ML20054B521: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:_ . . . _ . _ . . . _ _ _ _ _ _ _ . _ _ _                    -    _ _ _ _ . _ _ . _ _ _ _ - . . _ . _ . . _ _ _ _ _ _ . _ . _ _ _ _ . _ _ _ _ _ . .
{{#Wiki_filter:_
I I
I I
b i
b i
t If I
t I
!                                                        MISSISSIPPI POWER AND LIGHT CO.
f I
GRAND GULF NUCLEAR STATION j                                                                       UNIT 1 DOCKET NO. 50-416 1
MISSISSIPPI POWER AND LIGHT CO.
i
GRAND GULF NUCLEAR STATION j
!                                                                                                                                                      i j
UNIT 1 DOCKET NO. 50-416 1
I i
i i
t PRIMARY REACTOR CONTAINMENT INTEGRATED LEAKAGE RATE TEST REPORT l
j I
i t
PRIMARY REACTOR CONTAINMENT INTEGRATED LEAKAGE RATE TEST REPORT l
)
)
4 I
4 I
Line 33: Line 35:
i I
i I
I I
I I
!                                                                  Submitted To j                                               The United States Nuclear Regulatory Commission Pursuant To Facility Operating License                                                              !
Submitted To j
The United States Nuclear Regulatory Commission
]
]
1
Pursuant To Facility Operating License 1
;O 8204160572 820414 PDR ADOCK 05000416 A                   PDR
; O 8204160572 820414 PDR ADOCK 05000416 A
PDR


TABLE OF CONTENTS Page No.
TABLE OF CONTENTS Page No.
I 1-1 I.          INTRODUCTION II.         TEST SYNOPSIS                                                                                               2-1 III. TEST DATA  
I I.
INTRODUCTION 1-1 II.
TEST SYNOPSIS 2-1 III. TEST DATA  


==SUMMARY==
==SUMMARY==
3-1 IV.         ANALYSIS AND INTERPRETATION                                                                                 4-1 V.           COMPUTER REPORT AND DATA PRINTOUT                                                                           5-1 i
3-1 IV.
APPENDIXES A. Bechtel ILRT Computer Program                                                                                     A-1 B. ILRT Stabilization Data                                                                                           B-1 1
ANALYSIS AND INTERPRETATION 4-1 V.
l                   C. ILRT Summary Data                                                                                                 C-1 D. ILRT Calculations Mass Point Analysis                                                                                               D-1 Total Time Analysis                                                                                               D-2 Trend Report Analysis                                                                                             D-3 l                   E. ILRT Plots Temperature Versus Time                                                                                           E-1 Pressure Versus Time                                                                                             E-3 Air Mass Versus Time                                                                                             E-5 F. Verification Flow Test Summary Data                                                                               F-1 G. Verification Flow Test Calculations Mass Point Analysis                                                                                               G-1 Total Time Analysis                                                                                               G-2 Trend Report Analysis                                                                                             G-3 H. Bypass Leakage Rate Calculation                                                                                   H-1
COMPUTER REPORT AND DATA PRINTOUT 5-1 i
: 1. Local Leakage Test Summary Data                                                                                   I-l O               DH-103                                                       11
APPENDIXES A.
      . . - _ . _ . _ . _  _ ~ _ _               . _ _ . _ _ .    . _ - . _ . - . . _ _ _ _ . _ _ _ _ . - - . _ . _ . _ _ . _ .-.
Bechtel ILRT Computer Program A-1 B.
ILRT Stabilization Data B-1 1
l C.
ILRT Summary Data C-1 D.
ILRT Calculations Mass Point Analysis D-1 Total Time Analysis D-2 Trend Report Analysis D-3 l
E.
ILRT Plots Temperature Versus Time E-1 Pressure Versus Time E-3 Air Mass Versus Time E-5 F.
Verification Flow Test Summary Data F-1 G.
Verification Flow Test Calculations Mass Point Analysis G-1 Total Time Analysis G-2 Trend Report Analysis G-3 H.
Bypass Leakage Rate Calculation H-1 1.
Local Leakage Test Summary Data I-l O
DH-103 11
_ ~ _ _


[]     I. INTRODUCTION U
[]
I.
INTRODUCTION U
The Reactor Containment Building Integrated Leakage Rate (Type A) test is performed to demonstrate that leakare through the primary reactor containment systems and components penetrating the primary containment does not exceed the allowable leakage rate specified in the Grand Gulf Nuclear Station Final Safety Analysis Re port (FSAR).
The Reactor Containment Building Integrated Leakage Rate (Type A) test is performed to demonstrate that leakare through the primary reactor containment systems and components penetrating the primary containment does not exceed the allowable leakage rate specified in the Grand Gulf Nuclear Station Final Safety Analysis Re port (FSAR).
The successful preoperational Integrated Leakage Rate Test (ILRT),
The successful preoperational Integrated Leakage Rate Test (ILRT),
Verification Test, and Drywell Bypass Tert were completed on January 5, 1962 at Grand Gulf Nuclear Station Unit 1. Acceptance criteria for both ANSI /ANS 56.8-1981, " Containment System Leakage Testing Require-ments," and BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants,"
Verification Test, and Drywell Bypass Tert were completed on January 5, 1962 at Grand Gulf Nuclear Station Unit 1.
were met for an 8-hour chort duration test.             Calculations were per-formed using the ANSI /ANS 56.8-1981 " Mass Point Analysis Method" and BN-TOP-1, " Total Time Analysis Method." The test results are reported in accordance with the requirements of ANSI /ANS 56.8-1981, Section 5.8 and 10CFR50, Appendix J, Section V.B.3.
Acceptance criteria for both ANSI /ANS 56.8-1981, " Containment System Leakage Testing Require-ments," and BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants,"
were met for an 8-hour chort duration test.
Calculations were per-formed using the ANSI /ANS 56.8-1981 " Mass Point Analysis Method" and BN-TOP-1, " Total Time Analysis Method." The test results are reported in accordance with the requirements of ANSI /ANS 56.8-1981, Section 5.8 and 10CFR50, Appendix J, Section V.B.3.
The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Grand Gulf Nuclear Station Unit 1 ILRT.
The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Grand Gulf Nuclear Station Unit 1 ILRT.
Section II, Test Synopsis, presents the highlights of activities and events which occurred prior to and during the ILRT.
Section II, Test Synopsis, presents the highlights of activities and events which occurred prior to and during the ILRT.
I s_s/         Section III, Test Data Summary, contains the data and results necessary to demonstrate containment atmosphere stabilization, an acceptable leakage rate, and a successful verification test. In addition, plots provided in Appendix E supply a visual history of containment atmos-pheric conditions beginning with the stabilization condition, through-out the 8-hour short duration ILRT period, and ending with the verification test.
I s_s/
Section III, Test Data Summary, contains the data and results necessary to demonstrate containment atmosphere stabilization, an acceptable leakage rate, and a successful verification test.
In addition, plots provided in Appendix E supply a visual history of containment atmos-pheric conditions beginning with the stabilization condition, through-out the 8-hour short duration ILRT period, and ending with the verification test.
Section IV, Analysis and Interpretation, contains technical details of the integrated leakage rate measuring system used during the ILRT, and provides analysis to show that the containment 95% upper confidence limit leakage rate does not exceed 75% of the allowable rate as speci-fied in the plant FSAR.
Section IV, Analysis and Interpretation, contains technical details of the integrated leakage rate measuring system used during the ILRT, and provides analysis to show that the containment 95% upper confidence limit leakage rate does not exceed 75% of the allowable rate as speci-fied in the plant FSAR.
Section V, Computer Report and Data Printout, describes the ILRT com-puter program and report printouts.
Section V, Computer Report and Data Printout, describes the ILRT com-puter program and report printouts.
  ]
]
DH-103                               1-1
DH-103 1-1


l II. TEST SYNOPSIS TEST PREPARATION ACTIVITIES Prior to containment pressurization for the Structural Integrity Test (SIT) on January 1, 1982, Grand Gulf Nuclear Station Unit 1 test personnel were engaged in measuring containment leakage to ensure a successful preoperational ILRT. Sources of containment leakage were identified through Types B and C leakage rate testing programs and reduced by repairing those systems and containment components having relatively excessive leakage rates. The results of the Local Leakage Rate Test (LLRT) are presented in Appendix I.
l II.
TEST SYNOPSIS TEST PREPARATION ACTIVITIES Prior to containment pressurization for the Structural Integrity Test (SIT) on January 1, 1982, Grand Gulf Nuclear Station Unit 1 test personnel were engaged in measuring containment leakage to ensure a successful preoperational ILRT.
Sources of containment leakage were identified through Types B and C leakage rate testing programs and reduced by repairing those systems and containment components having relatively excessive leakage rates. The results of the Local Leakage Rate Test (LLRT) are presented in Appendix I.
Highlights of the test preparation activities included monitoring both upper and lower personnel hatch pneumatic systems leakage and repairing MSIV guard pipe inspection port seals, positioning sensors, verifying associated volume fractions, and conducting a temperature survey to ensure that all sensors could accurately monitor their respective subvolumes. An in-situ check, as specified in ANSI /ANS 56.8-1981, Section 4.2.3, was conducted to verify that all ILRT instrumentation was indicating correctly. The following items are presented in chronological order, and detail significant activities performed during the test preparation and successful execution.
Highlights of the test preparation activities included monitoring both upper and lower personnel hatch pneumatic systems leakage and repairing MSIV guard pipe inspection port seals, positioning sensors, verifying associated volume fractions, and conducting a temperature survey to ensure that all sensors could accurately monitor their respective subvolumes. An in-situ check, as specified in ANSI /ANS 56.8-1981, Section 4.2.3, was conducted to verify that all ILRT instrumentation was indicating correctly. The following items are presented in chronological order, and detail significant activities performed during the test preparation and successful execution.
The Type A test procedure was reviewed to verify compliance with a       Plant Technical Specifications, 10CFR50 Appendix J, ANSI /ANS 56.8-1981, BN-TOP-1, and the FSAR. In addition, test personnel reviewed the valve lineups to verify that the containment systems were in as close to post-accident alignment as possible.
The Type A test procedure was reviewed to verify compliance with a
CONTAINMENT PRESSURIZATION Containment pressurization for the ILRT began at 1030 on January 3, 1982. At the start of pressurization, containment fans M41-B001A and M41-B001B, and the containment, steam tunnel, and drywell cooling systems were operating. During pressurization with the containment at 10 to 12 psig, containment fan M41-B001B tripped off on overcurrent j         at approximately 68 amperes. ILRT pressure of 12.27 psig (26.24 psia) was reached at 1525. Containment fan M41-B001A was then manually tripped to prevent a possible uncontrolled trip.
Plant Technical Specifications, 10CFR50 Appendix J, ANSI /ANS 56.8-1981, BN-TOP-1, and the FSAR. In addition, test personnel reviewed the valve lineups to verify that the containment systems were in as close to post-accident alignment as possible.
CONTAINMENT PRESSURIZATION Containment pressurization for the ILRT began at 1030 on January 3, 1982. At the start of pressurization, containment fans M41-B001A and M41-B001B, and the containment, steam tunnel, and drywell cooling systems were operating. During pressurization with the containment at 10 to 12 psig, containment fan M41-B001B tripped off on overcurrent j
at approximately 68 amperes.
ILRT pressure of 12.27 psig (26.24 psia) was reached at 1525. Containment fan M41-B001A was then manually tripped to prevent a possible uncontrolled trip.
CONTAINMENT STABILIZATION Af ter reaching ILRT pressure, the containment atmosphere was allowed to stabilize. The temperature stabilization criteria of ANSI /ANS 56.8-1981, Section 5.3.1.3, and BN-TOP-1, Section 2.2.B, were satisfied. The ILRT stabilization data are given in Appendix B.
CONTAINMENT STABILIZATION Af ter reaching ILRT pressure, the containment atmosphere was allowed to stabilize. The temperature stabilization criteria of ANSI /ANS 56.8-1981, Section 5.3.1.3, and BN-TOP-1, Section 2.2.B, were satisfied. The ILRT stabilization data are given in Appendix B.
l Dil-103                                 2-1
l Dil-103 2-1


'
During containment stabilization the outer doors on the upper and lower personnel locks were opened. A number of small leaks were de-tected through the inner door seals. Leaks were repaired on the upper and lower lock containment pressure sensing systems. The outer doors were closed at 1853.
* During containment stabilization the outer doors on the upper and lower personnel locks were opened. A number of small leaks were de-
DURING ILRT Subsequent to containment air mass temperature stabilization, the ILRT for Grand Gulf Nuclear Station Unit 1 started at 2030 on January 3, 1982, and terminated at 0430 on the following day, for an 8-hour short duration test. The accumulated data were statistically analyzed (see Section III (C), Test Results - Type A Test.) The maximum allowable leakage rate (L ) for the primary containment is 0.437 wt.%/ day. The a
      .      tected through the inner door seals. Leaks were repaired on the upper and lower lock containment pressure sensing systems. The outer doors were closed at 1853.
Total Time Analysis (BN-TOP-1) yields a leakage rate of 0.068 wt.%/ day with an upper 95% confidence limit of 0.139 wt.%/ day.
DURING ILRT Subsequent to containment air mass temperature stabilization, the ILRT for Grand Gulf Nuclear Station Unit 1 started at 2030 on January 3, 1982, and terminated at 0430 on the following day, for an 8-hour short duration test. The accumulated data were statistically analyzed (see Section III (C), Test Results - Type A Test.) The maximum allowable leakage rate (La) for the primary containment is 0.437 wt.%/ day. The Total Time Analysis (BN-TOP-1) yields a leakage rate of 0.068 wt.%/ day with an upper 95% confidence limit of 0.139 wt.%/ day. Based on the Mass Point Analysis (ANSI /ANS 56.8-1981), the calculated leakage rate is 0.072 wt.%/ day with,an upper 95% confidence limit of 0.079 wt.%/ day.
Based on the Mass Point Analysis (ANSI /ANS 56.8-1981), the calculated leakage rate is 0.072 wt.%/ day with,an upper 95% confidence limit of 0.079 wt.%/ day.
These values are well below the Grand Gulf Nuclear Station Unit 1 acceptance criterion of 0.328 wt.%/ day (0.75 La)*
These values are well below the Grand Gulf Nuclear Station Unit 1 acceptance criterion of 0.328 wt.%/ day (0.75 L )*
VERIFICATION FLOW TEST A successful verification flow test was performed subsequent to the
a VERIFICATION FLOW TEST A successful verification flow test was performed subsequent to the
    ~\       ILRT from 0615 to 1015 on January 4, 1982. ILRT instrumentation per-formance was checked by imposing a leakage rate (Lo ) of 0.364 wt.%/ day (7.67 scfm). After imposing the leakage rate, the containment atmos-pheric conditions were allowed to stabilize for one (1) hour.
~\\
ILRT from 0615 to 1015 on January 4, 1982.
ILRT instrumentation per-formance was checked by imposing a leakage rate (L ) of 0.364 wt.%/ day o
(7.67 scfm). After imposing the leakage rate, the containment atmos-pheric conditions were allowed to stabilize for one (1) hour.
Due to an apparent flow restriction in the verification flow line, the imposed leakage rate could not reach the maximum allowable leakage rate (La) of 0.437 wt.%/ day. The imposed leakage rate (Lo) of 0.364 wt.%/ day is within the acceptance limits of La + 25% as given in ANSI /ANS 56.8-1981, Section 3.2.6(b)(1). The results of the verification test correlated to the ILRT are summarized as follows:
Due to an apparent flow restriction in the verification flow line, the imposed leakage rate could not reach the maximum allowable leakage rate (La) of 0.437 wt.%/ day. The imposed leakage rate (Lo) of 0.364 wt.%/ day is within the acceptance limits of La + 25% as given in ANSI /ANS 56.8-1981, Section 3.2.6(b)(1). The results of the verification test correlated to the ILRT are summarized as follows:
Measured (Acceptance Limit)       95% UCL Test Method                             Leakage wt.%/ day         wt.%/ day
Measured (Acceptance Limit) 95% UCL Test Method Leakage wt.%/ day wt.%/ day a.
: a.     ILRT/ Mass Point           0.072     (0.328)                   0.079 ILRT/ Total Time           0.068     (0.328)                   0.139
ILRT/ Mass Point 0.072 (0.328) 0.079 ILRT/ Total Time 0.068 (0.328) 0.139 b.
: b.     Verification / Mass Point 0.431     (0.327-0.545)               NA Verification / Total Time 0.434     (0.323-0.541)               NA DH-103                                 2-2
Verification / Mass Point 0.431 (0.327-0.545)
          .      -. .                                                    . _ _ . = _ ,
NA Verification / Total Time 0.434 (0.323-0.541)
NA DH-103 2-2
= _,


DEPRESSURIZATION AND DRYWELL BYPASS TEST Following the successful completion of the ILRT and verification flow test, containment depressurization began at 1030 on January 4, 1982. At 4.3 psig, a containment entry was made to close the drywell lock for the Drywell Bypass Test. The containment was then depressurized to O psig and the dry-well, whose pressure had dropped to 2.2 psig, was repressurized to 3 psig.
DEPRESSURIZATION AND DRYWELL BYPASS TEST Following the successful completion of the ILRT and verification flow test, containment depressurization began at 1030 on January 4, 1982. At 4.3 psig, a containment entry was made to close the drywell lock for the Drywell Bypass Test. The containment was then depressurized to O psig and the dry-well, whose pressure had dropped to 2.2 psig, was repressurized to 3 psig.
During repressurization of the drywell it was necessary to raise the sup-pression pool level to prevent leakage through the weir wall. After raising the suppression pool level, leakage through the weir wall was observed at 3.02 psig. The drywell pressure was then maintained between 3.00 and 3.01 psig with no observed leakage through the weir wall. The drywell atmosphere was allowed to stabilize for one hour, after which the Bypass Leakage Test began at 0400 on January 4,1982. The Bypass Leakage Test was successfully completed at 0800. The calculated bypass leakage rate of 609.7 scfm is well below the allowable rate of 3500 scfm. Refer to Appendix H Drywell Bypass Test Summary Data for calculations.
During repressurization of the drywell it was necessary to raise the sup-pression pool level to prevent leakage through the weir wall. After raising the suppression pool level, leakage through the weir wall was observed at 3.02 psig. The drywell pressure was then maintained between 3.00 and 3.01 psig with no observed leakage through the weir wall. The drywell atmosphere was allowed to stabilize for one hour, after which the Bypass Leakage Test began at 0400 on January 4,1982. The Bypass Leakage Test was successfully completed at 0800. The calculated bypass leakage rate of 609.7 scfm is well below the allowable rate of 3500 scfm. Refer to Appendix H Drywell Bypass Test Summary Data for calculations.
O I
O I
l O
l OV
V
(
DH-103                             2-3 l
DH-103 2-3 l


GGNO GlT/ ILRT PR699URG Vs. TMe curve                             -
GGNO GlT/ ILRT PR699URG Vs. TMe curve LEGEMD
LEGEMD
-._.. OIT
        -._.. OIT
-..... IL R T l
        - ..... IL R T l                                                                                       $
I./.,61T U
17.6                                                                                                                        U I./.,61T o
17.6 o
S I .I
S I.I \\
                                \.
m 3
m
n is.c
                                  \Ti 3
\\ i g
n is.c                     !!                                                                                                  g G
G
                          .I
.I T
* b G                       J             \           i
b G
                                                            ,'                          ILRT                                  ;j 12 s               ;
J
li         l o
\\
                                                                        . i .... .... .......
i ILRT
a)                   J:                   \                                                                                   $  .,
;j 12 s li l
n'                   .                                                                                                              e 3 10 0             I                 '      \
u o
* E   "
. i...............
@                  r                          "'I l                                                                                        _
a)
Q
J:
@M E
\\
n' e
3 10 0 I
\\
E r
l
"'I Q
@M 1
E i
l1 E
m I
l I
lQ 50
)
i
i
                  !'                            1 l1
?!
                                                                                              -                              E m
\\
I        l                                   I
l wwsu
* 50        )                                  i
[=vi i
                                                                                                                              ?!
srFAes Test m
l                        lQ\                                                    wwsu  .                :
I
29  .;!
\\i 29 m
I i
l 8
                                                          \i                                       [=vi    srFAes Test      m m
\\,
l                                   !                                                                8 i              ,
i i
                                                          \,                                                                 -
\\
oi
o i.
                                                            \
IO 20 50 40 90 60 70 80 90 10 0 IIO I20 I?O TIME
i.
( HOUR)
IO           20         50         40   90   60         70         80 90   10 0   IIO I20   I?O TIME       ( HOUR)
O O
O                                                                           O                                         9
9


III. TEST DATA  
O III. TEST DATA  


==SUMMARY==
==SUMMARY==
 
Pursuant to the requirements of ANSI /ANS 56.8-1981, Section 5.8, Reporting of Results, the information in this section is provided to supply adequate data for an independent review of the containment system leakage rate test results and instrumentation.
O            Pursuant to the requirements of ANSI /ANS 56.8-1981, Section 5.8, Reporting of Results, the information in this section is provided to supply adequate data for an independent review of the containment system leakage rate test results and instrumentation.
A.
A. Plant Information Owner:                 Mississippi Power and Light Company Plant:                 Grand Gulf Nuclear Station Unit 1 Location:             Port Gibson, MS Containment Type:     Mark III NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 5, 1982 B. Technical Data
Plant Information Owner:
: 1. Containment Net Free Air Volume         1,670,360 cu ft
Mississippi Power and Light Company Plant:
: 2. Design Pressure                         Pd = 15 psig
Grand Gulf Nuclear Station Unit 1 Location:
: 3. Design Temperature                       T = 185*F
Port Gibson, MS Containment Type:
: 4. Calculated Peak Accident Pressure       Pa = 11.5 psig S             5. Calculated Peak Accident Temperature     Ta= 181*F
Mark III NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 5, 1982 B.
    )
Technical Data 1.
: 6. Containment ILRT Average Temperature     40*F-120*F Limits C. Test Results - Type A Test
Containment Net Free Air Volume 1,670,360 cu ft 2.
: 1. Test Method                             Absolute
Design Pressure P = 15 psig d
: 2. Data Analysis Technique                 Mass Point Leakage Rate per ANSI /ANS 56.8-1981 Total Time per BN-TOP-1
3.
: 3. Test Pressure (actual)                   P = 11.97 to 12.27 psig
Design Temperature T = 185*F 4.
: 4. Maximum Allowable Leakage Rate           La= 0.437 wt.%/ day
Calculated Peak Accident Pressure P = 11.5 psig a
: 5. 75% of L a                              0.328 we.%/ day
S 5.
: 6. Integrated Leakage Rate Test Results     Leakage Rate, L,. wt.%/ day From Regres-   At Upper sion Line       95% Confi-dence Limit Mass Point Analysis                     0.072           0.079
Calculated Peak Accident Temperature T = 181*F a
/~'T                 Total Time Analysis                     0.068           0.139 Dil-103                               3-1
)
6.
Containment ILRT Average Temperature 40*F-120*F Limits C.
Test Results - Type A Test 1.
Test Method Absolute 2.
Data Analysis Technique Mass Point Leakage Rate per ANSI /ANS 56.8-1981 Total Time per BN-TOP-1 3.
Test Pressure (actual)
P = 11.97 to 12.27 psig 4.
Maximum Allowable Leakage Rate L = 0.437 wt.%/ day a
5.
75% of L 0.328 we.%/ day a
6.
Integrated Leakage Rate Test Results Leakage Rate, L,. wt.%/ day From Regres-At Upper sion Line 95% Confi-dence Limit Mass Point Analysis 0.072 0.079
/~'T Total Time Analysis 0.068 0.139 Dil-103 3-1


1 5
1 5
: 7. Verification Test Imposed                         Lo = 0.364 wt.%/ day (7.67 scfm)
C) 7.
C)                                Leakage Rate
Verification Test Imposed Lo = 0.364 wt.%/ day (7.67 scfm)
: 8. Verification Test Results                         Leakage Rate, Ly ., wt.%/ day Mass Point Analysis                               0.431 Total Time Analysis                               0.434
Leakage Rate 8.
: 9. Verification Test Limits:                         Test Limits, L y, wt.%/ day Mass Point       Total Time Analysis         Analysis 1
Verification Test Results Leakage Rate, L., wt.%/ day y
j                                       Upper Limit (Lo+ Lam + 0.25La)                     0.545             0.541 j                                       Lower Limit (Lo + Lam - 0.25La)                     0.327             0.323 1                               10. Report Printouts:
Mass Point Analysis 0.431 Total Time Analysis 0.434 9.
    ,                                  The report printouts and data plots for the Type A and verification test calculations are provided in Appendixes C through G.
Verification Test Limits:
D.         Drywell Bypass test results are provided in Appendix H.
Test Limits, L, wt.%/ day y
E.       Test Results - Type B and C Tests 4
Mass Point Total Time Analysis Analysis 1
Refer to Appendix 1 for a summary of local leakage rate test
j Upper Limit (Lo+ Lam + 0.25L )
[''N                      results.
0.545 0.541 a
F.         Integrated Leakage Rate Measurement System (For ILRT Data Acquisition System, see Figure.2).
j Lower Limit (Lo + Lam - 0.25L )
: 1. Absolute Pressure (2 channels):
0.327 0.323 a
Mensor Quartz Manometer i                                      Model No. 10100-001 PI-l Capsule S/N 2407, Gage S/N 1522 PI-2 (Spare) Capsule S/N 2406, Gage S/N 1555 Range:                     0-100,000 counts; 0-100 psia l                                     Accuracy:                   + 0.015% reading l                                     Sensitivity:               0.001 psia f                                     Repeatability:             0.001 psia Calibration Date:           12/23/81 s
1 10.
Report Printouts:
The report printouts and data plots for the Type A and verification test calculations are provided in Appendixes C through G.
D.
Drywell Bypass test results are provided in Appendix H.
E.
Test Results - Type B and C Tests 4
[''N Refer to Appendix 1 for a summary of local leakage rate test results.
F.
Integrated Leakage Rate Measurement System (For ILRT Data Acquisition System, see Figure.2).
1.
Absolute Pressure (2 channels):
Mensor Quartz Manometer Model No. 10100-001 i
PI-l Capsule S/N 2407, Gage S/N 1522 PI-2 (Spare) Capsule S/N 2406, Gage S/N 1555 Range:
0-100,000 counts; 0-100 psia l
Accuracy:
+ 0.015% reading l
Sensitivity:
0.001 psia f
Repeatability:
0.001 psia Calibration Date:
12/23/81 s
l l
l l
O DH-103                                                     3-2 l
O l
i            . - _ -                          - - . - -                      - - . - .                  .                .. --
DH-103 3-2 i
: 2. Drybulb Temperature (22 sensors):
 
Rosemount resistance temperature detector Model No. 14632 Series 78 Element:             Platinum Resistance:         Ro = 100 ohms @ 32*F Lead Type:           3 lered potentiometric configuration
2.
Drybulb Temperature (22 sensors):
Rosemount resistance temperature detector Model No.
14632 Series 78 Element:
Platinum Resistance:
Ro = 100 ohms @ 32*F Lead Type:
3 lered potentiometric configuration
]
]
Temperature Range:   32' to 120*F (from calibration data)
Temperature Range:
Volumetrics Bridge Model No. VSTD 333 Input Voltage:     1 15 volts and 5.2 volt Resistance:         100 ohms @ 32*F Output:             1.0 millivolt /*F; 32*F = 32 mv.,
32' to 120*F (from calibration data)
100*F = 100 av.; 3-wire configuration with l                                             constant current Adjustment:         Zero, span and linearity (lic:ited)
Volumetrics Bridge Model No. VSTD 333 Input Voltage:
Accuracy:           1 0.l'F Sensitivity:         0.0l*F Repeatability:       0.0l*F Calibration Date:   12/21/81 N                   3. Dewpoint Temperature (6 sensors):
1 15 volts and 5.2 volt Resistance:
100 ohms @ 32*F Output:
1.0 millivolt /*F; 32*F = 32 mv.,
100*F = 100 av.; 3-wire configuration with l
constant current Adjustment:
Zero, span and linearity (lic:ited)
Accuracy:
1 0.l'F Sensitivity:
0.0l*F Repeatability:
0.0l*F Calibration Date:
12/21/81 N
3.
Dewpoint Temperature (6 sensors):
Dewpoint Temperature Systems - EG6G, Inc., Dewpoint Hygromater, Model No. 660 with 6 sensors and signal conditioning.
Dewpoint Temperature Systems - EG6G, Inc., Dewpoint Hygromater, Model No. 660 with 6 sensors and signal conditioning.
Accuracy:           1 0.1*F Sensitivity:         0.0l*F Repeatability:       0.05*F Calibration Date:   12/18/81
Accuracy:
: 4. Verification Flow (1 channel):
1 0.1*F Sensitivity:
Volumetric thermal mass flow meter, TSI model No. 2013 S/N 1516 Range:               0-10.0 scfm Accuracy:           1 1% F.S.
0.0l*F Repeatability:
Sensitivity:       1 0.01 scfm Repeatability:     1 0.01 scfm Calibration date:   10/20/81
0.05*F Calibration Date:
: 5. Drybulb and Dewpoint Temperature Sensor Volume Fractions (see j                         Tables 1 and 2).
12/18/81 4.
\o DH-103                               3-3
Verification Flow (1 channel):
Volumetric thermal mass flow meter, TSI model No. 2013 S/N 1516 Range:
0-10.0 scfm Accuracy:
1 1% F.S.
Sensitivity:
1 0.01 scfm Repeatability:
1 0.01 scfm Calibration date:
10/20/81 5.
Drybulb and Dewpoint Temperature Sensor Volume Fractions (see j
Tables 1 and 2).
\\o DH-103 3-3


l'         G. Information Retained at Plant O'
l' G.
Information Retained at Plant O'
The following information is available for review at the facility:
The following information is available for review at the facility:
: 1. Access control procedures established to limit ingress to, containment during testing.
1.
: 2. A listing of all containment penetrations, including the total number of like penetrations, penetration size, and function.
Access control procedures established to limit ingress to, containment during testing.
: 3. A listing of normal operating instrumentation used for the leakage rate test.
2.
: 4. A system lineup (at time of test) showing required valve positions and status of piping systems.
A listing of all containment penetrations, including the total number of like penetrations, penetration size, and function.
: 5. A continuous, sequential log of events from initial survey of containment to restoration of all tested systems.
3.
: 6. Documentation of instrumentation calibrations and standards (included with documentation should be an error analysis of instrumentation).
A listing of normal operating instrumentation used for the leakage rate test.
: 7. Data to verify temperature stabilization criteria as estab-lished by test procedure (Appendix B).
4.
8.
A system lineup (at time of test) showing required valve positions and status of piping systems.
%l f                The working copy of the test procedure that includes signature sign-off of procedural steps.
5.
: 9. The procedure and all data that verify completion of penetra-tions and valve testing (B&C-type tests) including as-found leak rates , corrective action taken, and final leak rate.
A continuous, sequential log of events from initial survey of containment to restoration of all tested systems.
: 10. Computer printouts of ILRT data and manual data accumulation along with summary description of computer program (Appendix C).
6.
: 11. The Quality Assurance audit plan or checklist used to monitor ILRT with proper sign-offs.
Documentation of instrumentation calibrations and standards (included with documentation should be an error analysis of instrumentation).
: 12. A listing of all test exceptions including changes in contain-ment system boundaries instituted by licensee to conclude successful testing.
7.
: 13. Description of sensor malfunctions, repairs, and methods used to redistribute volume fractions to operating instrumentation where applicable.
Data to verify temperature stabilization criteria as estab-lished by test procedure (Appendix B).
: 14. A review of confidence limits of test results with accompanying computer printouts where applicable.
%l f 8.
v DH-103                               3-4
The working copy of the test procedure that includes signature sign-off of procedural steps.
: 15. Description of method of leakage rate verification of instru-ment measuring system (superimposed leakage), with calibration information on flow meters along with calculations used to measure the verification leakage rate (Appendixes F and G).
9.
: 16. Plots presenting 1LRT data obtained during the test (Appendix E).
The procedure and all data that verify completion of penetra-tions and valve testing (B&C-type tests) including as-found leak rates, corrective action taken, and final leak rate.
10.
Computer printouts of ILRT data and manual data accumulation along with summary description of computer program (Appendix C).
11.
The Quality Assurance audit plan or checklist used to monitor ILRT with proper sign-offs.
12.
A listing of all test exceptions including changes in contain-ment system boundaries instituted by licensee to conclude successful testing.
13.
Description of sensor malfunctions, repairs, and methods used to redistribute volume fractions to operating instrumentation where applicable.
14.
A review of confidence limits of test results with accompanying computer printouts where applicable.
v DH-103 3-4
 
15.
Description of method of leakage rate verification of instru-ment measuring system (superimposed leakage), with calibration information on flow meters along with calculations used to measure the verification leakage rate (Appendixes F and G).
16.
Plots presenting 1LRT data obtained during the test (Appendix E).
: 17. The P& ids of systems which penetrate the containment.
: 17. The P& ids of systems which penetrate the containment.
30
30
)O Dii-103                             3-5
)O Dii-103 3-5


TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (ILRT)
TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (ILRT)
Containment Azimuth   Distance from   Volume RTD Instrument No.     Elevation   ( Degrees)     Center       Fraction TE-N001-01         274'-0"         352         20'-0"     0.062 TE-N001-02         274'-0"         172         20'-0"     0.062 TE-N001-03         247'-9"           90         30'-8"     0.062 TE-N001-04         245'-9"         265         27'-6"     0.062 TE-N001-05         214'-4"           45         50'-6"     0.062 T E-N001-06       229'-2"         155         49'-8"     0.062 TE-N001-07         216'-0"         225         49'-8"     0.062 TE-N001-08         227'-0"         319         49'-0"     0.062 TE-N001-09         173'-0"         220         52'-0"     0.058 TE-N001-10         163'-0"         305         50'-8"     0.057 TE-N001-11         164'-6"         155         28'-8"     0.022 TE-N001-12         141'-6"         162         50'-3"     0.058 TE-N001-13         141'-2"           90         55'-6"     0.057 TE-N001-14         122'-2"         335         41'-2"     0.057 TE-N001-15         124'-0"         177         51'-6"     0.057 TE-N001-16         150'-6"         219         25'-4"     0.022
Containment Azimuth Distance from Volume RTD Instrument No.
  'h-)
Elevation
    '-        TE-N001-17         120'-0"           95         27'-8"     0.022 TE-N001-18         129'-0"         187         29'-0"     0.022 TE-N001-19         168'-0"         350         30'-3"     0.022 TE-N001-20         153'-5"           41         27'-3"     0.023 TE-N001-21         119'-9"         278         26'-9"     0.022 TE-N001-22         102'-6"           0           4'       O.005 1.000 Containment Azimuth   Distance from   Volume ME Instrument No. Elevation     (Degrees)     Center       Fraction ME-N002-01         247'-9"           90         30'-8"     0.210 ME-N002-02         216'-0"         225         49'-9"     0.210 ME-N002-03         167'-0"         305         50'-8"     0.210 ME-N002-04         122'-2"         355         41'-2"     0.210 ME-N002-05         158'-5"           41         27'-3"     0.080 ME-N002-06         118'-2"         278         26'-9"     0.080 1.000 i
( Degrees)
Dil-103                               3-6 a
Center Fraction TE-N001-01 274'-0" 352 20'-0" 0.062 TE-N001-02 274'-0" 172 20'-0" 0.062 TE-N001-03 247'-9" 90 30'-8" 0.062 TE-N001-04 245'-9" 265 27'-6" 0.062 TE-N001-05 214'-4" 45 50'-6" 0.062 T E-N001-06 229'-2" 155 49'-8" 0.062 TE-N001-07 216'-0" 225 49'-8" 0.062 TE-N001-08 227'-0" 319 49'-0" 0.062 TE-N001-09 173'-0" 220 52'-0" 0.058 TE-N001-10 163'-0" 305 50'-8" 0.057 TE-N001-11 164'-6" 155 28'-8" 0.022 TE-N001-12 141'-6" 162 50'-3" 0.058 TE-N001-13 141'-2" 90 55'-6" 0.057 TE-N001-14 122'-2" 335 41'-2" 0.057 TE-N001-15 124'-0" 177 51'-6" 0.057
'h-)
TE-N001-16 150'-6" 219 25'-4" 0.022 TE-N001-17 120'-0" 95 27'-8" 0.022 TE-N001-18 129'-0" 187 29'-0" 0.022 TE-N001-19 168'-0" 350 30'-3" 0.022 TE-N001-20 153'-5" 41 27'-3" 0.023 TE-N001-21 119'-9" 278 26'-9" 0.022 TE-N001-22 102'-6" 0
4' O.005 1.000 Containment Azimuth Distance from Volume ME Instrument No.
Elevation (Degrees)
Center Fraction ME-N002-01 247'-9" 90 30'-8" 0.210 ME-N002-02 216'-0" 225 49'-9" 0.210 ME-N002-03 167'-0" 305 50'-8" 0.210 ME-N002-04 122'-2" 355 41'-2" 0.210 ME-N002-05 158'-5" 41 27'-3" 0.080 ME-N002-06 118'-2" 278 26'-9" 0.080 1.000 i
Dil-103 3-6 a


      ,                                  TABLE 2 DRYWELL TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (BYPASS TEST)
TABLE 2 DRYWELL TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (BYPASS TEST)
Drywell Azimuth   Distance from   Volume RTD Instrument No. Elevation   (Degrees)     Center       Fraction TE-N001-11         164'-6"       155         28'-8"       0.138 TE-N001-16         150'-6"       219         25'-4"       0.138 TE-N001-17         120'           95         27'-8"       0.138 TE-N001-18         129'           187         29'-0"       0.138 TE-N001-19         168'           350         30'-3"       0.138 TE-N001-20         153'-5"         41         27'-3"       0.138 TE-N001-21         119'-9"       278         26'-9"       0.138 TE-N001-22         102'-6"         0           4'-0"       0.034 1.000 Drywell Azimuth   Distance from   Volume ME Instrument No. Elevation   (Degrees)     Center       Fraction ME-N002-05         158'-5"         41         27'-3"         0.5 ME-N002-06         118'-2"       278         26'-9"         0.5 1.0 k
Drywell Azimuth Distance from Volume RTD Instrument No.
DH-103                             3-7
Elevation (Degrees)
Center Fraction TE-N001-11 164'-6" 155 28'-8" 0.138 TE-N001-16 150'-6" 219 25'-4" 0.138 TE-N001-17 120' 95 27'-8" 0.138 TE-N001-18 129' 187 29'-0" 0.138 TE-N001-19 168' 350 30'-3" 0.138 TE-N001-20 153'-5" 41 27'-3" 0.138 TE-N001-21 119'-9" 278 26'-9" 0.138 TE-N001-22 102'-6" 0
4'-0" 0.034 1.000 Drywell Azimuth Distance from Volume ME Instrument No.
Elevation (Degrees)
Center Fraction ME-N002-05 158'-5" 41 27'-3" 0.5 ME-N002-06 118'-2" 278 26'-9" 0.5 1.0 k
DH-103 3-7


m                                                                     *
m
            \
\\
MC M
M C N
N m              N N              2 C   e             $
M N
55W                v5 mo zu m -a l               l 2=
mN 2
                                                                                                              = m g=.-------------                                   -----               ------,2=        4 1
C e 55 v5 W
x       ,                              I I                m,,        =                                                      I
mo zu m -a l
                                        >=m         >m,m,           8,, mN l                2mm         2mm                                 mmm               l
l 2=
                                                    -ENS            ~<E l             ~ -c-ENS w aa        -c-
m
                                                    -4 m o E",
=
o rn ms              EEG o- >
------,2=
l                nm=         Mm=             ;"e                   "
g=.-------------
4 1
I x
I
>=m
>m,m, 8,, mN I
m,,
=
2mm 2mm mmm l
l
~<E EEG E",
l
~ ENS
-ENS o ms o-
-c-
-c-w aa
-4 m o rn l
nm=
Mm=
;"e 1
m m
m =
I g
\\
l N
1 l
I l
1 F
-e
::a I
]E I
H I
I l
I C
1 I
1, I
y k
i E-o I
5 l
5 "
N, M9 1
R 1
Ec Em i
O EE o
i 8
go g
=
=r I
c I
1
=
en 1
1 1
I y
1 I
1 I
m           m              m =                                    g
o I
                                                                    \
i 2
l                                                    N                              1 l                              ,.
m I
I         _
B,g" I
l                                                                                              F
.cn I
                                                      -e                                                    1
::a I
I
I
                                                      ]E I
: 1. _ _. _ _. _ _._. _ -.
I H
I I
l                                                                                  I          C 1                                                                                   I
v)
    <                  1,                              ,,                    .,      ,,,
I I
I          y k                  i E-                           o                                      .
H I
I l 5 R
I I
                                "                    5
I I
                                                              -        N,        -
9 E
M9              1          >
1                                              Ec                Em                i        O i                              8 g
go          -
EE
                                                                                          =r o
I                             =
                                                                        =                                    I         c 1
1                                                - "                                          en 1        -
1 I
1 I
y 1                                            .                    ,              I        o I                                                                       m          i         2 I                                                                                   I I                                                                       B,g"                .cn I        .<:
m n
: 1. _ _. _ _. _ _ ._ . _ -.     - - - _ - -                                         I          v)
x m=
ig:
7;=
I en ae i
in E 9 amE sus QE ENE I
I m
me>
mc=
me o>c 5
P I
nm nm r-yp r-a 3
-g n m -.4 E m -4 n
-a: r-r-
r-Em>
gmg
]
1 t
mm
=m
=2 m
l
]
N d
l 1
I I
I I
I        H I                        I      -                                                  I I
O FIGURE 2 3-8 t
I 9
a
x            m=
m
                                                                              -    1              n      I E
inE 9<            ig:
amE 7;=-
sus I    en        ae      i I 5    -
me>                      mc=            !    QE        ENE    I m    -
nm P                    nm r-me yp o>c I      n                                                                  r- a 3
                            -g              m -.4 E                  m -4 n              -a: r-    r-
                                >          Em>                      gmg            ]              m r-1      t            mm                        =m  "
                                                                                                    =2 N                          d l      ]                                                                          l 1                                                          I I
O                   '------------------------'-------------
FIGURE 2 3-8 t
_ ___ ___ __ __        a   --


IV. ANALYSIS AND INTERPRETATION oC\
IV.
k--       A. This section is provided pursuant to ANSI /ANS 56.8-1981, Section 5.8.6, which requires analysis of leakage rate data and provides an interpretation of the test results to show proper compliance with acceptance criteria specified in ANSI /ANS 56.8-1981, 10CFR50, Appendix J, and the Grand Gulf Nuclear Station FSAR.
ANALYSIS AND INTERPRETATION oC\\
k--
A.
This section is provided pursuant to ANSI /ANS 56.8-1981, Section 5.8.6, which requires analysis of leakage rate data and provides an interpretation of the test results to show proper compliance with acceptance criteria specified in ANSI /ANS 56.8-1981, 10CFR50, Appendix J, and the Grand Gulf Nuclear Station FSAR.
Several corrections must be added to the calculated results of the Unit 1 ILRT. The Plant Chilled Water System (Pen 38 + 39) was not in the post LOCA lineup position and therefore the LLRT result of 2.69 SCFH must be added to the ILRT calculated results. The seal systems on the upper and lower personnel locks required makeup flows of 0.12 and 0.005 SCFH respectively during the ILRT period.
Several corrections must be added to the calculated results of the Unit 1 ILRT. The Plant Chilled Water System (Pen 38 + 39) was not in the post LOCA lineup position and therefore the LLRT result of 2.69 SCFH must be added to the ILRT calculated results. The seal systems on the upper and lower personnel locks required makeup flows of 0.12 and 0.005 SCFH respectively during the ILRT period.
The total correction to be added to the calculated Type A leakage rate is 2.82 SCFH or 0.004%/ day.
The total correction to be added to the calculated Type A leakage rate is 2.82 SCFH or 0.004%/ day.
Pre-and post-test containment water level measurements indicated that the upper pool. water volume had decreased by 574 cu f t from 1700 December 31, 1981, to 1200 January 5, 1982, and that the dry-well sump water volume had increased by 95 cu f t from 1000 January 3 to 1200 January 5, 1982. This resulted in a net water volume decrease rate of 74 cu ft per day. The indicated water volume change is most likely due to measurement accuracy. At any rate, a decrease in water volume would not mask an in-leakage, and therefore is not added as a correction.
Pre-and post-test containment water level measurements indicated that the upper pool. water volume had decreased by 574 cu f t from 1700 December 31, 1981, to 1200 January 5, 1982, and that the dry-well sump water volume had increased by 95 cu f t from 1000 January 3 to 1200 January 5, 1982. This resulted in a net water volume decrease rate of 74 cu ft per day. The indicated water volume change is most likely due to measurement accuracy. At any rate, a decrease in water volume would not mask an in-leakage, and therefore is not added as a correction.
&f
&f \\
\"-
The corrected and uncorrected Type A leakage rates are tabulated
    \          The corrected and uncorrected Type A leakage rates are tabulated below:
\\"-
Lam wt%/ day         95% UCL wt%/ day I     II   III         I     II     III
below:
: 1. ILRT/ Mass Point   0.072 0.076 0.328         0.079 0.083 0.328 ILRT/ Total Time   0.068 0.072 0.328         0.139 0.143 0.328
L wt%/ day 95% UCL wt%/ day am I
: 2. Verification /
II III I
Mass Point         0.431         0.327-0.545 Total Time         0.434         0.323-0.541 where Column I      = Uncorrected leakage rate calculated during ILRT.
II III 1.
Column II   = Corrected leakage rate corresponding to Column I plus corrections.
ILRT/ Mass Point 0.072 0.076 0.328 0.079 0.083 0.328 ILRT/ Total Time 0.068 0.072 0.328 0.139 0.143 0.328 2.
Verification /
Mass Point 0.431 0.327-0.545 Total Time 0.434 0.323-0.541 Uncorrected leakage rate calculated during where Column I
=
ILRT.
Column II Corrected leakage rate corresponding to Column
=
I plus corrections.
Column III = Acceptance limits O
Column III = Acceptance limits O
DH-103                                 4-1
DH-103 4-1


The ILRT results at the upper 95% confidence level satisfy the P
The ILRT results at the upper 95% confidence level satisfy the
tance criterion of Lam < 0.75La = 0.328%/ day, at Pa = 11.5 B. ISG CALCULATION The ISG calculation provided below was performed according to the format specified in ANSI /ANS 56.8-1981, Appendix G.
= 0.328%/ day, at Pa = 11.5 P
: a. Calibration Data Number of                                         l Repeatability,6 Sensors       Sensitivity, E Temperature, T               22           0.0l*F (*R)   0.01*F (*R)
tance criterion of Lam < 0.75La B.
Pregsure, P                   1         0.001 psia     0.001 psia Vapor Pressure (Dewpoint), Pv               6         0.0l*F         0.05'F
ISG CALCULATION The ISG calculation provided below was performed according to the format specified in ANSI /ANS 56.8-1981, Appendix G.
: b. _ Instrument Measurement Errors
a.
: 1. Tempe ratures e
Calibration Data Number of l
T = [(E T    ) +I)I T    l/2 /(No. of Sensors)1/2
Sensors Sensitivity, E Repeatability,6 Temperature, T 22 0.0l*F (*R) 0.01*F (*R)
                              = [(0.01)2 + (0,01)2]l/2/(22)1/2
Pregsure, P 1
                              = 0.003*F'(*R)
0.001 psia 0.001 psia Vapor Pressure (Dewpoint), Pv 6
: 2. Pressures ep  = [(Ep )2 + (s p)2jl/2 (No.
0.0l*F 0.05'F b.
                                                      /    of Sensors)1/2
_ Instrument Measurement Errors 1.
                              = [(0.001)2 + (0.001)2]1/2/(1)l/2
Tempe ratures l/2 (No. of Sensors)1/2 T = [(E ) +I)I
                              = 0.0014 psia
/
: 3. Vapor Pressure
e T
;                        For a dewpoint temperature range of 68.25'F + 0.05*F the average rate of change in dewpoint pressure is 0.0118 psi /*F, i.e.,
T
= [(0.01)2 + (0,01)2]l/2/(22)1/2
= 0.003*F'(*R) 2.
Pressures
= [(E )2 + (s )2jl/2 (No. of Sensors)1/2
/
e p
p p
= [(0.001)2 + (0.001)2]1/2/(1)l/2
= 0.0014 psia 3.
Vapor Pressure For a dewpoint temperature range of 68.25'F + 0.05*F the average rate of change in dewpoint pressure is 0.0118 psi /*F, i.e.,
vapor pressure @ 68.3*F = 0.34243 psi
vapor pressure @ 68.3*F = 0.34243 psi
                                          @ 68.2*F = 0.34125 psi change for 0.1*F = 0.00118 psi The sensitivity and repeatability in terms of pressure are:
@ 68.2*F = 0.34125 psi change for 0.1*F = 0.00118 psi The sensitivity and repeatability in terms of pressure are:
E py  = (0.0118 psi /*F)(0.0l*F) = 0.000118 psi Spv = (0.0118 psi /*F)(0.05'F) = 0.00059 psi D
E
DH-103                                   4-2
= (0.0118 psi /*F)(0.0l*F) = 0.000118 psi py Spv = (0.0118 psi /*F)(0.05'F) = 0.00059 psi D
DH-103 4-2


  )           Therefore, e
)
py                          /
Therefore, py)2 + (g )2]l/2 (No. of Sensors)l/2 e
                  = [(E py)2 + (gpy)2]l/2 (No. of Sensors)l/2
= [(E
              = [(0.000118)2 + (0.00059)2)l/2/ (6)1/2
/
              = 0.00025 psi
py py
: c. ISG Calculation for 8 hour ILRT P = 12.27 psig + 14.7 = 26.97 psia T = 77'F + 460 = 537*R ISG = + 2400     2 p
= [(0.000118)2 + (0.00059)2)l/2 (6)1/2
2+2         2+2       2 1/2 ISG = 1 2400   ~ 2 0.0014)2+2(0.00025 2+2 0.003 2           1/2 8   _    26.97 /     \ 26.97           537   _
/
                  = 1 300 (0.54 x 10-8 + 0.0169 x 10-8 + 0.006 x 10-8)l/2
= 0.00025 psi c.
                  = 1 300 (0.75 x 10-4)
ISG Calculation for 8 hour ILRT P = 12.27 psig + 14.7 = 26.97 psia T = 77'F + 460 = 537*R ISG = + 2400 2
                  = 0.0225 wt.%/ day j           25% La = 0.437 x 0.25 = 0.10925 wt.%/ day 0.0225 < 0.10925 meets the criterion of ANSI /ANS 56.8-1981 and BN-TOP-1.
2+2 2+2 2
1/2 p
ISG = 1 2400 ~ 2 0.0014)2+2(0.00025 2+2 0.003 2 1/2 8
26.97 /
\\ 26.97 537
= 1 300 (0.54 x 10-8 + 0.0169 x 10-8 + 0.006 x 10-8)l/2
= 1 300 (0.75 x 10-4) 0.0225 wt.%/ day
=
j 25% La = 0.437 x 0.25 = 0.10925 wt.%/ day 0.0225 < 0.10925 meets the criterion of ANSI /ANS 56.8-1981 and BN-TOP-1.
I i
I i
i I
i IlO DH-103 4-3
lO DH-103                             4-3


( }
V.
COMPUTER REPORT AND DATA PRINTOUT
%/
A.
MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as determined by the Mass Point Method described in the " Computer Program" section of this report. The " Calculated Leakage Rate" is the value determined from the regression analysis. The
" Containment Air Mass" values are the masses of dry air in the containment (lbm). These values, determined from the Equation of State, are used in the regression analysis.
B.
TOTAL TIME REPORT The Total Time Report presents data leakage rate (wt%/ day) as determined by the Total Time Method. The " Calculated Leakage Rate" is the value determined from the regression analysis. The
" Measured Leakage Rates" are the leakage rate values determined using Total Time calculations used in the above regression analysis.
C.
TREND REPORT The Trend Report presents leakage rates (as determined by the Mass Point and Total Time methods described in the " Computer Program"
(
(
%/
)
      }  V. COMPUTER REPORT AND DATA PRINTOUT A. MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as determined by the Mass Point Method described in the " Computer Program" section of this report. The " Calculated Leakage Rate" is the value determined from the regression analysis. The
section of this report) in percent of the initial contained mass
                " Containment Air Mass" values are the masses of dry air in the containment (lbm). These values, determined from the Equation of State, are used in the regression analysis.
\\_ '
B. TOTAL TIME REPORT The Total Time Report presents data leakage rate (wt%/ day) as determined by the Total Time Method. The " Calculated Leakage Rate" is the value determined from the regression analysis. The
of dry air per day (wt%/ day), elapsed time (hours), and number of data points.
                " Measured Leakage Rates" are the leakage rate values determined using Total Time calculations used in the above regression analysis.
D.
C. TREND REPORT The Trend Report presents leakage rates (as determined by the Mass Point and Total Time methods described in the " Computer Program"
(      )        section of this report) in percent of the initial contained mass
\_ '           of dry air per day (wt%/ day), elapsed time (hours), and number of data points.
D.  


==SUMMARY==
==SUMMARY==
DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The five column headings are TIME, DATE, TEMP, PRESSURE, and VPRS, and contain data defined as follows:
DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The five column headings are TIME, DATE, TEMP, PRESSURE, and VPRS, and contain data defined as follows:
: 1. TIME:       Time in 24-hour notations (hours and minutes).
1.
: 2. DATE:       Calendar date (month and day).
TIME:
: 3. TEMP:       Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).
Time in 24-hour notations (hours and minutes).
: 4. PRESSURE: Partial pressure of the dry air component of the containment atmosphere in absolute units (psia).
2.
: 5. VPRS:       Partial pressure of water vapor of the containment atmosphere in absolute units (psia).
DATE:
Calendar date (month and day).
3.
TEMP:
Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).
4.
PRESSURE: Partial pressure of the dry air component of the containment atmosphere in absolute units (psia).
5.
VPRS:
Partial pressure of water vapor of the containment atmosphere in absolute units (psia).
p.
p.
(v    )
(
DH-103                               5-1
)
v DH-103 5-1


s E.  
s E.


==SUMMARY==
==SUMMARY==
Line 350: Line 585:
==SUMMARY==
==SUMMARY==
OF CORRECTED DATA p
OF CORRECTED DATA p
( -)           The Summary of Measured Data presents the individual containment atmosphere drybulb temperatures, dewpoint temperatures, and absolute total pressure measured at the time and date as indicated and is used to determine the temperature and pressure described in V.D.3-5 above.
( -)
: 1. TEMP 1 through TEMP 22 are the drybulb temperatures. The values in the right-hand column are temperatures (*F), multi-plied by 100, as read from the data acquisition system (DAS).
The Summary of Measured Data presents the individual containment atmosphere drybulb temperatures, dewpoint temperatures, and absolute total pressure measured at the time and date as indicated and is used to determine the temperature and pressure described in V.D.3-5 above.
1.
TEMP 1 through TEMP 22 are the drybulb temperatures. The values in the right-hand column are temperatures (*F), multi-plied by 100, as read from the data acquisition system (DAS).
The values in the left-hand column are the corrected tempera-tures expressed in absolute units (*R).
The values in the left-hand column are the corrected tempera-tures expressed in absolute units (*R).
: 2. PRES 1 is the total pressure, absolute. The right-hand value, in parentheses, is a number in counts as read from the DAS.
2.
PRES 1 is the total pressure, absolute. The right-hand value, in parentheses, is a number in counts as read from the DAS.
This count value is converted to a value in psia by the com-puter via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia.
This count value is converted to a value in psia by the com-puter via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia.
: 3. VPRS 1 through VPRS 6 are the dewpoint temperatures (water vapor pressures). The values in the right-hand column are temperatures (*F), multiplied by 100 as read from the DAS.
3.
VPRS 1 through VPRS 6 are the dewpoint temperatures (water vapor pressures). The values in the right-hand column are temperatures (*F), multiplied by 100 as read from the DAS.
The values in the left-hand column are the water vapor pres-sures (psia) from the steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in
The values in the left-hand column are the water vapor pres-sures (psia) from the steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in
(   j             the center column.
(
j the center column.
G The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:
G The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:
: 1. TEMPERATURE (*F) is the volume weighted average containment atmosphere drybulb temperature (refer to Section III, Tables 1 and 2, for sensor volume fractions) derived from TEMP 1 through TEMP 22.
1.
: 2. CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from PRES 1, total pressure, yielding the partial pressure of the dry air.
TEMPERATURE (*F) is the volume weighted average containment atmosphere drybulb temperature (refer to Section III, Tables 1 and 2, for sensor volume fractions) derived from TEMP 1 through TEMP 22.
: 3. VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute (refer to Section III, Tables 1 and 2 for sensor volume fractions),
2.
CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from PRES 1, total pressure, yielding the partial pressure of the dry air.
3.
VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute (refer to Section III, Tables 1 and 2 for sensor volume fractions),
derived from VPRS 1 through VPRS 6.
derived from VPRS 1 through VPRS 6.
: 4. CONTAINMENT AIR MASS (lbm) is the calculated mass of dry air in the containment. The mass of dry air is calculated using the containment free air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air.
4.
CONTAINMENT AIR MASS (lbm) is the calculated mass of dry air in the containment. The mass of dry air is calculated using the containment free air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air.
[)
[)
\'/  '
Note: This printout is not included in the report, but is
Note: This printout is not included in the report, but is retained at the facility.
\\'/
Dil-103                               5-2
retained at the facility.
Dil-103 5-2


APPENDIX A
APPENDIX A (m
    /
/
(m q ,/
)
          )
BECHTEL ILRT COMPUTER PROGRAM q,/
BECHTEL ILRT COMPUTER PROGRAM A. Program and Report Description
A.
: 1. The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.
Program and Report Description 1.
The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.
The program is used to compute leakage rate based on input values of time, containment atmosphere total pressure, drybulb tempera-ture, and dewpoint temperature (water vapor pressure). Leakage rate is computer using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".
The program is used to compute leakage rate based on input values of time, containment atmosphere total pressure, drybulb tempera-ture, and dewpoint temperature (water vapor pressure). Leakage rate is computer using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".
The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during' containment leakage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.
The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during' containment leakage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.
: 2. The first printout, the Total Time Report , is based on the Total Time Method described in BN-TOP-1.       Leakage rate is computed from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time.         These individually computed g-~g             leakage rates are statistically averaged using linear regression by
2.
(' ' '
The first printout, the Total Time Report, is based on the Total Time Method described in BN-TOP-1.
          )           the method of least squares. The Total Time Method is the computa-tional technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant,"
Leakage rate is computed from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time.
These individually computed g-~g leakage rates are statistically averaged using linear regression by
(
)
the method of least squares. The Total Time Method is the computa-tional technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant,"
are based.
are based.
: 3. The second printout is the Mass Point Report and is based on the Mass-Point Analysis Technique described in ANSI /ANS 56.8-1981,
3.
                      " Containment System Leakage Testing Requirements." The mass of dry
The second printout is the Mass Point Report and is based on the Mass-Point Analysis Technique described in ANSI /ANS 56.8-1981,
  "                  air in the containment is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air. Contained mass is " plotted" versus time and a regression line is fit to the data using the method of least squares. Leakage rate is determined from the statistically derived slope and intercept of the regression line.
" Containment System Leakage Testing Requirements." The mass of dry air in the containment is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air.
: 4. The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a fuction of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.
Contained mass is " plotted" versus time and a regression line is fit to the data using the method of least squares.
: 5. The program is written in a high level language and is designed for use on a mini-computer with direct data input from the data acquisition system. Brief descriptions of program use, formulae
Leakage rate is determined from the statistically derived slope and intercept of the regression line.
[s'- ')         used for leakage rate computations, and program logic are provided in the following paragraphs.
4.
DH-103                                   A-1 i
The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a fuction of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.
5.
The program is written in a high level language and is designed for use on a mini-computer with direct data input from the data acquisition system. Brief descriptions of program use, formulae
[s'- ')
used for leakage rate computations, and program logic are provided in the following paragraphs.
DH-103 A-1 i


4 i
4 O) i l
l O)
(
(                 B. Explanation of Program
B.
: l. The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.
Explanation of Program l.
: 2. Information loaded into the program prior to the start of the test:
The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.
: a. Number of containment atmosphere drybulb temperature sensors f
2.
and dewpoint temperature (water vapor pressure) sensors to be used in leakage rate computations for the specific test e
Information loaded into the program prior to the start of the test:
: b. Volume fractions assigned to each of the above sensors
Number of containment atmosphere drybulb temperature sensors a.
: c. Calibration data for above sensor, if required
and dewpoint temperature (water vapor pressure) sensors to be f
: d. Calibration data for pressure sensor.
used in leakage rate computations for the specific test b.
: 3. Information entered into the program at the start of the test:
Volume fractions assigned to each of the above sensors e
: a. Test title
Calibration data for above sensor, if required c.
: b. Current test pressure and peak test pressure s                c. Maximum allowable leakage rate at peak test pressure           ,
d.
5
Calibration data for pressure sensor.
: d. If the test is a verification test:
3.
Information entered into the program at the start of the test:
a.
Test title b.
Current test pressure and peak test pressure Maximum allowable leakage rate at peak test pressure s
c.
5' d.
If the test is a verification test:
4 (1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.
4 (1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.
: 4. Data received from the data acquistion system during the test, and used to compute leakage rates:
4.
r
Data received from the data acquistion system during the test, and used to compute leakage rates:
: a. Time and date
r a.
: b. Containment atmosphere drybulb temperatures
Time and date b.
: c. Containment atmosphere pressure i
Containment atmosphere drybulb temperatures c.
: d. Containment atmosphere dewpoint temperatures
Containment atmosphere pressure i
:                            5. After all data at a given time are received , a Summary of Measured Data report (refer to " Program Logic," Paragraph D, " Data" option
d.
}                                   command) is printed on the data terminal. The date, containment atmosphere weighted average drybulb temperature, partial pressure of the dry air and water vapor pressure are stored on a data file.
Containment atmosphere dewpoint temperatures 5.
DH-103                                   A-2 I
After all data at a given time are received, a Summary of Measured Data report (refer to " Program Logic," Paragraph D, " Data" option
}
command) is printed on the data terminal. The date, containment atmosphere weighted average drybulb temperature, partial pressure of the dry air and water vapor pressure are stored on a data file.
DH-103 A-2 I
- - - - - - - - - - -, - - - - - - - - - - ~ - - - ~ ' ~ ~ ~ '- ''''


l                         6.
l 6.
If drybulb and dewpoint temperature sensors should fail during the test, the data from the sensor (s) are not used. The volume frac-tions for the remaining acnsors are recomputed and reloaded ~into the program for use in ensuing leakage rate computations.
If drybulb and dewpoint temperature sensors should fail during the test, the data from the sensor (s) are not used. The volume frac-tions for the remaining acnsors are recomputed and reloaded ~into the program for use in ensuing leakage rate computations.
C. Leakage Rate Formulae
C.
: 1. Computation using the Total Time Method:
Leakage Rate Formulae 1.
t
Computation using the Total Time Method:
: a. Measured leaka e rate, from data:
a.
P1V = W11tTi                                                                  (1)
Measured leaka e rate, from data:
PiV = WiRTi                                                                    (2) 2400 (W1-W)   i att W1 Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:
t P V = W 1tTi (1) 1 1
Li = 2400/at i(1-T 1i                P /Ti1P )                                 (4) whe re:
P V = W RTi (2) i i
W,Wi 1                  = Weight of contained mass of dry air at times tt-and ti respectively, lbm.
2400 (W1-W) i att W1 Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:
T,Ti 1              = Containment atmosphere drybulb temperature at times el and ti respectively, *R.
Li = 2400/ati(1-T P /T P )
P,Pi 1                = Partial pressure of the dry air component of the con-tainment atmosphere at times ti and ti respectively, psia.
(4) 1i i1 whe re:
V = Containment free air volume 3
W,Wi = Weight of contained mass of dry air at times tt-and 1
(assumed to be constant during the test), ft .
ti respectively, lbm.
1 ti, tt = Time at 1st and i th data points respectively, hours.
T,Ti = Containment atmosphere drybulb temperature at times 1
i ati = Elapsed time f rom ti to ti, hours.
el and ti respectively,
R = Specific gas cons tant for air = 53.35 f t.lbf/lbm. *R.
*R.
P,Pi = Partial pressure of the dry air component of the con-1 tainment atmosphere at times ti and ti respectively, psia.
V = Containment free air volume (assumed to be constant 3
during the test), ft.
th ti, tt = Time at 1st and i data points respectively, hours.
1 ati = Elapsed time f rom ti to ti, hours.
i R = Specific gas cons tant for air = 53.35 f t.lbf/lbm. *R.
Li = Measured leakage rate computed during time interval ti to ti, %/ day.
Li = Measured leakage rate computed during time interval ti to ti, %/ day.
]
]
4 DH-103                                                       A-3
4 DH-103 A-3 1
* 1 7   e ..~ - - , , - , -           . , . - . - , - . -          , , ,      --    -,
7 e
: b. Calculated leakage rate from regression analysis:
..~ - -,, -, -
      /             L = a + batN V)
a
(5) where:
 
b.
Calculated leakage rate from regression analysis:
V)
/
L = a + batN (5) where:
L = Calculated Icakage rate, %/ day, as determined from the regression line.
L = Calculated Icakage rate, %/ day, as determined from the regression line.
ILi (Eatg2 ) - EAtf( Et att) a=
2 IL (Eatg ) - EAtf( E att) i t
A                                                                                       (6)
a=
N(Eatt ) - U4tt)2 b=
A (6)
N(ILi ati) - ELi (IAti) 2                                                                                         (7)
N(Eatt ) - U4tt)2 N(IL ati) - EL (IAti) i i
b=
2 (7)
N(eat 1 ) - (Eatt)2 N = Number of data points I=E J
N(eat 1 ) - (Eatt)2 N = Number of data points I=E J
1-1
1-1 c.
: c. Calculated leakage rate at the 95% confidence level.
Calculated leakage rate at the 95% confidence level.
L95 = a + bacN + S._                                                                                             (8) i                                             L where:
L95 = a + bacN + S._
I,95 = Calculated leakage rate at the 95% confidence level,. %/ day, at j                           elapsed time AtN*
(8)
L i
where:
I,95 = Calculated leakage rate at the 95% confidence level,. %/ day, at j
elapsed time AtN*
J For AtN < 24 I
J For AtN < 24 I
S_    =t    0 025;N-2 (I(L1 -It )2/ (N-2)}1/2 x [1 + 1 + (AtN - H ) /ECAt                               -E) ]II (9a)
0 025;N-2 (I(L -I )2 (N-2)}1/2 x [1 + 1 + (At - H ) /ECAt -E) ]II (9a)
  ;                  L                                                                                N i
S_
I where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;
=t
i N-2                       (N-2)4
/
!                  For AtN2.24 s_ = tg.025;N-2 (E(L 1 - L1 )2/(N-2)]1/2 x (1 +(AtN - E) /E(Ot L                                                                      N i -   ) ]II (9b)
1 t N
Y 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 j                         where, t0 025;N-2 =
i L
N I
where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;
N-2 (N-2)4 i
For AtN2.24 1 - L )2 (N-2)]1/2 x (1 +(AtN - E) /E(Ot -
) ]II (9b) s_ = tg.025;N-2 (E(L
/
1 i
L N
Y 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 j
where, t0 025;N-2 =
(N-2)2 + 1.2209(N-2) - 1.5162 4
(N-2)2 + 1.2209(N-2) - 1.5162 4
  ;                L = Calculated leakage rate computed using equation (5) at total elapsed
~i = Calculated leakage rate computed using equation (5) at total elapsed L
                  ~i time Att, %/ day.
time Att, %/ day.
O           u=
O Iat i u=
Iat i N
l N
l l
l l
l            DH-103                                                         A-4 I _ -_ __ . - _ _ _ . _ . - - . . _            . _ - - . - - - - -              - - - - - - - - - - - - - - -                      - - - - - - - - -
DH-103 A-4 I -  


J b
J b
: 2.           Computation using the Mass Point Method 4
2.
: a.          Contained mass of dry air from data:
Computation using the Mass Point Method Contained mass of dry air from data:
                                                                -Wi = 144 Pg RTi                                                                                                                                                                       (10) where:
4 a.
All symbols as previously defined.                                                                                                                                                     ~
-Wi = 144 Pg RTi (10) where:
: b.           Calculated leakage rate from regression analysis:
All symbols as previously defined.
~
b.
Calculated leakage rate from regression analysis:
l
l
.i b
.i b
L = -2400 -
L = -2400 -
a                                                                                                                                                                    (11)
(11) a I
I where:
where:
L     = Calculated leakage rate, %/ day, as determined from the regression line.
L
IWi -bEAti
= Calculated leakage rate, %/ day, as determined from the regression line.
;                                                                a     =
IW -bEAti i
s N
a
s (12) j                       -
=
E[(W i        - EWi /N) (Ati - E)] -
(12) s N
b   =
s j
E[(Wi - EW /N) (Ati - E)] -
i b
(13)
(13)
E(At -h t Ati = Total elapsed t'ime at time of--i th                                                              data point, hours N = Number of data points                                                   '
=
Wi
E(At -h t
* Contained mass of dry air at i th data point, lbm, as computed f rom equation (10).
th Ati = Total elapsed t'ime at time of--i data point, hours N = Number of data points th Wi
* Contained mass of dry air at i data point, lbm, as computed f rom equation (10).
i N
i N
I=E i=1                             '
I=E i=1 i
i E = Eat i/N 2
E = Eat /N i
: c.            Calculated leakage rate at the 95% confidence level.
2 Calculated leakage rate at the 95% confidence level.
                                                                          -2400
c.
                                                                                                          ~
-2400
L95 =                     (b + Sb)                                                                                                                                                         (14) i a
~
where:
L95 =
(b + S )
(14) b i
a where:
4 1
4 1
L95 = Calculated leakage rate at the 95% confidence level, %/ day.
L95 = Calculated leakage rate at the 95% confidence level, %/ day.
          \
\\
DH-103 A-5 i
DH-103 A-5 i
i
i
    . - - _ . -                      . _ _ . . . _ - . - _ _ _ _                  _,.--._          - . _ - . _ - . _ . -    . . ~ - _ . . _ _ _ _ _ _ . - - _ . . _ _ _ _ . . _ . . _ _ _ . _ . _ - . . _ _ _ _ _ - - _ _ _ _ . _ . _ _ _ _ _ _ _ _                      _
.. ~ -


Sb"C0 025;N-2
- E(w - Ui)2 i
                                          - E(wi - Ui)2                        _
Sb"C0 025;N-2 1/2 (15)
1/2 (15)
(N-2)t(ati - IE)2 _1 1.6449(N-2)2 + 3.5283 (N-2)2 + 0.85602 where, t0 025;N-2 =
(N-2)t(ati - IE)2 _1 1.6449(N-2)2 + 3.5283 (N-2)2 + 0.85602 where, t0 025;N-2 =
(N-2)2 + 1.2209 (N-2) - 1.5162 5 = Contained mass of dry air, Ibm, computed at the i (16) th 1
(N-2)2 + 1.2209 (N-2) - 1.5162 51= Contained mass of dry air, Ibm, computed at the i th                              (16) data point from the regression equation
data point from the regression equation
                    = a + bati All other symbols are previously defined.
= a + bati All other symbols are previously defined.
  \
\\
                                        /
/
    /
/
l DH-103                                                       A-6 i
l DH-103 A-6 i


        ~
~
( j_     D. Procran Loeic 1.
( j_
A flow chart of Bechtel ILRT computer program usage is pre-sented in Figure 1, following. The various user options and a brief description of their associated function are presented below:
Procran Loeic D.
OPTION-C010LuiD                         FUNCTION DATA             Enables operator to enter raw data. When the sys-tem requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data. Af ter completing the data entry, a summary is printed out. The user then verifies that the data were entered correctly.
1.
A flow chart of Bechtel ILRT computer program usage is pre-sented in Figure 1, following.
The various user options and a brief description of their associated function are presented below:
OPTION-C010LuiD FUNCTION DATA Enables operator to enter raw data.
When the sys-tem requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data. Af ter completing the data entry, a summary is printed out.
The user then verifies that the data were entered correctly.
If errors are detected, the user will then be given the opportunity to correct the errors.
If errors are detected, the user will then be given the opportunity to correct the errors.
After the user verifies that the data were entered correctly, a Corrected Data Su= mary Report o'f time, date, average temperature, partial pressure of dry air, and water vapor pressure is printed.
After the user verifies that the data were entered correctly, a Corrected Data Su= mary Report o'f time, date, average temperature, partial pressure of dry air, and water vapor pressure is printed.
TREND Terminal will print out a Trend Report.
TREND Terminal will print out a Trend Report.
[               TOTAL Terminal will print out a Total time Report.
[
    \ 'T MASS Terminal will print out a Mass Point Report.
TOTAL Terminal will print out a Total time Report.
\\ 'T MASS Terminal will print out a Mass Point Report.
TERM Enables operator to sign off temporarily or pe rmanently.
TERM Enables operator to sign off temporarily or pe rmanently.
SAVE
SAVE
                                    ' Enables operator to store the Data Summary on a file.
' Enables operator to store the Data Summary on a file.
PREV
PREV Enables operator to call up an old, previously stored, file.
!                                    Enables   operator to call up an old, previously stored, file.
CORR Enables operator to correct data stored on a file.
CORR Enables operator to correct data stored on a file.
LIST When used with a given file name, the printer will print cut a list of the Summary Data stored on the file.
LIST When used with a given file name, the printer will print cut a list of the Summary Data stored on the file.
1 READ l                                   Enable the computer to receive the next set of raw data from the data acquisition system directly.
1 READ l
)                                               A-7
Enable the computer to receive the next set of raw data from the data acquisition system directly.
)
A-7


( SIGtJ ON) t
( SIGtJ ON) t
                                              \ ENTER BASIC /
\\ ENTER BASIC /
NO
/ ENTER PREVIOUS \\
{ INFO RMATION/
{ INFO RMATION/
NO      / ENTER PREVIOUS \
\\ VALUES FROM FILES /
                                                                            \ VALUES FROM FILES /
YES r
YES r
DATA -
DATA -
(OPTIONSg           -
(OPTIONSg AA TORED ON o-PREV (ENTER D ATA)
AA TORED ON     .
CO RRECTS o-CORR
o- PREV (ENTER D ATA)                                         CO RRECTS o- CORR           -


==SUMMARY==
==SUMMARY==
Line 547: Line 856:


==SUMMARY==
==SUMMARY==
 
\\
        \      ENTER   /             ,
ENTER
NO           <
/
r- SAVE       -
NO r-SAVE D ATA ON A CORRECTIONS /
D ATA ON       --
SELECTED FILE
A CORRECTIONS /                                                         SELECTED FILE


==SUMMARY==
==SUMMARY==
OF           <
OF rTRENO
rTRENO
[ TREND REPORT)
[ TREND REPORT)
MEASURED DATA
MEASURED DATA
[   )
[
L._ A -
)
                                                    <r-  TOTAL                -
<r-TOTAL TOTAL TIME L._ A -
TOTAL TIME YES REPORT
YES REPORT
                                  'E 1 R R O R?)
'E R R O R?)
NO
1 NO
                                                    "- M ASS                 -
"- M ASS MASS POINT REPORT CORRECTED CUMMARY DATA PRINTOUT o-LIST PRINT DUT OF
MASS POINT REPORT
                        ,      CORRECTED                                                           '
CUMMARY DATA PRINTOUT o- LIST                         PRINT DUT OF


==SUMMARY==
==SUMMARY==
 
DATA o-TERM
DATA o- TERM
- ( SIGN OFF )
                                                                                  - ( SIGN OFF )
N J
N                                                         J BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CHART FIGURE 1
BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CHART FIGURE 1
/O N_ I A-8
/O N_ I A-8


O APPENDIX B ILRT STABILIZATION DATA TEST.STA GRAND GULF STABILIZATION ALMAX = 0.437                         VOL = 1670000.00 VRATET = 0.000         VRATEM = 0.000     VRATEP = 0.000 TIME DATE             TEMP     PRESSURE             VPRS 1529     103   537.56366     26.425938       0.34851480 1545 103         537.01373     26.402582 1603 103 0.34475750 536.61597     26.383574       0.34468400 1615     103   536.46893     26.377193       0.34303159 1630 103         536.30707     26.368984       0.34320599 1645 103         536.20459     26.363253       0.34291309 1700 103         536.09918     26.357325       0.34281561 1715 103         536.03223 1730 103 26.353136       3.34298769
O APPENDIX B ILRT STABILIZATION DATA TEST.STA GRAND GULF STABILIZATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 1529 103 537.56366 26.425938 0.34851480 1545 103 537.01373 26.402582 0.34475750 1603 103 536.61597 26.383574 0.34468400 1615 103 536.46893 26.377193 0.34303159 1630 103 536.30707 26.368984 0.34320599 1645 103 536.20459 26.363253 0.34291309 1700 103 536.09918 26.357325 0.34281561 1715 103 536.03223 26.353136 3.34298769 1730 103 535.95685 26.348457 0.34264520
      ''\
''\\
535.95685     26.348457       0.34264520 1745     103   535.88330     26.344131       0.34295520
(\\ms) 1745 103 535.88330 26.344131 0.34295520 1800 103 535.82629 26.340103 0.34296569 1815 103 535.76117 26.337587 0.34246781 1830 103 535.70874 26.334372 0.34267199 1845 103 535.66150 26.332005 0.34202629 1900 103 535.61688 26.329777 0.34224480 i
(\ms)                          1800 103         535.82629     26.340103       0.34296569 1815 103         535.76117 1830 103 26.337587       0.34246781 535.70874     26.334372       0.34267199 1845 103         535.66150     26.332005       0.34202629 1900 103         535.61688     26.329777       0.34224480 i
1915 103 535.56860 26.327791
1915 103         535.56860     26.327791   .O.34222180 l
.O.34222180 l
1930 103         535.54742     26.324705       0.34229621 1945 103 535.43054     26.323195       0.34179929 2000 103         535.44885     26.320612       0.34237379 2015 103         535.40631     26.318562       0.34241500 O
1930 103 535.54742 26.324705 0.34229621 1945 103 535.43054 26.323195 0.34179929 2000 103 535.44885 26.320612 0.34237379 2015 103 535.40631 26.318562 0.34241500 O
B-1 l
B-1 l
e c ----v - =   + --- . _ .    - . _ .                          _ _      ___        _
e c
----v
- =
:-n.
+


I d
I d
Line 590: Line 898:


==SUMMARY==
==SUMMARY==
DATA TEST.DAT GRAND GULF ILRT ALMAX = 0.437                                 VOL = 1670000.00 VRATET = 0.000                 VRATEM = 0.000         VRATEP = 0.000 TIME DATE                     TEMP       PRESSURE           VPRS 2030 103           535.38818 2045 103 26.316441     0.34252653 535.37219           26.315517     0.34244490 2100 103           535.34686 2115 103 26.313202     0.34275225 535.32245           26.311718     0.34222719
DATA TEST.DAT GRAND GULF ILRT ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 2030 103 535.38818 26.316441 0.34252653 2045 103 535.37219 26.315517 0.34244490 2100 103 535.34686 26.313202 0.34275225 2115 103 535.32245 26.311718 0.34222719 2130 103 535.28601 26.310568 0.34237543 2145 103 535.26984 26.309896 0.34204134 2200 103 535.23566 26.307184 0.34274417 2215 103 535.21973 26.304913 0.34300748 2230 103 535.19214 26.304295 0.34262270 2245 103 535.16925 26.302761 0.34315175 2300 103 535.14685 26.301828 0.34307989 2315 103 535.11749 26.300154 0.34274691 2330 103 535.10406 26.299398 0.34249672 0
* 2130 103           535.28601           26.310568     0.34237543 2145 103           535.26984           26.309896       0.34204134 2200 103           535.23566           26.307184       0.34274417 2215 103           535.21973           26.304913 2230          103 0.34300748 535.19214           26.304295       0.34262270 2245           103 535.16925           26.302761     0.34315175 2300           103 535.14685           26.301828     0.34307989 2315           103 535.11749           26.300154     0.34274691 2330           103 535.10406           26.299398 0                   2345 0
2345 103 535.09546 26.299583 0.34231171 0
15 103 104 104 535.09546 535.06689 26.299583 26.296225 0.34249672 0.34231171 0.34366253       '
104 535.06689 26.296225 0.34366253 15 104 535.05304 26.297117 0.34277007 30 104 535.03369 26.295589 0.34329468 45 104 535.01672 26.293724 0.34415492 100 104 534.99390 26.293665 0.34321022 115 104 534.98413 26.292389 0.34348071 130 104 534.96783 26.291492 0.34337339 4
535.05304           26.297117     0.34277007 30           104 535.03369           26.295589     0.34329468 45           104 535.01672           26.293724 100          104 0.34415492 534.99390           26.293665     0.34321022 115           104 534.98413           26.292389 130          104 0.34348071 534.96783 4
145 104 534.96344 26.290226 0.34363529 200 104 534.94757 26.289938 0.34392363 i
26.291492     0.34337339 145           104 534.96344           26.290226 200          104 0.34363529 534.94757           26.289938     0.34392363 i
215 104 534.93909 26.288767 0.34409159 230 104 534.92371 26.287523 0.34432954 245 104 534.91162 26.287708 0.34414417 300 104 534.89838 26.286375 0.34447473 315 104 534.89233 26.285236 0.34460890 i
215           104 534.93909           26.288767     0.34409159 230           104 534.92371           26.287523 245          104 0.34432954 534.91162           26.287708     0.34414417 300           104 534.89838           26.286375     0.34447473 315           104 534.89233           26.285236     0.34460890 i
330 104 534.87921 26.285433 0.34441105 345 104 534.86578 26.284437 0.34440356 400 104 534.85150 26.283850 0.34499204 415 104 534.84827 26.283432 0.34440419 430 104 534.82874 26.283085 0.34475130 i
330           104 534.87921           26.285433 345        104 0.34441105
i l
'                                        534.86578           26.284437     0.34440356 400         104   534.85150           26.283850     0.34499204 415       104   534.84827           26.283432     0.34440419 430         104   534.82874           26.283085     0.34475130 i
t C-1
i
, l t
C-1


                                                  ~ APPENDIX D ILRT CALCULATIONS (O) ss m
~ APPENDIX D ILRT CALCULATIONS (O) ss GRAND GULF ILRT m
GRAND GULF ILRT LEAHAGE RATE (WEIGHT PERCEllT/ DAY)
LEAHAGE RATE (WEIGHT PERCEllT/ DAY)
MAS 3-POINT ANALtSIS TIME AND DATE.AT START OF TEST: 2030 0103 ELAPSED TIME:     8.00 HOURS TIME             TEMP           PRESSURE         CTMT. AIR MASS LOSS       TOT. AVG. MASS (R)             (PSIA)       MASS (LBM)     (LBM)     LOSS (LBM/HR) 2030       535.388             26.3164               221566.
MAS 3-POINT ANALtSIS TIME AND DATE.AT START OF TEST:
2045         535.372             26.3155               221565.           1.1         4.6 2100       535.347             26.3132               221556.         9.0         20.3 2115         535.322             26.3117               221550.         2.4         16.8 2100       535.286             26.3106               221559.       -5.4           7.2 2145         535.270             26.3099               221560.       -1.0           4.9 2200       535.236             26.3072               221551.         8.7         9.9 2215         535.220             26.3049               221539.       12.5         15.6
2030 0103 ELAPSED TIME:
      ')   2230         535.192             26.3043               221545.       -6.2         10.6
8.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)
      ' 2245           535.169             26.3028               221541.         3.4         10.9 2300         535.147             26.3018               221543.       -1.4           9.3 2315         535.117             26.0002               221541.           1.9         9.1 2300         535.104             26.2994               221540.         0.8         8.6 2345         535.095             26.2996               221545.       -5.1           6.4
(PSIA)
(^N             O     535.067             26.2962               221529.       16.5       -
MASS (LBM)
10.6
(LBM)
\               15     535.053             26.2971               221542.     -13.3           6.4 30       535.034             26.2956               221537.         4.9         7.2 45       535.017             26.2937               221528.         8.7         8.8 100       534.994             26.2937               221537.       -9.0           6.4 115       534.984             26.2924               221531.         6.7           7.4 100       534.968             26.2915               221530.         0.8         7.2 145       534.963             26.2902             221521.         8.9           86 200       534.948             26.2899               221525.       -4.2           7.4 215       534.939             26.2888             221519.         6.4           8.2 230       534.924             26.2875               221515.         4.1 245 8.5 534.912             26.2877             221521.       -6.6           7.2 300       534.898             26.2864               201515.         5.8           7.8 315       524.892             26.2852             221508.         7.1           8.5 330       534.879             26.2854               221515.       -7.1           7.2 345       534.866             26.2844             221513.         2.8           7.4 400       534.852             26.2838               221514.       -1.0           7.0 415       534.848           '26.2934               221511.         2.2           7.0 400       534.829             26.2831             221517.       -5.2           6.2 FREE AIR VOLUME USED (MILLIONS CF CU. FT.)                     =
LOSS (LBM/HR) 2030 535.388 26.3164 221566.
1.670 REGRESSION LINE INTERCEPT (LEM)                                             =  2215cl.
2045 535.372 26.3155 221565.
SLOPE (LBM/HR)                                             =        -6.7 MAXIMUll ALLOWAELE LEAKAGE RATE                                 =          0.4 7 g)                     75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE                         =          0.028 THE UFFER 95% CONFIDENCE LIMIT                                 =          0.079 THE CALCULATED LEAKAGE RATE                                     =          0.072 D-1
1.1 4.6 2100 535.347 26.3132 221556.
9.0 20.3 2115 535.322 26.3117 221550.
2.4 16.8 2100 535.286 26.3106 221559.
-5.4 7.2 2145 535.270 26.3099 221560.
-1.0 4.9 2200 535.236 26.3072 221551.
8.7 9.9 2215 535.220 26.3049 221539.
12.5 15.6
') 2230 535.192 26.3043 221545.
-6.2 10.6
' 2245 535.169 26.3028 221541.
3.4 10.9 2300 535.147 26.3018 221543.
-1.4 9.3 2315 535.117 26.0002 221541.
1.9 9.1 2300 535.104 26.2994 221540.
0.8 8.6 2345 535.095 26.2996 221545.
-5.1 6.4
(^N O
535.067 26.2962 221529.
16.5 10.6
\\
15 535.053 26.2971 221542.
-13.3 6.4 30 535.034 26.2956 221537.
4.9 7.2 45 535.017 26.2937 221528.
8.7 8.8 100 534.994 26.2937 221537.
-9.0 6.4 115 534.984 26.2924 221531.
6.7 7.4 100 534.968 26.2915 221530.
0.8 7.2 145 534.963 26.2902 221521.
8.9 86 200 534.948 26.2899 221525.
-4.2 7.4 215 534.939 26.2888 221519.
6.4 8.2 230 534.924 26.2875 221515.
4.1 8.5 245 534.912 26.2877 221521.
-6.6 7.2 300 534.898 26.2864 201515.
5.8 7.8 315 524.892 26.2852 221508.
7.1 8.5 330 534.879 26.2854 221515.
-7.1 7.2 345 534.866 26.2844 221513.
2.8 7.4 400 534.852 26.2838 221514.
-1.0 7.0 415 534.848
'26.2934 221511.
2.2 7.0 400 534.829 26.2831 221517.
-5.2 6.2 FREE AIR VOLUME USED (MILLIONS CF CU. FT.)
1.670
=
REGRESSION LINE INTERCEPT (LEM) 2215cl.
=
SLOPE (LBM/HR)
-6.7
=
MAXIMUll ALLOWAELE LEAKAGE RATE 0.4 7
=
g) 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE 0.028
=
THE UFFER 95% CONFIDENCE LIMIT 0.079
=
THE CALCULATED LEAKAGE RATE 0.072
=
D-1


        \,
\\,
r'~5                               GRnND GULF ILRT
r'~5
(      )
(
\_/
)
GRnND GULF ILRT
\\_/
LEiikAGE RATE (WEIGH 1 PERCENT / DAY)
LEiikAGE RATE (WEIGH 1 PERCENT / DAY)
TO1HL-TIME ANALYSIS TIME AND DATE AT START CC TEST: 2000 0100 ELAPSED TIME:           E.OO HOURS TIME     TEMP.       PRESSURE             MEASURED (R)         (PSIA)         LGAKAGE RATE
TO1HL-TIME ANALYSIS TIME AND DATE AT START CC TEST:
_- __-- ~ ----- ___         . _ - - - . . - -      __
2000 0100 ELAPSED TIME:
2000     505.388       26.3164 2045     535.072       26.3155               0.050
E.OO HOURS TIME TEMP.
            -          2100     505.347       26.3132               0.220 2115     505.022       26.3117               0.181 2130     535.286       26.0106               0.078 2145     505.270       26.3009               0.053 2000     505.236       26.0072               0.107 2215     535.220       26.3049               0.169 2230     535.192       26.3043               0.115 22d5     535.169       26.3028               0.118 2000     535.147       26.3018               0.100
PRESSURE MEASURED (R)
        )             2015     505.117       26.3002               0.099 2000     535.104       26.2994               0.094 2045     535.095       26.2996               0.069 0     505.067       26.2962               0.11,5
(PSIA)
('"y                     15     535.053       26.2971               0.06'9 x" ~ '
LGAKAGE RATE
      )                 30     535.034       26.2956               0.078 45   535.017       26.2907               0.096 100     534.994       26.2937               0.069 115   534.984       26.2924               0.081 100     534.968       26.2915               0.078 145   534.963       26.2902               0.093 200     534.948       26.2899               0.080 215   534.939       26.2888               0.089 200   534.924       26.2875               0.093 245   534.912       26.2877               0.078 300   534.898       26.2864               0.084 315   534.892       26.2852               0.092 330   534.879       26.2854               0.078 345   534.866       26.2844               0.080 400   504.852       26.2008               0.076 415   504.848       26.2834               0.076 400   534.829       26.2831               0.067 MEAN OF MEASURED LEAKAGE RATES                               =    0.095
_- __-- ~ ----- ___
        )
2000 505.388 26.3164 2045 535.072 26.3155 0.050 2100 505.347 26.3132 0.220 2115 505.022 26.3117 0.181 2130 535.286 26.0106 0.078 2145 505.270 26.3009 0.053 2000 505.236 26.0072 0.107 2215 535.220 26.3049 0.169 2230 535.192 26.3043 0.115 22d5 535.169 26.3028 0.118 2000 535.147 26.3018 0.100
MAXIMUM ALLOWADLE LEAKAGE RATE                               =    0.437 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE                       =
)
0.328 THE UPPER 95% CONFIDENCE LIMIT                               =
2015 505.117 26.3002 0.099 2000 535.104 26.2994 0.094 2045 535.095 26.2996 0.069 0
0.139 THE CALCULATED LEAKAGE RATE                                   =
505.067 26.2962 0.11,5
0.068 G
('"y 15 535.053 26.2971 0.06'9 x
I      I v
)
30 535.034 26.2956 0.078
" ~ '
45 535.017 26.2907 0.096 100 534.994 26.2937 0.069 115 534.984 26.2924 0.081 100 534.968 26.2915 0.078 145 534.963 26.2902 0.093 200 534.948 26.2899 0.080 215 534.939 26.2888 0.089 200 534.924 26.2875 0.093 245 534.912 26.2877 0.078 300 534.898 26.2864 0.084 315 534.892 26.2852 0.092 330 534.879 26.2854 0.078 345 534.866 26.2844 0.080 400 504.852 26.2008 0.076 415 504.848 26.2834 0.076 400 534.829 26.2831 0.067 MEAN OF MEASURED LEAKAGE RATES 0.095
=
)
MAXIMUM ALLOWADLE LEAKAGE RATE 0.437
=
75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE 0.328
=
THE UPPER 95% CONFIDENCE LIMIT 0.139
=
THE CALCULATED LEAKAGE RATE 0.068
=
G I
I v
D-2
D-2


m
m (G
    )
)
(G GRhilb GULF ILRT TREi!D REPORT LEAL.: AGE Rf. TEE tWElGHT FERCEllT/ DAY)
GRhilb GULF ILRT TREi!D REPORT LEAL.: AGE Rf. TEE tWElGHT FERCEllT/ DAY)
TIME AtJD DATE AT START OF TEST: 2000 0103 ELAPEED TIi1E:     9.00 HOURS NO. DATA ELAPSED FOINTS    TIME    TOTAL-TIME     ANALYSIS't1 ASS-POIf1T At1ALYSIS MEAT 1     CALCULATED                   95:. UCL 10     2.25           _ ______________ ___ CALCULATED                  ___________
TIME AtJD DATE AT START OF TEST:
O.121       0.119           0.119 11     2.50     0.119                                       0.162 0.112           0.110           0.146 12     2.75     O.117       0.107 13                                            0.104         O.134 3.00     0.115       O.101 14                                            0.098         0.124 3.25     0.112       0.091 15                                            0.035       0.111 3.50     0.112       0.094 16      3.75 0.093         0.116 O.109       0.086           0.083 17     4.00     0.107                                     0.105 0.082           0.079       0.099 13     4.25     0.107       0.082           0.031       0.099 19     4.50     0.105       O.077           0.075       O.092 20     4.75     0.103       0.075           O.074       0.089 21     5.00     0.102       0.073           0.073       0.087 22 p!
2000 0103 ELAPEED TIi1E:
i        23 5.25 5.50 0.102 0.101 0.074           0.075       0.088 0.073           0.075       O.086 24       5.75     O.100       0.073           0.076       0.087 25     6.00     0.100       0.074 26                                            0.078       0.03G 6.25     O.099       0.073 27      6.50                                  0.077       C.086 0.098       0.073           0.077 29       6.75     O.098                                     0.086 0.074           0.079       0.087 29       7.00     0.097       0.073           0.078       0.085 30     7.25     O.097         0.072           0.077       0.084 31       7.50     0.096       0.071           0.076       0.083 32     7.75     0.095         0.070 30      8.00                                  0.075       0.081 0.095         O.068           0.072       0.079 1
9.00 HOURS NO. DATA ELAPSED TOTAL-TIME ANALYSIS't1 ASS-POIf1T At1ALYSIS FOINTS TIME MEAT 1 CALCULATED
___________________ _ ______________ ___ CALCULATED ___________
95:. UCL 10 2.25 O.121 0.119 0.119 0.162 11 2.50 0.119 0.112 0.110 0.146 12 2.75 O.117 0.107 0.104 O.134 13 3.00 0.115 O.101 0.098 0.124 14 3.25 0.112 0.091 0.035 0.111 15 3.50 0.112 0.094 0.093 0.116 16 3.75 O.109 0.086 0.083 0.105 17 4.00 0.107 0.082 0.079 0.099 13 4.25 0.107 0.082 0.031 0.099 19 4.50 0.105 O.077 0.075 O.092 20 4.75 0.103 0.075 O.074 0.089 21 5.00 0.102 0.073 0.073 0.087 p!
22 5.25 0.102 0.074 0.075 0.088 i
23 5.50 0.101 0.073 0.075 O.086 24 5.75 O.100 0.073 0.076 0.087 25 6.00 0.100 0.074 0.078 0.03G 26 6.25 O.099 0.073 0.077 C.086 27 6.50 0.098 0.073 0.077 0.086 29 6.75 O.098 0.074 0.079 0.087 29 7.00 0.097 0.073 0.078 0.085 30 7.25 O.097 0.072 0.077 0.084 31 7.50 0.096 0.071 0.076 0.083 32 7.75 0.095 0.070 0.075 0.081 30 8.00 0.095 O.068 0.072 0.079 1
v D-3
v D-3


A_PPENDIX E ILRT PLOTS ILRT T EHF EF.n I UF.E 502.00     533.00       534.00   5 5.00             536.00                 538,00             539.
A_PPENDIX E ILRT PLOTS ILRT T EHF EF.n I UF.E 502.00 533.00 534.00 5 5.00 536.00 538,00 539.
                +_________+_________._________._________._____537.00
+_________+_________._________._________._____537.00
                                                              +
+
                                                              +
+
2100 -                                           +
2100 -
                                                            +
+
                                                            +
+
                                                            +
+
2296 -                                         +
+
2296 -
+
+
a
a
                                                          +
+
                                                          +
+
                                                          +
2000 -
2000 -                                       +
+
                                                        +
+
                                                        +
+
                                                        +
+
0-                                         +
0-
                                                        +
+
                                                      +
+
                                                      +
+
i 1QQ -                                     +
+
                                                      +
i 1QQ -
                                                      +
+
                ~
+
                                                      +
+
290 -                                   +
~
                                                  +
+
                                                    +
290 -
                                                  +                                                                 l 300 -                                   +
+
+
+
+
l 300 -
+
6
6
                                                    +
+
                                                    +
+
                                                    +
+
400 -                                   +
400 -
                                                  +
+
500 -                                 +
+
500 -
+
4
4
                                                                                                                    )
)
1 i
1 i
O E-1
O E-1
                                                                      - - - -          - - - - ~ ' ~   -    - ' -
- - - - ~ ' ~


VERIFICATION                                           ,
VERIFICATION TEMPERATURE 532.00 533.00 534.00 535.00 536.00 537.00 539.00
TEMPERATURE 532.00     533.00     534.00     535.00           536.00         537.00                     539.00
+__-------+-____----+-________+_________,_________,_____538.00
              +__-------+-____----+-________+_________,_________,_____538.00           ____,_        _
+
                                                  +
+
                                                  +                                                             *
+
                                                  +
600 -
600 -                                   +
+
                                                  +
+
                                                  +
+
                                                  +
+
700 -                                 +
700 -
                                                +
+
                                                +
+
              ~
+
                                                +
~
      . 800 -                                 +
+
              ~
800 -
                                                +
+
                                                +
~
                                                +
+
900 -                                 +
+
                                                +
+
                                                +
900 -
                                              +
+
,        1000 -                               +
+
,=             _
+
                                              +
+
1000 -
+
,=
+
!O i
!O i
s STABILIZATION l
s STABILIZATION l
1 533.00                           TEMPERATURE 533.00     534.00     535.00
1 TEMPERATURE 533.00 533.00 534.00 535.00 536.00 537.00 538.00 539.00
              +-----     -+-
+-----
536.00          537.00    538.00
-+-
                                  -___+-_____       _,_______
-___+-_____
__,_________,__                      539.00 f                                                                                             _ _________
f i
+
1 IGO3 -
t
+
t
+
l
+
i l700 -
i
+
i
i
:              -                                                                        +
=
1        IGO3 -
+
* t              -                                                              +
+
t              -                                                            +
+
                                                                          +
i ISOC -
i        l700 -
)
i              -
i i
                                                                        +
+
i               =
+
                                                                      +
+
                                                                      +
l 1900 -
i        ISOC -           *
+
                                                                    +
+
)                                                                 ,
i i
i i               -
+
                                                                  +
+
                                                                +
1900 -                                                +
l
                                                              +
                                                              +
;                                                                                i
                                                            +
i'                                                        +
2000 -
2000 -
* 1
1
                                                          +
+
e E-2
e E-2


i
i ILRT
                                            .      ILRT
;l i
;l i
PRESSURE 2c.150             26.000         26.250   26.300             26.050                   23.asc                               26.sc
PRESSURE 2c.150 26.000 26.250 26.300 26.050 23.asc 26.sc
                +_________+_________+_________+_________+____26.400
+_________+_________+_________+_________+____26.400
                                                              +
+
                                                              +
+
2100         -
2100
                                                              +
+
                                                          +
+
                                                          +
+
2200 -                                               +
2200 -
                                                        +
+
                                                        +
+
mm. .                                                 +                                                                             I l
+
mm..
+
I l
ee W
ee W
              ~
~
                                                      +                                                                               l 1
+
                                                      +                                       ,                                      j
l
                                                      +
+
0-                                         +
j
                                                    +
+
                                                    +
0-
                                                    +
+
100 -                                           +
+
                                                  +
+
                                                  +
+
                                                  +
100 -
200 -                                         +
+
                                                  +
+
            ~
+
                                                  +
+
            ~
200 -
                                                  +
+
200 -                                       +
+
                                                +
~
                                                +
+
                                                +
~
400 -                                       +
+
                                                +
200 -
                                                +
+
                                              +
+
500 -                                     +
+
+
400 -
+
+
+
+
500 -
+
E-3
E-3


VERIFICATION PRE 55URE 26.150       26.200   26.250         26.200       2                 2o.400         26.450       26.5OO
VERIFICATION PRE 55URE 26.150 26.200 26.250 26.200 2
        +-_--_-__-+_________+_________+_____6.250
2o.400 26.450 26.5OO
                                          +
+-_--_-__-+_________+_________+_____6.250
                                          +
+
                                          +
+
600 -                                 +
+
                                        +
600 -
                                        +
+
                                      +
+
700 -                               +
+
                                      +
+
                                    +
700 -
                                    +
+
GOO -                             +
+
                                  +
+
                                  +
+
                                  +
GOO -
900 -                         +
+
        ~
+
                                +
+
                              +
+
                              +
900 -
1000 -                       +
+
                              +
~
STABILIZATION PF. ESSURE 26.150       26.000   26.250         26.200       26.250           26.400
+
    +_________+__--       __+__         ____+____________
+
26.450        26.500
+
                                                                                    +
1000 -
1603 -                                                                       +
+
_                                                                  +
+
_                                                                +
STABILIZATION PF. ESSURE 26.150 26.000 26.250 26.200 26.250 26.400 26.450 26.500
_                                                              +
+ _ _ _ _ _ _ _ _ _ + _ _ - -
1700 -                                                           +
__+__
_                                                          +
_ _ _ _ + _ _ _ _ _ _ _ _ _ _ _ _
_                                                          +
+
_                                                        +
1603 -
1800 -                                                     +
+
                                                          +
+
                                                          +
+
                                                        +
+
                                                      +
1700 -
+
+
+
+
1800 -
+
+
+
+
+
1900 -
1900 -
                                                      +
+
                                                      +
+
                                                    +
+
2OOO -                                             +
+
                                                  +
2OOO -
                                                  +
+
+
E-4
E-4


ILRT es1RMetSS 221000.         221100. 221200. 221300. 221400. 221300.
ILRT es1RMetSS 221000.
                                                            +---------+---------+--------_,-----_-__,-__----__.______221                COO.
221100.
221200.
221300.
221400.
221300.
221:
221:
                                                          =
+---------+---------+--------_,-----_-__,-__----__.______221 COO.
                                                                                                                                  +
=
                                                                                                                                +
+
2100 -                                                                           +
+
                                                                                                                              +
2100 -
                                                                                                                                +
+
                                                                                                                                +
+
+
+
: m. m,, k.,
m_v -
m_v -
: m. m , , k.,
+
                                                                                                                              +
+
                                                                                                                            +
t
t
                                                                                                                            +
+
2000 -                                                                       +
2000 -
                                                                                                                            +
+
                                                                                                                            +
+
                                                                                                                              +
+
0-                                                                 +
+
                                                                                                                            +
0-
                                                                                                                            +
+
                                                                                                                          +
+
100 -                                                                     +
+
                                                                                                                          +
+
                                                                                                                          +
100 -
                                                                                                                        +
+
200 -                                                                   +
+
                                                                                                                        +
+
                                                                                                                      +
+
                                                                                                                        +
200 -
200 -                                                                 +
+
                                                            -                                                    1
+
                                                                                                                        +
+
                                                                                                                      +
+
400 -                                                               +
200 -
                                                                                                                      +
+
                                                                                                                        +
1
                                                                                                                    +
+
500 -                                                             +
+
400 -
+
+
+
+
500 -
+
t i
t i
I                                                                                                                                                     i l                                                                                                                                                     I l                                                                                                                                                     l i
I i
l I
l l
i i
i i
I l                                                                                                                                                     1 i                                                                                                                                                     '
i l
E-5                                                       l i
1 i
E-5 i


VERIFICATION AIRMitSS 221000.       221100. 221200.           221200
VERIFICATION AIRMitSS 221000.
              +---------+---_----.-+---------+--.                 221400.          221500.        2216                      2217-
221100.
            -                                              --_---+_-.-------+---------.00.                   - - - - - . - - - -
221200.
            -                                                                            +
221200 221400.
            -                                                                          +
221500.
600 -                                                                             +
2216 2217-
_                                                                        +
+---------+---_----.-+---------+--.
_                                                                      +
--_---+_-.-------+---------.00.
_                                                                    +
+
700 -                                                                     +
+
            -                                                                +
600 -
            -                                                              +
+
                                                                          +
+
i,       -
+
800 -                                                             +
+
                                                                        +
700 -
                                                                      +
+
                                                                    +                         . .
+
900 -                                                       +
+
                                                                +
i,
                                                              +
+
                                                          +
+
                                                          +
800 -
+
+
+
+
900 -
+
+
+
+
1000 -
1000 -
                                                        +
+
                                                        +
+
STABILIZATION AIRMASS 221000.       221100,    ,,
STABILIZATION AIRMASS 221000.
                                -   1,0U.
: 221100,
                                                  ,,1 00.       ,
- 1,0U.
            +-----
,,1 00.
                                                  -0            -'1400.
-'1400.
                                                                    -               ,mieOO.
-0
                                                                                    -- s 221600.
,mieOO.
                                                  ---+_---__--_+-__.
221600.
2217c
2217c
            -                                                                           -+_             -+=-           -_____ ,
+-----
                                                                                                      +
-- s
    /603 -                                                                                                       +
- - - + _ - - - _ _ - - _ + - _ _.
                                                                                                                  +
-+_
                                                                                                                    +
- + = -
                                                                                                                    +
+
1700 -                                                                                                       +
/603 -
                                                                                                                  +
+
                                                                                                                +
+
                                                                                                        +
+
1800 -                                                                                           +
+
                                                                                                    +
1700 -
                                                                                                      +
+
                                                                                                    +
+
1900 -                                                                                         +
+
                                                                                                    +
+
                                                                                                      +
1800 -
)         -
+
                                                                                                  +
+
2000 -                                                                                                   +
+
                                                                                                    +
+
1900 -
+
+
)
+
+
2000 -
+
+
E-6
E-6


Line 952: Line 1,404:


==SUMMARY==
==SUMMARY==
DATA TEST.VER GRAND GULF VERIFICATION ALMAX = 0.437                                   VOL = 1670000.00 VRATET = 0.432               VRATEM = 0.436       VRATEP = 0.364 TIME DATE                     TEMP         PRESSURE 515 104                                                     VPRS 534.80566       26.280268       0.34556079 530 104               534.79596     26.278370 545            104                                    0.34544951 534.78748       26.277615       0.34520060 600 104               534.77368     26.276218 615            104                                  0.34559339 534.76746     26.274252       0.34554970 630           104   534.75714     26.272772 645                                                  0.34602681 104   534.76361     26.272007       0.34578761 700           104   534.74396     26.269663 715            104                                    0.34612215 534.73499     26.268349       0.34643370 730            104
DATA TEST.VER GRAND GULF VERIFICATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.432 VRATEM = 0.436 VRATEP = 0.364 TIME DATE TEMP PRESSURE VPRS 515 104 534.80566 26.280268 0.34556079 530 104 534.79596 26.278370 0.34544951 545 104 534.78748 26.277615 0.34520060 600 104 534.77368 26.276218 0.34559339 615 104 534.76746 26.274252 0.34554970 630 104 534.75714 26.272772 0.34602681 645 104 534.76361 26.272007 0.34578761 700 104 534.74396 26.269663 0.34612215 715 104 534.73499 26.268349 0.34643370
(*~')s
(*~')s 730 104 534.73236 26.267462 0.34631500 s.
: s.                     745           104 534.73236 534.72797 26.267462 26.265524 0.34631500 0.34624526 800           104   534.71405     26.264580 815            104                                    0.34618655 534.70410     26.262316       0.34644118 830           104   534.69879       26.261040 845            104                                    0.34671304 534.68665       26.259174       0.34656873 900           104   534.63726       26.257030       0.34670511 915           104   534.67273       26.256052 930             104   534.65894                       0.34667951      -
745 104 534.72797 26.265524 0.34624526 800 104 534.71405 26.264580 0.34618655 815 104 534.70410 26.262316 0.34644118 830 104 534.69879 26.261040 0.34671304 845 104 534.68665 26.259174 0.34656873 900 104 534.63726 26.257030 0.34670511 915 104 534.67273 26.256052 0.34667951 930 104 534.65894 26.252333 0.34738570 945 104 534.64771 26.252180 0.34753838 1000 104 534.64069 26.250376 0.34733403 1015 104 534.63062 26.249893 0.34681413 1
26.252333       0.34738570 945             104   534.64771       26.252180 1000             104   534.64069                       0.34753838 1015            104 26.250376       0.34733403 1
1 F-1
534.63062       26.249893       0.34681413 1
F-1


O
O APPENDIX G VERIFICATION FLOW TEST CALCULATIONS
.                                              APPENDIX G VERIFICATION FLOW TEST CALCULATIONS
- GRAND GULF VERIFICATION LEAKAGE RATE (NEIGHT PERCENT / DAY)
                                          - GRAND GULF VERIFICATION LEAKAGE RATE (NEIGHT PERCENT / DAY)
MASS-FOINT ANALYSIS TIME AND DA1E AT START OF TEST:
MASS-FOINT ANALYSIS TIME AND DA1E AT START OF TEST:                       615 0104 ELAPSED TIME:             4.00 HOURS TIME       TEMP           PRESSURE CTMT. AIR         MASS LOSS         TOT. AVG. MASS (R)           (PSIA)           MASS (LBM)
615 0104 ELAPSED TIME:
(LEM)         LOSS (LEM/HR)
4.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)
                                    .---- _ = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - .
(PSIA)
615 534.767           26.2743                                                     _ _______
MASS (LBM)
221467.
(LEM)
630 534.757             26.2729               221459.               8,2 645 534.764           26.2720                                                       32.8 221450.               9.1             34.7 700 534.744             26.2697               221439.
LOSS (LEM/HR)
715 534.735                                                        11.6             38.6 26.2683               221431.               7.4 730 534.732             26.2675                                                       36.3 221425.               6.4 745 534.728             26.2655               221410.               14.5 34,2 300 534.714             26.2646                                                       38.1 815 534.704                                  221408.               2.2             34.0 26.2623               221393.               15.0 830 534.699             26.2610                                                       37.2 221335.
.---- _ = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -.
Q   845 534.687             26.2592               221374.
615 534.767 26.2743 221467.
S'.6 10.7 36.9 37.5 900 534.687             26.2570             221356.
630 534.757 26.2729 221459.
915 534.673                                                        18.3             40.7 26.2561             221350.                 2.2 930 534.659           26.2523             221328.
8,2 32.8 645 534.764 26.2720 221450.
38.1 945  534.648                                                      ~25.6             43.0 26.2522             221331.               -3.4 1000 534.641             26.2504             221319.               12.3 39.0 1015   534.631           26.2499                                                     39.7 221319               -0.1             37.2       -
9.1 34.7 700 534.744 26.2697 221439.
FREE AIR VOLUME USED (MILLIONS OF CU. FT.)                             =
11.6 38.6 715 534.735 26.2683 221431.
1.670 REGRESSION LINE INTERCEPT (LBM)
7.4 36.3 730 534.732 26.2675 221425.
6.4 34,2 745 534.728 26.2655 221410.
14.5 38.1 300 534.714 26.2646 221408.
2.2 34.0 815 534.704 26.2623 221393.
15.0 37.2 830 534.699 26.2610 221335.
S'.6 36.9 Q
845 534.687 26.2592 221374.
10.7 37.5 900 534.687 26.2570 221356.
18.3 40.7 915 534.673 26.2561 221350.
2.2 38.1 930 534.659 26.2523 221328.
~25.6 43.0 945 534.648 26.2522 221331.
-3.4 39.0 1000 534.641 26.2504 221319.
12.3 39.7 1015 534.631 26.2499 221319
-0.1 37.2 FREE AIR VOLUME USED (MILLIONS OF CU. FT.)
=
1.670 REGRESSION LINE INTERCEPT (LBM) 221471.
=
SLOPE (LBM/HR)
SLOPE (LBM/HR)
                                                                                    =
-39.8
221471.
=
                                                                                    =
VERIFICATION TEST LEAKAGE RATE UFPER LIMIT =
                                                                                            -39.8 VERIFICATION TEST LEAKAGE RATE UFPER LIMIT =                                       0.545 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =                                       0.327 THE CALCULATED LEAKAGE RATE                                             =
0.545 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =
0.431-l 1
0.327 THE CALCULATED LEAKAGE RATE 0.431-
=
l 1
1 o
1 o
l G-1 l
G-1 l
 
* w OY GRAND GULF VERIFICATION LEAKAGE RATE (WEIGHT FERCENT/ DAY)
  *w OY GRAND GULF VERIFICATION LEAKAGE RATE (WEIGHT FERCENT/ DAY)
TO THL-T IME ANALYSIS TIME AND DATE AT STAR T OF TEST:
TO THL-T IME ANALYSIS TIME AND DATE AT STAR T OF TEST:       615 0104 ELAP$ED TIME:     4.00 HOURS TIME     TEMP. PRESSURE (R)                   MEASURED (PSIA)   LEAKAGE RA
615 0104 ELAP$ED TIME:
________-____-_______________________1E   _
4.00 HOURS TIME TEMP.
615   534.767     26.2743 630   534.757     26.2728       0.356 645   534.764 26.2720       0.376 700   534.744     26.2697       0.418 715   534.735     26.2683       0.394 730   534.732     26.2675 745                              0.370 534.728     26.2655       0.413 800   534.714     26.2646 815                              0.368 534.704     26.2623       0.403 800   534.699     26.2610       0.399 845   534.687     26.2592 900                              0.406 534.687     26.2570       0.441 915   534.673     26.2561
PRESSURE MEASURED (R)
(~N           930                             0.413 534.659     26.2523
(PSIA)
\ s) m            945   534.640     26.2522 0.466 1000                               0.423 534.641     26.2504       0.430 1015   534.631     26.2499       0.403
LEAKAGE RA
* MEAN OF MEASURED LEAKAGE RATES                   =
________-____-_______________________1E 615 534.767 26.2743 630 534.757 26.2728 0.356 645 534.764 26.2720 0.376 700 534.744 26.2697 0.418 715 534.735 26.2683 0.394 730 534.732 26.2675 0.370 745 534.728 26.2655 0.413 800 534.714 26.2646 0.368 815 534.704 26.2623 0.403 800 534.699 26.2610 0.399 845 534.687 26.2592 0.406 900 534.687 26.2570 0.441 915 534.673 26.2561 0.413
0.405 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =             0.541 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =             0.323 THE CALCULATED LEAKAGE RATE                     =
(~N 930 534.659 26.2523 0.466
\\ s) 945 534.640 26.2522 0.423 m
1000 534.641 26.2504 0.430 1015 534.631 26.2499 0.403 MEAN OF MEASURED LEAKAGE RATES
=
0.405 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =
VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =
0.541 THE CALCULATED LEAKAGE RATE 0.323
=
0.434 O
0.434 O
V G-2
V G-2


  'J GRAND GULF VERIFICATION TREND REPORT LEAKAGE RfiTES (WEIGHT FERCENT/ DAY)
'J GRAND GULF VERIFICATION TREND REPORT LEAKAGE RfiTES (WEIGHT FERCENT/ DAY)
TIME AND DATE AT START OF TESY:           615 0104 ELAPSED TIME:       4.00 HOURS NO. DATA     ELAPSED POINTS        TIME        TOTAL-TIME MEAN            ANALYSIS' MASS-FOINT ANALYSIS CALCULATED     CALCULATED 10         2.25         0.389                   ___----------------------
TIME AND DATE AT START OF TESY:
11 0.400         0.397 2.50         0.390         0.404 12         2.75                                       0.402 0.395         0.418         0.420 13         3.00         0.396 14 0.420         0.420 3.25         0.402         0.436 15         3.50                                       0.440 0.403         0.436         0.438 16         3.75         0.405 17 0.439         0.439
615 0104 ELAPSED TIME:
    -,                    4.00         0.405         0.434         0.431
4.00 HOURS NO. DATA ELAPSED TOTAL-TIME ANALYSIS' MASS-FOINT ANALYSIS POINTS TIME MEAN CALCULATED CALCULATED 10 2.25 0.389 0.400 0.397 11 2.50 0.390 0.404 0.402 12 2.75 0.395 0.418 0.420 13 3.00 0.396 0.420 0.420 14 3.25 0.402 0.436 0.440 15 3.50 0.403 0.436 0.438 16 3.75 0.405 0.439 0.439 17 4.00 0.405 0.434 0.431
  \
\\
1
1
(
(
c-3
c-3


(                                                                             APPENDIX H BYPASS LEAKAGE RATE CALCULATIONS The formula for computing leakage rate by flow totalizer method is:
(
1 Lt = (P1/T 1 - P2/T2) x (VT s/60tPs) + F/60t where:
APPENDIX H BYPASS LEAKAGE RATE CALCULATIONS The formula for computing leakage rate by flow totalizer method is:
I Lt=       Leakage rate, standard cubic feet per minute (SCFM) 4 P,P2 = Test volume absolute pressure at start and end of test respectively, absolute units i
Lt = (P /T1 - P /T ) x (VT /60tP ) + F/60t 1
T,T2 = Test volume absolute temperature at start and end of test respectively, absolute units V
2 2 s
1                                                    = Total test free air volume, cubit feet (270,128 cu.ft.)
s 1
Ts     = Standard temperature (68'F)
where:
Ps     = Standard pressure (14.6959 psia)
I Lt=
          -s)                                 t       = Tes t duration, hours (4 hrs.)
Leakage rate, standard cubic feet per minute (SCFM)
O                                     F
P,P2 = Test volume absolute pressure at start and end of test 1
                                                      = Makeup air (to maintain test pressure), standard cubic
4 respectively, absolute units i
,                                                      feet = F2-F1 F,F2 = Makeup air flow meter reading at start and end of test respectively, SCF (convert from actual cubic feet to standard cubic feet).
T,T2 = Test volume absolute temperature at start and end of test 1
(1) Calculate drywell average temperature at start and end of test, where VF = Volume Friction.
respectively, absolute units V
= Total test free air volume, cubit feet (270,128 cu.ft.)
1 Ts
= Standard temperature (68'F)
Ps
= Standard pressure (14.6959 psia)
-s) t
= Tes t duration, hours (4 hrs.)
O F
= Makeup air (to maintain test pressure), standard cubic feet = F2-F1 F,F2 = Makeup air flow meter reading at start and end of test 1
respectively, SCF (convert from actual cubic feet to standard cubic feet).
(1)
Calculate drywell average temperature at start and end of test, where VF = Volume Friction.
T1 - 76.102*F = 535.772*R T2 = 76.271*F = 535.941*R (2) Drywell pressure at start and end of test:
T1 - 76.102*F = 535.772*R T2 = 76.271*F = 535.941*R (2) Drywell pressure at start and end of test:
P1 = 17.793 psia P2 = 17.785 psia                                                           s d
P1 = 17.793 psia P2 = 17.785 psia s
O DH-103 i                                                                                     H-1 4
O d
DH-103 i
H-1 4


                                                    ._ ,-                    _ _ _ _ . _ _ __ _ _ . _.                      . _ . , - - _ _ --        -  - - ~ -
- - ~ -
i (3) Calculate drywell makeup air volume, convert from actual cubic feet to
i (3) Calculate drywell makeup air volume, convert from actual cubic feet to standard cubic feet:
.,                                              standard cubic feet:
F1 = 118070 cu.ft.
F1 = 118070 cu.ft.                                                                                               i F2 = 86350 cu.ft F = (F1-F)        2        14.6959 )*\ % (44+459.67 /68+459.67)
i F2 = 86350 cu.ft (50+14.6959 % (44+459.67 /68+459.67) 14.6959
(50+14.6959
)*\\
                                                                    /'64.6959                                       527.67)
F = (F1-F) 2
                                                    =
/'64.6959 527.67) x(503.67 /
31720 x14.6959                         x(503.67
31720 x14.6959
                                                                                                        \                   /
\\
                                                    =
=
146295.19 cu.ft.
146295.19 cu.ft.
=
(4) Bypass Leakage Rate Calculation:
(4) Bypass Leakage Rate Calculation:
[17.793         _
[17.793 17.785 270,128x68 }
17.785                               270,128x68 }     146295.19 Lt = \535.772               535.941                                   60x4x14.6959/ '         60x4
146295.19 Lt = \\535.772 535.941 60x4x14.6959/ '
                                                      =
60x4 609.7 SCFM
609.7 SCFM O
=
J O
O J
DH-103                                                                             H-2
O DH-103 H-2


l APPENDIX I Local Leakage Test Summary Data Type B Test Results i
l APPENDIX I Local Leakage Test Summary Data Type B Test Results i
Penetration                 Description                             Leakage, SCCM 1                   Equipment Hatch                                     2+2 2                     Upper Personnel Lock                                   2 3                     Lower Personnel Lock                                   -
Penetration Description Leakage, SCCM 1
4                    Fuel Transfer Tube                                 0 + 11 201                   Reactor Protection System                           030 202                   Low Voltage Power                                   0+0 203 204 Instrumentation                                   030 9
Equipment Hatch 2+2 2
Instrumentation                                     0+0
Upper Personnel Lock 2
;              205                   Neutron Monitoring                                 0IO 206                   Low Voltage Power                                   0IO 4
3 Lower Personnel Lock 4
207                   Control and Power                                   0I0 J
Fuel Transfer Tube 0 + 11 201 Reactor Protection System 030 202 Low Voltage Power 0+0 203 Instrumentation 030 9
208 209 Control Low Voltage Power 0{0 0+0 210                   Radiation Monitoring                               0+0 211                   Control                                             0+0 i               212                   Instrumentation                                     0IO OIO 213                   Rod Position Indication 214                   T.I.P.                                             OT0 t
204 Instrumentation 0+0 205 Neutron Monitoring 0IO 206 Low Voltage Power 0IO 207 Control and Power 0I0 4
0          215 216 217 6.9 Kv-Reactor Recirculate Pump A Spare LV Power and Control 0[0 0+0 0I0 218 219 Neutron Monitoring Ins trument ation 0{0 0+0 I               220 221 Instrumentation Spare 0{0 0+0 i               222                   Reactor Protection                                 0IO 223                   LV Power and Control                               0I0 224                   Spare                                               0IO l               225                   LV Power                                           0IO 226                   Control                                             0IO 227                   Instrumentation                                     0I0 228 229 Instrumentation (Neutron Monitoring)
208 Control 0{0 J
LV Power and Control 0{0 0+0 t
209 Low Voltage Power 0+0 210 Radiation Monitoring 0+0 211 Control 0+0 i
230 231 Reactor Protection Instrumentation 0{0 0+0 232 233 Neutron Monitoring Rod Position Indication 0[0 0+0 234                   Spare                                               0IO 235                   Neutron Monitoring                                 0I0 l
212 Instrumentation 0IO 213 Rod Position Indication OIO 214 T.I.P.
237 238 Instrumentation (SRV Inplant Test)
OT0 0
Reactor Protection System 0{0 0+0 239                   Control                                             0+0 240                   Instrumentation                                     0I0 241                   LV Power and Control                               0I0 1       242                   LV Power and Control                               0{0 Dil-119                                         I-1 i
215 6.9 Kv-Reactor Recirculate Pump A 0[0 t
e         , ,--, , . . - -    ,-  ,r._.             -            -
216 Spare 0+0 217 LV Power and Control 0I0 218 Neutron Monitoring 0{0 219 Ins trument ation 0+0 I
                                                                                -,,..,,n,.       _ , , , _ ,
220 Instrumentation 0{0 221 Spare 0+0 i
222 Reactor Protection 0IO 223 LV Power and Control 0I0 224 Spare 0IO l
225 LV Power 0IO 226 Control 0IO 227 Instrumentation 0I0 228 Instrumentation (Neutron Monitoring) 0{0 229 LV Power and Control 0+0 230 Reactor Protection 0{0 t
231 Instrumentation 0+0 232 Neutron Monitoring 0[0 233 Rod Position Indication 0+0 234 Spare 0IO 235 Neutron Monitoring 0I0 l
237 Instrumentation (SRV Inplant Test) 0{0 238 Reactor Protection System 0+0 239 Control 0+0 240 Instrumentation 0I0 241 LV Power and Control 0I0 1
242 LV Power and Control 0{0 Dil-119 I-1 i
e
,r._.
-,,..,,n,.


APPENDIX I (Cont'd)
APPENDIX I (Cont'd)
Local Leakage Test Summary Data Type B Test Results (Cont'd)                                           !
Local Leakage Test Summary Data Type B Test Results (Cont'd)
Penetration Description                                         Leakage, SCCM 243     Spare                                                   010 244     LV Power                                                 0+0 245     Control Bop                                             010 246     Radiation Monitoring                                     010 247     6.9 KV Reactor Recirculate Pump B                       010 249     Instrumentation                                         010 Drywell Personnel Hatch                                   -
Penetration Description Leakage, SCCM 243 Spare 010 244 LV Power 0+0 245 Control Bop 010 246 Radiation Monitoring 010 247 6.9 KV Reactor Recirculate Pump B 010 249 Instrumentation 010 Drywell Personnel Hatch Drywell Head Drywell Equipment Hatch 30 1 11 Drywell Head Manhole TOTAL = 32 1 16 O
Drywell Head Drywell Equipment Hatch                               30 1 11 Drywell Head Manhole                                       -
O DH-119 I-2
TOTAL = 32 1 16
. O O
DH-119                         I-2


APPENDIX I (Cont'd)
APPENDIX I (Cont'd)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)
Penetration     Description                                   Leakage, SCCM 5         Main Steam Line A                             10,500 i 150 6         Main Steam Line B                                 552 + 19 7         Main Steam Line C                                 20 + 17 8         Main Steam Line D                               3,3901148 17         Steam Supply to RCIC Turbine and RHR Hx                                     114.0 1 17 19         Main Steam Drain to Condenser                       4 i 12 33           CRD Pump Discharge                                 0 1 12 34           Containment Purge Supply                         135 1 17 35           Containment Purge Exhaust                         80 + 17.
Penetration Description Leakage, SCCM 5
36         Plant Service Water Return                         58 1 12 37           Plant Service Water Supply 38           Chilled Water Supply                           1,250 i 120 39           Chilled Water Return                               20 + 12 40*         ILRT Containment Pressurization /
Main Steam Line A 10,500 i 150 6
Depressurization                             286 + 12 41           Plant Service Air                                 220 + 12 42           Instrument Air                                   800 1 12 O     43           RWCU to Main Condenser                             10 1 17
Main Steam Line B 552 + 19 7
\     44           Component Cooling Water Supply                     40 1 17 45           Component Cooling Water Return                     48 + 17 47           Reactor Recirculate Post Accident Sample                                         0 i 11 49           RWCU Backwash Transfer Pump to Spent Resin Storage Tank                             72 + 12 50           DW & Containment CRW Sump Pumps Discharge to Auxiliary Building Collector Tank                             1,385 1 104 51           DW & Containment DRW Sump Pumps Discharge to Auxiliary Building Collector Tank                             1,395 1 100 54           To Upper Containment Pool and f rom Refueling Water Storage Tank                       5 + 12 56           Condensate Makeup to Upper Containment Pool       230 + 11 57           Discharge from Fuel Pool Cooling and C.U.
Main Steam Line C 20 + 17 8
System to Upper Containment Pool             172 + 12 58           Inlet Upper Containment Pool skimmer Tanks to Fuel Pool Cooling and C.U. System         142 1 12 60           Auxiliary Building Floor and Equipment Drain Return                                   23 + 17 65           Containment Normal Vent Supply and Combustible Cas                               350 1 17 66           Containment Normal Vent and Combustible Gas Exchange                                   30 + 17 A                                                                       -
Main Steam Line D 3,3901148 17 Steam Supply to RCIC Turbine and RHR Hx 114.0 1 17 19 Main Steam Drain to Condenser 4 i 12 33 CRD Pump Discharge 0 1 12 34 Containment Purge Supply 135 1 17 35 Containment Purge Exhaust 80 + 17.
* Leakage rate for penetration 40 and 82 is included in this total Dil-119                               I-3
36 Plant Service Water Return 58 1 12 37 Plant Service Water Supply 38 Chilled Water Supply 1,250 i 120 39 Chilled Water Return 20 + 12 40*
ILRT Containment Pressurization /
Depressurization 286 + 12 41 Plant Service Air 220 + 12 42 Instrument Air 800 1 12 O
43 RWCU to Main Condenser 10 1 17
\\
44 Component Cooling Water Supply 40 1 17 45 Component Cooling Water Return 48 + 17 47 Reactor Recirculate Post Accident Sample 0 i 11 49 RWCU Backwash Transfer Pump to Spent Resin Storage Tank 72 + 12 50 DW & Containment CRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,385 1 104 51 DW & Containment DRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,395 1 100 54 To Upper Containment Pool and f rom Refueling Water Storage Tank 5 + 12 56 Condensate Makeup to Upper Containment Pool 230 + 11 57 Discharge from Fuel Pool Cooling and C.U.
System to Upper Containment Pool 172 + 12 58 Inlet Upper Containment Pool skimmer Tanks to Fuel Pool Cooling and C.U. System 142 1 12 60 Auxiliary Building Floor and Equipment Drain Return 23 + 17 65 Containment Normal Vent Supply and Combustible Cas 350 1 17 66 Containment Normal Vent and Combustible Gas Exchange 30 + 17 A
* Leakage rate for penetration 40 and 82 is included in this total Dil-119 I-3


APPENDIX I (Cont'd)
APPENDIX I (Cont'd)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)(Cont'd)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)(Cont'd)
Penetration               Description                                                                 Leakage, SCCM i
Penetration Description Leakage, SCCM i
70                     Automatic Depressurization System 4                                                      (Instrument Air)                                                                   20 + 17
70 Automatic Depressurization System (Instrument Air) 20 + 17 4
)                       75                       RCIC Pump Turbine Exhaust Vaccum Relief                                                 12112 j                       81                       Reactor Recirculate Sample                                                               0 1 12
)
;                      82*                     ILRT Drywell Pressurization /Depressurization                                           286 1 12
75 RCIC Pump Turbine Exhaust Vaccum Relief 12112 j
  !                    83                       RWCV Line from Regenerative Ht. Exchange
81 Reactor Recirculate Sample 0 1 12 82*
,                                                    to Feedwater                                                                       100 + 12
ILRT Drywell Pressurization /Depressurization 286 1 12 83 RWCV Line from Regenerative Ht. Exchange to Feedwater 100 + 12 84 Drywell and Containment Chemical Waste 60112 85 Suppression Pool Cleanup Return 180 1 21 86 Demineralization Water Supply to Containment 330 1 12 87 RWCV Putap Suction from Recirculate Loops 60 1 17 88 RWCV Pump Discharge to RWCV Ht. Exchange 40 1 12 101C Drywell Pressure Instrumentation (Narrow Range) 0 1 12 101F Drywell Pressure Instrumentation (Wide Range) 6 1 12 l
:                      84                       Drywell and Containment Chemical Waste                                                   60112 85                       Suppression Pool Cleanup Return                                                         180 1 21 86                       Demineralization Water Supply to Containment                                           330 1 12 87                       RWCV Putap Suction from Recirculate Loops                                               60 1 17 88                       RWCV Pump Discharge to RWCV Ht. Exchange                                                 40 1 12 101C                     Drywell Pressure Instrumentation (Narrow Range)                                                                       0 1 12 101F                     Drywell Pressure Instrumentation (Wide Range)                                                                         6 1 12 l
102D Drywell Pressure (Wide Range) 15 1 12 103D Containment Pressure (Wide Range) 10 + 12 0
102D                     Drywell Pressure (Wide Range)                                                           15 1 12 103D                     Containment Pressure (Wide Range)                                                       10 + 12 j
104D Containment Pressure (Wide Range) 10112 j
0                104D 105A Containment Pressure (Wide Range)
105A Containment Drywell H2 Analyzing 110 1 12 106A Drywell H2 Analyzing Sample 14 i 12 l
Containment Drywell H2 Analyzing 10112 110 1 12 106A                     Drywell H2 Analyzing Sample                                                             14 i 12 l                     106B                     Drywell H2 Analyzing Sample Return                                                       10 i 12 l                     106E                     Containment H2 Analyzing Sample Return                                                   10 1 12 107B                     Drywell H2 Analyzing Sample Return                                                     158 1 12 107D                     Drywell H2 Analyzing Sample                                                             50112 107E                     Drywell H2 Analyzing Sample Return                                                       15 1 12 108A                     Containment H2 Analyzing                                                                 95 1 12 Drywell - Fission Products Monitor Sample 109A                                                                                                                0 1 12 109B                     Drywell - Fission Products Monitor Sample i                                                   Return                                                                             100 i 12 109D                     Containment Pressure Instrument (Narrow Range)                                                                     10 1 12 110A                     ILRT Instrumentation Drywell Pressure                                                     0 1 11
106B Drywell H2 Analyzing Sample Return 10 i 12 l
!                      110C                     ILRT Instrumentation Verification Flow                                                   0 + 11 i
106E Containment H2 Analyzing Sample Return 10 1 12 107B Drywell H2 Analyzing Sample Return 158 1 12 107D Drywell H2 Analyzing Sample 50112 107E Drywell H2 Analyzing Sample Return 15 1 12 108A Containment H2 Analyzing 95 1 12 109A Drywell - Fission Products Monitor Sample 0 1 12 109B Drywell - Fission Products Monitor Sample i
110F                     ILRT Instrumentation Containment Pressure                                               10 + 11 114                       Suppression Pool Water Level Control                                                     9 1 12 116                       Suppression Pool Water Level Control                                                     45 1 12 118                       Suppression Pool Water Level Control                                                     7 1 12 1
Return 100 i 12 109D Containment Pressure Instrument (Narrow Range) 10 1 12 110A ILRT Instrumentation Drywell Pressure 0 1 11 110C ILRT Instrumentation Verification Flow 0 + 11 i
120                       Suppression Pool Water Level Control                                                     5 1 12 TOTAL = 22822 1 300 N
110F ILRT Instrumentation Containment Pressure 10 + 11 114 Suppression Pool Water Level Control 9 1 12 116 Suppression Pool Water Level Control 45 1 12 118 Suppression Pool Water Level Control 7 1 12 120 Suppression Pool Water Level Control 5 1 12 1
TOTAL = 22822 1 300 N
* Leakage rate for penetration 40 and 82 is included in this total.
* Leakage rate for penetration 40 and 82 is included in this total.
DH-119                                                                 I-4 i
DH-119 I-4 i


APPENDIX I (Cont'd)
APPENDIX I (Cont'd)
Local Leakage Test Summary Data Type C Test Results (Hydraulic)
Local Leakage Test Summary Data Type C Test Results (Hydraulic)
Penetration Description                                   Leakage, SCCM 9     Feedwater A                                       3.8 + 2.5 10       Feedwater B                                   16-2/3{2.5 11       RHR Pump A Suction                                 180 1 36 12       RHR Pump B Suction                               503 + 92
Penetration Description Leakage, SCCM 9
                                                                        ~
Feedwater A 3.8 + 2.5 10 Feedwater B 16-2/3{2.5 11 RHR Pump A Suction 180 1 36 12 RHR Pump B Suction 503 + 92
13       RHR Pump C Suction                               917 + 74 14       RHR Shutdown Suction                                 010 18       RHR to RPV Head Spray                             3.8 1 5 20       RHR A to LPCI                                       010 21       RHR B to LPCI                                   5.60 1 3.5 22       RHR C to LPCI                                     519 + 28
~
                                                                      ~
13 RHR Pump C Suction 917 + 74 14 RHR Shutdown Suction 010 18 RHR to RPV Head Spray 3.8 1 5 20 RHR A to LPCI 010 21 RHR B to LPCI 5.60 1 3.5 22 RHR C to LPCI 519 + 28
23       RHR A Pump Test Line to Suppression Pool         180 1 35 24       RHR C Pump Test Line to Suppression Pool         917 1 74 25       HPCS Pump Suction                               6.23 + 4.3 26       HPCS Pump Discharge to RPV                         25 + 20 27       HPCS Test Line to Suppression Pool               6.3 1 2.5 28       RCIC Pump Suction                                   010
~
)   29       RCIC Turbine Exhaust                                 0+0 30       LPCS Pump Suction                                   0I0 31       LPCS Pump Discharge to RPV                       471 1 53 32       LPCS Test Line to Suppression Pool                   0+0~
23 RHR A Pump Test Line to Suppression Pool 180 1 35 24 RHR C Pump Test Line to Suppression Pool 917 1 74 25 HPCS Pump Suction 6.23 + 4.3 26 HPCS Pump Discharge to RPV 25 + 20 27 HPCS Test Line to Suppression Pool 6.3 1 2.5 28 RCIC Pump Suction 010
46       RCIC Pump Discharge Minimum Flow Line               010 48       RHR Hx B Relief Valve Vent Header to             8.5 1 5 Suppression Pool 67       RHR Pump B Test Line to Suppression Pool         503 1 54 69       Refueling Water Transfer Pump Suction From Suppression Pool                           50 + 7 71A     LPCS Relief Valve Discharge to Suppression Pool                                             0+0-71B     RHR "C" Relief Valve Discharge to Suppression Pool                                           917 + 74 i    73       RHR Shutdown Relief Valve Discharge to Suppression Pool (H.P.)                         82.6 1 24 76B     RHR A Shutdown Suction Relief Valve Discharge to Suppression Pool (H.P.)         12.75 1 5 77       RHR HT. Exchanger A Relief Valve Discharge to Suppression Pool                           180 + 35 89       Standby Service Water Supply A                     22[7 90       Standby Service Water Return A                       0+0 91       Standby Service Water Supply B                       010 92       Standby Service Water Return B                       5+6 113     Suppression Pool Water Level Control             5.3 I 5
)
                                                                      ~
29 RCIC Turbine Exhaust 0+0 30 LPCS Pump Suction 0I0 31 LPCS Pump Discharge to RPV 471 1 53 32 LPCS Test Line to Suppression Pool 0+0
115     Suppression Pool Water Level Control i
~
117 010 i              Suppression Pool Water Level Control               5 + 12 1     119     Suppression Pool Water Level Control               17 I_ 12 TOTAL = 5563 _+ 192 DH-119                           I-5
46 RCIC Pump Discharge Minimum Flow Line 010 48 RHR Hx B Relief Valve Vent Header to 8.5 1 5 Suppression Pool 67 RHR Pump B Test Line to Suppression Pool 503 1 54 69 Refueling Water Transfer Pump Suction From Suppression Pool 50 + 7 71A LPCS Relief Valve Discharge to Suppression Pool 0+0 71B RHR "C" Relief Valve Discharge to Suppression Pool 917 + 74 73 RHR Shutdown Relief Valve Discharge to i
Suppression Pool (H.P.)
82.6 1 24 76B RHR A Shutdown Suction Relief Valve Discharge to Suppression Pool (H.P.)
12.75 1 5 77 RHR HT. Exchanger A Relief Valve Discharge to Suppression Pool 180 + 35 89 Standby Service Water Supply A 22[7 90 Standby Service Water Return A 0+0 91 Standby Service Water Supply B 010 92 Standby Service Water Return B 5+6 113 Suppression Pool Water Level Control 5.3 I 5
~
i 115 Suppression Pool Water Level Control 010 i
117 Suppression Pool Water Level Control 5 + 12 I
1 119 Suppression Pool Water Level Control 17 _ 12 TOTAL = 5563 _+ 192 DH-119 I-5


r 1
r 1
Line 1,106: Line 1,616:
!O
!O
)
)
I                                                                                             MISSISSIPPI POWER AND LIGHT CO.
I MISSISSIPPI POWER AND LIGHT CO.
GRAND GULF NUCLEAR STATION UNIT 1 j
GRAND GULF NUCLEAR STATION UNIT 1 DOCKET NO. 50-416 j
DOCKET NO. 50-416
)
)
.                                                                                  PRIMARY REACTOR CONTAINMENT INTEGRATED i                                                                                                      LEAKAGE RATE TEST REPORT a
PRIMARY REACTOR CONTAINMENT INTEGRATED LEAKAGE RATE TEST REPORT i
J i                                                                                                                                                                                                                                                                   i 4
a J
8 i
i i
1 I
4 8
O l
i 1
I O l
i l
i l
I Submitted To The United States Nuclear Regulatory Commission Pursuant To Facility Operating License i
I Submitted To The United States Nuclear Regulatory Commission Pursuant To Facility Operating License i
e
e 4
: f.                    4          }
}
g   ,V [l M I; .,
g
t/ . JQ U                         [T I O Y 3 I ~#                                                                                                                                   <
,V [l M f.
WP=VW   ''FT '' ""-"'v'v''"FWM w etNNwN47^--*--m--W-m                           -+-' rem-PT-           w---w w -&T e +wo n =-mule- W -Ne'*Nw'u-'-w                                           W CN-                   %-+w--er-ww-w--v'm +*m-,---,wem--ew- -- w
t/. JQ U
[T I O Y 3 I ~#
I.,
WP=VW
''FT
""-"'v'v''"FWM w etNNwN47^--*--m--W-m
-+-' rem-PT-w---w w -&T e +wo n =-mule-W -Ne'*Nw'u-'-w W CN-
%-+w--er-ww-w--v'm
+*m-,---,wem--ew-w


i TABLE OF CONTENTS O
i TABLE OF CONTENTS O
Page No.
Page No.
I.       INTRODUCTION                                                                     1-1 4
I.
!          II.       TEST SYNOPSIS                                                                   2-1 III. TEST DATA  
INTRODUCTION 1-1 4
II.
TEST SYNOPSIS 2-1 III. TEST DATA  


==SUMMARY==
==SUMMARY==
3-1 IV.       ANALYSIS AND INTERPRETATION                                                     4-1 l
3-1 IV.
V.         COMPUTER REPORT AND DATA PRINTOUT                                               5-1 i
ANALYSIS AND INTERPRETATION 4-1 l
APPENDIXES A.       Bechtel ILRT Computer Program                                                     A-1 B.     ILRT Stabilizaticn Data                                                           B-1 C.     ILRT Summary Data                                                                 C-1 D.     ILRT Calculations 1                   Mass Point Analysis                                                               D-1 Total Time Analysis                                                               D-2 Trend Report Analysis                                                             D-3 E.     ILRT Plots Temperature Versus Time                                                           E-1 Pressure Versus Time                                                             E-3 Air Mass Versus Time                                                             E-5 F.     Verification Flow Test Summary Data                                               F-1 G.     Verification Flow Test Calculations Mass Point Analysis                                                               G-1 1                 Total Time Analysis                                                               G-2 Trend Report Analysis                                                             G-3 H.     Bypass Leakage Rate Calculation                                                   H-1 I.     Local Leakage Test Summary Data                                                   I-l 11 DH-103
V.
COMPUTER REPORT AND DATA PRINTOUT 5-1 i
APPENDIXES A.
Bechtel ILRT Computer Program A-1 B.
ILRT Stabilizaticn Data B-1 C.
ILRT Summary Data C-1 D.
ILRT Calculations 1
Mass Point Analysis D-1 Total Time Analysis D-2 Trend Report Analysis D-3 E.
ILRT Plots Temperature Versus Time E-1 Pressure Versus Time E-3 Air Mass Versus Time E-5 F.
Verification Flow Test Summary Data F-1 G.
Verification Flow Test Calculations Mass Point Analysis G-1 1
Total Time Analysis G-2 Trend Report Analysis G-3 H.
Bypass Leakage Rate Calculation H-1 I.
Local Leakage Test Summary Data I-l 11 DH-103


('') I. INTRODUCTION
('')
, (s /     The Reactor Containment Building Integrated Leakage Rate (Type A) test is performed to demonstrate that leakage through the primary reactor containment systems and components penetrating the primary containment does not exceed the allowable leakage rate specified in the Grand Gulf Nuclear Station Final Safety Analysis Report (FSAR).
I.
INTRODUCTION (s /
The Reactor Containment Building Integrated Leakage Rate (Type A) test is performed to demonstrate that leakage through the primary reactor containment systems and components penetrating the primary containment does not exceed the allowable leakage rate specified in the Grand Gulf Nuclear Station Final Safety Analysis Report (FSAR).
The successful preoperational Integrated Leakage Rate Test (ILRT),
The successful preoperational Integrated Leakage Rate Test (ILRT),
Verification Test, and Drywell Bypass Test were completed on January 5, 1982 at Grand Gulf Nuclear Station Unit 1. Acceptance criteria for both ANSI /ANS 56.8-1981, " Containment System Leakage Testing Require-ments," and BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Powcr Plants,"
Verification Test, and Drywell Bypass Test were completed on January 5, 1982 at Grand Gulf Nuclear Station Unit 1.
were met for an 8-hour short duration test. Calculations were per-formed using the ANSI /ANS 56.8-1981 " Mass Point Analysis Method" and BN-TOP-1, " Total Time Analysis Method." The test results are reported in accordance with the requirements of ANSI /ANS 56.8-1981, Section 5.8 and 10CFR50, Appendix J, Section V.B.3.
Acceptance criteria for both ANSI /ANS 56.8-1981, " Containment System Leakage Testing Require-ments," and BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Powcr Plants,"
were met for an 8-hour short duration test.
Calculations were per-formed using the ANSI /ANS 56.8-1981 " Mass Point Analysis Method" and BN-TOP-1, " Total Time Analysis Method." The test results are reported in accordance with the requirements of ANSI /ANS 56.8-1981, Section 5.8 and 10CFR50, Appendix J, Section V.B.3.
The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Grand Gulf Nuclear Station Unit 1 ILRT.
The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Grand Gulf Nuclear Station Unit 1 ILRT.
Section II, Test Synopsis, presents the highlights of activities and events which occurred prior to and during the ILRT.
Section II, Test Synopsis, presents the highlights of activities and events which occurred prior to and during the ILRT.
3 x_,/     Section III, Test Data Summary, contains the data and results necessary to demonstrate containment atmosphere stabilization, an acceptable leakage rate, and a successful verification test. In addition, plots provided in Appendix E supply a visual history of containment atmos-pheric conditions beginning with the stabilization condition, through-out the 8-hour short duration ILRT period, and ending with the verification test.
3 x_,/
Section III, Test Data Summary, contains the data and results necessary to demonstrate containment atmosphere stabilization, an acceptable leakage rate, and a successful verification test.
In addition, plots provided in Appendix E supply a visual history of containment atmos-pheric conditions beginning with the stabilization condition, through-out the 8-hour short duration ILRT period, and ending with the verification test.
Section IV, Analysis and Interpretation, contains technical details of the integrated leakage rate measuring system used during the ILRT, and provides analysis to show that the containment 95% upper confidence limit leakage rate does not exceed 75% of the allowable rate as speci-fied in the plant FSAR.
Section IV, Analysis and Interpretation, contains technical details of the integrated leakage rate measuring system used during the ILRT, and provides analysis to show that the containment 95% upper confidence limit leakage rate does not exceed 75% of the allowable rate as speci-fied in the plant FSAR.
Section V, Computer Report and Data Printout , describes the ILRT com-puter program and report printouts.
Section V, Computer Report and Data Printout, describes the ILRT com-puter program and report printouts.
I b
Ib DH-103 1-1
DH-103                                 1-1


II. TEST SYNOPSIS TEST PREPARATION ACTIVITIES Prior to containment pressurization for the Structural Integrity Test (SIT) on January 1,1982, Grand Gulf Nuclear Station Unit 1 test personnel were engaged in measuring containment leakage to ensure a successful preoperational ILRT. Sources of containment leakage were identified through Types B and C leakage rate testing programs and reduced by repairing those systems and containment components having relatively excessive leakage rates. The results of the Local Leakage
II.
              ~ Rate Test (LLRT) are presented in Appendix I.
TEST SYNOPSIS TEST PREPARATION ACTIVITIES Prior to containment pressurization for the Structural Integrity Test (SIT) on January 1,1982, Grand Gulf Nuclear Station Unit 1 test personnel were engaged in measuring containment leakage to ensure a successful preoperational ILRT.
Sources of containment leakage were identified through Types B and C leakage rate testing programs and reduced by repairing those systems and containment components having relatively excessive leakage rates. The results of the Local Leakage
~ Rate Test (LLRT) are presented in Appendix I.
Highlight 3 of the test preparation activities included monitoring both upper and lower personnel hatch pneumatic systems leakage and repniring MSIV guard pipe inspection. port seals, positioning sensors, verifying associated volume fractions, and conducting a temperature' survey to ensure that all sensors could accurately monitor their respective subvolumes. An in-situ check, as specified in ANSI /ANS 56.8-1981, Section 4.2.3, was conducted to verify that all ILRT instrumentation was indicating correctly. The following items are presented in chronological order, and detail significant activities performed during the test preparation and successful execution.
Highlight 3 of the test preparation activities included monitoring both upper and lower personnel hatch pneumatic systems leakage and repniring MSIV guard pipe inspection. port seals, positioning sensors, verifying associated volume fractions, and conducting a temperature' survey to ensure that all sensors could accurately monitor their respective subvolumes. An in-situ check, as specified in ANSI /ANS 56.8-1981, Section 4.2.3, was conducted to verify that all ILRT instrumentation was indicating correctly. The following items are presented in chronological order, and detail significant activities performed during the test preparation and successful execution.
The Type A test procedure was reviewed to verify compliance with 3         Plant Technical Specifications, 10CFR50 Appendix J, ANSI /ANS 56.8-
The Type A test procedure was reviewed to verify compliance with 3
            -  1981, BN-TOP-1, and the FSAR. In addition,-test personnel reviewed the valve lineups to verify that the containment systems were in as close to post-accident alignment as possible.
Plant Technical Specifications, 10CFR50 Appendix J, ANSI /ANS 56.8-1981, BN-TOP-1, and the FSAR.
CONTAINMENT PRESSURIZATION Containment pressurization for the ILRT began at 1030 on January 3, j,            1982. At the start of pressurization, containment fans M41-B001A and M41-8001B, and the containment, steam tunnel, and drywell cooling systems were operating. During pressurization with the containment
In addition,-test personnel reviewed the valve lineups to verify that the containment systems were in as close to post-accident alignment as possible.
!              at 10 to 12 psig, containment fan M41-B001B tripped off on overcurrent at approximately 68 amperes. ILRT pressure of 12.27 psig (26.24 psia) was reached at 1525. Containment fan M41-B001A was then manually tripped to prevent a possible uncontrolled trip.
CONTAINMENT PRESSURIZATION j,
CONTAINMENT STABILIZATION l             After reaching ILRT pressure, the containment atmosphere was allowed to l             stabilize. The temperature stabilization criteria of ANSI /ANS 56.8-1981, Section 5.3.1.3, and BN-TOP-1, Section 2.2.B, were satisfied. The ILRT stabilization data are given in Appendix B.
Containment pressurization for the ILRT began at 1030 on January 3, 1982. At the start of pressurization, containment fans M41-B001A and M41-8001B, and the containment, steam tunnel, and drywell cooling systems were operating.
O DU-103                                   2-1
During pressurization with the containment at 10 to 12 psig, containment fan M41-B001B tripped off on overcurrent at approximately 68 amperes.
ILRT pressure of 12.27 psig (26.24 psia) was reached at 1525. Containment fan M41-B001A was then manually tripped to prevent a possible uncontrolled trip.
CONTAINMENT STABILIZATION l
After reaching ILRT pressure, the containment atmosphere was allowed to l
stabilize. The temperature stabilization criteria of ANSI /ANS 56.8-1981, Section 5.3.1.3, and BN-TOP-1, Section 2.2.B, were satisfied.
The ILRT stabilization data are given in Appendix B.
O DU-103 2-1


(''}       During containment stabilization the outer doors on the upper and
(''}
(_,/       lower personnel locks were opened. A number of small leaks were de-tected through the inner door seals. Leaks were repaired on the upper and lower lock containment pressure sensing systems. The outer doors were closed at 1853.
During containment stabilization the outer doors on the upper and
DURING ILRT Subsequent to containment air mass temperature stabilization, the ILRT for Grand Gulf Nuclear Station Unit 1 started at 2030 on January 3, 1982, and terminated at 0430 on the following day, for an 8-hour short duration test. The accumulated data were statistically analyzed (see Section III (C), Test Results - Type A Test.) The maximum allowable leakage rate (La) for the primary containment is 0.437 wt.%/ day. The Total Time Analysis (BN-TOP-1) yields a leakage rate of 0.068 wt.%/ day with an upper 95% confidence limit of 0.139 wt.%/ day. Based on the Mass Point Analysis (ANSI /ANS 56.8-1981), the calculated leakage rate is 0.072 wt.%/ day with an upper 95% confidence limit of 0.079 wt.%/ day.
(_,/
These values are well below the Grand Gulf Nuclear Station Unit 1 acceptance criterion of 0.328 wt.%/ day (0.75 La )*
lower personnel locks were opened. A number of small leaks were de-tected through the inner door seals. Leaks were repaired on the upper and lower lock containment pressure sensing systems. The outer doors were closed at 1853.
VERIFICATION FLOW TEST A successful verification flow test was performed subsequent to the
DURING ILRT Subsequent to containment air mass temperature stabilization, the ILRT for Grand Gulf Nuclear Station Unit 1 started at 2030 on January 3, 1982, and terminated at 0430 on the following day, for an 8-hour short duration test.
      ')     ILRT from 0615 to 1015 on January 4, 1982. ILRT instrumentation per-s_J       formance was checked by imposing a leakage rate (La ) of 0.364 wt.%/ day (7.67 scfm). Af ter imposing the leakage rate, the containment atmos-pheric conditions were allowed to stabilize for one (1) hour.
The accumulated data were statistically analyzed (see Section III (C), Test Results - Type A Test.) The maximum allowable leakage rate (L ) for the primary containment is 0.437 wt.%/ day. The a
Total Time Analysis (BN-TOP-1) yields a leakage rate of 0.068 wt.%/ day with an upper 95% confidence limit of 0.139 wt.%/ day.
Based on the Mass Point Analysis (ANSI /ANS 56.8-1981), the calculated leakage rate is 0.072 wt.%/ day with an upper 95% confidence limit of 0.079 wt.%/ day.
These values are well below the Grand Gulf Nuclear Station Unit 1 acceptance criterion of 0.328 wt.%/ day (0.75 L )*
a VERIFICATION FLOW TEST A successful verification flow test was performed subsequent to the
')
ILRT from 0615 to 1015 on January 4, 1982.
ILRT instrumentation per-s_J formance was checked by imposing a leakage rate (L ) of 0.364 wt.%/ day a
(7.67 scfm). Af ter imposing the leakage rate, the containment atmos-pheric conditions were allowed to stabilize for one (1) hour.
Due to an apparent flow restriction in the verification flow line, the imposed leakage rate could not reach the maximum allowable leakage rate (La) of 0.437 wt.%/ day. The imposed leakage rate (Lo) of 0.364 wt.%/ day is within the acceptance limits of La + 25% as given in ANSI /ANS 56.8-1981, Section 3.2.6(b)(1). The results of the verification test correlated to the ILRT are summarized as follows:
Due to an apparent flow restriction in the verification flow line, the imposed leakage rate could not reach the maximum allowable leakage rate (La) of 0.437 wt.%/ day. The imposed leakage rate (Lo) of 0.364 wt.%/ day is within the acceptance limits of La + 25% as given in ANSI /ANS 56.8-1981, Section 3.2.6(b)(1). The results of the verification test correlated to the ILRT are summarized as follows:
Measured (Acceptance Limit)   95% UCL Test Method                             Leakage wt.%/ day     wt.%/ day
Measured (Acceptance Limit) 95% UCL Test Method Leakage wt.%/ day wt.%/ day a.
: a. ILRT/ Mass Point             0.072     (0.328)           0.079 ILRT/ Total Time             0.068     (0.328)           0.139
ILRT/ Mass Point 0.072 (0.328) 0.079 ILRT/ Total Time 0.068 (0.328) 0.139 b.
: b. Verification / Mass Point   0.431     (0.327-0.545)       NA Verification / Total Time   0.434     (0.323-0.541)       NA 1 0)
Verification / Mass Point 0.431 (0.327-0.545)
  \s_
NA Verification / Total Time 0.434 (0.323-0.541)
DH-103                               2-2
NA 0)
\\s_
1 DH-103 2-2


DEPRESSURIZATION AND DRWELL BYPASS TEST Following the successful completion of the ILRT and verification flow test, containment depressurization began at 1030 on January 4, 1982. At 4.3 psig, a containment entry was made to close the drywell lock for the Drywell Bypass Test. The containment was then depressurized to O psig and the dry
DEPRESSURIZATION AND DRWELL BYPASS TEST Following the successful completion of the ILRT and verification flow test, containment depressurization began at 1030 on January 4, 1982. At 4.3 psig, a containment entry was made to close the drywell lock for the Drywell Bypass Test. The containment was then depressurized to O psig and the dry
* well, whose pressure had dropped to 2.2 psig, was repressurized to 3 psig.
* well, whose pressure had dropped to 2.2 psig, was repressurized to 3 psig.
During repressurization of the drywell it was necessary to raise the sup-pression pool level to prevent leakage through the weir wall. After raising the suppression pool level, leakage through the weir wall was observed at 3.02 psig. The drywell pressure was then maintained between 3.00 and 3.01 psig with no observed leakage through the weir wall. The drywell atmosphere was allowed to stabilize for one hour, after which the Bypass Leakage Test began at 0400 on January 4, 1982. The Bypass Leakage Test was successfully completed at 0800. The calculated bypass leakage rate of 609.7 scfm is well below the allowable rate of 3500 scfm. Refer to Appendix H, Drywell Bypass Test Summary Data for calculations.
During repressurization of the drywell it was necessary to raise the sup-pression pool level to prevent leakage through the weir wall. After raising the suppression pool level, leakage through the weir wall was observed at 3.02 psig. The drywell pressure was then maintained between 3.00 and 3.01 psig with no observed leakage through the weir wall. The drywell atmosphere was allowed to stabilize for one hour, after which the Bypass Leakage Test began at 0400 on January 4, 1982. The Bypass Leakage Test was successfully completed at 0800. The calculated bypass leakage rate of 609.7 scfm is well below the allowable rate of 3500 scfm. Refer to Appendix H, Drywell Bypass Test Summary Data for calculations.
O G
OG DH-103 2-3
DH-103                                   2-3


l GGNO OIT/ ILRT PR699UR.6 Vs. TME C URVE                                   -
l GGNO OIT/ ILRT PR699UR.6 Vs. TME C URVE LEGEND 61 T
LEGEND
-..... IL R T 17 5
        -.          .            61 T
/61T y
        - ..... IL R T 17 5                           /61T                                                                                                               y
li E
: '.                                                                                                                  a li.
a
                                    \
\\
E n 16.0                       _ f       \!                                                                                                             8
n 16.0 f
$                        !            l           .                                                                                                  ;
\\!
@                      l                \         j               ,                        ILRT                                                     ;j
8 l
[L                     .                I-                                                                                                           -
l
12 5                                 it        l g
\\
g a                     I                     \                                                                                                       m w
j ILRT
W                     .                                          ,
;j
e 3 roo               I!                 l     \                 i E  "
[L I-g it l
@                  r!     ,
g 12 5 a
                                                "1                                                                                                   _
a I
sn 4
\\
I        i
m w
                                                  ).                                                                                                  m W
W e
                .                                                i                                                                                   e
3 roo I!
  ]5 k              l                                 '}
l
\\
E i
r!
"1 4
sn I
i
)
m W
i e
k
]5 l
l
l
                .!                                    .                                                                                              m
'}
                        !                            1         !
m 1
                                                                                                                                                      =
=
90       !
90 Q
_7             ,                              Q                                                                                            #
_7 j
j                                            i                                                 7 pnywsu    .                              :
i pnywsu 7
                                                          -l\. :                                          b=       6YFAGS Test                     w 2D../                                                             -                                                                              x o
b=
j              I
6YFAGS Test
                                                              \.'                                                                                   S m
-l o
oi                                                        d-10               20       SO           AO     90   GO         70       80   90     l%     tlO 82 0     lbO TIME       ( HOUR)
w 2D../
O                                                                               O                                               O
\\. :
x j
I
\\.'
S m
i d-o 10 20 SO AO 90 GO 70 80 90 l%
tlO 82 0 lbO TIME
( HOUR)
O O
O


I III. TEST DATA  
I III. TEST DATA  


==SUMMARY==
==SUMMARY==
Pursuant to the requirements of ANSI /ANS 56.8-1981, Section 5.8, Reporting of Results, the information in this section is provided to supply adequate data for an independent review of the containment system leakage rate test results and instrumentation.
Pursuant to the requirements of ANSI /ANS 56.8-1981, Section 5.8, Reporting of Results, the information in this section is provided to supply adequate data for an independent review of the containment system leakage rate test results and instrumentation.
: 4. Plant Information 1
4.
Owner:                 Mississippi Power and Light Company Plant:                 Grand Gulf Nuclear Station Unit 1 Location:             Port Gibson, MS
Plant Information 1
;                          Containment Type:     Mark III NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 5, 1982 B. Technical Data
Owner:
: 1. Containment Net Free Air Volume'                 1,670,360 cu ft
Mississippi Power and Light Company Plant:
: 2. Design Pressure                                 Pd = 15 psig
Grand Gulf Nuclear Station Unit 1 Location:
: 3. Design Temperature                              T = 185'F
Port Gibson, MS Containment Type:
Mark III NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 5, 1982 B.
Technical Data 1.
Containment Net Free Air Volume' 1,670,360 cu ft 2.
Design Pressure P = 15 psig d
{
{
: 4. Calculated Peak Accident Pressure               Pa = 11.5 psig
3.
: 5. Calculated Peak Accident Temperature           Ta= 181'F
Design Temperature T = 185'F 4.
: 6. Containment ILRT Average Temperature           40*F-120*F Limits C. Test Results - Type A Test
Calculated Peak Accident Pressure P = 11.5 psig a
: 1. Test Method                                     Absolute I
5.
l                           2. Data Analysis Technique                         Mass Point Leakage Rate per ANSI /ANS 56.8-1981
Calculated Peak Accident Temperature T = 181'F a
)                                                                               Total Time per BN-TOP-1 4                          3. Test Pressure (actual)                         P = 11.97 to 12.27 psig
6.
: 4. Maximum Allowable Leakage Rate                 La= 0.437 wt.%/ day
Containment ILRT Average Temperature 40*F-120*F Limits C.
: 5. 75% of L a                                      0.328 wt.%/ day
Test Results - Type A Test 1.
: 6. Integrated Leakage Rate Test Results           Leakage Rate, L,. wt.%/ day From Regres-   At Upper sion Line       95% Confi-dence Limit Mass Point Analysis                             0.072           0.079 Total Time Analysis                             0.068           0.139 DH-103                                 3-1
Test Method Absolute I
l 2.
Data Analysis Technique Mass Point Leakage Rate per ANSI /ANS 56.8-1981
)
Total Time per BN-TOP-1 3.
Test Pressure (actual)
P = 11.97 to 12.27 psig 4
4.
Maximum Allowable Leakage Rate L = 0.437 wt.%/ day a
5.
75% of L 0.328 wt.%/ day a
6.
Integrated Leakage Rate Test Results Leakage Rate, L,. wt.%/ day From Regres-At Upper sion Line 95% Confi-dence Limit Mass Point Analysis 0.072 0.079 Total Time Analysis 0.068 0.139 DH-103 3-1


  /''%                         7.       Verification Test Imposed           Lo = 0.364 wt.%/ day (7.67 scfm)
/''%
(_,/                                 Leakage Rate
7.
: 8.       Verification Test Results           Leakage Rate, L yg, wt.%/ day Mass Point Analysis                 0.431 Total Time Analysis                 0.434
Verification Test Imposed Lo = 0.364 wt.%/ day (7.67 scfm)
: 9.       Verification Test Limits:           Test Limits, L y, wt.%/ day Mass Point                 Total Time Analysis                   Analysis Upper Limit (Lo+ Lam + 0.25La)           0.545                   0.541 Lower Limit (Lo + Lam - 0.25La )         0.327                   0.323
(_,/
: 10.       Report Printouts:
Leakage Rate 8.
,                                      The report printouts and data plots for the Type A and verification test calculations are provided in Appendixes C through G.
Verification Test Results Leakage Rate, L wt.%/ day yg, Mass Point Analysis 0.431 Total Time Analysis 0.434 9.
D. Drywell Bypass test results are provided in Appendix H.
Verification Test Limits:
E. Test Results - Type B and C Tests O                           Refer to Appendix 1 for a summary of local leakage rate test results.
Test Limits, L, wt.%/ day y
F. Integrated Leakage Rate Measurement System (For ILRT Data Acquisition System, see Figure 2).
Mass Point Total Time Analysis Analysis Upper Limit (Lo+ Lam + 0.25L )
: 1. Absolute Pressure (2 channels):
0.545 0.541 a
Mensor Quartz Manometer Model No. 10100-001 PI-l Capsule S/N 2407, Gage S/N 1522 PI-2 (Spare) Capsule S/N 2406, Gage S/N 1555 Range:               0-100,000 counts; 0-100 psia Accuracy:           + 0.015% reading Sensitivity:         0.001 psia Repeatability:       0.001 psia Calibration Date: 12/23/81 I
Lower Limit (Lo + Lam - 0.25L )
i i
0.327 0.323 a
O DH-103                                             3-2
10.
Report Printouts:
The report printouts and data plots for the Type A and verification test calculations are provided in Appendixes C through G.
D.
Drywell Bypass test results are provided in Appendix H.
E.
Test Results - Type B and C Tests O
Refer to Appendix 1 for a summary of local leakage rate test results.
F.
Integrated Leakage Rate Measurement System (For ILRT Data Acquisition System, see Figure 2).
1.
Absolute Pressure (2 channels):
Mensor Quartz Manometer Model No. 10100-001 PI-l Capsule S/N 2407, Gage S/N 1522 PI-2 (Spare) Capsule S/N 2406, Gage S/N 1555 Range:
0-100,000 counts; 0-100 psia Accuracy:
+ 0.015% reading Sensitivity:
0.001 psia Repeatability:
0.001 psia Calibration Date: 12/23/81 I
i i O DH-103 3-2


i           2.         Drybulb Temperature (22 sensors):
i 2.
Rosemount resistance temperature detector Model No. 14632 Series 78 r                                                   .
Drybulb Temperature (22 sensors):
Element:             Platinum Resistance:         Ro = 100 ohms @ 32*F Lecd Type:           3 lead potentiometric configuration Temperature Range:   32' to 120*F (from calibration data)
Rosemount resistance temperature detector Model No.
Volumetrics Bridge Model No. VSTD 333 Input Voltage:       i 15 volts and 5.2 volt Resistance:         100 ohms @ 32*F j                       Output:               1.0 millivolt /*F; 32*F = 32 mv.,
14632 Series 78 r
100*F = 100 mv.; 3-wire configuration with constant current Adjustment:         Zero, span and linearity (limited)
Element:
Accuracy:                 0.l*F Sensitivity:         0.0l*F Repeatability:       0.0l*F Calibration Date:   12/21/81
Platinum Resistance:
: 3.         Dewpoint Temperature (6 sensors):
Ro = 100 ohms @ 32*F Lecd Type:
3 lead potentiometric configuration Temperature Range:
32' to 120*F (from calibration data)
Volumetrics Bridge Model No. VSTD 333 Input Voltage:
i 15 volts and 5.2 volt Resistance:
100 ohms @ 32*F j
Output:
1.0 millivolt /*F; 32*F = 32 mv.,
100*F = 100 mv.; 3-wire configuration with constant current Adjustment:
Zero, span and linearity (limited)
Accuracy:
0.l*F Sensitivity:
0.0l*F Repeatability:
0.0l*F Calibration Date:
12/21/81 3.
Dewpoint Temperature (6 sensors):
Dewpoint Temperature Systems - EC&G, Inc., Dewpoint Hygrometer, Model No. 660 with 6 sensors and signal conditioning.
Dewpoint Temperature Systems - EC&G, Inc., Dewpoint Hygrometer, Model No. 660 with 6 sensors and signal conditioning.
Accuracy:           1 0.l*F Sensitivity:         0.0l*F Repeatability:       0.05'F
Accuracy:
;                        Calibration Date:     12/18/81
1 0.l*F Sensitivity:
: 4.         Verification Flow (1 channel):
0.0l*F Repeatability:
Volumetric thermal mass flow meter, TSI model No. 2013 S/N 1516 Range:               0-10.0 scfm Accuracy:           i 1% F.S.
0.05'F Calibration Date:
Sensitivity:         1 0.01 scfm Repeatability:       1 0.01 scfm Calibration date:     10/20/81
12/18/81 4.
: 5.         Drybulb and Dewpoint Temperature Sensor Volume Fractions (see Tables 1 ar.d 2).
Verification Flow (1 channel):
O DH-103                                                   3-3
Volumetric thermal mass flow meter, TSI model No. 2013 S/N 1516 Range:
        ,-    - - - - - -      -  +,     ,-,t m.,     . - , . , ,  -  _ - - - . . - - -
0-10.0 scfm Accuracy:
i 1% F.S.
Sensitivity:
1 0.01 scfm Repeatability:
1 0.01 scfm Calibration date:
10/20/81 5.
Drybulb and Dewpoint Temperature Sensor Volume Fractions (see Tables 1 ar.d 2).
O DH-103 3-3
+,
,-,t m.,


(       G. Information Retained at Plant
(
  ,              The following information is available for review at the facility:
G.
: 1. Access control procedures established to limit ingress to containment during testing.
Information Retained at Plant The following information is available for review at the facility:
: 2. A listing of all containment penetrations, including the total i                 number of like penetrations, penetration size, and function.
1.
1
Access control procedures established to limit ingress to containment during testing.
: 3. A listing of normal operating instrumentation used for the leakage rate test.
2.
: 4. A system lineup (at time of test) showing required valve positions and status of piping systems.
A listing of all containment penetrations, including the total i
: 5. A continuous, sequential log of events from initial survey of containment to restoration of all tested systems.
number of like penetrations, penetration size, and function.
: 6. Documentation of instrumentation calibrations and standards (included with documentation should be an error analysis of
1 3.
;                    instrumentation).
A listing of normal operating instrumentation used for the leakage rate test.
: 7. Data to verify temperature stabilization criteria as estab-lished by test procedure (Appendix B).
4.
O           8. The working copy of the test procedure that includes signature sign-off of procedural steps.
A system lineup (at time of test) showing required valve positions and status of piping systems.
: 9. The procedure and all data that verify completion of penetra-tions and valve testing (B&C-type tests) including as-found leak rates, corrective action taken, and final leak rate.
5.
: 10. Computer printouts of ILRT data and manual data accumulation
A continuous, sequential log of events from initial survey of containment to restoration of all tested systems.
!                  along with summary description of computer program (Appendix C).
6.
: 11. The Quality Assurance audit plan or checklist used to monitor ILRT with proper sign-offs.
Documentation of instrumentation calibrations and standards (included with documentation should be an error analysis of instrumentation).
: 12. A listing of all test exceptions including changes in contain-ment system boundaries instituted by licensee to conclude successful testing.
7.
: 13. Description of sensor malfunctions, repairs, and methods used to redistribute volume fractions to operating instrumentation where applicable.
Data to verify temperature stabilization criteria as estab-lished by test procedure (Appendix B).
l               14. A review of confidence limits of test results with accompanying computer printouts where applicable.
O 8.
lO i       DH-103                                   3-4
The working copy of the test procedure that includes signature sign-off of procedural steps.
9.
The procedure and all data that verify completion of penetra-tions and valve testing (B&C-type tests) including as-found leak rates, corrective action taken, and final leak rate.
10.
Computer printouts of ILRT data and manual data accumulation along with summary description of computer program (Appendix C).
11.
The Quality Assurance audit plan or checklist used to monitor ILRT with proper sign-offs.
12.
A listing of all test exceptions including changes in contain-ment system boundaries instituted by licensee to conclude successful testing.
13.
Description of sensor malfunctions, repairs, and methods used to redistribute volume fractions to operating instrumentation where applicable.
l 14.
A review of confidence limits of test results with accompanying computer printouts where applicable.
lO i
DH-103 3-4


  !                                                                              i l
i l
i i                                                                               <
i i
i
i 15.
: 15. Description of method of leakage rate verification of instru-
Description of method of leakage rate verification of instru-
  }             ment measuring system (superimposed leakage), with calibration
}
  ,1             information on flow meters along with calculations used to-J               measure the verification leakage rate (Appendixes F and G).
ment measuring system (superimposed leakage), with calibration
5           16. Plots presenting ILRT data obtained during the test             ,
,1 information on flow meters along with calculations used to-J measure the verification leakage rate (Appendixes F and G).
:l               (Appendix E).
5 16.
I i           17. The P& ids of systems which penetrate the containment.
Plots presenting ILRT data obtained during the test
:l (Appendix E).
I i
: 17. The P& ids of systems which penetrate the containment.
:i a
:i a
e J
e J
l t                                                                               .
l t
i l
i l
i i
i i
Line 1,300: Line 1,948:
I f
I f
l l
l l
l
l DH-103 3-5 i
,    DH-103                             3-5 i
{
{                                       _


TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (ILRT)
TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (ILRT)
Containment Azimuth         Distance from                       Volume RTD Instrument No.             Elevation     (Degrees)                     Center                     Fraction TE-N001-01             274'-0"                     352               20'-0"                   0.062 TE-N001-02             274'-0"                     172               20'-0"                   0.062 TE-N001-03             247'-9"                       90             30'-8"                   0.062 TE-N001-04           245'-9"                     265               27'-6"                   0.062 TE-N001-05           214'-4"                       45             50'-6"                   0.062 TE-N001-06           229'-2"                     155               49'-8"                   0.062 TE-N001-07           216'-0"                     225               49'-8"                   0.062 TE-N001-08           227'-0"                     319               49'-0"                   0.062 TE-N001-09           173'-0"                     220               52'-0"                   0.058 1                         TE-N001-10           163'-0"                     305               50'-8"                   0.057 TE-N001-11           164'-6"                     155               28'-8"                   0.022 TE-N001-12           141'-6"                     162               50'-3"                   0.058 TE-N001-13           141'-2"                       90             55'-6"                   0.057 TE-N001-14           122'-2"                     335               41'-2"                   0.057 TE-N001-15           124'-0"                     177               51'-6"                   0.057 TE-N001-16           150'-6"                     219               25'-4"                   0.022 O.                      TE-N001-17           120'-0"                       95             27'-8"                   0.022 TE-N001-18         129'-0"                     187               29'-0"                   0.022 TE-N001-19           168'-0"                     350               30'-3"                   0.022 TE-N001-20         153'-5"                       41             27'-3"                   0.023 TE-N001-21         119'-9"                     278               26'-9"                   0.022 TE-N001-22         102'-6"                       0                 4'                     O.005 1.000 Containment Azimuth           Distance from                       Volume ME Instrument No.           Elevation       (Degrees)                     Center                     Fraction ME-N002-01         247'-9"                       90             30'-8"                   0.210 ME-N002-02           216'-0"                     225               49'-9"                   0.210 ME-N002-03           167'-0"                     305               50'-8"                   0.210 ME-N002-04           122'-2"                     355               41'-2"                   0.210 ME-N002-05           158'-5"                     41               27'-3"                   0.080
Containment Azimuth Distance from Volume RTD Instrument No.
,                            ME-N002-06           118'-2"                     278               26'-9"                   0.080 1.000 i
Elevation (Degrees)
Center Fraction TE-N001-01 274'-0" 352 20'-0" 0.062 TE-N001-02 274'-0" 172 20'-0" 0.062 TE-N001-03 247'-9" 90 30'-8" 0.062 TE-N001-04 245'-9" 265 27'-6" 0.062 TE-N001-05 214'-4" 45 50'-6" 0.062 TE-N001-06 229'-2" 155 49'-8" 0.062 TE-N001-07 216'-0" 225 49'-8" 0.062 TE-N001-08 227'-0" 319 49'-0" 0.062 TE-N001-09 173'-0" 220 52'-0" 0.058 1
TE-N001-10 163'-0" 305 50'-8" 0.057 TE-N001-11 164'-6" 155 28'-8" 0.022 TE-N001-12 141'-6" 162 50'-3" 0.058 TE-N001-13 141'-2" 90 55'-6" 0.057 TE-N001-14 122'-2" 335 41'-2" 0.057 TE-N001-15 124'-0" 177 51'-6" 0.057 O.
TE-N001-16 150'-6" 219 25'-4" 0.022 TE-N001-17 120'-0" 95 27'-8" 0.022 TE-N001-18 129'-0" 187 29'-0" 0.022 TE-N001-19 168'-0" 350 30'-3" 0.022 TE-N001-20 153'-5" 41 27'-3" 0.023 TE-N001-21 119'-9" 278 26'-9" 0.022 TE-N001-22 102'-6" 0
4' O.005 1.000 Containment Azimuth Distance from Volume ME Instrument No.
Elevation (Degrees)
Center Fraction ME-N002-01 247'-9" 90 30'-8" 0.210 ME-N002-02 216'-0" 225 49'-9" 0.210 ME-N002-03 167'-0" 305 50'-8" 0.210 ME-N002-04 122'-2" 355 41'-2" 0.210 ME-N002-05 158'-5" 41 27'-3" 0.080 ME-N002-06 118'-2" 278 26'-9" 0.080 1.000 i
O l
O l
DH-103                                             3-6 i
3-6 DH-103 i


                  -      __          .    .. _    . - _ _ _ _ _ - - - . .      _. _ _ -    .=
.=
TABLE 2 DRYWELL TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (BYPASS TEST)
TABLE 2 DRYWELL TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (BYPASS TEST)
Drywell 1
Drywell 1
Azimuth       Distance from Volume 1                           RTD Instrument No. Elevation                   (Degrees)           Center   Fraction TE-N001-ll           164'-6"                       155               28'-8"   0.138 TE-N001-16           150'-6"                       219               25'-4"   0.138
Azimuth Distance from Volume 1
,                              TE-N001-17           120'                             95             27'-8"   0.138 TE-N001-18           129'                           187               29'-0"   0.138 I
RTD Instrument No.
TE-N001-19           168'                           350               30'-3"   0.138 TE-N001-20           153'-5"                         41             27'-3"   0.138 TE-N001-21           119'-9"                       278               26'-9"   0.138 TE-N001-22           102'-6"                         0               4'-0"   0.034 1.000 Drywell Azimuth       Distance from Volume ME Instrument No. Elevation                     (Degrees)           Center   Fraction ME-N002-05           158'-5"                         41               27'-3"   0.5 ME-N002-06           118'-2"                       278               26'-9"   0.5 4
Elevation (Degrees)
Center Fraction TE-N001-ll 164'-6" 155 28'-8" 0.138 TE-N001-16 150'-6" 219 25'-4" 0.138 TE-N001-17 120' 95 27'-8" 0.138 TE-N001-18 129' 187 29'-0" 0.138 I
TE-N001-19 168' 350 30'-3" 0.138 TE-N001-20 153'-5" 41 27'-3" 0.138 TE-N001-21 119'-9" 278 26'-9" 0.138 TE-N001-22 102'-6" 0
4'-0" 0.034 1.000 Drywell Azimuth Distance from Volume ME Instrument No.
Elevation (Degrees)
Center Fraction ME-N002-05 158'-5" 41 27'-3" 0.5 ME-N002-06 118'-2" 278 26'-9" 0.5 4
1.0 i
1.0 i
i O
i O
;                  DH-103                                                     3-7 i
DH-103 3-7 i
-__.--..,__-_.-_.m___


#                                                      m MC                    N e,                   -
m M C N
5 mu                    m mm mc 22 m -4 l                   l                     3" EE
e, 5mu m
      , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _        _ _ _ _ _ _        _ _ __ _ _ __ _, =ac  a:
mm mc 22 m -4 l
1                                                                                     I
l 3"
                      -            -            w.
EE ac
I               =
_ _ __ _ _ __ _, = a:
                      >mm          =,m
1 w.
                                    >m          B,mN                       .
I I
I l               2mm         Emm         ~
=,m B,mN I
mmm                  l 1             ~uss
=
                      -c_         -ENS
>mm
                                    -c_
>m l
E"<E o   ma                 85a a-
2mm Emm mmm l
                      -4 m o       -4 me       r r= m                   >
~
I              ama         am=         p'e                     "
1
~uss
-ENS E"<E 85a
-c_
-c_
o ma a-
-4 m o
-4 me r r= m I
ama am=
p'e 1
=
=
 
==
I
\\
l l
N I
I I
1 I
1 I
                      =            =            ==
F
                                                \                                          l l                                                N                                    I I                                                                                    I        -
_e
1                                                                                              F
::a 1
_e                                                     I
=e I
::a 1                             =e C "4 I       H I                            -4 >
H C "4 I
l                                                                                     i       C I                                                                                     I
-4 >
  ~s   i                                                                                             H (d
l i
s      i E-n
C I
                                      =
I H
~s i
I (d
n i
E-s
=
I I
I I
I 5"
5" E
      ; O E    -        N,           -
N, NE I
NE                   I       >
O E
E             2: c               Ea                   i       o i                             8   -
2: c Ea
Na              -  =9                          o g             m                   ="                   i       c I                            =                                                               -
=9 i
1 I                                           ,, <,
o Na i
l en, 1
8 o
I g
m
="
i c
1
=
I l
en, 1
I g
I g
I I       o i                                                                     m              i       2 I
I I
g               I     ,e I                                                                     =g             i       <
o i
l._.______.____________l i
i 2
l i       H to g     m I
m I
g I
,e I
=g i
l._.______.____________l l
to i
I i
Hm g
i m
i m
I 9
I 9
x             ,=
1 E
                                                      ,-            1 n         i E
i x
InE ;- e          ig;                   ?;=g               I  en         8c         I I sm aun mc>
,=
suc mc>               1  QB        GNE nm P                  nm r-                 me yy o>c e- M y I
n e
I    g n         m -4 e               m -4                             r" D                                                      .C r-         r-Em>                   U m g:=                         m I     d             3m                     3m                         2 i
ig;
C 2
?;=
m"                     m M          l I
I g
A        ,_-._____.___-.________J_.__._____.._I, I
en 8c I
V FIGURE 2 3-8
InE ;-
aun suc 1
QB GNE I
I s mc>
mc>
me o>c P
I m
nm nm r-yy e-M y g n m -4 e m -4
.C r-r" r-D Em>
U m g:=
I d
3m 3m 2
m l
C m"
M i
m 2
I I
,_-._____.___-.________J_.__._____.._I, AV FIGURE 2 3-8


IV. ANALYSIS AND INTERPRETATION O
IV.
                      --        A. This section is provided pursuant to ANSI /ANS 56.8-1981, Section 5.8.6, which requires analysis of leakage rate data and provides an interpretation of the test results to show proper compliance l                               with acceptance criteria specified in ANSI /ANS 56.8-1981, 10CFR50, Appendix J, and the Grand Gulf Nuclear Station FSAR.
ANALYSIS AND INTERPRETATION O
A.
This section is provided pursuant to ANSI /ANS 56.8-1981, Section 5.8.6, which requires analysis of leakage rate data and provides an interpretation of the test results to show proper compliance l
with acceptance criteria specified in ANSI /ANS 56.8-1981, 10CFR50, Appendix J, and the Grand Gulf Nuclear Station FSAR.
Several corrections must be added to the calculated results of the Unit 1 ILRT. The Plant Chilled Water System (Pen 38 + 39) was not in the post LOCA lineup position and therefore the LLRT result of 2.69 SCFH must be added to the ILRT calculated results. The seal systems on the upper and lower personnel locks required makeup flows of 0.12 and 0.005 SCFH respectively during the ILRT period.
Several corrections must be added to the calculated results of the Unit 1 ILRT. The Plant Chilled Water System (Pen 38 + 39) was not in the post LOCA lineup position and therefore the LLRT result of 2.69 SCFH must be added to the ILRT calculated results. The seal systems on the upper and lower personnel locks required makeup flows of 0.12 and 0.005 SCFH respectively during the ILRT period.
The total correction to be added to the calculated Type A leakage
The total correction to be added to the calculated Type A leakage rate is 2.82 SCFH or 0.004%/ day.
  ,                                  rate is 2.82 SCFH or 0.004%/ day.
1 Pre-and post-test containment water level measurements indicated that the upper pool water volume had decreased by 574 cu f t from 1700 December 31, 1981, to 1200 January 5, 1982, and that the dry-well sump water volume had increased by 95 cu ft from 1000 January 3 to 1200 January 5, 1982. This resulted in a net water volume decrease rate of 74 cu ft per day. The indicated water volume change is most likely due to measurement accuracy. At any rate, a decrease in water volume would not mask an in-leakage, and therefore is not added as a correction.
1 Pre-and post-test containment water level measurements indicated that the upper pool water volume had decreased by 574 cu f t from 1700 December 31, 1981, to 1200 January 5, 1982, and that the dry-well sump water volume had increased by 95 cu ft from 1000 January 3 to 1200 January 5, 1982. This resulted in a net water volume decrease rate of 74 cu ft per day. The indicated water volume change is most likely due to measurement accuracy. At any rate, a decrease in water volume would not mask an in-leakage, and therefore is not added as a correction.
The corrected and uncorrected Type A leakage rates are tabulated below:
The corrected and uncorrected Type A leakage rates are tabulated below:
Lam wt%/ day                                 95% UCL wt%/ day I     II       III                             I     II     III
L wt%/ day 95% UCL wt%/ day am I
: 1. ILRT/ Mass Point         0.072 0.076 0.328                                   0.079 0.083 0.328 ILRT/ Total Time         0.068 0.072 0.328                                   0.139 0.143 0.328
II III I
: 2. Ve rification/
II III 1.
Mass Point               0.431                 0.327-0.545 Total Time               0.434                 0.323-0.541 where Column I     = Uncorrected leakage rate calculated during ILRT.
ILRT/ Mass Point 0.072 0.076 0.328 0.079 0.083 0.328 ILRT/ Total Time 0.068 0.072 0.328 0.139 0.143 0.328 2.
Column II   = Corrected leakage rate corresponding to Column I plus corrections.
Ve rification/
Mass Point 0.431 0.327-0.545 Total Time 0.434 0.323-0.541 where Column I Uncorrected leakage rate calculated during
=
ILRT.
Column II Corrected leakage rate corresponding to Column
=
I plus corrections.
Column III = Acceptance limits O
Column III = Acceptance limits O
DH-103                                           4-1
DH-103 4-1
                        .  ~_    ,      _              ~ - _ _ _ . _           __ -      --
~
~ - _ _ _. _


The ILRT results at the upper 95% confidence level satisfy the b
The ILRT results at the upper 95% confidence level satisfy the b
V acceptance criterion of Lam < 0.75La = 0.328%/ day, at Pa = 11.5 psig.
acceptance criterion of Lam < 0.75La = 0.328%/ day, at Pa = 11.5 V
B. ISG CALCULATION The ISG calculation provided below was performed according to the format specified in ANSI /ANS 56.8-1981, Appendix G.
psig.
: a. Calibration Data Number of Sensors     Sensitivity, E Repeatability,C Temperature, T                         22         0.01*F (*R)     0.01*F (*R)
B.
Pressure, P                               1       0.001 psia     0.001 psia Vapor Pressure (Dewpoint), Py                         6         0.01*F         0.05'F
ISG CALCULATION The ISG calculation provided below was performed according to the format specified in ANSI /ANS 56.8-1981, Appendix G.
: b. Instrument Measurement Errors
a.
: 1.     Temperatures e T = [(F7 )2 ,              )2jl/2 (No.
Calibration Data Number of Sensors Sensitivity, E Repeatability,C Temperature, T 22 0.01*F (*R) 0.01*F (*R)
                                                                  /    of Sensors)l/2
Pressure, P 1
                                  =  [(0.01)2 + (0,01)2]l/2/(22)1/2
0.001 psia 0.001 psia Vapor Pressure (Dewpoint), Py 6
                                  =
0.01*F 0.05'F b.
Instrument Measurement Errors 1.
Temperatures
)2jl/2 (No. of Sensors)l/2 T = [(F )2,
/
e 7
[(0.01)2 + (0,01)2]l/2/(22)1/2
=
0.003*F (*R)
0.003*F (*R)
: 2.       Pressures p = [(Ep)2 + (g p)2)1/2 /(No. of Sensors)l/2
=
                                  =  [(0.001)2 + (0,001)2]l/2/(1)1/2
2.
                                  =   0.0014 psia
Pressures p = [(E )2 + (g )2)1/2 (No. of Sensors)l/2
: 3.       Vapor Pressure For a dewpoint temperature range of 68.25'F + 0.05'F the average rate of change in dewpoint pressure is 0.0118 psi /*F,   i.e.,
/
e p
p
[(0.001)2 + (0,001)2]l/2/(1)1/2
=
0.0014 psia
=
3.
Vapor Pressure For a dewpoint temperature range of 68.25'F + 0.05'F the average rate of change in dewpoint pressure is 0.0118 psi /*F, i.e.,
vapor pressure @ 68.3*F = 0.34243 psi
vapor pressure @ 68.3*F = 0.34243 psi
                                                        @ 68.2*F = 0.34125 psi change for         0.l*F = 0.00118 psi The sensitivity and repeatability in terms of pressure are:
@ 68.2*F = 0.34125 psi change for 0.l*F = 0.00118 psi The sensitivity and repeatability in terms of pressure are:
E py =  (0.0118 psi /*F)(0.Ol*F) = 0.000118 psi gpy   =  (0.0118 psi /*F)(0.05'F) = 0.00059 psi U
(0.0118 psi /*F)(0.Ol*F) = 0.000118 psi E
DH-103                                                 4-2
=
py gpy (0.0118 psi /*F)(0.05'F) = 0.00059 psi
=
U DH-103 4-2


___.__m       _ _ _            _
___.__m I
I i
i 4
4 Therefore, e
Therefore, py)2 + g )2 1/2 (No. of Sensors)1/2
py = [(Epy)2 + g py  )2 1/2 3        / of Sensors)1/2 (No.
{
{
l                         = [(0.000118)2 + (0.00059)2]1/2/(6)1/2                                                             ,
3
I                                                                                                                            l
/
                          = 0.00025 psi                                                                                       l i
e
1 i                       c. ISC Calculation for 8 hour ILRT                                                                     [
= [(E py py l
j                                                                                                                             t
= [(0.000118)2 + (0.00059)2]1/2/(6)1/2 I
,                        P = 12.27 psig + 14.7 = 26.97 psia l                         T = 77*F + 460 = 537*R ISC = 1 2400       2 p
l
2+2                     y      2+2 e           ,
= 0.00025 psi l
                                            ~
i 1
f                         ISG = 1 2400       2 [0.0014 ) 2 + 2 [0.00025g 2 + 2 / 0.003) 2             1/2 i                                     8     .  \ 26.97 /                       \ 26.97 /   ( 537 / ,
i c.
                                = 1 300 (0.54 x 10-8 + 0.0169 x 10-8 + 0.006 x 10-8)1/2 l                               = 1 300 (0.75 x 10-4)
ISC Calculation for 8 hour ILRT
[
j t
P = 12.27 psig + 14.7 = 26.97 psia l
T = 77*F + 460 = 537*R ISC = 1 2400 2
2+2 2+2 p
y e
f ISG = 1 2400 2 [0.0014 ) 2 + 2 [0.00025g 2 + 2 / 0.003) 2 1/2
~
i 8
\\ 26.97 /
\\ 26.97 /
( 537 /
= 1 300 (0.54 x 10-8 + 0.0169 x 10-8 + 0.006 x 10-8)1/2 l
= 1 300 (0.75 x 10-4)
J
J
                                = 0.0225 wt.%/ day i
= 0.0225 wt.%/ day i
25% La = 0.437 7 0.25 = 0.10925 wt.%/ day 0.0225 < 0.10925 meets the criterion of ANSI /ANS 56.8-1981 and BN-TOP-1.
25% La = 0.437 7 0.25 = 0.10925 wt.%/ day 0.0225 < 0.10925 meets the criterion of ANSI /ANS 56.8-1981 and BN-TOP-1.
i l                                                                                                                             ,
i l
2                                                                                                                             1 i
2 1
t
i t
:                                                                                                                              r
r i
:                                                                                                                              i i
i
!O l
!O l
DR-103                                     4-3 r
DR-103 4-3 I
I
r


f\ V. COMPUTER REPORT AND DATA PRINTOUT N,                                                                  ,
f\\
A. MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as determined by the Mass Point Method described in the " Computer                 ,
V.
Program" section of this report. The " Calculated Leakage Rate" is the value determined from the regression ~ analysis. Thel   i       a-
COMPUTER REPORT AND DATA PRINTOUT N,
            " Containment Air Mass" values are the masses of dry air in the containment (lbm). These values, determined from the Equatica of State, are used in the regression analysis.                   '
A.
                                                                                )
MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as determined by the Mass Point Method described in the " Computer Program" section of this report. The " Calculated Leakage Rate" is the value determined from the regression ~ analysis. Thel i
B. TOTAL TIME REPORT                                                       1 The Total Time Report presents data leakage rate (wt%/ day) as
a-
" Containment Air Mass" values are the masses of dry air in the containment (lbm). These values, determined from the Equatica' of State, are used in the regression analysis.
)
B.
TOTAL TIME REPORT 1
([
([
determined by the Total Time Method. The " Calculated Leakage             '
The Total Time Report presents data leakage rate (wt%/ day) as determined by the Total Time Method. The " Calculated Leakage Rate" is the value determined f rom the regression analysis. The
Rate" is the value determined f rom the regression analysis. The
" Measured Leakage Rates" are the leakage rate values determined using Total Time calculations used in the above regression analysis.
          " Measured Leakage Rates" are the leakage rate values determined using Total Time calculations used in the above regression analysis.
~
                                                                              ~
C.
C. TREND REPORT The Trend Report presents leakage rates (as determined by the Mass Point and Total Time methods described in the " Computer Program" g         section of this report) in percent of the initial contained mass s        of dry air per day (wt%/ day), elapsed time (hours), and number of data points.
TREND REPORT The Trend Report presents leakage rates (as determined by the Mass Point and Total Time methods described in the " Computer Program" g
D.  
section of this report) in percent of the initial contained mass of dry air per day (wt%/ day), elapsed time (hours), and number of s
data points.
D.


==SUMMARY==
==SUMMARY==
DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The five column headings are               '
DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The five column headings are TIME, DATE, TEMP, PRESSURE, and VPRS, and contain data defined as follows:
TIME, DATE, TEMP, PRESSURE, and VPRS, and contain data defined as follows:
1.
: 1. TIME:     Time in'24rhourinotations (hours and minutes).
TIME:
: 2. DATE:     Calendar date (month and day).
Time in'24rhourinotations (hours and minutes).
: 3. TEMP:     Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).
2.
: 4. PRESSURE: Partial pressure of the dry air component of the containment atmosphere in absolute units (psia).
DATE:
: 5. VPRS:     Partial pressure of water vapor of the containment atmosphere in absolute units (psia).                         ,
Calendar date (month and day).
O G
3.
DH-103                               5-1
TEMP:
Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).
4.
PRESSURE: Partial pressure of the dry air component of the containment atmosphere in absolute units (psia).
5.
VPRS:
Partial pressure of water vapor of the containment atmosphere in absolute units (psia).
OG DH-103 5-1


E.  
E.


==SUMMARY==
==SUMMARY==
Line 1,464: Line 2,231:


==SUMMARY==
==SUMMARY==
OF CORRECTED DATA (m,/)        The Summary of Measured Data presents the individual containment atmosphere drybulb temperatures, dewpoint temperatures, and absolute total pressure measured at the time and date as indicated and is used to determine the temperature and pressure described in V.D.3-5 above.
OF CORRECTED DATA
: 1.                                 TEMP 1 through TEMP 22 are the drybulb temperatures. The values in the right-hand column are temperatures (*F), multi-   l plied by 100, as read from the data acquisition system (DAS). l l
)
(m,/
The Summary of Measured Data presents the individual containment atmosphere drybulb temperatures, dewpoint temperatures, and absolute total pressure measured at the time and date as indicated and is used to determine the temperature and pressure described in V.D.3-5 above.
1.
TEMP 1 through TEMP 22 are the drybulb temperatures. The values in the right-hand column are temperatures (*F), multi-l plied by 100, as read from the data acquisition system (DAS).
l l
The values in the left-hand column are the corrected tempera-tures expressed in absolute units (*R).
The values in the left-hand column are the corrected tempera-tures expressed in absolute units (*R).
: 2.                                 PRES 1 is the total pressure, absolute. The right-hand value, in parentheses, is a number in counts as read from the DAS.
2.
PRES 1 is the total pressure, absolute. The right-hand value, in parentheses, is a number in counts as read from the DAS.
This count value is converted to a value in psia by the com-puter via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia.
This count value is converted to a value in psia by the com-puter via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia.
: 3.                                 VPRS 1 through VPRS 6 are the dewpoint temperatures (water vapor pressures). The values in the right-hand column are temperatures (*F), multiplied by 100 as read from the DAS.
3.
The values in the left-hand column are the water vapor pres-sures (psia) from the steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in the center column.
VPRS 1 through VPRS 6 are the dewpoint temperatures (water vapor pressures). The values in the right-hand column are temperatures (*F), multiplied by 100 as read from the DAS.
f~'T s_ /
The values in the left-hand column are the water vapor pres-sures (psia) from the steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in f~'T the center column.
s_ /
The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:
The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:
i
1.
: 1.                                 TEMPERATURE (*F) is the volume weighted average containment
TEMPERATURE (*F) is the volume weighted average containment i
!                                                    atmosphere drybulb temperature (refer to Section III, Tables 1 and 2, for sensor volume fractions) derived from TEMP 1 through TEMP 22.
atmosphere drybulb temperature (refer to Section III, Tables 1 and 2, for sensor volume fractions) derived from TEMP 1 through TEMP 22.
: 2.                                   CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from PRES 1, total pressure, yielding the partial pressure of the dry air.
2.
: 3.                                   VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute (refer to Section III, Tables 1 and 2 for sensor volume fractions),
CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from PRES 1, total pressure, yielding the partial pressure of the dry air.
3.
VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute (refer to Section III, Tables 1 and 2 for sensor volume fractions),
derived from VPRS 1 through VPRS 6.
derived from VPRS 1 through VPRS 6.
: 4.                                   CONTAINMENT AIR MASS (1bm) is the calculated mass of dry air in the containment. The mass of dry air is calculated using the containment free air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air.
4.
  /''T                                               Note: This printout is not included in the report, but is
CONTAINMENT AIR MASS (1bm) is the calculated mass of dry air in the containment. The mass of dry air is calculated using the containment free air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air.
(_-)                                                       retained at the facility.
/''T Note: This printout is not included in the report, but is
DH-103                                                                   5-2
(_-)
retained at the facility.
DH-103 5-2


APPENDIX A
APPENDIX A
{                                 BECHTEL ILRT COMPUTER PROGRAM
{
  'v/
BECHTEL ILRT COMPUTER PROGRAM
A. Program and Report Description
'v/
: 1. The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.
A.
Program and Report Description 1.
The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.
The program is used to compute leakage rate based on input values of time, containment atmosphere total pressure, drybulb tempera-ture, and dewpoint temperature (water vapor pressure). Leakage rate is computer using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".
The program is used to compute leakage rate based on input values of time, containment atmosphere total pressure, drybulb tempera-ture, and dewpoint temperature (water vapor pressure). Leakage rate is computer using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".
The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during' containment leakage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.
The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during' containment leakage testing.
: 2. The first printout, the Total Time Report, is based on the Total Time Method described in BN-TOP-1.     Leakage rate is computed from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time. These individually computed 2
Current leakage rate values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.
gg               leakage rates are statistically averaged using linear regression by t
2.
  '~- )           the method of least squares. The Total Time Method is the computa-tional technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant,"
The first printout, the Total Time Report, is based on the Total Time Method described in BN-TOP-1.
Leakage rate is computed from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time. These individually computed gg leakage rates are statistically averaged using linear regression by 2
'~- )
the method of least squares. The Total Time Method is the computa-t tional technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant,"
are based.
are based.
: 3. The second printout is the Mass Point Report and is based on the Mass-Point Analysis Technique described in ANSI /ANS 56.8-1981,
3.
                  " Containment System Leakage Testing Requirements." The mass of dry air in the containgent is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air. Contained mass is " plotted" versus time and a regression line is fit to the data using the method of lepst squares.     Leakage rate is determined from the statistically derived slope and intercept of the regression line.
The second printout is the Mass Point Report and is based on the Mass-Point Analysis Technique described in ANSI /ANS 56.8-1981,
: 4. The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a fuction of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.
" Containment System Leakage Testing Requirements." The mass of dry air in the containgent is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air.
: 5. The program is written in a high level language and is designed for use on a mini-computer with direct data input from the data acquisition system. Brief descriptions of program use, formulae
Contained mass is " plotted" versus time and a regression line is fit to the data using the method of lepst squares.
(< s-)           used for leakage rate computations, and program logic are provided in the f ollowing paragraphs.
Leakage rate is determined from the statistically derived slope and intercept of the regression line.
DH-103                                 A-1
4.
The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a fuction of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.
5.
The program is written in a high level language and is designed for use on a mini-computer with direct data input from the data acquisition system.
Brief descriptions of program use, formulae
(< s-)
used for leakage rate computations, and program logic are provided in the f ollowing paragraphs.
DH-103 A-1


I       B. Explanation of Program
I B.
( ,j
Explanation of Program
: 1. The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.
(,j 1.
: 2. Information loaded into the program prior to the start of the test:
The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.
: a. Number of containment atmosphere drybulb temperature sensors and dewpoint temperature (water vapor pressure) aansors to be used in leakage rate computations for the specific test
2.
: b. Volume fractions assigned to each of the above sensors
Information loaded into the program prior to the start of the test:
: c. Calibration data for above sensor, if required
Number of containment atmosphere drybulb temperature sensors a.
: d. Calibration data for pressure sensor.
and dewpoint temperature (water vapor pressure) aansors to be used in leakage rate computations for the specific test b.
: 3. Information entered into the program at the start of the test:
Volume fractions assigned to each of the above sensors c.
: a. Test title
Calibration data for above sensor, if required d.
: b. Current test pressure and peak test pressure
Calibration data for pressure sensor.
! f"'             c. Maximum allowable leakage rate at peak test pressure N,-]S
3.
: d. If the test is a verification test:
Information entered into the program at the start of the test:
a.
Test title b.
Current test pressure and peak test pressure f"'
c.
Maximum allowable leakage rate at peak test pressure N,-]S d.
If the test is a verification test:
(1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.
(1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.
: 4. Data received from the data acquistion system during the test, and used to compute leakage rates:
4.
: a. Time and date l
Data received from the data acquistion system during the test, and used to compute leakage rates:
: b. Containment atmosphere drybulb temperatures 1
a.
[                   c. Containment atmosphere pressure I
Time and date l
: d. Containment atmosphere dewpoint temperatures i
b.
i             5. After all data at a given time are received , a Summary of Measured l                   Data report (refer to " Program Logic," Paragraph D, " Data" option command) is printed on the data terminal. The date, containment
Containment atmosphere drybulb temperatures 1
,                  atmosphere weighted average drybulb temperature, partial pressure I
[
of the dry air and water vapor pressure are stored on a data file.
c.
I n%.s l         DH-103                                 A-2                         .
Containment atmosphere pressure I
l l
d.
t
Containment atmosphere dewpoint temperatures i
i 5.
After all data at a given time are received, a Summary of Measured l
Data report (refer to " Program Logic," Paragraph D, " Data" option command) is printed on the data terminal.
The date, containment atmosphere weighted average drybulb temperature, partial pressure of the dry air and water vapor pressure are stored on a data file.
I I
n%.s l
l DH-103 A-2 l
l t


(           6. If drybulb and dewpoint temperature sensors should fail during the i   V               test, the data from the sensor (s) are not used.                     The volume frac-i tions for the remaining sensors are recomputed and reloaded into the program for use in ensuing leakage rate computations.
(
C. Leakage Rate Formulae
6.
: 1. Computation using the Total Time Method:
If drybulb and dewpoint temperature sensors should fail during the i
1
V test, the data from the sensor (s) are not used.
;                    a. Measured leakage rate, from data:
The volume frac-i tions for the remaining sensors are recomputed and reloaded into the program for use in ensuing leakage rate computations.
i P1V = W 1RT1                                                                        (1)
C.
Pi V = WtRTi                                                                        (2) 2400 (W1-W) i Li      =
Leakage Rate Formulae 1.
(3)
Computation using the Total Time Method:
1 a.
Measured leakage rate, from data:
i P V = W RT1 (1) 1 1
P V = W RTi (2) i t
2400 (W1-W) i L
=
i (3)
Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:
Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:
Li = 2400/at i(1-T 1t          P /Tt1P )                                             (4) where:
Li = 2400/ati(1-T P /T P )
W,Wi 1            = Weight of contained mass of dry air at times ti and
(4) 1t t1 where:
,                                          ti respectively, lbm.
W,Wi = Weight of contained mass of dry air at times ti and 1
T,Ti 1    = Containment atmosphere drybulb temperature at times ti and ti respectively, *R.
ti respectively, lbm.
P,Pi 1          = Partial pressure of the dry air component of the con-tainment atmosphere at times ti and ti respectively, psia.
T,Ti = Containment atmosphere drybulb temperature at times 1
V = Containment free air volume       3 (assumed to be constant during the test), ft .
ti and ti respectively,
ti, tt = Time at ist and i th data points respectively, hours.
*R.
P,Pi = Partial pressure of the dry air component of the con-1 tainment atmosphere at times ti and ti respectively, psia.
V = Containment free air volume (assumed to be constant 3
during the test), ft.
th ti, tt = Time at ist and i data points respectively, hours.
Att = Elapsed time from ti to ti, hours.
Att = Elapsed time from ti to ti, hours.
R = Specific gas constant for air = 53.35 f t.lbf/lbm.*R.
R = Specific gas constant for air = 53.35 f t.lbf/lbm.*R.
Li = Measured leakage rate computed during time interval el CO C1, %/ day.
Li = Measured leakage rate computed during time interval el CO C1, %/ day.
I DH-103                                                     A-3     '
I DH-103 A-3
: b. Calculated Icakage rate from regression analysis:                                                                               .
 
O           L = a + batN                                                                                                                       (5) where:
b.
Calculated Icakage rate from regression analysis:
O L = a + batN (5) where:
L = Calculated leakage rate, %/ day, as determined from the regression line.
L = Calculated leakage rate, %/ day, as determined from the regression line.
ILi (Eatg2 ) - Eatf(ELi att) a=
2 IL (Eatg ) - Eatf(EL att) i i
2                                                                                         (6)
a=
N(Eatg ) _ (gggi)2 N(EL             i ati) - ELi (eati )
2 (6)
b=
N(Eatg ) _ (gggi)2 N(EL ati) - EL (eat )
2                                                                                             (7) i                           N(Eatg                           ) - (EAtt)2 N = Number of data points N
i i
I=E i=1
i b=
: c. Calculated leakage rate at the 95% confidence level.
2 (7) i N(Eatg ) - (EAtt)2 N = Number of data points N
L95 = a + batN+S-                                                                                                                 (8) i O         where:
I=E i=1 Calculated leakage rate at the 95% confidence level.
L L95 = Calculated leakage rate at the 95% confidence level, %/ day, at elapsed time AtN*
c.
For AtN < 24 S_    =t          0 025;N-2 [E(L                     t g -I /)2 (N-2)]l/2 x [1 + 1 + N(At - ) /E(at               -It) ] /         (9a)
L95 = a + batN+S-(8)
L                                                                                            N i
O L
where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;
where:
N-2     (N-2)4 j               For AtN2.24 i              S_ = t0 025;N-2 [I(L 1 - Lg)2 /(N-2)]1/2 x [1 +(AtN-                                                   ) /E(Ot i - t)2)l/2           (9b)
i L95 = Calculated leakage rate at the 95% confidence level, %/ day, at elapsed time AtN*
L                                                                                         N i
For AtN < 24 0 025;N-2 [E(L -I )2 (N-2)]l/2 x [1 + 1 + (At - ) /E(at -It) ] /
1.6449(N-2)2 + 3.5283(N-2) + 0.85602 where, t0 025;N-2 =
(9a)
S_
=t
/
t g N
i L
N where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;
N-2 (N-2)4 j
For AtN2.24 1 - L )2 (N-2)]1/2 x [1 +(AtN-
) /E(Ot - t)2)l/2 (9b) i S_ = t0 025;N-2 [I(L
/
g i
L N
i 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 where, t0 025;N-2 =
(N-2)2 + 1.2209(N-2) - 1.5162 Li = Calculated leakage rate computed using equation (5) at total clapsed time Ati, %/ day.
(N-2)2 + 1.2209(N-2) - 1.5162 Li = Calculated leakage rate computed using equation (5) at total clapsed time Ati, %/ day.
{                         Eat t 4
{
v         _At =
_At =
N 4
Eat t v
I DH-103                                                                                   A-4
4 N
: 2.             Computation using the Mass Point Method t
4 I
: a. Contained mass of dry air from data:
DH-103 A-4
 
2.
Computation using the Mass Point Method t
a.
Contained mass of dry air from data:
Wi = 144 P d j
Wi = 144 P d j
RTi                                                                                                     (10) where:
RTi (10) where:
j                                       All symbols as previously defined.
j All symbols as previously defined.
: b. Calculated leakage rate from regression analysis:
b.
Calculated leakage rate from regression analysis:
b
b
__L = -2400 -
__L = -2400 -
a                                                                                                      (11) where:
(11) a where:
                                      ~
~
L     = Calculated leakage rate, %/ day, as determined from the regression line.
L
EWi -bEAti a     =
= Calculated leakage rate, %/ day, as determined from the regression line.
N (12)
EW -bEAti i
E[(W i  - IWi /N) (Ati - E )]
a
E(At i - b)2 Ati = Total elapsed time at time of ith                                                                   data point, hours N = Number of data points Wi = Contained mass of dry air at ith data point, Ibm, as computed from equation (10),
=
(12)
N E[(Wi - IW /N) (Ati - E )]
i E(At - b)2 i
Ati = Total elapsed time at time of ith data point, hours N = Number of data points Wi = Contained mass of dry air at ith data point, Ibm, as computed from equation (10),
i N
i N
E=E i=1 E = IAt i/N
E=E i=1 E = IAt /N i
: c. Calculated leakage rate at the 95% confidence level.
c.
1 i                                               -2400 f                                     L95 =                   (b + Sb )                                                                                           (14)
Calculated leakage rate at the 95% confidence level.
{                                                           a s
1 i
where:
-2400 f
L95 =
(b + S )
(14) b
{
a where:
s
__95 = Calculated leakage rate at the 95% confidence level, %/ day.
L
L
__95    = Calculated leakage rate at the 95% confidence level, %/ day.
)
)
DH-103 A-5 i   _ . - - - , - . - _ . - . - .                                      . - - - . , , _ . - - . . . - . . - - - - - . . _ . _ . . -
DH-103 A-5 i


i                                                                                                   l
i
  )
)
l 4
4 3
l 3
i 4
i 4
h
h
                                                - E(W1 - W1)2     -
- E(W1 - W )2 1/2 1
1/2 i
.sb"t0 025;N-2 (15) i
                            .sb"t0 025;N-2                                               (15)
_(N-2)E(ati - It)2 J
_(N-2)E(ati - It)2 _
1.6449(N-2)2 +-3.5283 (N-2)2 + 0.85602 j
J j
where, t0 025;N-2 =
1.6449(N-2)2 +-3.5283 (N-2)2 + 0.85602 where, t0 025;N-2 =
(N-2)2 + 1.2209 (N-2) - 1.5162 i
i (N-2)2 + 1.2209 (N-2) - 1.5162
-g = Contained mass of dry air, lbm, computed at the i (16) f W
!                            W = Contained mass of dry air, lbm, computed at the i th
th j
                              -g j                                                                                          (16) f data point from the regression equation                       i
data point from the regression equation i
                                  = a + bati                                                     ;
= a + bati i
i
All other symbols are previously defined.
;.                          All other symbols are previously defined.                         ;
1 i
1 i
e c
e c
't l
't l
i DH-103                                       A-6
i DH-103 A-6


X
X
    )   D. Procran Loeic 1.
)
A flow chart of Bechtel ILRT computer program usage is pre-sented in Figure 1, following. The various user options and a brief description of their associated function are presented below:
D.
OPTION ComiAND                               FUNCTION DATA Enables operator to entet raw data. When the sys-tem requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data. After completing the data entry, a summary is printed out.     The user then verifies that the data were entered correctly.
Procran Loeic 1.
A flow chart of Bechtel ILRT computer program usage is pre-sented in Figure 1, following.
The various user options and a brief description of their associated function are presented below:
OPTION ComiAND FUNCTION DATA Enables operator to entet raw data. When the sys-tem requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data. After completing the data entry, a summary is printed out.
The user then verifies that the data were entered correctly.
If errors are detected, the user will then be given the opportunity to correct the errors.
If errors are detected, the user will then be given the opportunity to correct the errors.
After the user verifies that the data were entered correctly, a Corrected Data Su= mary Report of time, date, average temperature, partial pressure of dry air, and water vapor pressure is printed.
After the user verifies that the data were entered correctly, a Corrected Data Su= mary Report of time, date, average temperature, partial pressure of dry air, and water vapor pressure is printed.
TREND Terminal will print out a Trend Report.
TREND Terminal will print out a Trend Report.
  '~'\           TOTAL f                                    Terminal will print out a Total Time Report.
'~'\\
MASS Terminal will print out a Mass Point Report.
TOTAL Terminal will print out a Total Time Report.
TERM
f MASS Terminal will print out a Mass Point Report.
.                                  Enables operator to sign off temporarily or pe rmanently.
TERM Enables operator to sign off temporarily or pe rmanently.
SAVE
SAVE
                                ~ Enables operator to store the Data Sunnary on a file.
~ Enables operator to store the Data Sunnary on a file.
PREV Enables stored, file.
PREV Enables operator to call up an old, previously stored, file.
operator to call up an old, previously CORR Enables operator to correct data stored on a file.
CORR Enables operator to correct data stored on a file.
LIST When used with a given file name, the printer will print out a list of the Summary Data stored on the file.
LIST When used with a given file name, the printer will print out a list of the Summary Data stored on the file.
t READ Enable the computer to receive the next set of raw data from the data acquisition system directly.
t READ Enable the computer to receive the next set of raw data from the data acquisition system directly.
1 A-7
1 A-7


                                                            ~
~
O
O
( SIGtJ DN) t I ENTER BASIC /
( SIGtJ DN)
                                                        \ INFORMATION/
I ENTER BASIC /
                                                                              -- N O         / ENTER PREVIOUS \
t
                                                                                              \ VALUES FROM FILES /
-- N O
'                                                                                                            YES r
/ ENTER PREVIOUS \\
DATA         ,
\\ INFORMATION/
ENTERS  
\\ VALUES FROM FILES /
YES r
DATA ENTERS  


==SUMMARY==
==SUMMARY==
 
(OPTIONSp DATA STORE 0 ON (r PREV EO FILE s
(OPTIONSp                 -
(ENTER D ATA)
DATA STORE 0 ON (r PREV                                     EO FILE s
CORRECTS o-CORR
(ENTER D ATA)                                                         CORRECTS o- CORR                 -


==SUMMARY==
==SUMMARY==
D ATA (E RRO R?)
D ATA
[ YES                                                                                                            o STO RES  
[ YES (E RRO R?)
o STO RES  


==SUMMARY==
==SUMMARY==
 
\\
      \      ENTER     /           ,  N0                   o- S AV E - -          -
ENTER
/
N0 o-S AV E - -
DATA DN A CORRECTIONS /
DATA DN A CORRECTIONS /
SELECTED FILE           ",    ,
SELECTED FILE


==SUMMARY==
==SUMMARY==
OF                   o- TREND MEASURED DATA                                                   = (TREND REPORT l   ~-
OF o-TREND MEASURED DATA
O+-                                                         o- TOTAL s-(      YES u    TOTAL TIME REPORT N0 o MASS                                 MASS POINT REPORT
= (TREND REPORT l
                          ,    CORRECTED                                                                                 '
~-
O+-
o-TOTAL TOTAL TIME u
(
YES s-REPORT N0 o MASS MASS POINT REPORT CORRECTED


==SUMMARY==
==SUMMARY==
DATA PRINTOUT o- LIST                     -
DATA PRINTOUT o-LIST PRINT OUT OF
PRINT OUT OF         =
=


==SUMMARY==
==SUMMARY==
 
DATA o-TERM
DATA o- TERM
' ( SIGN OFF )
                                                                                                  ' ( SIGN OFF )
N J
l N                                                                             J BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CliART FIGURE 1 C\
l BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CliART FIGURE 1 C\\
U i
U i
A-8
A-8


      )
)
APPENDIX B ILRT STABILIZATION DATA TEST.STA GRAND GULF STABILIZATION ALMAX = 0.437                                     VOL = 1670000.00 VRATET = 0.000       VRATEM = 0.000                   VRATEP = 0.000 TIME DATE             TEMP       PRESSURE                     VPRS 1529 103     537.56366       26.425938                 0.34851480 1545 103     537.01373       26.402582                 0.34475750 1603 103     536.61597       26.383574                 0.34468400 1615 103     536.46893       26.377193                 0.34303159 1
APPENDIX B ILRT STABILIZATION DATA TEST.STA GRAND GULF STABILIZATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 1529 103 537.56366 26.425938 0.34851480 1545 103 537.01373 26.402582 0.34475750 1603 103 536.61597 26.383574 0.34468400 1615 103 536.46893 26.377193 0.34303159 1
1630 103     536.30707       26.368984                 0.34320599 1645 103     536.20459       26.363253                 0.34291309 1700 103     536.09918       26.357325                 0.34281561 1715 103     536.03223       26.353136                 0.34298769 1730 103     535.95685       26.348457                 0.34264520
1630 103 536.30707 26.368984 0.34320599 1645 103 536.20459 26.363253 0.34291309 1700 103 536.09918 26.357325 0.34281561 1715 103 536.03223 26.353136 0.34298769 1730 103 535.95685 26.348457 0.34264520
[~}
[~}
(,j 1745 1800 103 103 535.88330       26.344131                 0.34295520 535.82629       26.340103                 0.34296569 1815 103     535.76117       26.337587                 0.34246781
1745 103 535.88330 26.344131 0.34295520
          -    1830 103     535.70874       26.334372                 0.34267199 1845 103     535.66150       26.332005                 0.34202629 1900 103     535.61688       26.329777                 0.34224480 1915 103     535.56860       26.327791                 .O.34222180 1930 103     535.54742       26.324705                 0.34229621                     -
(,j 1800 103 535.82629 26.340103 0.34296569 1815 103 535.76117 26.337587 0.34246781 1830 103 535.70874 26.334372 0.34267199 1845 103 535.66150 26.332005 0.34202629 1900 103 535.61688 26.329777 0.34224480 1915 103 535.56860 26.327791
1945 103     535.43054       26.323195                 0.34179929 2000 103     535.44885       26.320612                 0.34237379 2015 103     535.40631       26.318562                 0.34241500 O
.O.34222180 1930 103 535.54742 26.324705 0.34229621 1945 103 535.43054 26.323195 0.34179929 2000 103 535.44885 26.320612 0.34237379 2015 103 535.40631 26.318562 0.34241500 O
I
I B-1
'                              B-1


  /~'N b
/~'N b
APPENDIX C ILRT  
APPENDIX C ILRT  


==SUMMARY==
==SUMMARY==
DATA TEST.DAT GRAND GULF ILRT ALMAX = 0.437                   VOL = 1670000.00 VRATET = 0.000     VRATEM = 0.000   VRATEP = 0.000 TIME DATE         TEMP   PRESSURE         VPRS 2030 103     535.38918 2045 103 26.316441   0.34252653 535.37219   26.315517   0.34244490 2100 103     535.34686 2115    103 26.313202   0.34275225 535.32245   26.311718   0.34222719 2130 103     535.28601 2145 103 26.310568   0.34237543 535.26984     26.309896   0.34204134 2200 103     535.23566 2215 103 26.307184   0.34274417 535.21973     26.304913   0.34300748 2230 103     535.19214     26.304295 2245 103                                0.34262270 535.16925     26.302761   0.34315175 2300 103     535.14685 2315 103 26.301828   0.34307989 535.11749     26.300154   0.34274691 7_s       2 30   103 535.10406 2345 103 26.299398   0.34249672
DATA TEST.DAT GRAND GULF ILRT ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 2030 103 535.38918 26.316441 0.34252653 2045 103 535.37219 26.315517 0.34244490 2100 103 535.34686 26.313202 0.34275225 2115 103 535.32245 26.311718 0.34222719 2130 103 535.28601 26.310568 0.34237543 2145 103 535.26984 26.309896 0.34204134 2200 103 535.23566 26.307184 0.34274417 2215 103 535.21973 26.304913 0.34300748 2230 103 535.19214 26.304295 0.34262270 2245 103 535.16925 26.302761 0.34315175 2300 103 535.14685 26.301828 0.34307989 2315 103 535.11749 26.300154 0.34274691 7_s 2 30 103 535.10406 26.299398 0.34249672
(\ -)                   535.09546     26.299583   0.34231171 0 104   535.06689 15  104 26.296225   0.34366253 535.05304     26.297117   0.34277007 30 104   535.03369 45  104 26.295589   0.34329468
(\\ -)
        '                535.01672     26.293724   0.34415492 100 104   534.99390     26.293665 115  104 0.34321022
2345 103 535.09546 26.299583 0.34231171 0
          '              534.98413     26.292389   0.34348071 130 104   534.96783     26.291492 145  104 0.34337339 534.96344     26.290226   0.34363529 200 104   534.94757     26.289938   0.34392363 215 104   534.93909 230  104 26.288767   0.34409159 534.92371   26.287523   0.34432954 245 104   534.91162 300  104 26.287708   0.34414417 534.89838   26.286375   0.34447473 315   104   534.89233 330  104 26.285236   0.34460890 534.87921   26.285433   0.34441105 345 104   534.86578   26.284437 l             400   104 0.34440356 534.85150   26.283850   0.34499204 415   104   534.84827   26.283432   0.34440419 400   104   534.82874   26.283085   0.34475130 l
104 535.06689 26.296225 0.34366253 15 104 535.05304 26.297117 0.34277007 30 104 535.03369 26.295589 0.34329468 45 104 535.01672 26.293724 0.34415492 100 104 534.99390 26.293665 0.34321022 115 104 534.98413 26.292389 0.34348071 130 104 534.96783 26.291492 0.34337339 145 104 534.96344 26.290226 0.34363529 200 104 534.94757 26.289938 0.34392363 215 104 534.93909 26.288767 0.34409159 230 104 534.92371 26.287523 0.34432954 245 104 534.91162 26.287708 0.34414417 300 104 534.89838 26.286375 0.34447473 315 104 534.89233 26.285236 0.34460890 330 104 534.87921 26.285433 0.34441105 345 104 534.86578 26.284437 0.34440356 l
i-(
400 104 534.85150 26.283850 0.34499204 415 104 534.84827 26.283432 0.34440419 400 104 534.82874 26.283085 0.34475130 li-(
(_
(_
C-1 i
C-1 i


                                                      ~ APPENDIX D ILRT CALCULATIONS O
~ APPENDIX D ILRT CALCULATIONS O\\--)
  \--)                                                                 GRAND GULF ILRT LEAKAGE RATE (WEIGHT PERCEtJT/ DAY)
GRAND GULF ILRT LEAKAGE RATE (WEIGHT PERCEtJT/ DAY)
MAS 3-POINT ANAL (SIS TIME AND DATE.AT START OF TEST: 2030 01(3 ELAPSED TIME:           8.00 HOURS TIME             TEMP     PRESSURE                       CTMT. AIR MASS LOSS                 TOT. AVG. MASS (R)       (PSIA)                       MASS (LEM)               (lLBM)     LOSS (LBM/HR)
MAS 3-POINT ANAL (SIS TIME AND DATE.AT START OF TEST:
                -------- _-_ =-_
2030 01(3 ELAPSED TIME:
2030       535.388       26.3164                           221566.
8.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)
2045         535.372       26.3155                           221565.                     1.1 2100                                                                                                                      4.6 535.347       26.3132                           221556.                     9.0                           20.3 2115         535.322       26.3117                           221553.                     2.4                           16.8 2100       535.236       26.3106                           221559.                   -5.4 2145                                                                                                                      7.2 535.270       26.0099                           221560.                   -1.0                             4.9 2200       535.236       26.3072                           221551.                     8.7 2215                                                                                                                      9.9 535.220       26.3049                           221539.                   12.5                           15.6
(PSIA)
              '} 2230         535.192       26.3043                           221545.                   -6.2                           10.6
MASS (LEM)
              ' 2245         535.169       26.3028                           221541.                     3.4                           10.9 2300         535.147       26.3018                           221543.                   -1.4 2315                                                                                                                      9.3 535.117       26.0002                           221541.                     1.9                             9.1 2330         535.104       26.2994                           221540.                     0.8 2345                                                                                                                      8.6 535.095       26.2996                           221545.                   -5.1                             6.4 0     535.067       26.2962                           221529.                   16.5                 .
(lLBM)
10.6
LOSS (LBM/HR)
(   ,-            15     535.053       26.2971                           221542.                 -13.3                               6.4 30       535.034       26.2956                           221537.                     4.9 45                                                                                                                    7.2 535.017       26.2937                           221528.                     8.7                             8.8 100       534.994       26.2937                           221537.                   -9.0 115                                                                                                                    6.4 534.984       26.2924                           221531.                     6.7                             7.4 100       534.968       26.2915                           221530.                     0.8 145                                                                                                                    7.2 534.963       26.2902                           221521.                     8.9 200                                                                                                                      8.6 534.948       26.2899                           221525.                   -4.2 215       534.939                                                                                                       7.4 26.2888                           221519.                     6.4                             8.2 230       534.924       26.2875                           221515.                     4.1 245                                                                                                                      8.5 534.912       26.2877                           221521.                   -6.6                             7.2 300       534.898       26.2864                           221515.                     5.8 315                                                                                                                      7.8 534.892       26.2852                           221508.                     7.1                             8.5 330       534.879       26.2854                           221515.                   -7.1 345                                                                                                                      7.2 534.866       26.2844                           221513.                     2.8                             7.4 400       534.852       26.283G                           221514.                   -1.0                             7.0 415       534.848     '26.2834                           221511.                     2.2                             7. 0 400       534.829       26.2831                           221517.                   -5.2                             6.2 j                           FREE AIR VOLUt1E USED (NILLIONS OF CU. FT.)                                       =
-------- _-_ =-_
1.670 REGRESSION LINE t
2030 535.388 26.3164 221566.
'                                INTERCEPT (LEM)                                                               =          221561.
2045 535.372 26.3155 221565.
SLOPE (LBM/HR)                                                               =                          -6.7 O
1.1 4.6 2100 535.347 26.3132 221556.
s '~j MAXIMUtl ALLONABLE LEAKAGE RATE 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE
9.0 20.3 2115 535.322 26.3117 221553.
                                                                                                                =
2.4 16.8 2100 535.236 26.3106 221559.
                                                                                                                =
-5.4 7.2 2145 535.270 26.0099 221560.
0.4~7 0.028 THE UFFER 95% CONFIDENCE LIMIT                                                   =                            0.079 THE CALCULATED LEAL: AGE RATE                                                     =                            0.072 D-1 1
-1.0 4.9 2200 535.236 26.3072 221551.
8.7 9.9 2215 535.220 26.3049 221539.
12.5 15.6
'}
2230 535.192 26.3043 221545.
-6.2 10.6
' 2245 535.169 26.3028 221541.
3.4 10.9 2300 535.147 26.3018 221543.
-1.4 9.3 2315 535.117 26.0002 221541.
1.9 9.1 2330 535.104 26.2994 221540.
0.8 8.6 2345 535.095 26.2996 221545.
-5.1 6.4 0
535.067 26.2962 221529.
16.5 10.6
(
15 535.053 26.2971 221542.
-13.3 6.4 30 535.034 26.2956 221537.
4.9 7.2 45 535.017 26.2937 221528.
8.7 8.8 100 534.994 26.2937 221537.
-9.0 6.4 115 534.984 26.2924 221531.
6.7 7.4 100 534.968 26.2915 221530.
0.8 7.2 145 534.963 26.2902 221521.
8.9 8.6 200 534.948 26.2899 221525.
-4.2 7.4 215 534.939 26.2888 221519.
6.4 8.2 230 534.924 26.2875 221515.
4.1 8.5 245 534.912 26.2877 221521.
-6.6 7.2 300 534.898 26.2864 221515.
5.8 7.8 315 534.892 26.2852 221508.
7.1 8.5 330 534.879 26.2854 221515.
-7.1 7.2 345 534.866 26.2844 221513.
2.8 7.4 400 534.852 26.283G 221514.
-1.0 7.0 415 534.848
'26.2834 221511.
2.2
: 7. 0 400 534.829 26.2831 221517.
-5.2 6.2 j
FREE AIR VOLUt1E USED (NILLIONS OF CU. FT.)
1.670
=
REGRESSION LINE t
INTERCEPT (LEM) 221561.
=
SLOPE (LBM/HR)
-6.7
=
O MAXIMUtl ALLONABLE LEAKAGE RATE 0.4~7
=
'~j 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE s
0.028
=
THE UFFER 95% CONFIDENCE LIMIT 0.079
=
THE CALCULATED LEAL: AGE RATE 0.072
=
D-1 1
I
I


_ _.          _.          -_ . - _                                              _        _      _=-   . _
_=-
q i-       i, l
q i-i, l
  ! r"'
r"'
  ! (                                               GRAND GULF ILRT LEAMAGE RATE (WEIGHT PERCENT / DAY'i 4
(
TOTAL-TIME ANALYSIS I                               TIME AND DATE AT START OF TEST: 2000 0103 ELAPSED TIME:                 8.00 HOURS:
GRAND GULF ILRT LEAMAGE RATE (WEIGHT PERCENT / DAY'i TOTAL-TIME ANALYSIS 4
                              . TIME               TEMP.       PRESSURE                       MEASURED (R)           (PSIA)               LEAKAGE RATE
I TIME AND DATE AT START OF TEST:
                                --------= _               _ - - - - - -    - - - _ - - - - - -    - = -
2000 0103 ELAPSED TIME:
2000             535.388           26.3164 2045             535.372           26.3155                       0.050
8.00 HOURS:
              -                2100             535.347           26.3132                       0.220 2115           535.322           26.3117                       0.181 2130             535.286           26.3106                     0.078 2145           535.270           26.0099                       0.053 2200             535.236           26.3072                       0.107 2215           535.220           26.3049                       0.169 2230             535.102           26.3043                       0.115 2245           535.169           26.3028                       0.118                 '
. TIME TEMP.
2300             535.147           26.3018                       0.100
PRESSURE MEASURED (R)
            )                   2015           535.117           26.3002                       0.099 2330           535.104           26.2994                       0.094 2345             535.095           26.2996                       0.069 0         535.067           26.2962                       0.11,5 gg                             15         535.033             26.2971                       0.06'9
(PSIA)
(   J-                         30           535.034           26.2956                       0.078 45         535.017             26.2937                       0.096 100           534.994           26.2937                       0.069
LEAKAGE RATE
)                                 115         534.984             26.2924                       0.081 1
--------= _
130         534.968             26.2915                       0.078 145         534.963             26.2902                       0.093 200         534.948             26.2S99                       0.080 215         534.939             26.2888                       0.089 230         534.924             26.2875                       0.093 245         534.912             26.2877                       0.078 300         534.898             26.2864                       0.084 315         534.892             26.2852                       0.092 330         534.879             26.2854                       0.078
- = -
                                  ~345         534.866             26.2844                       0.080 3
2000 535.388 26.3164 2045 535.372 26.3155 0.050 2100 535.347 26.3132 0.220 2115 535.322 26.3117 0.181 2130 535.286 26.3106 0.078 2145 535.270 26.0099 0.053 2200 535.236 26.3072 0.107 2215 535.220 26.3049 0.169 2230 535.102 26.3043 0.115 2245 535.169 26.3028 0.118 2300 535.147 26.3018 0.100
400         534.852             26.2838                       0.076 415         534.848             26.2834                       0.076 430         534.829             26.2831                       0.Oe7 MEAN OF MEASURED LEAKAGE RATES                                                       =
)
0.095 1
2015 535.117 26.3002 0.099 2330 535.104 26.2994 0.094 2345 535.095 26.2996 0.069 0
MAXIMUM ALLOWADLE LEAKAGE RATE                                                       =
535.067 26.2962 0.11,5 gg 15 535.033 26.2971 0.06'9
0.437 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE                                               =
(
0.328 THE UPPER 95% CONFIDENCE LIMIT                                                       =
J-30 535.034 26.2956 0.078 45 535.017 26.2937 0.096 100 534.994 26.2937 0.069
0.139 THE CALCULATED LEAKAGE RATE                                                         =
)
0.068 a
115 534.984 26.2924 0.081 1
        )
130 534.968 26.2915 0.078 145 534.963 26.2902 0.093 200 534.948 26.2S99 0.080 215 534.939 26.2888 0.089 230 534.924 26.2875 0.093 245 534.912 26.2877 0.078 300 534.898 26.2864 0.084 315 534.892 26.2852 0.092 330 534.879 26.2854 0.078
D-2
~345 534.866 26.2844 0.080 3
400 534.852 26.2838 0.076 415 534.848 26.2834 0.076 430 534.829 26.2831 0.Oe7 MEAN OF MEASURED LEAKAGE RATES 1
0.095
=
MAXIMUM ALLOWADLE LEAKAGE RATE 0.437
=
75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE 0.328
=
THE UPPER 95% CONFIDENCE LIMIT 0.139
=
THE CALCULATED LEAKAGE RATE 0.068
=
)
a D-2


        /\\
/\\\\
          'v)
' 'v)
GRAllD E-ULF ILRT TREliD REPORT LEM AGE R,.i TES t WEIGHT PERCEllT/ DAY)
GRAllD E-ULF ILRT TREliD REPORT LEM AGE R,.i TES t WEIGHT PERCEllT/ DAY)
TIME At1D DATE AT START OF TEST: 2030 0103 ELAPEED TIME:                 S.00 HOURS NO. DATA                       ELAPSED FOINTS                          TIME          TOTAL-TIME Menti          ANALYEIS' fMSS-POItiT ANALYSIS CALCULATED                 CALCULATED 95% UCL 10                       2.25               O.121     O.119                       O.119     o,g33 11                         2.50             O.119     O.112                       O.110     0.146 12                       2.75               O.117     O.107 13                                                                                  O.104     O.134 3.00               0.115     0.101 14                        3.25                                                      0.098     0.124 O.112     O.091                       0.085 15                       3.50               0.I12                                           O.111 0.094                       O.093     O.116 16                         3.75               O.109     O.086                       O.083     O.105 17                         4.00               O.107     0.082                       O.079     0.099 13                         4.25               O.107 19 O.082                       0.031     O 099 4.50               O.105     O.077 20                            4.75                                                      0.075     O.092 O.100     O.075
TIME At1D DATE AT START OF TEST:
* O.074 21                           5.00               O.102                                           O.089 O.073                       O.073     0,ve7 (3                           22                           5.25               O.102     O.074 (j                           23                           5.50               O.101     O.073 0.075
2030 0103 ELAPEED TIME:
                                                                                                                              .O.075 O 088 24                           5.75               O.100                                           O.086 0.073                     O.076     O.087 25                           6.00               O.100     O.074 26                                                                                    O.078     0 OSS 6.25               O.099     O.073 27                            6.50 O.077     O.086 0.099     0.073                     0.077 28                             6.75               0.098                                           0.086 0.074                     0.079     0.087 29                           7.00               0.097     0.073 30                            7.25 0.078     0.085 0.097     0.072                     0.077 31                             7.50               0.096                                           0.084 0.071                     0.076     0.083 32                             7.75               O.095     O.070 30                                                                                      0.075     O.081 8.00               O.095     O.068                     0.072     O 079 s
S.00 HOURS NO. DATA ELAPSED TOTAL-TIME ANALYEIS' fMSS-POItiT ANALYSIS FOINTS TIME Menti CALCULATED CALCULATED 95% UCL 10 2.25 O.121 O.119 O.119 o,g33 11 2.50 O.119 O.112 O.110 0.146 12 2.75 O.117 O.107 O.104 O.134 13 3.00 0.115 0.101 0.098 0.124 14 3.25 O.112 O.091 0.085 O.111 15 3.50 0.I12 0.094 O.093 O.116 16 3.75 O.109 O.086 O.083 O.105 17 4.00 O.107 0.082 O.079 0.099 13 4.25 O.107 O.082 0.031 O 099 19 4.50 O.105 O.077 0.075 O.092 20 4.75 O.100 O.075 O.074 O.089 21 5.00 O.102 O.073 O.073 0,ve7 (3
                  /
22 5.25 O.102 O.074 0.075 O 088 (j
23 5.50 O.101 O.073
.O.075 O.086 24 5.75 O.100 0.073 O.076 O.087 25 6.00 O.100 O.074 O.078 0 OSS 26 6.25 O.099 O.073 O.077 O.086 27 6.50 0.099 0.073 0.077 0.086 28 6.75 0.098 0.074 0.079 0.087 29 7.00 0.097 0.073 0.078 0.085 30 7.25 0.097 0.072 0.077 0.084 31 7.50 0.096 0.071 0.076 0.083 32 7.75 O.095 O.070 0.075 O.081 30 8.00 O.095 O.068 0.072 O 079 s/
i a
i a
D-3
D-3
    -en,,-m-i--             ---,m.   . . . . , . , . . , , . , ,
-en,,-m-i--
e   _w - . , - ,              ,    ,,,,,.,e     -
---,m.
e ,-g-     .,---%-.--
e
_w
,,,,,.,e
,-.m 7
e
,-g-y


    .                                                                                                    1 A_PPENDIX E ILRT PLOTS 1
A_PPENDIX E ILRT PLOTS 1
1 ILRT                                    ,
ILRT 1
1 T EHF EF.si1 UF.E                             I 502.00                     5~C.00     534.00   535.00             536.00                     i
T EHF EF.si1 UF.E 502.00 5~C.00 534.00 535.00 536.00 537.0 535.00 5 9.
                    +---------+---------,-----_---+----_----.-------__0,__-______,________.)
)
537.0 535.00  5 9. )
i
                                                                          +
+---------+---------,-----_---+----_----.-------__0,__-______,________.)
                                                                          +
+
2100 -                                                         +
+
                                                                        +
2100 -
                    -                                                                                  1
+
                                                                        +                             I l
+
                                                                        +
1
2200 -                                                       +
+
I l
+
2200 -
l
l
                                                                      +
+
                                                                      +
+
                                                                      +
+
2000 -                                                     +
+
                                                                    +                                 ;
2000 -
                                                                    +
+
                                                                    +
+
0-                                                 +
+
                                                                    +
+
                                                                  +
0-
                                                                  +
+
100 -                                                   +
+
                                                                  +
+
                                                                  +
+
                                                                  +
100 -
200 -                                                 +
+
                                                                +
+
                                                                +
+
                                                                +
+
COO -                                                 +
200 -
i                                                             +
+
                                                                +
+
                                                                +
+
400 -                                                 +
+
                                                              +
COO -
                                                              +
+
                                                              +
+
500 -                                               +
i
+
+
400 -
+
+
+
+
500 -
+
I l
I l
l E-1
l E-1
            , , , ,    ,,,_---,--w     ---r--
,,,_---,--w
---r--


VERIFICATION O
VERIFICATION O
TEM.ERATURE e n.. .m. . O'.y
TEM.ERATURE e n..m.. O'.y
            .e                       e s . L,,)         en    -.
.e.
J .a               aw* .UV      c.~ c . ,)U
e s. L,,)
                                                                        .J.s a
J.a en c.~ c.,)U aag.UU
.J.s a
: c. _
: c. _
aag.UU c.
aw*.UV c.
aas . U U c~e a
. U U aas c~e e
n, , ,., ,., ,1
n,,,.,,.,,1
                            +-_-__-_-- _-______ + ---__ --+-________+ ________ ,.______s3.Us)                                                                             ___ _________+
+-_-__-_-- _-______ + ---__ --+-________+ ________,.______s3.Us) a y,
y,
___ _________+
                                                                                  +
+
                                                                                  +                                                                                                                       .
+
                                                                                  +
+
600 -                                                             +
600 -
                                                                                  +
+
                                                                                  +
+
                                                                                  +
+
700 -                                                         +
+
                                                                            +
700 -
                                                                            +
+
                                                                            +
+
S00 -                                                         +
+
                            ~
+
                                                                            +
S00 -
                                                                            +
+
                                                                            +
~
900 -                                                         +
+
                                                                            +
+
                                                                            +
+
                                                                          +
900 -
1000 -                                                       +
+
                                                                          +
+
STABILI*.ATION TEMPERATURE 533.00                   533.00             534.00       535.00
+
                            + _ - - _ - - _ _ _ + - --
+
536.00                537.00                        538.00
1000 -
                                                              --_+_-- ._____+_________,_____                                                                                            539.00
+
_                                                                                                                                          +
+
STABILI*.ATION TEMPERATURE 533.00 533.00 534.00 535.00 536.00 537.00 538.00 539.00
+ _ - - _ - - _ _ _ + - --
--_+_--
. _ _ _ _ _ + _ _ _ _ _ _ _ _ _, _ _ _ _ _
+
IGo3 -
IGo3 -
* _                                                                                                                  +
+
                            -                                                                                                          +
+
                                                                                                                                  +
+
                                                                                                                                +
+
L700 -
L700 -
                                                                                                                              +
+
                                                                                                                            +
+
                                                                                                                            +
+
                                                                                                                          +
+
[S00 -                           *
[S00 -
                                                                                                                        +
+
                                                                                                                        +
+
                                                                                                                      +
+
                                                                                                                      +
+
1900 -
1900 -
                                                                                                                    +
+
e
e g
                              ~
~
                                                                                                                  +
+
g
+
                                                                                                                +
2000 -
i 2000 -                                                                                             +
i
E-2
+
_______m            ,.      _ -                  __          ,        . . - , . _ _ . , _ . _ - - . . --                      . - . , . .          , , . _ , _                                      ,
E-2 m


J
J ILRT PRESSURE 2c.150 26.200 26.250 26.200 26.250
_                        ILRT PRESSURE 2c.150                         26.200       26.250         26.200                         26.250   's.4                         -
's.4
_ b . z e . .,               ,      --
_ b. z e..,
                                                                                                                                                                                                                                . c . a t..
. c. a t..
                                                                                          +_________+_________+_________+_________,________00
+_________+_________+_________+_________,________00
                                                                                                                                                          +
+
                                                                                                                                                          +
+
2100 -
2100 -
                                                                                                                                                        +
+
1                                                                                       _
1
                                                                                                                                                        +
+
_m     e. m - .-
_m m -.-
* p
* p e.
                                                                                                                                                      +
+
                                                                                                                                                    +
+
m V() -
m V() -
+
_w
_w
                                                                                                                                                  +
+
                                                                                                                                                  +
V
V
                                                                                        ~
~
I
+
                                                                                                                                                  +
I 0-
0-                                                             +
+
                                                                                                                                                +
+
                                                                                                                                                +
+
                                                                                                                                                +
+
100 -                                                                     +
100 -
                                                                                                                                              +
+
                                                                                      ~
+
                                                                                                                                              +
~
200 -                                                                     +
+
i                                                                                     -
200 -
                                                                                                                                              +
+
                                                                                      ~
i
                                                                                                                                              +
+
                                                                                      ~
~
                                                                                                                                              +
+
j                                                                 200 -                                                               +
~
                                                                                                                                                                    ~
+
                                                                                                                                        +
j 200 -
                                                                                                                                      +
~
t 400 -                                                               +
+
                                                                                                                                      +
+
                                                                                                                                      +
+
                                                                                                                                +
t 400 -
500 -                                                         +
+
+
+
+
500 -
+
l l
l l
l l
l l
Line 1,926: Line 2,879:
1 j
1 j
1 I
1 I
i E-3                                                                                           '
i E-3 i
'                                                                                                                                                                                                                                            1 i                                                                                                                                                                                                                                            l I
l I


VERIFICATION                               .
VERIFICATION PRE 55URE 26.150 26.200 26.250 26.200 26.400 26.450 sm
PRE 55URE 26.150         26.200           26.250         26.200                                     26.400
+_-_______+_________+_________,____26.250
            +_-_______+_________+_________,____26.250 26.450        sm
+
                                                      +
+
                                                      +
+
                                                      +
600 -
600 -      -
+
                                                    +
+
                                                    +
+
                                                    +
+
                                                  +
700 -
700 -                                       +
+
                                                  +
+
                                                +
+
                                                +
+
GOO -                                     +
GOO -
                                              +
+
                                              +
+
                                              +
+
900 -                                 +
+
                                            +
900 -
                                          +
+
                                          +
+
1000 -                               +
+
                                          +
+
STABILIZATION 26.150                                       PRESSURE 26.200             26.250         26.200
1000 -
        +-------_-+-__--                                         26.250                      26.400              26.450
+
                                        .+-________,_____                     _,_________ ____                                    26.500
+
                                                                                                                  +
STABILIZATION PRESSURE 26.150 26.200 26.250 26.200 26.250 26.400 26.450 26.500
IGO3 -                                                                                             +
+-------_-+-__--
_                                                                                        +
.+-________,_____
_                                                                                    +
+
        -                                                                              +
IGO3 -
+
+
+
+
1700 -
1700 -
* _                                                                        +
+
_                                                                        +
+
_                                                                      +
+
1900 -                                                                   +
1900 -
_                                                                  +
+
_                                                                  +
+
_                                                                +
+
1900 -                                                             +
+
        -                                                              +
1900 -
                                                                        +
+
                                                                  +
+
    "006 -                                                       +
+
                                                                +
+
"006 -
+
+
M E-4
M E-4
[
[


ILRT AIRMASS 221000,     221100. 221200. 221000. 221400.           22250                       221600.                   221:
ILRT AIRMASS
        +_-----___+--_-__---,___--____,__-______,_________,_0.
: 221000, 221100.
                                                                                              +
221200.
                                                                                            +
221000.
221400.
22250 221600.
221:
+_-----___+--_-__---,___--____,__-______,_________,_0.
+
+
2100 -
2100 -
                                                                                            +
+
                                                                                          +
+
                                                                                            +
+
                                                                                            +
+
2200 -
2200 -
                                                                                          +
+
                                                                                      +
+
                                                                                        +
+
                                                                                      +
+
2000 -                                                                               +
2000 -
                                                                                      +
+
                                                                                        +
+
                                                                                          +
+
+
0-
0-
                                                                                  +
+
                                                                                      +
+
                                                                                        +
+
100 -                                                                           +
+
                                                                                        +
100 -
                                                                                    +
+
                                                                                      +
+
                                                                            +
+
200 -                                                                             +
+
                                                                            +
200 -
                                                                          +
+
                                                                            +
+
300 -                                                                   +
+
        -                                                            l
+
                                                                            +
300 -
                                                                          +
+
400 -                                                                 +
l
                                                                          +
+
                                                                            +
+
                                                                        +
400 -
500 -                                                               +
+
+
+
+
500 -
+
m E-5
m E-5


      . -..---.-- .- -                _~ - .~. - - - - - . _ _ . - . - ... ...--~.. _ .- - . - .-....-- . - ._. -. ....- - --.-- - -       _
_~ -.~. - - - - -. _ _. -. -......--~.. _.- -. -.-....--. -._. -.....- - --.-- - -
A 1
A 1
s i
s i
4
i.
: i.                                                                                                   -
4 l
l f'                                                                                                   VERIFICATION 1                                                                                             AIRMASS 221000.             221100.                                                                                                                                       l l
f' VERIFICATION 1
                                  +--
AIRMASS l
221200.                     '"<-0                       ,
221000.
1 j                                              ---+--                           --+--              - -_^!_0_____-_]3'f___221500.
221100.
221600.     22174     .
221200.
'"<-0 1
- - + - -
- -_^!_0_____-_]3'f___221500.
221600.
22174 j
+--
---+--
_ +--------_._-_______.
_ +--------_._-_______.
_                                                                                                                            +                               ,
+
_                                                                                                                          +
+
i                      600 -                                                                                                                             +
600 -
!                                _                                                                                                                        +
+
_                                                                                                                      +
i
_                                                                                                                    +                                       t i
+
700 -                                                                                                                     *
+
                                                                                                                                                    +
+
                                                                                                                                                  +
t i
l                  ,
700 -
                                                                                                                                                +
l
t                  I.                                                                                                                       +
+
1                         800 -
+
                                                                                                                                              +
+
                                                                                                                                        +                           . .                        t
I.
                                                                                                                                      +
t
                          '900 -
+
                                                                                                                                  +
1 800 -
i A-
+
                                                                                                                          +
+
i                       1000 -
t
+
'900 -
i
+
A i
1000 -
+
4
4
                                                                                                                      +
+
i l            .                                                                .                                    +
i i Q
iQ                                                                                                                                                                                              1 1
+
i f
l 1
1 i                                                                                              STABILIZATION
1 i
* AIRMASS 221t00.             221100.                     221200.                     221200.                     221400.
f i
                                                                                --+---
STABILIZATION 1
221500.       221600.     o' 17 t.-
AIRMASS 221t00.
                                                                                                                                                                                      ~~
221100.
_+--                     --+---         - ---+---__ ___+___             ____,    ;
221200.
e i                               -
221200.
                                                                                                                                                                            +                   ,
221400.
221500.
221600.
o' 17 t.-
- - + - - -
_ + - -
~~
- - + - - -
- ---+---__ ___+___
e i
+
l
/603 -
+
\\
+
l 1
+
- +
1700 -
+
+
l
l
                        /603 -              ,
+
                                                                                                                                                                                  +             1
~
                                                                                                                                                                                                \
+
                                                                                                                                                                                  +             l 1
1900 -
                                                                                                                                                                                    +
+
                                                                                                                                                                                  -+            ,
+
1700 -                                                                                                                                                    +
+
                                                                                                                                                                                  +             l
+
                                                                                                                                                                                +
1900 -
                                ~
+
                                                                                                                                                                              +
1900 -                                                                                                                                             +
                                -                                                                                                                                        +
                              -                                                                                                                                            +
                                                                                                                                                                          +
1900 -                                                                                                                                            +
1
1
                                                                                                                                                                          +
+
i                             -
i
                                                                                                                                                                            +
+
                                                                                                                                                                        +
+
2000 -                                                                                                                                                 +
2000 -
                                                                                                                                                                          +
+
                                                                                                                                                                          +
+
+
I
I
                                                                                                            .E-6 i
.E-6 i
i
i
-wmesure- - & w ge' imp,muerg__
.--M
.-eme-..
me--wh--**-se


v J
J v APPENDIX F VERIFICATION FLOW TEST
APPENDIX F VERIFICATION FLOW TEST


==SUMMARY==
==SUMMARY==
DATA TEST.VER GRAND GULF VERIFICATION ALMAX = 0.437                                       VOL = 1670000.00 VRATET = 0.432             VRATEM = 0.436                         VRATEP = 0.364 TIME DATE                   TEMP               PRESSURE 515 104                                                                 VPRS 534.80566               26.280268               0.34556079 530 104           534.79596               26.278370 545 104                                                            0.34544951 534.78748               26.277615               0.34520060 600 104           534.77368               26.276218 615 104                                                            0.34559339 630 104 534.76746               26.274252               0.34554970 534.75714               26.272772               0.34602681 645 104           534.76361               26.272007 700 104                                                            0.34578761 534.74396               26.269663             0.34612215 715 104           534.73499               26.268349 730 104                                                            0.34643370 534.73236 s ,/                                                            26.267462             0.34631500 745 104           534.72797               26.265524 800 104                                                            0.34624526 534.71405               26.264580             0.34618655 815 104           534.70410               26.262316 830 104                                                            0.34644118 534.69879               26.261040             0.34671304 845 104           534.68665               26.259174 900 104                                                            0.34656873 534.68726               26.257030             0.34670511 915 104             534.67273               26.256052 930 104                                                            0.34667951       -
DATA TEST.VER GRAND GULF VERIFICATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.432 VRATEM = 0.436 VRATEP = 0.364 TIME DATE TEMP PRESSURE VPRS 515 104 534.80566 26.280268 0.34556079 530 104 534.79596 26.278370 0.34544951 545 104 534.78748 26.277615 0.34520060 600 104 534.77368 26.276218 0.34559339 615 104 534.76746 26.274252 0.34554970 630 104 534.75714 26.272772 0.34602681 645 104 534.76361 26.272007 0.34578761 700 104 534.74396 26.269663 0.34612215 715 104 534.73499 26.268349 0.34643370 730 104 534.73236 26.267462 0.34631500 s,/
534.65894               26.252333             0.34738570 945 104             534.64771               26.252180 1000  104                                                            0.34753838 534.64069               26.250376             0.34733403 1015 104           534.33062               26.249893             0.34681413 O
745 104 534.72797 26.265524 0.34624526 800 104 534.71405 26.264580 0.34618655 815 104 534.70410 26.262316 0.34644118 830 104 534.69879 26.261040 0.34671304 845 104 534.68665 26.259174 0.34656873 900 104 534.68726 26.257030 0.34670511 915 104 534.67273 26.256052 0.34667951 930 104 534.65894 26.252333 0.34738570 945 104 534.64771 26.252180 0.34753838 1000 104 534.64069 26.250376 0.34733403 1015 104 534.33062 26.249893 0.34681413 OU F-1
U F-1


4
4
            %- )
)
APPENDIX G VERIFICATION FLOW TEST CALCULATIONS
APPENDIX G VERIFICATION FLOW TEST CALCULATIONS
                                                                                        - GRANO GULF VERIFICATION LEAKAGE RATE (WEIGHT PERCENT / DAY)
- GRANO GULF VERIFICATION LEAKAGE RATE (WEIGHT PERCENT / DAY)
MASS-FOINT ANALYSIS TIME AND DALE AT START OF TEST:                           615 0104 ELAPSED TIME:                 4.00 HOURS TIME                                   TEMP               PRESSURE
MASS-FOINT ANALYSIS TIME AND DALE AT START OF TEST:
* CTMT. AIR           MASS LOSS       TOT. AVG. MASS (R)             (PSIA)
615 0104 ELAPSED TIME:
MASS (LBM)               (LEM)       LOSS (LBM/HR) 615                     534.767                       26.2743 600 221467.
4.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)
534.757                       26.2728               221459.
(PSIA)
645                      534.764                                                                        8.2                         32.S 26.2720               221450.                   9.1 700                     534.744                       26.2697               221439.
MASS (LBM)
34.7 715                                                                                                    11.6                         38.6 534.735                       26.2603               221431.
(LEM)
730                      534.732                                                                        7.4                         36.3 26.2675             221425.                     6.4 745                     534.728                       26.2655               221410.
LOSS (LBM/HR) 615 534.767 26.2743 221467.
34.2 14.5                         38.1 800                     534.714                         26.2646             221408.                     2.2 815                     534.704                       26.2623             221093.
600 534.757 26.2728 221459.
34.0 830                                                                                                    15.0-                       37.2 534.699                         26.,2610             221385.
8.2 32.S 645 534.764 26.2720 221450.
q        845                                                                                                      S'. 6                       36.9 534.687                         26.2592             221374.
9.1 34.7 700 534.744 26.2697 221439.
900                     534. 68 ~t-                                                                     10.7                        37.5 26.2570             221356.                   18.3 915                     534.673                         26.2561                                                                     40.7 930                                                                          221353.                     2.0                         38.1 534.659                         26.2523             221329.
11.6 38.6 715 534.735 26.2603 221431.
945                      534.648                                                                        25.6                         43.0 26.2522             221331.                   -3.4 1000                       534.641                         26.2504             221319,                                                 39.0 1015                       534.631                                                                         12.3                        39.7 26.2499             221319                     -0.1                         37.2       -
7.4 36.3 730 534.732 26.2675 221425.
FREE AIR VOLUME USED (MILLIONS OF CU. FT.)                                               =
6.4 34.2 745 534.728 26.2655 221410.
1.670 REGRESSION LINE INTERCEPT (LBM)
14.5 38.1 800 534.714 26.2646 221408.
2.2 34.0 815 534.704 26.2623 221093.
15.0-37.2 830 534.699 26.,2610 221385.
S'. 6 36.9 q
845 534.687 26.2592 221374.
10.7 37.5 900 534. 68 ~t-26.2570 221356.
18.3 40.7 915 534.673 26.2561 221353.
2.0 38.1 930 534.659 26.2523 221329.
25.6 43.0 945 534.648 26.2522 221331.
-3.4 39.0 1000 534.641 26.2504
: 221319, 12.3 39.7 1015 534.631 26.2499 221319
-0.1 37.2 FREE AIR VOLUME USED (MILLIONS OF CU. FT.)
=
1.670 REGRESSION LINE INTERCEPT (LBM) 221471.
=
SLOPE (LBM/HR)
SLOPE (LBM/HR)
                                                                                                                                      =
-39.8
221471.
=
                                                                                                                                      =
VERIFICATION TEST LEAKAGE RATE UFPER LIMIT =
                                                                                                                                                          -39.8 VERIFICATION TEST LEAKAGE RATE UFPER LIMIT =                                                                   0.545 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =                                                                   0.327 THE CALCULATED LEAKAGE RATE                                                             =
0.545 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =
0.431-G-1
0.327 THE CALCULATED LEAKAGE RATE 0.431-
_. . . .      . . _ _ . _ _ _ , _ . _ _ _ _ = _ . , _ _ _ _ _ _ , . .                         ,~,_,         -.    .,            _. _ , _ _ . _ . _      _ _ .  . _ - .
=
G-1
.. _ _. _ _ _, _. _ _ _ _ = _., _ _ _ _ _ _,..
,~,_,


O c
O c
GRAND GULF VERIFICATION LEAKAGE RATE (WEIGHT FERCENT/ DAY)
GRAND GULF VERIFICATION LEAKAGE RATE (WEIGHT FERCENT/ DAY)
TOTAL-TIME ANALYSIS TIME AND DATE AT STAR T OF TEST-                 615 0104 ELAPSED TIME:           4.00 HOURS TIME       TEMP. PRESSURE           MEASURED (R)         (PSIA)
TOTAL-TIME ANALYSIS TIME AND DATE AT STAR T OF TEST-615 0104 ELAPSED TIME:
LEAKAGE   RATE 615     534.767     26.2743 630     534.757       26.2728           0.356 645 534.764     26.2720           0.37e 700     534.744     26.2697           0.418 715   534.735       26.2683           0.394 700     534.732     26.2675           0.370 745   534.728       26.2655 800                                    0.413 534.714       26.2646           0.368 815     534.704       26.2623 830 0.403 534.699       26.2610           0.399 845     534.687       26.2592           0.406 900     534.c87       26.2570 915                                      0.441 534.673       26.2561           0.413'
4.00 HOURS TIME TEMP.
(#')           930     534.659       26.2523           0.466
PRESSURE MEASURED (R)
\._ /           945     534.648       26.2522 1000                                      0.'423 534.641       26.2504           0.430 1015     534.631       26.2499           0.403
(PSIA)
* MEAN OF MEASURED LEAKAGE RATES                             =
LEAKAGE RATE 615 534.767 26.2743 630 534.757 26.2728 0.356 645 534.764 26.2720 0.37e 700 534.744 26.2697 0.418 715 534.735 26.2683 0.394 700 534.732 26.2675 0.370 745 534.728 26.2655 0.413 800 534.714 26.2646 0.368 815 534.704 26.2623 0.403 830 534.699 26.2610 0.399 845 534.687 26.2592 0.406 900 534.c87 26.2570 0.441 915 534.673 26.2561 0.413'
0.405   ,
(#')
VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =                       0.541 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =                       0.323 THE CALCULATED LEAKAGE RATE                               =
930 534.659 26.2523 0.466
\\._ /
945 534.648 26.2522 0.'423 1000 534.641 26.2504 0.430 1015 534.631 26.2499 0.403 MEAN OF MEASURED LEAKAGE RATES 0.405
=
VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =
0.541 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =
0.323 THE CALCULATED LEAKAGE RATE
=
0.434 ul c-2
0.434 ul c-2


    . _  _ _ . . _ _ . _ . . . _ . _ . - _ _ _ _ . _                            _ _ _ . . _ _ . _ . _ . _ - . .              ...-_ _..-.._,_                        __._._.__.m                       ._ _ ___._.
__._._.__.m I
I i'
i' i
i 1                                                                                                                                                                                                                   g i
1 g
-1                                                                                                                                                                                                                   >
i
1 1
-1 1
i i
1 i
3 GRAND GULF VERIFICATION i-
i 3
{                                                                                                                           TREND REPORT LEAKAGE RATES (WEIGHT PERCENT / DAY) 3 j                                                                                             TIME AND DATE AT START OF TEST:                                                 615 0104 ELAPSED TIME:                             4.00 HOURS                                               '
GRAND GULF VERIFICATION
j NO. DATA                       ELAPSED POINTS                            TIME                  TOTAL-TIME MEAN            ANALYSIS'MASE-POINT ANALYSIS                                                               l CALCULATED                             CALCULATED 10                                                                                                       --- ,-------------
.!i-
2.25                     0.389         0.400 11                     2.50                                                                             0.397 0.390         0.404                                   0.402 12                     2.75                       0.395 13 0.418                                   0.420 3.00                     0.396         0.420
{
{                                                     14                                                                                                       0.420 3.25                     0.402         0.436
TREND REPORT LEAKAGE RATES (WEIGHT PERCENT / DAY) 3 j
{                                                     15                     3.50                                                                             0.440 0.403         O.436                                   O.439 16                     3.75                     0.405
TIME AND DATE AT START OF TEST:
(                                                      17 0.439                                   0.439 4.00                     0.405         0.434
615 0104 ELAPSED TIME:
;                                                                                                                                                              O.431 4
4.00 HOURS j
NO. DATA ELAPSED TOTAL-TIME ANALYSIS'MASE-POINT ANALYSIS POINTS TIME l
MEAN CALCULATED CALCULATED 10 2.25 0.389 0.400 0.397 11 2.50 0.390 0.404 0.402 12 2.75 0.395 0.418 0.420 13 3.00 0.396 0.420 0.420
{
14 3.25 0.402 0.436 0.440
{
15 3.50 0.403 O.436 O.439 16 3.75 0.405 0.439 0.439
(
17 4.00 0.405 0.434 O.431 4
1 4
1 4
s e
s e
Line 2,161: Line 3,197:
G-3 s
G-3 s
4 1
4 1
_ _ _ _ _ _ . _ _ _ _ _ . - _                              - _ _ . ~ . . . _ _ _ _ _ _ _ _ . - _ _                      _ . . _ _ _ _ . _ . -
. ~...


h
h
' (O APPENDIX H j
' (O APPENDIX H j
BYPASS LEAKAGE RATE CALCULATIONS The formula for computing leakage rate by flow totalizer method is:
BYPASS LEAKAGE RATE CALCULATIONS The formula for computing leakage rate by flow totalizer method is:
LL = (P1/T 1 - P2/T2) x (VT s/60tPs) + F/60t where:
LL = (P /T1 - P /T ) x (VT /60tP ) + F/60t 1
LL=       Leakage rate, standard cubic feet per minute (SCFM)
2 2 s
P,P2 = Test volume absolute pressure at start and end of test respectively, absolute units T,T2 = Test volume absolute temperature at start and end of test respectively, absolute units V
s where:
                          = Total test free air volume, cubit feet (270,128 cu.ft.)
LL=
Ts     = Standard temperature (68'F)
Leakage rate, standard cubic feet per minute (SCFM)
Ps     = Standard pressure (14.6959 psia)
P,P2 = Test volume absolute pressure at start and end of test 1
      -~
respectively, absolute units T,T2 = Test volume absolute temperature at start and end of test 1
t       = Tes t duration, hours (4 hrs.)
respectively, absolute units V
= Total test free air volume, cubit feet (270,128 cu.ft.)
Ts
= Standard temperature (68'F)
Ps
= Standard pressure (14.6959 psia)
-~
t
= Tes t duration, hours (4 hrs.)
F
F
                          = Makeup air (to maintain test pressure), standard cubic feet = F2-F1 F,F2 = Makeup air flow meter reading at start and end of test respectively, SCF (convert from actual cubic feet to standard cubic feet).
= Makeup air (to maintain test pressure), standard cubic feet = F2-F1 F,F2 = Makeup air flow meter reading at start and end of test 1
(1) Calculate drywell average temperature at start and end of test, where VF = Volume Friction.
respectively, SCF (convert from actual cubic feet to standard cubic feet).
(1)
Calculate drywell average temperature at start and end of test, where VF = Volume Friction.
Ti = 76.102*F = 535. 772 *R T2 = 76.271*F = 535.941*R (2) Drywell pressure at start and end of test:
Ti = 76.102*F = 535. 772 *R T2 = 76.271*F = 535.941*R (2) Drywell pressure at start and end of test:
P1 = 17.793 psia P2 = 17.785 psia O
P1 = 17.793 psia P2 = 17.785 psia O
DH-103 H-1
DH-103 H-1


                                  -__                    _                  ..-        . . -    . . _ . ...                    -            . - . _ . - .                                      - .. . . -                                            - . . . . ~ -_ _ . . _ . _ . -
.. ~
i (3) Calculate drywell makeup air volume, convert from actual cubic feet to standard cubic feet:
i (3) Calculate drywell makeup air volume, convert from actual cubic feet to standard cubic feet:
2 F1 = 118070 cu.ft.
2 F1 = 118070 cu.ft.
F2 = 86350 cu.ft i
F2 = 86350 cu.ft i
50+14.6959                   68+459.67 F = (F1-F)       2              14.6959                     44+459.67 i
50+14.6959 68+459.67 F = (F1-F) 14.6959 44+459.67 2
                                                                                                /'64.6959                       527.67)
i
                                                                                  =
/'64.6959 x((503.67 /
31720 g 14.6959                       x((503.67 /
527.67) 31720 g 14.6959
                                                                                  =
=
146295.19 cu.ft.
146295.19 cu.ft.
,                                                              (4) Bypass Leakage Rate Calculation:
=
l 17.793                17.785                270,128x68 }                                                              146295.19 L t=C535.772 _ 535.941                                   60x4x14.6959/ '                                                                     60x4 4
(4) Bypass Leakage Rate Calculation:
                                                                                    =
l t=C535.772 _ 535.941 60x4x14.6959/ '
609.7 SCFM i
60x4 17.793 17.785 270,128x68 }
i
146295.19 L
4 609.7 SCFM
=
i i
: i. O j
: i. O j
1 i
1 i
1 1
1 1
i J                                                                                                                                                                                                                                                                                           i l
i J
i l
l 1
l 1
i j
i j
l' i
l' i
a i
a i
DH-103                                                                           H-2 1
DH-103 H-2
1
{
{
1 1
i l
i l
    - , . . _ . - . . - . . _ . . . . . _ . _ _ . _ . _ . . . . _ - - - - . .                                    . , _ . - _ . _      . . _ , . _ . . . . . _ _ _ _ _ _ _ _ . . _ . _ . . _ _ . _ , . , . _ _ ~ . . . _ _ _ _ . _ - - - _ . _ . _ . . _ _
.. _,. _..... _ _ _ _ _ _ _ _.. _. _.. _ _. _,.,. _ _ ~... _ _ _ _. _ - - - _. _. _.. _ _


APPENDIX I Local Leakage Test Summary Data Type B Test Results Penetration     Description                                     Leakage, SCCM 1           Equipment Hatch                                     212 2           Upper Personnel Lock                                     -
APPENDIX I Local Leakage Test Summary Data Type B Test Results Penetration Description Leakage, SCCM 1
3            Lower Personnel Lock                                     -
Equipment Hatch 212 2
4            Fuel Transfer Tube                                   0 i 11 201           Reactor Protection System                           010 202           Low Voltage Power                                   010 203 204 Instrumentation                                     010 205 Instrumentation                                      010 Neutron Monitoring                                   010 206           Low Voltage Power                                   010 207           Control and Power                                   0+0 208 209 Control Low Voltage Power 010 010 210           Radiation Monitoring                                 010 211           Control                                             0+0 212 213 Instrumentation                                     010 214 Rod Position Indication                             010 T.I.P.                                               0+0
Upper Personnel Lock 3
[V'      215           6.9 Kv-Reactor Recirculate Pump A                   010 216           Spare                                               010 217           LV Power and Control                                 010 218           Neutron Monitoring                                   010 219           Instrumentation                                     0+0 220           Instrumentation                                     0[0 221           Spare                                               010 222           Reactor Protection                                   0+0 223           LV Power and Control                                 0[0 224           Spare                                               010 225           LV Power                                             010 226           Control                                             010 227           Instrumentation                                     010 228           Instrumentation (Neutron Monitoring)                 010 229           LV Power and Control                                 010 230           Reactor Protection                                   010 231           Instrumentation                                     010 232           Neutron Monitoring                                   010
Lower Personnel Lock 4
,          233           Rod Position Indication                             0+0 234           Spare                                               010 235           Neutron Monitoring                                   010 237           Instrumentation (SRV Inplant Test)                   010 238           Reactor Protection System                           010 239           Control                                             010 240           Instrumentation                                     010 1
Fuel Transfer Tube 0 i 11 201 Reactor Protection System 010 202 Low Voltage Power 010 203 Instrumentation 010 204 Instrumentation 010 205 Neutron Monitoring 010 206 Low Voltage Power 010 207 Control and Power 0+0 208 Control 010 209 Low Voltage Power 010 210 Radiation Monitoring 010 211 Control 0+0 212 Instrumentation 010 213 Rod Position Indication 010 214 T.I.P.
241           LV Power and Control                                 0+0 242           LV Power and Control                                 010 DH-119                           I-l
0+0
                                                            - . . _ , _ _            .~ _
[
215 6.9 Kv-Reactor Recirculate Pump A 010 V'
216 Spare 010 217 LV Power and Control 010 218 Neutron Monitoring 010 219 Instrumentation 0+0 220 Instrumentation 0[0 221 Spare 010 222 Reactor Protection 0+0 223 LV Power and Control 0[0 224 Spare 010 225 LV Power 010 226 Control 010 227 Instrumentation 010 228 Instrumentation (Neutron Monitoring) 010 229 LV Power and Control 010 230 Reactor Protection 010 231 Instrumentation 010 232 Neutron Monitoring 010 233 Rod Position Indication 0+0 234 Spare 010 235 Neutron Monitoring 010 237 Instrumentation (SRV Inplant Test) 010 238 Reactor Protection System 010 239 Control 010 240 Instrumentation 010 1
241 LV Power and Control 0+0 242 LV Power and Control 010 DH-119 I-l
.~


_ . _ _ . . _ . _ _      _ _ _ _ _ _ _ . _ _ _ _ . . . . . .._. _ __                                                  _._..._ - _._  .. - .      m     ..m.
m
                                                                                                                                                                    ..____3.....___.m.
..m.
                                                                                                                                                                                      ?-
..____3.....___.m.
?-
4 s
4 s
                                                                                                                                                                                      *i 4
*i 4
APPENDIX I (Cont'd) s l                                                                                                       Local Leakage Test Summary Data                                                                               :
APPENDIX I (Cont'd) s l
l                                                                                                            Type B Test Results (Cont'd)                                                             '                  '
Local Leakage Test Summary Data l
i                                                                                                                                                                                                                         !
Type B Test Results (Cont'd) i c
c Penetration                                                                     Description                               Leakage, SCCM                                       '
Penetration Description Leakage, SCCM 243 Spare 010 j
;                              243                                                                     Spare                                         010                                       ,
244 LV Power 0+0 l
j                              244                                                                     LV Power                                       0+0 l
245 Control Bop 010
245 246 Control Bop                                   010                                     -
):
)                                                                                                       Radiation Monitoring                           0+0                                 "
246 Radiation Monitoring 0+0 l
l 247 249 6.9 KV Reactor Recirculate Pump B Instrumentation 030 0+0                         .
247 6.9 KV Reactor Recirculate Pump B 030 249 Instrumentation 0+0
                                                                                                                                                            !                                  ^
^
I                                                                                                       Drywell Personnel Hatch                                                 '
I Drywell Personnel Hatch i
i                                                                                                        Drywell Head                                     .                        a'
Drywell Head a'
]                                                                                                       Drywell Equipment Hatch                     30111                           k 4                                                                                                        Drywell Head Manhole                                 -
]
!                                                                                                                                                                                      )
Drywell Equipment Hatch 30111 k
l                                                                                                                                           TOTAL = 32 + 16
Drywell Head Manhole 4
                                                                                                                                                            -                x 3
)
f i
l TOTAL = 32 + 16 3
1 1
x f
l l'
i 1
1 l
l'
=
=
l I
l I
Line 2,247: Line 3,304:
i i
i i
l l
l l
)
)
l l
l l
l 1
l 1
i i
i i
4 i
4 i
i, Dil-119                                                                                         I-2 l
i, Dil-119 I-2 l
1 1
1 1
i._.._____._.._..__        .______..__...__,_..._..___,_.._._,__..__.__.-...__...,,,_.._-...__.,,.,__m.,,_
: i...
.______..__...__,_..._..___,_.._._,__..__.__.-...__...,,,_.._-...__.,,.,__m.,,_


l                                   APPENDIX I (Cont'd)
l APPENDIX I (Cont'd)
V)
V)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)
Penetration     Description                                   Leakage, SCCM 5           Main Steam Line A                             10,500 1 150 6           Main Steam Line B                                 552 + 19 7           Main Steam Line C                                 20 I 17 8           Main Steam Line D                             3,390}148 17           Steam Supply to RCIC Turbine and RHR Hx                                     114.0 + 17 19           Main Steam Drain to Condenser                       4312 33           CRD Pump Discharge                                 0 + 12 34           Containment Purge Supply                         135{17 35           Containment Purge Exhaust                         80 + 17 36           Plant Service Water Return                         58 1 12 37           Plant Service Water Supply 38           Chilled Water Supply                           1,250 1 120 39           Chilled Vater Return                               20 + 12
Penetration Description Leakage, SCCM 5
                                                                              ~
Main Steam Line A 10,500 1 150 6
40*           ILRT Containment Pressurization /
Main Steam Line B 552 + 19 7
Depressurization                               286 + 12 41           Plant Service Air                                 220 + 12 42           Instrument Air                                   800 I 12 43           RWCU to Main Condenser                             10 I 17
Main Steam Line C 20 I 17 8
(( )')    44           Component Cooling Water Supply                     40[17 45           Component Cooling Water Return                     48 1 17 47           Reactor Recirculate Post Accident Sample                                           0111 49           RWCU Backwash Transfer Pump to Spent Resin Storage Tank                             72 1 12 50           DW & Containment CRW Sump Pumps Discharge to Auxiliary Building Collector Tank                             1,385 1 104 51           DW & Containment DRW Sump Pumps Discharge to Auxiliary Building Collector Tank                             1,395 1 100 54           To Upper Containment Pool and f rom Refueling Water Storage Tank                       5 1 12 56           Condensate Makeup to Upper Containment Pool       230 1 11 57           Discharge from Fuel Pool Cooling and C.U.
Main Steam Line D 3,390}148 17 Steam Supply to RCIC Turbine and RHR Hx 114.0 + 17 19 Main Steam Drain to Condenser 4312 33 CRD Pump Discharge 0 + 12 34 Containment Purge Supply 135{17 35 Containment Purge Exhaust 80 + 17 36 Plant Service Water Return 58 1 12 37 Plant Service Water Supply 38 Chilled Water Supply 1,250 1 120 39 Chilled Vater Return 20 + 12 40*
System to Upper Containment Pool               172 1 12 58           Inlet Upper Containment Pool skimmer Tanks to Fuel Pool Cooling and C.U. System           142 1 12 60           Auxiliary Building Floor and Equipment Drain Return                                   23 1 17 65           Containment Normal Vent Supply and Combustible Gas                               350 1 17 66           Containment Normal Vent and Combustible Gas Exchange                                   30 1 17
ILRT Containment Pressurization /
(   i V
~
* Leakage rate for penetration 40 and 82 is included in this total DH-119                               I-3
Depressurization 286 + 12 41 Plant Service Air 220 + 12 42 Instrument Air 800 I 12
( )')
43 RWCU to Main Condenser 10 I 17
(
44 Component Cooling Water Supply 40[17 45 Component Cooling Water Return 48 1 17 47 Reactor Recirculate Post Accident Sample 0111 49 RWCU Backwash Transfer Pump to Spent Resin Storage Tank 72 1 12 50 DW & Containment CRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,385 1 104 51 DW & Containment DRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,395 1 100 54 To Upper Containment Pool and f rom Refueling Water Storage Tank 5 1 12 56 Condensate Makeup to Upper Containment Pool 230 1 11 57 Discharge from Fuel Pool Cooling and C.U.
System to Upper Containment Pool 172 1 12 58 Inlet Upper Containment Pool skimmer Tanks to Fuel Pool Cooling and C.U. System 142 1 12 60 Auxiliary Building Floor and Equipment Drain Return 23 1 17 65 Containment Normal Vent Supply and Combustible Gas 350 1 17 66 Containment Normal Vent and Combustible Gas Exchange 30 1 17
(
i V
* Leakage rate for penetration 40 and 82 is included in this total DH-119 I-3


APPENDIX I (Cont'd)
APPENDIX I (Cont'd)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)(Cont'o)
Local Leakage Test Summary Data Type C Test Results (Pneumatic)(Cont'o)
Penetration     Description                                   Leakage, SCCM 70           Automatic Depressurization System (Instrument Air)                               20 + 17 75           RCIC Pump Turbine Exhaust Vaccum Relief           12112 81           Reactor Recirculate Sample                         0 1 12 82*         ILRT Drywell Pressurization /Depressurization     286 + 12 83           RWCV Line from Regenerative Ht. Exchange to Feedwater                                   100 + 12 84           Drywell and Containment Chemical Waste             60112 85           Suppression Pool Cleanup Return                   180 1 21 86           Demineralization Water Supply to Containment     330 i 12 87           RWCV Pump Suction from Recirculate Loops           60 1 17 88           RWCV Pump Discharge to RWCV Ht. Exchange           40112 101C         Drywell Pressure Instrumentation (Narrow Range)                                   0 1 12 101F         Drywell Pressure Instrumentation (Wide Range)                                     6 + 12 102D         Drywell Pressure (Wide Range)                     15112 103D         Containment Pressure (Wide Range)                 10 + 12 104D         Containment Pressure (Wide Range)                 10112 105A         Containment Drywell H2 Analyzing                 110 1 12 106A         Drywell H2 Analyzing Sample                       14 1 12 106B         Drywell H2 Analyzing Sample Return                 10112 106E         Containment H2 Analyzing Sample Return             10 1 12 107B         Drywell H2 Analyzing Sample Return               158 1 12 107D         Drywell H2 Analyzing Sample                       50 i 12 107E         Drywell H2 Analyzing Sample Return                 15 1 12 108A         Containment H2 Analyzing                           95 i 12 109A         Drywell - Fission Products Monitor Sample           0 i 12 109B         Drywell - Fission Products Monitor Sample Return                                         100 1 12 109D         Containment Pressure Instrument (Narrow Range)                                 10 1 12 110A         ILRT Instrumentation Drywell Pressure               0 1 11 110C         ILRT Instrumentation Verification Flow             0111 110F         ILRT Instrumentation Containment Pressure         10 + 11 114           Suppression Pool Water Level Control               9112 116           Suppression Pool Water Level Control               45112 118           Suppression Pool Water Level Control               7112 120           Suppression Pool Water Level Control               5 1 12 TOTAL = 22822 + 300 0
Penetration Description Leakage, SCCM 70 Automatic Depressurization System (Instrument Air) 20 + 17 75 RCIC Pump Turbine Exhaust Vaccum Relief 12112 81 Reactor Recirculate Sample 0 1 12 82*
ILRT Drywell Pressurization /Depressurization 286 + 12 83 RWCV Line from Regenerative Ht. Exchange to Feedwater 100 + 12 84 Drywell and Containment Chemical Waste 60112 85 Suppression Pool Cleanup Return 180 1 21 86 Demineralization Water Supply to Containment 330 i 12 87 RWCV Pump Suction from Recirculate Loops 60 1 17 88 RWCV Pump Discharge to RWCV Ht. Exchange 40112 101C Drywell Pressure Instrumentation (Narrow Range) 0 1 12 101F Drywell Pressure Instrumentation (Wide Range) 6 + 12 102D Drywell Pressure (Wide Range) 15112 103D Containment Pressure (Wide Range) 10 + 12 104D Containment Pressure (Wide Range) 10112 105A Containment Drywell H2 Analyzing 110 1 12 106A Drywell H2 Analyzing Sample 14 1 12 106B Drywell H2 Analyzing Sample Return 10112 106E Containment H2 Analyzing Sample Return 10 1 12 107B Drywell H2 Analyzing Sample Return 158 1 12 107D Drywell H2 Analyzing Sample 50 i 12 107E Drywell H2 Analyzing Sample Return 15 1 12 108A Containment H2 Analyzing 95 i 12 109A Drywell - Fission Products Monitor Sample 0 i 12 109B Drywell - Fission Products Monitor Sample Return 100 1 12 109D Containment Pressure Instrument (Narrow Range) 10 1 12 110A ILRT Instrumentation Drywell Pressure 0 1 11 110C ILRT Instrumentation Verification Flow 0111 110F ILRT Instrumentation Containment Pressure 10 + 11 114 Suppression Pool Water Level Control 9112 116 Suppression Pool Water Level Control 45112 118 Suppression Pool Water Level Control 7112 120 Suppression Pool Water Level Control 5 1 12 TOTAL = 22822 + 300 0
* Leakage rate for penetration 40 and 82 is included in this total.
* Leakage rate for penetration 40 and 82 is included in this total.
DH-119                                 I-4
DH-119 I-4


APPENDIX I (Cont'd)
APPENDIX I (Cont'd)
G                     Local Leakage Test Summary Data Type C Test Results (llydraulic)
G Local Leakage Test Summary Data Type C Test Results (llydraulic)
Penetration Description                                   Leakage, SCCM 9     Feedwater A                                       3.8 + 2.5 10     Feedwater B                                   16-2/3{2.5 11     RHR Pump A Suction                                 180 + 36 12     RilR Pump B Suction                               503 + 92 13     RIIR Pump C Suction                               917 + 74 14     RHR Shutdown Suction                                 010 18     RiiR to RPV Head Spray                             3.8 + 5 20     RiiR A to LPCI                                       0+0 21     RHR B to LPCI                                     5.60 1 3.5 22     RHR C to LPCI                                     519 + 28 23     RHR A Pump Test Line to Suppression Pool           180 1 35 24     RilR C Pump Test Line to Suppression Pool         917 1 74 25     HPCS Pump Suction                                 6.23 + 4.3 26     HPCS Pump Discharge to RPV                         25[20 27     HPCS Test Line to Suppression Pool                 6.3 1 2.5 28     RCIC Pump Suction                                   0+0 29     RCIC Turbine Exhaust                                 010 30     LPCS Pump Suction                                   010 31     LPCS Pump Discharge to RPV                         471 + 53 32     LPCS Test Line to Suppression Pool                   0~0 46 48 RCIC Pump Discharge Minimum Flow Line RilR Ilx B Relief Valve Vent Ileader to 0[0 8.5 + 5 Suppression Pool 67     RHR Pump B Test Line to Suppression Pool           503 1 54 69     Refueling Water Transfer Pump Suction From Suppression Pool                           5017 71A     LPCS Relief Valve Discharge to Suppression Pool                                             0+0 71B     RilR "C" Relief Valve Discharge to Suppression Pool                                           917 + 74 l
Penetration Description Leakage, SCCM 9
73     RHR Shutdown Relief Valve Discharge to Suppression Pool (H.P.)                           82.6 + 24 76B     RHR A Shutdown Suction Relief Valve Discharge to Suppression Pool (ll.P.)       12.75 1 5 77     RHR llT. Exchanger A Reif.ef Valve Discharge j                   to Suppression Pool                           180 1 35 89     Standby Service Water Supply A                     22 + 7 90     Standby Service Water Return A                       0+0 91     Standby Service Water Supply B                       010 92     Standby Service Water Return   B                   5+6 113     Suppression Pool Water Level   Control           5.3 + 5 l       115     Suppression Pool Water Level   Control             010 l       117     Suppression Pool Water Level   Control             5 i 12
Feedwater A 3.8 + 2.5 10 Feedwater B 16-2/3{2.5 11 RHR Pump A Suction 180 + 36 12 RilR Pump B Suction 503 + 92 13 RIIR Pump C Suction 917 + 74 14 RHR Shutdown Suction 010 18 RiiR to RPV Head Spray 3.8 + 5 20 RiiR A to LPCI 0+0 21 RHR B to LPCI 5.60 1 3.5 22 RHR C to LPCI 519 + 28 23 RHR A Pump Test Line to Suppression Pool 180 1 35 24 RilR C Pump Test Line to Suppression Pool 917 1 74 25 HPCS Pump Suction 6.23 + 4.3 26 HPCS Pump Discharge to RPV 25[20 27 HPCS Test Line to Suppression Pool 6.3 1 2.5 28 RCIC Pump Suction 0+0 29 RCIC Turbine Exhaust 010 30 LPCS Pump Suction 010 31 LPCS Pump Discharge to RPV 471 + 53 32 LPCS Test Line to Suppression Pool 0 ~ 0 46 RCIC Pump Discharge Minimum Flow Line 0[0 48 RilR Ilx B Relief Valve Vent Ileader to 8.5 + 5 Suppression Pool 67 RHR Pump B Test Line to Suppression Pool 503 1 54 69 Refueling Water Transfer Pump Suction From Suppression Pool 5017 71A LPCS Relief Valve Discharge to Suppression Pool 0+0 71B RilR "C" Relief Valve Discharge to Suppression Pool 917 + 74 73 RHR Shutdown Relief Valve Discharge to l
!      119     Suppression Pool Water Level   Control             17 + 12 l
Suppression Pool (H.P.)
p b                                                      TOTAL = 5563 + 192 Dil-119                           I-5}}
82.6 + 24 76B RHR A Shutdown Suction Relief Valve Discharge to Suppression Pool (ll.P.)
12.75 1 5 77 RHR llT. Exchanger A Reif.ef Valve Discharge j
to Suppression Pool 180 1 35 89 Standby Service Water Supply A 22 + 7 90 Standby Service Water Return A 0+0 91 Standby Service Water Supply B 010 92 Standby Service Water Return B 5+6 113 Suppression Pool Water Level Control 5.3 + 5 l
115 Suppression Pool Water Level Control 010 l
117 Suppression Pool Water Level Control 5 i 12 119 Suppression Pool Water Level Control 17 + 12 l pb TOTAL = 5563 + 192 I-5 Dil-119}}

Latest revision as of 19:06, 17 December 2024

Primary Reactor Containment Integrated Leakage Rate Test, Final Rept
ML20054B521
Person / Time
Site: Grand Gulf Entergy icon.png
Issue date: 04/14/1982
From:
BECHTEL GROUP, INC.
To:
Shared Package
ML20054B503 List:
References
NUDOCS 8204160572
Download: ML20054B521 (50)


Text

_

I I

b i

t I

f I

MISSISSIPPI POWER AND LIGHT CO.

GRAND GULF NUCLEAR STATION j

UNIT 1 DOCKET NO. 50-416 1

i i

j I

i t

PRIMARY REACTOR CONTAINMENT INTEGRATED LEAKAGE RATE TEST REPORT l

)

4 I

i 1

.i I

i I

I I

Submitted To j

The United States Nuclear Regulatory Commission

]

Pursuant To Facility Operating License 1

O 8204160572 820414 PDR ADOCK 05000416 A

PDR

TABLE OF CONTENTS Page No.

I I.

INTRODUCTION 1-1 II.

TEST SYNOPSIS 2-1 III. TEST DATA

SUMMARY

3-1 IV.

ANALYSIS AND INTERPRETATION 4-1 V.

COMPUTER REPORT AND DATA PRINTOUT 5-1 i

APPENDIXES A.

Bechtel ILRT Computer Program A-1 B.

ILRT Stabilization Data B-1 1

l C.

ILRT Summary Data C-1 D.

ILRT Calculations Mass Point Analysis D-1 Total Time Analysis D-2 Trend Report Analysis D-3 l

E.

ILRT Plots Temperature Versus Time E-1 Pressure Versus Time E-3 Air Mass Versus Time E-5 F.

Verification Flow Test Summary Data F-1 G.

Verification Flow Test Calculations Mass Point Analysis G-1 Total Time Analysis G-2 Trend Report Analysis G-3 H.

Bypass Leakage Rate Calculation H-1 1.

Local Leakage Test Summary Data I-l O

DH-103 11

_ ~ _ _

[]

I.

INTRODUCTION U

The Reactor Containment Building Integrated Leakage Rate (Type A) test is performed to demonstrate that leakare through the primary reactor containment systems and components penetrating the primary containment does not exceed the allowable leakage rate specified in the Grand Gulf Nuclear Station Final Safety Analysis Re port (FSAR).

The successful preoperational Integrated Leakage Rate Test (ILRT),

Verification Test, and Drywell Bypass Tert were completed on January 5, 1962 at Grand Gulf Nuclear Station Unit 1.

Acceptance criteria for both ANSI /ANS 56.8-1981, " Containment System Leakage Testing Require-ments," and BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants,"

were met for an 8-hour chort duration test.

Calculations were per-formed using the ANSI /ANS 56.8-1981 " Mass Point Analysis Method" and BN-TOP-1, " Total Time Analysis Method." The test results are reported in accordance with the requirements of ANSI /ANS 56.8-1981, Section 5.8 and 10CFR50, Appendix J, Section V.B.3.

The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Grand Gulf Nuclear Station Unit 1 ILRT.

Section II, Test Synopsis, presents the highlights of activities and events which occurred prior to and during the ILRT.

I s_s/

Section III, Test Data Summary, contains the data and results necessary to demonstrate containment atmosphere stabilization, an acceptable leakage rate, and a successful verification test.

In addition, plots provided in Appendix E supply a visual history of containment atmos-pheric conditions beginning with the stabilization condition, through-out the 8-hour short duration ILRT period, and ending with the verification test.

Section IV, Analysis and Interpretation, contains technical details of the integrated leakage rate measuring system used during the ILRT, and provides analysis to show that the containment 95% upper confidence limit leakage rate does not exceed 75% of the allowable rate as speci-fied in the plant FSAR.

Section V, Computer Report and Data Printout, describes the ILRT com-puter program and report printouts.

]

DH-103 1-1

l II.

TEST SYNOPSIS TEST PREPARATION ACTIVITIES Prior to containment pressurization for the Structural Integrity Test (SIT) on January 1, 1982, Grand Gulf Nuclear Station Unit 1 test personnel were engaged in measuring containment leakage to ensure a successful preoperational ILRT.

Sources of containment leakage were identified through Types B and C leakage rate testing programs and reduced by repairing those systems and containment components having relatively excessive leakage rates. The results of the Local Leakage Rate Test (LLRT) are presented in Appendix I.

Highlights of the test preparation activities included monitoring both upper and lower personnel hatch pneumatic systems leakage and repairing MSIV guard pipe inspection port seals, positioning sensors, verifying associated volume fractions, and conducting a temperature survey to ensure that all sensors could accurately monitor their respective subvolumes. An in-situ check, as specified in ANSI /ANS 56.8-1981, Section 4.2.3, was conducted to verify that all ILRT instrumentation was indicating correctly. The following items are presented in chronological order, and detail significant activities performed during the test preparation and successful execution.

The Type A test procedure was reviewed to verify compliance with a

Plant Technical Specifications, 10CFR50 Appendix J, ANSI /ANS 56.8-1981, BN-TOP-1, and the FSAR. In addition, test personnel reviewed the valve lineups to verify that the containment systems were in as close to post-accident alignment as possible.

CONTAINMENT PRESSURIZATION Containment pressurization for the ILRT began at 1030 on January 3, 1982. At the start of pressurization, containment fans M41-B001A and M41-B001B, and the containment, steam tunnel, and drywell cooling systems were operating. During pressurization with the containment at 10 to 12 psig, containment fan M41-B001B tripped off on overcurrent j

at approximately 68 amperes.

ILRT pressure of 12.27 psig (26.24 psia) was reached at 1525. Containment fan M41-B001A was then manually tripped to prevent a possible uncontrolled trip.

CONTAINMENT STABILIZATION Af ter reaching ILRT pressure, the containment atmosphere was allowed to stabilize. The temperature stabilization criteria of ANSI /ANS 56.8-1981, Section 5.3.1.3, and BN-TOP-1, Section 2.2.B, were satisfied. The ILRT stabilization data are given in Appendix B.

l Dil-103 2-1

During containment stabilization the outer doors on the upper and lower personnel locks were opened. A number of small leaks were de-tected through the inner door seals. Leaks were repaired on the upper and lower lock containment pressure sensing systems. The outer doors were closed at 1853.

DURING ILRT Subsequent to containment air mass temperature stabilization, the ILRT for Grand Gulf Nuclear Station Unit 1 started at 2030 on January 3, 1982, and terminated at 0430 on the following day, for an 8-hour short duration test. The accumulated data were statistically analyzed (see Section III (C), Test Results - Type A Test.) The maximum allowable leakage rate (L ) for the primary containment is 0.437 wt.%/ day. The a

Total Time Analysis (BN-TOP-1) yields a leakage rate of 0.068 wt.%/ day with an upper 95% confidence limit of 0.139 wt.%/ day.

Based on the Mass Point Analysis (ANSI /ANS 56.8-1981), the calculated leakage rate is 0.072 wt.%/ day with,an upper 95% confidence limit of 0.079 wt.%/ day.

These values are well below the Grand Gulf Nuclear Station Unit 1 acceptance criterion of 0.328 wt.%/ day (0.75 L )*

a VERIFICATION FLOW TEST A successful verification flow test was performed subsequent to the

~\\

ILRT from 0615 to 1015 on January 4, 1982.

ILRT instrumentation per-formance was checked by imposing a leakage rate (L ) of 0.364 wt.%/ day o

(7.67 scfm). After imposing the leakage rate, the containment atmos-pheric conditions were allowed to stabilize for one (1) hour.

Due to an apparent flow restriction in the verification flow line, the imposed leakage rate could not reach the maximum allowable leakage rate (La) of 0.437 wt.%/ day. The imposed leakage rate (Lo) of 0.364 wt.%/ day is within the acceptance limits of La + 25% as given in ANSI /ANS 56.8-1981, Section 3.2.6(b)(1). The results of the verification test correlated to the ILRT are summarized as follows:

Measured (Acceptance Limit) 95% UCL Test Method Leakage wt.%/ day wt.%/ day a.

ILRT/ Mass Point 0.072 (0.328) 0.079 ILRT/ Total Time 0.068 (0.328) 0.139 b.

Verification / Mass Point 0.431 (0.327-0.545)

NA Verification / Total Time 0.434 (0.323-0.541)

NA DH-103 2-2

= _,

DEPRESSURIZATION AND DRYWELL BYPASS TEST Following the successful completion of the ILRT and verification flow test, containment depressurization began at 1030 on January 4, 1982. At 4.3 psig, a containment entry was made to close the drywell lock for the Drywell Bypass Test. The containment was then depressurized to O psig and the dry-well, whose pressure had dropped to 2.2 psig, was repressurized to 3 psig.

During repressurization of the drywell it was necessary to raise the sup-pression pool level to prevent leakage through the weir wall. After raising the suppression pool level, leakage through the weir wall was observed at 3.02 psig. The drywell pressure was then maintained between 3.00 and 3.01 psig with no observed leakage through the weir wall. The drywell atmosphere was allowed to stabilize for one hour, after which the Bypass Leakage Test began at 0400 on January 4,1982. The Bypass Leakage Test was successfully completed at 0800. The calculated bypass leakage rate of 609.7 scfm is well below the allowable rate of 3500 scfm. Refer to Appendix H Drywell Bypass Test Summary Data for calculations.

O I

l OV

(

DH-103 2-3 l

GGNO GlT/ ILRT PR699URG Vs. TMe curve LEGEMD

-._.. OIT

-..... IL R T l

I./.,61T U

17.6 o

S I.I \\

m 3

n is.c

\\ i g

G

.I T

b G

J

\\

i ILRT

j 12 s li l

u o

. i...............

a)

J:

\\

n' e

3 10 0 I

\\

E r

l

"'I Q

@M 1

E i

l1 E

m I

l I

lQ 50

)

i

?!

\\

l wwsu

[=vi i

srFAes Test m

I

\\i 29 m

l 8

\\,

i i

\\

o i.

IO 20 50 40 90 60 70 80 90 10 0 IIO I20 I?O TIME

( HOUR)

O O

9

O III. TEST DATA

SUMMARY

Pursuant to the requirements of ANSI /ANS 56.8-1981, Section 5.8, Reporting of Results, the information in this section is provided to supply adequate data for an independent review of the containment system leakage rate test results and instrumentation.

A.

Plant Information Owner:

Mississippi Power and Light Company Plant:

Grand Gulf Nuclear Station Unit 1 Location:

Port Gibson, MS Containment Type:

Mark III NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 5, 1982 B.

Technical Data 1.

Containment Net Free Air Volume 1,670,360 cu ft 2.

Design Pressure P = 15 psig d

3.

Design Temperature T = 185*F 4.

Calculated Peak Accident Pressure P = 11.5 psig a

S 5.

Calculated Peak Accident Temperature T = 181*F a

)

6.

Containment ILRT Average Temperature 40*F-120*F Limits C.

Test Results - Type A Test 1.

Test Method Absolute 2.

Data Analysis Technique Mass Point Leakage Rate per ANSI /ANS 56.8-1981 Total Time per BN-TOP-1 3.

Test Pressure (actual)

P = 11.97 to 12.27 psig 4.

Maximum Allowable Leakage Rate L = 0.437 wt.%/ day a

5.

75% of L 0.328 we.%/ day a

6.

Integrated Leakage Rate Test Results Leakage Rate, L,. wt.%/ day From Regres-At Upper sion Line 95% Confi-dence Limit Mass Point Analysis 0.072 0.079

/~'T Total Time Analysis 0.068 0.139 Dil-103 3-1

1 5

C) 7.

Verification Test Imposed Lo = 0.364 wt.%/ day (7.67 scfm)

Leakage Rate 8.

Verification Test Results Leakage Rate, L., wt.%/ day y

Mass Point Analysis 0.431 Total Time Analysis 0.434 9.

Verification Test Limits:

Test Limits, L, wt.%/ day y

Mass Point Total Time Analysis Analysis 1

j Upper Limit (Lo+ Lam + 0.25L )

0.545 0.541 a

j Lower Limit (Lo + Lam - 0.25L )

0.327 0.323 a

1 10.

Report Printouts:

The report printouts and data plots for the Type A and verification test calculations are provided in Appendixes C through G.

D.

Drywell Bypass test results are provided in Appendix H.

E.

Test Results - Type B and C Tests 4

[N Refer to Appendix 1 for a summary of local leakage rate test results.

F.

Integrated Leakage Rate Measurement System (For ILRT Data Acquisition System, see Figure.2).

1.

Absolute Pressure (2 channels):

Mensor Quartz Manometer Model No. 10100-001 i

PI-l Capsule S/N 2407, Gage S/N 1522 PI-2 (Spare) Capsule S/N 2406, Gage S/N 1555 Range:

0-100,000 counts; 0-100 psia l

Accuracy:

+ 0.015% reading l

Sensitivity:

0.001 psia f

Repeatability:

0.001 psia Calibration Date:

12/23/81 s

l l

O l

DH-103 3-2 i

2.

Drybulb Temperature (22 sensors):

Rosemount resistance temperature detector Model No.

14632 Series 78 Element:

Platinum Resistance:

Ro = 100 ohms @ 32*F Lead Type:

3 lered potentiometric configuration

]

Temperature Range:

32' to 120*F (from calibration data)

Volumetrics Bridge Model No. VSTD 333 Input Voltage:

1 15 volts and 5.2 volt Resistance:

100 ohms @ 32*F Output:

1.0 millivolt /*F; 32*F = 32 mv.,

100*F = 100 av.; 3-wire configuration with l

constant current Adjustment:

Zero, span and linearity (lic:ited)

Accuracy:

1 0.l'F Sensitivity:

0.0l*F Repeatability:

0.0l*F Calibration Date:

12/21/81 N

3.

Dewpoint Temperature (6 sensors):

Dewpoint Temperature Systems - EG6G, Inc., Dewpoint Hygromater, Model No. 660 with 6 sensors and signal conditioning.

Accuracy:

1 0.1*F Sensitivity:

0.0l*F Repeatability:

0.05*F Calibration Date:

12/18/81 4.

Verification Flow (1 channel):

Volumetric thermal mass flow meter, TSI model No. 2013 S/N 1516 Range:

0-10.0 scfm Accuracy:

1 1% F.S.

Sensitivity:

1 0.01 scfm Repeatability:

1 0.01 scfm Calibration date:

10/20/81 5.

Drybulb and Dewpoint Temperature Sensor Volume Fractions (see j

Tables 1 and 2).

\\o DH-103 3-3

l' G.

Information Retained at Plant O'

The following information is available for review at the facility:

1.

Access control procedures established to limit ingress to, containment during testing.

2.

A listing of all containment penetrations, including the total number of like penetrations, penetration size, and function.

3.

A listing of normal operating instrumentation used for the leakage rate test.

4.

A system lineup (at time of test) showing required valve positions and status of piping systems.

5.

A continuous, sequential log of events from initial survey of containment to restoration of all tested systems.

6.

Documentation of instrumentation calibrations and standards (included with documentation should be an error analysis of instrumentation).

7.

Data to verify temperature stabilization criteria as estab-lished by test procedure (Appendix B).

%l f 8.

The working copy of the test procedure that includes signature sign-off of procedural steps.

9.

The procedure and all data that verify completion of penetra-tions and valve testing (B&C-type tests) including as-found leak rates, corrective action taken, and final leak rate.

10.

Computer printouts of ILRT data and manual data accumulation along with summary description of computer program (Appendix C).

11.

The Quality Assurance audit plan or checklist used to monitor ILRT with proper sign-offs.

12.

A listing of all test exceptions including changes in contain-ment system boundaries instituted by licensee to conclude successful testing.

13.

Description of sensor malfunctions, repairs, and methods used to redistribute volume fractions to operating instrumentation where applicable.

14.

A review of confidence limits of test results with accompanying computer printouts where applicable.

v DH-103 3-4

15.

Description of method of leakage rate verification of instru-ment measuring system (superimposed leakage), with calibration information on flow meters along with calculations used to measure the verification leakage rate (Appendixes F and G).

16.

Plots presenting 1LRT data obtained during the test (Appendix E).

17. The P& ids of systems which penetrate the containment.

30

)O Dii-103 3-5

TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (ILRT)

Containment Azimuth Distance from Volume RTD Instrument No.

Elevation

( Degrees)

Center Fraction TE-N001-01 274'-0" 352 20'-0" 0.062 TE-N001-02 274'-0" 172 20'-0" 0.062 TE-N001-03 247'-9" 90 30'-8" 0.062 TE-N001-04 245'-9" 265 27'-6" 0.062 TE-N001-05 214'-4" 45 50'-6" 0.062 T E-N001-06 229'-2" 155 49'-8" 0.062 TE-N001-07 216'-0" 225 49'-8" 0.062 TE-N001-08 227'-0" 319 49'-0" 0.062 TE-N001-09 173'-0" 220 52'-0" 0.058 TE-N001-10 163'-0" 305 50'-8" 0.057 TE-N001-11 164'-6" 155 28'-8" 0.022 TE-N001-12 141'-6" 162 50'-3" 0.058 TE-N001-13 141'-2" 90 55'-6" 0.057 TE-N001-14 122'-2" 335 41'-2" 0.057 TE-N001-15 124'-0" 177 51'-6" 0.057

'h-)

TE-N001-16 150'-6" 219 25'-4" 0.022 TE-N001-17 120'-0" 95 27'-8" 0.022 TE-N001-18 129'-0" 187 29'-0" 0.022 TE-N001-19 168'-0" 350 30'-3" 0.022 TE-N001-20 153'-5" 41 27'-3" 0.023 TE-N001-21 119'-9" 278 26'-9" 0.022 TE-N001-22 102'-6" 0

4' O.005 1.000 Containment Azimuth Distance from Volume ME Instrument No.

Elevation (Degrees)

Center Fraction ME-N002-01 247'-9" 90 30'-8" 0.210 ME-N002-02 216'-0" 225 49'-9" 0.210 ME-N002-03 167'-0" 305 50'-8" 0.210 ME-N002-04 122'-2" 355 41'-2" 0.210 ME-N002-05 158'-5" 41 27'-3" 0.080 ME-N002-06 118'-2" 278 26'-9" 0.080 1.000 i

Dil-103 3-6 a

TABLE 2 DRYWELL TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (BYPASS TEST)

Drywell Azimuth Distance from Volume RTD Instrument No.

Elevation (Degrees)

Center Fraction TE-N001-11 164'-6" 155 28'-8" 0.138 TE-N001-16 150'-6" 219 25'-4" 0.138 TE-N001-17 120' 95 27'-8" 0.138 TE-N001-18 129' 187 29'-0" 0.138 TE-N001-19 168' 350 30'-3" 0.138 TE-N001-20 153'-5" 41 27'-3" 0.138 TE-N001-21 119'-9" 278 26'-9" 0.138 TE-N001-22 102'-6" 0

4'-0" 0.034 1.000 Drywell Azimuth Distance from Volume ME Instrument No.

Elevation (Degrees)

Center Fraction ME-N002-05 158'-5" 41 27'-3" 0.5 ME-N002-06 118'-2" 278 26'-9" 0.5 1.0 k

DH-103 3-7

m

\\

M C N

M N

mN 2

C e 55 v5 W

mo zu m -a l

l 2=

m

=


,2=

g=.-------------

4 1

I x

I

>=m

>m,m, 8,, mN I

m,,

=

2mm 2mm mmm l

l

~<E EEG E",

l

~ ENS

-ENS o ms o-

-c-

-c-w aa

-4 m o rn l

nm=

Mm=

"e 1

m m

m =

I g

\\

l N

1 l

I l

1 F

-e

a I

]E I

H I

I l

I C

1 I

1, I

y k

i E-o I

5 l

5 "

N, M9 1

R 1

Ec Em i

O EE o

i 8

go g

=

=r I

c I

1

=

en 1

1 1

I y

1 I

o I

i 2

m I

B,g" I

.cn I

I

1. _ _. _ _. _ _._. _ -.

I I

v)

I I

H I

I I

I I

9 E

1 I

m n

x m=

ig:

7;=

I en ae i

in E 9 amE sus QE ENE I

I m

me>

mc=

me o>c 5

P I

nm nm r-yp r-a 3

-g n m -.4 E m -4 n

-a: r-r-

r-Em>

gmg

]

1 t

mm

=m

=2 m

l

]

N d

l 1

I I

O FIGURE 2 3-8 t

a

IV.

ANALYSIS AND INTERPRETATION oC\\

k--

A.

This section is provided pursuant to ANSI /ANS 56.8-1981, Section 5.8.6, which requires analysis of leakage rate data and provides an interpretation of the test results to show proper compliance with acceptance criteria specified in ANSI /ANS 56.8-1981, 10CFR50, Appendix J, and the Grand Gulf Nuclear Station FSAR.

Several corrections must be added to the calculated results of the Unit 1 ILRT. The Plant Chilled Water System (Pen 38 + 39) was not in the post LOCA lineup position and therefore the LLRT result of 2.69 SCFH must be added to the ILRT calculated results. The seal systems on the upper and lower personnel locks required makeup flows of 0.12 and 0.005 SCFH respectively during the ILRT period.

The total correction to be added to the calculated Type A leakage rate is 2.82 SCFH or 0.004%/ day.

Pre-and post-test containment water level measurements indicated that the upper pool. water volume had decreased by 574 cu f t from 1700 December 31, 1981, to 1200 January 5, 1982, and that the dry-well sump water volume had increased by 95 cu f t from 1000 January 3 to 1200 January 5, 1982. This resulted in a net water volume decrease rate of 74 cu ft per day. The indicated water volume change is most likely due to measurement accuracy. At any rate, a decrease in water volume would not mask an in-leakage, and therefore is not added as a correction.

&f \\

The corrected and uncorrected Type A leakage rates are tabulated

\\"-

below:

L wt%/ day 95% UCL wt%/ day am I

II III I

II III 1.

ILRT/ Mass Point 0.072 0.076 0.328 0.079 0.083 0.328 ILRT/ Total Time 0.068 0.072 0.328 0.139 0.143 0.328 2.

Verification /

Mass Point 0.431 0.327-0.545 Total Time 0.434 0.323-0.541 Uncorrected leakage rate calculated during where Column I

=

ILRT.

Column II Corrected leakage rate corresponding to Column

=

I plus corrections.

Column III = Acceptance limits O

DH-103 4-1

The ILRT results at the upper 95% confidence level satisfy the

= 0.328%/ day, at Pa = 11.5 P

tance criterion of Lam < 0.75La B.

ISG CALCULATION The ISG calculation provided below was performed according to the format specified in ANSI /ANS 56.8-1981, Appendix G.

a.

Calibration Data Number of l

Sensors Sensitivity, E Repeatability,6 Temperature, T 22 0.0l*F (*R) 0.01*F (*R)

Pregsure, P 1

0.001 psia 0.001 psia Vapor Pressure (Dewpoint), Pv 6

0.0l*F 0.05'F b.

_ Instrument Measurement Errors 1.

Tempe ratures l/2 (No. of Sensors)1/2 T = [(E ) +I)I

/

e T

T

= [(0.01)2 + (0,01)2]l/2/(22)1/2

= 0.003*F'(*R) 2.

Pressures

= [(E )2 + (s )2jl/2 (No. of Sensors)1/2

/

e p

p p

= [(0.001)2 + (0.001)2]1/2/(1)l/2

= 0.0014 psia 3.

Vapor Pressure For a dewpoint temperature range of 68.25'F + 0.05*F the average rate of change in dewpoint pressure is 0.0118 psi /*F, i.e.,

vapor pressure @ 68.3*F = 0.34243 psi

@ 68.2*F = 0.34125 psi change for 0.1*F = 0.00118 psi The sensitivity and repeatability in terms of pressure are:

E

= (0.0118 psi /*F)(0.0l*F) = 0.000118 psi py Spv = (0.0118 psi /*F)(0.05'F) = 0.00059 psi D

DH-103 4-2

)

Therefore, py)2 + (g )2]l/2 (No. of Sensors)l/2 e

= [(E

/

py py

= [(0.000118)2 + (0.00059)2)l/2 (6)1/2

/

= 0.00025 psi c.

ISG Calculation for 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> ILRT P = 12.27 psig + 14.7 = 26.97 psia T = 77'F + 460 = 537*R ISG = + 2400 2

2+2 2+2 2

1/2 p

ISG = 1 2400 ~ 2 0.0014)2+2(0.00025 2+2 0.003 2 1/2 8

26.97 /

\\ 26.97 537

= 1 300 (0.54 x 10-8 + 0.0169 x 10-8 + 0.006 x 10-8)l/2

= 1 300 (0.75 x 10-4) 0.0225 wt.%/ day

=

j 25% La = 0.437 x 0.25 = 0.10925 wt.%/ day 0.0225 < 0.10925 meets the criterion of ANSI /ANS 56.8-1981 and BN-TOP-1.

I i

i IlO DH-103 4-3

( }

V.

COMPUTER REPORT AND DATA PRINTOUT

%/

A.

MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as determined by the Mass Point Method described in the " Computer Program" section of this report. The " Calculated Leakage Rate" is the value determined from the regression analysis. The

" Containment Air Mass" values are the masses of dry air in the containment (lbm). These values, determined from the Equation of State, are used in the regression analysis.

B.

TOTAL TIME REPORT The Total Time Report presents data leakage rate (wt%/ day) as determined by the Total Time Method. The " Calculated Leakage Rate" is the value determined from the regression analysis. The

" Measured Leakage Rates" are the leakage rate values determined using Total Time calculations used in the above regression analysis.

C.

TREND REPORT The Trend Report presents leakage rates (as determined by the Mass Point and Total Time methods described in the " Computer Program"

(

)

section of this report) in percent of the initial contained mass

\\_ '

of dry air per day (wt%/ day), elapsed time (hours), and number of data points.

D.

SUMMARY

DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The five column headings are TIME, DATE, TEMP, PRESSURE, and VPRS, and contain data defined as follows:

1.

TIME:

Time in 24-hour notations (hours and minutes).

2.

DATE:

Calendar date (month and day).

3.

TEMP:

Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).

4.

PRESSURE: Partial pressure of the dry air component of the containment atmosphere in absolute units (psia).

5.

VPRS:

Partial pressure of water vapor of the containment atmosphere in absolute units (psia).

p.

(

)

v DH-103 5-1

s E.

SUMMARY

OF MEASURED DATA AND

SUMMARY

OF CORRECTED DATA p

( -)

The Summary of Measured Data presents the individual containment atmosphere drybulb temperatures, dewpoint temperatures, and absolute total pressure measured at the time and date as indicated and is used to determine the temperature and pressure described in V.D.3-5 above.

1.

TEMP 1 through TEMP 22 are the drybulb temperatures. The values in the right-hand column are temperatures (*F), multi-plied by 100, as read from the data acquisition system (DAS).

The values in the left-hand column are the corrected tempera-tures expressed in absolute units (*R).

2.

PRES 1 is the total pressure, absolute. The right-hand value, in parentheses, is a number in counts as read from the DAS.

This count value is converted to a value in psia by the com-puter via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia.

3.

VPRS 1 through VPRS 6 are the dewpoint temperatures (water vapor pressures). The values in the right-hand column are temperatures (*F), multiplied by 100 as read from the DAS.

The values in the left-hand column are the water vapor pres-sures (psia) from the steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in

(

j the center column.

G The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:

1.

TEMPERATURE (*F) is the volume weighted average containment atmosphere drybulb temperature (refer to Section III, Tables 1 and 2, for sensor volume fractions) derived from TEMP 1 through TEMP 22.

2.

CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from PRES 1, total pressure, yielding the partial pressure of the dry air.

3.

VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute (refer to Section III, Tables 1 and 2 for sensor volume fractions),

derived from VPRS 1 through VPRS 6.

4.

CONTAINMENT AIR MASS (lbm) is the calculated mass of dry air in the containment. The mass of dry air is calculated using the containment free air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air.

[)

Note: This printout is not included in the report, but is

\\'/

retained at the facility.

Dil-103 5-2

APPENDIX A (m

/

)

BECHTEL ILRT COMPUTER PROGRAM q,/

A.

Program and Report Description 1.

The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.

The program is used to compute leakage rate based on input values of time, containment atmosphere total pressure, drybulb tempera-ture, and dewpoint temperature (water vapor pressure). Leakage rate is computer using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".

The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during' containment leakage testing. Current leakage rate values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.

2.

The first printout, the Total Time Report, is based on the Total Time Method described in BN-TOP-1.

Leakage rate is computed from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time.

These individually computed g-~g leakage rates are statistically averaged using linear regression by

(

)

the method of least squares. The Total Time Method is the computa-tional technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant,"

are based.

3.

The second printout is the Mass Point Report and is based on the Mass-Point Analysis Technique described in ANSI /ANS 56.8-1981,

" Containment System Leakage Testing Requirements." The mass of dry air in the containment is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air.

Contained mass is " plotted" versus time and a regression line is fit to the data using the method of least squares.

Leakage rate is determined from the statistically derived slope and intercept of the regression line.

4.

The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a fuction of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.

5.

The program is written in a high level language and is designed for use on a mini-computer with direct data input from the data acquisition system. Brief descriptions of program use, formulae

[s'- ')

used for leakage rate computations, and program logic are provided in the following paragraphs.

DH-103 A-1 i

4 O) i l

(

B.

Explanation of Program l.

The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.

2.

Information loaded into the program prior to the start of the test:

Number of containment atmosphere drybulb temperature sensors a.

and dewpoint temperature (water vapor pressure) sensors to be f

used in leakage rate computations for the specific test b.

Volume fractions assigned to each of the above sensors e

Calibration data for above sensor, if required c.

d.

Calibration data for pressure sensor.

3.

Information entered into the program at the start of the test:

a.

Test title b.

Current test pressure and peak test pressure Maximum allowable leakage rate at peak test pressure s

c.

5' d.

If the test is a verification test:

4 (1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.

4.

Data received from the data acquistion system during the test, and used to compute leakage rates:

r a.

Time and date b.

Containment atmosphere drybulb temperatures c.

Containment atmosphere pressure i

d.

Containment atmosphere dewpoint temperatures 5.

After all data at a given time are received, a Summary of Measured Data report (refer to " Program Logic," Paragraph D, " Data" option

}

command) is printed on the data terminal. The date, containment atmosphere weighted average drybulb temperature, partial pressure of the dry air and water vapor pressure are stored on a data file.

DH-103 A-2 I

- - - - - - - - - - -, - - - - - - - - - - ~ - - - ~ ' ~ ~ ~ '- '

l 6.

If drybulb and dewpoint temperature sensors should fail during the test, the data from the sensor (s) are not used. The volume frac-tions for the remaining acnsors are recomputed and reloaded ~into the program for use in ensuing leakage rate computations.

C.

Leakage Rate Formulae 1.

Computation using the Total Time Method:

a.

Measured leaka e rate, from data:

t P V = W 1tTi (1) 1 1

P V = W RTi (2) i i

2400 (W1-W) i att W1 Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:

Li = 2400/ati(1-T P /T P )

(4) 1i i1 whe re:

W,Wi = Weight of contained mass of dry air at times tt-and 1

ti respectively, lbm.

T,Ti = Containment atmosphere drybulb temperature at times 1

el and ti respectively,

  • R.

P,Pi = Partial pressure of the dry air component of the con-1 tainment atmosphere at times ti and ti respectively, psia.

V = Containment free air volume (assumed to be constant 3

during the test), ft.

th ti, tt = Time at 1st and i data points respectively, hours.

1 ati = Elapsed time f rom ti to ti, hours.

i R = Specific gas cons tant for air = 53.35 f t.lbf/lbm. *R.

Li = Measured leakage rate computed during time interval ti to ti, %/ day.

]

4 DH-103 A-3 1

7 e

..~ - -,, -, -

a

b.

Calculated leakage rate from regression analysis:

V)

/

L = a + batN (5) where:

L = Calculated Icakage rate, %/ day, as determined from the regression line.

2 IL (Eatg ) - EAtf( E att) i t

a=

A (6)

N(Eatt ) - U4tt)2 N(IL ati) - EL (IAti) i i

b=

2 (7)

N(eat 1 ) - (Eatt)2 N = Number of data points I=E J

1-1 c.

Calculated leakage rate at the 95% confidence level.

L95 = a + bacN + S._

(8)

L i

where:

I,95 = Calculated leakage rate at the 95% confidence level,. %/ day, at j

elapsed time AtN*

J For AtN < 24 I

0 025;N-2 (I(L -I )2 (N-2)}1/2 x [1 + 1 + (At - H ) /ECAt -E) ]II (9a)

S_

=t

/

1 t N

i L

N I

where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;

N-2 (N-2)4 i

For AtN2.24 1 - L )2 (N-2)]1/2 x (1 +(AtN - E) /E(Ot -

) ]II (9b) s_ = tg.025;N-2 (E(L

/

1 i

L N

Y 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 j

where, t0 025;N-2 =

(N-2)2 + 1.2209(N-2) - 1.5162 4

~i = Calculated leakage rate computed using equation (5) at total elapsed L

time Att, %/ day.

O Iat i u=

l N

l l

DH-103 A-4 I -

J b

2.

Computation using the Mass Point Method Contained mass of dry air from data:

4 a.

-Wi = 144 Pg RTi (10) where:

All symbols as previously defined.

~

b.

Calculated leakage rate from regression analysis:

l

.i b

L = -2400 -

(11) a I

where:

L

= Calculated leakage rate, %/ day, as determined from the regression line.

IW -bEAti i

a

=

(12) s N

s j

E[(Wi - EW /N) (Ati - E)] -

i b

(13)

=

E(At -h t

th Ati = Total elapsed t'ime at time of--i data point, hours N = Number of data points th Wi

  • Contained mass of dry air at i data point, lbm, as computed f rom equation (10).

i N

I=E i=1 i

E = Eat /N i

2 Calculated leakage rate at the 95% confidence level.

c.

-2400

~

L95 =

(b + S )

(14) b i

a where:

4 1

L95 = Calculated leakage rate at the 95% confidence level, %/ day.

\\

DH-103 A-5 i

i

.. ~ -

- E(w - Ui)2 i

Sb"C0 025;N-2 1/2 (15)

(N-2)t(ati - IE)2 _1 1.6449(N-2)2 + 3.5283 (N-2)2 + 0.85602 where, t0 025;N-2 =

(N-2)2 + 1.2209 (N-2) - 1.5162 5 = Contained mass of dry air, Ibm, computed at the i (16) th 1

data point from the regression equation

= a + bati All other symbols are previously defined.

\\

/

/

l DH-103 A-6 i

~

( j_

Procran Loeic D.

1.

A flow chart of Bechtel ILRT computer program usage is pre-sented in Figure 1, following.

The various user options and a brief description of their associated function are presented below:

OPTION-C010LuiD FUNCTION DATA Enables operator to enter raw data.

When the sys-tem requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data. Af ter completing the data entry, a summary is printed out.

The user then verifies that the data were entered correctly.

If errors are detected, the user will then be given the opportunity to correct the errors.

After the user verifies that the data were entered correctly, a Corrected Data Su= mary Report o'f time, date, average temperature, partial pressure of dry air, and water vapor pressure is printed.

TREND Terminal will print out a Trend Report.

[

TOTAL Terminal will print out a Total time Report.

\\ 'T MASS Terminal will print out a Mass Point Report.

TERM Enables operator to sign off temporarily or pe rmanently.

SAVE

' Enables operator to store the Data Summary on a file.

PREV Enables operator to call up an old, previously stored, file.

CORR Enables operator to correct data stored on a file.

LIST When used with a given file name, the printer will print cut a list of the Summary Data stored on the file.

1 READ l

Enable the computer to receive the next set of raw data from the data acquisition system directly.

)

A-7

( SIGtJ ON) t

\\ ENTER BASIC /

NO

/ ENTER PREVIOUS \\

{ INFO RMATION/

\\ VALUES FROM FILES /

YES r

DATA -

(OPTIONSg AA TORED ON o-PREV (ENTER D ATA)

CO RRECTS o-CORR

SUMMARY

DATA

[ YES STO RES

SUMMARY

\\

ENTER

/

NO r-SAVE D ATA ON A CORRECTIONS /

SELECTED FILE

SUMMARY

OF rTRENO

[ TREND REPORT)

MEASURED DATA

[

)

<r-TOTAL TOTAL TIME L._ A -

YES REPORT

'E R R O R?)

1 NO

"- M ASS MASS POINT REPORT CORRECTED CUMMARY DATA PRINTOUT o-LIST PRINT DUT OF

SUMMARY

DATA o-TERM

- ( SIGN OFF )

N J

BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CHART FIGURE 1

/O N_ I A-8

O APPENDIX B ILRT STABILIZATION DATA TEST.STA GRAND GULF STABILIZATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 1529 103 537.56366 26.425938 0.34851480 1545 103 537.01373 26.402582 0.34475750 1603 103 536.61597 26.383574 0.34468400 1615 103 536.46893 26.377193 0.34303159 1630 103 536.30707 26.368984 0.34320599 1645 103 536.20459 26.363253 0.34291309 1700 103 536.09918 26.357325 0.34281561 1715 103 536.03223 26.353136 3.34298769 1730 103 535.95685 26.348457 0.34264520

\\

(\\ms) 1745 103 535.88330 26.344131 0.34295520 1800 103 535.82629 26.340103 0.34296569 1815 103 535.76117 26.337587 0.34246781 1830 103 535.70874 26.334372 0.34267199 1845 103 535.66150 26.332005 0.34202629 1900 103 535.61688 26.329777 0.34224480 i

1915 103 535.56860 26.327791

.O.34222180 l

1930 103 535.54742 26.324705 0.34229621 1945 103 535.43054 26.323195 0.34179929 2000 103 535.44885 26.320612 0.34237379 2015 103 535.40631 26.318562 0.34241500 O

B-1 l

e c


v

- =

-n.

+

I d

APPENDIX C ILRT

SUMMARY

DATA TEST.DAT GRAND GULF ILRT ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 2030 103 535.38818 26.316441 0.34252653 2045 103 535.37219 26.315517 0.34244490 2100 103 535.34686 26.313202 0.34275225 2115 103 535.32245 26.311718 0.34222719 2130 103 535.28601 26.310568 0.34237543 2145 103 535.26984 26.309896 0.34204134 2200 103 535.23566 26.307184 0.34274417 2215 103 535.21973 26.304913 0.34300748 2230 103 535.19214 26.304295 0.34262270 2245 103 535.16925 26.302761 0.34315175 2300 103 535.14685 26.301828 0.34307989 2315 103 535.11749 26.300154 0.34274691 2330 103 535.10406 26.299398 0.34249672 0

2345 103 535.09546 26.299583 0.34231171 0

104 535.06689 26.296225 0.34366253 15 104 535.05304 26.297117 0.34277007 30 104 535.03369 26.295589 0.34329468 45 104 535.01672 26.293724 0.34415492 100 104 534.99390 26.293665 0.34321022 115 104 534.98413 26.292389 0.34348071 130 104 534.96783 26.291492 0.34337339 4

145 104 534.96344 26.290226 0.34363529 200 104 534.94757 26.289938 0.34392363 i

215 104 534.93909 26.288767 0.34409159 230 104 534.92371 26.287523 0.34432954 245 104 534.91162 26.287708 0.34414417 300 104 534.89838 26.286375 0.34447473 315 104 534.89233 26.285236 0.34460890 i

330 104 534.87921 26.285433 0.34441105 345 104 534.86578 26.284437 0.34440356 400 104 534.85150 26.283850 0.34499204 415 104 534.84827 26.283432 0.34440419 430 104 534.82874 26.283085 0.34475130 i

i l

t C-1

~ APPENDIX D ILRT CALCULATIONS (O) ss GRAND GULF ILRT m

LEAHAGE RATE (WEIGHT PERCEllT/ DAY)

MAS 3-POINT ANALtSIS TIME AND DATE.AT START OF TEST:

2030 0103 ELAPSED TIME:

8.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)

(PSIA)

MASS (LBM)

(LBM)

LOSS (LBM/HR) 2030 535.388 26.3164 221566.

2045 535.372 26.3155 221565.

1.1 4.6 2100 535.347 26.3132 221556.

9.0 20.3 2115 535.322 26.3117 221550.

2.4 16.8 2100 535.286 26.3106 221559.

-5.4 7.2 2145 535.270 26.3099 221560.

-1.0 4.9 2200 535.236 26.3072 221551.

8.7 9.9 2215 535.220 26.3049 221539.

12.5 15.6

') 2230 535.192 26.3043 221545.

-6.2 10.6

' 2245 535.169 26.3028 221541.

3.4 10.9 2300 535.147 26.3018 221543.

-1.4 9.3 2315 535.117 26.0002 221541.

1.9 9.1 2300 535.104 26.2994 221540.

0.8 8.6 2345 535.095 26.2996 221545.

-5.1 6.4

(^N O

535.067 26.2962 221529.

16.5 10.6

\\

15 535.053 26.2971 221542.

-13.3 6.4 30 535.034 26.2956 221537.

4.9 7.2 45 535.017 26.2937 221528.

8.7 8.8 100 534.994 26.2937 221537.

-9.0 6.4 115 534.984 26.2924 221531.

6.7 7.4 100 534.968 26.2915 221530.

0.8 7.2 145 534.963 26.2902 221521.

8.9 86 200 534.948 26.2899 221525.

-4.2 7.4 215 534.939 26.2888 221519.

6.4 8.2 230 534.924 26.2875 221515.

4.1 8.5 245 534.912 26.2877 221521.

-6.6 7.2 300 534.898 26.2864 201515.

5.8 7.8 315 524.892 26.2852 221508.

7.1 8.5 330 534.879 26.2854 221515.

-7.1 7.2 345 534.866 26.2844 221513.

2.8 7.4 400 534.852 26.2838 221514.

-1.0 7.0 415 534.848

'26.2934 221511.

2.2 7.0 400 534.829 26.2831 221517.

-5.2 6.2 FREE AIR VOLUME USED (MILLIONS CF CU. FT.)

1.670

=

REGRESSION LINE INTERCEPT (LEM) 2215cl.

=

SLOPE (LBM/HR)

-6.7

=

MAXIMUll ALLOWAELE LEAKAGE RATE 0.4 7

=

g) 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE 0.028

=

THE UFFER 95% CONFIDENCE LIMIT 0.079

=

THE CALCULATED LEAKAGE RATE 0.072

=

D-1

\\,

r'~5

(

)

GRnND GULF ILRT

\\_/

LEiikAGE RATE (WEIGH 1 PERCENT / DAY)

TO1HL-TIME ANALYSIS TIME AND DATE AT START CC TEST:

2000 0100 ELAPSED TIME:

E.OO HOURS TIME TEMP.

PRESSURE MEASURED (R)

(PSIA)

LGAKAGE RATE

_- __-- ~ ----- ___

2000 505.388 26.3164 2045 535.072 26.3155 0.050 2100 505.347 26.3132 0.220 2115 505.022 26.3117 0.181 2130 535.286 26.0106 0.078 2145 505.270 26.3009 0.053 2000 505.236 26.0072 0.107 2215 535.220 26.3049 0.169 2230 535.192 26.3043 0.115 22d5 535.169 26.3028 0.118 2000 535.147 26.3018 0.100

)

2015 505.117 26.3002 0.099 2000 535.104 26.2994 0.094 2045 535.095 26.2996 0.069 0

505.067 26.2962 0.11,5

('"y 15 535.053 26.2971 0.06'9 x

)

30 535.034 26.2956 0.078

" ~ '

45 535.017 26.2907 0.096 100 534.994 26.2937 0.069 115 534.984 26.2924 0.081 100 534.968 26.2915 0.078 145 534.963 26.2902 0.093 200 534.948 26.2899 0.080 215 534.939 26.2888 0.089 200 534.924 26.2875 0.093 245 534.912 26.2877 0.078 300 534.898 26.2864 0.084 315 534.892 26.2852 0.092 330 534.879 26.2854 0.078 345 534.866 26.2844 0.080 400 504.852 26.2008 0.076 415 504.848 26.2834 0.076 400 534.829 26.2831 0.067 MEAN OF MEASURED LEAKAGE RATES 0.095

=

)

MAXIMUM ALLOWADLE LEAKAGE RATE 0.437

=

75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE 0.328

=

THE UPPER 95% CONFIDENCE LIMIT 0.139

=

THE CALCULATED LEAKAGE RATE 0.068

=

G I

I v

D-2

m (G

)

GRhilb GULF ILRT TREi!D REPORT LEAL.: AGE Rf. TEE tWElGHT FERCEllT/ DAY)

TIME AtJD DATE AT START OF TEST:

2000 0103 ELAPEED TIi1E:

9.00 HOURS NO. DATA ELAPSED TOTAL-TIME ANALYSIS't1 ASS-POIf1T At1ALYSIS FOINTS TIME MEAT 1 CALCULATED

___________________ _ ______________ ___ CALCULATED ___________

95:. UCL 10 2.25 O.121 0.119 0.119 0.162 11 2.50 0.119 0.112 0.110 0.146 12 2.75 O.117 0.107 0.104 O.134 13 3.00 0.115 O.101 0.098 0.124 14 3.25 0.112 0.091 0.035 0.111 15 3.50 0.112 0.094 0.093 0.116 16 3.75 O.109 0.086 0.083 0.105 17 4.00 0.107 0.082 0.079 0.099 13 4.25 0.107 0.082 0.031 0.099 19 4.50 0.105 O.077 0.075 O.092 20 4.75 0.103 0.075 O.074 0.089 21 5.00 0.102 0.073 0.073 0.087 p!

22 5.25 0.102 0.074 0.075 0.088 i

23 5.50 0.101 0.073 0.075 O.086 24 5.75 O.100 0.073 0.076 0.087 25 6.00 0.100 0.074 0.078 0.03G 26 6.25 O.099 0.073 0.077 C.086 27 6.50 0.098 0.073 0.077 0.086 29 6.75 O.098 0.074 0.079 0.087 29 7.00 0.097 0.073 0.078 0.085 30 7.25 O.097 0.072 0.077 0.084 31 7.50 0.096 0.071 0.076 0.083 32 7.75 0.095 0.070 0.075 0.081 30 8.00 0.095 O.068 0.072 0.079 1

v D-3

A_PPENDIX E ILRT PLOTS ILRT T EHF EF.n I UF.E 502.00 533.00 534.00 5 5.00 536.00 538,00 539.

+_________+_________._________._________._____537.00

+

+

2100 -

+

+

+

+

2296 -

+

+

a

+

+

2000 -

+

+

+

+

0-

+

+

+

+

i 1QQ -

+

+

+

~

+

290 -

+

+

+

+

l 300 -

+

6

+

+

+

400 -

+

+

500 -

+

4

)

1 i

O E-1

- - - - ~ ' ~

VERIFICATION TEMPERATURE 532.00 533.00 534.00 535.00 536.00 537.00 539.00

+__-------+-____----+-________+_________,_________,_____538.00

+

+

+

600 -

+

+

+

+

700 -

+

+

+

~

+

800 -

+

~

+

+

+

900 -

+

+

+

+

1000 -

+

,=

+

!O i

s STABILIZATION l

1 TEMPERATURE 533.00 533.00 534.00 535.00 536.00 537.00 538.00 539.00

+-----

-+-

-___+-_____

f i

+

1 IGO3 -

t

+

t

+

l

+

i l700 -

i

+

i

=

+

+

+

i ISOC -

)

i i

+

+

+

l 1900 -

+

+

i i

+

+

2000 -

1

+

e E-2

i ILRT

l i

PRESSURE 2c.150 26.000 26.250 26.300 26.050 23.asc 26.sc

+_________+_________+_________+_________+____26.400

+

+

2100

+

+

+

2200 -

+

+

+

mm..

+

I l

ee W

~

+

l

+

j

+

0-

+

+

+

+

100 -

+

+

+

+

200 -

+

+

~

+

~

+

200 -

+

+

+

+

400 -

+

+

+

+

500 -

+

E-3

VERIFICATION PRE 55URE 26.150 26.200 26.250 26.200 2

2o.400 26.450 26.5OO

+-_--_-__-+_________+_________+_____6.250

+

+

+

600 -

+

+

+

+

700 -

+

+

+

+

GOO -

+

+

+

+

900 -

+

~

+

+

+

1000 -

+

+

STABILIZATION PF. ESSURE 26.150 26.000 26.250 26.200 26.250 26.400 26.450 26.500

+ _ _ _ _ _ _ _ _ _ + _ _ - -

__+__

_ _ _ _ + _ _ _ _ _ _ _ _ _ _ _ _

+

1603 -

+

+

+

+

1700 -

+

+

+

+

1800 -

+

+

+

+

+

1900 -

+

+

+

+

2OOO -

+

+

E-4

ILRT es1RMetSS 221000.

221100.

221200.

221300.

221400.

221300.

221:

+---------+---------+--------_,-----_-__,-__----__.______221 COO.

=

+

+

2100 -

+

+

+

+

m. m,, k.,

m_v -

+

+

t

+

2000 -

+

+

+

+

0-

+

+

+

+

100 -

+

+

+

+

200 -

+

+

+

+

200 -

+

1

+

+

400 -

+

+

+

+

500 -

+

t i

I i

l I

l l

i i

i l

1 i

E-5 i

VERIFICATION AIRMitSS 221000.

221100.

221200.

221200 221400.

221500.

2216 2217-

+---------+---_----.-+---------+--.

--_---+_-.-------+---------.00.

+

+

600 -

+

+

+

+

700 -

+

+

+

i,

+

+

800 -

+

+

+

+

900 -

+

+

+

+

1000 -

+

+

STABILIZATION AIRMASS 221000.

221100,

- 1,0U.

,,1 00.

-'1400.

-0

,mieOO.

221600.

2217c

+-----

-- s

- - - + _ - - - _ _ - - _ + - _ _.

-+_

- + = -

+

/603 -

+

+

+

+

1700 -

+

+

+

+

1800 -

+

+

+

+

1900 -

+

+

)

+

+

2000 -

+

+

E-6

O APPENDIX F VERIFICATION FLOW TEST

SUMMARY

DATA TEST.VER GRAND GULF VERIFICATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.432 VRATEM = 0.436 VRATEP = 0.364 TIME DATE TEMP PRESSURE VPRS 515 104 534.80566 26.280268 0.34556079 530 104 534.79596 26.278370 0.34544951 545 104 534.78748 26.277615 0.34520060 600 104 534.77368 26.276218 0.34559339 615 104 534.76746 26.274252 0.34554970 630 104 534.75714 26.272772 0.34602681 645 104 534.76361 26.272007 0.34578761 700 104 534.74396 26.269663 0.34612215 715 104 534.73499 26.268349 0.34643370

(*~')s 730 104 534.73236 26.267462 0.34631500 s.

745 104 534.72797 26.265524 0.34624526 800 104 534.71405 26.264580 0.34618655 815 104 534.70410 26.262316 0.34644118 830 104 534.69879 26.261040 0.34671304 845 104 534.68665 26.259174 0.34656873 900 104 534.63726 26.257030 0.34670511 915 104 534.67273 26.256052 0.34667951 930 104 534.65894 26.252333 0.34738570 945 104 534.64771 26.252180 0.34753838 1000 104 534.64069 26.250376 0.34733403 1015 104 534.63062 26.249893 0.34681413 1

1 F-1

O APPENDIX G VERIFICATION FLOW TEST CALCULATIONS

- GRAND GULF VERIFICATION LEAKAGE RATE (NEIGHT PERCENT / DAY)

MASS-FOINT ANALYSIS TIME AND DA1E AT START OF TEST:

615 0104 ELAPSED TIME:

4.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)

(PSIA)

MASS (LBM)

(LEM)

LOSS (LEM/HR)

.---- _ = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -.

615 534.767 26.2743 221467.

630 534.757 26.2729 221459.

8,2 32.8 645 534.764 26.2720 221450.

9.1 34.7 700 534.744 26.2697 221439.

11.6 38.6 715 534.735 26.2683 221431.

7.4 36.3 730 534.732 26.2675 221425.

6.4 34,2 745 534.728 26.2655 221410.

14.5 38.1 300 534.714 26.2646 221408.

2.2 34.0 815 534.704 26.2623 221393.

15.0 37.2 830 534.699 26.2610 221335.

S'.6 36.9 Q

845 534.687 26.2592 221374.

10.7 37.5 900 534.687 26.2570 221356.

18.3 40.7 915 534.673 26.2561 221350.

2.2 38.1 930 534.659 26.2523 221328.

~25.6 43.0 945 534.648 26.2522 221331.

-3.4 39.0 1000 534.641 26.2504 221319.

12.3 39.7 1015 534.631 26.2499 221319

-0.1 37.2 FREE AIR VOLUME USED (MILLIONS OF CU. FT.)

=

1.670 REGRESSION LINE INTERCEPT (LBM) 221471.

=

SLOPE (LBM/HR)

-39.8

=

VERIFICATION TEST LEAKAGE RATE UFPER LIMIT =

0.545 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =

0.327 THE CALCULATED LEAKAGE RATE 0.431-

=

l 1

1 o

G-1 l

  • w OY GRAND GULF VERIFICATION LEAKAGE RATE (WEIGHT FERCENT/ DAY)

TO THL-T IME ANALYSIS TIME AND DATE AT STAR T OF TEST:

615 0104 ELAP$ED TIME:

4.00 HOURS TIME TEMP.

PRESSURE MEASURED (R)

(PSIA)

LEAKAGE RA

________-____-_______________________1E 615 534.767 26.2743 630 534.757 26.2728 0.356 645 534.764 26.2720 0.376 700 534.744 26.2697 0.418 715 534.735 26.2683 0.394 730 534.732 26.2675 0.370 745 534.728 26.2655 0.413 800 534.714 26.2646 0.368 815 534.704 26.2623 0.403 800 534.699 26.2610 0.399 845 534.687 26.2592 0.406 900 534.687 26.2570 0.441 915 534.673 26.2561 0.413

(~N 930 534.659 26.2523 0.466

\\ s) 945 534.640 26.2522 0.423 m

1000 534.641 26.2504 0.430 1015 534.631 26.2499 0.403 MEAN OF MEASURED LEAKAGE RATES

=

0.405 VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =

VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =

0.541 THE CALCULATED LEAKAGE RATE 0.323

=

0.434 O

V G-2

'J GRAND GULF VERIFICATION TREND REPORT LEAKAGE RfiTES (WEIGHT FERCENT/ DAY)

TIME AND DATE AT START OF TESY:

615 0104 ELAPSED TIME:

4.00 HOURS NO. DATA ELAPSED TOTAL-TIME ANALYSIS' MASS-FOINT ANALYSIS POINTS TIME MEAN CALCULATED CALCULATED 10 2.25 0.389 0.400 0.397 11 2.50 0.390 0.404 0.402 12 2.75 0.395 0.418 0.420 13 3.00 0.396 0.420 0.420 14 3.25 0.402 0.436 0.440 15 3.50 0.403 0.436 0.438 16 3.75 0.405 0.439 0.439 17 4.00 0.405 0.434 0.431

\\

1

(

c-3

(

APPENDIX H BYPASS LEAKAGE RATE CALCULATIONS The formula for computing leakage rate by flow totalizer method is:

Lt = (P /T1 - P /T ) x (VT /60tP ) + F/60t 1

2 2 s

s 1

where:

I Lt=

Leakage rate, standard cubic feet per minute (SCFM)

P,P2 = Test volume absolute pressure at start and end of test 1

4 respectively, absolute units i

T,T2 = Test volume absolute temperature at start and end of test 1

respectively, absolute units V

= Total test free air volume, cubit feet (270,128 cu.ft.)

1 Ts

= Standard temperature (68'F)

Ps

= Standard pressure (14.6959 psia)

-s) t

= Tes t duration, hours (4 hrs.)

O F

= Makeup air (to maintain test pressure), standard cubic feet = F2-F1 F,F2 = Makeup air flow meter reading at start and end of test 1

respectively, SCF (convert from actual cubic feet to standard cubic feet).

(1)

Calculate drywell average temperature at start and end of test, where VF = Volume Friction.

T1 - 76.102*F = 535.772*R T2 = 76.271*F = 535.941*R (2) Drywell pressure at start and end of test:

P1 = 17.793 psia P2 = 17.785 psia s

O d

DH-103 i

H-1 4

- - ~ -

i (3) Calculate drywell makeup air volume, convert from actual cubic feet to standard cubic feet:

F1 = 118070 cu.ft.

i F2 = 86350 cu.ft (50+14.6959 % (44+459.67 /68+459.67) 14.6959

)*\\

F = (F1-F) 2

/'64.6959 527.67) x(503.67 /

31720 x14.6959

\\

=

146295.19 cu.ft.

=

(4) Bypass Leakage Rate Calculation:

[17.793 17.785 270,128x68 }

146295.19 Lt = \\535.772 535.941 60x4x14.6959/ '

60x4 609.7 SCFM

=

O J

O DH-103 H-2

l APPENDIX I Local Leakage Test Summary Data Type B Test Results i

Penetration Description Leakage, SCCM 1

Equipment Hatch 2+2 2

Upper Personnel Lock 2

3 Lower Personnel Lock 4

Fuel Transfer Tube 0 + 11 201 Reactor Protection System 030 202 Low Voltage Power 0+0 203 Instrumentation 030 9

204 Instrumentation 0+0 205 Neutron Monitoring 0IO 206 Low Voltage Power 0IO 207 Control and Power 0I0 4

208 Control 0{0 J

209 Low Voltage Power 0+0 210 Radiation Monitoring 0+0 211 Control 0+0 i

212 Instrumentation 0IO 213 Rod Position Indication OIO 214 T.I.P.

OT0 0

215 6.9 Kv-Reactor Recirculate Pump A 0[0 t

216 Spare 0+0 217 LV Power and Control 0I0 218 Neutron Monitoring 0{0 219 Ins trument ation 0+0 I

220 Instrumentation 0{0 221 Spare 0+0 i

222 Reactor Protection 0IO 223 LV Power and Control 0I0 224 Spare 0IO l

225 LV Power 0IO 226 Control 0IO 227 Instrumentation 0I0 228 Instrumentation (Neutron Monitoring) 0{0 229 LV Power and Control 0+0 230 Reactor Protection 0{0 t

231 Instrumentation 0+0 232 Neutron Monitoring 0[0 233 Rod Position Indication 0+0 234 Spare 0IO 235 Neutron Monitoring 0I0 l

237 Instrumentation (SRV Inplant Test) 0{0 238 Reactor Protection System 0+0 239 Control 0+0 240 Instrumentation 0I0 241 LV Power and Control 0I0 1

242 LV Power and Control 0{0 Dil-119 I-1 i

e

,r._.

-,,..,,n,.

APPENDIX I (Cont'd)

Local Leakage Test Summary Data Type B Test Results (Cont'd)

Penetration Description Leakage, SCCM 243 Spare 010 244 LV Power 0+0 245 Control Bop 010 246 Radiation Monitoring 010 247 6.9 KV Reactor Recirculate Pump B 010 249 Instrumentation 010 Drywell Personnel Hatch Drywell Head Drywell Equipment Hatch 30 1 11 Drywell Head Manhole TOTAL = 32 1 16 O

O DH-119 I-2

APPENDIX I (Cont'd)

Local Leakage Test Summary Data Type C Test Results (Pneumatic)

Penetration Description Leakage, SCCM 5

Main Steam Line A 10,500 i 150 6

Main Steam Line B 552 + 19 7

Main Steam Line C 20 + 17 8

Main Steam Line D 3,3901148 17 Steam Supply to RCIC Turbine and RHR Hx 114.0 1 17 19 Main Steam Drain to Condenser 4 i 12 33 CRD Pump Discharge 0 1 12 34 Containment Purge Supply 135 1 17 35 Containment Purge Exhaust 80 + 17.

36 Plant Service Water Return 58 1 12 37 Plant Service Water Supply 38 Chilled Water Supply 1,250 i 120 39 Chilled Water Return 20 + 12 40*

ILRT Containment Pressurization /

Depressurization 286 + 12 41 Plant Service Air 220 + 12 42 Instrument Air 800 1 12 O

43 RWCU to Main Condenser 10 1 17

\\

44 Component Cooling Water Supply 40 1 17 45 Component Cooling Water Return 48 + 17 47 Reactor Recirculate Post Accident Sample 0 i 11 49 RWCU Backwash Transfer Pump to Spent Resin Storage Tank 72 + 12 50 DW & Containment CRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,385 1 104 51 DW & Containment DRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,395 1 100 54 To Upper Containment Pool and f rom Refueling Water Storage Tank 5 + 12 56 Condensate Makeup to Upper Containment Pool 230 + 11 57 Discharge from Fuel Pool Cooling and C.U.

System to Upper Containment Pool 172 + 12 58 Inlet Upper Containment Pool skimmer Tanks to Fuel Pool Cooling and C.U. System 142 1 12 60 Auxiliary Building Floor and Equipment Drain Return 23 + 17 65 Containment Normal Vent Supply and Combustible Cas 350 1 17 66 Containment Normal Vent and Combustible Gas Exchange 30 + 17 A

  • Leakage rate for penetration 40 and 82 is included in this total Dil-119 I-3

APPENDIX I (Cont'd)

Local Leakage Test Summary Data Type C Test Results (Pneumatic)(Cont'd)

Penetration Description Leakage, SCCM i

70 Automatic Depressurization System (Instrument Air) 20 + 17 4

)

75 RCIC Pump Turbine Exhaust Vaccum Relief 12112 j

81 Reactor Recirculate Sample 0 1 12 82*

ILRT Drywell Pressurization /Depressurization 286 1 12 83 RWCV Line from Regenerative Ht. Exchange to Feedwater 100 + 12 84 Drywell and Containment Chemical Waste 60112 85 Suppression Pool Cleanup Return 180 1 21 86 Demineralization Water Supply to Containment 330 1 12 87 RWCV Putap Suction from Recirculate Loops 60 1 17 88 RWCV Pump Discharge to RWCV Ht. Exchange 40 1 12 101C Drywell Pressure Instrumentation (Narrow Range) 0 1 12 101F Drywell Pressure Instrumentation (Wide Range) 6 1 12 l

102D Drywell Pressure (Wide Range) 15 1 12 103D Containment Pressure (Wide Range) 10 + 12 0

104D Containment Pressure (Wide Range) 10112 j

105A Containment Drywell H2 Analyzing 110 1 12 106A Drywell H2 Analyzing Sample 14 i 12 l

106B Drywell H2 Analyzing Sample Return 10 i 12 l

106E Containment H2 Analyzing Sample Return 10 1 12 107B Drywell H2 Analyzing Sample Return 158 1 12 107D Drywell H2 Analyzing Sample 50112 107E Drywell H2 Analyzing Sample Return 15 1 12 108A Containment H2 Analyzing 95 1 12 109A Drywell - Fission Products Monitor Sample 0 1 12 109B Drywell - Fission Products Monitor Sample i

Return 100 i 12 109D Containment Pressure Instrument (Narrow Range) 10 1 12 110A ILRT Instrumentation Drywell Pressure 0 1 11 110C ILRT Instrumentation Verification Flow 0 + 11 i

110F ILRT Instrumentation Containment Pressure 10 + 11 114 Suppression Pool Water Level Control 9 1 12 116 Suppression Pool Water Level Control 45 1 12 118 Suppression Pool Water Level Control 7 1 12 120 Suppression Pool Water Level Control 5 1 12 1

TOTAL = 22822 1 300 N

  • Leakage rate for penetration 40 and 82 is included in this total.

DH-119 I-4 i

APPENDIX I (Cont'd)

Local Leakage Test Summary Data Type C Test Results (Hydraulic)

Penetration Description Leakage, SCCM 9

Feedwater A 3.8 + 2.5 10 Feedwater B 16-2/3{2.5 11 RHR Pump A Suction 180 1 36 12 RHR Pump B Suction 503 + 92

~

13 RHR Pump C Suction 917 + 74 14 RHR Shutdown Suction 010 18 RHR to RPV Head Spray 3.8 1 5 20 RHR A to LPCI 010 21 RHR B to LPCI 5.60 1 3.5 22 RHR C to LPCI 519 + 28

~

23 RHR A Pump Test Line to Suppression Pool 180 1 35 24 RHR C Pump Test Line to Suppression Pool 917 1 74 25 HPCS Pump Suction 6.23 + 4.3 26 HPCS Pump Discharge to RPV 25 + 20 27 HPCS Test Line to Suppression Pool 6.3 1 2.5 28 RCIC Pump Suction 010

)

29 RCIC Turbine Exhaust 0+0 30 LPCS Pump Suction 0I0 31 LPCS Pump Discharge to RPV 471 1 53 32 LPCS Test Line to Suppression Pool 0+0

~

46 RCIC Pump Discharge Minimum Flow Line 010 48 RHR Hx B Relief Valve Vent Header to 8.5 1 5 Suppression Pool 67 RHR Pump B Test Line to Suppression Pool 503 1 54 69 Refueling Water Transfer Pump Suction From Suppression Pool 50 + 7 71A LPCS Relief Valve Discharge to Suppression Pool 0+0 71B RHR "C" Relief Valve Discharge to Suppression Pool 917 + 74 73 RHR Shutdown Relief Valve Discharge to i

Suppression Pool (H.P.)

82.6 1 24 76B RHR A Shutdown Suction Relief Valve Discharge to Suppression Pool (H.P.)

12.75 1 5 77 RHR HT. Exchanger A Relief Valve Discharge to Suppression Pool 180 + 35 89 Standby Service Water Supply A 22[7 90 Standby Service Water Return A 0+0 91 Standby Service Water Supply B 010 92 Standby Service Water Return B 5+6 113 Suppression Pool Water Level Control 5.3 I 5

~

i 115 Suppression Pool Water Level Control 010 i

117 Suppression Pool Water Level Control 5 + 12 I

1 119 Suppression Pool Water Level Control 17 _ 12 TOTAL = 5563 _+ 192 DH-119 I-5

r 1

4 1

!O

)

I MISSISSIPPI POWER AND LIGHT CO.

GRAND GULF NUCLEAR STATION UNIT 1 DOCKET NO. 50-416 j

)

PRIMARY REACTOR CONTAINMENT INTEGRATED LEAKAGE RATE TEST REPORT i

a J

i i

4 8

i 1

I O l

i l

I Submitted To The United States Nuclear Regulatory Commission Pursuant To Facility Operating License i

e 4

}

g

,V [l M f.

t/. JQ U

[T I O Y 3 I ~#

I.,

WP=VW

FT

""-"'v'v"FWM w etNNwN47^--*--m--W-m

-+-' rem-PT-w---w w -&T e +wo n =-mule-W -Ne'*Nw'u-'-w W CN-

%-+w--er-ww-w--v'm

+*m-,---,wem--ew-w

i TABLE OF CONTENTS O

Page No.

I.

INTRODUCTION 1-1 4

II.

TEST SYNOPSIS 2-1 III. TEST DATA

SUMMARY

3-1 IV.

ANALYSIS AND INTERPRETATION 4-1 l

V.

COMPUTER REPORT AND DATA PRINTOUT 5-1 i

APPENDIXES A.

Bechtel ILRT Computer Program A-1 B.

ILRT Stabilizaticn Data B-1 C.

ILRT Summary Data C-1 D.

ILRT Calculations 1

Mass Point Analysis D-1 Total Time Analysis D-2 Trend Report Analysis D-3 E.

ILRT Plots Temperature Versus Time E-1 Pressure Versus Time E-3 Air Mass Versus Time E-5 F.

Verification Flow Test Summary Data F-1 G.

Verification Flow Test Calculations Mass Point Analysis G-1 1

Total Time Analysis G-2 Trend Report Analysis G-3 H.

Bypass Leakage Rate Calculation H-1 I.

Local Leakage Test Summary Data I-l 11 DH-103

()

I.

INTRODUCTION (s /

The Reactor Containment Building Integrated Leakage Rate (Type A) test is performed to demonstrate that leakage through the primary reactor containment systems and components penetrating the primary containment does not exceed the allowable leakage rate specified in the Grand Gulf Nuclear Station Final Safety Analysis Report (FSAR).

The successful preoperational Integrated Leakage Rate Test (ILRT),

Verification Test, and Drywell Bypass Test were completed on January 5, 1982 at Grand Gulf Nuclear Station Unit 1.

Acceptance criteria for both ANSI /ANS 56.8-1981, " Containment System Leakage Testing Require-ments," and BN-TOP-1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Powcr Plants,"

were met for an 8-hour short duration test.

Calculations were per-formed using the ANSI /ANS 56.8-1981 " Mass Point Analysis Method" and BN-TOP-1, " Total Time Analysis Method." The test results are reported in accordance with the requirements of ANSI /ANS 56.8-1981, Section 5.8 and 10CFR50, Appendix J, Section V.B.3.

The purpose of this report is to provide information pertinent to the activities related to the preparation, test performance, and reporting of the Grand Gulf Nuclear Station Unit 1 ILRT.

Section II, Test Synopsis, presents the highlights of activities and events which occurred prior to and during the ILRT.

3 x_,/

Section III, Test Data Summary, contains the data and results necessary to demonstrate containment atmosphere stabilization, an acceptable leakage rate, and a successful verification test.

In addition, plots provided in Appendix E supply a visual history of containment atmos-pheric conditions beginning with the stabilization condition, through-out the 8-hour short duration ILRT period, and ending with the verification test.

Section IV, Analysis and Interpretation, contains technical details of the integrated leakage rate measuring system used during the ILRT, and provides analysis to show that the containment 95% upper confidence limit leakage rate does not exceed 75% of the allowable rate as speci-fied in the plant FSAR.

Section V, Computer Report and Data Printout, describes the ILRT com-puter program and report printouts.

Ib DH-103 1-1

II.

TEST SYNOPSIS TEST PREPARATION ACTIVITIES Prior to containment pressurization for the Structural Integrity Test (SIT) on January 1,1982, Grand Gulf Nuclear Station Unit 1 test personnel were engaged in measuring containment leakage to ensure a successful preoperational ILRT.

Sources of containment leakage were identified through Types B and C leakage rate testing programs and reduced by repairing those systems and containment components having relatively excessive leakage rates. The results of the Local Leakage

~ Rate Test (LLRT) are presented in Appendix I.

Highlight 3 of the test preparation activities included monitoring both upper and lower personnel hatch pneumatic systems leakage and repniring MSIV guard pipe inspection. port seals, positioning sensors, verifying associated volume fractions, and conducting a temperature' survey to ensure that all sensors could accurately monitor their respective subvolumes. An in-situ check, as specified in ANSI /ANS 56.8-1981, Section 4.2.3, was conducted to verify that all ILRT instrumentation was indicating correctly. The following items are presented in chronological order, and detail significant activities performed during the test preparation and successful execution.

The Type A test procedure was reviewed to verify compliance with 3

Plant Technical Specifications, 10CFR50 Appendix J, ANSI /ANS 56.8-1981, BN-TOP-1, and the FSAR.

In addition,-test personnel reviewed the valve lineups to verify that the containment systems were in as close to post-accident alignment as possible.

CONTAINMENT PRESSURIZATION j,

Containment pressurization for the ILRT began at 1030 on January 3, 1982. At the start of pressurization, containment fans M41-B001A and M41-8001B, and the containment, steam tunnel, and drywell cooling systems were operating.

During pressurization with the containment at 10 to 12 psig, containment fan M41-B001B tripped off on overcurrent at approximately 68 amperes.

ILRT pressure of 12.27 psig (26.24 psia) was reached at 1525. Containment fan M41-B001A was then manually tripped to prevent a possible uncontrolled trip.

CONTAINMENT STABILIZATION l

After reaching ILRT pressure, the containment atmosphere was allowed to l

stabilize. The temperature stabilization criteria of ANSI /ANS 56.8-1981, Section 5.3.1.3, and BN-TOP-1, Section 2.2.B, were satisfied.

The ILRT stabilization data are given in Appendix B.

O DU-103 2-1

(}

During containment stabilization the outer doors on the upper and

(_,/

lower personnel locks were opened. A number of small leaks were de-tected through the inner door seals. Leaks were repaired on the upper and lower lock containment pressure sensing systems. The outer doors were closed at 1853.

DURING ILRT Subsequent to containment air mass temperature stabilization, the ILRT for Grand Gulf Nuclear Station Unit 1 started at 2030 on January 3, 1982, and terminated at 0430 on the following day, for an 8-hour short duration test.

The accumulated data were statistically analyzed (see Section III (C), Test Results - Type A Test.) The maximum allowable leakage rate (L ) for the primary containment is 0.437 wt.%/ day. The a

Total Time Analysis (BN-TOP-1) yields a leakage rate of 0.068 wt.%/ day with an upper 95% confidence limit of 0.139 wt.%/ day.

Based on the Mass Point Analysis (ANSI /ANS 56.8-1981), the calculated leakage rate is 0.072 wt.%/ day with an upper 95% confidence limit of 0.079 wt.%/ day.

These values are well below the Grand Gulf Nuclear Station Unit 1 acceptance criterion of 0.328 wt.%/ day (0.75 L )*

a VERIFICATION FLOW TEST A successful verification flow test was performed subsequent to the

')

ILRT from 0615 to 1015 on January 4, 1982.

ILRT instrumentation per-s_J formance was checked by imposing a leakage rate (L ) of 0.364 wt.%/ day a

(7.67 scfm). Af ter imposing the leakage rate, the containment atmos-pheric conditions were allowed to stabilize for one (1) hour.

Due to an apparent flow restriction in the verification flow line, the imposed leakage rate could not reach the maximum allowable leakage rate (La) of 0.437 wt.%/ day. The imposed leakage rate (Lo) of 0.364 wt.%/ day is within the acceptance limits of La + 25% as given in ANSI /ANS 56.8-1981, Section 3.2.6(b)(1). The results of the verification test correlated to the ILRT are summarized as follows:

Measured (Acceptance Limit) 95% UCL Test Method Leakage wt.%/ day wt.%/ day a.

ILRT/ Mass Point 0.072 (0.328) 0.079 ILRT/ Total Time 0.068 (0.328) 0.139 b.

Verification / Mass Point 0.431 (0.327-0.545)

NA Verification / Total Time 0.434 (0.323-0.541)

NA 0)

\\s_

1 DH-103 2-2

DEPRESSURIZATION AND DRWELL BYPASS TEST Following the successful completion of the ILRT and verification flow test, containment depressurization began at 1030 on January 4, 1982. At 4.3 psig, a containment entry was made to close the drywell lock for the Drywell Bypass Test. The containment was then depressurized to O psig and the dry

  • well, whose pressure had dropped to 2.2 psig, was repressurized to 3 psig.

During repressurization of the drywell it was necessary to raise the sup-pression pool level to prevent leakage through the weir wall. After raising the suppression pool level, leakage through the weir wall was observed at 3.02 psig. The drywell pressure was then maintained between 3.00 and 3.01 psig with no observed leakage through the weir wall. The drywell atmosphere was allowed to stabilize for one hour, after which the Bypass Leakage Test began at 0400 on January 4, 1982. The Bypass Leakage Test was successfully completed at 0800. The calculated bypass leakage rate of 609.7 scfm is well below the allowable rate of 3500 scfm. Refer to Appendix H, Drywell Bypass Test Summary Data for calculations.

OG DH-103 2-3

l GGNO OIT/ ILRT PR699UR.6 Vs. TME C URVE LEGEND 61 T

-..... IL R T 17 5

/61T y

li E

a

\\

n 16.0 f

\\!

8 l

l

\\

j ILRT

j

[L I-g it l

g 12 5 a

a I

\\

m w

W e

3 roo I!

l

\\

E i

r!

"1 4

sn I

i

)

m W

i e

k

]5 l

l

'}

m 1

=

90 Q

_7 j

i pnywsu 7

b=

6YFAGS Test

-l o

w 2D../

\\. :

x j

I

\\.'

S m

i d-o 10 20 SO AO 90 GO 70 80 90 l%

tlO 82 0 lbO TIME

( HOUR)

O O

O

I III. TEST DATA

SUMMARY

Pursuant to the requirements of ANSI /ANS 56.8-1981, Section 5.8, Reporting of Results, the information in this section is provided to supply adequate data for an independent review of the containment system leakage rate test results and instrumentation.

4.

Plant Information 1

Owner:

Mississippi Power and Light Company Plant:

Grand Gulf Nuclear Station Unit 1 Location:

Port Gibson, MS Containment Type:

Mark III NSSS Supplier, Type: General Electric, BWR Date Test Completed: January 5, 1982 B.

Technical Data 1.

Containment Net Free Air Volume' 1,670,360 cu ft 2.

Design Pressure P = 15 psig d

{

3.

Design Temperature T = 185'F 4.

Calculated Peak Accident Pressure P = 11.5 psig a

5.

Calculated Peak Accident Temperature T = 181'F a

6.

Containment ILRT Average Temperature 40*F-120*F Limits C.

Test Results - Type A Test 1.

Test Method Absolute I

l 2.

Data Analysis Technique Mass Point Leakage Rate per ANSI /ANS 56.8-1981

)

Total Time per BN-TOP-1 3.

Test Pressure (actual)

P = 11.97 to 12.27 psig 4

4.

Maximum Allowable Leakage Rate L = 0.437 wt.%/ day a

5.

75% of L 0.328 wt.%/ day a

6.

Integrated Leakage Rate Test Results Leakage Rate, L,. wt.%/ day From Regres-At Upper sion Line 95% Confi-dence Limit Mass Point Analysis 0.072 0.079 Total Time Analysis 0.068 0.139 DH-103 3-1

/%

7.

Verification Test Imposed Lo = 0.364 wt.%/ day (7.67 scfm)

(_,/

Leakage Rate 8.

Verification Test Results Leakage Rate, L wt.%/ day yg, Mass Point Analysis 0.431 Total Time Analysis 0.434 9.

Verification Test Limits:

Test Limits, L, wt.%/ day y

Mass Point Total Time Analysis Analysis Upper Limit (Lo+ Lam + 0.25L )

0.545 0.541 a

Lower Limit (Lo + Lam - 0.25L )

0.327 0.323 a

10.

Report Printouts:

The report printouts and data plots for the Type A and verification test calculations are provided in Appendixes C through G.

D.

Drywell Bypass test results are provided in Appendix H.

E.

Test Results - Type B and C Tests O

Refer to Appendix 1 for a summary of local leakage rate test results.

F.

Integrated Leakage Rate Measurement System (For ILRT Data Acquisition System, see Figure 2).

1.

Absolute Pressure (2 channels):

Mensor Quartz Manometer Model No. 10100-001 PI-l Capsule S/N 2407, Gage S/N 1522 PI-2 (Spare) Capsule S/N 2406, Gage S/N 1555 Range:

0-100,000 counts; 0-100 psia Accuracy:

+ 0.015% reading Sensitivity:

0.001 psia Repeatability:

0.001 psia Calibration Date: 12/23/81 I

i i O DH-103 3-2

i 2.

Drybulb Temperature (22 sensors):

Rosemount resistance temperature detector Model No.

14632 Series 78 r

Element:

Platinum Resistance:

Ro = 100 ohms @ 32*F Lecd Type:

3 lead potentiometric configuration Temperature Range:

32' to 120*F (from calibration data)

Volumetrics Bridge Model No. VSTD 333 Input Voltage:

i 15 volts and 5.2 volt Resistance:

100 ohms @ 32*F j

Output:

1.0 millivolt /*F; 32*F = 32 mv.,

100*F = 100 mv.; 3-wire configuration with constant current Adjustment:

Zero, span and linearity (limited)

Accuracy:

0.l*F Sensitivity:

0.0l*F Repeatability:

0.0l*F Calibration Date:

12/21/81 3.

Dewpoint Temperature (6 sensors):

Dewpoint Temperature Systems - EC&G, Inc., Dewpoint Hygrometer, Model No. 660 with 6 sensors and signal conditioning.

Accuracy:

1 0.l*F Sensitivity:

0.0l*F Repeatability:

0.05'F Calibration Date:

12/18/81 4.

Verification Flow (1 channel):

Volumetric thermal mass flow meter, TSI model No. 2013 S/N 1516 Range:

0-10.0 scfm Accuracy:

i 1% F.S.

Sensitivity:

1 0.01 scfm Repeatability:

1 0.01 scfm Calibration date:

10/20/81 5.

Drybulb and Dewpoint Temperature Sensor Volume Fractions (see Tables 1 ar.d 2).

O DH-103 3-3

+,

,-,t m.,

(

G.

Information Retained at Plant The following information is available for review at the facility:

1.

Access control procedures established to limit ingress to containment during testing.

2.

A listing of all containment penetrations, including the total i

number of like penetrations, penetration size, and function.

1 3.

A listing of normal operating instrumentation used for the leakage rate test.

4.

A system lineup (at time of test) showing required valve positions and status of piping systems.

5.

A continuous, sequential log of events from initial survey of containment to restoration of all tested systems.

6.

Documentation of instrumentation calibrations and standards (included with documentation should be an error analysis of instrumentation).

7.

Data to verify temperature stabilization criteria as estab-lished by test procedure (Appendix B).

O 8.

The working copy of the test procedure that includes signature sign-off of procedural steps.

9.

The procedure and all data that verify completion of penetra-tions and valve testing (B&C-type tests) including as-found leak rates, corrective action taken, and final leak rate.

10.

Computer printouts of ILRT data and manual data accumulation along with summary description of computer program (Appendix C).

11.

The Quality Assurance audit plan or checklist used to monitor ILRT with proper sign-offs.

12.

A listing of all test exceptions including changes in contain-ment system boundaries instituted by licensee to conclude successful testing.

13.

Description of sensor malfunctions, repairs, and methods used to redistribute volume fractions to operating instrumentation where applicable.

l 14.

A review of confidence limits of test results with accompanying computer printouts where applicable.

lO i

DH-103 3-4

i l

i i

i 15.

Description of method of leakage rate verification of instru-

}

ment measuring system (superimposed leakage), with calibration

,1 information on flow meters along with calculations used to-J measure the verification leakage rate (Appendixes F and G).

5 16.

Plots presenting ILRT data obtained during the test

l (Appendix E).

I i

17. The P& ids of systems which penetrate the containment.
i a

e J

l t

i l

i i

4 f

I f

l l

l DH-103 3-5 i

{

TABLE 1 CONTAINMENT TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (ILRT)

Containment Azimuth Distance from Volume RTD Instrument No.

Elevation (Degrees)

Center Fraction TE-N001-01 274'-0" 352 20'-0" 0.062 TE-N001-02 274'-0" 172 20'-0" 0.062 TE-N001-03 247'-9" 90 30'-8" 0.062 TE-N001-04 245'-9" 265 27'-6" 0.062 TE-N001-05 214'-4" 45 50'-6" 0.062 TE-N001-06 229'-2" 155 49'-8" 0.062 TE-N001-07 216'-0" 225 49'-8" 0.062 TE-N001-08 227'-0" 319 49'-0" 0.062 TE-N001-09 173'-0" 220 52'-0" 0.058 1

TE-N001-10 163'-0" 305 50'-8" 0.057 TE-N001-11 164'-6" 155 28'-8" 0.022 TE-N001-12 141'-6" 162 50'-3" 0.058 TE-N001-13 141'-2" 90 55'-6" 0.057 TE-N001-14 122'-2" 335 41'-2" 0.057 TE-N001-15 124'-0" 177 51'-6" 0.057 O.

TE-N001-16 150'-6" 219 25'-4" 0.022 TE-N001-17 120'-0" 95 27'-8" 0.022 TE-N001-18 129'-0" 187 29'-0" 0.022 TE-N001-19 168'-0" 350 30'-3" 0.022 TE-N001-20 153'-5" 41 27'-3" 0.023 TE-N001-21 119'-9" 278 26'-9" 0.022 TE-N001-22 102'-6" 0

4' O.005 1.000 Containment Azimuth Distance from Volume ME Instrument No.

Elevation (Degrees)

Center Fraction ME-N002-01 247'-9" 90 30'-8" 0.210 ME-N002-02 216'-0" 225 49'-9" 0.210 ME-N002-03 167'-0" 305 50'-8" 0.210 ME-N002-04 122'-2" 355 41'-2" 0.210 ME-N002-05 158'-5" 41 27'-3" 0.080 ME-N002-06 118'-2" 278 26'-9" 0.080 1.000 i

O l

3-6 DH-103 i

.=

TABLE 2 DRYWELL TEMPERATURE AND DEWPOINT SENSOR LOCATIONS AND VOLUME FRACTIONS (BYPASS TEST)

Drywell 1

Azimuth Distance from Volume 1

RTD Instrument No.

Elevation (Degrees)

Center Fraction TE-N001-ll 164'-6" 155 28'-8" 0.138 TE-N001-16 150'-6" 219 25'-4" 0.138 TE-N001-17 120' 95 27'-8" 0.138 TE-N001-18 129' 187 29'-0" 0.138 I

TE-N001-19 168' 350 30'-3" 0.138 TE-N001-20 153'-5" 41 27'-3" 0.138 TE-N001-21 119'-9" 278 26'-9" 0.138 TE-N001-22 102'-6" 0

4'-0" 0.034 1.000 Drywell Azimuth Distance from Volume ME Instrument No.

Elevation (Degrees)

Center Fraction ME-N002-05 158'-5" 41 27'-3" 0.5 ME-N002-06 118'-2" 278 26'-9" 0.5 4

1.0 i

i O

DH-103 3-7 i

-__.--..,__-_.-_.m___

m M C N

e, 5mu m

mm mc 22 m -4 l

l 3"

EE ac

_ _ __ _ _ __ _, = a:

1 w.

I I

=,m B,mN I

=

>mm

>m l

2mm Emm mmm l

~

1

~uss

-ENS E"<E 85a

-c_

-c_

o ma a-

-4 m o

-4 me r r= m I

ama am=

p'e 1

=

=

==

I

\\

l l

N I

I I

1 I

F

_e

a 1

=e I

H C "4 I

-4 >

l i

C I

I H

~s i

I (d

n i

E-s

=

I I

5" E

N, NE I

O E

2: c Ea

=9 i

o Na i

8 o

I g

m

="

i c

1

=

I l

en, 1

I g

I I

o i

i 2

m I

g I

,e I

=g i

l._.______.____________l l

to i

I i

Hm g

i m

I 9

1 E

i x

,=

n e

ig;

?;=

I g

en 8c I

InE ;-

aun suc 1

QB GNE I

I s mc>

mc>

me o>c P

I m

nm nm r-yy e-M y g n m -4 e m -4

.C r-r" r-D Em>

U m g:=

I d

3m 3m 2

m l

C m"

M i

m 2

I I

,_-._____.___-.________J_.__._____.._I, AV FIGURE 2 3-8

IV.

ANALYSIS AND INTERPRETATION O

A.

This section is provided pursuant to ANSI /ANS 56.8-1981, Section 5.8.6, which requires analysis of leakage rate data and provides an interpretation of the test results to show proper compliance l

with acceptance criteria specified in ANSI /ANS 56.8-1981, 10CFR50, Appendix J, and the Grand Gulf Nuclear Station FSAR.

Several corrections must be added to the calculated results of the Unit 1 ILRT. The Plant Chilled Water System (Pen 38 + 39) was not in the post LOCA lineup position and therefore the LLRT result of 2.69 SCFH must be added to the ILRT calculated results. The seal systems on the upper and lower personnel locks required makeup flows of 0.12 and 0.005 SCFH respectively during the ILRT period.

The total correction to be added to the calculated Type A leakage rate is 2.82 SCFH or 0.004%/ day.

1 Pre-and post-test containment water level measurements indicated that the upper pool water volume had decreased by 574 cu f t from 1700 December 31, 1981, to 1200 January 5, 1982, and that the dry-well sump water volume had increased by 95 cu ft from 1000 January 3 to 1200 January 5, 1982. This resulted in a net water volume decrease rate of 74 cu ft per day. The indicated water volume change is most likely due to measurement accuracy. At any rate, a decrease in water volume would not mask an in-leakage, and therefore is not added as a correction.

The corrected and uncorrected Type A leakage rates are tabulated below:

L wt%/ day 95% UCL wt%/ day am I

II III I

II III 1.

ILRT/ Mass Point 0.072 0.076 0.328 0.079 0.083 0.328 ILRT/ Total Time 0.068 0.072 0.328 0.139 0.143 0.328 2.

Ve rification/

Mass Point 0.431 0.327-0.545 Total Time 0.434 0.323-0.541 where Column I Uncorrected leakage rate calculated during

=

ILRT.

Column II Corrected leakage rate corresponding to Column

=

I plus corrections.

Column III = Acceptance limits O

DH-103 4-1

~

~ - _ _ _. _

The ILRT results at the upper 95% confidence level satisfy the b

acceptance criterion of Lam < 0.75La = 0.328%/ day, at Pa = 11.5 V

psig.

B.

ISG CALCULATION The ISG calculation provided below was performed according to the format specified in ANSI /ANS 56.8-1981, Appendix G.

a.

Calibration Data Number of Sensors Sensitivity, E Repeatability,C Temperature, T 22 0.01*F (*R) 0.01*F (*R)

Pressure, P 1

0.001 psia 0.001 psia Vapor Pressure (Dewpoint), Py 6

0.01*F 0.05'F b.

Instrument Measurement Errors 1.

Temperatures

)2jl/2 (No. of Sensors)l/2 T = [(F )2,

/

e 7

[(0.01)2 + (0,01)2]l/2/(22)1/2

=

0.003*F (*R)

=

2.

Pressures p = [(E )2 + (g )2)1/2 (No. of Sensors)l/2

/

e p

p

[(0.001)2 + (0,001)2]l/2/(1)1/2

=

0.0014 psia

=

3.

Vapor Pressure For a dewpoint temperature range of 68.25'F + 0.05'F the average rate of change in dewpoint pressure is 0.0118 psi /*F, i.e.,

vapor pressure @ 68.3*F = 0.34243 psi

@ 68.2*F = 0.34125 psi change for 0.l*F = 0.00118 psi The sensitivity and repeatability in terms of pressure are:

(0.0118 psi /*F)(0.Ol*F) = 0.000118 psi E

=

py gpy (0.0118 psi /*F)(0.05'F) = 0.00059 psi

=

U DH-103 4-2

___.__m I

i 4

Therefore, py)2 + g )2 1/2 (No. of Sensors)1/2

{

3

/

e

= [(E py py l

= [(0.000118)2 + (0.00059)2]1/2/(6)1/2 I

l

= 0.00025 psi l

i 1

i c.

ISC Calculation for 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> ILRT

[

j t

P = 12.27 psig + 14.7 = 26.97 psia l

T = 77*F + 460 = 537*R ISC = 1 2400 2

2+2 2+2 p

y e

f ISG = 1 2400 2 [0.0014 ) 2 + 2 [0.00025g 2 + 2 / 0.003) 2 1/2

~

i 8

\\ 26.97 /

\\ 26.97 /

( 537 /

= 1 300 (0.54 x 10-8 + 0.0169 x 10-8 + 0.006 x 10-8)1/2 l

= 1 300 (0.75 x 10-4)

J

= 0.0225 wt.%/ day i

25% La = 0.437 7 0.25 = 0.10925 wt.%/ day 0.0225 < 0.10925 meets the criterion of ANSI /ANS 56.8-1981 and BN-TOP-1.

i l

2 1

i t

r i

i

!O l

DR-103 4-3 I

r

f\\

V.

COMPUTER REPORT AND DATA PRINTOUT N,

A.

MASS POINT REPORT The Mass Point Report presents leakage rate data (wt%/ day) as determined by the Mass Point Method described in the " Computer Program" section of this report. The " Calculated Leakage Rate" is the value determined from the regression ~ analysis. Thel i

a-

" Containment Air Mass" values are the masses of dry air in the containment (lbm). These values, determined from the Equatica' of State, are used in the regression analysis.

)

B.

TOTAL TIME REPORT 1

([

The Total Time Report presents data leakage rate (wt%/ day) as determined by the Total Time Method. The " Calculated Leakage Rate" is the value determined f rom the regression analysis. The

" Measured Leakage Rates" are the leakage rate values determined using Total Time calculations used in the above regression analysis.

~

C.

TREND REPORT The Trend Report presents leakage rates (as determined by the Mass Point and Total Time methods described in the " Computer Program" g

section of this report) in percent of the initial contained mass of dry air per day (wt%/ day), elapsed time (hours), and number of s

data points.

D.

SUMMARY

DATA REPORT The Summary Data report presents the actual data used to calculate leakage rates by the various methods described in the " Computer Program" section of this report. The five column headings are TIME, DATE, TEMP, PRESSURE, and VPRS, and contain data defined as follows:

1.

TIME:

Time in'24rhourinotations (hours and minutes).

2.

DATE:

Calendar date (month and day).

3.

TEMP:

Containment weighted-average drybulb temperature in absolute units, degrees Rankine (*R).

4.

PRESSURE: Partial pressure of the dry air component of the containment atmosphere in absolute units (psia).

5.

VPRS:

Partial pressure of water vapor of the containment atmosphere in absolute units (psia).

OG DH-103 5-1

E.

SUMMARY

OF MEASURED DATA AND

SUMMARY

OF CORRECTED DATA

)

(m,/

The Summary of Measured Data presents the individual containment atmosphere drybulb temperatures, dewpoint temperatures, and absolute total pressure measured at the time and date as indicated and is used to determine the temperature and pressure described in V.D.3-5 above.

1.

TEMP 1 through TEMP 22 are the drybulb temperatures. The values in the right-hand column are temperatures (*F), multi-l plied by 100, as read from the data acquisition system (DAS).

l l

The values in the left-hand column are the corrected tempera-tures expressed in absolute units (*R).

2.

PRES 1 is the total pressure, absolute. The right-hand value, in parentheses, is a number in counts as read from the DAS.

This count value is converted to a value in psia by the com-puter via the instrument's calibration table, counts versus psia. The left-hand column is the absolute total pressure, psia.

3.

VPRS 1 through VPRS 6 are the dewpoint temperatures (water vapor pressures). The values in the right-hand column are temperatures (*F), multiplied by 100 as read from the DAS.

The values in the left-hand column are the water vapor pres-sures (psia) from the steam tables for saturated steam corresponding to the dewpoint (saturation) temperatures in f~'T the center column.

s_ /

The Summary of Corrected Data presents corrected temperature and pressure values and calculated air mass determined as follows:

1.

TEMPERATURE (*F) is the volume weighted average containment i

atmosphere drybulb temperature (refer to Section III, Tables 1 and 2, for sensor volume fractions) derived from TEMP 1 through TEMP 22.

2.

CORRECTED PRESSURE (psia) is the partial pressure of the dry air component of the containment atmosphere, absolute. The volume weighted average containment atmosphere water vapor pressure is subtracted from PRES 1, total pressure, yielding the partial pressure of the dry air.

3.

VAPOR PRESSURE (psia) is the volume weighted average contain-ment atmosphere water vapor pressure, absolute (refer to Section III, Tables 1 and 2 for sensor volume fractions),

derived from VPRS 1 through VPRS 6.

4.

CONTAINMENT AIR MASS (1bm) is the calculated mass of dry air in the containment. The mass of dry air is calculated using the containment free air volume and the above TEMPERATURE and CORRRECTED PRESSURE of the dry air.

/T Note: This printout is not included in the report, but is

(_-)

retained at the facility.

DH-103 5-2

APPENDIX A

{

BECHTEL ILRT COMPUTER PROGRAM

'v/

A.

Program and Report Description 1.

The Bechtel ILRT computer program is used to determine the inte-grated leakage rate of a nuclear primary containment structure.

The program is used to compute leakage rate based on input values of time, containment atmosphere total pressure, drybulb tempera-ture, and dewpoint temperature (water vapor pressure). Leakage rate is computer using the Absolute Method as defined in ANSI /ANS 56.8-1981, " Containment System Leakage Testing Requirements" and BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plants".

The program is designed to allow the user to evaluate containment leakage rate test results at the jobsite during' containment leakage testing.

Current leakage rate values may be obtained at any time during the testing period using one of two computational methods, yielding three different report printouts.

2.

The first printout, the Total Time Report, is based on the Total Time Method described in BN-TOP-1.

Leakage rate is computed from initial values of free air volume, containment atmosphere drybulb temperature and partial pressure of dry air, the latest values of the same parameters, and elapsed time. These individually computed gg leakage rates are statistically averaged using linear regression by 2

'~- )

the method of least squares. The Total Time Method is the computa-t tional technique upon which the short duration test criteria of BN-TOP-1, Rev 1, " Testing Criteria for Integrated Leakage Rate Testing of Primary Containment Structures for Nuclear Power Plant,"

are based.

3.

The second printout is the Mass Point Report and is based on the Mass-Point Analysis Technique described in ANSI /ANS 56.8-1981,

" Containment System Leakage Testing Requirements." The mass of dry air in the containgent is computed at each data point (time) using the Equation of State, from current values of containment atmosphere drybulb temperature and partial pressure of dry air.

Contained mass is " plotted" versus time and a regression line is fit to the data using the method of lepst squares.

Leakage rate is determined from the statistically derived slope and intercept of the regression line.

4.

The third printout, the Trend Report, is a summary of leakage rate values based on Total time and Mass Point computations presented as a fuction of number of data points and elapsed time (test dura-tion). The Trend Report provides all leakage rate values required for comparision to the acceptance criteria of BN-TOP-1 for conduct of a short duration test.

5.

The program is written in a high level language and is designed for use on a mini-computer with direct data input from the data acquisition system.

Brief descriptions of program use, formulae

(< s-)

used for leakage rate computations, and program logic are provided in the f ollowing paragraphs.

DH-103 A-1

I B.

Explanation of Program

(,j 1.

The Bechtel ILRT computer program is written, for use by experi-enced ILRT personnel, to determine containment integrated leakage rates based on the Absolute Method described in ANSI /ANS 56.8-1981 and BN-TOP-1.

2.

Information loaded into the program prior to the start of the test:

Number of containment atmosphere drybulb temperature sensors a.

and dewpoint temperature (water vapor pressure) aansors to be used in leakage rate computations for the specific test b.

Volume fractions assigned to each of the above sensors c.

Calibration data for above sensor, if required d.

Calibration data for pressure sensor.

3.

Information entered into the program at the start of the test:

a.

Test title b.

Current test pressure and peak test pressure f"'

c.

Maximum allowable leakage rate at peak test pressure N,-]S d.

If the test is a verification test:

(1) Imposed leakage rate (2) Leakage rates determined using the two computational methods described in Paragraph A above during the ILRT.

4.

Data received from the data acquistion system during the test, and used to compute leakage rates:

a.

Time and date l

b.

Containment atmosphere drybulb temperatures 1

[

c.

Containment atmosphere pressure I

d.

Containment atmosphere dewpoint temperatures i

i 5.

After all data at a given time are received, a Summary of Measured l

Data report (refer to " Program Logic," Paragraph D, " Data" option command) is printed on the data terminal.

The date, containment atmosphere weighted average drybulb temperature, partial pressure of the dry air and water vapor pressure are stored on a data file.

I I

n%.s l

l DH-103 A-2 l

l t

(

6.

If drybulb and dewpoint temperature sensors should fail during the i

V test, the data from the sensor (s) are not used.

The volume frac-i tions for the remaining sensors are recomputed and reloaded into the program for use in ensuing leakage rate computations.

C.

Leakage Rate Formulae 1.

Computation using the Total Time Method:

1 a.

Measured leakage rate, from data:

i P V = W RT1 (1) 1 1

P V = W RTi (2) i t

2400 (W1-W) i L

=

i (3)

Solving for W1 and Wi and substituting equations (1) and (2) into (3) yields:

Li = 2400/ati(1-T P /T P )

(4) 1t t1 where:

W,Wi = Weight of contained mass of dry air at times ti and 1

ti respectively, lbm.

T,Ti = Containment atmosphere drybulb temperature at times 1

ti and ti respectively,

  • R.

P,Pi = Partial pressure of the dry air component of the con-1 tainment atmosphere at times ti and ti respectively, psia.

V = Containment free air volume (assumed to be constant 3

during the test), ft.

th ti, tt = Time at ist and i data points respectively, hours.

Att = Elapsed time from ti to ti, hours.

R = Specific gas constant for air = 53.35 f t.lbf/lbm.*R.

Li = Measured leakage rate computed during time interval el CO C1, %/ day.

I DH-103 A-3

b.

Calculated Icakage rate from regression analysis:

O L = a + batN (5) where:

L = Calculated leakage rate, %/ day, as determined from the regression line.

2 IL (Eatg ) - Eatf(EL att) i i

a=

2 (6)

N(Eatg ) _ (gggi)2 N(EL ati) - EL (eat )

i i

i b=

2 (7) i N(Eatg ) - (EAtt)2 N = Number of data points N

I=E i=1 Calculated leakage rate at the 95% confidence level.

c.

L95 = a + batN+S-(8)

O L

where:

i L95 = Calculated leakage rate at the 95% confidence level, %/ day, at elapsed time AtN*

For AtN < 24 0 025;N-2 [E(L -I )2 (N-2)]l/2 x [1 + 1 + (At - ) /E(at -It) ] /

(9a)

S_

=t

/

t g N

i L

N where, to.025;N-2 = 1.95996 + 2.37226 + 2.82250 ;

N-2 (N-2)4 j

For AtN2.24 1 - L )2 (N-2)]1/2 x [1 +(AtN-

) /E(Ot - t)2)l/2 (9b) i S_ = t0 025;N-2 [I(L

/

g i

L N

i 1.6449(N-2)2 + 3.5283(N-2) + 0.85602 where, t0 025;N-2 =

(N-2)2 + 1.2209(N-2) - 1.5162 Li = Calculated leakage rate computed using equation (5) at total clapsed time Ati, %/ day.

{

_At =

Eat t v

4 N

4 I

DH-103 A-4

2.

Computation using the Mass Point Method t

a.

Contained mass of dry air from data:

Wi = 144 P d j

RTi (10) where:

j All symbols as previously defined.

b.

Calculated leakage rate from regression analysis:

b

__L = -2400 -

(11) a where:

~

L

= Calculated leakage rate, %/ day, as determined from the regression line.

EW -bEAti i

a

=

(12)

N E[(Wi - IW /N) (Ati - E )]

i E(At - b)2 i

Ati = Total elapsed time at time of ith data point, hours N = Number of data points Wi = Contained mass of dry air at ith data point, Ibm, as computed from equation (10),

i N

E=E i=1 E = IAt /N i

c.

Calculated leakage rate at the 95% confidence level.

1 i

-2400 f

L95 =

(b + S )

(14) b

{

a where:

s

__95 = Calculated leakage rate at the 95% confidence level, %/ day.

L

)

DH-103 A-5 i

i

)

4 3

i 4

h

- E(W1 - W )2 1/2 1

.sb"t0 025;N-2 (15) i

_(N-2)E(ati - It)2 J

1.6449(N-2)2 +-3.5283 (N-2)2 + 0.85602 j

where, t0 025;N-2 =

(N-2)2 + 1.2209 (N-2) - 1.5162 i

-g = Contained mass of dry air, lbm, computed at the i (16) f W

th j

data point from the regression equation i

= a + bati i

All other symbols are previously defined.

1 i

e c

't l

i DH-103 A-6

X

)

D.

Procran Loeic 1.

A flow chart of Bechtel ILRT computer program usage is pre-sented in Figure 1, following.

The various user options and a brief description of their associated function are presented below:

OPTION ComiAND FUNCTION DATA Enables operator to entet raw data. When the sys-tem requests values of time, volume temperature, pressure and vapor pressure, the user enters the appropriate data. After completing the data entry, a summary is printed out.

The user then verifies that the data were entered correctly.

If errors are detected, the user will then be given the opportunity to correct the errors.

After the user verifies that the data were entered correctly, a Corrected Data Su= mary Report of time, date, average temperature, partial pressure of dry air, and water vapor pressure is printed.

TREND Terminal will print out a Trend Report.

'~'\\

TOTAL Terminal will print out a Total Time Report.

f MASS Terminal will print out a Mass Point Report.

TERM Enables operator to sign off temporarily or pe rmanently.

SAVE

~ Enables operator to store the Data Sunnary on a file.

PREV Enables operator to call up an old, previously stored, file.

CORR Enables operator to correct data stored on a file.

LIST When used with a given file name, the printer will print out a list of the Summary Data stored on the file.

t READ Enable the computer to receive the next set of raw data from the data acquisition system directly.

1 A-7

~

O

( SIGtJ DN)

I ENTER BASIC /

t

-- N O

/ ENTER PREVIOUS \\

\\ INFORMATION/

\\ VALUES FROM FILES /

YES r

DATA ENTERS

SUMMARY

(OPTIONSp DATA STORE 0 ON (r PREV EO FILE s

(ENTER D ATA)

CORRECTS o-CORR

SUMMARY

D ATA

[ YES (E RRO R?)

o STO RES

SUMMARY

\\

ENTER

/

N0 o-S AV E - -

DATA DN A CORRECTIONS /

SELECTED FILE

SUMMARY

OF o-TREND MEASURED DATA

= (TREND REPORT l

~-

O+-

o-TOTAL TOTAL TIME u

(

YES s-REPORT N0 o MASS MASS POINT REPORT CORRECTED

SUMMARY

DATA PRINTOUT o-LIST PRINT OUT OF

=

SUMMARY

DATA o-TERM

' ( SIGN OFF )

N J

l BECHTEL CONTAINMENT INTEGRATED LEAKAGE RATE TEST COMPUTER PROGRAM FLOW CliART FIGURE 1 C\\

U i

A-8

)

APPENDIX B ILRT STABILIZATION DATA TEST.STA GRAND GULF STABILIZATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 1529 103 537.56366 26.425938 0.34851480 1545 103 537.01373 26.402582 0.34475750 1603 103 536.61597 26.383574 0.34468400 1615 103 536.46893 26.377193 0.34303159 1

1630 103 536.30707 26.368984 0.34320599 1645 103 536.20459 26.363253 0.34291309 1700 103 536.09918 26.357325 0.34281561 1715 103 536.03223 26.353136 0.34298769 1730 103 535.95685 26.348457 0.34264520

[~}

1745 103 535.88330 26.344131 0.34295520

(,j 1800 103 535.82629 26.340103 0.34296569 1815 103 535.76117 26.337587 0.34246781 1830 103 535.70874 26.334372 0.34267199 1845 103 535.66150 26.332005 0.34202629 1900 103 535.61688 26.329777 0.34224480 1915 103 535.56860 26.327791

.O.34222180 1930 103 535.54742 26.324705 0.34229621 1945 103 535.43054 26.323195 0.34179929 2000 103 535.44885 26.320612 0.34237379 2015 103 535.40631 26.318562 0.34241500 O

I B-1

/~'N b

APPENDIX C ILRT

SUMMARY

DATA TEST.DAT GRAND GULF ILRT ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.000 VRATEM = 0.000 VRATEP = 0.000 TIME DATE TEMP PRESSURE VPRS 2030 103 535.38918 26.316441 0.34252653 2045 103 535.37219 26.315517 0.34244490 2100 103 535.34686 26.313202 0.34275225 2115 103 535.32245 26.311718 0.34222719 2130 103 535.28601 26.310568 0.34237543 2145 103 535.26984 26.309896 0.34204134 2200 103 535.23566 26.307184 0.34274417 2215 103 535.21973 26.304913 0.34300748 2230 103 535.19214 26.304295 0.34262270 2245 103 535.16925 26.302761 0.34315175 2300 103 535.14685 26.301828 0.34307989 2315 103 535.11749 26.300154 0.34274691 7_s 2 30 103 535.10406 26.299398 0.34249672

(\\ -)

2345 103 535.09546 26.299583 0.34231171 0

104 535.06689 26.296225 0.34366253 15 104 535.05304 26.297117 0.34277007 30 104 535.03369 26.295589 0.34329468 45 104 535.01672 26.293724 0.34415492 100 104 534.99390 26.293665 0.34321022 115 104 534.98413 26.292389 0.34348071 130 104 534.96783 26.291492 0.34337339 145 104 534.96344 26.290226 0.34363529 200 104 534.94757 26.289938 0.34392363 215 104 534.93909 26.288767 0.34409159 230 104 534.92371 26.287523 0.34432954 245 104 534.91162 26.287708 0.34414417 300 104 534.89838 26.286375 0.34447473 315 104 534.89233 26.285236 0.34460890 330 104 534.87921 26.285433 0.34441105 345 104 534.86578 26.284437 0.34440356 l

400 104 534.85150 26.283850 0.34499204 415 104 534.84827 26.283432 0.34440419 400 104 534.82874 26.283085 0.34475130 li-(

(_

C-1 i

~ APPENDIX D ILRT CALCULATIONS O\\--)

GRAND GULF ILRT LEAKAGE RATE (WEIGHT PERCEtJT/ DAY)

MAS 3-POINT ANAL (SIS TIME AND DATE.AT START OF TEST:

2030 01(3 ELAPSED TIME:

8.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)

(PSIA)

MASS (LEM)

(lLBM)

LOSS (LBM/HR)


_-_ =-_

2030 535.388 26.3164 221566.

2045 535.372 26.3155 221565.

1.1 4.6 2100 535.347 26.3132 221556.

9.0 20.3 2115 535.322 26.3117 221553.

2.4 16.8 2100 535.236 26.3106 221559.

-5.4 7.2 2145 535.270 26.0099 221560.

-1.0 4.9 2200 535.236 26.3072 221551.

8.7 9.9 2215 535.220 26.3049 221539.

12.5 15.6

'}

2230 535.192 26.3043 221545.

-6.2 10.6

' 2245 535.169 26.3028 221541.

3.4 10.9 2300 535.147 26.3018 221543.

-1.4 9.3 2315 535.117 26.0002 221541.

1.9 9.1 2330 535.104 26.2994 221540.

0.8 8.6 2345 535.095 26.2996 221545.

-5.1 6.4 0

535.067 26.2962 221529.

16.5 10.6

(

15 535.053 26.2971 221542.

-13.3 6.4 30 535.034 26.2956 221537.

4.9 7.2 45 535.017 26.2937 221528.

8.7 8.8 100 534.994 26.2937 221537.

-9.0 6.4 115 534.984 26.2924 221531.

6.7 7.4 100 534.968 26.2915 221530.

0.8 7.2 145 534.963 26.2902 221521.

8.9 8.6 200 534.948 26.2899 221525.

-4.2 7.4 215 534.939 26.2888 221519.

6.4 8.2 230 534.924 26.2875 221515.

4.1 8.5 245 534.912 26.2877 221521.

-6.6 7.2 300 534.898 26.2864 221515.

5.8 7.8 315 534.892 26.2852 221508.

7.1 8.5 330 534.879 26.2854 221515.

-7.1 7.2 345 534.866 26.2844 221513.

2.8 7.4 400 534.852 26.283G 221514.

-1.0 7.0 415 534.848

'26.2834 221511.

2.2

7. 0 400 534.829 26.2831 221517.

-5.2 6.2 j

FREE AIR VOLUt1E USED (NILLIONS OF CU. FT.)

1.670

=

REGRESSION LINE t

INTERCEPT (LEM) 221561.

=

SLOPE (LBM/HR)

-6.7

=

O MAXIMUtl ALLONABLE LEAKAGE RATE 0.4~7

=

'~j 75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE s

0.028

=

THE UFFER 95% CONFIDENCE LIMIT 0.079

=

THE CALCULATED LEAL: AGE RATE 0.072

=

D-1 1

I

_=-

q i-i, l

r"'

(

GRAND GULF ILRT LEAMAGE RATE (WEIGHT PERCENT / DAY'i TOTAL-TIME ANALYSIS 4

I TIME AND DATE AT START OF TEST:

2000 0103 ELAPSED TIME:

8.00 HOURS:

. TIME TEMP.

PRESSURE MEASURED (R)

(PSIA)

LEAKAGE RATE


= _

- = -

2000 535.388 26.3164 2045 535.372 26.3155 0.050 2100 535.347 26.3132 0.220 2115 535.322 26.3117 0.181 2130 535.286 26.3106 0.078 2145 535.270 26.0099 0.053 2200 535.236 26.3072 0.107 2215 535.220 26.3049 0.169 2230 535.102 26.3043 0.115 2245 535.169 26.3028 0.118 2300 535.147 26.3018 0.100

)

2015 535.117 26.3002 0.099 2330 535.104 26.2994 0.094 2345 535.095 26.2996 0.069 0

535.067 26.2962 0.11,5 gg 15 535.033 26.2971 0.06'9

(

J-30 535.034 26.2956 0.078 45 535.017 26.2937 0.096 100 534.994 26.2937 0.069

)

115 534.984 26.2924 0.081 1

130 534.968 26.2915 0.078 145 534.963 26.2902 0.093 200 534.948 26.2S99 0.080 215 534.939 26.2888 0.089 230 534.924 26.2875 0.093 245 534.912 26.2877 0.078 300 534.898 26.2864 0.084 315 534.892 26.2852 0.092 330 534.879 26.2854 0.078

~345 534.866 26.2844 0.080 3

400 534.852 26.2838 0.076 415 534.848 26.2834 0.076 430 534.829 26.2831 0.Oe7 MEAN OF MEASURED LEAKAGE RATES 1

0.095

=

MAXIMUM ALLOWADLE LEAKAGE RATE 0.437

=

75 % OF MAXIMUM ALLOWABLE LEAKAGE RATE 0.328

=

THE UPPER 95% CONFIDENCE LIMIT 0.139

=

THE CALCULATED LEAKAGE RATE 0.068

=

)

a D-2

/\\\\

' 'v)

GRAllD E-ULF ILRT TREliD REPORT LEM AGE R,.i TES t WEIGHT PERCEllT/ DAY)

TIME At1D DATE AT START OF TEST:

2030 0103 ELAPEED TIME:

S.00 HOURS NO. DATA ELAPSED TOTAL-TIME ANALYEIS' fMSS-POItiT ANALYSIS FOINTS TIME Menti CALCULATED CALCULATED 95% UCL 10 2.25 O.121 O.119 O.119 o,g33 11 2.50 O.119 O.112 O.110 0.146 12 2.75 O.117 O.107 O.104 O.134 13 3.00 0.115 0.101 0.098 0.124 14 3.25 O.112 O.091 0.085 O.111 15 3.50 0.I12 0.094 O.093 O.116 16 3.75 O.109 O.086 O.083 O.105 17 4.00 O.107 0.082 O.079 0.099 13 4.25 O.107 O.082 0.031 O 099 19 4.50 O.105 O.077 0.075 O.092 20 4.75 O.100 O.075 O.074 O.089 21 5.00 O.102 O.073 O.073 0,ve7 (3

22 5.25 O.102 O.074 0.075 O 088 (j

23 5.50 O.101 O.073

.O.075 O.086 24 5.75 O.100 0.073 O.076 O.087 25 6.00 O.100 O.074 O.078 0 OSS 26 6.25 O.099 O.073 O.077 O.086 27 6.50 0.099 0.073 0.077 0.086 28 6.75 0.098 0.074 0.079 0.087 29 7.00 0.097 0.073 0.078 0.085 30 7.25 0.097 0.072 0.077 0.084 31 7.50 0.096 0.071 0.076 0.083 32 7.75 O.095 O.070 0.075 O.081 30 8.00 O.095 O.068 0.072 O 079 s/

i a

D-3

-en,,-m-i--

---,m.

e

_w

,,,,,.,e

,-.m 7

e

,-g-y

A_PPENDIX E ILRT PLOTS 1

ILRT 1

T EHF EF.si1 UF.E 502.00 5~C.00 534.00 535.00 536.00 537.0 535.00 5 9.

)

i

+---------+---------,-----_---+----_----.-------__0,__-______,________.)

+

+

2100 -

+

+

1

+

I l

+

2200 -

l

+

+

+

+

2000 -

+

+

+

+

0-

+

+

+

+

100 -

+

+

+

+

200 -

+

+

+

+

COO -

+

+

i

+

+

400 -

+

+

+

+

500 -

+

I l

l E-1

,,,_---,--w

---r--

VERIFICATION O

TEM.ERATURE e n..m.. O'.y

.e.

e s. L,,)

J.a en c.~ c.,)U aag.UU

.J.s a

c. _

aw*.UV c.

. U U aas c~e e

n,,,.,,.,,1

+-_-__-_-- _-______ + ---__ --+-________+ ________,.______s3.Us) a y,

___ _________+

+

+

+

600 -

+

+

+

+

700 -

+

+

+

+

S00 -

+

~

+

+

+

900 -

+

+

+

+

1000 -

+

+

STABILI*.ATION TEMPERATURE 533.00 533.00 534.00 535.00 536.00 537.00 538.00 539.00

+ _ - - _ - - _ _ _ + - --

--_+_--

. _ _ _ _ _ + _ _ _ _ _ _ _ _ _, _ _ _ _ _

+

IGo3 -

+

+

+

+

L700 -

+

+

+

+

[S00 -

+

+

+

+

1900 -

+

e g

~

+

+

2000 -

i

+

E-2 m

J ILRT PRESSURE 2c.150 26.200 26.250 26.200 26.250

's.4

_ b. z e..,

. c. a t..

+_________+_________+_________+_________,________00

+

+

2100 -

+

1

+

_m m -.-

  • p e.

+

+

m V() -

+

_w

+

V

~

+

I 0-

+

+

+

+

100 -

+

+

~

+

200 -

+

i

+

~

+

~

+

j 200 -

~

+

+

+

t 400 -

+

+

+

+

500 -

+

l l

l l

l l

l l

l l

l I

1 j

1 I

i E-3 i

l I

VERIFICATION PRE 55URE 26.150 26.200 26.250 26.200 26.400 26.450 sm

+_-_______+_________+_________,____26.250

+

+

+

600 -

+

+

+

+

700 -

+

+

+

+

GOO -

+

+

+

+

900 -

+

+

+

+

1000 -

+

+

STABILIZATION PRESSURE 26.150 26.200 26.250 26.200 26.250 26.400 26.450 26.500

+-------_-+-__--

.+-________,_____

+

IGO3 -

+

+

+

+

1700 -

+

+

+

1900 -

+

+

+

+

1900 -

+

+

+

+

"006 -

+

+

M E-4

[

ILRT AIRMASS

221000, 221100.

221200.

221000.

221400.

22250 221600.

221:

+_-----___+--_-__---,___--____,__-______,_________,_0.

+

+

2100 -

+

+

+

+

2200 -

+

+

+

+

2000 -

+

+

+

+

0-

+

+

+

+

100 -

+

+

+

+

200 -

+

+

+

+

300 -

+

l

+

+

400 -

+

+

+

+

500 -

+

m E-5

_~ -.~. - - - - -. _ _. -. -......--~.. _.- -. -.-....--. -._. -.....- - --.-- - -

A 1

s i

i.

4 l

f' VERIFICATION 1

AIRMASS l

221000.

221100.

221200.

'"<-0 1

- - + - -

- -_^!_0_____-_]3'f___221500.

221600.

22174 j

+--

---+--

_ +--------_._-_______.

+

+

600 -

+

i

+

+

+

t i

700 -

l

+

+

+

I.

t

+

1 800 -

+

+

t

+

'900 -

i

+

A i

1000 -

+

4

+

i i Q

+

l 1

1 i

f i

STABILIZATION 1

AIRMASS 221t00.

221100.

221200.

221200.

221400.

221500.

221600.

o' 17 t.-

- - + - - -

_ + - -

~~

- - + - - -

- ---+---__ ___+___

e i

+

l

/603 -

+

\\

+

l 1

+

- +

1700 -

+

+

l

+

~

+

1900 -

+

+

+

+

1900 -

+

1

+

i

+

+

2000 -

+

+

+

I

.E-6 i

i

-wmesure- - & w ge' imp,muerg__

.--M

.-eme-..

me--wh--**-se

J v APPENDIX F VERIFICATION FLOW TEST

SUMMARY

DATA TEST.VER GRAND GULF VERIFICATION ALMAX = 0.437 VOL = 1670000.00 VRATET = 0.432 VRATEM = 0.436 VRATEP = 0.364 TIME DATE TEMP PRESSURE VPRS 515 104 534.80566 26.280268 0.34556079 530 104 534.79596 26.278370 0.34544951 545 104 534.78748 26.277615 0.34520060 600 104 534.77368 26.276218 0.34559339 615 104 534.76746 26.274252 0.34554970 630 104 534.75714 26.272772 0.34602681 645 104 534.76361 26.272007 0.34578761 700 104 534.74396 26.269663 0.34612215 715 104 534.73499 26.268349 0.34643370 730 104 534.73236 26.267462 0.34631500 s,/

745 104 534.72797 26.265524 0.34624526 800 104 534.71405 26.264580 0.34618655 815 104 534.70410 26.262316 0.34644118 830 104 534.69879 26.261040 0.34671304 845 104 534.68665 26.259174 0.34656873 900 104 534.68726 26.257030 0.34670511 915 104 534.67273 26.256052 0.34667951 930 104 534.65894 26.252333 0.34738570 945 104 534.64771 26.252180 0.34753838 1000 104 534.64069 26.250376 0.34733403 1015 104 534.33062 26.249893 0.34681413 OU F-1

4

)

APPENDIX G VERIFICATION FLOW TEST CALCULATIONS

- GRANO GULF VERIFICATION LEAKAGE RATE (WEIGHT PERCENT / DAY)

MASS-FOINT ANALYSIS TIME AND DALE AT START OF TEST:

615 0104 ELAPSED TIME:

4.00 HOURS TIME TEMP PRESSURE CTMT. AIR MASS LOSS TOT. AVG. MASS (R)

(PSIA)

MASS (LBM)

(LEM)

LOSS (LBM/HR) 615 534.767 26.2743 221467.

600 534.757 26.2728 221459.

8.2 32.S 645 534.764 26.2720 221450.

9.1 34.7 700 534.744 26.2697 221439.

11.6 38.6 715 534.735 26.2603 221431.

7.4 36.3 730 534.732 26.2675 221425.

6.4 34.2 745 534.728 26.2655 221410.

14.5 38.1 800 534.714 26.2646 221408.

2.2 34.0 815 534.704 26.2623 221093.

15.0-37.2 830 534.699 26.,2610 221385.

S'. 6 36.9 q

845 534.687 26.2592 221374.

10.7 37.5 900 534. 68 ~t-26.2570 221356.

18.3 40.7 915 534.673 26.2561 221353.

2.0 38.1 930 534.659 26.2523 221329.

25.6 43.0 945 534.648 26.2522 221331.

-3.4 39.0 1000 534.641 26.2504

221319, 12.3 39.7 1015 534.631 26.2499 221319

-0.1 37.2 FREE AIR VOLUME USED (MILLIONS OF CU. FT.)

=

1.670 REGRESSION LINE INTERCEPT (LBM) 221471.

=

SLOPE (LBM/HR)

-39.8

=

VERIFICATION TEST LEAKAGE RATE UFPER LIMIT =

0.545 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =

0.327 THE CALCULATED LEAKAGE RATE 0.431-

=

G-1

.. _ _. _ _ _, _. _ _ _ _ = _., _ _ _ _ _ _,..

,~,_,

O c

GRAND GULF VERIFICATION LEAKAGE RATE (WEIGHT FERCENT/ DAY)

TOTAL-TIME ANALYSIS TIME AND DATE AT STAR T OF TEST-615 0104 ELAPSED TIME:

4.00 HOURS TIME TEMP.

PRESSURE MEASURED (R)

(PSIA)

LEAKAGE RATE 615 534.767 26.2743 630 534.757 26.2728 0.356 645 534.764 26.2720 0.37e 700 534.744 26.2697 0.418 715 534.735 26.2683 0.394 700 534.732 26.2675 0.370 745 534.728 26.2655 0.413 800 534.714 26.2646 0.368 815 534.704 26.2623 0.403 830 534.699 26.2610 0.399 845 534.687 26.2592 0.406 900 534.c87 26.2570 0.441 915 534.673 26.2561 0.413'

(#')

930 534.659 26.2523 0.466

\\._ /

945 534.648 26.2522 0.'423 1000 534.641 26.2504 0.430 1015 534.631 26.2499 0.403 MEAN OF MEASURED LEAKAGE RATES 0.405

=

VERIFICATION TEST LEAKAGE RATE UPPER LIMIT =

0.541 VERIFICATION TEST LEAKAGE RATE LOWER LIMIT =

0.323 THE CALCULATED LEAKAGE RATE

=

0.434 ul c-2

__._._.__.m I

i' i

1 g

i

-1 1

1 i

i 3

GRAND GULF VERIFICATION

.!i-

{

TREND REPORT LEAKAGE RATES (WEIGHT PERCENT / DAY) 3 j

TIME AND DATE AT START OF TEST:

615 0104 ELAPSED TIME:

4.00 HOURS j

NO. DATA ELAPSED TOTAL-TIME ANALYSIS'MASE-POINT ANALYSIS POINTS TIME l

MEAN CALCULATED CALCULATED 10 2.25 0.389 0.400 0.397 11 2.50 0.390 0.404 0.402 12 2.75 0.395 0.418 0.420 13 3.00 0.396 0.420 0.420

{

14 3.25 0.402 0.436 0.440

{

15 3.50 0.403 O.436 O.439 16 3.75 0.405 0.439 0.439

(

17 4.00 0.405 0.434 O.431 4

1 4

s e

i I

f f

t l

G-3 s

4 1

. ~...

h

' (O APPENDIX H j

BYPASS LEAKAGE RATE CALCULATIONS The formula for computing leakage rate by flow totalizer method is:

LL = (P /T1 - P /T ) x (VT /60tP ) + F/60t 1

2 2 s

s where:

LL=

Leakage rate, standard cubic feet per minute (SCFM)

P,P2 = Test volume absolute pressure at start and end of test 1

respectively, absolute units T,T2 = Test volume absolute temperature at start and end of test 1

respectively, absolute units V

= Total test free air volume, cubit feet (270,128 cu.ft.)

Ts

= Standard temperature (68'F)

Ps

= Standard pressure (14.6959 psia)

-~

t

= Tes t duration, hours (4 hrs.)

F

= Makeup air (to maintain test pressure), standard cubic feet = F2-F1 F,F2 = Makeup air flow meter reading at start and end of test 1

respectively, SCF (convert from actual cubic feet to standard cubic feet).

(1)

Calculate drywell average temperature at start and end of test, where VF = Volume Friction.

Ti = 76.102*F = 535. 772 *R T2 = 76.271*F = 535.941*R (2) Drywell pressure at start and end of test:

P1 = 17.793 psia P2 = 17.785 psia O

DH-103 H-1

.. ~

i (3) Calculate drywell makeup air volume, convert from actual cubic feet to standard cubic feet:

2 F1 = 118070 cu.ft.

F2 = 86350 cu.ft i

50+14.6959 68+459.67 F = (F1-F) 14.6959 44+459.67 2

i

/'64.6959 x((503.67 /

527.67) 31720 g 14.6959

=

146295.19 cu.ft.

=

(4) Bypass Leakage Rate Calculation:

l t=C535.772 _ 535.941 60x4x14.6959/ '

60x4 17.793 17.785 270,128x68 }

146295.19 L

4 609.7 SCFM

=

i i

i. O j

1 i

1 1

i J

i l

l 1

i j

l' i

a i

DH-103 H-2

{

1 1

i l

.. _,. _..... _ _ _ _ _ _ _ _.. _. _.. _ _. _,.,. _ _ ~... _ _ _ _. _ - - - _. _. _.. _ _

APPENDIX I Local Leakage Test Summary Data Type B Test Results Penetration Description Leakage, SCCM 1

Equipment Hatch 212 2

Upper Personnel Lock 3

Lower Personnel Lock 4

Fuel Transfer Tube 0 i 11 201 Reactor Protection System 010 202 Low Voltage Power 010 203 Instrumentation 010 204 Instrumentation 010 205 Neutron Monitoring 010 206 Low Voltage Power 010 207 Control and Power 0+0 208 Control 010 209 Low Voltage Power 010 210 Radiation Monitoring 010 211 Control 0+0 212 Instrumentation 010 213 Rod Position Indication 010 214 T.I.P.

0+0

[

215 6.9 Kv-Reactor Recirculate Pump A 010 V'

216 Spare 010 217 LV Power and Control 010 218 Neutron Monitoring 010 219 Instrumentation 0+0 220 Instrumentation 0[0 221 Spare 010 222 Reactor Protection 0+0 223 LV Power and Control 0[0 224 Spare 010 225 LV Power 010 226 Control 010 227 Instrumentation 010 228 Instrumentation (Neutron Monitoring) 010 229 LV Power and Control 010 230 Reactor Protection 010 231 Instrumentation 010 232 Neutron Monitoring 010 233 Rod Position Indication 0+0 234 Spare 010 235 Neutron Monitoring 010 237 Instrumentation (SRV Inplant Test) 010 238 Reactor Protection System 010 239 Control 010 240 Instrumentation 010 1

241 LV Power and Control 0+0 242 LV Power and Control 010 DH-119 I-l

.~

m

..m.

..____3.....___.m.

?-

4 s

  • i 4

APPENDIX I (Cont'd) s l

Local Leakage Test Summary Data l

Type B Test Results (Cont'd) i c

Penetration Description Leakage, SCCM 243 Spare 010 j

244 LV Power 0+0 l

245 Control Bop 010

):

246 Radiation Monitoring 0+0 l

247 6.9 KV Reactor Recirculate Pump B 030 249 Instrumentation 0+0

^

I Drywell Personnel Hatch i

Drywell Head a'

]

Drywell Equipment Hatch 30111 k

Drywell Head Manhole 4

)

l TOTAL = 32 + 16 3

x f

i 1

1 l

l'

=

l I

{

i i

l l

)

l l

l 1

i i

4 i

i, Dil-119 I-2 l

1 1

i...

.______..__...__,_..._..___,_.._._,__..__.__.-...__...,,,_.._-...__.,,.,__m.,,_

l APPENDIX I (Cont'd)

V)

Local Leakage Test Summary Data Type C Test Results (Pneumatic)

Penetration Description Leakage, SCCM 5

Main Steam Line A 10,500 1 150 6

Main Steam Line B 552 + 19 7

Main Steam Line C 20 I 17 8

Main Steam Line D 3,390}148 17 Steam Supply to RCIC Turbine and RHR Hx 114.0 + 17 19 Main Steam Drain to Condenser 4312 33 CRD Pump Discharge 0 + 12 34 Containment Purge Supply 135{17 35 Containment Purge Exhaust 80 + 17 36 Plant Service Water Return 58 1 12 37 Plant Service Water Supply 38 Chilled Water Supply 1,250 1 120 39 Chilled Vater Return 20 + 12 40*

ILRT Containment Pressurization /

~

Depressurization 286 + 12 41 Plant Service Air 220 + 12 42 Instrument Air 800 I 12

( )')

43 RWCU to Main Condenser 10 I 17

(

44 Component Cooling Water Supply 40[17 45 Component Cooling Water Return 48 1 17 47 Reactor Recirculate Post Accident Sample 0111 49 RWCU Backwash Transfer Pump to Spent Resin Storage Tank 72 1 12 50 DW & Containment CRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,385 1 104 51 DW & Containment DRW Sump Pumps Discharge to Auxiliary Building Collector Tank 1,395 1 100 54 To Upper Containment Pool and f rom Refueling Water Storage Tank 5 1 12 56 Condensate Makeup to Upper Containment Pool 230 1 11 57 Discharge from Fuel Pool Cooling and C.U.

System to Upper Containment Pool 172 1 12 58 Inlet Upper Containment Pool skimmer Tanks to Fuel Pool Cooling and C.U. System 142 1 12 60 Auxiliary Building Floor and Equipment Drain Return 23 1 17 65 Containment Normal Vent Supply and Combustible Gas 350 1 17 66 Containment Normal Vent and Combustible Gas Exchange 30 1 17

(

i V

  • Leakage rate for penetration 40 and 82 is included in this total DH-119 I-3

APPENDIX I (Cont'd)

Local Leakage Test Summary Data Type C Test Results (Pneumatic)(Cont'o)

Penetration Description Leakage, SCCM 70 Automatic Depressurization System (Instrument Air) 20 + 17 75 RCIC Pump Turbine Exhaust Vaccum Relief 12112 81 Reactor Recirculate Sample 0 1 12 82*

ILRT Drywell Pressurization /Depressurization 286 + 12 83 RWCV Line from Regenerative Ht. Exchange to Feedwater 100 + 12 84 Drywell and Containment Chemical Waste 60112 85 Suppression Pool Cleanup Return 180 1 21 86 Demineralization Water Supply to Containment 330 i 12 87 RWCV Pump Suction from Recirculate Loops 60 1 17 88 RWCV Pump Discharge to RWCV Ht. Exchange 40112 101C Drywell Pressure Instrumentation (Narrow Range) 0 1 12 101F Drywell Pressure Instrumentation (Wide Range) 6 + 12 102D Drywell Pressure (Wide Range) 15112 103D Containment Pressure (Wide Range) 10 + 12 104D Containment Pressure (Wide Range) 10112 105A Containment Drywell H2 Analyzing 110 1 12 106A Drywell H2 Analyzing Sample 14 1 12 106B Drywell H2 Analyzing Sample Return 10112 106E Containment H2 Analyzing Sample Return 10 1 12 107B Drywell H2 Analyzing Sample Return 158 1 12 107D Drywell H2 Analyzing Sample 50 i 12 107E Drywell H2 Analyzing Sample Return 15 1 12 108A Containment H2 Analyzing 95 i 12 109A Drywell - Fission Products Monitor Sample 0 i 12 109B Drywell - Fission Products Monitor Sample Return 100 1 12 109D Containment Pressure Instrument (Narrow Range) 10 1 12 110A ILRT Instrumentation Drywell Pressure 0 1 11 110C ILRT Instrumentation Verification Flow 0111 110F ILRT Instrumentation Containment Pressure 10 + 11 114 Suppression Pool Water Level Control 9112 116 Suppression Pool Water Level Control 45112 118 Suppression Pool Water Level Control 7112 120 Suppression Pool Water Level Control 5 1 12 TOTAL = 22822 + 300 0

  • Leakage rate for penetration 40 and 82 is included in this total.

DH-119 I-4

APPENDIX I (Cont'd)

G Local Leakage Test Summary Data Type C Test Results (llydraulic)

Penetration Description Leakage, SCCM 9

Feedwater A 3.8 + 2.5 10 Feedwater B 16-2/3{2.5 11 RHR Pump A Suction 180 + 36 12 RilR Pump B Suction 503 + 92 13 RIIR Pump C Suction 917 + 74 14 RHR Shutdown Suction 010 18 RiiR to RPV Head Spray 3.8 + 5 20 RiiR A to LPCI 0+0 21 RHR B to LPCI 5.60 1 3.5 22 RHR C to LPCI 519 + 28 23 RHR A Pump Test Line to Suppression Pool 180 1 35 24 RilR C Pump Test Line to Suppression Pool 917 1 74 25 HPCS Pump Suction 6.23 + 4.3 26 HPCS Pump Discharge to RPV 25[20 27 HPCS Test Line to Suppression Pool 6.3 1 2.5 28 RCIC Pump Suction 0+0 29 RCIC Turbine Exhaust 010 30 LPCS Pump Suction 010 31 LPCS Pump Discharge to RPV 471 + 53 32 LPCS Test Line to Suppression Pool 0 ~ 0 46 RCIC Pump Discharge Minimum Flow Line 0[0 48 RilR Ilx B Relief Valve Vent Ileader to 8.5 + 5 Suppression Pool 67 RHR Pump B Test Line to Suppression Pool 503 1 54 69 Refueling Water Transfer Pump Suction From Suppression Pool 5017 71A LPCS Relief Valve Discharge to Suppression Pool 0+0 71B RilR "C" Relief Valve Discharge to Suppression Pool 917 + 74 73 RHR Shutdown Relief Valve Discharge to l

Suppression Pool (H.P.)

82.6 + 24 76B RHR A Shutdown Suction Relief Valve Discharge to Suppression Pool (ll.P.)

12.75 1 5 77 RHR llT. Exchanger A Reif.ef Valve Discharge j

to Suppression Pool 180 1 35 89 Standby Service Water Supply A 22 + 7 90 Standby Service Water Return A 0+0 91 Standby Service Water Supply B 010 92 Standby Service Water Return B 5+6 113 Suppression Pool Water Level Control 5.3 + 5 l

115 Suppression Pool Water Level Control 010 l

117 Suppression Pool Water Level Control 5 i 12 119 Suppression Pool Water Level Control 17 + 12 l pb TOTAL = 5563 + 192 I-5 Dil-119