Regulatory Guide 1.3: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
{{Adams
{{Adams
| number = ML13350A383
| number = ML003739601
| issue date = 06/30/1973
| issue date = 06/30/1974
| title = Assumptions Used for Evaluation the Potential Radiological Consequences of a Loss Coolant Accident for Boiling Water Reactor
| title = Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors
| author name =  
| author name =  
| author affiliation = US Atomic Energy Commission (AEC)
| author affiliation = NRC/RES
| addressee name =  
| addressee name =  
| addressee affiliation =  
| addressee affiliation =  
Line 10: Line 10:
| license number =  
| license number =  
| contact person =  
| contact person =  
| case reference number = RG-1.003, Rev 1
| document report number = RG-1.3, Rev 2
| document type = Regulatory Guide
| document type = Regulatory Guide
| page count = 12
| page count = 12
}}
}}
{{#Wiki_filter:.!a                                                                                                                                                                                  1 Revision P                                                                                                                                                                        Revision I
{{#Wiki_filter:U.S. ATOMIC ENERGY COMMISSION  
                                                                                                                                                                          June 1973 U.S.   ATOMIC ENERGY COMMISSION
REGULATORY  
                                      REGULATORY
DIRECTORATE OF REGULATORY STANDARDS
                                      DIRECTORATE OF REGULATORY                                 STANDARDS
Revision 2 June 1974 GUIDE
                                                                                                                                            GUIDE
REGULATORY GUIDE 1.3 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES  
                                                                      REGULATORY GUIDE 1.3 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES
OF A LOSS OF COOLANT ACCIDENT FOR BOILING WATER REACTORS
                          OF A LOSS OF COOLANT ACCIDENT FOR BOILING WATER REACTORS'


==A. INTRODUCTION==
==A. INTRODUCTION==
Section 50.34 of 10 CFR Part 50 requires that each applicant for a construction permit or operating license provide an analysis and evaluation of the design and performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to evaluate the adequacy of these structures, systems, and components with respect to the public health and safety.
This guide gives acceptable assumptions that may be used in evaluating the radiological consequences of this accident for a boiling water reactor. In some cases, unusual site characteristics, plant design features, or other factors may require different assumptions which will be considered on an individual case basis. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position.
==B. DISCUSSION==
After reviewing a number of applications for construction permits and operating licenses for boiling water power reactors, the AEC Regulatory staff has developed a number of appropriately conservative assumptions, based on engineering judgment and on applicable experimental results from safety research programs conducted by the AEC and the nuclear industry, that are used to evaluate calculations of the diological consequences of various postulated accidents.
This guide lists acceptable assumptions that may be used to evaluate the design basis LOCA of a Boiling Water Reactor (BWR). It should be shown that the offsite dose consequences will be within the guidelines of 10 CFR Part 100. (During the construction permit review, guideline, exposures of 20 rem whole body and
150 rem thyroid should be used rather than the values given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data and calculational techniques that might influence the final design of engineered safety features or the dose reduction factors allowed for these features.)


==C. REGULATORY POSITION==
==C. REGULATORY POSITION==
S.'i'Cllil 50..;,I *it fII('FR PlaII 50( eiliuir lsth:t each                    I.                aIlle
1. The assumptions related to the release of radioactive material from the fuel and containment are as follows:  
                                                                                                                ,ssutllptiotis elatied I ll lte        tcle:se o' l;ldia:lct ii
a.
      :1pl'icailll        l a ,oittllrlic t      n lpli ilil ltm or olperaling lic*tise              iilellit        l front1 th11f0 I andlcollt iilnltiill alle ;as I",lfows:
 
        'ro',idtc an :!lhlvsis mtid evahaltion ol" the design and                                      a.       "\'i- t l >y-f'ive percent, of tile equilih)iilutn pl' ci; Iiiice of1 sitlicitlres. s*:{;ems anld Components of                          radioactive iodine invetn tory dovelo*.ed fromt mia\ iliintt ihtc I:,,iility with the otive                t" assessing the risk to                 !'uitl pow'er opeiatioi of thie core slhuhld IV JssI.niCId 1)
Twenty-five percent of the equilibrium radioactive iodine inventory developed from maximum full power operation of the core should be assumed to be immediately available for leakage from the primary reactor containment. Ninety-one percent of this 25 percent is to be assumed to be in the form of elemental iodine, 5 percent of this 25 percent in the form of particulate iodine, and 4 percent of this 25 percent in the form of organic iodides.
      lputllic h10:1tll :aitd :lfelv- resl              frm Im oporation,        ol'the        he imtncdililely available I'Mti leakaue fioin the primar:iyv laTilily. "h"          de:;ipi basis loss (of' coolant accident                        reactor conttaiinment. Nine tV-mit                          percent ito this 2 l()C' A i5 )IliC ,I I p[st lat3ted accidents used 1o                                perceill is toIle assulmled ito he ill tile 'orto of'ei nlenial evaluate fil ade(l'iacv ofi these Sliltctures. syll.*y s. and                          iodine. 5 percent of' this 25 percent ill ilic ltOnn oI
 
    c..'tIIIpolt0elli  swill lrespecl It tile public health a*nd safely.                   particulate ioidine. and -I p't.eent of this 25 percinti it!
b.
    This Inidle -,i\'es :,ccepltble assumlptions lhat mavy be                               lhe l'orit of' orwanic iodides.
 
One hundred percent of the equilibrium radioactive noble gas inventory developed from maximum full power operation of the core should be assumed to be immediately available for leakage from the reactor containment.
 
c.
 
The effects of radiological decay during holdup in the containment or other buildings should be taken into account.
 
d.
 
The reduction in the amount of radioactive material available for leakage to the environment by containment sprays, recirculating filter systems, or other engineered safety features may be taken into account, but the amount of reduction in concentration of radioactive materials should be evaluated on an individual case basis.
 
e.
 
The primary containment should be assumed to leak at the leak rate incorporated or to be incorporated in the technical specifications for the duration of the USAEC REGULATORY GUIDES
Copies of published s nay be obtained by request Indicating the divisions desired to the US. Atomic Energy Commission, Washington, D.C. 20645, Regulatory Guides are issued to descobe and mal available to the Public Attention: Director of Regulatory Standrds. Comments and suggestions for methods acceptable to the AEC Regulatory staff of implementing specific parts of Improvements In thes guides we encouraged and should be sent to the Secretary ths Commission's regulations, to delineate techniques used by the staff in of the Commission, US. Atomic Energy Commission, Washington, D.C. 20645, eveluating specific problems or postulatedi accidents, or to provide guidance to Attention: Chief, Public Proceedings Staff.
 
applicants. Regulatory Guides are not substitutes for regulations end compliance with them is not required. Methods end solutions different from thorn set out in The auides are issued in the following ten broad divisions:
the guldes will be acceptable If they provide a basis for the findings requisite to the issuance or continuance of a permit or license by the Commission.
 
===1. Power Reactors ===


iseal ill eva\tial l- tihe radiological ctnsequcuces of' this                                    h. One hluldred percent o1' the eqLlihibritinlt accident for a boiling wlei                      leactor. Ill soniLC CLasCs,            radioaclive nhble gas itnVentorny developed Ir'omll ntiitsnltal site chlaractelrisltics. plant dest;i featlres. or                          IltaxitiltilM frill powver o**ralion of' [lie %:oieshould ble othlr li'l tolls nav:y retqglire dilferetit asstinlotionls w\hich                      assumed it) lb ietltedialtelv available lot hcakane It'oit wiill ble Ctiside Led on anl illtividulial case basis. The                              tle leactol Coll lailllltent.
===6. Products ===
2. Research and Test Reactors


Advisoty ('Cimmnitee Oil Reactor S:ile'quards hias been.                                           c. The elfl*f os          . tf' radiolo-ical deca, during holdup consul ted con:ernini lt is guide altnd has conceturred in tlie                        inl thle conwaiintient or othet bujildimes should ble taketn regulatorvy pl ýili inl.                                                                into accounltI.
===7. Transportation ===
3. Fuels and Materials Facilities
8. Occupational Health Published guide will be revised periodically, as appropriate, to accommodate
4. Environmental and Siting
9. Antitrust Review comments to reflect new information or experience.


d. 'File reductiotn ill (hle alotii                        titt' adioactive
5. Materials and Plant Protection
1


==B. DISCUSSION==
===0. General===
mtat.'rial :ivailfable for leaka! ito the ehnvironineut bv Arler reviewtitt                                                            Cloln[;,ilmllelln Spray'.               recirtuilaing filter sys*cnis. ni olhier a titinumber or" applicationls for conslitiet iin ,t nuits mnd opetating licenses for boiling eneih:eered sai'eity ftatlres mtay be takelil itlno :icclittl, water p*,,\er reacolos. tile AEIC Regulaltury staff has                                bill the atounit of' reduction ihi concrentiation of radioactive materiils shotuld be evtlualed on :an developed a rilniber ofl' appropriately conservalive ildividual case ba:sis.
 
accident. 1 The leakage should be assumed to pass directly to the emergency exhaust system without mixing_2 in the surrounding reactor building atmosphere and should then be assumed to be released as an elevated plume for those facilities with stacks. '  
f.
 
No credit should be given for retention of iodine in the suppression pool.
 
2.
 
Acceptable assumptions for atmospheric diffusion and dose conversion are:
a.
 
Elevated releases should be considered to be at a height equal to no more than the actual stack height.
 
Certain site dependent conditions may exist, such as surrounding elevated topography or nearby structures which will have the effect of reducing the actual stack height. The degree of stack height reduction should be evaluated on an individual case basis. Also, special meteorological and geographical conditions may exist which can contribute to greater ground level concentrations in the immediate neighborhood of a stack. For example, fumigation should always be assumed to occur; however, the length of time that a fumigation condition exists is strongly dependent on geographical and seasonal factors and should be evaluated on a case-by-case basis.4 (See Figures IA
through 1D for atmospheric diffusion factors for an elevated release with fumigation.)
b.
 
No correction should be made for depletion of the effluent plume of radioactive iodine due to deposition on the ground, or for the radiological decay of iodine in transit.


al,          ptinons. bliscd on en&inecring juidpneni and on e. Tile primary conllaitnitent should ble assumed to applicable eXperimnenltal results fromn sa 'ty research leak at the leak rate incorporated or tio hie incolporated progratus cndudcted by the AEC and(l tie nuclear in thie technical specifications f'or the duration ill' [lie industryv. that are used ti) evaluale calculalions of tlie accident. 2 The leaka*e shotild be assuiitedito                                        pass radiological consequetces of1 various postulated accidelel s.                                                                                      t"'l'iS guiidte is a revision *l'ltirrittr Sate \l Giuide 3.
c.


2
For the first 8 hours, the breathing rate of persons offsite should be assumed to be 3.47x 104 cubic meters per second. From 8 to 24 hours following the accident, the breathing rate should be assumed to be
                                                                                                      'lic      e*t'ition containni ent              leakaee      Iindcr atccid.nl This guide lists acceptable assumptions that may he u-sed to evalutate the design basis LOCA of' a Boilinlg                              conditio ot"                  I'e:ttlires protvidted to red          ilce t' t':lkatpie of"
1.75 x 10"4 cubic meters per second. After that until the end of the accident, the rate should be assumed to be
                                                                                          radioalclive rtatlritits I'roll ItI" t'(l tnlit1inn n            Will he'11CeV3 litt1 Lilt Wa enr Rcactor (IIWPR). It should be shown tlhal tlhe                                :nilindividual case I*saiis.
2.32 x 10-4 cubic meters per second. (These values were
1The effect on containment leakage under accident conditions of1 features provided to reduce the leakage of radioactive materials from the containment will be evaluated on an individual case basis.


of*lsi tc.,lose cotnsequences will be within the guidelines of I(I CFR Part 100.
"2 In some cases, credit for mixing will be allowed; however, the amount of credit allowed will be evaluated on an individual case basis.


USAEC REGULATORY GUIDES                                    Copies of published guides may he obtained by reqcuest indicating the. divisions deilred to the US. Atomic Energy Commisvon. Washington, D.C. 201545.
' Credit for an elevated release should be given only if the point of release is (1) more than two and one-half times the height of any structure close enough to affect the dispersion of the plume, or (2) located far enough from any structure which could have an effect on the dispersion of the plume. For those BWR's without stacks the atmospheric diffusion factors assuming ground level release given in section 2.h. should be used to determine site acceptability.


Rcgulatnry Guides are issued in describe and make available to the public          Attention; Director of Regulatory Stalndards. Comments and suggestion% lot methods accptablte to the AEC Regulatory staff of implementing specilit part- of   itiproverienti In theta guidemý          aceancouragd and should be sent to the Secretary the Corirmisl*on' regulations. tO delineale techniques used by the staff in        of the Commitsion, US. Atomic Energy Commission. Washington, D.C. 20545.
4 For sites located more than 2 miles from large bodies of water such as oceans or one of the Great Lakes, a fumigation condition should be assumed to exist at the time of the accident and continue for one-half hour. For sites located less than 2 miles from large bodies of water, a fumigation condition should be assumed to exist at the time of the accident and continue for
4 hours.


ealuating specific problems or postulated accidents, or to provide guidence to      Attention: Chief, Public Proo-redinga Staff.
developed from the average daily breathing rate [2 x 107 cm3 /day] assumed in the report of ICRP, Committee
11-1959.). 
d.


applkOjlnts. Reoualo.yi Guides are not substitutes for regulations and compliance with them is not requited. Mrthods and solutions different from those set out in    The guides are itsuedt in the fortlowing ten broad divisior.:
The iodine dose conversion factors are given in ICRP Publication
    the u.-ris will be acceptahle it they provide a basis for the findings requisite to the llluance or osntinuance of a permit or licante by the Commission.                1. Power Reactors                                 
2, Report of Committee II,
"Permissible Dose for Internal Radiation," 1959.


===6. Products===
e.
                                                                                          2. Research and Test Reactors                      7. 'Transrptortation
                                                                                          3. Fuels and Materials Facilities                  B. Occullationl Heialth PuhllshM quiewi will hbe revi-id periodically, as aip!iogilate. to accommodate        4. Environmental ard Siting                        9. Antitrust Review cornrmenit 4nd in reflect new informatint, or experience.                            S. Materials and Plant Protection                tO, General


----          I                                  *
External whole body doses should be calculated using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the distance that the gamma rays and beta particles travel.
directly to the emergency exhaust system without                              d. The iodine dose conversion factors are given in mixing' in the. surrounding reactor building atmosphere                  ICRP Publication 2, Report of Comtmittee i1.


and should then be assumed to be released as an elevated                "Permissible Dose for Internal Radiation." 1959.
"Such a cloud would be considered an infinite cloud for a receptor at the center because any additional [gamma and]
beta emitting material beyond the cloud dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and Atomic Energy, Section 7.4.1.1-editorial additions made so that gamma and beta emitting material could be considered). Under these conditions the rate of energy absorption per unit volume is equal to the rate of energy released per unit volume. For an infinite uniform cloud containing X curies of beta radioactivity per cubic meter the beta dose in air at the cloud center is:
SD4g = 0.457 EX
The surface body dose rate from beta emitters in the infinite cloud can be approximated as being one-half this amount (i.e., 0D+/- = 0.23 ETX). 
For gamma emitting material the dose rate in air at the cloud center is:
D
0.507 .EX
From a semi-infinite cloud, the gamma dose rate in air is:
S=
0.25 E~x Where
= beta dose rate from an infinite cloud (rad/sec)
gamma dose rate from an infinite cloud (rad/sec)
Eg =
average beta energy per disintegration (Mev/dis)
EB = average gamma energy per disintegration
"(Mev/dis)
X
= concentration of beta or gamma emitting isotope in the cloud (curie/m 3)
f.


plume for those facilities with stacks.4                                      e. External whole body doses should be calculated f. No credit should be given for retention of                using Infinite Cloud" assumptions. i.e.. the dimensions iodine in the suppression pool.                                          of the cloud are assumed to be large compared to ihe distance Ihat Ihic gamma rays and beta particles travel.
The following specific assumptions are acceptable with respect to the radioactive cloud dose calculations:
(1) The dose at any distance fronthe reactor should be calculated based on the maximum concentration in the plume at that distance taking into account specific meteorological, topographical, and other characteristics which may affect the maximum plume concentration. These site related characteristics
1.3-2


2. Acceptable assumptions for atmospheric diffusion                    "Such a cloud would be considered atn infinite cloud for and dose conversion are:                                                a receptor at the center because any additional (gamma a. Elevated releases should be considered to be at                 andi beta emitting material beyond t(le clotud a height equal to no more than the actual stack height.                 dimensions would not alter the flux of Igatmna rays Certain site dependent conditions may exist, such as                    andl beta particles to the receptor" (Meteorology and surrounding elevated topography or nearby stnictures                    Atomic Energy, Section 7.4.1.1-editorial additions which will have the effect of reducing the actual stack                made so that gamnma and beta emitting material could be height. The degree of stack height reduction should be                   considered). Under ihese conditions the rate of energy.
must be evaluated on an individual case basis. In the case of beta radiation, the receptor is assumed to be exposed to an infinite cloud at the maximum ground level concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be exposed to only one-half the cloud owing to the presence of the ground. The maximum cloud concentration always should be assumed to be at ground level.


evaluated on an individual case hasis. Also. special                    absorption per unit volume is equal to the rate ortenergy meleorologicaI and geographical conditions may exist                    released per unit volume. For an infinite uniform cloud which can contribute to greater ground level                            containing X curies of beta radioactivity per cubic meter concentrations in the immediate neighborhood of a                        the beta dose in air at the cloud center is:
(2) The appropriate average beta and gamma energies emitted per disintegration, as given in the Table of Isotopes, Sixth Edition, by C. M. Lederer, J. M.
stack. For example. fumigation should always be assumed to occur: however. tlh- length of time that a                                            D. = 0.457 E
  rumigation condition exists is strongly dependent on geographical and seasonal factors and should be                        The surface body dose rate from beta emitters in the evaluated on a case-by-case basis." (See Figures I A                    infinite cloud can be approximated as being one-half this through ID for atmospheric diffusion factors for an                    amount (i.e.. 01D- = 0.23 EOX).
elcvated release with fumigation.)
      b. No correction should be made for depletion of the effluent plume of radioactive iodine due to deposition on the ground. or for the radiological decay                For gamma emitting material the dose rate in air at the of iodine in transit.                                                  cloud center is:
      c. For the first 8 hours, the breathing rate of persons offsite should be assumed to be 3.47x 10'                                                DA= 0.507 E rX
cubic meters per second. From 8 to 24 hours following the accident, the breathing rate should be assumed to be
1.75 x 1 0 4 cubic meters per second, After that until the              From a semi-infinite cloud. the gamma dose rate in air end of the accident, the rate should be assumed to be                    is:
2.32 x 10-4 cubic meters per second. (These values were developed from the average daily breathing rate 12 x 107                                          S=o.2s Ex cm3 /dayl assumed in the report of ICRP, Committee
11-1959.)                                                               Where D= beta dose rate from an infinite cloud (rad/sec)
                                                                                DE= gamma dose rate from an infimite cloud
    3
      1n some c-ases, credit fur mixing will he allowed: however.                      (rad/sec)
the amount of credit allowed will be evaluated on an individual              EO = average beta energy per disintegration case basis.                                                                              (Mev/dis)
                                                                              Ei = average gamma energy per disintegration
    "Credit for an elevated release should be given only if the pitnt of release is (I) nire than two and one-half times the                            (Mevldis)
height of any structure close enough to afrect the dispersion of              X = concentration of beta or gatnma emitting the plume, or (2) located far enough from any structure which                            isotope in the cloud (curie/mr3 )
could have an efrect on the dispersion of the plume. For those It\R's without stacks the atmospheric diffusion factors                        f. The following specific assumptions are assuming pround level release given in section 2.h. should be used to determine site acceptability.                                        acceptable with respect to the radioactive cloud dose calculations:
      For sites located more than 2 miles from large bodies of                     (I) The dose at any distance from the reactor water such as oceans or one of (the Great takes. a fumigation            should be calculated based on the maximunm condition should be assumed to exist at the time of the accident        concentration in the plume at that distance taking into and continue for one-half hour. For sites located less than 2 miles from large bodies of water, a fumigation condition should          account specific meteorological, topographical, and be assumed to exist at the time of the accident and continue for        other characteristics which may affect the maximium
4 hours.                                                                 plume concentration. These site related characteristics
                                                                  1.3-2


must be evaluated on an individual case basis. In the case                    (3) The atmospheric diffuision model' for an of beta radiation, the receptor is assumed to be exposed          elevated release as a function of the distance from the to an infinite cloud at the maxinmum ground level                  reactor, is based on the information in the table below.
Hollander, I. Perlman; University of California, Berkeley;
Lawrence Radiation Laboratory; should be used.


concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be                  Time exposed to only one-half the ckud owing to tcie                      Following presence of' the ground. Tile maxinmm cloud                          Accident                Atmospheric Conditions concentration always should be assumed to be at ground level.                                                              0-8 hours    See Figure 1(A) Envelope o1" Pastluill
g.
          (2) The appropriate average beta and gamnia                            diffusion categories based oil Figure A7 energies emitted per disintegration, as given in the Table                        NI 'teorolog' and Atomic I-netryo I tt(,1 ,
of Isotopes. Sixth Edition, by C. M. Lederer. J. M.                              assuming various stack heights: vindspeed I
Hollander, I. Perhlan; University ofCalifornia. Berkeley:                        me ier/see; uniform direction.


Lawrence Radiation Laboratory: should be used.
For BWR's with stacks the atmospheric diffusion model should be as follows:
(1) The basic equation for atmospheric diffusion from an elevated release is:
exp(-h2 I2oz2)
X/Q
iu a Sy~z Where X
= the short term average centerline value of the ground level concentration (curie/meter 3)
Q
= amount of material released (curie/sec)
u
= windspeed (meter/sec)
y= the horizontal standard deviation of the plume (meters) [See Figure V-l, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]
oz= the vertical standard deviation of the plume (meters) [See Figure V-2, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4,
"Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]
h
= effective height of release (meters)
(2) For time periods of greater than 8 hours the plume from an elevated release should be assumed to meander and spread uniformly over a 22.50 sector. The resultant equation is:
2.032 exp(-h2/2az 2)
x/Q
a=ux Where x
= distance from the release point (meters);
other variables are as given in g(l).
(3) The atmospheric diffusion model s for an elevated release as a function of the distance from the reactor, is based on the information in the table below.


g. For BWR's with stacks the atmospheric                      8-24 hours See Figure ItB) lEnvelope of Pasquill diffusion model should be as follows:                                            diffusion categories: windspeed I meter/see:
Time Following Accident Atmospheric Conditions
          (I) The basic equation for atmospheric                                variable direction within a 22.5 sector.
0-8 hours See Figure I(A)  
Envelope of Pasquill diffusion categories based on Figure A7 Meteorology and Atomic Energy-1968, assuming various stack heights; windspeed 1 meter/sec; uniform direction.


diffusion from an elevated release is:
8-24 hours See Figure I(B)  
                                                                    1-4 days    See Figure I[C) Envulope of Pasquill
Envelope of Pasquill diffusion categories; windspeed 1 meter/sec;
                              2    2                                              diffusion categories with the following exp(-h /2Oz )                                              relationship used to represent maximnnumn Tu y VQ                                                      plume concentrations as a tumeltion of'
variable direction within a 22.50 sector.
                                0z Where                                                                            distance:
                                                                    Atmospheric Condition Case I
      x    =  the short term average centerline value of the ground level concentration (curie/meter 3 )                                      40Y Pasquill A
                                                                                                    601'} Pasquill C
      Q = amount of material released (curie/see)
      u = windspeed (meter/sec)                                    Atmospheric Condition Case 2
                                                                                                  50% Pasquill C
      Gy = the horizontal standard deviation of the                                              50Y%* Pasqtill D
                  plume (meters) [See Figure V-i. Page 48.          Atmospheric Condition Case 3 Nuclear Safety, June 1961, Volume 2.                                              33.3',` Pasquill C
                Number 4, "Use of Routine Meteorological                                          33.3% Pasquill D
                Observations for Estimating Atmospheric                                          33.3% Pasquill E
                Dispersion," F. A. Gifford, Jr.)                    Atmospheric Condition Case 4 z= the vertical standard deviation of the plume                                            33.3!, Pasquill 1)
                (meters) [See Figure V-2. Page 48, Nuclear                                        33.3, Pasquill E
                Safety, June 1961, Volume 2, Number 4,                                            33.3K- Pasquill F
                "Use    of Routine Meteorological                  Atmospheric Condition Case 5 Observations for Estimating Atmospheric                                          50r', Pasquill D
                Dispersion," F. A. Gifford, Jr.)                                                  501? Pasquill F
      h = effective height of release (meters)
                                                                                  wind speed variable (Pasquill Types A. B. E.


and F windspeed 2 memer/sec: Pasquill
14 days See Figure 1(C) Envelope of Pasquill diffusion categories with the following relationship used to represent maximum plume concentrations as a function of distance:
          (2) For time periods of greater than 8 hours Types C nid D windspeed 3 meter/sec)
Atmospheric Condition Case 1
the plume from an elevated release should be assumed to                          variable direction within a 22.5" sector.
40% Pasquill A
60% Pasquill C
Atmospheric Condition Case 2
50% Pasquill C
50% Pasquill D
Atmospheric Condition Case 3
33.3% Pasquill C
33.3% Pasquill D
33.3% Pasquill E
Atmospheric Condition Case 4
33.3% Pasquill D
33.3% Pasquill E
33.3% Pasquill F
Atmospheric Condition Case 5
50% Pasquill D
50% Pasquill F
wind speed variable (Pasquill Types A, B, E,
and F windspeed 2 meter/sec; Pasquill Types C and D windspeed 3 meter/sec);
variable direction within a 22.50 sector.


meander and spread uniformly over a 22.50 sector. The resultant equation is:
4-30 days See Figure I(D) Same diffusion relations as given above; windspeed variable dependent on Pasquill Type used; wind direction 33.3%
                                                                    4-30 days See Figure I(D) Same diffusion relations as given above- windspeed variable dependent
frequency in a 22.50 sector.
                        2.032 exp(-h2 /2oz 2 )                                  on Pasquill Type used; wind direction 33.3"
                  x/Q                                                            frequency in a 22.50 sector.


=
This model should be used until adequate site meteorological data are obtained. In some cases, available information, such as meteorology, topography and geographical location, may dictate the use of a more restrictive model to insure a conservative estimate of potential offsite exposures.
                                                                        11This model should be used until adequate site Where                                                              meteorological data are obtained. In smote cases. avaitable information, such as meteorology, topography and geographical x    =  distance from the release point (meters);            location. may dictate the use of a more restrictive model to other variables are as given in g(1).                insure a conservative estimate of potential offtsite exposures.


1.3-3
1.3-3


h.
For BWR's without stacks the atmospheric diffusion model 6 should be as follows:
(1) The
0-8 hour ground level release concentrations may be reduced by a factor ranging from one to a maximum of three (see Figure 2) for additional dispersion produced by the turbulent wake of the reactor building in calculating potential exposures. The volumetric building wake correction factor, as defined in section 3-3.5.2 of Meteorology and Atomic Energy
1968, should be used only in the 0-8 hour period; it is used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only.
(2) The basic equation for atmospheric diffusion from a ground level point source is:
1 x/Q = 7rUOryc"Z
Where
(4) The atmospheric diffusion model for ground level releases is based on the information in the table below.
Time Following Accident Atmospheric Conditions
0-8 hours Pasquill Type F, windspeed
1 meter/sec, uniform direction
8-24 hours Pasquill Type F, windspeed
1 meter/sec, variable direction within a 22.50 sector
14 days (a) 40% Pasquill Type D, windspeed
3 meter/sec (b) 60% Pasquill Type F,
meter/sec (c) wind direction variable sector windspeed
2 within a 22.50
x
= the short term average centerline value of the ground level concentration (curie/meter 3)
Q
= amount of material released (curie/sec)
u
= windspeed (meter/sec)
ay = the horizontal standard deviation of the plume (meters) [See Figure V-1, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]
z= the vertical standard deviation of the plume (meters) [See Figure V-2, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4,
"Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]
(3) For time periods of greater than 8 hours the plume should be assumed to meander and spread unikormly over a 22.50 sector. The resultant equation is:
4-30 days (a) 33.3% Pasquill Type C, windspeed 3 meter/sec (b) 33.3% Pasquill Type D, windspeed 3 meter/sec (c) 33.3% Pasquill Type F, windspeed 2 meter/sec (d) Wind direction 33.3% frequency in a
22.50 sector
(5) Figures 3A and 3B give the ground level release atmospheric diffusion factors based on the parameters given in h(4). 
==D. IMPLEMENTATION==
The purpose of the revision (indicated by a line in the margin) to this guide is to reflect current Regulatory staff practice in the review of construction permit appli cations, and the revised guide, therefore, is effective immediately.
2.032 X/Q =-
Where x
= distance from point of release to the receptor;
other variables are as given in h(2).
1.3-4
10
10r5
0
U
10
102 J-. 4 -
4 .- 


-j
.1 If Att~
-
i4i
L47L
*
...i
. i.
-
-I
41 j
f I -I-
/HL
F I
- j I
1Z.LJ-
---
J-4----------4-f~-,
4~
+~-4 L
77-
-
--4-
4
1
4 Lw bhi5ometer;¶1 I
III
p
12
1
-
*t

-
-14--p
5 meters4.
4-1
-,--
4 -1-
+ -- 4 -1--i--1-1
-k Li
-.4- U
----
4---
4-
+ -
-4-- +/- -1
-4--1--4---t-
- 4..
1
4-4- -
+ -s-- + -- 4 CF'I(PaqII Diffis~io'
(T ssSow asryas.h
-t-L
ADS
-j
~~~-.~~~~~.-4-~~~~~~~~~-~
1
.I
~ 4-~--
-4--
-
---
4-4-4-
4
4--+--I-
4
14-14
----
4--
r
10
-j i-v
1tIf
.4
-ij t-
-4.-
4
----I -J
I
--4--I
II
-4
10
Distance from Release Point (meters)
1.3-5
-4-
!ILI
I
I
      h. For BIWR's without stacks dhe almospheric                                              2.032 diffusion inodel6,should be as follows:                                                  X/Q =  azUX*
-
          (I) The 0-8 hour ground level release concentrations may be reduced b'y a factor ranging from one to a nlaximum of three (see Figure 2) for additional            Whe re dispersion produced by the turbulent wake of the reactor building in calculating potential exposures. The                  x    = distance from point of release to the receptor;
-. -
volumetric building wake correction factor, as defined in                        other variables are as given in h(2).
4 -I-  
section 3-3.5.2 of Meteorology and Atomic Energy
4-I
1968, should be used only in the 0-8 hour period; it is                      (4) The atmospheric diffusion model for used with a shape factar of 1/2 and the minimum                    ground level releases is based on the information in the croms-sectional area ot the reactor building only.                  table below.
.4
4 j +-
4 I-
I
~ ~ I K
ELVTERLES
-7-1;vh-75 meterst
-7
10
-12
10 5


(2) The basic equation for atmospheric diffuision from a ground level point source is:                        Ti me Following Accident                Atmospheric Conditions x/0 =
10 - S2Tm d~ 7
                        41Uy oz                                  0.8 hours      Pasquill Type F, windspeed        I meter/see, uniform direction Where
*
                                                                  8-24 hours Pasquill Type F, windspeed 1 meter/see, the short term average centerline value of the                      variable direction within a 22.50 sector ground level concentration (curie/rmeter 3 )
I  
    Q      amount of material released (curie/see)                1-4 days      (a) 40% Pasquill Type D. windspeed            3 u      windspeed (meter/sec)                                                meter/see Oy  =the horizontal standard deviation of the                              (b) 60% Pasquill Type F, windspeed            2 plume (nieters) [See Figure V-I. Page 48,                        meter/sec Nuclear Safrity. June 1961, Volume 2.                            (c) wind direction variable within a 22.50
.I 1 I  
                                                                                  sector Number 4. "Use of Routine Meteorological Observations for Estimating Atmospheric
.L
                                                                  4-30 days (a) 33.3% Pasquill        Type C, windspeed 3 Dispersion," F. A. Gifford. Jr.]
.**
    ID  =the vertical standard deviation of the plume meter/sec (b) 33.3% Pasquill    Type D, windspeed 3 (meters) ISee Figure V-2, Page 48.Nuclear meter/sec Safety, June 1961, Volume 2, Number 4.                           (c) 33.3% Pasquill    Type F, windspeed 2
.......  
                "Use    of Routine Meteorological meter/sec Observations for Estimating Atmospheric                        (d) Wiind direction      33.3% frequency in a Dispersion," F. A. Gifford, Jr.]                                22.5' sector
. .
          (3) For time periods of greater than 8 hours                        (5) Figures 3A and 3B give the ground level the plume should be assumed to meander and spread                  release atmospheric diffusion factors based on the uniformly over a 22.5" sector. The resultant equation is:         parameters given in h(4),
..
                                                            I I A
1
.
ELEVATED RELEASE
:ATMOSPHERIC DIFFUSION FACTORS
S8-24 HOUR RELEASE TIME.


10-3 S
~z1Iiii~d42b~c..
                                                  ELEVATED RELEASE
..
                                      ATMOSPHfERIC DIFFSON FACTORS
1
                        S,0-8                      HLJUR RiEtASE TIME
-...
                            *  .                     FIGURE  1VA)
LJL
    10-4
L7I:7t:.
                    7.                     ..     ... . . . . ...   h*-Vb....
................................................................
              _ . . ....           . .     . L..                 . .÷        .
*1  
                              '*'--Ar S10-5    _
*  
  S-                                .d_........___.....I
I.
                                                      -1 - -*.
          10-4
      102                103                                10410
                          Distance from Release Point (meters)
                                        1.3-5


i
103
      :-o : -T  -r----.-        .        ..                                      -
105 Distance from Release Point (meters)
          ....              II
1.3-6 LZiIzt Bizz
                ................                                      ......... '  --
10-3
10-
10-
    io2                            iO3                                o                o Distance from Release Point (meters)
LL
                                                z -6
C
0 -
01-I
10-k
101'
IE
"I
I¸
i.
 
: I
.
J'-!j`:'j171T;,
 
p.ý
C
C
I-
. . . .. 
V4, T; 7
:j.


. % -'N
1;:  
  p
L
                      .. 1
T:T.
                                                                          .- LEXMATF&ULEASt.                            .
                                                                  ATMC kSH9R1C--D##ISMQ FACTORS
                                                                          1-4.C)A'Y.R:1LASE Tljfg.~
                                                                                  FIGURE M()
            *10-
                                                                                              -- t.................            .
                        ...          .. .    . .Ii
                                                  .i..
                                                                                                                              *1 I              '
            10-5                                                                  *      [ ....
                            - 4-2 E
                  I            I"  /'              --- S                          --------
        0
                                                                                    sk                TfI1It40#1
        010
                  ------------IL-
                  :zzjzz~~I~
                                          . . I ý
                                                      t        VL~~I        XA¶N.AIX
                                                                                                                    i  I
                                                                                                                      SI.


-I    I
-v A
                                                          Jpi i:.       i:F [I                        xI  '%
:.wa- m...
                                                              71 ..1              1f
ts:
          10
7
                                                                      -NI
'wr VT
0l        10-8
-J.
              102                              103 Distance from Release Point (meters)
                                                                  1.3-7


EUiVA"~bRIES
i f 11 Ta;
                                                                  ATAMSW          ON f-OR
-H
                            *    ..       4
T 4
ým w;
7W
ýIzr, lit: tlý
T:
777 v1!
L
ýi Ri;
'Tit
;7:
v T
T:
4.,:. 
47:
+
10
3; q E. :F
Em T=
------
UM
---
---
H7 Tý
rr I iýt i4i,-
7777-77 i,
T+I :7: L '-77
77
-w tý I" tit lp
14, TM L-,. 
4,n mg tj a
M
IL
7; - T
(,w/ow) DIXjom=d uoisnula I
LX t'i.i
1V t II
f%.
6 I
0 a.


* S
U
                                                                                      TtM
3
      ..........
.5 E
                    *  .,.    .      .~
0
                                4-1
T'
10 -5i IL                            -L.4                  -4 T V:                                                  _  _7j    J.
c
'9 a
I-
:1 Id :1
1  
-L-L
I.... I- -


I      x___
10
                      I Iv. I4N.N
                                                              INi
                                            --
                                            -  ------
                                                                                                I
                              7:'.
                                            I~w                                              z..L.J
10-
10-
    102                                   10
U.1 fie
                                              3
104I
                                                                          .1o4 Distance from Release Point (meters)
H
                                                        1.3-8
---4- ij
~TTI
YE
T
-I
---
---1-
* I- 1 1:
J: f I
I
I
7i*~ jf1i~li itIl~
t
'i v.
 
4
77ý 7*'7.-.. 
9 itl:
L
.
... ... 
jaAff:. 
Ir or
.4.7 pp Lt, I
t li Will N,
-fý
'aull i!:
ift H.:
44 lAA iififi` q M rju MA
:; IT C
I -
. 1. i.
 
A- W::
C
ali ItL
T
I I
hiAl.;
-7
-it W III
%L' 1, AA
7--
-77 i
X,
I i I
C 11
10
-114 a
Z_ý_L
...
-------
a I _T
1T Ay- ug
-1 -1:: IN
lit ItMA
HT jlllflllý
4i"
V.
 
V1 Wi R! 19 INER i U
!;I i 11'4ý M
P4 Fý, 4ý4
17 Tf iflul il M
Ml
1UN
IMU-
N"I
-7r+ !it liil lv, fili I
P11 flif
:1 fl IfAma, lFfff M,
I El U.
 
1W
,
Nt I f
ýf AT
I
A
it
::ij
:q.1=i;
Yi j ::;l it qi:
T
7
7
102
+/-
t I--
4,1++
Distance from Release Point (meters)
1.3-8 I I . .
w I
~
~ EIE --
__ _7
-;. 
1-_4L
~
1 t
.1
:1
103
104
 
1- -
"!
I
II
I
.1 I
j.4ivit I lit I. v
10-2
10-3  
0
10-5
-6
10
104 Distance from Release Point (meters)  
1 .3-9
:
!{iELEVATED RELEASE
ATMOSPHERIC DISPERSION FACTORS
FOR FUMIGATION CONDITIONS
7ý
"
=: -ATMOSPHERIC CONDITIONS
PASQUlLL TYPE F
.... 
fTWINDSPEED 1 METER/SEC
1=507
7etrs Sh=75
1 Smeters
'"!I
IL10 meesj h=125~J
meeJ*'
l=15
$1er
2
10
103
105
 
4.)
___
. 
______
N
r
 i rrf
:i I Vt I 4----
:17 i4 liP
\\ \\\\fii
3
2.5
-1.5
*1
-
..
.
.
i7
7V7
i-tx Si.
 
Iil
-.
----
V
r r
Id Il,
+
"F4H
-..-.- T-;-t.:-.
- +
..
7T
TW
-4- BUILDING WAKE
CORRECTION FACTOR-
-i-i-i-,-
-I
T
LL
4 V
Ilil I I
411*
14I
. I
* 1 I!1 U--
ii jr I
I
ritttr1PmrtPF
-
+/-..L-.----I- Hhl'* Will I
I I
I
rt-i'1'Thtr-!
iIi
7
.
.1-7 H'4
*" *-*
7_.


*
S. ..
. : :.; :;;;T
I
r
r
                                                        , EtVAMD. RELEASE
1'
                                          ATMOSPHERIC DISPERSION FACTORS
4r ii III
                                                FOR .FUMIGATION qONDITIONS
10"*
                                                  -ATMOSPHER ICCdiNDITIONgS.
(
T.1
177f II
Z
II!
I,-I
-
-....
. meters 2
0.5A-1500 meers20
0.5A-2000 meters
0.5
0
-F-,
103 Distance from Structure (meters)
-I.


PASOUILL TYPE F
-. 4- Th.
                                                      WINDSPEED I METER/SEC
 
      10-2                                                  " F1GUHE It ......
T
                              i
L*..1 t nlý
                    .. .....
,  
                  ;h60
*
  C,,                                ... .....   ..      .............
!
                                                                                        ,.. .....     .*. .. ..-.
z.
                                                                                  .....................................
 
                                                    i                 i:                              T
.
                                                                                                    j    7     :       i
!
0
!
                                                                                                        .
!
                                                                    w I   :      a
.
      10-                                             ~                      H
.
                                                                        -F-9 WT
.
                      N
.
          5
.
      10-
.
                I,.A
.
                              7-n                                                                            LTL
.
                        4-.                                       4--4
I
      10-6
I
            102                  103                                          104                                      105 Distance from Release Point (meters)
..  
                                                3..9)
..  
.
t
.
*
I
,
I
I
I
I
I I
J
i
.
,
r
,llJh n
I
, .
,,I
I
I
t ' t . ..  
. I
I
!
;;
;
;
;
;
.
.
.
.
i n
.-  
I
I
I I I I
I
I
.
.
.
..  
_
I , , l i  
,7 1
]
1
,
1 I I I I I I~l
,
~ ,
,
II
IIF
:I]
!i III
if!
i .l
2-_-i N!
I  
<
t
"
i
_-&#xfd;
7&#xfd;q
4_4
-----
,,---  
-
.
. . .
.
T -
 
1w4Thz4 GROUND LEVEL RELEASE
ATMOSPHERIC DIFFUSION FACTORS FOR
VARIOUS TIMES FOLLOWING ACCIDENTw TTW T I i I '' ; I I
T
44
-3
3 _7.
 
-<J4jT2:
-8-24hours,:.. 
0V
U.


w        ~
7 yjIIti;; :
      K"                                                                    i
Jfi.ti~  
  3
S4-34 days, t&#xfd;z5 L
  2.5  h----                             FIGU^R'E 2                  1        :
1O2
                                                    T.               I-
163 Distance from structure (meters)
0
1.3-11
                                        ._. . ... ..
10-2
0                                            .M.     :Ii u
10-
                                    -77                        I
10-
0
I I I-  
                                                                      *              I
- I 111r . I f&#xfd; I I n if"ITF-1 I I I I I " ' H I ,
                                                                                    -I..
I
                                                                        *  I I
..  
ra                                                                      *  I
.. .. .. -.. .. -Il- 11 i
cc
&#xfd; Llt"
5i                    t St.
&#xfd; r! " &#xfd; 4 PP f " rH
9 Ml
+ t E I + &#xfd; T &#xfd; I t -, -, I  
t-11 -
-
I
10"
104 tj M-f i i-t
)-8 hours fl-
#


*
- .
                                                          ii 3;  1 I
-4--GROUND
                                                                                -i
LEVEL RELEASE
                                                                                        6i iTd
T
  0.5
..,2
  0                                                      .1.~3
~~~
  102      102                            104 Dlsnme from Structur (won W~
ATMOSPHERIC DIFFUSION
                                                                                    0.-
ATR
O
I'
VARIOUS TIMES FOLLOWING ACCIDENT
,T
t
{-0-8 hours
*
r71 V
.
-t
74*  
-T4:+o r
~
74i
:R.P
I
I! ii I  
II -t----tt 4 -  t---t-t--t--rt-I-t1-1-i-r1--FrTLflTLHiL1iTh1Lu4i4 Tr KNL
+/-1--in
1-4 days T
1A
-4--.  
4 T-- q
1
+1.1  
4
4~
y~
- *
'.  
4~  
IIN
44'7
. .. . . . .. . .
.
-i4+/-AET'1Th12-rV
jL
1
4-4- I
-
"12% -t I
I
I
I
Ii A--
.
7:
4.,
-4 T'
4 L.L. A .LA L J


1 .
-
I I
I
I -
-
= -
-
- -
_______
Distance from S tructure (meters) 1
1.3-12
414
4.


IA
-I-. Li
          U V    .--                               .  _.-.-     . .
--
                          I~                                           A
lU
                            VARIOUS TIN ESF LC14HN            CI T
E
                                          FIGURE V(A)
.2
                                                                          L-1
70~  
                          8-24 hours            .~
10
  10-5 L
10
      102  10a3                                    10                  10
17F;
                  Distance from Structure Imeters)
I-.
-I-.
-4.-
-T
4-4 f T~  
1 4
&#xfd;
I.


-                                                                           lA0TMOSERL~qIF LLStOq Fibt
1 T-
~~    .~      .~...          ..        ..              .      .VARIOUS                TIMES FOULOWING IAC IrINT
--4
                                    ~                  .        ~-..                        FIGURE 30    3B)
-i J  JJ LI I
                                                                          0-8 hours
;; 41 rEtLI
                      ....................
L
                            .. 43.............................
1'
                                                        ta .                      ~~.
I -I-
                                                                                    .....
-4
                                                                                      .
4+/-  
                                                      I              JI
-4+/-U
          I.                ... . . ..    ..              .
A
  I.                              i
10
                                                      4                                                             -t
.
            103    10LL
Al ff!
                            Dit6Ic fromzz                    Stutr (meters}}
-
-5 L--
10
-T
-4-}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 02:09, 17 January 2025

Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors
ML003739601
Person / Time
Issue date: 06/30/1974
From:
Office of Nuclear Regulatory Research
To:
References
RG-1.3, Rev 2
Download: ML003739601 (12)


U.S. ATOMIC ENERGY COMMISSION

REGULATORY

DIRECTORATE OF REGULATORY STANDARDS

Revision 2 June 1974 GUIDE

REGULATORY GUIDE 1.3 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES

OF A LOSS OF COOLANT ACCIDENT FOR BOILING WATER REACTORS

A. INTRODUCTION

Section 50.34 of 10 CFR Part 50 requires that each applicant for a construction permit or operating license provide an analysis and evaluation of the design and performance of structures, systems, and components of the facility with the objective of assessing the risk to public health and safety resulting from operation of the facility. The design basis loss of coolant accident (LOCA) is one of the postulated accidents used to evaluate the adequacy of these structures, systems, and components with respect to the public health and safety.

This guide gives acceptable assumptions that may be used in evaluating the radiological consequences of this accident for a boiling water reactor. In some cases, unusual site characteristics, plant design features, or other factors may require different assumptions which will be considered on an individual case basis. The Advisory Committee on Reactor Safeguards has been consulted concerning this guide and has concurred in the regulatory position.

B. DISCUSSION

After reviewing a number of applications for construction permits and operating licenses for boiling water power reactors, the AEC Regulatory staff has developed a number of appropriately conservative assumptions, based on engineering judgment and on applicable experimental results from safety research programs conducted by the AEC and the nuclear industry, that are used to evaluate calculations of the diological consequences of various postulated accidents.

This guide lists acceptable assumptions that may be used to evaluate the design basis LOCA of a Boiling Water Reactor (BWR). It should be shown that the offsite dose consequences will be within the guidelines of 10 CFR Part 100. (During the construction permit review, guideline, exposures of 20 rem whole body and

150 rem thyroid should be used rather than the values given in § 100.11 in order to allow for (a) uncertainties in final design details and meteorology or (b) new data and calculational techniques that might influence the final design of engineered safety features or the dose reduction factors allowed for these features.)

C. REGULATORY POSITION

1. The assumptions related to the release of radioactive material from the fuel and containment are as follows:

a.

Twenty-five percent of the equilibrium radioactive iodine inventory developed from maximum full power operation of the core should be assumed to be immediately available for leakage from the primary reactor containment. Ninety-one percent of this 25 percent is to be assumed to be in the form of elemental iodine, 5 percent of this 25 percent in the form of particulate iodine, and 4 percent of this 25 percent in the form of organic iodides.

b.

One hundred percent of the equilibrium radioactive noble gas inventory developed from maximum full power operation of the core should be assumed to be immediately available for leakage from the reactor containment.

c.

The effects of radiological decay during holdup in the containment or other buildings should be taken into account.

d.

The reduction in the amount of radioactive material available for leakage to the environment by containment sprays, recirculating filter systems, or other engineered safety features may be taken into account, but the amount of reduction in concentration of radioactive materials should be evaluated on an individual case basis.

e.

The primary containment should be assumed to leak at the leak rate incorporated or to be incorporated in the technical specifications for the duration of the USAEC REGULATORY GUIDES

Copies of published s nay be obtained by request Indicating the divisions desired to the US. Atomic Energy Commission, Washington, D.C. 20645, Regulatory Guides are issued to descobe and mal available to the Public Attention: Director of Regulatory Standrds. Comments and suggestions for methods acceptable to the AEC Regulatory staff of implementing specific parts of Improvements In thes guides we encouraged and should be sent to the Secretary ths Commission's regulations, to delineate techniques used by the staff in of the Commission, US. Atomic Energy Commission, Washington, D.C. 20645, eveluating specific problems or postulatedi accidents, or to provide guidance to Attention: Chief, Public Proceedings Staff.

applicants. Regulatory Guides are not substitutes for regulations end compliance with them is not required. Methods end solutions different from thorn set out in The auides are issued in the following ten broad divisions:

the guldes will be acceptable If they provide a basis for the findings requisite to the issuance or continuance of a permit or license by the Commission.

1. Power Reactors

6. Products

2. Research and Test Reactors

7. Transportation

3. Fuels and Materials Facilities

8. Occupational Health Published guide will be revised periodically, as appropriate, to accommodate

4. Environmental and Siting

9. Antitrust Review comments to reflect new information or experience.

5. Materials and Plant Protection

1

0. General

accident. 1 The leakage should be assumed to pass directly to the emergency exhaust system without mixing_2 in the surrounding reactor building atmosphere and should then be assumed to be released as an elevated plume for those facilities with stacks. '

f.

No credit should be given for retention of iodine in the suppression pool.

2.

Acceptable assumptions for atmospheric diffusion and dose conversion are:

a.

Elevated releases should be considered to be at a height equal to no more than the actual stack height.

Certain site dependent conditions may exist, such as surrounding elevated topography or nearby structures which will have the effect of reducing the actual stack height. The degree of stack height reduction should be evaluated on an individual case basis. Also, special meteorological and geographical conditions may exist which can contribute to greater ground level concentrations in the immediate neighborhood of a stack. For example, fumigation should always be assumed to occur; however, the length of time that a fumigation condition exists is strongly dependent on geographical and seasonal factors and should be evaluated on a case-by-case basis.4 (See Figures IA

through 1D for atmospheric diffusion factors for an elevated release with fumigation.)

b.

No correction should be made for depletion of the effluent plume of radioactive iodine due to deposition on the ground, or for the radiological decay of iodine in transit.

c.

For the first 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, the breathing rate of persons offsite should be assumed to be 3.47x 104 cubic meters per second. From 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following the accident, the breathing rate should be assumed to be

1.75 x 10"4 cubic meters per second. After that until the end of the accident, the rate should be assumed to be

2.32 x 10-4 cubic meters per second. (These values were

1The effect on containment leakage under accident conditions of1 features provided to reduce the leakage of radioactive materials from the containment will be evaluated on an individual case basis.

"2 In some cases, credit for mixing will be allowed; however, the amount of credit allowed will be evaluated on an individual case basis.

' Credit for an elevated release should be given only if the point of release is (1) more than two and one-half times the height of any structure close enough to affect the dispersion of the plume, or (2) located far enough from any structure which could have an effect on the dispersion of the plume. For those BWR's without stacks the atmospheric diffusion factors assuming ground level release given in section 2.h. should be used to determine site acceptability.

4 For sites located more than 2 miles from large bodies of water such as oceans or one of the Great Lakes, a fumigation condition should be assumed to exist at the time of the accident and continue for one-half hour. For sites located less than 2 miles from large bodies of water, a fumigation condition should be assumed to exist at the time of the accident and continue for

4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

developed from the average daily breathing rate [2 x 107 cm3 /day] assumed in the report of ICRP, Committee

11-1959.).

d.

The iodine dose conversion factors are given in ICRP Publication

2, Report of Committee II,

"Permissible Dose for Internal Radiation," 1959.

e.

External whole body doses should be calculated using "Infinite Cloud" assumptions, i.e., the dimensions of the cloud are assumed to be large compared to the distance that the gamma rays and beta particles travel.

"Such a cloud would be considered an infinite cloud for a receptor at the center because any additional [gamma and]

beta emitting material beyond the cloud dimensions would not alter the flux of [gamma rays and] beta particles to the receptor" (Meteorology and Atomic Energy, Section 7.4.1.1-editorial additions made so that gamma and beta emitting material could be considered). Under these conditions the rate of energy absorption per unit volume is equal to the rate of energy released per unit volume. For an infinite uniform cloud containing X curies of beta radioactivity per cubic meter the beta dose in air at the cloud center is:

SD4g = 0.457 EX

The surface body dose rate from beta emitters in the infinite cloud can be approximated as being one-half this amount (i.e., 0D+/- = 0.23 ETX).

For gamma emitting material the dose rate in air at the cloud center is:

D

0.507 .EX

From a semi-infinite cloud, the gamma dose rate in air is:

S=

0.25 E~x Where

= beta dose rate from an infinite cloud (rad/sec)

gamma dose rate from an infinite cloud (rad/sec)

Eg =

average beta energy per disintegration (Mev/dis)

EB = average gamma energy per disintegration

"(Mev/dis)

X

= concentration of beta or gamma emitting isotope in the cloud (curie/m 3)

f.

The following specific assumptions are acceptable with respect to the radioactive cloud dose calculations:

(1) The dose at any distance fronthe reactor should be calculated based on the maximum concentration in the plume at that distance taking into account specific meteorological, topographical, and other characteristics which may affect the maximum plume concentration. These site related characteristics

1.3-2

must be evaluated on an individual case basis. In the case of beta radiation, the receptor is assumed to be exposed to an infinite cloud at the maximum ground level concentration at that distance from the reactor. In the case of gamma radiation, the receptor is assumed to be exposed to only one-half the cloud owing to the presence of the ground. The maximum cloud concentration always should be assumed to be at ground level.

(2) The appropriate average beta and gamma energies emitted per disintegration, as given in the Table of Isotopes, Sixth Edition, by C. M. Lederer, J. M.

Hollander, I. Perlman; University of California, Berkeley;

Lawrence Radiation Laboratory; should be used.

g.

For BWR's with stacks the atmospheric diffusion model should be as follows:

(1) The basic equation for atmospheric diffusion from an elevated release is:

exp(-h2 I2oz2)

X/Q

iu a Sy~z Where X

= the short term average centerline value of the ground level concentration (curie/meter 3)

Q

= amount of material released (curie/sec)

u

= windspeed (meter/sec)

y= the horizontal standard deviation of the plume (meters) [See Figure V-l, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]

oz= the vertical standard deviation of the plume (meters) [See Figure V-2, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4,

"Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]

h

= effective height of release (meters)

(2) For time periods of greater than 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> the plume from an elevated release should be assumed to meander and spread uniformly over a 22.50 sector. The resultant equation is:

2.032 exp(-h2/2az 2)

x/Q

a=ux Where x

= distance from the release point (meters);

other variables are as given in g(l).

(3) The atmospheric diffusion model s for an elevated release as a function of the distance from the reactor, is based on the information in the table below.

Time Following Accident Atmospheric Conditions

0-8 hours See Figure I(A)

Envelope of Pasquill diffusion categories based on Figure A7 Meteorology and Atomic Energy-1968, assuming various stack heights; windspeed 1 meter/sec; uniform direction.

8-24 hours See Figure I(B)

Envelope of Pasquill diffusion categories; windspeed 1 meter/sec;

variable direction within a 22.50 sector.

14 days See Figure 1(C) Envelope of Pasquill diffusion categories with the following relationship used to represent maximum plume concentrations as a function of distance:

Atmospheric Condition Case 1

40% Pasquill A

60% Pasquill C

Atmospheric Condition Case 2

50% Pasquill C

50% Pasquill D

Atmospheric Condition Case 3

33.3% Pasquill C

33.3% Pasquill D

33.3% Pasquill E

Atmospheric Condition Case 4

33.3% Pasquill D

33.3% Pasquill E

33.3% Pasquill F

Atmospheric Condition Case 5

50% Pasquill D

50% Pasquill F

wind speed variable (Pasquill Types A, B, E,

and F windspeed 2 meter/sec; Pasquill Types C and D windspeed 3 meter/sec);

variable direction within a 22.50 sector.

4-30 days See Figure I(D) Same diffusion relations as given above; windspeed variable dependent on Pasquill Type used; wind direction 33.3%

frequency in a 22.50 sector.

This model should be used until adequate site meteorological data are obtained. In some cases, available information, such as meteorology, topography and geographical location, may dictate the use of a more restrictive model to insure a conservative estimate of potential offsite exposures.

1.3-3

h.

For BWR's without stacks the atmospheric diffusion model 6 should be as follows:

(1) The

0-8 hour ground level release concentrations may be reduced by a factor ranging from one to a maximum of three (see Figure 2) for additional dispersion produced by the turbulent wake of the reactor building in calculating potential exposures. The volumetric building wake correction factor, as defined in section 3-3.5.2 of Meteorology and Atomic Energy

1968, should be used only in the 0-8 hour period; it is used with a shape factor of 1/2 and the minimum cross-sectional area of the reactor building only.

(2) The basic equation for atmospheric diffusion from a ground level point source is:

1 x/Q = 7rUOryc"Z

Where

(4) The atmospheric diffusion model for ground level releases is based on the information in the table below.

Time Following Accident Atmospheric Conditions

0-8 hours Pasquill Type F, windspeed

1 meter/sec, uniform direction

8-24 hours Pasquill Type F, windspeed

1 meter/sec, variable direction within a 22.50 sector

14 days (a) 40% Pasquill Type D, windspeed

3 meter/sec (b) 60% Pasquill Type F,

meter/sec (c) wind direction variable sector windspeed

2 within a 22.50

x

= the short term average centerline value of the ground level concentration (curie/meter 3)

Q

= amount of material released (curie/sec)

u

= windspeed (meter/sec)

ay = the horizontal standard deviation of the plume (meters) [See Figure V-1, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4, "Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]

z= the vertical standard deviation of the plume (meters) [See Figure V-2, Page 48, Nuclear Safety, June 1961, Volume 2, Number 4,

"Use of Routine Meteorological Observations for Estimating Atmospheric Dispersion," F. A. Gifford, Jr.]

(3) For time periods of greater than 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> the plume should be assumed to meander and spread unikormly over a 22.50 sector. The resultant equation is:

4-30 days (a) 33.3% Pasquill Type C, windspeed 3 meter/sec (b) 33.3% Pasquill Type D, windspeed 3 meter/sec (c) 33.3% Pasquill Type F, windspeed 2 meter/sec (d) Wind direction 33.3% frequency in a

22.50 sector

(5) Figures 3A and 3B give the ground level release atmospheric diffusion factors based on the parameters given in h(4).

D. IMPLEMENTATION

The purpose of the revision (indicated by a line in the margin) to this guide is to reflect current Regulatory staff practice in the review of construction permit appli cations, and the revised guide, therefore, is effective immediately.

2.032 X/Q =-

Where x

= distance from point of release to the receptor;

other variables are as given in h(2).

1.3-4

10

10r5

0

U

10

102 J-. 4 -

4 .- 





-j

.1 If Att~

-

i4i

L47L

...i

. i.

-

-I

41 j

f I -I-

/HL

F I

- j I

1Z.LJ-

---

J-4----------4-f~-,

4~

+~-4 L

77-

-

--4-

4

1

4 Lw bhi5ometer;¶1 I

III

p

12

1

-

  • t



-

-14--p

5 meters4.

4-1

-,--

4 -1-

+ -- 4 -1--i--1-1

-k Li

-.4- U


4---

4-

+ -

-4-- +/- -1

-4--1--4---t-

- 4..

1

4-4- -

+ -s-- + -- 4 CF'I(PaqII Diffis~io'

(T ssSow asryas.h

-t-L

ADS

-j

~~~-.~~~~~.-4-~~~~~~~~~-~

1

.I

~ 4-~--

-4--

-

---

4-4-4-

4

4--+--I-

4

14-14


4--

r

10

-j i-v

1tIf

.4

-ij t-

-4.-

4


I -J

I

--4--I

II

-4

10

Distance from Release Point (meters)

1.3-5

-4-

!ILI

I

-

-. -

4 -I-

4-I

.4

4 j +-

4 I-

I

~ ~ I K

ELVTERLES

-7-1;vh-75 meterst

-7

10

-12

10 5

10 - S2Tm d~ 7

I

.I 1 I

.L

.**

.......

. .

..

1

.

ELEVATED RELEASE

ATMOSPHERIC DIFFUSION FACTORS

S8-24 HOUR RELEASE TIME.

~z1Iiii~d42b~c..

..

1

-...

LJL

L7I:7t:.

................................................................

  • 1

I.

103

105 Distance from Release Point (meters)

1.3-6 LZiIzt Bizz

10-

LL

C

0 -

01-I

10-k

101'

IE

"I

i.

I

.

J'-!j`:'j171T;,

p.ý

C

C

I-

. . . ..

V4, T; 7

j.

1;:

L

T:T.

-v A

.wa- m...

ts:

7

'wr VT

-J.

i f 11 Ta;

-H

T 4

ým w;

7W

ýIzr, lit: tlý

T:

777 v1!

L

ýi Ri;

'Tit

7

v T

T:

4.,:.

47:

+

10

3; q E. :F

Em T=


UM

---

---

H7 Tý

rr I iýt i4i,-

7777-77 i,

T+I :7: L '-77

77

-w tý I" tit lp

14, TM L-,.

4,n mg tj a

M

IL

7; - T

(,w/ow) DIXjom=d uoisnula I

LX t'i.i

1V t II

f%.

6 I

0 a.

U

3

.5 E

0

T'

c

'9 a

I-

1 Id :1

1

-L-L

I.... I- -

10

10-

U.1 fie

104I

H

---4- ij

~TTI

YE

T

-I

---

---1-

  • I- 1 1:

J: f I

I

I

7i*~ jf1i~li itIl~

t

'i v.

4

77ý 7*'7.-..

9 itl:

L

.

... ...

jaAff:.

Ir or

.4.7 pp Lt, I

t li Will N,

-fý

'aull i!:

ift H.:

44 lAA iififi` q M rju MA

IT C

I -

. 1. i.

A- W::

C

ali ItL

T

I I

hiAl.;

-7

-it W III

%L' 1, AA

7--

-77 i

X,

I i I

C 11

10

-114 a

Z_ý_L

...


a I _T

1T Ay- ug

-1 -1:: IN

lit ItMA

HT jlllflllý

4i"

V.

V1 Wi R! 19 INER i U

!;I i 11'4ý M

P4 Fý, 4ý4

17 Tf iflul il M

Ml

1UN

IMU-

N"I

-7r+ !it liil lv, fili I

P11 flif

1 fl IfAma, lFfff M,

I El U.

1W

,

Nt I f

ýf AT

I

A

it

ij
q.1=i;

Yi j ::;l it qi:

T

7

7

102

+/-

t I--

4,1++

Distance from Release Point (meters)

1.3-8 I I . .

w I

~

~ EIE --

__ _7

-;.

1-_4L

~

1 t

.1

1

103

104

1- -

"!

I

II

I

.1 I

j.4ivit I lit I. v

10-2

10-3

0

10-5

-6

10

104 Distance from Release Point (meters)

1 .3-9

!{iELEVATED RELEASE

ATMOSPHERIC DISPERSION FACTORS

FOR FUMIGATION CONDITIONS

"

=: -ATMOSPHERIC CONDITIONS

PASQUlLL TYPE F

....

fTWINDSPEED 1 METER/SEC

1=507

7etrs Sh=75

1 Smeters

'"!I

IL10 meesj h=125~J

meeJ*'

l=15

$1er

2

10

103

105

4.)

___

.

______

N

r

 i rrf

i I Vt I 4----
17 i4 liP

\\ \\\\fii

3

2.5

-1.5

  • 1

-

..

.

.

i7

7V7

i-tx Si.

Iil

-.


V

r r

Id Il,

+

"F4H

-..-.- T-;-t.:-.

- +

..

7T

TW

-4- BUILDING WAKE

CORRECTION FACTOR-

-i-i-i-,-

-I

T

LL

4 V

Ilil I I

411*

14I

. I

  • 1 I!1 U--

ii jr I

I

ritttr1PmrtPF

-

+/-..L-.----I- Hhl'* Will I

I I

I

rt-i'1'Thtr-!

iIi

7

.

.1-7 H'4

  • " *-*

7_.

S. ..

. : :.; :;;;T

I

r

1'

4r ii III

10"*

(

T.1

177f II

Z

II!

I,-I

-

-....

. meters 2

0.5A-1500 meers20

0.5A-2000 meters

0.5

0

-F-,

103 Distance from Structure (meters)

-I.

-. 4- Th.

T

L*..1 t nlý

,

!

z.

.

!

!

!

.

.

.

.

.

.

.

.

I

I

..

..

.

t

.

I

,

I

I

I

I

I I

J

i

.

,

r

,llJh n

I

, .

,,I

I

I

t ' t . ..

. I

I

!

.

.

.

.

i n

.-

I

I

I I I I

I

I

.

.

.

..

_

I , , l i

,7 1

]

1

,

1 I I I I I I~l

,

~ ,

,

II

IIF

I]

!i III

if!

i .l

2-_-i N!

I

<

t

"

i

_-ý

7ýq

4_4


,,---

-

.

. . .

.

T -

1w4Thz4 GROUND LEVEL RELEASE

ATMOSPHERIC DIFFUSION FACTORS FOR

VARIOUS TIMES FOLLOWING ACCIDENTw TTW T I i I  ; I I

T

44

-3

3 _7.

-<J4jT2:

-8-24hours,:..

0V

U.

7 yjIIti;; :

Jfi.ti~

S4-34 days, týz5 L

1O2

163 Distance from structure (meters)

1.3-11

10-2

10-

10-

I I I-

- I 111r . I fý I I n if"ITF-1 I I I I I " ' H I ,

I

..

.. .. .. -.. .. -Il- 11 i

ý Llt"

ý r! " ý 4 PP f " rH

9 Ml

+ t E I + ý T ý I t -, -, I

t-11 -

-

I

10"

104 tj M-f i i-t

)-8 hours fl-

- .

-4--GROUND

LEVEL RELEASE

T

..,2

~~~

ATMOSPHERIC DIFFUSION

ATR

O

I'

VARIOUS TIMES FOLLOWING ACCIDENT

,T

t

{-0-8 hours

r71 V

.

-t

74*

-T4:+o r

~

74i

R.P

I

I! ii I

II -t----tt 4 -  t---t-t--t--rt-I-t1-1-i-r1--FrTLflTLHiL1iTh1Lu4i4 Tr KNL

+/-1--in

1-4 days T

1A

-4--.

4 T-- q

1

+1.1

4

4~

y~

- *

'.

4~

IIN

44'7

. .. . . . .. . .

.

-i4+/-AET'1Th12-rV

jL

1

4-4- I

-

"12% -t I

I

I

I

Ii A--

.

7:

4.,

-4 T'

4 L.L. A .LA L J





1 .

-

I I

I

I -

-

= -

-

- -

_______

Distance from S tructure (meters) 1

1.3-12

414

4.

-I-. Li

--

lU

E

.2

70~

10

10

17F;

I-.

-I-.

-4.-

-T

4-4 f T~

1 4

ý

I.

1 T-

--4

-i J  JJ LI I

41 rEtLI

L

1'

I -I-

-4

4+/-

-4+/-U

A

10

.

Al ff!

-

-5 L--

10

-T

-4-