ML18141A562: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(5 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML18141A562
| number = ML18141A562
| issue date = 12/12/2018
| issue date = 12/12/2018
| title = Enclosure 2: Proposed CoC 1014 Amendment 11 Appendix a [Memorandum to K. Morgan-Butler User Need for Rulemaking for the Holtec HI-STORM 100 Cask System, Amendment No. 11]
| title = Enclosure 2: Proposed CoC 1014 Amendment 11 Appendix a (Memorandum to K. Morgan-Butler User Need for Rulemaking for the Holtec HI-STORM 100 Cask System, Amendment No. 11)
| author name = McKirgan J B
| author name = Mckirgan J
| author affiliation = NRC/NMSS/DSFM/SFLB
| author affiliation = NRC/NMSS/DSFM/SFLB
| addressee name = Morgan-Butler K
| addressee name = Morgan-Butler K
Line 9: Line 9:
| docket = 07201014
| docket = 07201014
| license number =  
| license number =  
| contact person = Chen Y J
| contact person = Chen Y
| case reference number = CAC 001028, EPID L-2017-LLA-0028
| case reference number = CAC 001028, EPID L-2017-LLA-0028
| package number = ML18141A560
| package number = ML18141A560
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:PROPOSED CERTIFICATE OF COMPLIANCE NO. 1014 APPENDIX A TECHNICAL SPECIFICATIONS FOR THE HI
{{#Wiki_filter:PROPOSED CERTIFICATE OF COMPLIANCE NO. 1014 APPENDIX A TECHNICAL SPECIFICATIONS FOR THE HI-STORM 100 CASK SYSTEM
-STORM 100 CASK SYSTEM


Certificate of Compliance No.
TABLE OF CONTENTS 1.0     USE AND APPLICATION 1.1-1 1.1             Definitions ............................................................................................ 1.1-1 1.2             Logical Connectors .............................................................................. 1.2-1 1.3             Completion Times ................................................................................ 1.3-1 1.4             Frequency ............................................................................................ 1.4-1 2.0     NOT USED................................................................................................... 2.0-1 3.0     LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY............... 3.0-1 3.0     SURVEILLANCE REQUIREMENT (SR) APPLICABILITY ............................. 3.0-2 3.1             SFSC INTEGRITY ............................................................................ 3.1.1-1 3.1.1                   Multi-Purpose Canister (MPC) ............................................... 3.1.1-1 3.1.2                   SFSC Heat Removal System ................................................. 3.1.2-1 3.1.3                   MPC Cavity Reflooding .......................................................... 3.1.3-1 3.1.4                   Supplemental Cooling System ............................................... 3.1.4-1 3.2             SFSC RADIATION PROTECTION ................................................... 3.2.1-1 3.2.1                   Deleted................................................................................... 3.2.1-1 3.2.2                   TRANSFER CASK Surface Contamination ............................ 3.2.2-1 3.2.3                   Deleted................................................................................... 3.2.3-1 3.3             SFSC CRITICALITY CONTROL ....................................................... 3.3.1-1 3.3.1                   Boron Concentration .............................................................. 3.3.1-1 Table 3-1       MPC Cavity Drying Limits .................................................................... 3.4-1 Table 3-2       MPC Helium Backfill Limits .................................................................. 3.4-2 Table 3-3       Regionalized Storage Cell Heat Load Limits........................ ..3.4-3 Table 3-4       Uniform Storage Cell Heat Load Limits.........................3.4-3 Table 3-5       Completion Time for Actions to Restore SFSC Heat Removal System to Operable .........3.4-4 4.0     NOT USED........................................................ . 4.0-1 5.0     ADMINISTRATIVE CONTROLS.................................................................... 5.0-1 5.1             Deleted ................................................................................................ 5.0-1 5.2             Deleted ................................................................................................ 5.0-1 5.3             Deleted ................................................................................................ 5.0-1 5.4             Radioactive Effluent Control Program .................................................. 5.0-1 5.5             Cask Transport Evaluation Program .................................................... 5.0-2 5.6             Deleted ................................................................................................ 5.0-4 5.7             Radiation Protection Program .............................................................. 5.0-5 Table 5-1       TRANSFER CASK and Free Standing OVERPACK Lifting Requirements ............................................................................ 5.0-4 Certificate of Compliance No. 1014                                                                  Amendment No. 11 Appendix A                                                i
1014 Amendment No. 1 1 Appendix A i TABLE OF CONTENTS 1.0 USE AND APPLICATION 1.1-1 1.1 Definitions
................................
................................
............................
1.1-1 1.2 Logical Connectors
................................
................................
..............
1.2-1 1.3 Completion Times
................................
................................
................
1.3-1 1.4 Frequency ................................
................................
............................
1.4-1 2.0 NOT USED... ................................
................................
................................
2.0-1 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY
...............
3.0-1 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY
.............................
3.0-2 3.1 SFSC INTEGRITY
................................
................................
............
3.1.1-1 3.1.1 Multi-Purpose Canister (MPC)
................................
...............
3.1.1-1 3.1.2 SFSC Heat Removal System
................................
.................
3.1.2-1 3.1.3 MPC Cavity Reflooding
................................
..........................
3.1.3-1 3.1.4 Supplemental Cooling System
................................
...............
3.1.4-1 3.2 SFSC RADIATION PROTECTION
................................
...................
3.2.1-1 3.2.1 Deleted ................................
................................
...................
3.2.1-1 3.2.2 TRANSFER CASK Surface Contamination
............................
3.2.2-1 3.2.3 Deleted ................................
................................
...................
3.2.3-1 3.3 SFSC CRITICALITY CONTROL
................................
.......................
3.3.1-1 3.3.1 Boron Concentration
................................
..............................
3.3.1-1 Table 3-1 MPC Cavity Drying Limits
................................
................................
.... 3.4-1 Table 3-2 MPC Helium Backfill Limits
................................
................................
.. 3.4-2 Table 3-3 Regionalized Storage Cell Heat Load Limits
........................
----..3.4-3 Table 3-4 Uniform Storage Cell Heat Load Limits.......................----..3.4-3 Table 3-5 Completion Time for Actions to Restore SFSC Heat Removal System to Operable ------------..----...-.--...3.4
-4 4.0 NOT USED........................................................
. 4.0-1 5.0 ADMINISTRATIVE CONTROLS
................................
................................
.... 5.0-1 5.1 Deleted ................................
................................
................................
5.0-1 5.2 Deleted ................................
................................
................................
5.0-1 5.3 Deleted ................................
................................
................................
5.0-1 5.4 Radioactive Effluent Control Program
................................
..................
5.0-1 5.5 Cask Transport Evaluation Program
................................
....................
5.0-2 5.6 Deleted ................................
................................
................................
5.0-4   5.7 Radiation Protection Program
................................
..............................
5.0-5 Table 5-1 TRANSFER CASK and Free Standing OVERPACK Lifting Requirements
................................
................................
............
5.0-4 Definitions


===1.1 Certificate===
Definitions 1.1 1.0 USE AND APPLICATION 1.1 Definitions
of Compliance No.
-----------------------------------------------------NOTE-----------------------------------------------------------
1014 Amendment No. 1 1 Appendix A 1.1-1 1.0 USE AND APPLICATION
 
===1.1 Definitions===
  -----------------------------------------------------NOTE-----------------------------------------------------------
The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.
The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.
-------------------------------------------------------------------------------------------------------------------------
Term                                           Definition ACTIONS                                       ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times.
Term Definition ACTIONS ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times. CASK TRANSFER FACILITY (CTF)  A CASK TRANSFER FACILITY is an optional aboveground or underground system used during the transfer of a loaded MPC between a transfer cask and a storage OVERPACK external to 10 CFR Part 50 controlled structures. The CASK TRANSFER FACILITY includes the following components and equipment: (1) a Cask Transfer Structure used to stabilize the OVERPACK, TRANSFER CASK and/or MPC during lifts involving spent fuel not bounded by the regulations of 10 CFR Part 50, and (2) Either a stationary lifting device or a mobile lifting device used in concert with the stationary structure to lift the OVERPACK, TRANSFER CASK, and/or MPC.
CASK TRANSFER FACILITY                         A CASK TRANSFER FACILITY is an optional (CTF)                                          aboveground or underground system used during the transfer of a loaded MPC between a transfer cask and a storage OVERPACK external to 10 CFR Part 50 controlled structures. The CASK TRANSFER FACILITY includes the following components and equipment: (1) a Cask Transfer Structure used to stabilize the OVERPACK, TRANSFER CASK and/or MPC during lifts involving spent fuel not bounded by the regulations of 10 CFR Part 50, and (2) Either a stationary lifting device or a mobile lifting device used in concert with the stationary structure to lift the OVERPACK, TRANSFER CASK, and/or MPC.
DAMAGED FUEL ASSEMBLY DAMAGED FUEL ASSEMBLIES are fuel assemblies with known or suspected cladding defects, as determined by a review of records, greater than pinhole leaks or hairline cracks, empty fuel rod locations that are not filled with dummy fuel rods, missing structural components such as grid spacers, whose structural integrity has been impaired such that geometric rearrangement of fuel or gross failure of the cladding is expected based on engineering evaluations, or that cannot be handled by normal means. Fuel assemblies that cannot be handled by normal means due to fuel cladding damage are considered FUEL DEBRIS.
DAMAGED FUEL ASSEMBLY                         DAMAGED FUEL ASSEMBLIES are fuel assemblies with known or suspected cladding defects, as determined by a review of records, greater than pinhole leaks or hairline cracks, empty fuel rod locations that are not filled with dummy fuel rods, missing structural components such as grid spacers, whose structural integrity has been impaired such that geometric rearrangement of fuel or gross failure of the cladding is expected based on engineering evaluations, or that cannot be handled by normal means. Fuel assemblies that cannot be handled by normal means due to fuel cladding damage are considered FUEL DEBRIS.
(continued)
(continued)
 
Certificate of Compliance No. 1014                                                              Amendment No. 11 Appendix A                                                1.1-1
Definitions


===1.1 Certificate===
Definitions 1.1 1.1     Definitions (continued)
of Compliance No.
DAMAGED FUEL                     DFCs are specially designed enclosures for CONTAINER (DFC)                  DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS which permit gaseous and liquid media to escape while minimizing dispersal of gross particulates.
1014 Amendment No. 1 1 Appendix A 1.1-2 1.1 Definitions (continued)
DFCs authorized for use in the HI-STORM 100 System are as follows:
DAMAGED FUEL CONTAINER (DFC)
: 1. Holtec Dresden Unit 1/Humboldt Bay design
DFCs are specially designed enclosures for DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS which permit gaseous and liquid media to escape while minimizing dispersal of gross particulates. DFCs authorized for use in the HI
: 2. Transnuclear Dresden Unit 1 design
-STORM 100 System are as follows:
: 1. Holtec Dresden Unit 1/Humboldt Bay design 2. Transnuclear Dresden Unit 1 design
: 3. Holtec Generic BWR design
: 3. Holtec Generic BWR design
: 4. Holtec Generic PWR design FUEL DEBRIS FUEL DEBRIS is ruptured fuel rods, severed rods, loose fuel pellets, containers or structures that are supporting these loose fuel assembly parts, or fuel assemblies with known or suspected defects which cannot be handled by normal means due to fuel cladding damage.
: 4. Holtec Generic PWR design FUEL DEBRIS                     FUEL DEBRIS is ruptured fuel rods, severed rods, loose fuel pellets, containers or structures that are supporting these loose fuel assembly parts, or fuel assemblies with known or suspected defects which cannot be handled by normal means due to fuel cladding damage.
FUEL BUILDING The FUEL BUILDING is the site
FUEL BUILDING                   The FUEL BUILDING is the site-specific power plant facility, governed by the regulations of 10 CFR Part 50, where the loaded OVERPACK or TRANSFER CASK is transferred to or from the transporter.
-specific power plant facility, governed by the regulations of 10 CFR Part 50, where the loaded OVERPACK or TRANSFER CASK is transferred to or from the transporter.
GROSSLY BREACHED                 Spent nuclear fuel rod with a cladding defect that SPENT FUEL ROD                  could lead to the release of fuel particulate greater than the average size fuel fragment for that particular assembly. A gross cladding breach may be confirmed by visual examination, through a review of reactor operating records indicating the presence of heavy metal isotopes, or other acceptable inspection means.
GROSSLY BREACHED SPENT FUEL ROD Spent nuclear fuel rod with a cladding defect that could lead to the release of fuel particulate greater than the average size fuel fragment for that particular assembly. A gross cladding breach may be confirmed by visual examination, through a review of reactor operating records indicating the presence of heavy metal isotopes, or other acceptable inspection means.
Certificate of Compliance No. 1014                                     Amendment No. 11 Appendix A                                 1.1-2
Definitions
 
===1.1 Certificate===
of Compliance No.
1014 Amendment No. 1 1 Appendix A 1.1-3 INTACT FUEL ASSEMBLY INTACT FUEL ASSEMBLIES are fuel assemblies without known or suspected cladding defects greater than pinhole leaks or hairline cracks and which can be handled by normal means.
Fuel assemblies without fuel rods in fuel rod locations shall not be classified as INTACT FUEL ASSEMBLIES unless dummy fuel rods are used to displace an amount of water greater than or equal to that displaced by the fuel rod(s) in the active region. INTACT FUEL ASSEMBLIES may contain integral fuel absorber rods (IFBA) in PWR fuel, or burnable poison rods in BWR fuel.
(continued)
Definitions
 
===1.1 Certificate===
of Compliance No.
1014 Amendment No. 1 1 Appendix A 1.1-4 1.1 Definitions (continued)
LOADING OPERATIONS LOADING OPERATIONS include all licensed activities on an OVERPACK or TRANSFER CASK while it is being loaded with fuel assemblies. LOADING OPERATIONS begin when the first fuel assembly is placed in the MPC and end when the OVERPACK or TRANSFER CASK is suspended from or secured on the transporter. LOADING OPERATIONS does not include MPC TRANSFER.
MINIMUM ENRICHMENT MINIMUM ENRICHMENT is the minimum assembly average enrichment. Natural uranium and low enrichment blankets are not considered in determining minimum enrichment.
MULTI-PURPOSE CANISTER (MPC) MPCs are the sealed spent nuclear fuel canisters which consist of a honeycombed fuel basket contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. The MPC provides the confinement boundary for the contained radioactive materials.
MPC TRANSFER MPC TRANSFER begins when the MPC is lifted off the TRANSFER CASK bottom lid and ends when the MPC is supported from beneath by the OVERPACK or VVM (or the reverse)
. NON-FUEL HARDWARE NON-FUEL HARDWARE is defined as Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Devices (TPDs), Control Rod Assemblies (CRAs), Axial Power Shaping Rods (APSRs), Wet Annular Burnable Absorbers (WABAs), Rod Cluster Control Assemblies (RCCAs), Control Element Assemblies (CEAs), Neutron Source Assemblies (NSAs), water displacement guide tube plugs, orifice rod assemblies, instrument tube tie rods (ITTRs)
, vibration suppressor inserts, and components of these devices such as individual rods.
  (continued)


Definitions
Definitions 1.1 INTACT FUEL ASSEMBLY            INTACT FUEL ASSEMBLIES are fuel assemblies without known or suspected cladding defects greater than pinhole leaks or hairline cracks and which can be handled by normal means. Fuel assemblies without fuel rods in fuel rod locations shall not be classified as INTACT FUEL ASSEMBLIES unless dummy fuel rods are used to displace an amount of water greater than or equal to that displaced by the fuel rod(s) in the active region. INTACT FUEL ASSEMBLIES may contain integral fuel absorber rods (IFBA) in PWR fuel, or burnable poison rods in BWR fuel.
(continued)
Certificate of Compliance No. 1014                                    Amendment No. 11 Appendix A                              1.1-3


===1.1 Certificate===
Definitions 1.1 1.1     Definitions (continued)
of Compliance No.
LOADING OPERATIONS              LOADING OPERATIONS include all licensed activities on an OVERPACK or TRANSFER CASK while it is being loaded with fuel assemblies.
1014 Amendment No. 1 1 Appendix A 1.1-5 1.1 Definitions (continued)
LOADING OPERATIONS begin when the first fuel assembly is placed in the MPC and end when the OVERPACK or TRANSFER CASK is suspended from or secured on the transporter. LOADING OPERATIONS does not include MPC TRANSFER.
OVERPACK OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI. They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The term OVERPACK does not include the TRANSFER CASK.
MINIMUM ENRICHMENT               MINIMUM ENRICHMENT is the minimum assembly average enrichment. Natural uranium and low enrichment blankets are not considered in determining minimum enrichment.
PLANAR-AVERAGE INITIAL ENRICHMENT PLANAR AVERAGE INITIAL ENRICHMENT is the average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.
MULTI-PURPOSE CANISTER          MPCs are the sealed spent nuclear fuel canisters (MPC)                           which consist of a honeycombed fuel basket contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. The MPC provides the confinement boundary for the contained radioactive materials.
REPAIRED/RECONSTITUTED FUEL ASSEMBLY Spent nuclear fuel assembly which contains dummy fuel rod (s) that displaces an amount of water greater than or equal to the original fuel rod (s) and/or which contains structural repairs so it can be handled by normal means.
MPC TRANSFER                    MPC TRANSFER begins when the MPC is lifted off the TRANSFER CASK bottom lid and ends when the MPC is supported from beneath by the OVERPACK or VVM (or the reverse).
SPENT FUEL STORAGE CASKS (SFSCs)
NON-FUEL HARDWARE                NON-FUEL HARDWARE is defined as Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Devices (TPDs), Control Rod Assemblies (CRAs),
SFSCs are containers approved for the storage of spent fuel assemblies at the ISFSI. The HI
Axial Power Shaping Rods (APSRs), Wet Annular Burnable Absorbers (WABAs), Rod Cluster Control Assemblies (RCCAs), Control Element Assemblies (CEAs), Neutron Source Assemblies (NSAs), water displacement guide tube plugs, orifice rod assemblies, instrument tube tie rods (ITTRs),
-STORM 100 SFSC System consists of the OVERPACK/VVM and its integral MPC.
vibration suppressor inserts, and components of these devices such as individual rods.
STORAGE OPERATIONS STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while an SFSC containing spent fuel is situated within the ISFSI perimeter. STORAGE OPERATIONS does not include MPC TRANSFER.
(continued)
TRANSFER CASK TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK/VVM. The HI-STORM 100 System employs either the 125
Certificate of Compliance No. 1014                                      Amendment No. 11 Appendix A                                1.1-4
-Ton or the 100
-Ton HI-TRAC TRANSFER CASK.
(continued)


Definitions
Definitions 1.1 1.1 Definitions (continued)
OVERPACK                        OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI.
They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The term OVERPACK does not include the TRANSFER CASK.
PLANAR-AVERAGE INITIAL          PLANAR AVERAGE INITIAL ENRICHMENT is the ENRICHMENT                      average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.
REPAIRED/RECONSTITUTED          Spent nuclear fuel assembly which contains dummy FUEL ASSEMBLY                    fuel rod(s) that displaces an amount of water greater than or equal to the original fuel rod(s) and/or which contains structural repairs so it can be handled by normal means.
SPENT FUEL STORAGE              SFSCs are containers approved for the storage of CASKS (SFSCs)                    spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK/VVM and its integral MPC.
STORAGE OPERATIONS              STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while an SFSC containing spent fuel is situated within the ISFSI perimeter. STORAGE OPERATIONS does not include MPC TRANSFER.
TRANSFER CASK                    TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK/VVM. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.
(continued)
Certificate of Compliance No. 1014                                      Amendment No. 11 Appendix A                                1.1-5


===1.1 Certificate===
Definitions 1.1 1.1     Definitions (continued)
of Compliance No.
TRANSPORT OPERATIONS             TRANSPORT OPERATIONS include all licensed activities performed on an OVERPACK or TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING OPERATIONS           or     before       UNLOADING OPERATIONS. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS includes MPC TRANSFER.
1014 Amendment No. 1 1 Appendix A 1.1-6 1.1 Definitions (continued)
UNDAMAGED FUEL                   UNDAMAGED FUEL ASSEMBLY is: a) a fuel ASSEMBLY                        assembly without known or suspected cladding defects greater than pinhole leaks or hairline cracks and which can be handled by normal means; or b) a BWR fuel assembly with an intact channel, a maximum planar average initial enrichment of 3.3 wt%
TRANSPORT OPERATIONS TRANSPORT OPERATIONS include all licensed activities performed on an OVERPACK or TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING OPERATIONS or before UNLOADING OPERATIONS. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS includes MPC TRANSFER
. UNDAMAGED FUEL ASSEMBLY  UNDAMAGED FUEL ASSEMBL Y is: a) a fuel assembl y without known or suspected cladding defects greater than pinhole leaks or hairline cracks and which can be handled by normal means; or b) a BWR fuel assembly with an intact channel, a maximum planar average initial enrichment of 3.3 wt%
U-235, without known or suspected GROSSLY BREACHED SPENT FUEL RODS, and which can be handled by normal means. An UNDAMAGED FUEL ASSEMBLY may be a REPAIRED/
U-235, without known or suspected GROSSLY BREACHED SPENT FUEL RODS, and which can be handled by normal means. An UNDAMAGED FUEL ASSEMBLY may be a REPAIRED/
RECONSTITUTED FUEL ASSEMBLY.
RECONSTITUTED FUEL ASSEMBLY.
UNLOADING OPERATIONS UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC TRANSFER.
UNLOADING OPERATIONS             UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC TRANSFER.
VERTICAL VENTILATED MODULE (VVM)
VERTICAL VENTILATED             The VVM is a subterranean type overpack which MODULE (VVM) (HI-STORM           receives and contains the sealed MPC for interim 100U SYSTEM ONLY)                storage at the ISFSI. The VVM supports the MPC in a vertical orientation and provides air flow through cooling passages to promote heat transfer from the MPC to the environs.
(HI-STORM 100U SYSTEM ONLY)
ZR                               ZR means any zirconium-based fuel cladding or fuel channel material authorized for use in a commercial nuclear power plant reactor.
The VVM is a subterranean type overpack which receives and contain s the sealed MPC for interim storage at the ISFSI. The VVM supports the MPC in a vertical orientation and provides air flow through cooling passages to promote heat transfer from the MPC to the environ s. ZR ZR means any zirconium
Certificate of Compliance No. 1014                                     Amendment No. 11 Appendix A                               1.1-6
-based fuel cladding or fuel channel material authorized for use in a commercial nuclear power plant reactor.
Logical Connectors
 
===1.2 Certificate===
of Compliance No.
1014 Amendment No. 1 1 Appendix A 1.2-1  1.0  USE AND APPLICATION


===1.2 Logical===
Logical Connectors 1.2 1.0 USE AND APPLICATION 1.2 Logical Connectors PURPOSE               The purpose of this section is to explain the meaning of logical connectors.
Connectors PURPOSE The purpose of this section is to explain the meaning of logical connectors.
Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.
Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.
BACKGROUND Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.
BACKGROUND             Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action.
The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.
When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.
When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.
  (continued)
(continued)
 
Certificate of Compliance No. 1014                                            Amendment No. 11 Appendix A                                    1.2-1
Logical Connectors


===1.2 Certificate===
Logical Connectors 1.2 1.2     Logical Connectors (continued)
of Compliance No.
EXAMPLES               The following examples illustrate the use of logical connectors.
1014 Amendment No. 1 1 Appendix A 1.2-2  1.2 Logical Connectors (continued)
EXAMPLE 1.2-1 ACTIONS CONDITION           REQUIRED ACTION               COMPLETION TIME A. LCO not met.       A.1 VERIFY . . .
EXAMPLES The following examples illustrate the use of logical connectors.
AND A.2 Restore . . .
EXAMPLE 1.2
-1 ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. LCO not met.
A.1   VERIFY . . .
AND A.2   Restore . . .
In this example the logical connector AND is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.
In this example the logical connector AND is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.
  (continued)
(continued)
 
Certificate of Compliance No. 1014                                        Amendment No. 11 Appendix A                                  1.2-2
Logical Connectors


===1.2 Certificate===
Logical Connectors 1.2 1.2     Logical Connectors (continued)
of Compliance No.
EXAMPLES               EXAMPLE 1.2-2 (continued)
1014 Amendment No. 1 1 Appendix A 1.2-3  1.2 Logical Connectors (continued)
ACTIONS CONDITION           REQUIRED ACTION             COMPLETION TIME A. LCO not met.       A.1       Stop . . .
EXAMPLES (continued)
OR A.2.1     Verify . . .
EXAMPLE 1.2
AND A.2.2.1   Reduce . . .
-2 ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. LCO not met.
OR A.2.2.2   Perform . . .
A.1 Stop . . .
OR A.3       Remove . . .
OR A.2.1 Verify . . .
AND A.2.2.1 Reduce . . .
OR A.2.2.2 Perform . . .
OR A.3 Remove . . .
This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three ACTIONS may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.
This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three ACTIONS may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.
Certificate of Compliance No. 1014                                          Amendment No. 11 Appendix A                                  1.2-3


Completion Times
Completion Times 1.3 1.0 USE AND APPLICATION 1.3 Completion Times PURPOSE               The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.
 
BACKGROUND           Limiting Conditions for Operation (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the facility. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Times(s).
===1.3 Certificate===
DESCRIPTION           The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the HI-STORM 100 System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the HI-STORM 100 System is not within the LCO Applicability.
of Compliance No.
1014 Amendment No.
1 1 Appendix A 1.3-1  1.0 USE AND APPLICATION
 
===1.3 Completion===
Times PURPOSE The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.
BACKGROUND Limiting Conditions for Operation (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the facility. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Times(s).
DESCRIPTION The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the HI
-STORM 100 System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the HI
-STORM 100 System is not within the LCO Applicability.
Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will not result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.
Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will not result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.
  (continued)
(continued)
 
Certificate of Compliance No. 1014                                            Amendment No. 11 Appendix A                                    1.3-1
Completion Times


===1.3 Certificate===
Completion Times 1.3 1.3 Completion Times (continued)
of Compliance No.
EXAMPLES               The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.
1014 Amendment No.
EXAMPLE 1.3-1 ACTIONS CONDITION             REQUIRED ACTION           COMPLETION TIME B. Required             B.1 Perform Action B.1     12 hours Action and associated        AND Completion Time not met.      B.2 Perform Action B.2     36 hours Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.
1 1 Appendix A 1.3-2  1.3 Completion Times (continued)
EXAMPLES The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.
EXAMPLE 1.3
-1 ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME B. Required Action and associated Completion Time not met.
B.1   Perform Action B.1 AND B.2   Perform Action B.2 12 hours    36 hours   Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.
The Required Actions of Condition B are to complete action B.1 within 12 hours AND complete action B.2 within 36 hours. A total of 12 hours is allowed for completing action B.1 and a total of 36 hours (not 48 hours) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours, the time allowed for completing action B.2 is the next 30 hours because the total time allowed for completing action B.2 is 36 hours.
The Required Actions of Condition B are to complete action B.1 within 12 hours AND complete action B.2 within 36 hours. A total of 12 hours is allowed for completing action B.1 and a total of 36 hours (not 48 hours) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours, the time allowed for completing action B.2 is the next 30 hours because the total time allowed for completing action B.2 is 36 hours.
  (continued)
(continued)
 
Certificate of Compliance No. 1014                                         Amendment No. 11 Appendix A                                     1.3-2
Completion Times
 
===1.3 Certificate===
of Compliance No.
1014 Amendment No.
1 1 Appendix A 1.3-3  1.3 Completion Times (continued)  EXAMPLES (continued)
EXAMPLE 1.3
-2 ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME  A. One system not within limit.
A.1 Restore system to within limit.
7 days  B. Required  Action and associated Completion Time not met.
B.1 Complete action B.1. AND  B.2 Complete action B.2. 12 hours    36 hours  When a system is determined not to meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.
  (continued)


Completion Times
Completion Times 1.3 1.3    Completion Times (continued)
EXAMPLES              EXAMPLE 1.3-2 (continued)
ACTIONS CONDITION              REQUIRED ACTION          COMPLETION TIME A. One system            A.1  Restore system to    7 days not within limit.        within limit.
B. Required              B.1  Complete action      12 hours Action and              B.1.
associated Completion          AND Time not met.
B.2  Complete action      36 hours B.2.
When a system is determined not to meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.
(continued)
Certificate of Compliance No. 1014                                        Amendment No. 11 Appendix A                                    1.3-3


===1.3 Certificate===
Completion Times 1.3 1.3     Completion Times (continued)
of Compliance No.
EXAMPLES               EXAMPLE 1.3-3 (continued)
1014 Amendment No.
ACTIONS
1 1 Appendix A 1.3-4  1.3 Completion Times (continued)
                        ---------------------------------------NOTE------------------------------------------
EXAMPLES (continued)
EXAMPLE 1.3
-3 ACTIONS ---------------------------------------NOTE------------------------------------------
Separate Condition entry is allowed for each component.
Separate Condition entry is allowed for each component.
------------------------------------------------------------------------------------------
CONDITION                   REQUIRED ACTION                     COMPLETION TIME A. LCO not met.               A.1     Restore                     4 hours compliance with LCO.
CONDITION REQUIRED ACTION COMPLETION TIME A. LCO not met.
B. Required                   B.1     Complete action             6 hours Action and                      B.1.
A.1 Restore compliance with LCO. 4 hours  B. Required Action and associated Completion Time not met. B.1 Complete action B.1. AND B.2 Complete action B.2. 6 hours    12 hours  The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.
associated Completion              AND Time not met.
B.2     Complete action             12 hours B.2.
The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.
The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.
The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.
  (continued)
(continued)
 
Certificate of Compliance No. 1014                                                         Amendment No. 11 Appendix A                                         1.3-4
Completion Times
 
===1.3 Certificate===
of Compliance No.
1014 Amendment No.
1 1 Appendix A 1.3-5  1.3 Completion Times (continued)
IMMEDIATE COMPLETION TIME When "Immediately" is used as a Completion Time, the Required Action should be pursued without delay and in a controlled manner.


Frequency  1.4 Certificate of Compliance No.
Completion Times 1.3 1.3 Completion Times (continued)
1014 Amendment No. 1 1 Appendix A 1.4-1  1.0  USE AND APPLICATION
IMMEDIATE              When "Immediately" is used as a Completion Time, the Required COMPLETION            Action should be pursued without delay and in a controlled manner.
TIME Certificate of Compliance No. 1014                                       Amendment No. 11 Appendix A                                 1.3-5


===1.4 Frequency===
Frequency 1.4 1.0 USE AND APPLICATION 1.4 Frequency PURPOSE               The purpose of this section is to define the proper use and application of Frequency requirements.
PURPOSE The purpose of this section is to define the proper use and application of Frequency requirements.
DESCRIPTION           Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.
DESCRIPTION Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.
The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR.
The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR.
Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.
Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.
  (continued)
(continued)
Certificate of Compliance No. 1014                                          Amendment No. 11 Appendix A                                    1.4-1


Frequency 1.4 Certificate of Compliance No.
Frequency 1.4 1.4 Frequency (continued)
1014  Amendment No. 1 1 Appendix A 1.4-2  1.4 Frequency (continued)
EXAMPLES               The following examples illustrate the various ways that Frequencies are specified.
EXAMPLES The following examples illustrate the various ways that Frequencies are specified.
EXAMPLE 1.4-1 SURVEILLANCE REQUIREMENTS SURVEILLANCE                             FREQUENCY Verify pressure within limit                             12 hours Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.
EXAMPLE 1.4
-1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY Verify pressure within limit 12 hours Example 1.4
-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.
If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4 (continued)
If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4 (continued)
Certificate of Compliance No. 1014                                              Amendment No. 11 Appendix A                                      1.4-2


Frequency 1.4 Certificate of Compliance No.
Frequency 1.4 1.4 Frequency (continued)
1014  Amendment No. 1 1 Appendix A 1.4-3  1.4 Frequency (continued)
EXAMPLES (continued)           EXAMPLE 1.4-2 SURVEILLANCE REQUIREMENTS SURVEILLANCE                         FREQUENCY Verify flow is within limits.                       Once within 12 hours prior to starting activity AND 24 hours thereafter Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed within 12 hours prior to starting the activity.
EXAMPLES (continued)
The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25%
EXAMPLE 1.4
extension allowed by SR 3.0.2.
-2 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY Verify flow is within limits.
                        "Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops.
Once within 12 hours prior to starting activity AND 24 hours thereafter Example 1.4
New intervals start upon preparing to restart the specified activity.
-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4
Certificate of Compliance No. 1014                                         Amendment No. 11 Appendix A                                   1.4-3
-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed within 12 hours prior to starting the activity.
The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25% extension allowed by SR 3.0.2.
"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops. New intervals start upon preparing to restart the specified activity.
 
===2.0 Certificate===
of Compliance No.
1014 Amendment No. 1 1 Appendix A 2.0-1  2.0  This section is intentionally left blank
 
LCO Applicability


===3.0 Certificate===
2.0 2.0 This section is intentionally left blank Certificate of Compliance No. 1014             Amendment No. 11 Appendix A                               2.0-1
of Compliance No.
1014 Amendment No. 1 1 Appendix A 3.0-1 3.0  LIMITING CONDITIONS FOR OPERATION (LCO) APPLICABILITY LCO 3.0.1 LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.
LCO 3.0.2 Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5. If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
LCO 3.0.3 Not applicable.
LCO 3.0.4 When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an SFSC.
LCO 3.0.5 Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing.


LCO Applicability
LCO Applicability 3.0 3.0 LIMITING CONDITIONS FOR OPERATION (LCO) APPLICABILITY LCO 3.0.1            LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.
LCO 3.0.2            Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5.
If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
LCO 3.0.3            Not applicable.
LCO 3.0.4            When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an SFSC.
LCO 3.0.5            Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing.
Certificate of Compliance No. 1014                                            Amendment No. 11 Appendix A                                    3.0-1


===3.0 Certificate===
LCO Applicability 3.0 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.1             SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.
of Compliance No.
SR 3.0.2             The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.
1014 Amendment No. 1 1 Appendix A 3.0-2  3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.1 SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.
For Frequencies specified as once, the above interval extension does not apply. If a Completion Time requires periodic performance on a once per... basis, the above Frequency extension applies to each performance after the initial performance.
SR 3.0.2 The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.
For Frequencies specified as "once," the above interval extension does not apply. If a Completion Time requires periodic performance on a "once per..." basis, the above Frequency extension applies to each performance after the initial performance.
Exceptions to this Specification are stated in the individual Specifications.
Exceptions to this Specification are stated in the individual Specifications.
SR 3.0.3 If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is less. This delay period is permitted to allow performance of the Surveillance.
SR 3.0.3             If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours or up to the limit of the specified Frequency, whichever is less.
This delay period is permitted to allow performance of the Surveillance.
If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
  (continued)
(continued)
 
Certificate of Compliance No. 1014                                         Amendment No. 11 Appendix A                                   3.0-2
LCO Applicability
 
===3.0 Certificate===
of Compliance No.
1014 Amendment No. 1 1 Appendix A 3.0-3  3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.3 (continued)
When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
SR 3.0.4 Entry into a specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of an SFSC.
 
SFSC Heat Removal System


====3.1.1 Certificate====
LCO Applicability 3.0 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.3              When the Surveillance is performed within the delay period and the (continued)          Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
of Compliance No.
SR 3.0.4              Entry into a specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of an SFSC.
1014 Amendment No. 1 1 Appendix A 3.1.1-3.1  SFSC INTEGRITY
Certificate of Compliance No. 1014                                             Amendment No. 11 Appendix A                                   3.0-3


====3.1.1 Multi====
SFSC Heat Removal System 3.1.1 3.1 SFSC INTEGRITY 3.1.1 Multi-Purpose Canister (MPC)
-Purpose Canister (MPC)
LCO 3.1.1                 The MPC shall be dry and helium filled.
LCO 3.1.1 The MPC shall be dry and helium filled.
Table 3-1 provides decay heat and burnup limits for forced helium dehydration (FHD) and vacuum drying. FHD is not subject to time limits. Vacuum drying of the MPC-68M is not subject to time limits.
Table 3-1 provides decay heat and burnup limits for forced helium dehydration (FHD) and vacuum drying. FHD is not subject to time limits. Vacuum drying of the MPC
Vacuum drying, for all other MPCs, is subject to the following time limits, from the end of bulk water removal until the start of helium backfill:
-68M is not subject to time limits. Vacuum drying
MPC Total Decay Heat (Q)                                 Vacuum Drying Time Limit Q < 26 kW                                                 None 26 kW < Q < 30 kW                                         40 hours Q > 30 kW                                                 Not Permitted (see Table 3-1)
, for all other MPCs , is subject to the following time limits, from the end of bulk water removal until the start of helium backfill: MPC Total Decay Heat (Q)
Note 1: Maximum storage cell heat load must not exceed MPC heat load limits in the table divided by number of storage cells.
Vacuum Drying Time Limit Q < 2 6 kW None 26 kW < Q < 30 kW 40 hours Q > 30 kW Not Permitted (see Table 3
APPLICABILITY: During TRANSPORT OPERATIONS and STORAGE OPERATIONS.
-1) Note 1: Maximum storage cell heat load must not exceed MPC heat load limits in the table divided by number of storage cells.
ACTIONS
APPLICABILITY:
-------------------------------------------------NOTES---------------------------------------------------------
During TRANSPORT OPERATIONS and STORAGE OPERATIONS.
ACTIONS -------------------------------------------------NOTES---------------------------------------------------------
Separate Condition entry is allowed for each MPC.
Separate Condition entry is allowed for each MPC.
--------------------------------------------------------------------------------------------------------------------
COMPLETION CONDITION                               REQUIRED ACTION TIME A. MPC cavity vacuum                 A.1 Perform an engineering                     7 days drying pressure or                        evaluation to determine the demoisturizer exit gas                    quantity of moisture left in temperature limit not                    the MPC.
CONDITION REQUIRED ACTION COMPLETION TIME A. MPC cavity vacuum drying pressure or demoisturizer exit gas temperature limit not met. A.1 Perform an engineering evaluation to determine the quantity of moisture left in the MPC. 7 days AND A.2 Develop and initiate corrective actions necessary to return the MPC to compliance with Table 3
met.
-1. 30 days SFSC Heat Removal System
AND A.2 Develop and initiate                       30 days corrective actions necessary to return the MPC to compliance with Table 3-1.
Certificate of Compliance No. 1014                                                          Amendment No. 11 Appendix A                                            3.1.1-1


====3.1.1 Certificate====
SFSC Heat Removal System 3.1.1 ACTIONS (continued)
of Compliance No.
B. MPC cavity vacuum         B.1 Backfill the MPC cavity with   6 hours drying acceptance              helium to a pressure of at criteria not met during        least 0.5 atm.
1014 Amendment No. 1 1 Appendix A 3.1.1-2  ACTIONS (continued)
allowable time.
B. MPC cavity vacuum drying acceptance criteria not met during allowable time.
C. MPC helium backfill limit C.1   Perform an engineering       72 hours not met.                        evaluation to determine the impact of helium differential.
B.1 Backfill the MPC cavity with helium to a pressure of at least 0.5 atm.
AND C.2.1 Develop and initiate         14 days corrective actions necessary to return the MPC to an analyzed condition by adding helium to or removing helium from the MPC.
6 hours C. MPC helium backfill limit not met. C.1 Perform an engineering evaluation to determine the impact of helium differential.
OR C.2.2 Develop and initiate corrective actions necessary to demonstrate through analysis, using the models and methods from the HI-STORM FSAR, that all limits for cask components and contents will be met.
72 hours AND C.2.1 Develop and initiate corrective actions necessary to return the MPC to an analyzed condition by adding helium to or removing helium from the MPC. 14 days  OR C.2.2 Develop and initiate corrective actions necessary to demonstrate through analysis, using the models and methods from the HI-STORM FSAR, that all limits for cask components and contents will be met.
D. MPC helium leak rate     D.1  Perform an engineering      24 hours limit for vent and drain       evaluation to determine the port cover plate welds or       impact of increased helium cover plate base metal         leak rate on heat removal not met.                        capability and offsite dose.
D. MPC helium leak rate limit for vent and drain port cover plate welds or cover plate base metal not met. D.1 Perform an engineering evaluation to determine the impact of increased helium leak rate on heat removal capability and offsite dose.
AND D.2   Develop and initiate         7 days corrective actions necessary to return the MPC to compliance with SR 3.1.1.3.
24 hou r s AND D.2 Develop and initiate corrective actions necessary to return the MPC to compliance with SR 3.1.1.3.
Certificate of Compliance No. 1014                                    Amendment No. 11 Appendix A                                3.1.1-2
7 days SFSC Heat Removal System


====3.1.1 Certificate====
SFSC Heat Removal System 3.1.1 E. Required Actions and         E.1   Remove all fuel assemblies   30 days associated Completion              from the SFSC.
of Compliance No.
Times not met.
1014 Amendment No. 1 1 Appendix A 3.1.1-3  E. Required Actions and associated Completion Times not met.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                 FREQUENCY SR 3.1.1.1         Verify that the MPC cavity has been dried in         Once, prior to accordance with the applicable limits in Table       TRANSPORT 3-1, within the specified vacuum drying time limits OPERATIONS as applicable.
E.1 Remove all fuel assemblies from the SFSC.
SR 3.1.1.2         Verify MPC helium backfill quantity is within the   Once, prior to limit specified in Table 3-2 for the applicable MPC TRANSPORT model. Re-performance of this surveillance is not   OPERATIONS required upon successful completion of Action C.2.2.
30 days  SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.1.1.1 Verify that the MPC cavity has been dried in accordance with the applicable limits in Table 3-1, within the specified vacuum drying time limits as applicable.
SR 3.1.1.3         Verify that the helium leak rate through the MPC     Once, prior to vent and drain port cover plates (confinement       TRANSPORT welds and the base metal) meets the leaktight       OPERATIONS criteria of ANSI N14.5-1997.
Once, prior to TRANSPORT OPERATIONS SR 3.1.1.2 Verify MPC helium backfill quantity is within the limit specified in Table 3
Certificate of Compliance No. 1014                                        Amendment No. 11 Appendix A                                  3.1.1-3
-2 for the applicable MPC model. Re-performance of this surveillance is not required upon successful completion of Action C.2.2. Once, prior to TRANSPORT OPERATIONS SR 3.1.1.3 Verify that the helium leak rate through the MPC vent and drain port cover plates (confinement welds and the base metal) meet s the leaktight criteria of ANSI N14.5
-1997. Once, prior to TRANSPORT OPERATIONS


SFSC Heat Removal System
SFSC Heat Removal System 3.1.2 3.1 SFSC INTEGRITY 3.1.2 SFSC Heat Removal System LCO 3.1.2                The SFSC Heat Removal System shall be operable
----------------------------------------------------------NOTE--------------------------------------------------
The SFSC Heat Removal System is operable when 50% or more of the inlet and outlet vent areas are unblocked and available for flow or when air temperature requirements are met.
APPLICABILITY: During STORAGE OPERATIONS.
ACTIONS
----------------------------------------------------------NOTE--------------------------------------------------
Separate Condition entry is allowed for each SFSC.
COMPLETION CONDITION                              REQUIRED ACTION TIME A. SFSC Heat Removal                      A.1    Remove blockage.                        N/A System operable, but partially (<50%) blocked.
B. SFSC Heat Removal                      B.1    Restore SFSC Heat                      Table 3-5 System inoperable.                          Removal System to operable status.
C. Required Action B.1 and                C.1    Measure SFSC dose rates                Immediately and associated Completion                        in accordance with the                  once per 12 hours Time not met.                                Radiation Protection                    thereafter Program.
AND C.2.1 Restore SFSC Heat                        Table 3-5 Removal System to operable status.
OR C.2.2 Transfer the MPC into a                  Table 3-5 TRANSFER CASK.
Certificate of Compliance No. 1014                                                          Amendment No. 11 Appendix A                                            3.1.2-1


====3.1.2 Certificate====
SFSC Heat Removal System 3.1.2 SURVEILLANCE REQUIREMENTS SURVEILLANCE                                FREQUENCY SR 3.1.2           Verify all OVERPACK inlets and outlets are free    Table 3-5 of blockage from solid debris or floodwater.
of Compliance No.
OR For OVERPACKS with installed temperature          Table 3-5 monitoring equipment, verify that the difference between the average OVERPACK air outlet temperature and ISFSI ambient temperature is
1014 Amendment No. 1 1 Appendix A 3.1.2-1  3.1  SFSC INTEGRITY 3.1.2  SFSC Heat Removal System LCO  3.1.2 The SFSC Heat Removal System shall be operable
                    < 155oF for OVERPACKS containing PWR MPCs, < 137oF for OVERPACKS containing BWR MPCs.
  ----------------------------------------------------------NOTE--------------------------------------------------
Certificate of Compliance No. 1014                                      Amendment No. 11 Appendix A                                 3.1.2-2
The SFSC Heat Removal System is operable when 50% or more of the inlet and outlet vent areas are unblocked and available for flow or when air temperature requirements are met. ---------------------------------------------------------------------------------------------------------------------
APPLICABILITY:
During STORAGE OPERATIONS.
ACTIONS ----------------------------------------------------------NOTE--------------------------------------------------
Separate Condition entry is allowed for each SFSC.
---------------------------------------------------------------------------------------------------------------------
CONDITION REQUIRED ACTION COMPLETION TIME A. SFSC Heat Removal System operable, but partially (<50%) blocked.
A.1 Remove blockage.
N/A B. SFSC Heat Removal System inoperable.
B.1 Restore SFSC Heat Removal System to operable status.
Table 3-5 C. Required Action B.1 and associated Completion Time not met.
C.1 Measure SFSC dose rates in accordance with the Radiation Protection Program. Immediately and once per 12 hours thereafter AND  C.2.1 Restore SFSC Heat Removal System to operable status.
Table 3-5  OR  C.2.2 Transfer the MPC into a TRANSFER CASK.
Table 3-5 SFSC Heat Removal System


====3.1.2 Certificate====
Fuel Cool-Down 3.1.3 3.1 SFSC INTEGRITY 3.1.3 MPC Cavity Reflooding LCO 3.1.3                 The MPC cavity pressure shall be < 100 psig
of Compliance No.
----------------------------------------------------NOTE--------------------------------------------------------
1014 Amendment No. 1 1 Appendix A 3.1.2-2  SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR  3.1.2 Verify all OVERPACK inlets and outlets are free of blockage from solid debris or floodwater.
Table 3-5  OR  For OVERPACKS with installed temperature monitoring equipment, verify that the difference between the average OVERPACK air outlet temperature and ISFSI ambient temperature is
< 155 oF for OVERPACKS containing PWR MPCs, < 137 oF for OVERPACKS containing BWR MPCs. Table 3-5 Fuel Cool-Down 3.1.3  Certificate of Compliance No.
1014 Amendment No. 1 1 Appendix A 3.1.3-1  3.1 SFSC INTEGRITY 3.1.3 MPC Cavity Reflooding LCO 3.1.3 The MPC cavity pressure shall be < 100 psig
  ----------------------------------------------------NOTE--------------------------------------------------------
The LCO is only applicable to wet UNLOADING OPERATIONS.
The LCO is only applicable to wet UNLOADING OPERATIONS.
--------------------------------------------------------------------------------------------------------------------
APPLICABILITY: UNLOADING OPERATIONS prior to and during re-flooding.
APPLICABILITY:
ACTIONS
UNLOADING OPERATIONS prior to and during re
----------------------------------------------------NOTE--------------------------------------------------------
-flooding. ACTIONS ----------------------------------------------------NOTE--------------------------------------------------------
Separate Condition entry is allowed for each MPC.
Separate Condition entry is allowed for each MPC.
--------------------------------------------------------------------------------------------------------------------
COMPLETION CONDITION                               REQUIRED ACTION TIME A.     MPC cavity pressure               A.1 Stop re-flooding operations                 Immediately not within limit.                        until MPC cavity pressure is within limit.
CONDITION REQUIRED ACTION COMPLETION TIME A. MPC cavity pressure not within limit.
AND A.2 Ensure MPC vent port is not                 Immediately closed or blocked.
A.1 Stop re-flooding operations until MPC cavity pressure is within limit.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                               FREQUENCY SR 3.1.3.1           Ensure via analysis or direct measurement that                       Once, prior to MPC cavity pressure is within limit.                                 MPC re-flooding operations.
Immediately AND A.2 Ensure MPC vent port is not closed or blocked.
AND Once every 1 hour thereafter when using direct measurement.
Immediately SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.1.3.1 Ensure via analysis or direct measurement that MPC cavity pressure is within limit.
Certificate of Compliance No. 1014                                                          Amendment No. 11 Appendix A                                            3.1.3-1
Once, prior to MPC re-flooding operations.
AND Once every 1 hour thereafter when using direct measurement.
 
Supplemental Cooling System


====3.1.4 Certificate====
Supplemental Cooling System 3.1.4 3.1 SFSC INTEGRITY LCO 3.1.4         A supplemental cooling system (SCS) shall be operable
of Compliance No.
---------------------------------------------------NOTE---------------------------------------------------------
1014 Amendment No. 1 1 Appendix A 3.1.4-1  3.1 SFSC INTEGRITY LCO 3.1.4 A supplemental cooling system (SCS) shall be operable
  ---------------------------------------------------NOTE---------------------------------------------------------
Upon reaching steady state operation, the SCS may be temporarily disabled for a short duration (< 7 hours) to facilitate necessary operational evolutions, such as movement of the TRANSFER CASK through a door way, or other similar operation.
Upon reaching steady state operation, the SCS may be temporarily disabled for a short duration (< 7 hours) to facilitate necessary operational evolutions, such as movement of the TRANSFER CASK through a door way, or other similar operation.
--------------------------------------------------------------------------------------------------------------------
APPLICABILITY: This LCO is not applicable to the MPC-68M. For all other MPCs this LCO is applicable when the loaded MPC is in the TRANSFER CASK and:
APPLICABILITY:
: a. Within 4 hours of the completion of MPC drying operations in accordance with LCO 3.1.1 or within 4 hours of transferring the MPC into the TRANSFER CASK if the MPC is to be unloaded AND
This LCO is not applicable to the MPC
: b. The MPC contains one or more fuel assemblies with an average burnup > 45,000 MWD/MTU AND c1. MPC backfilled to higher helium backfill limits in Table 3-2 AND any storage cell decay heat load exceeds 90% of maximum allowable storage cell heat load defined in Appendix B, Section 2.4.1 or 2.4.2 and FSAR Section 2.1.9.1 procedures.
-68M. For all other MPCs this LCO is applicable when the loaded MPC is in the TRANSFER CASK and: a. Within 4 hours of the completion of MPC drying operations in accordance with LCO 3.1.1 or within 4 hours of transferring the MPC into the TRANSFER CASK if the MPC is to be unloaded AND   b. The MPC contains one or more fuel assemblies with an average burnup > 45,000 MWD/MTU AND     c1. MPC backfilled to higher helium backfill limits in Table 3
OR c2. MPC backfilled to lower helium backfill limits in Table 3-2 AND any storage cell heat load exceeds 90% of storage cell heat load limits defined in Tables 3-3 or 3-4.
-2 AND any storage cell decay heat load exceeds 90% of maximum allowable storage cell heat load defined in Appendix B, Section 2.4.1 or 2.4.2 and FSAR Section 2.1.9.1 procedures
Certificate of Compliance No. 1014                                                           Amendment No. 11 Appendix A                                           3.1.4-1
. OR   c2. MPC backfilled to lower helium backfill limits in Table 3
-2 AND any storage cell heat load exceeds 90% of storage cell heat load limits defined in Tables 3
-3 or 3-4.
Supplemental Cooling System
 
====3.1.4 Certificate====
of Compliance No.
1014 Amendment No. 1 1 Appendix A 3.1.4-2    ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. SFSC Supplemental Cooling System inoperable.
A.1 Restore SFSC Supplemental Cooling System to operable status.
7 days B. Required Action A.1 and associated Completion Time not met.
B.1 Remove all fuel assemblies from the SFSC. 30 days  SURVEILLANCE REQUIREMENTS SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR  3.1.4.1 Verify SCS is operable.
2 hours Supplemental Cooling System


====3.1.4 Certificate====
Supplemental Cooling System 3.1.4 ACTIONS COMPLETION CONDITION                    REQUIRED ACTION TIME A. SFSC Supplemental          A.1  Restore SFSC              7 days Cooling System                  Supplemental Cooling inoperable.                      System to operable status.
of Compliance No.
B. Required Action A.1 and    B.1  Remove all fuel            30 days associated Completion            assemblies from the Time not met.                    SFSC.
1014 Amendment No. 1 1 Appendix A 3.1.4-3    This page is intentionally left blank
SURVEILLANCE REQUIREMENTS SURVEILLANCE REQUIREMENTS SURVEILLANCE                              FREQUENCY SR 3.1.4.1        Verify SCS is operable.                        2 hours Certificate of Compliance No. 1014                                   Amendment No. 11 Appendix A                               3.1.4-2


Deleted  3.2.1 Certificate of Compliance No.
Supplemental Cooling System 3.1.4 This page is intentionally left blank Certificate of Compliance No. 1014                       Amendment No. 11 Appendix A                             3.1.4-3
1014 Amendment No. 1 1 Appendix A 3.2.1-3.2 SFSC RADIATION PROTECTION.
3.2.1  Deleted.
LCO  3.2.1 Deleted.
TRANSFER CASK Surface Contamination


====3.2.2 Certificate====
Deleted 3.2.1 3.2 SFSC RADIATION PROTECTION.
of Compliance No.
3.2.1 Deleted.
1014 Amendment No. 1 1 Appendix A 3.2.2-1 3.2  SFSC RADIATION PROTECTION.
LCO 3.2.1            Deleted.
Certificate of Compliance No. 1014         Amendment No. 11 Appendix A                         3.2.1-1


====3.2.2 TRANSFER====
TRANSFER CASK Surface Contamination 3.2.2 3.2 SFSC RADIATION PROTECTION.
CASK Surface Contamination.
3.2.2 TRANSFER CASK Surface Contamination.
LCO 3.2.2 Removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC shall each not exceed:
LCO 3.2.2                 Removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC shall each not exceed:
: a. 1000 dpm/100 cm 2 from beta and gamma sources
: a. 1000 dpm/100 cm2 from beta and gamma sources
: b. 20 dpm/100 cm 2 from alpha sources.
: b. 20 dpm/100 cm2 from alpha sources.
  ----------------------------------------------------NOTE--------------------------------------------------------
----------------------------------------------------NOTE--------------------------------------------------------
This LCO is not applicable to the TRANSFER CASK if MPC TRANSFER operations occur inside the FUEL BUILDING.
This LCO is not applicable to the TRANSFER CASK if MPC TRANSFER operations occur inside the FUEL BUILDING.
---------------------------------------------------------------------------------------------------------------------
APPLICABILITY: During TRANSPORT OPERATIONS.
APPLICABILITY:
ACTIONS
During TRANSPORT OPERATIONS.
----------------------------------------------------NOTE--------------------------------------------------------
ACTIONS ----------------------------------------------------NOTE--------------------------------------------------------
Separate Condition entry is allowed for each TRANSFER CASK.
Separate Condition entry is allowed for each TRANSFER CASK.
---------------------------------------------------------------------------------------------------------------------
COMPLETION CONDITION                               REQUIRED ACTION TIME A. TRANSFER CASK or                   A.1 Restore removable surface                   7 days MPC removable surface                      contamination to within contamination limits not                  limits.
CONDITION REQUIRED ACTION COMPLETION TIME A. TRANSFER CASK or MPC removable surface contamination limits not met. A.1 Restore removable surface contamination to within limits. 7 days  SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.2.2.1 Verify that the removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC containing fuel is within limits.
met.
Once, prior to TRANSPORT OPERATIONS
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                               FREQUENCY SR 3.2.2.1             Verify that the removable contamination on the                     Once, prior to exterior surfaces of the TRANSFER CASK and                         TRANSPORT accessible portions of the MPC containing fuel is                   OPERATIONS within limits.
 
Certificate of Compliance No. 1014                                                           Amendment No. 11 Appendix A                                           3.2.2-1
Deleted  3.2.3 1Certificate of Compliance No.
1014 Amendment No.1 1 Appendix A 3.2.3-1 3.2  SFSC RADIATION PROTECTION.
3.2.3  Deleted.
LCO  3.2.3 Deleted.
Boron Concentration


====3.3.1 Certificate====
Deleted 3.2.3 3.2 SFSC RADIATION PROTECTION.
of Compliance No.
3.2.3 Deleted.
1014 Amendment No. 1 1 Appendix A 3.3.1-1 3.3  SFSC CRITICALITY CONTROL
LCO 3.2.3            Deleted.
1Certificate of Compliance No. 1014         Amendment No.11 Appendix A                         3.2.3-1


====3.3.1 Boron====
Boron Concentration 3.3.1 3.3 SFSC CRITICALITY CONTROL 3.3.1 Boron Concentration LCO 3.3.1                 As required by CoC Appendix B, Table 2.1-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model and the most limiting fuel assembly array/class and classification to be stored in the MPC:
Concentration LCO 3.3.1 As required by CoC Appendix B, Table 2.1
: a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% 235U: > 400 ppmb
-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model and the most limiting fuel assembly array/class and classification to be stored in the MPC:
: b. MPC-24E or MPC-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% 235U: > 300 ppmb
: a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1
: c. Deleted.
-2 for no soluble boron credit and  
: d. Deleted.
< 5.0 wt% 235U: > 400 ppmb b. MPC-24E or MPC
: e. MPC-24E or MPC-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt% 235U and
-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1
                                < 5.0 wt% 235U: > 600 ppmb
-2 for no soluble boron credit and < 5.0 wt% 235U: > 300 ppmb c. Deleted. d. Deleted. e. MPC-24E or MPC
: f. MPC-32/32F: Minimum soluble boron concentration as required by the table below.
-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt%
One or more DAMAGED FUEL All INTACT FUEL ASSEMBLIES ASSEMBLIES or FUEL DEBRIS Array/Class        Maximum Initial   Maximum Initial    Maximum Initial      Maximum Initial Enrichment      Enrichment 5.0        Enrichment          Enrichment
235U and < 5.0 wt% 235 U: > 600 ppmb f. MPC-32/32F: Minimum soluble boron concentration as required by the table belowf. Array/Class All INTACT FUEL ASSEMBLIES One or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS Maximum Initial Enrichment
                            < 4.1 wt% 235U      wt% 235U          < 4.1 wt% 235U      5.0 wt% 235U (ppmb)            (ppmb)              (ppmb)              (ppmb) 14x14A/B/C/D/E               1,300             1,900               1,500               2,300 15x15A/B/C/G/I               1,800             2,500               1,900               2,700 15x15D/E/F/H               1,900             2,600               2,100               2,900 16x16A/B/C                 1,400             2,000               1,500               2,300 17x17A                 1,600             2,200               1,800               2,600 17x17B/C                 1,900             2,600               2,100               2,900 For maximum initial enrichments between 4.1 wt% and 5.0 wt%   235U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.0 wt%.
< 4.1 wt% 235 U (ppmb) Maximum Initial Enrichment 5.0 wt% 235 U (ppmb) Maximum Initial Enrichment
Certificate of Compliance No. 1014                                                  Amendment No. 11 Appendix A                                      3.3.1-1
< 4.1 wt% 235 U (ppmb) Maximum Initial Enrichment 5.0 wt% 235 U (ppmb) 14x14A/B/C/D/E 1,300 1,900 1,500 2,300 15x15A/B/C/G
/I 1,800 2,500 1,900 2,700 15x15D/E/F/H 1,900 2,600 2,100 2,900 16x16A/B/C 1,400 2,000 1,500 2,300 17x17A 1,600 2,200 1,800 2,600 17x17B/C 1,900 2,600 2,100 2,900 f For maximum initial enrichments between 4.1 wt% and 5.0 wt% 235U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.0 wt%.


Boron Concentration
Boron Concentration


====3.3.1 Certificate====
====3.3.1 APPLICABILITY====
of Compliance No.
During PWR fuel LOADING OPERATIONS with fuel and water in the MPC AND During PWR fuel UNLOADING OPERATIONS with fuel and water in the MPC.
1014 Amendment No. 1 1 Appendix A 3.3.1-2  APPLICABILITY:
ACTIONS
During PWR fuel LOADING OPERATIONS with fuel and water in the MPC AND During PWR fuel UNLOADING OPERATIONS with fuel and water in the MPC.
--------------------------------------------------------NOTE----------------------------------------------------
ACTIONS --------------------------------------------------------NOTE----------------------------------------------------
Separate Condition entry is allowed for each MPC.
Separate Condition entry is allowed for each MPC.
---------------------------------------------------------------------------------------------------------------------
COMPLETION CONDITION                               REQUIRED ACTION TIME A. Boron concentration not             A.1     Suspend LOADING                         Immediately within limit.                              OPERATIONS or UNLOADING OPERATIONS.
CONDITION REQUIRED ACTION COMPLETION TIME A. Boron concentration not within limit.
AND A.2     Suspend positive reactivity             Immediately additions.
A.1 Suspend LOADING OPERATIONS or UNLOADING OPERATIONS.
AND A.3     Initiate action to restore             Immediately boron concentration to within limit.
Immediately AND A.2 Suspend positive reactivity additions.
SURVEILLANCE REQUIREMENTS SURVEILLANCE                                               FREQUENCY
Immediately AND A.3 Initiate action to restore boron concentration to within limit.
  -------------------------------------------NOTE------------------------------------       Once, within 4 This surveillance is only required to be performed if the MPC is                           hours prior to submerged in water or if water is to be added to, or recirculated                         entering the through the MPC.                                                                           Applicability of
Immediately SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY -------------------------------------------NOTE------------------------------------
  ---------------------------------------------------------------------------------------   this LCO.
This surveillance is only required to be performed if the MPC is submerged in water or if water is to be added to, or recirculated through the MPC.
SR 3.3.1.1           Verify boron concentration is within the                             AND applicable limit using two independent measurements.                                                        Once per 48 hours thereafter.
---------------------------------------------------------------------------------------
Certificate of Compliance No. 1014                                                          Amendment No. 11 Appendix A                                            3.3.1-2
SR 3.3.1.1 Verify boron concentration is within the applicable limit using two independent measurements.
 
Once, within 4 hours prior to entering the Applicability of this LCO. AND  Once per 48 hours thereafter.
MPC Cavity Drying Limits Table 3-1 Table 3-1 MPC Cavity Drying Limits for all MPC Types Method of Moisture Fuel Burnup MPC Heat Load (kW)                    Removal (MWD/MTU)
(Notes 1 and 2) 30 (MPC-24/24E/24EF, MPC-All Assemblies < 45,000          32/32F, MPC-68/68F/68FF)          VDSNote 5 or FHDNote 6 36.9 (MPC-68M)
All Assemblies < 45,000        > 30 (MPC-24/24E/24EF, MPC-                  FHDNote 6 32/32F, MPC-68/68F/68FF)
One or more assemblies 29 (MPC-68M)                VDSNote 4 or FHDNote 6
            > 45,000 36.9 (MPC-24/24E/24EF/MPC-One or more assemblies        32/32F/MPC-68/68F/68FF/MPC-                  FHDNote 6
            > 45,000                            68M Notes:
: 1.      VDS means a vacuum drying system. The acceptance criterion when using a VDS is MPC cavity pressure shall be < 3 torr for > 30 minutes.
: 2.      FHD means a forced helium dehydration system. The acceptance criterion when using an FHD system is the gas temperature exiting the demoisturizer shall be
        < 21oF for > 30 minutes or the gas dew point exiting the MPC shall be < 22.9oF for > 30 minutes.
: 3.      Deleted
: 4.      The maximum allowable decay heat per fuel storage location is 0.426 kW.
: 5.      Maximum allowable storage cell heat load is 1.25 kW (MPC-24/24E/24EF), 0.937 kW (MPC-32/32F) and 0.441 kW (MPC-68/68F/68FF).
: 6.      Maximum per assembly allowable heat loads under uniform or regionalized storage defined in Appendix B, Section 2.4.1 or 2.4.2.
Certificate of Compliance No. 1014                                          Amendment No. 11 Appendix A                                    3.4-1


MPC Cavity Drying Limits Table 3-1 Certificate of Compliance No.
MPC Helium Backfill Limits Table 3-2 Table 3-2 MPC Helium Backfill Limits 1 MPC MODEL                                                LIMIT MPC-24/24E/24EF
1014 Amendment No. 1 1 Appendix A 3.4-1  Table 3-1 MPC Cavity Drying Limits for all MPC Types Fuel Burnup (MWD/MTU) MPC Heat Load (kW)
: i. Cask Heat Load 27.77 kW (MPC-24)                  0.1212 +/-10% g-moles/l or  28.17 kW (MPC-24E/EF) -                OR uniformly distributed per Table 3-4 or                          29.3 psig and  48.5 psig regionalized loading per Table 3-3 ii. Cask Heat Load >27.77 kW (MPC-24) or > 28.17 kW (MPC-24E/EF) -
Method of Moisture Removal (Notes 1 and 2)
uniformly distributed 45.5 psig and 48.5 psig or greater than regionalized heat load limits per Table 3-3 MPC-68/68F/68FF/68M
All Assemblies
: i. Cask Heat Load 28.19 kW -                          0.1218 +/-10% g-moles/l uniformly distributed per Table 3-4            OR or regionalized loading per Table 3-3              29.3 psig and  48.5 psig ii. Cask Heat Load > 28.19 kW -
< 45,000  30 (MPC-24/24E/24EF , MPC-32/32F , MPC-68/68F/68FF)  
uniformly distributed or                        45.5 psig and  48.5 psig greater than regionalized heat load limits per Table 3-3 MPC-32/32F
  (MPC-68M) VDSNote 5 or FHDNote 6 All Assemblies
: i. Cask Heat Load  28.74 kW -
< 45,000 > 30 (MPC-24/24E/24EF , MPC-32/32F , MPC-68/68F/68FF)
uniformly distributed per Table 3-4          29.3 psig and 48.5 psig or regionalized loading per Table 3-3 ii. Cask Heat Load >28.74 kW -
FH DNote 6 One or more assemblies > 45,000 -68M) VDSNote 4 or FHDNote 6  One or more assemblies > 45,000  (MPC-24/24E/24EF/MPC-32/32F/MPC
uniformly distributed or                          45.5 psig and 48.5 psig greater than regionalized heat load limits per Table 3-3 1
-68/68F/68FF/MPC
Helium used for backfill of MPC shall have a purity of  99.995%. Pressure range is at a reference temperature of 70oF Certificate of Compliance No. 1014                                                    Amendment No. 11 Appendix A                                          3.4-2
-68M FH DNote 6  Notes1. VDS means a vacuum drying system. The acceptance criterion when using a VDS is MPC cavity pressure shall be
< 3 torr for
> 30 minutes.
: 2. FHD means a forced helium dehydration system. The acceptance criterion when using a n FHD system is the gas temperature exiting the demoisturizer shall be
< 21 oF for > 30 minutes or the gas dew point exiting the MPC shall be
< 22.9 oF for > 30 minutes. 3. Deleted 4. The maximum allowable decay heat per fuel storage location is 0.426 kW.
: 5. Maximum allowable storage cell heat load is 1.25 kW (MPC
-24/24E/24EF), 0.937 kW (M P C-32/32F) and 0.441 kW (MPC
-68/68F/68FF).
: 6. Maximum per assembly allowable heat loads under uniform or regionalized storage defined in Appendix B, Section 2.4.1 or 2.4.2.


MPC Helium Backfill Limits Table 3-2 Certificate of Compliance No.
MPC Heat Load Limits Table 3-3 Table 3-3: Regionalized StorageNote 2 Cell Heat Load Limits Storage Cell                        Storage Cell Number ofCells                        Number of Heat Load                          Heat Load MPC Type             in Inner                       Cells in Outer (Inner Region)                     (Outer Region)
1014  Amendment No. 1 1 Appendix A 3.4-2  Table 3-2 MPC Helium Backfill Limits 1 MPC MODEL LIMIT MPC-24/24E/24EF
RegionNote 1                        RegionNote 1 (kW)                               (kW)
: i. -24) -24E/EF) -  uniformly distributed per Table 3
MPC-24                 4             1.470              20             0.900 MPC-24E/EF               4             1.540              20             0.900 MPC-32/32F               12             1.131               20             0.600 MPC-32             0.500              36             0.275 68/68F/68FF Note 1: The location of MPC-32 and MPC-68 inner and outer region cells are defined in Appendix B Figures 2.1-3 and 2.1-4 respectively.
-4                            or                                          regionalized loading per Table 3
The MPC-24 and MPC-24E/EF cell locations are defined below:
-3 0.1212 +/-10% g-moles/l OR  ii. Cask Heat Load >27.77 kW (MPC
Inner Region Cell numbers 9, 10, 15, 16 in Appendix B Figures 2.1-1 and 2.1-2 respectively.
-24) or > 28.17 kW (MPC-24E/EF) - uniformly distributed or                                                  greater than regionalized heat load limits per Table 3
Outer Region Cell numbers 1-8, 11-14, 17-24 in Appendix B Figures 2.1-1 and 2.1-2 respectively.
-3  MPC-68/68F/68FF/68M
: i.  -  uniformly distributed per Table 3
-4                            or                                          regionalized loading per Table 3
-3 0.1218 +/-10% g-moles/l OR  ii. Cask Heat Load > 28.19 kW
-  uniformly distributed or    greater than regionalized heat load  limits per Table 3
-3  MPC-32/32F i.  -    uniformly distributed per Table 3
-4      or regionalized l oading per Table 3
-3 ii. Cask Heat Load >28.74 kW
-  uniformly distributed                              or greater than regionalized heat load limits per Table 3
-3 1 Helium used for backfill of MPC shall have a purity of reference temperature of 70 o F MPC Heat Load Limits Table 3-3 Certificate of Compliance No.
1014  Amendment No. 1 1 0 Appendix A 3.4-3  Table 3-3: Regionalized StorageNote 2 Cell Heat Load Limits MPC Type Number ofCells in Inner RegionNote 1 Storage Cell Heat Load (Inner Region)
(kW) Number of Cells in Outer RegionNote 1 Storage Cell Heat Load (Outer Region)
(kW) MPC-24 4 1.47 0 20 0.9 0 0 MPC-24E/EF 4 1.54 0 20 0.9 0 0 MPC-32/32F 12 1.131 20 0.6 0 0 MPC-68/68F/68FF 32 0.5 00 36 0.275 Note 1: The location of MPC
-32 and MPC
-68 inner and outer region cells are defined in Appendix B Figures 2.1
-3 and 2.1-4 respectivel
: y. The MPC-24 and MPC
-24E/EF cell locations are defined below:
Inner Region Cell numbers 9, 10, 15, 16 in Appendix B Figures 2.1
-1 and 2.1-2 respectively.
Outer Region Cell numbers 1
-8, 11-14, 17-24 in Appendix B Figures 2.1
-1 and 2.1-2 respectively.
Note 2: The storage cell regionalization is defined in Note 1 in accordance with safety analyses under the heat load limits of this Table.
Note 2: The storage cell regionalization is defined in Note 1 in accordance with safety analyses under the heat load limits of this Table.
Table 3-4: Uniform Storage Cell Heat Load Limits MPC Type Heat Load (kW)
Table 3-4: Uniform Storage Cell Heat Load Limits MPC Type                                 Heat Load (kW)
MPC-24 1.157 MPC-24E/EF 1.173 MPC-68/68F/68FF 0.414 MPC-32 0.898 LCO Completion Time Table 3-5  Certificate of Compliance No.
MPC-24                                       1.157 MPC-24E/EF                                     1.173 MPC-68/68F/68FF                                   0.414 MPC-32                                       0.898 Certificate of Compliance No. 1014                                     Amendment No. 110 Appendix A                                 3.4-3
1014 Amendment No. 11 Appendix A 3.4-Table 3-5: Completion Time for Actions to Restore SFSC Heat Removal System to Operable MPC Type Decay Heat Limits per Storage Location Condition B Completion Time Condition C Completion Time Surveillance Frequency MPC-24/24E/24EF Appendix B, Section 2.4 8 hrs 24 hrs 24 hrs MPC-32/32F MPC-68/68F/68FF/68M MPC-24/24E/24EF Appendix A, Table 3-3 (Regionalized)
 
OR  Appendix A, Table 3-4 (Uniform) 8 hrs 64 hrs 24 hrs MPC-32/32F MPC-68/68F/68FF/68M MPC-24/24E/24EF 0.75 kW 24 hrs 64 hrs 30 days MPC-32/32F 0.5 kW MPC-68/68F/68FF/68M 0.264 kW  
LCO Completion Time Table 3-5 Table 3-5: Completion Time for Actions to Restore SFSC Heat Removal System to Operable Decay Heat Limits   Condition B Condition C Surveillance MPC Type                per Storage      Completion Completion Frequency Location          Time      Time MPC-24/24E/24EF Appendix B, MPC-32/32F                                    8 hrs     24 hrs         24 hrs Section 2.4 MPC-68/68F/68FF/68M MPC-24/24E/24EF             Appendix A, Table 3-3 (Regionalized)
MPC-32/32F                                    8 hrs     64 hrs         24 hrs OR MPC-68/68F/68FF/68M             Appendix A, Table 3-4 (Uniform)
MPC-24/24E/24EF               0.75 kW MPC-32/32F                 0.5 kW           24 hrs    64 hrs        30 days MPC-68/68F/68FF/68M               0.264 kW Certificate of Compliance No. 1014                                    Amendment No. 11 Appendix A                                  3.4-4
 
4.0 4.0 This section is intentionally left blank Certificate of Compliance No. 1014              Amendment No. 11 Appendix A                                4.0-1


===4.0 Certificate===
Programs 5.0 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS The following programs shall be established, implemented and maintained.
of Compliance No.
5.1     Deleted.
1014  Amendment No. 1 1 Appendix A 4.0-1  4.0  This section is intentionally left blank Programs 5.0 Certificate of Compliance No.
5.2     Deleted.
1014 Amendment No. 1 1 Appendix A 5.0-1  5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS The following programs shall be established, implemented and maintained.
5.3     Deleted.
5.1 Deleted. 5.2 Deleted. 5.3 Deleted. 5.4 Radioactive Effluent Control Program This program implements the requirements of 10 CFR 72.44(d).
5.4     Radioactive Effluent Control Program This program implements the requirements of 10 CFR 72.44(d).
: a. The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required. Specification 3.1.1, Multi
: a.     The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required.
-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.
Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.
: b. This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations. c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).
: b.     This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations.
      (continued)
: c.     An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).
(continued)
Certificate of Compliance No. 1014                                          Amendment No. 11 Appendix A                                    5.0-1


Programs 5.0 Certificate of Compliance No.
Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5     Cask Transport Evaluation Program This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met.
1014 Amendment No. 1 1 Appendix A 5.0-2  ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5 Cask Transport Evaluation Program This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met. For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc...) or is being handled by a device designed in accordance with the increased safety factors of ANSI N14.6 and having redundant drop protection.
For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc...) or is being handled by a device designed in accordance with the increased safety factors of ANSI N14.6 and having redundant drop protection.
Pursuant to 10 CFR 72.212, this program shall evaluate the site
Pursuant to 10 CFR 72.212, this program shall evaluate the site-specific transport route conditions.
-specific transport route conditions.
: a.       For free-standing OVERPACKS and the TRANSFER CASK, the following requirements apply:
: a. For free-standing OVERPACKS and the TRANSFER CASK, the following requirements apply:
: 1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5-1 except as provided for in Specification 5.5.a.2. Also, if applying the limits in Table 5-1, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than either Set A or Set B in HI-STORM FSAR Table 2.2.9.
: 1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5
: 2. The program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 gs at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.
-1 except as provided for in Specification 5.5.a.2. Also, if applying the limits in Table 5
(continued)
-1, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than either Set A or Set B in HI
Certificate of Compliance No. 1014                                            Amendment No. 11 Appendix A                                    5.0-2
-STORM FSAR Table 2.2.9.
: 2. The program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 g's at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI
-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.
    (continued)


Programs 5.0 Certificate of Compliance No.
Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5     Cask Transport Evaluation Program (continued)
1014 Amendment No. 1 1 Appendix A 5.0-3  ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5 Cask Transport Evaluation Program (continued)
: 3.     The TRANSFER CASK or OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS, provided the lifting device is designed in accordance with applicable stress limits from ANSI N14.6, and/or NUREG-0612, and has redundant drop protection features.
: 3. The TRANSFER CASK or OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS, provided the lifting device is designed in accordance with applicable stress limits from ANSI N14.6, and/or NUREG-0612, and has redundant drop protection features.  
: 4.     The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC TRANSFER, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.
: 4. The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC TRANSFER, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.
: b.       For the transport of OVERPACKS to be anchored to the ISFSI pad, the following requirements apply:
: b. For the transport of OVERPACKS to be anchored to the ISFSI pad, the following requirements apply:
: 1. Except as provided in 5.5.b.2, user shall determine allowable OVERPACK lift height limit(s) above the transport route surface(s) based on site-specific transport route conditions. The lift heights shall be determined by evaluation or analysis, based on limiting the design basis cask deceleration during a postulated drop event to
: 1. Except as provided in 5.5.b.2, user shall determine allowable OVERPACK lift height limit(s) above the transport route surface(s) based on site
                        < 45 gs at the top of the MPC fuel basket. Evaluations and/or analyses shall be performed using methodologies consistent with those in the HI-STORM 100 FSAR.
-specific transport route conditions. The lift heights shall be determined by evaluation or analysis, based on limiting the design basis cask deceleration during a postulated drop event to  
: 2. The OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS provided the lifting device is designed in accordance with applicable stress limits from ANSI N14.6, and/or NUREG-0612, and has redundant drop protection features.
< 45 g's at the top of the MPC fuel basket. Evaluations and/or analyses shall be performed using methodologies consistent with those in the HI
(continued)
-STORM 100 FSAR.
Certificate of Compliance No. 1014                                          Amendment No. 11 Appendix A                                      5.0-3
: 2. The OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS provided the lifting device is designed in accordance with applicable stress limits from ANSI N14.6, and/or NUREG
-0612, and has redundant drop protection features.
    (continued)


Programs 5.0 Certificate of Compliance No.
Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5     Cask Transport Evaluation Program (continued)
1014 Amendment No. 1 1 Appendix A 5.0-4  ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5 Cask Transport Evaluation Program (continued)
Table 5-1 TRANSFER CASK and Free-Standing OVERPACK Lifting Requirements ITEM                     ORIENTATION             LIFTING HEIGHT LIMIT (in.)
Table 5-1 TRANSFER CASK and Free
TRANSFER CASK                       Horizontal             42 (Notes 1 and 2)
-Standing OVERPACK Lifting Requirements ITEM ORIENTATION LIFTING HEIGHT LIMIT (in.) TRANSFER CASK Horizontal 42 (Notes 1 and 2)
TRANSFER CASK                         Vertical         None Established (Note 2)
TRANSFER CASK Vertical None Established (Note 2)
OVERPACK                         Horizontal               Not Permitted OVERPACK                           Vertical                 11 (Note 3)
OVERPACK Horizontal Not Permitted OVERPACK Vertical 11 (Note 3)
Notes:     1. To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)
Notes: 1. To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)
: 2. See Technical Specification 5.5.a.3 and 4
: 2. See Technical Specification 5.5.a.3 and 4
: 3. See Technical Specification 5.5.a.3.
: 3. See Technical Specification 5.5.a.3.
5.6 Deleted.   (continued)
5.6     Deleted.
 
(continued)
Programs  5.0 Certificate of Compliance No.
Certificate of Compliance No. 1014                                       Amendment No. 11 Appendix A                                   5.0-4
1014 Amendment No. 1 1 Appendix A 5.0-5  ADMINISTRATIVE CONTROLS AND PROGRAMS
 
===5.7 Radiation===
Protection Program 5.7.1 Each cask user shall ensure that the Part 50 radiation protection program appropriately addresses dry storage cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. The radiation protection program shall include appropriate controls for direct radiation and contamination, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The actions and criteria to be included in the program are provided below.
5.7.2 As part of its evaluation pursuant to 10 CFR 72.212(b)(2)(i)(C), the licensee shall perform an analysis to confirm that the dose limits of 10 CFR 72.104(a) will be satisfied under the actual site conditions and ISFSI configuration, considering the planned number of casks to be deployed and the cask contents. 5.7.3 Based on the analysis performed pursuant to Section 5.7.2, the licensee shall establish individual cask surface dose rate limits for the HI
-TRAC TRANSFER CASK and the HI
-STORM OVERPACK to be used at the site. Total (neutron plus gamma) dose rate limits shall be established at the following locations:
: a. The top of the TRANSFER CASK and the OVERPACK.
: b. The side of the TRANSFER CASK and OVERPACK
: c. The inlet and outlet ducts on the OVERPACK
 
====5.7.4 Notwithstanding====
the limits established in Section 5.7.3, the measured dose rates on a loaded OVERPACK shall not exceed the following values:
: a. 30 mrem/hr (gamma + neutron) on the top of the OVERPACK
: b. 300 mrem/hr (gamma + neutron) on the side of the OVERPACK, excluding inlet and outlet ducts 5.7.5 The licensee shall measure the TRANSFER CASK and OVERPACK surface neutron and gamma dose rates as described in Section 5.7.8 for comparison against the limits established in Section 5.7.3 or Section 5.7.4, whichever are lower.


Programs 5.0 Certificate of Compliance No.
Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.7    Radiation Protection Program 5.7.1 Each cask user shall ensure that the Part 50 radiation protection program appropriately addresses dry storage cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. The radiation protection program shall include appropriate controls for direct radiation and contamination, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The actions and criteria to be included in the program are provided below.
1014 Amendment No. 1 1 Appendix A 5.0-6  ADMINISTRATIVE CONTROLS AND PROGRAMS
5.7.2 As part of its evaluation pursuant to 10 CFR 72.212(b)(2)(i)(C), the licensee shall perform an analysis to confirm that the dose limits of 10 CFR 72.104(a) will be satisfied under the actual site conditions and ISFSI configuration, considering the planned number of casks to be deployed and the cask contents.
5.7.3 Based on the analysis performed pursuant to Section 5.7.2, the licensee shall establish individual cask surface dose rate limits for the HI-TRAC TRANSFER CASK and the HI-STORM OVERPACK to be used at the site.
Total (neutron plus gamma) dose rate limits shall be established at the following locations:
: a.      The top of the TRANSFER CASK and the OVERPACK.
: b.      The side of the TRANSFER CASK and OVERPACK
: c.      The inlet and outlet ducts on the OVERPACK 5.7.4 Notwithstanding the limits established in Section 5.7.3, the measured dose rates on a loaded OVERPACK shall not exceed the following values:
: a.      30 mrem/hr (gamma + neutron) on the top of the OVERPACK
: b.      300 mrem/hr (gamma + neutron) on the side of the OVERPACK, excluding inlet and outlet ducts 5.7.5 The licensee shall measure the TRANSFER CASK and OVERPACK surface neutron and gamma dose rates as described in Section 5.7.8 for comparison against the limits established in Section 5.7.3 or Section 5.7.4, whichever are lower.
Certificate of Compliance No. 1014                                           Amendment No. 11 Appendix A                                     5.0-5


===5.7 Radiation===
Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.7     Radiation Protection Program (contd) 5.7.6 If the measured surface dose rates exceed the lower of the two limits established in Section 5.7.3 or Section 5.7.4, the licensee shall:
Protection Program (cont'd) 5.7.6 If the measured surface dose rates exceed the lower of the two limits established in Section 5.7.3 or Section 5.7.4, the licensee shall:
: a.     Administratively verify that the correct contents were loaded in the correct fuel storage cell locations.
: a. Administratively verify that the correct contents were loaded in the correct fuel storage cell locations.
: b.     Perform a written evaluation to verify whether an OVERPACK at the ISFSI containing the as-loaded MPC will cause the dose limits of 10 CFR 72.104 to be exceeded.
: b. Perform a written evaluation to verify whether an OVERPACK at the ISF SI containing the as
: c.     Perform a written evaluation within 30 days to determine why the surface dose rate limits were exceeded.
-loaded MPC will cause the dose limits of 10 CFR 72.104 to be exceeded.
: c. Perform a written evaluation within 30 days to determine why the surface dose rate limits were exceeded.
5.7.7 If the evaluation performed pursuant to Section 5.7.6 shows that the dose limits of 10 CFR 72.104 will be exceeded, the MPC shall not be placed into storage or, in the case of the OVERPACK loaded at the ISFSI, the MPC shall be removed from storage until appropriate corrective action is taken to ensure the dose limits are not exceeded.
5.7.7 If the evaluation performed pursuant to Section 5.7.6 shows that the dose limits of 10 CFR 72.104 will be exceeded, the MPC shall not be placed into storage or, in the case of the OVERPACK loaded at the ISFSI, the MPC shall be removed from storage until appropriate corrective action is taken to ensure the dose limits are not exceeded.
5.7.8 TRANSFER CASK and OVERPACK surface dose rates shall be measured at approximately the following locations:
: a.      A minimum of four (4) dose rate measurements shall be taken on the side of the TRANSFER CASK approximately at the cask mid-height plane. The measurement locations shall be approximately 90 degrees apart around the circumference of the cask. Dose rates shall be measured between the radial ribs of the water jacket.
: b.      A minimum of four (4) TRANSFER CASK top lid dose rates shall be measured at locations approximately half way between the edge of the hole in the top lid and the outer edge of the top lid, 90 degrees apart around the circumference of the top lid.
: c.      A minimum of twelve (12) dose rate measurements shall be taken on the side of the OVERPACK in three sets of four measurements.
One measurement set shall be taken approximately at the cask mid-height plane, 90 degrees apart around the circumference of the cask. The second and third measurement sets shall be taken approximately 60 inches above and below the mid-height plane, respectively, also 90 degrees apart around the circumference of the cask.
Certificate of Compliance No. 1014                                            Amendment No. 11 Appendix A                                      5.0-6


====5.7.8 TRANSFER====
Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.7     Radiation Protection Program (contd)
CASK and OVERPACK surface dose rates shall be measured at approximately the following locations:
: d. A minimum of five (5) dose rate measurements shall be taken on the top of the OVERPACK. One dose rate measurement shall be taken at approximately the center of the lid and four measurements shall be taken at locations on the top concrete shield, approximately half way between the center and the edge of the top concrete shield, 90 degrees apart around the circumference of the lid.
: a. A minimum of four (4) dose rate measurements shall be taken on the side of the TRANSFER CASK approximately at the cask mid
: e. A dose rate measurement shall be taken on contact at the surface of each inlet and outlet vent duct screen of the OVERPACK.
-height plane. The measurement locations shall be approximately 90 degrees apart around the circumference of the cask. Dose rates shall be measured between the radial ribs of the water jacket.
Certificate of Compliance No. 1014                                      Amendment No. 11 Appendix A                                  5.0-7}}
: b. A minimum of four (4) TRANSFER CASK top lid dose rates shall be measured at locations approximately half way between the edge of the hole in the top lid and the outer edge of the top lid, 90 degrees apart around the circumference of the top lid.
: c. A minimum of twelve (12) dose rate measurements shall be taken on the side of the OVERPACK in three sets of four measurements. One measurement set shall be taken approximately at the cask mid-height plane, 90 degrees apart around the circumference of the cask. The second and third measurement sets shall be taken approximately 60 inches above and below the mid
-height plane, respectively, also 90 degrees apart around the circumference of the cask.
Programs 5.0 Certificate of Compliance No.
1014 Amendment No. 1 1 Appendix A 5.0-7  ADMINISTRATIVE CONTROLS AND PROGRAMS
 
===5.7 Radiation===
Protection Program (cont'd)
: d. A minimum of five (5) dose rate measurements shall be taken on the top of the OVERPACK. One dose rate measurement shall be taken at approximately the center of the lid and four measurements shall be taken at locations on the top concrete shield, approximately half way between the center and the edge of the top concrete shield, 90 degrees apart around the circumference of the lid. e. A dose rate measurement shall be taken on contact at the surface of each inlet and outlet vent duct screen of the OVERPACK.}}

Latest revision as of 23:46, 2 February 2020

Enclosure 2: Proposed CoC 1014 Amendment 11 Appendix a (Memorandum to K. Morgan-Butler User Need for Rulemaking for the Holtec HI-STORM 100 Cask System, Amendment No. 11)
ML18141A562
Person / Time
Site: Holtec
Issue date: 12/12/2018
From: John Mckirgan
Spent Fuel Licensing Branch
To: Kimyata Morgan-Butler
Holtec
Chen Y
Shared Package
ML18141A560 List:
References
CAC 001028, EPID L-2017-LLA-0028
Download: ML18141A562 (49)


Text

PROPOSED CERTIFICATE OF COMPLIANCE NO. 1014 APPENDIX A TECHNICAL SPECIFICATIONS FOR THE HI-STORM 100 CASK SYSTEM

TABLE OF CONTENTS 1.0 USE AND APPLICATION 1.1-1 1.1 Definitions ............................................................................................ 1.1-1 1.2 Logical Connectors .............................................................................. 1.2-1 1.3 Completion Times ................................................................................ 1.3-1 1.4 Frequency ............................................................................................ 1.4-1 2.0 NOT USED................................................................................................... 2.0-1 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY............... 3.0-1 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY ............................. 3.0-2 3.1 SFSC INTEGRITY ............................................................................ 3.1.1-1 3.1.1 Multi-Purpose Canister (MPC) ............................................... 3.1.1-1 3.1.2 SFSC Heat Removal System ................................................. 3.1.2-1 3.1.3 MPC Cavity Reflooding .......................................................... 3.1.3-1 3.1.4 Supplemental Cooling System ............................................... 3.1.4-1 3.2 SFSC RADIATION PROTECTION ................................................... 3.2.1-1 3.2.1 Deleted................................................................................... 3.2.1-1 3.2.2 TRANSFER CASK Surface Contamination ............................ 3.2.2-1 3.2.3 Deleted................................................................................... 3.2.3-1 3.3 SFSC CRITICALITY CONTROL ....................................................... 3.3.1-1 3.3.1 Boron Concentration .............................................................. 3.3.1-1 Table 3-1 MPC Cavity Drying Limits .................................................................... 3.4-1 Table 3-2 MPC Helium Backfill Limits .................................................................. 3.4-2 Table 3-3 Regionalized Storage Cell Heat Load Limits........................ ..3.4-3 Table 3-4 Uniform Storage Cell Heat Load Limits.........................3.4-3 Table 3-5 Completion Time for Actions to Restore SFSC Heat Removal System to Operable .........3.4-4 4.0 NOT USED........................................................ . 4.0-1 5.0 ADMINISTRATIVE CONTROLS.................................................................... 5.0-1 5.1 Deleted ................................................................................................ 5.0-1 5.2 Deleted ................................................................................................ 5.0-1 5.3 Deleted ................................................................................................ 5.0-1 5.4 Radioactive Effluent Control Program .................................................. 5.0-1 5.5 Cask Transport Evaluation Program .................................................... 5.0-2 5.6 Deleted ................................................................................................ 5.0-4 5.7 Radiation Protection Program .............................................................. 5.0-5 Table 5-1 TRANSFER CASK and Free Standing OVERPACK Lifting Requirements ............................................................................ 5.0-4 Certificate of Compliance No. 1014 Amendment No. 11 Appendix A i

Definitions 1.1 1.0 USE AND APPLICATION 1.1 Definitions


NOTE-----------------------------------------------------------

The defined terms of this section appear in capitalized type and are applicable throughout these Technical Specifications and Bases.

Term Definition ACTIONS ACTIONS shall be that part of a Specification that prescribes Required Actions to be taken under designated Conditions within specified Completion Times.

CASK TRANSFER FACILITY A CASK TRANSFER FACILITY is an optional (CTF) aboveground or underground system used during the transfer of a loaded MPC between a transfer cask and a storage OVERPACK external to 10 CFR Part 50 controlled structures. The CASK TRANSFER FACILITY includes the following components and equipment: (1) a Cask Transfer Structure used to stabilize the OVERPACK, TRANSFER CASK and/or MPC during lifts involving spent fuel not bounded by the regulations of 10 CFR Part 50, and (2) Either a stationary lifting device or a mobile lifting device used in concert with the stationary structure to lift the OVERPACK, TRANSFER CASK, and/or MPC.

DAMAGED FUEL ASSEMBLY DAMAGED FUEL ASSEMBLIES are fuel assemblies with known or suspected cladding defects, as determined by a review of records, greater than pinhole leaks or hairline cracks, empty fuel rod locations that are not filled with dummy fuel rods, missing structural components such as grid spacers, whose structural integrity has been impaired such that geometric rearrangement of fuel or gross failure of the cladding is expected based on engineering evaluations, or that cannot be handled by normal means. Fuel assemblies that cannot be handled by normal means due to fuel cladding damage are considered FUEL DEBRIS.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.1-1

Definitions 1.1 1.1 Definitions (continued)

DAMAGED FUEL DFCs are specially designed enclosures for CONTAINER (DFC) DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS which permit gaseous and liquid media to escape while minimizing dispersal of gross particulates.

DFCs authorized for use in the HI-STORM 100 System are as follows:

1. Holtec Dresden Unit 1/Humboldt Bay design
2. Transnuclear Dresden Unit 1 design
3. Holtec Generic BWR design
4. Holtec Generic PWR design FUEL DEBRIS FUEL DEBRIS is ruptured fuel rods, severed rods, loose fuel pellets, containers or structures that are supporting these loose fuel assembly parts, or fuel assemblies with known or suspected defects which cannot be handled by normal means due to fuel cladding damage.

FUEL BUILDING The FUEL BUILDING is the site-specific power plant facility, governed by the regulations of 10 CFR Part 50, where the loaded OVERPACK or TRANSFER CASK is transferred to or from the transporter.

GROSSLY BREACHED Spent nuclear fuel rod with a cladding defect that SPENT FUEL ROD could lead to the release of fuel particulate greater than the average size fuel fragment for that particular assembly. A gross cladding breach may be confirmed by visual examination, through a review of reactor operating records indicating the presence of heavy metal isotopes, or other acceptable inspection means.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.1-2

Definitions 1.1 INTACT FUEL ASSEMBLY INTACT FUEL ASSEMBLIES are fuel assemblies without known or suspected cladding defects greater than pinhole leaks or hairline cracks and which can be handled by normal means. Fuel assemblies without fuel rods in fuel rod locations shall not be classified as INTACT FUEL ASSEMBLIES unless dummy fuel rods are used to displace an amount of water greater than or equal to that displaced by the fuel rod(s) in the active region. INTACT FUEL ASSEMBLIES may contain integral fuel absorber rods (IFBA) in PWR fuel, or burnable poison rods in BWR fuel.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.1-3

Definitions 1.1 1.1 Definitions (continued)

LOADING OPERATIONS LOADING OPERATIONS include all licensed activities on an OVERPACK or TRANSFER CASK while it is being loaded with fuel assemblies.

LOADING OPERATIONS begin when the first fuel assembly is placed in the MPC and end when the OVERPACK or TRANSFER CASK is suspended from or secured on the transporter. LOADING OPERATIONS does not include MPC TRANSFER.

MINIMUM ENRICHMENT MINIMUM ENRICHMENT is the minimum assembly average enrichment. Natural uranium and low enrichment blankets are not considered in determining minimum enrichment.

MULTI-PURPOSE CANISTER MPCs are the sealed spent nuclear fuel canisters (MPC) which consist of a honeycombed fuel basket contained in a cylindrical canister shell which is welded to a baseplate, lid with welded port cover plates, and closure ring. The MPC provides the confinement boundary for the contained radioactive materials.

MPC TRANSFER MPC TRANSFER begins when the MPC is lifted off the TRANSFER CASK bottom lid and ends when the MPC is supported from beneath by the OVERPACK or VVM (or the reverse).

NON-FUEL HARDWARE NON-FUEL HARDWARE is defined as Burnable Poison Rod Assemblies (BPRAs), Thimble Plug Devices (TPDs), Control Rod Assemblies (CRAs),

Axial Power Shaping Rods (APSRs), Wet Annular Burnable Absorbers (WABAs), Rod Cluster Control Assemblies (RCCAs), Control Element Assemblies (CEAs), Neutron Source Assemblies (NSAs), water displacement guide tube plugs, orifice rod assemblies, instrument tube tie rods (ITTRs),

vibration suppressor inserts, and components of these devices such as individual rods.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.1-4

Definitions 1.1 1.1 Definitions (continued)

OVERPACK OVERPACKs are the casks which receive and contain the sealed MPCs for interim storage on the ISFSI.

They provide gamma and neutron shielding, and provide for ventilated air flow to promote heat transfer from the MPC to the environs. The term OVERPACK does not include the TRANSFER CASK.

PLANAR-AVERAGE INITIAL PLANAR AVERAGE INITIAL ENRICHMENT is the ENRICHMENT average of the distributed fuel rod initial enrichments within a given axial plane of the assembly lattice.

REPAIRED/RECONSTITUTED Spent nuclear fuel assembly which contains dummy FUEL ASSEMBLY fuel rod(s) that displaces an amount of water greater than or equal to the original fuel rod(s) and/or which contains structural repairs so it can be handled by normal means.

SPENT FUEL STORAGE SFSCs are containers approved for the storage of CASKS (SFSCs) spent fuel assemblies at the ISFSI. The HI-STORM 100 SFSC System consists of the OVERPACK/VVM and its integral MPC.

STORAGE OPERATIONS STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI while an SFSC containing spent fuel is situated within the ISFSI perimeter. STORAGE OPERATIONS does not include MPC TRANSFER.

TRANSFER CASK TRANSFER CASKs are containers designed to contain the MPC during and after loading of spent fuel assemblies and to transfer the MPC to or from the OVERPACK/VVM. The HI-STORM 100 System employs either the 125-Ton or the 100-Ton HI-TRAC TRANSFER CASK.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.1-5

Definitions 1.1 1.1 Definitions (continued)

TRANSPORT OPERATIONS TRANSPORT OPERATIONS include all licensed activities performed on an OVERPACK or TRANSFER CASK loaded with one or more fuel assemblies when it is being moved after LOADING OPERATIONS or before UNLOADING OPERATIONS. TRANSPORT OPERATIONS begin when the OVERPACK or TRANSFER CASK is first suspended from or secured on the transporter and end when the OVERPACK or TRANSFER CASK is at its destination and no longer secured on or suspended from the transporter. TRANSPORT OPERATIONS includes MPC TRANSFER.

UNDAMAGED FUEL UNDAMAGED FUEL ASSEMBLY is: a) a fuel ASSEMBLY assembly without known or suspected cladding defects greater than pinhole leaks or hairline cracks and which can be handled by normal means; or b) a BWR fuel assembly with an intact channel, a maximum planar average initial enrichment of 3.3 wt%

U-235, without known or suspected GROSSLY BREACHED SPENT FUEL RODS, and which can be handled by normal means. An UNDAMAGED FUEL ASSEMBLY may be a REPAIRED/

RECONSTITUTED FUEL ASSEMBLY.

UNLOADING OPERATIONS UNLOADING OPERATIONS include all licensed activities on an SFSC to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the OVERPACK or TRANSFER CASK is no longer suspended from or secured on the transporter and end when the last fuel assembly is removed from the SFSC. UNLOADING OPERATIONS does not include MPC TRANSFER.

VERTICAL VENTILATED The VVM is a subterranean type overpack which MODULE (VVM) (HI-STORM receives and contains the sealed MPC for interim 100U SYSTEM ONLY) storage at the ISFSI. The VVM supports the MPC in a vertical orientation and provides air flow through cooling passages to promote heat transfer from the MPC to the environs.

ZR ZR means any zirconium-based fuel cladding or fuel channel material authorized for use in a commercial nuclear power plant reactor.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.1-6

Logical Connectors 1.2 1.0 USE AND APPLICATION 1.2 Logical Connectors PURPOSE The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in TS are AND and OR. The physical arrangement of these connectors constitutes logical conventions with specific meanings.

BACKGROUND Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action.

The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentions of the logical connectors.

When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used, and the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.2-1

Logical Connectors 1.2 1.2 Logical Connectors (continued)

EXAMPLES The following examples illustrate the use of logical connectors.

EXAMPLE 1.2-1 ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. LCO not met. A.1 VERIFY . . .

AND A.2 Restore . . .

In this example the logical connector AND is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.2-2

Logical Connectors 1.2 1.2 Logical Connectors (continued)

EXAMPLES EXAMPLE 1.2-2 (continued)

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. LCO not met. A.1 Stop . . .

OR A.2.1 Verify . . .

AND A.2.2.1 Reduce . . .

OR A.2.2.2 Perform . . .

OR A.3 Remove . . .

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector OR and the left justified placement. Any one of these three ACTIONS may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector AND. Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector OR indicates that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.2-3

Completion Times 1.3 1.0 USE AND APPLICATION 1.3 Completion Times PURPOSE The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.

BACKGROUND Limiting Conditions for Operation (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the facility. The ACTIONS associated with an LCO state Conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Times(s).

DESCRIPTION The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition unless otherwise specified, providing the HI-STORM 100 System is in a specified condition stated in the Applicability of the LCO. Required Actions must be completed prior to the expiration of the specified Completion Time. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the HI-STORM 100 System is not within the LCO Applicability.

Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will not result in separate entry into the Condition unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.3-1

Completion Times 1.3 1.3 Completion Times (continued)

EXAMPLES The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

EXAMPLE 1.3-1 ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME B. Required B.1 Perform Action B.1 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Action and associated AND Completion Time not met. B.2 Perform Action B.2 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> Condition B has two Required Actions. Each Required Action has its own separate Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to complete action B.1 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> AND complete action B.2 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. A total of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is allowed for completing action B.1 and a total of 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> (not 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br />, the time allowed for completing action B.2 is the next 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br /> because the total time allowed for completing action B.2 is 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.3-2

Completion Times 1.3 1.3 Completion Times (continued)

EXAMPLES EXAMPLE 1.3-2 (continued)

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A. One system A.1 Restore system to 7 days not within limit. within limit.

B. Required B.1 Complete action 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Action and B.1.

associated Completion AND Time not met.

B.2 Complete action 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> B.2.

When a system is determined not to meet the LCO, Condition A is entered. If the system is not restored within 7 days, Condition B is also entered and the Completion Time clocks for Required Actions B.1 and B.2 start. If the system is restored after Condition B is entered, Conditions A and B are exited, and therefore, the Required Actions of Condition B may be terminated.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.3-3

Completion Times 1.3 1.3 Completion Times (continued)

EXAMPLES EXAMPLE 1.3-3 (continued)

ACTIONS


NOTE------------------------------------------

Separate Condition entry is allowed for each component.

CONDITION REQUIRED ACTION COMPLETION TIME A. LCO not met. A.1 Restore 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> compliance with LCO.

B. Required B.1 Complete action 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> Action and B.1.

associated Completion AND Time not met.

B.2 Complete action 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> B.2.

The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each component, and Completion Times tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times start and are tracked for each component.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.3-4

Completion Times 1.3 1.3 Completion Times (continued)

IMMEDIATE When "Immediately" is used as a Completion Time, the Required COMPLETION Action should be pursued without delay and in a controlled manner.

TIME Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.3-5

Frequency 1.4 1.0 USE AND APPLICATION 1.4 Frequency PURPOSE The purpose of this section is to define the proper use and application of Frequency requirements.

DESCRIPTION Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.

The "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of the requirements of the Frequency column of each SR.

Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.4-1

Frequency 1.4 1.4 Frequency (continued)

EXAMPLES The following examples illustrate the various ways that Frequencies are specified.

EXAMPLE 1.4-1 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY Verify pressure within limit 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, an extension of the time interval to 1.25 times the interval specified in the Frequency is allowed by SR 3.0.2 for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO, the LCO is not met in accordance with SR 3.0.1.

If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2 prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4 (continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.4-2

Frequency 1.4 1.4 Frequency (continued)

EXAMPLES (continued) EXAMPLE 1.4-2 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY Verify flow is within limits. Once within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> prior to starting activity AND 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> thereafter Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> prior to starting the activity.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25%

extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops.

New intervals start upon preparing to restart the specified activity.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 1.4-3

2.0 2.0 This section is intentionally left blank Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 2.0-1

LCO Applicability 3.0 3.0 LIMITING CONDITIONS FOR OPERATION (LCO) APPLICABILITY LCO 3.0.1 LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.

LCO 3.0.2 Upon discovery of a failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5.

If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.

LCO 3.0.3 Not applicable.

LCO 3.0.4 When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an SFSC.

LCO 3.0.5 Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the system returned to service under administrative control to perform the testing.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.0-1

LCO Applicability 3.0 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.1 SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be failure to meet the LCO except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.

SR 3.0.2 The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.

For Frequencies specified as once, the above interval extension does not apply. If a Completion Time requires periodic performance on a once per... basis, the above Frequency extension applies to each performance after the initial performance.

Exceptions to this Specification are stated in the individual Specifications.

SR 3.0.3 If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed, from the time of discovery, up to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> or up to the limit of the specified Frequency, whichever is less.

This delay period is permitted to allow performance of the Surveillance.

If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.0-2

LCO Applicability 3.0 3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY SR 3.0.3 When the Surveillance is performed within the delay period and the (continued) Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.

SR 3.0.4 Entry into a specified condition in the Applicability of an LCO shall not be made unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of an SFSC.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.0-3

SFSC Heat Removal System 3.1.1 3.1 SFSC INTEGRITY 3.1.1 Multi-Purpose Canister (MPC)

LCO 3.1.1 The MPC shall be dry and helium filled.

Table 3-1 provides decay heat and burnup limits for forced helium dehydration (FHD) and vacuum drying. FHD is not subject to time limits. Vacuum drying of the MPC-68M is not subject to time limits.

Vacuum drying, for all other MPCs, is subject to the following time limits, from the end of bulk water removal until the start of helium backfill:

MPC Total Decay Heat (Q) Vacuum Drying Time Limit Q < 26 kW None 26 kW < Q < 30 kW 40 hours4.62963e-4 days <br />0.0111 hours <br />6.613757e-5 weeks <br />1.522e-5 months <br /> Q > 30 kW Not Permitted (see Table 3-1)

Note 1: Maximum storage cell heat load must not exceed MPC heat load limits in the table divided by number of storage cells.

APPLICABILITY: During TRANSPORT OPERATIONS and STORAGE OPERATIONS.

ACTIONS


NOTES---------------------------------------------------------

Separate Condition entry is allowed for each MPC.

COMPLETION CONDITION REQUIRED ACTION TIME A. MPC cavity vacuum A.1 Perform an engineering 7 days drying pressure or evaluation to determine the demoisturizer exit gas quantity of moisture left in temperature limit not the MPC.

met.

AND A.2 Develop and initiate 30 days corrective actions necessary to return the MPC to compliance with Table 3-1.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.1-1

SFSC Heat Removal System 3.1.1 ACTIONS (continued)

B. MPC cavity vacuum B.1 Backfill the MPC cavity with 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> drying acceptance helium to a pressure of at criteria not met during least 0.5 atm.

allowable time.

C. MPC helium backfill limit C.1 Perform an engineering 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> not met. evaluation to determine the impact of helium differential.

AND C.2.1 Develop and initiate 14 days corrective actions necessary to return the MPC to an analyzed condition by adding helium to or removing helium from the MPC.

OR C.2.2 Develop and initiate corrective actions necessary to demonstrate through analysis, using the models and methods from the HI-STORM FSAR, that all limits for cask components and contents will be met.

D. MPC helium leak rate D.1 Perform an engineering 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> limit for vent and drain evaluation to determine the port cover plate welds or impact of increased helium cover plate base metal leak rate on heat removal not met. capability and offsite dose.

AND D.2 Develop and initiate 7 days corrective actions necessary to return the MPC to compliance with SR 3.1.1.3.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.1-2

SFSC Heat Removal System 3.1.1 E. Required Actions and E.1 Remove all fuel assemblies 30 days associated Completion from the SFSC.

Times not met.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.1.1.1 Verify that the MPC cavity has been dried in Once, prior to accordance with the applicable limits in Table TRANSPORT 3-1, within the specified vacuum drying time limits OPERATIONS as applicable.

SR 3.1.1.2 Verify MPC helium backfill quantity is within the Once, prior to limit specified in Table 3-2 for the applicable MPC TRANSPORT model. Re-performance of this surveillance is not OPERATIONS required upon successful completion of Action C.2.2.

SR 3.1.1.3 Verify that the helium leak rate through the MPC Once, prior to vent and drain port cover plates (confinement TRANSPORT welds and the base metal) meets the leaktight OPERATIONS criteria of ANSI N14.5-1997.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.1-3

SFSC Heat Removal System 3.1.2 3.1 SFSC INTEGRITY 3.1.2 SFSC Heat Removal System LCO 3.1.2 The SFSC Heat Removal System shall be operable


NOTE--------------------------------------------------

The SFSC Heat Removal System is operable when 50% or more of the inlet and outlet vent areas are unblocked and available for flow or when air temperature requirements are met.

APPLICABILITY: During STORAGE OPERATIONS.

ACTIONS


NOTE--------------------------------------------------

Separate Condition entry is allowed for each SFSC.

COMPLETION CONDITION REQUIRED ACTION TIME A. SFSC Heat Removal A.1 Remove blockage. N/A System operable, but partially (<50%) blocked.

B. SFSC Heat Removal B.1 Restore SFSC Heat Table 3-5 System inoperable. Removal System to operable status.

C. Required Action B.1 and C.1 Measure SFSC dose rates Immediately and associated Completion in accordance with the once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> Time not met. Radiation Protection thereafter Program.

AND C.2.1 Restore SFSC Heat Table 3-5 Removal System to operable status.

OR C.2.2 Transfer the MPC into a Table 3-5 TRANSFER CASK.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.2-1

SFSC Heat Removal System 3.1.2 SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.1.2 Verify all OVERPACK inlets and outlets are free Table 3-5 of blockage from solid debris or floodwater.

OR For OVERPACKS with installed temperature Table 3-5 monitoring equipment, verify that the difference between the average OVERPACK air outlet temperature and ISFSI ambient temperature is

< 155oF for OVERPACKS containing PWR MPCs, < 137oF for OVERPACKS containing BWR MPCs.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.2-2

Fuel Cool-Down 3.1.3 3.1 SFSC INTEGRITY 3.1.3 MPC Cavity Reflooding LCO 3.1.3 The MPC cavity pressure shall be < 100 psig


NOTE--------------------------------------------------------

The LCO is only applicable to wet UNLOADING OPERATIONS.

APPLICABILITY: UNLOADING OPERATIONS prior to and during re-flooding.

ACTIONS


NOTE--------------------------------------------------------

Separate Condition entry is allowed for each MPC.

COMPLETION CONDITION REQUIRED ACTION TIME A. MPC cavity pressure A.1 Stop re-flooding operations Immediately not within limit. until MPC cavity pressure is within limit.

AND A.2 Ensure MPC vent port is not Immediately closed or blocked.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.1.3.1 Ensure via analysis or direct measurement that Once, prior to MPC cavity pressure is within limit. MPC re-flooding operations.

AND Once every 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> thereafter when using direct measurement.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.3-1

Supplemental Cooling System 3.1.4 3.1 SFSC INTEGRITY LCO 3.1.4 A supplemental cooling system (SCS) shall be operable


NOTE---------------------------------------------------------

Upon reaching steady state operation, the SCS may be temporarily disabled for a short duration (< 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br />) to facilitate necessary operational evolutions, such as movement of the TRANSFER CASK through a door way, or other similar operation.

APPLICABILITY: This LCO is not applicable to the MPC-68M. For all other MPCs this LCO is applicable when the loaded MPC is in the TRANSFER CASK and:

a. Within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of the completion of MPC drying operations in accordance with LCO 3.1.1 or within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> of transferring the MPC into the TRANSFER CASK if the MPC is to be unloaded AND
b. The MPC contains one or more fuel assemblies with an average burnup > 45,000 MWD/MTU AND c1. MPC backfilled to higher helium backfill limits in Table 3-2 AND any storage cell decay heat load exceeds 90% of maximum allowable storage cell heat load defined in Appendix B, Section 2.4.1 or 2.4.2 and FSAR Section 2.1.9.1 procedures.

OR c2. MPC backfilled to lower helium backfill limits in Table 3-2 AND any storage cell heat load exceeds 90% of storage cell heat load limits defined in Tables 3-3 or 3-4.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.4-1

Supplemental Cooling System 3.1.4 ACTIONS COMPLETION CONDITION REQUIRED ACTION TIME A. SFSC Supplemental A.1 Restore SFSC 7 days Cooling System Supplemental Cooling inoperable. System to operable status.

B. Required Action A.1 and B.1 Remove all fuel 30 days associated Completion assemblies from the Time not met. SFSC.

SURVEILLANCE REQUIREMENTS SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.1.4.1 Verify SCS is operable. 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.4-2

Supplemental Cooling System 3.1.4 This page is intentionally left blank Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.1.4-3

Deleted 3.2.1 3.2 SFSC RADIATION PROTECTION.

3.2.1 Deleted.

LCO 3.2.1 Deleted.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.2.1-1

TRANSFER CASK Surface Contamination 3.2.2 3.2 SFSC RADIATION PROTECTION.

3.2.2 TRANSFER CASK Surface Contamination.

LCO 3.2.2 Removable contamination on the exterior surfaces of the TRANSFER CASK and accessible portions of the MPC shall each not exceed:

a. 1000 dpm/100 cm2 from beta and gamma sources
b. 20 dpm/100 cm2 from alpha sources.

NOTE--------------------------------------------------------

This LCO is not applicable to the TRANSFER CASK if MPC TRANSFER operations occur inside the FUEL BUILDING.

APPLICABILITY: During TRANSPORT OPERATIONS.

ACTIONS


NOTE--------------------------------------------------------

Separate Condition entry is allowed for each TRANSFER CASK.

COMPLETION CONDITION REQUIRED ACTION TIME A. TRANSFER CASK or A.1 Restore removable surface 7 days MPC removable surface contamination to within contamination limits not limits.

met.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.2.2.1 Verify that the removable contamination on the Once, prior to exterior surfaces of the TRANSFER CASK and TRANSPORT accessible portions of the MPC containing fuel is OPERATIONS within limits.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.2.2-1

Deleted 3.2.3 3.2 SFSC RADIATION PROTECTION.

3.2.3 Deleted.

LCO 3.2.3 Deleted.

1Certificate of Compliance No. 1014 Amendment No.11 Appendix A 3.2.3-1

Boron Concentration 3.3.1 3.3 SFSC CRITICALITY CONTROL 3.3.1 Boron Concentration LCO 3.3.1 As required by CoC Appendix B, Table 2.1-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model and the most limiting fuel assembly array/class and classification to be stored in the MPC:

a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% 235U: > 400 ppmb
b. MPC-24E or MPC-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and < 5.0 wt% 235U: > 300 ppmb
c. Deleted.
d. Deleted.
e. MPC-24E or MPC-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt% 235U and

< 5.0 wt% 235U: > 600 ppmb

f. MPC-32/32F: Minimum soluble boron concentration as required by the table below.

One or more DAMAGED FUEL All INTACT FUEL ASSEMBLIES ASSEMBLIES or FUEL DEBRIS Array/Class Maximum Initial Maximum Initial Maximum Initial Maximum Initial Enrichment Enrichment 5.0 Enrichment Enrichment

< 4.1 wt% 235U wt% 235U < 4.1 wt% 235U 5.0 wt% 235U (ppmb) (ppmb) (ppmb) (ppmb) 14x14A/B/C/D/E 1,300 1,900 1,500 2,300 15x15A/B/C/G/I 1,800 2,500 1,900 2,700 15x15D/E/F/H 1,900 2,600 2,100 2,900 16x16A/B/C 1,400 2,000 1,500 2,300 17x17A 1,600 2,200 1,800 2,600 17x17B/C 1,900 2,600 2,100 2,900 For maximum initial enrichments between 4.1 wt% and 5.0 wt% 235U, the minimum soluble boron concentration may be determined by linear interpolation between the minimum soluble boron concentrations at 4.1 wt% and 5.0 wt%.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.3.1-1

Boron Concentration

3.3.1 APPLICABILITY

During PWR fuel LOADING OPERATIONS with fuel and water in the MPC AND During PWR fuel UNLOADING OPERATIONS with fuel and water in the MPC.

ACTIONS


NOTE----------------------------------------------------

Separate Condition entry is allowed for each MPC.

COMPLETION CONDITION REQUIRED ACTION TIME A. Boron concentration not A.1 Suspend LOADING Immediately within limit. OPERATIONS or UNLOADING OPERATIONS.

AND A.2 Suspend positive reactivity Immediately additions.

AND A.3 Initiate action to restore Immediately boron concentration to within limit.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY


NOTE------------------------------------ Once, within 4 This surveillance is only required to be performed if the MPC is hours prior to submerged in water or if water is to be added to, or recirculated entering the through the MPC. Applicability of


this LCO.

SR 3.3.1.1 Verify boron concentration is within the AND applicable limit using two independent measurements. Once per 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> thereafter.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.3.1-2

MPC Cavity Drying Limits Table 3-1 Table 3-1 MPC Cavity Drying Limits for all MPC Types Method of Moisture Fuel Burnup MPC Heat Load (kW) Removal (MWD/MTU)

(Notes 1 and 2) 30 (MPC-24/24E/24EF, MPC-All Assemblies < 45,000 32/32F, MPC-68/68F/68FF) VDSNote 5 or FHDNote 6 36.9 (MPC-68M)

All Assemblies < 45,000 > 30 (MPC-24/24E/24EF, MPC- FHDNote 6 32/32F, MPC-68/68F/68FF)

One or more assemblies 29 (MPC-68M) VDSNote 4 or FHDNote 6

> 45,000 36.9 (MPC-24/24E/24EF/MPC-One or more assemblies 32/32F/MPC-68/68F/68FF/MPC- FHDNote 6

> 45,000 68M Notes:

1. VDS means a vacuum drying system. The acceptance criterion when using a VDS is MPC cavity pressure shall be < 3 torr for > 30 minutes.
2. FHD means a forced helium dehydration system. The acceptance criterion when using an FHD system is the gas temperature exiting the demoisturizer shall be

< 21oF for > 30 minutes or the gas dew point exiting the MPC shall be < 22.9oF for > 30 minutes.

3. Deleted
4. The maximum allowable decay heat per fuel storage location is 0.426 kW.
5. Maximum allowable storage cell heat load is 1.25 kW (MPC-24/24E/24EF), 0.937 kW (MPC-32/32F) and 0.441 kW (MPC-68/68F/68FF).
6. Maximum per assembly allowable heat loads under uniform or regionalized storage defined in Appendix B, Section 2.4.1 or 2.4.2.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.4-1

MPC Helium Backfill Limits Table 3-2 Table 3-2 MPC Helium Backfill Limits 1 MPC MODEL LIMIT MPC-24/24E/24EF

i. Cask Heat Load 27.77 kW (MPC-24) 0.1212 +/-10% g-moles/l or 28.17 kW (MPC-24E/EF) - OR uniformly distributed per Table 3-4 or 29.3 psig and 48.5 psig regionalized loading per Table 3-3 ii. Cask Heat Load >27.77 kW (MPC-24) or > 28.17 kW (MPC-24E/EF) -

uniformly distributed 45.5 psig and 48.5 psig or greater than regionalized heat load limits per Table 3-3 MPC-68/68F/68FF/68M

i. Cask Heat Load 28.19 kW - 0.1218 +/-10% g-moles/l uniformly distributed per Table 3-4 OR or regionalized loading per Table 3-3 29.3 psig and 48.5 psig ii. Cask Heat Load > 28.19 kW -

uniformly distributed or 45.5 psig and 48.5 psig greater than regionalized heat load limits per Table 3-3 MPC-32/32F

i. Cask Heat Load 28.74 kW -

uniformly distributed per Table 3-4 29.3 psig and 48.5 psig or regionalized loading per Table 3-3 ii. Cask Heat Load >28.74 kW -

uniformly distributed or 45.5 psig and 48.5 psig greater than regionalized heat load limits per Table 3-3 1

Helium used for backfill of MPC shall have a purity of 99.995%. Pressure range is at a reference temperature of 70oF Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.4-2

MPC Heat Load Limits Table 3-3 Table 3-3: Regionalized StorageNote 2 Cell Heat Load Limits Storage Cell Storage Cell Number ofCells Number of Heat Load Heat Load MPC Type in Inner Cells in Outer (Inner Region) (Outer Region)

RegionNote 1 RegionNote 1 (kW) (kW)

MPC-24 4 1.470 20 0.900 MPC-24E/EF 4 1.540 20 0.900 MPC-32/32F 12 1.131 20 0.600 MPC-32 0.500 36 0.275 68/68F/68FF Note 1: The location of MPC-32 and MPC-68 inner and outer region cells are defined in Appendix B Figures 2.1-3 and 2.1-4 respectively.

The MPC-24 and MPC-24E/EF cell locations are defined below:

Inner Region Cell numbers 9, 10, 15, 16 in Appendix B Figures 2.1-1 and 2.1-2 respectively.

Outer Region Cell numbers 1-8, 11-14, 17-24 in Appendix B Figures 2.1-1 and 2.1-2 respectively.

Note 2: The storage cell regionalization is defined in Note 1 in accordance with safety analyses under the heat load limits of this Table.

Table 3-4: Uniform Storage Cell Heat Load Limits MPC Type Heat Load (kW)

MPC-24 1.157 MPC-24E/EF 1.173 MPC-68/68F/68FF 0.414 MPC-32 0.898 Certificate of Compliance No. 1014 Amendment No. 110 Appendix A 3.4-3

LCO Completion Time Table 3-5 Table 3-5: Completion Time for Actions to Restore SFSC Heat Removal System to Operable Decay Heat Limits Condition B Condition C Surveillance MPC Type per Storage Completion Completion Frequency Location Time Time MPC-24/24E/24EF Appendix B, MPC-32/32F 8 hrs 24 hrs 24 hrs Section 2.4 MPC-68/68F/68FF/68M MPC-24/24E/24EF Appendix A, Table 3-3 (Regionalized)

MPC-32/32F 8 hrs 64 hrs 24 hrs OR MPC-68/68F/68FF/68M Appendix A, Table 3-4 (Uniform)

MPC-24/24E/24EF 0.75 kW MPC-32/32F 0.5 kW 24 hrs 64 hrs 30 days MPC-68/68F/68FF/68M 0.264 kW Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 3.4-4

4.0 4.0 This section is intentionally left blank Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 4.0-1

Programs 5.0 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS The following programs shall be established, implemented and maintained.

5.1 Deleted.

5.2 Deleted.

5.3 Deleted.

5.4 Radioactive Effluent Control Program This program implements the requirements of 10 CFR 72.44(d).

a. The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required.

Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.

b. This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations.
c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-1

Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5 Cask Transport Evaluation Program This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met.

For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc...) or is being handled by a device designed in accordance with the increased safety factors of ANSI N14.6 and having redundant drop protection.

Pursuant to 10 CFR 72.212, this program shall evaluate the site-specific transport route conditions.

a. For free-standing OVERPACKS and the TRANSFER CASK, the following requirements apply:
1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5-1 except as provided for in Specification 5.5.a.2. Also, if applying the limits in Table 5-1, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than either Set A or Set B in HI-STORM FSAR Table 2.2.9.
2. The program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 gs at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-2

Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5 Cask Transport Evaluation Program (continued)

3. The TRANSFER CASK or OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS, provided the lifting device is designed in accordance with applicable stress limits from ANSI N14.6, and/or NUREG-0612, and has redundant drop protection features.
4. The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC TRANSFER, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.
b. For the transport of OVERPACKS to be anchored to the ISFSI pad, the following requirements apply:
1. Except as provided in 5.5.b.2, user shall determine allowable OVERPACK lift height limit(s) above the transport route surface(s) based on site-specific transport route conditions. The lift heights shall be determined by evaluation or analysis, based on limiting the design basis cask deceleration during a postulated drop event to

< 45 gs at the top of the MPC fuel basket. Evaluations and/or analyses shall be performed using methodologies consistent with those in the HI-STORM 100 FSAR.

2. The OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during TRANSPORT OPERATIONS provided the lifting device is designed in accordance with applicable stress limits from ANSI N14.6, and/or NUREG-0612, and has redundant drop protection features.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-3

Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.5 Cask Transport Evaluation Program (continued)

Table 5-1 TRANSFER CASK and Free-Standing OVERPACK Lifting Requirements ITEM ORIENTATION LIFTING HEIGHT LIMIT (in.)

TRANSFER CASK Horizontal 42 (Notes 1 and 2)

TRANSFER CASK Vertical None Established (Note 2)

OVERPACK Horizontal Not Permitted OVERPACK Vertical 11 (Note 3)

Notes: 1. To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)

2. See Technical Specification 5.5.a.3 and 4
3. See Technical Specification 5.5.a.3.

5.6 Deleted.

(continued)

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-4

Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.7 Radiation Protection Program 5.7.1 Each cask user shall ensure that the Part 50 radiation protection program appropriately addresses dry storage cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. The radiation protection program shall include appropriate controls for direct radiation and contamination, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The actions and criteria to be included in the program are provided below.

5.7.2 As part of its evaluation pursuant to 10 CFR 72.212(b)(2)(i)(C), the licensee shall perform an analysis to confirm that the dose limits of 10 CFR 72.104(a) will be satisfied under the actual site conditions and ISFSI configuration, considering the planned number of casks to be deployed and the cask contents.

5.7.3 Based on the analysis performed pursuant to Section 5.7.2, the licensee shall establish individual cask surface dose rate limits for the HI-TRAC TRANSFER CASK and the HI-STORM OVERPACK to be used at the site.

Total (neutron plus gamma) dose rate limits shall be established at the following locations:

a. The top of the TRANSFER CASK and the OVERPACK.
b. The side of the TRANSFER CASK and OVERPACK
c. The inlet and outlet ducts on the OVERPACK 5.7.4 Notwithstanding the limits established in Section 5.7.3, the measured dose rates on a loaded OVERPACK shall not exceed the following values:
a. 30 mrem/hr (gamma + neutron) on the top of the OVERPACK
b. 300 mrem/hr (gamma + neutron) on the side of the OVERPACK, excluding inlet and outlet ducts 5.7.5 The licensee shall measure the TRANSFER CASK and OVERPACK surface neutron and gamma dose rates as described in Section 5.7.8 for comparison against the limits established in Section 5.7.3 or Section 5.7.4, whichever are lower.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-5

Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.7 Radiation Protection Program (contd) 5.7.6 If the measured surface dose rates exceed the lower of the two limits established in Section 5.7.3 or Section 5.7.4, the licensee shall:

a. Administratively verify that the correct contents were loaded in the correct fuel storage cell locations.
b. Perform a written evaluation to verify whether an OVERPACK at the ISFSI containing the as-loaded MPC will cause the dose limits of 10 CFR 72.104 to be exceeded.
c. Perform a written evaluation within 30 days to determine why the surface dose rate limits were exceeded.

5.7.7 If the evaluation performed pursuant to Section 5.7.6 shows that the dose limits of 10 CFR 72.104 will be exceeded, the MPC shall not be placed into storage or, in the case of the OVERPACK loaded at the ISFSI, the MPC shall be removed from storage until appropriate corrective action is taken to ensure the dose limits are not exceeded.

5.7.8 TRANSFER CASK and OVERPACK surface dose rates shall be measured at approximately the following locations:

a. A minimum of four (4) dose rate measurements shall be taken on the side of the TRANSFER CASK approximately at the cask mid-height plane. The measurement locations shall be approximately 90 degrees apart around the circumference of the cask. Dose rates shall be measured between the radial ribs of the water jacket.
b. A minimum of four (4) TRANSFER CASK top lid dose rates shall be measured at locations approximately half way between the edge of the hole in the top lid and the outer edge of the top lid, 90 degrees apart around the circumference of the top lid.
c. A minimum of twelve (12) dose rate measurements shall be taken on the side of the OVERPACK in three sets of four measurements.

One measurement set shall be taken approximately at the cask mid-height plane, 90 degrees apart around the circumference of the cask. The second and third measurement sets shall be taken approximately 60 inches above and below the mid-height plane, respectively, also 90 degrees apart around the circumference of the cask.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-6

Programs 5.0 ADMINISTRATIVE CONTROLS AND PROGRAMS 5.7 Radiation Protection Program (contd)

d. A minimum of five (5) dose rate measurements shall be taken on the top of the OVERPACK. One dose rate measurement shall be taken at approximately the center of the lid and four measurements shall be taken at locations on the top concrete shield, approximately half way between the center and the edge of the top concrete shield, 90 degrees apart around the circumference of the lid.
e. A dose rate measurement shall be taken on contact at the surface of each inlet and outlet vent duct screen of the OVERPACK.

Certificate of Compliance No. 1014 Amendment No. 11 Appendix A 5.0-7