 2 (1+v)up+down avg'onnet 2 Et n(1-')which gives, D=1.322 10 and G=1.131~10 1 b a.b b a b GeometryFactors, C2.=-1--1+2 1n-C3'.=--+1 ht-+--1 4,a b 4a a b a 1 b 2 C8=-1+v+(1-v)2 a b 1+v a 1-v b 2 C9---ln-+-1--a 2 b 4 a which gives, C 2=0.009 C 8 0.908 C 3=4.316'10 C 9~0.124 COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV18B page 1 r7 if I I I Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Q~~~o 4-C~&2 j/5 7 NMP2 Calculation Cont.Sheet Checker/Oate
Coefficient of friction between disk and seat,           p:=
~~/./~r Pagw'o//37 A10.1-AD403, RW, 01 Additional Geometry'Factors, r p.'=b I 64 2 4 2 rp fp fp I+4--5--4 a a a 2 rp a 2+-In-a rp I L17 4 4 2 1-Y'0 a I--I----I+(I+Y)In-4 a a rp which gives, Moment Factors, L 11=1.545 10, and L17=0.009 Mrb'DP avg a Cg C9~a-rp-L17 2ab Qb'a-r0 j 2b which gives, M+--25.298 and Qb-62.225 Deflect/on from pressure/t/ending, a a avg a 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, yb=-3.016 10 q Deflection fiom pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 In-b a b 2 sa'vg a ysq'hich gives, K sa~.013 and y"~-3.297 10 s sq Deflection from pressure/hub stretch, P f tt (a b)DP g P force'L y stretch'b 2E which gives, force'y~<<h-5355'10 COMED PL Evaluation PSWP18BA,MCD Valve ID: 2SWP MOV18B page 2~i
                                                                '- s~(e)                 p   0.622     (reference   &#xb9;6) up+ down                                  =71 Average DP Across Disk,                 avg 'onnet                  2 gives,    DP Disk SINnes Constants, Et            Bed       G:=       E n(1   -')                           2 (1+v) which gives,     D =1.322     10         and         G =1.131 ~ 10 GeometryFactors, 4,a C2.=
1       b 1+2     1n a
 
b C3'.=.
b 4a b
                                                                                        +1 a
ht a
 
b b
                                                                                                          + -1 a
C8   =-1 2
1+ v+(1 v) b a
2 C9 a
1-
                                                                                --b 1+v2 a
ln +
b 1-v 4
b a
2 which gives,       C 2 =0.009               C3    =4.316'10 C8    0.908            C 9 ~0.124 COMED PL Evaluation                           Valve ID: 2SWP'MOV18B                                                 page   1 PSWP18BA.MCD
 
r7 I
if I
I
 
Niagara Mohawk Power Corporation                                   NMP2                                                    Pagw'o//37 Nuctear Engineering                                     Calculation Cont. Sheet A10.1-AD403, RW, 01 Checker/Oate Originator/Date Q~~~ o 4 - C~ &2j/5 7                                                     ~~/./~r Additional Geometry'Factors,                                 rp    .'=b 2           4                 2              2 I
I+4   -5 rp          fp      4 fp 2+    In-rp            a 64            a           a             a                 a         rp L17 I
4 I - I-1-Y 4
                                  '
a 4
a 0
2 I +(I+ Y) In     a rp which gives,           L 11 =1.545     10,             and             L17 =0.009 Moment Factors, Mrb' DP avg a Cg C9 2ab
                                          ~
a   -rp -L17                             Qb'a           2b
                                                                                                              -r0 j which gives, M+--25.298                   and           Qb-62.225 Deflect/on from pressure/t/ending, 4
                              .'=Mrb 3
avg a C2+Qb C3-a                  a yb            D                 D                 D LII which gives,               yb q =-3.016           10 Deflection fiom pressure/shear, 2
K ~:=-0.3       2 In a
I +
rp
 
2 I 2     In-brp                              sa'vg   a b            a ysq'hich gives,             K sa ~.013                     and                     y" ~-3.297 10 s sq Deflection from pressure/hub stretch, P f       tt (a     b ) DP g                       y stretch  'b        P force'L 2E which gives,                 force
                                                                    '                           y~<<h     -5355'10 COMED PL Evaluation                               Valve ID: 2SWP MOV18B                                                      page 2 PSWP18BA,MCD                                                                                                                   ~i
 
Niagara Mohawk Power Corporation                                NMP2                                                Pager"trot /7 7 Nuctear Engineering                                    Calculation Cont Sheet A10.1-AD403, Rev. 01 Originator/Date                                            Checker/Date R~pju          W P~~ ~fg+g7                                            ~~/slur Total Deflection due to pressure,                            yq 'bq+ysq+ystretch which gives,          y q =%.367.10 Additional Geometry'Factors                      ro'.=a L3 '.=
ro 4a ro a
2 1-1  ~
In +  - I r
a      ro a
2 L9.=
a
 
ro I+v 2
In a
ro
                                                                                                +
I-v 4
I ro a
2 which gives,'"              L3 ~0              and          'L9 ~0 Deflection from seat load/bending,                        w:= I y bw ..=-
D C2 C8 roC9.-
b L9 roC3 b
                                                                + L3    which gives,        yb      1437 10
                                                                                                                'r Deflection from seat load/sheer, Ksa:=-1.2 ro ro
 
a In-b                y sw'G
                                                    .'=Ksa            which gives,          Ksa ~ %.182 y ~  -1.174 10 Deflection from seat load/hub compression, L
                          -2tta      2 which gives,                        ~ I'002 10 y compr '                                                      ycompr itb Total Deflection from unit seat load, yw:=ybw+ysw+ycompr                            which gives,          y w -2.621 ~ 10 Equilibrium contact load distributr'on, w eqmlibri~      'hich yq yw gives,      w equilibrium = 24.291 Load per seat =          2 tt.a yq    877.591 yw Pressure LocMng Force, COMED PL Evaluation                              Valve ID: 2SWP'MOV18B                                             page 3 PSWP18BA.MCD


Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date R~pju W P~~~fg+g7 NMP2 Calculation Cont Sheet Checker/Date
f' NMP2                                             PageirSot/3 ~
~~/slur Pager"trot
Niagara Mohawk Power Corporaaon Nuotear Engineering                               Catoulation Cont. Sheet A10.1-AD403, Rev. 01 CheckerlDate
/7 7 A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry'Factors yq'bq+ysq+ystretch which gives, y q=%.367.10 ro'.=a ro L3'.=-4a 2 2 ro a ro 1-1~In-+--I a r a ro L9.=-a r 2 I+v a I-v o-In-+-I-2 ro 4 a which gives,'" L3~0 and'L9~0 Deflection from seat load/bending, w:=I C2 roC9.roC3 y bw..=-----L9--+L3 which gives, D C8 b b yb 1437 10'r Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b y.'=Ksa-which gives, sw'G Ksa~%.182 y~-1.174 10 Deflection from seat load/hub compression,-2tta y compr'itb L 2 which gives, ycompr~I'002 10 Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, y w-2.621~10 Equilibrium contact load distributr'on, w eqmlibri~'hich gives, yq yw Load per seat=2 tt.a-877.591 yq yw w equilibrium
                                                              ~io.rrrW F pres lock:=
=24.291 Pressure LocMng Force, COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV18B page 3 f'
1 2 tt a Yq (p cos(0) - sin(0)) 2         which gives,   F pres lock   981 925 W
Niagara Mohawk Power Corporaaon Nuotear Engineering NMP2 Catoulation Cont.Sheet CheckerlDate
Piston Effect Force, .                         P au:=0
~io.rrrW PageirSot/3
                        '=                         p stm)           which givess   F lston off~e   392.699 "piston street S'D stem '(p bonnet "Reverse Piston Effect" Force, Fvert'=     rt a   2Pbonnet       up     down which gives,      F ~ = 900.428 Total Force Re uired to Overcome Pressure Lockin
~A10.1-AD403, Rev.01 F lock:=2 tt a-(p cos(0)-sin(0))2 which gives, F pres lock 981 925 Yq pres 1 W Piston Effect Force,.P au:=0"piston street'=S'D stem'(p bonnet p stm)which givess F lston off~e 392.699"Reverse Piston Effect" Force, Fvert'=rt a 2Pbonnet up down Total Force Re uired to Overcome Pressure Lockin which gives, F~=900.428 F total'pres lock+F po+F veft F pist which gives,'<<~=3.618654 10'ACTUATOR CAPABILITY:
              '                        F        F pist F total       pres lock+ F po + veft
Actuator Model/Size:
                                              '                              '
Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
which gives,         <<~ =3.618654         10 ACTUATOR CAPABILITY:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
Actuator Model/Size:                                                                   = SMB-0-25 Motor Torque Output:                                                              TQm:= 23.52           ft- Ibs Gear Ratio:                                                                      OGR:= 39.11 Application Factor.                                                                Af:=0.9 Pullout Efficiency:                                                                Eff:=0.4 Reduced Voltage:                                                                  RV:=0.8852 Torque Output:                TQout:= Tg    RV OGR        Afar                TQout = 259.484       tt- lbs Stem Factor.                                                                      St: = 0.019627 Thrust Capability:              THcap  .'=
TQout:=Tg RV OGR Afar TQout THcap.'=-Sf=SMB-0-25 TQm:=23.52 OGR:=39.11 Af:=0.9 Eff:=0.4 RV:=0.8852 TQout=259.484 St:=0.019627 THcap~1.322 10 ft-Ibs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
TQout Sf                                THcap ~ 1.322 10       lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
KEI:=1.20 Thrust Msrtpn:=THeep-(Fmmt KEI)Thrust Margin~8.878'10 lbs I
ENHANCED PRESSURE LOCIQNG METHODOLOGY:                                         KEI:= 1.20 Thrust Msrtpn:= THeep (Fmmt KEI)
Thrust Margin ~ 8.878'10           lbs I


== Conclusion:==
== Conclusion:==
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                          Valve ID: 2SWP'MOV1 8B                                            page 4 PSWP18BA.MCD


Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
0 Niagara Mohawk Power Corporation                           NMP2                                                  Page C4or~ 7 Nuctear Engineering                               Calcutation Cont. Sheet A10.1.AD403, RW. 01 Originator/Date                                        Checker/Date Q ~/~3bp                                    ~vrzjt7 Valve ID no: 2SWP'MOV2tA Re uired         0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV1 8B page 4 0
Design Basis Conditions at time of Pressure Locking Event:
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Q~/~3bp NMP2 Calcutation Cont.Sheet Checker/Date
Upstream pressure (psig),          P np 108      Valve Bonnet pressure (psig), P bonnet .= 2314 Downstream pressure (psig), P d          ~.=0 Valve Disk Geometry:
~vrzjt7 Page C4or~7 A10.1.AD403, RW.01 Valve ID no: 2SWP'MOV2tA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a.=1.47 average disk thickness, t:=0.54.a tt seat angle, a.=10 e:=--e=0.087 2 180 0 ishalfdisk angle u hub length, L:=0.25 Valve DIsk Materfai Properties:
hub radius,         b:=0.875       mean seat radius,           a.=1.47 average disk thickness,           t:=0.54 hub length,      L:=0.25          seat angle,         a.=10               .a e:=-   tt e =0.087 2 180 Valve DIsk Materfai Properties:                                                         0  ishalfdisk angle u modulus of elasticity,       E;=29400000           Poisson's Ratio, v.=0.3 Other Valve Parameters:
modulus of elasticity, E;=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters:
Valve Stem Diameter,         D<     .=1.125       Static Unseating Thrust,         F o:=1890 (reference: Test       &#xb9; 7, 3/30/93)
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 108 Valve Bonnet pressure (psig), P bonnet.=2314 Downstream pressure (psig), P d~.=0 Valve Factor VF:=I Valve Stem Diameter, D<.=1.125 Static Unseating Thrust, F o:=1890 (reference:
Valve Factor          VF:= I                  (reference.'ER-2M-010)
Test&#xb9;7, 3/30/93)(reference.'ER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, cope)-'-s~(e)It=1.091 (reference
cope)
&#xb9;6)Average DP Across Disk, Disk SNfnes Constants, up+down 3 avg bonnet 2 gives, DP avg 2 26 10 D:=and G:=Et E iz(i-')2 (I+v)which gives, D~4.239 10 and G~1.131~10 I b a a GeometryFactors, C2.=-I--I+21n-C3'.=--+I In-+--I 4 a b 4a a b a I b 2 C8'.=-1+v+(I-v)2 a C 9.=--In-+-I-which gives, C 2=0.07 C 8 0774 C 3=0.008 C 9~0.268 COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP MOV21A page 1
Coefficient   of friction between disk and seat,
                                                                  '- s~(e)               It =1.091     (reference   &#xb9;6) up+ down                                        3 Average DP Across Disk,                 avg       bonnet                           gives,     DP avg   2 26 10 2
Disk SNfnes Constants,            D:=     Et              and       G:=     E iz(i-')                             2 (I+ v) which gives,       D ~4.239   10         and           G ~ 1.131 ~ 10 GeometryFactors,         C2.=-I 4
I-   b
 
a I+21n     a b
C3'.=
4a
                                                                                      +
a I In a
 
b
                                                                                                        +
a
                                                                                                                -  I C8'.=-I 1+ v+(I- v) 2 b
a 2
C 9.=-   I- In   +
which gives,         C 2 =0.07               C 3 =0.008 C 8 0774                C 9 ~0.268 COMED PL Evaluation                           Valve ID: 2SWP MOV21A                                                page  1 PSWP21AA.MCD
 
Niagara Mohawk Power CorPoration                                  NMP2                                                            Page C'Pot /7 7 Nuctear Engineering                                    Catcutation Cont. Sheet A10.1-AD403, Rw. 01 Originator/Date                                                Checker/Date so~.oy~            4Q~        PZ)$ g Additional Geometry Factors,                                rp .'=b 2              4              2              2 fp In-I 1+4    4 rp 5
rp              rp 2+            ~
64          a            a                a                a        rp L17 I
4 I - I-  -
4 rp a
4 rp a
2 I +(I+v) In      a rp which gives,          L 11 =9.149        10            and                L17 ~0.063 Moment Factors, M~'=-
Dpavg C8 wh/ch g/ves, 2
C9 2ab      (a  -ro )-Lrr                          ~b:=      2b
                                                                                                  '"'(*-              0')
M rb =-516.898              and            Qb      1.802 10'eflection f/Qm pressureIbending,
 
yb .=Mrb O C2+
2 Qb    C 3-D                D
                                                                                    .L 11 which gives,              y bq ~%.158          10 Deflection from pressure        Ishear, 2                                                                  2 rp                                          avg a K ~:=-0.3 2 In  - I +
rp    ~
I-2    In-b                            sa tG b              a which gives,            Ksa =%.118                    a/ld              y'sq = %.403'10 Deflection from pressure /hub stretch, P force'L P,:=a (a'- b') DP,,                                y stretch ttb 2E which gives,            P force        9 906  18        and        y stretch =-1.751.            10 COMED PL Evaluation                              Valve ID: 2SWP'MOV21A                                                             page 2 PSWP21AA.MCD


Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date so~.oy~4Q~PZ)$g NMP2 Catcutation Cont.Sheet Checker/Date Page C'Pot/7 7 A10.1-AD403, Rw.01 Additional Geometry Factors, rp.'=b I 64 2 4 2 2 rp rp rp fp 1+4--5--4-2+-~In-a a a a rp I L17 4 4 2 rp rp a I--I----I+(I+v)In-4 a a rp which gives, L 11=9.149 10 and Moment Factors, 2 Dpavg C9 M~'=---(a-ro)-Lrr C8 2ab L17~0.063~b:=-'"'(*-0')2b wh/ch g/ves, M rb=-516.898 and Qb 1.802 10'eflection f/Qm pressureIbending, 2 yb.=Mrb-C2+Q b-C 3-.L 11 O D D which gives, y~%.158 10 bq Deflection from pressure I shear, 2 rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 sa avg a tG which gives, Ksa=%.118 a/ld y'sq=%.403'10 Deflection from pressure/hub stretch, P,:=a (a'-b')DP,, P force'L y stretch ttb 2E which gives, P force 9 906 18 and y stretch=-1.751.10 COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP'MOV21A page 2  
NMP2                                        Pagerr 1/o/~7 >
Niagara Mohawk Power Corporation Nuclear Engineering                                 Calculation Cont. Sheet 4                                                                            A10.1.AMX},Rw. 01 Originator/Date                                          Checker/Date Row i>pc,       A. Q~ QZy/p p                                                  ~/i/~r Total Deflection due to pressure,                           yq '
bq ~ y sq+ y.trctch which gives,             y   =-2.031 ~
10 Additional Geometry Factors                    ro:=a L3 '=
ro 4a ro a
2
                              +1  1n +  -1 a
ro ro a
2 ro a


Niagara Mohawk Power Corporation Nuclear Engineering 4 Originator/Date Row i>pc, A.Q~QZy/p p NMP2 Calculation Cont.Sheet Checker/Date
L9.= 1+v 1n 2
~/i/~r Pagerr 1/o/~7>A10.1.AMX}, Rw.01 Total Deflection due to pressure, y q'bq~y sq+y.trctch which gives, y=-2.031~10 Additional Geometry Factors ro:=a ro L3'=-4a 2 2 ro a ro+1 1n-+--1 a ro a ro L9.=-a 2 1+v a 1-v ro-1n-+-1-2 ro 4 a which gives, L3=0 II and L9=0 Detlection from seat load/bending, w:=1~a w C2 roC9 roC3 y bw.-L9--+L3 which gives, D C8 b b ybw 64'Deflection from seat load/shear, ro ro Ksa:=-1.2-1n-a b y:=Ksa-which gives, Ksa W.623 sw'~~-1:499'10 Deflection from seat load/hub compression,-2tta y compr'b L 2 which gives, y~-1.633 10 Total Deflection from unit seat load, yw:=y bw+y sway compr which gives, y w 3.626 10 Equilibrium contact load distribution, w~b-~.=-which gives, yq yw Load per seat r 2 tt a-5.175 10 yq yw w cquiTibrium 5%'241 Pressure Locking Force, COMED PL Evaluation PSWP21AAMGD Valve ID: 2SWP'MOV21A page 3  
a ro
                                                                                              +
1-v 1- ro 4       a 2
which gives,             L3 =0                 and         L9 =0 II Detlection from seat load/bending,                     w:=1
        ~
y bw.
a D
w C2 C8 roC9 b
L9 roC3 b
                                                              + L3     which gives,       ybw       64' Deflection from seat load/shear, Ksa:=-   1.2 ro ro a
1n-b y:=Ksa sw '
which gives,         Ksa   W.623
                                                                                            ~ ~-1:499'10 Deflection from seat load/hub compression, L
y compr   'b -2tta  2 which gives,               y       ~-1.633 10 Total Deflection from unit seat load, yw:=y bw+y sway compr                       which gives,           yw    3.626 10 Equilibrium contact load distribution, w ~b-~.= yq                which gives,           w cquiTibrium 5%'241 yw Load per seat     r   2 tt a yq    5.175 10 yw Pressure Locking Force, COMED PL Evaluation                           Valve ID: 2SWP'MOV21A                                         page 3 PSWP21AAMGD


Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date
Niagara Mohawk Power Corporation                               NMP2                                                  Page/ /of I$ 1 Nuctear Engineering                                   Catcutation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date                                            Checker/Date
,>;A'.a Pdislp~NMP2 Catcutation Cont.Sheet Checker/Date Pio.rid Page//of I$1 A10.1-AD403.
          ,>; A'. a Pdislp~                                     Pio.rid Yq
Rev.01 Yq 4 F pres]ocp 2 ft a-" (p cos(0)-sin(0))2 which gives, F pres loc'k=1.035 1 0 W Piston Effect Force, Pat:=0 ft"piston etr(mt'stem'i bonnet p etm)which givesr F piston cff~t"Reverse Piston Effect" Force, v~:=" Pbonnct-up-so~'m<<)Total Force Re uired to Overcome Pressure Lockin which gives, Fcrt=2.674 10 F total.'=Fprcs lock+Fpo+'F vert Fpiston cffcct which gives,'<<~=1.261328 10 ACTUATOR CAPABILITY:
                                  "                                                    F pres loc'k = 1 .035    0 4
Actuator Mode!I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
F pres ]ocp       2 ft a       ( p cos(0) sin(0)) 2           which gives,                           1 W
Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor..TQ ut Thrust Capability:
Piston Effect Force,                               Pat:=0 ft "piston etr(mt   '
fHcap:=-T out Sf=SMB-000-5 TQm.'=4.76 OGR:=52 Af:=0.9 Eff:=0.4 RV:=0.8623 TQout~66.257 Sf:=0.014500 THcap~4.569 10 ft-1bs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
stem 'i   bonnet   p etm)           which givesr   F piston cff~t "Reverse Piston Effect" Force, v~:="             Pbonnct-       up- so~ 'm<<)                     which gives,      F crt = 2.674 10 Total Force Re uired to Overcome Pressure Lockin F total.'=Fprcs lock+ Fpo+'F vert           Fpiston cffcct
KEI:=1.20'ibrnst Mer(pn:=THeep-(FmmrKH1)Thrust Margin~-1.057 10 1bs
                                                  '
which gives,           <<~ =1.261328         10 ACTUATOR CAPABILITY:
Actuator Mode! I Size:                                                                     = SMB-000-5 Motor Torque Output:                                                                TQm .'=4.76             ft- 1bs Gear Ratio:                                                                          OGR:=52 Application Factor.                                                                  Af:=0.9 Pullout Efficiency:                                                                  Eff:=0.4 Reduced Voltage:                                                                      RV:= 0.8623 Torque Output:                  TQout:= TQm RV OGR            AfEff              TQout ~ 66.257           ft- lbs Stem Factor.                                                                          Sf:= 0.014500 T
TQoutut Thrust Capability:                fHcap:=.
THcap ~4.569 10           lbs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                             KEI:= 1.20
                    'ibrnst Mer(pn:= THeep- (FmmrKH1)
Thrust Margin ~-1.057 10             1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP'MOV21A page 4  
COMED PL Evaluation                             Valve ID: 2SWP'MOV21A                                               page 4 PSWP21AA.MCD


NIagara Mohawk Power CorPoration Nuctear Engineering Originator/Date
NIagara Mohawk Power CorPoration Nuctear Engineering NMP2 Calcutation Cont Sheet Page7uor /97 A10.1-AD403, RW. 01 Originator/Date
~enie3w A.g e'/e3leg NMP2 Calcutation Cont Sheet Checker/Date eke Page7uor/97 A10.1-AD403, RW.01 Valve ID no: 2SWP MOV21B Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a:=1.47 average disk thickness, t:=0.54 seat angle, a.=10 0:=--0 0.087 a tt 2 180 0 ishalfdiskangle a hub length, L:=0.25 Valve Disk Material Properties modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
~enie3w A.               g e'/e3leg                     Checker/Date eke Valve ID no: 2SWP MOV21B Re uired         0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P:=108 Valve Bonnet pressure (psig), Pbo<<.=2314 Downstream pressure (psig), P do~0 Valve Factor VF:=1 Valve Stem Diameter, D<~.=1.125 Static Unseating Thrust, F po 1245 (reference:
Design Basis Conditions at time          of Pressure Locking Event:
Test&#xb9;12, 1295)(reference:
Upstream pressure (psig),          P :=108            Valve Bonnet pressure        (psig), Pbo      <<.=2314 Downstream pressure (psig), P do~              0 Valve Disk Geometry:
NER-2M-010)
hub radius,         b:=0.875       mean seat radius,           a:=1.47 average disk thickness,             t:=0.54 hub length,      L:=0.25          seat angle,         a.=10             0:=-a tt 2 180 0 0.087 Valve Disk Material Properties                                                           0  ishalfdiskangle a modulus     of elasticity,   E:= 29400000           Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter,         D <~.=1.125           Static Unseating Thrust,       F po       1245 (reference: Test&#xb9; 12, 1295)
Valve Factor          VF:= 1                (reference: NER-2M-010)
CALCULA77ONS:
CALCULA77ONS:
Coefficient of friction between disk and seat, cos(0)-sin(0)it=1.091 (reference
Coefficient of friction between disk and seat,                     cos(0)
&#xb9;6)Average DP Across Disk, Disk SNI'nes Constants, gives, DP a2.26 10 E G:=-2 (1+v)P~+Pdo~D avg" bonnet 2 Et3 D:=end which gives, D 4.239 10 and G=1.131~10 1 b a b b2 a b2 GeometryFactors, C2.=-1--1+2 1n-C3.=--+1 ln-+--1 4 a b 4a a b a 1 b 2 C 8'=-1+v+(1-, v)-2 a b 1+v a 1-v b 2 C9.'=--ln-+-.1--a 2 b 4 a which gives, C 2=0.07 C 8~0.774 C 3~0.008 C 9=0.268 COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP'MOV21 B page 1
                                                                      - sin(0)             it =1.091     (reference   &#xb9;6)
P~+Pdo~
Average DP Across Disk,             D avg"      bonnet                              gives,       DP a2.26       10 2
Disk SNI'nes Constants,          D:=
Et3 end      G:= 2 E
(1+ v) which gives,       D 4.239   10       and             G = 1.131 ~ 10 GeometryFactors,         C2.=
1 4
b a
1+2 1n a
 
b C3.=
4a b      b2
                                                                                        +1 a
a ln +
b b2
                                                                                                              -1 a
C8  '=-
1 2
1 + v+ (1 -, v) b a
2 a
 
C9.'=-b 1+v ln 2
a b
                                                                                                  + .1-1 4
v       b a
2 which gives,        C 2 =0.07                C 3 ~0.008 C 8 ~0.774              C 9 =0.268 COMED PL Evaluation                          Valve ID: 2SWP'MOV21 B                                                  page  1 PSWP21BA.MCD
 
Niagara Mohawk Power CorPoration                                    NMP2                                                  Pagey/  of/3 7 Nuclear Engineering                                        Calculation Cont. Sheet At 0.t-AD403, Rev. 01 originator/Date                                                Checker/Date Additional Geometry Factors,                                  rp '.=b 2            4              2              2 1
1+4 rp
                                -5  4      rp            rp 2+    ln-rp          a 64            a              a            a              a        rp L17 1
4 I  1-Y 1-4
 
a 0
4 a
0 2
I+(1+ Y) ift      a rp which gives,              L 1 1 =9.149    10            and            L17 ~0.063
 
Moment Factors, 2
DP ayg    a 2ab 9  ~
-rp -L17                          ob:=
2b
                                                                                                    '"'('-    0')
C&
which gives, Mrb -516.898              and          Q b ~ 1.802'lp W
Deflection from pressure&ending, yb    ''rb'a o
2+Qb' o      3 DP ayg a o
                                                                                      'l which gives,                  y bq ~%.15&          10 Deflection from pressure /shear, I
K~:=-0.3 21n  -1+
rp 2'
                                                          ~
1-21n-
                                                                        'p                    '=
s'a'vg    a 2
a                    b ysq which gives,                K sa  ~.l    1 &          and              y'.403 sq          10 Deflection from pressure/hub stretch, P force  L P force    tt (a     b ) DP ayg                          y stretch '=
itb 2E which gives,                 Pf0~ =9.906.10                  and        y~~        -1.751 ~ 10 COMED PL Evaluation                                  Valve ID: 2SWP'MOV218                                                  page 2 PS.WP21BA.MCD
 
0 Niagara Mohawk Power Corgoration                                NMP2                                              Page 72bi/77 Nuotear Engineering                                    Catcutation Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date
>c ~p-            8'~          Wzp/pp Checkerloate Total Deflection due to pressure,                            yq '=ybq+ysq+ystretch which gives,            yq    2 031 10 Additional Geometry'actors                        ro.'=a L3 '=
ro 4a ro a
2
                                +  I In +
a ro ro -
 
a 2
I          L9 "=
a
 
ro I+v 2
ln a
ro
                                                                                                +
I-v I-4 ro a
2 which gives,              L3 ~0                and          L9 ~0 Deflection from seat load/bending,                        w:=I
 
                                                    'sa
        ~          a3w C2 ro C9
 
roC3                                        =-1.964        7 y bw.-
              .
L9              + L3      which gives,      yb              10 D      C8        b                b Deflection from seat load/shear, Ksa:=-    1.2 ro ro
 
a In-b                y:=
sw Ksa which gives,            ~ W.623 y sw ~-1.499 10 Deflection from seat load/hub compression, L
                            - 2'1t'a  2 y compr
                        'tb                      which gives,              y      ~-1.633 10 Total Deflection from unit seat load, y w:=y bw+'y sway compr                        which gives,          y w ~-3.626'10 Equilibnum contact load distribution,
                                '
yq        which gives,          w equilibrium 560'241 equilibrium yw Load perseat= 2              tt a yq  ~5.175 10 yw Pressure Locking Force, COMED PL Evaluation                               Valve ID: 2SWP'MOV21 B                                           page 3 PSWP21BA.MCD


Niagara Mohawk Power CorPoration Nuclear Engineering originator/Date NMP2 Calculation Cont.Sheet Checker/Date Pagey/of/3 7 At 0.t-AD403, Rev.01 Additional Geometry Factors, rp'.=b 1 64 2 4 2 rp rp rp 1+4--5--4 a a a2 rp a 2+-ln-a rp 1 L17 4 4 2 1-Y 0 0 a I--1----I+(1+Y)ift-4 a a rp which gives, Moment Factors, 2 DP ayg a C&L 1 1=9.149 10 and 9~a-rp-L17 2ab L17~0.063 ob:=-'"'('-0')2b which gives, Mrb-516.898 and Q b~1.802'lp W Deflection from pressure&ending, a DP ayg a yb'&#x17d;rb'2+Qb'3'l o o o which gives, y~%.15&10 bq Deflection from pressure/shear, 2'rp'p K~:=-0.3 21n--1+-~1-21n-a b I 2 s'a'vg a ysq'=which gives, K sa~.l 1&and y'.403 10 sq Deflection from pressure/hub stretch, P force tt (a b)DP ayg P force L y stretch'=itb 2E which gives, Pf0~=9.906.10 and y~~-1.751~10 COMED PL Evaluation PS.WP21BA.MCD Valve ID: 2SWP'MOV218 page 2 0
I NMP2                                                   Pa//el &o/ I >>
Niagara Mohawk Power Corgoration Nuotear Engineering Originator/Date
Niagara Mohawk Power Corporation Nuotear Ent/ineeriny                              Catoutatton Cont. Sheet A10.1-AD403, Rev. 01 Onglnatof/Date                                        Checker/Date wowrop A '                     /r(gSrp7                     ~re rtr+p F pres loca '= 2 tt a J tl (P cos(e) sin(e)) 2           which gives,         F,     1~1,   1.035 10
>c~p-8'~Wzp/pp NMP2 Catcutation Cont.Sheet Checkerloate Page 72bi/77 A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry'actors yq'=ybq+ysq+ystretch which gives, y q 2 031 10 ro.'=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9"=-a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3~0 and L9~0 Deflection from seat load/bending, w:=I~.a3w C2 ro C9 roC3 y bw.-L9--+L3 which gives, D C8 b b y b=-1.964 10 7 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b y:=Ksa-which gives, sw'sa~W.623 y sw~-1.499 10 Deflection from seat load/hub compression,-2'1t'a y compr'tb L 2 which gives, y~-1.633 10 Total Deflection from unit seat load, y w:=y bw+'y sway compr which gives, y w~-3.626'10 Equilibnum contact load distribution, equilibrium
                                >w Piston Effect Force,                           P at:=0 P piston pt on etreet
'which gives, yq yw Load perseat=2 tt a-~5.175 10 yq yw w equilibrium 560'241 Pressure Locking Force, COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP'MOV21 B page 3 I
                        '=
Niagara Mohawk Power Corporation Nuotear Ent/ineeriny Onglnatof/Date wowrop A'/r(gSrp7 NMP2 Catoutatton Cont.Sheet Checker/Date
4
~re rtr+p Pa//el&o/I>>A10.1-AD403, Rev.01 F pres loca'=2 tt a-(P cos(e)-sin(e))2 J tl>w which gives, F, 1~1, 1.035 10 Piston Effect Force, P at:=0 P piston etreet'='tern'(P ttonnet P ann)which gives, P piston street pt on 4"Reverse Piston Effect" Force, vert''onnet up down Total Force Re uired to Overcome Pressure Lockin which gives, F~2.674 10 F totai:=F pres loca+F po+F vert-F piston effect which gives, F<<nd=1.196828 10'CTUATOR CAPABILITY:
                              'tern   '(P ttonnet   P ann)           which gives,         P piston street "Reverse Piston Effect" Force, vert ''onnet                   up     down which gives,           F ~     2.674 10 Total Force Re uired to Overcome Pressure Lockin F totai: = F pres loca + F po+ F vert- F piston effect which gives,       F <<nd =1.196828 10
Actuator Model/Size:
                                                                            'CTUATOR CAPABILITY:
Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
Actuator Model/Size:                                                                       = SMB-000.5 Motor Torque Output:                                                                  TQm;=4.76             ft- 1bs Gear Ratio:                                                                            OGR:=52 Application Factor.                                                                    Af:=0.9 Pullout Efficiency:                                                                    Eff:=0.4 Reduced Voltage:                                                                        RV: = 0.8591 Torque Output:                TQout:= TQm RV OGR          AfEff                    TQout = 65.766         ft- lbs Stem Factor:
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
Thrust Capability:              THcap:  =TQout Sf Sf:= 0.014500 THcap =4.536 1(P           lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-000.5 TQm;=4.76 OGR:=52 Af:=0.9 Eff:=0.4 RV:=0.8591 TQout=65.766 Sf:=0.014500 THcap=4.536 1(P ft-1bs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                 KEI:"
KEI:"-1.20 Thntat Margin:=THcap-(F tong KEi)Thrust Margin~%.826'10 1bs
                                                                                          -1.20 Thntat Margin:= THcap (F tong KEi)
Thrust Margin ~%.826'10         1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to oVercome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                          Valve ID: 2SWP MOV21B                                                  page 4 PSWP21BA.MCD


Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to oVercome the theoretical pressure locking conditions evaluated.
Niagara Mohawk Power Corporatke                                    NMP2 Calcukrtion Cont. Sheet Page7rtor/ pp Nuciear Enginoerinp A10.1-AD403, Rev. 01 Orlglnatof/Data                                                CheckerlDate Qo nv rp> A                tot s  /s p lng                              .
COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP MOV21B page 4
                                                                              ~re/r7 Valve ID no: 2SWP MOV66A Re uiredO enin                  ForceDeternminationunderPressureLockin                                              Conditions COMED Method DESIGN INPUTS:
Design Basis Conditions at time                  of Pressure Locking Event:
I Upstream pressure (psig),            F := 108                Valve Bonnet pressure        (psig), P b      <
                                                                                                                  = 108 I
Downstream pressure (psig), F go~                      0 Valve Disk Geometry:
hub radius,          b:= 3.375        mean seat radius,                a:= 3.91 average disk thickness,            t:=0.48 hub length,        L:=0.125            seat angle,              a:=  10          e:=
a tt


Niagara Mohawk Power Corporatke Nuciear Enginoerinp Orlglnatof/Data Qo nv rp>A tot s/s p lng NMP2 Calcukrtion Cont.Sheet CheckerlDate
2 180 e   0.087 Valve Disk Material Properties:                                                                 e  is half disk'angle a of elasticity,   E:= 29400000'odulus Poisson's Ratio, v.'=0.3 Other Valve Parameters:
.~re/r7 Page7rtor/
Valve Stem Diameter, D         ~.= 1.625                 Static Unseating Thrust         F po     9232
p p A10.1-AD403, Rev.01 Valve ID no: 2SWP MOV66A Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: I Upstream pressure (psig), F:=108 Valve Bonnet pressure (psig), P b<=108 I Downstream pressure (psig), F go~0 Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a:=3.91 average disk thickness, t:=0.48 seat angle, a:=10 e:=--e 0.087 a tt 2 180 Valve Disk Material Properties:
                                                                              &#xb9; (reference: Test 25, 10/5/94)
'odulus of elasticity, E:=29400000 Other Valve Parameters:
Valve Factor          VF:=0.65                      (reference: NER-2M-010)
Poisson's Ratio, v.'=0.3 e is half disk'angle a Valve Factor VF:=0.65 Valve Stem Diameter, D~.=1.625 Static Unseating Thrust F po 9232 (reference:
Test&#xb9;25, 10/5/94)(reference:
NER-2M-010)
CA L CULA77ONS:
CA L CULA77ONS:
Coel'cient of fnction between disk and seat, It:=I--am(e)VF It=0.686 (reference
Coel'cient of fnction between disk and seat,                     It:=
&#xb9;6)gives, DP avg 54 Fup+F de Average DP Across Disk, DP avg'Disk Etttthss Constsnts, D:=snd G:=Et E tk (t-s')2(tsv)which gives, D 2.977'10 and G=1.131~10 Geometry Factors, C 2.'=-I--I<<2 In-I b a 4 a b I b C 8.'=-I+v+(I-v)-2 a C3.---+I In-+--I C9---In-+-I--which gives, C 2 0.009 C 8~0.911 COMED Pi Evaluation PSWP66AA.MCD C 3=3.965'10 C 9=0.121 (o+Valve ID: 2SWP'MOVS48 page 1  
                                                                        -
VF I
am(e)
It =0.686     (reference &#xb9;6)
Average DP Across Disk,               DP avg '                      Fup+F de               gives,     DP avg     54 Disk Etttthss Constsnts,           D:=           Et            snd         G:=     E tk (t       s')                         2(tsv) which gives,       D   2.977'10                 and         G =1.131 ~ 10 Geometry Factors,         C 2.'=-I 4
I -         b
 
a I <<2 In   a b
C3.-   +              I In  +        - I C8  .'=-I 2
I+         v+ ( I - v) b a
C9    --   I-In   +
which gives,         C2    0.009                     C 3 =3.965'10 C 8 ~0.911                     C 9 = 0.121 (o+
COMED Pi Evaluation                                 Valve ID: 2SWP'MOVS48                                                page  1 PSWP66AA.MCD
 
Niapara Mohawk Power Corporation                                      NMP2                                                Pape75 ot /77 Nuclear Enpineerinp                                      Calculation Cont. Sheet A10.1 AO403. Rw. Ot Oripinator/Oate                                                  Checkerloate Q~~~ A'. g~ Wiplpp Addih'onel Geometry Factors,                                    rp .'=b 2            4                  2              2 fp                fp
 
LII =        I+4    -5  -4 fp            fp                        ~
2+            In 64            a            a              a                  a            rp L17 I
4 I-I-U I -
4            a 0
4
                                                -
a 0
2
                                                            ~
I+(I+v) ln      a rp which gives,            L I I =1.378      10              and                L 17 =0.009 Moment Factors, Mg:=-          avg 2
9    /2
                                                    'o)                                              '"'a'- ra'j C8          2ab                                                            2b which gives, Mrb -8.373                  and            Qb-3118 Deflection from pressurelbending, 4
3 avga
                            .'=Mrb C2+Qb C3-a                    a yb              D                    D                  D LII which gives,                y b tI -1.937 10 Deflection fmm pressure/sheer, 2                                                          2 K ~:=-0.3      2 In a
I +
b rp a
                                                        ~
I  - 2 In- rp b
sq'G Ksa DP av'g'a which gives,              Ksa ~%.012                      end                  y'1.796 sq 10 Deflection from pressure/hub stretch,
                                                                                              -P force L P f    '.=ll (a  - b ) DP      vg                        y stretch    '=
rtb 2E II which gives,                                                  and          y ~tch  -3.928 10 P  f0~          661.191 COMED PL Evaluation                                Valve ID: 2SWP'MOV66A                                                    page 2 PSWP66AA.MCD
 
Niagara Mohawk Power Cotporatton                              NMP2 Nuotear Enttineertntt                                Catoulation Cont. Sheet A10.1 AD403, Rw. 01 Orfttlnatorioate                                          Checkerloate
>~ ~~> A'.g~ c /gy+)                                                            7/i/~y Total Deflection due to pressure,                          yq'bq+ysq+ystretch which gives,            y q ~-3.77I'10 Additional Geometry Factors r0.'=a L3 .'=
ro
                .
4a ro a
2
                                +I    ln +  - I a
ro r0 a
2 r0 a
I-L9.= 1+v In 2
a ro
                                                                                                +
I v 4          a 0
2 which gives,            L3 =0                and          L9 =0 Deflection from seat load/bending,                      w:= I ybw.=
a.w C2 roC9 D      C8      b L9 roC3 b
                                                              +L3 which gives,              ybw      1835 10 Deflection from seat load/shear, ro ro


Niapara Mohawk Power Corporation Nuclear Enpineerinp Oripinator/Oate Q~~~A'.g~Wiplpp NMP2 Calculation Cont.Sheet Checkerloate Pape75 ot/77 A10.1 AO403.Rw.Ot Addih'onel Geometry Factors, rp.'=b 2 4 2 2 fp fp fp fp LII=-I+4--5--4-~2+-In-64 a a a a rp I L17 4 4 2 I-U 0 0 a I--I----~I+(I+v)ln-4 a a rp which gives, L I I=1.378 10 and Moment Factors, 2 avg 9/2 Mg:=-'o)C8 2ab L 17=0.009'"'a'-ra'j 2b which gives, Mrb-8.373 and Qb-3118 Deflection from pressurelbending, a a avga 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, y b-1.937 10 tI Deflection fmm pressure/sheer, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 Ksa DP av'g'a sq'G which gives, Ksa~%.012 end y'1.796 10 sq Deflection from pressure/hub stretch, P f'.=ll (a-b)DP vg-P force L y stretch'=rtb 2E which gives, P f0~661.191 II and y~tch-3.928 10 COMED PL Evaluation PSWP66AA.MCD Valve ID: 2SWP'MOV66A page 2
Ksa:=-1.2 a
ln- b y:=Ksa-       tG a
which gives,           Ksa =-0.177 y    =-I 272  10 Deflecflon from seat load/hub compression, L
                            -2 tt'a 2 compr  'tb                    which gives,               y         -1.459 10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr                      which gives,             yw    3 122'10 Equilibrium contact load distribution, we    ~bn~.=       yq        which gives,             equilibrium    12'081 w
Load per seat =          2 a a yq    296.797 yw Pressure LDCMng Force, COMED PL Evaluallon                            Valve ID: 2SWP MOV66A                                             pag8 3 PSWP66AA.MCD


Niagara Mohawk Power Cotporatton Nuotear Enttineertntt Orfttlnatorioate
0 Niagara Mohawk Power Corporation                            NMP2                                                PageTfo/ I +'7 Nuciear Engineeiing                              Ceioiglation Cont. Sheet A10.1-AD403. Rev. 01 4.~
>~~~>A'.g~c/gy+)NMP2 Catoulation Cont.Sheet Checkerloate 7/i/~y A10.1 AD403, Rw.01 Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q~-3.77I'10 r0.'=a ro L3.'=-.4a 2 2 ro a r0+I ln-+--I a ro a r0 L9.=-a 2 1+v a I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a.w C2 roC9 roC3 ybw.=L9--+L3 which gives, D C8 b b ybw 1835 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b a y:=Ksa-tG which gives, Ksa=-0.177 y=-I 272 10 Deflecflon from seat load/hub compression,-2 tt'a compr'tb L 2 which gives, y-1.459 10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w 3 122'10 Equilibrium contact load distribution, yq we~bn~.=-which gives, w Load per seat=2 a a-296.797 yq yw equilibrium 12'081 Pressure LDCMng Force, COMED PL Evaluallon PSWP66AA.MCD Valve ID: 2SWP MOV66A pag8 3 0
Originator/Date                                        Checker/Date a~"p"                           4/go/pr
Niagara Mohawk Power Corporation Nuciear Engineeiing Originator/Date a~"p" 4.~4/go/pr NMP2 Ceioiglation Cont.Sheet Checker/Date
                                                          ~rs       r.r r/
~rs r.r r/PageTfo/I+'7 A10.1-AD403.
F pres leak'       tt a "
Rev.01 F pres leak'tt a-" (p;cos(e)-
Yq (p;cos(e)-   sin(e)) 2           which gives,   Fpres look =354.165 Vrr Piston Effect Force,                           Pau   '=0 F piston street ''D     stem 2/'(p bonnet   p atm)           which gives,   F piston eff~t = 223.986 "Reverse Piston Effect" Force, F<<.'=     it a 2 P bonnet up     gown                     which gives,     F v<< = 452.0SS Total Force Re uired to Overcome Pressure Lockin F total:=F pres look+ F po+ F       v<<- F piston which gives,         F +~ = 9.814267'10 ACTUATOR CAPABILITY:
sin(e))2 which gives, Fpres look=354.165 Yq Vrr Piston Effect Force, Pau'=0 2/F piston street''D stem'(p bonnet p atm)which gives, F piston eff~t=223.986"Reverse Piston Effect" Force, F<<.'=it a 2 P bonnet up gown Total Force Re uired to Overcome Pressure Lockin which gives, F v<<=452.0SS F total:=F pres look+F po+F v<<-F piston which gives, F+~=9.814267'10 ACTUATOR CAPABILITY:
Actuator Mode)/Size:                                                                     = SMB-00-15 Motor Torque Output:                                                              TQrn: = 14.74         ft- lbs Gear Ratio:                                                                      OGR:= 34.1 Application Factor:                                                                Af:=0.9 Pullout Efficiency:                                                                Eff:=0.4 Reduced Voltage:                                                                    RV:= 0.8838 Torque Output:              TQout:= TQI RV OGR            AfEff                TQout = 141.339         ft- lbs Stem Factor:                                                                        Sf:= 0.016407 Thrust Capability:              THcap  "= TQout Sf                                THeap = 8.615'10         Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
Actuator Mode)/Size:
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                         KEI:= 1.20 Throat Margin:= THoap (Fm~           Kgi) n Thrust Margin     -3.163'10       lbs
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
TQout THcap"=-Sf TQout:=TQI RV OGR Af Eff=SMB-00-15 TQrn:=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:=0.8838 TQout=141.339 Sf:=0.016407 THeap=8.615'10 ft-lbs ft-lbs Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Throat Margin:=THoap-(Fm~Kgi)n Thrust Margin-3.163'10 lbs


== Conclusion:==
== Conclusion:==
Open Thrust Margin ls negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
4 COMED PL Evaluation                          Valve ID: 2SWP'MOV66A                                            page 4 PSWP66AA.MCD


Open Thrust Margin ls negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
ll Niagara Mohawk Power Corporation N ucteaf Engineering HMP2 Calculation Cont Sheet Page7+1 /37 A10.1.AD403, Rev. 01 Oflglnatof/Date                                          Checker/Gate A    0$g  cfs E i)7                                        ~/<C Valve ID no: 2SWP'MOV66B Re uired         0 enin         Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
4 COMED PL Evaluation PSWP66AA.MCD Valve ID: 2SWP'MOV66A page 4 ll Niagara Mohawk Power Corporation N ucteaf Engineering Oflglnatof/Date A 0$g cfs E i)7 HMP2 Calculation Cont Sheet Checker/Gate
Design Basis Conditions at time of Pressure Locking Event:
~/<C Page7+1/37 A10.1.AD403, Rev.01 Valve ID no: 2SWP'MOV66B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), Pbo~ct-108 Downstream pressure (psig), P~o~.=0 Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a'.=3.91 average disk thickness, t:=0.48 seat angle, a:=10 6:=--6 0.087 a tt 2 180 Valve Disk Material Properties:
Upstream pressure (psig),             P>>.=108           Valve Bonnet pressure (psig), Pbo~ct -108 Downstream pressure (psig), P ~o~.=0 Valve Disk Geometry:
modulus of elasticity, E:=29400000 Other Valve Parameters:
hub radius,           b:= 3.375       mean seat radius,         a '.=3.91       average disk thickness,             t:=0.48 hub length,        L:=0.125          seat angle,       a:=10               6:=-a tt 2 180 6     0.087 Valve Disk Material Properties:                                                             6    ishalfdisk'angle u modulus of elasticity,         E:=29400000           Poisson's Ratio, v.=0.3 Other Valve Parameters:
Poisson's Ratio, v.=0.3 6 ishalfdisk'angle u Valve Stem Diameter, D<~.=1.625 Static Unseating Thrust F po 7027 (reference:
Valve Stem Diameter,           D <~.= 1.625       Static Unseating Thrust F                       7027 po
Test&#xb9;16, 3N/94)Valve Factor VF:=0.65 (reference:
                                                                        &#xb9; (reference: Test 16, 3N/94)
NER-2M-010)
Valve Factor           VF:=0.65                 (reference: NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, It:=cos(6)I--sitt(6)VF p 0.686 (reference
cos(6)
&#xb9;6)Pup+Pdo~A~erage DP Across Disk, DP ayg: P boggct-gives, DP=54 2 Disk SNnves Censlsnls, D:=snd G:=Et E 12 (!-v)2 (!vv)which gives, D 2.977 10 and G=1.131'10 I b a.b b a b Geometry Factors, C 2.=-I--I+2 ln-C'3'.=--+I h-+--I 4 a b 4a a'a I b C8.'=-I+v+(I-v)2 a b 1+v a I-v b 2 C9=--In-+-I--a 2 b 4 a which gives, C 2 0.009 C 8~0.911 C 3=3.965'10 C 9~0.121 COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWPeMOVSICB page 1 I,
Coefficient     of friction between disk and seat,         It:=
Niagara Mohawk Power Corgoration Nuctear Engineering Originator/Date
 
~~oPo W<~~M&7 NMP2 Catcutation Cont.Sheet Checker/Date
VF I
~/z/y y Page7?of/7 7 A10.1 AD403, Rw.01 Add/t/onel Geometry Factors, rp.'=b 2 4 2 2 fp fp fp fp L 11'=-1+4--5--4-2+-In-64 a aa a rp 4 2 I I-Y 0 0 a L17'.=-I--1----~I+(I+Y)In-4 4 a a rp which gives, L I I=1.378 10 and Moment Factors, L17=0.009 Mg:=-2 OP avg'a C 9~-a-rp-L17 C8 2ab~b:=-'"'(*-o*j , 2b which gives, Mrb=-8.373 end Qb~31.18 Deflection from pressureibending, a a avg a 3 4 y b'.=Mrb-C 2+Q b-C 3-L11 o o o which gives, yb~1.937.10 q Deflection from pressure I shear, 2 a rp rp K~:=-0.3 2 In--I+-~1-2 In-b a b 2 sa'vg a Sq'G which gives, K sa=%.012 end y-1.796'10 Sq Deflection from pressure/hub stretch, Pro~.'=m (a-b)DP~<-Pronx L>'uetch:=ttb 2E which gives, P fo~=661.191 end y~t h=-3.928 10 8 f COMED PL EvaluaIIon PSWP66BA.MCD Valve ID: 2SWP MOV66B page 2 I
sitt(6) p     0.686     (reference     &#xb9;6)
Niagara Mohawk Power Corgoration Nudear Engineering Originator/Date
Pup+Pdo~                                         = 54 A~erage DP Across Disk,               DP ayg: P boggct-                                 gives,       DP 2
%~ryan~Ai 4&4'fdkpj NMP2 Calcuiation Cont.Sheet Checker/Date
Disk SNnves Censlsnls,             D:=     Et            snd       G:=         E 12 (! - v )                           2 (! vv) which gives,       D   2.977 10         and           G = 1.131'10 Geometry Factors,           C 2.=-I 4
~p/z/rz Page tourt/3 7 A10.1-AD403, Rw.01 Total Deflection due to pressure, y q y bq+y sq+y stretch which gives, y=-3.771~10 Additional Geometry Factors ro.'=a ro L3.'=-.4a 2 2 ro a ro+I In-+--I a ro a ro L9'.=-a r 2 1+v a I-v o-~In-+-I--2 ro 4 a which gives, L3~0 and L9~0 Deflection from seat load/bending, w:=1 a w C2 roC9 ro C3 ybw'9--+L3 D C8 b b which gives, y bw=-1.835 10 Deflection from seat load/shear, ro Ksa.'=-1.2-In-a b y:=Ksa-which gives, Ksa%.177 tG y~~-I:272 10 Deflection from seat load/hub compression,-2"tt.a y compr'b L 2 which gives, y-1.459 10 Total Detlection from unit seat loa'd, yw'bw+ysw+ycompr which gives, yw 3122 10 Equilibrium contact load distribution, w e,l;b~.--which gives, yw Load per seat r-2 tt a-296.797 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWP'MOV668 page 3  
I -   b
 
a I + 2 ln a
b C'3   .'.= b 4a b
                                                                                            +
a
                                                                                                '
I   h a      b
                                                                                                                  + -
a I
C8.'= I 2
I+ v+(I - v) b a
C9 a
 
                                                                                    =-b 1+v In 2          b a
                                                                                                          +
I-v I-4 b
a 2
which gives,         C2    0.009             C 3 =3.965'10 C 8 ~0.911              C 9 ~0.121 COMED PL Evaluation                             Valve ID: 2SWPeMOVSICB                                                       page   1 PSWP66BA.MCD
 
I, Niagara Mohawk Power Corgoration                                   NMP2                                                Page7?of  /7 7 Nuctear Engineering                                   Catcutation Cont. Sheet A10.1 AD403, Rw. 01 Checker/Date Originator/Date
~~       oPo W       <~ ~M&7                                                           ~/z/y y Add/t/onel Geometry Factors,                                 rp.'=b 2             4                 2             2 fp - fp -                    fp               fp In L 11 '=     1 +4           5     a      4               2+
64         a              a                                 a         rp L17'.= I -
I 4
 
I-Y 1-4            a 0
4
 
a 0
2
                                                            ~
I+(I + Y) In rp a
which gives,           L I I =1.378     10             and                 L17 =0.009 Moment Factors, Mg:=-
OP avg'a C8 2
                                ~  -rp C 9 2ab a               -L17                     ~b:= , 2b
                                                                                                  '"'(*-   o*j which gives, Mrb =-8.373               end               Qb ~31.18 Deflection from pressureibending, 4
avg a 3
                            '.=Mrb C 2+ Q b C 3-a                    a yb                                                              L11 o                   o                 o which gives,               yb q ~ 1.937.10 Deflection from pressure         Ishear, 2
 
rp 2
rp                         sa'vg    a K ~:=-0.3     2 In a
 
b
                                      - I+
a
                                                        ~     1- 2 In-b Sq'G which gives,             K sa =%.012                   end               y Sq  -1.796'10 Deflection from pressure/hub stretch,
                                                                                          -Pronx L Pro~.'=m (a     -b   ) DP~<                           >'uetch: =
ttb 2E 8
which gives,             P   fo~ = 661.191                   end       y~t h =-3.928     10 f
COMED PL EvaluaIIon                               Valve ID: 2SWP MOV66B                                                 page 2 PSWP66BA.MCD
 
I Niagara Mohawk Power Corgoration                             NMP2                                              Page tourt /3 7 Nudear Engineering                                   Calcuiation Cont. Sheet A10.1-AD403, Rw. 01 Originator/Date                                          Checker/Date
%~ryan~         Ai 4& 4'fdkpj                                         ~p/z/rz Total Deflection due to pressure,                         yq    y bq+ y sq+ y stretch y = -3.771 10
                                                                                              ~
which gives, Additional Geometry Factors                     ro.'=a L3 .'=
ro
                .
4a ro a
2
                              + I In   + - I a
ro ro a
2 L9 '.=
a
                                                                                  -
ro 1+v 2
                                                                                      ~
In a
ro
                                                                                                +
I v 4
I ro a
2 which gives,               L3 ~0               and           L9 ~0 Deflection from seat load/bending,                       w:=1 ybw'9    a w C2 D C8 roC9 b
 
ro C3 b
                                                              +L3 which gives,             y bw =-1.835 10 Deflection from seat load/shear, Ksa .'=- 1.2 In-a ro b
y:=Ksa       tG which gives,           Ksa   %.177 y~~-I:272     10 Deflection from seat load/hub compression, L
y compr  'b - 2 "tt.a 2 which gives,               y         -1.459 10 Total Detlection from unit seat loa'd, yw' bw+ysw+ycompr                             which gives,           yw       3122 10 Equilibrium contact load distribution, w e,l;b~.                     which gives,             equilibrium yw Load per seat r-         2 tt a yq    296.797 yw Pressure Locking Force, COMED PL Evaluation                           Valve ID: 2SWP'MOV668                                             page 3 PSWP66BA.MCD


Niagara Mohawk Power Corporation Nuotear Engineering Onglnstor/Date
Niagara Mohawk Power Corporation                                             NMP2                                                Page j/ot / W7 Nuotear Engineering                                               CaCulati'on Cont. Sheet Atp.t-AD403, Rev. 01 Onglnstor/Date                                                          Checker/Date
~~ny u P-<5/g/as/P7 NMP2 CaCulati'on Cont.Sheet Checker/Date 7 Page j/ot/W7 Atp.t-AD403, Rev.01 Fpres loci'.'=2 tt a-(it cos(e)-sin(e))2 which gives, pres leak W t Piston Effect Force, P au:=0"piston street''tem
~~ny u           P- <5/g/as/P7                                                                 7 Fpres loci'.'= 2 tt a (it     cos(e) sin(e)) 2           which gives,     pres leak t
'i honest ann}which gives, F piston effect"Reverse Piston EIfect" Force, Fyert'=a'2'P bonnet P up down Total Force Re uired to Overcome Pressure Lockin which gives, F y~=452.088 Ftptai t=F pres]pck1 Fpp+Fyert Fpistpn effect which gives, F tp<7 609267 10 ACTUATOR CAPABILITY'ctuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
W Piston Effect Force,                                           P au:=0 "piston       street''tem 'i                       honest     ann}
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
which gives,   F piston effect "Reverse Piston EIfect" Force, Fyert '= a'                     2'P bonnet     P up     down which gives,       F y~ = 452.088 Total Force Re uired to Overcome Pressure Lockin Ftptai t=F pres ]pck1 Fpp+ Fyert                           Fpistpn effect which gives,         F tp<       7 609267 10 ACTUATOR CAPABILITY'ctuator Model ISize:                                                                               = SMB-00-15 Motor Torque Output:                                                                              TQm   .'= 14.74         tt- lbs Gear Ratio:                                                                                      OGR:= 34.1 Application Factor:                                                                                Af:=0.9 Pullout Efficiency:                                                                                Eff:=0.4 Reduced Voltage:                                                                                  RV:-" 0.8847 Torque Output:                                TQout:= TQm RV .OGR AfEff                        TQout = 141.627           tt- lbs Stem Factor.
TQout THcap:=-Sf TQout:=TQm RV.OGR Af Eff=SMB-00-15 TQm.'=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:-" 0.8847 TQout=141.627 Sf:=0.016407 THcap=8.632 10 tt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
Thrust Capability:                            THcap:  = TQout Sf Sf:= 0.016407 THcap = 8.632 10           lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
KEI:=1.20 Thrust Margin:=THoap-(Fmmt KEI)Thrust Margin-499.005 1bs
ENHANCED PRESSURE LOCIQNG METHODOLOGY:                                                         KEI:= 1.20 Thrust Margin:= THoap- (Fmmt KEI)
Y/cl'payee Thrust Margin       -499.005         1bs


== Conclusion:==
== Conclusion:==
Open Thrust Margin is negative, therefore this valve and actuator are likety to overcome the theoretical pressure locking conditions evaluated. ra/d4clcvat 4 J                                                j 4 vdry mrrvelvlcr                        gt ptgsl 1'AdNC is a /rrglk cgpn/icPt~r.p pggp these'rpr            lreertrresureroskio1 Seeeranro COMED PL Evaluation                                          Valve ID: 2SWP'MOV66B                                                page 4 PSWP66BA.MCD
Niagara Mohawk Power Corporation N)tctear Engtneerfng NMP2 calo)station Cont. Sheet Page~  /3$
A10.1-AD403, Rw. 01 Orfgtnatorloate                                              Checker/Date g
                                                                                .
        ~~          A Q -tt>>/sv
                        ~
Valve ID no: 2SWP'MOV67A Re uired          0 enin        Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Design Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),              P up 108        Valve Bonnet pressure (psig), P bonnet = 108 Downstream pressure (pslg), P down                    0 Valve Disk Geometry:
hub radius,          b:= 1.25        mean seat radius,                a:=1.88 average disk thickness,                      t:=0.626 hub length,        L:= 0.25            seat angle,            a =10                e;=-    u rt 2 180 e  =0.087 Valve Disk Material Properties                                                                        e  is half disK angle a modulus of elasticity,          E:=29400000              Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter,          D st    ..=  1.375      Static Unseating Thrust,                  F>> .= 2534 (reference: Tesr 10.      &#xb9;            1M')
Valve Factor          VF:=1                        (reference: NER-2M-010)
CALCULATIONS:
cos(0)
CoeNicient      of friction between disk and seat,              it.=
                                                                              - sin(e)                  lt    1.091    (reference    &#xb9;6) up ~    down Average DPAcross Disk,            '
:=Pb                                              gives,      DP          54 Disk St)I)as      ConstantsD:=
                                        ,
                                              ,andEt
                                              )s.()-s')
2 G:=      2 E
(1+v) which gives,        D    6.605 10            and            G = 1.131 ~ 10 Geomet/yFactors,            C2.=
1 4
b a
1+2ln      a b
C3        = b 4a b
                                                                                                      +1 a
h  a b
b
                                                                                                                          +  -1 a'
C8:=-
2 1    v+
b a
2 C      9,--b a
1+v ln 2
a b
                                                                                                                  +
1 4
v
                                                                                                                            ~ 1-  b a
2 which gives,          C2    0.049                C 3 ~0.005 C 8 =0.805                  C 9 =0.241 COMED PL Evaluation                                        ID: 2SWP MOVQ48        @7'alve page  1 PSWP67AA.MCD
Niagara Mohawk Power Corporation                                    NMP2                                                    Pag  ~bi yP Nuclear Engineering                                        Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Originator/Date                                                  Checker/Date Q~rwp o AiQrc44- 4rjQ3/pQ                                                                      ~/4e Add/tional Geometry Factors,                                    rp '=b 2            4                2                  2 I          rp          rp              rp rp 1+4.            5          -4                  2+                1n- a 64            a            a              a                  a          rp L17 1
4 1
v 1-4 rp a
4
                                                  -  ro
a 2
                                                              ~
1+ (1+ v)          ln-a rp which gives,              L11      4.481.10                and                  L 17 <0.046 Moment Factors, 2
avg a Mg:=-                                a  -rp -L17 C8          2&b which gives, Mrb -13.186                and                Q b =42.593 Deflection fmm pressure/bend/ng, 4
                              '.=Mrb C2+Qb
                                          &
C3-a                avg'b L11 D                  D                  D which gives,                yb ~-1.752'10 Deflection from pressure /shear, 2                                                          2 K~:=-0.3        2.1n  a 1+
rp
                                                          ~  1-    2 ln-brp                            sa'vg    a b            a                                                      t.G which gives,              K sa =%.078                    and                  y.    =-2.09 10 sq Deflection from pressu/8/hub stretch, P force  L Pfpree    tt (a      b ) DP avg                          y stretch '=
ttb 2E which gives,              P fo~        334.525                and        y ~~ =-2.897'10 COMED PL Evaluation                                Valve ID: 2SWP'MOV67A                                                      page 2 PSWP67AA.MCD


Open Thrust Margin is negative, therefore this valve and actuator are likety to overcome the theoretical pressure locking conditions evaluated.
I Niagara Mohawk Power Corporation                              NMP2                                              Page Pfotr 37 Nuclear Engineering                                  Calculation Cont. Sheet A1 0.1-AD403, Rev. 01 Originator/Date                                            CheckerlDate Qc~r.))~        4. C'~ /g)(p-g Total Deflectr'on due to pressure,                          yq '     bq+ y sq + y stretch which gives,          y    -4.131 ~ 10 Additional Geometry Factors ro'.=a L3 '=
ra/d4clcvat 4 J Y/cl'payee j 4 vdry mrrvelvlcr gt ptgsl 1'AdNC is a/rrglk cgpn/icPt~r.p pggp these'rpr lreertrresureroskio1 Seeeranro COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWP'MOV66B page 4
ro 4a ro a
2
                                +I    In +  - I a
ro ro a
2 L9 -
a


Niagara Mohawk Power Corporation N)tctear Engtneerfng Orfgtnatorloate g~~A~Q-tt>>/sv NMP2 calo)station Cont.Sheet Checker/Date
ro 1+v 2
.Page~/3$A10.1-AD403, Rw.01 Valve ID no: 2SWP'MOV67A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P up 108 Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (pslg), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 u rt seat angle, a=10 e;=--e=0.087 2 180 Valve Disk Material Properties modulus of elasticity, E:=29400000 Other Valve Parameters:
In a
Poisson's Ratio, v:=0.3 e is half disK angle a Valve Factor VF:=1 Valve Stem Diameter, D st..=1.375 Static Unseating Thrust, F>>.=2534 (reference:
ro
Tesr&#xb9;10.1M')(reference:
                                                                                                +
NER-2M-010)
I-v I-4 ro a
CALCULATIONS:
2 which gives,             L3 ~0                end          L9 =0 Deflection from seat load/bending,                         w:= I ybw
CoeNicient of friction between disk and seat, it.=cos(0)-sin(e)lt 1.091 (reference
              '- a w C2 roC9 D C8            b L9    roC3 b
&#xb9;6)up~down Average DPAcross Disk,':=Pb gives, DP 54 2 Disk St)I)as ConstantsD:=,and G:=-Et E ,)s.()-s')2 (1+v)which gives, D 6.605 10 and G=1.131~10 1 b a b b a b Geomet/yFactors, C2.=-1--1+2ln-C3=--+1 h-+--1 4 a b 4a a b a'b 2 b 1+v a 1-v b 2 C8:=-1 v+C 9,---ln-+-~1-2 a a 2 b 4 a which gives, C 2 0.049 C 8=0.805 COMED PL Evaluation PSWP67AA.MCD C 3~0.005 C 9=0.241@7'alve ID: 2SWP MOVQ48 page 1
                                                              + L3      which gives,        ybw Deflection from seat        load! shear, Ksa:=-1.2 ro ro


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Q~rwp o AiQrc44-4rjQ3/pQ NMP2 Calculation Cont.Sheet Checker/Date
a In- b y ~:=Ksa     a tG which gives,           Ksa ~W.49 y sw ~-1.301 ~ IO Deflection fmm seat load/hub compression, L
~/4e Pag~bi yP Ato.t-AD403, Rev.01 Add/tional Geometry Factors, rp'=b I 64 2 4 2 rp rp rp 1+4.--5--4 a a a 2 rp a 2+-1n-a rp 1 L17 4 4 2 1-v rp ro 1--1----~1+(1+4 a a v)ln-a rp which gives, Moment Factors, L11 4.481.10 and L 17<0.046 Mg:=-2 avg a C8 a-rp-L17 2&b which gives, Mrb-13.186 and Q b=42.593 Deflection fmm pressure/bend/ng, 4&a avg'b'.=Mrb-C2+Qb-C3-L11 D D D which gives, yb~-1.752'10 Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2.1n--1+-~1-2 ln-b a b 2 sa'vg a t.G which gives, K sa=%.078 and y.=-2.09 10 sq Deflection from pressu/8/hub stretch, Pfpree tt (a b)DP avg P force L y stretch'=ttb 2E which gives, P fo~334.525 and y~~=-2.897'10 COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SWP'MOV67A page 2 I
                          -2tta     2 compr 'tb
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qc~r.))~4.C'~/g)(p-g NMP2 Calculation Cont.Sheet CheckerlDate Page Pfotr 37 A1 0.1-AD403, Rev.01 Total Deflectr'on due to pressure, y q'bq+y sq+y stretch which gives, y-4.131~10 Additional Geometry Factors ro'.=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9--a r 2 1+v a I-v o-In-+-I-2 ro 4 a which gives, L3~0 end L9=0 Deflection from seat load/bending, w:=I a w C2 roC9 roC3 ybw'-L9--+L3 which gives, D C8 b b ybw Deflection from seat load!shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, a tG Ksa~W.49 y sw~-1.301~IO Deflection fmm seat load/hub compression,.-2tta compr'tb L 2 E which gives, y compr Total Deflection from unit seat load, which gives, yw~2'868'10 yw'=y bw+ysw+ycompr Equilibrium contact load distribution, yq w equilibrium
                      .
'w Load per seat ra 2 tt a-170.165 yq yw which gives, equilibrium Pressure Locking Force, COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SNIP'MOV67A page 3  
E which gives,               y compr Total Deflection from unit seat load, yw '=y bw+ysw+ ycompr                          which gives,           yw ~ 2'868'10 Equilibrium contact load distribution, yq w equilibrium
                              'w             which gives,            equilibrium Load per seat       ra   2 tt a yq    170.165 yw Pressure Locking Force, COMED PL Evaluation                             Valve ID: 2SNIP'MOV67A                                           page 3 PSWP67AA.MCD


Niagara Mohawk Power Corporation Nuclear Engineering Originatorlnate A.+/b/nslPP NMP2 Catcutation Cont.Sheet Checker/bate Pagano//7/}At0.1.AO403.
Niagara Mohawk Power Corporation                           NMP2                                                       Pagano/ /7 /}
Rev.Ot F pres Jock''tt'a'(tt'cos(e)
Nuclear Engineering                              Catcutation Cont. Sheet At0.1.AO403. Rev. Ot Originatorlnate A.  + /b/nslPP                      Checker/bate Yq F pres Jock   ''tt'a'(tt'cos(e)       sin(e)) 2           which gives,          Fp~s 1~k
-sin(e))2 Yq 1'w Piston Effect Force, P at:=0 2/piston effect''tem'(bonnet etm}which gives, Fp~s 1~k=0.3 I which gives, F piston effect'160.368"Reverse Piston Effect" Force, F vert'=rt a~2 P bonnet up down sin(e)which gives, Total Force Re uired to Overcome Pressure Lockin F v~=104.517 F totat:=F pres tock+F po+F vert-F piston effect which gives, F>~=2.818478 10'CTUATOR CAPABILITY:
                                                                                                        =    0. 3 1'w Piston Effect Force,                         P at:=0
Actuator Model/Size:
                          ''tem '(
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
I 2 /                            which gives,           F piston effect   '160.368 piston effect                  bonnet      etm}
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
  "Reverse Piston Effect" Force, F vert '= rt a ~
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-000-5 TQm'=5 OGR:=40 Af:=0.9 Eff:=0.4 RV:=0.8816 TQout 55.96 Sf':=0.014263 THcap~3.923 10 ft-lbs ft-Ibs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
2 P bonnet           down       sin(e)         which gives,           F v~ = 104.517 up Total Force Re uired to Overcome Pressure Lockin F totat:=F pres tock+ F po+ F vert- F piston effect which gives,       F >~ =2.818478 10
KEI:=1.20 n M tp.:=nr p yt.~ffffi}
                                                                            'CTUATOR CAPABILITY:
Thrust Margin=541.246 Ibs
Actuator Model/Size:                                                                         = SMB-000-5 Motor Torque Output:                                                                  TQm '=5                 ft- lbs Gear Ratio:                                                                          OGR:=40 Application Factor:                                                                    Af:=0.9 Pullout Efficiency:                                                                    Eff:=0.4 Reduced Voltage:                                                                      RV: = 0.8816 Torque Output:                TQout:= TQm RV OGR          AfEff                    TQout 55.96               ft- Ibs Stem Factor.
Thrust Capability:            THcap:  =TQout Sf Sf': = 0.014263 THcap ~3.923 10             1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                               KEI:= 1.20 n       M tp.:=nr       p   yt.~ffffi}
Thrust Margin = 541.246         Ibs


== Conclusion:==
== Conclusion:==
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation                          Valve ID: 2SWP'MOV67A                                                    page 4 PSWP67AA.MCD
0 Niagara Mohawk Power Corporation                                  NMP2                                                  peg+Car r3' Nudear Engineering                                      Calcutation Cont. Sheet A1 0.1-AD403. Rw. 01 Originator/Date                                              Checker/Date
>~i.p e A Q                          4,/tr/~7                                      7/</87 Valve ID no: 2SWP MOV67B Re      uiredo enin ForceDeternminationunderPressureLockin                                                        Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),                P>>    .= 108        Valve Bonnet pressure (psig), P bonnet            = 108 Downstream pressure (psig), P down                    0 Valve Disk Geometry:
hub radius,              b:=1.25        mean seat radius,            a:=1.88 average disk thickness,              t:=0.626 hub length,              L:=0.25        seat angle,          a:= 10 e:=-a tt 2 180 e = 0.087 Valve Disk Material Properties:                                                              0  ishalfdiskangle u modulus      of elasticity,        E:= 29400000            Poisson's Ratio, v.--0.3 Other Valve Parameters:
Valve Stem Diameter,              D<    .=1.375        Static Unseating Thrust,        F>>.=3092 (reference: Test 12,    &#xb9;      10/1M4)
Valve Factor              VF:= I                  (reference: NER-2M-Of0)
CALCULA77ONS:
coge)
Coeflicient of friction between disk and seat,                  p:=
                                                                        '- s~(e)              'lt    1.091    (reference    &#xb9;6) 1    down up Average DP Acmss Disk,                  DP avg '      bonnet                            gives,    DP        =54 2
Disk StN'nes Constants, Et3              and        G:=      E i2(l-')                              2 (I+ v) which gives,            D  6.605 10          and          G = 1.131 ~ 10 Geometry Factors,              C2 '=-I 4
I -
                                              '
a
                                                    ~
I + 2 ln b
C 3 .= b 4a b2
                                                                                            + I In a
a b
                                                                                                                +
bi - I a
c8:=-I 1+v+
2 b
a C9    --  -  In  +            I b
2 which gives,            C2    0.049              C 3 ~0.005 C 8 ~0.805                C 9 =0.241 COMED PL Evaluation                                Valve ID: 2SWP'MOVQ&                                                    page  1 PSWP67BA.MCD
Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calcutatton Cont. Sheet Page  ~fr+7 A10.1-AD%03, Rev. 01 Originator/Date                                                    Checker/Date Qo~np~              A'-4~ ~ip/pp                                                                elitism AddtI'onal Geomehy Factors,                                        rp.'=b 2              4                2              2 rp L I I:=  I +4  5  - 4 rp                              rp rp      ~
2+          ~ In 64            a                a              a                a          rp L17 4
I I-  I-v I -
4 ro a
4
                                                    -  ro a
2
                                                                  ~
I+(I + v) In      a rp which gives,              L11=4.481        ~
10            and                L 17 =0.046
Moment Factors, Mrb '=-
OPavg' C8 2
                                        -rp)-LI7 2.a b r2
                                                '(a                                        ~b  =
2b
                                                                                                        '"'(*-    0*)
which gives, Mrb -13.186                and            Q b =42.593 Deflectfon from pressure/bending, 2
avg a yb '=Mrb C2+ Qb a
C 3-                  L11
                                          ,o                    o                o which gives,                      yb q        1752 10 Deflection from pressure/shear, Ksa'=-0.3        2.1n    a I+
r


Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
2
COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SWP'MOV67A page 4 0
                                                              ~
Niagara Mohawk Power Corporation Nudear Engineering Originator/Date
I  -2 In-   rp                        m'vg a    2 b               a                     b                            t.G which gives,                   K sa =%.078                    arid              y'sq =-2.09 10 Deflection from pressure /hub stretch, P force'L P fprce    tt (a    - b ) OP avg                              y stretch '=
>~i.p e A Q 4,/tr/~7 NMP2 Calcutation Cont.Sheet Checker/Date 7/</87 peg+Car r3'A1 0.1-AD403.
ttb 2E which gives,                   P f        =334.525              and         yst tch =-2.897  10 COMED PL Evaluation                                   Valve ID: 2SWP'MOV67B                                                page 2 PSWP67BA.MCD
Rw.01 Valve ID no: 2SWP MOV67B Re uiredo enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 a tt seat angle, a:=10 e:=--e=0.087 2 180 Valve Disk Material Properties:
modulus of elasticity, E:=29400000 Other Valve Parameters:
Poisson's Ratio, v.--0.3 0 ishalfdiskangle u Valve Stem Diameter, D<.=1.375 Static Unseating Thrust, F>>.=3092 (reference:
Test&#xb9;12, 10/1M4)Valve Factor VF:=I (reference:
NER-2M-Of 0)CALCULA77ONS:
Coeflicient of friction between disk and seat, p:=coge)-'-s~(e)'lt 1.091 (reference
&#xb9;6)Average DP Acmss Disk, Disk StN'nes Constants, gives, DP=54 and G:=E 2 (I+v)up 1 down DP avg'bonnet 2 Et 3 i2(l-')which gives, D 6.605 10 and G=1.131~10 I'b b2 a bi Geometry Factors, C 2'=-I--~I+2 ln-C 3.=--+I In-+--I 4 a b 4a a b a I b c8:=-1+v+2 a b 2 C9---In-+-I--which gives, C 2 0.049 C 8~0.805 COMED PL Evaluation PSWP67BA.MCD C 3~0.005 C 9=0.241 Valve ID: 2SWP'MOVQ&
page 1


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qo~np~A'-4~~ip/pp NMP2 Calcutatton Cont.Sheet Checker/Date elitism Page~fr+7 A10.1-AD%03, Rev.01 AddtI'onal Geomehy Factors, rp.'=b 2 4 2 2 rp rp rp rp L I I:=-I+4--5--4-~2+-~In-64 a a a a rp I L17 4 4 2 I-v ro ro a I--I----~I+(I+v)In-4 a a rp which gives, L11=4.481~10 and Moment Factors, 2 OPavg'r2 Mrb'=--'(a-rp)-LI7 C 8 2.a b L 17=0.046~b=-'"'(*-0*)2b which gives, Mrb-13.186 and Q b=42.593 Deflectfon from pressure/bending, 2 a avg a yb'=Mrb-C2+Qb-C 3-L11 ,o o o which gives, yb 1752 10 q Deflection from pressure/shear, 2 a r rp Ksa'=-0.3 2.1n--I+-~I-2 In-b a b 2 m'vg a t.G which gives, K sa=%.078 arid y'sq=-2.09 10 Deflection from pressure/hub stretch, P fprce tt (a-b)OP avg P force'L y stretch'=ttb 2E which gives, P f=334.525 and yst tch=-2.897 10 COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 2
Niagara Mohawk Power Corporation Nuoteer Engineering NMP2 Cetouletion Cont. Sheet Page  $ hf /~
A10.1-A@003, Rev. 01 Originetotlnete goer gp o            A    8~        g/r->lpga Total Deflection due to pressure,                         yq: ybq+ysq+y~~
                                                                                                      'I which gives,           y q =-4.131 ~ 10 Additional Geometry Factors r  .'=,a L3  .=
ro
                .
4a ro a
2
                                +I  In r
a     ro
                                            + -I a
2 ro a


Niagara Mohawk Power Corporation Nuoteer Engineering Originetotlnete goer gp o A 8~g/r->lpga NMP2 Cetouletion Cont.Sheet Page$hf/~A10.1-A@003, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq: ybq+ysq+y~~
L9.'= . 1+v In 2
which gives, y q=-4.131~10'I r.'=,a ro L3.=-.4a 2 2 ro a ro+I In-+--I a r a ro L9.'=-.a r 2 1+v&I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a w C2 roC9 roC3 L9--+L3 which gives, D CS b b y bw I'465'10 7 Deflection from seat load/shear, ro ro Ksa.'=-1.2-In-a b y~:=Ksa-which gives, Ksa~W.49 tG sw y-1.301 10 Deflection from seat load/hub compression, L-2'1t'a 2 y compr'=ttb E which gives, y~"1.023 10 Total Deflection from unit seat load, which gives, y w=-2.868 10 w equilibrium 14 406 yw:=ybw+ysw+
                                                                                          &
ycompr Equilibrium contact load distribution, yq w equilibrium
ro
'which gives, yw Load per seat=2 tt a-=170.165 yq yw Pressure Locking Force, COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 3 0 tl Niagara Mohawk Power CorPoration Nuotear Engineering NMP2 Catoutation Cont.Sheet Checker/Date A+1 Pagee j'o//37 A10.1-AD403.
                                                                                              +
Rev.01 F 1 k:=2 n a-(p cos(e)-sin(e))2 which gives, Fpres lock=3 0.3 Yq pres lock'w Piston Effect Force, P~'.=0 F rara airaar'D anan'P hennar Fane)whinh given F pinna airaar i60368"Reverse Piston Effect" Force, Fv~.=[en (gphe~ar-Pap-Pea~)]ain(8) whi hngive a Total Force Re uired to Overcome Pressure Lockin F vm=104.517"total'res lock+po~vert piston effect which gives,'to<3 376478 10 3.ACTUATOR CAPABILITYt Actuator Model/Size:
I-v I-4 r0 a
Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
2 which gives,           L3 =0               and           L9=0 Deflection from seat load/bending,                     w:= I a w C2 roC9 D CS          b L9    roC3 b
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
                                                            + L3     which gives,       y bw     I'465'10   7 Deflection from seat load/shear, Ksa .'=-1.2 ro ro
TQout:=TQm RV OGR.Af Eff TQout THcap.'=-Sf=SMB-000-5 TQm:=5 OGR:=40 Af:=0.9 Eff:=0.4 RV:=0.8825 TQout=56.074 Sf:-"0.014263 THcap~3.931~10 lt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCKING METHODOLOGY:
KEI:=1.20 Threat Margin:=Tiicap-(F n,ng.KEi)Thst Margin~-120.34 lbs IL~Conclusion:
Open Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated>
Ay ufetre 8 six r c Vle ieea~g p gn.ig go t./ns'e,~et g~>~fcms col'i egpecg4/Ho>dr ev'.COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 4


Niagara Mohawk Power Corporation Nuclear Engineering
a In-   b y ~:= Ksa tG which gives,         Ksa ~ W.49 y sw -1.301 10 Deflection from seat load/hub compression, L
'go~ap n@Q+l>%i&7 Valve ID no: 2SWP'MOV94A NMP2 Calculation Cont.Sheet Checker/Date Pager/P P A10.1-AD403, Rev.01 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTSr Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a:=3.91 average disk thickness, t:=0.4S a ft seat angle, o:=10 e=--e=0.087 2 180 disk angle a Valve Disk Material Properties:
                          - 2'1t'a 2 y compr '=                       which gives,               y        ~ "1.023 10 ttb    E Total Deflection from unit seat load, yw:=ybw+ysw+ ycompr                          which gives,         y w =-2.868    10 Equilibrium contact load distribution, w equilibrium ' yq              which gives,          w equilibrium    14 406 yw Load per seat =         2 tt a yq yw
e ishalf modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
                                                = 170.165 Pressure Locking Force, COMED PL Evaluation                           Valve ID: 2SWP'MOV67B                                                page 3 PSWP67BA.MCD
Valve Stem Diameter, D<~.--1.625 Static Unseating Thrust, F~.=7751 (reference:
Test&#xb9;26,$9i95)Valve Factor VF:=0.65 (reference:
NER-2M-010)
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P~.=10S Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (psig), P down'=0 CALCULATIONS:
Coefllcient of friction between disk and seat, p:=cos(e)--a~(e)I VF~+p 0.686 (reference
&#xb9;6)Average DP Across Disk, Disk Stf'ffnes Constants, gives, DP=54 and G:=-E 2 (1+v)up+down DP avg'bonnet 2 Et u (i-.*)which gives, D 2.977 10 and G=1.131~10 I b a, b b a b Geometry Factors, C 2.=-I--1+2 ln-C3.'=--+I In-+--I 4 a b 4a a b a I b C 8.=-I+v+(I-v)2 a b I+v a I-v b 2 C9.---In-+-.I-a 2 b 4 a whichgives, C2 0.009 C 8 0.911 COMED PL EvalUation PSWP94AA.MCD C 3=3.965'10 C 9<0.121 A Valve lD: 2SWP'MOV page 1 Jl 0 Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date cQ~~~+z 4'~&/z 3j5p NMP2 Calculation Cont.Sheet Checker/Date Page~fo/r%~, A10.1&D40S.
Rev.01 Additional Geometry Factors, rp,=b 2 4 2'o ro'o L11'=-1+4--5--4 64 a a a 2 ro a 2+-ln-a rp 1 L17 4 4 2 1-U 0 0 a 1--1----~11-(1+Y)1n-4 a a rp which gives, L11=1.378.10 and Moment Factors, 2 DPavga C9 I 2 Mrb'0 j C8 2ab L 17=0.009'"'(*-0*)2b which gives, M rb=-8.373 and Q b=31.18 Dellection from pressureIbending, 4 a DP avg a yb'.=Mrb-C2+Qb'C3-.L11 D D D which gives, yb 1937 10 q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 21n--1+-1-21n-b a b ysq'=.2 sa avg a tG which gives, K sa=%.012.and y.~-L796 10 sq Deflect/on from pressure/hub stretch, Pforce'.=tt (a-b)DPavg P force L y stretch=nb 2E which gives, P force~661.191 and y stretch-3.928'10 COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP'MOV94A page 2


Niagara Mohawk Power Cotporauon Nuclear Engineering Orlginatorlnate cCiygpg NMP2 Calculation Cont.Sheet chackarlDste
0 tl
~~/g/rr Page/~/'3 7 Ato.t-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q=-3.771~10 ro:=a ro L3'=-.48 2 2 ro a ro+I ln-+--I 8 ro a ro L9--a 1 I+v a I-v o-ln-+-I-2 ro 4 a which gives, L3~0 and L9=0 Deflection from seat load/bending, Wi=I 8 w C2 roC9 roC3 ybw.'=L9--+L3 which gives, D C8 b b y bw=-1.835'10 7 Deflection from seat load/shear, ro ro Ksa.'=-1.2-In-a b 8 y~.--Ksa-tG which gives, Ksa=%.177 y sw=-1.272'10 Deflection from seat load/hub compression,-2 tt.a y compr'tb L 2 which gives, y compr'otal Deflection from unit seat load, y w:=y bw+'y sw+y compr which gives, yw 3122 10 which gives, Equilibrium contact load distributfon, yq w equilibrium
'w Load per seat-"2 tt a-~296.797 Jq yw equi]ibrium Pressure Locking Force, COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP'MOV94A page 3


Niagara Mohawk Power Corfgoratfon Nucfear Engineering t3rfginator/Date roy o Af~Q lfClgnlr p NMP2 Catculation Cont.Sheet Checker/Date jgl rp It./f/Page9+f/3 7 Atp.1 AD403, Rev.Ot F 1~'=2 ft a-(it cos(6)-sin(0))2 which gives, F pres lock=354.165 pres lock Yw Piston Effect Force, P an:=0 ft piston effect'tem'i bonnet p atm)which gives, F tstpn~~t 223 986"Reverse Piston Effect" Force, F veft a a 2 P bonnet P up P down sm(1)which gives, Total Force Re uired to Overcome Pressure Lockin F~=452.088 F<<tal:=F pres lock+F pp+F veft-F piston effect which gives, F<<~=8.333267 10'CTUATOR CAPABILITY:
Niagara Mohawk Power CorPoration                            NMP2 Catoutation Cont. Sheet Pagee j'o/ /37 Nuotear Engineering A10.1-AD403. Rev. 01 Checker/Date A+1 F pres 1lock
Actuator Model!Size:
                      'w k:= 2 n a Yq (p cos(e) - sin(e)) 2         which gives,     Fpres lock
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
                                                                                                  = 3 0.3 Piston Effect Force,                           P ~'.=0 F rara    airaar 'D    anan
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
                                      'P hennar    Fane)           whinh given F pinna airaar i60368 "Reverse Piston Effect" Force, Fv~.=[en (gphe~ar-Pap-Pea~)]ain(8)                                 whi hngive a      F vm = 104.517 Total Force Re uired to Overcome Pressure Lockin "total  'res      lock+ po ~ vert          piston effect which gives, '
TQout:=TQm RV OGR Af Eff TQout THcap:=-Sf=SMB-00-15 TQm'.=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:=1.0 TQout~180.948 Sf:=0.016407 THcap=1.103 10 tt-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
3 376478 10 3.
KE[:=1.20 Thrust Margin:=THcap-(F m~KEI)Thust Margin~1.029 10 1bs
to<
ACTUATOR CAPABILITYt Actuator Model/Size:                                                                   = SMB-000-5 Motor Torque Output:                                                             TQm:= 5                lt- lbs Gear Ratio:                                                                     OGR:=40 Application Factor.                                                                Af:=0.9 Pullout Efficiency:                                                               Eff:=0.4 Reduced Voltage:                                                                   RV:= 0.8825 Torque Output:               TQout:= TQm RV OGR.Af Eff                         TQout = 56.074          tt- lbs Stem Factor.                                                                      Sf:-"0.014263 Thrust Capability:             THcap  .'=
TQout Sf                                 THcap ~ 3.931 ~ 10       lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCKING METHODOLOGY:                                         KEI:= 1.20 Threat Margin:= Tiicap (F n,ng.KEi)
Thst    Margin ~-120.34          lbs IL~


== Conclusion:==
== Conclusion:==
Open Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated> Ayufetre 8 six r c Vle ieea~g                            p gn.
ig go t./ns'e, ~et g~> ~fcms col'i egpecg4/ Ho >dr ev'.
COMED PL Evaluation                          Valve ID: 2SWP'MOV67B                                            page 4 PSWP67BA.MCD
Niagara Mohawk Power Corporation                            NMP2                                                      Pager /P P Nuclear Engineering                                Calculation Cont. Sheet A10.1-AD403, Rev. 01 Checker/Date
'go~        ap    n  @ Q +l>%i&7 Valve ID no: 2SWP'MOV94A Re uired        0 enin        Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTSr Design Basis Conditions at time            of Pressure Locking Event:
Upstream pressure (psig),                                Valve Bonnet pressure (psig), P bonnet =108 P
                                          ~ .=10S Downstream pressure (psig), P down '=0 Valve Disk Geometry:
hub radius,          b:= 3.375      mean seat radius,            a:= 3.91 average disk thickness,              t:=0.4S hub length,      L:=0.125          seat angle,          o:=  10          e  =-a  ft 2 180 e  =0.087 Valve Disk Material Properties:                                                            e  ishalf disk angle      a modulus of elasticity,        E:=29400000            Poisson's Ratio,        v:=0.3 Other Valve Parameters:
Valve Stem Diameter,          D <~.--1.625        Static Unseating Thrust,            F~.=7751
                                                                          &#xb9; (reference: Test 26, $ 9i95)
Valve Factor          VF:= 0.65                  (reference: NER-2M-010)
CALCULATIONS:
cos(e)
Coefllcient of friction between disk and seat,              p:=
I VF
                                                                        - a~(e)              p    0.686    (reference    &#xb9;6)
            ~+
up+    down Average DP Across Disk,              DP avg '    bonnet                                gives,    DP        =54 2
Disk Stf'ffnes Constants, Et              and        G:=      E u  (i .*)                          2 (1+  v) which gives, Geometry Factors, D
C 2.977 10 2.=-I 4
I -  b
a and 1  +2 ln b
a, G = 1.131 ~ 10 C3.'= b 4a b
a
                                                                                              +  I In a
b
                                                                                                              +
b a
                                                                                                                    -  I C 8.=-I 2
I+  v+ (I - v) b a                      a
C9.--b I+v In 2      b a
                                                                                                      + .
I-v I-4 b
a 2
whichgives,          C2    0.009              C3  =3.965'10 C8    0.911              C 9 <0.121 A
COMED PL EvalUation                            Valve lD: 2SWP'MOV                                                      page    1 PSWP94AA.MCD
Jl 0
Niagara Mohawk Power Corporation                                  NMP2                                                    Page  ~fo/r %~
Nuclear Engineering                                      Calculation Cont. Sheet
                                                                                                                , A10.1&D40S. Rev. 01 Originator/Date cQ~~~+z            4'~          &/z 3j5p Checker/Date Additional Geometry Factors,                                rp,=b 2            4              2                2
                            'o                          'o L11'=  1+ 4  -5  -4 ro                              ro 64 2+              ln- a a              a            a                a          rp
                  '0 L17 4
1
1- 1-U 1-4              a 0
4
a 0
2
                                                            ~
11-(1+    Y)  1n  a rp which gives,              L11 =1.378.10                and                L 17 =0.009 Moment Factors, 2
Mrb DPavga          C9 I    2 j
                                                                                                    '"'(*- 0*)
C8          2ab                                                        2b which gives, M rb =-8.373            and              Q b = 31.18 Dellection from pressureIbending, 4
DP avg a yb '.=Mrb C2+Qb' a
C3-                    .L11 D                D                D which gives,                yb q      1937 10 Deflection from pressure /shear, 2                                                      .2 K~:=-0.3 21n          a b
1+      rp 1-21n-      rp ysq
                                                                                              '=    sa tG avg a a                  b which gives,              K sa =%.012                  .and                y.
sq
                                                                                                    ~-L796  10 Deflect/on from pressure /hub stretch, P force  L Pforce'.=tt (a  -b    ) DPavg                          y stretch    =
nb 2E which gives,              P force ~661.191                and          y stretch  -3.928'10 COMED PL Evaluation                                Valve lD: 2SWP'MOV94A                                                  page 2 PSWP94AA.MCD
                                                                                                                        /~/'3 7
                                                                          ~
Niagara Mohawk Power Cotporauon                              NMP2                                              Page Nuclear Engineering                                  Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Orlginatorlnate                                          chackarlDste
                                                                                    ~/g/rr cCiygpg Total Deflection due to pressure,                          yq'bq+ ysq+ystretch which gives,          y q =-3.771 ~ 10 Additional Geometry Factors ro:=a L3  '=  ro
                  .
48 ro 8
2
                                +I    ln +  - I a
ro ro a
2 L9    -
a
ro I+v 2
ln a
ro
                                                                                                +
I-v I-4          a o
1 which gives,            L3 ~0              and            L9 =0 Deflection from seat load/bending,                        Wi= I ybw.'=
8  w C2 roC9 D C8            b L9   
                                                  - roC3 + L3 b
which gives,        y bw =-1.835'10 7
Deflection from seat load/shear, ro ro Ksa .'=-1.2      In-b                y~.--Ksa-    8 which gives,          Ksa = %.177 a                                  tG y sw = -1.272'10 Deflection from seat load/hub compression, L
                          -2  tt.a  2 y compr
                        'tb                      which gives,              y compr
'otal Deflection from unit seat          load, y w:=y bw+'y sw+y compr                      which gives,          yw      3122  10 Equilibrium contact load distributfon, yq w equilibrium
                              'w                which gives,            equi]ibrium Load per seat -    "2    tt a Jq  ~ 296.797 yw Pressure Locking Force, COMED PL Evaluation                              Valve lD: 2SWP'MOV94A                                            page 3 PSWP94AA.MCD
Niagara Mohawk Power Corfgoratfon Nucfear Engineering NMP2 Catculation Cont. Sheet Page9+f  /3 7 Atp.1 AD403, Rev. Ot t3rfginator/Date                                      Checker/Date roy o Af    ~
Q      lfClgnlrp jgl      rp It./  f/
F pres lock '= 2 ft a 1~            (it    cos(6)  - sin(0)) 2        which gives,            F pres lock = 354.165 Yw Piston Effect Force,                          P  an:=0 ft piston effect      'tem 'i    bonnet    p atm)          which gives,            F tstpn  ~~t  223 986 "Reverse Piston Effect" Force, F veft    a a  2 P bonnet  P up P down      sm(1)          which gives,            F ~ = 452.088 Total Force Re uired to Overcome Pressure Lockin F <<tal: = F pres lock+ F + F veft - F piston effect pp which gives,        F <<~ =8.333267          10
                                                                              'CTUATOR CAPABILITY:
Actuator Model!Size:                                                                          = SMB-00-15 Motor Torque Output:                                                                    TQm '.= 14.74        tt- lbs Gear Ratio:                                                                              OGR:=34.1 Application Factor:                                                                      Af:=0.9 Pullout Efficiency:                                                                      Eff:=0.4 Reduced Voltage:                                                                          RV:= 1.0 Torque Output:                TQout:= TQm RV OGR          AfEff                        TQout ~ 180.948      ft- lbs Stem Factor.
Thrust Capability:              THcap: =TQout Sf Sf:= 0.016407 THcap = 1.103 10            lbs NOTE: RV IS SQUARE IF ACTUATORIS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                  KE[:= 1.20 Thrust Margin: = THcap (F m~ KEI)
Thust Margin ~ 1.029    10      1bs


== Conclusion:==
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP MOV94A page 4  
COMED PL Evaluation                         Valve lD: 2SWP MOV94A                                                  page 4 PSWP94AA.MCD
 
Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calculation Cont. Sheet
                                                                                                                          >>
Pag~of    / 5'7 A10.1.AD403, Rev. 01
> ~. p.. 4- Q~/iabp Originator/Date                                          CheckeriDate r/s/N7 Valve ID no: 2SlrrVP'MOV94B Re uired        0 enin Force Oeternminafion under Pressure Lockin Condifions COMED Method DESIGN INPUTS:
Design Basis Conditions at tIme of Pressure Locking Event:
Upstream pressure (psig),            P    .=108        Valve Bonnet pressure (psig), P bonnet"                    108 p
Downstream pressure (psig), P down              0 Valve Disk Geometry:
hub radius,        b:=3.375        mean seat radius,            a '.=3.91      average disk thickness,            t:=0.48 hub length,      L:=0.125          seat angle,          a --10              0:=-.a    rt 0    0.087 2 180 Valve. Disk Material Properties:                                                                8  ishalfdiskangle a modulus of elasticity,        E:=29400000              Poisson's Ratio, v.=0.3 Other Valve Parameters:
hl Valve Stem Diameter,        Dz      .'=1.625      Static Unseating Thrust,              F po    8674
                                                                            &#xb9; (reference: Test 6, tV1M3)
Valve Factor        VF:= 0.65                    (reference: NER-2M-010)
CALCULA77ONSi CoeNicient      of fnction between disk and seat,            p:=        cue)
                                                                          - sin(0)                p    0.686    (reference  &#xb9;6) up+ down Average DP Across Disk,                  avg 'onnet"                    2 gives,    DP        =54 Disk Stiffnes Constants, Et              Sfl(t        G:=      E r2 (r    ')                            2 (1+v) which gives,      D =2.977    10        and            G      1.131 ~ 10 GeometiyFactors,          C2.'=-1 1-4 b
a 1+2ln      a b
C3.'=. b 4a b
                                                                                                +1 a
h  a b
                                                                                                                  +
C8:=-  1 2
1+  v+(1- v)      b a                          a
                                                                                            +-
C9.--.b 1+v ln 2      b a      1 4
v which gives,        C2    0.009              C3  =3.965'10 C8    0.911              C 9 =0.)21 COMED PL Evaluation                            Valve ID: 2SWP MOV94B                                                        page  1 PSWP94BA.MCD
 
r~'7
                                                                                  ~
Niagara Mohawk Power Corgoration                                          NMP2                                              Page95of Nuclear Engineering                                        Calculation Cont. Sheet A10.1 AO403, RW. 01 akkkkklrakrk Originatorloate
~~pc,            Q. g~ ~gyypp                                                              7/a/r7 Additional Geometry Factors,                                      rp ',=b 2                4                  2              2 L 11  '= I+4      rp -
5 rp
                                                    -4      rp        ~
2+
rp In 64          a                a                a                a          rp I-4              2 L 17  .'=-I      I-v I-            0            rp      ~
I  +(I+ v) ln-    a 4        4        ~      a              a                            rp which gives,            LII        1.378 10                  and              L 17 =0.009 Moment Factors, 2
Mg:=-
DP avg a a  -rp -L17                                          '"'(*- 0*)
C8          2ab                                                            2b which gives, M*        -8.373              and          Q b ~31.18 Deflection from pressure/bending, r
4 avg a 2+ Q b C 3 a                    a yb  '.= M rb'      C                                          L 11 D                    O                O which gives,                  yb, q
                                                        ~-I 937          10 Deflection from pressure/shear, 2                                                        2 rp                      Km.DP avg    a K ~:=-0.3 2 In a
I+
rp      ~
I - 2 In-b                            t.G b                a which gives,                K~ ~%.012                        and              y sq    -1.796'10 Deflection from pressure! hub stretch, P force'L
                                    -b Pra~.'=a    (a            ) DPak<                            y stretch
                                                                                          'tb      2E which gives,                P f0~'"~ 661.191                      and      y stretch =-3.928 10 COMED PL Evaluation                                  Valve ID: 2SWP'MOV948                                                    page 2 PSWP94BA,MCD
 
1 I'I
 
A'MP2 ~
Niagara Mohawk Power Corporation N uotear Engineering Originator/Date
~reap        g, Calcuiation Cont. Sheet cweaea as<a Page94efi' A10.1-AD402. Rev. 01 P
Total Deflection due to pressure,                            yq'bq+ysq+ystretch y =-3.771 10
                                                                                                ~
which gives, Additional Geometer Factors                      r:=a L3 '=
ro 4a ro a
2
                                +  I  In +  - I a
ro ro a
2 L9  .= .
a
 
ro I+v 2
ln a
ro
                                                                                                  +
1- v I-4 ro a
2 which gives,              L3 =0                and            L9=0 Deflection fmm seat load/bending,                          w:=I


Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
                                                    'sa a w C2 roC9                      roC3 ybw:=                               -L9                +L3 whichgives                ybw ~-1.835    10 D C8            b                 b Deflection from seat load/shear, Ksa:=- 1.2 ro ro
>~.p..4-Q~/iabp NMP2 Calculation Cont.Sheet CheckeriDate r/s/N7>>Pag~of/5'7 A10.1.AD403, Rev.01 Valve ID no: 2SlrrVP'MOV94B Re uired 0 enin Force Oeternminafion under Pressure Lockin Condifions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=3.375 mean seat radius, a'.=3.91 average disk thickness, t:=0.48 seat angle, a--10 0:=--0 0.087.a rt 2 180 8 ishalfdiskangle a hub length, L:=0.125 Valve.Disk Material Properties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters:
hl Valve Stem Diameter, D z.'=1.625 Static Unseating Thrust, F po 8674 (reference:
Test&#xb9;6, tV1M3)(reference:
NER-2M-010)
Valve Factor VF:=0.65 Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), Pp.=108 Valve Bonnet pressure (psig), P bonnet" 108 Downstream pressure (psig), P down 0 CALCULA77ONSi CoeNicient of fnction between disk and seat, p:=cue)-sin(0)p 0.686 (reference
&#xb9;6)Average DP Across Disk, Disk Stiffnes Constants, gives, DP=54 Sfl(t G:=-E 2 (1+v)up+down avg'onnet" 2 Et r2 (r-')which gives, D=2.977 10 and G 1.131~10 1 b a.b b a GeometiyFactors, C2.'=-1--1+2ln-C3.'=--+1 h-+4 a b 4a a b 1 b C8:=-1+v+(1-v)2 a b 1+v a 1-v C9.--.-ln-+-a 2 b 4 which gives, C 2 0.009 C 8 0.911 C 3=3.965'10 C 9=0.)21 COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP MOV94B page 1


Niagara Mohawk Power Corgoration Nuclear Engineering Originatorloate
a ln- b y:=
~~pc, Q.g~~gyypp NMP2 Calculation Cont.Sheet akkkkklrakrk
sw Ksa a
~7/a/r7 Page95of r~'7 A10.1 AO403, RW.01 Additional Geometry Factors, rp',=b 2 4 2 2 rp rp rp rp L 11'=-I+4--5--4-~2+-In-64 a a a a rp I L 17.'=-4 4 I-v 0 I--I--4~a 2 rp a~I+(I+v)ln-a rp which gives, Moment Factors, L I I 1.378 10 and L 17=0.009 Mg:=-2 DP avg a C8 a-rp-L17 2ab'"'(*-0*)2b which gives, M*-8.373 and Q b~31.18 Deflection from pressure/bending, r 4 a a avg a y b'.=M rb'C 2+Q b-C 3-L 11 D O O which gives, yb~-I 937 10 , q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 Km.DP avg a t.G which gives, K~~%.012 and y-1.796'10 sq Deflection from pressure!hub stretch, Pra~.'=a (a-b)DPak<P force'L y stretch'tb 2E which gives, P f0~'"~661.191 and y stretch=-3.928 10 COMED PL Evaluation PSWP94BA,MCD Valve ID: 2SWP'MOV948 page 2 1 I'I Niagara Mohawk Power Corporation N uotear Engineering Originator/Date
which gives,               ~ %.177 y sw ~-1.272.10 Deflection from seat load/hub compression, L
~reap g, A'MP2 Calcuiation Cont.Sheet cweaea as<a~Page94efi' P A10.1-AD402.
                            -2'tt a 2 compr   'tb                     which gives,                 y compr Total Detlection from unit seat load, yw:=y bw+ysw+ycompr                             which gives,           yw    3.122 10 Equilibrium contact load distnbution,
Rev.01 Total Deflection due to pressure, yq'bq+ysq+ystretch which gives, y=-3.771~10 Additional Geometer Factors r:=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9.=-.a 2 I+v a 1-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection fmm seat load/bending, w:=I a w C2 roC9 roC3 ybw:=----L9--+L3 whichgives D C8 b b ybw~-1.835 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b y:=Ksa-which gives, a sw'sa~%.177 y sw~-1.272.10 Deflection from seat load/hub compression,-2'tt a compr'tb L 2 which gives, y compr Total Detlection from unit seat load, yw:=y bw+ysw+ycompr which gives, y w 3.122 10 Equilibrium contact load distnbution, w e~bn~.'=-which gives, yq yw Load per seat>>-2 tt a-~296.797 yq yw w equilibrium 12.081 Pressure Locking Force, COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP'MOV94B page 3  
                    ~bn~ .'=
we yq          which gives,         w equilibrium    12.081 yw Load per seat       >>-   2 tt a yq  ~296.797 yw Pressure Locking Force, COMED PL Evaluation                             Valve ID: 2SWP'MOV94B                                             page 3 PSWP94BA.MCD


Niagara Mohawk Power CorPoration Nucfear Engineering Onginator/Date wo~rzp rr~rob/p'/zs jpQ NMP2 Cafcufation Cont.Sheet Checker/Date.ir/fCj7 Pagerr/of J9~A10,1.AD403, Rev.Ot 2., q.(.~>0)<0)).2 whichgives, Fp 1~k=354 165 Yq Yw Piston Effect Force, Pat:=0 2/p piston street''D stem'(Pbonnet Pstm)wh/ch give~, F p,.st,n cff~t=223.986 s"Reverse Piston Effect" Force, Fcrt.'-.ft a 2 Pbonnct-Pup-P flown sin(8)which gives, Total Force Re uired to Overcome Pressure Lockin F v~=452.088 F tptat.'=F pres loci'+Fpc+F vert-F piston cffcc which gives, F t~9.256267'10
Niagara Mohawk Power CorPoration                           NMP2                                                          Pagerr/of J9 ~
'CTUATOR CAPABILITY:
Nucfear Engineering                               Cafcufation Cont. Sheet A10,1.AD403, Rev. Ot Onginator/Date                                          Checker/Date wo~rzp rr               ~
Actuator Model/Sizar Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
rob /p'/zs jpQ
Reduced Voltage: Torque Output: Stem factor.Thrust Capability:
                                                                              .ir/fCj7 Yq 2.,     q
TQout THcap:=Sf TQout:=TQm RV OGR Af Eff=SMB-00-15 TQm',=14.74 OGR:=34.1 Af:=0.9 Eff'=0.4 RV:=1.0 TQout~180.948 Sf:=0.016407 THcap=1.103'10 ft-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
                                      .(.~>0)         <0)).2         whichgives,             Fp       1~k=354   165 Yw Piston Effect Force,                           Pat:=0 piston street
KEI:=1.20 Tbrnst Msrttin=THcsp-(F tomt KEI)Thrust Margin~-78.799 1bs Qt/1
                          ''D         2  /p stem '(Pbonnet     Pstm)           wh/ch give~,
s F p,.st,n cff~t =223.986 "Reverse Piston Effect" Force, Fcrt.'-. ft a     2 Pbonnct- Pup- P flown         sin(8)         which gives,             F v~ = 452.088 Total Force Re uired to Overcome Pressure Lockin
                .'=F F tptat      pres   loci'+ Fpc+ F vert- F piston cffcc which gives,       Ft  ~     9.256267'10
                                                                                'CTUATOR CAPABILITY:
Actuator Model/Sizar                                                                             = SMB-00-15 Motor Torque Output:                                                                      TQm ',= 14.74         ft- lbs Gear Ratio:                                                                                OGR:= 34.1 Application Factor:                                                                        Af:=0.9 Pullout Efficiency:                                                                        Eff '=0.4 Reduced Voltage:                                                                            RV:= 1.0 Torque Output:                TQout:= TQm RV OGR          AfEff                        TQout ~ 180.948         ft- lbs Stem factor.                                                                                Sf:= 0.016407 TQout Thrust Capability:              THcap: =
Sf                                      THcap = 1.103'10           1bs NOTE: RVIS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOCNNG METHODOLOGY:                                                     KEI:= 1.20 Tbrnst Msrttin = THcsp     - (F tomt KEI)
Thrust Margin ~-78.799             1bs Qt/1


== Conclusion:==
== Conclusion:==
Open Thrust Margin Is negative, therefore this valve and actuator are likely to .
overcomethetheoreticalpressurelocklngconditlonsevaluated>                                      pe~ever        HAe    rr/a~giw/~
ao    girasol    graf Hriis r/d/'~pgaep~ 4)drifts~                                      < ~4 COMED PL Evaluation                          Valve ID: 2SWP'MOV94B                                                      page 4 PSWP94BA.MCD
hl Y NlAGARA H Q MOHg~K ..                CALCULATIONCONTINUATION'SHEET                            Page (Next ~at NUCLEAR ENGINEERING Nine Mile Point Nuclear Station              Unit: 2                          Disposition:  NA Originator/Date cgiOWWP'        ffe ~  ggP Checker/Date ria/~r      A10.1-AD-003 Revision 01 ATTACHMENTS
                                                                            &#xb9; FORMAT NEP-DES-08, Rev. 01 (F02)


Open Thrust Margin Is negative, therefore this valve and actuator are likely to.overcomethetheoreticalpressurelocklngconditlonsevaluated>
CACCldll/0>: A/0, (-AD a&9 P gv'                          (
pe~ever HAe rr/a~giw/~
NIAG&M IITOHAWK                          AA sl ~ed/ g                        NUcr.Em NG~~G
ao girasol graf Hriis r/d/'~pgaep~
                                        ~~ ~Ay ~ P gg NOTES OF TELEPHONE CONVERSATION Persons Involved:          NMPC:              Gaines Bruce Anchor/Darling:    Ron Brubaker Date of Conversation:      Tuesday, August 22, 1995            2:45PM
4)drifts~<~4 COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP'MOV94B page 4


hl Y NlAGARA H Q MOHg~K..CALCULATION CONTINUATION'SHEET NUCLEAR ENGINEERING Page (Next~at Nine Mile Point Nuclear Station Unit: 2 Disposition:
==Subject:==
NA Originator/Date Checker/Date cgiOWWP'ffe~ggP ria/~r A10.1-AD-003 Revision 01 ATTACHMENTS FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)  
Internal Valve Dimensions for 2CSH*MOV101 Summary of Conversation: Ron called to state that he was working on our P.Q. to provide internal valve dimensions. Ron stated that as I had previously requested, that he was calling to provide me the dimensions for 2CSH~MOV101 in advance of the formal response.
Applicable dimensions for 2CSH*MOV101 are:
Seat OD:                     13 1/2 inches Seat ID:                    11 inches Hub Diameter:               4 inches Wedge angle:                6 degrees (includes both faces)
Top of disc width:          2.013 inches Bottom of disk width:      I/306 inches    P/, Pod  ")
Hub width:                  3/16 inch Ron stated that there was about 1/8 inch of hard facing on the disc scat. I advised him that I thought that MPR wanted thc width less hard facing. Ron'also stated that the hub width was not a uniform width from top to bottom. The sides are abrasive cut and that is the 3/16 inch dimension. Ron stated that he would try ta clarify what is being provided in the formal response.
Action Required and Due Dates:            No specific actions are to result f'rom this discussion. Anchor Darling is to,comply with P.O.
Commitments:          N/A xc:    Ron Brubaker (by fax)


NIAG&M IITOHAWK Persons Involved: CACCldll/0>:
0 Niagara Mohawk Power Corporation Veian P.O. P9-80572 K                                                  DM-0050 Dimensional Data for Pressure Locking Analysis cP                          Velan                Seat Dimensions  Hub    Hub    Top of Disk Bottom of Disk Wedge Bonnet 0      Valve ID          Dw . No. item Size      OO    ID    Dia. Width Thick"ess      Thickness    An le Volume 2RHSA MOV112      P2-7026- N13      49  20    17.625 15.935  1<.250  0,37K          %6/         1.330      10 4464.7 2RHS*MOV113      P2-7026- N13      48  20    17.625 15.935  i 4.250  0 .375                    1.330      10 4464.7 2RHS*MOV1 5A      P3-7026-N10        47  16    15.906 14.906  1'..500  0.~00        ".~BP        1.406      10 3238.9 2RHS*MOV1 5B      P3-7026- N10      47  16    15.906 14.906  i1.500  0.600        3.882        1.406      10 3238.9 2RHS*MOV25A        P3-7026-N10        47  16    15.906 14.906  11.500  0.500        1.882        1.406      10 3238.9 2RHS*MOV2sB        P3-7028-N10        47  16  15.906 14.906  11.500  0.600        1.882          1.406    10 3238.9 2SWP'MOV21A        P3-7026- N18      62          3.125  2.760  1.750  0.500        0.528        0.552      10      639 2SWP*MOV21 B      P3-7026- N18      62          3.125  2.760  1.750  0.500        0.528        0.552      10      63.9 2CSL4 MOV107      P3-7026- N2      13          3.938  3.576  2.500  0.500        0.628          0.624    10    111.0 2SWPA MOY67A        P3-7026- N18      77          3.938  3.576  2.500  0.500        0.628          0.624    10    111.0 2SWP*MOV67B        P3-7026-N18      77          3.938  3.576  2,500  0.500        0.628          0.624    10    111 0 2ICS*MOV129      P3-7026- N2      24          6.250  5.750  4.500  0.250        0.412          0.343      7    215.3 2ICS*MOV136      P3-7026-N2        24          6.250- 5.750  4.500  0.250        0.412          0.343      7    216.3 2HH8'OV4A        P3-7028- N2      26          8.260  6.760  4.600  0.260        0.412          0.343      7    2163 2RHS*MOV4B        P3-7026- N2      25    6    6.250  5.750  4.500  0.250        0.412          0.343      7    21s3 2RHS*MOV4C        P3-7026- N2      25    6    6.250  5.750  4.500  0.250        0.412          0.343      7    215.3 2SWP*MOV66A        P3-7026-N6      65    8    8.063  7.563  6.750  0.250        0.471          0.478      10    434.3 2SWP*MOV66B        P3-7026-N6      65    8 8.063  7.563  6.750  0.250        0.471          0.478      10    434.8 2SWP'MOV94A        P3-7026- N6      66    8    8.063  7.563  6.750  0.250        0.471          0.478      10    434.8 2SWP*MOV94B        P3-7026-N6      66    8    8.063  7.563  6.750  0.250        0.471          0.478      10    434.8 2SWP*MOV17A        P3-7026- N6      37  12  11.750 11.250    9.875  0,250        0.671          0.906      7 1294 0 2SWPo MOV17B        P3-7026- NB      37  12    ii.7s0 11.260  9.876  0.260        A P7<          0.906      7 1294.0 2SWP'MOV1 BA        P3 7026-N6      38  12    11.750 11.250  9.875  0.250        9 67"-        0.906      7 1294.0 2SWP*MOV18B        P3-7026- N6      38  12    11.750 11.250  9.875  0.250                      0.906      7 129 .0 2RHS'MOV1 15      P3-7026- N6      46  16    15.906 14.906  11.500  0.500        1.882        1.406      10 3238.9 2RHS*MOV1 16      P3-7026= N6      45  16    15.906 14.906  11.500  0.500        1.882        1.406      10 . 3238.9 2ICS*MOV1 26      P3-7026- NB      30    6    5.875  5.332  3.000  1.000        1.000        1.123      10    283.4 2ICS*MOV122      P3-7026- N10 40  12    11.750 11.250  9.875  0.250        0.671          0.906      7 1294.0 2ICS~ MOV1 21    P2-7026- N17      36  10    8.750  8.030  6.125  0.375        0.826          1.197      10    617.2 2ICS*MOV128      P2-7026-N17      69  10    8.750  8.030  6.125  0.375        0.826          1.197      10    617.2 Note: Dimensions are ln inches.
A/0, (-AD a&9 P gv'(AA sl~ed/g NUcr.Em~~~Ay~P gg NG~~G NOTES OF TELEPHONE CONVERSATION NMPC: Gaines Bruce Anchor/Darling:
Prepared by: John McDougall      24/08/1995   Rev  1
Ron Brubaker Date of Conversation:
Tuesday, August 22, 1995  


==Subject:==
Internal Valve Dimensions for 2CSH*MOV101 2:45PM Summary of Conversation:
Ron called to state that he was working on our P.Q.to provide internal valve dimensions.
Ron stated that as I had previously requested, that he was calling to provide me the dimensions for 2CSH~MOV101 in advance of the formal response.Applicable dimensions for 2CSH*MOV101 are: Seat OD: Seat ID: Hub Diameter: Wedge angle: Top of disc width: Bottom of disk width: Hub width: 13 1/2 inches 11 inches 4 inches 6 degrees (includes both faces)2.013 inches I/306 inches P/, Pod")3/16 inch Ron stated that there was about 1/8 inch of hard facing on the disc scat.I advised him that I thought that MPR wanted thc width less hard facing.Ron'also stated that the hub width was not a uniform width from top to bottom.The sides are abrasive cut and that is the 3/16 inch dimension.
Ron stated that he would try ta clarify what is being provided in the formal response.Action Required and Due Dates: No specific actions are to result f'rom this discussion.
Anchor Darling is to,comply with P.O.Commitments:
N/A xc: Ron Brubaker (by fax) 0 Niagara Mohawk Power Corporation
-Veian P.O.P9-80572-K Dimensional Data for Pressure Locking Analysis DM-0050 cP 0 Valve ID 2RHSA MOV112 Velan Dw.No.P2-7026-N13 item 49 20 17.625 15.935 Seat Dimensions Size OO ID Hub Dia.1<.250 0,37K%6/Hub Top of Disk Width Thick"ess Bottom of Disk Wedge Bonnet Thickness An le Volume 1.330 10 4464.7 2RHS*MOV113 P2-7026-N13 48 20 17.625 15.935 i 4.250 0.375 1.330 10 4464.7 2RHS*MOV1 5A 2RHS*MOV1 5B 2RHS*MOV25A 2RHS*MOV2sB 2SWP'MOV21A 2SWP*MOV21 B 2CSL4 MOV107 2SWPA MOY67A 2SWP*MOV67B 2ICS*MOV129 P3-7026-N10 P3-7026-N10 P3-7026-N10 P3-7028-N10 P3-7026-N18 P3-7026-N18 P3-7026-N2 P3-7026-N18 P3-7026-N18 P3-7026-N2 47 47 47 47 62 62 13 77 77 24 16 16 16 16 15.906 15.906 15.906 15.906 3.125 3.125 3.938 3.938 3.938 6.250 14.906 14.906 14.906 14.906 2.760 2.760 3.576 3.576 3.576 5.750 1'..500 i1.500 11.500 11.500 1.750 1.750 2.500 2.500 2,500 4.500 0.~00 0.600 0.500 0.600 0.500 0.500 0.500 0.500 0.500 0.250".~BP 3.882 1.882 1.882 0.528 0.528 0.628 0.628 0.628 0.412 1.406 1.406 1.406 1.406 0.552 0.552 0.624 0.624 0.624 0.343 10 3238.9 10 3238.9 10 3238.9 10 3238.9 10 639 10 63.9 10 111.0 10 111.0 10 111 0 7 215.3 2ICS*MOV136 2HH8'OV4A P3-7026-N2 24 P3-7028-N2 26 6.250-8.260 5.750 6.760 4.500 4.600 0.250 0.412 0.260 0.412 0.343 0.343 7 216.3 7 2163 2RHS*MOV4B 2RHS*MOV4C P3-7026-N2 P3-7026-N2 2SWP*MOV17A 2SWPo MOV17B 2SWP'MOV1 BA P3-7026-N6 P3-7026-NB P3-7026-N6 2SWP*MOV66A P3-7026-N6 2SWP*MOV66B P3-7026-N6 2SWP'MOV94A P3-7026-N6 2SWP*MOV94B P3-7026-N6 25 25 65 65 66 66 37 37 38 6 6 8 8 8 8 12 12 12 6.250 6.250 8.063-8.063 8.063 8.063 11.750 ii.7s0 11.750 5.750 5.750 7.563 7.563 7.563 7.563 11.250 11.260 11.250 9.875 9.876 9.875 0,250 0.260 0.250 4.500 0.250 4.500 0.250 6.750 0.250 6.750 0.250 6.750 0.250 6.750 0.250 0.412 0.412 0.471 0.471 0.471 0.471 0.671 A P7<9 67"-0.343 0.343 0.478 0.478 0.478 0.478 0.906 0.906 0.906 7 21s3 7 215.3 10 434.3 10 434.8 10 434.8 10 434.8 7 1294 0 7 1294.0 7 1294.0 2SWP*MOV18B 2RHS'MOV1 15 2RHS*MOV1 16 2ICS*MOV1 26 2ICS*MOV122 2ICS~MOV1 21 P3-7026-N6 P3-7026-N6 P3-7026=N6 P3-7026-NB P3-7026-N10 P2-7026-N17 2ICS*MOV128 P2-7026-N17 Note: Dimensions are ln inches.38 46 45 30-40 36 69 12 16 16 6 12 10 10 11.750 15.906 15.906 5.875 11.750 8.750 8.750 11.250 14.906 14.906 5.332 11.250 8.030 8.030 9.875 11.500 11.500 3.000 9.875 6.125 6.125 0.250 0.500 0.500 1.000 0.250 0.375 0.375 1.882 1.882 1.000 0.671 0.826 0.826 0.906 1.406 1.406 1.123 0.906 1.197 1.197 7 129.0 10 3238.9 10.3238.9 10 283.4 7 1294.0 10 617.2 10 617.2 Prepared by: John McDougall 24/08/1995 Rev 1
'
'
4M~M me.~C P~qt cd=4 C z4 COMMONWEALTH EDISON COMPANY PRESSURE LOCKING TEST REPORT Brian D.Bunte, P.E.Commonwealth Edison Company John F.Kelly, P.E.RECTA Technologies, inc.ABSTRACT Pressuie Locking is a phenomena which can cause the unseating thrust for'gate ygye to increase dramatically from its typical static unseating thrust.This can result in the valve actuator having insufficient capability to open the valve.In addition, this can result in valve damage in cases where the actuator capability exceeds the valve structural limits.For these reasons, a proper understanding of the conditions which may cause pressure locking and thermal binding, as well as a methodology for predicting the unseating thrust for a pressure locked or thermally bound valve, are necessary, This report discusses the primary mechanisms which cause pressure locking.These include sudden depressurization of piping adjacent to the valve and pressurization of fluid trapped in the valve bonnet due to heat transfer.This report provides a methodology for calculating the unseating thrust for a'valve which is pressure locked.This report provides test data which demonstrates the accuracy of the calculation methodology.
4M ~M me.~ C P~qt cd=4         C   z4 COMMONWEALTHEDISON COMPANY PRESSURE LOCKING TEST REPORT Brian D. Bunte, P.E.
DESCRY"HON OF PRESSURE LOCKING PHENOMENA Pressure locking occurs when the bonnet cavity pressure of a gate valve exceeds the pressure on hgh sides of the valve disk.The two primary mechanisms that exist for pressure locking of gate valves are described below: This pressure locking mechanism occurs when a valve is pressurized from one side.Leakage past the valve scat will cause the fluid in the gate valve bonnet to pressurize to.,the pressure of the high pressure side of the valve disk.Depending on the leak-tightness of the valve seats, this pressurizatio process may take seconds or hours;however, it is extremely unlikely that the valve seat will be sufficiently leak tight to prevent this process from eventually occurring.
Commonwealth Edison Company John F. Kelly, P.E.
If the source of pressure is suddenly removed, then prcssure in the bonnet valve will remain trapped.If the valve is called upon to open before the bonnet pressure has decayed to the line pressure, then a pressure locking event occurs.e The'time needed for the bonnet pressure to decay is dependent on several factors including leak tightncss of valve seats and packing.In addition, when the bonnet fluid is at a high temperature or contains large amounts of air, the, bonnet pressure decays much more slowly due to the pressurizer effect.Apparent cases of pressure locking occurring up to a day after the pressure source is removed have been recorded.However, test data presented later in this report suggests that the bonnet pressure is likely to decay within one hour of the sudden depressurization event 3C-9'UREG/CP-0152 0'I 0 g44 iehwy~y C C~~c+C2~urring~is type of pressure locking is likely to occur when pumps adjacent to closed valves shut off or when an event such as a LOCA causes pressure on one side of a valve to suddenly<<op<<f~en the initial differential pressure across the valve disk is sufficient to unseat the high pressure side disk from its seat, then the bonnet pressure following a sudden depressurization event is less than the bonnet pressure at the start of the event.The maximum pressure which can be trapped in the valve bonnet can be calculated by determining the differential pressure at which the valve disk will come back into contact with the valve seat.Until the disk to seat contact is re-established, the bonnet pressure will follow the.upstream side pressure.This calculation has been developed by ComEd, but is not provided in this report due to constraints on length.This pressure locking mechanism occurs when the valve bonnet cavity of a gate valve is filled with liquid that contains little or no air.If a heat source is applied to fluid in the valve bonnet cavity, then expansion of the fluid can cause pressure in the valve bonnet to dramatically increase.The heat source can be fluid in piping adjacent to the valve or external environmental conditions as might be encountered following a high energy line break.Pressurization rates of-20 psi/'F to 60 psi/'F have been recorded during special testing.However, pressurization rates of this nature require the following conditions to exist: the valve seats and pachng must be very leak tight~the heat source must provide a high heat transfer rate to the bonnet cavity fluid~no air can exist in the valve bonnet cavity, or the temperature rise in the valve bonnet cavity must be sufficient to cause the expanding fluid to collapse the air bubbles before the high pressurization rate can be achieved.PRESSURE LOCKING CALCULATION MEI'HODOLOGY 1.The valve disk is assumed to act as two ideal disks connected by a hub.The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces, 2..The coefBcient of friction between the valve, seat and disk is assumed to be the same under pressure locking conditions as it is under DP conditions.
RECTA Technologies, inc.
NUREG/CP4152 3C-10  
ABSTRACT Pressuie Locking is a phenomena which can cause the unseating thrust for' gate ygye to increase dramatically from its typical static unseating thrust. This can result in the valve actuator having insufficient capability to open the valve. In addition, this can result in valve damage in cases where the actuator capability exceeds the valve structural limits.
For these reasons, a proper understanding of the conditions which may cause pressure locking and thermal binding, as well as a methodology for predicting the unseating thrust for a pressure locked or thermally bound valve, are necessary, This report discusses the primary mechanisms which cause pressure locking. These include sudden depressurization of piping adjacent to the valve and pressurization of fluid trapped in the valve bonnet due to heat transfer. This report provides a methodology for calculating the unseating thrust for a'valve which is pressure locked. This report provides test data which demonstrates the accuracy of the calculation methodology.
DESCRY"HON OF PRESSURE LOCKING PHENOMENA Pressure locking occurs when the bonnet cavity pressure of a gate valve exceeds the pressure on hgh sides of the valve disk. The two primary mechanisms that exist for pressure locking of gate valves are described below:
This pressure locking mechanism occurs when a valve is pressurized from one side. Leakage past the valve scat will cause the fluid in the gate valve bonnet to pressurize to.,the pressure of the high pressure side of the valve disk. Depending on the leak-tightness of the valve seats, this pressurizatio process may take seconds or hours; however, it is extremely unlikely that the valve seat will be sufficiently leak tight to prevent this process from eventually occurring. If the source of pressure is suddenly removed, then prcssure in the bonnet valve will remain trapped. Ifthe valve is called upon to open before the bonnet pressure has decayed to the line pressure, then a pressure locking event occurs.
e The'time needed for the bonnet pressure to decay is dependent on several factors including leak tightncss of valve seats and packing. In addition, when the bonnet fluid is at a high temperature or contains large amounts of air, the, bonnet pressure decays much more slowly due to the pressurizer effect. Apparent cases of pressure locking occurring up to a day after the pressure source is removed have been recorded. However, test data presented later in this report suggests that the bonnet pressure is likely to decay within one hour of the sudden depressurization event 3C-9                           'UREG/CP-0152
 
0
'I 0
 
g44 iehwy~y     C C ~~ c+ C2~
urring   ~is type of pressure   locking is likely to occur when pumps adjacent to closed valves shut off or when   an event such as a LOCA causes pressure on one side of a valve to suddenly   <<op   <<f
~en     the initial differential pressure across the valve disk is sufficient to unseat the high pressure side disk from its seat, then the bonnet pressure following a sudden depressurization event is less than the bonnet pressure at the start of the event. The maximum pressure which can be trapped in the valve bonnet can be calculated by determining the differential pressure at which the valve disk will come back into contact with the valve seat. Until the disk to seat contact is re-established, the bonnet pressure will follow the.upstream side pressure.         This calculation has been developed by ComEd, but is not provided in this report due to constraints on length.
This pressure locking mechanism occurs when the valve bonnet cavity of a gate valve is filled with liquid that contains little or no air. Ifa heat source is applied to fluid in the valve bonnet cavity, then expansion of the fluid can cause pressure in the valve bonnet to dramatically increase. The heat source can be fluid in piping adjacent to the valve or external environmental conditions as might be encountered following a high energy line break. Pressurization rates of-20 psi/'F to 60 psi/'F have been recorded during special testing. However, pressurization rates of this nature require the following conditions to exist:
the valve seats and pachng must be very leak tight
~       the heat source must provide a high heat transfer rate to the bonnet cavity fluid
~       no air can exist in the valve bonnet cavity, or the temperature rise in the valve bonnet cavity must be sufficient to cause the expanding fluid to collapse the air bubbles before the high pressurization rate can be achieved.
PRESSURE LOCKING CALCULATION MEI'HODOLOGY
: 1. The valve disk is assumed to act as two ideal disks connected by a hub. The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces, 2.. The coefBcient of friction between the valve, seat and disk is assumed to be the same under pressure locking conditions as it is under DP conditions.
NUREG/CP4152                                     3C-10
 
                                                                ~X~U4aa          KLb  K  A)i CQX      <o i k44~~h ~g~+            C
                                                                                          ~%  c.K  c'
                        'gn 'nputs are used in calculating the force required to unseat a pressure locked i
MOV:
  ~        sign  ~is  Pressure Conditions at the time of the pressure locking event.      This includes the upstream (PP, downstream (P~ g, and bonnet pressure (P~J.
  ~      Valve Disk Geometry. This includes the hub radius (b), hub length (L), mean seat radius
      ., (a), seat angle (8), and average disk thickness (t). Figure 1 below is provided, for further clarification. When the hub cross-section is not circular (e.g. many Westinghouse gate valve designs), then an effective hub radius which corresponds to a circle of equal area to the hub cross-sectional area should be used.
  ~ Valve Disk Material Properties.              This includes the modulus of elasticity (E) and the Poisson's ratio (r) for the disk base material.
  ~ Valve Stem Diameter II (D~
  ~ Static Unseating Thrust        (FP
  ~ Coefficient      of Friction between Disk and    Seat (p) 3C-11                              NUREG/CP-0152
 
0 FIGURE    1 VALVE DISK SEAT RlNG I    Seat Ring Centerline Plane of Symme Through Olsk The methodology for calculating the thrust required to open the MOVs under the pressure locking scemuio is based on the Reference 1 (Roark's) engineering handbook. This methodology is based in part on calculations developed by MPR Associates (Reference 2). The methodology determines the total force required to open the valve under a pressure locking scenario by calculating the four components to this required force. The four components of the force are the pressure locking component, the static unseating component, the piston effect component, and the "reverse piston effect'omponent.        These components are determined using the following steps.
NUREG/CP4 152                                3C-12
 
II II I
  ~
            ,
              ~
n
 
led as two plates attached at the center by a hub which is concentric with plane of symmetry is assumed between the valve disks.'This plane f symmetry is considered fixed in the analysis FIGURE 2 Hane of Symmetry Modeled As:                        -I  Axis af Symmetry 3C-13                          NUREG/CP-0152
 
                                                                ~ ~ IJQ    (~ l~ i ~ %4gt 44+      b.~Q  ~q~+    C gascxf on this geometry, the fo>>o~ing constants are calculated using the Reference  i equations:
Average DPAcross Disk P+ P~
OP~ Pbo Disk Stress Constants D-          Ext (Reference I, Table 24) 12x/1-      v'-
                                  .2x(1+ v)
Geometry Factors                            b      (Q.g      b's    FM~INB (Reference  1, Table 24)    C2  =                                    4 1
1+2                                      (4) b'2 C    =4a b
a
                                                  +1 a
 
b
                                                              +
b a
1 I
CI  =- 1 I+ v+(1- v) a 2
b 1+v          a    1-v 1-        b 2
C9 =
(7)
                                                      +
a      2        b      4            a hHGKG/CP4 152                                3C-14
 
gQ a(, ji L)- 4~
                                                                ++~eh ~pn+                            C V) qz c The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter. The outer edge oi the disk is assumed to be unimpeded and allowed to deflect away from the pressure force.
In addition, the disk hub is allowed to stretch. The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the Reference 1 equations.
FIGURE 3 shear
                                                                                                          ~am.
                                                                                                    ~  stretch PuP2            P3 Addtdonal Gccwcny Facmrs
                                            ,1 (lbfcrcncc l. Toblc24)
                                                                            ]+(]+v)
(r, ~ b for'Cacc2L)
Moment    F~                                        ()  $  g~s          g              ('D()
                                              -DP    x        C  -
c      i
(()(2ssasaa 2 Ta(sla 24,Csaa2L)    hf>>                          (a -as ) Lss]
2
                                            ~DPav    ~    ~)
(r, ~ b for Cocc2L)                      22(b (
Dcjfccclccc jhraprccc()tel bcatbg a(s(a2( Ccaa2L)  yk(a a'iCs Q(s    - .D Cs DPassg  a a'PalaasaaL1 (ss 3C-15                                                NUREG/CP4152
 
4 ~bc            X~Wi-o~ A,LO.E- KC  -O~ ~
0 44 ~~4 ~a~% C C  S ~+ ~~Co Deflect to from pressure.'hear (peference          1, Table 25, Case 2 L)      Ksa = -0. 2t          '-2l                      (13)
K,. x DPavgxa'xG (r, = b for Case" L)
Deflection Po pressure I hub stretch P>  = tr (a'      b') DPavg
                                                          -Pj          L n  xb'2xE Total Deflecti ondueto pressure (17)
An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk TNs force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub. The pressure force is reacted to by an increase in this contact force between the valve disk and seats. The valve body seats are conservatively assumed to be fixed.
Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load. The deflection due to the pressure force was previously calculated.
The Reference 1 equations are now usod to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force. This is done by first calculating the amount deflection created by a unit load of seat const force (w ~ 1 lbf/in). The equilibrium contact load is then determined by dividing the deflection caused by the unit contact load into the previously calculated deflection due to the pressure force. The equations are provided below.
NUREG/CP %152                                  3C-16
 
i~a      +  o~ k<O >-    4>-<<      ~
hA4. Ac% w ca+
p~gg        Q Q o+ C-Z4 rfdditional Geometry Factors l          a 2
(Reference I, Table 24, Case                    IL)        L,=  rn 4xa a ro
                                                                                    +I  I


~X~U4aa KLb K A)i-CQX<o i k44~~h~g~+C~%c.K c''gn'nputs are used in calculating the force required to unseat a pressure locked MOV: i~sign~is Pressure Conditions at the time of the pressure locking event.This includes the upstream (PP, downstream (P~g, and bonnet pressure (P~J.~Valve Disk Geometry.This includes the hub radius (b), hub length (L), mean seat radius., (a), seat angle (8), and average disk thickness (t).Figure 1 below is provided, for further clarification.
r, r,
When the hub cross-section is not circular (e.g.many Westinghouse gate valve designs), then an effective hub radius which corresponds to a circle of equal area to the hub cross-sectional area should be used.~Valve Disk Material Properties.
                                                                                                +  -I a
This includes the modulus of elasticity (E)and the Poisson's ratio (r)for the disk base material.~Valve Stem Diameter (D~II~Static Unseating Thrust (FP~Coefficient of Friction between Disk and Seat (p)3C-11 NUREG/CP-0152 0
(18)
FIGURE 1 SEAT RlNG VALVE DISK I Seat Ring Centerline Plane of Symme Through Olsk The methodology for calculating the thrust required to open the MOVs under the pressure locking scemuio is based on the Reference 1 (Roark's)engineering handbook.This methodology is based in part on calculations developed by MPR Associates (Reference 2).The methodology determines the total force required to open the valve under a pressure locking scenario by calculating the four components to this required force.The four components of the force are the pressure locking component, the static unseating component, the piston effect component, and the"reverse piston effect'omponent.
(for Case                    IL, r, = a, . L3 = Q = 0)        >>0 a
These components are determined using the following steps.NUREG/CP4 152 3C-12 II II I~,~n led as two plates attached at the center by a hub which is concentric with plane of symmetry is assumed between the valve disks.'This plane f symmetry is considered fixed in the analysis FIGURE 2 Hane of Symmetry Modeled As:-I-Axis af Symmetry 3C-13 NUREG/CP-0152  
I+ v 2
I a
ro
                                                                                      +
I-v 4    -H Deflectionjom sea load /bending      (r,=a)         ~,~          pc/yp (Reference I, Table 24, Case IL, w =                      I)                                                       (2o)
Deflection f>>om seat load/sltea>>                              (>> =a)
(ReferenceI, TaMe25,CaseIL,w=1)                                E'-12        '                                      (21) a      b y  =E                                                (22)
Deflectt'onPomseat load Ihub cour.
Zxg xa w= I, .'.'Cnryres.hefo>>ce=2xe xa y zxb                                      (23)
                              '.=y Deflectionporn Total                                        uni seat load (w=1)                                                                    +y +y                                      (24) 3C-17                                NUREG/CP-0152


~~IJQ (~l~i~%4gt 44+b.~Q~q~+C gascxf on this geometry, the fo>>o~ing constants are calculated using the Reference i equations:
  '
Average DPAcross Disk P+P~OP~-Pbo Disk Stress Constants Ext (Reference I, Table 24)D-12x/1-v'-.2x(1+v)Geometry Factors b (Q.g b's FM~INB (Reference 1, Table 24)1 C=-1-2 4 b C=-4a I 1+2 b'2+1 a a b-+--1 b a (4)1 C=-I 2 b C=-9 a I+v+(1-v)-a 1+v a 1-v+2 b 4 b 2 1--a (7)hHGKG/CP4 152 3C-14
~
0


gQ a(, ji L)-4~++~eh~pn+C V)qz c The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter.The outer edge oi the disk is assumed to be unimpeded and allowed to deflect away from the pressure force.In addition, the disk hub is allowed to stretch.The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the Reference 1 equations.
g g4i~4     ~i>+     C C  sa  ~+'C~+
FIGURE 3 shear~am.~stretch Addtdonal Gccwcny Facmrs (lbfcrcncc l.Toblc24)(r,~b for'Cacc2L)
Therefore, the equilibrium contact  nt t load'istribution (ibf/in) and the corresponding load applied to each seatt iss calculated.
PuP2 P3 ,1]+(]+v)Moment F~()$g~s g ('D()-DP x C-c i (()(2ssasaa 2 Ta(sla 24,Csaa2L) hf>>2 (a-as)Lss](r,~b for Cocc2L)~DPav (~~)22(b Dcjfccclccc jhraprccc()tel bcatbg a'i DPassg a a'PalaasaaL1 a(s(a2(Ccaa2L)yk(a Cs Q(s-Cs-.D-(ss 3C-15 NUREG/CP4152
cu        using the relationship bc}ow..
                                            , it'll eX. iscalculated fpp ~
Load per seat = 2 x g x a                x                                                  (25'26
  'ri    'fi 'h Several methods may be uused to determine
                      '
this friction coc cient and e
                                                            ',
an appropriate scat to disk friction coefficient. Using
                                                                                              '
an a force balance on the disk to,seat interface, thcc followin cq uation is derived for cal cu Iating e s tcm force required to overcome thc increased contact load between the seat and disk:


4~bc X~Wi-o~A,LO.E-KC-O~~0 44~~4~a~%C C S~+~~Co Deflect to from pressure.'hear (peference 1, Table 25, Case 2 L)Ksa=-0.2t---'-2l (13)(r,=b for Case" L)K,.x DPavgxa'xG Deflection Po pressure I hub stretch P>=tr (a'b')DPavg-Pj L n xb'2xE Total Deflecti ondueto pressure (17)An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk TNs force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub.The pressure force is reacted to by an increase in this contact force between the valve disk and seats.The valve body seats are conservatively assumed to be fixed.Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load.The deflection due to the pressure force was previously calculated.
Fprcskek = 2xgrxax '[pxcos{8)-sin{8)jx2 (27) wlenil the lass 2 corraposdssothenumber    of scam The static unseating force results from the oopenn pac king load and pullout force'due to wedging of the valve disk during closure. These loads are superimposed on the loads due to c pressure forces which occur during pressure locking. The value for this load is based on static test data for the MOVs.
The Reference 1 equations are now usod to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force.This is done by first calculating the amount deflection created by a unit load of seat const force (w~1 lbf/in).The equilibrium contact load is then determined by dividing the deflection caused by the unit contact load into the previously calculated deflection due to the pressure force.The equations are provided below.NUREG/CP%152 3C-16
I~
The piston effect due to vaIve internal pressure acceding outside pressure is calculated using dard ln the standard    'usuy'equation usuy'eq              This force assists movement of the valve stem in the open direction.
F plsross cffecs =    x D          2 srtlss x Pb<<<<,  P<<III) 4                                                                        {2S NUREG/CPA 152                                         3C-l8


i~a+o~k<O>-4>-<<~hA4.Ac%w ca+p~gg Q Q o+C-Z4 rfdditional Geometry Factors (Reference I, Table 24, Case IL)rn L,=-4xa l ro+I a 2 a r, I-+--I r, a (18)(for Case IL, r,=a,.L3=Q=0)>>0 a I+v-I 2 a I-v+ro 4-H Deflectionjom sea load/bending (r,=a)~,~pc/yp (Reference I, Table 24, Case IL, w=I)(2o)Deflection f>>om seat load/sltea>>
The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk. This force is calculated as follows:
(>>=a)(ReferenceI, TaMe25,CaseIL,w=1)
(29)
E'-12-'a b (21)y=E-(22)Deflectt'onPomseat load I hub cour.Zxg xa w=I,.'.'Cnryres.hefo>>ce=2xe xa y zxb (23)Total Deflectionporn uni seat load (w=1)'.=y+y+y (24)3C-17 NUREG/CP-0152
F,,= <xa            x 2xP~        P,,P, xsing HGURE 4 P
~'0 g g4i~4~i>+C C sa~+'C~+nt t load'istribution (ibf/in)and the corresponding load applied Therefore, the equilibrium contact to each seat is cu t s calculated.
1oanet P
using the relationship bc}ow.., it'll eX.iscalculated fpp~Load per seat=2 x g x a x-(25'26 be used to determine an appropriate scat to disk friction coefficient.
bonnet 3C-19                              NUREG/CP-0152
Using Several methods may u e c followin uation this friction coc cient an a', c'ri'fi'and a force balance on the disk to,seat interface, thc'cq between is derived for cu ating e s cal I'h tcm force required to overcome thc increased contact load the seat and disk: F=2xgrxax-'[pxcos{8)-sin{8)jx2 prcskek (27)wlenil the lass 2 corraposdssothenumber of scam The static unseating force results from the open pac g o n kin load and pullout force'due to wedging of the valve disk during closure.These loads are superimposed on the loads due to c pressure forces which occur during pressure locking.The value for this load is based on static test data for the MOVs.I~The piston effect due to vaIve internal pressure acceding outside pressure is calculated using the standard ln usuy'eq dard'usuy'equation This force assists movement of the valve stem in the open direction.
2 F=-x D x Pb<<<<,-P<<III)plsross cffecs 4 srtlss{2S NUREG/CPA 152 3C-l8


The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk.This force is calculated as follows: F,,=<xa x 2xP~-P,,-P, xsing (29)HGURE 4 P 1oanet P bonnet3C-19 NUREG/CP-0152
                                          ~~ Xc    Io.+s'o<    EhtO  ~ t- h <0- << >
k44~~4 we~+          C
                                                                                ~  4K2c As mentioned previously, the total stem force (tension) required to overcome pressure lochng is the sum of the four components discussed above. All of the terms are positive with the exception of the piston effect component.
(30)
DESCRIFMON OF TEST VALVES The three test valves were obtained from different sources. The Crane valve is a test valve located at Quad Cities Station. The Westinghouse valve was obtained through the Westinghouse Owners Group. The Borg-Warner valve was obtained from Arizona Public Service.
The Cram valve is a spare valve which was subjected to blowdown testing at Wyle Laboratories in Huntsville, Ahlmmt. The Westinghouse valve is a test valve which was subjected to limited testing at South Texas Project. The Borg-Warner valve was a spare valve which had not been subjected to previous testing other than that performed at the vendor prior to delivery.
Thc Crane valve is a carbon steel valve (Model 783-U) which was modified during blowdown testing to contain a stainless steel valve disk and malcolmized guide rail (similar to the Model 783-UL valve design). The Westinghouse valve and Borg-Warner'alve were stainless steel valve designs.
NUREG/CP4152                                  3C-20


~~Xc Io.+s'o<EhtO~t-h<0-<<>k44~~4 we~+C~4K2c As mentioned previously, the total stem force (tension)required to overcome pressure lochng is the sum of the four components discussed above.All of the terms are positive with the exception of the piston effect component.
11
(30)DESCRIFMON OF TEST VALVES The three test valves were obtained from different sources.The Crane valve is a test valve located at Quad Cities Station.The Westinghouse valve was obtained through the Westinghouse Owners Group.The Borg-Warner valve was obtained from Arizona Public Service.The Cram valve is a spare valve which was subjected to blowdown testing at Wyle Laboratories in Huntsville, Ahlmmt.The Westinghouse valve is a test valve which was subjected to limited testing at South Texas Project.The Borg-Warner valve was a spare valve which had not been subjected to previous testing other than that performed at the vendor prior to delivery.Thc Crane valve is a carbon steel valve (Model 783-U)which was modified during blowdown testing to contain a stainless steel valve disk and malcolmized guide rail (similar to the Model 783-UL valve design).The Westinghouse valve and Borg-Warner'alve were stainless steel valve designs.NUREG/CP4152 3C-20 11 DMM~'ION OF TEST'APPARATUS
                                                  ~ Xc     ~~W~q>       K~@, (         Z xy-u gg4hc4 ~+~+
~Xc~~W~q>K~@, (Z xy-u gg4hc4~+~+c 4 C The figure belo w shows the basic test setup used for the pressure locking tests.A VQTES'4 t acquisition system and a Motor Power Monitor (MPM)data acquisition system were used to collect stem thrust, actuato r torque and motor power data.In addition, on-line pressure data was collected during the Westinghouse and Borg-Warner valve tests.A hydrostatic test pump and accumulator were used as the pressure source during pressure locking tests and hydrppump DP tests: HGURE S VOTES m Llmttarq.MPM system Vent 88 S>>In Ga" Qe Accumutator Pressure Gauge Pressure Gauge Hydro Pump~1 Pressure Gauge Pressure Gauge Vent For the Crane test, the valve was laid on its siCk with the stem slightly below horizontal.
c 4   C DMM~'IONOF TEST'APPARATUS The figure belo w shows the basic test setup used for the pressure locking tests. A VQTES'4 t acquisition system and a Motor Power Monitor (MPM) data acquisition system were used to collect stem thrust, actuato r torque and motor power data. In addition, on-line pressure data was collected during the Westinghouse and Borg-Warner valve tests. A hydrostatic test pump and accumulator were used as the pressure source during pressure locking tests and hydrppump DP tests:
This configuration was used to enlire that no air pockets would be trapped within the valve body when it was filled with water.The Westinghouse valve was installed in a test stand with the stem upright.The valve bonnet was vented by bleeding air out of thk packing leakwff line.'The Borg-Warner valve was installed in a special test stand which allowed pivoting the valve abo'erline The valve stem could be put at any angle between upright and sloped ut 1'ts cen~~~~~valve bonnet, the downward at a 15 degree angle in either direction.
HGURE     S MPM VOTES                                         system m                     Llmttarq.
To remove air from the valve bon valve was rotated on its siCk and rocked up and down as it filled with water.3C-21 NUREG/CP4152  
S>>In Ga" Qe         Accumutator 88 Pressure Pressure                      Gauge Gauge Hydro Pump
                                                                                      ~1 Vent Vent Pressure                    Pressure Gauge                       Gauge For the Crane test, the valve was laid on its siCk with the stem slightly below horizontal. This configuration was used to enlire that no air pockets would be trapped within the valve body when it was filled with water.
The Westinghouse valve was installed in a test stand with the stem upright. The valve bonnet was vented by bleeding air out of thk packing leakwff line.
  '
The Borg-Warner valve was installed in a special test stand which allowed pivoting the valve
      'erline abo ut 1'ts cen        The valve stem could be put at any angle between upright and sloped
                                                                        ~
downward at a 15 degree angle in either direction. To remove air from the valve bon         bonnet, the
                                  ~  ~      ~    ~
valve was rotated on its siCk and rocked up and down as it filled with water.
3C-21                               NUREG/CP4152


DESCRY'TION OF TEST METHODS The test process started with static test strokes to verify the proper installation of the data acquisiti systems and to measure static unseating load magnitude and repeatability.
DESCRY'TION OF TEST METHODS The test process started with static test strokes to verify the proper installation of the data acquisiti systems and to measure static unseating load magnitude and repeatability.
LLE K RAT T Local leak rate tests of the valves were performed to measure seat tightness.
LLE K RAT             T Local leak rate tests of the valves were performed to measure seat tightness.           These tests wi performed at multiple torque switch settings in some cases.
These tests wi performed at multiple torque switch settings in some cases.DP Tests in the open direction were performed by pressurizing the valve from one side with hydropump and then stroking the valve open.Test data indicates that the differential pressure i maintained across the valve disk while the disk slid across the valve seat.The purpose of the DP tc was to precondition the valve seats and disks and to monitor the seat-to-disk friction coefficient.
DP Tests in the open direction were performed by pressurizing the valve from one side with hydropump and then stroking the valve open. Test data indicates that the differential pressure i maintained across the valve disk while the disk slid across the valve seat. The purpose of the DP tc was to precondition the valve seats and disks and to monitor the seat-to-disk friction coefficient.
DP tests were performed until a stable friction coefficient was achieved.A series of pressure locking tests was performed fot each valve.Inlet pressure, outlet pressure, bon pressure, and static seating force were varied during these tests.Static baseline tests to measure static unseating load were performed between the pressure locking tests.Thc closure strokes for static tests were performed at the same initial conditions (pressure and seating force)as the clos strokes prior to the pressure locking tests so that the change in unseating load due to pressure lock could be accurately determined.
DP tests were performed until a stable friction coefficient was achieved.
To measure the seat tightness, bonnet deprcssurization rate tests were performed.
A series of pressure locking tests was performed fot each valve. Inlet pressure, outlet pressure, bon pressure, and static seating force were varied during these tests. Static baseline tests to measure static unseating load were performed between the pressure locking tests. Thc closure strokes for static tests were performed at the same initial conditions (pressure and seating force) as the clos strokes prior to the pressure locking tests so that the change in unseating load due to pressure lock could be accurately determined.
The entire v assembly (including the valve bonnet)was pressurized while in the closed position.Then the upstr and downstream pressute wcte vented.The bonnet pressure as a function of time was measured.To'easure thc potential for pressure locking due to bonnet fiuid heat-up, thermally induced boy pressurization rate tests were performed on the Westinghouse and Borg-Warner valves.After ven air from the valve bonnet cavity, each valve was closed while filled with water at approximately psig.The valve bonnet was then heated using an outside heat source.The pressure of the fluid in valve bonnet was measured directly.The temperature of fluid in the valve bonnet for the Borg-Wa valve and the temperature of the outside of the valve bonnet for the Westinghouse valve were measu Initial pressurization rates between 0.5 and 2.0 psi/degree F were measured.Much higher ultir NUREG/CP4152 3C-22 1
To measure the seat tightness, bonnet deprcssurization rate tests were performed. The entire v assembly (including the valve bonnet) was pressurized while in the closed position. Then the upstr and downstream pressute wcte vented. The bonnet pressure as a function of time was measured.
klO<-Ab-o 9 C tW e 4C.~W pressurization rates were witnessed during the Borg-Warner tests.The data from this testing is not presented in this report, but is available from ComEd upon request.PRESSURE LOCKING TEST DATA The following table provides the pressure locking test results comparing the measured pressure locking unseating load to the predicted pressure locking unseating load: TABLE 1 IncraLse ercent Conservatism (Non-Cons.)
To'easure thc potential for pressure locking       due to bonnet fiuid heat-up, thermally induced boy pressurization rate tests were performed on the Westinghouse and Borg-Warner valves. After ven air from the valve bonnet cavity, each valve was closed while filled with water at approximately psig. The valve bonnet was then heated using an outside heat source. The pressure of the fluid in valve bonnet was measured directly. The temperature of fluid in the valve bonnet for the Borg-Wa valve and the temperature of the outside of the valve bonnet for the Westinghouse valve were measu Initial pressurization rates between 0.5 and 2.0 psi/degree F were measured. Much higher ultir NUREG/CP4152                                   3C-22
Notes fan4 1 4 1 4 1 14 el ,4 fg o fg o fg o fg-fg e fge~fge~1 4 el 4 fge~fge~fg~3ce23 NUREG/CP-0152  
 
1 klO   <
Ab-o 9 C tW   e 4C.~W pressurization rates were witnessed during the Borg-Warner tests. The data from this testing is not presented in this report, but is available from ComEd upon request.
PRESSURE LOCKING TEST DATA The following table provides the pressure locking test results comparing the measured pressure locking unseating load to the predicted pressure locking unseating load:
TABLE 1 ercent IncraLse             Conservatism   Notes (Non-Cons.)
1 4 1  14 fan4                                                1 4
                                                                                              ,4 el fg   o fg   o fg   o fg-                                                 1  4 fg   e fge   ~                                                                   el 4 fge   ~
fge   ~
fge   ~
fg   ~
3ce23                         NUREG/CP-0152
 
6 +~~M ~Vw+
c.g(    e% (
tattc                    c                    ercent Unseating            lncratse        d    'onservatism      Notes Thrust                            Increase    (Non-Cons.)
fg  o i                      1    4 fg  o I org-                                                  1    4 rg- . IO rg- . I rg- . I rg"  ~ I NOTES:
: 1. The percent conservatism    values are calculated after a "memory effect" of 3100 lbf (at TSS=1) or 3500 Ibf (at TSS=2) is added to the predicted pressure locking load. Testing indicated that the process of applying and then relieving pressure against one side of the closed valve was sufficient to cause the unseating force to increase by these amounts, even when no pressure was captured in the valve bonnet. This effect was only noted for the Borg-Warner test valve.
: 2. When bonnet pressure significantly exceeds the pressure class rating of the test valve, the pressure locking calculation methodology appears to become non~nservative.
: 3. Tests 86 and 95 were performed to quantify the "memory effect" for the Borg-Warner valve.
Thcsc tests were performed like a pressure locking test in that high pressure    (-  600 psig) was put against one side of the valve disk and then bled off. However, any pressure that entered the vaLve bonnet was relieved prior to the opening stroke.
J
: 4. The AC motor for the test valve staned during this test and the valve did not fully unseat.
Test data suggests that open valve motion was initiated prior to thc stall. Consequently, the measured. increase due to pressure locking is believed to be. correct.
: 5. Thc pressure data for this test is questionable and is being evaluated at this time.
II
: 6. The upstream and downstream prcssure during these tests was approximately 350 psig. This was done to approximate, the LPCI and LPCS injection valve pressure conditions which could exist in the event of a LOCh.
Graphs 1 through 6 provide thc data in Table 1 for the three test valves. Thc total measured unseating load versus the total predicted unseating load and the pressure related portion of the measiued load versus the predicted pressure related portion of the unseating load are plotted for each valve.
NUREG/CP%152                                  3C-24
 
IP
    '
It
 
GRAPH    1 Predicted Unseating Thrust Versus Measured Pressure Locldng Unseating Force for Crane Valve
'I  sxNO tm 1mo 0
0  10000  20000  30000  4XOO 60000 000  70000 80000 Total Predicted Uneealng Load 3C-25                NUREGICP-0152
 
GRAPH 2 Predicted Versus Measured Portion of Pressure Thrust bue to Pressure Forces for Crane Valve 4XNO 35000 30MO 25000 20000 15000 10000 5000 0
0  5000  10000 15000  20000 25000 30000 35000 4XNO Predicted Load Due to Pressure NUREG/CP-0152                    3C-26
 
r, oow Ro) he%) cpu GRAPH 3 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Westinghouse        Valve'O 5000 C co 8000
'I g  axo 1000 0
0  1000    2000      3000          4000 5000 Total Predicted Unseating Thrust 3C-27                      NUREG/CP-'0152
 
GRAPH 4 Predicted Yersus Measured Portion of Unseating Thrust Due to Pressure Forces for Westinghouse Valve a      7000 8000 Ch 5000 g  m    <<xe ceo axe
            '1000 0    1000  2000    3000 4000 5000  6000 7000 Predicted Laad Due to Pressure NUREG/C F4152                      3C-28


6+~~M~Vw+c.g(e%(fg o i fg o I org-rg-.IO rg-.I rg-.I rg"~I tattc Unseating Thrust 1 4 c lncratse 1 4 d Increase ercent'onservatism (Non-Cons.)
I)
Notes NOTES: 1.The percent conservatism values are calculated after a"memory effect" of 3100 lbf (at TSS=1)or 3500 Ibf (at TSS=2)is added to the predicted pressure locking load.Testing indicated that the process of applying and then relieving pressure against one side of the closed valve was sufficient to cause the unseating force to increase by these amounts, even when no pressure was captured in the valve bonnet.This effect was only noted for the Borg-Warner test valve.2.When bonnet pressure significantly exceeds the pressure class rating of the test valve, the pressure locking calculation methodology appears to become non~nservative.
GRAPH 5 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Borg-Warner Valve 10000      15000 '0000      25000 Predicted Unseating Load 3C-29                  NUREG/CP-0152
3.Tests 86 and 95 were performed to quantify the"memory effect" for the Borg-Warner valve.Thcsc tests were performed like a pressure locking test in that high pressure (-600 psig)was put against one side of the valve disk and then bled off.However, any pressure that entered the vaLve bonnet was relieved prior to the opening stroke.J 4.The AC motor for the test valve staned during this test and the valve did not fully unseat.Test data suggests that open valve motion was initiated prior to thc stall.Consequently, the measured.increase due to pressure locking is believed to be.correct.5.Thc pressure data for this test is questionable and is being evaluated at this time.II 6.The upstream and downstream prcssure during these tests was approximately 350 psig.This was done to approximate, the LPCI and LPCS injection valve pressure conditions which could exist in the event of a LOCh.Graphs 1 through 6 provide thc data in Table 1 for the three test valves.Thc total measured unseating load versus the total predicted unseating load and the pressure related portion of the measiued load versus the predicted pressure related portion of the unseating load are plotted for each valve.NUREG/CP%152 3C-24 IP'It GRAPH 1 Predicted Unseating Thrust Versus Measured Pressure Locldng Unseating Force for Crane Valve'I sxNO tm 1mo 0 0 10000 20000 30000 4XOO 60000 000 70000 80000 Total Predicted Uneealng Load 3C-25 NUREGICP-0152  


GRAPH 2 Predicted Versus Measured Portion of Pressure Thrust bue to Pressure Forces for Crane Valve 4XNO 35000 30MO 25000 20000 15000 10000 5000 0 0 5000 10000 15000 20000 25000 30000 35000 4XNO Predicted Load Due to Pressure NUREG/CP-0152 3C-26 r,
0 GRAPH 6 Predicted Versus Measured Portion of Unseating Thrust Due to Pressure Forces.
oow Ro)he%)cpu GRAPH 3 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Westinghouse Valve'O 5000 8000 C co'I g axo 1000 0 0 1000 2000 3000 4000 5000 Total Predicted Unseating Thrust 3C-27 NUREG/CP-'0152
for Borg-%amer Valve 10000   "  1$ 0   8NXS PrecHcted Pnasure Fonee NUREGICP-0152                 3C-30


GRAPH 4 Predicted Yersus Measured Portion of Unseating Thrust Due to Pressure Forces for Westinghouse Valve 7000 a 8000 Ch 5000 g m<<xe ceo axe'1000 0 1000 2000 3000 4000 5000 6000 7000 Predicted Laad Due to Pressure NUREG/C F4152 3C-28 I)
14 K~l~+ o           ~~a.i-     h b-   Oo   ~     P o 1 c.zw           4-   c>4 PRIMARY DIN'ERENCES BETWEEN THE COMMONWEALTHEDISON PRESSURE LOCKING CALCULATION AND THE PRESSURE LOCKING CALCULATION METHOD PUBLISHED IN NUIT/CP-0146 The ComEd methodology is based on calculating the contact load at the edge of the disk which results in an equal and opposite disk deflection to that caused by pressure trapped between the disks, The ComEd methodology differs in several ways from the methodology described in the Reference 4 NUREG.
GRAPH 5 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Borg-Warner Valve 10000 15000'0000 25000 Predicted Unseating Load 3C-29 NUREG/CP-0152 0
~ The NUTMEG Methodology ignores disk deflection due to hub elongation. This is non-conservative. For typical disk geometries, the expected impact of ignoring this effect is less than 5%.
GRAPH 6 Predicted Versus Measured Portion of Unseating Thrust Due to Pressure Forces.for Borg-%amer Valve 10000" 1$0 8NXS PrecHcted Pnasure Fonee NUREGICP-0152 3C-30 14 K~l~+o~~a.i-h b-Oo~P o 1 c.zw 4-c>4 PRIMARY DIN'ERENCES BETWEEN THE COMMONWEALTH EDISON PRESSURE LOCKING CALCULATION AND THE PRESSURE LOCKING CALCULATION METHOD PUBLISHED IN NUIT/CP-0146 The ComEd methodology is based on calculating the contact load at the edge of the disk which results in an equal and opposite disk deflection to that caused by pressure trapped between the disks, The ComEd methodology differs in several ways from the methodology described in the Reference 4 NUREG.~The NUTMEG Methodology ignores disk deflection due to hub elongation.
~ The hKGKG Methodology is based on using Table 24 of Roark's equations for calculating forces in the disk. This table ignores disk deflection duc to transverse shear stresses.
This is non-conservative.
Section 10.3 of Roark's Equations discusses the conditions under which deflection due to shear is negligible. For typical disk geometries the deflection due to shear is often not negligible. Table 25 of Roark's Equations provides the equations for calculating disk deflection due to shear. Ignoring deflection duc to shear is non~nscrvativc. For small valve sizes where the disk thickness to disk diameter aspect ratio is large () 0.3), ignoring shear may result in under predicting the disk to seat contact load by 10% or more, The ComEd methodology treats the vertical pressure force on the disk separately from the pressure lochng load caused by the increased contact load between the seat and disk. The NUREG methodology relies on use of the open disk factor for translating the increased seating contact force into an increased unseating load. The open disk factor is based on a free body diagram in which the disk hub is unloaded. This is not the case for pressure locking. The NUREG treatment of these two components to the pressure locking unseating load is non-conservative. This source of nonmnservatism is generally much more significant than the other concerns mentioned above for the NUREG method and is the primary ComEd concern with the NUIT method.
For typical disk geometries, the expected impact of ignoring this effect is less than 5%.~The hKGKG Methodology is based on using Table 24 of Roark's equations for calculating forces in the disk.This table ignores disk deflection duc to transverse shear stresses.Section 10.3 of Roark's Equations discusses the conditions under which deflection due to shear is negligible.
The derivations on the following pages are provided to support the discussion above.
For typical disk geometries the deflection due to shear is often not negligible.
3C-31                             NUREG/CP-0152
Table 25 of Roark's Equations provides the equations for calculating disk deflection due to shear.Ignoring deflection duc to shear is non~nscrvativc.
For small valve sizes where the disk thickness to disk diameter aspect ratio is large ()0.3), ignoring shear may result in under predicting the disk to seat contact load by 10%or more, The ComEd methodology treats the vertical pressure force on the disk separately from the pressure lochng load caused by the increased contact load between the seat and disk.The NUREG methodology relies on use of the open disk factor for translating the increased seating contact force into an increased unseating load.The open disk factor is based on a free body diagram in which the disk hub is unloaded.This is not the case for pressure locking.The NUREG treatment of these two components to the pressure locking unseating load is non-conservative.
This source of nonmnservatism is generally much more significant than the other concerns mentioned above for the NUREG method and is the primary ComEd concern with the NUIT method.The derivations on the following pages are provided to support the discussion above.3C-31 NUREG/CP-0152  


Op~phAT eACTOR DERIVATlON (Opening a valve against a differential pressure)%~%~4 o~p F=Stem Force (tension)pic i-~u-'~+~'~4~p~i+C P=Pressure Force<g~q, c+CZG FIGURE 6'DP x Seat Area R=Seat Reaction Force pR=Seat Friction Force 8=Seat Angle Disk Factor (VF)=F/P (by definition)
Op~   phAT eACTOR DERIVATlON (Opening         a valve against a differential pressure)
                                                                                %~%~4 o~ ~'
F = Stem Force (tension)       pic i- ~u-'~+
p                                                          ~4 ~   p~i+C P = Pressure Force                   < g ~ q, c+ CZG FIGURE 6
                                            '
DP x Seat Area R = Seat Reaction Force pR = Seat Friction Force 8 = Seat Angle Disk Factor (VF) = F / P (by definition)
Sum of forces in direction:
Sum of forces in direction:
g F, Peos8 Rcos8-@csin-8 P cM8 cos&+psia&Sum of forces in y~ction: Z~~e.-h e iam-F Psfn&P.sh8-peas&}
g F, Peos8   Rcos8 -@csin-8                                                                 (31) cM8                                                                            (32)
coe&coe&+csin&sh cps&+yah&sh&-icos&)
P cos&+ psia&
cos&+psh&cos&+psh8 F sin&coe&+psin&~&sh&+
Sum of forces in   y~ction:
col (31)(32)(33)P~P coe&+psh8 (34)hKHKG/CP 4152 3C-32
Z~~e.-h     e iam-                                                           (33) coe&
F Psfn&   P         . sh8-peas&}
coe&+ csin&
sh cps&+yah&             sh&-icos&)
                ~
cos&+psh&           cos&+psh8 F sin&coe&+psin&~&sh&+           col P                                                                                (34)
P coe&+psh8 hKHKG/CP4152                            3C-32
 
4'                fQ.'I.
5 c                  h,          h.Q    ca%  Q.o
                                                                          +~ 4i          ~~%    C PRESSURE LOCKING SUM'OF FORCES                                          W~qq        C  >w Q.++ 4 F    = Stem Force (tension)
P    = Pressure Force
                                                          = DP x Seat Area FIGURE 7 Q,  =  Seat Reaction Force (calculated using Roark's) p,Q,  = Seat Friction Force
                                                  , 8    = Seat Angle T = Disk Hub Tension
                                  <a Note that the sum of the forces in the    x~tion      is different than for the seat factor case due to the hub tension force T. Consequently, the Q, value is a typically a much lower portion of the P value under pressure lochng than it is for the seat factor calculation. (This is the benefit of using Roark's equations for calculating the seat load increase.) Therefore, the sum of the forces in the direction should be solved for directly from the free body diagram above, as follows:
P Pz    F pQ,esS -Psbdl+Qp-in8                                                                    (35)
:.F qJpcos8-Iin8)+Mn8 The first term in the equation above is the pressure locking load term in the ComEd methodology. The second term in the equation above is the F or reverse piston effect term              ~
in the ComEd methodology. The ComEd method adds these two terms to the static unseating load and then subtracts the stem rejection load to get the predicted unseating load under pressure locking conditions Rather than use these equations, the NUREG method applies the open seat factor to the Q, value. Because of the relationship in equation 37 below, the NUREG method substantially under predicts the vertical pressure force portion of the required thrust.
Qa  < P cos8/ (cos8    +p  sin8)                                                        (37) 3C-33                                NVREG/CP4152
 
I C-    K    4  4'0      < tg.~        b.) -oa      'W R,<t h.~~+ ~pm' xvr. REHaMNCES nqq    C+< c4          C2 Young, W. C., 1989, Sixth Edition of Roark's Formulas for Stress and Strain, McGraw-Hill Inc.                                            n
: 2. MPR Calculations 101-013-1, "Effect of Bonnet Pressure on Disc to Seat Contact Load",
dated 3/23/95; and 101-013-4, "Estimate of Valve Unseating Force as Function of Bonnet Pressure", dated 3/23/95.
: 3. Electric Power Research Institute, Nuclear Maintenance Applications Center, 1990, Application Guide For Motor-Operated Valves in Nuclear Power Plants, EPRI/NMAC Report NP-6660-D, March.
: 4. Smith, D.E., 1994, "Calculation to Predict the Required Thrust to Open a Flexible Wedge Gate Valve Subjected to Pressure Locking", Proceedings of the Workshop on Gate Valve Pressure Locking and 7hennal Binding, NUREG/CP-0146, July 1995.
NUREG/CP4152                            3C-34
 
gc    +So~        6 lQ he@-~4 ~y ~+
P~)w    6  l <    W1 2, GATE VALVETYPE, GEOMETRY, AND ITS EFFECT ON OPEMNG AND CLOSING THRUSTS There are five different types of gate valves that cover most of the applications in nuclear power plants in the United States. The key features of these designs are shown in Figure 2.1. Variations in the most commonly used gate valves include solid, flexible, and split gates (Figure 2.1a). The two types of parallel expanding wedge gates shown in Figure 2.1b are also used, but their population is smaller. Parallel sliding gate valves shown in Figure 2.1c are relatively uncommon in the United States, but are widely used in European nuclear power plants. The advantages and disadvantages of various design features for these valves are discussed in detail in Reference [13]
Flexible Wedge                  Solid Wedge                    Split Wedge Gate                            Gate                            Gate Figure 2.1a Conventional Solid Wedge, Hexible Wedge, and Split Wedge Gate Valves As shown in these figures, the designs vary significantly in gate geometries. Other important variations that affect performance are related to gate guide arrangements and their dimensions; clearances at critical locations between gate, guides, and seats; seat contact widths; and materials and surface finish in the disc guide sliding interfaces.
Section 2 presents the gate thrust requirements for the above-described variations in gate geometries. This section also addresses the potential for disc tilting during mid-travel due to fluid forces across the disc. Disc tilting causes localized loading between the disc and the downstream seat, or between the disc and the guides. A preliminary analysis approach to determine the localized contact stresses is presented in this section to determine the loading severity based upon valve design and operating conditions.
 
0 Preliminary analyses of localized contact stresses between disc and seats as well as disc and guides used in typical wedge gate valve designs are presented in this section. The preliminary approach presented here needs further analytical refinement and empirical correlations to develop improved predictive models. Detailed derivations of the equations summarized in this section are included in Appendices A, B, and C.
Stom Down-Upper                                        stream Wodge                                        Disc Upstream                                        Lower Disc                                            Wedge Body                                                                    Stop Pad Seat Sogment Figuxe 2.1b Parallel Expanding Gate Valves Stem Disc Retalnlng Pine Seat Disc Carrier                Preload Spring Figure 2.1c Parallel Sliding Gate Valve
 
/I
('      4  ~ Waken        A tn.i-
                                                                                                      ~p~+        ~l Waqg 2, l. Stem Thrust for Solid, Flexible, and Split Wodge Gate Valves
                                            'I Even though there are differences in the performance of solid, flexible, and split wedge gate valves as related to their sensitivity, to external piping loads and thermal binding [13],
the equations for their stem thrust requirements based upon free body considerations are the same. Subsections 2.1.1 through 2.1.2 summarize the stem thrust requirements to I
overcome only the differential pressure load across the disc. Subsections 2.1.3 and 2.1.4 give the stem wedging and unwedging thrust requirements to close and open the gate, respectively. The total stem thrust requirements to close and operi the gate are provided in Section 2.4, which include other components such as stem packing load, stem rejection Nn            force (also referred to as blowout force or piston eff'ect force), and stem and gate weight.
  ~am C
2.1.1. Ciosinl, Stem Thrust to Ouereome Gate Di/7erenti al Pressure Ivor          As shown in Section A.1.1 of Appendix A, the stem thrust at the gate to overcome the dgo          diff'erential pressure during closing can be expressed as:
F,=            .      F                              (Eq. 2.1)
[cos6-@sine where Fs = stem load    at gate, Ib Fp                Fp = disc pressure load due to upstream/downstream differential pressure, lb hP x (effective seat area)
Figuxe R2                          coefficient of friction between gate and seat Gate Equilibrium Under                8=  1/2 of gate wedge angle, deg' hP Load During Closing The disc pressure load, Fp, is the product of hP and seat area based on effective disc sealing diameter as discussed further in Section 2.5.
From Equation 2.1 the relationship between the commonly-used term disc factor (some-times called ualue factor) and coefficient of friction, p, can be derived:
Disc Factor =                                                              (Eq. 2. la) cos  8- p sin 8 For'ypical wedge gate valves that use a total wedge angle of around 10 degrees (or 8 = 5')
and a normal range of coefficients of friction, the difference between the disc factor and the coefficient of friction is practically negligible, as discussed in Section 3.1. The disc factor calculated in the closing direction can be as much as 5 percent higher than the coefficient of friction for typical values of 8 and p that are encountered in practice.
 
I'c 2.1.2. Opening Stem Thrust to Overcome Disc Differential Pressure As derived in Section A.l.2 of Appendix A, stem thrust during opening of a wedge disc against a differential pressure is given by:
F =          ~        F                (Eq. 2.2) cos6+I sin6 From this one can derive the equivalence between the disc factor in the opening direction and the coefficient of friction:
Disc Factor =                                    (Eq. 2.2a) cos 6+ iL sin 6 Figure R3                The disc factor in the opening direction is slightly less Gate Equilibrium Under          than the coefficient of friction for typical ranges of wedge dP Load During Opening          angles and coefficients of friction (within 5 percent of the coefficient of friction), as discussed in Section 3.1.
As stated earlier, the stem force calculated in Equation 2.1 or 2.2 is the force required to overcome the differential pressure resistance only.
2.1.3. Stem WedgingLoad -Closing The stem wedging load is related to the normal seat contact force, Fn, as shown in Section A.1.3 of Appendix A:
F,=2(sin 6+ p cos6) F                  (Eq, 2.3)
It should  be noted  that this equation applies to the case when there is no differen'tial pressure across the gate. When differential pressure is present, the stem force Fs in this equation is the net stem Figure 2A Gate Equilibrium under            force after subtracting the differential pressure Wedging Load During Closing            load.
In some cases, the limit switch instead of the torque switch is used to stop the disc travel in the closing direction. Where acceptable from the shut-off standpoint, this approach can be used to reduce, and in some cases eliminate, the wedging load, F.
 
\
Q h %+-a.~(~F
> 1,4. Stem UnwedgingLoad - Opening
                                                                                  ~~~~ 8 ~ ~wbg Section A.l.4 of Appendix A shows that the unwedg-ing load to overcome the seat contact force, F, is given by:
F = 2 (lL cos 9- sin 9) F                  (Eq. 2.4)
The seat contact force, F, that is to be overcome dur-Fn                                  ing the opening cycle is developed by (1) wedging load from the previous closing cycle, including inertia overshoot, (2) external piping loads, or (3) differential thermal effects between the valve body and disc. Section 4 provides an analytical method-Figure 2$                    ology to predict stem thrust due to inertia overshoot, Gate Equilibrium under              and Section 5 discusses external pipe load and ther-Unwedging Load During Opening            mal effects that may influence the normal load, Fn.
2.2. Stem Thrust for ParaM Expanding Gate Valves This Subsection 2.2 summarizes the stem thrust requirements for closing and opening directions for the two types of parallel expanding gate valves shown in Figure 2.1b. The same stem thrust equations apply to both types of parallel expanding gate valves shown in this figure. The typical wedge an'gle used in the through-conduit type is 15 degrees, and for the double-disc type is 25 degrees. It should be noted that for coefficient of friction of 0.4Z
(= tan 25') or less, the 25-degree angle between the wedge surfaces (also referred to as back angles) provides a non-locking condition between the wedges.
2.2.1. Stem Thrust to Overcome Gate Differential Pressure - Closing and Opening As shown in Section A.2.1 of Appendix A, the following equation applies to both closing and openihg stem thrusts to overcome gate frictional force due to Fn hP load; Fy F -pF                        (Eq. 2,5) where p = coefficient of friction between seat and disc Closing                Opening Fp    disc pressure load due to Hguxe RS                                        upstream/downstream Gate Equilibrium Under hP Load During                            differential pressure, lb Closing/Opening                                  = hP x (effective seat area)
 
(l 4
 
('iQ.i-                  h  w4-~~ ~~
ay    oo~ l20    I 2.2.2. Stem 7Vedging Load - Closing The stem wedging load for a parallel expanding gate valve is shown in Section A.2.2 of Appendix A to be given by:
sill 6+ p cos 6 Fs    p+                                      (Eq. 2.6) cos6-p'sin    6 where coefficient of friction between seat and disc X
coefficient of friction between wedge Fp faces 6    parallel gate total wedge angle, deg Fn      normal force between gate and seat due to Figure 2.7                                wedging, lbs Gate Equilibrium Under Wedging Load During Closing This, equation makes allowance'or the fact that the coefficients of friction at the seat-to-disc interface may be different than that at the wedge interface. Typically the seat faces have a finer surface finish and are overlaid with Stellite hard-facing, whereas the wedge faces have a rougher surface finish and are not hard-faced.
Ifthe  coefficient of friction at the seat faces and the wedge faces is assumed to be the same, p'  p, and this equation reduces to sin'6  1-li  +2gcos6 Fs=                              Fn                                          (Eq. 2.6a) cos 6-csin  6 Equation 2.6a shows that the stem load is proportional to the seat contact force, Fn.
2.2.3: Stem UnwedgingLoad - Opening The stem unwedging load to overcome the seat contact force, Fn, for a parallel expanding gate valve is given by (reference Section A.2.3, Appendix A):
 
0
                                                                      *a~ kia.l-        a~i      a~S 2c'l
                                                                                      ~s~+
((p p'-  1) sin 8+ (g+ ll') cos 6 F  (Eq. 2.7) cos8~p'sin 6 I'or p = p ', this equation reduces to:
sin 6 p    -1+2pcos6 F-                                Fn      (Eq. 2.7a) cos6+psin6-Figure 2.8 Gate EquiHbrium Under Unwedging Load During Opening As discussed in Section 2.1.4, the seat contact force Fn to be overcome is determined by adding the wedging force from the previous closing cycle to the resultant force from external piping loads and differential thermal expansion loads between the body and disc.
4 2>. Stem Loads for Parallel Sliding Gate Valves - Closing and Opening Most parallel sliding gate valves are equipped with a preloading spring to maintain proper contact and provide a low pressure seal between the disc and seats. As shown in Appendix A, Section A.3.1, the required stem thrust to overcome dP and spring load friction can be expressed as:
FI=2pF>>+pFp                                                                  (Eq. 2.8) where    F>> = disc spring load, lb F>= hP x (eFective seat area), lbs
                                                <s A
                  <n
                                                    ~F ~P Dawn  ~w paW              llP ~~ p4 Figure R9 Gate EquBibrium Under hP Load During Closing
 
E gl
    .0
 
A>CO tao>sa> S><')>> >> >>>a:                    VCS  a>uu  S>u>>CO 5>OS>> t>o >Orb>OS> >rs  Ons iment: Af, au unit tangential bending moment; Q. ~ unit shear force {force per unit of c'Ircumferencial length); E ~ modulus of elasticity (force
: unit area: v s Poisson's ratio; y ~ temperature coefftcient of expansion {unit strain per degree); a ~ outer radius; b ~ inner radius for annular
    >te; t ~ plate thickness; r ~ radial location of quantity being evaluated; r, ~ radial location of unit line loading or start of a distributed load. F, ul FO and G> to f'>are the several functions of the radial location r. C> to Cs are plate constants dependent upon the ratio aib. L, to L>> are loading                                                                            O nstants dependent upon the ratio air,. When used as subscripts, r and t refer to radial and tangential directions, respectively. When used as osc            . a. b. and o refer to an evaluation of the quantity subscripted at the outer edge, inner edge, and the posinon ol'he loading or start of I'oading.
f'(lls
  ~
cn respectively. When used as a subscript, r refers to an evaluation of the quantity subscripted 'at the center of the plate.
are asar>cia(ed with the several quantities in the following manner: Deflections v and vo are positive upward: slopes () 2nd 84 are positive eflectio>> l increases positively as r increases; moments /)f~ Ill>. >>ml If are positive when creating compression on the top surface; and the O
cn sr force Q is p>sitive when acting upward on the inner edge of a given annular section                                                                                                                                            <n 0
Bc>>di>>g s(recses can be found from the moments /Ifr and Afr by the expreani>>r> o = 6M/t2. The plate constant D = Etal)2{) r ). The singularity                                                                                (>>>
iction brackets ( ) indicate that the expression contained within the brackets must be equated to sero unless r any other brackets. Note that Qa, Q, M, and Mare reactions, not loads. They exist only when necessary edge restraints are provided.
                                                                                                                                                                                          )  ro, after which they are uested        0 0>
                                                                                                                                                                                                                                      >>
  =  -I.-+
rral Pl>>r fssn<2 in and Gonuan>> (or Solid and Annular Circular
        >nrb              >        I    rtr p--j Lb b>>
rj Pla>ca I+rb In r + I- ~ I~
2    r          b            4    Lb bi
                                                                                                                                                            ~J h )I's  't  AQ OOQ    gC)
  . ,''-(-'.)'("*'-')]                                                                              n--.'['-(-.') ("*'-;)]                                                                                  h+4~k,b,a~+ C
  =
          .([(      )        ']'"      '( )                                                            --:. ([(-.')'"] :.(-.')'-                              )
Pvq~ Q'{ af{-f
  =    If + rl-+
      -I(l              b (I - r)-j rl                                                        C> >u If[(I + r) b +(I r) rl 2                                  bJ                                                                2            ~                      bJ
  =-'.[        -(-:)']                                                                                n--,'[ -(-.')']
  =    '[(-')'- i+ li.,']                                                                            2, =  '[(-')'                  i+  is -']
  =-(I I 2
                    )---
              - r LbIr bK.J                                                                            C,    -'(I a)(-'- -)
  =    2[I+ +ll  >(-) ]                                                                                  - -,'! + . +                i .>(-')
 
2.
                                                                                                                  "."-:-
                                                                                                                                                      ]
                                                                                                                                    <
  =-',I    ""'-'.''. "t'-H'9                                                                        n--.'{                                ', '[      -(-.')'])
rso'In
                      ~
 
rr
 
r I rjr - r l r I {
r,      ~)
r                                                                                    '(:.                    )](
I -(
2 I    =                    ') (I o21                                                                                - ( ') ll + sa )]<
                                                                                                                                                                                -")'[I
                                                  )]
' ([(-")'")'-'.(-")*- )                                                                                s. - -," {[(  ')'+ l]~-'+ (-")'- I)<. ..>
      =    I  f                                  rl                                                                                                    rl](r r )4 n~
Ls 2[[(I + rI r +(I                  rl ro J                                                    Ca w-[(I +4) r'+(I                        4)                  0 2i[I        (') ]                                                                            0,    ,'[ -(
                  ') i + Ii.
                                                                                                                            "))<...>'r i, = ;[(              2
                                            ']                                                        C,    -f(.)[(r l -)+2) r]l(,,)4 I
in        -rsi C
2 (I
rs        ~                                                                  2 w I
2 (I -  r2)                      J(r    r) ta =    -[
2l I
: n.    + (I      - r) (  'J 2[ + ~ +(I 4)(
 
                    >
                "'"-
Ca  >u-[I                          ') J(r            r )4
'. =-{                                  '"['-(-")'))                                                    n--"{        ".''-'.                  '. '[      -(-")']}< -">'
    =-'.      ('(-") (-) - (-) [*.(-) ]"-;,}
 
                                                                                                            =-.'.      - (-)'-'(-)'- (-)'["(-)')"-;)
                                                                                                                          ~                                  ~
(                                                                              <
(il 225
(              r, 155(  ')  2  25!(  ')                                                              -225-'-
                                                                                                                                                                                                      -">''5<
I 4AOO(r          ro) {
                                                                                                              )4.4OO(r                r){                            (I-o'+IIii(        ")
                                                                      + si(  ")'[s(  ") + io]o-'}
42
                                                                                                                                                                                                  +so(        ')'fs(-')'+ io]o-')
r              r (25 l25            + 225{    ') 25(                                                                                rs
                                                                                )                    C,
(
                                                                                                                                                    !22 2'5+ 225(          ')        25(  ')
  ,
        '-['(-)  (-)              ~        I  -']
[lo-l5+5() +52( )(I+so
                                                            -"(-) -"(-)'["(-)'1"-:)
                                                                                      )]
                                                                                                      '= I'['-(-)'- (-')*"-']<
r )4 r
                                                                                                                                                                  -">'(r
                                                                                                                                                                                                    -">'>
                                                                                                                                                                                        -"(-:) -"(-)'f"(-)']'-:.}
                                                                                                                                                                                                                                    >>
                                                                                                                                                                                                                                    >>
                          ,[is-si-"+n(                    ")'-2(    ")'-5(")'(2+ iso          ')]                                                '+si(
[Is ol                  ')          2(      ') -5(')(I+ Iso ))
{I ='[i-( 
                                        ")] ( ") [)+no..>i -'])                                      "--,'(' '. {'-(-ll-(-:)'[" ">"-,'])<                                    <
 
Al, It~
t
 
T~ 24          Foenw(ae for flat cfrcu)ar platee of conetent th)cttneee (Cortgfrscsed)                                                                                                              -+(- 4 I t. Outcr edge kec. 'utntr edge simply    Ismo        Afoao        Afmao>        Q  ao                                If r,  m d  Iloal <<ou(er      edge).
vd ICICI Max  I I                                f;l) sp    (
L Ct
                                                                                                                                                                                                                        'r 4'd              Cs                                          0 axtf m    Af                (I    I )
0 (For numerica values sce case Ib after computing thc luadtng st Ihc Inner cdgc)                                                                                      0 ec 4
If rr                                                                                      4 psao        tssso      Afmao            mo                                        Is d (load at outcr edge),
 
II. Outcr  edge free. inner edge ftxed                                          Q                                                                                                                                  4 0
                                                                                                                                                      -Irds /CsCs                                                        a Max p      s  =                        Cl) cc Sp    (  Cs
                                                                                                                                                        -uds    C, Max Af a Af< m 5      Cs (For nutncrieal values sce        case  Ib ahtr computing thc loading    at thc mncr edge)
"  Case 2. Annular plate vritb a uniformly distributed prawre 5 over the pordon ftotn r, to d General cxpcasaons for dcformadons, moments, snd shears:
P  a P + tsrFt + Af>>    rl +
D Fs rl Q D Fj    - f reD Cn t atsF                          rl
                                                                                                                        +AfIspr Fs+Qs p Fs t p Cts
                                                                                                                      ~
Afr a ts  Fr + Afmps + /pe f Ctr tD(l sa) r,          r
                                                                                                                                + Jf, For tbc numcrical data given bcknr, ra  03 s  a lf  t a ts D                D Af ss 8'dfds rcstrainm tcr edge wnp)y su inner edge lme Afmao        'q ao                                                                                                                                                          D MsxAf a Af,~
If rr a  8 (usufocss                                                                      C L
8/o            O.l                                  OS          0.7              0.9 0.0587              0,075)            0.0525        0.0525      -O.oocg O.l)20            O.lgol        O. I eel          0.0c77 0.0555            O. I 079          O.I5gl        0 I ISO          O.OC9 I 0495$              0P272              0.2<05        O. I 559          O.OC97 Sb't>>        edge sunply supponed,        Osao        q a4              0        a Inner edge gtddcd                                                          Afm    0 ats        Mxc Af a Afm
(~        g
                                                                        )
xP 8 rr a 5 (utufsra        load over ensue pbtch Afma        g 5/d            O.l              Oy                  08 Cu r                                                                                                                                  0.7                0.9
                                                                                                                                      -0.0575        'OSIS)5
                                                  ~l
(~          g
                                                                      )
0.09I9 0~5 OA) tMS 0~)85
                                                                                                                                                                            -O.OIOS 0.0505 O.I22S
                                                                                                                                                                                        -0.00)5 OA)078 0.04$ 5 0.00052 Q. a    r (dl    rq 0.00$ 0$
Outcr edge simply supptutcd,              a 8(~
2C.
inner edge simply wpponcd              pa    0      Afm  ao      pr  ss 0    Afm ao                                  lf r, a                hmd o cr    cutup)me),
D
    ,l~
C,C                                                              Ald                O. I                  OD                                      nT Ctgts    Csgtt                                                      E                -0.0050
                                                                                                                                            -O.O255
                                                                                                                                                                    -0.0029            0.0008          -n nnn I 0.0 I 5$          0.00$ 5            0 IIIII 2 t, = t,CC +      D Ce D
f.ts A'4                  0.0 I 98 0.2<01 0.0708 O.OI)9 0.0455 0.0552 O.oos 7 0.0 I 0 I nnntl 4 Iut I s I'S 0.0500            4    tlt tn Q a+--
S                                                                                          I.8870 (ds- rs)                                                                                                0.50 I 5          02250              II tnvI
 
If~laooo (Cctctgltl~)                                                                          ~ %  ~
                                                                                                                                                                                      '          ~  C  ~c      7          /~~)F. C 5 ~f. C        +
X Q4 Fctnlttt)od lor fldt cltctl(af gt(4tloo of tcdcott(
Cele no  Cdse IC%l(klhl                                                                                                                                                                                                                      0 (ulcc edge gu(dr(l. Ih(ul rdgc        ps      0        ds  a    0      ds ss 0        Q  a 0                                  (
lf r a              b (undonn load over coute                      ptuc).                                      9 a -rst I
blr                                              "      03                              0.7          0.9 I (tfnC[gb              Cs (c      r~ )    Lts E      ~
O.l O.OS4$                0.0125 0.5 0.0050        0.0004                    O I.co 0          Q    a  (r -rs) 2b A~
Ecl
                                                                                                                                                              -0.7892 0.1146 0.2978 0.0767
                                                                                                                                                                                                      -0.1184 0.0407 0.0$ $ 9 0.0149 0 II(IS<I 0.00167 en Cs -
r2 I ps    a  Sfn      Cs + Q                      L>>
D                D          D I                                                                                                                                                                                                                                K I Afn    = Africa+        ()seCe    rsLtt                                                                                                                                                                    tn If rs a ca Dulce edge f(ee. Inner edge Nmpl)    psao            A(mao            A(mao          Q  ao                                                        b (uniform load ores entice p4cc).
wpponed dsa
                                              -rsr        Ca (e  r    )    Ltt                                            blr                              O,l                    09                0.5          0.7        0.9 DC, Lgrb                                                                        E                                0.11150.1158                              0 0826    -0.0578        0.0051 Ec                                0.1400                  08025            O.ld76        0.1540    -0.0$ 15 Q    a      (rs      rs)                                                                                                  0.1082                  0.1404            0.1479        0.1188      0.0498 2b                                                                              Es
                                                                                                                                                                                                        -03414      -0.1742        0.0521
                                                                        -                                                      Eu                              1.2754                  0.6146 a  dscC      + Q o          fr Ltt p                          p Ca        n 8    = >CCC    + 4-Cs r2 D
                                                                      -  rs D
Lts lf ls
 
(ulcc edge free. Inner edge fised      tsad            8  aO          Af    aO        q aO                                                            b    (unlblln bad        neer Cluue p4IC)i
                                              -r Ifcs(r ,2a]                                                                blr                              O.l                    03              0.$            0.7          0.9
  ,
r'                      Qa      2b Ca (c
L gab rs)
E Es Eu
                                                                                                                                                              -0.0757
                                                                                                                                                              -O.O868
                                                                                                                                                              -OSI545 0.0$ 1 dr 0.0512 OAIOS 0.0086 0.0207
                                                                                                                                                                                                        -0.1756
                                                                                                                                                                                                                    -0.0011 0.0046 0.0541 0.00017 0.005SO
                                        ~    Af(s -Cs+
p rs Qa-Cs-D D
L>>
6-Cs
                                                    ~              rs ds  a Sf+-Ca+
                                                *D                                  Lss D          D r
 
lulsr pbte Iricb n distributed    pcessunt        ecuasuu 6 bnear(7 fieun aero    at rs to 5 nt Ccnccal caprcslions for dcfonoaions, aoacncs. and sbcata P a Ps+    V'i+dfm-Es+  r 2 0-Ea - 9 Dr-r'Cts ra            rer-r, D
0~                          oa D
Af,ad;z,+df~,+q;r,-d r
r
                                                                                                          ~ a dape + /gm Es + Q D
rs D
fe 9
                                                                                                                                                                    -,'
2 ra r
                                                                                                                                                                              ~
p>>rs'c rs ta C
ea
 
                                                                                                                                                                            ~
                                                                                                                ~ D(l  as)
N, r
                                                                                                                            +((    T e  e    --
8 rJ      (<+-h.<+0<'-'>'r(r
                                                                                                                                                                        ~          ~            ~
For tbc unacriea) dace gnen bcb(nr,    ra  Od eaE-p  ~
rD Cslc no edge reattain(I Outcf edge Nulpll supponc(L                    0        Qao              p,ao          Afm ad                                    Man p                  aps              Max Af a Pfl ~
~ nncl edge kec pl  a              CL                                                                    lf rs a                    b (lincsclp      btseabg bad floss          b  Io ~ ).
ds  a DCI Lts blr Es O.I O.OS17 0.0482 Od O.OS06 0.0470 0.$
0.02S I 0.0454 0.7 0.0114 0$ )$ 58 0.9 0.0015 O.0l dl Es (I,  a r'(CILC                L                                                            E                                0.0186                  0.04 Id          0.04850.0595                0.0166
                                                                          )                                                      Eu                              0.1590                  0.1259          OA)879        0.0514      0.0 1 dd
                                      <a            (ar -rsr-res) 0UI Cf CdgC Nnlpll'lppoltCIL          Psao            Qao              ps  ad      Afm ao                                    Mas s                ape              Mas bf ss bfm lnncl cdgc guided
                                      .Il a
                                                -r'        CCLIC                                                                  lf rs a                    b (linear)7 'uurcw'ng            bsd (nun    b to ~ ),
n LC,  \              LI2) rsLI                                                                              blr                              0.1                    OD                0.5          0.7            0.9 Afn a
                                                      ~
ro)                                                                                                              E                              0 0259                  0 0l SS        -0 0041        0.0005      0.00001 Cs A'                              0.0454                  0.0286          0.0126        0.0051      0.00012 Csg (Csgls                                                                                                      0.1280                  0.0847          0.0447        0.0150      0.00171 Ey Q    a  -dr 4
(Sos        rcr    rs)


PRESSURE LOCKING SUM'OF FORCES 5 c 4'h, fQ.'I.h.Q ca%Q.o+~4i~~%C W~qq C>w Q.++4 F=Stem Force (tension)FIGURE 7 P=Pressure Force=DP x Seat Area Q,=Seat Reaction Force (calculated using Roark's)p,Q,=Seat Friction Force , 8=Seat Angle T=Disk Hub Tension<a Note that the sum of the forces in the x~tion is different than for the seat factor case due to the hub tension force T.Consequently, the Q, value is a typically a much lower portion of the P value under pressure lochng than it is for the seat factor calculation.(This is the benefit of using Roark's equations for calculating the seat load increase.)
.I TMLx25 I)soar sfalacttossa        for Oat ckcxatar ptalaa ol conatant %~000                                                                                            4+4-s            cft ~f        > Q Nerhmolf: g>, p, andy            are the deflections at b, 4, and rrespectively, caused by transYelse shear stresses. jl, E', and h . are deflection coeflicients dcfined by the other notation and for the relationshipsg, a Ega/f(r for an annular line load and p, a Egct/IG for all distributed loading (See Table 26 for all loading cases referenced)
Therefore, the sum of the forces in the direction should be solved for directly from the free body diagram above, as follows: P Pz F pQ,esS-Psbdl+Qp-in8
Tsbolsad tsiocs fot v-f$ cc$ 6c casss w C- S              4-e~
:.F qJpcos8-Iin8)+Mn8 (35)The first term in the equation above is the pressure locking load term in the ComEd methodology.
Csss oo.
The second term in the equation above is the F or reverse piston effect term~in the ComEd methodology.
n.l              h.$              0.%                n.r              no      C Ig tt In
The ComEd method adds these two terms to the static unseating load and then subtracts the stem rejection load to get the predicted unseating load under pressure locking conditions (37)Rather than use these equations, the NUREG method applies the open seat factor to the Q, value.Because of the relationship in equation 37 below, the NUREG method substantially under predicts the vertical pressure force portion of the required thrust.Qa<P cos8/(cos8+p sin8)3C-33 NVREG/CP4152 I
                                                ~                                                                                                                                                CI IJs Ik lc, 11,9    <<>>  RAga                            6Y>>.                                          ~ s V'                  A    4          OA I              nutso            $
xvr.REHaMNCES C-K 4 4'0<tg.~b.)-oa'W R,<t h.~~+~pm'nqq C+<c4 C2 Young, W.C., 1989, Sixth Edition of Roark's Formulas for Stress and Strain, McGraw-Hill Inc.n 2.MPR Calculations 101-013-1,"Effect of Bonnet Pressure on Disc to Seat Contact Load", dated 3/23/95;and 101-013-4,"Estimate of Valve Unseating Force as Function of Bonnet Pressure", dated 3/23/95.3.Electric Power Research Institute, Nuclear Maintenance Applications Center, 1990, Application Guide For Motor-Operated Valves in Nuclear Power Plants, EPRI/NMAC Report NP-6660-D, March.4.Smith, D.E., 1994,"Calculation to Predict the Required Thrust to Open a Flexible Wedge Gate Valve Subjected to Pressure Locking", Proceedings of the Workshop on Gate Valve Pressure Locking and 7hennal Binding, NUREG/CP-0146, July 1995.NUREG/CP4152 3C-34
ts 0
tb. fc. fl, 10  << . a <<>>      -4~[1 (-') <<+ 21                )]                                            -4.'fSSS            0.2050        '.1210                -0.0451        -4.405$
                                  "+(
ts Sa. Sb. Sc. St,  Il $$                        [$  -$          ")'($ +$ $ -')]                                  -O.l ISS            0.0776          0.04$ 0          -0.0166        -0.0019 a
                                                ,[$ -$ $    "+$$ (    ") -( ")(!$ $ III -')]                                      -0.0411            0.0ftS              OANS4          4.00095 4a, 4b, 44. 4t, If                          s 0.06SS t.lc          0.2              0.4              0.6              0.5            1.0 li, lj. lb. II      <<>> a  Qa       - Id o
                                          'n    ''Var.        6 > 0)
                                                                                                                                                          ,
                                                                                                                                                                                            <<161 I 0.1                0.1654          0.66$ 4          1.2901            I ANa J OJ                                0.1$ $ 1        0.4991          0.9416          IA445 03                                                  0.ISIS          OASI2          O.SSI 5 0.7            Ysbsss  of <<>>                                        4.12 Sf        OA2 50 0$                                                                                  0.1264 ttfc                                            03                0.7            0.9
: 21. fj. ft. fl            -0.50[1    - (") ] I -"          (N~ 6 > 0)
O.I             OJ
                                                                                                                                                                              -4.$ 9$ $          4.2$ 0$
0.1            -OANOO              08995            0.7242 OD                                OANOO                f O.f 99            08$ 9$      -4.1292 OS                                                0.0000            0.10$ 4     -0.0674 0.7          Yatws af <<>>                                            0.4044      -0.0257 OP                                                                                    0.0040
                    '-- -'"[ :-"(-)('- 2"-")]        t                                                   0.1 OD I AN45          IAN9$
OA494 OPISI OA 209 0.6665 0320$
                                                                                                                                                                                              -OfS67
                                                                                                                                                                                              -O.ISIS n
08                                                0.1909            0.1640      -0.0122 0.7                                                                  OANI0            0.0149 04                                                                                -4.006t i,sj,SI    Sl      <<>>  a    OW 2      - \
                                          ~        ~
1st JJ  ba s
praas>0)                            a t,fc          O.I            04              OS                0.7              0.9 O. I              4 4444          44$ $ $                                                      ca OA024            P.SI52          4.1274 04 OS OANOO                f O.l 77            0.1$ 7$          OANST OANOO 0.7 08 Yabsa of    ~                                          0.0$ 4$
OANOO 0.0741 0.0146
                              ,
                                  '    [$ ($ $    ")s    -'-    ~ + $ "(-")'($ - ~$ ")]            O.l                0.7949
                                                                                                                                                                                            -0.0000 n$                                                                                                                OA5$ 5          IL$$ 2 7 tiVsfa 6 > 0) 04 08 Od IO I          0~                08$ 5$
0.175$
0.1216 0.0619 0.7 Vabsa of   ~                        0.1$ 0$          OAI9$7 OAI~  If 4.0$ aj 4.0 I 57 04 ts          a OAIO 4  f
                      <<>> a
( ~ ) ]b, ';        la~6>0) 4I, 4j, 4b, 41                    0.10 S                                                                      tsfc          O.l              Oa
[        o                                                          L                                                                    0.7            0.9 O. I              OANOO            0.2$ $ 5        04517            OAIIW          v.oa OJ                                OANOO            OAN94            0.0941 0$                                                                                  0.042 6 0.0000            4AISTS        O.ott9 0.7            Vabsa  of <<                                          0.0000        0.049$
0.9 0.0040 0.1                08791          OA905            04407            O.f 472        0.0555 t                                                                              OJ 08 OMTO            0.'I 554          O.ltst        0.0460
                                                              +(-")'(IS- Itb -"))        firer.s>0)      0.7 OAN90            OAN5$          0.0251 0.9 OAIS12        0.01 f9
                                                                                                                                                                                            -0.0021


gc+So~6 lQ he@-~4~y~+P~)w 6 l<W1 2, GATE VALVE TYPE, GEOMETRY, AND ITS EFFECT ON OPEMNG AND CLOSING THRUSTS There are five different types of gate valves that cover most of the applications in nuclear power plants in the United States.The key features of these designs are shown in Figure 2.1.Variations in the most commonly used gate valves include solid, flexible, and split gates (Figure 2.1a).The two types of parallel expanding wedge gates shown in Figure 2.1b are also used, but their population is smaller.Parallel sliding gate valves shown in Figure 2.1c are relatively uncommon in the United States, but are widely used in European nuclear power plants.The advantages and disadvantages of various design features for these valves are discussed in detail in Reference[13]Flexible Wedge Gate Solid Wedge Gate Split Wedge Gate Figure 2.1a Conventional Solid Wedge, Hexible Wedge, and Split Wedge Gate Valves As shown in these figures, the designs vary significantly in gate geometries.
(Enclosure 2 consists of the Disposition to Calculation No. A10.1-AD-003, titled "Pressure Locking Evaluation of MOVs." Enclosure 2 has 13 pages,
Other important variations that affect performance are related to gate guide arrangements and their dimensions; clearances at critical locations between gate, guides, and seats;seat contact widths;and materials and surface finish in the disc guide sliding interfaces.
~
Section 2 presents the gate thrust requirements for the above-described variations in gate geometries.
    ~
This section also addresses the potential for disc tilting during mid-travel due to fluid forces across the disc.Disc tilting causes localized loading between the disc and the downstream seat, or between the disc and the guides.A preliminary analysis approach to determine the localized contact stresses is presented in this section to determine the loading severity based upon valve design and operating conditions.
which are numbered from 1 to 13)
0 Preliminary analyses of localized contact stresses between disc and seats as well as disc and guides used in typical wedge gate valve designs are presented in this section.The preliminary approach presented here needs further analytical refinement and empirical correlations to develop improved predictive models.Detailed derivations of the equations summarized in this section are included in Appendices A, B, and C.Stom Upper Wodge Upstream Disc Down-stream Disc Lower Wedge Body Sogment Seat Stop Pad Figuxe 2.1b Parallel Expanding Gate Valves Stem Disc Retalnlng Pine Disc Carrier Seat Preload Spring Figure 2.1c Parallel Sliding Gate Valve
/I Nn~am CIvor dgo ('4~Waken A tn.i-~p~+~l Waqg 2, l.Stem Thrust for Solid, Flexible, and Split Wodge Gate Valves'I Even though there are differences in the performance of solid, flexible, and split wedge gate valves as related to their sensitivity, to external piping loads and thermal binding[13], the equations for their stem thrust requirements based upon free body considerations are the same.Subsections 2.1.1 through 2.1.2 summarize the stem thrust requirements to I overcome only the differential pressure load across the disc.Subsections 2.1.3 and 2.1.4 give the stem wedging and unwedging thrust requirements to close and open the gate, respectively.
The total stem thrust requirements to close and operi the gate are provided in Section 2.4, which include other components such as stem packing load, stem rejection force (also referred to as blowout force or piston eff'ect force), and stem and gate weight.2.1.1.Ciosinl, Stem Thrust to Ouereome Gate Di/7erenti al Pressure As shown in Section A.1.1 of Appendix A, the stem thrust at the gate to overcome the diff'erential pressure during closing can be expressed as: F,=.F[cos6-@sine (Eq.2.1)Fp Figuxe R2 Gate Equilibrium Under hP Load During Closing where Fs=Fp=8=stem load at gate, Ib disc pressure load due to upstream/downstream differential pressure, lb hP x (effective seat area)coefficient of friction between gate and seat 1/2 of gate wedge angle, deg'The disc pressure load, Fp, is the product of hP and seat area based on effective disc sealing diameter as discussed further in Section 2.5.From Equation 2.1 the relationship between the commonly-used term disc factor (some-times called ualue factor)and coefficient of friction, p, can be derived: Disc Factor=cos 8-p sin 8 (Eq.2.la)For'ypical wedge gate valves that use a total wedge angle of around 10 degrees (or 8=5')and a normal range of coefficients of friction, the difference between the disc factor and the coefficient of friction is practically negligible, as discussed in Section 3.1.The disc factor calculated in the closing direction can be as much as 5 percent higher than the coefficient of friction for typical values of 8 and p that are encountered in practice.
I'c 2.1.2.Opening Stem Thrust to Overcome Disc Differential Pressure As derived in Section A.l.2 of Appendix A, stem thrust during opening of a wedge disc against a differential pressure is given by: F=~F cos6+I sin6 (Eq.2.2)From this one can derive the equivalence between the disc factor in the opening direction and the coefficient of friction: Disc Factor=cos 6+iL sin 6 (Eq.2.2a)Figure R3 Gate Equilibrium Under dP Load During Opening The disc factor in the opening direction is slightly less than the coefficient of friction for typical ranges of wedge angles and coefficients of friction (within 5 percent of the coefficient of friction), as discussed in Section 3.1.As stated earlier, the stem force calculated in Equation 2.1 or 2.2 is the force required to overcome the differential pressure resistance only.2.1.3.Stem WedgingLoad-Closing The stem wedging load is related to the normal seat contact force, Fn, as shown in Section A.1.3 of Appendix A: F,=2(sin 6+p cos6)F(Eq, 2.3)Figure 2A Gate Equilibrium under Wedging Load During Closing It should be noted that this equation applies to the case when there is no differen'tial pressure across the gate.When differential pressure is present, the stem force Fs in this equation is the net stem force after subtracting the differential pressure load.In some cases, the limit switch instead of the torque switch is used to stop the disc travel in the closing direction.
Where acceptable from the shut-off standpoint, this approach can be used to reduce, and in some cases eliminate, the wedging load, F.
\
>1,4.Stem UnwedgingLoad
-Opening Q h%+-a.~(~F
~~~~8~~wbg Section A.l.4 of Appendix A shows that the unwedg-ing load to overcome the seat contact force, F, is given by: F=2 (lL cos 9-sin 9)F(Eq.2.4)Fn Figure 2$Gate Equilibrium under Unwedging Load During Opening The seat contact force, F, that is to be overcome dur-ing the opening cycle is developed by (1)wedging load from the previous closing cycle, including inertia overshoot, (2)external piping loads, or (3)differential thermal effects between the valve body and disc.Section 4 provides an analytical method-ology to predict stem thrust due to inertia overshoot, and Section 5 discusses external pipe load and ther-mal effects that may influence the normal load, Fn.2.2.Stem Thrust for ParaM Expanding Gate Valves This Subsection 2.2 summarizes the stem thrust requirements for closing and opening directions for the two types of parallel expanding gate valves shown in Figure 2.1b.The same stem thrust equations apply to both types of parallel expanding gate valves shown in this figure.The typical wedge an'gle used in the through-conduit type is 15 degrees, and for the double-disc type is 25 degrees.It should be noted that for coefficient of friction of 0.4Z (=tan 25')or less, the 25-degree angle between the wedge surfaces (also referred to as back angles)provides a non-locking condition between the wedges.2.2.1.Stem Thrust to Overcome Gate Differential Pressure-Closing and Opening Fn Fy Closing Opening Hguxe RS Gate Equilibrium Under hP Load During Closing/Opening F-pF (Eq.2,5)where p=coefficient of friction between seat and disc Fp disc pressure load due to upstream/downstream differential pressure, lb=hP x (effective seat area)As shown in Section A.2.1 of Appendix A, the following equation applies to both closing and openihg stem thrusts to overcome gate frictional force due to hP load; (l 4
('iQ.i-ay oo~l20 I h w4-~~~~2.2.2.Stem 7Vedging Load-Closing The stem wedging load for a parallel expanding gate valve is shown in Section A.2.2 of Appendix A to be given by: sill 6+p cos 6 Fs p+cos6-p'sin 6 (Eq.2.6)X Fp Figure 2.7 Gate Equilibrium Under Wedging Load During Closing where 6 Fn coefficient of friction between seat and disc coefficient of friction between wedge faces parallel gate total wedge angle, deg normal force between gate and seat due to wedging, lbs This, equation makes allowance'or the fact that the coefficients of friction at the seat-to-disc interface may be different than that at the wedge interface.
Typically the seat faces have a finer surface finish and are overlaid with Stellite hard-facing, whereas the wedge faces have a rougher surface finish and are not hard-faced.
If the coefficient of friction at the seat faces and the wedge faces is assumed to be the same, p'p, and this equation reduces to Fs=sin'6 1-li+2gcos6 cos 6-csin 6 Fn (Eq.2.6a)Equation 2.6a shows that the stem load is proportional to the seat contact force, Fn.2.2.3: Stem UnwedgingLoad
-Opening The stem unwedging load to overcome the seat contact force, Fn, for a parallel expanding gate valve is given by (reference Section A.2.3, Appendix A):
0
*a~kia.l-a~i a~S 2c'l~s~+((p p'-1)sin 8+(g+ll')cos 6 F (Eq.2.7)cos8~p'sin 6 I'or p=p', this equation reduces to: sin 6 p-1+2pcos6 F-Fn cos6+psin6-(Eq.2.7a)Figure 2.8 Gate EquiHbrium Under Unwedging Load During Opening As discussed in Section 2.1.4, the seat contact force Fn to be overcome is determined by adding the wedging force from the previous closing cycle to the resultant force from external piping loads and differential thermal expansion loads between the body and disc.4 2>.Stem Loads for Parallel Sliding Gate Valves-Closing and Opening Most parallel sliding gate valves are equipped with a preloading spring to maintain proper contact and provide a low pressure seal between the disc and seats.As shown in Appendix A, Section A.3.1, the required stem thrust to overcome dP and spring load friction can be expressed as: FI=2pF>>+pFp where F>>=disc spring load, lb F>=hP x (eFective seat area), lbs (Eq.2.8)<s<n A~F~P Dawn~w paW llP~~p4 Figure R9 Gate EquBibrium Under hP Load During Closing E gl.0 A>CO tao>sa>S><')>>>>>>>a: VCS a>uu S>u>>CO 5>OS>>t>o>Orb>OS>>rs Ons iment: Af, au unit tangential bending moment;Q.~unit shear force{force per unit of c'Ircumferencial length);E~modulus of elasticity (force: unit area: v s Poisson's ratio;y~temperature coefftcient of expansion{unit strain per degree);a~outer radius;b~inner radius for annular>te;t~plate thickness; r~radial location of quantity being evaluated; r,~radial location of unit line loading or start of a distributed load.F, FO and G>to f'>are the several functions of the radial location r.C>to Cs are plate constants dependent upon the ratio aib.L, to L>>are loading nstants dependent upon the ratio air,.When used as subscripts, r and t refer to radial and tangential directions, respectively.
When used as osc.a.b.and o refer to an evaluation of the quantity subscripted at the outer edge, inner edge, and the posinon ol'he loading or start of~I'oading.respectively.
When used as a subscript, r refers to an evaluation of the quantity subscripted
'at the center of the plate.f'(lls are asar>cia(ed with the several quantities in the following manner: Deflections v and vo are positive upward: slopes ()2nd 84 are positive cn eflectio>>l increases positively as r increases; moments/)f~Ill>.>>ml If are positive when creating compression on the top surface;and the sr force Q is p>sitive when acting upward on the inner edge of a given annular section Bc>>di>>g s(recses can be found from the moments/Ifr and Afr by the expreani>>r>
o=6M/t2.The plate constant D=Etal)2{)-r).The singularity iction brackets ()indicate that the expression contained within the brackets must be equated to sero unless r)ro, after which they are uested any other brackets.Note that Qa, Q, M, and Mare reactions, not loads.They exist only when necessary edge restraints are provided.rral Pl>>r fssn<2 in and Gonuan>>(or Solid and Annular Circular Pla>ca ul O O cn<n 0 (>>>0 0>>>>nrb>I rtr b>>=--I.-+-p--j Lb rj.-,''-(-'.)'("*'-')]=.([()']'"'()If b rl=-I(l+rl-+(I-r)-j 2 bJ=-'.[-(-:)']=-'[(-')'-i+li.-,']I Ir bK=-(I-r)---2 Lb.J=2[I++ll->(-)]=-',I-""'-'.''."t'-H'9 I+rb r I-~I~bi In+2 r b 4 Lb~J n--.'['-(-.')
("*'-;)]--:.([(-.')'"]
-:.(-.')'-)If b rl C>>u[(I+r)+(I r)2~bJ n--,'[-(-.')']2,=-'[(-')'i+is-']C,-'(I-a)(-'--)2.--,'!+.+<i-.>(-')]n--.'{-"."-:--','[-(-.')'])h)I's't AQ OOQ gC)h+4~k,b,a~+
C Pvq~Q'{af{-f rso r I rjr r l'In-r-{-~)~rr I r, r 2 I=I-(-')(I o21-)]'-([(-")'")'-'.
(-")*-)I f rl Ls=[(I+rI+(I rl J 2[r ro 2i[I (')]2 i,=-;[(-')-i+Ii.-']I C in (I-rsi 2 rs~ta=-[I n.>+(I-r)(-'J 2l'.=-{-"'"--'"['-(-")'))
=-'.('(-")-(-)-(-)[*.(-)]"-;,}(r, (il-225--155(')2 25!(')I 4AOO(r ro){+si(-")'[s(-")+io]o-'}42 r r (25-l25+225{-')-25()-"(-)-"(-)'[" (-)'1"-:)'-['(-)-~(-)I-'],[lo-l5-+5(-)+52()(I+so)],[is-si-"+n(-")'-2(-")'-5(")'(2+
iso')]-{I-='[i-(-")]-(-")[)+no..>i-'])'(:.)](-")'[I-(')ll+sa-)]<s.--,"{[(-')'+l]~-'+(-")'-I)<.-..>rl Ca w-[(I+4)'+(I 4)-](r-r)4 r 0 0,-,'[-(-"))<.-..>'r
[(r l r]C,-f(.)-)+2)l(,,)4 I 2 w-(I-r2)J(r r)2 Ca>u-[I+~+(I-4)(-')J(r r)4 2[n--"{-".''-'.-'.'[-(-")']}<-">'=-.'.(-~(-)'-'(-)'-
~(-)'[" (-)')"-;)<-">''5<-225-'-(I-o'+IIii(-"))4.4OO(r r){+so(-')'fs(-')'+
io]o-')rs C, (!22-2'5+225(')-25(')-"(-:)-"(-)'f" (-)']'-:.}
'=I'['-(-)'-
(-')*"-']<
-">'(r-r)4 r[Is ol'+si(-')2(-')-5(')(I+Iso-))"--,'(''.{'-(-ll-(-:)'["<">"-,'])<-">'>n~>>>>
Al, It~t T~24 Foenw(ae for flat cfrcu)ar platee of conetent th)cttneee (Cortgfrscsed)
-+(-4 I t.Outcr edge kec.'utntr edge simply II.Outcr edge free.inner edge ftxed Ismo Afoao Afmao>Q ao psao tssso Afmao Q mo If r, m d Iloal<<ou(er edge).vd ICICI Max I-I (f;l)sp L Ct 4'd Cs axtf m Af-(I I)(For numerica values sce case Ib after computing thc luadtng st Ihc Inner cdgc)If rr Is d (load at outcr edge),-Irds/CsCs Max p s=-(-Cl)Sp (Cs-uds C, Max Af a Af<m 5 Cs (For nutncrieal values sce case Ib ahtr computing thc loading at thc mncr edge)'r 0 0 0 ec 4 4 4 0 a cc" Case 2.Annular plate vritb a uniformly distributed prawre 5 over the pordon ftotn r, to d General cxpcasaons for dcformadons, moments, snd shears: rl rl re P a P+tsrFt+Af>>-Fs+Q-Fj-f Cn D D D r rl t atsF+Af Fs+Qs Fs t Cts~Isp p p Afr a ts-Fr+Afmps+/pe-f Ctr r,+Jf, tD(l-sa)r For tbc numcrical data given bcknr, r a 03 D s a lf-t a ts-Af ss 8'dfds D rcstrainm tcr edge wnp)y su inner edge lme Afmao'q ao MsxAf a Af,~If rr a 8 (usufocss D C L 8/o O.l OS 0.7 0.9 0.0587 0,075)O.l)20 0.0555 O.I 079 0495$0P272 0.0525 O.lgol O.I5gl 0.2<05 0.0525 O.I eel 0 I ISO O.I 559-O.oocg 0.0c77 O.OC9 I O.OC97 Sb't>>edge sunply supponed, Inner edge gtddcd Osao q a4 0 (~g)Afma g r Cu~l (~g)r Q.a-(dl-rq Afm a 0 xP ats Mxc Af a Afm 8 rr a 5 (utufsra load over ensue pbtch 5/d-O.OIOS-0.00)5 0.0505 OA)078 0.00052 O.I22S 0.04$5 0.00$0$-0.0575'OSIS)5 0.09I9 OA)tMS 0~5 0~)85 O.l Oy 08 0.7 0.9 2C.Outcr edge simply supptutcd, inner edge simply wpponcd ,l~pa a 0 Afm ao pr ss 0 D C,C Ctgts Csgtt t,=t,CC+-Ce--f.ts D D S Q a+---(ds-rs)Afm ao Ald O.I OD E A'4-0.0050-O.O255 0.0 I 98 0.2<01 0.0708 I.8870-0.0029 0.0 I 5$O.OI)9 0.0455 0.0552 0.50 I 5 lf r, a 8(~hmd o cr cutup)me), 0.0008 0.00$5 O.oos 7 0.0 I 0 I 0.0500 02250-n nnn I 0 IIII I 2 nnntl 4 Iut I s 4 tlt tn II tnvI I'S nT


X Q4 Fctnlttt)od lor fldt cltctl(af gt(4tloo of tcdcott(If~laooo (Cctctgltl~)
0 T NAGARA                                                                                                      Peoe    1  INaxi)
~%~'~C~c 7/~~)F.C 5~f.C+Dulce edge f(ee.Inner edge Nmpl)wpponed psao A(mao A(mao Q ao-rsr Ca dsa (e-r)Ltt DC, Lgrb Q a (rs rs)2b o fr p a dscC+Q-Ca--Ltt p n r2 rs 8=>CCC+4-Cs--Lts D D Cele no Cdse IC%l(klhl (ulcc edge gu(dr(l.Ih(ul rdgc ps 0 ds a 0 ds ss 0 Q a 0 I-rst Cs I nC[gb~(tf a-(c r)Lts I.co Q a-(r-rs)0 2b r2 I I ps a Sfn-Cs+Q-Cs--L>>D D D I Afn=Africa+()seCe-rsLtt (lf r a b (undonn load over coute ptuc).blr O.l" 03 0.5 0.7 0.9 E~O.OS4$A~-0.7892 Ecl 0.1146 0.0125 0.0050 0.2978-0.1184 0.0767 0.0407 0.0004 0.0$$9 0 II(IS<I 0.0149 0.00167 If rs a b (uniform load ores entice p4cc).E Ec Es Eu 0.11150.1158 0 0826-0.0578 0.0051 0.1400 08025 O.ld76 0.1540-0.0$15 0.1082 0.1404 0.1479 0.1188 0.0498 1.2754 0.6146-03414-0.1742 0.0521 blr O,l 09 0.5 0.7 0.9 0 9 O en K tn ca (ulcc edge free.Inner edge fised , r'tsad 8 aO Af aO q aO-r fcs-I-(r-,2-a]Ca L gab Qa (c rs)2b rs Af-Cs+Qa-Cs--L>>~(s p D D~rs ds a Sf+-Ca+6-Cs--Lss*D D D blr O.l 03 0.$E Es Eu-0.0757-O.O868-OSI545 0.0$1 dr 0.0086 0.0512 0.0207 OAIOS-0.1756 lf ls b (unlblln bad neer Cluue p4IC)i-0.0011 0.0046 0.0541 0.00017 0.005SO 0.7 0.9 lulsr pbte Iricb n distributed pcessunt-0~oa Cslc no edge reattain(I ecuasuu 6 bnear(7 fieun aero at rs to 5 nt r Ccnccal caprcslions for dcfonoaions, aoacncs.and sbcata r 2 ra rer-r, P a Ps+V'i+dfm-Es+0-Ea-9-'Cts D Dr-r r rs ra r~a dape+/gm Es+Q-fe-, 9-C D D'~rs D p>>rs Af,ad;z,+df~,+q;r,-d 2-'c r~ta~D(l-as)N,+((r T r D 8 e e---(<+-h.<+0<'-'>'r(r
V NUCLEAR MOHAWK ENGINEERING 0'tel Li(t't                i  3 u
-r J~~~For tbc unacriea)dace gnen bcb(nr, r a Od eaE-~p ea Outcf edge Nulpll supponc(L~nncl edge kec pl a ds a (I, a 0 Qao p,ao CL-Lts DCI r'(CILC L)Afm ad Man p aps Max Af a Pfl~lf rs a b (lincsclp btseabg bad floss b Io~).blr O.I Od 0.$0.7 0.9 Es Es E Eu O.OS17 O.OS06 0.02S I 0.0114 0.0015 0.0482 0.0470 0.0454 0$)$58 O.0l dl 0.0186 0.04 Id 0.04850.0595 0.0166 0.1590 0.1259 OA)879 0.0514 0.0 1 dd<a-(ar-rsr-res)0UI Cf CdgC Nnlpll'lppolt CIL lnncl cdgc guided ro)Psao Qao ps ad-r'CCLIC.Il a\LI2)n LC, rsLI~Afn a Cs Csg (Csgls 4 Q a-(Sos-rcr rs)dr Afm ao blr E A'Ey 0.1 OD 0.5 0 0259 0 0l SS-0 0041 0.0454 0.0286 0.0126 0.1280 0.0847 0.0447 Mas s ape Mas bf ss bfm lf rs a b (linear)7'uurcw'ng bsd (nun b to~), 0.7 0.0005 0.0051 0.0150 0.9 0.00001 0.00012 0.00171
Project: NINE MILE POINT NUCLEAR STATION                          Unit (1,2 or 0=Both):        ~           Discipline:    +<<~~
.I TMLx 25 I)soar sfalacttossa for Oat ckcxatar ptalaa ol conatant%~000 4+4-s cft~f>Q Nerhmolf: g>, p, andy are the deflections at b, 4, and rrespectively, caused by transYelse shear stresses.jl, E', and h.are deflection coeflicients dcfined by the relationshipsg, a Ega/f(r for an annular line load and p, a Egct/IG for all distributed loading (See Table 26 for all other notation and for the loading cases referenced) v-w C-S 4-e~Csss oo.Ik lc, 11,9 tb.fc.fl, 10 Sa.Sb.Sc.St, Il tt~<<>>RAga Ig In 6Y>>.ts<<.a<<>>-4~[1-(-')<<+21-)]ts$$-[$-$-"+(-")'($+$$-')]Tsbolsad tsiocs fot f$cc$6c casss n.l h.$0.%n.r no~s V'A 4 OA I nutso$CI IJs-4.'fSSS 0.2050'.1210-0.0451-4.405$-O.l ISS 0.0776 0.04$0-0.0166-0.0019 C 0 4a, 4b, 44.4t, If li, lj.lb.II ,[$-$$-"+$$(-")-(-")(!$$III-')]s<<>>a Q a-Id-'n-''Var.6>0)o t.lc 0.1 OJ 03 0.7 0$0.2 0.4 , 0.6 0.5 1.0 0.1654 0.66$4 0.1$$1 Ysbsss of<<>>1.2901 0.4991 0.ISIS I AN a J 0.9416 OASI2 4.12 Sf-<<161 I IA445 O.SSI 5 OA2 50 0.1264 0.06SS-0.0411 0.0ftS OANS4 4.00095 a 21.fj.ft.fl-0.50[1-(-")]I-" (N~6>0)t'---'"[-:-"(-)('-2"-")]ttfc 0.1 OD OS 0.7 OP 0.1 OD 08 0.7 04 O.I OJ-OANOO 08995 OANOO Yatws af<<>>I AN45 IAN9$OA494 03 0.7242 O.f f 99 0.0000 OPISI OA 209 0.1909 0.7-4.$9$$08$9$0.10$4 0.4044 0.6665 0320$0.1640 OANI 0 0.9 4.2$0$-4.1292-0.0674-0.0257 0.0040-OfS67 n-O.ISIS-0.0122 0.0149-4.006t i,sj,SI Sl 4I, 4j, 4b, 41 1st<<>>a OW 2--ba s praas>0)~\~JJ[ts a S o<<>>a 0.10 (~)]b,';la~6>0)n$,'[$($-$-")s-'-~+$-"-(-")'($-~$-")]tiVsfa 6>0)t,fc a O.I 04 OS 0.7 08 O.l 04 08 0.7 04 tsfc L O.I OJ 0$0.7 0.9 4 4444 44$$$OANOO Yabsa of~OA024 O.l f 77 OANOO 0.7949 OA5$5 Od IO I Vabsa of~IL$$2 7 0~0.1$0$O.l Oa OANOO 0.2$$5 OANOO Vabsa of<<04517 OAN94 0.0000 O.I 04 OS 0.7 P.SI52 0.1$7$0.0$4$OANOO 08$5$0.175$OAI9$7 OAI~If 0.9 4.1274 OANST 0.0741 0.0146-0.0000 0.1216 0.0619 4.0$aj 4.0 I 57 OAIO 4 f OAIIW 0.0941 4AISTS 0.0000 v.oa 0.042 6 O.ott9 0.049$0.0040 0.7 0.9 ca t+(-")'(IS-Itb-"))firer.s>0) 0.1 OJ 08 0.7 0.9 08791 OA905 OMTO 04407 0.'I 554 OAN90 O.f 472 O.ltst OAN5$OAIS12 0.0555 0.0460 0.0251 0.01 f9-0.0021
Ti le                                                                  Calcullt tion No.                           Rev                    Disp m~f.c o s,          Uac.'(I('eg      l:- u    Ku- I('o~                A,tOd'l-     A5-OO~                    0      t              g I P, Wo<      s                                                  nginator o~r~>>         4     6 c-~a       A,,q,      ate M/r r Ag
                                                                                                                                        /
(Sub) System(s)
                    ~mP                                  Index No.     Checker                                          Date Change No.
KePS+Cfir Approver V Xe+JOlO Ae~            "'-                 Date
                                                                                                                                    /lrql /9 Safety Class: (SR/NSR/QXX):                                                  NMPC Acceptance/Date Superseded  Document(s):            Q,om(
Descnption of Change hwpeetA'aw              iw      ~(a'R~~ +o ~.~~~~"t ~~~'>" "                                                              +
I ~ 'f4%. C,N'%(4 4 ~~~d'1 waif                                RI
    '2  ~      P    w ~on 5'7A/Q, ie %he. P~y'E~~
~p y          ~og r gb 44E. 0ve/LA'ti '@~V 5h,Q,
(
                                                                                  ~c(./~8'             ~~ P $ &Ou &7Al8 AIVt      ~ < ~ Ag r" h rR,ups ) %De~ $ 0 4+0 Q l ~0                                               d    ~
4P th~ce.i4 pr~is~a,s.Cw %dasrt Id(                                                           ~
C
        ~                          pV +o -77 e~ m +4 P< +0 2.d A      4 P g~s 'IIX +
                                                                                      "r~  'l
                                                                                              $   cs4
                                                                                                            $ o4+
44s.(i Xd1 pobd+I <                        7 esolution l4,~          X>ZI ~~A,~~ ~~X w f(v'~~g 44K. 44%o                          0
(
e.
                                                                      ~          +%~ ~ur.le 4 ~~4 I)~~>~~
4       W.hruS1' 5
                    "hOe5 C Va t>w                  4    4 >
gg,'ro,.i(          o>      ua      P Cross Reference Changels):
tZ- eeW                                                                                97- 03                    4 on irmaoon    equire      es  o:                  ina ssue tatup            i e ocation                  perations      cceptance See Page(s):                                      (APPIFIO/(/OII:    + Pi    (Ca(outa(/oo/Heidi:+d(d      Rea d(Yea(I/'IAI:                (d Cl Evaluation Number(s): 2 Og 3T                0   - 7 0%'h          Component IDls)(As shown in MEL):
Copy of Applicability Review Attached) Yes rU~
29%9 fC A L-pP<<ops), Z5g+'o C                        &#xc3;-V-4 2.~Ps      ~gcgfge maw WnV O(
a+A4      -       7 Key Words: F                                                            ~s~ P v Woe c 7n- +<T      c  '7A oo Thrc                  s(~                                       z~~ p ~ woo > 4 '7                                     .
ArWg2            I g+ /
r    9> <<O7 ws    ~ p + WMM /b-   D c
                                                                                                            /3 AG7 I
((e f aa 0 r SOS f0 34 2l Page    25                                          NEP-DES-08 Rev 04


(Enclosure 2 consists of the Disposition to Calculation No.A10.1-AD-003, titled"Pressure Locking Evaluation of MOVs." Enclosure 2 has 13 pages,~~which are numbered from 1 to 13) 0 T NAGARA V MOHAWK NUCLEAR ENGINEERING Peoe 1 INaxi)0'tel Li(t't i 3 u Project: NINE MILE POINT NUCLEAR STATION Unit (1,2 or 0=Both):~Discipline:
0 Niagara Mohawk Power Corporation                                NMP2                                                                  Page2ot Ato.t.AD%03, Rev. 01 t3 NuctearEngineering                                     Calculation Cont. Sheet Originator/Date Dno~'mQ ~ 4       Q~ /cf /<~(>~           Checker/Date gVtt     IJrq /R <
+<<~~(Sub)System(s)~mP Index No.Ti le m~f.c o s, Uac.'(I('eg l:-u Ku-I('o~Wo<s Calcullt tion No.Rev Disp A,tOd'l-A5-OO~0 t g I P, nginator A,,q, ate/o~r~>>4 6 c-~a M/r r Ag Checker Date KePS+Cfir V Xe+JOlO/lrql/9 Change No.Approver Ae~Date"'-Safety Class: (SR/NSR/QXX):
Disp. 01A Valve ID no: ";"<<VP'"'IQVtGA Re uired         0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Superseded Document(s):
Design Basis Conditions at time of Pressure Locking Event:
Q,om(NMPC Acceptance/Date Descnption of Change hwpeetA'aw iw~(a'R~~+o~.~~~~"t~~~'>""+I~'f4%.waif C,N'%(4 4~~~d'1 RI'2~P w~on 5'7A/Q, ie%he.P~y'E~~g~p y~og r gb 44E.0ve/LA'ti (5h,Q,'@~V~c(./~8'~~P$&Ou&7Al8 AIVt C~<Id(~Ag r" h rR,ups)%De~$0~4+0 Q l d 0~4 th~ce.pr~a,s.pV+o-77 A 4 P g~s'IIX+~$o 4+P~i4~is Cw%dasrt e~m d+4 P<+0 2."r~'l$cs4 44s.(i Xd1 pobd+I<7 esolution l4,~X>ZI~~A,~~~~X (~+%~~ur.le C 4 W.hruS1'w f(v'~~g 44K.44%o 0 e.4~~4 I)~~>~~5"hOe5 C Va t>w 4 4>gg,'ro,.i(o>ua P Cross Reference Changels):
Upstream pressure (psig),             P    .'=108           Valve Bonnet pressure (psig),             P bonn<<.=108 p
tZ-eeW 97-03 4 on irmaoon equire es o: See Page(s): ina ssue tatup i e ocation perations cceptance (APPIFIO/(/OII:
pressure (psig), P down 0                                                                                     'ownstream Valve Disk Geometry:                                                                                   I hubradius,         b:=3.375           meanseatradius,                 a .'=3.91   averaae disk thickness,               t:=0.48 6:= a n
+Pi (Ca(outa(/oo/Heidi:+d(d Rea d(Yea(I/'IAI: (d Cl Evaluation Number(s):
hub length,       L:=0.125           seat angle,           a   '.= 10             ~
2 Og 3T 0-7 0%'h rU~Copy of Applicability Review Attached)Yes 29%9 fC A L-pP<<ops), Z5g+'o C&#xc3;-V-4 Key Words: F oo Thrc g+/s(~ArWg2 I I r 9><<O7 Component IDls)(As shown in MEL): 2.~Ps maw a+A~gcgfge WnV O(4-7~s~P v Woe c'7A z~~p~woo c 7n-+<T.w s~p+W D>4'7/3 MM c/b-AG7 ((e f aa 0 r SOS f0 34 2l Page 25 NEP-DES-08 Rev 04 0
6 = 0.087 2 180 Valve Disk Material Properties:                                                                   6 rs r','2!r <.'/s.'.:..:2gie ot modulus of elasticity,        E '.=29400000              Poisson's Ratio, v .'=0.3 Other Valve Parameters:
Niagara Mohawk Power Corporation NMP2 NuctearEngineering Calculation Cont.Sheet Originator/Date Dno~'mQ~4 Q~/cf/<~(>~Checker/Date gVtt IJrq/R<Page2ot t3 Ato.t.AD%03, Rev.01 Disp.01A Valve ID no: ";"<<VP'"'IQVt GA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=108 Valve Bonnet pressure (psig), P bonn<<.=108
Valve Stem Diameter,         D stern .'=1.625       Static Unseating Thrust                 F po 9232
'ownstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=3.375 meanseatradius, I a.'=3.91 averaae disk thickness,~a n hub length, L:=0.125 seat angle, a'.=10 6:=-6=0.087 2 180 t:=0.48 Valve Disk Material Properties:
                                                                              &#xb9; (reference: Test 25, 70/6/94)
modulus of elasticity, E'.=29400000 Other Valve Parameters:
Valve Factor        VF:=0.65                    r'/eference: N.":R-2'-Ot0)
Poisson's Ratio, v.'=0.3 6 rs r','2!r<.'/s.'.:..:2gie ot Valve Factor VF:=0.65 Valve Stem Diameter, D stern.'=1.625 Static Unseating Thrust F po 9232 (reference:
Test&#xb9;25, 70/6/94)r'/eference:
N.":R-2'-Ot0)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, cos<6>1--sin(6)VF It=0 686 t reference Prte, up+down Average DPAcross Disk, DPavg Pbonnet-'I E\Disk Stiffnes Constants, D:=2 12 I-v III which gives, D=2.97710 and gives, DP av<=54 nnd G:=E 2 (2+2I)G=1.131~10 I b a b b a b Geometry Factors, C2'.=-I--1+2 In-C3',=--+1 In-+--I 4 a b 4a a b a 1 b C8:=-1+v+2 a 2 C 9'=--In-+-I--whichgives, C2=8.91910 C3=3.96510 C 8=0.911 C 9=0.121 COMED PL EvaitjationlNPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 1 1t~,
cos<6>
Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Catctrlation Cont.Sheet Originator/Date
Coefficient of friction between disk and seat, sin(6)
~~1~a e A 8~X ffl t~t~7 Checker/Date
VF 1                        It =0 686       t reference             Prte, up+ down Average DPAcross Disk,               DPavg         Pbonnet-                                 gives,    DP av< =54
/dc'//e lfv Page 3of t'tt Ato.t.AD4103, Rey, 111 Disp.01A Additional Geometrt/Factors, rp'.=b 2 4 2 1 0 0 0 L11'=-1+4--5--4 64 a a a 2 rp a 2+-ln-a rp 1 L17 4 4 2 1-v'0'0 a 1--1----'+(1+v)ln-4 a a rp which gives, L 11=1.378 10 and L 17=8.641.10 Moment Factors, 2 DPavg a C9 f M rb'.=---(a-r0)-L r7 C8 2ab Qb'a-r0)2b which gives, M,b=-8.373 and Qb=31.18 Deflection from pressure/bending, 4~=a'avg a ybq&#x17d;rb'C2+Qb C3-L11 D D D which gives, y bq=-1.937 10 Deflection from pressure/shear, 2 a rp rp Ksa'3 2'In 1+'2'I b a b.2 sa'vg a sq'G which gives, K sa=-0.012 and ysq 1796 10" Deflection from pressure/hub stretch, (2 force''(a-b)DPavg P force'L y stretctt'abb 2E which gives, P f=661.191 and y stre<ctt=-3.928 10 COMED PL EvaluationlNPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 2  
    'I Disk Stiffnes Constants,           D:=       E\                nnd          G:=        E 12     I-v   2 III 2  (2+2I) which gives,     D=2.97710                 and             G = 1.131 10 ~
/0 Niagara Mohawk Power Corporation NMP2 NuclearEnginee ring Calculahon Cont.Sheet Originatorloate
Geometry Factors,         C2'.=-I 4
'D c~>~>e Q~I~t W~f Checkedoate
I-   b a
~+ii'><iqrt yves Page4of i3 Ato.t.AD403.
1+2     In a
Rev.01 Disp.01A Total Deflection due to pressure, Additional Geometer Factors y q:=y bq+y sq+y stretch which gives, y q=-3.771 10 r.'=a 0'p L 3'.=-.4a 2 2 ro a ro+1 ln-+--1 a ro a p 1+v a 1-v ro L9'=--ln-+-.1--a 2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, w.'=1 asw C2 rpC9 p 3 y.b.=L9--+L3 whichgives, C8 b b ybw=-L83S 10 Deflection from seat load/shear, rp rp Ksa.'=-1.2 In-a b y'.=Ksa which gives, a tG Ksa=-0.177 y sw 1'272'10 Deflection from seat load I hub compression, L ,-2na 2 ycompr'b E which gives, y compr=Total Deflection from unit seat load, y w:=y bw+ysw+'ycompr which gives, y w=-3.122 10 which gives, Equilibrium contact load distribution, yq w equilibrium
 
'w Load per seat=2 n a=296.797 yq yw equilibrium
b C3',=   b 4a b
=12.081 Pressure Locking Force, COMED PL EvaluationlNPswp66aaa.mcd Valve ID: 2SWP MOV66A page 3
                                                                                                  +1 a
In a b
                                                                                                                        + I b
a 1
C8:=- 1+v+
2 b
a C9    '=-   - In   +                   I 2
whichgives,       C2 =8.91910                 C3 =3.96510 C 8 =0.911                   C 9 =0.121 COMED PL                                       Valve ID: 2SWP'MOV66A                                                                       page     1 EvaitjationlNPswp66aaa.mcd
 
1t
  ~,
 
Niagara Mohawk Power Corporation                                     NMP2                                                     Page  3of t'tt Catctrlation Cont. Sheet                                 Ato.t.AD4103, Rey, 111 Nuctear Engineering Originator/Date ~ ~ 1~a e     A8      ~X fflt~t~7               Checker/Date
                                                                                      /dc'//e lfv                             Disp. 01A Additional Geometrt/Factors,                                   rp '.=b 2               4               2                2
                              -5                                        2+  ln-rp L11 '=   1 64 1+4 a
0 a
0
                                                      -4 a
0 a
a rp L17 1
4
 
1-1- v 1-4
                                          '0
 
a 4
a 2
                                                        '0 '+(1+v) ln rp a
which gives,           L 11 =1.378       10             and                 L 17 = 8.641.10 Moment Factors, M rb'.=-
DPavg a C8 which gives, 2
C9 f 2ab    (a   -r0 ) L r7                           Qb'a     2b
                                                                                                                -r0)
M,b =-8.373                 and             Qb =31.18 Deflection from pressure/bending, 4
a'                                   avg a
ybq 'rb
                              ~
                                =
D
                                              'C2+Qb D
C3-D L11 which gives,                 y bq =-1.937 10 Deflection from pressure /shear, 2
sa'vg .2a Ksa'3         2'In a
b 1+
rp a
                                                            '       2'I rp b
sq'G which gives,               K sa =-0.012                   and                 ysq     1796 10" Deflection from pressure         /hub stretch, P force'L (2 b force''(a             ) DPavg                           y stretctt
                                                                                            'abb 2E which gives,                 P f       = 661.191             and         y stre<ctt =-3.928 10 COMED PL                                           Valve ID: 2SWP'MOV66A                                                       page 2 EvaluationlNPswp66aaa.mcd


e Niagara Mohawk Power Corporation NMP2 NuclearEngineering Catoutaoon Cont.Sheet Originator/Date Q~<~~~lL,.~g lrgtyq Cheotterjoate gvg y/rg/gg Pages ot+Al O.t-AD403.
/ 0 Niagara Mohawk Power Corporation                                   NMP2                                               Page4of i3 NuclearEnginee ring                                      Calculahon Cont. Sheet                             Ato.t.AD403. Rev.01 Originatorloate  'D c ~>~>e        Q ~ I ~t      W  ~  f    Checkedoate yves
Rev.01 Disp.01A Vq pres lock:=2na-'(it~os(8)-sin(8)).2 whichgives, Fp,es lock=354.165 Yw Piston Effect Force, Pu'=0 aun'n>>"piston effect''tem'(bonnet atm which gives, F piston effect 223.986'Reverse Piston Effect'orce, , I F een[n'.=e (2 FOonnet np Oownj]ein(8)Total Force Re uired to Overcome Pressure Lockin, which gives, F vert 452 088 F tot I:=F pres lock+F po+F vert-"pisto~effect which gives,, F total=9.814267 10.ACTUA TOFt CAPAGILlTYt Actuator Nodei/Slzet&fotor Torque Output: Gear Ratio: Application Factor: Pullout ENciencyt Reduced Voltage: Torque Ouf put: Stem Factor;Tht ust Capat3llityt
                                                                                      ~    +ii'><iqrt                  Disp. 01A Total Deflection due to pressure,                               y q:=y bq+ y sq+ y stretch which gives,           y q =-3.771 10 Additional Geometer Factors r .'=a
~TQout THcap:=-Sf TQout:=TQmRV OGRAf Eff=8MB-00-1$TQm'=14.74 OGR:=41.0 Af:=0.9 Eff:=0.4 RV:=0.8838 TQout=169.939 Sf'=0.016407 THcap=1.036 10 ft-Ibs ft-Ibs lbs iVOTEr RV lS SQUARE/F ACTUATQR IS AC.ENHANCED PRESSURE LQCKtNG NETHQDQLOGK KEI:='.20 Thrust Margin:=THcap-F>~.KEI Thrust Margin=-1.419 10 lbs ARy aot


== Conclusion:==
0'p 1+v ln + .
2                            2 1-v 1-      ro L3    '.= .
4a ro
                                  +1    ln +
a        ro 1        L9'=
a p
2 a
rp      4            a a            ro          a which gives,            L3 =0                  and          L9=0 Deflection from seat load bending,I                          w .'=1 y.b      .=
asw C2 rpC9 C8      b L9          p b
3
                                                                      +L3    whichgives,        ybw =-L83S      10 Deflection from seat load/shear, rp      rp Ksa .'=-1.2 a
In- b y    '.= Ksa tG a
which gives,          Ksa =-0.177 y sw    1'272'10 I
Deflection from seat load hub compression, L
ycompr  'b
                          ,
                              -2na      2 E
which gives,                y compr =
Total Deflection from unit seat load, y w:=y bw+ysw+'ycompr                            which gives,          y w =-3.122 10 Equilibrium contact load distribution, yq w equilibrium
                                  'w              which gives,              equilibrium
                                                                                          = 12.081 yq =296.797 Load per seat=          2 n  a yw Pressure Locking Force, COMED PL                                          Valve ID: 2SWP MOV66A                                                page 3 EvaluationlNPswp66aaa.mcd


Open Thrust t0ergin is negative, therefore this valve and actuator are-~44~overcome the theoretical pressure torking conditions evaluated.
e Niagara Mohawk Power Corporation                             NMP2                                               Pages  ot+
COMED PL EvaluationINPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 4 0
NuclearEngineering Originator/Date   Q  ~   <~~~ lL,. ~     g lrgtyq Catoutaoon Cont. Sheet Cheotterjoate gvg y/rg/gg AlO.t-AD403. Rev. 01 Disp. 01A pres  lock:= 2na    '(it~os(8)-sin(8)).2 Vq Yw whichgives,     Fp,es lock=354.165 Piston Effect Force,                         Pu aun  ''=0 n>>
Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Catculation Cont.Sheet Originator/Date 422~>~y~A~g tgg(q y Checker/Date af/r4/4o Page tc2ot l3 A10.1.AD403.
          "piston effect   '   'tem   '(   bonnet       atm which gives,   F piston effect   223.986
Rev.01Disp.01A Valve ID no: 282t V!'MOVE:~A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=108 Valve Bonnet pressure (psig), P bonnet 108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a'.=1.88 averaae disk thickness, t:=0.626 a x seat angle, a'.=10 e:=-e=0.087 2 180 Valve Disk Material Properties:
    'Reverse Piston Effect'orce, I
modulus of elasticity, E:=29400000 Other Valve Parameters:
F een , [n'.=e (2 FOonnet        np      Oownj] ein(8) which gives,       F vert 452 088 Total Force Re uired to Overcome Pressure Lockin, F tot  I:=F pres lock+ F po+ F vert- "pisto~effect which gives,,      F total = 9.814267 10   .
Valve Stem Diameter, D stern.'=1.375 Valve Factor VF.'=I Poisson's Ratio, v'.=0.3 e js hair'I pk ij)oje tx'tatic Unseating Thrust, F po'.=4056 (reference:
ACTUA TOFt CAPAGILlTYt Actuator Nodei /Slzet                                                                  = 8MB-00-1$
Test&#xb9;8, 5/17/98)(je/erence:
  &fotor Torque Output:                                                                 '=
NER-Bk0$0)CALCULATIONS:
TQm 14.74                ft- Ibs Gear Ratio:                                                                    OGR:=41.0 Application Factor:                                                              Af:=0.9 Pullout ENciencyt                                                                Eff:=0.4 Reduced Voltage:                                                                  RV:= 0.8838 Torque Oufput:                TQout:=TQmRV OGRAf Eff                          TQout = 169.939          ft- Ibs Stem Factor;                                                                      Sf '= 0.016407 Tht ust Capat3llityt                    TQout THcap:=
Coefficient of friction between disk and seat, 0 cos(e)It:=--sin(e)1 VF It=1091 t referee::eft3 Average DP Across Disk, Disk Stiffnes Constants, gives, nnd G:=E 2(1+v)up+down avg'onnet 2 Et 12 1-v DP ayg 54 which gives, D=6.605 10 and G=1.131 10 Geometry Factors, C 2.'=-I--1+2 In-C3'.=--+I In-+--I 1 b a, b b a b 4 a b'4a a a b 2 C 8'.=-1+v+(I-v)~-2 a 2 C 9:=--In-+-I--which gives, C 2=0.049 C 8=0.805 C 3=5.093 10 C 9=0.241 COMED PL EvaluationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 1 II, Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Calcutation Cont.Sheet Originator/Date Q~,~~4~/Vl y leap Checker/Date
                                        ~
'I X4 u]el~~Page'7 ot IP At 0.t-AD%03.
THcap = 1.036 10           lbs Sf iVOTEr RV lS SQUARE /F ACTUATQR IS AC.
Rev.01 Disp.01A Add/'tionat Geometr3/Factors,'p'.=b
ENHANCED PRESSURE LQCKtNG NETHQDQLOGK                                        KEI:='.20 Thrust Margin:= THcap- F >~.KEI Thrust Margin =-1.419 10          lbs ARy aot
~I 64 2 4 2 fp rp rp I+4--5--4-a a a 2 fp 2y-In-a rp I L17 4 4 2.I-v P 0 a I+(I+v)In-4 a a rp whichgives, L11=4.48110 and Moment Factors, 2 DPavg a C9 l M~b'.=---(a-r 0)-L~r cg 2ab L 17=0.046 ob:=-'"'(*-0*)2b which gives, M rb--13.186 and Q b 42.593 Deflection from pressure/bending, a a avg a ybq:=Mrb C2+Qb C3-L11 D D D which gives, yh=-1.752 10 Deflection from pressure/shear, 2 a rp rp Ksa'.3 2 In--1+-~I-2 In-b a b 2 sa'vg a t.o which gives, K sa=-0.078 and ysq=-2.09 10 Deflection from pressure/hub stretch, l2 orce''(a-b)DPavg-P force L y stretch'tb 2E which gives, P force 334 525 and y stretch=-2.897 10 COMED PL EvaiuationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 2 ll 0 18 lp Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Catcutabon Cont.Sheet Originaterlnate Qss~lW~g'~/+f<0 IO)CheokerrDate gad N/err/W Page~ot t 3 Ato.t.AD403.
Rev.0t Disp.OtA Total Deflection due to pressure, Additional Geometry Factors y q'=y bq+y sq+y stretch hfch gives yq=-4.131 10 rp.'=a rp L3'.=-4a 2 2 ro a ro+1 ln-+--1 a ro a ro L 9:=-.a 2 I+v a I-v 0-ln-+-1--2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, we 1 awC2p9 y'bw D C8 b rp C3 Lg--+L3, evhichgivss b y bw=-1.465 10 Deflection from seat load I shear, fp rp Ksa.'=-1.2 ln-a b y',=Ksa which gives, a tG Ksa=-0.49 y sw=-1.301 10 Deflection from seat load I hub compression, L ,-2na 2 y compr'=nb E which gives, compr 1 023 1 0 Total Deflection from unit seat load, y w:=ybw+ysw+ycompr which gives, y w=-2.868 10 Equilibrium contact load distribution, w equilibrium
'hich giv yq yw yq Load per seat=2 n a=170.165 yw w equilibrium 14'406 Pressure Locking Force, COMED PL EvaiuationlNPswp67aaa.mcd Valve ID: 2SWP MOV67A page 3 tl Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Calculation Cont.Sheet ortginatorroate
%+>~'to A.~/~(ry (yq checkerroate
~/vJ e/~/~~Page Iof 17 At 0.t-AD403.
Rev.Ot Disp.ptA Yq F I k'.=2tt a (It cos(e)-sin(e))
2 pres oc w which gives, F pres lock Piston Effect Force, P:=0 aun 2/piston effect''tem
'(bonnet atm wl Ich gives, Fpistpn effect=160.368'Reverse Piston Effect'orce, F vert'.a~2 P bonnet up gown sin(e)which gives, vert 04 Total Force Re uired to Overcome Pressure Lockin, F total:=F pres lock+F pp+F vert-F pistpn effec which gives, F to~=4.340478 10 ACTLrAWR CAPAGILITV'cfuetor IHodel/'ize: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency." Reduced Voltage: Torque Output: 8temF acfor: Thrust Capatv7ltrrr:
TQout THcap'.=-Sf TQout:=TQm RV OGR Af Eff ft-lbs ft-Ibs=SM8-000-5 TQm ,'=5 OGR:=57.0 Af:=0.9/Eff:=0.4 RV l=0.8816 TQout=79.743 Sf:=0.014263 THcap=5.591 10 Ibs ItIOT'F;RtrIG SQUARE IF ACTLIATOR IS AC.FWHAeCEO PRESSURE LOCIr,'AVO urETHOaoLOOI" KEI:=1.20 Thrust Margin'.=THcaP-Ftot I KEI Thrust Margin=382.299 lbs


== Conclusion:==
== Conclusion:==
Open Thrust t0ergin is negative, therefore this valve and actuator                      are-~44~
overcome the theoretical pressure torking conditions evaluated.
COMED PL                                      Valve ID: 2SWP'MOV66A                                            page 4 EvaluationINPswp66aaa.mcd
0 Niagara Mohawk Power Corporation                                NMP2                                                    Page tc2ot  l3 Nuclear Engineering Originator/Date 422~>~y~    A    ~        g tgg(q y Catculation Cont. Sheet Checker/Date af/r4/4o A10.1.AD403. Rev. 01 Disp. 01A


Open Thrust Nerain is Positive.fherefore this valve and actuator are Iilrely fo overcome the theoretical pressure locking conrIIBons evaluated.
Valve ID no: 282t V!'MOVE:~A Re uired          0 enin      Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS:
COMED PL EvaluationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 4
Design Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),              P    .'= 108          Valve Bonnet pressure (psig), P bonnet              108 p
Downstream pressure (psig), P down                  0 Valve Disk Geometry:
hub radius,        b:= 1.25          mean seat radius,            a'.=1.88    averaae disk thickness,        t:=0.626 a x


Niagara Mohawk Power Corporation NMP2 N trotear Engineering Catoulation Cont.Sheet ohginalorloate Q~l~j'e Ar~/Vlcgl p f checkerroate
hub length,       L:=0.25             seat angle,           a  '.=10         e:=               e =0.087 2 180 Valve Disk Material Properties:                                                               e js  hair 'I pk ij)oje  tx modulus of elasticity,        E:=29400000              Poisson's Ratio, v '.=0.3 Other Valve Parameters:
+tIcrI re/r 9/Orr PagelOol\g At 0.t.AD403.
Valve Stem Diameter,         D stern .'=1.375     'tatic Unseating         Thrust,   F po'.=4056 (reference: Test         &#xb9; 8, 5/17/98)
Rev.01 Disp.otA Valve ID no: BSSVP>;"Ot/6TB Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=10S Valve Bonnet pressure (psig), P bonn<<.'=10S Downstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=1.25 meanseatradius, modulus of elasticity, E:=29400000 Poisson's Ratio, v'.=0.3 Other Valve Parameters:
Valve Factor        VF.'= I                     ( je/erence: NER-Bk0$ 0 )
a.'=1.88 averaae disk thickness, t:=0.626 a rt hub length, L:=0.25 seat angle, ct'.=10 e:=--e=0.087 2 180 Valve Disk Material Properties:
e is h tir di:-'..;tngie a Valve Factor VF.'=I Valve Stem Diameter, Dstcm.'=1.375 Static Unseating Thrust, F~.'=2444 (reference:
Test&#xb9;13, 5/26/9B)I reference:
NER-2'-Ot0)
CALCULATIONS:
CALCULATIONS:
Coefficient of friction between disk and seat, p,.'=cos(e)I--sin(e)VF It=1.091 ("eference
cos(e)
="6;Average DP Across Disk, Disk Stiffnes Constants, gives, DP avg=54 and G:=E 2/1+v)up+down avg'onnet 2 Et 12 I-v which gives, D=6.605 10 and G=1.131 10 Geometry Factors, C 2'.=-I--~I+2 In-C3.'=--+I ln-+--I I b a, b b a b 4 a b'4a a b a b CS:=-'+'+('-')2 a b I+v a I-v b C 9'=--ln-+-I--a 2 b 4 a which gives, C 2=0.049 C 8=0.805 C3=5.093 10 C 9=0.241 COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV678 page 1  
Coefficient of friction between disk and seat,                 It:=
0 1
VF sin(e)
It =1091    t referee::eft3 up+ down Average DP Across Disk,                   avg  'onnet                    2 gives,    DP ayg    54 Disk Stiffnes Constants, Et              nnd        G:=       E 12    1-v                              2(1+v) which gives, Geometry Factors, D = 6.605 10 C  2.'=-1 4
I-  b a
and 1+2      In a,
G = 1.131 10
 
b C3  '.= b
                                                                                  '4a      b a
                                                                                                  +I    In a      b
                                                                                                              +  I a
C 8 '.= 1+v+(I 2
                                                        - v) ~    b a
2 C 9:=-     - In  +              I 2
which gives,      C 2 = 0.049                  C 3 = 5.093 10 C 8 =0.805                  C 9 =0.241 COMED PL                                        Valve ID: 2SWP'MOV67A                                                  page      1 EvaluationlNPswp67aaa.mcd
 
II, Niagara Mohawk Power Corporation                                      NMP2                                                Page'7 ot At0.t-AD%03. Rev.
IP 01 Nuctear Engineering                                    leapCalcutation Cont. Sheet Originator/Date  Q ~,~    ~  4    ~/Vl              y            Checker/Date X4
                                                                                                  'I u] el~~
Disp. 01A Add/'tionat Geometr3/        Factors,'p'.=b 2              4              2              2 I+4 4                                      2y  In-
                ~
I          fp              rp              rp              fp 64          a              a                a              a          rp 4              2.
I      I-v              P              0 I+(I+v) In        a L17 4        4              a              a                           rp whichgives,           L11=4.48110                      and              L 17 =0.046 Moment Factors, M ~b '.=-
DPavg cg which gives, a
2 C9 2ab l
(a   - r 0 ) - L ~r                      ob:=     2b
                                                                                                      '"'(*-     0*)
M rb --13.186                and            Qb    42.593 Deflection from pressure/bending, a
a                    a               avg ybq:=Mrb            C2+Qb                C3-                   L11 D                    D              D which gives,                  yh    =-1.752      10 Deflection from pressure /shear, 2
                      '.3    2 a
In 1+
rp 2
                                                              ~
I 2  In-brp                        sa'vg    a Ksa                                                                                      t.o b               a which gives,               K sa =-0.078                  and              ysq =-2.09  10 Deflection from pressure          /hub stretch,
                                                                                              -P force L orce''(al2 -b        ) DPavg                          y stretch
                                                                                            'tb 2E which gives,                P force        334 525            and      y stretch =-2.897 10 COMED PL                                             Valve ID: 2SWP'MOV67A                                                  page 2 EvaiuationlNPswp67aaa.mcd
 
ll 0
18 lp
 
Niagara Mohawk Power Corporation                            NMP2                                                Page  ~ot t 3 Nuclear Engineering                                Catcutabon Cont. Sheet                            Ato.t.AD403. Rev. 0t Originaterlnate Qss~ lW~      g'~ /+      f< 0 IO)
CheokerrDate gad    N/err/W Disp. OtA Total Deflection due to pressure,                        yq  '=y bq+ y sq+ y stretch hfch gives          yq =-4.131      10 Additional Geometry Factors                  rp.'=a L3'.=  rp 4a ro a
2
                                +1   ln + -1 a
ro ro a
2 L 9:= .
a


Niagara Mohawk Power Cofgoration NMP2 Nooiear Engineering Caioulation Cont Sheet o'creere roar af cr re A~err(<+(rr ceeee rcce gute vb~)~o Pagetiof 1 2h A10.1.AO403, Rev.01 Disp.01A Additional Geometry'actors, rp:-"b I 64 2 4 2 1'p rp fp 1~4--5--4 a a a 2 fp 2+-In-a rp I L17 4 4 2]y fp fp a I--I----I+(I+y)ln-4'a t'p which gives, L11=4481.10'nd Moment Factors, L 17=0.046 M fb:-"-2 DP avg a C9~-.a-rp-L17 C8 2'a'b oh:=-'"'('-0')2b which gives, M rb"13.186 and Qb=42593 Deflection from pressureNending, 4 a'avg a ybq:=Mrb C2+Qb C3-L 11 D, D D which gives, y bq=-1.752 10 Deflection from pressure I shear, 2 a rp fp K:=-0.3 2 In--Iy-~I-2 In-sa'b 2 Km'DP avg a ysq'=which gives, K sa=-0.078 and ysq=-2.09 10 Deflection from pressure/hub stretch, force'ecerch't b.2E which gives.p=334.525 and y stretch=COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV67B page 2 h I 0 Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Cahuiation Cont.Sheet Ottgnator/DateWsem>>qual
ro I+v 2
~(tt, gg9itrpy Checker/Date pe lr/19/gQ Page 12ot 1 g A10.1.AD403, Rev.01 Disp.ot A Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q=-4.131 10 rp.'=a L 3.'"--.4a 2 2'o a'o+1 ln-'+--1 a rp a 1'L9'=-.a 2 1+v a 1 v rp-ln-+-1-2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, w.'=1 s w C3 rccg r~C3 ybw.=----Lg.-s.L3 whichgives, D Cs b b y bw=-1.465 10 Deflection from seat load I shear, ro ro Ksa.'=-1.2 In-a b I a ysw'sa tG which gives, Ksa=-0.49 ysw=-1.301 10 Deflection from seat load/hub compression, L 2'tt'a 2 y compr'tb E which gives, cpm r 1 023 10 P Total Deflection from unit seat load, yw'bw+ysw+ycompr which gives, y w 2'868'10 which gives, Equilibrium contact load distribution, q y equilibrium
ln +
'w yq Load per seat=2 tt a=170.165 yw equilibrium Pressure Locking Force, COMED PL EvaluatlonlNPswp67baa.rncd Valve ID: 2SWP'MOV67B page 3  
rp a     I-v 1-4           a 0
2 which gives,         L3 =0               and         L9=0 I
Deflection from seat load bending,                     we  1 y'bw awC2p9 D      C8      b Lg rp C3 b
                                                              +L3, evhichgivss            y bw =-1.465 10 Deflection from seat load shear, I fp      rp Ksa .'=-1.2 a
ln- b y',= Ksa        a tG which gives,         Ksa =-0.49 y sw =-1.301 10 I
Deflection from seat load hub compression, L
                        ,'= -2na    2 which gives,                         1 023     0 y compr                                                      compr            1 nb      E Total Deflection from unit seat load, y w:=ybw+ysw+ycompr                         which gives,         y w =-2.868 10 Equilibrium contact load distribution, w equilibrium   'hich yq yw giv          w equilibrium  14'406 yq =170.165 Load per seat=         2 n a yw Pressure Locking Force, COMED PL                                     Valve ID: 2SWP MOV67A                                              page 3 EvaiuationlNPswp67aaa.mcd


Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Calculation Cont.Sheet Ortgtnatorlnate Qep~~g>4~4lj PbP Checker/Dale XV4 Vlr~l~z Pager 9of l3 At 0.t.AD403.
tl NMP2                                                Page Iof 17 Niagara Mohawk Power Corporation                                                                                       At0.t-AD403. Rev. Ot Nuclear Engineering                                                 Calculation Cont. Sheet ortginatorroate  % +>~ 'to A.                    ~/~(ry (yq            checkerroate  ~
Rev.01 Disp.ot A F pres lock 2 rt a-(p, cos(8)-sin(0))2 Yq W which gives, F pres lock=" Piston Effect Force, Pan:=0 2/p piston effect''tem
                                                                                                    /vJ  e/~/~~
'(bonnet atm which gives, F piston effect=160.368'Reverse Piston Effect'orce, Fen'.=[n s (2 p bonnet np-psronss}]sin(8), I Total Force Re uired o Overcome Pressure Lockin, which gives, Fert=104.517 F total:=F pres lock+'po+F vert-F piston effec which gives, F<<~=2.728478 10 ACTUA TOR CAPABILITYr Actuator Nodel I Size: Motor Torrfue Output;Gear Ratio: Application Factor: Pullout Efficiency:
Disp. ptA Yq F pres Ioc k'.=                  2tt a     (It cos(e)-sin(e))         2       which gives,   F pres lock w
Reduced Volta ge: Torque Output;Stern Factor: Tlu ust CapBbflityr TQout THcap'.=-Sf TQout:=TQm RV OGR Af Eff=Sl'f8-000-5 TQm'=5 OGR:=57.0 Af'=0.9 Eff:=0.4 RV:=0.8825 TQout=79.906 Sf:=0.014263 THcap=5.602 10 3 ft-lbs ft-Ibs Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOC/C NG METHODOLOGY:
Piston Effect Force,                                         P:=0 aun
, KEI:>>1.20 Thrust Margin'=THcap-F to~KEI Thrust Margin=2.328 10 lbs
                                                        '(/                                                            =
2 piston   effect''tem                           bonnet       atm           wl Ich gives,   Fpistpn effect 160.368
    'Reverse Piston Effect'orce, F vert '.a                    ~
2 P bonnet up      gown      sin(e)         which gives,       vert  04 Total Force Re uired to Overcome Pressure Lockin, F total:=F pres lock+ F pp+ F vert- F pistpn effec which gives,         F to~ = 4.340478 10 ACTLrAWR CAPAGILITV'cfuetor IHodel /'ize:                                                                               = SM8-000-5 Motor Torque Output:                                                                                TQm ,'=5             ft- lbs Gear Ratio:                                                                                        OGR:=57.0 Application Factor:                                                                                  Af:=0.9               /
Pullout Efficiency."                                                                                Eff:=0.4 Reduced Voltage:                                                                                    RV l=0.8816 Torque Output:                              TQout:= TQm RV OGR Af Eff                            TQout = 79.743          ft- Ibs 8temF acfor:                                                                                        Sf:=0.014263 Thrust Capatv7ltrrr:
THcap  '.=TQout Sf                                  THcap = 5.591 10         Ibs ItIOT'F; RtrIG SQUARE                         IF ACTLIATORIS AC.
FWHAeCEO PRESSURE LOCIr,'AVO urETHOaoLOOI"                                                        KEI:= 1.20 Thrust Margin'.=THcaP- Ftot I KEI Thrust Margin = 382.299            lbs


== Conclusion:==
== Conclusion:==
Open Thrust Nerain is Positive. fherefore this valve and actuator are Iilrely fo overcome the theoretical pressure locking conrIIBons evaluated.
COMED PL                                                      Valve ID: 2SWP'MOV67A                                              page 4 EvaluationlNPswp67aaa.mcd
Niagara Mohawk Power Corporation                              NMP2                                                      PagelOol  \g N trotear Engineering                                Catoulation Cont. Sheet                                At0.t.AD403. Rev. 01 ohginalorloate    Q  ~l~ j'e Ar ~/Vlcglp f              checkerroate
                                                                                  +tIcrI Disp.otA re /r 9/Orr Valve ID no: BSSVP >;"Ot/6TB Re uired          0 enin      Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:
Design Basis Conditions at time of Pressure Locking Event:
Upstream pressure (psig),            P p.'= 10S        Valve Bonnet pressure (psig), P bonn<<              .'= 10S Downstream pressure (psig), P down                0 Valve Disk Geometry:
hubradius,          b:=1.25          meanseatradius,              a .'=1.88  averaae disk thickness,            t:=0.626 hub length,        L:=0.25          seat angle,          ct '.= 10          e:= a rt 2 180 e =0.087 Valve Disk Material Properties:                                                            e is h tir di:-'..;tngie a modulus of elasticity,          E:=29400000            Poisson's Ratio, v '.=0.3 Other Valve Parameters:
Valve Stem Diameter,          Dstcm.'=1.375        Static Unseating Thrust,          F~.'=2444 (reference: Test          &#xb9; 13, 5/26/9B)
Valve Factor          VF .'= I                I reference:      NER-2'-Ot0)
CALCULATIONS:
cos(e)
Coefficient of friction between disk and seat,              p, .'=
I VF sin(e)
It =1.091    ("eference ="6; up+ down Average DP Across Disk,                  avg  'onnet                    2 gives,      DP avg =54 Disk Stiffnes Constants,                    Et              and        G:=      E 12  I-v                              2/1+ v) which gives, Geometry Factors, D =6.605 10 C 2'.=-
I 4
I-  b a
                                                  ~
and I+2 In    a, G =1.131 10 b
C3.'=
                                                                                '4a b
b a
                                                                                                  +I    ln a
b
                                                                                                              +  I a
b CS:=-
2
                                          '+'+('-')            b a
C9 a
                                                                                          -
                                                                                  '=-b I+v ln 2
a b
                                                                                                          +
I-v 4
I b
a which gives,        C 2 =0.049              C3 =5.093        10 C 8 =0.805              C 9 =0.241 COMED PL                                      Valve ID: 2SWP'MOV678                                                      page    1 EvaluationlNPswp67baa.mcd
Niagara Mohawk Power Cofgoration                                      NMP2                                                Pagetiof  1 2h Caioulation Cont Sheet                              A10.1.AO403, Rev. 01 Nooiear Engineering o 'creere roar af cr      re A      ~err(<+(rr                    ceeee rcce                                              Disp.01A gute vb~)~o Additional Geometry'actors,                                      rp:-"b 2                4              2              2 I
64 1~4 1'p a
5 rp  fp a
4 a
2+    In-fp a          rp L17 4
I  I-  I-
                          ]  y 4'
fp 4
fp a
2 I+(I+y) ln        a t'p which gives,            L11 =4481.10
                                                                'nd                        L 17 =0.046 Moment Factors, M fb:-"-
DP avg a C8 2
                                    ~  .C9 2'a'b a  rp        -L17                    oh:=      2b
                                                                                                        '"'('-  0')
which gives, M rb "13.186              and            Qb =42593 Deflection from pressureNending, 4
ybq:=Mrb D,
a' C2+Qb D
C3-        avg D
a L 11 which gives,                  y bq =-1.752 10 Deflection from pressure        Ishear, 2                                                      2 Km'DP avg K:=-0.3 sa      '  2 In    Iy a
I  In-b rp    ~
2 fp ysq
                                                                                                  '=
a which gives,                K sa =-0.078                  and                ysq =-2.09 10 Deflection from pressure        /hub stretch, ecerch    't    force' b  .2E which gives.                p            = 334.525            and        y stretch =
COMED PL                                            Valve ID: 2SWP'MOV67B                                                  page 2 EvaluationlNPswp67baa.mcd
h I
0
Niagara Mohawk Power Corporation                                NMP2                                                  Page 12ot  1 g
Nuctear Engineering                                    Cahuiation Cont. Sheet                                A10.1.AD403, Rev. 01 Ottgnator/DateWsem>>qual
                                ~ (tt,        gg9itrpy      Checker/Date pe        lr/ 19 /gQ Disp.ot A Total Deflection due to pressure,                            yq 'bq+ysq+ystretch which gives,            y q =-4.131 10 Additional Geometry Factors                          .'=a rp
              -.
L 3 .'"
4a
                          'o a
2
                                +1      ln '+
a rp
                                                    'o -1 a
2 L9  '= .
1' a
1+v 2
ln a
rp
                                                                                                      +
1 4
v 1-  rp a
2 which gives,                L3 =0                and            L9 =0 I
Deflection from seat load bending,                          w .'=1 ybw.=-
s w D
C3 Cs
rccg -Lg  b
                                                    .
r~C3 b
s.L3 whichgives,              y bw =-1.465 10 Deflection from seat load shear, I I
ro      ro Ksa .'=-1.2 a
In-  b ysw'sa          a tG which gives,          Ksa =-0.49 ysw =-1.301      10 Deflection from seat load /hub compression, L
2'tt 'a 2 y compr
                        'tb          E which gives,                  cpm P r  1 023 10 Total Deflection from unit seat load, yw'bw+ysw+ycompr                                which gives,            yw      2'868'10 Equilibrium contact load distribution, yq equilibrium  'w                which gives,              equilibrium Load per seat=
yq =
2 tt a        170.165 yw Pressure Locking Force, COMED PL                                        Valve ID: 2SWP'MOV67B                                                  page 3 EvaluatlonlNPswp67baa.rncd
Niagara Mohawk Power Corporation                          NMP2                                                Pager 9of At0.t.AD403. Rev. 01 l3 Nuctear Engineering                              Calculation Cont. Sheet Ortgtnatorlnate Qep~~g      >  4  ~4lj PbP            Checker/Dale XV4 Vlr~l~z Disp.ot A F pres lock      2 rt a Yq W
(p, cos(8 ) sin(0 ) ) 2        which gives,    F pres lock =    "
Piston Effect Force,                          Pan:=0 effect''tem 2 '(/p bonnet          atm which gives,    F piston effect = 160.368 piston
    'Reverse Piston Effect'orce, F      , I en'.=[n  s (2 p bonnet      np- psronss}] sin(8)            which gives,      F ert = 104.517 Total Force Re uired o Overcome Pressure Lockin, F total:= F pres lock+'  po+ F vert- F piston effec which gives,      F  <<~ =2.728478        10 ACTUATOR CAPABILITYr Actuator Nodel Size:  I                                                                = Sl'f8-000-5
                                                                                        '=5              ft- lbs Motor Torrfue Output;                                                            TQm Gear Ratio:                                                                      OGR:=57.0 Application Factor:                                                              Af '=0.9 Pullout Efficiency:                                                              Eff:=0.4 Reduced Voltage:                                                                  RV:= 0.8825 Torque Output;                TQout:= TQm RV OGR AfEff                          TQout = 79.906          ft- Ibs Stern Factor:                                                                    Sf:= 0.014263 Tlu ust CapBbflityr                    TQout THcap'.=                                      THcap = 5.602 10 3
Ibs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC.
ENHANCED PRESSURE LOC/C NG METHODOLOGY:                                    ,
KEI:>> 1.20 Thrust Margin '=THcap- F to~ KEI Thrust Margin =2.328 10          lbs


== Conclusion:==
Open Thrust Margin ls posftivep therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Open Thrust Margin ls posftivep therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV67B page 4 I 0 N 0}}
COMED PL                                     Valve ID: 2SWP'MOV67B                                               page 4 EvaluationlNPswp67baa.mcd
 
I 0
N 0}}

Revision as of 21:53, 21 October 2019

Rev 1 to A10.1-AD-003, Pressure Locking Evaluation of Movs.
ML18040A362
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 10/21/1997
From: Cruz D
NIAGARA MOHAWK POWER CORP.
To:
Shared Package
ML17059C644 List:
References
A10.1-AD-003, A10.1-AD-003-R01, A10.1-AD-3, A10.1-AD-3-R1, NUDOCS 9904300086
Download: ML18040A362 (305)


Text

{{#Wiki_filter:(Enclosure 1 consists of Calculation No. A10.1-AD-003, titled "Pressure Locking Evaluation of MOVs." Enclosure 1 has 137 pages, which are numbered from 1 to E4)

0 GARA Page 1 ( Next Z ) U MOHAWK ~CA'LC.UL'AT:.lON.',C,OV;ER'SHEET".,"" Tetai /s7 NUCLEAR ENGINEERING Last C'4 NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Discipline: MECHANICAL Title Calculation No. PRESSURE LOCKING EVALUATIONOF MOV'S A10.1-AD-003 (Sub)system(s) Building Floor Elev. Index No. VARIOUS NA NA NA Originator(s) DOMINGO A CRUZ Checker(s) I Approver(s)

                          ~. A l    e  (K ldll/Cg IC. Ze tee Design          Prep'd Rev                   Descri tion             'han     e No.        B             Date        Chk          Date         A             Date 01            COMPLETE REVISION TO               NA                 DAc a         8-25-yg INCORPORATE DISP.

00A AND TO USE MOST CURRENT INDUSTRY INF. Computer Output/Microfilm Filed Separately (Yes / No / NA): NO '.: Safety Class (SR / NSR I Qxx): SR Superseded Document(s): A10.1-AD@03, REV. 00, . ~+c</I /e(9', e DOCument CrOSS ReferenCe(S) - FOr additianal referenCeS See page(S):46NE 'b<C.O )titsrS  % tg. ~ & eg4bO 4- G Ref Doc Document No. T e Index Sheet Rev SEE SECTION 4.0 General Reference(s): NONE Remarks: NONE Confirmation Required (Yes / No): No Final Issue Status File Location Operations Acceptance See Page(s): NA ( APP I FIO/ VOI ): APP ( Cele I Hold ): Gale Required ( Yes I No ): No Evaluation Number(s) I Revision: NA Component ID(s) (As shown ln MEL):

                                                 /                     2CSH'MOV101,2CSL'MOV107,2ICS         MOV121,122,128,129,2RHS'MOV Copy of Applicability      Review  Attached (Yes    N/R)7NR 115,116,4A,B,C,2SWP'MOV17A,B,1 8A,B,21 A,B,66A,B,67A,B,94A,B Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7
'gl'gl04300086 9'gI042i                                                                                           ¹ FORMAT NEP-DES-08, Rev. 02 (F01)

PDR ADQCK 050004i0 P PDR

GARR::::! e': '-'!:.::: '-': ':: ': '::.: -f-: .::" Page 1 ( Next Ia 7 P l CALCULATIONCOVER SHEET Total NUOLEAR ENGINEERING NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Disci pline: MECHANICAL Title Calculation No. PRESSURE LOCKING EVALUATIONOF MOV'S A10.1-AD-003 (Sub)system(s) Building Floor Elev. Index No. VARIOUS NA NA NA Originator(s) DOMINGO A. CRUZ A ('(~ Checker(s) / Approver(s)

@~i~r~ S.Z~~,~

Design Prep'd Rev Descri tion Chan e No. B Date Chk Date A Date 01 COMPLETE REVISION TO NA Dhce tll-25-yg INCORPORATE DISP. 00A AND TO USE MOST CURRENT INDUSTRY INF. Computer Output/Microfilm Filed Separately (Yes / No / NA): NO . Safety Class (SR I NSR I Qxx): SR Superseded Document(s): A10.1&D403, REV. 00, . ts+~I //6/pg Document Cross Reference(s) - For additional references see page(s):4QNE ><Ca lild'rS % 8, < G acket>"r i. + Ref Doc Document No. T Index Sheet Rev SEE SECTION 4.0 General Reference(s): NONE Remarks: NONE Confirmation Required (Yes / No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO I VOI ): APP ( Cele/ Hold ): Cele Required ( Yes / No ): No Evaluation Number(s) I Revision: NA Component ID(s) (As shown in MEL): Copy of Applicability Review Attached (Yes I N/R)? NR 2CSH'MOV101,2CSL'MOV107,2ICS'MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,18A,841 A,B,66A,B,67A,B,94A,B Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7

                                                                                                                      ¹ FORMAT NEP-DES48, Rev. 02 (FOI)
       %NIAGARA N U MOHAWK                        CAL'CULATION'CONTINUATIONSHEET                                  Page
                                                                                                   <@ext ra NUCLEAR ENGINEERING                                               v Nine Mile Point Nuclear Station                   Unit: 2                                Disposition:  NA Originator/Date 3c ef.

rn ow A.C,~ // 8/Ls'/rg ~ Checker/Date JP.JH7 A10.1-AD-003 Revision 01

1.0 PURPOSE

The purpose of this evaluation is to assess the capability of various motor operated valves to open against potential pressure locking conditions as described in NUREG 1275, Operating Feedback Report - Pressure Locking and Thermal Binding of Gate Valves, and to address GL89-10, Supplement 6 and GL95-07. The following valves have been identified as potentially susceptible to pressure locking per NER-2M-007, Rev. 1, "Pressure Locking I Thermal Binding of Safety Related Power Operated Valves". This evaluation uses the current design basis to determine the acceptability of these valves.

2.0 SCOPE

High Pressure Core Spray System - 2CSH'MOV101 Low Pressure Core Spray System - 2CSL MOV107 Reactor Core Isolation Cooling System - 2ICS'MOV121, 2ICS" MOV1 22, 2ICS*MOV128 and 2ICS'MOV129 Residual Heat Removal System - 2RHS'MOV115, 2RHS'MOV116, 2RHS*MOV4A, 2RHS*MOV4B and 2RHS'MOV4C Service Water System - 2SWP*MOV17A, 2SWP'MOV17B, 2SWP'MOV1 8A, 2SWP'MOV18B, 2SWP"MOV21A, 2SWP'MOV21B, 2SWP'MOV66A, 2SWP'MOV66B, 2SWP*MOV67A. 2SWP'MOV67B, 2SWP'MOV94A and 2SWP MOV94B I

3.0 METHODOLOGY

For each of the valve groups, the most limiting pressure locking j conditions will be identified. Utilizing the formulas derived from the Commonwealth Edison the required thrust to open the valve subject to pressure locking is determined (Ref. ,'ethod, and adjusted with the Kalsi Engineering Enhanced Pressure Locking Methodology (Ref. 31). '),

4.0 REFERENCES

I NOTES:

1. NMPC Telecon with Anchor Darling, dated 8l22l95, (Attachment A)
                                                                                   '.

MPR-1691, "Nine Mile Point Unit 2 Gate Valve Pressure Locking Due to Bonnet Heatup", dated November 1995

3. Limitorque Manual, NMPC File No. N2L20000VALVE003, Rev. 0., and EPRI Application Guide to MOVs, Doc. No. NP-6660-D, Section 3.3.3.

FORMAT ¹ NEP-DES-08, Rev. 01 (F02)

V NIAGARA N 4 MOHAWK NUCLEAR ENGINEERING CALCULATIONCONTINUATION SHEET Nine Mile Point Nuclear Stat/on Unit: 2 Disposition: NA Originator/Date ef.

      ,,. 4,. C.n  ~letzshg               ~

Checker/Date

                                                    /o-/H7      A10.1-AD-003 Rension 01
4. Velan Report DM-0050, page A4, (Attachment 8)
5. NUREG I CP-0152, page 3C-9 through 3C-34, "Commonwealth Edison Company Pressure
            ,Locking Test Report", (Attachment C)
6. NUREG I CR-5807, page 5 through 11, "Improvement in Motor Operated Gate Valve Design and Prediction Models for Nuclear Power Plant Systems" (Attachment D)
7. For 2CSH'MOV101 DBR-CSH-MOV101, Rev. 1, and MOV sizing calculation No. A10.1-G-048, Rev. 0
8. For 2CSL MOV107 DBR-CSL-MOV107, Rev. 1, and MOV sizing calculation No. A10.1-F-032, Rev. 0
9. For 2ICS MOV121 DBR-ICS-MOV121, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
10. For 2ICS MOV122 DBR-ICS-MOV122, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
11. For 2ICS'MOV128 DBR-ICS-MOV128, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
12. For 2ICS'MOV129 DBR-ICS-MOV129, Rev. 2, and MOV sizing calculation No. A10.1-H-059, Rev. 0
13. For 2RHS*MOV4A DBR-RHS-MOV4A, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
14. For RHS'MOV48 DBR-RHS-MOV48, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
15. For 2RHS MOV4C FORMAT ¹ NEP-DES-OS, Rev. 01 (F02)

Y NIAGARA 0 MOHAWK NUCLEAR ENG1NEERING CAL'CULATIONCONTINUATION SHEET Page (Next ~S 4 Nine Mile Point Nuclear Station Unit: 2 Disposition: NA Originator/Date Checker/Date Revision Qv m'en<.c A,. C-aux /8/Zt A7 /0 ./4'~ A10.1-AD-003 01 ef. DBR-RHS-MOV4C, Rev. 1, and MOY sizing calculation No. A10,1-E-139, Rev. 0

16. For 2RHS" MOV115 DBR-RHS-MOV115, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
17. For 2RHS" MOV116 DBR-RHS-MOV116, Rev. 1, and MOV sizing calculation No. A10.1-E-139, Rev. 0
18. For 2SWP*MOV17A DBR-SWP-MOV17A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev, 0
19. For 2SWP'MOV17A DBR-SWP-MOV17A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
20. For 2SWP"MOV18A DBR-SWP-MOV18A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
21. For 2SWP'MOV18B DBR-SWP-MOV18B, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
22. For 2SWP'MOV21A DBR-SWP-MOV21A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
23. For 2SWP'MOV21B t e DBR-SWP-MOV21B, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
24. For 2SWP'MOV66A DBR-SWP-MOV66A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
25. For 2SWP'MOV66B DBR-SWP-MOV66B, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0 FORMAT ¹ NEP-DES-08, Rev. 01 (F02)

V NAGARA N U MOHAWK NUCLEAR ENGINEERING CALCULATIONCONTINUATIONSHEET Page (Next ~ee Nine Mile Point Nuclear Station Unit: 2 Disposition: NA Originator/Date DC')e) >'l )e, i> I ~ C. Recta / 8/2C /5'7 Checker/Da y -/rt/-f7 A10.1-AD-003 Revision 01 ef.

26. For SWP*MOV67A DBR-SWP-MOV67A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0 2?. For 2SWP'MOV678 DBR-SWP-MOV678, Rev. 1, and MOV sizing calculation No. A10.1-NQ08, Rev. 0
28. For 2SWP'MOV94A DBR-SWP-MOV94A, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
29. For 2SWP'MOV948 DBR-SWP-MOV948, Rev. 1, and MOV sizing calculation No. A10.1-N408, Rev. 0
30. Roark's Formulas for Stress and Strain, Sixth Edition 1989, pages 398,399,404,405,408.409 444 and 445, (Attachment E)
31. ENHANCED PRESSURE LOCKING METHODOLOGY, Kalsi Engineering, inc. (1997) 5.0 CALCULATION RESULTS: As documented as the bottom of the last page for each valve evaluated, the thrust margin is either positive or negative. A positive thrust margin indicates that the valve and actuator is likely to overcome applicable theoretical pressure locking phenomena. A negative thrust margin indicates that the valve and actuator may not be able to overcome the applicable theoretical locking phenomena. Of the valves evaluated, valves 2CSH'MOV101, 2CSL MOV107, 2ICS'MOV121, 2ICS MOV129, 2RHS'MOV115, 2RHS MOV116, 2RHS'MOV4A, 2RHS'MOV48) 2RHS MOV4C) 2SWP'MOV21A, 2SWP'MOV218, 2SWP*MOV66A, x

2SWP'MOV668, 2SWP'MOV678 and 2SWP'MOV948 yielded a negative thrust margin. However, an evaluation of plant configuration, normal and accident, and system function for each of the valves analytically susceptible to pressure locking indicates no operability concerns and the valves will operate under postulated accident scenarious. A detail evaluation of the results of this calculation for the valves identified as susceptible to pressure locking phenomena is included in NER-2M07, Rev. 02. CHECKERS NOTE: This calculation was hand checked, therefore the MATHCAD commonly used commercial program does not required validation for this application. FORMAT ¹ NEP-DES-08, Rev. 01 (F02)

Niagara Mohawk Power Corporation Nuctear Engineering NMP 2 Calculation Cont. Sheet Page Qt /37 A10.1-AtM03, Rev. 01 Origina torl Date Checker/Date o harms y ~ a. C w ~/,s/y> Valve ID no: 2CSH'MOV101 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COINED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>.=55 Valve Bonnet pressure (psig), Pboggct 2477 ryP. Downstream pressure (psig), Pdo~' 4 II Valve Disk Geometry: r hub radius, b:=2 mean seat radius, a:=6.125 average disk thickness, t:= 1.66 hub length, L:=0.094 seat angle, a:= 6 e:=-'" e =o.o52 2 180 Valve Disk Material Properties: e is half disk anglect modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D ~.-- LS Static Unseating Thrust, F ~'.=4385 ( reference: Test ¹ 8, 4/18/96 ) Valve Factor VF:= 0.5 ( reference: NER-2M410 ) CALCULATIONS: cope) Coefficient of friction between disk and seat, It'.=

                                                                     '- a~(e)         It =0.513    ( reference ¹6 )

P~+Pdo~ gives,'P AverageDPAcrossDisk, DPavg Pbo~<- avg 2 45'10 2 Disk StNnes Constants, D:= Et and G:= E 12 1-v 2 (1+v) which gives, D 1.232 10 and G =1.131 ~ 10 Geometry Factors, C2 '.=-1 1-4 I+2 ln C3 '= + I In + 1 C8.'=- 1+v+(1 1 2 v) b a C 9.--b a 1-1+v ln 2 a b

                                                                                              +

1-v 4 b a 2 which gives, C2 0.164 C 3 =0.028 C8 0'68 C 9 =0.289 COMED PL Evaluation Valve ID: 2CSH'MOV1 01 page 1 PCSH101A.MCD

I Niagara Mohawk Power Corporation NMP 2 Page fo( t S t Nuciear Engineering Calculation Cont. Sheet A1 0.1-AD403, Rev. 01 Onginatorloate Checker/Date o~ ~)~ 4-<~ ~~tnhq Additional Geometry Factors, . fp'=b 2 4 2 2 I fp fp 4 fp fp In-I+4 5 2+ ~ 64 a a a a rp L17.=- I -I 4

I-U I - 4 a 0 4

a 0 2

                                                           ~

I+(I+Y) In a fp

           ,

which gives, L I I =0.006 and L17 ~0/141 Moment Factors, 2 M fb'= DPavg'a C9 /2

                                                     '0)2                            ob:=       '"'(*- 0*)

C8 2ab 2b which gives, Mfb =-3.389 10 and Q b ~2.052'10 Deflection from pressure/bending, 3 4 2+ Q b C 3 - a a avga y bq:=M fb' L 11 D D D which gives, yb q ~i).008 Deflection from pressure I shear, 2 2 K ~:=-0.3 2 In a I + rp I-2 rp in-b ysq'= m'DP avg a b a which gives, K sa &.404 and y ~%.002 Deflection from pressure I hub stretch,

                                                                                       -P fotee L
                                -b
                        '=

ofee tt (a ) DP avg y stretch

                                                                                     'tb     2E which gives,                 P fo~ =2.579. 10               and        y ~      =-3.281 ~ 10 COMED PL Evaluation                                 Valve ID: 2CSH'MOV1 01                                              page 2 PCS H101A.MCD

I 0

Niagara Mohawk Power Corporation NMP 2 Page ~of (3 I Nuorear Engineering Celcutation Cont. Sheet A1 0.1-AD403, Rev. 01 Onginatorloate Checkerloate ~~a+> k~ C C4>4 <(tet l~r) Q Io I-r< Total Deflection due to pressure, yq:=ybq+ysq+yg t h which gives, yq =<.OI Additional Geometry Factors r0'.= a L3 '.=ro 4.a ro a 2

                             + I In   +a ro ro -

a 2 I ro L9,= I+v In a

2

                                                                                        + I-v a

ro 4 1-ro a 2 which gives, L3 ~0 and L9=0 P Deflection from seat load/bending, w:= I y bw'.= O C2 ro C9 CS b L9 ro C3 b

                                                          + L3      which gives,          ybw                2317    10 6

Deflection from seat load I shear, Ksa:=-1.2 ro ro

a In- b y ~:= Ksa tG which gives, Ksa -1.343 y~ ~-4.383 10 Deflection from seat load I hub compression, L

                        -2 tta    2 y'ompr    'tb                    which gives,               ycom r Total Deflection from unit seat load, y w:=ybw+ysw+ycompr                        which gives,             yw     2'76 10 contact load distribution,                                                10'quilibrium w equilibrium '=

yq ~hi~h gi~es, 3.517 wequilibn~ yw Load per seat = 2.tt a yq =1.354 I0 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2CSH'MOV101 page 3 PCSH101A.MCD

Niagara Mohatttrk Power orporatton NMP 2 Page 1 o(/37 Nuciear Engineering Catctglation Cont. Sheet A10.1-AD403, Rev. 01 Checker/Date gag ///-(0< Fpres lock:= 2m a

Yq

                                   'PM<e)-      sm(e)) 2           which glvm. Fpres lock=1245'los Jw Piston Effect Force,                        P  an',=0 piston    streettem '[       bonnet       ann)          which gives,    F;   1   ff t =4.377'10 "Reverse Piston Effect" Force, F vert  .'= (t a  2 P bonnet up     down      'sin(0)          which gives,     F ~ = 3.022  10 Total Force R        ulred to Overcome Pressure Lockln "total   'res      lock+ "po+ vert        piston effect F to~       1'546805 ACTUATOR CAPABILITY:

Actuator Model ISize: = SMB-00-10 Motor Torque Output: TQm:= 9.3 tt- lbs Gear Ratio: OGR:=72 Application Factor. Af:=0.9 Pullout Efficienc: Eff:=0.4 Reduced Voltage: RV:= 1.0 Torque Output: TQout:= TQm RV .OGR.Af Eff TQout ~ 241.056 tt- lbs Stem Factor. Thrust Capability: THcap: = TQout Sf Sf:= 0.018919 THcap =1.274 10 lbs NOTE: RV IS SQUARE IF ACTUATORIS AC. ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:= 1.20 a Thrust Margin:= THeap (p tomt KEI) Thrust Margin ~ -1.729'10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2CSH'MOV1 01 page 4 PCSH101A.MCD

Niagara Mohawk Power Corporation Nucteer Engineering NMP 2 Calcutation Cont Sheet Page /OH /+7

                                                           ~

A1 0.1-AD403, R et/. 01 w e~ ~/i~bp Originator/Date Checker/Date

                                                                     >-i17 Valve ID no: 2CSL'MOV107 Re uired        0     enin    Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:

Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=500 Valve Bonnet pressure(psig), Pboggat =8931 Downstream pressure (psig) P dp~ Disk Geometry: 'alve hub radius, b:=1.25 mean seat radius, a:= 1.879 average disk thickness, t:=0.626 hub length, L:=0.25 seat angle, a:= lo e:=-a tt 2 180 e =0.087 Valve Disk Material Properties: e is half disk anglea modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: Valve Stem Diameter, D <~.'=1.375 Static Unseating Thr'ust, Fpo 3399

                                                                              ¹

( reference: Test 4, 6/3/96 ) ( reference: NER-2M410 ) CALCULATIONS:

                                                                           ~ge)

Coefficient of friction between disk and seat, It:=

                                                                        '- sa(e)             It =0.521    ( reference ¹6 )

Pup+Pdo~ Average DP Across Disk, DP avg:=P bomct- gives DP avg 8 681 1(P 2 Disk Stittnas Constants, D:= Et and G:= E l2 t-v 2 2 (I+ v) which gives, D =6.605 10 and G =1.131 ~ 10 Geometry Factors, C2.=-I 4 I-b

a I+2 In a b C3'.=. b 4a b

                                                                                           +

a I In a b

                                                                                                           +

b a I C8.'=-I 2 I+v+(I-v) b a 2 C a

                                                                                        -

9.--b I+v ln 2 a b

                                                                                                     +

I v 4 I b a 2 which gives, C2 0.049 C3 0.005 C 8 =0.805 C 9 =0.241 COMED PL Evaluation Valve ID: 2CSL MOV107 page 1 PCSL1 07A.MCD

Niagara Mohawk Power CorPorat/on NMP 2 Page /r of /p7 Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rw. 01 Originate rloate Qcwr~ g 4 @Ace C Jr P/$ 7 ~ Checker/Date

                                                                                 ~-i-17 Additional Geometry Factors,                                      rp  .'=b 2              4                2                2 I

I+4 rp 5 rp 4 rp 2+ rp In- a 64 a a a rp L17 4 I I- I-v 4 I- rp a 4 rp a 2

                                                                ~

I+(I+v) ln-rp which gives, L I I =4.463 10 and L i7 =0.046 Moment Factors, 2 Mrb '=- DP avg a C9 a -rp -L17 '"'(*- 0') C8 2ab 2b which gives, Mrb -2.113 10 and Qb 6.834-10 Deflection from pressure/bending, 4 a y b '.=M rb.C 2+ Q b - a C avg L 11 D D 3 D which gh/es, yb q ~-2.798'10 Defiectlon from pressure I shear, 2 2 K:=-0.3 a 2 in I+ b

rp ~ I 21n- rp b sa t.G avg a a which gives, K sa =%.077 and y sq =-3.348'10 Deflet%ion from pressure I hub stretch,

                                                                                             -P force L Pf        lt (a       b ) DP g                        ystretch-ttb 2E which gives,                 P f0~0 =5.368.10
                                                                             -

and y ~~ -4.649 10 COMED PL Evaluation Valve ID: 2CSL MOV107 page 2 PCSL1 07A.MCD 4

0 Niagara MotunNk Power Corporation NMP 2 Page/2d /ST Nuclear Engineering Calculation Cont. Sheet A A10.1-AD403, Rev. 01 Originator/Date Checker/Date Qo~p~ A.C~P r /ralph ~ ~-<7 Total Deflection due to pressure, yq y bq+ y sq+ y stretch which gives, y q =<.611 ~ 10 Additional Geometry Factors r:=a L3 = ro

               .

4-a ro a 2

                                + I ln   +  - I a

ro ro a 2 ro L9.I+v In a

2

                                                                                             + I-v I-a ro      4 ro a

2 which gives, L3 0 and L9 ~0 Deflection from seat load I bending, w:= I II ybw. O C2 roC9 CS b L9 .

                                                   - roC3' b
                                                                 + L3      which gives,         bw =-1.458 10 Deflection from seat load I shear, Ksa '=-1.2     In-                      y ~!=Ksa-       a which gives,          Ksa   <.489 a        b                              tG y sw =-1.298'10 Deflection from seat load I hub compression,                         '

L 2'll'a h y compr "'= which gives, y compr 1023 10 ttb E Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, yw -2.85810 Equilibrium contact load distribution, w equilibrium ' yq which gives, w equilibrium ~ Load per seat= 2 tt a yq yw

                                                       ~

2.731 ~ 10 4 Pressure Locking Force, COMED PL Evaluation Valve ID: 2CSL MOV107 page 3 PCSL1 07A.MCD

8 4 l

Niagara Mohawk Power Corporation NMP 2 Pat/e/> of r 3bT Nigciesr Enpineeriny Calculation Cont. Sheet A10.1-ADO03, Rev. 01 Onpinstor/Date Checker/Date 4 C esc> //tike!r gr

                                                                      /)./i)/4 F

p ] k 2 n a (it

                                 'Yq cos(e) sin(0)) 2           which g/vesa    F W

Piston Effect Force, P a~."=0 2 piston street ' stem '( bonnet atm) which ganesa Fp,ston cffcct =1326'10 "Reverse Piston Effect" Force, 2 vmt [s'e '( 'onnet deum)j'smigi which gives, F v~ = 1.678'10 up Total Force Re uired to Overcome Pressure Lockin F total l=F pres lock+ F po + F'vert- F'piston cffcct which gives F total 3 049697 10 ACTUATOR CAPABILITY: Actuator Motor/Size: = SMB-00S-15 Motor Torque Output: TQm:= 14.18 ft- lbs Gear Ratio: OGR:= 23 Application Factor: Af:=0.9 Pullout Efficiency: Eff .s= 0.45 Reduced Voltage: RV: = 0.8848 Torque Output TQout: = TQI RV OGR AfEff TQout = 103.407 ft- lbs Stem Factor: Sf': = 0.017861 TQout Thrust Capability: THcap:= 'IHcap 5.79 10 1bs Sf NOTE: RV IS SQUARE IF ACTUATORIS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Margin:= THoap '(pmmt KEI) e Thrust Margin -3.081 ~ 10 lbs

== Conclusion:== Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2CSL'MOV107 page 4 PCSL107A.MCD

Niagara Mohawk Power Corporation NMP 2 Page/Q/I'3 7 Nuclear Engineering Calculation Cont. Sheet A10.1-AtM03, Rev. 01 Originator/Date 6/itlF7 W v-i~7 Checker/Date Valve IDno: 2ICS MOV121 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPlJTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>> ..= 1200 Valve Bonnet pressure (psig), P bonnet 1200 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:= 3.063 mean seat radius, a.'=4.45 average disk thickness, t:=1.012 hub length, L:=0.188 seat angle, u.=10 6:=-a rt 2 180 0 0.087 Valve Disk Material Properties: e ishalfdiskangle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D< .=2.5 Static Unseating Thrust, F>>.=27694

                                                                                 ¹ (raference: Test 7, 1/9/96)

Valve Factor VF:=0.6 (reference: NER-2M-010) CALCULATIONS: Coefficient of fnction between disk and seat, lt:= ~ge)

                                                                                 - sin(e)            It = 0.631     (reference   ¹ 6) up~     down Average DP Across Disk,                           avg  'onnet                   2 glvesr      DP avg     600 Disk Stitfnes Constants,                    D:=       Et             and         G:=       E 12(i-')                              2 (1+v) which gives,                  D =2.79   10          and           G = 1.131 ~ 10 GeometryFactors,                     C2'.=-I 4

I- b

a I+2 1n a b

                                                                                      .

C3.'= b 4a b

                                                                                                 +

a I In a b b

                                                                                                                    +  - I a

C8.'= I 2 I + v+(I - v) b a C a I-9.--b I+v In 2 a b

                                                                                                            +

I-v 4 b a 2 which gives, C2 0.043 C 3 =0.004 C8 0.816 C 9 =0.23 COMED PL Evaluation Valve ID: 2ICS MOV121 page 1 PICS121A.MCD

n Niagara Mohawk Power Corgoration NMP 2 Pager+o//P7 Nuclear Engin<<ring Catcutation Cont. Sh<<t A10.1-AD403, Rev. 01 Originator/Date Checker/Date Wa~ 4.C~~ ~/rPl~ czf85 >-i r7 Add/t/onal Geometry'actors, rp =b 2 4 2 2 fp fp fp rp I I+4 5 -4 2+ ln- a 64 a a a a rp L17.=- I 4 I- I-v 4 I- a 0 4

                                             -     fp

a 2 I+(I+v) In a rp which gives, L I I ~3.398 10 and L17 =0.04 Moment Factors, 2 DP avg a 9 DP avg M rb.'=- a -rp -L17 Qb.'= (a ro j C8 2ab 2b which gives, M rb -698.979 and Qb 1.021'10 Deflection from pressurelbend/ng, 4 avg a yb .'=M*C2+Qb C3-a a D D D LII which gives, yb q -1.078 10 Deflection fmm pressure/sheer, 2 2 K sa .'=-0.3 2 In a

                                     - I+     rp      ~

I - 2 In-rp sa'vg a b a b ysq which gives, K sa ~%.066 end y ~ =W.877'10 Deflecflon from pressure /hub stretch, P fofoo'L force '=tt (a

                                 - b ) DP avg                             ystretch-ttb 2E which gives,              P f             1.964-10           end        y ~t,>    -2.131 ~ 10 COMED PL Evaluation                                Valve ID: 2ICS'MOV121                                               page 2 PICS121A.MCD

f Niagara Mohawk Power CorPoratlon NMP 2 Page Aaf /3P

                                                                   ~

Nuclear Engineertng Calculation Cont. Sheet A1 0.1-AD403, Rev. 01 originator/Date Checker/Date Qc~r~ rg. Q~p ~-i-e7 Total Deflection due to pressure, yq ' bq+ -" sq + y stretch which gives, y q =-1.787 10 Additional Geometry Factors ro,'=a L3 .'= ro

                .

4a ro a 2

                                +1    ln +

a ro ro a 2

                                                        -1            L9     .

a

ro lyv a 2 ln + ro 1-v 4 III 1-ro a 2

        'bw    '9 Ksa: =- 1.2 a3.w D

which gives, Deflection from seat load/bending, ro ro

a C2 C8 Deflection from seat load/shear, ln- b ro.C 9 b y sw L3 0

roC3 i=Ksa b w:=1 a tG

                                                              + L3 and which g/ves, which gives, L9    0 ybw ~-3.67 Ksa  -0.448 10 y ~ ~ -1.743'10 Deflection from seat load/hub compression, L
                          -2 tta 2 y compr '=                          which gives,               y         =-3.033    10 ttb Total Deflection from unit seat load, yw:=ybw+ysw+ ycompr                            which gives,            y      -5.443 10 Equilibrium contact load distribution, yq equilibrium   'w              which gives,         weq~brium 328415 Load per seat =           2 tt a yq     9.183 1(P yw Pressure Locking Force, COMED PL Evaluation                               Valve ID: 2ICS'MOV121                                               page 3 PICS121A.MCD

Niagara Mohawk Povtter Corporation NMP 2 Pager 7of /P7 N uctear Engineering Catculation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date Checker/Date @capri@ A ~ C.~/ tr/Z5ly7 IO.W P Fp~ lock'tt'a (Itcos(8)- Yq

                                 ~'w sin(0)) 2         whichgives,      Fpr     s lock  9938 10 Piston EN'ect Force,                           P  au:=0 piston street
                        '

stem '( bonnet, stm) F 1st "Reverse Piston Effect" Force, F crt.= rt a 2pbonnct down wh/ch g/ves F ycrt 6 506 I 0 up Total Force Re uired to Overcome Pressure Lockin F <<taI:=F pres lock+ F po+ F ycrt- F piston affec which gives, . F <<~ = 3.824814 10 ACTUATOR CAPABILITY: Actuator Model ISizer = SB-2-60 Motor Torque Output: TQm:= 51.63 ft- Ibs Gear Ratio: OGR:= 101.52 Application Factor: Af:=0.9 Pullout Efficiency: EK:=0.35 Reduced Voltage: RV:= 0.8627 Torque Output: TQout: = TQm RV OGR AfEff TQout ~ 1.229'10 ft- Ibs Stem Factor: Sf: = 0.029481 TQout Thrust Capability: THcap:= THcap ~4.168 10 lbs SE NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:= 1.20 Tbtnst Mssipn:= THeep (F tomt KEI) Thrust Margin ~-4.216 10 Ibs

Conclusion:

Open, Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2ICS MOV121 page 4 PICS121A.MCD

Niagara Mohawk Power Corporation NMP 2 Page/got /'37 Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date Checker/Date Durga A ~ C49 t )pljrr Valve ID no: 2ICS MOV122 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>> .= 160 Valve Bonnet pressure (psig), P bonnet,.=160 Downstream pressure (psig), P d .=0 Valve Disk Geometry: hub radius, b:=4.94 mean seat radius, a = 5.75 average disk thickness, t:=0.789 seat angle, a:=7 e:=- a tt 2 180 e =o.o61 Valve Disk Material Properties: e ishalfdiskangle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D ~.=2 Static Unseating Thrust F po 9730

                                                                            ¹ (reference: Test 30, 10/27/93)

Valve Factor VF:=0.5 (reference: NER-2M-010) CALCULATIONS:

                                                                          ~ge)

Coefficient of friction between disk and seat, it:=

                                                                      '- ~(e)                     lt = 0.515   (referece   ¹6) up+ down Average DP Across Disk,                  DP       'bonnet                                  gives,       DP avg,   80 avg                            2 Disk Stiffnes Constants, Et 3           and         G.        E 12    1-v                             2 (1+v) which gives,            D =1.322   10          and          G =1.131 ~ 10 Geometry Factors,              C 2.'=  1+ 2 ln                        C 3 '.= +               1  ln  +   .  -  1 C8.=- 1+

1 2

                                                +

b a 2 C 9.-- 1- ln + which gives, C2 0.009 C 3 =4.316'10 C 8 =0.908 C 9 =0.124 COMED PL Evaluation Valve ID: 2ICS MOV122 page 1 PICS122A.MCD

0 h Niagara Mohawk Power Corporation NMP 2 Page /fol ~T Nuctear Engineering Calculation Cont. Sheet A10.1-AD403, RW. 01 Originator/Date Checker/Date +~~ ~ Ai O~y 4 /jpl+T 7-1+7 Additional Geometry Factors, rp.=b hh 2 4 2 I I+4 -5 -4 0 0 0 2 1- rp In- a 64 a a a a rp L17 I 4 I- "4 I-U I -' a 4

a 0 2 I+(I+Y) In rp a which gives, L I I =1.545 10 and L 17 0.009 Moment Factors, 2 DP avg a C9 Mrb '=- a -rp -L17 '( 0) C8 2ab 2b

             'hich gives, Mrb -28.505                 and             Q b =70.113 Deflection from pressurelbending, 4
                                 '=Mrb C2+Qb' C3-                               avg a                   a yb D                   D                D LII h

which gives, yb q ~ 3398'10 Deflect/on from pressure lshear, K~:=-0.3 2'In a I+ rp 2 I-2 rp In-b m'vg a 2 b a

                                                             ~

tG" which gives, Ksa ~%.013 and ysq 3 715 10 hh Deflection from pressure//hub stretch,

                                                                                             -P force.L orce '=tt (a
                                       - b ) DP avg                            y stretch ttb.2E which gives,                   P force         2 176 l(P           and        y stretch    6 034 10 COMED PL Evaluation                                      Valve ID: 2ICS'MOV122                                                 page 2 PICS122A.MCD

Niagara Mohawk Power Corporation NMP 2 Page~i>~ Nuotear Engineering CatoLrlation Cont. Sheet A10.1-AD403, Rw. 01 Originatorloate

'Dao r~po JP r ~M </r 5 ~f7i                            ChN'kar/Ost Iggp Total Deflection due to pressure,                        yq  '     bq+ y sq+ y stretch which gives,            y   = -7.174 10 Addilional Geometry Factors ro.'=a L3 .=

ro

                .

4a ro a 2

                               + I ln a

ro ro

                                       +  - I a

2 L9 .'= a

                                                                                -

ro I+v 2 In + I-v a ro 4 I ro a 2 which gives, L3 =0 and L9 =0 P Deflection from seat load/bending, w'- ] ybw' D C2 rpC9 C8

                                ~

b L9

                                               - foC3 +L3 b

which gives, y bw =-1.43

                                                                                                           ~

o Deflection from seat load/shear, Ksa:=-1.2 ln-a b y:= Ksa tG which gives, Ksa . 182 y ~ -1.174'10 Deflection from seat load/hub compression, L

                         -2'1t a   2 y compr                          which gives,                y~mpr =-I 002'10 ttb Total Deflection from unit seat load, y w:=y bw+y sway compr                      which gives,            yw       2621 10 Equilibrium contact load distribution, w equilibrium ' yq              which gives,             equilibrium Load per seat =         2 tt a yq    988.835 yw Pressure Locking Force, COMED PL Evaluation                            Valve ID: 2ICS'MOV122                                               page 3 PICS122A.MCD

Niagara Mohawk Power CorPoration NMP 2 Pagegl ot i >7 Nuctear Engineering Catculation Cont. Sheet

                         ~

A10.1-AO403. Rev. 01 Originator/Date Checker/Date WC ms>c/ A ~ /g//25'lf7 Vq F pres Iock 2 +a (p cos(e) sin(e)) 2 which gives, F pres lock = 895.433 Yw Effect Force, au:=0 1'iston P F pistcn street 'D stem 2

                                            '(P hcnnet- Penn}            which give,        pistcn efreet =502655 "Reverse Piston Effect" Force, F vert.'= n a          2 P bonnet up    down
                                                             -

sin(e) which gives. F ~ 1.015'10 Total Force Re uired to Overcome Pressure Lockin F total:=F pres lock+ Fpo+ F vert- F piston effect which gives, F >< =1.113735 10 ACTUATOR CAPA8ILITYt Actuator Model/Size: = SMB-0-25 Motor Torque Output: TQm:= 25.0 ft- lbs Gear Ratio: OGR:= 43.69 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:=0.806 Torque Output: TQout:= TQm RV OGR AfEff TQout = 316.927 ft- Ibs Stem Factor: Thrust Capability: THcap: = TQout Sf THcap Sf:= 0.019627 Is615 10 Ibs ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Mtutpn:= THcsp- (Fmmi KHI} Thrust Margin ~ 2.783 ~ 10 Ibs

== Conclusion:== Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve lD: 2lCS MOV122 page 4 PICS122A.MCD

Niagara Mohawk Power Corporation NMP 2 PagegZof/3 ~

                                                            +

Nuclear Engineering Calculation Cont. Sheet

                      ~

Ato.t-AD403. Rev. 01 Originator/Date Checker/Date

      ~,~,       A'.          c./,];ZPP                                "r-i+7 Valve ID no: 2ICS MOV128 Re uired          0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS:

Design Basis Conditions at time of Pressure Locking Event: Upstream pressure(psig), Pp.=1200 Valve Bonnet pressure(psig),Pbonnet '=1200 Downstream pressure (psig), P do .=0 Valve Disk Geometry: r hub radius, b:= 3.063 mean seatradius, a:=4.45 average disk thickness, t:=1.012 hub length, L:= 0.188 seat angle, a:= 10 0:=-a ft 2 180 8 0.087 Valve Disk Material Properties: 8 ishalfdiskangle u modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D ~.= 2.5 Static Unseating Thrust, F po 17995

                                                                         ¹ (reference: Test 10, 5f4N5)

Valve Factor VF:=0.6 (reference: NER-2M-010) CALCULATIONS: Coefficient of fnct/on between disk and seat, It: = cue) sin(6) It =0.631 (reference ¹6) up+ down Average DP Across Disk, DP avg .'=P bonnet gives, DP avg 600 2 Disk Sfiffnes Constants, D:= Et and G:= E l2(1-') 2 (1+v) which gives, D =2.79 10 and G =1.131 ~ 10 Geometry Factors, C2'.=-I 4 I - b

a I+2 In a b C3

                                                                           .'.=

b 4a, b

                                                                                        +

a I In a

b

                                                                                                        +

b a I C8:=-I I+ 2

                                            +

b C9 a

                                                                               '=-b I+v In 2

a b

                                                                                                  +

I-v 4 I b a 2 which gives, C2 0.043 C 3 ~0.004 C8 08'6 C 9 ~0.23 COMED PL Evaluation Valve ID: 2ICS MOV128 page 1 PICS128A.MCD

Niagara Mohawk Power Corporation NMP 2 Page Zgofi S Nuclear Engineering Calculation Cont. Sheet Rev. 01 7'10.1-AD403, Origina! or/Date Checkor/Da! e 2 c/is Jap p- j-f7 Addit/onal Geomet/y Factors, rp '.=b 2 4 2 2 I+4 fp - fp -4. fp fp L 11 '= 5 ~ 2+ ln 64 a a a a rp L17.'=-I I - 4 I-Y - 4 I a 0 4

a 0 2 I+(I+Y) ln a rp which gives, L I I =3.398 10 and L17 ~0.04 ~ Moment Factors, DPavga C9 ( Mrb' 2ab 2

                                                       'pj             1(                  ~b:=

2b

                                                                                                       .'"'( *-     0*)

C8 which gives, M rb -<98.979 and Qb I 021 Ip k Deflection from pressure(bending, 4 3 avg a yb '=M*C2+Qb' a a C3- LII o o o which gives, yb q =-1.078-10 Deflection from pressure Ishear, 2 2 r'p K m'DP avg I+ rp a 21n - 21n-a K~:=-0.3 ~ I b a b t.G III which gives, K sa  %.066 and y sq ~%.877 10 Deflection from pressure lhub stretch, P fpfee 't (a b ) DP avg y stretch '= P fpfce'L ttb 2E which gives, P fp~ =1.964 10 and y ~h =-2.131 10 COMED PL Evaluation Valve ID: 2ICS'MOV128 page 2 PICS128A.MCD

Niagara Mohawk Power Corporation NMP 2 Nuctear Engineering Calculation Cont. Sheet A10,1.AD403, Rev. 01 Originator/Date Checker/Date uo~r~~ <-d~ p c/~Vpp Total Deflection due to pressure, yq: ybq~ysq+y~~h which gives, y =-1.787 10 Additional Geometry Factors ro.'=a L3,- ro 4a ro a 2

                                +I    In  +

a ro ro

                                                  -

a 2 I L9 -'= a

ro I+v 2 In a ro

                                                                                                +

I-v I-4 ro a 21 ybw Ksa:=-

              '9  a3.w 1.2 D

which gives, Deflection from seat load/bending, ro ro

a C2 ro C9 C8 Deflection from seat load!shear, In-b b L3 =0 ro.c3 y ~.'=Ksa b w:= I

tG

                                                               + L3 and which gives,
                                                                                    'L9 which gives, 0

y bw =-3.67 Ksa W.448 10 y ~ ~-,1.743 10 Deflection from seat load/hub compression, L

                          - 2'tt'a   2 y compr
                      'tb                        which gives,               y compr    3'033 10 Total Deflection from unit seat load, y w:=y bw+y ~+y compr                           which gives,           y w =-5.443 10 Equilibrium contact load distnbut/on, w equiIibrium         yq           which givest          w cqtulibzum     328.415 yw Load per seat =            2 tt a yq  =9.183 ~ 10 yw Pressure Locking Force, COMED PL Evaluation                               Valve ID: 2ICS'MOV128                                           page 3 PICS128A.MCD

It Niagara Mohawk Power CorPoration NMP 2 Pagano/ /97 Nuctear Engineenng Catculation Cont. Sheet

                  ~

A10.1.AD403, Rev. 01 Originator/Date Checker/Date Z c Xs ~ ~ v A. /P'/t,r Zzlpp ~re tr 'I" F pres lock 2 tt a (p Yq cos(1) - sin(e)) 2 which gives, F pres lock = 9.938'0 3 Vw Piston Effect Force, Pau '.=0 r tt Fpinon WmtDm '(Phoner Penn) which g/ves, F piston effec "Reverse Piston Effect" Force, Pttoten)]sin(S) which gives, F v~ 6 506 10 Frets.=[as (2Phonnet up Total Force Re uired to Overcome Pressure Lockin F total l= F pres lock+ F po+ F vert - F piston which gives, F >~ 2.854914.10 ACTUATOR CAPABILITY: Actuator Mode! ISize: = SB-2-60 Motor Torque Output: TQm .'=58.37 ft- 1bs Gear Ratio: OGR: = 72.01 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV: = 0.8703 Torque Output: TQout:= TQm RV OGR AfEff TQout = 1.146 10 ft- 1bs Stem Factor: Sf:= 0.029481 TQout Thrust Capability: THcap:= THcap ~3.888 10 1bs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURELOCIQNG METHODOLOGY: KEI:=1.20 Thrust Mtntpn:= THoap (F n,uu KE!) Thrust Margin 4.617'10 1bs

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2ICS MOV128 page 4 PICS128A.MCD

Niagara Mohawk Power Corgoration NMP 2 Calculation Cont. Sheet Pageant/'0 7 Nuoiear Engineering A10.1-AD403, Rev. 01 cheekerioste~ r/</r7 Valve ID no: 2ICS'MOV129 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P .=76 Valve Bonnet pressure (psig), P bonn<< = 2799 p Downstream pressure (psig), P do~ 0 Valve Disk Geometry: hub radius, b:= 2.25 mean seat radius, a:= 3 average disk thickness, t:=0.378 hub length, L:=0.125 seat angle, u:=7 e:=-'" e =o.o61 2 180 Valve Disk Material Properties: e ishalfdiskangle a modulus of elasticitY, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D <~.= 1.5 Static Unseating Thrust, F~.=5924 (reference: Test 12, ¹ 6/QM3) Valve Factor VF:=0.65 (reference: NER-2M-010) CALCULATIONS: Coefficient of friction between disk and seat, It.,= cue) It 0.676 (reference ¹6)

                                                                      - sin(e)

Pup+Pdo~ Average DP Across Disk, avg 'onnet 2 gives; DP av< =2.761 ~ 10 Disk Stlffnes Constants, D:= Et and G:= E u (1 .*j 2 (1+v) which gives, GeometryFactors, D =1.454 C2.'=- 1 4 10 I - b

a and I+2.1n a, G =1.131 ~ 10 b C3'.= b 4a b

a a

                                                                                           +1 ln  +

b b a

                                                                                                               -   I C8.=-  1 2

1+ v+(1- v) b a 2 C a 1-9.--b I+v ln 2 a b

                                                                                                +

1 4 v b a 2 which gives, C2 0.028 C 3 ~0.002 C 8 ~0.847 C 9 ~0.198 COMED PL Evaluation Valve ID: 2ICS'MOV129 page 1 PICS129A.MCD

Niagara Mohawk Power CorPoration NMP 2 PageMot tp T Nuctear Engineering Catcutation Cont Sheet A10.1-AD403, Rw. 01 Onginator/Date Checker/Date Wc,~~a, A'.Quar S c./ip~ Additional Geomet/y Factors, rp .'=b 2 4 2 2 fp fp 11 I I+ 4 rp

                                      -5    rp
                                                    -4            ~

2+ ln-64 a a a a rp L 17 I

           '.=-.

4 I- - I v 4 I rO a 4

rO a 2 I +(I+ v) In a rp which gives, L I I =1.453 10 and L 17 =0.027

Moment Factors, Mg:=- DP avg cs a 2 C9 2ab., (

0 j-"I7 ~b:= 2b

                                                                                                  '"'('-      0')

which gives, Mrb =%03.057 and Qb ~2.416 10 Detiection from pressureIbend/ng, 4 3 avg.a yb '.=Mrb- C2+Qb a C3-a LII o o o which gives, yb q --8.049 10 Deflection from pressure Ishear, 2 2 K:=-0.3 2 In a I+ 'o I-21n- 'o sa'vg a sa' a b tG which gives, Ksa 041 'nd y sq ~-2.404 10 Deflection from pressure /hub stretch,

                                                                                        -P force L P fore'0    Tt (a       b ) DP avg                          y stretch '=

ttb 2E which gives, P force 3 415 10 and y stretch -4.565 10 COMED PL Evaluation Valve ID: 2ICS MOV129 page 2 PICS129A.MCD

Niagara Mohawk Power CorPoration NMP 2 Page gd Nuotear Engineering Calcutatton Cont. Sheet oflVV'10.1-ADOOS, Rev. 01 Ortginatorioate checker/Dmto~ p/j/rp Woe~-. 4.Cavy c/~/pp Total Deflection due to pressure, yq'=ybq+ysq+yst tch which gives y q =~001 Addilional Geometry'actors ro.'=a L3 = ro 4a ro a 2

                                +1     1n r

a ro

                                               +  -1 a

2 L9 .'. a

ro 1+v 2 ln a ro

                                                                                                +

1 v 4 1-ro a which gives, L3 =0 and L9 =0 Deflechon fram seat load/bending, w:= I

                                          -L9 -

IP

              '.=-

as.w C2 ro C9 roC3 yb +L3 which gives, y bw =-1.088 10 D C8 b b Deflection from seat load/shear, ro ro

Ksa: =-1.2 a In-b y~'.=Ksa-a tG which gives, Ksa <.345 y sw ~-2.423 10 Deflection from seat load/hub compression, L

                          -2 rta     2 y compr '=                           which gives,               y compr =-252'10 rtb 7otal Deflection from unit seat load, y w:=y bw+y sw+y compr                         which gives,            yw     1332 10 Equilibrium contact load distribution, yq            which gives,         w cqtttTtbrtttm 787.968 cqttitibrtttm w

Load per seat = 2 rt a yq = 1.485 10 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2ICS MOV129 page 3 PICS129A.MCD

lg Fy

Niagara Mohavttk Povtrer Corporation NMP 2 Page2 lot I 7 7 Nuclear Engineering Calculation Cont. Sheet A10.1.AD403, Rev. 01 Originatorloate 'Qp~r y>> <. Cecq /gQ j /F7 Checker/Date

                                                                              ,g HII Vq F

p 1 oc k 2 ta 1 1'w ( p co s ( 0 ) s in ( 8 ) ) 2 whi ch gi ve s, F p, 1 oc Piston Effect Force, P au:=0 "piston streettem'i2 I 1t bonnet atm) piston effect "Reverse Piston Effect" Force, F vett tt a 2 P bonnet P P tlown stn( ) which gives F vert 9 532 1 0 up Total Force Re ulred to Overcome Pressure Lockln F total: F pres 1ock+ F po t F >crt F pisto which gives, F <<~ =2.872746 10 ACTUATOR CAPABILITY: Actuator Model /Size: = SMB-00-10 Motor Torque Output: TQm:= 10.0 ft- lbs Gear Ratio: OGR:=36.2 Application Factor. Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV: = 0.8252 Torque Output: TQout:= TQm RV OGR.Af Eff TQout 107.54 ft- Ibs Stem Factor. Thrust Capability: THcap '.= , TQout Sf Sf:= 0.015334 THcap =7.013 10 'bs ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Tbrnst Margin: = THoap (F >>mt KEI) Thrust Margin ~ -2.746 10 1bs

Conclusion:

Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2ICS MOV129 page 4 PICS129A.MCD

0 Niagara Mohawk Power Corporation NMP 2 Page QO/ /P 7 Nuclear Engineering Calculation Cont. Sheet A10.1 AD403. Rev. 01 Originator/Date Checker/Date

                                         ~/i~/vr Valve ID no: 2RHS MOV115 Re uiredO enin                         ForceDeternminafionunderPressureiockin                                            Condifions COMED Method DESIGN Design Basis Conditions at time of Pressure Locking Event:
                                                .= 85            Valve Bonnet pressure (psig), P bonnet '= 7105 INPUTS'alve Upstream pressure (psig),                    P Downstream pressure (psig), P do~                           0 Disk Geometry:

hub radius, b:=5.75 mean seat radius, a:=7.703 average disk thickness, t;=1.644 hub length, L:=0.25 seat angle, a '= 10 0:=-'" 0 -0.087 2 180 Valve Disk Material Properties: 0 ishalfdiskangle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other VaNe Parameters: Valve Stem Diameter, D ~.= 2.375'tatic Unseating Thrust, F po 12604

                                                                                    ¹ (reference: Test 4, 6/24/93)

Valve Factor VF:= 0.5 (reference: NER-2M-010) 1 CALC ULATIONS: Coefficient of fnction between disk and seat, It:= ~<0) sin(0) It 0.521 (reference ¹6) P~+Pdo~ Average DP Across Disk, avg 'onnet 2 gives, DP ag =7.063 10 Disk St/ffnes Constants, Et 3 and G:= 12 I-v 2 (1+v) which gives, D =1.196 10 and G 1.131 ~ 10 Geometry Factors, C 2'.=-I 4 I - b

a

                                                          ~

I + 2 In a

b

                                                                                      ".

C 3 ',= b 4a b

                                                                                                    +I a

In a

b

                                                                                                                     +

b a

                                                                                                                             - I C8   I 2
                                               '+ v+(I - v)        b a

2 C9.-- I- In + 2 which gives, C 2 ~0.029 C 3 ~0.002 C 8 ~0.845 C9 =02 COMED PL Evaluation Valve ID: 2RHS MOV115 page 1 PRHS115A.MCD

0 Niagara Mohawk Power Corporation NMP 2 Pagea/of/'3T Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date Wc~i~~ W.imp c.gp/pp Chaclterllhte e

                                                                                     ~Q g/~

Additional Geometry Factors, rp"=b 2 4 2 2 L II '= I 1 +4 0 - 5 - 4 0 0 2+ rp ln- a 64 a a a a rp L17 I 4 I- I-I-v 4 a 0 4 rp a 2 I+(I+v) In- a rp which gives, L I I =1.535 10 and L17 ~0.028 Moment Factors, Mrb '.=- DPavga C8 2

                                ~  -

C9 / 2ab ~a rp,i - L17 2b

                                                                                                           '(     Oi which gives, Mrb =-1.57            10    and                   Qb     1.614 10 Deflection from pressureibending, 4
                           'rb'C2+Qb'C3 a

D . D a "avg'b D

                                                                                           'Lll which gives,                yb q =W.OOI Detiecfion from pressure /shear, K~:=-0.3 21n         a -

I+ rp 2

                                                        ~   1-21n-     rp                              stt'vg a2 b   -'

b t.G which gives, K aa =%.043 and y~ = %.605'O DefieÃon from pressure lhub stretch,

                                                                                               -P forciL Pforca't   (a      b ) DPavg                                     ystretch-ttb 2E which gives,               P  f0~         5.829 10                  and         y ~t h    -2.386 10 CQMED PL Evaluation                                Valve ID: 2RHS'MOV115                                                      page 2 PRHS115A.MCD
                                                                          ~

Niagara Mohawk Power Corporation NMP 2 Page32of r&7 Nuotear Engineering Calculation Cont. Sheet A10.1-AtM03, Rev. 01 Originatorloate Checker/DIt ~ p/1)gg Vo~rvp e 4.Qm a c /(s lp 7 Total Deflection due to pressure, yq: ybq+ysq+y~~h which gives,, y q =%.002 Additional Geometry Factors r "=a L3 ro 4a ro a 2

                             +I     In +  - I r

a ro a 2 L9.= a

rp I+v 2

                                                                                      ~

In a rp

                                                                                                  +

I- I-4 v ro a 2 which gives, L3 =0 and L9 =0 Detlection from seat load/bending, w:= I ybw'9 D C2 rpC9 C8 b

fpC3 b

                                                             + L3      which gives,         ybw =-2.338       10 Deflection from seat load/shear, Ksa: =-1.2    In-                   y sw  '=~'Ga              which gives,           Ksa     -0.351 a       b y'w      -1.454'10 Deflection from seat load/hub compression, L
                        -2'tt'a 2 y compr
                     'tb                       which gives,               y~     r =-1.981
                                                                                              ~

10 Total Deflection from unit seat load, y w:=y bw+y sw+y eompr which gives, yw 3'811 10 Equilibrium contact load distnbution, w equiiibritm:= yq which gives, w equilibrium 5'6N IP yw Load per seat ~ 2 tt a yq = 2.712 10 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2RHS'MOV115 page 3 PRHS115A.MCD

0 Niagara Mohawk Power Corporation NMP2 Page&of /3'7 Nuoiear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originatot/Date Checker/Date z~~g~g; A. 4 ~ 8/zHs7 lock'= 2 11 a " Yq (p'cos(e)- sin(e)) 2 " whichg/ves, F pres loci; pres Yw Piston Effect Force, piston etreot

                          '=    'tem '(    bonnet       atm)          whicl gives,      F piston egect "Reverse Piston Effect" Force,
                . I Pont/=[a       a  (2 P bonnet      np    Pttonn)] sin(g)             which gives,       F~ =2.295     10 Total Force Re uired to Overcome Pressure Lockin F totd:=F p~ I~k+Fpo+F v~- Fpi~n                  erect which gives,       F to  d     4.447654 10 ACTUATOR Actuator Model ISIze:                                                                     = SMB-0-25 Motor TorqueCAPABIUTY'Qout Output:                                                      TQm .'= 24.67           ft- lbs Gear Ratio:                                                                        OGR:=58.13 Application Factor:                                                                  Af:=0.9 Pullout Efficiency:                                                                  Eff:=0.4 Reduced Voltage:                                                                     RV:= 0.8767 Torque Output:                   TQout."= TQm RV -OGR        AfEff                TQout = 396.802          ft- lbs Stem Factoi:

Thrust Capability: THcap: = Sf THcap Sf: = 0.023664 1.677 10 lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. Jt ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:= 1.20 Tbrnst Margin:= THoap (pmmt KBI) Thrust Margin ~ -5.17 10 1bs

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2RHS'MOV115 page 4 PRHS115A.MCD

                                                                                     ~

Niagara Mohawk Power Corporation Nuotear Engineering NMP 2 Calcutation Cont. Sheet Pageggf 1 37 A10.1.AD403. Rev. 01 Originator/Date

                                           <</c'r/r 7 Ch<<kerlD le
                                                                                                >// ~

Valve IDno: 2RHS'MOV116 Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN Design Basis Conditions at tIme of Pressure Locking Event: INPUTS'alve Upstream pressure (psig), P .= 133 Valve Bonnet pressure (psig), P bonnet = 1868 p Downstream pressure (psig), P down 0 Disk Geometry: hub radius, b:= 5.75 mean seat radius, a.'=7.703 average disk thickness, t:= 1.644 hub length, L:=0.25 seat angle, a.=10 0:=-a tt 2 180 0 =0.087 Valve Disk Material Properties: 0 ishalfdiskangle a modulus ofelasÃcity, E:=29400000 Poisson's Ratio, .=0.3 Other Valve Parameters: Valve Stem Diameter, D ~ ..=2.375 Static Unseating Thrust (reference: Test ¹ 10, F po 7/10195) 16894 Valve Factor VF:= 0.5 (reference: NER-2M-010) CALCULATIONS: cos(0) Coefficient of friction between disk end seat, it:=

                                                                               -

VF I sin(0) p 0.521 (reference ¹6) up+ "down Average DP Across Disk, DP avg '.= P bonnet glvesr DP av I 802 10 2 Disk StNnes Constants, D;= and G:= i2. (1 ') 2 (1+v) which gives, D 1.196 10 and G =1.131 ~ 10 GeometiyFactors, C2.=-I 4 I- b

a 1+2 ln a b C3'.= b 4a b

                                                                                                     +

a I ln a b

                                                                                                                       +

b a I C8:=-'+I 2 v+(I- v) b a 2 C a

                                                                                                  -

9,--b I+v In 2 a b

                                                                                                               +

I v 4 I b a 2 which gives, C2 0.029 C 3 =0.002 C8 0.845 C 9 =0.2 COMED PL Evaluation Valve ID: 2RHS'MOV116 page 1 PRHS116A.MCD

0 w}

Niagara Mohawk Power Corporation NMP 2 Page'PS of ~>> Nuctear Engineering Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Originator/Date Checkerloate

+~~ape +-OW2 r Xp(gp                                                                      ~g~ /p Additional Geometry Factors,                                     rp .'=b 2               4               2                2 L  1 1
            '.= I 1  +4    -  -4 fP 5

rP rP

                                                                     ~

2+ In fP 64 a a a a rp L 17 -=-.I I I- v I - 4 rp a 4

                                                   -  rp a

2 I + (I 1- v) In a rp which gives, L 1,1 =1.535 10 and L17 =0.028 Moment Factors, 2 DPavga C9 / ~ (a -rp (-L17 'rib.- '"'. (a'- r,*j C8 2ab 2b which gives, 3 M~ =-4.005 10 and Qb =4 116 IO Defiedion from pressure/bending, 4 3 avg.a

                             '=Mrb           C2+ Qb C3-a                   a yb D                   D                  D LII which gives,                    yb q ~-2.937          10 Detiection from pressure/shear, 2                                                         2 K ~:=-0.3 2 In         a b
                                         - I+

rp a I-2 rp In-b ysq m Pavg a which gives, K ~ ~&.043 and y sq -245 10 DefieBion from pressure /hub stretch,

                      "
                                                                                             -P force L P f     '    (a       b ) DP g                       y stretch   '

nb 2E v which gives, P fo~ 1.487'10 and y stretch  %.087'10 COMED PL Evaluation Valve ID: 2RHS'MOV116 page 2 PRHS116A.MCD

lI I,

Nktgara Mohawk Povrer Corporation NMP 2 Page/cot r> W Nuclear Engineering Calculation Cont. Sheet A10.1-AD403. Rev. 01 Ortginatorloate Checker/Date ~~~~y~ ~. 8~ al~s/j~ ~le/e~ Total Deflection due to pressure, yq:=ybq+ysq+yst t h which gives, yq 5 448 10 Additional Geometry Factors ro;=a L3 ro

                .

4a ro a 2 e- I In + - I a ro ro a 2 L9 .'= a

ro I+v 2 In ~ I-v I-a ro 4 ro a 2 which gives, L3 =0 and L9 ~0 Deflection from seat load/bending, w:= I ybw

                -  as.w D

C2 ro C9 C8 b L9 roC3 b

                                                                   +L3 which gives,             y bw "2.338'10 Deflection from seat load/sheer, Ksa .'=-1.2 ro ro

a In-b y sw .'= Ksa tG which gives, Ksa ~ <.351 y sw ~-1.454'10 Deflection from seat load/hub compression, L

                           - 2'tt'a ycompr'=                ' 2           which gives,                y       ~-1.981 ~ 10 2

ttb E Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w ~-3.81I 10 Equilibrium contact load distribution, w equilibrium '= yq which gives, w equilibrium ~ 1.429 10 yw Load per seat = 2 tt a yq 6.918 10 4 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2RHS'MOV116 page 3 PRHS116A.MCD

Niagara Mohawk Power Corporation NMP 2 >>geN<</3 7 Nuclear Engineering Calculation Cont. Sheet A10.1-AO403, Rev. 01 Originator/Date Checker/Date Qc,~/~aug tie g/Z)l57 pres lock

                      "'a'(>' Yq Yw
                                                     )      (  ))v 'res                           lock
                                                                                                                ~

4 Piston Effect Force, P ~,=0 effectDstem'i bonnet atm) which gives, F p,st,n effect = 8.275 piston 10'Reverse Piston Effect" Force, Frets.'=[s a (2 Fbonnet-Pp-Pgo~)] sin(g) whichgives, F ~=5.854 10 Total Force Re uired to Overcome Pressure Lockin F total ' F pres lock+ F pp + vert F - F piston effect which gives, F >~ =.1.26883 ~ 10 ACTUATOR CAPABILITY: Model /Size: 'ctuator = SMB-0-25 Motor Torque Output: TQm '= 24.67 ft- lbs Gear Ratio: OGR:= 58.13 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV: = 0.8731 Torque Output: TQout: = TQm RV OGR AfEff TQout ~ 393.55 ft- lbs 'Stem Factor. Thrust Capability: THcap: = TQout Sf Sf: = 0.023664 THcap ~ 1.663 ~ 10 lbs NOTE: RVIS SQUAREIF ACTUATORISAC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Margin - THcap (F toM KEi) Thrust Margin ~-1.356'10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2RHS'MOV116 page 4 PRHS116A.MCD

0 Niagara Mohawk Power Corporation Nuctear Engineering NMP2 Calculation Cont. Sheet Paggtrtri /P 7 A10.1.AD403, Rev. 01 Originator/Date Checirer/Date Valve ID no: 2RHS MOV4A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design BasIs Conditions at time of Pressure Locking Event: e Upstream pressure (psig), P =325 Valve Bonnet pressure (psig), P bo << = 9677 Downstream pressure (psig), P down 0 Valve Disk Geometry: r 4 hub radius, b:=2.25 mean seat radius, a:=3 average disk thickness, t:=0.378 hub length, L:= 0.125 seat angle, a:=7 e:=-' ' -o.o61 2 180 Valve Disk Materfal Properties: e ishalfdiskangle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D <~ '.= 1.5 Static Unseating Thrust F po 6341 (reference: Test ¹ 5, t/7/97) Valve Factor VF:=0.5 (reference: NER-2M-010) CALCULA77ONS: Coefficient of fiiction between disk and seat, lt:= cope) I VF

                                                                       -  sin(e)

It 0.515 (reference ¹6) up ~ down avg 'onnet Average DP Across Disk, gives, DP avg 9 515 10 2 E.t 3 Disk Stlffnes Constants, and G'= u (i .*j 2 (I+ v) which gives, D 1.454 10 and G 1.131 ~ 10 Geometry Factors, C2 I

                               '.=-,I 4

b a

                                               ~

I+2 In a b C 3 .'= 4a b b

                                                                                         +

a I In a b

                                                                                                              +

b a I C8.=-I 2 b a C9 --b a

                                                                                      -

1+v In 2 a b

                                                                                                      +

I v 4 I b a 2 which gives, C2 0.028 C 3 =0.002 C 8 =0.847 C 9 = 0.198 COMED PL Evaluation Valve ID: 2RHS'MOV4A page 1 PRHS4AA.MCD

lj Niagara Mohawk Power CorPoration NMP2 Page5&f ~>> Nuctear Engineering Calculation Cont. Sheet A10.1-AtM03, Rev. 01 Originator/Date Checker/Date Wo+.~~-4.Ce g ~/~g/.~ Additional Geometry'actors, rp '.=b 2 4 2 2 I fp fp

                                             -4          fp                rp In ,         a I+4                5                            2+             ~

64 a a a a rp L17 4 1 I - 1 v 4 I - rP a 4 rP a 2 I+(I+v) ln a rp which gives, L I I =1.453 10 and L17 =0.027 Moment Factors, DP avg a Mrb ' 2.a b a -rp -L17 <b:- 2b

                                                                                                      .'"'(*-"*j C8 which gives, Mrb =-3.112        10    and              Q b ~8.325 10 Deflection from pressureibending, 4
                              '=Mrb C2+Qb C3-                               avg a                a yb                                                             L11 o                 o                 o which gives,                  yb q =<.003 Deflection from pressure/shear, 2                                                     2 K:=-0.3 Sa'           2 In a

I+ rp I 21n- rp ysq'= sa'vg b b which gives, K sa =%.041 and '8.286 y sq 10 Deflection from pressure lhub stretch,

                                                                                        .
                                                                                            -Pto~'L P f0~      tt (a       b ) DPavg                           y stretch '=

ttb 2E which gives, P to~ =1.177 10 and y ~~ ~-1.573 10 COMED PL Evaluation Valve ID: 2RHS'MOV4A page 2 PRHS4AA.MCD

Ih I~

Niagara Mohawk Power Corporation NMP2 Pagegoof is T Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originatorloate Qomrap . g. @goy /gy/< Total Deflection due to pressure, yq:=ybq+ysq+yg etch which gives, y q =.004 Additional Geometry Factors r .'=a L3 '= ro 4a ro a 2

                               + I In ~  - I a

r'0 ro a 2 ro a

L9,'= I+v ln 2

                                                                                        + I-v a

ro 4 I ro a 2 which gives, L3 =0 and L9 =0 Deflection from seat load/bending, w:= I ybw

                -

D C2 ro C9 C8 b L9 ro C3 b

                                                           + L3      which gives,        ybw =-1.088    10 Deflection from seat load/shear, Ksa:=-      1.2 ro ro

a In-b y ~:= Ksa tG which gives, Ksa <.345 y sw ~-2.423 10 Deflection from seat load/hub compression, L y compr 'b

                       .  -2na E

2 which gives, y compr 2 52 10 9 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, y w =-1.332 10 Equilibrium contact load distribution, w equii;brium.'= yq which gives w equilibriu =2.715 10 yw Load perseat= 2 na yq =5.118 10 yw Pressure Locldng Force, COMED PL Evaluation Valve ID: 2RHS MOV4A page 3 PRHS4AA.MCD

Niagara Mohawk Power CorPoration NMP2 Page 'flor>> 7 Nuclear Engineering Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Checker/Date Originator/Date 'Dc,mrs3 8 ~> s/ S/l567 ~,e trr1 F pres look 2 a a Yq (1 cos(e) - sin(e)) 2

                                                                         ~    ~

which gives, F pros 1001

                                                                                                   = 4.635 ~ 10 4 W

Piston Effect Force, P a~'.=0 P Pinon W~t:=S D n~ (Phoner-Pet which give~, F piston

                                                            )

Frets "Reverse Piston Effect" Force, I

                .
                .'=[s e ~

(2 P honnet P dorm) j'etn(tt) which gives, F y~ 3 285 10 up Total Force Re uired to Overcome Pressure Lockin F total l = F pros look + F po + F yurt - F piston 0@00 which gives, F <<~ =6.843527 10 ACTUATOR CAPABILITY: Actuator Model ISize: = SB-OOS-15 Motor Torque Output: TQm:= 14.18 ft- lbs Gear Ratio: OGR:= 36.2 Application Factor: Af:=0.9 Pullout Efficiency: EQ':=0.45 Reduced Voltage: RV:"-0.8538 Torque Output: TQout:= TQm RV OGR.Af Eff TQout ~ 151.549 ft- lbs Stem Factor. Thrust Capability: THcap: = TQout Sf Sf:= 0.018919 THcap = 8.01 10 lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Meripn:= THoep (p n,~ KEI) Thrust Margin =-7.411 ~ 10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2RHS MOV4A page 4 PRHS4AA.MCD

fp 0

Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calculation Cont. Sheet Page/Zof /$ 7 A10.1-AD4ta, Rev. 01 Orlglnalor/Date ~z/v r>p ~ 8 ~ 4/2'3/Y7 Checker/Date

                                                                                ~z/z/rg Valve ID no: 2RHS MOV4B Re uired                   0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event:

Upstream pressure (psig), P .= 325 Valve Bonnet pressure (psig), P bo~<< = 9677 p Downstream pressure (psig), P do .=0 Valve Disk Geometry: r hub radius, b:= 2.25 mean seat radius, a:= 3 average disk thickness, t:=0.378 hub length, L:=0.125 seat angle, a '.=7 e:=-' ' =o.o61 2 180 Valve Disk Material Properties: e ishalfdisk angle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D st .= 1.5 Static Unseating Thrust, F po 7324

                                                                                  ¹ (reference: Test 5, 6/16/96)

Valve Factor VF:=0.5 (reference: NER-2M-010) . CALCULAnONS: cope> Coefficient of friction between disk and seat, it:=

                                                                            ~(e)

I VF p 0.515 (reference ¹6) up down Average DP Across Disk DP avg gives, DP av< = 9.515 10 2 Et3 Disk SfNnes Constants, D:= and G:= n.(i-') 2 (1+v) which gives, D 1.454 10 and G 1.131 ~ 10 GeometlyFactors, C2.'=-I 4 I- b

a I+2 1n a b C3'.= . b 4a b

                                                                                                    +I a

In a b

                                                                                                                      +

b a

                                                                                                                              -I c8:=-I 1+v+

2 a 2 C9 --b a I-1+v 2 In a

b

                                                                                                               +

I v 4 b a 2 which gives, C2 0.028 C 3 =0.002 C 8 =0.847 C 9 =0.198 COMED PL Evaluation Valve ID: 2RHS MOV4B page 1 PRHS4BA.MCD

, )pf Niagara Mohawk Power Corgoration NMP2 Pager/3of/3 7 Nuctear Engineering Calculation Cont. Sheet A10.1-AD003, Rev. 01 N.<~ i er.abp Originator/Date Checker/Date

       -~p-Additional Geometry Factors,                                    rp '=b 2             4                2             2
                             -5  -4                                      '0

64 1

                     ]+4 a

0 a 0 a 0 2+ a ln-L]7 4 1

1- 1-U 1-4

a 0 4 a 0 2 I+(]+Y) ln rp a which gives, L ll =1.453 10 and L]7 0.027 Moment Factors, Mrb '=- DP avg a C8 2 C9 2ab a -rp -L]7 which gives, Mrb -3.112 10 and Qb =8.325 ]0 Deflection from pressureIbending, 4 3 avga

                             '.=Mrb C2+Qb' C3-a                  a yb                                                            L]1 o                  o                o which gives,                 yb q ~      0.003 Deflection from pressure /shear, K ~:=-0.3        2 ]n'   - ] +

a

rp 2

                                                        ~

1 - 2 ]n- rp ysq'= m'vg a 2 a b which gives, K sa ~%.04] and y'-8.286 sq 10 Deflection from pressure Ihub stretch, P force'L P force tt (a b~) DP y stretch avg ttb 2E which gives, p force ] ] 77 ] p and y stretch -].573 ]p COMED PL Evaluation Valve ID: 2RHS'MOV4B page 2 PRHS4BA.MCD

1 Niagara Mohawk Power Corporation NMP2 Peg~ Af/j7 Nuclear Engineering Calculation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date Checker/Date

      . >oA.e~z Qzz/sy                                            ~rWrZ Total Deflection due to pressure,                           yq:=ybq~ysq+yst        etch which gives,           yq    0 004 Additional Geometry Factors                           =a ro L3 .=

ro

               .

4a ro a 2

                              + I In    +  - I a

ro ro a 2 L9 - a

ro I+v I-v 2 In a ro

                                                                                             +

4 I ro a 2 which gives, L3 =0 and L9~0 Deflection from seat load/bending, w:= I ybw:- a w C2 rDC9 D C8 b L9 fpC3 b

                                                              +L3 whichgives,             y bw -1.088    10 Deflection from seat load/sheer, ro ro

Ksa:=-1.2 a In-b y:=Ksa- a tG which gives, Ksa ~ <.345 y~~-2.423 10 Deflection from seat load/hub compression, L

                         - 2'll'a 2 y compr
                      'tb                      which gives,               y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr                         which gives,           y  =-1.332 10 Equilibrium contact load distribution, equiiibn~: =     yq           which gives,            equilibrium yw LOad per Seat        a-    2 ft a yq    5.118 10 4

yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2RHS'MOV4B page 3 PRHS4BA.MOD

1 Niagara Mohawk Powir Corporation NMP2 Pagett+of W7 'uclear Engineering Catculatlon Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date '3cmr wag A'- ~ &/isls7 Checker/Date Fpr s lock '(l' Vq W

                                                   )      (  ))                   g          pfe  loctu
                                                                                                              ~

4 Piston Etect Force, P ~'.=0 F piston '= ttu'D 2/'(P which gives, etrtmt stem bonnet Perm)

   "Reverse Piston Effect" Force, Fyett.'=    rt a   2 P bonnet                gown     .sin(0)          which gives,      F y~   3 285 10 up 1

Total Force Re uired to Overcome Pressure Lockin F total: = F pres toed p F po + F yett - F piston effect r which gives, F <<~ =6.941827 10 ACTUATOR CAPABILITY: Actuator Model ISize: = SB-OOS-15 Motor Torque Output: TQm:= 14.18 ft- lbs Gear Ratio: OGR:= 36.2 Application Factor. Af:=0.9 Pullout Efficienc: Eff:=0.45 Reduced Voltage: RV:=0.8741 Torque Output: TQout:= TQm RV OGR AfEff TQout ~ 158.841 ft- 1bs Stem Factor. Sf: = 0.018919 TQout Thrust Cap'ability: THcap:= THcap ~ 8.396'10 Ibs Sf NOTE: RV IS SQUAREIF ACTUATORIS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Margin:= THcsp (F mmt KEt) Thtust Margin = -7.491 ~ 10 1bs

Conclusion:

Open Thrust Marginis negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2RHS MOV4B page 4 PRHS4BA.MCD

U Niagara Mohawk Power Corporation NMP2 Pagefrcpf/3 7 Nuclear Fngineering Calcuhtion Cont. Sheet A10.1-AD403, Rev. 01 Checker/Date

         .~. ZA Originator/Date c/zylsp Valve ID no: 2RHS'MOV4C Re uiredO enin                          ForceDeternminationunderPressureiockin                                                  Conditions COMED Method DESIGN Design Basis Conditions at time of Pressure Locking Event:

INPUTS'alve Upstream pressure (psig), P 325 Valve Bonnet pressure (psig), P bonn<< = 9677 np Downstream pressure (psig), P down 0 Disk Geometry: hub radius, b:= 2.25 mean seat radius, a:= 3 average disk thickness, t:=0.378 hub length, L:=0.125 seat angle, a '.=7 e:=-' ' -0.06I 2 180 Valve Disk Material Propertie: 6 ishalfdisk angle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D st~ 1.5 > Static Unseating Thrust, F po 3798

                                                                                      ¹ (reference: Test 21, Tlt8/g5)

Valve Factor VF '=0.5 (reference: NER-2M-010) CALCULATIONS: coge) Coeftic/ent of frict/on between disk and seat, lt.=

                                                                                                                                          ¹6)

I VF sin(6) It = 0.515 (reference up ~ down gives,'P <<g = 9.515 Average DP Across Disk, <<g'bonnet ~ 10 Disk SNfnes Constants, Et:=

                                                                       'nd             G:=       E u(i-')                                     2.(1 + v) which gives,                D =1.454     10               and          G ~ I.I31 ~ 10 Geomet/y Factors,                   C2  .'=-I I -

4 b a I + 2 In a b

                                                                                           .

C 3 '.= +I b 4.a b a h b a

                                                                                                                           +  -I b

a C8.=-I 1+ v+(I- v) 2 b a 2 C a

                                                                                                     -

9'.=-b 1+v In 2 a b

                                                                                                                   +

1-v 4 I b a 2 which gives, C 2 =0.028 C 3 ~0.002 C 8 =0.847 C 9 =0.198 COMED PL Evaluation Valve ID: 2RHS'MOV4C page 1 PRHS4CA.MCD

Niagara Mohawk Power Corporation NMP2 Pagegkfl~ 7 f Nuclear ngineering Calculation Cont. Sheet A10.1-AD403, Relr. 01 Checker/Date Originator/Date Ww~ g~ N. 8~ WiP/P'P r/ r7 Additional Geometry Factors, rp '.=b 2 4 2 2 fp fp fp fp I+ 4 -5 -4 In

                                                      .

LII = 2+ ~ 64 a a a a rp L17 .-- I-4 I I-Y I-4 a 0 4 a 0 2

                                                                 ~

I+(I+Y) In- a rp which gives, L I I =1.453 10 and L17 =0.027 Moment Factors, 2 Dpavga C9 I 2- f (a 0 ) 2h - L I7 avg 2 2 C8 2ab 2b which gives, Mrb -3.112 10 and Qb 8.325 10 Deflection from pressureIbending, 4 3 avg a yb .'=Mrb C2+Qb C3-a a D D D LII which gives, yb q ~%.003 Deflection from pressure Ishear, 2 2 K sa DP 'avg I+ I-21n-a

                                          -          rp                      rp                                  a K~'=-0.3 21n                                    ~

ysq'= b a b which gives, K sa ~%.041 and y sq =-8.286 10 DefleiWon from pressure Ihub stretch, P force'L P force tt'(a b j DP avg ystrctch-ttb 2E which gives, P fo~- 1.177 10'nd y ~etch = 1573'10 COMED PL Evaluation Valve ID: 2RHS MOV4C page 2 PRHS4CA.MCD

>E

    ~

g

Niagara Mohawk Power Corporation NMP2 Psge4<ot / 3 > Nuclear Engineering Calculation Cont. Sheet A10.1.AD403, Rev. 01 Onginatorloate Checker/Date w t"~ Qgp$ p Total Deflection due to pressure, yq'bq+ysq+ystretch which gives, y q =%.004 Additional Geometry Factors ro.'=a L3 '= ro 4a ro a 2

                                +I   In  +  - I a

ro ro a 2 L9 '.= ro a I-2 ln ro

                                                                                               +

4 r a

                                                                                                                )

which gives, L3 0 and Deflection from seat load/bending, w:= I ybw.- asw C2 ro'Cg D C8 b L9

                                                 - ro'C 3 + L3 b

which gives, y bw -1.088'10 Deflection from seat load/sheer, ro ro Ksa: =- 1.2 In-b y sw:= KsR a which gives, Ksa = %.345 a tG y sw =-2.423 10 Deflection from seat load/hub compression, L

                      ,   -2tta '   2 which gives,                              ~

9 compr 2 y compr tt b Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w =-1.332 10 Equilibnum contact load distribution, w equilibrium 'yq which gives, wequilibrium =2.715 10 yw Load per seat = 2 tt a yq yw 5.118 10 4 Pressure LocMng Force, COMED PL Evaluation Valve ID: 2RHS'MOV4C page 3 PRHS4CA.MCD

Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calculation Cont. Sheet Page+of/ + f A10.1-AtM03. Rev. Ot Checker/Date

                                         /PD $ lp7 F pres ]ock . = 2 tt a            (

Yq lt cos( t)) sin( 0) ) 2

                                                                                     ~      ~

which gives, F pres ]oc]

                                                                                                                 = 4.63 5- ~ ] 0 4 Yw Piston Effect Force,                                      Pat:=0 piston eg'act'=              'tem '(      honnet        aun)
                                                                                   "'o" tg"          piston street "Reverse Piston Effect" Force, Poets
                's'a 2'(g'Phennet
                . I Pup       Pttosan)j'stn(g)            which gives,       F ycrt   3 285 10 Total Force Re uired to Overcome Pressure Lockin F tpta]: = F pres ]ock+ F pp+ F ycrt               - F piston    cffcct which gives,          F <<~ =6.589227           10 ACTUATOR Model ISIze:

CAPABILITY'ctuator

                                                                                                    = SB-OOS.15 Motor Torque Output:                                                                          TQm: = 14.18            ft- 1bs Gear Ratio:                                                                                   OGR:= 36.2 Application Factor:                                                                            Af:=0.9 Pullout Efficiency:                                                                            Eff:= 0.45 Reduced Voltage:                                                                               RV: = 0.8727 Torque Output:                         TQout:= TQm RV OGR.Af Eff                             TQout ~ 158.332          ft- lbs Stem Factor:

Thrust Capability: THcap: =TQout Sf , Sf:= 0.018919 THcap 8.369 ~ ]0 Ibs . NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KE]:= 1.20 Thrust Margin:= THcap (F>og KE1) Thrust Margin =-7.07'10 1bs

Conclusion:

Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking under conditions evaluated. COMED PL Evaluation Valve ID: 2RHS'MOV4C page 4 PRHS4CA.MCD

Niagara Mohawk Prrrrer CorPoration NMP2 Page jabot/Q7 Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originatorloate ga w~' $ r/a3/6 Valve ID no: 2SWP MOV17A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>> .= 123 Valve Bonnet pressure (psig), P bonn<< = 86 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=4.94 mean seat radius, a:=5.75 average disk thickness, t:=0.789 hub length, L:=0.125 seat angle, a,'=7 0:=-a tt 2 180 0-0.061 Valve Disk Material Properties: 0 ishalfdisk angle a modulus of elasticity, E:=29400000 Poisson's Ratio, v.--0.3 Other Valve Parameters: Valve Stem Diameter, D ~.=2 Static Unseating Thrust, F po 6219

                                                                        ¹ (reference: Test 25, 3ttM5)

Valve Factor VF:=0.6 (reference: NER-2M-010) CALCULATIONS: cos(0) Coefficient of fnction between disk and seat, tt:=

                                                                 -     sin(0) tt =0.622    (reference   ¹6) up+     down Average DP Across Disk,               DP avg .'=Pbonnet                             gives,     DP av     24 5 2

Disk Stifl'nes Constants, Et 3 and G = E u (i - ') 2 (1+ v) which gives, D 1.322 10 and G 1.131 ~ 10 GeometryFactors, C2.'= 1+2 ln C3.'= +1 1n + -1 C8 .- 1 2 1+ v+ (1 v) b a C a

9.--b I+v ln 2 a b

                                                                                                 +

1-v 1-4 b a 2 which gives, C2 0.009 C3 =4.316'10 C 8 ~0.908 C 9 ~0.124 COMED PL Evaluation Valve ID: 2SWP'MOV17A page 1 PSWP17AA.MCD

. ~ Niagara Mohawk Power Corporation NMP2 Page5lofr3 ar Nuctear Engineering Calculation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date Checker/Date Woevppw 4 Cw p cfg3/9) z/z/H7 Additional Geometry Factors, rp '.=b 2 4 2 2 ll '4 I I+4 fp 5 4 fp fp 2+ rp In- a a a a a rp L17 '=-.I 4 I I-I-U 4 a 0 4

a 0 2

                                                         ~

I+ (I + Y) In a rp which gives, L 11 = 1.545'10 and L17 =0.009 Moment Factors, Mg:=- DP avg a C8 2

                                ~  -rp C9 2ab a               -L17 2b avg which gives, Mrb -8.73                  end            Qb =21.472 Deflection from pressure%ending, 4

avg a

                           '.=Mrb C2+Qb C3 a                  a yb                                                          .LII D                  O                  D which gives,              yb q ~-1.041 ~ 10 Deflection from pressure/sheer, K ~:=-0.3     2 In a

I+ rp 2

                                                     ~

I-2 rp In-b ysq '= I'vg a 2 b a which gives, K sa  %.013 and y'sq =-1.138 10 Deflection from pressure/hub stretch, P force'L Pra~.--a (a b ) DPaa< y stretch '= ttb 2E which gives, P fp~ 666.467 and y ~~ -1.848 10 COMED PL Evaluation Valve ID: 2SWP MOV17A page 2 PSWP17AA.MCD

II Niagara Mohawk Power Corporation NMP2 Page5'Zof r%T Nuclear Engineering Calculation Cont. Sheet A10.1-AtM03, Rev. Ot Originator/Date Checker/Date Z ~ ~p S. e~~/i slsp ~/zr~ Total Deflection due to pressure, yq'bq+ysq+ystretch which gives, yq 2 197 10 Additional Geometry Factors ro.'=a L3 '.= ro 4a ro a 2

                              + I In   +  - I ro a      ro a

2 L9 - a

ro I+v 2 ln + I-v I-a ro 4 ro a 2 which gives, L3 =0 and L9 =0 Deflection from seat load/bending, w:= I ybw -

              '=- a w C2 D C8 ro'C9 b

L9 fo'C3 b

                                                              + L3      which gives,       yb      I 437'10 "7

Deflection from seat load shear, l ro ro Ksa:=- 1.2 a ln- b y ~:=Ksa-tG a which gives, Ksa ~ %.182 y =-1.174 10 Deflection from seat load!hub compression, L

                          -2'lr a 2 y'compf    'ib                     which gives,                y compr Total Deflection f/om unit seat load, y w:=y bw+y sw+y compr                        which gives,            yw~ 2621'10 Equilibnum contact load distribution, yq w equilibrium
                              'w             which gives,              equilibrium Load per seat ~          2 tt a yq     302.831 yw Pressure Locking Force, COMED PL Evaluation                             Valve ID: 2SWP MOV17A                                           page 3 PSWP17AA.MCD

Niagara Mohawk Power Corporation NMP2 Calculation Cont. Sheet Page5$ of /37 Nuclear Engineering ~ s A10.1-ADO03, Rey. 01 Qflglnatof/Date Checker/Date

       ,. A. ~in/~ff/P 7                                               gtg rstg+

F pres look 2 s a Yq (p cos(8) - sin(8)) 2 which gives, F pres look 338 833

                                 /w Piston Effect Force,                             P au:=0 "piston cffect   '

stem 2

                                         '(  bonnet      atm)
                                                                          " "tp"     'iston       effect "Reverse Piston Eh'ect" Force, F v~',=     rt a  2 P bonnet               down       sin(8)          which gives,     F ert = 310.711 up Total Force Re uired to Overcome Pressure Lockin s

F total:=F pres look+ F po + F vert F ptston effec which gives, F >ud ~6.598367 10 ACTUATOR CAPABILITY: Actuator Model /Size: = SMB-0-25 Motor Torque Output: TQm:= 23.52 tt- lbs Gear Ratio: OGR;= 39.11 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV: = 0.8785 Torque Output: TQout:= TQm RV OGR AfEff TQout = 255.571 ft- lbs 'tem Factor: TQout Sf:= 0.019627 Thrust Capability: IHcap:= THcap ~ 1.302'10 1bs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Margin:= THcap (F mmt KEI) Thrust Margin = 5.103'10 1bs

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2SWP'MOV17A page 4 PSWP17AA.MCD

0 Niagara Mohawk Povver Corporation Nuclear Engineertng NMP2 Calculation Cont. Sheet Page'574 / 97 A10.1 AD403. Rev. 01 Checker/Date 7/Z/gp Valve ID no: 2SWPMOV17B I Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P  := 123 Valve Bonnet pressure (psig), P bonnet '= 86 Downstream pressure (psig), P doggy 0 Valve Disk Geometry: r hub radius, b:=4.94 mean seat radius, a '.=5.75 average disk thickness, t:=0.789 hub length, L:=0.125 seat angle, a:=7 e:=-'" e =o.o61 2 180. Valve Disk Materfal Properties: e ishalfdiskangle u modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, " D <<~.= 2 Static Unseating Thrust F po 5862 (reference: Test 6, 8/2M4) ¹ Valve Factor VF:=0.6 (reference: NER-2M-010) CALCULATIONS: cos(e) CoeNicient of friction between disk and seat, p .'=

VF I sin(e) It 0.622 (reference ¹6) P down Pup + Average DP Across Disk, avg 'onnet 2 gives, DP av< 24.5 3 Disk SNfnes Constants, D:= and G:= i2. (1 ') 2 (1+v) which gives, D 1.322 10 and G =1.131 ~ 10 Geometry Factors, C2'.=-I 4 I - b

a

                                                 ~

1+2.ln a b C3.=. b 4a b

                                                                                             +

a I In a

b

                                                                                                              +

b a I C8.--I I+ v+(I - v) 2 b a C9 -- - In + I which gives, C2 0.009 C3 =4.316'10 C 8 >0.908 C 9 = 0.124 COMED PL Evaluation Valve ID: 2SWP MOV17B page 1 PSWP17BA.MCD

e Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Calculation Cont. Sheet A10.1 AD403, Rev. 01 Originator/Date Checker/Date W~ ~c rP-Q~ ~gybe ~7/i/F7 Additional Geometry Factors, rp =b 2 4 2 2 I I+4 5 0 0 4 0 2+ rp In- a 64 a a a a rp L17 I 4 I-I-U 4 I a 0 4 a 0 2 I+ (I+ Y) In a rp which gives, L I I =1.545 10 and L17 =0.009 Moment Factors, avg'a C8 2 9 2ab p

                                          /2 -rp                                ~b=

DP avg 2b (

Oj which gives, M rb -8.73 and Qb 21.472 Deflection from pressure/bending, a2 a3 DP avg'a yb '.=Mrb C2+Qb' D C3- D LII D which gives, yb -1.041 10 Deflection from pressure /shear, 2 rp m.D avg .2 a K~:=-0.3 a 21n I+ I-21n-b rp ysq:= tG b a J which gives, K sa ~%.013 and y' -1.138'10 sq 0 Deflection from pressure/hub stretch,

                                                                                     -P forca.L
='(a'- b') DP,, y stretch .

ttb 2E which gives, P f0~0 =666.467 and y search 848 10 COMED PL Evaluation Valve ID: 2SWP'MOV17B page 2 PSWP17BA.MCD

'C Niagara Mohawk Power Corgoration NMP2 Page5cof/9 9 Nuciear Engineering Calcuhrtion Con!. Sheet A10.1-AD403, Rev. 01 OriginatorlOate W~~ ~ > 4. C'mg +~sky Total Deflection due to pressure, y q:=ybq<<ysq+ y stretch which givesr yq 2 197 10 AddNonal Geometry Factors '.=a r L3 - . ro 4a ro a 2

                                + I In   +

a ro r0 a 2

                                                        -I            L9    =

a I-ro I+v a 2 In + ro I v 4 r0 a 2 which gives, L3 =0 and L9 ~0 ~ Deflection from seat load/bending, w:= I

       ~

ybw ',=

              . a  w C2 D C8 roC9 b

L9' rpC3 b

                                                               + L3     which gives,         yb        I 437'10 Deflection from seat         loadl shear, ro ro Ksa:=-1.2         In-                y ~:=Ksa' a

which gives, Ksa =-0.182 a b tG y sw =-1.174'10 Deflection from seat load/hub compression, L

                          -2'tt a    2 y compr
                       '.b                      which gives,               y     p
                                                                                      -1.002'10 Total Deflectio from unit seat load, y w:=y bw+y sw+y compr                         which gives,            yw     2 621'10 Equilibrium contact load distribution, equilibrium   'hich yq yw gives,           equilibrium Load per seat =           2 tt a yq  =302.831 yw Pressure Locking Force, COMED PL Evaluation                             Valve ID: 2SWP MOV17B                                               page 3 PSWP17BA.MCD

e Niagara Mohawk Power Co/Poration NMP2 Page&ot/ 7 7 Nuclear Engineering Calculation Cont. Sheet

                                                              ~

A10.1-AD403. Rev. 01 Originator/Date Thorn.ep-. At + /Flzglpp Checker/Date rs-rrÃ7 F pres loclt 2 a a Vq (p cos(0) - sin(0)) 2 which gives, F pres loci' 338.833

                                /w Piston Effect Force,                            P  at:=0 piston street
                         '= O'tem '< bonnet          p atm)          which gives,     F iston effect   270.177 "Reverse Piston Effect" Force, F vert      "'a P bonnet      P up P down                      which gives,     F ~ = 310.711 Total Force Re uired to Overcome Pressure Lockin F total: = F pres tock+ F po+ F 1/ert F piston effect which gives,         F <<< =6.241367          10 ACTUATOR CAPABlLITYt Actuator Model /Size:                                                                    = SMB-0-25 Motor Torque Output:                                                              TQm:= 23.52            tt-'bs Gear Ratio:                                                                       OGR:= 39.11 Application Factor:                                                                 Af:=0.9 Pullout Efficiency:                                                                 Eff:-"0.4 Reduced Voltage:                                                                    RV:= 0.8834 Torque Output:                TQout:= TQm RV OGR.Af Eff                          TQout = 258.43         tt- lbs Stem Factor.                                                                        Sf:=0.019627 TQout Thrust Capability:              THcap  '.=

Sf THcap = 1.317'10 lbs NOTE: RV lS SQUARE/F ACTUATORlS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Margin: = THeap (F tong KBI) Thust Margin ~ 5.677 10 1bs

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locklngconditions evaluated. COMED PL Evaluation Valve ID: 2SWP'MOV17B page 4 PSWP17BA.MCD

Niagara Mohawk Power Corporation NMP2 Page5$ br /%T Nuciear Engineering Calcutation Cont. Sheet At0,1-AD403. Rev. Ot Originator/Oate Checkedoate

'uow pro        /I Q 0 (p3/v
                    ~
                                                                   ~e/z/r7 ValvelDno: 2SWPMOV18A Re uired         0 enin        Force Defernmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:

Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.--108 Valve Bonnet pressure (psig), P bonnet =125 Downstream pressure (psig), P do~.=0 Valve Disk Geometry: hub radius, b:=4.94 mean sestrsdius, a:=5.75 average diskthickness, t:=0.789 hub length, L:= 0.125 seat angle, a .'=7 0:=- 2 180 0 =0.061 Valve'isk Matertal Properties: 0 ishstfdisksngle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D at~.--2 Static Unseating Thrust F po 8635

                                                                     ¹ (reference: Test 8, 3/17>95)

Valve Factor VF:= 0.6 (reference: NER-2M-010) CALCULATIONS: Coefticient of fnction between disk and seat, ~<0)

                                                               -

I VF sm(0) it =0.622 (reference ¹6) up+ down Average DP Across Disk, DP avg '= P bonnet" gives, DP av< ~71 2 Disk Sfiffnes Constants, Et and G:= E iz(i-v') 2 (I+ v) which gives, D ~1.322 10 and G ~1.131 ~ 10 GeometryFsctors, C2.'=- I- I+21n C3.= +I In 2 C8 '=-I 2 I+ v+ ( I - v) b a C9 --b a

I+v In 2 b a

                                                                                                +

I-v - 4 I b a which gives, C2 0.009 C3 ~4.316 10 C 8 =0.908 C 9 = 0.124 COMED PL Evaluation Valve ID: 2SWP'MOV18A page 1 PSWP18AA.MCD

Peg<~ref/V Niagara Mohawk Power Corporation NMP2 7 Nuclear Engineering Calculation Cont. Sheet A10.1&D003, Rw. 01 Orit/lnatorloate Checker/Date Wc ~~p t, N. des y cP~/pg r/s/f7 Additional Geomehy Factors, rp.'=b 2 4 2 2 L11 .'= 1+4. fp - rp 5 4 rp 2+ rp ~ In 64 a a a a rp L17.=- 4 I- I-4 ro a 4

rp

a 2

                                                               . 1~(1+v)       In rp a

which gives, L I I =1.545 10 and L17 ~0.009 Moment Factors, Mg:=- DPavga CS which gives, 2 C9 2ab (a -ro )-L lq o:= -") DP avg 2b ( Mrb =-25.298 and Q b ~62.225 Deflection fiom pressure/bending, DP avg a a2 yb '=Mrb C2+Qb D C3-a3 D LII D which gives, y bq 3.016.10 Deflection fiom pressure/shear, 2 2 rp K~:=-0.3 21n a I+ rp ~ 1-21n-b avg'o b a which gives, K sa =%.013 and y'-3.297'10 sq t Deflection from pressure /hub stretch, P force L P f .'= ll (a - b ) DP vg y stretch ttb 2E and y ~<h -5.355 10 which gives, P f0~ ~1.931 10 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP MOV18A'age 2

Niagara Mohawk Power Corporation NMP2 Pag~W 7 Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. Ot CSginatorlDate Checkerloate Q~~ apy 4e @AD k- /g3/py r/rr'6 Total Deflection due to pressure, yq ' bq+ y sq+ y stretch which gives, yq H.367 10 Additional Geometry Factors ro:=a L3 - ro 4a ro a 2

                              + I In  +

a ro ro a 2 I L9 a

ro I+v 2 In a ro

                                                                                            +

I-v 4 I ro a 2 which gives, L3 0 and L9 =0, Deflection from seat loadlbending, w.'= I ybw'- asw C2 roC9 D C8 b L9 roC3 b

                                                            +L3 which gives,             yb     -I 437'10 Deflection from seat load shear, l ro      ro
                   ' In-b a

Ksa '.=- 1.2 y ~:=Ksa'G which gives, Ksa ~-0.182 y <-I;174 10 Deflection from seat load/hub compression, L 2'll'a 2 y compr' which gives, y compr ttb E Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w =-2.621 ~ 10 Equilibrium contact load distnbution, w eqtniib.tm,.= yq which gives, w eqttitibritm = 24.291 w Load per seat - "2 tt a yq 877.591 yw Pressure Locking Force,, COMED PL Evaluation Valve ID 2SWP MOV18A page 3 PSWP'I 8AA.MCD

Niagara Mohawk Power Corporation NMP2 Paged/of /7 Nuclear Engineering Calculation Cont. Sheet A10.1-AtHSS, Rev. 01 Orig inatorloate Checker/Date m--;-A +lsPg/~p /is r<<. F pres iocle: = 2 rt a " Yq ( tt cos( 0) - sin( 6) ) 2 which gives, F pres loci = 98 1 . 925 W Piston Effect Force, Pat:=0 ft which gives, F piston effect "piston street,a'D stem '(phonnet peon)

 "Reverse Piston Effect" Force, F vert'.= ft a ~

2 P bonnet up

                                            - P do1tfn     sin(e)          whichgives,               Fy~     900428 Total Force Re uired to Overcome Pressure Lockin total 'res     lock+ po+         vert     piston effect whichgives,          F<<~         1.012465 10
                                                                              'CTUATOR CAPABILITY:

Actuator Model/SIze: = SMB-0-25 Motor Torque Output: TQm .'= 23.21 ft- lbs Gear Ratio: OGR:= 39.11 Application Factor. Af:=0.9 Pullout ENciency: Eff:= 0.4 Reduced Voltage: RV '-= 0.8789 Torque Output: TQout:= TQm RV OGR AfEff TQout = 252.432 ft- lbs Stem Factor. , Sf:=0.019627 Thrust Capability:, THcap .'=T out Sf THcap =1 286 10 lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Thrust Margin:= THoap (F to% KEI) Thrust Margin 711.881 Ibs sl

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED Pl. Evaluation Valve ID: 2SWP'MOV18A page 4 PSWP18AA.MCD

Niagara Mohawk Power Corporatton NMP2 Pape scut I PT Nuclear Engineertng Calculation Cont. Sheet A10.1-AD403, Rev. 01 Originato/Date

          ,-.w. e; -E~/~

Checker/Date gled f >/i/~7 Valve ID no: 2SWP'MOV18B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P p,=108 Valve Bonnet pressure (psig), P bonnet.--125 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=4.94 meanseatradius, a:=5.75 averagediskthickness, t:=0.789 hub length, L:= 0.125 seat angle, a:= 7 1:= " a tt 2 180 e 0.061 Valve Disk Material Properties: 0 ishalfdisk'angle a modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: Valve Stem Diameter, D <~.--2 Static Unseating Thrust, F po 2129

                                                                     ¹ (reference: Test 11. SS96)

Valve Factor VF:=0.6 (reference: NER-2M-010) CALCULATIONS: cos(e) Coefficient of friction between disk and seat, p:=

                                                                '- s~(e)                  p   0.622     (reference    ¹6) up+ down                                  =71 Average DP Across Disk,                 avg 'onnet                  2 gives,     DP Disk SINnes Constants, Et             Bed        G:=       E n(1    -')                           2 (1+v) which gives,      D =1.322     10         and          G =1.131 ~ 10 GeometryFactors, 4,a C2.=

1 b 1+2 1n a

b C3'.=. b 4a b

                                                                                        +1 a

ht a

b b

                                                                                                         +  -1 a

C8 =-1 2 1+ v+(1 v) b a 2 C9 a 1-

                                                                               --b 1+v2 a

ln + b 1-v 4 b a 2 which gives, C 2 =0.009 C3 =4.316'10 C8 0.908 C 9 ~0.124 COMED PL Evaluation Valve ID: 2SWP'MOV18B page 1 PSWP18BA.MCD

r7 I if I I

Niagara Mohawk Power Corporation NMP2 Pagw'o//37 Nuctear Engineering Calculation Cont. Sheet A10.1-AD403, RW, 01 Checker/Oate Originator/Date Q~~~ o 4 - C~ &2j/5 7 ~~/./~r Additional Geometry'Factors, rp .'=b 2 4 2 2 I I+4 -5 rp fp 4 fp 2+ In-rp a 64 a a a a rp L17 I 4 I - I-1-Y 4

                                 '

a 4 a 0 2 I +(I+ Y) In a rp which gives, L 11 =1.545 10, and L17 =0.009 Moment Factors, Mrb' DP avg a Cg C9 2ab

                                          ~

a -rp -L17 Qb'a 2b

                                                                                                              -r0 j which gives, M+--25.298                   and            Qb-62.225 Deflect/on from pressure/t/ending, 4
                             .'=Mrb 3

avg a C2+Qb C3-a a yb D D D LII which gives, yb q =-3.016 10 Deflection fiom pressure/shear, 2 K ~:=-0.3 2 In a I + rp

2 I 2 In-brp sa'vg a b a ysq'hich gives, K sa ~.013 and y" ~-3.297 10 s sq Deflection from pressure/hub stretch, P f tt (a b ) DP g y stretch 'b P force'L 2E which gives, force

                                                                    '                            y~<<h      -5355'10 COMED PL Evaluation                               Valve ID: 2SWP MOV18B                                                      page 2 PSWP18BA,MCD                                                                                                                   ~i

Niagara Mohawk Power Corporation NMP2 Pager"trot /7 7 Nuctear Engineering Calculation Cont Sheet A10.1-AD403, Rev. 01 Originator/Date Checker/Date R~pju W P~~ ~fg+g7 ~~/slur Total Deflection due to pressure, yq 'bq+ysq+ystretch which gives, y q =%.367.10 Additional Geometry'Factors ro'.=a L3 '.= ro 4a ro a 2 1-1 ~ In + - I r a ro a 2 L9.= a

ro I+v 2 In a ro

                                                                                                +

I-v 4 I ro a 2 which gives,'" L3 ~0 and 'L9 ~0 Deflection from seat load/bending, w:= I y bw ..=- D C2 C8 roC9.- b L9 roC3 b

                                                               + L3     which gives,        yb       1437 10
                                                                                                                'r Deflection from seat load/sheer, Ksa:=-1.2 ro ro

a In-b y sw'G

                                                   .'=Ksa            which gives,           Ksa ~ %.182 y ~   -1.174 10 Deflection from seat load/hub compression, L
                          -2tta      2 which gives,                        ~ I'002 10 y compr '                                                       ycompr itb Total Deflection from unit seat load, yw:=ybw+ysw+ycompr                             which gives,           y w -2.621 ~ 10 Equilibrium contact load distributr'on, w eqmlibri~      'hich yq yw gives,       w equilibrium = 24.291 Load per seat =           2 tt.a yq     877.591 yw Pressure LocMng Force, COMED PL Evaluation                               Valve ID: 2SWP'MOV18B                                              page 3 PSWP18BA.MCD

f' NMP2 PageirSot/3 ~ Niagara Mohawk Power Corporaaon Nuotear Engineering Catoulation Cont. Sheet A10.1-AD403, Rev. 01 CheckerlDate

                                                              ~io.rrrW F pres lock:=

1 2 tt a Yq (p cos(0) - sin(0)) 2 which gives, F pres lock 981 925 W Piston Effect Force, . P au:=0

                        '=                          p stm)           which givess    F lston off~e    392.699 "piston street S'D stem '(p bonnet "Reverse Piston Effect" Force, Fvert'=     rt a   2Pbonnet        up      down which gives,      F ~ = 900.428 Total Force Re uired to Overcome Pressure Lockin
              '                         F         F pist F total       pres lock+ F po + veft
                                              '                              '

which gives, <<~ =3.618654 10 ACTUATOR CAPABILITY: Actuator Model/Size: = SMB-0-25 Motor Torque Output: TQm:= 23.52 ft- Ibs Gear Ratio: OGR:= 39.11 Application Factor. Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:=0.8852 Torque Output: TQout:= Tg RV OGR Afar TQout = 259.484 tt- lbs Stem Factor. St: = 0.019627 Thrust Capability: THcap .'= TQout Sf THcap ~ 1.322 10 lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:= 1.20 Thrust Msrtpn:= THeep (Fmmt KEI) Thrust Margin ~ 8.878'10 lbs I

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2SWP'MOV1 8B page 4 PSWP18BA.MCD

0 Niagara Mohawk Power Corporation NMP2 Page C4or~ 7 Nuctear Engineering Calcutation Cont. Sheet A10.1.AD403, RW. 01 Originator/Date Checker/Date Q ~/~3bp ~vrzjt7 Valve ID no: 2SWP'MOV2tA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 108 Valve Bonnet pressure (psig), P bonnet .= 2314 Downstream pressure (psig), P d ~.=0 Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a.=1.47 average disk thickness, t:=0.54 hub length, L:=0.25 seat angle, a.=10 .a e:=- tt e =0.087 2 180 Valve DIsk Materfai Properties: 0 ishalfdisk angle u modulus of elasticity, E;=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: Valve Stem Diameter, D< .=1.125 Static Unseating Thrust, F o:=1890 (reference: Test ¹ 7, 3/30/93) Valve Factor VF:= I (reference.'ER-2M-010) CALCULATIONS: cope) Coefficient of friction between disk and seat,

                                                                  '- s~(e)               It =1.091     (reference    ¹6) up+ down                                         3 Average DP Across Disk,                 avg       bonnet                            gives,      DP avg    2 26 10 2

Disk SNfnes Constants, D:= Et and G:= E iz(i-') 2 (I+ v) which gives, D ~4.239 10 and G ~ 1.131 ~ 10 GeometryFactors, C2.=-I 4 I- b

a I+21n a b C3'.= 4a

                                                                                      +

a I In a

b

                                                                                                        +

a

                                                                                                               -   I C8'.=-I 1+ v+(I- v) 2 b

a 2 C 9.=- I- In + which gives, C 2 =0.07 C 3 =0.008 C 8 0774 C 9 ~0.268 COMED PL Evaluation Valve ID: 2SWP MOV21A page 1 PSWP21AA.MCD

Niagara Mohawk Power CorPoration NMP2 Page C'Pot /7 7 Nuctear Engineering Catcutation Cont. Sheet A10.1-AD403, Rw. 01 Originator/Date Checker/Date so~.oy~ 4Q~ PZ)$ g Additional Geometry Factors, rp .'=b 2 4 2 2 fp In-I 1+4 4 rp 5 rp rp 2+ ~ 64 a a a a rp L17 I 4 I - I- - 4 rp a 4 rp a 2 I +(I+v) In a rp which gives, L 11 =9.149 10 and L17 ~0.063 Moment Factors, M~'=- Dpavg C8 wh/ch g/ves, 2 C9 2ab (a -ro )-Lrr ~b:= 2b

                                                                                                  '"'(*-               0')

M rb =-516.898 and Qb 1.802 10'eflection f/Qm pressureIbending,

yb .=Mrb O C2+ 2 Qb C 3-D D

                                                                                   .L 11 which gives,               y bq ~%.158           10 Deflection from pressure        Ishear, 2                                                                   2 rp                                           avg a K ~:=-0.3 2 In  - I +

rp ~ I-2 In-b sa tG b a which gives, Ksa =%.118 a/ld y'sq = %.403'10 Deflection from pressure /hub stretch, P force'L P,:=a (a'- b') DP,, y stretch ttb 2E which gives, P force 9 906 18 and y stretch =-1.751. 10 COMED PL Evaluation Valve ID: 2SWP'MOV21A page 2 PSWP21AA.MCD

NMP2 Pagerr 1/o/~7 > Niagara Mohawk Power Corporation Nuclear Engineering Calculation Cont. Sheet 4 A10.1.AMX},Rw. 01 Originator/Date Checker/Date Row i>pc, A. Q~ QZy/p p ~/i/~r Total Deflection due to pressure, yq ' bq ~ y sq+ y.trctch which gives, y =-2.031 ~ 10 Additional Geometry Factors ro:=a L3 '= ro 4a ro a 2

                              +1  1n +  -1 a

ro ro a 2 ro a

L9.= 1+v 1n 2 a ro

                                                                                             +

1-v 1- ro 4 a 2 which gives, L3 =0 and L9 =0 II Detlection from seat load/bending, w:=1

       ~

y bw. a D w C2 C8 roC9 b L9 roC3 b

                                                             + L3     which gives,        ybw       64' Deflection from seat load/shear, Ksa:=-   1.2 ro ro a

1n-b y:=Ksa sw ' which gives, Ksa W.623

                                                                                           ~ ~-1:499'10 Deflection from seat load/hub compression, L

y compr 'b -2tta 2 which gives, y ~-1.633 10 Total Deflection from unit seat load, yw:=y bw+y sway compr which gives, yw 3.626 10 Equilibrium contact load distribution, w ~b-~.= yq which gives, w cquiTibrium 5%'241 yw Load per seat r 2 tt a yq 5.175 10 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2SWP'MOV21A page 3 PSWP21AAMGD

Niagara Mohawk Power Corporation NMP2 Page/ /of I$ 1 Nuctear Engineering Catcutation Cont. Sheet A10.1-AD403. Rev. 01 Originator/Date Checker/Date

          ,>; A'. a Pdislp~                                     Pio.rid Yq
                                 "                                                     F pres loc'k = 1 .035    0 4

F pres ]ocp 2 ft a ( p cos(0) sin(0)) 2 which gives, 1 W Piston Effect Force, Pat:=0 ft "piston etr(mt ' stem 'i bonnet p etm) which givesr F piston cff~t "Reverse Piston Effect" Force, v~:=" Pbonnct- up- so~ 'm<<) which gives, F crt = 2.674 10 Total Force Re uired to Overcome Pressure Lockin F total.'=Fprcs lock+ Fpo+'F vert Fpiston cffcct

                                                  '

which gives, <<~ =1.261328 10 ACTUATOR CAPABILITY: Actuator Mode! I Size: = SMB-000-5 Motor Torque Output: TQm .'=4.76 ft- 1bs Gear Ratio: OGR:=52 Application Factor. Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:= 0.8623 Torque Output: TQout:= TQm RV OGR AfEff TQout ~ 66.257 ft- lbs Stem Factor. Sf:= 0.014500 T TQoutut Thrust Capability: fHcap:=. THcap ~4.569 10 lbs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20

                   'ibrnst Mer(pn:= THeep- (FmmrKH1)

Thrust Margin ~-1.057 10 1bs

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2SWP'MOV21A page 4 PSWP21AA.MCD

NIagara Mohawk Power CorPoration Nuctear Engineering NMP2 Calcutation Cont Sheet Page7uor /97 A10.1-AD403, RW. 01 Originator/Date ~enie3w A. g e'/e3leg Checker/Date eke Valve ID no: 2SWP MOV21B Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P :=108 Valve Bonnet pressure (psig), Pbo <<.=2314 Downstream pressure (psig), P do~ 0 Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a:=1.47 average disk thickness, t:=0.54 hub length, L:=0.25 seat angle, a.=10 0:=-a tt 2 180 0 0.087 Valve Disk Material Properties 0 ishalfdiskangle a modulus of elasticity, E:= 29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D <~.=1.125 Static Unseating Thrust, F po 1245 (reference: Test¹ 12, 1295) Valve Factor VF:= 1 (reference: NER-2M-010) CALCULA77ONS: Coefficient of friction between disk and seat, cos(0)

                                                                     - sin(0)              it =1.091      (reference    ¹6)

P~+Pdo~ Average DP Across Disk, D avg" bonnet gives, DP a2.26 10 2 Disk SNI'nes Constants, D:= Et3 end G:= 2 E (1+ v) which gives, D 4.239 10 and G = 1.131 ~ 10 GeometryFactors, C2.= 1 4 b a 1+2 1n a

b C3.= 4a b b2

                                                                                       +1 a

a ln + b b2

                                                                                                              -1 a

C8 '=- 1 2 1 + v+ (1 -, v) b a 2 a

C9.'=-b 1+v ln 2 a b

                                                                                                  + .1-1 4

v b a 2 which gives, C 2 =0.07 C 3 ~0.008 C 8 ~0.774 C 9 =0.268 COMED PL Evaluation Valve ID: 2SWP'MOV21 B page 1 PSWP21BA.MCD

Niagara Mohawk Power CorPoration NMP2 Pagey/ of/3 7 Nuclear Engineering Calculation Cont. Sheet At 0.t-AD403, Rev. 01 originator/Date Checker/Date Additional Geometry Factors, rp '.=b 2 4 2 2 1 1+4 rp

                               -5  4      rp            rp 2+    ln-rp          a 64             a              a             a               a         rp L17 1

4 I 1-Y 1-4

a 0 4 a 0 2 I+(1+ Y) ift a rp which gives, L 1 1 =9.149 10 and L17 ~0.063

Moment Factors, 2 DP ayg a 2ab 9 ~ a -rp -L17 ob:= 2b

                                                                                                    '"'('-     0')

C& which gives, Mrb -516.898 and Q b ~ 1.802'lp W Deflection from pressure&ending, yb rb'a o 2+Qb' o 3 DP ayg a o

                                                                                     'l which gives,                  y bq ~%.15&          10 Deflection from pressure /shear, I

K~:=-0.3 21n -1+ rp 2'

                                                         ~

1-21n-

                                                                       'p                    '=

s'a'vg a 2 a b ysq which gives, K sa ~.l 1 & and y'.403 sq 10 Deflection from pressure/hub stretch, P force L P force tt (a b ) DP ayg y stretch '= itb 2E which gives, Pf0~ =9.906.10 and y~~ -1.751 ~ 10 COMED PL Evaluation Valve ID: 2SWP'MOV218 page 2 PS.WP21BA.MCD

0 Niagara Mohawk Power Corgoration NMP2 Page 72bi/77 Nuotear Engineering Catcutation Cont. Sheet A10.1-AD403, Rev. 01 Originator/Date >c ~p- 8'~ Wzp/pp Checkerloate Total Deflection due to pressure, yq '=ybq+ysq+ystretch which gives, yq 2 031 10 Additional Geometry'actors ro.'=a L3 '= ro 4a ro a 2

                                +   I In +

a ro ro -

a 2 I L9 "= a

ro I+v 2 ln a ro

                                                                                               +

I-v I-4 ro a 2 which gives, L3 ~0 and L9 ~0 Deflection from seat load/bending, w:=I

                                                   'sa
       ~          a3w C2 ro C9

roC3 =-1.964 7 y bw.-

              .

L9 + L3 which gives, yb 10 D C8 b b Deflection from seat load/shear, Ksa:=- 1.2 ro ro

a In-b y:= sw Ksa which gives, ~ W.623 y sw ~-1.499 10 Deflection from seat load/hub compression, L

                           - 2'1t'a   2 y compr
                       'tb                       which gives,               y       ~-1.633 10 Total Deflection from unit seat load, y w:=y bw+'y sway compr                         which gives,           y w ~-3.626'10 Equilibnum contact load distribution,
                                '

yq which gives, w equilibrium 560'241 equilibrium yw Load perseat= 2 tt a yq ~5.175 10 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2SWP'MOV21 B page 3 PSWP21BA.MCD

I NMP2 Pa//el &o/ I >> Niagara Mohawk Power Corporation Nuotear Ent/ineeriny Catoutatton Cont. Sheet A10.1-AD403, Rev. 01 Onglnatof/Date Checker/Date wowrop A ' /r(gSrp7 ~re rtr+p F pres loca '= 2 tt a J tl (P cos(e) sin(e)) 2 which gives, F, 1~1, 1.035 10

                               >w Piston Effect Force,                           P  at:=0 P piston pt on etreet
                        '=

4

                             'tern   '(P ttonnet   P ann)           which gives,         P piston street "Reverse Piston Effect" Force, vert onnet                   up      down which gives,           F ~     2.674 10 Total Force Re uired to Overcome Pressure Lockin F totai: = F pres loca + F po+ F vert- F piston effect which gives,        F <<nd =1.196828 10
                                                                            'CTUATOR CAPABILITY:

Actuator Model/Size: = SMB-000.5 Motor Torque Output: TQm;=4.76 ft- 1bs Gear Ratio: OGR:=52 Application Factor. Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV: = 0.8591 Torque Output: TQout:= TQm RV OGR AfEff TQout = 65.766 ft- lbs Stem Factor: Thrust Capability: THcap: =TQout Sf Sf:= 0.014500 THcap =4.536 1(P lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:"

                                                                                         -1.20 Thntat Margin:= THcap  (F tong KEi)

Thrust Margin ~%.826'10 1bs

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to oVercome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2SWP MOV21B page 4 PSWP21BA.MCD

Niagara Mohawk Power Corporatke NMP2 Calcukrtion Cont. Sheet Page7rtor/ pp Nuciear Enginoerinp A10.1-AD403, Rev. 01 Orlglnatof/Data CheckerlDate Qo nv rp> A tot s /s p lng .

                                                                             ~re/r7 Valve ID no: 2SWP MOV66A Re uiredO enin                  ForceDeternminationunderPressureLockin                                               Conditions COMED Method DESIGN INPUTS:

Design Basis Conditions at time of Pressure Locking Event: I Upstream pressure (psig), F := 108 Valve Bonnet pressure (psig), P b <

                                                                                                                  = 108 I

Downstream pressure (psig), F go~ 0 Valve Disk Geometry: hub radius, b:= 3.375 mean seat radius, a:= 3.91 average disk thickness, t:=0.48 hub length, L:=0.125 seat angle, a:= 10 e:= a tt

2 180 e 0.087 Valve Disk Material Properties: e is half disk'angle a of elasticity, E:= 29400000'odulus Poisson's Ratio, v.'=0.3 Other Valve Parameters: Valve Stem Diameter, D ~.= 1.625 Static Unseating Thrust F po 9232

                                                                             ¹ (reference: Test 25, 10/5/94)

Valve Factor VF:=0.65 (reference: NER-2M-010) CA L CULA77ONS: Coel'cient of fnction between disk and seat, It:=

                                                                        -

VF I am(e) It =0.686 (reference ¹6) Average DP Across Disk, DP avg ' Fup+F de gives, DP avg 54 Disk Etttthss Constsnts, D:= Et snd G:= E tk (t s') 2(tsv) which gives, D 2.977'10 and G =1.131 ~ 10 Geometry Factors, C 2.'=-I 4 I - b

a I <<2 In a b C3.- + I In + - I C8 .'=-I 2 I+ v+ ( I - v) b a C9 -- I-In + which gives, C2 0.009 C 3 =3.965'10 C 8 ~0.911 C 9 = 0.121 (o+ COMED Pi Evaluation Valve ID: 2SWP'MOVS48 page 1 PSWP66AA.MCD

Niapara Mohawk Power Corporation NMP2 Pape75 ot /77 Nuclear Enpineerinp Calculation Cont. Sheet A10.1 AO403. Rw. Ot Oripinator/Oate Checkerloate Q~~~ A'. g~ Wiplpp Addih'onel Geometry Factors, rp .'=b 2 4 2 2 fp fp

LII = I+4 -5 -4 fp fp ~ 2+ In 64 a a a a rp L17 I 4 I-I-U I - 4 a 0 4

                                               -

a 0 2

                                                            ~

I+(I+v) ln a rp which gives, L I I =1.378 10 and L 17 =0.009 Moment Factors, Mg:=- avg 2 9 /2

                                                    'o)                                              '"'a'- ra'j C8          2ab                                                            2b which gives, Mrb -8.373                   and             Qb-3118 Deflection from pressurelbending, 4

3 avga

                            .'=Mrb C2+Qb C3-a                    a yb              D                    D                   D LII which gives,                 y b tI -1.937 10 Deflection fmm pressure/sheer, 2                                                          2 K ~:=-0.3       2 In a

I + b rp a

                                                        ~

I - 2 In- rp b sq'G Ksa DP av'g'a which gives, Ksa ~%.012 end y'1.796 sq 10 Deflection from pressure/hub stretch,

                                                                                             -P force L P f    '.=ll (a   - b ) DP      vg                         y stretch     '=

rtb 2E II which gives, and y ~tch -3.928 10 P f0~ 661.191 COMED PL Evaluation Valve ID: 2SWP'MOV66A page 2 PSWP66AA.MCD

Niagara Mohawk Power Cotporatton NMP2 Nuotear Enttineertntt Catoulation Cont. Sheet A10.1 AD403, Rw. 01 Orfttlnatorioate Checkerloate >~ ~~> A'.g~ c /gy+) 7/i/~y Total Deflection due to pressure, yq'bq+ysq+ystretch which gives, y q ~-3.77I'10 Additional Geometry Factors r0.'=a L3 .'= ro

                .

4a ro a 2

                               +I    ln +  - I a

ro r0 a 2 r0 a I-L9.= 1+v In 2 a ro

                                                                                                +

I v 4 a 0 2 which gives, L3 =0 and L9 =0 Deflection from seat load/bending, w:= I ybw.= a.w C2 roC9 D C8 b L9 roC3 b

                                                              +L3 which gives,              ybw       1835 10 Deflection from seat load/shear, ro ro

Ksa:=-1.2 a ln- b y:=Ksa- tG a which gives, Ksa =-0.177 y =-I 272 10 Deflecflon from seat load/hub compression, L

                           -2 tt'a  2 compr   'tb                    which gives,                y          -1.459 10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr                       which gives,             yw     3 122'10 Equilibrium contact load distribution, we    ~bn~.=        yq         which gives,              equilibrium    12'081 w

Load per seat = 2 a a yq 296.797 yw Pressure LDCMng Force, COMED PL Evaluallon Valve ID: 2SWP MOV66A pag8 3 PSWP66AA.MCD

0 Niagara Mohawk Power Corporation NMP2 PageTfo/ I +'7 Nuciear Engineeiing Ceioiglation Cont. Sheet A10.1-AD403. Rev. 01 4.~ Originator/Date Checker/Date a~"p" 4/go/pr

                                                          ~rs        r.r r/

F pres leak' tt a " Yq (p;cos(e)- sin(e)) 2 which gives, Fpres look =354.165 Vrr Piston Effect Force, Pau '=0 F piston street D stem 2/'(p bonnet p atm) which gives, F piston eff~t = 223.986 "Reverse Piston Effect" Force, F<<.'= it a 2 P bonnet up gown which gives, F v<< = 452.0SS Total Force Re uired to Overcome Pressure Lockin F total:=F pres look+ F po+ F v<<- F piston which gives, F +~ = 9.814267'10 ACTUATOR CAPABILITY: Actuator Mode)/Size: = SMB-00-15 Motor Torque Output: TQrn: = 14.74 ft- lbs Gear Ratio: OGR:= 34.1 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:= 0.8838 Torque Output: TQout:= TQI RV OGR AfEff TQout = 141.339 ft- lbs Stem Factor: Sf:= 0.016407 Thrust Capability: THcap "= TQout Sf THeap = 8.615'10 Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Throat Margin:= THoap (Fm~ Kgi) n Thrust Margin -3.163'10 lbs

Conclusion:

Open Thrust Margin ls negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. 4 COMED PL Evaluation Valve ID: 2SWP'MOV66A page 4 PSWP66AA.MCD

ll Niagara Mohawk Power Corporation N ucteaf Engineering HMP2 Calculation Cont Sheet Page7+1 /37 A10.1.AD403, Rev. 01 Oflglnatof/Date Checker/Gate A 0$g cfs E i)7 ~/<C Valve ID no: 2SWP'MOV66B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), Pbo~ct -108 Downstream pressure (psig), P ~o~.=0 Valve Disk Geometry: hub radius, b:= 3.375 mean seat radius, a '.=3.91 average disk thickness, t:=0.48 hub length, L:=0.125 seat angle, a:=10 6:=-a tt 2 180 6 0.087 Valve Disk Material Properties: 6 ishalfdisk'angle u modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: Valve Stem Diameter, D <~.= 1.625 Static Unseating Thrust F 7027 po

                                                                        ¹ (reference: Test 16, 3N/94)

Valve Factor VF:=0.65 (reference: NER-2M-010) CALCULATIONS: cos(6) Coefficient of friction between disk and seat, It:=

VF I sitt(6) p 0.686 (reference ¹6) Pup+Pdo~ = 54 A~erage DP Across Disk, DP ayg: P boggct- gives, DP 2 Disk SNnves Censlsnls, D:= Et snd G:= E 12 (! - v ) 2 (! vv) which gives, D 2.977 10 and G = 1.131'10 Geometry Factors, C 2.=-I 4 I - b

a I + 2 ln a b C'3 .'.= b 4a b

                                                                                           +

a

                                                                                               '

I h a b

                                                                                                                 +  -

a I C8.'= I 2 I+ v+(I - v) b a C9 a

                                                                                   =-b 1+v In 2          b a
                                                                                                         +

I-v I-4 b a 2 which gives, C2 0.009 C 3 =3.965'10 C 8 ~0.911 C 9 ~0.121 COMED PL Evaluation Valve ID: 2SWPeMOVSICB page 1 PSWP66BA.MCD

I, Niagara Mohawk Power Corgoration NMP2 Page7?of /7 7 Nuctear Engineering Catcutation Cont. Sheet A10.1 AD403, Rw. 01 Checker/Date Originator/Date ~~ oPo W <~ ~M&7 ~/z/y y Add/t/onel Geometry Factors, rp.'=b 2 4 2 2 fp - fp - fp fp In L 11 '= 1 +4 5 a 4 2+ 64 a a a rp L17'.= I - I 4

I-Y 1-4 a 0 4

a 0 2

                                                           ~

I+(I + Y) In rp a which gives, L I I =1.378 10 and L17 =0.009 Moment Factors, Mg:=- OP avg'a C8 2

                                ~  -rp C 9 2ab a                -L17                      ~b:=  , 2b
                                                                                                  '"'(*-    o*j which gives, Mrb =-8.373                end               Qb ~31.18 Deflection from pressureibending, 4

avg a 3

                           '.=Mrb C 2+ Q b C 3-a                    a yb                                                              L11 o                   o                  o which gives,               yb q ~ 1.937.10 Deflection from pressure         Ishear, 2

rp 2 rp sa'vg a K ~:=-0.3 2 In a

b

                                      - I+

a

                                                       ~     1- 2 In-b Sq'G which gives,              K sa =%.012                    end                y Sq  -1.796'10 Deflection from pressure/hub stretch,
                                                                                         -Pronx L Pro~.'=m (a      -b    ) DP~<                            >'uetch: =

ttb 2E 8 which gives, P fo~ = 661.191 end y~t h =-3.928 10 f COMED PL EvaluaIIon Valve ID: 2SWP MOV66B page 2 PSWP66BA.MCD

I Niagara Mohawk Power Corgoration NMP2 Page tourt /3 7 Nudear Engineering Calcuiation Cont. Sheet A10.1-AD403, Rw. 01 Originator/Date Checker/Date %~ryan~ Ai 4& 4'fdkpj ~p/z/rz Total Deflection due to pressure, yq y bq+ y sq+ y stretch y = -3.771 10

                                                                                             ~

which gives, Additional Geometry Factors ro.'=a L3 .'= ro

               .

4a ro a 2

                             + I In    +  - I a

ro ro a 2 L9 '.= a

                                                                                 -

ro 1+v 2

                                                                                     ~

In a ro

                                                                                               +

I v 4 I ro a 2 which gives, L3 ~0 and L9 ~0 Deflection from seat load/bending, w:=1 ybw'9 a w C2 D C8 roC9 b

ro C3 b

                                                             +L3 which gives,              y bw =-1.835 10 Deflection from seat load/shear, Ksa .'=- 1.2 In-a ro b

y:=Ksa tG which gives, Ksa  %.177 y~~-I:272 10 Deflection from seat load/hub compression, L y compr 'b - 2 "tt.a 2 which gives, y -1.459 10 Total Detlection from unit seat loa'd, yw' bw+ysw+ycompr which gives, yw 3122 10 Equilibrium contact load distribution, w e,l;b~. which gives, equilibrium yw Load per seat r- 2 tt a yq 296.797 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2SWP'MOV668 page 3 PSWP66BA.MCD

Niagara Mohawk Power Corporation NMP2 Page j/ot / W7 Nuotear Engineering CaCulati'on Cont. Sheet Atp.t-AD403, Rev. 01 Onglnstor/Date Checker/Date ~~ny u P- <5/g/as/P7 7 Fpres loci'.'= 2 tt a (it cos(e) sin(e)) 2 which gives, pres leak t W Piston Effect Force, P au:=0 "piston streettem 'i honest ann} which gives, F piston effect "Reverse Piston EIfect" Force, Fyert '= a' 2'P bonnet P up down which gives, F y~ = 452.088 Total Force Re uired to Overcome Pressure Lockin Ftptai t=F pres ]pck1 Fpp+ Fyert Fpistpn effect which gives, F tp< 7 609267 10 ACTUATOR CAPABILITY'ctuator Model ISize: = SMB-00-15 Motor Torque Output: TQm .'= 14.74 tt- lbs Gear Ratio: OGR:= 34.1 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:-" 0.8847 Torque Output: TQout:= TQm RV .OGR AfEff TQout = 141.627 tt- lbs Stem Factor. Thrust Capability: THcap: = TQout Sf Sf:= 0.016407 THcap = 8.632 10 lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:= 1.20 Thrust Margin:= THoap- (Fmmt KEI) Y/cl'payee Thrust Margin -499.005 1bs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are likety to overcome the theoretical pressure locking conditions evaluated. ra/d4clcvat 4 J j 4 vdry mrrvelvlcr gt ptgsl 1'AdNC is a /rrglk cgpn/icPt~r.p pggp these'rpr lreertrresureroskio1 Seeeranro COMED PL Evaluation Valve ID: 2SWP'MOV66B page 4 PSWP66BA.MCD

Niagara Mohawk Power Corporation N)tctear Engtneerfng NMP2 calo)station Cont. Sheet Page~ /3$ A10.1-AD403, Rw. 01 Orfgtnatorloate Checker/Date g

                                                                               .
       ~~          A Q -tt>>/sv
                       ~

Valve ID no: 2SWP'MOV67A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P up 108 Valve Bonnet pressure (psig), P bonnet = 108 Downstream pressure (pslg), P down 0 Valve Disk Geometry: hub radius, b:= 1.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 hub length, L:= 0.25 seat angle, a =10 e;=- u rt 2 180 e =0.087 Valve Disk Material Properties e is half disK angle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D st ..= 1.375 Static Unseating Thrust, F>> .= 2534 (reference: Tesr 10. ¹ 1M') Valve Factor VF:=1 (reference: NER-2M-010) CALCULATIONS: cos(0) CoeNicient of friction between disk and seat, it.=

                                                                              - sin(e)                  lt     1.091     (reference    ¹6) up ~     down Average DPAcross Disk,             '
=Pb gives, DP 54 Disk St)I)as ConstantsD:=
                                        ,
                                              ,andEt
                                              )s.()-s')

2 G:= 2 E (1+v) which gives, D 6.605 10 and G = 1.131 ~ 10 Geomet/yFactors, C2.= 1 4 b a 1+2ln a b C3 = b 4a b

                                                                                                     +1 a

h a b b

                                                                                                                         +  -1 a'

C8:=- 2 1 v+ b a 2 C 9,--b a

1+v ln 2 a b

                                                                                                                 +

1 4 v

                                                                                                                           ~ 1-   b a

2 which gives, C2 0.049 C 3 ~0.005 C 8 =0.805 C 9 =0.241 COMED PL Evaluation ID: 2SWP MOVQ48 @7'alve page 1 PSWP67AA.MCD

Niagara Mohawk Power Corporation NMP2 Pag ~bi yP Nuclear Engineering Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Originator/Date Checker/Date Q~rwp o AiQrc44- 4rjQ3/pQ ~/4e Add/tional Geometry Factors, rp '=b 2 4 2 2 I rp rp rp rp 1+4. 5 -4 2+ 1n- a 64 a a a a rp L17 1 4 1 v 1-4 rp a 4

                                                 -   ro

a 2

                                                              ~

1+ (1+ v) ln-a rp which gives, L11 4.481.10 and L 17 <0.046 Moment Factors, 2 avg a Mg:=- a -rp -L17 C8 2&b which gives, Mrb -13.186 and Q b =42.593 Deflection fmm pressure/bend/ng, 4

                              '.=Mrb C2+Qb
                                         &

C3-a avg'b L11 D D D which gives, yb ~-1.752'10 Deflection from pressure /shear, 2 2 K~:=-0.3 2.1n a 1+ rp

                                                         ~  1-    2 ln-brp                             sa'vg     a b             a                                                       t.G which gives,               K sa =%.078                    and                   y.    =-2.09 10 sq Deflection from pressu/8/hub stretch, P force  L Pfpree    tt (a      b ) DP avg                           y stretch '=

ttb 2E which gives, P fo~ 334.525 and y ~~ =-2.897'10 COMED PL Evaluation Valve ID: 2SWP'MOV67A page 2 PSWP67AA.MCD

I Niagara Mohawk Power Corporation NMP2 Page Pfotr 37 Nuclear Engineering Calculation Cont. Sheet A1 0.1-AD403, Rev. 01 Originator/Date CheckerlDate Qc~r.))~ 4. C'~ /g)(p-g Total Deflectr'on due to pressure, yq ' bq+ y sq + y stretch which gives, y -4.131 ~ 10 Additional Geometry Factors ro'.=a L3 '= ro 4a ro a 2

                               +I    In +  - I a

ro ro a 2 L9 - a

ro 1+v 2 In a ro

                                                                                                +

I-v I-4 ro a 2 which gives, L3 ~0 end L9 =0 Deflection from seat load/bending, w:= I ybw

              '-  a  w C2 roC9 D C8            b L9    roC3 b
                                                              + L3      which gives,         ybw Deflection from seat        load! shear, Ksa:=-1.2 ro ro

a In- b y ~:=Ksa a tG which gives, Ksa ~W.49 y sw ~-1.301 ~ IO Deflection fmm seat load/hub compression, L

                         -2tta      2 compr  'tb
                      .

E which gives, y compr Total Deflection from unit seat load, yw '=y bw+ysw+ ycompr which gives, yw ~ 2'868'10 Equilibrium contact load distribution, yq w equilibrium

                              'w              which gives,             equilibrium Load per seat        ra   2 tt a yq     170.165 yw Pressure Locking Force, COMED PL Evaluation                              Valve ID: 2SNIP'MOV67A                                            page 3 PSWP67AA.MCD

Niagara Mohawk Power Corporation NMP2 Pagano/ /7 /} Nuclear Engineering Catcutation Cont. Sheet At0.1.AO403. Rev. Ot Originatorlnate A. + /b/nslPP Checker/bate Yq F pres Jock tt'a'(tt'cos(e) sin(e)) 2 which gives, Fp~s 1~k

                                                                                                       =    0. 3 1'w Piston Effect Force,                          P  at:=0
                         tem '(

I 2 / which gives, F piston effect '160.368 piston effect bonnet etm}

 "Reverse Piston Effect" Force, F vert '= rt a  ~

2 P bonnet down sin(e) which gives, F v~ = 104.517 up Total Force Re uired to Overcome Pressure Lockin F totat:=F pres tock+ F po+ F vert- F piston effect which gives, F >~ =2.818478 10

                                                                           'CTUATOR CAPABILITY:

Actuator Model/Size: = SMB-000-5 Motor Torque Output: TQm '=5 ft- lbs Gear Ratio: OGR:=40 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV: = 0.8816 Torque Output: TQout:= TQm RV OGR AfEff TQout 55.96 ft- Ibs Stem Factor. Thrust Capability: THcap: =TQout Sf Sf': = 0.014263 THcap ~3.923 10 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 n M tp.:=nr p yt.~ffffi} Thrust Margin = 541.246 Ibs

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve ID: 2SWP'MOV67A page 4 PSWP67AA.MCD

0 Niagara Mohawk Power Corporation NMP2 peg+Car r3' Nudear Engineering Calcutation Cont. Sheet A1 0.1-AD403. Rw. 01 Originator/Date Checker/Date

>~i.p e A Q                           4,/tr/~7                                       7/</87 Valve ID no: 2SWP MOV67B Re      uiredo enin ForceDeternminationunderPressureLockin                                                         Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event:

Upstream pressure (psig), P>> .= 108 Valve Bonnet pressure (psig), P bonnet = 108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 hub length, L:=0.25 seat angle, a:= 10 e:=-a tt 2 180 e = 0.087 Valve Disk Material Properties: 0 ishalfdiskangle u modulus of elasticity, E:= 29400000 Poisson's Ratio, v.--0.3 Other Valve Parameters: Valve Stem Diameter, D< .=1.375 Static Unseating Thrust, F>>.=3092 (reference: Test 12, ¹ 10/1M4) Valve Factor VF:= I (reference: NER-2M-Of0) CALCULA77ONS: coge) Coeflicient of friction between disk and seat, p:=

                                                                       '- s~(e)               'lt    1.091    (reference    ¹6) 1    down up Average DP Acmss Disk,                   DP avg '      bonnet                             gives,     DP        =54 2

Disk StN'nes Constants, Et3 and G:= E i2(l-') 2 (I+ v) which gives, D 6.605 10 and G = 1.131 ~ 10 Geometry Factors, C2 '=-I 4 I -

                                             '

a

                                                    ~

I + 2 ln b C 3 .= b 4a b2

                                                                                            + I In a

a b

                                                                                                               +

bi - I a c8:=-I 1+v+ 2 b a C9 -- - In + I b 2 which gives, C2 0.049 C 3 ~0.005 C 8 ~0.805 C 9 =0.241 COMED PL Evaluation Valve ID: 2SWP'MOVQ& page 1 PSWP67BA.MCD

Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calcutatton Cont. Sheet Page ~fr+7 A10.1-AD%03, Rev. 01 Originator/Date Checker/Date Qo~np~ A'-4~ ~ip/pp elitism AddtI'onal Geomehy Factors, rp.'=b 2 4 2 2 rp L I I:= I +4 5 - 4 rp rp rp ~ 2+ ~ In 64 a a a a rp L17 4 I I- I-v I - 4 ro a 4

                                                    -  ro a

2

                                                                 ~

I+(I + v) In a rp which gives, L11=4.481 ~ 10 and L 17 =0.046

Moment Factors, Mrb '=- OPavg' C8 2

                                       -rp)-LI7 2.a b r2
                                                '(a                                         ~b   =

2b

                                                                                                       '"'(*-    0*)

which gives, Mrb -13.186 and Q b =42.593 Deflectfon from pressure/bending, 2 avg a yb '=Mrb C2+ Qb a C 3- L11

                                         ,o                     o                o which gives,                      yb q        1752 10 Deflection from pressure/shear, Ksa'=-0.3        2.1n    a I+

r

2

                                                             ~

I -2 In- rp m'vg a 2 b a b t.G which gives, K sa =%.078 arid y'sq =-2.09 10 Deflection from pressure /hub stretch, P force'L P fprce tt (a - b ) OP avg y stretch '= ttb 2E which gives, P f =334.525 and yst tch =-2.897 10 COMED PL Evaluation Valve ID: 2SWP'MOV67B page 2 PSWP67BA.MCD

Niagara Mohawk Power Corporation Nuoteer Engineering NMP2 Cetouletion Cont. Sheet Page $ hf /~ A10.1-A@003, Rev. 01 Originetotlnete goer gp o A 8~ g/r->lpga Total Deflection due to pressure, yq: ybq+ysq+y~~

                                                                                                     'I which gives,           y q =-4.131 ~ 10 Additional Geometry Factors r   .'=,a L3   .=

ro

                .

4a ro a 2

                               +I   In r

a ro

                                            +  -I a

2 ro a

L9.'= . 1+v In 2

                                                                                          &

ro

                                                                                              +

I-v I-4 r0 a 2 which gives, L3 =0 and L9=0 Deflection from seat load/bending, w:= I a w C2 roC9 D CS b L9 roC3 b

                                                            + L3      which gives,        y bw      I'465'10    7 Deflection from seat load/shear, Ksa .'=-1.2 ro ro

a In- b y ~:= Ksa tG which gives, Ksa ~ W.49 y sw -1.301 10 Deflection from seat load/hub compression, L

                         - 2'1t'a  2 y compr '=                        which gives,               y        ~ "1.023 10 ttb     E Total Deflection from unit seat load, yw:=ybw+ysw+ ycompr                           which gives,          y w =-2.868    10 Equilibrium contact load distribution, w equilibrium ' yq              which gives,          w equilibrium     14 406 yw Load per seat =         2 tt a yq yw
                                               = 170.165 Pressure Locking Force, COMED PL Evaluation                           Valve ID: 2SWP'MOV67B                                                page 3 PSWP67BA.MCD

0 tl

Niagara Mohawk Power CorPoration NMP2 Catoutation Cont. Sheet Pagee j'o/ /37 Nuotear Engineering A10.1-AD403. Rev. 01 Checker/Date A+1 F pres 1lock

                      'w k:= 2 n a Yq (p cos(e) - sin(e)) 2          which gives,     Fpres lock
                                                                                                  = 3 0.3 Piston Effect Force,                           P  ~'.=0 F rara     airaar 'D     anan
                                      'P hennar    Fane)            whinh given F  pinna airaar i60368 "Reverse Piston Effect" Force, Fv~.=[en (gphe~ar-Pap-Pea~)]ain(8)                                 whi hngive a      F vm = 104.517 Total Force Re uired to Overcome Pressure Lockin "total  'res       lock+ po ~ vert          piston effect which gives,  '

3 376478 10 3. to< ACTUATOR CAPABILITYt Actuator Model/Size: = SMB-000-5 Motor Torque Output: TQm:= 5 lt- lbs Gear Ratio: OGR:=40 Application Factor. Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:= 0.8825 Torque Output: TQout:= TQm RV OGR.Af Eff TQout = 56.074 tt- lbs Stem Factor. Sf:-"0.014263 Thrust Capability: THcap .'= TQout Sf THcap ~ 3.931 ~ 10 lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCKING METHODOLOGY: KEI:= 1.20 Threat Margin:= Tiicap (F n,ng.KEi) Thst Margin ~-120.34 lbs IL~

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated> Ayufetre 8 six r c Vle ieea~g p gn. ig go t./ns'e, ~et g~> ~fcms col'i egpecg4/ Ho >dr ev'. COMED PL Evaluation Valve ID: 2SWP'MOV67B page 4 PSWP67BA.MCD

Niagara Mohawk Power Corporation NMP2 Pager /P P Nuclear Engineering Calculation Cont. Sheet A10.1-AD403, Rev. 01 Checker/Date 'go~ ap n @ Q +l>%i&7 Valve ID no: 2SWP'MOV94A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTSr Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Valve Bonnet pressure (psig), P bonnet =108 P

                                         ~ .=10S Downstream pressure (psig), P down '=0 Valve Disk Geometry:

hub radius, b:= 3.375 mean seat radius, a:= 3.91 average disk thickness, t:=0.4S hub length, L:=0.125 seat angle, o:= 10 e =-a ft 2 180 e =0.087 Valve Disk Material Properties: e ishalf disk angle a modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D <~.--1.625 Static Unseating Thrust, F~.=7751

                                                                          ¹ (reference: Test 26, $ 9i95)

Valve Factor VF:= 0.65 (reference: NER-2M-010) CALCULATIONS: cos(e) Coefllcient of friction between disk and seat, p:= I VF

                                                                        - a~(e)               p     0.686    (reference     ¹6)
           ~+

up+ down Average DP Across Disk, DP avg ' bonnet gives, DP =54 2 Disk Stf'ffnes Constants, Et and G:= E u (i .*) 2 (1+ v) which gives, Geometry Factors, D C 2.977 10 2.=-I 4 I - b

a and 1 +2 ln b a, G = 1.131 ~ 10 C3.'= b 4a b

a

                                                                                              +   I In a

b

                                                                                                             +

b a

                                                                                                                    -   I C 8.=-I 2

I+ v+ (I - v) b a a

C9.--b I+v In 2 b a

                                                                                                      + .

I-v I-4 b a 2 whichgives, C2 0.009 C3 =3.965'10 C8 0.911 C 9 <0.121 A COMED PL EvalUation Valve lD: 2SWP'MOV page 1 PSWP94AA.MCD

Jl 0

Niagara Mohawk Power Corporation NMP2 Page ~fo/r %~ Nuclear Engineering Calculation Cont. Sheet

                                                                                                               , A10.1&D40S. Rev. 01 Originator/Date cQ~~~+z            4'~           &/z 3j5p Checker/Date Additional Geometry Factors,                                 rp,=b 2             4              2                2
                            'o                           'o L11'=  1+ 4  -5  -4 ro                              ro 64 2+               ln- a a              a             a                 a           rp
                  '0 L17 4

1

1- 1-U 1-4 a 0 4

a 0 2

                                                           ~

11-(1+ Y) 1n a rp which gives, L11 =1.378.10 and L 17 =0.009 Moment Factors, 2 Mrb DPavga C9 I 2 j

                                                                                                    '"'(*- 0*)

C8 2ab 2b which gives, M rb =-8.373 and Q b = 31.18 Dellection from pressureIbending, 4 DP avg a yb '.=Mrb C2+Qb' a C3- .L11 D D D which gives, yb q 1937 10 Deflection from pressure /shear, 2 .2 K~:=-0.3 21n a b 1+ rp 1-21n- rp ysq

                                                                                              '=    sa tG avg a a                   b which gives,               K sa =%.012                  .and                 y.

sq

                                                                                                    ~-L796   10 Deflect/on from pressure /hub stretch, P force  L Pforce'.=tt (a   -b     ) DPavg                          y stretch    =

nb 2E which gives, P force ~661.191 and y stretch -3.928'10 COMED PL Evaluation Valve lD: 2SWP'MOV94A page 2 PSWP94AA.MCD

                                                                                                                       /~/'3 7
                                                                          ~

Niagara Mohawk Power Cotporauon NMP2 Page Nuclear Engineering Calculation Cont. Sheet Ato.t-AD403, Rev. 01 Orlginatorlnate chackarlDste

                                                                                   ~/g/rr cCiygpg Total Deflection due to pressure,                          yq'bq+ ysq+ystretch which gives,           y q =-3.771 ~ 10 Additional Geometry Factors ro:=a L3   '=  ro
                 .

48 ro 8 2

                                +I    ln +  - I a

ro ro a 2 L9 - a

ro I+v 2 ln a ro

                                                                                                +

I-v I-4 a o 1 which gives, L3 ~0 and L9 =0 Deflection from seat load/bending, Wi= I ybw.'= 8 w C2 roC9 D C8 b L9

                                                  - roC3 + L3 b

which gives, y bw =-1.835'10 7 Deflection from seat load/shear, ro ro Ksa .'=-1.2 In-b y~.--Ksa- 8 which gives, Ksa = %.177 a tG y sw = -1.272'10 Deflection from seat load/hub compression, L

                          -2  tt.a  2 y compr
                        'tb                      which gives,              y compr

'otal Deflection from unit seat load, y w:=y bw+'y sw+y compr which gives, yw 3122 10 Equilibrium contact load distributfon, yq w equilibrium

                             'w                which gives,            equi]ibrium Load per seat -     "2     tt a Jq  ~ 296.797 yw Pressure Locking Force, COMED PL Evaluation                              Valve lD: 2SWP'MOV94A                                            page 3 PSWP94AA.MCD

Niagara Mohawk Power Corfgoratfon Nucfear Engineering NMP2 Catculation Cont. Sheet Page9+f /3 7 Atp.1 AD403, Rev. Ot t3rfginator/Date Checker/Date roy o Af ~ Q lfClgnlrp jgl rp It./ f/ F pres lock '= 2 ft a 1~ (it cos(6) - sin(0)) 2 which gives, F pres lock = 354.165 Yw Piston Effect Force, P an:=0 ft piston effect 'tem 'i bonnet p atm) which gives, F tstpn ~~t 223 986 "Reverse Piston Effect" Force, F veft a a 2 P bonnet P up P down sm(1) which gives, F ~ = 452.088 Total Force Re uired to Overcome Pressure Lockin F <<tal: = F pres lock+ F + F veft - F piston effect pp which gives, F <<~ =8.333267 10

                                                                              'CTUATOR CAPABILITY:

Actuator Model!Size: = SMB-00-15 Motor Torque Output: TQm '.= 14.74 tt- lbs Gear Ratio: OGR:=34.1 Application Factor: Af:=0.9 Pullout Efficiency: Eff:=0.4 Reduced Voltage: RV:= 1.0 Torque Output: TQout:= TQm RV OGR AfEff TQout ~ 180.948 ft- lbs Stem Factor. Thrust Capability: THcap: =TQout Sf Sf:= 0.016407 THcap = 1.103 10 lbs NOTE: RV IS SQUARE IF ACTUATORIS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KE[:= 1.20 Thrust Margin: = THcap (F m~ KEI) Thust Margin ~ 1.029 10 1bs

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation Valve lD: 2SWP MOV94A page 4 PSWP94AA.MCD

Niagara Mohawk Power Corporation Nuclear Engineering NMP2 Calculation Cont. Sheet

                                                                                                                          >>

Pag~of / 5'7 A10.1.AD403, Rev. 01 > ~. p.. 4- Q~/iabp Originator/Date CheckeriDate r/s/N7 Valve ID no: 2SlrrVP'MOV94B Re uired 0 enin Force Oeternminafion under Pressure Lockin Condifions COMED Method DESIGN INPUTS: Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), P .=108 Valve Bonnet pressure (psig), P bonnet" 108 p Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=3.375 mean seat radius, a '.=3.91 average disk thickness, t:=0.48 hub length, L:=0.125 seat angle, a --10 0:=-.a rt 0 0.087 2 180 Valve. Disk Material Properties: 8 ishalfdiskangle a modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: hl Valve Stem Diameter, Dz .'=1.625 Static Unseating Thrust, F po 8674

                                                                           ¹ (reference: Test 6, tV1M3)

Valve Factor VF:= 0.65 (reference: NER-2M-010) CALCULA77ONSi CoeNicient of fnction between disk and seat, p:= cue)

                                                                          - sin(0)                p     0.686     (reference   ¹6) up+ down Average DP Across Disk,                   avg 'onnet"                    2 gives,     DP         =54 Disk Stiffnes Constants, Et              Sfl(t        G:=       E r2 (r    ')                            2 (1+v) which gives,       D =2.977     10        and            G      1.131 ~ 10 GeometiyFactors,           C2.'=-1 1-4 b

a 1+2ln a b C3.'=. b 4a b

                                                                                               +1 a

h a b

                                                                                                                  +

C8:=- 1 2 1+ v+(1- v) b a a

                                                                                           +-

C9.--.b 1+v ln 2 b a 1 4 v which gives, C2 0.009 C3 =3.965'10 C8 0.911 C 9 =0.)21 COMED PL Evaluation Valve ID: 2SWP MOV94B page 1 PSWP94BA.MCD

r~'7

                                                                                  ~

Niagara Mohawk Power Corgoration NMP2 Page95of Nuclear Engineering Calculation Cont. Sheet A10.1 AO403, RW. 01 akkkkklrakrk Originatorloate ~~pc, Q. g~ ~gyypp 7/a/r7 Additional Geometry Factors, rp ',=b 2 4 2 2 L 11 '= I+4 rp - 5 rp

                                                   -4       rp        ~

2+ rp In 64 a a a a rp I-4 2 L 17 .'=-I I-v I- 0 rp ~ I +(I+ v) ln- a 4 4 ~ a a rp which gives, LII 1.378 10 and L 17 =0.009 Moment Factors, 2 Mg:=- DP avg a a -rp -L17 '"'(*- 0*) C8 2ab 2b which gives, M* -8.373 and Q b ~31.18 Deflection from pressure/bending, r 4 avg a 2+ Q b C 3 a a yb '.= M rb' C L 11 D O O which gives, yb, q

                                                       ~-I 937           10 Deflection from pressure/shear, 2                                                         2 rp                      Km.DP avg    a K ~:=-0.3 2 In a

I+ rp ~ I - 2 In-b t.G b a which gives, K~ ~%.012 and y sq -1.796'10 Deflection from pressure! hub stretch, P force'L

                                   -b Pra~.'=a    (a            ) DPak<                             y stretch
                                                                                          'tb      2E which gives,                 P f0~'"~ 661.191                      and       y stretch =-3.928 10 COMED PL Evaluation                                  Valve ID: 2SWP'MOV948                                                    page 2 PSWP94BA,MCD

1 I'I

A'MP2 ~ Niagara Mohawk Power Corporation N uotear Engineering Originator/Date ~reap g, Calcuiation Cont. Sheet cweaea as<a Page94efi' A10.1-AD402. Rev. 01 P Total Deflection due to pressure, yq'bq+ysq+ystretch y =-3.771 10

                                                                                                ~

which gives, Additional Geometer Factors r:=a L3 '= ro 4a ro a 2

                                +  I  In +  - I a

ro ro a 2 L9 .= . a

ro I+v 2 ln a ro

                                                                                                  +

1- v I-4 ro a 2 which gives, L3 =0 and L9=0 Deflection fmm seat load/bending, w:=I

                                                    'sa a  w C2 roC9                       roC3 ybw:=                               -L9                +L3 whichgives                ybw ~-1.835    10 D C8             b                  b Deflection from seat load/shear, Ksa:=- 1.2 ro ro

a ln- b y:= sw Ksa a which gives, ~ %.177 y sw ~-1.272.10 Deflection from seat load/hub compression, L

                            -2'tt a 2 compr   'tb                      which gives,                 y compr Total Detlection from unit seat load, yw:=y bw+ysw+ycompr                             which gives,            yw     3.122 10 Equilibrium contact load distnbution,
                    ~bn~ .'=

we yq which gives, w equilibrium 12.081 yw Load per seat >>- 2 tt a yq ~296.797 yw Pressure Locking Force, COMED PL Evaluation Valve ID: 2SWP'MOV94B page 3 PSWP94BA.MCD

Niagara Mohawk Power CorPoration NMP2 Pagerr/of J9 ~ Nucfear Engineering Cafcufation Cont. Sheet A10,1.AD403, Rev. Ot Onginator/Date Checker/Date wo~rzp rr ~ rob /p'/zs jpQ

                                                                             .ir/fCj7 Yq 2.,     q
                                      .(.~>0)         <0)).2         whichgives,             Fp        1~k=354   165 Yw Piston Effect Force,                            Pat:=0 piston  street
                          D         2  /p stem '(Pbonnet     Pstm)           wh/ch give~,

s F p,.st,n cff~t =223.986 "Reverse Piston Effect" Force, Fcrt.'-. ft a 2 Pbonnct- Pup- P flown sin(8) which gives, F v~ = 452.088 Total Force Re uired to Overcome Pressure Lockin

               .'=F F tptat       pres   loci'+ Fpc+ F vert- F piston cffcc which gives,        Ft  ~      9.256267'10
                                                                                'CTUATOR CAPABILITY:

Actuator Model/Sizar = SMB-00-15 Motor Torque Output: TQm ',= 14.74 ft- lbs Gear Ratio: OGR:= 34.1 Application Factor: Af:=0.9 Pullout Efficiency: Eff '=0.4 Reduced Voltage: RV:= 1.0 Torque Output: TQout:= TQm RV OGR AfEff TQout ~ 180.948 ft- lbs Stem factor. Sf:= 0.016407 TQout Thrust Capability: THcap: = Sf THcap = 1.103'10 1bs NOTE: RVIS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:= 1.20 Tbrnst Msrttin = THcsp - (F tomt KEI) Thrust Margin ~-78.799 1bs Qt/1

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are likely to . overcomethetheoreticalpressurelocklngconditlonsevaluated> pe~ever HAe rr/a~giw/~ ao girasol graf Hriis r/d/'~pgaep~ 4)drifts~ < ~4 COMED PL Evaluation Valve ID: 2SWP'MOV94B page 4 PSWP94BA.MCD

hl Y NlAGARA H Q MOHg~K .. CALCULATIONCONTINUATION'SHEET Page (Next ~at NUCLEAR ENGINEERING Nine Mile Point Nuclear Station Unit: 2 Disposition: NA Originator/Date cgiOWWP' ffe ~ ggP Checker/Date ria/~r A10.1-AD-003 Revision 01 ATTACHMENTS

                                                                           ¹ FORMAT NEP-DES-08, Rev. 01 (F02)

CACCldll/0>: A/0, (-AD a&9 P gv' ( NIAG&M IITOHAWK AA sl ~ed/ g NUcr.Em NG~~G

                                       ~~ ~Ay ~ P gg NOTES OF TELEPHONE CONVERSATION Persons Involved:           NMPC:               Gaines Bruce Anchor/Darling:     Ron Brubaker Date of Conversation:      Tuesday, August 22, 1995            2:45PM

Subject:

Internal Valve Dimensions for 2CSH*MOV101 Summary of Conversation: Ron called to state that he was working on our P.Q. to provide internal valve dimensions. Ron stated that as I had previously requested, that he was calling to provide me the dimensions for 2CSH~MOV101 in advance of the formal response. Applicable dimensions for 2CSH*MOV101 are: Seat OD: 13 1/2 inches Seat ID: 11 inches Hub Diameter: 4 inches Wedge angle: 6 degrees (includes both faces) Top of disc width: 2.013 inches Bottom of disk width: I/306 inches P/, Pod ") Hub width: 3/16 inch Ron stated that there was about 1/8 inch of hard facing on the disc scat. I advised him that I thought that MPR wanted thc width less hard facing. Ron'also stated that the hub width was not a uniform width from top to bottom. The sides are abrasive cut and that is the 3/16 inch dimension. Ron stated that he would try ta clarify what is being provided in the formal response. Action Required and Due Dates: No specific actions are to result f'rom this discussion. Anchor Darling is to,comply with P.O. Commitments: N/A xc: Ron Brubaker (by fax)

0 Niagara Mohawk Power Corporation Veian P.O. P9-80572 K DM-0050 Dimensional Data for Pressure Locking Analysis cP Velan Seat Dimensions Hub Hub Top of Disk Bottom of Disk Wedge Bonnet 0 Valve ID Dw . No. item Size OO ID Dia. Width Thick"ess Thickness An le Volume 2RHSA MOV112 P2-7026- N13 49 20 17.625 15.935 1<.250 0,37K %6/ 1.330 10 4464.7 2RHS*MOV113 P2-7026- N13 48 20 17.625 15.935 i 4.250 0 .375 1.330 10 4464.7 2RHS*MOV1 5A P3-7026-N10 47 16 15.906 14.906 1'..500 0.~00 ".~BP 1.406 10 3238.9 2RHS*MOV1 5B P3-7026- N10 47 16 15.906 14.906 i1.500 0.600 3.882 1.406 10 3238.9 2RHS*MOV25A P3-7026-N10 47 16 15.906 14.906 11.500 0.500 1.882 1.406 10 3238.9 2RHS*MOV2sB P3-7028-N10 47 16 15.906 14.906 11.500 0.600 1.882 1.406 10 3238.9 2SWP'MOV21A P3-7026- N18 62 3.125 2.760 1.750 0.500 0.528 0.552 10 639 2SWP*MOV21 B P3-7026- N18 62 3.125 2.760 1.750 0.500 0.528 0.552 10 63.9 2CSL4 MOV107 P3-7026- N2 13 3.938 3.576 2.500 0.500 0.628 0.624 10 111.0 2SWPA MOY67A P3-7026- N18 77 3.938 3.576 2.500 0.500 0.628 0.624 10 111.0 2SWP*MOV67B P3-7026-N18 77 3.938 3.576 2,500 0.500 0.628 0.624 10 111 0 2ICS*MOV129 P3-7026- N2 24 6.250 5.750 4.500 0.250 0.412 0.343 7 215.3 2ICS*MOV136 P3-7026-N2 24 6.250- 5.750 4.500 0.250 0.412 0.343 7 216.3 2HH8'OV4A P3-7028- N2 26 8.260 6.760 4.600 0.260 0.412 0.343 7 2163 2RHS*MOV4B P3-7026- N2 25 6 6.250 5.750 4.500 0.250 0.412 0.343 7 21s3 2RHS*MOV4C P3-7026- N2 25 6 6.250 5.750 4.500 0.250 0.412 0.343 7 215.3 2SWP*MOV66A P3-7026-N6 65 8 8.063 7.563 6.750 0.250 0.471 0.478 10 434.3 2SWP*MOV66B P3-7026-N6 65 8 8.063 7.563 6.750 0.250 0.471 0.478 10 434.8 2SWP'MOV94A P3-7026- N6 66 8 8.063 7.563 6.750 0.250 0.471 0.478 10 434.8 2SWP*MOV94B P3-7026-N6 66 8 8.063 7.563 6.750 0.250 0.471 0.478 10 434.8 2SWP*MOV17A P3-7026- N6 37 12 11.750 11.250 9.875 0,250 0.671 0.906 7 1294 0 2SWPo MOV17B P3-7026- NB 37 12 ii.7s0 11.260 9.876 0.260 A P7< 0.906 7 1294.0 2SWP'MOV1 BA P3 7026-N6 38 12 11.750 11.250 9.875 0.250 9 67"- 0.906 7 1294.0 2SWP*MOV18B P3-7026- N6 38 12 11.750 11.250 9.875 0.250 0.906 7 129 .0 2RHS'MOV1 15 P3-7026- N6 46 16 15.906 14.906 11.500 0.500 1.882 1.406 10 3238.9 2RHS*MOV1 16 P3-7026= N6 45 16 15.906 14.906 11.500 0.500 1.882 1.406 10 . 3238.9 2ICS*MOV1 26 P3-7026- NB 30 6 5.875 5.332 3.000 1.000 1.000 1.123 10 283.4 2ICS*MOV122 P3-7026- N10 40 12 11.750 11.250 9.875 0.250 0.671 0.906 7 1294.0 2ICS~ MOV1 21 P2-7026- N17 36 10 8.750 8.030 6.125 0.375 0.826 1.197 10 617.2 2ICS*MOV128 P2-7026-N17 69 10 8.750 8.030 6.125 0.375 0.826 1.197 10 617.2 Note: Dimensions are ln inches. Prepared by: John McDougall 24/08/1995 Rev 1

' 4M ~M me.~ C P~qt cd=4 C z4 COMMONWEALTHEDISON COMPANY PRESSURE LOCKING TEST REPORT Brian D. Bunte, P.E. Commonwealth Edison Company John F. Kelly, P.E. RECTA Technologies, inc. ABSTRACT Pressuie Locking is a phenomena which can cause the unseating thrust for' gate ygye to increase dramatically from its typical static unseating thrust. This can result in the valve actuator having insufficient capability to open the valve. In addition, this can result in valve damage in cases where the actuator capability exceeds the valve structural limits. For these reasons, a proper understanding of the conditions which may cause pressure locking and thermal binding, as well as a methodology for predicting the unseating thrust for a pressure locked or thermally bound valve, are necessary, This report discusses the primary mechanisms which cause pressure locking. These include sudden depressurization of piping adjacent to the valve and pressurization of fluid trapped in the valve bonnet due to heat transfer. This report provides a methodology for calculating the unseating thrust for a'valve which is pressure locked. This report provides test data which demonstrates the accuracy of the calculation methodology. DESCRY"HON OF PRESSURE LOCKING PHENOMENA Pressure locking occurs when the bonnet cavity pressure of a gate valve exceeds the pressure on hgh sides of the valve disk. The two primary mechanisms that exist for pressure locking of gate valves are described below: This pressure locking mechanism occurs when a valve is pressurized from one side. Leakage past the valve scat will cause the fluid in the gate valve bonnet to pressurize to.,the pressure of the high pressure side of the valve disk. Depending on the leak-tightness of the valve seats, this pressurizatio process may take seconds or hours; however, it is extremely unlikely that the valve seat will be sufficiently leak tight to prevent this process from eventually occurring. If the source of pressure is suddenly removed, then prcssure in the bonnet valve will remain trapped. Ifthe valve is called upon to open before the bonnet pressure has decayed to the line pressure, then a pressure locking event occurs. e The'time needed for the bonnet pressure to decay is dependent on several factors including leak tightncss of valve seats and packing. In addition, when the bonnet fluid is at a high temperature or contains large amounts of air, the, bonnet pressure decays much more slowly due to the pressurizer effect. Apparent cases of pressure locking occurring up to a day after the pressure source is removed have been recorded. However, test data presented later in this report suggests that the bonnet pressure is likely to decay within one hour of the sudden depressurization event 3C-9 'UREG/CP-0152

0 'I 0

g44 iehwy~y C C ~~ c+ C2~ urring ~is type of pressure locking is likely to occur when pumps adjacent to closed valves shut off or when an event such as a LOCA causes pressure on one side of a valve to suddenly <<op <<f

~en     the initial differential pressure across the valve disk is sufficient to unseat the high pressure side disk from its seat, then the bonnet pressure following a sudden depressurization event is less than the bonnet pressure at the start of the event. The maximum pressure which can be trapped in the valve bonnet can be calculated by determining the differential pressure at which the valve disk will come back into contact with the valve seat. Until the disk to seat contact is re-established, the bonnet pressure will follow the.upstream side pressure.          This calculation has been developed by ComEd, but is not provided in this report due to constraints on length.

This pressure locking mechanism occurs when the valve bonnet cavity of a gate valve is filled with liquid that contains little or no air. Ifa heat source is applied to fluid in the valve bonnet cavity, then expansion of the fluid can cause pressure in the valve bonnet to dramatically increase. The heat source can be fluid in piping adjacent to the valve or external environmental conditions as might be encountered following a high energy line break. Pressurization rates of-20 psi/'F to 60 psi/'F have been recorded during special testing. However, pressurization rates of this nature require the following conditions to exist: the valve seats and pachng must be very leak tight ~ the heat source must provide a high heat transfer rate to the bonnet cavity fluid ~ no air can exist in the valve bonnet cavity, or the temperature rise in the valve bonnet cavity must be sufficient to cause the expanding fluid to collapse the air bubbles before the high pressurization rate can be achieved. PRESSURE LOCKING CALCULATION MEI'HODOLOGY

1. The valve disk is assumed to act as two ideal disks connected by a hub. The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces, 2.. The coefBcient of friction between the valve, seat and disk is assumed to be the same under pressure locking conditions as it is under DP conditions.

NUREG/CP4152 3C-10

                                                               ~X~U4aa           KLb   K   A)i CQX       <o i k44~~h ~g~+            C
                                                                                         ~%  c.K   c'
                        'gn 'nputs are used in calculating the force required to unseat a pressure locked i

MOV:

 ~         sign  ~is   Pressure Conditions at the time of the pressure locking event.       This includes the upstream (PP, downstream (P~ g, and bonnet pressure (P~J.
 ~      Valve Disk Geometry. This includes the hub radius (b), hub length (L), mean seat radius
     ., (a), seat angle (8), and average disk thickness (t). Figure 1 below is provided, for further clarification. When the hub cross-section is not circular (e.g. many Westinghouse gate valve designs), then an effective hub radius which corresponds to a circle of equal area to the hub cross-sectional area should be used.
 ~ Valve Disk Material Properties.              This includes the modulus of elasticity (E) and the Poisson's ratio (r) for the disk base material.
 ~ Valve Stem Diameter II (D~
 ~ Static Unseating Thrust         (FP
 ~ Coefficient       of Friction between Disk and     Seat (p) 3C-11                              NUREG/CP-0152

0 FIGURE 1 VALVE DISK SEAT RlNG I Seat Ring Centerline Plane of Symme Through Olsk The methodology for calculating the thrust required to open the MOVs under the pressure locking scemuio is based on the Reference 1 (Roark's) engineering handbook. This methodology is based in part on calculations developed by MPR Associates (Reference 2). The methodology determines the total force required to open the valve under a pressure locking scenario by calculating the four components to this required force. The four components of the force are the pressure locking component, the static unseating component, the piston effect component, and the "reverse piston effect'omponent. These components are determined using the following steps. NUREG/CP4 152 3C-12

II II I

 ~
           ,
             ~

n

led as two plates attached at the center by a hub which is concentric with plane of symmetry is assumed between the valve disks.'This plane f symmetry is considered fixed in the analysis FIGURE 2 Hane of Symmetry Modeled As: -I Axis af Symmetry 3C-13 NUREG/CP-0152

                                                                ~ ~ IJQ    (~ l~ i ~ %4gt 44+      b.~Q  ~q~+     C gascxf on this geometry, the fo>>o~ing constants are calculated using the Reference   i equations:

Average DPAcross Disk P+ P~ OP~ Pbo Disk Stress Constants D- Ext (Reference I, Table 24) 12x/1- v'-

                                 .2x(1+ v)

Geometry Factors b (Q.g b's FM~INB (Reference 1, Table 24) C2 = 4 1 1+2 (4) b'2 C =4a b a

                                                  +1 a

b

                                                             +

b a 1 I CI =- 1 I+ v+(1- v) a 2 b 1+v a 1-v 1- b 2 C9 = (7)

                                                     +

a 2 b 4 a hHGKG/CP4 152 3C-14

gQ a(, ji L)- 4~

                                                               ++~eh ~pn+                            C V) qz c The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter. The outer edge oi the disk is assumed to be unimpeded and allowed to deflect away from the pressure force.

In addition, the disk hub is allowed to stretch. The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the Reference 1 equations. FIGURE 3 shear

                                                                                                          ~am.
                                                                                                    ~  stretch PuP2            P3 Addtdonal Gccwcny Facmrs
                                           ,1 (lbfcrcncc l. Toblc24)
                                                                           ]+(]+v)

(r, ~ b for'Cacc2L) Moment F~ () $ g~s g ('D()

                                              -DP     x        C  -

c i (()(2ssasaa 2 Ta(sla 24,Csaa2L) hf>> (a -as ) Lss] 2

                                            ~DPav    ~     ~)

(r, ~ b for Cocc2L) 22(b ( Dcjfccclccc jhraprccc()tel bcatbg a(s(a2( Ccaa2L) yk(a a'iCs Q(s - .D Cs DPassg a a'PalaasaaL1 (ss 3C-15 NUREG/CP4152

4 ~bc X~Wi-o~ A,LO.E- KC -O~ ~ 0 44 ~~4 ~a~% C C S ~+ ~~Co Deflect to from pressure.'hear (peference 1, Table 25, Case 2 L) Ksa = -0. 2t '-2l (13) K,. x DPavgxa'xG (r, = b for Case" L) Deflection Po pressure I hub stretch P> = tr (a' b') DPavg

                                                          -Pj           L n  xb'2xE Total Deflecti ondueto pressure (17)

An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk TNs force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub. The pressure force is reacted to by an increase in this contact force between the valve disk and seats. The valve body seats are conservatively assumed to be fixed. Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load. The deflection due to the pressure force was previously calculated. The Reference 1 equations are now usod to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force. This is done by first calculating the amount deflection created by a unit load of seat const force (w ~ 1 lbf/in). The equilibrium contact load is then determined by dividing the deflection caused by the unit contact load into the previously calculated deflection due to the pressure force. The equations are provided below. NUREG/CP %152 3C-16

i~a + o~ k<O >- 4>-<< ~ hA4. Ac% w ca+ p~gg Q Q o+ C-Z4 rfdditional Geometry Factors l a 2 (Reference I, Table 24, Case IL) L,= rn 4xa a ro

                                                                                   +I   I

r, r,

                                                                                               +  -I a

(18) (for Case IL, r, = a, . L3 = Q = 0) >>0 a I+ v 2 I a ro

                                                                                      +

I-v 4 -H Deflectionjom sea load /bending (r,=a) ~,~ pc/yp (Reference I, Table 24, Case IL, w = I) (2o) Deflection f>>om seat load/sltea>> (>> =a) (ReferenceI, TaMe25,CaseIL,w=1) E'-12 ' (21) a b y =E (22) Deflectt'onPomseat load Ihub cour. Zxg xa w= I, .'.'Cnryres.hefo>>ce=2xe xa y zxb (23)

                             '.=y Deflectionporn Total                                         uni seat load (w=1)                                                                    +y +y                                       (24) 3C-17                                NUREG/CP-0152
 '

~ 0

g g4i~4 ~i>+ C C sa ~+'C~+ Therefore, the equilibrium contact nt t load'istribution (ibf/in) and the corresponding load applied to each seatt iss calculated. cu using the relationship bc}ow..

                                           , it'll eX. iscalculated fpp ~

Load per seat = 2 x g x a x (25'26

  'ri    'fi 'h Several methods may be uused to determine
                      '

this friction coc cient and e

                                                            ',

an appropriate scat to disk friction coefficient. Using

                                                                                              '

an a force balance on the disk to,seat interface, thcc followin cq uation is derived for cal cu Iating e s tcm force required to overcome thc increased contact load between the seat and disk:

Fprcskek = 2xgrxax '[pxcos{8)-sin{8)jx2 (27) wlenil the lass 2 corraposdssothenumber of scam The static unseating force results from the oopenn pac king load and pullout force'due to wedging of the valve disk during closure. These loads are superimposed on the loads due to c pressure forces which occur during pressure locking. The value for this load is based on static test data for the MOVs. I~ The piston effect due to vaIve internal pressure acceding outside pressure is calculated using dard ln the standard 'usuy'equation usuy'eq This force assists movement of the valve stem in the open direction. F plsross cffecs = x D 2 srtlss x Pb<<<<, P<<III) 4 {2S NUREG/CPA 152 3C-l8

The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk. This force is calculated as follows: (29) F,,= <xa x 2xP~ P,,P, xsing HGURE 4 P 1oanet P bonnet 3C-19 NUREG/CP-0152

                                          ~~ Xc     Io.+s'o<    EhtO  ~ t- h <0- << >

k44~~4 we~+ C

                                                                               ~   4K2c As mentioned previously, the total stem force (tension) required to overcome pressure lochng is the sum of the four components discussed above. All of the terms are positive with the exception of the piston effect component.

(30) DESCRIFMON OF TEST VALVES The three test valves were obtained from different sources. The Crane valve is a test valve located at Quad Cities Station. The Westinghouse valve was obtained through the Westinghouse Owners Group. The Borg-Warner valve was obtained from Arizona Public Service. The Cram valve is a spare valve which was subjected to blowdown testing at Wyle Laboratories in Huntsville, Ahlmmt. The Westinghouse valve is a test valve which was subjected to limited testing at South Texas Project. The Borg-Warner valve was a spare valve which had not been subjected to previous testing other than that performed at the vendor prior to delivery. Thc Crane valve is a carbon steel valve (Model 783-U) which was modified during blowdown testing to contain a stainless steel valve disk and malcolmized guide rail (similar to the Model 783-UL valve design). The Westinghouse valve and Borg-Warner'alve were stainless steel valve designs. NUREG/CP4152 3C-20

11

                                                  ~ Xc     ~~W~q>        K~@, (         Z xy-u gg4hc4 ~+~+

c 4 C DMM~'IONOF TEST'APPARATUS The figure belo w shows the basic test setup used for the pressure locking tests. A VQTES'4 t acquisition system and a Motor Power Monitor (MPM) data acquisition system were used to collect stem thrust, actuato r torque and motor power data. In addition, on-line pressure data was collected during the Westinghouse and Borg-Warner valve tests. A hydrostatic test pump and accumulator were used as the pressure source during pressure locking tests and hydrppump DP tests: HGURE S MPM VOTES system m Llmttarq. S>>In Ga" Qe Accumutator 88 Pressure Pressure Gauge Gauge Hydro Pump

                                                                                     ~1 Vent Vent Pressure                    Pressure Gauge                       Gauge For the Crane test, the valve was laid on its siCk with the stem slightly below horizontal. This configuration was used to enlire that no air pockets would be trapped within the valve body when it was filled with water.

The Westinghouse valve was installed in a test stand with the stem upright. The valve bonnet was vented by bleeding air out of thk packing leakwff line.

 '

The Borg-Warner valve was installed in a special test stand which allowed pivoting the valve

      'erline abo ut 1'ts cen         The valve stem could be put at any angle between upright and sloped
                                                                       ~

downward at a 15 degree angle in either direction. To remove air from the valve bon bonnet, the

                                  ~  ~       ~    ~

valve was rotated on its siCk and rocked up and down as it filled with water. 3C-21 NUREG/CP4152

DESCRY'TION OF TEST METHODS The test process started with static test strokes to verify the proper installation of the data acquisiti systems and to measure static unseating load magnitude and repeatability. LLE K RAT T Local leak rate tests of the valves were performed to measure seat tightness. These tests wi performed at multiple torque switch settings in some cases. DP Tests in the open direction were performed by pressurizing the valve from one side with hydropump and then stroking the valve open. Test data indicates that the differential pressure i maintained across the valve disk while the disk slid across the valve seat. The purpose of the DP tc was to precondition the valve seats and disks and to monitor the seat-to-disk friction coefficient. DP tests were performed until a stable friction coefficient was achieved. A series of pressure locking tests was performed fot each valve. Inlet pressure, outlet pressure, bon pressure, and static seating force were varied during these tests. Static baseline tests to measure static unseating load were performed between the pressure locking tests. Thc closure strokes for static tests were performed at the same initial conditions (pressure and seating force) as the clos strokes prior to the pressure locking tests so that the change in unseating load due to pressure lock could be accurately determined. To measure the seat tightness, bonnet deprcssurization rate tests were performed. The entire v assembly (including the valve bonnet) was pressurized while in the closed position. Then the upstr and downstream pressute wcte vented. The bonnet pressure as a function of time was measured. To'easure thc potential for pressure locking due to bonnet fiuid heat-up, thermally induced boy pressurization rate tests were performed on the Westinghouse and Borg-Warner valves. After ven air from the valve bonnet cavity, each valve was closed while filled with water at approximately psig. The valve bonnet was then heated using an outside heat source. The pressure of the fluid in valve bonnet was measured directly. The temperature of fluid in the valve bonnet for the Borg-Wa valve and the temperature of the outside of the valve bonnet for the Westinghouse valve were measu Initial pressurization rates between 0.5 and 2.0 psi/degree F were measured. Much higher ultir NUREG/CP4152 3C-22

1 klO < Ab-o 9 C tW e 4C.~W pressurization rates were witnessed during the Borg-Warner tests. The data from this testing is not presented in this report, but is available from ComEd upon request. PRESSURE LOCKING TEST DATA The following table provides the pressure locking test results comparing the measured pressure locking unseating load to the predicted pressure locking unseating load: TABLE 1 ercent IncraLse Conservatism Notes (Non-Cons.) 1 4 1 14 fan4 1 4

                                                                                             ,4 el fg    o fg    o fg    o fg-                                                  1  4 fg    e fge   ~                                                                    el 4 fge   ~

fge ~ fge ~ fg ~ 3ce23 NUREG/CP-0152

6 +~~M ~Vw+ c.g( e% ( tattc c ercent Unseating lncratse d 'onservatism Notes Thrust Increase (Non-Cons.) fg o i 1 4 fg o I org- 1 4 rg- . IO rg- . I rg- . I rg" ~ I NOTES:

1. The percent conservatism values are calculated after a "memory effect" of 3100 lbf (at TSS=1) or 3500 Ibf (at TSS=2) is added to the predicted pressure locking load. Testing indicated that the process of applying and then relieving pressure against one side of the closed valve was sufficient to cause the unseating force to increase by these amounts, even when no pressure was captured in the valve bonnet. This effect was only noted for the Borg-Warner test valve.
2. When bonnet pressure significantly exceeds the pressure class rating of the test valve, the pressure locking calculation methodology appears to become non~nservative.
3. Tests 86 and 95 were performed to quantify the "memory effect" for the Borg-Warner valve.

Thcsc tests were performed like a pressure locking test in that high pressure (- 600 psig) was put against one side of the valve disk and then bled off. However, any pressure that entered the vaLve bonnet was relieved prior to the opening stroke. J

4. The AC motor for the test valve staned during this test and the valve did not fully unseat.

Test data suggests that open valve motion was initiated prior to thc stall. Consequently, the measured. increase due to pressure locking is believed to be. correct.

5. Thc pressure data for this test is questionable and is being evaluated at this time.

II

6. The upstream and downstream prcssure during these tests was approximately 350 psig. This was done to approximate, the LPCI and LPCS injection valve pressure conditions which could exist in the event of a LOCh.

Graphs 1 through 6 provide thc data in Table 1 for the three test valves. Thc total measured unseating load versus the total predicted unseating load and the pressure related portion of the measiued load versus the predicted pressure related portion of the unseating load are plotted for each valve. NUREG/CP%152 3C-24

IP

   '

It

GRAPH 1 Predicted Unseating Thrust Versus Measured Pressure Locldng Unseating Force for Crane Valve 'I sxNO tm 1mo 0 0 10000 20000 30000 4XOO 60000 000 70000 80000 Total Predicted Uneealng Load 3C-25 NUREGICP-0152

GRAPH 2 Predicted Versus Measured Portion of Pressure Thrust bue to Pressure Forces for Crane Valve 4XNO 35000 30MO 25000 20000 15000 10000 5000 0 0 5000 10000 15000 20000 25000 30000 35000 4XNO Predicted Load Due to Pressure NUREG/CP-0152 3C-26

r, oow Ro) he%) cpu GRAPH 3 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Westinghouse Valve'O 5000 C co 8000 'I g axo 1000 0 0 1000 2000 3000 4000 5000 Total Predicted Unseating Thrust 3C-27 NUREG/CP-'0152

GRAPH 4 Predicted Yersus Measured Portion of Unseating Thrust Due to Pressure Forces for Westinghouse Valve a 7000 8000 Ch 5000 g m <<xe ceo axe

           '1000 0    1000   2000     3000 4000 5000  6000 7000 Predicted Laad Due to Pressure NUREG/C F4152                      3C-28

I) GRAPH 5 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Borg-Warner Valve 10000 15000 '0000 25000 Predicted Unseating Load 3C-29 NUREG/CP-0152

0 GRAPH 6 Predicted Versus Measured Portion of Unseating Thrust Due to Pressure Forces. for Borg-%amer Valve 10000 " 1$ 0 8NXS PrecHcted Pnasure Fonee NUREGICP-0152 3C-30

14 K~l~+ o ~~a.i- h b- Oo ~ P o 1 c.zw 4- c>4 PRIMARY DIN'ERENCES BETWEEN THE COMMONWEALTHEDISON PRESSURE LOCKING CALCULATION AND THE PRESSURE LOCKING CALCULATION METHOD PUBLISHED IN NUIT/CP-0146 The ComEd methodology is based on calculating the contact load at the edge of the disk which results in an equal and opposite disk deflection to that caused by pressure trapped between the disks, The ComEd methodology differs in several ways from the methodology described in the Reference 4 NUREG.

~ The NUTMEG Methodology ignores disk deflection due to hub elongation. This is non-conservative. For typical disk geometries, the expected impact of ignoring this effect is less than 5%.

~ The hKGKG Methodology is based on using Table 24 of Roark's equations for calculating forces in the disk. This table ignores disk deflection duc to transverse shear stresses. Section 10.3 of Roark's Equations discusses the conditions under which deflection due to shear is negligible. For typical disk geometries the deflection due to shear is often not negligible. Table 25 of Roark's Equations provides the equations for calculating disk deflection due to shear. Ignoring deflection duc to shear is non~nscrvativc. For small valve sizes where the disk thickness to disk diameter aspect ratio is large () 0.3), ignoring shear may result in under predicting the disk to seat contact load by 10% or more, The ComEd methodology treats the vertical pressure force on the disk separately from the pressure lochng load caused by the increased contact load between the seat and disk. The NUREG methodology relies on use of the open disk factor for translating the increased seating contact force into an increased unseating load. The open disk factor is based on a free body diagram in which the disk hub is unloaded. This is not the case for pressure locking. The NUREG treatment of these two components to the pressure locking unseating load is non-conservative. This source of nonmnservatism is generally much more significant than the other concerns mentioned above for the NUREG method and is the primary ComEd concern with the NUIT method. The derivations on the following pages are provided to support the discussion above. 3C-31 NUREG/CP-0152

Op~ phAT eACTOR DERIVATlON (Opening a valve against a differential pressure)

                                                                               %~%~4 o~ ~'

F = Stem Force (tension) pic i- ~u-'~+ p ~4 ~ p~i+C P = Pressure Force < g ~ q, c+ CZG FIGURE 6

                                            '

DP x Seat Area R = Seat Reaction Force pR = Seat Friction Force 8 = Seat Angle Disk Factor (VF) = F / P (by definition) Sum of forces in direction: g F, Peos8 Rcos8 -@csin-8 (31) cM8 (32) P cos&+ psia& Sum of forces in y~ction: Z~~e.-h e iam- (33) coe& F Psfn& P . sh8-peas&} coe&+ csin& sh cps&+yah& sh&-icos&)

               ~

cos&+psh& cos&+psh8 F sin&coe&+psin&~&sh&+ col P (34) P coe&+psh8 hKHKG/CP4152 3C-32

4' fQ.'I. 5 c h, h.Q ca% Q.o

                                                                         +~ 4i          ~~%     C PRESSURE LOCKING SUM'OF FORCES                                          W~qq        C  >w Q.++ 4 F     = Stem Force (tension)

P = Pressure Force

                                                         = DP x Seat Area FIGURE 7 Q,   =  Seat Reaction Force (calculated using Roark's) p,Q,  = Seat Friction Force
                                                  , 8    = Seat Angle T = Disk Hub Tension
                                 <a Note that the sum of the forces in the    x~tion       is different than for the seat factor case due to the hub tension force T. Consequently, the Q, value is a typically a much lower portion of the P value under pressure lochng than it is for the seat factor calculation. (This is the benefit of using Roark's equations for calculating the seat load increase.) Therefore, the sum of the forces in the direction should be solved for directly from the free body diagram above, as follows:

P Pz F pQ,esS -Psbdl+Qp-in8 (35)

.F qJpcos8-Iin8)+Mn8 The first term in the equation above is the pressure locking load term in the ComEd methodology. The second term in the equation above is the F or reverse piston effect term ~

in the ComEd methodology. The ComEd method adds these two terms to the static unseating load and then subtracts the stem rejection load to get the predicted unseating load under pressure locking conditions Rather than use these equations, the NUREG method applies the open seat factor to the Q, value. Because of the relationship in equation 37 below, the NUREG method substantially under predicts the vertical pressure force portion of the required thrust. Qa < P cos8/ (cos8 +p sin8) (37) 3C-33 NVREG/CP4152

I C- K 4 4'0 < tg.~ b.) -oa 'W R,<t h.~~+ ~pm' xvr. REHaMNCES nqq C+< c4 C2 Young, W. C., 1989, Sixth Edition of Roark's Formulas for Stress and Strain, McGraw-Hill Inc. n

2. MPR Calculations 101-013-1, "Effect of Bonnet Pressure on Disc to Seat Contact Load",

dated 3/23/95; and 101-013-4, "Estimate of Valve Unseating Force as Function of Bonnet Pressure", dated 3/23/95.

3. Electric Power Research Institute, Nuclear Maintenance Applications Center, 1990, Application Guide For Motor-Operated Valves in Nuclear Power Plants, EPRI/NMAC Report NP-6660-D, March.
4. Smith, D.E., 1994, "Calculation to Predict the Required Thrust to Open a Flexible Wedge Gate Valve Subjected to Pressure Locking", Proceedings of the Workshop on Gate Valve Pressure Locking and 7hennal Binding, NUREG/CP-0146, July 1995.

NUREG/CP4152 3C-34

gc +So~ 6 lQ he@-~4 ~y ~+ P~)w 6 l < W1 2, GATE VALVETYPE, GEOMETRY, AND ITS EFFECT ON OPEMNG AND CLOSING THRUSTS There are five different types of gate valves that cover most of the applications in nuclear power plants in the United States. The key features of these designs are shown in Figure 2.1. Variations in the most commonly used gate valves include solid, flexible, and split gates (Figure 2.1a). The two types of parallel expanding wedge gates shown in Figure 2.1b are also used, but their population is smaller. Parallel sliding gate valves shown in Figure 2.1c are relatively uncommon in the United States, but are widely used in European nuclear power plants. The advantages and disadvantages of various design features for these valves are discussed in detail in Reference [13] Flexible Wedge Solid Wedge Split Wedge Gate Gate Gate Figure 2.1a Conventional Solid Wedge, Hexible Wedge, and Split Wedge Gate Valves As shown in these figures, the designs vary significantly in gate geometries. Other important variations that affect performance are related to gate guide arrangements and their dimensions; clearances at critical locations between gate, guides, and seats; seat contact widths; and materials and surface finish in the disc guide sliding interfaces. Section 2 presents the gate thrust requirements for the above-described variations in gate geometries. This section also addresses the potential for disc tilting during mid-travel due to fluid forces across the disc. Disc tilting causes localized loading between the disc and the downstream seat, or between the disc and the guides. A preliminary analysis approach to determine the localized contact stresses is presented in this section to determine the loading severity based upon valve design and operating conditions.

0 Preliminary analyses of localized contact stresses between disc and seats as well as disc and guides used in typical wedge gate valve designs are presented in this section. The preliminary approach presented here needs further analytical refinement and empirical correlations to develop improved predictive models. Detailed derivations of the equations summarized in this section are included in Appendices A, B, and C. Stom Down-Upper stream Wodge Disc Upstream Lower Disc Wedge Body Stop Pad Seat Sogment Figuxe 2.1b Parallel Expanding Gate Valves Stem Disc Retalnlng Pine Seat Disc Carrier Preload Spring Figure 2.1c Parallel Sliding Gate Valve

/I (' 4 ~ Waken A tn.i-

                                                                                                     ~p~+         ~l Waqg 2, l. Stem Thrust for Solid, Flexible, and Split Wodge Gate Valves
                                            'I Even though there are differences in the performance of solid, flexible, and split wedge gate valves as related to their sensitivity, to external piping loads and thermal binding [13],

the equations for their stem thrust requirements based upon free body considerations are the same. Subsections 2.1.1 through 2.1.2 summarize the stem thrust requirements to I overcome only the differential pressure load across the disc. Subsections 2.1.3 and 2.1.4 give the stem wedging and unwedging thrust requirements to close and open the gate, respectively. The total stem thrust requirements to close and operi the gate are provided in Section 2.4, which include other components such as stem packing load, stem rejection Nn force (also referred to as blowout force or piston eff'ect force), and stem and gate weight.

 ~am C

2.1.1. Ciosinl, Stem Thrust to Ouereome Gate Di/7erenti al Pressure Ivor As shown in Section A.1.1 of Appendix A, the stem thrust at the gate to overcome the dgo diff'erential pressure during closing can be expressed as: F,= . F (Eq. 2.1) [cos6-@sine where Fs = stem load at gate, Ib Fp Fp = disc pressure load due to upstream/downstream differential pressure, lb hP x (effective seat area) Figuxe R2 coefficient of friction between gate and seat Gate Equilibrium Under 8= 1/2 of gate wedge angle, deg' hP Load During Closing The disc pressure load, Fp, is the product of hP and seat area based on effective disc sealing diameter as discussed further in Section 2.5. From Equation 2.1 the relationship between the commonly-used term disc factor (some-times called ualue factor) and coefficient of friction, p, can be derived: Disc Factor = (Eq. 2. la) cos 8- p sin 8 For'ypical wedge gate valves that use a total wedge angle of around 10 degrees (or 8 = 5') and a normal range of coefficients of friction, the difference between the disc factor and the coefficient of friction is practically negligible, as discussed in Section 3.1. The disc factor calculated in the closing direction can be as much as 5 percent higher than the coefficient of friction for typical values of 8 and p that are encountered in practice.

I'c 2.1.2. Opening Stem Thrust to Overcome Disc Differential Pressure As derived in Section A.l.2 of Appendix A, stem thrust during opening of a wedge disc against a differential pressure is given by: F = ~ F (Eq. 2.2) cos6+I sin6 From this one can derive the equivalence between the disc factor in the opening direction and the coefficient of friction: Disc Factor = (Eq. 2.2a) cos 6+ iL sin 6 Figure R3 The disc factor in the opening direction is slightly less Gate Equilibrium Under than the coefficient of friction for typical ranges of wedge dP Load During Opening angles and coefficients of friction (within 5 percent of the coefficient of friction), as discussed in Section 3.1. As stated earlier, the stem force calculated in Equation 2.1 or 2.2 is the force required to overcome the differential pressure resistance only. 2.1.3. Stem WedgingLoad -Closing The stem wedging load is related to the normal seat contact force, Fn, as shown in Section A.1.3 of Appendix A: F,=2(sin 6+ p cos6) F (Eq, 2.3) It should be noted that this equation applies to the case when there is no differen'tial pressure across the gate. When differential pressure is present, the stem force Fs in this equation is the net stem Figure 2A Gate Equilibrium under force after subtracting the differential pressure Wedging Load During Closing load. In some cases, the limit switch instead of the torque switch is used to stop the disc travel in the closing direction. Where acceptable from the shut-off standpoint, this approach can be used to reduce, and in some cases eliminate, the wedging load, F.

\ Q h %+-a.~(~F

> 1,4. Stem UnwedgingLoad - Opening
                                                                                 ~~~~ 8 ~ ~wbg Section A.l.4 of Appendix A shows that the unwedg-ing load to overcome the seat contact force, F, is given by:

F = 2 (lL cos 9- sin 9) F (Eq. 2.4) The seat contact force, F, that is to be overcome dur-Fn ing the opening cycle is developed by (1) wedging load from the previous closing cycle, including inertia overshoot, (2) external piping loads, or (3) differential thermal effects between the valve body and disc. Section 4 provides an analytical method-Figure 2$ ology to predict stem thrust due to inertia overshoot, Gate Equilibrium under and Section 5 discusses external pipe load and ther-Unwedging Load During Opening mal effects that may influence the normal load, Fn. 2.2. Stem Thrust for ParaM Expanding Gate Valves This Subsection 2.2 summarizes the stem thrust requirements for closing and opening directions for the two types of parallel expanding gate valves shown in Figure 2.1b. The same stem thrust equations apply to both types of parallel expanding gate valves shown in this figure. The typical wedge an'gle used in the through-conduit type is 15 degrees, and for the double-disc type is 25 degrees. It should be noted that for coefficient of friction of 0.4Z (= tan 25') or less, the 25-degree angle between the wedge surfaces (also referred to as back angles) provides a non-locking condition between the wedges. 2.2.1. Stem Thrust to Overcome Gate Differential Pressure - Closing and Opening As shown in Section A.2.1 of Appendix A, the following equation applies to both closing and openihg stem thrusts to overcome gate frictional force due to Fn hP load; Fy F -pF (Eq. 2,5) where p = coefficient of friction between seat and disc Closing Opening Fp disc pressure load due to Hguxe RS upstream/downstream Gate Equilibrium Under hP Load During differential pressure, lb Closing/Opening = hP x (effective seat area)

(l 4

('iQ.i- h w4-~~ ~~ ay oo~ l20 I 2.2.2. Stem 7Vedging Load - Closing The stem wedging load for a parallel expanding gate valve is shown in Section A.2.2 of Appendix A to be given by: sill 6+ p cos 6 Fs p+ (Eq. 2.6) cos6-p'sin 6 where coefficient of friction between seat and disc X coefficient of friction between wedge Fp faces 6 parallel gate total wedge angle, deg Fn normal force between gate and seat due to Figure 2.7 wedging, lbs Gate Equilibrium Under Wedging Load During Closing This, equation makes allowance'or the fact that the coefficients of friction at the seat-to-disc interface may be different than that at the wedge interface. Typically the seat faces have a finer surface finish and are overlaid with Stellite hard-facing, whereas the wedge faces have a rougher surface finish and are not hard-faced. Ifthe coefficient of friction at the seat faces and the wedge faces is assumed to be the same, p' p, and this equation reduces to sin'6 1-li +2gcos6 Fs= Fn (Eq. 2.6a) cos 6-csin 6 Equation 2.6a shows that the stem load is proportional to the seat contact force, Fn. 2.2.3: Stem UnwedgingLoad - Opening The stem unwedging load to overcome the seat contact force, Fn, for a parallel expanding gate valve is given by (reference Section A.2.3, Appendix A):

0

                                                                     *a~ kia.l-         a~i      a~S 2c'l
                                                                                      ~s~+

((p p'- 1) sin 8+ (g+ ll') cos 6 F (Eq. 2.7) cos8~p'sin 6 I'or p = p ', this equation reduces to: sin 6 p -1+2pcos6 F- Fn (Eq. 2.7a) cos6+psin6-Figure 2.8 Gate EquiHbrium Under Unwedging Load During Opening As discussed in Section 2.1.4, the seat contact force Fn to be overcome is determined by adding the wedging force from the previous closing cycle to the resultant force from external piping loads and differential thermal expansion loads between the body and disc. 4 2>. Stem Loads for Parallel Sliding Gate Valves - Closing and Opening Most parallel sliding gate valves are equipped with a preloading spring to maintain proper contact and provide a low pressure seal between the disc and seats. As shown in Appendix A, Section A.3.1, the required stem thrust to overcome dP and spring load friction can be expressed as: FI=2pF>>+pFp (Eq. 2.8) where F>> = disc spring load, lb F>= hP x (eFective seat area), lbs

                                                <s A
                  <n
                                                   ~F ~P Dawn  ~w paW              llP ~~ p4 Figure R9 Gate EquBibrium Under hP Load During Closing

E gl

    .0

A>CO tao>sa> S><')>> >> >>>a: VCS a>uu S>u>>CO 5>OS>> t>o >Orb>OS> >rs Ons iment: Af, au unit tangential bending moment; Q. ~ unit shear force {force per unit of c'Ircumferencial length); E ~ modulus of elasticity (force

unit area: v s Poisson's ratio; y ~ temperature coefftcient of expansion {unit strain per degree); a ~ outer radius; b ~ inner radius for annular
   >te; t ~ plate thickness; r ~ radial location of quantity being evaluated; r, ~ radial location of unit line loading or start of a distributed load. F, ul FO and G> to f'>are the several functions of the radial location r. C> to Cs are plate constants dependent upon the ratio aib. L, to L>> are loading                                                                             O nstants dependent upon the ratio air,. When used as subscripts, r and t refer to radial and tangential directions, respectively. When used as osc             . a. b. and o refer to an evaluation of the quantity subscripted at the outer edge, inner edge, and the posinon ol'he loading or start of I'oading.

f'(lls

 ~

cn respectively. When used as a subscript, r refers to an evaluation of the quantity subscripted 'at the center of the plate. are asar>cia(ed with the several quantities in the following manner: Deflections v and vo are positive upward: slopes () 2nd 84 are positive eflectio>> l increases positively as r increases; moments /)f~ Ill>. >>ml If are positive when creating compression on the top surface; and the O cn sr force Q is p>sitive when acting upward on the inner edge of a given annular section <n 0 Bc>>di>>g s(recses can be found from the moments /Ifr and Afr by the expreani>>r> o = 6M/t2. The plate constant D = Etal)2{) r ). The singularity (>>> iction brackets ( ) indicate that the expression contained within the brackets must be equated to sero unless r any other brackets. Note that Qa, Q, M, and Mare reactions, not loads. They exist only when necessary edge restraints are provided.

                                                                                                                                                                                          )  ro, after which they are uested         0 0>
                                                                                                                                                                                                                                     >>
  =   -I.-+

rral Pl>>r fssn<2 in and Gonuan>> (or Solid and Annular Circular

       >nrb              >         I     rtr p--j Lb b>>

rj Pla>ca I+rb In r + I- ~ I~ 2 r b 4 Lb bi

                                                                                                                                                            ~J h )I's  't  AQ OOQ     gC)
  . ,-(-'.)'("*'-')]                                                                               n--.'['-(-.') ("*'-;)]                                                                                  h+4~k,b,a~+ C
  =
         .([(       )         ']'"       '( )                                                             --:. ([(-.')'"] :.(-.')'-                              )

Pvq~ Q'{ af{-f

  =    If + rl-+
      -I(l              b (I - r)-j rl                                                         C> >u If[(I + r) b +(I r) rl 2                                   bJ                                                                2             ~                       bJ
 =-'.[        -(-:)']                                                                                 n--,'[ -(-.')']
 =    '[(-')'- i+ li.,']                                                                            2, =  '[(-')'                   i+   is -']
 =-(I I 2
                    )---
             - r LbIr bK.J                                                                            C,    -'(I a)(-'- -)
 =    2[I+ +ll  >(-) ]                                                                                   - -,'! + . +                 i .>(-')

2.

                                                                                                                 "."-:-
                                                                                                                                                     ]
                                                                                                                                    <
  =-',I     ""'-'.. "t'-H'9                                                                         n--.'{                                 ', '[      -(-.')'])

rso'In

                      ~

rr

r I rjr - r l r I { r, ~) r '(:. )]( I -( 2 I = ') (I o21 - ( ') ll + sa )]<

                                                                                                                                                                               -")'[I
                                                 )]
' ([(-")'")'-'.(-")*- )                                                                                s. - -," {[(   ')'+ l]~-'+ (-")'- I)<. ..>
     =    I  f                                  rl                                                                                                     rl](r r )4 n~

Ls 2[[(I + rI r +(I rl ro J Ca w-[(I +4) r'+(I 4) 0 2i[I (') ] 0, ,'[ -(

                  ') i + Ii.
                                                                                                                           "))<...>'r i, = ;[(              2
                                            ']                                                         C,     -f(.)[(r l -)+2) r]l(,,)4 I

in -rsi C 2 (I rs ~ 2 w I 2 (I - r2) J(r r) ta = -[ 2l I

n. + (I - r) ( 'J 2[ + ~ +(I 4)(
                    >
               "'"-

Ca >u-[I ') J(r r )4 '. =-{ '"['-(-")')) n--"{ ".-'. '. '[ -(-")']}< -">'

   =-'.      ('(-") (-) - (-) [*.(-) ]"-;,}
                                                                                                           =-.'.      - (-)'-'(-)'- (-)'["(-)')"-;)
                                                                                                                         ~                                   ~

( < (il 225 ( r, 155( ') 2 25!( ') -225-'-

                                                                                                                                                                                                     -">5<

I 4AOO(r ro) {

                                                                                                              )4.4OO(r                r){                             (I-o'+IIii(         ")
                                                                      + si(  ")'[s(   ") + io]o-'}

42

                                                                                                                                                                                                 +so(        ')'fs(-')'+ io]o-')

r r (25 l25 + 225{ ') 25( rs

                                                                               )                     C,

(

                                                                                                                                                   !22 2'5+ 225(           ')         25(  ')
  ,
        '-['(-)  (-)               ~        I  -']

[lo-l5+5() +52( )(I+so

                                                           -"(-) -"(-)'["(-)'1"-:)
                                                                                      )]
                                                                                                     '= I'['-(-)'- (-')*"-']<

r )4 r

                                                                                                                                                                 -">'(r
                                                                                                                                                                                                    -">'>
                                                                                                                                                                                        -"(-:) -"(-)'f"(-)']'-:.}
                                                                                                                                                                                                                                   >>
                                                                                                                                                                                                                                   >>
                         ,[is-si-"+n(                    ")'-2(     ")'-5(")'(2+ iso           ')]                                                '+si(

[Is ol ') 2( ') -5(')(I+ Iso )) {I ='[i-(

                                        ")] ( ") [)+no..>i -'])                                      "--,'(' '. {'-(-ll-(-:)'[" ">"-,'])<                                    <

Al, It~ t

T~ 24 Foenw(ae for flat cfrcu)ar platee of conetent th)cttneee (Cortgfrscsed) -+(- 4 I t. Outcr edge kec. 'utntr edge simply Ismo Afoao Afmao> Q ao If r, m d Iloal <<ou(er edge). vd ICICI Max I I f;l) sp ( L Ct

                                                                                                                                                                                                                        'r 4'd               Cs                                           0 axtf m    Af                (I     I )

0 (For numerica values sce case Ib after computing thc luadtng st Ihc Inner cdgc) 0 ec 4 If rr 4 psao tssso Afmao mo Is d (load at outcr edge),

II. Outcr edge free. inner edge ftxed Q 4 0

                                                                                                                                                     -Irds /CsCs                                                        a Max p       s   =                        Cl) cc Sp    (  Cs
                                                                                                                                                        -uds     C, Max Af a Af< m 5      Cs (For nutncrieal values sce        case   Ib ahtr computing thc loading     at thc mncr edge)
"  Case 2. Annular plate vritb a uniformly distributed prawre 5 over the pordon ftotn r, to d General cxpcasaons for dcformadons, moments, snd shears:

P a P + tsrFt + Af>> rl + D Fs rl Q D Fj - f reD Cn t atsF rl

                                                                                                                       +AfIspr Fs+Qs p Fs t p Cts
                                                                                                                     ~

Afr a ts Fr + Afmps + /pe f Ctr tD(l sa) r, r

                                                                                                                                + Jf, For tbc numcrical data given bcknr, ra   03 s  a lf   t a ts D                 D Af ss 8'dfds rcstrainm tcr edge wnp)y su inner edge lme Afmao        'q ao                                                                                                                                                           D MsxAf a Af,~

If rr a 8 (usufocss C L 8/o O.l OS 0.7 0.9 0.0587 0,075) 0.0525 0.0525 -O.oocg O.l)20 O.lgol O. I eel 0.0c77 0.0555 O. I 079 O.I5gl 0 I ISO O.OC9 I 0495$ 0P272 0.2<05 O. I 559 O.OC97 Sb't>> edge sunply supponed, Osao q a4 0 a Inner edge gtddcd Afm 0 ats Mxc Af a Afm (~ g

                                                                        )

xP 8 rr a 5 (utufsra load over ensue pbtch Afma g 5/d O.l Oy 08 Cu r 0.7 0.9

                                                                                                                                      -0.0575         'OSIS)5
                                                  ~l

(~ g

                                                                     )

0.09I9 0~5 OA) tMS 0~)85

                                                                                                                                                                           -O.OIOS 0.0505 O.I22S
                                                                                                                                                                                        -0.00)5 OA)078 0.04$ 5 0.00052 Q. a     r (dl    rq 0.00$ 0$

Outcr edge simply supptutcd, a 8(~ 2C. inner edge simply wpponcd pa 0 Afm ao pr ss 0 Afm ao lf r, a hmd o cr cutup)me), D

   ,l~

C,C Ald O. I OD nT Ctgts Csgtt E -0.0050

                                                                                                                                           -O.O255
                                                                                                                                                                   -0.0029             0.0008           -n nnn I 0.0 I 5$          0.00$ 5            0 IIIII 2 t, = t,CC +       D Ce D

f.ts A'4 0.0 I 98 0.2<01 0.0708 O.OI)9 0.0455 0.0552 O.oos 7 0.0 I 0 I nnntl 4 Iut I s I'S 0.0500 4 tlt tn Q a+-- S I.8870 (ds- rs) 0.50 I 5 02250 II tnvI

If~laooo (Cctctgltl~) ~ % ~

                                                                                                                                                                                      '          ~   C  ~c      7           /~~)F. C 5 ~f. C         +

X Q4 Fctnlttt)od lor fldt cltctl(af gt(4tloo of tcdcott( Cele no Cdse IC%l(klhl 0 (ulcc edge gu(dr(l. Ih(ul rdgc ps 0 ds a 0 ds ss 0 Q a 0 ( lf r a b (undonn load over coute ptuc). 9 a -rst I blr " 03 0.7 0.9 I (tfnC[gb Cs (c r~ ) Lts E ~ O.l O.OS4$ 0.0125 0.5 0.0050 0.0004 O I.co 0 Q a (r -rs) 2b A~ Ecl

                                                                                                                                                             -0.7892 0.1146 0.2978 0.0767
                                                                                                                                                                                                      -0.1184 0.0407 0.0$ $ 9 0.0149 0 II(IS>

D D D I K I Afn = Africa+ ()seCe rsLtt tn If rs a ca Dulce edge f(ee. Inner edge Nmpl) psao A(mao A(mao Q ao b (uniform load ores entice p4cc). wpponed dsa

                                              -rsr        Ca (e   r     )    Ltt                                             blr                               O,l                     09                0.5           0.7         0.9 DC, Lgrb                                                                        E                                0.11150.1158                               0 0826    -0.0578         0.0051 Ec                                0.1400                  08025             O.ld76        0.1540    -0.0$ 15 Q    a       (rs       rs)                                                                                                  0.1082                  0.1404            0.1479        0.1188      0.0498 2b                                                                               Es
                                                                                                                                                                                                        -03414       -0.1742         0.0521
                                                                       -                                                       Eu                               1.2754                  0.6146 a  dscC      + Q o           fr Ltt p                          p Ca         n 8    = >CCC     + 4-Cs r2 D
                                                                     -   rs D

Lts lf ls

(ulcc edge free. Inner edge fised tsad 8 aO Af aO q aO b (unlblln bad neer Cluue p4IC)i

                                              -r Ifcs(r ,2a]                                                                blr                              O.l                     03              0.$            0.7           0.9
  ,

r' Qa 2b Ca (c L gab rs) E Es Eu

                                                                                                                                                             -0.0757
                                                                                                                                                             -O.O868
                                                                                                                                                             -OSI545 0.0$ 1 dr 0.0512 OAIOS 0.0086 0.0207
                                                                                                                                                                                                       -0.1756
                                                                                                                                                                                                                    -0.0011 0.0046 0.0541 0.00017 0.005SO
                                        ~    Af(s -Cs+

p rs Qa-Cs-D D L>> 6-Cs

                                                    ~               rs ds   a Sf+-Ca+
                                                *D                                  Lss D           D r

lulsr pbte Iricb n distributed pcessunt ecuasuu 6 bnear(7 fieun aero at rs to 5 nt Ccnccal caprcslions for dcfonoaions, aoacncs. and sbcata P a Ps+ V'i+dfm-Es+ r 2 0-Ea - 9 Dr-r'Cts ra rer-r, D 0~ oa D Af,ad;z,+df~,+q;r,-d r r

                                                                                                          ~ a dape + /gm Es + Q D

rs D fe 9

                                                                                                                                                                   -,'

2 ra r

                                                                                                                                                                              ~

p>>rs'c rs ta C ea

                                                                                                                                                                           ~
                                                                                                               ~ D(l   as)

N, r

                                                                                                                            +((     T e   e    --

8 rJ (<+-h.<+0<'-'>'r(r

                                                                                                                                                                       ~          ~            ~

For tbc unacriea) dace gnen bcb(nr, ra Od eaE-p ~ rD Cslc no edge reattain(I Outcf edge Nulpll supponc(L 0 Qao p,ao Afm ad Man p aps Max Af a Pfl ~ ~ nncl edge kec pl a CL lf rs a b (lincsclp btseabg bad floss b Io ~ ). ds a DCI Lts blr Es O.I O.OS17 0.0482 Od O.OS06 0.0470 0.$ 0.02S I 0.0454 0.7 0.0114 0$ )$ 58 0.9 0.0015 O.0l dl Es (I, a r'(CILC L E 0.0186 0.04 Id 0.04850.0595 0.0166

                                                                         )                                                       Eu                               0.1590                  0.1259           OA)879         0.0514       0.0 1 dd
                                     <a             (ar -rsr-res) 0UI Cf CdgC Nnlpll'lppoltCIL           Psao             Qao              ps   ad       Afm ao                                     Mas s                 ape               Mas bf ss bfm lnncl cdgc guided
                                      .Il a
                                               -r'        CCLIC                                                                  lf rs a                    b (linear)7 'uurcw'ng            bsd (nun    b to ~ ),

n LC, \ LI2) rsLI blr 0.1 OD 0.5 0.7 0.9 Afn a

                                                      ~

ro) E 0 0259 0 0l SS -0 0041 0.0005 0.00001 Cs A' 0.0454 0.0286 0.0126 0.0051 0.00012 Csg (Csgls 0.1280 0.0847 0.0447 0.0150 0.00171 Ey Q a -dr 4 (Sos rcr rs)

.I TMLx25 I)soar sfalacttossa for Oat ckcxatar ptalaa ol conatant %~000 4+4-s cft ~f > Q Nerhmolf: g>, p, andy are the deflections at b, 4, and rrespectively, caused by transYelse shear stresses. jl, E', and h . are deflection coeflicients dcfined by the other notation and for the relationshipsg, a Ega/f(r for an annular line load and p, a Egct/IG for all distributed loading (See Table 26 for all loading cases referenced) Tsbolsad tsiocs fot v-f$ cc$ 6c casss w C- S 4-e~ Csss oo. n.l h.$ 0.% n.r no C Ig tt In

                                                ~                                                                                                                                                CI IJs Ik lc, 11,9     <<>>  RAga                            6Y>>.                                           ~ s V'                  A     4          OA I               nutso            $

ts 0 tb. fc. fl, 10 << . a <<>> -4~[1 (-') <<+ 21 )] -4.'fSSS 0.2050 '.1210 -0.0451 -4.405$

                                 "+(

ts Sa. Sb. Sc. St, Il $$ [$ -$ ")'($ +$ $ -')] -O.l ISS 0.0776 0.04$ 0 -0.0166 -0.0019 a

                                                ,[$ -$ $    "+$$ (    ") -( ")(!$ $ III -')]                                       -0.0411            0.0ftS              OANS4           4.00095 4a, 4b, 44. 4t,  If                          s 0.06SS t.lc          0.2              0.4              0.6              0.5             1.0 li, lj. lb. II      <<>> a   Qa       - Id o
                                          'n     Var.         6 > 0)
                                                                                                                                                          ,
                                                                                                                                                                                            <<161 I 0.1                0.1654          0.66$ 4          1.2901            I ANa J OJ                                 0.1$ $ 1         0.4991           0.9416           IA445 03                                                  0.ISIS           OASI2           O.SSI 5 0.7            Ysbsss   of <<>>                                        4.12 Sf         OA2 50 0$                                                                                   0.1264 ttfc                                             03                0.7            0.9
21. fj. ft. fl -0.50[1 - (") ] I -" (N~ 6 > 0)

O.I OJ

                                                                                                                                                                             -4.$ 9$ $          4.2$ 0$

0.1 -OANOO 08995 0.7242 OD OANOO f O.f 99 08$ 9$ -4.1292 OS 0.0000 0.10$ 4 -0.0674 0.7 Yatws af <<>> 0.4044 -0.0257 OP 0.0040

                    '-- -'"[ :-"(-)('- 2"-")]         t                                                   0.1 OD I AN45           IAN9$

OA494 OPISI OA 209 0.6665 0320$

                                                                                                                                                                                             -OfS67
                                                                                                                                                                                             -O.ISIS n

08 0.1909 0.1640 -0.0122 0.7 OANI0 0.0149 04 -4.006t i,sj,SI Sl <<>> a OW 2 - \

                                          ~         ~

1st JJ ba s praas>0) a t,fc O.I 04 OS 0.7 0.9 O. I 4 4444 44$ $ $ ca OA024 P.SI52 4.1274 04 OS OANOO f O.l 77 0.1$ 7$ OANST OANOO 0.7 08 Yabsa of ~ 0.0$ 4$ OANOO 0.0741 0.0146

                              ,
                                  '     [$ ($ $    ")s    -'-     ~ + $ "(-")'($ - ~$ ")]            O.l                0.7949
                                                                                                                                                                                            -0.0000 n$                                                                                                                OA5$ 5           IL$$ 2 7 tiVsfa 6 > 0) 04 08 Od IO I          0~                08$ 5$

0.175$ 0.1216 0.0619 0.7 Vabsa of ~ 0.1$ 0$ OAI9$7 OAI~ If 4.0$ aj 4.0 I 57 04 ts a OAIO 4 f

                      <<>> a

( ~ ) ]b, '; la~6>0) 4I, 4j, 4b, 41 0.10 S tsfc O.l Oa [ o L 0.7 0.9 O. I OANOO 0.2$ $ 5 04517 OAIIW v.oa OJ OANOO OAN94 0.0941 0$ 0.042 6 0.0000 4AISTS O.ott9 0.7 Vabsa of << 0.0000 0.049$ 0.9 0.0040 0.1 08791 OA905 04407 O.f 472 0.0555 t OJ 08 OMTO 0.'I 554 O.ltst 0.0460

                                                             +(-")'(IS- Itb -"))         firer.s>0)      0.7 OAN90             OAN5$          0.0251 0.9 OAIS12         0.01 f9
                                                                                                                                                                                           -0.0021

(Enclosure 2 consists of the Disposition to Calculation No. A10.1-AD-003, titled "Pressure Locking Evaluation of MOVs." Enclosure 2 has 13 pages,

~
   ~

which are numbered from 1 to 13)

0 T NAGARA Peoe 1 INaxi) V NUCLEAR MOHAWK ENGINEERING 0'tel Li(t't i 3 u Project: NINE MILE POINT NUCLEAR STATION Unit (1,2 or 0=Both): ~ Discipline: +<<~~ Ti le Calcullt tion No. Rev Disp m~f.c o s, Uac.'(I('eg l:- u Ku- I('o~ A,tOd'l- A5-OO~ 0 t g I P, Wo< s nginator o~r~>> 4 6 c-~a A,,q, ate M/r r Ag

                                                                                                                                        /

(Sub) System(s)

                   ~mP                                   Index No.      Checker                                          Date Change No.

KePS+Cfir Approver V Xe+JOlO Ae~ "'- Date

                                                                                                                                    /lrql /9 Safety Class: (SR/NSR/QXX):                                                   NMPC Acceptance/Date Superseded   Document(s):            Q,om(

Descnption of Change hwpeetA'aw iw ~(a'R~~ +o ~.~~~~"t ~~~'>" " + I ~ 'f4%. C,N'%(4 4 ~~~d'1 waif RI

   '2  ~      P    w ~on 5'7A/Q, ie %he. P~y'E~~

g ~p y ~og r gb 44E. 0ve/LA'ti '@~V 5h,Q, (

                                                                                 ~c(./~8'              ~~ P $ &Ou &7Al8 AIVt      ~ < ~ Ag r" h rR,ups ) %De~ $ 0 4+0 Q l ~0                                                d     ~

4P th~ce.i4 pr~is~a,s.Cw %dasrt Id( ~ C

       ~                          pV +o -77 e~ m +4 P< +0 2.d A      4 P g~s 'IIX +
                                                                                      "r~  'l
                                                                                              $   cs4
                                                                                                            $ o4+

44s.(i Xd1 pobd+I < 7 esolution l4,~ X>ZI ~~A,~~ ~~X w f(v'~~g 44K. 44%o 0 ( e.

                                                                      ~          +%~ ~ur.le 4 ~~4 I)~~>~~

C 4 W.hruS1' 5

                    "hOe5 C Va t>w                   4    4  >

gg,'ro,.i( o> ua P Cross Reference Changels): tZ- eeW 97- 03 4 on irmaoon equire es o: ina ssue tatup i e ocation perations cceptance See Page(s): (APPIFIO/(/OII: + Pi (Ca(outa(/oo/Heidi:+d(d Rea d(Yea(I/'IAI: (d Cl Evaluation Number(s): 2 Og 3T 0 - 7 0%'h Component IDls)(As shown in MEL): Copy of Applicability Review Attached) Yes rU~ 29%9 fC A L-pP<<ops), Z5g+'o C Ã-V-4 2.~Ps ~gcgfge maw WnV O( a+A4 - 7 Key Words: F ~s~ P v Woe c 7n- +<T c '7A oo Thrc s(~ z~~ p ~ woo > 4 '7 . ArWg2 I g+ / r 9> <<O7 ws ~ p + WMM /b- D c

                                                                                                            /3 AG7 I

((e f aa 0 r SOS f0 34 2l Page 25 NEP-DES-08 Rev 04

0 Niagara Mohawk Power Corporation NMP2 Page2ot Ato.t.AD%03, Rev. 01 t3 NuctearEngineering Calculation Cont. Sheet Originator/Date Dno~'mQ ~ 4 Q~ /cf /<~(>~ Checker/Date gVtt IJrq /R < Disp. 01A Valve ID no: ";"<<VP'"'IQVtGA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P .'=108 Valve Bonnet pressure (psig), P bonn<<.=108 p pressure (psig), P down 0 'ownstream Valve Disk Geometry: I hubradius, b:=3.375 meanseatradius, a .'=3.91 averaae disk thickness, t:=0.48 6:= a n hub length, L:=0.125 seat angle, a '.= 10 ~ 6 = 0.087 2 180 Valve Disk Material Properties: 6 rs r','2!r <.'/s.'.:..:2gie ot modulus of elasticity, E '.=29400000 Poisson's Ratio, v .'=0.3 Other Valve Parameters: Valve Stem Diameter, D stern .'=1.625 Static Unseating Thrust F po 9232

                                                                              ¹ (reference: Test 25, 70/6/94)

Valve Factor VF:=0.65 r'/eference: N.":R-2'-Ot0) CALCULATIONS: cos<6> Coefficient of friction between disk and seat, sin(6) VF 1 It =0 686 t reference Prte, up+ down Average DPAcross Disk, DPavg Pbonnet- gives, DP av< =54

    'I Disk Stiffnes Constants,           D:=        E\                 nnd          G:=        E 12     I-v   2 III 2  (2+2I) which gives,     D=2.97710                  and             G = 1.131 10 ~

Geometry Factors, C2'.=-I 4 I- b a 1+2 In a

b C3',= b 4a b

                                                                                                  +1 a

In a b

                                                                                                                       +  I b

a 1 C8:=- 1+v+ 2 b a C9 '=- - In + I 2 whichgives, C2 =8.91910 C3 =3.96510 C 8 =0.911 C 9 =0.121 COMED PL Valve ID: 2SWP'MOV66A page 1 EvaitjationlNPswp66aaa.mcd

1t

  ~,

Niagara Mohawk Power Corporation NMP2 Page 3of t'tt Catctrlation Cont. Sheet Ato.t.AD4103, Rey, 111 Nuctear Engineering Originator/Date ~ ~ 1~a e A8 ~X fflt~t~7 Checker/Date

                                                                                      /dc'//e lfv                              Disp. 01A Additional Geometrt/Factors,                                    rp '.=b 2               4               2                2
                             -5                                        2+  ln-rp L11 '=    1 64 1+4 a

0 a 0

                                                     -4 a

0 a a rp L17 1 4

1-1- v 1-4

                                         '0

a 4 a 2

                                                        '0 '+(1+v) ln rp a

which gives, L 11 =1.378 10 and L 17 = 8.641.10 Moment Factors, M rb'.=- DPavg a C8 which gives, 2 C9 f 2ab (a -r0 ) L r7 Qb'a 2b

                                                                                                                -r0)

M,b =-8.373 and Qb =31.18 Deflection from pressure/bending, 4 a' avg a ybq 'rb

                              ~
                                =

D

                                             'C2+Qb D

C3-D L11 which gives, y bq =-1.937 10 Deflection from pressure /shear, 2 sa'vg .2a Ksa'3 2'In a b 1+ rp a

                                                            '        2'I rp b

sq'G which gives, K sa =-0.012 and ysq 1796 10" Deflection from pressure /hub stretch, P force'L (2 b force(a ) DPavg y stretctt

                                                                                            'abb 2E which gives,                 P  f        = 661.191              and         y stre<ctt =-3.928 10 COMED PL                                            Valve ID: 2SWP'MOV66A                                                       page 2 EvaluationlNPswp66aaa.mcd

/ 0 Niagara Mohawk Power Corporation NMP2 Page4of i3 NuclearEnginee ring Calculahon Cont. Sheet Ato.t.AD403. Rev.01 Originatorloate 'D c ~>~>e Q ~ I ~t W ~ f Checkedoate yves

                                                                                      ~    +ii'><iqrt                  Disp. 01A Total Deflection due to pressure,                               y q:=y bq+ y sq+ y stretch which gives,           y q =-3.771 10 Additional Geometer Factors r .'=a

0'p 1+v ln + . 2 2 1-v 1- ro L3 '.= . 4a ro

                                 +1    ln +

a ro 1 L9'= a p 2 a rp 4 a a ro a which gives, L3 =0 and L9=0 Deflection from seat load bending,I w .'=1 y.b .= asw C2 rpC9 C8 b L9 p b 3

                                                                     +L3     whichgives,         ybw =-L83S       10 Deflection from seat load/shear, rp       rp Ksa .'=-1.2 a

In- b y '.= Ksa tG a which gives, Ksa =-0.177 y sw 1'272'10 I Deflection from seat load hub compression, L ycompr 'b

                         ,
                             -2na      2 E

which gives, y compr = Total Deflection from unit seat load, y w:=y bw+ysw+'ycompr which gives, y w =-3.122 10 Equilibrium contact load distribution, yq w equilibrium

                                 'w              which gives,               equilibrium
                                                                                         = 12.081 yq =296.797 Load per seat=          2 n  a yw Pressure Locking Force, COMED PL                                          Valve ID: 2SWP MOV66A                                                 page 3 EvaluationlNPswp66aaa.mcd

e Niagara Mohawk Power Corporation NMP2 Pages ot+ NuclearEngineering Originator/Date Q ~ <~~~ lL,. ~ g lrgtyq Catoutaoon Cont. Sheet Cheotterjoate gvg y/rg/gg AlO.t-AD403. Rev. 01 Disp. 01A pres lock:= 2na '(it~os(8)-sin(8)).2 Vq Yw whichgives, Fp,es lock=354.165 Piston Effect Force, Pu aun =0 n>>

          "piston effect   '    'tem   '(   bonnet       atm which gives,    F piston effect   223.986
   'Reverse Piston Effect'orce, I

F een , [n'.=e (2 FOonnet np Oownj] ein(8) which gives, F vert 452 088 Total Force Re uired to Overcome Pressure Lockin, F tot I:=F pres lock+ F po+ F vert- "pisto~effect which gives,, F total = 9.814267 10 . ACTUA TOFt CAPAGILlTYt Actuator Nodei /Slzet = 8MB-00-1$

 &fotor Torque Output:                                                                  '=

TQm 14.74 ft- Ibs Gear Ratio: OGR:=41.0 Application Factor: Af:=0.9 Pullout ENciencyt Eff:=0.4 Reduced Voltage: RV:= 0.8838 Torque Oufput: TQout:=TQmRV OGRAf Eff TQout = 169.939 ft- Ibs Stem Factor; Sf '= 0.016407 Tht ust Capat3llityt TQout THcap:=

                                       ~

THcap = 1.036 10 lbs Sf iVOTEr RV lS SQUARE /F ACTUATQR IS AC. ENHANCED PRESSURE LQCKtNG NETHQDQLOGK KEI:='.20 Thrust Margin:= THcap- F >~.KEI Thrust Margin =-1.419 10 lbs ARy aot

Conclusion:

Open Thrust t0ergin is negative, therefore this valve and actuator are-~44~ overcome the theoretical pressure torking conditions evaluated. COMED PL Valve ID: 2SWP'MOV66A page 4 EvaluationINPswp66aaa.mcd

0 Niagara Mohawk Power Corporation NMP2 Page tc2ot l3 Nuclear Engineering Originator/Date 422~>~y~ A ~ g tgg(q y Catculation Cont. Sheet Checker/Date af/r4/4o A10.1.AD403. Rev. 01 Disp. 01A

Valve ID no: 282t V!'MOVE:~A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P .'= 108 Valve Bonnet pressure (psig), P bonnet 108 p Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:= 1.25 mean seat radius, a'.=1.88 averaae disk thickness, t:=0.626 a x

hub length, L:=0.25 seat angle, a '.=10 e:= e =0.087 2 180 Valve Disk Material Properties: e js hair 'I pk ij)oje tx modulus of elasticity, E:=29400000 Poisson's Ratio, v '.=0.3 Other Valve Parameters: Valve Stem Diameter, D stern .'=1.375 'tatic Unseating Thrust, F po'.=4056 (reference: Test ¹ 8, 5/17/98) Valve Factor VF.'= I ( je/erence: NER-Bk0$ 0 ) CALCULATIONS: cos(e) Coefficient of friction between disk and seat, It:= 0 1 VF sin(e) It =1091 t referee::eft3 up+ down Average DP Across Disk, avg 'onnet 2 gives, DP ayg 54 Disk Stiffnes Constants, Et nnd G:= E 12 1-v 2(1+v) which gives, Geometry Factors, D = 6.605 10 C 2.'=-1 4 I- b a and 1+2 In a, G = 1.131 10

b C3 '.= b

                                                                                  '4a       b a
                                                                                                 +I    In a       b
                                                                                                              +  I a

C 8 '.= 1+v+(I 2

                                                       - v) ~    b a

2 C 9:=- - In + I 2 which gives, C 2 = 0.049 C 3 = 5.093 10 C 8 =0.805 C 9 =0.241 COMED PL Valve ID: 2SWP'MOV67A page 1 EvaluationlNPswp67aaa.mcd

II, Niagara Mohawk Power Corporation NMP2 Page'7 ot At0.t-AD%03. Rev. IP 01 Nuctear Engineering leapCalcutation Cont. Sheet Originator/Date Q ~,~ ~ 4 ~/Vl y Checker/Date X4

                                                                                                 'I u] el~~

Disp. 01A Add/'tionat Geometr3/ Factors,'p'.=b 2 4 2 2 I+4 4 2y In-

               ~

I fp rp rp fp 64 a a a a rp 4 2. I I-v P 0 I+(I+v) In a L17 4 4 a a rp whichgives, L11=4.48110 and L 17 =0.046 Moment Factors, M ~b '.=- DPavg cg which gives, a 2 C9 2ab l (a - r 0 ) - L ~r ob:= 2b

                                                                                                      '"'(*-     0*)

M rb --13.186 and Qb 42.593 Deflection from pressure/bending, a a a avg ybq:=Mrb C2+Qb C3- L11 D D D which gives, yh =-1.752 10 Deflection from pressure /shear, 2

                      '.3     2 a

In 1+ rp 2

                                                             ~

I 2 In-brp sa'vg a Ksa t.o b a which gives, K sa =-0.078 and ysq =-2.09 10 Deflection from pressure /hub stretch,

                                                                                             -P force L orce(al2 -b         ) DPavg                           y stretch
                                                                                           'tb 2E which gives,                 P force        334 525            and       y stretch =-2.897 10 COMED PL                                              Valve ID: 2SWP'MOV67A                                                  page 2 EvaiuationlNPswp67aaa.mcd

ll 0 18 lp

Niagara Mohawk Power Corporation NMP2 Page ~ot t 3 Nuclear Engineering Catcutabon Cont. Sheet Ato.t.AD403. Rev. 0t Originaterlnate Qss~ lW~ g'~ /+ f< 0 IO) CheokerrDate gad N/err/W Disp. OtA Total Deflection due to pressure, yq '=y bq+ y sq+ y stretch hfch gives yq =-4.131 10 Additional Geometry Factors rp.'=a L3'.= rp 4a ro a 2

                                +1   ln + -1 a

ro ro a 2 L 9:= . a

ro I+v 2 ln + rp a I-v 1-4 a 0 2 which gives, L3 =0 and L9=0 I Deflection from seat load bending, we 1 y'bw awC2p9 D C8 b Lg rp C3 b

                                                              +L3, evhichgivss             y bw =-1.465 10 Deflection from seat load shear, I fp       rp Ksa .'=-1.2 a

ln- b y',= Ksa a tG which gives, Ksa =-0.49 y sw =-1.301 10 I Deflection from seat load hub compression, L

                        ,'= -2na     2 which gives,                          1  023     0 y compr                                                      compr             1 nb      E Total Deflection from unit seat load, y w:=ybw+ysw+ycompr                         which gives,          y w =-2.868 10 Equilibrium contact load distribution, w equilibrium    'hich yq yw giv           w equilibrium   14'406 yq =170.165 Load per seat=         2 n a yw Pressure Locking Force, COMED PL                                      Valve ID: 2SWP MOV67A                                               page 3 EvaiuationlNPswp67aaa.mcd

tl NMP2 Page Iof 17 Niagara Mohawk Power Corporation At0.t-AD403. Rev. Ot Nuclear Engineering Calculation Cont. Sheet ortginatorroate  % +>~ 'to A. ~/~(ry (yq checkerroate ~

                                                                                                    /vJ   e/~/~~

Disp. ptA Yq F pres Ioc k'.= 2tt a (It cos(e)-sin(e)) 2 which gives, F pres lock w Piston Effect Force, P:=0 aun

                                                        '(/                                                             =

2 piston effecttem bonnet atm wl Ich gives, Fpistpn effect 160.368

    'Reverse Piston Effect'orce, F vert '.a                     ~

2 P bonnet up gown sin(e) which gives, vert 04 Total Force Re uired to Overcome Pressure Lockin, F total:=F pres lock+ F pp+ F vert- F pistpn effec which gives, F to~ = 4.340478 10 ACTLrAWR CAPAGILITV'cfuetor IHodel /'ize: = SM8-000-5 Motor Torque Output: TQm ,'=5 ft- lbs Gear Ratio: OGR:=57.0 Application Factor: Af:=0.9 / Pullout Efficiency." Eff:=0.4 Reduced Voltage: RV l=0.8816 Torque Output: TQout:= TQm RV OGR Af Eff TQout = 79.743 ft- Ibs 8temF acfor: Sf:=0.014263 Thrust Capatv7ltrrr: THcap '.=TQout Sf THcap = 5.591 10 Ibs ItIOT'F; RtrIG SQUARE IF ACTLIATORIS AC. FWHAeCEO PRESSURE LOCIr,'AVO urETHOaoLOOI" KEI:= 1.20 Thrust Margin'.=THcaP- Ftot I KEI Thrust Margin = 382.299 lbs

Conclusion:

Open Thrust Nerain is Positive. fherefore this valve and actuator are Iilrely fo overcome the theoretical pressure locking conrIIBons evaluated. COMED PL Valve ID: 2SWP'MOV67A page 4 EvaluationlNPswp67aaa.mcd

Niagara Mohawk Power Corporation NMP2 PagelOol \g N trotear Engineering Catoulation Cont. Sheet At0.t.AD403. Rev. 01 ohginalorloate Q ~l~ j'e Ar ~/Vlcglp f checkerroate

                                                                                  +tIcrI Disp.otA re /r 9/Orr Valve ID no: BSSVP >;"Ot/6TB Re uired           0 enin      Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS:

Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P p.'= 10S Valve Bonnet pressure (psig), P bonn<< .'= 10S Downstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=1.25 meanseatradius, a .'=1.88 averaae disk thickness, t:=0.626 hub length, L:=0.25 seat angle, ct '.= 10 e:= a rt 2 180 e =0.087 Valve Disk Material Properties: e is h tir di:-'..;tngie a modulus of elasticity, E:=29400000 Poisson's Ratio, v '.=0.3 Other Valve Parameters: Valve Stem Diameter, Dstcm.'=1.375 Static Unseating Thrust, F~.'=2444 (reference: Test ¹ 13, 5/26/9B) Valve Factor VF .'= I I reference: NER-2'-Ot0) CALCULATIONS: cos(e) Coefficient of friction between disk and seat, p, .'= I VF sin(e) It =1.091 ("eference ="6; up+ down Average DP Across Disk, avg 'onnet 2 gives, DP avg =54 Disk Stiffnes Constants, Et and G:= E 12 I-v 2/1+ v) which gives, Geometry Factors, D =6.605 10 C 2'.=- I 4 I- b a

                                                  ~

and I+2 In a, G =1.131 10 b C3.'=

                                                                                '4a b

b a

                                                                                                 +I     ln a

b

                                                                                                              +  I a

b CS:=- 2

                                         '+'+('-')             b a

C9 a

                                                                                         -
                                                                                 '=-b I+v ln 2

a b

                                                                                                         +

I-v 4 I b a which gives, C 2 =0.049 C3 =5.093 10 C 8 =0.805 C 9 =0.241 COMED PL Valve ID: 2SWP'MOV678 page 1 EvaluationlNPswp67baa.mcd

Niagara Mohawk Power Cofgoration NMP2 Pagetiof 1 2h Caioulation Cont Sheet A10.1.AO403, Rev. 01 Nooiear Engineering o 'creere roar af cr re A ~err(<+(rr ceeee rcce Disp.01A gute vb~)~o Additional Geometry'actors, rp:-"b 2 4 2 2 I 64 1~4 1'p a 5 rp fp a 4 a 2+ In-fp a rp L17 4 I I- I-

                         ]   y 4'

fp 4 fp a 2 I+(I+y) ln a t'p which gives, L11 =4481.10

                                                                'nd                         L 17 =0.046 Moment Factors, M fb:-"-

DP avg a C8 2

                                    ~  .C9 2'a'b a   rp        -L17                     oh:=      2b
                                                                                                       '"'('-   0')

which gives, M rb "13.186 and Qb =42593 Deflection from pressureNending, 4 ybq:=Mrb D, a' C2+Qb D C3- avg D a L 11 which gives, y bq =-1.752 10 Deflection from pressure Ishear, 2 2 Km'DP avg K:=-0.3 sa ' 2 In Iy a I In-b rp ~ 2 fp ysq

                                                                                                  '=

a which gives, K sa =-0.078 and ysq =-2.09 10 Deflection from pressure /hub stretch, ecerch 't force' b .2E which gives. p = 334.525 and y stretch = COMED PL Valve ID: 2SWP'MOV67B page 2 EvaluationlNPswp67baa.mcd

h I 0

Niagara Mohawk Power Corporation NMP2 Page 12ot 1 g Nuctear Engineering Cahuiation Cont. Sheet A10.1.AD403, Rev. 01 Ottgnator/DateWsem>>qual

                                ~ (tt,        gg9itrpy       Checker/Date pe        lr/ 19 /gQ Disp.ot A Total Deflection due to pressure,                            yq 'bq+ysq+ystretch which gives,            y q =-4.131 10 Additional Geometry Factors                           .'=a rp
              -.

L 3 .'" 4a

                         'o a

2

                               +1      ln '+

a rp

                                                    'o -1 a

2 L9 '= . 1' a

1+v 2 ln a rp

                                                                                                      +

1 4 v 1- rp a 2 which gives, L3 =0 and L9 =0 I Deflection from seat load bending, w .'=1 ybw.=- s w D C3 Cs

rccg -Lg b

                                                    .

r~C3 b s.L3 whichgives, y bw =-1.465 10 Deflection from seat load shear, I I ro ro Ksa .'=-1.2 a In- b ysw'sa a tG which gives, Ksa =-0.49 ysw =-1.301 10 Deflection from seat load /hub compression, L 2'tt 'a 2 y compr

                        'tb           E which gives,                   cpm P r   1 023 10 Total Deflection from unit seat load, yw'bw+ysw+ycompr                                 which gives,            yw      2'868'10 Equilibrium contact load distribution, yq equilibrium  'w                 which gives,              equilibrium Load per seat=

yq = 2 tt a 170.165 yw Pressure Locking Force, COMED PL Valve ID: 2SWP'MOV67B page 3 EvaluatlonlNPswp67baa.rncd

Niagara Mohawk Power Corporation NMP2 Pager 9of At0.t.AD403. Rev. 01 l3 Nuctear Engineering Calculation Cont. Sheet Ortgtnatorlnate Qep~~g > 4 ~4lj PbP Checker/Dale XV4 Vlr~l~z Disp.ot A F pres lock 2 rt a Yq W (p, cos(8 ) sin(0 ) ) 2 which gives, F pres lock = " Piston Effect Force, Pan:=0 effecttem 2 '(/p bonnet atm which gives, F piston effect = 160.368 piston

   'Reverse Piston Effect'orce, F       , I en'.=[n   s (2 p bonnet      np- psronss}] sin(8)            which gives,       F ert = 104.517 Total Force Re uired o Overcome Pressure Lockin, F total:= F pres lock+'   po+ F vert- F piston effec which gives,       F  <<~ =2.728478         10 ACTUATOR CAPABILITYr Actuator Nodel Size:  I                                                                = Sl'f8-000-5
                                                                                        '=5               ft- lbs Motor Torrfue Output;                                                            TQm Gear Ratio:                                                                      OGR:=57.0 Application Factor:                                                               Af '=0.9 Pullout Efficiency:                                                               Eff:=0.4 Reduced Voltage:                                                                  RV:= 0.8825 Torque Output;                TQout:= TQm RV OGR AfEff                          TQout = 79.906           ft- Ibs Stern Factor:                                                                     Sf:= 0.014263 Tlu ust CapBbflityr                     TQout THcap'.=                                      THcap = 5.602 10 3

Ibs Sf NOTE: RV IS SQUARE IF ACTUATOR IS AC. ENHANCED PRESSURE LOC/C NG METHODOLOGY: , KEI:>> 1.20 Thrust Margin '=THcap- F to~ KEI Thrust Margin =2.328 10 lbs

Conclusion:

Open Thrust Margin ls posftivep therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Valve ID: 2SWP'MOV67B page 4 EvaluationlNPswp67baa.mcd

I 0 N 0}}