ML18040A362: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:(Enclosure 1consistsofCalculation No.A10.1-AD-003, titled"Pressure LockingEvaluation ofMOVs."Enclosure 1has137pages,whicharenumberedfrom1toE4) 0 GARAUMOHAWKNUCLEARENGINEERING
{{#Wiki_filter:(Enclosure 1 consists of Calculation No.A10.1-AD-003, titled"Pressure Locking Evaluation of MOVs." Enclosure 1 has 137 pages, which are numbered from 1 to E4) 0 GARA U MOHAWK NUCLEAR ENGINEERING
~CA'L''C.UL'AT:.lON.',C,OV;ER'SHEET".,""
~CA'L''C.UL'AT:.lON.',C,OV;ER'SHEET".,"" Page 1 (Next Z)Tetai/s7 Last C'4 NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Discipline:
Page1(NextZ)Tetai/s7LastC'4NINEMILEPOINTNUCLEARSTATIONUnit(1,2or0=Both):2Discipline:
MECHANICAL Title PRESSURE LOCKING EVALUATION OF MOV'S Calculation No.A10.1-AD-003 (Sub)system(s)
MECHANICAL TitlePRESSURELOCKINGEVALUATION OFMOV'SCalculation No.A10.1-AD-003 (Sub)system(s)
VARIOUS Building Floor Elev.Index No.NA NA NA Originator(s)
VARIOUSBuildingFloorElev.IndexNo.NANANAOriginator(s)
DOMINGO A CRUZ~.A e l (K Checker(s)
DOMINGOACRUZ~.Ael(KChecker(s)
I Approver(s) ldll/Cg IC.Ze tee Rev Descri tion Design Prep'd'han e No.B Date Chk Date A Date 01 COMPLETE REVISION TO NA INCORPORATE DISP.00A AND TO USE MOST CURRENT INDUSTRY INF.DAc a 8-25-yg Computer Output/Microfilm Filed Separately (Yes/No/NA): NO'.: Safety Class (SR/NSR I Qxx): SR Superseded Document(s):
IApprover(s) ldll/CgIC.ZeteeRevDescritionDesignPrep'd'haneNo.BDateChkDateADate01COMPLETEREVISIONTONAINCORPORATE DISP.00AANDTOUSEMOSTCURRENTINDUSTRYINF.DAca8-25-ygComputerOutput/Microfilm FiledSeparately (Yes/No/NA):NO'.:SafetyClass(SR/NSRIQxx):SRSuperseded Document(s):
A10.1-AD@03, REV.00,.~+c</I/e(9', e DOCument CrOSS ReferenCe(S)
A10.1-AD@03, REV.00,.~+c</I/e(9',eDOCumentCrOSSReferenCe(S)
-FOr additianal referenCeS See page(S):46NE
-FOradditianal referenCeS Seepage(S):46NE
'b<C.O)tits''rS%tg.~&eg4bO 4-GRef SEE SECTION 4.0 Document No.Doc T e Index Sheet Rev General Reference(s):
'b<C.O)tits''rS
NONE Remarks: NONE Confirmation Required (Yes/No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO/VOI): APP (Cele I Hold): Gale Required (Yes I No): No Evaluation Number(s)I Revision: NA Copy of Applicability Review Attached (Yes/N/R)7NR Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7 Component ID(s)(As shown ln MEL): 2CSH'MOV101,2CSL'MOV107,2ICS MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,1 8A,B,21 A,B,66A,B,67A,B,94A,B
%tg.~&eg4bO4-GRefSEESECTION4.0DocumentNo.DocTeIndexSheetRevGeneralReference(s):
'gl'gl04300086 9'gI042i PDR ADQCK 050004i0 P PDR FORMAT&#xb9;NEP-DES-08, Rev.02 (F01)
NONERemarks:NONEConfirmation Required(Yes/No):NoFinalIssueStatusFileLocationOperations Acceptance SeePage(s):NA(APPIFIO/VOI):APP(CeleIHold):GaleRequired(YesINo):NoEvaluation Number(s)
GARR::::!e': '-'!:.::: '-': ':: ': '::.:-f-:.::" Page 1 (Next P l CALCULATION COVER SHEET Total I a 7 NUOLEAR ENGINEERING NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Disci pline: MECHANICAL Title PRESSURE LOCKING EVALUATION OF MOV'S Calculation No.A10.1-AD-003 (Sub)system(s)
IRevision:
VARIOUS Building NA Floor Elev.Index No.NA NA Originator(s)
NACopyofApplicability ReviewAttached(Yes/N/R)7NRKeyWords:PRESSLOCKING,GL89-10,MOVTHRUST,SR,MECH,NMP2,GL95%7Component ID(s)(AsshownlnMEL):2CSH'MOV101,2CSL'MOV107,2ICS MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,1 8A,B,21A,B,66A,B,67A,B,94A,B
DOMINGO A.CRUZ Checker(s)
'gl'gl04300086 9'gI042iPDRADQCK050004i0PPDRFORMAT&#xb9;NEP-DES-08, Rev.02(F01)
GARR::::!
e':'-'!:.:::
'-':'::':'::.:-f-:.::"Page1(NextPlCALCULATION COVERSHEETTotalIa7NUOLEARENGINEERING NINEMILEPOINTNUCLEARSTATIONUnit(1,2or0=Both):2Discipline:MECHANICAL TitlePRESSURELOCKINGEVALUATION OFMOV'SCalculation No.A10.1-AD-003 (Sub)system(s)
VARIOUSBuildingNAFloorElev.IndexNo.NANAOriginator(s)
DOMINGOA.CRUZChecker(s)
/Approver(s)
/Approver(s)
@~i~r~S.Z~~,~A('(~RevDescritionDesignPrep'dChaneNo.BDateChkDateADate01COMPLETEREVISIONTONAINCORPORATE DISP.00AANDTOUSEMOSTCURRENTINDUSTRYINF.Dhcetll-25-yg ComputerOutput/Microfilm FiledSeparately (Yes/No/NA):NO.SafetyClass(SRINSRIQxx):SRSuperseded Document(s):
@~i~r~S.Z~~,~A ('(~Rev Descri tion Design Prep'd Chan e No.B Date Chk Date A Date 01 COMPLETE REVISION TO NA INCORPORATE DISP.00A AND TO USE MOST CURRENT INDUSTRY INF.Dhce tll-25-yg Computer Output/Microfilm Filed Separately (Yes/No/NA): NO.Safety Class (SR I NSR I Qxx): SR Superseded Document(s):
A10.1&D403, REV.00,.ts+~I//6/pgDocumentCrossReference(s)
A10.1&D403, REV.00,.ts+~I//6/pg Document Cross Reference(s)
-Foradditional references seepage(s):4QNE
-For additional references see page(s):4QNE
><Calild'rS%8,<Gacket>"ri.+RefSEESECTION4.0DocumentNo.DocTIndexSheetRevGeneralReference(s):
><Ca lild'rS%8,<G acket>"r i.+Ref SEE SECTION 4.0 Document No.Doc T Index Sheet Rev General Reference(s):
NONERemarks:NONEConfirmation Required(Yes/No):NoFinalIssueStatusFileLocationOperations Acceptance SeePage(s):NA(APPIFIOIVOI):APP(Cele/Hold):CeleRequired(Yes/No):NoEvaluation Number(s)
NONE Remarks: NONE Confirmation Required (Yes/No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO I VOI): APP (Cele/Hold): Cele Required (Yes/No): No Evaluation Number(s)I Revision: NA Copy of Applicability Review Attached (Yes I N/R)?NR Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7 Component ID(s)(As shown in MEL): 2CSH'MOV101,2CSL'MOV107,2ICS'MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,18A,841 A,B,66A,B,67A,B,94A,B FORMAT&#xb9;NEP-DES48, Rev.02 (FOI)  
IRevision:
NACopyofApplicability ReviewAttached(YesIN/R)?NRKeyWords:PRESSLOCKING,GL89-10,MOVTHRUST,SR,MECH,NMP2,GL95%7Component ID(s)(AsshowninMEL):2CSH'MOV101,2CSL'MOV107,2ICS'MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,18A,841 A,B,66A,B,67A,B,94A,B FORMAT&#xb9;NEP-DES48, Rev.02(FOI)  


N%NIAGARAUMOHAWKNUCLEARENGINEERING CAL'CULATION'CONTINUATION SHEETvPage<@extraNineMilePointNuclearStationOriginator/Date 3crnowA.C,~//8/Ls'/rgef.Unit:2Checker/Date
N%NIAGARA U MOHAWK NUCLEAR ENGINEERING CAL'CULATION'CONTINUATION SHEET v Page<@ext ra Nine Mile Point Nuclear Station Originator/Date 3c rn ow A.C,~//8/Ls'/rg ef.Unit: 2 Checker/Date
~JP.JH7A10.1-AD-003 Disposition:
~JP.JH7 A10.1-AD-003 Disposition:
NARevision011.0PURPOSE:Thepurposeofthisevaluation istoassessthecapability ofvariousmotoroperatedvalvestoopenagainstpotential pressurelockingconditions asdescribed inNUREG1275,Operating FeedbackReport-PressureLockingandThermalBindingofGateValves,andtoaddressGL89-10,Supplement 6andGL95-07.Thefollowing valveshavebeenidentified aspotentially susceptible topressurelockingperNER-2M-007, Rev.1,"Pressure LockingIThermalBindingofSafetyRelatedPowerOperatedValves".Thisevaluation usesthecurrentdesignbasistodetermine theacceptability ofthesevalves.2.0SCOPE:HighPressureCoreSpraySystem-2CSH'MOV101 LowPressureCoreSpraySystem-2CSLMOV107ReactorCoreIsolation CoolingSystem-2ICS'MOV121, 2ICS"MOV122,2ICS*MOV1 28and2ICS'MOV129 ResidualHeatRemovalSystem-2RHS'MOV115, 2RHS'MOV116, 2RHS*MOV4A, 2RHS*MOV4B and2RHS'MOV4C ServiceWaterSystem-2SWP*MOV17A, 2SWP'MOV17B, 2SWP'MOV1 8A,2SWP'MOV18B, 2SWP"MOV21A, 2SWP'MOV21B, 2SWP'MOV66A, 2SWP'MOV66B, 2SWP*MOV67A.
NA Revision 01 1.0 PURPOSE: The purpose of this evaluation is to assess the capability of various motor operated valves to open against potential pressure locking conditions as described in NUREG 1275, Operating Feedback Report-Pressure Locking and Thermal Binding of Gate Valves, and to address GL89-10, Supplement 6 and GL95-07.The following valves have been identified as potentially susceptible to pressure locking per NER-2M-007, Rev.1,"Pressure Locking I Thermal Binding of Safety Related Power Operated Valves".This evaluation uses the current design basis to determine the acceptability of these valves.2.0 SCOPE: High Pressure Core Spray System-2CSH'MOV101 Low Pressure Core Spray System-2CSL MOV107 Reactor Core Isolation Cooling System-2ICS'MOV121, 2ICS" MOV1 22, 2ICS*MOV1 28 and 2ICS'MOV129 Residual Heat Removal System-2RHS'MOV115, 2RHS'MOV116, 2RHS*MOV4A, 2RHS*MOV4B and 2RHS'MOV4C Service Water System-2SWP*MOV17A, 2SWP'MOV17B, 2SWP'MOV1 8A, 2SWP'MOV18B, 2SWP"MOV21A, 2SWP'MOV21B, 2SWP'MOV66A, 2SWP'MOV66B, 2SWP*MOV67A.
2SWP'MOV67B, 2SWP'MOV94A and2SWPMOV94BI3.0METHODOLOGY:
2SWP'MOV67B, 2SWP'MOV94A and 2SWP MOV94B I 3.0 METHODOLOGY:
Foreachofthevalvegroups,themostlimitingpressurelockingjconditions willbeidentified.
For each of the valve groups, the most limiting pressure locking j conditions will be identified.
Utilizing theformulasderivedfromtheCommonwealth Edison,'ethod,therequiredthrusttoopenthevalvesubjecttopressurelockingisdetermined (Ref.'),andadjustedwiththeKalsiEngineering EnhancedPressureLockingMethodology (Ref.31).
Utilizing the formulas derived from the Commonwealth Edison ,'ethod, the required thrust to open the valve subject to pressure locking is determined (Ref.'), and adjusted with the Kalsi Engineering Enhanced Pressure Locking Methodology (Ref.31).


==4.0REFERENCES==
==4.0 REFERENCES==


INOTES:1.NMPCTeleconwithAnchorDarling,dated8l22l95,(Attachment A)'.MPR-1691, "NineMilePointUnit2GateValvePressureLockingDuetoBonnetHeatup",datedNovember19953.Limitorque Manual,NMPCFileNo.N2L20000VALVE003, Rev.0.,andEPRIApplication GuidetoMOVs,Doc.No.NP-6660-D, Section3.3.3.FORMAT&#xb9;NEP-DES-08, Rev.01(F02)  
I NOTES: 1.NMPC Telecon with Anchor Darling, dated 8l22l95, (Attachment A)'.MPR-1691,"Nine Mile Point Unit 2 Gate Valve Pressure Locking Due to Bonnet Heatup", dated November 1995 3.Limitorque Manual, NMPC File No.N2L20000VALVE003, Rev.0., and EPRI Application Guide to MOVs, Doc.No.NP-6660-D, Section 3.3.3.FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)  


NVNIAGARA4MOHAWKNUCLEARENGINEERING CALCULATION CONTINUATION SHEETNineMilePointNuclearStat/onOriginator/Date
N V NIAGARA 4 MOHAWK NUCLEAR ENGINEERING CALCULATION CONTINUATION SHEET Nine Mile Point Nuclear Stat/on Originator/Date
,,.4,.C.n~letzshgef.Unit:2Checker/Date
,,.4,.C.n~letzshg ef.Unit: 2 Checker/Date
~/o-/H7A10.1-AD-003 Disposition:
~/o-/H7 A10.1-AD-003 Disposition:
NARension014.VelanReportDM-0050,pageA4,(Attachment 8)5.NUREGICP-0152,page3C-9through3C-34,"Commonwealth EdisonCompanyPressure,LockingTestReport",(Attachment C)6.NUREGICR-5807,page5through11,"Improvement inMotorOperatedGateValveDesignandPrediction ModelsforNuclearPowerPlantSystems"(Attachment D)7.For2CSH'MOV101 DBR-CSH-MOV101, Rev.1,andMOVsizingcalculation No.A10.1-G-048, Rev.08.For2CSLMOV107DBR-CSL-MOV107, Rev.1,andMOVsizingcalculation No.A10.1-F-032, Rev.09.For2ICSMOV121DBR-ICS-MOV121, Rev.2,andMOVsizingcalculation No.A10.1-H-059, Rev.010.For2ICSMOV122DBR-ICS-MOV122, Rev.2,andMOVsizingcalculation No.A10.1-H-059, Rev.011.For2ICS'MOV128 DBR-ICS-MOV128, Rev.2,andMOVsizingcalculation No.A10.1-H-059, Rev.012.For2ICS'MOV129 DBR-ICS-MOV129, Rev.2,andMOVsizingcalculation No.A10.1-H-059, Rev.013.For2RHS*MOV4A DBR-RHS-MOV4A, Rev.1,andMOVsizingcalculation No.A10.1-E-139, Rev.014.ForRHS'MOV48 DBR-RHS-MOV48, Rev.1,andMOVsizingcalculation No.A10.1-E-139, Rev.015.For2RHSMOV4CFORMAT&#xb9;NEP-DES-OS, Rev.01(F02)  
NA Rension 01 4.Velan Report DM-0050, page A4, (Attachment 8)5.NUREG I CP-0152, page 3C-9 through 3C-34,"Commonwealth Edison Company Pressure ,Locking Test Report", (Attachment C)6.NUREG I CR-5807, page 5 through 11,"Improvement in Motor Operated Gate Valve Design and Prediction Models for Nuclear Power Plant Systems" (Attachment D)7.For 2CSH'MOV101 DBR-CSH-MOV101, Rev.1, and MOV sizing calculation No.A10.1-G-048, Rev.0 8.For 2CSL MOV107 DBR-CSL-MOV107, Rev.1, and MOV sizing calculation No.A10.1-F-032, Rev.0 9.For 2ICS MOV121 DBR-ICS-MOV121, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 10.For 2ICS MOV122 DBR-ICS-MOV122, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 11.For 2ICS'MOV128 DBR-ICS-MOV128, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 12.For 2ICS'MOV129 DBR-ICS-MOV129, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 13.For 2RHS*MOV4A DBR-RHS-MOV4A, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 14.For RHS'MOV48 DBR-RHS-MOV48, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 15.For 2RHS MOV4C FORMAT&#xb9;NEP-DES-OS, Rev.01 (F02)  


YNIAGARA0MOHAWKNUCLEARENG1NEERING CAL'CULATION CONTINUATION SHEETPage4(Next~SNineMilePointNuclearStationUnit:2Originator/Date Checker/Date Qvm'en<.cA,.C-aux/8/ZtA7/0./4'~ef.A10.1-AD-003 Disposition:
Y NIAGARA 0 MOHAWK NUCLEAR ENG1NEERING CAL'CULATION CONTINUATION SHEET Page 4 (Next~S Nine Mile Point Nuclear Station Unit: 2 Originator/Date Checker/Date Qv m'en<.c A,.C-aux/8/Zt A7/0./4'~ef.A10.1-AD-003 Disposition:
NARevision01DBR-RHS-MOV4C, Rev.1,andMOYsizingcalculation No.A10,1-E-139, Rev.016.For2RHS"MOV115DBR-RHS-MOV115, Rev.1,andMOVsizingcalculation No.A10.1-E-139, Rev.017.For2RHS"MOV116DBR-RHS-MOV116, Rev.1,andMOVsizingcalculation No.A10.1-E-139, Rev.018.For2SWP*MOV17A DBR-SWP-MOV17A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev,019.For2SWP'MOV17A DBR-SWP-MOV17A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.020.For2SWP"MOV18A DBR-SWP-MOV18A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.021.For2SWP'MOV18B DBR-SWP-MOV18B, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.022.For2SWP'MOV21A DBR-SWP-MOV21A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.023.For2SWP'MOV21B teDBR-SWP-MOV21B, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.024.For2SWP'MOV66A DBR-SWP-MOV66A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.025.For2SWP'MOV66B DBR-SWP-MOV66B, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.0FORMAT&#xb9;NEP-DES-08, Rev.01(F02)  
NA Revision 01DBR-RHS-MOV4C, Rev.1, and MOY sizing calculation No.A10,1-E-139, Rev.0 16.For 2RHS" MOV115 DBR-RHS-MOV115, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 17.For 2RHS" MOV116 DBR-RHS-MOV116, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 18.For 2SWP*MOV17A DBR-SWP-MOV17A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev, 0 19.For 2SWP'MOV17A DBR-SWP-MOV17A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 20.For 2SWP"MOV18A DBR-SWP-MOV18A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 21.For 2SWP'MOV18B DBR-SWP-MOV18B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 22.For 2SWP'MOV21A DBR-SWP-MOV21A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 23.For 2SWP'MOV21B t e DBR-SWP-MOV21B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 24.For 2SWP'MOV66A DBR-SWP-MOV66A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 25.For 2SWP'MOV66B DBR-SWP-MOV66B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)  


NVNAGARAUMOHAWKNUCLEARENGINEERING CALCULATION CONTINUATION SHEETPage(Next~eeNineMilePointNuclearStationOriginator/Date Checker/Da DC')e)>'l)e,i>I~C.Recta/8/2C/5'7ef.26.ForSWP*MOV67A Unit:2y-/rt/-f7A10.1-AD-003 Disposition:
N V NAGARA U MOHAWK NUCLEAR ENGINEERING CALCULATION CONTINUATION SHEET Page (Next~ee Nine Mile Point Nuclear Station Originator/Date Checker/Da DC')e)>'l)e, i>I~C.Recta/8/2C/5'7 ef.26.For SWP*MOV67A Unit: 2 y-/rt/-f7 A10.1-AD-003 Disposition:
NARevision01DBR-SWP-MOV67A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.02?.For2SWP'MOV678 DBR-SWP-MOV678, Rev.1,andMOVsizingcalculation No.A10.1-NQ08, Rev.028.For2SWP'MOV94A DBR-SWP-MOV94A, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.029.For2SWP'MOV948 DBR-SWP-MOV948, Rev.1,andMOVsizingcalculation No.A10.1-N408, Rev.030.Roark'sFormulasforStressandStrain,SixthEdition1989,pages398,399,404,405,408.409 444and445,(Attachment E)31.ENHANCEDPRESSURELOCKINGMETHODOLOGY, KalsiEngineering, inc.(1997)5.0CALCULATION RESULTS:Asdocumented asthebottomofthelastpageforeachvalveevaluated, thethrustmarginiseitherpositiveornegative.
NA Revision 01 DBR-SWP-MOV67A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 2?.For 2SWP'MOV678 DBR-SWP-MOV678, Rev.1, and MOV sizing calculation No.A10.1-NQ08, Rev.0 28.For 2SWP'MOV94A DBR-SWP-MOV94A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 29.For 2SWP'MOV948 DBR-SWP-MOV948, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 30.Roark's Formulas for Stress and Strain, Sixth Edition 1989, pages 398,399,404,405,408.409 444 and 445, (Attachment E)31.ENHANCED PRESSURE LOCKING METHODOLOGY, Kalsi Engineering, inc.(1997)5.0 CALCULATION RESULTS: As documented as the bottom of the last page for each valve evaluated, the thrust margin is either positive or negative.A positive thrust margin indicates that the valve and actuator is likely to overcome applicable theoretical pressure locking phenomena.
Apositivethrustmarginindicates thatthevalveandactuatorislikelytoovercomeapplicable theoretical pressurelockingphenomena.
A negative thrust margin indicates that the valve and actuator may not be able to overcome the applicable theoretical locking phenomena.
Anegativethrustmarginindicates thatthevalveandactuatormaynotbeabletoovercometheapplicable theoretical lockingphenomena.
Of the valves evaluated, valves 2CSH'MOV101, 2CSL MOV107, 2ICS'MOV121, 2ICS MOV129, 2RHS'MOV115, 2RHS MOV116, 2RHS'MOV4A, 2RHS'MOV48) 2RHS x MOV4C)2SWP'MOV21A, 2SWP'MOV218, 2SWP*MOV66A, 2SWP'MOV668, 2SWP'MOV678 and 2SWP'MOV948 yielded a negative thrust margin.However, an evaluation of plant configuration, normal and accident, and system function for each of the valves analytically susceptible to pressure locking indicates no operability concerns and the valves will operate under postulated accident scenarious.
Ofthevalvesevaluated, valves2CSH'MOV101, 2CSLMOV107,2ICS'MOV121, 2ICSMOV129,2RHS'MOV115, 2RHSMOV116,2RHS'MOV4A, 2RHS'MOV48) 2RHSxMOV4C)2SWP'MOV21A, 2SWP'MOV218, 2SWP*MOV66A, 2SWP'MOV668, 2SWP'MOV678 and2SWP'MOV948 yieldedanegativethrustmargin.However,anevaluation ofplantconfiguration, normalandaccident, andsystemfunctionforeachofthevalvesanalytically susceptible topressurelockingindicates nooperability concernsandthevalveswilloperateunderpostulated accidentscenarious.
A detail evaluation of the results of this calculation for the valves identified as susceptible to pressure locking phenomena is included in NER-2M07, Rev.02.CHECKERS NOTE: This calculation was hand checked, therefore the MATHCAD commonly used commercial program does not required validation for this application.
Adetailevaluation oftheresultsofthiscalculation forthevalvesidentified assusceptible topressurelockingphenomena isincludedinNER-2M07, Rev.02.CHECKERSNOTE:Thiscalculation washandchecked,therefore theMATHCADcommonlyusedcommercial programdoesnotrequiredvalidation forthisapplication.
FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)  
FORMAT&#xb9;NEP-DES-08, Rev.01(F02)  


NiagaraMohawkPowerCorporation NuctearEngineering OriginatorlDate~a.Cw~/,s/y>oharmsyNMP2Calculation Cont.SheetChecker/Date PageQt/37A10.1-AtM03, Rev.01ValveIDno:2CSH'MOV101 Reuired0eninForceDeternmination underPressureLockinConditions COINEDMethodDESIGNINPUTS:ValveDiskGeometry:
Niagara Mohawk Power Corporation Nuctear Engineering Origina torl Date~a.C w~/,s/y>o harms y NMP 2 Calculation Cont.Sheet Checker/Date Page Qt/37 A10.1-AtM03, Rev.01 Valve ID no: 2CSH'MOV101 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COINED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=2 hub length, L:=0.094 r mean seat radius, a:=6.125 average disk thickness, t:=1.66 seat angle, a:=6 e:=-'" e=o.o52 2 180 e is half disk anglect Valve Disk Material Properties:
hubradius,b:=2hublength,L:=0.094rmeanseatradius,a:=6.125averagediskthickness, t:=1.66seatangle,a:=6e:=-'"e=o.o522180eishalfdiskanglectValveDiskMaterialProperties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3OtherValveParameters:
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>.=55 Valve Bonnet pressure (psig), Pboggct 2477 Downstream pressure (psig), Pdo~'ryP.4 II Valve Stem Diameter, D~.--LS Static Unseating Thrust, F~'.=4385 (reference:
DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P>.=55ValveBonnetpressure(psig),Pboggct2477Downstream pressure(psig),Pdo~'ryP.4IIValveStemDiameter, D~.--LSStaticUnseating Thrust,F~'.=4385(reference:
Test&#xb9;8, 4/18/96)Valve Factor VF:=0.5 (reference:
Test&#xb9;8,4/18/96)ValveFactorVF:=0.5(reference:
NER-2M410)CALCULATIONS:
NER-2M410
Coefficient of friction between disk and seat, It'.=cope)-'-a~(e)It=0.513 (reference&#xb9;6)gives,'P avg 2 45'10 P~+Pdo~AverageDPAcrossDisk, DPavg Pbo~<-2 Disk StNnes Constants, D:=and G:=Et E 12 1-v 2 (1+v)which gives, D 1.232 10 Geometry Factors, C 2'.=-1-1 4 and G=1.131~10 I+2 ln-C3'=--+I In-+--1 1 b C8.'=-1+v+(1-v)2 a b 1+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.164 C 8 0'68 C 3=0.028 C 9=0.289 COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV1 01 page 1 I
)CALCULATIONS:
Niagara Mohawk Power Corporation Nuciear Engineering Onginatorloate o~~)~4-<~~~tnhq NMP 2 Calculation Cont.Sheet Checker/Date Page fo(t S t A1 0.1-AD403, Rev.01 Additional Geometry Factors,.fp'=b I 64 2 4 2 2 fp fp fp fp I+4--5--4-2+-~In-a a a a rp I L17.=-4 4 2 I-U 0 0 a I--I----~I+(I+Y)In-4 a a fp , which gives, L I I=0.006 and L17~0/141 Moment Factors, M fb'=2 DPavg'a C9/2 2'0)C8 2ab ob:='"'(*-0*)2b which gives, Mfb=-3.389 10 and Q b~2.052'10 Deflection from pressure/bending, a a avga 3 4 y bq:=M fb'2+Q b-C 3-L 11 D D D which gives, yb~i).008 q Deflection from pressure I shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 in-b a b 2 m'DP avg a ysq'=which gives, K sa&.404 and y~%.002 Deflection from pressure I hub stretch, ofee'=tt (a-b)DP avg-P fotee L y stretch'tb 2E which gives, P fo~=2.579.10 and y~=-3.281~10 COMED PL Evaluation PCS H101A.MCD Valve ID: 2CSH'MOV1 01 page 2 I0 Niagara Mohawk Power Corporation Nuorear Engineering Onginatorloate
Coefficient offrictionbetweendiskandseat,It'.=cope)-'-a~(e)It=0.513(reference
~~a+>k~C C4>4<(tet l~r)NMP 2 Celcutation Cont.Sheet Checkerloate Q Io I-r<Page~of (3 I A1 0.1-AD403, Rev.01 Total Deflection due to pressure, yq:=ybq+ysq+yg t h Additional Geometry Factors which gives, r0'.=a yq=<.OI ro L3'.=-4.a 2 2 ro a ro+I In-+--I a ro a ro L9,=-a 2 I+v a I-v ro-In-+-1-2 ro 4 a which gives, L3~0 and L9=0 P Deflection from seat load/bending, w:=I C2 ro C9 ro C3 y bw'.=L9--+L3 which gives, O CS b b ybw 2317 10 6 Deflection from seat load I shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, Ksa-1.343 tG y~~-4.383 10 Deflection from seat load I hub compression,-2 tta y'ompr'tb L 2 which gives, ycom r Total Deflection from unit seat load, y w:=ybw+ysw+ycompr which gives, y w 2'76 10~hi~h gi~es, wequilibn~
&#xb9;6)gives,'Pavg245'10P~+Pdo~AverageDPAcrossDisk, DPavgPbo~<-2DiskStNnesConstants, D:=andG:=EtE121-v2(1+v)whichgives,D1.23210GeometryFactors,C2'.=-1-14andG=1.131~10I+2ln-C3'=--+IIn-+--11bC8.'=-1+v+(1-v)2ab1+va1-vb2C9.---ln-+-1--a2b4awhichgives,C20.164C80'68C3=0.028C9=0.289COMEDPLEvaluation PCSH101A.MCD ValveID:2CSH'MOV1 01page1 I
3.517 10'quilibrium contact load distribution, yq w equilibrium
NiagaraMohawkPowerCorporation NuciearEngineering Onginatorloate o~~)~4-<~~~tnhqNMP2Calculation Cont.SheetChecker/Date Pagefo(tStA10.1-AD403, Rev.01Additional GeometryFactors,.fp'=bI642422fpfpfpfpI+4--5--4-2+-~In-aaaarpIL17.=-442I-U00aI--I----~I+(I+Y)In-4aafp,whichgives,LII=0.006andL17~0/141MomentFactors,Mfb'=2DPavg'aC9/22'0)C82abob:='"'(*-0*)2bwhichgives,Mfb=-3.38910andQb~2.052'10 Deflection frompressure/bending, aaavga34ybq:=Mfb'2+Qb-C3-L11DDDwhichgives,yb~i).008qDeflection frompressureIshear,2arprpK~:=-0.32In--I+-I-2in-bab2m'DPavgaysq'=whichgives,Ksa&.404andy~%.002Deflection frompressureIhubstretch,ofee'=tt(a-b)DPavg-PfoteeLystretch'tb2Ewhichgives,Pfo~=2.579.10andy~=-3.281~10COMEDPLEvaluation PCSH101A.MCD ValveID:2CSH'MOV1 01page2 I0 NiagaraMohawkPowerCorporation NuorearEngineering Onginatorloate
'=yw Load per seat=2.tt a-=1.354 I0 yq yw Pressure Locking Force, COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV101 page 3
~~a+>k~CC4>4<(tetl~r)NMP2Celcutation Cont.SheetCheckerloate QIoI-r<Page~of(3IA10.1-AD403, Rev.01TotalDeflection duetopressure, yq:=ybq+ysq+yg thAdditional GeometryFactorswhichgives,r0'.=ayq=<.OIroL3'.=-4.a22roaro+IIn-+--IaroaroL9,=-a2I+vaI-vro-In-+-1-2ro4awhichgives,L3~0andL9=0PDeflection fromseatload/bending, w:=IC2roC9roC3ybw'.=L9--+L3whichgives,OCSbbybw2317106Deflection fromseatloadIshear,roroKsa:=-1.2
-In-aby~:=Ksa-whichgives,Ksa-1.343tGy~~-4.38310Deflection fromseatloadIhubcompression,
-2ttay'ompr'tbL2whichgives,ycomrTotalDeflection fromunitseatload,yw:=ybw+ysw+ycompr whichgives,yw2'7610~hi~hgi~es,wequilibn~
3.51710'quilibrium contactloaddistribution, yqwequilibrium
'=ywLoadperseat=2.tta-=1.354I0yqywPressureLockingForce,COMEDPLEvaluation PCSH101A.MCD ValveID:2CSH'MOV101 page3


NiagaraMohatttrk Powerorporatton NuciearEngineering NMP2Catctglation Cont.SheetChecker/Date gag///-(0<Page1o(/37A10.1-AD403, Rev.01YqFpreslock:=2ma-'PM<e)-sm(e))2whichglvm.Fpreslock=1245'los JwPistonEffectForce,Pan',=0pistonstreet''tem
Niagara Mohatttrk Power orporatton Nuciear Engineering NMP 2 Catctglation Cont.Sheet Checker/Date gag///-(0<Page 1 o(/37 A10.1-AD403, Rev.01 Yq Fpres lock:=2m a-'PM<e)-sm(e))2 which glvm.Fpres lock=1245'los Jw Piston Effect Force, P an',=0 piston street''tem
'[bonnetann)whichgives,F;1fft=4.377'10 "ReversePistonEffect"Force,Fvert.'=(ta2Pbonnetupdown'sin(0)whichgives,F~=3.02210TotalForceRulredtoOvercomePressureLockln"total'reslock+"po+vertpistoneffectFto~1'546805ACTUATORCAPABILITY:
'[bonnet ann)which gives, F;1ff t=4.377'10"Reverse Piston Effect" Force, F vert.'=(t a 2 P bonnet up down'sin(0)which gives, F~=3.022 10 Total Force R ulred to Overcome Pressure Lockln"total'res lock+"po+vert piston effect F to~1'546805 ACTUATOR CAPABILITY:
ActuatorModelISize:MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficienc:
Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficienc:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout:=TQmRV.OGR.AfEffTQoutTHcap:=-Sf=SMB-00-10 TQm:=9.3OGR:=72Af:=0.9Eff:=0.4RV:=1.0TQout~241.056Sf:=0.018919THcap=1.27410tt-lbstt-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCIQNGMETHODOLOGY:
TQout:=TQm RV.OGR.Af Eff TQout THcap:=-Sf=SMB-00-10 TQm:=9.3 OGR:=72 Af:=0.9 Eff:=0.4 RV:=1.0 TQout~241.056 Sf:=0.018919 THcap=1.274 10 tt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
KEI:=1.20aThrustMargin:=THeap-(ptomtKEI)ThrustMargin~-1.729'10 lbsConclusion:
KEI:=1.20 a Thrust Margin:=THeap-(p tomt KEI)Thrust Margin~-1.729'10 lbs
OpenThrustMarginisnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PCSH101A.MCD ValveID:2CSH'MOV1 01page4


NiagaraMohawkPowerCorporation NucteerEngineering Originator/Date we~~/i~bpNMP2Calcutation ContSheetChecker/Date
== Conclusion:==
~>-i17Page/OH/+7A10.1-AD403, Ret/.01ValveIDno:2CSL'MOV107 Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.=500ValveBonnetpressure(psig),
Pboggat=8931Downstream pressure(psig)Pdp~'alveDiskGeometry:
hubradius,b:=1.25hublength,L:=0.25meanseatradius,a:=1.879averagediskthickness, t:=0.626seatangle,a:=loe:=--e=0.087att2180ValveDiskMaterialProperties:
modulusofelasticity, E:=29400000 Poisson's Ratio,v.=0.3OtherValveParameters:
eishalfdiskangleaValveStemDiameter, D<~.'=1.375 StaticUnseating Thr'ust,Fpo3399(reference:
Test&#xb9;4,6/3/96)(reference:
NER-2M410
)CALCULATIONS:
Coefficient offrictionbetweendiskandseat,It:=~ge)-'-sa(e)It=0.521(reference
&#xb9;6)givesDPavg86811(PG:=E2(I+v)whichgives,D=6.60510andG=1.131~10Pup+Pdo~AverageDPAcrossDisk,DPavg:=Pbomct-2DiskStittnasConstants, D:=andEtl2t-v2Iba.bbabGeometryFactors,C2.=-I--I+2In-C3'.=--+IIn-+--I4ab4aabaIb2bI+vaI-vb2C8.'=-I+v+(I-v)-C9.---ln-+-I--2aa2b4awhichgives,C20.049C8=0.805C30.005C9=0.241COMEDPLEvaluation PCSL107A.MCDValveID:2CSLMOV107page1


NiagaraMohawkPowerCorPorat/on NuclearEngineering Originate rloateQcwr~g4@AceCJrP/$7NMP2Calculation Cont.SheetChecker/Date
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
~~-i-17Page/rof/p7A10.1-AD403, Rw.01Additional GeometryFactors,rp.'=bI6424rprpI+4--5--4aa2rp2rpa2+-In-arpIL174I-vI--I-44rprpaa2~I+(I+v)ln-rpwhichgives,MomentFactors,LII=4.46310andLi7=0.046Mrb'=-2DPavgaC8C9a-rp-L172ab'"'(*-0')2bwhichgives,Mrb-2.11310andQb6.834-10Deflection frompressure/bending, 4aaavgyb'.=Mrb.-C2+Qb-C3-L11DDDwhichgh/es,yb~-2.798'10 qDefiectlon frompressureIshear,2arprpK:=-0.32in--I+-~I-21n-bab2saavgat.Gwhichgives,Ksa=%.077andy=-3.348'10 sqDeflet%ionfrompressureIhubstretch,Pflt(ab)DPg-PforceLystretch-ttb2Ewhichgives,Pf0~0=5.368.10
COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV1 01 page 4
-andy~~-4.64910COMEDPLEvaluation PCSL107A.MCDValveID:2CSLMOV1074page2 0
NiagaraMotunNkPowerCorporation NuclearEngineering Originator/Date Qo~p~A.C~Pr/ralphNMP2Calculation Cont.SheetChecker/Date A~~-<7Page/2d/STA10.1-AD403, Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyqybq+ysq+ystretchwhichgives,yq=<.611~10r:=aroL3=-.4-a22roaro+Iln-+--IaroaroL9.--a2I+vaI-vro-In-+-I-2ro4awhichgives,L30andL9~0Deflection fromseatloadIbending,w:=IIIC2roC9roC3ybw.-L9--.+L3whichgives,OCSbb'bw=-1.45810Deflection fromseatloadIshear,Ksa'=-1.2-In-abay~!=Ksa-tGwhichgives,Ksa<.489ysw=-1.298'10 Deflection fromseatloadIhubcompression,
'2'll'aycompr"'=ttbLhwhichgives,ycompr102310ETotalDeflection fromunitseatload,yw:=ybw+ysw+ycompr whichgives,yw-2.85810whichgives,wequilibrium
~Loadperseat=2tta-2.731~10yq~4ywEquilibrium contactloaddistribution, yqwequilibrium
'PressureLockingForce,COMEDPLEvaluation PCSL107A.MCDValveID:2CSLMOV107page3 84l NiagaraMohawkPowerCorporation NigciesrEnpineeriny Onpinstor/Date 4Cesc>//tike!rgrNMP2Calculation Cont.SheetChecker/Date
/)./i)/4Pat/e/>ofr3bTA10.1-ADO03, Rev.01Fp]k2na-(itcos(e)-sin(0))2'YqWwhichg/vesaFPistonEffectForce,Pa~."=02pistonstreet'stem'(bonnetatm)whichganesaFp,stoncffcct=1326'10"ReversePistonEffect"Force,2vmt[s'e'('onnetupdeum)j'smigi TotalForceReuiredtoOvercomePressureLockinwhichgives,Fv~=1.678'10Ftotall=Fpreslock+Fpo+F'vert-F'pistoncffcctwhichgivesFtotal304969710ACTUATORCAPABILITY:
ActuatorMotor/Size:
MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutputStemFactor:ThrustCapability:
TQout:=TQIRVOGRAfEffTQoutTHcap:=-Sf=SMB-00S-15 TQm:=14.18OGR:=23Af:=0.9Eff.s=0.45RV:=0.8848TQout=103.407Sf':=0.017861'IHcap5.7910ft-lbsft-lbs1bsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20ThrustMargin:=THoap-'(pmmtKEI)eThrustMargin-3.081~10lbsConclusion:
OpenThrustMarginisnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PCSL107A.MCD ValveID:2CSL'MOV107 page4


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date 6/itlF7NMP2Calculation Cont.SheetChecker/Date Wv-i~7Page/Q/I'3 7A10.1-AtM03, Rev.01ValveIDno:2ICSMOV121Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPlJTS'esign BasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P>>..=1200ValveBonnetpressure(psig),Pbonnet1200Downstream pressure(psig),Pdown0ValveDiskGeometry:
Niagara Mohawk Power Corporation Nucteer Engineering Originator/Date w e~~/i~bp NMP 2 Calcutation Cont Sheet Checker/Date
hubradius,b:=3.063hublength,L:=0.188meanseatradius,a.'=4.45averagediskthickness, t:=1.012artseatangle,u.=106:=--00.0872180ValveDiskMaterialProperties:
~>-i17 Page/OH/+7 A1 0.1-AD403, R et/.01 Valve ID no: 2CSL'MOV107 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=500 Valve Bonnet pressure(psig), Pboggat=8931 Downstream pressure (psig)P dp~'alve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.879 average disk thickness, t:=0.626 seat angle, a:=lo e:=--e=0.087 a tt 2 180 Valve Disk Material Properties:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3OtherValveParameters:
modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters:
eishalfdiskangle aValveStemDiameter, D<.=2.5ValveFactorVF:=0.6StaticUnseating Thrust,F>>.=27694 (raference:
e is half disk anglea Valve Stem Diameter, D<~.'=1.375 Static Unseating Thr'ust, Fpo 3399 (reference:
Test&#xb9;7,1/9/96)(reference:
Test&#xb9;4, 6/3/96)(reference:
NER-2M410)CALCULATIONS:
Coefficient of friction between disk and seat, It:=~ge)-'-sa(e)It=0.521 (reference&#xb9;6)gives DP avg 8 681 1(P G:=E 2 (I+v)which gives, D=6.605 10 and G=1.131~10 Pup+Pdo~Average DP Across Disk, DP avg:=P bomct-2 Disk Stittnas Constants, D:=and Et l2 t-v 2 I b a.b b a b Geometry Factors, C2.=-I--I+2 In-C3'.=--+I In-+--I 4 a b 4a a b a I b 2 b I+v a I-v b 2 C8.'=-I+v+(I-v)-C 9.---ln-+-I--2 a a 2 b 4 a which gives, C 2 0.049 C 8=0.805 C 3 0.005 C 9=0.241 COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 page 1
 
Niagara Mohawk Power CorPorat/on Nuclear Engineering Originate rloate Qcwr~g 4@Ace C Jr P/$7 NMP 2 Calculation Cont.Sheet Checker/Date
~~-i-17 Page/r of/p7 A10.1-AD403, Rw.01 Additional Geometry Factors, rp.'=b I 64 2 4 rp rp I+4--5--4 a a 2 rp 2 rp a 2+-In-a rp I L17 4 I-v I--I-4 4 rp rp a a 2~I+(I+v)ln-rp which gives, Moment Factors, L I I=4.463 10 and L i7=0.046 Mrb'=-2 DP avg a C8 C9 a-rp-L17 2ab'"'(*-0')2b which gives, Mrb-2.113 10 and Q b 6.834-10 Deflection from pressure/bending, 4 a a avg y b'.=M rb.-C 2+Q b-C 3-L 11 D D D which gh/es, yb~-2.798'10 q Defiectlon from pressure I shear, 2 a rp rp K:=-0.3 2 in--I+-~I-21n-b a b 2 sa avg a t.G which gives, K sa=%.077 and y=-3.348'10 sq Def let%ion from pressure I hub stretch, Pf lt (a b)DP g-P force L ystretch-ttb 2E which gives, P f0~0=5.368.10-and y~~-4.649 10 COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 4 page 2 0
Niagara MotunNk Power Corporation Nuclear Engineering Originator/Date Qo~p~A.C~P r/ralph NMP 2 Calculation Cont.Sheet Checker/Date A~~-<7 Page/2d/ST A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors y q y bq+y sq+y stretch which gives, y q=<.611~10 r:=a ro L3=-.4-a 2 2 ro a ro+I ln-+--I a ro a ro L9.--a 2 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3 0 and L9~0 Deflection from seat load I bending, w:=I II C2 roC9 roC3 ybw.-L9--.+L3 which gives, O CS b b'bw=-1.458 10 Deflection from seat load I shear, Ksa'=-1.2-In-a b a y~!=Ksa-tG which gives, Ksa<.489 y sw=-1.298'10 Deflection from seat load I hub compression,'2'll'a y compr"'=ttb L h which gives, y compr 1023 10 E Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, yw-2.85810 which gives, w equilibrium
~Load per seat=2 tt a-2.731~10 yq~4 yw Equilibrium contact load distribution, yq w equilibrium
'Pressure Locking Force, COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 page 3 8 4 l Niagara Mohawk Power Corporation Nigciesr Enpineeriny Onpinstor/Date 4 C esc>//tike!r gr NMP 2 Calculation Cont.Sheet Checker/Date
/)./i)/4 Pat/e/>of r 3bT A10.1-ADO03, Rev.01 F p]k 2 n a-(it cos(e)-sin(0))2'Yq W which g/vesa F Piston Effect Force, P a~."=0 2 piston street'stem'(bonnet atm)which ganesa Fp,ston cffcct=1326'10"Reverse Piston Effect" Force, 2 vmt[s'e'('onnet up deum)j'smigi Total Force Re uired to Overcome Pressure Lockin which gives, F v~=1.678'10 F total l=F pres lock+F po+F'vert-F'piston cffcct which gives F total 3 049697 10 ACTUATOR CAPABILITY:
Actuator Motor/Size:
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output Stem Factor: Thrust Capability:
TQout:=TQI RV OGR Af Eff TQout THcap:=-Sf=SMB-00S-15 TQm:=14.18 OGR:=23 Af:=0.9 Eff.s=0.45 RV:=0.8848 TQout=103.407 Sf':=0.017861'IHcap 5.79 10 ft-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Thrust Margin:=THoap-'(pmmt KEI)e Thrust Margin-3.081~10 lbs
 
== Conclusion:==
 
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PCSL107A.MCD Valve ID: 2CSL'MOV107 page 4
 
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date 6/itlF7 NMP 2 Calculation Cont.Sheet Checker/Date W v-i~7 Page/Q/I'3 7 A10.1-AtM03, Rev.01 Valve IDno: 2ICS MOV121 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPlJTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>..=1200 Valve Bonnet pressure (psig), P bonnet 1200 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=3.063 hub length, L:=0.188 mean seat radius, a.'=4.45 average disk thickness, t:=1.012 a rt seat angle, u.=10 6:=--0 0.087 2 180 Valve Disk Material Properties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
e ishalfdiskangle a Valve Stem Diameter, D<.=2.5 Valve Factor VF:=0.6 Static Unseating Thrust, F>>.=27694 (raference:
Test&#xb9;7, 1/9/96)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offnctionbetweendiskandseat,lt:=~ge)-sin(e)It=0.631(reference
Coefficient of fnction between disk and seat, lt:=~ge)-sin(e)It=0.631 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStitfnesConstants, up~downavg'onnet2glvesrDPavg600D:=andG:=EtE12(i-')2(1+v)whichgives,D=2.7910andG=1.131~10GeometryFactors, C2'.=-I--I+21n-C3.'=--+IIn-+--IIba.bbab4ab4aabaIbC8.'=-I+v+(I-v)-2a2bI+vaI-vbC9.---In-+-I-a2b4awhichgives,C20.043C80.816C3=0.004C9=0.23COMEDPLEvaluation PICS121A.MCD ValveID:2ICSMOV121page1 n
&#xb9;6)Average DP Across Disk, Disk Stitfnes Constants, up~down avg'onnet 2 glvesr DP avg 600 D:=and G:=Et E 12(i-')2 (1+v)which gives, D=2.79 10 and G=1.131~10 GeometryFactors, C2'.=-I--I+2 1n-C3.'=--+I In-+--I I b a.b b a b 4 a b 4a a b a I b C8.'=-I+v+(I-v)-2 a 2 b I+v a I-v b C 9.---In-+-I-a 2 b 4 a which gives, C 2 0.043 C 8 0.816 C 3=0.004 C 9=0.23 COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS MOV121 page 1 n
NiagaraMohawkPowerCorgoration NuclearEngin<<ring Originator/Date Wa~4.C~~~/rPl~NMP2Catcutation Cont.Sh<<tChecker/Date czf85>-ir7Pager+o//P7 A10.1-AD403, Rev.01Add/t/onal Geometry'actors, rp=bI64242fpfpfpI+4--5--4aaa2rpa2+-ln-arp42II-v0fpaL17.=-I--I----I+(I+v)In-44aarpwhichgives,MomentFactors,LII~3.39810andL17=0.04Mrb.'=-2DPavgaC89a-rp-L172abDPavgQb.'=(a-roj2bwhichgives,Mrb-698.979andQb1.021'10Deflection frompressurelbend/ng, 4aaavgayb.'=M*-C2+Qb-C3-LIIDDDwhichgives,yb-1.07810qDeflection fmmpressure/sheer, 2arprpKsa.'=-0.32In--I+-~I-2In-bab2sa'vgaysqwhichgives,Ksa~%.066endy~=W.877'10 Deflecflon frompressure/hubstretch,force'=tt(a-b)DPavgPfofoo'Lystretch-ttb2Ewhichgives,Pf1.964-10endy~t,>-2.131~10COMEDPLEvaluation PICS121A.MCD ValveID:2ICS'MOV121 page2 f
Niagara Mohawk Power Corgoration Nuclear Engin<<ring Originator/Date Wa~4.C~~~/rPl~NMP 2 Catcutation Cont.Sh<<t Checker/Date czf85>-i r7 Pager+o//P7 A10.1-AD403, Rev.01 Add/t/onal Geometry'actors, rp=b I 64 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-ln-a rp 4 2 I I-v 0 fp a L17.=-I--I----I+(I+v)In-4 4 a a rp which gives, Moment Factors, L I I~3.398 10 and L17=0.04 M rb.'=-2 DP avg a C8 9 a-rp-L17 2ab DP avg Qb.'=(a-ro j 2b which gives, M rb-698.979 and Q b 1.021'10 Deflection from pressurelbend/ng, 4 a a avg a yb.'=M*-C2+Qb-C3-LII D D D which gives, yb-1.078 10 q Deflection fmm pressure/sheer, 2 a rp rp K sa.'=-0.3 2 In--I+-~I-2 In-b a b 2 sa'vg a ysq which gives, K sa~%.066 end y~=W.877'10 Deflecflon from pressure/hub stretch, force'=tt (a-b)DP avg P fofoo'L ystretch-ttb 2E which gives, P f 1.964-10 end y~t,>-2.131~10 COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS'MOV121 page 2 f
NiagaraMohawkPowerCorPoratlon NuclearEngineertng originator/Date Qc~r~rg.Q~pNMP2Calculation Cont.SheetChecker/Date
Niagara Mohawk Power CorPoratlon Nuclear Engineertng originator/Date Qc~r~rg.Q~p NMP 2 Calculation Cont.Sheet Checker/Date
~~-i-e7PageAaf/3PA10.1-AD403, Rev.01TotalDeflection duetopressure, yq'bq+-"sq+ystretchAdditional GeometryFactorswhichgives,ro,'=ay=-1.78710qroL3.'=-.4a22roaro+1ln-+--1aroaroL9--.aIII2lyva1-vro-ln-+-1-2ro4awhichgives,L30andL90Deflection fromseatload/bending, w:=1a3.wC2ro.C9roC3'bw'9--+L3whichg/ves,DC8bbybw~-3.6710Deflection fromseatload/shear, roroKsa:=-1.2-ln-abayswi=Ksa-tGwhichgives,Ksa-0.448y~~-1.743'10 Deflection fromseatload/hubcompression,
~~-i-e7 Page Aaf/3P A1 0.1-AD403, Rev.01 Total Deflection due to pressure, y q'bq+-" sq+y stretch Additional Geometry Factors which gives, ro,'=a y=-1.787 10 q ro L3.'=-.4a 2 2 ro a ro+1 ln-+--1 a ro a ro L9--.a III 2 lyv a 1-v ro-ln-+-1-2 ro 4 a which gives, L3 0 and L9 0 Deflection from seat load/bending, w:=1 a3.w C 2 ro.C 9 roC3'bw'9--+L3 which g/ves, D C8 b b ybw~-3.67 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b a y sw i=Ksa-tG which gives, Ksa-0.448 y~~-1.743'10 Deflection from seat load/hub compression,-2 tta y compr'=ttb L 2 which gives, y=-3.033 10 Total Deflection from unit seat load, yw:=ybw+ysw+
-2ttaycompr'=ttbL2whichgives,y=-3.03310TotalDeflection fromunitseatload,yw:=ybw+ysw+
ycompr which gives, y-5.443 10 which gives, weq~brium 328415 Equilibrium contact load distribution, yq equilibrium
ycomprwhichgives,y-5.44310whichgives,weq~brium 328415Equilibrium contactloaddistribution, yqequilibrium
'w Load per seat=2 tt a-9.183 1(P yq yw Pressure Locking Force, COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS'MOV121 page 3
'wLoadperseat=2tta-9.1831(PyqywPressureLockingForce,COMEDPLEvaluation PICS121A.MCD ValveID:2ICS'MOV121 page3


NiagaraMohawkPovtterCorporation NuctearEngineering Originator/Date
Niagara Mohawk Povtter Corporation N uctear Engineering Originator/Date
@capri@A~C.~/tr/Z5ly7NMP2Catculation Cont.SheetChecker/Date IO.WPPager7of/P7A10.1-AD403.
@capri@A~C.~/tr/Z5ly7 NMP 2 Catculation Cont.Sheet Checker/Date IO.W P Pager 7of/P7 A10.1-AD403.
Rev.01YqFp~lock'tt'a
Rev.01 Yq Fp~lock'tt'a-(Itcos(8)-
-(Itcos(8)-
sin(0))2 whichgives, Fpr s lock 9938 10~'w Piston EN'ect Force, P au:=0 piston street'stem'(bonnet, stm)F 1st"Reverse Piston Effect" Force, F crt.=rt a 2pbonnct up down Total Force Re uired to Overcome Pressure Lockin wh/ch g/ves F ycrt 6 506 I 0 F<<taI:=F pres lock+F po+F ycrt-F piston affec which gives,.F<<~=3.824814 10 ACTUATOR CAPABILITY:
sin(0))2whichgives, Fprslock993810~'wPistonEN'ectForce,Pau:=0pistonstreet'stem'(bonnet,stm)F1st"ReversePistonEffect"Force,Fcrt.=rta2pbonnctupdownTotalForceReuiredtoOvercomePressureLockinwh/chg/vesFycrt6506I0F<<taI:=Fpreslock+Fpo+Fycrt-Fpistonaffecwhichgives,.F<<~=3.82481410ACTUATORCAPABILITY:
Actuator Model I Sizer Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
ActuatorModelISizerMotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
ReducedVoltage:TorqueOutput:StemFactor:ThrustCapability:
TQout THcap:=-SE TQout:=TQm RV OGR Af Eff=SB-2-60 TQm:=51.63 OGR:=101.52 Af:=0.9 EK:=0.35 RV:=0.8627 TQout~1.229'10 Sf:=0.029481 THcap~4.168 10 ft-Ibs ft-Ibs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
TQoutTHcap:=-SETQout:=TQmRVOGRAfEff=SB-2-60TQm:=51.63OGR:=101.52Af:=0.9EK:=0.35RV:=0.8627TQout~1.229'10Sf:=0.029481THcap~4.16810ft-Ibsft-IbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCIQNGMETHODOLOGY:
KEI:=1.20 Tbtnst Mssipn:=THeep-(F tomt KEI)Thrust Margin~-4.216 10 Ibs
KEI:=1.20TbtnstMssipn:=THeep-(FtomtKEI)ThrustMargin~-4.21610IbsConclusion:
Open,ThrustMarginisnegative, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PICS121A.MCD ValveID:2ICSMOV121page4


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date DurgaA~C49t)pljrrNMP2Calculation Cont.SheetChecker/Date Page/got/'37A10.1-AD403, Rev.01ValveIDno:2ICSMOV122Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS'esign BasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P>>.=160ValveBonnetpressure(psig),Pbonnet,.=160 Downstream pressure(psig),Pd.=0ValveDiskGeometry:
== Conclusion:==
eishalfdiskangle ahubradius,b:=4.94meanseatradius,a=5.75averagediskthickness, t:=0.789attseatangle,a:=7e:=--e=o.o612180ValveDiskMaterialProperties:
 
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3OtherValveParameters:
Open, Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
ValveStemDiameter, D~.=2ValveFactorVF:=0.5StaticUnseating ThrustFpo9730(reference:
COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS MOV121 page 4
Test&#xb9;30,10/27/93)
 
(reference:
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Durga A~C49 t)pljrr NMP 2 Calculation Cont.Sheet Checker/Date Page/got/'37 A10.1-AD403, Rev.01 Valve ID no: 2ICS MOV122 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=160 Valve Bonnet pressure (psig), P bonnet,.=160 Downstream pressure (psig), P d.=0 Valve Disk Geometry: e ishalfdiskangle a hub radius, b:=4.94 mean seat radius, a=5.75 average disk thickness, t:=0.789 a tt seat angle, a:=7 e:=--e=o.o61 2 180 Valve Disk Material Properties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
Valve Stem Diameter, D~.=2 Valve Factor VF:=0.5 Static Unseating Thrust F po 9730 (reference:
Test&#xb9;30, 10/27/93)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,it:=~ge)-'-~(e)lt=0.515(referece
Coefficient of friction between disk and seat, it:=~ge)-'-~(e)lt=0.515 (referece&#xb9;6)Average DP Across Disk, Disk Stiffnes Constants, up+down DP avg'bonnet 2 gives, DP avg, 80 3 Et and G.E 12 1-v 2 (1+v)which gives, D=1.322 10 and G=1.131~10 Geometry Factors, C 2.'=-1--1+2 ln-C 3'.=--+1 ln-+-.-1 1 b 2 C8.=-1++2 a C 9.---ln-+-1--which gives, C 2 0.009 C 8=0.908 C 3=4.316'10 C 9=0.124 COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS MOV122 page 1 0
&#xb9;6)AverageDPAcrossDisk,DiskStiffnesConstants, up+downDPavg'bonnet2gives,DPavg,803EtandG.E121-v2(1+v)whichgives,D=1.32210andG=1.131~10GeometryFactors,C2.'=-1--1+2ln-C3'.=--+1ln-+-.-11b2C8.=-1++2aC9.---ln-+-1--whichgives,C20.009C8=0.908C3=4.316'10 C9=0.124COMEDPLEvaluation PICS122A.MCD ValveID:2ICSMOV122page1 0
h Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date
hNiagaraMohawkPowerCorporation NuctearEngineering Originator/Date
+~~~Ai O~y 4/jpl+T NMP 2 Calculation Cont.Sheet Checker/Date 7-1+7 Page/f ol~T A10.1-AD403, RW.01 Additional Geometry Factors, rp.=b I 64 hh 2 4 2 0 0 0 I+4--5--4 a a a rp a 2 1--In-a rp I L17 4 4 2 I-U'0 a I--I----I+(I+Y)In-"4 a a rp which gives, Moment Factors, L I I=1.545 10 and L 17 0.009 Mrb'=-2 DP avg a C8 C9 a-rp-L17 2ab'(0)2b'hich gives, Mrb-28.505 and Q b=70.113 Deflection from pressurelbending, 4 a a avg yb'=Mrb-C2+Qb'C3-LII D D D h which gives, yb~3398'10 q Deflect/on from pressure l shear, 2 a rp rp K~:=-0.3 2'In--I+-~I-2 In-b a b 2 m'vg a tG" which gives, Ksa~%.013 and ysq 3 715 10 hh Deflection from pressure//hub stretch, orce'=tt (a-b)DP avg-P force.L y stretch ttb.2E which gives, P force 2 176 l(P andy stretch 6 034 10 COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS'MOV122 page 2
+~~~AiO~y4/jpl+TNMP2Calculation Cont.SheetChecker/Date 7-1+7Page/fol~TA10.1-AD403, RW.01Additional GeometryFactors,rp.=bI64hh242000I+4--5--4aaarpa21--In-arpIL17442I-U'0aI--I----I+(I+Y)In-"4aarpwhichgives,MomentFactors,LII=1.54510andL170.009Mrb'=-2DPavgaC8C9a-rp-L172ab'(0)2b'hichgives,Mrb-28.505andQb=70.113Deflection frompressurelbending, 4aaavgyb'=Mrb-C2+Qb'C3-LIIDDDhwhichgives,yb~3398'10qDeflect/on frompressurelshear,2arprpK~:=-0.32'In--I+-~I-2In-bab2m'vgatG"whichgives,Ksa~%.013andysq371510hhDeflection frompressure//hub stretch,orce'=tt(a-b)DPavg-Pforce.Lystretchttb.2Ewhichgives,Pforce2176l(Pandystretch603410COMEDPLEvaluation PICS122A.MCD ValveID:2ICS'MOV122 page2


NiagaraMohawkPowerCorporation NuotearEngineering Originatorloate
Niagara Mohawk Power Corporation Nuotear Engineering Originatorloate
'Daor~poJPr~Mi</r5~f7NMP2CatoLrlation Cont.SheetChN'kar/Ost IggpPage~i>~A10.1-AD403, Rw.01TotalDeflection duetopressure, yq'bq+ysq+ystretchwhichgives,y=-7.17410Addilional GeometryFactorsro.'=aroL3.=-.4a22roaro+Iln-+--IaroaroL9.'=-a2I+vaI-vro-In-+-I--2ro4awhichgives,L3=0andL9=0PDeflection fromseatload/bending, w'-]C2rpC9foC3ybw'~L9--+L3DC8bbwhichgives,ybw=-1.43~oDeflection fromseatload/shear, Ksa:=-1.2
'Dao r~po JP r~M i</r 5~f 7 NMP 2 CatoLrlation Cont.Sheet ChN'kar/Ost Iggp Page~i>~A10.1-AD403, Rw.01 Total Deflection due to pressure, y q'bq+y sq+y stretch which gives, y=-7.174 10 Addilional Geometry Factors ro.'=a ro L3.=-.4a 2 2 ro a ro+I ln-+--I a ro a ro L9.'=-a 2 I+v a I-v ro-In-+-I--2 ro 4 a which gives, L3=0 and L9=0 P Deflection from seat load/bending, w'-]C2 rpC9 foC3 ybw'~L9--+L3 D C8 b b which gives, y bw=-1.43~o Deflection from seat load/shear, Ksa:=-1.2-ln-a b y:=Ksa-which gives, Ksa.182 tG y~-1.174'10 Deflection from seat load/hub compression,-2'1t a y compr ttb L 2 which gives, y~mpr=-I 002'10 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, yw 2621 10 which gives, Equilibrium contact load distribution, yq w equilibrium
-ln-aby:=Ksa-whichgives,Ksa.182tGy~-1.174'10 Deflection fromseatload/hubcompression,
'Load per seat=2 tt a-988.835 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS'MOV122 page 3
-2'1taycomprttbL2whichgives,y~mpr=-I002'10TotalDeflection fromunitseatload,yw:=ybw+yswaycomprwhichgives,yw262110whichgives,Equilibrium contactloaddistribution, yqwequilibrium
'Loadperseat=2tta-988.835yqywequilibrium PressureLockingForce,COMEDPLEvaluation PICS122A.MCD ValveID:2ICS'MOV122 page3


NiagaraMohawkPowerCorPoration NuctearEngineering Originator/Date WCms>c/A~~/g//25'lf 7NMP2Catculation Cont.SheetChecker/Date Pagegloti>7A10.1-AO403.
Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date WC ms>c/A~~/g//25'lf 7 NMP 2 Catculation Cont.Sheet Checker/Date Pagegl ot i>7 A10.1-AO403.
Rev.01VqFpresIock2+a(pcos(e)-sin(e))2whichgives,Fpreslock=895.433Yw1'istonEffectForce,Pau:=02Fpistcnstreet'Dstem'(Phcnnet-Penn}whichgive,pistcnefreet=502655"ReversePistonEffect"Force,Fvert.'=na2Pbonnetupdown-sin(e)whichgives.TotalForceReuiredtoOvercomePressureLockinF~1.015'10Ftotal:=Fpreslock+Fpo+Fvert-Fpistoneffectwhichgives,F><=1.113735 10TQoutTHcap:=-SfACTUATORCAPA8ILITYt ActuatorModel/Size:
Rev.01 Vq F pres Iock 2+a (p cos(e)-sin(e))2 which gives, F pres lock=895.433 Yw 1'iston Effect Force, P au:=0 2 F pistcn street'D stem'(P hcnnet-Penn}which give, pistcn efreet=502655"Reverse Piston Effect" Force, F vert.'=n a 2 P bonnet up down-sin(e)which gives.Total Force Re uired to Overcome Pressure Lockin F~1.015'10 F total:=F pres lock+Fpo+F vert-F piston effect which gives, F><=1.113735 10 TQout THcap:=-Sf ACTUATOR CAPA8ILITYt Actuator Model/Size:
MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
ReducedVoltage:TorqueOutput:TQout:=TQmRVOGRAfEffStemFactor:ThrustCapability:
Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor: Thrust Capability:
=SMB-0-25TQm:=25.0OGR:=43.69Af:=0.9Eff:=0.4RV:=0.806 TQout=316.927Sf:=0.019627THcapIs61510ft-lbsft-IbsIbsENHANCEDPRESSURELOCNNGMETHODOLOGY:
=SMB-0-25 TQm:=25.0 OGR:=43.69 Af:=0.9 Eff:=0.4 RV:=0.806 TQout=316.927 Sf:=0.019627 THcap Is615 10 ft-lbs ft-Ibs Ibs ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 ThrustMtutpn:=THcsp-(FmmiKHI}ThrustMargin~2.783~10IbsConclusion:
KEI:=1.20 Thrust Mtutpn:=THcsp-(Fmmi KHI}Thrust Margin~2.783~10 Ibs
OpenThrustMarginispositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PICS122A.MCD ValvelD:2lCSMOV122page4


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date
== Conclusion:==
~,~,A'.~c./,];ZPP NMP2Calculation Cont.SheetChecker/Date
 
+"r-i+7PagegZof/3
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PICS122A.MCD Valve lD: 2lCS MOV122 page 4
 
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
~,~, A'.~c./,];ZPP NMP 2 Calculation Cont.Sheet Checker/Date
+"r-i+7 PagegZof/3
~Ato.t-AD403.
~Ato.t-AD403.
Rev.01ValveIDno:2ICSMOV128Reuired0eninForceDefernminafion underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),
Rev.01 Valve ID no: 2ICS MOV128 Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure(psig), Pp.=1200 Valve Bonnet pressure(psig),Pbonnet
Pp.=1200 ValveBonnetpressure(psig),Pbonnet
'=1200 Downstream pressure (psig), P do.=0 Valve Disk Geometry: hub radius, b:=3.063 hub length, L:=0.188 r mean seatradius, a:=4.45 average disk thickness, t:=1.012 a ft seat angle, a:=10 0:=--8 0.087 2 180 Valve Disk Material Properties:
'=1200Downstream pressure(psig),Pdo.=0ValveDiskGeometry:
modulus of elasticity, E:=29400000 Other Valve Parameters:
hubradius,b:=3.063hublength,L:=0.188rmeanseatradius, a:=4.45averagediskthickness, t:=1.012aftseatangle,a:=100:=--80.0872180ValveDiskMaterialProperties:
Poisson's Ratio, v:=0.3 8 ishalfdiskangle u Valve Stem Diameter, D~.=2.5 Valve Factor VF:=0.6 Static Unseating Thrust, F po 17995 (reference:
modulusofelasticity, E:=29400000 OtherValveParameters:
Test&#xb9;10, 5f4N5)(reference:
Poisson's Ratio,v:=0.38ishalfdiskangle uValveStemDiameter, D~.=2.5ValveFactorVF:=0.6StaticUnseating Thrust,Fpo17995(reference:
Test&#xb9;10,5f4N5)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offnct/onbetweendiskandseat,It:=cue)-sin(6)It=0.631(reference
Coefficient of fnct/on between disk and seat, It:=cue)-sin(6)It=0.631 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSfiffnesConstants, up+downDPavg.'=Pbonnet2gives,DPavg600D:=andG:=EtEl2(1-')2(1+v)whichgives,D=2.7910andG=1.131~10Iba.bbabGeometryFactors,C2'.=-I--I+2In-C3'.=--+IIn-+--I4ab4a,abaIbC8:=-I++2bI+vaI-vb2C9'=--In-+-I-a2b4awhichgives,C20.043C808'6C3~0.004C9~0.23COMEDPLEvaluation PICS128A.MCD ValveID:2ICSMOV128page1
&#xb9;6)Average DP Across Disk, Disk Sfiffnes Constants, up+down DP avg.'=P bonnet 2 gives, DP avg 600 D:=and G:=Et El2(1-')2 (1+v)which gives, D=2.79 10 and G=1.131~10 I b a.b b a b Geometry Factors, C2'.=-I--I+2 In-C3'.=--+I In-+--I 4 a b 4a, a b a I b C8:=-I++2 b I+v a I-v b 2 C 9'=--In-+-I-a 2 b 4 a which gives, C 2 0.043 C8 08'6 C 3~0.004 C 9~0.23 COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS MOV128 page 1
 
Niagara Mohawk Power Corporation Nuclear Engineering Origina!or/Date 2 c/is Jap NMP 2 Calculation Cont.Sheet Checkor/Da!
e p-j-f7 Page Zgofi S 7'10.1-AD403, Rev.01 Addit/onal Geomet/y Factors, rp'.=b 2 4 2 2 fp fp fp fp L 11'=-I+4--5--4.-~2+-ln-64 a a a a rp I L17.'=-4 4 2 I-Y 0 0 a I--I----I+(I+Y)ln-4 a a rp which gives, L I I=3.398 10 and Moment Factors, L17~0.04~Mrb'DPavga C9 (2'pj 1(C8 2ab~b:=.'"'(*-0*)2b which gives, M rb-<98.979 and Q b I 021 Ip k Deflection from pressure(bending, a a avg a 3 4 yb'=M*-C2+Qb'C3-LII o o o which gives, yb=-1.078-10 q Deflection from pressure I shear, 2 a rp r'p K~:=-0.3 21n--I+-~I-21n-b a b 2 K m'DP avg a t.G which gives, K sa%.066 and III y~%.877 10 sq Deflection from pressure l hub stretch, P fpfee't (a b)DP avg P fpfce'L y stretch'=ttb 2E which gives, P fp~=1.964 10 and y~h=-2.131 10 COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS'MOV128 page 2
 
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date uo~r~~<-d~p c/~Vpp NMP 2 Calculation Cont.Sheet Checker/Date A10,1.AD403, Rev.01 Total Deflection due to pressure, yq: ybq~ysq+y~~h which gives, y=-1.787 10 Additional Geometry Factors ro.'=a ro L3,--4a 2 2 ro a ro+I In-+--I a ro a ro L9-'=-a 21 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3=0 and'L9 0 Deflection from seat load/bending, w:=I a3.w C2 ro C9 ro.c3 ybw'9--+L3 D C8 bb which gives, y bw=-3.67 10 Deflection from seat load!shear, ro ro Ksa:=-1.2-In-a b y~.'=Ksa-which gives, Ksa W.448 tG y~~-,1.743 10 Deflection from seat load/hub compression,-2'tt'a y compr'tb L 2 which gives, y compr 3'033 10 Total Deflection from unit seat load, y w:=y bw+y~+y compr which gives, y w=-5.443 10 which givest w cqtulibzum 328.415 Equilibrium contact load distnbut/on, yq w equiIibrium yw Load per seat=2 tt a-=9.183~10 yq yw Pressure Locking Force, COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS'MOV128 page 3 It Niagara Mohawk Power CorPoration Nuctear Engineenng Originator/Date Z c Xs~~v A.~/P'/t,r Zzlpp NMP 2 Catculation Cont.Sheet Checker/Date
~re tr'I" Pagano//97 A10.1.AD403, Rev.01 Yq 3 F pres lock 2 tt a-(p cos(1)-sin(e))2 which gives, F pres lock=9.938'0 Vw Piston Effect Force, Pau'.=0 tt Fpinon Wmt''Dm'(Phoner Penn)r which g/ves, F piston effec"Reverse Piston Effect" Force, Frets.=[as (2Phonnet up-Pttoten)]sin(S)
Total Force Re uired to Overcome Pressure Lockin which gives, F v~6 506 10 F total l=F pres lock+F po+F vert-F piston which gives, F>~2.854914.10 ACTUATOR CAPABILITY:
Actuator Mode!I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor: Thrust Capability:
THcap:=-TQout Sf=SB-2-60 TQm.'=58.37 OGR:=72.01 Af:=0.9 Eff:=0.4 RV:=0.8703 TQout=1.146 10 Sf:=0.029481 THcap~3.888 10 ft-1bs ft-1bs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURELOCIQNG METHODOLOGY:
KEI:=1.20 Thrust Mtntpn:=THoap-(F n,uu KE!)Thrust Margin 4.617'10 1bs


NiagaraMohawkPowerCorporation NuclearEngineering Origina!or/Date2c/isJapNMP2Calculation Cont.SheetCheckor/Da!
== Conclusion:==
ep-j-f7PageZgofiS7'10.1-AD403, Rev.01Addit/onal Geomet/yFactors,rp'.=b2422fpfpfpfpL11'=-I+4--5--4.-~2+-ln-64aaaarpIL17.'=-442I-Y00aI--I----I+(I+Y)ln-4aarpwhichgives,LII=3.39810andMomentFactors,L17~0.04~Mrb'DPavgaC9(2'pj1(C82ab~b:=.'"'(*-0*)2bwhichgives,Mrb-<98.979andQbI021IpkDeflection frompressure(bending, aaavga34yb'=M*-C2+Qb'C3-LIIooowhichgives,yb=-1.078-10 qDeflection frompressureIshear,2arpr'pK~:=-0.321n--I+-~I-21n-bab2Km'DPavgat.Gwhichgives,Ksa%.066andIIIy~%.87710sqDeflection frompressurelhubstretch,Pfpfee't(ab)DPavgPfpfce'Lystretch'=ttb2Ewhichgives,Pfp~=1.96410andy~h=-2.13110COMEDPLEvaluation PICS128A.MCD ValveID:2ICS'MOV128 page2


NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date uo~r~~<-d~pc/~VppNMP2Calculation Cont.SheetChecker/Date A10,1.AD403, Rev.01TotalDeflection duetopressure, yq:ybq~ysq+y~~h whichgives,y=-1.78710Additional GeometryFactorsro.'=aroL3,--4a22roaro+IIn-+--IaroaroL9-'=-a21I+vaI-vro-In-+-I-2ro4awhichgives,L3=0and'L90Deflection fromseatload/bending, w:=Ia3.wC2roC9ro.c3ybw'9--+L3DC8bbwhichgives,ybw=-3.6710Deflection fromseatload!shear, roroKsa:=-1.2-In-aby~.'=Ksa-whichgives,KsaW.448tGy~~-,1.74310Deflection fromseatload/hubcompression,
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
-2'tt'aycompr'tbL2whichgives,ycompr3'03310TotalDeflection fromunitseatload,yw:=ybw+y~+ycomprwhichgives,yw=-5.44310whichgivestwcqtulibzum 328.415Equilibrium contactloaddistnbut/on, yqwequiIibrium ywLoadperseat=2tta-=9.183~10yqywPressureLockingForce,COMEDPLEvaluation PICS128A.MCD ValveID:2ICS'MOV128 page3 It NiagaraMohawkPowerCorPoration NuctearEngineenng Originator/Date ZcXs~~vA.~/P'/t,rZzlppNMP2Catculation Cont.SheetChecker/Date
COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS MOV128 page 4
~retr'I"Pagano//97A10.1.AD403, Rev.01Yq3Fpreslock2tta-(pcos(1)-sin(e))2whichgives,Fpreslock=9.938'0VwPistonEffectForce,Pau'.=0ttFpinonWmt''Dm'(PhonerPenn)rwhichg/ves,Fpistoneffec"ReversePistonEffect"Force,Frets.=[as (2Phonnet up-Pttoten)]sin(S)
TotalForceReuiredtoOvercomePressureLockinwhichgives,Fv~650610Ftotall=Fpreslock+Fpo+Fvert-Fpistonwhichgives,F>~2.854914.10 ACTUATORCAPABILITY:
ActuatorMode!ISize:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutput:TQout:=TQmRVOGRAfEffStemFactor:ThrustCapability:
THcap:=-TQoutSf=SB-2-60TQm.'=58.37OGR:=72.01Af:=0.9Eff:=0.4RV:=0.8703TQout=1.14610Sf:=0.029481THcap~3.88810ft-1bsft-1bs1bsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCIQNG METHODOLOGY:
KEI:=1.20 ThrustMtntpn:=THoap-(Fn,uuKE!)ThrustMargin4.617'101bsConclusion:
OpenThrustMarginispositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PICS128A.MCD ValveID:2ICSMOV128page4


NiagaraMohawkPowerCorgoration NuoiearEngineering NMP2Calculation Cont.Sheetcheekerioste~
Niagara Mohawk Power Corgoration Nuoiear Engineering NMP 2 Calculation Cont.Sheet cheekerioste~
r/</r7Pageant/'0 7A10.1-AD403, Rev.01ValveIDno:2ICS'MOV129 Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPIJTS:ValveDiskGeometry:
r/</r7 Pageant/'0 7 A10.1-AD403, Rev.01 Valve ID no: 2ICS'MOV129 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Valve Disk Geometry: hub radius, b:=2.25 mean seat radius, a:=3 average disk thickness, t:=0.378 e:=-'" e=o.o61 2 180 e ishalfdiskangle a hub length, L:=0.125 seat angle, u:=7 Valve Disk Material Properties:
hubradius,b:=2.25meanseatradius,a:=3averagediskthickness, t:=0.378e:=-'"e=o.o612180eishalfdiskangle ahublength,L:=0.125seatangle,u:=7ValveDiskMaterialProperties:
modulus of elasticitY, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=76 Valve Bonnet pressure (psig), P bonn<<=2799 Downstream pressure (psig), P do~0 Other Valve Parameters:
modulusofelasticitY, E:=29400000 Poisson's Ratio,v:=0.3DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.=76ValveBonnetpressure(psig),Pbonn<<=2799Downstream pressure(psig),Pdo~0OtherValveParameters:
Valve Stem Diameter, D<~.=1.5 Valve Factor VF:=0.65 Static Unseating Thrust, F~.=5924 (reference:
ValveStemDiameter, D<~.=1.5ValveFactorVF:=0.65StaticUnseating Thrust,F~.=5924(reference:
Test&#xb9;12, 6/QM3)(reference:
Test&#xb9;12,6/QM3)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,It.,=cue)-sin(e)It0.676(reference
Coefficient of friction between disk and seat, It.,=cue)-sin(e)It 0.676 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStlffnesConstants, avg'onnetPup+Pdo~gives;DPav<=2.761~102D:=andG:=EtEu(1-.*j2(1+v)whichgives,D=1.45410andG=1.131~101ba,bbabGeometryFactors, C2.'=-I--I+2.1n-C3'.=--+1ln-+--I4ab4aaba1b2C8.=-1+v+(1-v)-2abI+va1-vb2C9.---ln-+-1--a2b4awhichgives,C20.028C8~0.847C3~0.002C9~0.198COMEDPLEvaluation PICS129A.MCD ValveID:2ICS'MOV129 page1
&#xb9;6)Average DP Across Disk, Disk Stlffnes Constants, avg'onnet Pup+Pdo~gives;DP av<=2.761~10 2 D:=and G:=Et E u (1-.*j 2 (1+v)which gives, D=1.454 10 and G=1.131~10 1 b a, b b a b GeometryFactors, C2.'=-I--I+2.1n-C3'.=--+1 ln-+--I 4 a b 4a a b a 1 b 2 C8.=-1+v+(1-v)-2 a b I+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.028 C 8~0.847 C 3~0.002 C 9~0.198 COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS'MOV129 page 1
 
Niagara Mohawk Power CorPoration Nuctear Engineering Onginator/Date Wc,~~a, A'.Quar S c./ip~NMP 2 Catcutation Cont Sheet Checker/Date PageMot tp T A10.1-AD403, Rw.01 Additional Geomet/y Factors, rp.'=b I 11 64 2 4 2 2 rp rp fp fp I+4--5--4-~2+-ln-a a a a rp I L 17'.=-.4 4 2 I-v rO rO a I--I----I+(I+v)In-4 a a rp which gives, Moment Factors, L I I=1.453 10 and L 17=0.027 Mg:=-2 DP avg a cs C9-(-0 j-"I7 2ab.,~b:=-'"'('-0')2b which gives, Mrb=%03.057 and Qb~2.416 10 Detiection from pressureIbend/ng, a a avg.a 3 4 yb'.=Mrb-C2+Qb-C3-LII o o o which gives, yb--8.049 10 q Deflection from pressure I shear, 2 a'o'o K:=-0.3 2 In--I+-I-21n-sa'a b 2 sa'vg a tG which gives, Ksa 041'nd y~-2.404 10 sq Deflection from pressure/hub stretch, P fore'0 Tt (a b)DP avg-P force L y stretch'=ttb 2E which gives, P force 3 415 10 and y stretch-4.565 10 COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 2
 
Niagara Mohawk Power CorPoration Nuotear Engineering Ortginatorioate Woe~-.4.Cavy c/~/pp NMP 2 Calcutatton Cont.Sheet checker/Dmto~
p/j/r p Page gd oflVV'10.1-ADOOS, Rev.01 Total Deflection due to pressure, Addilional Geometry'actors yq'=ybq+ysq+yst tch which gives y q=~001 ro.'=a ro L3=-4a 2 2 ro a ro+1 1n-+--1 a r a ro L9.'--.a r 1+v a 1-v o-ln-+-1-2 ro 4 a which gives, L3=0 and L9=0 Deflechon fram seat load/bending, w:=I IP as.w C2 ro C9 roC3 yb'.=-----L9--+L3 D C8 b b which gives, y bw=-1.088 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b a y~'.=Ksa-tG which gives, Ksa<.345 y sw~-2.423 10 Deflection from seat load/hub compression,-2 rta y compr'=rtb L 2 which gives, y compr=-252'10 7otal Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, yw 1332 10 Equilibrium contact load distribution, cqttitibrtttm which gives, yq w Load per seat=2 rt a-=1.485 10 yq yw w cqtttTtbrtttm 787.968 Pressure Locking Force, COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 3 lg Fy Niagara Mohavttk Povtrer Corporation Nuclear Engineering Originatorloate
'Qp~r y>><.Cecq/gQ j/F7 NMP 2 Calculation Cont.Sheet Checker/Date ,g HII Page2 lot I 7 7 A10.1.AD403, Rev.01 Vq F p 1 o c k 2 1 t a (p co s (0)s in (8))2 w hi c h gi v e s, F p, 1 o c 1'w Piston Effect Force, P au:=0 1t 2 I"piston street''tem'i bonnet atm)piston effect"Reverse Piston Effect" Force, F vett tt a 2 P bonnet P up P tlown stn()which gives F vert 9 532 1 0 Total Force Re ulred to Overcome Pressure Lockln F total: F pres 1ock+F po t F>crt F pisto which gives, F<<~=2.872746 10 ACTUATOR CAPABILITY:
Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout THcap'.=-, Sf TQout:=TQm RV OGR.Af Eff ft-lbs ft-Ibs=SMB-00-10 TQm:=10.0 OGR:=36.2 Af:=0.9 Eff:=0.4 RV:=0.8252 TQout 107.54 Sf:=0.015334 THcap=7.013 10'bs ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Tbrnst Margin:=THoap-(F>>mt KEI)Thrust Margin~-2.746 10 1bs
 
== Conclusion:==
 
Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 4 0
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
~/i~/vr NMP 2 Calculation Cont.Sheet Checker/Date Page QO//P 7 A10.1 AD403.Rev.01 Valve ID no: 2RHS MOV115 Re uiredO enin ForceDeternminafionunderPressureiockin Condifions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=5.75 hub length, L:=0.25 mean seat radius, a:=7.703 average disk thickness, t;=1.644 seat angle, a'=10 0:=-'" 0-0.087 2 180 0 ishalfdiskangle a Valve Disk Material Properties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other VaNe Parameters:
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P.=85 Valve Bonnet pressure (psig), P bonnet'=7105 Downstream pressure (psig), P do~0 It 0.521 (reference
&#xb9;6)Valve Stem Diameter, D~.=2.375'tatic Unseating Thrust, F po 12604 (reference:
Test&#xb9;4, 6/24/93)Valve Factor VF:=0.5 (reference:
NER-2M-010) 1 CAL C ULA TIONS: Coefficient of fnction between disk and seat, It:=~<0)-sin(0)Average DP Across Disk, Disk St/ffnes Constants, gives, DP ag=7.063 10 and G:=2 (1+v)P~+Pdo~avg'onnet 2 Et 3 12 I-v which gives, D=1.196 10 and G 1.131~10 I b a".b b a b Geometry Factors, C 2'.=-I--~I+2 In-C 3',=--+I In-+--I 4 a b 4a a b a I b 2 C8-'+v+(I-v)-2 a 2 C9.---In-+-I-which gives, C 2~0.029 C 8~0.845 C 3~0.002 C9=02 COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS MOV115 page 1 0
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Wc~i~~W.imp c.gp/pp NMP 2 Calculation Cont.Sheet Chaclterllhte
~Q g/~e Pagea/of/'3T A10.1-AD403, Rev.01 Additional Geometry Factors, rp"=b 2 4 2 I 0 0 0 L II'=-1+4--5--4 64 a a a 2 rp a 2+-ln-a rp I L17 4 4 I-v 0 I--I--4 a 2 rp a I+(I+v)In-a rp which gives, L I I=1.535 10 and Moment Factors, 2 DPavga C9/Mrb'.=-~-~a-rp,i-L17 C8 2ab L17~0.028'(Oi 2b which gives, Mrb=-1.57 10 and Q b 1.614 10 Deflection from pressureibending, 4 a a"avg'b'rb'C2+Qb'C3
'Lll D.D D which gives, yb=W.OOI q Detiecfion from pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-~1-21n-b-'b 2 stt'vg a t.G which gives, K aa=%.043 and y~=%.605'O Defie&#xc3;on from pressure lhub stretch, Pforca't (a b)DPavg-P forciL ystretch-ttb 2E which gives, P f0~5.829 10 and y~t h-2.386 10 CQMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 2


NiagaraMohawkPowerCorPoration NuctearEngineering Onginator/Date Wc,~~a,A'.QuarSc./ip~NMP2Catcutation ContSheetChecker/Date PageMottpTA10.1-AD403, Rw.01Additional Geomet/yFactors,rp.'=bI11642422rprpfpfpI+4--5--4-~2+-ln-aaaarpIL17'.=-.442I-vrOrOaI--I----I+(I+v)In-4aarpwhichgives,MomentFactors,LII=1.45310andL17=0.027Mg:=-2DPavgacsC9-(-0j-"I72ab.,~b:=-'"'('-0')2bwhichgives,Mrb=%03.057andQb~2.41610Detiection frompressureIbend/ng, aaavg.a34yb'.=Mrb-C2+Qb-C3-LIIooowhichgives,yb--8.04910qDeflection frompressureIshear,2a'o'oK:=-0.32In--I+-I-21n-sa'ab2sa'vgatGwhichgives,Ksa041'ndy~-2.40410sqDeflection frompressure/hubstretch,Pfore'0Tt(ab)DPavg-PforceLystretch'=ttb2Ewhichgives,Pforce341510andystretch-4.56510COMEDPLEvaluation PICS129A.MCD ValveID:2ICSMOV129page2
Niagara Mohawk Power Corporation Nuotear Engineering Originatorloate Vo~rvp e 4.Qm a c/(s lp 7 NMP 2 Calculation Cont.Sheet Checker/DIt
~~p/1)gg Page32of r&7 A10.1-AtM03, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq: ybq+ysq+y~~h which gives,, y q=%.002 r"=a ro L3--4a 2 2 ro a ro+I In-+--I a r a rp L9.=-a 2 I+v a I-v ro-~In-+-I-2 rp 4 a which gives, L3=0 and L9=0 Detlection from seat load/bending, w:=I C2 rpC9 fpC3 ybw'9--+L3 which gives, D C8 b b ybw=-2.338 10 Deflection from seat load/shear, Ksa:=-1.2-In-a b a y sw'=~'G which gives, Ksa-0.351 y'w-1.454'10 Deflection from seat load/hub compression,-2'tt'a y compr'tb L 2 which gives, y~r=-1.981~10 Total Deflection from unit seat load, y w:=y bw+y sw+y eompr which gives, y w 3'811 10 Equilibrium contact load distnbution, yq w equiiibritm:=
-which gives, yw Load per seat~2 tt a-=2.712 10 yq yw w equilibrium 5'6N IP Pressure Locking Force, COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 3 0
Niagara Mohawk Power Corporation Nuoiear Engineering Originatot/Date z~~g~g;A.4~8/zHs7 NMP2 Calculation Cont.Sheet Checker/Date Page&of/3'7 A10.1-AD403, Rev.01 Yq pres lock'=2 11 a-" (p'cos(e)-
sin(e))2" whichg/ves, F pres loci;Yw Piston Effect Force, piston etreot'='tem'(bonnet atm)whicl gives, F piston egect"Reverse Piston Effect" Force,.I Pont/=[a a (2 P bonnet np Pttonn)]sin(g)Total Force Re uired to Overcome Pressure Lockin which gives, F~=2.295 10 F totd:=F p~I~k+Fpo+F v~-Fpi~n erect which gives, F to d 4.447654 10 ACTUATOR CAPABIUTY'Qout THcap:=-Sf Actuator Model I SIze: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: TQout."=TQm RV-OGR Af Eff Stem Factoi: Thrust Capability:
=SMB-0-25 TQm.'=24.67 OGR:=58.13 Af:=0.9 Eff:=0.4 RV:=0.8767 TQout=396.802 Sf:=0.023664 THcap 1.677 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.Jt ENHANCED PRESSURE LOCIQNG METHODOLOGY:
KEI:=1.20 Tbrnst Margin:=THoap-(pmmt KBI)Thrust Margin~-5.17 10 1bs


NiagaraMohawkPowerCorPoration NuotearEngineering Ortginatorioate Woe~-.4.Cavyc/~/ppNMP2Calcutatton Cont.Sheetchecker/Dmto~
== Conclusion:==
p/j/rpPagegdoflVV'10.1-ADOOS, Rev.01TotalDeflection duetopressure, Addilional Geometry'actors yq'=ybq+ysq+yst tchwhichgivesyq=~001ro.'=aroL3=-4a22roaro+11n-+--1araroL9.'--.ar1+va1-vo-ln-+-1-2ro4awhichgives,L3=0andL9=0Deflechon framseatload/bending, w:=IIPas.wC2roC9roC3yb'.=-----L9--+L3DC8bbwhichgives,ybw=-1.08810Deflection fromseatload/shear, roroKsa:=-1.2-In-abay~'.=Ksa-tGwhichgives,Ksa<.345ysw~-2.42310Deflection fromseatload/hubcompression,
-2rtaycompr'=rtbL2whichgives,ycompr=-252'107otalDeflection fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw133210Equilibrium contactloaddistribution, cqttitibrtttm whichgives,yqwLoadperseat=2rta-=1.48510yqywwcqtttTtbrtttm 787.968PressureLockingForce,COMEDPLEvaluation PICS129A.MCD ValveID:2ICSMOV129page3 lgFy NiagaraMohavttkPovtrerCorporation NuclearEngineering Originatorloate
'Qp~ry>><.Cecq/gQj/F7NMP2Calculation Cont.SheetChecker/Date
,gHIIPage2lotI77A10.1.AD403, Rev.01VqFp1ock21ta(pcos(0)sin(8))2whichgives,Fp,1oc1'wPistonEffectForce,Pau:=01t2I"pistonstreet''tem'i bonnetatm)pistoneffect"ReversePistonEffect"Force,Fvetttta2PbonnetPupPtlownstn()whichgivesFvert953210TotalForceReulredtoOvercomePressureLocklnFtotal:Fpres1ock+FpotF>crtFpistowhichgives,F<<~=2.872746 10ACTUATORCAPABILITY:
ActuatorModel/Size:MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficiency:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
TQoutTHcap'.=-,SfTQout:=TQmRVOGR.AfEffft-lbsft-Ibs=SMB-00-10 TQm:=10.0OGR:=36.2 Af:=0.9Eff:=0.4RV:=0.8252TQout107.54Sf:=0.015334THcap=7.01310'bsENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20TbrnstMargin:=THoap-(F>>mtKEI)ThrustMargin~-2.746101bsConclusion:
OpenThrustMarginlsnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PICS129A.MCD ValveID:2ICSMOV129page4 0
NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date
~/i~/vrNMP2Calculation Cont.SheetChecker/Date PageQO//P7A10.1AD403.Rev.01ValveIDno:2RHSMOV115ReuiredOeninForceDeternminafionunderPressureiockin Condifions COMEDMethodDESIGNINPUTS'alve DiskGeometry:
hubradius,b:=5.75hublength,L:=0.25meanseatradius,a:=7.703averagediskthickness, t;=1.644seatangle,a'=100:=-'"0-0.08721800ishalfdiskangle aValveDiskMaterialProperties:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3OtherVaNeParameters:
DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P.=85ValveBonnetpressure(psig),Pbonnet'=7105Downstream pressure(psig),Pdo~0It0.521(reference
&#xb9;6)ValveStemDiameter, D~.=2.375'tatic Unseating Thrust,Fpo12604(reference:
Test&#xb9;4,6/24/93)ValveFactorVF:=0.5(reference:
NER-2M-010) 1CALCULATIONS:Coefficient offnctionbetweendiskandseat,It:=~<0)-sin(0)AverageDPAcrossDisk,DiskSt/ffnesConstants, gives,DPag=7.06310andG:=2(1+v)P~+Pdo~avg'onnet2Et312I-vwhichgives,D=1.19610andG1.131~10Iba".bbabGeometryFactors,C2'.=-I--~I+2In-C3',=--+IIn-+--I4ab4aabaIb2C8-'+v+(I-v)-2a2C9.---In-+-I-whichgives,C2~0.029C8~0.845C3~0.002C9=02COMEDPLEvaluation PRHS115A.MCD ValveID:2RHSMOV115page1 0
NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date Wc~i~~W.impc.gp/ppNMP2Calculation Cont.SheetChaclterllhte
~Qg/~ePagea/of/'3T A10.1-AD403, Rev.01Additional GeometryFactors,rp"=b242I000LII'=-1+4--5--464aaa2rpa2+-ln-arpIL1744I-v0I--I--4a2rpaI+(I+v)In-arpwhichgives,LII=1.53510andMomentFactors,2DPavgaC9/Mrb'.=-~-~a-rp,i-L17C82abL17~0.028'(Oi2bwhichgives,Mrb=-1.5710andQb1.61410Deflection frompressureibending, 4aa"avg'b'rb'C2+Qb'C3
'LllD.DDwhichgives,yb=W.OOIqDetiecfion frompressure/shear,2arprpK~:=-0.321n--I+-~1-21n-b-'b2stt'vgat.Gwhichgives,Kaa=%.043andy~=%.605'ODefie&#xc3;onfrompressurelhubstretch,Pforca't(ab)DPavg-PforciLystretch-ttb2Ewhichgives,Pf0~5.82910andy~th-2.38610CQMEDPLEvaluation PRHS115A.MCD ValveID:2RHS'MOV115 page2


NiagaraMohawkPowerCorporation NuotearEngineering Originatorloate Vo~rvpe4.Qmac/(slp7NMP2Calculation Cont.SheetChecker/DIt
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
~~p/1)ggPage32ofr&7A10.1-AtM03, Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyq:ybq+ysq+y~~h whichgives,,yq=%.002r"=aroL3--4a22roaro+IIn-+--IararpL9.=-a2I+vaI-vro-~In-+-I-2rp4awhichgives,L3=0andL9=0Detlection fromseatload/bending, w:=IC2rpC9fpC3ybw'9--+L3whichgives,DC8bbybw=-2.33810Deflection fromseatload/shear, Ksa:=-1.2-In-abaysw'=~'Gwhichgives,Ksa-0.351y'w-1.454'10 Deflection fromseatload/hubcompression,
COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 4
-2'tt'aycompr'tbL2whichgives,y~r=-1.981~10TotalDeflection fromunitseatload,yw:=ybw+ysw+yeomprwhichgives,yw3'81110Equilibrium contactloaddistnbution, yqwequiiibritm:=
-whichgives,ywLoadperseat~2tta-=2.71210yqywwequilibrium 5'6NIPPressureLockingForce,COMEDPLEvaluation PRHS115A.MCD ValveID:2RHS'MOV115 page3 0
NiagaraMohawkPowerCorporation NuoiearEngineering Originatot/Date z~~g~g;A.4~8/zHs7NMP2Calculation Cont.SheetChecker/Date Page&of/3'7A10.1-AD403, Rev.01Yqpreslock'=211a-"(p'cos(e)-
sin(e))2"whichg/ves, Fpresloci;YwPistonEffectForce,pistonetreot'='tem'(bonnetatm)whiclgives,Fpistonegect"ReversePistonEffect"Force,.IPont/=[aa(2PbonnetnpPttonn)]sin(g)TotalForceReuiredtoOvercomePressureLockinwhichgives,F~=2.29510Ftotd:=Fp~I~k+Fpo+F v~-Fpi~nerectwhichgives,Ftod4.44765410ACTUATORCAPABIUTY'Qout THcap:=-SfActuatorModelISIze:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutput:TQout."=TQmRV-OGRAfEffStemFactoi:ThrustCapability:
=SMB-0-25TQm.'=24.67OGR:=58.13 Af:=0.9Eff:=0.4RV:=0.8767TQout=396.802Sf:=0.023664THcap1.67710ft-lbsft-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.JtENHANCEDPRESSURELOCIQNGMETHODOLOGY:
KEI:=1.20TbrnstMargin:=THoap-(pmmtKBI)ThrustMargin~-5.17101bsConclusion:
OpenThrustMarginIsnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PRHS115A.MCD ValveID:2RHS'MOV115 page4


NiagaraMohawkPowerCorporation NuotearEngineering Originator/Date
Niagara Mohawk Power Corporation Nuotear Engineering Originator/Date
<</c'r/r7NMP2Calcutation Cont.SheetCh<<kerlDle~>//~Pageggf137A10.1.AD403.
<</c'r/r 7 NMP 2 Calcutation Cont.Sheet Ch<<kerlD le~>//~Pageggf 1 37 A10.1.AD403.
Rev.01ValveIDno:2RHS'MOV116 ReuiredOeninForceDeternminationunderPressureLockin Conditions COMEDMethodDESIGNINPUTS'alve DiskGeometry:
Rev.01 Valve IDno: 2RHS'MOV116 Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=5.75 mean seat radius, a.'=7.703 average disk thickness, t:=1.644 a tt seat angle, a.=10 0:=--0=0.087 2 180 0 ishalfdiskangle a hub length, L:=0.25 Valve Disk Material Properties:
hubradius,b:=5.75meanseatradius,a.'=7.703 averagediskthickness, t:=1.644attseatangle,a.=100:=--0=0.08721800ishalfdiskangle ahublength,L:=0.25ValveDiskMaterialProperties:
modulus ofelas&#xc3;city, E:=29400000 Poisson's Ratio,''.=0.3 Other Valve Parameters:
modulusofelas&#xc3;city, E:=29400000 Poisson's Ratio,''.=0.3OtherValveParameters:
Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), Pp.=133 Valve Bonnet pressure (psig), P bonnet=1868 Downstream pressure (psig), P down 0 Valve Factor VF:=0.5 Valve Stem Diameter, D~..=2.375 Static Unseating Thrust F po 16894 (reference:
DesignBasisConditions attImeofPressureLockingEvent:Upstreampressure(psig),Pp.=133ValveBonnetpressure(psig),Pbonnet=1868Downstream pressure(psig),Pdown0ValveFactorVF:=0.5ValveStemDiameter, D~..=2.375StaticUnseating ThrustFpo16894(reference:
Test&#xb9;10, 7/10195)(reference:
Test&#xb9;10,7/10195)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskendseat,it:=cos(0)--sin(0)IVFp0.521(reference
Coefficient of friction between disk end seat, it:=cos(0)--sin(0)I VF p 0.521 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStNnesConstants, up+"downDPavg'.=Pbonnet2glvesrD;=andG:=i2.(1-')2(1+v)DPavI80210whichgives,D1.19610andG=1.131~10IbabbabGeometiyFactors, C2.=-I--1+2ln-C3'.=--+Iln-+--I4ab4aabaIb2bI+vaI-vb2C8:=-'+v+(I-v)C9,---In-+-I--2aa2b4awhichgives,C20.029C80.845C3=0.002C9=0.2COMEDPLEvaluation PRHS116A.MCD ValveID:2RHS'MOV116 page1 0w}
&#xb9;6)Average DP Across Disk, Disk StNnes Constants, up+"down DP avg'.=P bonnet 2 glvesr D;=and G:=i2.(1-')2 (1+v)DP av I 802 10 which gives, D 1.196 10 and G=1.131~10 I b a b b a b GeometiyFactors, C2.=-I--1+2 ln-C3'.=--+I ln-+--I 4 a b 4a a b a I b 2 b I+v a I-v b 2 C8:=-'+v+(I-v)C 9,---In-+-I--2 a a 2 b 4 a which gives, C 2 0.029 C 8 0.845 C 3=0.002 C 9=0.2 COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 1 0 w}
NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date
+~~ape+-OW2rXp(gpNMP2Calculation Cont.SheetCheckerloate
+~~ape+-OW2 r Xp(gp NMP 2 Calculation Cont.Sheet Checkerloate
~g~/pPage'PSof~>>Ato.t-AD403, Rev.01Additional GeometryFactors,rp.'=b2422IfPrPrPfPL11'.=-1+4--5--4-~2+-In-64aaaarpIL17-=-.42I-vrprpaI--I----I+(I1-v)In-4aarpwhichgives,L1,1=1.53510andMomentFactors,2DPavgaC9/~(a-rp(-L17C82abL17=0.028'rib.-'"'.(a'-r,*j2bwhichgives,M~=-4.00510and3Qb=4116IODefiedion frompressure/bending, aaavg.a34yb'=Mrb-C2+Qb-C3-LIIDDDwhichgives,yb~-2.93710qDetiection frompressure/shear, 2arprpK~:=-0.32In--I+-I-2In-bab2mPavgaysqwhichgives,K~~&.043andy-24510sqDefieBion frompressure/hubstretch,Pf"'(ab)DPg-PforceLystretch'vnb2Ewhichgives,Pfo~1.487'10andystretch%.087'10COMEDPLEvaluation PRHS116A.MCD ValveID:2RHS'MOV116 page2
~g~/p Page'PS of~>>Ato.t-AD403, Rev.01 Additional Geometry Factors, rp.'=b 2 4 2 2 I fP rP rP fP L 1 1'.=-1+4--5--4-~2+-In-64 a a a a rp I L 17-=-.4 2 I-v rp rp a I--I----I+(I 1-v)In-4 a a rp which gives, L 1,1=1.535 10 and Moment Factors, 2 DPavga C9/~(a-rp (-L17 C8 2ab L17=0.028'rib.-'"'.(a'-r,*j 2b which gives, M~=-4.005 10 and 3 Qb=4 116 IO Defiedion from pressure/bending, a a avg.a 3 4 yb'=Mrb-C2+Qb-C3-LII D D D which gives, yb~-2.937 10 q Detiection from pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 In-b a b 2 m Pavg a ysq which gives, K~~&.043 and y-245 10 sq DefieBion from pressure/hub stretch, P f"'(a b)DP g-P force L y stretch'v nb 2E which gives, P fo~1.487'10 and y stretch%.087'10 COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 2 lI I, Nktgara Mohawk Povrer Corporation Nuclear Engineering Ortginatorloate
: lII, NktgaraMohawkPovrerCorporation NuclearEngineering Ortginatorloate
~~~~y~~.8~al~s/j~NMP 2 Calculation Cont.Sheet Checker/Date
~~~~y~~.8~al~s/j~NMP2Calculation Cont.SheetChecker/Date
~le/e~Page/cot r>W A10.1-AD403.
~le/e~Page/cotr>WA10.1-AD403.
Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq+ysq+yst t h which gives, y q 5 448 10 ro;=a ro L3--.4a 2 2 ro a ro e-I In-+--I a ro a ro L9.'=-a 2 I+v a I-v ro-In-~-I-2 ro 4 a which gives, L3=0 and L9~0 Deflection from seat load/bending, w:=I as.w C2 ro C9 roC3 ybw-L9--+L3 which gives, D C8 b b y bw"2.338'10 Deflection from seat load/sheer, ro ro Ksa.'=-1.2-In-a b y sw.'=Ksa-which gives, tG Ksa~<.351 y sw~-1.454'10 Deflection from seat load/hub compression, L--2'tt'a 2 ycompr'=2'ttb E which gives, y~-1.981~10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w~-3.81I 10 which gives, w equilibrium
Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyq:=ybq+ysq+yst thwhichgives,yq544810ro;=aroL3--.4a22roaroe-IIn-+--IaroaroL9.'=-a2I+vaI-vro-In-~-I-2ro4awhichgives,L3=0andL9~0Deflection fromseatload/bending, w:=Ias.wC2roC9roC3ybw-L9--+L3whichgives,DC8bbybw"2.338'10 Deflection fromseatload/sheer, roroKsa.'=-1.2-In-abysw.'=Ksa-whichgives,tGKsa~<.351ysw~-1.454'10 Deflection fromseatload/hubcompression, L--2'tt'a2ycompr'=2'ttbEwhichgives,y~-1.981~10TotalDeflection fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw~-3.81I10whichgives,wequilibrium
~1.429 10 Equilibrium contact load distribution, yq w equilibrium
~1.42910Equilibrium contactloaddistribution, yqwequilibrium
'=yw Load per seat=2 tt a-6.918 10 yq 4 yw Pressure Locking Force, COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 3
'=ywLoadperseat=2tta-6.91810yq4ywPressureLockingForce,COMEDPLEvaluation PRHS116A.MCD ValveID:2RHS'MOV116 page3
 
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qc,~/~aug tie g/Z)l57 NMP 2 Calculation Cont.Sheet Checker/Date
>>geN<</3 7 A10.1-AO403, Rev.01 pres lock''"'a'(>')())''v'res lock Yq~4 Yw Piston Effect Force, P~,=0 piston effect''Dstem'i bonnet atm)which gives, F p,st,n effect=8.275 10'Reverse Piston Effect" Force, Frets.'=[s a (2 Fbonnet-Pp-Pgo~)]
sin(g)Total Force Re uired to Overcome Pressure Lockin whichgives, F~=5.854 10 F total'F pres lock+F pp+F vert-F piston effect which gives, F>~=.1.26883~10 ACTUATOR CAPABILITY:
'ctuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: 'Stem Factor.Thrust Capability:
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-0-25 TQm'=24.67 OGR:=58.13 Af:=0.9 Eff:=0.4 RV:=0.8731 TQout~393.55 Sf:=0.023664 THcap~1.663~10 ft-lbs ft-lbs lbs NOTE: RVIS SQUAREIF ACTUATORIS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Thrust Margin--THcap-(F toM KEi)Thrust Margin~-1.356'10 lbs
 
== Conclusion:==


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date Qc,~/~aug tieg/Z)l57NMP2Calculation Cont.SheetChecker/Date
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
>>geN<</37A10.1-AO403, Rev.01preslock''"'a'(>'
COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 4 0
)())''v'reslockYq~4YwPistonEffectForce,P~,=0pistoneffect''Dstem'i bonnetatm)whichgives,Fp,st,neffect=8.27510'Reverse PistonEffect"Force,Frets.'=[s a(2Fbonnet-Pp-Pgo~)]
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date NMP2 Calculation Cont.Sheet Checirer/Date Paggtrtri/P 7 A10.1.AD403, Rev.01 Valve ID no: 2RHS MOV4A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=2.25 hub length, L:=0.125 r average disk thickness, t:=0.378 e:=-''-o.o61 2 180 e ishalfdiskangle a 4 mean seat radius, a:=3 seat angle, a:=7 Valve Disk Materfal Properties:
sin(g)TotalForceReuiredtoOvercomePressureLockinwhichgives, F~=5.85410Ftotal'Fpreslock+Fpp+Fvert-Fpistoneffectwhichgives,F>~=.1.26883
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design BasIs Conditions at time of Pressure Locking Event: e Upstream pressure (psig), P=325 Valve Bonnet pressure (psig), P bo<<=9677 Downstream pressure (psig), P down 0 Other Valve Parameters:
~10ACTUATORCAPABILITY:
Valve Stem Diameter, D<~'.=1.5 Valve Factor VF:=0.5 Static Unseating Thrust F po 6341 (reference:
'ctuatorModel/Size:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
Test&#xb9;5, t/7/97)(reference:
ReducedVoltage:TorqueOutput:'StemFactor.ThrustCapability:
TQoutTHcap:=-SfTQout:=TQmRVOGRAfEff=SMB-0-25TQm'=24.67OGR:=58.13Af:=0.9Eff:=0.4RV:=0.8731TQout~393.55Sf:=0.023664THcap~1.663~10ft-lbsft-lbslbsNOTE:RVISSQUAREIFACTUATORIS AC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20ThrustMargin--THcap-(FtoMKEi)ThrustMargin~-1.356'10 lbsConclusion:
OpenThrustMarginisnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PRHS116A.MCD ValveID:2RHS'MOV116 page4 0
NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date NMP2Calculation Cont.SheetChecirer/Date Paggtrtri
/P7A10.1.AD403, Rev.01ValveIDno:2RHSMOV4AReuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:ValveDiskGeometry:
hubradius,b:=2.25hublength,L:=0.125raveragediskthickness, t:=0.378e:=-''-o.o612180eishalfdiskangle a4meanseatradius,a:=3seatangle,a:=7ValveDiskMaterfalProperties:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3DesignBasIsConditions attimeofPressureLockingEvent:eUpstreampressure(psig),P=325ValveBonnetpressure(psig),Pbo<<=9677Downstream pressure(psig),Pdown0OtherValveParameters:
ValveStemDiameter, D<~'.=1.5ValveFactorVF:=0.5StaticUnseating ThrustFpo6341(reference:
Test&#xb9;5,t/7/97)(reference:
NER-2M-010)
NER-2M-010)
CALCULA77ONS:
CALCULA77ONS:
Coefficient offiictionbetweendiskandseat,lt:=cope)--sin(e)IVFIt0.515(reference
Coefficient of fiiction between disk and seat, lt:=cope)--sin(e)I VF It 0.515 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStlffnesConstants, gives,DPavg951510andG'=2(I+v)up~downavg'onnet2E.t3u(i-.*jwhichgives,D1.45410andG1.131~10b1+vaI-vb2C9---In-+-I--a2b4aIba.bbabGeometryFactors,C2'.=-,I--~I+2In-C3'=--+IIn-+--I4ab4aabaIbC8.=-2awhichgives,C20.028C8=0.847C3=0.002C9=0.198COMEDPLEvaluation PRHS4AA.MCD ValveID:2RHS'MOV4A page1 lj NiagaraMohawkPowerCorPoration NuctearEngineering Originator/Date Wo+.~~-4.Ce g~/~g/.~NMP2Calculation Cont.SheetChecker/Date Page5&f~>>A10.1-AtM03, Rev.01Additional Geometry'actors, rp'.=bI64242fpfpfpI+4--5--4aaa2rpa2+-~In-,arp1L174421-vrPrPaI--I----I+(I+v)ln-4aarpwhichgives,MomentFactors,LII=1.45310andL17=0.027Mrb'DPavgaC8a-rp-L172.ab<b:-.'"'(*-"*j 2bwhichgives,Mrb=-3.11210andQb~8.32510Deflection frompressureibending, 4aaavgyb'=Mrb-C2+Qb-C3-L11ooowhichgives,yb=<.003qDeflection frompressure/shear, 2arprpK:=-0.32In--I+-I-21n-Sa'bb2sa'vgysq'=whichgives,Ksa=%.041andy'8.28610sqDeflection frompressurelhubstretch,Pf0~tt(ab)DPavg.-Pto~'Lystretch'=ttb2Ewhichgives,Pto~=1.17710andy~~~-1.57310COMEDPLEvaluation PRHS4AA.MCD ValveID:2RHS'MOV4A page2 IhI~
&#xb9;6)Average DP Across Disk, Disk Stlffnes Constants, gives, DP avg 9 515 10 and G'=2 (I+v)up~down avg'onnet 2 E.t 3 u (i-.*j which gives, D 1.454 10 and G 1.131~10 b 1+v a I-v b 2 C9---In-+-I--a 2 b 4 a I b a.b b a b Geometry Factors, C2'.=-,I--~I+2 In-C 3'=--+I In-+--I 4 a b 4a a b a I b C8.=-2 a which gives, C 2 0.028 C 8=0.847 C 3=0.002 C 9=0.198 COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS'MOV4A page 1 lj Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date Wo+.~~-4.Ce g~/~g/.~NMP2 Calculation Cont.Sheet Checker/Date Page5&f~>>A10.1-AtM03, Rev.01 Additional Geometry'actors, rp'.=b I 64 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-~In-, a rp 1 L17 4 4 2 1-v rP rP a I--I----I+(I+v)ln-4 a a rp which gives, Moment Factors, L I I=1.453 10 and L17=0.027 Mrb'DP avg a C8 a-rp-L17 2.a b<b:-.'"'(*-"*j 2b which gives, Mrb=-3.112 10 and Q b~8.325 10 Deflection from pressureibending, 4 a a avg yb'=Mrb-C2+Qb-C3-L11 o o o which gives, yb=<.003 q Deflection from pressure/shear, 2 a rp rp K:=-0.3 2 In--I+-I-21n-Sa'b b 2 sa'vg ysq'=which gives, K sa=%.041 and y'8.286 10 sq Deflection from pressure lhub stretch, P f0~tt (a b)DPavg.-Pto~'L y stretch'=ttb 2E which gives, P to~=1.177 10 and y~~~-1.573 10 COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS'MOV4A page 2 Ih I~
NiagaraMohawkPowerCorporation NuclearEngineering Originatorloate Qomrap.g.@goy/gy/<NMP2Calculation Cont.SheetPagegoofisTA10.1-AD403, Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyq:=ybq+ysq+yg etchwhichgives,yq=.004r.'=aroL3'=-4a22roaro+IIn-~--Iar'0aroL9,'=-a2I+vaI-vro-ln-+-I-2ro4awhichgives,L3=0andL9=0Deflection fromseatload/bending, w:=IC2roC9roC3ybw-L9--+L3whichgives,DC8bbybw=-1.08810Deflection fromseatload/shear, roroKsa:=-1.2-In-aby~:=Ksa-whichgives,tGKsa<.345ysw~-2.42310Deflection fromseatload/hubcompression,
Niagara Mohawk Power Corporation Nuclear Engineering Originatorloate Qomrap.g.@goy/gy/<NMP2 Calculation Cont.Sheet Pagegoof is T A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq+ysq+yg etch which gives, y q=.004 r.'=a ro L3'=-4a 2 2 ro a ro+I In-~--I a r'0 a ro L9,'=-a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I C2 ro C9 ro C3 ybw-L9--+L3 which gives, D C8 b b ybw=-1.088 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, tG Ksa<.345 y sw~-2.423 10 Deflection from seat load/hub compression,.-2na y compr'b L 2 E which gives, y compr 2 52 10 9 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, y w=-1.332 10 Equilibrium contact load distribution, w equii;brium.'=
.-2naycompr'bL2Ewhichgives,ycompr252109TotalDeflection fromunitseatload,yw:=ybw+yswaycomprwhichgives,yw=-1.33210Equilibrium contactloaddistribution, wequii;brium.'=
-which gives w equilibriu
-whichgiveswequilibriu
=2.715 10 yq yw Load perseat=2 n a-=5.118 10 yq yw Pressure Locldng Force, COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS MOV4A page 3
=2.71510yqywLoadperseat=2na-=5.11810yqywPressureLocldngForce,COMEDPLEvaluation PRHS4AA.MCD ValveID:2RHSMOV4Apage3


NiagaraMohawkPowerCorPoration NuclearEngineering Originator/Date
Niagara Mohawk Power CorPoration Nuclear Engineering Originator/Date
'Dc,mrs''3 8~>s/S/l567NMP2Calculation Cont.SheetChecker/Date
'Dc,mrs''3 8~>s/S/l567 NMP2 Calculation Cont.Sheet Checker/Date
~,etrr1Page'flor>>7Ato.t-AD403, Rev.01Fpreslook2aa-(1cos(e)-sin(e))2whichgives,Fpros1001=4.63510Yq~~~4WPistonEffectForce,Pa~'.=0PPinonW~t:=SDn~(Phoner-Pet
~,e trr1 Page'flor>>7 Ato.t-AD403, Rev.01 F pres look 2 a a-(1 cos(e)-sin(e))2 which gives, F pros 1001=4.635 10 Yq~~~4 W Piston Effect Force, P a~'.=0 P Pinon W~t:=S D n~(Phoner-Pet
)"ReversePistonEffect"Force,Frets~.'=[se~(2PhonnetupPdorm)j'etn(tt)
)"Reverse Piston Effect" Force, Frets~.'=[s e~(2 P honnet up P dorm)j'etn(tt).I Total Force Re uired to Overcome Pressure Lockin which give~, F piston which gives, F y~3 285 10 F total l=F pros look+F po+F yurt-F piston 0@00 which gives, F<<~=6.843527 10 ACTUATOR CAPABILITY:
.ITotalForceReuiredtoOvercomePressureLockinwhichgive~,Fpistonwhichgives,Fy~328510Ftotall=Fproslook+Fpo+Fyurt-Fpiston0@00whichgives,F<<~=6.843527 10ACTUATORCAPABILITY:
Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
ActuatorModelISize:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
TQout THcap:=-Sf TQout:=TQm RV OGR.Af Eff=SB-OOS-15 TQm:=14.18 OGR:=36.2 Af:=0.9 EQ':=0.45 RV:"-0.8538 TQout~151.549 Sf:=0.018919 THcap=8.01 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
TQoutTHcap:=-SfTQout:=TQmRVOGR.AfEff=SB-OOS-15 TQm:=14.18OGR:=36.2Af:=0.9EQ':=0.45 RV:"-0.8538 TQout~151.549Sf:=0.018919THcap=8.0110ft-lbsft-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20 Thrust Meripn:=THoep-(p n,~KEI)Thrust Margin=-7.411~10 lbs
KEI:=1.20ThrustMeripn:=THoep-(pn,~KEI)ThrustMargin=-7.411~10lbsConclusion:
 
OpenThrustMarginisnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
== Conclusion:==
COMEDPLEvaluation PRHS4AA.MCD ValveID:2RHSMOV4Apage4 fp0 NiagaraMohawkPowerCorporation NuclearEngineering Orlglnalor/Date
 
~z/vr>p~8~4/2'3/Y7NMP2Calculation Cont.SheetChecker/Date
Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
~z/z/rgPage/Zof/$7A10.1-AD4ta, Rev.01ValveIDno:2RHSMOV4BReuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS'esign BasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.=325ValveBonnetpressure(psig),Pbo~<<=9677Downstream pressure(psig),Pdo.=0ValveDiskGeometry:
COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS MOV4A page 4 fp 0 Niagara Mohawk Power Corporation Nuclear Engineering Orlglnalor/Date
hubradius,b:=2.25raveragediskthickness, t:=0.378e:=-''=o.o612180eishalfdisk angleameanseatradius,a:=3seatangle,a'.=7hublength,L:=0.125Poisson's Ratio,v:=0.3ValveDiskMaterialProperties:
~z/v r>p~8~4/2'3/Y7 NMP2 Calculation Cont.Sheet Checker/Date
modulusofelasticity, E:=29400000 OtherValveParameters:
~z/z/rg Page/Zof/$7 A10.1-AD4ta, Rev.01 Valve ID no: 2RHS MOV4B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=325 Valve Bonnet pressure (psig), P bo~<<=9677 Downstream pressure (psig), P do.=0 Valve Disk Geometry: hub radius, b:=2.25 r average disk thickness, t:=0.378 e:=-''=o.o61 2 180 e ishalfdisk angle a mean seat radius, a:=3 seat angle, a'.=7 hub length, L:=0.125 Poisson's Ratio, v:=0.3 Valve Disk Material Properties:
ValveStemDiameter, Dst.=1.5ValveFactorVF:=0.5StaticUnseating Thrust,Fpo7324(reference:
modulus of elasticity, E:=29400000 Other Valve Parameters:
Test&#xb9;5,6/16/96)(reference:
Valve Stem Diameter, D st.=1.5 Valve Factor VF:=0.5 Static Unseating Thrust, F po 7324 (reference:
Test&#xb9;5, 6/16/96)(reference:
NER-2M-010)
NER-2M-010)
.CALCULAnONS:
.CALCULAnONS:
Coefficient offrictionbetweendiskandseat,it:=cope>I--~(e)VFp0.515(reference
Coefficient of friction between disk and seat, it:=cope>I--~(e)VF p 0.515 (reference
&#xb9;6)AverageDPAcrossDiskDPavgupdowngives,DPav<=9.515102Et3DiskSfNnesConstants, D:=andG:=n.(i-')2(1+v)whichgives,D1.45410andG1.131~10Iba.bbabGeometlyFactors, C2.'=-I--I+21n-C3'.=--+IIn-+--I4ab4aabaI2c8:=-1+v+2ab1+vaI-vb2C9---In-+-I--a2b4awhichgives,C20.028C8=0.847C3=0.002C9=0.198COMEDPLEvaluation PRHS4BA.MCD ValveID:2RHSMOV4Bpage1
&#xb9;6)Average DP Across Disk DP avg up down gives, DP av<=9.515 10 2 Et3 Disk SfNnes Constants, D:=and G:=n.(i-')2 (1+v)which gives, D 1.454 10 and G 1.131~10 I b a.b b a b GeometlyFactors, C2.'=-I--I+2 1n-C3'.=--+I In-+--I 4 a b 4a a b a I 2 c8:=-1+v+2 a b 1+v a I-v b 2 C9---In-+-I--a 2 b 4 a which gives, C 2 0.028 C 8=0.847 C 3=0.002 C 9=0.198 COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS MOV4B page 1
,)pf NiagaraMohawkPowerCorgoration NuctearEngineering Originator/Date
,)pf Niagara Mohawk Power Corgoration Nuctear Engineering Originator/Date
-~p-N.<~ier.abpNMP2Calculation Cont.SheetChecker/Date Pager/3of/3 7A10.1-AD003, Rev.01Additional GeometryFactors,rp'=b164242000]+4--5--4aaa2'02+-ln-a1L]74421-U00a1--1----I+(]+Y)ln-4aarpwhichgives,MomentFactors,Lll=1.45310andL]70.027Mrb'=-2DPavgaC8C9-a-rp-L]72abwhichgives,Mrb-3.11210andQb=8.325]0Deflection frompressureIbending, aaavga34yb'.=Mrb-C2+Qb'C3-L]1ooowhichgives,yb~0.003qDeflection frompressure/shear,2arprpK~:=-0.32]n--]+-~1-2]n-'ab2m'vgaysq'=whichgives,Ksa~%.04]andy'-8.28610sqDeflection frompressureIhubstretch,Pforcett(ab~)DPavgPforce'Lystretchttb2Ewhichgives,pforce]]77]pandystretch-].573]pCOMEDPLEvaluation PRHS4BA.MCD ValveID:2RHS'MOV4B page2 1
-~p-N.<~i er.abp NMP2 Calculation Cont.Sheet Checker/Date Pager/3of/3 7 A10.1-AD003, Rev.01 Additional Geometry Factors, rp'=b 1 64 2 4 2 0 0 0]+4--5--4 a a a 2'0 2+-ln-a 1 L]7 4 4 2 1-U 0 0 a 1--1----I+(]+Y)ln-4 a a rp which gives, Moment Factors, L ll=1.453 10 and L]7 0.027 Mrb'=-2 DP avg a C8 C9-a-rp-L]7 2ab which gives, Mrb-3.112 10 and Qb=8.325]0 Deflection from pressureIbending, a a avga 3 4 yb'.=Mrb-C2+Qb'C3-L]1 o o o which gives, yb~0.003 q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2]n--]+-~1-2]n-'a b 2 m'vg a ysq'=which gives, K sa~%.04]and y'-8.286 10 sq Deflection from pressure I hub stretch, P force tt (a b~)DP avg P force'L y stretch ttb 2E which gives, p force]]77]p and y stretch-].573]p COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS'MOV4B page 2 1
NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
.>oA.e~zQzz/syNMP2Calculation Cont.SheetChecker/Date
.>oA.e~z Qzz/sy NMP2 Calculation Cont.Sheet Checker/Date
~rWrZPeg~Af/j7A10.1-AD403.
~rWrZ Peg~Af/j7 A10.1-AD403.
Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyq:=ybq~ysq+yst etchwhichgives,yq0004ro=aroL3.=-.4a22roaro+IIn-+--IaroaroL9--a2I+vaI-vro-In-+-I-2ro4awhichgives,L3=0andL9~0Deflection fromseatload/bending, w:=IawC2rDC9fpC3ybw:-L9--+L3whichgives, DC8bbybw-1.08810Deflection fromseatload/sheer, roroKsa:=-1.2
Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq~ysq+yst etch which gives, y q 0 004 ro=a ro L3.=-.4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3=0 and L9~0 Deflection from seat load/bending, w:=I a w C2 rDC9 fpC3 ybw:-L9--+L3 whichgives, D C8 b b y bw-1.088 10 Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b a y:=Ksa-tG which gives, Ksa~<.345 y~~-2.423 10 Deflection from seat load/hub compression,-2'll'a y compr'tb L 2 which gives, y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y=-1.332 10 Equilibrium contact load distribution, yq equiiibn~:
-In-abay:=Ksa-tGwhichgives,Ksa~<.345y~~-2.423 10Deflection fromseatload/hubcompression,
=-which gives, yw LOad per Seat a-2 ft a-5.118 10 yq 4 yw equilibrium Pressure Locking Force, COMED PL Evaluation PRHS4BA.MOD Valve ID: 2RHS'MOV4B page 3 1
-2'll'aycompr'tbL2whichgives,ycomprTotalDeflection fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,y=-1.33210Equilibrium contactloaddistribution, yqequiiibn~:
Niagara Mohawk Powir Corporation
=-whichgives,ywLOadperSeata-2fta-5.11810yq4ywequilibrium PressureLockingForce,COMEDPLEvaluation PRHS4BA.MOD ValveID:2RHS'MOV4B page3 1
'uclear Engineering Originator/Date
NiagaraMohawkPowirCorporation
'3cmr wag A'-~&/isls7 NMP2 Catculatlon Cont.Sheet Checker/Date Pagett+of W7 A10.1-AD403, Rev.01 Fpr s lock'''(l')())g pfe loctu Vq~4 W Piston Etect Force, P~'.=0 tt 2/F piston etrtmt'=u'D stem'(P bonnet Perm)which gives,"Reverse Piston Effect" Force, Fyett.'=rt a 2 P bonnet up gown.sin(0)1 Total Force Re uired to Overcome Pressure Lockin which gives, F y~3 285 10 r F total:=F pres toed p F po+F yett-F piston effect which gives, F<<~=6.941827 10 ACTUATOR CAPABILITY:
'uclearEngineering Originator/Date
Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficienc:
'3cmrwagA'-~&/isls7NMP2Catculatlon Cont.SheetChecker/Date Pagett+of W7A10.1-AD403, Rev.01Fprslock'''(l')())gpfeloctuVq~4WPistonEtectForce,P~'.=0tt2/Fpistonetrtmt'=u'Dstem'(PbonnetPerm)whichgives,"ReversePistonEffect"Force,Fyett.'=rta2Pbonnetupgown.sin(0)1TotalForceReuiredtoOvercomePressureLockinwhichgives,Fy~328510rFtotal:=FprestoedpFpo+Fyett-Fpistoneffectwhichgives,F<<~=6.941827 10ACTUATORCAPABILITY:
Reduced Voltage: Torque Output: Stem Factor.Thrust Cap'ability:
ActuatorModelISize:MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficienc:
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SB-OOS-15 TQm:=14.18 OGR:=36.2 Af:=0.9 Eff:=0.45 RV:=0.8741 TQout~158.841 Sf:=0.018919 THcap~8.396'10 ft-lbs ft-1bs Ibs NOTE: RV IS SQUAREIF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCap'ability:
KEI:=1.20 Thrust Margin:=THcsp-(F mmt KEt)Thtust Margin=-7.491~10 1bs
TQoutTHcap:=-SfTQout:=TQmRVOGRAfEff=SB-OOS-15 TQm:=14.18OGR:=36.2Af:=0.9Eff:=0.45 RV:=0.8741 TQout~158.841Sf:=0.018919THcap~8.396'10ft-lbsft-1bsIbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
 
KEI:=1.20ThrustMargin:=THcsp-(FmmtKEt)ThtustMargin=-7.491~101bsConclusion:
== Conclusion:==
OpenThrustMarginisnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
 
COMEDPLEvaluation PRHS4BA.MCD ValveID:2RHSMOV4Bpage4 U
Open Thrust Marginis negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
NiagaraMohawkPowerCorporation NuclearFngineering Originator/Date
COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS MOV4B page 4 U
.~.ZAc/zylspNMP2Calcuhtion Cont.SheetChecker/Date Pagefrcpf/3 7A10.1-AD403, Rev.01ValveIDno:2RHS'MOV4C ReuiredOeninForceDeternminationunderPressureiockin Conditions COMEDMethodDESIGNINPUTS'alve DiskGeometry:
Niagara Mohawk Power Corporation Nuclear Fngineering Originator/Date
hubradius,b:=2.25meanseatradius,a:=3seatangle,a'.=7averagediskthickness, t:=0.378e:=-''-0.06I21806ishalfdisk angleahublength,L:=0.125ValveDiskMaterialPropertie:
.~.ZA c/zylsp NMP2 Calcuhtion Cont.Sheet Checker/Date Pagefrcpf/3 7 A10.1-AD403, Rev.01 Valve ID no: 2RHS'MOV4C Re uiredO enin ForceDeternminationunderPressureiockin Conditions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=2.25 mean seat radius, a:=3 seat angle, a'.=7 average disk thickness, t:=0.378 e:=-''-0.06I 2 180 6 ishalfdisk angle a hub length, L:=0.125 Valve Disk Material Propertie:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3OtherValveParameters:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pnp325ValveBonnetpressure(psig),Pbonn<<=9677Downstream pressure(psig),Pdown0ValveFactorVF'=0.5ValveStemDiameter, Dst~1.5>StaticUnseating Thrust,Fpo3798(reference:
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 325 Valve Bonnet pressure (psig), P bonn<<=9677 Downstream pressure (psig), P down 0 Valve Factor VF'=0.5 Valve Stem Diameter, D st~1.5>Static Unseating Thrust, F po 3798 (reference:
Test&#xb9;21,Tlt8/g5)(reference:
Test&#xb9;21, Tlt8/g5)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coeftic/ent offrict/onbetweendiskandseat,lt.=coge)I--sin(6)VFIt=0.515(reference
Coeftic/ent of frict/on between disk and seat, lt.=coge)I--sin(6)VF It=0.515 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSNfnesConstants, gives,'P<<g=9.515~10G:=E2.(1+v)up~down<<g'bonnet Et'':='ndu(i-')whichgives,D=1.45410andG~I.I31~10Iba.bbabGeomet/yFactors,C2.'=-I--I+2In-C3'.=--+Ih-+--I4ab4.aabaIb2C8.=-1+v+(I-v)2ab1+va1-vb2C9'.=--In-+-I--a2b4awhichgives,C2=0.028C8=0.847C3~0.002C9=0.198COMEDPLEvaluation PRHS4CA.MCD ValveID:2RHS'MOV4C page1
&#xb9;6)Average DP Across Disk, Disk SNfnes Constants, gives,'P<<g=9.515~10 G:=E 2.(1+v)up~down<<g'bonnet Et'':='nd u(i-')which gives, D=1.454 10 and G~I.I31~10 I b a.b b a b Geomet/y Factors, C 2.'=-I--I+2 In-C 3'.=--+I h-+--I 4 a b 4.a a b a I b 2 C8.=-1+v+(I-v)2 a b 1+v a 1-v b 2 C 9'.=--In-+-I--a 2 b 4 a which gives, C 2=0.028 C 8=0.847 C 3~0.002 C 9=0.198 COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 1


NiagaraMohawkPowerCorporation Nuclearfngineering Originator/Date Ww~g~N.8~WiP/P'PNMP2Calculation Cont.SheetChecker/Date r/r7Pagegkfl~
Niagara Mohawk Power Corporation Nuclear f ngineering Originator/Date Ww~g~N.8~WiP/P'P NMP2 Calculation Cont.Sheet Checker/Date r/r7 Pagegkfl~7 A10.1-AD403, Relr.01 Additional Geometry Factors, rp'.=b 2 4 2 2 fp fp.fp fp LII=-I+4--5--4-2+-~In-64 a a a a rp I L17.--4 4 I-Y 0 0 I--I-4 a a 2~I+(I+Y)In-a rp which gives, L I I=1.453 10 and Moment Factors, 2 Dpavga C9 I 2 2h (a-f 0)-L I7 C8 2ab L17=0.027 avg 2 2 2b which gives, Mrb-3.112 10 and Q b 8.325 10 Deflection from pressureIbending, a a avg a 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, yb~%.003 q Deflection from pressure I shear, 2 a rp rp K~'=-0.3 21n--I+-~I-21n-b a b 2 K sa DP'avg a ysq'=which gives, K sa~%.041 and y=-8.286 10 sq DefleiWon from pressure Ihub stretch, P force tt'(a b j DP avg P force'L ystrctch-ttb 2E which gives, P fo~-1.177 10'nd y~etch=1573'10 COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS MOV4C page 2
7A10.1-AD403, Relr.01Additional GeometryFactors,rp'.=b2422fpfp.fpfpLII=-I+4--5--4-2+-~In-64aaaarpIL17.--44I-Y00I--I-4aa2~I+(I+Y)In-arpwhichgives,LII=1.45310andMomentFactors,2DpavgaC9I22h(a-f0)-LI7C82abL17=0.027avg222bwhichgives,Mrb-3.11210andQb8.32510Deflection frompressureIbending, aaavga34yb.'=Mrb-C2+Qb-C3-LIIDDDwhichgives,yb~%.003qDeflection frompressureIshear,2arprpK~'=-0.321n--I+-~I-21n-bab2KsaDP'avgaysq'=whichgives,Ksa~%.041andy=-8.28610sqDefleiWon frompressureIhubstretch,Pforcett'(abjDPavgPforce'Lystrctch-ttb2Ewhichgives,Pfo~-1.17710'ndy~etch=1573'10COMEDPLEvaluation PRHS4CA.MCD ValveID:2RHSMOV4Cpage2
>E g~
>Eg~
Niagara Mohawk Power Corporation Nuclear Engineering Onginatorloate w t"~Qgp$p NMP2 Calculation Cont.Sheet Checker/Date Psge4<ot/3>A10.1.AD403, Rev.01 Total Deflection due to pressure, yq'bq+ysq+ystretch Additional Geometry Factors which gives, ro.'=a y=%.004 q ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9'.=-a r)-ln-+-I-2 ro 4 a which gives, L3 0 and Deflection from seat load/bending, w:=I asw C2 ro'Cg ro'C 3 ybw.-L9--+L3 which gives, D C8 b b y bw-1.088'10 Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b a y sw:=KsR-tG which gives, Ksa=%.345 y sw=-2.423 10 Deflection from seat load/hub compression, L ,-2tta 2 compr 2'tt b which gives,~9 y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w=-1.332 10 Equilibnum contact load distribution, w equilibrium
NiagaraMohawkPowerCorporation NuclearEngineering Onginatorloate wt"~Qgp$pNMP2Calculation Cont.SheetChecker/Date Psge4<ot/3>A10.1.AD403, Rev.01TotalDeflection duetopressure, yq'bq+ysq+ystretch Additional GeometryFactorswhichgives,ro.'=ay=%.004qroL3'=-4a22roaro+IIn-+--IaroaroL9'.=-ar)-ln-+-I-2ro4awhichgives,L30andDeflection fromseatload/bending, w:=IaswC2ro'Cgro'C3ybw.-L9--+L3whichgives,DC8bbybw-1.088'10 Deflection fromseatload/sheer, roroKsa:=-1.2-In-abaysw:=KsR-tGwhichgives,Ksa=%.345ysw=-2.42310Deflection fromseatload/hubcompression, L,-2tta2compr2'ttbwhichgives,~9ycomprTotalDeflection fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw=-1.33210Equilibnum contactloaddistribution, wequilibrium
'yq which gives, wequilibrium
'yqwhichgives,wequilibrium
=2.715 10 yw Load per seat=2 tt a-5.118 10 yq 4 yw Pressure LocMng Force, COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 3
=2.71510ywLoadperseat=2tta-5.11810yq4ywPressureLocMngForce,COMEDPLEvaluation PRHS4CA.MCD ValveID:2RHS'MOV4C page3


NiagaraMohawkPowerCorporation NuclearEngineering
Niagara Mohawk Power Corporation Nuclear Engineering
/PD$lp7NMP2Calculation Cont.SheetChecker/Date Page+of/+fA10.1-AtM03.
/PD$lp7 NMP2 Calculation Cont.Sheet Checker/Date Page+of/+f A10.1-AtM03.
Rev.OtYq~~-~4Fpres]ock.=2tta-(ltcos(t))-sin(0))2whichgives,Fpres]oc]=4.635]0YwPistonEffectForce,Pat:=0pistoneg'act'='tem'(honnetaun)"'o"tg"pistonstreet"ReversePistonEffect"Force,.I2Poets's'a'(g'Phennet PupPttosan)j'stn(g)
Rev.Ot Yq~~-~4 F pres]ock.=2 tt a-(lt cos(t))-sin(0))2 which gives, F pres]oc]=4.63 5]0 Yw Piston Effect Force, Pat:=0 piston eg'act'='tem'(honnet aun)"'o" tg" piston street"Reverse Piston Effect" Force,.I 2 Poets's'a'(g'Phennet Pup Pttosan)j'stn(g)
TotalForceReuiredtoOvercomePressureLockinwhichgives,Fycrt328510Ftpta]:=Fpres]ock+Fpp+Fycrt-Fpistoncffcctwhichgives,F<<~=6.589227 10ACTUATORCAPABILITY'ctuator ModelISIze:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
Total Force Re uired to Overcome Pressure Lockin which gives, F ycrt 3 285 10 F tpta]:=F pres]ock+F pp+F ycrt-F piston cffcct which gives, F<<~=6.589227 10 ACTUATOR CAPABILITY'ctuator Model I SIze: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
ReducedVoltage:TorqueOutput:StemFactor:ThrustCapability:
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
TQoutTHcap:=-SfTQout:=TQmRVOGR.AfEff=SB-OOS.15 TQm:=14.18OGR:=36.2Af:=0.9Eff:=0.45RV:=0.8727TQout~158.332Sf:=0.018919,THcap8.369~]0ft-1bsft-lbsIbs.NOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
TQout THcap:=-Sf TQout:=TQm RV OGR.Af Eff=SB-OOS.15 TQm:=14.18 OGR:=36.2 Af:=0.9 Eff:=0.45 RV:=0.8727 TQout~158.332 Sf:=0.018919 , THcap 8.369~]0 ft-1bs ft-lbs Ibs.NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KE]:=1.20ThrustMargin:=THcap-(F>ogKE1)ThrustMargin=-7.07'10 1bsConclusion:
KE]:=1.20 Thrust Margin:=THcap-(F>og KE1)Thrust Margin=-7.07'10 1bs
OpenThrustMarginlsnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingunderconditions evaluated.
COMEDPLEvaluation PRHS4CA.MCD ValveID:2RHS'MOV4C page4


NiagaraMohawkPrrrrerCorPoration NuclearEngineering Originatorloate gaw~'$r/a3/6NMP2Calculation Cont.SheetPagejabot/Q7A10.1-AD403, Rev.01ValveIDno:2SWPMOV17AReuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:ValveDiskGeometry:
== Conclusion:==
hubradius,b:=4.94meanseatradius,a:=5.75averagediskthickness, t:=0.789seatangle,a,'=70:=--0-0.061att21800ishalfdisk angleahublength,L:=0.125ValveDiskMaterialProperties:
 
modulusofelasticity, E:=29400000 Poisson's Ratio,v.--0.3Upstreampressure(psig),P>>.=123ValveBonnetpressure(psig),Pbonn<<=86Downstream pressure(psig),Pdown0OtherValveParameters:
Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking under conditions evaluated.
ValveStemDiameter, D~.=2ValveFactorVF:=0.6StaticUnseating Thrust,Fpo6219(reference:
COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 4
Test&#xb9;25,3ttM5)(reference:
 
Niagara Mohawk Prrrrer CorPoration Nuclear Engineering Originatorloate ga w~'$r/a3/6 NMP2 Calculation Cont.Sheet Page jabot/Q7 A10.1-AD403, Rev.01 Valve ID no: 2SWP MOV17A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Valve Disk Geometry: hub radius, b:=4.94 mean seat radius, a:=5.75 average disk thickness, t:=0.789 seat angle, a,'=7 0:=--0-0.061 a tt 2 180 0 ishalfdisk angle a hub length, L:=0.125 Valve Disk Material Properties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v.--0.3 Upstream pressure (psig), P>>.=123 Valve Bonnet pressure (psig), P bonn<<=86 Downstream pressure (psig), P down 0 Other Valve Parameters:
Valve Stem Diameter, D~.=2 Valve Factor VF:=0.6 Static Unseating Thrust, F po 6219 (reference:
Test&#xb9;25, 3ttM5)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offnctionbetweendiskandseat,tt:=cos(0)--sin(0)tt=0.622(reference
Coefficient of fnction between disk and seat, tt:=cos(0)--sin(0)tt=0.622 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStifl'nes Constants, gives,DPav245andG=E2(1+v)up+downDPavg.'=Pbonnet 2Et3u(i-')whichgives,D1.32210andG1.131~10GeometryFactors, C2.'=-1--1+2ln-C3.'=--+11n-+--11bC8.--1+v+(1-v)2abI+va1-vb2C9.---ln-+-1--a2b4awhichgives,C20.009C8~0.908C3=4.316'10 C9~0.124COMEDPLEvaluation PSWP17AA.MCD ValveID:2SWP'MOV17A page1
&#xb9;6)Average DP Across Disk, Disk Stifl'nes Constants, gives, DP av 24 5 and G=E 2 (1+v)up+down DP avg.'=Pbonnet 2 Et 3 u (i-')which gives, D 1.322 10 and G 1.131~10 GeometryFactors, C2.'=-1--1+2 ln-C3.'=--+1 1n-+--1 1 b C 8.--1+v+(1-v)2 a b I+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.009 C 8~0.908 C 3=4.316'10 C 9~0.124 COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP'MOV17A page 1
.~
.~
NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date Woevppw4Cwpcfg3/9)NMP2Calculation Cont.SheetChecker/Date z/z/H7Page5lofr3 arA10.1-AD403.
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Woevppw 4 Cw p cfg3/9)NMP2 Calculation Cont.Sheet Checker/Date z/z/H7 Page5lofr3 ar A10.1-AD403.
Rev.01Additional GeometryFactors,rp'.=bIll'4242fpfpfpI+4--5--4aaa2rpa2+-In-arpIL17'=-.442I-U00aI--I----~I+(I+Y)In-4aarpwhichgives,L11=1.545'10andMomentFactors,L17=0.009Mg:=-2DPavgaC9~-a-rp-L17C82abavg2bwhichgives,Mrb-8.73endQb=21.472Deflection frompressure%ending, 4aaavgayb'.=Mrb-C2+Qb-C3-.LIIDODwhichgives,yb~-1.041~10qDeflection frompressure/sheer, 2arprpK~:=-0.32In--I+-~I-2In-bab2I'vgaysq'=whichgives,Ksa%.013andy'sq=-1.13810Deflection frompressure/hub stretch,Pra~.--a(a-b)DPaa<Pforce'Lystretch'=ttb2Ewhichgives,Pfp~666.467andy~~-1.84810COMEDPLEvaluation PSWP17AA.MCD ValveID:2SWPMOV17Apage2 II NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date Z~~pS.e~~/islspNMP2Calculation Cont.SheetChecker/Date
Rev.01 Additional Geometry Factors, rp'.=b I ll'4 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-In-a rp I L17'=-.4 4 2 I-U 0 0 a I--I----~I+(I+Y)In-4 a a rp which gives, L 11=1.545'10 and Moment Factors, L17=0.009 Mg:=-2 DP avg a C9~-a-rp-L17 C8 2ab avg 2b which gives, Mrb-8.73 end Qb=21.472 Deflection from pressure%ending, 4 a a avg a yb'.=Mrb-C2+Qb-C3-.LII D O D which gives, yb~-1.041~10 q Deflection from pressure/sheer, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 I'vg a ysq'=which gives, K sa%.013 and y'sq=-1.138 10 Deflection from pressure/hub stretch, Pra~.--a (a-b)DPaa<P force'L y stretch'=ttb 2E which gives, P fp~666.467 and y~~-1.848 10 COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP MOV17A page 2 II Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Z~~p S.e~~/i slsp NMP2 Calculation Cont.Sheet Checker/Date
~/zr~Page5'Zof r%TA10.1-AtM03, Rev.OtTotalDeflection duetopressure, Additional GeometryFactorsyq'bq+ysq+ystretch whichgives,yq219710ro.'=aroL3'.=-4a22roaro+IIn-+--IaroaroL9--a2I+vaI-vro-ln-+-I-2ro4awhichgives,L3=0andL9=0Deflection fromseatload/bending, w:=IawC2ro'C9fo'C3ybw'=-----L9--+L3whichgives,DC8bbybI437'10"7Deflection fromseatloadlshear,roroKsa:=-1.2-ln-abay~:=Ksa-tGwhichgives,Ksa~%.182y=-1.17410Deflection fromseatload!hubcompression,
~/zr~Page5'Zof r%T A10.1-AtM03, Rev.Ot Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q 2 197 10 ro.'=a ro L3'.=-4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a w C2 ro'C9 fo'C3 ybw'=-----L9--+L3 which gives, D C8 b b y b I 437'10"7 Deflection from seat load l shear, ro ro Ksa:=-1.2-ln-a b a y~:=Ksa-tG which gives, Ksa~%.182 y=-1.174 10 Deflection from seat load!hub compression,-2'lr a y'compf'ib L 2 which gives, y compr Total Deflection f/om unit seat load, y w:=y bw+y sw+y compr which gives, yw~2621'10 Equilibnum contact load distribution, yq w equilibrium
-2'lray'compf'ibL2whichgives,ycomprTotalDeflection f/omunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw~2621'10Equilibnum contactloaddistribution, yqwequilibrium
'w which gives, Load per seat~2 tt a-302.831 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP MOV17A page 3
'wwhichgives,Loadperseat~2tta-302.831yqywequilibrium PressureLockingForce,COMEDPLEvaluation PSWP17AA.MCD ValveID:2SWPMOV17Apage3
 
Niagara Mohawk Power Corporation Nuclear Engineering
~s Qflglnatof/Date
,.A.~in/~ff/P 7 NMP2 Calculation Cont.Sheet Checker/Date gtg rstg+Page5$of/37 A10.1-ADO03, Rey.01 Yq F pres look 2 s a-(p cos(8)-sin(8))2 which gives, F pres look 338 833/w Piston Effect Force, P au:=0 2"piston cffect'stem'(bonnet atm)""tp"'iston effect"Reverse Piston Eh'ect" Force, F v~',=rt a 2 P bonnet up down sin(8)which gives, Fert=310.711 Total Force Re uired to Overcome Pressure Lockin s F total:=F pres look+F po+F vert-F ptston effec which gives, F>ud~6.598367 10 ACTUATOR CAPABILITY:
Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: 'tem Factor: Thrust Capability:
TQout IHcap:=-Sf TQout:=TQm RV OGR AfEff=SMB-0-25 TQm:=23.52 OGR;=39.11 Af:=0.9 Eff:=0.4 RV:=0.8785 TQout=255.571 Sf:=0.019627 THcap~1.302'10 tt-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Thrust Margin:=THcap-(F mmt KEI)Thrust Margin=5.103'10 1bs
 
== Conclusion:==


NiagaraMohawkPowerCorporation NuclearEngineering
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
~sQflglnatof/Date
COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP'MOV17A page 4 0
,.A.~in/~ff/P 7NMP2Calculation Cont.SheetChecker/Date gtgrstg+Page5$of/37A10.1-ADO03, Rey.01YqFpreslook2sa-(pcos(8)-sin(8))2whichgives,Fpreslook338833/wPistonEffectForce,Pau:=02"pistoncffect'stem'(bonnetatm)""tp"'istoneffect"ReversePistonEh'ect"Force,Fv~',=rta2Pbonnetupdownsin(8)whichgives,Fert=310.711TotalForceReuiredtoOvercomePressureLockinsFtotal:=Fpreslook+Fpo+Fvert-Fptstoneffecwhichgives,F>ud~6.598367 10ACTUATORCAPABILITY:
Niagara Mohawk Povver Corporation Nuclear Engineertng NMP2 Calculation Cont.Sheet Checker/Date 7/Z/gp Page'574/97 A10.1 AD403.Rev.01 Valve ID no: 2SWPMOV17B I Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=4.94 r mean seat radius, a'.=5.75 average disk thickness, t:=0.789 seat angle, a:=7 e:=-'" e=o.o61 2 180.e ishalfdiskangle u hub length, L:=0.125 Valve Disk Materfal Properties:
ActuatorModel/Size:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P:=123 Valve Bonnet pressure (psig), P bonnet'=86 Downstream pressure (psig), P doggy 0 Other Valve Parameters:
ReducedVoltage:TorqueOutput:'temFactor:ThrustCapability:
Valve Stem Diameter," D<<~.=2 Valve Factor VF:=0.6 Static Unseating Thrust F po 5862 (reference:
TQoutIHcap:=-SfTQout:=TQmRVOGRAfEff=SMB-0-25TQm:=23.52OGR;=39.11Af:=0.9Eff:=0.4RV:=0.8785TQout=255.571Sf:=0.019627THcap~1.302'10tt-lbsft-lbs1bsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
Test&#xb9;6, 8/2M4)(reference:
KEI:=1.20ThrustMargin:=THcap-(FmmtKEI)ThrustMargin=5.103'101bsConclusion:
OpenThrustMarginlspositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PSWP17AA.MCD ValveID:2SWP'MOV17A page4 0
NiagaraMohawkPovverCorporation NuclearEngineertng NMP2Calculation Cont.SheetChecker/Date 7/Z/gpPage'574/97A10.1AD403.Rev.01ValveIDno:2SWPMOV17B IReuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:ValveDiskGeometry:
hubradius,b:=4.94rmeanseatradius,a'.=5.75averagediskthickness, t:=0.789seatangle,a:=7e:=-'"e=o.o612180.eishalfdiskangle uhublength,L:=0.125ValveDiskMaterfalProperties:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P:=123ValveBonnetpressure(psig),Pbonnet'=86Downstream pressure(psig),Pdoggy0OtherValveParameters:
ValveStemDiameter, "D<<~.=2ValveFactorVF:=0.6StaticUnseating ThrustFpo5862(reference:
Test&#xb9;6,8/2M4)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
CoeNicient offrictionbetweendiskandseat,p.'=cos(e)I--sin(e)VFIt0.622(reference
CoeNicient of friction between disk and seat, p.'=cos(e)I--sin(e)VF It 0.622 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSNfnesConstants, Pup+Pdownavg'onnet2gives,DPav<24.53D:=andG:=i2.(1-')2(1+v)whichgives,D1.32210andG=1.131~10Iba.bbabGeometryFactors,C2'.=-I--~1+2.ln-C3.=--+IIn-+--I4ab4aabaIbC8.--I+v+(I-v)2aC9---In-+-I--whichgives,C20.009C8>0.908C3=4.316'10 C9=0.124COMEDPLEvaluation PSWP17BA.MCD ValveID:2SWPMOV17Bpage1 e
&#xb9;6)Average DP Across Disk, Disk SNfnes Constants, Pup+P down avg'onnet 2 gives, DP av<24.5 3 D:=and G:=i2.(1-')2 (1+v)which gives, D 1.322 10 and G=1.131~10 I b a.b b a b Geometry Factors, C2'.=-I--~1+2.ln-C3.=--+I In-+--I 4 a b 4a a b a I b C8.--I+v+(I-v)2 a C9---In-+-I--which gives, C 2 0.009 C 8>0.908 C 3=4.316'10 C 9=0.124 COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP MOV17B page 1 e
NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date W~~crP-Q~~gybeNMP2Calculation Cont.SheetChecker/Date
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date W~~c rP-Q~~gybe NMP2 Calculation Cont.Sheet Checker/Date
~7/i/F7A10.1AD403,Rev.01Additional GeometryFactors,rp=bI64242000I+4--5--4aaa2rpa2+-In-arpIL17442I-U00aI--I----I+(I+Y)In-4aarpwhichgives,LII=1.54510andMomentFactors,2avg'a9/2p-rpC82abL17=0.009DPavg~b=-(-Oj2bwhichgives,Mrb-8.73andQb21.472Deflection frompressure/bending, a2a3DPavg'ayb'.=Mrb-C2+Qb'C3-LIIDDDwhichgives,yb-1.04110Deflection frompressure/shear,2arprpK~:=-0.321n--I+-I-21n-babJysq:=.2m.DavgatGwhichgives,Ksa~%.013andy'-1.138'10 sq0Deflection frompressure/hub stretch,:='(a'-b')DP,,-Pforca.Lystretch.ttb2Ewhichgives,Pf0~0=666.467andysearch84810COMEDPLEvaluation PSWP17BA.MCD ValveID:2SWP'MOV17B page2
~7/i/F7 A10.1 AD403, Rev.01 Additional Geometry Factors, rp=b I 64 2 4 2 0 0 0 I+4--5--4 a a a 2 rp a 2+-In-a rp I L17 4 4 2 I-U 0 0 a I--I----I+(I+Y)In-4 a a rp which gives, L I I=1.545 10 and Moment Factors, 2 avg'a 9/2 p-rp C8 2ab L17=0.009 DP avg~b=-(-Oj 2b which gives, M rb-8.73 and Q b 21.472 Deflection from pressure/bending, a2 a3 DP avg'a yb'.=Mrb-C2+Qb'C3-LII D D D which gives, y b-1.041 10 Deflection from pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-I-21n-b a b J ysq:=.2 m.D avg a tG which gives, K sa~%.013 and y'-1.138'10 sq 0 Deflection from pressure/hub stretch,:='(a'-b')DP,,-P forca.L y stretch.ttb 2E which gives, P f0~0=666.467 and y search 848 10 COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP'MOV17B page 2
'C NiagaraMohawkPowerCorgoration NuciearEngineering OriginatorlOate W~~~>4.C'mg+~skyNMP2Calcuhrtion Con!.SheetPage5cof/9 9A10.1-AD403, Rev.01TotalDeflection duetopressure, AddNonalGeometryFactorsyq:=ybq<<ysq+
'C Niagara Mohawk Power Corgoration Nuciear Engineering OriginatorlOate W~~~>4.C'mg+~sky NMP2 Calcuhrtion Con!.Sheet Page5cof/9 9 A10.1-AD403, Rev.01 Total Deflection due to pressure, AddNonal Geometry Factors y q:=ybq<<ysq+
ystretchwhichgivesryq219710r'.=aroL3--.4a2roa+IIn-+aro2r0-IaroL9=-ar2I+vaI-v0-In-+-I-2ro4awhichgives,L3=0andL9~0~Deflection fromseatload/bending, w:=I~.awC2roC9rpC3ybw',=L9'-+L3whichgives,DC8bbybI437'10Deflection fromseatloadlshear,roroKsa:=-1.2
y stretch which givesr y q 2 197 10 r'.=a ro L3--.4a 2 ro a+I In-+a ro 2 r0-I a ro L9=-a r 2 I+v a I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9~0~Deflection from seat load/bending, w:=I~.a w C2 roC9 rpC3 ybw',=L9'-+L3 which gives, D C8 b b y b I 437'10 Deflection from seat loadl shear, ro ro Ksa:=-1.2-In-a b a y~:=Ksa'-tG which gives, Ksa=-0.182 y sw=-1.174'10 Deflection from seat load/hub compression,-2'tt a y compr'.b L 2 which gives, y p-1.002'10 Total Deflectio from unit seat load, y w:=y bw+y sw+y compr which gives, y w 2 621'10 Equilibrium contact load distribution, yq equilibrium
-In-abay~:=Ksa'-tGwhichgives,Ksa=-0.182ysw=-1.174'10 Deflection fromseatload/hubcompression,
'hich gives, yw Load per seat=2 tt a-=302.831 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP MOV17B page 3 e
-2'ttaycompr'.bL2whichgives,yp-1.002'10 TotalDeflectio fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw2621'10Equilibrium contactloaddistribution, yqequilibrium
Niagara Mohawk Power Co/Poration Nuclear Engineering Originator/Date Thorn.ep-.
'hichgives,ywLoadperseat=2tta-=302.831yqywequilibrium PressureLockingForce,COMEDPLEvaluation PSWP17BA.MCD ValveID:2SWPMOV17Bpage3 e
At+/Flzglpp NMP2 Calculation Cont.Sheet Checker/Date
NiagaraMohawkPowerCo/Poration NuclearEngineering Originator/Date Thorn.ep-.
~rs-rr&#xc3;7 Page&ot/7 7 A10.1-AD403.
At+/FlzglppNMP2Calculation Cont.SheetChecker/Date
Rev.01 F pres loclt 2 a a-(p cos(0)-sin(0))2 which gives, F pres loci'338.833 Vq/w Piston Effect Force, P at:=0 piston street'=O'tem'<bonnet p atm)which gives, F iston effect 270.177"Reverse Piston Effect" Force, F vert"'a''P bonnet P up P down Total Force Re uired to Overcome Pressure Lockin which gives, F~=310.711 F total:=F pres tock+F po+F 1/ert-F piston effect which gives, F<<<=6.241367 10 ACTUATOR CAPABlLITYt Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
~rs-rr&#xc3;7Page&ot/77A10.1-AD403.
Reduced Voltage: Torque Output: TQout:=TQm RV OGR.Af Eff Stem Factor.TQout Thrust Capability:
Rev.01Fpresloclt2aa-(pcos(0)-sin(0))2whichgives,Fpresloci'338.833Vq/wPistonEffectForce,Pat:=0pistonstreet'=O'tem'<bonnetpatm)whichgives,Fistoneffect270.177"ReversePistonEffect"Force,Fvert"'a''PbonnetPupPdownTotalForceReuiredtoOvercomePressureLockinwhichgives,F~=310.711Ftotal:=Fprestock+Fpo+F1/ert-Fpistoneffectwhichgives,F<<<=6.241367 10ACTUATORCAPABlLITYt ActuatorModel/Size:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
THcap'.=Sf tt-'bs tt-lbs=SMB-0-25 TQm:=23.52 OGR:=39.11 Af:=0.9 Eff:-"0.4 RV:=0.8834 TQout=258.43 Sf:=0.019627 THcap=1.317'10 lbs NOTE: RV lS SQUARE/F ACTUATOR lS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
ReducedVoltage:TorqueOutput:TQout:=TQmRVOGR.AfEffStemFactor.TQoutThrustCapability:
KEI:=1.20 Thrust Margin:=THeap-(F tong KBI)Thust Margin~5.677 10 1bs
THcap'.=Sftt-'bstt-lbs=SMB-0-25TQm:=23.52OGR:=39.11Af:=0.9Eff:-"0.4 RV:=0.8834TQout=258.43Sf:=0.019627 THcap=1.317'10lbsNOTE:RVlSSQUARE/FACTUATORlSAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
 
KEI:=1.20ThrustMargin:=THeap-(FtongKBI)ThustMargin~5.677101bsConclusion:
== Conclusion:==
OpenThrustMarginlspositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelocklngconditions evaluated.
 
COMEDPLEvaluation PSWP17BA.MCD ValveID:2SWP'MOV17B page4
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locklngconditions evaluated.
COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP'MOV17B page 4


NiagaraMohawkPowerCorporation NuciearEngineering Originator/Oate
Niagara Mohawk Power Corporation Nuciear Engineering Originator/Oate
'uowpro/I~Q0(p3/vNMP2Calcutation Cont.SheetCheckedoate
'uow pro/I~Q 0 (p3/v NMP2 Calcutation Cont.Sheet Checkedoate
~e/z/r7Page5$br/%TAt0,1-AD403.
~e/z/r7 Page5$br/%T At0,1-AD403.
Rev.OtValvelDno:
Rev.Ot ValvelDno:
2SWPMOV18A Reuired0eninForceDefernmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:ValveDiskGeometry:
2SWPMOV18A Re uired 0 enin Force Defernmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=4.94 mean sestrsdius, a:=5.75 average diskthickness, t:=0.789 seat angle, a.'=7 0:=--0=0.061 2 180 0 ishstfdisksngle a hub length, L:=0.125 Valve'isk Matertal Properties:
hubradius,b:=4.94meansestrsdius, a:=5.75averagediskthickness, t:=0.789seatangle,a.'=70:=--0=0.06121800ishstfdisksngle ahublength,L:=0.125Valve'isk MatertalProperties:
modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.--108 Valve Bonnet pressure (psig), P bonnet=125 Downstream pressure (psig), P do~.=0 Other Valve Parameters:
modulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.--108 ValveBonnetpressure(psig),Pbonnet=125Downstream pressure(psig),Pdo~.=0OtherValveParameters:
Valve Stem Diameter, D at~.--2 Valve Factor VF:=0.6 Static Unseating Thrust F po 8635 (reference:
ValveStemDiameter, Dat~.--2ValveFactorVF:=0.6StaticUnseating ThrustFpo8635(reference:
Test&#xb9;8, 3/17>95)(reference:
Test&#xb9;8,3/17>95)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefticient offnctionbetweendiskandseat,~<0)--sm(0)IVFit=0.622(reference
Coefticient of fnction between disk and seat,~<0)--sm(0)I VF it=0.622 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSfiffnesConstants, gives,DPav<~71andG:=E2(I+v)up+downDPavg'=Pbonnet"2Etiz(i-v')whichgives,D~1.32210andG~1.131~102GeometryFsctors, C2.'=-I--I+21n-C3.=--+IIn-IbC8'=-I+v+(I-v)-2abI+vaI-vbC9---In-+-I--a2b4awhichgives,C20.009C8=0.908C3~4.31610C9=0.124COMEDPLEvaluation PSWP18AA.MCD ValveID:2SWP'MOV18A page1
&#xb9;6)Average DP Across Disk, Disk Sfiffnes Constants, gives, DP av<~71 and G:=E 2 (I+v)up+down DP avg'=P bonnet" 2 Et iz(i-v')which gives, D~1.322 10 and G~1.131~10 2 GeometryFsctors, C2.'=-I--I+21n-C3.=--+I In-I b C 8'=-I+v+(I-v)-2 a b I+v a I-v b C9---In-+-I--a 2 b 4 a which gives, C 2 0.009 C 8=0.908 C3~4.316 10 C 9=0.124 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP'MOV18A page 1
 
Niagara Mohawk Power Corporation Nuclear Engineering Orit/lnatorloate Wc~~p t, N.des y cP~/pg NMP2 Calculation Cont.Sheet Checker/Date r/s/f7 Peg<~ref/V 7 A10.1&D003, Rw.01 Additional Geomehy Factors, rp.'=b 2 4 2 2 fp rp rp rp L 1 1.'=-1+4.--5--4-2+-~In-64 a a a a rp 4 2 ro rp a L17.=-I--I----.1~(1+v)In-4 4 a a rp which gives, L I I=1.545 10 and Moment Factors, L17~0.009 Mg:=-2 DPavga C9--(a-ro)-L lq CS 2ab DP avg o:=-(-")2b which gives, Mrb=-25.298 and Q b~62.225 Deflection fiom pressure/bending, a2 a3 DP avg a yb'=Mrb-C2+Qb-C3-LII D D D which gives, y b 3.016.10 q Deflection fiom pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-~1-21n-b a b 2 avg'o which gives, K sa=%.013 and y'-3.297'10 sq t Deflection from pressure/hub stretch, P f.'=ll (a-b)DP vg P force L y stretch ttb 2E which gives, P f0~~1.931 10 and y~<h-5.355 10 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP MOV18A'age 2
 
Niagara Mohawk Power Corporation Nuclear Engineering CSginatorlDate Q~~apy 4e@AD k-/g3/py NMP2 Calculation Cont.Sheet Checkerloate r/rr'6 Pag~W 7 A10.1-AD403, Rev.Ot Total Deflection due to pressure, Additional Geometry Factors y q'bq+y sq+y stretch which gives, y q H.367 10 ro:=a ro L3--4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-In-+-I--2 ro 4 a which gives, L3 0 and L9=0, Deflection from seat loadlbending, w.'=I asw C2 roC9 roC3 ybw'-L9--+L3 which gives, D C8 b b y b-I 437'10 Deflection from seat load l shear, ro ro Ksa'.=-1.2-In-'b a y~:=Ksa'G which gives, Ksa~-0.182 y<-I;174 10 Deflection from seat load/hub compression, L 2'll'a 2 y compr'E ttb which gives, y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w=-2.621~10 Equilibrium contact load distnbution, w eqtniib.tm,.=
-which gives, yq w Load per seat-"2 tt a-877.591 yq yw w eqttitibritm
=24.291 Pressure Locking Force,, COMED PL Evaluation PSWP'I 8AA.MCD Valve ID 2SWP MOV18A page 3


NiagaraMohawkPowerCorporation NuclearEngineering Orit/lnatorloate Wc~~pt,N.desycP~/pgNMP2Calculation Cont.SheetChecker/Date r/s/f7Peg<~ref/V 7A10.1&D003, Rw.01Additional GeomehyFactors,rp.'=b2422fprprprpL11.'=-1+4.--5--4-2+-~In-64aaaarp42rorpaL17.=-I--I----.1~(1+v)In-44aarpwhichgives,LII=1.54510andMomentFactors,L17~0.009Mg:=-2DPavgaC9--(a-ro)-LlqCS2abDPavgo:=-(-")2bwhichgives,Mrb=-25.298andQb~62.225Deflection fiompressure/bending, a2a3DPavgayb'=Mrb-C2+Qb-C3-LIIDDDwhichgives,yb3.016.10qDeflection fiompressure/shear, 2arprpK~:=-0.321n--I+-~1-21n-bab2avg'owhichgives,Ksa=%.013andy'-3.297'10 sqtDeflection frompressure/hubstretch,Pf.'=ll(a-b)DPvgPforceLystretchttb2Ewhichgives,Pf0~~1.93110andy~<h-5.35510COMEDPLEvaluation PSWP18AA.MCD ValveID:2SWPMOV18A'age 2
Niagara Mohawk Power Corporation Nuclear Engineering Orig inatorloate m--;-A+lsPg/~p NMP2 Calculation Cont.Sheet Checker/Date
/is r<<.Paged/of/7 A10.1-AtHSS, Rev.01 F pres iocle:=2 rt a-" (tt cos(0)-sin(6))2 which gives, F pres loci=98 1.925 Yq W Piston Effect Force, Pat:=0 ft"piston street,a'D stem'(phonnet peon)which gives, F piston effect"Reverse Piston Effect" Force, F vert'.=ft a~2 P bonnet up-P do1tfn sin(e)Total Force Re uired to Overcome Pressure Lockin whichgives, Fy~900428 total'res lock+po+vert piston effect whichgives, F<<~1.012465 10'CTUATOR CAPABILITY:
Actuator Model/SIze:
Motor Torque Output: Gear Ratio: Application Factor.Pullout ENciency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor.Thrust Capability:, THcap.'=-T out Sf=SMB-0-25 TQm.'=23.21 OGR:=39.11 Af:=0.9 Eff:=0.4 RV'-=0.8789 TQout=252.432 , Sf:=0.019627 THcap=1 286 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Thrust Margin:=THoap-(F to%KEI)Thrust Margin 711.881 Ibs sl


NiagaraMohawkPowerCorporation NuclearEngineering CSginatorlDate Q~~apy4e@ADk-/g3/pyNMP2Calculation Cont.SheetCheckerloate r/rr'6Pag~W7A10.1-AD403, Rev.OtTotalDeflection duetopressure, Additional GeometryFactorsyq'bq+ysq+ystretchwhichgives,yqH.36710ro:=aroL3--4a22roaro+IIn-+--IaroaroL9--a2I+vaI-vro-In-+-I--2ro4awhichgives,L30andL9=0,Deflection fromseatloadlbending, w.'=IaswC2roC9roC3ybw'-L9--+L3whichgives,DC8bbyb-I437'10Deflection fromseatloadlshear,roroKsa'.=-1.2-In-'bay~:=Ksa'Gwhichgives,Ksa~-0.182y<-I;17410Deflection fromseatload/hubcompression, L2'll'a2ycompr'Ettbwhichgives,ycomprTotalDeflection fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw=-2.621~10Equilibrium contactloaddistnbution, weqtniib.tm,.=
== Conclusion:==
-whichgives,yqwLoadperseat-"2tta-877.591yqywweqttitibritm
=24.291PressureLockingForce,,COMEDPLEvaluation PSWP'I8AA.MCDValveID2SWPMOV18Apage3


NiagaraMohawkPowerCorporation NuclearEngineering Originatorloate m--;-A+lsPg/~pNMP2Calculation Cont.SheetChecker/Date
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
/isr<<.Paged/of/7A10.1-AtHSS, Rev.01Fpresiocle:=2rta-"(ttcos(0)-sin(6))2whichgives,Fpresloci=981.925YqWPistonEffectForce,Pat:=0ft"pistonstreet,a'D stem'(phonnet peon)whichgives,Fpistoneffect"ReversePistonEffect"Force,Fvert'.=fta~2Pbonnetup-Pdo1tfnsin(e)TotalForceReuiredtoOvercomePressureLockinwhichgives, Fy~900428total'reslock+po+vertpistoneffectwhichgives, F<<~1.01246510'CTUATORCAPABILITY:
COMED Pl.Evaluation PSWP18AA.MCD Valve ID: 2SWP'MOV18A page 4
ActuatorModel/SIze:
MotorTorqueOutput:GearRatio:Application Factor.PulloutENciency:
ReducedVoltage:TorqueOutput:TQout:=TQmRVOGRAfEffStemFactor.ThrustCapability:,
THcap.'=-ToutSf=SMB-0-25TQm.'=23.21OGR:=39.11Af:=0.9Eff:=0.4RV'-=0.8789TQout=252.432,Sf:=0.019627 THcap=128610ft-lbsft-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20ThrustMargin:=THoap-(Fto%KEI)ThrustMargin711.881IbsslConclusion:
OpenThrustMarginlspositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPl.Evaluation PSWP18AA.MCD ValveID:2SWP'MOV18A page4


NiagaraMohawkPowerCorporatton NuclearEngineertng Originato/Date
Niagara Mohawk Power Corporatton Nuclear Engineertng Originato/Date
,-.w.e;-E~/~NMP2Calculation Cont.SheetChecker/Date gledf>/i/~7PapescutIPTA10.1-AD403, Rev.01ValveIDno:2SWP'MOV18B Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp,=108ValveBonnetpressure(psig),Pbonnet.--125 Downstream pressure(psig),Pdown0ValveDiskGeometry:
,-.w.e;-E~/~NMP2 Calculation Cont.Sheet Checker/Date gled f>/i/~7 Pape scut I PT A10.1-AD403, Rev.01 Valve ID no: 2SWP'MOV18B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp,=108 Valve Bonnet pressure (psig), P bonnet.--125 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=4.94 meanseatradius, a:=5.75 averagediskthickness, t:=0.789 hub length, L:=0.125 seat angle, a:=7 1:=--" e 0.061 a tt 2 180 Valve Disk Material Properties:
hubradius,b:=4.94meanseatradius, a:=5.75averagediskthickness, t:=0.789hublength,L:=0.125seatangle,a:=71:=--"e0.061att2180ValveDiskMaterialProperties:
0 ishalfdisk'angle a modulus of elasticity, E:=29400000 Other Valve Parameters:
0ishalfdisk'angle amodulusofelasticity, E:=29400000 OtherValveParameters:
Valve Stem Diameter, D<~.--2 Valve Factor VF:=0.6 Poisson's Ratio, v.=0.3 Static Unseating Thrust, F po 2129 (reference:
ValveStemDiameter, D<~.--2ValveFactorVF:=0.6Poisson's Ratio,v.=0.3StaticUnseating Thrust,Fpo2129(reference:
Test&#xb9;11.SS96)(reference:
Test&#xb9;11.SS96)(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,p:=cos(e)-'-s~(e)p0.622(reference
Coefficient of friction between disk and seat, p:=cos(e)-'-s~(e)p 0.622 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSINnesConstants, gives,DP=71BedG:=-E2(1+v)up+downavg'onnet2Etn(1-')whichgives,D=1.32210andG=1.131~101ba.bbabGeometryFactors, C2.=-1--1+21n-C3'.=--+1ht-+--14,ab4aaba1b2C8=-1+v+(1-v)2ab1+va1-vb2C9---ln-+-1--a2b4awhichgives,C2=0.009C80.908C3=4.316'10 C9~0.124COMEDPLEvaluation PSWP18BA.MCD ValveID:2SWP'MOV18B page1 r7ifIII NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date Q~~~o4-C~&2j/57NMP2Calculation Cont.SheetChecker/Oate
&#xb9;6)Average DP Across Disk, Disk SINnes Constants, gives, DP=71 Bed G:=-E 2 (1+v)up+down avg'onnet 2 Et n(1-')which gives, D=1.322 10 and G=1.131~10 1 b a.b b a b GeometryFactors, C2.=-1--1+2 1n-C3'.=--+1 ht-+--1 4,a b 4a a b a 1 b 2 C8=-1+v+(1-v)2 a b 1+v a 1-v b 2 C9---ln-+-1--a 2 b 4 a which gives, C 2=0.009 C 8 0.908 C 3=4.316'10 C 9~0.124 COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV18B page 1 r7 if I I I Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Q~~~o 4-C~&2 j/5 7 NMP2 Calculation Cont.Sheet Checker/Oate
~~/./~rPagw'o//37 A10.1-AD403, RW,01Additional Geometry'Factors, rp.'=bI64242rpfpfpI+4--5--4aaa2rpa2+-In-arpIL174421-Y'0aI--I----I+(I+Y)In-4aarpwhichgives,MomentFactors,L11=1.54510,andL17=0.009Mrb'DPavgaCgC9~a-rp-L172abQb'a-r0j2bwhichgives,M+--25.298 andQb-62.225 Deflect/on frompressure/t/ending, aaavga34yb.'=Mrb-C2+Qb-C3-LIIDDDwhichgives,yb=-3.01610qDeflection fiompressure/shear, 2arprpK~:=-0.32In--I+-I-2In-bab2sa'vgaysq'hichgives,Ksa~.013andy"~-3.29710ssqDeflection frompressure/hub stretch,Pftt(ab)DPgPforce'Lystretch'b2Ewhichgives,force'y~<<h-5355'10COMEDPLEvaluation PSWP18BA,MCD ValveID:2SWPMOV18Bpage2~i  
~~/./~r Pagw'o//37 A10.1-AD403, RW, 01 Additional Geometry'Factors, r p.'=b I 64 2 4 2 rp fp fp I+4--5--4 a a a 2 rp a 2+-In-a rp I L17 4 4 2 1-Y'0 a I--I----I+(I+Y)In-4 a a rp which gives, Moment Factors, L 11=1.545 10, and L17=0.009 Mrb'DP avg a Cg C9~a-rp-L17 2ab Qb'a-r0 j 2b which gives, M+--25.298 and Qb-62.225 Deflect/on from pressure/t/ending, a a avg a 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, yb=-3.016 10 q Deflection fiom pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 In-b a b 2 sa'vg a ysq'hich gives, K sa~.013 and y"~-3.297 10 s sq Deflection from pressure/hub stretch, P f tt (a b)DP g P force'L y stretch'b 2E which gives, force'y~<<h-5355'10 COMED PL Evaluation PSWP18BA,MCD Valve ID: 2SWP MOV18B page 2~i  
 
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date R~pju W P~~~fg+g7 NMP2 Calculation Cont Sheet Checker/Date
~~/slur Pager"trot
/7 7 A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry'Factors yq'bq+ysq+ystretch which gives, y q=%.367.10 ro'.=a ro L3'.=-4a 2 2 ro a ro 1-1~In-+--I a r a ro L9.=-a r 2 I+v a I-v o-In-+-I-2 ro 4 a which gives,'" L3~0 and'L9~0 Deflection from seat load/bending, w:=I C2 roC9.roC3 y bw..=-----L9--+L3 which gives, D C8 b b yb 1437 10'r Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b y.'=Ksa-which gives, sw'G Ksa~%.182 y~-1.174 10 Deflection from seat load/hub compression,-2tta y compr'itb L 2 which gives, ycompr~I'002 10 Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, y w-2.621~10 Equilibrium contact load distributr'on, w eqmlibri~'hich gives, yq yw Load per seat=2 tt.a-877.591 yq yw w equilibrium
=24.291 Pressure LocMng Force, COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV18B page 3 f'
Niagara Mohawk Power Corporaaon Nuotear Engineering NMP2 Catoulation Cont.Sheet CheckerlDate
~io.rrrW PageirSot/3
~A10.1-AD403, Rev.01 F lock:=2 tt a-(p cos(0)-sin(0))2 which gives, F pres lock 981 925 Yq pres 1 W Piston Effect Force,.P au:=0"piston street'=S'D stem'(p bonnet p stm)which givess F lston off~e 392.699"Reverse Piston Effect" Force, Fvert'=rt a 2Pbonnet up down Total Force Re uired to Overcome Pressure Lockin which gives, F~=900.428 F total'pres lock+F po+F veft F pist which gives,'<<~=3.618654 10'ACTUATOR CAPABILITY:
Actuator Model/Size:
Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout:=Tg RV OGR Afar TQout THcap.'=-Sf=SMB-0-25 TQm:=23.52 OGR:=39.11 Af:=0.9 Eff:=0.4 RV:=0.8852 TQout=259.484 St:=0.019627 THcap~1.322 10 ft-Ibs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
KEI:=1.20 Thrust Msrtpn:=THeep-(Fmmt KEI)Thrust Margin~8.878'10 lbs I


NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date R~pjuWP~~~fg+g7NMP2Calculation ContSheetChecker/Date
== Conclusion:==
~~/slurPager"trot
 
/77A10.1-AD403, Rev.01TotalDeflection duetopressure, Additional Geometry'Factors yq'bq+ysq+ystretch whichgives,yq=%.367.10 ro'.=aroL3'.=-4a22roaro1-1~In-+--IararoL9.=-ar2I+vaI-vo-In-+-I-2ro4awhichgives,'"L3~0and'L9~0Deflection fromseatload/bending, w:=IC2roC9.roC3ybw..=-----L9--+L3whichgives,DC8bbyb143710'rDeflection fromseatload/sheer, roroKsa:=-1.2
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
-In-aby.'=Ksa-whichgives,sw'GKsa~%.182y~-1.17410Deflection fromseatload/hubcompression,
COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV1 8B page 4 0
-2ttaycompr'itbL2whichgives,ycompr~I'00210TotalDeflection fromunitseatload,yw:=ybw+ysw+ycompr whichgives,yw-2.621~10Equilibrium contactloaddistributr'on, weqmlibri~
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Q~/~3bp NMP2 Calcutation Cont.Sheet Checker/Date
'hichgives,yqywLoadperseat=2tt.a-877.591yqywwequilibrium
~vrzjt7 Page C4or~7 A10.1.AD403, RW.01 Valve ID no: 2SWP'MOV2tA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a.=1.47 average disk thickness, t:=0.54.a tt seat angle, a.=10 e:=--e=0.087 2 180 0 ishalfdisk angle u hub length, L:=0.25 Valve DIsk Materfai Properties:
=24.291PressureLocMngForce,COMEDPLEvaluation PSWP18BA.MCD ValveID:2SWP'MOV18B page3 f'
modulus of elasticity, E;=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters:
NiagaraMohawkPowerCorporaaon NuotearEngineering NMP2Catoulation Cont.SheetCheckerlDate
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 108 Valve Bonnet pressure (psig), P bonnet.=2314 Downstream pressure (psig), P d~.=0 Valve Factor VF:=I Valve Stem Diameter, D<.=1.125 Static Unseating Thrust, F o:=1890 (reference:
~io.rrrWPageirSot/3
Test&#xb9;7, 3/30/93)(reference.'ER-2M-010)
~A10.1-AD403, Rev.01Flock:=2tta-(pcos(0)-sin(0))2whichgives,Fpreslock981925Yqpres1WPistonEffectForce,.Pau:=0"pistonstreet'=S'Dstem'(pbonnetpstm)whichgivessFlstonoff~e392.699"ReversePistonEffect"Force,Fvert'=rta2PbonnetupdownTotalForceReuiredtoOvercomePressureLockinwhichgives,F~=900.428Ftotal'preslock+Fpo+FveftFpistwhichgives,'<<~=3.618654 10'ACTUATORCAPABILITY:
ActuatorModel/Size:
MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficiency:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
TQout:=TgRVOGRAfarTQoutTHcap.'=-Sf=SMB-0-25TQm:=23.52OGR:=39.11Af:=0.9Eff:=0.4RV:=0.8852 TQout=259.484St:=0.019627THcap~1.32210ft-Ibstt-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCIQNGMETHODOLOGY:
KEI:=1.20ThrustMsrtpn:=THeep-(FmmtKEI)ThrustMargin~8.878'10lbsIConclusion:
OpenThrustMarginispositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PSWP18BA.MCD ValveID:2SWP'MOV1 8Bpage4 0
NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date Q~/~3bpNMP2Calcutation Cont.SheetChecker/Date
~vrzjt7PageC4or~7A10.1.AD403, RW.01ValveIDno:2SWP'MOV2tA Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:ValveDiskGeometry:
hubradius,b:=0.875meanseatradius,a.=1.47averagediskthickness, t:=0.54.attseatangle,a.=10e:=--e=0.08721800ishalfdisk angleuhublength,L:=0.25ValveDIskMaterfaiProperties:
modulusofelasticity, E;=29400000 Poisson's Ratio,v.=0.3OtherValveParameters:
DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pnp108ValveBonnetpressure(psig),Pbonnet.=2314Downstream pressure(psig),Pd~.=0ValveFactorVF:=IValveStemDiameter, D<.=1.125StaticUnseating Thrust,Fo:=1890(reference:
Test&#xb9;7,3/30/93)(reference.'ER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,cope)-'-s~(e)It=1.091(reference
Coefficient of friction between disk and seat, cope)-'-s~(e)It=1.091 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSNfnesConstants, up+down3avgbonnet2gives,DPavg22610D:=andG:=EtEiz(i-')2(I+v)whichgives,D~4.23910andG~1.131~10IbaaGeometryFactors, C2.=-I--I+21n-C3'.=--+IIn-+--I4ab4aabaIb2C8'.=-1+v+(I-v)2aC9.=--In-+-I-whichgives,C2=0.07C80774C3=0.008C9~0.268COMEDPLEvaluation PSWP21AA.MCD ValveID:2SWPMOV21Apage1
&#xb9;6)Average DP Across Disk, Disk SNfnes Constants, up+down 3 avg bonnet 2 gives, DP avg 2 26 10 D:=and G:=Et E iz(i-')2 (I+v)which gives, D~4.239 10 and G~1.131~10 I b a a GeometryFactors, C2.=-I--I+21n-C3'.=--+I In-+--I 4 a b 4a a b a I b 2 C8'.=-1+v+(I-v)2 a C 9.=--In-+-I-which gives, C 2=0.07 C 8 0774 C 3=0.008 C 9~0.268 COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP MOV21A page 1


NiagaraMohawkPowerCorPoration NuctearEngineering Originator/Date so~.oy~4Q~PZ)$gNMP2Catcutation Cont.SheetChecker/Date PageC'Pot/77A10.1-AD403, Rw.01Additional GeometryFactors,rp.'=bI642422rprprpfp1+4--5--4-2+-~In-aaaarpIL17442rprpaI--I----I+(I+v)In-4aarpwhichgives,L11=9.14910andMomentFactors,2DpavgC9M~'=---(a-ro)-LrrC82abL17~0.063~b:=-'"'(*-0')2bwh/chg/ves,Mrb=-516.898 andQb1.80210'eflection f/QmpressureIbending, 2yb.=Mrb-C2+Qb-C3-.L11ODDwhichgives,y~%.15810bqDeflection frompressureIshear,2rprpK~:=-0.32In--I+-~I-2In-bab2saavgatGwhichgives,Ksa=%.118a/ldy'sq=%.403'10Deflection frompressure/hubstretch,P,:=a(a'-b')DP,,Pforce'Lystretchttb2Ewhichgives,Pforce990618andystretch=-1.751.10COMEDPLEvaluation PSWP21AA.MCD ValveID:2SWP'MOV21A page2
Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date so~.oy~4Q~PZ)$g NMP2 Catcutation Cont.Sheet Checker/Date Page C'Pot/7 7 A10.1-AD403, Rw.01 Additional Geometry Factors, rp.'=b I 64 2 4 2 2 rp rp rp fp 1+4--5--4-2+-~In-a a a a rp I L17 4 4 2 rp rp a I--I----I+(I+v)In-4 a a rp which gives, L 11=9.149 10 and Moment Factors, 2 Dpavg C9 M~'=---(a-ro)-Lrr C8 2ab L17~0.063~b:=-'"'(*-0')2b wh/ch g/ves, M rb=-516.898 and Qb 1.802 10'eflection f/Qm pressureIbending, 2 yb.=Mrb-C2+Q b-C 3-.L 11 O D D which gives, y~%.158 10 bq Deflection from pressure I shear, 2 rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 sa avg a tG which gives, Ksa=%.118 a/ld y'sq=%.403'10 Deflection from pressure/hub stretch, P,:=a (a'-b')DP,, P force'L y stretch ttb 2E which gives, P force 9 906 18 and y stretch=-1.751.10 COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP'MOV21A page 2


NiagaraMohawkPowerCorporation NuclearEngineering 4Originator/Date Rowi>pc,A.Q~QZy/ppNMP2Calculation Cont.SheetChecker/Date
Niagara Mohawk Power Corporation Nuclear Engineering 4 Originator/Date Row i>pc, A.Q~QZy/p p NMP2 Calculation Cont.Sheet Checker/Date
~/i/~rPagerr1/o/~7>A10.1.AMX},
~/i/~r Pagerr 1/o/~7>A10.1.AMX}, Rw.01 Total Deflection due to pressure, y q'bq~y sq+y.trctch which gives, y=-2.031~10 Additional Geometry Factors ro:=a ro L3'=-4a 2 2 ro a ro+1 1n-+--1 a ro a ro L9.=-a 2 1+v a 1-v ro-1n-+-1-2 ro 4 a which gives, L3=0 II and L9=0 Detlection from seat load/bending, w:=1~a w C2 roC9 roC3 y bw.-L9--+L3 which gives, D C8 b b ybw 64'Deflection from seat load/shear, ro ro Ksa:=-1.2-1n-a b y:=Ksa-which gives, Ksa W.623 sw'~~-1:499'10 Deflection from seat load/hub compression,-2tta y compr'b L 2 which gives, y~-1.633 10 Total Deflection from unit seat load, yw:=y bw+y sway compr which gives, y w 3.626 10 Equilibrium contact load distribution, w~b-~.=-which gives, yq yw Load per seat r 2 tt a-5.175 10 yq yw w cquiTibrium 5%'241 Pressure Locking Force, COMED PL Evaluation PSWP21AAMGD Valve ID: 2SWP'MOV21A page 3
Rw.01TotalDeflection duetopressure, yq'bq~ysq+y.trctchwhichgives,y=-2.031~10Additional GeometryFactorsro:=aroL3'=-4a22roaro+11n-+--1aroaroL9.=-a21+va1-vro-1n-+-1-2ro4awhichgives,L3=0IIandL9=0Detlection fromseatload/bending, w:=1~awC2roC9roC3ybw.-L9--+L3whichgives,DC8bbybw64'Deflection fromseatload/shear, roroKsa:=-1.2-1n-aby:=Ksa-whichgives,KsaW.623sw'~~-1:499'10 Deflection fromseatload/hubcompression,
-2ttaycompr'bL2whichgives,y~-1.63310TotalDeflection fromunitseatload,yw:=ybw+yswaycomprwhichgives,yw3.62610Equilibrium contactloaddistribution, w~b-~.=-whichgives,yqywLoadperseatr2tta-5.17510yqywwcquiTibrium 5%'241PressureLockingForce,COMEDPLEvaluation PSWP21AAMGD ValveID:2SWP'MOV21A page3


NiagaraMohawkPowerCorporation NuctearEngineering Originator/Date
Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date
,>;A'.aPdislp~NMP2Catcutation Cont.SheetChecker/Date Pio.ridPage//ofI$1A10.1-AD403.
,>;A'.a Pdislp~NMP2 Catcutation Cont.Sheet Checker/Date Pio.rid Page//of I$1 A10.1-AD403.
Rev.01Yq4Fpres]ocp2fta-"(pcos(0)-sin(0))2whichgives,Fpresloc'k=1.03510WPistonEffectForce,Pat:=0ft"pistonetr(mt'stem'ibonnetpetm)whichgivesrFpistoncff~t"ReversePistonEffect"Force,v~:="Pbonnct-up-so~'m<<)TotalForceReuiredtoOvercomePressureLockinwhichgives,Fcrt=2.67410Ftotal.'=Fprcs lock+Fpo+'FvertFpistoncffcctwhichgives,'<<~=1.261328 10ACTUATORCAPABILITY:
Rev.01 Yq 4 F pres]ocp 2 ft a-" (p cos(0)-sin(0))2 which gives, F pres loc'k=1.035 1 0 W Piston Effect Force, Pat:=0 ft"piston etr(mt'stem'i bonnet p etm)which givesr F piston cff~t"Reverse Piston Effect" Force, v~:=" Pbonnct-up-so~'m<<)Total Force Re uired to Overcome Pressure Lockin which gives, Fcrt=2.674 10 F total.'=Fprcs lock+Fpo+'F vert Fpiston cffcct which gives,'<<~=1.261328 10 ACTUATOR CAPABILITY:
ActuatorMode!ISize:MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficiency:
Actuator Mode!I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
ReducedVoltage:TorqueOutput:TQout:=TQmRVOGRAfEffStemFactor..TQutThrustCapability:
Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor..TQ ut Thrust Capability:
fHcap:=-ToutSf=SMB-000-5 TQm.'=4.76OGR:=52Af:=0.9Eff:=0.4RV:=0.8623TQout~66.257Sf:=0.014500THcap~4.56910ft-1bsft-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
fHcap:=-T out Sf=SMB-000-5 TQm.'=4.76 OGR:=52 Af:=0.9 Eff:=0.4 RV:=0.8623 TQout~66.257 Sf:=0.014500 THcap~4.569 10 ft-1bs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20'ibrnstMer(pn:=THeep-(FmmrKH1)
KEI:=1.20'ibrnst Mer(pn:=THeep-(FmmrKH1)Thrust Margin~-1.057 10 1bs
ThrustMargin~-1.057101bsConclusion:
OpenThrustMarginIsnegative, therefore thisvalveandactuatorareunlikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PSWP21AA.MCD ValveID:2SWP'MOV21A page4


NIagaraMohawkPowerCorPoration NuctearEngineering Originator/Date
== Conclusion:==
~enie3wA.ge'/e3legNMP2Calcutation ContSheetChecker/Date ekePage7uor/97A10.1-AD403, RW.01ValveIDno:2SWPMOV21BReuired0eninForceDefernminafion underPressureLockinConditions COMEDMethodDESIGNINPUTS:ValveDiskGeometry:
 
hubradius,b:=0.875meanseatradius,a:=1.47averagediskthickness, t:=0.54seatangle,a.=100:=--00.087att21800ishalfdiskangle ahublength,L:=0.25ValveDiskMaterialProperties modulusofelasticity, E:=29400000Poisson's Ratio,v:=0.3OtherValveParameters:
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated.
DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P:=108ValveBonnetpressure(psig),Pbo<<.=2314Downstream pressure(psig),Pdo~0ValveFactorVF:=1ValveStemDiameter, D<~.=1.125 StaticUnseating Thrust,Fpo1245(reference:
COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP'MOV21A page 4
Test&#xb9;12,1295)(reference:
 
NIagara Mohawk Power CorPoration Nuctear Engineering Originator/Date
~enie3w A.g e'/e3leg NMP2 Calcutation Cont Sheet Checker/Date eke Page7uor/97 A10.1-AD403, RW.01 Valve ID no: 2SWP MOV21B Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a:=1.47 average disk thickness, t:=0.54 seat angle, a.=10 0:=--0 0.087 a tt 2 180 0 ishalfdiskangle a hub length, L:=0.25 Valve Disk Material Properties modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P:=108 Valve Bonnet pressure (psig), Pbo<<.=2314 Downstream pressure (psig), P do~0 Valve Factor VF:=1 Valve Stem Diameter, D<~.=1.125 Static Unseating Thrust, F po 1245 (reference:
Test&#xb9;12, 1295)(reference:
NER-2M-010)
NER-2M-010)
CALCULA77ONS:
CALCULA77ONS:
Coefficient offrictionbetweendiskandseat,cos(0)-sin(0)it=1.091(reference
Coefficient of friction between disk and seat, cos(0)-sin(0)it=1.091 (reference
&#xb9;6)AverageDPAcrossDisk,DiskSNI'nesConstants, gives,DPa2.2610EG:=-2(1+v)P~+Pdo~Davg"bonnet2Et3D:=endwhichgives,D4.23910andG=1.131~101babb2ab2GeometryFactors, C2.=-1--1+21n-C3.=--+1ln-+--14ab4aaba1b2C8'=-1+v+(1-,v)-2ab1+va1-vb2C9.'=--ln-+-.1--a2b4awhichgives,C2=0.07C8~0.774C3~0.008C9=0.268COMEDPLEvaluation PSWP21BA.MCD ValveID:2SWP'MOV21 Bpage1
&#xb9;6)Average DP Across Disk, Disk SNI'nes Constants, gives, DP a2.26 10 E G:=-2 (1+v)P~+Pdo~D avg" bonnet 2 Et3 D:=end which gives, D 4.239 10 and G=1.131~10 1 b a b b2 a b2 GeometryFactors, C2.=-1--1+2 1n-C3.=--+1 ln-+--1 4 a b 4a a b a 1 b 2 C 8'=-1+v+(1-, v)-2 a b 1+v a 1-v b 2 C9.'=--ln-+-.1--a 2 b 4 a which gives, C 2=0.07 C 8~0.774 C 3~0.008 C 9=0.268 COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP'MOV21 B page 1


NiagaraMohawkPowerCorPoration NuclearEngineering originator/Date NMP2Calculation Cont.SheetChecker/Date Pagey/of/37At0.t-AD403, Rev.01Additional GeometryFactors,rp'.=b164242rprprp1+4--5--4aaa2rpa2+-ln-arp1L174421-Y00aI--1----I+(1+Y)ift-4aarpwhichgives,MomentFactors,2DPaygaC&L11=9.14910and9~a-rp-L172abL17~0.063ob:=-'"'('-0')2bwhichgives,Mrb-516.898andQb~1.802'lpWDeflection frompressure&ending, aDPaygayb'&#x17d;rb'2+Qb'3'looowhichgives,y~%.15&10bqDeflection frompressure/shear,2'rp'pK~:=-0.321n--1+-~1-21n-abI2s'a'vgaysq'=whichgives,Ksa~.l1&andy'.40310sqDeflection frompressure/hub stretch,Pforcett(ab)DPaygPforceLystretch'=itb2Ewhichgives,Pf0~=9.906.10 andy~~-1.751~10COMEDPLEvaluation PS.WP21BA.MCD ValveID:2SWP'MOV218 page2 0
Niagara Mohawk Power CorPoration Nuclear Engineering originator/Date NMP2 Calculation Cont.Sheet Checker/Date Pagey/of/3 7 At 0.t-AD403, Rev.01 Additional Geometry Factors, rp'.=b 1 64 2 4 2 rp rp rp 1+4--5--4 a a a2 rp a 2+-ln-a rp 1 L17 4 4 2 1-Y 0 0 a I--1----I+(1+Y)ift-4 a a rp which gives, Moment Factors, 2 DP ayg a C&L 1 1=9.149 10 and 9~a-rp-L17 2ab L17~0.063 ob:=-'"'('-0')2b which gives, Mrb-516.898 and Q b~1.802'lp W Deflection from pressure&ending, a DP ayg a yb'&#x17d;rb'2+Qb'3'l o o o which gives, y~%.15&10 bq Deflection from pressure/shear, 2'rp'p K~:=-0.3 21n--1+-~1-21n-a b I 2 s'a'vg a ysq'=which gives, K sa~.l 1&and y'.403 10 sq Deflection from pressure/hub stretch, P force tt (a b)DP ayg P force L y stretch'=itb 2E which gives, Pf0~=9.906.10 and y~~-1.751~10 COMED PL Evaluation PS.WP21BA.MCD Valve ID: 2SWP'MOV218 page 2 0
NiagaraMohawkPowerCorgoration NuotearEngineering Originator/Date
Niagara Mohawk Power Corgoration Nuotear Engineering Originator/Date
>c~p-8'~Wzp/ppNMP2Catcutation Cont.SheetCheckerloate Page72bi/77A10.1-AD403, Rev.01TotalDeflection duetopressure, Additional Geometry'actors yq'=ybq+ysq+ystretch whichgives,yq203110ro.'=aroL3'=-4a22roaro+IIn-+--IaroaroL9"=-a2I+vaI-vro-ln-+-I-2ro4awhichgives,L3~0andL9~0Deflection fromseatload/bending, w:=I~.a3wC2roC9roC3ybw.-L9--+L3whichgives,DC8bbyb=-1.964107Deflection fromseatload/shear, roroKsa:=-1.2-In-aby:=Ksa-whichgives,sw'sa~W.623ysw~-1.49910Deflection fromseatload/hubcompression,
>c~p-8'~Wzp/pp NMP2 Catcutation Cont.Sheet Checkerloate Page 72bi/77 A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry'actors yq'=ybq+ysq+ystretch which gives, y q 2 031 10 ro.'=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9"=-a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3~0 and L9~0 Deflection from seat load/bending, w:=I~.a3w C2 ro C9 roC3 y bw.-L9--+L3 which gives, D C8 b b y b=-1.964 10 7 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b y:=Ksa-which gives, sw'sa~W.623 y sw~-1.499 10 Deflection from seat load/hub compression,-2'1t'a y compr'tb L 2 which gives, y~-1.633 10 Total Deflection from unit seat load, y w:=y bw+'y sway compr which gives, y w~-3.626'10 Equilibnum contact load distribution, equilibrium
-2'1t'aycompr'tbL2whichgives,y~-1.63310TotalDeflection fromunitseatload,yw:=ybw+'yswaycomprwhichgives,yw~-3.626'10 Equilibnum contactloaddistribution, equilibrium
'which gives, yq yw Load perseat=2 tt a-~5.175 10 yq yw w equilibrium 560'241 Pressure Locking Force, COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP'MOV21 B page 3 I
'whichgives,yqywLoadperseat=2tta-~5.17510yqywwequilibrium 560'241PressureLockingForce,COMEDPLEvaluation PSWP21BA.MCD ValveID:2SWP'MOV21 Bpage3 I
Niagara Mohawk Power Corporation Nuotear Ent/ineeriny Onglnatof/Date wowrop A'/r(gSrp7 NMP2 Catoutatton Cont.Sheet Checker/Date
NiagaraMohawkPowerCorporation NuotearEnt/ineeriny Onglnatof/Date wowropA'/r(gSrp7NMP2Catoutatton Cont.SheetChecker/Date
~re rtr+p Pa//el&o/I>>A10.1-AD403, Rev.01 F pres loca'=2 tt a-(P cos(e)-sin(e))2 J tl>w which gives, F, 1~1, 1.035 10 Piston Effect Force, P at:=0 P piston etreet'='tern'(P ttonnet P ann)which gives, P piston street pt on 4"Reverse Piston Effect" Force, vert''onnet up down Total Force Re uired to Overcome Pressure Lockin which gives, F~2.674 10 F totai:=F pres loca+F po+F vert-F piston effect which gives, F<<nd=1.196828 10'CTUATOR CAPABILITY:
~rertr+pPa//el&o/I>>A10.1-AD403, Rev.01Fpresloca'=2tta-(Pcos(e)-sin(e))2Jtl>wwhichgives,F,1~1,1.03510PistonEffectForce,Pat:=0Ppistonetreet'='tern'(PttonnetPann)whichgives,Ppistonstreetpton4"ReversePistonEffect"Force,vert''onnetupdownTotalForceReuiredtoOvercomePressureLockinwhichgives,F~2.67410Ftotai:=Fpresloca+Fpo+Fvert-Fpistoneffectwhichgives,F<<nd=1.196828 10'CTUATORCAPABILITY:
Actuator Model/Size:
ActuatorModel/Size:
Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficiency:
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
ReducedVoltage:TorqueOutput:StemFactor:ThrustCapability:
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-000.5 TQm;=4.76 OGR:=52 Af:=0.9 Eff:=0.4 RV:=0.8591 TQout=65.766 Sf:=0.014500 THcap=4.536 1(P ft-1bs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
TQoutTHcap:=-SfTQout:=TQmRVOGRAfEff=SMB-000.5 TQm;=4.76 OGR:=52Af:=0.9Eff:=0.4RV:=0.8591TQout=65.766Sf:=0.014500THcap=4.5361(Pft-1bsft-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:"-1.20 Thntat Margin:=THcap-(F tong KEi)Thrust Margin~%.826'10 1bs
KEI:"-1.20ThntatMargin:=THcap-(FtongKEi)ThrustMargin~%.826'10 1bsConclusion:
OpenThrustMarginIsnegative, therefore thisvalveandactuatorareunlikelytooVercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PSWP21BA.MCD ValveID:2SWPMOV21Bpage4


NiagaraMohawkPowerCorporatke NuciearEnginoerinp Orlglnatof/Data Qonvrp>Atots/splngNMP2Calcukrtion Cont.SheetCheckerlDate
== Conclusion:==
.~re/r7Page7rtor/
 
ppA10.1-AD403, Rev.01ValveIDno:2SWPMOV66AReuiredOeninForceDeternminationunderPressureLockin Conditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:IUpstreampressure(psig),F:=108ValveBonnetpressure(psig),Pb<=108IDownstream pressure(psig),Fgo~0ValveDiskGeometry:
Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to oVercome the theoretical pressure locking conditions evaluated.
hubradius,b:=3.375hublength,L:=0.125meanseatradius,a:=3.91averagediskthickness, t:=0.48seatangle,a:=10e:=--e0.087att2180ValveDiskMaterialProperties:
COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP MOV21B page 4
'odulusofelasticity, E:=29400000OtherValveParameters:
 
Poisson's Ratio,v.'=0.3eishalfdisk'angle aValveFactorVF:=0.65ValveStemDiameter, D~.=1.625StaticUnseating ThrustFpo9232(reference:
Niagara Mohawk Power Corporatke Nuciear Enginoerinp Orlglnatof/Data Qo nv rp>A tot s/s p lng NMP2 Calcukrtion Cont.Sheet CheckerlDate
Test&#xb9;25,10/5/94)(reference:
.~re/r7 Page7rtor/
p p A10.1-AD403, Rev.01 Valve ID no: 2SWP MOV66A Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: I Upstream pressure (psig), F:=108 Valve Bonnet pressure (psig), P b<=108 I Downstream pressure (psig), F go~0 Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a:=3.91 average disk thickness, t:=0.48 seat angle, a:=10 e:=--e 0.087 a tt 2 180 Valve Disk Material Properties:
'odulus of elasticity, E:=29400000 Other Valve Parameters:
Poisson's Ratio, v.'=0.3 e is half disk'angle a Valve Factor VF:=0.65 Valve Stem Diameter, D~.=1.625 Static Unseating Thrust F po 9232 (reference:
Test&#xb9;25, 10/5/94)(reference:
NER-2M-010)
NER-2M-010)
CALCULA77ONS:
CA L CULA77ONS:
Coel'cient offnctionbetweendiskandseat,It:=I--am(e)VFIt=0.686(reference
Coel'cient of fnction between disk and seat, It:=I--am(e)VF It=0.686 (reference
&#xb9;6)gives,DPavg54Fup+FdeAverageDPAcrossDisk,DPavg'DiskEtttthssConstsnts, D:=sndG:=EtEtk(t-s')2(tsv)whichgives,D2.977'10andG=1.131~10GeometryFactors,C2.'=-I--I<<2In-Iba4abIbC8.'=-I+v+(I-v)-2aC3.---+IIn-+--IC9---In-+-I--whichgives,C20.009C8~0.911COMEDPiEvaluation PSWP66AA.MCD C3=3.965'10 C9=0.121(o+ValveID:2SWP'MOVS48 page1
&#xb9;6)gives, DP avg 54 Fup+F de Average DP Across Disk, DP avg'Disk Etttthss Constsnts, D:=snd G:=Et E tk (t-s')2(tsv)which gives, D 2.977'10 and G=1.131~10 Geometry Factors, C 2.'=-I--I<<2 In-I b a 4 a b I b C 8.'=-I+v+(I-v)-2 a C3.---+I In-+--I C9---In-+-I--which gives, C 2 0.009 C 8~0.911 COMED Pi Evaluation PSWP66AA.MCD C 3=3.965'10 C 9=0.121 (o+Valve ID: 2SWP'MOVS48 page 1
 
Niapara Mohawk Power Corporation Nuclear Enpineerinp Oripinator/Oate Q~~~A'.g~Wiplpp NMP2 Calculation Cont.Sheet Checkerloate Pape75 ot/77 A10.1 AO403.Rw.Ot Addih'onel Geometry Factors, rp.'=b 2 4 2 2 fp fp fp fp LII=-I+4--5--4-~2+-In-64 a a a a rp I L17 4 4 2 I-U 0 0 a I--I----~I+(I+v)ln-4 a a rp which gives, L I I=1.378 10 and Moment Factors, 2 avg 9/2 Mg:=-'o)C8 2ab L 17=0.009'"'a'-ra'j 2b which gives, Mrb-8.373 and Qb-3118 Deflection from pressurelbending, a a avga 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, y b-1.937 10 tI Deflection fmm pressure/sheer, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 Ksa DP av'g'a sq'G which gives, Ksa~%.012 end y'1.796 10 sq Deflection from pressure/hub stretch, P f'.=ll (a-b)DP vg-P force L y stretch'=rtb 2E which gives, P f0~661.191 II and y~tch-3.928 10 COMED PL Evaluation PSWP66AA.MCD Valve ID: 2SWP'MOV66A page 2
 
Niagara Mohawk Power Cotporatton Nuotear Enttineertntt Orfttlnatorioate
>~~~>A'.g~c/gy+)NMP2 Catoulation Cont.Sheet Checkerloate 7/i/~y A10.1 AD403, Rw.01 Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q~-3.77I'10 r0.'=a ro L3.'=-.4a 2 2 ro a r0+I ln-+--I a ro a r0 L9.=-a 2 1+v a I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a.w C2 roC9 roC3 ybw.=L9--+L3 which gives, D C8 b b ybw 1835 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b a y:=Ksa-tG which gives, Ksa=-0.177 y=-I 272 10 Deflecflon from seat load/hub compression,-2 tt'a compr'tb L 2 which gives, y-1.459 10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w 3 122'10 Equilibrium contact load distribution, yq we~bn~.=-which gives, w Load per seat=2 a a-296.797 yq yw equilibrium 12'081 Pressure LDCMng Force, COMED PL Evaluallon PSWP66AA.MCD Valve ID: 2SWP MOV66A pag8 3 0
Niagara Mohawk Power Corporation Nuciear Engineeiing Originator/Date a~"p" 4.~4/go/pr NMP2 Ceioiglation Cont.Sheet Checker/Date
~rs r.r r/PageTfo/I+'7 A10.1-AD403.
Rev.01 F pres leak'tt a-" (p;cos(e)-
sin(e))2 which gives, Fpres look=354.165 Yq Vrr Piston Effect Force, Pau'=0 2/F piston street''D stem'(p bonnet p atm)which gives, F piston eff~t=223.986"Reverse Piston Effect" Force, F<<.'=it a 2 P bonnet up gown Total Force Re uired to Overcome Pressure Lockin which gives, F v<<=452.0SS F total:=F pres look+F po+F v<<-F piston which gives, F+~=9.814267'10 ACTUATOR CAPABILITY:
Actuator Mode)/Size:
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: Stem Factor: Thrust Capability:
TQout THcap"=-Sf TQout:=TQI RV OGR Af Eff=SMB-00-15 TQrn:=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:=0.8838 TQout=141.339 Sf:=0.016407 THeap=8.615'10 ft-lbs ft-lbs Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 Throat Margin:=THoap-(Fm~Kgi)n Thrust Margin-3.163'10 lbs


NiaparaMohawkPowerCorporation NuclearEnpineerinp Oripinator/Oate Q~~~A'.g~WiplppNMP2Calculation Cont.SheetCheckerloate Pape75ot/77A10.1AO403.Rw.OtAddih'onel GeometryFactors,rp.'=b2422fpfpfpfpLII=-I+4--5--4-~2+-In-64aaaarpIL17442I-U00aI--I----~I+(I+v)ln-4aarpwhichgives,LII=1.37810andMomentFactors,2avg9/2Mg:=-'o)C82abL17=0.009'"'a'-ra'j2bwhichgives,Mrb-8.373andQb-3118Deflection frompressurelbending, aaavga34yb.'=Mrb-C2+Qb-C3-LIIDDDwhichgives,yb-1.93710tIDeflection fmmpressure/sheer, 2arprpK~:=-0.32In--I+-~I-2In-bab2KsaDPav'g'asq'Gwhichgives,Ksa~%.012endy'1.79610sqDeflection frompressure/hub stretch,Pf'.=ll(a-b)DPvg-PforceLystretch'=rtb2Ewhichgives,Pf0~661.191IIandy~tch-3.92810COMEDPLEvaluation PSWP66AA.MCD ValveID:2SWP'MOV66A page2
== Conclusion:==


NiagaraMohawkPowerCotporatton NuotearEnttineertntt Orfttlnatorioate
Open Thrust Margin ls negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
>~~~>A'.g~c/gy+)NMP2Catoulation Cont.SheetCheckerloate 7/i/~yA10.1AD403,Rw.01TotalDeflection duetopressure, Additional GeometryFactorsyq'bq+ysq+ystretch whichgives,yq~-3.77I'10 r0.'=aroL3.'=-.4a22roar0+Iln-+--Iaroar0L9.=-a21+vaI-v0-In-+-I-2ro4awhichgives,L3=0andL9=0Deflection fromseatload/bending, w:=Ia.wC2roC9roC3ybw.=L9--+L3whichgives,DC8bbybw183510Deflection fromseatload/shear, roroKsa:=-1.2
4 COMED PL Evaluation PSWP66AA.MCD Valve ID: 2SWP'MOV66A page 4 ll Niagara Mohawk Power Corporation N ucteaf Engineering Oflglnatof/Date A 0$g cfs E i)7 HMP2 Calculation Cont Sheet Checker/Gate
-ln-abay:=Ksa-tGwhichgives,Ksa=-0.177y=-I27210Deflecflon fromseatload/hubcompression,
~/<C Page7+1/37 A10.1.AD403, Rev.01 Valve ID no: 2SWP'MOV66B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), Pbo~ct-108 Downstream pressure (psig), P~o~.=0 Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a'.=3.91 average disk thickness, t:=0.48 seat angle, a:=10 6:=--6 0.087 a tt 2 180 Valve Disk Material Properties:
-2tt'acompr'tbL2whichgives,y-1.45910TotalDeflection fromunitseatload,yw:=ybw+ysw+ycomprwhichgives,yw3122'10Equilibrium contactloaddistribution, yqwe~bn~.=-whichgives,wLoadperseat=2aa-296.797yqywequilibrium 12'081PressureLDCMngForce,COMEDPLEvaluallon PSWP66AA.MCD ValveID:2SWPMOV66Apag83 0
modulus of elasticity, E:=29400000 Other Valve Parameters:
NiagaraMohawkPowerCorporation NuciearEngineeiing Originator/Date a~"p"4.~4/go/prNMP2Ceioiglation Cont.SheetChecker/Date
Poisson's Ratio, v.=0.3 6 ishalfdisk'angle u Valve Stem Diameter, D<~.=1.625 Static Unseating Thrust F po 7027 (reference:
~rsr.rr/PageTfo/I+'7A10.1-AD403.
Test&#xb9;16, 3N/94)Valve Factor VF:=0.65 (reference:
Rev.01Fpresleak'tta-"(p;cos(e)-
sin(e))2whichgives,Fpreslook=354.165YqVrrPistonEffectForce,Pau'=02/Fpistonstreet''Dstem'(pbonnetpatm)whichgives,Fpistoneff~t=223.986"ReversePistonEffect"Force,F<<.'=ita2PbonnetupgownTotalForceReuiredtoOvercomePressureLockinwhichgives,Fv<<=452.0SSFtotal:=Fpreslook+Fpo+Fv<<-Fpistonwhichgives,F+~=9.814267'10 ACTUATORCAPABILITY:
ActuatorMode)/Size:
MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutput:StemFactor:ThrustCapability:
TQoutTHcap"=-SfTQout:=TQIRVOGRAfEff=SMB-00-15 TQrn:=14.74OGR:=34.1Af:=0.9Eff:=0.4RV:=0.8838TQout=141.339Sf:=0.016407THeap=8.615'10ft-lbsft-lbsIbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20ThroatMargin:=THoap-(Fm~Kgi)nThrustMargin-3.163'10 lbsConclusion:
OpenThrustMarginlsnegative, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
4COMEDPLEvaluation PSWP66AA.MCD ValveID:2SWP'MOV66A page4 ll NiagaraMohawkPowerCorporation NucteafEngineering Oflglnatof/Date A0$gcfsEi)7HMP2Calculation ContSheetChecker/Gate
~/<CPage7+1/37A10.1.AD403, Rev.01ValveIDno:2SWP'MOV66B Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P>>.=108ValveBonnetpressure(psig),Pbo~ct-108Downstream pressure(psig),P~o~.=0ValveDiskGeometry:
hubradius,b:=3.375hublength,L:=0.125meanseatradius,a'.=3.91averagediskthickness, t:=0.48seatangle,a:=106:=--60.087att2180ValveDiskMaterialProperties:
modulusofelasticity, E:=29400000 OtherValveParameters:
Poisson's Ratio,v.=0.36ishalfdisk'angle uValveStemDiameter, D<~.=1.625StaticUnseating ThrustFpo7027(reference:
Test&#xb9;16,3N/94)ValveFactorVF:=0.65(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,It:=cos(6)I--sitt(6)VFp0.686(reference
Coefficient of friction between disk and seat, It:=cos(6)I--sitt(6)VF p 0.686 (reference
&#xb9;6)Pup+Pdo~A~erageDPAcrossDisk,DPayg:Pboggct-gives,DP=542DiskSNnvesCenslsnls, D:=sndG:=EtE12(!-v)2(!vv)whichgives,D2.97710andG=1.131'10Iba.bbabGeometryFactors,C2.=-I--I+2ln-C'3'.=--+Ih-+--I4ab4aa'aIbC8.'=-I+v+(I-v)2ab1+vaI-vb2C9=--In-+-I--a2b4awhichgives,C20.009C8~0.911C3=3.965'10 C9~0.121COMEDPLEvaluation PSWP66BA.MCD ValveID:2SWPeMOVSICB page1 I,
&#xb9;6)Pup+Pdo~A~erage DP Across Disk, DP ayg: P boggct-gives, DP=54 2 Disk SNnves Censlsnls, D:=snd G:=Et E 12 (!-v)2 (!vv)which gives, D 2.977 10 and G=1.131'10 I b a.b b a b Geometry Factors, C 2.=-I--I+2 ln-C'3'.=--+I h-+--I 4 a b 4a a'a I b C8.'=-I+v+(I-v)2 a b 1+v a I-v b 2 C9=--In-+-I--a 2 b 4 a which gives, C 2 0.009 C 8~0.911 C 3=3.965'10 C 9~0.121 COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWPeMOVSICB page 1 I,
NiagaraMohawkPowerCorgoration NuctearEngineering Originator/Date
Niagara Mohawk Power Corgoration Nuctear Engineering Originator/Date
~~oPoW<~~M&7NMP2Catcutation Cont.SheetChecker/Date
~~oPo W<~~M&7 NMP2 Catcutation Cont.Sheet Checker/Date
~/z/yyPage7?of/77A10.1AD403,Rw.01Add/t/onel GeometryFactors,rp.'=b2422fpfpfpfpL11'=-1+4--5--4-2+-In-64aaaarp42II-Y00aL17'.=-I--1----~I+(I+Y)In-44aarpwhichgives,LII=1.37810andMomentFactors,L17=0.009Mg:=-2OPavg'aC9~-a-rp-L17C82ab~b:=-'"'(*-o*j,2bwhichgives,Mrb=-8.373endQb~31.18Deflection frompressureibending, aaavga34yb'.=Mrb-C2+Qb-C3-L11ooowhichgives,yb~1.937.10qDeflection frompressureIshear,2arprpK~:=-0.32In--I+-~1-2In-bab2sa'vgaSq'Gwhichgives,Ksa=%.012endy-1.796'10 SqDeflection frompressure/hub stretch,Pro~.'=m(a-b)DP~<-PronxL>'uetch:=ttb2Ewhichgives,Pfo~=661.191endy~th=-3.928108fCOMEDPLEvaluaIIon PSWP66BA.MCD ValveID:2SWPMOV66Bpage2 I
~/z/y y Page7?of/7 7 A10.1 AD403, Rw.01 Add/t/onel Geometry Factors, rp.'=b 2 4 2 2 fp fp fp fp L 11'=-1+4--5--4-2+-In-64 a aa a rp 4 2 I I-Y 0 0 a L17'.=-I--1----~I+(I+Y)In-4 4 a a rp which gives, L I I=1.378 10 and Moment Factors, L17=0.009 Mg:=-2 OP avg'a C 9~-a-rp-L17 C8 2ab~b:=-'"'(*-o*j , 2b which gives, Mrb=-8.373 end Qb~31.18 Deflection from pressureibending, a a avg a 3 4 y b'.=Mrb-C 2+Q b-C 3-L11 o o o which gives, yb~1.937.10 q Deflection from pressure I shear, 2 a rp rp K~:=-0.3 2 In--I+-~1-2 In-b a b 2 sa'vg a Sq'G which gives, K sa=%.012 end y-1.796'10 Sq Deflection from pressure/hub stretch, Pro~.'=m (a-b)DP~<-Pronx L>'uetch:=ttb 2E which gives, P fo~=661.191 end y~t h=-3.928 10 8 f COMED PL EvaluaIIon PSWP66BA.MCD Valve ID: 2SWP MOV66B page 2 I
NiagaraMohawkPowerCorgoration NudearEngineering Originator/Date
Niagara Mohawk Power Corgoration Nudear Engineering Originator/Date
%~ryan~Ai4&4'fdkpjNMP2Calcuiation Cont.SheetChecker/Date
%~ryan~Ai 4&4'fdkpj NMP2 Calcuiation Cont.Sheet Checker/Date
~p/z/rzPagetourt/37A10.1-AD403, Rw.01TotalDeflection duetopressure, yqybq+ysq+ystretchwhichgives,y=-3.771~10Additional GeometryFactorsro.'=aroL3.'=-.4a22roaro+IIn-+--IaroaroL9'.=-ar21+vaI-vo-~In-+-I--2ro4awhichgives,L3~0andL9~0Deflection fromseatload/bending, w:=1awC2roC9roC3ybw'9--+L3DC8bbwhichgives,ybw=-1.83510Deflection fromseatload/shear, roKsa.'=-1.2-In-aby:=Ksa-whichgives,Ksa%.177tGy~~-I:272 10Deflection fromseatload/hubcompression,
~p/z/rz Page tourt/3 7 A10.1-AD403, Rw.01 Total Deflection due to pressure, y q y bq+y sq+y stretch which gives, y=-3.771~10 Additional Geometry Factors ro.'=a ro L3.'=-.4a 2 2 ro a ro+I In-+--I a ro a ro L9'.=-a r 2 1+v a I-v o-~In-+-I--2 ro 4 a which gives, L3~0 and L9~0 Deflection from seat load/bending, w:=1 a w C2 roC9 ro C3 ybw'9--+L3 D C8 b b which gives, y bw=-1.835 10 Deflection from seat load/shear, ro Ksa.'=-1.2-In-a b y:=Ksa-which gives, Ksa%.177 tG y~~-I:272 10 Deflection from seat load/hub compression,-2"tt.a y compr'b L 2 which gives, y-1.459 10 Total Detlection from unit seat loa'd, yw'bw+ysw+ycompr which gives, yw 3122 10 Equilibrium contact load distribution, w e,l;b~.--which gives, yw Load per seat r-2 tt a-296.797 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWP'MOV668 page 3
-2"tt.aycompr'bL2whichgives,y-1.45910TotalDetlection fromunitseatloa'd,yw'bw+ysw+ycompr whichgives,yw312210Equilibrium contactloaddistribution, we,l;b~.-
 
-whichgives,ywLoadperseatr-2tta-296.797yqywequilibrium PressureLockingForce,COMEDPLEvaluation PSWP66BA.MCD ValveID:2SWP'MOV668 page3
Niagara Mohawk Power Corporation Nuotear Engineering Onglnstor/Date
~~ny u P-<5/g/as/P7 NMP2 CaCulati'on Cont.Sheet Checker/Date 7 Page j/ot/W7 Atp.t-AD403, Rev.01 Fpres loci'.'=2 tt a-(it cos(e)-sin(e))2 which gives, pres leak W t Piston Effect Force, P au:=0"piston street''tem
'i honest ann}which gives, F piston effect"Reverse Piston EIfect" Force, Fyert'=a'2'P bonnet P up down Total Force Re uired to Overcome Pressure Lockin which gives, F y~=452.088 Ftptai t=F pres]pck1 Fpp+Fyert Fpistpn effect which gives, F tp<7 609267 10 ACTUATOR CAPABILITY'ctuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout THcap:=-Sf TQout:=TQm RV.OGR Af Eff=SMB-00-15 TQm.'=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:-" 0.8847 TQout=141.627 Sf:=0.016407 THcap=8.632 10 tt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY:
KEI:=1.20 Thrust Margin:=THoap-(Fmmt KEI)Thrust Margin-499.005 1bs
 
== Conclusion:==


NiagaraMohawkPowerCorporation NuotearEngineering Onglnstor/Date
Open Thrust Margin is negative, therefore this valve and actuator are likety to overcome the theoretical pressure locking conditions evaluated.
~~nyuP-<5/g/as/P7 NMP2CaCulati'on Cont.SheetChecker/Date 7Pagej/ot/W7Atp.t-AD403, Rev.01Fpresloci'.'=2tta-(itcos(e)-sin(e))2whichgives,presleakWtPistonEffectForce,Pau:=0"pistonstreet''tem
ra/d4clcvat 4 J Y/cl'payee j 4 vdry mrrvelvlcr gt ptgsl 1'AdNC is a/rrglk cgpn/icPt~r.p pggp these'rpr lreertrresureroskio1 Seeeranro COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWP'MOV66B page 4
'ihonestann}whichgives,Fpistoneffect"ReversePistonEIfect"Force,Fyert'=a'2'PbonnetPupdownTotalForceReuiredtoOvercomePressureLockinwhichgives,Fy~=452.088Ftptait=Fpres]pck1Fpp+FyertFpistpneffectwhichgives,Ftp<760926710ACTUATORCAPABILITY'ctuator ModelISize:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
TQoutTHcap:=-SfTQout:=TQmRV.OGRAfEff=SMB-00-15 TQm.'=14.74OGR:=34.1Af:=0.9Eff:=0.4RV:-"0.8847TQout=141.627Sf:=0.016407THcap=8.63210tt-lbstt-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCIQNGMETHODOLOGY:
KEI:=1.20ThrustMargin:=THoap-(FmmtKEI)ThrustMargin-499.0051bsConclusion:
OpenThrustMarginisnegative, therefore thisvalveandactuatorareliketytoovercomethetheoretical pressurelockingconditions evaluated.
ra/d4clcvat 4JY/cl'payee j4vdrymrrvelvlcr gtptgsl1'AdNCisa/rrglkcgpn/icPt~r.p pggpthese'rpr lreertrresureroskio1 Seeeranro COMEDPLEvaluation PSWP66BA.MCD ValveID:2SWP'MOV66B page4


NiagaraMohawkPowerCorporation N)tctearEngtneerfng Orfgtnatorloate g~~A~Q-tt>>/svNMP2calo)station Cont.SheetChecker/Date
Niagara Mohawk Power Corporation N)tctear Engtneerfng Orfgtnatorloate g~~A~Q-tt>>/sv NMP2 calo)station Cont.Sheet Checker/Date
.Page~/3$A10.1-AD403, Rw.01ValveIDno:2SWP'MOV67A Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pup108ValveBonnetpressure(psig),Pbonnet=108Downstream pressure(pslg),Pdown0ValveDiskGeometry:
.Page~/3$A10.1-AD403, Rw.01 Valve ID no: 2SWP'MOV67A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P up 108 Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (pslg), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 u rt seat angle, a=10 e;=--e=0.087 2 180 Valve Disk Material Properties modulus of elasticity, E:=29400000 Other Valve Parameters:
hubradius,b:=1.25hublength,L:=0.25meanseatradius,a:=1.88averagediskthickness, t:=0.626urtseatangle,a=10e;=--e=0.0872180ValveDiskMaterialProperties modulusofelasticity, E:=29400000 OtherValveParameters:
Poisson's Ratio, v:=0.3 e is half disK angle a Valve Factor VF:=1 Valve Stem Diameter, D st..=1.375 Static Unseating Thrust, F>>.=2534 (reference:
Poisson's Ratio,v:=0.3eishalfdisKangleaValveFactorVF:=1ValveStemDiameter, Dst..=1.375StaticUnseating Thrust,F>>.=2534(reference:
Tesr&#xb9;10.1M')(reference:
Tesr&#xb9;10.1M')(reference:
NER-2M-010)
NER-2M-010)
CALCULATIONS:
CALCULATIONS:
CoeNicient offrictionbetweendiskandseat,it.=cos(0)-sin(e)lt1.091(reference
CoeNicient of friction between disk and seat, it.=cos(0)-sin(e)lt 1.091 (reference
&#xb9;6)up~downAverageDPAcrossDisk,':=Pbgives,DP542DiskSt)I)asConstantsD:=
&#xb9;6)up~down Average DPAcross Disk,':=Pb gives, DP 54 2 Disk St)I)as ConstantsD:=,and G:=-Et E ,)s.()-s')2 (1+v)which gives, D 6.605 10 and G=1.131~10 1 b a b b a b Geomet/yFactors, C2.=-1--1+2ln-C3=--+1 h-+--1 4 a b 4a a b a'b 2 b 1+v a 1-v b 2 C8:=-1 v+C 9,---ln-+-~1-2 a a 2 b 4 a which gives, C 2 0.049 C 8=0.805 COMED PL Evaluation PSWP67AA.MCD C 3~0.005 C 9=0.241@7'alve ID: 2SWP MOVQ48 page 1
,andG:=-EtE,)s.()-s')
 
2(1+v)whichgives,D6.60510andG=1.131~101babbabGeomet/yFactors, C2.=-1--1+2ln-C3=--+1h-+--14ab4aaba'b2b1+va1-vb2C8:=-1v+C9,---ln-+-~1-2aa2b4awhichgives,C20.049C8=0.805COMEDPLEvaluation PSWP67AA.MCD C3~0.005C9=0.241@7'alveID:2SWPMOVQ48page1
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Q~rwp o AiQrc44-4rjQ3/pQ NMP2 Calculation Cont.Sheet Checker/Date
~/4e Pag~bi yP Ato.t-AD403, Rev.01 Add/tional Geometry Factors, rp'=b I 64 2 4 2 rp rp rp 1+4.--5--4 a a a 2 rp a 2+-1n-a rp 1 L17 4 4 2 1-v rp ro 1--1----~1+(1+4 a a v)ln-a rp which gives, Moment Factors, L11 4.481.10 and L 17<0.046 Mg:=-2 avg a C8 a-rp-L17 2&b which gives, Mrb-13.186 and Q b=42.593 Deflection fmm pressure/bend/ng, 4&a avg'b'.=Mrb-C2+Qb-C3-L11 D D D which gives, yb~-1.752'10 Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2.1n--1+-~1-2 ln-b a b 2 sa'vg a t.G which gives, K sa=%.078 and y.=-2.09 10 sq Deflection from pressu/8/hub stretch, Pfpree tt (a b)DP avg P force L y stretch'=ttb 2E which gives, P fo~334.525 and y~~=-2.897'10 COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SWP'MOV67A page 2 I
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qc~r.))~4.C'~/g)(p-g NMP2 Calculation Cont.Sheet CheckerlDate Page Pfotr 37 A1 0.1-AD403, Rev.01 Total Deflectr'on due to pressure, y q'bq+y sq+y stretch which gives, y-4.131~10 Additional Geometry Factors ro'.=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9--a r 2 1+v a I-v o-In-+-I-2 ro 4 a which gives, L3~0 end L9=0 Deflection from seat load/bending, w:=I a w C2 roC9 roC3 ybw'-L9--+L3 which gives, D C8 b b ybw Deflection from seat load!shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, a tG Ksa~W.49 y sw~-1.301~IO Deflection fmm seat load/hub compression,.-2tta compr'tb L 2 E which gives, y compr Total Deflection from unit seat load, which gives, yw~2'868'10 yw'=y bw+ysw+ycompr Equilibrium contact load distribution, yq w equilibrium
'w Load per seat ra 2 tt a-170.165 yq yw which gives, equilibrium Pressure Locking Force, COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SNIP'MOV67A page 3
 
Niagara Mohawk Power Corporation Nuclear Engineering Originatorlnate A.+/b/nslPP NMP2 Catcutation Cont.Sheet Checker/bate Pagano//7/}At0.1.AO403.
Rev.Ot F pres Jock''tt'a'(tt'cos(e)
-sin(e))2 Yq 1'w Piston Effect Force, P at:=0 2/piston effect''tem'(bonnet etm}which gives, Fp~s 1~k=0.3 I which gives, F piston effect'160.368"Reverse Piston Effect" Force, F vert'=rt a~2 P bonnet up down sin(e)which gives, Total Force Re uired to Overcome Pressure Lockin F v~=104.517 F totat:=F pres tock+F po+F vert-F piston effect which gives, F>~=2.818478 10'CTUATOR CAPABILITY:
Actuator Model/Size:
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-000-5 TQm'=5 OGR:=40 Af:=0.9 Eff:=0.4 RV:=0.8816 TQout 55.96 Sf':=0.014263 THcap~3.923 10 ft-lbs ft-Ibs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KEI:=1.20 n M tp.:=nr p yt.~ffffi}
Thrust Margin=541.246 Ibs


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date Q~rwpoAiQrc44-4rjQ3/pQNMP2Calculation Cont.SheetChecker/Date
== Conclusion:==
~/4ePag~biyPAto.t-AD403, Rev.01Add/tional GeometryFactors,rp'=bI64242rprprp1+4.--5--4aaa2rpa2+-1n-arp1L174421-vrpro1--1----~1+(1+4aav)ln-arpwhichgives,MomentFactors,L114.481.10andL17<0.046Mg:=-2avgaC8a-rp-L172&bwhichgives,Mrb-13.186andQb=42.593Deflection fmmpressure/bend/ng, 4&aavg'b'.=Mrb-C2+Qb-C3-L11DDDwhichgives,yb~-1.752'10 Deflection frompressure/shear,2arprpK~:=-0.32.1n--1+-~1-2ln-bab2sa'vgat.Gwhichgives,Ksa=%.078andy.=-2.0910sqDeflection frompressu/8/hub stretch,Pfpreett(ab)DPavgPforceLystretch'=ttb2Ewhichgives,Pfo~334.525andy~~=-2.897'10 COMEDPLEvaluation PSWP67AA.MCD ValveID:2SWP'MOV67A page2 I
NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date Qc~r.))~4.C'~/g)(p-gNMP2Calculation Cont.SheetCheckerlDate PagePfotr37A10.1-AD403, Rev.01TotalDeflectr'on duetopressure, yq'bq+ysq+ystretchwhichgives,y-4.131~10Additional GeometryFactorsro'.=aroL3'=-4a22roaro+IIn-+--IaroaroL9--ar21+vaI-vo-In-+-I-2ro4awhichgives,L3~0endL9=0Deflection fromseatload/bending, w:=IawC2roC9roC3ybw'-L9--+L3whichgives,DC8bbybwDeflection fromseatload!shear,roroKsa:=-1.2
-In-aby~:=Ksa-whichgives,atGKsa~W.49ysw~-1.301~IODeflection fmmseatload/hubcompression,
.-2ttacompr'tbL2Ewhichgives,ycomprTotalDeflection fromunitseatload,whichgives,yw~2'868'10yw'=ybw+ysw+ycomprEquilibrium contactloaddistribution, yqwequilibrium
'wLoadperseatra2tta-170.165yqywwhichgives,equilibrium PressureLockingForce,COMEDPLEvaluation PSWP67AA.MCD ValveID:2SNIP'MOV67A page3


NiagaraMohawkPowerCorporation NuclearEngineering Originatorlnate A.+/b/nslPPNMP2Catcutation Cont.SheetChecker/bate Pagano//7/}At0.1.AO403.
Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Rev.OtFpresJock''tt'a'(tt'cos(e)
COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SWP'MOV67A page 4 0
-sin(e))2Yq1'wPistonEffectForce,Pat:=02/pistoneffect''tem'(bonnetetm}whichgives,Fp~s1~k=0.3Iwhichgives,Fpistoneffect'160.368"ReversePistonEffect"Force,Fvert'=rta~2Pbonnetupdownsin(e)whichgives,TotalForceReuiredtoOvercomePressureLockinFv~=104.517Ftotat:=Fprestock+Fpo+Fvert-Fpistoneffectwhichgives,F>~=2.818478 10'CTUATORCAPABILITY:
Niagara Mohawk Power Corporation Nudear Engineering Originator/Date
ActuatorModel/Size:
>~i.p e A Q 4,/tr/~7 NMP2 Calcutation Cont.Sheet Checker/Date 7/</87 peg+Car r3'A1 0.1-AD403.
MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
Rw.01 Valve ID no: 2SWP MOV67B Re uiredo enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 a tt seat angle, a:=10 e:=--e=0.087 2 180 Valve Disk Material Properties:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
modulus of elasticity, E:=29400000 Other Valve Parameters:
TQoutTHcap:=-SfTQout:=TQmRVOGRAfEff=SMB-000-5 TQm'=5OGR:=40Af:=0.9Eff:=0.4RV:=0.8816TQout55.96Sf':=0.014263THcap~3.92310ft-lbsft-Ibs1bsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
Poisson's Ratio, v.--0.3 0 ishalfdiskangle u Valve Stem Diameter, D<.=1.375 Static Unseating Thrust, F>>.=3092 (reference:
KEI:=1.20nMtp.:=nrpyt.~ffffi}
Test&#xb9;12, 10/1M4)Valve Factor VF:=I (reference:
ThrustMargin=541.246IbsConclusion:
OpenThrustMarginispositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PSWP67AA.MCD ValveID:2SWP'MOV67A page4 0
NiagaraMohawkPowerCorporation NudearEngineering Originator/Date
>~i.peAQ4,/tr/~7NMP2Calcutation Cont.SheetChecker/Date 7/</87peg+Carr3'A10.1-AD403.
Rw.01ValveIDno:2SWPMOV67BReuiredoeninForceDeternminationunderPressureLockin Conditions COMEDMethodDESIGNINPUTS'esign BasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P>>.=108ValveBonnetpressure(psig),Pbonnet=108Downstream pressure(psig),Pdown0ValveDiskGeometry:
hubradius,b:=1.25hublength,L:=0.25meanseatradius,a:=1.88averagediskthickness, t:=0.626attseatangle,a:=10e:=--e=0.0872180ValveDiskMaterialProperties:
modulusofelasticity, E:=29400000OtherValveParameters:
Poisson's Ratio,v.--0.30ishalfdiskangle uValveStemDiameter, D<.=1.375StaticUnseating Thrust,F>>.=3092(reference:
Test&#xb9;12,10/1M4)ValveFactorVF:=I(reference:
NER-2M-Of 0)CALCULA77ONS:
NER-2M-Of 0)CALCULA77ONS:
Coeflicient offrictionbetweendiskandseat,p:=coge)-'-s~(e)'lt1.091(reference
Coeflicient of friction between disk and seat, p:=coge)-'-s~(e)'lt 1.091 (reference
&#xb9;6)AverageDPAcmssDisk,DiskStN'nesConstants, gives,DP=54andG:=E2(I+v)up1downDPavg'bonnet2Et3i2(l-')whichgives,D6.60510andG=1.131~10I'bb2abiGeometryFactors,C2'=-I--~I+2ln-C3.=--+IIn-+--I4ab4aabaIbc8:=-1+v+2ab2C9---In-+-I--whichgives,C20.049C8~0.805COMEDPLEvaluation PSWP67BA.MCD C3~0.005C9=0.241ValveID:2SWP'MOVQ&
&#xb9;6)Average DP Acmss Disk, Disk StN'nes Constants, gives, DP=54 and G:=E 2 (I+v)up 1 down DP avg'bonnet 2 Et 3 i2(l-')which gives, D 6.605 10 and G=1.131~10 I'b b2 a bi Geometry Factors, C 2'=-I--~I+2 ln-C 3.=--+I In-+--I 4 a b 4a a b a I b c8:=-1+v+2 a b 2 C9---In-+-I--which gives, C 2 0.049 C 8~0.805 COMED PL Evaluation PSWP67BA.MCD C 3~0.005 C 9=0.241 Valve ID: 2SWP'MOVQ&
page1
page 1


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date Qo~np~A'-4~~ip/ppNMP2Calcutatton Cont.SheetChecker/Date elitismPage~fr+7A10.1-AD%03, Rev.01AddtI'onal GeomehyFactors,rp.'=b2422rprprprpLII:=-I+4--5--4-~2+-~In-64aaaarpIL17442I-vroroaI--I----~I+(I+v)In-4aarpwhichgives,L11=4.481
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qo~np~A'-4~~ip/pp NMP2 Calcutatton Cont.Sheet Checker/Date elitism Page~fr+7 A10.1-AD%03, Rev.01 AddtI'onal Geomehy Factors, rp.'=b 2 4 2 2 rp rp rp rp L I I:=-I+4--5--4-~2+-~In-64 a a a a rp I L17 4 4 2 I-v ro ro a I--I----~I+(I+v)In-4 a a rp which gives, L11=4.481~10 and Moment Factors, 2 OPavg'r2 Mrb'=--'(a-rp)-LI7 C 8 2.a b L 17=0.046~b=-'"'(*-0*)2b which gives, Mrb-13.186 and Q b=42.593 Deflectfon from pressure/bending, 2 a avg a yb'=Mrb-C2+Qb-C 3-L11 ,o o o which gives, yb 1752 10 q Deflection from pressure/shear, 2 a r rp Ksa'=-0.3 2.1n--I+-~I-2 In-b a b 2 m'vg a t.G which gives, K sa=%.078 arid y'sq=-2.09 10 Deflection from pressure/hub stretch, P fprce tt (a-b)OP avg P force'L y stretch'=ttb 2E which gives, P f=334.525 and yst tch=-2.897 10 COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 2
~10andMomentFactors,2OPavg'r2Mrb'=--'(a-rp)-LI7C82.abL17=0.046~b=-'"'(*-0*)2bwhichgives,Mrb-13.186andQb=42.593Deflectfon frompressure/bending, 2aavgayb'=Mrb-C2+Qb-C3-L11,ooowhichgives,yb175210qDeflection frompressure/shear, 2arrpKsa'=-0.3 2.1n--I+-~I-2In-bab2m'vgat.Gwhichgives,Ksa=%.078aridy'sq=-2.0910Deflection frompressure/hubstretch,Pfprcett(a-b)OPavgPforce'Lystretch'=ttb2Ewhichgives,Pf=334.525andysttch=-2.89710COMEDPLEvaluation PSWP67BA.MCD ValveID:2SWP'MOV67B page2


NiagaraMohawkPowerCorporation NuoteerEngineering Originetotlnete goergpoA8~g/r->lpga NMP2Cetouletion Cont.SheetPage$hf/~A10.1-A@003, Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyq:ybq+ysq+y~~
Niagara Mohawk Power Corporation Nuoteer Engineering Originetotlnete goer gp o A 8~g/r->lpga NMP2 Cetouletion Cont.Sheet Page$hf/~A10.1-A@003, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq: ybq+ysq+y~~
whichgives,yq=-4.131~10'Ir.'=,aroL3.=-.4a22roaro+IIn-+--IararoL9.'=-.ar21+v&I-v0-In-+-I-2ro4awhichgives,L3=0andL9=0Deflection fromseatload/bending, w:=IawC2roC9roC3L9--+L3whichgives,DCSbbybwI'465'107Deflection fromseatload/shear, roroKsa.'=-1.2-In-aby~:=Ksa-whichgives,Ksa~W.49tGswy-1.30110Deflection fromseatload/hubcompression, L-2'1t'a2ycompr'=ttbEwhichgives,y~"1.02310TotalDeflection fromunitseatload,whichgives,yw=-2.86810wequilibrium 14406yw:=ybw+ysw+
which gives, y q=-4.131~10'I r.'=,a ro L3.=-.4a 2 2 ro a ro+I In-+--I a r a ro L9.'=-.a r 2 1+v&I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a w C2 roC9 roC3 L9--+L3 which gives, D CS b b y bw I'465'10 7 Deflection from seat load/shear, ro ro Ksa.'=-1.2-In-a b y~:=Ksa-which gives, Ksa~W.49 tG sw y-1.301 10 Deflection from seat load/hub compression, L-2'1t'a 2 y compr'=ttb E which gives, y~"1.023 10 Total Deflection from unit seat load, which gives, y w=-2.868 10 w equilibrium 14 406 yw:=ybw+ysw+
ycomprEquilibrium contactloaddistribution, yqwequilibrium
ycompr Equilibrium contact load distribution, yq w equilibrium
'whichgives,ywLoadperseat=2tta-=170.165yqywPressureLockingForce,COMEDPLEvaluation PSWP67BA.MCD ValveID:2SWP'MOV67B page3 0tl NiagaraMohawkPowerCorPoration NuotearEngineering NMP2Catoutation Cont.SheetChecker/Date A+1Pageej'o//37A10.1-AD403.
'which gives, yw Load per seat=2 tt a-=170.165 yq yw Pressure Locking Force, COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 3 0 tl Niagara Mohawk Power CorPoration Nuotear Engineering NMP2 Catoutation Cont.Sheet Checker/Date A+1 Pagee j'o//37 A10.1-AD403.
Rev.01F1k:=2na-(pcos(e)-sin(e))2whichgives,Fpreslock=30.3Yqpreslock'wPistonEffectForce,P~'.=0Fraraairaar'Danan'PhennarFane)whinhgivenFpinnaairaari60368"ReversePistonEffect"Force,Fv~.=[en(gphe~ar-Pap-Pea~)]ain(8) whihngiveaTotalForceReuiredtoOvercomePressureLockinFvm=104.517"total'reslock+po~vertpistoneffectwhichgives,'to<3376478103.ACTUATORCAPABILITYt ActuatorModel/Size:
Rev.01 F 1 k:=2 n a-(p cos(e)-sin(e))2 which gives, Fpres lock=3 0.3 Yq pres lock'w Piston Effect Force, P~'.=0 F rara airaar'D anan'P hennar Fane)whinh given F pinna airaar i60368"Reverse Piston Effect" Force, Fv~.=[en (gphe~ar-Pap-Pea~)]ain(8) whi hngive a Total Force Re uired to Overcome Pressure Lockin F vm=104.517"total'res lock+po~vert piston effect which gives,'to<3 376478 10 3.ACTUATOR CAPABILITYt Actuator Model/Size:
MotorTorqueOutput:GearRatio:Application Factor.PulloutEfficiency:
Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout:=TQmRVOGR.AfEffTQoutTHcap.'=-Sf=SMB-000-5 TQm:=5OGR:=40Af:=0.9Eff:=0.4RV:=0.8825TQout=56.074Sf:-"0.014263 THcap~3.931~10lt-lbstt-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCKINGMETHODOLOGY:
TQout:=TQm RV OGR.Af Eff TQout THcap.'=-Sf=SMB-000-5 TQm:=5 OGR:=40 Af:=0.9 Eff:=0.4 RV:=0.8825 TQout=56.074 Sf:-"0.014263 THcap~3.931~10 lt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCKING METHODOLOGY:
KEI:=1.20ThreatMargin:=Tiicap-(Fn,ng.KEi)
KEI:=1.20 Threat Margin:=Tiicap-(F n,ng.KEi)Thst Margin~-120.34 lbs IL~Conclusion:
ThstMargin~-120.34lbsIL~Conclusion:
Open Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated>
OpenThrustMarginisnegative, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated>
Ay ufetre 8 six r c Vle ieea~g p gn.ig go t./ns'e,~et g~>~fcms col'i egpecg4/Ho>dr ev'.COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 4
Ayufetre8sixrcVleieea~gpgn.iggot./ns'e,~etg~>~fcmscol'iegpecg4/Ho>drev'.COMEDPLEvaluation PSWP67BA.MCD ValveID:2SWP'MOV67B page4


NiagaraMohawkPowerCorporation NuclearEngineering
Niagara Mohawk Power Corporation Nuclear Engineering
'go~apn@Q+l>%i&7ValveIDno:2SWP'MOV94A NMP2Calculation Cont.SheetChecker/Date Pager/PPA10.1-AD403, Rev.01Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTSrValveDiskGeometry:
'go~ap n@Q+l>%i&7 Valve ID no: 2SWP'MOV94A NMP2 Calculation Cont.Sheet Checker/Date Pager/P P A10.1-AD403, Rev.01 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTSr Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a:=3.91 average disk thickness, t:=0.4S a ft seat angle, o:=10 e=--e=0.087 2 180 disk angle a Valve Disk Material Properties:
hubradius,b:=3.375hublength,L:=0.125meanseatradius,a:=3.91averagediskthickness, t:=0.4Saftseatangle,o:=10e=--e=0.0872180diskangleaValveDiskMaterialProperties:
e ishalf modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters:
eishalfmodulusofelasticity, E:=29400000 Poisson's Ratio,v:=0.3OtherValveParameters:
Valve Stem Diameter, D<~.--1.625 Static Unseating Thrust, F~.=7751 (reference:
ValveStemDiameter, D<~.--1.625 StaticUnseating Thrust,F~.=7751(reference:
Test&#xb9;26,$9i95)Valve Factor VF:=0.65 (reference:
Test&#xb9;26,$9i95)ValveFactorVF:=0.65(reference:
NER-2M-010)
NER-2M-010)
DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),P~.=10SValveBonnetpressure(psig),Pbonnet=108Downstream pressure(psig),Pdown'=0CALCULATIONS:
Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P~.=10S Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (psig), P down'=0 CALCULATIONS:
Coefllcient offrictionbetweendiskandseat,p:=cos(e)--a~(e)IVF~+p0.686(reference
Coefllcient of friction between disk and seat, p:=cos(e)--a~(e)I VF~+p 0.686 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStf'ffnes Constants, gives,DP=54andG:=-E2(1+v)up+downDPavg'bonnet2Etu(i-.*)whichgives,D2.97710andG=1.131~10Iba,bbabGeometryFactors,C2.=-I--1+2ln-C3.'=--+IIn-+--I4ab4aabaIbC8.=-I+v+(I-v)2abI+vaI-vb2C9.---In-+-.I-a2b4awhichgives, C20.009C80.911COMEDPLEvalUation PSWP94AA.MCD C3=3.965'10 C9<0.121AValvelD:2SWP'MOVpage1 Jl0 NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date cQ~~~+z4'~&/z3j5pNMP2Calculation Cont.SheetChecker/Date Page~fo/r%~,A10.1&D40S.
&#xb9;6)Average DP Across Disk, Disk Stf'ffnes Constants, gives, DP=54 and G:=-E 2 (1+v)up+down DP avg'bonnet 2 Et u (i-.*)which gives, D 2.977 10 and G=1.131~10 I b a, b b a b Geometry Factors, C 2.=-I--1+2 ln-C3.'=--+I In-+--I 4 a b 4a a b a I b C 8.=-I+v+(I-v)2 a b I+v a I-v b 2 C9.---In-+-.I-a 2 b 4 a whichgives, C2 0.009 C 8 0.911 COMED PL EvalUation PSWP94AA.MCD C 3=3.965'10 C 9<0.121 A Valve lD: 2SWP'MOV page 1 Jl 0 Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date cQ~~~+z 4'~&/z 3j5p NMP2 Calculation Cont.Sheet Checker/Date Page~fo/r%~, A10.1&D40S.
Rev.01Additional GeometryFactors,rp,=b242'oro'oL11'=-1+4--5--464aaa2roa2+-ln-arp1L174421-U00a1--1----~11-(1+Y)1n-4aarpwhichgives,L11=1.378.10 andMomentFactors,2DPavgaC9I2Mrb'0jC82abL17=0.009'"'(*-0*)2bwhichgives,Mrb=-8.373andQb=31.18Dellection frompressureIbending, 4aDPavgayb'.=Mrb-C2+Qb'C3-.L11DDDwhichgives,yb193710qDeflection frompressure/shear,2arprpK~:=-0.321n--1+-1-21n-babysq'=.2saavgatGwhichgives,Ksa=%.012.andy.~-L79610sqDeflect/on frompressure/hubstretch,Pforce'.=tt (a-b)DPavgPforceLystretch=nb2Ewhichgives,Pforce~661.191andystretch-3.928'10 COMEDPLEvaluation PSWP94AA.MCD ValvelD:2SWP'MOV94A page2
Rev.01 Additional Geometry Factors, rp,=b 2 4 2'o ro'o L11'=-1+4--5--4 64 a a a 2 ro a 2+-ln-a rp 1 L17 4 4 2 1-U 0 0 a 1--1----~11-(1+Y)1n-4 a a rp which gives, L11=1.378.10 and Moment Factors, 2 DPavga C9 I 2 Mrb'0 j C8 2ab L 17=0.009'"'(*-0*)2b which gives, M rb=-8.373 and Q b=31.18 Dellection from pressureIbending, 4 a DP avg a yb'.=Mrb-C2+Qb'C3-.L11 D D D which gives, yb 1937 10 q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 21n--1+-1-21n-b a b ysq'=.2 sa avg a tG which gives, K sa=%.012.and y.~-L796 10 sq Deflect/on from pressure/hub stretch, Pforce'.=tt (a-b)DPavg P force L y stretch=nb 2E which gives, P force~661.191 and y stretch-3.928'10 COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP'MOV94A page 2
 
Niagara Mohawk Power Cotporauon Nuclear Engineering Orlginatorlnate cCiygpg NMP2 Calculation Cont.Sheet chackarlDste
~~/g/rr Page/~/'3 7 Ato.t-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q=-3.771~10 ro:=a ro L3'=-.48 2 2 ro a ro+I ln-+--I 8 ro a ro L9--a 1 I+v a I-v o-ln-+-I-2 ro 4 a which gives, L3~0 and L9=0 Deflection from seat load/bending, Wi=I 8 w C2 roC9 roC3 ybw.'=L9--+L3 which gives, D C8 b b y bw=-1.835'10 7 Deflection from seat load/shear, ro ro Ksa.'=-1.2-In-a b 8 y~.--Ksa-tG which gives, Ksa=%.177 y sw=-1.272'10 Deflection from seat load/hub compression,-2 tt.a y compr'tb L 2 which gives, y compr'otal Deflection from unit seat load, y w:=y bw+'y sw+y compr which gives, yw 3122 10 which gives, Equilibrium contact load distributfon, yq w equilibrium
'w Load per seat-"2 tt a-~296.797 Jq yw equi]ibrium Pressure Locking Force, COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP'MOV94A page 3


NiagaraMohawkPowerCotporauon NuclearEngineering Orlginatorlnate cCiygpgNMP2Calculation Cont.SheetchackarlDste
Niagara Mohawk Power Corfgoratfon Nucfear Engineering t3rfginator/Date roy o Af~Q lfClgnlr p NMP2 Catculation Cont.Sheet Checker/Date jgl rp It./f/Page9+f/3 7 Atp.1 AD403, Rev.Ot F 1~'=2 ft a-(it cos(6)-sin(0))2 which gives, F pres lock=354.165 pres lock Yw Piston Effect Force, P an:=0 ft piston effect'tem'i bonnet p atm)which gives, F tstpn~~t 223 986"Reverse Piston Effect" Force, F veft a a 2 P bonnet P up P down sm(1)which gives, Total Force Re uired to Overcome Pressure Lockin F~=452.088 F<<tal:=F pres lock+F pp+F veft-F piston effect which gives, F<<~=8.333267 10'CTUATOR CAPABILITY:
~~/g/rrPage/~/'37Ato.t-AD403, Rev.01TotalDeflection duetopressure, Additional GeometryFactorsyq'bq+ysq+ystretch whichgives,yq=-3.771~10ro:=aroL3'=-.4822roaro+Iln-+--I8roaroL9--a1I+vaI-vo-ln-+-I-2ro4awhichgives,L3~0andL9=0Deflection fromseatload/bending, Wi=I8wC2roC9roC3ybw.'=L9--+L3whichgives,DC8bbybw=-1.835'10 7Deflection fromseatload/shear, roroKsa.'=-1.2-In-ab8y~.--Ksa-tGwhichgives,Ksa=%.177ysw=-1.272'10 Deflection fromseatload/hubcompression,
Actuator Model!Size:
-2tt.aycompr'tbL2whichgives,ycompr'otalDeflection fromunitseatload,yw:=ybw+'ysw+ycomprwhichgives,yw312210whichgives,Equilibrium contactloaddistributfon, yqwequilibrium
Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
'wLoadperseat-"2tta-~296.797Jqywequi]ibrium PressureLockingForce,COMEDPLEvaluation PSWP94AA.MCD ValvelD:2SWP'MOV94A page3
Reduced Voltage: Torque Output: Stem Factor.Thrust Capability:
TQout:=TQm RV OGR Af Eff TQout THcap:=-Sf=SMB-00-15 TQm'.=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:=1.0 TQout~180.948 Sf:=0.016407 THcap=1.103 10 tt-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
KE[:=1.20 Thrust Margin:=THcap-(F m~KEI)Thust Margin~1.029 10 1bs


NiagaraMohawkPowerCorfgoratfon NucfearEngineering t3rfginator/Date royoAf~QlfClgnlrpNMP2Catculation Cont.SheetChecker/Date jglrpIt./f/Page9+f/37Atp.1AD403,Rev.OtF1~'=2fta-(itcos(6)-sin(0))2whichgives,Fpreslock=354.165preslockYwPistonEffectForce,Pan:=0ftpistoneffect'tem'ibonnetpatm)whichgives,Ftstpn~~t223986"ReversePistonEffect"Force,Fveftaa2PbonnetPupPdownsm(1)whichgives,TotalForceReuiredtoOvercomePressureLockinF~=452.088F<<tal:=Fpreslock+Fpp+Fveft-Fpistoneffectwhichgives,F<<~=8.333267 10'CTUATORCAPABILITY:
== Conclusion:==
ActuatorModel!Size:
MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutput:StemFactor.ThrustCapability:
TQout:=TQmRVOGRAfEffTQoutTHcap:=-Sf=SMB-00-15 TQm'.=14.74OGR:=34.1 Af:=0.9Eff:=0.4RV:=1.0TQout~180.948Sf:=0.016407THcap=1.10310tt-lbsft-lbslbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KE[:=1.20ThrustMargin:=THcap-(Fm~KEI)ThustMargin~1.029101bsConclusion:
OpenThrustMarginlspositive, therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluation PSWP94AA.MCD ValvelD:2SWPMOV94Apage4


NiagaraMohawkPowerCorporation NuclearEngineering Originator/Date
Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
>~.p..4-Q~/iabpNMP2Calculation Cont.SheetCheckeriDate r/s/N7>>Pag~of/5'7A10.1.AD403, Rev.01ValveIDno:2SlrrVP'MOV94B Reuired0eninForceOeternminafion underPressureLockinCondifions COMEDMethodDESIGNINPUTS:ValveDiskGeometry:
COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP MOV94A page 4
hubradius,b:=3.375meanseatradius,a'.=3.91averagediskthickness, t:=0.48seatangle,a--100:=--00.087.art21808ishalfdiskangle ahublength,L:=0.125Valve.DiskMaterialProperties:
 
modulusofelasticity, E:=29400000 Poisson's Ratio,v.=0.3OtherValveParameters:
Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date
hlValveStemDiameter, Dz.'=1.625StaticUnseating Thrust,Fpo8674(reference:
>~.p..4-Q~/iabp NMP2 Calculation Cont.Sheet CheckeriDate r/s/N7>>Pag~of/5'7 A10.1.AD403, Rev.01 Valve ID no: 2SlrrVP'MOV94B Re uired 0 enin Force Oeternminafion under Pressure Lockin Condifions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=3.375 mean seat radius, a'.=3.91 average disk thickness, t:=0.48 seat angle, a--10 0:=--0 0.087.a rt 2 180 8 ishalfdiskangle a hub length, L:=0.125 Valve.Disk Material Properties:
Test&#xb9;6,tV1M3)(reference:
modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters:
hl Valve Stem Diameter, D z.'=1.625 Static Unseating Thrust, F po 8674 (reference:
Test&#xb9;6, tV1M3)(reference:
NER-2M-010)
NER-2M-010)
ValveFactorVF:=0.65DesignBasisConditions attImeofPressureLockingEvent:Upstreampressure(psig),Pp.=108ValveBonnetpressure(psig),Pbonnet"108Downstream pressure(psig),Pdown0CALCULA77ONSi CoeNicient offnctionbetweendiskandseat,p:=cue)-sin(0)p0.686(reference
Valve Factor VF:=0.65 Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), Pp.=108 Valve Bonnet pressure (psig), P bonnet" 108 Downstream pressure (psig), P down 0 CALCULA77ONSi CoeNicient of fnction between disk and seat, p:=cue)-sin(0)p 0.686 (reference
&#xb9;6)AverageDPAcrossDisk,DiskStiffnesConstants, gives,DP=54Sfl(tG:=-E2(1+v)up+downavg'onnet"2Etr2(r-')whichgives,D=2.97710andG1.131~101ba.bbaGeometiyFactors, C2.'=-1--1+2ln-C3.'=--+1h-+4ab4aab1bC8:=-1+v+(1-v)2ab1+va1-vC9.--.-ln-+-a2b4whichgives,C20.009C80.911C3=3.965'10 C9=0.)21COMEDPLEvaluation PSWP94BA.MCD ValveID:2SWPMOV94Bpage1
&#xb9;6)Average DP Across Disk, Disk Stiffnes Constants, gives, DP=54 Sfl(t G:=-E 2 (1+v)up+down avg'onnet" 2 Et r2 (r-')which gives, D=2.977 10 and G 1.131~10 1 b a.b b a GeometiyFactors, C2.'=-1--1+2ln-C3.'=--+1 h-+4 a b 4a a b 1 b C8:=-1+v+(1-v)2 a b 1+v a 1-v C9.--.-ln-+-a 2 b 4 which gives, C 2 0.009 C 8 0.911 C 3=3.965'10 C 9=0.)21 COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP MOV94B page 1


NiagaraMohawkPowerCorgoration NuclearEngineering Originatorloate
Niagara Mohawk Power Corgoration Nuclear Engineering Originatorloate
~~pc,Q.g~~gyyppNMP2Calculation Cont.Sheetakkkkklrakrk
~~pc, Q.g~~gyypp NMP2 Calculation Cont.Sheet akkkkklrakrk
~7/a/r7Page95ofr~'7A10.1AO403,RW.01Additional GeometryFactors,rp',=b2422rprprprpL11'=-I+4--5--4-~2+-In-64aaaarpIL17.'=-44I-v0I--I--4~a2rpa~I+(I+v)ln-arpwhichgives,MomentFactors,LII1.37810andL17=0.009Mg:=-2DPavgaC8a-rp-L172ab'"'(*-0*)2bwhichgives,M*-8.373andQb~31.18Deflection frompressure/bending, r4aaavgayb'.=Mrb'C2+Qb-C3-L11DOOwhichgives,yb~-I93710,qDeflection frompressure/shear, 2arprpK~:=-0.32In--I+-~I-2In-bab2Km.DPavgat.Gwhichgives,K~~%.012andy-1.796'10 sqDeflection frompressure!
~7/a/r7 Page95of r~'7 A10.1 AO403, RW.01 Additional Geometry Factors, rp',=b 2 4 2 2 rp rp rp rp L 11'=-I+4--5--4-~2+-In-64 a a a a rp I L 17.'=-4 4 I-v 0 I--I--4~a 2 rp a~I+(I+v)ln-a rp which gives, Moment Factors, L I I 1.378 10 and L 17=0.009 Mg:=-2 DP avg a C8 a-rp-L17 2ab'"'(*-0*)2b which gives, M*-8.373 and Q b~31.18 Deflection from pressure/bending, r 4 a a avg a y b'.=M rb'C 2+Q b-C 3-L 11 D O O which gives, yb~-I 937 10 , q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 Km.DP avg a t.G which gives, K~~%.012 and y-1.796'10 sq Deflection from pressure!hub stretch, Pra~.'=a (a-b)DPak<P force'L y stretch'tb 2E which gives, P f0~'"~661.191 and y stretch=-3.928 10 COMED PL Evaluation PSWP94BA,MCD Valve ID: 2SWP'MOV948 page 2 1 I'I Niagara Mohawk Power Corporation N uotear Engineering Originator/Date
hubstretch,Pra~.'=a(a-b)DPak<Pforce'Lystretch'tb2Ewhichgives,Pf0~'"~661.191andystretch=-3.92810COMEDPLEvaluation PSWP94BA,MCD ValveID:2SWP'MOV948 page2 1I'I NiagaraMohawkPowerCorporation NuotearEngineering Originator/Date
~reap g, A'MP2 Calcuiation Cont.Sheet cweaea as<a~Page94efi' P A10.1-AD402.
~reapg,A'MP2Calcuiation Cont.Sheetcweaeaas<a~Page94efi' PA10.1-AD402.
Rev.01 Total Deflection due to pressure, yq'bq+ysq+ystretch which gives, y=-3.771~10 Additional Geometer Factors r:=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9.=-.a 2 I+v a 1-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection fmm seat load/bending, w:=I a w C2 roC9 roC3 ybw:=----L9--+L3 whichgives D C8 b b ybw~-1.835 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b y:=Ksa-which gives, a sw'sa~%.177 y sw~-1.272.10 Deflection from seat load/hub compression,-2'tt a compr'tb L 2 which gives, y compr Total Detlection from unit seat load, yw:=y bw+ysw+ycompr which gives, y w 3.122 10 Equilibrium contact load distnbution, w e~bn~.'=-which gives, yq yw Load per seat>>-2 tt a-~296.797 yq yw w equilibrium 12.081 Pressure Locking Force, COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP'MOV94B page 3
Rev.01TotalDeflection duetopressure, yq'bq+ysq+ystretch whichgives,y=-3.771~10Additional GeometerFactorsr:=aroL3'=-4a22roaro+IIn-+--IaroaroL9.=-.a2I+va1-vro-ln-+-I-2ro4awhichgives,L3=0andL9=0Deflection fmmseatload/bending, w:=IawC2roC9roC3ybw:=----L9--+L3whichgives DC8bbybw~-1.83510Deflection fromseatload/shear, roroKsa:=-1.2-ln-aby:=Ksa-whichgives,asw'sa~%.177ysw~-1.272.10 Deflection fromseatload/hubcompression,
-2'ttacompr'tbL2whichgives,ycomprTotalDetlection fromunitseatload,yw:=ybw+ysw+ycompr whichgives,yw3.12210Equilibrium contactloaddistnbution, we~bn~.'=-whichgives,yqywLoadperseat>>-2tta-~296.797yqywwequilibrium 12.081PressureLockingForce,COMEDPLEvaluation PSWP94BA.MCD ValveID:2SWP'MOV94B page3


NiagaraMohawkPowerCorPoration NucfearEngineering Onginator/Date wo~rzprr~rob/p'/zsjpQNMP2Cafcufation Cont.SheetChecker/Date
Niagara Mohawk Power CorPoration Nucfear Engineering Onginator/Date wo~rzp rr~rob/p'/zs jpQ NMP2 Cafcufation Cont.Sheet Checker/Date.ir/fCj7 Pagerr/of J9~A10,1.AD403, Rev.Ot 2., q.(.~>0)<0)).2 whichgives, Fp 1~k=354 165 Yq Yw Piston Effect Force, Pat:=0 2/p piston street''D stem'(Pbonnet Pstm)wh/ch give~, F p,.st,n cff~t=223.986 s"Reverse Piston Effect" Force, Fcrt.'-.ft a 2 Pbonnct-Pup-P flown sin(8)which gives, Total Force Re uired to Overcome Pressure Lockin F v~=452.088 F tptat.'=F pres loci'+Fpc+F vert-F piston cffcc which gives, F t~9.256267'10
.ir/fCj7Pagerr/of J9~A10,1.AD403, Rev.Ot2.,q.(.~>0)<0)).2whichgives, Fp1~k=354165YqYwPistonEffectForce,Pat:=02/ppistonstreet''Dstem'(Pbonnet Pstm)wh/chgive~,Fp,.st,ncff~t=223.986s"ReversePistonEffect"Force,Fcrt.'-.
'CTUATOR CAPABILITY:
fta2Pbonnct-Pup-Pflownsin(8)whichgives,TotalForceReuiredtoOvercomePressureLockinFv~=452.088Ftptat.'=Fpresloci'+Fpc+Fvert-Fpistoncffccwhichgives,Ft~9.256267'10
Actuator Model/Sizar Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency:
'CTUATORCAPABILITY:
Reduced Voltage: Torque Output: Stem factor.Thrust Capability:
ActuatorModel/Sizar MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency:
TQout THcap:=Sf TQout:=TQm RV OGR Af Eff=SMB-00-15 TQm',=14.74 OGR:=34.1 Af:=0.9 Eff'=0.4 RV:=1.0 TQout~180.948 Sf:=0.016407 THcap=1.103'10 ft-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY:
ReducedVoltage:TorqueOutput:Stemfactor.ThrustCapability:
KEI:=1.20 Tbrnst Msrttin=THcsp-(F tomt KEI)Thrust Margin~-78.799 1bs Qt/1
TQoutTHcap:=SfTQout:=TQmRVOGRAfEff=SMB-00-15 TQm',=14.74OGR:=34.1Af:=0.9Eff'=0.4RV:=1.0TQout~180.948Sf:=0.016407THcap=1.103'10ft-lbsft-lbs1bsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOCNNGMETHODOLOGY:
KEI:=1.20TbrnstMsrttin=THcsp-(FtomtKEI)ThrustMargin~-78.7991bsQt/1Conclusion:
OpenThrustMarginIsnegative, therefore thisvalveandactuatorarelikelyto.overcomethetheoreticalpressurelocklngconditlonsevaluated>
pe~everHAerr/a~giw/~
aogirasolgrafHriisr/d/'~pgaep~
4)drifts~
<~4COMEDPLEvaluation PSWP94BA.MCD ValveID:2SWP'MOV94B page4


hlYNlAGARAHQMOHg~K..CALCULATION CONTINUATION'SHEET NUCLEARENGINEERING Page(Next~atNineMilePointNuclearStationUnit:2Disposition:
== Conclusion:==
NAOriginator/Date Checker/Date cgiOWWP'ffe~ggPria/~rA10.1-AD-003 Revision01ATTACHMENTS FORMAT&#xb9;NEP-DES-08, Rev.01(F02)


NIAG&MIITOHAWKPersonsInvolved:
Open Thrust Margin Is negative, therefore this valve and actuator are likely to.overcomethetheoreticalpressurelocklngconditlonsevaluated>
CACCldll/0>:
pe~ever HAe rr/a~giw/~
A/0,(-ADa&9Pgv'(AAsl~ed/gNUcr.Em~~~Ay~PggNG~~GNOTESOFTELEPHONE CONVERSATION NMPC:GainesBruceAnchor/Darling:
ao girasol graf Hriis r/d/'~pgaep~
RonBrubakerDateofConversation:
4)drifts~<~4 COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP'MOV94B page 4
Tuesday,August22,1995
 
hl Y NlAGARA H Q MOHg~K..CALCULATION CONTINUATION'SHEET NUCLEAR ENGINEERING Page (Next~at Nine Mile Point Nuclear Station Unit: 2 Disposition:
NA Originator/Date Checker/Date cgiOWWP'ffe~ggP ria/~r A10.1-AD-003 Revision 01 ATTACHMENTS FORMAT&#xb9;NEP-DES-08, Rev.01 (F02)
 
NIAG&M IITOHAWK Persons Involved: CACCldll/0>:
A/0, (-AD a&9 P gv'(AA sl~ed/g NUcr.Em~~~Ay~P gg NG~~G NOTES OF TELEPHONE CONVERSATION NMPC: Gaines Bruce Anchor/Darling:
Ron Brubaker Date of Conversation:
Tuesday, August 22, 1995  


==Subject:==
==Subject:==
InternalValveDimensions for2CSH*MOV101 2:45PMSummaryofConversation:
Internal Valve Dimensions for 2CSH*MOV101 2:45PM Summary of Conversation:
RoncalledtostatethathewasworkingonourP.Q.toprovideinternalvalvedimensions.
Ron called to state that he was working on our P.Q.to provide internal valve dimensions.
RonstatedthatasIhadpreviously requested, thathewascallingtoprovidemethedimensions for2CSH~MOV101 inadvanceoftheformalresponse.
Ron stated that as I had previously requested, that he was calling to provide me the dimensions for 2CSH~MOV101 in advance of the formal response.Applicable dimensions for 2CSH*MOV101 are: Seat OD: Seat ID: Hub Diameter: Wedge angle: Top of disc width: Bottom of disk width: Hub width: 13 1/2 inches 11 inches 4 inches 6 degrees (includes both faces)2.013 inches I/306 inches P/, Pod")3/16 inch Ron stated that there was about 1/8 inch of hard facing on the disc scat.I advised him that I thought that MPR wanted thc width less hard facing.Ron'also stated that the hub width was not a uniform width from top to bottom.The sides are abrasive cut and that is the 3/16 inch dimension.
Applicable dimensions for2CSH*MOV101 are:SeatOD:SeatID:HubDiameter:
Ron stated that he would try ta clarify what is being provided in the formal response.Action Required and Due Dates: No specific actions are to result f'rom this discussion.
Wedgeangle:Topofdiscwidth:Bottomofdiskwidth:Hubwidth:131/2inches11inches4inches6degrees(includes bothfaces)2.013inchesI/306inchesP/,Pod")3/16inchRonstatedthattherewasabout1/8inchofhardfacingonthediscscat.IadvisedhimthatIthoughtthatMPRwantedthcwidthlesshardfacing.Ron'alsostatedthatthehubwidthwasnotauniformwidthfromtoptobottom.Thesidesareabrasivecutandthatisthe3/16inchdimension.
Anchor Darling is to,comply with P.O.Commitments:
Ronstatedthathewouldtrytaclarifywhatisbeingprovidedintheformalresponse.
N/A xc: Ron Brubaker (by fax) 0 Niagara Mohawk Power Corporation
ActionRequiredandDueDates:Nospecificactionsaretoresultf'romthisdiscussion.
-Veian P.O.P9-80572-K Dimensional Data for Pressure Locking Analysis DM-0050 cP 0 Valve ID 2RHSA MOV112 Velan Dw.No.P2-7026-N13 item 49 20 17.625 15.935 Seat Dimensions Size OO ID Hub Dia.1<.250 0,37K%6/Hub Top of Disk Width Thick"ess Bottom of Disk Wedge Bonnet Thickness An le Volume 1.330 10 4464.7 2RHS*MOV113 P2-7026-N13 48 20 17.625 15.935 i 4.250 0.375 1.330 10 4464.7 2RHS*MOV1 5A 2RHS*MOV1 5B 2RHS*MOV25A 2RHS*MOV2sB 2SWP'MOV21A 2SWP*MOV21 B 2CSL4 MOV107 2SWPA MOY67A 2SWP*MOV67B 2ICS*MOV129 P3-7026-N10 P3-7026-N10 P3-7026-N10 P3-7028-N10 P3-7026-N18 P3-7026-N18 P3-7026-N2 P3-7026-N18 P3-7026-N18 P3-7026-N2 47 47 47 47 62 62 13 77 77 24 16 16 16 16 15.906 15.906 15.906 15.906 3.125 3.125 3.938 3.938 3.938 6.250 14.906 14.906 14.906 14.906 2.760 2.760 3.576 3.576 3.576 5.750 1'..500 i1.500 11.500 11.500 1.750 1.750 2.500 2.500 2,500 4.500 0.~00 0.600 0.500 0.600 0.500 0.500 0.500 0.500 0.500 0.250".~BP 3.882 1.882 1.882 0.528 0.528 0.628 0.628 0.628 0.412 1.406 1.406 1.406 1.406 0.552 0.552 0.624 0.624 0.624 0.343 10 3238.9 10 3238.9 10 3238.9 10 3238.9 10 639 10 63.9 10 111.0 10 111.0 10 111 0 7 215.3 2ICS*MOV136 2HH8'OV4A P3-7026-N2 24 P3-7028-N2 26 6.250-8.260 5.750 6.760 4.500 4.600 0.250 0.412 0.260 0.412 0.343 0.343 7 216.3 7 2163 2RHS*MOV4B 2RHS*MOV4C P3-7026-N2 P3-7026-N2 2SWP*MOV17A 2SWPo MOV17B 2SWP'MOV1 BA P3-7026-N6 P3-7026-NB P3-7026-N6 2SWP*MOV66A P3-7026-N6 2SWP*MOV66B P3-7026-N6 2SWP'MOV94A P3-7026-N6 2SWP*MOV94B P3-7026-N6 25 25 65 65 66 66 37 37 38 6 6 8 8 8 8 12 12 12 6.250 6.250 8.063-8.063 8.063 8.063 11.750 ii.7s0 11.750 5.750 5.750 7.563 7.563 7.563 7.563 11.250 11.260 11.250 9.875 9.876 9.875 0,250 0.260 0.250 4.500 0.250 4.500 0.250 6.750 0.250 6.750 0.250 6.750 0.250 6.750 0.250 0.412 0.412 0.471 0.471 0.471 0.471 0.671 A P7<9 67"-0.343 0.343 0.478 0.478 0.478 0.478 0.906 0.906 0.906 7 21s3 7 215.3 10 434.3 10 434.8 10 434.8 10 434.8 7 1294 0 7 1294.0 7 1294.0 2SWP*MOV18B 2RHS'MOV1 15 2RHS*MOV1 16 2ICS*MOV1 26 2ICS*MOV122 2ICS~MOV1 21 P3-7026-N6 P3-7026-N6 P3-7026=N6 P3-7026-NB P3-7026-N10 P2-7026-N17 2ICS*MOV128 P2-7026-N17 Note: Dimensions are ln inches.38 46 45 30-40 36 69 12 16 16 6 12 10 10 11.750 15.906 15.906 5.875 11.750 8.750 8.750 11.250 14.906 14.906 5.332 11.250 8.030 8.030 9.875 11.500 11.500 3.000 9.875 6.125 6.125 0.250 0.500 0.500 1.000 0.250 0.375 0.375 1.882 1.882 1.000 0.671 0.826 0.826 0.906 1.406 1.406 1.123 0.906 1.197 1.197 7 129.0 10 3238.9 10.3238.9 10 283.4 7 1294.0 10 617.2 10 617.2 Prepared by: John McDougall 24/08/1995 Rev 1
AnchorDarlingisto,comply withP.O.Commitments:
N/Axc:RonBrubaker(byfax) 0 NiagaraMohawkPowerCorporation
-VeianP.O.P9-80572-KDimensional DataforPressureLockingAnalysisDM-0050cP0ValveID2RHSAMOV112VelanDw.No.P2-7026-N13item492017.62515.935SeatDimensions SizeOOIDHubDia.1<.2500,37K%6/HubTopofDiskWidthThick"ess BottomofDiskWedgeBonnetThickness AnleVolume1.330104464.72RHS*MOV113 P2-7026-N13482017.62515.935i4.2500.3751.330104464.72RHS*MOV1 5A2RHS*MOV1 5B2RHS*MOV25A 2RHS*MOV2sB 2SWP'MOV21A 2SWP*MOV21 B2CSL4MOV1072SWPAMOY67A2SWP*MOV67B 2ICS*MOV129 P3-7026-N10 P3-7026-N10P3-7026-N10 P3-7028-N10 P3-7026-N18P3-7026-N18P3-7026-N2P3-7026-N18P3-7026-N18 P3-7026-N2474747476262137777241616161615.90615.90615.90615.9063.1253.1253.9383.9383.9386.25014.90614.90614.90614.9062.7602.7603.5763.5763.5765.7501'..500i1.50011.50011.5001.7501.7502.5002.5002,5004.5000.~000.6000.5000.6000.5000.5000.5000.5000.5000.250".~BP3.8821.8821.8820.5280.5280.6280.6280.6280.4121.4061.4061.4061.4060.5520.5520.6240.6240.6240.343103238.9103238.9103238.9103238.9106391063.910111.010111.01011107215.32ICS*MOV136 2HH8'OV4A P3-7026-N2 24P3-7028-N2266.250-8.2605.7506.7604.5004.6000.2500.4120.2600.4120.3430.3437216.3721632RHS*MOV4B 2RHS*MOV4C P3-7026-N2P3-7026-N22SWP*MOV17A 2SWPoMOV17B2SWP'MOV1 BAP3-7026-N6P3-7026-NBP3-7026-N62SWP*MOV66A P3-7026-N6 2SWP*MOV66B P3-7026-N6 2SWP'MOV94A P3-7026-N62SWP*MOV94B P3-7026-N6 2525656566663737386688881212126.2506.2508.063-8.0638.0638.06311.750ii.7s011.7505.7505.7507.5637.5637.5637.56311.25011.26011.2509.8759.8769.8750,2500.2600.2504.5000.2504.5000.2506.7500.2506.7500.2506.7500.2506.7500.2500.4120.4120.4710.4710.4710.4710.671AP7<967"-0.3430.3430.4780.4780.4780.4780.9060.9060.906721s37215.310434.310434.810434.810434.871294071294.071294.02SWP*MOV18B 2RHS'MOV1 152RHS*MOV1 162ICS*MOV1 262ICS*MOV122 2ICS~MOV121P3-7026-N6P3-7026-N6P3-7026=N6P3-7026-NBP3-7026-N10P2-7026-N172ICS*MOV128 P2-7026-N17 Note:Dimensions arelninches.38464530-403669121616612101011.75015.90615.9065.87511.7508.7508.75011.25014.90614.9065.33211.2508.0308.0309.87511.50011.5003.0009.8756.1256.1250.2500.5000.5001.0000.2500.3750.3751.8821.8821.0000.6710.8260.8260.9061.4061.4061.1230.9061.1971.1977129.0103238.910.3238.910283.471294.010617.210617.2Preparedby:JohnMcDougall 24/08/1995 Rev1
'
'
4M~Mme.~CP~qtcd=4Cz4COMMONWEALTH EDISONCOMPANYPRESSURELOCKINGTESTREPORTBrianD.Bunte,P.E.Commonwealth EdisonCompanyJohnF.Kelly,P.E.RECTATechnologies, inc.ABSTRACTPressuieLockingisaphenomena whichcancausetheunseating thrustfor'gateygyetoincreasedramatically fromitstypicalstaticunseating thrust.Thiscanresultinthevalveactuatorhavinginsufficient capability toopenthevalve.Inaddition, thiscanresultinvalvedamageincaseswheretheactuatorcapability exceedsthevalvestructural limits.Forthesereasons,aproperunderstanding oftheconditions whichmaycausepressurelockingandthermalbinding,aswellasamethodology forpredicting theunseating thrustforapressurelockedorthermally boundvalve,arenecessary, Thisreportdiscusses theprimarymechanisms whichcausepressurelocking.Theseincludesuddendepressurization ofpipingadjacenttothevalveandpressurization offluidtrappedinthevalvebonnetduetoheattransfer.
4M~M me.~C P~qt cd=4 C z4 COMMONWEALTH EDISON COMPANY PRESSURE LOCKING TEST REPORT Brian D.Bunte, P.E.Commonwealth Edison Company John F.Kelly, P.E.RECTA Technologies, inc.ABSTRACT Pressuie Locking is a phenomena which can cause the unseating thrust for'gate ygye to increase dramatically from its typical static unseating thrust.This can result in the valve actuator having insufficient capability to open the valve.In addition, this can result in valve damage in cases where the actuator capability exceeds the valve structural limits.For these reasons, a proper understanding of the conditions which may cause pressure locking and thermal binding, as well as a methodology for predicting the unseating thrust for a pressure locked or thermally bound valve, are necessary, This report discusses the primary mechanisms which cause pressure locking.These include sudden depressurization of piping adjacent to the valve and pressurization of fluid trapped in the valve bonnet due to heat transfer.This report provides a methodology for calculating the unseating thrust for a'valve which is pressure locked.This report provides test data which demonstrates the accuracy of the calculation methodology.
Thisreportprovidesamethodology forcalculating theunseating thrustfora'valvewhichispressurelocked.Thisreportprovidestestdatawhichdemonstrates theaccuracyofthecalculation methodology.
DESCRY"HON OF PRESSURE LOCKING PHENOMENA Pressure locking occurs when the bonnet cavity pressure of a gate valve exceeds the pressure on hgh sides of the valve disk.The two primary mechanisms that exist for pressure locking of gate valves are described below: This pressure locking mechanism occurs when a valve is pressurized from one side.Leakage past the valve scat will cause the fluid in the gate valve bonnet to pressurize to.,the pressure of the high pressure side of the valve disk.Depending on the leak-tightness of the valve seats, this pressurizatio process may take seconds or hours;however, it is extremely unlikely that the valve seat will be sufficiently leak tight to prevent this process from eventually occurring.
DESCRY"HON OFPRESSURELOCKINGPHENOMENA Pressurelockingoccurswhenthebonnetcavitypressureofagatevalveexceedsthepressureonhghsidesofthevalvedisk.Thetwoprimarymechanisms thatexistforpressurelockingofgatevalvesaredescribed below:Thispressurelockingmechanism occurswhenavalveispressurized fromoneside.Leakagepastthevalvescatwillcausethefluidinthegatevalvebonnettopressurize to.,thepressureofthehighpressuresideofthevalvedisk.Depending ontheleak-tightness ofthevalveseats,thispressurizatio processmaytakesecondsorhours;however,itisextremely unlikelythatthevalveseatwillbesufficiently leaktighttopreventthisprocessfromeventually occurring.
If the source of pressure is suddenly removed, then prcssure in the bonnet valve will remain trapped.If the valve is called upon to open before the bonnet pressure has decayed to the line pressure, then a pressure locking event occurs.e The'time needed for the bonnet pressure to decay is dependent on several factors including leak tightncss of valve seats and packing.In addition, when the bonnet fluid is at a high temperature or contains large amounts of air, the, bonnet pressure decays much more slowly due to the pressurizer effect.Apparent cases of pressure locking occurring up to a day after the pressure source is removed have been recorded.However, test data presented later in this report suggests that the bonnet pressure is likely to decay within one hour of the sudden depressurization event 3C-9'UREG/CP-0152 0'I 0 g44 iehwy~y C C~~c+C2~urring~is type of pressure locking is likely to occur when pumps adjacent to closed valves shut off or when an event such as a LOCA causes pressure on one side of a valve to suddenly<<op<<f~en the initial differential pressure across the valve disk is sufficient to unseat the high pressure side disk from its seat, then the bonnet pressure following a sudden depressurization event is less than the bonnet pressure at the start of the event.The maximum pressure which can be trapped in the valve bonnet can be calculated by determining the differential pressure at which the valve disk will come back into contact with the valve seat.Until the disk to seat contact is re-established, the bonnet pressure will follow the.upstream side pressure.This calculation has been developed by ComEd, but is not provided in this report due to constraints on length.This pressure locking mechanism occurs when the valve bonnet cavity of a gate valve is filled with liquid that contains little or no air.If a heat source is applied to fluid in the valve bonnet cavity, then expansion of the fluid can cause pressure in the valve bonnet to dramatically increase.The heat source can be fluid in piping adjacent to the valve or external environmental conditions as might be encountered following a high energy line break.Pressurization rates of-20 psi/'F to 60 psi/'F have been recorded during special testing.However, pressurization rates of this nature require the following conditions to exist: the valve seats and pachng must be very leak tight~the heat source must provide a high heat transfer rate to the bonnet cavity fluid~no air can exist in the valve bonnet cavity, or the temperature rise in the valve bonnet cavity must be sufficient to cause the expanding fluid to collapse the air bubbles before the high pressurization rate can be achieved.PRESSURE LOCKING CALCULATION MEI'HODOLOGY 1.The valve disk is assumed to act as two ideal disks connected by a hub.The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces, 2..The coefBcient of friction between the valve, seat and disk is assumed to be the same under pressure locking conditions as it is under DP conditions.
Ifthesourceofpressureissuddenlyremoved,thenprcssureinthebonnetvalvewillremaintrapped.Ifthevalveiscalledupontoopenbeforethebonnetpressurehasdecayedtothelinepressure, thenapressurelockingeventoccurs.eThe'timeneededforthebonnetpressuretodecayisdependent onseveralfactorsincluding leaktightncss ofvalveseatsandpacking.Inaddition, whenthebonnetfluidisatahightemperature orcontainslargeamountsofair,the,bonnetpressuredecaysmuchmoreslowlyduetothepressurizer effect.Apparentcasesofpressurelockingoccurring uptoadayafterthepressuresourceisremovedhavebeenrecorded.
However,testdatapresented laterinthisreportsuggeststhatthebonnetpressureislikelytodecaywithinonehourofthesuddendepressurization event3C-9'UREG/CP-0152 0'I0 g44iehwy~yCC~~c+C2~urring~istypeofpressurelockingislikelytooccurwhenpumpsadjacenttoclosedvalvesshutofforwhenaneventsuchasaLOCAcausespressureononesideofavalvetosuddenly<<op<<f~entheinitialdifferential pressureacrossthevalvediskissufficient tounseatthehighpressuresidediskfromitsseat,thenthebonnetpressurefollowing asuddendepressurization eventislessthanthebonnetpressureatthestartoftheevent.Themaximumpressurewhichcanbetrappedinthevalvebonnetcanbecalculated bydetermining thedifferential pressureatwhichthevalvediskwillcomebackintocontactwiththevalveseat.Untilthedisktoseatcontactisre-established, thebonnetpressurewillfollowthe.upstream sidepressure.
Thiscalculation hasbeendeveloped byComEd,butisnotprovidedinthisreportduetoconstraints onlength.Thispressurelockingmechanism occurswhenthevalvebonnetcavityofagatevalveisfilledwithliquidthatcontainslittleornoair.Ifaheatsourceisappliedtofluidinthevalvebonnetcavity,thenexpansion ofthefluidcancausepressureinthevalvebonnettodramatically increase.
Theheatsourcecanbefluidinpipingadjacenttothevalveorexternalenvironmental conditions asmightbeencountered following ahighenergylinebreak.Pressurization ratesof-20psi/'Fto60psi/'Fhavebeenrecordedduringspecialtesting.However,pressurization ratesofthisnaturerequirethefollowing conditions toexist:thevalveseatsandpachngmustbeveryleaktight~theheatsourcemustprovideahighheattransferratetothebonnetcavityfluid~noaircanexistinthevalvebonnetcavity,orthetemperature riseinthevalvebonnetcavitymustbesufficient tocausetheexpanding fluidtocollapsetheairbubblesbeforethehighpressurization ratecanbeachieved.
PRESSURELOCKINGCALCULATION MEI'HODOLOGY 1.Thevalvediskisassumedtoactastwoidealdisksconnected byahub.Theequations inreference 1areassumedtoconservatively modeltheactualloadduetopressureforces,2..ThecoefBcient offrictionbetweenthevalve,seatanddiskisassumedtobethesameunderpressurelockingconditions asitisunderDPconditions.
NUREG/CP4152 3C-10  
NUREG/CP4152 3C-10  


~X~U4aaKLbKA)i-CQX<oik44~~h~g~+C~%c.Kc''gn'nputsareusedincalculating theforcerequiredtounseatapressurelockedMOV:i~sign~isPressureConditions atthetimeofthepressurelockingevent.Thisincludestheupstream(PP,downstream (P~g,andbonnetpressure(P~J.~ValveDiskGeometry.
~X~U4aa KLb K A)i-CQX<o i k44~~h~g~+C~%c.K c''gn'nputs are used in calculating the force required to unseat a pressure locked MOV: i~sign~is Pressure Conditions at the time of the pressure locking event.This includes the upstream (PP, downstream (P~g, and bonnet pressure (P~J.~Valve Disk Geometry.This includes the hub radius (b), hub length (L), mean seat radius., (a), seat angle (8), and average disk thickness (t).Figure 1 below is provided, for further clarification.
Thisincludesthehubradius(b),hublength(L),meanseatradius.,(a),seatangle(8),andaveragediskthickness (t).Figure1belowisprovided, forfurtherclarification.
When the hub cross-section is not circular (e.g.many Westinghouse gate valve designs), then an effective hub radius which corresponds to a circle of equal area to the hub cross-sectional area should be used.~Valve Disk Material Properties.
Whenthehubcross-section isnotcircular(e.g.manyWestinghouse gatevalvedesigns),
This includes the modulus of elasticity (E)and the Poisson's ratio (r)for the disk base material.~Valve Stem Diameter (D~II~Static Unseating Thrust (FP~Coefficient of Friction between Disk and Seat (p)3C-11 NUREG/CP-0152 0
thenaneffective hubradiuswhichcorresponds toacircleofequalareatothehubcross-sectional areashouldbeused.~ValveDiskMaterialProperties.
FIGURE 1 SEAT RlNG VALVE DISK I Seat Ring Centerline Plane of Symme Through Olsk The methodology for calculating the thrust required to open the MOVs under the pressure locking scemuio is based on the Reference 1 (Roark's)engineering handbook.This methodology is based in part on calculations developed by MPR Associates (Reference 2).The methodology determines the total force required to open the valve under a pressure locking scenario by calculating the four components to this required force.The four components of the force are the pressure locking component, the static unseating component, the piston effect component, and the"reverse piston effect'omponent.
Thisincludesthemodulusofelasticity (E)andthePoisson's ratio(r)forthediskbasematerial.
These components are determined using the following steps.NUREG/CP4 152 3C-12 II II I~,~n led as two plates attached at the center by a hub which is concentric with plane of symmetry is assumed between the valve disks.'This plane f symmetry is considered fixed in the analysis FIGURE 2 Hane of Symmetry Modeled As:-I-Axis af Symmetry 3C-13 NUREG/CP-0152  
~ValveStemDiameter(D~II~StaticUnseating Thrust(FP~Coefficient ofFrictionbetweenDiskandSeat(p)3C-11NUREG/CP-0152 0
FIGURE1SEATRlNGVALVEDISKISeatRingCenterline PlaneofSymmeThroughOlskThemethodology forcalculating thethrustrequiredtoopentheMOVsunderthepressurelockingscemuioisbasedontheReference 1(Roark's) engineering handbook.
Thismethodology isbasedinpartoncalculations developed byMPRAssociates (Reference 2).Themethodology determines thetotalforcerequiredtoopenthevalveunderapressurelockingscenariobycalculating thefourcomponents tothisrequiredforce.Thefourcomponents oftheforcearethepressurelockingcomponent, thestaticunseating component, thepistoneffectcomponent, andthe"reversepistoneffect'omponent.
Thesecomponents aredetermined usingthefollowing steps.NUREG/CP4 1523C-12 IIIII~,~n ledastwoplatesattachedatthecenterbyahubwhichisconcentric withplaneofsymmetryisassumedbetweenthevalvedisks.'This planefsymmetryisconsidered fixedintheanalysisFIGURE2HaneofSymmetryModeledAs:-I-AxisafSymmetry3C-13NUREG/CP-0152  


~~IJQ(~l~i~%4gt44+b.~Q~q~+Cgascxfonthisgeometry, thefo>>o~ing constants arecalculated usingtheReference iequations:
~~IJQ (~l~i~%4gt 44+b.~Q~q~+C gascxf on this geometry, the fo>>o~ing constants are calculated using the Reference i equations:
AverageDPAcrossDiskP+P~OP~-PboDiskStressConstants Ext(Reference I,Table24)D-12x/1-v'-.2x(1+v)GeometryFactorsb(Q.gb'sFM~INB(Reference 1,Table24)1C=-1-24bC=-4aI1+2b'2+1aab-+--1ba(4)1C=-I2bC=-9aI+v+(1-v)-a1+va1-v+2b4b21--a(7)hHGKG/CP4 1523C-14  
Average DPAcross Disk P+P~OP~-Pbo Disk Stress Constants Ext (Reference I, Table 24)D-12x/1-v'-.2x(1+v)Geometry Factors b (Q.g b's FM~INB (Reference 1, Table 24)1 C=-1-2 4 b C=-4a I 1+2 b'2+1 a a b-+--1 b a (4)1 C=-I 2 b C=-9 a I+v+(1-v)-a 1+v a 1-v+2 b 4 b 2 1--a (7)hHGKG/CP4 152 3C-14  


gQa(,jiL)-4~++~eh~pn+CV)qzcThepressureforceisassumedtoactuniformly upontheinnersurfaceofthediskbetweenthehubdiameterandtheouterdiskdiameter.
gQ a(, ji L)-4~++~eh~pn+C V)qz c The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter.The outer edge oi the disk is assumed to be unimpeded and allowed to deflect away from the pressure force.In addition, the disk hub is allowed to stretch.The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the Reference 1 equations.
Theouteredgeoithediskisassumedtobeunimpeded andallowedtodeflectawayfromthepressureforce.Inaddition, thediskhubisallowedtostretch.Thetotaldisplacement attheouteredgeofthevalvediskduetoshearandbendingandduetohubstretcharecalculated usingtheReference 1equations.
FIGURE 3 shear~am.~stretch Addtdonal Gccwcny Facmrs (lbfcrcncc l.Toblc24)(r,~b for'Cacc2L)
FIGURE3shear~am.~stretchAddtdonal GccwcnyFacmrs(lbfcrcncc l.Toblc24)(r,~bfor'Cacc2L)
PuP2 P3 ,1]+(]+v)Moment F~()$g~s g ('D()-DP x C-c i (()(2ssasaa 2 Ta(sla 24,Csaa2L) hf>>2 (a-as)Lss](r,~b for Cocc2L)~DPav (~~)22(b Dcjfccclccc jhraprccc()tel bcatbg a'i DPassg a a'PalaasaaL1 a(s(a2(Ccaa2L)yk(a Cs Q(s-Cs-.D-(ss 3C-15 NUREG/CP4152  
PuP2P3,1]+(]+v)MomentF~()$g~sg('D()-DPxC-ci(()(2ssasaa 2Ta(sla24,Csaa2L) hf>>2(a-as)Lss](r,~bforCocc2L)~DPav(~~)22(bDcjfccclccc jhraprccc()tel bcatbga'iDPassgaa'PalaasaaL1 a(s(a2(Ccaa2L)yk(aCsQ(s-Cs-.D-(ss3C-15NUREG/CP4152  


4~bcX~Wi-o~A,LO.E-KC-O~~044~~4~a~%CCS~+~~CoDeflecttofrompressure.'hear (peference 1,Table25,Case2L)Ksa=-0.2t---'-2l(13)(r,=bforCase"L)K,.xDPavgxa'xG Deflection PopressureIhubstretchP>=tr(a'b')DPavg-PjLnxb'2xETotalDeflectionduetopressure(17)Anevenlydistributed forceisassumedtoactbetweenthevalveseatandtheouteredgeofthevalvediskTNsforceactstodeflecttheouterdiameterofthevalvediskinwardandtocompressthediskhub.Thepressureforceisreactedtobyanincreaseinthiscontactforcebetweenthevalvediskandseats.Thevalvebodyseatsareconservatively assumedtobefixed.Therefore, thedeflection duetotheknownpressureloadmustbebalancedbythedeflection duetotheunknownseatload.Thedeflection duetothepressureforcewaspreviously calculated.
4~bc X~Wi-o~A,LO.E-KC-O~~0 44~~4~a~%C C S~+~~Co Deflect to from pressure.'hear (peference 1, Table 25, Case 2 L)Ksa=-0.2t---'-2l (13)(r,=b for Case" L)K,.x DPavgxa'xG Deflection Po pressure I hub stretch P>=tr (a'b')DPavg-Pj L n xb'2xE Total Deflecti ondueto pressure (17)An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk TNs force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub.The pressure force is reacted to by an increase in this contact force between the valve disk and seats.The valve body seats are conservatively assumed to be fixed.Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load.The deflection due to the pressure force was previously calculated.
TheReference 1equations arenowusodtodetermine thecontactforcebetweentheseatanddiskwhichresultsinadeflection whichisequalandoppositetothedeflection duetothepressureforce.Thisisdonebyfirstcalculating theamountdeflection createdbyaunitloadofseatconstforce(w~1lbf/in).Theequilibrium contactloadisthendetermined bydividingthedeflection causedbytheunitcontactloadintothepreviously calculated deflection duetothepressureforce.Theequations areprovidedbelow.NUREG/CP%1523C-16  
The Reference 1 equations are now usod to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force.This is done by first calculating the amount deflection created by a unit load of seat const force (w~1 lbf/in).The equilibrium contact load is then determined by dividing the deflection caused by the unit contact load into the previously calculated deflection due to the pressure force.The equations are provided below.NUREG/CP%152 3C-16  


i~a+o~k<O>-4>-<<~hA4.Ac%wca+p~ggQQo+C-Z4rfdditional GeometryFactors(Reference I,Table24,CaseIL)rnL,=-4xalro+Ia2ar,I-+--Ir,a(18)(forCaseIL,r,=a,.L3=Q=0)>>0aI+v-I2aI-v+ro4-HDeflectionjom seaload/bending(r,=a)~,~pc/yp(Reference I,Table24,CaseIL,w=I)(2o)Deflection f>>omseatload/sltea>>
i~a+o~k<O>-4>-<<~hA4.Ac%w ca+p~gg Q Q o+C-Z4 rfdditional Geometry Factors (Reference I, Table 24, Case IL)rn L,=-4xa l ro+I a 2 a r, I-+--I r, a (18)(for Case IL, r,=a,.L3=Q=0)>>0 a I+v-I 2 a I-v+ro 4-H Deflectionjom sea load/bending (r,=a)~,~pc/yp (Reference I, Table 24, Case IL, w=I)(2o)Deflection f>>om seat load/sltea>>
(>>=a)(ReferenceI, TaMe25,CaseIL,w=1)
(>>=a)(ReferenceI, TaMe25,CaseIL,w=1)
E'-12-'ab(21)y=E-(22)Deflectt'onPomseat loadIhubcour.Zxgxaw=I,.'.'Cnryres.hefo>>ce=2xe xayzxb(23)TotalDeflectionporn uniseatload(w=1)'.=y+y+y(24)3C-17NUREG/CP-0152  
E'-12-'a b (21)y=E-(22)Deflectt'onPomseat load I hub cour.Zxg xa w=I,.'.'Cnryres.hefo>>ce=2xe xa y zxb (23)Total Deflectionporn uni seat load (w=1)'.=y+y+y (24)3C-17 NUREG/CP-0152  
~'0 gg4i~4~i>+CCsa~+'C~+nttload'istribution (ibf/in)andthecorresponding loadappliedTherefore, theequilibrium contacttoeachseatiscutscalculated.
~'0 g g4i~4~i>+C C sa~+'C~+nt t load'istribution (ibf/in)and the corresponding load applied Therefore, the equilibrium contact to each seat is cu t s calculated.
usingtherelationship bc}ow..,it'lleX.iscalculated fpp~Loadperseat=2xgxax-(25'26beusedtodetermine anappropriate scattodiskfrictioncoefficient.
using the relationship bc}ow.., it'll eX.iscalculated fpp~Load per seat=2 x g x a x-(25'26 be used to determine an appropriate scat to disk friction coefficient.
UsingSeveralmethodsmayuecfollowinuationthisfrictioncoccientana',c'ri'fi'andaforcebalanceonthediskto,seatinterface, thc'cqbetweenisderivedforcuatingescalI'htcmforcerequiredtoovercomethcincreased contactloadtheseatanddisk:F=2xgrxax-'[pxcos{8)-sin{8)jx2 prcskek(27)wlenilthelass2corraposdssothenumber ofscamThestaticunseating forceresultsfromtheopenpacgonkinloadandpulloutforce'due towedgingofthevalvediskduringclosure.Theseloadsaresuperimposed ontheloadsduetocpressureforceswhichoccurduringpressurelocking.ThevalueforthisloadisbasedonstatictestdatafortheMOVs.I~ThepistoneffectduetovaIveinternalpressureaccedingoutsidepressureiscalculated usingthestandardlnusuy'eqdard'usuy'equation Thisforceassistsmovementofthevalvestemintheopendirection.
Using Several methods may u e c followin uation this friction coc cient an a', c'ri'fi'and a force balance on the disk to,seat interface, thc'cq between is derived for cu ating e s cal I'h tcm force required to overcome thc increased contact load the seat and disk: F=2xgrxax-'[pxcos{8)-sin{8)jx2 prcskek (27)wlenil the lass 2 corraposdssothenumber of scam The static unseating force results from the open pac g o n kin load and pullout force'due to wedging of the valve disk during closure.These loads are superimposed on the loads due to c pressure forces which occur during pressure locking.The value for this load is based on static test data for the MOVs.I~The piston effect due to vaIve internal pressure acceding outside pressure is calculated using the standard ln usuy'eq dard'usuy'equation This force assists movement of the valve stem in the open direction.
2F=-xDxPb<<<<,-P<<III)plsrosscffecs4srtlss{2SNUREG/CPA 1523C-l8  
2 F=-x D x Pb<<<<,-P<<III)plsross cffecs 4 srtlss{2S NUREG/CPA 152 3C-l8  


Thereversepistoneffectisthetermusedinthiscalculation torefertothepressureforceactingdownwardagainstthevalvedisk.Thisforceiscalculated asfollows:F,,=<xax2xP~-P,,-P,xsing(29)HGURE4P1oanetPbonnet3C-19NUREG/CP-0152  
The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk.This force is calculated as follows: F,,=<xa x 2xP~-P,,-P, xsing (29)HGURE 4 P 1oanet P bonnet3C-19 NUREG/CP-0152  


~~XcIo.+s'o<EhtO~t-h<0-<<>k44~~4we~+C~4K2cAsmentioned previously, thetotalstemforce(tension) requiredtoovercomepressurelochngisthesumofthefourcomponents discussed above.Allofthetermsarepositivewiththeexception ofthepistoneffectcomponent.
~~Xc Io.+s'o<EhtO~t-h<0-<<>k44~~4 we~+C~4K2c As mentioned previously, the total stem force (tension)required to overcome pressure lochng is the sum of the four components discussed above.All of the terms are positive with the exception of the piston effect component.
(30)DESCRIFMON OFTESTVALVESThethreetestvalveswereobtainedfromdifferent sources.TheCranevalveisatestvalvelocatedatQuadCitiesStation.TheWestinghouse valvewasobtainedthroughtheWestinghouse OwnersGroup.TheBorg-Warner valvewasobtainedfromArizonaPublicService.TheCramvalveisasparevalvewhichwassubjected toblowdowntestingatWyleLaboratories inHuntsville, Ahlmmt.TheWestinghouse valveisatestvalvewhichwassubjected tolimitedtestingatSouthTexasProject.TheBorg-Warner valvewasasparevalvewhichhadnotbeensubjected toprevioustestingotherthanthatperformed atthevendorpriortodelivery.
(30)DESCRIFMON OF TEST VALVES The three test valves were obtained from different sources.The Crane valve is a test valve located at Quad Cities Station.The Westinghouse valve was obtained through the Westinghouse Owners Group.The Borg-Warner valve was obtained from Arizona Public Service.The Cram valve is a spare valve which was subjected to blowdown testing at Wyle Laboratories in Huntsville, Ahlmmt.The Westinghouse valve is a test valve which was subjected to limited testing at South Texas Project.The Borg-Warner valve was a spare valve which had not been subjected to previous testing other than that performed at the vendor prior to delivery.Thc Crane valve is a carbon steel valve (Model 783-U)which was modified during blowdown testing to contain a stainless steel valve disk and malcolmized guide rail (similar to the Model 783-UL valve design).The Westinghouse valve and Borg-Warner'alve were stainless steel valve designs.NUREG/CP4152 3C-20 11 DMM~'ION OF TEST'APPARATUS
ThcCranevalveisacarbonsteelvalve(Model783-U)whichwasmodifiedduringblowdowntestingtocontainastainless steelvalvediskandmalcolmized guiderail(similartotheModel783-ULvalvedesign).TheWestinghouse valveandBorg-Warner'alve werestainless steelvalvedesigns.NUREG/CP4152 3C-20 11 DMM~'IONOFTEST'APPARATUS
~Xc~~W~q>K~@, (Z xy-u gg4hc4~+~+c 4 C The figure belo w shows the basic test setup used for the pressure locking tests.A VQTES'4 t acquisition system and a Motor Power Monitor (MPM)data acquisition system were used to collect stem thrust, actuato r torque and motor power data.In addition, on-line pressure data was collected during the Westinghouse and Borg-Warner valve tests.A hydrostatic test pump and accumulator were used as the pressure source during pressure locking tests and hydrppump DP tests: HGURE S VOTES m Llmttarq.MPM system Vent 88 S>>In Ga" Qe Accumutator Pressure Gauge Pressure Gauge Hydro Pump~1 Pressure Gauge Pressure Gauge Vent For the Crane test, the valve was laid on its siCk with the stem slightly below horizontal.
~Xc~~W~q>K~@,(Zxy-ugg4hc4~+~+c4CThefigurebelowshowsthebasictestsetupusedforthepressurelockingtests.AVQTES'4tacquisition systemandaMotorPowerMonitor(MPM)dataacquisition systemwereusedtocollectstemthrust,actuatortorqueandmotorpowerdata.Inaddition, on-linepressuredatawascollected duringtheWestinghouse andBorg-Warner valvetests.Ahydrostatic testpumpandaccumulator wereusedasthepressuresourceduringpressurelockingtestsandhydrppump DPtests:HGURESVOTESmLlmttarq.
This configuration was used to enlire that no air pockets would be trapped within the valve body when it was filled with water.The Westinghouse valve was installed in a test stand with the stem upright.The valve bonnet was vented by bleeding air out of thk packing leakwff line.'The Borg-Warner valve was installed in a special test stand which allowed pivoting the valve abo'erline The valve stem could be put at any angle between upright and sloped ut 1'ts cen~~~~~valve bonnet, the downward at a 15 degree angle in either direction.
MPMsystemVent88S>>InGa"QeAccumutator PressureGaugePressureGaugeHydroPump~1PressureGaugePressureGaugeVentFortheCranetest,thevalvewaslaidonitssiCkwiththestemslightlybelowhorizontal.
To remove air from the valve bon valve was rotated on its siCk and rocked up and down as it filled with water.3C-21 NUREG/CP4152  
Thisconfiguration wasusedtoenlirethatnoairpocketswouldbetrappedwithinthevalvebodywhenitwasfilledwithwater.TheWestinghouse valvewasinstalled inateststandwiththestemupright.Thevalvebonnetwasventedbybleedingairoutofthkpackingleakwffline.'TheBorg-Warner valvewasinstalled inaspecialteststandwhichallowedpivotingthevalveabo'erlineThevalvestemcouldbeputatanyanglebetweenuprightandslopedut1'tscen~~~~~valvebonnet,thedownwardata15degreeangleineitherdirection.
ToremoveairfromthevalvebonvalvewasrotatedonitssiCkandrockedupanddownasitfilledwithwater.3C-21NUREG/CP4152  


DESCRY'TION OFTESTMETHODSThetestprocessstartedwithstaticteststrokestoverifytheproperinstallation ofthedataacquisiti systemsandtomeasurestaticunseating loadmagnitude andrepeatability.
DESCRY'TION OF TEST METHODS The test process started with static test strokes to verify the proper installation of the data acquisiti systems and to measure static unseating load magnitude and repeatability.
LLEKRATTLocalleakratetestsofthevalveswereperformed tomeasureseattightness.
LLE K RAT T Local leak rate tests of the valves were performed to measure seat tightness.
Thesetestswiperformed atmultipletorqueswitchsettingsinsomecases.DPTestsintheopendirection wereperformed bypressurizing thevalvefromonesidewithhydropump andthenstrokingthevalveopen.Testdataindicates thatthedifferential pressureimaintained acrossthevalvediskwhilethediskslidacrossthevalveseat.ThepurposeoftheDPtcwastoprecondition thevalveseatsanddisksandtomonitortheseat-to-disk frictioncoefficient.
These tests wi performed at multiple torque switch settings in some cases.DP Tests in the open direction were performed by pressurizing the valve from one side with hydropump and then stroking the valve open.Test data indicates that the differential pressure i maintained across the valve disk while the disk slid across the valve seat.The purpose of the DP tc was to precondition the valve seats and disks and to monitor the seat-to-disk friction coefficient.
DPtestswereperformed untilastablefrictioncoefficient wasachieved.
DP tests were performed until a stable friction coefficient was achieved.A series of pressure locking tests was performed fot each valve.Inlet pressure, outlet pressure, bon pressure, and static seating force were varied during these tests.Static baseline tests to measure static unseating load were performed between the pressure locking tests.Thc closure strokes for static tests were performed at the same initial conditions (pressure and seating force)as the clos strokes prior to the pressure locking tests so that the change in unseating load due to pressure lock could be accurately determined.
Aseriesofpressurelockingtestswasperformed foteachvalve.Inletpressure, outletpressure, bonpressure, andstaticseatingforcewerevariedduringthesetests.Staticbaselineteststomeasurestaticunseating loadwereperformed betweenthepressurelockingtests.Thcclosurestrokesforstatictestswereperformed atthesameinitialconditions (pressure andseatingforce)astheclosstrokespriortothepressurelockingtestssothatthechangeinunseating loadduetopressurelockcouldbeaccurately determined.
To measure the seat tightness, bonnet deprcssurization rate tests were performed.
Tomeasuretheseattightness, bonnetdeprcssurization ratetestswereperformed.
The entire v assembly (including the valve bonnet)was pressurized while in the closed position.Then the upstr and downstream pressute wcte vented.The bonnet pressure as a function of time was measured.To'easure thc potential for pressure locking due to bonnet fiuid heat-up, thermally induced boy pressurization rate tests were performed on the Westinghouse and Borg-Warner valves.After ven air from the valve bonnet cavity, each valve was closed while filled with water at approximately psig.The valve bonnet was then heated using an outside heat source.The pressure of the fluid in valve bonnet was measured directly.The temperature of fluid in the valve bonnet for the Borg-Wa valve and the temperature of the outside of the valve bonnet for the Westinghouse valve were measu Initial pressurization rates between 0.5 and 2.0 psi/degree F were measured.Much higher ultir NUREG/CP4152 3C-22 1
Theentirevassembly(including thevalvebonnet)waspressurized whileintheclosedposition.
klO<-Ab-o 9 C tW e 4C.~W pressurization rates were witnessed during the Borg-Warner tests.The data from this testing is not presented in this report, but is available from ComEd upon request.PRESSURE LOCKING TEST DATA The following table provides the pressure locking test results comparing the measured pressure locking unseating load to the predicted pressure locking unseating load: TABLE 1 IncraLse ercent Conservatism (Non-Cons.)
Thentheupstranddownstream pressutewctevented.Thebonnetpressureasafunctionoftimewasmeasured.
Notes fan4 1 4 1 4 1 14 el ,4 fg o fg o fg o fg-fg e fge~fge~1 4 el 4 fge~fge~fg~3ce23 NUREG/CP-0152  
To'easure thcpotential forpressurelockingduetobonnetfiuidheat-up,thermally inducedboypressurization ratetestswereperformed ontheWestinghouse andBorg-Warner valves.Aftervenairfromthevalvebonnetcavity,eachvalvewasclosedwhilefilledwithwateratapproximately psig.Thevalvebonnetwasthenheatedusinganoutsideheatsource.Thepressureofthefluidinvalvebonnetwasmeasureddirectly.
Thetemperature offluidinthevalvebonnetfortheBorg-Wavalveandthetemperature oftheoutsideofthevalvebonnetfortheWestinghouse valveweremeasuInitialpressurization ratesbetween0.5and2.0psi/degree Fweremeasured.
MuchhigherultirNUREG/CP4152 3C-22 1
klO<-Ab-o9CtWe4C.~Wpressurization rateswerewitnessed duringtheBorg-Warner tests.Thedatafromthistestingisnotpresented inthisreport,butisavailable fromComEduponrequest.PRESSURELOCKINGTESTDATAThefollowing tableprovidesthepressurelockingtestresultscomparing themeasuredpressurelockingunseating loadtothepredicted pressurelockingunseating load:TABLE1IncraLseercentConservatism (Non-Cons.)
Notesfan41414114el,4fgofgofgofg-fgefge~fge~14el4fge~fge~fg~3ce23NUREG/CP-0152  


6+~~M~Vw+c.g(e%(fgoifgoIorg-rg-.IOrg-.Irg-.Irg"~ItattcUnseating Thrust14clncratse14dIncreaseercent'onservatism (Non-Cons.)
6+~~M~Vw+c.g(e%(fg o i fg o I org-rg-.IO rg-.I rg-.I rg"~I tattc Unseating Thrust 1 4 c lncratse 1 4 d Increase ercent'onservatism (Non-Cons.)
NotesNOTES:1.Thepercentconservatism valuesarecalculated aftera"memoryeffect"of3100lbf(atTSS=1)or3500Ibf(atTSS=2)isaddedtothepredicted pressurelockingload.Testingindicated thattheprocessofapplyingandthenrelieving pressureagainstonesideoftheclosedvalvewassufficient tocausetheunseating forcetoincreasebytheseamounts,evenwhennopressurewascapturedinthevalvebonnet.ThiseffectwasonlynotedfortheBorg-Warnertestvalve.2.Whenbonnetpressuresignificantly exceedsthepressureclassratingofthetestvalve,thepressurelockingcalculation methodology appearstobecomenon~nservative.
Notes NOTES: 1.The percent conservatism values are calculated after a"memory effect" of 3100 lbf (at TSS=1)or 3500 Ibf (at TSS=2)is added to the predicted pressure locking load.Testing indicated that the process of applying and then relieving pressure against one side of the closed valve was sufficient to cause the unseating force to increase by these amounts, even when no pressure was captured in the valve bonnet.This effect was only noted for the Borg-Warner test valve.2.When bonnet pressure significantly exceeds the pressure class rating of the test valve, the pressure locking calculation methodology appears to become non~nservative.
3.Tests86and95wereperformed toquantifythe"memoryeffect"fortheBorg-Warner valve.Thcsctestswereperformed likeapressurelockingtestinthathighpressure(-600psig)wasputagainstonesideofthevalvediskandthenbledoff.However,anypressurethatenteredthevaLvebonnetwasrelievedpriortotheopeningstroke.J4.TheACmotorforthetestvalvestanedduringthistestandthevalvedidnotfullyunseat.Testdatasuggeststhatopenvalvemotionwasinitiated priortothcstall.Consequently, themeasured.
3.Tests 86 and 95 were performed to quantify the"memory effect" for the Borg-Warner valve.Thcsc tests were performed like a pressure locking test in that high pressure (-600 psig)was put against one side of the valve disk and then bled off.However, any pressure that entered the vaLve bonnet was relieved prior to the opening stroke.J 4.The AC motor for the test valve staned during this test and the valve did not fully unseat.Test data suggests that open valve motion was initiated prior to thc stall.Consequently, the measured.increase due to pressure locking is believed to be.correct.5.Thc pressure data for this test is questionable and is being evaluated at this time.II 6.The upstream and downstream prcssure during these tests was approximately 350 psig.This was done to approximate, the LPCI and LPCS injection valve pressure conditions which could exist in the event of a LOCh.Graphs 1 through 6 provide thc data in Table 1 for the three test valves.Thc total measured unseating load versus the total predicted unseating load and the pressure related portion of the measiued load versus the predicted pressure related portion of the unseating load are plotted for each valve.NUREG/CP%152 3C-24 IP'It GRAPH 1 Predicted Unseating Thrust Versus Measured Pressure Locldng Unseating Force for Crane Valve'I sxNO tm 1mo 0 0 10000 20000 30000 4XOO 60000 000 70000 80000 Total Predicted Uneealng Load 3C-25 NUREGICP-0152  
increaseduetopressurelockingisbelievedtobe.correct.5.Thcpressuredataforthistestisquestionable andisbeingevaluated atthistime.II6.Theupstreamanddownstream prcssureduringthesetestswasapproximately 350psig.Thiswasdonetoapproximate, theLPCIandLPCSinjection valvepressureconditions whichcouldexistintheeventofaLOCh.Graphs1through6providethcdatainTable1forthethreetestvalves.Thctotalmeasuredunseating loadversusthetotalpredicted unseating loadandthepressurerelatedportionofthemeasiuedloadversusthepredicted pressurerelatedportionoftheunseating loadareplottedforeachvalve.NUREG/CP%152 3C-24 IP'It GRAPH1Predicted Unseating ThrustVersusMeasuredPressureLocldngUnseating ForceforCraneValve'IsxNOtm1mo001000020000300004XOO600000007000080000TotalPredicted UneealngLoad3C-25NUREGICP-0152  


GRAPH2Predicted VersusMeasuredPortionofPressureThrustbuetoPressureForcesforCraneValve4XNO3500030MO2500020000150001000050000050001000015000200002500030000350004XNOPredicted LoadDuetoPressureNUREG/CP-0152 3C-26 r,
GRAPH 2 Predicted Versus Measured Portion of Pressure Thrust bue to Pressure Forces for Crane Valve 4XNO 35000 30MO 25000 20000 15000 10000 5000 0 0 5000 10000 15000 20000 25000 30000 35000 4XNO Predicted Load Due to Pressure NUREG/CP-0152 3C-26 r,
oowRo)he%)cpuGRAPH3Predicted Unseating ThrustVersusMeasuredPressureLockingUnseating ThrustforWestinghouse Valve'O50008000Cco'Igaxo10000010002000300040005000TotalPredicted Unseating Thrust3C-27NUREG/CP-'0152  
oow Ro)he%)cpu GRAPH 3 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Westinghouse Valve'O 5000 8000 C co'I g axo 1000 0 0 1000 2000 3000 4000 5000 Total Predicted Unseating Thrust 3C-27 NUREG/CP-'0152  


GRAPH4Predicted YersusMeasuredPortionofUnseating ThrustDuetoPressureForcesforWestinghouse Valve7000a8000Ch5000gm<<xeceoaxe'100001000200030004000500060007000Predicted LaadDuetoPressureNUREG/CF41523C-28 I)
GRAPH 4 Predicted Yersus Measured Portion of Unseating Thrust Due to Pressure Forces for Westinghouse Valve 7000 a 8000 Ch 5000 g m<<xe ceo axe'1000 0 1000 2000 3000 4000 5000 6000 7000 Predicted Laad Due to Pressure NUREG/C F4152 3C-28 I)
GRAPH5Predicted Unseating ThrustVersusMeasuredPressureLockingUnseating ThrustforBorg-Warner Valve1000015000'000025000Predicted Unseating Load3C-29NUREG/CP-0152 0
GRAPH 5 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Borg-Warner Valve 10000 15000'0000 25000 Predicted Unseating Load 3C-29 NUREG/CP-0152 0
GRAPH6Predicted VersusMeasuredPortionofUnseating ThrustDuetoPressureForces.forBorg-%amer Valve10000"1$08NXSPrecHcted PnasureFoneeNUREGICP-0152 3C-30 14 K~l~+o~~a.i-hb-Oo~Po1c.zw4-c>4PRIMARYDIN'ERENCES BETWEENTHECOMMONWEALTH EDISONPRESSURELOCKINGCALCULATION ANDTHEPRESSURELOCKINGCALCULATION METHODPUBLISHED INNUIT/CP-0146 TheComEdmethodology isbasedoncalculating thecontactloadattheedgeofthediskwhichresultsinanequalandoppositediskdeflection tothatcausedbypressuretrappedbetweenthedisks,TheComEdmethodology differsinseveralwaysfromthemethodology described intheReference 4NUREG.~TheNUTMEGMethodology ignoresdiskdeflection duetohubelongation.
GRAPH 6 Predicted Versus Measured Portion of Unseating Thrust Due to Pressure Forces.for Borg-%amer Valve 10000" 1$0 8NXS PrecHcted Pnasure Fonee NUREGICP-0152 3C-30 14 K~l~+o~~a.i-h b-Oo~P o 1 c.zw 4-c>4 PRIMARY DIN'ERENCES BETWEEN THE COMMONWEALTH EDISON PRESSURE LOCKING CALCULATION AND THE PRESSURE LOCKING CALCULATION METHOD PUBLISHED IN NUIT/CP-0146 The ComEd methodology is based on calculating the contact load at the edge of the disk which results in an equal and opposite disk deflection to that caused by pressure trapped between the disks, The ComEd methodology differs in several ways from the methodology described in the Reference 4 NUREG.~The NUTMEG Methodology ignores disk deflection due to hub elongation.
Thisisnon-conservative.
This is non-conservative.
Fortypicaldiskgeometries, theexpectedimpactofignoringthiseffectislessthan5%.~ThehKGKGMethodology isbasedonusingTable24ofRoark'sequations forcalculating forcesinthedisk.Thistableignoresdiskdeflection ductotransverse shearstresses.
For typical disk geometries, the expected impact of ignoring this effect is less than 5%.~The hKGKG Methodology is based on using Table 24 of Roark's equations for calculating forces in the disk.This table ignores disk deflection duc to transverse shear stresses.Section 10.3 of Roark's Equations discusses the conditions under which deflection due to shear is negligible.
Section10.3ofRoark'sEquations discusses theconditions underwhichdeflection duetoshearisnegligible.
For typical disk geometries the deflection due to shear is often not negligible.
Fortypicaldiskgeometries thedeflection duetoshearisoftennotnegligible.
Table 25 of Roark's Equations provides the equations for calculating disk deflection due to shear.Ignoring deflection duc to shear is non~nscrvativc.
Table25ofRoark'sEquations providestheequations forcalculating diskdeflection duetoshear.Ignoringdeflection ductoshearisnon~nscrvativc.
For small valve sizes where the disk thickness to disk diameter aspect ratio is large ()0.3), ignoring shear may result in under predicting the disk to seat contact load by 10%or more, The ComEd methodology treats the vertical pressure force on the disk separately from the pressure lochng load caused by the increased contact load between the seat and disk.The NUREG methodology relies on use of the open disk factor for translating the increased seating contact force into an increased unseating load.The open disk factor is based on a free body diagram in which the disk hub is unloaded.This is not the case for pressure locking.The NUREG treatment of these two components to the pressure locking unseating load is non-conservative.
Forsmallvalvesizeswherethediskthickness todiskdiameteraspectratioislarge()0.3),ignoringshearmayresultinunderpredicting thedisktoseatcontactloadby10%ormore,TheComEdmethodology treatstheverticalpressureforceonthediskseparately fromthepressurelochngloadcausedbytheincreased contactloadbetweentheseatanddisk.TheNUREGmethodology reliesonuseoftheopendiskfactorfortranslating theincreased seatingcontactforceintoanincreased unseating load.Theopendiskfactorisbasedonafreebodydiagraminwhichthediskhubisunloaded.
This source of nonmnservatism is generally much more significant than the other concerns mentioned above for the NUREG method and is the primary ComEd concern with the NUIT method.The derivations on the following pages are provided to support the discussion above.3C-31 NUREG/CP-0152  
Thisisnotthecaseforpressurelocking.TheNUREGtreatment ofthesetwocomponents tothepressurelockingunseating loadisnon-conservative.
Thissourceofnonmnservatism isgenerally muchmoresignificant thantheotherconcernsmentioned abovefortheNUREGmethodandistheprimaryComEdconcernwiththeNUITmethod.Thederivations onthefollowing pagesareprovidedtosupportthediscussion above.3C-31NUREG/CP-0152  


Op~phATeACTORDERIVATlON (Openingavalveagainstadifferential pressure)
Op~phAT eACTOR DERIVATlON (Opening a valve against a differential pressure)%~%~4 o~p F=Stem Force (tension)pic i-~u-'~+~'~4~p~i+C P=Pressure Force<g~q, c+CZG FIGURE 6'DP x Seat Area R=Seat Reaction Force pR=Seat Friction Force 8=Seat Angle Disk Factor (VF)=F/P (by definition)
%~%~4o~pF=StemForce(tension) pici-~u-'~+~'~4~p~i+CP=PressureForce<g~q,c+CZGFIGURE6'DPxSeatAreaR=SeatReactionForcepR=SeatFrictionForce8=SeatAngleDiskFactor(VF)=F/P(bydefinition)
Sum of forces in direction:
Sumofforcesindirection:
g F, Peos8 Rcos8-@csin-8 P cM8 cos&+psia&Sum of forces in y~ction: Z~~e.-h e iam-F Psfn&P.sh8-peas&}
gF,Peos8Rcos8-@csin-8PcM8cos&+psia&Sumofforcesiny~ction:Z~~e.-heiam-FPsfn&P.sh8-peas&}
coe&coe&+csin&sh cps&+yah&sh&-icos&)
coe&coe&+csin&shcps&+yah&
cos&+psh&cos&+psh8 F sin&coe&+psin&~&sh&+
sh&-icos&)
col (31)(32)(33)P~P coe&+psh8 (34)hKHKG/CP 4152 3C-32  
cos&+psh&
cos&+psh8 Fsin&coe&+psin&~&sh&+
col(31)(32)(33)P~Pcoe&+psh8 (34)hKHKG/CP41523C-32  


PRESSURELOCKINGSUM'OFFORCES5c4'h,fQ.'I.h.Qca%Q.o+~4i~~%CW~qqC>wQ.++4F=StemForce(tension)
PRESSURE LOCKING SUM'OF FORCES 5 c 4'h, fQ.'I.h.Q ca%Q.o+~4i~~%C W~qq C>w Q.++4 F=Stem Force (tension)FIGURE 7 P=Pressure Force=DP x Seat Area Q,=Seat Reaction Force (calculated using Roark's)p,Q,=Seat Friction Force , 8=Seat Angle T=Disk Hub Tension<a Note that the sum of the forces in the x~tion is different than for the seat factor case due to the hub tension force T.Consequently, the Q, value is a typically a much lower portion of the P value under pressure lochng than it is for the seat factor calculation.(This is the benefit of using Roark's equations for calculating the seat load increase.)
FIGURE7P=PressureForce=DPxSeatAreaQ,=SeatReactionForce(calculated usingRoark's)p,Q,=SeatFrictionForce,8=SeatAngleT=DiskHubTension<aNotethatthesumoftheforcesinthex~tionisdifferent thanfortheseatfactorcaseduetothehubtensionforceT.Consequently, theQ,valueisatypically amuchlowerportionofthePvalueunderpressurelochngthanitisfortheseatfactorcalculation.
Therefore, the sum of the forces in the direction should be solved for directly from the free body diagram above, as follows: P Pz F pQ,esS-Psbdl+Qp-in8
(ThisisthebenefitofusingRoark'sequations forcalculating theseatloadincrease.)
:.F qJpcos8-Iin8)+Mn8 (35)The first term in the equation above is the pressure locking load term in the ComEd methodology.
Therefore, thesumoftheforcesinthedirection shouldbesolvedfordirectlyfromthefreebodydiagramabove,asfollows:PPzFpQ,esS-Psbdl+Qp-in8
The second term in the equation above is the F or reverse piston effect term~in the ComEd methodology.
:.FqJpcos8-Iin8)+Mn8 (35)ThefirsttermintheequationaboveisthepressurelockingloadtermintheComEdmethodology.
The ComEd method adds these two terms to the static unseating load and then subtracts the stem rejection load to get the predicted unseating load under pressure locking conditions (37)Rather than use these equations, the NUREG method applies the open seat factor to the Q, value.Because of the relationship in equation 37 below, the NUREG method substantially under predicts the vertical pressure force portion of the required thrust.Qa<P cos8/(cos8+p sin8)3C-33 NVREG/CP4152 I
ThesecondtermintheequationaboveistheForreversepistoneffectterm~intheComEdmethodology.
xvr.REHaMNCES C-K 4 4'0<tg.~b.)-oa'W R,<t h.~~+~pm'nqq C+<c4 C2 Young, W.C., 1989, Sixth Edition of Roark's Formulas for Stress and Strain, McGraw-Hill Inc.n 2.MPR Calculations 101-013-1,"Effect of Bonnet Pressure on Disc to Seat Contact Load", dated 3/23/95;and 101-013-4,"Estimate of Valve Unseating Force as Function of Bonnet Pressure", dated 3/23/95.3.Electric Power Research Institute, Nuclear Maintenance Applications Center, 1990, Application Guide For Motor-Operated Valves in Nuclear Power Plants, EPRI/NMAC Report NP-6660-D, March.4.Smith, D.E., 1994,"Calculation to Predict the Required Thrust to Open a Flexible Wedge Gate Valve Subjected to Pressure Locking", Proceedings of the Workshop on Gate Valve Pressure Locking and 7hennal Binding, NUREG/CP-0146, July 1995.NUREG/CP4152 3C-34  
TheComEdmethodaddsthesetwotermstothestaticunseating loadandthensubtracts thestemrejection loadtogetthepredicted unseating loadunderpressurelockingconditions (37)Ratherthanusetheseequations, theNUREGmethodappliestheopenseatfactortotheQ,value.Becauseoftherelationship inequation37below,theNUREGmethodsubstantially underpredictstheverticalpressureforceportionoftherequiredthrust.Qa<Pcos8/(cos8+psin8)3C-33NVREG/CP4152 I
xvr.REHaMNCES C-K44'0<tg.~b.)-oa'WR,<th.~~+~pm'nqqC+<c4C2Young,W.C.,1989,SixthEditionofRoark'sFormulasforStressandStrain,McGraw-HillInc.n2.MPRCalculations 101-013-1, "EffectofBonnetPressureonDisctoSeatContactLoad",dated3/23/95;and101-013-4, "Estimate ofValveUnseating ForceasFunctionofBonnetPressure",
dated3/23/95.3.ElectricPowerResearchInstitute, NuclearMaintenance Applications Center,1990,Application GuideForMotor-Operated ValvesinNuclearPowerPlants,EPRI/NMAC ReportNP-6660-D, March.4.Smith,D.E.,1994,"Calculation toPredicttheRequiredThrusttoOpenaFlexibleWedgeGateValveSubjected toPressureLocking",
Proceedings oftheWorkshoponGateValvePressureLockingand7hennalBinding,NUREG/CP-0146, July1995.NUREG/CP4152 3C-34  


gc+So~6lQhe@-~4~y~+P~)w6l<W12,GATEVALVETYPE,GEOMETRY, ANDITSEFFECTONOPEMNGANDCLOSINGTHRUSTSTherearefivedifferent typesofgatevalvesthatcovermostoftheapplications innuclearpowerplantsintheUnitedStates.ThekeyfeaturesofthesedesignsareshowninFigure2.1.Variations inthemostcommonlyusedgatevalvesincludesolid,flexible, andsplitgates(Figure2.1a).Thetwotypesofparallelexpanding wedgegatesshowninFigure2.1barealsoused,buttheirpopulation issmaller.ParallelslidinggatevalvesshowninFigure2.1carerelatively uncommonintheUnitedStates,butarewidelyusedinEuropeannuclearpowerplants.Theadvantages anddisadvantages ofvariousdesignfeaturesforthesevalvesarediscussed indetailinReference
gc+So~6 lQ he@-~4~y~+P~)w 6 l<W1 2, GATE VALVE TYPE, GEOMETRY, AND ITS EFFECT ON OPEMNG AND CLOSING THRUSTS There are five different types of gate valves that cover most of the applications in nuclear power plants in the United States.The key features of these designs are shown in Figure 2.1.Variations in the most commonly used gate valves include solid, flexible, and split gates (Figure 2.1a).The two types of parallel expanding wedge gates shown in Figure 2.1b are also used, but their population is smaller.Parallel sliding gate valves shown in Figure 2.1c are relatively uncommon in the United States, but are widely used in European nuclear power plants.The advantages and disadvantages of various design features for these valves are discussed in detail in Reference[13]Flexible Wedge Gate Solid Wedge Gate Split Wedge Gate Figure 2.1a Conventional Solid Wedge, Hexible Wedge, and Split Wedge Gate Valves As shown in these figures, the designs vary significantly in gate geometries.
[13]FlexibleWedgeGateSolidWedgeGateSplitWedgeGateFigure2.1aConventional SolidWedge,HexibleWedge,andSplitWedgeGateValvesAsshowninthesefigures,thedesignsvarysignificantly ingategeometries.
Other important variations that affect performance are related to gate guide arrangements and their dimensions; clearances at critical locations between gate, guides, and seats;seat contact widths;and materials and surface finish in the disc guide sliding interfaces.
Otherimportant variations thataffectperformance arerelatedtogateguidearrangements andtheirdimensions; clearances atcriticallocations betweengate,guides,andseats;seatcontactwidths;andmaterials andsurfacefinishinthediscguideslidinginterfaces.
Section 2 presents the gate thrust requirements for the above-described variations in gate geometries.
Section2presentsthegatethrustrequirements fortheabove-described variations ingategeometries.
This section also addresses the potential for disc tilting during mid-travel due to fluid forces across the disc.Disc tilting causes localized loading between the disc and the downstream seat, or between the disc and the guides.A preliminary analysis approach to determine the localized contact stresses is presented in this section to determine the loading severity based upon valve design and operating conditions.
Thissectionalsoaddresses thepotential fordisctiltingduringmid-travel duetofluidforcesacrossthedisc.Disctiltingcauseslocalized loadingbetweenthediscandthedownstream seat,orbetweenthediscandtheguides.Apreliminary analysisapproachtodetermine thelocalized contactstressesispresented inthissectiontodetermine theloadingseveritybaseduponvalvedesignandoperating conditions.
0 Preliminary analyses of localized contact stresses between disc and seats as well as disc and guides used in typical wedge gate valve designs are presented in this section.The preliminary approach presented here needs further analytical refinement and empirical correlations to develop improved predictive models.Detailed derivations of the equations summarized in this section are included in Appendices A, B, and C.Stom Upper Wodge Upstream Disc Down-stream Disc Lower Wedge Body Sogment Seat Stop Pad Figuxe 2.1b Parallel Expanding Gate Valves Stem Disc Retalnlng Pine Disc Carrier Seat Preload Spring Figure 2.1c Parallel Sliding Gate Valve
0 Preliminary analysesoflocalized contactstressesbetweendiscandseatsaswellasdiscandguidesusedintypicalwedgegatevalvedesignsarepresented inthissection.Thepreliminary approachpresented hereneedsfurtheranalytical refinement andempirical correlations todevelopimprovedpredictive models.Detailedderivations oftheequations summarized inthissectionareincludedinAppendices A,B,andC.StomUpperWodgeUpstreamDiscDown-streamDiscLowerWedgeBodySogmentSeatStopPadFiguxe2.1bParallelExpanding GateValvesStemDiscRetalnlng PineDiscCarrierSeatPreloadSpringFigure2.1cParallelSlidingGateValve
/I Nn~am CIvor dgo ('4~Waken A tn.i-~p~+~l Waqg 2, l.Stem Thrust for Solid, Flexible, and Split Wodge Gate Valves'I Even though there are differences in the performance of solid, flexible, and split wedge gate valves as related to their sensitivity, to external piping loads and thermal binding[13], the equations for their stem thrust requirements based upon free body considerations are the same.Subsections 2.1.1 through 2.1.2 summarize the stem thrust requirements to I overcome only the differential pressure load across the disc.Subsections 2.1.3 and 2.1.4 give the stem wedging and unwedging thrust requirements to close and open the gate, respectively.
/I Nn~amCIvordgo('4~WakenAtn.i-~p~+~lWaqg2,l.StemThrustforSolid,Flexible, andSplitWodgeGateValves'IEventhoughtherearedifferences intheperformance ofsolid,flexible, andsplitwedgegatevalvesasrelatedtotheirsensitivity, toexternalpipingloadsandthermalbinding[13],theequations fortheirstemthrustrequirements baseduponfreebodyconsiderations arethesame.Subsections 2.1.1through2.1.2summarize thestemthrustrequirements toIovercomeonlythedifferential pressureloadacrossthedisc.Subsections 2.1.3and2.1.4givethestemwedgingandunwedging thrustrequirements tocloseandopenthegate,respectively.
The total stem thrust requirements to close and operi the gate are provided in Section 2.4, which include other components such as stem packing load, stem rejection force (also referred to as blowout force or piston eff'ect force), and stem and gate weight.2.1.1.Ciosinl, Stem Thrust to Ouereome Gate Di/7erenti al Pressure As shown in Section A.1.1 of Appendix A, the stem thrust at the gate to overcome the diff'erential pressure during closing can be expressed as: F,=.F[cos6-@sine (Eq.2.1)Fp Figuxe R2 Gate Equilibrium Under hP Load During Closing where Fs=Fp=8=stem load at gate, Ib disc pressure load due to upstream/downstream differential pressure, lb hP x (effective seat area)coefficient of friction between gate and seat 1/2 of gate wedge angle, deg'The disc pressure load, Fp, is the product of hP and seat area based on effective disc sealing diameter as discussed further in Section 2.5.From Equation 2.1 the relationship between the commonly-used term disc factor (some-times called ualue factor)and coefficient of friction, p, can be derived: Disc Factor=cos 8-p sin 8 (Eq.2.la)For'ypical wedge gate valves that use a total wedge angle of around 10 degrees (or 8=5')and a normal range of coefficients of friction, the difference between the disc factor and the coefficient of friction is practically negligible, as discussed in Section 3.1.The disc factor calculated in the closing direction can be as much as 5 percent higher than the coefficient of friction for typical values of 8 and p that are encountered in practice.
Thetotalstemthrustrequirements tocloseandoperithegateareprovidedinSection2.4,whichincludeothercomponents suchasstempackingload,stemrejection force(alsoreferredtoasblowoutforceorpistoneff'ectforce),andstemandgateweight.2.1.1.Ciosinl,StemThrusttoOuereomeGateDi/7erenti alPressureAsshowninSectionA.1.1ofAppendixA,thestemthrustatthegatetoovercomethediff'erential pressureduringclosingcanbeexpressed as:F,=.F[cos6-@sine (Eq.2.1)FpFiguxeR2GateEquilibrium UnderhPLoadDuringClosingwhereFs=Fp=8=stemloadatgate,Ibdiscpressureloadduetoupstream/downstream differential
I'c 2.1.2.Opening Stem Thrust to Overcome Disc Differential Pressure As derived in Section A.l.2 of Appendix A, stem thrust during opening of a wedge disc against a differential pressure is given by: F=~F cos6+I sin6 (Eq.2.2)From this one can derive the equivalence between the disc factor in the opening direction and the coefficient of friction: Disc Factor=cos 6+iL sin 6 (Eq.2.2a)Figure R3 Gate Equilibrium Under dP Load During Opening The disc factor in the opening direction is slightly less than the coefficient of friction for typical ranges of wedge angles and coefficients of friction (within 5 percent of the coefficient of friction), as discussed in Section 3.1.As stated earlier, the stem force calculated in Equation 2.1 or 2.2 is the force required to overcome the differential pressure resistance only.2.1.3.Stem WedgingLoad-Closing The stem wedging load is related to the normal seat contact force, Fn, as shown in Section A.1.3 of Appendix A: F,=2(sin 6+p cos6)F(Eq, 2.3)Figure 2A Gate Equilibrium under Wedging Load During Closing It should be noted that this equation applies to the case when there is no differen'tial pressure across the gate.When differential pressure is present, the stem force Fs in this equation is the net stem force after subtracting the differential pressure load.In some cases, the limit switch instead of the torque switch is used to stop the disc travel in the closing direction.
: pressure, lbhPx(effective seatarea)coefficient offrictionbetweengateandseat1/2ofgatewedgeangle,deg'Thediscpressureload,Fp,istheproductofhPandseatareabasedoneffective discsealingdiameterasdiscussed furtherinSection2.5.FromEquation2.1therelationship betweenthecommonly-used termdiscfactor(some-timescalledualuefactor)andcoefficient offriction, p,canbederived:DiscFactor=cos8-psin8(Eq.2.la)For'ypical wedgegatevalvesthatuseatotalwedgeangleofaround10degrees(or8=5')andanormalrangeofcoefficients offriction, thedifference betweenthediscfactorandthecoefficient offrictionispractically negligible, asdiscussed inSection3.1.Thediscfactorcalculated intheclosingdirection canbeasmuchas5percenthigherthanthecoefficient offrictionfortypicalvaluesof8andpthatareencountered inpractice.
Where acceptable from the shut-off standpoint, this approach can be used to reduce, and in some cases eliminate, the wedging load, F.  
I'c 2.1.2.OpeningStemThrusttoOvercomeDiscDifferential PressureAsderivedinSectionA.l.2ofAppendixA,stemthrustduringopeningofawedgediscagainstadifferential pressureisgivenby:F=~Fcos6+Isin6(Eq.2.2)Fromthisonecanderivetheequivalence betweenthediscfactorintheopeningdirection andthecoefficient offriction:
DiscFactor=cos6+iLsin6(Eq.2.2a)FigureR3GateEquilibrium UnderdPLoadDuringOpeningThediscfactorintheopeningdirection isslightlylessthanthecoefficient offrictionfortypicalrangesofwedgeanglesandcoefficients offriction(within5percentofthecoefficient offriction),
asdiscussed inSection3.1.Asstatedearlier,thestemforcecalculated inEquation2.1or2.2istheforcerequiredtoovercomethedifferential pressureresistance only.2.1.3.StemWedgingLoad
-ClosingThestemwedgingloadisrelatedtothenormalseatcontactforce,Fn,asshowninSectionA.1.3ofAppendixA:F,=2(sin6+pcos6)F(Eq,2.3)Figure2AGateEquilibrium underWedgingLoadDuringClosingItshouldbenotedthatthisequationappliestothecasewhenthereisnodifferen'tial pressureacrossthegate.Whendifferential pressureispresent,thestemforceFsinthisequationisthenetstemforceaftersubtracting thedifferential pressureload.Insomecases,thelimitswitchinsteadofthetorqueswitchisusedtostopthedisctravelintheclosingdirection.
Whereacceptable fromtheshut-offstandpoint, thisapproachcanbeusedtoreduce,andinsomecaseseliminate, thewedgingload,F.  
\  
\  
>1,4.StemUnwedgingLoad
>1,4.Stem UnwedgingLoad
-OpeningQh%+-a.~(~F
-Opening Q h%+-a.~(~F
~~~~8~~wbgSectionA.l.4ofAppendixAshowsthattheunwedg-ingloadtoovercometheseatcontactforce,F,isgivenby:F=2(lLcos9-sin9)F(Eq.2.4)FnFigure2$GateEquilibrium underUnwedging LoadDuringOpeningTheseatcontactforce,F,thatistobeovercomedur-ingtheopeningcycleisdeveloped by(1)wedgingloadfromthepreviousclosingcycle,including inertiaovershoot, (2)externalpipingloads,or(3)differential thermaleffectsbetweenthevalvebodyanddisc.Section4providesananalytical method-ologytopredictstemthrustduetoinertiaovershoot, andSection5discusses externalpipeloadandther-maleffectsthatmayinfluence thenormalload,Fn.2.2.StemThrustforParaMExpanding GateValvesThisSubsection 2.2summarizes thestemthrustrequirements forclosingandopeningdirections forthetwotypesofparallelexpanding gatevalvesshowninFigure2.1b.Thesamestemthrustequations applytobothtypesofparallelexpanding gatevalvesshowninthisfigure.Thetypicalwedgean'gleusedinthethrough-conduit typeis15degrees,andforthedouble-disc typeis25degrees.Itshouldbenotedthatforcoefficient offrictionof0.4Z(=tan25')orless,the25-degree anglebetweenthewedgesurfaces(alsoreferredtoasbackangles)providesanon-locking condition betweenthewedges.2.2.1.StemThrusttoOvercomeGateDifferential Pressure-ClosingandOpeningFnFyClosingOpeningHguxeRSGateEquilibrium UnderhPLoadDuringClosing/Opening F-pF(Eq.2,5)wherep=coefficient offrictionbetweenseatanddiscFpdiscpressureloadduetoupstream/downstream differential
~~~~8~~wbg Section A.l.4 of Appendix A shows that the unwedg-ing load to overcome the seat contact force, F, is given by: F=2 (lL cos 9-sin 9)F(Eq.2.4)Fn Figure 2$Gate Equilibrium under Unwedging Load During Opening The seat contact force, F, that is to be overcome dur-ing the opening cycle is developed by (1)wedging load from the previous closing cycle, including inertia overshoot, (2)external piping loads, or (3)differential thermal effects between the valve body and disc.Section 4 provides an analytical method-ology to predict stem thrust due to inertia overshoot, and Section 5 discusses external pipe load and ther-mal effects that may influence the normal load, Fn.2.2.Stem Thrust for ParaM Expanding Gate Valves This Subsection
: pressure, lb=hPx(effective seatarea)AsshowninSectionA.2.1ofAppendixA,thefollowing equationappliestobothclosingandopenihgstemthruststoovercomegatefrictional forceduetohPload; (l4
 
('iQ.i-ayoo~l20Ihw4-~~~~2.2.2.Stem7VedgingLoad-ClosingThestemwedgingloadforaparallelexpanding gatevalveisshowninSectionA.2.2ofAppendixAtobegivenby:sill6+pcos6Fsp+cos6-p'sin 6(Eq.2.6)XFpFigure2.7GateEquilibrium UnderWedgingLoadDuringClosingwhere6Fncoefficient offrictionbetweenseatanddisccoefficient offrictionbetweenwedgefacesparallelgatetotalwedgeangle,degnormalforcebetweengateandseatduetowedging,lbsThis,equationmakesallowance'or thefactthatthecoefficients offrictionattheseat-to-discinterface maybedifferent thanthatatthewedgeinterface.
===2.2 summarizes===
Typically theseatfaceshaveafinersurfacefinishandareoverlaidwithStellitehard-facing, whereasthewedgefaceshavearoughersurfacefinishandarenothard-faced.
the stem thrust requirements for closing and opening directions for the two types of parallel expanding gate valves shown in Figure 2.1b.The same stem thrust equations apply to both types of parallel expanding gate valves shown in this figure.The typical wedge an'gle used in the through-conduit type is 15 degrees, and for the double-disc type is 25 degrees.It should be noted that for coefficient of friction of 0.4Z (=tan 25')or less, the 25-degree angle between the wedge surfaces (also referred to as back angles)provides a non-locking condition between the wedges.2.2.1.Stem Thrust to Overcome Gate Differential Pressure-Closing and Opening Fn Fy Closing Opening Hguxe RS Gate Equilibrium Under hP Load During Closing/Opening F-pF (Eq.2,5)where p=coefficient of friction between seat and disc Fp disc pressure load due to upstream/downstream differential pressure, lb=hP x (effective seat area)As shown in Section A.2.1 of Appendix A, the following equation applies to both closing and openihg stem thrusts to overcome gate frictional force due to hP load; (l 4
Ifthecoefficient offrictionattheseatfacesandthewedgefacesisassumedtobethesame,p'p,andthisequationreducestoFs=sin'61-li+2gcos6cos6-csin6Fn(Eq.2.6a)Equation2.6ashowsthatthestemloadisproportional totheseatcontactforce,Fn.2.2.3:StemUnwedgingLoad
('iQ.i-ay oo~l20 I h w4-~~~~2.2.2.Stem 7Vedging Load-Closing The stem wedging load for a parallel expanding gate valve is shown in Section A.2.2 of Appendix A to be given by: sill 6+p cos 6 Fs p+cos6-p'sin 6 (Eq.2.6)X Fp Figure 2.7 Gate Equilibrium Under Wedging Load During Closing where 6 Fn coefficient of friction between seat and disc coefficient of friction between wedge faces parallel gate total wedge angle, deg normal force between gate and seat due to wedging, lbs This, equation makes allowance'or the fact that the coefficients of friction at the seat-to-disc interface may be different than that at the wedge interface.
-OpeningThestemunwedging loadtoovercometheseatcontactforce,Fn,foraparallelexpanding gatevalveisgivenby(reference SectionA.2.3,AppendixA):
Typically the seat faces have a finer surface finish and are overlaid with Stellite hard-facing, whereas the wedge faces have a rougher surface finish and are not hard-faced.
If the coefficient of friction at the seat faces and the wedge faces is assumed to be the same, p'p, and this equation reduces to Fs=sin'6 1-li+2gcos6 cos 6-csin 6 Fn (Eq.2.6a)Equation 2.6a shows that the stem load is proportional to the seat contact force, Fn.2.2.3: Stem UnwedgingLoad
-Opening The stem unwedging load to overcome the seat contact force, Fn, for a parallel expanding gate valve is given by (reference Section A.2.3, Appendix A):
0  
0  
*a~kia.l-a~ia~S2c'l~s~+((pp'-1)sin8+(g+ll')cos6F(Eq.2.7)cos8~p'sin 6I'orp=p',thisequationreducesto:sin6p-1+2pcos6 F-Fncos6+psin6-(Eq.2.7a)Figure2.8GateEquiHbrium UnderUnwedging LoadDuringOpeningAsdiscussed inSection2.1.4,theseatcontactforceFntobeovercomeisdetermined byaddingthewedgingforcefromthepreviousclosingcycletotheresultant forcefromexternalpipingloadsanddifferential thermalexpansion loadsbetweenthebodyanddisc.42>.StemLoadsforParallelSlidingGateValves-ClosingandOpeningMostparallelslidinggatevalvesareequippedwithapreloading springtomaintainpropercontactandprovidealowpressuresealbetweenthediscandseats.AsshowninAppendixA,SectionA.3.1,therequiredstemthrusttoovercomedPandspringloadfrictioncanbeexpressed as:FI=2pF>>+pFp whereF>>=discspringload,lbF>=hPx(eFective seatarea),lbs(Eq.2.8)<s<nA~F~PDawn~wpaWllP~~p4FigureR9GateEquBibrium UnderhPLoadDuringClosing Egl.0 A>COtao>sa>S><')>>>>>>>a:VCSa>uuS>u>>CO5>OS>>t>o>Orb>OS>>rsOnsiment:Af,auunittangential bendingmoment;Q.~unitshearforce{forceperunitofc'Ircumferencial length);E~modulusofelasticity (force:unitarea:vsPoisson's ratio;y~temperature coefftcient ofexpansion
*a~kia.l-a~i a~S 2c'l~s~+((p p'-1)sin 8+(g+ll')cos 6 F (Eq.2.7)cos8~p'sin 6 I'or p=p', this equation reduces to: sin 6 p-1+2pcos6 F-Fn cos6+psin6-(Eq.2.7a)Figure 2.8 Gate EquiHbrium Under Unwedging Load During Opening As discussed in Section 2.1.4, the seat contact force Fn to be overcome is determined by adding the wedging force from the previous closing cycle to the resultant force from external piping loads and differential thermal expansion loads between the body and disc.4 2>.Stem Loads for Parallel Sliding Gate Valves-Closing and Opening Most parallel sliding gate valves are equipped with a preloading spring to maintain proper contact and provide a low pressure seal between the disc and seats.As shown in Appendix A, Section A.3.1, the required stem thrust to overcome dP and spring load friction can be expressed as: FI=2pF>>+pFp where F>>=disc spring load, lb F>=hP x (eFective seat area), lbs (Eq.2.8)<s<n A~F~P Dawn~w paW llP~~p4 Figure R9 Gate EquBibrium Under hP Load During Closing E gl.0 A>CO tao>sa>S><')>>>>>>>a: VCS a>uu S>u>>CO 5>OS>>t>o>Orb>OS>>rs Ons iment: Af, au unit tangential bending moment;Q.~unit shear force{force per unit of c'Ircumferencial length);E~modulus of elasticity (force: unit area: v s Poisson's ratio;y~temperature coefftcient of expansion{unit strain per degree);a~outer radius;b~inner radius for annular>te;t~plate thickness; r~radial location of quantity being evaluated; r,~radial location of unit line loading or start of a distributed load.F, FO and G>to f'>are the several functions of the radial location r.C>to Cs are plate constants dependent upon the ratio aib.L, to L>>are loading nstants dependent upon the ratio air,.When used as subscripts, r and t refer to radial and tangential directions, respectively.
{unitstrainperdegree);a~outerradius;b~innerradiusforannular>te;t~platethickness; r~radiallocationofquantitybeingevaluated; r,~radiallocationofunitlineloadingorstartofadistributed load.F,FOandG>tof'>aretheseveralfunctions oftheradiallocationr.C>toCsareplateconstants dependent upontheratioaib.L,toL>>areloadingnstantsdependent upontheratioair,.Whenusedassubscripts, randtrefertoradialandtangential directions, respectively.
When used as osc.a.b.and o refer to an evaluation of the quantity subscripted at the outer edge, inner edge, and the posinon ol'he loading or start of~I'oading.respectively.
Whenusedasosc.a.b.andorefertoanevaluation ofthequantitysubscripted attheouteredge,inneredge,andtheposinonol'heloadingorstartof~I'oading.
When used as a subscript, r refers to an evaluation of the quantity subscripted
respectively.
'at the center of the plate.f'(lls are asar>cia(ed with the several quantities in the following manner: Deflections v and vo are positive upward: slopes ()2nd 84 are positive cn eflectio>>l increases positively as r increases; moments/)f~Ill>.>>ml If are positive when creating compression on the top surface;and the sr force Q is p>sitive when acting upward on the inner edge of a given annular section Bc>>di>>g s(recses can be found from the moments/Ifr and Afr by the expreani>>r>
Whenusedasasubscript, rreferstoanevaluation ofthequantitysubscripted
o=6M/t2.The plate constant D=Etal)2{)-r).The singularity iction brackets ()indicate that the expression contained within the brackets must be equated to sero unless r)ro, after which they are uested any other brackets.Note that Qa, Q, M, and Mare reactions, not loads.They exist only when necessary edge restraints are provided.rral Pl>>r fssn<2 in and Gonuan>>(or Solid and Annular Circular Pla>ca ul O O cn<n 0 (>>>0 0>>>>nrb>I rtr b>>=--I.-+-p--j Lb rj.-,''-(-'.)'("*'-')]=.([()']'"'()If b rl=-I(l+rl-+(I-r)-j 2 bJ=-'.[-(-:)']=-'[(-')'-i+li.-,']I Ir bK=-(I-r)---2 Lb.J=2[I++ll->(-)]=-',I-""'-'.''."t'-H'9 I+rb r I-~I~bi In+2 r b 4 Lb~J n--.'['-(-.')
'atthecenteroftheplate.f'(llsareasar>cia(ed withtheseveralquantities inthefollowing manner:Deflections vandvoarepositiveupward:slopes()2nd84arepositivecneflectio>>
lincreases positively asrincreases; moments/)f~Ill>.>>mlIfarepositivewhencreatingcompression onthetopsurface;andthesrforceQisp>sitivewhenactingupwardontheinneredgeofagivenannularsectionBc>>di>>gs(recsescanbefoundfromthemoments/IfrandAfrbytheexpreani>>r>
o=6M/t2.TheplateconstantD=Etal)2{)-r).Thesingularity ictionbrackets()indicatethattheexpression contained withinthebracketsmustbeequatedtoserounlessr)ro,afterwhichtheyareuestedanyotherbrackets.
NotethatQa,Q,M,andMarereactions, notloads.Theyexistonlywhennecessary edgerestraints areprovided.
rralPl>>rfssn<2inandGonuan>>(orSolidandAnnularCircularPla>caulOOcn<n0(>>>00>>>>nrb>Irtrb>>=--I.-+-p--jLbrj.-,''-(-'.)'("
*'-')]=.([()']'"'()Ifbrl=-I(l+rl-+(I-r)-j2bJ=-'.[-(-:)']=-'[(-')'-i+li.-,']IIrbK=-(I-r)---2Lb.J=2[I++ll->(-)]=-',I-""'-'.''."t'-H'9I+rbrI-~I~biIn+2rb4Lb~Jn--.'['-(-.')
("*'-;)]--:.([(-.')'"]
("*'-;)]--:.([(-.')'"]
-:.(-.')'-)IfbrlC>>u[(I+r)+(Ir)2~bJn--,'[-(-.')']2,=-'[(-')'i+is-']C,-'(I-a)(-'--)2.--,'!+.+<i-.>(-')]n--.'{-"."-:--','[-(-.')'])
-:.(-.')'-)If b rl C>>u[(I+r)+(I r)2~bJ n--,'[-(-.')']2,=-'[(-')'i+is-']C,-'(I-a)(-'--)2.--,'!+.+<i-.>(-')]n--.'{-"."-:--','[-(-.')'])h)I's't AQ OOQ gC)h+4~k,b,a~+
h)I's'tAQOOQgC)h+4~k,b,a~+
C Pvq~Q'{af{-f rso r I rjr r l'In-r-{-~)~rr I r, r 2 I=I-(-')(I o21-)]'-([(-")'")'-'.
CPvq~Q'{af{-frsorIrjrrl'In-r-{-~)~rrIr,r2I=I-(-')(Io21-)]'-([(-")'")'-'.
(-")*-)I f rl Ls=[(I+rI+(I rl J 2[r ro 2i[I (')]2 i,=-;[(-')-i+Ii.-']I C in (I-rsi 2 rs~ta=-[I n.>+(I-r)(-'J 2l'.=-{-"'"--'"['-(-")'))
(-")*-)IfrlLs=[(I+rI+(IrlJ2[rro2i[I(')]2i,=-;[(-')-i+Ii.-']ICin(I-rsi2rs~ta=-[In.>+(I-r)(-'J2l'.=-{-"'"--'"['-(-")'))
=-'.('(-")-(-)-(-)[*.(-)]"-;,}(r, (il-225--155(')2 25!(')I 4AOO(r ro){+si(-")'[s(-")+io]o-'}42 r r (25-l25+225{-')-25()-"(-)-"(-)'[" (-)'1"-:)'-['(-)-~(-)I-'],[lo-l5-+5(-)+52()(I+so)],[is-si-"+n(-")'-2(-")'-5(")'(2+
=-'.('(-")-(-)-(-)[*.(-)]"-;,}(r,(il-225--155(')225!(')I4AOO(rro){+si(-")'[s(-")+io]o-'}42rr(25-l25+225{-')-25()-"(-)-"(-)'["(-)'1"-:)
iso')]-{I-='[i-(-")]-(-")[)+no..>i-'])'(:.)](-")'[I-(')ll+sa-)]<s.--,"{[(-')'+l]~-'+(-")'-I)<.-..>rl Ca w-[(I+4)'+(I 4)-](r-r)4 r 0 0,-,'[-(-"))<.-..>'r
'-['(-)-~(-)I-'],[lo-l5-+5(-)+52()(I+so)],[is-si-"+n(
[(r l r]C,-f(.)-)+2)l(,,)4 I 2 w-(I-r2)J(r r)2 Ca>u-[I+~+(I-4)(-')J(r r)4 2[n--"{-".''-'.-'.'[-(-")']}<-">'=-.'.(-~(-)'-'(-)'-
-")'-2(-")'-5(")'(2+
~(-)'[" (-)')"-;)<-">''5<-225-'-(I-o'+IIii(-"))4.4OO(r r){+so(-')'fs(-')'+
iso')]-{I-='[i-(-")]-(-")[)+no..>i
io]o-')rs C, (!22-2'5+225(')-25(')-"(-:)-"(-)'f" (-)']'-:.}
-'])'(:.)](-")'[I-(')ll+sa-)]<s.--,"{[(-')'+l]~-'+(-")'-I)<.-..>rlCaw-[(I+4)'+(I4)-](r-r)4r00,-,'[-(-"))<.-..>'r
[(rlr]C,-f(.)-)+2)l(,,)4I2w-(I-r2)J(rr)2Ca>u-[I+~+(I-4)(-')J(rr)42[n--"{-".''-'.-'.'[-(-")']}<
-">'=-.'.(-~(-)'-'(-)'-
~(-)'["(-)')"-;)
<-">''5<-225-'-(I-o'+IIii(
-"))4.4OO(rr){+so(-')'fs(-')'+
io]o-')rsC,(!22-2'5+225(')-25(')-"(-:)-"(-)'f"(-)']'-:.}
'=I'['-(-)'-
'=I'['-(-)'-
(-')*"-']<
(-')*"-']<
-">'(r-r)4r[Isol'+si(-')2(-')-5(')(I+Iso-))"--,'(''.{'-(-ll-(-:)'["
-">'(r-r)4 r[Is ol'+si(-')2(-')-5(')(I+Iso-))"--,'(''.{'-(-ll-(-:)'["<">"-,'])<-">'>n~>>>>
<">"-,'])<
Al, It~t T~24 Foenw(ae for flat cfrcu)ar platee of conetent th)cttneee (Cortgfrscsed)
-">'>n~>>>>
-+(-4 I t.Outcr edge kec.'utntr edge simply II.Outcr edge free.inner edge ftxed Ismo Afoao Afmao>Q ao psao tssso Afmao Q mo If r, m d Iloal<<ou(er edge).vd ICICI Max I-I (f;l)sp L Ct 4'd Cs axtf m Af-(I I)(For numerica values sce case Ib after computing thc luadtng st Ihc Inner cdgc)If rr Is d (load at outcr edge),-Irds/CsCs Max p s=-(-Cl)Sp (Cs-uds C, Max Af a Af<m 5 Cs (For nutncrieal values sce case Ib ahtr computing thc loading at thc mncr edge)'r 0 0 0 ec 4 4 4 0 a cc" Case 2.Annular plate vritb a uniformly distributed prawre 5 over the pordon ftotn r, to d General cxpcasaons for dcformadons, moments, snd shears: rl rl re P a P+tsrFt+Af>>-Fs+Q-Fj-f Cn D D D r rl t atsF+Af Fs+Qs Fs t Cts~Isp p p Afr a ts-Fr+Afmps+/pe-f Ctr r,+Jf, tD(l-sa)r For tbc numcrical data given bcknr, r a 03 D s a lf-t a ts-Af ss 8'dfds D rcstrainm tcr edge wnp)y su inner edge lme Afmao'q ao MsxAf a Af,~If rr a 8 (usufocss D C L 8/o O.l OS 0.7 0.9 0.0587 0,075)O.l)20 0.0555 O.I 079 0495$0P272 0.0525 O.lgol O.I5gl 0.2<05 0.0525 O.I eel 0 I ISO O.I 559-O.oocg 0.0c77 O.OC9 I O.OC97 Sb't>>edge sunply supponed, Inner edge gtddcd Osao q a4 0 (~g)Afma g r Cu~l (~g)r Q.a-(dl-rq Afm a 0 xP ats Mxc Af a Afm 8 rr a 5 (utufsra load over ensue pbtch 5/d-O.OIOS-0.00)5 0.0505 OA)078 0.00052 O.I22S 0.04$5 0.00$0$-0.0575'OSIS)5 0.09I9 OA)tMS 0~5 0~)85 O.l Oy 08 0.7 0.9 2C.Outcr edge simply supptutcd, inner edge simply wpponcd ,l~pa a 0 Afm ao pr ss 0 D C,C Ctgts Csgtt t,=t,CC+-Ce--f.ts D D S Q a+---(ds-rs)Afm ao Ald O.I OD E A'4-0.0050-O.O255 0.0 I 98 0.2<01 0.0708 I.8870-0.0029 0.0 I 5$O.OI)9 0.0455 0.0552 0.50 I 5 lf r, a 8(~hmd o cr cutup)me), 0.0008 0.00$5 O.oos 7 0.0 I 0 I 0.0500 02250-n nnn I 0 IIII I 2 nnntl 4 Iut I s 4 tlt tn II tnvI I'S nT
Al,It~t T~24Foenw(aeforflatcfrcu)arplateeofconetentth)cttneee (Cortgfrscsed)
-+(-4It.Outcredgekec.'utntredgesimplyII.Outcredgefree.inneredgeftxedIsmoAfoaoAfmao>QaopsaotsssoAfmaoQmoIfr,mdIloal<<ou(eredge).vdICICIMaxI-I(f;l)spLCt4'dCsaxtfmAf-(II)(FornumericavaluesscecaseIbaftercomputing thcluadtngstIhcInnercdgc)IfrrIsd(loadatoutcredge),-Irds/CsCsMaxps=-(-Cl)Sp(Cs-udsC,MaxAfaAf<m5Cs(Fornutncrieal valuesscecaseIbahtrcomputing thcloadingatthcmncredge)'r000ec4440acc"Case2.Annularplatevritbauniformly distributed prawre5overthepordonftotnr,todGeneralcxpcasaons fordcformadons, moments,sndshears:rlrlrePaP+tsrFt+Af>>-Fs+Q-Fj-fCnDDDrrltatsF+AfFs+QsFstCts~IspppAfrats-Fr+Afmps+/pe-fCtrr,+Jf,tD(l-sa)rFortbcnumcrical datagivenbcknr,ra03Dsalf-tats-Afss8'dfdsDrcstrainm tcredgewnp)ysuinneredgelmeAfmao'qaoMsxAfaAf,~Ifrra8(usufocss DCL8/oO.lOS0.70.90.05870,075)O.l)200.0555O.I0790495$0P2720.0525O.lgolO.I5gl0.2<050.0525O.Ieel0IISOO.I559-O.oocg0.0c77O.OC9IO.OC97Sb't>>edgesunplysupponed, InneredgegtddcdOsaoqa40(~g)AfmagrCu~l(~g)rQ.a-(dl-rqAfma0xPatsMxcAfaAfm8rra5(utufsraloadoverensuepbtch5/d-O.OIOS-0.00)50.0505OA)0780.00052O.I22S0.04$50.00$0$-0.0575'OSIS)50.09I9OA)tMS0~50~)85O.lOy080.70.92C.Outcredgesimplysupptutcd, inneredgesimplywpponcd,l~paa0Afmaoprss0DC,CCtgtsCsgttt,=t,CC+-Ce--f.tsDDSQa+---(ds-rs)AfmaoAldO.IODEA'4-0.0050-O.O2550.0I980.2<010.0708I.8870-0.00290.0I5$O.OI)90.04550.05520.50I5lfr,a8(~hmdocrcutup)me),
0.00080.00$5O.oos70.0I0I0.050002250-nnnnI0IIIII2nnntl4IutIs4tlttnIItnvII'SnT


XQ4Fctnlttt)od lorfldtcltctl(af gt(4tloooftcdcott(If~laooo(Cctctgltl~)
X Q4 Fctnlttt)od lor fldt cltctl(af gt(4tloo of tcdcott(If~laooo (Cctctgltl~)
~%~'~C~c7/~~)F.C5~f.C+Dulceedgef(ee.InneredgeNmpl)wpponedpsaoA(maoA(maoQao-rsrCadsa(e-r)LttDC,LgrbQa(rsrs)2bofrpadscC+Q-Ca--Lttpnr2rs8=>CCC+4-Cs--LtsDDCelenoCdseIC%l(klhl (ulccedgegu(dr(l.Ih(ulrdgcps0dsa0dsss0Qa0I-rstCsInC[gb~(tfa-(cr)LtsI.coQa-(r-rs)02br2IIpsaSfn-Cs+Q-Cs--L>>DDDIAfn=Africa+()seCe-rsLtt(lfrab(undonnloadovercouteptuc).blrO.l"030.50.70.9E~O.OS4$A~-0.7892Ecl0.11460.01250.00500.2978-0.11840.07670.04070.00040.0$$90II(IS<I0.01490.00167Ifrsab(uniformloadoresenticep4cc).EEcEsEu0.11150.1158 00826-0.05780.00510.140008025O.ld760.1540-0.0$150.10820.14040.14790.11880.04981.27540.6146-03414-0.17420.0521blrO,l090.50.70.909OenKtnca(ulccedgefree.Inneredgefised,r'tsad8aOAfaOqaO-rfcs-I-(r-,2-a]CaLgabQa(crs)2brsAf-Cs+Qa-Cs--L>>~(spDD~rsdsaSf+-Ca+6-Cs--Lss*DDDblrO.l030.$EEsEu-0.0757-O.O868-OSI5450.0$1dr0.00860.05120.0207OAIOS-0.1756lflsb(unlbllnbadneerCluuep4IC)i-0.00110.00460.05410.000170.005SO0.70.9lulsrpbteIricbndistributed pcessunt-0~oaCslcnoedgereattain(I ecuasuu6bnear(7fieunaeroatrsto5ntrCcnccalcaprcslions fordcfonoaions, aoacncs.andsbcatar2rarer-r,PaPs+V'i+dfm-Es+0-Ea-9-'CtsDDr-rrrsrar~adape+/gmEs+Q-fe-,9-CDD'~rsDp>>rsAf,ad;z,+df~,+q;r,-d 2-'cr~ta~D(l-as)N,+((rTrD8ee---(<+-h.<+0<'-'>'r(r
~%~'~C~c 7/~~)F.C 5~f.C+Dulce edge f(ee.Inner edge Nmpl)wpponed psao A(mao A(mao Q ao-rsr Ca dsa (e-r)Ltt DC, Lgrb Q a (rs rs)2b o fr p a dscC+Q-Ca--Ltt p n r2 rs 8=>CCC+4-Cs--Lts D D Cele no Cdse IC%l(klhl (ulcc edge gu(dr(l.Ih(ul rdgc ps 0 ds a 0 ds ss 0 Q a 0 I-rst Cs I nC[gb~(tf a-(c r)Lts I.co Q a-(r-rs)0 2b r2 I I ps a Sfn-Cs+Q-Cs--L>>D D D I Afn=Africa+()seCe-rsLtt (lf r a b (undonn load over coute ptuc).blr O.l" 03 0.5 0.7 0.9 E~O.OS4$A~-0.7892 Ecl 0.1146 0.0125 0.0050 0.2978-0.1184 0.0767 0.0407 0.0004 0.0$$9 0 II(IS<I 0.0149 0.00167 If rs a b (uniform load ores entice p4cc).E Ec Es Eu 0.11150.1158 0 0826-0.0578 0.0051 0.1400 08025 O.ld76 0.1540-0.0$15 0.1082 0.1404 0.1479 0.1188 0.0498 1.2754 0.6146-03414-0.1742 0.0521 blr O,l 09 0.5 0.7 0.9 0 9 O en K tn ca (ulcc edge free.Inner edge fised , r'tsad 8 aO Af aO q aO-r fcs-I-(r-,2-a]Ca L gab Qa (c rs)2b rs Af-Cs+Qa-Cs--L>>~(s p D D~rs ds a Sf+-Ca+6-Cs--Lss*D D D blr O.l 03 0.$E Es Eu-0.0757-O.O868-OSI545 0.0$1 dr 0.0086 0.0512 0.0207 OAIOS-0.1756 lf ls b (unlblln bad neer Cluue p4IC)i-0.0011 0.0046 0.0541 0.00017 0.005SO 0.7 0.9 lulsr pbte Iricb n distributed pcessunt-0~oa Cslc no edge reattain(I ecuasuu 6 bnear(7 fieun aero at rs to 5 nt r Ccnccal caprcslions for dcfonoaions, aoacncs.and sbcata r 2 ra rer-r, P a Ps+V'i+dfm-Es+0-Ea-9-'Cts D Dr-r r rs ra r~a dape+/gm Es+Q-fe-, 9-C D D'~rs D p>>rs Af,ad;z,+df~,+q;r,-d 2-'c r~ta~D(l-as)N,+((r T r D 8 e e---(<+-h.<+0<'-'>'r(r
-rJ~~~Fortbcunacriea) dacegnenbcb(nr,raOdeaE-~peaOutcfedgeNulpllsupponc(L
-r J~~~For tbc unacriea)dace gnen bcb(nr, r a Od eaE-~p ea Outcf edge Nulpll supponc(L~nncl edge kec pl a ds a (I, a 0 Qao p,ao CL-Lts DCI r'(CILC L)Afm ad Man p aps Max Af a Pfl~lf rs a b (lincsclp btseabg bad floss b Io~).blr O.I Od 0.$0.7 0.9 Es Es E Eu O.OS17 O.OS06 0.02S I 0.0114 0.0015 0.0482 0.0470 0.0454 0$)$58 O.0l dl 0.0186 0.04 Id 0.04850.0595 0.0166 0.1590 0.1259 OA)879 0.0514 0.0 1 dd<a-(ar-rsr-res)0UI Cf CdgC Nnlpll'lppolt CIL lnncl cdgc guided ro)Psao Qao ps ad-r'CCLIC.Il a\LI2)n LC, rsLI~Afn a Cs Csg (Csgls 4 Q a-(Sos-rcr rs)dr Afm ao blr E A'Ey 0.1 OD 0.5 0 0259 0 0l SS-0 0041 0.0454 0.0286 0.0126 0.1280 0.0847 0.0447 Mas s ape Mas bf ss bfm lf rs a b (linear)7'uurcw'ng bsd (nun b to~), 0.7 0.0005 0.0051 0.0150 0.9 0.00001 0.00012 0.00171  
~nncledgekecpladsa(I,a0Qaop,aoCL-LtsDCIr'(CILCL)AfmadManpapsMaxAfaPfl~lfrsab(lincsclp btseabgbadflossbIo~).blrO.IOd0.$0.70.9EsEsEEuO.OS17O.OS060.02SI0.01140.00150.04820.04700.04540$)$58O.0ldl0.01860.04Id0.04850.0595 0.01660.15900.1259OA)8790.05140.01dd<a-(ar-rsr-res) 0UICfCdgCNnlpll'lppolt CILlnnclcdgcguidedro)PsaoQaopsad-r'CCLIC.Ila\LI2)nLC,rsLI~AfnaCsCsg(Csgls4Qa-(Sos-rcrrs)drAfmaoblrEA'Ey0.1OD0.50025900lSS-000410.04540.02860.01260.12800.08470.0447MassapeMasbfssbfmlfrsab(linear)7
.I TMLx 25 I)soar sfalacttossa for Oat ckcxatar ptalaa ol conatant%~000 4+4-s cft~f>Q Nerhmolf: g>, p, andy are the deflections at b, 4, and rrespectively, caused by transYelse shear stresses.jl, E', and h.are deflection coeflicients dcfined by the relationshipsg, a Ega/f(r for an annular line load and p, a Egct/IG for all distributed loading (See Table 26 for all other notation and for the loading cases referenced) v-w C-S 4-e~Csss oo.Ik lc, 11,9 tb.fc.fl, 10 Sa.Sb.Sc.St, Il tt~<<>>RAga Ig In 6Y>>.ts<<.a<<>>-4~[1-(-')<<+21-)]ts$$-[$-$-"+(-")'($+$$-')]Tsbolsad tsiocs fot f$cc$6c casss n.l h.$0.%n.r no~s V'A 4 OA I nutso$CI IJs-4.'fSSS 0.2050'.1210-0.0451-4.405$-O.l ISS 0.0776 0.04$0-0.0166-0.0019 C 0 4a, 4b, 44.4t, If li, lj.lb.II ,[$-$$-"+$$(-")-(-")(!$$III-')]s<<>>a Q a-Id-'n-''Var.6>0)o t.lc 0.1 OJ 03 0.7 0$0.2 0.4 , 0.6 0.5 1.0 0.1654 0.66$4 0.1$$1 Ysbsss of<<>>1.2901 0.4991 0.ISIS I AN a J 0.9416 OASI2 4.12 Sf-<<161 I IA445 O.SSI 5 OA2 50 0.1264 0.06SS-0.0411 0.0ftS OANS4 4.00095 a 21.fj.ft.fl-0.50[1-(-")]I-" (N~6>0)t'---'"[-:-"(-)('-2"-")]ttfc 0.1 OD OS 0.7 OP 0.1 OD 08 0.7 04 O.I OJ-OANOO 08995 OANOO Yatws af<<>>I AN45 IAN9$OA494 03 0.7242 O.f f 99 0.0000 OPISI OA 209 0.1909 0.7-4.$9$$08$9$0.10$4 0.4044 0.6665 0320$0.1640 OANI 0 0.9 4.2$0$-4.1292-0.0674-0.0257 0.0040-OfS67 n-O.ISIS-0.0122 0.0149-4.006t i,sj,SI Sl 4I, 4j, 4b, 41 1st<<>>a OW 2--ba s praas>0)~\~JJ[ts a S o<<>>a 0.10 (~)]b,';la~6>0)n$,'[$($-$-")s-'-~+$-"-(-")'($-~$-")]tiVsfa 6>0)t,fc a O.I 04 OS 0.7 08 O.l 04 08 0.7 04 tsfc L O.I OJ 0$0.7 0.9 4 4444 44$$$OANOO Yabsa of~OA024 O.l f 77 OANOO 0.7949 OA5$5 Od IO I Vabsa of~IL$$2 7 0~0.1$0$O.l Oa OANOO 0.2$$5 OANOO Vabsa of<<04517 OAN94 0.0000 O.I 04 OS 0.7 P.SI52 0.1$7$0.0$4$OANOO 08$5$0.175$OAI9$7 OAI~If 0.9 4.1274 OANST 0.0741 0.0146-0.0000 0.1216 0.0619 4.0$aj 4.0 I 57 OAIO 4 f OAIIW 0.0941 4AISTS 0.0000 v.oa 0.042 6 O.ott9 0.049$0.0040 0.7 0.9 ca t+(-")'(IS-Itb-"))firer.s>0) 0.1 OJ 08 0.7 0.9 08791 OA905 OMTO 04407 0.'I 554 OAN90 O.f 472 O.ltst OAN5$OAIS12 0.0555 0.0460 0.0251 0.01 f9-0.0021  
'uurcw'ng bsd(nunbto~),0.70.00050.00510.01500.90.000010.000120.00171  
.I TMLx25I)soarsfalacttossa forOatckcxatarptalaaolconatant%~0004+4-scft~f>QNerhmolf:
g>,p,andyarethedeflections atb,4,andrrespectively, causedbytransYelse shearstresses.
jl,E',andh.aredeflection coeflicients dcfinedbytherelationshipsg, aEga/f(rforanannularlineloadandp,aEgct/IGforalldistributed loading(SeeTable26forallothernotationandfortheloadingcasesreferenced) v-wC-S4-e~Csssoo.Iklc,11,9tb.fc.fl,10Sa.Sb.Sc.St,Iltt~<<>>RAgaIgIn6Y>>.ts<<.a<<>>-4~[1-(-')<<+21-)]ts$$-[$-$-"+(-")'($+$$-')]Tsbolsadtsiocsfotf$cc$6ccasssn.lh.$0.%n.rno~sV'A4OAInutso$CIIJs-4.'fSSS0.2050'.1210-0.0451-4.405$-O.lISS0.07760.04$0-0.0166-0.0019C04a,4b,44.4t,Ifli,lj.lb.II,[$-$$-"+$$(-")-(-")(!$$III-')]s<<>>aQa-Id-'n-''Var.6>0)ot.lc0.1OJ030.70$0.20.4,0.60.51.00.16540.66$40.1$$1Ysbsssof<<>>1.29010.49910.ISISIANaJ0.9416OASI24.12Sf-<<161IIA445O.SSI5OA2500.12640.06SS-0.04110.0ftSOANS44.00095a21.fj.ft.fl-0.50[1-(-")]I-"(N~6>0)t'---'"[-:-"(-)('-2"-")]ttfc0.1ODOS0.7OP0.1OD080.704O.IOJ-OANOO08995OANOOYatwsaf<<>>IAN45IAN9$OA494030.7242O.ff990.0000OPISIOA2090.19090.7-4.$9$$08$9$0.10$40.40440.66650320$0.1640OANI00.94.2$0$-4.1292-0.0674-0.02570.0040-OfS67n-O.ISIS-0.01220.0149-4.006ti,sj,SISl4I,4j,4b,411st<<>>aOW2--baspraas>0)~\~JJ[tsaSo<<>>a0.10(~)]b,';la~6>0)n$,'[$($-$-")s-'-~+$-"-(-")'($-~$-")]tiVsfa6>0)t,fcaO.I04OS0.708O.l04080.704tsfcLO.IOJ0$0.70.94444444$$$OANOOYabsaof~OA024O.lf77OANOO0.7949OA5$5OdIOIVabsaof~IL$$270~0.1$0$O.lOaOANOO0.2$$5OANOOVabsaof<<04517OAN940.0000O.I04OS0.7P.SI520.1$7$0.0$4$OANOO08$5$0.175$OAI9$7OAI~If0.94.1274OANST0.07410.0146-0.00000.12160.06194.0$aj4.0I57OAIO4fOAIIW0.09414AISTS0.0000v.oa0.0426O.ott90.049$0.00400.70.9cat+(-")'(IS-Itb-"))firer.s>0) 0.1OJ080.70.908791OA905OMTO044070.'I554OAN90O.f472O.ltstOAN5$OAIS120.05550.04600.02510.01f9-0.0021  


(Enclosure 2consistsoftheDisposition toCalculation No.A10.1-AD-003, titled"Pressure LockingEvaluation ofMOVs."Enclosure 2has13pages,~~whicharenumberedfrom1to13) 0 TNAGARAVMOHAWKNUCLEARENGINEERING Peoe1INaxi)0'telLi(t'ti3uProject:NINEMILEPOINTNUCLEARSTATIONUnit(1,2or0=Both):~Discipline:
(Enclosure 2 consists of the Disposition to Calculation No.A10.1-AD-003, titled"Pressure Locking Evaluation of MOVs." Enclosure 2 has 13 pages,~~which are numbered from 1 to 13) 0 T NAGARA V MOHAWK NUCLEAR ENGINEERING Peoe 1 INaxi)0'tel Li(t't i 3 u Project: NINE MILE POINT NUCLEAR STATION Unit (1,2 or 0=Both):~Discipline:
+<<~~(Sub)System(s)
+<<~~(Sub)System(s)~mP Index No.Ti le m~f.c o s, Uac.'(I('eg l:-u Ku-I('o~Wo<s Calcullt tion No.Rev Disp A,tOd'l-A5-OO~0 t g I P, nginator A,,q, ate/o~r~>>4 6 c-~a M/r r Ag Checker Date KePS+Cfir V Xe+JOlO/lrql/9 Change No.Approver Ae~Date"'-Safety Class: (SR/NSR/QXX):
~mPIndexNo.Tilem~f.cos,Uac.'(I('eg l:-uKu-I('o~Wo<sCalcullttionNo.RevDispA,tOd'l-A5-OO~0tgIP,nginatorA,,q,ate/o~r~>>46c-~aM/rrAgCheckerDateKePS+Cfir VXe+JOlO/lrql/9ChangeNo.ApproverAe~Date"'-SafetyClass:(SR/NSR/QXX):
Superseded Document(s):
Superseded Document(s):
Q,om(NMPCAcceptance/Date Descnption ofChangehwpeetA'aw iw~(a'R~~+o~.~~~~"t~~~'>""+I~'f4%.waifC,N'%(44~~~d'1RI'2~Pw~on5'7A/Q,ie%he.P~y'E~~g~py~ogrgb44E.0ve/LA'ti (5h,Q,'@~V~c(./~8'~~P$&Ou&7Al8AIVtC~<Id(~Agr"hrR,ups)%De~$0~4+0Qld0~4th~ce.pr~a,s.pV+o-77A4Pg~s'IIX+~$o4+P~i4~isCw%dasrte~md+4P<+02."r~'l$cs444s.(iXd1pobd+I<7esolution l4,~X>ZI~~A,~~~~X(~+%~~ur.leC4W.hruS1'wf(v'~~g44K.44%o0e.4~~4I)~~>~~5"hOe5CVat>w44>gg,'ro,.i(
Q,om(NMPC Acceptance/Date Descnption of Change hwpeetA'aw iw~(a'R~~+o~.~~~~"t~~~'>""+I~'f4%.waif C,N'%(4 4~~~d'1 RI'2~P w~on 5'7A/Q, ie%he.P~y'E~~g~p y~og r gb 44E.0ve/LA'ti (5h,Q,'@~V~c(./~8'~~P$&Ou&7Al8 AIVt C~<Id(~Ag r" h rR,ups)%De~$0~4+0 Q l d 0~4 th~ce.pr~a,s.pV+o-77 A 4 P g~s'IIX+~$o 4+P~i4~is Cw%dasrt e~m d+4 P<+0 2."r~'l$cs4 44s.(i Xd1 pobd+I<7 esolution l4,~X>ZI~~A,~~~~X (~+%~~ur.le C 4 W.hruS1'w f(v'~~g 44K.44%o 0 e.4~~4 I)~~>~~5"hOe5 C Va t>w 4 4>gg,'ro,.i(o>ua P Cross Reference Changels):
o>uaPCrossReference Changels):
tZ-eeW 97-03 4 on irmaoon equire es o: See Page(s): ina ssue tatup i e ocation perations cceptance (APPIFIO/(/OII:
tZ-eeW97-034onirmaoonequireeso:SeePage(s):inassuetatupieocationperations cceptance (APPIFIO/(/OII:
+Pi (Ca(outa(/oo/Heidi:+d(d Rea d(Yea(I/'IAI: (d Cl Evaluation Number(s):
+Pi(Ca(outa(/oo/Heidi:+d(d Read(Yea(I/'IAI:
2 Og 3T 0-7 0%'h rU~Copy of Applicability Review Attached)Yes 29%9 fC A L-pP<<ops), Z5g+'o C&#xc3;-V-4 Key Words: F oo Thrc g+/s(~ArWg2 I I r 9><<O7 Component IDls)(As shown in MEL): 2.~Ps maw a+A~gcgfge WnV O(4-7~s~P v Woe c'7A z~~p~woo c 7n-+<T.w s~p+W D>4'7/3 MM c/b-AG7 ((e f aa 0 r SOS f0 34 2l Page 25 NEP-DES-08 Rev 04 0
(dClEvaluation Number(s):
Niagara Mohawk Power Corporation NMP2 NuctearEngineering Calculation Cont.Sheet Originator/Date Dno~'mQ~4 Q~/cf/<~(>~Checker/Date gVtt IJrq/R<Page2ot t3 Ato.t.AD%03, Rev.01 Disp.01A Valve ID no: ";"<<VP'"'IQVt GA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=108 Valve Bonnet pressure (psig), P bonn<<.=108
2Og3T0-70%'hrU~CopyofApplicability ReviewAttached)
'ownstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=3.375 meanseatradius, I a.'=3.91 averaae disk thickness,~a n hub length, L:=0.125 seat angle, a'.=10 6:=-6=0.087 2 180 t:=0.48 Valve Disk Material Properties:
Yes29%9fCAL-pP<<ops),
modulus of elasticity, E'.=29400000 Other Valve Parameters:
Z5g+'oC&#xc3;-V-4KeyWords:FooThrcg+/s(~ArWg2IIr9><<O7Component IDls)(AsshowninMEL):2.~Psmawa+A~gcgfgeWnVO(4-7~s~PvWoec'7Az~~p~wooc7n-+<T.ws~p+WD>4'7/3MMc/b-AG7((efaa0rSOSf0342lPage25NEP-DES-08 Rev04 0
Poisson's Ratio, v.'=0.3 6 rs r','2!r<.'/s.'.:..:2gie ot Valve Factor VF:=0.65 Valve Stem Diameter, D stern.'=1.625 Static Unseating Thrust F po 9232 (reference:
NiagaraMohawkPowerCorporation NMP2NuctearEngineering Calculation Cont.SheetOriginator/Date Dno~'mQ~4Q~/cf/<~(>~Checker/Date gVttIJrq/R<Page2ott3Ato.t.AD%03, Rev.01Disp.01AValveIDno:";"<<VP'"'IQVt GAReuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.'=108ValveBonnetpressure(psig),Pbonn<<.=108
Test&#xb9;25, 70/6/94)r'/eference:
'ownstream pressure(psig),Pdown0ValveDiskGeometry:
hubradius, b:=3.375meanseatradius, Ia.'=3.91averaaediskthickness,
~anhublength,L:=0.125seatangle,a'.=106:=-6=0.0872180t:=0.48ValveDiskMaterialProperties:
modulusofelasticity, E'.=29400000 OtherValveParameters:
Poisson's Ratio,v.'=0.36rsr','2!r<.'/s.'.:..:2gie otValveFactorVF:=0.65ValveStemDiameter, Dstern.'=1.625StaticUnseating ThrustFpo9232(reference:
Test&#xb9;25,70/6/94)r'/eference:
N.":R-2'-Ot0)
N.":R-2'-Ot0)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,cos<6>1--sin(6)VFIt=0686treference Prte,up+downAverageDPAcrossDisk,DPavgPbonnet-'IE\DiskStiffnesConstants, D:=212I-vIIIwhichgives,D=2.97710 andgives,DPav<=54nndG:=E2(2+2I)G=1.131~10IbabbabGeometryFactors,C2'.=-I--1+2In-C3',=--+1In-+--I4ab4aaba1bC8:=-1+v+2a2C9'=--In-+-I--whichgives, C2=8.91910C3=3.96510C8=0.911C9=0.121COMEDPLEvaitjationlNPswp66aaa.mcd ValveID:2SWP'MOV66A page1 1t~,
Coefficient of friction between disk and seat, cos<6>1--sin(6)VF It=0 686 t reference Prte, up+down Average DPAcross Disk, DPavg Pbonnet-'I E\Disk Stiffnes Constants, D:=2 12 I-v III which gives, D=2.97710 and gives, DP av<=54 nnd G:=E 2 (2+2I)G=1.131~10 I b a b b a b Geometry Factors, C2'.=-I--1+2 In-C3',=--+1 In-+--I 4 a b 4a a b a 1 b C8:=-1+v+2 a 2 C 9'=--In-+-I--whichgives, C2=8.91910 C3=3.96510 C 8=0.911 C 9=0.121 COMED PL EvaitjationlNPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 1 1t~,
NiagaraMohawkPowerCorporation NMP2NuctearEngineering Catctrlation Cont.SheetOriginator/Date
Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Catctrlation Cont.Sheet Originator/Date
~~1~aeA8~Xfflt~t~7Checker/Date
~~1~a e A 8~X ffl t~t~7 Checker/Date
/dc'//elfvPage3oft'ttAto.t.AD4103, Rey,111Disp.01AAdditional Geometrt/Factors, rp'.=b2421000L11'=-1+4--5--464aaa2rpa2+-ln-arp1L174421-v'0'0a1--1----'+(1+v)ln-4aarpwhichgives,L11=1.37810andL17=8.641.10MomentFactors,2DPavgaC9fMrb'.=---(a-r0)-Lr7C82abQb'a-r0)2bwhichgives,M,b=-8.373andQb=31.18Deflection frompressure/bending, 4~=a'avgaybq&#x17d;rb'C2+QbC3-L11DDDwhichgives,ybq=-1.93710Deflection frompressure/shear,2arprpKsa'32'In1+'2'Ibab.2sa'vgasq'Gwhichgives,Ksa=-0.012andysq179610"Deflection frompressure/hubstretch,(2force''(a
/dc'//e lfv Page 3of t'tt Ato.t.AD4103, Rey, 111 Disp.01A Additional Geometrt/Factors, rp'.=b 2 4 2 1 0 0 0 L11'=-1+4--5--4 64 a a a 2 rp a 2+-ln-a rp 1 L17 4 4 2 1-v'0'0 a 1--1----'+(1+v)ln-4 a a rp which gives, L 11=1.378 10 and L 17=8.641.10 Moment Factors, 2 DPavg a C9 f M rb'.=---(a-r0)-L r7 C8 2ab Qb'a-r0)2b which gives, M,b=-8.373 and Qb=31.18 Deflection from pressure/bending, 4~=a'avg a ybq&#x17d;rb'C2+Qb C3-L11 D D D which gives, y bq=-1.937 10 Deflection from pressure/shear, 2 a rp rp Ksa'3 2'In 1+'2'I b a b.2 sa'vg a sq'G which gives, K sa=-0.012 and ysq 1796 10" Deflection from pressure/hub stretch, (2 force''(a-b)DPavg P force'L y stretctt'abb 2E which gives, P f=661.191 and y stre<ctt=-3.928 10 COMED PL EvaluationlNPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 2
-b)DPavgPforce'Lystretctt'abb2Ewhichgives,Pf=661.191andystre<ctt=-3.92810COMEDPLEvaluationlNPswp66aaa.mcd ValveID:2SWP'MOV66A page2
/0 Niagara Mohawk Power Corporation NMP2 NuclearEnginee ring Calculahon Cont.Sheet Originatorloate
/0 NiagaraMohawkPowerCorporation NMP2NuclearEnginee ringCalculahon Cont.SheetOriginatorloate
'D c~>~>e Q~I~t W~f Checkedoate
'Dc~>~>eQ~I~tW~fCheckedoate
~+ii'><iqrt yves Page4of i3 Ato.t.AD403.
~+ii'><iqrt yvesPage4ofi3Ato.t.AD403.
Rev.01 Disp.01A Total Deflection due to pressure, Additional Geometer Factors y q:=y bq+y sq+y stretch which gives, y q=-3.771 10 r.'=a 0'p L 3'.=-.4a 2 2 ro a ro+1 ln-+--1 a ro a p 1+v a 1-v ro L9'=--ln-+-.1--a 2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, w.'=1 asw C2 rpC9 p 3 y.b.=L9--+L3 whichgives, C8 b b ybw=-L83S 10 Deflection from seat load/shear, rp rp Ksa.'=-1.2 In-a b y'.=Ksa which gives, a tG Ksa=-0.177 y sw 1'272'10 Deflection from seat load I hub compression, L ,-2na 2 ycompr'b E which gives, y compr=Total Deflection from unit seat load, y w:=y bw+ysw+'ycompr which gives, y w=-3.122 10 which gives, Equilibrium contact load distribution, yq w equilibrium
Rev.01Disp.01ATotalDeflection duetopressure, Additional GeometerFactorsyq:=ybq+ysq+ystretchwhichgives,yq=-3.77110r.'=a0'pL3'.=-.4a22roaro+1ln-+--1aroap1+va1-vroL9'=--ln-+-.1--a2rp4awhichgives,L3=0andL9=0Deflection fromseatloadIbending,w.'=1aswC2rpC9p3y.b.=L9--+L3whichgives, C8bbybw=-L83S10Deflection fromseatload/shear, rprpKsa.'=-1.2In-aby'.=Ksawhichgives,atGKsa=-0.177ysw1'272'10Deflection fromseatloadIhubcompression, L,-2na2ycompr'bEwhichgives,ycompr=TotalDeflection fromunitseatload,yw:=ybw+ysw+'ycompr whichgives,yw=-3.12210whichgives,Equilibrium contactloaddistribution, yqwequilibrium
'w Load per seat=2 n a=296.797 yq yw equilibrium
'wLoadperseat=2na=296.797yqywequilibrium
=12.081 Pressure Locking Force, COMED PL EvaluationlNPswp66aaa.mcd Valve ID: 2SWP MOV66A page 3
=12.081PressureLockingForce,COMEDPLEvaluationlNPswp66aaa.mcd ValveID:2SWPMOV66Apage3


eNiagaraMohawkPowerCorporation NMP2NuclearEngineering Catoutaoon Cont.SheetOriginator/Date Q~<~~~lL,.~glrgtyqCheotterjoate gvgy/rg/ggPagesot+AlO.t-AD403.
e Niagara Mohawk Power Corporation NMP2 NuclearEngineering Catoutaoon Cont.Sheet Originator/Date Q~<~~~lL,.~g lrgtyq Cheotterjoate gvg y/rg/gg Pages ot+Al O.t-AD403.
Rev.01Disp.01AVqpreslock:=2na-'(it~os(8)-sin(8)).2 whichgives, Fp,eslock=354.165 YwPistonEffectForce,Pu'=0aun'n>>"pistoneffect''tem'(bonnetatmwhichgives,Fpistoneffect223.986'ReversePistonEffect'orce,
Rev.01 Disp.01A Vq pres lock:=2na-'(it~os(8)-sin(8)).2 whichgives, Fp,es lock=354.165 Yw Piston Effect Force, Pu'=0 aun'n>>"piston effect''tem'(bonnet atm which gives, F piston effect 223.986'Reverse Piston Effect'orce, , I F een[n'.=e (2 FOonnet np Oownj]ein(8)Total Force Re uired to Overcome Pressure Lockin, which gives, F vert 452 088 F tot I:=F pres lock+F po+F vert-"pisto~effect which gives,, F total=9.814267 10.ACTUA TOFt CAPAGILlTYt Actuator Nodei/Slzet&fotor Torque Output: Gear Ratio: Application Factor: Pullout ENciencyt Reduced Voltage: Torque Ouf put: Stem Factor;Tht ust Capat3llityt
,IFeen[n'.=e(2FOonnetnpOownj]ein(8)TotalForceReuiredtoOvercomePressureLockin,whichgives,Fvert452088FtotI:=Fpreslock+Fpo+Fvert-"pisto~effect whichgives,,Ftotal=9.81426710.ACTUATOFtCAPAGILlTYt ActuatorNodei/Slzet&fotorTorqueOutput:GearRatio:Application Factor:PulloutENciencyt ReducedVoltage:TorqueOufput:StemFactor;ThtustCapat3llityt
~TQout THcap:=-Sf TQout:=TQmRV OGRAf Eff=8MB-00-1$TQm'=14.74 OGR:=41.0 Af:=0.9 Eff:=0.4 RV:=0.8838 TQout=169.939 Sf'=0.016407 THcap=1.036 10 ft-Ibs ft-Ibs lbs iVOTEr RV lS SQUARE/F ACTUATQR IS AC.ENHANCED PRESSURE LQCKtNG NETHQDQLOGK KEI:='.20 Thrust Margin:=THcap-F>~.KEI Thrust Margin=-1.419 10 lbs ARy aot
~TQoutTHcap:=-SfTQout:=TQmRV OGRAfEff=8MB-00-1$
 
TQm'=14.74OGR:=41.0 Af:=0.9Eff:=0.4RV:=0.8838TQout=169.939Sf'=0.016407THcap=1.03610ft-Ibsft-IbslbsiVOTErRVlSSQUARE/FACTUATQRISAC.ENHANCEDPRESSURELQCKtNGNETHQDQLOGK KEI:='.20 ThrustMargin:=THcap-F>~.KEIThrustMargin=-1.41910lbsARyaotConclusion:
== Conclusion:==
OpenThrustt0erginisnegative, therefore thisvalveandactuatorare-~44~overcomethetheoretical pressuretorkingconditions evaluated.
 
COMEDPLEvaluationINPswp66aaa.mcd ValveID:2SWP'MOV66A page4 0
Open Thrust t0ergin is negative, therefore this valve and actuator are-~44~overcome the theoretical pressure torking conditions evaluated.
NiagaraMohawkPowerCorporation NMP2NuclearEngineering Catculation Cont.SheetOriginator/Date 422~>~y~A~gtgg(qyChecker/Date af/r4/4oPagetc2otl3A10.1.AD403.
COMED PL EvaluationINPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 4 0
Rev.01Disp.01AValveIDno:282tV!'MOVE:~A Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPIJTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.'=108ValveBonnetpressure(psig),Pbonnet108Downstream pressure(psig),Pdown0ValveDiskGeometry:
Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Catculation Cont.Sheet Originator/Date 422~>~y~A~g tgg(q y Checker/Date af/r4/4o Page tc2ot l3 A10.1.AD403.
hubradius,b:=1.25hublength,L:=0.25meanseatradius,a'.=1.88averaaediskthickness, t:=0.626axseatangle,a'.=10e:=-e=0.0872180ValveDiskMaterialProperties:
Rev.01Disp.01A Valve ID no: 282t V!'MOVE:~A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=108 Valve Bonnet pressure (psig), P bonnet 108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a'.=1.88 averaae disk thickness, t:=0.626 a x seat angle, a'.=10 e:=-e=0.087 2 180 Valve Disk Material Properties:
modulusofelasticity, E:=29400000 OtherValveParameters:
modulus of elasticity, E:=29400000 Other Valve Parameters:
ValveStemDiameter, Dstern.'=1.375ValveFactorVF.'=IPoisson's Ratio,v'.=0.3ejshair'Ipkij)ojetx'taticUnseating Thrust,Fpo'.=4056 (reference:
Valve Stem Diameter, D stern.'=1.375 Valve Factor VF.'=I Poisson's Ratio, v'.=0.3 e js hair'I pk ij)oje tx'tatic Unseating Thrust, F po'.=4056 (reference:
Test&#xb9;8,5/17/98)(je/erence:
Test&#xb9;8, 5/17/98)(je/erence:
NER-Bk0$0)CALCULATIONS:
NER-Bk0$0)CALCULATIONS:
Coefficient offrictionbetweendiskandseat,0cos(e)It:=--sin(e)1VFIt=1091treferee::eft3 AverageDPAcrossDisk,DiskStiffnesConstants, gives,nndG:=E2(1+v)up+downavg'onnet2Et121-vDPayg54whichgives,D=6.60510andG=1.13110GeometryFactors,C2.'=-I--1+2In-C3'.=--+IIn-+--I1ba,bbab4ab'4aaab2C8'.=-1+v+(I-v)~-2a2C9:=--In-+-I--whichgives,C2=0.049C8=0.805C3=5.09310C9=0.241COMEDPLEvaluationlNPswp67aaa.mcd ValveID:2SWP'MOV67A page1 II, NiagaraMohawkPowerCorporation NMP2NuctearEngineering Calcutation Cont.SheetOriginator/Date Q~,~~4~/VlyleapChecker/Date
Coefficient of friction between disk and seat, 0 cos(e)It:=--sin(e)1 VF It=1091 t referee::eft3 Average DP Across Disk, Disk Stiffnes Constants, gives, nnd G:=E 2(1+v)up+down avg'onnet 2 Et 12 1-v DP ayg 54 which gives, D=6.605 10 and G=1.131 10 Geometry Factors, C 2.'=-I--1+2 In-C3'.=--+I In-+--I 1 b a, b b a b 4 a b'4a a a b 2 C 8'.=-1+v+(I-v)~-2 a 2 C 9:=--In-+-I--which gives, C 2=0.049 C 8=0.805 C 3=5.093 10 C 9=0.241 COMED PL EvaluationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 1 II, Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Calcutation Cont.Sheet Originator/Date Q~,~~4~/Vl y leap Checker/Date
'IX4u]el~~Page'7otIPAt0.t-AD%03.
'I X4 u]el~~Page'7 ot IP At 0.t-AD%03.
Rev.01Disp.01AAdd/'tionat Geometr3/
Rev.01 Disp.01A Add/'tionat Geometr3/Factors,'p'.=b
Factors,'p'.=b
~I 64 2 4 2 fp rp rp I+4--5--4-a a a 2 fp 2y-In-a rp I L17 4 4 2.I-v P 0 a I+(I+v)In-4 a a rp whichgives, L11=4.48110 and Moment Factors, 2 DPavg a C9 l M~b'.=---(a-r 0)-L~r cg 2ab L 17=0.046 ob:=-'"'(*-0*)2b which gives, M rb--13.186 and Q b 42.593 Deflection from pressure/bending, a a avg a ybq:=Mrb C2+Qb C3-L11 D D D which gives, yh=-1.752 10 Deflection from pressure/shear, 2 a rp rp Ksa'.3 2 In--1+-~I-2 In-b a b 2 sa'vg a t.o which gives, K sa=-0.078 and ysq=-2.09 10 Deflection from pressure/hub stretch, l2 orce''(a-b)DPavg-P force L y stretch'tb 2E which gives, P force 334 525 and y stretch=-2.897 10 COMED PL EvaiuationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 2 ll 0 18 lp Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Catcutabon Cont.Sheet Originaterlnate Qss~lW~g'~/+f<0 IO)CheokerrDate gad N/err/W Page~ot t 3 Ato.t.AD403.
~I64242fprprpI+4--5--4-aaa2fp2y-In-arpIL17442.I-vP0aI+(I+v)In-4aarpwhichgives, L11=4.48110 andMomentFactors,2DPavgaC9lM~b'.=---(a-r0)-L~rcg2abL17=0.046ob:=-'"'(*-0*)2bwhichgives,Mrb--13.186andQb42.593Deflection frompressure/bending, aaavgaybq:=MrbC2+QbC3-L11DDDwhichgives,yh=-1.75210Deflection frompressure/shear,2arprpKsa'.32In--1+-~I-2In-bab2sa'vgat.owhichgives,Ksa=-0.078andysq=-2.0910Deflection frompressure/hubstretch,l2orce''(a-b)DPavg-PforceLystretch'tb2Ewhichgives,Pforce334525andystretch=-2.89710COMEDPLEvaiuationlNPswp67aaa.mcd ValveID:2SWP'MOV67A page2 ll018lp NiagaraMohawkPowerCorporation NMP2NuclearEngineering Catcutabon Cont.SheetOriginaterlnate Qss~lW~g'~/+f<0IO)CheokerrDate gadN/err/WPage~ott3Ato.t.AD403.
Rev.0t Disp.OtA Total Deflection due to pressure, Additional Geometry Factors y q'=y bq+y sq+y stretch hfch gives yq=-4.131 10 rp.'=a rp L3'.=-4a 2 2 ro a ro+1 ln-+--1 a ro a ro L 9:=-.a 2 I+v a I-v 0-ln-+-1--2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, we 1 awC2p9 y'bw D C8 b rp C3 Lg--+L3, evhichgivss b y bw=-1.465 10 Deflection from seat load I shear, fp rp Ksa.'=-1.2 ln-a b y',=Ksa which gives, a tG Ksa=-0.49 y sw=-1.301 10 Deflection from seat load I hub compression, L ,-2na 2 y compr'=nb E which gives, compr 1 023 1 0 Total Deflection from unit seat load, y w:=ybw+ysw+ycompr which gives, y w=-2.868 10 Equilibrium contact load distribution, w equilibrium
Rev.0tDisp.OtATotalDeflection duetopressure, Additional GeometryFactorsyq'=ybq+ysq+ystretchhfchgivesyq=-4.13110rp.'=arpL3'.=-4a22roaro+1ln-+--1aroaroL9:=-.a2I+vaI-v0-ln-+-1--2rp4awhichgives,L3=0andL9=0Deflection fromseatloadIbending,we1awC2p9y'bwDC8brpC3Lg--+L3,evhichgivss bybw=-1.46510Deflection fromseatloadIshear,fprpKsa.'=-1.2ln-aby',=Ksawhichgives,atGKsa=-0.49ysw=-1.30110Deflection fromseatloadIhubcompression, L,-2na2ycompr'=nbEwhichgives,compr102310TotalDeflection fromunitseatload,yw:=ybw+ysw+ycompr whichgives,yw=-2.86810Equilibrium contactloaddistribution, wequilibrium
'hich giv yq yw yq Load per seat=2 n a=170.165 yw w equilibrium 14'406 Pressure Locking Force, COMED PL EvaiuationlNPswp67aaa.mcd Valve ID: 2SWP MOV67A page 3 tl Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Calculation Cont.Sheet ortginatorroate
'hichgivyqywyqLoadperseat=2na=170.165ywwequilibrium 14'406PressureLockingForce,COMEDPLEvaiuationlNPswp67aaa.mcd ValveID:2SWPMOV67Apage3 tl NiagaraMohawkPowerCorporation NMP2NuclearEngineering Calculation Cont.Sheetortginatorroate
%+>~'to A.~/~(ry (yq checkerroate
%+>~'toA.~/~(ry(yqcheckerroate
~/vJ e/~/~~Page Iof 17 At 0.t-AD403.
~/vJe/~/~~PageIof17At0.t-AD403.
Rev.Ot Disp.ptA Yq F I k'.=2tt a (It cos(e)-sin(e))
Rev.OtDisp.ptAYqFIk'.=2tta(Itcos(e)-sin(e))
2 pres oc w which gives, F pres lock Piston Effect Force, P:=0 aun 2/piston effect''tem
2presocwwhichgives,FpreslockPistonEffectForce,P:=0aun2/pistoneffect''tem
'(bonnet atm wl Ich gives, Fpistpn effect=160.368'Reverse Piston Effect'orce, F vert'.a~2 P bonnet up gown sin(e)which gives, vert 04 Total Force Re uired to Overcome Pressure Lockin, F total:=F pres lock+F pp+F vert-F pistpn effec which gives, F to~=4.340478 10 ACTLrAWR CAPAGILITV'cfuetor IHodel/'ize: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency." Reduced Voltage: Torque Output: 8temF acfor: Thrust Capatv7ltrrr:
'(bonnetatmwlIchgives,Fpistpneffect=160.368'ReversePistonEffect'orce, Fvert'.a~2Pbonnetupgownsin(e)whichgives,vert04TotalForceReuiredtoOvercomePressureLockin,Ftotal:=Fpreslock+Fpp+Fvert-Fpistpneffecwhichgives,Fto~=4.34047810ACTLrAWRCAPAGILITV'cfuetor IHodel/'ize:MotorTorqueOutput:GearRatio:Application Factor:PulloutEfficiency."
TQout THcap'.=-Sf TQout:=TQm RV OGR Af Eff ft-lbs ft-Ibs=SM8-000-5 TQm ,'=5 OGR:=57.0 Af:=0.9/Eff:=0.4 RV l=0.8816 TQout=79.743 Sf:=0.014263 THcap=5.591 10 Ibs ItIOT'F;RtrIG SQUARE IF ACTLIATOR IS AC.FWHAeCEO PRESSURE LOCIr,'AVO urETHOaoLOOI" KEI:=1.20 Thrust Margin'.=THcaP-Ftot I KEI Thrust Margin=382.299 lbs
ReducedVoltage:TorqueOutput:8temFacfor:ThrustCapatv7ltrrr:
 
TQoutTHcap'.=-SfTQout:=TQmRVOGRAfEffft-lbsft-Ibs=SM8-000-5 TQm,'=5OGR:=57.0 Af:=0.9/Eff:=0.4RVl=0.8816TQout=79.743Sf:=0.014263 THcap=5.59110IbsItIOT'F;RtrIGSQUAREIFACTLIATOR ISAC.FWHAeCEOPRESSURELOCIr,'AVO urETHOaoLOOI" KEI:=1.20ThrustMargin'.=THcaP-FtotIKEIThrustMargin=382.299lbsConclusion:
== Conclusion:==
OpenThrustNerainisPositive.
 
fherefore thisvalveandactuatorareIilrelyfoovercomethetheoretical pressurelockingconrIIBons evaluated.
Open Thrust Nerain is Positive.fherefore this valve and actuator are Iilrely fo overcome the theoretical pressure locking conrIIBons evaluated.
COMEDPLEvaluationlNPswp67aaa.mcd ValveID:2SWP'MOV67A page4
COMED PL EvaluationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 4


NiagaraMohawkPowerCorporation NMP2NtrotearEngineering Catoulation Cont.Sheetohginalorloate Q~l~j'eAr~/Vlcglpfcheckerroate
Niagara Mohawk Power Corporation NMP2 N trotear Engineering Catoulation Cont.Sheet ohginalorloate Q~l~j'e Ar~/Vlcgl p f checkerroate
+tIcrIre/r9/OrrPagelOol\gAt0.t.AD403.
+tIcrI re/r 9/Orr PagelOol\g At 0.t.AD403.
Rev.01Disp.otAValveIDno:BSSVP>;"Ot/6TB Reuired0eninForceDeternmination underPressureLockinConditions COMEDMethodDESIGNINPUTS:DesignBasisConditions attimeofPressureLockingEvent:Upstreampressure(psig),Pp.'=10SValveBonnetpressure(psig),Pbonn<<.'=10SDownstream pressure(psig),Pdown0ValveDiskGeometry:
Rev.01 Disp.otA Valve ID no: BSSVP>;"Ot/6TB Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=10S Valve Bonnet pressure (psig), P bonn<<.'=10S Downstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=1.25 meanseatradius, modulus of elasticity, E:=29400000 Poisson's Ratio, v'.=0.3 Other Valve Parameters:
hubradius, b:=1.25meanseatradius, modulusofelasticity, E:=29400000 Poisson's Ratio,v'.=0.3OtherValveParameters:
a.'=1.88 averaae disk thickness, t:=0.626 a rt hub length, L:=0.25 seat angle, ct'.=10 e:=--e=0.087 2 180 Valve Disk Material Properties:
a.'=1.88averaaediskthickness, t:=0.626arthublength,L:=0.25seatangle,ct'.=10e:=--e=0.0872180ValveDiskMaterialProperties:
e is h tir di:-'..;tngie a Valve Factor VF.'=I Valve Stem Diameter, Dstcm.'=1.375 Static Unseating Thrust, F~.'=2444 (reference:
eishtirdi:-'..;tngie aValveFactorVF.'=IValveStemDiameter, Dstcm.'=1.375 StaticUnseating Thrust,F~.'=2444 (reference:
Test&#xb9;13, 5/26/9B)I reference:
Test&#xb9;13,5/26/9B)Ireference:
NER-2'-Ot0)
NER-2'-Ot0)
CALCULATIONS:
CALCULATIONS:
Coefficient offrictionbetweendiskandseat,p,.'=cos(e)I--sin(e)VFIt=1.091("eference
Coefficient of friction between disk and seat, p,.'=cos(e)I--sin(e)VF It=1.091 ("eference
="6;AverageDPAcrossDisk,DiskStiffnesConstants, gives,DPavg=54andG:=E2/1+v)up+downavg'onnet2Et12I-vwhichgives,D=6.60510andG=1.13110GeometryFactors,C2'.=-I--~I+2In-C3.'=--+Iln-+--IIba,bbab4ab'4aababCS:=-'+'+('-')
="6;Average DP Across Disk, Disk Stiffnes Constants, gives, DP avg=54 and G:=E 2/1+v)up+down avg'onnet 2 Et 12 I-v which gives, D=6.605 10 and G=1.131 10 Geometry Factors, C 2'.=-I--~I+2 In-C3.'=--+I ln-+--I I b a, b b a b 4 a b'4a a b a b CS:=-'+'+('-')2 a b I+v a I-v b C 9'=--ln-+-I--a 2 b 4 a which gives, C 2=0.049 C 8=0.805 C3=5.093 10 C 9=0.241 COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV678 page 1
2abI+vaI-vbC9'=--ln-+-I--a2b4awhichgives,C2=0.049C8=0.805C3=5.09310C9=0.241COMEDPLEvaluationlNPswp67baa.mcd ValveID:2SWP'MOV678 page1
 
Niagara Mohawk Power Cofgoration NMP2 Nooiear Engineering Caioulation Cont Sheet o'creere roar af cr re A~err(<+(rr ceeee rcce gute vb~)~o Pagetiof 1 2h A10.1.AO403, Rev.01 Disp.01A Additional Geometry'actors, rp:-"b I 64 2 4 2 1'p rp fp 1~4--5--4 a a a 2 fp 2+-In-a rp I L17 4 4 2]y fp fp a I--I----I+(I+y)ln-4'a t'p which gives, L11=4481.10'nd Moment Factors, L 17=0.046 M fb:-"-2 DP avg a C9~-.a-rp-L17 C8 2'a'b oh:=-'"'('-0')2b which gives, M rb"13.186 and Qb=42593 Deflection from pressureNending, 4 a'avg a ybq:=Mrb C2+Qb C3-L 11 D, D D which gives, y bq=-1.752 10 Deflection from pressure I shear, 2 a rp fp K:=-0.3 2 In--Iy-~I-2 In-sa'b 2 Km'DP avg a ysq'=which gives, K sa=-0.078 and ysq=-2.09 10 Deflection from pressure/hub stretch, force'ecerch't b.2E which gives.p=334.525 and y stretch=COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV67B page 2 h I 0 Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Cahuiation Cont.Sheet Ottgnator/DateWsem>>qual
~(tt, gg9itrpy Checker/Date pe lr/19/gQ Page 12ot 1 g A10.1.AD403, Rev.01 Disp.ot A Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q=-4.131 10 rp.'=a L 3.'"--.4a 2 2'o a'o+1 ln-'+--1 a rp a 1'L9'=-.a 2 1+v a 1 v rp-ln-+-1-2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, w.'=1 s w C3 rccg r~C3 ybw.=----Lg.-s.L3 whichgives, D Cs b b y bw=-1.465 10 Deflection from seat load I shear, ro ro Ksa.'=-1.2 In-a b I a ysw'sa tG which gives, Ksa=-0.49 ysw=-1.301 10 Deflection from seat load/hub compression, L 2'tt'a 2 y compr'tb E which gives, cpm r 1 023 10 P Total Deflection from unit seat load, yw'bw+ysw+ycompr which gives, y w 2'868'10 which gives, Equilibrium contact load distribution, q y equilibrium
'w yq Load per seat=2 tt a=170.165 yw equilibrium Pressure Locking Force, COMED PL EvaluatlonlNPswp67baa.rncd Valve ID: 2SWP'MOV67B page 3
 
Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Calculation Cont.Sheet Ortgtnatorlnate Qep~~g>4~4lj PbP Checker/Dale XV4 Vlr~l~z Pager 9of l3 At 0.t.AD403.
Rev.01 Disp.ot A F pres lock 2 rt a-(p, cos(8)-sin(0))2 Yq W which gives, F pres lock=" Piston Effect Force, Pan:=0 2/p piston effect''tem
'(bonnet atm which gives, F piston effect=160.368'Reverse Piston Effect'orce, Fen'.=[n s (2 p bonnet np-psronss}]sin(8), I Total Force Re uired o Overcome Pressure Lockin, which gives, Fert=104.517 F total:=F pres lock+'po+F vert-F piston effec which gives, F<<~=2.728478 10 ACTUA TOR CAPABILITYr Actuator Nodel I Size: Motor Torrfue Output;Gear Ratio: Application Factor: Pullout Efficiency:
Reduced Volta ge: Torque Output;Stern Factor: Tlu ust CapBbflityr TQout THcap'.=-Sf TQout:=TQm RV OGR Af Eff=Sl'f8-000-5 TQm'=5 OGR:=57.0 Af'=0.9 Eff:=0.4 RV:=0.8825 TQout=79.906 Sf:=0.014263 THcap=5.602 10 3 ft-lbs ft-Ibs Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOC/C NG METHODOLOGY:
, KEI:>>1.20 Thrust Margin'=THcap-F to~KEI Thrust Margin=2.328 10 lbs


NiagaraMohawkPowerCofgoration NMP2NooiearEngineering Caioulation ContSheeto'creereroarafcrreA~err(<+(rr ceeeerccegutevb~)~oPagetiof12hA10.1.AO403, Rev.01Disp.01AAdditional Geometry'actors, rp:-"bI642421'prpfp1~4--5--4aaa2fp2+-In-arpIL17442]yfpfpaI--I----I+(I+y)ln-4'at'pwhichgives,L11=4481.10'ndMomentFactors,L17=0.046Mfb:-"-2DPavgaC9~-.a-rp-L17C82'a'boh:=-'"'('-0')2bwhichgives,Mrb"13.186andQb=42593Deflection frompressureNending, 4a'avgaybq:=MrbC2+QbC3-L11D,DDwhichgives,ybq=-1.75210Deflection frompressureIshear,2arpfpK:=-0.32In--Iy-~I-2In-sa'b2Km'DPavgaysq'=whichgives,Ksa=-0.078andysq=-2.0910Deflection frompressure/hubstretch,force'ecerch'tb.2Ewhichgives.p=334.525andystretch=COMEDPLEvaluationlNPswp67baa.mcd ValveID:2SWP'MOV67B page2 hI0 NiagaraMohawkPowerCorporation NMP2NuctearEngineering Cahuiation Cont.SheetOttgnator/DateWsem>>qual
== Conclusion:==
~(tt,gg9itrpyChecker/Date pelr/19/gQPage12ot1gA10.1.AD403, Rev.01Disp.otATotalDeflection duetopressure, Additional GeometryFactorsyq'bq+ysq+ystretch whichgives,yq=-4.13110rp.'=aL3.'"--.4a22'oa'o+1ln-'+--1arpa1'L9'=-.a21+va1vrp-ln-+-1-2rp4awhichgives,L3=0andL9=0Deflection fromseatloadIbending,w.'=1swC3rccgr~C3ybw.=----Lg.-s.L3whichgives, DCsbbybw=-1.46510Deflection fromseatloadIshear,roroKsa.'=-1.2In-abIaysw'satGwhichgives,Ksa=-0.49ysw=-1.30110Deflection fromseatload/hubcompression, L2'tt'a2ycompr'tbEwhichgives,cpmr102310PTotalDeflection fromunitseatload,yw'bw+ysw+ycompr whichgives,yw2'868'10whichgives,Equilibrium contactloaddistribution, qyequilibrium
'wyqLoadperseat=2tta=170.165ywequilibrium PressureLockingForce,COMEDPLEvaluatlonlNPswp67baa.rncd ValveID:2SWP'MOV67B page3


NiagaraMohawkPowerCorporation NMP2NuctearEngineering Calculation Cont.SheetOrtgtnatorlnate Qep~~g>4~4ljPbPChecker/Dale XV4Vlr~l~zPager9ofl3At0.t.AD403.
Open Thrust Margin ls posftivep therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated.
Rev.01Disp.otAFpreslock2rta-(p,cos(8)-sin(0))2YqWwhichgives,Fpreslock="PistonEffectForce,Pan:=02/ppistoneffect''tem
COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV67B page 4 I 0 N 0}}
'(bonnetatmwhichgives,Fpistoneffect=160.368'ReversePistonEffect'orce, Fen'.=[ns(2pbonnetnp-psronss}]
sin(8),ITotalForceReuiredoOvercomePressureLockin,whichgives,Fert=104.517Ftotal:=Fpreslock+'po+Fvert-Fpistoneffecwhichgives,F<<~=2.728478 10ACTUATORCAPABILITYr ActuatorNodelISize:MotorTorrfueOutput;GearRatio:Application Factor:PulloutEfficiency:
ReducedVoltage:TorqueOutput;SternFactor:TluustCapBbflityr TQoutTHcap'.=-
SfTQout:=TQmRVOGRAfEff=Sl'f8-000-5 TQm'=5OGR:=57.0 Af'=0.9Eff:=0.4RV:=0.8825TQout=79.906Sf:=0.014263THcap=5.602103ft-lbsft-IbsIbsNOTE:RVISSQUAREIFACTUATORISAC.ENHANCEDPRESSURELOC/CNGMETHODOLOGY:
,KEI:>>1.20ThrustMargin'=THcap-Fto~KEIThrustMargin=2.32810lbsConclusion:
OpenThrustMarginlsposftivep therefore thisvalveandactuatorarelikelytoovercomethetheoretical pressurelockingconditions evaluated.
COMEDPLEvaluationlNPswp67baa.mcd ValveID:2SWP'MOV67B page4 I0N0}}

Revision as of 02:13, 6 July 2018

Rev 1 to A10.1-AD-003, Pressure Locking Evaluation of Movs.
ML18040A362
Person / Time
Site: Nine Mile Point Constellation icon.png
Issue date: 10/21/1997
From: CRUZ D A
NIAGARA MOHAWK POWER CORP.
To:
Shared Package
ML17059C644 List:
References
A10.1-AD-003, A10.1-AD-003-R01, A10.1-AD-3, A10.1-AD-3-R1, NUDOCS 9904300086
Download: ML18040A362 (305)


Text

{{#Wiki_filter:(Enclosure 1 consists of Calculation No.A10.1-AD-003, titled"Pressure Locking Evaluation of MOVs." Enclosure 1 has 137 pages, which are numbered from 1 to E4) 0 GARA U MOHAWK NUCLEAR ENGINEERING ~CA'LC.UL'AT:.lON.',C,OV;ER'SHEET".,"" Page 1 (Next Z)Tetai/s7 Last C'4 NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Discipline: MECHANICAL Title PRESSURE LOCKING EVALUATION OF MOV'S Calculation No.A10.1-AD-003 (Sub)system(s) VARIOUS Building Floor Elev.Index No.NA NA NA Originator(s) DOMINGO A CRUZ~.A e l (K Checker(s) I Approver(s) ldll/Cg IC.Ze tee Rev Descri tion Design Prep'd'han e No.B Date Chk Date A Date 01 COMPLETE REVISION TO NA INCORPORATE DISP.00A AND TO USE MOST CURRENT INDUSTRY INF.DAc a 8-25-yg Computer Output/Microfilm Filed Separately (Yes/No/NA): NO'.: Safety Class (SR/NSR I Qxx): SR Superseded Document(s): A10.1-AD@03, REV.00,.~+c</I/e(9', e DOCument CrOSS ReferenCe(S) -FOr additianal referenCeS See page(S):46NE 'b<C.O)titsrS%tg.~&eg4bO 4-GRef SEE SECTION 4.0 Document No.Doc T e Index Sheet Rev General Reference(s): NONE Remarks: NONE Confirmation Required (Yes/No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO/VOI): APP (Cele I Hold): Gale Required (Yes I No): No Evaluation Number(s)I Revision: NA Copy of Applicability Review Attached (Yes/N/R)7NR Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7 Component ID(s)(As shown ln MEL): 2CSH'MOV101,2CSL'MOV107,2ICS MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,1 8A,B,21 A,B,66A,B,67A,B,94A,B 'gl'gl04300086 9'gI042i PDR ADQCK 050004i0 P PDR FORMAT¹NEP-DES-08, Rev.02 (F01) GARR::::!e': '-'!:.::: '-': ':: ': '::.:-f-:.::" Page 1 (Next P l CALCULATION COVER SHEET Total I a 7 NUOLEAR ENGINEERING NINE MILE POINT NUCLEAR STATION Unit (1, 2 or 0=Both): 2 Disci pline: MECHANICAL Title PRESSURE LOCKING EVALUATION OF MOV'S Calculation No.A10.1-AD-003 (Sub)system(s) VARIOUS Building NA Floor Elev.Index No.NA NA Originator(s) DOMINGO A.CRUZ Checker(s) /Approver(s) @~i~r~S.Z~~,~A ('(~Rev Descri tion Design Prep'd Chan e No.B Date Chk Date A Date 01 COMPLETE REVISION TO NA INCORPORATE DISP.00A AND TO USE MOST CURRENT INDUSTRY INF.Dhce tll-25-yg Computer Output/Microfilm Filed Separately (Yes/No/NA): NO.Safety Class (SR I NSR I Qxx): SR Superseded Document(s): A10.1&D403, REV.00,.ts+~I//6/pg Document Cross Reference(s) -For additional references see page(s):4QNE ><Ca lild'rS%8,<G acket>"r i.+Ref SEE SECTION 4.0 Document No.Doc T Index Sheet Rev General Reference(s): NONE Remarks: NONE Confirmation Required (Yes/No): No Final Issue Status File Location Operations Acceptance See Page(s): NA (APP I FIO I VOI): APP (Cele/Hold): Cele Required (Yes/No): No Evaluation Number(s)I Revision: NA Copy of Applicability Review Attached (Yes I N/R)?NR Key Words: PRESS LOCKING, GL89-10, MOV THRUST, SR, MECH, NMP2, GL95%7 Component ID(s)(As shown in MEL): 2CSH'MOV101,2CSL'MOV107,2ICS'MOV121,122,128,129,2RHS'MOV 115,116,4A,B,C,2SWP'MOV17A,B,18A,841 A,B,66A,B,67A,B,94A,B FORMAT¹NEP-DES48, Rev.02 (FOI)

N%NIAGARA U MOHAWK NUCLEAR ENGINEERING CAL'CULATION'CONTINUATION SHEET v Page<@ext ra Nine Mile Point Nuclear Station Originator/Date 3c rn ow A.C,~//8/Ls'/rg ef.Unit: 2 Checker/Date ~JP.JH7 A10.1-AD-003 Disposition: NA Revision 01 1.0 PURPOSE: The purpose of this evaluation is to assess the capability of various motor operated valves to open against potential pressure locking conditions as described in NUREG 1275, Operating Feedback Report-Pressure Locking and Thermal Binding of Gate Valves, and to address GL89-10, Supplement 6 and GL95-07.The following valves have been identified as potentially susceptible to pressure locking per NER-2M-007, Rev.1,"Pressure Locking I Thermal Binding of Safety Related Power Operated Valves".This evaluation uses the current design basis to determine the acceptability of these valves.2.0 SCOPE: High Pressure Core Spray System-2CSH'MOV101 Low Pressure Core Spray System-2CSL MOV107 Reactor Core Isolation Cooling System-2ICS'MOV121, 2ICS" MOV1 22, 2ICS*MOV1 28 and 2ICS'MOV129 Residual Heat Removal System-2RHS'MOV115, 2RHS'MOV116, 2RHS*MOV4A, 2RHS*MOV4B and 2RHS'MOV4C Service Water System-2SWP*MOV17A, 2SWP'MOV17B, 2SWP'MOV1 8A, 2SWP'MOV18B, 2SWP"MOV21A, 2SWP'MOV21B, 2SWP'MOV66A, 2SWP'MOV66B, 2SWP*MOV67A. 2SWP'MOV67B, 2SWP'MOV94A and 2SWP MOV94B I 3.0 METHODOLOGY: For each of the valve groups, the most limiting pressure locking j conditions will be identified. Utilizing the formulas derived from the Commonwealth Edison ,'ethod, the required thrust to open the valve subject to pressure locking is determined (Ref.'), and adjusted with the Kalsi Engineering Enhanced Pressure Locking Methodology (Ref.31).

4.0 REFERENCES

I NOTES: 1.NMPC Telecon with Anchor Darling, dated 8l22l95, (Attachment A)'.MPR-1691,"Nine Mile Point Unit 2 Gate Valve Pressure Locking Due to Bonnet Heatup", dated November 1995 3.Limitorque Manual, NMPC File No.N2L20000VALVE003, Rev.0., and EPRI Application Guide to MOVs, Doc.No.NP-6660-D, Section 3.3.3.FORMAT¹NEP-DES-08, Rev.01 (F02)

N V NIAGARA 4 MOHAWK NUCLEAR ENGINEERING CALCULATION CONTINUATION SHEET Nine Mile Point Nuclear Stat/on Originator/Date ,,.4,.C.n~letzshg ef.Unit: 2 Checker/Date ~/o-/H7 A10.1-AD-003 Disposition: NA Rension 01 4.Velan Report DM-0050, page A4, (Attachment 8)5.NUREG I CP-0152, page 3C-9 through 3C-34,"Commonwealth Edison Company Pressure ,Locking Test Report", (Attachment C)6.NUREG I CR-5807, page 5 through 11,"Improvement in Motor Operated Gate Valve Design and Prediction Models for Nuclear Power Plant Systems" (Attachment D)7.For 2CSH'MOV101 DBR-CSH-MOV101, Rev.1, and MOV sizing calculation No.A10.1-G-048, Rev.0 8.For 2CSL MOV107 DBR-CSL-MOV107, Rev.1, and MOV sizing calculation No.A10.1-F-032, Rev.0 9.For 2ICS MOV121 DBR-ICS-MOV121, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 10.For 2ICS MOV122 DBR-ICS-MOV122, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 11.For 2ICS'MOV128 DBR-ICS-MOV128, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 12.For 2ICS'MOV129 DBR-ICS-MOV129, Rev.2, and MOV sizing calculation No.A10.1-H-059, Rev.0 13.For 2RHS*MOV4A DBR-RHS-MOV4A, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 14.For RHS'MOV48 DBR-RHS-MOV48, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 15.For 2RHS MOV4C FORMAT¹NEP-DES-OS, Rev.01 (F02)

Y NIAGARA 0 MOHAWK NUCLEAR ENG1NEERING CAL'CULATION CONTINUATION SHEET Page 4 (Next~S Nine Mile Point Nuclear Station Unit: 2 Originator/Date Checker/Date Qv m'en<.c A,.C-aux/8/Zt A7/0./4'~ef.A10.1-AD-003 Disposition: NA Revision 01DBR-RHS-MOV4C, Rev.1, and MOY sizing calculation No.A10,1-E-139, Rev.0 16.For 2RHS" MOV115 DBR-RHS-MOV115, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 17.For 2RHS" MOV116 DBR-RHS-MOV116, Rev.1, and MOV sizing calculation No.A10.1-E-139, Rev.0 18.For 2SWP*MOV17A DBR-SWP-MOV17A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev, 0 19.For 2SWP'MOV17A DBR-SWP-MOV17A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 20.For 2SWP"MOV18A DBR-SWP-MOV18A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 21.For 2SWP'MOV18B DBR-SWP-MOV18B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 22.For 2SWP'MOV21A DBR-SWP-MOV21A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 23.For 2SWP'MOV21B t e DBR-SWP-MOV21B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 24.For 2SWP'MOV66A DBR-SWP-MOV66A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 25.For 2SWP'MOV66B DBR-SWP-MOV66B, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 FORMAT¹NEP-DES-08, Rev.01 (F02)

N V NAGARA U MOHAWK NUCLEAR ENGINEERING CALCULATION CONTINUATION SHEET Page (Next~ee Nine Mile Point Nuclear Station Originator/Date Checker/Da DC')e)>'l)e, i>I~C.Recta/8/2C/5'7 ef.26.For SWP*MOV67A Unit: 2 y-/rt/-f7 A10.1-AD-003 Disposition: NA Revision 01 DBR-SWP-MOV67A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 2?.For 2SWP'MOV678 DBR-SWP-MOV678, Rev.1, and MOV sizing calculation No.A10.1-NQ08, Rev.0 28.For 2SWP'MOV94A DBR-SWP-MOV94A, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 29.For 2SWP'MOV948 DBR-SWP-MOV948, Rev.1, and MOV sizing calculation No.A10.1-N408, Rev.0 30.Roark's Formulas for Stress and Strain, Sixth Edition 1989, pages 398,399,404,405,408.409 444 and 445, (Attachment E)31.ENHANCED PRESSURE LOCKING METHODOLOGY, Kalsi Engineering, inc.(1997)5.0 CALCULATION RESULTS: As documented as the bottom of the last page for each valve evaluated, the thrust margin is either positive or negative.A positive thrust margin indicates that the valve and actuator is likely to overcome applicable theoretical pressure locking phenomena. A negative thrust margin indicates that the valve and actuator may not be able to overcome the applicable theoretical locking phenomena. Of the valves evaluated, valves 2CSH'MOV101, 2CSL MOV107, 2ICS'MOV121, 2ICS MOV129, 2RHS'MOV115, 2RHS MOV116, 2RHS'MOV4A, 2RHS'MOV48) 2RHS x MOV4C)2SWP'MOV21A, 2SWP'MOV218, 2SWP*MOV66A, 2SWP'MOV668, 2SWP'MOV678 and 2SWP'MOV948 yielded a negative thrust margin.However, an evaluation of plant configuration, normal and accident, and system function for each of the valves analytically susceptible to pressure locking indicates no operability concerns and the valves will operate under postulated accident scenarious. A detail evaluation of the results of this calculation for the valves identified as susceptible to pressure locking phenomena is included in NER-2M07, Rev.02.CHECKERS NOTE: This calculation was hand checked, therefore the MATHCAD commonly used commercial program does not required validation for this application. FORMAT¹NEP-DES-08, Rev.01 (F02)

Niagara Mohawk Power Corporation Nuctear Engineering Origina torl Date~a.C w~/,s/y>o harms y NMP 2 Calculation Cont.Sheet Checker/Date Page Qt/37 A10.1-AtM03, Rev.01 Valve ID no: 2CSH'MOV101 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COINED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=2 hub length, L:=0.094 r mean seat radius, a:=6.125 average disk thickness, t:=1.66 seat angle, a:=6 e:=-'" e=o.o52 2 180 e is half disk anglect Valve Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>.=55 Valve Bonnet pressure (psig), Pboggct 2477 Downstream pressure (psig), Pdo~'ryP.4 II Valve Stem Diameter, D~.--LS Static Unseating Thrust, F~'.=4385 (reference: Test¹8, 4/18/96)Valve Factor VF:=0.5 (reference: NER-2M410)CALCULATIONS: Coefficient of friction between disk and seat, It'.=cope)-'-a~(e)It=0.513 (reference¹6)gives,'P avg 2 45'10 P~+Pdo~AverageDPAcrossDisk, DPavg Pbo~<-2 Disk StNnes Constants, D:=and G:=Et E 12 1-v 2 (1+v)which gives, D 1.232 10 Geometry Factors, C 2'.=-1-1 4 and G=1.131~10 I+2 ln-C3'=--+I In-+--1 1 b C8.'=-1+v+(1-v)2 a b 1+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.164 C 8 0'68 C 3=0.028 C 9=0.289 COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV1 01 page 1 I Niagara Mohawk Power Corporation Nuciear Engineering Onginatorloate o~~)~4-<~~~tnhq NMP 2 Calculation Cont.Sheet Checker/Date Page fo(t S t A1 0.1-AD403, Rev.01 Additional Geometry Factors,.fp'=b I 64 2 4 2 2 fp fp fp fp I+4--5--4-2+-~In-a a a a rp I L17.=-4 4 2 I-U 0 0 a I--I----~I+(I+Y)In-4 a a fp , which gives, L I I=0.006 and L17~0/141 Moment Factors, M fb'=2 DPavg'a C9/2 2'0)C8 2ab ob:='"'(*-0*)2b which gives, Mfb=-3.389 10 and Q b~2.052'10 Deflection from pressure/bending, a a avga 3 4 y bq:=M fb'2+Q b-C 3-L 11 D D D which gives, yb~i).008 q Deflection from pressure I shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 in-b a b 2 m'DP avg a ysq'=which gives, K sa&.404 and y~%.002 Deflection from pressure I hub stretch, ofee'=tt (a-b)DP avg-P fotee L y stretch'tb 2E which gives, P fo~=2.579.10 and y~=-3.281~10 COMED PL Evaluation PCS H101A.MCD Valve ID: 2CSH'MOV1 01 page 2 I0 Niagara Mohawk Power Corporation Nuorear Engineering Onginatorloate ~~a+>k~C C4>4<(tet l~r)NMP 2 Celcutation Cont.Sheet Checkerloate Q Io I-r<Page~of (3 I A1 0.1-AD403, Rev.01 Total Deflection due to pressure, yq:=ybq+ysq+yg t h Additional Geometry Factors which gives, r0'.=a yq=<.OI ro L3'.=-4.a 2 2 ro a ro+I In-+--I a ro a ro L9,=-a 2 I+v a I-v ro-In-+-1-2 ro 4 a which gives, L3~0 and L9=0 P Deflection from seat load/bending, w:=I C2 ro C9 ro C3 y bw'.=L9--+L3 which gives, O CS b b ybw 2317 10 6 Deflection from seat load I shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, Ksa-1.343 tG y~~-4.383 10 Deflection from seat load I hub compression,-2 tta y'ompr'tb L 2 which gives, ycom r Total Deflection from unit seat load, y w:=ybw+ysw+ycompr which gives, y w 2'76 10~hi~h gi~es, wequilibn~ 3.517 10'quilibrium contact load distribution, yq w equilibrium '=yw Load per seat=2.tt a-=1.354 I0 yq yw Pressure Locking Force, COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV101 page 3

Niagara Mohatttrk Power orporatton Nuciear Engineering NMP 2 Catctglation Cont.Sheet Checker/Date gag///-(0<Page 1 o(/37 A10.1-AD403, Rev.01 Yq Fpres lock:=2m a-'PM<e)-sm(e))2 which glvm.Fpres lock=1245'los Jw Piston Effect Force, P an',=0 piston streettem '[bonnet ann)which gives, F;1ff t=4.377'10"Reverse Piston Effect" Force, F vert.'=(t a 2 P bonnet up down'sin(0)which gives, F~=3.022 10 Total Force R ulred to Overcome Pressure Lockln"total'res lock+"po+vert piston effect F to~1'546805 ACTUATOR CAPABILITY: Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficienc: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout:=TQm RV.OGR.Af Eff TQout THcap:=-Sf=SMB-00-10 TQm:=9.3 OGR:=72 Af:=0.9 Eff:=0.4 RV:=1.0 TQout~241.056 Sf:=0.018919 THcap=1.274 10 tt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:=1.20 a Thrust Margin:=THeap-(p tomt KEI)Thrust Margin~-1.729'10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PCSH101A.MCD Valve ID: 2CSH'MOV1 01 page 4

Niagara Mohawk Power Corporation Nucteer Engineering Originator/Date w e~~/i~bp NMP 2 Calcutation Cont Sheet Checker/Date ~>-i17 Page/OH/+7 A1 0.1-AD403, R et/.01 Valve ID no: 2CSL'MOV107 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=500 Valve Bonnet pressure(psig), Pboggat=8931 Downstream pressure (psig)P dp~'alve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.879 average disk thickness, t:=0.626 seat angle, a:=lo e:=--e=0.087 a tt 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: e is half disk anglea Valve Stem Diameter, D<~.'=1.375 Static Unseating Thr'ust, Fpo 3399 (reference: Test¹4, 6/3/96)(reference: NER-2M410)CALCULATIONS: Coefficient of friction between disk and seat, It:=~ge)-'-sa(e)It=0.521 (reference¹6)gives DP avg 8 681 1(P G:=E 2 (I+v)which gives, D=6.605 10 and G=1.131~10 Pup+Pdo~Average DP Across Disk, DP avg:=P bomct-2 Disk Stittnas Constants, D:=and Et l2 t-v 2 I b a.b b a b Geometry Factors, C2.=-I--I+2 In-C3'.=--+I In-+--I 4 a b 4a a b a I b 2 b I+v a I-v b 2 C8.'=-I+v+(I-v)-C 9.---ln-+-I--2 a a 2 b 4 a which gives, C 2 0.049 C 8=0.805 C 3 0.005 C 9=0.241 COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 page 1

Niagara Mohawk Power CorPorat/on Nuclear Engineering Originate rloate Qcwr~g 4@Ace C Jr P/$7 NMP 2 Calculation Cont.Sheet Checker/Date ~~-i-17 Page/r of/p7 A10.1-AD403, Rw.01 Additional Geometry Factors, rp.'=b I 64 2 4 rp rp I+4--5--4 a a 2 rp 2 rp a 2+-In-a rp I L17 4 I-v I--I-4 4 rp rp a a 2~I+(I+v)ln-rp which gives, Moment Factors, L I I=4.463 10 and L i7=0.046 Mrb'=-2 DP avg a C8 C9 a-rp-L17 2ab'"'(*-0')2b which gives, Mrb-2.113 10 and Q b 6.834-10 Deflection from pressure/bending, 4 a a avg y b'.=M rb.-C 2+Q b-C 3-L 11 D D D which gh/es, yb~-2.798'10 q Defiectlon from pressure I shear, 2 a rp rp K:=-0.3 2 in--I+-~I-21n-b a b 2 sa avg a t.G which gives, K sa=%.077 and y=-3.348'10 sq Def let%ion from pressure I hub stretch, Pf lt (a b)DP g-P force L ystretch-ttb 2E which gives, P f0~0=5.368.10-and y~~-4.649 10 COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 4 page 2 0 Niagara MotunNk Power Corporation Nuclear Engineering Originator/Date Qo~p~A.C~P r/ralph NMP 2 Calculation Cont.Sheet Checker/Date A~~-<7 Page/2d/ST A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors y q y bq+y sq+y stretch which gives, y q=<.611~10 r:=a ro L3=-.4-a 2 2 ro a ro+I ln-+--I a ro a ro L9.--a 2 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3 0 and L9~0 Deflection from seat load I bending, w:=I II C2 roC9 roC3 ybw.-L9--.+L3 which gives, O CS b b'bw=-1.458 10 Deflection from seat load I shear, Ksa'=-1.2-In-a b a y~!=Ksa-tG which gives, Ksa<.489 y sw=-1.298'10 Deflection from seat load I hub compression,'2'll'a y compr"'=ttb L h which gives, y compr 1023 10 E Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, yw-2.85810 which gives, w equilibrium ~Load per seat=2 tt a-2.731~10 yq~4 yw Equilibrium contact load distribution, yq w equilibrium 'Pressure Locking Force, COMED PL Evaluation PCSL1 07A.MCD Valve ID: 2CSL MOV107 page 3 8 4 l Niagara Mohawk Power Corporation Nigciesr Enpineeriny Onpinstor/Date 4 C esc>//tike!r gr NMP 2 Calculation Cont.Sheet Checker/Date /)./i)/4 Pat/e/>of r 3bT A10.1-ADO03, Rev.01 F p]k 2 n a-(it cos(e)-sin(0))2'Yq W which g/vesa F Piston Effect Force, P a~."=0 2 piston street'stem'(bonnet atm)which ganesa Fp,ston cffcct=1326'10"Reverse Piston Effect" Force, 2 vmt[s'e'('onnet up deum)j'smigi Total Force Re uired to Overcome Pressure Lockin which gives, F v~=1.678'10 F total l=F pres lock+F po+F'vert-F'piston cffcct which gives F total 3 049697 10 ACTUATOR CAPABILITY: Actuator Motor/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output Stem Factor: Thrust Capability: TQout:=TQI RV OGR Af Eff TQout THcap:=-Sf=SMB-00S-15 TQm:=14.18 OGR:=23 Af:=0.9 Eff.s=0.45 RV:=0.8848 TQout=103.407 Sf':=0.017861'IHcap 5.79 10 ft-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Margin:=THoap-'(pmmt KEI)e Thrust Margin-3.081~10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PCSL107A.MCD Valve ID: 2CSL'MOV107 page 4

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date 6/itlF7 NMP 2 Calculation Cont.Sheet Checker/Date W v-i~7 Page/Q/I'3 7 A10.1-AtM03, Rev.01 Valve IDno: 2ICS MOV121 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPlJTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>..=1200 Valve Bonnet pressure (psig), P bonnet 1200 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=3.063 hub length, L:=0.188 mean seat radius, a.'=4.45 average disk thickness, t:=1.012 a rt seat angle, u.=10 6:=--0 0.087 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: e ishalfdiskangle a Valve Stem Diameter, D<.=2.5 Valve Factor VF:=0.6 Static Unseating Thrust, F>>.=27694 (raference: Test¹7, 1/9/96)(reference: NER-2M-010) CALCULATIONS: Coefficient of fnction between disk and seat, lt:=~ge)-sin(e)It=0.631 (reference ¹6)Average DP Across Disk, Disk Stitfnes Constants, up~down avg'onnet 2 glvesr DP avg 600 D:=and G:=Et E 12(i-')2 (1+v)which gives, D=2.79 10 and G=1.131~10 GeometryFactors, C2'.=-I--I+2 1n-C3.'=--+I In-+--I I b a.b b a b 4 a b 4a a b a I b C8.'=-I+v+(I-v)-2 a 2 b I+v a I-v b C 9.---In-+-I-a 2 b 4 a which gives, C 2 0.043 C 8 0.816 C 3=0.004 C 9=0.23 COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS MOV121 page 1 n Niagara Mohawk Power Corgoration Nuclear Engin<<ring Originator/Date Wa~4.C~~~/rPl~NMP 2 Catcutation Cont.Sh<<t Checker/Date czf85>-i r7 Pager+o//P7 A10.1-AD403, Rev.01 Add/t/onal Geometry'actors, rp=b I 64 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-ln-a rp 4 2 I I-v 0 fp a L17.=-I--I----I+(I+v)In-4 4 a a rp which gives, Moment Factors, L I I~3.398 10 and L17=0.04 M rb.'=-2 DP avg a C8 9 a-rp-L17 2ab DP avg Qb.'=(a-ro j 2b which gives, M rb-698.979 and Q b 1.021'10 Deflection from pressurelbend/ng, 4 a a avg a yb.'=M*-C2+Qb-C3-LII D D D which gives, yb-1.078 10 q Deflection fmm pressure/sheer, 2 a rp rp K sa.'=-0.3 2 In--I+-~I-2 In-b a b 2 sa'vg a ysq which gives, K sa~%.066 end y~=W.877'10 Deflecflon from pressure/hub stretch, force'=tt (a-b)DP avg P fofoo'L ystretch-ttb 2E which gives, P f 1.964-10 end y~t,>-2.131~10 COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS'MOV121 page 2 f Niagara Mohawk Power CorPoratlon Nuclear Engineertng originator/Date Qc~r~rg.Q~p NMP 2 Calculation Cont.Sheet Checker/Date ~~-i-e7 Page Aaf/3P A1 0.1-AD403, Rev.01 Total Deflection due to pressure, y q'bq+-" sq+y stretch Additional Geometry Factors which gives, ro,'=a y=-1.787 10 q ro L3.'=-.4a 2 2 ro a ro+1 ln-+--1 a ro a ro L9--.a III 2 lyv a 1-v ro-ln-+-1-2 ro 4 a which gives, L3 0 and L9 0 Deflection from seat load/bending, w:=1 a3.w C 2 ro.C 9 roC3'bw'9--+L3 which g/ves, D C8 b b ybw~-3.67 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b a y sw i=Ksa-tG which gives, Ksa-0.448 y~~-1.743'10 Deflection from seat load/hub compression,-2 tta y compr'=ttb L 2 which gives, y=-3.033 10 Total Deflection from unit seat load, yw:=ybw+ysw+ ycompr which gives, y-5.443 10 which gives, weq~brium 328415 Equilibrium contact load distribution, yq equilibrium 'w Load per seat=2 tt a-9.183 1(P yq yw Pressure Locking Force, COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS'MOV121 page 3

Niagara Mohawk Povtter Corporation N uctear Engineering Originator/Date @capri@A~C.~/tr/Z5ly7 NMP 2 Catculation Cont.Sheet Checker/Date IO.W P Pager 7of/P7 A10.1-AD403. Rev.01 Yq Fp~lock'tt'a-(Itcos(8)- sin(0))2 whichgives, Fpr s lock 9938 10~'w Piston EN'ect Force, P au:=0 piston street'stem'(bonnet, stm)F 1st"Reverse Piston Effect" Force, F crt.=rt a 2pbonnct up down Total Force Re uired to Overcome Pressure Lockin wh/ch g/ves F ycrt 6 506 I 0 F<<taI:=F pres lock+F po+F ycrt-F piston affec which gives,.F<<~=3.824814 10 ACTUATOR CAPABILITY: Actuator Model I Sizer Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor: Thrust Capability: TQout THcap:=-SE TQout:=TQm RV OGR Af Eff=SB-2-60 TQm:=51.63 OGR:=101.52 Af:=0.9 EK:=0.35 RV:=0.8627 TQout~1.229'10 Sf:=0.029481 THcap~4.168 10 ft-Ibs ft-Ibs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:=1.20 Tbtnst Mssipn:=THeep-(F tomt KEI)Thrust Margin~-4.216 10 Ibs

Conclusion:

Open, Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PICS121A.MCD Valve ID: 2ICS MOV121 page 4

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Durga A~C49 t)pljrr NMP 2 Calculation Cont.Sheet Checker/Date Page/got/'37 A10.1-AD403, Rev.01 Valve ID no: 2ICS MOV122 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=160 Valve Bonnet pressure (psig), P bonnet,.=160 Downstream pressure (psig), P d.=0 Valve Disk Geometry: e ishalfdiskangle a hub radius, b:=4.94 mean seat radius, a=5.75 average disk thickness, t:=0.789 a tt seat angle, a:=7 e:=--e=o.o61 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D~.=2 Valve Factor VF:=0.5 Static Unseating Thrust F po 9730 (reference: Test¹30, 10/27/93)(reference: NER-2M-010) CALCULATIONS: Coefficient of friction between disk and seat, it:=~ge)-'-~(e)lt=0.515 (referece¹6)Average DP Across Disk, Disk Stiffnes Constants, up+down DP avg'bonnet 2 gives, DP avg, 80 3 Et and G.E 12 1-v 2 (1+v)which gives, D=1.322 10 and G=1.131~10 Geometry Factors, C 2.'=-1--1+2 ln-C 3'.=--+1 ln-+-.-1 1 b 2 C8.=-1++2 a C 9.---ln-+-1--which gives, C 2 0.009 C 8=0.908 C 3=4.316'10 C 9=0.124 COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS MOV122 page 1 0 h Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date +~~~Ai O~y 4/jpl+T NMP 2 Calculation Cont.Sheet Checker/Date 7-1+7 Page/f ol~T A10.1-AD403, RW.01 Additional Geometry Factors, rp.=b I 64 hh 2 4 2 0 0 0 I+4--5--4 a a a rp a 2 1--In-a rp I L17 4 4 2 I-U'0 a I--I----I+(I+Y)In-"4 a a rp which gives, Moment Factors, L I I=1.545 10 and L 17 0.009 Mrb'=-2 DP avg a C8 C9 a-rp-L17 2ab'(0)2b'hich gives, Mrb-28.505 and Q b=70.113 Deflection from pressurelbending, 4 a a avg yb'=Mrb-C2+Qb'C3-LII D D D h which gives, yb~3398'10 q Deflect/on from pressure l shear, 2 a rp rp K~:=-0.3 2'In--I+-~I-2 In-b a b 2 m'vg a tG" which gives, Ksa~%.013 and ysq 3 715 10 hh Deflection from pressure//hub stretch, orce'=tt (a-b)DP avg-P force.L y stretch ttb.2E which gives, P force 2 176 l(P andy stretch 6 034 10 COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS'MOV122 page 2

Niagara Mohawk Power Corporation Nuotear Engineering Originatorloate 'Dao r~po JP r~M i</r 5~f 7 NMP 2 CatoLrlation Cont.Sheet ChN'kar/Ost Iggp Page~i>~A10.1-AD403, Rw.01 Total Deflection due to pressure, y q'bq+y sq+y stretch which gives, y=-7.174 10 Addilional Geometry Factors ro.'=a ro L3.=-.4a 2 2 ro a ro+I ln-+--I a ro a ro L9.'=-a 2 I+v a I-v ro-In-+-I--2 ro 4 a which gives, L3=0 and L9=0 P Deflection from seat load/bending, w'-]C2 rpC9 foC3 ybw'~L9--+L3 D C8 b b which gives, y bw=-1.43~o Deflection from seat load/shear, Ksa:=-1.2-ln-a b y:=Ksa-which gives, Ksa.182 tG y~-1.174'10 Deflection from seat load/hub compression,-2'1t a y compr ttb L 2 which gives, y~mpr=-I 002'10 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, yw 2621 10 which gives, Equilibrium contact load distribution, yq w equilibrium 'Load per seat=2 tt a-988.835 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PICS122A.MCD Valve ID: 2ICS'MOV122 page 3

Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date WC ms>c/A~~/g//25'lf 7 NMP 2 Catculation Cont.Sheet Checker/Date Pagegl ot i>7 A10.1-AO403. Rev.01 Vq F pres Iock 2+a (p cos(e)-sin(e))2 which gives, F pres lock=895.433 Yw 1'iston Effect Force, P au:=0 2 F pistcn street'D stem'(P hcnnet-Penn}which give, pistcn efreet=502655"Reverse Piston Effect" Force, F vert.'=n a 2 P bonnet up down-sin(e)which gives.Total Force Re uired to Overcome Pressure Lockin F~1.015'10 F total:=F pres lock+Fpo+F vert-F piston effect which gives, F><=1.113735 10 TQout THcap:=-Sf ACTUATOR CAPA8ILITYt Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor: Thrust Capability: =SMB-0-25 TQm:=25.0 OGR:=43.69 Af:=0.9 Eff:=0.4 RV:=0.806 TQout=316.927 Sf:=0.019627 THcap Is615 10 ft-lbs ft-Ibs Ibs ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Mtutpn:=THcsp-(Fmmi KHI}Thrust Margin~2.783~10 Ibs

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PICS122A.MCD Valve lD: 2lCS MOV122 page 4

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date ~,~, A'.~c./,];ZPP NMP 2 Calculation Cont.Sheet Checker/Date +"r-i+7 PagegZof/3 ~Ato.t-AD403. Rev.01 Valve ID no: 2ICS MOV128 Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure(psig), Pp.=1200 Valve Bonnet pressure(psig),Pbonnet '=1200 Downstream pressure (psig), P do.=0 Valve Disk Geometry: hub radius, b:=3.063 hub length, L:=0.188 r mean seatradius, a:=4.45 average disk thickness, t:=1.012 a ft seat angle, a:=10 0:=--8 0.087 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Other Valve Parameters: Poisson's Ratio, v:=0.3 8 ishalfdiskangle u Valve Stem Diameter, D~.=2.5 Valve Factor VF:=0.6 Static Unseating Thrust, F po 17995 (reference: Test¹10, 5f4N5)(reference: NER-2M-010) CALCULATIONS: Coefficient of fnct/on between disk and seat, It:=cue)-sin(6)It=0.631 (reference ¹6)Average DP Across Disk, Disk Sfiffnes Constants, up+down DP avg.'=P bonnet 2 gives, DP avg 600 D:=and G:=Et El2(1-')2 (1+v)which gives, D=2.79 10 and G=1.131~10 I b a.b b a b Geometry Factors, C2'.=-I--I+2 In-C3'.=--+I In-+--I 4 a b 4a, a b a I b C8:=-I++2 b I+v a I-v b 2 C 9'=--In-+-I-a 2 b 4 a which gives, C 2 0.043 C8 08'6 C 3~0.004 C 9~0.23 COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS MOV128 page 1

Niagara Mohawk Power Corporation Nuclear Engineering Origina!or/Date 2 c/is Jap NMP 2 Calculation Cont.Sheet Checkor/Da! e p-j-f7 Page Zgofi S 7'10.1-AD403, Rev.01 Addit/onal Geomet/y Factors, rp'.=b 2 4 2 2 fp fp fp fp L 11'=-I+4--5--4.-~2+-ln-64 a a a a rp I L17.'=-4 4 2 I-Y 0 0 a I--I----I+(I+Y)ln-4 a a rp which gives, L I I=3.398 10 and Moment Factors, L17~0.04~Mrb'DPavga C9 (2'pj 1(C8 2ab~b:=.'"'(*-0*)2b which gives, M rb-<98.979 and Q b I 021 Ip k Deflection from pressure(bending, a a avg a 3 4 yb'=M*-C2+Qb'C3-LII o o o which gives, yb=-1.078-10 q Deflection from pressure I shear, 2 a rp r'p K~:=-0.3 21n--I+-~I-21n-b a b 2 K m'DP avg a t.G which gives, K sa%.066 and III y~%.877 10 sq Deflection from pressure l hub stretch, P fpfee't (a b)DP avg P fpfce'L y stretch'=ttb 2E which gives, P fp~=1.964 10 and y~h=-2.131 10 COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS'MOV128 page 2

Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date uo~r~~<-d~p c/~Vpp NMP 2 Calculation Cont.Sheet Checker/Date A10,1.AD403, Rev.01 Total Deflection due to pressure, yq: ybq~ysq+y~~h which gives, y=-1.787 10 Additional Geometry Factors ro.'=a ro L3,--4a 2 2 ro a ro+I In-+--I a ro a ro L9-'=-a 21 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3=0 and'L9 0 Deflection from seat load/bending, w:=I a3.w C2 ro C9 ro.c3 ybw'9--+L3 D C8 bb which gives, y bw=-3.67 10 Deflection from seat load!shear, ro ro Ksa:=-1.2-In-a b y~.'=Ksa-which gives, Ksa W.448 tG y~~-,1.743 10 Deflection from seat load/hub compression,-2'tt'a y compr'tb L 2 which gives, y compr 3'033 10 Total Deflection from unit seat load, y w:=y bw+y~+y compr which gives, y w=-5.443 10 which givest w cqtulibzum 328.415 Equilibrium contact load distnbut/on, yq w equiIibrium yw Load per seat=2 tt a-=9.183~10 yq yw Pressure Locking Force, COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS'MOV128 page 3 It Niagara Mohawk Power CorPoration Nuctear Engineenng Originator/Date Z c Xs~~v A.~/P'/t,r Zzlpp NMP 2 Catculation Cont.Sheet Checker/Date ~re tr'I" Pagano//97 A10.1.AD403, Rev.01 Yq 3 F pres lock 2 tt a-(p cos(1)-sin(e))2 which gives, F pres lock=9.938'0 Vw Piston Effect Force, Pau'.=0 tt Fpinon WmtDm'(Phoner Penn)r which g/ves, F piston effec"Reverse Piston Effect" Force, Frets.=[as (2Phonnet up-Pttoten)]sin(S) Total Force Re uired to Overcome Pressure Lockin which gives, F v~6 506 10 F total l=F pres lock+F po+F vert-F piston which gives, F>~2.854914.10 ACTUATOR CAPABILITY: Actuator Mode!I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor: Thrust Capability: THcap:=-TQout Sf=SB-2-60 TQm.'=58.37 OGR:=72.01 Af:=0.9 Eff:=0.4 RV:=0.8703 TQout=1.146 10 Sf:=0.029481 THcap~3.888 10 ft-1bs ft-1bs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURELOCIQNG METHODOLOGY: KEI:=1.20 Thrust Mtntpn:=THoap-(F n,uu KE!)Thrust Margin 4.617'10 1bs

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PICS128A.MCD Valve ID: 2ICS MOV128 page 4

Niagara Mohawk Power Corgoration Nuoiear Engineering NMP 2 Calculation Cont.Sheet cheekerioste~ r/</r7 Pageant/'0 7 A10.1-AD403, Rev.01 Valve ID no: 2ICS'MOV129 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Valve Disk Geometry: hub radius, b:=2.25 mean seat radius, a:=3 average disk thickness, t:=0.378 e:=-'" e=o.o61 2 180 e ishalfdiskangle a hub length, L:=0.125 seat angle, u:=7 Valve Disk Material Properties: modulus of elasticitY, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=76 Valve Bonnet pressure (psig), P bonn<<=2799 Downstream pressure (psig), P do~0 Other Valve Parameters: Valve Stem Diameter, D<~.=1.5 Valve Factor VF:=0.65 Static Unseating Thrust, F~.=5924 (reference: Test¹12, 6/QM3)(reference: NER-2M-010) CALCULATIONS: Coefficient of friction between disk and seat, It.,=cue)-sin(e)It 0.676 (reference ¹6)Average DP Across Disk, Disk Stlffnes Constants, avg'onnet Pup+Pdo~gives;DP av<=2.761~10 2 D:=and G:=Et E u (1-.*j 2 (1+v)which gives, D=1.454 10 and G=1.131~10 1 b a, b b a b GeometryFactors, C2.'=-I--I+2.1n-C3'.=--+1 ln-+--I 4 a b 4a a b a 1 b 2 C8.=-1+v+(1-v)-2 a b I+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.028 C 8~0.847 C 3~0.002 C 9~0.198 COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS'MOV129 page 1

Niagara Mohawk Power CorPoration Nuctear Engineering Onginator/Date Wc,~~a, A'.Quar S c./ip~NMP 2 Catcutation Cont Sheet Checker/Date PageMot tp T A10.1-AD403, Rw.01 Additional Geomet/y Factors, rp.'=b I 11 64 2 4 2 2 rp rp fp fp I+4--5--4-~2+-ln-a a a a rp I L 17'.=-.4 4 2 I-v rO rO a I--I----I+(I+v)In-4 a a rp which gives, Moment Factors, L I I=1.453 10 and L 17=0.027 Mg:=-2 DP avg a cs C9-(-0 j-"I7 2ab.,~b:=-'"'('-0')2b which gives, Mrb=%03.057 and Qb~2.416 10 Detiection from pressureIbend/ng, a a avg.a 3 4 yb'.=Mrb-C2+Qb-C3-LII o o o which gives, yb--8.049 10 q Deflection from pressure I shear, 2 a'o'o K:=-0.3 2 In--I+-I-21n-sa'a b 2 sa'vg a tG which gives, Ksa 041'nd y~-2.404 10 sq Deflection from pressure/hub stretch, P fore'0 Tt (a b)DP avg-P force L y stretch'=ttb 2E which gives, P force 3 415 10 and y stretch-4.565 10 COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 2

Niagara Mohawk Power CorPoration Nuotear Engineering Ortginatorioate Woe~-.4.Cavy c/~/pp NMP 2 Calcutatton Cont.Sheet checker/Dmto~ p/j/r p Page gd oflVV'10.1-ADOOS, Rev.01 Total Deflection due to pressure, Addilional Geometry'actors yq'=ybq+ysq+yst tch which gives y q=~001 ro.'=a ro L3=-4a 2 2 ro a ro+1 1n-+--1 a r a ro L9.'--.a r 1+v a 1-v o-ln-+-1-2 ro 4 a which gives, L3=0 and L9=0 Deflechon fram seat load/bending, w:=I IP as.w C2 ro C9 roC3 yb'.=-----L9--+L3 D C8 b b which gives, y bw=-1.088 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b a y~'.=Ksa-tG which gives, Ksa<.345 y sw~-2.423 10 Deflection from seat load/hub compression,-2 rta y compr'=rtb L 2 which gives, y compr=-252'10 7otal Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, yw 1332 10 Equilibrium contact load distribution, cqttitibrtttm which gives, yq w Load per seat=2 rt a-=1.485 10 yq yw w cqtttTtbrtttm 787.968 Pressure Locking Force, COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 3 lg Fy Niagara Mohavttk Povtrer Corporation Nuclear Engineering Originatorloate 'Qp~r y>><.Cecq/gQ j/F7 NMP 2 Calculation Cont.Sheet Checker/Date ,g HII Page2 lot I 7 7 A10.1.AD403, Rev.01 Vq F p 1 o c k 2 1 t a (p co s (0)s in (8))2 w hi c h gi v e s, F p, 1 o c 1'w Piston Effect Force, P au:=0 1t 2 I"piston streettem'i bonnet atm)piston effect"Reverse Piston Effect" Force, F vett tt a 2 P bonnet P up P tlown stn()which gives F vert 9 532 1 0 Total Force Re ulred to Overcome Pressure Lockln F total: F pres 1ock+F po t F>crt F pisto which gives, F<<~=2.872746 10 ACTUATOR CAPABILITY: Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout THcap'.=-, Sf TQout:=TQm RV OGR.Af Eff ft-lbs ft-Ibs=SMB-00-10 TQm:=10.0 OGR:=36.2 Af:=0.9 Eff:=0.4 RV:=0.8252 TQout 107.54 Sf:=0.015334 THcap=7.013 10'bs ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Tbrnst Margin:=THoap-(F>>mt KEI)Thrust Margin~-2.746 10 1bs

Conclusion:

Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PICS129A.MCD Valve ID: 2ICS MOV129 page 4 0 Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date ~/i~/vr NMP 2 Calculation Cont.Sheet Checker/Date Page QO//P 7 A10.1 AD403.Rev.01 Valve ID no: 2RHS MOV115 Re uiredO enin ForceDeternminafionunderPressureiockin Condifions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=5.75 hub length, L:=0.25 mean seat radius, a:=7.703 average disk thickness, t;=1.644 seat angle, a'=10 0:=-'" 0-0.087 2 180 0 ishalfdiskangle a Valve Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other VaNe Parameters: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P.=85 Valve Bonnet pressure (psig), P bonnet'=7105 Downstream pressure (psig), P do~0 It 0.521 (reference ¹6)Valve Stem Diameter, D~.=2.375'tatic Unseating Thrust, F po 12604 (reference: Test¹4, 6/24/93)Valve Factor VF:=0.5 (reference: NER-2M-010) 1 CAL C ULA TIONS: Coefficient of fnction between disk and seat, It:=~<0)-sin(0)Average DP Across Disk, Disk St/ffnes Constants, gives, DP ag=7.063 10 and G:=2 (1+v)P~+Pdo~avg'onnet 2 Et 3 12 I-v which gives, D=1.196 10 and G 1.131~10 I b a".b b a b Geometry Factors, C 2'.=-I--~I+2 In-C 3',=--+I In-+--I 4 a b 4a a b a I b 2 C8-'+v+(I-v)-2 a 2 C9.---In-+-I-which gives, C 2~0.029 C 8~0.845 C 3~0.002 C9=02 COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS MOV115 page 1 0 Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Wc~i~~W.imp c.gp/pp NMP 2 Calculation Cont.Sheet Chaclterllhte ~Q g/~e Pagea/of/'3T A10.1-AD403, Rev.01 Additional Geometry Factors, rp"=b 2 4 2 I 0 0 0 L II'=-1+4--5--4 64 a a a 2 rp a 2+-ln-a rp I L17 4 4 I-v 0 I--I--4 a 2 rp a I+(I+v)In-a rp which gives, L I I=1.535 10 and Moment Factors, 2 DPavga C9/Mrb'.=-~-~a-rp,i-L17 C8 2ab L17~0.028'(Oi 2b which gives, Mrb=-1.57 10 and Q b 1.614 10 Deflection from pressureibending, 4 a a"avg'b'rb'C2+Qb'C3 'Lll D.D D which gives, yb=W.OOI q Detiecfion from pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-~1-21n-b-'b 2 stt'vg a t.G which gives, K aa=%.043 and y~=%.605'O DefieÃon from pressure lhub stretch, Pforca't (a b)DPavg-P forciL ystretch-ttb 2E which gives, P f0~5.829 10 and y~t h-2.386 10 CQMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 2

Niagara Mohawk Power Corporation Nuotear Engineering Originatorloate Vo~rvp e 4.Qm a c/(s lp 7 NMP 2 Calculation Cont.Sheet Checker/DIt ~~p/1)gg Page32of r&7 A10.1-AtM03, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq: ybq+ysq+y~~h which gives,, y q=%.002 r"=a ro L3--4a 2 2 ro a ro+I In-+--I a r a rp L9.=-a 2 I+v a I-v ro-~In-+-I-2 rp 4 a which gives, L3=0 and L9=0 Detlection from seat load/bending, w:=I C2 rpC9 fpC3 ybw'9--+L3 which gives, D C8 b b ybw=-2.338 10 Deflection from seat load/shear, Ksa:=-1.2-In-a b a y sw'=~'G which gives, Ksa-0.351 y'w-1.454'10 Deflection from seat load/hub compression,-2'tt'a y compr'tb L 2 which gives, y~r=-1.981~10 Total Deflection from unit seat load, y w:=y bw+y sw+y eompr which gives, y w 3'811 10 Equilibrium contact load distnbution, yq w equiiibritm:= -which gives, yw Load per seat~2 tt a-=2.712 10 yq yw w equilibrium 5'6N IP Pressure Locking Force, COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 3 0 Niagara Mohawk Power Corporation Nuoiear Engineering Originatot/Date z~~g~g;A.4~8/zHs7 NMP2 Calculation Cont.Sheet Checker/Date Page&of/3'7 A10.1-AD403, Rev.01 Yq pres lock'=2 11 a-" (p'cos(e)- sin(e))2" whichg/ves, F pres loci;Yw Piston Effect Force, piston etreot'='tem'(bonnet atm)whicl gives, F piston egect"Reverse Piston Effect" Force,.I Pont/=[a a (2 P bonnet np Pttonn)]sin(g)Total Force Re uired to Overcome Pressure Lockin which gives, F~=2.295 10 F totd:=F p~I~k+Fpo+F v~-Fpi~n erect which gives, F to d 4.447654 10 ACTUATOR CAPABIUTY'Qout THcap:=-Sf Actuator Model I SIze: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: TQout."=TQm RV-OGR Af Eff Stem Factoi: Thrust Capability: =SMB-0-25 TQm.'=24.67 OGR:=58.13 Af:=0.9 Eff:=0.4 RV:=0.8767 TQout=396.802 Sf:=0.023664 THcap 1.677 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.Jt ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:=1.20 Tbrnst Margin:=THoap-(pmmt KBI)Thrust Margin~-5.17 10 1bs

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PRHS115A.MCD Valve ID: 2RHS'MOV115 page 4

Niagara Mohawk Power Corporation Nuotear Engineering Originator/Date <</c'r/r 7 NMP 2 Calcutation Cont.Sheet Ch<<kerlD le~>//~Pageggf 1 37 A10.1.AD403. Rev.01 Valve IDno: 2RHS'MOV116 Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=5.75 mean seat radius, a.'=7.703 average disk thickness, t:=1.644 a tt seat angle, a.=10 0:=--0=0.087 2 180 0 ishalfdiskangle a hub length, L:=0.25 Valve Disk Material Properties: modulus ofelasÃcity, E:=29400000 Poisson's Ratio,.=0.3 Other Valve Parameters: Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), Pp.=133 Valve Bonnet pressure (psig), P bonnet=1868 Downstream pressure (psig), P down 0 Valve Factor VF:=0.5 Valve Stem Diameter, D~..=2.375 Static Unseating Thrust F po 16894 (reference: Test¹10, 7/10195)(reference: NER-2M-010) CALCULATIONS: Coefficient of friction between disk end seat, it:=cos(0)--sin(0)I VF p 0.521 (reference ¹6)Average DP Across Disk, Disk StNnes Constants, up+"down DP avg'.=P bonnet 2 glvesr D;=and G:=i2.(1-')2 (1+v)DP av I 802 10 which gives, D 1.196 10 and G=1.131~10 I b a b b a b GeometiyFactors, C2.=-I--1+2 ln-C3'.=--+I ln-+--I 4 a b 4a a b a I b 2 b I+v a I-v b 2 C8:=-'+v+(I-v)C 9,---In-+-I--2 a a 2 b 4 a which gives, C 2 0.029 C 8 0.845 C 3=0.002 C 9=0.2 COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 1 0 w} Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date +~~ape+-OW2 r Xp(gp NMP 2 Calculation Cont.Sheet Checkerloate ~g~/p Page'PS of~>>Ato.t-AD403, Rev.01 Additional Geometry Factors, rp.'=b 2 4 2 2 I fP rP rP fP L 1 1'.=-1+4--5--4-~2+-In-64 a a a a rp I L 17-=-.4 2 I-v rp rp a I--I----I+(I 1-v)In-4 a a rp which gives, L 1,1=1.535 10 and Moment Factors, 2 DPavga C9/~(a-rp (-L17 C8 2ab L17=0.028'rib.-'"'.(a'-r,*j 2b which gives, M~=-4.005 10 and 3 Qb=4 116 IO Defiedion from pressure/bending, a a avg.a 3 4 yb'=Mrb-C2+Qb-C3-LII D D D which gives, yb~-2.937 10 q Detiection from pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 In-b a b 2 m Pavg a ysq which gives, K~~&.043 and y-245 10 sq DefieBion from pressure/hub stretch, P f"'(a b)DP g-P force L y stretch'v nb 2E which gives, P fo~1.487'10 and y stretch%.087'10 COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 2 lI I, Nktgara Mohawk Povrer Corporation Nuclear Engineering Ortginatorloate ~~~~y~~.8~al~s/j~NMP 2 Calculation Cont.Sheet Checker/Date ~le/e~Page/cot r>W A10.1-AD403. Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq+ysq+yst t h which gives, y q 5 448 10 ro;=a ro L3--.4a 2 2 ro a ro e-I In-+--I a ro a ro L9.'=-a 2 I+v a I-v ro-In-~-I-2 ro 4 a which gives, L3=0 and L9~0 Deflection from seat load/bending, w:=I as.w C2 ro C9 roC3 ybw-L9--+L3 which gives, D C8 b b y bw"2.338'10 Deflection from seat load/sheer, ro ro Ksa.'=-1.2-In-a b y sw.'=Ksa-which gives, tG Ksa~<.351 y sw~-1.454'10 Deflection from seat load/hub compression, L--2'tt'a 2 ycompr'=2'ttb E which gives, y~-1.981~10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w~-3.81I 10 which gives, w equilibrium ~1.429 10 Equilibrium contact load distribution, yq w equilibrium '=yw Load per seat=2 tt a-6.918 10 yq 4 yw Pressure Locking Force, COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 3

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qc,~/~aug tie g/Z)l57 NMP 2 Calculation Cont.Sheet Checker/Date >>geN<</3 7 A10.1-AO403, Rev.01 pres lock"'a'(>')())v'res lock Yq~4 Yw Piston Effect Force, P~,=0 piston effectDstem'i bonnet atm)which gives, F p,st,n effect=8.275 10'Reverse Piston Effect" Force, Frets.'=[s a (2 Fbonnet-Pp-Pgo~)] sin(g)Total Force Re uired to Overcome Pressure Lockin whichgives, F~=5.854 10 F total'F pres lock+F pp+F vert-F piston effect which gives, F>~=.1.26883~10 ACTUATOR CAPABILITY: 'ctuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: 'Stem Factor.Thrust Capability: TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-0-25 TQm'=24.67 OGR:=58.13 Af:=0.9 Eff:=0.4 RV:=0.8731 TQout~393.55 Sf:=0.023664 THcap~1.663~10 ft-lbs ft-lbs lbs NOTE: RVIS SQUAREIF ACTUATORIS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Margin--THcap-(F toM KEi)Thrust Margin~-1.356'10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PRHS116A.MCD Valve ID: 2RHS'MOV116 page 4 0 Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date NMP2 Calculation Cont.Sheet Checirer/Date Paggtrtri/P 7 A10.1.AD403, Rev.01 Valve ID no: 2RHS MOV4A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=2.25 hub length, L:=0.125 r average disk thickness, t:=0.378 e:=--o.o61 2 180 e ishalfdiskangle a 4 mean seat radius, a:=3 seat angle, a:=7 Valve Disk Materfal Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design BasIs Conditions at time of Pressure Locking Event: e Upstream pressure (psig), P=325 Valve Bonnet pressure (psig), P bo<<=9677 Downstream pressure (psig), P down 0 Other Valve Parameters: Valve Stem Diameter, D<~'.=1.5 Valve Factor VF:=0.5 Static Unseating Thrust F po 6341 (reference: Test¹5, t/7/97)(reference: NER-2M-010) CALCULA77ONS: Coefficient of fiiction between disk and seat, lt:=cope)--sin(e)I VF It 0.515 (reference ¹6)Average DP Across Disk, Disk Stlffnes Constants, gives, DP avg 9 515 10 and G'=2 (I+v)up~down avg'onnet 2 E.t 3 u (i-.*j which gives, D 1.454 10 and G 1.131~10 b 1+v a I-v b 2 C9---In-+-I--a 2 b 4 a I b a.b b a b Geometry Factors, C2'.=-,I--~I+2 In-C 3'=--+I In-+--I 4 a b 4a a b a I b C8.=-2 a which gives, C 2 0.028 C 8=0.847 C 3=0.002 C 9=0.198 COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS'MOV4A page 1 lj Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date Wo+.~~-4.Ce g~/~g/.~NMP2 Calculation Cont.Sheet Checker/Date Page5&f~>>A10.1-AtM03, Rev.01 Additional Geometry'actors, rp'.=b I 64 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-~In-, a rp 1 L17 4 4 2 1-v rP rP a I--I----I+(I+v)ln-4 a a rp which gives, Moment Factors, L I I=1.453 10 and L17=0.027 Mrb'DP avg a C8 a-rp-L17 2.a b<b:-.'"'(*-"*j 2b which gives, Mrb=-3.112 10 and Q b~8.325 10 Deflection from pressureibending, 4 a a avg yb'=Mrb-C2+Qb-C3-L11 o o o which gives, yb=<.003 q Deflection from pressure/shear, 2 a rp rp K:=-0.3 2 In--I+-I-21n-Sa'b b 2 sa'vg ysq'=which gives, K sa=%.041 and y'8.286 10 sq Deflection from pressure lhub stretch, P f0~tt (a b)DPavg.-Pto~'L y stretch'=ttb 2E which gives, P to~=1.177 10 and y~~~-1.573 10 COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS'MOV4A page 2 Ih I~ Niagara Mohawk Power Corporation Nuclear Engineering Originatorloate Qomrap.g.@goy/gy/<NMP2 Calculation Cont.Sheet Pagegoof is T A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq+ysq+yg etch which gives, y q=.004 r.'=a ro L3'=-4a 2 2 ro a ro+I In-~--I a r'0 a ro L9,'=-a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I C2 ro C9 ro C3 ybw-L9--+L3 which gives, D C8 b b ybw=-1.088 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, tG Ksa<.345 y sw~-2.423 10 Deflection from seat load/hub compression,.-2na y compr'b L 2 E which gives, y compr 2 52 10 9 Total Deflection from unit seat load, y w:=y bw+y sway compr which gives, y w=-1.332 10 Equilibrium contact load distribution, w equii;brium.'= -which gives w equilibriu =2.715 10 yq yw Load perseat=2 n a-=5.118 10 yq yw Pressure Locldng Force, COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS MOV4A page 3

Niagara Mohawk Power CorPoration Nuclear Engineering Originator/Date 'Dc,mrs3 8~>s/S/l567 NMP2 Calculation Cont.Sheet Checker/Date ~,e trr1 Page'flor>>7 Ato.t-AD403, Rev.01 F pres look 2 a a-(1 cos(e)-sin(e))2 which gives, F pros 1001=4.635 10 Yq~~~4 W Piston Effect Force, P a~'.=0 P Pinon W~t:=S D n~(Phoner-Pet )"Reverse Piston Effect" Force, Frets~.'=[s e~(2 P honnet up P dorm)j'etn(tt).I Total Force Re uired to Overcome Pressure Lockin which give~, F piston which gives, F y~3 285 10 F total l=F pros look+F po+F yurt-F piston 0@00 which gives, F<<~=6.843527 10 ACTUATOR CAPABILITY: Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout THcap:=-Sf TQout:=TQm RV OGR.Af Eff=SB-OOS-15 TQm:=14.18 OGR:=36.2 Af:=0.9 EQ':=0.45 RV:"-0.8538 TQout~151.549 Sf:=0.018919 THcap=8.01 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Meripn:=THoep-(p n,~KEI)Thrust Margin=-7.411~10 lbs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PRHS4AA.MCD Valve ID: 2RHS MOV4A page 4 fp 0 Niagara Mohawk Power Corporation Nuclear Engineering Orlglnalor/Date ~z/v r>p~8~4/2'3/Y7 NMP2 Calculation Cont.Sheet Checker/Date ~z/z/rg Page/Zof/$7 A10.1-AD4ta, Rev.01 Valve ID no: 2RHS MOV4B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.=325 Valve Bonnet pressure (psig), P bo~<<=9677 Downstream pressure (psig), P do.=0 Valve Disk Geometry: hub radius, b:=2.25 r average disk thickness, t:=0.378 e:=-=o.o61 2 180 e ishalfdisk angle a mean seat radius, a:=3 seat angle, a'.=7 hub length, L:=0.125 Poisson's Ratio, v:=0.3 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Other Valve Parameters: Valve Stem Diameter, D st.=1.5 Valve Factor VF:=0.5 Static Unseating Thrust, F po 7324 (reference: Test¹5, 6/16/96)(reference: NER-2M-010) .CALCULAnONS: Coefficient of friction between disk and seat, it:=cope>I--~(e)VF p 0.515 (reference ¹6)Average DP Across Disk DP avg up down gives, DP av<=9.515 10 2 Et3 Disk SfNnes Constants, D:=and G:=n.(i-')2 (1+v)which gives, D 1.454 10 and G 1.131~10 I b a.b b a b GeometlyFactors, C2.'=-I--I+2 1n-C3'.=--+I In-+--I 4 a b 4a a b a I 2 c8:=-1+v+2 a b 1+v a I-v b 2 C9---In-+-I--a 2 b 4 a which gives, C 2 0.028 C 8=0.847 C 3=0.002 C 9=0.198 COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS MOV4B page 1 ,)pf Niagara Mohawk Power Corgoration Nuctear Engineering Originator/Date -~p-N.<~i er.abp NMP2 Calculation Cont.Sheet Checker/Date Pager/3of/3 7 A10.1-AD003, Rev.01 Additional Geometry Factors, rp'=b 1 64 2 4 2 0 0 0]+4--5--4 a a a 2'0 2+-ln-a 1 L]7 4 4 2 1-U 0 0 a 1--1----I+(]+Y)ln-4 a a rp which gives, Moment Factors, L ll=1.453 10 and L]7 0.027 Mrb'=-2 DP avg a C8 C9-a-rp-L]7 2ab which gives, Mrb-3.112 10 and Qb=8.325]0 Deflection from pressureIbending, a a avga 3 4 yb'.=Mrb-C2+Qb'C3-L]1 o o o which gives, yb~0.003 q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2]n--]+-~1-2]n-'a b 2 m'vg a ysq'=which gives, K sa~%.04]and y'-8.286 10 sq Deflection from pressure I hub stretch, P force tt (a b~)DP avg P force'L y stretch ttb 2E which gives, p force]]77]p and y stretch-].573]p COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS'MOV4B page 2 1 Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date .>oA.e~z Qzz/sy NMP2 Calculation Cont.Sheet Checker/Date ~rWrZ Peg~Af/j7 A10.1-AD403. Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq:=ybq~ysq+yst etch which gives, y q 0 004 ro=a ro L3.=-.4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-In-+-I-2 ro 4 a which gives, L3=0 and L9~0 Deflection from seat load/bending, w:=I a w C2 rDC9 fpC3 ybw:-L9--+L3 whichgives, D C8 b b y bw-1.088 10 Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b a y:=Ksa-tG which gives, Ksa~<.345 y~~-2.423 10 Deflection from seat load/hub compression,-2'll'a y compr'tb L 2 which gives, y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y=-1.332 10 Equilibrium contact load distribution, yq equiiibn~: =-which gives, yw LOad per Seat a-2 ft a-5.118 10 yq 4 yw equilibrium Pressure Locking Force, COMED PL Evaluation PRHS4BA.MOD Valve ID: 2RHS'MOV4B page 3 1 Niagara Mohawk Powir Corporation 'uclear Engineering Originator/Date '3cmr wag A'-~&/isls7 NMP2 Catculatlon Cont.Sheet Checker/Date Pagett+of W7 A10.1-AD403, Rev.01 Fpr s lock(l')())g pfe loctu Vq~4 W Piston Etect Force, P~'.=0 tt 2/F piston etrtmt'=u'D stem'(P bonnet Perm)which gives,"Reverse Piston Effect" Force, Fyett.'=rt a 2 P bonnet up gown.sin(0)1 Total Force Re uired to Overcome Pressure Lockin which gives, F y~3 285 10 r F total:=F pres toed p F po+F yett-F piston effect which gives, F<<~=6.941827 10 ACTUATOR CAPABILITY: Actuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficienc: Reduced Voltage: Torque Output: Stem Factor.Thrust Cap'ability: TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SB-OOS-15 TQm:=14.18 OGR:=36.2 Af:=0.9 Eff:=0.45 RV:=0.8741 TQout~158.841 Sf:=0.018919 THcap~8.396'10 ft-lbs ft-1bs Ibs NOTE: RV IS SQUAREIF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Margin:=THcsp-(F mmt KEt)Thtust Margin=-7.491~10 1bs

Conclusion:

Open Thrust Marginis negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PRHS4BA.MCD Valve ID: 2RHS MOV4B page 4 U Niagara Mohawk Power Corporation Nuclear Fngineering Originator/Date .~.ZA c/zylsp NMP2 Calcuhtion Cont.Sheet Checker/Date Pagefrcpf/3 7 A10.1-AD403, Rev.01 Valve ID no: 2RHS'MOV4C Re uiredO enin ForceDeternminationunderPressureiockin Conditions COMED Method DESIGN INPUTS'alve Disk Geometry: hub radius, b:=2.25 mean seat radius, a:=3 seat angle, a'.=7 average disk thickness, t:=0.378 e:=--0.06I 2 180 6 ishalfdisk angle a hub length, L:=0.125 Valve Disk Material Propertie: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 325 Valve Bonnet pressure (psig), P bonn<<=9677 Downstream pressure (psig), P down 0 Valve Factor VF'=0.5 Valve Stem Diameter, D st~1.5>Static Unseating Thrust, F po 3798 (reference: Test¹21, Tlt8/g5)(reference: NER-2M-010) CALCULATIONS: Coeftic/ent of frict/on between disk and seat, lt.=coge)I--sin(6)VF It=0.515 (reference ¹6)Average DP Across Disk, Disk SNfnes Constants, gives,'P<<g=9.515~10 G:=E 2.(1+v)up~down<<g'bonnet Et:='nd u(i-')which gives, D=1.454 10 and G~I.I31~10 I b a.b b a b Geomet/y Factors, C 2.'=-I--I+2 In-C 3'.=--+I h-+--I 4 a b 4.a a b a I b 2 C8.=-1+v+(I-v)2 a b 1+v a 1-v b 2 C 9'.=--In-+-I--a 2 b 4 a which gives, C 2=0.028 C 8=0.847 C 3~0.002 C 9=0.198 COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 1

Niagara Mohawk Power Corporation Nuclear f ngineering Originator/Date Ww~g~N.8~WiP/P'P NMP2 Calculation Cont.Sheet Checker/Date r/r7 Pagegkfl~7 A10.1-AD403, Relr.01 Additional Geometry Factors, rp'.=b 2 4 2 2 fp fp.fp fp LII=-I+4--5--4-2+-~In-64 a a a a rp I L17.--4 4 I-Y 0 0 I--I-4 a a 2~I+(I+Y)In-a rp which gives, L I I=1.453 10 and Moment Factors, 2 Dpavga C9 I 2 2h (a-f 0)-L I7 C8 2ab L17=0.027 avg 2 2 2b which gives, Mrb-3.112 10 and Q b 8.325 10 Deflection from pressureIbending, a a avg a 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, yb~%.003 q Deflection from pressure I shear, 2 a rp rp K~'=-0.3 21n--I+-~I-21n-b a b 2 K sa DP'avg a ysq'=which gives, K sa~%.041 and y=-8.286 10 sq DefleiWon from pressure Ihub stretch, P force tt'(a b j DP avg P force'L ystrctch-ttb 2E which gives, P fo~-1.177 10'nd y~etch=1573'10 COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS MOV4C page 2 >E g~ Niagara Mohawk Power Corporation Nuclear Engineering Onginatorloate w t"~Qgp$p NMP2 Calculation Cont.Sheet Checker/Date Psge4<ot/3>A10.1.AD403, Rev.01 Total Deflection due to pressure, yq'bq+ysq+ystretch Additional Geometry Factors which gives, ro.'=a y=%.004 q ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9'.=-a r)-ln-+-I-2 ro 4 a which gives, L3 0 and Deflection from seat load/bending, w:=I asw C2 ro'Cg ro'C 3 ybw.-L9--+L3 which gives, D C8 b b y bw-1.088'10 Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b a y sw:=KsR-tG which gives, Ksa=%.345 y sw=-2.423 10 Deflection from seat load/hub compression, L ,-2tta 2 compr 2'tt b which gives,~9 y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w=-1.332 10 Equilibnum contact load distribution, w equilibrium 'yq which gives, wequilibrium =2.715 10 yw Load per seat=2 tt a-5.118 10 yq 4 yw Pressure LocMng Force, COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 3

Niagara Mohawk Power Corporation Nuclear Engineering /PD$lp7 NMP2 Calculation Cont.Sheet Checker/Date Page+of/+f A10.1-AtM03. Rev.Ot Yq~~-~4 F pres]ock.=2 tt a-(lt cos(t))-sin(0))2 which gives, F pres]oc]=4.63 5]0 Yw Piston Effect Force, Pat:=0 piston eg'act'='tem'(honnet aun)"'o" tg" piston street"Reverse Piston Effect" Force,.I 2 Poets's'a'(g'Phennet Pup Pttosan)j'stn(g) Total Force Re uired to Overcome Pressure Lockin which gives, F ycrt 3 285 10 F tpta]:=F pres]ock+F pp+F ycrt-F piston cffcct which gives, F<<~=6.589227 10 ACTUATOR CAPABILITY'ctuator Model I SIze: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor: Thrust Capability: TQout THcap:=-Sf TQout:=TQm RV OGR.Af Eff=SB-OOS.15 TQm:=14.18 OGR:=36.2 Af:=0.9 Eff:=0.45 RV:=0.8727 TQout~158.332 Sf:=0.018919 , THcap 8.369~]0 ft-1bs ft-lbs Ibs.NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KE]:=1.20 Thrust Margin:=THcap-(F>og KE1)Thrust Margin=-7.07'10 1bs

Conclusion:

Open Thrust Margin ls negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking under conditions evaluated. COMED PL Evaluation PRHS4CA.MCD Valve ID: 2RHS'MOV4C page 4

Niagara Mohawk Prrrrer CorPoration Nuclear Engineering Originatorloate ga w~'$r/a3/6 NMP2 Calculation Cont.Sheet Page jabot/Q7 A10.1-AD403, Rev.01 Valve ID no: 2SWP MOV17A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Valve Disk Geometry: hub radius, b:=4.94 mean seat radius, a:=5.75 average disk thickness, t:=0.789 seat angle, a,'=7 0:=--0-0.061 a tt 2 180 0 ishalfdisk angle a hub length, L:=0.125 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v.--0.3 Upstream pressure (psig), P>>.=123 Valve Bonnet pressure (psig), P bonn<<=86 Downstream pressure (psig), P down 0 Other Valve Parameters: Valve Stem Diameter, D~.=2 Valve Factor VF:=0.6 Static Unseating Thrust, F po 6219 (reference: Test¹25, 3ttM5)(reference: NER-2M-010) CALCULATIONS: Coefficient of fnction between disk and seat, tt:=cos(0)--sin(0)tt=0.622 (reference ¹6)Average DP Across Disk, Disk Stifl'nes Constants, gives, DP av 24 5 and G=E 2 (1+v)up+down DP avg.'=Pbonnet 2 Et 3 u (i-')which gives, D 1.322 10 and G 1.131~10 GeometryFactors, C2.'=-1--1+2 ln-C3.'=--+1 1n-+--1 1 b C 8.--1+v+(1-v)2 a b I+v a 1-v b 2 C 9.---ln-+-1--a 2 b 4 a which gives, C 2 0.009 C 8~0.908 C 3=4.316'10 C 9~0.124 COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP'MOV17A page 1 .~ Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Woevppw 4 Cw p cfg3/9)NMP2 Calculation Cont.Sheet Checker/Date z/z/H7 Page5lofr3 ar A10.1-AD403.

Rev.01 Additional Geometry Factors, rp'.=b I ll'4 2 4 2 fp fp fp I+4--5--4 a a a 2 rp a 2+-In-a rp I L17'=-.4 4 2 I-U 0 0 a I--I----~I+(I+Y)In-4 a a rp which gives, L 11=1.545'10 and Moment Factors, L17=0.009 Mg:=-2 DP avg a C9~-a-rp-L17 C8 2ab avg 2b which gives, Mrb-8.73 end Qb=21.472 Deflection from pressure%ending, 4 a a avg a yb'.=Mrb-C2+Qb-C3-.LII D O D which gives, yb~-1.041~10 q Deflection from pressure/sheer, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 I'vg a ysq'=which gives, K sa%.013 and y'sq=-1.138 10 Deflection from pressure/hub stretch, Pra~.--a (a-b)DPaa

ud~6.598367 10 ACTUATOR CAPABILITY: Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: 'tem Factor: Thrust Capability: TQout IHcap:=-Sf TQout:=TQm RV OGR AfEff=SMB-0-25 TQm:=23.52 OGR;=39.11 Af:=0.9 Eff:=0.4 RV:=0.8785 TQout=255.571 Sf:=0.019627 THcap~1.302'10 tt-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Margin:=THcap-(F mmt KEI)Thrust Margin=5.103'10 1bs

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PSWP17AA.MCD Valve ID: 2SWP'MOV17A page 4 0 Niagara Mohawk Povver Corporation Nuclear Engineertng NMP2 Calculation Cont.Sheet Checker/Date 7/Z/gp Page'574/97 A10.1 AD403.Rev.01 Valve ID no: 2SWPMOV17B I Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=4.94 r mean seat radius, a'.=5.75 average disk thickness, t:=0.789 seat angle, a:=7 e:=-'" e=o.o61 2 180.e ishalfdiskangle u hub length, L:=0.125 Valve Disk Materfal Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P:=123 Valve Bonnet pressure (psig), P bonnet'=86 Downstream pressure (psig), P doggy 0 Other Valve Parameters: Valve Stem Diameter," D<<~.=2 Valve Factor VF:=0.6 Static Unseating Thrust F po 5862 (reference: Test¹6, 8/2M4)(reference: NER-2M-010) CALCULATIONS: CoeNicient of friction between disk and seat, p.'=cos(e)I--sin(e)VF It 0.622 (reference ¹6)Average DP Across Disk, Disk SNfnes Constants, Pup+P down avg'onnet 2 gives, DP av<24.5 3 D:=and G:=i2.(1-')2 (1+v)which gives, D 1.322 10 and G=1.131~10 I b a.b b a b Geometry Factors, C2'.=-I--~1+2.ln-C3.=--+I In-+--I 4 a b 4a a b a I b C8.--I+v+(I-v)2 a C9---In-+-I--which gives, C 2 0.009 C 8>0.908 C 3=4.316'10 C 9=0.124 COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP MOV17B page 1 e Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date W~~c rP-Q~~gybe NMP2 Calculation Cont.Sheet Checker/Date ~7/i/F7 A10.1 AD403, Rev.01 Additional Geometry Factors, rp=b I 64 2 4 2 0 0 0 I+4--5--4 a a a 2 rp a 2+-In-a rp I L17 4 4 2 I-U 0 0 a I--I----I+(I+Y)In-4 a a rp which gives, L I I=1.545 10 and Moment Factors, 2 avg'a 9/2 p-rp C8 2ab L17=0.009 DP avg~b=-(-Oj 2b which gives, M rb-8.73 and Q b 21.472 Deflection from pressure/bending, a2 a3 DP avg'a yb'.=Mrb-C2+Qb'C3-LII D D D which gives, y b-1.041 10 Deflection from pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-I-21n-b a b J ysq:=.2 m.D avg a tG which gives, K sa~%.013 and y'-1.138'10 sq 0 Deflection from pressure/hub stretch,:='(a'-b')DP,,-P forca.L y stretch.ttb 2E which gives, P f0~0=666.467 and y search 848 10 COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP'MOV17B page 2 'C Niagara Mohawk Power Corgoration Nuciear Engineering OriginatorlOate W~~~>4.C'mg+~sky NMP2 Calcuhrtion Con!.Sheet Page5cof/9 9 A10.1-AD403, Rev.01 Total Deflection due to pressure, AddNonal Geometry Factors y q:=ybq<<ysq+ y stretch which givesr y q 2 197 10 r'.=a ro L3--.4a 2 ro a+I In-+a ro 2 r0-I a ro L9=-a r 2 I+v a I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9~0~Deflection from seat load/bending, w:=I~.a w C2 roC9 rpC3 ybw',=L9'-+L3 which gives, D C8 b b y b I 437'10 Deflection from seat loadl shear, ro ro Ksa:=-1.2-In-a b a y~:=Ksa'-tG which gives, Ksa=-0.182 y sw=-1.174'10 Deflection from seat load/hub compression,-2'tt a y compr'.b L 2 which gives, y p-1.002'10 Total Deflectio from unit seat load, y w:=y bw+y sw+y compr which gives, y w 2 621'10 Equilibrium contact load distribution, yq equilibrium 'hich gives, yw Load per seat=2 tt a-=302.831 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP MOV17B page 3 e Niagara Mohawk Power Co/Poration Nuclear Engineering Originator/Date Thorn.ep-. At+/Flzglpp NMP2 Calculation Cont.Sheet Checker/Date ~rs-rrÃ7 Page&ot/7 7 A10.1-AD403. Rev.01 F pres loclt 2 a a-(p cos(0)-sin(0))2 which gives, F pres loci'338.833 Vq/w Piston Effect Force, P at:=0 piston street'=O'tem'<bonnet p atm)which gives, F iston effect 270.177"Reverse Piston Effect" Force, F vert"'aP bonnet P up P down Total Force Re uired to Overcome Pressure Lockin which gives, F~=310.711 F total:=F pres tock+F po+F 1/ert-F piston effect which gives, F<<<=6.241367 10 ACTUATOR CAPABlLITYt Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR.Af Eff Stem Factor.TQout Thrust Capability: THcap'.=Sf tt-'bs tt-lbs=SMB-0-25 TQm:=23.52 OGR:=39.11 Af:=0.9 Eff:-"0.4 RV:=0.8834 TQout=258.43 Sf:=0.019627 THcap=1.317'10 lbs NOTE: RV lS SQUARE/F ACTUATOR lS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Margin:=THeap-(F tong KBI)Thust Margin~5.677 10 1bs

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locklngconditions evaluated. COMED PL Evaluation PSWP17BA.MCD Valve ID: 2SWP'MOV17B page 4

Niagara Mohawk Power Corporation Nuciear Engineering Originator/Oate 'uow pro/I~Q 0 (p3/v NMP2 Calcutation Cont.Sheet Checkedoate ~e/z/r7 Page5$br/%T At0,1-AD403. Rev.Ot ValvelDno: 2SWPMOV18A Re uired 0 enin Force Defernmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=4.94 mean sestrsdius, a:=5.75 average diskthickness, t:=0.789 seat angle, a.'=7 0:=--0=0.061 2 180 0 ishstfdisksngle a hub length, L:=0.125 Valve'isk Matertal Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.--108 Valve Bonnet pressure (psig), P bonnet=125 Downstream pressure (psig), P do~.=0 Other Valve Parameters: Valve Stem Diameter, D at~.--2 Valve Factor VF:=0.6 Static Unseating Thrust F po 8635 (reference: Test¹8, 3/17>95)(reference: NER-2M-010) CALCULATIONS: Coefticient of fnction between disk and seat,~<0)--sm(0)I VF it=0.622 (reference ¹6)Average DP Across Disk, Disk Sfiffnes Constants, gives, DP av<~71 and G:=E 2 (I+v)up+down DP avg'=P bonnet" 2 Et iz(i-v')which gives, D~1.322 10 and G~1.131~10 2 GeometryFsctors, C2.'=-I--I+21n-C3.=--+I In-I b C 8'=-I+v+(I-v)-2 a b I+v a I-v b C9---In-+-I--a 2 b 4 a which gives, C 2 0.009 C 8=0.908 C3~4.316 10 C 9=0.124 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP'MOV18A page 1

Niagara Mohawk Power Corporation Nuclear Engineering Orit/lnatorloate Wc~~p t, N.des y cP~/pg NMP2 Calculation Cont.Sheet Checker/Date r/s/f7 Peg<~ref/V 7 A10.1&D003, Rw.01 Additional Geomehy Factors, rp.'=b 2 4 2 2 fp rp rp rp L 1 1.'=-1+4.--5--4-2+-~In-64 a a a a rp 4 2 ro rp a L17.=-I--I----.1~(1+v)In-4 4 a a rp which gives, L I I=1.545 10 and Moment Factors, L17~0.009 Mg:=-2 DPavga C9--(a-ro)-L lq CS 2ab DP avg o:=-(-")2b which gives, Mrb=-25.298 and Q b~62.225 Deflection fiom pressure/bending, a2 a3 DP avg a yb'=Mrb-C2+Qb-C3-LII D D D which gives, y b 3.016.10 q Deflection fiom pressure/shear, 2 a rp rp K~:=-0.3 21n--I+-~1-21n-b a b 2 avg'o which gives, K sa=%.013 and y'-3.297'10 sq t Deflection from pressure/hub stretch, P f.'=ll (a-b)DP vg P force L y stretch ttb 2E which gives, P f0~~1.931 10 and y~<h-5.355 10 COMED PL Evaluation PSWP18AA.MCD Valve ID: 2SWP MOV18A'age 2

Niagara Mohawk Power Corporation Nuclear Engineering CSginatorlDate Q~~apy 4e@AD k-/g3/py NMP2 Calculation Cont.Sheet Checkerloate r/rr'6 Pag~W 7 A10.1-AD403, Rev.Ot Total Deflection due to pressure, Additional Geometry Factors y q'bq+y sq+y stretch which gives, y q H.367 10 ro:=a ro L3--4a 2 2 ro a ro+I In-+--I a ro a ro L9--a 2 I+v a I-v ro-In-+-I--2 ro 4 a which gives, L3 0 and L9=0, Deflection from seat loadlbending, w.'=I asw C2 roC9 roC3 ybw'-L9--+L3 which gives, D C8 b b y b-I 437'10 Deflection from seat load l shear, ro ro Ksa'.=-1.2-In-'b a y~:=Ksa'G which gives, Ksa~-0.182 y<-I;174 10 Deflection from seat load/hub compression, L 2'll'a 2 y compr'E ttb which gives, y compr Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w=-2.621~10 Equilibrium contact load distnbution, w eqtniib.tm,.= -which gives, yq w Load per seat-"2 tt a-877.591 yq yw w eqttitibritm =24.291 Pressure Locking Force,, COMED PL Evaluation PSWP'I 8AA.MCD Valve ID 2SWP MOV18A page 3

Niagara Mohawk Power Corporation Nuclear Engineering Orig inatorloate m--;-A+lsPg/~p NMP2 Calculation Cont.Sheet Checker/Date /is r<<.Paged/of/7 A10.1-AtHSS, Rev.01 F pres iocle:=2 rt a-" (tt cos(0)-sin(6))2 which gives, F pres loci=98 1.925 Yq W Piston Effect Force, Pat:=0 ft"piston street,a'D stem'(phonnet peon)which gives, F piston effect"Reverse Piston Effect" Force, F vert'.=ft a~2 P bonnet up-P do1tfn sin(e)Total Force Re uired to Overcome Pressure Lockin whichgives, Fy~900428 total'res lock+po+vert piston effect whichgives, F<<~1.012465 10'CTUATOR CAPABILITY: Actuator Model/SIze: Motor Torque Output: Gear Ratio: Application Factor.Pullout ENciency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor.Thrust Capability:, THcap.'=-T out Sf=SMB-0-25 TQm.'=23.21 OGR:=39.11 Af:=0.9 Eff:=0.4 RV'-=0.8789 TQout=252.432 , Sf:=0.019627 THcap=1 286 10 ft-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Thrust Margin:=THoap-(F to%KEI)Thrust Margin 711.881 Ibs sl

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED Pl.Evaluation PSWP18AA.MCD Valve ID: 2SWP'MOV18A page 4

Niagara Mohawk Power Corporatton Nuclear Engineertng Originato/Date ,-.w.e;-E~/~NMP2 Calculation Cont.Sheet Checker/Date gled f>/i/~7 Pape scut I PT A10.1-AD403, Rev.01 Valve ID no: 2SWP'MOV18B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp,=108 Valve Bonnet pressure (psig), P bonnet.--125 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=4.94 meanseatradius, a:=5.75 averagediskthickness, t:=0.789 hub length, L:=0.125 seat angle, a:=7 1:=--" e 0.061 a tt 2 180 Valve Disk Material Properties: 0 ishalfdisk'angle a modulus of elasticity, E:=29400000 Other Valve Parameters: Valve Stem Diameter, D<~.--2 Valve Factor VF:=0.6 Poisson's Ratio, v.=0.3 Static Unseating Thrust, F po 2129 (reference: Test¹11.SS96)(reference: NER-2M-010) CALCULATIONS: Coefficient of friction between disk and seat, p:=cos(e)-'-s~(e)p 0.622 (reference ¹6)Average DP Across Disk, Disk SINnes Constants, gives, DP=71 Bed G:=-E 2 (1+v)up+down avg'onnet 2 Et n(1-')which gives, D=1.322 10 and G=1.131~10 1 b a.b b a b GeometryFactors, C2.=-1--1+2 1n-C3'.=--+1 ht-+--1 4,a b 4a a b a 1 b 2 C8=-1+v+(1-v)2 a b 1+v a 1-v b 2 C9---ln-+-1--a 2 b 4 a which gives, C 2=0.009 C 8 0.908 C 3=4.316'10 C 9~0.124 COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV18B page 1 r7 if I I I Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Q~~~o 4-C~&2 j/5 7 NMP2 Calculation Cont.Sheet Checker/Oate ~~/./~r Pagw'o//37 A10.1-AD403, RW, 01 Additional Geometry'Factors, r p.'=b I 64 2 4 2 rp fp fp I+4--5--4 a a a 2 rp a 2+-In-a rp I L17 4 4 2 1-Y'0 a I--I----I+(I+Y)In-4 a a rp which gives, Moment Factors, L 11=1.545 10, and L17=0.009 Mrb'DP avg a Cg C9~a-rp-L17 2ab Qb'a-r0 j 2b which gives, M+--25.298 and Qb-62.225 Deflect/on from pressure/t/ending, a a avg a 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, yb=-3.016 10 q Deflection fiom pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-I-2 In-b a b 2 sa'vg a ysq'hich gives, K sa~.013 and y"~-3.297 10 s sq Deflection from pressure/hub stretch, P f tt (a b)DP g P force'L y stretch'b 2E which gives, force'y~<<h-5355'10 COMED PL Evaluation PSWP18BA,MCD Valve ID: 2SWP MOV18B page 2~i

Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date R~pju W P~~~fg+g7 NMP2 Calculation Cont Sheet Checker/Date ~~/slur Pager"trot /7 7 A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry'Factors yq'bq+ysq+ystretch which gives, y q=%.367.10 ro'.=a ro L3'.=-4a 2 2 ro a ro 1-1~In-+--I a r a ro L9.=-a r 2 I+v a I-v o-In-+-I-2 ro 4 a which gives,'" L3~0 and'L9~0 Deflection from seat load/bending, w:=I C2 roC9.roC3 y bw..=-----L9--+L3 which gives, D C8 b b yb 1437 10'r Deflection from seat load/sheer, ro ro Ksa:=-1.2-In-a b y.'=Ksa-which gives, sw'G Ksa~%.182 y~-1.174 10 Deflection from seat load/hub compression,-2tta y compr'itb L 2 which gives, ycompr~I'002 10 Total Deflection from unit seat load, yw:=ybw+ysw+ycompr which gives, y w-2.621~10 Equilibrium contact load distributr'on, w eqmlibri~'hich gives, yq yw Load per seat=2 tt.a-877.591 yq yw w equilibrium =24.291 Pressure LocMng Force, COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV18B page 3 f' Niagara Mohawk Power Corporaaon Nuotear Engineering NMP2 Catoulation Cont.Sheet CheckerlDate ~io.rrrW PageirSot/3 ~A10.1-AD403, Rev.01 F lock:=2 tt a-(p cos(0)-sin(0))2 which gives, F pres lock 981 925 Yq pres 1 W Piston Effect Force,.P au:=0"piston street'=S'D stem'(p bonnet p stm)which givess F lston off~e 392.699"Reverse Piston Effect" Force, Fvert'=rt a 2Pbonnet up down Total Force Re uired to Overcome Pressure Lockin which gives, F~=900.428 F total'pres lock+F po+F veft F pist which gives,'<<~=3.618654 10'ACTUATOR CAPABILITY: Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout:=Tg RV OGR Afar TQout THcap.'=-Sf=SMB-0-25 TQm:=23.52 OGR:=39.11 Af:=0.9 Eff:=0.4 RV:=0.8852 TQout=259.484 St:=0.019627 THcap~1.322 10 ft-Ibs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:=1.20 Thrust Msrtpn:=THeep-(Fmmt KEI)Thrust Margin~8.878'10 lbs I

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PSWP18BA.MCD Valve ID: 2SWP'MOV1 8B page 4 0 Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date Q~/~3bp NMP2 Calcutation Cont.Sheet Checker/Date ~vrzjt7 Page C4or~7 A10.1.AD403, RW.01 Valve ID no: 2SWP'MOV2tA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a.=1.47 average disk thickness, t:=0.54.a tt seat angle, a.=10 e:=--e=0.087 2 180 0 ishalfdisk angle u hub length, L:=0.25 Valve DIsk Materfai Properties: modulus of elasticity, E;=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P np 108 Valve Bonnet pressure (psig), P bonnet.=2314 Downstream pressure (psig), P d~.=0 Valve Factor VF:=I Valve Stem Diameter, D<.=1.125 Static Unseating Thrust, F o:=1890 (reference: Test¹7, 3/30/93)(reference.'ER-2M-010) CALCULATIONS: Coefficient of friction between disk and seat, cope)-'-s~(e)It=1.091 (reference ¹6)Average DP Across Disk, Disk SNfnes Constants, up+down 3 avg bonnet 2 gives, DP avg 2 26 10 D:=and G:=Et E iz(i-')2 (I+v)which gives, D~4.239 10 and G~1.131~10 I b a a GeometryFactors, C2.=-I--I+21n-C3'.=--+I In-+--I 4 a b 4a a b a I b 2 C8'.=-1+v+(I-v)2 a C 9.=--In-+-I-which gives, C 2=0.07 C 8 0774 C 3=0.008 C 9~0.268 COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP MOV21A page 1

Niagara Mohawk Power CorPoration Nuctear Engineering Originator/Date so~.oy~4Q~PZ)$g NMP2 Catcutation Cont.Sheet Checker/Date Page C'Pot/7 7 A10.1-AD403, Rw.01 Additional Geometry Factors, rp.'=b I 64 2 4 2 2 rp rp rp fp 1+4--5--4-2+-~In-a a a a rp I L17 4 4 2 rp rp a I--I----I+(I+v)In-4 a a rp which gives, L 11=9.149 10 and Moment Factors, 2 Dpavg C9 M~'=---(a-ro)-Lrr C8 2ab L17~0.063~b:=-'"'(*-0')2b wh/ch g/ves, M rb=-516.898 and Qb 1.802 10'eflection f/Qm pressureIbending, 2 yb.=Mrb-C2+Q b-C 3-.L 11 O D D which gives, y~%.158 10 bq Deflection from pressure I shear, 2 rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 sa avg a tG which gives, Ksa=%.118 a/ld y'sq=%.403'10 Deflection from pressure/hub stretch, P,:=a (a'-b')DP,, P force'L y stretch ttb 2E which gives, P force 9 906 18 and y stretch=-1.751.10 COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP'MOV21A page 2

Niagara Mohawk Power Corporation Nuclear Engineering 4 Originator/Date Row i>pc, A.Q~QZy/p p NMP2 Calculation Cont.Sheet Checker/Date ~/i/~r Pagerr 1/o/~7>A10.1.AMX}, Rw.01 Total Deflection due to pressure, y q'bq~y sq+y.trctch which gives, y=-2.031~10 Additional Geometry Factors ro:=a ro L3'=-4a 2 2 ro a ro+1 1n-+--1 a ro a ro L9.=-a 2 1+v a 1-v ro-1n-+-1-2 ro 4 a which gives, L3=0 II and L9=0 Detlection from seat load/bending, w:=1~a w C2 roC9 roC3 y bw.-L9--+L3 which gives, D C8 b b ybw 64'Deflection from seat load/shear, ro ro Ksa:=-1.2-1n-a b y:=Ksa-which gives, Ksa W.623 sw'~~-1:499'10 Deflection from seat load/hub compression,-2tta y compr'b L 2 which gives, y~-1.633 10 Total Deflection from unit seat load, yw:=y bw+y sway compr which gives, y w 3.626 10 Equilibrium contact load distribution, w~b-~.=-which gives, yq yw Load per seat r 2 tt a-5.175 10 yq yw w cquiTibrium 5%'241 Pressure Locking Force, COMED PL Evaluation PSWP21AAMGD Valve ID: 2SWP'MOV21A page 3

Niagara Mohawk Power Corporation Nuctear Engineering Originator/Date ,>;A'.a Pdislp~NMP2 Catcutation Cont.Sheet Checker/Date Pio.rid Page//of I$1 A10.1-AD403. Rev.01 Yq 4 F pres]ocp 2 ft a-" (p cos(0)-sin(0))2 which gives, F pres loc'k=1.035 1 0 W Piston Effect Force, Pat:=0 ft"piston etr(mt'stem'i bonnet p etm)which givesr F piston cff~t"Reverse Piston Effect" Force, v~:=" Pbonnct-up-so~'m<<)Total Force Re uired to Overcome Pressure Lockin which gives, Fcrt=2.674 10 F total.'=Fprcs lock+Fpo+'F vert Fpiston cffcct which gives,'<<~=1.261328 10 ACTUATOR CAPABILITY: Actuator Mode!I Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency: Reduced Voltage: Torque Output: TQout:=TQm RV OGR Af Eff Stem Factor..TQ ut Thrust Capability: fHcap:=-T out Sf=SMB-000-5 TQm.'=4.76 OGR:=52 Af:=0.9 Eff:=0.4 RV:=0.8623 TQout~66.257 Sf:=0.014500 THcap~4.569 10 ft-1bs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20'ibrnst Mer(pn:=THeep-(FmmrKH1)Thrust Margin~-1.057 10 1bs

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PSWP21AA.MCD Valve ID: 2SWP'MOV21A page 4

NIagara Mohawk Power CorPoration Nuctear Engineering Originator/Date ~enie3w A.g e'/e3leg NMP2 Calcutation Cont Sheet Checker/Date eke Page7uor/97 A10.1-AD403, RW.01 Valve ID no: 2SWP MOV21B Re uired 0 enin Force Defernminafion under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=0.875 mean seat radius, a:=1.47 average disk thickness, t:=0.54 seat angle, a.=10 0:=--0 0.087 a tt 2 180 0 ishalfdiskangle a hub length, L:=0.25 Valve Disk Material Properties modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P:=108 Valve Bonnet pressure (psig), Pbo<<.=2314 Downstream pressure (psig), P do~0 Valve Factor VF:=1 Valve Stem Diameter, D<~.=1.125 Static Unseating Thrust, F po 1245 (reference: Test¹12, 1295)(reference: NER-2M-010) CALCULA77ONS: Coefficient of friction between disk and seat, cos(0)-sin(0)it=1.091 (reference ¹6)Average DP Across Disk, Disk SNI'nes Constants, gives, DP a2.26 10 E G:=-2 (1+v)P~+Pdo~D avg" bonnet 2 Et3 D:=end which gives, D 4.239 10 and G=1.131~10 1 b a b b2 a b2 GeometryFactors, C2.=-1--1+2 1n-C3.=--+1 ln-+--1 4 a b 4a a b a 1 b 2 C 8'=-1+v+(1-, v)-2 a b 1+v a 1-v b 2 C9.'=--ln-+-.1--a 2 b 4 a which gives, C 2=0.07 C 8~0.774 C 3~0.008 C 9=0.268 COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP'MOV21 B page 1

Niagara Mohawk Power CorPoration Nuclear Engineering originator/Date NMP2 Calculation Cont.Sheet Checker/Date Pagey/of/3 7 At 0.t-AD403, Rev.01 Additional Geometry Factors, rp'.=b 1 64 2 4 2 rp rp rp 1+4--5--4 a a a2 rp a 2+-ln-a rp 1 L17 4 4 2 1-Y 0 0 a I--1----I+(1+Y)ift-4 a a rp which gives, Moment Factors, 2 DP ayg a C&L 1 1=9.149 10 and 9~a-rp-L17 2ab L17~0.063 ob:=-'"'('-0')2b which gives, Mrb-516.898 and Q b~1.802'lp W Deflection from pressure&ending, a DP ayg a yb'Žrb'2+Qb'3'l o o o which gives, y~%.15&10 bq Deflection from pressure/shear, 2'rp'p K~:=-0.3 21n--1+-~1-21n-a b I 2 s'a'vg a ysq'=which gives, K sa~.l 1&and y'.403 10 sq Deflection from pressure/hub stretch, P force tt (a b)DP ayg P force L y stretch'=itb 2E which gives, Pf0~=9.906.10 and y~~-1.751~10 COMED PL Evaluation PS.WP21BA.MCD Valve ID: 2SWP'MOV218 page 2 0 Niagara Mohawk Power Corgoration Nuotear Engineering Originator/Date >c~p-8'~Wzp/pp NMP2 Catcutation Cont.Sheet Checkerloate Page 72bi/77 A10.1-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry'actors yq'=ybq+ysq+ystretch which gives, y q 2 031 10 ro.'=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9"=-a 2 I+v a I-v ro-ln-+-I-2 ro 4 a which gives, L3~0 and L9~0 Deflection from seat load/bending, w:=I~.a3w C2 ro C9 roC3 y bw.-L9--+L3 which gives, D C8 b b y b=-1.964 10 7 Deflection from seat load/shear, ro ro Ksa:=-1.2-In-a b y:=Ksa-which gives, sw'sa~W.623 y sw~-1.499 10 Deflection from seat load/hub compression,-2'1t'a y compr'tb L 2 which gives, y~-1.633 10 Total Deflection from unit seat load, y w:=y bw+'y sway compr which gives, y w~-3.626'10 Equilibnum contact load distribution, equilibrium 'which gives, yq yw Load perseat=2 tt a-~5.175 10 yq yw w equilibrium 560'241 Pressure Locking Force, COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP'MOV21 B page 3 I Niagara Mohawk Power Corporation Nuotear Ent/ineeriny Onglnatof/Date wowrop A'/r(gSrp7 NMP2 Catoutatton Cont.Sheet Checker/Date ~re rtr+p Pa//el&o/I>>A10.1-AD403, Rev.01 F pres loca'=2 tt a-(P cos(e)-sin(e))2 J tl>w which gives, F, 1~1, 1.035 10 Piston Effect Force, P at:=0 P piston etreet'='tern'(P ttonnet P ann)which gives, P piston street pt on 4"Reverse Piston Effect" Force, vertonnet up down Total Force Re uired to Overcome Pressure Lockin which gives, F~2.674 10 F totai:=F pres loca+F po+F vert-F piston effect which gives, F<<nd=1.196828 10'CTUATOR CAPABILITY: Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor: Thrust Capability: TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-000.5 TQm;=4.76 OGR:=52 Af:=0.9 Eff:=0.4 RV:=0.8591 TQout=65.766 Sf:=0.014500 THcap=4.536 1(P ft-1bs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:"-1.20 Thntat Margin:=THcap-(F tong KEi)Thrust Margin~%.826'10 1bs

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are unlikely to oVercome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PSWP21BA.MCD Valve ID: 2SWP MOV21B page 4

Niagara Mohawk Power Corporatke Nuciear Enginoerinp Orlglnatof/Data Qo nv rp>A tot s/s p lng NMP2 Calcukrtion Cont.Sheet CheckerlDate .~re/r7 Page7rtor/ p p A10.1-AD403, Rev.01 Valve ID no: 2SWP MOV66A Re uiredO enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: I Upstream pressure (psig), F:=108 Valve Bonnet pressure (psig), P b<=108 I Downstream pressure (psig), F go~0 Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a:=3.91 average disk thickness, t:=0.48 seat angle, a:=10 e:=--e 0.087 a tt 2 180 Valve Disk Material Properties: 'odulus of elasticity, E:=29400000 Other Valve Parameters: Poisson's Ratio, v.'=0.3 e is half disk'angle a Valve Factor VF:=0.65 Valve Stem Diameter, D~.=1.625 Static Unseating Thrust F po 9232 (reference: Test¹25, 10/5/94)(reference: NER-2M-010) CA L CULA77ONS: Coel'cient of fnction between disk and seat, It:=I--am(e)VF It=0.686 (reference ¹6)gives, DP avg 54 Fup+F de Average DP Across Disk, DP avg'Disk Etttthss Constsnts, D:=snd G:=Et E tk (t-s')2(tsv)which gives, D 2.977'10 and G=1.131~10 Geometry Factors, C 2.'=-I--I<<2 In-I b a 4 a b I b C 8.'=-I+v+(I-v)-2 a C3.---+I In-+--I C9---In-+-I--which gives, C 2 0.009 C 8~0.911 COMED Pi Evaluation PSWP66AA.MCD C 3=3.965'10 C 9=0.121 (o+Valve ID: 2SWP'MOVS48 page 1

Niapara Mohawk Power Corporation Nuclear Enpineerinp Oripinator/Oate Q~~~A'.g~Wiplpp NMP2 Calculation Cont.Sheet Checkerloate Pape75 ot/77 A10.1 AO403.Rw.Ot Addih'onel Geometry Factors, rp.'=b 2 4 2 2 fp fp fp fp LII=-I+4--5--4-~2+-In-64 a a a a rp I L17 4 4 2 I-U 0 0 a I--I----~I+(I+v)ln-4 a a rp which gives, L I I=1.378 10 and Moment Factors, 2 avg 9/2 Mg:=-'o)C8 2ab L 17=0.009'"'a'-ra'j 2b which gives, Mrb-8.373 and Qb-3118 Deflection from pressurelbending, a a avga 3 4 yb.'=Mrb-C2+Qb-C3-LII D D D which gives, y b-1.937 10 tI Deflection fmm pressure/sheer, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 Ksa DP av'g'a sq'G which gives, Ksa~%.012 end y'1.796 10 sq Deflection from pressure/hub stretch, P f'.=ll (a-b)DP vg-P force L y stretch'=rtb 2E which gives, P f0~661.191 II and y~tch-3.928 10 COMED PL Evaluation PSWP66AA.MCD Valve ID: 2SWP'MOV66A page 2

Niagara Mohawk Power Cotporatton Nuotear Enttineertntt Orfttlnatorioate >~~~>A'.g~c/gy+)NMP2 Catoulation Cont.Sheet Checkerloate 7/i/~y A10.1 AD403, Rw.01 Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q~-3.77I'10 r0.'=a ro L3.'=-.4a 2 2 ro a r0+I ln-+--I a ro a r0 L9.=-a 2 1+v a I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a.w C2 roC9 roC3 ybw.=L9--+L3 which gives, D C8 b b ybw 1835 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b a y:=Ksa-tG which gives, Ksa=-0.177 y=-I 272 10 Deflecflon from seat load/hub compression,-2 tt'a compr'tb L 2 which gives, y-1.459 10 Total Deflection from unit seat load, y w:=y bw+y sw+y compr which gives, y w 3 122'10 Equilibrium contact load distribution, yq we~bn~.=-which gives, w Load per seat=2 a a-296.797 yq yw equilibrium 12'081 Pressure LDCMng Force, COMED PL Evaluallon PSWP66AA.MCD Valve ID: 2SWP MOV66A pag8 3 0 Niagara Mohawk Power Corporation Nuciear Engineeiing Originator/Date a~"p" 4.~4/go/pr NMP2 Ceioiglation Cont.Sheet Checker/Date ~rs r.r r/PageTfo/I+'7 A10.1-AD403. Rev.01 F pres leak'tt a-" (p;cos(e)- sin(e))2 which gives, Fpres look=354.165 Yq Vrr Piston Effect Force, Pau'=0 2/F piston streetD stem'(p bonnet p atm)which gives, F piston eff~t=223.986"Reverse Piston Effect" Force, F<<.'=it a 2 P bonnet up gown Total Force Re uired to Overcome Pressure Lockin which gives, F v<<=452.0SS F total:=F pres look+F po+F v<<-F piston which gives, F+~=9.814267'10 ACTUATOR CAPABILITY: Actuator Mode)/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor: Thrust Capability: TQout THcap"=-Sf TQout:=TQI RV OGR Af Eff=SMB-00-15 TQrn:=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:=0.8838 TQout=141.339 Sf:=0.016407 THeap=8.615'10 ft-lbs ft-lbs Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Throat Margin:=THoap-(Fm~Kgi)n Thrust Margin-3.163'10 lbs

Conclusion:

Open Thrust Margin ls negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. 4 COMED PL Evaluation PSWP66AA.MCD Valve ID: 2SWP'MOV66A page 4 ll Niagara Mohawk Power Corporation N ucteaf Engineering Oflglnatof/Date A 0$g cfs E i)7 HMP2 Calculation Cont Sheet Checker/Gate ~/<C Page7+1/37 A10.1.AD403, Rev.01 Valve ID no: 2SWP'MOV66B Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), Pbo~ct-108 Downstream pressure (psig), P~o~.=0 Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a'.=3.91 average disk thickness, t:=0.48 seat angle, a:=10 6:=--6 0.087 a tt 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Other Valve Parameters: Poisson's Ratio, v.=0.3 6 ishalfdisk'angle u Valve Stem Diameter, D<~.=1.625 Static Unseating Thrust F po 7027 (reference: Test¹16, 3N/94)Valve Factor VF:=0.65 (reference: NER-2M-010) CALCULATIONS: Coefficient of friction between disk and seat, It:=cos(6)I--sitt(6)VF p 0.686 (reference ¹6)Pup+Pdo~A~erage DP Across Disk, DP ayg: P boggct-gives, DP=54 2 Disk SNnves Censlsnls, D:=snd G:=Et E 12 (!-v)2 (!vv)which gives, D 2.977 10 and G=1.131'10 I b a.b b a b Geometry Factors, C 2.=-I--I+2 ln-C'3'.=--+I h-+--I 4 a b 4a a'a I b C8.'=-I+v+(I-v)2 a b 1+v a I-v b 2 C9=--In-+-I--a 2 b 4 a which gives, C 2 0.009 C 8~0.911 C 3=3.965'10 C 9~0.121 COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWPeMOVSICB page 1 I, Niagara Mohawk Power Corgoration Nuctear Engineering Originator/Date ~~oPo W<~~M&7 NMP2 Catcutation Cont.Sheet Checker/Date ~/z/y y Page7?of/7 7 A10.1 AD403, Rw.01 Add/t/onel Geometry Factors, rp.'=b 2 4 2 2 fp fp fp fp L 11'=-1+4--5--4-2+-In-64 a aa a rp 4 2 I I-Y 0 0 a L17'.=-I--1----~I+(I+Y)In-4 4 a a rp which gives, L I I=1.378 10 and Moment Factors, L17=0.009 Mg:=-2 OP avg'a C 9~-a-rp-L17 C8 2ab~b:=-'"'(*-o*j , 2b which gives, Mrb=-8.373 end Qb~31.18 Deflection from pressureibending, a a avg a 3 4 y b'.=Mrb-C 2+Q b-C 3-L11 o o o which gives, yb~1.937.10 q Deflection from pressure I shear, 2 a rp rp K~:=-0.3 2 In--I+-~1-2 In-b a b 2 sa'vg a Sq'G which gives, K sa=%.012 end y-1.796'10 Sq Deflection from pressure/hub stretch, Pro~.'=m (a-b)DP~<-Pronx L>'uetch:=ttb 2E which gives, P fo~=661.191 end y~t h=-3.928 10 8 f COMED PL EvaluaIIon PSWP66BA.MCD Valve ID: 2SWP MOV66B page 2 I Niagara Mohawk Power Corgoration Nudear Engineering Originator/Date %~ryan~Ai 4&4'fdkpj NMP2 Calcuiation Cont.Sheet Checker/Date ~p/z/rz Page tourt/3 7 A10.1-AD403, Rw.01 Total Deflection due to pressure, y q y bq+y sq+y stretch which gives, y=-3.771~10 Additional Geometry Factors ro.'=a ro L3.'=-.4a 2 2 ro a ro+I In-+--I a ro a ro L9'.=-a r 2 1+v a I-v o-~In-+-I--2 ro 4 a which gives, L3~0 and L9~0 Deflection from seat load/bending, w:=1 a w C2 roC9 ro C3 ybw'9--+L3 D C8 b b which gives, y bw=-1.835 10 Deflection from seat load/shear, ro Ksa.'=-1.2-In-a b y:=Ksa-which gives, Ksa%.177 tG y~~-I:272 10 Deflection from seat load/hub compression,-2"tt.a y compr'b L 2 which gives, y-1.459 10 Total Detlection from unit seat loa'd, yw'bw+ysw+ycompr which gives, yw 3122 10 Equilibrium contact load distribution, w e,l;b~.--which gives, yw Load per seat r-2 tt a-296.797 yq yw equilibrium Pressure Locking Force, COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWP'MOV668 page 3

Niagara Mohawk Power Corporation Nuotear Engineering Onglnstor/Date ~~ny u P-<5/g/as/P7 NMP2 CaCulati'on Cont.Sheet Checker/Date 7 Page j/ot/W7 Atp.t-AD403, Rev.01 Fpres loci'.'=2 tt a-(it cos(e)-sin(e))2 which gives, pres leak W t Piston Effect Force, P au:=0"piston streettem 'i honest ann}which gives, F piston effect"Reverse Piston EIfect" Force, Fyert'=a'2'P bonnet P up down Total Force Re uired to Overcome Pressure Lockin which gives, F y~=452.088 Ftptai t=F pres]pck1 Fpp+Fyert Fpistpn effect which gives, F tp<7 609267 10 ACTUATOR CAPABILITY'ctuator Model I Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout THcap:=-Sf TQout:=TQm RV.OGR Af Eff=SMB-00-15 TQm.'=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:-" 0.8847 TQout=141.627 Sf:=0.016407 THcap=8.632 10 tt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCIQNG METHODOLOGY: KEI:=1.20 Thrust Margin:=THoap-(Fmmt KEI)Thrust Margin-499.005 1bs

Conclusion:

Open Thrust Margin is negative, therefore this valve and actuator are likety to overcome the theoretical pressure locking conditions evaluated. ra/d4clcvat 4 J Y/cl'payee j 4 vdry mrrvelvlcr gt ptgsl 1'AdNC is a/rrglk cgpn/icPt~r.p pggp these'rpr lreertrresureroskio1 Seeeranro COMED PL Evaluation PSWP66BA.MCD Valve ID: 2SWP'MOV66B page 4

Niagara Mohawk Power Corporation N)tctear Engtneerfng Orfgtnatorloate g~~A~Q-tt>>/sv NMP2 calo)station Cont.Sheet Checker/Date .Page~/3$A10.1-AD403, Rw.01 Valve ID no: 2SWP'MOV67A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P up 108 Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (pslg), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 u rt seat angle, a=10 e;=--e=0.087 2 180 Valve Disk Material Properties modulus of elasticity, E:=29400000 Other Valve Parameters: Poisson's Ratio, v:=0.3 e is half disK angle a Valve Factor VF:=1 Valve Stem Diameter, D st..=1.375 Static Unseating Thrust, F>>.=2534 (reference: Tesr¹10.1M')(reference: NER-2M-010) CALCULATIONS: CoeNicient of friction between disk and seat, it.=cos(0)-sin(e)lt 1.091 (reference ¹6)up~down Average DPAcross Disk,':=Pb gives, DP 54 2 Disk St)I)as ConstantsD:=,and G:=-Et E ,)s.()-s')2 (1+v)which gives, D 6.605 10 and G=1.131~10 1 b a b b a b Geomet/yFactors, C2.=-1--1+2ln-C3=--+1 h-+--1 4 a b 4a a b a'b 2 b 1+v a 1-v b 2 C8:=-1 v+C 9,---ln-+-~1-2 a a 2 b 4 a which gives, C 2 0.049 C 8=0.805 COMED PL Evaluation PSWP67AA.MCD C 3~0.005 C 9=0.241@7'alve ID: 2SWP MOVQ48 page 1

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Q~rwp o AiQrc44-4rjQ3/pQ NMP2 Calculation Cont.Sheet Checker/Date ~/4e Pag~bi yP Ato.t-AD403, Rev.01 Add/tional Geometry Factors, rp'=b I 64 2 4 2 rp rp rp 1+4.--5--4 a a a 2 rp a 2+-1n-a rp 1 L17 4 4 2 1-v rp ro 1--1----~1+(1+4 a a v)ln-a rp which gives, Moment Factors, L11 4.481.10 and L 17<0.046 Mg:=-2 avg a C8 a-rp-L17 2&b which gives, Mrb-13.186 and Q b=42.593 Deflection fmm pressure/bend/ng, 4&a avg'b'.=Mrb-C2+Qb-C3-L11 D D D which gives, yb~-1.752'10 Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2.1n--1+-~1-2 ln-b a b 2 sa'vg a t.G which gives, K sa=%.078 and y.=-2.09 10 sq Deflection from pressu/8/hub stretch, Pfpree tt (a b)DP avg P force L y stretch'=ttb 2E which gives, P fo~334.525 and y~~=-2.897'10 COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SWP'MOV67A page 2 I Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qc~r.))~4.C'~/g)(p-g NMP2 Calculation Cont.Sheet CheckerlDate Page Pfotr 37 A1 0.1-AD403, Rev.01 Total Deflectr'on due to pressure, y q'bq+y sq+y stretch which gives, y-4.131~10 Additional Geometry Factors ro'.=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9--a r 2 1+v a I-v o-In-+-I-2 ro 4 a which gives, L3~0 end L9=0 Deflection from seat load/bending, w:=I a w C2 roC9 roC3 ybw'-L9--+L3 which gives, D C8 b b ybw Deflection from seat load!shear, ro ro Ksa:=-1.2-In-a b y~:=Ksa-which gives, a tG Ksa~W.49 y sw~-1.301~IO Deflection fmm seat load/hub compression,.-2tta compr'tb L 2 E which gives, y compr Total Deflection from unit seat load, which gives, yw~2'868'10 yw'=y bw+ysw+ycompr Equilibrium contact load distribution, yq w equilibrium 'w Load per seat ra 2 tt a-170.165 yq yw which gives, equilibrium Pressure Locking Force, COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SNIP'MOV67A page 3

Niagara Mohawk Power Corporation Nuclear Engineering Originatorlnate A.+/b/nslPP NMP2 Catcutation Cont.Sheet Checker/bate Pagano//7/}At0.1.AO403. Rev.Ot F pres Jocktt'a'(tt'cos(e) -sin(e))2 Yq 1'w Piston Effect Force, P at:=0 2/piston effecttem'(bonnet etm}which gives, Fp~s 1~k=0.3 I which gives, F piston effect'160.368"Reverse Piston Effect" Force, F vert'=rt a~2 P bonnet up down sin(e)which gives, Total Force Re uired to Overcome Pressure Lockin F v~=104.517 F totat:=F pres tock+F po+F vert-F piston effect which gives, F>~=2.818478 10'CTUATOR CAPABILITY: Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout THcap:=-Sf TQout:=TQm RV OGR Af Eff=SMB-000-5 TQm'=5 OGR:=40 Af:=0.9 Eff:=0.4 RV:=0.8816 TQout 55.96 Sf':=0.014263 THcap~3.923 10 ft-lbs ft-Ibs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 n M tp.:=nr p yt.~ffffi} Thrust Margin=541.246 Ibs

Conclusion:

Open Thrust Margin is positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PSWP67AA.MCD Valve ID: 2SWP'MOV67A page 4 0 Niagara Mohawk Power Corporation Nudear Engineering Originator/Date >~i.p e A Q 4,/tr/~7 NMP2 Calcutation Cont.Sheet Checker/Date 7/</87 peg+Car r3'A1 0.1-AD403. Rw.01 Valve ID no: 2SWP MOV67B Re uiredo enin ForceDeternminationunderPressureLockin Conditions COMED Method DESIGN INPUTS'esign Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P>>.=108 Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a:=1.88 average disk thickness, t:=0.626 a tt seat angle, a:=10 e:=--e=0.087 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Other Valve Parameters: Poisson's Ratio, v.--0.3 0 ishalfdiskangle u Valve Stem Diameter, D<.=1.375 Static Unseating Thrust, F>>.=3092 (reference: Test¹12, 10/1M4)Valve Factor VF:=I (reference: NER-2M-Of 0)CALCULA77ONS: Coeflicient of friction between disk and seat, p:=coge)-'-s~(e)'lt 1.091 (reference ¹6)Average DP Acmss Disk, Disk StN'nes Constants, gives, DP=54 and G:=E 2 (I+v)up 1 down DP avg'bonnet 2 Et 3 i2(l-')which gives, D 6.605 10 and G=1.131~10 I'b b2 a bi Geometry Factors, C 2'=-I--~I+2 ln-C 3.=--+I In-+--I 4 a b 4a a b a I b c8:=-1+v+2 a b 2 C9---In-+-I--which gives, C 2 0.049 C 8~0.805 COMED PL Evaluation PSWP67BA.MCD C 3~0.005 C 9=0.241 Valve ID: 2SWP'MOVQ& page 1

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date Qo~np~A'-4~~ip/pp NMP2 Calcutatton Cont.Sheet Checker/Date elitism Page~fr+7 A10.1-AD%03, Rev.01 AddtI'onal Geomehy Factors, rp.'=b 2 4 2 2 rp rp rp rp L I I:=-I+4--5--4-~2+-~In-64 a a a a rp I L17 4 4 2 I-v ro ro a I--I----~I+(I+v)In-4 a a rp which gives, L11=4.481~10 and Moment Factors, 2 OPavg'r2 Mrb'=--'(a-rp)-LI7 C 8 2.a b L 17=0.046~b=-'"'(*-0*)2b which gives, Mrb-13.186 and Q b=42.593 Deflectfon from pressure/bending, 2 a avg a yb'=Mrb-C2+Qb-C 3-L11 ,o o o which gives, yb 1752 10 q Deflection from pressure/shear, 2 a r rp Ksa'=-0.3 2.1n--I+-~I-2 In-b a b 2 m'vg a t.G which gives, K sa=%.078 arid y'sq=-2.09 10 Deflection from pressure/hub stretch, P fprce tt (a-b)OP avg P force'L y stretch'=ttb 2E which gives, P f=334.525 and yst tch=-2.897 10 COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 2

Niagara Mohawk Power Corporation Nuoteer Engineering Originetotlnete goer gp o A 8~g/r->lpga NMP2 Cetouletion Cont.Sheet Page$hf/~A10.1-A@003, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq: ybq+ysq+y~~ which gives, y q=-4.131~10'I r.'=,a ro L3.=-.4a 2 2 ro a ro+I In-+--I a r a ro L9.'=-.a r 2 1+v&I-v 0-In-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection from seat load/bending, w:=I a w C2 roC9 roC3 L9--+L3 which gives, D CS b b y bw I'465'10 7 Deflection from seat load/shear, ro ro Ksa.'=-1.2-In-a b y~:=Ksa-which gives, Ksa~W.49 tG sw y-1.301 10 Deflection from seat load/hub compression, L-2'1t'a 2 y compr'=ttb E which gives, y~"1.023 10 Total Deflection from unit seat load, which gives, y w=-2.868 10 w equilibrium 14 406 yw:=ybw+ysw+ ycompr Equilibrium contact load distribution, yq w equilibrium 'which gives, yw Load per seat=2 tt a-=170.165 yq yw Pressure Locking Force, COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 3 0 tl Niagara Mohawk Power CorPoration Nuotear Engineering NMP2 Catoutation Cont.Sheet Checker/Date A+1 Pagee j'o//37 A10.1-AD403. Rev.01 F 1 k:=2 n a-(p cos(e)-sin(e))2 which gives, Fpres lock=3 0.3 Yq pres lock'w Piston Effect Force, P~'.=0 F rara airaar'D anan'P hennar Fane)whinh given F pinna airaar i60368"Reverse Piston Effect" Force, Fv~.=[en (gphe~ar-Pap-Pea~)]ain(8) whi hngive a Total Force Re uired to Overcome Pressure Lockin F vm=104.517"total'res lock+po~vert piston effect which gives,'to<3 376478 10 3.ACTUATOR CAPABILITYt Actuator Model/Size: Motor Torque Output: Gear Ratio: Application Factor.Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout:=TQm RV OGR.Af Eff TQout THcap.'=-Sf=SMB-000-5 TQm:=5 OGR:=40 Af:=0.9 Eff:=0.4 RV:=0.8825 TQout=56.074 Sf:-"0.014263 THcap~3.931~10 lt-lbs tt-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCKING METHODOLOGY: KEI:=1.20 Threat Margin:=Tiicap-(F n,ng.KEi)Thst Margin~-120.34 lbs IL~Conclusion: Open Thrust Margin is negative, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated> Ay ufetre 8 six r c Vle ieea~g p gn.ig go t./ns'e,~et g~>~fcms col'i egpecg4/Ho>dr ev'.COMED PL Evaluation PSWP67BA.MCD Valve ID: 2SWP'MOV67B page 4

Niagara Mohawk Power Corporation Nuclear Engineering 'go~ap n@Q+l>%i&7 Valve ID no: 2SWP'MOV94A NMP2 Calculation Cont.Sheet Checker/Date Pager/P P A10.1-AD403, Rev.01 Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTSr Valve Disk Geometry: hub radius, b:=3.375 hub length, L:=0.125 mean seat radius, a:=3.91 average disk thickness, t:=0.4S a ft seat angle, o:=10 e=--e=0.087 2 180 disk angle a Valve Disk Material Properties: e ishalf modulus of elasticity, E:=29400000 Poisson's Ratio, v:=0.3 Other Valve Parameters: Valve Stem Diameter, D<~.--1.625 Static Unseating Thrust, F~.=7751 (reference: Test¹26,$9i95)Valve Factor VF:=0.65 (reference: NER-2M-010) Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), P~.=10S Valve Bonnet pressure (psig), P bonnet=108 Downstream pressure (psig), P down'=0 CALCULATIONS: Coefllcient of friction between disk and seat, p:=cos(e)--a~(e)I VF~+p 0.686 (reference ¹6)Average DP Across Disk, Disk Stf'ffnes Constants, gives, DP=54 and G:=-E 2 (1+v)up+down DP avg'bonnet 2 Et u (i-.*)which gives, D 2.977 10 and G=1.131~10 I b a, b b a b Geometry Factors, C 2.=-I--1+2 ln-C3.'=--+I In-+--I 4 a b 4a a b a I b C 8.=-I+v+(I-v)2 a b I+v a I-v b 2 C9.---In-+-.I-a 2 b 4 a whichgives, C2 0.009 C 8 0.911 COMED PL EvalUation PSWP94AA.MCD C 3=3.965'10 C 9<0.121 A Valve lD: 2SWP'MOV page 1 Jl 0 Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date cQ~~~+z 4'~&/z 3j5p NMP2 Calculation Cont.Sheet Checker/Date Page~fo/r%~, A10.1&D40S. Rev.01 Additional Geometry Factors, rp,=b 2 4 2'o ro'o L11'=-1+4--5--4 64 a a a 2 ro a 2+-ln-a rp 1 L17 4 4 2 1-U 0 0 a 1--1----~11-(1+Y)1n-4 a a rp which gives, L11=1.378.10 and Moment Factors, 2 DPavga C9 I 2 Mrb'0 j C8 2ab L 17=0.009'"'(*-0*)2b which gives, M rb=-8.373 and Q b=31.18 Dellection from pressureIbending, 4 a DP avg a yb'.=Mrb-C2+Qb'C3-.L11 D D D which gives, yb 1937 10 q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 21n--1+-1-21n-b a b ysq'=.2 sa avg a tG which gives, K sa=%.012.and y.~-L796 10 sq Deflect/on from pressure/hub stretch, Pforce'.=tt (a-b)DPavg P force L y stretch=nb 2E which gives, P force~661.191 and y stretch-3.928'10 COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP'MOV94A page 2

Niagara Mohawk Power Cotporauon Nuclear Engineering Orlginatorlnate cCiygpg NMP2 Calculation Cont.Sheet chackarlDste ~~/g/rr Page/~/'3 7 Ato.t-AD403, Rev.01 Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q=-3.771~10 ro:=a ro L3'=-.48 2 2 ro a ro+I ln-+--I 8 ro a ro L9--a 1 I+v a I-v o-ln-+-I-2 ro 4 a which gives, L3~0 and L9=0 Deflection from seat load/bending, Wi=I 8 w C2 roC9 roC3 ybw.'=L9--+L3 which gives, D C8 b b y bw=-1.835'10 7 Deflection from seat load/shear, ro ro Ksa.'=-1.2-In-a b 8 y~.--Ksa-tG which gives, Ksa=%.177 y sw=-1.272'10 Deflection from seat load/hub compression,-2 tt.a y compr'tb L 2 which gives, y compr'otal Deflection from unit seat load, y w:=y bw+'y sw+y compr which gives, yw 3122 10 which gives, Equilibrium contact load distributfon, yq w equilibrium 'w Load per seat-"2 tt a-~296.797 Jq yw equi]ibrium Pressure Locking Force, COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP'MOV94A page 3

Niagara Mohawk Power Corfgoratfon Nucfear Engineering t3rfginator/Date roy o Af~Q lfClgnlr p NMP2 Catculation Cont.Sheet Checker/Date jgl rp It./f/Page9+f/3 7 Atp.1 AD403, Rev.Ot F 1~'=2 ft a-(it cos(6)-sin(0))2 which gives, F pres lock=354.165 pres lock Yw Piston Effect Force, P an:=0 ft piston effect'tem'i bonnet p atm)which gives, F tstpn~~t 223 986"Reverse Piston Effect" Force, F veft a a 2 P bonnet P up P down sm(1)which gives, Total Force Re uired to Overcome Pressure Lockin F~=452.088 F<<tal:=F pres lock+F pp+F veft-F piston effect which gives, F<<~=8.333267 10'CTUATOR CAPABILITY: Actuator Model!Size: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem Factor.Thrust Capability: TQout:=TQm RV OGR Af Eff TQout THcap:=-Sf=SMB-00-15 TQm'.=14.74 OGR:=34.1 Af:=0.9 Eff:=0.4 RV:=1.0 TQout~180.948 Sf:=0.016407 THcap=1.103 10 tt-lbs ft-lbs lbs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KE[:=1.20 Thrust Margin:=THcap-(F m~KEI)Thust Margin~1.029 10 1bs

Conclusion:

Open Thrust Margin ls positive, therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL Evaluation PSWP94AA.MCD Valve lD: 2SWP MOV94A page 4

Niagara Mohawk Power Corporation Nuclear Engineering Originator/Date >~.p..4-Q~/iabp NMP2 Calculation Cont.Sheet CheckeriDate r/s/N7>>Pag~of/5'7 A10.1.AD403, Rev.01 Valve ID no: 2SlrrVP'MOV94B Re uired 0 enin Force Oeternminafion under Pressure Lockin Condifions COMED Method DESIGN INPUTS: Valve Disk Geometry: hub radius, b:=3.375 mean seat radius, a'.=3.91 average disk thickness, t:=0.48 seat angle, a--10 0:=--0 0.087.a rt 2 180 8 ishalfdiskangle a hub length, L:=0.125 Valve.Disk Material Properties: modulus of elasticity, E:=29400000 Poisson's Ratio, v.=0.3 Other Valve Parameters: hl Valve Stem Diameter, D z.'=1.625 Static Unseating Thrust, F po 8674 (reference: Test¹6, tV1M3)(reference: NER-2M-010) Valve Factor VF:=0.65 Design Basis Conditions at tIme of Pressure Locking Event: Upstream pressure (psig), Pp.=108 Valve Bonnet pressure (psig), P bonnet" 108 Downstream pressure (psig), P down 0 CALCULA77ONSi CoeNicient of fnction between disk and seat, p:=cue)-sin(0)p 0.686 (reference ¹6)Average DP Across Disk, Disk Stiffnes Constants, gives, DP=54 Sfl(t G:=-E 2 (1+v)up+down avg'onnet" 2 Et r2 (r-')which gives, D=2.977 10 and G 1.131~10 1 b a.b b a GeometiyFactors, C2.'=-1--1+2ln-C3.'=--+1 h-+4 a b 4a a b 1 b C8:=-1+v+(1-v)2 a b 1+v a 1-v C9.--.-ln-+-a 2 b 4 which gives, C 2 0.009 C 8 0.911 C 3=3.965'10 C 9=0.)21 COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP MOV94B page 1

Niagara Mohawk Power Corgoration Nuclear Engineering Originatorloate ~~pc, Q.g~~gyypp NMP2 Calculation Cont.Sheet akkkkklrakrk ~7/a/r7 Page95of r~'7 A10.1 AO403, RW.01 Additional Geometry Factors, rp',=b 2 4 2 2 rp rp rp rp L 11'=-I+4--5--4-~2+-In-64 a a a a rp I L 17.'=-4 4 I-v 0 I--I--4~a 2 rp a~I+(I+v)ln-a rp which gives, Moment Factors, L I I 1.378 10 and L 17=0.009 Mg:=-2 DP avg a C8 a-rp-L17 2ab'"'(*-0*)2b which gives, M*-8.373 and Q b~31.18 Deflection from pressure/bending, r 4 a a avg a y b'.=M rb'C 2+Q b-C 3-L 11 D O O which gives, yb~-I 937 10 , q Deflection from pressure/shear, 2 a rp rp K~:=-0.3 2 In--I+-~I-2 In-b a b 2 Km.DP avg a t.G which gives, K~~%.012 and y-1.796'10 sq Deflection from pressure!hub stretch, Pra~.'=a (a-b)DPak<P force'L y stretch'tb 2E which gives, P f0~'"~661.191 and y stretch=-3.928 10 COMED PL Evaluation PSWP94BA,MCD Valve ID: 2SWP'MOV948 page 2 1 I'I Niagara Mohawk Power Corporation N uotear Engineering Originator/Date ~reap g, A'MP2 Calcuiation Cont.Sheet cweaea as<a~Page94efi' P A10.1-AD402. Rev.01 Total Deflection due to pressure, yq'bq+ysq+ystretch which gives, y=-3.771~10 Additional Geometer Factors r:=a ro L3'=-4a 2 2 ro a ro+I In-+--I a ro a ro L9.=-.a 2 I+v a 1-v ro-ln-+-I-2 ro 4 a which gives, L3=0 and L9=0 Deflection fmm seat load/bending, w:=I a w C2 roC9 roC3 ybw:=----L9--+L3 whichgives D C8 b b ybw~-1.835 10 Deflection from seat load/shear, ro ro Ksa:=-1.2-ln-a b y:=Ksa-which gives, a sw'sa~%.177 y sw~-1.272.10 Deflection from seat load/hub compression,-2'tt a compr'tb L 2 which gives, y compr Total Detlection from unit seat load, yw:=y bw+ysw+ycompr which gives, y w 3.122 10 Equilibrium contact load distnbution, w e~bn~.'=-which gives, yq yw Load per seat>>-2 tt a-~296.797 yq yw w equilibrium 12.081 Pressure Locking Force, COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP'MOV94B page 3

Niagara Mohawk Power CorPoration Nucfear Engineering Onginator/Date wo~rzp rr~rob/p'/zs jpQ NMP2 Cafcufation Cont.Sheet Checker/Date.ir/fCj7 Pagerr/of J9~A10,1.AD403, Rev.Ot 2., q.(.~>0)<0)).2 whichgives, Fp 1~k=354 165 Yq Yw Piston Effect Force, Pat:=0 2/p piston streetD stem'(Pbonnet Pstm)wh/ch give~, F p,.st,n cff~t=223.986 s"Reverse Piston Effect" Force, Fcrt.'-.ft a 2 Pbonnct-Pup-P flown sin(8)which gives, Total Force Re uired to Overcome Pressure Lockin F v~=452.088 F tptat.'=F pres loci'+Fpc+F vert-F piston cffcc which gives, F t~9.256267'10 'CTUATOR CAPABILITY: Actuator Model/Sizar Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency: Reduced Voltage: Torque Output: Stem factor.Thrust Capability: TQout THcap:=Sf TQout:=TQm RV OGR Af Eff=SMB-00-15 TQm',=14.74 OGR:=34.1 Af:=0.9 Eff'=0.4 RV:=1.0 TQout~180.948 Sf:=0.016407 THcap=1.103'10 ft-lbs ft-lbs 1bs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOCNNG METHODOLOGY: KEI:=1.20 Tbrnst Msrttin=THcsp-(F tomt KEI)Thrust Margin~-78.799 1bs Qt/1

Conclusion:

Open Thrust Margin Is negative, therefore this valve and actuator are likely to.overcomethetheoreticalpressurelocklngconditlonsevaluated> pe~ever HAe rr/a~giw/~ ao girasol graf Hriis r/d/'~pgaep~ 4)drifts~<~4 COMED PL Evaluation PSWP94BA.MCD Valve ID: 2SWP'MOV94B page 4

hl Y NlAGARA H Q MOHg~K..CALCULATION CONTINUATION'SHEET NUCLEAR ENGINEERING Page (Next~at Nine Mile Point Nuclear Station Unit: 2 Disposition: NA Originator/Date Checker/Date cgiOWWP'ffe~ggP ria/~r A10.1-AD-003 Revision 01 ATTACHMENTS FORMAT¹NEP-DES-08, Rev.01 (F02)

NIAG&M IITOHAWK Persons Involved: CACCldll/0>: A/0, (-AD a&9 P gv'(AA sl~ed/g NUcr.Em~~~Ay~P gg NG~~G NOTES OF TELEPHONE CONVERSATION NMPC: Gaines Bruce Anchor/Darling: Ron Brubaker Date of Conversation: Tuesday, August 22, 1995

Subject:

Internal Valve Dimensions for 2CSH*MOV101 2:45PM Summary of Conversation: Ron called to state that he was working on our P.Q.to provide internal valve dimensions. Ron stated that as I had previously requested, that he was calling to provide me the dimensions for 2CSH~MOV101 in advance of the formal response.Applicable dimensions for 2CSH*MOV101 are: Seat OD: Seat ID: Hub Diameter: Wedge angle: Top of disc width: Bottom of disk width: Hub width: 13 1/2 inches 11 inches 4 inches 6 degrees (includes both faces)2.013 inches I/306 inches P/, Pod")3/16 inch Ron stated that there was about 1/8 inch of hard facing on the disc scat.I advised him that I thought that MPR wanted thc width less hard facing.Ron'also stated that the hub width was not a uniform width from top to bottom.The sides are abrasive cut and that is the 3/16 inch dimension. Ron stated that he would try ta clarify what is being provided in the formal response.Action Required and Due Dates: No specific actions are to result f'rom this discussion. Anchor Darling is to,comply with P.O.Commitments: N/A xc: Ron Brubaker (by fax) 0 Niagara Mohawk Power Corporation -Veian P.O.P9-80572-K Dimensional Data for Pressure Locking Analysis DM-0050 cP 0 Valve ID 2RHSA MOV112 Velan Dw.No.P2-7026-N13 item 49 20 17.625 15.935 Seat Dimensions Size OO ID Hub Dia.1<.250 0,37K%6/Hub Top of Disk Width Thick"ess Bottom of Disk Wedge Bonnet Thickness An le Volume 1.330 10 4464.7 2RHS*MOV113 P2-7026-N13 48 20 17.625 15.935 i 4.250 0.375 1.330 10 4464.7 2RHS*MOV1 5A 2RHS*MOV1 5B 2RHS*MOV25A 2RHS*MOV2sB 2SWP'MOV21A 2SWP*MOV21 B 2CSL4 MOV107 2SWPA MOY67A 2SWP*MOV67B 2ICS*MOV129 P3-7026-N10 P3-7026-N10 P3-7026-N10 P3-7028-N10 P3-7026-N18 P3-7026-N18 P3-7026-N2 P3-7026-N18 P3-7026-N18 P3-7026-N2 47 47 47 47 62 62 13 77 77 24 16 16 16 16 15.906 15.906 15.906 15.906 3.125 3.125 3.938 3.938 3.938 6.250 14.906 14.906 14.906 14.906 2.760 2.760 3.576 3.576 3.576 5.750 1'..500 i1.500 11.500 11.500 1.750 1.750 2.500 2.500 2,500 4.500 0.~00 0.600 0.500 0.600 0.500 0.500 0.500 0.500 0.500 0.250".~BP 3.882 1.882 1.882 0.528 0.528 0.628 0.628 0.628 0.412 1.406 1.406 1.406 1.406 0.552 0.552 0.624 0.624 0.624 0.343 10 3238.9 10 3238.9 10 3238.9 10 3238.9 10 639 10 63.9 10 111.0 10 111.0 10 111 0 7 215.3 2ICS*MOV136 2HH8'OV4A P3-7026-N2 24 P3-7028-N2 26 6.250-8.260 5.750 6.760 4.500 4.600 0.250 0.412 0.260 0.412 0.343 0.343 7 216.3 7 2163 2RHS*MOV4B 2RHS*MOV4C P3-7026-N2 P3-7026-N2 2SWP*MOV17A 2SWPo MOV17B 2SWP'MOV1 BA P3-7026-N6 P3-7026-NB P3-7026-N6 2SWP*MOV66A P3-7026-N6 2SWP*MOV66B P3-7026-N6 2SWP'MOV94A P3-7026-N6 2SWP*MOV94B P3-7026-N6 25 25 65 65 66 66 37 37 38 6 6 8 8 8 8 12 12 12 6.250 6.250 8.063-8.063 8.063 8.063 11.750 ii.7s0 11.750 5.750 5.750 7.563 7.563 7.563 7.563 11.250 11.260 11.250 9.875 9.876 9.875 0,250 0.260 0.250 4.500 0.250 4.500 0.250 6.750 0.250 6.750 0.250 6.750 0.250 6.750 0.250 0.412 0.412 0.471 0.471 0.471 0.471 0.671 A P7<9 67"-0.343 0.343 0.478 0.478 0.478 0.478 0.906 0.906 0.906 7 21s3 7 215.3 10 434.3 10 434.8 10 434.8 10 434.8 7 1294 0 7 1294.0 7 1294.0 2SWP*MOV18B 2RHS'MOV1 15 2RHS*MOV1 16 2ICS*MOV1 26 2ICS*MOV122 2ICS~MOV1 21 P3-7026-N6 P3-7026-N6 P3-7026=N6 P3-7026-NB P3-7026-N10 P2-7026-N17 2ICS*MOV128 P2-7026-N17 Note: Dimensions are ln inches.38 46 45 30-40 36 69 12 16 16 6 12 10 10 11.750 15.906 15.906 5.875 11.750 8.750 8.750 11.250 14.906 14.906 5.332 11.250 8.030 8.030 9.875 11.500 11.500 3.000 9.875 6.125 6.125 0.250 0.500 0.500 1.000 0.250 0.375 0.375 1.882 1.882 1.000 0.671 0.826 0.826 0.906 1.406 1.406 1.123 0.906 1.197 1.197 7 129.0 10 3238.9 10.3238.9 10 283.4 7 1294.0 10 617.2 10 617.2 Prepared by: John McDougall 24/08/1995 Rev 1 ' 4M~M me.~C P~qt cd=4 C z4 COMMONWEALTH EDISON COMPANY PRESSURE LOCKING TEST REPORT Brian D.Bunte, P.E.Commonwealth Edison Company John F.Kelly, P.E.RECTA Technologies, inc.ABSTRACT Pressuie Locking is a phenomena which can cause the unseating thrust for'gate ygye to increase dramatically from its typical static unseating thrust.This can result in the valve actuator having insufficient capability to open the valve.In addition, this can result in valve damage in cases where the actuator capability exceeds the valve structural limits.For these reasons, a proper understanding of the conditions which may cause pressure locking and thermal binding, as well as a methodology for predicting the unseating thrust for a pressure locked or thermally bound valve, are necessary, This report discusses the primary mechanisms which cause pressure locking.These include sudden depressurization of piping adjacent to the valve and pressurization of fluid trapped in the valve bonnet due to heat transfer.This report provides a methodology for calculating the unseating thrust for a'valve which is pressure locked.This report provides test data which demonstrates the accuracy of the calculation methodology. DESCRY"HON OF PRESSURE LOCKING PHENOMENA Pressure locking occurs when the bonnet cavity pressure of a gate valve exceeds the pressure on hgh sides of the valve disk.The two primary mechanisms that exist for pressure locking of gate valves are described below: This pressure locking mechanism occurs when a valve is pressurized from one side.Leakage past the valve scat will cause the fluid in the gate valve bonnet to pressurize to.,the pressure of the high pressure side of the valve disk.Depending on the leak-tightness of the valve seats, this pressurizatio process may take seconds or hours;however, it is extremely unlikely that the valve seat will be sufficiently leak tight to prevent this process from eventually occurring. If the source of pressure is suddenly removed, then prcssure in the bonnet valve will remain trapped.If the valve is called upon to open before the bonnet pressure has decayed to the line pressure, then a pressure locking event occurs.e The'time needed for the bonnet pressure to decay is dependent on several factors including leak tightncss of valve seats and packing.In addition, when the bonnet fluid is at a high temperature or contains large amounts of air, the, bonnet pressure decays much more slowly due to the pressurizer effect.Apparent cases of pressure locking occurring up to a day after the pressure source is removed have been recorded.However, test data presented later in this report suggests that the bonnet pressure is likely to decay within one hour of the sudden depressurization event 3C-9'UREG/CP-0152 0'I 0 g44 iehwy~y C C~~c+C2~urring~is type of pressure locking is likely to occur when pumps adjacent to closed valves shut off or when an event such as a LOCA causes pressure on one side of a valve to suddenly<<op<<f~en the initial differential pressure across the valve disk is sufficient to unseat the high pressure side disk from its seat, then the bonnet pressure following a sudden depressurization event is less than the bonnet pressure at the start of the event.The maximum pressure which can be trapped in the valve bonnet can be calculated by determining the differential pressure at which the valve disk will come back into contact with the valve seat.Until the disk to seat contact is re-established, the bonnet pressure will follow the.upstream side pressure.This calculation has been developed by ComEd, but is not provided in this report due to constraints on length.This pressure locking mechanism occurs when the valve bonnet cavity of a gate valve is filled with liquid that contains little or no air.If a heat source is applied to fluid in the valve bonnet cavity, then expansion of the fluid can cause pressure in the valve bonnet to dramatically increase.The heat source can be fluid in piping adjacent to the valve or external environmental conditions as might be encountered following a high energy line break.Pressurization rates of-20 psi/'F to 60 psi/'F have been recorded during special testing.However, pressurization rates of this nature require the following conditions to exist: the valve seats and pachng must be very leak tight~the heat source must provide a high heat transfer rate to the bonnet cavity fluid~no air can exist in the valve bonnet cavity, or the temperature rise in the valve bonnet cavity must be sufficient to cause the expanding fluid to collapse the air bubbles before the high pressurization rate can be achieved.PRESSURE LOCKING CALCULATION MEI'HODOLOGY 1.The valve disk is assumed to act as two ideal disks connected by a hub.The equations in reference 1 are assumed to conservatively model the actual load due to pressure forces, 2..The coefBcient of friction between the valve, seat and disk is assumed to be the same under pressure locking conditions as it is under DP conditions. NUREG/CP4152 3C-10

~X~U4aa KLb K A)i-CQX<o i k44~~h~g~+C~%c.K cgn'nputs are used in calculating the force required to unseat a pressure locked MOV: i~sign~is Pressure Conditions at the time of the pressure locking event.This includes the upstream (PP, downstream (P~g, and bonnet pressure (P~J.~Valve Disk Geometry.This includes the hub radius (b), hub length (L), mean seat radius., (a), seat angle (8), and average disk thickness (t).Figure 1 below is provided, for further clarification. When the hub cross-section is not circular (e.g.many Westinghouse gate valve designs), then an effective hub radius which corresponds to a circle of equal area to the hub cross-sectional area should be used.~Valve Disk Material Properties. This includes the modulus of elasticity (E)and the Poisson's ratio (r)for the disk base material.~Valve Stem Diameter (D~II~Static Unseating Thrust (FP~Coefficient of Friction between Disk and Seat (p)3C-11 NUREG/CP-0152 0 FIGURE 1 SEAT RlNG VALVE DISK I Seat Ring Centerline Plane of Symme Through Olsk The methodology for calculating the thrust required to open the MOVs under the pressure locking scemuio is based on the Reference 1 (Roark's)engineering handbook.This methodology is based in part on calculations developed by MPR Associates (Reference 2).The methodology determines the total force required to open the valve under a pressure locking scenario by calculating the four components to this required force.The four components of the force are the pressure locking component, the static unseating component, the piston effect component, and the"reverse piston effect'omponent. These components are determined using the following steps.NUREG/CP4 152 3C-12 II II I~,~n led as two plates attached at the center by a hub which is concentric with plane of symmetry is assumed between the valve disks.'This plane f symmetry is considered fixed in the analysis FIGURE 2 Hane of Symmetry Modeled As:-I-Axis af Symmetry 3C-13 NUREG/CP-0152

~~IJQ (~l~i~%4gt 44+b.~Q~q~+C gascxf on this geometry, the fo>>o~ing constants are calculated using the Reference i equations: Average DPAcross Disk P+P~OP~-Pbo Disk Stress Constants Ext (Reference I, Table 24)D-12x/1-v'-.2x(1+v)Geometry Factors b (Q.g b's FM~INB (Reference 1, Table 24)1 C=-1-2 4 b C=-4a I 1+2 b'2+1 a a b-+--1 b a (4)1 C=-I 2 b C=-9 a I+v+(1-v)-a 1+v a 1-v+2 b 4 b 2 1--a (7)hHGKG/CP4 152 3C-14

gQ a(, ji L)-4~++~eh~pn+C V)qz c The pressure force is assumed to act uniformly upon the inner surface of the disk between the hub diameter and the outer disk diameter.The outer edge oi the disk is assumed to be unimpeded and allowed to deflect away from the pressure force.In addition, the disk hub is allowed to stretch.The total displacement at the outer edge of the valve disk due to shear and bending and due to hub stretch are calculated using the Reference 1 equations. FIGURE 3 shear~am.~stretch Addtdonal Gccwcny Facmrs (lbfcrcncc l.Toblc24)(r,~b for'Cacc2L) PuP2 P3 ,1]+(]+v)Moment F~()$g~s g ('D()-DP x C-c i (()(2ssasaa 2 Ta(sla 24,Csaa2L) hf>>2 (a-as)Lss](r,~b for Cocc2L)~DPav (~~)22(b Dcjfccclccc jhraprccc()tel bcatbg a'i DPassg a a'PalaasaaL1 a(s(a2(Ccaa2L)yk(a Cs Q(s-Cs-.D-(ss 3C-15 NUREG/CP4152

4~bc X~Wi-o~A,LO.E-KC-O~~0 44~~4~a~%C C S~+~~Co Deflect to from pressure.'hear (peference 1, Table 25, Case 2 L)Ksa=-0.2t---'-2l (13)(r,=b for Case" L)K,.x DPavgxa'xG Deflection Po pressure I hub stretch P>=tr (a'b')DPavg-Pj L n xb'2xE Total Deflecti ondueto pressure (17)An evenly distributed force is assumed to act between the valve seat and the outer edge of the valve disk TNs force acts to deflect the outer diameter of the valve disk inward and to compress the disk hub.The pressure force is reacted to by an increase in this contact force between the valve disk and seats.The valve body seats are conservatively assumed to be fixed.Therefore, the deflection due to the known pressure load must be balanced by the deflection due to the unknown seat load.The deflection due to the pressure force was previously calculated. The Reference 1 equations are now usod to determine the contact force between the seat and disk which results in a deflection which is equal and opposite to the deflection due to the pressure force.This is done by first calculating the amount deflection created by a unit load of seat const force (w~1 lbf/in).The equilibrium contact load is then determined by dividing the deflection caused by the unit contact load into the previously calculated deflection due to the pressure force.The equations are provided below.NUREG/CP%152 3C-16

i~a+o~k<O>-4>-<<~hA4.Ac%w ca+p~gg Q Q o+C-Z4 rfdditional Geometry Factors (Reference I, Table 24, Case IL)rn L,=-4xa l ro+I a 2 a r, I-+--I r, a (18)(for Case IL, r,=a,.L3=Q=0)>>0 a I+v-I 2 a I-v+ro 4-H Deflectionjom sea load/bending (r,=a)~,~pc/yp (Reference I, Table 24, Case IL, w=I)(2o)Deflection f>>om seat load/sltea>> (>>=a)(ReferenceI, TaMe25,CaseIL,w=1) E'-12-'a b (21)y=E-(22)Deflectt'onPomseat load I hub cour.Zxg xa w=I,.'.'Cnryres.hefo>>ce=2xe xa y zxb (23)Total Deflectionporn uni seat load (w=1)'.=y+y+y (24)3C-17 NUREG/CP-0152 ~'0 g g4i~4~i>+C C sa~+'C~+nt t load'istribution (ibf/in)and the corresponding load applied Therefore, the equilibrium contact to each seat is cu t s calculated. using the relationship bc}ow.., it'll eX.iscalculated fpp~Load per seat=2 x g x a x-(25'26 be used to determine an appropriate scat to disk friction coefficient. Using Several methods may u e c followin uation this friction coc cient an a', c'ri'fi'and a force balance on the disk to,seat interface, thc'cq between is derived for cu ating e s cal I'h tcm force required to overcome thc increased contact load the seat and disk: F=2xgrxax-'[pxcos{8)-sin{8)jx2 prcskek (27)wlenil the lass 2 corraposdssothenumber of scam The static unseating force results from the open pac g o n kin load and pullout force'due to wedging of the valve disk during closure.These loads are superimposed on the loads due to c pressure forces which occur during pressure locking.The value for this load is based on static test data for the MOVs.I~The piston effect due to vaIve internal pressure acceding outside pressure is calculated using the standard ln usuy'eq dard'usuy'equation This force assists movement of the valve stem in the open direction. 2 F=-x D x Pb<<<<,-P<<III)plsross cffecs 4 srtlss{2S NUREG/CPA 152 3C-l8

The reverse piston effect is the term used in this calculation to refer to the pressure force acting downward against the valve disk.This force is calculated as follows: F,,=<xa x 2xP~-P,,-P, xsing (29)HGURE 4 P 1oanet P bonnet3C-19 NUREG/CP-0152

~~Xc Io.+s'o<EhtO~t-h<0-<<>k44~~4 we~+C~4K2c As mentioned previously, the total stem force (tension)required to overcome pressure lochng is the sum of the four components discussed above.All of the terms are positive with the exception of the piston effect component. (30)DESCRIFMON OF TEST VALVES The three test valves were obtained from different sources.The Crane valve is a test valve located at Quad Cities Station.The Westinghouse valve was obtained through the Westinghouse Owners Group.The Borg-Warner valve was obtained from Arizona Public Service.The Cram valve is a spare valve which was subjected to blowdown testing at Wyle Laboratories in Huntsville, Ahlmmt.The Westinghouse valve is a test valve which was subjected to limited testing at South Texas Project.The Borg-Warner valve was a spare valve which had not been subjected to previous testing other than that performed at the vendor prior to delivery.Thc Crane valve is a carbon steel valve (Model 783-U)which was modified during blowdown testing to contain a stainless steel valve disk and malcolmized guide rail (similar to the Model 783-UL valve design).The Westinghouse valve and Borg-Warner'alve were stainless steel valve designs.NUREG/CP4152 3C-20 11 DMM~'ION OF TEST'APPARATUS ~Xc~~W~q>K~@, (Z xy-u gg4hc4~+~+c 4 C The figure belo w shows the basic test setup used for the pressure locking tests.A VQTES'4 t acquisition system and a Motor Power Monitor (MPM)data acquisition system were used to collect stem thrust, actuato r torque and motor power data.In addition, on-line pressure data was collected during the Westinghouse and Borg-Warner valve tests.A hydrostatic test pump and accumulator were used as the pressure source during pressure locking tests and hydrppump DP tests: HGURE S VOTES m Llmttarq.MPM system Vent 88 S>>In Ga" Qe Accumutator Pressure Gauge Pressure Gauge Hydro Pump~1 Pressure Gauge Pressure Gauge Vent For the Crane test, the valve was laid on its siCk with the stem slightly below horizontal. This configuration was used to enlire that no air pockets would be trapped within the valve body when it was filled with water.The Westinghouse valve was installed in a test stand with the stem upright.The valve bonnet was vented by bleeding air out of thk packing leakwff line.'The Borg-Warner valve was installed in a special test stand which allowed pivoting the valve abo'erline The valve stem could be put at any angle between upright and sloped ut 1'ts cen~~~~~valve bonnet, the downward at a 15 degree angle in either direction. To remove air from the valve bon valve was rotated on its siCk and rocked up and down as it filled with water.3C-21 NUREG/CP4152

DESCRY'TION OF TEST METHODS The test process started with static test strokes to verify the proper installation of the data acquisiti systems and to measure static unseating load magnitude and repeatability. LLE K RAT T Local leak rate tests of the valves were performed to measure seat tightness. These tests wi performed at multiple torque switch settings in some cases.DP Tests in the open direction were performed by pressurizing the valve from one side with hydropump and then stroking the valve open.Test data indicates that the differential pressure i maintained across the valve disk while the disk slid across the valve seat.The purpose of the DP tc was to precondition the valve seats and disks and to monitor the seat-to-disk friction coefficient. DP tests were performed until a stable friction coefficient was achieved.A series of pressure locking tests was performed fot each valve.Inlet pressure, outlet pressure, bon pressure, and static seating force were varied during these tests.Static baseline tests to measure static unseating load were performed between the pressure locking tests.Thc closure strokes for static tests were performed at the same initial conditions (pressure and seating force)as the clos strokes prior to the pressure locking tests so that the change in unseating load due to pressure lock could be accurately determined. To measure the seat tightness, bonnet deprcssurization rate tests were performed. The entire v assembly (including the valve bonnet)was pressurized while in the closed position.Then the upstr and downstream pressute wcte vented.The bonnet pressure as a function of time was measured.To'easure thc potential for pressure locking due to bonnet fiuid heat-up, thermally induced boy pressurization rate tests were performed on the Westinghouse and Borg-Warner valves.After ven air from the valve bonnet cavity, each valve was closed while filled with water at approximately psig.The valve bonnet was then heated using an outside heat source.The pressure of the fluid in valve bonnet was measured directly.The temperature of fluid in the valve bonnet for the Borg-Wa valve and the temperature of the outside of the valve bonnet for the Westinghouse valve were measu Initial pressurization rates between 0.5 and 2.0 psi/degree F were measured.Much higher ultir NUREG/CP4152 3C-22 1 klO<-Ab-o 9 C tW e 4C.~W pressurization rates were witnessed during the Borg-Warner tests.The data from this testing is not presented in this report, but is available from ComEd upon request.PRESSURE LOCKING TEST DATA The following table provides the pressure locking test results comparing the measured pressure locking unseating load to the predicted pressure locking unseating load: TABLE 1 IncraLse ercent Conservatism (Non-Cons.) Notes fan4 1 4 1 4 1 14 el ,4 fg o fg o fg o fg-fg e fge~fge~1 4 el 4 fge~fge~fg~3ce23 NUREG/CP-0152

6+~~M~Vw+c.g(e%(fg o i fg o I org-rg-.IO rg-.I rg-.I rg"~I tattc Unseating Thrust 1 4 c lncratse 1 4 d Increase ercent'onservatism (Non-Cons.) Notes NOTES: 1.The percent conservatism values are calculated after a"memory effect" of 3100 lbf (at TSS=1)or 3500 Ibf (at TSS=2)is added to the predicted pressure locking load.Testing indicated that the process of applying and then relieving pressure against one side of the closed valve was sufficient to cause the unseating force to increase by these amounts, even when no pressure was captured in the valve bonnet.This effect was only noted for the Borg-Warner test valve.2.When bonnet pressure significantly exceeds the pressure class rating of the test valve, the pressure locking calculation methodology appears to become non~nservative. 3.Tests 86 and 95 were performed to quantify the"memory effect" for the Borg-Warner valve.Thcsc tests were performed like a pressure locking test in that high pressure (-600 psig)was put against one side of the valve disk and then bled off.However, any pressure that entered the vaLve bonnet was relieved prior to the opening stroke.J 4.The AC motor for the test valve staned during this test and the valve did not fully unseat.Test data suggests that open valve motion was initiated prior to thc stall.Consequently, the measured.increase due to pressure locking is believed to be.correct.5.Thc pressure data for this test is questionable and is being evaluated at this time.II 6.The upstream and downstream prcssure during these tests was approximately 350 psig.This was done to approximate, the LPCI and LPCS injection valve pressure conditions which could exist in the event of a LOCh.Graphs 1 through 6 provide thc data in Table 1 for the three test valves.Thc total measured unseating load versus the total predicted unseating load and the pressure related portion of the measiued load versus the predicted pressure related portion of the unseating load are plotted for each valve.NUREG/CP%152 3C-24 IP'It GRAPH 1 Predicted Unseating Thrust Versus Measured Pressure Locldng Unseating Force for Crane Valve'I sxNO tm 1mo 0 0 10000 20000 30000 4XOO 60000 000 70000 80000 Total Predicted Uneealng Load 3C-25 NUREGICP-0152

GRAPH 2 Predicted Versus Measured Portion of Pressure Thrust bue to Pressure Forces for Crane Valve 4XNO 35000 30MO 25000 20000 15000 10000 5000 0 0 5000 10000 15000 20000 25000 30000 35000 4XNO Predicted Load Due to Pressure NUREG/CP-0152 3C-26 r, oow Ro)he%)cpu GRAPH 3 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Westinghouse Valve'O 5000 8000 C co'I g axo 1000 0 0 1000 2000 3000 4000 5000 Total Predicted Unseating Thrust 3C-27 NUREG/CP-'0152

GRAPH 4 Predicted Yersus Measured Portion of Unseating Thrust Due to Pressure Forces for Westinghouse Valve 7000 a 8000 Ch 5000 g m<<xe ceo axe'1000 0 1000 2000 3000 4000 5000 6000 7000 Predicted Laad Due to Pressure NUREG/C F4152 3C-28 I) GRAPH 5 Predicted Unseating Thrust Versus Measured Pressure Locking Unseating Thrust for Borg-Warner Valve 10000 15000'0000 25000 Predicted Unseating Load 3C-29 NUREG/CP-0152 0 GRAPH 6 Predicted Versus Measured Portion of Unseating Thrust Due to Pressure Forces.for Borg-%amer Valve 10000" 1$0 8NXS PrecHcted Pnasure Fonee NUREGICP-0152 3C-30 14 K~l~+o~~a.i-h b-Oo~P o 1 c.zw 4-c>4 PRIMARY DIN'ERENCES BETWEEN THE COMMONWEALTH EDISON PRESSURE LOCKING CALCULATION AND THE PRESSURE LOCKING CALCULATION METHOD PUBLISHED IN NUIT/CP-0146 The ComEd methodology is based on calculating the contact load at the edge of the disk which results in an equal and opposite disk deflection to that caused by pressure trapped between the disks, The ComEd methodology differs in several ways from the methodology described in the Reference 4 NUREG.~The NUTMEG Methodology ignores disk deflection due to hub elongation. This is non-conservative. For typical disk geometries, the expected impact of ignoring this effect is less than 5%.~The hKGKG Methodology is based on using Table 24 of Roark's equations for calculating forces in the disk.This table ignores disk deflection duc to transverse shear stresses.Section 10.3 of Roark's Equations discusses the conditions under which deflection due to shear is negligible. For typical disk geometries the deflection due to shear is often not negligible. Table 25 of Roark's Equations provides the equations for calculating disk deflection due to shear.Ignoring deflection duc to shear is non~nscrvativc. For small valve sizes where the disk thickness to disk diameter aspect ratio is large ()0.3), ignoring shear may result in under predicting the disk to seat contact load by 10%or more, The ComEd methodology treats the vertical pressure force on the disk separately from the pressure lochng load caused by the increased contact load between the seat and disk.The NUREG methodology relies on use of the open disk factor for translating the increased seating contact force into an increased unseating load.The open disk factor is based on a free body diagram in which the disk hub is unloaded.This is not the case for pressure locking.The NUREG treatment of these two components to the pressure locking unseating load is non-conservative. This source of nonmnservatism is generally much more significant than the other concerns mentioned above for the NUREG method and is the primary ComEd concern with the NUIT method.The derivations on the following pages are provided to support the discussion above.3C-31 NUREG/CP-0152

Op~phAT eACTOR DERIVATlON (Opening a valve against a differential pressure)%~%~4 o~p F=Stem Force (tension)pic i-~u-'~+~'~4~p~i+C P=Pressure Force<g~q, c+CZG FIGURE 6'DP x Seat Area R=Seat Reaction Force pR=Seat Friction Force 8=Seat Angle Disk Factor (VF)=F/P (by definition) Sum of forces in direction: g F, Peos8 Rcos8-@csin-8 P cM8 cos&+psia&Sum of forces in y~ction: Z~~e.-h e iam-F Psfn&P.sh8-peas&} coe&coe&+csin&sh cps&+yah&sh&-icos&) cos&+psh&cos&+psh8 F sin&coe&+psin&~&sh&+ col (31)(32)(33)P~P coe&+psh8 (34)hKHKG/CP 4152 3C-32

PRESSURE LOCKING SUM'OF FORCES 5 c 4'h, fQ.'I.h.Q ca%Q.o+~4i~~%C W~qq C>w Q.++4 F=Stem Force (tension)FIGURE 7 P=Pressure Force=DP x Seat Area Q,=Seat Reaction Force (calculated using Roark's)p,Q,=Seat Friction Force , 8=Seat Angle T=Disk Hub Tension<a Note that the sum of the forces in the x~tion is different than for the seat factor case due to the hub tension force T.Consequently, the Q, value is a typically a much lower portion of the P value under pressure lochng than it is for the seat factor calculation.(This is the benefit of using Roark's equations for calculating the seat load increase.) Therefore, the sum of the forces in the direction should be solved for directly from the free body diagram above, as follows: P Pz F pQ,esS-Psbdl+Qp-in8

.F qJpcos8-Iin8)+Mn8 (35)The first term in the equation above is the pressure locking load term in the ComEd methodology.

The second term in the equation above is the F or reverse piston effect term~in the ComEd methodology. The ComEd method adds these two terms to the static unseating load and then subtracts the stem rejection load to get the predicted unseating load under pressure locking conditions (37)Rather than use these equations, the NUREG method applies the open seat factor to the Q, value.Because of the relationship in equation 37 below, the NUREG method substantially under predicts the vertical pressure force portion of the required thrust.Qa<P cos8/(cos8+p sin8)3C-33 NVREG/CP4152 I xvr.REHaMNCES C-K 4 4'0<tg.~b.)-oa'W R,<t h.~~+~pm'nqq C+<c4 C2 Young, W.C., 1989, Sixth Edition of Roark's Formulas for Stress and Strain, McGraw-Hill Inc.n 2.MPR Calculations 101-013-1,"Effect of Bonnet Pressure on Disc to Seat Contact Load", dated 3/23/95;and 101-013-4,"Estimate of Valve Unseating Force as Function of Bonnet Pressure", dated 3/23/95.3.Electric Power Research Institute, Nuclear Maintenance Applications Center, 1990, Application Guide For Motor-Operated Valves in Nuclear Power Plants, EPRI/NMAC Report NP-6660-D, March.4.Smith, D.E., 1994,"Calculation to Predict the Required Thrust to Open a Flexible Wedge Gate Valve Subjected to Pressure Locking", Proceedings of the Workshop on Gate Valve Pressure Locking and 7hennal Binding, NUREG/CP-0146, July 1995.NUREG/CP4152 3C-34

gc+So~6 lQ he@-~4~y~+P~)w 6 l<W1 2, GATE VALVE TYPE, GEOMETRY, AND ITS EFFECT ON OPEMNG AND CLOSING THRUSTS There are five different types of gate valves that cover most of the applications in nuclear power plants in the United States.The key features of these designs are shown in Figure 2.1.Variations in the most commonly used gate valves include solid, flexible, and split gates (Figure 2.1a).The two types of parallel expanding wedge gates shown in Figure 2.1b are also used, but their population is smaller.Parallel sliding gate valves shown in Figure 2.1c are relatively uncommon in the United States, but are widely used in European nuclear power plants.The advantages and disadvantages of various design features for these valves are discussed in detail in Reference[13]Flexible Wedge Gate Solid Wedge Gate Split Wedge Gate Figure 2.1a Conventional Solid Wedge, Hexible Wedge, and Split Wedge Gate Valves As shown in these figures, the designs vary significantly in gate geometries. Other important variations that affect performance are related to gate guide arrangements and their dimensions; clearances at critical locations between gate, guides, and seats;seat contact widths;and materials and surface finish in the disc guide sliding interfaces. Section 2 presents the gate thrust requirements for the above-described variations in gate geometries. This section also addresses the potential for disc tilting during mid-travel due to fluid forces across the disc.Disc tilting causes localized loading between the disc and the downstream seat, or between the disc and the guides.A preliminary analysis approach to determine the localized contact stresses is presented in this section to determine the loading severity based upon valve design and operating conditions. 0 Preliminary analyses of localized contact stresses between disc and seats as well as disc and guides used in typical wedge gate valve designs are presented in this section.The preliminary approach presented here needs further analytical refinement and empirical correlations to develop improved predictive models.Detailed derivations of the equations summarized in this section are included in Appendices A, B, and C.Stom Upper Wodge Upstream Disc Down-stream Disc Lower Wedge Body Sogment Seat Stop Pad Figuxe 2.1b Parallel Expanding Gate Valves Stem Disc Retalnlng Pine Disc Carrier Seat Preload Spring Figure 2.1c Parallel Sliding Gate Valve /I Nn~am CIvor dgo ('4~Waken A tn.i-~p~+~l Waqg 2, l.Stem Thrust for Solid, Flexible, and Split Wodge Gate Valves'I Even though there are differences in the performance of solid, flexible, and split wedge gate valves as related to their sensitivity, to external piping loads and thermal binding[13], the equations for their stem thrust requirements based upon free body considerations are the same.Subsections 2.1.1 through 2.1.2 summarize the stem thrust requirements to I overcome only the differential pressure load across the disc.Subsections 2.1.3 and 2.1.4 give the stem wedging and unwedging thrust requirements to close and open the gate, respectively. The total stem thrust requirements to close and operi the gate are provided in Section 2.4, which include other components such as stem packing load, stem rejection force (also referred to as blowout force or piston eff'ect force), and stem and gate weight.2.1.1.Ciosinl, Stem Thrust to Ouereome Gate Di/7erenti al Pressure As shown in Section A.1.1 of Appendix A, the stem thrust at the gate to overcome the diff'erential pressure during closing can be expressed as: F,=.F[cos6-@sine (Eq.2.1)Fp Figuxe R2 Gate Equilibrium Under hP Load During Closing where Fs=Fp=8=stem load at gate, Ib disc pressure load due to upstream/downstream differential pressure, lb hP x (effective seat area)coefficient of friction between gate and seat 1/2 of gate wedge angle, deg'The disc pressure load, Fp, is the product of hP and seat area based on effective disc sealing diameter as discussed further in Section 2.5.From Equation 2.1 the relationship between the commonly-used term disc factor (some-times called ualue factor)and coefficient of friction, p, can be derived: Disc Factor=cos 8-p sin 8 (Eq.2.la)For'ypical wedge gate valves that use a total wedge angle of around 10 degrees (or 8=5')and a normal range of coefficients of friction, the difference between the disc factor and the coefficient of friction is practically negligible, as discussed in Section 3.1.The disc factor calculated in the closing direction can be as much as 5 percent higher than the coefficient of friction for typical values of 8 and p that are encountered in practice. I'c 2.1.2.Opening Stem Thrust to Overcome Disc Differential Pressure As derived in Section A.l.2 of Appendix A, stem thrust during opening of a wedge disc against a differential pressure is given by: F=~F cos6+I sin6 (Eq.2.2)From this one can derive the equivalence between the disc factor in the opening direction and the coefficient of friction: Disc Factor=cos 6+iL sin 6 (Eq.2.2a)Figure R3 Gate Equilibrium Under dP Load During Opening The disc factor in the opening direction is slightly less than the coefficient of friction for typical ranges of wedge angles and coefficients of friction (within 5 percent of the coefficient of friction), as discussed in Section 3.1.As stated earlier, the stem force calculated in Equation 2.1 or 2.2 is the force required to overcome the differential pressure resistance only.2.1.3.Stem WedgingLoad-Closing The stem wedging load is related to the normal seat contact force, Fn, as shown in Section A.1.3 of Appendix A: F,=2(sin 6+p cos6)F(Eq, 2.3)Figure 2A Gate Equilibrium under Wedging Load During Closing It should be noted that this equation applies to the case when there is no differen'tial pressure across the gate.When differential pressure is present, the stem force Fs in this equation is the net stem force after subtracting the differential pressure load.In some cases, the limit switch instead of the torque switch is used to stop the disc travel in the closing direction. Where acceptable from the shut-off standpoint, this approach can be used to reduce, and in some cases eliminate, the wedging load, F. \ >1,4.Stem UnwedgingLoad -Opening Q h%+-a.~(~F ~~~~8~~wbg Section A.l.4 of Appendix A shows that the unwedg-ing load to overcome the seat contact force, F, is given by: F=2 (lL cos 9-sin 9)F(Eq.2.4)Fn Figure 2$Gate Equilibrium under Unwedging Load During Opening The seat contact force, F, that is to be overcome dur-ing the opening cycle is developed by (1)wedging load from the previous closing cycle, including inertia overshoot, (2)external piping loads, or (3)differential thermal effects between the valve body and disc.Section 4 provides an analytical method-ology to predict stem thrust due to inertia overshoot, and Section 5 discusses external pipe load and ther-mal effects that may influence the normal load, Fn.2.2.Stem Thrust for ParaM Expanding Gate Valves This Subsection

2.2 summarizes

the stem thrust requirements for closing and opening directions for the two types of parallel expanding gate valves shown in Figure 2.1b.The same stem thrust equations apply to both types of parallel expanding gate valves shown in this figure.The typical wedge an'gle used in the through-conduit type is 15 degrees, and for the double-disc type is 25 degrees.It should be noted that for coefficient of friction of 0.4Z (=tan 25')or less, the 25-degree angle between the wedge surfaces (also referred to as back angles)provides a non-locking condition between the wedges.2.2.1.Stem Thrust to Overcome Gate Differential Pressure-Closing and Opening Fn Fy Closing Opening Hguxe RS Gate Equilibrium Under hP Load During Closing/Opening F-pF (Eq.2,5)where p=coefficient of friction between seat and disc Fp disc pressure load due to upstream/downstream differential pressure, lb=hP x (effective seat area)As shown in Section A.2.1 of Appendix A, the following equation applies to both closing and openihg stem thrusts to overcome gate frictional force due to hP load; (l 4 ('iQ.i-ay oo~l20 I h w4-~~~~2.2.2.Stem 7Vedging Load-Closing The stem wedging load for a parallel expanding gate valve is shown in Section A.2.2 of Appendix A to be given by: sill 6+p cos 6 Fs p+cos6-p'sin 6 (Eq.2.6)X Fp Figure 2.7 Gate Equilibrium Under Wedging Load During Closing where 6 Fn coefficient of friction between seat and disc coefficient of friction between wedge faces parallel gate total wedge angle, deg normal force between gate and seat due to wedging, lbs This, equation makes allowance'or the fact that the coefficients of friction at the seat-to-disc interface may be different than that at the wedge interface. Typically the seat faces have a finer surface finish and are overlaid with Stellite hard-facing, whereas the wedge faces have a rougher surface finish and are not hard-faced. If the coefficient of friction at the seat faces and the wedge faces is assumed to be the same, p'p, and this equation reduces to Fs=sin'6 1-li+2gcos6 cos 6-csin 6 Fn (Eq.2.6a)Equation 2.6a shows that the stem load is proportional to the seat contact force, Fn.2.2.3: Stem UnwedgingLoad -Opening The stem unwedging load to overcome the seat contact force, Fn, for a parallel expanding gate valve is given by (reference Section A.2.3, Appendix A): 0

  • a~kia.l-a~i a~S 2c'l~s~+((p p'-1)sin 8+(g+ll')cos 6 F (Eq.2.7)cos8~p'sin 6 I'or p=p', this equation reduces to: sin 6 p-1+2pcos6 F-Fn cos6+psin6-(Eq.2.7a)Figure 2.8 Gate EquiHbrium Under Unwedging Load During Opening As discussed in Section 2.1.4, the seat contact force Fn to be overcome is determined by adding the wedging force from the previous closing cycle to the resultant force from external piping loads and differential thermal expansion loads between the body and disc.4 2>.Stem Loads for Parallel Sliding Gate Valves-Closing and Opening Most parallel sliding gate valves are equipped with a preloading spring to maintain proper contact and provide a low pressure seal between the disc and seats.As shown in Appendix A, Section A.3.1, the required stem thrust to overcome dP and spring load friction can be expressed as: FI=2pF>>+pFp where F>>=disc spring load, lb F>=hP x (eFective seat area), lbs (Eq.2.8)<s<n A~F~P Dawn~w paW llP~~p4 Figure R9 Gate EquBibrium Under hP Load During Closing E gl.0 A>CO tao>sa>S><')>>>>>>>a: VCS a>uu S>u>>CO 5>OS>>t>o>Orb>OS>>rs Ons iment: Af, au unit tangential bending moment;Q.~unit shear force{force per unit of c'Ircumferencial length);E~modulus of elasticity (force: unit area: v s Poisson's ratio;y~temperature coefftcient of expansion{unit strain per degree);a~outer radius;b~inner radius for annular>te;t~plate thickness; r~radial location of quantity being evaluated; r,~radial location of unit line loading or start of a distributed load.F, FO and G>to f'>are the several functions of the radial location r.C>to Cs are plate constants dependent upon the ratio aib.L, to L>>are loading nstants dependent upon the ratio air,.When used as subscripts, r and t refer to radial and tangential directions, respectively.

When used as osc.a.b.and o refer to an evaluation of the quantity subscripted at the outer edge, inner edge, and the posinon ol'he loading or start of~I'oading.respectively. When used as a subscript, r refers to an evaluation of the quantity subscripted 'at the center of the plate.f'(lls are asar>cia(ed with the several quantities in the following manner: Deflections v and vo are positive upward: slopes ()2nd 84 are positive cn eflectio>>l increases positively as r increases; moments/)f~Ill>.>>ml If are positive when creating compression on the top surface;and the sr force Q is p>sitive when acting upward on the inner edge of a given annular section Bc>>di>>g s(recses can be found from the moments/Ifr and Afr by the expreani>>r> o=6M/t2.The plate constant D=Etal)2{)-r).The singularity iction brackets ()indicate that the expression contained within the brackets must be equated to sero unless r)ro, after which they are uested any other brackets.Note that Qa, Q, M, and Mare reactions, not loads.They exist only when necessary edge restraints are provided.rral Pl>>r fssn<2 in and Gonuan>>(or Solid and Annular Circular Pla>ca ul O O cn<n 0 (>>>0 0>>>>nrb>I rtr b>>=--I.-+-p--j Lb rj.-,-(-'.)'("*'-')]=.([()']'"'()If b rl=-I(l+rl-+(I-r)-j 2 bJ=-'.[-(-:)']=-'[(-')'-i+li.-,']I Ir bK=-(I-r)---2 Lb.J=2[I++ll->(-)]=-',I-""'-'.."t'-H'9 I+rb r I-~I~bi In+2 r b 4 Lb~J n--.'['-(-.') ("*'-;)]--:.([(-.')'"] -:.(-.')'-)If b rl C>>u[(I+r)+(I r)2~bJ n--,'[-(-.')']2,=-'[(-')'i+is-']C,-'(I-a)(-'--)2.--,'!+.+<i-.>(-')]n--.'{-"."-:--','[-(-.')'])h)I's't AQ OOQ gC)h+4~k,b,a~+ C Pvq~Q'{af{-f rso r I rjr r l'In-r-{-~)~rr I r, r 2 I=I-(-')(I o21-)]'-([(-")'")'-'. (-")*-)I f rl Ls=[(I+rI+(I rl J 2[r ro 2i[I (')]2 i,=-;[(-')-i+Ii.-']I C in (I-rsi 2 rs~ta=-[I n.>+(I-r)(-'J 2l'.=-{-"'"--'"['-(-")')) =-'.('(-")-(-)-(-)[*.(-)]"-;,}(r, (il-225--155(')2 25!(')I 4AOO(r ro){+si(-")'[s(-")+io]o-'}42 r r (25-l25+225{-')-25()-"(-)-"(-)'[" (-)'1"-:)'-['(-)-~(-)I-'],[lo-l5-+5(-)+52()(I+so)],[is-si-"+n(-")'-2(-")'-5(")'(2+ iso')]-{I-='[i-(-")]-(-")[)+no..>i-'])'(:.)](-")'[I-(')ll+sa-)]<s.--,"{[(-')'+l]~-'+(-")'-I)<.-..>rl Ca w-[(I+4)'+(I 4)-](r-r)4 r 0 0,-,'[-(-"))<.-..>'r [(r l r]C,-f(.)-)+2)l(,,)4 I 2 w-(I-r2)J(r r)2 Ca>u-[I+~+(I-4)(-')J(r r)4 2[n--"{-".-'.-'.'[-(-")']}<-">'=-.'.(-~(-)'-'(-)'- ~(-)'[" (-)')"-;)<-">5<-225-'-(I-o'+IIii(-"))4.4OO(r r){+so(-')'fs(-')'+ io]o-')rs C, (!22-2'5+225(')-25(')-"(-:)-"(-)'f" (-)']'-:.} '=I'['-(-)'- (-')*"-']< -">'(r-r)4 r[Is ol'+si(-')2(-')-5(')(I+Iso-))"--,'(.{'-(-ll-(-:)'["<">"-,'])<-">'>n~>>>> Al, It~t T~24 Foenw(ae for flat cfrcu)ar platee of conetent th)cttneee (Cortgfrscsed) -+(-4 I t.Outcr edge kec.'utntr edge simply II.Outcr edge free.inner edge ftxed Ismo Afoao Afmao>Q ao psao tssso Afmao Q mo If r, m d Iloal<<ou(er edge).vd ICICI Max I-I (f;l)sp L Ct 4'd Cs axtf m Af-(I I)(For numerica values sce case Ib after computing thc luadtng st Ihc Inner cdgc)If rr Is d (load at outcr edge),-Irds/CsCs Max p s=-(-Cl)Sp (Cs-uds C, Max Af a Af<m 5 Cs (For nutncrieal values sce case Ib ahtr computing thc loading at thc mncr edge)'r 0 0 0 ec 4 4 4 0 a cc" Case 2.Annular plate vritb a uniformly distributed prawre 5 over the pordon ftotn r, to d General cxpcasaons for dcformadons, moments, snd shears: rl rl re P a P+tsrFt+Af>>-Fs+Q-Fj-f Cn D D D r rl t atsF+Af Fs+Qs Fs t Cts~Isp p p Afr a ts-Fr+Afmps+/pe-f Ctr r,+Jf, tD(l-sa)r For tbc numcrical data given bcknr, r a 03 D s a lf-t a ts-Af ss 8'dfds D rcstrainm tcr edge wnp)y su inner edge lme Afmao'q ao MsxAf a Af,~If rr a 8 (usufocss D C L 8/o O.l OS 0.7 0.9 0.0587 0,075)O.l)20 0.0555 O.I 079 0495$0P272 0.0525 O.lgol O.I5gl 0.2<05 0.0525 O.I eel 0 I ISO O.I 559-O.oocg 0.0c77 O.OC9 I O.OC97 Sb't>>edge sunply supponed, Inner edge gtddcd Osao q a4 0 (~g)Afma g r Cu~l (~g)r Q.a-(dl-rq Afm a 0 xP ats Mxc Af a Afm 8 rr a 5 (utufsra load over ensue pbtch 5/d-O.OIOS-0.00)5 0.0505 OA)078 0.00052 O.I22S 0.04$5 0.00$0$-0.0575'OSIS)5 0.09I9 OA)tMS 0~5 0~)85 O.l Oy 08 0.7 0.9 2C.Outcr edge simply supptutcd, inner edge simply wpponcd ,l~pa a 0 Afm ao pr ss 0 D C,C Ctgts Csgtt t,=t,CC+-Ce--f.ts D D S Q a+---(ds-rs)Afm ao Ald O.I OD E A'4-0.0050-O.O255 0.0 I 98 0.2<01 0.0708 I.8870-0.0029 0.0 I 5$O.OI)9 0.0455 0.0552 0.50 I 5 lf r, a 8(~hmd o cr cutup)me), 0.0008 0.00$5 O.oos 7 0.0 I 0 I 0.0500 02250-n nnn I 0 IIII I 2 nnntl 4 Iut I s 4 tlt tn II tnvI I'S nT

X Q4 Fctnlttt)od lor fldt cltctl(af gt(4tloo of tcdcott(If~laooo (Cctctgltl~) ~%~'~C~c 7/~~)F.C 5~f.C+Dulce edge f(ee.Inner edge Nmpl)wpponed psao A(mao A(mao Q ao-rsr Ca dsa (e-r)Ltt DC, Lgrb Q a (rs rs)2b o fr p a dscC+Q-Ca--Ltt p n r2 rs 8=>CCC+4-Cs--Lts D D Cele no Cdse IC%l(klhl (ulcc edge gu(dr(l.Ih(ul rdgc ps 0 ds a 0 ds ss 0 Q a 0 I-rst Cs I nC[gb~(tf a-(c r)Lts I.co Q a-(r-rs)0 2b r2 I I ps a Sfn-Cs+Q-Cs--L>>D D D I Afn=Africa+()seCe-rsLtt (lf r a b (undonn load over coute ptuc).blr O.l" 03 0.5 0.7 0.9 E~O.OS4$A~-0.7892 Ecl 0.1146 0.0125 0.0050 0.2978-0.1184 0.0767 0.0407 0.0004 0.0$$9 0 II(IS>~(s p D D~rs ds a Sf+-Ca+6-Cs--Lss*D D D blr O.l 03 0.$E Es Eu-0.0757-O.O868-OSI545 0.0$1 dr 0.0086 0.0512 0.0207 OAIOS-0.1756 lf ls b (unlblln bad neer Cluue p4IC)i-0.0011 0.0046 0.0541 0.00017 0.005SO 0.7 0.9 lulsr pbte Iricb n distributed pcessunt-0~oa Cslc no edge reattain(I ecuasuu 6 bnear(7 fieun aero at rs to 5 nt r Ccnccal caprcslions for dcfonoaions, aoacncs.and sbcata r 2 ra rer-r, P a Ps+V'i+dfm-Es+0-Ea-9-'Cts D Dr-r r rs ra r~a dape+/gm Es+Q-fe-, 9-C D D'~rs D p>>rs Af,ad;z,+df~,+q;r,-d 2-'c r~ta~D(l-as)N,+((r T r D 8 e e---(<+-h.<+0<'-'>'r(r -r J~~~For tbc unacriea)dace gnen bcb(nr, r a Od eaE-~p ea Outcf edge Nulpll supponc(L~nncl edge kec pl a ds a (I, a 0 Qao p,ao CL-Lts DCI r'(CILC L)Afm ad Man p aps Max Af a Pfl~lf rs a b (lincsclp btseabg bad floss b Io~).blr O.I Od 0.$0.7 0.9 Es Es E Eu O.OS17 O.OS06 0.02S I 0.0114 0.0015 0.0482 0.0470 0.0454 0$)$58 O.0l dl 0.0186 0.04 Id 0.04850.0595 0.0166 0.1590 0.1259 OA)879 0.0514 0.0 1 dd<a-(ar-rsr-res)0UI Cf CdgC Nnlpll'lppolt CIL lnncl cdgc guided ro)Psao Qao ps ad-r'CCLIC.Il a\LI2)n LC, rsLI~Afn a Cs Csg (Csgls 4 Q a-(Sos-rcr rs)dr Afm ao blr E A'Ey 0.1 OD 0.5 0 0259 0 0l SS-0 0041 0.0454 0.0286 0.0126 0.1280 0.0847 0.0447 Mas s ape Mas bf ss bfm lf rs a b (linear)7'uurcw'ng bsd (nun b to~), 0.7 0.0005 0.0051 0.0150 0.9 0.00001 0.00012 0.00171 .I TMLx 25 I)soar sfalacttossa for Oat ckcxatar ptalaa ol conatant%~000 4+4-s cft~f>Q Nerhmolf: g>, p, andy are the deflections at b, 4, and rrespectively, caused by transYelse shear stresses.jl, E', and h.are deflection coeflicients dcfined by the relationshipsg, a Ega/f(r for an annular line load and p, a Egct/IG for all distributed loading (See Table 26 for all other notation and for the loading cases referenced) v-w C-S 4-e~Csss oo.Ik lc, 11,9 tb.fc.fl, 10 Sa.Sb.Sc.St, Il tt~<<>>RAga Ig In 6Y>>.ts<<.a<<>>-4~[1-(-')<<+21-)]ts$$-[$-$-"+(-")'($+$$-')]Tsbolsad tsiocs fot f$cc$6c casss n.l h.$0.%n.r no~s V'A 4 OA I nutso$CI IJs-4.'fSSS 0.2050'.1210-0.0451-4.405$-O.l ISS 0.0776 0.04$0-0.0166-0.0019 C 0 4a, 4b, 44.4t, If li, lj.lb.II ,[$-$$-"+$$(-")-(-")(!$$III-')]s<<>>a Q a-Id-'n-Var.6>0)o t.lc 0.1 OJ 03 0.7 0$0.2 0.4 , 0.6 0.5 1.0 0.1654 0.66$4 0.1$$1 Ysbsss of<<>>1.2901 0.4991 0.ISIS I AN a J 0.9416 OASI2 4.12 Sf-<<161 I IA445 O.SSI 5 OA2 50 0.1264 0.06SS-0.0411 0.0ftS OANS4 4.00095 a 21.fj.ft.fl-0.50[1-(-")]I-" (N~6>0)t'---'"[-:-"(-)('-2"-")]ttfc 0.1 OD OS 0.7 OP 0.1 OD 08 0.7 04 O.I OJ-OANOO 08995 OANOO Yatws af<<>>I AN45 IAN9$OA494 03 0.7242 O.f f 99 0.0000 OPISI OA 209 0.1909 0.7-4.$9$$08$9$0.10$4 0.4044 0.6665 0320$0.1640 OANI 0 0.9 4.2$0$-4.1292-0.0674-0.0257 0.0040-OfS67 n-O.ISIS-0.0122 0.0149-4.006t i,sj,SI Sl 4I, 4j, 4b, 41 1st<<>>a OW 2--ba s praas>0)~\~JJ[ts a S o<<>>a 0.10 (~)]b,';la~6>0)n$,'[$($-$-")s-'-~+$-"-(-")'($-~$-")]tiVsfa 6>0)t,fc a O.I 04 OS 0.7 08 O.l 04 08 0.7 04 tsfc L O.I OJ 0$0.7 0.9 4 4444 44$$$OANOO Yabsa of~OA024 O.l f 77 OANOO 0.7949 OA5$5 Od IO I Vabsa of~IL$$2 7 0~0.1$0$O.l Oa OANOO 0.2$$5 OANOO Vabsa of<<04517 OAN94 0.0000 O.I 04 OS 0.7 P.SI52 0.1$7$0.0$4$OANOO 08$5$0.175$OAI9$7 OAI~If 0.9 4.1274 OANST 0.0741 0.0146-0.0000 0.1216 0.0619 4.0$aj 4.0 I 57 OAIO 4 f OAIIW 0.0941 4AISTS 0.0000 v.oa 0.042 6 O.ott9 0.049$0.0040 0.7 0.9 ca t+(-")'(IS-Itb-"))firer.s>0) 0.1 OJ 08 0.7 0.9 08791 OA905 OMTO 04407 0.'I 554 OAN90 O.f 472 O.ltst OAN5$OAIS12 0.0555 0.0460 0.0251 0.01 f9-0.0021

(Enclosure 2 consists of the Disposition to Calculation No.A10.1-AD-003, titled"Pressure Locking Evaluation of MOVs." Enclosure 2 has 13 pages,~~which are numbered from 1 to 13) 0 T NAGARA V MOHAWK NUCLEAR ENGINEERING Peoe 1 INaxi)0'tel Li(t't i 3 u Project: NINE MILE POINT NUCLEAR STATION Unit (1,2 or 0=Both):~Discipline: +<<~~(Sub)System(s)~mP Index No.Ti le m~f.c o s, Uac.'(I('eg l:-u Ku-I('o~Wo>4 6 c-~a M/r r Ag Checker Date KePS+Cfir V Xe+JOlO/lrql/9 Change No.Approver Ae~Date"'-Safety Class: (SR/NSR/QXX): Superseded Document(s): Q,om(NMPC Acceptance/Date Descnption of Change hwpeetA'aw iw~(a'R~~+o~.~~~~"t~~~'>""+I~'f4%.waif C,N'%(4 4~~~d'1 RI'2~P w~on 5'7A/Q, ie%he.P~y'E~~g~p y~og r gb 44E.0ve/LA'ti (5h,Q,'@~V~c(./~8'~~P$&Ou&7Al8 AIVt C~<Id(~Ag r" h rR,ups)%De~$0~4+0 Q l d 0~4 th~ce.pr~a,s.pV+o-77 A 4 P g~s'IIX+~$o 4+P~i4~is Cw%dasrt e~m d+4 P<+0 2."r~'l$cs4 44s.(i Xd1 pobd+I<7 esolution l4,~X>ZI~~A,~~~~X (~+%~~ur.le C 4 W.hruS1'w f(v'~~g 44K.44%o 0 e.4~~4 I)~~>~~5"hOe5 C Va t>w 4 4>gg,'ro,.i(o>ua P Cross Reference Changels): tZ-eeW 97-03 4 on irmaoon equire es o: See Page(s): ina ssue tatup i e ocation perations cceptance (APPIFIO/(/OII: +Pi (Ca(outa(/oo/Heidi:+d(d Rea d(Yea(I/'IAI: (d Cl Evaluation Number(s): 2 Og 3T 0-7 0%'h rU~Copy of Applicability Review Attached)Yes 29%9 fC A L-pP<<ops), Z5g+'o CÃ-V-4 Key Words: F oo Thrc g+/s(~ArWg2 I I r 9><<O7 Component IDls)(As shown in MEL): 2.~Ps maw a+A~gcgfge WnV O(4-7~s~P v Woe c'7A z~~p~woo c 7n-+<T.w s~p+W D>4'7/3 MM c/b-AG7 ((e f aa 0 r SOS f0 34 2l Page 25 NEP-DES-08 Rev 04 0 Niagara Mohawk Power Corporation NMP2 NuctearEngineering Calculation Cont.Sheet Originator/Date Dno~'mQ~4 Q~/cf/<~(>~Checker/Date gVtt IJrq/R<Page2ot t3 Ato.t.AD%03, Rev.01 Disp.01A Valve ID no: ";"<<VP'"'IQVt GA Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=108 Valve Bonnet pressure (psig), P bonn<<.=108 'ownstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=3.375 meanseatradius, I a.'=3.91 averaae disk thickness,~a n hub length, L:=0.125 seat angle, a'.=10 6:=-6=0.087 2 180 t:=0.48 Valve Disk Material Properties: modulus of elasticity, E'.=29400000 Other Valve Parameters: Poisson's Ratio, v.'=0.3 6 rs r','2!r<.'/s.'.:..:2gie ot Valve Factor VF:=0.65 Valve Stem Diameter, D stern.'=1.625 Static Unseating Thrust F po 9232 (reference: Test¹25, 70/6/94)r'/eference: N.":R-2'-Ot0) CALCULATIONS: Coefficient of friction between disk and seat, cos<6>1--sin(6)VF It=0 686 t reference Prte, up+down Average DPAcross Disk, DPavg Pbonnet-'I E\Disk Stiffnes Constants, D:=2 12 I-v III which gives, D=2.97710 and gives, DP av<=54 nnd G:=E 2 (2+2I)G=1.131~10 I b a b b a b Geometry Factors, C2'.=-I--1+2 In-C3',=--+1 In-+--I 4 a b 4a a b a 1 b C8:=-1+v+2 a 2 C 9'=--In-+-I--whichgives, C2=8.91910 C3=3.96510 C 8=0.911 C 9=0.121 COMED PL EvaitjationlNPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 1 1t~, Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Catctrlation Cont.Sheet Originator/Date ~~1~a e A 8~X ffl t~t~7 Checker/Date /dc'//e lfv Page 3of t'tt Ato.t.AD4103, Rey, 111 Disp.01A Additional Geometrt/Factors, rp'.=b 2 4 2 1 0 0 0 L11'=-1+4--5--4 64 a a a 2 rp a 2+-ln-a rp 1 L17 4 4 2 1-v'0'0 a 1--1----'+(1+v)ln-4 a a rp which gives, L 11=1.378 10 and L 17=8.641.10 Moment Factors, 2 DPavg a C9 f M rb'.=---(a-r0)-L r7 C8 2ab Qb'a-r0)2b which gives, M,b=-8.373 and Qb=31.18 Deflection from pressure/bending, 4~=a'avg a ybqŽrb'C2+Qb C3-L11 D D D which gives, y bq=-1.937 10 Deflection from pressure/shear, 2 a rp rp Ksa'3 2'In 1+'2'I b a b.2 sa'vg a sq'G which gives, K sa=-0.012 and ysq 1796 10" Deflection from pressure/hub stretch, (2 force(a-b)DPavg P force'L y stretctt'abb 2E which gives, P f=661.191 and y stre<ctt=-3.928 10 COMED PL EvaluationlNPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 2 /0 Niagara Mohawk Power Corporation NMP2 NuclearEnginee ring Calculahon Cont.Sheet Originatorloate 'D c~>~>e Q~I~t W~f Checkedoate ~+ii'><iqrt yves Page4of i3 Ato.t.AD403. Rev.01 Disp.01A Total Deflection due to pressure, Additional Geometer Factors y q:=y bq+y sq+y stretch which gives, y q=-3.771 10 r.'=a 0'p L 3'.=-.4a 2 2 ro a ro+1 ln-+--1 a ro a p 1+v a 1-v ro L9'=--ln-+-.1--a 2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, w.'=1 asw C2 rpC9 p 3 y.b.=L9--+L3 whichgives, C8 b b ybw=-L83S 10 Deflection from seat load/shear, rp rp Ksa.'=-1.2 In-a b y'.=Ksa which gives, a tG Ksa=-0.177 y sw 1'272'10 Deflection from seat load I hub compression, L ,-2na 2 ycompr'b E which gives, y compr=Total Deflection from unit seat load, y w:=y bw+ysw+'ycompr which gives, y w=-3.122 10 which gives, Equilibrium contact load distribution, yq w equilibrium 'w Load per seat=2 n a=296.797 yq yw equilibrium =12.081 Pressure Locking Force, COMED PL EvaluationlNPswp66aaa.mcd Valve ID: 2SWP MOV66A page 3

e Niagara Mohawk Power Corporation NMP2 NuclearEngineering Catoutaoon Cont.Sheet Originator/Date Q~<~~~lL,.~g lrgtyq Cheotterjoate gvg y/rg/gg Pages ot+Al O.t-AD403. Rev.01 Disp.01A Vq pres lock:=2na-'(it~os(8)-sin(8)).2 whichgives, Fp,es lock=354.165 Yw Piston Effect Force, Pu'=0 aun'n>>"piston effecttem'(bonnet atm which gives, F piston effect 223.986'Reverse Piston Effect'orce, , I F een[n'.=e (2 FOonnet np Oownj]ein(8)Total Force Re uired to Overcome Pressure Lockin, which gives, F vert 452 088 F tot I:=F pres lock+F po+F vert-"pisto~effect which gives,, F total=9.814267 10.ACTUA TOFt CAPAGILlTYt Actuator Nodei/Slzet&fotor Torque Output: Gear Ratio: Application Factor: Pullout ENciencyt Reduced Voltage: Torque Ouf put: Stem Factor;Tht ust Capat3llityt ~TQout THcap:=-Sf TQout:=TQmRV OGRAf Eff=8MB-00-1$TQm'=14.74 OGR:=41.0 Af:=0.9 Eff:=0.4 RV:=0.8838 TQout=169.939 Sf'=0.016407 THcap=1.036 10 ft-Ibs ft-Ibs lbs iVOTEr RV lS SQUARE/F ACTUATQR IS AC.ENHANCED PRESSURE LQCKtNG NETHQDQLOGK KEI:='.20 Thrust Margin:=THcap-F>~.KEI Thrust Margin=-1.419 10 lbs ARy aot

Conclusion:

Open Thrust t0ergin is negative, therefore this valve and actuator are-~44~overcome the theoretical pressure torking conditions evaluated. COMED PL EvaluationINPswp66aaa.mcd Valve ID: 2SWP'MOV66A page 4 0 Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Catculation Cont.Sheet Originator/Date 422~>~y~A~g tgg(q y Checker/Date af/r4/4o Page tc2ot l3 A10.1.AD403. Rev.01Disp.01A Valve ID no: 282t V!'MOVE:~A Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPIJTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=108 Valve Bonnet pressure (psig), P bonnet 108 Downstream pressure (psig), P down 0 Valve Disk Geometry: hub radius, b:=1.25 hub length, L:=0.25 mean seat radius, a'.=1.88 averaae disk thickness, t:=0.626 a x seat angle, a'.=10 e:=-e=0.087 2 180 Valve Disk Material Properties: modulus of elasticity, E:=29400000 Other Valve Parameters: Valve Stem Diameter, D stern.'=1.375 Valve Factor VF.'=I Poisson's Ratio, v'.=0.3 e js hair'I pk ij)oje tx'tatic Unseating Thrust, F po'.=4056 (reference: Test¹8, 5/17/98)(je/erence: NER-Bk0$0)CALCULATIONS: Coefficient of friction between disk and seat, 0 cos(e)It:=--sin(e)1 VF It=1091 t referee::eft3 Average DP Across Disk, Disk Stiffnes Constants, gives, nnd G:=E 2(1+v)up+down avg'onnet 2 Et 12 1-v DP ayg 54 which gives, D=6.605 10 and G=1.131 10 Geometry Factors, C 2.'=-I--1+2 In-C3'.=--+I In-+--I 1 b a, b b a b 4 a b'4a a a b 2 C 8'.=-1+v+(I-v)~-2 a 2 C 9:=--In-+-I--which gives, C 2=0.049 C 8=0.805 C 3=5.093 10 C 9=0.241 COMED PL EvaluationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 1 II, Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Calcutation Cont.Sheet Originator/Date Q~,~~4~/Vl y leap Checker/Date 'I X4 u]el~~Page'7 ot IP At 0.t-AD%03. Rev.01 Disp.01A Add/'tionat Geometr3/Factors,'p'.=b ~I 64 2 4 2 fp rp rp I+4--5--4-a a a 2 fp 2y-In-a rp I L17 4 4 2.I-v P 0 a I+(I+v)In-4 a a rp whichgives, L11=4.48110 and Moment Factors, 2 DPavg a C9 l M~b'.=---(a-r 0)-L~r cg 2ab L 17=0.046 ob:=-'"'(*-0*)2b which gives, M rb--13.186 and Q b 42.593 Deflection from pressure/bending, a a avg a ybq:=Mrb C2+Qb C3-L11 D D D which gives, yh=-1.752 10 Deflection from pressure/shear, 2 a rp rp Ksa'.3 2 In--1+-~I-2 In-b a b 2 sa'vg a t.o which gives, K sa=-0.078 and ysq=-2.09 10 Deflection from pressure/hub stretch, l2 orce(a-b)DPavg-P force L y stretch'tb 2E which gives, P force 334 525 and y stretch=-2.897 10 COMED PL EvaiuationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 2 ll 0 18 lp Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Catcutabon Cont.Sheet Originaterlnate Qss~lW~g'~/+f<0 IO)CheokerrDate gad N/err/W Page~ot t 3 Ato.t.AD403. Rev.0t Disp.OtA Total Deflection due to pressure, Additional Geometry Factors y q'=y bq+y sq+y stretch hfch gives yq=-4.131 10 rp.'=a rp L3'.=-4a 2 2 ro a ro+1 ln-+--1 a ro a ro L 9:=-.a 2 I+v a I-v 0-ln-+-1--2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, we 1 awC2p9 y'bw D C8 b rp C3 Lg--+L3, evhichgivss b y bw=-1.465 10 Deflection from seat load I shear, fp rp Ksa.'=-1.2 ln-a b y',=Ksa which gives, a tG Ksa=-0.49 y sw=-1.301 10 Deflection from seat load I hub compression, L ,-2na 2 y compr'=nb E which gives, compr 1 023 1 0 Total Deflection from unit seat load, y w:=ybw+ysw+ycompr which gives, y w=-2.868 10 Equilibrium contact load distribution, w equilibrium 'hich giv yq yw yq Load per seat=2 n a=170.165 yw w equilibrium 14'406 Pressure Locking Force, COMED PL EvaiuationlNPswp67aaa.mcd Valve ID: 2SWP MOV67A page 3 tl Niagara Mohawk Power Corporation NMP2 Nuclear Engineering Calculation Cont.Sheet ortginatorroate %+>~'to A.~/~(ry (yq checkerroate ~/vJ e/~/~~Page Iof 17 At 0.t-AD403. Rev.Ot Disp.ptA Yq F I k'.=2tt a (It cos(e)-sin(e)) 2 pres oc w which gives, F pres lock Piston Effect Force, P:=0 aun 2/piston effecttem '(bonnet atm wl Ich gives, Fpistpn effect=160.368'Reverse Piston Effect'orce, F vert'.a~2 P bonnet up gown sin(e)which gives, vert 04 Total Force Re uired to Overcome Pressure Lockin, F total:=F pres lock+F pp+F vert-F pistpn effec which gives, F to~=4.340478 10 ACTLrAWR CAPAGILITV'cfuetor IHodel/'ize: Motor Torque Output: Gear Ratio: Application Factor: Pullout Efficiency." Reduced Voltage: Torque Output: 8temF acfor: Thrust Capatv7ltrrr: TQout THcap'.=-Sf TQout:=TQm RV OGR Af Eff ft-lbs ft-Ibs=SM8-000-5 TQm ,'=5 OGR:=57.0 Af:=0.9/Eff:=0.4 RV l=0.8816 TQout=79.743 Sf:=0.014263 THcap=5.591 10 Ibs ItIOT'F;RtrIG SQUARE IF ACTLIATOR IS AC.FWHAeCEO PRESSURE LOCIr,'AVO urETHOaoLOOI" KEI:=1.20 Thrust Margin'.=THcaP-Ftot I KEI Thrust Margin=382.299 lbs

Conclusion:

Open Thrust Nerain is Positive.fherefore this valve and actuator are Iilrely fo overcome the theoretical pressure locking conrIIBons evaluated. COMED PL EvaluationlNPswp67aaa.mcd Valve ID: 2SWP'MOV67A page 4

Niagara Mohawk Power Corporation NMP2 N trotear Engineering Catoulation Cont.Sheet ohginalorloate Q~l~j'e Ar~/Vlcgl p f checkerroate +tIcrI re/r 9/Orr PagelOol\g At 0.t.AD403. Rev.01 Disp.otA Valve ID no: BSSVP>;"Ot/6TB Re uired 0 enin Force Deternmination under Pressure Lockin Conditions COMED Method DESIGN INPUTS: Design Basis Conditions at time of Pressure Locking Event: Upstream pressure (psig), Pp.'=10S Valve Bonnet pressure (psig), P bonn<<.'=10S Downstream pressure (psig), P down 0 Valve Disk Geometry: hubradius, b:=1.25 meanseatradius, modulus of elasticity, E:=29400000 Poisson's Ratio, v'.=0.3 Other Valve Parameters: a.'=1.88 averaae disk thickness, t:=0.626 a rt hub length, L:=0.25 seat angle, ct'.=10 e:=--e=0.087 2 180 Valve Disk Material Properties: e is h tir di:-'..;tngie a Valve Factor VF.'=I Valve Stem Diameter, Dstcm.'=1.375 Static Unseating Thrust, F~.'=2444 (reference: Test¹13, 5/26/9B)I reference: NER-2'-Ot0) CALCULATIONS: Coefficient of friction between disk and seat, p,.'=cos(e)I--sin(e)VF It=1.091 ("eference ="6;Average DP Across Disk, Disk Stiffnes Constants, gives, DP avg=54 and G:=E 2/1+v)up+down avg'onnet 2 Et 12 I-v which gives, D=6.605 10 and G=1.131 10 Geometry Factors, C 2'.=-I--~I+2 In-C3.'=--+I ln-+--I I b a, b b a b 4 a b'4a a b a b CS:=-'+'+('-')2 a b I+v a I-v b C 9'=--ln-+-I--a 2 b 4 a which gives, C 2=0.049 C 8=0.805 C3=5.093 10 C 9=0.241 COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV678 page 1

Niagara Mohawk Power Cofgoration NMP2 Nooiear Engineering Caioulation Cont Sheet o'creere roar af cr re A~err(<+(rr ceeee rcce gute vb~)~o Pagetiof 1 2h A10.1.AO403, Rev.01 Disp.01A Additional Geometry'actors, rp:-"b I 64 2 4 2 1'p rp fp 1~4--5--4 a a a 2 fp 2+-In-a rp I L17 4 4 2]y fp fp a I--I----I+(I+y)ln-4'a t'p which gives, L11=4481.10'nd Moment Factors, L 17=0.046 M fb:-"-2 DP avg a C9~-.a-rp-L17 C8 2'a'b oh:=-'"'('-0')2b which gives, M rb"13.186 and Qb=42593 Deflection from pressureNending, 4 a'avg a ybq:=Mrb C2+Qb C3-L 11 D, D D which gives, y bq=-1.752 10 Deflection from pressure I shear, 2 a rp fp K:=-0.3 2 In--Iy-~I-2 In-sa'b 2 Km'DP avg a ysq'=which gives, K sa=-0.078 and ysq=-2.09 10 Deflection from pressure/hub stretch, force'ecerch't b.2E which gives.p=334.525 and y stretch=COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV67B page 2 h I 0 Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Cahuiation Cont.Sheet Ottgnator/DateWsem>>qual ~(tt, gg9itrpy Checker/Date pe lr/19/gQ Page 12ot 1 g A10.1.AD403, Rev.01 Disp.ot A Total Deflection due to pressure, Additional Geometry Factors yq'bq+ysq+ystretch which gives, y q=-4.131 10 rp.'=a L 3.'"--.4a 2 2'o a'o+1 ln-'+--1 a rp a 1'L9'=-.a 2 1+v a 1 v rp-ln-+-1-2 rp 4 a which gives, L3=0 and L9=0 Deflection from seat load I bending, w.'=1 s w C3 rccg r~C3 ybw.=----Lg.-s.L3 whichgives, D Cs b b y bw=-1.465 10 Deflection from seat load I shear, ro ro Ksa.'=-1.2 In-a b I a ysw'sa tG which gives, Ksa=-0.49 ysw=-1.301 10 Deflection from seat load/hub compression, L 2'tt'a 2 y compr'tb E which gives, cpm r 1 023 10 P Total Deflection from unit seat load, yw'bw+ysw+ycompr which gives, y w 2'868'10 which gives, Equilibrium contact load distribution, q y equilibrium 'w yq Load per seat=2 tt a=170.165 yw equilibrium Pressure Locking Force, COMED PL EvaluatlonlNPswp67baa.rncd Valve ID: 2SWP'MOV67B page 3

Niagara Mohawk Power Corporation NMP2 Nuctear Engineering Calculation Cont.Sheet Ortgtnatorlnate Qep~~g>4~4lj PbP Checker/Dale XV4 Vlr~l~z Pager 9of l3 At 0.t.AD403. Rev.01 Disp.ot A F pres lock 2 rt a-(p, cos(8)-sin(0))2 Yq W which gives, F pres lock=" Piston Effect Force, Pan:=0 2/p piston effecttem '(bonnet atm which gives, F piston effect=160.368'Reverse Piston Effect'orce, Fen'.=[n s (2 p bonnet np-psronss}]sin(8), I Total Force Re uired o Overcome Pressure Lockin, which gives, Fert=104.517 F total:=F pres lock+'po+F vert-F piston effec which gives, F<<~=2.728478 10 ACTUA TOR CAPABILITYr Actuator Nodel I Size: Motor Torrfue Output;Gear Ratio: Application Factor: Pullout Efficiency: Reduced Volta ge: Torque Output;Stern Factor: Tlu ust CapBbflityr TQout THcap'.=-Sf TQout:=TQm RV OGR Af Eff=Sl'f8-000-5 TQm'=5 OGR:=57.0 Af'=0.9 Eff:=0.4 RV:=0.8825 TQout=79.906 Sf:=0.014263 THcap=5.602 10 3 ft-lbs ft-Ibs Ibs NOTE: RV IS SQUARE IF ACTUATOR IS AC.ENHANCED PRESSURE LOC/C NG METHODOLOGY: , KEI:>>1.20 Thrust Margin'=THcap-F to~KEI Thrust Margin=2.328 10 lbs

Conclusion:

Open Thrust Margin ls posftivep therefore this valve and actuator are likely to overcome the theoretical pressure locking conditions evaluated. COMED PL EvaluationlNPswp67baa.mcd Valve ID: 2SWP'MOV67B page 4 I 0 N 0}}