ML17264A851: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(StriderTol Bot change)
 
(11 intermediate revisions by the same user not shown)
Line 2: Line 2:
| number = ML17264A851
| number = ML17264A851
| issue date = 03/19/1997
| issue date = 03/19/1997
| title = Rg&E Re Ginna Nuclear Power Plant Spent Fuel Pool Re-racking Licensing Rept.
| title = Rg&E Re Ginna Nuclear Power Plant Spent Fuel Pool Re-racking Licensing Rept
| author name = BIDDLE J R, HASSLER L A, HENNINGTON P J
| author name = Biddle J, Hassler L, Hennington P
| author affiliation = FRAMATOME
| author affiliation = FRAMATOME
| addressee name =  
| addressee name =  
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:20440-7(12I95)ENGINEERINGINFORMATIONRECORDDocumentIdentifier61-1258768-01TitleGinnaSpentFuelPoolRe-rackingUcenslngReportPREPAREDBY'eebelowREVIEWEDBY:SeebelowSignatureSignatureTechnicalManagerStatement:InitialsReviewerisIndependent.Remarks:CriticalityPreparedby:L.A.Hasslerf11/<1Reviewedby:B.M.Palmer2//'F/FFStructuralThermal-HydraulicJ.BiddleP.J.enningsons/IT/TVS/if//'qpgjl~~QD.A.arnsworthVjNOOR'SOOCUhiEt4TRFVIEVrl.PAPPROVED~ARPROVEihQPMITFINALOOCUl~UHQglcru'(hisLlAYMi&~io~~*'PPR0VEOASliGTED.llAViEC'HV4PH~'JAVOSU('.ITF:lsALOOCL>.'i'TS.li'JiNUVi.FACTUFiO:OllAYlRGCECOASAPPiOVEO.iLQ(lOT/PNOVEOCORRECANDREEUUl/lTPl>EVO':'(OTREDU(REO-l/'FAGTURtNO~hlAVPRDCEEOAP'.iROVALCFP+LlDOC"VEVTOOaSROTO'ELIEVEEU/iPLIRiRDhlFUL(.CO!PL(h'iCE'hflTHCONTRACTORFNCHAEECODE/<<I"lREI:O'.iS...d~+.r~~i)IRG"'FIEGTERGAii~l""'..L:CTiilCCCRP.RutherfordS.Q.King970407004697033iPDRADGCK05000244(PPDR~Page1ofyq~
{{#Wiki_filter:}}
TABLEOFCONTENTS
 
==1.0INTRODUCTION==
1.1GENERAL.1.2NEWSPENTFUELPOOLCONFIGURATION..1.3BORATEDSTAINLESSSTEELRACKDESCRIPTION1.3.1DescriptionofRegion1,Type3Racks1.3.2DescriptionofRegion2,Type2Racks...............1.3.3DescriptionofRegion2,Type4Racks...............1.3.4NeutronAbsorberMaterial.1.3.5StructuralMaterials..1.4SUPPLIERQUALIFICATIONANDEXPERIENCE1.4.1TeamQualifications..1.4.2TeamExperience.2.0PRINCIPALDESIGNCRITERIA2.1GeneralDesignCriteria2.2StructuralCriteria2.3CriticalityCriteria~2.4Thermal-HydraulicCriteria.2.5RadiologicalCriteria.3.0STRUCTURALEVALUATION3.1SCOPE3.2DESIGNCRITERIA.3.2.1ApplicableCodesandStandards3.2.2AcceptanceCriteria,LoadCombinationsandStressLimits..3.3STRUCTURALDESIGNFEATURES3.4MATERIALSOFCONSTRUCTION3.4.1StructuralMaterials3.4.2Non-structuralMaterials3.5STRUCTURALANALYSIS..3.5.1LoadingConditions3.5.1.1Overview3.5.1.2SeismicInputCompliance..3.5.2StructuralAnalysisMethods3.5.2.1Assumptions-Seismic/Structural3.5.2.2AnalyticalProcedure.3.5.2.2.1SeismicAnalysis3.5.2.2.2StructuralAnalysis3.5.2.2.2.1RackStresses3.5.2.2.2.2SupportLegsandConcreteBearingStresses3.5.2.2.2.3WeldStresses1920212122232425262626525252...5353....54....55......5557..63..65..65.65.72~~~~~~73........73....77.......100100101101...~.103....103....~..104~....10451-1258768-01GinnaSFPRe-rackingLicensingReportPage2 TABLEOFCONTENTS...105105.106.106.106.117....117..~.117....117.......118119....119....120120123130132136136..136136....142....142143.143...144..146149.~150....150....152..158....159~...159....161164....167...1713.5:2.2.2.4Fuel-to-RackImpactLoadsEvaluation.3.5.2.2.2.5SlidingandTipping......3.5.2.2.2.6ExpectedLoadsonFloorFromRacks.............3.5.2.2.2.7PoolLinerPlateIntegrityEvaluation3.5.2.3DetailedDescriptionsofMathematicalModels.3.5.2.4DetailedDocumentationofComputerCodes.............~3.5.2.4.1General.......~..3.5.2.4.2StructuraVSeismicComputerCodes.3.5.2.4.2.1ANSYS3.5.2.4.2.1.1SummaryofElementTypesUsedintheANSYSModels..3.5.2.4.2.1.2SummaryofANSYSErrorReportsforElementTypesUsed..3.5.2.4.2.2SIMQKE3.5.2.5HydrodynamicFluidCoupling.3.5.2.5.1Fuel-To-RackHydrodynamicCoupling3.5.2.5.2Rack-To-RackandRack-To-PoolHydrodynamicCoupling....3.5.2.6SeismicTimeHistoryFactorDeterminations..3.5.2.7RackStiffnessSensitivityStudy3.5.3StructuralEvaluation........~~.3.5.3.1Normal,UpsetandFaultedConditions..3.5.3.1.1VariousInputstothe3-DSingleRackandWholePoolFiniteElementModels~......3.5.3.1.1.1RackStructuralProperties.............3.5.3.1.1.2FuelStructuralProperties3.5.3.1.1.2.1ConsolidatedFuelCanisterStructuralProperties.3.5.3.1.1.2.2FuelAssemblyStructuralProperties.......3.5.3.1.1.3InterfaceStiffnessBetweenFuelandRack.3.5.3.1.1.4Damping3.5.3.1.1.5PerforatedPlates3.5.3.1.1.6LocalGapsSurroundingEachRack.3.5.3.1.2RackTubeConnectingTabsandTubeRetainerPlateWelds...3.5.3.1.2.1Tab/WeldStressesDuetoSeismicLoads..3.5.3.1.2.2Tab/WeldStressesDuetoFuel-to-TubeImpact........3.5.3.1.2.3ThermalStressesinTabs/Welds.....3.5.3.1.2.4TotalTab/WeldStresses3.5.3.1.2.5BoratedStainlessSteelRetainerPlatesWeldStresses...3.5.3.1.2.6RackTubeBucklingStrengthandTabWeldSpacing3.5.3.1.2.7RackTubeMaximumStressEvaluation3.5.3.1.3BottomofRackTubetoBasePlateWelds..3.5.3.1.4WeldingofSupportLegs51-1258768-01GinnaSFPRe-rackingLicensingReportPage3 TABLEOFCONTENTS3.5.3.1.5SummaryofSupportPadLoads..3.5.3.1.6Fuel-to-RackImpactLoads.......3.5.3.1.7SummaryofSingleRack3-DModelResults.3.5.3.1.7.1BriefDescriptionof3-DSingleRackModel3.5.3.1.7.2StudyofEffectsofRackHeightIncrease.3.5.3.1.7.2.1PurposeofRackHeightIncreaseStudy........3.5.3.1.7.2.2ModificationsRequiredintheRackModel...~.3.5.3.1.7.2.3ResultsofRackHeightIncreaseStudy........3.5.3.1.7.3PeripheralRackAttachmentStudy.3.5.3.1.7.3.1PurposeofPeripheralRackAttachmentStudy..3.5.3.1.7.3.2PeripheralRackModelInputAdjustments.....3.5.3.1.7.3.3SummaryofResults...........3.5.3.1.7.4Off-CenteredLoadingStudy.......3.5.3.1.7.4.1PurposeofOff-CenteredLoadingStudy.......3.5.3.1.7.4.2ModificationsRequiredtoAnalyzeOff-CenteredLoadingCases......3.5.3.1.7.4.3SummaryofOff-CenteredLoadingResults....3.5.3.1.7.5ComparisonofConnectedandDisconnectedFuelBeamModels3.5.3.1.8SummaryofWholePoolModelResults.....3.5.3.1.8.1RackForcesandMomentsforEachLoadCase.......3.5.3.1.8.2FinalRackDisplacementsforEachLoadCase~.......3.5.3.1.8.3FinalRackRotationsForEachLoadCase.3.5.3.1.8.4RepresentativePlots3.5.3.1.9SupportLegandBearingPadAnalysis..3.5.3.1.9.1SupportLegAnalysis3.5.3.1.9.1.1ExistingRackSupportAnalysis...3.5.3.1.9.1.2ConcreteandSpentFuelPoolLinerQualification3.5.3.1.9.1.2.1AverageConcreteBearingStress3.5.3.1.9.1.2.2Boussinesq'sSolution3.5.3.1.10RackThermalStressAnalysis3.5.3.1.11FatigueAnalysis3.5.3.1.12RackBasePlateEvaluation.3.5.3.1.13Sloshing..3.5.3.1.14SummaryofGapClosurefromFive(5)OBE'sPlusOne(1)SSE.~3.5.3.1.15BoratedStainlessSteelFunctionality3.5.3.1.16U.S.Tool4DieRackStructuralEvaluation3.5.3.1.17SpentFuelPoolandLinerStructuralEvaluation3.5.3.1.18StuckFuelAssembly-UpliftForce3.5.3.1.19StorageRacksLiftingAnalysis~ae.173.185.191.191.192.192.192.192.196.196.196196200.200200201201203...206..218230236254256..256...257..257.257260266269272.279283284.287.28929251-1258768-01GinnaSFPRe-rackingLicensingReportPage4 TABLEOFCONTENTS3.5.3.2AccidentConditions3.5.3.2.1MethodologyandAssumptions..3.5.3.2.2AcceptanceCriteria.........3.5.3.2.3FuelAssemblyDropAnalysis..............3.5.3.2.3.1FuelAssembly-StraightDeepDrop~..3.5.3.2.3.1.1FuelAssemblyFallsThroughCelltoBasePlate3.5.3.2.3.1.2FuelAssemblyDropsintoCellandStrikesSupportLeg..3.5.3.2.3.2FuelAssembly-ShallowDrops..3.5.3.2.3.2.1FlatImpactonTopInterfaceoftheRacks.....3.5.3.2.3.2.2End-OnImpact....3.5.3.2.4TornadoMissileImpact3.5.3.2.5GateDrop..3.5.3.2.6RackDrops3.5.3.2.7CaskDrop.3.5.3.2.8SummaryofAccidentDropResults3.5.3.2.9LossofSpentFuelPoolCooling3.5.3.3TabulationofResults3.5.3.4DiscussionofResultsandSignificance.3.5.3.5Conclusion.3.5.3.6AnticipatedImpactonOperationsofR.E.GinnaNuclearPlant...
 
==3.6REFERENCES==
.294294295..295296..296.....301.....304.....305306308310.310314...314316317323323....3243254.0CRITICALITYEVALUATION
 
==4.1INTRODUCTION==
~.4.1.1Region1NormalCondition.4.1.2Region2NormalCondition.4.1.3AbnormalConditions4.2ANALYTICALMETHODS.4.2.1CriticalityAnalysisMethodology4.2.2ToleranceEvaluation/BurnupIsotopicGenerationwithCASMO-3.4.2.3BurnupCreditMethodology..4.2.4BoraflexDegradation/ShrinkageMethodology..4.3CRITICALITYANALYSES...4.3.1InputParameters............,4.3.1.1FuelAssemblyDescription..4.3.1.2SpentFuelStorageRackDimensions.4.3.1.3MaterialSpecifications4.3.2Tolerance/UncertaintyEvaluation.4.3.2.1FuelRackToleranceAnalysisMethodology4.3.2.2Off-CenterFuelAssemblyAnalysis.328328329........329...330........331........331...~....332333334..335335335.335..33533633651-1258768-01GinnaSFPRe-rackingLicensingReportPage5 TABLEOFCONTENTS~Pae4.3.2.3StoragePoolCoolantTemperatureEffects4.3.2.4FuelAssemblyMechanicalTolerances.........336..3374.3.2.5MostReactiveFuelType......~......................3374.3.2.5.1IntactFuelAssemblies..........3374.3.2.5.2ConsolidatedFuelContainers.......4.3.2.6SummaryofBiases,Penalties,andUncertaintiesinAnalysis.....'.3.3Region1Analysis338..338..3384.3.3.1Region1GeometryModels..........~............~..3384.3.3.2BurnupCredit....................~~..............3394.3.4Region2Analysis4.3.4.1Region2GeometryModels......~~........~.......3393404.3.4.1.1RackType1-BoraflexRack3404.3.4.1.2RackType2-BoratedStainlessSteelRack.......3404.3.4.1.3Region2CombinedModelforRackType4Evaluation........3404.3.4.2Region2LoadingCurveGeneration...~.....3414.3.4.2.1BaseBurnupvsEnrichmentCurveGeneration.3414.3.4.3GenerationoftheLoadingCurveforAbnormalAssemblies..........4.3.5InterfaceEffects.4.3.6AccidentAnalysis..4.3.6.1Region1AssemblyDropAnalyses......4.3.6.2Region2AssemblyDropAnalyses.~~.4.3.6.3SeismicAnalysis..4.3.6.3.1Region1SeismicAnalysis..4.3.6.3.2Region2SeismicAnalysis..~..4.3.6.3.3InterfaceRegionSeismicAnalysis.4.3.7SummaryofResults4.3.7.1AnalyticalResultsforRegion14.3.7.1.1NormalConditionResults4.3.7.1.2BurnupVersusEnrichmentCurve.......~.................3413423433433443453463463463463473473484.3.7.1.3IFBARodRequirements......3484.3.7.1.4AccidentConditions.....3484.3.7.2AnalyticalResultsforRegion23494.3.7.2.1AnalyticalResultsforNormalConditions...4.3.7.2.2BaseBurnupVersusEnrichmentCurve....................4.3.7.2.3LoadingCurveforAbnormallyBurnedAssemblies...........4.3.7.2.4ResultsforAccidentConditions..4.3.8FuelRodConsolidation.4.3.9AcceptanceCriteriaforCriticality4.4SUPPLEMENTARYINFORMATION4.4.1KENOV.aBias4.4.1.1CriticalExperiments....4.4.1.2CASMO-3/KENOV.aBenchmarks34935035135135235335435435435751-1258768-01GinnaSFPRe-rackingLicensingReportPage6 TABLEOFCONTENTS4.4.1.3KENOV.aInfinitetoFiniteModelComparison.4.4.2BurnupCreditMethodology.......................4.4.2.1AxialProfileGeneration.4.4.2.2AxialProfileIsotopicConcentrationGeneration4.4.2.3AxialReactivityEffects4.4.2.4BoraflexDegradationModelMargin..4.4.3WestinghouseIFBADocumentation
 
==4.5REFERENCES==
0~0~Paae3573583583593603613613675.0THERMAL-HYDRAULICEVALUATION5~1INTRODUCTION5.2CRITERIA5.3ASSUMPTIONS.......................................5.4DISCUSSIONOFSPENTFUELCOOLING....................5.5SPENTFUELPOOLCAPACITYANDDISCHARGESCENARIOS~...5.5.1SpentFuelPoolCapacity...5.5.2CoreOffloadScenarios.............~..................5.5.2.1NormalDischargeScenario5.5.2.2FullCoreDischargeScenario.......................5.6DECAYHEATLOAD5.6.1FullCoreDecayHeatLoad.............................5.6.2SingleFuelAssemblyDecayHeatLoad.....................5.7REQUIREDCOREDECAYTIMES5.7.1SingleBatchOffload5.7.2FullCoreOffload..5.8LOCALFUELBUNDLETHERMAL-HYDRAULICS5.8.1NaturalCirculationintheSpentFuelPoolStorageCanisters5.8.2EffectsofGammaHeatingintheFluxTrapRegionsandInter-CanisterGaps....5.8.2.1RegionIType3FluxTraps......~...5.8.2.2RegionIIType2Inter-CanisterGaps....5.8.3FlowBlockages......................5.8.4NaturalCirculationintheConsolidatedFuelCanisters............5.9SPENTFUELPOOLTHERMAL-HYDRAULICSANALYSISRESULTS5.9.1RegionIwithType3ATEARacks.......5.9.2RegionIIwithType2ATEARacks..~....5.9.3RegionIwithType4ATEASideRacks5.9.4NaturalCirculationintheRegionIFluxTrapRegion............5.9.5NaturalCirculationintheRegionIIInter-CanisterGaps...........5.9.6TheEffectofFlowBlockage5.9.7NaturalCirculationintheConsolidatedFuelCanister............~~~~~~~~429430430430431431431431432434434435435435436~~~~~~~~\~~~~439439440441441442442443444445446446447..436..43751-1258768-01GinnaSFPRe-rackingLicensingReportPage7
 
TABLEOFCONTENTS5.10LOSSOFTHESPENTFUELCOOLINGSYSTEM..~.~.~..........4475.11COMPARISONBETWEENORIGEN2RESULTSANDASB9-2METHODOLOGY.................~...............4495.12REFERENCES6.0RADIOLOGICALEVALUATION6.1ACCEPTANCECRITERIA6.1.1OffsiteDoseExposure.6.1.2OccupationalDoseExposure.6.2OFFSITEDOSECONSEQUENCES6.2.1RackDropAccident6.2.2CaskDrop/TipAccident6.2.3GateDropAccident..6.2.4ConsolidatedCanisterDropAccident6.2.5FuelHandlingAccident.6.2.6TornadoMissileAccident.6.3OCCUPATIONALEXPOSURE.6.4SOLIDRADWASTE.6.5GASEOUSRELEASES6.6RACKDISPOSAL
 
==6.7CONCLUSION==
S
 
==6.8REFERENCES==
..451...451..452.452.......452~~~~~~~~~~~~~~~~452..452.452.......453..453.......455..........4584604614614617.0QUALITYASSURANCE7.1DESCRIPTIONOFSUPPLIER'SQUALITYASSURANCEPROGRAM7.2DESCRIPTIONOFQUALITYASSURANCEPLANANDIMPLEMENTATION.7.2.1Organization.7.2.2QualityAssurance7.2.3DesignControl.7.2.4ProcurementDocumentControl7.2.5Instructions,Procedures,andDrawings7.2.6DocumentControl7.2.7ControlofPurchasedMaterial,Equipment,andServices.....7.2.8IdentificationandControlofMaterials,Parts,andComponents.....7.2.9ControlofSpecialProcesses~...7.2.10Inspection.7.2.11TestControl............~............~7.2.12ControlofMeasuringandTestEquipment.............7.2.13Handling,Storage,andShipping~....~...~.......~..........7.2.14Inspections,Tests,andOperatingStatus.~...7.2.15Non-ConformingMaterials,Parts,orComponents...~....468....468~......469..~469469...469.~...469.....469...~.469.470470.470...470...471........471........47147151-1258768-01GinnaSFPRe-rackingLicensingReportPage8 TABLEOFCONTENTS7.2.16CorrectiveAction7.2.17Audits~ae..4724728.0ENVIRONMENTALCOST/BENEFITASSESSMENT8.1NEEDFORINCREASEDSTORAGECAPACITY.'..8.2ESTIMATEDCONSTRUCTIONCOSTS.8.3ALTERNATIVESTOINCREASEDSTORAGECAPACITY.8.4COMMITMENTOFMATERIALRESOURCES.8.5HEATRELEASEDTOTHEENVIRONMENT.....473..473..473474..475Table1.3-1Table1.3-2Table1.3-3Table1.3-4Table1.3-5Table1.4-1Table1.4-2NumberofCellsbyRackType.RackDimensions,Weight,Supports....DesignDataforRegion1,Type3Racks(FreshFuelandSpentFuel)..DesignDataforRegion2,Type2Racks(SpentFuel)..~~.DesignDataforRegion2,Type4Racks(SpentFuel).Framatome/ATEASpentFuelRacks.....BoratedStainlessSteelExperience(WetStorage)..0~29303132333435Table3.2-1Table3.2-2Table3.4-1Table3.4-2Table3.4-3Table3.4-4Table3.4-5Table3.4-6Table3.4-7Table3.4-8Table3.5-1Table3.5-2Table3.5-3Table3.5-4Table3.5-5Table3.5-6Table3.5-7Table3.5-8Table3.5-9StressAcceptanceCriteria-StorageRacks304LStainlessSteel-StressAcceptanceCriteria~.MaterialsofConstructionMaterial:304LStainlessSteelPlate,BarandPipeMaterial:304StainlessSteelPlate'andBarMaterial:630PrecipitationHardenedSteel.....Concrete~~~~~~~~~~~I~~~~~~~~~~t0~~~~~~Zircaloy-4TubingMaterialBoratedStainlessSteel..Boraflex~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~RegulatoryGuide1.60HorizontalSpectraSSEHorizontalSpectraOBEHorizontalSpectraRegulatoryGuide1.60VerticalSpectra..SSEVerticalSpectraOBEVerticalSpectraCross-CorrelationFactorsforSSETimeHistories..~Cross-CorrelationFactorsforOBETimeHistories........GeometricParametersforHydrodynamicMassCoupling-SummaryTable....61.6267.......6869.......70~~~~~~~71.......71...71.......71~~~~~~78....78.79...79....7980.....808112751-1258768-01GinnaSFPRe-rackingLicensingReportPage9 TABLEOFCONTENTSTable3.5-10Table3.5-11Table3.5.12Table3.5-13Table3.5-14Table3.5-15Table3.5-16Table3.5-17Table3.5-18Table3.5-19Table3.5-20Table3.5-21Table3.5-22Table3.5-23Table3.5-24Table3.5-25Table3.5-26Table3.5-27Table3.5-28Table3.5-29Table3.5-30Table3.5-31Table3.5-32Table3.5-33Table3.5-34Table3.5-35Table3.5-36Table3.5-37Table3.5-38Table3.5-39Table3.540Table3.5-41Table3.5-42Table3.5-43Table3.5-44Table3.5-45Table3.5-46..128....129131...~.132158158..162..163166.......168170....172.173173174~~..174175175....176....176.177..177..178.........178.....179.179.~180..180.181.181......182182183183...184.184........~185RackHydrodynamicCouplingMassesStandardConfiguration(NoType4RacksInstalled)RackHydrodynamicCouplingMassesExtendedConfiguration(Type4RacksInstalled)..SummaryofDeterminationofSSETimeHistoryFactor(UsingRack8(2B)LoadedwithConsolidatedFuel,mu=0.8).~.SummaryofDeterminationofOBETimeHistoryFactor(UsingRack8(2B)LoadedwithUnconsolidatedFuel,mu=0.8)....MechanicalTab/WeldStresses.Tabs/WeldsThermalStressesRackCross-SectionPropertiesforTubesCompressiveRackCornerTubeStressestpsi].SummaryofTubeStressesBasePlateWeldsCross-SectionPropertiesforNewATEARacksBasePlate&WeldStressSummaryforNewATEARacks........SummationofSupportLegWeldStresses.Max.Horiz.ModelLegForcesSRSS-LC&#xb9;1.Max.VerticalPoolFloorForces-LC&#xb9;1Max.Horiz.LegForcesSRSS-LC&#xb9;2Max.VerticalPoolFloorForces-LC&#xb9;2..Max.Horiz.ModelLegForcesSRSS-LC&#xb9;3.Max.VerticalPoolFloorForces-LC&#xb9;3Max.Horiz.LegForcesSRSS-LC&#xb9;4Max.VerticalPoolFloorForces-LC&#xb9;4Max.Horiz.ModelLegForcesSRSS-LC&#xb9;5.Max.VerticalPoolFloorForces-LC&#xb9;5Max.Horiz.ModelLegForcesSRSS-LC&#xb9;6Max.VerticalPoolFloorForces-LC&#xb9;6Max.Horiz.LegForcesSRSS-LC&#xb9;7Max.VerticalPoolFloorForces-LC&#xb9;7...............Max.Horiz.LegForcesSRSS-LC&#xb9;8Max.VerticalPoolFloorForces-LC&#xb9;8.~Max.Horiz.LegForcesSRSS-LC&#xb9;9Max.VerticalPoolFloorForces-LC&#xb9;9..Max.Horiz.LegForcesSRSS-LC&#xb9;10Max.VerticalPoolFloorForces-LC&#xb9;10Max.Horiz.LegForcesSRSS-LC&#xb9;11Max.VerticalPoolFloorForces-LC&#xb9;11Max.Horiz.LegForcesSRSS-LC&#xb9;12Max.VerticalPoolFloorForces-LC&#xb9;12LocalFuel/RackImpactForces-LC&#xb9;151-1258768-01GinnaSFPRe-rackingLicensingReportPage10
 
TABLEOFCONTENTSTable3.5-47Table3.5-48Table3.5-49Table3.5-50Table3.5-51Table3.5-52Table3.5-53Table3.5-54Table3.5-55Table3.5-56Table3.5-57Table3.5-58Table3.5-59Table3.5-60Table3.5-61Table3.5-62Table3.5-63Table3.5-64Table3.5-65Table3.5-66Table3.5-67Table3.5-68Table3.5-69Table3.5-70Table3.5-71Table3.5-72Table3.5-73Table3.5-74Table3.5-75Table3.5-76Table3.5-77Table3.5-78Table3.5-79Table3.5-80Table3.5-81Table3.5-82Table3.5-83Table3.5-84....185....186LocalFuel/RackImpactForces-LC&#xb9;2..~.LocalFuel/RackImpactForces-LC&#xb9;3LocalFuel/RackImpactForces-LC&#xb9;4...LocalFuel/RackImpactForces-LC&#xb9;5LocalFuel/RackImpactForces-LC&#xb9;6LocalFuel/RackImpactForces-LC&#xb9;7LocalFuel/RackImpactForces-LC&#xb9;8LocalFuel/RackImpactForces-LC&#xb9;9~.LocalFuel/RackImpactForces-LC&#xb9;10....LocalFuel/RackImpactForces-LC&#xb9;11.LocalFuel/RackImpactForces-LC&#xb9;12...SummaryofMaximumFuel/RackCellWallImpactLoaComparisonofResultsforRackModelWithandWithoutaHeightIncrease.SummaryofOBEResultsinPeripheralRackAnalysis.SummaryofSSEResultsinPeripheralRackAnalysis..ComparisonofResultsforHalf-LoadedConsolidatedRack8,SSE1,Mu=0.8.SummaryofConnectedandDisconnectedFuelBeamModelComparisonResults.SummaryofWholePoolModelLoadCases..SummaryofRackLoadingsforLoadCase&#xb9;11SummaryofRackLoadingsforLoadCase&#xb9;12~RackForcesFx,Fy&Fz-LC&#xb9;1.RackMomentsMx,My&Mz-LC&#xb9;1RackForcesFx,Fy&Fz-LC&#xb9;2RackMomentsMx,My&Mz-LC&#xb9;2RackForcesFx,Fy&Fz-LC&#xb9;3................RackMomentsMx,My&Mz-LC&#xb9;3RackForcesFx,Fy&Fz-LC&#xb9;4RackMomentsMx,My&Mz-LC&#xb9;4RackForcesFx,Fy&Fz-LC&#xb9;5RackMomentsMx,My&Mz-LC&#xb9;5RackForcesFx,Fy&Fz-LC&#xb9;6RackMomentsMx,My&Mz-LC&#xb9;6RackForcesFx,Fy&Fz-LC&#xb9;7RackMomentsMx,My&Mz-LC&#xb9;7..RackForcesFx,Fy&Fz-LC&#xb9;8.........~..RackMomentsMx,My&Mz-LC&#xb9;8RackForcesFx,Fy&Fz-LC&#xb9;9RackMomentsMx,My&Mz-LC&#xb9;9........186187.187..188..188..189..189..190..190191ds.........~........195....197.....198201203..203204205..206206~.207207208208..209.............209210210211211212212213.213214...21451-1258768-01GinnaSFPRe-rackingLicensingReportPage11 TABLEOFCONTENTSTable3.5-85Table3.5-86Table3.5-87Table3.5-88Table3.5-89Table3.5-90Table3.5-91Table3.5-92Table3.5-93Table3.5-94Table3.5-95Table3.5-96Table3.5-97Table3.5-98Table3.5-99Table3.5-100Table3.5-101Table3.5-102Table3.5-103Table3.5-104Table3.5-105Table3.5-106Table3.5-107Table3.5-108Table3.5-109Table3.5-110Table3.5-111Table3.5-112Table3.5-113Table3.5-114Table3.5-115Table3.5-116Table3.5-117Table3.5-118Table3.5-119Table3.5-120Table3.5-121Table3.5-122Table3.5-123Table3.5-124Table3.5-125RackFarcesFx,Fy&Fz-LC&#xb9;10RackMomentsMx,My&Mz-LC&#xb9;10.RackForcesFx,Fy&Fz-LC&#xb9;11...RackMomentsMx,My&Mz-LC&#xb9;11RackForcesFx,Fy&Fz-LC&#xb9;12RackMomentsMx,My&Mz-LC&#xb9;12........FinalRackRelativeEast-WestDisp.-LC&#xb9;1FinalRackRelativeNorth-SouthDisp.-LC&#xb9;1.FinalRackRelativeEast-WestDisp.-LC&#xb9;2FinalRackRelativeNorth-SouthDisp.-LC&#xb9;2....FinalRackRelativeEast-WestDisp.-LC&#xb9;3FinalRackRelativeNorth-SouthDisp.-LC&#xb9;3FinalRackRelativeEast-WestDisp.-LC&#xb9;4FinalRackRelativeNorth-SouthDisp.-LC&#xb9;4...FinalRackRelativeEast-WestDisp.-LC&#xb9;5FinalRackRelativeNorth-SouthDisp.-LC&#xb9;5FinalRackRelativeEast-WestDisp.-LC&#xb9;6FinalRackRelativeNorth-SouthDisp.-LC&#xb9;6FinalRackRelativeEast-WestDisp.-LC&#xb9;7FinalRackRelativeNorth-SouthDisp.-LC&#xb9;7.FinalRackRelativeEast-WestDisp.-LC&#xb9;8FinalRackRelativeNorth-SouthDisp.-LC&#xb9;8FinalRackRelativeEast-WestDisp.-LC&#xb9;9FinalRackRelativeNorth-SouthDisp.-LC&#xb9;9FinalRackRelativeEast-WestDisp.-LC&#xb9;10FinalRackRelativeNorth-SouthDisp.-LC&#xb9;10..FinalRackRelativeEast-WestDisp.-LC&#xb9;11FinalRackRelativeNorth-SouthDisp.-LC&#xb9;11...FinalRackRelativeEast-WestDisp.-LC&#xb9;12FinalRackRelativeNorth-SouthDisp.-LC&#xb9;12FinalRackRotations-LC&#xb9;1FinalRackRotations-LC&#xb9;2FinalRackRotations-LC&#xb9;3FinalRackRotations-LC&#xb9;4FinalRackRotations-LC&#xb9;5FinalRackRotations-LC&#xb9;6FinalRackRotations-LC&#xb9;7FinalRackRotations-LC&#xb9;8FinalRackRotations-LC&#xb9;9FinalRackRotations-LC&#xb9;10FinalRackRotations-LC&#xb9;11215..215..216216217..217..218218219..219220220221221222222223223224224225~.225226..226227227228228229229...230.230231.231232232233.23323423423551-1258768-01GinnaSFPRe-rackingLicensingReportPage12
 
TABLEOFCONTENTS~aeTable3.5-126Table3.5-127Table3.5-128Table3.5-129Table3.5-130Table3.5-131Table3.5-132Table3.5-133Table3.5-134Table3.5-135Table3.5-136Table3.5-137Table3.5-138Table3.5-139Table3.5-140Table3.5-141Table3.5-142Table3.5-143Table3.5-144Table3.5-145Table3.5-146FinalRackRotations-LC812..MaterialPropertiesforthePoolLinerandSupportLegs...~..ForcesUsedinQualificationofthePoolLinerandSupportLegs....SupportLegsForceComparisonforExistingRacks..SummationofConcreteStressesSummationofSpentFuelPoolLinerStresses......SummationofSupportLegStresses..RelativeDisp.DuetoEast-WestTranslation...RelativeEast-WestDisp.DuetoRotation.RelativeDisp.DuetoNorth-SouthTranslation...RelativeNorth-SouthDisp.DuetoRotation..SummaryofEast-WestRelativeDisp.SummaryofNorth-SouthRelativeDisp.~SeismicLoadsonRacks1through6-attheBaseofRackSeismicSupportPadLoadonRacks1through6LoadonEachPad..ResultsofSupportLegStressesResultsofConcreteStresses..............~.ResultsofSpentFuelPoolLinerStresses....ResultsofTabStressesResultsofTubeStressesResultsofBasePlateStresses....235..254......254256258258259280.280281..281282282286......287.....317.....318..~..318~..319321...322Table4.1-1Table4.1-2Table4.1-3Table4.1-4Table4.3-1Table4.3-2Table4.3-3aTable4.3-3bTable4.3-4Table4.3-5Table4.3-6Table4.3-7Table4.3-8Table4.3-9Table4.3-10PolynomialGeneratedforSpentFuelBurnupvsEnrichmentRequirementsfortheRegion1Racks..PolynomialGeneratedBurnupvsEnrichmentRequirementsfortheRegion2Racks..KENOV.aRegion1(RackType3)ResultsofBurnupvsEnrichmentCalculationsKENOV.aRegion2(RackTypes1,2,&4)ResultsofBurnupvsEnrichmentCalculationsFuelAssemblyParametersConsolidationCanisterSpecificationsRegion1,RackType3CellDimensions..~..Region1,RackType3DamagedFuelCellDimensionsRegion2,RackType1CellDimensions......~.Region2,RackType2CellDimensionsRegion2,RackType4CellDimensions....MaterialCompositionsforNon-FuelRegions..'..FuelMaterialNumberDensitiesAssemblyTolerancePenalties(b,k)ReactivityUncertaintyAssociatedWithFuelAssemblyType.~0~~~~~~~~~0~~~\~~37037137237337437537637637737737837938038138151-1258768-01GinnaSFPRe-rackingLicensingReportPage13 TABLEOFCONTENTS~aeTable4.3-11Table4.3-12Table4.3-13Table4.3-14Table4.3-15Table4.4-1Table4.4-2Table4.4-3Table4.4-4Table4.4-5Table4.4-6Table4.4-7Table4.4-8Table4.4-9Table4.4-10Table4.4-11Table4.4-12Table4.4-13Table4.4-14Table4.4-15Table4.4-16Table4.4-17Table4.4-18Table4.4-19ConsolidationContainerResults.SummaryofRackTypeUncertainties,Penalties,AndCredits........~...Region1,RackType3,DroppedAssemblyAccidentResults............Region2,RackTypes1,2,&4,DroppedAssemblyAccidentResults.....SeismicEventAccidentResults.........KENOV.aBIASvsSeparationDistance.AdditionalUO,CriticalExperimentComparisons.....................MixedOxideCriticalExperimentComparisons.InternationalHandbookCriticalExperimentsCASMO-3/KENOV.aBenchmarkConfigurations..CASMO-3/KENOV.aInfiniteArrayBenchmarkComparison...........CASMO-3/KENOV.aInfiniteArrayBenchmarkComparison...........KENOV.aInfinitetoFiniteModelComparisonGinnaFuelAssembliesUsedforAxialShapeEvaluationRelativeAxialShapesforTypicalNon-AxialBlanketStandardFuelAssembliesRelativeAxialShapesfortheSevenZoneAxialModel.AxialBurnupShapesfortheRegion2LoadingCurveIrradiationInputDataandIsotopicConcentrationsfor3Wt%InitialEnrichmentFuelat21GWd/mtUBurnupInRegion2IrradiationInputDataandIsotopicConcentrationsfor4Wt%InitialEnrichmentFuelat34GWd/mtUBurnupinRegion2.......IrradiationInputDataandIsotopicConcentrationsfor5Wt%InitialEnrichmentFuelat45GWd/mtUBurnupinRegion2.......IsotopicConcentrationsforFuelforRegion2AuxiliaryCurves...~......AverageIsotopicConcentrationsforRegion1LoadingCurve............EvaluationofAxialShapeEffectsforAllRackTypes.....EvaluationofMarginProvidedbytheBoraflexDegradationModelforRackType1.381382383383383384385386387387388388388389390391391392393394395395396397Table5.5-1Table5.9-1Table5.9-2Table5.9-3Table5.10-1Table5.11-1GinnaSpentFuelPoolInventory(ActualEcProjected)RegionIType3RackLocalPoolCoolingResults.~RegionIIType2RackLocalPoolCoolingResultsRegionIIType4EcBoraflexRackLocalPoolCoolingResults...LossofPoolCoolingandHeat-UpTimeComparisonbetweenORIGEN2andASB9-2Resultsforafullcorewith15GWD/MTUburnup.~~~~~444445448449.....433443Table6.2-1Table6.3-1Table6.3-2~OQsiteRadiologicalConsequencesofaHypotheticalTornadoMissileAccident.....~..............................~...455DoseRatesatLocationsofInterestAroundSpentFuelPool..............457GammaIsotopicAnalysisofSpentFuelPoolWaterfor1996.........~..45751-1258768-01GinnaSFPRe-rackingLicensingReportPage14 TABLEOFCONTENTSTable6.4-1Table6.5-1Table6A-1RadionuclideAnalysisReport-ResinActivity,fromtheSpentResinTanks...........~GaseousReleasesfromtheAuxiliaryBuilding..AssumptionsandInputsUsedinDeterminingOffsite.......~....458460Table6A-2Table6A-3Table6A-4DosesDuetoTornadoMissileAccidentInsideAuxiliaryBuilding........TornadoMissileAccidentSourceTermsforRegion1(100HoursofDecay)TornadoMissileAccidentSourceTermsforRegion2(60DaysofDecay).DoseConversionFactors464465466467ifFieFigure1.1-1Figure1.3-1Figure1.3-2Figure1.3-3Figure1.3-4Figure1.3-5Figure1.3-6Figure1.3-7Figure1.3-8~Figure1.3-9Figure1.3-10Figure1.3-11Figure1.3-12Figure1.3-13Figure1.3-14SpentFuelPool-GeneralArrangement...Type3Rack-Perspective...............Type3Rack-GeneralArrangementType3Rack-DetailofBase.............Type3Rack-VerticalSection.Type3Rack-TopView.Type3Rack-DetailsofConnectingTabs..Type2Rack-DetailsofTopType2Rack-PerspectiveType2Rack-DetailofBaseType2Rack-VerticalSectionType2Rack-TopViewType2Rack-DetailofConnectingTabs...Type4Rack.Type4Rack-TopView........37...38.......39.40.....41.....42...43.44....45.46...47...4849........50.51Figure3.5-1Figure3.5-2Figure3.5-3Figure3.5-4Figure3.5-5Figure3.5-6Figure3.5-7Figure3.5-8Figure3.5-9Figure3.5-10Figure3.5-11Figure3.5-12Figure3.5-13..82....83....84....85....86....878888.....89~~~~~~~89~~~~~90~9091Avg.Calculatedvs.DesignResponseSpectraforSSE(EW)X-Dir....Avg.Calculatedvs.DesignResponseSpectraforSSE(NS)Y-Dir.....Avg.Calculatedvs.DesignResponseSpectraforSSEZ-Dir.........Avg.Calculatedvs.DesignResponseSpectraforOBE(EW)X-Dir.Avg.Calculatedvs.DesignResponseSpectraforOBE(NS)Y-Dir....Avg.Calculatedvs.DesignResponseSpectraforOBEZ-Dir.SSEAccelerationTimeHistory&#xb9;1for(EW)X-Dir......SSEAccelerationTimeHistory&#xb9;2for(EW)X-Dir.SSEAccelerationTimeHistory&#xb9;3for(EW)X-Dir..SSEAccelerationTimeHistory&#xb9;4for(EW)X-Dir.SSEAccelerationTimeHistory&#xb9;1for(NS)Y-Dir..SSEAccelerationTimeHistory&#xb9;2for(NS)Y-Dir.......SSEAccelerationTimeHistory&#xb9;3for(NS)Y-Dir.51-1258768-01GinnaSFPRe-rackingLicensingReportPage15 TABLEOFCONTENTSFigure3.5-14Figure3.5-15Figure3.5-16Figure3.5-17Figure3.5-18Figure3.5-19Figure3.5-20Figure3.5-21Figure3.5-22Figure3.5-23Figure3.5-24Figure3.5-25Figure3.5-26Figure3.5-27Figure3.5-28Figure3.5-29Figure3.5-30Figure3.5-31Figure3.5-32Figure3.5-33Figure3.5-34Figure3.5-35Figure3.5-36Figure3.5-37Figure3.5-38Figure3.5-39Figure3.5-40Figure3.5-41Figure3.5-42Figure3.5-43Figure3.5-44Figure3.5-45Figure3.5-46Figure3.5-47Figure3.5-48Figure3.5-49Figure3.5-50Figure3.5-51SSEAccelerationTimeHistory&#xb9;4for(NS)Y-Dir..SSEAccelerationTimeHistory&#xb9;1forVerticalZ-Dir....SSEAccelerationTimeHistory&#xb9;2forVerticalZ-Dir..SSEAccelerationTimeHistory&#xb9;3forVerticalZ-Dir..SSEAccelerationTimeHistory&#xb9;4forVerticalZ-Dir..OBEAccelerationTimeHistory&#xb9;1for(EW)X-Dir...OBEAccelerationTimeHistory&#xb9;2for(EW)X-Dir...OBEAccelerationTimeHistory&#xb9;3for(EW)X-Dir..OBEAccelerationTimeHistory&#xb9;4for(EW)X-Dir..OBEAccelerationTimeHistory&#xb9;1for(NS)Y-Dir.OBEAccelerationTimeHistory&#xb9;2for(NS)Y-Dir.OBEAccelerationTimeHistory&#xb9;3for(NS)Y-Dir.OBEAccelerationTimeHistory&#xb9;4for(NS)Y-Dir.OBEAccelerationTimeHistory&#xb9;1forVerticalZ-Dir....OBEAccelerationTimeHistory&#xb9;2forVerticalZ-Dir...OBEAccelerationTimeHistory&#xb9;3forVerticalZ-Dir.OBEAccelerationTimeHistory&#xb9;4forVerticalZ-Dir.3D-SingleRackModelGinna3DWholePoolRackModel.SingleRackFiniteElementModel.GinnaType2RackCellFiniteElementModel..GinnaType3RackCellFiniteElementModel.PlanViewofSpentFuelPoolPercentofValueatStiffnessofContinuousStructurevs.StiffnessFactor.LongitudinalTabImpactModelLateralTabImpactModelDimensions,SupportLeg,andGussetPlatesUsedforWeldQualificationRepresentationofModelforSingleRackAnalysis.....RepresentationofModelforAnalysisofRack1WithAttachedRack4A.VerticalLegForceFz,Rack1,Leg1-LC&#xb9;1.SumofVert.LegForcesFz,Rack1-LC&#xb9;1Rack1HorizontalForceFy-LC&#xb9;1Rack1MomentMx-LC&#xb9;1....................Rack7MomentMy-LC&#xb9;1Fuel/RackImpactLds.+X,Rack1Top-LC&#xb9;1.......RelativeDispl.DXRack5/Rack7,Top-LC&#xb9;1Rel.Displ.DXRack5/Rack7,Base-LC&#xb9;1.Rel.Displ.DYRackl/Rack2,Base-LC&#xb9;1.9192929393949495...95969697~~~~~~~97989899.....99...~.111.....112.....~113114........115........116.......135.......153.......156.172193194236237238239240241242..24324451-1258768-01GinnaSFPRe-rackingLicensingReportPage16
 
TABIEOFCONTENTSFigure3.5-52Figure3.5-53Figure3.5-54Figure3.5-55Figure3.5-56Figure3.5-57Figure3.5-58Figure3.5-59Figure3.5-60Figure3.5-61Figure3.5-62Figure3.5-63Figure3.5-64Figure3.5-65Figure3.5-66Figure3.5-67Figure3.5-68Figure3.5-69Figure3.5-70Figure3.5-71Figure3.5-72Figure3.5-73Figure3.5-74VerticalLegForceFz,Rack1,Leg1-LC&#xb9;2......SumofVerticalLegForcesFz,Rack1-LC&#xb9;2.........Rack1HorizontalForceFy-LC&#xb9;2Rack1MomentMx-LC&#xb9;2Rack7MomentMy-LC&#xb9;2Fuel/RackImpactLoads+X,Rack1Top-LC&#xb9;2..RelativeDispl.DXRack5/Rack7,Top-LC&#xb9;2..........RelativeDispl.DXRack5/Rack7,Base-LC&#xb9;2.RelativeDispl.DYRackl/Rack2,Base-LC&#xb9;2.SupportLegDetailsSupportLegGussetPlateDetailsStressLocationsForBoussinesq'sBearingSolution..RackTubesStressContours-To(TopPlane)...RackTubesStressContours-To(MidPlane)BasePlateStressContours-To(TopPlane).BasePlateStressContours-To(MidPlane).DeformedBasePlatewithLegs-Ta....BottomCornerTubesStressContours-Ta(TopPlane).BottomCornerTubesStressContours-Ta(MidPlane).BasePlateStressContours-Ta(TopPlane).BasePlateStressContours-Ta(MidPlane)~..BasePlateMembraneStressContoursBasePlateMemb.+Bend.StressContours......~ae..245246..247248249..250251252.....253..~~.255256257..261261262262.263264264265265...271...272Figure4.1-1Figure4.1-2Figure4.1-3Figure4.1-4Figure4.3-1Figure4.3-2Figure4.3-3Figure4.3-4Figure4.3-5Figure4.3-6Figure4.3-7Figure4.3-8Figure4.3-9Region1SpentFuelBurnupvsEnrichmentCurve.....Region2BurnupvsEnrichmentCurve..SketchofAllowableLoadingConfigurationsforRegion1SketchofAllowableLoadingConfigurationsforRegion2~~.~....~...GinnaSpentFuelPoolConfigurationRegion1Type3BaseCellStructureforInfiniteModelAxialProfileOfFiniteAndInfiniteBaseModels..........~.Region1-RackType3FiniteModelRegion2BoraflexRack(Type1)-KENOV.aModel.Region2BoratedStainlessSteel(Type2)Racks-KENOV.aModel....AreasModeledtoExamineInterfaceEffectsbetweenRackTypesandRegionsKENOV.aModelUsedtoExamineInterfaceEffectbetween(1)RackTypes3CEc2B,and(2)RackTypes2B&3E..........KENOV.aModelUsedtoExamineInterfaceEffectsbetweenRackTypes1,4F,and3A.39839940040140240340440540640740840941051-1258768-01GinnaSFPRe-rackingLicensingReportPage17 TABLEOFCONTENTSFigure4.3-10Figure4.3-11Figure4.3-12Figure4.3-13Figure4.3-14Figure4.3-15Figure4.3-16Figure4.3-17Figure4.4-1Figure4.4-2Figure4.4-3Figure4.4-4Figure4.4-5Figure4.4-6Figure4.4-7Figure4.4-8Figure4.4-9Figure4.4-10411412413414415416417418419420421422423~......424425426427428KENOV.aModelUsedtoExamineInterfaceEffectsbetweenRackTypes1,4C,and2AKENOV.aShallowDropAccidentModels.KENOV.aSideDropAccidentModel.KENOV.aDeepDropAccidentModelforRackTypes2,3,and4KENOV.aRegion1MisplacedAssemblyModel.KENOV.aRegion2MisplacedAssemblyModel.............KENOV.aRackType1DeepDropAccidentModelSketchofConsolidationCanister.....KENOV.aResultsforB&WCriticalsforSpacingVariations....ResultsforWaterSpacingExperimentsfromKENOV.a27and44GroupandMCNPContinuousGroupCrossSections.......LeastSquaresFitThroughResultsB&WInterspersedAbsorberExperiments..TypicalGinnaAxialBurnupShapesforBurnupsbetween10and20GWd/mtUTypicalGinnaAxialBurnupShapesforBurnupsbetween20and30GWd/mtUTypicalGinnaAxialBurnupShapesforBurnupsbetween30and40GWd/mtUTypicalGinnaAxialBurnupShapesforBurnupsbetween40and50GWd/mtUNon-AxialBlanketShapesUsedforAnalysisRelativeNon-BlanketAxialShapesUsedinAnalysis.....IllustrationofSevenZoneRepresentationFigure5.8-1Figure5.8-2Figure5.8-3Figure5.8-4Figure5.9-1SpentFuelPool.NaturalCirculationFlowPath..FluxTrapRegionRegionIIType2Inter-CanisterGap.NaturalCirculationFlowPath-Type3.439~~~~~~~~~~~~~~~~~~~~~~~~~~~440.441Rack.................443Figure6-1Figure6-2OverviewofProposedRe-rackingoftheGinnaSpentFuelPool..........463OverviewofSpentFuelPoolConcreteWallThicknesses.........463endicAppendix6AAssumptionsandInput..46451-1258768-01GinnaSFPRe-rackingLicensingReportPage18
 
==1.0INTRODUCTION==
1.1GENERALThelicensinganalysispresentedinthefollowingsectionsisapplicabletoRochesterGasandElectric'sR.E.GinnaNuclearPowerPlant.TheGinnaNuclearPlantislocatedapproximately16mileseastofRochesterinWayneCounty,NewYork.ThereactorisaWestinghouse2-LoopPressurizedWaterReactor(PWR)designconfiguration,andutilizesa14x14fuelassembly.Theplant'sspentfuelpoolwasoriginallyrackedin1968.Subsequently,thepoolwasre-rackedin1977and1985.Thepresentpoolisconfiguredwithtwotypesofracks.Region1consistsofthreefluxtraptyperacksprovidingstoragefor176fuelassemblies,andRegion2consistsofsixhighdensityfixedpoison(Boraflex)typeracksaccommodating840fuelassembliesforatotalcapacityof1016fuelassemblies.Thenewspentfuelpoolrackanalysiscontainedinthisreportprovidesthenecessarylicensinganalysestoreconfigurethepooltoaccommodateanetincreaseof353locations.Thisisaccomplishedbyretainingthesixexistinghighdensityracks(840minus12forattachmentofnewracks=828locations),andinstallingnewBoratedStainlessSteel(BSS)rackswithupto541additionalstoragelocationsforanewtotalof1,369locations.Theanalysespresentedhereindemonstratethatatotalof1,879fuelassembliescanbeaccommodatedinthese1,369locationsbystoringconsolidatedrodcanistersinsomespentfuellocations.Thenumberoffuelrodscontainedintheintactfuelassembliesand/orconsolidatedrodstoragecanistersstoredintheselocationsislimitedtonomorethanthenumberofrodscontainedin1,879fuelassemblies(179fuelrodsperassemblyx1,879assemblies=336,341fuelrods.)There-configuredpoolwillhavefourtypesofracksintworegions.Region1willcontainonly&eshfueVspentfuelracksdesignatedType3.Region2willcontainspentfuelracksincludingtheexistingBoraflexracks,designatedType1,andnewhighdensityracksdesignatedTypes2and4.TheType2rackswilloccupythemainportionoftheavailablespacewhiletheType4rackswillbeplacedbetweentheexistingType1Boraflexracksandthepoolwall.TheRegionsandTypesaresummarizedbelow;Figure1.1-1showsthenewpoolarrangement.,";8,':Re'o'n.';::.';.';:BSSracksforfreshfueVspentfuelExistingBoraflexracksforspentfuelInteriorBSSracksforspentfuelPeripheralBSSracksforspentfuel*OnlyType2and3rackswillbeinstalledatthistime.TheType4racksarebeingpresentedasameansofachievingthemaximumstoragecapacityofthepoolandtolicensetheconfiguration,butwillnotbeinstalled,unlessneededinthefuture.51-1258768-01GinnaSFPRe-rackingLicensingReportPage19 Thenewrackswillconsistofagridarrangementofverticalsquare-sectionparallelcellseachdesignedtotakeonefuelassembly.Thedistancebetweencellsisminimizedbyinsertingneutronabsorberplatesbetweenthecellstoensureadequatemarginagainstcriticality.Tofacilitatemanufacturingandassembly,theseracksarenotofmonolithicconstructionbutaremadeofmodulesplacedsidebyside.Eachmoduleiscomprisedofmultiplecellsandissizedtomatchthegeometryofthestoragepoolzoneavailableandtoallowforhandlingconstraints.Theracksaredesignedforaforty-yearservicelife.Thematerialsusedintheirconstructionprovidecorrosionresistanceinpureorboratedwateranddimensionalandstructuralstabilityunderirradiation.Inaddition,theirstructureensurestheintegrityofthenuclearfuelstoredinthemunderallcircumstances,notablyintheeventofanearthquake.Theracksuseboratedstainlesssteelneutronabsorbersintheformofrigidplateswhichhavenotbeensubjectedtooperationslikebending,welding,ormechanicalfasteningwhichcanreducetheirstrengthandsubsequentintegrityunderoperatingconditions.Thefabricationmethodallowstheneutronabsorberplatestobeheldinplacewithoutbending,welding,ormechanicalfastening.1.2NEWSPENTFUELPOOLCONFIGURATIONFigure1.1-1showsthegenerallayoutofthere-configuredspentfuelpool.Theracksarelocatedintworegionsasdetailedbelow.REGION1-Freshfuelandspentfuelstoredinacheckerboardarrangement.Type3:Fiveboratedstainlesssteelracksaccommodating:145spentfuelassemblies144freshfuelassemblies5damagedfuelassembliesREGION2-Spentfuel.Type1:SixexistingBoraflexracksaccommodating:840spentfuelassemblies.WhenthesixperipheralType4racksareinstalled,12ofthe840locationsareusedtosupporttheType4racks.Type2:Twonewboratedstainlesssteelracksaccommodating:187spentfuelassemblies51-1258768-01GinnaSFPRe-rackingLicensingReportPage20 Type4:SixperipheralBoratedStainlessSteelracksaccommodating:60spentfuelassemblies.Thetype4racksarelocatedbetweentheexistingType1BoraflexracksandthepoolwallandareattachedtotheType1racks.1.3BORATEDSTAINLESSSTEELRACKDESCRIPTIONTheracksconsistofverticallyoriented,squarecross-sectioncellseachdesignedtoholdonefuelassembly(seeFigure1.3-1).Thenumberandtypeofracks,thenumberofcellsperrack,andthetotalnumberofcellsareshowninTable1.3-1.TheRegion1,Type3andRegion2,Type2racksare&eestandingandselfsupporting.TheRegion2,Type4rackshavetwolegseachforsupportandareattachedtotheRegion2,Type1rackstoprovidelateralsupport.Thedimensions,weightandnumberofsupportsforeachrackarelistedinTable1.3-2.1.3.1DescriptionofRegion1,Type3RacksTheseracksaccommodatefreshfuelandspentfuelinacheckerboardpattern.ThegeometryanddimensionsofthesquarecellsaregiveninFigure1.3-5andTable1.3-3.TherackconstituentpartsareshowninFigures1.3-1to1.3-6anddescribedbelow.a)CellsforFreshFuelAssemblies(Figure1.3-2,callout2)-Thesecellsarecomposedof:FourBoratedStainlessSteel(BSS)sheetsformingasquarecell~Thesheetsarelinkedtogetheratthecornersandrestonthebaseplate.EighthorizontalStainlessSteel(SS)beltsmaintainingtheBSSgeometryandensuringaveryprecisepitchdimension.Sevenofthesebeltsarelocatedinthesameverticalpositionasthesevenintermediatespacergridsonthefuelassemblies.StainlessSteelsquarecross-sectionfunnelsareweldedtotheadjacentSScells.ThesefunnelsguidethefreshfuelassemblyintothecellsandpreventtheinadvertentextractionoftheBSSsheetswhenafuelassemblyisremoved.Inthecellsfacingapoolwallorthecaskarea,thecorrespondingBSSsheetfacingthewallorthecaskareaisreplacedbyaSSsheet.b)CellsforSpentFuelAssemblies(Figure1.3-2,callout1).Thesecellsarecomposedof:ExternalSSsquaretubes.Thetubesareformedeitherbyweldingtwochannelsectionsorbyexpandingaroundtubeintoasquaretube.FourinternalBSSsheets.ThesheetsarelinkedtogetheratthecornersandrestonlowertabswhichareweldedtothesurroundingstainlesssteelcellwallsasintheType2racks(Figure1.3-10,callout8).Atthetop,stainlesssteeltabsarealsoweldedtothesurroundingSScellwallstorestraintheBSSplatesfromupwardmotion.51-1258768-01GinnaSFPRe-rackingLicensingReportPage21
 
Inthecellsfacingapoolwallorthecaskarea,theBSSsheetfacingthewallorthecaskareaisreplacedbyaSSsheet.c)BasePlate-Thisplateprovidesacontinuoushorizontalsurfaceforsupportingthefuelassemblies(Figure1.3-3,callout1).Holesinthebaseplate,concentrictoeachcell,providethenecessarypathforthecoolingwaterflow.Groovesaremachinedontheuppersurfaceofthebaseplateforpositioningeachsquarecell.Thisgrooveensuresaveryprecisecenter-to-centerspacingofthecells(pitch).TheSSsquaretubesarefilletweldedtothebaseplate.d)ConnectingTabs-TheSScellsarejoinedtogetheralongtheirlengthbySSconnectingtabsweldedtotheSSsquaretubefaces(Figure1.3-6).Thisformsthecellsineachrackintoacontinuousstructure.Rackassemblyisperformedinamachinedassemblyfixtureresultinginaveryprecisecenter-to-centerspacingofthecell(pitch).e)SupportLegs-Theracksupportlegsareoftheadjustabletype(Figure1.3-3,callout2).ThenumberofsupportlegsoneachrackisshowninTable1.3-2.Eachlegiscomposedoffourpieces:AnupperSSpartthatisweldedtothebaseplateandcontainingfourflowholesforcooling.Athreadedpinwithaconvexsphericalshapeatitsbottom.ThepinismadeofASTM630steelinordertoavoidgalling.ASSsupportplatewithaconcavesphericalbearingsurfaceincontactwiththethreadedpin.ASSwasherweldedtothesupportplate.f)FlatPlateandCornerPlate-TheBSScellslocatedeitheronarackedgeoronarackcornerincorporateaSSflatplateorcornerplatetorestrainthecorrespondingBSSplate(Figure1.3-2,callout7.)1.3.2DescriptionofRegion2,Type2RacksThisrackdesignaccommodatesspentfuelintwotypesofsquarecells:SScellsandBSScellsarrangedinacheckerboardarray.ThegeometryanddimensionsofthesquarecellsaregiveninFigure1.3-10andTable1.3-4.TherackconstituentpartsareshowninFigures1.3-7to1.3-12anddescribedbelow.a)StainlessSteelCells-Thesecellsaremadeeitherbyweldingtwochannelsectionsorbyexpandingaroundtubetoasquaretube(seeFigure1.3-7,callout1).b)BoratedStainlessSteelCells-ThesecellsarecomposedoffourBSSsheetslinkedtogetheratthecornersformingasquare(seeFigure1.3-7,callout2).TheBoratedStainlessSteelsheetsaresupportedbyalowertabwhichisweldedtothesurroundingstainlesssteelcells(Figure1.3-10,callout8).AtthetopastainlesssteeltabisweldedtotheSScelltoretaintheBSSplatesfromupwardmotion(Figure1.3-10,callout7).51-1258768-01GinnaSFPRe-rackingLicensingReportPage22 c)NeutronAbsorberMaterial-Thejoiningtabsonbothlongedgesofeachfull-lengthsheetofBSSarelasercuttoensureprecisealignmentofthesheets(seeFigure1.3-7,callout2).TheBSSsheetsarelocatedinfrontoftheactivefuellengthofthefuelassembly.d)BasePlate-Thebaseplateprovidesacontinuoushorizontalsurfaceforsupportingthefuelassemblies(Figure1.3-9,callout6).Holesinthebaseplate,concentrictothecells,correspondtothenecessarysectionforthecoolingwaterflow.Groovesaremachinedontheuppersurfaceofthebaseplateforpositioningeachsquarecellpriortowelding.Thesegroovesensureaveryprecisecenter-to-centerspacingofthecell(pitch).e)ConnectingTabs-TheSScellsarejoinedtogetheralongtheirlengthbySSconnectingtabsweldedtotheSSsquaretubefaces(Figure1.3-12).Thisformsthecellsineachrackintoacontinuousstructure.Rackassemblyisperformedinamachinedassemblyfixtureresultinginaveryprecisecenter-to-centerspacingofthecell(pitch).f)SupportLegs-Theracksupportlegsareoftheadjustabletype(Figure1.3-9,callout5).ThenumberofsupportlegsoneachrackisshowninTable1.3-2.Eachlegiscomposedoffourpieces:AnupperSSpartthatisweldedtothebaseplateandcontainingfourflowholesforcooling.Athreadedpinwithaconvexsphericalshapeatitsbottom.ThepinismadeofASTM630steelinordertoavoidgalling.ASSsupportplatewithaconcavesphericalbearingsurfaceincontactwiththethreadedpin.ASSwasherweldedtothesupportplate.g)FlatPlateandCornerPlate-TheBSScellslocatedeitheronarackedgeoronarackcornerincorporateaSSflatplateorcornerplatetorestrainthecorrespondingBSSplate.1.3.3DescriptionofRegion2,Type4RacksTherackdesignemployssquarecelllocations.TheracksandtheirconstituentpartsareshowninFigure1.3-13).a)Cells-TheseSScellsaremadeeitherbyweldingtwochannelsectionsorbyexpandingaroundtubetoasquaretube.BSSsheetsareinsertedbetweenadjacentcells.EachBSSsheetiscontinuousovertheactivelengthofafuelassembly.ThelowerpartoftheBSSsheetsrestonthebaseplate.QnthesidesfacingtheexistingBoraflexracksandthepoolwall,therearenoBSSsheets.ThegeometryanddimensionsofthesquarecellsaregiveninFigure1.3-14andTable1.3-5.b)BasePlate-Thebaseplateprovidesacontinuoushorizontalsurfaceforsupportingthefuelassemblies.Holesinthebaseplate,concentrictothecells,correspondtothenecessarysectionforthecoolingwaterflow.Groovesaremachinedontheuppersurfaceofthebaseplateforpositioningeachsquarecellpriortowelding.Thesegroovesensureaveryprecisecenter-to-centerspacingofthecell(pitch).51-1258768-01GinnaSFPRe-rackingLicensingReportPage23 c)ConnectingTabs-OnthecellsidesfacingtheexistingBoraflexracksandthepoolwall,connectingtabsareweldedbetweentheSSsquaretubefaces.Thisformseachrackintoacontinuousstructure.d)RackAttachment-Intheupperpartandthelowerpartoftherack,twoconnectingdevicesattacheachType4racktoanexistingBorafiexrack(Figure1.3-13.)EachupperconnectingdeviceconsistsofasquaretubeinsertedintoacelloftheexistingBoraflexrack,whichistakenoutofservice.EachlowerconnectingdeviceconsistsofalockingarminsertedintothecoolingflowholeintheexistingBoraflexrack.e)SupportLegs-TherearetwosupportlegsoneachType4rack.Theracksupportlegsareoftheadjustabletype.Eachlegsiscomposedoffourpieces:AnupperSSpartthatisweldedtothebaseplateandcontainingfourflowholesforcooling.Athreadedpinwithaconvexsphericalshapeatitsbottom.ThepinismadeofASTM630steelinordertoavoidgalling.ASSsupportplatewithaconcavesphericalbearingsurfaceincontactwiththethreadedpin.ASSwasherweldedtothesupportplate.1.3.4NeutronAbsorberMaterialTheneutronabsorbermaterialisboratedstainless'teel(BSS)sheet.Itisatype304austeniticchromiumstainlesssteelmodifiedbytheadditionofboron.TheBSSisinsertedintheracksforneutronabsorptionbut,duetothedesignoftheracks,nostressesareinducedintheBSS.Moreover,theBSSsheetsarefabricatedusingprocessesdesignedtopreventtheformationofresidualstresses.Theneutron"absorbermaterialisboratedstainlesssteel(BSS)type304B6/B7inaccordancewithASTMSpecificationA887-89.TheminimumpercentageofboronintheBSSis1.70inweight%.ThechemicalcompositionofboratedstainlesssteeltobeusedatGinnaisinaccordancewithASTMA887-89type304B6/B7,aslistedbelow:BlamedCarbonManganesePhosphorousSulfurSiliconChromiumNickelBoronMaximum~Wi~~ht00.082.000.0450.0300.7518.00-20.0012.00-15.001.70(min.)51-1258768-01GinnaSFPRe-rackingLicensingReportjPage24 Boronisaddedtotheausteniticstainlesssteelforitsneutronabsorptionproperties.Itispresentasanalloyingelementandnotasparticlesinamixture.Themicrostructureconsistsofanausteniticstainlesssteelmatrixwithafine,uniformdispersionofcomplexchromiumborides.Theuniformityoftheborondistributionisensuredbythemanufacturingpracticeandmaybeconfirmedbyanumberofmethods,includingelementalandisotopicboronanalysisordirectattenuationmeasurementofsamplestakenfromthefinishedsheet.Whencomparedtoplain304typestainlesssteel,boratedstainlesssteelshavehigherstrengthbutlowerductilityandlowerimpactresistance.However,thesepropertieshavenoimpactontheGinnarackdesignsincetheboratedstainlesssteelplatesarenotpartoftherackstructure.Boratedstainlesssteelsareusedforneutronattenuationinspentnuclearfuelstoragepoolracksandincaskbasketsforstorageandtransportationofspentfuel.Theseapplicationsdictatethattheboratedstainlesssteelbeexposedtoaqueousenvironmentswithandwithoutboricacid.TheBSStobeusedintheGinnarackshasexceptionalresistancetocorrosionbyelectrolytichydration,oxidation,orotherchemicalreactionsinboratedorpurewaterforthefollowingreasons:Austeniticstainlesssteelsarenotsusceptibletoanytypeofcorrosionleadingtohydrideproducts.InBSS,boronispresentasanalloyingelementwhicheliminatesmicrocelleffectsandnotasadispersionofanheterogeneousboroncomponent.Theproposeddesign,whereintheneutronabsorbermaterialisneitherbentnorwelded,thuspreventinganycrackingorthermalalterationofthemetal,isanessentialfactorthatalsocontributestoensuringcorrosion-resistanceofthismaterial.EarlystudiesofthecorrosionbehaviorBSSwithboroncontentsupto2.3wt%confirmedthatBSSexhibitscorrosionresistancesimilartothatofType304stainlesssteelinenvironmentspresentinnuclearreactors"".CorrosionratesforBSScontaining1.35wt%boroninboiling10%nitricacidhavealsobeenmeasured".Theresultswereconsistentwithotherstainlesssteelbehaviorwitharapidchangeinweight(passivation)within48hoursandnofurtherweightchange.Themaximumpenetrationwas0.09mils.CorrosiontestsofBSSwithboroncontentsof1.0wt%and1.75wt%exposedto2000PPMboricacidsolutionsat154'Fforsixmonthdurationshavealsobeenrecentlyreported'~.The154'Ftesttemperaturerepresentsthemaximumnormaloperatingtemperatureinspentfuelpools.Variouscouponconfigurationsrepresentingsimpleimmersion,creviced,andgalvanically-coupledconditionswereincludedinthesetests.Thetestshowedessentiallynodetectablecorrosionforalltestconditions.TherearenosignificantchangestothemechanicalpropertiesofboratedstainlesssteelduetoexposuretothelevelsofirradiationexperiencedoverthedesignlifeoftheGinnafuelstorageracks".1.3.5StructuralMaterialsTheprincipalstructuralmaterialsarestainlesssteelmeetingthefollowingstandards:~ASTMA240forstructure~ASTMA312forweldedpipesexpandedtosquaretubes51-1258768-01GinnaSFPRe-rackingLicensingReportPage25
~ASTMA564forbarofadjustablesupport~ASTMA479forsupportlegs.~ASTMA630forthreadedpinsinsupportlegsThesematerials,describedfurtherinSection3,areofprovendurabilityinspentfuelpools.1.4SUPPLIERQUALIFICATIONANDEXPERIENCE1.4.1TeamQualificationsTheTeamofFramatomeTechnologies,Inc.(FTI),SocieteAtlantiquedeTechniquesAvancees(ATEA),FramatomeCogemaFuels(FCF),andPeylaConsulting2ManagementServices,Inc.(PCM)bringanimpressivearrayofexperienceandresourcestotheGinnare-rackingprojectwhichensureshighqualityrackdesign,fabrication,andinstallation.ThetechnologyandskillsrequiredforanoverallsuccessfulprojectdemandsaTeamwithcomplimentarystrengths.FTIhasdemonstratedexperienceinthemanagementofcomplexnuclearprojectsasasupplierofNuclearSteamSupplySystems(NSSS)andservicemaintenanceprojectstothenuclearindustryforover30years.TheemployeeswithintheIntegratedNuclearServicesDivisionhaveexcelledinprovidingawiderangeofmanagementandmaintenanceservicestothenuclearutilityindustry.NowFTI'scapabilitieshavebeenexpandedthroughthenewFramatomeownershipbyprovidingaccesstoadditionalEuropeanresourcesandtechnologies.ATEA,withFramatome,hasbeeninvolvedformorethan15yearsinthedesign,manufacturing,licensing,andfielderectionofmorethan3S,000fuelstoragecells.ATEAisequippedwithspecializedequipmentandnuclearproductionareastofabricatespentfuelracks.InthelastMAANSHANproject,ATEAhasshownitscapabilitytomanufacturemorethan4300cellswithboratedstainlesssteelasneutronpoisonabsorber.FortheGinnaproject,allfabricationandassemblywillbeperformedbyATEA.TheATEArackfabricationfacilityinNantes,Franceconsistsof2500squaremeterswitha25toncranecapability.FCFhasbeenprovidingnuclearfuelandfuelservicestothedomesticcommercialnuclearindustryforover30years.Includedinthisexperienceistheevaluationofhighdensityfuelstorageracks.Theseevaluationsincludedcriticality,structural,thermal-hydraulic,andradiologicalanalysesusingNRCapprovedmethodstodemonstratecompliancewithNRCrequirements.PCMwillprovideon-sitemanagementandcoordinationfortheon-siteprojectwork.PCM'smanager,DavidPeyla,hasovertwentyyearsoffieldexperienceincompletingrackreplacementservices.1.4.2TeamExperienceTheFramatomeGroup,witha1995revenueof3.6billiondollarsand19,000employees,isinvolvedinfourmainindustrialsectors:NuclearEngineering:nuclearpowerplantdesign,manufacturing,erectionandmaintenanceandnuclearfuelservices,51-125S768-01GinnaSFPRe-rackingLicensingReportPage26 MechanicalEngineering:PWRheavycomponents,turbinesandcompressors,andprecisioncomponents,Connectorsforelectricalindustryandelectronics,Computerservices:computeraideddesign(CAD),structuralanalysis,andartificialintelligence.Inthenuclearfield,Framatomeiscurrentlytheprimarynuclearpowerplantdesigner,manufacturer'ndexporterintheworld,with60PWRunitsdeliveredandfiveunderconstruction.Framatome'sscopeinvolvesthedesignofallthemainsystemsandcomponentsoftheNuclearSteamSupplySystem(NSSS),includingfuelhandlingequipmentandfuelstorageracks.Therefore,Framatomehasverystrongteamsspecializinginnuclearphysics,thermal-hydraulics,structuralandseismicanalysis,shieldingandradiologicalanalysisandhasatitsdisposaltherelevantcomputercodesforsuchcalculations.Framatomehasbeeninvolvedinthedesign,manufacturing,licensing,onsitemountingandtestingofmorethan38,000fuelstoragecells,ofwhichmorethan10,000werehighdensitycellswithneutronabsorberatsixteenunitsworldwide(seeTable1.4-1).IntheFramatomeGrouporganization,ATEAisresponsibleforrackdesign,fabricationandinstallation.Since1976,PCMworkedintheNuclearIndustryperformingmaintenance,repair,retrofitandre-rackprojects.Manyoftheseprojectswereoneofakindorthefirsteverattempted.Responsibilitiesandpositionshavebeenvariedandextensive.DavePeylaservedasaDiver,Foreman,ProjectSuperintendentandProjectManagerandConsultantperformingthisworkandtwentythreere-rackingprojectsforutilitiesintheUnitedStatesandOverseas.GinnaNuclearPowerPlantVermontYankeeNineMilePointNuclearStationSurryPowerStationPilgrimNuclearStationKewauneeNuclearPowerPlantOconeeDuaneArnoldSalemDavisBesseBrunswickSteam4ElectricArkansasNuclearOneH.B.RobinsonIndianPoint-2ArkansasNuclearOneIndianPoint-3IndianPoint-2FitzpatrickNuclearPowerTaiwanPowerCoZionNuclearGeneratingStationFortCalhounSalemBoratedstainlesssteelhasbeenusedinspentfuelpoolapplicationsworldwideforover20years(seeTable1.4-2).Abriefsynopsisofthisexperienceisshownbelow.ForeignExperience-BoratedstainlesssteelhasbeenusedinvariousapplicationsinEuropeforover20years.Someoftheseapplicationsareproprietaiy;theuserisgenerallynotwillingtoprovidespecificinformation.However,informationobtainedfromtwoEuropeansuppliersofborated51-1258768-01GinnaSFPRe-rackingLicensingReportPage27 stainlesssteel,BOHLERBlecheGmbHandKRUPPThyssenNirostaGmbH,indicatestheyhavenothadanyclaimsconcerningthematerialsthattheyhavesupplied.Allindicationsarethattheusershavebeensatisfiedforupto20yearswiththematerialsupplied.DomesticExperience-ConsolidatedEdisonCompanyinstalledspentfuelstorageracksutilizingboratedstainlesssteelastheneutronabsorberintheIndianPointUnit2spentfuelpoolin1982.In1990theserackswereremovedfromthepoolinordertoexpandfuelstoragebyutilizingmoredenselypackedracks.Therackswereviewedduringremoval&omthespentfuelpoolandshowednegligible,ifany,corrosion;theoverallappearanceoftherackswasgood.REFERENCES1-1N.R.Grant,"CorrosionofBoronStainlessSteel,"ReactorEng.Div.QuarterlyReport,pp57-60,April-June1965,ANL56011-2W.KermitAndersonandJ.S.Theilacker,"NeutronAbsorberMaterialsforReactorControl,"USAtomicEnergyCommission,19621-3T.L.HoffmanandT.L.Adams,"CorrosionofAlloysinVariousICPPDecontaminatingSolutions,"PhillipsPetroleumCo.,AtomicEnergyDivision,April14,19611-4R.J.Smith,G.W.Loomis,C.PaulDeltete,"BoratedStainlessSteelApplicationsinSpentfuelPoolEnvironments,"EPRIReportTR100784,Project2813-21,June19921-5S.E.SolimanandBaratta,D.L.Youchison,T.A.Balliet,"NeutronEffectsonBoratedStainlessSteel,"NuclearTechnology,Vol.96,Dec.199151-1258768-01GinnaSFPRe-rackingLicensingReportPage28
 
Table1.3-1NumberofCellsbyRackType"":::::Type;:3"Rack"'-':~j';."I'':"."Nuiiib'e'r,;,':.:-:::.":.:'."'A3B3C3D3ETOTALTYPE3'::l""':'',<Cells~:.'''.""':".7062505062294':,.4jNoi;'o':,Spcri,!,':.;:"1A';:L'oca'tions,>:,''.3531252529145i~",,",:,:.No".-'::,'of;'Fr'eshI'I:,:;,,':FA':L'ocatio'ri's",~'531252528144;:;::!'.,i'pgNo:;of:,.'..,:;"',::;";;;::,::i::Damaged::FA";,::;":;'''::Loca'tio'ns'''::"':..0000:.'i~.Typ'e:2'Racket':2A2BTOTALTYPE2TOTALTYPE2A38899187481I:.:.:;:.No'::of;.Sperit,'".-..~~FA"":,Locatio'ns'j:88187332I),':No'."',of:Fr'esh''5:i:,:-:FA",::Loc'ations,'',i000~;-':.;Dam'a'g'ed:FA;..':.'>j:;-:::,;.L"ocatio'ns'i!;,'::;000,.'-!.':;:;:Typ'e'4IRack<,:,',:.;"::,':.";''-:,","Number,'of;:,":i'jm('<';No'.'Of''Spent:;;%<.''.':.FA'::L"o"catio'ris'-':,'':.".::No'.".".'of,'Fresh~".:;<<';':.":I',:FA'~L'ocatioiis",i,'',;:.:':Daiiiaged,::FA':',':j:;'.::i'::::Locatioii'sI,':::::,':',,.''::4A4B4C4D4E4FTOTAL10101010101060101010101010600000000000000051-1258768-01GinnaSFPRe-rackingLicensingReportPage29 Table1.3-2RackDimensions,Weight,Supportsi'':Rack'No."j';i-':;:;:~.".,":.;-."."IN-S,''Length'~:,:~;:'.:,:.~)",:~P:.',.::E-'W.:Z"en'gth-:.,':)-.':i.':,''(De'a'd';Weigh't'l,:~"!"':(lo'ii'g:,tons)';.;:.';:;;;'",;:Niiirib'er':of:,::'-;'.;suppo'rt;leg's''3A3B3C3D1642mm(64.6in)2345mm(92.3in)1642mm(64.6in)2345mm(92.3in)1173mm(46.2in)2345mm(92.3in)1173mm(46.2in)2345mm(92.3in)1642mm(64.6in)2345mm(92.3in)8.88.06.36.38.01212'-'.,":,'::Typ'e,':2,:;:::.".i':Ra'ck'..No!:,:;2A2B;-.,:';:~)N8,:L'eii'g'th"::.:':i'',';;:':;::i1729mm(68.1in)1942mm(76.5in),",":,:::"j<>E-',%:',Length'.':;:l..":.::;:,"..,:i2370mm(93.3in)2370mm(93.3in)i".De'a'd.';Weigh't':.i:~~'~(lorig",,',to'ns)''-',;.'::::,:7.88.8!!,:Nii'mber';;of;;::;","'sup'port'legsi,1216,':..':::;Typ'e."4I.,:-':,::.Ra'ck":No.'.,'''.4A4B4C4D4E4F241mm(9.5in)241mm(9.5in)241mm(9.5in)241mm(9.5in)241mm(9.5in)241mm(9.5in):::,':,:'I:::.'.;':"-::E,-":WL''ength'.:2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)2138mm(84.2in)51-1258768-01GinnaSFPRe-rackingLicensingReportPage30 Table1.3-3DesignDataforRegion1,Type3Racks(FreshFuelandSpentFuel)Cells~CellsforFreshFuel(BSScells)InnerdimensionHeightMaterial206.8x206.8mm(8.14x8.14in)4115mm(162in)BoratedStainlessSteel304B6~~hectHeightWidthThickness3770mm(148.4in)211mm(8.3in)2.5mm(0.1in)CellsforSpentFuel(BSS/SScells)InnerdimensionHeightMaterial~ledHeightWidthThickness~Pitch206.8x206.8mm(8.14x8.14in)4115mm(162in)BoratedStainlessSteel304B6304L3700mm(145.7in)211mm(8.3in)2.5mm(0.1in)234.5mm(9.23'in)~BasePlateThicknessMaterial30mm(1.2in)304L51-1258768-01GinnaSFPRe-rackingLicensingReportPage31
 
Table1.34DesignDataforRegion2,Type2Racks(SpentFuel)CellsSScellInnerdimensionHeightThicknessMaterial206.8x206.8mm(8.14x8.14in)4026mm(158.5in)2mm(0.08in)304LBSScellInnerdimensionHeightMaterial206.8x206.8mm(8.14x8.14in)4026mm(158.5in)BoratedStainlessSteel304B6~BSSsheet~PitchHeightWidthThickness3700mm(145.7in)213mm(8.4in)3mm(0.12in)214mm(8.43in)~BaseplateThicknessMaterial30mm(1.2in)304L51-1258768-01GinnaSFPRe-rackingLicensingReportPage32
 
Table1.3-5DesignDataforRegion2,Type4Racks(SpentFuel)CellsInnerdimensionHeightThicknessMaterials206.8x206.8mm(8.14x8.14in)4026mm(158.5in)2mm(0.08in)(SSmaterial)304L~BSSsheetWidthHeightThicknessMaterial208mm(8.18in)3770mm(148.42in)2.5mm(0.1in)BoratedStainlessSteel304B6~Pitch214mm(8.43in)51-1258768-01GinnaSFPRe-rackingLicensingReportPage33 Table1.4-1Framatome/ATRASpentFuelRacksRAN10i;5umbe'r',,of:,;::St'o'ra'ge".C'ell'sOXIPoisori':Material.:::.::::::;:;.and::Pitch.:.;..;I'.:~Ye'ar.',.'of:,.'':,:'.:':i'e'sign'::..,''''."::!'.;:.:,;:Year."os:""5';:;'.,:-:,;~;;::Fabric'ation":;::,:;.:."~t:::;L''ic'e'n'sed'.:,'Custo'm'er'ATTENOM-'ICATTENOM-2CATTENOM-3CATTENOM-4BELLEVILLE-1BELLEVILLE-2NOGENT-INOGENT-2PENLY-IPENLY-2GOLFECH-IGOLFECH-2PLhHL'tCHOOZ-ICHOOZ-2CIVAUX-ICIVAUX-2P~LtI0MAANSHANIMAANSHAN2GINNA000MPMHXSGUANGDONG-IGUANGDONG-2]]2520]]]1260]]1260]]1260]]1260]]1224]]1224]]1380]21602160480BORAL(11.3inches)CADMIUM(11inches)BORATEDSSRegionI:11.1"Region2:9.0"BORATEDSSRegion2:9.2"Region3:8.4"19831988199119961984-198519851986-1987198919851985-19861985198619871989-199019881990-199119891990-19911993-199419891990199319941995laterin1997August86Sept.90Jan.881993inprogressE.D.F.IIIIIIIIIIIIIIIGNPJVCIIIItTPCIIIIRG&E51-1258768-01GinnaSFPRe-rackingLicensingReportPage34
-"""i";:,"::No<~<~:::i:;:':,;:!i;.::<.:::i::.':.:':'<'.."-''>,:CollIlt@~i<'':".:;:k~Y:.::::~'':<.,'N>~X':::NU~clcal:,''Fac<ili2356789101112131415161718192021222324252627282930AustriaBelgiumBelgiumBrazilChezRepublicChezRepublicChezRepublicFinlandFinlandFranceGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyGermanyTullnerfeldDoel3Tihange2Angra2Temelin1-2Dukovany1-2-3-4Mochovoce1-2-3-4Olkiluoto1Olkiluoto2LaHagueKarlsruheStadeWuerpassenBrunsbuettelPhilippsburg2Neckarwestheim1Neckarwestheim2Grohnde(re-racking)UnterweserGrafenrheinfeldGrohndeGrundremmingen2-BGrundermmingen2-CBrokdorfBrokdorf(re-racking)KrummelIsar1Isar2EmslandBiblisA/BPWRPWRPWRVVERVVERVVERBWRBWRPWRFBRPWRPWRPWRPWRPWRPWRBWRBWRPWRPWRBWRPWRPWRPWRFBRPWRBWRPWRPWR1978UnderConstr.UnderConstr.1985-1987UnderConstr.198119811976-19911980197619891986197719821985198419851986198419841979198851-1258768-01GinnaSFPRe-rackingLicensingReportPage35 i'",::':;,"';;:;.,'i'-'':,Country',i:,::.':::::::;::::::;:":;:.:!:''.:.5'::::.:;::,'::i:'-.Nuclear:.'Fa'cili':!.''i!!:,:"::.:)kj(31323334353637'839404142434445HungaryHungaryHungaryHungarySpainSpainSpainSpainSpainKoreaSwedenTaiwanTaiwanUSAUSAPaks1Paks2Paks3Paks4Almaraz1Almaraz2Asco1Asco2Trillo1Kori3CLABinterimspentfuelstoragepoolMaanshan1Maanshan2IndianPt2IndianPt3VVERVVERVVERVVERPWRPWRPWRPWRPWRPWRPWREcBWRPWRPWRPWRPWR19851985198519851991199119921992198519921990199519951982197851-1258768-01GinnaSFPRe-rackingLicensingReportPage36
~000~rarararnrararararnrnrararnrrar1r1rararar1r1r1r1rararrarnr1rara~geJgeJgrjgrjgagagrjgJrgJegrJgrjgrJgrJjrrjgrjgrJgagrJgrjgrJgrJgJrgrjgjrgJrgagrJgrJgJrgjiksglJHUURCHRagRSHVRQRRHRSQCSQRRHQgasgkagasgQPSNCEHERQEEQa5QahHHHHHuHUQPSHVHHHaa5%5kagasgaagasLagasgasgaaLlgk4gasNESNPELsgasggEagkggaggkkgaggkagkagpkgkagaaggagggaagkagkgkagggggkaggagkagaagaagaagsagaagkaggagaagkagg4ghagksgaagllhgaasgQQRSQVsg8QPsgkagkagkaggEsgUg+CsHEEHksgEIHQHgasHasHaagglVagUggaagggkagaagggggkaggagkagaagaagaaggkagkaggggIJQUgL'QUQUgaagQQUg4gUHUQHHVEHRsgQUHUHasQVSHHQUHHHVRHEEHEEQESHBQHHHHHHHUHuHL18uQUHuLaQuQuH8HQHUQVEHREHgkagkagkagkaggggagkagggggkagggggkagkagg"MHL'8884'8.8.HQH&#xc3;H~HQHHQ'CtHH845-HHQ-HH8I"HMVHVQHHEH~H"QHBQUHUHHQaGUTEQBQCRRQ.EHE.HERQSSQPHQL'HL'QHHasHHQUHQQHQ8HUQRRHUHHQuQa5ggPsgPEQPsgasgasgPsgaagasgksgalgasgNgfCQPcggaagkagggakgggaagkagkagkagkagkagkagggkggaaE)gESQFgg'gaggag%%ghagE%ga%gfag%%QPg'ggkagaaggPSHGPksgkagRCgUgasgksigflgElgVsgasC5%%8%%5%5aaaacDaa"m-mnCF-m-aiba-acQ'aa"mQR~RHBQC'QEEHHHa5HULIREHVSHPRa5HHVshtfaHQQHMEEHHgPEIQSSHEsgUHRSHEQHHgDHHHVCNksHLHQNVHHDQRS5HHQ555"H5'"HEN'S''5ksgHHVllgPRQREHUgVagasgkagkalRSHRagULLHPRQgggaagsagaagggkagggfYgkagkaalgggggggglfgnglmgagasafaaaigasaaaaE5glJgamugrEsakaarulaBSHEDHRHBH8HUH':8CHHhHBHBHHraaar1rararatarararararlar1raar,Ir1rlrararI1F1%1raaar1rhrrarararagragejgJrgrjgrJgagrJgJrgJgeJgJrgrjgJgJegJgJgrjgJgrjgjgageJgJrgerJgjrgrjrgagJrgJegaC9gkagLgaagREHEagpkgEagka++kagESgkg8'"'8"'"'8'8%%%II.=4:,!ger//g/~.FrgP~/igirl/g/~BrgJr'Pr'gPl~ig////Y/Pr'.Ji///i/Y/'/Yi//Y///HFiHK~HKNH//;.:~KH~SHK;QKr'H~S/HYN'////r'fr/'//gr/r'//g/Irgp/rr,gr/I/g<///g/r//g'r///eg////JgY///Aran.<iA/'Yr////rY//r',/rYi//.'~/:~g4/@ling/I'gPPgfir/gki//'gFwYi'gPlg/J'<ig/Yj'i//g/"rig~~)////.AY/Y/gjY///g/,Zjj/~>iryZg~/Zg.////r'r'.~/iAY/Y///'//Y////.~i//.//.'////g~r/r//g%r/gg&#xc3;gerY/g'r//r/g//Y/g<%/'gYg<rrgr/rY/g///r/'m=aaaamaamm:sac;aK::.a'.ia:;:;gaagfagkggaagaggrrY/g'/r/r/'g/Y/'//!QY/Y/g'/r/ggL':L8:48'HUH',,;.jg;,.jj,;;~/g','-gy',-jgagggagggggggrig/'Y/g//:gg/yr.gY/Y/gaagkaahmgESmla///rrkaY/r/';"r.;..'"r:'.''////kajgagaagaagkaggagg/JJU~Yr=-=rr==r::==re=:=r25F~PVsgEsgasgfsgksgahI%%'a%%EaEa Figure1.3-1Type3Rack-PerspectiveFRESHFUELCELLSPENTFUELCELI51-1258768-01GinnaSFPRe-rackingLicensingReportPage38 Figure1.3-2Type3Rack-GeneralArrangement51-1258768-01GinnaSFPRe-rackingLicensingReportPage39 Figure1.3-3Type3Rack-DetailofBaseIII~~~."IIIIIIIIII~AIIIIIIII.IiI51-1258768-01GinnaSFPRe-rackingLicensingReportPage40 Figure1.3-4Type3Rack-VerticalSectionCCPlCU6170an(6.7')51-1258768-01GinnaSFPRe-rackingLicensingReportPage41 Figure1.3-5Type3Rack-TopViewBSS2.5w(9.1')IIII~~~~~iI~~~IIIII~~~~~~~~I~~~<~~s~~~~~is~~~~~~~<sf~234.5Plf1//51-1258768-01GinnaSFPRe-rackingLicensingReportPage42 Figure1.3-6Type3Rack-DetailsofConnectingTabsLJI-~aCOSPENTFUELASSEMBLYSS2n~(0,08')FRESHFUELASSEMBLYFRESHFUELASSEMBLYTABS180nnHEIGHT(7.1')AJSPENTFUELASSEMBLYBSS2.5nn(0.1')51-1258768-01GinnaSFPRe-rackingLicensingReportPage43 Figure1.3-7Type2Rack-DetailsofTop51-1258768-01GinnaSFPRe-rackingLicensingReportPage44 Figure1.3-SType2Rack-Perspective51-1258768-01GinnaSFPRe-rackingLicensingReportPage45 Figure1.3-9Type2Rack-DetailofBase<AV(51-1258768-01GinnaSFPRe-rackingLicensingReportPage46 Figure1.3-10Type2Rack-VerticalSection15m206.8mm8'14"Ic.t.c.2I1I6.8m.14"00IAIIIC)o130mm5.12"I'IOCO000051-1258768-01GinnaSFPRe-rackingLicensingReportPage47 Figure1.3-11Type2Rack-TopViewSSCELL2nm(0.08')BSSCELL3mm(o.u')115Ply(48')(~Z85')51-1258768-01GinnaSFPRe-rackingLicensingReportPage48 Figure1.3-12Type2Rack-DetailofConnectingTabsSPENTFUELASSEMBLY2mm(o.o8')SPENTFUELASSEMBLYEE~E~E~(n~SPENTFUELASSEMBLYSPENTFUELASSEMBLYtabs1.5mmthickness(0.06")2.5mm(o.>')BSS3mm(o.~z')51-1258768-01GinnaSFPRe-rackingLicensingReportPage49 Figure1.3-13Type4RackSS2am(0.08')BSS2.Jnn(0.1')51-1258768-01GinnaSFPRe-rackingLicensingReportPage50 Figure1.3-14Type4Rack-TopViewCOB.S.S214.12mm[8.4S']thickness2.50mm[0.10"]DOCODCV2mm[0.08206.80mm[8.14]2mm[0.08'51-1258768-01GinnaSFPRe-rackingLicensingReportPage51 2.0PRINCIPALDESIGNCRITERjlA2.1GeneralDesignCriteriaThenuclearfuelstorageracksarerequiredtohaveaminimumservicelifeof40yearsinanenvironmentthatincludeshighradiationfields,continuousexposuretopureandboratedwater;mustbedesignedtowithstandsevereaccidentsduetonaturalphenomenons(i.e.,seismic,tornadomissiles),anddropaccidentsassociatedwithplantoperations.Theprimaryfunctionoftheracksistoinsuresubcriticalityofthefreshandspentnuclearfuelforavarietyofaccidentscenarios.TheracksarecategorizedassafetyrelatedproductsandaredesignedtocomplywithstringentlicensingrequirementsoftheU.S.NuclearRegulatoryCommission's(NRC),RegulatoryGuides;theAmericanSocietyofMechanicalEngineers(ASME)BoilerandPressureVesselCode(Code),SectionIII,SubsectionNF;AmericanInstituteofSteelConstruction(AISC)ManualofSteelConstruction;variousAmericanNationalStandardsInstitute(ANSI)andindustrystandards;andmeetotherRG&Edesignspecifications.Fourmainareas(structural,criticality,thermal-hydraulics,andradiological)areexaminedandanalyzedtomeetthedesigncriteria.Sections3.0,4.0,5.0,and6.0describeindetailtheparticulardesignscenariosandtheresultsoftheseanalyses.2.2StructuralCriteriaThestorageracksareconsideredasseismicClassIcomponentsandaredesignedtomeettheallowablestressesoftheASMECode,SectionIII,SubsectionsNFforClass3ComponentSupports,applicableRegulatoryGuides,andStandardReviewPlan(SRP)NUREG-0800.Adetailedstressanalysiswasperformedtodeterminetheresultingstressesfordeadweight,thermal,seismicandotheraccidentimpactloads(i.e.,droppedfuel,canisters,andothermissiles).TheseismicanalysisincludeseffectsduetobothOperatingBasisEarthquake(OBE)andSafeShutdownEarthquake(SSE)loadingconditions.FactorsofSafetyagainstgrossslidingandoverturningoftheracksareinaccordancewithNUREG-0800,SRP,Section3.S.5,II-S.Thespentfuelpoollinershallnotpermitleakageofthepoolwater,andtheresultingconcretebearingloadsshallmeettheallowableconcretestressesofACI349-85.ImpactsthataredeterminedthatcouldpenetratethelinershallbemitigatedorpreventedbyRG&EbyinvokingtherequirementsofNUREG-0612,ControlofHeavyLoadsatNuclearPowerPlants.Thismaybeaccomplishedbyusingloadpathsthatwouldavoidthespentfuelpoolarea,ordesigninghandlingandliftingequipmenttomeettherequirementsof'Single-FailureProof'andlingSystems.ThestructuralanalyticalmethodologyandresultsarepresentedinSection3.0.2.3CriticalityCriteriaThecriticalityanalysisofthestorageracksdemonstratesthatboththe&eshandspentfuelassembliesremainsubcritical(ks0.95)ineitherthenormaloraccidentcondition.Criticalitycontrolismaintainedbygeometricalspacingofthefuelassemblies,andtheuseofneutronabsorptionwithfixedneutronpoisons.51-1258768-01GinnaSFPRe-rackingLicensingReportPage52
 
ThecriticalityanalyticalmethodologyandresultsarepresentedinSection4.0.TheanalysesareperformedusingNRC-approvedcomputercodesCASMO-3,andSCALE4.2(KENO-V.a).2.4Thermal-HydraulicCriteriaThermal-hydraulicanalyseswereperformedtoensurethatthespentfuelpoolcoolingsystemhasadequatecapacitytocoolandmaintainwaterandfuelassemblytemperatureswithinthecurrentlicensingcriteriagiventheaddedheatloadofthelargernumberofspentfuelassemblies.TheanalyseswereperformedtotherequirementsinthefollowingNRCdocuments:SRP9.1.3,uel~OTPositionforReviewandAcceptanceofSpentFuelStorageandHandlingApplications,datedApril14,1978andrevisedJanuary18,1979.Thethermal-hydraulicanalyticalmethodologyandresultsarepresentedinSection5.0.2.5RadiologicalCriteriaReferenceoQ'sitedosevaluesforevaluatinghypotheticalaccidentsinvolvingfissionproductreleasesarespecifiedin10CFRPart100andare25remtothewholebodyand300remtothethyroidfromiodineexposure.Bothvaluesareapplicabletotheexclusionareaboundary(EAB)andthelowpopulationzoneboundary(LPZ).Section15.7.4.oftheStandardReviewPlan(SRP)specifiesacceptancecriteriaof25%of10CFRPart100guidelinesforpostulatedfuelhandlingaccidents.However,theGinnaStationwasdesignedandbuiltpriortotheSRPandisnotrequiredtomeettheSRPlimits.Apreviousfuelhandlingaccidentanalysisshowedanoffsitedoseof96remthyroidwhichhasbeenpreviouslyacceptedbytheNRCasbeing"wellwithin"10CFRPart100limits(seeSection6.1.1).Occupationalexposuredoselimitsarespecifiedin10CFRPart20andarefurthercontrolledbyplantprocedures.TherecommendeddoseratethatshallnotbeexceededinaccessiblespacesadjacentthespentfuelpoolisgiveninANSUANS57.2andis2.5mrem/hrtoanypersonsoccupyingthosespaces.Therateisspecifiedforwhenthepoolisatitsdesignfuelinventoryandattheminimumdesignwaterdepth.TheradiologicalanalyticalmethodologyandresultsarepresentedinSection6.051-1258768-01GinnaSFPRe-rackingLicensingReportPage53 3.0STRUCTURALEVALUATIONThissectionpresentsthestructuralevaluationtoensurethattheRochesterGasandElectric'sGinnaUnit1SpentFuelStorageSystemmeetsallapplicablestructuralcriteriatomaintainasubcriticalarrayforthespentfuelandtokeepradiationexposurewithinfederallimits.TheanalysisoftheSpentFuelStorageSystemdemonstratesthatthestructuresatisfiestherequirementsofTitle10oftheCodeofFederalRegulationsPart50.Resultsoftheanalysisshowthedesignsatisfiesthe~statutoryrequirementsforlicensing.Theresultsalsodemonstratetheruggednessofthespentfuelrack.design.Currentstate-of-the-artmethodsareusedinthestructuralanalyses.ThestoragerackstructuralevaluationisbasedonaconservativeinterpretationoftheAmericanSocietyofMechanicalEngineers(ASME)BoilerandPressureVessel(B&PV)Code.ThespentfuelpoolevaluationisbasedonaconservativeinterpretationoftheAmericanConcreteInstitute'sCodeRequirementsforNuclearSafetyRelatedConcreteStructuresandAmericanInstituteofSteelConstruction'sBuildingCode.Itisshownthatthespentfuelsystemstructuresarerobustandprovidesafestorageofspentfuelunderanyofthenormal,upsetorhypotheticalaccidentconditions.Section3.2summarizesthestructuraldesigncriteria.Section3.3providesthestructuraldesignfeaturesoftheSpentFuelStorageRacks.Section3.4summarizesthematerialsofconstructionandthecorrespondingmaterialproperties.Section3.5summarizesthestructuralanalysis.Specifically,section3.5.3.3summarizestheanalyticallydeterminedminimumdesignfactorsforthemajorcomponents.3.1SCOPEThescopeofthisstructuralevaluationincludestheRG&E'sGinnaUnit1SpentFuelStorageSystem.Thestructuralevaluationincludesthespentfuelstorageracksandthefloorandlinerofthespentfuelpool.StructuralevaluationofthestorageracksincludeboththeresidentU.S.ToolandDieracksandthenewATEAracks.TheU.S.ToolandDierackshereafterarereferredtoasRacks1through6.ThenewATEAracksarereferredtoasRacks7through13oras2A,2B,3A,3B,3C,3D,3E.TheperimeterracksarereferredtoasType4Racks.Thedesignofthenewhighdensitystorageracksissuchthatitpreservestheoriginallicensingbasis(NRCSERdatedNovember14,1984),hereafterreferredtoasthe1985licensingbasis,forRacks1through6,andforthespentfuelpoollinerandpoolconcrete.ThenewATEAstorageracksarefreestandingracksandaresupportedonthepoolflooronly.Thegapsbetweentheracks,andthosebetweentherackandthepoolwall,aredesignedsuchthatthenewracksdonotimposeanyadditionalloadingsontheresidentracksoronthepoolwall.Theseconditionsareverifiedthroughouttheanalysis.Thenewracksarehighdensitystorageracksandarecapableofstoringadditionalfuel.Thenumberofsupportlegsaredesignedsuchthatthenewracksdonotimposeanyhigherloadingonthepoollinerorthepoolconcrete.Thisisalsoverifiedintheanalysis.Theseismicanalysisisperformedforboththeresidentandnewracks.The1985licensingbasisispreservedforallhypotheticalaccidentaldropcasesontheresidentU.S.ToolandDieracks.Therefore,thehypotheticalaccidentevaluationisperformedonlyonthenewATEAracks.51-1258768-01'innaSFPRe-rackingLicensingReportPage54 3.2DESIGNCRITERIA3.2.1ApplicableCodesandStandardsThissectionoutlinestheapplicabledesigncodes,standards,specifications,regulations,generaldesigncriteria,regulatoryguides,andotherindustrystandardsusedintheSpentFuelStorageSystemstructuralevaluation.Thefollowingflowchartprovidesanoverviewofthecodesandstandardsapplicabletothestructuralevaluation.StructuralEvaluation-SpentFuelStorageRacks10CFR50GeneralDesignCriteria1,2,4,5,61,62RegulatoryGuide1.13OTPosition1978/79ANSI/ANS57.2SRPNUREG-08003.5.1.43.7.13.7.33.8.4,AppendixD3.8.59.1.2RegulatoryGuides1.291.60,1.611.921.1171.1241.142LiftingNUREG-0612StorageRacks-ASMESectionIII,NF,1989PoolLiner-AISC1989PoolConcrete-ACI349-8551-1258768-01GinnaSFPRe-rackingLicensingReportPage55 10CFR50,GeneralDesignCriteriaRelevantrequirementsfortheSpentFuelStorageSysteminclude:GeneralDesignCriterion1:Safetyrelatedstructureshouldbedesigned,fabricated,...toqualitystandardscommensuratewiththeimportanceofsafetyfunctiontobeperformed.GeneralDesignCriterion2:Designofthesafetyrelatedstructuresbeingcapabletowithstandthemostseverenaturalphenomenasuchastornado,earthquake,...andtheappropriatecombinationofallloads.GeneralDesignCriterion4:Safetyrelatedstructurebeingcapableofwithstandingthedynamiceffectsofequipmentfailure.GeneralDesignCriterion5:Relatestosharingofstructureimportanttosafetyunlessitcanbeshownthatsuchsharingwillnotsignificantlyimpairtheirvaliditytoperformtheirsafetyfunction.GeneralDesignCriterion61:Fuelstoragecapacityrequirementsforfullcoredownload.GeneralDesignCriterion62:Preventionofcriticalitybyaphysicalandgeometricsafeconfiguration.USNRC"OTPositionforReviewandAcceptanceofSpentFuelStorageandHandlingApplications,"datedApril14,1978andthemodificationstothisdocumentdatedJanuary18,1979.RegulatoryGuides:ThefollowingrecommendationsandguidancebytheNRCStaffareusedinthestructuralevaluation:1.13SpentFuelStorageFacilitiesDesignBasis,Revision1,December19751.29SeismicDesignClassification,Revision3,September19781.60DesignResponseSpectraforSeismicDesignofNuclearPowerPlants,Revision1,December19731.61DampingValuesforSeismicDesignofNuclearPowerPlants,Revision0,October19731.92CombiningModalResponsesandSpatialComponentsinSeismicResponseAnalysis,Revision1,February19761.117TornadoDesignClassification,Revision1,April197851-1258768-01GinnaSFPRe-rackingLicensingReportPage56 1.124ServiceLimitsandLoadingCombinationsforClassILinear-TypeComponentsSupports,Revision1,January19781.142Safety-RelatedConcreteStructuresforNuclearPowerPlants(OtherthanReactorVesselsandContainments),Revision1,October1981StandardReviewPlan-NUREG-08003.5.1.4MissileGeneratedbyNaturalPhenomena,Revision2,July19813.7SeismicDesign3.7.1SeismicDesignParameters,Revision2,August19893.7.3SeismicSubsystemAnalysis,Revision2,August19893.8.4OtherSeismicCategoryIStructures,AppendixD:TechnicalPositiononSpentFuelPoolRacks,Revision1,July19813.8.59.1.2Foundations,Revision1,July1981SpentFuelStorage,Revision3,July1981NUREG-0612ControlofHeavyLoadsatNuclearPowerPlant,July1980ANSI-57.2-1983DesignRequirementsforLightWaterReactorSpentFuelStorageFacilitiesatNuclearPowerPlants,approvedOct.1983IndustryStandardASMESectionIII,Division1,SubsectionNF,1989Edition1989AmericanSocietyofMechanicalEngineers,SectionIII,PressureVesselandPipingCode,SubsectionNF-RulesforConstructionofNuclearPowerPlantComponentSupports.ACI349-85CodeRequirementsforNuclearSafetyRelatedConcreteStructures,AmericanConcreteInstitute1985.AISCManualofSteelConstruction,9thEdition1989,AmericanInstituteofSteelConstruction,SpecificationforStructuralSteelBuildings,June1989.3.2.2AcceptanceCriteria,LoadCombinationsandStressLimitsThestructuraldesignmeetsthebasicrequirementsspecifiedin10CFR50(GeneralDesignCriteria)andNRCRegulatoryGuide1.13,andcanbesummarizedas:Thedesignprotectsthehealthandsafetyofthegeneralpublicandpersonnelinvolvedinspentfuelhandlingundernormal,abnormalandaccidentconditions.Inaddition,thedesignofspentfuelstorageracksandpool:51-1258768-01GinnaSFPRe-rackingLicensingReportPage57
 
MaintainsthecapabilitytoremoveandinsertfuelassembliesPreventsphysicaldamagetothestoredfuelassembliesMaintainsthestoredfuelinaeoolablegeometryMaintainsthestoredfuelinasubcriticalconfigurationPerrequirementsofRegulatoryGuide1.29,thespentfuelsystemstructuresareclassifiedas"SeismicCategoryI"andaredesignedtoremainfunctionalundertheeffectsoftheSSE.Thesystemisdesignatedasasafety-relatedsystem.Thespentfuelstorageracksaredesignedandwillbe'onstructedtoconformtoASMESectionIII,SubsectionNFforClass3componentsupports.Allstructuralmaterialsselectedforthespentfuelstorageracksarecompatiblewiththefuelpoolenvironmenttominimizecorrosionandgalvaniceffects.Allsafetyrelatedstructuresconformto:enASMECode-SectionIII,SubsectionNF,Class3ComponentSupports,1989Edition.~RegulatoryGuide1.124~AISC-1989SpecificationforStructuralSteelBuildings,9thEdition,June1989.~ACI349-85CodeRequirementsforNuclearSafety-RelatedStructures,AmericanConcreteInstitute~RegulatoryGuide1.142LoadCombinationsThefollowingsectionprovidestheloadcombinationsconsideredinthestructuralanalysis.TheseloadcombinationsmeettherequirementsofStandardReviewPlan3.8.4,AppendixD.forSeismicCategoryIStructures.Wherepossible,loadcombinationswereenvelopedandcomparedwithlowerAcceptanceLimitstoreducethenumberofloadcombinationstobeanalyzed.Theanalysisprovidesdetailsontheenvelopedcasesconsidered,whereapplicable.DesignFactorAtermof"DesignFactor"isusedtorelateactualvalueswithallowablevalues,givenasapercentage.Theformofthecalculationisasfollows:DesignFactor(%)=KAllowable-Actual)/Actual]x10051-1258768-01GinnaSFPRe-rackingLicensingReportPage58 LoadCombinations-StorageRacks'na'ccetance'm'+LLevelAservicelimitsD+L+T,D+L+T,+ED+L+T,+ED+L+T,+PfD+L+T,+E'+L+F~LevelAservicelimitsLevelAservicelimitsLevelBservicelimitsLevelBservicelimitsLevelDservicelimitsThefunctionalcapabilityofthefuelracksshouldbedemonstratedTheabbreviationsusedhereare:DDeadloadsandtheirrelatedinternalforcesandmomentsLLiveload,zeroforstoragerackssincenomovingobjectsintherackELoadgeneratedbytheOperatingBasisEarthquakeE'oadgeneratedbytheSafeShutdownEarthquakeT,Thermaleffectsandloadduringnormaloperatingorshutdownconditions,basedonthemostcriticaltransientorsteadystateconditionT,ThermaleffectsatthehighesttemperatureassociatedwiththepostulatedabnormalconditionsP,UpwardforceontherackscausedbypostulatedstuckfuelassemblyF~Forcecausedbytheaccidentaldropoftheheaviestload&omthemaximumpossibleheightNote:ProvisionofASMESectionIII,SubsectionNF-3251.2isamendedbytherequirementsofparagraphsc.2.3and4ofRegulatoryGuide1.124entitled"DesignLimitsandLoadCombinationsforClass1Linear-TypeComponentSupports."51-1258768-01GinnaSFPRe-rackingLicensingReportPage59
~~'t4'N~~~t ACCEPTANCECRITERIAThissectionprovidestheacceptancecriteriausedtoqualifySpentFuelSystemstructures.Tostaywithinthe1985licensingbasis,severalself-imposedacceptancecriteriaareestablishedandarealsodefinedhere.Theacceptancecriteriasummarizedheremeetalltheregulatoryrequirementsandmeetsalltheself-imposedrequirements.AcceptanceCriteria-StorageRacksThestorageracksaredesignedpertherequirementsofSubsectionNFoftheASMESectionIIICode.Table3.2-1showstheClass3ComponentSupportstressallowablesforthestructure.ThestructuralevaluationisbasedonaconservativeinterpretationoftheASMEB&PVCode.ThedesignfactorsprovidedherearemarginsabovetheASMECode.TheCodehaslargebuilt-insafetyfactors.Table3.2-2providesthestressallowablesfor304L(ASTMA240andASTMA479)stainlesssteelmaterial.ThistableisdevelopedusingcriteriaoutlinedinTable3.2-1,andisprovidedasanexample.Forallothermaterials,thestressallowablesarecalculatedwhereapplicable.51-1258768-01GinnaSFPRe-rackingLicensingReportPage60 Table3.2-1StressAcceptanceCriteria-StorageRacks;:.'''.'.:Ser'v'ic'e'4-:""':"iF;"'"''::~"'::,"":::':,'.Servic'e'.'i'i:":,'::;~,""".::PrimaryMembraneStresso,PrimaryMembrane+Bending0)+OpRangeofPrimary+SecondaryStressBearingAverageLargedistancefromEdgePureShearAveragePrimaryShearMaximumPrimaryShearWeldStress-FilletWeldWeldmetalBasemetal1.0S1.5SLowerof2SyorSuSy1.5Sy0.6S0.8S0.3SU0.4Sy1.33S1.995SLowerof2SyorSuSy1.5Sy0.6S0.8S0.4Su0.532SyLowerof1.2Syor0.7SuLowerof1.8Syor'.05SULowerof2SyorSuNoEvaluationRequired0.42Su0.42SU0.42Su0.42SUPerASMESectionIII,SubsectionNF,SRP3.8.4,2RegGuide1.124where:S=Allowablestressvalueattemperature,fromtheapplicabletableofAppendixISy=YieldstrengthattemperatureSu=TensilestrengthattemperatureNotes:Line1:Line2:Line3:Line4:Line5:Line6:PersectionsofASMESectionIII,SubsectionNFandAppendixF:PerNF-3251,NF-3261andF-1332ofASMESectionIIIPerNF-3251,NF-3261andF-1332ofASMESectionIIIPerfootnote6ofTableNF-3523(b)-1andconservativeinterpretationofASMESectionIIIPerNF-3252.1,andF-1332.3ofASMESectionIIIPerNF-3252.2,andF-1332.4ofASMESectionIIIPerNF-3266,TableNF-3324.5(a)-1ofASMESectionIIIDeformationsshouldprecludedamagetothefuelassemblies.Inadditiontothestressacceptance,thestructureisevaluatedagainststability(buckling).51-1258768-01GinnaSFPRe-rackingLicensingReportPage61
 
NVREG-0612(ControlofHeavyLoadsatNuclearPowerPlants),Section5.1.6Safety/actorDesignQK~eQRedundantLift(Single-FailureProof)UltimateNon-redundantLift10UltimateAcceptanceCriteria-SpentFuelPoolLinerThespentfuelpoollinerisdesignedinaccordancewiththeAISC-1989Code.Thestorageracksupportpadsaredesignedsuchthattheydonotrestonanylinerweldseams.Thesupportpadsprimarilytransmittherackloadsasbearingloadsontheliner.Theredesignonlychangesthefloorbearingloads~BearingAllowablePerAISC0.9FLinerFatigueAnalysisperAISC,AppendixKIIAcceptanceCriteria-SpentFuelPoolConcreteThespentfuelpoolconcreteisdesignedperrequirementsACI349-85.Thestorageracks,beingfreestandingstructures,primarilyinducebearingloadsontheconcreteatsupportpadlocations.Theredesignonlychangesthefloorbearingloads.BearingAllowable(I)(0.85fgPerACI349,Section10.15~Demonstratethattherearenorack-to-wallimpacts3.3STRUCTURALDESIGNFEATURESTheATEAspentfuelrackdesignobjectivewastomaximizethenumberofavailablefuelassemblystoragecellswhileensuringthatallcriticality,thermal-hydraulic,andstructuralrequirementsweremet.Specifictothesestructuraldesignfeatures,theATEAracksconsistofthreefundamentalracktypes,groupedasTypes2A-2B,3A-3E,and4.Therackmodulesarefreestandingstructuresthatminimizetheloadingsonthepoollinerandfloor,inthatonlyfrictionloadsandbearingloadsaretransmitted.Inaddition,rackstructuralloadsareminimizedbythecomplianceofferedbythefree-standingboundarycondition.Rackmodulesaresizedtoensuresufficientlateralgapsbetweenmodulesandthepoolwallsuchthatnoimpactsaremadeduringthefaultedevents.Therackpedestalsarepositionedsuchthattheyaresufficientlyremovedfromtheexistingpoollinerleakchases,thusminimizingtheeffectsofadditionalloadsintheseareas.Thepedestalsarealso51-1258768-01GinnaSFPRe-rackingLicensingReportPage63 sizedandnumberedtoensureastablerackstructure,thusminimizingtilting,andalsotoequallydistributeandminimizetheresultingbearingloadsontothepoollinerandfloor.Thepedestalsalsoprovidethreadedconnectionstoensuretheoverallrackmodulelevelnessduringinstallation,thusminimizinganyloadeccentricitiesandimbalances.Thepedestalandrackbaseplatedesignsprovidesufficientcutoutsforfluidcoolingwhileensuringadequatestructuralstrength.TheATEAbaseplatethicknessisgreaterthanthatoftheresidentracks.Inaddition,theentirerackfoundationisdesignedwithagussetplatenetworktyingthebaseplateandpedestalsthroughouttherackmodule.Thegussetplatenetworkfurtherstrengthenstherack,increasingstructuralmarginsforthebaseplateandpedestals.Type2rackshaveaprimarystructuraldesignwhosefeaturesincludecelljunctionweldtabs,whichareusedtophysicallyconnectthestainlesssteelstructuralcellsaxiallyalongthecelllength.Theseweldtabslaterallypositionthestructuralcellsandprovidealoadpathbetweenthesecells.Theweldtabsaresizedandnumberedtoensuresufficientstructuralmargins.Thestructuralcellsarealsofabricatedwithweldedstainlesssteelretainerplateslocatedatthetopandbottomofthecell.Theseplatesservetoaxiallyconstraintheadjacentboratedstainlesssteel(BSS)cellswhileprovidingagaptoaccommodateanyaxialdifferentialthermalexpansion.TheretainerplatesalsoserveasabearingsurfacethroughwhichloadsaretransmittedfromstructuralcelltostructuralcellthroughthetopandbottomnozzlesofthefuelassemblywithintheBSScell.Theretainerplateweldsaresizedandnumberedtoensureasufficientstructuralmarginforallloadingcases,includingastuckfuelassembly.Type3rackshaveaprimarystructuraldesignwhosefeaturesincludeaseriesofstainlesssteel"bands"locatedatdiscreteaxiallocationsalongthelengthoftheBSScells.Theseaxiallocationscorrespondtothoseofthefuelassemblyspacergrids.Thespacergridsaretheprimarylateralloadinterfaceforthefuelassemblyinadditiontothetopandbottomnozzles.ThebandisassembledastwopiecesfittingintomorticejointsontheBSSplatesandthenweldedtoeachothertoformanintegralbandaroundtheBSScell.ThesebandsserveastheloadpaththroughtheBSScelltothestructuralcells.Thebandscoupledwiththerack-to-rackcellgapsensurethatonlycompressiveloadsandnobendingloadsaretransmittedtotheBSSplates.Thetype3racksalsoutilizethecelljunctionweldtabs,whichareusedtophysicallyconnectthestainlesssteelstructuralcellsaxiallyalongthecelllength.Theseweldtabslaterallypositionthestructuralcellsandprovidealoadpathbetweenthesecells,similartotype2racks.Theweldtabsaresizedandnumberedtoensuresufficientstructuralmargins.Type4racksarespecialrackslocatedontheperipheryoftheresidentrackmodules(type1)tofurtherincreasestoragecapacity.Theseracksconsistof10rackcellspermodulewhicharesecuredbytwocustommountingfixtureslocatedinthetopoftheoutercellsoftheadjacentresidentracks.Type4racksarealsopositionedonthepoolfloorusingtwopedestals,allowingittobeself-supportingandstable.Foradditionallateralconstraint,tiebarsfixturedtothebottomoftwotype4rackcells(adjacenttothepedestalcells)-interfacewiththediagonallyadjacenttype1rackcells.Thetype4racksandcorrespondingmountingfixturesaredesignedandpositionedtominimizerackdisplacementandmaximizestructuralmarginswhileensuringthatnoimpactswiththepoolwalloccur.51-1258768-01GinnaSFPRe-rackingLicensingReportPage64 3.4MATERIALSOFCONSTRUCTIONGeneralStandardsThissectionaddressesthegeneral'structuralmaterial'equirementsofStandardReviewPlan,NUREG-0800,Section3.8.4,AppendixDinthedesignofthespentfuelstorageracks.Theinternalandexternalenvironmentalconditionsofthestoragepoolwereconsideredintheselectionofthecomponentmaterials.AllofthestructuralmaterialsselectedconformtotheASTMSpecificationsandmeettheintentofASMESectionIII,SubsectionNFrequirements.AnybenefitsofthestructuralstrengthofBoraflexandboratedstainlesssteelarenotconsideredinthestructuralanalysis.Table3.4-1summarizesthematerialsofconstructionforthespentfuelstorageracks,spentfuelpoolliner,andthespentfuelpool.3.4.1StructuralMaterialsType304Land630stainlesssteelmaterialswereselectedforthestoragerackconstructionbecauseof:Corrosionresistance(lowcarboncontentwhichminimizesthesensitization),Strength,Fracturetoughness,andASMEacceptability.The630boltingmaterialisselectedforitshighstrengthandresistancetostresscorrosioncracking,evenattemperatureto300',andunderseverechlorideandH,Senvironment.Galvanicreactionsarenotexpectedbetweenthe304Landboratedstainlesssteel,orbetween304Land630austeniticstainlesssteel.TheresidentU.S.Tool&Diestorageracksandpoollinerarefabricatedfrom304stainlesssteel.Thespentfuelpoolwallsandfloorareconstructedusing3,000psiminimumstrengthconcrete-28dayscured.Tables3.4-2through3.4-6reportthematerialpropertiesusedinthestructuralanalyses.3.4.2Non-StructuralMaterialsBoratedstainlesssteelandBoraflexareusedasneutronabsorbermaterials.Theyareconsiderednon-structuralmaterialsinthestructuralanalyses.BoratedStainlessSteelTheboratedstainlesssteel(BSS)isgrade304B6/B7,TypeBinaccordancewithASTM-A887-89andA-480.NaturalBoron(B10)isaddedtotheausteniticstainlesssteelwithaminimumcontentof1.7percentinweightandacarboncontentlessthanorequalto0.03%.Themicrostructureconsistsofanausteniticstainlesssteelmatrixwithfine,uniformdispersionofcomplexchromiumborides.51-1258768-01GinnaSFPRe-rackingLicensingReportPage65
 
Boratedstainlesssteelsareusedforneutronattenuationinspentfuelstorageandtransportationapplications.BSShasbeenusedinspentfuelstoragepoolssince1978.Currently,morethan4,000metrictonsofBSSareinuseinspentfuelpools.BSShasbeenlicensedin13countriesincludingtheU.S.A.foruseinspentfuelpools.BSShasbeenlicensedforuseinspentfuelpoolsatIndianPoint2,IndianPoint3andMillstone2intheU.S.A.Fortheseapplications,BSSwasexposedtoaqueousenvironmentsincludingboricacid,andtheseapplicationshaveproventhecorrosionresistanceofBSS.Boratedstainlesssteelhasanexceptionalresistancetocorrosionbyelectrolytic'ydridation,oxidation,orotherchemicalreactionsinboratedandpurewater.Ascomparedto304typestainlesssteel,boratedstainlesssteelhasahigherstrengthbutlowerductilityandlowerimpactresistance.Thecoefficientofthermalexpansionanddensityforboratedstainlesssteelareverysimilarto304Lstainlesssteel(Table3.4-7).BSScorrosionresistanceisverysimilartoconventionalausteniticstainlesssteelinaspentfuelpoolenvironment.Therearenosignificantchangestothemechanicalpropertiesoftheboratedstainlesssteeluponexposuretothelevelsofirradiation,overthedesignlifeofthefuelstoragerack.IntheATEArackdesign,theboratedstainlesssteelplateisafreestandingmember.Theboratedstainlesssteelisneitherbentnorweldedinthestoragerackdesign.Thiswillprecludeanycrackingorthermalalterationofthemetal.Theboratedstainlesssteelisnotconsideredasastructuralmemberinthestructuralanalysis,anditscontributiontothestrengthoftheracksisneglected.Insummary,theneutronabsorbermaterialselectedfortherackconstructionprovide:HomogeneousBoroninausteniticstainlesssteelmatrixCorrosionresistanceoverthelifeoftheracksHighstabilityunderirradiation(noblistering,nocreep,...)Nodegradation,swellingorballooning.BoraflexBoraflexisusedasaneutronabsorberintheresidentU.S.Tool&Dieracks.TheBoraflexisnotconsideredasastructuralmemberinthestrengthanalysis.TheanalysisreflectsonlytheweightoftheBoraflex.Table3.4-8reportsthematerialdensityusedintheweightcalculation.51-1258768-01GinnaSFPRe-rackingLicensingReportPage66 Table3.4-1MaterialsofConstructionATRANewStorageRacksCellWallBaseSupportPlateSupportPadsPerimeterRackConnection(Lower)Bolts(PartofSupportPad)WeldMaterialNeutronAbsorberASTM-A240Type304LorASTM-A312Type304LASTM-A240Type304LASTM-A479Type304LASTM-A240Type304ASTM-A564Type630,ConditionH1100Grade308LinaccordancewithAWSAS-9ASTM-A887-89,Type304B6/B7,GradeBBoratedStainlessSteelResidentStorageRacks(USTool&,DieRacksonWachter'sBaseSupport)RackCellWallCellInsertWallFillerBaseSupportAssemblyBaseCornerSupportShimsBoraflexHoldDownBoltsSpentFuelPoolLinerConcreteConsolidatedFuelFuelCanWallCellDividerCanBottomASTM-A240Type304ASTM-A240Type304ASTM-A240Type304ASTM-A240Type304ASTM-A240Type3040.020gm/cm'inimumB,oType304StainlesssteelASTM-A240Type3043,000psiminimumstrength,28dayscuredASTMA240Type304ASTMA240Type304ASTMA240Type30451-1258768-01GinnaSFPRe-rackingLicensingReportPage67
 
Table34-3Material:304StainlessSteelPlateMaterial:304StainlessSteelBarSpec:ASTM-A240,Type304Spec:ASTM-A479,Type304Composition18Cr-8NiAllowableStressS-ksiMinimumYieldStrengthSy-ksiMinimumUltimateStrengthSu-ksiElasticModulusE-x10'siLinearThermalExpansiona-x10in/in/'FMeancoefficientgoingfrom70'Density-lb/in'07528.30.2918.830758.5517.8257127.68.7916.622.56627.09.00Source
 
==References:==
AllowableStressSfromTableI-7.2ofASMESectionIII,AppendixIMinimumSyfromTableI-2.2ofASMESectionIII,AppendixIMinimumSufromTableI-3.2ofASMESectionIII,AppendixILinearThermalExpansionafromTableI-5.0ofASMESectionIII,AppendixIElasticModulusEfromTableI-6.0ofASMESectionIII,AppendixI51-1258768-01GinnaSFPRe-rackingLicensingReportPage69 Table3.4-4Material:630PrecipitationHardenedSteelSpec:ASTM-A564,Type630BoltingMaterialNominalComposition:17Cr-4&#xb9;i4Cu,PrecipitationhardenedsteelMinimumtempertemperature1100'.'::,;1'00:,,::,,,'"::,".:;~j:.'',:::,'.;,'::,;:,:.::;i200":":I::;:,:::::,:.;;:',.":::':;,.::,':::,,':,:Fi;300,::-'"::,'";;AllowableStressS-ksiMinimumYieldStrength-ksiMinimumUltimateStrength-ksiElasticModulus-xl0'siLinearThermalExpansiona-x10'n/in/'FMeancoefficientgoing&om70'Density-lb/in'ource
 
==References:==
11514028.30.29281151405.8928106.314027.65.9028101.914027.05.90AllowableStressSfromTableI-7.3ofASMESectionIII,AppendixIMinimumSyfromTableI-2.1ofASMESectionIII,AppendixIMinimumSufromTableI-3.1ofASMESectionIII,AppendixILinearThermalExpansionufromTableI-5.0ofASMESectionIII,AppendixIElasticModulusEfromTableI-6.0ofASMESectionIII,AppendixI51-1258768-01GinnaSFPRe-rackingLicensingReportPage70 Table3.4-5Concrete3,000PSIMinimumStrength28daysCuredConcreteYoung'sModulus(psi)Note1Poisson'sRatioDensity(lb/ft')CoefficientofThermalExpansion(in/in/'F)CompressiveStrength-fc(psi)3.122x10'.251505.5x10~3,000minimumSource:GinnaUFSAR,Table3.8-20(Reference3.22)Note1:PerSection8.5ofACI349-85(Reference3.20)Table3.4-6Zircaloy-4TubingMaterialModulusofElasticitySource:FramatomeCogemaFuelTestResults12x10'b/in'@150'Table3.4-7BoratedStainlessSteelASTM-A887-89,Grade304B6/B7,TypeBWeightdensityandcoef5cientofthermalexpansiontakensameas304Lstainlesssteel.Note:Thismaterialisnotusedasastructuralmaterialinthestructuralanalysis.Source:EPRIReport&#xb9;EPRITR-100784,"BoratedStainlessSteelApplicationinSpentFuelStorageRacks,"June1992(Reference3.31)andASMECodeCaseN-510-1(Reference3.43).Table3.4-8BoraflexSpec:0.020gm/cmMinimumB,~SpecificGravity1.7g/ccTheBoraflexmaterialisnottobeusedasastructuralmaterialinthestructuralanalysis.Source
 
==Reference:==
TableA-2ofEPRINP-6159,"AnAssessmentofBoraflexPerformanceinSpent-Nuclear-FuelStorageRacks,"December1988(Reference3.30).51-1258768-01GinnaSFPRe-rackingLicensingReportPage71 3.5STRUCTURALANALYSISTheRG8cEGinnaUnit1SpentFuelStorageSystemstructureisanalyzedtomeetthecodesandstandardsspecifiedinSection3.2.1.Thissectioncoversthestructuralanalysisofthestorageracks,spentfuelpoolandthepoolliner.There-rackingatGinnautilizeshighdensity,free-standingspentfuelstoragerackstoreplaceselectedresident,lowdensityracks.Theracksareoffourbasicdesignvariations;namelyType1Type2,Type3andType4racks.Allracksaredesignedtostoreconsolidatedspentfuelcanisterswitha2:1consolidationratio.Thefollowingsketchprovidesagenerallayoutofthearrayofracks'nthepool.Rack4DRack4ERck4FRack2&#xb9;2Rack1&#xb9;1Rack4&#xb9;4Rack3&#xb9;3Rack6&#xb9;6Rack5&#xb9;5Rack3A&#xb9;10Rack3CRack2B&#xb9;8Rack2A&#xb9;7Rack3B&#xb9;13Rack3D&#xb9;12Rack3E&#xb9;11Rack4ARack4BRack4CStorageRacks-RackLocationsAndGeneralArrangementSection3.5.1presentsthemethodusedingeneratingtheseismicinput,thefuelassemblyloadingandvariousloadsconsideredintheanalysis.Section3.5.2presentsthestructuralandseismicanalysismethodologyandassumptions.Section3.5.3presentsanalysesandresultsfornormal(LevelA),upset(LevelB),faulted(LevelD)andhypotheticalaccidentloadingconditions.Finiteelementmethodswereusedextensivelytoanalyzeloads,deformationsandstressesinthestructuralcomponents.Computercodesusedforstructuralanalysisarecertifiedandbenchmarkedtoknownsolutions.Section3.5.2.4providesalistingofcomputerprogramsused.Thecomputerprogram,ANSYS,wasusedforamajorityofthesecalculations.Severalmathematicalmodelswereusedwithfeaturestorepresenttheslidingandtippingoftheracksandhydrodynamiccouplingwhichcanoccurbetweenfuelassembliesandrackcells,betweenracks,andbetweenracksandreinforcedconcretewalls.Thesemathematicalmodelsaccountfordifferencesinrackmodulesinthepool.Fuelloadingsanalyzedincludedallpossiblecombinations,51-1258768-01GinnaSFPRe-rackingLicensingReportPage72 loadingconditionsofempty,half-loaded,unconsolidatedandconsolidatedfuel.Duetothefactthattheracksare&eetoslideandtip,anonlineardynamicanalysiswasperformedtoevaluateseismicloadings.Theanalysiswasatimehistoryanalysis,whichpermittedbothslidingandtipping.Section3.5.2.3providesdetaileddescriptionsofthemathematicalmodels.Anoverviewofthemainmathematicalmodelsisprovidedhere.3-DSingleRackDynamicAnalysisModelsThesemathematicalmodelsareusedforvarioussensitivitystudies.Figure3.5-31providesaschematicofthe3-Dsinglerackmodel.Theseevaluationsreducethenumberofdiscretewholepoolevaluations,thusmakingtheanalysisofthespentfuelpoolracksmoreefficient.Section3.5.2.7presentstheresultsoftherackstiffnesssensitivitystudy.Theresultspresentedconcludethattheseismicloadingsandhencestressesarenotsensitivetotherackstiffness.Forthisreason,itisconcludedthatstructuraltestingisnotrequiredtoverifystiffnesscalculations.3-DWholePoolMulti-RackDynamicAnalysisModelAthree-dimensionalwholepoolmulti-rack(WPMR)model(Figure3.5-32)wasusedforthere-rackingseismicandstructuralanalysis.TheracksinthemodelreflecttheuseofsixrackscurrentlyinuseatGinnaandtheadditionalseven(7)newATEAracksforatotalofthirteen(13)racksinthespentfuelpool.Theuseofsixadditionalperimeterracks(Type4),whichmaybeinstalledatafuturetime,isalsoaddressedinanalyzingseveralpoolconfigurations.Theseismicinputissite-specifictotheGinnaplant.Rackloadsanddisplacementsweredeterminedfromthisanalysisforallloadcases.3-DSingleRackPlateModelsThesemathematicalmodelswereusedforstaticstress,thermal,baseplateandliftinganalyses.Figure3.5-33providesanisometricviewofthe3-DSingleRackPlateModel.IsolatedComponentModelsExtensiveusehasbeenmadeofvariousisolatedmathematicalmodelsforcalculationofglobalorisolatedstiffness,supporttabstiffnessandtabstresses,etc.Figures3.5-34and3.5-35provideanisometricviewoftype2andtype3fuelcellfiniteelementmodelswithtabsrespectively.Section3.5.3.1.1.3describestheisolatedmodelforfuel-to-rackinterfacestiffnesscalculation.Section3.5.3.1.2describestheisolatedmathematicalmodelforthetabstresses.3.5.1LoadingConditions3.5.1.1OverviewFUELASSEMBLYLOADINGTheempty,halffullandfullyloadedrackswereconsideredintheseismicanalysis.Theweightof1450poundswasusedforasinglefuelassembly.Thisweightenvelopesallthreefueldesigns,namelyW-standard,W-OFA,andExxon.The1450poundfuelassemblyweightincludestheweightofcontrolcomponents.Twofullrackloadingconditionswereanalyzed.Thefirst,referredtoasunconsolidated,representsarackfilledwithfuelassemblies.Thesecond,referredtoasconsolidated,representsarackfilledwithfullconsolidationcanisters,eachweighing2323pounds.Thehalf-fullconditionconsideredisarackwhichisfilledwithfuelassembliesinonehalfand51-1258768-01GinnaSFPRe-rackingLicensingReportPage73 emptyintheotherhalf,sothattheworstcaseeccentricitywouldexist.Theemptyrackconditionconsideredisarackwithnofuelassembliesorconsolidationcanisters.DEADWEIGHTThedeadweightloadingincludes:1)emptystorageracks,2)racksfullyloadedwithfuelassemblies,3)racksfullyloadedwiththeconsolidatedcanisters,and4)rackspartiallyloadedwithamixtureoffuelassembliesandconsolidatedcanisters.Theresultspresentedforseismicloadingsincludetheeffectofdeadweightloadings.Section3.5.3.1.5providesasummaryofthesupportpadloadswhichincludesthedeadweightloads.LIVELOADSTherearenoliveloadsonthestorageracks.Forthisreason,allliveloadsarezerointheloadcombinationconsidered.SEISMICLOADFortheRGBGinnaUnit1,thegroundseismicresponseis0.08gforOBEand0.2gSSE(GinnaUFSAR,Section3.7.1.2).Thespentfuelpoolisbuiltontopofhardrock.Therefore,thegroundresponsespectraarealsoapplicabletothepoolfoundation.TheshapeofresponsespectraisperU.S.NRCRegulatoryGuide1.60.SyntheticTimeHistoryFoursetsofstatisticallyindependentsyntheticaccelerationtimehistoriesweregeneratedfor2%dampingforOBEand4%dampingforSSEconditionswitheachsetcontaininghorizontalandverticalaccelerationtimehistories.ThemostcurrentversionofthecomputerprogramSIMQKEwasusedtogeneratesyntheticseismictimehistories.Itwasdemonstratedthateachofthegeneratedtimehistorieswasstatisticallyindependentfromalloftheothers.Inordertoprovestatisticalindependence,thenormalizedcross-correlationcoefficientbetweenanytwosetsislessthan0.1(SectionN-1213.1ofASMESectionIII,Reference3.19).Thelargestcoefficientwaslessthan0.1.Thetimehistorywasbasedonatimestepof0.01seconds.Thesynthetictimehistoriesusedhadadurationof20seconds,andthethreeorthogonalcomponentsofeachsetweresimultaneouslyappliedintheracktimehistoryseismicanalyses.Thefloorresponsespectrawereregeneratedfrom1.1timestheaverageofallfourdevelopedtimehistories.Theregeneratedfloorresponsespectraarefoundtomatchverywellthroughoutthe&equencyrangeoftheCriteriaFloorResponseSpectratomeettherequirementsspecifiedinSRP3.7.1ofNUREG-0800,Reference3.2.ThespecifiedOBEandSSEresponsespectraareperGinnaUFSAR,Section3.7.1.2.ThecomparisonofthecalculatedandtheGinnaspecificSSEresponsespectraareshowninFigures3.5-1through3.5-6.FourSSEandOBEtimehistorieswereusedinananalysisoftheRack8(Rack2B).Theparametricstudywasbaseduponafrictioncoefficientof0.8,whichproducedthemaximumloads.Forthisstudy,severalparameterswereexamined,suchasmaximumrackforcesandmoments,supportlegloads,andfueltorackimpactloads.Fromthecomparison,itwasfoundthatusingafactoronasingletimehistorywouldenveloptheotherthree.Section3.5.2.6presentsthedeterminationofthe51-1258768-01GinnaSFPRe-rackingLicensingReportPage74 "single"OBEand"single"SSEtimehistoriesandassociatedfactors.Tosimplifycalculations,theremaininganalyseswerebasedonsingleOBEandsingleSSEtimehistories.Fromtheresultsofthefourdifferenttimehistoriesuponthesinglerackmodel,factorswereappliedtoselectedsingleOBEandSSEforcesandmomentsforthestressanalysiscalculationsinordertocoverallpossibilities.ThefourOBE'sindicatedthatafactorof1.12appliedtotheOBE-4loadswouldcompletelyenvelopallfourofthegeneratedOBEloads.ThefourSSE'sindicatedthatafactorof1.20appliedtotheSSE-1loadswouldcompletelyenvelopallfourofthegeneratedSSEloads.Thesefactorsusedwere1.12and1.20forOBEandSSE,respectively.THERMALLOADSTheconditionsTaandTocauselocalthermalstressestobeproduced.Twocasesofthermaleffectswereconsidered.First,anisolatedstoragelocationcontainingafuelassemblywasconsidered,inwhichitwasassumedthatthefuelassemblyisgeneratingheatatthemaximumpostulatedrate.Thesurroundingstoragelocationswereassumedempty.Theheatedwaterwasassumedtomakecontactwiththeinsideofthestoragewalls,therebyproducingthemaximumpossibletemperaturedifference,To,betweentheadjacentcells.Inthesecondcase,itwasassumedthatthereisalossofcoolingsuchthattheentirerackexpands,settingupshearforcesinthesupportlegswhichareassumedtobeheld&omslidingbythehorizontalfrictionforcebetweenthesupportlegsbearingpadandpoolfloorliner,seeSection3.5.3.1.9.SingleHotCell(To)Theworstsituationwasassumedtoexistwhenanisolatedstoragelocationhasafuelassemblywhichisgeneratingheatatthemaximumpostulatedrate.Thesurroundingstoragelocationisassumedtocontainnofuel.Theheatedwatermakesunobstructedcontactwiththeinsideofthestoragewalls,therebyproducingthemaximumpossibletemperaturedifferencebetweentheadjacentcells.Thesumofprimaryplussecondarystressesislimitedtothelesseroftwotimesthematerialyieldstrength,2Sy,andultimatestrength,Suatthedesigntemperature.LossofSpentFuelPoolCooling(Ta)Thisthermalconditionisproducedwhenthepoolwaterbulktemperatureincreasesto180'duetolossofartificialcooling.Thepoollinertemperatureiskeptthesameasthenormaloperatingtemperaturetogenerateconservativestressesintherack.FATIGUEANALYSISThepeakstressrangeintherackstructureandthepoollinerduetothecyclicloadingwasevaluatedagainstfatiguecriteria.Forpurposesofevaluatingfatiguecompliance,oneSSEandfiveOBEeventswereused.Itwasdemonstrated,byanalysis,thattheCumulativeUsageFactorinaccordancewiththeproceduresofNB3222.4(Reference3.19)didnotexceed1.0forstorageracks.ThepoollinerfatiguestrengthwasevaluatedperPart5,AppendixKoftheAISCCode-9thedition.TheanalysisiscontainedinSection3.5.3.1.11.51-1258768-01GinnaSFPRe-rackingLicensingReportPage75 STUCKFUELASSEMBLY-UPLIFTFORCETheabilityoftherackstowithstandaverticalorinclined(at45')forceof2000poundsappliedatanypointwithoutdamagingtheracksastoviolatethesub-criticalitycriteria(K,irlessthan0.95)forthestoredfuelwasdemonstratedbyanalysis.TheanalysisiscontainedinSection3.5.3.1.18.SLOSHINGEFFECTSTheeffectofsloshingofthepoolwaterduringtheseismiceventontherackmotionisnegligible,asdemonstratedbyclassicalmethodsinSection3.5.3.1.13.Thehydrodynamicpressuresfromsloshingofthepoolsurfacewaterhavenoeffectupontheracks.Thesloshingwaterrisesandlowers'ttheendsofthepoolbyabout1ftunderOBEconditionsand3ftunderSSE.Theeffectofthisandtheresultingchangesinpressureareminimal.HYPOTHETICALACCIDENTDROPSThemajorhypotheticalaccidentconditionsaddressedinSection3.5.3.2are:a)b)c)d)e)FuelassemblydropduringfuelhandlinginthespentfuelpoolSpentfuelpoolcanalgatedropSpentfuelpoolstoragerackdropTornadomissileimpactSpentfuelcaskdrop.Thestraightdeepdropcasesrequiredanexactitude,(i.e.,fallsthroughcellwithnocontact),whichhasaverylowprobabilityofoccurring.Nevertheless,theconsequencesofsuchanaccidentwereexamined.Whiledamagetothefuelrackbottomplateorsupportlegcouldbeexpected,nodamagewouldoccurtothespentfuelpoolfloor.Theshallowdropwasexaminedanditwasfoundthatwithaductilityfactorlessthan20anddeformationlessthanoneinch,thedistortionofthecellswouldbeconfinedtotheportionofcellsabovetheboratedstainlesssteel,andhence,wouldnotaffecttheKfactorusedinthecriticalityanalysis.Theconservatismusedinthemechanicalaccidentanalysesforvariousdropsindicatedthatminordistortionoftherackislimitedtothevicinityoftheimpactarea.Thereisnogrossdeformationoftherackawayfromtheimpactarea.Consolidatedfuel,thepoolcanalgate,storageracksandspentfuelshippingcaskswereconsideredheavyloadsperNUREG-0612.Therewillbeadministrativecontrolformovementofthesehardwareinthespentfuelpoolarea.Alsotheywillbeliftedusingasingle-failureproofcraneandasingle-failureproofliftingsystem.HandlingofthesehardwareinthespentfuelpoolareawillbeperformedinaccordancewiththeguidelinesofNUREG-0612withregardtolimitingthechanceofunacceptableheavyloaddrop.Reference3.23,NRCStaffsafetyevaluationreport,providesexclusionofheavyloaddropsmeetingthesecriteria.51-1258768-01GinnaSFPRe-rackingLicensingReportPage76 3.5.1.2SeismicInputComplianceThissectiondemonstratescomplianceofRG&E'sGinnaspentfuelstorageseismicanalysistimehistoriesinputwith:a)b)c)U.S.NRCRegulatoryGuides1.60and1.61.StandardReviewPlan-NUREG-0800,Section3.7.1.,"SeismicDesignParameters"requirement,andASMECode,AppendixN,SectionsN-1212.2andN-1213.1,1989edition.DesignResponseSpectraReferences3.2and3.10providecriteriafordesignfloorresponsespectrainthethreeorthogonaldirectionsasafunctionofthefundamentalfrequencyforOperationalBasisEarthquake(OBE).Perreference3.10,theSafeShutdownEarthquake(SSE)groundresponsespectrais0.20G's(horizontal)and0.133G's(vertical),whiletheOBEgroundspectrais0.08G'sforhorizontaland0.053G'sforverticalmotioncomponents.Perreference3.3,structuraldampingvaluesforweldedsteelstructuresaretakenas2%and4%(percentofcriticaldamping)forOBEandSSErespectively.Thesespectrumcurveswereusedfortheseismicanalysisofallracksinthepool.ThenumericalvaluesofaccelerationsfortheRG&EGinnaUnit1spentfuelpoolspecifiedgroundresponsespectraaregiveninTables3.5-1through3.5-6.TheseaccelerationvaluesareconsistentwiththeU.S.NRCRegulatoryGuide1.60requirements.SyntheticTimeHistoriesPerReference3.2,Paragraph1"DesigngroundMotion",Option2"MultipleTimeHistories"ischosenasananalysisbasis.Persamereference,acceptancecriteriafortheOption2requiresaminimumoffourindependentlygeneratedtimehistories.Therefore,foursetsofstatisticallyindependentsyntheticaccelerationtimehistoriesweregeneratedassuming2%dampingforOBEand4%dampingforSSEconditions,eachsetcontaininghorizontalandverticalaccelerationtimehistories.Averagesofthecalculatedresponsespectrawithanassignedfactorof1.1envelopeachdesignspectragroundmotioncomponent,asshowninFigures3.5-1through3.5-6.Totalseismicactivitytimedurationwastakentobe20seconds.Reference3.19,SectionN-1212.2"DurationofTimeHistory"suggestsdurationtimelargerthan6secondsforstrongseismicmotion.Reference3.4,SectionII"AcceptanceCriteria",paragraph1-b"DesignTimeHistory"requiresatotaltimedurationbetween10and25seconds.Thus,bothrequirementsaremetwitha20secondstimehistoryduration.Alltimehistorieswerebasedona0.01secondtimestep.PlotsofthedevelopedaccelerationtimehistoriesaregiveninFigures3.5-7through3.5-30.TimeHistoriesIndependencePerReference3.19,SectionN-1213.1"TimePhaseRelationship",allartificiallygeneratedtimehistoriesmetcross-correlationlimitrequirement(maximumcorrelationcoefficientpertimehistorypairof0.16or16%).Itwasdemonstratedthateachofthegeneratedtimehistories,wasstatisticallyindependentfromalloftheothers,sinceanormalizedcross-correlationcoefficientbetweenanytwosetswaslessthan0.10(Reference3.43).TheresultsofthisanalysisforthefoursetsofsyntheticSSEandOBEtimehistoriesaregiveninTables3.5-7and3.5-8,respectively.51-1258768-01GinnaSFPRe-rackingLicensingReportPage77 MultipleTimeHistoryInputsThreeorthogonalcomponentsofeachsynthetictimehistorysetweresimultaneouslyappliedinallthreedirections.SeismicrunsweremadeforbothSSEandOBEconditions,withasingletimehistorysetchosenforeachcondition(oneoutoffour)forallofthe3Dwholepoolmulti-rackanalyses.Thechosentimehistorysetwasusedinconjunctionwithloadfactorstoenveloptheloadsanddisplacementsofallfourtimehistorysets.Thesefactorsare1.20,forSSE,usingtimehistorysetnumber1,and1.12forOBE,usingtimehistorysetnumber4.Section3.5.2.6.coversTimeHistoryFactor'etermination.SyntheticTimeHistoriesGenerationTheartificialtimehistorygenerationprogramSMQKEwasusedtoobtainallsetsofaccelerationtimehistories.Table3.5-10.533[Hz]1.009[Hz]4.965.950.7362.5[Hz]0.25[Hz];::Displac'e."..'::(irij::;-':0.25[Hz]3.24(*)101.001.0001.001.001.003.542.842.612.271.94.253.403.132.722.280.5750.4960.4710.4320.3912.52.1592.051.881~7(*)logarithmicinterpolationusingvaluesfor2and5%criticaldampingTable3.5-2'.D'am'ping:,:''::-':%,",,::0.54(*)1033[Hz]0.20.20.20.20.20.29[Hz]0.9920.7080.56730.5220.4540.382.5[Hz]1.190.850.68060.6260.5440.4560.25[Hz]0.14710.11490.09930.09430.08640.0782":Disp1a''c.':!':,fiiig.'.0.25[Hz]0.640.50.43190.410.3760.3451-1258768-01GinnaSFPRe-rackingLicensingReportPage78 Table3.5-3-'.;:Damping'.,:''.:%:.,"'',G3[Hz]9[Hz]2.5[Hz]0.25[Hz]0.25[Hz]0.54(*)100.080.080.0800.080.080.080.39680.28320.22690.20880.18160.15200.47600.34000.27200.25040.21760.18240.05880.04600'3970.03770.03460.03130.2560.20.17280.1640.15040.136Table3.54;:Dampirig'%"';I;:.;0.533[Hz]9[Hz]4.965.670.48962.5[Hz]0.25[Hz]'Displiic;;.':firiJ:,.';:0.25[Hz]2.134(*)103.542.842.612.271.94.053.242.982.592.170.38390.33170.31490.28740.25981.671.4431.371.251.13(*)logarithmicinterpolationusingvaluesfor2and5%criticaldampingTable3.5-50.533[Hz]0.13339[Hz]0.66132.5[Hz]0.75600.06530.28400.25[Hz]0.25[Hz]4(*)100.13330.13330.13330.13330.13330.47200.37820.34800.30270.25330.54000.43210.39730.34530.28930.05120.04420.04200.03830.03460.22270.19240.18270.16670.150751-1258768-01GinnaSFPRe-rackingLicensingReportPage79 Table3.5-633[Hz]9[Hz]2.5[Hz]0.25[Hz]';DEs'ilac;:l'(iiiJ,.::;0.25[Hz]0.54(*)100.05330.05330.05330.05330.05330.05330.26450.18880.15130.13920.12110.10130.30240.21600.17280.15890.13810.11570.02610.02050.01770.01680.01530.01390.11360.08910.07700.07310.06670.0000Table3.5-7Cross-CorrelationFactorsforSSKTimeHistoriesX-axes:Y-axes:2-axes:xltox2xltox3xltox4x2tox3x2tox4x3tox4-0.0062-0.0288-0.0664-0.0548+0.0459+0.0097yltoy2yltoy3yltoy4y2toy3y2toy4y3toy4-0.0471+0.0899-0.0608+0.0164+0.0189-0.0004zltoz2zltoz3zltoz4z2toz3z2toz4z3toz4+0.0509-0.0481+0.0087+0.0166+0.0122+0.0357X-Yaxes:X-2axes:Y-2axes:xltoylxltoy2xltoy3xltoy4x2toylx2toy2x2toy3x2toy4x3toylx3toy2x3toy3x3toy4x4toylx4toy2x4toy3x4toy4+0.0205-0.0194+0.0505-0.0214-0.0344-0.0049-0.0266+0.0218+0.0032+0.0522+0.0033-0.0639-0.0054-0.0414-0.0206-0.0152yltozlyltoz2yltoz3yltoz4y2tozly2toz2y2toz3y2toz4y3tozly3toz2y3toz3y3toz4y4tozly4toz2y4toz3y4toz4+0.0573+0.0213+0.0055+0.0236+0.0350-0.0974-0.0090-0.0573-0.0203-0.0414-0.0542+0.0220+0.0133-0.0282-0.0146+0.0185xltozlxltoz2xltoz3xltoz4x2tozlx2toz2x2toz3x2toz4x3tozlx3toz2x3toz3x3toz4x4tozlx4toz2x4toz3x4toz4+0.0480-0.0398-0.0523-0.0597+0.0247-0.0591+0.0096-0.0013-0.0149-0.0277-0.0422+0.0835+0.0705-0.0016+0.0171+0.032751-1258768-01GinnaSFPRe-rackingLicensingReportPage80 Table3.5-8Cross-CorrelationFactorsforOBETimeHistoriesX-axes:Y-axes:2-axes:xltox2xltox3xltox4x2tox3x2tox4x3tox4-0.0294+0..0605-0.0985+0.0345-0'160-0.0268yltoy2yltoy3yltoy4y2toy3y2toy4y3toy4-0.0066+0.0791+0.0236+0.0173+0.0114+0.0473zltoz2zltoz3zltoz4z2toz3z2toz4z3toz4+0.0128-0'163-0.0679+0.0040-0.0112+0.0429X-Yaxes:xltoylxltoy2xltoy3xltoy4x2toylx2toy2x2toy3x2toy4x3toylx3toy2x3toy3x3toy4x4toylx4toy2x4toy3x4toy4+0.0120-0.0241+0.0435-0.0360-0.0140+0~0380-0.0019+0.0144+0.0029+0.0449-0.0202+0.0234+0.0063+0.0234+0.0565-0.0065X-2axes:yltozlyltoz2yltoz3yltoz4y2tozly2toz2y2toz3y2toz4y3tozly3toz2y3toz3y3toz4y4tozly4toz2y4toz3y4toz4-0.0856+0.0222-0.0159-0.0187+0.0219+0.0028+0.0530+0.0536+0.0478+0.0186+0.0271+0.0046+0.0331+0.0296-0.0310+0.0134Y-2axes:xltozlxltoz2xltoz3xltoz4x2tozlx2toz2x2toz3x2toz4x3tozlx3toz2x3toz3x3toz4x4tozlx4toz2x4toz3x4toz4+0~0240+0.0570+0.0605+0.0121+0.0012+0.0270-0.0206-0.0418+0.0121+0.0727-0'543+0.0278-0.0246+0.0186+0.0237-0.022351-1258768-01GinnaSFPRe-rackingLicensingReportPage81 QtAgMCh00OI9pHLBPDKG'76C088DDx(00.1~~I1I1I1I'I1II11I1I1II1I1rI111IIIIII'P~~I~~~~~~~~~~~I~~~'II'~~I~~~~w"rI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~I~I~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~III~I~I~~~I~~~~~~~~~rr~~~~1~~~I~~~~rI'~~~~~~~r~~~~~~I~ld~~~~~~~~~I~~~~I'~~~~~II~~~~~~~~~~~~~~~~~~~~~rr~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~I~~~~~I1IIIIIIYI'YIIIrII~~~I~~Ir~~~~1~~~~II-r~~~I~~1~~~IJ1~~~~~~~~1~~1~~11~~~~~~~I~I~I~~'1~I~~~~~I~~~~~~~~'I~~~~~~~~~~I~~~~~~I~~~I~~1r~~~~~~~~~~~~~~~~~~~I~~~~~I~~~~~I~~~~~~~I~~II'P~~~~~~~~r-r-r~~~~~~L~~~~~~~~II--r1~~I~~1~~~~IJ~~I~~~~~1'Y~~~~~~~~'1'I~~~~~~~I~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~'h~~~~~~~~~~~~~~~~~~r1rr1rr~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~~~I~~~~~~~~~~~~~~~~~~~I~~~~~~GINNA-SSEHorizontalX-Ave.of4TH'sdamping=4%(factoredby3.30)0.110100Naturalf[Hz]
 
QCAgMLllMChOOOIBQOt~aOQAOQ(9088OOx(00.1FLF--FLFFIII'1IIII~~~~~~~~~1'1Y~~~~~~~~11Y~~~~~~~~1YY~~~~~~Ya~~~~Ad~~~~~~~~'IC~~~~~~~~~~~~~~~~IL~~~~~~~~~~~~~~Y~~~~~~~~~~~~~~~II~~~~~~IC~~~~~~~~~~~~~I~~~~~I~~~~~~~~~~~~~~~~~~~~~~I~~~FC~~~IL~~~~~~~~F'~~I~~~~FF'~~~~~~~~I~~~~~~~~~~~~~~C~~I~~I~~~~~~~~~~~~~~~~~~~~~~I'~~~~~~~~~~~~~~~~~I~~~~~I~~~~~~~I~~~~~~~~~1JI1F1''1IYYYIIIIIII~~~~~~YF'~I~'YYIIIIY~~~~I'~~~I~~~I~~~~~~F~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~I~~~~~~~II~I~~~~~~~~~~~~~~~~~~~~~~~CF~~~~~~~~~~~I~~I~I~I~~~~~~~~~~~~~~~~~~~~~~~~~~~1~~~~IL~~~~~~~~~F~~a~~~1~~JL~~~~~I~~~~'F~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IF~~~~~~~~~~~~~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~YA'YrcC~~~~III.FCI'FLFLFIIIII'~~~~~I~~~~~~~~~~~~~~~~~1~~~~L~~~~~I~~~1~~~~~~~~F1~~~~~~~~LF~~~~~~~~~~~~~~1~~~~~~~~~~~~~~~~~~~,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~I~~~~~~~~~~~~~~~~~~~~YIII0.110100Naturalf[Hz]GINNA-SSEHorizontalY-Avg.of4TH'sdamping=4%(factoredby3.30)(NtAVlOCIC4CCICD't5OMo~MMMC4&a GINNA-SSEVerticalZ-Avg.of4TH'sdamping=4%(factoredby3.10)SQ0e0.18QQxS0.010.1~~~~~~'IY~~~~'~~~~~~1'I~~iJ~~~~~~~I~~~~~~1~~~~~~~~'~~~~~~~~P'I~~Ph~~e1~~~~YY~~eJ~~~~~I~~~~~~~~CW~~~~~~~~~~P~~~~~~~~~I~~h4~~P~~I'V~~~~dJ~~~~~~~~~~~~1~~'4II'~~~~~~~~~~~~~~II~~~~~~~~~Y'1Y~~~~~~I~IJ~~II~~~~~~~~'IY~~~~~~1~~~~J~~~I~~~~~~~~1~~~~~II'v~~~~I~~~~~~~~~~~~~C'V~~~~~'I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1'I'1'IP~~~~~~P~~~~~~JI.~~~~~~'hP~~1'1P~~~~'P~~~~~'e~~~~~~~I~~~'I~~~J~~~~~~~~~1I'~~~P~~~~CY~~IJ~~PC~~~I~~~~~~~~'i~~~~~~~~~~~~I1Y~~~~I~I~~I~~~~~~~~I~~~~~~~~rv~~~~~~~~P~I~~~~~~~~~~~~~~~I~~I~~~'1'1P~~~C'IP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"~~'1r~~~~J~~~~'4~I~~~Phe~1~~~~II~~~~~~~~~I~'VYI'vJIJIIII~~~~~~~~~r'i~~~I~~1~~~~~~~~~~~~1C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~rv~~~~~~~~~~~~~~~~~~~~10~~~~~11~~~~~~III'P~~~~~~~~~~I~~P~~~I1C~~~~~h~I~J~~~~4I~~~~~~~~~~~~'ir~~~~~~~J~~I~I~~~I~~~'iC~~~~~~~I~~P~~r-r~~~~~~~~I~~~~rI'~~~~~I,~~~I~~~~~IYY~~~~~~~~~~~~~~~~~~~~100~~~~~~1P'1P~~~~~~~~~~~~~1pI~~~~~~~~r'vY~I~~~~I.Jd.I~~~~~~~~~~~P'hP~~~~~~~~~~~~~~~~~~~~~~~'VY1CiYY~~~~~~~~~~~~~~~~~~~'I~~~~~~~~~~~1~P~~~I~~Naturalf[Hz]
QM"5ChOOOIpRLPD'8QVJ6C0~~e01Q0x6$0.010.11f1'~~~~PP-rr~LrdIPr~~~~PPLPP'IJJJ~~Y1~~P~~~~~~~~~~~~rv~~~~~~~~~~~~~~~~A~~~~~~~~~~~~Ph~~Y'V~~rv~~~~~~P~~~~~LJI~~~~~~~~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A'I'11f1'1'P~PP~IrI'4IIrPIrrP~~'IP~~'PY~~'IP~~~~~~4~~~~~~vr~~~~~~~~~~~~AL~~~~~~~~~~~~~~~~~~~~J~~'IP~~'VY~~~~~~~~P~~~~~~~~~~~~'IP~~~~~~~~~~Jh~~~~~~~~~~~~~~~~~~~~~~~~'~h~~~~~~'V11~~~~''h~~~~~~~~~~~~1~~~~~~4~~~~~~~~~~Pl~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~h~~1~~1Y~~~~~~~h~~~~fJ~~~~~~~~h~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'V1~~'P1~~~~~~'h'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~PPLPP~~~~~''I~h~~~~~~1'If11~~~~~''I~~~~~~~~~J~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~1'If1~~~~~~~~~~~~~~~~JI~~~~~~~~~~~~~~~~~lff~~~~~~~~~~f~~~~~~~~~~~~~~~~~~~~I~~~'~~~~~~r1'Yf11~~~~~~I~J~~~~~~~~~~~~~~~P~'I~h'~~~~~~~~~~fAlff~I~P~~~~~~~~~~~~'I~'~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~100GINNA-OBEHorizontalX-Avg.of4TH'sdamping=2k{factoredby3.10)Naturalf[Hz]Wo GINNA-OBEHorizontalY-Avg.of4TH'sdamping=2k(factoredbye.30)OlGC0~~e01S0XGf0.010.11r~~~~~~I~~P~~~'I~~~~~~~~~~~~C~~~I~~~~~~~~~~~~~~~~~~~~~~J~~~~~~rw~~~~~~~~I~~~~~~~~~~~~~~~~~~~~~~~~~~~~P~~r1~~~~IJ~~~~~~~~~~~I'~~~'~~~P~~~~~~~~~~~~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~P'I~~~~~~~~~~IJ~~~~~~~~~~~~I~~~~~~~~~~~~~PrCP-rPICPPIhAIIA~~~~~~~~JA~~~~~~~~~~~~~~~~~~~~I~~'~~1~~1~~~J~~~~'~~~~IJ~~~~~~~~'~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~JJ~~~~~~~~~~~~~~~~~~~~J~~~~~'I~~~'I1~~J~~~~'I~I~~~AJ~~~~~~~~'I~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~IPI-r-PP10~~~~~P''I~~~~~~~Y~'I'Vl~~~~~P~~'I~~~~~~~~JJJ~~~~~~~~~~~~JJ~~~~~~~~~~~~~~~~1'I51~~~~~~~~IIlJYPYI~PP~~~~'~~~11I~~~~'~~~~~~~~~~~~~~~~~~~~~~~I'1~~~~~~~~~\~~~~~~~~~~~~~~~C'I~~~~~~I~~~~~~~~~~~~~Jr~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~P~~'I~~~~~I~PIPI1IrIr~~11~~~~~~~~~~~~II~~~~~~~~~'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~100~~~P~~I~Y1'P~~~P~Naturalf[Hz]
Q4hgMCA't1ChOOOIpHLpJ~QQA'80VJSC0~~e01QVX6$Z0.010.1~~~~~~~~~P~'PP~~~h~P1~~1~~1r~~~P~~~~r'Oh~~~~~rh~h~~~~Ih~~~~I~~~~~~~~4J~~~~~~rI~~~~~~~~~~~~~~~r'Ir'I~~~~~~~~~~4I~~~~~~~~~~~~I~~1rI'Ilr~~~~PP~P~~~~~IJ~~~~~~~~~~~~~~~'vr~~~~~~~~~I~~~~~~~~~~II~~~~~~~~~~~~~~~~~~~~~h~~~~rpp~~~r--r---r-r~~r---r~~~~~4~~~~~~IPrp~~~~~I~II~4~~'hJ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Pr4J~~~~P'h~~~~~~~~~~~~P~~~~~~~~~~LJ~~~~~~~~~~~~~~~~~~~~4I~PP~~PPPP'vA~JPr~PIP~~~'~~~1Y'V~~~'~h~~~~JJ11~~~~~~~JJ~~~~~~~~~1'I'I~~~~~~~~~~JJ~~~~~~~~~~~~~~P~~~~~~~~~~~~~~~~~~~~~~~~~~~~~JJ~~~~hh~~~1YY~~~1~~~~JJ~~~~~~~hh~~~~~~JAA~~~~~~~~~~~~~~'Ih~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'PP~1II'~'0IJJ~~~~~'~~~11I~~~''~~~~~~~~~~~~~~~~~~~~~~~~11~~~~~~~~~~~~~~~~~~~~~~~~~~~J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~r~1~~11~~~J~~~~h~~~~~J~~~~~~~~~'h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~'~~~~1~~~~~~~~~'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~100GINNA-OBEVerticalZ-Avg.of4TH'sdamping=2%%d(factoredby3.30)h5OclfAChCOOFCbCh~Je4OC5C0Mo~Naturalf[Hz]
Figure3.5-7SSEAccelerationTimeHistory&#xb9;Ifor(EW)XDirectionSSEX-AccelerationTimeHistory41damping=4'.25--0.2-0.15CD0.1"'0.05-0"ra-0.05oc-0.1CD-0.15"'8~~-~~~~~~)~p024681012Time[oec]d14161820Figure3.5-8SSEAccelerationTimeHistory&#xb9;2for(EW)XdirectionSSEX-AccelerationTimeHistory42damping=4'.2-'.15.CDO.l.O0.05"08co-0.05-oD-0.1"0CD-0.15I-0.21!IIirIII-0.25024a~~g"J~~.~l168101214161820Time[oec]51-1258768-01GinnaSFPRe-rackingLicensingReportPage88 Figure3.5-9SSEAccelerationTimeHistory&#xb9;3for(EW)XdirectionSSEX-AccelerationTimeHistory4-'3damping=4/o0.25--0.2-"0.15<<"(90.1"".98(0-0.05g-0.1(g-015""0,2.i~~i~-0.250,'-~-iI12468101214161820Time[oec3Figure3.5-10SSEAccelerationTimeHistory&#xb9;4for(EW)XdirectionSSEX-AccelerationTimeHistory4-'4damping=4'.25-Ia0.20.15-'0.1-""'""O'iI'-005-"Q-01-~~-~~~(g-0.15'r""""*""-0.2'>1.-=~4I~II1CiLIlI402468101214161820Time[oec]51-1258768-01GinnaSFPRe-rackingLicensingReportPage89
 
Figure3.5-11SSEAccelerationTimeHistory&#xb9;1for(NS)YdirectionSSEY-AccelerationTimeHistory4-'1damping=4/o0.25--0.2-4'70.15"(50.1o.ost0>>8[I-0.05-g-0.1-~(g-0.15")-0.2-'VCCII~1II.l,I-0.250IIC4Ct2468101214161820Time[oec3Figure3.5-12SSEAccelerationTimeHistory&#xb9;2for(NS)YdirectionSSEY-AccelerationTimeHistory42damping=4'.250.2cl0,15i"-~~""~~(sCDI0.1-"""-i'.05.i---t.0-$q(ca-0.05DI'(g-0.15''""""-""1IIj-02."~"--~.II024IIII,IiljI68101214161820Time[oec351-1258768-01GinnaSFPRe-rackingLicensingReportPage90 Figure3.5-13SSEAccelerationTimeHistory&#xb9;3for(NS)YdirectionSSEY-AccelerationTimeHistory43damping=4'.2510.2-0.05.~0"0.15"CO0.1"oQloM-0.05"g-0.1q(g-0.15->VV>>t111-0.2--1I>>11511-0.2502468101214161820Time[oec]Figure3.5-14SSEAccelerationTimeHistory&#xb9;4for(NS)YdirectionSSEY-AccelerationTimeHistory44damping=4'25"-0.2->>c00.15I.CD0.1"o0.05~0-oca-0.05-iag-0.1~0(g-0.15"'j(fltt1102468101214161820Time[sec]51-1258768-01GinnaSFPRe-rackingLicensingReportPage91 Figure3.5-15SSEAccelerationTimeHistory&#xb9;1forverticalZdirectionSSEZ-AccelerationTimeHistory41damping=4/o0.15-II8~c-o~!)fiI-0.15"'24681012Time[oec]14161820Figure3.5-16SSEAccelerationTimeHistory&#xb9;2forverticalZdirectionSSEZ-AccelerationTimeHistory4-'2damping=4'.15'~0.1(9ooLCD0"8Id-O.05iO-O.1.lI!IIIIIikfllipp~II-0.15"02468101214161820Time[oec]51-1258768-01GinnaSFPRe-rackingLicensingReportPage92 Figure3.5-17SSEAccelerationTimeHistory&#xb9;3forverticalZdirectionSSEZ-AccelerationTimeHistory4-'3damping=4/o0.15lIf'II-O.1-"-"":0,1-G0ICD-0.05"-""V)I-0.15l024681012Time[oec]14161820Figure3.5-18SSEAccelerationTimeHistory&#xb9;4forverticalZdirectionSSEZ-AccelerationTimeHistory44damping=4/o0.150.1-0.M)lI;CD0.050)CDCd-0.0O-O.1IIIIIIIIIIIIII-0.15024681012Time[oec]1416182051-1258768-01GinnaSFPRe-rackingLicensingReportPage93 Figure3.5-19OBEAccelerationTimeHistory&#xb9;Ifor(EW)XdirectionOBEX-AccelerationTimeHistory41damping=2/o0.10.06-CO0.04'.02.0-Va-0.02.o-0.04~(g-0.06.-0.08-"VVIJIIII-0.10lII~I42468101214161820Time[oec]Figure3.5-20OBEAccelerationTimeHistory&#xb9;2for(EW)XdirectionOBEX-AccelerationTimeHistory@2damping=2'.1-i-0.080.06CO0.04'"O0.02'.a)0-gra-0.02---0.04".DO(g-0.06"IIIII)~-0.08-0.1"I~-Ii2IIICe(024681012Time[oec]1416182051-1258768-01GinnaSFPRe-rackingLicensingReportPage94
'~4' Figure3.5-21OBEAccelerationTimeHistory&#xb9;3for(EW)XdirectionC'JOBEX-AccelerationTimeHistoryP3damping=2l0.1Iii~~II0.06-(90.04-.O0.02-L0-e-0.02-og-0.04.(g-006-0.08lI>>=>>II!IiI">>iiIlII>>~~~>>>>-0.1i('I1I02468101214161820Time[Gec]Figure3.5-22OBEAccelerationTimeHistory&#xb9;4for(EW)XdirectionOBEX-AccelerationTimeHistoryP4damping=2/o0.10.080.06'00.04q0.02".L0"M-0.02--0.04"~(g-0.06'~~II>>->>>>IIlI)I.I!,5IIprIii>>5i"~'III>>>>iI55III02468101214161820Time[haec]51-1258768-01GinnaSFPRe-rackingLicensingReportPage95 Figure3.5-23OBEAccelerationTimeHistory&#xb9;j.for(NS)YdirectionOBEY-AccelerationTimeHistory41damping=2/o0.1--WC~".~~~~~(90.04'O0.02-0-8as-0.02"'a-004"(g-0.06--0.08-<<F<<j<<<<h<<1<<<<<<<<IIIl-0.102468101214161820Time[oec3Figure3.5-24OBEAccelerationTimeHistory&#xb9;2for(NS)YdirectionOBEY-AccelerationTimeHistoryk2damping=2''1"""""'''''~"'<<"0.0.080.06-CD0.04"O0.028((s-0.02"D-004-<<.~~~<<<<I1<<III<<O-006.~CO(<<-0.08i<<-01'..<<It<<I(III"<<""r"+"'102468101214161820Timefoec351-1258768-01GinnaSFPRe-rackingLicensingReportPage96 Figure3.5-25OBEAccelerationTimeHistory&#xb9;3for(NS)YdirectionGBEY-AccelerationTimeHistoryl3damping=2'.08-"0.06-.CO0.04o0.02-~Ql8C)ca-0.02-g-0.04T.(g-0.061-0.08-.-0.1,lCl1~~iCi.)jj:III'.l~IIIW4~~IIIll02468101214161820Time{'oec3Pigure3.5-26OBEAccelerationTimeHistory&#xb9;4for(NS)YdirectionDBEY-AccelerationTimeHistory44damping=2/o~~4~-~11~0.080.04'O0.02""0)ca-0.02--.-004""-0.06'IIIlI)~0.08Y"""02468101214Time[oec]16182051-1258768-01GinnaSFPRe-rackingLicensingReportPage97 Figure3.5-27OBEAccelerationTimeHistory&#xb9;1forverticalZdirectionOBEZ-AccelerationTimeHistory41damping=2'.06"-0.04q-""..Oa)0-N'j''ICUO-002----l:-OI-oo4--"-"."~1ft)~f-0.060468101214Time[Gec]l'61820Figure3.5-28OBEAccelerationTimeHistory&#xb9;2forverticalZdirectionOBEZ-AccelerationTimeHistoryP2damping=2'06"0.04~"-"-"-CQL002C)0-4r)-o.o4ItII~~lI"ClIIIlItIjl1-0.06~'Ii'02468101214161820Time[Gec351-1258768-01GinnaSFPRe-rackingLicensingReportPage98 Figure3.5-29OBEAccelerationTimeHistory&#xb9;3forverticalZdirectionOBEZ-AccelerationTimeHistory4-'3damping=2'.06-ICD0.02q--""O'3-0.02-"IOiCDQQ4~~~->>~~i~s~~(IijjiI',iii-0.0602468101214161820Time[Gec]Figure3.5-30OBEAccelerationTimeHistory&#xb9;4forverticalZdirectionOBEZ-AccelerationTimeHistory44damping=2/ojssi(+c002-0.04-0.06"'"0IIi(('468101214161820Time[Dec]51-1258768-01GinnaSFPRe-rackingLicensingReportPage99
 
3.5.2StructuralAnalysisMethodsRG8cEGinnaNuclearPlantspentfuelstoragesystemstructureisevaluatedusingstate-of-the-artanalyticalmethods.ToexpediteStaffreview,themethodsusedincurrentlicenseapplicationsareusedhere.Themethodsofanalysisusedarewelldocumentedintextbooksandopenliterature.Themethodandsourcereferencesareidentifiedthroughoutthereport.Thefollowingsubsectionsprovidemoredetailsonthesemethods.3.5.2.1Assumptions-Seismic/Structural1.Rackstainlesssteelrespondselasticallyunderallloading,includingseismicOBEandSSE.2.Hydrodynamiccouplingtermswerecalculatedbaseduponpotentialflowtheorywithconsiderationofhorizontalflow.3.Forthe3-Dsinglerackmodelandthe3-Dwholepoolmodel,anumberofactualsupportlegsweremodeledbyfourlegsplacedatthecornersoftherackbaseplate.4.Seismicinputconsistsofthreestatisticallyindependentorthogonaltimehistoriesofmotion,simultaneouslyappliedateachpoolpointunderracklegs,andatpoolwallpointshydrodynamicallycoupledtotherackbeams.Foursetsofearthquakeinputsweregenerated.Alleffectsoftheearthquakewereexamined;i.e.,legandpoolwallreactionforces,displacements,tipping,etc.AsingleearthquaketimehistorywasselectedforOBEandSSEconditions.Ineachcase,aseismicresponsespectraenvelopingfactorwasdetermined,suchthattheaverageoffourdevelopedtimehistorieswouldenvelopthespecifiedfloorresponsespectrathroughoutthefrequencyrange,tomeettherequirementsspecifiedinSRP3.7.1ofNUREG0800.Atimehistoryfactorwasthenappliedtothefinalresultstoensurethattheresultswouldremainthemostconservativeandenvelopealltimehistorycases.6.Itwasassumedthatthehydrodynamiccouplingforcesweredependentupontheinitialgap.Theresultsofthe3-Dwholepoolanalysisshowedthesuitabilityofthisassumption.Thiswasduetothefactthatincreasesingapsononesideoftheracktendedtobeoffsetbydecreasesingapsontheotherside.Furthergapclosureswouldproducehigherhydrodynamiccouplingforces,whichwoulddecreasefurtherclosure.7.Coefficientsoffrictionbetween0.2and0.8areadequatetocovertherangebetweenthelowerandtheupper&ictionvaluesbetweentheracklegsandthepoolfloor.Aselectiverunwasmadewiththecoefficientoffrictionof0.5toshowthatloadswereboundedforthecoefficientoffrictionof0.8,andthedisplacementswereboundedforthecoefficientoffrictionof0.2.8.Buoyancywasconsideredforthecalculationsofrackandfuelweights.51-1258768-01GinnaSFPRe-rackingLicensingReportPage100 9.Theuseof20.0secondsforthedurationoftheseismictimehistoriesissufficient.ItwasshownthatthedevelopedtimehistoriesmatchtherequirementsspecifiedinSRP3.7.1ofNUREG-0800,Reference3.2.10.Nominaldimensionswereusedintheanalysis.11.AllowablematerialpropertiesasspecifiedintheASMECode,SectionIIIwereused.12.Hydrodynamiccouplingbetweenfuelandrackcells,betweenracksandbetweenracksandpoolwallwastakenintoaccount.13.Allthefuelassembliesactsimultaneouslytoproducethemaximumloadingeffect.14.Allrackstresses,excludingthelegsandthelegweldattachments,areevaluatedbaseduponmaximumforcesratherthanupontimedependentforces.15.Thepoolwasconsideredasarigidstructurewithregardtotheseismicexcitation.16.Adampingcoefficientof2%wasusedforOBEand4%forSSE.17.Boratedstainlesssteeldensityandcoefficientofthermalexpansionweretakenasthesameas304Lstainlesssteel.3.5.2.2AnalyticalProcedure3.5.2.2.1SeismicAnalysisThemethodologyusedtoperformtheseismicanalysisoftheracksisdescribedinthissection.Theracksare&eestandingmoduleswhichareindependentofeachotheraswellasthewalls.Theracksaresimplysupportedbythepoolfloorwithnostructuralconnection.Therefore,theracksmayslideandtip.Awiderangeofseismicanalyseswereperformedaccountingfor:A.B.C.D.E.F.variationincoefficientoffriction,variationinfuelloading,variouslevelsofseismicactivity,hydrodynamiccoupling,slidingandtippingofracks,andimpactoffuelassemblieswithintheracks.Thenewracks(racks7through13)tobeaddedattheGinnaStationutilizehighdensity,freestandingspentfuelstorageracks.Duetothefactthatthenewhighdensityspentfuelracksare&ee-standingstructureswhicharefreetoslideandtip,anonlineardynamicanalysisisrequiredtoevaluatethecasesofOperationalBasisEarthquake(OBE)andSafeShutdownEarthquake(SSE).Theracksareoftwobasicdesignvariations:namelythoseinRegion1andRegion2.Region1isdesignedtoaccommodate&eshfuelassemblies,whileRegion2isdesignedtoaccommodatespent51-1258768-01GinnaSFPRe-rackingLicensingReportPage101 fuelassemblies.Inaddition,Region1and2aredesignedtostoreconsolidatedspentfuelcanisterswitha2:1consolidationratio.Agenerallayoutofthearrayofracks,Region1and2,areshowninFigure3.5-36.Theanalyseswereperformedusingseveralmathematicalmodels.Themodelsincludedfeaturestoallowslidingandtippingoftheracksandtorepresentthehydrodynamiccouplingwhichoccursbetweenfuelassembliesandrackcells,betweenracks,andbetweenracksandreinforcedconcretepoolwalls.A3-Dsinglerackbeammodelwasusedtoselecttheappropriateparametersforthemulti-rackwholepoolnonlinearanalysis.The3-Dsinglerackmodelsimulatedthethree-dimensionalcharacteristicsoftherackmodulesinacomprehensivemanner.Thephysicaldegreesoffreedomsuchaslifting,twisting,bending,sliding,overturning,etc.,wereincorporatedintothedynamicmodelasrequired.The3-Dsinglerackmodelcouldnotevaluatemulti-rackeffects,suchasrelativerack-to-rackdisplacements,soa3-Dwholepoolmodelwasused.The3-Dsinglerackmodelwasusedtodeterminethesensitivityofvariousparametersonthestructuralresponseandtosimplifytheinputforthe3-Dwholepoolanalysis.Todetectanyimpactbetweenracksand/oranyimpactbetweentheracksandthepoolwall,additionalgapelementswereintroducedintothe3Dwholepoolmodel.The3-Dwholepoolmodelwasusedtodetermineallforcesandmomentsforeachrackmodule,andthenusedforthestressanalysisoftheracks.Thismodelwasalsousedtodeterminetherelativerack-to-rackandtherack-to-wallmotions.The3-Dsinglerackmodeldeterminedthefollowing:1)Asingleenvelopingseismictimehistoryfactor(seeSection3.5.2.6).2)Effectsofrackstiffnessonforces,momentsanddisplacements(seeSection3.5.2.7).3)Forcestransmittedtotheinter-rackconnectionsfromtheperipheralrackstotheexistingRegion2racks.Includingparametersfortheseconnectionsinthe3-Dwholepoolmodelwouldhavemadethemodeltoocomplextorunforthenonlinearanalysis.The3-Dsinglerackmodelwasrunfortherackthatproducedthehighestloadfortheperipheralrack(seeSection3.5.3.1.7.3).4)Effectsofoff-centeredfuelloadings(seeSection3.5.3.1.7.4).5)Comparisonofsingle3-Drackmodelswithconnectedanddisconnectedfuelbeams(seeSection3.5.3.1.7.5).6)Effectofrackheightincrease(seeSection3.5.3.1.7.2).Inboththe3-Dsinglerackmodelandthe3-Dwholepoolmulti-rackmodel,theracksandthefuelassembliesineachrackwererepresentedasasinglemember.Hydrodynamiccouplingandimpactforceswereobtainedforfueltorackimpact.Impactforcesfromracksupportlegstopoolfloorswerealsoobtained,aswellasmaximumloadings(bothverticalandlateral)onthesupportlegs.51-1258768-01GinnaSFPRe-rackingLicensingReportPage102 Detaileddescriptionsofthe3-Dsinglerackmodelandthe3-DwholepoolmodelusedintheanalysisaregiveninSection3.5.2.3.Theothermodelsusedinthestressanalysisincluded(1)a3-Dsinglerackplatemodeland(2)singlecellmodelswithtabs.The3-Dsinglerackplatemodelwasusedforthestaticstress,thermal,andthebaseplatestressanalysis.Thesinglecellmodelswithtabswereusedtodeterminethedistributionofthelocalfueltorackimpactloadings.The3-Dwholepoolmodelwasrunfortwelve(12)differentpoolloadingconfigurationsasdescribedinSection3.5.2.3andprovidedinTable3.5-64.Toaccountforallpossiblecombinations,fuelloadingconditionsofempty,half-loaded,andfully-loadedrackswereanalyzed.Bothnormalfuelassembliesandconsolidatedfuelcanisterswereconsidered.Interfacecoefficientsoffrictionconsideredfortherackswereasfollows:a)b)c)d)allat0.2,onerunofallat0.5allat0.8,andmixed,whichwerestatisticallydeterminedasprovidedinTables3.5-65and3.5-66.Maximumslidingoccurswhentheinterfacecoefficientof&ictionis0.2andmaximumtippingandstressoccurswhentheinterfacecoefficientoffrictionis0.8.Therefore,onlyselectiverunsweremadewiththemixedcoefficientsoffriction.Themaximumloadsforeachrackandrelativegapclosuresbetweenracksweredetermined.Themaximumloadsgeneratedontotheresidentrackswerethencomparedwiththeloadsusedfortheoriginallicensingoftheracks(racks1through6).3.5.2.2.2StructuralAnalysis3.5.2.2.2.1RackStressesTheresultsofallthedynamicanalysisrunsincludedbothseismicanddeadloads.ForbothOBEandSSEconditions,allaccelerationtimehistorieswereamplifiedbyaseismicresponsespectraenvelopingfactorof1.1.AsdescribedinSection3.5.2.6,atimehistoryfactorof1.2appliedtotheSSEloadswouldcompletelyenveloploadsgeneratedfromallfouroftheSSEtimehistories.Similarly,afactorof1.12wasdevelopedfortheOBEloads.TheaccompanyingTables3.5-141through3.5-146listthestressallowableandtheresultsoftheanalyses.Stressesinthetubeswerecalculatedfromthe3-Dwholepoolmodelbasedupontheoverallmomentsandshearsappliedtotherack.Inaddition,thefueltorackimpactscausesbendingstressesinthewallsofthestructuraltubes.Sincethetubesacttogetherinresistingseismicloads,shearforcesmustbetransferredthroughtheconnectingtabs.Duetotheseshearforces,thetabplatesaresubjectedtoshearandbendingmoments.Theweldsare,therefore,subjecttostressesduetotabplatebendingandshear.Theconnectingtabsareusedtoconnectstructuraltubestogethersothattherackactsasastructuralelement.ThetabandweldarrangementsandresultsaredescribedinSection3.5.3.1.2.51-1258768-01GinnaSFPRe-rackingLicensingReportPage103
 
Thetabsaredesignedtobecapableofcanyingtheshearflow&omonetubetothenext.Duetothegridarrangement,theshearstressineachdirectionwilltendtobeuniforminplan.Maximumbaseshearforce,calculatedfromthe3-Dwholepoolanalysis,wasfoundintwoorthogonaldirections;i.e.,N-S,E-W.AlltabsandweldsforATEAracksaredesignedfortheworstloadcases.Results&omthe3-Dwholepoolmodelanalysisprovideinformationonoverallmaximumstressesincells.Theoutputforcesandstressesofallboundingrunsusingthe3-DwholepoolmodelareprovidedinSection3.5.3.1.8.3.5.2.2.2.2SupportLegsandConcreteBearingStressesThebearingstressesintheconcreteslabandthestressesinthe'upportlegsweredeterminedfordeadweight,thermalandseismic(OBE&SSE)loadings.Boussinesq'ssolution(Reference3.35)forhalf-spacewasalsousedtoestimatebearingstressesintheconcrete(seeSection3.5.3.1.5forloads).Themaximumhorizontalandverticalloadinputstothemodelweretakenfromtheresultsfromthe3-Dwholepoolanalyses(seeSection3.5.3.1.5forloads).Themaximumsupportreactions,overallbendingmomentsandforcescalculatedfromthetimehistoryanalyseswereusedtodeterminestressesinthesupportlegsandreinforcedconcrete.AccordingtoReference3.22,theaverageconcretestrengthofthespentfuelpoolconcreteis3,000psi.Theaveragepressure(bearing)underthebearingpadshallnotexceedthedesignbasispressureforadeadloadorseismicload.Themaximumbearingstressintheconcretewascalculatedbytakingthemaximumverticalsupportlegloadsdeterminedfromthe3-Dwholepoolanalysesanddividingbytheareaofthebearingpad.Asanothercheckforbearingstresses,Boussinesq'ssolutionforhalf-spacewasused.Inthismethod,itwasassumedthatanormalforceisactingontheplaneboundaryofasemi-infinitesolid.AllresultsaresummarizedinSection3.5.3.1.9.Thestressallowablepertainingtothesupportleg,analysisdetailsandtabulatedresultsaregiveninSection3.5.3.1.9.3.5.2.2.2.3WeldStressesTheweldpatternsofconnectingtabswerecalculatedforeachrackinRegion1andRegion2.ThecontrollingloadcombinationsweretheconsolidatedfuelcaseforbothOBEandSSEconditionswiththecoefficientoffrictionof0.8.Thestructuraltubesareweldedtothebaseplatebymeansoffilletwelds.Theweldstransferthebaseshearforcesandthebasebendingmomentsfromthetubestothebaseplate.ThebaseshearineithertheE-WorN-SdirectionisassumedtocauselongitudinalshearstressesintheweldsorientedintheE-WandN-Sdirections,respectively.Thebendingmomentscauseverticalshearstressesinthewelds.Theweldmaterialis308L,forwhichtheminimumtensilestrengthisS=70,000psi51-1258768-01GinnaSFPRe-rackingLicensingReportPage104 Weldstresslimitto0.3SforServiceLevelA=21,000psi.Weldstresslimitto0.42SforServiceLevelD=29,400psiTo=180FTheresultsofthemaximumtabandtubeweldstressesarelistedinTables3.5-144and3.5-145.3.5.2.2.2.4Fuel-to-RackImpactLoadsEvaluationTheloadingduetofuelassemblieswasconsideredforunconsolidated,consolidated,half-fullandemptyconditions.TheimpactforcesbetweenthefuelassembliesandrackcellarepresentedinSection3.5.3.1.6.InallcasesfortheOBEandSSE,thecaseofunconsolidatedfuelcausedthegreatestseismicfuel-to-rackimpactloadingtooccur.Thehydrodynamiccouplingbetweentheunconsolidatedfuelandtherackcellswasmuchlowerthanthehydrodynamiccouplingbetweentheconsolidatedfuelcanistersandtherackcells,thuspermittinggreaterimpacttooccur.Theanalysiswasperformedtodemonstratethefuelrack-cellwallstructuralintegrityduetoimpactloadingoffuelassemblies.Thelocalstressintherackcellwascalculated&omthepeakimpactloadobtainedfromallthedynamicanalysisrunsthatincludedbothseismicanddeadloads.ThestresslimitsspecifiedforLevelBloadings(OBE)andLevelDloadings(SSE)givenintheASMESectionIIICode(Reference3.19)wereusedtoobtainthelimitingimpactload.Thestressesintherackcellweredeterminedusingafiniteelementmodelofasinglecell.Forthisanalysis,thebaseoftheplatewasassumedfixed,theotheredgesalongtheheightofthecellwereassumedsimply-supported,andthetopedgeofthecellwasassumedfree.ThemodelwasconstructedofshellelementswithANSYS5.2(Reference3.40)Table3.5-58providestheallowableloadandthemaximumloadobtainedforalloftheloadcasesanalyzed.AsdescribedinSection3.5.2.6,atimehistoryfactor,of1.2and1.12wasappliedtothemaximumSSEandOBEloadsrespectively.Thecalculatedmaximumfuelassembly-rackcellwallimpactloadsfortheSSEandOBEcases,accountingforthetimehistoryfactor,arewellbelowtheallowableloadlimit.Thisconfirmsthelocalcellwallintegrityforthemaximumfueltorackcellwallimpactloads.3.5.2.2.2.5SlidingandTippingInadditiontotheresultsofthe3-Dwholepoolanalysisusedtodeterminestresses,dataisalsoprovidedonthemaximumrelativeslidingandtipping.Theresultsindicatethatthevibratorynatureoftheseismiceffectsprecludesasignificantdegreeofslidingandtipping.Theslidingandtippinghavethreemajoreffects:1)theslidingisanenergydissipator,2)theslidingprecludestheeffectofresonancesinceenergyisnotstored,and3)bothtippingandslidinglimittheforcesthatcanbeintroducedintotherack.51-1258768-01GinnaSFPRe-rackingLicensingReportPage105 f
Thehorizontalseismicdisplacementsofthepoolflooraretransferredtotheracksthroughthesupportlegs.Thebaseshearforceislimitedbythecoefficientoffrictioninsliding.Theeffectivebendingmomentatthebaseofther'ackislimitedtothatbendingmomentwhichcausessomesupportlegstoliftoff.However,evenaftertippinghasoccurred,resistancetotippingisprovidedbythemomentsattributedtotheextremesupportlegsstillbearinguponthefloor.Supportingcalculationsforthe3-Dsinglerackmodelandthe3-DwholepoolmodelareprovidedinSection3.5.3.1.1.3.5.2.2.2.6ExpectedLoadsonFloorFromRacksEachrackrespondstotheseismicinputcausingpeakmaximumsupportpadloadsinadditiontomaximumaveragesupportpadloads.Theconcretebearingstresseswerecheckedformaximumpeakandaveragesupportpadloadsandfoundtobewithintheallowables,aspresentedinTable3.5-142.Duetothesupportingsurface(concrete)beingwideronallsidesthantheloadedarea(supportpads),thedesignbearingstrengthwasincreasedbyafactoroftwoperACI349-85,Section10.15,Reference3.20.InformationonthefloorloadsisprovidedinSection3.5.3.1.5.3.5.2.2.2.7PoolLinerPlateIntegrityEvaluationThepoollinerissubjecttoatopsurfaceshearingloadduetothefrictionalreactionload.Bydefinition,themaximumshearforceimposedbythesupportlegis0.8timestheverticalforce.Theverticalreactionistransferreddirectlydownwardtotheconcretethroughthelinerplate.ThemaximumbearingstressesandtensilestressesinducedonthelinerareprovidedinSection3.5.3.1.17.3.5.2.3DetailedDescriptionsofMathematicalModelsTheANSYS(Reference3.40)Finite-ElementAnalysisCodewasusedforthestructuraVseismicanalysisoftheracks.Bothelasticshellelementandbeamelementmodelswerecreated.Thesemodelsincludedfeaturestoallowforslidingandtippingoftheracksandtorepresentthehydrodynamiccouplingwhichcanoccurbetweenfuelassembliesandrackcells,betweenracks,andbetweentheracksandthereinforcedconcretewalls.Themodelsusedintheanalysisaredescribedinthefollowingparagraphs.Model1-3-DSingleRackPlateModelA3-DSingleRackPlateModel(SeeFigure3.5-33)waspreparedforuseinthestaticstress,thermal,andthebaseplatestressanalysis.Thismodelconsistedofshellelementsrepresentingthecellsoftherack.A9x11rackmodulewaschosensinceitholdsthelargestnumberofconsolidatedfuelassemblies,whichwillresultinthegreatestsupportpadloadings.Inthestaticanalysis,allsupportpadsarerestrainedagainstslidingandtipping.Themaximumhorizontalandverticalloadsandbendingmomentsinputtothemodelweretakenfromtheresultsofthe3-Dwhole'poolmodelseismicanalyses.Upperboundvaluesareusedintheselectionoftheseismicgloads.Therefore,thoughresultsofthisanalysisareconsideredconservative,theyprovideimportantinformationonpadbearingforcesandstressesintherack.51-1258768-01GinnaSFPRe-rackingLicensingReportPage106 Model2-3-DSingleRackBeamModelA3-DSingleRackBeamModel(seeFigure3.5-31)wasusedforparametricstudiesrelatingtotheseismicdynamicanalysesoftheracks.Therackmodulesinthepoolweremodeledasnon-lineardynamicstructurestakingthegeometricandphysicalnonlinearitiesintoconsideration,andanalyzedbythenonlineartimehistoryanalysismethod.Thenonlinearitiesariseprimarilyfromthefollowing:1.Thesupportlegsarefreetoslideinanyhorizontaldirectionandcanliftoff,verticallyupward.2.Thefuelassembly,whetherconsolidatedinacanisterornot,isnotstructurallytiedtothefuelrackcell.Thisresultsineitherafluidgaporanimpactatanytimeduringtheseismic,event.AllstructuralmembersaremodeledbytheANSYSBEAM4element.TheBEAM4elementisa3-Delasticbeamwithsixdegreesoffreedomateachnode.Beamelementsareusedtomodeltheracklegs,thebaseplate,theracktubes,andthefuel.Thefuelbeamandtherackbeamareverticalbeamslocatedatthecentroidoftherackinthehorizontalplane.Thefuelbeamandtherackbeamareconnectedatthebottomend.ThebaseplatebeamsextendhorizontallyRomthebottomoftherackbeamtothecentersofthecornerrackcells.Atthecornerrackcells,racklegbeamsextendverticallydownwardfromtheendsofthebaseplatebeams.Eachlegbeamrepresentsonefourthofthetotalnumberofracklegs.AllmassisrepresentedbyMASS21elements.TheMASS21elementisalumpedmasselementwhichcanbeappliedinallthreedirections.TheMASS21elementcanalsoapplyrotaryinertiatorepresentthelumpedmassmoreasadistributedmass.AllcontactelementsbetweentheracklegsandpoollinerandbetweenandtheracktubesandfuelaremodeledwithCONTACT52elements.TheCONTACT52elementisa3-Dpointtopointcontactelementwhichallowsforgaps,interfacestiffness,andslidingfriction.Allhydrodynamiccouplingbetweenthefuelandrack,andbetweentherackandadjacentracksaremodeledwiththeFLUID38elements.TheFLUID38elementisahydrodynamiccouplingelementwithtwodegreesoffreedomateachnode,i.e.horizontaltranslationintwoorthogonalaxesperpendiculartotheverticalaxesofthecoupledcylinders.Therackanalysisincorporatesinertialfluidcouplingtermswhichmodeltheeffectsoffluidinthegapsbetweenthefuelassembliesandracks,betweenadjacentracks,andbetweentheracksandthepoolwalls.Thecorrespondinghydrodynamicmasseswerecalculatedusingestablishedmethods,basedonpotentialtheorydescribedinReferences3.38.Theinter-rackhydrodynamicmasseswerecalculatedusingformulationsdevelopedforrectangularshapes(Reference3.38)assumingnominalgapsbetweenracks.ThehydrodynamicmassforconcentriclongcylindersgiveninReference3.38wasusedforfuel-to-rackcouplingterms.51-1258768-01GinnaSFPRe-rackingLicensingReportPage107
 
Gapelementswereprovidedinthemathematicalmodelasfollows:a1Thefuelassemblytocellgapincludedanelasticspringwhichbecameeffectivewhenthegapisclosed.Thisspringstiffnesswasbaseduponthebendingstiffnessofthecellwallsrestrainedatcorners.b.Thesupportlegtopoolfloorgapwasrepresentedseparatelyintheverticalandhorizontaldirections.Thehorizontalreactionwasbaseduponthecoefficientoffrictiontimestheverticalreactionupuntilthesummationofhorizontalreactionexceededthehorizontalinertialforce,atwhichtimetherackisassumedtoslide.Asaconservatism,theRayleighdampingeffectinthereinforcedconcreteslabwasnotconsidered,fortheverticalimpactsupportlegload.Therearetwobasicsinglerackmodels.Thefirstisarepresentationofrack8(2B),a9x11Region2rackdesignedbyATEA.Thesecondisarepresentationofrack1,anexistingRegion2rackintheR.E.Ginnaspentfuelpool,withaperipheralrack,rack4A,attached.Model3-3-DWholePoolModelA3-DWholePoolModelwasusedtodeterminetherelativerack-to-rackandtherack-to-wallmotions.Thismodelwasalsousedtodetermineallmaximumforcesandmomentsforeachrackmodule.ThearrangementsoftheGinnaspentfuelpoolwithsevennewATEAspentfuelracksandsixresidentracksareshowninFigure3.5-36.Noteinthisfigurethatracks1,through6aretheresidentracksand7through13arethenewracks.TheindividualrackmodelswerecombinedasshowninFigure3.5-32.Therackpropertiesweretaken&omtherackpropertiesforeachrack.Themajordifferencebetweenthisrackmodelandthe3-Dsinglerackmodelwasintherepresentationofthefuel.Theindividualrackmodelusedinthe3-DwholepoolmodelusedacommonnodebetweentherackbeamandthefuelbeamatthebaseplateoftherackasshowninFigure3.5-40.Itwasshownthatthiscommonnodedoesnotaffecttherackforcesandmomentsobtainedfromtheanalysis(seeTable3.5-63).Thebaselocationnodesoftherackbeamandthefuelbeamareconnectedbyaspringelementinthe3-Dsinglerackmodel.Thefuelmassinthe3-Dwholepoolmodelisdistributedwith1/4ofthetotalfuelmasslocatedatthetopnodeofthefuelbeamelement.Onehalfofthetotalfuelmassandonehalfoftherackmassarelocatedatthemiddlenodesofthefuelandrackbeams.Theremaining1/4ofthefuelmass,1/4oftherackmassandthebottomrackplatemass,aswellasthelegmassesarecombinedatthebottomnode.Hydrodynamiccouplingtermswerecalculatedforeachrackandthenaveragedfortheconnectionbetweenanytworacks.Thecouplingforanyperimeterracktothepoolwallwastakensimplyasthehydrodynamiccouplingforthatspecificrack.Thefueltorackhydrodynamiccouplingwasaccountedforwithonehalfofthecouplingplacedbetweenthetopnodesoftherackandfuelbeams.Theotherhalfofthefueltorackcouplingwasplacedbetweenthemiddletwonodesoftherackandfuelbeams.51-1258768-01GinnaSFPRe-rackingLicensingReportPage108 Theotherparametersusedinthe3-Dwholepoolmodelaresimilartothe3-Dsinglerackanalysis.Buoyancywasconsideredforthecalculationsofrackandfuelweights.Thecoefficientof&ictionbetweentheracksupportlegsandpoollinerusedinthe3-Dwholepoolanalysiscorrespondedtothefollowingcases:i)Allcoefficientoffriction=0.2ii)Allcoefficientoffriction=0.8iii)Allcoefficientoffriction=0.5iv)Combinationoffrictioncoefficientsbetween0.2and0.8.ThecoefficientsoffrictionbetweentheracksupportlegsandpoollinerweregeneratedusingaGaussiandistributionrandomnumbergeneratorwith0.52asthemeanand0.148standarddeviations.SeparatecalculationswerecarriedoutforbothOBEandSSEconditions.Conditionsoffull,emptyandhalf-loadedwithfuelassemblieswereanalyzed.Thestoragelocationsoccupiedbyfuelinthehalf-loadedconditionswereselectedinsuchamannerthatthecenterofgravityoftheloadedracksisfarthest&omitsgeometricplaneofsymmetry(i.e.,torsionalresponseofrackwasconsidered).Atotaloftwelveseparatecaseswereanalyzedwiththe3-Dwholepoolmodel.Thereisatotalofthirteen(13)racksinthe3-Dwholepoolmodel.TheloadcasesanalyzedaresummarizedinTable3.5-64.Thefirsttencasesassumedeachrackfilledwithunconsolidatedfuelorconsolidatedfuelwiththecoefficientof&ictionbeingvariedwithvaluesof0.8,0.5and0.2.TheseismicloadsconsistofboththeSSEandOBEconditions.Thelasttwocases(11and12)wererunwiththeracksassignedvariousfuelloadingsasgiveninTables3.5-65and3.5-66.Also,therackswereassignedrandomcoefficientsof&ictionwithvaluesof0.8,0.5and0.2asgiveninTables3.5-65and3.5-66.Thekinematiccriterionseekstoensurethattherackisaphysicallystablestructure.Thephysicalstabilityoftherackmustbeconsideredwiththecriterionthatinter-rackimpactorrack-to-wallimpactsdonotoccur.However,theimpactofthefuelassemblyonthecelldoesoccurandwasevaluatedandaccountedfor.Forcesgeneratedfromtheimpacteventsbetweenthefuelassembliesandtherackcellswereconsideredforlocalaswellasoveralleffectsonthecellwallsandrackmodule.Itwasdemonstratedthatsuchanimpactdoesnotleadtodamageoftherackmodules.SingleCellModelswithTabsTwo3-Dfiniteelementmodelsoftype2andtype3individualspentfuelstoragerackcellsweremadewithANSYS5.2usingaSHELL63element.Themodelswereusedtodeterminethedistributionofconnectingtabtranslationalreactionloads.Thefiniteelementmodelsforthetype2rackcellandthetype3rackcellareshowninFigures3.5-34and3.5-35respectively.Thetype2cellissubjectedtoapressureloadontheinsidesurfaceofonecellface,andapressureloadonthe51-1258768-01GinnaSFPRe-rackingLicensingReportPage109
 
outsidesurfaceofanoppositecellface.Thetype3cellissubjectedtoapressureloadontheinsidesurfaceofonecellface,andconcentratedloadsateightbeltelevationsontheoutsidesurfaceofanoppositecellface.Theentirelengthoftheconnectingtabsismodeledsuchthatthestiffnessofthetabisrepresentedproperly.Thetype2andtype3cellmodelswereloadedasdescribedabovewithanarbitraryloadtorepresentafuelassemblyloadinginsideandoutsideofacell.Theconnectingtabreactionloadswerethenratioedupordownbasedontheactualloading.Thesereactionloadswereusedtodeterminethestressesinthetab,andinthetabweldateachtablocation.Themaximumstressintensityofthecell.wasalsoobtainedforthetype2andtype3cellsfromthesefiniteelementmodels.Stressanalysisdetailsontheconnectiontabs,welds,andtube(rackcell)aregiveninSection3.5.3.1.2.51-1258768-01GinnaSFPRe-rackingLicensingReportPage110 Figure3.5-313D-SingleRackModelnrrn24GAPELEMENTn21n33RACKn30FLUIDCOUPLING(Fuel-to-Rack)ELEMENT0322n10II32n17n29FUELn1GAPn25n9n8n4FLOORn31n28FLUIDCOUPLINGELEMENT(Rack-to-WaII)n2n18SUPPORTLEGn8n1851-1258768-01GinnaSFPRe-rackingLicensingReportPage111 Figure3.5-32GINNA3DWholePoolRackModelR2R4R6R10R13R9R1RlR3RSR151-1258768-01GinnaSFPRe-rackingLicensingReportPage112
 
Figure3.5-33SingleRackFiniteElementModel51-1258768-01GinnaSFPRe-rackingLicensingReportPage113 I<llii~l<l~~i~lll===:.iii~~ill<i==-ii=-==~~~<--;Igl<llllili~lgllti~~<~Ill/====>~Ill['lg=~II()~lllp1$5)[-<II(-''lily1g'~ll)g<lg==:=i=,---=alii~~~I I
+.-==I](I~NEMESES~~~l~waeei~ei>E><~wq~~113E//)Il<~~l'1LWLWWLIIqk~WWkwlllkLILpe)[I$gi//~I)I<1~)~)~j')Ii~lii=l~~lllpl)======ilIrr>~'<i')====rI)I[I)~~~~I((l~~~~~/(]~'~
Figure3.5-36PlanViewofSpentFuelPool26663118.02IIBAR~8<<3015.254204%10)0501.75~I(14%10)1040I204trs+I254.304.7514.2514>+(14%10)0.750.7543(14%10)15.50457.750434.3012.75'%6(14%10)3.38a75~5(14%10)17AIO3.3892.34NIO-3A(7%10)0.79$93C(5%10)0.79%8-28(9%11)76460.79~72A(8%1,)6(L07~~(L7992.34620(5%10)+(2%6)012-3D(5%10)~ll-3E(6%10PIMO2)96.48g7.053271.7230.7364Ai387.74195014.75525~",.6.0O.7.SOI-93>>~NOI"thREGION2~REGIONI(INCLUDES2A62B)NoteiRacks1thrv6areexlstlngracks+X%East.+Y=N()rth,+Z=Up~~~Note:Pooloveralldimensionsareforinformationonly.51-1258768-01GinnaSFPRe-rackingLicensingReportPage116
 
3.5.2.4DetailedDocumentationofComputerCodes3.5.2.4.1GeneralThefollowingisadescriptionofthecomputercodesandverification/validationmethods(asapplicable)usedinthestructuraVseismicanalysesperformedbyFCFfortheGinnaStationSpentFuelStorageRacks.Acopyoftheuser'smanualanddocumentationforSIMQKEisavailableinthePublicDomain.3.5.2.4.2StructuraVSeismicComputerCodesTwocomputercodeswereutilizedforthestructural/seismiccalculations,ANSYS(Reference3.40)andSIMQKE(Reference3.41).3.5.2.4.2.1ANSYSTheprimarycodewhichwasusedforthestructuralanalysesisANSYSVersion5.2.ANSYSisageneralpurpose,finiteelementprogramforsolvingawidevarietyofengineeringanalysisproblems.ANSYSemploysthelatestfiniteelementtechnologyforthesolutionofseveralclassesofengineeringproblems.ANSYShasalargelibraryofelementsandanextensiveselectionofmaterialproperties,bothlinearandnonlinear.Thesofbvareservicesawidespectrumofuses,&omthelinearelasticanalysisoftwodimensionalandthree-dimensionalsolidstoapplicationsinwhichnonlinearmaterialandgeometriceQectsdominate.Theseapplicationsmustbeincludedinconjunctionwithsophisticatedgeometricmodeling.Theregimeofapplicationsvariesfromstatictodynamicstructuralproblems.Meshgeneratorsandextensivepre-processingandpost-processinggraphicshelpinestablishingthecorrectanalysis.Since1970,thisprogramhasbeenusedextensivelybyanalystsinthenuclear,chemical,construction,andelectronicindustries.Extensiveusehasledtoahighdegreeofreliabilityinobtainedcomputerresults.TheANSYSanalysistypesincludethefollowing:Staticanalysis~DynamicanalysisNonlineartransient,lineartransient,harmonicresponse,mode-frequency,modalseismic,randomvibration.~Bucklingandstabilityanalysis~Linearbuckling,nonlinearbuckling~HeattransferanalysisNonlinearitiesMaterial,geometric,elementSubstructures51-1258768-01GinnaSFPRe-rackingLicensingReportPage117 AllANSYSanalysistypesarebasedonclassicalengineeringconcepts.Throughprovennumericaltechniques,theseconceptscanbeformulatedintomatrixequationsthataresuitableforanalysisusingthefiniteelementmethod.Thesystemtobeanalyzedisrepresentedbyamathematicalmodelconsistingofelementsandnodes.Structuralelementtypesincludespars,pipesandelbows,beams,plates,shells,solids,masses,springs,dampers,slidinginterfaces,andgapinterfaces.Also,arbitrarystiffness,massanddampingmatrixelementsareavailable.Loadinginputforstructuralanalysesmaybenodalforces,bodyforces,displacements,velocities,accelerations,pressures,ortemperatures.Theseinputsmaybesinusoidal,randomoranarbitraryfunctionoftimeforthelinearandnonlineardynamicanalyses.Modefrequencyanalysesmayincludeforcespectrumorresponsespectrumloadings.Structuralanalysisoutputsareusuallyforces,displacements,stresses,andstrains.ANSYShasbeenusedatFCFforthelast21years,andanalysesareperformedperproceduresthatincludetheguidelinesforthecertificationofcomputercodes.FCFhasverifiedthatANSYS5.2isacceptableforthisanalysisandthatallapplicableerrorreportshavebeenreviewedandhavebeenshowntohavenoeffectontheseanalyses.3.5.2.4.2.1.1SummaryofElementTypesUsedintheANSYSModelsThefollowingisalistoftheelementtypeswhichwereusedintheANSYSmodels:BEAM4TheBEAM4elementisa3-Delasticbeamwithsixdegreesoffreedomateachnode.Beamelementswereusedtomodeltheracklegs,thebaseplate,theracktubes,andthefuel.MASS21TheMASS21elementisalumpedmasselementwhichcanbeappliedinallthreeorthogonaldirections.TheMASS21elementcanalsoapplyrotaryinertiatorepresentthelumpedmassmoreasadistributedmass.CONTACT52TheCONTACT52elementisa3-Dpoint-to-pointcontactelementwhichallowsforgaps,interfacestifRess,andslidingfriction.FLUID38TheFLUID38elementisahydrodynamiccouplingelementwithtwodegreesof&eedomateachnode,translationperpendiculartotheaxesofthecoupledcylinders.SHELL63TheSHELL63elementisanelasticshellelementthathasbothbendingandmembranecapabilities.Bothin-planeandnormalloadsarepermitted.Theelementhassixdegreesoffreedomateachnode.TheSHELL63elementwasusedinthesingle3Dplatemodelsoftheracks,andinthelocalrackcellmodelswithconnectingtabs.51-1258768-01GinnaSFPRe-rackingLicensingReportPage118 3.5.2.4.2.1.2SummaryofANSYSErrorReportsforElementTypesUsedErrorNo:96-14UseofSHELL63elementswith:(1)NON-UNIFORMthermalloads,and(2)anynonlinearityinthemodel,and(3)extradisplacementshapes.Thiserrorisnotapplicableforouranalysessincewedidn'tuseanynon-uniformthermalloads.ErrorNo:96-26UseofSHELL63elementswiththeAllmanin-planerotationalstiffness(KEYOPT(3)=2)inanyoneofthefollowing:(1)abucklinganalysis,or(2)aprestressedanalysis,or(3)inanonlinearanalysiswithstressstiffening.Thiserrorisnotapplicableforouranalysissincewedidn'tusetheAllmanin-planerotationalstiffness(KEYOPT(3)=2).Conclusion:NoneoftheANSYSErrorReportshadanyeffectontheresultsoftheanalyses.3.5.2.4.2.2SIMQKETheprogramSIMQKEhasthesecapabilities:itcomputesapowerspectraldensityfunctionfromaspecifiedsmoothresponsespectrum;itgeneratesstatisticallyindependentartificialaccelerationtimeshistoriesandtries,byiteration,tomatchthespecifiedresponsespectrum;itperformsabaselinecorrectiononthegeneratedmotiontoensurezerofinalgroundvelocity;anditcalculatesresponsespectrawiththetimehistoriesasinput.Theartificialmotiongeneratedbytheprogramisaseriesofsinusoidalwavesmultipliedbyanintensityenvelopefunction:Z(t)=I(t)LAsin(w,t+$gAistheamplitudeand$,isthephaseangleofthen~contributingsinusoid.Byfixinganarrayofamplitudesandgeneratingdifferentarraysofphaseangles,oneobtainsdifferentmotionswiththesamegeneralappearancebutdifferentdetails.Thecomputerusesarandomnumbergeneratortoproducestringsofphaseangleswithuniformlikelihoodintherangebetween0and2z.TheamplitudesAarerelatedtothe(one-sided)spectraldensityfunctionG(w)inthefollowingway:G(wg6w=A~/2Thetotalpowermaybeexpressedas:ZA'/2=ZG(wg5wThreedifferentintensityenvelopefunctionsI(t)areavailable"Trapezoidal,""Exponential"and"Compound."Theprogramartificiallyraisesorlowersthegeneratedpeakaccelerationtomatchthetargetpeakaccelerationexactly.Theresponsespectracorrespondingtothemotionarethen51-1258768-01GinnaSFPRe-rackingLicensingReportPage119 computed.Theresponsespectrumforonechosendampingvalueiscalledthe"target"responsespectrumwhichtheprogramwillattemptto"match."Tosmooththecalculatedspectrumandtoimprovethematching,aniterativeprocedureisimplemented.Ineachcycleoftheiteration,thecalculatedresponseiscomparedwiththetargetatasetofcontrolfrequenciesspecifiedbytheuser.3.5.2.5HydrodynamicFluidCouplingThepresentrackanalysisincorporatesinertialfluidcouplingtermswhichmodeltheeffectsoffluidinthegapsbetweenfuelassembliesandracks,betweenadjacentracks,andbetweentheracksandthepoolwall.Thecorrespondinghydrodynamicmassesarecalculatedusingestablishedmethods,basedonpotentialtheory,anddocumentedinReferences3.38.Thefollowingsectionsdescribehydrodynamicmassesandtheirmethodsofapplication.Therelativecontributionoffluidcouplingisdependentuponfluidgapsandtherelativemotionbetweenthebodiesconsidered.Thevaluescalculatedforthepresentanalysisarebasedonnominalgaps.Thecouplingtermsfor"in-phase"rackmotionaredeterminedforgapsequivalenttonominal,andfor"out-of-phase"rackmotionaredeterminedforgapsequaltoI/2nominal.Ageneraldescriptionofthemethodsusedisgivenherein.Theequationsindicatethatthehydrodynamiccouplingforceswouldbecomeinfiniteasthegapsapproachzero,sotobeconservative,thecalculationofthehydrodynamicmassisbasedontheoriginalgaps.Impactforceswouldbecalculatedifgapsaretoclosetozero.ANSYSElementSTIF38isused.Theoptionofcalculatinghydrodynamicmassesbothondiagonalandoffdiagonaltermsofthemassmatrixisselected.Thehydrodynamicelementmassesinsertedinthemassmatrixare:m>>0mI300m>>0m,4m>>0m>>00m4,0m44where:m>>=M,m~~=Mm>>=m,I=(M,+M)m~~=M,+M~+Mm,4=m4,=-(M,+M)m44=M,+M,+MThegeneralequationforfluidkineticenergyisusedtoestimatethehydrodynamicmass.ThevaluesofthesemassesisbasedupontheequationsdevelopedbySingh-90(Reference3.38).3.5.2.5.1Fuel-to-RackHydrodynamicCouplingFuelAssembliesThefuelassemblycontains179individualfuelrods,16guidetubesandoneinstrumenttube.Theserodsandtubesareheldinpositionbyspacergrids.Thereisnooutsidesheathing,sothehydrodynamiccouplingisbaseduponeachfuelrod,assumedtobeatthecenterofthecell.Forconcentriclongcylinders,thehydrodynamicmassisgivenbySingh-90(Reference3.38):51-1258768-01GinnaSFPRe-rackingLicensingReportPage120 R+R21R-R21nnPR1hwhereR,=fuelrodradiusR,=rackcell"equivalent"radiush=heightoffuelwithinrackp=densityoffluidn=numberoffuelrodsandtubesTherefore:SinceR,<<R2R+R21R-RH=PIIR1hi~1FuelAssemblyParameters:W-StandardW-OFAExxonFuelAssemblyRodsperAssemblyCladO.D.-inch14x141790.42214x141790.414x141790.424No.OfguideTubesGuideTubeO.D.-in160.539160.528160.524No.OfInstrumentTubeInstrumentTubeO.D.-in10.42210.39910.424Alsousing:p=9.345x10'b-sec'/in'=158.5in(rodandtubeslengthtakenasfulllengthofrack)R,=rodortube(O.D./2)weobtain,theM-hydrodynamicmassesforthefuelcoupling,andresultaresummarizedattheendofsection.51-1258768-01GinnaSFPRe-rackingLicensingReportPage121 M,=massoffluiddisplacedbytheinnerbody=thisissameasMforlongconcentriccylinderswithR,<<R2M,=massoffluidinsidetheouterbodyintheabsenceoftheinnerbody=areaxheightxfluiddensityForATEAracks(Type2,3or4)insidefuelcelldimension8.1417inForU.S.Tool&DieRacks,insidefuelcelldimensionis8.113inHeightis158.5inDensityoffluidis9.345x10'b-sec'/in'heresultsofM,M,andM,aresummarizedbelowforbothATEAandU.S.ToolEcDieRacks:Summary-FueltoRackHydrodynamicMasses-lb-sec2/inMnM,M2W-StandardW-OFAFuelFuel0.4270.3870.4270.3870.9820.982ExxonFuel0.4280.4280.982ConsolidatedFuelCanistersConsolidatedfuelstorageconsistsoffuelrodsstoredwithinaclosedcanister.Thehydrodynamiccouplingtothecellisbaseduponthecanisterratherthantheindividualfuelrods.Forconcentriclongrectangularbodies,thehydrodynamicmassalongxandy-directionsisgivenbySingh-90(Reference3.38).1653hH=-p-H3wwhereh=heightofrectangularbody=158.5inp=densityoffluid9345x10-slbseci/in'1-1258768-01GinnaSFPRe-rackingLicensingReportPage122 M,=(2b-w)'xhxpM,=(2b+w)'hxpTheresultsfortheconsolidatedfuelhydrodynamicmassesaresummarizedwithinputparameters.OutsidedimensionofconsolidatedfuelInsidedimensionofATEArackfuelcell8.0x8.0in8.1417inInsidedimensionofU.S.Tool&Dierackfuelcell8.113inSummary-HydrodynamiccouplingMassesforConsolidatedFuel-EachbwMM,M~ATEARack4.0350.07173.270.9480.982U.S.Tool&DieRack4.036inch0.0715inch91.39lb-sec~/in0.948lb-sec~/in0.975lb-sec'in3.5.2.5.2Rack-to-RackandRack-to-PoolHydrodynamicCoupling~~~Foreccentriclongrectangularbodies,thehydrodynamicmassalongxandy-directionsisgivenbySingh-90(Reference3.38).M~(HORZ'Z)=2phC-+-+-CC2B3g~3'~Nz=Ph(2C-gz)2b-I)2H~=ph(2C+g~)2b+()251-1258768-01GinnaSFPRe-rackingLicensingReportPage123
 
pg291g392-2BPLANwhereh=heightofrackp=densityoffluidgi~go~g3=gapsIfg,gapsaredifferentamongNorthorSouthsideofrack,theaveragegapsareusedinthehydrodynamicmasscalculations.Forcaseswhenthereisoverlapoftwoormoreracksonthesideofarack,theweightedaveragegapsareusedinthecalculations.WeightedGapsFortheidealizationofgaps,ifmorethanonerackwithdifferentgapsisinthevicinityoftherackunderconsideration,aweightedgapisused.Theweightedgapisbasedonlengthofoverlapbetweentheracks.L1L2G2L3G351-1258768-01GinnaSFPRe-rackingLicensingReportPage124 WeightedaveragegapZLzGzZLiTable3.5-9summarizesgeometricparametersandalsotheweightedgaps.WeightedAverageRackCouplingThehydrodynamicmasscouplingbetweenracktorackmotionunderseismiceventsisbasedonweightedmasscoupling.Theweightedmassisbasedonlengthofoverlapbetweentheracks.Case1Case2LIL4LSL2L3L751-1258768-01GinnaSFPRe-rackingLicensingReportPage125 UsingEffectiveCoupledLengthsforHydrodynamicMass:L~L~H-+HHsLHzL5I~M-+HHggHpHH)~2M1,4M-+ML~L~HggH47Tables3.5-10and-11summarizehydrodynamicmasses.51-1258768-01GinnaSFPRe-rackingLicensingReportPage126
 
Table3.5-9GeometricParametersforHydrodynamicMassCoupling-SummaryTableGapsattheTopoftheRack4'.j',''-:::;-:.~;"'...Ga's'''at:the':.To'::.'of-:.the,Rack"':'i.':::::..;>;-";.:','-'::.-'.:::E,-",V,::!Length:::N-',SLength':p':''y;~'OX~;%';.",;'.%e'st,:'.'Gap:"4':1n.':.!ll"North'::,Gap'::::.Ea'st:,'Gap'."'""''':-":::g2':::::::-"':"''::::South",Gap';1andTe42andTe43andTe44andTe4SandTe46andTe4159159159.15915915915915915915915915984.3084.3084.3084.3084.3084.3084.3084.3084.3084.3084.3084.30118.02127.21118.02127.21118.02127.21118.02127.21118.02127.21118.02127.2110.5010.509.759.751.751.751.251.250.750.750.630.630.500.5015.256.030.750.7514.255.030.750.7512.753.531.751.751.251.250.750.750.630.630.840.843.183.2114.755.530.500.5015.506.280.750.7517.007.780.750.757or2A8or2B10or3A159.68159.68159.6892.7392.7391.9367.575.8864.230.840.843.591.291.931.291.201.3696.777.341.361.2113or3B9or3C12or3D11or3E159.68159.68159.68159.6891.9391.9391.9391.9264.2345.7645.7655.771.203.551.201.291.931.211.211.213.451.203.513.481.211.211.2196.39Usingthesegeometricparameters,thehydrodynamicmassesarecalculatedfortheracktopoolandracktorackcoupling.Theresultsaresummarizedinthefollowingtable.TheX-directioncorrespondstoEastdirection.TheY-directioncorrespondstoNorthdirection.51-1258768-01GinnaSFPRe-rackingLicensingReportPage127
 
Table3.5-10RackHydrodynamicCouplingMassesStandardConfiguration(NoType4RacksInstalled)::;:".:.':;',1b';se'c''/,''in''.'':'":."4>.:"::::,"'.'..;lb''ec~."/.'in''.':::".;:.'''ndividualRackCoupling::;"''j,',')",':.:'lb"se'c~/,::iii'-;';~'";~.:::>";.,','.7:,:Ib;se'c,'.:/;in''.::,':::.,':.;:<.'.1234567(Rack2A)8(Rack2B)9(Rack3C)10(Rack3A)11(Rack3E)12(Rack3D)13(Rack3B)3028.213572.705978.957176.087532.386050.911807.094273.001426.572334.691668.511426.712337.263139.213223.446570.868284.389648.984735.823292.766308.243036.123226.973782.043045.613275.97147.83148.83147.83147.83147.83147.8393.40105.0062.7788.1176.5062.7788.11191.19189.42173.17170.33173.27172.18216.43111.1669.5197.23221.2869.4897.09WeightedAverageRackCouplingRacks1and2Racks1and3Racks2and4Racks3and5Racks3and4Racks4and6Racks5and6Racks5and7Racks5and8Racks6and10Racks6and9Racks6and8Racks7and8Racks8and11Racks8and9Racks10and13Racks9and10Racks12and13Racks9and12Racks11and123300.454503.585374.396755.666577.51.6613.56791.652638.77~3570.422352.861917.37901.663040.042970.752849.782335.971880.631881.981426.641547.613181.324855.035753.918109.927427.626510.107192.403797.744900.172421.952460.451028.224800.505045.144672.183251.473131.553160.793040.863413.82147.83147.83147.83147.83147.83147.83147.8376.5278.3470.3760.8022.0999.2090.7583.8988.1175.4475.4462.7769.63190.30182.18179.88173.22171.75171.26172.73135.3587.1679.7269.0224.52163.79166.2290.3397.1683.3783.2969.49145.3851-1258768-01GinnaSFPRe-rackingLicensingReportPage128 Table3.5-11RackHydrodynamicCouplingMassesExtendedConfiguration(Type4RacksInstalled)IndividualRackCoupling-.',":.:.:.:;:;::,;lb:s'ec~,"'./':in':':;-":,.",:,':,~:""";::::::lb';sec,=/';in'.,".i;:",<.:i'~.,"":."1b."s'ec.',.'/in':,''-'i;;,'.2'4567(Rack2A)8(Rack2B)9(Rack3C)10(Rack3A)11(Rack3E)12(Rack3D)13(Rack3B)5601.655960.828358.8010218.219664.2410096.491807.094273.001426.572334.691668.511426.712337.263288.113363.236843.528646.0310012.095003.733292.766308.243036.123226.973782.043045.613275.97159.34159.34159.34159.34159.34159.3493.40105.0062.7788.1176.5062.7788.11191.15189.38173.13170.30173.23172.20216.43111.1669.5197.23221.2869.4897.09WeightedAverageRackCouplingRacks1and2Racks1and3Racks2and4Racks3and5Racks3and4Racks4and6Racks5and6Racks5and7Racks5and8Racks6and10Racks6and9Racks6and8Racks7and8Racks8and11Racks8and9Racks10and13Racks9and10Racks12and13Racks9and12Racks11and125781.246980.228089.529011.529288.5110157.359880.373480.843926.363681.772572.73928.713040.042970.752849.782335.971880.631881.981426.641547.613325.675065.826004.638427.817744.786824.887507.914316.444803.672859.612439.58690.694800.505045.144672.183251.473131.553160.793040.863413.82159.34159.34159.34159.34159.34159.34159.3489.1978.2583.7460.7320.2399.2090.7583.8988.1175A475.4462.7769.63190.26182.14179.84173.18171.71171.25172.72154.4183.9091.5066.4722.07163.79166.2290.3397.1683.3783.2969.49145.3851-1258768-01GinnaSFPRe-rackingLicensingReportPage129
 
3.5.2.6SeismicTimeHistoryFactorDeterminationsApproachFourSafeShutdownEarthquake(SSE)andfourOperatingBasisEarthquake(OBE)timehistoriesaredevelopedtoevaluatetheracksfortheRG&EGinnaSpentFuelPool.ThedevelopmentofthetimehistoriesisdocumentedinSection3.5.1.Eachtimehistoryisappliedtoa3-DsinglerackmodelforRack8(2B),a9x11rackmanufacturedbyATEA.Afterapplyingeachtimehistorytothemodel,amultiplicationfactorisfoundthat,whenappliedtothecriticalresultsofoneofthetimehistories,wouldenvelopetheresultsproducedwhenrunningtheotherthreetimehistories.AfterthetimehistoryfactorsaredeterminedfortheSSEandOBEtimehistories,onlythetimehistoriesforwhichfactorshavebeencalculatedareusedonthewholepoolmodel.ThecalculatedfactorsforSSEandOBEarethenappliedtotheresultsoftheevaluations.SSETimeHistoryFactorTable3.5-12listskeyresultsofthesinglerackmodelevaluationsforthefourSSEtimehistories.ThelastcolumnofthetablegivestheresultsofmultiplyingtheresultsofSSE1bythecalculatedfactor.TheseresultsprovideverificationthattheresultsfromalloftheotherSSEtimehistoriesareenveloped.TheresultfromSSE1whichrequiresthehighestenvelopingfactoristhehorizontalrackload.Thefactorrequiredtoenvelopethehorizontalrackload&omSSE2is:Factor=73,320/62,980=1.164Thus,theenvelopingfactordeterminedfortheSSEtimehistoriesis1.20xSSE1.Therefore,allSSEevaluationswillbeperformedusingSSE1.Thefactorof1.20isappliedtoallresultstakenfromtheevaluation.Thefactorof1.20alsoenvelopesafactorfromtheeffectsofanincreaseinrackheight,seeSection3.5.3.1.7.OBETimeHistoryFactorTable3.5-13listskeyresultsofthesinglerackmodelevaluationsforthefourOBEtimehistories.ThelastcolumnofthetablegivestheresultsofmultiplyingtheresultsofOBE4bythecalculatedfactor.TheseresultsprovideverificationthattheresultsfromalloftheotherOBEtimehistoriesareenveloped.TheresultfromOBE4whichrequiresthehighestenvelopingfactoristhehorizontalrackload.ThefactorrequiredtoenvelopethehorizontalrackloadfromOBE1is:Factor=32,420/29,810=1.08851-1258768-01GinnaSFPRe-rackingLicensingReportPage130
 
Thus,theenvelopingfactordeterminedfortheOBEtimehistoriesis1.12xOBE4.Therefore;allOBEevaluationswillbeperformedusingOBFA.Thefactorof1.12isappliedtoallresultstakenfromtheevaluation.Thefactorof1.12alsoenvelopesafactorfromtheeffectsofanincreaseinrackheight,seeSection3.5.3.1.7.Table3.5-12SummaryofDeterminationofSSETimeHistoryFactor(UsingRackS(2B)LoadedivithConsolidatedFuel,mu=0.8)SingleModelLegHorizontal;":i4SSEI'/san';,';34,910SSE224,660-:;?'.;'SSE3j;,:;::37,390i:;;.'..',SSE4,"..;;.":31,580':,::.:1"';20.*.,SSB1::.::41,892Max.LegLoad(lbs.)SingleModelLegVerticalLegTotalVertical138,000122,700322,800307,100129,000320,200127,300307,100165,600387,360Max.RackLoad(lbs.)HorizontalVertical62,98013,48073,32012,82071,19013,37059,00012,82075,57616,176Max.RackMoments(in.-lbs.)Bending6.645*106.267*107001*10'.875*10~7974*10~Max.ImpactLoad(lbs.)FueltoRack12,95012,71011,05011,74015,540DisplacementofLeg(in.)Horizontal0.033540.029380.027650.025480.0402551-1258768-01GinnaSFPRe-rackingLicensingReportPage131 l
Table3.5-13SummaryofDeterminationofOBETimeHistoryFactor(UsingRackS(2B)LoadedwithUnconsolidatedFuel,mu=o.S):.Ij.,i:;:"..::~Item.:i,;::i'-::::;".''';;:":,"'i:;OBE1',ll""'!>N<"'.':,.OBE2':i')ti',:!agjOBB3,'%:,''~;:<NIl'l2.'...OBFA.'::Max.LegLoad(lbs.)SingleModelLegHorizontalSingleModelLegVertical8,63064,4407,69662,4107,34759,7408,72363,0909,77070,661LegTotalVertical159,400157,700156,400156,500175,280Max.RackLoad(lbs.)HorizontalVertical32,42011,23025,59011,11026,50011,02029,81011,03033,38712,354Max.RackMoments(in.-lbs.)Bending3.382*10'.206*10'070*10~3.114*10~3.488*10~Max.ImpactLoad(lbs.)FueltoRack42,98038,98042,33051,44057,613DisplacementofLeg(in.)Horizontal0.0086750.0076970.0073480.0087310.0097793.5.2.7RackStiffnessSensitivityStudyStatementofConcernIntheJuly1996meetingbetweentheNuclearRegulatoryCommission,(NRC),RG&E,andFramatomeCogemaFuels,theNRCexpressedconcernsaboutthestiffnessoftherackstructures.Theissueraisedwasthattherackstiffnessusedintheanalyticalmodelsmaynotnecessarilyrepresenttheactualstiffnessoftherack.Thedifferenceinstiffnessmayexistbecausetherackstiffnessinthemodelisbasedonacontinuousstructure,whiletherackismadeupoftubesconnectedbyweldedtabs.TheNRCexpectedthismethodoffabricationtoresultinastructurewithapotentiallylowerstiffnessthanthatusedinthestructuralanalysisoftherack.TheNRCrecommendedtestingtoverifythattherackstiffnessisclosetothestiffnessusedintheanalyses.Theobjectivesofthisstudyaretodeterminethedifferenceinstiffnessbetweenacontinuousstructureandasegmentedstructure,ifany,andtoshowthattherackseismicloadsandhencestressesarenotsensitivetotherackstiffness.51-1258768-01GinnaSFPRe-rackingLicensingReportPage132 ResolutionofConcernTheapproachtakentoresolvethisconcernistoapproximatethedifferenceinstiffnessbetweenacontinuousstructureandastructureconnectedbytabsandthentodeterminetheimpactthatthedifferenceinstiffnesswouldhaveoncriticalresultsoftherackanalysis,suchasthereactionforcesonthepoolfloor,themomentsgeneratedintherack,andthemovementoftherack.Todeterminethedifferenceinstiffness,acontinuousstructurewasmodeledusingANSYSandloadedtocalculateitsstiffness.ThefiniteelementcomputerprogramANSYSwasverifiedagainstexperimentaltestdata.Themodelwasthenmodifiedtoseparatethestructureintosegmentswhichwerethenconnectedwithtabs.Thestiffnessofthesegmentedstructureconnectedbyfourtabsasintheactualrackdesignwasfoundtobeabout13.5%lowerthanthestiffnessofthecontinuousstructure.Becausethestiffnessofthestructurewaslowerforthesegmentedstructureconnectedbytabs,theimpactofthisstiffnesswasexamined.Amodelfordynamicanalysisofasinglerackwas-modifiedtohaverackstiffnessesranging&om50%to200%ofthestiffnessofthecontinuousstructure.Themodelwasofafreestandingspentfuelrackwhichincludedracktorackhydrodynamiccoupling,racktofuelgaps,andracktofuelhydrodynamiccoupling.Becausetherackswerefreestanding,thegapsandhydrodynamiccouplinghadalargereffectthanrackstiffnessontheloads,moments,andrackmovementssincetherewasrigidbodymotion.Thesemodelswereevaluatedusingasinglespecifiedsafeshutdownearthquake(SSE)timehistory.Theresultsoftheseanalyseswerethenplottedaspercentagesofthevaluescalculatedusingthestiffnessofthecontinuousstructurevs.thefactorappliedtothestiffness.Theresultsplottedwerethemaximumtotalreactionloadatthefloor,themaximumhorizontaldisplacementattwocornersoftherack,andthemaximummomentsatthebaseoftherack.Ascanbeseeninthefollowingtableandplot,themaximumreactionforcesatthefloorareessentiallyindependentoftherackstiffness.Themomentsatthebaseoftherackshowedslightdependenceonthestiffnesswiththemomentsincreasingwithincreasingstiffness.Therackdisplacementsshowedthegreatestvariationwithchangingstiffness,followingthegeneraltrendofincreasingdisplacementwithincreasingstiffness.Notethatthedisplacementsreferredtoareracktranslationscausedbyfueltorackimpacts.Astifferrackbeamcausesmoreenergyfromtheimpacttogeneratetranslationoftheentirerackratherthanbendingoftherackbeam.ConclusionsThecomparisonofacontinuousstructureandasegmentedstructureconnectedwithtabsindicatesthatusingtabsasthemethodoffabricatingtherackwillresultinastiffnessabout13.5%lowerthanthatofacontinuousstructure.SSEanalysesperformedonasinglerackmodelwithstiffnessesrangingfrom50%to200%ofthestiffnessofacontinuousstructureindicatesthatthereactionloadsatthefloorremainconstant,bendingmomentsintherackincreaseslightlywithincreasingstiffness,andrackdisplacementsincreasewithincreasingstiffness.TheseresultsarelistedinthefollowingtableandareplottedinFigure3.5-37.51-125876S-01GinnaSFPRe-rackingLicensingReportPage133
\~
RackStiffnessSensitivityStudyResults;>Perceiita'ge:of:;;;;:';,',"Stiffn"e's's'."of,.'.":;::::'j~I:.';:,:Co'ntin'uou's",,::.''','I".',,':.";,s,'.'.:Structure':.;:::":.'-",',.'0%80%1PP%120%150%200%100%1PP%100%1PP%100%100%85%97%100%105%108%111%55%(0.018in.)73%(0.023in.)100%(0.032in.)124%(0.040111.)155%(0.049in.)176%(0.056in.)Resultsarebasedonfullyconsolidatedrackloadingandcoefficientoffrictionof0.8.Displacementslistedaregivenforcomparisonpurposesonly.Forrackdisplacementsandgapclosures,seeSection3.5.3.1.14.Rackstiffnessisnotacriticalparameterinthedeterminationofpoolfloorreactionloads,rackmoments,orrackdisplacements.Therefore,experimentalverificationoftherackstiffnessisunnecessary.ThestiffnessusedinthemodeloftheGinnaracksisslightlyhigherthantheactualstiffnessoftherack(basedonthestiffnessofacontinuousstructureratherthanasegmentedstructureconnectedbytabs).Theresultofusingahigherrackstiffnessishigherbendingmomentsandrackdisplacements,thusmakingtheuseofahigherthanactualrackstiffnessconservativefortheseismicanalyses.51-1258768-01GinnaSFPRe-rackingLicensingReportPage134 PercentofValueatStiffnessofContinuousStructurevs.StiffnessFactorMoments,Forces,andDisplacements2PP%15PCIv100%I05pp0.250.50.7511.251.5FactorAppliedtoStiffness1.75~SRSSMoments~VerticalForces~HorizontalDisplacementFigure3.5-37PercentofValueatStiffnessofContinuousStructurevs.StiffnessFactor 7L 3.5.3StructuralEvaluationTheRG&EGinnaUnit1SpentFuelStoragesystemstructure,i.e.,newATEAstorageracks,theresidentU.S.ToolandDieracks,spentfuelpoolandliner,wasevaluatedforlicenseapplication.Forallthesestructures,thenormal,upset,faulted,andthehypotheticalaccidentconditionswereevaluated.Thestructuralevaluationmethodsusedprovendesignpracticesandcurrenttechnologywithinnovativeengineeringprinciples.Detailsoftheseevaluationsareprovidedinthenextsubsections.3.5.3.1Normal,UpsetandFaultedConditionsTheSpentFuelStorageSystemwasdesignedtomeetallapplicablestructuralcriteriafornormal(LevelA),upset(LevelB)andfaulted(LevelD)conditionsasdefinedinNUREG-0800,SRP3.8.4,AppendixD.Thedeadweight,thermal,seismicandstuckfuelassemblyloadingswereconsidered.TheloadcombinationswereperformedperSRP3.8.4,AppendixD.ThecombinedloadswereusedtoassessstoragerackstructuralintegritybasedonallowablestresslimitsprovidedforClass3componentsupportofASMESectionIII,SubsectionNFoftheASMEBoilerandPressureVesselCode.AllrackcomponentswereshowntomeettheASMESectionIIIstructuralrequirements.Inaddition,thestoragerackliftingstresseswereshowntomeettheNUREG-0612liftingrequirementsoftheheavyloadliftinthenuclearpowerplant.ThespentfuelpoolevaluationwasbasedonallowablestresslimitsprovidedinACI349-85.Thespentfuelpoolwasshowntomeetthesestressrequirements.ThepoollinerevaluationwasbasedonstresslimitsprovidedinAISC-9thedition.Thepoollinerwasshowntomeetthesestressrequirements.Thestructuralintegritywasevaluatedusingconservativeanalyticalmethods.3.5.3.1.1VariousInputstothe3-DSingleRackandWholePoolFiniteElementModels3.5.3.1.1.1RackStructuralPropertiesType2RackGeneralInformationSSWallThickness=0.08in.CellSize=8.30in.CellHeight=158.5in.DensityofSS304L=0.290lb/in'oratedSSthickness=0.12in.BoratedSSOD=8.38in.BoratedSSHeight=145.7in.DensityofBoratedSS=0.290lb/in'ackBaseplatethickness=1.18in.Cellbottomholediameter=3.74in.LengthofRackSupportLeg=13.70in.Center-centerdimension(pitch)=8.43in51-1258768-01GinnaSFPRe-rackingLicensingReportPage136 Type2RackStructuralProperties'."'';Size,'",,'d''.AV,-'E'(Iii)".':::iy<.C!;I~ength':ii-;:s''(in)',:.':I:V,-:.i'::(in,)',.72A82B8x119xll113.9129.593.3193.3168.0776.4643,97164,00982,25095,291Type2RackTotalDryWeights":::Rack''':.;I,".'.,':.:No.':::;.'4!.,;:Ra'ck~'':.';Total",:I,:.',.',',:,:Total.::::,,:.::::::,:,,:";".:I.'Total'':.:;:.::;:::Type',::i~,,":::,No,;"P,'..'':.:I'No!''"of.,::::.I:;,;Rack:,::Dry',':;',.".jTot'al::L'eg'a'nd':::,'.;:Ba'sepIate'Dry".;:':;',.Weigh't''(lb's';).,"pTotal"Diy~',::Unco'ns'olidated:::j,:''::.::Pu'e1:Wt::(1bs".:)':"'::"Cons'olidated:>.'":',:'.:'Pu'el'::Wt.":,;"';"::,',:;:.'':;j"':~;::(1bs'i')'~'::'j::"::-".,'A12882B169914,07215,7013,0383,640127,600143,550232,170261,192Type2RackTotalWetWeights''.Rack:'.':::;,Rack':::'',,',':No;::::.,'':::'.",:Ty'pe!':,':Total.:::';,":L'egs',-.72A128882B169912,31913,7472,6593,187114,980129,353204,385229,933Type2RackTotalCombined(Rack+Baseplate+Legs+Fuel)WetandDryWeights(inlbs.).'-:Rack:::::".Rack'".::~Type';;",'~'otal!Dry.,:-.':.;;:,:;,,:Un'consolIdate'd,;";:Combin'ed'.Wts"':":I,;::~j',::',jTotal:::Diy.,'".".",.',:,"4'::,"'';;::,".:,':,.:::.,'';~Total':~Wet';::.''.!~.':;,'::::,.':Cori'solida'te'dI.:;I.".:::,;:',:!Uric'o'n's'olida'ted'k,Coiribiried".;its':'::::,:;::,Combiiie'd',':,Wts'.':,:,>',.<~;-"',,',Total';:Wet';.':,.:::;,',','::;.i~'~Coiiibined;Wts:,.:,"::I2A2B144,710162,891249,280280,533129,958146,287219,363246,86751-1258768-01GinnaSFPRe-rackingLicensingReportPage137 Type2RackMaximumWetandDryWeightsPerSupportLeg(inlbs.)".;RackI~',,';::No"..".':,'?:gg.'?.".'?.?;,::;::Rack'..:'.T?y?pe,:',.,::M.'.'?i?.:::'.'',Unco'ns'olid?ated:'.':,::,,':.:.:.:':Consoiida'te'd'':,::;:.'''..:.:.".-'.Uric'on':;At':-'.:;:on',:Oiie',:L''eg',.':,;;,'..:;:','.Total':Wet'.P-:.,.-:4;;,.::':-:,::;Corisolidate'd::.Wt.".':,'.::;::;,'';:::':;:::i.:io'n':.On?e':';L'eg'-'!:.""'':;""::.",72A82B12,05910,18120,77317,53310,8309,14318,28015,429Type3RackGeneralInformation.SSWallThickness=0.08in.CellSize=8.50in.CellHeight=162.0in.DensityofSS304L=0.290lb/in'ackBaseplatethickness=1.18inCellbottomholediameter=3.74in.BoratedSSthickness=0.10in.BoratedSSOD=8.34in.BoratedSSHeight=145.7in.DensityofBoratedSS=0.290lb/in'engthofRackSupportLeg=13.70inCenter-centerdimension(pitch)=9.23inType3RackStructuralProperties''!No"''':',;Rack'::,";'::,!'';;:;;:,;Size''',.$;,;,;'T","'.":,:::;:::::.g(in'.)::,.-?::.%?'.',"..:Width'w,.-:E(jr'':j:::L'e'n'gth':Ns'(in)':::';I:;::N-,'s':;{iii,);:"~I)w'.E:(in,'.;)":103CSx103A7x1066.292.792.3492.3446.1864.6512,07947,40232,72666,35912133E6x10+23DSxlo3BSx10+1284.866.282.192.3492.3492.34,55.4146.1812,07947,40264.65,46.1825,99855,47956.19,64.6326,00866,04051-1258768-01GinnaSFPRe-rackingLicensingReportPage138
 
Type3RackTotalDryWeights".'Ra'ck",';.',jNo;:i',..,:,::Rack':,':,:;IIType':,.l5;N.,.,@bi.'::'jTotal.,<:I"''of-":::"''-",'''',L'e'gs;,:.:,.:.::-Cells~",:.-,",.:;:;,),':Total'.':I',"::::-Total>Leg''a'n'd';;,:::,'.-:Rack::Dry)',-.',Baseplate",:Dry,.'.,':,"'.'-IVfeight';".':.,"-'-:::::,.':;%'eight.",(lbs.)';'',':;'lUiiconsolidate'd".,''".Fuel)Wt'::(ebs')'~",:',::-';;Tot'al';::Dry':,''-:..":i'Con's"olidat'e'd::;.>Fu'el':Wt.'.,',:,:1012133C3A3E3D3B1212507062506211,54816,23214,54711,54814,6512,1422,9582,7712,1422,67272,500101,50089,90072,50089,900131,915184,681163,575131,915163,575Type3RackTotalWetWeights;;::Ra'ck''I::;'.:::No.":,'":::Rack::;:;:';,'Total':i',Ty'pe'':i:,,:::;,:::,No."::,::".l:.,":;Total':;':,:;;,':;;!~Total.:"':;:,:-:,'':::i~:,"TotaI',L'eg:and~":;..NoI''of::;:::;,:;IRack;.Wet'~:,;;.;.,'!,.':"';Has'eplate>>':,,;'"'.;;,'.:!Cells::::,::,.'..:,'::j':,,:WeightI.'',(,,:",''.,:Wet,'':%'eIght':',':::I".::::iI-;',:.':,';.TotaI:::%'et':::!Ij':.~:;;,".;;:;Total::::;Wet:,'','":>Uii'co'n'salidated::':Cons'olidated'.;,:;'"!Pu'e1'%'t;:(lbs'.::)':,':;::-.",i".Fuel::.','Wt!':,:,'"1012133C83A123E123D83B11507062506210,11114,21112,73510,11112,8271,8752,5892,4251,8752,34065,33091,46181,00965,33081,009116,128162,461143,999116,128143,99951-1258768-01GinnaSFPRe-rackingLicensingReportPage139
 
Type4RackStructuralProperties4A-F1x1025.98.3084.5629215,471Type4RackTotalDryWeights::;:::Rack";:,"':<<Type'::.;';Total'::;;;:iNo',:",of:::;,':"':L'egs":,;;,:<<:;:<<<<',,:,.','.Total":ji"'No-of-;:''';Cells,''.,:-.';:::';::;::I:i,::::;::Total:...:<.',:'.:"':Rack:;Dry".il',:::::::,:;Weight;':.'::;::;:::;;(lb's'),!,'.''.:,',',I':,T<<otalIL'e'g>>'and:;:i::l..-'.;::,!::,Total'Dry',a,;:,".':,;:>I.:':;:::.;.':,.;;:;:.'.Total'.Dry,.:..:.;;.:,.",'"..".:';:Ba's'eplate':Diy,'II.',','Uncon>>solida'ted';:;:':.';:;:.::,Cons'olidated':;;-:";lWeiglit:,'(1bs')ll::,::;::;;::Fu'el.';Vt;:::;(Ibs",<<)'",'-':''';.:Fuel!Wt",{lb's')".'A-F101,91941814,50026,383Type4RackTotalWetWeightsR'ack.:,;.Typ"'e'c'>>'.:':;:Total':.'.':::::::'-.:::.:;of:::',::;::::;:::::,:L''egs'-'.::l:,'":,Total;-.'.::::,''':;No'.:.":.'of::.;:;"-."':,',Cells"'',".:<<'.NY.',.""::-:,,'-';:',:.Total'..";:,'::.";::::::Rack':.Net':=>>:.":::':::::-,':Weight"",::,':'..'i:;:-"."(lbs')'.;.'.'.-:;j':;..';.,Total,:L:e'g'an'd<<':..':<<;.;:.;Baseplate;'!.',:;:;.::::"%et:Weight',;;<'.:,~j:::.:.","i:,"'.:':{lb's'<<)'.i'~,'i,,'',:.,':.'':"::.:;5-";::;.;:!!To>>'t'aI':,Wet;.::::"..''.'"""":-'To't'al:%',et""'"":::Uiiconsolldate'd'':.'::.':.:.,;::,:.Co'ris'olidate'd'::;:-'.;:'Fuell:Wt'..'(1bs)'::';.:,,"':Fu>>"el';:Wt::'>>(lbs.'-).".';4A-F2101,68036513,06623,266Type4RackTotalCombined(Rack+Baseplate+Legs+Fuel)WetandDryWeights(inlbs.):IRack",::;;:;i''':;Type,',4A-F,',:;:':;:":.;";;:-':;:;,Total::;:Dr'y',.",",.':"';,;.';-',',:;,;.',i;-':;,Uncoiisolidated'j,::,;,',',::,'-:",:.';.Co'inbirie,'':W>>ts."'.i,.'-',:;16,837'':::;:':.':%Total~Dry,;'::'!'.;:i".'.':.:;:.::.:;:;-,.:;.Co'nsolidated".',.','"i";.i:.,'::::::~.;Coiiibined'.''Wts';-".'.'',':,'8,720;",.>Uiic'on's'olidate'd':l,:-''',:-.".:,Co'nlbi'n>>edIWts'::'.':::.::15,111",'-'...:.'<<i.'-'':I::.".":,Total:,Wet'-'','.';::;:;:<<~jj,.'i,:".~g::'::'::Co'nsolidat'edNm."'.",i";::";!:i'.;.'.Coinbiiied':Wtsii",.':25,311Type4RackMaximumWetandDryWeightsPerSupportLeg(inlbs.)::;;:Ty'pe,'.i';..:::::,.i-'::.;-;:.Uriconsoli'dated'"'';::-:;:;-::;:."',.Co'nsolld'ated',%t:.';oii'.;::<):.:-.'!j,:';Total:;:.,Wet",'::<<-::''"-"::.;,';..;;-,',Unc'o'n's'olidated:~i'.:;::,:.Wt'.".:on",Oii'e'Leg<<':;":":,"<<:..Conso1idat'e'd'~>>Wt'':o'n>>(><<r'.%.q.:z'<<s<<<<'pr~~g>>>><<gyp<<,:.j,>>.''jg,<<gij,':;:.'...<<:::,One;L'eg;,".:"::<..:,''.;','p:";i4A-F8,41914,3607,55612,65651-1258768-01GinnaSFPRe-rackingLicensingReportPage141
~~ay 3.5.3.1.1.2FuelStructuralProperties3.5.3.1.1.2.1ConsolidatedFuelCanisterStructuralPropertiesTheconsolidatedfuelcanisterisrepresentedbyabeamelementintheseismicanalysis.Boththestructuralcanisterandthe358fuelrodsarerepresentedbyasinglebeam(singleA,IandE).Sincethecanister(304SS)andthefuelcladding(Zircaloy)arefabricatedofdifferentmaterials,theequivalentA,zandI,~arecalculatedforabeamwithEofthecanister.OutsideLengthofFuelCanister=8.00in.CanisterThickness=0.093in.InsideLengthofFuelCanister/DividerPlateLength=7.814in.DividerPlateWidth=0.093in.AreaofCanister=3.6681in~AverageMomentofInertiaofCanister=32.5031in4Theelasticmodulusofthecanistermaterial(304SS)=27.87x10'si.FuelRodStructuralPropertiesFuelCladdingOuterDiameter=0.424in.(Exxon)FuelCladdingThickness=0.03in.(Exxon)NumberofRods=358AreaofFuelCladding=13.2938in'omentumofInertiaofCladding=0.2595in4Theelasticmodulusofthefuelrodcladding(Zircaloy)isonly12x10'si.EffectiveCross-SectionPropertiesofConsolidatedCanisterTheindividualpropertiesofthefuelcladdingandtheconsolidatedcanisterareusedtocalculatethecombinedcross-sectionpropertiesasfollow.Theelasticmodulusofthecanisterisusedforthebeamrepresentationintheseismicanalysis.EffectiveAreaEffectiveMomentofInertiaAg(Ef/E,)Ar+A,=9.3920inI,A=(Er/E,)ir+I,=32.6148inWhere:E<=FuelCladdingElasticModulus,12x10'siA,=FuelCladdingCrossSectionalArea=13.2938in'<=FuelCladdingMomentofInertia=0.2595in',=CanisterElasticModulus,27.87x10'siA,=CanisterCrossSectionalArea=3.6681in~I,=CanisterMomentofInertia=32.5031in451-1258768-01GinnaSFPRe-rackingLicensingReportPage142
~I 3.5.3.1.1.2.2FuelAssemblyStructuralPropertiesThefollowingstructuralpropertieswereusedintherackanalysistorepresentthefuelassembly.ThepropertiesenvelopeExxon'sandWestinghouse's(standardandoptimized)fuelassemblies.Eachfuelassemblyrepresents179fuelrods,16guidetubes,and1instrumenttube.Thepropertiescloselyresemblethepreviousanalysis(Reference3.25,section5.10).FuelAssembly'sCrossSectionalArea=7.1419in'uelAssembly'sBeamShearFactorUsedinANSYS=1.89FuelAssembly'sAreaMomentofInertia=2.17in4TheElasticModulusoftheFuelAssembly(Zircaloy)=12.0x10'si.FuelAssembly'sWidth=7.763inFuelAssemblyWetWeight=1306.6lbs(perassembly)3.5.3.1.1.3InterfaceStiffnessBetweenFuelandRackThecalculationswereperformedtogeneratetheinterfacestiffnessbetweenthefuelandrackcells.Theinterfaceofinterestwastheimpactoftheupperendfittingwiththestainlesssteeltubeoftherack.ThisstiffnesswascalculatedusingaplatefiniteelementmodelofasinglecellandcomputerprogramANSYS5.2.Apressureloadwasappliedintheareaofcontactbetweentheupperendfittingandthecellwallwhileconstraintspreventbeambendingofthecell.Thestiffnessdesiredwasonlythelocaleffectbecausethebeamsinthemodelalreadyaccountforbeamdeflection.Thestiffnesswasthendeterminedbydividingthetotalloadappliedbytheaveragedeflectionatthetopedgeofthecellwall.Contactareabetweenupperendfittingandcellwall:Type1(ExistingRacks)CellHeight=159in.OutsideTubeWidth=8.43in.TubeWallThickness=0.090in.Types2and3(NewATEARacks):CellHeight:Type2=158.5in.Type3=162in.InsideTubeWidth:Type2=8.1417in.Type3=8.3386in.TubeWallThickness=0.07874in.FuelAssemblyHeightsExxon-160.13in.WestinghouseOFA-159.710in.UpperEndFittingHeightsExxon-6.865in.WestinghouseOFA-3.480in.51-1258768-01GinnaSFPRe-rackingLicensingReportPage143 4
Elevationofbeginningofcontactbetweenupperendfittingandcellwall:Exxon:h=153.265in.WestinghouseOFA:h=156.230in.Themodelusedwasconstructedofshellelementswhichwereplacedatthemidplaneofthetubewalls.Inthetype1racks,therewasatubeforeachfuelassembly.Therefore,theloadwasappliedtoonlyonesideofthecell.Forthetype2and3racks,therewasonetubeforeverytwofuelassemblies.Therefore,theloadwasappliedinthesamedirectiononoppositesidesofthetube.Thedeflectionsweregeneratedfromthefiniteelementmodel.Thestiffnesswasthendeterminedbydividingthetotalloadappliedbytheaveragedeflectionatthetopedgeofthecellwall,whichissummarizedbelow:FuelCellImpactStiffnesssummary:Type1(ExistingU.S.Tool&DieRacks):4449lb/in.Type2andType4(NewATEARacks):7036lb/in.Type3(NewATEARacks):6595lb/in.3.5.3.1.1.4DampingStructuraldampingwasspecifiedintheseismicanalysis.ThecomputerprogramANSYSprovidedfivechoices(orfiveforms)toinputdampingvalues.AmongthemRayleighDamping(alsocalledasalphaandbetadamping)methodwasusedintheGinnaseismicanalysis,whereTheDampingMatrix.[C]=a[M]+P[iqThevaluesofaandParenotgenerallyknowndirectly,butcanbecalculatedfrommodaldampingratios,$i.Where$iistheratioofactualdampingtocriticaldampingforaparticularmodeofvibration,i.Ifoi;isthenaturalcircularfrequencyofmodei,aandPsatisfytherelation:aP,+I26)2Isince6)=27rfIIa+ofP4mfI51-1258768-01GinnaSFPRe-rackingLicensingReportPage144 OnlyonesetofaandI3areinputinananalysis,sooneneedstoselectthedominantfrequencyactiveinthatloadstep,tocalculateuandI3.Inthestoragerackseismicanalysis,thefuelassemblyimpactwasdominant.Forthatreason,thefuelassembly&equencieswereusedinthecalculationsofuandPvalues.Also,itwasconsideredthatthefirstthreemodesofthefuelassemblywereimportantintheseismicanalysis.ThevaluesfornandPweredevelopedforfirstthreemodesoffuelassemblyfrequencies.Thedamping(gi)valuesweretaken&omU.S.NRCRegulatoryGuide1.61(Reference3.11),forweldedsteelstructure.TheuandPvaluesweredevelopedforbothOBEandSSEloadingsusingfuelfrequenciesandRegulatoryguidedamping.FuelAssembly:Firstmodefrequencyisf;=3Hz(Page19,U.S.ToolEcDieSeismicReport,Reference3.25)j'=cgEI8'"Forhinged-freebeam:(Mark'sHandbook7thEditionPage5-101,Reference3.33)WhereCn=2.45forfirstmodehinged-freebeam,andCn=16.6forthirdmodehingedfreebeam.Usingthisthethirdmodefrequencyis16.6f~=-'32.45=20.3hzUsingdampingvaluesfromU.S.NRCRegulatoryGuide1.61forweldedsteelstructure:(pgp=2%01'02=4%ol'.04Mode+gg~erFrequencygdampingQJK320.30.020.020.040.0451-1258768-01GinnaSFPRe-rackingLicensingReportPage145 J
ForOBE:Mode1@Mode3a+xx20.3xP0.02=1a+mr3rP4zr30.02=147tr20.3Solving:a=0.6568andP=2.7323x10~ForSSE:SimiliarlysolvingforSSE:a=1.3136andP=5.4647x10~Summary:aandPvaluesfordamping:OBESSEa=0.6568a=1.3136P=2.7323x10~P=5.4647x10"3.5.3.1.1.5PerforatedPlatesThebottomplatesforthespentfuelstorageracksareplateswithflowholes.Theequivalenthomogeneousplatewasidealizedforplateswithcircularholesarrangedinsquarepattern.Theplatethicknesswaskeptthesameintheanalysis.TheYoung'sModulus(E')andPoisson'sRatio(v')wasmodifiedtoreflectsquarepatternperforationintheplate.ASMESectionIII,AppendixA,ArticleA-8000addressestheperforatedplate.However,theArticleA-8000onlyaddressestheholesinarrayofequilateraltriangle.TheWeldingResearchCouncilBulletin&#xb9;151,June1970(Reference3.28)titled,"FurtherTheoreticalTreatmentofPerforatedPlateswithSquarePenetrationPattern"wasused.Thisbulletinaddressedtheloadinginpitchanddiagonaldirection.Fortheseismicanalyses,thepitchdirectionloadingwasmoreappropriateandwasused.51-1258768-01GinnaSFPRe-rackingLicensingReportPage146 Nomenclature:2h2RpType2andType4(ATEA)Racks-PerforatedPlateh/RLigamentefficiencyEYoung'sModulusofmaterialE'ffectiveYoung'sModulusofperforatedplatewiththesamethicknessv'ffectivePoisson'sratiooferforatedplatewiththesamethicknessThicknessofplatet=1.18inFlowholesize3.74inRectangularPitch2R=8.43inWidthofligament2h=Pitch-Holediameter=8.43-3.74=4.69inLigamentef5ciencyh/R=4.69/8.43=0.56FromFigure3ofWRCB8151forloadinginpitchdirection:0.68Eandv'02&51-1258768-01GinnaSFPRe-rackingLicensingReportPage147 Type3(ATRA)Rack-PerforatedPlateThicknessofplateFlowholesizeRectangularPitcht=1.18in3.74in2R=9.23inWidthofligament2h=Pitch-Holediameter=9.23-3.74=5.49inLigamentefficiencyh/R=5.49/9.23=0.59FromFigure3ofWRCB&#xb9;151forloadinginpitchdirection:E'.72Eandv'0.285SummaryofPerforatedPlatesForperforatedplates,usingsamethicknessasdrawing,theequivalentE'oung'sModulusandequivalentv'oisson'sRatioforhomogeneousidealizationisasfollows.Thesevalueswereusedinthestressanalysisoftheperforatedplates.ATEAType2RackATEAType3RackATEAType4RackPlateThicknessin1.181.181.18E'/E0.680.720.68V0.280.2850.2851-1258768-01GinnaSFPRe-rackingLicensingReportPage14S 4-1Iw5'
 
3.5.3.1.2RackTubeConnectingTabsandTubeRetainerPlateWeldsThetabplatesareweldedtorackcells(tubes)inordertomaintainthestructuralintegrityoftherack.Theprimaryfunctionoftabsistoprovideatransferoftheshearflowbetweenthetubes.InATEAracks,mutuallyperpendicularpairsoftabsareweldedtoadjacentinteriorstainlesstubes.Forbothtype2andtype3racks,thereare4pairsofuniformlyspacedtabspereachinteriortubeedge.Tabstressesarederivedfromthefollowingthreestresscomponents:only.Thepoolruns.lopKookPionea)Interiorrackbeamloadsresultingfromseismicfullpoolrackanalyses.Baseplateshearforcecomponentsareassumedtoactasuniformlydistributedloadsalongrackheight,anddevelopshearstressesactingupontabs.Resultantinteriorrackbendingmomentsinducenormalstressesinracktubes,butnotintabswhichareexposedtoshearrackforcesandmomentsareprovidedfromthefullIIzb)Rack-to-fuelbeam(regularfuelassemblyorconsolidatedfuelcanister)impactloads.Dependingonanimpactdirectionrelativetotaborientation,twoimpactmodelsareconsidered.Section3.5.3.1.2.2describestheracktofuelbeamimpactmodelsinmoredetail.Obtainedtabloadsaresuperimposedtothecondition"a)"shearstresses.Notethattheinternalrackforceandmomentresultantsobtainedfromthefullpoolanalysesarereflectedinthe"a"tabshearstresscomponentscalculation.Impactloadsalsoproducenormal(axial)stressesintabs,aswellasbendingmomentinbothtabsandtabwelds.ResvttontSiosePeyoteSeisin@Looos~IIIIc)Thermallyinducedstressesdueto"Normal-To"and"Abnormal-Ta"thermalconditions.Section3.5.3.1.10coversthermalstresscalculation.Dependingontheloadcombinations,thermalstressesforthetwoconditionsaresuperimposedtothecombined"a"and"b"stresses.3.5.3.1.2.1Tab/WeldStressesduetoSeismicLoadsThissectionevaluatesthemaximumshearstressesdevelopedinracktubesinterconnectingtabs,developedasaresultofseismicrackshearforcesFxandFy.Assumingclampedsimplebeamasanequivalentofracktubes,seismicshearforceresultantsFxandFyareconsidereduniformlydistributedacrosstheracktubeheight.Atanyracktubecross-sectionparalleltothebaseplate,parabolicshearstressdistributionisdeveloped.Maximumshearstressesoccurnearbythebaseplate,i.e.inthelowesttabgroup,andalsoalongtheracktubecrosssectionneutralaxes:V=-QI'(Zt)51-1258768-01GinnaSFPRe-rackingLicensingReportPage150 A)*4~<<
where:VIztRackshearloadresultant,FxorFy.Momentofinertiaforaracktubescrosssectionaboutitsprincipalaxesperpendiculartotheshearforce(V)direction.Firstmomentofinertiaattheneutralaxislocationoftheracktubescrosssection.Cumulativetabthickness,foralltubesalongtheneutralaxistotheshearforcedirection.ExtremeOBEloadcaseisnumber8,withmaximumshearloadsdevelopedinrack3E(&#xb9;11):Fx=51,930lbsandFy=20,820lbs;(section3.5.3.1.8)ExtremeSSEloadcaseisnumber3,withmaximumshearloadsdevelopedinrack2B(&#xb9;8):Fx=98,880lbsandFy=60,740lbs;(section3.5.3.1.8)Crosssectionpropertiesforracks3E(&#xb9;11)and2B(&#xb9;8)arelistedinthetablebelow:.'ATEA'~Rack~;.j,.:~i':3E;:(&#xb9;II)''''':;.''':.::!5'',"-"28;(&#xb9;8)k',"''"':t[in]Ix[in4]Iy[in'Qx[in~]Qy[in'(zt)(zt)0.078731,33577,0731,073607.8St9t0.059175,257110,2011,506.51,222.78t10tMaximumTabuseMetal)ShearStressesforOBECaseSeismicstressenvelopingfactorforOBEcasesisf=1.12.Theshearstressesare:=2,058p.s.i.I'zg)77,073x(5x0.0787)vv>>220,820607.8639g.s.i.7(zt:)31,335x(9x0.0787)Combinedtabshearstressactinginvertical-Zdirectionis'K='K+'r=2g697g~ski+51-1258768-01GinnaSFPRe-rackingLicensingReportPage151 MaximumTabPaseMetal)ShearStressesforSSECaseSeismicstressenvelopingfactorforSSEcasesisf=1.20Theshearstressesare:z>12098I8801<506~53431I(Zt)110/201(80.0591)fy12060,7401,222~72,004p.s.i.I(Z5')75,257(100.0591)Combinedtabshearstressactinginvertical-Zdirectionis=5,435p.s.i.MaximumWeldStressesTabsareweldedtothetubesviafilletwelds,withthefollowingeffectiveweldthroats:Type2tabs:a=0.8mm=0.0315"Type3tabs:a=1.2mm=0.0472"Weldstressescanbeobtainedbylinearlyscalingtab~shearstress,actinginvertical-Zdirection,duetocombinedinfluenceofFxandFyshearforces:Rack&#xb9;8(type2):(~)=(~)~t/a=(x),1.5/0.8=1.875(~~~Rack&#xb9;11(type3):(~)=(~~~t/a=(x)2.0/1.2=1.667(~)~Resultsaresummarizedinthetablebelow-;."':.'-::Sh'ear','St'r'esse's''.:,-(<)~Ipsil(c~[psi]:;:-';::;OBK.";(Rack',&#xb9;ll):.;:::-,:::I,2,6975,057!,-:SSE'::,(Rack':&#xb9;8)'';;:5,4359,058~Estimatedstressesareconservative,sincemaximumofthetwocomponentshearforcesFxandFymaynotoccuratthesametimeinstant.3.5.3.1.2.2Tab/WeldStressesduetoFuel-to-TubeImpactThissectiondiscussesatabstrengthwhenafuelassemblyorconsolidatedcanisterimpactsaracktube.Theimpactloadisfurthertransmittedthroughthesetoftabpairstotheadjacenttubes.MaximumfueltorackbeamscumulativeimpactloadsfornewATEAracksarelistedinSection3.5.3.1.8:51-1258768-01GinnaSFPRe-rackingLicensingReportPage152 I
VOBE:811lbsx1.12(stressenvelopingfactor)=908lbsSSE:1,331lbsx1.20(stressenvelopingfactor)=1,597IbsConsideringtabandtab-to-tubeweldsstrength,twopossibleimpactscenariosaredistinguished:a)Longitudinaltabimpactb)LateraltabimpactA)Longitudinalrabimpactrefertoacasewheretheimpactforceistransmittedalongthetab,sothattheforcedirectionisparalleltothetabplane.EachstainlesssteeltubecornerisconnectedtoitsneighboringSStubeswithasetoftabpairs,mutuallyperpendiculartoeachother.ThisdesignenablestransmissionoffueltoracktubesimpactsineitherXorYdirections.Thisanalysisalsoconservativelyassumesthatseriesoftabsperpendiculartotheassumedimpactdirectiondonotcontributeasstressbearingelements.Actualstressesinlongitudinaltabsarethereforelowerthanpredicted.Figure3.5-38depictstopviewofapairofSStubesconnectedwithatabsetparalleltothedirectionoftheimpactingforce,assumedheretoacthorizontally.Figure3.5-38LongitudinalTabImpactModelType2Tabype3o.bGapwidth:Type2:d=0.0717"Type3:d=0.657"Afiniteelementmodeloftheracktubewithintegraltabsisconstructedtoobtainimpactloaddistributionacrossalltubetabs.Impactresultantsareobtainedforalltubemodeltabs,andarebasedon1,000lbstotalimpactforce.Maximumresultantimpactreactionsactinguponasingletabfortype2and3racktubesarethenappliedtoasingletabfiniteelementmodelwithneighboringSStubes,asshowninFig.3.5-38.Tabmodelconsistsof3shellfiniteelements,whilehalfofaneachSStubesideisdiscretizedintosixshellelements.TabtotubeweldsaremodeledsothatweldedtabedgessharecommonedgesofthecorrespondingSStubefiniteelements.Obtainedstressreactionsusedfortab(basemetal)andweldstrengthqualificationarelistedinthetablebelow:51-1258768-01GinnaSFPRe-rackingLicensingReportPage153 Fx[Ibs]Fy[lbs]Fz[Ibs]45.39.5215.3110.358.4Mx[in-lbs]negligiblenegligibleMy[in-lbs]Mz[in-lbs]21.621.3813641.32Localtabcoordinatesystemwheretheforceandmomentcomponentsaredefinedisshowninthesketchbelow:fzIIIIyl~IIIOveralltablength:type2:L=1.3487"type3:L=2.329"Tabheight:h=7.0866"Tabthickness:type2:t=0.0591"type3:t=0.0787"Tabweldthroat:type2:t=0.0315"type3:t=0.0472"Thefollowingstresscomponentsareconsidered:a)membranestressa-tabcrosssectionperpendiculartox-axis.b)averageshearx=V/A;whereV=((F)~+(FQ~)'",andA=htc)normalstresso>>-dueM:GI,yMyh/2IywhereI=h't/12d)normalstressob,-fromsingletabfiniteelementmodel51-1258768-01GinnaSFPRe-rackingLicensingReportPage154
 
-Totalnormalstress:a=om+sly+Gpz-Maximumprincipalstress:o,=1/2[a+(o+4m')'"]a)averageshear~=V/A;whereV=((F)+(F)'+(Fg')'",andA=hab)normalstressa>>-dueM:a,yMyh/21ywhereI=h'a/12c)normalstress0-fromsingletabfiniteelementmodel,scaledforthethroatthickness-Totalnormalstress:a=q,+a-Maximumprincipalstress:a,=1/2[a+(o+4~)'"]Resultsfortype2and3tabsandweldsaretabulatedbelow:'Stress':,Com'ponents::.':,';:;,'Ba'se":;Metal::,(Tab):.";.;.':.'",~::;::;:":,:'::::,:T'y'pe',:2~,':m,:.''.,'::,XI,-::-,'..Yy'pe)3:.;:~::."I.',~Type:,:2";::,::,;::,:::;;Type::3;,',:,Membrane-o.Avg.shear-~Normal-abNormal-aNormal-aPrincipal-a,726.3110.525.9290136533656444.7224206.5496156125621N/A1377.7824685.547685138N/A745344.2826886138677B)Lateraltabimpactrelatestotabstrengthinasituationwherefuelassemblyorconsolidatedcanisterimpactsaboratedstainlesssteel(BSS)tubeinwhichcasetheimpactloadcanbefurthertransmittedtoatabinterconnectingadjacentstainlesssteel(SS)tubes.TypicallayoutisshowninFig.3.5-39,incaseofthetype2racktabs.Thisconsiderationisnotfullyapplicabletothetype3racktabs,duetotheexistenceofbeltconnectorsthatbridgeBSStoadjacentSScelltubesforloadtransmission.51-1258768-01GinnaSFPRe-rackingLicensingReportPage155 Figure3.5-39LateralTabImpactModelType2RackTabImpactModelBSSNODE20~ImpactdirectionCobCharacteristicdimensions:a=0.485inb=0.096inc=0.800inTabthicknesst=0.0591"(1.5mm)TablengthI=7.087"(180mm)F'filetweldThetabismodeledasabeamclampedatbothends(weldlocations,nodes1and4)andsimplysupportedatnode2,thepointwheresurfacecontactbetweenthetabandtheSStubewallends.BSStubeisassumedtoimpactthetabatthepointmarkedasnode3.Forthistwicestaticallyindeterminatebeam,athreebeamsegmentfiniteelementmodelwasmade(ANSYS)withaverticalunitloadP=1lbs,actingintheassumedimpactdirection.Thefollowingresultswereobtained:ShearForce[Ibs](*)0.145*P-1.077*PP-0.077*PBendingMoment[in-lbs]0.0248*P0.0496*P0.039*P0.0226*P(*)positiveshearforcedirectionisassumedtobeindirectionofappliedP,ie.downward.Thelargestbendingmomentwillbedevelopedatnode2,ifPreacheslimitvalueP,causingyieldingofthetabcrosssection.Thecorrespondingbendingmomentlimitis:bt2H=a-lY=143.3in-lbs51-1258768-01GinnaSFPRe-rackingLicensingReportPage156 whereaisthetabmaterialyieldstrength(21.3ksiforSS304L,takenat150'F).Hence,thelimitloadisthenP=M/0.0496=2,888lbs.TheaverageshearatthatcrosssectioncanbeestimatedasE=(0.145+1.077)P/(bt)=8,343psi<9,420psi(ServiceLevelAorBStressAcceptanceCriteriaforpureshear).Themaximumcumulativeimpactloadsbetweenfuelandrackbeam,forthenew'TEAracksareforbothOBEandSSEconditionslessthanlimitloadestimatedvalueP..Hence,itisconcludedthatthetype2racktabs>villnotundergopermanentdeformationifimpactedbyanadjacentloadedBSStube.Thisconsiderationexcludesthefactthatonlypartoftheaboveexpectedimpactloadswouldbetransmittedtoasingletab,aswellasthattheotherBSStubecorneroredgewouldimpactanothertabgroupweldedtotheotherSStubecorner.Themaximumcombinedstressdevelopedinfilletweldatnode1inFig.3.5-39isestimatedass=~o'+~'hereoisthebendingmomentinducedstressinweld,andxistheverticalshearatthesamelocation.Hence,whereM,=0.0248*(0.5*P;,),andP;,=thetotalBSStubetotabimpactload(listedabove)I=(ba)/12,thetabcrosssectionmomentofinertia(a=0.0315"or0.8mmtheweldthroat)V,=0.145(0.5*P;)A,=ba,theeffectiveweldsheararea(reducedtoitsthroat)Resultsaretabulatedbelow:.OBESSEP;,=908lbsP;=1597lbscr=9.65ksia=16.9ksiC=0.295ksiC=0.52ksiS=9.654ksiS=16.91ksiTheallowablefilletweldmetalstressesare21ksiforServiceLevelA(OBE),and31.5ksiforServiceLevelD(SSE).Therefore,tabweldscanwithstandestimatedimpactforceswithmarginofsafetygreaterthan86%(forbothSSEandOBEconditions).Summaryofthemechanicallyinducedtabstresses51-1258768-01GinnaSFPRe-rackingLicensingReportPage157 0
Superimposedloadingconditionsare:1)Seismicallyinducedtab/weldstresses(Section3.5.3.1.2.1).2a)Stressesduetothelongitudinalimpact(Section3.5.3.1.2.2.A).Stressesareobtainedfor1,000lbstotalimpactforce,andscalingfactorshavetobeappliedforOBE(0.908)andSSE(1.6)conditions,2b)Stressesduetothelateralimpact(Section3.5.3.1.2.2.B).Resultsaresummarizedinthetablebelow:Table3.5-14MechanicalTab/WeldStresses:,",Ty'pe,';-..'::.",,"".,"'Str'es's"::,Category':>:;::,OBE',:Stress",(psi)P>:;.',:.,"'::.:';~-:.',"':-'~::.";(I)'::":,+';:::,(m'a'x'.:,of.,'.2a::.or,'::2b);'::;;:;:,'',::,';:i''::::j(f)':;:+,:,:(max,::.,'of,;::2a''or,,:,:2b)':",.:'.:-::;:",:.i,:BaseMetal(Tab)WeldPmPm+PbAvg.ShearAvg.ShearPm+Pb726.3(2a)*0.908=659.55621(2a)*0.908=5104or5759(2b)2697(1)+1324(2b)or224(2a)*0.9085057(1)+1377.7(2a)*0.908=1251or295(2b)8677(2a)*0.908=7879or9659(2b)726.3(2a)*1.6=11625621(2a)*1.6=8994or10148(2b)5435(1)+2333(2b)or224(2a)*1.69058(1)+1377.7(2a)*1.6=2204or520(2b)8677(2a)*1.6=13883or9659(2b)3.5.3.1.2.3ThermalStressesinTabs/WeldsMaximumthermallyinducedstressesintabsandtabweldsaretakenfromsection3.5.3.1.10.Anassumptionismadethatmaximum'thermalstressesoccurringinracktubesconservativelyenveloptab/weldsthermalstresses.Therackthermalfiniteelementmodel(section3.5.3.1.10)assumesrigidconnectionsbetweentheracktubes.Inreality,thetubesareconnectedviatabsandtab-to-tubelinewelds.Inreturn,thewholerackstructureismoreflexiblethantheassumedrackfiniteelementmodel.Hence,theobtainedstressesfromthemodelenveloprealthermalstressesintabsandtab-to-tubeswelds.Table3.5-15summarizesthermalstressesforNormal(To)andAbnormal(Ta)thermalconditions.Table3.5-15Tabs/WeldsThermallInducedStressesStr'ess''.[ysi]-:,::::;::::.',.',:;:...".::::;::::;:::".:;.:>W'-",',:.'.membrane3,8379,654,,To',:''-.,"',coii'd'tioii;~~.';",jTa~-.-',:,~condition",membrane+bending9,8569,80351-1258768-01GinnaSFPRe-rackingLicensingReportPage158
 
3.5.3.1.2.4TotalTab/WeldStressesStresscomponentsfromsummarytableinSection3.5.3.1.2.1,Tables3.5-14and3.5-15aresuperimposedinordertoarrivetomaximumestimatedstressesintabsandtabwelds..SummarizedvaluesarereportedinSection3.5.3.3,Table3.5-144.ItisthereforeconcludedthattabsandtabweldshasadequatemarginagainstASMEcodeallowablesforlevelsA,BandD.3.5.3.1.2.5BoratedStainlessSteelRetainerPlatesWeldStressesType2and3RacksBoratedStainlessSteelcellsareheldinplaceby4mmthickplates.Thefollowingcalculationsqualifytheretainerplatesandweldsformaximumimpactloadings(shear)ontherackcell.Thefollowingfigureshowstheretainerplatelocationsanddimensions.40mmTopRetainerPlate10mm(typ4places)7fnSS.TubeBSSPlpte10m(typ3placeI3.12In~BottomRetainerPlate51-1258768-01GinnaSFPRe-rackingLicensingReportPage159 Type2and3RetainerPlateDimensions:~esHeight(vertical)Length(horizontal)PlateThicknesse'nerPlate7.87in(200mm)5.71in(145mm)0.16in(4mm)1.18in(30mm)5.12in(130mm)0.16in(4mm)Theretainingplatesarethesamesizeforbothracktypes2and3.Theminimumweldthroatequals0.0313inches(0.8mm)forbothtopandbottomplates.Thetotalweldlengthrequiredforthetopretainerplateequals3.15inches(80mm),Aw=0.10in~Thetotalweldlengthforthebottomretainerplateequals1.18inches(30mm),Aw=0.04in~.TheBSS'sdeadweightequals164.9lbs.Eachlowerretainerplatereceives165/4or41.25lbs.ThemaximumstressesresultfromastuckfuelassemblyaccidentconditionwherethetotalupliftforceactingonallfoursidesoftheBSStubeequals2000lbs.Eachtopretainerplatereceives1/4oftheupliftor500lbs.ThestuckfuelassemblyconditionaffectstheupperretainerplateandoccursonlyintheServiceLevelBstresses.ForServiceLevelDstresses,a"g"value(acceleration)wasdeterminedforSSE.Themaximumrackweightisracknumber8(2B)equaling246,867lbspersection3.5.3.1.1.1.ThemaximumSSEplusdeadweightforrack8equals322,400(persection3.5.3.1.5forLoadcase3).TheratioofthehighestdeadweightplusSSEovertherackdeadweightgaveanaccelerationvalueof1.31g(includesdeadweight).Usingthetimehistoryfactorof1.2givesa"g"valueof1.57.Therefore,theSSEloadingoftheBSScell(perplate)equals41.25*1.57=64.8lbs.IObtainedstressesandcorrespondingallowablesaresummarizedbelow:aderveeeServiceLevelAServiceLevelBServiceLevelDBa~el~e1,031psi5,000psi1,620psi0.4*Sy=9,260psi0.532~Sy=11,725psi0.42*Su=28,120psiRetainerPlatesweldsareshownqualified.51-1258768-01GinnaSFPRe-rackingLicensingReportPage160 4
3.5.3.1.2.6RackTubeBucklingStrengthandTabWeldSpacingThissectionevaluatesthestrengthoftheRochesterGasEcElectricGINNAspentfuelATEAracktubeagainstbucklingrequirements.ThissectiondemonstratesthecomplianceofStandardReviewPlan,Section3.8.4,AppendixD,andASMESectionIII,SubsectionNF.TheresultsareapplicabletoATEAtype2,3,and4racks.Compressivestressesinracktubesareevaluatedatthelower,baseplatelevel,asaresultofcombinedactionofbendingmomentsaboutprincipalaxesMandMandverticalinertialloadF,(a,=F,/A,A-materialcrosssectionforalltubes),allduetoseismicactivity.Totalstressthusobtainedisscaledwiththetimehistoryenvelopingfactorf,equalto1.20forSSEor1.12forOBEconditions(section3.5.2.6),as2~2XzjlXYSquarerootofsumofsquaresofeachpeakcompressiveloadcomponentistakensincegenerallytheydonotoccuratthesametimeinstant.Asdepictedinthesketchshownbelow,thetotalcompressivetubestressisevaluatedforthefarthestedgeofthecornertubeforeachrack(distancesxandy,measuredwithrespecttoshownprincipalcoordinatesystem).Thisensuresconservatismofcalculatedstresses.Crosssectionproperties(tuberacks)forallracksaresummarizedintheTable3.5-16.CornerTubeXiXctIIIIIArbltroryTubeRock'sBosePlote51-1258768-01GinnaSFPRe-rackingLicensingReportPage161 Table3.5-16RackCross-sectionPropertiesforTubesRackXprYprIx-pr&#xb9;[in][in][in"4]Iy-prAtXctYct[in"4][in"2][in][in]7891011121346.446.446.246.146.146.242.733.737.923.132.335.523.129.453,89375,25716,30841,40731,33516,30833,48698,523110,20159,24081,05777,07359,24069,215126.2141.176.2104.194.776.293.546.3746.3746.1546.1546.1546.1549.5533.7237.9423.0832'135.4923.0835.19Note:XprYprIx-prIy-prAtXctYctX-locationofY(NS)principalaxis*Y-locationofX(EW)principalaxis*Principalmomentofinertia(tubes)aboutXaxisPrincipalmomentofinertia(tubes)aboutYaxisTotalcrosssectionarea(alltubes)Max.cornertubeedgetobaseplatecenterdistanceinXMax.cornertubeedgetobaseplatecenterdistanceinY(*)principalaxesareobtainedforensembleofalltubesinparticularrackbaseplateMomentsofinertiaforalltubesingivenrackarecalculatedviawheren,isthetotalnumberoftubesforparticularrackandI~,"andI>'reprincipaltubemomentsofinertia,A,-materialtubecrosssectionandxy,-tubecentroidlocationwithrespecttotheprincipalcoordinatesystem(asshowninthesketchabove).Obtainedstressesfortypes2and3ATEAracksarelistedinTable3.5-17forallloadcases.51-1258768-01GinnaSFPRe-rackingLicensingReportPage162 Table3.5-17CompressiveRackCornerTubeStressesfpsi]rack&#xb9;7101213LoadCase&#xb9;14,28623,67135,67544,14054,29765,48173,4398*2,7559*2,18810*2,487112,78912*4884,5374,0505,6834,4774,6005,6743,6892,9662,2942,4146502,1084,1374,1606,9794,0764,1305,6193,8514,1133,0583,1296,1752,9864,1983,7245,7934,0714,3185,2093,4822,7672,4312,3088256424,9974,4366,3934,8645,0306,1434,3104,5432,9292,8854,4284,0293,965-3,9146,4613,9474,0606,2383,7394,4462,8382,8723,8482,9254,9414,6636,9645,217S,3236,5024,6094,2142,8052,7304,6533,653(*)OBEloadcases.HighestcompressivestressesdevelopedforservicelevelsAandB(OBEcondition)arefromloadcase&#xb9;8forrack&#xb9;11,whereopgp4,543psi.IncaseofservicelevelD(SSEcondition),theworststressesarefromloadcase&#xb9;3forrack&#xb9;9,where~E=6,979psi.PerReference3.19(ASMESectionIII,subsectionNF3322(c)(2)(eq.6a,forausteniticstainlesssteel),theallowablestressincompressionforstainlesssteelgrosssectioncolumnmember(forkLlr=11.28(types2dc4),Il.02(type3))<120iskL/rF=S0.47ez'4410.29ksi(type2and4)12.31ksi(type3)where:S=k=L23.15ksiT=150'FforSStubematerial(ASMESectionIII,AppendixI)1.0,compressivebucklingcoefficient(ASMESectionIII,subsectionNF3322.2(b)(1)),forbracedframes37.9[in],interconnectingtabweldsspacingfortube'speripheraledges(type3rack)3.36[in],tubecrosssectionradiusofgyration(type2rack),3.44[in],tubecrosssectionradiusofgyration(type3rack)51-1258768-01GinnaSFPRe-rackingLicensingReportPage163
 
Thetuberadiusofgyrationisobtainedfrom:A3.36in,forracktubetypes2and43.44in,fortype3racktubewhereI=(2/3)h't=0.667x8.22'x0.0787=29.16in',isthetype2tubecrosssectionmomentofinertia,anditsareaisA=4ht=2.59in.Similarlyforthetype3rack,I=31.29in',andA=2.65in.Grosstubecrosssectionbucklingisnotcontrolling,sincebothaortaandossaarelowerthantheallowableF,.LocalelasticbucklingstressisevaluatedfromReference3.42,andinthecaseoftype2and3racktubes:9.24ksi(types2&4)12(1~)AS.S2ksi(typc3)where:v,=0.3,Poison'sratioforSSsteelO150'Ft=0.0787[in],tubewallthicknessh=8.22[in],tubesidewidth(medianline)(types2&4rack)8.417[in],tubesidewidth(medianline)(type3rack)k=4Again,bothao~HandassHforracktypes2,3and4arelowerthanthecorrespondingcriticalstresslimita.Consequently,bucklingisnotaconcernforRochesterGas&ElectricGINNAUnit1SpentFuelracks,forgivenlevelofseismicconditions,andmaximumtabweldsperipheraltubespacingisadequate.3.5.3.1.2.7RackTubeMaximumStressEvaluationInthissection,maximumracktubestressesareevaluatedandcomparedwithASMEcodeallowablestressesforServiceLevelsA,BandD.Inadditiontoaxial(compressive)tubestresses,shearstressesareactinguponbottomtubeends.Itwillbeshownthatshearstressescontributionisonlyafractionoftotaltubestress.ThereforeitissuQicienttoconsidershearloadsforSSEcondition(loadcase83)actinguponrack3C(89),wherethehighestcornertubeaxialstressoccurs.TheobtainedshearstressesconservativelyenvelopeOBEinducedshearstresses.a)ShearstressesduetorackbaseplateseismicloadsFandF:(F+x(F)=1240pst51-1258768-01GinnaSFPRe-rackingLicensingReportPage164 wherefTH=1.20,timehistoryenvelopingfactorforSSEconditionx(Fg,x(F)-averageshearstressesactingatthebaseplatelevel:Fx(F)n0.5A981.9psiFx(F)n,0.5A321.5psiwhereF=65,050lbandF=21,300lb(loadcase&#xb9;3,rack&#xb9;9,section3.5.3.1.8.1)A,=2.65in',thetube(type3)crosssectionarea(section3.5.3.1.2.6).Notethatareductionfactorof0.5isusedsinceeachpairofneighboringtubessharesacommonSSwall.n,=Sx10=50,totalnumberoftubesforrack&#xb9;9(3C)b)ShearstressesduetoracktorsionM,:184.6psiwhereM,=221,000in-lb(loadcase&#xb9;3,rack&#xb9;9,section3.5.3.1.8.1)r=52.6in,therackcornertocenterdistanceforrack&#xb9;9J=75,548in',torsionalconstantforrack&#xb9;9(=I+I,Table3.5-16)Generallytorsionaddslittletotheoverallmaximumtubestress.ItisthereforeconservativelytakenxT=250psi.Combinedshearstressisevaluatedasasquarerootofsumofsquaresoftheshearcomponents:22r-rF+rT1,265psi7,202psi/-223psiPrincipaltube(type3rack)stressesarenowobtained:a,~2=-[a+a,+4x]-12+21/22z-wherea,=assE=6,979psi,maximumaxialtube(type3)stress(Table3.5-17).51-1258768-01GinnaSFPRe-rackingLicensingReportPage165
 
Table3.5-18(Cont'd)D+L+E+Ta(LevelB)PrimaryMembranePrimaryMembrane+BendingRangeofPrimary+SecondaryAveragePrimaryShearD+L+E'+Ta(LevelD)PrimaryMembranePrimaryMembrane+BendingRangeofPrimary+SecondaryAveragePrimaryShear4,5434,87214,6751,2656,9797,20217,0051,26520,88131,32244,0809,42026,44839,67244,08028,12336054220064427945015921233.5.3.1.3BottomofRackTubetoBasePlateWeldsThissectiondemonstratescomplianceofRochesterGaskElectricGINNAspentfuelstoragerackswithallowablebaseplateweldsstresslimitsforservicelevelsBandD,perASMESectionIII,SubsectionNFforClass3componentsupports.BasePlateWeldsLayoutSquareracktubesareweldedtothebaseplateviaapairof2mmfilletweldsperdesignatedracktubesides.Totalweldlengthpertubesidevariesfromminimum3.150in(2x40mm)tomaximum6.299in(2x80mm).WeldlengthsareoptimizedsothatadequatedesignfactorsareobtainedforallnewATEAracksandall12loadcases(bothOBE(levelB)andSSE(levelD)conditions).Additionalrequirementsspecifiedactualweldlengthsin10mmincrements.Weldthroatistakentobe0.047in(1.2mm).Adoptedweldlengthsare:WeldType1L[mm]405060708051-1258768-01GinnaSFPRe-rackingLicensingReportPage167
~~
Dependingontheallowablestresslimitslowerdesignfactorscanbedevelopedeitherinweldsorinthebasemetal(racktubematerial).Criticalcrosssectionforweldsisassumedtobethethroatarea(throatwidthtimesweldlength).Incaseofbasemetal,criticalcrosssectionisequaltoatotalweldlengthpertubesidetimesthetubewallthickness.Baseplatewelds/basemetalcrosssectionpropertiesforeachrackarelistedintheTable3.5-19.Forbothweldsandbasemetal,sheararearepresentstotalweldareaforallweldedracktubesides,foralltubesofaparticularrack.Sameweldsorbasemetallinesaretakenintoaccountforcalculatingtheircrosssectionprincipalmomentsofinertia.PositionsofcorrespondingprincipalaxesarealsolistedintheTable3.5-19.Soobtainedcrosssectionpropertiesareusedforstresscalculations.Table3.5-19BasePlateWeldsCross-sectionPropertiesforNewATRARacks;:Rack::",:.j'.:'...Sh'ear''A'~[in~]:,".:::";';':,;::,"'"";::':Principal':;I'':[in4]','-'''-'':<:::,'~"".:.".',.'-.Princip'ai.I'-"''[in'.:]:',':::-.;-:::!<.'.;:..i,,'::.Principal.'Axes~i;>Weld',::,::;::;,':::.':::::B'as'e'.i';:::,.''',:",::::,:':Weld.;:.:.':.''::,':::::;::.'.,"lBa'se':.;'-':,'.""'-"'="-"""-"x:;.[in],P'.y.[in]:,~28.647.713,66722,77824,15740,26246.3733.5832.554.219,80133,00128,54047,56746.2237.94101223.939.933.655.928.247.025.041.65,80810,81412,1426,7839,68018,02320,23611,30423,16638,61031,06824,04451,78040,07420,59534,32646.4045.9946.1246.4423.0832.2235.1823.081329.048.311,62119,36824;08940,14942.4429.36(Note:x-directionisinEW,y-directionisinNS)WeldLoadsThefollowingtube-to-baseplateweldloadcomponentsareconsidered:a)Seismicloads-actinguponbottomrackbeamnode,andalsosharedbythebaseplatecrossbeams.Loadcomponentsareobtainedfromthefullpoolanalyses(section3.5.3.1.8)andconsistoftransverseFandFcomponents,verticalF,componentnormaltothebaseplate,bendingmomentsMandM,andtorsionM,.TransverseFandFforcesareassumedtobeuniformlydistributedacrossallwelds.LoadsaredistributedsimilarlyfortorsioninducedshearfromM,.Alltheloadsarethenassumedtoactatthetoprackplane.Loadcomponents(forcesandmoments)takenfromsection3.5.3.1.8aremultipliedbythetimehistoryenvelopingfactor(1.20forSSEand1.12forOBEcondition).Resultingweld/basemetalstressesarecalculatedas:51-1258768-01GinnaSFPRe-rackingLicensingReportPage168 4~L4~A whereoandoarethenormalstressesduetobaseplatebendingmomentsMandM.Thestresseswhichactuponthetubebottom(basemetal),arenormalstresses,aswellascombiedshearstressesintube-to-baseplatewelds:HTHZwhereIandIareprincipalmomentsofinertiaforthewholeweldorcorrespondingbasemetalgroup,(x;,y;)isweldedtubesidecenterlocationwithrespecttotheweldgroupprincipalcoordinatesystem.Theprincipalcoordinatesystemoriginislocatedat(x,y)withrespecttoSE(lowerleft)baseplatecorner.Horizontalweldandbasemetaltotal(average)shearstressxisduetotransverseFandF,verticalF,andtorsionMallreducedtotheweldorbasemetalgrouptotalareaA:2222FFFHx+tz+x,+xTwherex=f-";x=f-~;x=f-';x=f-'rxTH~yTH~zTH@TTHNotethatstresscomponentsareevaluatedattherackcornerwhichisfarthestfromtheweldgroupprincipalcoordinatesystemorigin(atdistancer).Polarmomentofinertiafortheweld/baseplategroupisJ=I+I.ResultsaresummarizedinTable3.5-20.b)Thermallyinducedloads-duetothedifferenceinthermalexpansionofthebaseplateandthetubes.Twoconditionswereconsidered(section3.5.3.1.10):eratin'""-AnANSYSmodelyieldsthemaximumstressof5,031psiatthe"hot"cell-to-baseplateinterface(minimum-type1weldlengthof40mmisassumed).d'""-freethermalexpansionofthebaseplateandtubesispartiallyconstrainedduetotheexistenceoffrictionbetweenlegsandpoolliner.Maximuminducedstressesareinthecornertubes,andestimated(ANSYSmodel)stressis6,676psiforcornertube-tobaseplatewelds(80mmweldlength,fortype2Brack).51-1258768-01GinnaSFPRe-rackingLicensingReportPage169 K
';L'o'a'd;'.I;;;:'';:;::I:;'-:,,Case"''0;:,i.,;::.':;::.Table3.5-20BasePlate&WeldStressSummaryforNewATEARacks:..",8:,:.'(2B):,"::':.,':-::.".':':.9;'(3C),":::,":,::i",-',:.'::.:'':;."g0;.:'(3if)':;::.':::':':','I1''(3E)"'"'':"'',.'12.;:(3D).;::.'::,::13(3B)::,'',".;:.':Ibm10,50610,6115,9008,8377,1705,1517,28617,51017,6869,83414,72911,9508,58512,1432bm8,9869,4425,9607,9186,2295,1056,84814,97615,7379,93313,19610,3818,50911,4143bm13,97613,3889,56512,0468,7248,23410,2964bm23,29310,15910,4755,8128,6006,9145,12322,31315,94220,07714,54113,72317,1607,6695bm6bm16,93210,53717,56213,50417,4599,68710,7705,99917,9509,99813,3117,94114,33411,5248,5399,1967,1815,31410,9868,3568,02915,32711,9698,85712,7827,82813,0479,61722,50722,18613,23618,30913,92713,38216,0297bm8,3978,6155,4787,4856,0274,8266,76613,99614,3589,12912,47510,0448,04411,2778bm6,7686,9265,5935,9306,2055,6116,19711,28011,5449,3229,88410,3419,35110,3289bm10bm5,3868,9776,0915,3828,9705,6534,2327,0534,3875,0958,4914,8633,9466,5773,8983,5975,9953,6564,1346,8894,02110,1529,4227,3128,1056,497~6,0946,07211bm6,8691,6228,4541,8456,2434,9846,86411,4482,70414,0903,07510,4058,30611,44012bm1,2114,9594,0421,4255,3113,7195,3816,7368,2642,018NOTE:bm-basemetal,w-weldstresses2,3748,8516,1998,96951-1258768-01GinnaSFPRe-rackingLicensingReportPage170 P~
 
pV Table3.5-21SummationofSupportLegWeldStresses';<i'':5~::"kL'oad,Co'iiibia'atioxn's';::.;"i~8".:,'!Max".%eld,'Streass"'(p'si);:'':.'!A'lloiiable';Str'ess":,(psi):.'elds:D+E(LevelA)D+E+Ta(LevelB)D+E'+Ta(LevelD)BaseMedal:D+E(LevelA)D+E+Ta(LevelB)D+E'+Ta(LevelD)11,67711,73318,3028,2578,29712,9420.3*(Su)=21,0000.40*(Su)=27,9300.42*(Su)=29,4000.40*(Sy)=9,2600.532~(Sy)=11,7250.42*(Su)=28,123Figure3.5-40Dimensions,SupportLeg,andGussetPlatesUsedForWeldQualificationRACKBASEPLATE5.31I-3.74-I~01013.274.05SUPPORTLEG9.23.351.5755.919.17GUSSETPLATE1.71/.394~Ctyp)T3.005.34.16(0taX)5.55~0943.00l.7~SUPPORTI-0.00~*FhorlZontalFvertlCal51-1258768-01GinnaSFPRe-rackingLicensingReportPage172 l
3.5.3.1.5SummaryofSupportPadLoadsThefollowinghorizontalandverticalloadsaregivenforthemodellegs.Theactuallegloadsforeachrackmustthenbemodifiedbytheactualnumberoflegsperrack.Thetablesalsodonotincludethetimehistoryfactorsof1.12forOBEand1.20forSSE.Table3.5-22Max.Boric.ModelLegForcesSRSS-LCQ1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8AbsoluteRack12345678910111213ValuesLeg154,57046,60045,26039,25037,32042,71030,34038,05026,47039,20032,43031,09034,870-HorizontalLeg266,62073,03043,40049,04043,87045,53033,28041,80027,52036,24035,75026,22033,920SRSS(FxLeg366,48057,70045,92041,13048,31052,51035,09033,65022,92032,37032,48025,25025,230&Fy)Leg454,97055,55037,63038,38039,89042,38042,12040,04023,77025,48029,75022,61024,590LbsMax.66,62073,03045,92049,04048,31052,51042,12041,80027,52039,20035,75031,09034,870Table3.5-23Max.VerticalPoolFloorForces-LCg1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8Rack12345678910111213Leg1122,700124,400113,400114,100115,600119,40083,640100,20055,49071,97067,57057,24073,390Leg2149,700'46,600128,600130,500119,900135,70096,810117,50068,41082,67089,03068,56085,750Leg3161,200151,800156,700142,600156,400144,40083,73098,64057,78070,70068,16053,26074,280VerticalLegandRackForces-LbsLeg4130,000117,300107,800109,600114,600116,40091,750116,40062,33082,94074,00062,62070,590Max.Leg161,200151,800156,700142,600156,400144,40096,810117,50068,41082,94089,03068,56085,750RackTotal274,100265,300263,900262,500269,100272,100162,100186,900104,300135,600132,200105,400121,00051-1258768-01GinnaSFPRe-rackingLicensingReportPage173 Table3.5-24Max.HorizontalLegForcesSRSS-LC52GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase52-UnconsolidatedFuel-SSE-Mu=0.2AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg124,18023,27020,68020,26021,79022,54015,75017,13010,02012,88012,00010,20012,550Leg222,55023,62020,19020,98021,24022,85015,51017,36010,49012,79012,83010,42011,470Leg323,34023,53018,57019,28018,97021,31013,27016,2409,93011,78012,3509,81310,930Leg421,27021,62020,20021,18020,76022,42015,38017,61011,24013,16012,44010,85010,720Max.24,18023,62020,68021,18021,79022,85015,75017,61011,24013,16012,83010,85012,550Table3.5-25Max.VerticalPoolFloorForces-LCg2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseI2-UnconsolidatedFuel-SSE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1121,000116,400103,500102,400108,900112,70078,68085,34050,07064,29060,67050,93062,430Leg2112,800117,800101,700104,800106,200114,20077,52086,71052,39063,87063,92052,03056,870Leg3116,600117,600106,20097,28098,680106,40071,79081,18051,19063,12061,70049,07054,640Leg4107,600107,900100,400105,900103,600112,00076,93087,95056,08065,78062,16054,05054,300Max.Leg121,000117,800106,200105,900108,900114,20078,68087,95056,08065,78063,92054,05062,430RackTotal262,200263,300262,200262,200262,800264,700157,700184,900109,100132,500118,200101,800115,700'1-1258768-01GinnaSFPRe-rackingLicensingReportPage174 Table3.5-26Max.Horiz.ModelLegForcesSRSS-LCN3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase53-ConsolidatedFuel-SSE-Mu=0.8AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910ll1213Leg164,98052,63034,64031,45029,52036,74041,30048,82031,90029,91043,73035,09038,160Leg286,33067,46039,73036,72031,24048,46046,78062,63027,59034,09038,60032,79038,210Leg360,80053,26046,30041,28042,72047,63034,94046,83028,85031,26037,62032,17028,970Leg471,86057,29032,76030,31027,82038,87039,01039,38032,82034,67045,19038,02032,360Max.86,33067,46046,30041,28042,72048,46046,78062,63032,82034,67045,19038,02038,210Table3.5-27Max.VerticalPoolFloorForces-LCI3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase53-ConsolidatedFuel-SSE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1189,900190,100162,800162,200155,000164,400123,600145,60087,060107,600112,00085,290115,600Leg2199,800201,400174,200175,500174,900182,500119,600150,30085,000101,100107,50085,680101,900Leg3208,900190,100162,000163,600172,500186,000129,600149,00087,990111,600112,20085,210103,600Leg4198,700174,900150,800154,800162,000172,300128,000146,50084,370108,900101,10085,57091,960Max.Leg208,900201,400174,200175,500174,900186,000129,600150,30087,990111,600112,20085,680115,600RackTotal465,500465,500465,500465,500465,500465,500276,700322,400166,300221,600204,200173,300203,40051-1258768-01GinnaSFPRe-rackingLicensingReportPage175 Table3.5-28Max.HorizontalLegForcesSRSS-LCN4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase54-UnconsolidatedFuel-SSE-Mu=0.5AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRackLeg1Leg2Leg3Leg4Max.1234567891011121349,66046,00037,75037,20035,86043,14034,91041,41026,62033,43031,80026,04031,7105,8,,72062,79048,60054,05041,16049,18032,50041,16026,34034,01031,98024,00033,87063,07056,07042,30034,59046,07050,86031,31033,14020,69029,91026,96020,78022,84053,36050,66035,92038,45040,88044,05034,74035,98021,84026,79023,87022,47023,45063,07062,79048,60054,05046,07050,86034,91041,41026,62034,01031,98026,04033,870Table3.5-29Max.VerticalPoolFloorForces-LCI4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase84-UnconsolidatedFuel-SSE-Mu=0.5VerticalLegandRackForces-LbsRack12345678910111213Leg1121,900123,600110,700110,300117,900122,60083,56094,66055,68074,91069,85058,75076,110Leg2146,000146,100124,800126,100124,700135,80093,060112,10064,07083,92082,02066,02082,910Leg3156,600152,600148,500138,100145,100138,800,83,07096,,74058-~49068,54069,32056,20072,920Leg4120,400122,500108,300109,500118,500121,20094,390115,40062,26084,41067,99061,22067,630Max.Leg156,600152,600148,500138,100145,100138,80094,390115,40064,07084,41082,02066,02082,910RackTotal267,000266,800264,200263,400270,100272,600166,400187,000108,800139,300127,500106,900123,800=51-1258768-01GinnaSFPRe-rackingLicensingReportPage176
~A~~<<J4~~,,*'t Table3.5-30Max.Horiz.ModelLegForcesSRSS-LCg5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910ll1213Leg163,63059,60047,59048,47045,47049,92034,96045,84026,52034,55038,32031,10037,720Leg269,79068,83049,96045,07047,04053,92037,89036,86029,04031,77032,73026,79035,320Leg370,00053,42047,74041,90050,27055,28043,69035,40025,91026,90027,06022,82026,650Leg465,03057,67050,31048,76044,58048,22031,48033,86025,29025,56030,93024,00029,960Max.70,00068,83050,31048,76050,27055,28043,69045,84029,04034,55038,32031,10037,720Table3.5-31Max.VerticalPoolFloorForces-LCN5GENNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1136,400132,200123,300114,800121,300123,40086,270103,10057,44069,56069,75055,99078,470Leg2150,600154,400121,600127,300117,800121,90084,320108,10064,34080,34078,53064,93083,720Leg3148,200139,600125,100122,400128,800127,60077,57091,97055,68065,37067,68052,81065,960Leg4136,900139,400128,500130,200116,600123,70094,180110,70060,48082,46072,82059,04067,610Max.Leg150,600154,400128,500130,200128,800127,60094,180110,70064,34082,46078,53064,93083,720RackTotal297,200290,400283,200283,200288,500288,300162,500192,90097,710134,800122,80099,740119,60051-1258768-01GinnaSFPRe-rackingLicensingReportPage177
 
Table3.5-32Max.Horiz.ModelLegForcesSRSS-LC56GlNNA3DWholePoolModel-WithPerimeterRacksLoadCase56-ConsolidatedFuel-SSE-Mu=0.8AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg164,02064,04038,47034,61032,94038,65036,91051,21029,39038,77040,26028,13039,660Leg268,46055,95042,42036,92031,79043,82035,89058,98028,50034,29040,83032,83039,600Leg365,79059,80047,92044,15045,24050,17036,96046,33027,97034,65037,11031,54028,120Leg466,38061,78031,30031,98031,82038,62039,04048,23033,19034,87042,83030,39031,650Max.68,46064,04047,92044,15045,24050,17039,04058,98033,19038,77042,83032,83039,660Table3.5-33Max.VerticalPoolFloorForces-LCI6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase56-ConsolidatedFuel-SSE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1213,400206,600168,000170,100159,300170,200121,100140,00081,330107,700102,10082,060105,900Leg2220,000215,100188,200185,000185,900187,800130,400156,00086,280109,600102,80087,480109,500Leg3204,000195,800167,900172,600173,900189,800117,500136,50082,30097,400108,10083,81098,730Leg4194,800186,000163,700160,700165,400181,200106,600138,90082,54095,92094,94086,77088,910Max.Leg220,000215,100188,200185,000185,900189,800130,400156,00086,280109,600108,10087,480109,500RackTotal496,500494,100494,100494,100494,100494,100276,600322,500169,800221,600204,800170,900202,60051-1258768-01GinnaSFPRe-rackingLicensingReportPage178 k'N Table3.5-34Max.HorizontalLegForcesSRSS-LCg7GZNNA3DWholePoolModel-WithPerimeterRacksLoadCase07-UnconsolidatedFuel-SSE-Mu=0.2AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg123,40024,30020,64021,10021,76022,68015,81017,42010,21012,75012,8309,86512,100Leg223,29024,35020,70021,49021,63022,68014,54016,59010,33011,91012,8709,96711,320Leg322,14022,49019,94019,81020,39022,01013,56016,2809,78711,63012,2309,54611,160Leg'421,96022,93021,57022,68022,75024,14014,55017,10010,21012,52011,69010,24010,490Max.23,40024,35021,57022,68022,75024,14015,81017,42010,33012,75012,87010,24012,100Table3.5-35Max.VerticalPoolFloorForces-LCI7GlNNA3DWholePoolModel-WithPerimeterRacksLoadCase07-UnconsolidatedFuel-SSE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1117,100121,400103,300105,400108,800113,40078,70086,31050,95063,79063,33049,35060,750Leg2116,400121,600104,200107,300108,100113,20073,23082,89051,65059,60064,21049,81056,560Leg3110,600112,500103,800101,900102,000110,00071,03081,40050,45062,78061,14047,74056,210Leg4109,700114,600107,700113,500113,900120,60072,69085,12051,09062,54058,29051,10052,440Max.Leg117,100121,600107,700113,500113,900120,60078,70086,31051,65063,79064,21051,10060,750RackTotal283,200283,200283,200283,200283,200284,100158,500181,600100,900131,800117,600101,800115,90051-1258768-01GinnaSFPRe-rackingLicensingReportPage179
 
Table3.5-36Max.HorizontalLegForcesSRSS-LCg8GINNA3DWholePoolModel-WithPerimeterRacksLoadCase58-ConsolidatedFuel-OBE-Mu=0.8AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg122,85019,44012,60013,02014,65016,66010,20011,58016,7907,67430,05022,04015,890Leg222,69019,38012,45012,86014,63016,58010,20011,42017,5107,66525,33023,82014,940Leg322,69019,38012,45012,86014,62016,58010,20011,42017,0307,66529,10022,74016,190Leg422,86019,44012,60013,02014,65016,66010,20011,58014,0507,67427,19025,99015,470Max.22,86019,44012,60013,02014,65016,66010,20011,58017,5107,67430,05025,99016,190Table3.5-37Max.VerticalPoolFloorForces-LCQSGINNA3DWholePoolModel-WithPerimeterRacksLoadCase08-ConsolidatedFuel-OBE-Mu=0.8VerticalLegandRackForces-LbsRack12345678910111213Leg1162,100160,300128,500129,000126,900132,60082,21097,56058,90070,91086,55075,85087,540Leg2159,700150,400134,500131,300125,100128,90091,200111,10068,61076,17089,14068,97078,730Leg3151,600149,200127,200128,300128,200135,90090,440106,80067,46077,60081,74066,21075,190Leg4151,900145,000121,100123,500124,100128,00079,42097,25058,70068,89083,45068,60064,670Max.Leg162,100160,300134,500131,300128,200135,90091,200111,10068,61077,60089,14075,85087,540RackTotal424,500424,500424,500424,500424,500424,500238,200270,000138,100195,200172,600141,300170,90051-1258768-01GinnaSFPRe-rackingLicensingReportPage180
 
Table3.5-38Max.HorizontalLegForcesSRSS-LCg9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase59-Unconsolidated.Fuel-OBE-Mu=0.2AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg121,85020,48018,24017,21017,19018,01011,94013,9108,8859,79110,9909,11510,790Leg220,12019,74015,34015,89014,82016,95012,00014,3208,3839,60610,3808,3519,172Leg319,37018,53015,83015,29015,54016,54012,41014,2908,95210,96010,1208,1729,128Leg419,75020,41016,81016,37016,66017,12011,81012,5507,9699,8349,7037,9598,687Max.21,85020,48018,24017,21017,19018,01012,41014,3208,95210,96010,9909,11510,790Table3.5-39Max.VerticalPoolFloorForces-LCI9GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseg9-UnconsolidatedFuel-OBE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1109,300102,40091,19086,06087,12090,99059,73069,53044,42048,95054,97045,56053,960Leg2101,60098,83084,18085,42084,46091,19062,09071,63041,91048,03052,93041,76046,370Leg396,84092,63084,34086,76078,81085,71062,05071,46044,76054,77050,59040,84045,640Leg498,720102,00086,62087,43083,97089,37059,14067,91039,84049,18048,52039,80044,170Max.Leg109,300102,40091,19087,43087,12091,19062,09071,63044,76054,77054,97045,56053,960RackTotal243,100243,100243,100243,100243,100243,100139,600156,50084,790116,000103,70085,220102,90051-1258768-01GinnaSFPRe-rackingLicensingReportPage181
 
Table3.5-40Max.HorizontalLegForcesSRSS-LCN10GlNNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseI10-UnconsolidatedFuel-OBE-Mu=0.2AbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg121,95020,84017,94017,12016,06015,89013,11014,5509,07710,24010,9408,79510,520Leg220,70020,45015,48016,54015,22014,75012,53014,1908,36610,45010,3908,3959,309Leg319,35017,54016,48015,53014,81016,11012,44013,7408,62110,42010,5308,4539,974Leg420,79019,15014,37014,62014,49015,72012,16014,0308,63110,16010,2907,7938,717Max.21,95020,84017,94017,12016,06016,11013,11014,5509,07710,45010,9408,79510,520Table3.5-41Max.VerticalPoolFloorForces-LCg10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseN10-UnconsolidatedFuel-OBE-Mu=0.2VerticalLegandRackForces-LbsRack12345678910ll1213Leg1109,800104,10089,69085,59082,92088,26065,53072,72045,39051,21054,70043,98052,830Leg2103,500102,30084,50088,68077,29084,01062,63070,96041,83052,23051,95041,96048,040Leg398,07092,25082,63079,49082,81082,45062,20068,70043,10052,09052,66042,27049,860Leg4103,90096,51083,23081,24084,62084,74060,79070,62043,15050,99051,48038,96043,620Max.Leg109,800104,10089,69088,68084,62088,26065,53072,72045,39052,23054,70043,98052,830RackTotal230,700230,700230,700230,700230,700230,700139,600156,50084,740115,400102,80083,740103,70051-1258768-01GinnaSFPRe-rackingLicensingReportPage182 Table3.5-42Max.HorizontalLegForcesSRSS-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase$11-MixedFuel-SSE-Mu=MixedAbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg127,67026,65029,11033,22026,01029,08021,19010,70029,4205,47830,61031,13031,360Leg242,71046,55023,62026,88024,16032,90019,49011,03028,7106,00923,58022,55023,780Leg330,14030,16028,69031,72024,32026,88021,92010,26025,1605,58122,49023,10024,640Leg434,54034,76028,06026,77029,55025,67023,15010,60030,5905,64727,85023,76024,250Max.42,71046,55029,11033,22029,55032,90023,15011,03030,5906,00930,61031,13031,360Table3.5-43Max.VerticalPoolFloorForces-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase511-MixedFuel-SSE-Mu=MixedVerticalLegandRackForces-LbsRack12345678910111213Leg157,75057,78068,950106,70089,810154,40068,51019,75080,43018,21070,23054,06072,440Leg289,72091,08054,710116,900127,800172,80045,19019,94084,21019,74074,50059,37072,320Leg381,92076,440101,400104,20063,930166,80081,98019,85071,50018,83065,10054,64067,860Leg495,52093,56070,060108,30092,180169,30075,95019,38077,17018,52066,89054,41062,970Max.Leg95,52093,560101,400116,900127,800172,80081,98019,'94084,21019,74074,50059,37072,440RackTotal158,000154,600157,100283,200262,600494,200142,60022,240157,50020,040117,700101,400118,70051-1258768-01GinnaSFPRe-rackingLicensingReportPage183 Table3.5-44Max.HorizontalLegForcesSRSS-LCI12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase512-MixedFuel-OBE-Mu=MixedAbsoluteValues-HorizontalSRSS(Fx&Fy)-LbsRack12345678910111213Leg116,0704,26011,9007,78212,77016,7705,78110,85016,8006,36620,72014,26012,360Leg215,4504,24011,8108,07611,62010,0306,15314,05013,8006,68520,24016,76011,430Leg314,3804,37711,8107,64415,52014,5005,36314,09015,3506,24121,01013,33012,130Leg415,6603,87411,9007,51214,74013,6506,72811,66015,1906,28719,95013,94011,600Max.16,0704,37711,9008,07615,52016,7706,72814,09016,8006,68521,01016,76012,360Table3.5-45Max.VerticalPoolFloorForces-LCN12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase512-MixedFuel-OBE-Mu=MixedVerticalLegandRackForces-LbsRack12345678910ll1213Leg1113,40017,82073,34018,36053,63055,72014,90063,28042,88015,64075,89054,60072,830Leg275,21017,73074,46017,97033,66032,65015,12070,74044,33016,84079,16049,01069,600Leg377,77018,31072,65018,68066,41070,44014,17069,88042,73015,14075,27033,95069,740Leg442,91016,21074,09018,44046,09047,45015,82062,51039,76015,36074,70025,66059,920Max.Leg113,40018,31074,46018,68066,41070,44015,82070,74044,33016,84079,16054,60072,830RackTotal222,30033,710243,30032,970136,500136,20016,890156,50085,33019,270170,90078,400170,80051-1258768-01GinnaSFPRe-rackingLicensingReportPage184 3.5.3.1.6Fuel-to-RackImpactLoadsTable3.5-46LocalFuel/RackImpactForces-LCNlGINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase$1-UnconsolidatedFuel-SSE-Mu=0.8LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910ll1213EastFx1,3881,1631,5181,1361,2991,3808031/2379881,0821/3231,1071,307NorthFy1,2241,0531,2911,2611,3411,3051,011873915978870944991WestFx1,3501,2991/2311,3041,2471/1226901,1147718321,2048911,046SouthFy1,3481/3221,2891,2401,2891,4321,2061,1741,1711,1281/1731,1811,175Table3.5-47LocalFuel/RackImpactForces-LCN2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase$2-UnconsolidatedFuel-SSE-Mu=0.2LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910ll1213EastFx1,2881,3671,5421,2041,3061,5241,1197951,1311,0601,1991,2541,054NorthFy1,1991,1601,2901,1421,3001,2191,149777917978971940988WestFx1/3171,4321,3071,3041,2701,2998607461,0018411,0441,079907SouthFy1,2531,1591/2231/2311,2911,3941,2881,1361/2231,0971,2511/2271/23351-1258768-01GinnaSFPRe-rackingLicensingReportPage185
 
Table3.5-48GINNA3DWholeLoadCase83-LocalFuel/RackImpactForces-LCg3PoolModel-WithoutPerimeterRacksConsolidatedFuel-SSE-Mu=0.8LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx299281293292293307260291306278330310289NorthFy317305290269339344176178166155156163142WestFx331333367359395396354380366330392366338SouthFy262290314302325328221227198199203191188Table3'-49GINNA3DWholeLoadCase54LocalFuel/RackImpactForces-LCN4PoolModel-WithoutPerimeterRacksUnconsolidatedFuel-SSE-Mu=0.5LocalFuel/RackImpactForcesFxFy(lbs)perFuelAssy.Rack12345678910111213EastFx1,2671,3741,0751,4141,5231,4238151,3281,0831/2131,1031,2101,280NorthFy1,1941,2741,0821,1341/1311,2081,2181/1238741,2648881,149990WestFx1,3351/1211,2291,3041,5081,1747881/1179749661,0459821,018SouthFy1,4211,2611,3011,3641,3281,3761,2391/2271/1721,1211,1981,2201,20251-1258768-01GinnaSFPRe-rackingLicensingReportPage186
~t Table3.5-50LocalFuel/RackImpactForces-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8LocalFuel/RackImpactForcesFxFy(lbs)perFuelAssy.Rack12345678910111213EastFx1,4511,3161,5011,5251,5161,3081,0879941,1121,0439509251/127NorthFy1,2051,0431,2741,2951,1391/2131,2159398079901,0139441,136WestFx1,2581,3041,5321,3241,5011/3279941,0361,031967821819969SouthFy1,4571,4481,2441,3301,3801,4391,2481,3018981/3311,1851,2281,229Table3.5-51LocalFuel/RackImpactForces-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase$6-ConsolidatedFuel-SSE-Mu=0.8LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx318317313311309318250267302272301286282NorthFy314298289269349355177176164'55153164144WestFx342340353348385385331363363318389368343SouthFy26530131130032032422322319720119819118951-1258768-01GinnaSFPRe-rackingLicensingReportPage187
* Table3.5-52LocalFuel/RackImpactForces-LC&#xb9;7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;7-UnconsolidatedFuel-SSE-Mu=0.2LocalFuel/RackImpactForcesFxFy(lbs)perFuelAssy.Rack12345678910ll1213EastFx1,3291,3891,5701,4231,4641,4661,2897819399989641,2581,000NorthFy8428438431,01712271,2361,0068581/2729819461,267991WestFx1,1431,4311,4701,1861,4931,3701,0269137579118041,099883SouthFy1,1021,1841,1161,3081,3971,4501,2161,2101,2031/2321/2731,1061,230Table3.5-53LocalFuel/RackImpactForces-LC&#xb9;8GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;8-ConsolidatedFuel-OBE-Mu=0.8LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack'2345678910ll1213EastFx11510910910310810480757667796965NorthFy1411371331321321329795100817910375WestFx132140142144144144122121119110120112111SouthFy11010610010094948481887778927351-1258768-01GinnaSFPRe-rackingLicensingReportPage188 Table3.5-54,LocalFuel/RackImpactForces-LC&#xb9;9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;9-UnconsolidatedFuel-OBE-Mu=0.2LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx382661696640362561378446441765411376497NorthFy682421469738563703620356603467589609621WestFx459691748699419573448574695735518489514SouthFy571573596519743690785426565587522698811Table3.5-55LocalFuel/RackImpactForces-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2LocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx618357440803465629333413343485358583461NorthFy707503590417751670461681575574489598624WestFx605392604959523794389524582574436521546SouthFy50460857751572094660847279772464949165851-1258768-01GinnaSFPRe-rackingLicensingReportPage189 Table3.5-56LocalFuel/RackImpactForces-LCN11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedLocalFuel/RackImpactForcesFxaFy(lbs)perFuelAssy.Rack12345678910111213EastFx1,5771,4881,4511,449322330258026601,0291,1931,070NorthWestFyFx1,0561,4071,1671,5201,1651,4959521,49729336524837217330400167284008981,0431,0349909771,026SouthFy1/3111,4091,4111,232304286219019401,2391,2611/272Table3.5-57LocalFuel/RackImpactForces-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedLocalFuel/RackImpactForcesFx&Fy(lbs)perFuelAssy.Rack12345678910111213EastFx1070618059052105685060808369NorthFy1260666067466706466290689877WestFx1430895064073005827380117122109SouthFy106075807887490683536064807351-1258768-01GinnaSFPRe-rackingLicensingReportPage190
~~I Table3.5-58SummaryofMaximumFuel/RackCellWallImpactLoads.'",,';:;.~,;::Seismic,',',:.('.:';.,''.::,",;~;:::Calculated!L''oad;-;:;.'jj',:::'p:;:.:.,',:;::.:.:(Ibs);~;;.":.:;.',!~i';;,-.':;TH.".Fa'cto'rL'oad,'':",,'':Ma'ximum":L'o'ad;,''i';.:'::Maximum,,'',',.;'.",',:!'Allow'able'.:L'o'a'd.','i::;..',';-:,.".';,'(lb');;'",'-,::,l'.;;,"'';;,';SSE13311.2016002902OBE8111.129082291Note:1)Max.allowableloaddeterminedasloadtoproducemax.allowablestressesinrackcellwallsperASMESectionIIIcriteria,asprovidedinTable3.2-1.3.5.3.1.7SummaryofSingleRack3-DModelResultsThesespecialstudiesonsinglerackmodelsareperformedtoevaluatetheeffectsofcertainparametersontheresultsofseismicanalyses.Theseevaluationsreducethenumberofwholepoolevaluationswhicharerequired,thusmakingtheanalysisoftheR.E.Ginnaspentfuelpoolracksmoreefficient.Twostudieshavealreadybeenreported.Section3.5.2.6coversthedeterminationoftimehistoryfactorsforSSEandOBE,andSection3.5.2.7coversastudyoftheeffectsofrackstiffnessonstressesanddeflections.Fouradditionalstudiesarereportedinthissection.Thefirststudyisanevaluationoftheeffectsthatincreasingtheracktubeheightwillhaveontheforces,moments,anddisplacementsoftherack.Thesecondstudyreportedisanevaluationoftheeffectsofattachingaperipheralrackontotheexistingregion2racks.Thisstudyincludestheevaluationoftheconnectionbetweentheperipheralrackandtheexistingregion2rack.Thethirdstudyreportedisanevaluationofthreeoff-centeredloadingcasesforhalf-loadedrackstofindthemostcriticalloadingtobeusedinthewholepoolmodel.Thefourthstudyisacomparisonofmodelswithconnectedanddisconnectedfuelbeams.3.5.3.1.7.1BriefDescriptionof3-DSingleRackModelTheanalysesofthe3-DsinglerackmodelareperformedusingANSYS5.2,afiniteelementcodeacceptedbytheUnitedStatesNuclearRegulatoryCommission(USNRC)forseismicandstressanalysis.Themodelismadeupofbeamelements,masselements,contactelementsandhydrodynamiccouplingelements..AllstructuralmembersaremodeledbytheBEAM4element.TheBEAM4elementisa3-Delasticbeamwithsixdegreesoffreedomateachnode.Beamelementsareusedtomodeltheracklegs,thebaseplate,theracktubes,andthefuel.Thefuelbeamandtherackbeamareverticalbeamslocatedatthecentroidoftherackinthehorizontalplane.Thefuelbeamandrackbeamareconnectedatthebottomend.ThebaseplatebeamsextendhorizontallyRomthebottomoftherackbeamtothecentersofthecornerrackcells.Atthecornerrackcells,racklegbeamsextendverticallydownwardfromtheendsofthebaseplatebeams.Eachlegbeamrepresentsonefourthofthetotalnumberofracklegs.51-1258768-01GinnaSFPRe-rackingLicensingReportPage191 AllmassisrepresentedbyMASS21elements.TheMASS21elementisalumpedmasselementwhichcanbeappliedinallthreeorthogonaldirections.TheMASS21elementcanalsoapplyrotaryinertiatorepresentthelumpedmassmoreasadistributedmass.AllcontactsbetweentheracklegsandpoollinerandbetweentheracktubesandfuelaremodeledwithCONTAC52elements.TheCONTAC52elementisa3-Dpointtopointcontactelementwhichallowsforgaps,interfacestiffness,andslidingfriction.Allhydrodynamiccouplingbetweenthefuelandrack,andbetweentherackandadjacentracksaremodeledwithFLUID38elements.TheFLUID38elementisahydrodynamiccouplingelementwithtwodegreesof&eedomateachnode,translationperpendiculartotheaxesofthecoupledcylinders.Therearetwobasicsinglerackmodels.Thefirstisarepresentationofrack8(2B),a9x11region2rackdesignedbyATEA,seeFigure3.5-41.Thesecondisarepresentationofrack1,anexistingregion2rackintheR.E.Ginnaspentfuelpool,withaperipheralrack,rack4Aattached,seeFigure3.5-42.3.5.3.1.7.2StudyofEffectsofRackHeightIncrease3.5.3.1.7.2.1PurposeofRackHeightIncreaseStudyDuringevaluationoftheracks,itbecameapparentthattheheightoftherackswouldhavetobeincreased.Theoriginaldesignheightofthetubesontherackswas158.5in.Thisheight,forthisstudy,wasincreased3in.to161.5in.Allofthepreviousanalyseshadbeenperformedusingtheshorterrackheight,sothisstudywasperformedtodeterminetheeffectsthatthischangewillhaveonthestructuralseismicperformanceoftheracks.3.5.3.1.7.2.2ModificationsRequiredinfheRackModelThefollowingmodificationsweremadetothestandardmodelforrack8(rack2B,11x9)inordertorepresentarackinwhichthetubeheighthadbeenincreased3in.1.2.3.45.Increaserackbeamheightby3in.Addmassofadditionalracktubeheight,98.6lbsRecalculatedMassMomentsofInertiaforheightof161.5in.Scalefueltorackhydrodynamiccouplingmassesby(161.5/158.5).Scaleracktorackhydrodynamiccouplingmassesby(162.68/159.68).3.5.3.1.7.2.3ResultsofRackHeightIncreaseStudyA3in.increaseintheheightoftheracktubeswasfoundtohaveonlyminoreffectsontheresultingrackloads,moments,anddisplacements.Table3.5-59providesacomparisonoftheresultsofarackanalyzedwithoutandwiththeheightincrease.Theactualheightincreaseoftherackswas3.5in.(to162.0in)ratherthanthe3.0in.usedinthisstudy.However,comparingthisdifferencewiththehighestanalyzedratioproducedinTable3.5-59equals(3.5/3.0)(0.028)=0.033,whichwhenroundedtotwosignificantfiguresstillshowsamaximumof3percentincreaseduetotheactualheightincreaseoftheracksby3.5inches.51-1258768-01GinnaSFPRe-rackingLicensingReportPage192 Figure3.5-41RepresentationofModelforSingleRackAnalysis21n24GAPELEMENTn21n33RACKn30FLUIDCOUPLING(Fuego-Reck)ELEMENT21nl77-n1Tn32n10n29FUELn1GAP~ELEMENT~~FLOORn15n31FLUIDCOUPLINGELEMENT(Reck<o-WeN)n2n6~SUPPORTLEGn6n16Note:ComparisonwiththeabovesimplifiedmodelandthemodelshowninFigure3.5-31isprovidedinSection3.5.3.1.7.5.51-1258768-01GinnaSFPRe-rackingLicensingReportPage193
 
Figure3.5-42RepresentationofModelforAnalysisofRack1withAttachedRack4ACAPELEWEg33SSRACKToRACK~SlCONNECTION47W~S3SgTYPE4RACKEXISTINGRACK3~8~131080C~P~LEuEIYT32S8748~EXISTINGRACK'SFUELS8651531TYPE4RACK'SFUEL8GAPdcFRICTION~~ELEIIENT,186341434842FLUIDCOUPLINGELEIIENT(RACK-TO-WALL)45TYPE4SUPPORT~44LEG(IOFa)49616lp~R64RACK-To-RACKCONNECTIONEXISTINGRACKSUPPORTLEG(IOF4)51-1258768-01GinnaSFPRe-rackingLicensingReportPage194 0
Table3.5-59ComparisonofResultsforRackModelWithandWithoutaHeightIncreaseMax.LegLoad(lbs)SingleModelLegHorizontalSingleModelLegVertical,';:,W(thout:.":Height:,",':.'Ii'icrea'se,".";:.':,:.,:;'.:,',:,:;":::.:;'.);';::::.""'"'4,910138,000;;.%'ith"Hei'gh't.'.'":Iiic'iea'se'.::;.',';::;.';.'.,'',:.".';;:33,570133,500;:::n'e""'edei"ht''".;.':"Or'igin'al':Height'',"..".0.9620.967Max.RackLoad(lbs)Max.RackMoments(in-lbs)Max.ImpactLoads(lbs)DisplacementofLeg(in)LegTotalVerticalHorizontalVerticalRackBendingMomentFuel-to-RackHorizontal322,80062,98013,4806.645*10'2,9500.03354322,80064,74013,5706.701*10~11,8700.031781.0001.0281.0071.0080.9170.948Includedinthetableisthefactorwhichwouldhavetobeappliedtotheresultsoftheanalysiswithouttheheightincreasetoenvelopetheresultsoftheanalysiswiththeheightincrease.Thisfactoris1.028and.isgovernedbyhorizontalrackload.Thisfactorneedstobeincreasedby(3.5/3.0)(.028)=0.033foratotalof1.033toaccountfortheactualheightincreaseof3.5in.ratherthan3.0in.asusedinthisstudy.Thisfactorappliestoallrackswhichhavebeenincreased3.5in.inheight.However,thisfactorwasaccountedforwhenselectingtheenvelopingtimehistoryfactorsinSection3.5.2.6.TheactualtimehistoryfactorcalculatedforSSEis1.164.Thecombinedtimehistoryfactoris:SSETimeHistoryFactor=1.164*1.033=1.2024=1.20Thus,thetimehistoryfactorselectedforSSEis1.20.Likewise,theactualtimehistoryfactorcalculatedforOBEis1.088.Thecombinedtimehistoryfactoris:OBETimeHistoryFactor=1.088*1.033=1.1239=1.12Thus,thetimehistoryfactorselectedforOBEis1.12.Becausethefactorforincreasedrackheighthasalreadybeenaccountedforinthetimehistoryfactor,noadditionalfactorsneedtobeapplied.51-1258768-01GinnaSFPRe-rackingLicensingReportPage195 3.5.3.1.7.3PeripheralRackAttachmentStudy3.5.3.1.7.3.1PurposeofPeripheralRackAttachmentStudyInthewholepoolmodels,theglobaleffectsoftheperipheralrackswasstudiedbyaddingthecorrespondingsizeandweighttotheresidentracks.However,thesizeandcomplexityofthewholepoolmodeldidnotallowdetailedmodelingoftheperipheralracks.Therefore,amodelofasingleperipheralrackattachedtoaresidentrackwasdeveloped.Thismodelincludesseparatebeammodelsforthetworacks,withbeamsconnectingthetworacks.Thefinerdetailofthismodelprovidesloadingsfortheconnections,thelegsoftheperipheralrack,andtheloadsontheperipheralrackitself.ArepresentationofthemodelusedisthisanalysisisincludedasFigure3.5-42.3.5.3.1.7.3.2PeripheralRackModelInputAdjustmentsThemodeltoanalyzetheconnectionsbetweentheType4peripheralracksconsistsofbeamelementmodelsoftheType1residentrackandtheType4peripheralrackconnectedbyadditionalbeams.ThebeamsforthelowerconnectionlinkthelegsoftheType1racktothebaseplateoftheType4rack.Thetype4racksaremodeledwith2legs.Theupperconnectionismodeledasasinglebeamwhichconnectsthecentersofthetworacks.ConnectionDimensionsBottomConnection(2permodel)MaterialisSSType304width=90mm(3.543in.)height=20mm(0.787in.)length=285mm(11.22in.)SectionProperties:Area=2.788in',I~=0.144in4,I=2.917in4TopConnection(1permodel)MaterialisSSType304Lwidth=140mm(5.512in.)height=40mm(1.575in.)length=57.4mm(2.26in.)SectionProperties:Area=8.681in',I~=1.795in4,I=3,778.695in43.5.3.1.7.3.3SummaryofResultsTheresultsofthismodelareanalyzedtofindtheloadsineachoftheindividualracksandintheconnectionsbetweenthetworacks.Tables3.5-60and3.5-61providesummariesofthedisplacementsandtheforcesandmomentsontheracksandtheconnectionsforOBEandSSErespectively.Incalculatingthestressesintheconnection,theloadsencounteredduringthermalaccidentconditions,atemperaturerise&om150'Fto180'F,mustbeincluded.Themaximumloadscausedbythethermalaccidentarehorizontallegforcesequaltothedeadloadoftherackmultipliedbythecoefficientoffrictionbetweentthelegandthepoolliner.Thetopendofthefrictionrangeis0.8.51-1258768-01GinnaSFPRe-rackingLicensingReportPage196 Table3.5-60SummaryofOBEResultsinPeripheralRackAnalysis';.';,Resident'.Rack!1:;.;"'",'Periphe'railRack;:4'ax.LegLoad(lbs)Max.RackLoad(lbs)RackMoments(in-lbs)Max.RackMoments(in-lbs)Max.ImpactLoad(lbs)DisplacementofLeg(in)SingleModelLegHorizontalSingleModelLegVerticalLegTotalVerticalHorizontalRackLoadVerticalRackLoadRackMomentMxRackMomentMyRackBendingMomentFuel-to-RackImpactLoadsHorizontal16,190137,10019,56016,990978,000747,8001.042*10~5,6140.01620424,8008,70827,11013,7001,340502,600583,8006.661*10',6990.01770AxialLoad(lbs)BendingLoad(lbs)BottomConnectionUpperConnectionBottomConnectionVerticalUpperConnectionHorizontalTension:11,034Compres.:-2,063Tension:7,618Compres.:-7,753-7031,218'OBEresultsneedtobemultipliedbyaseismicloadfactorof1.12.TopConnectionStressesforOBEo,,=1,000psi51.0*S=15,700psi(304LS.S.)o~=157psi~0.6*S=9,420psiBottomConnectionStressesforOBEob=4,433psis1.0*S=18,300psi(304S.S.)o~~b+b,~=25,740psi51.5*S=27,450psi51-1258768-01GinnaSFPRe-rackingLicensingReportPage197 I54\t1AM*4PtHP Table3.5-61SummaryofSSEResultsinPeripheralRackAnalysis':".::R'e'side'rit''.Rack-:::1.',,':::,;:.',:.'Pe'ripher'al'Rack"4A'::'ax.LegLoad(lbs)Max.RackLoad(lbs)RackMoments(in-lbs)Max.RackMoments(in-lbs)Max.ImpactLoad(lbs)DisplacementofLeg(in)SingleModelLegHorizontalSingleModelLegVerticalLegTotalVerticalHorizontalRackLoadVerticalRackLoadRackMomentMxRackMomentMyRackBendingMomentFuel-to-RackImpactLoadsHorizontal41,410184,90042,87023,2002.081*10'.323*10~2.196*10'4,0500.03793484,50018,08031,17025,7101,5188634*10s6.569*10'.676*10'1,9100.03682AxialLoad(lbs)BendingLoad(lbs)BottomConnectionUpperConnectionBottomConnectionVerticalUpperConnectionHorizontalTension:25,724Compres.:-5,164Tension:17,153Compres.:-17,319-9012,297'SSEresultsneedtobemultipliedbyaseismicloadfactorof1.20.TopConnectionStressesforSSEa~,~>=2,394psis1.2~S=26,450psi(304LS.S.)a>>~=318psis0.42~S=28,123psiBottomConnectionStressesforSSE0~,~,=11,072psi51.2*S=31,200psi(304S.S.)o,~,~~=31,914psis1.8~S=46,800psi~~~51-1258768-01GinnaSFPRe-rackingLicensingReportPage198 e4acktreefIxx=292in4Iyy=15,471in4A=25.9in'xx=8.3/2=4.15incyy=84.56/2=42.28ino,(X-Dir)=8,000psis1.0*S=15,700psi(304LS.S.)o,,(Y-Dir)=1,787psis1.0*S=15,700psi(304LS.S.)Note:RackOverturningmomentsresultinlocalcellwallmembranestressesTe4eeo,>(X-Dir)=14,725psis1.2~Sy26,450psi(304LS.S.)o,,(Y-Dir)=2,145psis1.2*S=26,450psi(304LS.S.)Note:RackOverturningmomentsresultinlocalcellwallmembranestressesnee'eacacUpperConnectiono,>=687psis1,194psilocalcriticalbucklingstressLowerConnectionThisconnectionrunstheentire84.56in.interfacebetweentheType4RackandtheResidentRacksAreaincompression=42.28in',~=1,453psis31,200psi(LevelDloadingwithLevelAallowables)51-1258768-01GinnaSFPRe-rackingLicensingReportPage199 I~~*~ll)fl 3.5.3.1.7.4Off-CenteredLoadingStudy~~~~~3.5.3.1.7.4.1PurposeofOff-CenteredLoadingStudyOneofthescenarioswhichisanalyzedusingthewholepoolmodelisamixedloadcase.Themixedloadcaserepresentsanyofthefollowingrackloadingconfigurations:1.2.3.4.5.Full,UnconsolidatedFull,ConsolidatedHalfLoaded,UnconsolidatedHalfLoaded,ConsolidatedEmptyThecaseswhichinvolvehalfloadedrackscanbeloadedoff-centered,causingthehigherloadingsanddisplacementsthaniftheyarepartiallyloadedwithanevendistribution.Therearethreedifferentwaystoloadthefueltoprovideoff-centeredloading:1.Loadhalfofrackononesideofshortaxis.2.Loadhalfofrackononesideoflongaxis.3.Loadhalfofrackononesideofdiagonal.Eachofthesethreeconditionsareanalyzedtodeterminewhichprovidesthehighestloads,moments,anddisplacementsforthehalfloadedracks.Itshouldbenotedthattheabsolutemaximumracksloadsoccurwithfullyloadedrackswithconsolidatedfuel.Further,themaximumrackdisplacementsoccurwithfullyloadedrackswithunconsolidatedfuel.3.5.3.1.7.4.2ModificationsRequiredtoAnalyzeOff-CenteredLoadingCasesTherackmodeledisrack8(2B),aregion211x9rack.Thehalfloadedcaseismodeledwith50consolidationcanisters.Thefuelbeamarea,fuelbeammomentofinertia,fuelweight,fueltorackinterfacestiffness,andfueltorackhydrodynamiccouplingarealladjustedbymultiplyingby50canistersratherthan99.Thecentroidsoftheracksareadjustedforeachcasetorepresenttheoff-centeredloading,andtheappropriatemassmomentsofinertiaareapplied.Centroidofcenteredloadingcase:x:46.655in.y:38.23in.Case1:Loadononesideofshortaxis.x:66.5193in.y:38.23in.Case2:Loadononesideoflongaxis.x:46.655in.y:22.0442in.Case3:Loadononesideofdiagonal.x:60.6336in.y:27.9300in.51-1258768-01GinnaSFPRe-rackingLicensingReportPage200 3.5.3.1.7.4.3SummaryofOff-CenteredLoadingResultsAsummaryoftheresultsoftheloadingsisprovidedinTable3.5-62.Theresultsindicatethatingeneral,thediagonalloadingpatternprovidesthehighestloads,momentsanddisplacements.Maximumvaluesareshowninboldtext.Fiveofthesevenitemsarehighestforthediagonalloadingpattern.Forthetwoitemswhicharehigherfortheshortaxisloadingcase,thevaluesforthediagonalloadingarewithin5percent.Table3.5-62ComparisonofResultsforHalf-LoadedConsolidatedRack8,SSE1,Mu=0.8SingleModelLegHorizontalLoad17,480lbs13,720lbs':Diagonal';,.'::;:;:,'.:y::;,;:.:,;,::ygg,':,',;,19,210IbsSingleModelLegVerticalLoad85,820lbs84,060lbs91,880IbsTotalVerticalLoadonLegsRackLoad-HorizontalRackLoad-VerticalRackBendingMomentLegDisplacement-Horiz.165,700lbs30,830lbs12,830lbs3.361*10'n-lbs0.02273in.164,000lbs27,970lbs12,700lbs2.873*10'n-lbs0.01478in.166,100lbs29,640lbs12,870lbs3.222*10~in-lbs0.02325in.3.5.3.1.7.5ComparisonofConnectedandDisconnectedFuelBeamModelsAllofthemodelsusedthusfarhaveconnectedthefuelbeamtotherackatthelowerend.Thismodelsimplificationwasperformedtoaidconvergenceinthewholepoolmodel.Inordertomaintainconsistencybetweenthesinglerackmodelsandthewholepoolmodels,thesamesimplificationwasmadeonthesinglerackmodels.However,thesinglerackmodel,havinglesscomplexitythanthewholepoolmodels,convergedwiththefuelbeamessentiallydisconnected&omtherack(weakspringswereusedtoconnectthefueltotherackatthebase,inordertoaidconvergence).Thepurposeofthisstudywastocomparetheresultsoftwoanalyses,onewiththefuelconnectedandonewithfueldisconnected,todeterminetheeffectsofconnectingthefuelontheforces,moments,anddisplacementsseenintherack.Theobjectivewastojustifyuseoftheconnectedfuelbeammodelforthewholepoolmodels.51-1258768-01GinnaSFPRe-rackingLicensingReportPage201 I~41L DifferencesBetweenConnectedandDisconnectedFuelBeamModelsThefirstanalysiswasperformedusingaconnectedfuelbeam(Figure3.5-41),andthesecondanalysiswasperformedusingthedisconnectedfuelbeam(Figure3.5-31).BothanalysesmodeledRack8(2B)withconsolidatedfuel,andusedacoefficientoffrictionof0.8andSSEtimehistorysetnumber1.Thefollowingisalistofthedifferencesbetweenthetwomodels:1.2.3.45.Separatenodeforbottomoffuelbeam.Thefuelmasswasseparatedfromrackmassandappliedatnewnode.Newnodewasattachedtorackbeambyweaklinearandtorsionalsprings.Ahydrodynamiccouplingelementwasaddedatthebottomofthefuelbeam.Thefueltorackhydrodynamiccouplingwasredistributed,25%attopofrack,50%atmiddleofrack,and25%atbottomofrack.Fueltorackgapelementswereaddedatthebottomofthefuelbeamforthe+X,+Y,-X,and-Ydirections.ResultsofConnectedandDisconnectedFuelBeamModelComparisonTable3.5-63containstheresultsofthecomparisonbetweentheconnectedanddisconnectedbeammodels.Thetablereportstheresultsoftheindividualevaluationsandtheratiooftheresultsoftheconnectedbeammodelwiththedisconnectedbeammodel.Thecomparisonshowsthatthedifferencesbetweentheresultsofthetwomodelsissmall,andtheconnectedbeammodelresultsareslightlyhigherandarethereforemoreconservative.Therefore,useofthesimplerconnectedfuelbeammodelisjustified.Table3.5-63SummaryofConnectedandDisconnectedFuelBeamModelComparisonResults'.:;:.:,::::;:.';;,:.";;,".",:.::Compoiierit,':j~:;:<g.,-',.::;-,''':.q.Conne'cted':Fuel%Beam:;:;SingleModelLegHorizontalForceSingleModelLegVerticalForce34,910lbs138,000Ibs29,070lbs134,500lbsI,'"i"'.zDIs'c'o'nnect'e'd!Fu'e1N>::,:,:j''l:1.2011.026SumofLegsVertical.Force322,800lbs322,600Ibs1.001HorizontalRackForceVerticalRackForceHorizontalRackMoment62,980lbs13,480Ibs6.645x10'n-Ibs57,090Ibs13,470lbs6.342x10'n-Ibs1.1031.0011.048HorizontalLegDisplacement0.03354in.0.03120in.1.07551-1258768-01GinnaSFPRe-rackingLicensingReportPage202 3.5.3.1.8SummaryofWholePoolModelResultsTheresultsofthewholepoolmulti-rackanalysisarepresentedinthissection,exceptforselectedtopics(ie,Fuel-to-RackImpactLoads)whicharecoveredinothersections.Thesubsectionsareasfollows:3.5.3.1.8.13.5.3.1.8.23.5.3.1.8.33.5.3.1.8.4RackForcesandMomentsforEachLoadCaseFinalRackDisplacementsforEachLoadCase'inalRackRotationsforEachLoadCaseRepresentativePlotsTable3.5-64SummaryofWholePoolModelLoadCasesSSE:;:j,:::ij~'jL'oading'':"':i.:':''::'.:'-:.::"'lUnconsolidated,":::;'-"'',:::,:'!P,.crim'eter:,'-',i',PNo-.''.:;:::;;Coefficie'rit."of;.:,!'..'::;:;::.:,-"::i.:Friction',"',ji;.';",."'.c'"...'a".."'~::.".i0.81012SSESSESSESSESSESSEOBEOBEOBESSEOBEUnconsolidatedConsolidatedUnconsolidatedUnconsolidatedConsolidatedUnconsolidatedConsolidatedUnconsolidatedUnconsolidatedMixed'ixed'oNoNoYesYesYesYesYesNoYesYes0.20.80.50.80.80.20.80.20.2Mixed'ixed'otes:1)FuelloadingsofEmpty,Half-Consolidated,Half-Unconsolidated,Full-ConsolidatedandFull-Unconsolidatedwererandomlyassignedtotheracksinthepool.2)CoefficientsofFrictionrangingfrom0.2to0.8(withameanof0.5,andastandarddeviationof0.15)wererandomlyassignedtotheracksinthepool.51-1258768-01GinnaSFPRe-rackingLicensingReportPage203 Table3.5-65SummaryofRackLoadingsforLoadCase&#xb9;11,,";;::NI,:;:',':;:,;Coef5cIent'of'::.;'-;"';-'.101213Half-Unconsolidated,NE'alf-Unconsolidated,NEHalf-Unconsolidated,NWFullUnconsolidatedHalf-Consolidated,SEFullConsolidatedHalf-Consolidated,NWEmptyFullConsolidatedEmptyFullUnconsolidatedFullUnconsolidatedFullUnconsolidated0.480.530.580.750.660.250.430.590.420.310.590.710.47Notes:1)Fuelloadingsofhalffullusedadiagonalfuelloadingforworsteccentricity.Thelocationsofthecentroidforthehalfloadedconditionswererandomlyassignedtooneofthefourcornersoftherack.Thus,NE=North-East,NW=North-West,SW=South-WestandSE=South-East.2)Coefficientsoffrictionintherangebetween0.2and0.8wererandomlyassignedtotheracks.ThemeanofthevaluesforLoadCase&#xb9;11is0.52andthestandarddeviationis0.148.DistributionofFuelLoadsforLoadCase&#xb9;11Lu~FullConsolidatedFullUnconsolidatedHalfConsolidatedHalfUnconsolidatedEmptyQh2423251-1258768-01GinnaSFPRe-rackingLicensingReportPage204 4
Table3.5-66SummaryofRackLoadingsforLoadCase&#xb9;12101213Half-Consolidated,SW'mptyFullUnconsolidatedEmptyHalf-Unconsolidated,NWHalf-Unconsolidated,NWEmptyFullUnconsolidatedFullUnconsolidatedEmptyFullConsolidatedHalf-Consolidated,SWFullConsolidated0.420.240.500..450.550.400.430.770.650.410.430.750.36Notes:1)Fuelloadingsofhalffullusedadiagonalfuelloadingforworsteccentricity.Thelocationsofthecentroidforthehalfloadedconditionswererandomlyassignedtooneofthefourcornersoftherack.Thus,NE=North-East,NW=North-West,SW=South-WestandSE=South-East.2)Coefficientsoffrictionintherangebetween0.2and0.8wererandomlyassignedtotheracks.ThemeanofthevaluesforLoadCase&#xb9;12is0.49andthestandarddeviationis0.153.DistributionofFuelLoadsforLoadCase812Lua&eFullConsolidatedFullUnconsolidatedHalfConsolidatedHalfUnconsolidatedEmpty2322451-1258768-01GinnaSFPRe-rackingLicensingReportPage205 e
3.5.3.1.8.1RackForcesandMomentsforEachLoadCase~~~~~~Table3.5-67RackForcesFx,Fy&Fz-LC&#xb9;1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-52,790-47,730'-52,960-54,020-73,610-67,270-56,650-64I390-35,110-42,430-44,190-37,490-42,010MaxFx48,960,56,87040,22045,66054,30046,41051,99059,14032,44042,91050,49035,78044,180MinFy-95,430-92,630-105,000-95,510-81,040-84,280-24,720-37,730-14,060-24,340-19,790-10,180-23(340MaxFy90,50084,69077,03076,14082,45088,82033,78042,31013,79022,98025,57016,22025,000MinFz-23,460-22,930-22I810-22,690-23,260-23,510-11,460-13,140-10,260-13,330-13I090-10,310-12,090MaxFz-13,890-13I650-14,190-14,190-13,720-14I200-6,824-7,841-5,674-8,283-6,938-5,847-7,388Table3.5-68RackMomentsMx,My&Mz-LC&#xb9;1GlNNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-10.640-10.130-8.325-8.653.-8.884-9.460-3.154-4.669-1.325-2.556-2.783-1.138-2.424MaxMx10.95011.0709.9789.4408.9269.8263.0514.2231.1822.2532.4041.1102.284MinMy-6.556-5.283-4.775-4.703-7.813-7.416-5.735-7'30-3'10-5.044-4.405-3.575-3.972MaxMy5.8996.0424.3504.6805.2275.5426.3236.7293.5334.9024'383.6994.515MinMz-0.522-0.606-0.577-0.377-0.366-0F508-0.208-0.281-0.237-0.146-0.166-0.135-0.189MaxMz0.5950.6770.5350.2720.4250.5820.2390.3310.2150'660.1850.1250.18551-1258768-01GinnaSFPRe-rackingLicensingReportPage206 I,~'f Table3.5-69RackForcesFx,Fy&Fz-LC&#xb9;2GZNNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack1235678910111213MinFx-50,330-52,770-46,020-53I420-43,320-43,000-47,250-44,110-28,350-36,730-35,370-27,700"33,300MaxFx47,92051,31046,44044,68046,07044,00041,46046,20030,65037,95037,46028,63033,330MinFy-63,490-61,840-61,140-61,420-60,860-73,570-28,000-33,770-12,860-26,080-23,670-12,070-25,230MaxFy72,31068,07058,39068,47068,44090,93025,57042,68013,25022,73020,42012,54019,060MinFz-22,660-22,710-22,660-22,660-22,720-22,880-11,200-12,980-10,630-13,010-11,750-9,960-11,570MaxFz-13,900-13,570-13,460-13,460-13,460-13,470-7,134-7,788-5,653-8,373-7,460-6,047-7,651Table3.5-70RackMomentsMx,My&Mz-LC&#xb9;2GONNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-9.342-9.097-7.066-7.515-8.004-8.725-2'67-4.418-1.398-2'49-2.2741~277-2.405MaxMx7.9557.3846'196.4306.5637.9412.4183.8361.0422.2262.1970.9852.260MinMy-5.506-5.325-4.635-4.343-3.653-4.092-5.137-5.276-3.387-4.289-4.102-3.468-3.788MaxMy5.0034.7793.4153.6303.1863.3755.3556.0243.6504.2804.4233.4814.120MinMz-0.370-0.291-0.194-0'25-0.235-0.323-0'44-0.159-0.120-0.112-0.095-0.072-0.129MaxMz0.2920.2500.1960.2350.2700.3680.1670.1960.1290.1360.1030.0750.10051-1258768-01GinnaSFPRe-rackingLicensingReportPage207 Table3.5-71RackForcesFx,Fy&Fz-LCg3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseg3-ConsolidatedFuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-66,330-57,400-60,520-60,290-65,780-69,900-79,380-82,650-52,350-65,250-63/300-49,740-61,500MaxFx71,48054,08057,64051,58054,30056,79086,28098,88065,05072,76074,98059,82067,090MinFy-147,200-131,900-101,700-106,500-98,050-104,700-40,040-51,140-181540-35,700-31,200-19,800-35,060MaxFy137,700119,500108,600107,600108,000117,80045,42060,74021,30036,29032,49023,53033,130MinFz-24,060-24,060-24,060-24,060-24,060-24,060-11,650-13,460-9,837-13,170-12,250-10,250-12,290MaxFz-12,630-12,730-12,750-12,750-12,750-12,750-6,779-7,888-5,310-7,864-6/996-5,530-7/212Table3.5-72RackMomentsMx,My&Mz-LCI3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseg3-ConsolidatedFuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack1234i5678910111213MinMx-15.840-14'60-11.160-10.480-9.832-11.480-3.848-5.114-1'79-2.821-2.451-1.403-2.468MaxMx14.95013.60010.7309.84210F42012.0503.3104.9091.6782.8572.6611.4352.972MinMy-6.339-5.366-3.900-3.957-4.897-5.369-7.457-8.893-5.341"6.487-6.969-5.424-6.146MaxMy7.3075.3213.4413.5804.3184.9698.6489.4406.8137.5177.3336.3996.830MinMz-0.888-0'19-0.340-0.220-0.199-0.275-0.180-0.324-0.221-0.182-0.260-0'11-0.284MaxMz0.8980.4910.2720.1730'710.2930.2310.3530.2170.2130.2660'300.32251-1258768-01GinnaSFPRe-rackingLicensingReportPage208 Table3.5-73RackForcesFx,Fy&Fz-LC&#xb9;4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;4-UnconsolidatedFuel-SSE-Mu=0.5RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-51/490-46,580-61,530-53,010-64,430-65,330-57,600-63,580-34,780-44,950-41,200-35,730-35,060MaxFx59,47053,85044,99043,26049,92060,21050,18056,17033,07044,39043,38035,10042,560MinFy-92,040-87,100-91,480-89,380-77,530-82,560-29,510-39,670-13,050-26,660-20,200-10,890-24,380MaxFy86,22089,18073,310-79,11086,68088,10033,70043,28012,65029,75023,60011,35024,200MinFz-23,050-23,060-22,840-22,770-23,340-23,550-11/810-13,170-10,720-13,680-12,640-10,530-12,310MaxFz-13,740-13,460-13,940-13,810-13,920-13,900-6,715-7,906-5,496-8,234-7,326-5,671-7,174Table3.5-74RackMomentsMx,My&Mz-LC&#xb9;4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;4-UnconsolidatedFuel-SSE-Mu=0.5RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-10.430-10.430-8.321-8.416-8.156-9.294-3.055-4.580-1.289-2.474-2.634-1.000-2.680MaxMx11.49010.8909.1069.0208'859.5772.8963.9261.3092.2712.1091.1582.662MinMy-5.788-4.886-5.468-5.542-7.789-7.997-6.100-6.961-3.650"4.894-4.448-3.657-3.946MaxMy5.8725.9814.2404.7205.7855.9355.8396.6733.5354.8354.5763.6064.622MinMz-0.504-0.543-0.289-0.417-0.325-0.366-0.159-0.341-0.151-0.169-0.172"0.141-0.155MaxMz0.6540.3760.3360.3660'360.3600.1920.3910.1380.1400.1580.1630.13851-1258768-01GinnaSFPRe-rackingLicensingReportPage209
 
Table3.5-75RackForcesFx,Fy&Rz-LC&#xb9;5GONNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-46I410-48,550-51,080-49,500-71,970-81,550-57,340-70I580-33,960-42,600-38,990-35,120-39,010MaxFx51,27054,79042,07042,44047,94053,64054,57059,84035,27046,36055,46035,70042,250MinFy103,900104,600-96,110-97,660-97,320102,900-29,000-45,040-14,720-28,250-24,760-12,600-28,440"MaxFy109,100105,20095,89097,74089,39097,70034,34040,21012,70026,68021,80013,37026,050MinFz-25,870-25,430-24,700-24I700-25,160-25,140-11,510-13,580-9,535-13,250-12,170-9,740-11,970MaxFz-14I070-14,320-14,680-14,740-14,430-14,280-7,102-7,830-5,702-8,087-7,055-5,515-7,140Table3.5-76RackMomentsMx,My&Mz-LC&#xb9;5GONNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-12'30-12'60"11.410-11.310-10.040-10.650-3.145-4.538-1.453-2'73-2.199-1.121-2.800MaxMx13.46011.92011.08011.56010.96011.8303.0034.9461.3092.8682.7151.3072.742MinMy-4.887-4.816-4.913-4.252-7.132-6.449-6.261-6.909-3.539-4.944-4.412-3.527-4'33MaxMy4.6974.1643'864.2344.6714.9746.3546.9163.4884.8134.7523.6334'33MinMz-0.709-0.739-0.491-0.421-0.598-0.332-0.212-0.295-0.180-0.155-0.230-0'38-0.180MaxMz0.5480.7500.4060.5110'060.4240.2520.2730.1320.2030.2410.1350.14551-1258768-01GinnaSFPRe-rackingLicensingReportPage210 Table3.5-77RackForcesFx,Fy&Fz-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;6-ConsolidatedFuel-SSE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-70,290-65,800-62,710-67,340-71,790-72,390-65,260-84,380-53,660-56,100-63,610-53,130-61,190MaxFx59,94050,59049,58047,81056,63063,11090,64084,64056,94072,92063,84066,96062,430MinFy-144,000-129,300-107,200-107,000-101,600-108,400-39,500-54,980-18,140-36,530-31,290-20,620-35,200MaxFy145,800123,700119,700118,800114,300125,10045,21063,02019,66036,96031,35018,89033,010MinFz-25,950-25,800-25,800-25,800-25,800-25,800-11,650-13,470-10,040-13,170-12,290-10,110-12,240MaxFz-13,170-13,170-13,170-13,170-13,170-13,170-6,815-7,838-5,575-8,024-6,851-5,598-6,846Table3.5-78RackMomentsMx,My&Mz-TC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;6-ConsolidatedFuel-SSE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-15.390-15.050-12.430-11.420-10.490-12.310-4.070-5.555-1.646"2.882-2.305-1.408-2.387MaxMx15.93012.78011.70010.85010.77012.1603.2884.6081.5532.7122.5651.5042.648MinMy-5.518-6.292-3.967-4.713-5.261-5.664-6.997-9.052-5.132-6.343-6.481-5.596-5.881MaxMy5.5415.4653.9933.9874.6344.8848.0547.9255'126.5177.0356.0856.491MinMz-0.516-0.533-0.250-0.248-0.144-0.179-0.215-0.323-0'85-0.214-0'32-0.197-0.233MaxMz0.7010.8450.2080.2170.1230.1490.2460.3950.2120.2410.2270.2090.19751-1258768-01GinnaSFPRe-rackingLicensingReportPage211
 
Table3.5-79RackForcesFx,FyEFz-LC&#xb9;7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;7-UnconsolidatedFuel-SSE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-59,090-48/380-43,220-41,430-38,700-46,190-40,620-39,420-28,900-34,250-34,050-27,760-31,360MaxFx55,91046,53039,65053,07044,67043,21038,76046,99029,18037,82035,07029,20031,690MinFy-70,350-67,240-61,890-69,170-73,460-82,560-25,540-42,170-19,840-29,830-25,470-16,670-25,500MaxFy75,78072,95074,53068,82071,53096,50024,89040,08012,64024,80019,90011,61025,950MinFz-24,700-24,700-24,700-24,700-24,700-24,780-11/260-12,770-9/851-12,960-11,700-9,956-11,590MaxFz-14,790-14,880-14,430-14,430-14,430-14,430-7,219-7,940-5,949-8,340-7,545-5,840-7,417Table3.5-80RackMomentsMx,MyaMz-LC&#xb9;7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;7-UnconsolidatedFuel-SSE-Mu=0.2RackMomentsMx,My6Mz(in-lbs)x1E6Rack12345678910111213MinMx-9.349-9.193-7.675-7.884-8.760-9.640-2.710-4.177-1.220-2.426-2.026-1F055-2.354MaxMx8.7968.6627.1006.8187.6799.3032.4414.0011.1642.2402.1611.0062'32MinMy-4.441-4.681-4'05-3.6703~272-3.292-4.906-4.897-3.468-3.856-4.191-3.488-3.620MaxMy4.2464.1403.6913.4613.1143.0664'675.3193.3643.7794.3853.5074.100MinMz-0.221-0.262-0.185-0.276-0.231-0.319-0'25-0.132-0.105-0.108-0.103-0.074-0.094MaxMz0.2780.2730.1810.3080.3040.4070.1710'870.1220.1080.1340.0830.09051-1258768-01GinnaSFPRe-rackingLicensingReportPage212
 
Table3.5-81RackForcesFx,Fy&Fz-LCN8GONNA3DWholePoolModel-WithPerimeterRacksLoadCaseg8-ConsolidatedFuel-OBE-Mu=0.8RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-46,380-38,460-30,360-31/580-33I460-32,590-39,830-39,420-39,680-30,590-51,930-41,410-36,700MaxFx42,38037,83034,95033,65029,11027,99030,61034,93031,63025,11042,77040,77030,680MinFy-85,620-74,010-56I530'52,960-73,110-79,430-28,490-37,940-12,420-21,120-20,820-13,350-20,950MaxFy99,54088,26056,64053,88056,47061,01023,87032,40010,90021,76017,42010,07020,830MinFz-20,850-20,850-20,850-20,850-20,850-20,850-10,030-11,270-8,178-11,600-10,360-8,363-10,330MaxFz-15,980-15,980-15/980-15,980-15,980-15,980-8,295-9,219-6,987-9,608-8,628-6,845-8,692Table3.5-82RackMomentsMx,My&Mz-LC58GONNA3DWholePoolModel-WithPerimeterRacksLoadCaseNS-ConsolidatedFuel-OBE-Mu=0.8RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-10.640-9.256-5.797-5'71-5.902-6.334-2.145-2.828-1.000-1.602"1.314-0.888-1.584MaxMx10.1608.3475.3915.0306.9577.5922.1293.6050.9942.0662.0930.9222.150MinMy-3.968-3.412-2.581-2.299-2.596-2.647-4.378-4.575-4.348-3.283-5.220-4.740-4.199MaxMy3.6282.8172.1992.0431.8761.9923'843.9333.9592.8885.4944.8114.197MinMz-0.000-0.000-0.000-0F000-0.000-0.000-0.000-0.003-0.061-0.000-0.093-0.100-0.081MaxMz0.0000.0000.0000.0000.0000.0000.0000.0040.0630.0000.0830.1020.05451-1258768-01GinnaSFPRe-rackingLicensingReportPage213 4lt+AI~gq~\')1~
Table3.5-83RackForcesFx,FyaFz-LC&#xb9;9GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;9-UnconsolidatedFuel-OBE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack1235678910111213MinFx-38/300-31,830-28,990-31,420-33,230-27,350-37,940-38,580-25,390-30,010-29,570-21,520-24,810MaxFx33,27028,85030,15030,1302S,92026,08030,52032,79027,43027,28030,46021,65025,070MinFy-67,440-62,750-51,200-52,740-60,110-51,230-19,910-24,210-10,250-12,680-14,600-9,840-15,740MaxFy63,89058,13051,07053,58061,87052,20019,40022,5909,79915,04011,9508,59914,310MinFz-21,210-21/210-21,210-21,210-21,210-21,210-9,922-11,030-8,312-11,420-10,300-8,321-10,290MaxFz-17,510-17,510-17,510-17,510-17,510-17,510-8,542-9,418-6,978-9,830-8/733-6,895-8,832Table3.5-84RackMomentsMx,My6Mz-LC&#xb9;9GZNNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;9-UnconsolidatedFuel-OBE-Mu=0.2RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-8.108-7.581-4.687-4.809-4.988-5.782-1.783-2.363-0.875-10327-1.242-0.674-1.198MaxMx8.3367.5265'835.4915.0745.5531.7652.2890.7831.4691.1760.7031.390MinMy-2.595-2.804-2.539-2.068-2'42-2.086-3'04-3.956-2.935-3'31-3.527-2.988-2.838MaxMy2.9562.5572.4552.0852.2012.1023.3913'403.1212.3593.6772.9662.692MinMz-0.185-0.128-0.167-0.087-0.066-0.078-0.072-0.078-0.054-0.062-0.054-0.032-0.051MaxMz0.1850.1980.1900.0850.0500.0880.0590.0940.0420.0580.0500.0320.06351-1258768-01GinnaSFPRe-rackingLicensingReportPage214 I
Table3.5-85RackForcesFx,Fy&Fz-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2RackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-34,740-30,270-34,310-29,010-27,410-39,260-32,790-32,820-25,420-25,500-29,520-24,000-23,010MaxFx37,84034,12029,99034,49031,40029,05032,78036,59027,08026,77024,89024,94021,090MinFy-56,520-59,450-48,080-51,390-58,770-50,920-17,130-27,360-9,398-16,720-13,850-10,900-14,930MaxFy54,27063,30054,76047,61058,87052,15017,40024,2309,52115,82014,2608,51917,800MinFz-19,950-19,950-19,950-19,950-19,950-19,950-9,922-11,030-8,316-11,360-10,200-8,211-10,370MaxFz-16,470-16,470-16,470-16,470-16,470-16,470-8,542-9,418-7,041-9,830-8,896-7,018-8,844Table3.5-86RackMomentsMx,My&Mz-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2RackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-6.622-6.944-5.023-4.659-5.158-4.850-1.831-2.428-0.890-1.387-1.254-0'09-1.364MaxMx7.3047.1495'965.2054.4905.2181.7642.5860.9891.4811.1050.7221.468MinMy-3.373-2.751-2.292-2.365-2.328-2.557-4.039-4.076-3.006-2'90-3.584-3.016-2.631MaxMy3.9733.7102.5872.5432.2572.5103.7053.5723.1012.9473.2522.9702.486MinMz-0.155-0'17-0.121-0.112-0.092-0.063-0.080-0.080-0.062-0.050-0.047-0.044-0'61MaxMz0.1880.0930.1060.1320.0980.0550.0930.0830.0430.0490.0540.0380.06151-1258768-01GinnaSFPRe-rackingLicensingReportPage215 Table3.5-87RackForcesFx,Fy&Fz-LC&#xb9;11GZNNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedRackForcesFx,Fy&Fz(lbs)Rack12345678910111213MinFx-31,020-32,360-27940-31,290-34,340-58,400-39,090-15,480-53/780-10,960-41,190-33,950-42,590MaxFx26,09026,29025,10042,99033,51062,02040,39015,38055,23012,07039,65033,81035,970MinFy-70,390-61,450-55,930-68,710-59,820-81,720-27,180-17,430-14,180-12,090-18,910-12,700-22,810MaxFy46,51047,21055,93061,97074,51098,51023,81022,32016,25013,52020,72015,99022,310MinFz-24,290-23,730-24,100-24,700-25,370-25,800-11,240-13,490-9,322-,12,710-11,640-9,940-11,870MaxFz-15,070-15/370-15,410-14,440-14,390-13,160-7,180-7,898-6,032-8,540-7,394-5/738-7,756Table3.5-88RackMomentsMx,My&Mz-LC&#xb9;11GONNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedRackMomentsMx,My&Mz(in-lbs)x1E6Rack12345678910111213MinMx-5.815-5.501-5'39-6.993-7.137-9.980-1:943-0.734-1.500-0.585-2.133-0.997-2.123MaxMx8.2227.5806.4777.2575.7158.4691.7970.7041.0750.5142.3021.0942'20MinMy-2.948-3.246-2.098-3.501-2.399-3.812-3.506-0.912-5.366-0.805-4.109-3.601-3.954MaxMy2.7182.9651.8943.9122.7775.3114.2050.8966.0150.8784.3563.3804.322MinMz-0.261-0.248-0.234-0.094-0.172-0.235-0.108-0.102-0'06-0.039-0.127-0.088-0.142MaxMz0.2250.1980.2070.0740.1490.2850.1200.1180.1330.0480.1170.0920.16851-1258768-01GinnaSFPRe-rackingLicensingReportPage216
 
Table3.5-89RackForcesFx,Fy8Fz-LC&#xb9;12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedRackForcesFx,Fy&Fz(lbs)Rack1235678910111213MinFx-181950-11,140-23,560-11,610-17,680-15,970-9,893-37,740-27,570-10,460-39,560-21,370-32,750MaxFx16,9808,00927,67011,26015,95016,2309,51431,64027,0109,99345,87028,87032,160MinFy-40,320-15,440-38,210-17,270-32,500-37,820-6,669-22,830-8,257-8,776-13,820-7,209-201110MaxFy45,93014,01041,05018,84034,20034,7806,99420,0609,2158,30413,7507,71815,010MinFz-21,470-21,580-21,230-21,110-20,970-20,920-10,390-11,030-8,351-12,190-10,250-8,485-10,330MaxFz-17,750-17,860-17,520-18,360-18,100-18,110-8,539-9,418-6,886-9,684-8,628-6,851-8,691Table3.5-90RackMomentsMxIMyaMz-LC&#xb9;12GZNNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedRackMomentsMx,My6Mz(in-lbs)x1E6Rack12345678910111213MinMx-5.514-1.665-3.134-1.722-3.105-3'31-0.474-1.809-0.699-0.467-0.945,-0.496-1.334MaxMx4.3771.6783.4431.6543.3584.0700.4751.9850.6340.4771.3980.6861'29MinMy-1.124-0.722-1.472"0'38-1.257-1.436-0.647-3.784"3.083-0.728-4.905-2.126-3.454MaxMy1'900.5711.2200.7271.3561.3860.6533.6263'750.7385.3923.1093.780MinMz-0.075-0.034-0.000-0'31-0.055-0.052-0.025-0.040-0.057-0.040-0.039-0.049-0.027MaxMz0.0830.0290.0000.0370.0580.0590.0290.0340.0600.0330.0330.0620.03151-1258768-01GinnaSFPRe-rackingLicensingReportPage217 3.5.3.1.8.2FinalRackDisplacementsforEachLoadCaseTable3.5-91FinalRackRelativeEast-WestDisp.-LCgiGINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseN1-UnconsolidatedFuel-SSE-Mu=0.8Fa.naReRack/RackWW/1WW/21/32/4.3/S4/6S/7S/86/86/96/108/ii9/i210/i311/EW12/EW13/EWatzveHorzzontaGapStatusOpeningClosingClosingOpeningClosingClosingOpeningClosingClosingOpeningOpeningClosingClosingOpeningOpeningOpeningClosingXDisp.E-WAbsoluteMagnitude0.024170.021800.036670.009130.003360.005520.002670.008110.005780.035450.018400.000520.023120.018700.024490.005850.01891ora(in)racs:Table3.5-92FinalRackRelativeNorth-SouthDisp.-LC01GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCasegl-UnconsolidatedFuel-SSE-Mu=0.8Fz.naReRack/RackSW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWatxveHorzzontaGapStatusOpeningOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingClosingOpeningOpeningOpeningClosingOpeningOpeningOpeningYDxsp.N-SAbsoluteMagnitude0.012730.010730.023450.023920.000860.023060.001730.019100.017370.097080.022450.002350.049140.068040.149160.014880.025720.10856ora(in)racs:51-1258768-01GinnaSFPRe-rackingLicensingReportPage218 llljA,A...4:%IIA~It~~,0P4ttle+.aft~h Table3.5-93FinalRackRelativeEast-WestDisp.-LC&#xb9;2GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2FinaReatzveHora.zontaXDxsp.E-Woralracs:Rack/RackWW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/EW12/EW13/EWCapStatusClosingOpeningClosingClosingClosingClosingClosingClosingClosingClosingOpeningClosingClosingClosingOpeningOpeningClosingAbsoluteMagnitude(in)0.007630.034300.007250.002080.010170.011640.195460.141370.186990.207720.055270.130150.038440.067190.296560.225580.00865Table3.5-94FinalRackRelativeNorth-SouthGlNNA3DWholePoolModel-WithoutPerimeterLoadCase&#xb9;2-UnconsolidatedFuel-SSE-MuDisp.-LC&#xb9;2Racks0.2Fz.nalRelativeHorz.zontalYDz.sp.N-Sforalracs:Rack/RackSW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingClosingOpeningClosingOpeningOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.141720.054690.087030.154610.004410.159020.160200.010210.149990.215960.007280.040890.019310.163040.14911'.075540.111410.1849851-1258768-01GinnaSFPRe-rackingLicensingReportPage219
~4 Table3.5-95FinalRackRelativeEast-WestDisp.-LCN3GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseN3-ConsolidatedFuel-SSE-Mu=0.8FinaReativeHorizontaDisp.E-Woraracs:Rack/RackWW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/Ew12/Ew13/EwGapStatusOpeningOpeningClosingOpeningClosingOpeningClosingClosingClosingClosingClosingClosingOpeningOpeningOpeningOpeningClosingAbsoluteMagnitude(in)0.054600.000680.049840.002630.000950.000920.017450.007250.007660.033090.011430.031670.024190.022160.035110.004690.01494Table3.5-96FinalRackRelativeNorth-SouthDisp.-LCN3GlNNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseN3-ConsolidatedFuel-SSE-Mu=0.8FinalRelativeHorizontalDisp.N-Sforallracks:Rack/RackSW/11/22/NWSw/33/44/NWSW/55/66/NwSw/7,7/88/99/1010/NWSw/1111/1212/1313/NWGapStatusClosingOpeningClosingClosingOpeningOpeningClosingOpeningClosingClosingClosingClosingOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude0.001540.013100.011560.009110.003290.005820.008780.012830.004050.005930.024830.029800.051610.008940.060630.040960.032450.0521251-1258768-01GinnaSFPRe-rackingLicensingReportPage220
~-~P Table3.5-97FinalRackRelativeEast-WestDisp.-LCN4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseg4-UnconsolidatedFuel-SSE-Mu=0.5Fa.naReatzveHorizontaXDz.sp.E-Woraracs:Rack/RackWW/1WW/21/32/43/S4/6S/75/86/86/96/io8/119/i210/i311/EW12/EW13/EWGapStatusClosingClosingOpeningOpeningClosingClosingOpeningOpeningOpeningOpeningOpeningClosingClosingOpeningOpeningOpeningClosingAbsoluteMagnitude(in)0.000090'08310.003090.010360.019170.007190.000680.039860.028830.043920.007940.031250.043780.090560.007550.004990.09336Table3.5-98FinalRackRelativeNorth-SouthDisp.-LCI4GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCaseN4-UnconsolidatedFuel-SSE-Mu=0.5Fz.naRelativeHorxzontaYDz.sp.N-Sforaracs:Rack/RackSW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningClosingClosingOpeningOpeningClosingClosingOpeningClosingClosingOpeningClosingOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in)0.001230.025320.024090.022820.003940.018880.004770.011370.016140.058390.023070.020800.030800.091450.083630.016340.051660.0483251-1258768-01GinnaSFPRe-rackingLicensingReportPage221 n"rrC.~<,Was.~~rr;..w~!~'H'rrr1rj Table3.5-99FinalRackRelativeEast-WestDisp.-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8Fz.naReativeHors.zontaXDz.sp.E-Woraracs:Rack/RackWW/1WW/21/32/43/S4/6S/7S/86/8-6/96/108/119/1210/1311/EW12/EW13/EWGapStatusOpeningOpeningClosingClosingOpeningOpeningOpeningOpeningClosingClosingClosingOpeningOpeningOpeningClosingClosingClosingAbsoluteMagnitude(in)0.030920.001700.036630.004220.018470.030230.015690.013560.001380.022690.027170.021420.048830.051460.047750.053850.05200Table3.5-100FinalRackRelativeNorth-SouthDisp.-LC&#xb9;5GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;5-UnconsolidatedFuel-SSE-Mu=0.8FinaReatzveHors.zontaYDa.sp.N-Soraracs:Rack/RackSW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingClosingOpeningClosingOpeningClosingClosingOpeningClosingClosingClosingOpeningOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in)0.050420.019510.030910.006620.009330.002710.004740.001040.005770.052070.002280.048590.037730.065220.052600.019830.017400.0550351-1258768-01GinnaSFPRe-rackingLicensingReportPage222 Iil>>tA~~4~
Table3.5-101FinalRackRelativeEast-WestDisp.-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;6-ConsolidatedFuel-SSE-Mu=0.8FinaReatzveHors.zontaXDz.sp.E-Woraracs:Rack/RackWW/1WW/21/32/43/54/65/75/86/86/96/io8/ii9/12io/i311/EW12/EW13/EWCapStatusOpeningOpeningOpeningClosingClosingClosingClosingOpeningOpeningClosingOpeningClosingOpeningOpeningOpeningClosingClosingAbsoluteMagnitude(in)0.004540'06600.002290.000020.002760.003570.000370.015890.016960.006480.001030.051800.004670.026880.031830.001200.03092Table3.5-102FinalRackRelativeNorth-SouthDisp.-LC&#xb9;6GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;6-ConsolidatedFuel-SSE-Mu=0.8Fa.naReatzveHorz.zontaYDx,sp.N-Sforaracs:Rack/RackSW/11/22/NWSW/33/44/NWsw/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingClosingClosingClosingOpeningClosingOpeningOpeningClosingClosingClosingOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.059790.023410.036390.006310.001240.007550.010720.007980.002740.012550.027770.007800.026770.021350.045370.016380.020280.0492751-1258768-01GinnaSFPRe-rackingLicensingReportPage223
~Q-~1I Table3.5-103FinalRackRelativeEast-WestDisp.-LC&#xb9;7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;7-UnconsolidatedFuel-SSE-Mu=0.2FinaReatzveHors.zontaXDzsp.E-Woraracs:Rack/RackWW/1WW/21/32/43/S4/6'/7S/86/86/96/108/119/1210/1311/EW12/EW13/EWGapStatusOpeningOpeningOpeningClosingOpeningClosingOpeningOpeningOpeningOpeningOpeningClosingClosingClosingOpeningOpeningClosingAbsoluteMagnitude0'04230.045900.005300'42300.015370.004410.034290.033640.059360.008900.054440.215700.275500.038070.157160.267420.01555(in)Table3.5-104FinalRackRelativeNorth-SouthDisp.-LC&#xb9;7GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;7-UnconsolidatedFuel-SSE-Mu=0.2Fa.nalRelativeHorzzontaYDz.sp.N-Soraracs:Rack/RackSW/11/22/NWSW/33/44/NWsw/ss/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingClosingOpeningClosingClosingOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.059380'27150.032230.049460.035720.085180.101250.062970.164220.200510.019690.029840'42740.147620.189760.043030.038870.1856051-1258768-01GinnaSFPRe-rackingLicensingReportPage224
 
Table3.5-105FinalRackRelativeEast-WestDisp.-LCN8GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseNS-ConsolidatedFuel-OBE-Mu=0.8FinaReativeHorizontaXDisp.E-Woraracs:Rack/RackWW/1WW/21/32/43/S4/6S/7S/86/86/96/108/119/1210/1311/EW12/EW13/EWCapStatusClosingClosingClosingOpeningOpeningOpeningOpeningOpeningOpeningClosingOpeningOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.002490.003090.000100.000140.000410.000220.000380.000620.001160.005950.000290.000850.009210.009650.000710.000540.01209Table3.5-106FinalRackRelativeNorth-SouthDisp.-LCI8GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseNS-ConsolidatedFuel-OBE-Mu=0.8FinaReativeHorizontaYDisp.N-Sforaracs:Rack/RackSW/11/22/NWSW/33/44/NWSW/SS/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingClosingClosingOpeningClosingClosingClosingOpeningClosingClosingOpeningOpeningOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in)0.003780.000740.003040.000120.000160.000040.004590.000710.005300.004520.001760.000410.001960.003910.008730.010880.011580'080351-1258768-01GinnaSFPRe-rackingLicensingReportPage225 i>%ca Table3.5-107FinalRackRelativeEast-WestDisp.-LCN9GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseN9-UnconsolidatedFuel-OBE-Mu=0.2Fz.naReativeHors.zontaXDz.sp.E-Woraracs:Rack/RackWW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/EW12/EW13/EWGapStatusClosingOpeningOpeningClosingOpeningOpeningOpeningClosingClosingClosingClosingOpeningOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in)0.016060.005680.006330.007920.012200.010360.023890.011080.016720.021630.015340.041940.000880.098810.033340.012640.10603Table3.5-108FinalRackRelativeNorth-SouthDisp.-LC59GINNA3DWholePoolModel-WithPerimeterRacksLoadCase49-UnconsolidatedFuel-OBE-Mu=0.2FinaReatzveHors.zontaYDa.sp.N-Sforaracs:Rack/RackSW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningClosingClosingOpeningOpeningOpeningClosingOpeningOpeningClosingOpeningClosingClosingClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.011790.051420.039630.016800.002750.014050.000120.022730.022600.000180.019660.034190.007810.006910.033250.039520.013290.0070251-1258768-01GinnaSFPRe-rackingLicensingReportPage226 k
Table3.5-109FinalRackRelativeEast-WestDisp.-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2Fz.naReataveHorzzontaDz.sp.E-Woraracs:Rack/RackWw/1WW/21/32/43/54/65/75/86/86/96/108/ii9/i210/i311/Ew12/Ew13/EwGapStatusClosingOpeningOpeningClosingOpeningClosingOpeningOpeningOpeningClosingClosingOpeningClosingClosingClosingOpeningOpeningAbsoluteMagnitude(in)0.016430.022050.016200.016300.001080.006080.006850.014790.015960.013170.043310.062240.032780.082060.077870.046280.12570Table3.5-110FinalRackRelativeNorth-SouthDisp.-LC&#xb9;10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2FinalRelativeHorizontalDxsp.N-Sforallracs:Rack/RackSW/11/22/NWSw/33/44/NWSW/55/66/NWSw/77/88/99/1010/NWSw/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingOpeningOpeningClosingOpeningClosingClosingClosingOpeningClosingClosingClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.069400.01541'0.053990.017150.008150.009000.024080.032330.008250.011770.007040.021160.001550.000810.026750.025550.011330.0125351-1258768-01GinnaSFPRe-rackingLicensingReportPage227 Table3.5-111FinalRackRelativeEast-WestDisp.-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedFinaReatzveHors.zontaDzsp.E-Woraracks:Rack/RackWW/1WW/21/32/43/54/65/75/86/86/96/108/ii9/i210/i311/EW12/EW13/EWGapStatusOpeningOpeningClosingClosingOpeningOpeningOpeningClosingClosingOpeningOpeningOpeningClosingClosingOpeningOpeningClosingAbsoluteMagnitude(in)0.046140.028640.075180.023140.035750.001710.028460.078950.079440.002810.023020.032530.069760.020950.039700.059730.00929Table3.5-112FinalRackRelativeNorth-SouthDisp.-LC&#xb9;11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedFz.nalReatzve'ors.zontaDa.sp.N-Sforallracks:Rack/RackSW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusClosingOpeningOpeningClosingOpeningOpeningClosingClosingOpeningOpeningClosingClosingOpeningOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.136540.063510.073030.012860.007530.005330.008820.008480'17300.015090.079440.018510'33410.049450.059670.029350.038410.0687251-1258768-01GinnaSFPRe-rackingLicensingReportPage228 Table3.5-113FinalRackRelativeEast-WestDisp.-LCg12GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseN12-MixedFuel-OBE-Mu=MixedFinaReativeHorizontaXDisp.E-Woraracs:Rack/RackWW/1WW/21/32/43/54/65/75/86/86/96/108/119/1210/1311/EW12/EW13/EWCapStatusClosingClosingOpeningOpeningClosingClosingOpeningOpeningOpeningClosingOpeningClosingOpeningClosingOpeningClosingOpeningAbsoluteMagnitude(in)0.006990.000330.005790.005910.002970.010730.067920.004850.005830'03940.017720.008020.027320.020900.007340.018230.00833Table3.5-114FinalRackRelativeNorth-SouthDisp.-LCN12GINNA3DWholePoolModel-WithPerimeterRacksLoadCaseN12-MixedFuel-OBE-Mu=MixedFinaRelativeHorizontaDisp.N-Soralracks:Rack/RackSW/11/22/NWSW/33/44/NWSW/55/66/NWSW/77/88/99/1010/NWSW/1111/1212/1313/NWGapStatusOpeningClosingOpeningOpeningClosingOpeningOpeningClosingClosingOpeningClosingClosingClosingOpeningClosingClosingOpeningOpeningAbsoluteMagnitude(in)0.000020.048070.048040.000940.004680.003750.002570.000580.001990.010270.013900.010170.025910.039710.006240.054340.055290.0053051-1258768-01-GinnaSFPRe-rackingLicensingReportPage229 ti'%,~I 3.5.3.1.8.3FinalRackRotationsforEachLoadCaseTable3.5-115FinalRackRotations-LCN1GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;1-UnconsolidatedFuel-SSE-Mu=0.8FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.00187-0.000840.00004-0.000120.000320.000090.000350.000780.001280.00027-0.000590.001020.00044Degrees-0.10722-0.048020.00232-0.006680.018060.005210.020060.044640.073480.01554-0.033530.058660.02527Table3.5-116FinalRackRotations-LC52GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;2-UnconsolidatedFuel-SSE-Mu=0.2FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.00180-0.00054-0.00014-0.000290.000700.000140.000200.002570.001040.001710.002410.002180.00337Degrees-0.10340-0.03108-0.00784-0.016720.040140.008270.011390.147190.059660.097720.137860.124860.1932051-1258768-01GinnaSFPRe-rackingLicensingReportPage230 4151 Table3.5-117GINNA3DWholeLoadCase53FinalRackRotations-LCg3PoolModel-WithoutPerimeterRacksConsolidatedFuel-SSE-Mu=0.8FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.000350.00003-0.00007-0.00003-0.000010.000010.000840.000950.001100.000680.000710.002220.00080,Degrees-0.020010.00150-0.00393-0.00168-0.000550.000680.048310.054250.063300.038750.040720.127080.04609Table3.5-118GINNA3DWholeLoadCase54FinalRackRotations-LCQ4PoolModel-WithoutPerimeterRacksUnconsolidatedFuel-SSE-Mu=0.5FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians0'00090.000100.00012-0.000030.00008-0.00009-0.00054-0.000630.00022-0.000170.001860.002080.00192Degrees0.005060.005510.00713-0.001970.00436-0.00542-0.03118-0.036300.01281-0.009990.106350.118940.1097851-1258768-01GinnaSFPRe-rackingLicensingReportPage231
 
Table3.5-119GINNA3DWholeLoadCaseI5-FinalRackRotations-LCg5PoolModel-WithPerimeterRacksUnconsolidatedFuel-SSE-Mu=0.8FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.00029-0.00067-0.00022-0.00010-0.000140.00004-0.00079-0.000560.00033-0.000170.00029-0.00011-0.00169Degrees-0.01645-0.03828-0.01269-0.00583-0.008300.00208-0.04528-0.031830.01918-0.009500.01665.-0.00611-0.09679Table3.5-120GENNA3DWholeLoadCaseN6FinalRackRotations-LCN6PoolModel-WithPerimeterRacksConsolidatedFuel-SSE-Mu=0.8FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.00019-0.00018-0.00005-0.00006-0.000000.000000.000240.000830.000310.000310.001030.000770.00077Degrees-0.01111-0.01018-0.00305-0.00352-0.000220.000270.013670.047350.017530.017970.058960.044320,.0439151-1258768-01GinnaSFPRe-rackingLicensingReportPage232
 
Table3.5-121GINNA3DWholeLoadCase57FinalRackRotations-LCN7PoolModel-WithPerimeterRacksUnconsolidatedFuel-SSE-Mu=0.2FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.00041-0.00046-0.00029-0.000070.000430.00034-0.000390.000580.000950.000780.002380.002500.00183Degrees-0.02349-0.02647-0.01673-0.004180.024910.01946-0.022340.032970.054570.044820.136370.142960.10472Table3.5-122FinalRackRotations-LCNSGINNA3DWholePoolModel-WithPerimeterRacksLoadCaseI8-ConsolidatedFuel-OBE-Mu=0.8FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians-0.00000-0.000000.00000-0.00000-0.00000-0.00000-0.000000.00000-0.000010.000000.000220.000350.00004Degrees-0.00000-0.000000.00000-0.00000-0.00000-0.00000-0.000000.00005-0.000670.000000.012750.019860.0021251-1258768-01GinnaSFPRe-rackingLicensingReportPage233 HPL,E Table3.5-123GINNA3DWholeLoadCase&#xb9;9FinalRackRotations-LC59PoolModel-WithPerimeterRacksUnconsolidatedFuel-OBE-Mu=0.2FinalRackRotationsROTZ(AboutVertical)Rack12345678910ll1213Radians-0.00013-0.000220.00005-0.00001-0.00003-0.00002-0.00002-0.000040.000470.000050.000380.000740.00010Degrees-0.00762-0'12330.00297-0.00038-0.00171-0.00132-0.00133-0.002250.026660.003020.022010.042590.00590Table3.5-124FinalRackRotations-LCg10GINNA3DWholePoolModel-WithoutPerimeterRacksLoadCase&#xb9;10-UnconsolidatedFuel-OBE-Mu=0.2FinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians0.00026-0.00017-0.00008-0.00004-0.00002-0.000010.00038-0.000060.000720.000350.000010.00045-0.00019Degrees0.01470-0.00991-0.00477-0.00228-0.00122-0.000510.02198-0.003640.041130.020290.000410.02575-0.0106651-125S768-01GinnaSFPRe-rackingLicensingReportPage234
 
Table3.5-125FinalRackRotations-LCg11GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;11-MixedFuel-SSE-Mu=MixedFinalRackRotationsROTZ(AboutVertical)Rack12345678910111213Radians0'00900.00057-0.00049-0.00001-0.000070.000060.000910.000480.000790.000900.000030.000240.00040Degrees0.051430.03237-0.02835-0.00050-0.003930.003210.052290.027300.045310.051520.001520.013520.02318Table3.5-126FinalRackRotations-LCN12GINNA3DWholePoolModel-WithPerimeterRacksLoadCase&#xb9;12-MixedFuel-OBE-Mu=MixedFinalRackRotationsROTZ(AboutVertical)Rack1235678910111213Radians-0.000010.000230.00000-0.00020-0.00000-0.00002-0.00057-0.000020.00024-0.00067-0.00003-0.001470.00001Degrees-0.000400.013310.00000-0.01164-0.00009-0.00136-0.03250-0.000970.01360-0.03824'-0.00168-0.084350.0004451-1258768-01GinnaSFPRe-rackingLicensingReportPage235 3.5.3.1.8.4RepresentativePlotsThefollowingplotsarerepresentativeofalltheplotsthatwereobtainedforeachloadcase.Figure3.5-43VerticalLegForceFz,RackI,Leg1-LC&#xb9;l(IIof02)FZIOl2TIMEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-125878-01GinnaSFPRe-rackingLicensingReportPage236 Figure3.5-44SumofVert.LegForcesFz,Rack1-LC01(I10002)2bR1FZ18lb1012lb18TIMEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-1257-1GinnaSFPRe-rackingLicensingReportPage237
 
Figure3.5-45Rack1HorizontalForceFy-LC&#xb9;1(~Ioee2)Rck1FY-l0002I0l2IS22TINEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-257-01GinnaSFPRe-rackingLicensingReportPage238 Figure3.5-46Rack1MomentMx-LC&#xb9;1(s104t4)Rck1MX7-125021012I8TIMEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-12587-1GinnaSFPRe-rackingLicensingReportPage239
 
Figure3.5-47Rack7MomentMy-LCQ1(Ilosel)Rck7MY1012TIMEGINNAWPM,LCC1,UnconsolidatedFuel,mu=0.8,SSE1-157-01GinnaSFPRe-rackingLicensingReportPage240 Figure3.5-48Fuel/RackImpactLds.+X,Rack1Top-LC01(II0012IR1TGFXPII25IO'ISGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-12587-01GinnaSFPRe-rackingLicensingReportPage241 Figure3.5-49RelativeDispl.DXRack5/Rack7,Top-LC&#xb9;1(s10t"I)2~DX-5-72o5101218TIMEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-12587-1GinnaSFPRe-rackingLicensingReportPage242
 
Figure3.5-50Rel.Displ.DXRack5/Rack7,Base-LC&#xb9;1(110s-2)DX-5-710l2IdISTIMEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-187-1GinnaSFPRe-rackingLicensingReportPage243
~%1II.I Figure3.5-51Rel.Displ.DYRackl/Rack2,Base-LC&#xb9;1(~Iofo"2)DY-1-221I0l2IeIS22TIMEGINNAWPM,LC&#xb9;1,UnconsolidatedFuel,mu=0.8,SSE51-1257-1GinnaSFPRe-rackingLicensingReportPage244
 
Figure3.5-52VerticalLegForceFz,Rack1,Leg1-LC&#xb9;2(~1000217FZ10121e1822TINEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE51-1257-1GinnaSFPRe-rackingLicensingReportPage245 Figure3.5-53SumofVerticalLegForcesFz,Rack1-LC&#xb9;2(sl0002}272e23<<CR1FZIS17lel5001012leIS22GINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE51-2578-1GinnaSFPRe-rackingLicensingReportPage246 I
Figure3.5-54Rack1HorizontalForceFy-LC02(>>oee2>Rck1FY"2"80010121822GINNAWPM,LC02,UnconsolidatedFuel,mu=0.2,SSE51-1257-1GinnaSFPRe-rackingLicensingReportPage247 Xh4v~
Figure3.5-55Rack1MomentMx-LC&#xb9;2(~l00t4)Rck1MXl0002l0l2l6ls22TIMEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE51-12578-01GinnaSFPRe-rackingLicensingReportPage248 1<a.sa>c.r1~sii**~.W4a"~~~\l4L.t%4~I Figure3.5-56Rack7MomentMy-LC02(s10ee3)1cCRck7MY-e25021012leTIMEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE1-1257-1GinnaSFPRe-rackingLicensingReportPage249 Figure3.5-57Fuel/RackImpactLoads+X,Rack1Top-LC&#xb9;2t~1041)R1TGFXPCC-710121822TIMEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE51-1257-1GinnaSFPRe-rackingLicensingReportPage250 j\
Figure3.5-58RelativeDispl.DXRack5/Rack7,Top-LC&#xb9;2(I1000-1)20DX-5-7<<C-210121822TIMEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE1-157-1GinnaSFPRe-rackingLicensingReportPage251
*1~
Figure3.5-59RelativeDispl.DXRack5/Rack7,Base-LC&#xb9;2(~1000-l)2020DX-5-71.6le0-l.22l012IST1MEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE51-17-1GinnaSFPRe-rackingLicensingReportPage252 1f~
Figure3.5-60RelativeDispl.DYRackl/Rack2,Base-LC&#xb9;2(sloco-I)<<b<<CDY-1-2IOl2IS22TIMEGINNAWPM,LC&#xb9;2,UnconsolidatedFuel,mu=0.2,SSE51-1257-1GinnaSFPRe-rackingLicensingReportPage253
 
3.5.3.1.9SupportLegandBearingPadAnalysisThemodelshowninFigure3.5-61wasusedtodeterminethestressesinthesupportleg,andbearingstressesintheconcretefordead-weiglit,thermalandseismic(OBE8'cSSE)loadings.Boussinesq'ssolutionforelastichalf-space(Reference3.35)wasalsousedtoestimatebearingstressesintheconcrete.Thepoollinerisa1/4inchASTMA240Type304SSplate.Thesupportpadsare6.6929inchdiameterASTMA479Type304LSSbarstock.Thefollowingmaterialproperties(andallowables)wereusedinthisevaluation:E(304L)=27.9x10psi@150'(27.71x10psi@180')a(304L)=8.74E-6in/in'F180'(8.67E-6in/in'F150')Table3.5-127MaterialPropertiesforthePoolLinerandSupportLegs(Reference3.19):;:;To':,.-;...,..',::.Ope'r'atiiig':;Temp''::(1:50,:,:,F)'",:::::,'::.:::.,';:Ta:';,=.',',':A'bn'o'riiial;:Temp'eratu'r'e'.,(1:80...'aterialTypeA240Type304A479Type304L15.723.15Sy18.327.5Su73.068.118.015.7Sy26.022.0Su71.867.0Note:AllallowablesareinksiThefollowingperlegdead-weight,thermal,andOBEandSSEhorizontalandverticalloads(i.e.supportpadreactions)weretaken&omtheresultsofthe3-DFullRackand2-DMulti-Rackanalysesandusedinthepresentanalysis.Theloadspertaintothenewracksonly.Table3.5-128ForcesUsedinQualificationofthePoolLinerandSupportLegs'DeadWeihtDThermalTaOBESSE(E')14,62414,55422,81218,28042,47652794'ncludesdeadweightinverticalforce.maximumfrictionloadallowedbeforeslippageofthesupportlegoccurs(lessthancalculatedthermalload)51-1258768-01GinnaSFPRe-rackingLicensingReport-FinalDraftPage254 h*4~'
Intherackanalysismodels,eachrackwasrepresentedbyonlythe4cornerlegs.Forexample,amajorityofthenewracksinthepoolhavebeendesignedtohavetwelvesupportlegs.The3-Dsinglerackmodelhasfourlegstorepresentthetwelvetotallegs.Therefore,theloadpersupportlegisfoundbydividingby12/4or3.ThemaximumsupportverticallegloadsforSSEwerefoundatasinglerackwitheightsupportlegs(racknumber9fortheverticalloadandracknumber12forthemaximumhorizontalload).Therefore,theloadwasdividedby8/4or2todeterminethemaximumloadpersupportleg.TheverticalloadwasappliedintheZdirection(compression)andthehorizontalloadwastheSquareRootSumoftheSquaresoftheXandYdirections(refertoFigure3.5-61).Fortheseismicloadcases,thereexistedsignificantlateral(horizontal)loadsonthesupportleg.Supportlegstressesattwolocationswereevaluated.Thefirstlocation(case1)evaluatedwasatthelocationofthecylinder'sholes(4.05inchesbelowthebottomofthebaseplate).Thecross-sectionalarea(Ag=6.90in,andthesectionmodulus(Sx)=12.38in'.Thissectionwasshowntoproducethehigheststresses.Thesecondlocation(case2)wasatthebaseplatebottom(wheremomentsarethelargest).Thecylinder'scross-sectionalarea(A,)=13.33in,andthesectionmodulus(Sx)=17.58in'.Figure3.5-61-SupportLegDetailsRACKBASEPLATEf374~~1483.3513SUPPORTLEGI$755.9!97GUSSETPLATETCnax>0.9l40(nax)I.7~SUPPORTPAOI669~9'69999Ontal.FvertICal51-1258768-01GinnaSFPRe-rackingLicensingReport-FinalDraftPage255
 
Figure3.5-62-SupportLegGussetPlateDetails.00Ii0.394IIII+1.71.061.211.87l2.103.001.575IIGUSSTPTiRACKLEG3.5.3.1.9.1SupportLegAnalysis3.5.3.1.9.1.1ExistingRackSupportAnalysisEvaluationoftheexistingracksupportwasperformedbycomparisonofnewloadswiththepreviousrackleganalysis(Reference3.26).Thefollowingtablegivesthemaximumloadsofthenewanalysiscomparedwiththepreviousanalysis.Sincethenewrackanalysisresultsinlowerexistingsupportloadsthanthepreviousanalysis(Reference3.26),existingracksandsupportloadsarequalifiedpercomparisontothepreviousrackanalysis.Table3.5-129SupportLegsForceComparisonforExistingRacks(Newvs.OldAnalyses).",:::.:',..:::.::;:.':;::.';.:;!Ho'rIzontalILo'ad,,:,:,:,',:';::;,':,::StandardFuelSSEConsolidatedFuelHorizontal141,939Vertical237,862:"::;;,",':.':;,";;:P:U:;S:;::,To'ol<<'&-'Die':An'alysis;:"'.:-'"''ll":..::.'<<:'",::I,;:";:I:::L'oads':,atISupp'oit:::Pad';:(Ibs)'',:';:.';:',;'.l!',;,.'.Horizontal87,636Vertical193,440!I;','.i::;:::i:;.I'.,:,",.'<<Loa<<ds:,at'''.Su<<ppo'rt".,Pa<<'dI'(1bs);.:!;:,::::::.::'>NWNPSSE(E')151,144282,782103,596250,680'ncludesdeadweightinverticalforce.SSEloadsarefactoredby1.2051-1258768-01GinnaSFPRe-rackingLicensingReport-FinalDraftPage256 3.5.3.1.9.1.2Concrete'andSpentFuelPoolLinerQualificationThe28dayscuredcompressivestrengthofthespentfuelpoolconcreteis3,000psi.Theaveragepressure(bearing)underthebearingpadshallnotexceedthedesignbasispressurefordeadloadorseismic.ThebearingstressesandcomparisontoallowablesarepresentedinTable3.5-130.3.5.3.1.9.1.2.1AverageConcreteBearingStressThemaximumbearingstressesintheconcretearecalculatedbelow,whereastheaveragebearingstressesarecalculatedbytakingthemaximumverticalsupportlegloadsdeterminedfromthesingleandmulti-rackanalysesanddividingbytheareaofthebearingpadasfollows:GBEARING=P/A,whereA=md'/4=35.18ind=6.693in.(supportpaddiameter)~BEARING,DEADLOAD+BEARING,OBE+DL+BEARING,SSE+18,280/35.1842,476/35.1852,794/35.18520psi.1,207psi.1,501psi.3.5.3.1.9.1.2.2Boussinesq'sSolutionAsanothercheckforbearingstresses,Boussinesq'ssolutionforelastichalf-spaceisused(Reference3.35,pages398through402).Inthismethod,itisassumedthatanormalforce,P,isactingontheplaneboundaryofasemi-infinitesolidasshowninthefollowingfigure.AllresultsaresummarizedinTable3.5-130.Figure3.5-63StressLocationsForBoussinesq'sBearingSolution8CA51-1258768-01GinnaSFPRe-rackingLicensingReport-FinalDraftPage257
 
Table3.5-130SummationofConcreteStressesMaximumSlabBearinBoussinesq'sSolution5207793,5703,570D+EMaximumSlabBearinBoussinesq'sSolution1,2071,8113,5703,570D+E'aximumSlabBearinBoussinesq'sSolution1,5012,2513,5703,570Concrete'sbearingallowable=$(0.85)fc'0.70(0.85)3000psi*2'3,570psi'inceAreaofconcrete>>areaofpad=xd'/4=35.18in',bearingallowableisincreasedbyfactorof2(Reference3.20,section10.15)Fortheevaluationofcompressivestressesintheconcrete,thespecifiedBoussinesqsolutionisconsideredvalid.Table3.5-131SummationofSpentFuelPoolLinerStresses.','!:.'.I::';::.'j''',:,'':.:'.'.:'':;,::::;Corn,','::;'''A'llo'wable','Stress','(p'si)''"''';LinerBearinStressD+E'inerBearingStress1,2071,5010.9*=23,4000.9~(Fy)=23,400PoolLiner'sAllowableStressisfromReference3.2151-1258768-01GinnaSFPRe-rackingLicensingReport-FinalDraftPage258 Table3.5-132SummationofSupportLegStressesDevelAPrimMembranemPrimaryMembrane+Bendingm+Pb6,15616,9951>>S=15,7001.54(S)=23,550D+EevelBPrimMembranePmPrimaryMembrane+Bendingm+PbAveraeShearStress6,15616,9952,1091.334S=20,8801.995*(S)=31,3200.6*S=9,420D+E'velDPrimMembranemPrimaryMembrane+BendingPm+PbAverageShearStress7,65124,6403,3061.2*S=26,4481.8*(Sy)=39,6720.42*(Su)=28,12351-1258768-01GinnaSFPRe-rackingLicensingReport-FinalDraftPage259 3.53.1.10RackThermalStressAnalysisTwothermalaccidentconditionswereconsidered.AnalysisisperformedonANSYS3Dsinglerackplatemodeloftherack88(2B)withthelargestplanprojection(footprint),aswellaslargestnumberofcells.Asaconsequence,thiswillproducelargestincreaseinoveralllineardimensionsoftherackstructure.1)NormalorUpsetCondition(To)-Thisthermalconditionisproducedwhenanisolatedstoragelocationhasafuelassemblygeneratingheatatthemaximumpostulatedrate.Surroundingstoragetubesareassumedtocontainnofuelassemblies.Inlieuofrunningafullthermalanalysisto~determinetheactualtemperaturedistributionalongtheinnerandouterhotcellwalls,itwasconservativelyassumedthattheoutsidetubewalltemperatureremainsat150'F,whiletheinnerwalltemperatureiskeptat212'F.Thisresultsinaconservative62'Ftemperaturedifferentialacrossthe2mm(0.0787in)thicktubewall.ThismaximumDTassumptionenvelopestheactualthermaldistributioninthecellwallsduetoamaximumoutletwaterbulktemperaturewhichexitsthecellat224'F,andlinearlydropstothetubeinlettemperatureof150'F.Thehotcelloutsidewaterbulk.temperatureisassumedtobe150'F,andtemperaturedropthroughthewall'sadjacentboundarylayersisnotconsidered.Duetothistemperaturedifferential,thermalgrowthofthehotcellinducesmembraneandbendingstressesintherackbaseplateandtubewalls.StresscontoursinrackcellsaroundmiddlehotcellareshowninFigures3.5-64(topplane)and3.5-65(midplane).Halfoftherackisshown,sincethestressdistributionissymmetricaboutNSdirection.BaseplatestresscontoursareshowninFigures3.5-66(topplane)and3.5-67(midplane).Summarized,thelocalhotcellmaximumthermalstressesare:a)Tubewalls:membrane=3,837psi;membrane+bending=9,856psib)Baseplate:membrane=1,198psi;membrane+bending=5,941psi51-1258768-01GinnaSFPRe-rackingLicensingReportPage260
 
Figure3.5-64RackTubesStressContours-To(TopPlane)ANSYS6>NOV7100020:$1:60PLOTNO.1NODALSOLVTIONSTEP<<1SVB<<ITIME<<1SlNTQVO)TOPDllX<<.007145SMN$N$1SMX<<9060SMXB24004A<<5$2N0$B1047C2742D<<$0$dE<<4051F<<00260<<7120H0214I<<9009RO58RaaX28(Iixs)ThermalCond.TolNormaBFigure3.5-65RackTubesStressContours-To(MidPlane)ANSYS6.2Nov7191020.62NdPLOTNO.2NODALSOLVTIONSTEPiSVB<<1TIME<<1BINTBRAVO)MIDDLEDMX<<.007145SMN<<5290SMX<<$007A2102d7B<<04$.07dC<<1070D149dE<<1021F<<2047O<<277$H<<$190I<<$024RO58Rack28(Iix9)Than<<elCond.'To'io>mal)51-1258768-01GinnaSFPRe-rackingLicensingReportPage261 CIl'p~,
Figure3.5-66BasePlateStressContours-To(TopPlane)ANSYS62NOV7100820:55A3PLOTNO.2NODALSOL(mONSTEP<<1SIIS<<1%IE<<1SINT(AVG)TOPDMX<<.003102SMN<<1527$SMX<<50118MX8<<15l77A<<35IA028~1003C<<1881D~E<<2Q78F<<383'<<e205H<<4053I<<5811ROLERack28(11xQ)ThermalCond.'To'Nonna8Figure3.5-67BasePlateStressContours-To(MidPlane)ANSYS62NOV7100820:SSMPLOTNO.1NOSTESVSTIMESINTMIDDMXSMNSMXA8CDE<<73IL302<<880.543<<1001~1132DALSOLUllONP<<1~I(AVG)<<.003102<<18AM<<1108~.10<<2133II~.581<<e75.822@$7.082ROSERack28(11xQ)ThermalCond."To'Nanna!)51-1258768-01GinnaSFPRe-rackingLicensingReportPage262 2)AbnormalCondition(Ta)-Thisthermalconditionisproducedwhenthepoolwaterbulktemperaturereachesamaximumallowablevalueof180'F,whenauxiliarypumpsareactivated.Referencetemperaturewithnothermallyinducedstressesisassumedtobenormalpooloperatingtemperatureof150'F.Legsarefixedtothepoolliner(Figure3.5-68).StresscontoursatthebottomofthecornerracktubesareshowninFigures3.5-69(topplane)and3.5-70(midplane).BaseplatestresscontoursareshowninFigures3.5-71(topplane)and3.5-72(midplane).Summarized,thermallyinducedstressesare:a)Tubewalls:membrane=9,654psi;membrane+bending=9,803psib)Baseplate:membrane=596psi;membrane+bending=1,556psiFigure3.5-68DeformedBasePlatewithLegs-TaANSYS0.2HDV710002$OO:IdPLOTND.1DISPIACEMEHTSTEP<<1SUB<<1TIME<<1RSYS<<ODMX<<.01d$$0SEPC<<72A12DSCA<<$0220$XV<<.042YV<<.7221ZV<<A200DIST<<00.00XF~0$0$YF<<$7.7$2ZFM.OOSA<$~.022PRECISEHIDDENROSERookt11n0)ThonnolCond.To'LAooMont)51-1258768-01GinnaSFPRe-rackingLicensingReportPage263 Figure3.5-69BottomCornerTubesStressContours-Ta(TopPlane)ANSYS$2NOV7100823:14MPLOTNO.1NOOALSOUJTION6~16UB~1TIMEolBINTQVO)TOPDMXn.0187846MN~6M~006MX~SMX&11008AW201B&030C0o8238E~$F>76340o8182H~8831Io0470ROSERack{11a0)ThermalCond.faAedden9Figure3.5-70BottomCornerTubesStressContours-Ta(MidPlane)ANSYS6XNOV7100823:14I48PLOTNO.2NOOALSOUmONSTEPrr1SUS>ITIME1BINTQVO)MIDOLEOMX~AIL87846MN~106MX~A~2BW0$8C<<$6840~11EHATF~74830rL8880H0876I&34R08ERack(11x0)ThermalCond.Ta~51-1258768-01GinnaSFPRe-rackingLicensingReportPage264 t*
Figure3.5-71BasePlateStressContours-Ta(TopPlane)ANSYS52NOV8100810:20:52PLOTNO.1NODALSOLUTIONSTEP>>1SUB>>1TIME>>1SINT(AVO)TOPDMX>>.015S30SMN>>188.778SMX>>15SSSMXB>>1030A>>24S.SOO8W00.048C>>OS'>>708AOOfWOS.MOF>>1017O>>1171H>>1S25I>>1470ROLERack(11xQ)ThermalCond.TsAcddenDFigure3.5-72BasePlateStressContours-Ta(MidPlane)DMX>>.01SMNSMX>>$A>>25S.8>>205C>>33A22D>>37404fW1.388FWSS~OW0541S330>>23$AQS0$.24470A51H>>535282575~ANSYS5>NOV81QQS10:21:04PLOTNO.2NODALSOLUllONSTEP>>1SUB>>1TIME>>1BINT(AVO)MIDDLEROSERack(11x0)ThermalCond.Ts(AcrddenD51-1258768-01GinnaSFPRe-rackingLicensingReportPage265 3.5.3.1.11FatigueAnalysisApplicableCodesandStandards-StructuralfatigueanalysisoftheRochesterGasandElectric'sR.E.GinnaUnit1highdensityspentfuelstorageracksandspentfuelpoollinerisperformedhere.Thedesignbyanalysisprocedureisemployedforqualification.ThenumberofearthquakecyclesisperStandardReviewPlan,Section3.7.3,SubsectionII.2(NUREG-0800).TheacceptablemaximumstressrangeinvariousstoragerackstructuresisbasedonthedesigncriteriagivenintheAmericanSocietyofMechanicalEngineersBoilerandPressureVesselCode-SectionIII,RulesofConstructionofNuclearPowerPlantComponents,DivisionI,1989edition.HereafteritisreferredtoastheASMECode(Reference3.19).TheacceptablemaximumstressrangeinpoollinerstructuresisbasedonthedesigncriteriagivenintheAmericanInstitutionofSteelConstruction,ManualofSteelConstruction,Part5-SpecificationandCodes,NinthEdition.HereafteritisreferredtoastheAISCCode(Reference3.21).ThefuelstorageracksareconsideredClass3componentsupportsandareplateandshelltypesupports.DesignrulesgiveninSubsectionNFoftheCodeareutilizedintheevaluation.Generalrequirementsconcerningstressdetermination,definitions,derivationofstressintensities,derivationofstressrange,andclassificationofstressesareperSubsectionsNBandNFoftheASMECode.PerSubsectionNFoftheCode,thesecondarystressesevaluationisnotrequiredfortheClass3supports.However,asaconservativeapproach,therangeofprimaryplussecondarystressesisevaluatedagainsttheloweroftwotimesyieldstrengthorultimatetensilestrengthatthedesigntemperature.Forthepoolliner,thedefinitionof'LoadingCondition,'ypeandlocationof'stresscategory,'nd'allowablestressrange'reperPart5,AppendixKoftheAISCCode.FatigueAnalysisandMethodology-AcronymsEYoung'sModulusFyMaterialyieldstrengthHzHertz,NaturalfrequencyincyclespersecondOBEOperatingBasisEarthquakeSSESafeShutdownEarthquakeSaAlternatingstressintensitySyMaterialyieldstrengthSuMaterialtensilestrengthU'CumulativeusagefactorOtheracronymsareexplainedwheretheyfirstappear.Theearthquakestressesareincludedinthestressanalysis.ThestructureisdesignedforfiveOperatingBasisEarthquakesandoneSafeShutdownEarthquake(SRPSection3.7.3,II.2,NUREG-0800).51.-1258768-01GinnaSFPRe-rackingLicensingReportPage266
 
Reviewofthenaturalfrequenciesofthestructureindicatesthatthemajorityofthestressesinthestructurewillbeinducedduringlowfrequencyexcitation.Thefrequencyoftheracksloadedwithfuelassembliesrangesfrom7to26Hz(followingtable).Themajorityofrackfirstmodefrequenciesarelessthan20Hz.Thefrequencyoftheemptyrackrangesfrom24to72Hz.Beingofahighfrequencystructures,theemptyrackswillbehavelikearigidstructure.Loadedspentfuelstoragerackswillinducethemajorityofstresses.Therefore,mostofthestressesinthestructurewillbeinducedbyafrequencyoflessthan20Hz.Foraconservativefatigueanalysis,thestresscyclesaretakenat20cyclespersecond.SpentFuelStorageRacks-FirstModeFrequency::;.':!::,:,':,''::',,':Ra'':;::,:;"::',:::;":,:::;Niimb'er'':;',..'-;':;:,-:;-;:,:~"',::,;::";-:,'Eiiip'ty',";R$:;"::;::;:<<'I."I::.".'j,::IRacks;':With'4::'':::',.';.:,;''::.".;,:'::'.!:,"~,Con's'olidated:Fu'el!I'",!:;::,;::iI':,'!I',~;I:;:;:;:l':i)<.Canisters<<;::.I,::':.'-l<<:;;:::I":',::,';:East-.'..Wes't':.','-';Fr'equeiicy,'.:;-:".'.,",';:.'.,::::N-':.S;:.',":;::,':,:,::::::.:'::;:::.::East'-':We'st',~':,:Fieqii'eri'cy<<.,';;:::<<lFi'equeiicy'~i:<<::<<'%y'z4.:cN:":YY.<<~;.<<'8Hz:"<<<<<<<<.ji<<<<2;.F<<r<<equ<<e'ncy',.;;",;',".!East-'.West'::,'!:;Pre'quency'~:::::~Fr'e'qu'ency:1to62A2B3A3B3C3D3E60.238.340.930.929.923.723.730.371.746.446.238.637.538.538.539.821.812.813.712.111.89.29.211.926.115.615.515.114.715.015.015.716.79.810.49.39.17.17.19.119.811.811.811.611.311.611.612.0Althoughearthquakemotionscanbeexpectedtolastforadurationofminutes,thestrongmotionportionofashock,whichisofconcernforseismicallydesignedstructures,isgenerallynotlongerthanafewseconds.Ofmotionsbasedon60earthquakesranginginmagnitudefrom5.0to8.0,thedurationofthestrongmotionportionoftheseearthquakesrangesfromabout1.5secondsformagnitude5.0toabout15secondsformagnitude8.0.Theaveragedurationofthestrongmotionportion,however,isonlyabout2.2seconds.Tobesomewhatconservative,itwillbeassumedthatthedurationofthestrongmotionportionwillbe5secondsfortheOBEand20secondsfortheSSE.WhencomparedtothedurationofthestrongmotionrecordsofsuchearthquakesastheN-Scomponentofthe1940ElCentroandtheN69Wcomponentofthe1952Taft,thisassumeddurationofstrongmotionearthquakeisconservative.ThehighdensityfuelstorageracksaredesignedforfiveOBE'sandoneSSE.Numberofstresscycles=NumberofearthquakesxtimeinsecondforthestrongmotionearthquakexFundamentalmodeinHz.NumberofstresscyclesduringOBE=5x5x20=500cyclesNumberofstresscyclesduringSSE=1x20x20=400cycles.51-1258768-01GinnaSFPRe-rackingLicensingReportPage267 StorageRackFatigueAnalysis-PerSubsectionNFoftheASMECode,nopeakstress.orfatigueevaluationisrequiredforClass3supports.However,asaconservativeapproach,thepeakstressrange,fatigueevaluation,andcumulativedamagearecalculatedperSubsectionNB-3222.4oftheCode.Therangeofprimaryplussecondarystressesislimitedtothelowerof2SyorSu,perASMECodeSectionIII,TableNF-3522(b)-1,Note5.Thematerialpropertiesoftherackmaterialaretabulatedbelowatdesigntemperature.Thedesigntemperatureofthestoragerackis150'F.ThematerialpropertiesgivenintheASMECodeSectionIII,AppendixI,areinterpolatedtogetpropertiesat150'F.SyksiSUksiElb/in~ASTMA-240Type304LASTMA-479Type304L23.1523.1563.168.127.9x10'7.9x10'heallowablerangeofprimaryplussecondarystress(lowerof2SyorSuatdesigntemperature)is46.3ksi.AlternatingstressSa=~/i(StressRange):.Sa=/ix46.3=23.15ksiThestoragerackfatigueanalysisisperformedperASMECodeSectionIII,SubsectionNB-3222.4.First,theeffectofelasticmodulus(E)isconsideredsincetheEforthefuelstorageracksisdifferentfromtheASMECodeSectionIII,FiguresI-9.2.1,andI-9.2.2.TheeffectofelasticmodulusisconsideredbymultiplyingSabytheratioofthemodulusofelasticitygivenonthedesignfatiguecurvetothevalueofthemodulusofelasticityofthefuelstorageracks.Sa=23.15x(28.3/27.9)Sa=23.48ksiInordertoensurethatthefatigueanalysisisconservative,astressconcentrationfactorof4isappliedtoSa.Therefore:Sa=4(23.48ksi)=93.92ksiFigureI-9.2.1oftheASMECodeSectionIII(Reference3.19)isusedtocalculatetheallowablenumberofcyclesatthegivenalternatingstress.Thenumberofallowablecycleat93.92ksialternatingstressis2000.CumulativeusagefactorU=nl/N1+n2/N2U=(500/2000)+(400/2000)U=0.25+0.20U=0.4551-1258768-01GinnaSFPRe-rackingLicensingReportPage268 whereU=Cumulativeusagefactornl=NumberofOBEstresscyclesNl=AllowablecyclesatOBESan2=NumberofSSEstresscyclesN2=AllowablecyclesatSSESaThecumulativeusagefactorforthespentfuelstorageracksis0.45whichislessthanthelimitof1.0,sotheracksmeettherequirementsoftheASMECodeSectionIII,SubsectionNB-3222.4.PoolLinerFatigueAnalysis-ThepoollinerfatigueanalysisisperformedperPart5,AppendixKoftheAISCCode-NinthEdition.Theallowabletensilestressforthelineris0.6Fy(Part5,ChapterD-1oftheAISCCode).Thetensilepropertyforthelinerat150'is:ASTMA-240Type304StainlesssteelFy=27.5ksi(AppendixI,ASMESectionIII):.Allowabletensilestressis=0.6Fy=0.6x27.5=16.5ksiStressrange=2x16.5=33ksiThetotalnumberofOBE+SSEstresscycleis900.Thesestresscyclesarelowerthan20,000.Therefore,LoadCondition&#xb9;1oftheTableA-K4.1(AISCCode)willbeapplicabletothepoolliner.Forthepoollinerweldedconnections,theStressCategoryBoftheTableA-K4.2(AISCCode)willbeapplicable.ForLoadingCondition&#xb9;1andStressCategoryB,theallowablestressrangeis49ksiforfatiguestrength,perTableA-K4.3oftheAISCCode.Sincethepoollinerstressrangeis33ksi,thepoollinermeetsthefatiguerequirementsoftheAISCCode.Conclusion-RochesterGas&,Electric'sR.'E.GinnaUnit1highdensityspentfuelstorageracksmeetthefatiguerequirementsoftheASMECodeSectionIII,SubsectionNB-3222.4,andthepoollinermeetsthefatiguerequirementsoftheAISCCode,Section5,AppendixK.Allofthesehardwarehavemorethanadequatefatiguelife.3.5.3.1.12RackBasePlateEvaluationRack&#xb9;8(2B),whichisa9xl1rack,waschosenforthethermalstresscalculationssinceithasthelargestplanprojection(footprint).Asaconsequence,thiswillproducethelargestthermalstressesduetothedifferentialthermalgrowthduringthefaultedthermalaccident,Ta.Themaximumrackloadsgeneratedduringaseismicevent(SSE)wereappliedtotheANSYS3Dsinglerackplatemodel.Thefuelloadconsistedofconsolidatedfuelcanisters(allcellsloaded),withthecoefficientoffrictionequalto0.8.Thissetofconditionsproducedthemaximumloadsintherackstructure,andwasusedtoenvelopethemaximumbaseplatestressesforallthenewracks.Additionalconservatismwasintroducedintotheanalysisbyconstrainingalltheracklegs.Theloadsobtainedfromtherackfullpoolseismicanalysisweretakenasthemaximumvaluesforeachforceandmomentcomponent(whichgenerallydonotachievetheirmaximumsatthesametimeinstant).Theuseoftheindividualmaximumvaluesassuresaconservativecombinationofrackloads.51-1258768-01GinnaSFPRe-rackingLicensingReportPage269 Thehigheststressesinthebaseplateoccurinthevicinityofthesupports.Thehighestloadedlegsarethecornerlegs,whicharesubjectedtocompressionduetotheverticalload(weight)andalsoduetothemaximumbendingaboutthetwohorizontalaxes.Thethermallyinducedstresses(section3.5.3.1.10)furtherincreasebaseplatecornerstresses.ThebaseplatemembranestressisshowninFigure3.5-73,andFigure3.5-74showsthecorrespondingmembraneplusbendingstress.Theanalysisresultsforthebaseplatearesummarizedinthetablebelow:::>>j~';'i::Lo'a'd':Coiiibi'nation$,':,,:;>>IMax.",Stress,':[p'si]P,,:i":,,.''","'';,:;,,li>~~!':'Allo'wable':Stres's',pepsi],''i:;.::D+L+E+To(LevelA)D+L+E+Ta(LevelB)D+L+E'+Ta(LevelD)membrane:767*memb+bend:4,286*rangeofm+b:10,227membrane:767*memb+bend:4,286~rangeofm+b:5,842membrane:767memb+bend:4,286rangeofm+b:5,842membrane:15,700memb+bend:23,550rangeofm+b:46,300membrane:20.881memb+bend:31,322rangeofm+b:44,080membrane:26,448memb+bend:39,672rangeofm+b:44,080(*)SeismicstressesforLevelDarereportedsincetheyenvelopseismicOBEstresses51-1258768-01GinnaSFPRe-rackingLicensingReportPage270 Figure3.5-73BasePlateMembraneStressContoursIIIl--II)IIIANSYS52JANI14412200.'llPLOTNO.INODALSOLUTION0'TEP<<1SOS~ITIME<<ISIIT(AVO)MX)DLEDMX~.015011SLIN054.044SMX<<IIISSSA~IISIT0~155.045O0211.14~D0242AISE<<541.14FQIIIAII0<<ITISITH~ISISIII0405445IIIIRO4ERsct(IIxt)IsssPNtosiss<<<<<<51-1258768-01GinnaSFPRe-rackingLicensingReportPage271 Figure3.5-74BasePlateMemb.+Bend.StressContoursr-~Il--IIf-1iI-IIANSYS$2JAN$1~IT254040PLOTNO.1NODALSOLVT)ONSTES'1SDS~1TSSE1SINT)AYO)TOPDNXAN5011SNNs50$25SNXs$512SllXSW25$A2)SSI4s002$D1050DIIIIE1I2IP22500s2002N2000Is$$10IIiROSERssI(115$)IsssIlsVsIsss053.5.3.1.13SloshingThissectiondemonstratescomplianceofRochesterGas&Electric'sGinnaspentfuelstoragerackswithStandardReviewPlan-NUREG-0800,Section3.8.4,AppendixD,Subsection(5),'sloshingwater'equirements.Thestandardstipulatesthatthespentfuelassembliesshouldbeinasafeconfigurationthroughearthquakeincludingitssloshingeffects.BothseismicOBEandSSEconditionsareevaluatedforthesloshingeffects.AcceptanceCriteria:Thesafeconfigurationofthespentfuelassembliesisvalidatedbyverifying:a)Changeinhydrostaticpressureduetosloshing-impulsiveforceisnegligible.b)Heightofsloshingwavesissmallsuchthatthespentfuelrackswillremainsubmergedinspentfuelwateratalltimes.51-1258768-01GinnaSFPRe-rackingLicensingReportPage272 SloshingAnalysisNomenclatureA,MaximumdisplacementofW,dMaximumwater-surfacedisplacementEBPExcludingBottomPressureIBPIncludingBottomPressuregAccelerationofgravityhHeightofwatersurfaceabovethebottomofpoolhh,VerticaldistancefromthepoolbottomtoW,andW,respectivelyOnehalflengthofrectangularpoolwallMBendingmomentoroverturningmomentonhorizontalsectionofpoolatthebottomPP~Impulsiveandconvectiveforces,respectivelyTPeriodofvibration6MaximumhorizontalaccelerationofthegroundduringanearthquakeWWeightoffluidinapoolW,EquivalentweightoffluidtoproducetheimpulsiveforceP,onthepoolwallW,EquivalentoscillatingweighttoproducetheconvectiveforceP,onpoolwallOAngularamplitudeoffreeoscillationsatthewatersurfacepMassdensityoffluidCircular&equencyoffreevibrationforthen~modeSloshing:ThemethodofcalculatingseismicallyinducedfluidpressureandmaximumwavemotionhasbeendevelopedbyHousner(TID-7024,Reference3.27).Themethodappliestoaflatbottomed,verticallyorientedtankofuniformrectangularsection.WhenatankcontainingfluidofweightWisacceleratedinhorizontaldirection,acertainportionofthefluidactsasifitwereasolidmassofweightW,inrigidcontactwithwallsandremainderweightW,willoscillate.Assumingthetankmovesasarigidbody,bottomandwallswillundergothesameacceleration.Theaccelerationinducesoscillationsofthefluid,contributingadditionaldynamicpressureonthewallsandbottom.Themaximumamplitude,Aofthehorizontalexcursionofthemassdeterminestheverticaldisplacement,d,ofthewatersurface,sloshheight.Bothimpulsivepressureandthesloshheightarecalculated.51-1258768-01GinnaSFPRe-rackingLicensingReportPage273 ImpulsivePressure:pWaterSurface276'1.75"ConcreteE1236'"2L=457.5inE-W(2L=266.5N-S)usingequationF.47(Reference3.27)P=p0h---(-)P3tanh(+3-)1h2hhWhere:p=62.4lb/ft~densityofwater6=horizontalacceleration(zeroperiodacceleration)0.2gforhorizontalSSEh=276'13/4"-(236'"+linearthickness)Neglectinglinerthicknessof1/4"h=40.3362L=EastWestlengthofpool=457.50"or38.125ft.L=19.1ft191047h40.33ImpulsivePressureaty=hP=x0.2gx40.331--f3tanh(Q3)62.4119.1g240.3351-1258768-01GinnaSFPRe-rackingLicensingReportPage274
=435.9xtanh(0.8203)=435.9x(0.6752)=294.3Ib/fPor2psiThemaximumpressureonthewallis2psi.Thisreducestozeroatwatersurface.Thisisacceptableconsideringhydrostaticpressureduetoheightofwater40.33ftundernormalcondition.MAXIMUMWATER-SURFACEDISPLACEMENT-dUNDEROBE:=0.527&#xc3;=0'27=0.249Fort/h=0.474-tanh(1.58-)Equation6.5ofReference(3.27)hhx0.474xtanh()1.580.474EBP-ExcludingbottomPressureonbottomhq=1hcosh(1.58-)-1h1.58-sinh(1.58-)hh=0.72cosh('-11.580.4741.58.1.580.474xsinh(-)0.47451-1258768-01GinnaSFPRe-rackingLicensingReportPage275 Pt UsingEquation6.8(Reference3.27)158gh(158jl1.58x32.2th15819.119.1=2.6569:.e=~2.6569=1.63cad/eecT2rr2rr-3.85secondsm1.63or5--'0.26Hz1.632rr2xrrFromOBEhorizontalresponsespectraat0.25Hzat1/2%damping,thespectraaccelerationis0.0588g's(derived&om0.08g'sRegulatoryGuide1.60,horizontalspectra,References3.10,and3.22).,spectraaccln0.0588x32.207]2.6569UsingEquation6.9ofReference3.27e=1.58-tanh(1.58-)A~e=1.58xtanh(1.58x'0.7140.3319.119.1=0.05858radian51-1258768-01GinnaSFPRe-rackingLicensingReportPage276 UsingEquation6.11ofReference3.27:1((8(X0.527lcoth(1.58-)0.527x19.1xcath(1.58x(40.3319.132.22.6569x0'5858x19.1=1.026ZtDuetosloshingduringOBEthewatersurfacewillriseandlowerby1.026feet.Thedistancefrompoolwaterleveltotopoffuelstorageracksisapproximately25feet.Thisdepthissignificantlyhigherthanthesloshingwave(dgheight.Therefore,spentfuelwillremainsubmergedinthespentfuelpoolwaterthroughouttheOBEevent.MAXIMUMWATERSURFACEDISPLACEMENT-dUNDERSSE:ThefrequencyofsloshingisthesameasthatofOBE,i.e.,0.26Hz.FromSSEhorizontalresponsespectraat0.25Hzat1/2%damping,thespectraaccelerationis0.1471g's(derivedfrom0.2g'sRegulatoryGuide1.60,horizontalspectra,References3.11,and3.22).>Pectraa(=(=2n0.1471x32.2-17828ftQ)22.6569UsingEquation6.9ofReference3.27e=1.58-tanh(1.58-)A~=1.58x'anh(1.58x'1.782840.3319.119.1=0.1471radian51-1258768-01GinnaSFPRe-rackingLicensingReportPage277 UsingEquation6.11ofReference3.27:0.527$coth(1.58-)max0.527x19.1xcoth(1.58x'40.3319.132.22.6569x0.1471x19.1=3.054StDuringSSEeventthewatersurfacewillriseandlowerby3.054ft.Thedistancefrompoolwaterleveltotopoffuelstorageracksisapproximately25feet.Thisdepthissignificantlyhigherthanthesloshingwave(dgheight.Therefore,spentfuelwillremainsubmergedinthespentfuelpoolwaterthroughouttheSSEevent.SloshingSummary:Duringearthquakethepoolwaterwilloscillatewithfrequencyof0.26Hz(orwithaperiodof3.85seconds).DuringOBEthewatersurfacewillrise1.026ft.aboveit'sundisturbedlevel.DuringpostulatedOBEeventthewaterwillnotspillabovepoolwall.DuringSSEthewatersurfacewillriseandfall3.054ftfromit'sundisturbedlevel.DuringbothOBEandSSEevents,spentfuelwillremainsubmergedinthespentfuelpoolwater.51-1258768-01GinnaSFPRe-rackingLicensingReportPage278 llf.%l'llA~
3.5.3.1.14SummaryofGapClosurefromFive(5)OBE'sPlusOne(1)SSE~Thecumulativemovementoftherackswithinthepoolduetoacombinationofseismiceventsisaddressedinthissection.Atotaloffive(5)OBEeventsandone(1)SSEeventisaccountedfor.TherelativeclosurebetweentheracksistabulatedforbothEast-WestandNorth-Southdirections.Themaximumrackdisplacementsoccurwiththelowestcoefficientoffrictionequalto0.2,andtherackscompletelyloadedwithunconsolidatedfuel.Thelowhydrodynamiccouplingvaluesforunconsolidatedfuel(versushigherhydrodynamiccouplingfortheconsolidatedfuel)combinedwiththemaximumfuelloadperrack(fullracks)causethemaximumdisplacementstooccur.Therefore,thetotalclosurecalculatedfromthissectionistakenfromloadingcaseswithrackscompletely.loadedwithunconsolidatedfuelandcoefficientsof&ictionequalto0.2.Thefinalpositionoftheracks(bothtranslationsandrotations)fortheOBEeventsiscombinedusingtheSRSSmethod.Thetime-historyfactorfortheOBEevents(1.12)isthenmultipliedbytheSRSSvalueforthe5OBEs.Thisprocessisappliedtobothdisplacementsandrotations.ThemaximummotionsduringtheentireSSEevent(displacementsatthetopoftheracks)werethenusedforSSE.Thetime-historyfactorof1.20wasusedfortheSSEevents.Forconservatism,allOBEfinalrelativedisplacementsweretakenas"closure",eventhoughmanywereactuallyshowingan"opening"betweenthetwobodies.Further,toaddtotheoverallconservatism,therelativelateraldisplacementsduetorackrotationswereadditiveforeachrackrotation,regardlessastotheactualrotationsbetweenthetwobodies.Forexample,forsmallanglesofrotation,withtworacksrotatingthesamedirectionforsimilarangles,therelativegapbetweentwocornerswouldremainthesame.Alsotheeffectsofhigherhydrodynamiccouplingbetweentwobodiesthathaveasmallergapbetweenthemduringsuccessiveseismiceventsarenotaccountedfor.Thenomenclatureforthefollowingtablesareasfollows:WW=WestWall,NW=NorthWall,EW=EastWallandSW=SouthWall.Inconclusion,usingaconservativeapproach,noneoftheracksimpactwithanyotherrackorwiththewallsduringthecumulativeeffectsof5OBE'sand1SSE.51-1258768-01GinnaSFPRe-rackingLicensingReportPage279 MaximumGapClosurefor5OBE's+1SSE(WithPerimeterRacks)HorizontalEast-WestRelativeDisplacements(in)Table3.5-133RelativeDisp.DuetoEast-WestTranslation1stRackWWWW12345566689101112132ndRack123456788910111213,EWEWEW1OBE0.01610.00570.00630'0790.01220.01040.02390.01110.01670.02160.01530'4190.00090.09880.03330.01260.10605OBE's0'3590.01270'1410.01770.02730.02330.05340.02480.03740.04840.03430.09370.00200.22090.07460.02820.23701.12X5OBE's0.04020.01420.01580.01980.03060.02610.05980.02780.04190.05420.03840.10490.00220.24740.08360.03160.26541SSE0.16800.19030.07310.09240.05920.06190.15950.20600.18440.21510.12300.27500.34730.17380.20760.13120.19911.2X1SSE0.20160.22840.08770.11090.07110.07430.19140'4720.22130.25810.14760.33000.41680.20860.24910.15740.2389TotalDisp.0.24180.24260.10350.13080.10170.10040.25120.27500'6320.31230.18600.43490.41900.45600.33270.18900.5044Table1stRack3.5-134RelativeEast-WestDisp.Dueto2nd1.12XRack1OBE5OBE's5OBE's1SSERotation1.2XTotal1SSEDisp.WWWW1234556668910111213123456788910111213EWEWEW0.00890.01440.01230.01480.00550.00200.00280.00350.00300.01230.00320.01390.02790.00500.01240.01720.00330.01990.03220.02750.03310.01230.00450.00630.00780.00670.02750.00720.03110.06240.01120.02770.03850.00740.02230.03610.03080.03710.01380.00500.00700.00880.00750.03080.00800.03480.06990.01250.03110.04310.00830.02740'3080.04690.03570.04850.02750.04230.05100.04470.04470.04800.09890.07960.08440.07690'5760.05910.03290.03700.05630.04280.05820.03300.05080.06120.05360.05360.05760.11870.09550.10130.09230.06910.07090.05520'7300.08710.07990.07200.03800.05780.07000'6120.08440.06560.15350.16540.11380.12330.11220.079251-1258768-01GinnaSFPRe-rackingLicensingReportPage280
>>0~'l MaximumGapClosurefor5OBE's+1SSE(WithPerimeterRacks)HorizontalNorth-SouthRelativeDisplacements(in)Table3.5-135RelativeDisp.DuetoNorth-SouthTranslation1stRackSW12SW34SW56SW78910SW1112132IldRack12NW34NW56NW78910NWll1213NW1OBE0.01180.05140.03960.01680.00280.01410.00010.02270.02260.00020.01970.03420.00780.00690.03330.03950.01330.00705OBE's0.03590.01270.01410.01770.02730.02330.05340.02480.03740.04840.03430.09370.00200.22090.07460.02820.23700.23701.12X5OBE's0.04020.01420.01580.01980.03060.02610.05980.02780'4190.05420.03840.10490.00220.24740.08360.03160.26540.26541SSE0.20100.09660.29530.15140.09820.16990.19070.07990.19320.33540'7160.09940.05360'4100.32050.04290.09690.13131.2X1SSE0.24120.11590.35440.18170.11780.20390.22880.09590.2318,0.40250.08600'1920.06430.16920.38460.05150.11630.1576TotalDisp.0.28140.13010.37020.20150.14840.23000.28860.12370.27370.45670.12440'2420.06650.41660.46820.08310.38170.4230Table1stRack3.5-136RelativeNorth-SouthDisp.Due2Ild1.12XRack1OBE5OBE's5OBE's1SSE1.2X1SSETotalDisp.toRotationSW12SW3SW56SW78910SW11121312NW34NW56NW78910NW111213NW0.00560.01470.00910.00220.00250'0030.00130.00220.00100.00110.00290.02330.02390.00240.01770.05210.03910.00480.01250.03290'2030.00490.00560.00070.00290.00490.00220.00250.00650.05210.05340.00540.03960.11650.08740.01070.01400.03680.02280.00550.00630.00080.00330.00550.00250'0280.00730.05840.05990.00600.04430.13050'9790.01200.01730.03680.01950.01230.01540.00310.01830'3260.01430.01820.04500.07080.08010.03610.10990.22510.19960.08440.02080.04420.02340'1480.01850.00370.02200.03910.01720.02180.05400.08500.09610.04330.13190.27010.23950.10130.03480~08100.04620.02030.02470.00450.02520'4460.01970.02460.06130.14330.15600.04930'7620.40060.33740.113351-1258768-01GinnaSFPRe-rackingLicensingReportPage281
 
MaximumGapClosurefor5OBE's+1SSE(WithPerimeterRacks)Table3.5-137SummaryofEast-WestRelativeDisp.SummaryofTotalNorth-SouthGapClosure(TranslationandRotation)1stRackWWWW12345566689101112132ndRack123456788910111213EWEWEWTotalTrans.Closure0.24180.24260.10350.13080.10170.10040.25120.27500'6320.31230.18600.43490.41900.45600.33270'8900.5044TotalRot.Closure0.05520.07300.08710.07990.07200.03800.05780.07000.06120.08440.06560.15350.16540.11380.12330.11220.0792TotalClosureBetween0.29700.31560.19060.21070.17360.13840.30900.34490.32430.39680.25160.58840.58440.56980.45600'0120.5835InitialGapBetweenRacks10.5009.7501.7501.2500.7500.6300.5500.5500.5503.3803.3800.7900.7900.7903.2703.2703.270FinalGapBetweenRacks10.2039.4341.5591.0390.5760.4920.2410.2050.2262.9833.1280.2020.2060.2202.8142.9692.686GapStatusOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenTable3.5-138SummaryofNorth-SouthRelativeDisp.1stRackSW12SW34SW56SW78910SW1112132ndRack12NW34NW56NW78910NW111213NWTotalTrans.Closure0.28140.13010.37020.20150.14840.23000.28860.12370.27370.45670.12440.22420.06650.41660.46820.08310.38170.4230Total"Rot.Closure0.03480.08100.04620'2030.02470.00450.02520.04460.01970.02460.06130.14330.15600.04930.17620.40060.33740.1133TotalClosureBetween0.31620.21110.41630.22180.17320.23440'1390.16830.29340.48130.18560.36750.22250.46590.64440'8370.71920.5363InitialGapBetweenRacks5.2500.5005.7506.0000.7504.7507.5000.7503.2507.0500.7900.7900.7901.72087.7400.7900.7901.720FinalGapBetweenRacks4.9340.2895.3345.7780.5774.5167.1860.5822.9576.5690.6040.4220.5681.25487.0960.3060.0711.184GapStatusOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpen51-1258768-01GinnaSFPRe-rackingLicensingReportPage282 3.5.3.1.15BoratedStainlessSteelFunctionalityBoratedstainlesssteel(BSS)isutilizedintheATEAspentfuelpoolrackdesignastheneutronabsorber.BSSisanexcellentmaterialforuseinspentfuelpoolsandhasbeenusedinallofATEA'sracks.Whileitisaneffectiveneutronpoison,italsoexhibitshighcorrosionresistanceintheboratedwaterenvironmentofthespentfuelpool.Italsoexhibitsgoodstructuralpropertiesinstrengthandductility.TheATEA-spentfuelrackdesignsutilizeBSSasaneutronabsorberonly,andisfunctionallydesignedasanon-structuralcomponent.TheBSSplatesaredesignedtotransmitonlycompressiveloadswithinthestructuralframeworkoftheracks.Notensionorbendingloadsaretransmittedgiventheinherentcell-to-cellgaps,thespecificbearingloadtransmissionfeaturesbetweentheBSSandadjacentstructuralcells,thecomplianceoftheinterlockingfeaturesoftheBSSplates,andthecomplianceofthenon-fixityfree-standingconditionsoftheBSScellitself.Interlockingfingers(straightmortisesandtenons)machinedalongtheedgesoftheBSSplatesserveadualpurpose.FourindividualBSS'platesareassembledtoformasquaretubecellwithouttheuseofmechanical(i.e.,screwsorpins)orfusion(i.e.,weldoradhesive)joiningprocesses.TheBSScellslidesinsidetherackframecellasaninterlockedunitduringfabrication.Theinterlockingfingersaredesignedsuchthatsufficientclearancesareprovidedtopermitthejointtorotateandslip.ThejointmitigatesfuelassemblyimpactloadingwithintheBSScellwhilemaintainingproperfingeroverlapandsufficientplateengagement.Thedesigntolerancesaresuchthataminimumengagementofone-halfofaplatethicknessisensured.Whilethedesignprovidescomplianceforinternalloads,i.e.,fuelassemblyimpactloads,themortiseandtenonjointmaintainsthesquarecellgeometrywhentransmittingloadsbetweenthestructuralcells.ThetransmissionoflateralloadswithintheATEAtype2A-Brackstructuralframeisachievedthroughaseriesofbearingretainerplatesandcornertabsweldedtothestainlesssteelcells.TheretainerplatesalsoservetoaxiallyconstraintheBSScellwithinitsdesignatedrackcell.LateralgapsbetweentheBSSandstainlesssteelintegralcellinadditiontothenon-fixityfeaturesoftheBSScellitselfservetomitigatebendingloadsintheBSSplates.ThetransmissionoflateralloadsbetweentheATEAtype3A-ErackstructuralframeandtheBSScellsisachievedthroughaseriesofstainlesssteel"bands"locatedatdiscreteaxiallocationsalongthelengthoftheBSScells.ThebandisassembledastwopiecesfittingintomorticejointsontheBSSplatesandthenweldedtoeachothertoformanintegralbandaroundtheBSScell.Giventhe&eestandingboundaryconditionsoftheBSScellandlateralgapsbetweenthebandsandadjacentstructuralcells,rigidbodymotionisallowedwithnegligiblebendingmomentsproducedintheBSScell.Transmissionofloadsareentirelybearinginnature.TheBSSplatesaresandwichedbetweenthestainlesssteelstructuralcellsfortheATEAtype4rackswiththetransmissionofloadsbeingbearinginnature.Anymomentloadsduetotype1rackimpactwouldbein-planeandresultinnegligiblestresses.Impactbetweenthetype4racksandthepoolwalldoesnotexist.ResultsfromtherackanalysesshowthatsubsequentrackframeloadsanddisplacementsareinsufficienttoloadtheBSScellinbendingortension.51-1258768-01GinnaSFPRe-rackingLicensingReportPage283 Dynamicloadingsweregeneratedbycomputermodelsforthevariousrackdesigns.ThesemodelsincludedtheBSSplatesandthevariousrackcomponentmasses.G-forceloadingsweregeneratedatlocationswherethebearingretainerplatesaxiallyconstraintheBSSplateswithinthetype2stainlesssteelrackcellandalsoattherackbaseplateseatingsurfaceforthetype3racks.TheretainerplateweldsandrackbaseplatearedesignedtocarrythefullverticaldynamicloadingsfromtheBSSplates/cells-tothestainlesssteelrackstructure.AnalysescontainedintheSections3.5.3.1.2.5and3.5.3.1.12demonstratetheintegrityoftheretainerplateweldtabsandbaseplaterespectively.Lateralloadsandsubsequentmomentsanddisplacementswerealsogeneratedfortherackcells.Resultingdisplacementsweresmallandwithintheavailabledesigngaps.Inaddition,theBSSplatesoffer'verylittleresistanceduetoitslackofrestraintattheendsastheplatesareonlycapturedandnotfixed(weldedorpinned)totherackstructure.Thein-planebending(acrossthewidthoftheplate)displacementduetoitsownmassisnegligible,andbowingalongtheplatelengthisprecludedbytheinterlockingfingerswithadjacentplates.ThermalStressesinBSSWhenafreshlydischargedfuelassemblyisstoredinaBoratedStainlessSteel(BSS)cell,theBSSplatetemperatureincreases.Thetemperaturedistributionisisotropicineachsection,sothattheBSScellexpandsinanisotropicway(withoutstresses).Theamountofexpansion,calculatedinaveryconservativeway(assumingasaturatedboilingtemperature,238.9'F,intheBSScellandonly120'FintheSScelloutside)canbeevaluatedasfollows:WhereLateralExpansion:=a(b,T)L=(8.872E-6)(238.9-120)(8.4)=0.009in.<ExistingGap=0.016in.a=8.872E-6in/in/'Fat238.9'FL,=8.4in.(BSSwidth)VerticalExpansion:=a(b,T)L,WhereL2=145.7in.(BSSheight)=(8.872E-6)(238.9-120)(145.7)=0.154in.<ExistingGap=0.197in.Therefore,undernocircumstanceswilltheBSSbeconstrainedbythesurroundingSScell.Further,anadditionalgapexistsbetweenthenotchesintheBSSplatesduetolasercuttingduringthemanufacturingprocess.Therefore,theBSSplateswilladequatelyfunctionastheneutronattenuatorandwillprovideasafeenvironmentforstoringspentfuelandfreshnuclearfuelassemblies.3.5.3.1.16U.S.TooldtDieRackStructuralEvaluationRacks1through6areresidentracksandwillbekeptinthenewpoolconfiguration.ThoseracksarereferredasRacks1through6.ThoserackshavebeenlicensedintheRochesterGas&Electric'sGinnaspentfuelpool,NRCSERdatedNovember14,1984,Amendment65toLicenseNo.DPR-18.Hereafter,thisisreferredas1985LicensingBasis.51-1258768-01GinnaSFPRe-rackingLicensingReportPage284
 
ThegapsinthenewconfigurationaredesignedsuchthatnewATEAracksdonotimpactU.S.ToolandDieracksundernormalandallseismicconditions.However,duetohydrodynamiccoupling,therewillbesomeloadtransferbetweenresidentandnewracks.Toestablishtheseloads,thenewseismicanalysisincludesallracksinthepool,inthewholepoolmodel.Thenewseismicloadsaregeneratedforbothresidentandnewracks.Tables3.5-139and-140providesummaryofseismicloadsonU.S.ToolandDieracks.Theloadsaresummarizedfromnewanalysisandalso&om1985LicensingBasis.ReviewofthesetablesindicatesthatthenewseismicloadsonU.S.ToolandDieracksandracksupportarelowerthantheoriginallicensingbasis.ThisistrueforbothOBEandSSEconditions.Therefore,thestressesintheU.S.ToolandDierackswillbelowerthanthe1985LicensingBasis.51-1258768-01GinnaSFPRe-rackingLicensingReportPage285 Table3.5-139SeismicLoadsonRacks1through6-attheBaseofRack',5>..U;S'Toolgr,';:DieAnalysis:,":$'~:.'::l:::;::;41985:L'IcensingBa'sis'.:-''$);.':''.,:..'',l,.;:".'Witho'iitPerime'ter'acks.:..","::.''.,!::.',::ij::With':Pei'im'eter,'Racks',',''',::,':,,:::.;.:"::';.;::Sta'i'idardco'nfIgu'ration",".:.:;:~;:.:.':;:::;.;'.::.:,:':i:::.:'.,:",.Exte'nded'Corifigur'atIon~j:.OperatingBasisEarthquake,,"'."lbs,'i:'':'!!,:'-;';,'.':,Ibs;:.:'::":;,';:;::.:i,'.;.IStandardFuelConsolidatedFuelMixedFuel156,200153,000170,000160,200411,13343,97170,896451,146230,70039,99848,43628,89670,429253,875103,952443,31647,966254,084SafeShutdownEarthquakeStandardFuelConsolidatedFuelMixedFuel164,300231,500184,700239,300475,723565,56488,832126,000328,92085,776176,640558,60091,248122,074332,54380,999163,138555,54369,395110,225552,970Notes:1.2.3.Reportedresultswithperimeterracksareratioedfromanalysisresultstoreflectmaximum138fuelassembliesinRacks1through6.MaximumloadsamongRacks1through6arereported.Emptyspacesintheabovetablemeans,theresultsfromothercaseenvelopesthisloadingconfiguration.TheXdirectionisEast,theYdirectionisNorthandtheZdirectionisvertical.51-1258768-01GinnaSFPRe-rackingLicensingReportPage286 Table3.5-140SeismicSupportPadLoadonRacks1through6LoadonEachPadi~j,.:,:'.:U-S';.;To'oi:::'4,:Di'e):,,:-,'"if'''-:=,",::l',':;::.'::;:-'Aii'alysis.'::,':.'.","i'',:':!.:;:W."''i';,"'1985'.':L''iceiisin'g':Basjs",,"",'%"..5"NewjAiialysis,,::.',.;'':~::-':,'::::''"..'i~-',~jWithou't'-Periiii'eter',."-:':,":.:":S'tandard:Config'uiation'''':i;:,;::j.;,.":i'::'.>New',"An'aiysIs'-:'".,",.';.".';,',.":'i':,:::Exte'rided';Coiifigu'ratjo'n',:,:::;yY~C,'''''',~'5+','C',::;::Horimn41::~::':;:;;::Ver'tical)::",.';'Horig'oiital:::i::::,:Vertic'a1I:;OperatingBasisEarthquake,'I","::,:-,:.V.er'tical>,''".;,;.;:g.;:,,';,.',gglbs'.-"..''::,'!:.:"':StandardFuelConsolidatedFuel115,432205,56724,584110,762225,573122,97622,81823,873114,145169,285MixedFuelSafeShutdownEarthquake17,513118,426StandardFuel141,939237,86287,636193,44078,324172,761ConsolidatedFuel151,144282,782103,596250,68076,601246,162MixedFuel52,086193,349Notes:1.Reportedresultswithperimeterracksareratioedfromanalysisresultstoreflectmaximum138fuelassembliesinRacks1through6.MaximumloadsamongRacks1through6arereported.Emptyspacesintheabovetablemeans,theresultsfromothercaseenvelopesthisloadingconfiguration.SummaryTheloadsandstressesintheU.S.ToolandDieracksarelowerthanthe1985LicensingBasis.Therefore,theU.S.ToolandDieracksmeetsthestructuralacceptancecriteria.3.5.3.1.17SpentFuelPoolandLinerStructuralEvaluationThissectiondemonstratescomplianceofRGEcEGinnaUnit1spentfuelpoolandpoollinerstructuralintegritywiththerequirementsofNUREG-0800,StandardReviewPlan3.8.4,AppendixDrequirements.ThespentfuelpoolevaluationisbasedonaconservativeinterpretationoftheAmericanConcreteInstitute*sCodeRequirementsforNuclearSafetyRelatedConcreteStructuresACI349-85(Reference3.20).ThepoollinerevaluationisbasedonaconservativeinterpretationoftheAmericanInstituteofSteelConstruction'sBuildingCodeAISC-9thEdition(Reference3.21).51-1258768-01GinnaSFPRe-rackingLicensingReportPage287 C
Thedesignofnewhighdensitystorageracksissuchthatitpreservestheoriginallicensingbasis(NRCSERdatedNovember14,1984),hereaflerreferredtoasthe1985licensingbasis,forthespentfuelpoollinerandpoolconcrete.ThenewATEAstorageracksare&eestandingracks,andtheyaresupportedonthepoolflooronly.Thegapsbetweentherackandthepoolaredesignedsuchthatthenewracksdonotimposeanyadditionalloadingsonthepoolwall.Theseconditionsareverifiedthroughouttheanalysis.Thenewracksarehighdensitystorageracksandtheywillstoremorefuel.Thenumberofsupportlegsaredesignedsuchthatthenewracksdonotimposeanyhigherloadingtothepoollinerorthepoolconcrete.Thisalsoverifiedduringanalysis.Thesupportlegsarepositionedonthelinersuchthattheyareawayfromthelinerweldseams.Thepoolandthelinertemperaturesarekeptthesameastheoriginaldesignbasis.Therefore,therearenoadditionalthermalloadingsonthepoolortheliner.Thepoolwaterleveliskeptthesameastheoriginaldesignbasis.Therefore,therearenoadditionalhydrostaticorhydrodynamicloadsonthepoolortheliner.Thisdesignrequires,only,verificationofbearingloadsonthelinerandconcrete.AcceptanceCriteria-SpentFuelPoolLinerThespentfuelpoollinerisdesignedtoAISCCode.Thestorageracksupportpadsaredesignedsuchthattheydonotrestonlinerweldseam.Thesupportpadsprimarilyinducebearingloadsontheliner.TheredesignonlychangesfloorbearingloadsBearingAllowable0.9FvPerAISCLinerFatigueAnalysisperAISC,AppendixKAcceptanceCriteria-SpentFuelPoolConcreteThespentfuelpoolconcreteisdesignedperrequirementsACI349-85.Thestorageracksbeing&eestandingstructure,primarilyinducesbearingloadonconcreteatsupportpadlocations.Theredesignonlychangesfloorbearingloads.BearingAllowable$(0.85f,)PerACI349,Section10.15~Demonstratethattherearenorack-to-wallimpactsPoolLinerEvaluationThepoollinerbearingstressanalysisisperformedinSection3.5.3.1.9.1.2.Table3.5-131presentstheresultsofthestressanalysis.TheresultsindicatethatthereisalargemarginagainstAISCCodeallowable.Section3.5.3.1.11presentstheresultofthepoollinerfatigueanalysis.TheresultsindicatethatthepoollinermeetsthefatiguerequirementsoftheAISCCode,NinthEdition,Section5,AppendixK,andthelinerhasadequatefatiguelife.Therefore,thestructuralintegrityofthelinerismaintained.51-1258768-01GinnaSFPRe-rackingLicensingReportPage288 SpentFuelPoolStructuralEvaluationThisverticalreactionistransferreddirectlydownwardtotheconcretethroughthelinerplate.Themaximumappliedconcretebearingstressesforallloadcombinationsislessthan3,570psi.ThemaximumbearingstressesandthecomparisonofmaximumbearingstressestoallowablearepresentedinSection30.3.1.9.1.2,whichindicatesanadequatemarginagainsttheACI349-85Code.Therefore,thestructuralintegrityofthespentfuelpoolismaintained.3.5.3.1.18StuckFuelAssembly-UpliftForceThissectiondemonstratescomplianceofRochesterGas4Electric'sGinnaspentfuelstoragerackswithStandardReviewPlan-NUREG-0800,Section3.8.4,AppendixD,'upwardforceontherackscausedbypostulatedstuckfuelassembly'equirements.Thestandardforthestuckfuelassemblyconditionstipulatesthatthespentfuelrackssodesignedandconstructedsuchthat,ifmaximumupliftforceofthespentfuelcraneisapplied,thestressesintherackshouldbewithinserviceLevelBstressofASMESectionIII,SubsectionNF(Reference3.19).Twopostulatedeventsareconsidered,namely:PCasel:AxialLoadofPCase2:LoadP45DegreesFromVerticalAcceptanceCriteria:TheStandardReviewPlan3.8.4,AppendixD(Reference3.4)providestheloadcombinationtobeconsideredandacceptablestresslimitsforthisloadcombination.TheloadcombinationperSRP3.8.4is:D+L+To+PfWhere:Disdeadweightload,thesearenegligibleatthetopofrack.Lisliveload,thesearezerosincethereisnoliveloadToisnormalconditionthermalloadandisnegligibleatthetopoftubePfisupwardforceontherackscausedbypostulatedstuckfuelassembly.51-1258768-01GinnaSFPRe-rackingLicensingReportPage289 TheallowablestresslimitsaretheLevelBstresslimitsperASMESectionIII,SubsectionNFforClass3componentsupports(Reference3.19).TheselimitsperNF-3251andTableNF-3552(b)-1are:Primarymembranestress1.33SPrimarymembraneplusbendingstress1.995SThestructuraltubesarefabricatedfromASTMA240Type304Lmaterial.TheSvalueat150'fromASMESectionIII,AppendixI,TableI-7.2is15.7ksi(Reference3.19).Therefore,theallowablestressforthisconditionare:Prim'arymembranestress1.33x15.7=20.881ksiPrimarymembraneplusbending1.995x15.7=31.322ksiStuckFuelAssembly-UpliftAnalysisTherearetwoone-tonhoistsonthefuelhandlingbridge.Oneextendsoneachsideofthebridge(EastandWest).Onlyonehoistisusedtoremoveastuckfuelassembly.Therefore,thetotalupliftforceP=2,000lbsFuelcell-StructuralTubeCrossSectionProperties:Tubeoutsidedimension(2xc)TubeinsidedimensionTubethickness-tTubecrosssectionarea-ATubemomentofinertia-IType2andType4Racks8.2992in8.1417in0.0787in2.59in'9.17in'ype3Racks8.496in8.3386in0.0787in2.65in~31.29in4Foragivenload,thestressesintheType2(andType4)racktubeswillbehighest,duetolowercrosssectionproperties.ThefollowinganalysisisperformedforType2Rackstructuraltubes,andtheresultswillbeapplicabletoType3andtype4racksalso.Case1:VerticalUpliftForceTheverticalP=2,000lbforcewillproduceaxialstressinthetube.o~=Load/CrossSectionArea=P/A=2,000/2.59=772psi<20,881psi(Primarymembraneallowable1.33Sat150')DesignFactor=[(Allowable-Actual)/Actual)]x100=[(20,881-772)/772]x100=2,605%Largemargin51-1258768-01GinnaSFPRe-rackingLicensingReportPage290 0II Case2:UpliftForce45DegreeFromVerticalAxisZhP~oooooooooo~9.88inTheP=2,000lbisapplied45degreesfromvertical.Fx=2,000xCos45'=1414.2lbFz=2,000xSin45'1414.2lbForbendingmoment,conservativemomentuptothesecondtabisused,L=9.88inchBendingmomentM=Fx~L=1414.2x9.88=13,972in.lbHc0'elld13972x8.2992229.171,988psiFz1414.20546psiA259Membraneplusbendingstress=1,988+546=2,534psi<31,322psi,1.995Sfor304Lat150'51-1258768-01GinnaSFPRe-rackingLicensingReportPage291
 
DesignFactor=[(Allowable-Actual)/Actual)]x100=[(31,322-2,534)/2,534]x100=1,136%:.LargemarginTheweldstressesinthe(BSS)upperretainersarecalculatedinSection3.5.3.1.2.Thestressesinallother,hardwaree.g.,tabs,baseplate,tubetobaseplateweld,supportlegs,etc.,aremuchlowerthanthefueltubestressescalculatedhere.Conclusion:RochesterGasEcElectric'sGinnaUnit1highdensityspentfuelstorageracksmeetstheLevelBstresslimitsofASMESectionIII,SubsectionNF,Class3componentsupportrequirementsforstuckfuelassembly-maximumupliftforce.Thedesignhasminimummarginofsafetyof11.4againstallowablestress.3.5.3.1.19StorageRackLiftingAnalysisThissectiondemonstratescomplianceofexistingRegion1residentWachterstorageracksandnewATEAstoragerackswithNUREG-0612(Reference3.16),heavyloadliftingrequirements.ThestandardforNUREG-0612heavyloadliftingrequirementsstipulatesthatthestructuretobeliftedbedesignedandconstructedsuchthatithasaminimumspecifiedsafetyfactortoprecludedropofstructureonanysafetyrelatedsystemorequipmentsatnuclearpowerplants.ExistingRegion1,threeWachterrackswillberemovedfromthespentfuelpoolandsevennewATEArackswillbeplacedinthespentfuelpool.Fourliftingpoints,atthebottomplate,areprovidedoneachrack.Theliftingpointsarediagonallyacrossfromeachother.Eachliftingbeam-cablecan'beattachedtodiagonallyoppositeliftingpoint.Thisfacilitateseitherredundantornon-redundantlifting.Thesinglefailureproof,30-tonauxiliarybuildingcranewillbeusedtoliftresidentracks&omthespentfuelpoolandtoliftnewATEAracksintothespentfuelpool.Eachrackweighsmorethanonefuelassemblyplusthefuelhandlingtool.Forthisreason,theracksareclassifiedasheavyloadperNUREG-0612criteria.AnalysisisperformedforeachracktoensurecompliancewiththeliftingrequirementsofNUREG-0612.Theliftingacceptancecriteriais:51-1258768-01GinnaSFPRe-rackingLicensingReportPage292
~~~
NUREG-0612(ControlofHeavyLoadsatNuclearPowerPlants),Section5.1.6(Reference3.16)SafetyFactorDesignCriteriaRedundantLiftNon-redundantLift10UltimateUltimateTheliftingstressanalysisisperformedforexistingRegion1WachterstorageracksandthenewATEAstorageracks.Theresultsaresummarizedinthefollowingtable:;:,::,.;:Mate'rials':;of:;jConstructiaii':;:bv4x'.'c'~:,"~x;.~,~q';"k'>Dry".;q%;eight",.:';;.','".;-','tress;,:'(,:,';',iI~Mat'erial':TerisileI::';:;::,:I,,'.,g~',,'Stre'n'gth'';-:i:::,::':;,",:;.';''::.::<<".',at.::1'5,0,:;.;Fj:;,-'";:,,'>>';;>.:!,'',Safety',.",','.;'','':Su"/',:S':;':..WachterRacks(Theserackswillberemovedfromthepool)TypeA3RackTypeBRackTypeCRack304SS304SS304SS31,36626,53323,4531,10596455073,00073,00073,0006676133ATEARacks(Theserackswillbeinstalledinthepool)Type2BRack*304LSS19,3414,78068,10014*StressesinRack2BenvelopesallothernewATEAracks.Stressesaredevelopedusingveryconservativepointloadapplication.AnadequatemarginexistsforliftingexistingRegion1WachterstorageracksandnewATEAstorageracksforeitherredundantornon-redundantlifting.51-1258768-01GinnaSFPRe-rackingLicensingReportPage293
 
3.5.3.2AccidentConditionsMechanicalAccidentEvaluationThissectiondemonstratescompliancewithRG&E'sGinnaspentfuelstoragesystemwiththeStandardReviewPlan-NUREG-0800,AppendixD,hypotheticalaccidentconditionrequirements.Thestandardsforhypotheticalaccidentconditionsstipulatethatthespentfuelstoragesystembesodesignedandconstructedsuchthat,ifitissubjecttothespecifiedaccidentconditions,spentfuelassembliesshouldremaininsafeconfiguration.Thismeans,a)theoff-siteradiationdoseshouldbewithinregulatorylimit;andb)thefuelshouldremainsubcritical.Themajorhypotheticalaccidentconditionsevaluatedare:a)b)c)d)e)FuelassemblydropduringfuelhandlinginthespentfuelpoolSpentfuelpoolcanalgatedropSpentfuelpoolstoragerackdropTornadomissileimpactSpentfuelcaskdropSeveralofthesehypotheticalconditionsareeliminatedbyadministrativeprocedureand/orbytheuseofasingle-failureproofliftingsystem.Assessmentofotherconditionswasperformedbystructuralanalysis.Wellprovenclassicalmethodswereusedintheperformanceoftheseanalyses.Detailedinformationsupportingtheseanalysesarepresentedhere.3.5.3.2.1MethodologyandAssumptionsThebasisfortheseanalysesisanequatingofthekineticenergyofthefallingmissileatimpactwiththeelasticandplasticstrainenergy;i.e.,anenergybalance.Theevaluationofthevariousaccidentswasbasedupontheconservativeassumptionthatunderstress&omauniformverticalload,thestructuraltubeswillreachcompressiveyieldusingareducedeffectivetubearea.Inordertojudgethereasonablenessofmethodology,tworesultsshouldbeestablished;namelyductilityfactorandtotaldeformation.Theductilityfactorisdefinedastheratiooftotalstraintoplasticstrain.Thetotaldeformationiscalculateddirectly&omtheenergybalance.Theelasticandplasticstrainsarebaseduponthedeformationsandtheheightofthetargetstructure.Thegreatertheheightofthetargetstructure,thelesserwillbetheplasticstrain.Thetargetstructureisselectedasthatportionoftheracksabovetheboratedstainlesssteel.Therefore,thecalculatedplasticstrainsandhenceductilityfactorsareveryconservative.Fordropsontothetopsurfaceoftheracks,thecheckerboardpatternmeansthatthenumberofstructuraltubesisaboutonehalfofthenumberofstoragecells.Asthedroppedobjectimpactsthetopoftheracks,theaffectedtubesyield.However,theeffectdoesnotremainlocalizedandwillspreadtothesurroundingtubesthroughthestronginterconnectionprovidedbytheweldedconnectingtabs.Theassumptionofthespreadingofloadonlytoimmediatelyadjacenttubesisveryconservative.Suf5cientinterconnectingtabsareusedtopreventgeneralorlocalelasticbuckling51-1258768-01GinnaSFPLicensingRe-rackReportPage294 ofthetubes.Thisdesignprovidesforcapacitytoaccommodatethevariousdropaccidents.Theextentofcompressiveyieldwasdeterminedaftercompletionofthevariousloaddrops.Thestressvaluesforbucklingweredeterminedandfoundtobesufficientlyhigh.Thehydrodynamiceffectshavebeenneglectedintheaccidentdropanalysestoprovideconservativeresults.Inaddition,nobenefitistakenfordeformationorenergyabsorptionofthefallingobject.3.5.3.2.2AcceptanceCriteriaThestandardsforthehypotheticalaccidentconditionsstipulatethatthespentfuelstoragesystembedesignedandconstructedsuchthat,ifitissubjecttothespecifiedaccidentconditions,spentfuelassembliesshouldremaininsafeconfiguration.Thismeans,a)theoff-siteradiationdoseshouldbewithinregulatorylimit;andb)thefuelshouldremainsubcritical.Thishasbeenverifiedbyconfirmingfunctioncapabilityofspentfuelstorageracksandthespentfuelpoolasfollows:StraightDeepDropThefallingfuelassemblyisstopp'edpriortoimpinginguponthefuelpoolfloorliner.StraightDeepDropOntoSupportLegTheloadtransmittedtotheconcretewillnotresultincrushingofconcretesoastopreventanuncontrollableleakinthepool.ShallowDropsandTornadoMissileImpactTheacceptancecriteriafortopofrackimpactsarethattherequiredinelasticdeformationmustbelessthan10%ofthelengthofthedeformingstructuralmechanismandthattheductilityfactorremainslessthan20(perTable4-4ofReference3.32).Theductilityfactorof20asalimithasbeenacceptedbyNRCStaffinreviewofBechtelTopicalReport,BC-TOP-9A,Revision2,September1974.Significantdistortionofthecellswillbelimitedtothefootprintofimpactandtheadjacentfuelcells.3.5.3.2.3FuelAssemblyDropAnalysisForhypotheticalfuelassemblydrops,fourcaseswereexamined:a)Straightdeepdropthroughcell.b)Sameasabove,exceptasupportlegispresentatthebaseofthecell.c)Shallowdropinwhichadroppedassemblystrikesthetopofarackandfallsflatontopoftherack.d)Shallowdropinwhichadroppedassemblystrikesthetopofarackinaverticalposition.Unconsolidated,fuelassemblydropswereevaluatedfortheconditionsoutlinedabove.Thecanistercontainingconsolidatedfuel(weighing2,638lb)isconsideredheavyloadperNUREG-0612criteriaandwillbetransportedwithinspentfuelpoolusingaspecialtoolsuspendedfromasinglefailureproofauxiliarybuildingcrane.InasafetyevaluationreportdatedDecember31,1984theNRCStaffreviewedandapprovedmodificationstotheauxiliarybuildingcraneinordertomeetthecranesingle-failurecriteriaofNUREG-0612andNUREG-0554.Therefore,handlingofconsolidatedfuelwillbeperformedinaccordancewiththeguidelinesofNUREG-0612withregardtolimitingthechanceofunacceptableheavyloaddrop(reference"NRCStaffSafetyEvaluationSupporting51-1258768-01GinnaSFPLicensingRe-rackReportPage295 Amendment12toFacilityOperatingLicenseNo.DPR-18,RG&EGinna,Docket50-244,"datedDecember16,1988).DesignParametersforFuelAssemblyDropAnalyses:Therequirementsoftheaccidentarethatafuelassembly,alongwiththehandlingtool,dropsfromanoperatingheight.WeightsWeightinairWeightinwater14501307~24Total17741591FuelAssemblywithcontrolcomponentsFuelhandlingtoolMaximumfuelassemblyheightaboveracksduringfuelhandling12inchHeightofthefuelassembly160inchFordeepdrops,thedropheight(160+12)Forshallowdrops,thedropheight172inch12inch304LStainlessSteelmaterialpropertiesat150'(fromASMESectionIII,AppendixI)Young'sModulusE=27.9x10'b/in'ieldstrengthS=23,150psior23.15ksiUltimateStrengthS=68,100psior68.1ksi3.5.3.2.3.1FuelAssembly-StraightDeepDropForthishypotheticalaccidentdropofthefuelassemblydeepdroptwocaseswereanalyzed.Thefirstisthedropthroughthecellandimpactingonthebottomplateremotefromanysupportlegs.Thesecondcaseisthedeepdropinsidethroughthefuelcellcontainingthesupportleg.ThefollowingappliesequallytoType2,Type3andType4racksforbothofthesedrops.Weightoffuelassembly+weightofhandlingtool=1,591lbsor1.591kipsDropheight172inchBottomplatethickness1.18inch3.5.3.2.3.1.1FuelAssemblyFallsThroughCelltoBasePlateImpactEnergy:IE=WxdIE=1.591x172=273.652in-kips51-1258768-01GinnaSFPLicensingRe-rackReportPage296 ah~
Type2andType3RacksThedropinthemiddlebetweensupportlegswillproducemaximumdeformationoftherack.Ineffect,atwo-wayslabdevelops.Theapproximatespacingofadjacentsupportlegsis4xpitchof9.2323fortype3racks(-37inches).TheType3rackislimiting,becausethemaximumspacingbetweenthesupportlegsisintheType3Rack.TheresultspresentedbelowwillenvelopeType2racks.3737'ieldLinesTVP.SupportLegDuring172inchfuelassemblydropimpact,theweldsconnectingthetubetothebaseplatewillfail.Thebaseplatewilldetachfromthecellsina37"x37"region.The37"x37"platewillhavesupportatthefourlegsandalsowillhaveasupportfromremainingplate.Thismeanstheedgeswillhavefixedsupport.Forconservatism,theenergyabsorbedinbreakingweldsisneglected.Allkineticenergyisabsorbedinformingplastichingesofthe1.18inchthickbottomplate.Theplastichingelinesareshowninabovefigure.ForfullyplastichingeofaplateM,,=(ot'/4MpL=8.059in-kips/inwhereMpLPlasticMomentt=1.18inches,thicknessofthebottomplateo=23.15ksiat150'for304LStainlessSteelFora37"x37"twowayflatplate.P=16mp=128.9kipsFullyFlasticLoadExternalenergy=InternalenergyWd=P551-1258768-01GinnaSFPLicensingRe-rackReportPage297 5=273.652/128.9=2.12inch<13.7inch:.O.K.Where13.7isthedistancebetweenthebottomplateandthepoolliner.Therefore,thedeformedplatewillnotimpactthepoolliner.b=-8whereb=37inches28=0.1146radians(t/2)8dcndgb/4BendingStrain6>,z=0.007wheret=thicknessofplate1.18inchL=b/4therewillbefourplasticmomentsinlengthb,L=b/4b=37inchspacingbetweensupportlegsFor2.12inchdeformationofbottomplate,thefallingobjectorthebottomplatewillnotimpactthepoolliner.ASTMSpecificationA240-93a,Table2specifiesaminimumelongationof40%forType304Lstainlesssteelmaterial.Thetype304Lmaterialisductileandhasadequatemargintoaccommodate0.007strainduringfuelassemblydrop.Amajorconservatismistoneglecttheenergyrequiredtofailallthebaseweldsina37"x37"areaofbaseplate.51-1258768-01GinnaSFPLicensingRe-rackReportPage298 l~-,~
Type4RacksAdropinthemiddlebetweensupportlegswillproducemaximumdeformationoftherack.Thespacingofadjacentsupportlegsis5xpitchof8.43forType4racks(L=42.15inches).0ML-MPgsarshbovefigure.Forfullyplastichingeofthebaseplate(TCrossSection)During172inchfuelassemblydropimpact,theweldsconnectingthetubetothebaseplatewillfail.Thebaseplatewilldetach&omthecells.The42.15"platewillhavesupportatthetwolegs.Thismeanstheedgeswillhavefixedsupport.Forconservatism,theenergyabsorbedinbreakingweldsisneglected.Allkineticenergyisabsorbedinformingplastichingesofthe1.18inchthickbottomplatewith1.97inchthickweb.Thebaseplatewith1.97inchthickwebformsaTcrosssectionbeam.ThelastichinelineeowninaMpiZ0>whereZistheplasticsectionofmodulus.Z=34.15in'orfullyplastichingeofaplateM,=34.15oMpi=ZG>=790.5725in-kipswhereo=23.15ksiat150'for304LStainlessSteelForasimplysupportedbeam:-5=ZM8=2M86=(L/2)8PL=8Mi51-1258768-01GinnaSFPLicensingRe-rackReportPage299 Loadsrequiredtoformfullyplastichinge:P=150.05KipsEquatingInternalStrainEnergytotheKineticEnergyExternalenergy=Internalenergy.Wd=P5273.652=150.0555=273.652/150.05=1.82inch<7.8inch:.O.K.Where7.8"isthedistancebetweenthebottomwebandthepoolliner.Therefore,thedeformedbeamwillnotimpactthepoolliner.5=-8whereL=42.15inches28=6-b8=0.0864radianscoLengthL/4BendingStrain6>,<=0.0342wherec=4.165"distancebetweenneutralaxisandoutermostfibreLength=L/4sincetherewillbefourplasticmomentsinbetweensupports,:.Length=L/4L=42.15inchspacingbetweensupportlegsFor1.82inchdeformationofbottomplate,thefallingobjectorthebottomplatewillnotimpactthepoolliner.ASTMSpecificationA240-93a,Table2specifiesaminimumelongationof40%forType304Lstainlesssteelmaterial.TheType304Lmaterialisductileandhasadequatemargintoaccommodate0.0342strainduringfuelassemblydrop.Amajorconservatismistoneglecttheenergyrequiredtofailthebaseweldsbetweenfuelcellandbottomplate.51-1258768-01GinnaSFPLicensingRe-rackReportPage300 444%44IE.'I...0%.l44,~\*Ct,akrs~tIj"444'r 3.5.3.2.3.1.2FuelAssemblyDropsintoCellandStrikesSupportLegForthishypotheticalfuelassemblydeepdrop,thefuelassemblydropsthroughthefuelcellontothesupportleg.Theexternalenergyatthepointofcontact:Wh=1.591x172=273.652in-kipsAtthisenergy,thesupportlegfemalethreadswillshearfirst.Thefemalethreadsarein304Lstainlesssteeltube,whereasthemalethreadsareinhighstrengthASTM-A564Type630stainlesssteel.Thetensilestrengthof304Ltubebarmaterialis68.1ksi,whereasforthe630precipitationhardenedsteelis140ksi.Therefore,thefemalethreadswillstripfirst.Qp~rdw'>reCylinderThreadedRodNeckdownPortionSupportpadhhLee+304LSSA564,Type630A564,Type630F304L~a~g'68.1ksi14014063.25Shearareaofinternalthreads:(FromMachinery'sHandbook,23rdEdition,page1279)An=3.1416xnxLexDs;[(1/2n)+0.57735(Ds;-Eng]wheren=numberofthreadsperinch,forM80x6threadsn=6mmor4.23threads/inchLe=lengthofthreadengagement,40mmor1.57inchDs;=minimummajordiameterofexternalthreads,79.32mmor3.123inchEs=maximumpitchdiameterofinternalthread,76.478mmor3.011inchSubstitutingAn=11.915inUltimateshearstrengthofthefemalethreads:Pu=(Su/2)xAn=405.7kipswhereSu=68.1ksifor304Lstainlesssteelat150'Afterstrippingthefemalethreads,therackbottomplatewillprovidesupportandalsoabsorbtheimpactenergy.Forconservativeevaluation,allremainingenergyofthedropisusedtocalculatetheimpactloadwherethecylindricalportionofthefemalesupportlegimpactsthebottombearingpadandneglectstheenergyabsorbedinthebottomplate.51-1258768-01GinnaSFPLicensingRe-rackReportPage301
 
Energyofthedrop=Wh=1.591x172=273.652in-kipsEnergyconsumedinshearingthreads=95.747in-kipsRemainingenergyforimpacttothebearingpadis=273.652-95.747=177.905in-kipsThisenergyisconvertedtogetinitialvelocity=(1/2)mV'gainonlytheweightofthefuelassembly(1.591kips)isusedtogetmaximumvelocityaftershearingthreads.177.905=(1/2)(1.591/386.4)V:.V'86,414(in/sec)'hesupportlegwilltravel36mmbeforeitimpactsthebearingpad.Forconservativeimpact,thetargetisconsideredrigidandthevelocityafterimpactisconsideredzero.TheinitialvelocityofVo=~86,414in/secandVf=0.0,s=36mm,andusingconstantdeceleration:2864142s362x25.4-30,485in/secOR-79gsTheimpactloadis=Wxdeceleration=1.591x79=125.7kips.Thisimpactloadislowerthantheloadrequiredtoshearfemalethreads(405.7kips).ForthiscasetheinelasticstrainenergyisconfinedtotheMSOx6threadedportionofthesupportleg.Themaximumloadimpartedtothespentfuelpoolfloorislimitedtoultimatestrengthofthethreadedportionofthelegandis405.7kips.Duetolimitedmechanismforinelasticenergyabsorption,thesupportlegfemalethreadswillfail.Theloadimpartedtothefloorwillpassthroughthestainlesssteelliner.ThestressesinthereinforcedconcretefloorarecalculatedusingBoussinesq'ssolution(Reference3.35),wherePisequaltothemaximumforcetransferredthroughthesupportlegstothefloor.UsingtheBoussinesqsolution,themaximumconcretecompressivestressisatpointC.51-1258768-01GinnaSFPLicensingRe-rackReportPage302 icC%~F4P0Va PCAAtpointCr=0t=0.25"poollinerthicknessz=bearingpaddiameter+2t=6.6929+2x0.25=7.1929in23(2y2)2A=108.36in'oncreteCompressiveStress=P/A=3,744psi<4,462.5psi:.O.K.whereconcreteallowablestressis4,462.5psiforaccidentalimpactloadfor3Dconfinedconcrete.Fornormalcondition,concreteallowablebearingstress=$(0.85)fc(perACI349-85,section10.15)Foraccidentconditionwithimpactload,allowablecompressivestress=$(0.85)fcx2xDIFwhere:$=0.7persection9.3ofACI349-85Fc=3,000psiminimumstrength28dayscuredconcreteDIF=1.25DynamicimpactfactorforhighstrainrateperTableC-1ofACI349-85:.concreteallowablestress=0.7x0.85x3,000x2x1.25=4,462.5psi51-1258768-01GinnaSFPLicensingRe-rackReportPage303 Inaddition,theconcreteCodeACI349-85,Section9.2.6statesthat"whenconsideringtheseconcentratedloads,localsectionstrengthsandstressesmaybeexceededprovidedtherewillbenolossofintendedfunctionofanysafetyrelatedsystems."Since3footthickreinforcedconcretespentfuelpoolfloorissupportedonhardrockandiscompletelyconfined,thelocalizedspallingof,concretewillnotjeopardizethesafetyfunctionofthepool.Theindicationsarethat,atdistancebelowthesupportpadequaltothediameterofthesupportpad(6.6929"),thestressesarebelowallowablestresses.Theconcretedirectlyunderthesupportpadisalocalconditionwiththree-dimensionalconfinementand,therefore,willnotbedamagedbythe.impactload.3.5.3.2.3.2FuelAssembly-ShallowDropsForthishypotheticalaccidentdropofthefuelassembly,shallowdrops,twocaseswereanalyzed.Theacceptancecriteriafortopofrackimpactsarethattherequiredinelasticdeformationmustbelessthan10%ofthelengthofthedeformingstructuralmechanismandthattheductilityfactorremainslessthan20.Fordropsontothetopsoftheracks,themathematicalmodelconsistsofaverticalprismaticmemberwithaheightequaltothedistancefromthetopoftheracktothetopoftheboratedstainlesssteel.Becauseinelasticresponseisconfinedtothisupperregion,thevaluescalculatedforinelasticstrainandductilityfactorsareconservative.Iftheentirerackweretobeconsidered,theductilityfactorswouldbereduced.Thenumberoftubesconsideredinthismodelisthenumberoftubesdirectlyimpactedplusthenumberoftubesimmediatelyadjacent.Duetothestronginterconnectionbetweentubes,thisassumptionisconservative.Asthedroppedobjectimpactsthetopoftheracks,theaffectedtubesyield;however,theeffectdoesnotremainlocalized.Itwillspreadtothesurroundingtubesthroughthestronginterconnectionprovidedbytheweldedconnectingtabs.Theassumptionofthespreadingofloadonlytoimmediatelyadjacenttubesisconservative.Firstbucklingstrengthofthestructuraltubeiscalculated.Fromthisitwillbeinvestigatedwhetherthestructuraltubebucklingoccursinelasticorplasticrange.EulerBucklingofStructuralTubeBetweenConnectionTabPlates$=clearlengthbetweenpitchofthetabsI=crosssectionmomentofinertiaofthestructuraltubeA=crosssectionareaofthestructuraltubeE=Young'sModulusofthetubematerialat150'F51-1258768-01GinnaSFPLicensingRe-rackReportPage304 EI7P0APRackfggei~itchA~nI4E2Type2Type3Type449.2949.2948.232.592.652.5929.1731.2929.1727.9x10',27727.9x10',33827.9x101333Since0iswellabovetheyieldstress,theaboveresultsindicatesthatbucklingwillnotoccurintheelasticrange.3.5.3.2.3.2.1FlatImpactonTopInterfaceoftheRacksForthishypotheticalaccident,thefuelassemblywithhandlingtoolisdropped&om12inchesabovetherack,thefuelassemblyimpactsthetopoftherackandfallsflatontopoftherack.Forthiscaseitisassumedthatthefuelassemblyisdroppedverticallyontothetopoftherack.Afterinitiallystrikingthetopoftherack,thefuelassemblyandhandlinggearrotatesandfallsflatontopoftheracks.Thetotalkineticenergydeliveredtothetopoftheracksislittlediminishedduetotheinitialstrike.Thisisduetothefactthatthelinearkineticenergyisconvertedtotherotationalkineticenergybymeansofacoupleequaltotheweightandinertialforceofthefuelrodtimesthehorizontalcomponentofthedistancebetweenthecenterofgravityofthefallingfuelassemblyandthepointofinitialstrikeuponthetopoftheracks.Thekineticenergyatimpact=Wxdwhere:Weightofthefuelassemblyandthetoolis1,591lb.Thedropheightforshallowdropis12inch+halfheightoffuelassemblyd=12+(160/2)=92inchKineticenergyatimpact=Wxd=1591x92=146,372in-lbPitchoffuelcells:Type2RackType3RackType4Rack8.43inch9.23inch8.43inchForalltheaccidentanalysespresentedinthissection,thetotalnumberoftubesconsideredintheanalysisisthatcontainedwithinthefootprintoftheimpactedarea,plusthetubesthatareimmediatelyadjacent.Thelengthoffuelassemblyis160inchorapproximately18pitch.Fornewracks,everyothercellisastructuraltube.Therefore,initiallyaminimumof9structuraltubeswill51-1258768-01GinnaSFPLicensingRe-rackReportPage305
\1~+I beimpacted.Theother9adjacentstructuraltubeswillalsoabsorbimpactenergy.Soeffectively,2x9or18structuraltubeswillparticipateinabsorbingimpactenergy.Thetop10inchportion,abovetheboratedstainlesssteelportionofthetube,willabsorbenergy.TheType2rackstructuraltubeshavetheminimumcrosssectionarea,andwillhavethelargestdeformationduringfueldropaccident.ThefollowingcalculationswereperformedforType2racks.However,theresultsenvelopeallthreetypeofracks.A,tr-effectivecrosssectionareafor18structuraltubes.A,ft=2.59x18=46.62in~Thetop10inchesofthetube,abovetheboratedstainlesssteel,willabsorballenergy.Therefore,h=10inch2hbElasticStrainEnergy=-0-2=4,478in-lbvEoffTheelasticstrainenergyabsorbedislessthanthetotaldropenergy.Therefore,therewillbesomeinelasticdeformation.Totaldropenergy=Elasticstrainenergy+Inelasticstrainenergy146,372=4,478+Inelasticstrainenergy:.Inelasticstrainenergy=146,372-4,478=141,894in-lbInelasticStrainEnergy=0he,A,<=141,894in-lbe;=0.01310e=-"=0.00083elE6=(6t+6,)(10)=(0.00083+0.0131)(10)=0.14in~ct+6000083+0131DunilityFacior-16.8G,t.00083Ductilityfactor=16.8<20:.O.K.3.5.3.2.3.2.2End-OnImpactDuringanend-onimpacthypotheticalaccident,thefuelassemblywithhandlingtoolisdropped&om12inchesabovetherack,andthefuelassemblyimpactsthetopoftherackvertically.51-1258768-01GinnaSFPLicensingRe-rackReportPage306 ThedropenergyWxdis1591x12=19,100in-lbwhereW=1,591lb(weightofthefuelassemblyandthetool)Thedropheightis12inches.Foralltheaccidentanalysespresentedinthissection,thetotalnumberoftubesconsideredintheanalysisisthatcontainedwithinthefootprintoftheimpactedarea,plusthetubesthatareimmediatelyadjacent.Initialcontactwillengagetwostructuraltubes.However,duetointerconnectionbetweenthetubes,atotalof8tubeswillabsorbimpactenergy.TheType2rackstructuraltubeshavetheminimumcrosssectionarea,andwillhavethelargestdeformationduringafueldropaccident.ThefollowingcalculationswereperformedforType2racks.However,theresultsenvelopeallthreetypeofracks.A,tr-effectivecrosssectionareafor8structuraltubes.A,tt=2.59x8=20.72in~Thetop10inchesofthetube,abovetheboratedstainlesssteel,willabsorballenergy.Therefore,h=10inch1zhElasticStrainEnergy=-o-2=1,990in-lb2'ETheelasticstrainenergyabsorbedislessthanthetotaldropenergy.Therefore,therewillbesomeinelasticdeformation.Totaldropenergy=Elasticstrainenergy+Inelasticstrainenergy19,100=1,990+Inelasticstrainenergy:.Inelasticstrainenergy=19,100-1,990=17,110in-lbInelasticStrainEnergy=0hF,2<=17,110in-lbe;=0.003570e=-~=0.000835=(6t+6,)(10)=(0.00083+0.00357)(10)=0.044in~,t+~t,0.00083+.00357DuctilityFactor=.00083Ductilityfactor=5.3<20:.O.K.51-1258768-01GinnaSFPLicensingRe-rackReportPage307
~'
3.53.2.4TornadoMissileImpactAtornadomissileimpactonthestoragerackswasconsidered.DesignvaluesfortornadowindspeedandmissilecharacteristicsarethoseestablishedinNUREG-0800,StandardReviewPlan3.5.1.4(revision2,July1981).Themissileischaracterizedasa1490poundwoodpole,35feetinlengthwithadiameterof13.5inches.Atornadowindvelocityof132mph(59meter/persecond)isconsideredperGinnaUFSAR,Section3.5.2.1.TheimpactenergywhenthemissilehitsthestorageracksiscalculatedinRG8cELettertoNRCdatedJanuary18,1984,DocketNo50-244(Reference3.39)andissummarizedbelow:VerticalkineticenergyatimpactHorizontalkineticenergyatimpact79,000ft-lb8,800ft-IbTheverticalmissileimpactproducesthelargestdeformationoftheracks.Therackdeformationduetohorizontalmissileimpactwillbelowerthantheverticalimpact.Bothoftheseimpactareevaluatedinthefollowingsection.Theacceptancecriteriafortopofrackimpactsarethattherequiredinelasticdeformationmustbelessthan10%ofthelengthofthedeformingstructuralmechanismandthattheductilityfactorremainslessthan20.VerticalMissileImpactThewoodenpolediameteris13.5inches.Thediagonaldimensionsofstructuraltubesis11.74inchesforType2andType4racks,and12.02inchforType3Racks.Therefore,asaminimumtwostructuraltubeswillbeimpactedbyaverticalimpact.Fordropsontothetopsoftheracks,themathematicalmodelconsistsofaverticalprismaticmemberwithaheightequaltothefulllengthofthefueltube.Thenumberoftubesconsideredinthismodelisthenumberoftubesdirectlyimpactedplusthenumberoftubesimmediatelyadjacent.Duetothestronginterconnectionbetweentubes,thisassumptionisconservative.Asthedroppedobjectimpactsthetopoftheracks,theaffectedtubesyield;however,theeffect'doesnotremainlocalized.Itwillspreadtothesurroundingtubesthroughthestronginterconnectionprovidedbytheweldedconnectingtabs.Theassumptionofthespreadingofloadonlytoimmediatelyadjacenttubesisveryconservative.Theverticalimpactenergyis79,000ft-ibor948,000in-lbInitialcontactwillengagetwostructuraltubes.However,duetointerconnectionbetweenthetubes,atotalof8structuraltubeswillabsorbimpactenergy.TheType2rackstructuraltubeshavetheminimumcrosssectionarea,andwillhavelargestdeformationduringamissileimpact.ThefollowingcalculationswereperformedforType2racks.However,theresultsenvelopeallthreetypesofracks.A,~-effectivecrosssectionareafor8structuraltubes.A,a=2.59x8=20.72in'1-1258768-01GinnaSFPLicensingRe-rackReportPage308 Thewoodenpolewillsplitonimpact.Alsothewoodisagoodenergyabsorber.However,theenergyabsorbedinthewoodenpoleisneglectedasaconservatism.Theimpactwillbeofalongduration;forthatreason,theentirelengthofthefueltube(158.5inch)willabsorbtheimpactenergy.Therefore,h=158.5inch1zhElasticStrainEnergy=-0-2=31,542in-lbyEoffTheelasticstrainenergyabsorbedislessthanthetotalkineticenergy.Therefore,therewillbesomeinelasticdeformation.Totalmissileimpactenergy=Elasticstrainenergy+Inelasticstrainenergy948,000=31,542+Inelasticstrainenergy:.Inelasticstrainenergy=948,000-31,542=916,458in-lbInelasticStrainEnergy=0hF,A,<=916,458in-lbe;=0.012106=-=0.00083clE5=(6,>+6,)(10)=(0.00083+0.0121)(158.5)=2.05inct+i,0.00083+.0121DuctilityFactor=.00083Ductilityfactor=15.6<20:.O.K.HorizontalMissileImpactThehorizontalkineticenergyofthemissileimpactis8,800ft-lb.Thisimpactenergyismuchlessthantheverticalmissileimpact.Inaddition,duetothelengthofthepolebeing35feet,thelargenumberofstructuraltubeswillabsorbtheimpactenergy.Forthisreason,therackdeformationandductilityfactorduetohorizontalmissileimpactwillbelessthanthoseoftheverticalmissileimpact.51-1258768-01GinnaSFPLicensingRe-rackReportPage309
~1 3.5.3.2.5GateDropThegateseparatingthespentfuelstoragepoolfromthecaskloadingpitislocatedontheeastendofthespentfuelstoragepool.Thegateisapproximately28'ongand2'.5"wide.Thegateweighsapproximately2100pounds.ThecanalgateisconsideredaheavyloadperNUREG-0612criteria.Thegatehandlingprocedureswillbechangedsuchthatitwillbeliftedwithinthespentfuelpoolusingaspecialtoolsuspended&omasingle-failureproofauxiliarybuildingcrane.InasafetyevaluationreportdatedDecember31,1984,theNRCStaFreviewedandapprovedmodificationstotheauxiliarybuildingcraneinordertomeetthecranesingle-failurecriteriaofNUREG-0612andNUREG-0554.Therefore,handlingofthecanalgatewillbeperformedinaccordancewiththe.guidelinesofNUREG-0612withregardtolimitingthechanceofunacceptableheavyloaddrop.3.5.3.2.6RackDropsTheliftinganalysisoftherackswasperformedtoqualifytherackstoliftingcriteriaofNUREG-0612.Section3.5.3.1.19providesresultsoftheliftinganalysis.Theresultsindicateadequatemarginagainstliftingbyeitheraredundantornon-redundantliftsystem.Theinstallationprocedureswillprecludemovingarackoverapreviouslyinstalledrack.Rackswillbeliftedinthevicinityofthespentfuelpoolusingsingle-failureproofcraneandliftingattachments.Thiswillprecluderackdropanalysis.However,theanalysisisperformedtoverifystructuralstrengthofthedesigntowithstandrackdrops.Ifarackdropstothefloor,themaximumtotalforcewouldbelimitedtothecrushstrengthoftheracks.Thecrushstrengthofracksisprovidedinthissection.Duringrackdrops,mostoftheenergywillbeabsorbedinthecrushingofracks.Therefore,rackbucklingandcrushstrengtharecalculatedfirst..EulerBucklingofStructuralTubeBetweenConnectionTabPlatesEarliercalculationforEuler'sbucklingofthestructuraltubeshasshownthatforallthreetyperacks,the0ismuchmorehigherthantheo.Therefore,thetubeswillnotbuckleasabeamintheelasticrange.51-1258768-01GinnaSFPLicensingRe-rackReportPage310 OverallRackBucklingEImAL)WhereL,=effectivelengthforbuckling,2xheightofracks=2x158.5=317inchA=crosssectionareaofstructuralmembersinarackI=crosssectionmomentofinertiaofrackstructuralmembersE=Young'sModulus=27.9x10'b/in'or304LSSat150'F(Note:LowestofEast-WestorNorth-Southpropertiesaretaken)RACKXKl~e2A2B3A3B3C3D3E4ALn2113.9129.592.782.166.266.284.825.9lnorthsouth443,79164,00932,72625,99812,07912,07926,0082921,0541,35496786850050084031Alloftheseoarehigherthantheotherefore,rackswillnotbuckleinbeammodeinelasticrange.LocalPlateBucklingCrushstrengthofeachrackisbasedupontheeffectivearea,reducedforbucklingtimesthecompressiveyield.Thisrepresentsfullmobilizationofallthecellsofthcrack.Thejustificationforthisisbaseduponcompressiveyieldofthecellswithoutgeneralelasticbuckling.Reference3.37-Blodgettpp.2.12-4through9.Type2andType4Rackst7P(4)(27900)0.07870=9.43ksi12(1-v)b12(1-0.3)8.14wheret=tubewallthickness=0.0787inb=insidedimensionofstructuraltube=8.14inE,=4(Reference3.37,Blodgett)51-1258768-01GinnaSFPLicensingRe-rackReportPage311
~~~*
Type3Racksoo,=8.982ksi,usingt=0.0787inandb=8.34inCrushStrength1)Crushstrengthbaseduponeffectivecrushareaandyieldstrengthofmaterial.2)Elasticbucklingofindividualtubesortherackasawholeisprecluded.Usingconservativeassumptions:o+aycrwhereA=totalcross-sectionalareaofthestructuraltubewhereo=yieldstress=23.15ksifor304Lstainlesssteel150'A=totalcrosssectionalareaofthetubes.A,ff=effectiveareaoftubes,reducedtoaccountforlocalbuckling,Note,Type2Racks-'0.704A,~Type3Racks-'0.694A.nMethodologyandModelsThemathematicalmodelfordevelopingtherackcrushstrengthisthatofuniformcompressiveyieldunderauniformappliedloadatthetopshowninthefollowingsketch.51-1258768-01GinnaSFPLicensingRe-rackReportPage312 CrushStrengthModelUNIFORMLOADElASTIC+INELASTICDEFORMATIONMEMBERWITHAREA~SumofAREA(ceIlsfCrushstrengthofeachrackisbasedupontheeffectivearea,reducedforbucklingtimesthecompressiveyield.Thisrepresentsfullmobilizationofallthecellsoftherack.Thejustificationforthisisbaseduponcompressiveyieldofthecellswithoutgeneralelasticbuckling.51-1258768-01GinnaSFPLicensingRe-rackReportPage313
 
Theshallowdropwasexaminedanditwasfoundthatwithductilityfactorlessthan20anddeformationlessthanoneinch,thedistortionofthecellswouldbeconfinedtotheportionofcellsabovetheboratedstainlesssteel,andhence,notaffecttheKfactorusedinthecriticalityanalysis.Theconservatismusedinthemechanicalaccidentanalysesforvariousdropsindicatethat,minordistortionoftherackislimitedinthevicinityoftheimpactarea.ThereisnogrossdeformationoftherackawayRomtheimpactarea.Individualhypotheticalaccidentcasesaresummarizedbelow.IFuelAssembly-StraightDeepDropThekineticenergyofthefallingfuelassemblyissuchthatitcanbeexpectedthatthebottomplateoftherackswillbeseparatedRomthebottomofthecellsduetofailureofthewelds(bottomplatetocell).Thebottomplatewouldbesupportedbythesupportlegs,locatednominallyat37"oncenterforType2andType3racks.Itisfoundthatthebottomplatewouldyieldanddeform,deflectingabout2.12"withthefuelassemblyimpactingatthemidpointbetweensupportlegs.ForType4racks,thebottomplatewouldyieldanddeform,deflectingabout1.82"withfuelassemblyimpacting,approximately,atthemidpointbetweensupportlegs.Therefore,itisconcludedthatthiswouldnotresultinanydistresstothespentfuelpoolfloor.FuelAssembly-StraightDeepDropontoSupportLegForthiscasetheinelasticstrainenergyisconfinedtotheM80x6threadedportionofthesupportleg.Themaximumloadimpartedtothespentfuelpoolfloorislimitedtoultimatestrengthofthethreadedportionofthelegandis405.7kips.Duetolimitedmechanismforinelasticenergyabsorption,thesupportlegfemalethreadswillfail.Theloadimpartedtothefloorwillpassthroughthestainlesssteelliner.ThestressesinthereinforcedconcretefloorarecalculatedusingBoussinesq'ssolution(Reference3.35).Theindicationsarethat,atdistancebelowthesupportpadequaltothediameterofthesupportpad(6.6929"),thestressesarebelowallowablestresses.Theconcretedirectlyunderthesupportpadisalocalconditionwiththree-dimensionalconfinementand,therefore,willnotbedamagedbytheimpactload.Themaximumdeformationofthebottomplatewillbe1.42inches(36mm)afterfemalethreadsarestripped.FuelAssembly-ShallowDropsForthiscaseitwasassumedthatthefuelassemblyisdroppedverticallyontothetopoftherack.Afterinitiallystrikingthetopoftherack,thefuelassemblyandhandlinggearrotatesandfallsflatontopoftheracks.Thetotalkineticenergydeliveredtothetopoftheracksislittlediminishedduetotheinitialstrike.Thisisduetothefactthatthelinearkineticenergyisconvertedtotherotationalkineticenergybymeansofacoupleequaltotheweightandinertialforceofthefuelrodtimesthehorizontalcomponentofthedistancebetweenthecenterofgravityofthefallingfuelassemblyandthepointofinitialstrikeuponthetopoftheracks.Theresultsoftheanalysisindicatethatdistortionofcellswillbelimitedtotheportionofthecellsabovethetopoftheboratedstainlesssteel.Theductilityfactorislessthan20forbothshallowdropsandthemaximumdeformationofthetopoftherackis0.14inches.51-1258768-01GinnaSFPLicensingRe-rackReportPage315 Theresultsoftheanalysisindicatethatdistortionofthecellswillbelimitedtotheportionofthecellsabovethetopoftheboratedstainlesssteel.~c~de1InelasticStrainShLd&#xc3;KDuctility~FactrTotalDeformation~~nc>~e)F.A.,ShallowDrop,0.0131FlatImpact16.80.14F.A.,ShallowDrop,0.00357End-onImpact5.30.044TornadoMissileImpactVerticalandhorizontaltornadomissileimpactswereconsidered.Thewoodenpolemissileisdroppedontopoftheracks.Consideringtheimpactenergyandthefootprintoftheimpactamongverticalandhorizontalimpact,theverticalimpactcausesthehighestdeformationandhighestductilityfactorfortheracks.Theresultsindicatethatthedistortionofthecellwillbelimitedtothefootprintareaandadjacentfuelcells.Thedeformationofthetopoftheimpactedfuelcellwillbe2.05inchesandductilityfactorofstructuraltubeswillbelimitedto15.6.GateDrop,RackDropandCaskDropTheconsolidatedfuel,poolcanalgate,storageracksandthespentfuelshippingcaskareconsideredheavyloadsperNUREG-0612.Therewillbeadministrativecontrolformovementofthesehardwareinthespentfuelpoolarea.Alsotheywillbeliftedusingasingle-failureproofcraneandasingle-failureproofliftingsystem.HandlingofthesehardwareinthespentfuelpoolareawillbeperformedinaccordancewiththeguidelinesofNUREG-0612withregardtolimitingthechanceofunacceptableheavyloaddrop.Reference3.23,NRCStaffsafetyevaluationreportprovidesexclusionofheavyloaddropsmeetingthesecriteria.3.5.3.2.9LossofSpentFuelPoolCoolingDifferentialTemperatureInducedLoads-AbnormalCondition(T,)Thisthermalconditionisproducedwhenthepoolwaterbulktemperatureincreasesduetolossofartificialcooling.Thepoollinertemperatureiskeptthesameasthenormaloperatingtemperaturetogenerateconservativestressesintherack.Themostconservativeanalysisoftherackwouldthenbetoassumethatthebottomsofthelegsoftherackremainintheiroriginalpositionsandthattheuniformtemperatureoftherackitselfhasreachedtoaccidentconditiontemperature.Themaximumloadingwouldthusbecausedbytheconstraintatthebottomsofthelegsandtheuniformthermalgrowthintherack.Section3.5.3.1.10presentstheanalysisandresultsoftherackthermalanalysisunderabnormalcondition(Tg.Theresultsindicateadequatemarginexistsinthestoragerackstoaccommodatedifferentialtemperatureinducedloadduetolossofartificialcooling.51-1258768-01GinnaSFPLicensingRe-rackReportPage316 3.5.3.3TabulationofResultsTable3.5-141ResultsofSupportLegStresses4;.',;:'':.,'-:-::-::,.:::;:,':.:::;::lCombinatioii's':,:.';:;.-','',;i!:;:;:"::::::,Oil':,"'':'-:!::;.:..:,.Str'ess';(ps'i);:::;;;i';;::,'-::.';:,:,:::Stxess';.(psi)'.';::;''.:.;::":';:-:')Fact'or',"(':/)';'i<D+LevelAPrimMembranemPrimaryMembrane+Bendingm+PbD+L+EevelBPrimMembranemPrimaryMembrane+Bendingm+PbAveraeShearStressD+L+E'velDPrimMembranemPrimaryMembrane+Bendingm+PbAveraeShearStressWelds:D+EevelAD+E+TaevelBD+E'+TaevelDBaseMetal:D+EevelAD+E+TaevelBD+E'+Ta(LevelD)6,15616,9956,15616,9952,1097,65124,6403,30611,67711,73318,3028,2578,29712,94215,70023,55020,88031,3229,42026,44839,67228,12321,00027,93029,4009,26011,72528,123155.038.6239.284.3346.7245.661.0750.779.8138.060.612.141.3117.3Notes:L-Liveloadiszero.DesignFactor(%)=[(Allowable-Actual)/Actual]x10051-1258768-01GinnaSFPLicensingRe-rackReportPage317 Table3.5-142ResultsofConcreteStresses:5::,":-'::,:i'::~5ii'."':::,;::':Combiri'a'tion's':',:-.'".''.:.:":'I::::i'i"',''.'';;'::'::::.";.:',-j:Str'ess'."'(p'si)'~ji,:<',::-,',"~Str'ess(psi).';I:-',.:"::.'::,:,,''.'::llFactor,,"(/o)',::;:,.IMaximumSlabBearinBoussinesq'sSolution5207793,5703,570586.5358.2D+EMaximumSlabBearinBoussinesq'sSolution1,2071,8113,5703,570195.897.1D+E'aximumSlabBearinBoussinesq'sSolution1,5012,2513,5703,570137.858.523Notes:Concrete'sbearingallowable=$(0.85)fc'0.70(0.85)3000psi*2'3,570psi1.SinceAreaofconcrete>>areaofpad=md'/4=35.18in,bearingallowableisincreasedbyfactorof2perReference3.5.2.2.2.1.L-LiveloadiszeroT,-Thermalloadiszeroforconcrete.Table3.5-143ResultsofSpentFuelPoolLinerStressesD+L+ELinerBearinStressD+L+E'inerBearingStress1,2071,50123,40023,4001838.71459.051-1258768-01GinnaSFPLicensingRe-rackReportPage318 Table3.5-144ResultsofTabStresses',-:.::-:-';-'i:.:::,::j'~'-'~!7;::::,Coiiibin'aeons)'::.':.:'"::.'''~j.':::;"::.::::.:,::::-;jjI:::Str'es's'''(jsi);:"-::;:::;'.':,':i'~;.:,".;":Sf'r'es's,(psi)')',"";!,:,;.:.:~I,';::::;:Fac't'o'r'::,(/0)'.'-:.:.'+L+E+ToevelAPrimMembranePmPrimaryMembrane+BendinPm+Pb)RangeofPrimary+SecondAveraePrimShearStressWeldStressilletWeldShearPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondD+L+E+TaevelBPrimMembranePmPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondAveraePrimShearStressWeldStressilletWeldShearPrimaryMembrane+Bendinm+PbRangeofPrimary+Second6605,75915,6154,0216,3089,65919,5156605,75915,5624,0216,3089,65919,46215,70023,55046,3009,42021,00021,00046,30020,88131,32244,0809,42027,93027,93044,080LareLarge196134232117137LareLarge18313434318912651-1258768-01GinnaSFPLicensingRe-rackReportPage319
'.:;:.::4.'::i>::,:.'.":'.,':,';:.Coinbiii'ations'::.'4@j'":"::.';%~'::i':;;<<~,'":,:;Str'es's':(jsi),'i",;:,':"')'.':.''Str'ess'(nisi)';,':"::,D+L+E'+TaevelDPrimMembranemPrimaryMembrane+BendinPm+PbRangeofPrimary+SecondAveraePrimShearStressWeldStressilletWeldShearPrimaryMembrane+BendinPm+PbRangeofPrimary+Second1,16210,14819,9517,76811,26216,91626,71926,44839,67244,08028,12329,40029,40044,080Lare291120262161746551-1258768-01GinnaSFPLicensingRe-rackReportPage320
 
Table3.5-145ResultsofTubeStressesD+L+E+ToevelAPrimMembranemPrimaryMembrane+BendinPm+PbRangeofPrimary+SecondAveraeShearStressD+L+E+TaevelBPrimMembranemPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondAveraeShearStressD+L+To+PevelBPrimMembranemPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondD+L+E'+TaevelDPrimMembranemPrimaryMembrane+Bendinm+PbRangeofPrimary+SecondAveraeShearStress4,5434,87214,7281,2654,5434,87214,6751,2655,4437,20517,0086,9797,20217,005126515,70023,55046,3009,42020,88131,32244,0809,42020,88131,32244,08026,44839,67244,0809420:;:Ij:;:.,'"I'acfor,."..(%)~"."ll246383214Lare360542200Lare283334159279450159Lare51-1258768-01GinnaSFPLicensingRe-rackReportPage321 4~w~,'
Tube-to-BasePlateFilletWeld',:::"'.;:.'"Allo'wable';.'';,,::",,:::,"'".;:,.:::,".":,":.",,':Desig'ri':.::,::;:;::i:,::'',.:"::,St'r'ess',(p'si);::::,::,:,:,,':;;:,':;;:I.,'.,:Fa'ctor'.'(%)'''-'.,D+L+E+To(LevelA)D+LIE+Ta(LevelB)D+L+E'+Ta(LevelD)BaseMetalWeldBaseMetalWeldBaseMetalWeld11,95716,57511,95716,57520,65229,96946,30046,30044,08044,08044,08044,08028717926816611347Table3.5-146ResultsofBasePlateStressesD+L+E+T0evelAI:-'.,':;!:'::.:Maximu'iii'':.,",,:::.':i:":,,j'',Str'ess::.'(psi)"',"',","4!.:::i'''Allowable,.:'::':..".-::::,'NY.'::",:;:::,:,'9esig'n'-':."'''':':'.:;::;>",,"Stres's''(p'si)';','::'-.";:':,,':,;;:::;!;=':.;:Factor.,"'(fo)'-:."',;:::!IPrimMembranemPrimaryMembrane+BendingPm+PbRangeofPrimary+SecondaryStress7674,28610,22715,70023,55046,300LareLarge353D+L+E+TaevelBPrimMembranemPrimaryMembrane+Bendingm+PbRangeofPrimary+SecondaryStressD+L+E'+TaevelDPrimMembranePmPrimaryMembrane+Bendingm+PbRangeofPrimary+SecondaryStress7674,2865,8427674,2865,84220,88131,32244,08026,44839,67244,080LareLargeLargeLareLargeLarge51-1258768-01GinnaSFPLicensingRe-rackReportPage322 3.5.3.4DiscussionofResultsandSignificanceTheanalysisanddesignoftheGinnaSpentFuelStorageRacksprovideassurancesthattherackswillperformthefunctionsasrequired.Theassemblyofstructuraltubescreatesasufficientlystiffandstrongrackstructure.Theassociatedinter-rackconnectionsandweldingprovidethenecessarystrengthandstiflnesstoaccommodatealloftherackloadingconditions.Inaddition,alargenumberofsupportlegsprovideforawidedistributionofforceandreactionsandadequatestructuralmargins.Thevariousloadingsandresultingconsequenceswereexaminedindetailbymeansofnonlineardynamicanalysis.Oneofthemajorloadingeffectsistheimpactoffuelassembliesagainstthecellwalls.Whiletheimpacteffectisofveryshortduration,itenhancesthepotentialforslidingandtipping.Consequentialimpacteffectswereanalyzed;namelytheimpactofsupportlegsuponthespentfuelpoolfloorduringtipping.Giventheevaluatedseismicevents,thechangesinthefinalpositionoftheracksaresmallascomparedtotheinitialpositionpriortotheseismicevent.Theeffectoftippingissuchthatnonetchangeofpositionresults.Theonlychangesinpositionresult&omsliding;however,theresultsofthe3Dwholepoolmulti-rackanalysesandthe3Dsinglerackmodelstudiesindicatelittlenetchangeinthegapsbetweenracks.Themaximumclosureofgapsissuchthatnosignificantchangesinthegapsresultduringanysingleseismicevent.Furthermore,thecombinedgapclosuresresultingfromacombinationof5OBE'sand1SSEshowthattherearenorack-to-rackorrack-to-wallimpacts.Theconservatismsinherentinthecriteriaandmethodologyindicatethattherackshavesufficientlylargemarginsasshownbycomparisonsofcalculatedandallowablestresses.Detailedresultsarefoundinsections3.5.3.1and3.5.3.2,whichprovidetheresultsofthenormalconditionandaccidentconditionevaluationsrespectively.Section3.5.3.3providesatabulationofallresults.3.5.3.5ConclusionItisshownthatthespentfuelstoragesystemstructuresatRG&E'sR.E.GinnaUnit1arerobustandthattheyprovidesafestorageofspentfuelunderanyofthenormal,upsetorhypotheticalaccidentconditions.ThedesignandsupportinganalysesofthehighdensityfreestandingstorageracksindicatethatthespentfuelandtheconsolidatedfuelcanistercanbestoredsafelyinthenewATEAdesignedracks.Duringtheseismicevents,impactswilloccurontheracksduetotheimpactsofthefuelassembliesorcanistersaswellastheimpactsoftheracklegsonthefloorduringtipping.TheanalysesshowduringOBEorSSEseismicevents,therearenorack-to-rackorrack-to-wallimpacts.Theracksthemselvesareveryrigidstructures,capableofresistinglargeloads.Thefactthattheracksare&eetoslidehastwosignificanteffects;1)thelateralforcesaretherebylimited,and2)theslidingdissipatesenergy.Thetippingoftheracksislimitedbytherestoringmomentduetotheweightoftherack,thefuel,andthecontainedwater.Thehydrodynamiccouplingisalsoarestorativeforce.Theeffectofthewatercouplingisalsoanenergydissipator.Thehydrodynamic51-1258768-01GinnaSFPLicensingRe-rackReportPage323 V
pressuresdevelopinordertoforcewater&omaclosinggap.Thevibratorynatureofseismicevents,whileresultinginamplifiedloading,alsoresultsinrapidloadreversals.Thefreestandingcharacteristicsoftheracksandthehy'drodynamiccouplingareveryeffectiveinrespondingtotherapidloadreversals.StressesinthenewATEAracksandintheexistingU.S.Tool&Dieracks,poollinerandspentfuelpoolarebelowallowable.Thedeformationsofthishardwarearewithinallowablelimits.Also,theresultsshowtheruggednessofthespentfuelrackdesign.ThestructuralevaluationpresentedhereshowsthattheRGkE'sGinnaUnit1spentfuelstoragesystemmeetsallapplicablestructuralcriteriatomaintainasubcriticalarrayforthespentfuelandkeepradiationexposurewithinfederallimits.TheanalysisofthespentfuelstoragesystemdemonstratesthatthestructuresatisfiestherequirementsofPart50ofTitle10oftheCodeofFederalRegulations.Resultsoftheanalysisshowthedesignsatisfiesthestatutoryrequirementsforlicensing.3.5.3.6AnticipatedImpactonOperationsofR.E.GinnaNuclearPlantTheracksarestructurallydesignedtoprovidestorageforspentfuelassembliesorconsolidatedfuelcanisterswithoutrestriction.Bothspentfuelorconsolidatedfuelcanisterscanbesafelystoredinanyoftherackswithoutrestrictions.Thehighdensityspentfuelstorageracksare&eestanding;hence&eetoslideortipwithoutracktorackimpactsunderseismicevents.Boththeoldandnewracksdonotimpactthewallsofthespentfuelpoolunderanyofthenormal,abnormalandfaultedconditions.TheseconditionsincludeseismicOBEandSSEconditions.Duringseismicevents,loadsfromtheracksupportsontothespentfuelstoragepoolfioorarewithintheallowableconcretebearingstresses.Thelineritselfwillnotbesubjecttoanysignificantloadsduetoanyslidingoftheracks.Underthehypotheticalaccidentdropofafuelassemblyortornadomissileimpact,minordistortionoftherackswilloccur.Theserackdistortionsarelimitedtothefootprintareaoftheimpactandfuelcellinthevicinityoftheimpactarea.Therewillbenogrossdistortionsoftheracksoranyadverseeffectsupontheplantstructuresorequipment.Fortheconsolidatedfuelcanister,poolcanalgateandspentfuelshippingcask,administrativeprocedureswillrequireliAingthishardwareusingNUREG-0612,singlefailureproofcraneandsinglefailureproofliftingandriggingsystem.Also,duringtheremovaloftheoldracksandduringtheinstallationofthenewracks,thatmovementoverthespentfuelpoolshallbeperformedusingsinglefailureproofliftsystem.Insummary,thefunctioningoftheracksunderthespecifiedloading,orevents,willhavenodetrimentalconsequencestothespentfuelpoolorplantoperation.51-1258768-01GinnaSFPLicensingRe-rackReportPage324 3.
 
==63.1REFERENCES==
NUREG-0800,StandardReviewPlan,Section3.5.1.4,"MissileGeneratedbyNaturalPhenomena,"U.S.NuclearRegulatoryCommission,Revision2,July1981.3.2NUREG-0800,StandardReviewPlan,Section3.7.1,"SeismicDesignParameters,"U.S.NuclearRegulatoryCommission,Revision2,August1989.3.3NUREG-0800,StandardReviewPlan,Section3.7.3,"SeismicSubsystemAnalysis,"U.S.NuclearRegulatoryCommission,Revision2,August1989.3.4NUREG-0800,StandardReviewPlan,Section3.8.4,AppendixD,"TechnicalPositiononSpentFuelPoolRacks,"Revision1,July1981.3.5NUREG-0800,StandardReviewPlan,Section3.8.5,"Foundations,"U.S.NuclearRegulatoryCommission,Revision1,July1981.3.6NUREG-0800,StandardReviewPlan,Section9.1.2,"SpentFuelStorage,"U.S.NuclearRegulatoryCommission,Revision3,July1981~3.7OTPosition,"ReviewandAcceptanceofSpentFuelStorageandHandlingApplications,"datedApril14,1978andthemodificationstothisdocumentdatedJanuary18,1979,U.S.NuclearRegulatoryCommission.3.8U.S.NRCRegulatoryGuide1.13,"SpentFuelStorageFacilityDesignBasis,"Revision1,December19753.9U.S.NRCRegulatoryGuide1.29,"SeismicDesignClassification,"Revision3,September19783.10U.S.NRCRegulatoryGuide1.60,"DesignResponseSpectraforSeismicDesignofNuclearPowerPlants,"Revision1,December1973.3.11U.S.NRCRegulatoryGuide1.61,"DampingValuesforSeismicDesignofNuclearPowerPlants,"Revision0,October1973.3.12U.S.NRCRegulatoryGuide1.92,"CombiningModalResponsesandSpatialComponentsinSeismicResponseAnalysis,"Revision1,February1976.3.13U.S.NRCRegulatoryGuide1.117,"TornadoDesignClassification,"Revision1,April1978.3.143.15U.S.NRCRegulatoryGuide1.124,"ServiceLimitsandLoadingCombinationsforClassILinearTypeComponentsSupports,"Revision1,January1978.U.S.NRCRegulatoryGuide1.142,"Safety-RelatedConcreteStructuresforNuclearPowerPlants,"Revision1,October1981.51-1258768-01GinnaSFPLicensingRe-rackReportPage325 3.16NUREG-0612,"ControlofHeavyLoadsatNuclearPowerPlant,"U.S.NRC,July1980.3.17NUREG-0554,"Single-Failure-ProofCranesforNuclearPowerPlants,"U.S.NRC,May1979.3.18ANSI-57.2-1983,"DesignRequirementsforLightWaterReactorSpentFuelStorageFacilitiesatNuclearPowerPlants."3.19AmericanSocietyofMechanicalEngineers,BoilerandPressureVesselCode,SectionIII,'989Edition.3.20ACI349-85,"CodeRequirementsforNuclearSafetyRelatedConcreteStructures,"AmericanConcreteInstitute,1985.3.21AISC-1989,"ManualofSteelConstruction-Part5,SpecificationandCodes,"AmericanInstituteofSteelConstruction,9thEdition,1989.3.22UpdatedFinalSafetyAnalysisReport,"RochesterGas&Electric,R.E.GinnaNuclearPowerPlant,Docket50-244"Revision13-1,July1996.3.23NRC-SafetyEvaluationbytheOfficeofNuclearReactorRegulationSupportingAmendment12toFacilityOperatingLicenseNo.DPR-18,RochesterGas&ElectricCorp.,R.E.GinnaNuclearPowerPlant,DocketNo50-244,datedDecember16,1985.3.24NRCLettertoRG&E-Mr.KoberdatedNovember14,1984.SafetyEvaluationReporttoAmendmentNo.65"IncreaseoftheSpentFuelStorageCapacity,"LicenseNo.DPR-18,DocketNo.50-244.3.25U.S.Tool&DieInc.,"SeismicAnalysisSpentFuelStorageRacksModifiedto100%StorageDensityinRegion2,"ReportNo.8369-00-0013,"Revision1,March1,1984.3.26U.S.Tool&DieInc.,"MechanicalAnalysis,SpentFuelStorageRacksModifiedto100%StorageCapacityinRegion2,"ReportNo.8369-00-0014,Revision2,September1984.3.27"NuclearReactorsandEarthquakes,"TID-7024,USAtomicEnergyCommission,August1963.3.28WeldingResearchCouncilBulletinNumber151,"FurtherTheoreticalTreatmentofPerforatedPlateswithSquarePenetrationPatterns,"W.J.O'Donnell,June1970.3.29DOE/RW-0184,CharacteristicofSpentFuel,High-LevelWaste,andOtherRadioactiveWasteWhichMayRequireLongTermIsolation,"December1987.3.30EPRINP-6159,"AnAssessmentofBoraflexPerformanceinSpent-Nuclear-FuelStorageRacks,"ElectricPowerResearchInstitute,December1988.51-1258768-01GinnaSFPLicensingRe-rackReportPage326 3.31EPRITR-100784,"BoratedStainlessSteelApplicationinSpentFuelStorageRacks,"ElectricPowerResearchInstitute,June1992.3.32BechtelTopicalReport"DesignofStructuresForMissileImpact,"BC-TOP-9A,Revision2,September1974.3.33MarksHandbook,"StandardHandbookforMechanicalEngineers,"SeventhEdition,McGrawHillBookCompany.3.34Oberg,E.Etal,"Machinery'sHandbook,"23rdEdition,IndustrialPressInc.,NewYork,19903.353.36,idEChi,TiINd~ii*,hl~-Hill~Y.,1970.n'enDi,5thEdition,ShigleyandMischke,McGraw-Hill,N.Y.,1989,pp.735and751.3.371edtructureO.W.Blodgett,JamesF.LincolnArcWeldingFoundation,Cleveland,OH,1991.3.38Singh-1990,"StructuralEvaluationofOnsiteSpentFuelStorage:RecentDevelopments,"S.Singh,et.Al.,ProceedingsoftheThirdSymposium,Orlando,Florida,December1990.NorthCarolinaStateUniversity,Raleigh,NC27695,ppV/4-1throughV/4-18.3.39LetterfromJohnE.Maier,RG&Eto'HaroldR.Denton,USNRC,"ApplicationforAmendmenttoOperatingLicense,"Docket50-244,January18,1984.3.40ANSYS,EngineeringAnalysesSystemUser'sManual,Version5.2,1995.3.41SIMQKE-"AProgramforArtificialMotionGeneration,"DepartmentofCivilEngineering,MassachusettsInstituteofTechnology,November1976.3.421965.e'nFlhVc,E.F.Bruhn,Tri-StateOffsetPrinting,3.43ASMECodeCaseN-510-1,"BoratedStainlessSteelforClassCSCoreSupportStructuresandClass1ComponentSupports,SectionIII,Division1,"December12,1994.51-1258768-01GinnaSFPLicensingRe-rackReportPage327
 
==4.0 CRITICALITYEVALUATION==
 
==4.1INTRODUCTION==
TworegionscomprisethespentfuelstorageracksfortheR.E.GinnaNuclearPowerStation.Region1maintainsamaximumk,~~s0.95forfreshfuelwithnominalenrichmentsupto5.0wt%~'U.ThisisaccomplishedbyacombinationofabsorberfluxMps,acheckerboardoffreshandhighlyburnedassemblies,andIntegratedFuelBurnableAbsorber(IFBA)creditfor&eshassemblies.withnominalenrichmentsabove4.0wt%~'U.Region2maintainsthe0.95criticalitycriterionbyusingfixedabsorberplatesandburnupcredit.Thisregionaccommodatesnominalinitialenrichmentsupto5.0wt%~'U,withanassociatedminimumburnupof47.25GWd/mtU.Loadingcurvesrelatingtherequiredburnuptotheinitialenrichmentofthespentfuelassembliesgovernplacementofspentfuelintoeitherregion.TheKENOV.aMonteCarloprogramdeterminesKforbothRegion1and2usingstoragerackmodelswithunboratedwateratnominalpooltemperatures.KincludesthesumoftheKENOV.acalculatedk,ir,theKENOV.abias,penaltiesrelatedtofabricationtoleranceuncertainties,andstatisticallycombineduncertaintiesrelatedtotheseparameters.ThissumensuresthatKwillbelessthanorequalto0.95witha95%probabilityata95%confidencelevel.Evaluationsofthereactivityeffectsofabnormalandaccidentconditionsensurethattheseconditionsalsosatisfythiscriticalitycriterionunderthedoublecontinencyprinciple.ThecriticalitysafetyanalysesfortheGinnaUnit1storageracksconformtoapplicablecodesandstandards""'.TheresultsoftheanalysesshowthatthecombinationoffixedabsorbersandburnupcreditinherentinthedesignsenablesboththeRegion1andRegion2rackstosatisfythecriticalitysafetycriterion,i.e.,Ks0.95.Asummaryoftheburnuprequirementsforloadingfuelineitherregionisprovidedbelow.ThelimitingaccidentconditionisamisplacedassemblyinRegion2.Thecriticalitycriterionissatisfiedforthis,andanyotherabnormaleventbyaminimumsolubleboronconcentrationinthestoragepoolcoolantof450ppmduringfuelmovement.4.1.1Region1NormalConditionAboratedstainlesssteelrack,Type3,comprisesRegion1.Thisregionaccommodatesfuelwithinitialenrichmentsupto4.0wt%~'U(nominal)foreitherfreshfuelwithoutIFBAorupto5.0wt%~'U(nominal)withappropriateIFBAloadings.Freshassembliesmustbestoredinacheckerboardarrangementsothat&eshfuelisnotdirectlyadjacenttootherfreshfuel.Thepositionsadjacenttothefreshfuel,i.e.,withflatsurfacesfacingeachother,mustbefilledwithfuelwithaburnupappropriatetoitsinitialenrichment,orleftempty.Therelationshipbetweentheburnupandinitialenrichmentisdefinedbyaburnupversusenrichment,orloading,curve.ThereisafurtherphysicalrestrictiononfuelassemblyloadinginRegion1inadditiontotheloadingcurveduetotherackdesign.AsdescribedinSection1.3.1,lead-infunnelsareprovidedforthecellsthatacceptfreshfuelassemblies.Thecellswithoutafunnelmayonlycontainspentfuel.Figure4.1-1illustratestheburnupversusinitialenrichmentloadingcurveforspentfuelinRegion1.Figure4.1-3illustratesallowableloadingarrangementsfor&eshfuelassembliesandspentfuelassemblieswithenrichmentsandburnupsinareasAandBofFigure4.1-1.Theburnuprequirements,includinga5%burnup'measurement'ncertainty,aretabulatedinTable4.1-1.Table4.1-3liststhecalculatedk,ffvalues51-1258768-01GinnaSFPRe-rackingLicensingReportPage328
 
fromtheKENOV.acalculationandKwhichincludesallbiasesanduncertaintiesforRegion1fornormalconditions.Theseresultsarebasedupona&eshWestinghouseOptimizedFuelAssembly(OFA)storedadjacenttoaWestinghouseStandardassembly.TheWestinghouseOFAassemblyismostreactivefor&eshfuelwhiletheWestinghouseStandardassemblyismostreactiveforburnedfuelsatisfyingtheloadingcurveforRegion1.Consolidatedfuelcanistersarealsoboundedbytheseassembliesandthusmustconformtothesameloadingcurve.4.1.2Region2NormalConditionThetightpitchoftheRegion2cellsrequiresburnupcreditandfixedabsorberstosatisfythe'riticalitycriterion.ThreerackcellconfigurationscompriseRegion2(seeFigure4.3-1).Type1cellsaretheBoraflexcellsthatformRegion2fortheexistinglicense.TworacksofType2cells,containingboratedstainlesssteel(BSS)absorberplates,havebeenaddedtoincreasethecapacityofRegion2.ThecapacitycanbeincreasedinthefuturebytheadditionofType4racksonthenorthandsouthfacesoftheType1rackconfiguration,(seeFigure4.3-1).ThistypealsocontainsBSSabsorberplates.Figure4.1-2showstheburnupversusinitialenrichmentcurvesforRegion2,aswellastheinventoryoffuelasof06/09/96intheGinnastoragepool.Figure4.1-4illustratesallowableloadingarrangementsforassemblieswithenrichmentsandburnupsinareasA,,AB,andCofFigure4.1-2.Table4.1-2liststherequiredburnupvalues.Thecentral,solidcurveisthebasecurveforstorageinRegion2foralltyperacks.ItisbasedupontherequirementsoftheBoraflexrack,Type1,withanassumedamountofBoraflexdegradation/shrinkage.Whilenosignificantdegradationhasbeenshown,oranticipated,intheGinnaBoraflexracks,asignificantmarginhasbeenincludedinthisanalysistomitigateeffects&ompossibledegradation/shrinkageinthefuture.Figure4.1-2illustratesthatthemajorityofthefuelcurrentlystoredinRegion2fallsabovethecurve.Thedashedupperandlowercurvesprescribeacheckerboardpatternofloadingburnedfueltoaccommodatethoseassembliesthatfallbelowthebasecurve.Assemblieswithburnupsabovethebasecurve,A1andA2maybeplaceddirectlyadjacenttoeachother,i.e.,flatsurfacesfacingeachother.AssembliesbelowthecurveinareaBshallonlybeplacedadjacenttoassemblies&omareaAl,orawaterhole.Theyshallnotbedirectlyadjacenttoeachother.AssembliesinareaCshallbestoredeitheradjacenttowaterholesorinRegion1.Foranominal5.0wt%"'Uassembly,thebaselinerequiresaminimumburnupof47.25GWd/mtU.Thisincludesa5%uncertaintyassociatedwiththemeasurementoftheassemblyburnup.Table4.1-4listsKENOV.acalculatedreactivityvaluesforRegion2normalconditions.TheseresultsareforaWestinghouse14x14Standardfuelassemblydesign.ThisfueltypeboundstheotherassemblydesignsatGinnawithacceptableburnupsforstorageinRegion2.ConsolidatedcontainersarealsoboundedbythisdesignandmaybestoredinRegion2governedbytheloadingcurve.4.1.3AbnormalConditionsTheanalysisevaluatestheabnormalandaccidentconditionslistedbelow.TheseconditionsaresubjecttotheDoubleContingencyPrinciple46whichallowsconsiderationofthesolubleboroninthepoolwater.Allowanceforsolubleboronmitigatesanyreactivityincreaseandallowsthestorageracktosatisfythecriticalitycriterion.51-1258768-01GinnaSFPRe-rackingLicensingReportPage329 "1~~
Abnormaloraccidentconditionsconsiderseveraldroppedassemblyscenarios,misloadinganassembly,andseismicallyinducedconditions,Droppedassemblyaccidentsincludeanassemblydroppedontopoftherack(T-boneorshallowdrop),outsidetherack(sidedrop),andthrougharackcell(deepdrop).Themisloadingaccident,i.e.,storageofafuelassemblyinviolationoftheadministrativecontrols,isboundedbyassumingthemisloadedassemblyisfreshwithanenrichmentof4wt%"'U.TheboundingaccidentforRegions1and2isamisloadedassemblyintheBoraflexrackofRegion2.Theb,kforthisaccidentisabout0.05.Assumingasolubleboronconcentrationof450ppminthepoolwaterprovidessufficientmargintomitigateanyreactivityincreasesfromthis,orother,credibleaccidents.ANSUANS-57.2",Section6.4.2.1.3,liststhecredibleabnormaloccurrencesthatmustbeconsideredforcriticalitysafetyanalyses.ThoselistedabovereflectthecredibleaccidentfortheGinnastoragepool,i.e.,shallowdrop,deepdrop,sidedrop,misloadedassembly,andhorizontalmovementofracksduetoseismicevents.ThefollowingoccurrencesspecifiedinANSI/ANS-57.2werenotconsidered:1.TippingofthestoragerackwasnotanalyzedbecausetheGinnastoragerackfitstightlyintothepool.2.Astuckfuelassemblywithacraneprovidinganupliftingforceisconstruedtomeanthattheassemblyhangsupduetocontactbetweentheassemblyandtherackstructuralmaterial.Thestructuralanalysisofthiseventindicatesnodamagetotheracks(Section3.5.3.1.18).Thus,thereisnoimpactoncriticalitysafety.Theonlysignificantobjectsthatcouldfallintooronthespentfuelrackotherthanafuelassemblyisthespentfuelhandlingbridgeandthepoolgate.ThespentfuelhandlingbridgeisrestrainedtoSeismicClassIrailsbySeismicClassIrestraintstopreventitfromjumpingthetracksintheeventofanearthquake.SeismicClassIanchorsretainthewinchmechanismonthefuelhandlingbridgefloor.Redundancyisprovidedonthegateliftingmechanismtoprecludeagatedropaccident.Thus,thereisnoimpactoncriticalitysafety.Norotatingequipmentisinthevicinityofthespentfuelpool.Thus,missilesgeneratedbythefailureofrotatingmachineryarenotpertinent.Naturalphenomena,i.e.,atornadomissile,hasbeenanalyzed(Section3.5.3.2.4).Thereisminimaldamagetothetopofthestorageracks.However,fuelwithintherackmaybedamaged.Thisdamagemaycauseradiologicalreleasesandbowinginthefuel.However,thedamagewillnothaveasignificantimpactonthecriticalitysafetyofthestorageracks.4.2ANALYTICALMETHODSThissectiondescribesthemethodsusedtoensurethecriticalitysafetyoftheGinnastorageracks.ThebaseanalysismethodologyemploystheSCALE4.2codesystem"withKENOV.a.CASMO-3"supplementsSCALE4.2forevaluationoftoleranceeffectsandgenerationofspentfuelisotopics.Thesemethodsprovidethebasisforgeneratingtheburnupversusenrichmentcurvesthatgovernloadingoffuelintothestorageracks.IntegratedintotheRegion2curvesistheconsiderationofBoraflexdegradationinrackType1.Abriefdiscussionoftheseitemsinvolvedingeneratingtheloadingcurveisprovidedinthissection.51-1258768-01GinnaSFPRe-rackingLicensingReportPage330 4.2.1CriticalityAnalysisMethodologyTheKENOV.aMonteCarloprogmmcalculatestheabsolutereactivitiesforthevariousstoragerackconfigurations.Allanalysesusetherevised44groupcrosssectionset4'.ThiscrosssectionsetisprocessedbytheCSh.SroutinesofSCALE4.2.Thissystemofcodeshasbeenverifiedwithextensivein-housebenchmarksagainstcriticalconfigurationsdirectlyapplicabletospentfuelstoragepoolstorageanalyses.ThebenchmarkcaseshavebeenchosentodemonstratetheapplicabilityoftheSCALE4.2system'iththe44groupcrosssectionlibrarytospentfuelstoragerackanalyses.Aseriesof37criticalconfigurationscloselymodelingstoragerackconfigurationshavebeenanalyzed.Theseexperimentsspanarangeoffuelenrichments,assembly/pinspacings,andmaterialsinterspersedbetweenthefuelarraysapplicabletotheBoraflexandBSSracksevaluatedinthisanalysis.Additionally,twelvemixed-oxidecriticalconfigurationshavebeenexaminedtoverifycalculationsforburnupcredit,i.e.,inclusionofplutoniumeffects.AdescriptionofthebenchmarkcasesandacompletediscussionofresultsisprovidedinSection4.4.1.Theresultsfromthebenchmarkcalculationsindicatednodiscernabletrendrelativetoenrichment,pinpitch,fuelrodsize,orfuelcomposition.However,theydosuggestatrendofincreasingbiasasafunctionofthespacingbetweentheedgesofthefuelarrays.Thisisfurtherinfluencedbythematerialsinsertedintothespacebetweentheedges.TheRegion1rackshaveaspacingofabout3.7cm(1.45")betweentheedgesoffuelassembliescenteredintherackcells.TheKENOV.abiasthatcorrespondstothisspacing,includingBSSandSSabsorberplateeffects,is-0.0070+0.0009b,k.Theedge-to-edgespacingbetweenfuelassembliesinRegion2isabout1.64cm(0.646").TheKENOV.abiasassociatedwiththisspacingis0.0056+0.0009hk.AsnotedinSection4.4.1,independentbenchmarkcalculationspresentedintheInternationalHandbookofEvaluatedCriticalitySafetyBenchmarkverifythistrendfortypicalassemblyedge-to-edgespacingsfortightlatticestorageracks.4.2.2ToleranceEvaluation/BurnupIsotopicGenerationwithCASMO-3Theanalysisconsidersnominaldimensionsformodelingboththestorageracksandthefuelassemblies.Toensureamarginofsafety,thereactivityeffectscausedbypotentialvariationsfromthenominaland/orconditionsassumedintheanalysismustbefactoredintotheanalysis.TheCASMO-3programdeterminestoleranceandmoderatortemperatureeffects,aswellas,burnup'sotopics.CASMO-3isamultigrouptwo-dimensionaltransporttheoryprogramdevelopedforburnupcalculationsonLightWaterReactor(LWR)fuelassembliesorsimplepincells.Thecodehandlesageometryconsistingofcylindricalfuelrodsofvaryingcompositioninaninfinitesquarepitcharray.Thiscapabilityallowstheevaluationoffuelassemblytypedifferences,fuelassemblyfabricationtolerances,e.g.,enrichment,pelletdiameters,etc.,androdconsolidationeffects.Typicalfuel-storage-rackmodelingcapabilitiesallowevaluationofrackfabricationtolerancesandmoderatortemperatureeffectsinthestoragepool.Inadditiontoitsuseforsensitivitystudies,CASMO-3providesdepletiondataforburnupcreditevaluations.51-1258768-01GinnaSFPRe-rackingLicensingReportPage331 Theapplicationofburnupcreditusesreactivityequivalenceoffuelassembliesdefinedinaninitialenrichmentversusburnupcurve.Thisallowsatighterpitchforstorageoffuelassemblieswithoutrestrictivelimitsonenrichment.AnalternativeapplicationofreactivityequivalencingisthedeterminationofacurverelatinginitialenrichmentversusthenumberofIFBArodsforanassembly.FortheGinnastoragerackssuchacurveisdefinedforfuelwithnominalinitialenrichmentsabove4.0wt%.Similartotheburnupversusenrichmentcurve,anassemblyIFBArodversusenrichmentcurveprovidesequivalencywithanunroddedassembly.CASMO-3isusedtogeneratethiscurvefortheoptimalburnuppointforIFBAassembliestobestoredintheGinnastorageracks.4.2.3BurnupCreditMethodologyTypically,aburnupcreditanalysisappliesauniform,averageburnupdistributionovertheentirelengthoftheassembly.However,auniformdistributionmayunderestimatetheburnupatthecenteroftheassemblywhileoverestimatingtheburnupatthetopandbottom.Toadequatelyutilizeburnupcredit,anestimateofthereactivityeffectsoftheaxialburnupdistributionrelativetoauniformdistributionmustbedeterminedandappropriatelyappliedtotheresults.Alternatively,theexplicitaxialdistributioncanbemodeledintheKENOV.acalculationtoremovetheneedforapplicationofanaxialburnuppenalty.ThisanalysisusesthelattermethodandisbaseduponabestestimateofaxialburnupshapesandfueVmoderatortemperaturesfortheGinnaplant.TheGinnaspentfuelrackscontainsthreeprimarytypesof14x14fuelassemblies:theWestinghouseStandard,theExxonStandard,andtheWestinghouseOFAassemblies.Thelattergenerallyhaveaxialblankets(currentlyrangingfromnaturaltoabout2.6wt%~'U)andvaryingnumbersofIFBArods.Theolder,StandardassembliescontainedneitheraxialblanketsnorIFBArods.Analyticalaxialburnupprofileswereobtained&omRGEforseveralOFAandStandardassembliesforvariousenrichmentandburnupranges.Fromtheseshapes,bestestimatesfortheburnupprofilesforburnuprangesfrom10to20,20to30,30to40,and40to50GWd/mtUwerechosen.The23-nodeanalyticalprofileswerereducedtosevenaxialzones:theburnupforthethreeupperandthreelowerzonesaretotopandbottomthreenodalpointswhilethecentralzonerepresentsanaverageofthe17centralnodalpointsoftheanalyticalprofile.Suchasevenzonemodelhasbeenshowntobeareasonableapproximationtomoreaxialnodes'".Foreachburnuprangethesevenzonedistributionisnormalizedto1toenablegenerationofanaxialshapeforanaverageburnupbyasimplemultiplicativeprocess.CASMO-3generatestheisotopicconcentrationsforeachsegmentoftheaxialprofile.Thesegmentconcentrationsareinfluencedbytheaxialfuelandmoderatortemperaturedistributionsthateffecttheplutoniumbuildupoccurringduringdepletion.Ahighermoderatortemperaturecausesspectral"hardening"(ashiftoftheneutronenergyspectrumtohigherenergyvalues)whichincreasesconversionof'Pu&om~'U.Additionally,higherfueltemperaturescauseDopplerbroadeningofthe'Uresonancestructure,alsoincreasing~Puproduction.Typicalcoreaverageaxialmoderatorandfueltemperatureprofileswereobtained&omRGEandusedintheCASMO-3depletionsforthegenerationofisotopicsforKENOV.a.51-1258768-01GinnaSFPRe-rackingLicensingReportPage332 ToreducetheamountofdatatransferbetweenCASMO-3andKENOV.a,onlyselectedactinideisotopes('Un'UmUmPu~Pu"Pu)'andequilibrium'"Sm(xenonandiodineareeliminatedinbothrackmodels)atshutdown(nodecayconsidered)areexplicitlyconsideredintheanalysis.Theotherisotopesarerepresentedbyanequivalent'Bconcentration.CASMO-3isusedtodeterminetheequivalency.Section4.4.2providesanadditionaldescriptionofthemethodologyandliststheisotopicconcentrationsforthebasecalculations.TheabilityofCASMO-3topredictisotopicshasbeenillustratedbyacomparisonbetweenCASMO-3predictedandthemeasuredisotopicvaluesfortheYANKEEROWEPowerPlantCoresI,II,andIV3.A''heratioofU,+U,~U,~PuPuPu,andPutotheinitial~Uconcentra-tionwascomparedforthemeasuredandCASMO-3predictedresults.TheCASMO-3predictionswereshowntobewellwithinthestatisticalvariationsofthemeasuredvalues.Noobservedbiasisseenforanyisotopeexcept'PuwithCASMO-3consistentlyunderpredictingthemeasuredvaluesbyabout9%.Since"'Puisnotanimportantcontributortok,thiseffectisnegligibleforthisanalysis.Basedontheseresults,itisconcludedthattheuncertaintyofCASMO-3predictedisotopicsisboundedbytheconservativemethodologyandtheapplicationofa5.0%burnupuncertainty.4.2.4BoraflexDegradation/ShrinkageMethodologyRecentindustry-wideblacknesstestingofBorafiexpanelsatotherreactorstoragesiteshasindicatedshrinkageandgapformationintheBoraflexabsorbersheets.'Additionalindustryexperiencewiththematerialhasshowndegradation,i.e.,lossofthepolymermaterial,inthesheets.TheeffectsofboththedegradationandtheshrinkageofBoraflexintheType1racksofRegion2areevaluatedandfactoredintothegenerationoftheloadingcurvesforRegion2.ThepreviouslicensingreportforRegion2oftheGinnaracks'"evaluatedtheeffectsofa4%shrinkageanda4"gap.Thiswasconsideredaconservativeassumptionsupportedbygenericstudiesforrackgeometries'".Recentblacknesstestingatotherstoragepoolshasindicatedgapsrangingfrom9"to12"inlength.OtherlossofBoraflexintothespentfuelpoolhasalsobeenpostulatedrecently.Thefollowingassumptionsandmethodologiesareusedtoevaluatetheeffectsofbothoftheselossmechanismsonthereactivityofthestorageracks:Baseduponthemostrecentindicationofa12"gap,anequivalentshrinkage,8.3%basedupona144"Boraflexplate,orgapisassumed.Fortheshrinkageevaluation,itisassumedthattheshrinkageisuniformoverthelengthandwidthoftheplate.Thusanequalgapformsatthetopandbottom,andateithersideoftheplate,i.e.,4.15%ofthedimensionateachedge.Nodensitychangeismadetotheremainingabsorbermaterialtoreflecttheshrinkage.KENOV.aevaluatestheshrinkagereactivityeffects.2.Thegapevaluationexaminedasingle12"gapoverthelengthoftheplatewithan8.3%shrinkageoverthewidth.Themodelassumesthatthelocationofthegapisrandomlydistributedoneachplateofthecell.Toprovideareasonablemodel,anarrayof16rackcellsismodeledwitheachofthe32absorberplates(2platespercell)randomlyassigneda12"gap.Appropriateboundaryconditionsprovideaninfinitearrayofthisrack.Themodelassumesa144"fuelzonewitha144"absorberplate.However,foradditionalconservatism,thegapsarelimitedtothecentral132inchesofthecellstosimulatethemostreactiveregionwhenaxialreflectorfuelisused.Waterreplacestheabsorbermaterialinthegapwithno51-1258768-01GinnaSFPRe-rackingLicensingReportPage333 whenaxialreflectorfuelisused.Waterreplacestheabsorbermaterialinthegapwithnodensitymodificationoftheremainingabsorbermaterial.TheevaluationusesKENOV.atoassessgappingreactivityeffects.AdetailedCASMO-3modeloftheBoraflexrackevaluatesthereactivityeffectsofthepotentialdegradationoftheabsorbermaterial.Thisdegradationmodelreducesthethicknessoftheabsorbermaterialinthecell.Theevaluationexaminesvariousdegradedconfigurationstoprovideaboundingassessmentoftheeffect.Theseconfigurationsincludereplacementoftheabsorberwithwater,reductionofthedensityoftheabsorbermaterialby.theassumedboronloss,andahomogeneousmixtureofdegradedabsorberandwaterintheabsorberregion.Anevaluationoftherequiredboronconcentrationinthepoolwatertocompensateforvaryingamountsofdegradationisalsoprovided.Nosignificantdegradationand/orshrinkageisanticipatedintheGinnaracks.Indeed,fuelloadingpracticesforRegion2atGinna""shouldreducedamagetotheabsorbermaterial.Howevertoaddressanypotentialabsorberloss,thegenerationoftheloadingcurveforRegion2forRackType1includesallowancesforBoraflexdegradations.AsixteencellinfiniteKENOV.amodelwithbotha12"gap,including8.3%shrinkageonthewidth,andreductionoftheabsorberthicknessby50%providesthegeometricalbasisfortheallowances.Thus,aconservativemarginisprovidedtoaccommodateacombinationofpotentialgappinganddegradationbeyondthatcurrentlyexperiencedintheindustry.ThisiswellbeyondthatexpectedfortheGinnastoragerack.4.3CRITICALITYANALYSESThespentfuelracksaredividedintotwoadministrativelycontrolledregions(seeFigure4.3-1).Region1isdesignedtoaccommodateafullcoreoff-loadofassemblies.Thus,itmustbeabletostoreassembliesrangingfromzerotoveryhighburnups.Thisregioncomprises5modularracksofaboratedstainlesssteelrackdesigndesignatedasrackType3.RackType3combinesafluxtrapwithacheckerboardpatternof&eshandburnedfueltoinsurecriticalitysafety.Region2providesthebulkofthestorageforburnedfuelassemblies.Itconsistsofthreeracktypes:Type1istheBoraflexdesigncurrentlylicensed;Type2isa&eestanding,BSSabsorberplaterackdesign;Type4,alsoaBSSdesign,isasinglerowdesignthatmaybeattachedtothenorthandsouthfacesoftheBoraflexrackregionforadditionalstorageinthefuture.Section1.3providesadescriptionofthenewracktypestobeplacedintheGinnastoragepool.Figure1.1-1illustratesthegeneralarrangementofracktypesinthepool.Section4.3.1describesthebaseinputparametersforalltheanalyses.Section4.3.2describestheevaluationofthereactivityeffectsduetomanufacturingtolerancesfortherackandfuelassemblies,aswellasuncertaintiesrelatedtostorageoffuelintheracks,i.e.,fuelassemblytype,fuelassemblyposition,boraflexdegradation/shrinkage,andcoolanttemperatureeffect.Sections4.3.3and4.3.4discusstheanalysisfornormalconditionsforRegions1and2.ThisisfollowedbyadiscussionoftheevaluationoftheinterfaceeffectsbetweenracktypesinSection4.3.5.Section4.3.6describestheaccidentconditionevaluation.TheresultsoftheseanalysesarediscussedinSections4.3.7.Section4.3.8discussesstorageofconsolidatedfuelcontainersinthestorageracks.Finally,Section4.3.9relatestheresultsoftheanalysestotheacceptancecriteriaforcriticalitysafety.51-1258768-01GinnaSFPRe-rackingLicensingReportPage334 4.3.1InputParametersThissectionliststheinputparametersusedintheanalysisofthestorageracks.Thisincludesfuelassemblydimensions,rackdimensions,andmaterialspecifications.4.3.1.1FuelAssemblyDescriptionThreebasicfuelassembliesarestoredintheGinnaspentfuelstorageracks:WestinghouseStandardassemblies,ExxonStandardassemblies,andWestinghouseOFAassemblies.Table4.3-1showsthesignificantspecificationsanddimensionsfortheseassemblies.NodimensionsareprovidedforintermediatespacergridsandendfittingssincetheseitemsarenotmodeledintheCASMO-3or'ENOV.acalculations.Thecriticalityanalysisusesthenominaldimensionsofthefuelassemblycomponentstodeterminek,a,TolerancesareevaluatedandincludedinthedeterminationofKthatiscomparedtothe0.95criticalitysafetycriterion.Inadditiontoanintactfuelassembly,thereactivityofconsolidationcontainerscontainingfuelrodsfromuptotwoassembliesisevaluated.Table4.3-2providesinformationonthestructureoftheconsolidatedcontainers.4.3.1.2SpentFuelStorageRackDimensionsAsketchoftheGinnastoragerackisprovidedinFigure4.3-1.ThisshowsthearrangementsofthevariousracktypestoformRegions1and2.Region1consistsoffivemodules,orracks,ofrackType3.Rack3Econtainsfivecellswiththecellinternaldimensionenlargedtoaccommodateseverelybowedordamagedfuelassemblies.Tables4.3-3aand4.3-3bprovidethedimensionssignificanttothecriticalityanalysis.AsillustratedinFigure4.3-1,Region2initiallywillbeformedwithrackType1,theexistingBoraflexracks,andType2racks2Aand2B.Analysisisalsoprovidedforperipheralracks,Type4,thatmaybeaddedtothenorthandsouthfacesofrackType1(seeFigure4.3-1).Type4rackswillbeaddedifadditionalstorageisrequiredinthefuture.ThesignificantdimensionsfortheseracktypesareprovidedinTables4.3-4through4.3-6.Thesetablesformthebasesfortheanalyticalmodelsdescribedinalatersection.Nominalvaluesareusedprimarilyintheevaluationofk,iiandtheeffectsoftolerancesareincludedtodetermineK4.3.1.3MaterialSpecificationsTables4.3-7and4.3-8providetheregionmaterialcompositionsandnumberdensitiesusedinthemodels.Thefirsttableliststhenon-fuelmaterials.Thesecondtableprovidesthefuelnumberdensitiesfortheanalyzedfreshfuelenrichmentsandtheburnupisotopicsforfuelwithaninitialenrichmentof5wt%~'Uburnedto45GWd/mtU,theupperpointfortheburnupversusenrichmentcurves.Section4.4.2containstheisotopicnumberdensitiesforotherinitialenrichmentsandlimitingburnupsusedintheanalysis.4.3.2Tolerance/UncertaintyEvaluationThefuelracktoleranceresultsaredescribedinSection4.3.2.1.Section4.3.2.2describespenaltiesassociatedwithoff-centerfuelplacementwhileanevaluationofthecoolanttemperatureeffectonrackreactivityisprovidedinSection4.3.2.3.Tolerancepenaltiesassociatedwiththefuelassemblydesign,enrichment,andtheoreticaldensityaredescribedinSection4.3.2.4.Section4.3.2.5discusses51-1258768-01GinnaSFPRe-rackingLicensingReportPage335 0l thereactivitydifferencesamongthethreefuelassemblytypes.Asummaryofthetolerances,uncertainties,andbiasesappliedtotheKENOV.aresultsisprovidedinSection4.3.2.6.Table4.3-12summarizesthetolerance,uncertainty,andbiasvaluesfromthisevaluation.Additionally,theKENOV.abias,discussedinSection4.4.1,isincludedinthistableforcompleteness.4.3.2.1FuelRackToleranceAnalysisMethodologyThetolerancepenaltiesassociatedwiththedifferentrackdesignsareobtainedwiththeCASMO-3computercode.RackTypes2,3,and,specifically,thecellsfordamagedfuelassembliesinrack3Eareevaluatedusingamodelof4rackcellsinCASMO-3.Periodicboundaryconditionsareusedto'rovideaninfiniterackmodel.ThesemodelscloselyapproximatetherackconfigurationssketchedinFigures4.3-2and4.3-6.Suchmodelsarenecessarytoevaluatethealternatingcelltypesinthese.RackType1ismodeledasaninfinitearrayofBorafiexcells(Figure4.3-5).TheType4rackevaluationdivergesfromthatoftheothers.Sinceitisonlyonecellwide,itismodeledasinfiniteinonedirection.DuetothelargewatergapsbetweentheType4racks,thepoolwall,andtheType1racks(Figure4.3-1),geometrylimitationsinCASMO-3precludeeitherincludingtheType1racksorthepoolwallinthemodel.However,sincetheprimarycontributiontothetolerancepenalty,asobservedfortheotherracktypes,isthewatergapbetweentheType4cells,modelingonlytheType4rackissufficientandprovidesarelativelysmalltolerancepenalty.TheboundingtolerancesforeachracktypearelistedinTable4.3-12.Notethatthedamagedcellsofrack3E(Figure4.3-4)willbenotbedistinguishedfromtheotherType3cellssincetheyaremorelimitingandonlyalimitednumberofType3Ecellsareplacedalongtheouteredgerack3E.4.3.2.2Off-CenterFuelAssemblyAnalysisTheoff-'centerstudyevaluatesthereactivityeffectsoffuelassemblymovementwithintherackcellbyplacingassembliesinacornerofthecell.Thisresultsinanunevendistributionofwaterbetweentheouteredgeoftheassemblyandthecanandplacesassembliesclosertogetherwhichmayincreasereactivity.DuetolimitationsinCASMO-3,theassembliescanonlybearrangedingroupsoffour(exceptforrackType4).Largeroff-'centergroupingsrequiretheuseofKENOV.aforevaluation.BasedonpreviouscalculationswithKENOV.aandCASMO-3thereactivityeffect&omoff-centerassemblyspacingisnotsignificant.Thisisillustratedinthelistingtheoff-'centerpenaltyforeachracktypeinTable4.3-12.4.3.2.3StoragePoolCoolantTemperatureEffectsTherackanalyseswereperformedforanominalpooltemperatureof68'F(293'K).AnevaluationofthereactivitychangesassociatedwithtemperaturevariationsaroundthisnominalvaluewasperformedwithCASMO-3.Theevaluationexaminedthetemperaturerangefrom50to212'Ftocoverbothcredible'cooldown'nd'heatup'ventsinthespentfuelpool.Thereactivityincreasesfromabout0.001to0.002hkasthetemperatureisloweredfrom68'Fto50'F,dependinguponracktype,seeTable4.3-12.Forallracktypesthereactivitydecreasesasthepooltemperatureisraised.Forthisevaluation,pooltemperaturedecreasestoabout50'Fareconsideredcrediblesoapenaltyistakenonlyfortheb,kincreasefrom68to50'F.Pooltemperaturesbelow50'Farenotconsideredcredibleandrepresentanaccidentconditioncoveredbythedoublecontingencyprinciple.Fortemperaturesbelow50'F,thereactivitychangeislessthan+0.0002LHcforanyracktype.Suchsmallreactivitychangesareeasilycoveredbytheeffectofthe450ppmminimumboronconcentrationinthepoolwater.51-1258768-01GinnaSFPRe-rackingLicensingReportPage336 4.3.2.4FuelAssemblyMechanicalTolerancesThissectionaddressesthereactivityeffectsduetomanufacturingtolerancesonthevariousdimensionsofthe14x14pinfuelassemblytypes.ThemajorassemblytypesaretheExxonStandard,theWestinghouseStandard,andtheWestinghouseOFAfuelassembly.Thevariablesexaminedaredimensionalchangesofthefuelpelletdiameter,thepelletcladdingIDandOD,theguidetubeandinstrumenttubeIDandODvalues,thefueltheoreticaldensity,andtheenrichment.ThesepenaltiesaredeterminedwiththeCASMO-3code.Boundingpenaltiesareobtainedforassemblycomponentpartsbyvaryingthecomponentdimensionovertheallowabletolerancerange.Thestatisticallycombinedtolerancepenaltyforthefuelpellet,guidetube,instrumenttube,andfuelcladdingis.reportedforconvenienceforeachassembly.Thefuelpelletenrichmentandtheoreticaldensitypenaltiesreportedseparatelytoillustratethattheenrichmentsreportedfortheloadingrequirementsareindeednominalvalues.Table4.3-9providesalistingofthefuelassemblytolerancepenalties.TheExxonassemblyisseentohavethelargesttolerancepenaltyforbothmanufacturingandenrichmentvariationswhiletheWestinghouseOFAassemblyshowsthelargestpenaltyrelatedtothevariationintheoreticaldensity.AstatisticalcombinationoftheindividualresultsshowsthattheExxonassemblypenaltyboundstheotherassemblies.Thus,thepenaltyforthisassemblyisusedinthedeterminationofKandincorporatedintothesummaryTable4.3-124.3.2.5MostReactiveFuelTypeThreebasictypesofintactfuelplustwelveleadtestassembliesarestoredintheGinnarack.Inadditiontotheintactassemblies,thereareseveralconsolidatedfuelcontainerscurrentlyintherack.Thus,theevaluationofthereactivityofdifferentfueltypeslogicallyisdividedintotwoareas:intactfuelandconsolidatedfuel.Theevaluationofthesefueltypesisdiscussedinthissection.4.3.2.5.1IntactFuelAssembliesACASMO-3evaluationofthereactivityofeachfuelassemblyinaracktypeconfigurationisperformedforthetwotypesofWestinghouseassembliesandtheExxonassembly.Table4.3-10liststhereactivitydifferencesbetweentheassembliesasafunctionofburnupforaninfinitearrayofrackType1cells.TheWestinghouseOFAassemblyisseentobethemostreactiveforfreshfuelfornormalreactorenrichments,whiletheWestinghouseStandardassemblyisthemostreactiveforfuelwithburnupsaboveabout12GWd/mtU.TheExxonassemblyisboundedbythetwoWestinghouseassemblies.Aseparatestudyforlowenrichments,i.e.,about1.95wt%,showedtheWestinghouseStandardassemblytobemostreactiveevenwhenmesh(theenrichmentissimilartothatforburnedassemblies).TheseresultswerefactoredintothefinalKENOV.arackanalysestoprovidethemostreactiveconditionsbyappropriateuseofthemostreactivefuelinthemodels.Thus,nopenaltyisrequiredtocorrectforfuelassemblytype.Inadditiontothethreebasictypesoffuelassemblies,12LeadTestAssembliesarealsostoredinthespentfuelrack.TheyaretwoeachofB&WandExxonStandardassemblydesigns,fourExxonAnnularPelletdesigns,andfourWestinghouseStandardmixed-oxidedesigns.CASMO-3evaluationsoftheseassembliesshowedthattheirreactivitiesareboundedbythatoftheWestinghouseStandardassembly.Thus,theyaresubjecttothesamerestrictionsastheWestinghouseStandardassembly.51-1258768-01GinnaSFPRe-rackingLicensingReportPage337 y
4.3.2.5.2ConsolidatedFuelContainersKENOV.aisusedtoevaluatethereactivityoftheconsolidationcontainersforbothnormalandabnormalconditions.Forthenormalcondition,anevaluationismadeoftheintactcontainersinthestorageracks.Theevaluationexamines&eshfuelenrichmentsof1.6and2.22wt%"'Uatstoragepooltemperatures,-68'F,foreachmajortypefuelassembly.ThecontainermodelincludesonlytheouterwallsofthecontainerwithdimensionsboundedbyTable4.3-2.Thereactivityworthoftheinnerplateisalsoassessedintheevaluation.Thereactivityofthecontainerisoptimizedwithaseriesofcasesvaryingboththenumberofpinsandthepinpitch.Theevaluationexaminesstorageofonlyconsolidationcontainersinarackoracombinationofintactfuelassembliesandcontainers.Theaccidentcaseconsidersalossofcontainmentofthecontainerthatallowsthefuelpinstospillintothestoragepool.Forconvenience,a19x19arrayofpins(361)isexamined(3morethanavailableinafullcontainer).Thepitchofthearrayisoptimizedtoprovideaboundingaccidentcondition.Inadditiontheeffectoftheminimumconcentrationofsolubleboroninthepoolwater,450ppm,isdetermined.Thisevaluation,forboththenormalandabnormalconditions,ensurethatthestorageofconsolidationcanisterssatisfiesthecriticalitysafetycriterionforbothfullandpartiallyfilledcontainers.4.3.2.6SummaryofBiases,Penalties,andUncertaintiesinAnalysisThecalculatedk,irfromKENOV.aresultsmustbeadjustedtoaccountformethodologybiasand,penaltiesanduncertaintiesassociatedwithdifferencesbetweenthecalculationalmodelandvariationsinkeyparametersofthemodel.ThemethodologybiasisdiscussedinSection4.2.1.ManufacturingtoleranceuncertaintiesandpenaltiesarediscussedinSection4.3.2,asareotheruncertaintiesassociatedwiththechoiceofparametersfactoredintothemodels.Thesebiases,penalties,anduncertaintiesaresummarizedinTable4.3-12forthefourracktypes.Anadditionaluncertaintyrelativetotheselfshieldingof"BinBoraflex""isalsoincludedintherackType1summary.ThelastrowliststheapproximateadjustmentfactortoobtainKobtainedfromtheadditiveandstatisticalcombinationsofthesevalues.Anestimateoftheprojectedcalculationaluncertaintybasedupononemillionneutronhistories,0.0007,isassumedtoobtainthisfactor.4.3.3Region1AnalysisRegion1(rackType3)storesspentand&eshfuelinacheckerboardpattern.AllinteriorRegion1cellsareformedbyfourboratedstainlesssteelsheets(seeSection1.3.1foradetaileddescription).Eachcellcontainingaspentassemblyalsocontainsastainlesssteelcasingwhichsurroundstheboratedstainlesssteelplates.Table4.3-3aliststhedimensionsoftherackcellthatareexplicitlymodeledwithKENOV.a.Basedupontheevaluationsforthemostreactiveassembly(Section4.3.2.5),aWestinghouse.OFAassemblyrepresentstheboundingfreshassemblywhileaWestinghouseStandardboundsthespentassemblies.AdiscussionofthegeometricalmodelandtheburnupcreditmethodologyforRegion1isprovidedinthissection.4.3.3.1Region1GeometryModelsThebaseKENOV.amodelrepresentsaninfiniterackarrayinthex-yplane.Theaxialdimensionincludesanactivefuellengthof144"(365.76cm)witha12"(30.48cm)topandbottomwaterrefiector.Thestructureofthecells,fourBSSrackcells(twowithandtwowithouttheSScasings),areexplicitlymodeledinthex-yplane.Periodicboundaryconditionsontheouterfacesofthefourcombinedcellmodelsgenerateaninfinitex-yarrayofRegion1cells.Figure4.3-2illustratesthebasemodelwithtwofreshOFAassembliesandtwospentStandardassemblies.Theaxial51-1258768-01GinnaSFPRe-rackingLicensingReportPage338 t
representationoftheinfinitemodelisshowninFigure4.3-3.Notethatthisrackhaslead-infunnelsinthecellswithoutSScasingstofacilitateloadingofoff-loadedfuel.Freshfuelmustonlybeplacedinthesecells,notinthosewithSScasings(andwithoutlead-infunnels)andaresomodeled.Reversingthepositionsincreasesthereactivityofthisregionbyabout0.2%bk.4.3.3.2BurnupCreditTheapplicationofburnupcreditrequiresmorecalculationsthanthetypicalmeshfuelanalysis.Thereactivityeffectofthefollowingitemsmustbeevaluatedandfactoredintotheanalysis:Operatinghistoryincludingfuelandmoderatortemperature,Axialburnupdistributionsasafunctionofburnup,andMeasuredburnupuncertainty.Theseitemscontributetotheresidualreactivityoftheburnedfuel,especiallyfortheaxialdistribution.ForaRegion2typerackwhichcontainsburnedfueladjacenttoburnedfuel,considerationoftheaxialburnupdistributionisnecessarytoadequatelydefinetheloadingcurve.However,foracheckerboardof&eshandburnedfuel,thefreshfuelcompletelydominatesthesystem'sreactivity.Thus,considerationofauniformaverageburnupshapeforthecheckerboardedspentfuelisallthatisrequired.ThisisillustratedinSection4.4.2.ThefollowingmethodologydescribesthestepstocalculatetheburnupversusenrichmentcurveforRegion1.ACASMO-3hot-full-powerdepletionwithcoreaveragefuelandmoderatortemperaturesisperformedtodeterminetheisotopicconcentrationsfortheaverageburnupofanassembly.AsecondCASMO-3calculationprovidesthebasek;,forafuelassemblywithallisotopesforracktemperatureconditions(notethatxenonandiodineareremoved)atshutdown.AthirdCASMO-3rackmodelcalculatesthek;~withonlytheshutdownfuelpinconcentrationsof"0,~'U,'U,"'U,~'Pu,"'Pu,"'Pu,and'"Sm(xenonandiodineareeliminatedinbothmodels).Asmallamountof"Bisaddedtothefuelpinuntilthek;fromthesecondCASMO-3calculationagreeswiththatofthefirst.Inthismanner,theadded'simulatestheneutronabsorptionoftheisotopesnotpresentintheKENOV.amodel.TheseconcentrationsareinsertedintheKENOV.amodelandk,a.calculated.Ifthek,~isnotsatisfactory,theburnupischangedandtheentireprocessrepeateduntilatargetKofabout0.94isobtained.Thisisthenrepeatedforadditionalenrichmentvalues.Theburnup/enrichmentpairsprovidethepointstodefineapolynomialfittotheburnupversusenrichmentcurveofFigure4.1-1thatgeneratesthevaluesinTable4.1-1.Basedupontheconservatisminherentinthemodelandthepenaltiesapplied,theproximitytothe0.95criticalitylimitisjustified.4.3.4Region2AnalysisRegion2consistsofrackTypes1,2,and4.Type1istheexistingBoraflexrackwhichcontain840cellsina30x28array.TheType2racks(seeFigure1.1-1)consistoftwoboratedstainlesssteel(BSS)racks,rack2A(8x11array)andrack2B(9x11array).Type4racksconsistofsixindividualracksof10cellseach(Figure1.3-13)andareattachedtoNorthandSouthfacesoftheType1racks.AninfinitemodelofeachoftheTypes1and2racksprovidestheevaluationfortheseracks.Thesinglerowdimension,andpositioningoftheType4rackprecludeanindividualanalysisofthisrack.TheevaluationforthisrackiscombinedintoamodelcontainingbothrackTypes1aild2.51-1258768-01GinnaSFPRe-rackingLicensingReportPage339 58wPk 4.3.4.1Region2GeometryModelsIndividualinfinite(inx-yplane)rackmodelsareusedforrackTypes1and2.TheevaluationofType4requiresconsiderationofinteractionswithType1toadequatelyevaluatethereactivityofthisracktype.Sinceacombinationofracktypesisrequired,amodelisdevelopedthatexaminesalltheRegion2racktypestogetherfortheevaluationofType4.Inallcases,theuseoftheWestinghouseStandardassemblyprovidesboundingresultsforspentfuelinthisregion.4.3.4.1.1RackType1-BoraflexRackTheBoraflexrackcontainsonlyasinglecellconfiguration.Amodelofthiscellwascreatedandcombinedintoamulti-cellarraywithperiodicboundaryconditionstocreateaninfinitearrayinx-yextent(seeFigure4.3-5).TheaxialmodelissimilartothatforRegion1,asillustratedinFigure4.3-3.ThenominaldimensionslistedinTable4.3-4wereusedintheexplicitmodelofthisrack.AsnotedinSection4.2.4asignificantamountofBoraflexdegradationisincludedinthemodel.Themodelcontainsa16x16arrayofcellswithBoraflexpanelseachcontainingarandomlydistributed12"axialgap,a8%widthshrinkage,anda50%reductionintheplatethickness.Anominalrackmodelwithoutdegradationprovidesameasureofthereactivitychangeobtained&omthisdegradedmodel.4.3.4.1.2RackType2-BoratedStainlessSteelRackTheBSSrackscontaintwocelltypes.OnetypeismanufacturedRom3mm,boratedstainless-steelplates(SS304B7),andtheotherconsistsofa2mm,unboratedstainless-steelcan(SS304L).Figures1.3-8and1.3-12provideillustrativedrawingsforthisracktype.Thetwobasiccellsarefabricatedintoacheckerboardpatternwithanominal2.32mmwatergaplocatedbetweencellsinthex-ydirections.Themodelofthe2x2arrayofthetwodifferentcellsusesaperiodicboundaryconditiontocreateaninfinitearrayinthex-yplane(seeFigure4.3-6).4.3.4.1.3Region2CombinedModelforRackType4EvaluationRackType4(Figure1.3-13)issimilarindesigntorackType2.However,therearesomenotabledifferences.ThistypeconsistsofonlyasinglerowofcellswitharelativelylargewatergapbetweenrackType4andeitherrackType1orthepoolwall(seeFigure1.1-1).ThelargewatergapsallowstheabsorbercellstobefabricatedwithBSSplatesonlybetweenadjacentType4cells,i.e.,intheeast-westdirection.Basedonthesinglerowconfiguration,thistypecanbeadequatelyanalyzedonlyincombinationwiththeadjacentType1rack.Acombinedmodelwasdevelopedfortheinterfaceeffectevaluations(Section4.3.5)forTypes1,2and4,i.e.,thesouthfaceofType1(seeFigure4.3-7).Itwasusedfortheevaluationofthisrack.ThesouthfaceofType1waschosensincethisfacedoesnotcontainBoraflex.ThislackofBoraflexfacingtheType4rackmakesthismorereactivethanthenorthface.InclusionofType2allowsagoodassessmentofthetotalreactivityofRegion2.ThebaseinterfacemodelisdescribedinSection4.3.5.ModificationstothismodelweremadetoimplementthedegradedBoraflexmodelintotheType1model.Thus,abounding,geometricalmodelofRegion2iscontainedinthisevaluation.51-1258768-01GinnaSFPRe-rackingLicensingReportPage340
\V 4.3.4.2Region2LoadingCurveGenerationAsmentionedaboveforRegion1,theapplicationofburnupcreditrequiresseveralbasiccalculationalsteps:1)determineappropriateaxialpowershapesasafunctionofburnup,2)determineaxialintervalstobemodeled,andgenerateburnupisotopicsandcrosssectionsfortheseburnupintervals,3)integrateoperatinghistorydataintothemodeldirectlyorthroughappropriatepenaltiestobeappliedtothefinalresults,and4)iterateonburnupforaseriesofenrichmentstodevelopanacceptableburnupversusenrichmentcurveforthestoragerackdesign.Forarackcontainingcompletelyburnedfuelaxialeffectsaresignificantandmustbeassessed.Thissectionprovidesabriefdescriptionofthemethodologyfortheburnupcreditanalysis.DetailsforthesestepsareprovidedinSection4.4.2.ThismethodologyforburnupcreditisverysimilartothatacceptedbytheU.S.NuclearRegulatoryCommission4.I0,4.is,4.>64.3.4.2.1BaseBurnupvsEnrichmentCurveGenerationGenerationoftheburnupversusenrichmentcurveincludesconsiderationofaxialburnupeffectsandfuelirradiationconditions.Thisinformationisusedtoobtaintheisotopicconcentrationsoftheburnedfuelfortheanalysis.Abriefdescriptionofthisprocessisprovidedinthissection.AxialprofilesaredeterminedforselectedaverageburnupvaluesfromthreedimensionalfuelcycledesigndatafortheGinnareactor.TheseprofilesarethencollapsedintothesevenaxialsegmentsusedintheKENOV.amodel.Thetopandbottomthreesegmentsareexactlythesameburnups,andspacings,ofthe3Dfuelcycledesigncalculations.Thecenterburnupsegmentisadjustedtobalancetheaverageassemblyburnuptothedesiredburnupvaluewhenweightedwiththeburnupsattheendsoftheassembly.Previousstudieshaveshownthatthesevenaxialzonemodelprovidesresultsequivalenttoa15axialsegmentmodel'"whichnearlyduplicatesthenodesinthefuelcycledesignanalysis.ACASMO-3hot-full-powerdepletionisperformedtodeterminetheisotopicconcentrationsineachaxialsegmentattheappropriateburnupandfuelandmoderatortemperature.AsecondCASMO-3calculationprovidesthebasek;~forafuelassemblywithallisotopesfortheracktemperatureconditionatshutdown.AthirdCASMO-3rackmodelcalculatesthe~withonlytheshutdownfuelpinconcentrationsof'60nsU,+U,+U,+Pu,Pu,'Pu,and'm(xenonandiodineareeliminatedinbothrackCASMO-2calculation).Asmallamountof'isaddedtothefuelpinuntilthesecondCASMO-3k;~agreeswiththefirst.Inthismanner,theadded"BsimulatestheneutronabsorptionoftheisotopesnotpresentintheKENOV.amodel.Togeneratethecurve,aniterationprocessisusedtodeterminetheminimumburnuptogiveatargetk,ff,about0.94forthiscase.Iffortheinitialburnup,theKENOV.aisnotsatisfactory,theburnupischanged,andtheentireprocessrepeatedforagivenburnupprofile.Thismethodisrepeatedforseveralenrichmentstoobtaintheburnup/enrichmentpairsfortheloadingcurveinFigure4.1-2.ApolynomialisfittotheburnupversusenrichmentcurveofFigure4.1-2toallowgenerationofthepointsinTable4.1-2.Basedupontheconservatisminherentinthemodel,theuseofboundingaxialprofiles,andthepenaltiesapplied,theproximitytothe0.95criticalitylimitisjustified.4.3.4.3GenerationoftheLoadingCurveforAbnormalAssembliesFigure4.1-2definestheburnupversusenrichmentrequirementsfortheRegion2storageracks.Fuellocatedabovethebasecurve,areasAlandA2,canbeloadedanywhereinRegion2nexttofuelwithburnupsabovethebaseline.Mostoftheburnedfuelassembliescurrentlyresidingintheracks51-1258768-01GinnaSFPRe-rackingLicensingReportPage341 0
(diamondsinFigure4.1-2)fallinareasAlorA2.Toallowflexibility,andtoprecludefillingtheRegion1rackwithlowerburnedassemblies,evaluationsaremadetodeterminetheadministrativecontrolstoloadfuelassembliesfallingbelowthecurveinFigure4.1-2.Theseevaluationsexaminetwoclassesoffuelassembliesbelowthebasecurve:thosewithaverageburnupwithinaspecifiedburnuprangebelowtheburnupversusenrichmentcurvelimit,areaB,andthosewithburnupbelowthisrange,areaC.Theanalysisdevelopssecondarycurvestoallowstorageofthoseassemblieswithburnups(Figure4.1-2)uptoabout15%belowthenormalcurve,definedasareaB.Followingtheaboveprocedureforthenormalcurve,anadministrativeloadingschemeisdevelopedthatreliesonthetwosecondarycurvesinFigure4.1-2(theupperandlowerboundarylines).Theinterceptofthepolynomialfittothebasecurveisadjustedtofitaburnuppoint10%belowthebasecurveat5.0wt%"'Unominalenrichment.Thisvalueisfurtherreduced5%toaccountformeasuredburnupuncertaintytogiveatotalvalueof(0.9)(0.95)=0.855belowthe5.0wt%enrichmentcurvevalue.Thiscurvehasthesameslopeasthebasecurve.Baseduponthislowercurve,CASMO-3rackcalculationsgeneratetheupperboundarypolynomialline.Thisisdonewitharackmodelcontainingfourcellsthatcheckerboardthelowerlinefuelwithestimatedvaluesontheupperlinefor5.0wt%"'Ufuel.Theburnupfortheupperlineisadjusteduntilthek;,ofthemodelequalsthatforthebaseline.Oncetheburnupisdefined,theinterceptofthebaselinepolynomialisadjustedtofitthispoint.Thus,theuppercurvealsohasthesameslopeasthebasecurve.Itisnotedthatforlowerburnups,theburnupsinareaBmaybesignificantlylowerthan10%ofthenominalcurve.Theabovecalculationsdefineachecker-boardloadingscheme.AreaBassemblieswithburnupsabovethelowerburnupboundarymustbeloadeddirectlyadjacent(inacheckerboardpattern)toareaAlassemblieswithburnupsabovetheupperburnupboundaryline.AnotheracceptableloadingpatternforthesefuelassembliesisalternatingrowsofA1andBassemblies.IftheBfuelisplacedontheoutsideedgeofaracknearthepoolwall,A1fuelmustbeplaceddirectlyadjacenttoitintherack.KENOV.acalculationsatseveralenrichmentsverifythevalidityoftheadditionalcurves.Fuelwithburnupsandenrichmentsbelowthelowerboundaryline,designatedareaCfuel,requireanalternateloadingschemeforstorageintheRegion2fuelracks.ThelimitingareaCfuelassemblyisfreshfuelatanominalenrichmentof4.0wt%~'U.AKENOV.acalculationforthisconditionusestwo4.0wt%"'Ufreshfuelassembliesdiagonallyoppositeeachotherinacheckerboardpatternwithtwowaterlocations(noassemblies).Thus,theuseofwaterholesadjacenttofuelwillsatisfytheloadingcriteriaforanyenrichment/burnupcombination.ThisarrangementmaybeusedinplaceofstoringfuelbelowthelineinRegion1.4.3.5InterfaceEffectsTheinteractionbetweenRegions1and2,i.e.,interfaceeffects,isalsoexamined,aswellasthatbetweentheBoraflexracksandBSSracksinRegion2.Threeareasoftheracksinthepoolweremodeledtoassesstheseeffects.TheareasofinterestasshowninFigure4.3-7are:1.Interfacesbetween(1)racks3Cand2Band(2)racks2Band3E.2.Interfacesbetweenracks1,4F,and3A.3.Interfacesbetweenracks1,4C,and2A.51-1258768-01GinnaSFPRe-rackingLicensingReportPage342
 
Figures4.3-8,4.3-9,and4.3-10showsketchesofeachmodel.ThesameKENOV.ageometrymodelswereidenticalfortheexaminationofthe2B/3Cinterfaceandthe2B/3Einterface.Theonlydifferencewasthepositionofaspikeintheneutronstartingdistributionsattheinterfaceofinterest.Asimilarstarttypeapplicationwasappliedtomodels2and3listedabovefortheotherinterfaces.Ineachmodel,sufficientconcrete,19.7"(50cm),andwater,12"(30.48cm)ismodeledtoadequatelyrepresentreflectivesurfaces.4.3.6AccidentAnalysisTheaccidentanalysesexaminethefollowingassemblydropconditionsforeachregion:anassemblydroppedhorizontallyontopofrackTypes2and3andanassemblydroppedverticallybesideracks2Band3E.ForbothRegions1and2,theeffectofamisplacedassemblywasalsoexaminedtoensurecriticalitysafety.Foraseismicevent,thereductionintherackTypes2and3rack-to-rackseparationdistancewasexamined.Theseaccidentsareextremelyimprobable,andanyassociatedreactivityincreasecanbemitigatedbythesolubleboroninthepoolwater.Aspartofthisanalysis,thereactivityeffectofthesolubleboroninthewaterwasevaluatedtodeterminethereactivitymarginsfortheaccidentconditions.TheKENOV.aaccidentmodelsarebasedontheinfinite,orfinitebasemodelsforbothregions.Onlymodificationsnecessarytodescribetheaccidentconditionaremadetothebasemodels.Thisallowsassessmentoftheimpactoftheaccidentbyexaminingthereactivitydifferencebetweentheresultsfromnormalandaccidentmodels.4.3.6.1Region1AssemblyDropAnalysesRegion1assemblydropanalysesincludetheT-bone(shallowdrop),sidedrop,anddeepdropaccidents.Thefollowingparagraphsdescribethemodelsforeachaccident.TheT-boneaccidentisaclassofshallow-dropaccidentsinwhichthedroppedassemblyisassumedtolayhorizontallyatoptherack(seeFigure4.3-11).Thedroppedassemblyisrepresentedasafullassemblyinboththexandydirections.Periodicboundaryconditionsontherightandbottomfacesapproximateadroppedassemblyatthecenterofa24x24cellrackregion.Therackdeformationfromthedroppedassemblyisnegligible(Section3.5.3.2.3.2.1).However,forconservatism,themodelplacesthedroppedassemblyindirectcontactwiththetopoftheactivefuelregionoftheassembliesintherack,i.e.,theuppernozzlesareneglected.Thisprovidesaboundingaccidentscenario.Forareferencecasethesamemodelisusedwiththedroppedassemblyreplacedwithwater.Thedifferencebetweenthek,ffoftheaccidentandthereferencecaseprovidesthereactivityincreaseoftheaccident.TheT-bonemodelboundstheothershallow-dropaccident,theverticaldrop,inwhichthedroppedassemblyfallsintoastoragespaceandimpactsuponthetopofastoredassemblybutremainsverticallyabovetheassembly.Sincetheupperandlowerendfittingdimensionswillmaintainatleasta4"(10.16cm)gapbetweentheactivefuelregions,theaccidentislessreactivethanthemodeledT-boneaccident.Anyreactivityeffects&omtheminorbowingthatmayresultinthestoredassemblyduetotheimpactwillbenegligiblerelativetothemarginobtainedfromthesolubleboroninthepoolwater.51-1258768-01GinnaSFPRe-rackingLicensingReportPage343 I
TheRegion1side-dropmodelrequiredmodificationtotherackType3finitemodel(Figure4.3-4)inthatthesouthwestcornercellofrack3Ewasremovedandreplacedwitha&eshassemblyimmediatelynexttoracks3Eand2B(seeFigure4.3-12).Thisconfigurationisnotconsideredpossible,butisusedforconservatism.Thisistheonlylocationthatexistswhereanassemblycanbeverticallydroppedandhavefuelontwoadjacentfaceswithoutanabsorbermaterialbetweenthedroppedassemblyandthoseintheracks.Baseduponthisconsiderationitisalsothemostreactiveconfigurationforasidedropaccident.Asecondcasewiththedroppedassemblyreplacedwithwaterprovidesthebasecasefordeterminationofthereactivityincreaseduetotheaccident.Thedeep-dropaccidentconsidersafuelassemblydroppedintoarackcell(seeFigure4.3-13).Theassemblyisassumedtoimpactthebottomplateoftherackwhichissupportedbypadsonabout37"(94cm)centers.Itisassumedthatanassemblydropsatthecenterofasectionanddeformstherackbaseplatetothemaximumdeterminedfromthestructuralanalyses,2.12"(Section3.5.3.2.3.1.1).Thus,thedropcausesaconcavedepressionintheplate,withassembliespositionedalongthecurvedsurface,Figure4.3-13.Duetothecomplexityofexplicitlymodelingtheaccidentcondition,aboundinganalysisisused.Theanalysisassumedallfuelassembliesintherackweredisplaced3.2"(8.13cm)belowthebottomoftherack.Thehkfromabasemodelisdeterminedaswellastheminimumboronconcentrationpoolwaterneededtoreducethesystembelowthe0.95limit.NotethatduetothesimilarityinconstructionofrackTypes2,3,and4,theresultsfromtheType3rackboundsthosefromTypes2and4.Themisplacedassemblyaccidentassumesthatduringloadinganassemblyisplacedinalocationthatviolatestheloadingcurverequirements.Theaccidentmodelassumesthatafresh4.0wt%"Ufuelassemblyisplacedintoaspentracklocationbetweenfour&eshassemblies(seeFigure4.3-14)intheRegion1finitemodel.Themodelfocusestheneutronstartingdistributionintothemisplacedassemblytoensurethattheassemblyisadequatelysampled.Theresultofthismodelisthencomparedwiththatofthenormalcondition,finitemodeltoassesstheb,keffectofthemisplacedassembly.4.3.6.2Region2AssemblyDropAnalysesFouraccidentswereexaminedfortheRegion2racks:theT-boneonrackType2,sidedrop,misplacedassembly,anddeepdropintoastoragecell.Theaccidentmodelsassumedthattherackcontainedthehighestallowable&eshfuelenrichment.Thedroppedassemblyisassumedtobefresh4.0wt%'Ufuel.Theuseofthemaximumenrichmentprovidesaboundingaccidentanalysiswithrespecttofuelloadings.ThemodelfortheRegion2T-boneaccidentissimilartothatforRegion1.ForRegion2,rackType2wasusedfortheaccidentmodelsinceinanormalconditionitisslightlymorereactivethatType1.Figure4.3-11providesasketchofthemodelwiththedroppedassemblylayinghorizontallyacrossthetopoftherack.Theb,kisdeterminedfromtheresultsfromcaseswithandwithoutthedroppedassembly.Theside-dropaccidentforRegion2hasalreadybeenconsideredinthatusedforRegion1.ThedroppedassemblyispositionedadjacenttorackType3ofRegion1andType2ofRegion2(Figure4.3-12).AsnotedinthediscussionfortheRegion1accident,thisisaboundinganalysisandanindividualassessmentfortheotherracktypesofRegion2isunnecessary.IfrackType4isinstalled51-1258768-01GinnaSFPRe-rackingLicensingReportPage344 0'llq?,"<<.-
inthepool(Figure4.3-1),thereisinsufficientspacetoplaceanassemblybetweentherackandthepoolwall.However,priortoitsinstallation,thereissufficientroomforadroppedassemblytolodgebetweenthewallandrackType1.ThisagainisboundedbytheanalysisforthedroppedassemblylocatedinthecornerofTypes2and3.TheworstcaseforrackType1isadroponthesouthsideofthearraywhichdoesnotcontainBoraflexontheoutersurface.ThisisequivalenttotheassemblydroppedadjacenttotheType2rackcellwhichalsodoesnotcontainBSS-.Thus,onlyasinglelayerofstainlesssteelseparatestheassemblies.ThestainlesssteelintheType1rackisabout0.01"(0.0254cm)thickerthantheType2.Duetothemildabsorptionofthestainlesssteel,thiswillreducetheeffectofthedropintheType1rack.Inaddition,basedupontheresultsfromtheType2and3sidedrop(Table4.3-13),theeffectisminimalandalowlevelofsolubleboronreducesmaintainsk,~withinacceptablelimits.AmisplacedassemblymodelwascreatedforrackTypes1and2similartothatforRegion1.Ineachmodela4.0wt%~'UfuelassemblyisplacedeitherintotheBoraflexcellofrackType1(seeFigure4.3-15),orintothestainlesssteelcellofrackType2.Themisplacedassemblyisplacedinalocationtoprovideaboundingreactivityincrease.Bothmodelsfocusthestartingneutronsintothemisplacedassembly.TheBoraflexrackmodelincludesBoraflexdegradationandassumesthatthemisplacedassemblyisplacedinthemostreactivecheckerboardlocationofspentfuelassemblies.Themodelassumesaninfinitearrayof144cellswitha4wt%~'UOFAassemblynearthecenterofthearray.Theresultsofthesemodelsarethencomparedwiththoseofthefinitegeometrymodelstoassessthehkeffectofthemisplacedassembly.ThedeformationduetothedeepdropaccidentforrackTypes2and4isequivalenttothatforrackType3(Figure4.3-13).Thus,they,arecoveredbythatanalysis.RackType1hasbeenfabricateddifferently&omtheType2,3,and4racks.Ratherthanasinglebaseplateacrossthebottomofeachrack,individualplatesareweldedatthebottomofeachcelltosupportthefuelassembly.Thus,underthehypotheticaldropaccident(Figure4.3-16),itisassumedthatthebottomweldsbreak.Thiswillallowamaximumof14"(35.56cm)oftheassemblytobeexposedbelowtherack.Duetotheuniqueconstructionofeachcell,thereisnodamage,ordeformation,insurroundingcells.Twotypesoffuelassembliescanbeconsideredforthisaccident.Foraspentassemblythatcanbestoredinthecellinwhichitisdropped,thepostaccidentconditionisequivalenttoapartiallyinsertedassemblyduringloadingandresultsinnoimpactoncriticalitysafety.Similarlyforafresh4.0wt%~'Ufuelassembly,thisaccidentisboundedbythemisplacedassemblyaccident.Theportionofthedroppedassemblyinthecellisequivalenttoamisplacedassemblyandisboundedbythatevaluation.The14"(35.56cm)displacementbelowtherackisequivalenttheportionofanassemblythatprotrudes&omtherackduringinsertion.Thisportionisessentiallyisolatedfromtheassembliesintherackandthusdoesnotaffectthereactivityoftherack.Thus,sincethisaccidentconditionisboundedbythemisplacedassemblyaccident;theminimumsolubleboronconcentrationinthepoolissufficienttooffsetanyreactivityincrease.4.3.6.3SeismicAnalysisThestructuralanalysisfortheseismicaccidentindicatesthattherewillbenoimpactsbetweenadjacentracksorbetweentheracksandthepoolwalls(Section3.5.3.1.14).Thus,thereisnomechanismforsignificantpermanentrackdeformationsineitherrackregion.Theanalysisshowsthatduringtheworstseismicevent,thegapsbetweentherackswillalwaysbegreaterthan0.071"(0.18cm),seeTable3.5-137and3.5-138columnlabeled'FinalGapBetweenRacks'.Thisincludes51-1258768-01GinnaSFPRe-rackingLicensingReportPage345 r
bothlateralmovementandmomentaryswayingoftherackduringtheseismicevent.Thus,thereis'nophysicalcontactbetweenadjacentracks.Basedupontheseresults,anevaluationofthereactivityeffectofrackmovementwasmadeforRegions1and2andfortheinterfacesbetweentheseregions.Thespecificmodelsfortheseismiceventsarediscussedbelow.4.3.6.3.1Region1SeismicAnalysisTheRegion1basedplatesnormallyarespaced0.79"(2.0cm)apart(seeFigure3.5-36),approximatelymaintainingtherackcellpitch.Fortheseismicanalysis,itisassumedthateachrackType3baseplatetouchesthatoftheadjacentrack.ThegeometrymodelfortheRegion1seismicmodelisidenticaltoRegion1interfacemodelsketchedinFigure4.3-7,exceptthatthenominalwatergapsbetweenthebaseplatesarereducedtozerowidth,i.e.thebaseplatesaretouching.Theb,keffectoftheRegion1seismiceventisdeterminedfromthedifferencebetweenthenominalwatergapmodelandthemodelwithoutwatergapsbetweenthebaseplates.4.3.6.3.2Region2SeismicAnalysisAsinRegion1,theseismiceventmaycausethefreestandingRegion2rackstoshiA,onerelativetotheother,suchthatthebaseplatesmaytoucheachother.Thisaccidenthasnoeffectonthecurrentcriticalityanalysis,sinceaninfinitearrayofcellsisconsideredwithoutinter-rackspacings.Thus,thebasemodelisidenticaltoaseismicmodel.Soeveniftheracksmovedirectlyadjacenttoeachotherorifthecansswayandtouchatthetopwithoutrackmovement,theresultinggeometryisnomorelimitingthantheinfinitelattice.ThisisverifiedfurtherbytheexplicitinterfacemodelsforRegion1and2inthenextsection.4.3.6.3.3InterfaceRegionSeismicAnalysisTheseismiceventisassumedtomovealltherackssothattheirbaseplatesaretouching.ThiswasmodeledfortheType1,2,and3racks.ForType4amoresevereresultwasmodeled.ThismodelassumedthattheType4rackswerecompresseduntiltheytouchedtheedgesoftheType1racks.=AlltheseconditionsarebeyondtheseismicconditionsprojectedbythestructuralanalysesinSection3.5.3.1.14.Attheinterfacebetweenthetworegions,theseismiceventisassumedtoreducethespacingbetweenRegions1and2.Thecombinedinterfacemodelisusedwithareducedspacingbetweentheregionsof0.004"(0.01cm).Again,thisboundsanyactualcalculatedminimumgapof0.071"(0.18cm),whichreducestheseparationbetweencellsfrom1.57"(4.0cm)to0.85"(2.17cm).Thedifferencebetweentheresultsoftheseismicandthebaseinterfacemodelsdeterminethehkoftheevent.Aswiththeinterfacemodels,thesizeoftheracksrequiresanexaminationofselectedportionsoftheracks(seeFigure4.3-7).ThefirstevaluationexaminedtheType2and3movement.TheevaluationseismiceffectsontheType1racks,weredividedintoeffectsforTypes1,2A,and4C,i.e.,thesouthfaceoftherack,andthenorthface,Types1,3A,and4F.ThesouthfaceisexpectedtoshowthehighestincreaseinreactivitybecauseofthelackofBoraflexonthesouthfaceoftheType1rack.4.3.7SummaryofResultsThissectionliststheresults&omthevariousanalysesfortheGinnastorageracks.Theyshowthattherackssatisfythe0.95criticalitysafetycriterionforbothnormalandabnormalconditions.Thebasesforthisconclusionareprovidedinthissection.51-1258768-01GinnaSFPRe-rackingLicensingReportPage346 4.3.7.1AnalyticalResultsforRegion1TheresultsforthenormalconditionofRegion1arelistedinTable4.1-3whichprovidesthecalculatedk,ifandthemaximumk,Kasafunctionofburnupandenrichment.AccidentconditionreactivitiesaresummarizedinTable4.3-13.Abriefdiscussionoftheseresultsisgiveninthissection.4.3.7.1.1NormalConditionResultsEachmodelusedinthisanalysisprovidesacalculatedk,baseduponnominaldimensions.Thus,theeffectsofvariationsaroundthenominalandbiasesmustbecombinedwiththecalculatedk,atodeterminemaximumK-effective(Kg.Table4.3-12summarizestheRegion1penalties,uncertainties,andbiasesthatareusedtoobtainK.KiscalculatedforRegion1asfollows:<=>,g+~>+~>+(1763*~,)'+(1763*0hI)'+(0,)'here,b,kb;hk<cObi~0~0iisthecalculatedkfromKENOV.a;istheKENOV.amethodologybias;isthesumofpenaltiesforpooltemperatureandoff-centerplacement;istheKENOV.astatisticaluncertaintyink,ff,istheuncertaintyintheKENOV.amethodologybias;isthesumoftoleranceuncertainties.TheRegion1analysesconsideredfresh4.0wt%"'Ufuelcheckerboardedwithspentfuel.ThespentfuelburnupversusenrichmentcurveillustratedinFigure4.1-1specifiestheminimumburnupversusenrichmentfortheloadingspentfueladjacenttofreshassembliesinthisregion.Thetargetofusedtogeneratethecurvewasapproximately0.92toprovideaKofabout0.94.TheKENOV.aresultsareshowninTable4.1-3.Theseresultsarebasedupon1,000,000neutronhistories(1000batchesof1003neutrons),asareallKENOV.aresults.Asseen,thehighestKforanyenrichmentis0.943withamargintothelimitof0.0081.ThisverifiesthattheRegion1rackssatisfythecriticalitysafetycriterionforfreshfuelwithanominalenrichmentlesss4.0wt%"'U.TheminimumburnupvalueslistedinTable4.1-3arethosethatprovidethedesiredk,ir&omKENOV.a.However,theloadingofassembliesintherackisbasedupon'measured'urnupsfromtheplantcomputer.Toaccountfortheuncertaintyinthemeasuredburnup,thecalculatedburnupsusedintheloadingcurveareincreasedby5%.The5%valueisbaseduponthefluxmapmeasurementuncertaintyoftheincoredetectors'"andissimilartotheuncertaintyofotherWestinghouseplants""'".Sinceburnupistheintegratedpowerovertime,thepoweruncertaintylimitsthemaximumuncertaintyinburnuptolessthan4%fortheintegratedpowerand5%forthelocalpower.Thus,a5%valuehasbeenconservativelyselectedfortheuncertaintyoftheassemblyaveragemeasuredburnup.51-1258768-01GinnaSFPRe-rackingLicensingReportPage347 s~.+~C'O'.'E-4!'
4.3.7.1.2BurnupVersusEnrichmentCurveApolynomialcurveisgeneratedtoalloweasydeterminationoftheburnuplimitatagivennominalenrichmentbasedonthedatapointsinTable4.1-3.Amultipleregressionanalysisisperformedontheenrichment/burnuppoints,andathirdorderpolynomialisdetermined.TheresultingpolynomialcurvethatdifferentiatesRegionAfromRegionBinFigure4.1-1is:y=-53.570547+38.06359x-7.81411x'+0.692842x'herexisnominalenrichmentinwt%"UandyisintermsofeitherMWd/kgUorGWd/mtU.Baseduponthispolynomial,theminimumburnupforfuelwithanominalenrichmentof4.0wt%"'Uis28GWd/mtU.FortheloadingcurveandTable4.1-1,thisvalueismultipliedby1.05toaccountfortheburnupmeasurementuncertainty.Thus,forfuelwithanominalenrichmentof5.0wt%'Ufuel,aminimumburnupof29.4GWd/mtUisrequiredforthespentfueltobeloadedinRegion1.Table4.1-1liststheacceptableburnupsversusenrichmentsbasedupontheabovepolynomialfittoverifiedpointsatenrichmentsof2.22,3,4,and5wt%.4.3.7.1.3IFBARodRequirementsThepreviouslicensinganalysis'"usedtheconceptofreactivityequivalencingforstorageoffuelassemblieswithnominalenrichmentsgreaterthan4.0wt%~'UintheRegion1racks.Thisconcept,baseduponthereactivitydecreaseassociatedwiththeadditionofIntegralFuelBurnableAbsorbers,isretainedforfuelwithnominalenrichmentsgreaterthan4.0wt%"'U.TheIFBAanalysisperformedforthepreviouslicensingreportwasnotrepeatedinitsentirety.However,CASMO-3calculationswereperformedtoverifythattheIFBArequirementsspecifiedinthatanalysisremainvalidfortheBSSracksofRegion1.Similarly,thekreferencecriticalityreactivitypointwasverifiedas1.458forfreshfuelinGinnacoregeometrywithanominalenrichmentof4.0wt%~'U.Thus,theresults,andappropriateuseoftheresults&omthepreviousanalysisremainsapplicabletostorageoffuelassemblieswithnominalenrichmentsgreaterthan4.0wt%"UintheRegion1racks.Forcompleteness,theappropriateIFBAsectionsofthepreviouslicensingdocumentarelistedinSection4.4.3.4.3.7.1.4AccidentConditionsTheresultsfortheanalysisoftheassemblydropaccidents,i.e.,T-bone,misplacedassembly,sidedropanddeepdrop,arediscussedinthissection.Inaddition,theresults&omtheseismiceventareprovidedforallracktypes.a)AssemblyDropAccidents-TheRegion1assemblydropanalysesincludetheT-bone,sidedrop,deepdrop(ordropthrough)accidents,andthemisplacedassembly.Table4.3-13summarizestheresultsfromtheseanalyses.TheT-boneaccidenthasaminimaleffectonreactivity,i.e.,withinthestatisticaluncertaintyofthecases,eventhoughitisaveryconservativemodel.Themisloadingofa4wt%'Ufreshassemblybetweenfouradjacentassembliesshowsonlyasmallreactivityincrease,about1%b,k.Thedeepdropaccidentwithmaximumexpecteddeformationofthebaseplateshowsessentiallynochangeinreactivity.Thedroppingofanassemblyinthecasklaydownarea(Figure4.3-12),inthecornerbetweenracks3Eand2B,showsthelargestincreaseforadroppedassembly,about4%hk.Sinceapplicationofthesolubleboroncreditisallowedbythedouble51-1258768-01GinnaSFPRe-rackingLicensingReportPage348 1141*4,~<<4 contingencyprinciple,300ppmboronwasaddedtothewaterinthemodel.Thisreducedthereactivityabout2%hkbelowthebasecase,orabout6%h,kbelowtheaccidentvalue.Thus,asmallconcentrationofboroninthepoolwater,<300ppm,easilycompensatesforthereactivityfromanyoftheseaccidents.b)SeismicConditions-AsdiscussedinSection4.3.6.3,theseismiceventisassumedtohavemovedalltherackssothattheirbaseplatesaretouching.ThiswasmodeledfortheType1,2,and3racks.ForType4amoresevereresultwasmodeled.ThismodelassumedthattheType4rackswerecompresseduntiltheytouchedtheedgesoftheType1racks.Alltheseconditionsarebeyond.thepost-eventconditionsprojectedbythestructuralanalysesinSection3.5.3.1.14.TheresultsoftheanalysesarelistedinTable4.3-15.ThefirstevaluationexaminedtheType2and3movement.Theaccidentresultsinabouta0.4%hkincreaseinreactivityoverthenormalcondition.DuetothenumberofType1racksinRegion2,theevaluationofseismiceffectsontheType1racksexaminedonlyportionsofRegion1(seeFigure4.3-7).TheeffectonType1,andracks2Aand4C,i.e.,thesouthfaceoftherack,andType1andracks3Aand4F,thenorthface,wereconsideredindividually.Thesouthface,asexpected,showedthehighestincrease,about1%hk.ThiswasexpectedduetolackofBoraflexonthesouthfaceoftheType1rack.ThenorthfaceshowedanincreaseequivalenttothatforTypes2and3alone,about0.4%hk.Duetothesmallchangeinreactivityassociatedwiththisaccident,the300ppmsolubleboronrequiredtocovertheside-dropaccidentismorethansufficienttocovertheseismiceventeffects.4.3.7.2AnalyticalResultsforRegion2TheRegion2analysisrequiresamorein-depthdiscussionsinceburnupcreditismoreextensivelyappliedinRegion2.TheresultsforthenormalconditionsarediscussedinSection4.3.7.2.1.DevelopmentoftheburnupversusenrichmentcurveisaddressedinSection4.3.7.2.2.Adiscussion*oftheauxiliarycurvesthatallowtheloadingofabnormalassembliesisprovidedinSection4.3.7.2.3.FinallyaccidentconditionresultsarerelatedinSection4.3.7.2.4.4.3.7.2.1AnalyticalResultsforNormalConditionsEachmodelusedinthisanalysisprovidesacalculatedk,irbaseduponnominaldimensions.Thus,adjustmentsaremadetothecalculatedk,~toobtainthemaximumk,a(Kg.Table4.3-12summarizestheRegion2uncertainties,penalties,andbiasesandcombinestheindividualvaluestoprovidetheoveralladjustmentasafunctionofracktype.Thesevaluesarethenappliedtothek,a.calculatedbyKENOV.aasfollows:IC,=k,~+6kb,+6k,+(1.763+0,)+(1.763+ob,)+(oI)51-1258768-01GinnaSFPRe-rackingLicensingReportPage349
~~I where,8kb;b,kOcObi~o~oiisthecalculatedkfromKENOV.a;istheKENOV.amethodologybias;isthesumofpenaltiesforpooltemperature,"Bself-shielding,andoff-centerplacement;istheKENOV.astatisticaluncertaintyink,a;istheuncertaintyintheKENOV.amethodologybias;isthesumoftoleranceuncertainties.AsdiscussedinSection4.4.2.4,asignificantamountofBoraflexdegradation,i.e.,bothgappingandlossofthickness,areincludedinthebasemodelfortheType1rack(providingahkmarginof0.048,seeSection4.4.2.4).Tofacilitatethemanagementoftheloadingoftherack,asingleloadingcurveforallthreeracktypesisdesired.Thus,theloadingcurveforType1isbounding.Thisrackrepresentsthebasemodelthatisusedtogeneratetheloadingcurve.Subsequently,theapplicationofthiscurvetoTypes2and4willvalidatetheconservatismofasingleloadingcurveforallracktypesinRegion2.TheburnupversusenrichmentcurveforRegion2isillustratedinFigure4.1-2.Itspecifiestheminimumburnupversusenrichmentforloadingspentfuelinthisregion.Thetargetk,ausedtogeneratethecurvewasabout0.93toprovideagofabout0.94.TheresultsoftheKENOV.acalculationsareshowninTable4.1-4foralltheracktypescomprisingRegion2.Asseen,thehighestKforanyenrichmentis0.946withamargintothelimitof0.004.ThisverifiesthattheRegion2rackssatisfythecriticalitysafetycriterion.AlsorecallthatthevaluesfortheType4rackresult&omafinitemodelthatcombinesallthreetypesinRegion1andrepresentsthemorereactivesouthface.ThiscombinationshowsthattheinfinitemodelsusedtogeneratetheresultsforTypes2and3providesanadditionalmarginintheresultsoverthatfromamoreexplicitfinitemodel.4.3.7.2.2BaseBurnupVersusEnrichmentCurveAswithRegion1,apolynomialcurveisgeneratedforRegion2toalloweasydeterminationoftheburnuplimitatagivenenrichment.ForRegion2,thebasecurvefitsthedatapointsfromtheType1resultsinTable4.1-4.Amultipleregressionanalysisisperformedontheenrichment/burnuppoints,andathirdorderpolynomialisdetermined.TheresultingpolynomialcurvethatdiQerentiatesregionsA1andA2fromregionsBandCinFigure4.1-2is:y=-27.058824+17.69608x-0.41176x'0.04902x'herexisthenominalenrichmentinwt%'UandyisintermsofeitherMwd/KgUorGWd/mtU.Baseduponthispolynomial,theminimumburnupforfuelwithanominalenrichmentof5.0wt%"Uis45GWd/mtU.FortheloadingcurveorTable4.1-2,thisvalueismultipliedby1.05toaccountfortheburnupmeasurementuncertainty.Thus,forfuelwithanominalenrichmentof5.0wt%"'Ufuel,aminimumburnupof47.25GWd/mtUisrequiredforthespentfueltobeloadedinRegion1.Table4.1-2liststheacceptablebaseminimumburnupsversusnominalenrichments&omtheabovepolynomialfittoverifiedpointsatnominalenrichmentsof1.6,3,4,and5wt%.51-1258768-01GinnaSFPRe-rackingLicensingReportPage350 4.3.7.2.3LoadingCurveforAbnormallyBurnedAssembliesFigure4.1-2showsthebaselinecurveandallassembliesthatarecurrentlystoredintheGinnastoragerack.Asnotedmostassemblieshaveburnupsabovetheloadingcurve,areasAlandA2.However,someassembliesdonotmeettheminimumburnuprequirements.ThisconditionistheresultofaccommodatingasignificantamountofBoraflexdegradationintothemodels.Withoutthisdegradationmodel,allassemblieswouldsatisfythecurvefortheBoraflexrack,asisnotedinthecurrentlicense.However,withtheBoraflexdegradationallassembliesdonotmeettheloadingrequirements.TheseassembliescanbeloadedintoRegion2withmorerestrictiveadministrativecontrols.Anauxiliarysetofloadingcurvesisobtainedforassembliess10%belowthebasecurve,'efinedbyareaB.Theseassembliesmustbeloadedinacheckerboardarrangementwithfuelassemblieswithburnupsabovetheuppercurve,inareaAl.Thesecurvesaredefinedbythefollowingpolynomials:y,=-33.584697+17.69608x-0.41176x'0.04902x'=-19.565780+17.69608x-0.41176x'0.04902x'here,y,istheequationofthelowerlinedefiningthelowerlimitofareaB,andyistheequationoftheupperlinedefiningthelowerlimitofareaAl.TheselinesarebasedupontheKENOV.aresultsforstorageoffuelwithanominalenrichmentof5.0wt%~'Uwithburnupsat38.5and55.2GWd/mtUinacheckerboardarrangementinrackType1.Table4.1-4liststheKforthispoint.Thisvaluewasobtainedbyapplyinganaxialcorrectionfactortothecasethatwasevaluatedforauniformaxialshape,seeSection4.4.2.Thepolynomialfitwasgeneratedbasedupontheconstantsofthebasecurvewiththeinterceptchosentopassthroughtherequired5wt%'Uupperandlowerburnuppoints.Pointsat3and4wt%"Uwereevaluatedtoverifytheconservatismofthiscurve.Forthe3and4wt%"Uenrichments,upper/lowerburnupsof18/25and29.1/40GWd/mtUwereassumedinthecalculation,respectively.Theseburnupsarewithintheupperandlowercurves,i.e.,requiringupper/lowerburnupsof15.2/29.9and28.8/43.5GWd/mtUfor3and4wt%,respectively.Thek,ffvaluesforthechosenburnupswere0.92840and0.90950,respectively.Bothvaluessatisfythecriticalitycriterionwithallfactorsincluded.Thus,eventhoughtheupperburnupisinareaA2,thecriticalitycriterionismet.Thisshowsthatthereisconservatismbuiltintothepolynomial.4.3.7.2.4ResultsforAccidentConditionsTheresultsfortheaccidentsconsideredforRegion2arelistedinTable4.3-14.TheseincludetheT-boneandmisplacedassemblyanalysisforrackType2andthemisplacedassemblyanddeepdropaccidentforType1.Theside-dropaccidentforallracktypesisboundedbythatlistedinTable4.3-13forthedropintothecornerofracks2Band3E(Figure4.3-12).ThedeepdropaccidentforTypes2and4areequivalenttothatforType3sincethebaseplatesareofsimilarconstructionandwillexperiencethesamedamageforthisaccident.DuetothefabricationsimilaritybetweenrackTypes2and4,theaccidentresultsforthesetworackswillbeequivalent.Sincethereactivityincreasesareminimal,anindividualevaluationforType4isnotnecessary.51-1258768-01GinnaSFPRe-rackingLicensingReportPage351 AreviewofTable4.3-14showsthatthereactivitychangesfortheType2andType4racksarelessthan1%ddcforallthedropaccidents.'ThissmallchangeiswithintherangeofthatforType1andeasilycoveredby450ppmsolubleboron.TheType1rackmisplacedassemblygivesareactivityincreaselargertothatoftheside-dropaccident.Themisplacedfreshassembly,seeFigure4.3-15,isassumedtoreplaceanA1assemblyarrangedinacheckerboardpatternwithassemblies&omareaB.Thisistheboundingmisplacedaccidentconditionforthisregion.Aminimumsolubleboronconcentrationof450ppmreducesthereactivitytoabout2%hkbelowthereactivityofthenormalcondition.Thus,asmallamountofsolubleboronadequatelynegatesthereactivityincreasefromthisoranyotheraccidentcondition.4.3.SFuelRodConsolidationThestoragerackscurrentlycontainseveralconsolidatedfuelcontainersandaredesignedtoaccommodateadditionalfuelconsolidationinthefuture.Figure4.3-17providesasketchoftheconsolidationcanisterwithdimensionsbaseduponTable4.3-2.ThestorageofthesecontainerswasevaluatedwithaseriesofKENOV.acalculationsforbothnormalandabnormalconditions.Theresultsofthesecalculationsconfirmthecriticalitysafetyofstorageofconsolidationcontainersinthestorageracks.TheevaluationoftheconsolidationcanisterswasmadewithmodificationsofthebasicKENOV.arackmodels.Themodificationsinvolvedreplacingspentfuelassembliesineachoftherackregionswithamodeloftheconsolidationcanister.Thebasecanistermodelassumedonlyasquarestainlesssteelcanwithanoutersquaredimensionof8.02"(20.371cm)andawallthicknessof0.089"(0.2261cm).Thesedimensionsincludetolerancevalues,seeTable4.3-2,toprovidethelargestinteriordimensionforthecontainer,7.842"(19.919cm).Thisdimensionwillprovidethelargestpitchforthefuelrodsinthecontainerandthusoptimizethereactivity.Thebasecanistermodelcontained144"(356.76cm)fuelrodswithoutaxialblanketsorintegralabsorbers.ForRegion1,fresh2.22wt%~'Urodswereplacedinthecontainer,whileforRegion2,1.6wt%~'Urodsweremodeled.TheoptimumreactivityofthecontainerineachtyperackwasthenobtainedwithaseriesofKENOV.acasesbyvaryingboththenumberandpitchoftherodsinthecontainermodel.Table4.3-11liststheoptimizedresultsofthisevaluationforRacktypes1,2,and3~ThesimilaritybetweenrackTypes2and4obviatedtheneedforanevaluationfortheType4rack.TheresultslistedinTable4.3-11forRackType1showthatfor1.6wt%"Urodsthecriticalitycriterionissatisfiedfortheoptimizedcontainerwitheither196rodsfromaWestinghousestandardassemblyor225rodsfromaWestinghouseOFAassembly.Theseresultsarebasedupontherackmodelwithboraflexdegradation.TheseresultsdifferRomthepreviousanalysis'"forthisrackintworespects.First,theyshowthattherearenorestrictionsonthenumberofrodsthatcanbeplacedinthecontainer.Second,theoptimizedarraysizeis196forStandardand225forOFArodsinthisanalysisfor1.6wt%'Urods,andwas169forStandardrodsat1.85wt%and196forOFArodsat1.95wt%inthepreviousanalysis.Theoptimizationofrodsisdependentuponboththeconfigurationinwhichtherodsareplacedandupontheenrichmentoftherods.ForRackType1theenrichmentistheprimarycauseforthedifferences.ThiswasverifiedbyrepeatingthecalculationswiththeconditionsusedinthepreviousanalysiswhichshowedagreementessentiallywithinthestatisticaluncertaintyofKENOV.a.Anadditionalevaluationwasmadetoassesstheeffectofthecenterplateinthisrack.Thecenterplatewasaddedtothemodelbetweenthecenterpinsinthecontainer(forthearraywithanoddnumberofpins,itwasplacedtoonesideofthecenter51-1258768-01GinnaSFPRe-rackingLicensingReportPage352 C
ofthecontainer).Nore-optimizationwasmadeforthisconfiguration,howeverduetothethinnessoftheplate,itisjudgeditwillnotsignificantlyeffecttheoptimizationparameters.TheinsertionofthecenterplatereducedKbyabout2.7%hkforboththeOFAandStandardassemblies.Thus,thereissignificantconservatisminthemodels.TheRackType2resultsinTable4.3-11aresimilartothoseofRackType1relativetotheoptimumpitch.ThelowerKvaluesreflecttheconservatisminherentinthisrack.ThisconservatismisbaseduponburnupversusenrichmentcurvesbaseduponadegradedRackType1modelthatisappliedtoRackType2.TheRackType3resultsinTable4.3-11illustratetheeffectofthe'onfigurationinwhichthecontainerisplaced.TheRackType3configurationcausestheoptimumnumberofOFArodstopeakat196ratherthan225rods.BothRackType2and3resultsshowthatthecriticalitycriterionissatisfiedwithoutmodelingthecenterplate.Additionalmarginexistsduetothepresenceofthecenterplate.Theseresultsindicatethatfornormalconditions,thecriticalityconditionissatisfiedforstorageofconsolidationcontainersinlocationsforintactspentassemblies.Theanalysisexaminedthemaximumfreshfuelenrichmentallowedbytheburnupversusenrichmentcurveforeachregion.Baseduponthereactivityequivalencyofthesecurves,spentfuelrodswithenrichmentandburnuppairsintheacceptableareasofthesecurvescanfillthecontainersandsatisfythecriticalitycriterion.Theabnormalconditionconsidersalltherodsspillingfromtheconsolidationcontainerintothestoragepool.Toboundtheaccidentcondition,itisassumedthattherodsformintoanoptimizedsquarearrayinthestoragepool.A19x19arrayofrodsismodeledthatprovidesa361-rodarraytoboundthemaximumnumberofrodsthatcanbestoredinthecontainer,358.Theevaluationconsidersarraysofboth1.6and2.22wt%"'Urods.CASMO-3calculationsdeterminedtheoptimumpitchfortheseenrichmentsatabout1.95cmand2.05cm,respectivelyforthe1.6and2.22wt%"'Urodsinasquarearray.Thisoptimizedarrayof144"(365.76cm)longfuelrodswasmodeledwithKENOV.awithaninfinitewaterreflectortodeterminethek,irofthearrayforbothenrichments.Forthe1.6wt%~'Urods,KENOV.aobtainedak,~+1oof0.87510+0.00059,wellbelowthe0.95limit.For2.22wt%"'Urods,thek,~+10was0.97697+0.00059inunboratedwaterand0.80706+0.00056withamoderatorboronconcentrationof450ppm.Theminimalconcentrationofboroninthemoderatorsignificantlyreducesthereactivityofthisaccident.Basedupontheseresults,withtheminimumboronconcentrationof450ppm,thesafetycriterionissatisfiedforthefuelrodsthatsatisfythespentfuelburnupversusenrichmentcurvesforeitherRegion1or2.4.3.9AcceptanceCriteriaforCriticalityThiscriticalityanalysisevaluatesWestinghouse-OFA&eshfuelandWestinghouseStandardfuelintheRegion1and2racksoftheR.E.GinnaNuclearPowerPlant.Amaximumnominalenrichmentof4.0wt%~'U&eshfuelisjustifiedforRegion1.Freshfuelenrichmentsabove4.0wt%'Utoanominal5.0wt%~'UareallowedwithanappropriatenumberofIFBArodsloadedintheassemblies.ThisisaccomplishedbyacheckerboardloadingplanwithspentfuelloadedaccordingtothecurveinFigure4.1-1.ForRegion2,initialenrichmentsuptoanominal5.0wt%~'UmaybeloadedaccordingtotheloadingcurveillustratedinFigure4.1-2.Bothnormalandaccidentconditionshavebeenevaluatedforthesetworegions.Theaccidentsconsideredare:51-1258768-01GinnaSFPRe-rackingLicensingReportPage353 1.Adroppedassemblyontop,beside,andintotheracks.2.RackmovementsforRegion1,2,andtheinterfacebetweenRegions1and2.3.AmisplacedassemblyforRegions1and2.TheanalysisfurtherdemonstratesthatthecriticalitycriterionisnotaffectedbytheinteractionofRegion1and2racksundernormalconditions.BurnupisusedasamechanismtocontrolthereactivityoftheRegion1andRegion2storageracks.ForRegion1,anominalenrichmentof5.0wt%~'Urequiresaminimumburnupof29.4GWd/mtUtobeloadedinacheckerboardpatternwith&eshfuelwithreactivitieslessthanorequaltothatfornominal4.0wt%"'UfuelwithnoIFBArods.TheRegion2racksrequireaminimumburnupof47.25GWd/mtUforanominalenrichmentlimitof5.0wt%~'U.Thevaluesusedtodeterminetheminimumburnupasafunctionofinitialenrichmentaccountfortheeffectofmanufacturingandfuelassemblytoleranceeffectsonreactivity.Inaddition,thetabulatedminimumburnupslistedinTables4.1-1and4.1-2includeaburnup'measurement'ncertaintyof5%.TheevaluationofconsolidatedfuelcontainersdemonstratesthatthecontainersmaybestoredanywhereinRegions1and2followingtheloadingrequirementsofthatofthemostrestrictiverodintheconsolidatedcontainer.Thisappliestoeithercompletelyfilled,358rods,orpartiallyfilledcontainers.4.4SUPPLEMENTARYINFORMATIONThissectionprovidesadditionaldiscussionsabouttheevaluationoftheKENOV.abiasandtheprocedurefollowedtogeneratetheburnupversusenrichmentcurves.Section4.4.1describesthecomparisonbetweenKENOV.aandexperimentalresultsandtheevaluationoftrendsinthecomparison.AdescriptionofthefacetsinvolvedwithgeneratingtheloadingcurvesincludinganillustrationoftheaxialshapeeffectisprovidedinSection4.4.2.4.4.1KENOV.aBiasTheKENOV.abiasisevaluatedinthissection.Anexaminationoflightwaterreactorcriticalexperimentsforlow-enriched~'Ulatticesindicatesatrendinthebiasrelatedtotheseparationdistancebetweenassemblies.Atotaloffifty-sevencriticallightwatermoderated,low-enrichedfuelconfigurationsareevaluatedwithKENOV.aandthe44groupcrosssectionlibrary.Atrendofincreasedbiaswiththeseparationdistancebetweenfuelarraysisnoted(seeFigure4.4-1)suchthatthebiasreachesamaximumb,kof-0.0087+0.0026(1.7630uncertainty)witha2.576"(6.543cm)spacingbetweenthefuelarrays(Table4.4-1).BaseduponthistrendthebiasesforRegion1andRegion2asrelatedtotheseparationdistanceoftheedgesoftheassembliesintheracksare-0.0070+0.00096,kforRegion1(1.46"or3.7cmseparation)and-0.0056+0.0009hkforRegion2(0.65"or1.64cmseparation),seeTable4.4-1.Abriefdescriptionofthecriticalexperiments,determinationofthebias,andvalidationofthetrendisprovidedinthissection.4.4.1.1CriticalExperimentsAtotaloffifty-sevencriticalexperimentswasevaluatedwithKENOV.atodeterminethebiasinherentinitsmethodology.Allexperimentswereconductedtosimulatelow-enriched,light-waterreactorfuelarraysinstoragepoolconfigurations.ThisincludesbothUO,andmixedoxidefuelcompositions.Theexperimentscontainuraniumenrichments&omabout2.3to5.7andplutonium51-1258768-01GinnaSFPRe-rackingLicensingReportPage354 enrichmentsRom2to6wt%.Rackgeometryissimulatedwithvariationsonfuelarrayspacingsandwithinterspersedabsorbermaterialsbetweenthearrays.Thus,alltheseexperimentsaredirectlyapplicabletorackanalyses.Theexperimentshavebeendividedintofoursets.Thefirstexaminesasetoftwenty-onecriticalconfigurations'erformedspecificallyforracksimulationforasinglefuelenrichment.ThesecondisaseriesofsixteenadditionalUO,criticals"'overingarangeofenrichmentsandconditions.Thethirdisasetoftwelvemixedoxidecriticals""thatareincludedtosupportanalysisofspentfuel.ThelastsetcompriseseightotherUOicriticalconfigurationsthathavebeenapprovedforaninternationaldatabase'~.ThislastsetincludesresultsfromtheMCNPMonteCarlocode"'ndKENOV.awiththe27groupcrosssectionset.Theseothercalculations'rovideanindependentverificationoftheresultsandtrendsforthe44groupKENOV.aresults.Thefirstsetofbenchmarkcasesare21experimentsrepresentingcloseproximitywaterstorageofLWRfuel.Thefuelenrichmentfortheseexperimentsis2.459wt%.TheconfigurationsexaminedtheeQectsoffuelarrayspacing,solubleboroninthemoderator,andinterspersedabsorbersbetweenfuelarrays.TheabsorbersincludedB4Crods,stainlesssteelsheets,andboratedaluminumsheetswithfourdifFerentboronconcentrations.Theseexperimentsspanthegeneralrangeofapplicabilityforstoragerackcalculationsandthusformthebasesetforthebiasdetermination.Table4.4-1liststhecalculatedandexperimentalk,irvaluesplusthebiasforthisseriesofexperiments.Forthegroupasawhole,theaveragebiasisabout-0.0056withastandarddeviationofabout0.0024.However,examinationofthebiasasafunctionofspacingindicatesatrendinthedata.Figure4.4-2providesaplotofthebiasasafunctionofseparationdistancebetweenfuelarrays.Thedataplottedincludesbothwatergapsandcaseswithinterspersedabsorbermaterials,i.e.,B4Crodsandstainlesssteelandboratedaluminumsheets.Thetrendofincreasingbiasisapparentinallcases.Thetrendappearstoindicatethatthebiaswillcontinuetoincreaseasthespacingincreases.However,eventuallythefuelarrayswillbeisolatedfromeachotherandthebiasisexpectedtoreturntothezerospacingvalue.TheInternationalHandbookcasesdiscussedlatershowthisbehaviorforthewatergapbias.Thelargestbiasoccursforspacingsbetween6and7centimetersandthenreturnstoavalueclosetothebiasatthezerospacingforaspacingofabout12cm.Dataforinterspersedabsorbersisbeingreviewedandisnotavailableatthistime.However,exaininingthesparsedata&omtheseexperiments,seemstoindicatethatthespacingforthelargestbiasisdependentupontheamountofabsorberpresent.Thehighertheamountofabsorbermaterial,thesmallerthespacingfortheminimuminthebias.ThisismosteasilyseenbyreviewingtheB4Crodcaseswhichcontainalargeamountofabsorberandcomparingthesewiththevariousboratedaluminumsheetcases.Notethatthedatafor0.4wt%'Uboratedaluminumissuspectduetothelargeuncertaintyintheboroncontentofthesheets.Italsoappearsthatthemagnitudeofthebiasdecreasesastheabsorberincreases.Thevariationofthespacingforthebiasminimumandbiasmagnitudewiththeabsorbercontentseemsreasonable,sincethesematerialsincreasetheisolationoffuelarraysandtendtoreducethespacingrequiredforfullisolation.ThesetrendswillbefactoredintothebiasesappliedtotheGinnastoragerackanalyses.Thenexttwosetsofbenchmarkcomparisonswereperformedtowidentherangeofapplicabilityofthecalculations.TheUO,criticalexperimentscoverawiderrangeofenrichmentsandsomeadditionalabsorbermaterials.TheKENOV.abiasforthesesetsislistedinTable4.4-2.Sincetherewaslittlespacingvariationinthesecases,theaveragebiasis-0.0023+0.0025,indicatingessentiallynobias.Notrendisnotedrelativetoenrichmentinthesecases.Themixedoxidecriticals51-1258768-01GinnaSFPRe-rackingLicensingReportPage355
~~.t comparisons,Table4.4-3,provideabiasrelativetoplutoniuminfuelrodsthatisapplicabletoburnupcredit.Thecasesprimarilyvariedthelatticepitchandtheeffectofboroninthemoderator.Noobvioustrendsarenotedandtheaveragebiasofthesetis-0.0023+0.0033.Thus,thesecasesextendthebenchmarkstovariousenrichmentsandfuelmixtureswithoutanyindicationofbiastrendsrelativetotheseparameters.TheB&Wcriticaldataprovidesagoodsetforbench-markingmethodologiesforrackcalculations.However,thedatastopsataspacingwithalargebiasanddoesnotillustratetheexpectedreductioninthebiasasthespacingcontinuestoincrease.ThedataobtainedfromtheInternationalHandbook."'uppliesseveralspacingpointsbeyondthosefromB&Wforwaterbetweenthefuelarrays.Inaddition,itprovidescomparisonsofresultsfromotheranalysismethodologies.Thisdataenablesverificationoftheexpectedtrendforlargerspacings.Additionally,itprovidesindependentverificationofthecalculationaltechniques.Table4.4-4providestheresults&omtheHandbookandthosecalculatedwithKENOV.ausingthe44groupcrosssectionset.TheHandbookcriticalexperimentshaveacriticalk,~of0.9998.Resultsareprovidedfroma)KENOV.awiththe27groupsSCALEset,andb)MCNPwiththecontinuousenergycrosssectionset.Figure4.4-2illustratesthetrendsinthedataofTable4.4-4.Thefigureshowssubstantialagreementforthetrendwiththeedge-to-edgespacingamongthedifferentmethods.However,theabsolutebiasesdiffer.TheMCNPresults,withacontinuousenergyset,givethesmallestbias,aswouldbeexpectedfromthecrosssectionrepresentation.The44groupsetgivesintermediateresultsbothfortheHandbookbenchmarksandfortheB&Wexperiments.The27groupsethasthelargestbiaswhichillustratestherationaleforthemigrationtothe44groupsetforcriticalityanalyses.Thefigureshowsavalleyinthebiasforspacingsbetweensixandeightcentimeters.Asexpectedthebiasdecreasesasthespacingincreasesbeyondthisrangeandseemstobeapproachingthezerospacingbias.Figure4.4-3showsplotsofthe44groupKENOV.aresultsandaleastsquarefitofthedata.Thefitcurveclearlyindicatesthetrendofthedatawithavalleyaroundeightcentimetersandareturntothezerospacingbiasasthespacingincreasesbeyondthevalley.ThistrendwillbeconsideredforthebiasesappliedtotheRegion1and2storageracks.TheabsorbermaterialinbothRegion1andthereplacementracksinRegion2isboratedstainlesssteel.Theminimumboroncontentinthestainlesssteelis1.7wt%.TheabsorbermaterialintheType1rackisBoraflexwithaboroncontentofabout34wt%boron.The"BarealdensityoftheBSSplatesrange&omabout0.006to0.007g/cm',theBoraflexsheetisabout0.02g/cm,andthatoftheboratedaluminumplatesusedintheexperimentfromabout0.0008to0.01g/cm.Thus,theabsorbercontentoftheBSSandBoraflexiswithin,ornear,therangeoftheexperimentalplates.Inadditiontotheboron,thestainlesssteelintheBSSplatesservesasamildabsorber.Thebiasassociatedwithstainlesssteelplateswasalsoevaluatedwiththeexperimentalconfigurations.Ratherthantrytorelatethebiastoaspecificabsorberdensity,theaverageofthebiasesfortheinterspersedB-AlandSSsheetsisobtainedateachspacingintervalandaleastsquarefitgeneratedtoallowestimationofthebiasesfortheRegions1and2spacings.AreviewofthedataindicatedthatconsiderationofonlytheB-Alsheetsprovidedthelargestbias,forconservatismtheaveragesusedfortheleastsquaresfitonlyincludedthesedata.Thefittingequationis:I51-1258768-01GinnaSFPRe-rackingLicensingReportPage356 where,y=-0.00348-0.00003s+0.00027s'0.00152s'isthebias,andsisthespacingincentimeters.Theedge-to-edgespacingbetweencenteredassembliesinRegion1isabout1.46"(3.68cm)andinRegion2thespacingisabout0.65"(1.64cm).BasedontheabovepolynomialthebiasforRegion1is-0.0070hkandforRegion2,-0.0056b,k.Themaximumstandarddeviationintheaveragevalueatthenearestexperimentalpointstotheactualspacingsistakenastheuncertaintyinthebias,0.0009inthiscase.ThesevalueswillbeusedtoincludetheuncertaintyintheKENOV.amethodologyintothecriticalitysafetyevaluationoftheGinnastorageracks.4.4.1.2CASMO-3/KENOV.aBenchmarksToprovideassurancethatCASMO-3isconsistentwithKENOV.a,itisbenchmarkedagainstKENOV.aforselectedcriticalconfigurations.CASMO-3isatwo-dimensionalcodethatallowsanexplicitmodelofafuelregioninthex-ydirectionwiththeimplicitreflectiveboundaryconditionsontheoutersurfaces.Thus,CASMO-3doesnothavethegeometricalcapabilitytoadequatelymodelthecriticalexperimentdirectly.Thus,anindirectbenchmarkisnecessary.ThisindirectbenchmarkisderivedbymodifyingseveralcriticalconfigurationsintoafuelregionthatcanbemodeledbothbyCASMO-3andKENOV.a.TheseconfigurationsprovidethedesiredbenchmarkbetweenKENOV.aandCASMO-3,andindirectly,withcriticalexperiments.ThecomparisonsbetweenCASMO-3andKENOV.aforRegion1and2rackmodelsalsoanindependentverificationoftheKENOV.aabsoluteresults.Sixcriticalarrangements'~arechosenforthiscomparisonfromthebenchmarkcasesdescribedintheprevioussection.Table4A-5liststheconfigurationsandsignificantinformationabouttheselectedcases.Table4.4-6providestheresults&omCASMO-3andKENOV.a.TheseresultsshowthatthebiasbetweenCASMO-3andKENOV.aisgenerallysimilartotheKENOV.abiasobtained&omthecriticalexperiments.TheCASMO-3/KENOV.adifferencesexhibitaboutthesametrendsastheKENOV.abias.ThelastcolumninTable4.4-6liststhesumofK,ir,thebias,andtheuncertaintytogiveK.AsnotedthisvalueisgenerallyslightlygreaterthantheCASMO-3value.ThecomparisonsbetweenCASMO-3andKENOV.aforRegion1and2rackmodelsalsoserveasabenchmark,aswellasanindependentverificationoftheKENOV.aabsoluteresults.ThecomparisonisshowninTable4.4-7andagainshowsexcellentagreementbetweenthetwocodes.AlthoughtheKENOV.ak,~valueslightlyunderestimatestheCASMO-3result,applicationoftheKENObiasanduncertaintiesprovidesthemaximumk,irwhichexceedstheCASMO-3result.SinceallabsolutevaluesquotedforKENOV.afortheanalysishavethebiasapplied,conservativeresultsareobtainedbyuseofKENOV.aratherthanCASMO-3values.4.4.1.3KENOV.aInfinitetoFiniteModelComparisonThebaseanalysesusemodelsoftheracksthatareinfiniteinthex-ydirection.Duetothesizeoftherackregionsthisisgenerallyagoodassumptionwithsomeconservatism.Table4.4-8whichliststhehkbetweentheinfiniteandfinitemodelsforeachrack.TheresultforrackType1illustratesthe51-1258768-01GinnaSFPRe-rackingLicensingReportPage357 k4 slightconservatisminthemodelforaregularrackarray.RackTypes2and3donothaveBSSplatesinthecellsthatfacethepoolwallsandcreateasmallerstorageregionthanType1.Thus,thiscomparisonwasperformedtoensurethattheinfinitemodelisindeedconservativerelativetoanactualfinitemodel.TheresultsinTable4.4-8showthatthisisthecaseevenwiththeBSSremoved&omtheedges.Thiscomparisonshowsabouta0.5%b,kconservatisminthemodelsfortheBSSracks.4.4.2BurnupCreditMethodologyTypicallyaburnupcreditanalysisusesauniform,averageburnupdistributionovertheentirelength'ftheassembly.Thisdistributionunderestimatestheburnupatthecenteroftheassemblyandoverestimatestheburnupatthetopandbottom.Toadequatelyutilizeburnupcredittheaxialeffectsmustbeunderstood.Thisrequiresthatanestimateofthereactivityeffectsoftheaxialburnupdistributionrelativetoauniformdistributionmustbedeterminedandappropriatelyappliedtotheresults.Alternatively,theexplicitaxialdistributioncanbemodeledintheKENOV.acalculation.Thisremovestheneedforapplicationofanaxialburnuppenalty.Thisanalysisusesthelattermethodwhichisdescribedinthissection.Thisincludesadescriptionoftheassumptionsusedtogenerateboththeaxialburnupprofileandthenumberdensitiesfortheaxialsegments.ThismethodologyforburnupcreditisverysimilartothatalreadyacceptedbytheU.S.NuclearRegulatoryCommission4.'0,4.i3,4.i64.4.2.1AxialProfileGeneration.Theaxialeffectshavebeenfoundtovarywiththeamountofburnup.Indeedintherange&omabout10to20GWd/mtU,theuseofauniformaxialshapeprovidesconservativeresults.Also,forstorageoffreshfueladjacenttoburnedfuel,theuseofauniformaxialburnupshapeisconservative.However,&omabout20to50GWd/mtU,theaxialburnupshapehasasignificanteffect.Toprovideanestimateoftheeffecttypicalaxialburnupshapeswereobtained&omseveralirradiatedassembliesoftheGinnaNuclearPowerPlant,seeTable4.4-9.ThesecoveredbothOFAandStandardassemblieswithburnupsranging&om10toabout48GWd/mtU.Theselectedassembliescoveredarangeofenrichments,axialblanketenrichments,corepositions,anddifferentcycles.ThebulkofthedatarepresentedWestinghouseOFAassemblieswithaxialblanketsfromlatercyclessincetheseare,andwillbe,themostnumerousassemblies.However,data&omanANFassemblyofStandardWestinghousedesignwasalsoexamined.Thisassemblydidnothaveaxialblanketsandtheaxialshapesfromthisassemblywerechosenasrepresentative,andboundingforaxialblanketedfuel.Figures4.4-4through4.4-7showacomparisonofthenormalizedshapesfortheexaminedassemblies.Theshapeswerebrokeninto10GWd/mtUranges&om10to50GWd/mtU.Areviewofthefiguresshowthecurvesareverysimilarovereachregion.TheOFAassemblieswithnaturaluraniumblanketsshowhigherburnupsinallnodesexceptthetopandbottomtwonodeswhichcontainaxialblankets.Assembly'E60'ontainsa2.6wt%~'Ublanketandshowslowerburnupinthecentralregionthantheassemblieswithblanketsofnaturalenrichments.Thenon-blanketassembly'Q16'lsoshowsalowercentralburnupespeciallyintheimportanttopandbottomthreenodes.Theaxialshapefromthisassemblywaschosentoprovidetheaxialeffectsforthisreason,i.e.,thelowerburnupsinthelowerandupperthreenodes.Notethatwhilethenaturaluraniumblanketshavelowerburnupsintheoutertwonodes,theseareblanketzonesthatareessentiallydeadrelativetorackreactivity.Thus,theycanbeignored.The2.6wt%"'Uassemblydoeshaveslightlylowerburnupinthebottomnodeinthe10to20GWd/mtUrange.However,inthenexttwolowernodesandthethreetopnodesitislessthanthenon-blanketassembly.Thisbehaviorisignoredfor51-1258768-01GinnaSFPRe-rackingLicensingReportPage358 tworeasons:first,thetopnodesprovidethemostreactivityduetoirradiationtemperatureeffects,andsecond,inthisregiontheaxialeQectsareminimalornonexistent.Thus,theaxialprofiledataRomassembly'Q16'aschosenasrepresentativeofthetypicalburnupprofilefortheGinnacore.Table4.4-10liststherelativeaxialprofileobtained&omtypicalfuelcycleanalysesforthisassemblyasafunctionofend-of-cycleburnup.Figure4.4-8providesaplotoftheabsoluteburnupasafunctionofheightforeachcycleofirradiationandFigure4.4-9showstherelativedistribution.Apreviousanalysisshowedthataseven-zoneaxialmodelwassufFicienttorepresenttheaxialeffects'".Thismodelexplicitlyrepresentstheburnupinthetopandbottomthreenodesofthe.twenty-threeanalyticalnodes.Thecentral17nodesareaveragedtogethertoprovideasinglecentralzone.Thecentralzoneaveragevaluemaybemodifiedslightlytomaintaintherelativeburnupequalto1.0ifthesumofallsevenzonesdoesnotequal1.0.Thismaintainsthedesiredaverageburnupassociatedwiththeshape.Figure4.4-10illustratesthesevennodemodelforthe40/50GWd/mtUburnuprange.NotethattheKENOV.amodelassumesa144"activefuelheightwhilemostofthepastandcurrentfuelhadaheightofabout141".Toaccommodatetheaddedheight,theextralengthisaddedtothecentralportionofthecurve,asnotedbythegapatthecenterofthesevenzoneshapeinFigure4.4-10.Similarsevenzonemodelsareobtainedfortheotherburnupranges.Table4.4-11liststherelativeaxialshapesforeachrangeinthesevenzonemodelwiththemidpointheightofeachnode.FortheanalysisforRegion2,burnupsof21,34,and45GWd/mtUwererequiredfor3,4and5wt%~'Uinitialenrichments.Theshapesfortheseburnupsarejusttheproductoftherelativedistributiontimestheaverageburnup.Table4.4-12liststhezoneburnupvaluesfortheburnupsexaminedinthisanalysis.Theseburnupsareusedtoobtainthenuclideconcentrationsineachzone.4.4.2.2AxialProfileIsotopicConcentrationGenerationCASMO-3generatestheisotopicconcentrationsforeachsegmentoftheaxialprofile.Theaxialfuelandmoderatortemperaturedistributionsinfluencetheplutoniumbuildupthatoccursasafunctionofdepletion.Ahighermoderatortemperaturecausesspectral"hardening"(ashiftoftheneutronenergyspectrumtohigherenergyvalues)whichincreasesconversionof~'Uto~'Pu.Additionally,higherfueltemperaturescauseDopplerbroadeningofthe"'Uresonancestructure,alsoincreasing"'Puproduction.Tocapturethiseffect,mid-cycleaverageaxialmoderatorandfueltemperatureprofileswereobtainedfortheGinnacore.Thesedatawereusedtoapproximatetheaveragetemperaturedataforthesevenaxialzonesinthemodel.Inaddition,sincetheaxialburnupprofilerepresentsacumulativeaxialpowerdistribution,therelativeaxialburnupvalueswereusedtoobtaintheaveragepowerineachzone.Duetothesimilarityintheprofiles,the40-50GWd/mtUrangeburnupprofilewasusedtoobtainthepowerdistributionthatwasusedforallranges.ThetemperaturedataandthepowerdataareusedbyCASMO-3todepletethefueltothedesiredburnupforeachinitialenrichmentandeachaxialzone.Table4.4-13liststhesevenzonedatafor3.0wt%"'Uinitialenrichmentandanaverageburnupof21GWd/mtU.ThefirsttableliststheinputdatafortheCASMO-3calculations.Thesecondsetoftablesprovidesthenuclideconcentrationsinforeachzoneintermsofatoms/barn-cm.ThisdatawasuseddirectlyinKENOV.afortheevaluationatthisenrichmentandburnup.Similardatafor4.0wt%/34GWd/mtUand5.0wt%/45GWd/mtUislistedinTables4.4-14and4.4-15.51-1258768-01GinnaSFPRe-rackingLicensingReportPage359 Theisotopicconcentrationdatawasobtainedbythefollowingprocedure.ACASMO-3hotfullpowerdepletionisperformedtodeterminetheisotopicsforeachaxialsegmentattheappropriateburnup,fuelandmoderatortemperature.ThesecalculationsareforStandardfuelassemblieswithoutIFBArods.ACASMO-3calculationprovidesthebasek;,forafuelassemblywiththeshutdownisotopesatrackconditions.AsecondCASMO-3rackmodelcalculatesthek;withonlytheshutdownfuelpelletconcentrationsof"0,'U,"'U,'U,Pu,"'Pu,"'Pu,and'"Sm(xenonandiodineareeliminatedinbothrackmodels).Previousanalyseshaveshownthattheuseofshutdownisotopicswithoutxenonessentiallyprovidesthemaximumreactivityafterirradiation.Itprovidesconservativevalueswhendecaygreaterthanaboutsevenmonthsisconsidered.Asmallamountof"BisaddedtothefuelpinuntilthesecondCASMO-3modelk;,agreeswiththefirst.Tables4.4-13through4.4-15listtheconcentrationswiththe"Bequivalent.Inthismanner,theadded"BsimulatestheneutronabsorptionofthedeletedisotopesfortheKENOV.amodel.Asimilarprocessisusedtogeneratetheisotopicconcentrationsforthecasesthatuseauniformassemblyaverageburnup,e.g.,fortheRegion1analysis.Tables4.4-16and4.4-17listdataforassemblyaverageburnups.Table4.4-16providestheconcentrationsforcasesusedtoprovidetheauxiliarylinesfortheRegion2curveat5wt%.Thesecurvesallowstorageof5wt%'Uinitialenrichmentassemblieswithburnupsof38.5and52.2GWd/mtUadjacenttoeachother.Notethatforthesecurvesauniformdistributionwasused.However,itwascorrectedwiththeaxialshapefactorappropriatetotheburnuprangediscussedinthenextsection.Table4.4-17providestheisotopicconcentrationsfortheaverageburnupsrequiredfortheRegion1checkerboardedburnedfuel.4.4.2.3AxialReactivityEffectsTheaxialburnupshapesareintegratedintothemodelsforRegion2andthustheeffectsareexplicitlyconsideredintheresults.However,itisinstructivetoevaluatethemagnitudeoftheeffect.Inaddition,thisevaluationillustratesthatthenumberofhistoriesanddistributionoftheneutronstarttypesaresufficientto'see'heeffect.Table44-18liststheresultsoftheevaluationforeachracktype.TheaxialburnupdistributionusedtodeterminethebaselinefortheRegion2loadingcurveisusedforthisevaluation.Asnoted&omthetable,alltheRegion2rackshaveaboutthesameaxialeffect.Notethatforthe3.0wt%~'Uenrichmentat21GWd/mtUburnup,theaxialeffectisalmostnil,i.e.,withinstatisticaluncertainty.Thus,thevaluesmaybeplusorminus.Thiseffectvarieswithburnupandranges&omabout2%hkforthe40-50GWd/mtUrangetoabout0.0%b,kforabout21GWd/mtUrange.ReviewingtherackType1resultsinTable4.4-18,whichshowsboththedegradedandthenormalconditionoftherack,theeffectisrelativelyinsensitivetotheabsorbermaterialintherack.Duetothemagnitudeofthedifferences,itisapparentthatthestatisticsoftheKENOV.acasesarerecognizingthedifferentaxialzonesandtheirimportance.TheRegion1,rackType3resultsshowanegativehkofabout0.5%.Thisconfirmstheassertionthatforafresh/burnedcombination,a'uniformaxialdistributionprovidesconservativeresults.However,asisapparentforRegion2theeffectissignificantandmustbefactoredintothefinalk,ireitherimplicitly,asisdonehere,orbyalargermargintothe0.95safetylimit.51-1258768-01GinnaSFPRe-rackingLicensingReportPage360 4\
4.4.2.4BoraflexDegradationModelMarginTheloadingcurvesforrackType1andRegion2includemarginforpotentialBoraflexdegradation.Table4.4-19liststheresultsofanassessmentofthemarginintheBoraflexdegradationmodel.Theuniformaxialshapecases&omTable4.4-18forrackType1withandwithoutthedegradedmodelarecompared.Thetableshowsthatthedegradedmodelprovidesabkmarginof0.048overthenormalconditionmodel.Thus,thereisapproximatelya5%marginintheloadingcurvesforRegion2toaccommodatepotentialBoraflexloss.4.4.3WestinghouseIFBADocumentationThefollowingdiscussionoftheIFBAcreditwasobtainedRomthepreviouslicensingsubmittal'".TheresultshavebeenverifiedwiththeCASMO-3codeandremainunchangedforthecurrentanalysis.Thisverificationalsoincludedverificationoftheinfinitemultiplicationfactorequivalencing.Thetextthatfollowshasbeenextractedwithoutchangefromthepreviouslicensingreport.Table7andFigure8citedinthetextareappendedtotheendofthetext,asarereferences.IFBACreditReactivityEquivulencing"Storageoffuelassemblieswithnominalenrichmentsgreaterthan4.0wloUintheRegionIspentfuelstorageracksisachievablebymeansoftheconceptofreactivityequivalencing.TheconceptofreactivityequivalencingispredicateduponthereactivitydecreaseassociatedwiththeadditionofIntegralFuelBurnableAbsorbers(IFBA)".IFBAsconsistofneutronabsorbingmaterialappliedasathinZrBzcoatingontheoutsideoftheUO~fuelpellet.Asaresult,theneutronabsorbingmaterialisanon-removableorintegralpartofthefuelassemblyonceitismanufactured."TwoanalyticaltechniquesareusedtoestablishthecriticalitycriteriaforthestorageofIFBAfuelinthefuelstoragerackThefirstmethodusesreactivityequivalencingtoestablishthepoisonmaterialloadingrequiredtomeetthecriticalitylimits.ThepoisonmaterialconsideredinthisanalysisisazirconiumdiboridegrBQcoatingmanufacturedbyWestinghouse.Thesecondmethodusesthefuelassemblyinfinitemultiplicationfactortoestablishareferencereactivity.Thereferencereactivitypointiscomparedtothefuelassemblypeakreactivitytodetermineitsacceptabilityforstorageinthefuelracks."4.2.1IFBARequirementDetermination"AseriesofreactivitycalculationsareperformedtogenerateasetofIFBArodnumberversusenrichmentorderedpairswhichallyieldtheequivalentK>whenthefuelisstoredintheRegion1spentfuelracks.ThefollowingassumptionswereusedfortheIFBArodassembliesinthePHOENIXmodels:1.ThefuelassemblyparametersrelevanttothecriticalityanalysisarebasedontheWestinghouse14X14OFAdesign(seeTableI...forfuelparameters).[editor'note:Table1isfullyreproducedinTable4.3-1].2.Thefuelassemblyismodeledatitsmostreaci'ivepointinlife.51-1258768-01GinnaSFPRe-rackingLicensingReportPage361 gl*Il~W 3.ThefuelpelletsaremodeledassumingnominalvaluesfortheoreticaldensityanddishingPaction.4.Nocreditistakenforanynaturalenrichmentorreducedenrichmentaxialblankets.5.NocreditistakenforanyU'iorUi6inthefuel.6..Nocreditistakenforanyspacergridsorspacersleeves.TheIFBAabsorbermaterialisazirconiumdiboride(ZrBJcoatingonthefuelpellet.EachIFBArodhasanominalpoisonmaterialloadingof1.67milligramsB'erinch,whichistheminimumstandardloadingofferedbyWestinghousefor14x14OFAfuelassemblies.8.TheIFBAB'oadingisreducedby5percenttoconservativelyaccountformanufacturingtolerancesandthenbyanadditional10%toconservativelymodelaminimumpoisonlengthof92inches.9.Themoderatorispurewater(noboron)atatemperatureof68'Fwithadensityof1.0gmlcmi.10.Thearrayisinfiniteinlateral(xandy)andaxial(vertical)extent.ThisprecludesanyneutronleakagePomthearray."Figure8[ed.note:Figure8isfullyreproducedattheendofthistext]...showstheconstantK>contourgeneratedfortheRegion1spentfuelracks.Notetheendpointat0IFBArodswherethenominalenrichmentis4.0w/oandat64(IX)IFBArodswherethenominalenrichmentis5.0w/o.Theinterpretationoftheendpointdataisasfollows:thereactivityofthefuelrackarraywhenfilledwithfuelassembliesenrichedtoanominal5.0w/oU'itheachcontaining64(1.0X)IFBArodsisequivalenttothereactivityoftherackwhenfilledwithfuelassembliesenrichedtoanominal4.0w/oandcontainingnoIFBAs.ThedatainFigure8...isalsoprovidedonTable7[ed.note:Table7isfullyreproducedattheendofthistext]...forthe1.0X1.5Xand2.0XIFBArods."ItisimportanttorecognizethatthecurveinFigure8...isbasedonreactivity'equivalencecalculationsforthespecificenrichmentandIFBAcombinationsinactualrackgeometry(andnotjustonsimplecomparisonsofindividualfuelassemblyinfinitemultiplicationfactors).Inthisway,theenvironmentofthestoragerackanditsinfluenceonassemblyreactivityisimplicitlyconsidered."TheIFBArequirementsofFigure8...weredevelopedbasedonthestandardIFBApatternsusedbyWestinghouse.However,sincetheworthofindividualIFBArodscanchangedependingonpositionwithintheassembly(duetolocalvariationsinthermalflux),studieswereperformedtoevaluatethiseffectandaconservativereactivitymarginwasincludedinthedevelopmentoftheIFBArequirementtoaccountforthisegect.ThisassuresthattheIFBArequirementremainsvalidatintermediateenrichmentswherestandardIFBA51-1258768-01GinnaSFPRe-rackingLicensingReportPage362 C'I patternsmaynotbeavailable.Inaddition,toconservativelyaccountforcalculationaluncertainties,theIFBArequirementsofFigure8...alsoincludeaconservatismofapproximately10%onthetotalnumberofIFBArodsatthe5.0w/oend(i.e.,about6extraIFBArodsfora5.0w/ofuelassembly)."AdditionalIFBAcreditcalculationswereperformedtoexaminethereactivityeffectsofhigherIFBAlinearB"loadings(1.5Xand2.0X).ThesecalculationsconfirmthatassemblyreactivityremainsconstantprovidedthenetB'aterialperassemblyispreserved.Therefore,withhigherIFBAB'oadings,therequirednumberofIFBArodsperassembly'anbereducedbytheratioofthehigherloadingtothenominal1.0Xloading.Forexample,using2.0XIFBAin5.0w/ofuelassembliesallowsareductionintheIFBArodrequirementPom64IFBArodsperassemblyto32IFBArodsperassembly(64dividedbytheratio2.0X/1.0X)."4.2.2InfiniteMultiplicationFactov"Theinfinitemultiplicationfactor,Kisusedasareferencecriticalityreactivitypoint,andoffersanalternativemethodfordeterminingtheacceptabilityoffuelassemblystorageintheRegionIspentfuelracks.ThereferenceKisdeterminedforanominalfresh4.0w/ofuelassembly."ThefuelassemblyKcalculationsareperformedusingtheWestinghouselicensedcoredesigncodePHOENIX-Pin~.Thefollowingassumptionswereusedtodeveloptheinfinitemultiplicationfactormodel:The8'estinghouse14x14OFAfuelassemblywasanalyzed(seeTable1[ed.note:Table43-1]....forparameters).Thefuelassemblyismodeledatitsmostreactivepointinlifeandnocreditistakenforanydiscreteburnableabsorbersintheassembly.2.Allfuelrodscontainuraniumdioxideatanominalenrichmentof4.0w/oUovertheentirelengthofeachrod.3.Thefuelarraymodelisbasedonaunitassemblyconfiguration(infiniteinthelateralandaxialextent)inGinnareactorgeometry(norack).4.Themoderatorispurewater(noboron)atatemperatureof68'Fwithadensityof1.0gmlcm'."Calculationoftheinfinitemultiplicationfactorforthe8'estinghouse14x14OFAfuelassemblyintheGinnacoregeometryresultedinareferenceKof1.458.Thisincludesa1%dKreactivitybiastoconservativelyaccountforcalculationaluncertainties.ThisbiasisconsistentwiththestandardconservatismincludedintheGinnacoredesignrefuelingshutdownmargincalculations.51-1258768-01GinnaSFPRe-rackingLicensingReportPage363 "ForIFBAcredit,all14x14fuelassembliesplacedintheRegionIspentfuelracksmustcomplywiththeenrichment-IFBArequirementsofFigure8...orhaveareferenceKlessorequalto1.458.Bymeetingeitheroftheseconditions,themaximumrackreactivitywillthenbelessthan0.95,...""BibliogrupIIy11.Nguyen,T.Q.et.al.,"QualificationofthePHOENIX-P/ANCNuclearDesignSystemforPressurized8'aterReactorCores,"%CAP-I1596-P-A,June1988PVestinghouseProprietary).15.Davidson,SL.,et.al,"VANTAGE5FuelAssemblyReferenceCoreReport,AddendumI,"8'CAP-10444-P-A,March1986."51-1258768-01GinnaSFPRe-rackingLicensingReportPage364
 
Table7GinnaRegion1SpentFuelRackIFBARequirementNominalEnrichment(wlo)4.04'.55.01.0X(1.67mgJin)IFBARodsinAssembly32I.SX(2.51mgKin)IFBARodsinAssembly242.0X(3.34mgPin)IFBARodsinAssembly163251-1258768-01GinnaSFPRe-rackingLicensingReportPage365
 
Figure8GinnaRegionISpentFuelRackIFBARequirement5030CC201.0XIFBALoading1.5XIFBALoading2.0XIFBALoading1044.142434.44.54.64.74.84.95NominalUEnrichment,Wt%[ed.note:Endofmaterialfromreference4.13]51-1258768-01GinnaSFPRe-rackingLicensingReportPage366
 
4.
 
==54.1REFERENCES==
ANSUANS57.2-1983,"DesignRequirementsforLightWaterReactorSpentFuelStorageFacilitiesatNuclearPowerPlants,"approvedOctober1983.4.2AmericanNationalStandard,"ValidationofCalculationalMethodsforNuclearSafetyC'IllySfty,"~NIN4.3NRCStandardReviewPlanNUREG-0800,SRP9.1.2,"SpentFuelStorage,"Rev.3,July1981.4.4USNRCPositionPaper-"OTPositionforReviewandHandlingApplication,"April14,1978,revisedJanuary18,1979.4.5USNRCReg.Guide1.13,"SpentFuelStorageFacilitiesDesignBasis,"ProposedRev.2,publishedDec.1981.(ProvidessupplementaryinformationrelativetoANS57.2)4.6ANSIN16.1-1975,"AmericanNationalStandardforNuclearCriticalitySafetyinOperationswithFissionableMaterialsOutsideReactors."4.7'SCALE4.2,ModularCodeSystemforPerformingStandardizedComputerAnalysesforLicensingEvaluation,"NUIT/CR-0200,Revision4,November1993,OakRidgeNationalLaboratory.4.8"CASMO-3,AFuelAssemblyBurnupProgram,"STUDSVIK/NFA-89/3,November1989,StudsvikofAmericaInc.4.9'SCALE4.3,ModularCodeSystemforPerformingStandardizedComputerAnalysesforLicensingEvaluationforWorkstationsandPersonalComputers,"Volume3,SectionM4,NUREG/CR-0200,Revision5,September1995,OakRidgeNationalLaboratory.(NotetherevisedlibraryreleasedinMay1996wasusedfortheanalysis).4.10Docket50-302,FloridaPowerCorporation,Letter&omP.M.Beard,FPC,"UpdatesShoolyEvaluationandReplacesAttachment3withaNonproprietaryVersionofReportBAW-2209,Rev1.'CrystalRiverUnit3SpentFuelStoragePoolBCriticalityAnalysis,'erdiscussionswithNRCreFPC950126Application,"March9,1995.Note:BAW-2209,R01(95/02/28)iscontainedinDoc.83104,pp091-171.4.11R.J.Nodvik,"EvaluationofMassSpectrometricandRadiochemicalAnalysisofYankeeCore1SpentFuel,"WCAP-6068,March1966,WestinghouseElectricCorporation,Pittsburgh,PA15230.4.12R.JNodvik,etal,"SupplementaryReportonEvaluationofMassSpectrometricandRadiochemicalAnalysisofYankeeCore1SpentFuel,IncludingIsotopesofElementsThoriumThroughCurium,"WCAP-6086,August1969,WestinghouseElectricCorporation,Pittsburgh,PA15230.51-1258768-01GinnaSFPRe-rackingLicensingReportPage367
 
4.13"CriticalityAnalysisofTheR.E.GinnaNuclearPowerPlantFreshandSpentFuelRacks,andConsolidatedRodStorageCanisters,"datedJune1994,AttachmentAofLetterR.C.Mecredy,RGE,toA.R.Johnson,NRC,
 
==Subject:==
"TechnicalSpecificationImprovementProgram,"RochesterGas&Electric,DocketNo.50-244,May5,1995.4.14"AnAssessmentofBoraflexPerformanceinSpent-Nuclear-FuelStorageRacks,"K.LinquestandD.E.Kline,NP-6159,ElectricPowerResearchInstitute,December1988.4.15LetterR.C.Mecredy,RGE,toG.Vissing,US.NRC,"ResponsetoNRCGenericLetter96-.04,datedJune26,1996;
 
==Subject:==
BoraflexDegradationinSpentFuelPoolStorageRacks,"R.E.GinnaNuclearPowerPlant,October24,1996.4.16"AmendmentNo.181ToFacilityOperationLicenseNo.NPF-3(TACNo.M86933),"DocketNo.50-346,LetterUSNuclearRegulatoryCommissiontoToledoEdisonCo.,November19,1993.(ApprovalofanenrichmentincreasefortheDavisBesseNuclearPowerStation,Unit1spentfuelstoragepool).4.17GinnaTechnicalSpecifications,SectionSR3.2.1.1,PageB.3.2-6,Amendment65.4.18"SequoyahNuclearPlant(SQN)-RequestforLicenseAmendmenttoTechnicalSpecifications(TS)-Spent-FuelPoolStorageCapacityIncrease,"DocketNumbers50-327and50-328,4/27/92.4.19"NorthAnnaPowerStation,UnitNo.1,TechnicalSpecifications,"DocketNo.50-338,AmendmentNo.178,3/94.4.20BAW-1484-7,"CriticalExperimentsSupportingCloseProximityWaterStorageofPowerReactorFuel,"N.M.Baldwin,etal.,July1979.4.21TheUO,CriticalsDatawereobtainedfromthefollowing:4.21a.S.R.Bierman,etal.,"CriticalSeparationBetweenSubcriticalClustersof2.35wt%~'UEnrichedUO,RodsinWaterwithFixedNeutronPoisons,"PNL-2438,BattellePacificNorthwestLaboratories,October1977.4.21b.S.R.Bierman,etal.,"CriticalSeparationBetweenSubcriticalClustersof4.31wt%'UEnrichedUO~RodsinWaterwithFixedNeutronPoisons,"NUREG/CR-0073(PNL-2615),BattellePacificNorthwestLaboratories,March1978.4.21c.S.R.Biermanetal.,"CriticalityExperimentswithSubcriticalClustersof2.35wt%and4.31wt%~'UEnrichedUO,RodsinWaterwithUraniumorLeadReflectingWalls,"NUREG/CR-0796(PNL-2827),PacificNorthwestLaboratory,April1979.4.21d.R.I.SmithandG.J.Konzek,"CleanCriticalExperimentBenchmarksforPlutoniumRecycleinLWRs,"EPRINP-196,VolsIandII,ElectricPowerResearchInstitute,April1976andSeptember1978.51-1258768-01GinnaSFPRe-rackingLicensingReportPage368 F4s' 4.21e.E.G.Tayloretal.,"SaxtonPlutoniumProgramCriticalExperimentsfortheSaxtonPartialPlutoniumCore,"WCAP-3385-54,WestinghouseElectricCorp.,AtomicPowerDivision,December1965.4.22TheMixedOxideCriticalsDatawereobtainedfromthefollowing:4.22a.R.I.SmithandG.J.Konzek,"CleanCriticalExperimentBenchmarksforPlutoniumRecycleinLWRs,"EPRINP-196,VolsIandII,ElectricPowerResearchInstitute,April1976andSeptember1978.4.22b.E.G.Tayloretal.,"SaxtonPlutoniumProgramCriticalExperimentsfortheSaxtonPartialPlutoniumCore,"WCAP-3385-54,WestinghouseElectricCorp.,AtomicPowerDivision,December1965.4.22c.S.R.Bierman,etal.,"CriticalityExperimentswithLowEnrichedUO,FuelRodsinWaterContainingDissolvedGadolinium,PNL-4976,BattellePacificNorthwestLaboratory,February1984.N4.23"InternationalHandbookofEvaluatedCriticalitySafetyBenchmarkExperiments,"VolumeIV,LEU-COMP-THERM-002,"LowEnrichedUraniumSystems,Water-ModeratedU(4.31)O,FuelRodsIn2.54-CmSquare-PitchedArrays,"NEA/NSC/DOC(95)03/IV,NuclearEnergyAgency,Paris.4.24"MCNP4,MonteCarloN-ParticleTransportCodeSystem,"usingContinuousEnergyENDF/B-Vcrosssections.51-1258768-01GinnaSFPRe-rackingLicensingReportPage369 Table4.1-1PolynomialGeneratedforSpentFuelBurnupvsEnrichmentRequirementsfortheRegion1Racksal!+t/~":+~U,':.':.~i.;".'i.";:I:'';;ll,:,>:Miiiiiiiui'ii":Bumiip':'::;;;;:,!,:.:;:-:::'(NomInal)'::::::::;:":::;:!":::::.."::".-:,::;:.:.,".:,-..:,:,::;.,:~GWd/mtU:,',:;:;;:,::",:,::,:,,:,~>,;:.''-':::::::::!IIutiaj:'.Wt~/o':;23~V:::-':":.'i'-".''',:;:;::;.".:':!':,:::::'I(No'minal)':;.:'~$.:;::',:::::.';::i-',,:"":'::,":,':.::MIniinuIri",Bu'rii'up',".,':,.,'',;,:::;~:;::;::;:"."'.".;;:,::.,'j,;',GWd/iiitV,.':::;::::;.,:,;::;.'":,"";:;:2.222.32.42.52.62.72.82.93.03.13.23.33.43.53.60.001.122.473.754.996.177.308.399.4510.4711.4712.4313.3814.3215.243.63.73.83.94.04.14.24.34.44.54.64.74.8495.015.2416.1517.0717.9818.9019.8320.7821.7422.7323.7524.7925.8827.0128.1829.4051-1258768-01GinnaSFPRe-rackingLicensingReportPage370
 
Table4.1-2PolynomialGeneratedBurnupvsEnrichmentRequirementsfortheRegion2Racks'';:..::';:':Initial',-',::;:,:'::,'::,';,%to/o';,~'.;~U.oiiiin'al'':;::.:,'.:':::.'.:.:Bas'e':.:',.'.:'','".:'.''.'.".':::''::.',::'::,':Upp'er'".,";::j',''::>,",,.:;.',".,L''ow'e'r'',':;;"::,'".::,:.'::."::,:i:,:"'.-:"',.':Miiiimuiii:::Buiiiup',::.,'GWdImtUIgj,:',i'':;,::":;::,;:,'Imtial,"-,,"."'WtN'"U"'"!.oiniiial'.:5,j.';::;-'::;Uppe'r:'.':,,".i';':-'::::.:,:L"over':;i:::I',:,'.-'.I'!Miiiimum'::Biiriiu'p,'":;GWd/mtU';:;'.':1.141.21.31.41.51.61.71.81.92.02.0152.12.22.32.42.52.62.72.82.93.00.001.673.334.986.616.858.229.8311.4112.9814.5316.0717.5919.1020.5822.050.001.042.774.486.187.879.5411.2012.8514A814.7216.0917.6919.2820.8522.4023.9425.4626.9628.4529.920.001.372.974.566.137.689.2210.7412.2413.7315.203.03.13.23.33.43.53.63.73.83.94.04.14.2'4.3444.54.64.74.84.95.022.0523.5024.9326.3527.7429.1230.4731.8133.1334.4235.7036.9538.1939.4040.5941.7642.9044.0245.1246.2047.2529.9231.3732.8034.2135.6136.9938.3439.6841.0042.2943.5744.8246.0647.2748.4649.6250.7751.8952.9954.0755.1215.2016.6518.0819.4920.8922.2723.6224.9626.2827.5728.8530.1031.3432.5533.7434.9036.0537.1738.2739.3540.4051-1258768-01GinnaSFPRe-rackingLicensingReportPage371 I'%4*Qll't&0%1I' Table4.1-3KENOV.aRegion1(RackType3)ResultsofBurnupvsEnrichmentCalculations4wt%fresh/2.22wt%at0GWd/mtU4wt%fresh/3wt%at9GWd/mtU4wt%fresh/4wt%at18GWd/mtU4wt%fresh/5wt%at28GWd/mtU:.-'.,:::,:;:..."'':,:,:.,'::,Calculated':.',,''';,""::,:",'>.'-;i-'".-:0.919770.000720.918770.000690.921440.000700.919900.000680.941590.940580.943260.94171::Margin'-.To,':::',"i:G.'95,':'hkjj0.008410.009420.006740.00829a)K,iscalculatedwiththeformulalistedinSection4.3.7.1.1,i.e.,wherethevaluesforb,k;,hk,o,ando,areobtainedfromTable4.3-12.Forexample,theK,forthe2.22wt%assemblyinrackType3isE=0.91977+0.00701+0.00133+(1.763+0.00072)+(1.763+0.0009)+(0.01332)=0.9415951-1258768-01GinnaSFPRe-rackingLicensingReportPage372
 
Table4.1-4KENOV.aRegion2(RackTypes1,2,&4)ResultsofBurnupvsEnrichmentCalculationsRackTe1StandardAsss5wt%at45GWd/mtU,axialmodel,deradedrackmodel4wt%at34GWd/mtU,axialmodel,deradedrackmodel3wt%at21GWd/mtU,axialmodel,deradedrackmodel5wt%at38.8checkerboardedwith5wt%at55.2GWd/mtU,dededrackmodel,correctedtoaxialmodel1.6wt%freshfuel,deradedrackmodel4.0wt%freshfuelcheckerboardedwithwaterholesRackTe2StandardAsss5wt%at45GWd/mtUaxialmodel4wt%at34GWd/mtUaxialmodel3wt%at21GWd/mtUaxialmodel1.6wt%freshfuelRackTe4StandardAsss5wt%at45GWd/mtUaxialmodel,degradedType1rackmodel4wt%at34GWd/mtUaxialmodel,degradedType1rackmodel3wt%at21GWd/mtUaxialmodel,degradedType1rackmodelfresh1.6wt%fuelderadedTe1rackmodel",I",''':,-:Il'Calciilat'ed:'::;':::!;;:::.",:.".:0.930910.000590.928060.000610.920990.000580.928980.000560.923110.000780.919510.000580.916290.000570.909140.000570.912650.000540.917180.000600.915110.000600.907510.00057'I0.910770.00059<<::Margiii;0:95:I'M0.948170.001830.945320.004680.938240.011760.943750.006250.946230.003770.940420.009580.935000.015000.931780.018220.924630.025370.928130.021870.931900.018100.929830.020170.927780.022220.925480.02452a)K,iscalculatedwiththeformulalistedinSection4.3.7.2.1,i.e.,E=>,ff+~>gI+~>,+(1763*<,)'+(1.763*~(,I)'+(<g,I)'herethevaluesforb,g;,hk,o;,ando,areobtainedfromTable4.3-12.Forexample,theK,forrackType.1at5wt%at45Gwd/mtUisE=0.93091+0.00561+0.00358+(1.763+0.00059)+(1.763+0.0009)+(0.00784)=0.9481751-1258768-01GinnaSFPRe-rackingLicensingReportPage373 Table4.3-1FuelAssemblyParametersRods/AssyGuideTubes/AssyInstrumentTubes/AssyIHMWt,Kg/assyRodPitch,inPelletOD,inPelletDensity,%TDMaxEnrichment,wt%noIFBAswithIFBAsPelletDishFactor,%ActiveFuelLgth,inCladOD,inCladThickness,inCladMaterialGuideTubeOD,inGTThickness,inGTMaterialInst.TubeOD,inITThickness,inITMaterialIFBANumber/AssyBoronLoading,mg/in17916370-374.50.5560.3565+0.000895+2.04.0+0.051.187+2.0141-1440.424+0.00250.030+0.0025Zirc-40.524+0.0050.015+0.0055Zirc-40.424+0.0050.039+0.004Zirc-417916383-3980.5560.3669+0.000895+2.04.(H:0.051.187+2.0141-1440.42&0.00250.0243+0.0025Zirc-40.53&0.0050.017+0.0055SS'.42&0.0050.024(H:0.004SS~jj'~",'::,""",;::.:;:,',;,w;:oFAI':':::'";'4~17916349-356.50.5560.3444+0.000895+2.04.0+0.055.0~0.051.1926+2.0141-1440.400+0.00250.0243+0.0025Zirc-40.528+0.0050.019+0.0055Zirc-40.399+0.0050.0235+0.004Zirc-40-641.67-3.34a)ModeledconservativelyasZirc-451-1258768-01GinnaSFPRe-rackingLicensingReportPage374
~.-~~3 Table4.3-2ConsolidationCanisterSpecificationsOutersquaredimension,inWallthickness,inHeight,inIncludingLidsattop/bottomWithoutLidsattop/bottomCanisterlidheight,in-top/bottomMaterialofconstructionBodyLidsDividerPlateDividerPlateThickness,inCenteredWithin,inLength,inMaxrods/container8.0(H:0.020.093+0.004168+0.06156I/4+0.0657/8SS304SS304SS3040.093+0.0041/321535/16+0.062x17951-1258768-01GinnaSFPRe-rackingLicensingReportPage375
 
Table4.3-3aRegion1,RackType3CellDimensionsCellPitch,cm(in)CellID,cm(in)WallThickness,cm(in)SS304LBSSNominalgap,cm(in)/minPeripheralrowBSSsupportBeltplatewidth,cm(in)SSthickness,cm(in)BSSParametersBSSdensity,g/ccBoroncontent,wt%"Bwt%innaturalboronPlatelength,in23.45+0.2(9.2323)20.68+0.2/-0.1(8.1418)0.2(H:0.018(0.0787)0.25+0.05/-0.0(0.0984)2.07(0.815)/1.95min'.8(0.3228)0.20+0.018(0.0787)7.73-7.781.7min18.14145.723.4520.680.200.252.070.80.207.731.718.14144.0a)Aminimumtoleranceof1.85cmisassumedfortheanalysistoprovideadditionalmarginfortheType3rack.Table4.3-3bRegion1,RackType3DamagedFuelCellDimensions'i:':"-"'l%:iii:::i:i:::;"'~$''":c:"vii:DescI'Ifton';:"."~xiii"'.":.g":i':""%j'ij.~i~gpjpCellPitch,cm(in)CellID,cm(in)WallThickness,cm(in)SS304LBSSNominalGap,cm(in)/minimumBetweendamagedcellsBetweendamaged/normalcellsBSSParametersBSSdensity,g/ccBoroncontent,wt%'OBwt%innaturalboronPlatelength,in'::."::.":.kl~-':::-":i':.!''":.'.:'.'::'::i."";:lDest'ri:::Dimen's'tons"':.",!.'!.,'::i:.::::::::::::,':':>.,'4k~>'.::!,:'j:.;l23.45+0.2(9.2323)22.1+0.2/-0.1(8.701)0.&0.018(0.0787)0.30+0.05/-0.0(0.1181)0.55(0.2165)/0.43min1.36(0.5354)/1.13min7.73-7.781.7min18.14145.751-1258768-01GinnaSFPRe-rackingLicensingReportPage376 Table4.3-4Region2,RackType1CellDimensionsk>'.::.YFlDe'si'n::::Dimeiision's"':!'!>':.'-..-,'-':l':::iModel'Diiiiensio'n's''.'''-."CellPitch,inCellID(withoutpoisons),inWallThickness,inWallMaterialSSPoisonsupportsheetthickness,inCellIDwithpoison,inBoraflexPoison,length,inwidth,inthickness,in'SelfShieldingBiasMin"Bcontent,g/cm'.43+0.06/-0.08.25+0.06/-0.0,square0.09+0.004SS-3040.062+0.0038.113144+1/167.625+0.06250.075+0.007+0.00140.0208.438.250.09SS-3040.0628.113144'.33'.038'.020a)Boraflexshrinkage/degradationmodelincludesa12"gapinlengthrandomlypositioned,withinthecentral132"oftheplate,a8%widthshrinkage,anda50%lossinthickness.Table4.3-5Region2,RackType2CellDimensions','~","::i."::.'';-;:~,':-';:".g::::,::.:::!;<,"'..Des'cri"tion'I'!!".i.'',%<i'.".'ellPitch,cm(in)CellID,cm(in)WallThickness,cm(in)SS304LBSSNominalGap,cm(in)/minimumBSSParametersBSSdensity,g/ccBoroncontent,wt%"BWt%innaturalboronPlatelength,in21.41&0.2(8.43)20.68+0.2/-0.1(8.1418)0.2+0.018(0.0787)0.3+0.05/-0.0(0.1181)0.232(0.0913)/0.15min7.73-7.78'.7min18.14145.7:"Model';Dimensions!21.41220.680.20.30.2327.731.718.14144.051-1258768-01GinnaSFPRe-rackingLicensingReportPage377 Table4.3-6Region2,RackType4CellDimensionsCellPitch,cm(in)CellID,cm(in)WallThickness,cm(in)SS304LBSSNominalgapthickness,cm(in)betweenType4cells(nominal/min)betweenType4andrackType1betweenType4andpoolwallBSSParametersBSSdensity,g/ccBoroncontent,wt%"BWt%innaturalboronPlatelength,in21.412+0.2(8.43)20.68+0.2/-0.1(8.1418)0.2&0.018(0.08)0.25+0.05/-0.0(0.10)0.082(0.03228)/0.03min3.0(1.18)min13.334(5.25)min7.73-7.781.7min18.14145.721.41220.680.20.250.0823.013.3347.731.718.14144.051-1258768-01GinnaSFPRe-rackingLicensingReportPage378 Table4.3-7MaterialCompositionsforNon-FuelRegionsMaterialCompositionsforStainlessSteelSS304L(p=S.Og/cc)~lei~nCrMnFeNiW'.1800.0200.7200.080RQdkK11.66779E-21.75387E-36.21117E-26.56661E-3MaterialCompositionsforBoratedStainlessSS304B6(p=7.73g/cc)P~lemggCrMnFeNiBWeihtFraci0.1800.0200.6630.1200.017Qgg/~c1.61151E-21.69468E-35526419E-29.51448E-37.31794E-3MaterialCompositionsforZircaloy-4(p=6.56g/cc)Qlem~efZlSnFeCrWehFracti0.98290.01400.00210.0010ggDL/~c4.25652E-24.65903E-41.48550E-47.59770E-S~lem~rgHlOBIlBC0SiMaterialCompositionsforBoraflex(p=1.7g/cc)eihr0.0300.06180.27510.1900.2200.22323.04701E-26.31428E-32.55761E-21.61945E-21.40812E-28.13601E-3MaterialCompositionsforWaterandConcreteKENOV.aStandardCompositions@T=293'KDensityofWater=1.0g/cc51-1258768-01GinnaSFPRe-rackingLicensingReportPage379 00~'all!
Table4.3-8FuelMaterialNumberDensitiesKENOV.aFreshFuelStandardCompositionParametersWt%"'U1.62.224.0AxialBurnupRegionNumberDensitiesfor5.0Wt%InitialEnrichmentFuelAt45GWd/mtVAverageBurnup,Atom/b-cm>>j';::,,'L'evel'j':21.9736.6045.116.5805E-044.2226E-043.1547E-044.6040E-029.1978E-054.6040E-021.2979E-044.6040E-021.4412E-042.1400E-021.1504E-072.1136E-021.1678E-072.0952E-021.1550E-0749.152.7799E-0442.123.6395E-0433.554.6717E-044.6040E-021.4937E-044.6040E-021.3988E-044.6040E-021.2524E-042.0864E-021.2008E-072.1002E-021.3026E-072.1176E-021.2931E-07Averae20.11456.9888E-043.2281E-044.6040E-028.6650E-054.6040E-021.4409E-042.1431E-021.2438E-072.0958E-021.2364E-07:;:::,,':L'ev'el;::.':,'.;'.,'3'u'r'n'u'p':.:":;:::.':::i:.''".:::.,'::i,~,',P'u.'':::..""''.:,,','i:;'::;,'verae21.9736.6045.1149.1542.1233.5520.11451.1721E-041.3755E-041.4105E-041.4550E-041.4988E-041.4418E-041.1854E-041.4492E-042.5577E-054.5800E-055.5424E-056.0421E-055.4273E-054.4430E-052.3898E-055.6043E-051.3166E-052.7853E-053.4953E-053.8844E-053.4922E-052.7446E-051.2260E-053.6072E-051.4923E-052.3099E-052.6417E-052.8880E-052.6902E-052.2480E-051.4145E-053.2281E-0451-1258768-01GinnaSFPRe-rackingLicensingReportPage380
'llh Table4.3-9AssemblyTolerancePenalties(hk))Manu'facturin'g'',,',;-'";','.':Th'eor'e'tical::.;-:'..'9IEiirichment,'"",:;:i'::>.',.";';''.St'a'tis'tie'al.':.",-"'!a'0.'05,ivt%'ihE''::.'.-'9'Combiii'ationWestinghouseOFAWestinghouseStandardExxonStandard0.002660.003030.003030.002930.002660.002790.004190.004080.004130.005760.005740.00583Table4.3-10ReactivityUncertaintyAssociatedWithFuelAssemblyType,;"j:;'."'jP;:.,'.~PCASlVlO'3jk-'irifiriity.'.fo',a!'4'.%t%''Asse'mbty"',in'..Rack'Ty'pe.:101020301.131641.044050.968540.898111.121001.034290.958160.886291.134481.045840.963850.88318Table4.3-11ConsolidationContainerResults,::ee,':Fuel'::As';.',:,I>':RackType11.61.6196225StandardOFA0.927650.925340.000580.000540.944900.94259RackType21.61.6196225StandardOFA0.915380.911960.000580.000570.930870.92745RackType32.222.22196196StandardOFA0.923070.921690.000740.000720.944890.9435151-1258768-01GinnaSFPRe-rackingLicensingReportPage381 J
Table4.3-12SummaryofRackTypeUncertainties,Penalties,AndCredits:.:;:.:.Region:'.",:..':'iType'3::,:.::.:,'::,'-":,r,-:"''..Type.il~,::,:;::j>'::.,:,'P;::;Typ'e'.2:::,~-.:';)";'.,7'~Typ'e4-'.::i'::,MethodoloBiasdkCalculationalPenaltiesb,k-KENO.V.aBias44Grou0.007010.005610.005610.00561Penalties:PoolTemperaturePenalty(50to212'F),0.00133BoraflexB10SelfShieldingPenalty0.00000AssyOff-CenterPlacementPenalty~I~-sumofenalties0.001330.002180.002070.002070.001400.000000.00000KHHHmKQKQQKQEHQ0.003580.002070.00290Total=hk.+b,0.008340.009190.007680.00851ToleranceUncertaintiesandStatisticalUncertaintiesToleranceUncertainties:FuelAssyManufacturingTolerance0.005830.005830.005830.00583RackFabricationToleranceKEJ2EQJHKl4EQM4H59M'-sumoftoleranceuncertainties0.013320.007840.007580.00590o-CalculationalUncertaino.-MethodoloBiasUncertaintTotalStatisticallCombined0.000700.000700.000900.000900.013480.008090.000700.000900.007840.000700.000900.00624Totalad'ustmentto0.021820.017280.015520.01475a)Baseduponatypicalsigmaof0.0007for1,000,000neutronhistoriesforKENOV.acases.51-1258768-01GinnaSFPRe-rackingLicensingReportPage382
 
Table4.3-13Region1,RackType3,DroppedAssemblyAccidentResultsRackTe3T-boneRackType3MisplacedassemblyRackTe3DeeDroAccidentRackTe2/3SideDroSideDrowith300mBoron0.0017&0.00180.0114+0.00150.0008&0.00180.0393+0.0016-0.0222+0.0017Table4.3-14Region2,RackTypes1,2,&,4,DroppedAssemblyAccidentResultsRackTe2T-boneRackTe2MislacedAssemblRacksTe28'c4DeeDroAccident'ackTe1MislacedAssembl-LowerCurveRackTe1MislacedAss,450mBoron,BaseRackTe1DeeDroAccident0.0079+0.00150.0097+0.00150.0008+0.00180.0469&0.0013-0.0196&0.00140.0469+0.0013a)SameasdeepdropforrackType3sincebaseplatecontructionissimilar.b)BoundedbytheRackType1misplacedassemblyaccident.Table4.3-15SeismicEventAccidentResultsRackTes2and3RackTes1,2A,8'c4CRackTypes1,3A,8c4F0.0043+0.00260.0085+0.00260.004560.002651-1258768-01GinnaSFPRe-rackingLicensingReportPage383
 
Table4.4-1KENOV.aBIASvsSeparationDistanceMLA008O';:'';;Case':;,'";.','.:Coie:'::Spacirig,'"i'',:;::;:1B4C'""".::::::.".-,",.Pins:;-;-.';';"''Bor'oii'-':.',P.lates'.'..'.;:::::,',;::;;:,.;.',';;"Calculated';"',':;-'::>>.'=':.',.";Experiin'ental:":;:;:;-;1012131415161718192021VlVIIvniXIXIIXnlXIVXvXVIXvnXvniXIXQ.QO1.643.274.914.916.544.911.643.271.641.641.643.273.271.643.274.9108464643434001037764000000143514217159239512148719763432072NoneSSSS1.614%B/AL1257%B/AL0401%B/AL0.401%B/AL0.242%B/AL0.242%B/AL0.100%B/AL0.100%B/AL0.100%B/AL0.99650.99820.99960.99520.99591.00660.99461.00150.99430.99500.99560.99370.99490.99420.99060.98920.99320.99290.99550.99420.99180.00101.00020.00050.00061.00010.00050.00061.00000.00060.00100.99990.00060.00101.00000.00070.00101.00970.00120.00090.99980.00090.00101.00830.00120.00071.00300.00090.00061.00010.00090.00061.00000.00060.00061.00000.00070.00101.00000.00100.00101.0001;0;00100.00090.9998'.00140.00091.00010.00190.00041.00000.00100.00041.00020.00110.00041.00020.00100.00051.00030.00110.00050.99970.0015-0.0037-0.0019-0.0004-0.0047-0.0041-0.0031-0.0052-0.0068-0.0087-0.0051-0.0044-0.0063-0.0051-0.0059-0.0092-0.0109-0.0068-0.0073-0.0047-0.0061-0.0079AveraeStandardDeviation0.99540.00381.00100.00?7-0.0056Q.0024 gtAgOO:.':Case',.'::,-:.(Ca'se"ID.":;;::,Table4.4-2AdditionalUO,CriticalExperimentComparisons:::,;.':-.';;:;;,'".i'-';-.Calc'ulafe'd'.,;:":-::,::.,::.;.'.,;j:-':-'.'Bias";..':,'~O1012131415162438x052438x172438x282615x142615x232615x313314a3314be196u6neru615beru75eru75be196u87ceru87bsaxu56saxu792NoAbsorberPlatesBoralAbsoberPlatesStainlessSteelAbsorberPlatesStainlessSteelAbsorberPlatesCadmiumAbsorberPlatesBoralAbsoberPlates0.226cmBoraflexAbsorberPlates0.452cmBoraflexAbsorberPlates0.615"Pitch0.615"Pitch0.750"Pitch0.750"Pitch0.870"Pitch0.870"Pitch2LatticePitches,SSClad,0.56"Pitch2LatticePitches,SSClad,0.792"PitchAverae=StandardDeviation=2.352.352.354.314.314.314.314.312.352.352.352.352.352.355.745.7400000000046405680286000.99680.99610.99580.99790.99950.99871.00271.00160.99510.99470.99430.99860.99760.99990.99500.9988.99770.00250.00090.00090.00100.00110.00110.00110.00110.00110.00100.00100.00100.00080.00090.00080.00110.00B1--0.0032-0.0039-0.0042-0.0021-0.0005-0.00130.0027'.0016-0.0049-0.0053-0.0057-0.0014-0.0024-0.0001-0.0050-0.0012--0.00230.0025 Table4.4-3MixedOxideCriticalExperimentComparisons4chQO,:::;.:,:Ci'se''.,'::.:..:-:,'","'',;;:";:,Ca'se'."ID;:;:::;::,::;:;;,',-:',:;-:."',''-:,:;:.";::;";-,',Case.Desciiption':,',",'::;-:,"i'-';:;k,,:"::;::i."',"';::;"::::,':,::;:.::.-'''::;:::::So'r'o'n'piii';-,'',:.::-':::".,::::.Calc'iilated';",:::,',"',:O1012eri70uneri70beri87uneri87beri99uneri99bsaxton52saxton56saxtn56bsaxtn792saxtn735saxtn104UO2/Pu02SuareLattice,0.700"PitchUO2/Pu02SuareLattice,0.700"PitchUO2/Pu02SuareLattice,0.870"Pitch2UO2/Pu02SuareLattice,0.870"PitchUO2/Pu02SuareLattice,0.990"PitchUO2/Pu02SuareLattice,0.990"Pitch2UO2/Pu02SuareLattice,0.52"Pitch6.6UO2/Pu02SuareLattice,0.56"Pitch6.6UO2/Pu02SuareLattice,0.56"Pitch6.6UO2/Pu02SuareLattice,0.792"Pitch6.6UO2/Pu02SuareLattice,0.735"Pitch6.6UO2/Pu02SuareLattice,1.04"Pitch6.6AveraeStandardDeviation0681010900767003370000.99690.00111.00080.00101.00180.00111.00830.00091.00510.00091.00720.00091.00010.00110.99930.00111.00060.00001.00310.00111.00100.00121.00360.00111.00230.0033-0.00310.00110.00080.00100.00180.00110.00830.00090.00510.00090.00720.00090.00010.0011-0.00070.00110.00060.00000.00310.00110.00100.00120.00360001'10.00230.0033 Table4.4-4InternationalHandbookCriticalExperiments8poa'cIii'g'::Between':;';;Fu'ei:A'rr'ay's','",.".'i',04.466.397.578.018.4110.0511.9201.6364.9076.54;:.",::"hk::KENO,,':;V;.'a,':,''..-::27,,:',Gro'uop.'Cr'o'ss',::::j'hajj;':Sections,:;;:~P'~i'.,'j-0.0084-0.0079-0.0108-0.0092-0.0067-0.0110-0.0036-0.0094';::':::.::::jii:MOPi;::::;:::;:::::,'"""<'."",'Co'ri't'iniih'u's",':;".'"i-0.0011-0.0030-0.0028-0.0077-0.0043-0.0042-0.0006-0.0021.':-;.';j::.'Hanodb'ook-;::::":'.,';,''-,:';"i!.'-:;:iCriticais.'I:','.',,''.::-0.0039-0.0048-0.0072-0.0068-0.0040-0.0060-0.0042-0.0042:."!8'&%.'Cr'itic'als.'0.0019-0.0004-0.0051-0.0087.";:,:-'j:-:.'":,KErNO.:IV,:aI"':.,44.';.Gr'up".,Cr'oss::,.:':.';.'..'"..:;-;Table4.4-5CASMO-3/KENOV.aBenchmarkConfigurations::;~':,::::;;-:.::::;Core",;:;::.,';;::,;:,'i!Mod)To'mph:::,:!:,.',:j:':,,:;tiprPM',Bo'roii'i::5'".'j;,;.",.''".','n::::.',:.".::,,"::,':.,';-",'.aaj';':;,",,',i,,':';;IXXIIIXVIXII1.6366.541.6363.2724.9073.272A1,1.614wt%BAl,0.401wt%BAl,0.100wt%BSS18.017.520.017.516.526.07640151217221751-1258768-01GinnaSFPRe-rackingLicensingReportPage387 Table4.4-6CASMO-3/KENOV.aInfiniteArrayBenchmarkComparisonIX',"CA'SMO.3)1.122991.07976'",.':KENO'V.."'a:;,.'j~~;.''~";.CA'SMO.-',3;.p.'..1.07214+0.00059-0.007621.11758+0.00048-0.00541!:KENO'.'V."a.:,;,':'~.c",:,.Bias"'-':<."'';,'0.00045-0.00874',"'.:K'EN'O':V,".a''-,'-".--UlSQ,'.1.1202361.096324XIIIXVIXXIXII1.104061.099091.091511.106431.09490+0.000631.09040+0.000611.08473&0.000601.09701+0.00058-0.00926-0.00869-0.00678-0.00942-0.00509-0.01086-0.00787-0.006081.1035811.1049401.0957871.105645a)Kisthesumofk;<,thebias,and1.763timesthesumofthesquaresoftheuncertainiesassociatedwiththebiasandk;,.Table4.4-7CASMO-3/KENOV.aInfiniteArrayBenchmarkComparisonRack'':j;,Typ'e;",'.".'::,.'CA'SMO.-".3!i';,'gj4;.>'a'r&#xc3;y'i~",.;':,.";",',;",,';'."~,"R"',::"-';:,:+:;'1'a:-.:,";:j,:,-'y:::4jCASMO-'.3.KENO:::.V..:a-.;;~';::lA'.:;.':Bia's::;::.';.':.":.','j';,,:KENO,'::V.a",(-,TelTe2Te30.865480.86614+0.000540.000660.903560.89964+0.00053-0.003920.918940.91060&0.00073-0.00834-0.0056-0.0056-0.00790.873590.907080.92054a)Kisthesumofk;,thebias,and1.763timesthesumofthesquaresoftheuncertainiesassociatedwiththebiasandk;.Table4.4-8KENOV.aInfinitetoFiniteModelComparison5<.'haik::irifiiiite':.fiiiit'e',';::;:';k':,':5'5!'.::.:::.'."i:::.'1'o:~::,':!'::i~-::::".::::::)8::,iRackType1RackType2BSSonEdgeofFiniteModelNoBSSonEdgeofFiniteModelRackType3BSSonEdgeofFiniteModelNoBSSonEdgeofFiniteModel0.00320.004390.006450.006610.009750.00080.00080.00080.00100.001051-1258768-01GinnaSFPRe-rackingLicensingReportPage388
 
Table4.4-9GinnaFuelAssembliesUsedforAxialShapeEvaluation?<'::<'pj''''(c'<@jX<<<:'&'<<."><'<q.'%?&#xc3;'j%'.?.';?'<<P?,',.':.i'?i'<?<g$"-'.;'P<<."<R0'<'?<<'""<<<<F>>~'<'0<<)j'v'(hoFuel"Asse'mbl".<ID'i;'::,';,:':.-::."~i:::::.":'.":,"A''.':T""e&#xc3;~;::::,;.'<!'::<.-';:,!FPP.';-:'.",::i:?'cle:,ki%~5";:","::":.:,<:;:."Sur'riu";-':.GYVd/mtU':A62A62A62A62D77D77D77C63C63C63C63C56C56C56C56E60E60Q16Q16Q16Q16OFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketOFA,BlanketANFStd,NoBlktANFStd,NoBlktANFStd,NoBlktANFStd,NoBlkt21222326242526232425262324252625261415161715.1927.2133.9748.4812.9627.8744.1112.8827.0839.6745.0314.2227.6232.3037.5115.6534.4210.7223.0133.5344.8451-1258768-01GinnaSFPRe-rackingLicensingReportPage389
 
Table4.4-10RelativeAxialShapesforTypicalNon-AxialBlanketStandardFuelAssemblies;:-:8:::.:;''Ass',";;Burnu"':,:GWd/mtU='.:.",:,":.:'::~i:;A's's"..JD,'8i'';C"'cle.''of-:Ir'r'adiatio'n,=.'..;hi"ii!10i71'5'.>i'l:""$23'.011!=':!3::,"'''.':!33".'526'.i,:::':'':i'4'4i844'"">'<1'6";:'.,"1'4~:;16..:"::15,16::::''''l6':.Q1'6.'::C'.::17;"'-:-'';:-';No'de':;:,:::';:.'.'",::,;.'':Heigh't,:.iii:".Mrdpt,''''',:in'~I::-;:::::;;::',::.-::.;'::,;'::;:;:.';!4~,j;.",.'-..:<:.':,::;.:","'j:::Relativ'e':3uinu'pW-:.-'.''.,".:."::::,:-.':;.I.:::;:i'i,'!..':i.,::';;,;:;':,''101213141516171819202122236.1512.3018.4524.6030.7536.9043.0549.2055.3561.5067.6573.8079.9586.1092.2598.40104.55110.70116.85123.00129.15135.30141.453.0759.22515.37521.52527.67533.82539.97546.12552.27558.42564.57570.72576.87583.02589.17595.325101.475107.625113.775119.925126.075132.225138.3750.4909010.4857240.8065330.8136110.9876811.0009561.0743821.0843081.1123661.1177261.1270181.1289381.1307511.1306771.1300981.1283731.1272981.124681.1234721.1203771.1198321.1160311.1159121.1116421.1120861.1073831.1076991.1028641.102941.098171.0971541.0925641.0886611.0846121.0743821.0718791.047971.047760.9971071.0002170.8985530.9038720.7132990.7146580.4151190.413150.4727080.4881810.8067770.8133750.9977931.002521.0826221.0811261.1166261.1069491.12808.1.1137051.1298691.1138391.1276021.1114981.1240231.1085541.1199671.1055441.115911.1026671.1118531.0998351~1080361.0972931.1040981.0947731.0999221.0921641.0950311.0893991.0878721.085141.076061.0778481.0529141.0620151.0061441.0251760.9096220.9360670.7174130.7456520A094730.44679351-1258768-01GinnaSFPRe-rackingLicensingReportPage390
 
Table4.4-11RelativeAxialShapesfortheSevenZoneAxialModel::,'>2.NOde:;:.".:Height','::in",.::Height::::cm::';:~"-:":i'A'ss':.'::Burnu","':.GWd/mtU'';='',,"!~~)i'A'ss",.:'I54"'::,'cle'of:Irr'adiafion',.=.:,'::'';::;~10!715::'::::-'i;:;5;:!23!OXX:.:gA'.k':,":33526I~":::;.:.".,".'.",."44'.844'':.;16:.'."1'4I'6'::';:15::!':.6',:..''i6'.':::1'6'::'.I17:'';.::,:,';:;'::!,-:.'.1515.6210.4910.4860.4730.48812.3031.2420.8070.8140.8070.81318.4546.863125.55318.897131.70334.518137.85350.139144.00365.7600.7130.7150.415OA130.9881.0011.0991.0980.8990.9040.9981.0990.9100.7170.4091.0031.0920.9360.7460.447Table4.4-12AxialBurnupShapesfortheRegion2LoadingCurve,I'Ass';RaitialEiirichiiie'nt,"'::Wt%'':i'=.--,;";:;:I:::,':>"':;~'::,';:::::'.;:::!As's"''Biirnu"'$GWd/mtU:,.=;::.',::..-::-'.'-:'';i:i~",;21';00',>";!::;:::;:-'"::;3400;;;:i.';':::':-'::>~'45.'00'.":-':.::::''",::No''de!:::,.'::'~,:::,:;::Height:,::;:'.inHeigh't,c'm'::';::::,'I:::,"'.":::.";:Node;Burnup",::,,GWd/mtU,',:::.:,:,:::,I:;:::,";:I6.1515.62110.2016.07.21.9712.331.24217.0927.4336.6018.4546.86321.0233.9245.11125.55131.7318.89723.0637.3749.15334.51818.9830.9342.12137.85144350.13915.01365.768.6824.3933.5513.9220.1151-1258768-01GinnaSFPRe-rackingLicensingReportPage391 k'<<>>,
Table4.4-13IrradiationInputDataandIsotopicConcentrationsfor3Wt/oInitialEnrichmentFuelat21GWd/mtUBurnupInRegion2:;,,',.",Upp'pe'r',":,.,'.':';.,''::::;:;Ij::..',".::,::;;.::,':.i,'"',::,:"~:..::;.j::j;::;:::i::"'Fuel:-;:I.".":~i';:::;:::<.".''".':Moderator.,:,",::Xo'ne',:Bi'irnu'p',"':,Teiiije'r'atiir'e,":Temp1era'tur'e,"";;;:;,CASMO-3:":"'':'Xou'e'::Po'w'er',':;.-:,';:.'-:.':,W/gU:;:i;:.'.,'i15.62131.24246.863318.897334.518350.139365.76010.2017.0921.0223.0618.9815.018.68805.94867.05928.16932.57887.60829.27770.94557.70558.16558.35574.28590.85591.59592.0715.5241625.8653331.8801334.7321929.7669423.7117214.20803AxialBurnupRegionNumberDensities,Atom/b-cm:::",:;::,';;:L''ev'el;;:,'::,":;:,;;;::,,':Bur'ri'u'p,","".G%d/m'tU,10.204.6345E-0417.093.4726E-0421.022.9213E-0423.062.6977E-0418.983.2605E-0415.013.8452E-044.6040E-024.6040E-024.6040E-024.6040E-024.6040E-024.6040E-024.0905E-056.0203E-056.8757E-057.2601E-056.4526E-055.5108E-052.1987E-022.1827E-022.1713E-022.1666E-022.1765E-022.1878E-02"'."""",',siii""""'""'.0831E-OS7.8726E-088.1832E-088.6537E-088.8019E-OS8.3143E-OSAverae8.68214.9549E-042.9541E-044.6040E-024.6040E-023.6081E-056.8760E-052.2025E-022.1725E-027.3739E-OS8.4910E-OS'>,'='Le'vel,:":;::::,",''.'7.0921.021.0171E-041.0928E-0423.061.1414E-0418.981.1053E-0415.011.0065E-048.687.4853E-05.-':Biirnu'p;"'-":;;::GWdlmtU)10.207.9185E-051.3750E-052.6739E-053.3917E-053.7909E-053.1282E-052.3841E-051.1527E-055.1063E-061.3023E-051.7595E-052.0480E-051.6341E-051.1271E-054.0172E-066.4851E-061.0251E-051.2369E-051.3609E-051.1580E-059.3555E-065.7635E-06Averae211.1108E-043.4359E-051.8077E-051.2496E-0551-1258768-01GinnaSFPRe-rackingLicensingReportPage392
~I Table4.4-14IrradiationInputDataandIsotopicConcentrationsfor4Wt/oInitialEnrichmentFuelat34GWd/mtUBurnupinRegion215.62131.24246.863318.897334.518350.139365.76016.0727.4333.9237.3730.9324.3913.92':33:';.~j;.:Fuel.~>~":"~~>Te'iiijer'ature,"'05.94867.05928.16932.57887.60829.27770.94<,'.:Mo'deratorj';ITein'p'eratur'e'57.70558.16558.35574.28590.85591.59592.07I'::::."CASMO3'::::;:IZoi'ie':Poive'r,":I.:','"';;W/gV15.5241625.8653331.8801334.7321929.7669423.7117214.20803AxialBurnupRegionNumberDensities,Atom/b-cm'.:,'!'.:'L'evel'::'-:,,"',;"'verae,,:Biirriup',":,;",:';.GWd/mtU.::16.0727.4333.9237.3730.9324.3913.92345.6255E-044.6040E-026.5780E-052.1690E-023.7849E-044.6040E-029.5834E-052.1467E-022.9530E-044.6040E-021.0780E-042.1312E-022.6207E-044.6040E-021.1286E-042.1237E-023.4179E-044.6040E-021.0278E-042.1371E-024.3079E-044.6040E-028.9221E-052.1526E-026.0756E-044.6040E-025.9153E-052.1732E-022.9901E-044.6040E-021.0802E-042.1319E-029.3550E-OS9.9113E-OS1.0033E-071.0513E-071.1147E-071.0842E-079.9625E-081.0478E-07<<i;,'L'ev'el";i:,':,-'""!Averaeturnup~".;',',GWd/mtU;,';16.0727.4333.9237.3730.9324.3913.9234.:,;@9Pu.:.:.;,'...,.,;,,';.+40Puw,,',;,.:.:.;:,.j:;241Pug,,:I(;g,.",,;~:~:IOB;,$:;Q.1.0013E-042.0203E-059.2139E-061.0533E-051.2273E-043.8390E-OS2.1475E-051.6809E-051.2814E-044.7397E-052.7845E-052.0217E-OS1.3283E-045.2374E-053.1720E-052.2295E-051.3354E-044.4857E-052.6875F051.9272E-051.2503E-043.4904E-051.9731E-051.5624E-059.7316E-051.7494E-057.6889E-069.5098E-061.3104E-044.8234E-052.8681E-052.0526E-0551-1258768-01GinnaSFPRe-rackingLicensingReportPage393
: f.
Table4.4-16IsotopicConcentrationsforFuelforRegion2AuxilaryCurves,Atom/b-cmEnrichmeiit,"i"'",,::::,::i:,:%t:;,':lo):,":':-:,'j.'.05.04.04.03.03.0''y'sunup~.",.".".i'GWdlm'tUI':I52.238.840.029.125.018.02.4763E-044.6040E-021.5282E-042.0832E-024.0229E-044.6040E-021.3335E-042.1066E-022.3482E-044.6040E-021.1638E-042.1211E-023.5997E-044.6040E-029.9148E-052.1403E-022.4699E-044.6040E-027.6063E-052.1651E-023.3627E-044.6040E-026.2279E-052.1778E-02;''!"'149Sm,-g'.1451E-071.2873E-071.0064E-071.0839E-078.4683E-088.4126E-085.05.04.04.03.03.052.238.840.029.125.018.06.3354E-054.8842E-051.3277E-041.2770E-041.1583E-041.0576E-044.0144E-053.0860E-055.5454E-054.1271E-054.1120E-052.8949E-051.4439E-041.4294E-043.3446E-052.4286E-052.2419E-051.4549E-053.1155E-052.4623E-052.3452E-051.8037E-051.2589E-059.8012E-06Table4.4-17AverageIsotopicConcentrationsforRegion1LoadingCurve,Atom/b-cm3.04.05.0'i:;";BuDlUp~',:.,'-,":::;,GWd/mtU;:,:;::18284.8608E-045.2911E-045.5621E-044.6040E-024.6040E-024.6040E-023.6932E-052.1930E-027.1679E-052.1582E-021.0952E-042.1231E-027.5148E-051.0825E-071.3556E-073.04.05.018281.1790E-054.1949E-067.6900E-082.3888E-051.1999E-051.0873E-043.4759E-052.0835E-051.3291E-046.0879E-061.2043E-051.8966E-0551-1258768-01GinnaSFPRe-rackingLicensingReportPage395 4
 
Table4.4-19EvaluationofMarginProvidedbytheBorafiexDegradationModelforRackType1""""'~@'''''""':"'Calciilated"'"i-"'-"::"'-''"::''-''"""''.::;:~,k":"~+::to:;-'wt%at45GWd/mtUderadedrackmodel5wt%at45GWd/mtUnominalrackmodel4wt%at34GWd/mtUderadedrackmodel4wt%at34GWd/mtUnominalrackmodel3wt%at21GWd/mtUderadedrackmodel3wt%at21GWd/mtUnominalrackmodel0.910800.862580.911880.864320.923970.874950.000510.0482+o.00070.000530.000510.047660.00080.000560.000520.0490+0.00080.0005551-1258768-01GinnaSFPRe-rackingLicensingReportPage397 Figure4.1-1Region1SpentFuelBurnupvsEnrichmentCurveRegion1SpentFuelBurnupVersusEnrichmentCurve60000500004000030000200001000000.511.522.533.54455NominalInitialEnrichment,Wt%51-1258768-01GinnaSFPRe-rackingLicensingReportPage398 Figure4.1-2Region2BurnupvsEnrichmentCurveRegion2BurnupVersusEnrichmentCurve60000500004000030000AssysInReeks~-Base-.W--Minus10/o--R--Plus10%20000100001234NominalInitialEnrichment,wt%51-1258768-01GinnaSFPRe-rackingLicensingReportPage399 Figure4.1-3SketchofAllowableLoadingConfigurationsforRegion1FB4-'AorEmpty4:AorEmpty4A,B,F,orEmptyCellWithIntegralLead-inFunnelCellWithoutIntegralLead-inFunnelF=FreshFuelAssembly.A=FuelAssemblywithBurnupandEnrichmentinAreaAofFigure4.1-1.B=FuelAssemblywithBurnupandEnrichmentinAreaBofFigure4.1-1.51-1258768-01GinnaSFPRe-rackingLicensingReportPage400 Figure4.1-4SketchofAllowableLoadingConfigurationsforRegion2A,A4A>>A~,B,orEmpty4A>>Az,orEmpty4A,orEmpty4EmptyA,=FuelAssemblywithBurnupandEnrichmentinAreaA,ofFigure4.1-2.A,=FuelAssemblywithBurnupandEnrichmentinAreaA,ofFigure4.1-2.BFuelAssemblywithBurnupandEnrichmentinAreaBofFigure4.1-2.C=FuelAssemblywithBurnupandEnrichmentinAreaCofFigure4.1-2.51-1258768-01GinnaSFPRe-rackingLicensingReportPage401
'
Figure4.3-1GiiinaSpentFuelPoolConfigurationRackType4Region2Region14D4ARackType14B4F4CRackTe3Racks3A,3B,3C,R3DRack3ERack~Te2Racks2A82Bpoolwall-concreteRackType4caskareaL,51-1258768-01GinnaSFPRe-rackingLicensingReportPage402 Figure4.3-2-Region1Type3BaseCellStructureforInfiniteModel9i88558c23.45cm9.232"'+Ire's4"""'blQFuelAssemblyModeratorQBoratedSS-304ggSS3042345cm(9.232")$".j."f25'i4514gpN-":1$.7:9.::c'm.f4248':):::2.07cm(0.815")51-1258768-01GinnaSFPRe-rackingLicensingReportPage403
~~~
Figure4.3-3AxialProfileofFiniteAndInfiniteBaseModelsWaterAdatblanket12'(30ABcm)Fuelassemblycell44'(365.76cm)AxtatblanketWater12'(30ABcm)51-1258768-01GinnaSFPRe-rackingLicensingReportPage404 Figure4.3-4Region1-RackType3FiniteModel3A10x7Elev.10xj(Less8ForElevatorArea)VoidBoundary3Ciox53D10x52Bllx93E10x7DamagedFuelCells(5Cells)2Allx8CASKAAirrorBoundary51-1258768-01GinnaSFPRe-rackingLicensingReportPage405
 
Figure4.3-5Region2BoraflexRack(Type1)-KENOV.aModel0.062+.003/-.0030.075+.007/-.0070.09+.004/-.004(SS-304)0.075+.007/-.007Orlglaofarray8.25+.06/-.000.5///////////8.25+.06/-.008.43+.06/-.007.625'/-.00258.113rr.113'.43+.06/-.006oraflaxSS-304QziSS-30451-1258768-01GinnaSFPRe-rackingLicensingReportPage406 Figure4.3-6Region2BoratedStainlessSteel(Type2)Racks-KENOV.aModel-W[Q-0.091"(.232cm)&g8.14"(20.68cm)0.12"-(0.3cm)0.079"(0.2cm)PoolWater8.43"(21.412cm)IUBorstedStainlessSpentptteiSSSteelAssembly51-1258768-01GinnaSFPRe-rackingLicensingReportPage407 Jl.~IW)
Figure4.3-7AreasModeledtoExamineInterfaceEffectsbetweenRackTypesandRegionsRackType4D-4FRakType3RackType1AreasModeledRackType2RackType3RackType4A-4Cpoolwall-concreteL,51-1258768-01GinnaSFPRe-rackingLicensingReportPage408 Figure4.3-8KENOV.aModelUsedtoExamineInterfaceEffectsbetween(I)RackTypes3Cdk,2B,and(2)RackTypes2B&3E3Alox7Elcv.Ioxj(Less8ForElevatorArea)VoidBoundary3CIox5I3Dlox52BIlx93E)ioxDamagedFuelCells2AIlx8ASKAA5>4+'(.irrorBoundaryNeutronStartPointsatI&2and34,451-1258768-01GinnaSFPRe-rackingLicensingReportPage409 I
Figure4.3-9KENOV.aModelUsedtoExamineInterfaceEffectsbetweenRackTypes1,4F,and3Apoolwall-concrotoRackTpo4F-10x1C3j2RackTypo110x83A10x7water51-1258768-01GinnaSFPRe-rackingLicensingReportPage410
 
Figure4.3-10KENOV.aModelUsedtoExamineInterfaceEffectsbetweenRackTypes1,4C,and2ARackType110x8ackType4C-10x1322A11x8poolwall-concreteL,51-1258768-01GinnaSFPRe-rackingLicensingReportPage411
 
Figure4.3-11KENOV.aShallowDropAccidentModelsT-BoneAccidentDroppedFuelAssemblyActiveFuelRegion~~VerticalDropAccidentDroppedFuelAssembly~ReckCells'1-1258768-01GinnaSFPRe-rackingLicensingReportPage412
~h1a/
Figure4.3-12KENOV.aSideDropAccidentModelRack2BRack3EIRegion1BSSReplacedbySSOnOuterFacesRegion2DroppedFuelAssemblyBSSCellCaskLaydownArea51-1258768-01GinnaSFPRe-rackingLicensingReportPage413 0I Figure4.3-13KENOV.aDeepDropAccidentModelforRackTypes2,3,and4RackCells~DisplacedFuelAssemblyHypotheticalBasePlateDeformation2.12"DisplacementRackTypes2,3,dk,4DeepDropDeformedModel51-1258768-01GinnaSFPRe-rackingLicensingReportPage414 Figure4.3-14KENOV.aRegion1MisplacedAssemblyModelMisplacedA.ssemblyt%FreAWt%Fresh4Wt%Fresh4Wt%reshWt%FreshWt%FreshWt%Fresh4Wt%'4'.,r',."ashFresh4Wt%Fresh4Wt%FreshWt%Fresh4Wt%FreshRegion1RackType351-1258768-01GinnaSFPRe-rackingLicensingReportPage415 Figure4.3-15KENOV.aRegion2MisplacedAssemblyModelMisplacedAssemblyAlBAlB'lBABAlBAlBAlBAlBAlBA1BAlRegion2RackTypej.51-1258768-01GinnaSFPRe-rackingLicensingReportPage416 Figure4.3-16KENOV.aRackType1DeepDropAccidentModelDroppedAssembly]4tlScntFuelPoolFloorDeepDropDeformationForRackType151-1258768-01GinnaSFPRe-rackingLicensingReportPage417 Figure4.3-17SketchofConsolidationCanisterIIOuterSquareDimension,20.34+0.0508cm(8.00+0.02")FuelRodPitch16~6086SQi'i8586"0Q~'QQSIS6Q)!)PlateThickness,0.236+0.0102cm0.093&0.004")51-1258768-01GinnaSFPRe-rackingLicensingReportPage418
'N Figure4.4-1KENOV.aResultsforB&%CriticalsforSpacingVariations44GroupBlcWCriticalExperimentsSpacing/InterspersedAbsorberBiasEvaluationO.lll4A02W.OOZC04J044.005A4.000hoQ~vvarefba0.1~ba02-"9"baOAbaU/1.0-~..ee-I-b4oAverage4.0104.012O.i1.02.03.04.0Spacing,cm5.07.051-1258768-01GinnaSFPRe-rackingLicensingReportPage419 Figure4.4-2ResultsforWaterSpacingExperimentsfromKENOV.a27and44GroupandMCNPContinuousGroupCrossSectionsWaterGapComparisonsBetweenDifferentCodesEcCrossSections0.0004.002~4.000o1%4nlCl~~4.006c0l~14~I~27Bnmk~-MCNPCont60FCIBnmk~<<20~~40BWBnmk4.000.0104.012FuelClusterSpacing,cm1251-1258768-01GinnaSFPRe-rackingLicensingReportPage420
~%-~~~4~,n Figure4.4-3LeastSquaresFitThroughResultsBOWInterspersedAbsorberExperimentsKENOV.aBiasAsAFunctionofSpacingBetweenAssemblies,WaterFilled0.0010.000'.A.0014.0024.003014.004Aco~Wgz.oos4.000<.007e.000'/,yr/1II~//I/////r/'DBK-AverageBWCrrt~-----.Avg+Dev~-----Avg-Dev.009SpacingBetweenFuelArrays,cm101251-1258768-01GinnaSFPRe-rackingLicensingReportPage421 Figure4.4-4TypicalGinnaAxialBurnupShapesforBurnupsbetween10and20G%d/mtUBurnupRange10to20G%D/MTUC4a~(L6~IV~A62Cy2l~09Cy23~C56Cy&~q16Cy14~E60Cy25~D77Cy2420NodeHeight,in12014051-1258768-01GinnaSFPRe-rackingLicensingReportPage422
'P'4I~
Figure4.4-5TypicalGinnaAxialBurnupShapesforBurnupsbetween20and30GWd/mtUBurnupRange,20to30GWD/lCIU1.008gplL6~%4CP~QI6Cyl5~A62Cy22~D77Cy25~C56Cy24~CQCy24OA020.02040NodeHeight,in12051-1258768-01GinnaSFPRe-rackingLicensingReportPage423 Figure4.4-6TypicalGinnaAxialBurnupShapesforBurnupsbebveen30and40GWd/mtUBurnupRange,30to40GWD/MTU1.00.8C,Le0,6Cv0)~A62Cy23~Q16Cy16~C63Cy2$~CS6Cy26-26E60Cy26~CS62S0A0.0204060$0NodeHeight,in10012014051-1258768-01GinnaSFPRe-rackingLicensingReportPage424 I~t~
Figure4.4-7TypicalGinnaAxialBurnupShapesforBurnupsbetween40and50GWd/mtU1.0Lc~06~WCCY)~gl6('Pl7~A62Cy24~053Cy26~D77Cy26ILO0206080100NodeHeight,in51-1258768-01GinnaSFPRe-rackingLicensingReportPage425 Figure4.4-SNon-AxialBlanketShapesUsedforAnalysisNon-BhnketFuelAssmblyBurnupShapesC20000~QI6Cy14~Q16Cy15~Q16Cy16~Q16Cy171000020AssyHeight,in12014051-1258768-01GinnaSFPRe-rackingLicensingReportPage426 Figure4.4-9RelativeNon-BlanketAxialShapesUsedinAnalysisMativeShapesForNon-AxialBhnhetFuel1.0~QI6+14-6-Q16+15~Q16@16~Q16Ot'7aoNodeHei,+In14051-1258768-01GinnaSFPRe-rackingLicensingReportPage427 Figure4.4-10IllustrationofSevenZoneRepresentationSevenZoneModelFor40to50GWD/MTURange1.20.80~0.6~A4l23NodeShape~ScveaZoaeModelOA0.220406000100120AxialHeight14016051-1258768-01GinnaSFPRe-rackingLicensingReportPage428 5.0THECAL-HYDRAULICEVALUATION
 
==5.1INTRODUCTION==
RochesterGas&ElectricCo.isexpandingthespentfuelstoragecapacityatitsGinnaplantthroughinstallationofhighdensitystorageracksinthespentfuelstoragepool.Thepoolcapacitywillbeincreasedintwophases.Theinitialphasewillincreasethepoolstoragecapacityby305locationswiththeinstallationofATEAType2and3racks.Thesecondphase,ifimplementedbyRG&E,willincreasethecapacitybyanadditional48storagelocationswiththeinstallationofATEAType4racks.AsdiscussedinSection1.1,thepooltotalstoragecapacityofthespentfuelpoolwillbeincreased&omitspresentcapacityof1016toatotalof1369locationswiththeimplementationof'othphases1and2.Theincreasedstoragecapacityofthespentfuelpoolwillresultinincreaseddecayheatloads.TheefFectoftheincreaseddecayheatonthethermalperformanceofthespentfuelpoolwasdeterminedforthefinalspentfuelpoolconfiguration(bothphase1and2)atthemaximumcapacity.Therequiredreactorhold-timebasedonconservativeassumptionsforthefullcoredischargeschedulewasdeterminedusingtheexistingheatremovalcapabilityofthespentfuelheatexchangers.Poolheatupratesatthemaximumpoolcapacitywerecalculatedaccountingforthedisplacedwatervolume.Localfluidconditionsandmaximumcladtemperatureatthemostlimitinglocationinthepoolwereverifiedasacceptable.RG&Emayelecttoutilizefuelconsolidationasafuturemeansofincreasingthespentfuelpoolstoragecapacityoverthepresentdesign.Localfluidconditionsforthelimitinglocationinthespentfuelstoragepool,conservativelydeterminedfornormalstorage,weredemonstratedasboundingcomparedtothoseforconsolidatedfuelcanisterspositionedthroughoutthespentfuelpool.Thefollowinganalysesforthethermal-hydraulicqualificationofthespentfuelstoragepoolwereperformedfortheATEAType2,3and4racks:CalculationofSpentFuelDecayHeatLoads~BulkPoolHeatUpRate(uponlossofpoolcooling)~LocalPoolThermalEvaluationsCalculationoflocalfluidandfuelcladtemperaturesAssessmentofflowblockageonlocalfluidconditionsAssessmentofgammaheatingonthefluidconditionsintheinter-canistergaps~ImpactofPoolRe-rackingonFuelConsolidationLimitsTheresultsoftheseevaluationsdemonstratingtheacceptablethermal-hydraulicperformanceoftheGinnaspentfuelpoolwithincreasedstoragecapacityfollow.51-1258768-01GinnaSFPRe-rackingLicensingReportPage429 0
5.2CRITERIAThethermal-hydraulicanalyseswereperformedinaccordancewiththerequirementsandguidelinessetforthinthefollowing:OTPositionforReviewandAcceptanceofSpentFuelStorageandHandlingApplications,DatedApril14,1978andrevisedJanuary18,1979,(Ref.5.2.1),NUREG-0800StandardReviewPlan9.1.3,Revision1(July1981)andStandardReviewPlan9.2.5,Revision2(July1981),(Ref.5.2.2),~A.G.Croft,RI-ev'deVeeinneleide,ORNL-5621,(Ref.5.2.3).eaThethermal-hydrauliccriteriaincludethefollowing:~Bulkpooldoesnotexceed150'FunderanySFPloadingcriteriaLocalboilingdoesnotoccurinthehotassemblyexceptfortheconditionofacompleteinletflowblockageMaximumcladtemperatureremainsbelowsaturationforallnon-flowblockagecasesAdequatecoolingforconsolidatedfuelcanistersisprovidedwiththeincreasedpoolstoragecapacity5.3ASSUMPTIONSThemaximumbulkfluidandcladtemperaturesfortheGinnaspentfuelstoragepoolwerecalculatedwiththefollowingconservativeassumptions:Maximizeddecayheatloadasaresultofboundingfuelenrichment,boundingburn-upandboundingnumberofassembliesdischargedtotheSFP,Instantaneousdischargeofthefueltothespentfuelpoolafleraminimumreactorshutdowntimeof100hours~Localhotchannelpeakingfactor,F"~=1.75,usedforpeakingforthehotfuelassembly~Minimumwatervolumeaccountingforfullpoolstoragecapacityusedforthecalculationofthebulkpoolheat-uprate5.4DISCUSSIONOFSPENTFUELCOOLINGTheexistingspentfuelcoolingsystemattheGinnaplantconsistsofthreecoolingloops.Theprimaryloop(loop2)ismadeupofspentfuelpumpB,spentfuelpoolheatexchangerBandpiping.Thebackuploopsincludeinstalledloop1withspentfuelpoolpumpA,spentfuelpoolheatexchangerAandpiping,andskid-mountedloop3withskid-mountedspentfuelpoolpump,spentfuelpoolstandbyheatexchanger,pipingandhoses.51-1258768-01GinnaSFPRe-rackingLicensingReportPage430 Loop2isdesignedtomaintainthespentfuelpoolwaterbelow150'Fwithadesignbasisheatloadof16x10'tu/hrassociatedwithaservicewatertemperatureof80'F.Loop1andloop3areeachdesignedtoremove7.93x10'tu/hrwithapooltemperatureof150'Fandservicewaterat80'F.Operatedinparallel,theyarecapableofremovingthedesignbasisheatload.ThesourceofservicewaterfortheSFPheatexchangersisLakeOntario.NomodificationstotheexistingSFPcoolingsystemareplannedasaresultoftheinstallationoftheATEAracks.Theavailabilityofthreepumps,threeheatexchangersandassociatedparallelflowpathsintheGinnaSFPSystemprovidesadequateprotectionagainstanypostulatedsinglefailures.Therefore,redundancyexistsintheGinnaspentfuelpoolcoolingsystemto-ensurethatfullheatremovalcapabilityisavailableforthedesignbasisheatload.ServicewatertothespentfuelpoolcoolingsystemisprovidedbylakewatersuppliedbyLakeOntario.SincethelakewatertemperaturevariesRomwintertosummer,thepotentialheatremovalcapabilityoftheSFPcoolingsystemalsovaries.Withcoolerlakewatertemperature,theheatremovalcapabilityoftheSFPcoolingsystemincreases.Therefore,thenecessarycoreshutdownrequiredtoensurethattheSFPtemperaturedoesnotexceedits150'Flimitisafunctionoflakewatertemperature.TherequiredcoreshutdowntimestopreventtheSFPfromexceedingthe150'Flimitwereanalyzedforlakewatertemperaturesof40'Fand60'Faswellasforthedesignlakewatertemperatureof80'F.5.5SPENTFUELPOOLCAPACITYANDDISCHARGESCENARIOSThefollowingsectionssummarizethespentfuelpoolcapacityusedasacalculationalbaseandthedischargescenariosforthenormalandfullcoreoffload.5.5.1SpentFuelPoolCapacityThedischargescheduleisshowninTable5.5-1.Beginningin1997,abounding44assemblybatchdischargeschedulebasedonan18monthfuelcyclewasassumedthroughtheendofplantlife.ThedischargeschedulelistedinTable5.5-1resultsinatotalspentpoolinventoryof1879intheyear2029.ThispostulatedloadingschemeisconservativefordeterminingthemaximumGinnaspentfuelpoolheatloadsincethepresentGinnaoperatinglicenseexpiresintheyear2009.Additionally,the1879fuelassembliesassumedtobeloadedexceedsthe1369fuelassemblystoragelocationsavailableinthepoolafterinstallationoftheATEATypes2,3and4racks.Theseextrafuelassembliescouldbeaccommodatedbyperformingfuelconsolidation.Presently,theGinnafuelpoolincludes11fuelassembliesthathavebeenconsolidatedandarestoredin8fuelassemblylocations.'dditionally,2fuelassemblylocationsarepresentlybeingused'tostorenon-fuelrelatedhardware.5.5.2CoreOffloadScenariosTwocoreoffloadscenariosbasedonthecoredischargescheduleinTable5.5-1wereusedintheevaluationofthespentfuelpool.5.5.2.1NormalDischargeScenarioThenormalfuelstoragescenarioassumesthatonereloadbatchissequentiallydischargedfromthecoreuntilspaceremainsforonecoreoffload.Thenewlydischargedbatchisassumedtohaveadecaytimeof100hoursandthepreviouslydischargedbatchhasadecaytimeof18monthsconsistentwithTable5.5-1.51-1258768-01GinnaSFPRe-rackingLicensingReportPage431 5.5.2.2FullCoreDischargeScenarioForafullcoreoffload,onereloadbatchatatimeisdischargedfromthereactoruntilvacantlocationsremaininthespentfuelstoragepoolforonebatchplusonefullcoreoffuel.Bothbeginningofcycle(BOC)andendofcycle(EOC)scenarioswereinvestigatedforthefullcoreoffload.FortheBOCscenario,theplantisassumedtooperatefor30dayspriortoshutdown.Thedecayheatforthepreviouslydischargedbatchisassumedtobethedecaytimeforthe30dayoperationplusthedecaytimeforthefullcorepriortodischargetotheSFP.Nocreditistakenforthedecaytimeassociatedwiththerefuelingoutagedurationforthepreviouslydischargedbatch.FortheEOCscenario,thedecayheatforthepreviouslydischarged44fuelassemblybatchisbasedonan18monthirradiationtime.Forthedischargedfuelassemblies,showninTable5.5-1,noadditionaldecaytimedueoutagedurationwasconservativelyassumedtomaximizethedecayheat.51-1258768-01GinnaSFPRe-rackingLicensingReportPage432 Table5.5-1GinnaSpentFuelPoolInventory(Actual&Projected)N.,:'l,:',:Dischar'g'e.:;;::.:;':i::Avera'g'e'Burri'uji:;:,:,",:Number,of',,'.::;:5,:".:;:;:::;.;::;::lDa'te':.'","."::::::::.",'.'WD/MTi':::,::::A'ssembfles':.".I'::-.:i!::Dec'a".;',to'.9/18/2029;::.:.:'':,:10/1/721/1/743/11/751/29/764/15/773/25/782/9/793/29/804/18/811/26/823/27/833/3/843/2/852/7/862/6/872/10/883/17/893/23/903/22/913/27/923/12/933/4/943/26/954/1/9610/20/973/7/999/15/003/17/029/16/033/15/059/21/063/19/089/18/093/15/119/15/12195722513524054250482883128579294293072131258322813520036714373423911939421402813811836995394734005744705423974151840674Pro:55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':5500070122437414140361519212831323336372937372737414444444444444444444444208062034919915195911914918805184841807017685174021697716635162711592915565151961479514424'4060136891333912982125951222311656111531059510047949989538398785373056762621251-1258768-01GinnaSFPRe-rackingLicensingReportPage433 Table5.5-1GinnaSpentFuelPoolInventory(ActualandProjected)Continued',,':;;,.DIsch'arge':,:I'vera'ge'Biiriiii'p:i:".'':.'."'Date:::::...':'".::::.:.::,:::D/M:''~A'ssei'iibiics"::;::"::::4'5cca":to'9/f8/2029:i:::..-"'/15/149/15/153/15/179/15/183/15/209/15/213/15/239/15/243/15/269/15/273/15/299/18/29TBDTotalPro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro':55000Pro:55000Pro:55000Pro':55000Pro':5500044444444444444444444441211879566651174570402134742925237918291283734187Note:NumberofassembliesdischargedthroughApril1996areactualassembliesdischargedtotheSFP.5.6DECAYHEATLOADThedecayheatloadsweredeterminedwiththeORIGEN2computercode(Ref.5.2.3).ORIGEN2hasbeensubmittedpreviouslyforasimilarapplication(Ref.5.6.1).Thecodeexplicitlysolvesthecoupledisotopicproductionanddecayequations,properlyaccountsfortheheatproducedbyallactivationproductsandmorethan100actinideisotopes,andrigorouslyaccountsforneutronabsorptioninthefissionproducts.Whereasactivationproductsproduceasmallfmctionofthedecayheatpower,theircontributionisincludedinthisanalysisforconservatism.AcomparisonbetweenORIGEN2andASB9.2methodologyisincludedinSection5.11.5.6.1FullCoreDecayHeatLoadForthisevaluation,thecorewasassumedtooperateat102%oftherated1520MWtcorepowerfor18monthcycles.Aconservativeflatfullpowerhistorywasusedfortheentirecyclelength.Consequently,thereactorwasassumedtooperateat102%powerfortheentirecyclelengthwithnoreductionsinpowerwhichnormallyoccurduringatypicalcycle.Nocreditwastakenfornuclidedecay(andcorrespondingreductionindecayheat)duringoutageperiodsandduringfueltransfer(i.e.,theassembly,batch,orcoreoffloadwasassumedtooccurinstantaneously).Themaximumheatloadresultingfromacoreoffloadwascalculatedat100hoursafterreactorshutdown.Toensurethatconservativedecayheatswereobtained,thedecayheatforburnupsof15,17.5,and20GWD/MTUwerecalculated.The20GWD/MTUburnupboundsthecyclelengthassociatedwithan18monthfuelcycle.Inaddition,ashortirradiationperiodof30days,whichcorrespondstoacycleburnupof1.1GWD/MTU,wasperformedtoinvestigatepoolheatloadsforaBOCcoreoffloadscenario.Theresultingdecayheatloadsafter100hoursofdecaywereexaminedandthemaximumvalue,whichoccurredafteraburnupof20GWD/MTU,wasusedinthisanalysis.51-1258768-01GinnaSFPRe-rackingLicensingReportPage434 5.6.2SingleFuelAssemblyDecayHeatLoadTheheatloadforasinglefuelassemblywasalsocomputed.Bothaverageandpeakassemblyheatloadsarerequiredforanalysis.Theheatloadwasbasedonaneighteenmonthcyclelengthand44fuelassemblybatchsizewasassumedforeachreloadoutage.Thepowerhistoryofanindividualfuelassemblyhasasignificanteffectonthedecayheatprediction.Typically,-freshandonce-burnedfuelwilloperateabovetheaverageassemblypower.Thisevaluationincorporatedanassemblypeakingof1.35forfreshfuel,1.20foronce-burnedand1.00fortwiceburnedfuel.Calculationsutilizingthedecayheatloadforanaveragefuelassemblywerebasedona'peak'veragefuelassemblyoperatingatanassemblyrelativepowerof1.35.Thiscorrespondstoafreshfuelassemblyinthereactor.Thedecayheatloadforthis'peak'ssemblyafterashutdowntimeof100hoursisgreaterthanthatforanassemblyoperatingatthetruecoreaveragepower,i.e.,havinga1.00peakingfactor.Thehot,ordesign,fuelassemblydecayheatloadwasobtainedbyconservativelyapplyingthedesignenthalpyrisefactorfortheGinnacore,F"~>>=1.75,totheaverageassemblydecayheatload.5.7REQUIREDCOREDECAYTIMESThetechnicalspecificationtemperaturelimitfortheGinnaspentfuelstoragepoolis150'F.ThistemperaturelimitisachievedwiththeheatremovalcapabilityofthepresentSFPheatexchangers.TheSFPheatloadmustnotexceedtheheatremovalcapabilityoftheexistingSFPheatexchangersata150'Fpooltemperature.InordertomaintaintheSFPbulktemperaturebelowthetechnicalspecificationlimit,thefuelmustbeheldinthecoreforaminimumshutdowntimetoensurethatthetotalSFPheatloadislessthantheheatremovalcapabilityoftheexistingGinnaSFPcoolingsystem.Fuelmaynotbeoffloadedfromthecore,inanyevent,priortoaminimumshutdowntimeof100hoursthatisassumedfortheradiologicalconsequenceanalysis.Therequiredshutdowntimetomaintainthebulkpooltemperaturelessthanthe150'Ftechnicalspecificationlimitwasdeterminedforlaketemperaturesof80'F,60'Fand40'F.5.7.1SingleBatchOffloadThedecayheatloadfora44fuelassemblybatchwasdeterminedforbatchaverageburnupsof15,30,45and60GWD/MTU.Themaximumspentfuelpooldecayheatload,aftera100hourshutdowntime,is11.22x10'tu/hr.Thisheatloadincludesthecontributionduetoallpreviouslydischargedbatches,andoccurredforthe15GWD/MTUcase.Thecontributionduetoallpreviousdischargedbatchesis3.56x10'tu/hr.Notethat,ingeneral,thelongtermdecayheatloadtypicallyincreaseswithincreasingburnup.However,the44assemblybatchmodeledhereutilizedconservativepeakingfactorsof1.35foraburnupof0to20GWD/MTU,1.2foraburnupof20to36GWD/MTU,and1.0foraburnupof36to60GWD/MTU.Thismodelingofabatchyieldedaslightlyhigherdecayheatloadwith100hoursofdecayafterthe15GWD/MTUburnupthandidsubsequentburnupswiththeirreducedpeakingfactors.Thus,aconservativedecayheatloadwasgeneratedforthe44assemblybatch.51-1258768-01GinnaSFPRe-rackingLicensingReportPage435 Thesinglebatchcoreoffloadcanbeperformedaftertherequired100hourshutdowntimeassociatedwiththeradiologicalrequirement.Thetotalspentfuelpooldecayheatloadat100hoursiswellwithinthe16x10'tu/hrheatremovalcapabilityoftheSFPheatexchangersatthe80'Fmaximumlakewatertemperature.Consequently,anormal1/3coreoffloadafter100hoursdecaywillneverresultintheSFPapproachingitsdesigntemperaturelimitof150'F.5.7.2FullCoreOffloadAfullcoreoffloadscenariowithafullinventoryofspentfuelassemblies(1879fuelassembliesassumingsomeconsolidatedrodcanisters)resultsinthehighestpredicteddecayheatloads.Acomparisonofdecayheatloadsforthefullcoreoffloadat30daysofoperationandforcoreaverageburnupsof15,17.5and20GWD/MTUshowedaconservativevaluewascalculatedforthe30daycoreoperation.Thisisbecausetheonceandtwiceburnedfuelassemblieswerenotdecayedforanycycleoutagetimebeforethefullcoreoffloadoutage.Forthe30daycoreoperation,thetotaldecayheatloadontheSFPafter100hoursis21.7MBtu/hr.Sincethisdecayheatloadexceedsthe16MBtu/hrdesignlimitheatremovalcapacityfor80'Flakewatertemperature,additionalshutdownisrequiredbeforeinitiatingthefullcoreoffloadatthedesignlaketemperaturescenario.TherequireddelaytimepriortocompletingthefullcoreoffloadisobtainedfromacomparisonofdecayheatloadagainsttheSFPheatexchangerheatremovalcapabilityforthevariouslakewatertemperaturestoensurethatthe150'FSFPlimitisnotexceeded.TherequiredcoredelaytimesensuringthattheSFPdesignlimittemperatureof150'Fisnotexceededforthefullcoreoffloadscenariowithafullinventoryofspentfuelassembliesissummarizedbelowforlaketemperaturesof40'F,60'Fand80'F:j"::.'.";:-;;.';:;.'::l.-',;:150,::>FjTech';':Sp'e'c';i'::;,':,:;:::,:.':X'll40608024.620.416.021.720.416.0100hours132hours280hours5.8LOCALFUELBUNDLETHERMAL-HYDRAULICSThespentfuelpoolatRG&E'sGinnaplant,showninFigure5.8-1,isdividedintotworegions.RegionIconsistsoffluxtyperacksandRegionIIconsistsofhigh-densitytyperacks.TwodifferentrackdesignsarecontainedinRegionII.PartofRegionIIcontainsATEAType2boratedstainlesssteelracks;theremainingracksinRegionIIaretheexistingboraflexdesign(notremovedaspartofthepoolre-rack).Theexistinghigh-densityboraflexrackshaveATEAType4boratedstainlesssteelsiderackslocatedbetweenthemandthepoolwallinthegap.TheATEAsideracksarelocatedontheNorthandSouthwallsoftheSFP.51-1258768-01GinnaSFPRe-rackingLicensingReportPage436 Figure5.8-1SpentFuelPoolRemainingRocksAreRegion2~~~'~~~,,~:+ol:~.+r~irRegion1I~J~~~++nnrQtVAIORA/If>+++++++++++++++EXISPNGRACKS+++Thermal-HydraulicModels++CASKAREA~4~~ie~icr'~~~~~~~3ThefollowingtableidentifiestherackdesignsfoundintheGinnaSFP.3A,B,C,D,EATEABSSFluxTrapATEABSSHighDensity2A,BExistingHighDensityBoraflex4Athrough4F(Type4aresideracks)ATEABSSHighDensity-BoratedStainlessSteel-Letterdenotesaparticulararrayofcanistersonaspecificracktype.BSS3A,etc.51-1258768-01GinnaSFPRe-rackingLicensingReportPage437S.S.1NaturalCirculationintheSpentFuelPoolStorageCanistersWhenfuelassembliesoffloadedfromthecoreareplacedinthespentfuelpoolintothecanisters,coolingoccursbynaturalcirculation.Thedensitydifferencebetweenthehotfuelassembliesandthecoolerbulkpoolfluidresultinathermalhead.Pressuredropduetofrictionallossesinthedowncomer,resistancesduetoracklevelingfeet,inlettothefuelcanisters,bundleskin&iction,fuelassembly(upperandlower)nozzlesandgridsandotherlossesintheflowpathbalancethisbuoyancyforce.
Thenaturalcirculationcoolingisanalyzedtodemonstratethatadequatecoolingoccursinthehottestfuelassemblyintheabsenceofinletandoutletflowblockagespreventinglocalboilingandmaintainingthepeakcladtemperaturebelowsaturation.Thehydraulicmodelconsistsofarowoffuelassembliesextendingfromthedowncomerwalltothecenterofthepool.Thepoolwaterisassumedtoflowdownwardbetweentheperipheryofthewalladjacenttotherackmodules,thenlaterallyintheregionbetweentherackmodulebasesandthepoolfloor,thenupwardthroughthefuelassemblies(Figure5.8-2).Aconservativepool-rackgapgeometryisusedtomodelthedowncomer.Thisisconservativebecauseflowisassumedtocommunicatewiththecanistersfromthedowncomeronlywhichismodelledasaflowpathonlyonerowwide.Inreality,flowreachesthecanistersfromotherdowncomerregionsbesidesthedowncomersegmentmodelled.ForthelimitingRegionIlocation,theassemblypowerisforapeakaverageassemblyhavingapeakingfactorof1.35(freshfuel)andisfromthemostrecentlydischargedbatchhaving100hoursofdecayfortheradiologicalrequirement.Thefuelassemblyaxialvariationofpowerwasmodelledwitha1.55choppedcosineshape;theresultsagreedverycloselywiththoseobtainedusingauniformpowershape.Thesinglerowoffuelassembliesaremodelledinitiallytoestablishthepressuredropboundaryconditionwhichisthenimposedonthehotfuelassembly.Allcanistersintherowareconservativelyassumedtocontainafuelassemblywiththeminimumdecaytime.Aracklevelingfootisconservativelyplacedbeloweachofthefuelassembliesasanaddedresistancetoflow.Inreality,arepresentativerowselectedforevaluationconsistsofapproximately12ormorefuelassembliesandhasatmost4or5supportfeet.Oncethepressuredropacrosstherowofaveragefuelassembliesiscalculated,thecalculationisrepeated.Thepressuredropboundaryconditionobtainedfromtherowofaveragefuelassembliesisimposedonthehottestfuelassemblyfortheregionbeinganalyzed.ThehottestfuelassemblyhasapeakingfactorofF"~,=1.75.Aracklevelingfootisplacedunderthehighestpoweredassembly.Theplacementoftheracklevelingfootunderthehotassemblyincreasesthepressuredropacrosstheassemblyandminimizestheflowtothehottestassembly.Theinlettemperatureofthewaterenteringthedowncomerandflowingintheregionbetweentherackbaseandpoolfloorisassumedtobeatthemaximumpoolbulktemperatureof150'F.Minimumrack-to-walldimensionsinthedowncomerweremodelledinordertomaximizedowncomerresistancetherebyminimizingfuelassemblyflow.ThefuelcladtemperatureforthehottestfuelassemblywascalculatedwithaheattransfercoeQicientforfreeconvection.Anadditionalresistanceof0.001ft~-hr-'F/Btuwasusedforpotentialfoulingonthefuelrods.DuetothevariouscanisterdesignspresentintheGinnaspentfuelpool,asinglecanister-typemodelwasnotused.Thefinalpoolconfiguration,uponcompletionofPhaseII,requiredtheapplicationofthreeseparatemodelstoanalyzethefollowinggeometries:RegionItype3racks,RegionIItype2racks,andRegionIIwiththeexistingboraflexandadjacenttype4sideracks.51-1258768-01GinnaSFPRe-rackingLicensingReportPage438 0
Eachofthemodelsfollowedthegeneralapproachdescribedabove.ThecalculationswereperformedwithFramatomeCogemaFuel'sFSPLITcode(Ref.5.7.1).FSPLITisaPCbasedcodewhichcanbeusedforpressuredrop/flowsolutionsfornetworkswithwater,heavywater,incompressiblefluids,orgasses.Thenetworkscanbeclosedlooporsimulatedopenloop.ForcedflowandnaturalcirculationproblemscanbeanalyzedwithFSPLIT.TheFSPLITcodehasbeenpreviouslyusedsupportinglicensingsubmittals.Figure5.8-2NaturalCirculationFlowPathDowncomerRegionFuelCanistersFlowPath"SupportFoot5.8.2EffectsofGammaHeatingintheFluxTrapRegionsandInter-CanisterGapsThenaturalcirculationinthefluxtrapregions(type3racks)andintercellgaps(type2racks)isdrivenbythepressuredropacrossthemajorflowpath.Waterentersthebottomofthecanistersandflowsupwardsintwoparallelpaths.Themajorflowpathisthroughthefuelassembliesandasecondarypathisinthegapsbetweencanistertypeswhereitisheatedbythegammaheatproducedinthestainlesssteel.Thisanalysisverifiestheabsenceoflocalizedboilinginthesesecondarypaths.5.8.2.1RegionIType3FluxTrapsWaterenterstheRegionIfluxtrapsthrougharectangularopeningatthetopofthebaseplate.ItflowsupwardsintheregionbetweenthecanistersandexitsatthelevelofthetopofthecanistersasshowninFigure5.8-3.Thetopofeveryothertype3canisterhasaleadinedgewhichformsafunnelthatfacilitatestheinsertionofoffloadedfuelandwhicheffectivelyblocksasignificantpartoftheexitflowareaalongthecanisterwidth.ThisconfigurationisshowninFigure1.3-4.Flowexitsthefluxtrapregionatthecornerintersectionsoffourcanisterswhicharenotobstructedbythefunnelfeatureandrejoinsthemainflow.51-1258768-01GinnaSFPRe-rackingLicensingReportPage439
 
Figure5.8-3FluxTrapRegionFuelCanisterFuelCanisterIMainFlowPathFluxTrapRegion1FluxTrapEntrance)~DiagramshowingtheflowpathintheType3RackFluxTrapRegion.5.8.2.2RegionIIType2Inter-CanisterGapsForthetype2canisterinter-canistergap,waterentersanopeningbetweentheboratedstainlesssteelplateandthecanisterwallabovethebaseplateandflowsupwardapproximately12feetandre-entersthemainflowstreamthroughasimilargapatthetop(Figure5.8-4).Theboundaryconditionsfortheflowintheinter-canistergaparethepressureswheretheflowentersthegapabovethebaseplateandatthetopwheretheflowexitsthegapandre-entersthemainflowstream.Forbothgapconfigurations,allofthegammaheatproductionisdepositedinthegap.Thetotalwallthickness,includingtheboratedstainlesssteel,isusedtocalculatetheheatproduction.51-1258768-01GinnaSFPRe-rackingLicensingReportPage440 Figure5.8-4RegionIIType2Inter-CanisterGapp3A08D0dI8QIp8KNIGapExit~5!3QtNQtpKN<II8liN8ptQeQType2GapEntrancMainFlowPathInter-CanisterGapDiagramshowingflowpathinRackType2Inter-CanisterGap.5.S.3FlowBlockagesApartialflowblockageatthecelloutletwaspostulatedwithafuelassemblylyingontopoftherack.Thisconfigurationwasmodelledasablockageofapproximately85%oftheexitflowareaofthehottestassemblylocatedoveraracklevelingfoottodemonstratethatboilingwouldnotoccur.Acompleteinletblockageofthehottestassemblywasalsopostulated.Usingacounterflowflooding,.correlation,itwasdemonstratedthatwaterwouldreplacetheexitingflowwhichwasassumedtobesteam.5.S.4NaturalCirculationintheConsolidatedFuelCanistersThenaturalcirculationinthe,consolidatedfuelcanistersiscalculatedinamannersimilartothatforthefuelcells.Theboundaryconditionfortheflowthroughtheconsolidatedcanistersisobtainedfromthenaturalcirculationoftheaveragefuelassemblies.Flowresistancesarebasedonfuelrodsinaclosepacked51-1258768-01GinnaSFPRe-rackingLicensingReportPage441 triangularlatticeataconsolidationrateof2:1.Thisassumesthatthefuelrodsassociatedwithtwofuelassembliesarestoredinoneconsolidatedcanister;Theflowlossthroughtheconsolidatedcanisterisprimarilyduetolaminar&ictionlossesalongtherodswhichwasdeterminedtobeapproximately50timesgreaterthancanisterinletandexitflowlosses.RG&Emay,atafuturedate,increasethestoragecapacityofthespentfuelpoolthroughfuelconsolidation.Anevaluationwasperformedtoascertaintheaffectsofadditionalfuelconsolidationactivitiesonthethermal-hydraulicresultsforthehottestfuelassembly.Theanalysis,inprincipal,isthesameasthatusedforthefuelassemblies.ComparingtotheRegionIresults,whichwerethermallylimitingforthespentfuelpool,consolidatedfuelcanisterswereplacedinthefuelassemblyrowpreviouslymodelledtoestablishthepressuredropboundaryconditionforthehottestfuelassembly.Anacceptableapplicationofconsolidatedfuelcanistersispossibleprovidedthecalculatedpressuredropboundaryconditionfromtherowoffuelassembliesusedforthehottestfuelassemblyremainslimiting.Variousconfigurationsofconsolidatedfuelcanisterswereinvestigated:FullrowofconsolidatedcanistersinRegionI,Singleconsolidatedcanisterinarowoffuelassemblies,Fullconsolidation(2:1)andpartialconsolidation(1:1).5.9SPENTFUELPOOLTHECAL-HYDRAULICSANALYSISRESULTSTheresultsofthespentfuelthermal-hydraulicanalysesperformedarediscussedinthissection.ThegeneralmethodologyusedisdiscussedinSection5.8.Certainfeaturesoftheanalysismethodarerepeatedandexpandedinthediscussionsofthevariousanalysesforclarity.5.9.1RegionIwithType3ATEARacksTheATEAtype3rack,fluxtrapdesign,islocatedinRegionIoftheGinnaspentfuelpool(Figure5.8-1).Thisracktypewasconservativelymodelledasasinglerowof12canistersextendingfromtheNorthwallsouthwardtothemiddleofthespentfuelpool(Figure5.8-1).Thethermal-hydraulicmodelincludesracks3Aand3C;thesinglerow(type3canisters)endsattheinter-rackgapbetweenthetype3andATEAtype2rack.Theminimumdowncomergapdimension,rack-to-poolwall,is1.80inches.Figure5.9-1showstheflowpath.Asinglecanisterwidthisusedforthewidthofthedowncomerchannel.Frictionalflowlossesinthedowncomerwerebasedonturbulentflow.Turnlosses,contraction/expansionlossesattherackbasetowallandthroughthesupportfeetandbaseplatewerebasedonwellknownexpressionsfoundinreference5.8.1.Thefuelassemblygridandnozzlepressuredroplosseswerebasedonthebehaviorofanorificeinthelaminarflowregime.Frictionallossduetothefuelrodandcanisterskinfrictionwascalculatedassuminglaminarflowthroughthecanister.Thetotalpressuredroplossofthefuelassemblywasobtainedbycombiningthegridandnozzlelosseswiththefrictionloss.TheresultsforthehottestassemblyinaRegionItype3rackaresummarizedinthefollowingtable.51-1258768-01GinnaSFPRe-rackingLicensingReportPage442 Table5.9-1RegionIType3RackLocalPoolCoolingResults9',:!':.':'Ass'eiiibly,'.;.','-.:.:..:',::';:.,'::::.':',;.';;.',.'''',";:":::r"..',.'::Te'mperat'ur'e',(:F)'.;':;:;:::::,:''::,.':::.'!:,:.:.'..:'',:.',',".",;.,".RegionIType31.75::;;::':;::.;:.':::;::j;.';:;(Ibiii/hr)'."';:;.:.,":-;,":,."4260150."::.:::::,':.".:,,Outlet'.,':;:;,';;:::.::;i'::Fluid":.i'''::;i222;::;::;:;":P:eak.;:-:.";;::';:"i'Clad;:;".";:232Saturationtemperatureatthetopoftherackis238.9'FbasedonaminimumSFPwaterheightof23feet'bovethetopoftheracks.Figure5.9-1NaturalCirculationFlowPath-Type3RackFuelCanister1FuelCanister2DowncomerRegionFuelCanistersFlowPathRackBaseSupportFootTootherFuelCanistersinrow(ResistanceDuetoSupportFootPlacedUnderallCanistersinModel)5.9.2RegionIIwithType2ATRARacksTheATEAtype2rack,highdensitydesign,islocatedinRegionIIoftheGinnaspentfuelpool(Figure5.8-1).Thisracktypewasconservativelymodelledasasinglerowof17canistersextendingfromtheSouthwallnorthwardtothemiddleofthespentfuelpool(Figure5.8-1).Thethermal-hydraulicmodelincludesracks2Aand2B;thesinglerow(type2canisters)endsattheinter-rackgapbetweenthetype2andATEAtype3rack.TherowoffuelassemblieswasmodelledinasimilarmannerasdiscussedinSection5.8.1.Theminimumdowncomergapdimension,rack-to-poolwall,is7.30inches.Asinglecanisterwidthisusedforthewidthofthedowncomerchannel.51-1258768-01'innaSFPRe-rackingLicensingReportPage443
'~I TheGinnaUFSARstatesthatpriortomovingfuelfromRegionItoRegionII,acoolingperiodof60daysmusthaveelapsed.Thedecayheatloadfora60daydecaytimewasusedforthethermal-hydraulicmodel.TheresultsforthehottestassemblyinaRegionIIType2racksaresummarizedin'thefollowingtable.ThepeakcladtemperaturecalculatedinSection5.9.1forthetype3rackinRegionIboundstheresultsforaType2rack.Thisisprimarilyduetothesignificantlylowerdecayheatresultingfromtheminimum60daydecaytimerequiredforassemblieslocatedinRegionII.Table5.9-2RegionIIType2RackLocalPoolCoolingResults:,'-:.'"'A's'sembly',",",,":.".'~'4)i;::,"-:!.':;(Ibiii/hi))i~.":,:;,-'.ii:.''':.'",.',,;,'','';-',:;Inlet'.:.,;:!::i'j;::;::l:.'".;ll-:.:;j-".::.,0'utletj',;;.,:-:;,'egionIIType21.753180150181Saturationtemperatureatthetopoftherackis238.9'FbasedonaminiinumSFPwaterheightof23feetabovethetopoftheracks.TheresultsreportedinSection5.8.1fortheRegionI,type3rackarebounding.5.9.3RegionIIwithType4ATEASideRacksTheATEAtype4sideracksarelocatedalongtheNorthandSouthwallsoftheGinnaspentfuelstoragepoolinthepool-to-rackgapfortheexistingboraflexracks(Figure5.8-1).Thelargeexistinggapalongthesewalls,ranging&omapproximately14to17inches,permittedtheadditionalstorageusingthetype4racks.TheactualplacementoftheracksintothepooloccursuponcompletionofPhaseII.Thethermal-hydraulicmodelconsistedofasinglerowof15canistersextending&omtheNorthwallsouthwardtothemiddleofthespentfuelpool(Figure5.8-1).Thethermal-hydraulicmodelincludesasinglecanisterinrack4-4Fandarowof14canistersinoneoftheexistingboraflexracks.TherowoffuelassemblieswasmodelledinasimilarmannerasdiscussedinSection5.8.1.ThismodeldiffersslightlyduetothedifferencesbetweentheexistingrackdesignandtheATEAType4rackdesign.TheexistingboraflexrackshaveanI-beamaroundtheirperimetersupportingthemainstructurewhichresemblesarectangularhoneycomb.SquareflowholesarelocatedintheI-beampermittingflowtotransverse&omthedowncomertocentralregionsofthepool.Thecanisterentranceflowholeinthebaseplateofthecanistersisvirtuallyidenticalforbothdesigns(3.37in.fortheATEAtype4and3.25in.minimumfortheexistingborafiexcanister).ThepressurelossthroughtheI-beamwasmodelledasarestrictionforflowtotheboraflexracks.ThelosscoeKcientforflowthroughtheI-beamissimilarinmagnitudetothatforflowthroughanATEAsupportfoot.Theminimumdowncomergapdimension,rack-to-poolwall,is3.59inchesforthisanalysis.Asinglecanisterwidthisusedforthewidthofthedowncomerchannel.51-1258768-01GinnaSFPRe-rackingLicensingReportPage444 Becauseofdifferencesininletregionsoftherackdesigns,theboraflextypewasanalyzedinitiallywiththeminimumrack-to-wallgapdimensiontoobtainthepressuredropboundarycondition.Theminimumdowncomerrack-to-wallgapdimensionof3.59incheswasbasedonthepresenceofatype4canister.ThecanisterpressuredropobtainedfortheboraflextypecanisterwasthenusedasaboundaryconditionthatexistedacrosstheATEAType4rack.ThefuelassemblyflowrateandtemperaturerisefortheATEAType4rackwascalculatedbasedupontheassumedpressuredropboundarycondition.-TheGinnaUFSARstatesthatpriortomovingfuel&omRegionItoRegionII,acoolingperiodof60daysmusthaveelapsed.Thedecayheatloadfora60daydecaytimewasusedforthethermal-hydraulicmodel.SincetheATEAtype4andboraflexrackdesignsbothhaveessentiallyequalflowareas(theboraflexisslightlylargerthantype4),theresultsobtainedfortheATEAType4rackareequallyapplicabletobothracktypes.TheATEAType4rackresultsaresummarizedinthefollowingtable.Table5.9-3RegionIIType44BoraflexRackLocalPoolCoolingResults';.;;'Asse'mbly,:,',:.':'.;',:''',:>'.""'Ass'embly",Flow.,",:.':,',":t,'':;::.;::'';.:.,''.;l:,'i:':i'(Ibmlhr).',:::::;.::',,::::''::,;:;-,':,~;:."-.:."~',:::,:;Te'mp'eratu'r'e'',,'(',.F)'i:';:;;":;:.':l~::;::i'.".:~4;":::::.Inlet:::::!."''::::'':':.Outlet'"i""::RegionIIType4&Boraflex1.753600150177Saturationtemperatureatthetopoftherackis238.9'FbasedonaminimumSFPwaterheightof23feetabovethetopoftheracks.AswiththeATEAType2racks,theresultsreportedinSection5.8.1fortheRegionI,type3rackareboundingduetothelongerdecaytimeassociatedwiththefuelassembliesstoredinRegionIIoftheGinnaspentfuelpool.5.9.4NaturalCirculationintheRegionIFluxTrapRegionThepressuresobtainedfromtheRegionItype3averagefuelassemblieswereappliedastheboundaryconditiontoobtaintheflowintheRegionIfluxtraps.Thecirculationinthefluxtrapregionsisdrivenbythepressuredifferencesinthefuelcellsbecausetheflowinthesemajorpathsismuchhigher.Thegammaheatingoccursinthestainlesssteelandwaterandisdepositeddirectlyintothefluxtrapregion.FortheanalysisconfigurationdescribedinSection5.8.2,thefollowingresultswereobtainedfortheRegionIfluxtraps.ThereportedflowiscontainedinonegapbetweentwoadjacentcanistersinRegionI.Flow(pergap):38ibm/hrOutletTemperature:221'F51-1258768-01GinnaSFPRe-rackingLicensingReportPage445 5.9.5NaturalCirculationintheRegionIIInter-CanisterGapsThepressuresobtainedfromtheRegionIItype2averagefuelassemblieswereappliedastheboundaryconditiontoobtaintheflowintheRegionIIfluxtraps.Pressureswereselectedattheheightoftheinlettotheinter-canistergapabovethebaseplateandapproximately12feetdownstreamwheretheflow&omthegapsre-entersthemainstreaminsidethecanister.AswiththeRegionIfluxtraps,thecirculationintheinter-canistergapsisdrivenbythepressuredifferencesinthefuelcellsbecausetheflowinthesemajorflowpathsismuchhigher.Thegammaheatingoccurringinthestainlesssteelandwaterisdepositeddirectlyintotheinter-canistergapregion.FortheanalysisconfigurationdescribedinSection5.8.2,thefollowingresultswereobtainedfortheRegionIIinter-canistergaps.ThereportedflowiscontainedinonegapbetweentwoadjacentcanistersinRegionII.Flow(pergap):12Ibm/hrOutletTemperature:184'F5.9.6TheEffectofFlowBlockageThepartialblockageofacanisteroutletwasanalyzedassumingadroppedfuelassemblywaslayingontopoftherack.UtilizingtheconservativeassumptionthattheendflittingofthedroppedfuelassemblyobstructedtheexitflowfromthehottestassemblyinRegionI,theexitflowareawasreducedbyapproximately85%.Theresultingbulkfluidtemperaturewasdeterminedtobe233'Fwhichisbelowsaturation(238.9'F).Thepeakcladtemperaturefortheoutletblockageis244'F.Thepeakcladtemperatureisslightlyabovethesaturationtemperature.Usinganucleationcriterion&omLahey(Ref.5.9.6),itwasshownthatbubblesmaybepresentonthecladdingsurfacebutthatlocalconditionswouldnotsupportbubblegrowth.Theheatfluxnecessaryforactivenucleationisapproximatelyseventimesgreaterthanthehotfuelassemblyheatflux.Consequently,adequatecoolingofthecanisterisstillmaintained.Thesecondscenariothatwasinvestigatedwasthecompleteblockageofthefuelcanisterinlet.Thecompleteblockageofacanisterinletpreventsnaturalcirculationflow&omremovingthedecayheat.Intheeventofsuchablockage,evaporativecoolingremovesthedecayheatfromthecanister.Assumingsteamflowexistsinthehottestfuelassemblycanister(F"~=1.75),acounterflowfloodingcorrelationofWallisdemonstratedthattheliquidwaterenteringthecanisterwassufficienttoreplenishtheboil-offandpreventdry-out.Aslongastherequiredmassfluxofliquid(neededtomatchthesteamrate)islessthanthefloodinglimit,adequatecoolingoftheassemblyisassuredevenifthecanisterinletiscompletelyobstructed.Thecounter-currentfloodingcalculationwasperformedforminimumflowareasofone-half(0.139fl)andone-fourth(0.070fP)oftheminimumfuelassemblytuberegionflowarea.Theminimumtuberegionflowareais0.279ft'.Itwasconservativelyassumedthatthefluidpressureatthefuelassemblyexitwasatmosphericandnocreditwastakenforsubcoolingoftheliquidenteringthetopoftheassembly.Theresultsindicatedthatasafetymarginofover40existsattheone-halfareareductionandover7fortheone-fourthareareduction.Thecladtemperaturewascalculatedtobeapproximately10'Fabovethewatersaturationtemperature.51-1258768-01GinnaSFPRe-rackingLicensingReportPage446
 
5.9.7NaturalCirculationintheConsolidatedFuelCanisterTheevaluationofcoolingtheconsolidatedfuelcanisterisidenticalinprincipletothefuelassemblyanalysis.Thedecayheatloadismuchlower,basedona5yeardecaytime.Thelocalpressures&omtheRegionIaveragefuelassemblyanalysiswereappliedasboundaryconditionswitharacklevelingfootplacedbelowtheconsolidatedfuelcanister.Theconsolidatedfuelcanistercontainedtwofuelassembliesworthofrods.Decayheatforthisanalysiswasselectedbycomparingthedecayheatofpeakaveragefuelassembliesaftera5yeardecayhavingburnupsof15,30,45and60GWd/mtU.Thedecayheatforafuelassemblyhaving60GWd/mtUwasfoundtobeboundingandwasusedforthisevaluation.Theresultfortheconsolidatedfuelcanisterfollows:Flow:120ibm/hrOutletTemperature:222'FPeakCladTemperature:231'FRGB'ay,atafuturedate,increasethecapacityoftheGinnaspentfuelstoragepoolthroughconsolidation.Thisevaluationassessedtheimpactofconsolidatedfuelcanistersonthelocalpressureresults&omtheRegionIanalysis.UsingtheRegionIthermal-hydraulicmodel,ananalysiswasperformedtoobtainthepressuredropboundaryconditionaswasdonefortherowofaveragefuelassemblies.Consolidatedfuelcanistershavingconsolidationratesof2:1and1:1weremodelled.Theresultsindicatedthatbothconfigurationsofconsolidatedfuelcanisterswouldresultinhigherlocalpressuredropsthanweredeterminedfortherowoffuelassemblies.Applyingtheselocalpressuresacrossthehottestfuelassemblyasapressuredropboundaryconditionwouldresultinincreasedflowtothehottestassemblycomparedtothedesignresultsobtainedwiththefuelassemblies.Theseevaluationsindicatethethermal-hydraulicconditionsdeterminedwithfuelassembliesinthefuelcanistersinbothRegionsIandIIremainboundingwithincreasingnumbersofconsolidatedfuelcanisters.Withincreasingnumbersofconsolidatedfuelcanisters,additionalflowwouldbedivertedtothehottestfuelassemblyresultinginreducedbulkfluidandcladtemperaturesforthehottestassembly.5.10LOSSOFTHESPENTFVELCOOLINGSYSTEMThespentfuelpooltemperatureheat-upratehasbeendeterminedforacompletelossofthespentfuelheatremovalsystem.Nocreditistakenforheatlossthroughthepoolwalls,evaporativecoolingfromthepoolsurfaceorconvectivecoolingtotheambientair.Thethermalinertiaofthepoolwasdeterminedbysummingthecontributionsoftheracks,fuelassemblies,thenetpoolwatervolume,andtheSFPliner.51-1258768-01GinnaSFPRe-rackingLicensingReportPage447 Theheat-upratesarecalculatedforthetimeittakesthepooltoheatfromthe150'FtechnicalspecificationlimittemperaturetothedesignlimitfortheSFP,180'F.Valuesarereportedforboththepoolconfigurationwithfuelassembliesandforcompleteconsolidation.Completeconsolidationplacestwofuelassembliesinaconsolidatedfuelcanisterplacedineverylocationofthespentfuelpool.Thetablesummarizestheheat-upratesforvaryingheatloadsasafunctionofthelakewatertemperature.BackupheatremovalsystemsconsistingoftheoriginalSFPCSandtheportableskidmountedunitareavailableintheeventofafailureoftheprimarySFPCS.Theuseofthesebackupsystemsprovideheatuptimestoreachthe180'FstructuralintegritylimittemperaturegreaterthanthoselistedinTable5.10-1.TheoriginalSFPCScanbemadeoperationalin45minuteswhichisconsiderablylessthantheminimumtimeof3.4hourslistedinTable5.10-1forfullconsolidationwithan80'Flakewatertemperature.After45minutesofheatup,thepooltemperaturewouldbe156.5'Fforaheatuprateof8.71'/hrforfullconsolidation.Theincreaseinwatertemperaturewouldthendropto4.4'F/hrafter45minutes.Anadditional5.3hourswouldbeavailableforrepairortoplacetheskidmountedunitintooperationbeforethepoolwatertemperaturereaches180'F.Theadditionaltimeof5.3hoursisgreaterthanthe3hoursrequiredtobringtheskidmountedsystemintooperation.Similarresultsareobtainedforlakewatertemperaturesbelow80'F.Thus,adequatetimeandcoolingcapacityareavailabletopreventtheSFPwatertemperature&omreaching180'F.Table5.10-1LossofPoolCoolingandHeat-UpTime".,:.,".,::Pool':;Coiifiguration'!'::::'::,"';,-:::-:';;:llake'.".%ater@~,.'-".:~),:::,'::--,'"=:;-.';;:(Hours)':''::-'::.:.-::';':'".-:;:;!1:50;::F'"~;;:;1:80.':F.;-::ii.:'.;;",UnconsolidatedUnconsolidatedUnconsolidatedConsolidatedConsolidatedConsolidated40608040608021.720.416.021.720.416.02.83.03.82.52.73.4Theheat-uprateforalakewatertemperatureof40'FisbasedonthedecayheataAera100hourdecaytimebasedontheradiologicalrequirement.Theconsolidatedpoolconfigurationisforfullpoolconsolidation,i.e.,twospentfuelassembliesareconservativelyplacedinaconsolidatedfuelcanisterinalllocations.51-1258768-01GinnaSFPRe-rackingLicensingReportPage448
 
5.11COMPARISONBETWEENORIGEN2RESULTSANDASB9-2METHODOLOGYORIGEN2doesnotuseempirical-basedmethodstocalculatedecayheatbuttracksthebuildupanddecayoftheindividualfissionproductswithinthereactorcoreduringoperationpndshutdown.ORIGEN2alsoincludestheeffectofelementtransmutationfromneutroncapture,bothinfissileisotopesandfissionproducts.BecauseORIGEN2performsarigorouscalculationofdecayheat,itwasusedinthecalculationsfordecay'eatinthisanalysis.Toprovideadditionalinformation,acomparisonofthefullcoredecayheatpowerresultingfromORIGEN2andthatresultingfromtheBranchTechnicalPositionASB9-2foracoreoperatingtimeof15GWD/MTUisshownbelowforseveraltimesaftershutdown.Table5.11-1ComparisonbetweenORIGEN2andASB9-2Resultsforafullcoreoffload(121FuelAssemblies,nopoolinventory)with15GWD/MTUburnup241006002400804150502351109491045537254411011.1321.0961.0821.006Thiscomparisonshowsthatforthetimeofinterestinthisanalysis,100hours,thattheASB9-2methodpredictsthedecayheatforafullcoretobewithin10%ofORIGEN2.5.12REFERENCES5.2.1OTPositionforReviewandAcceptanceofSpentFuelStorageandHandlingApplications,DatedApril14,1978,andrevisedJanuary18,1979.5.2.2NUREG-0800StandardReviewPlan9.1.3,Revision1(July1981),andStandardReviewPlan9.2.5Revision2(July1981),(Ref.5.2).5.2.3A.G.Croff,2-evieeVeineak'deeeORNL-5621,(Ref.5.3).5.6.1P.L.Holman,et.al.,ewtraeRBAW-2095,November1989.(FCFinternaldocument).c5.7.1FTIDocument32-1203121-01,"FSPLITCertificationAnalysis,"September1991.(CodeVerification)51-1258768-01GinnaSFPRe-rackingLicensingReportPage449 0
5.8.1HandbookofHydraulicResistance,2ndEdition,I.E.Idelchik,HemispherePublishingCorp.,1986.5.9.6TheThermal-HydraulicsofaBoilingWaterNuclearReactor,2ndPrinting,R.T.Lahey,Jr.,andF.J.Moody,ANS/AECMonographSeriesonNuclearScienceandTechnologyPublishedbytheANS.51-1258768-01GinnaSFPRe-rackingLicensingReportPage450 6.0RADIOLOGICALEVALVATIONTheradiologicalsafetyanalysis"'IwasperformedinaccordancewithGeneralDesignCriteria61of10CFRPart50AppendixAI"ItoevaluatehypotheticalaccidentsinvolvingfueldamagetoRegions1and2anddoseratesduetotheincreasedcapacity.Theanalysisaddressed:(1)offsitedoseconsequencesatthesiteboundary(EAB)andatthelowpopulationzone.boundary(LPZ)fromtheselimitinghypothetical'accidents:(a)rackdropaccident(b)caskdroportipaccident(c)gatedropaccident(d)consolidatedcanisterdropaccident(e)fuelhandlingaccident(f)tornadomissileaccident(2)doseratesatthesurfaceofthespentfuelpoolandthroughthepool'sconcretewallsforthepurposesofoccupationalexposure.Theanalysisalsoaddressessolidradwasteandgaseousreleases.Fromthestandpointofoffsitedoses,theimportantaspectoftheproposedre-rackingisthatthepoolwillcontinuetobedividedintotworegions,Region1whichrequiresfueltohavedecayedaminimumtimeof100hours,and(2)Region2whichrequiresfueltohavedecayedforaminimumtimeof60days.ThesetworegionsareillustratedinFigure6-1.Duetothetwoseparatedecaytimes,accidentsoccurringineitherareacanhavevaryingradiologicalconsequences.6.1ACCEPTANCECRITERIA6.1.1OffsiteDoseExposureReferenceoffsitedosevaluesforevaluatinghypotheticalaccidentsinvolvingfissionproductreleasesarespecifiedin10CFRPart100""andare25remtothewholebodyand300remtothethyroid&omiodineexposure.Bothvaluesareapplicabletotheexclusionareaboundary(EAB)andthelowpopulationzoneboundary(LPZ).Section15.7.4.oftheStandardReviewPlan"'I(SRP)specifiesacceptancecriteriaof25%of10CFRPart100guidelines'orpostulatedfuelhandlingaccidents.However,theGinnaStationwasdesignedandbuiltpriortotheSRPandisnotrequiredtomeettheSRPlimits.Apreviousfuelhandlingaccidentanalysisshowedanoffsitedoseof96remthyroid""+'hichhasbeenpreviouslyacceptedbytheNRCasbeing"wellwithin"10CFRPart100limits.1Section15.7.4.IVstatesthataplant'sfacilitiesareacceptableifreasonableassuranceisprovidedthatthecalculatedoffsiteradiologicalconsequencesofapostulatedfuelhandlingaccidentarewellwithinthe10CFRPart100exposureguidelines.51-1258768-01GinnaSFPRe-rackingLicensingReportPage451 6.1.2OccupationalDoseExposureOccupationalexposuredoselimitsarespecifiedin10CFRPart20~jandarefurthercontrolledbyplantprocedures.TherecommendeddoseratethatshallnotbeexceededinaccessiblespacesadjacentthespentfuelpoolisgiveninANSVANS57.2~"jandis2.5mrem/hrtoanypersonsoccupyingthosespaces.Therateisspecifiedforwhenthepoolisatitsdesignfuelinventoryandattheminimumdesignwaterdepth.6.2OFFSITEDOSECONSEQUENCESThefollowingsixhypotheticalaccidentspotentiallyresultinginreleasesoffissionproductswereevaluated:a)b)c)d)e)f)rackdropaccidentcaskdroportipaccidentgatedropaccidentconsolidatedcanisterdropaccidentfuelhandlingaccidenttornadomissileaccident6.2.1RackDropAccidentInstallationandremovaloftheracks(heavyloads)willrequireuseoftheauxiliarybuilding's30toncranehook,whichmeetsthesinglefailureproofrequirementsofNUREG-0612~jforcarryingheavyloads(seeUFSARCh.9.1.4.3.1)"'".Inaddition,duringthere-racking,installationandremovalprocedureswillpreventtransportofracksoverspentfuel.Thus,anaccidentinvolvingthereleaseoffissionproductsfromarackdropaccidentisnotplausible,andtheoffsiteradiologicaldoseconsequencesneednotbedeterminedforthisaccident.6.2.2CaskDrop/TipAccidentInsertionandremovalofaspentfuelcaskwillbeconductedusingtheauxiliarybuilding's30toncranehook,whichmeetsthesinglefailureproofrequirementsofNUREG-0612forcarryingheavy'oads(seeUFSARCh.9.1.4.3.1).Inaddition,duringtheremovalandinsertionofthecask,plantproceduresandcraneinterlockswillpreventtransportofthecaskoverspentfuel.Thus,anaccidentinvolvingthereleaseoffissionproductsfromacaskdroportipaccidentisnotplausible,andtheoffsiteradiologicaldoseconsequencesneednotbedeterminedforthisaccident.6.2.3GateDropAccidentTheexistingliftingmechanismforthespentfuelpoolgate(totransfercanal)isnotsinglefailureproof.However,RG&EwillmodifytheliftingmechanismtomakeitsinglefailureproofinaccordancewithNUREG-0612topreventaccidentaldroppingofthegate,whichisconsideredaheavyload.Thisactionwillpreventpotentialfueldamageandthesubsequentreleaseoffissionproducts.Thus,theoQsiteradiologicaldoseconsequencesneednotbedeterminedforthisaccident.6.2.4ConsolidatedCanisterDropAccidentAconsolidatedcanistercancontainallofthefuelrodsfromtwoassembliesandisconsideredaheavyloadperNUREG-0612criteria.Therewillbeadministrativecontrolformovementofthecanistersinthespentfuelpool.Thecanisterswillbeliftedusingasingle-failureproofcraneanda51-1258768-01GinnaSFPRe-rackingLicensingReportPage452 single-failureproofliftingsystemandwillbehandledinaccordancewiththeguidelinesonNUREG-0612withregardtolimitingthechanceofanunacceptableheavyloaddrop.Thisactionwillpreventpotentialfueldamageandthesubsequentreleaseoffissionproducts.Thus,theoffsiteradiologicaldoseconsequencesneednotbedeterminedforthisaccident.6.2.5FuelHandlingAccidentThedosemodelsandmethodologyforcalculatingthethyroidandwhole-bodydosesattheEABandLPZduetoafuelhandlingaccidentinsidetheauxiliarybuildingaredescribedinSection15.7.3.2oftheUFSAR.Theproposedre-rackingoftheGinnaSFPhasnotaffectedanyassumptionsor'nputs(includingsourceterms)usedinthefuelhandlingaccidentasdescribedintheUFSAR.TheheightoftheRegion1rackswillremainthesameasthosecurrentlyinstalled,andithasbeenshown(UFSAR15.7.3.1.4)thatifadroppedfuelassemblyimpactsastoredassembly,thefuelrodcladdingoftheimpactedassemblywouldnotfail.Therefore,thecurrentanalysisforthisaccidentasdocumentedintheUFSARremainsvalidandapplicable.Theoffsitedoseconsequencesforafuelhandlingaccidentoccurringinthespentfuelpoolare:0-2hourthyroid0-2hourwholebody140.310.880.026.2.6TornadoMissileAccidentSinceRegion1racksaretobereplacedwithATEA-designedracks,theradiologicaldoseconsequencesofthetornadomissileaccidentinRegion1mustbere-evaluated.Thedosemodelsusedtocalculatetheoffsitethyroidandwholebodydosesareidenticaltothemodelsusedinthefuelhandlingaccidentanalysisinsidetheauxiliarybuilding(seesection15.7.3.2oftheUFSAR).Thethyroiddosewascalculatedusingthefollowingequation:Dose(rem)=PA-BDCFXIgIwhereA;=X/Q=BDCF;iodineactivity(Ci)releasedfromauxiliarybuildingforisotopeIthe0-2houratmosphericdispersionfactoratthesiteboundaryandthe0-8houratmosphericdispersionfactoratthelowpopulationboundarybreathingrate(3.47x10~m'/sec)adultthyroidinhalationdoseconversionfactor(rem/Ci)foriodineisotopeITheexternalwholebodygammaradiationdosewascalculatedusingthefollowingsemi-infinitecloudequation:XDose(rem)=0.25gEI51-1258768-01GinnaSFPRe-rackingLicensingReportPage453 where0.25EY;A;=X/Q=unitsconversionfactor[(rad-m3-disintegration)/(Ci-MeV-sec)]toconvert[(Ci-sec-MeV)/m']torads(orremssincequalityfactoris1.0)averagegammarayenergy(MeV/disintegration)forisotopeInoblegasactivity(Ci)releasedfromtheauxiliarybuildingthe0-2houratmosphericdispersionfactoratthesiteboundaryandthe0-8houratmosphericdispersionfactoratthelowpopulationboundaryNotethat0.25xEY;isthewholebodydoseconversionfactor.Sincethepoolisdividedintotworegions,itispossiblethatthehypotheticaltornadomissile,whichisconsideredtobea1,490lbwoodenpole,35ftinlengthand13.5inchesindiameter(seeUFSAR9.1.2.7),couldimpactanddamagethefuelineitherregion.TheATEAracksarebeingdesignedtoreplacetheexistingRegion1racksandwillhavethesameheightasthecurrentRegion1racks.Ithasbeendeterminedinaseparateanalysis(seeSection3ofthisreport)thattheresultingdamagefromthestatedtornadomissiletotheATEA-designedrackswouldbetheassemblyofdirectimpactandimmediatelyadjacentassembliesforatotalofninedamagedassemblies.SinceRegion1istocontainfreshlyoff-loadedfuelwithaminimumof100hoursofdecaywhereasRegion2'sminimumdecaytimeis60days,Region1damagewillprovidelimitingdoseconsequences.FreshlyoF-loadedfuelistobestoredinacheckerboardpattern.Toensurethatfreshlyoff-loadedfuelisnotstoredinadjacentrackcells,theRegion1rackswillbeloadedinacheckerboardpatternwithfuelfromRegion2beforeoff-loadingfreshfuel.Uponimpactfromthehypotheticaltornadomissile,themaximumdamagetotheRegion1ATEArackswillbeninecellsornineassemblies.Theworstcaseconfigurationwouldbefivefreshlyoff-loadedassembliesandfourRegion2assemblies.Itwasconservativelyassumedthatallassemblieshadapeakingfactorof1.2.AdditionalassumptionsandinputsareshowninTable6A-1inAppendix6A.TheresultingoffsitedoseconsequencesareshownbelowinTable6.4-1.Forcomparison,thedoseconsequencesresulting&omthetornadomissileaccidentoccurringinRegion2anddamagingninefuelassemblies(seeUFSAR9.1.2.7)werealsocalculatedandareshowninTable6.2-1.51-1258768-01GinnaSFPRe-rackingLicensingReportPage454 Table6.2-1OffsiteRadiologicalConsequencesofaHypotheticalTornadoMissileAccidentTornadomissileaccidentinRegion1(100hrsdecay)0-2hourthyroid0-2hourwholebody400.19200.093TornadomissileaccidentinRegion2(60daysdecay)0-2hourthyroid0-2hourwholebody0.518.1E-40.254.0E-46.3OCCUPATIONALEXPOSURETheGinnaStationRadiationProtectionStaffandProceduresarecurrentlyadequateforsupportingthismajoroperation.Theareasofpotentialconcernsaredocumentedinprocedures.Theseincludebutarelimitedto:theriskofsignificantairborneactivity,theprotectionofthediversandtheworkersfrominadvertentandunplannedexposures,andthedocumentationofthedosefromthiscampaign.WorkwillbecontrolledbytheGinnaStationRWP,andtrackedusingtheautomatedelectronicdosimetryprogram.Thisallowsaveryrapidupdateoftheworker'sdosesaswellasthetotalperson-remassociatedwiththererack.Personneltrafficandequipmentmovementwillbemonitoredandcontrolledtominimizecontaminationandradioactivewastegeneration,andtoensurethattheworkisinkeepingwiththeALARAdoseminimizationphilosophy.DiverswillhavemultipleelectronicandTLDdosimetrytoensurethatcorrectmonitoringofthedosesisachieved.Tosupportthis,arearadiationmonitorswillbeinstalledintothespentfuelpooltoanticipateanyradiologicalchanges.GaseousreleaseswillbemonitoredatthepoolbyaContinuousAirMonitorwhichwillbeNobleGasandIodinecapable.Theplanteffluentradiationmonitoringsystemwillalsobeavailabletomonitortheseconditions.GinnaStationperformedarerackin1984-1985andthelessonslearnedwerereviewedandwillbeappliedtotheupcomingproject.Asaresult,weexpectthistoreducethetotalexposureassociatedwiththererackfrom14Person-Remin1984-1985toarangeof8to12Person-Remin1998.51-1258768-01GinnaSFPRe-rackingLicensingReportPage455 Whileoffsitedoseconsequencesarecalculatedforaccidentscenarios,thereshouldbenosignificantreleasestotheatmosphereorreceivingwatersasaresultofthererack.Anyreleaseswhichdooccurshouldbewellwithintheregulatorylimits.AlloftheRadiationProtectionProfessionalStaffareBoardCertifiedbytheAmericanBoardofHealthPhysics(Parts1and2).Asaresult,theyhaveahighdegreeoftrainingandexperiencetodealwithdevelopingsituations.Duetotheproposedincreaseinspentfuelcapacity,thedoseratesattheoutersurfaceofeachconcretewallofthespentfuelpoolandthedoserateatthepoolsurfacewerecalculated.ThespentfuelpoolwallthicknessesareshowninFigure6.2.Thedoserateswerecalculatedusingthediscreteordinatestransportcodes,ANISN"'",andDORT"'".ANISNisessentiallyaone-dimensionalversionofthetwo-dimensionalDORTcodeandgenerallyyieldsslightlymoreconservativeresultsthantheDORTcode.TheDORTcodewasusedtoverifytheANISNresults.ThemacroscopicmaterialcrosssectionsweregeneratedusingtheBUGLE-93""microscopiccrosssectionlibrary.Thesourcetermsforbothcodesweregeneratedbasedupon:~>poolatfullcapacity~>fuelwithaburnupof60GWD/MTU~~fuelwith100hoursofdecay.TheresultingdoseratesatlocationsofinterestareshowninTable6.3-1.Alldoseratesattheoutersurfacesaresmallwiththeexceptionofthesouthwall,whichhasadoserateof101rem/hr.Thisdoserateisnotaconcern,however,sincethesouthwallfacesthegroundatelevationsspanningtheheightsofthefuelassemblies.Atelevationsabovethefuel,theconcreteisnearlysixfeetthickandatthisoutersurfaceitbecomesthenorthwallofthedecontaminationpit.Duringnormaloperations,personnelworkinginthefuelstorageareaareexposedtoradiationfromthespentfuelpool.Operatingexperiencehasshownthatthearearadiationdoserates,whichoriginateprimarilyfromradionuclidesinthepoolwater,aregenerally1.0to2.0mrem/hr.RadionuclideconcentrationstypicalofthosefoundinpoolwaterareshowninTable6.3-2.Duringfuelreloadoperations,theconcentrationsmightbeexpectedtoincreaseduetocruddepositsspallingRomspentfuelassembliesandtoactivitiescarriedintothepool&omtheprimarysystem.However,experiencetodatehasnotindicatedamajorincreaseasaconsequenceofrefueling.51-1258768-01GinnaSFPRe-rackingLicensingReportPage456 eU
 
6.4SOLIDRADWASTKSpentresinsaregeneratedbythespentfuelpoolpurificationsystem.Thefrequencyforchangingtheresinsisbetweentwotothreeyears.ThefloorofthespentfuelpoolwillbecleanedbeforeanyworkandaftereachoftheoldRegion1racksisremoved.Appropriateworkpracticesandthecleaningofthespentfuelpoolfloorwillreducethegenerationofspentresinsbythepurificationsystem.Itisnotpossibletoseparateouttheactivityofthespentfuelpoolresinfromtheresininthespentresintank.RecentresinactivityisshowninTable6.4-1.Operatingexperienceafterthe1985modificationindicatesthattheincreasedstoragecapacitywillnotresultinasignificantchangeingenerationofsolidradwaste(disposaloftheexistingRegion1.racksimmediatelyafterthe.installationisdiscussedseparatelyinSection6.6).Thereisnoexpectedadditionalman-remburdenfromthesolidradwastegeneratedduetotheincreasedcapacityofthespentfuelpool.Table6.4-1RadionuclideAnalysisReport-ResinActivity,fromtheSpentResinTanksNON-TRANSURANICCo-58Cs-137Cs-134Co-60Mn-54C-14Tc-99I-129H-3Sr-90Ni-63Fe-55Sb-125pCi/gm4.6315.041.2913.831.011.27<LLD<LLD1.280.1327.7024.906.6951-1258768-01GinnaSFPRe-rackingLicensingReportPage458 Table6.4-1RadionuclideAnalysisReport-ResinActivity,fromtheSpentResinTanksContinuedTRANSURANICPo-238P0-239,240PU-241Cm-242Cm-245/2440.0140.0080.700.0190.020ResinVolume=14''or0.4m'LD=lowestlevelofdetection51-1258768-01GinnaSFPRe-rackingLicensingReportPage459 6.5GASEOUSRELEASESTable6.5-1summarizestheauxiliarybuildinggaseousreleasesin1994and1995.Nosignificantincreasesareexpectedasaresultofthereracking.ThereisnowaytoseparateouttheSFPcontribution&omthetotalexhausted&omtheauxiliarybuilding.Table6.5-1GaseousReleasesfromtheAuxiliaryBuildingI;::.'Radio'nuclide':,Xe-133Xe-135I-131Kr-85mKr-87Kr-88I-133H-3Cs-137'.;-'..'.,':,-P)Cur'ies.::'',>,'':",:y',.'.21x10'.631.30x10"1.62x10"3.73x10'.46x10~,Radio'aiiclide.'.-Xe-133Xe-135I-131Kr-85mKr-87Kr-88I-133H-3Cs-137i'::;::;:>,.".,'.;,'Cii'r'ie's','';:,'::.":.":I.':,',1.86x107.037.18x10~1.22x10~4.94x104.27x10Note:Itisnotpossibletosegregatetheatmosphericreleases&omthespentfuelpoolfromtheremainderoftheauxiliarybuilding.51-1258768-01GinnaSFPRe-rackingLicensingReportPage460 6.6RACKDISPOSALDuringthemodification,threeWachterrackswillberemoved&omthespentfuelpool:TypeA3(31,366lbs),TypeB(26,533lbs),andTypeC(23,453lbs).TheoldRegion1rackswillbedecontaminated,packaged,andshippedbytrucktoafacilitylicensedfortheprocessingoflow-levelradioactivewaste.ShipmentofthespentfuelpoolrackstotheprocessingfacilitywillmeetalltherequirementssetforthbyapplicableDepartmentsofTransportation(FederalandState)andtheAmericanAssociationofStateHighwayandTransportationOfficials.6R7CONCLUSIONSOfthesixlimitinghypotheticalaccidentsevaluatedonlytwo,thefuelhandlingandtornadomissileaccidents,resultinthereleaseoffissionproductstotheenvironment.Theoffsitethyroidandwholebodydosescalculatedfortheexclusionareaboundaryandlowpopulationzoneboundaryarelessthantheacceptancecriteria.Therefore,itcanbeconcludedthatintheeventoftheseaccidents,theproposedre-rackingoftheGinnaspentfuelpooldoesnotadverselyaffectthehealthandsafetyofthepublic.Theincreaseinstoragecapacitydoesnotadverselyaffectthedoseratesatthepoolsurfaceoratotherlocationsofinterestnorwillitadverselyaffectsolidradwasteproductionandgaseousreleasesfromtheauxiliarybuilding.
 
==6.8REFERENCES==
6.132-1258146-00,-acRinli,M.A.Rutherford.6.232-1257240-00,erakeI',T.L.Lotz.33flllll,ddpI,Cd*fl'*IR3II,9dtlApp41A,~riteriala,4/30/93.6.4Title10,Chapter1,CodeofFederalRegulations,Part100,6.5NUEEG-0800,narRviwev'ewfe.LNRRd.,CPNRC,CAC31999.'4139193.I'frNuclr6.638-1247195-00,Rutherford.veTI,M.A.Referencedtransmittalsare:(A)LetterfromJ.P..Ortiz(RG&E)toG.T.Fairburn(FTI),FR-96-013,datedJuly19,1996.
 
==SUBJECT:==
INPUTDATAFORTHERADIOLOGICALSAFETYANALYSIS/DRAFTAISNO.51-1257365-00.(B)Thisreferenceintentionallyomitted.51-1258768-01GinnaSFPRe-rackingLicensingReportPage461 ReferencesContinued(C)Letter&omJ.P.Ortiz(RG&E)toG.T.Fairburn(FTI),FR-96-022,datedAugust19,1996.
 
==SUBJECT:==
ACTIONITEMMM-07/10/96-8.2/INPUTTOTHEMOSTRECENTCONTROLROOMDOSEANALYSIS.6.7Title10,Chapter1,CodeofFederalRegulations,Part20,nrEy~gjgo3/31/95.tecain6.8ANSI/ANS57.2-1983,cil'.9NUREG-0612,euWacwPAmericanNuclearSociety,10/7/83.wrPln,U.S.NRC,July1980.6.10UpdatedFinalSafetyAnalysisReportforR.E.GinnaUnit1,DocketNo.50-244,currentthruRev.13-1,controlledcopy01243,7/96.6.11ANISNBW-n-''al'ee'ane,B&WVersionofANISN-WUser'sManual,NPGD-TM-491,Rev.8,Filepoint2A4,FTILynchburg,VA,July1993.6.12BWNT-TM-107,ORIG,DORT-Tw''reterin(BWNTVersionofRSIC/ORNLCodeDORT),VA,Filepoint2A4,FTI,Lynchburg,May1995.6.13BUGLE-93Brade'nV'nerh-ecii'vedte-VclerQuid,DLC-175,OakRidgeNationalLaboratory,OakRidge,April1994.6.14USAECReg.Guide1.25,eec'nAcciilin'Weac,3/23/72.elandlinicacilif6.15NUREG/CR-5009,emtheefedrnuFueliniewer~~c~.Baker,D.A.;Bailey,W.J.;Beyer,C.E.;etal.BattelleMemorialInstitute,PacificNorthwestLaboratory,February1988.6.16InternationalCommissiononRadiologicalProtectionPublication30SupplementtoPart1,ake'clidee,1980.51-1258768-01GinnaSFPRe-rackingLicensingReportPage462 Figure6-1OverviewofProposedRe-rackingoftheGinnaSpentFuelPoolRackType4Region2Region14D4A4ERackType14B4F4C~RackT3Racks3A,3B,3C,83DRack3ERack~Te2Racks2A82BRackType4poowall-concretecaskareaLFigure6-2OverviewofSpentFuelPoolConcreteWallThicknessesN6''ReionI294spentfuelcells6'I31~Reion21,075spentfuelcells3.5'askareaconcretewallstransfercanal51-1258768-01GinnaSFPRe-rackingLicensingReportPage463
 
Appendix6AAssumptionsandInputKeyassumptionsandinputarepresentedinthisappendixforthecalculationofradiologicaldoseconsequencesforthetornadomissileaccident.Table6A-1AssumptionsandInputsUsedinDeterminingOffsiteDosesDuetoTornadoMissileAccidentInsideAuxiliaryBuilding.':.:,":;"',:;;;;>,.:::i:;:.:';:::A'ss'u'iiiptloii'o'r:.'Inpu'ti'i;::,:,:::,':;::,:;:,;::;'":."j"I::;:t'':,::;:::;:,:.;Value;:.';:;,';:,';;:,:::;:;.:,~,';~;::.;,:;::;:.'..;:;:,:,:,::::;I:;.:;t..~:Ba'sts<for,',ValueNp",::;:.';<i':;:j'<Ie"'.j;v~gi;::.,'.:;Core.power,MW~RadialpeakingfactorTotal&#xb9;ofrodsinassembly&#xb9;ofdamagedassembliesCoresourcetermsGapactivity,%Minimumwaterdepthabovedamagedfuelassembly,ttPoolscrubbingfactorelementalorgamcNGIodinechemicalspecies,%elementalorganicFiltrationSiteboundaryatmosphericdispersionfactor,sec/m'owpopulationzoneboundaryatmosphericdispersionfactor,sec/m'odinedoseconversionfactors(DCFs),rem/ciI-131I-132I-133I-134I-13515511.2179I&NG,10Kr-85,301-131,1223133II99.750.25Noneassumed6.0E-53.0E-51.07E66.29E31.81E51.07E33.14E41520plus2%uncertaintyConservativeaveragevaluefordamagedassembliesConsistentwithcurrentFHanalysisSeesection3IodineandnoblegasactivitydeterminedwithORIGEN2Reg.guide1.25;extendedburnupfactorappliedtoI-131perNUREG-5009""tReg.guide1.25Reg.guide1.25-overalleffectivedecontaminationfactoris100.Iodinereleasedfromfueltopoolwater,Reg.Guide1.25.Table15.7-1ofUFSARICRP30~'51-1258768-01GinnaSFPRe-rackingLicensingReportPage464
.:,.,"jj;:;,.N:.":::;,:;;.'gjjA'ssuinption;oi..':Input''~~:~:-:;l,'g~.k.;,:Breathingrate,m'/secFuelexposureforimpactedspentfuelassembly,MWD/MTUDesignmissileCooldowntimeforimpactedspentfuelassemblies:Region1(RackType3)Region2(RackTypes2,3,&4)3.47EA60,0001490lbwoodenpole,35feetinlengthand13.5"indiameterwithaverticalvelocityof70lt/sec.100hrs60daysReg.guide1.25.Reference6.6(A)UFSARCh.9.1.2.7UFSARCh.15.7.3.2&Ch.9.1.2Table6A-2TornadoMissileAccidentSourceTermsforRegion1(100HoursofDecay)NV;::,:.::'::.'Niiclide".'::'.:.":::.'.-:,"."..':Rele'a'sed::foYAu'x!31d''iI-131I-132I-133I-134I-1351.78E+031.24E+031.54E+02Neliible1~11E-01Kr-83mKr-85mKr-85Kr-87Kr-88Neliible1.07E-021.28E+04NeliibleNeliibleXe-131mXe-133mXe-133Xe-135mXe-135Xe-1382.31E+035.31E+032.86E+051.77E+005.35E+02Neliible51-1258768-01GinnaSFPRe-rackingLicensingReportPage465 Table6A-3TornadoMissileAccidentSourceTermsforRegion2(60DaysofDecay),','.<:.,:;..,':.:".3;::.'.;::.:.>xj$;:p.;::::;.;;:Activity(Ci)::';:,.':.:;":,''.;:.i':,:,::I.":,":::N~Nuclide!.:,."i:::'':::Releas'e'd'',to':Aux':'Bld"'-131I-132I-133I-134I-1352.28E+011.61E-02NeliibleNeliibleNeliibleKr-83mKr-85mKr-85Kr-87Kr-88NeliibleNeliible1.55E+04NeliibleNeliibleXe-131mXe-133mXe-133Xe-135mXe-135Xe-1383.01E+021.84E-022.81E+02NeliibleNeliibleNeliible51-1258768-01GinnaSFPRe-rackingLicensingReportPage466 Table6A-4DoseConversionFactors.-I-131I-132I-133I-134I-1351.07E+066.29E+031.81E+051.07E+033.14E+04Nh'ole'.3o'dyIDCF,.::.<'.Reiii-"'.m'.ICi-"s'ec".',',9.70E-025.59E-011.50E-016.48E-013.64E-01;:,'Eav'e'-:.,'.0.392.240.602.591.46Kr-83mKr-85mKr-85'r-87Kr-881.10E-024.00E-025.75E-'041.98E-015.50E-010.0440.160.00230.792.2Xe-131mXe-133mXe-133Xe-135mXe-135Xe-1387.25E-045.00E-037.50E-031.08E-016.25E-022.80E-010.00290.020.030.430.251.12NotethatthewholebodyDCFsarecalculatedbymultiplyingtheaverageenergyoftheemittedphotonsby0.25(seeSection6.2.6).51-1258768-01GinnaSFPRe-rackingLicensingReportPage467 7.0QUALITYASSURANCE7.1DESCRIPTIONOFSUPPLIER'SQUALITYASSURANCEPROGRAMFTIhasaQualityAssuranceProgramforproductsandservicesdesignatedas'Safety-Related'ndas'Non-SafetyRelated'.Thisprogramisintendedtocomplywiththerequirementsof10CFR50,AppendixB(QualityAssuranceCriteriaforNuclearPowerPlantsandFuelProcessingPlants)andtheapplicablerequirementsoftheASMEBoiler&PressureVesselCode,SectionIII,DivisionI.TheQualityAssuranceProgramisincompliancewithANSIN45.2anditsapplicabledaughterdocuments,andanyapplicablerequirementsinANSVASME,NQA-1whicharenotcoveredintheANSIN45.2Series.Theprogramalsoestablishesmethodstomeetthequalityrequirementsthatareimposedbycontractswiththecustomerorthat,intheabsenceofsuchprovisions,areimposedbytheProductLineManager.Thisprogramalsoprovidesfortheimplementationofthecustomer-specificprocedureswhenrequiredbythecontract.Thescopeofthisprogramcoversactivitiesbeginningwiththeauthorizationtoproceedundercustomercontractandextendingthroughthedeliveryofthefinalproduct.AttheoptionoftheProductLineManager,itmayalsobeappliedtoactivitiesperformedpriortotheinitiationofthecontract.ThisprogramhasbeenreviewedandapprovedbyRG&Eandhasbeenutilizedinperformingworkinthepast.AcontrolledcopyoftheFTIQualityAssuranceManual(Doc.No.56-1201212)ismaintainedatRG&EbyG.R.Amsden,QualityAssurance.7.2DESCRIPTIONOFQUALITYASSURANCEPLANANDIMPLEMENTATIONFTIisthePrimeContractorfordesign,licensinganalysis,fabrication,andinstallationofspentnuclearfuelstorageracks.FTIisteamedwithATEAfordesignandfabrication,andFCFforthelicensinganalysis.PeylaConstructionManagement(PCM)willberesponsiblefortheremovalanddisposaloftheoldracksandwillinstallthenewracks.ATEAisasubcontractorofFTI,andFCFandPCMaresubcontractorstoATEA.FTIisresponsiblefortheoverallprojectcoordinationandintegrationoftheresourcesandtheteam.Allworkperformedontheproject,whethertechnicaloradministrative,willbeperformedinaccordancewithFTI'sQualityAssuranceProgram(Doc.No.56-1201212).Also,inaccordancewiththeProjectManagementPlan(Doc.No.56-1257505)project-specifictasksperformedbyFCFwillutilizetheFCFQualityAssuranceProgram(Doc.No.56-1177617);project-specifictasksforATEAwillutilizetheATEAQualityAssuranceProgram(Rev.0,datedApril18,1995,asauditedandapprovedbyFTI;andproject-specifictasksperformedatGinnabyPCMwillbeperformedinaccordancewiththeFIIQualityAssuranceProgram(Doc.No.56-1201212).TechnicaldocumentsfromRG&EandotherorganizationswillberetainedintheFTIRecordsCenterandwillbemaintainedinaccordancewiththecontractrequirements.51-1258768-01GinnaSFPRe-rackingLicensingReportPage468 TheATEAstorageracksarecategorizedas'Safety-Related'roductsandassucharerequiredtomeetorcomplywiththerequirementsof10CFR50,AppendixB.7.2.1OrganizationAuthorityandanorganizationhavebeenestablishedunderthisprojectandarecontainedintheProjectManagementManualnotedintheaboveparagraphs.FTIretainstheresponsibilityfortheoverallprogrameffectivenessincludingworkthatisdelegatedtosuppliers.7.2.2QualityAssuranceAQualityAssuranceProgramhasbeenestablishedthatappliestoallactivities,productsandservicesperformed,procuredandrenderedonthisproject.FTIretainstheoverallresponsibilityforestablishingandmaintainingtheproject'sQualityAssurance.TheFTIQualityAssuranceProgramshallbeperformedinaccordancewithFTIdocumentnumber56-1201212.7.2.3DesignControlAdesigncontrolprogramhasbeenestablishedfortheprojecttoprovideaprocesstocontroldesigndocuments.Thesedataaffectthesafety-relatedproductsandincludeforexample,butarenotlimitedto,designdrawings,inputforstressanalysis,thermalhydraulics,seismic,physics,radiation,computerprograms,materials,specifications,andsystemdescriptions.SpecificsofthedesigncontrolprocessesaredescribedintheFTIorsubcontractors'ualityAssuranceProgramManuals.7.2.4ProcurementDocumentControlProcurementofsafety-relatedproductsandservicesarespecifiedinprocurementdocuments.Productsandservicesareprovidedbyapprovedsuppliers.7.2.5Instructions,Procedures,andDrawingsActivitiesaffectingqualityofsafety-relatedproductsandservicesareperformedinaccordancewithdocumentedinstructions,proceduresordrawings,whichincludeappropriatequantitativeandqualitativemeansofverifyingquality.Requiredactionsandresponsibilitiesforpreparation,review,approvalandcontrolofthesedocumentsareestablishedinproceduresandinstructions.7.2.6DocumentControlMeasuresforthereview,approvalandissuanceofdocumentscoveringsafety-relatedproductsandservicesandtheirassociatedchangesareestablishedinternallytoassuretechnicaladequacyandtheinclusionofqualitycontrolrequirementspriortoimplementation.ThesemeasuresincluderesponsibiTitiesforrequiredindependentreviewsbyqualifiedindividualsincludingqualitypersonnelforreviewandconcurrencewithrespecttoQualityAssurance-relatedaspectsofdocumentstoassureacceptability.Documentcontrolisappliedtodesign,procurementandmanufacturingdocumentsincludingas-builtdocumentsanddocumentsrelatingtocomputercodes,aswellasinstructionsandprocedures.7.2.7ControlofPurchasedMaterial,Equipment,andServicesWhenspecifiedintheprocurementdocument,FTIprovidesforQualityAssurancesurveillanceofsuppliersduringfabrication,inspection,testingandthereleaseofsafety-relatedproductsandservices.51-1258768-01GinnaSFPRe-rackingLicensingReportPage469 Forcommercial'ofF-the-shelf'tems,whicharetobeusedassafety-relatedproductsandservices,butwhereaspecificQualityAssurancecontrolappropriatefornuclearapplicationscannotbeimposedinapracticalmanner,areceivinginspectionand/ortestsareperformedandshallmeettheacceptancecriteria.Theseinstructionsaresubjecttothedocumentcontrolprovisions.Priortoplacinganorderwithanew'upplier,anevaluationisconductedbyQualityAssurancepersonnelandappropriateengineeringand/orprocurementpersonnel.SuchanevaluationmayincludeanauditandisconductedinaccordancewithapplicableFTIand/ortheirsubcontractor'sQualityAssuranceProgram.7.2.8IdentificationandControlofMaterials,Parts,andComponentsIdentificationrequirementsareestablishedinQualityAssuranceprogramsandarespecifiedasnecessaryintheprocurementdocumentsforsafety-relatedproductsandservices.Identificationandcontrolproceduresassurethatidentificationismaintainedontheitemoronrecordsthataretraceabletotheitemtoprecludeuseofincorrectordefectiveitems.Identificationofitemscanbetracedtoappropriatedocumentationsuchasdesigndocuments,procurementdocumentsand/orinspectionrecords.Identificationofitemsisverifiedanddocumentedpriortoreleaseoftheitemforfurtheruse.7.2.9ControlofSpecialProcessesEstablishedproceduresaremaintainedtoprovideappropriatecontroloverspecialprocessesforsafety-relatedproductsandservices.Theprocessesthatarecontrolledasspecialprocessesarethefollowing:theprocesswheredirectinspectionisimpossibleordisadvantageous;andprocesseswheretheresultsarehighlydependentonthecontroloftheprocessortheskilloftheoperator,orboth.Examplesoftheseprocessesarewelding,casting,andexplosiveforming.Thespecialprocessproceduresandcertificationofqualifiedpersonnelaremaintainedunderdocumentcontrol.Specialprocessesareperformedbyqualifiedpersonnelandaccomplishedunderprescribedproceduralcontrols.Recordedevidenceofverificationismaintained.'I7.2.10InspectionProceduresareestablishedthatcontrolmanufacturingactivitiesofsafety-relatedproductsandservices.Theseproceduresprovidecontrolfortheselectionandidentificationofrequiredinspectioninaqualityplanidentifyingtheinspectionstobeperformed,theirlocationinthemanufacturingprocessandthemandatory'HoldPoints'equiredbyvariousorganizations(i.e.,QualityAssurance,thecustomer).Thisdocumentiseitherpreparedand/orapprovedbytheQualityAssuranceorganizationhavingtheresponsibilityfortheitemtobeinspected.7.2.11TestControlMeasuresareestablishedtocontrolthetestingofsafety-relatedproductsandservices.Thesemeasuresincludeidentificationofrequiredtesting,developmentofprocedures,ameansofassessingtheadequacyoftesteditems,anddesignationofresponsibilityforperformingthevariousphasesofthetestingactivities.TestsrequiredduringmanufacturingareidentifiedintheQualityPlanoftheitem.Themeasuresestablishedforthecontrolofspecialprocessesincludeaprovisionforidentifyingthenecessaryqualificationtests.51-1258768-01GinnaSFPRe-rackingLicensingReportPage470 Thetestresultsaredocumented,evaluated,andtheiracceptabilitydeterminedbyaqualified,responsibleindividualorgroup.Modifications,repairsandreplacementsaretestedinaccordancewiththeoriginaltestorappropriatealternatives.TestprogramrequirementsareincorporatedasappropriatedinpurchaseordersandwillbereflectedintheQualityPlan.Suppliertestingactivitiesaresubjecttoauditingandmonitoringforcomplianceduringthesurveillanceactivities.7.2.12ControlofMeasuringandTestEquipmentFTImaintainsthemeansofcontrollingmeasuringandtestequipmentusedonsafety-relatedproductsandservices.Programsweredevelopedforconsideringsuchattributesasinherentstability,purposeofuse,desiredaccuracy,andthedegreeofusage.Measuringandtestequipmentareidentifiedandtraceabletothecalibrationtestdataandforotherrequireddocumentation.Thecompletestatusofallitemsunderthecalibrationsystemincludingpersonalacceptancegages,isrecorded,maintainedandcontrolled.7.2.13Handling,Storage,andShippingProceduresareestablishedtocontrolcleaning,packaging,shipping,storageandhandlingofsafety-relatedproductsandservices.Whererequired,theseactivitiesareaccomplishedbyappropriatelytrainedpersonnel.Theproceduresincludethecontrolofcleaning,handling,storage,packaging,shippingandpreservationonmaterials,components,andsystemsinaccordancewithdesignspecificationrequirementstoprecludeunacceptabledamage,loss,ordeteriorationbyenvironmentalconditions.Theidentificationcontrolsincludeconsiderationsforidentificationofinspection,use,personneltrainingandqualification,auditing,non-conformance,andotherappropriaterequirements.Theseproceduresmaybeinvariousforms,suchasmanufacturingprocedures,shippinginstructions,drawings,manufacturingroutingsheets,cleaningspecifications,andproceduraltrainingbooklets.7.2.14Inspections,Tests,andOperatingStatusProceduresareestablishedtoindicatetheinspection,testandoperatingstatusofsafety-relatedproductsandservicesduringfabrication,installationandtesting.Theseprocedurescontroltheapplicationandremovalofstatusindicatorsthroughtheuseofinspectioncontrolcards,shoptravelers,orotherdocuments.Theseproceduresalsocontrolsequencechangesandtheidentificationofnon-conformingitems.Theproceduresdocumentthesequenceofrequiredtests,inspections,andothersafety-relatedoperations.7.2.15Non-ConformingMaterials,Parts,orComponentsProceduresareestablishedtocontroltheidentification,documentation,segregation,reviewanddispositionofnon-conformingsafety-relatedproductsandservices.Theyincludenotificationofaffectedorganizationsifdispositionisotherthanscrap.Theseproceduresidentifyindividualsorgroupswhoareauthorizedtodisposeofandapprovenon-conformanceanddescribethesegregationand/orcontrolofnon-conformingitemstopreventinadvertentuse.51-1258768-01GinnaSFPRe-rackingLicensingReportPage471 Documentationidentifiesthenon-conformingitems,describesthenon-conformance,thedispositionofthenon-conformance,includingreinspectionrequirements,andincludesdocumentedapprovalofthedisposition.Whennon-conformingitemsarerepairedorotherwisemadesuitablefortheirdesigneduse,theyareinspectedandtestedinaccordancewiththeoriginalinspectionandtestrequirementsoracceptablealternatives.TheQualityAssuranceDepartmentisresponsibleforthereviewandapprovalofdecisionsproposedbyEngineering.7.2.16CorrectiveActionProceduresareestablishedthatprovidecorrectiveactionsforsafety-relatedproductsandservices.Theseproceduresincludetheinitiationanddocumentationofcorrectiveactionstoprecluderecurrenceofsignificantconditionsadversetoquality.Implementationofcorrectiveactionisverifiedbyresponsibleindividualsororganizationsandisdocumentedtocloseoutthecorrectiveaction.CorrectiveactionprocessinginvolvesparticipationofQualityAssurance.Thesedecisionsaredocumented.Forsignificantconditionsadversetoquality,thecauseandcorrectiveactionstakenaredocumentedandreportedtomanagementforreview.Non-conformancereportsaregenerated.Thesenon-conformancereportsarereviewedtodeterminetheneedforcorrectiveactionandareanalyzedfortrends.Theresultsofthesetrendanalysesareprovidedtomanagement.7.2.17AuditsProceduresareestablishedthatprovideacomprehensivesystemofQualityAssuranceProgramauditsofactivitiesaffectingthequalityofsafety-relatedproductsandservices.AuditsareperformedbyqualifiedauditpersonnelusingwrittenproceduresorchecklistsdesignedtoprovideanobjectiveevaluationoftheQualityAssuranceProgramanditseffectiveimplementation.AuditsareplannedandconductedbythequalityorganizationresponsibleforitsQualityAssuranceManual.ActivitiesofthequalityorganizationitselfareauditedbyqualifiedauditorsassignedbytheGeneralManagement,havingnodirectresponsibilitiesintheareatobeaudited.Awrittenreportthatdocumentstheauditresultsandcorrectiveactionispreparedbytheteamleaderanddistributedtothemanagementoftheorganizationbeingaudited.Thecorrectiveactionstobeproposedbytheorganizationresponsibleforthefindingarereviewedbythe,qualityorganizationorbytheteamleader(whenthequalityorganizationwastheauditedarea).Verificationofcorrectiveaction(includingre-auditofdeficientareas,whereappropriate)isperformedanddocumented.Provisionsmadeforpreparation,performance,reporting,andclosingoutofsuppliers'uditsaresimilarandmeetthesamerequirements.AuditschedulesareimplementedinaccordancewiththeQualityAssuranceManual.TheseauditsensurethatproceduresandactivitiescomplywiththeoverallQualityAssuranceProgramandprovideacomprehensiveindependentverificationandevaluationofquality-relatedproceduresandactivities.51-1258768-01GinnaSFPRe-rackingLicensingReportPage472 S.OENVIRONMENTALCOST/BENEFITASSESSMENT8.1NEEDFORINCREASEDSTORAGECAPACITYTheU.S.DepartmentofEnergy(DOE)hasstatutoryandcontractualobligationstoacceptGinnaspentfuelbeginningln1998.RG&E,inconsideringitscapacityneeds,assessedthattheDOEwouldnotbereadytoacceptspentfuelin1998.ThisassessmenthasbeenconfirmedbyrecentletterfromDOEdatedDecember17,1996,inwhichtheDOEnotifiedRG&EthatitwillnotstartacceptanceofGinnaspentfuelin1998.EarlyinJanuary1997,theDOEreleasedadraftproposaloutliningathree-phaseprocessforprivatefirmstoacceptandtransportwastefromcivilianreactors.Accordingtotheproposal,therewouldbetwophasespriortooperationofaFederalrepository.Theestimateddurationofthe.phasesisseveralyearsbeyond1998,subjecttotheDOEmeetingthescheduleforawardofthecontractsandCongressdesignatingaFederalstoragesite.TheDOEproposal,anditsassociateduncertainties,furtherconfirmsRG&E'sneedforincreasedstoragecapacitybeyond1998toaccommodatetheGinnaspentfuelpriortooperationoftheFederalrepository.Table5.5-1showsthescheduleofrefuelingoutagestotheendoflicenseinSeptember2009.AdditionaldischargeswereconservativelyincorporatedbeyondSeptember2009forthepurposeofdeterminingaboundingdecayheatload.Theboundingdecayheatloadisbasedonaninventoryoffuelrodsinthespentfuelpoolnottoexceedthenumberofrodscontainedin1,879intactfuelassemblies(179fuelrods/assemblyx1,879assemblies=336,341fuelrods).Thecurrentspentfuelpoolinventoryisasfollows:(a)782spentfuelassemblies(intact),(b)8consolidatedrodcanistersand2consolidatedhardwarecanisters(from11intactfuelassemblies),1fuelrodstoragebasket,(d)5storagelocationswithnon-fuelcomponents,and(e)1storagelocationnotavailableforstorage,foratotalof799storagelocationsbeingoccupied.Thecurrentlicensedcapacityis1,016fuelassemblies.Projectedspentfueldischargesareconservativelyestimatedat44spentfuelassembliesduringeachoftheprojectedrefuelingoutages.Basedonthecurrentinventoryandprojectedspentfueldischarges,Ginnalosesthecapabilitytodischargeafull-coreintothespentfuelpoolinSeptember2000.S.2ESTIMATEDCONSTRUCTIONCOSTSTheconstructioncostfortheproposedreracking,includingengineering,escalation,andallowanceforfundsusedduringconstructionisestimatedat$6million.S.3ALTERNATIVESTOINCREASEDSTORAGECAPACITYFuelAssemblyConsolidationFuelassemblyconsolidationinvolvesseparationofthefuelrodsfromthefuelassemblyhardware(grids,guidetubes,andnozzles).Thenuclearindustry,includingRG&E,hasconductedseveralprogramsoverseveralyearstodemonstratethatrodscanbeconsolidatedwithuptoaratioof2to1(rods&omtwofuelassembliesarestoredinonecanister).Rodconsolidationtothatratiohasbeendemonstratedtobeachievable.51-1258768-01GinnaSFPRe-rackingLicensingReportPage473 Utilitieshavealsoundertakenprogramstoconsolidateassemblyhardware.Theprogramshavenotachievedthedesiredconsolidationrateof10:1(hardwarefromtenfuelassembliesarestoredinonecanister).Vendorshavedevelopedadvancedconsolidationmachinestoaddresslessonslearnedfromtheprograms.Thesemachineshavenotbeendemonstratedyet.Atpresent,thereisadegreeofuncertaintywithrespecttotheconsolidationrateofhardware.Theeconomicsofconsolidationishighlydependentontheconsolidationratesforfuelrodsandhardware.Withadditionaldemonstiationprograms,fuelconsolidationhasthepotentialtobeastrongalternativetobuildinganIndependentStorageFacility(ISFSI).RG&EhaspreparedthisLicensingReporttoallowfuturestorageofconsolidatedspentfuelasanalternativetoanISFSI.Atpresent,increasingthecapacityofthespentfuelpoolbyrerackingisabetteralternative(lowercost,loweruncertainty).IndependentSpentFuelStorageFacility(ISFSI)ConstructinganISFSItoincreasecapacityisnotcost-effectivecomparedwithincreasingcapacitybyrerackingthespentfuelpool.Thereisalargefixedcostforconstructingthefacilityandprocuringtheancillaryequipmentforstoringalimitednumberofstoragecasks.Becauseofthisfixedcost,thecostoftheISFSIfortheequivalentnumberofstoragelocationsismorethan3timesthecostperlocationofrerackingthespentfuelpool.ShipmenttoanotherReactorSiteShipmentofspentfueltoothernon-RG&EreactorsiteswouldrequireanincreaseinthestoragecapacityatthosesitestoaccommodateGinnaspentfuelassemblies.Additionalcapacityatnon-RG&EsiteswouldhavetobedesignedtostoreGinna14x14spentfuelassemblies.Inaddition,utilitiesatthosesitesmaychargestoragefeesseparatefromthecostoftheincreasedcapacity.Theproposedrerackingisthemostcost-efFectiveofallstoragealternativestoincreasecapacityattheGinnasite.BymodifyingthespentfuelpoolatGinna,therearenoadditionalcostsassociatedwithtransportationtoanothersite,modificationstoaccommodate14x14assemblies,andpotentialstoragefees.OtherAlternativesPermanentshutdownofGinnabecauseoflackofstoragecapacityforspentfuelwasnotaviablealternative.Thecostsofapermanentshutdownaresignificantlyhigherthanthecostofrerackingthespentfuelpool.8.4COMMITMENTOFMATERIALRESOURCESThematerialresourcesutilizedinthespentfuelrerackingaredescribedinSection1.0.Theseincludeprimarilyausteniticstainlesssteelasastructuralmaterialandboratedstainlesssteelasaneutronabsorber.Therequirementforausteniticstainlesssteelforthererackingisanegligibleamountofworldproduction.TheproductionofboratedstainlesssteelcanbeaccommodatedbymanufacturersintheU.S.,Austria,Germany,andtheCzechRepublic.Levelsofproductionofboratedstainlesssteelcanbeadjustedtomeetsignificantlyhigherdemands.51-1258768-01GinnaSFPRe-rackingLicensingReportPage474 Theadditionalcapacityinthespentfuelpooldoesnotresultinapermanentcommitmentofwater,land,orairresources.Theincreasedcapacitywillutilizetheexistingareaofthespentfuelpool.Theproposedadditionalstoragecapacityinthespentfuelpoolwillnotsignificantlyforeclosethealternativesavailablewithrespecttoanyotherlicensingactionsdesignedtoameliorateapossibleshortageofspentfuelstoragecapacity.8.5HEATRELEASEDTOTHEENVIRONMENTTheheatremovalcapabilityofthespentfuelpoolcoolingsystemwillremainunchangedasdiscussedinSection5.4.Afterashutdown,thefullcorewilldecayinthereactorvesselpriortomovementtothespentfuelpool.ThetotalheatloadRomthespentfuelassemblies,includingafullcoredischarge,willremainwithinthelimitsoftheexistingspentfuelpoolcoolingsystem(Section5.4).Theheatreleasedtotheenvironmentfromthismodificationisboundedbyexistingheatloadsfromnormaloperation.51-1258768-01GinnaSFPRe-rackingLicensingReportPage475
}}

Latest revision as of 09:49, 8 January 2025

Rg&E Re Ginna Nuclear Power Plant Spent Fuel Pool Re-racking Licensing Rept
ML17264A851
Person / Time
Site: Ginna Constellation icon.png
Issue date: 03/19/1997
From: Biddle J, Hassler L, Hennington P
FRAMATOME
To:
Shared Package
ML17264A848 List:
References
1258768-01, 1258768-1, NUDOCS 9704070046
Download: ML17264A851 (672)


Text