Regulatory Guide 7.6: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13350A219
| number = ML003739418
| issue date = 02/28/1977
| issue date = 03/31/1978
| title = Stress Allowables for the Design of Shipping Cask Containment Vessels
| title = (Revision 1), Design Criteria for Structural Analysis of Shipping Cask Containment Vessels
| author name =  
| author name =  
| author affiliation = NRC/RES
| author affiliation = NRC/RES
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| document report number = RG-7.006
| document report number = RG-7.6 Rev 1
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 4
| page count = 4
}}
}}
{{#Wiki_filter:REG"LATORY COMMISSION'"            n          e l                                                                      eibruaryh1977
{{#Wiki_filter:Revision 1 March 1978 U.S. NUCLEAR REGULATORY COMMISSION
                      ) .(ou@                                    U.~...INUCLEAO
                                      REGULATORY GUIDE
                                                                                                                                                                                                                                  :..G
                                      OFFICE OF STANDARDS DEVELOPMENT
                                                        *.      .
                                                                      REGULATORY GUIDE 7.6 DESIGN CRITERIA FOR THE STRUCTURAL ANALYSIS OF
                                                                  *OFFICE OF STANDARDS :DEV ELOPM ENT-
                                                    SHIPPING CASK CONTAINMENT VESSELS
                                                                                                                REGULATORY GUIDE-7.8 STRESS ALLOWABLES FOR THE DESIGN
                                                                                    OF:SHIPPING. CASK CONTAINMENT VESSELS
                                                  '


==A. INTRODUCTION==
==A. INTRODUCTION==
aind thev allowthe use, of superposition in stimming loaiding týffcfls. De~sign stressVtlutsfor                                  ifltefsitiesar          dL usel.
those given in this guide on a case-by-case basis.


Se.'tions 7                                a.35:and   ,,1136 Of 10 CFR Part 7..                                             h-bCauseLestablished naterial                                                                this use ist
Sections 71.35 and 71.36 of 10 CFR Part 71,
                                                                                                                                              -in',Iih4      th 1E'.d.          C            and,.bccause this impproach is
  "Packaging of Radioactive Material for Transport                                             Section III of the ASME Boiler and Pressure Code t and Transportation of Radioactive Material Under                                        contains requirements for the design of nuclear power Certain Conditions," require that packages used to                                     plant components. Portions of the Code that use a transport radioactive materials meet the normal and                                      "design-by-analysis" approach for Class 1 compo I ypothetical accident conditions of Appendices A and                                   nents have been adapted in this guide to form accept B, respectively, to Part 71. This guide describes de                                    able design criteria for shipping cask containment sign criteria acceptable to the NRC staff for use in the                                 vessels. The design criteria for normal transport con structural analysis of the containment vessels of Type                                   ditions, as defined in 10 CFR Part 71, are similar to B packages used to transport irradiated nuclear fuel.                                     the criteria for Level A Service Limits (formerly Alternative design criteria may be used if judged ac                                     called "normal conditions") of Section III, and the ceptable by the NRC staff in meeting the structural                                       design criteria for accident conditions are similar to requirements of §§71.35 and 71.36 of 10 CFR Part                                         those for Level D Service Limits (formerly called
            ,...ackaging..of Radioactive .NMtaterial for Tranisport.                                                                                                                                shear stress the~or-...'h;i6 h*.s
71.                                                                                       "faulted conditions"). However, Section III was de veloped for reactor components, not fuel casks, and many of the Code's requirements may not be appli
            ... : Tr    *: tnsport                                of Rad~ioact*ie.Mieria U~nder*. "t bh"huni                                    aeon icUd              hI
                                                                                                                                                                        i    niaxixmunif Certa.un Condiiihn.C:.establish* reqirementst                                                                                                  sh0,"n to .he iacnserv ivL cSt mainttcLfthe stress"
                                                                                                                                                *ominitns tha-iUep istic de orn~a* re it v
          " Oi.ekaAsusd:i6? tr'amsp0r. radi'active materials,;-:z                                                                                                                                                                          ,
          , ,-must."mt:under~normal-                                            and.hypothettcal',accident.                                  ,to,,cxerimntal. ..data-                " ""                      -'= -                  ,                  .            ." "
                                                                                                      sign       criteria       ac-        :' ',"            ...-. :
    "*i!!=? :0h *        iti5sUTis
                      ,::::                                            uid          niostmib  es' d
            .con
            *. .ceptah.to itions.This                      gudd
                                            .the.,N.RCstaforuse
                                                                  -
                                                                                                            the rteistructuraC, .                   'In current designs for the                                               t*a nent                        isselsol vessels of-type B                                    fuel casks. the nature or *i y.c.l i                        t                                   d    pressure analysiso*.f th:Icontainment                                                                                                        loads and the contain*                                                                        ,,,i (stainle.s
              :p ickages: used to transpo rt irradiated nuclear :fuel.
 
steel) re such tha c                                                      rle fracture ru not MAlternativedesign criteria may"be used if judged ac,                                                                                                                                                           Thermal ratchetting considered to p                              I P let
              .cptah!-,by the NRC.staff in meeting the structural                                                                                                                         Iau.                          I  ficulies          in cyindrical requirementsofli§7L.35 and 71.36of                                                      10CFR            Part     71.             is    nol      consi        ere


==B. DISCUSSION==
==B. DISCUSSION==
I*N o' ' "ions 3 vieldint.                and 7 ensure                    that failure
cable to fuel cask design.
                                                                                                                                                .                  ket,              'e;tt~r    ined                                  ntr,*,.t. hlid At nresent. there are no desien standards                                                            thatican ticcur. Secondarv stresses (i.e..                                            stiesse:
            .he directly used toevaluate the structurhl integrity orf:Affil
* 0..,;        the -contairieinnt
          ....radiated                                  How-vcr.
 
ruecls. radiated.fuel.  %lessels"Section of shippingcaksfrr AIl or~he. A E                                    ""-T~l'                              ieidingar 'ni s unrestrained Ni-ldbng-hut. are :considered in not considered        nsiee tooc's          cause H eergro Boiler*and Pressure Vessel Code.* n a                                                                                              fatiuu and shakedow n .mnlmls
              *ments.for thi design of nuclear power                                                                nit. corm of    S      J.* lOf "r tion                        d Regulatory csnt                      Position 4cmtr              ensures that          Positio fatigue            failure
                                                                                                                                                                                                                                                        5nensure.,
              nents. "The staff                        has.adaptcd                  pbrtions eria                oe notoccur and Reulat                                                        Position the ASM*E.Code to'form acceptabled
          .. for shippiing c, k containment.:vessels. In I.I guide. .                                                                            that- the structureswill shake down to elastic behavior mcask containment                      Vest            :after afew c\ cles.                        Both of these positions deal only thc'ded6ign* criteria for.s                                                  fined in 10 CFR Part                                  ..ithehstress rane of normal operation. A reduc-
              *.st~ls ~r..normal conditii                                        (
                71). are'.similar                                            Ntgcdictr,  r ia-in Section III of                                    tion. in the aIIowitble stress for-lire exceeding.10' -cv- the ASME.Co                                    fo            'as. components under nor- :                                          ces is specificd:in, Reulator, Position 4 since:use of


* al condj* n and I de ign criteria for.* accident                                                                                 the~ 10:Cvclycvalue for greater lives* mnia not preserve cases.
At present, there are no design standards that can be directly used to evaluate the structural integrity of                                      The criteria in this guide reflect the designs of re the containment vessels of shipping casks for ir                                          cently licensed shipping casks. The containment ves radiated fuels. This guide presents containment ves                                        sels having these designs were made of austenitic sel design criteria that can be used in conjunction                                        stainless steel, which is ductile even at low temper with an analysis which considers the containment                                          atures. Thus, this guide does not consider brittle frac vessel and other principal shells of the cask (e.g.,                                      ture. Likewise, creep is not discussed because the outer shell, neutron shield jacket shell) to be linearly                                  temperatures of containment vessels for irradiated elastic. A basic assumption for the use of this guide                                      fuel are characteristically below the creep range, is that the principle of superposition can be applied to                                  even after the hypothetical thermal accident require determine the effect of combined loads on the con                                          ment of 10 CFR Part 71. The nature of the design tainment vessel. However, use of this guide does-not                                      cyclic thermal loads and pressure loads is such that preclude appropriate nonlinear treatment of other                                        thermal ratchetting is not considered a realistic fail cask components (e.g., impact limiters and lead                                          ure mode for cylindrical containment vessels. Con shielding).                                                                              tainment vessel designs that are significantly differ Design criteria for nonlinear structural analyses are                                ent from current designs (in shape, material, etc.)
not presented in this guide because of the present lack                                  may necessitate the consideration of the above failure of data sufficient to formulate substantial nonlinear                                    modes.


condit'fr                                                      those for-faulted      :)
criteria. The NRC staff will review criteria other than                                      Copies may be obtained from the American Society of
                                                                                                                    conditions
*Lines indicate substantive changes from previous issue.                                   Mechanical Engineers, United Engineering Center, 345 East
                                                                                                                      :':          *
                                                                                          47th Street, New York, N.Y. 10017.
                                                                                                                                                    an amdequate design margin                                  : for all inw the                            ý'
                                                    Co    a,              ..
                                                                                                                                                        Regulatory Position 8 places a limit on the extreme The desit criteria :.presented hcre arc based                                                                                rance of.tht tot ilstresses due to initial fahrication primnarily on lin ear elastic analyses. Linear.. elastic                                                                          and the norial: opr ating and accident states ol" the analyses are simpler than truc elastic-plastic analyse


====s. containment vesseL====
USNRC REGULATORY GUIDES                                          Comments should be sent to the Secretary of the Commission, US. Nuclear Re u latory Commission. Washington, DC. 20555, Attention            Docketing and Servie
                "'Copies may be obtained; from. the American. Society or Mechanical Engineers, United Engineering Center. 345 East 47th                                                                      The followking terms are presented with the delini- Street. New York. N.Y. 10017.
                                                                                                                                                                            9 Regulatory Guides are issued to describe and make available to the public methods  Branchy acceptable to the NRC staff of implementing specific parts of the Commission's regulations, to delineate techniques used by the staff in evaluating specific problems The guides are issued in the following ten broad divisions or postulated accidents, or to provide guidance to applicants, Regulatory Guides are not subsirtutes for regulations, and compliance with them is not required          1. Power Reactors                            6  Products Methods and solutions different from those set out in the guides will be accept able if they provide a basis for the fidigs  requisite to the issuance or continuance  2. Research and Test Reactors                7. Transportation of a        or        by the Commiision.


tions used in this guide:
fermnt  r                                        3, Fuels and Materials Facilities            8. Occupational Health ncense                              4. Environmental and Siting                  9  Antitrust Review
                                                                                                                                                                                  -1    , 111:-Slwict..9lv I IN Ot,:t.'-.'
                                                                                          5. Materials and Plant Protection          10,  General Comments and suggestions for improvements in these guides are encouraged at all        Requests for single copies of issued guides which may be reproduced) yr for place times, and guides will be revised, as appropriate, to accommodate comments and          ment on an automatic distribution list for single copies of future guides in specilic to reflect new information or experience. This guide was revised as a result of        divisions should be made in writing to the U.S. Nuclear Regulatory Commission substantive comments received from the public and additional staff review.             Washington, 0.C      20555, Attention      Director. Division of Document Control
                                                                                                                                                                                        14.1~                                                      icfJ;.'tt.


UNCREGULATORY G IDES,                                        t~i                        C~lnik'tn      011411IdW
Regulatory positions 2 and 6 ensure that failure                    than load-controlled, and these stresses decrease as due to gross unrestrained yielding across a solid sec                  yielding occurs.
                                                                                                                                                                                                      .,2blA-1-1D~                                    !";--11S1 thu~itr ie    l!    iý"  ~totE                jiý
                                                                        ,git,,meine!    tiaks~e a       uiart~.t  the pulcmethodss~              faluly o40tt4ih"llI
                                                            .iii ffl    ttvttilIn, th


====e.   to====
tion does not occur. Secondary stresses (i.e., stresses that are self-limiting) are not considered to cause                        The bending stress at a gross structural discon gross unrestrained yielding but are considered in                      tinuity, such as where a cylindrical shell joins a flat fatigue and shakedown analyses.                                        head, is generally self-limiting and is considered to be a secondary stress. However, when the edge mo Regulatory position 3 ensures that fatigue failure                  ment at the shell and head junction is needed to pre does not occur, and regulatory position 4 ensures that                  vent excessive bending stresses in the head, the stress the structure will shake down to elastic behavior after                at the junction is considered a primary stress. The a few cycles. Both of these positions address only the                  bending stress at a joint between the walls of a rec stress range of normal operation. Recent studies 2                      tangular cross-section shell is considered a primary have shown that fatigue strength decreases beyond                      stress.
                                                                                        4 fl4in          aliln      Slc ii ittn Gublern.


Rt,
10' cycles for certain material
                            1tS  t      otttJet4 lt
                                                                                                                                                    1. I'owl,- flea      Jtu%                                        I.. Pttoijur wilth tt14Cm isno, rftwified.


;a'! nut ast.etit uvts fto re 0 4 llt tons, antl 0.tintI.iflrp                                                                    2. Rnse..11t It,%.Tlst R,,ictms                                  7.  T  ,s~~ttc, dif1levent front thousi%410nutin                itte,?quitil" will ile .IVcet.t                                                                              .de                        I
====s. Regulatory position====
                    'l                  v1,1 tiltsoulno4s                                                                                                    3., Fuets ntrolMaim ,,ts F itte                a                      ocuil.outn.t11 tI~novie              I t,,u In, the Instltitjs mln~us~tp 4tho a~~,                                                tim sulatee or conflniiunce                                                                                  9,  Anfn,,ttstH'
3.b addresses the possibility of fatigue strength re                      4. Primary membrane stress means the average duction beyond 10' cycles.                                             normal primary stresses across the thickness of a solid section. Primary bending stresses are the com Regulatory position 5 states that buckling of the                   ponents of the normal primary stresses that vary containment vessel should not occur. While it is rec                    linearly across the thickness of a solid section.
                  A .bif .th                                                                                                              .        4, Env,,tinnwntatl anti Sitirnl
                                                                                                                                  .
                   at      peri      or jw.,          Ir itm Coirmivor,                              -
                                                                                                      Otatidi        encautav.id at all Corntnnts an'l %urfgvittris Inimpntfltewtflit%- iti ttiev-
                                                                                                                .14
  0 .            fim. and.rpotle.


to 1,41lectri" Inom to
ognized that local or gross buckling of the contain ment vessel could occur without failure (i.e., leak                        5. Alternating stress intensity, Sait, means one age), the stress and strain limits given in this guide                  half the maximum absolute value of S'2, Sý3, S;,, for are based on linear elastic analysis and are inappro                    all possible stress states i and j where 0-, 0"2 , and ("3 priate for determining the integrity of a postbuckled                    are principal stresses and vessel. If the analysis of a containment vessel indi cates the likelihood of structural instability, the de                              S'12 = (o1i -    G"1,)  - (0"'i  0-2 i)
                                            ,nflf.ix:t.,u, o                   t*-4. tlnnt orniwrrv.
sign criteria of this guide should not be used.                                    Sý3 =  (0r 2 i - 92i) -  (o` 3 1 S'31 = (0-3i -  0-3 i) - (0'H
    Regulatory position 7 places a limit on the extreme range of the total stresses due to the initial and fabri
                                                                        0-7, etc., follow the principal stresses as their direc cation states (see definition 9 below) and the normal tions rotate if the directions of the principal stresses operating and accident states of the containment ves at a point change during the cycle.


ti1av.
sel. The 10-cycle value of Sa (taken from the ASME
design fatigue curves) is used. Because this value is                      6. Stresses caused by stress concentrations means in the extreme low-cycle range, this regulatory posi                    stress increases due to local geometric discontinuities tion is actually a limit on strain rather than stress.                  (e.g., notches or local thermal "hot spots"). These stresses produce no noticeable distortions.


Ho 'w Cotl
Design criteria for bolted closures are not pre sented in this guide. Insufficient information exists,                     7. Type B quantity is defined in §71.4(q) of 10
                                                                                                        -nimiatS
particularly for response to impact loading, to estab                  CFR Part 71. Normal conditions of transport and lish such criteria.                                                     hypothetical accident conditions are defined in Ap pendices A and B, respectively, to 10 CFR Part 71.
                                                                                                      .C4 1t n cieihls on th is  q idjif d        R...ttess It,Is~nifle. 1r-o1nýIII-W
                                                                                                                                                    men!,t 0n  .40 *tunslntiidtt  t i ii-0 t swet lml4.1 Ii timtli
                                                                                                                                                                                          4ti ll 4wr SIt.


%As,,rh 116v, Iii4.!~w,'it tt,, ,  ilIthlefittS
The following terms are presented with the defini tions used in this guide:                                                  8. Containment vessel means the receptacle on which principal reliance is placed to retain the
                                                                                                                                                                                                                                                          t  41  .
    1. Stress intensity means twice the maximum shear radioactive material during transport.
                                                                                                                                                                              205!bg. Alttrit-ri                U,.  ,twt          .      ofit Dot T11i.111en  11:.1,oo,,
                                                                                                                                                    W.0st~o
                                                                                                                                                          ..          U.C,                              ., -
                  nett.autt ott tt,. t.4 eil tor an .6irv s.it,.


I. Stress intensity' is defined as twice the maximum              8. Containmeni vessel is defined as the receptacle shear stress and is equal to the largest algebraic dif-          on which principal reliance is placed to retain the ference between any two of the three principal stres-             radioactive material during transport.
stress and is equal to the largest algebraic difference between any two of the three principal stresses.                            9. Fabrication means the assembly of the major components of the casks (i.e., the inner shell, shield
    2. Primarv stress means a stress that is necessary ing, outer shell, heads, etc.) but not the construction to satisfy the laws of equilibrium of forces and mo of the individual components. Thus, the phrase fab ments due to applied loadings, pressure loadings, and ricationstresses includes the stresses caused by inter body (inertial) loadings. Primary stresses are not ference fits and the shrinkage of bonded lead shield self-limiting because local yielding and minor distor ing during solidification but does not include the re tions do not reduce the average stress across a solid sidual stresses due to plate formation, welding, etc.


ses.
section.


==C. REGULATORY POSITION==
The prefabrication 2tate is designated as the initial
2. A primary stress is a stress that is necessary to satisfy the laws of equilibrium of forces and moments                The following design criteria are acceptable to the due to applied loadings, pressure loadings, and body              NRC staff for assessing the adequacy of designs for (inertial) loadings. Primary stresses are not self-              shipping cask containment vessels in meeting the limiting because local yielding and minor distortions            structural requirements in §§71.35 and 71.36 of 10
    3. Secondary stress means a stress that is self                     state and is treated as having zero stress.
do not reduce the average stress across a solid sec-              CFR Part 71.


tion.
limiting. Thermal stresses are considered to be sec
                                                                            10. Shakedown means the absence of a continuing ondary stresses since they are strain-controlled rather cycle of plastic deformation. A structure shakes down if, after a few cycles of load application, the deforma
2 C. E'. Jaske and W. J. O'Donnell, 'Fatigue Design Criteria for      tion stabilizes and subsequent structural response is Pressure Vessel Alloys,' ASME Paper 77-PVP-12.                        elastic.


I. The values for material propertie
L
                                                                  7.6-2


====s. design stress====
==C. REGULATORY POSITION==
  3. A secondary stress is a stress that is self-limiting.      intensities (Sil), and design fatigue curves for Class I
4. The stress intensity, Sn, associated with the range of primary plus secondary stresses under nor The following design criteria are acceptable to the         mal conditions should be less than 3 Sm. The calcula NRC staff for assessing the adequacy of designs for           tion of this stress intensity is similar to the calcula containment vessels of irradiated fuel shipping casks          tion of 2 Salt; however, the effects of local stress con in meeting the structural requirements in §§7 1.35 and centrations that are considered in the fatigue calcula
Thermal stresses are considered to be secondary                  components given in Subsection NA of Section III of stresses since they are strain-controlled rather than            the ASME Boiler and Pressure Vessel Code should be load-controlled, and these stresses decrease as                  used for the materials listed in that subsection. For yielding occurs.                                                  materials not listed there, the method discussed in Article 111-2000 of Subsection NA should be used to The bending stress at a gross structural discon-            derive design stress intensity values. ASTM material tinuity, such as where a cylindrical shell joins a flat          properties should be used, if available, to derive head, is generally self-limiting and is considered to be          design stress intensity values. The values of material a cecondary stress. However. when the edge moment                properties that should be used in the structural at the shell and head junction is needed to prevent ex-          analysis are those that correspond to the appropriate cessive bending stresses in the head, the stress at the          temperatures at loading.
  71.36 of 10 CFR Part 71. References to the ASME               tions are not included in this stress range.
 
junction is cons'idered to be a primary stress. The bending stress at a joint between a rectangular shell                2. Strain-rate-sensitive material properties may be and a flat head is unrestrained by hoop effects and              used in the evaluation of impact loading if the values will be considered to be a primary stress.                        used are appropriately considered in a dynamic time- dependent analysis and can be suitably justified in the
  4. Primary membrane stresses are the average nor-              license application.
 
mal primary stresses across the thickness of a solid section. Primar.1 bendingk stresses are the components                    When strain rate sensitivity is considered in the of the normal primary stresses that vary linearly                structural response to a combination of static and across the thickness of a solid section.                          dynamic loads, the static portion of the stresses and strains should be analyzed separately using static
  5. The alternatingstress intensity. Salt- is defined          material properties and should meet the static design as one-half the maximum absolute value of S 12, S,).,            criteria. The total stress and strain state resulting S'I. for all possible stress states i and j where oa., a02        from both static and dynamic loads should meet the and u 3 irc principal stresses and                                design criteria for which strain-rate-sensitive material rroperties (e.g., yield strength) are substituted for static values.
 
SC2= (Oi - frlj) - (o2i - '2j)
                                                                      3. Under normal conditions the value of the stress S!3 = (a      - a2j )" (03i - a3)                  intensity resulting from the primary membrane stres- Sit.    (3i    - a3j)-(ali - Or1j)                  ses should be less than the design stress intensity, Sm, and the stress intensity resulting from the sum of the
* 1, etc., follow the principal stresses as their direc-          primary membrane stresses and the primary bending stresses should be less than 1.5Sm.
 
tions rotate if the directions of the principal stresses at a point change during the cycle.                                  4. The fatigue analysis for stresses under normal conditions should be performed as follows:
  6. The phrase stresses caused b ' stress concentra- tions refers to increases in stresses due to local                       a. Salt is determined (as defined in the "Discus- geometric discontinuities (e.g., notches or local ther-            sion"). The total stress state at each point in the nor- mal "hot spots"). These stresses produce no                        mal operating cycle should be considered so that a noticeable distortions.                                            maximum range may be determined.
 
7. TIpe B quantitv isdefined in §71.4(q)of 10CFR                      b. The design fatigue curves (Figures 1-9.0) of Part    71.  Normal conditions of transport and                   Section III of the ASME Boiler and Pressure Vessel hypothetical accident conditions are defined in Appen-            Code should be used. These curves include the max- dices A and B, respectively, to 10 CFR Part 71.                   imum mean stress effect.
 
7.6-2
 
c. Salt should be multiplied by the ratio of the                                              m        n  Trnax. 0 F
modulus of elasticity given on the design fatigue               Low Alloy Steel                    2.0    0.2    700
curve to the modulus of elasticity used in the analysis to obtain a value of stress to be used with the design          Martensitic Stainless Stec          2.0    0.2    700
fatigue curves. The corresponding number of cycles              Carbon Steel                        3.0    0.2    700
taken from the appropriate design fatigue curve is the allowable life if only one type of operational cycle is          Austenitic Stainless Steel          1.7    0.3    800
considered. If two or more types of stress cycles are           Nickel-Chromium-Iron                1.7    0.3    800
considered to produce significant stresses, the rules for cumulative damage given in Article NB-3222.4 of Section III of the ASME Boiler and Pressure Vessel Code should be applied.
 
c. The temperatures do not exceed those listed in the above table for the various classes of materials.
 
d. In the analysis of high cycle fatigue where the number of cycles exceeds 104 cycles, the ASME
design fatigue curves should be extended using a 4%
decrease in the allowable stress per decade, starting                  d. The ratio of the minimum specified yield from the IO0 cycle value. High cycle fatigue could be a          strength of the material to the minimum specified potential problem due to vibration during transpor-              ultimate strength is less than 0.80.
 
tation.


e. A value of 4 should be used as the maximum                  6. Buckling of the containment vessel should not stress concentration factor in regions where this fac-            occur under normal and accident conditions.
Boiler and Pressure Vessel Code indicate the 1977 edition.                                                         The 3Sm limit given above may be exceeded if the following conditions are met (these conditions can I. The values for material properties, design stress        generally be met only in cases where the thermal intensities (Sm), and design fatigue curves for Class 1        bending stresses are a substantial portion of the total components given in Subsection NA of Section III                stress):
of the ASME Boiler and Pressure Vessel Code should                   a. The range of stresses under normal condi be used for the materials that meet the ASME specifi            tions, excluding stresses due to stress concentrations cations. For other materials, the method discussed in          and thermal bending stresses, yields a stress inten Article III -2000 of Subsection NA should be used to           sity, Sn, that is less than 3Sm.


tor is unknown.
derive design stress intensity values. ASTM material properties should be used, if available, to derive de                b. The value Sa used for entering the design sign stress intensity values. The values of material          fatigue curve is multiplied by the factor Kg, where:
properties that should be used in the structural analy            K. = 1.0, for Sn--3Sm sis are those values that correspond to the appropriate
                                                                          =1.0+n(m      -)(-m-  ), for 3Sm<Sn<3mSn temperatures at loading.


5. The stress intensity, Sn, associated with the range of primary plus secondary stresses under nor-                  7. Under accident conditions, the value of the mal conditions should be less than 3Sm. The calcula-              stress intensity resulting from the primary membrane tion of this stress intensity is similar to the calculation      stresses should be less than the lesser value of 2.4Sm of 2 Salt; however, the effects of local stress con-              and 0 .7Su (ultimate strength): and the stress intensity centrations that are considered in the fatigue calcula-           resulting from the sum of the primary membrane tions are not included in this stress range.                      stresses and the primary bending stresses should be less than the lesser value of 3 .6Sm and Su.
-    , for Sn > 3mSm
    2. Under normal conditions, the value of the stress                   n intensity resulting from the primary membrane stress should be less than the design stress intensity, Si,           Sn is as described in regulatory position 4.a.


The 3 Sm limit given above may be exceeded if the following conditions arc met (these conditions                  . 8. The extreme total stress intensity range between can generally be met only in cases where the secon-              the initial zero stress state, fabrication, normal opera- dary bending stresses are a substantial portion of the           tion. and accident conditions should be less than total stress):                                                    twice the adjusted value (adjusted to account for modulus of elasticity at the highest temperature) of a. The range of stresses under normal condi-                Sa at 10 cycles given by the appropriate design fatigue tions excluding stresses due to stress. concentrations            curves.
and the stress intensity resulting from the sum of the            The values of the material parameters m and n are primary membrane stresses and the primary bending              given for the various classes of materials in the fol stresses should be less than 1.5Si.                            lowing table:
                                                                                                                  Tmax
    3. The fatigue analysis for stresses under normal                                                m    n    'F    &deg;C
conditions should be performed as follows:                      Low-Alloy Steel                    2.0  0.2  700  371 a. Sa1t is determined (as defined in the Discus          Martensitic Stainless Steel        2.0  0.2  700  371 sion). The total stress state at each point in the nor          Carbon Steel                        3.0  0.2  700  371 mal operating cycle should be considered so that a              Austenitic Stainless Steel          1.7  0.3  800  427 maximum range may be determined.                                Nickel -Chromium-Iron               1.7  0.3  800  427 b. The design fatigue curves in Appendix I of Section III of the ASME Boiler and Pressure Vessel Code should be used for cyclic loading less than or                    c. The temperatures do not exceed those listed equal to 106 cycles. Cornsideration should be given to          in the above table for the various classes of materials.


and secondary bending stresses yields a stress inten- sity, Sn, that is less than 3 Sm.
further reduction in fatigue strength when loading ex                  d. The ratio of the minimum specified yield ceeds 10' cycles.                                              strength of the material to the minimum specified ul timate strength is less than 0.8.


A value of 4 should be used as the maximum b. The value Sa used for entering the design               stress concentration factor in regions where this fac- fatigue curve is multiplied by the factor Ke, where:              tor is unknown.
c. SaIt should be multiplied by the ratio of the modulus of elasticity given on the design fatigue                  5. Buckling of the containment vessel should not curve to the modulus of elasticity used in the analysis        occur under normal or accident conditions. Suitable to obtain a value of stress to be used with the design        factors, should be used to account for eccentricities in fatigue curves. The corresponding number of cycles            the design geometry and loading. An elastic-plastic taken from the appropriate design fatigue curve is the         buckling analysis may be used to show that structural allowable life if only one type of operational cycle is        instability will not occur; however, the vessel should considered. If two or more types of stress cycles are          also meet the specifications for linear elastic analysis considered to produce significant stresses, the rules          given in this guide.


Ke = 1.0 (Snr < 3 Sm)
for cumulative damage given in Article NB-3222.4 of Section III of the ASME Boiler and Pressure Ves                6. Under accident conditions, the value of the sel Code should be applied.                                    stress intensity resulting from the primary membrane stresses should be less'than the lesser value of 2 .4Sm d. Appropriate stress concentration factors for          and 0.7S, (ultimate strength); and the stress intensity structural discontinuities should be used. A value of 4        resulting from the sum of the primary membrane should be used in regions where this factor is un              stresses and the primary bending stresses should be known.                                                        less than the lesser value of 3 .6Sm and Su.
                                                                      9. In some cask designs. shielding materials apply (I-n) (Sn        _I                              loads through differential thermal expansion or supp-
        =1.0+ n(m- ik3Sm 1 _(3 Sm<Sn<              3 mSm)
                                                                  ly additional strength to the containment vessel. In such cases, shielding materials that have low yield
        =1n  (Snn -. 3 mSm)                                      strengths (e.g., lead) may be structurally analyzed us- Sn is as described in a.                                           ing an elastic-plastic technique while the inner shell is analyzed by a linear elastic analysis. When uranium is The values of the material parameters m and n are                used for shielding and is needed to add strength to the given for the various classes of materials in the fol-            containment vessel, the fracture behavior of the lowing table:                                                    uranium shielding should he considered.


7.6-3
7.6-3


Ii .D0
7. The extreme total stress intensity range between    cycles given by the appropriate design fatigue curves.
 
==J. IMPLEMENTATION==
sions regulahtions., the design criteria described herein
                                                                    %,ill be used bh the starr mter October I .1977. in as-
            1I,-pUrp'os o N his section. is to provide infornma-
            16n,:.ppII&#xfd;l Ints:-              rardingj the N RC
                                      lien ezs
                                                                    .se.sing the. adequacy or designs.
 
"LI 0l" packages for shipping ur coiltainnient:.,ces- irradiated fuel with
                                                                                                                                    '0
                                                                    respect to the structural rcquiremcnis in *71.35 and stahrt~. plan  wror Lil.i n. this regulatory guide.


7.1-36 .of I..CI"R. Part771. Whenoralternative        criteria licensee .roposed...ti.applicant should I w.-.cpt in thl%L  t.s case in h~ich thL dfplpic nt 'or icnu proposes .mndmet.ptatl ahk            letrilativt method. denitinrtr      tl*t tl'heir use satisfies the: requirements t'or conilpI\ ing;wtth ,pecified portions ol*.tht Conmris%    of -&sect;,7 T3 5mAnd 71 36 o 110 CF R Part .71.
the initial state, the fabrication state (see definition 9 in the Discussion), the normal operating conditions,         Appropriate stress concentration factors for struc and the accident conditions should be less than twice      tural discontinuities should be used. A value of 4 the adjusted value (adjusted to account for modulus of elasticity at the highest temperature) of Sa at 10
                                                            should be used in regions where this factor is unknown.


I
I
                    I.J)NITED STATES
            UNITED STATES
*    NUCLEAR       REGULATO11Y COMMISSION
NUCLEAR REGULATORY COMMISSION
              INAS H IN rTON; D. C. 20555                                               POSTAOE AND FEEs PAID
      WASHINGTON, D. C. 20555                                           POSTAGE AND FEES PAID
                                                                                      *NUCLAR        RC.ULA.ORV
                                                                        U.S. NUCLEAR REGULATORY
  *              OFFICIAL BUSINESS                                                             COMMISSION
                                                                                COMMISSION
          PE~NALTY IFOR PRIVATE USE. S300
          OFFICIAL BUSINESS
                                                                                                                                      0}}
  PENALTY FOR PRIVATE USE, $300
                                                                                                                  L}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 11:38, 28 March 2020

(Revision 1), Design Criteria for Structural Analysis of Shipping Cask Containment Vessels
ML003739418
Person / Time
Issue date: 03/31/1978
From:
Office of Nuclear Regulatory Research
To:
References
RG-7.6 Rev 1
Download: ML003739418 (4)


Revision 1 March 1978 U.S. NUCLEAR REGULATORY COMMISSION

REGULATORY GUIDE

OFFICE OF STANDARDS DEVELOPMENT

REGULATORY GUIDE 7.6 DESIGN CRITERIA FOR THE STRUCTURAL ANALYSIS OF

SHIPPING CASK CONTAINMENT VESSELS

A. INTRODUCTION

those given in this guide on a case-by-case basis.

Sections 71.35 and 71.36 of 10 CFR Part 71,

"Packaging of Radioactive Material for Transport Section III of the ASME Boiler and Pressure Code t and Transportation of Radioactive Material Under contains requirements for the design of nuclear power Certain Conditions," require that packages used to plant components. Portions of the Code that use a transport radioactive materials meet the normal and "design-by-analysis" approach for Class 1 compo I ypothetical accident conditions of Appendices A and nents have been adapted in this guide to form accept B, respectively, to Part 71. This guide describes de able design criteria for shipping cask containment sign criteria acceptable to the NRC staff for use in the vessels. The design criteria for normal transport con structural analysis of the containment vessels of Type ditions, as defined in 10 CFR Part 71, are similar to B packages used to transport irradiated nuclear fuel. the criteria for Level A Service Limits (formerly Alternative design criteria may be used if judged ac called "normal conditions") of Section III, and the ceptable by the NRC staff in meeting the structural design criteria for accident conditions are similar to requirements of §§71.35 and 71.36 of 10 CFR Part those for Level D Service Limits (formerly called

71. "faulted conditions"). However,Section III was de veloped for reactor components, not fuel casks, and many of the Code's requirements may not be appli

B. DISCUSSION

cable to fuel cask design.

At present, there are no design standards that can be directly used to evaluate the structural integrity of The criteria in this guide reflect the designs of re the containment vessels of shipping casks for ir cently licensed shipping casks. The containment ves radiated fuels. This guide presents containment ves sels having these designs were made of austenitic sel design criteria that can be used in conjunction stainless steel, which is ductile even at low temper with an analysis which considers the containment atures. Thus, this guide does not consider brittle frac vessel and other principal shells of the cask (e.g., ture. Likewise, creep is not discussed because the outer shell, neutron shield jacket shell) to be linearly temperatures of containment vessels for irradiated elastic. A basic assumption for the use of this guide fuel are characteristically below the creep range, is that the principle of superposition can be applied to even after the hypothetical thermal accident require determine the effect of combined loads on the con ment of 10 CFR Part 71. The nature of the design tainment vessel. However, use of this guide does-not cyclic thermal loads and pressure loads is such that preclude appropriate nonlinear treatment of other thermal ratchetting is not considered a realistic fail cask components (e.g., impact limiters and lead ure mode for cylindrical containment vessels. Con shielding). tainment vessel designs that are significantly differ Design criteria for nonlinear structural analyses are ent from current designs (in shape, material, etc.)

not presented in this guide because of the present lack may necessitate the consideration of the above failure of data sufficient to formulate substantial nonlinear modes.

criteria. The NRC staff will review criteria other than Copies may be obtained from the American Society of

  • Lines indicate substantive changes from previous issue. Mechanical Engineers, United Engineering Center, 345 East

47th Street, New York, N.Y. 10017.

USNRC REGULATORY GUIDES Comments should be sent to the Secretary of the Commission, US. Nuclear Re u latory Commission. Washington, DC. 20555, Attention Docketing and Servie

9 Regulatory Guides are issued to describe and make available to the public methods Branchy acceptable to the NRC staff of implementing specific parts of the Commission's regulations, to delineate techniques used by the staff in evaluating specific problems The guides are issued in the following ten broad divisions or postulated accidents, or to provide guidance to applicants, Regulatory Guides are not subsirtutes for regulations, and compliance with them is not required 1. Power Reactors 6 Products Methods and solutions different from those set out in the guides will be accept able if they provide a basis for the fidigs requisite to the issuance or continuance 2. Research and Test Reactors 7. Transportation of a or by the Commiision.

fermnt r 3, Fuels and Materials Facilities 8. Occupational Health ncense 4. Environmental and Siting 9 Antitrust Review

5. Materials and Plant Protection 10, General Comments and suggestions for improvements in these guides are encouraged at all Requests for single copies of issued guides which may be reproduced) yr for place times, and guides will be revised, as appropriate, to accommodate comments and ment on an automatic distribution list for single copies of future guides in specilic to reflect new information or experience. This guide was revised as a result of divisions should be made in writing to the U.S. Nuclear Regulatory Commission substantive comments received from the public and additional staff review. Washington, 0.C 20555, Attention Director. Division of Document Control

Regulatory positions 2 and 6 ensure that failure than load-controlled, and these stresses decrease as due to gross unrestrained yielding across a solid sec yielding occurs.

tion does not occur. Secondary stresses (i.e., stresses that are self-limiting) are not considered to cause The bending stress at a gross structural discon gross unrestrained yielding but are considered in tinuity, such as where a cylindrical shell joins a flat fatigue and shakedown analyses. head, is generally self-limiting and is considered to be a secondary stress. However, when the edge mo Regulatory position 3 ensures that fatigue failure ment at the shell and head junction is needed to pre does not occur, and regulatory position 4 ensures that vent excessive bending stresses in the head, the stress the structure will shake down to elastic behavior after at the junction is considered a primary stress. The a few cycles. Both of these positions address only the bending stress at a joint between the walls of a rec stress range of normal operation. Recent studies 2 tangular cross-section shell is considered a primary have shown that fatigue strength decreases beyond stress.

10' cycles for certain material

s. Regulatory position

3.b addresses the possibility of fatigue strength re 4. Primary membrane stress means the average duction beyond 10' cycles. normal primary stresses across the thickness of a solid section. Primary bending stresses are the com Regulatory position 5 states that buckling of the ponents of the normal primary stresses that vary containment vessel should not occur. While it is rec linearly across the thickness of a solid section.

ognized that local or gross buckling of the contain ment vessel could occur without failure (i.e., leak 5. Alternating stress intensity, Sait, means one age), the stress and strain limits given in this guide half the maximum absolute value of S'2, Sý3, S;,, for are based on linear elastic analysis and are inappro all possible stress states i and j where 0-, 0"2 , and ("3 priate for determining the integrity of a postbuckled are principal stresses and vessel. If the analysis of a containment vessel indi cates the likelihood of structural instability, the de S'12 = (o1i - G"1,) - (0"'i 0-2 i)

sign criteria of this guide should not be used. Sý3 = (0r 2 i - 92i) - (o` 3 1 S'31 = (0-3i - 0-3 i) - (0'H

Regulatory position 7 places a limit on the extreme range of the total stresses due to the initial and fabri

0-7, etc., follow the principal stresses as their direc cation states (see definition 9 below) and the normal tions rotate if the directions of the principal stresses operating and accident states of the containment ves at a point change during the cycle.

sel. The 10-cycle value of Sa (taken from the ASME

design fatigue curves) is used. Because this value is 6. Stresses caused by stress concentrations means in the extreme low-cycle range, this regulatory posi stress increases due to local geometric discontinuities tion is actually a limit on strain rather than stress. (e.g., notches or local thermal "hot spots"). These stresses produce no noticeable distortions.

Design criteria for bolted closures are not pre sented in this guide. Insufficient information exists, 7. Type B quantity is defined in §71.4(q) of 10

particularly for response to impact loading, to estab CFR Part 71. Normal conditions of transport and lish such criteria. hypothetical accident conditions are defined in Ap pendices A and B, respectively, to 10 CFR Part 71.

The following terms are presented with the defini tions used in this guide: 8. Containment vessel means the receptacle on which principal reliance is placed to retain the

1. Stress intensity means twice the maximum shear radioactive material during transport.

stress and is equal to the largest algebraic difference between any two of the three principal stresses. 9. Fabrication means the assembly of the major components of the casks (i.e., the inner shell, shield

2. Primarv stress means a stress that is necessary ing, outer shell, heads, etc.) but not the construction to satisfy the laws of equilibrium of forces and mo of the individual components. Thus, the phrase fab ments due to applied loadings, pressure loadings, and ricationstresses includes the stresses caused by inter body (inertial) loadings. Primary stresses are not ference fits and the shrinkage of bonded lead shield self-limiting because local yielding and minor distor ing during solidification but does not include the re tions do not reduce the average stress across a solid sidual stresses due to plate formation, welding, etc.

section.

The prefabrication 2tate is designated as the initial

3. Secondary stress means a stress that is self state and is treated as having zero stress.

limiting. Thermal stresses are considered to be sec

10. Shakedown means the absence of a continuing ondary stresses since they are strain-controlled rather cycle of plastic deformation. A structure shakes down if, after a few cycles of load application, the deforma

2 C. E'. Jaske and W. J. O'Donnell, 'Fatigue Design Criteria for tion stabilizes and subsequent structural response is Pressure Vessel Alloys,' ASME Paper 77-PVP-12. elastic.

L

7.6-2

C. REGULATORY POSITION

4. The stress intensity, Sn, associated with the range of primary plus secondary stresses under nor The following design criteria are acceptable to the mal conditions should be less than 3 Sm. The calcula NRC staff for assessing the adequacy of designs for tion of this stress intensity is similar to the calcula containment vessels of irradiated fuel shipping casks tion of 2 Salt; however, the effects of local stress con in meeting the structural requirements in §§7 1.35 and centrations that are considered in the fatigue calcula

71.36 of 10 CFR Part 71. References to the ASME tions are not included in this stress range.

Boiler and Pressure Vessel Code indicate the 1977 edition. The 3Sm limit given above may be exceeded if the following conditions are met (these conditions can I. The values for material properties, design stress generally be met only in cases where the thermal intensities (Sm), and design fatigue curves for Class 1 bending stresses are a substantial portion of the total components given in Subsection NA of Section III stress):

of the ASME Boiler and Pressure Vessel Code should a. The range of stresses under normal condi be used for the materials that meet the ASME specifi tions, excluding stresses due to stress concentrations cations. For other materials, the method discussed in and thermal bending stresses, yields a stress inten Article III -2000 of Subsection NA should be used to sity, Sn, that is less than 3Sm.

derive design stress intensity values. ASTM material properties should be used, if available, to derive de b. The value Sa used for entering the design sign stress intensity values. The values of material fatigue curve is multiplied by the factor Kg, where:

properties that should be used in the structural analy K. = 1.0, for Sn--3Sm sis are those values that correspond to the appropriate

=1.0+n(m -)(-m- ), for 3Sm<Sn<3mSn temperatures at loading.

- , for Sn > 3mSm

2. Under normal conditions, the value of the stress n intensity resulting from the primary membrane stress should be less than the design stress intensity, Si, Sn is as described in regulatory position 4.a.

and the stress intensity resulting from the sum of the The values of the material parameters m and n are primary membrane stresses and the primary bending given for the various classes of materials in the fol stresses should be less than 1.5Si. lowing table:

Tmax

3. The fatigue analysis for stresses under normal m n 'F °C

conditions should be performed as follows: Low-Alloy Steel 2.0 0.2 700 371 a. Sa1t is determined (as defined in the Discus Martensitic Stainless Steel 2.0 0.2 700 371 sion). The total stress state at each point in the nor Carbon Steel 3.0 0.2 700 371 mal operating cycle should be considered so that a Austenitic Stainless Steel 1.7 0.3 800 427 maximum range may be determined. Nickel -Chromium-Iron 1.7 0.3 800 427 b. The design fatigue curves in Appendix I of Section III of the ASME Boiler and Pressure Vessel Code should be used for cyclic loading less than or c. The temperatures do not exceed those listed equal to 106 cycles. Cornsideration should be given to in the above table for the various classes of materials.

further reduction in fatigue strength when loading ex d. The ratio of the minimum specified yield ceeds 10' cycles. strength of the material to the minimum specified ul timate strength is less than 0.8.

c. SaIt should be multiplied by the ratio of the modulus of elasticity given on the design fatigue 5. Buckling of the containment vessel should not curve to the modulus of elasticity used in the analysis occur under normal or accident conditions. Suitable to obtain a value of stress to be used with the design factors, should be used to account for eccentricities in fatigue curves. The corresponding number of cycles the design geometry and loading. An elastic-plastic taken from the appropriate design fatigue curve is the buckling analysis may be used to show that structural allowable life if only one type of operational cycle is instability will not occur; however, the vessel should considered. If two or more types of stress cycles are also meet the specifications for linear elastic analysis considered to produce significant stresses, the rules given in this guide.

for cumulative damage given in Article NB-3222.4 of Section III of the ASME Boiler and Pressure Ves 6. Under accident conditions, the value of the sel Code should be applied. stress intensity resulting from the primary membrane stresses should be less'than the lesser value of 2 .4Sm d. Appropriate stress concentration factors for and 0.7S, (ultimate strength); and the stress intensity structural discontinuities should be used. A value of 4 resulting from the sum of the primary membrane should be used in regions where this factor is un stresses and the primary bending stresses should be known. less than the lesser value of 3 .6Sm and Su.

7.6-3

7. The extreme total stress intensity range between cycles given by the appropriate design fatigue curves.

the initial state, the fabrication state (see definition 9 in the Discussion), the normal operating conditions, Appropriate stress concentration factors for struc and the accident conditions should be less than twice tural discontinuities should be used. A value of 4 the adjusted value (adjusted to account for modulus of elasticity at the highest temperature) of Sa at 10

should be used in regions where this factor is unknown.

I

UNITED STATES

NUCLEAR REGULATORY COMMISSION

WASHINGTON, D. C. 20555 POSTAGE AND FEES PAID

U.S. NUCLEAR REGULATORY

COMMISSION

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE, $300

L