ML18038B754: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(2 intermediate revisions by the same user not shown)
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:BR()WNS FR~V NUCLEAR PLANT Ill'W'"tel t~F Date    c            of Utr Regulator Docket File Enclosure I Volume 1 9609'i90i76 '760906 PDR  ADOCK 05000259 P                PDR
{{#Wiki_filter:}}
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA CONTENTS
: 1. INTRODUCTION
: 2. SCREENING CRITERIA
: 3. PROBABILISTIC RISK ASSESSMENT INSIGHTS
: 4. RESULTS OF APPLICATION OF SCREENING CRITERIA
: 5. REFERENCES ATTACHMENT
 
==SUMMARY==
DISPOSITION MATRIX  FOR BFN UNITS 1, 2, AND 3 t APPENDICES A.
B.
JUSTIFICATION  FOR BFN SPECIFIC RISK SPECIFICATION RELOCATION SIGNIFICANT EVALUATION
 
BROMNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA INTRODUCTION The purpose of this document is to confirm the results of the BWR Owners Group application of the Technical Specification screening criteria on a plant specific basis for Browns Ferry (BFN) Units 1, 2 5 3. TVA has reviewed the application of the screening criteria to each of the Technical Specifications utilized in BWROG report NED0-31466, "Technical Specification Screening Criteria Application and Risk Assessment,"
(Reference 1) including Supplement 1 (Reference 1), NUREG 1433, Revision 1, Standard Technical Specifications, General Electric Plants BWR/4," and applied the criteria to each of the current BFN Units 1, 2 8 3 Technical Specifications. Additionally, in accordance with the NRC guidance,  this confirmation  of  the application of screening criteria to BFN Units 1, 2, 5  3 includes  confirming  the risk insights from Probabilistic Risk Assessment (PRA) evaluations, provided in the Reference 1, as applicable to BFN Units 1, 2, E 3.
SCREENING CRITERIA TVA used  the screening criteria provided in the NRC Final Policy Statement on Technical Specification Improvements of July 22, 1993 to develop the results contained in the attached matrix. Probabilistic Risk Assessment (PRA) insights as used in the BWROG submittal were used, confirmed by TVA, and are discussed in the next section of this report.
The screening criteria and discussion provided in the NRC Final Policy statement are as follows:
Criterion 1: Installed instrumentation that is used to detect, and indicate in the control room, a significant abnormal degradation of the reactor coolant pressure boundary:
Discussion of Criterion 1: A basic concept in the adequate protection of the public health and safety is the prevention of accidents.
Instrumentation is installed to detect significant abnormal degradation of the reactor coolant pressure boundary so as to allow operator actions to either correct the condition or to shut down the plant safely, thus reducing the likelihood of a loss-of-coolant accident. This criterion is intended to ensure that Technical Specifications control those instruments specifically installed to detect excessive reactor coolant system leakage. This criterion should not, however, be interpreted to include instrumentation to detect precursors to reactor coolant pressure boundary leakage or instrumentation to identify the source of actual leakage (e.g., loose parts monitor, seismic instrumentation, valve position indicators).
Page  1 of 8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA Criterion    2:  A process variable, design feature, or operating restriction that is      an initial condition of a Design Basis Accident (DBA)  or  transient  analyses  that either assumes the failure of or presents    a  challenge to the  integrity of    a  fission product barrier:
Discussion of Criterion 2:        Another basic concept in the adequate protection of the public health and safety is that the plant shall be operated within the bounds of the initial conditions assumed in the existing DBA and transient analyses and that the plant will be operated to preclude unanalyzed transients and accidents. These analyses consist of postulated events, analyzed in the FSAR, for which a structure, system, or component must meet specified functional goals. These analyses are contained in Chapters 6 and 15 of the FSAR (or equivalent chapters) and are identified as Condition II,            III,  or IV events (ANSI N18.2) (or equivalent) that either assume the failure of or present  a  challenge to the  integrity of    a  fission product barrier.
As used  in Criterion 2, process variables are only those parameters for which  specific values or ranges of values have been chosen as reference bounds in the DBA or transient analyses and which are monitored and controlled during power operation such that process values remain within the analysis bounds. Process variables captured by Criterion 2 are not, however, limited to only those directly monitored and controlled from the control room.      These could also include other features or characteristics that are specifically        assumed in DBA or transient analyses    if  they cannot be directly observed in the control room coefficient      hot channel factors).
(e.g.,
moderator temperature                    and The purpose      of this criterion is to capture those process variables that have  initial values assumed in the DBA and transient analyses, and which are monitored and controlled during power operation. As long as these variables are maintained within the established values, risk to the public safety is presumed to be acceptably low, This criterion also includes active design features (e.g., high pressure/low pressure system valves and interlocks) needed to preclude unanalyzed accidents and transients.
Criterion 3:      A structure, system, or    component    that is part of the primary success path and which functions          or  actuates  to mitigate a DBA or Transient that either assumes the failure            of or  presents a challenge to the integrity of a fission product barrier:
Discussion of Criterion 3: A third concept in the adequate protection of the public health and safety is that "in the event that a postulated DBA or Transient should occur, structures,            systems, and components are available to function or to actuate in order to mitigate the consequences of the DBA or Transient.          Safety sequence analyses or their equivalent have been performed in recent years and provide a method of Page  2  of 8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA presenting the plant response to      an  accident. These can be used  to define the primary success paths.
A  safety sequence analysis is a systematic examination of the actions required to mitigate the consequences of events considered in the plant's DBA and transient analyses, as prese~ted in Chapters 6 and 15 of the plant's FSAR (or equivalent chapters).          Such a safety sequence analysis considers all applicable events, whether explicitly or implicitly presented. The primary success path of a safety sequence analysis consists of the combination and sequences of equipment needed to operate (including consideration of the single failure criteria), so that the plant response to DBAs and Transients limits the consequences of these events to within the appropriate acceptance criteria.
It is the intent of this criterion to capture into Technical Specifications only those structures, systems, and components that are part of the primary success path of a safety sequence analysis. Also captured by this criterion are those support and actuation systems that are necessary for items in the primary success path to successfully function. The primary success path for a particular mode of operation does not include backup and diverse equipment (e.g., rod withdrawal block which is a backup to the average power range monitor high flux trip in the startup mode, safety valves which are backup to low temperature overpressure    relief    valves during cold shutdown).
Criterion 4:    A structure, system, or      component which operating experience or  probabilistic safety      assessment has shown to be significant to public health      and  safety:
Discussion of Criterion 4: It is the Commission's policy that licensees retain in their Technical Specifications LCOs, action statements, and Surveillance Requirements for the following systems (as applicable),
which operating experience and PSA have generally shown to be significant to public health and safety and any other structures, systems,  or components that meet this criterion:
      ~  Reactor Core Isolation Cooling/Isolation Condenser,
      ~  Residual Heat Removal
      ~  Standby Liquid Control, and
      ~  Recirculation  Pump  Trip.
The Commission recognizes    that other structures, systems, or components may meet this criterion. Plant- and design-specific PSA's have yielded valuable insight to unique plant vulnerabilities not fully recognized in the safety analysis report DBA or transient analyses.          It is the intent of this criterion that those requirements that PSA or operating experience exposes as significant to public health and safety, consistent with the Commission's Safety Goal and Severe Accident Page 3  of  8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA Policies,  be retained or included in the Technical Specifications.
The Commission expects    that licensees, in preparing their Technical Specification related submittals, will utilize any plant-specific PSA or risk survey and any available literature on risk insights and PSAs.
This material should be employed to strengthen the technical bases for those requirements that remain in Technical Specifications, when applicable, and to verify that none of the requirements to be relocated contain constraints of prime importance in limiting the likelihood or severity of the accident sequences that are commonly found to dominate risk. Similarly, the NRC staff will also employ risk insights and PSAs in evaluating Technical Specifications related submittal. Further, as a part of the Commissions ongoing program of improving Technical Specifications, it will continue to consider methods to make better use of risk and reliability information for defining future generic Technical Specification requirements.
PROBABILISTIC RISK ASSESSMENT INSIGHTS Introduction  and  Ob'ectives The  Final Policy Statement includes a statement that NRC expects licensees to utilize the available literature on risk insights to verify that none of the requirements to be relocated contain constraints of prime importance in limiting the likelihood or severity of the accident sequences that are commonly found to dominate risk.
Those Technical Specifications proposed for relocation to other plant controlled documents will be maintained under the 10 CFR 50.59, safety evaluation review program. These specifications have been compared to a variety of Probabilistic Risk Assessment (PRA) material with two purposes:  1) to identify  if  a component or variable is addressed by PRA, and 2) to judge  if  the component or variable is risk-important. In addition, in some cases risk was judged independent of any specific PRA material. The intent of the review was to provide a supplemental screen to the deterministic criteria. Those Technical Specifications proposed to remain part of the Improved Technical Specifications were not reviewed. This review was accomplished in Reference 1 except where discussed in Appendix A, "Justification For Specification Relocation,",
and has been confirmed by TVA for those Specifications to be relocated.
Where Reference 1 did not review a Technical Specification against the criteria of Reference 3, TVA performed a review similar (but not identical) to that described below for Reference 1. The results of these reviews are presented in Appendix B.
Page  4 of 8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA Assum  tions  and A    roach Briefly, the approach used in Reference 1 was the following; The risk assessment analysis evaluated the loss of function of the system or component whose LCO was being considered for relocation and qualitatively assessed the associated effect on core damage frequency and offsite releases.      The assessment was based on available- literature on plant risk insights and PRAs.        Table 3-1 lists the PRAs used for making  the assessments  and  is  provided  at the end of this section. A detailed quantitative calculation of the core damage and offsite release effects was not performed. However, the analysis did provide an indication of the relative significance of those LCOs proposed for relocation  on  the likelihood or severity of the accident sequences        that are commonly found to dominate plant safety risks. The following analysis steps were performed for each LCO proposed for relocation:
a ~    List the function(s) affected      by removal  of the LCO item.
: b. Determine the    effect of loss of the    LCO  item on the function(s).
C. Identify compensating provisions, redundancy,        and backups related to the loss of the LCO item.
: d. Determine the    relative frequency (high,    medium, and low)  of the loss of the function(s) assuming the LCO item is removed from Technical Specifications and controlled by other procedures or programs. Use information from current PRAs and related analyses to establish the relative frequency.
: e. Determine the    relative significance (high, medium, and low) of the loss of the function(s). Use information from current PRAs and related analyses to establish the relative significance.
Page  5 of  8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA Apply  risk category criteria to establish the potential risk significance or non-significance of the LCO item. Risk categories were defined as follows:
RISK CRITERIA Consequence
~Fre uenc            Hicih        Medium      Low High                S            S            NS Medium              S            S            NS Low                  NS            NS          NS S      =      Potential Significant Risk Contributor NS    =      Risk Non-Significant List  any comments or caveats that apply to the above assessment. The output from the above evaluation was a        list of LCOs proposed for relocation that could have potential plant safety risk significance      if not properly controlled by other procedures or programs. As a result these Specifications will be relocated to other plant controlled documents outside the Technical Specifications.
Page  6 of 8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA TABLE  3-1 BWR PRAs  USED IN NEDO-31466 (and Supplement      1)
RISK ASSESSMENT BWR  6 Standard Plant, GESSAR II, 238 Nuclear Island, BWR/5 Standard Plant Probabilistic Risk Assessment, Docket No. STN 50- 447, March 1982.
La  Salle Count  Station,  NED0-31085,      Probabilistic Safety Analysis, February 1988.
Grand Gulf Nuclear Station, IDCOR, Technical        Report 86.2GG, Verification of IPE for Grand Gulf, March 1987.
Limerick, Docket Nos. 50-352, 50-353, 1981, "Probabilistic Risk Assessment,  Limerick Generating Station," Philadelphia Electric      Company.
Shoreham, Probabilistic Risk Assessment Shoreham Nuclear Power        Station, Long Island Lighting Company, SAI-372-83-PA-01, June 24, 1983.
Peach  Bottom 2, NUREG-75/0104,      "Reactor Safety Study," WASH-1400, October 1975.
Millstone Point  1, NUREG/CR-3085,      "Interim Reliability Evaluation Program:    Analysis of the Millstone Point Unit 1 Nuclear Power Plant,"
January 1983.
Grand Gulf, NUREG/CR-1559, "Reactor Safety Study Methodology Applications Program: Grand Gulf Pl BWR Power Plant," October 1981.
NEDC-30935P,  "BWR  Owners'roup Technical Specification Improvement Methodology (with Demonstration      for  BWR ECCS Actuation Instrumentation)
Part 2," June 1987.
Page  7  of 8
 
BROWNS FERRY NUCLEAR PLANT APPLICATION OF SCREENING CRITERIA RESULTS OF APPLICATION OF SCREENING CRITERIA The  screening criteria from Section 2 were applied to the BFN Units 1, 2, and  3 Technical Specifications. The attachment is a summary of that application indicating which Specifications are being retained or relocated. Discussions that document the rationale for the relocation of each Specification which failed to meet the screening criteria are provided in Appendix A. No Significant Hazards Considerations (10 CFR 50.92) evaluations for those Specifications relocated are provided with the Justification for Changes for the specific Technical Specifications.
TVA will relocate those Specifications identified as not satisfying the criteria to licensee controlled documents whose changes are governed by 10 CFR 50.59.
REFERENCES NEDO-31466 (and Supplement 1), "Technical    Specification Screening Criteria Application and Risk Assessment,"    November 1987.
: 2. NUREG  1433, Revision 1, "Standard Technical  Specifications, General  Electric Plants BWR/4," April 1995.
: 3. Final Policy Statement    on Technical Specifications Improvements, July 22, 1993, (58FR39132).
Page 8  of 8
 
==SUMMARY==
DISPOSITION MATRIX FOR BFN UNITS    I,  2,  AND 3 CURRENT TS TITLE                            BFN        STS        NUREG    RETAINED/  BASIS  FOR IHCLUSIOH/EXCLUSION NUNBER                                      ISTS        REV. 4    1433      CRITERION NUHBER      NUHBER    HUHBER    FOR INCLUS ION 1.0        Definitions                                  1.0                  Yes        Definitions for selected terms used in the Technical Specifications are provided to improve understanding and ensure consistent application. Application of the Technical Specification selection criteria to these definitions is not appropriate. However, definitions for those terms that remain in the Technical Specifications following the application of the selection criteria will be retained.
1/2.1.A    Safety Limit:                    2.1        2.1.1      2.1      Yes        Application of Technical Specification selection criteria to 1/2.1.8    Fuel Cladding Integrity          3.3.1 '    2.1.2      3.3.1.1              Safety Limits and Limiting Safety System Settings (LSSS) is 1/2.1.C                                    3.3.5.1    2.1.4      3.3.5.1              not appropriate. The fuel cladding integrity LSSS (with the 3.3.5.2    2.2.1      3.3.5.2              exception of APRH Rod Blocks) are retained by their 3.3.6.1    3.3.2      3.3.6.1              incorporation into the RPS and ECCS instrunentation 3.3.3                          Specifications because the associated Functions either 3.3.5                          actuate to mitigate consequences of Design Basis Accidents (DBAs) and transients or are retained as directed by the HRC.
2.1.A.1.c  Safety Limit:                    Relocated  None      None      No        See Appendix A, page  A-4.
Fuel Cladding Integrity -- APRH Rod Block Trip Setting 1/2.2    Safety Limit:                    2.1 ~ 2    2.1.3      2.1.2    Yes        Application of Technical Specification selection criteria to Reactor Coolant System          3.3.1.1    2.2        3.3.1.1              Safety Limits and Limiting Safety System Settings (LSSS) is Integrity                        3.4.3      3.4.2.1    3.4.3                not appropriate. The Reactor Coolant System integrity LSSS 3.3.6.1                3.3.6.1              are retained by incorporation into the RPS and safety relief valve Specifications because the associated components function to mitigate the consequences of events that would result in overpressurization of the RCS.
1.0 ~ C  Limiting Condition for          LCO 3.0.3  3.0.3      LCO 3.0.3 Yes        This Specification provides generic guidance applicable to Operation (LCO) Applicability    3.8.'I      3/4.B.1. 1 3.8.1                one or more Specifications to facilitate understanding of LCOs. As such, direct application of the Technical Specification selection criteria is not appropriate. The general requirements of 1.0.C are retained in the Technical Specifications consistent with NUREG-1433.
 
==SUMMARY==
DISPOSITION MATRIX FOR BFN UNITS  I,  2,  AND 3 CURRENT TS TITLE                              BFH            STS      NUREG    RETAIHEO/  BASIS  FOR INCLUSIOH/EXCLUSIOH NUMBER                                        ISTS          REV. 4    1433    CRITERION NUMBER        NUMBER    NUMBER  FOR INCLUSION 1.0.LL    Surveillance Requirement (SR)      SR  3.0.1      4.0.1    SR 3.0.1 Yes        This Specification provides generic guidance applicable to Applicability                      SR  3.0.2      4.0.2    SR 3.0.2            one or more Specifications to facilitate understanding of SR  3.0.3      4.0.3    SR 3.0.3            SRs. As such, direct application of the Technical Specification selection criteria is not appropriate. The general requirements of 1.0.LL are retained in the Technical Specifications consistent with NUREG-1433.
3/4.1.A    Reactor Protection System:          3.3 ~ 1 ~ 1    3/4.3.1  3.3.1.1  Yes - 3, 4 All Functions retained (with exception listed    below)
Instrwentation that Initiate    a                                              because the various Functions: 1) actuate to mitigate Reactor Scram (Instrwents in                                                    consequences of OBAs and/or transients; or, 2) are Table 3.1.1 and associated  SRs                                                considered risk significant and retained in accordance with in Table 4.1 ~ 1 and 4.1.2)                                                      the NRC Final Policy Statement on Technical Specification Improvements; or, 3) are part of the RPS/Reactor Scram Function; or, 4) provide an anticipatory scram to ensure the scram discharge voiwe and thus RPS remains operable.
Table      Turbine First Stage Permissive      Relocated      None      Hone    No        See RPS Instrwentation    Justification for  Change (LAS  for 3/4.'I.A                                                                                    ISTS 3.3.F 1)-
3/4.1.B    Reactor Protection System Power    3.3.8.2        3/4.8.4.4 3.3.8.2  Yes - 3    Provides protection for the RPS bus powered instrwentation Supply                                                                          against unacceptable voltage and frequency conditions that could degrade instrwentation so that      it would not perform the intended safety function.
3/4.2.A    Primary Containment and Reactor    3.3.6.1        3/4.3.2  3.3.6.1  Yes - 3, 4 All Functions retained (with exceptions listed      below)
Building Isolation:                3.3.6.2                  3.3.6.2            because  the Functions actuate to mitigate the consequences Instrwentation that initiates      3.3.7.1                  3.3.7.1            of a DBA LOCA, Fuel Handling Accident or are considered risk primary contairvrent isolation.                                                  significant and are retained in accordance with the NRC (Instrwents in Table 3.2.A and                                                  Final Policy Statement on Technical Specification associated SRs in Table 4.2.A)                                                  Improvements. The isolation signals generated by the (Exceptions listed below>                                                        reactor building isolation instrwentation are implicitly assumed in the safety analyses to initiate closure of valves to limit offsite doses.
3/4.2.A    SGTS  flow functions                Relocated      Hone      Hone    Ho        See Secondary Contairment Isolation Instrwentation Justification for Change (LA3 for ISTS 3.3.6.2) 3/4.2.A    Reactor Building Isolation          Relocated      Hone      None                See Secondary  Contalwent Isolation Instrwentation Timer Functions                                                                  Justification for  Change (LA3  for ISTS  3.3.6.2)
 
==SUMMARY==
DISPOSITION MATRIX FOR BFN UNITS    I,  2,  AND 3 CURRENT TS TITLE                                BFN        STS      NUREG  RETAINED/    BASIS  FOR  INCLUSION/EXCLUSION NUHBER                                          ISTS        REV. 4    1433    CR I TER ION NUMBER      NUHBER    NUHBER  FOR INCLUSION 3/4.2.B    Core and Containment Cooling          3.3.5 'I    3/4.3.3  3.3.5.1  Yes -  3, 4 Functions retained (with exceptions listed below) because Systems - Initiation 5 Control:      3.3.5 '    3/4.3.5  3.3.5.2              the various Functions actuate to mitigate the consequences Instrunentation that initiates        3.3.6.1              3.3.6.1              of 8 DBA LOCA or are considered risk significant and are or controls the core and                                                          retained in accordance with the NRC Final Policy Statement containment cooling systems                                                      on Technical Specification Improvements.
(LPCI, CS, ADS, NPCI, and RCIC).    (Instrunents in Table 3.2.B and associated SRs in Table 4.2.B) (Exceptions listed below)
Table      Drywell High Pressure                Relocated  None      None                  See ECCS  Instrunentation Justification for  Change (R2 for 3/4.2.B    (1<p<2 ~ 5  psig)                                                                ISIS 3.3.5.1)
Table      Core Spray Sparger      to Reactor    Relocated  None      Hone    No          See Appendix A, Page    A-3.
3/4.2.B    Pressure Vessel d/p Table      Trip  System Bus Power    Honitors:  Relocated  None      Hone    No          See Appendix A, Page A-1 3/4.2.B    RHR  (LPCI),    CS, ADS, HPCI, and RCIC  Trip  Systems Table      CS  and  RHR  Discharge Pressure      Relocated  Hone      None    No          See ECCS Instrunentation    Justification for Change (LA3 for 3/4.2.B                                                                                      ISTS 3.3.5.1)
Table      End  of Cycle Recirculation Pump      3.3.4.1    3/4.3.4.1 3.3.4.1  Yes - 3      EOC-RPT  aids the reactor scram in protecting fuel cladding 3/4.2.B    Trip: Instrunentation that                                                        integrity by ensuring the fuel cladding integrity Safety trips the reactor recirculation                                                  Limit is not exceeded during a load rejection or turbine pump to limit the consequences                                                    trip transient.
of a failure to scram (ATNS-RPT) ~  (Instruments in Table 3.2.8 and associated SRs in Table 4.2.8))
Table      CS  and  RHR  Area Cooler Fan        Relocated  Hone      Hone    Ho          See ECCS Instrumentation    Justification for Change (LA3 for 3/4.2.8    Thermostat                                                                        ISTS 3.3.5.1) 3/4.2.C    Control    Rod Block Actuation:      3.3.2.1    3/4.3.6  3.3.2.1  Yes          Control Rod Block Actuation Instrunentation functions to Instrunentation that Initiates                                                    prevent violation of the HCPR Safety Limit and cladding Control    Rod  Blocks.                                                          plastic strain design limit during a single control rod (Instrunents in Table 3.2.C and                                                  withdrawal error event, ensures the initial conditions of associated SRs in Table 4.2.C)                                                    the control rod drop accident analysis are not violated, and (Exceptions    listed  below)                                                    prevents inadvertent criticality when the reactor is shutdown (thereby preserving the safety analysis assumptions).
 
SUHMARY    DISPOSITION MATRIX FOR BFN UNITS    I,  2,  AND 3 CURRENT TS TITLE                              BFN        STS        NUREG    RETAINED/ BASIS FOR INCLUSION/EXCLUSION NUMBER                                        ISTS        REV. 4    1433      CRITERION NUMBER      NUMBER    NUMBER    FOR IHCLUSIOH Table      APRM  (Upscale Flow Bias,        Relocated  3/4.3.6    Hone      No        See Appendix A, Page  A-4.
3/4.2.C    Upscale Startup Mode, APRM Downscale, and APRM Inoperative)
Table      IRM  (Upscale, Downscale,          Relocated  3/4.3.6    Hone      Ho        See Appendix A, Page  A-6.
3/4.2.C    Detector Not in Startup Position, Inoperative)
Table      SRM  (Upscale, Downscale,        Relocated  3/4 '.6    None                See Appendix A, Page  A-7.
3/4.2.C    Detector Not in Startup Position, Inoperative)
Table      Scram Discharge Votune High        Relocated  3/4.3.6    Hone      No        See Appendix A, Page A-B.
3/4.2.C    Level 3/4.2.D    (Deleted) 3/4.2.E    Drywell Leak Detection:            3.4.5      3/4.4.3.1  3.4 6    Yes -  1  Leak detection instrunentation is used to indicate an Instrunentation that monitors                                                abnormal condition of the reactor coolant pressure boundary.
drywell leakage 3/4.2.F  Surveillance Instrunentation        3.3.3.1    3/4 3.7.5 3 3 3  1 Yes - 3  Regulatory Guide 1.97 Type  A and Category  1 instruoents 3/4 '.M    (Post Accident Monitoring                                                    retained. See Appendix A. Page A-10, for  full discussion of Instrunents):                                                                all instrunents in Table 3.2.F.
Instrunentation that provide surveillance information.
(Instrunents in Table 3.2.F and associated SRs in Table 4 '.F) 3/4.2.G    Control  Room  Isolation:          3.3.7.1    3/4.3.7    3.3.7.1  Yes - 3  Functions actuate to maintain control room habitability so Instrunentation that isolates                                                that operation can continue from the control room following the control room and initiates                                                a DBA.
CREVs.  (Instrm.nts in Table 3.2.G and associated SRs in Table 4.2.G) 3/4.2.H    Flood Protection                  Relocated  Hone      Hone      Ho        See Appendix A, page A-16.
Instrwentation 3/4.2.I    Meteorological Monitoring          Retocated  Hone      None      No        See Appendix A, page A-19.
Instrunentatton 3/4.2.J    Seismic Monitoring                Relocated  None      Hone      No        See Appendix A, page A-18.
Instrwentation
 
==SUMMARY==
DISPOSITION MATRIX    FOR BFN UNITS  I,  2,  AND 3 CURRENT TS  TITLE                              BFN        STS      NUREG      RETAINED/ BASIS  FOR  INCLUSION/EXCLUSION NUHBER                                          ISTS      REV. 4    1433        CRITERION NUHBER    NUMBER    NUHBER      FOR INCLUSION 3/4 '.K    Explosive  Gas Monitoring          Relocated  None      None                  See Appendix A, page A-21.      Part of the program required by Instrunentation                                                                BFN  Specification 5.5.8.
3/4.2.L    ATWS  Recirculation  Pump  Trip    3.3.4.2    3/4.3.4.1 3.3.4.2    Yes - 4  ATWS-RPT  is being retained in accordance with NRC Final Policy Statement on I'echnical Specification Improvements due to risk significance.
3/4.3.A.1  Reactivity Hargin -  Core          3.1.1      3/4.1.1  3.1.1      Yes - 2  Shutdown Margin (SDH) is assumed as an      initial condition for Loading                                                                        the control rod removal error during a      refueling event and the fuel assembly insertion error during a refueling event.
3/4.3.A.2.a Reactivity Hargin  - Inoperable    3.1.3      3/4.1.3 ' 3.1.3      Yes-3    Control rods are part of the primary success path for 3/4.3.A.2.b Control Rods                                  3/4.1.3.5                      mitigating the    consequences  of DBAs and  transients.
3/4.3.A.2.c                                                3/4.1.3.6 3.3.A.2.d 3/4 '.B.1 3.3.A.2.e  Scram  Accunuiators                3.1.5      3/4.1.3.5 3.1.5      Yes - 3  Same as  above.
/4.3.A.2 d                                                3/4.1.3.7 3/4.3.B.2  Control Rod Housing Support        Relocated  3/4.1.3.8 None        No        See Control Rod    Operability Justification for    Change (R1 for ISTS 3.1.3) 3/4.3.8.3.b Rod Worth  Minimizer                3.3.2.1    3/4.1.4.1 3.3.2.1    Yes - 3  The  RWH  enforces the Banked Position Withdrawal Sequence (BPWS)  to ensure that the    initial conditions of the LOCA analysis are not violated.
3/4.3.B.4  Minimum Count Rate  for Control    3.3.1.2    3/4.3.7.6 3.3.1.2    Yes      Does not  satisfy selection criteria, however is being Rod Withdrawal                                                                retained because it is considered necessary for flux monitoring during shutdown, startup and refueling operations.
3/4.3.C    Scram  Insertion  Times            3.1.3      3/4.1.3.2 3.1.3      Yes - 3  Control rods are part of the primary success path for 3.1.4      3/4.1.3.3 3.1.4                mitigating the consequences of DBAs and transients. The LOCA 3/4.1.3.4                      and transient analyses assune that control rods scram at a specified insertion rate.
3/4.3.D    Reactivity Anomalies                3.1.2      3/4.1 '  3.1.2      Yes - 2  Not a measured process variable, but is important parameter that is used to confirm the acceptability of the accident analysis 3/4.3.F    Scram Discharge Volune              3.1.8      3/4.1.3.1 3.1.8      Yes -  3  The  capability to insert the control rods ensures the assunptions used for the scram reactivity in the LOCA and transient analyses are maintained. The Scram Discharge Volune (SDV vent and drain valves contribute to the operability of the control rod scram function.
 
==SUMMARY==
DISPOSITION MATRIX    FOR BFN    UNITS I,  2,  AND 3 CURRENT TS  TITLE                              BFN        STS        NUREG      RETAIHED/    BASIS FOR INCLUSION/EXCLUSION NUMBER                                          ISTS      REV. 4    1433        CRITERION NUMBER    NUMBER    NUMBER      FOR INCI.US ION 3/4.4        Standby Liquid Control System      3.1.7      3/4.1.5    3.1.7      Yes  -4      The Standby  Liquid Control (SLC) is a backup system to the control rod scram function. This system is being retained per the NRC Final Policy Statement on Technical Specification Improvements due to the risk significance.
                                              ,~
            -CORE. AHD'CONTAINMEHT COOLING'.:,"
SYSTEMS 3/4.5.A      Core Spray System                  3.5.1      3/4.5.1    3.5.1      Yes - 3      Core Spray subsystems  are part of the ECCS and function to provide cooling water to the reactor core to mitigate large Loss of Coolant Accidents.
3/4.5.8      Residual Heat Removal System        3.5.1      3/4.5.'I  3.5.1      Yes - 3      RHR  Low  Pressure Coolant Injection subsystems are part of (RHRS) (LPCI AND    Contaiment      3.5.2      3/4.5.2    3.5.2                    the  ECCS  and function to provide cooling water to the Cooling)                            3.6.2.3    3/4.6.2.2  3.6.2.3                  reactor core to mitigate large Loss of Coolant Accidents.
3.6.2.4    3/4.6.2.3  3.6.2.4                  RHR Containment Cooling systems provide a reliable source of 3.6.2.5              3.6.2.5                  cooling water and functions to provide cooling to the primary contairment under post accident conditions.
3/4.5.B. 11  RHR  cross-connect  capability    None      Hone      None        Relocated    See  Justification for  Change Rl  for BFH ISTS 3.5.1, ECCS.
3/4.5.B.12  between  units 3/4.5.8.13 3/4.5.C.1    RHR  Service Mater and Emergency  3.7.1      3/4.7.1 1~ 3.7.1      Yes - 3      Designed for heat removal from various safety related 3/4.5.C.2    Equipment Cooling Hater Systems    3.7.2      3/4.7.1.2  3.7.2                    systems following a DBA. As such, acts to mitigate the 3/4.7.1.3                            consequences of an accident.
3/4 '.C.3  Standby Coolant Supply              Hone      None      Hone        Relocated    See  Justification for  Change  R1 for BFH ISIS 3.7.1, RHRSH.
3/4.5.C.4  Capability 3/4.5.C.5 3/4.5D      Equipment Area Coolers              Relocated  Hone      None        No          Relocated to the Bases as they are part of    ECCS Operability.
See ECCS  Justification for Changes (3.5.1, LA4) 3/4.5E      High Pressure  Coolant Injection  3.5.1      3/4.5.1  3.5.1        Yes - 3      The HPCI  System is part of the ECCS and functions to System                                                                            mitigate small break Loss of Coolant Accidents.
3/4.5F      Reactor Core Isolation Cooling      3.5.3      3/4.7.4  3.5.3        Yes  -4      System  retained in accordance with the NRC Final Policy System                                                                            Statement on Technical Specification improvements due to risk significance.
 
==SUMMARY==
DISPOSITION HATRIX FOR BFN UNITS  I,  2,    AND 3 CURRENT TS TITLE                              BFN        STS      NUREG    RETAINED/  BASIS  FOR  INCLUSION/EXCLUSION NUHBER                                        ISTS      REV. 4    1433    CRITERION NUHBER    NUHBER    NUHBER  FOR INCLUSION 3/4 ~ 5G  Automatic Depressurization          3.5.1      3/4.5.1  3.5.1    Yes - 3    The ADS  is part of the ECCS and is designed to mitigate a System (ADS)                                                                small or mediun break Loss of Coolant Accident. The ADS acts to rapidly reduce reactor vessel pressure in a LOCA situation in which the HPCI System fails to automaticaily maintain reactor vessel water level. This depressurization enables the low-pressure emergency core cooling systems to deliver cooling water to the reactor core.
3/4.5H    Haintenance of  Filled Discharge    3.5.1      3/4.5.1  3 ~ 5.1  Yes - 3, 4 This Specification ensures the operability of the ECCS and Pipe                                3.5.2      3/4.5.2  3 '.2              RCIC System, which function to mitigate the consequences of 3.5.3      3/4.5.4  3.5.3              a LOCA (ECCS) or is required to be retained by the NRC Final Policy Statement on Technical Specification Isprovements (RCIC).
3/4.51    Average Planar Linear Heat          3.2.1      3/4.2.1  3.2.1    Yes - 2    The APLHGR  limit is  an initial condition in the safety Generation Rate (HAPLHGR)                                                    analyses.
3/4.5J    Linear Heat Generation Rate        3.2.3      3/4.2.4  3.2.3    Yes - 2    The LHGR  limit is an  initial condition in the safety (LHGR)                                                                      analyses.
3/4.5K    Hinimm  Critical Power  Ratio      3.2.2      3/4.2.3  3.2 '    Yes - 2    The HCPR  limit is an  initial condition in the safety (HCPR)                                                                      analyses.
3/4.5L    APRH  Setpoints                    3.2.4      3/4.2.2  3.2.4    Yes - 2, 3 The Operability of the    APRHs and their setpoints is an initial condition  of all safety analyses that assune rod insertion upon reactor scram.
3/4.5H    Core Thermal-Hydraulic              3.4.1      3/4.4.1.1 3.4.1    Yes-2      Recirculation loop flow is an    initial condition in  the Stability                                      3/4.4.1.3                    safety analysis.
3/4.6.A.1  Thermal and Pressurization          3 '.9      3/4.4.6.1 3.4.'IO  Yes - 2    Establishes  initial conditions such that operation is 3/4.6.A.2  Limitations                                                                  prohibited in areas or at temperature rate changes that 3/4.6.A.3                                                                              might cause undetected flaws to propagate in turn 3/4.6.A.4                                                                              challenging the reactor coolant pressure boundary integrity.
3/3.6.A.S 3/4.6.A.6  Idle Recirculation  Loop Startup  3.4.9      3/4.4.6.1 3.4.10  Yes - 2    Same as  above.
3/4.6.A.7 3/4.6.8.1  Coolant Chemistry                  Relocated  3/4.4.4  Hone    No        See Appendix A, Page A-12.
3/4.6.8.2 3/4.6.8.3 3/4.6.8.4 3/4.6.8.5
 
==SUMMARY==
DISPOSITION MATRIX    FOR BFN  UNITS  I,  2,  AND 3 CURRENT TS TITLE                              BFN        STS      NUREG      RETAINED/  BASIS  FOR INCLUSION/EXCLUSION NUMBER                                        ISTS      REV. 4    1433        CRITERION NUMBER    NUHBER    NUMBER      FOR IHCLUSION 3/4.6.B.6  Specific Activity                  3.4.6      3/4.4.5  3.4.7      Yes - 2    The specific activity in the reactor coolant is an initial condition for evaluation of the consequences of an accident due to a main steam line break (MSLB) outside contaiwent.
3/4.6.C.1  Coolant Leakage                    3.4.4      3/4.4.3.1 3.4.4      Yes-1,2    Leakage beyond limits would indicate an abnormal condition of the reactor coolant pressure boundary. Operation in this condition may result in reactor coolant pressure boundary failure. Leakage detection instrunents are used to indicate an abnormal condition of the reactor coolant pressure boundary.
3/4.6.C.2  Leakage Detection Systems          3.4.5      3/4.4.3.2 3.4.6      Yes-1,    2 Same as  above.
3/4.6.D    Relief Valves                      3.4.3      3/4.4.2.1 3.4.3      Yes - 3    The Safety and Relief Valves are assuned to operate to maintain the reactor pressure below design limits.
3/4.6E    Jet Pumps                          3.4.2      3/4.4.1.2 3.4.2      Yes - 2    Jet Purp operability is explicitly assed in the design basis LOCA to assure adequate core reflood capability.
3/4.6F    Recirculation  Pump  Operation    3.4.1      3/4.4.1.1 3.4.1      Yes - 2    Recirculation loop flow is an  initial condition  in the 3/4.4.1.3                        safety analysis.
3/4.6G    Structural Integrity              Relocated  3/4.4.8  None                    See Appendix A, Page A-13 3/4 'H    Snubbers                          Relocated  3/4.7.5  None        Ho          See  Justification for Change (CTS  3.6.H/4.6.H, LA1) for relocating snubbers in  CTS 3.6.H/4.6.H. (Spec 3.4 markup) 3/4.7.A. 1 Suppression Chamber                3.6.2.1    3/4.6.2.1 3.6.2 '    Yes - 2, 3  The suppression  pool water voiune and terrperature are 3.6.2.2              3.6.2.2                initial conditions in  the DBA LOCA contairvaent response analysis and mitigate the consequences  of  a DBA.
3/4.7.A.2  Primary Contairvaent  Integrity    3.6.1.1    3/4.6.1.1 3.6.1.1    Yes - 3    Primary contairvaent functions to mitigate the consequences 3.6.1.2    3/4.6.1 ' 3.6.1.2                of a DBA. Primary contaiment leakage is an assumption 3.6.1.3    3/4.6.1.3 3.6.1.3                utilized in the LOCA safety analysis to ensure primary 3/4.6.1 '                        contairment operability.
3/4.7.A.3  Pressure Suppression Chamber-      3.6.1.5    3/4.6.4.2 3.6.1.7    Yes - 3    Pressure suppression chamber to reactor building vacrxmr Reactor Building Vacuun                                                        breaker operation is relied upon to limit a negative Breakers                                                                        pressure differential, secondary to primary contairvaent, that could challenge primary contairment integrity.
3/4.7.A.4  Drywell-pressure Suppression      3.6.1.6    3/4.6.4.1 3.6.1.8    Yes-3      Drywell-pressure suppression chamber vacrxmr breaker Chamber Vacua Breakers                                                          operation is assumed in the LOCA analysis to limit drywell pressure thereby ensuring primary contairment integrity.
 
==SUMMARY==
DISPOSITION MATRIX    FOR BFN      UNITS  I,  2,  AND 3 CURRENT TS                                  BFN        STS      NUREG      RETAINED/      BASIS FOR INCLUSION/EXCLUSIOH NUMBER                                      ISTS        REV. 4    1433        CR I TER ION NUMBER      NUMBER    NUMBER      FOR IN CLUB I  ON 3/4.7.A.S  Oxygen Concentration              3.6.3.2    3/4.6.6.4 3.6.3.2    Yes - 2        Oxygen  concentration is limited such that, when combined with hydrogen (that is postulated to evolve following a LOCA), the total explosive gas concentration remains below explosive levels. Therefore, primary contairvnent integrity is maintained.
3/4.7.A.6  Drywell-suppression Chamber      3.6.2.6    3/4.6.2.4 3.6.2.5    Yes - 2        Dryweii-suppression    Chamber  Differential Pressure is  an Differential Pressure                                                              initial condition in    the DBA LOCA  contairment response analysis.
3/4.78    Standby Gas Treatment System      3.6.4 '    3/4.6.5.3 3.6.4.3    Yes - 3        System  functions following  a DBA  to limit offsite releases.
3/4.7C    Secondary Contaireent            3.6.4.1    3/4.6.5.1 3.6.4.1    Yes -    3    Secondary contaiment integrity is relied on to limit the 3.6.4.2    3/4.6.5.2 3.6.4.2                    offsite dose during an accident by ensuring a release to contairment is delayed and treated prior to release to the enviroreent. Damper operation within time limits establishes secondary contaim.nt and limits offsite releases to acceptable values.
3/4.7D    Primary Contairment Isolation    3.6.1.3    3/4.6.3  3.6.1.3    Yes - 3        Isolation valves function to limit DBA consequences.
3.7.F.3.a  Valves                                        3/4.6.1.8 3/4.7F    Primary Contairment Purge        Relocated  Hone      None        No            See  Justification for  Change (CTS 3.7.F/4.7.F, R1 at the end System                                                                            of markup for proposed    BFH ISTS 3.6) for relocating primary contairment purge system.
3/4.7E    Control  Room Emergency          3.7.3      3/4.7.2  3.7.4      Yes - 3        Maintains  habitability of the control room so that operators Ventilation                                                                        can remain in the control room following an-accident.        As such,  it mitigates the consequences of an accident by allowing the operators to continue accident mitigat'Ion activities from the control room.
3/4.7.G    Contairment Atmosphere  Dilution  3.6.3 ~ 1  3/4.6.6.2 3.6.3.4    Yes - 3        System ensures    oxygen concentration is maintained below the System (CAD)                                                                      explosive level following a LOCA by inerting the dryweli with nitrogen. Therefore, contairment integrity is maintained.
3.8.A.S    Liquid Holdup Tanks              5.5.8      Hone      5.5.8      Yes            Although this Specification does not meet any criteria of 3/4.8.A.6                                                                                    the HRC Final Policy Statement,      it has been retained in accordance with NRC Letter from II. T. Russell to the Industry ITS chairpersons, dated October 25, 1993.
 
==SUMMARY==
DISPOSITION MATRIX FOR BFN UNITS      I,  2,  AND 3 CURRENT TS  TITLE                              BFH        STS        HUREG    RETAINED/  BASIS FOR INCLUSION/EXCLUSION NUMBER                                        ISTS      REV. 4    1433      CRITERION NUMBER    NUMBER    NUMBER    FOR I NCLUS IOH 3.8.8.9    Airborne Effluents - Explosive    5.5.8      None      5.5.8    Yes        See Appendix A, page  A-20. This is a requirement of the 3.8.B.10    Gas Mixture                                                                    program required by  BFN  Specification 5.5.8.
4.8.8.5 3/4.8.E    Miscellaneous Radioactive          Relocated  3/4.7.6    None      No          See Appendix A, page  A-'I7.
Materials Sources 3/4.9.A.1  Auxiliary Electrical  Equipment    3.8.1      3/4.8.1.1  3.8.1    Yes  -3    The  operability of the AC power sources is part of the 3.9.A.2    - A. C. Sources Operating                                                      primary success path of the accident analyses.
3.9.A.6 3/4.9.8.1 3/4.9.8.3 3.9.8.15 3.9.A.3    Auxiliary Electrical  Equipment    3.8.7      3/4.8.3.1  3.8.9    Yes - 3    The  operability of the distribution system is part of the
/4.9.A.4.D  - Buses and Boards  Available                                                primary success path of the accident analyses.
4.9.A.S 3/4.9.8.2 3/4.9.B.4 3/4.9.8.5 3/4.9.B.6 3.9.8.12 3.9.8.13 3.9.B.14 3.9.B.15 3.9.A.4    D. C. Power System                3.8.4      3/4.8.3.1  3.8.4    Yes  -3    The  operability of the DC subsystems is consistent with the
/4.9.A.2                                                                                  initial assumptions of the accident analyses.
3.9.8.7 3.9.8.8 3.9.B.15 3.9.A.5    Logic Systems                    3.8.1      3/4.8.1.1 3.8.1    Yes - 3    Required to mitigate the consequences  of  a DBA.
/4.9.A.3.a                                    3.3.5.1              3.3.5.1 3/4.9.C.1  A. C. Sources - Operation    in    3.8.2      3/4.8.1.2 3.8.2    Yes - 3    Same  as above.
3.9.C.2    Cold Shutdown 3.9.C.3    Onsite Electrical Power            3.8.8      3/4.8.1.2 3.8.10    Yes - 3    Same  as above.
3.9.C.4    Distribution - Shutdown 3/4.9.D    Unit  3 Diesel Generators          3.8.1      3/4.8.1.1 3.8.1      Yes - 3    Same  as above.
Required  for Unit 2 Operation    3.8.2      3/4.8.1.2  3.8.2 10
 
==SUMMARY==
DISPOSITION MATRIX FOR BFN UNITS      I,  2,  AND 3 CURRENT TS TITLE                              BFH        STS        NUREG    RETAINED/    BASIS  FOR  INCLUSION/EXCLUSION NUMBER                                        ISTS      REV. 4    1433      CR I TER IOH NUMBER    NUMBER    NUHBER    FOR INCLUSION 3/4.10.A.1 Refueling Operations-              3.9.1      3/4.9.'I  3.9.1    Yes - 3      The  refueling interlocks protect against prompt reactivity 3/4.10.A.2 Interlocks                        3.9.2                3.9.2                  excursions during the Refuel Hode. The safety analyses for 3.9.3                3.9.3                  the control rod removal error during refueling end the fuel assembly insertion error during refueling assme the functioning of the refueling interlocks.
3.10.A.3  Refueling Platform Equipment      Relocated  3/4.9.7    None      No          See Appendix A, Page    A-22.
3.'IO.A.4  Interlocks 3/4.10.A.5 Refueling Operations - Single      3.10.4    3/4.9.10 ~ 3.10.4    Yes          This requirement is being retained to allow relaxation of Control Rod Naintenance                      2                                certain Limiting Conditions for operation (LCOs) under specific conditions to allow testing and maintenance. This requirement is directly related to several LCOS. Direct application of the Technical Specification selection criteria is not appropriate. However, this requirement, directly tied to LCOs that remain in Technical Specifications, will also remain in Technical Specifications.
3/4.10.A.6 Refueling Operations -  Removal    3.10.5    3/4.9.10. 3.10.4    Yes          Same as  above.
of Two Control Rods                          2 3/4.10.A.7 Refueling Operations - Removal    3.10.6    3/4.9.10 ' 3.10.6    Yes          Same  as above.
of Any Number of Control Rods 3/4.10. B  Refueling Operations - Core        3.3.1.2    3/4.9.2    3.3.1.2  Yes          Does not  satisfy criteria for inclusion but is retained Monitoring                                                                      because  it  is considered necessary for flux monitoring during shutdown, startup, and refueling operations.
3/4.10.D  Refueling Operations - Reactor    Relocated  3/4.9.6    None      No          See Appendix A, Page A-14 Building Crane 3/4.10.E  Refueling Operations - Spent      Relocated  3/4.9.6    None                  See Appendix A, Page A-15 3.10 '    Fuel Cask 5.0      Major Design Features              4.0        5.0        4.0      Yes          Application of Technical Specification selection criteria is not appropriate. However, Design Features will be included in Technical Specifications as required by 10 CFR 50.36a.
6.0      Administrative Controls            5.0        6.0      5.0      Yes          Application of Technical Specification selection criteria is not appropriate. However, Administrative Controls will be included in Technical Specifications as required by 10 CFR 50.36a.
11
 
APPENDIX A JUSTIFICATION  FOR SPECIFICATION RELOCATION
 
APPENDIX A TABLE  3/4.2.B        TRIP SYSTEM  BUS POWER MONITORS FOR THE RHR      (LPCI), CORE SPRAY, ADS, HPCI AND RCIC TRIP SYSTEMS LCO  Statement:
The  limiting conditions for operation for the instrumentation that initiates or controls the core and containment cooling systems are given in Table 3.2.B.
Table 3.2.B            Instrumentation that Initiates or Controls the Core        and Containment Coolin    S  stems 3/4.2-17              RHR (LPCI) Trip System Bus Power Monitor 3/4.2-17              Core Spray Trip System Bus Power Monitor 3/4.2-17              -ADS Trip System Bus Power Monitor 3/4.2-18              HPCI Trip System Bus Power Monitor 3/4.2-18              RCIC Trip System Bus Power Monitor Discussion:
The Trip System Bus Power Monitors for          the  RHR  (LPCI), Core Spray,  ADS, HPCI and RCIC  trip  systems alarm    if a fault  is detected in the  power system  to the appropriate systems      logic. No design basis accident (DBA) or transient analyses takes credit for the Trip System Bus Power Monitors. This instrumentation provides      a monitoring/alarm function only.
Com  arison to Screenin      Criteria:
The  Trip System Bus Power Monitors are not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2. The  Trip  System Bus Power Monitors are not process        variables that are initial conditions of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The  Trip System Bus Power Monitors are not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed    in Sections 3.5  and 6  of  NEDO-31466 and summarized in Table 4-1 (item 106) of NED0-31466, Supplement 1, and verified by TVA, the loss of the RHR (LPCI), Core Spray, ADS, HPCI and RCIC Trip System Bus Power Monitors was found to be a non-significant risk contributor to core damage frequency and offsite releases.
A-1
 
APPENDIX A TABLE 3/4.2.B      TRIP SYSTEM BUS POWER MONITORS FOR THE RHR (LPCI), CORE SPRAY, ADS, HPCI AND RCIC TRIP SYSTEMS (cont'd.)
 
==
Conclusion:==
 
Since the screening criteria have not been satisfied, the RHR (LPCI), Core Spray, ADS, HPCI and RCIC Trip System Bus Power Monitors LCO and Surveillances may be relocated to a licensee controlled document.
A-2
 
APPENDIX A TABLE  3/4.2.8      CORE SPRAY SPARGER TO REACTOR PRESSURE    VESSEL  d/p LCO  Statement:
The  limiting conditions for operation for the instrumentation that initiates or controls the core and containment cooling systems are given in Table 3.2.B.
Table 3.2.B          Instrumentation that Initiates or Controls the Core      and Containment Coolin    S  stems 3/4.2-17              Core Spray Sparger  to Reactor Pressure Vessel d/p Discussion:
This instrumentation measures the differential pressure between the core spray sparger and the reactor pressure vessel above the core plate and alarms          if a break is    detected. This  Function does  not  actuate any equipment;  it provides an alarm function only. This Function monitors the integrity of the core spray system piping in the reactor annulus region which would not otherwise be apparent to the operators.      It is not credited in the accident analysis.
Com  arison to Screenin      Criteria:
This instrumentation is not the primary method for detecting a significant abnormal degradation of the reactor coolant pressure boundary    prior to  a DBA.
: 2. This instrumentation is not a process variable that is an initial condition of a DBA or transient analysis that either, assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. This instrumentation is not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed in Appendix B, Page 1, TVA found the loss of the Core Spray Sparger to Reactor Pressure Vessel d/p Instrumentation to be a non-significant risk contributor to core damage frequency and offsite releases.
r
 
==
Conclusion:==
 
Since the screening criteria have not been satisfied, the Core Spray Sparger to Reactor Pressure Vessel d/p Instrumentation LCO and Surveillances may be relocated to a licensee controlled document.
A-3
 
APPENDIX A 2.1.A.l.c            APRH ROD BLOCK TRIP SETTING TABLE  3/4.2.C        CONTROL ROD BLOCKS - APRH UPSCALE (FLOW BIASED, STARTUP MODE), APRH DOWNSCALE LSSS  Statement:
The  limiting safety system settings shall be as specified    below:
A.l.c          The APRH Rod Block Trip Setting shall be less  than or equal to the limit specified in    the  COLR LCO  Statement:
The  limiting conditions of operation for the instrumentation that initiates control rod blocks are given in Table 3.2.C.
Table 3.2.C          Instrumentation that Initiates or Controls the Core    and Containment Coolin    S stems 3/4.2-25              APRH  Upscale (Flow Biased) 3/4.2-25              APRM  Upscale (Startup Mode) 3/4.2-25              APRM  Downscale 3/4.2-25              APRM  Inoperative Discussion:
The Average Power Range      Monitor (APRM) control rod blocks function to prevent a control rod withdrawal error during power range operations using LPRH signals to create the APRH rod block signal. APRHs provide information about the average core power and APRH rod blocks are not assumed to mitigate a DBA or transient.
Com  arison to Screenin      Criteria:
The APRH  control rod blocks are not used for, nor capable    of, detecting a  significant abnormal degradation of the reactor coolant    pressure boundary prior to a DBA.
: 2. The APRH control rod block instrumentation is not used to      monitor  a process variable that is an initial condition of a DBA or      transient analysis that either assumes the failure of or presents a      challenge to the integrity of a fission product barrier.
: 3. The APRH    control rod blocks are not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
A-4
 
APPENDIX A 2.1.A.l.c          APRH ROD BLOCK TRIP SETTING TABLE 3/4.2.C      CONTROL ROD BLOCKS - APR. UPSCALE (FLOW BIASED, STARTUP MODE), APRH DOWNSCALE  (cont'd.)
As  discussed  in Sections 3.5  and 6 and summarized in Table 4-1 (item 135) of NEDO 31466, and verified by TVA, the loss of the APRH control rod block functions was found to be a non-significant risk contributor to core damage frequency and offsite releases.
 
==
Conclusion:==
 
Since the screening criteria have not been    satisfied, the  APRH Control Rod Block Instrumentation LCO and Surveillances    may be  relocated to  a licensee controlled document.
A-5
 
APPENDIX A TABLE  3/4.2.C        CONTROL ROD BLOCKS - IRH UPSCALE,    IRH DOWNSCALE, IRH DETECTOR NOT IN STARTUP POSITION,    IRH INOPERATIVE LCO  Statement:
The  limiting conditions of operation for the instrumentation that      initiate control rod blocks are given in Table 3.2.C.
Table 3.2.C Instrumentation that Initiates or Controls the Core and Containment Coolin S stems 3/4.2-25        IRH Upscale 3/4.2-25        IRH Downscale 3/4.2-25        IRH Detector Not  In Startup Position 3/4.2-25        IRH Inoperative Discussion:
The  Intermediate Range Monitor (IRH) control rod blocks function to prevent a control rod withdrawal error during reactor startup using IRH signals to create the rod block signal. IRHs are provided to monitor the neutron flux levels during refueling and startup conditions. No design basis accident or transient analysis takes credit for rod block signals initiated by IRHs.
Com  arison to Screenin      Criteria:
: 1. The IRH    control rod blocks are not used for, nor capable of, detecting    a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2. The IRH    control rod block instrumentation is not a process variable that is an initial condition of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The IRH    control rod blocks are not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed  in Sections 3.5  and 6 and summarized in Table 4-1 (item 138) of NED0-31466, and verified by TVA, the loss      of the IRH control rod block functions was found to be a non-significant      risk contributor to core damage frequency and offsite releases.
t
 
== Conclusion:==
 
Since the screening criteria have not been satisfied, the IRH Control Rod Block Instrumentation LCO and Surveillances may be relocated to a licensee controlled document.
A-6
 
APPENDIX A TABLE  3/4.2.C        CONTROL ROD BLOCKS - SRM UPSCALE, SRM DOWNSCALE, SRH DETECTOR NOT IN STARTUP POSITION, SRM INOPERATIVE LCO  Statement:
The  limiting conditions of operation for the instrumentation that initiates control rod blocks are given in Table 3.2.C.
Table 3.2.C Instrumentation that Initiates or Controls the Core and Containment Coolin S stems 3/4.2-25        SRH Upscale 3/4.2-25        SRM Downscale 3/4.2-25        SRM Detector Not In Startup Position 3/4.2-25        SRM Inoperative Discussion:
The Source Range    Monitor (SRM) control rod blocks function to prevent a control    rod  withdrawal  error during reactor startup using SRM signals to create the rod block signal. SRH signals are used to monitor the neutron flux levels during refueling, shutdown, and startup conditions. No design basis accident or transient analysis takes credit for rod block signals initiated by the  SRMs.
Com  arison to Screenin      Criteria:
: 1. The  SRM control rod blocks are not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2. The SRH control rod block instrumentation is not a process variable that is an initial condition of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The  SRM control rod blocks are not part of the primary success  path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed  in Sections 3.5 and 6 and summarized in Table 4-1 (item 137)  of NED0-31466, and verified by TVA, the loss of the SRM control rod block functions was found to be a non-significant risk contributor to core damage frequency and    offsite releases.
t
 
== Conclusion:==
 
Since the screening criteria have not been satisfied, the SRH Control Rod Block Instrumentation LCO and Surveillances may be relocated to a licensee controlled document.
A-7
 
APPENDIX A TABLE  3.2.C        CONTROL ROD BLOCKS  -  SCRAM DISCHARGE INSTRUMENT VOLUME HIGH LEVEL LCO  Statement:
The  limiting conditions for operation for the instrumentation that initiates control rod blocks are given in Table 3.2.C.
Table 3.2.C          Instrumentation that    Initiate  Control  Rod Blocks 3/4.2-25              Scram Discharge  Instrument Volume High Level Discussion:
The Scram Discharge Volume (SDV)      control rod block functions to prevent control rod withdrawals during power range operations, utilizing SDV high level signals to create the rod block signal,          if water is accumulating in the SDV. The purpose of monitoring the SDV water level is to ensure that there is sufficient volume remaining to contain the water discharged by the control rod drive during a scram, thus ensuring that the control rods will be able to insert fully. This rod block signal provides an indication to the operator that water is accumulating in the SDV and prevents further control rod withdrawals. With continued water accumulation, a reactor protection system initiated scram signal will occur. Thus, the SDV water level rod block signal provides an opportunity for the operator to take action to avoid a subsequent scram. No design basis accident (DBA) or transient analysis takes credit. for rod block signals initiated by the SDV high level instrumentation.
Com  arison to Screenin    Criteria:
The SDV    control rod block is not    used  for, nor  capable of, detecting  a significant    abnormal degradation of the reactor coolant pressure boundary prior to    a DBA.
: 2. The SDV    control rod block instrumentation is not a process variable that is an initial condition of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The SDV    control rod block is not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 4. As  discussed  in Sections 3.5  and 6 and summarized      in Table 4-1 (item 139) of NED0-31466,    and verified by TVA, the loss      of the Scram Discharge Volume High Level Control Rod Block        Instrumentation was found to be a nonsignificant risk contributor      to  core  damage frequency and offsite releases.
A-8
 
APPENDIX A TABLE  3.2.C      CONTROL ROD BLOCKS - SCRAM DISCHARGE INSTRUMENT VOLUME HIGH LEVEL (cont'd.)
 
==
Conclusion:==
 
Since the screening criteria have not been satisfied, the Scram Discharge Instrument Volume High Level Control Rod Block Instrumentation LCO and Surveillances may be relocated to a licensee controlled document.
A-9
 
APPENDIX A 3/4. 2. F    SURVEILLANCE INSTRUHENTATION LCO  Statement:
The  limiting conditions for the instrumentation that provides surveillance information readouts are given in Table 3.2.F Table 3.2.F Surveillance Instrumentation 3/4.2-31      Reactor Water Level 3/4.2-31      Reactor Pressure 3/4.2-31      Drywell Pressure 3/4.2-31      Drywell Air Temperature 3/4.2-31      Suppression Chamber Air Temperature 3/4.2-31      Control Rod Position 3/4.2-31      Neutron Honitoring 3/4.2-31      Drywell Pressure Alarm 3/4.2-31      Drywell Temperature and Pressure and Timer 3/4.2-31      CAD Tank Level 3/4.2-32      Drywell and Torus Hydrogen Concentration 3/4.2-32      Drywell to Suppression Chamber Differential Pressure 3/4.2-32      Relief Valve Tailpipe Thermocouple Temperature or Acoustic Honitor on Relief Valve Tailpipe 3/4.2-32      Primary Containment High Range Radiation Honitors 3/4.2-32      Drywell Pressure - Wide Range 3/4.2-32      Suppression Chamber Water Level - Wide Range 3/4.2-32      Suppression Pool Bulk Temperature 3/4.2-32      Wide Range Gaseous Effluent Radiation Honitor Discussion:
Each individual accident monitoring parameter has a specific purpose, however, the general purpose for all accident monitoring instrumentation is to provide sufficient information to confirm an accident is proceeding per prediction, i.e., automatic safety systems are performing properly, and deviations from expected accident course are minimal.
Com  arison to Screenin    Criteria:
The  NRC  position on application of the deterministic screening criteria to post-accident monitoring instrumentation is documented in letter dated Hay 7, 1988 from T. E. Hurley (NRC) to R. F. Janecek (BWROG). The position taken was that the post-accident monitoring instrumentation table list should contain, on a plant specific basis, all Regulatory Guide 1.97 Type A instruments specified in the plants SER on Regulatory Guide 1.97, and all Regulatory Guide 1.97 Category 1 instruments. Accordingly, this position has been applied to the  BFN  Regulatory Guide 1.97 instruments. Those instruments not meeting this criteria have been relocated from the Technical Specifications to a licensee controlled document.
 
APPENDIX A 3/3.2.F                SURVEILLANCE INSTRUMENTATION  (cont'd.)
The  following summarizes the      BFN position for those instruments currently in Technical Specifications.
From  NRC SER    dated  April 30,  1984,
 
==Subject:==
Conformance  to RG 1.97 Cate or    1  or  T  e A Variables
: 1. Reactor Pressure
: 2. Reactor Vessel Water Level (wide range, accident range)
: 3. Suppression Pool Water Temperature Suppression Pool Water Level (wide range)
: 5. Drywell Pressure (normal range, wide range)
: 6. Drywell Air Temperature
: 7. Primary Containment Area Radiation
: 8. Drywell and Torus Hydrogen Concentration For other post-accident monitoring instrumentation currently in Technical Specifications, their loss is not considered risk significant since the variable they monitored did not qualify as a Type A (one that is important to safety and needed by the operator, so that the operator can perform necessary manual actions) or Category 1 variable .
 
==
Conclusion:==
 
Since the screening      criteria  have not been satisfied for instruments that do not meet Regulatory Guide 1.97 Type A variable requirements or Category 1 variable Type A instruments, their associated LCO and Surveillances will be relocated to a licensee controlled document. The instruments to be relocated are as follows:
: l. Drywell Temperature and Pressure Timer
: 2. Suppression Chamber Air Temperature
: 3. Control Rod Position 4,    Neutron Monitoring
: 5. Drywell Pressure Alarm
: 6. CAD  Tank Level
: 7. Drywell to Suppression Chamber Differential Pressure
: 8. Relief Valve Tailpipe Thermocouple Temperature or Acoustic Monitor      on Relief Valve Tailpipe
: 9. Wide Range Gaseous Effluent Radiation Monitor
 
APPENDIX A 3/4.6.B.1 -    5      PRIMARY SYSTEM BOUNDARY  -  COOLANT CHEMISTRY LCO  Statement:
The  following limits shall be observed for reactor water quality prior to          any startup and when operating at rated pressure:
a)      Conductivity at 25'C -          2.0    mho/cm b)      Chloride concentration -        0. 1  ppm Discussion:
Poor reactor coolant water chemistry contributes to the long-term degradation of system materials and, thus, is not of immediate importance to the plant operator. Reactor coolant water chemistry is maintained to reduce the possibility of failure in the reactor coolant system pressure boundary caused by corrosion.      In summary, the chemistry monitoring activity is of a long term preventive purpose rather than mitigative.
Com  arison to Screenin      Criteria:
: 1. Reactor coolant water chemistry is not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2. Reactor coolant water chemistry is not        a process variable that is an initial  condition of a  DBA or transient analysis    that either assumes the failure of or presents      a challenge to the    integrity of a fission product barrier.
: 3.      Reactor coolant water chemistry is not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed  in Sections 3.5  and 6 and summarized in Table 4-1 (item 211) of NED0-31466, and verified by TVA, Coolant Chemistry requirements not being met was found to be a non-significant risk contributor to core damage frequency and offsite releases.
 
==
Conclusion:==
 
Since the screening      criteria  have not been  satisfied, the Coolant Chemistry (Conductivity and Chloride) LCO      and  Surveillances  may be relocated to  a licensee controlled document.
 
APPENDIX A 3/4.6.G        PRIMARY SYSTEM BOUNDARY  -  STRUCTURAL INTEGRITY LCO  Statement:
The  structural integrity of the primary system boundary shall be maintained at the level required by the original acceptance standards throughout the life of the station.
Discussion:
The  inspection programs for    ASHE Code  Class 1, 2, and 3 components ensure that the structural    integrity of  those components will be maintained throughout the components life. Operability of the primary system boundary is ensured by separate Technical Specifications and therefore, the inspections are not required to be retained in the Technical Specifications. This Technical Specification is more directed toward prevention of component degradation and continued long term maintenance of acceptable structural conditions. However, it  is not necessary to retain this Specification to ensure the operability of the primary system boundary.
Com  arison to Screenin    Criteria:
: 1. The  inspections stipulated by this Specification are not used for, nor capable  of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2. The  inspections stipulated by this Specification do not monitor process variables that are initial conditions of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The ASNE Code Class 1, 2, and 3 components inspected per this Specification are assumed to function to mitigate a DBA. Their capability to perform this function is addressed by other Technical Specifications. This Technical Specification, however, only specifies inspection requirements for these components;    and these inspections can only be performed when the plant is shutdown.      Therefore, Criterion 3 is not satisfied.
4,    As  discussed  in Sections 3.5  and 6 and summarized in Table 4-1 (item 216) of NED0-31466, and verified by TVA, the lack of a Structural Integrity Specification was found to be a non-significant risk contributor to core damage frequency and offsite releases since the requirement is currently covered by 10 CFR 50.55a and the Inservice Inspection Program.
 
==
Conclusion:==
 
Since the screening    criteria  have not been satisfied, the Structural Integrity LCO  and  Surveillance  may be  relocated to a licensee controlled document.
A-13
 
APPENDIX A 3/4.10.D        REFUELING OPERATIONS  -  REACTOR BUILDING CRANE LCO  Statement The  reactor building crane shall      be OPERABLE:
: a.      When a spent fuel cask is handled.
: b.      Whenever new  or spent fuel is handled with the 5-ton hoist.
Discussion:
The  reactor building crane and 125 ton hoist are required to be operable for handling of the spent fuel in the reactor building. This LCO specifies minimum operability requirements to prevent damage to the refueling platform equipment and core internals. The crane is not assumed to function to mitigate the consequences of a DBA.
Com  arison to Screenin      Criteria:
: 1. The  reactor building crane is not used, nor is it capable of, detecting a  significant  abnormal degradation of the reactor coolant pressure boundary (RCPB).
: 2. The  reactor building crane is not a process variable that is an initial condition of a DBA or transient analyses that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The  reactor building crane is not a structure, system, or component that is part of the primary success path and which functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 4. As  discussed  in Sections 3.5    and 6 and summarized in Table 4-1 (item 287) of NED0-31466, and verified by TVA, Reactor building crane requirements not being met was found to be a non-significant risk contributor to core damage frequency and offsite releases.
 
==
Conclusion:==
 
Since the screening    criteria  have not been  satisfied, the LCO and associated surveillance may be relocated to the Technical Requirements        Manual.
A-14
 
APPENDIX A 3/4.10.E      REFUELING OPERATIONS - SPENT FUEL CRANE 3.10.F LCO  Statements Spent Fuel Cask Upon  receipt,  an empty fuel cask shall  not  be  lifted until  a visual inspection is    made of the cask-lifting  trunnions    and fastening connection has been conducted.
Spent Fuel Cask Handling - Refueling Floor Administrative control shall be exercised to limit the height the spent fuel cask is raised above the refueling floor by the reactor building crane to 6 inches, except for entry into the cask decontamination chamber where height above the floor will be approximately 3 feet.
The spent    fuel cask yoke safety links shall be properly positioned at all times    except when the cask is in the decontamination chamber.
Discussion:
BFN analysis has    been performed to address the handling of spent fuel cask.
However,  BFN  currently  does not have the need to handle spent fuel cask.
Therefore, these    LCOs serve no useful purpose and should be deleted.
Com arison to Screenin      Criteria:
The Spent    fuel cask and spent fuel cask handling controls are not        used to detect,    and indicate in the control room a significant abnormal degradation of the reactor coolant pressure boundary (RCPB).
: 2. The Spent    fuel cask and spent fuel cask handling controls are not capable of monitoring a process variable that is an initial condition of a DBA or transient analyses that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The Spent    fuel cask  and spent  fuel cask handling controls are not a structure, system, or      component  that is part of the primary success path and which functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of  a  fission product barrier.
As  discussed in Sections 3.5 and 6 and summarized in Table 4-1 (item 287) of NED0-31466, and verified by TVA, Spent fuel cask and spent fuel cask handling control requirements not being met 'was found to be a non-significant risk contributor to core      damage  frequency and    offsite releases.
 
APPENDIX A 3/4.10.E    REFUELING OPERATIONS - SPENT FUEL CRANE 3.10.F (cont'd.)
 
==
Conclusion:==
 
Since the screening criteria have not been  satisfied and the  LCOs  serve no useful purpose, the LCOs and associated  surveillance may be  deleted.
A-16
 
APPENDIX A 3/4.2.H                FLOOD PROTECTION INSTRUMENTATION LCO  Statement:
The  unit shall be shutdown and placed in the cold condition when Wheeler Reservoir lake stage rises to a level such that water from the reservoir begins to run across the pumping station deck at elevation 565. Requirements for the instrumentation that monitors the reservoir level are given in Table 3.2.H.
Discussion:
Provides capability to predict flood levels of large magnitudes which allows the plant to take advantage of advance warning to take appropriate action when reservoir levels      above normal pool are    predicted.
Com  arison to Screenin      Criteria:
: 1. The  Reservoir Level Monitoring instrumentation is not used to detect, t
and  indicate in the control room a significant abnormal degradation of the reactor coolant pressure boundary (RCPB).
: 2. The  Reservoir Level Monitoring instrumentation is not capable of monitoring a process variable that is an initial condition of a DBA or transient analyses that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The  Reservoir Level Monitoring instrumentation is not a      structure, system, or component that is part of the primary success          path and which functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 4. As  discussed  in Sections 3.5    and 6 and summarized in Table 4-1 (item 273) of NE00-31466, and verified by TVA, Reservoir Level Monitoring instrumentation requirements not being met was found to be a non-significant risk contributor to core damage frequency and offsite releases.
 
== Conclusion:==
 
Since the screening      criteria have not been    satisfied, the LCO and  associated surveillance    may be  relocated to  a  licensee controlled  document.
A-17
 
APPENDIX A MISCELLANEOUS RADIOACTIVE MATERIALS SOURCES LCO  Statement:
The leakage    test shall be capable of detecting presence of 0.005 microcurie of radioactive material on the test sample.
Discussion:
The  limitations on sealed source contamination are intended to ensure that the total body or individual organ irradiation does not exceed allowable limits in the event of ingestion or inhalation. This is done by imposing a limitation on the maximum amount of removable contamination on each sealed source.            This requirement and the associated surveillance requirements bear no relation to the conditions or limitations which are necessary to ensure safe reactor operation.
Com  arison to Screenin      Criteria:
Miscellaneous radioactive materials sources requirements are not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
Miscellaneous radioactive materials sources requirements are not process variables that are initial conditions of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. Miscellaneous radioactive materials sources requirements are not part of the primary success path that function or actuate to mitigate a DBA or transient that either assumes the failure of'or presents a challenge to the integrity of a fission product barrier.
: 4. As  discussed  in Sections 3.5 and 6 and summarized in Table 4-1 (item 267)  of NEDO  31466, and verified by TVA, the Miscellaneous Radioactive Materials Sources requirements not being met was found to be a non-significant risk contributor to core      damage  frequency and  offsite releases.
 
==
Conclusion:==
 
Since the screening    criteria  have not been  satisfied, the Miscellaneous Radioactive Materials Sources      LCO and  Surveillances    may be relocated to  a licensee controlled document.
A-18
 
APPENDIX A 3/4.2.J              SEISMIC MONITORING INSTRUMENTATION LCO  Statement:
The  seismic monitoring instrumentation shown in Table 3.2.J shall        be operable.
Discussion:
In the event of an earthquake, seismic monitoring instrumentation is required to determine the magnitude of the seismic event. These instruments do not perform any automatic action. They are used to measure the magnitude of the seismic event for comparison to the design basis of the plant to ensure the design margins for plant equipment and structures have not been violated.
Since the determination of the magnitude of the seismic event is performed after the event has occurred, this instrumentation has no bearing on the mitigation of any design basis accident (DBA) or transient.
Com  arison to Screenin    Criteria:
: 1. Seismic monitoring instrumentation is not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2. Seismic monitoring instrumentation is not        a process variable that is an initial  condition of a  DBA or  transient analysis that either assumes the failure of or presents    a challenge  to the integrity of a fission product barrier.
: 3. Seismic monitoring instrumentation is not part of the primary success path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed  in Sections 3.5  and 6 and summarized in Table 4-1 (item 151) of NED0-31466, and verified by TVA, the loss of the Seismic Monitoring instrumentation was found to be a non-significant risk contributor to core damage frequency and offsite releases.
 
==
Conclusion:==
 
Since the screening    criteria  have not been  satisfied, the Seismic Monitoring Instrumentation    LCO  and Surveillances  may be  relocated to  a licensee controlled document.
A-19
 
APPENDIX A 3.2.F/4.2.F            METEOROLOGICAL MONITORING INSTRUHENTATION LCO Statement The meteorological monitoring instrumentation listed in Table 3.2. I shall          be OPERABLE    at all times.
Discussion:
Ensures  that there is a sufficient amount of data available to estimate potential radiological doses. There are no automatic actions during any event that these instruments perform, nor do they actuate to mitigate a DBA or transient.
Com arison to Screenin        Criteria:
: 1. The  Meteorological Monitoring instrumentation is not used to detect, and indicate in the control room a significant abnormal degradation of the reactor coolant pressure boundary (RCPB).
t
: 2. The  Meteorological Monitoring instrumentation is not capable of monitoring a process variable that is an initial condition of a DBA or transient analyses that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. The  Meteorological Monitoring instrumentation is not a structure, system, or component that is part of the primary success path and which functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 4. As  discussed    in Sections 3.5  and 6 and summarized in Table 4-1 (item 151)  of  NEDO-31466 (Table  4-1  and 6-3, Item 152), the loss of meteorological monitoring instrumentation is a non-significant risk contributor to core damage frequency and offsite releases.
 
== Conclusion:==
 
Since the screening      criteria  have not been  satisfied, the LCO and associated surveillance      may be  relocated to the  Technical  Requirements Manual.
A-20
 
APPENDIX A 3.8.B.9,    10              RADIOACTIVE MATERIALS - AIRBORNE EFFLUENTS, EXPLOSIVE 4.8.B.5                      GAS MIXTURE LCO  Statement:
The  concentration of hydrogen downstream of the recombiners shall          be  limited to  less  than or equal to 4% by volume.
Discussion:
The  explosive gas mixture Specification is provided to ensure that the concentration of potentially explosive gas mixtures contained in the waste gas holdup system is maintained below the flammability limit of hydrogen. However, the waste gas holdup system is designed to contain detonations and will not affect the function of any safety related equipment. The concentration of hydrogen in the offgas stream is not an initial assumption of any design basis accident (DBA) or transient analysis.
Com  arison to Screenin      Criteria:
The    explosive gas mixture requirements are not used for, nor capable of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
: 2.      The  explosive gas mixture requirements are not process variables that are  initial conditions of a DBA or transient analysis that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3.      The  explosive gas mixture requirements are not part of the primary success  path that functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed  in Sections 3.5 and 6 and summarized in Table 4-1 (item 306) of  NED0-31466, and verified by TVA, an explosive gas mixture in the waste gas holdup system was found to be a non-significant risk contributor to core    damage  frequency and  offsite releases.
 
==
Conclusion:==
 
Since the screening      criteria  have not been    satisfied, the Explosive  Gas Mixture    LCO  and  Surveillances  may be  relocated to  a licensee controlled document.
A-21
 
APPENDIX A 3.2.F/4.2.F          EXPLOSIVE GAS MONITORING INSTRUMENTATION LCO  Statement The  explosive gas monitoring instrumentation listed in Table 3.2.K shall    be OPERABLE  with the applicability as shown in Tables 3.2.K/4.2.K.
Discussion:
The explosive gas monitoring instrumentation is provided to ensure that the concentration of potentially explosive gas mixtures contained in the gaseous radwaste treatment system is adequately monitored, which will help ensure that the concentration is maintained below the flammability limit of hydrogen.
However, the offgas system is designed to contain detonations and will not affect the function of safety related equipment. The concentration of hydrogen in the offgas system is not an initial assumption of any design basis accident or transient analysis.
Com arison to Screenin      Criteria:
The  explosive gas monitoring instrumentation is not used for, nor capable  of, detecting a significant abnormal degradation of the reactor coolant pressure boundary prior to a DBA.
The  explosive gas monitoring instrumentation is not used to monitor a process variables that is an initial conditions of a DBA or transient.
Excessive system effluent is not an indication of a DBA or transient.
: 3. The  explosive gas    monitoring instrumentation is not part of the primary success  path that functions or actuates  to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed  in Sections 3.5  and 6 and summarized in Table 4-1 (Item 306) of NED0-31466, and verified by TVA, an explosive gas mixture in      the waste gas holdup system was found to be a non-significant risk contributor to core damage frequency and offsite releases.
 
==
Conclusion:==
 
Since the screening criteria have not been satisfied, the Explosive Gas Mixture LCO and Surveillances may be relocated to a licensee controlled document.
A-22
 
APPENDIX A 3.10.A.3  & 4        REFUELING PLATFORM EQUIPMENT INTERLOCKS LCO  Statement Refueling Interlocks
: 3.      The  fuel grapple hoist load switch shall      be set at ( 1,000 lbs.
If the frame-mounted auxiliary hoist, the monorail-mounted auxiliary hoist, or the service platform hoist is to be used for handling fuel with the head off the reactor vessel, the load        limit switch on the hoist to be used shall be set at < 400 lbs..
Discussion:
Specifies    minimum operability requirements.        Designed to provide the capabilities to prevent damage to the refueling platform equipment and core internals, they are not assumed to function to mitigate the consequences of          a DBA.
Com  arison to Screenin      Criteria:
: 1. Refueling platform equipment interlocks are not used to detect, and indicate in the control room a significant abnormal degradation of the reactor coolant pressure boundary (RCPB).
: 2. Refueling platform equipment interlocks are not capable of monitoring a process variable that is an initial condition of a DBA or transient analyses that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
: 3. Refueling platform equipment interlocks are not a structure,. system, or component that is part of the primary success path and which functions or actuates to mitigate a DBA or transient that either assumes the failure of or presents a challenge to the integrity of a fission product barrier.
As  discussed    in Sections 3.5  and 6 and summarized  in Table 4-1 (item 306)  of  NED0-31466, and  verified  by TVA, the loss  of the refueling platform equipment interlocks is a        non-significant contributor to core damage frequency and offsite release.
 
==
Conclusion:==
 
Since the screening      criteria  have not been    satisfied, the LCO and associated surveillance    may be  relocated to  a  licensee controlled document..
A-23
 
APPENDIX  B BFN  SPECIFIC RISK SIGNIFICANT EVALUATIONS
 
APPENDIX  B TABLE  3/4.2.B      CORE SPRAY SPARGER TO REACTOR PRESSURE    VESSEL d/p LCO  Statement:
The  limiting conditions for operation for the instrumentation that initiates or controls the core and containment cooling systems are given in Table 3.2.B.
Table 3.2.B        Instrumentation that Initiates or Controls the Core  and Containment Coolin  S  stems 3/4.2-17            Core Spray Sparger  to Reactor Pressure Vessel d/p Descri tion of  Re uirement:
This instrumentation measures the differential pressure between the core spray sparger and the reactor pressure vessel above the core plate and alarms    if a break is detected. This instrumentation does not actuate any equipment.
Risk  Justification:
The  function of the instrumentation is to identify a break in the core spray sparger. The probability of a pipe break (EPRI TR-100380) is extremely low, therefore the relative probability as defined in NEDO-31466 is low. LOCAs represent a small contribution to the BFN core damage frequency (CDF). A break in the sparger in the reactor pressure vessel would, without a LOCA, provide injection to the core. Given the success of injection with a break in non-LOCA accidents and the small contribution of LOCA to the CDF, the relative significance from an offsite radiological dose perspective would be low. The risk category would therefore be considered non-significant (NS).
Relative Probabilit      Rl  1    Rl  111      ~ltikC Low                      Low
 
APPENDIX 8 3/4.2.              FLOOD PROTECTION LCO  Statement The  unit shall be shutdown and placed in the cold condition when Wheeler Reservoir lake stage rises to a level such that water from the reservoir begins to run across the pumping station deck at elevation 565. Requirements for the instrumentation that monitors the reservoir level are given in Table 3.2.H.
Descri tion of  Re uirements:
This Technical Specification has provisions for high reservoir water level instrumentation. A high reservoir water level indication is a preliminary indication of a flood. A flood is not a design basis accident or transient, thus reservoir water level is not credited in the safety analysis.
Risk  Justification:
An  analysis of the risk of external flooding was performed in BFN's Individual Plant Examination of External Events ( IPEEE) for Severe Accident Vulnerabilities. Historical flood data was collected and analyzed to determine the frequency and magnitude of floods at BFN. All critical equipment essential to the safe shutdown of the plant are flood protected to an elevation well above that required in the current LCO. Given the plant design features and the conservative analysis of flooding in the IPEEE, the contribution of flooding to overall plant risk (probability of occurrence  and radiological consequence) is considered negligible.
Rl    l      b bill      Rl    l    l ll      l~kbk<<
Low                      Low B-2
 
Enclosure V Volume 1S
 
3Pec    0'& on 3.'f, l NOV      18    1S88 4.6.D.          R      V  v 588  3~+A~ capon                                                3. The    integrity of the 4<<kz<gcs*< 8P<                                                      relief    valve bellovs shall    be  continuously l ST 5 Z.g.2, ~ggqg                                                monitored when valves incorporating the bcllovs design are installed.
: 4. ht least one relief valve shall be disassembled and inspected each operating cycle.
3 6 E    2aMmua                                          E
                                                                ~Rum'.
Whenever the    reactor is in the                        1. Whenever there        is SThRTUP  or  RUN modes,  all )et                              recirculation flov vith yumya  shall  be operable. If                              the reactor in tha it is  determined that a    )et                              STARTUP    or RUE aodaa pump  is inoperable, or    if tvo or more get pump flov instrument vith both recirculation pumps running, 5et yap failures occur    and cannot be                                operability ahall ba corrected    vithin 12 hours, an                              checked daily by orderly shutdown shall be                                      verifying that the initiated and the reactor shall                                folloving conditions be placed in thc COLD 'SHUTDOWN                                do  not occur                                    al COHDITIOK vithin 24 hours.                                    simultaneously:
                                                                                                ~ased log, VC'fig                                r SRZV.(,l
                                                  ~SR  .,I
                                                        ~  ~                4~va        racir                          at
                                                                        >~ loo        taaa-e-  flo                          ~
or    <z.
Ius aoea when
                                                                          '- i%~opera "    ~
: b. The  indicated value Ink ~I~        of core flov rata l~              varies from the value derived froa looy flov measurements      by sore than 10K.
: c. The.diffuser to lover plan~ di fferantial pressure reading on an individual )ct yump varies from the mean of all ]ct    yump by aors than differentia.'ressures 10K.
3.6/4.6-11 BFl Unit  1                                                                AMBINENTIjL        Q~
 
                                                          'i                              AUG 0  4  5$
4.6.Z.
                          ~<<5'uS44'r'Cab'O~ P        gQ ~S Whenever there    is
                                                  ~
recirculation flov vith 4 BFd I STS Z,q,~                                    the reactor in the SThRHJP or RVH Mode and one recirculation pump is operating, the diffuser to lover          i plenum  differential pressure shall be checked daily and the differential prcssure of an individual
                                                                              )et pump .in a loop shall Pr~d Qp~                                not vary from the mean 6$ R g...)                              of all get pump differential pressures in that looy by more than 10X.
i
    &03igel
: 1. The
                      +        mr reactor shall not        be operated s,    II Recirculation    pump s eeds vith  one  recirculation looy out                          shall be chewed              e
  ~r;oeie      of  eerrfoe    for sore theo ~boors            2          at least      ce pcr ay.
Vith thc reactor operating, if oac recirculation loop is out of service, the ylant shall bc placed in a HOT SHUTDOWNS CONDITION    vithia 24 hours unless
          ~
the loop    is sooner returned to
            . scrvicc.
2~    Fol oviag        c y        opera    on, th dis          ge va      e  of    e  lov sp ed p        may      t  be o ened css  t e spec      of th faster p      is  css          50K of its atsd s aed 3~    Mhaa    the rca          is  n    in thc                  3. Bcf rc star ing cit      r rgC7'>od      CUR  aode,        CTOR POWER OPERATION                      re rculat on ump D        vith both      rec rcu at on pumps out-                      d ing        CT0 PO R of-service for uy to 12 hours is                                      IO,      cck permitted. Dur ag such interval                                og  th loo dis          e estart of the recirculation                                teapc    tur    and do yumps is permitted, yrovided thc                              ~ at  ati    t    cra ure.
loop discharge temperature is vithia 7$ 'F of the saturation sec 3MHg'~h'o 4 Qe~gds Pr  ggh) (5T5    g tf BEE                                                  3 '/4.6-12          AMENDMENT NO. 2g7 f Unit  1                                                                                        k.oo
 
temperature of e reactor vessel vatcr  aa determined by d pressure. The tota elapsed time QvioN        natural circulation    and one pump operation must be no greater than 24 hours.
: 4. The  reactor shall not    be operated vith both recirculation pumps out-of-service vhile the reactor ia in the RUB mode. Polloving a trip of both recirculation    pumps  vhile in the  RUN  mode, imnediatcly inftiate  a  manual reactor scram.
3.6.C                                                4+6.C The  structural integrity of    hSNE          1. Inservice inspection of  ESNE Code Class 1, 2, and 3 equivalent                    Code Class 1, Class  2, and components shall be maintained in                    Class 3 components  ahall be accordance    vith Specification    4.6.G          .performed in accordance vith throughout the    life of  the plant.                Section XI of the hSNE Boiler
                                                              'and Pressure Vessel Code and
: a. Vith the structural integrity                  applicable Addenda aa of any ESNE Code Class 1                        required by 10 CFR 50, equivalent component, vhich fa                  Section 50.55a(g)j except part of the primary ayatca, not                vhsre specific vritten relief conforming to the above                        has been granted by HRC requirements,  restore the                    pursuant to 10 CFR 50, structural integrity of the                    Section 50.55a(g)(6)(i).
affected component to vithin ita limit or maintain the                  2. hdditional inspections shall reactor coolant system in                      be performed on certain either  a Cold Shutdovn                        circumferential pipe vclda to conditfon or less than    50 F                provide additional protection above the ainfiime temperature                  against pipe vhip, vhich requfred by  HDT considerations,              could damage auxiliary and until  each indication of a                    control systems.
defect haa been investigated and evaluated.
BFS                                          3.6/4.6-13                AMEKOMHP go  p 06 Unit    1
 
0 S'F'.inca. 'on    3. M HAY 3  1594 SR
<CO      l. the reactor shall not be                                Verify that the reactor is outside of Region I and II operated at a thermal pover Z.Q. )      and core flov inside of                                of Figure 3.5.5-1I Regions I and II of Figure 3.5.N-l.                                                a. Folloving any increase of aors than 5Z rated    ,
: 2. If Regionis I of Figurc                                    theraal pover vhile initfal core flov fs 3.5.N-1        entered, faaedf ately initiate        a                              less than 45K of aanual scram.                                              rated, and 4An        If Region II of Figure                                  b. Folloving any decrease of aors than 10K rated 3.5.8-1 is entered:
8                                                                      core  flov vhile
: a. Iaecdfately initiate                                  initial thermal  pover action and exit thc                                    is greater than  40K of re ion vithin 2 u                                      rated.
ert            rol    ods or by in reasi          c c                  Pcopsr d Qc+'o n flo (sta ting eci culat on p          t t ere fon an a      0 fa e ac 00)
LR~
: b. While exiting the region, iaaediately initiate a manual acre%
if  thcraal-,hydraulf c instability is obserred, as cridcnced by o  illa iona        ch ed 1      percen pe    to-p        of r    ted or LPRN    acfll tions          ch exes      30 pc
                              -
ent peak-t    peak      seal .
If peri    ic  LP    ups      e
                . o Qqps          e ala oc    ,        'atel      che the APRH's and indi idual RN's              r erid ce of .
the      -hydraulic tab    ity.
NENbggPN.      2p g BlK                                                  3.5/4.5-21 Unit    1
 
r  ~    ~ ~
ill IIIIIII  .  ~ o
 
UNIT 2 CURRENT TECHNICAL SP ECIF ICATION MARKUP
 
0 5 cci figqgjo~ g g /
4              S S    0                                              HOV 18 1988
  -'NITING  CONDITIONS FOR OPERATION                  SURVEILLANCE RE UIREMENTS 3 ~ The    integrity of      the relief    valve bellows
  +L 4~sfili(qfio~                                              shall be continuously 4r No~g~gg~                                                  monitored when valves incorporating the bellows Bylaw ISIS g yZ                                              design are installed.
3.g 3 4~  At least one      relief valv shall    be disassembled and inspected each operating cycle.
3.6.E.    ~Jt  Pupas                                      E.  ~Jet    um Whenever the  reactor is in the                    Whenever there        is STARTUP  or RUH modes, all jet                      recirculation flow with pumps shall be OPERABLE. If                          the reactor in the it is determined that a jet                          STARTUP      or RUH  modes pump is inoperable, or if two                        with both recirculation or more jet pump flow instrument                    pumps    running,    jet  pump failures occur and cannot be                        operability shall be corrected within 12 hours, an                        checked daily by orderly shutdown shall be                            verifying that the initiated and the reactor shall                      following conditions            p ~~ ~g be shutdown in the COLD SHUTDOWN                    do  not occur                *-sa~.V.l.i COHDITIOH within 24 hours.                          simultaneousl      ~
                                                ~~5~ti 4 /.          v'cr.C        'Lb
: a. The %vo      ec rcu    ation loopg %ave-a flow ~:s~gt;>
kgb ~.
                                                                      .~opera when
                                                                                        ~he-or    ii ge h
c,e J.4, The      dicated value      !OOP of core flow rate varies from the value derived from loop flow measurements      by more than 10X.
: c. The    diffuser to lower      plenun differential      pressure reading on an individual jet pump varies from the mean of all jet    pump    differential pressures by more than lOX.
BFH                                      3  6/4.6-11                  hMMmetn. %la Unit  2
 
AUG  04594 A'l 4  '.E.
2~    Whenever    there is 3854AL40~          fol                                  recirculation flov vith
                        +a Q phJ                                                    the reactor in the SThRTtJP or RUR Mode and one recirculation pump ia operating, the diffuser to lover plenum  differential pressure shall bc checked daily and the differential pressure of an individual Ql.l                                        )et pump in a loop shall not vary from the mean Pape@ Nk                              of all )et pump
                                            ~  sR p.g.f.i                          differential pressures in that loop by more lOX.
QAI        ~  0  ~
LCO 8.4  )        a4.44 Qo~~ ~:~~            RZ.                            9. V.//
: 1.      The  reactor shal        not  be operated                            Recirculation pump    ayceda vith one recirculation loo            out                      M2. shall be checked of service for more                24 hours.        A>              at least once per With the reactor operating, one recirculation loop is out of                                                    A3 service, the plant shall be placed in a HOT SHUTDOWR COHDITIOR vithin 24 hours unless the loop ia sooner returned to service.
Pollov ng one    pump      operation, the d achargc va        e  of the      v Al        ape    yump may        t  be open sa  thc sp    d  of the f ter y      ia less            SO% of its eated speed.
30    'Whan  tha reactor ia not in the  RJJK  mode        GTOR POWE QVIOQ.        HDtATIOR            o      recircu-                            3~    Bcfor starting, either D,,            on yea out~f-service                                              Foci      ation for uy to 12 hours ia crmitted.                                        dur      REi      POWER au    interval, restart o                          R2        0        OE,      ck thc racirculation pumps ia                                              1    thc lo y dia        gc permitted, provided the loop                                            tcmyerat    c and d ia vithin                              saturation temperature 2'f thetemperature diachare saturation
                                                        '5
                                                                                                                ~
temperature of the reactor Bt&#xc3;                                                        3 ~ 6/4.6-12 Unit  2      c 5th  W~d'IfiCagi~
4~ BF< IsM z.9
                                        ~~< C4~
9 gg
 
Z eE<<$ ,.  >.V. I NR  i  8 1993 3~    ~
Secs.  ~);C;,.4;og. CE vessel water as determined 4a<  SftJ Lszg by dome pressure        The total e apsed time in natural gcgm8      circulation    and one pump          +I h        operation must      be no greater than 24 hours.
: 4.      The reactor shall not be operated with both recirculation pumps pgsiod    out-of-service while the E        reactor is in the RUN mode.      Following a trip of
    .G'.6.G both recirculation pumps while in the RUN mode, ismediately initiate The a manual    reactor scram.
structural integrity of ASME Code Class 1, 2, and Inservice inspect,ion of Code Class  1, Class 2, and ASIDE 3 equivalent components        shall                      Class 3 components shall be be  maintained in accordance                              performed in accordance witt with Specification 4.6.G                                  Section XI of the ASME Boil~
throughout the life of the                                and Pressure Veseecl Code anc plant.                                                    applicable Addenda    as  requi:
by 10  CFR 50, Section 50.55c
: a. With the structural                                  except where specific writtc integrity of any ASME                                relief has been granted by      1 Code Class 1 equivalent                              pursuant to 10 CFR .50, Sect:
component, which is part                            50.55a(g)(6)(i).
of the primary system, not conforming to thc above requirements, restore                  2. Additional inspections the structural integrity of                          shall be performed on thc affcctcd component to                            certain circumferential within its limit or maintain                        pipe welds to provide thc reactor coolant system in                        additional protection either    a COLD  SHUTDOWN                          against pipe whip, CONDITION    or less than 50'F                      which could damage above thc minimum temperature                        auxiliary  and  control required by NDT consider-                            systems.
ations, until each indication of a defect hae been inves<<
tigatcd and evaluated.
Se~  ~iS4eyio- 4r C~~-gez
                  *~ cw5    Z.4.p//Q  gi )
BF&#xc3;                ~"'~ Sec~ii<                3 6/4 6-13
                                                    ~                  AMENDMENT  lE 8 0 6 Unit    2 PAGE
 
FEB 2 4 1995 Ai L.        t  o                                  L.
: l. Whenever the core thermal                        FRP/CMFLPD      shall  be pover is g 25Z of rated, thc                      dctermincd daily vhen
            'ratio of  FRP/CMFLPD    shall                  the reactor is g 25Z of bc Z 1.0, or thc      APRM  scram                rated thermal pover.
sctpoint equation listed in Section 2.1.k and the APRM rod block setpoint equation    listed in  the CORE OPEKLTIHG      LIMITS REPORT  shall  be  multiplied            Qg    J ~gk Cite,ly~ fir CA'<7Q by FRP/CMFLPD.                                4~ 8~N isis z.z.f
: 2. Shen  it  is determined that 3.5.L.1 is not being, mct, 6 hours is allovcd to correct the condition.
: 3. If  3.5.L.1 and 3.5.L.2 cannot bc mct, the reactor povcr shall be reduced to g 25X of rated thermal pover      vithin 4 hours.
Ai Sg'.0. I- 2.
/CO    1. Thc  reactor shall not bc                  1. Verify that the reactor is operated at a thermal povcr                      outside of Region I and II and core flov inside of                          of Figure 3.5.N-1:
Regions  I  and  II of Figure 3.5.N-1.                                  a. Follovtng any increase of more than SX rated
: 2. If Region I of      Figure 3.5.N-1                    thermal povcr vhile core flow is less A      is entcrcd,    immediately                                                    'nitial initiate  a manual scram.                            than 45X of rated, and
: 3. IfZe~g      II of. Figurc    3.5.N-1            b. Follovtng any decrease is 'entered:                                          of more than lOX rated core flow vhilc initial thermal povcr is greater than 40X of rated.
2S2 BFH Unit 2 3 '/4.5-20                aemoMapgo.
5      ',
 
N OO 3  ~  ~ ~
: a. Immediately initiate action yq IG~          and  exit the region vithin 8            2 hours          nsert ng con ro o s or b      increas ng cor f v.('tar g a re rcu-1st ~n pump          exit t region    s  ~ot an appropriate action)      and
: b. While exiting the region, immediately initiate a manual scram  if thermal-hydraulic instabilit is        obse        as evidenc d by AP          oscil a-ti  ns vh ch excee        10 p cent pea  -to-p ak of r        ed or PRN osci atio vhich          exceed 30 pe    ent      eak-to- eak of cale. 'Cf    p  riodic  LP3X scale    r  d  vnscale alarms oc  r,        edi ely ch ck the APRM    and ndi idual ARM's for  e  denc of thermal-hydraulic ins      ability.
BFN                                            3;5/4.5-20a Unit  2
 
3.V.      (-(
Fi ure BEN Power I=low Stabilii:y Regions 100  .
9Q              ~    00000      ~~0 000    ~0 ~0 ~0~    ~0 ~0    ~ ~
100% Rod Line 80-    ~ ~0 ~ ~  0 ~ ~ 0 ~ 000 f  000    ~ 000  ~
g
                                                                                      ~ 0 ~0 ~0 ~ 0 CJ  70-                                                                          ~~ \ ~0 ~
IO OperoVion Not 0    60;    ---- Note:                  Permitled in                            ~0  ~ ~0 ~
C                                      TI>is Region                                                                                            807. Rod Line 6)
O
: 0)  50.                                                          ~  ~~  ~
CL ID 40-    .                                                                                                    ~ ~
0 CL 0) 0  30-    -.
(3                                                              Noturol
(:irculotion, 00  0~~    ~ 00  ~~~~    ~ ~ ~ ~ oo ~ 0 ~ ~ ~
Line                          ~ ~  ~ ~~~ \~~  ~~ ~~
                                                                                                                          ~eend ~ ~  ~ ~~~0~ 0~~ ~ ~          ~ ~  0 2Q l[jggm        Raijion    Io CD Rnoion                                  ~ ~                      C3 10-                                                    ~~ ~~~ 00 ~ 0 ~    ~                                                                ~ ~          ~ ~ ~ ~ ~      ~  ~ ~~ ~
  .R 0
0 0
PP~
5            10 I
15 01  ~  tW 20            25            30    35      40      45  50    55      60      65    /0 r ~~ rm r~<~~
                                                                                                                                                                    /5 80        85    90      95 100 10 5 CTl Core Flow (perrcnt of rnted)
 
0' UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
SPeC    Plea.
OY  18 tS88 NG CO        TONS FO  0      ON            SUR        C See  3WS+06CC    fjOn                                        3. The    integrity of      the 4e  ~eS+r                                                          relief 1sT5 s.e.x 30 9e
                      ~tlPA                                                        valve bellows shall be continuously monitored when valves incorporating the bellows design are installed.
: 4. At least one        relief  valve shall    be disassembled and inspected each operating cycle.
3.6.E. J~ee  Pum                                      E.      J~e~im~
: 1. Whenever the      reactor is in the                        Whenever there        is STARTUP    or  RUN modes, all jet                        recirculation flow with pumps    shall  be OPERABLE. If                        the reactor in the it is    determined that  a  jet                          STARTUP      or  RUN modes pum'p  is  INOPERABLE, or  if two                        with both recirculation or more    jet  pump flow instrument                      pumps    running,    jet  pump failures occur and cannot be                              operability shall be corrected within 12 hours, an                              checked daily by orderly shutdown shall be                                  verifying that the initiated and the reactor shall                            following conditions be placed in the COLD SHUTDOWN                            do  not occur
    !      CONDITION within 24 hours.                                simultaneously:
                                                                                      '
583.']. I-I    a    X~voy +~
ecirculati oops hes~a flow~
                                                                          ]of (s
4504K. when 4',
or l]
                                                                              ~opera 1      6C tC'E.E nu+lc El
: b. The    indicated value of core flow rate varies from the value derived from loop flow measure-ments by more than lOX.
: c. The    diffuser to lower plenum    differential pressure reading on 0                                                                              an pump mean individual jet varies from the of differential all jet    pump pressures by more than 10K.
BFN                                            3.6/4.6-11 AIAENDINBII'5.1        99 Unit    3
                                                                              ~~a=      ..&
 
0 h
 
QPgc'gjcctM'1 3b        / ~  (
BO      ARY AtJS  04594 Ai I
4 6  E. ~Jam
: 2. Whene ver    there is 5Ll564i4AW oA      6<                  recirculation flow with the reactor in the Cl  ~es    e  Bknl t S TS                  STARTUP    or  RUH Mode      and Z.9- '2-                                    one    recirculation        pump is operating, the diffuser to lower plen~ differential pressure shall be checked daily and the L                                      differential pressure of an individual jet pump in a loop shall fTO)05ed @ok                          not vary from the mean 6  5R  3A.I.I                        of all get pump differential      pressures in that loop      by more than 10K.
i co  z.e.(      R4c            eeerrrrm rrrr ~lrr2              SR3.~  I l
: 1. The    reactor shall not be operated                        1. Recirculation        pump with one recirculation loop out                                  speeds    shall  be checked of service for more than 4 hours.                      'm                    1  at east With the reactor operating, one recirculation loop is out of if                      nce    er    a C +g service, the plant shall be                                                          Laz.
placed      in  a HOT SHUTDOWH COHDITIOH      within 24 hours unless the loop      is sooner returned to service.
: 2. F  liow ng        e-p    p o    era ion, e      sch    ge    alve of        e 1
~LA  I      pe      p      m      no    be    pene un    ss    e      eed    f    e  f  te p    p  i    le  s  t      5    of ts ate    spe d.
: 3. When    th      eactor is not-'in th          RUH          3. Bef e st      rti      eit    er ACTIN al mode, REACTOR POWER OPERATIO        with                re rcu tion          pum D      both recirculation pumps              out-of-                  d    ing      CT    P      R service for u to 12 hours is                                        ERA    OH,    e      and permitted.          uring such interval                            og    e  lo  p d    cha ge estart of the recirculation pumps                              tern    ratu e          do e is permitted, provided the loop                                  saturation tempe            ture.
discharge temperature is within 75'F of the saturation temperature See yooiiCrcrHon for <largP BFN Unit  3 6"    BFN ~SYS Z.H.9
 
0 See  5~sWWog fc~
of the reactor vessel water determined b      dome  ress        The
                                                                  ~~< krBPN      igTsp  q.q, Agio g      tota    e  apsed time fn natural D        circulation and one pump operation must be no greater than 24 hours.
4~  The reactor shall not be operated with both recirculation pumps AC4'oui, out-of-service while the reactor E      is in the RUH mode. Following a trip of both recirculation pumps while in the      RUH mode, immediately      initiate  a manual reactor scram.
3.6.G    S    ctu                                      4.6.G The  structural integrity of      ASME          l. Inservice inspection of    ASME Code  Class 1, 2, and    3 equivalent              Code Class 1, Class  2, and components shall be maintained                        Class 3 components  shall  be in  accordance    with Specification                performed in accordance with 4.6.G throughout the life of the                      Section XI of the ASME Boiler plant.                                                and Pressure Vessel Code and applicable  Addenda as  required
: a. With the structural      integrity              by 10 CFR 50, Section 50.55a(g of any    ASME Code  Class 1                    except where specific written "equivalent component, which                      relief has been granted by HRC is part of the primary system,                  pursuant to 10 CFR 50, Section not conforming to the above                      50.55a(g)(6)(i).
r'equirements, restore the structural fntegrity of the                2. Additional inspections shall    b affected component to within                    performed on certain fts limit or maintain the                        circumferential pipe welds reactor coolant system in either                to provide additional a Cold Shutdown condition                        protection against pipe whip or less than 50'F above                          which could damage auxiliary the miniinm temperature                          and control systems.
required by HDT consfder-ations, until each indication of a defect has been investigated    and evaluated.
See  S~W'cOHo+ 6~
ch ~ys 6 cps        s.<%6. r..G in yh;S geC4og BFH                                            3.6/4.6-13              ANBMgrNO. y 79 Unit  3 paG
 
0
    ~~~~;~:w, ats&e1iJBYilt(hsrtit&eloeily7%(lMJt Ram~
                    ~
                                                                                                                                                  ~ ~
qn w;I~ P$ :~.'i+iglJ g4'A > 4f yy XI)'EMIIHIIT')CtIi1'J Sa'e->                            ~~~
                                      ~          '                  ~    ~          ~
          ~  ~                                                                      ~ ~                ~ ~    ~                    ~  ~        ~ ~
              ~ ~
                                          ~    ~
                                                                                                                  ~    ~      ~ '      Q'
                                                                                                                                  ~  ~
                              ~    ~                                                                                            ~ ~
I~  I    ~                                                                                                      ~ ~ ~
I    ~  ~                                                                                                            ~ ~
                              ~  ~                                                                              ~    o      ~    . ~ g    ~
                                                                                                                                  ~,  ~
I~  I    ~                                                                                                        I  ~  ~
                                  ~  ~        ~    ~                                                                                    ~  ~    I
                                  ~  ~
                                          ~    '              I                        ~ ~
                                                                    ~    '          ~
                                                            ~      ~        I  ~        ~
4t                        ~  ~            .      I ~
                                  ~  ~    ~    ~                                        ~ ~
                        ~  ~
                                  ~  ~              I      ~
                                                                ~  ~
                                                            ~  ~
                                                                          ~    ~
                                        ~    I~            ~  ~
                                                        ~ ~          I        a  ~
                                      ~          I        ~
                                        ~        ~
                                                                      >    ~
                                        ~        I
                                            ~    ~                    ~          1  ~    ~
                              ~    ~    ~
                                ~ ~
                        ~  ~            ~  ~
                              'I    >~
                                                  ~      ~      ~ i
~ ~
 
~ ~
        ~ I ~ ~ ~
    ~ ~
 
E JUSTIFICATION FOR CHANGES BFN ISTS      3.4.1 -  RECIRCULATION LOOPS OPERATING ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.          This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in 'a technical change.
CTS  requires the plant to be placed in the HOT SHUTDOWN CONDITION in 24 hours with one recirculation loop out of service. Proposed ACTION C requires the loop be returned to service in 12 hours or ACTION D requires the plant to be in MODE 3 (Hot Shutdown) in 12 hours. The CTS and the proposed ISTS Completion Times are essentially equivalent since both require the plant to be in MODE 3 in 24 hours.
A3    The frequency for this        Surveillance has been changed from once per day to once per 24 hours.          This is a terminology change and is therefore administrative.
TECHNICAL CHANGE    -  MORE  RESTRICTIVE CTS  allows    up  to  24 hours  operation with the reactor power < 1% with no recirculation loops operating (the total elapsed time in natural circulation and one pump operation must be no greater than 24 hours).
Proposed ACTION D is more restrictive since the time limit of 12 hours applies to < 1% while in MODE 2 also.
0                                                                              Revision 0 BFN-UNITS 1, 2,  5. 3 Pi,GE        Vt    3
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.4.1 -  RECIRCULATION LOOPS OPERATING H2    The  flow imbalance limit is being reduced to 10% of rated core flow when operating at < 70% of rated core flow, and to 5% of rated core flow when operating at a 70% of rated core flow. The current requirement is 15%
mismatch of flow at the given flow conditions. While the limit appears to be less restrictive    if core flow is x 66% of rated core flow, it is more restrictive  when'>  66% of rated core flow (i.e., 15% x 66% or less is x 10% of rated core flow), where the unit normally operates. In addition, currently, this is only a problem      if  there is an imbalance in combination with two other conditions (CTS 4.6.8. l.b and c). The new requirement is separate from the other two, thus, actions will now be required  if  there is an imbalance by itself. Therefore, this change is considered more restrictive on plant operations.
TECHNICAL CHANGE  -  LESS RESTRICTIVE "Generic"
~ LA1  This requirement is being relocated to plant specific procedures.
purpose of this limitation    is" to provide assurance that when shifting from one to two loop operations, excessive vibration of the jet pump risers will not occur. Short term excessive vibration should not result The in immediate inoperability of a jet pump, but could reduce the lifetime of the jet pump. This type of requirement is generally found in plant operating procedures, similar to other operating requirements necessary to minimize the potential of damage to components. Changes to the procedures will be controlled by the licensee controlled programs.
LA2  This requirement is being relocated to plant specific procedures.
Details of the methods for performing this Surveillance, and any requirement to record data, has been relocated to plant procedures.        Any changes to the procedures    will  be controlled  by  the licensee controlled programs.
LA3  These requirements are being relocated to plant specific procedures.
The details of the acceptable method for meeting an action requirement and what constitutes evidence of thermal hydraulic instability and the need to check for  it  have been relocated to plant procedures. Any changes to the procedures will be    controlled  by  the licensee controlled programs.
PAGE~OP BFN-UNITS 1, 2, 5 3                                                      Revision  0
 
Cl JUSTIFICATION  FOR CHANGES BFN ISTS  3.4.1 -  RECIRCULATION LOOPS OPERATING "Specific" Ll    This change adds  a note which states the Surveillance is not required to be performed until 24 hours after both recirculation loops are in operation. The Surveillance is not required to be performed until both loops are in operation since the mismatch limits are meaningless during single loop'or natural circulation operation. Also, the Surveillance is allowed to be delayed 24 hours after both recirculation loops are in operation. This allows time to establish appropriate conditions for the test to be performed.
L2    Per CTS  3.5.M.3.a,  if  Region II of Figure 3.5.M-1 is not exited within 2 hours, the Specification is violated and CTS 1.O.C. 1 applies requiring the plant be placed in Hot Standby within 6 hours and in Cold Shutdown within the following 30 hours. This provides actions for circumstances not directly provided for in the specifications and where occurrence would violate the intent of the specification. The BFN ISTS provides Action within the Specification which could be considered less restrictive than CTS. Action 0 allows 12 hours to be in MODE 3 (Hot Shutdown) and 36 hours to be in MODE 4 (Cold Shutdown). The proposed Action is considered less restrictive since 12 hours is allowed to place the unit in Hot Shutdown versus the 6 hours allowed to place the unit in Hot Standby per CTS.
BFN-UNITS 1, 2, & 3                                                    Revision 0
 
UNIT 1 CURRENT TECHNICAL SP ECIF ICATION MARKUP
 
NOV Z8 1988 4.6.D. R      e  Va ve 3 ~    The  integrity of the relief    valve bcllovs 5'C'('~c+',4;(c,h~                                  shall  be  continuously
                            +~$ <o +<
p                              monitored vhen valves BP+  ILATS 3,q,                      incorporating the belloys design arc installed.
4~    At least onc        relief        valve shall    be disassembled              iowan and inspected each o  erati      c  cle.
Vcn    c&oLht.o~(. of-lt~~i ~P C~ehn~
LCo 3.9.2                                                                                    Mti o~ee      Fi'CA      (eLcg 0A Whenever    thc reactor is in thc                                  enevcr there        is Rgplicab'1'kj  STARTUP    or RUH modes, all,)et                                  ecircu ation flov vith umps  shall be operable.        If                              he re ctor            th it is  determined that a      jet                                TAR      or                cs pump  is inoperablc, r          tv                              ith 0th ecir Lt or    re    t pump ov t              cnt                        um  s        ingg      ct fa urea occur d c ot c                                          op  rabil        s    11 b rec d            12 ours an                              checked      aily order y shutdovn shall bc                                      vcrifyi            t th initiated and the reactor shall                                follov ng      c    diti
              'be placed COHDITIOH in  the~ ours.
vithin HUTDOWH                            do  not occ simultaneously:
: a. The  tvo recirculation loops have a flov imbalance of 15X or morc vhen the pumps
            ~e  Y~ShA(cfhon 4,f-    ~~>                                            arc op~rated at th gci  gPN LS75 p,q.    ~                                                      s ccd
: b. The  indic ted value of orc ov ate frogoCd <R    >'t  > I  IJokS                                        v ies rom              e luc eriv            f oop      ov g2          ftopsH    SP Z.9.3. I                                                mess    em    ts          more han 10K l.$ . The  dfffeeer        eo    lower plenum    differential pressure reading on an individual )et            p eke cc~]isa&          varies from
                                                              %Pe  v 3.6/4.6-11 C g          less      g2.
BFH Unit    1                                                                  NENOMENT NL        I5 8
 
Se>> iP;      on    5.,z AUB  04  1994
                                                      ~se ev r    t  ereyis cu    ti    A,o    vith
                                                      ~lICab;fig      thc reactor in the
                                                                    ~ STARTUP or RUR Mode and n rec culat n um 8
diffuser to lover plenum differential pressure shall be checked a    and thc differential pressure of an individual
        ~k~ >m Isis 8pnl Z~Von 4- C/g~~
z.g,~
get pump .in a loop shall vary from of all get p m
dif er tial      (mesa rea t t o        by eave
                                                                                ~
z    ~ass    t}x 3.6.F                                                4.6.F
: 1. The  reactor shall not bc operated                1. Recirculation pump speeds vith  one  recirculation loop out                      shall be checked a'nd logged of service for more than 24 hours.                      at least once per day.
With the reactor operating, onc recirculation loop is out of if service, thc plant shall bc placed  in  a HOT SHUTDOWN CORDITIOR    vithin 24 hours unless the loop  is sooner returned to service.
: 2. Folloving    one pump  operation,                  2. Ro  additional surveillance the discharge valve of the lov                          required.
speed pump may not bc opened unlesa the speed of thc faster pump is less than 50Z of its
          .rated speed.
: 3. When  the reactor%a not in thc                    3. Before  starting either RUE mode,    REACTOR POWER OPERATIOR                    recirculation pump vith both recirculation      pumps  out-              during    REACTOR POWER of-service for up to 12      hours  is                OPERATIOK, check and permitted. During such interval                          log thc loop discharge restart of the recirculation                            temperature and      dome pumps ia permitted, provided thc                        saturation temperature.
loop discharge temperature is vithin 75'P of the satu BFK                                            3.6/4.6-12          AMENDMENT No. 2gy Unit  1
:. 3-          5
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~GP~
 
0 s
NOV                18    1S88 ION 4.6.D.      e        Va ves 3 ~  The  integrity of                    the 5'VC7 lgjCA7 IohJ                                relief    valve bellovs shall be continuously Fog      ~ho/~        /or                        monitored vhen valves B j=w                                            incorporating the bellows design are installed.
4~  At least one                relief          valve shall    be disassembled and inspected each' erati        c    cle.
Al                                                                                      c    Q ak                    o<c.
  ~  ~  ~
C1.4'ra Lu) 3.VZ                                                                                    lS Sa          'l<gg~
I-~        Whenever the        reactor is in the                          enever    t CI  h'4 i              ~vkg  ~ //os Apl'c4'.j,g  STARTUP    or  RUH    modes,  all jet                    recircul ion flov vith pumps it is shall    be OPERABLE.        If                    the re tor in the determined that        a  Jet                        TAR        or RUH modes pump  is inoperable or i~two                                it    both rec culation or ore get pump flov instibment                            p    ps runni, get pump failu s occur~ cannot                                      operabili            shall            be orrecte vithin 12 hours an                                checked        aily              b orderly shutdown shall be                                  veriiyi          tha                the initiated and the reactor shall                            follovfng        c      ditions be shutdown      in the    66BB-  HUTDOWH                do  not occur COHDITIOH    vithi          hou
                                      /2.
: a. The    tvo recirculation loops have a flov imbalance of 1SX or more vhen the pumps ad    QuST(@CA Tkr& FbA        C4<u~                          are operated at the same s eed.
84, BFH'ggg        g g.]
Prolog~
: b. The    i      icated value of  c  re flov ate 4~    ~~ SW Sa            S.MZ.I No4S    ~                          var    es from v ue deri ed ir e.
m oop flo measurements                    by more SR 3.42.
Sg. 3.Q  2./                                              The    diffuser to lover plena
                    ~dc                                                        differential                    pressure reading on an individual et y$ ~ ~
varie from as'  I~4/        pump p ffcr~
by p.
BFH Unit  2 3.6/4.6-11                                          IL 54
                                                                                                /'MENDME&#xc3;f I
 
Al D  ~
sg 3.Cz,l Wh  never there is reci  c    atioWflo vith reactor in the
                                                        "'"'~        ] the
                                                                ''M (STARXUP      or RUH mode one~ec ~u at o~uidp
                                                                                                  ~
o erati      , t c diffuser to lover plenum    differential pressure shall be checked pS      @~ail and the differential pressure of an individual jet pump in a loop shall Seead&#xc3;c4m fc ~  BFN Is~
4
                            ~ 'I. J
                                    ~a                                  o vary from e me all )et    ump
                                                                      -di        ential    essurc loop y than        ~
C5 2d    L3 3.6.F                t            0    t                4.6.F.
: 1. The    reactor shall not      be operated              1. Recirculation pump speeds vith    one recirculation loop out                            shall be checked and logged of service for more than 24 hours.                            at least once per day.
With the reactor operating, one recirculation loop is out of if service, thc plant shall          be placed    in a HOT SHUTDOWH COHDITIOH vithin 24 hours unless the loop is sooner returned to service+
: 2. Folloving      one pump    operation,                  2. Ho  additional surveillance the discharge valve of the lov                                required.
speed pump may not bc opened unless thc spccd of the faster pump is less than 50K of its rated speed.
: 3. When    thc reacHmis not-in the    RUE mode,  REACTOR POWER OPERATIOH    vith both recircu-                      3. Before    starting cithcr lation pumps out-of-service                                  recirculation pump for up to 12 hours is permitted.                              during    REACTOR POWER During such interval, restart of                              OPERATIOH,      check and the recirculation pumps is                                    log the loop discharge permitted, provided the loop                                  temperature and      dome discharge tempcraturc.is vithin                              saturation tcmpcraturc.
75 F of thc saturation temperature of the reactor BFH                                              3. 6/4. 6-12              AMENOMENr    N. 2 2 g Unit  2
                                                                                .3    ..
0, UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
0!
5  e  'A'cn      ',g.g HOV18              1S88 4.6.D. Re    e    Va ves integrity of
                            ~
3 ~  The                            the See  ~~ggg                                      relief    valve bellows
                                    +~ Shd                            shall be continuously IS TS yq.g                                      monitored when valves incorporating the bellows design are installed.
: 4. At least one          relief      valve shall    be disassembled and inspected each operating cycle.
QA>                              gtt        4 ))auo'f~
lcf36+o~
6 Ecole,g  2.
enever the reactor  is in the                              enev r TARTUP  or  RUH modes,  all jet                          recir ulati          n  fl      w  t
          ~  pumps shall be OPERABLE. If                                the      eact        in      he t is determined that a jet                                ST TUP            R        mo  es pump  is INOPERABLE    or                                  w th bo          re      rc at n or fai et    pf wist ure occu and anno be nt                        umps ilit  i    , et            p oper                s      11 orr cte with              s an                          che      ed      ily by order y s utdown shall be                                  veifyi t t t initiated and the reactor shall                            f liow            ndi        o be placed in the          HUTDOWH                            o no    oc    r CONDITION  within      ou                                simultaneousl Iz          Ito7.                                                '.
The two      recirculatio loops have a flow imbalance of 15K or
          ~de +reeH~ifrrfroe gr Cluepr                                        more when the pumps are operated at the
          +~ 8PN. Is<5 g,q.i                                                  same speed.
: b.        e    n      at    d      lu J-Z  Ifogsbcd  5R 3.9.g,( Plpkg                                        of or        fl w        at v    ie fr m            he lu d iv            d  f  om oo    f    w      eas re-m    ts y or than 1  X.
sa e.~,>>
The  diffeeer re lever plenum      differential pressure reading on an  individual jet pump    varies fire+ +ho flC csW0Q4e fh Hrea than    ~        40'/o          la>>
                                                                              +t-~ f 29,;
BFH                                          3.6/4.6-11 Unit  3 AMENOMHfTNi)
P/s
 
                                                                                ~  ~
Ccs    c        ~    ~
AUS 0 4    594
                                                        ~ ~ ~
SR cn    er her is rc at on ov vith Ay~;cog],'Q~) the reactor in he C STARTUP or RUH Mo              and e      c      ula i o c    ati      the di fuser to lover plenty differential pressure shall be che            ail and the differential prcssure of an individual jet pump    in  a  loop shall
                                                              /}C            va      fro t      m 5<+ YuSkjkicaHon h r t:kpeg                              of  a        et ump
              +~  8~                                    h3            ift cr tial            s    e l SVS 8 N.1                                          t      o  by move than 3.6.F    e    c  at          0  a  o              4.6.F                                          t o
: 1. Thc  reactor shall not be operated                      1. Recirculation        pump vith  one  recirculation loop out                            speeds shall be checked of service for more than 24 hours.                            and logged at least With the reactor operating, one recirculation loop is out of if                          once per day.
service, the plant shall be placed in a HOT SHUTDOWH COHDITIOH within 24 hours unless thc loop is sooner returned to service.
: 2. Folloving    one-pump  operation,                        2. Ho  additional the discharge valve of thc lov                                surveillance required.
speed pump may not be opened unless thc speed of the faster pump is less than 50X of its rated speed.
: 3. When  the reactor    is not "in the RUH                  3. Before      starting either mode, REACTOR    POWER OPERATIOH  vith                      recirculation pump both recirculation pumps out-of-                              during      REACTOR POWER service for up to 12 hours is                                OPERATIOH, check and permitted. During such interval                              log thc loop discharge restart of the recirculation pumps                            temperature and        dome is permitted, provided the loop                              saturation temperature.
discharge temperature is vithin 75'F of the saturation temperature BFH Unit  3 3.6/4.6-12                a~arn~mt vo.        i 8C
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.4.2 -  JET PUNPS ADNI NI STRATI VE Al      Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readil'y readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change..
The wording of the surveillance was changed to require verification that one of the following criteria are met rather than verifying that none of the conditions exist simultaneously.      This is consistent with  NUREG-1433 which attempts to phrase everything in    a  positive manner. Due  to the change in phrasing of the Surveillance,      "more than" was changed  to "less than or equal to" in criteria b and c.
A3    The  variance of the diffuser-to-lower plenum differential pressure reading on an individual jet pump will now be taken from the established pattern rather than from the mean of all jet pump differential pressures. This change is in accordance with the recommendations of SIL-330 and NUREG/CR-3052 and is consistent with NUREG-1433.
A4    The  conditions of the Surveillance Requirement are assured by      LCO  3.4. 1.
Therefore, there is no need to restate the conditions for jet      pump operability.
A5    The frequency  for this Surveillance has been changed from daily to      once per 24 hours. This is a terminology change and is therefore administrative'.
BFN-UNITS 1, 2, 5 3                                                        Revision  0
 
JUSTIFICATION    FOR CHANGES BFN ISTS  3.4.2 -  JET PUMPS TECHNICAL CHANGE  -  MORE  RESTRICTIVE Ml    The requirement    to place the plant in      a  Cold Shutdown condition within 24 hours when a    jet  pump  is inoperable    has been revised to reflect placing the plant in a non-applicable condition. Current Specification 1.0.C.1 states action requirements are applicable during the operational conditions of each specification. Therefore, the requirement to place the plant in Cold Shutdown is not applicable after Mode 3 is reached.
The 'revised action requires plant power to be brought to Mode 3 (outside the applicable condition) within 12 hours. The current action allows 24 hours to place'he plant in a non-applicable condition. As such, this is an additional restriction on plant operation which constitutes a more restrictive    change.
This change adds two requirements to the Surveillance to detect significant degradation in jet pump performance that precedes jet pump failure. The first requirement added would detect a change in the relationship between pump speed, and pump flow and loop flow (difference
        > 5%). A change in the relationship indicates a plug flow restriction, loss in pump hydraulic performance, leakage, or new flow path between the recirculation pump discharge and jet pump nozzle. The second requirement added monitors the jet pump flow versus established patterns. Any deviations > 10% from normal are considered indicative of potential problem in the recirculation drive flow or jet pump system.
These two added requirements to the Surveillance help to detect significant degradation in jet pump performance that precedes jet pump failure. Requirements added to Surveillance Requirements constitute a more restrictive change.        In addition, CTS 4.6.E. 1 allows jet pump operability to be verified by demonstrating that the two recirculation loops. have  a  flow imbalance of    s  15% when  the pumps are operated at the same speed. This is now a separate      requirement (Proposed SR 3.4.1.1 See M2 of the Justification for Changes for          Specification 3.4. 1) and can no longer be used by      itself  to demonstrate    jet  pump operability. This change is  consistent    with  NUREG-1433.
SIL-330 provides two alternate testing          criteria (thus the deletion of current  Surveillance    4.6.E. l.b). One  method  uses easy to perform surveillances with strict limits to initially screen jet pump operability (the proposed changes above). If these limits are not met, another set of Surveillances exist (current Technical Specifications).
Revising the Surveillances to separate the flow imbalance test requirement and to include the stricter limits reflects a more 0      restrictive    change.
BFN-UNITS 1, 2, L 3                                                            Revision  0
 
JUSTIFICATION  FOR CHANGES BFN ISTS 3.4.2 -  JET PUMPS TECHNICAL CHANGE  - LESS RESTRICTIVE "Specific" Ll    This change deletes the current shutdown requirement associated with jet pump flow indication. Currently, when required jet pump flow indication is lost, an orderly shutdown must be initiated in 12 hours and the reactor is required to be in Cold Shutdown within the following 24 hours (since Mode 3 is the non-applicable mode, then 24 hours is allowed to reach Mode 3; see discussion of change Hl for ITS 3.4.2). The proposed Specification implicitly requires the jet pump flow indication to be operable only for the performance of the Surveillance Requirement.              If the flow indication is inoperable when the      surveillance  is  required  to be performed and jet pump flow can not be determined by other means, the jet pump would be decl'ared inoperable and the appropriate actions would be followed. Since the proposed jet pump surveillance requirement is required to be performed every 24 hours (the 25% extension per SR 3.0.2 can be applied) and the Required Actions require the reactor to be in Mode 3 within 12 hours, the maximum difference in the current Specification and the proposed specification is 6 hours. As a result, the proposed specification effectively allows a maximum of an additional 6 hours (which is the 25% extension) to reach a non-applicable Mode          if  a required core flow indicator is inoperable and jet pump flow can not be determined. Depending on when the failure occurs, 6 hours is the maximum increase over the current Specifications (failure occurring immediately after the surveillance is performed). The following table provides the details of the calculation of the 6 hour period:
Current Tech Specs                      Proposed Tech Specs Time 0 hours-  Jet Pump  .            Time 0 hours -    Jet  Pump Indication Fails                          Indication Fails
                    - 12 hr AOT Begins                          (Immedi ately After SR Time 12 hours- 12  hr  AOT Expires    Time 30 hours-    SR  due; Flow
                      -  24 hr  AOT Begins      (24 hrs x        Indication Inop to MODE 3  (per        1.25)          - 12 hr AOT to 3.0.A; see Ml)                          MODE 3    Begins Time 36 hours- 24 hr AOT Expires        Time 42 hours- 12 hour AOT Plant in MODE 3                          Expires Plant in  MODE 3 BFN-UNITS 1, 2, & 3                                                          Revision  0
 
JUSTIFICATION FOR .CHANGES BFN ISTS  3.4.2 - JET PUMPS As  depicted above, 42 hours is the maximum time that would be allowed        if a required jet pump flow indicator is inoperable and jet pump flow can not be determined. Currently a maximum of 36 hours is allowed        if  more than one jet pump flow indicator is inoperable. Jet pump flow indication operability does not directly impact jet pump operability.
Jet pump flow indication is only required to perform the jet pump Surveillance (SR 3..4.2. 1). SR 3.4.2. 1 verifies jet pump operability and has a frequency of every 24 hours. The 24 hours frequency plus the 25%
extension has been shown by operating experience to. be timely for detecting jet pump degradation and is consistent with the surveillance frequency for recirculation loop operability verification. The most common outcome .of the performance of a surveillance is the successful demonstration that the acceptance criteria are satisfied. This change is consistent with NUREG-1433.
L2    Note  1 allows this Surveillance not to be performed until 4 hours after the associated recirculation loop is in operation, since these checks can only be performed during jet pump operation.      The 4 hours is an acceptable time to establish conditions appropriate for data collection and evaluation. Note 2 to proposed SR 3.4.2. 1 provides time to perform the required. Surveillance when the reactor exceeds 25% RTP. Below 25%
RTP, low jet pump flow results in indication which precludes the collection of repeatable and meaningful data. The flexibility to proceed to a 25% RTP and then commence the SR every 24 hours is consistent with approved Technical Specifications for both Perry Nuclear Power Plant and River Bend Station.
L3    The allowed  difference  between each jet pump diffuser-to-lower plenum differential pressure to the loop average has been increased to 20%.
This change is consistent with the recommendations of SIL'-330 and NUREG/CR-3052 (Closeout of IE Bulletin 80-07:      BWR Jet Pump Assembly Failure). SIL-330 specifies  a 10/ criteria for individual jet  pump  flow distribution. When measured by jet pump diffuser-to-lower plenum differential pressure, the equivalent limit is 20% because of the relationship between flow and delta-P. Since BFN uses the diffuser-to-lower plenum differential pressure measurement, the variance allowed should be  20% as recommended  by SIL-330 and NUREG/CR-3052. This is  a relaxation from existing requirements, therefore,    it constitutes  a  less restrictive change. This increase in allowed difference is considered an acceptable criterion for verifying jet pump operability and is consistent with the BWR Standard Technical Specifications, NUREG 1433.
BFN-UNITS 1, 2, & 3                                                      Revision    0 PAGE
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION .
MARKUP
 
OEC 0      7  1SS4 F 6.C 4 '.C 2~  Anytime irradiated fuel is in                            2. With the        air    sampling the reactor vessel and reactor                              sys tern inoperable,            grab coolant temperature is above                                samples shall be 212'F, both the sump and air                                obtained and analyzed sampling systems shall be                                    at least        once every 24 OPERABLE. From and after the                            hours.
date that one of these systems is made or found to be inoperable for any reason, the reactor may remain in operation during the succeeding 24 hours                      Ac    5'usaf'i~tjon        gag    Qqg for the sump system or 72 hours              I HPFA)ST> pgq                y~~~
for the air sampling system.,                !
The air sampling system may be removed from service for a period of    4 hours for calibration, function testing, and maintenance without providing a temporary monitor.
3 ~  If the    condition in    1  or  2 above cannot be met, an orderly shutdoml shall be initiated and the reactor shall be placed in the  COLD SHUTDOWN CONDITION within    24 hours.                        I Qai                                                                SR 3.ge3ol 4Me3      in                  A  proxy e y          one-half I>br s AH of all re ief          va es o    relief alve                          sha    1 be b      ch-ch ked
: 1. When is kno~ to      be  failed,    an                              or r laced with            a A<Ho 8                                                                                    eck            ve orderly shutdo~ shall          be R          i  iti epressurize and the reactor o  less than      105 A2      each operatin All val            es c  cle.
11 have L2                w  th        hour                                          en heck          or e            s  ae ot      eq    red                      r lac d up the to  b  OP    LE  in    e C                                co let on of ever IT N.                                          ecnd      c es  l,243                                                SR7'l  3 ~2      In accordance vith Specification                MM each    relief      valve shall be manually opened tfopScl                                              t'1 t e oco ples              nd SR  s.q',g,~                                    ac stic moni rs d      str  am    of the      alve i dica    e    ste      is lookin      f      the    a lve .
BFN 3.6/4.6-10            AMENDMENT NL          2 Z3 Unit    1
 
0 gkl NOY 18 1988
: 3.      e  i  tegr y of the elie val          e bel ovs shal be ontin ousl mo    tore vhen alv in orpo ating he b 1            ws desi          r        tall  d.
At leas        o      rel ef al    e s  all    e      sass    bl d d  i          ted    ach oper    tip        c e.
3 6 E  Jm~muu                                        E. ~Jet
: 1. Whenever the    reactor is in the              1. Whenever there          is STARTUP  or  RUH  modes, all get                    recirculation flov vith pumps it is  shall be operable.      If                    the reactor in the determined that a    )et                      STARTUP      or    RUH  modes pump  is inoperable, or if tvo                        vith both recirculation or more Jet pump flow instrument                      pumps running, get pump failures occur and cannot be                          operability'hall be corrected vithin 12 hours, an                        checked daily by orderly shutdown shall be                            verifying that the initiated and the reactor shall                      folloving conditions be placed in the COLD SHUTDOWH                        do  not occur COHDITIOH    vithin  24 hours.                      simultaneously:
: a. The tvo recirculation loops have a flov gee    rw+,'p; (qp<g~                                imbalance of 15Z or more vhen the pumps
                  <+es      tr>  8cnr lSTS                              are operated at the
                  ~ s.z. r+ P~ps                                      same speed.
: b. The    indicated value of core flov rate varies from the value derived from loop flov measurements          by more than 1OZ.
: c. The    diffuser to lover plenum      differential pressure reading on an individual )et pump varies from the mean of all )et        pump  differenti a.'
pressures by more than 10Z.
BFH                                        3.6/4.6-11 Unit  1                                                      AMENOMENr        N. Z g 8 p~GC
 
0 SAPBTY I INIT                                        f INITIN3 SAPETY  SYSTEN SBTTIHQ 1.2  Reactor Coolant      S  stea Inte  rlt        2.2    Reactor Coolant  S    tea Inte  rlt Applies to llalts on reactor coolant                    Applies to  trip settings of    thc systea pressure.                                        instruecnts  and devices which are provided to prevent the reactor systea safety lialts fraa being exceeded.
O~b8cl 1v8                                              o~h  ective To  establish    a  ligilt below  which                To  define the level of the the  integrity of the reactor                          process variables at which coolant systea is not threatened                        autccaatic protective action due  to  an overpressure      condition.              is initiated to prevent the pressure safety limit free "
being exceeded.
S  ecificatlons A. The pressure      at the lowest point            The  limiting safety systea of the reactor vessel shall not                  settings shall be as specified exceed 1,375 psig whenever                        below:
irradiated fuel is in the                                        Liwiting Safety reactor vessel.                              rotcctlve Action    S  tea Settin SR  2'f.3l
: h. Nuclear systea      1.105 psig +
relief valves  sg,        sl open nuclear        (4 valves) systca pressure Cgz~gc    4  gC 4  I S TS,  3.o                                              1,115 psig +
33.5      osl (4 valves)
                                                                                ~
1.125 pslg    +
83.8 -k+ psl (5 valves)
B. Scraa--nuclear      <1,055 psig systen high pressure BFN                                            1.2/2.2-1 unit l
 
S UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
0 OEt; 0 V  1SS4
: 2. Anytime irradiated fuel is in                      2. Pith the air sampling the reactor vessel and reactor                            system inoperable, grab coolant temperature is above                              samples shall be obtained 212'F, both the sump and air                              and analyzed at least sampling systems shall be                                once every 24 hours.
OPERABLE. From and after the date that one of these systems is made or found to be inoperable for any reason, the reactor may remain in operation during the succeeding 24 hours for the sump system or 72 hours for 5+8 ~ST(FICA7 /QPJ      ~Q the air sampling system.                                CPA+G:E-svo BFN )'sl-s    gc/g
                                                                              + 3.0.5 The air sampling system may be removed from service for a period of 4 hours for calibration, function testing, and maintenance    vithout providing  a temporary      monitor.
: 3. If the  condition in    1  or  2 above cannot be met, an orderly shutdovn shall be initiated and the reactor shall be placed in the COLD SHUTDOWN    COlQITIOK vithin 24  hours.                                      sp s..~    l tely one-half o~
l?,he          al relief val s sh 11 be  . ch-cheched    r When    ore than one      relief                          repla    d vith a valve is kaovn to be failed                    p,Z        bench-chewed valv each p<glot4      an  orderly shutdovn shall        b                      operating cyc        JQ.1 13 p        initiate            e  react r                          valves    vill have h!Ien depress            o  lyas          10                  chere~or replace~on
                      ~ ig vithin        ours.        e                        the compMtion of every c              ar ot req            ed to bc              in        COLD L,h goo&5 lg2Q      SHUTDOWN                                            2. In accordance vith          /,Z.
5g.4'f.3.> Specification .O.tR
      )),ca),;l Q                                                            each relief valve shall be aanually opened unti 7rapos~                                c  c Qp3 hble. ha                          co    tic m    tora sas4~~                            o    trc    of the alv dicate team i flo        ng om thc valve.
6/4.6-10            AMENDMENT 10. 2 29 BFR                                              3 Fia=-~OF~
 
I HOY    18  1S88
~r                                                    ~ ~
3 4
Tho        te    'ty of    che r                  eh      on be    ont      o  ly to              v es rpo atQxg the bellove design are install 4,        leaa    one  r ief alv e  di      emb    d azicl        act      ea the          e.
3.6A. &~max
: 1. Whenever the reactor is in the                  1. Rxenever there          is STOUP oz EHf modes, all Jet                          recirculation flov vith pampa ahall be OPELQKZ.                              the reactor        in  the it  ia determined that a get                        STQCUP        or RON modes pap is inoperable~ or if tvo                        vith both recirculation or more )et pump flov instrument                    poaye ramduS, get pmnp failures occur end cannot be                        operability shall be corrected  vithin 12 hours,  sn                    checJcack daily by orderly shntdovn shall be initiated and the reactor ahall veri~            that the follcndxw conditions
[-    CanamOI vithin Zi      ~.
be ekan~rn in the COLD SKFRtNN                      do  not occur simnltaneoasly1
: a.      The  tvo recirculation loops have a flov imbalance of LSZ or more vhen the pampa QQ Qug4s ls qgL >0M                                    are operated at the C4c.~q
* Q,Phd <gP~
b.
same speed+
                                                                      ~    indicated      value 2 4 2, a e,k P -1 ps.
of  core  flov rate varies from the value derived from loop flov measurements        by more than 10K.
c~      The  diffnaer to lover      plenum differential      pressure readfilg on an individuaJ, p1mep varies from the mean of all )et    pump  differential pressures      by more than 10".
: 3. h/4. 6-11                    AMENDMENT NO            15 4 Vn't "
 
SAFETY  LIMIT                                            LINITING SAFETY SYSTEN SETTING l.2  Reactor Coolant            S stem  Inte rit          2.2  Reactor Coolant    S  tern  Inte  rit Applies to          limits  on  reactor coolant          Applies to trip settings of the system                                                    instruments and devices which are provided to prevent the reactor system safety limits prcssure'~e frcci being exceeded.
ective                                                O~e votive To  establish          a limit below which                To  define the level of the the  integrity of the reactor                              process variables at which coolant system is not threatened                          automatic protective action due to an overpressure condition.                          is initiated to prevent the pressure safety limit from being exceeded..
S  ecifications                                            S  cifications A. The pressure          at the lowest point          The  limiting safety system of the reactor vessel shall not                      settings shall be as specified exceed 1,375 psig whenever irradiated fuel is in the below'ijiiting Safety reactor vessel.                                  protective Action    S  stem  Settin 5R 9.0,9./
: h. Nuclear system        1.105 psig    +
relief valves    93        psi open  nuclear        (1 valves) system pressure
                                                                                        .115 psig +
SEE'Q5TIF'Ic/TIoAJ F'ag                                                      - 3i.S (i  valves)
CPANg gee ~O gyral          i~g Z ~
1,125 psig    +
si (5 valves)
B. Scram- nuclear        <1,055 psig system high pressure BPN                                                1. 2/2. 2-1      PAGE Unit 2
 
UNIT 3 CURRENT TECHNICAL SP ECIF ICATION MARKUP PAGE~OF~
 
0 5
DEt'    7        1994
  ~ 6.C                                                        4.6.C
: 2.      Anytime irradiated fuel is in                          2. With the      air sampling the reactor vessel and reactor                              system inoperable, grab coolant temperature is above                                samples shall be 212'F, both the sump and air                                obtained and analyted sampling'systems shall be                                  at least      once every 24 OPERABLE'rom and after the                                  hours.
date that one of these systems is made or found to be inoperable for any reason, the reactor may remain in operation during the succeeding 24 hours for the                          ~~ X~564ie4on 0 ~                    chases sump system or 72 hours for                          + BIN jsTs 3'.q.y the air sampling system.                                                        p3.V.s'he air  sampling system may be removed from      service for      a period of    4  hours    for calibration, function testing, and maintenance      without providing    a temporary      monitor.
: 3.      If the    condition in      1 or  2 above cannot be met, an orderly shutdown shall be initiated and the reactor shall be placed in the COLD SHUTDOWN CONDITION        within 24  hours.                                    sg P.f>.
                                                'in M>
jn jIhfS o
proximately onc-half 11  relief val                    s shal      e bench-chec                    d
: 1.      When        than on      relief                            or repl d vt,th a valve is    known    to be failed,                          bench-ch eked                    vc, an  orderly shutdam shall b                                  ach o    r    n            c  cle initiate d the reactor                                      hll  13  ~alves      vill have depressurite        o lcaa            0                    be    checked          r sx v thin  ~                    e                        repla    d upon          t LR              e  c        s a      n    re    i ed                  complet          of eve t    e 0 ERAB      i    th  CO                            second cycle.
CON    TIO sR z.s.s.c 2        accordance with                If'n od<$    lp  X43                                                      Specification each  relief valve shall
        +l  jCR  bIll            ProPOSC Jj  HO<                            be manual t    thermoco o              ed es and
                                ~    SP.3. la.>                              aco    tic  monito downs    earn of the                    alve indicat      steam            is the valve BFH                                                3. 6/4. 6-10              AMENVHrrNIL X 86 Unit  3 Po.GE~O'~
 
0 SPecif)cafjnr)    3.Q.3'OV 18 t988 Q5    3. Th    in egrity of the r ie val e b 11 vs
                                                              ~    al    bc ont nu usl on  ore vh                alv s inc rpo ati                  e  ellovs de ign rc ns al d.
: 4. At eas      one  rel ef            v lve s    ll d i di pcc ed ass ach ble 0  cra ing cyc          ~
3.6.E. Jet~ups                                          E. J~e
: 1. Whenever the  reactor is in the                1. Whenever    there is STARTUP  or RUH modes, all jet                        recirculation flov vith pumps shall be OPERABLE. If                            the reactor in the it is dctermincd that a jet                            STARTUP    or  RUH  modes pump is IHOPERABLE, or if tvo                          vith both recirculation or more jet pump flov instrument                      pumps running, jet pump failures occur  and cannot be                          operability shall be corrected  vithin 12 hours, an                        checked daily by
        . orderly shutdown shall be  .                          verifying that the initiated and thc reactor shall                        folloving conditions be placed in the COLD SHUTDOWN                        do  not occur COHDITIOH vithin 24 hours.                            simultaneously:
: a. The  tvo rccirculatio loops have a flov imbalance of 15X or more vhen the pumps 5'ee                                                  arc operated at the Tus&ceh>>n J>>~                                    same speed>>
c4ngc's  4  BcN 7srs g.q.2
: b. The  indicated value 5<fpuw p g of core flov rate varies 'from the value derived from loop flov measurc-mcnts by more than 1OX.
: c. The  diffuser to lover plenum  differential pressure reading on an  individual jet pump  varies from the mean  of all jet            pump differential pressures by more than 10X.
BFH Unit  3 3.6/4.6-11 AMENOMBfrN.      I 29
 
5fec)@ca an 3'.< 3 1.2                                              2.2 hpplles to liaits on reactor coolant              Applies to trip settings of thc systea prcssure.                                  instruments and devices vhich are provided to prevent thc reactor systca safety liaits froa being excccded.
To  establish  a  liait belov vhich              To  define thc level of thc process variables at vhich thc integrity of thc reactor coolant systea ls not thrcatencd                  automatic protective action due  to  an ovcrpressure  condition.            is initiated to prcvcnt thc pressure safety    lialt froa being exceeded.
: h. The prcssure    at thc lovcst point        The  liaiting safety    systea of the reactor vessel shall not            ~ ettings ahall bc    as  specified exceed 1,375 psig vhenevcr                  bclov!
irradiated fuel is ln thc reactor vcsselo                          5R S4, .I J. Nuclear systea        1 105  pslg g relief  valves 33,xM psi open  nuclear      (4 valves)
                                                                        "
systea pressure 115 craig g m          psl
                                                                                            'f S
4  valves)
Scc  SLL5+
s gasw                                        .g ~ psi 1 125 (5
psig g valves) 4s f5  '2eg B. Scraa  nuclear      g1,055 psig systea high prcssure BPK                                        1.2/2.2-1
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.3 - SAFETY/RELIEF VALVES ADMINISTRATIVE A1    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is        done to make consistent with      NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.        This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
The Frequency    for proposed SR 3.4.3. 1 (CTS 4.6.0.1) has been changed from "each operating cycle" to "18 months." Since an operating cycle is 18 months these are equivalent.        The Frequency for proposed SR 3.4.3.2 (CTS 4.6.0.2) has been changed from "In accordance with Specification 1.0 HH" to "18 months." Since the Inservice Testing Program (1.0.HH) frequency is 18 months these are equivalent.          As such, these changes are considered administrative.
A3    The proposed    change adds a note  that states that the Surveillance is not required to be performed      until  12  hours after reactor steam pressure and flow are adequate to perform the test. Plant startup is allowed prior to performing this test because valve OPERABILITY and the setpoints for overpressure protection are verified, per ASHE code requirements, prior to valve installation. As such, the addition of the note is considered administrative.
A4    CTS  3.6.D. 1 requires an orderly shutdown when more than one      relief valve is  known to have failed. Therefore, the CTS allows unlimited operation with one S/RV inoperable. BFN has 13'/RVs, therefore, 12 are required OPERABLE at all times.      LCO 3.4.3 requires 12 to be OPERABLE and shutdown  if  one of the 12 required S/RVs is inoperable.      As such, the two Specifications are equivalent and this change in presentation is considered administrative.
BFN-UNITS 1, 2,  5. 3                                                      Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.3 - SAFETY/RELIEF VALVES A5    BFN CTS  4.6.0.3 is only applicable to three stage Target        Rock S/RVs.
Only the two stage Target Rock S/RVs      are'nstalled    and authorized for use in BFN Unit 2. The three stage design is obsolete and is no longer supported at BFN. Since this Surveillance Requirement is no longer applicable to the BFN S/RV design, the deletion of this requirement is considered administrative.
TECHNICAL CHANGE  -  MORE RESTRICTIVE Ml    Ah'additional requirement is being added that requires the plant to be in MODE 3 within 12 hours. This change is more restrictive because't stipulates that the reactor shutdown be completed much earlier than would be required by the existing specifications (CTS 3.6.D. 1). CTS requires a shutdown to MODE 4 within 24 hours but does not stipulate how quickly MODE 3 must be reached. Reference Comment L2 which addresses the less restrictive change of be in MODE 4 in 36 hours rather than 24 hours.
TECHNICAL CHANGE  -  LESS RESTRICTIVE "Generic" LAl  The  details relating to    methods  of performing Surveillances have been relocated to the Bases or procedures. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in Chapter 5 of the Technical Specifications.        Changes to the procedures will be controlled by the      licensee  controlled  programs.
LA2  This Surveillance Requirement has been relocated to plant procedures since the requirement does not directly relate to S/RV operability.
This is strictly a preventive maintenance requirement.
0                                                    Pr. "-        QF BFN-UNITS  I, 2, 5  3                                                      Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.3 - SAFETY/RELIEF YALVES "Specific" Ll  The allowed  lift  setpoint  tolerance has been increased from 1% to 3%
based on incorporation of    this larger setpoint tolerance in the BFN reload licensing analysis for each Unit prior to ISTS implementation.
The larger setpoint tolerance has already been incorporated into the Unit 2 reload analysis and will be incorporated into the Unit 3 reload analysis for the next cycle (Spring 1997). In addition, when the setpoints are verified, they are still required to be reset to 1%
(proposed SR 3.4.3. 1). Thus, since the analysis still ensure that all limits are maintained even with the expanded tolerance, this change is considered acceptable.      This change is also consistent with the BWR Standard Technical Specifications, NUREG 1433.
L2  The  time to reach  NODE 4  (reactor depressurized to < 105 psig, Cold Shutdown) has been extended from 24 hours to 36 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems. In addition, a new (more restrictive) requirement to be in NODE 3 (Hot Shutdown) within 12 hours has been added (Reference Comment M4 above).
These times are consistent with the BWR Standard Technical Specifications, NUREG 1433.
0 BFN-UNITS 1, 2, L 3                                                    Revision 0
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
0 SPec ikcrc ]ion (gi (g                                                  es Lz w3 crab; sea.v.e l
: 1. a. Any time    irradiated                        l. Reactor coolant fuel is in the                                    system leakage shall 3 pp)>      I gg      reactor vessel and                                be checked          t e reactor coolant temperature      is  above              Jal        8 ai    s r ore li
        ~      3.R.9.k 212 e  into the primary containment
                                                                                ~thours.
least  once per irom unidentified sources shall not exceed In add tion, t  e  total reactor Mo 3,4,q.c.          coolant system leakage    into the primary containment shall not exceed
: b. haytime the reactor          is in RUlf NODE,    reactor coolant Qo    3,Q,Q,Q      leakage into the primary containment from unidentified sources shall not increase by more than 2 gpm averaged Qi'+in pJlCvia~
                    ~      axe~ay 24-hour period in which the'eactor ia in the RUE NODS cep  as    e    ne    n 3.6.C.l.c below.
C~  During the      first    24 hour in the RUE      NODE    following LCo Z.g,q g            STAEHJP, an      increase in reactor coolant leakage into the primary containment of.,>2 gpa is acceptable as long as the requirements of 3.6.C.l.a are met.
Rl        kg gmggq              ~
BFH                                                    3.6/4.6-9            ANENOMNr N0. Ig 7 Unit  1 i~AGE~~>>            ~
 
8PECi  K< C  $ og Q(                        QEC    07  19S4
: 2. Anytime irradiated fuel is in                      2  With the    air sampling the reactor vessel and reactor                        system inoperable, grab coolant temperature is above                          samples shall be 212'F, both the sump and air                          obtained and analyzed sampling systems shall be                              at least    once every 24 OPERABLE. From and after the                        hours.
date that one of these systems is made or found to be inoperable for any reason, the                ~<<3'us4g;~hon P,          ~+~
reactor may remain in operation during the-succeeding 24 hours
                                                              ~  BP'r4 1575    Z,q,q for the sump system or 72 hours for the air sampling system.
The  air  sampling system may be removed from    service for    a L3          period of    4  hours  for                    d JF<guircd'can a,g calibration, function testing, and maintenance without Ad~ R+o~-      providing a temporary monitor.                Add P"      once'A'on oP
  +      'A gCQHl<                                                  Rch'on  L ml g~~~ 8      3. If the condition'n        1  or  2 above cannot be met, an orderly shutdown shall be initiated and the reactor shall be placed 'n
  ~ "~4'+W th        COLD SHUTDOWN CONDITION within      hours.                        4.6.D 3.6.D                                  hRlig Q                    l. Approximately one-half of all relief valves
: 1. When more    than onc    relief valve                    shall  be bench-checked is  known  to bc failed, an                            or replaced with a orderly shutdown shall bc                                bench-checked valve initiated and thc reactor                                each operating cycle.
depressurized to less than 105                          All 13  valves  will have psig within 24 hours. The                                been checked or relief ~alves are not required                          replaced upon the to be OPERABLE in the COLD                              completion of every SHPTDO~. ONDITIOH.                                      second cycle.
: 2. In accordance with fD 8I-iv
                                        + ca                            Specification 1.0.MM,
                                  ~  e    pl                          each relief valve shall R(g                                                      be manually opened until  thermocouples  and acoustic monitors downstream of the valve indicate steam is loving from the valve.
BFN Unit  1 3.6/4.6-10          AMENDMENT NL R    l
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION IVIARKUP PAGE OF~
 
                                                                    ' j ar v ~  '.rmzv rv't'tv'A                        ~ la'g
                                                                ~
                                                                            ~  ~                                                                    ~ ~
~ ~ ''s var vr    @@sit        ~ava~'v'                                ~  ~      v:si                        ~ H    .'        l0      gv)gl
                                                                                      ~ ~
                                                                                                                    '%'If'LW le aa  IA
                                                                                                                                              ~ ~
(    a
                                                                                                                                              ~  ~
                                                                                        ~  ~
                                                          ~    ~
                                                                                        ~  ~
                                                                                            ~,
I          ~ .a ~    .'\ ~ ~
                                                                                                                                            ~ ~    ~  ~ ~
e&
                                                                                                                                              ~ ~
                                                                                        ~          ~
                                                          ~        ~
                ~    ~                                    ~    I              ~      AI
                                                                                        ~
                                                                                              '
                              ~    a    ~ ~ ~        ~
                                              ~    ~
                                                          ~            ~    ~              ~  ~
                          ~    ~
                                                            ~        ~
                      ~            II                      ~    ~
                                              ~    ~
                                '
I              ~  ~                                                ~ ~
                                                            ~        ~                      ~      ~
                          ~  ~                ~    \  A~
                        ~ ~        ~    AI                          ~        '
                                                ~  ~
                                                ~        ~
                                                                          ~    ~                        ~ ~
                          ~            ~
                                        ~          ~                I            I ~  ~
                                                                                  ~      ~
l  ~            I                                                          ~  ~  ~
4P                                      I
                                      'S I '
                                                      'll,                ~    ~
                                                              ~    ~
I I't
                            ~        ~                      ~
                            ~    ~              ~
                            ~    ~                                                                    AI
 
S  ~'4 C~4;o~ S.V.9 DEC 0 '? 199'I 2 ~  Anytime irradiated fuel is in                      2. Vith the air sampling the reactor vessel and reactor                          system inoperable, grab coolant teaperature is above                            samples shall be. obtained 212 F, both the sump and air                            and analyzed at least sampling systems    shall be                          once every 24 hours.
OPERABLE. From  and after the date that one of these systems is made or found to bc inoperable for any reason, the reactor may reasfn in                                    S~>~S 7.]Rmnoe        Fog operation during the                                      ~"" ~~S~ ar Is~~.yS succeeding 24 hours for the                                    <~IS S'~clod sump system    or 72 hours for the air sampling system.
The air sampling system may be removed from service for a L3                  period of 4 hours for calibration, function testing, Adct.                  and maintenance    vithout Dc7'Iod    P,            rovidi a tea ora monitor.                    ]V(d eepu,~& A 4o~      B.Z P jeep~'~
ego~          3. If the  condition in      1  or  2            AdcP  2M D above cannot be metD        L11
        ,~<<~    c. orderly shutdovn shall be                        Ac7104 Q (Igf  Co<
                )
JiSr~    initiated and the reactor shall be placed i the COLD WK  CONDITION  vithfn            4.6.D ours ~
Po7    5//~why            1. Appro~tely one-half of 3.6.D                                    4,oD3plZ3o&
JQ  gong and                  all relief valves shall be bench-checked or When more    than one  rcl    e                        replaced vith a valve is knovn to be failed,                            bench-checked valve each an  orderly shutdovn shall bc                          operating, cycle. All 13 initiated and the reactor                                valves  vill have been depressurfred to less than 105                          checked or replaced upon psig vf@EX~4 hours The                                  the completion of every relief valves are not required                          second cycle.
to be OPERABLE in the COLD SHUTDOW COHDITIOlf                                      In accordance    vith f
Speci ication    1.0.lS, each relief valve    shall
                          ~> 3~S7  I/iCA77ohJ p'o~                            be manually opened    until CAAo1665 7o g/Q I~7~g qg                              theraocouples and
                          ~N  <<<~ 5'Cc77og acoustic monitors dovnstream  of the valve fndfcate steam is floving from the valve.
BFH                                                  3.6/4.6-10            hMENDMBIT  N. 2 29 Unit    2                                                              :=A!."."  3
 
UNIT 3 CURRENT TECHNICAI SPECIFICATION MARKUP PAGE OF
 
SA c.i<i 0'o AUG  26  1987
                                          ~~< 2+3 SR 3,~.w. t
: l.      a. Any time  irradiated                      1. Reactor coolant system lcakagc shall R ppl ifctfy,'tip        fuel is in the reactor vessel and                            bc checked y t reactor coolant                                sum st an  ai  sam  li temperature    is  above                                    re ord 212 F    e c    r  coo ant                    at east once per ge  into thc                                hours.
/CO 3 primary containment from unidentified sources shall not 5        In addition, the total reactor coolant system Lco gg g.                leakage into the primary containment shall not  exceed
: b. Anytime the reactor      is in RUB  mode,  reactor coolant leakage into the primary containment from unidentified sources shall not increase by y)s&>n %AC      more than 2 gpm avcragcd FfC Js04LS in vhich the reactor is in the RUE mode cpt as    c    c 3.6.C.l.c below.
Co During the    first 24    hour in'he    RUN mode    follov STARTllP, an    increase in reactor coolant leakage into thc primary containment of >2 gye is acceptable as long..as the requirements of 3$%1.a"are met.
Pl    )    Rdd 4C0 3.q,'I,a 3.6/4.6-9 NatmNr gO. g o 8 BPS Unit    3 PAGE                3
 
DEC      0 7'1994 20  Anytime    irradiated fuel is in                            2. With the air sampliag thc reactor vessel and reactor                                    system inoperable, grab coolant temperature is above                                      samples      shall bc 212'F, both the sump and air                                    obtained and analyscd sampling systens shall be                                        at least once every 24 OPERABLE. From and after the                                      hours.
date that onc of these systems is made or found to be inoperable for any reason, the reactor may remain in operation during the succeeding 24 hours for the sump system or 72 hours for.
5''  SLeSAF'eQon &4 Qhagu + 8 P'nl Z.S TS Z.q,5 the air sampling system.                                    ~ +hiSSccgon The  air  sampliag system may be removed from      service for              a period of      4  hours  for calibration, function testing, and maintenance vithout R>D /I@ion A            rovidiag a temporary monitor.
D kQLhiF<    Qt'.tl4~ Bo2
+ Requircst            If the  condition in      1          or  2 Avion                                                                        "~~ ><~ Qnn(i'h'on oF 8,1          above cannot be met, an orderly shutdown shall be                              Rch'on                          ~  )
Ac<i'aN C initiated and the reactor (t s4 Co~d4'i~) shall  be placed in thc COLD S            CONDITIO    vithin                      4.6 D.
ours 3.6.D.
34
                                  ~
l SNYPo~4 fnndifjoee Ift
: 1. hpproxijnately one-halt of all relief valves t
                                          /P honte          md                        shall    be bench-checked When more      than      re            c                        or replaced with a valve is known to be failed,                                      benc~hecked valve an orderly shutdown shall be                                      each operating cycle.
initiated and the reactor                                          hll  13  valves    vill hav depressurised to less than 105                                    been checked        or psig within 24" hours. The                                        replaced upon the relimf snLLyes are not required                                    completion of every to be OPERABLE in the COLD                                        secoad cycle.
SHUT1XNN CONDITION.
: 2. Ia accordaace vith Specificatioa 1.0.IR, each relief valve shall F44  ipse'cc4&#xc3;on  A~ ~+pcs                                      be manually opened W Bkd %575 3.9,'3 xn                                                  until    thermocouples aad W>s',ekion acoustic monitors downstream of the valve indicate steam is flowing from the valve BFN unit  3 3.6/4.6-10            NENMBlTNL          I 86 q  IP
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.4 - RCS OPERATIONAL LEAKAGE ADMINISTRATIVE A1    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is      done to make consistent with    NUREG-1433. During ISTS development  certain wording preferences    or English language conventions were adopted which resulted in  no  technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
The  total  LEAKAGE  limit applies  at any moment, to the previous 24 hours (not any future or past 24 hour period). This results in a "rolling average" covering "any. 24-hour period." Therefore, changing "any" to "the previous" does not change any intent. In addition, the current provision (CTS 3.6.C. l.c), which allows an increase in reactor coolant leakage into the primary containment of )2 gpm during the first 24 hours in the RUN mode following STARTUP as long as unidentified leakage and total leakage limits are not exceeded, is encompassed by proposed LCO 3.4.4.d which allows the same. LCO 3.4.4.d is worded differently (i.e.,
a 2 gpm increase in unidentified leakage within the previous 24 hour period in MODE 1) but means the same. Since there is no "previous" 24 hour period until being in MODE 1 for 24 hours, this limit does not apply for the first 24 hours. These are editorial changes only and as such are considered    administrative.
TECHNICAL CHANGE  -  MORE RESTRICTIVE A new requirement has been added to preclude pressure      boundary  LEAKAGE.
An applicable ACTION has also been added.      This is an  additional restriction    on plant operation.
BFN-UNITS 1, 2, 5 3                                                      Revision  0
 
0 JUSTIFICATION FOR CHANGES BFN ISTS 3.4.4 - RCS OPERATIONAL LEAKAGE CTS  3.6.C.3 requires an orderly shutdown be initiated and the reactor to be in the COLD SHUTDOWN CONDITION within 24 hours when certain conditions can not be met. Proposed Action C will require the plant be in MODE 3 in 12 hours and MODE 4 in 36 hours. The addition of this intermediate step to the COLD SHUTDOWN CONDITION is considerqd more restrictive since CTS does not require any action to have taken place within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
M3    The proposed  applicability of MODES 1, 2 and 3 is more restrictive  than CTS  3.6.C. l.a applicability of "Any time irradiated fuel is in the reactor vessel and reactor coolant temperature is above 212'F." The Startup Mode will now include the mode switch position of "Refuel" when the head bolts are fully tensioned. The change eliminates the potential to interpret certain plant conditions such that no MODE, or a less restrictive MODE, would exist. Currently, CTS 1.0.H allows the plant to be considered in the SHUTDOWN CONDITION and in the Shutdown Mode with the mode switch in the Refuel position (and other positions are allowed while in the Shutdown Mode) as permitted by notes to that definition.
The allowance  to place the  Mode Switch in other positions has been moved to Section 3. 10, Special Operations and Section 3.3.2. 1, Control Rod Block Instrumentation. Any technical changes to these allowances will be discussed in the Justification for Changes to these Sections.
TECHNICAL CHANGE  - LESS RESTRICTIVE "Generic" LAl  Details of the methods for performing this Surveillance are relocated to the Bases and procedures. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in Chapter 5 of the Technical Specifications. Changes to the procedures will be controlled by the licensee controlled programs.
PAGE~Or~
BFN-UNITS 1, 2, 5 3                                                    Revision  0
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.4.4 - RCS OPERATIONAL LEAKAGE "Specific" Ll    The  total LEAKAGE allowed has been increased to 30 gpm. No applicable safety analysis assumes the total LEAKAGE limit. The limit considers RCS inventory makeup and drywell floor drain capacity.      The new limit of 30 gpm is well within the capacity    of the Control Rod Drive System pump and the RCIC System, and is well below the capacity of one drywell equipment drain or floor drain pump, which is used to pump the water out of the collecting sump. The collecting sumps can also accommodate this small additional leakage rate.
L2    The Frequency has been changed    from 4 hours to 12 hours, consistent with the allowance in Generic Letter 88-01, Supplement 1. The supplement allows the Frequency to be extended to shiftly, not to exceed 12 hours.
Browns Ferry Technical Specifications currently define the frequency of shiftly as 12 hours, thus, this Frequency is adjusted to coincide with this.
CTS do  not provide  a period of time to reduce leakage prior to initiating  an  orderly shutdown. Proposed ACTIONS A and B allow 4 hours to reduce LEAKAGE within limits prior to initiating a shutdown. This is reasonable since the total leakage limits are conservatively below the LEAKAGE that would constitute a critical crack size.      The 4 hour completion time for ACTION B is reasonable to properly verify the source
      . of unidentified leakage    before the reactor must be shutdown without unduly jeopardizing plant safety. The proposed changes are consistent with the BWR/4 Standard Technical Specifications, NUREG 1433.
L4    The time allowed to shutdown the plant when the required actions are not met has been changed from "in the COLD SHUTDOWN CONDITION within 24 hours" to in MODE 3 (Hot Shutdown) in 12 hours and MODE 4 (Cold Shutdown) within 36 hours. The proposed allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from  full  power conditions in an orderly manner and without challenging plant  systems. The additional 12 hours allowed to reach Mode 4 is offset by the safety benefit of being subcritical (MODE 3) in a  shorter required time.
PAQF~OF~
0 BFN-UNITS 1, 2, & 3                                                      Revision  0
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.4.4 - RCS OPERATIONAL LEAKAGE L5    Proposed  LCO  3.4.4, RCS  Operational Leakage, will add an  alternative to existing requirement in Specifications 3.6.C.l and    3.6.C.3 that a reactor shutdown be initiated if unidentified leakage increases at a rate of more than 2 gpm within a 24 hour period. Under proposed Required Action B.2, unidentified leakage that increases at a rate of more than 2 gpm within a 24 hour period will not require initiation of a reactor shutdown if it can be determined within 4 hours that the source of the unidentified leakage is not service sensitive type 304 and type 316 austenitic stainless steel piping that is subject to high stress or that contains relatively stagnant or intermittent flow fluids. This alternative Required Action is acceptable because the low limit on the rate of increase of unidentified leakage was established as a method for early identification of Intergranular Stress Corrosion Cracking (IGSCC) in Type 304 and Type 316 austenitic stainless steel piping. IGSCC produces tight cracks and the small flow increase limit is capable of providing an early warning of such deterioration. Verification that the source of leakage is not Type 304 and Type 316 austenitic stainless steel eliminates IGSCC as a cause of leak. This significantly reduces concerns about crack instability and the rapid failure in the RCS boundary. Also, the unidentified LEAKAGE limit is still being maintained and will continue to limit the maximum unidentified LEAKAGE allowed. This change is consistent with NUREG-1433.
BFN-UNITS 1, 2, 5 3                                                      Revision 0
 
CURRENT TECHNI AL SPECIFICATION MARKUP
 
~ 8-                                          c  dry  I~ a y3 QKC  07  1994 Al Anytime irradiated fuel is in                              2. With the  air sampling the reactor vessel and reactor                Zeu  w          system inoperable, grab coolant tempera        e is above          ,
Rcg'on          samples shall be 12'F, oth the sump and air                                    obtained and analyze 4Co 3.9e4 sampling systems shall be OPERABLE.      From and after the 8.I at least hours.
once every ~
                                                                                                        /2 date that one of these systems is made or found to be QCT]ddt inoperable for any reason, the r90 B      reactor may remain in operation during the succeeding 24              urs      $ 6 QQq5 Pr'~ca    for the sump system or ~~emu's hfoQ W    for the air sampling system.,              I ifcHonS g8                                              I e  air  s    pling system        ay    e r oved fr m serv ce for a per d of 4 hours or cali ation, funct n tes ng, and ma ntenan e      vit      ut provi        a tern  ora      monit    r
: 3. If the    condition in      1  or Q2 AhogS      above cannot be met, an orderly shutdown shall be initiated and                      i<
m tiorA    r~~ ~iT~
C+o                                                                l2howrc one the reactor shall be placed in the  COLD SHUTDOWN CONDITION vithin        h    s.                            4.6.D 3~    Ll
      .e.D                                                                    l. Approximately one-hal f
of all relief valves
: 1. When more    than one    relief      valve                    shall  be bench-checked is  known  to be failed, an                                  or replaced vith    a orderly    shutdown shall be                                    bench-checked valve initiated and the reactor                                      each operating cycle.
dcprcssurizcd to less than 105                                  All 13  valves  vill have psig vithin 24 hours. The                                      been checked or relief valves are not required                                  replaced upon the to bc OPERABLE in thc COLD                                      completion of every SHUTDOWN.~NDITIQN.                                              second cycle.
: 2. In accordance  vith See  Su~gp;~ye                                              Specification 1.0.NM, each  relief valve shall C4lnoIt.5  ~ 8F:~                                            be manually opened bt Bg5 5qcg                                          until  thermocouples  and og                              acoustic monitors downstream of the valve indicate steam is flowing from the valve.
BFN                                              3.6/4.6-10              AMENDMNTNO. 2 Z3 Unit    1 OF~
 
S IAblE 3.2.
51RtNENIAI ION  IIAI INN)ISIS  i        INIO OR  tl 5  stas    ~2                        Set    ints                          A~ctl ne        abl fqupa I ent      0 ra n ator se r ctor cool I leakage.              LAG lou Inl F
Smp      fill I iaer te
                                            >20.1  ain.
: 2.      idered par of swp    s  tea.
Swp Punp Out Rate i I
c    i ain Floor Orain                                                                                      I. Used  to ghteoaine unidentifiable lcm    Intcgrator                    A                                                        reactor cool anl leakage.
F
: 2. Considered part of sunup systea.
Swy    Fill Rale Iiaer                        .i    Ia.
  >"t.S. a      Sllql P~1 Out Rate Iiaa:r                8.9  in.
gLo                                  L3      c~
NOISES:
p q,g b  Or@sell      Air Sampling      Oas backgfoungde Pari cu ate I4 C
~ 4 o
I (I)    Qicnever a system is required lo be operable, there shall be one operable systco ellher autaaatic or annual,    or7 ~<T'f>~
the acliun required in Section    3.6.C.2  shall be  laken.
ine the le        f lao      aanual syst        rcby I    lee betve    swp pwp~tarts is (2)          alt ate sy a to de                                  eaka      ou because      olune o he s        u    be knae~
ulll be  lakcn to conf lra lhc ala    and assess  t~poss        y  f (3)    titan Ageipt of alum, imacdiate acti Increas+leakage.
BFN  Unit I
 
IABIE 1.2.E IIIRIN    ES I            %ICY FQt    ll tEAII    EC    N      I SR 9.'f 5J Function                  functional Iesl  gg q g        Calibralion 5  .5. fnstrmi~nchec
~
F loor Orain Simp F lm Intciirator IQ Air SuplinII  Systea    SR  3..5.'K            PI~  s    ~    once        th  LS
                                                                                                          ~2 hrS Rale Fino Orain  4'ilg l Rath,1laars ~
le  n bicycle ohqel      rail c  e oo  ra n tag c                    one  qar
 
Are SR y PlORS  i,Banal 4 qgly ~.7r)blr q,Z.E.
434 raised i n a.e s.z.  ~
4 J)c  ~tr~ f$ ~ gag~3    3 ~ ~ nfl)Ainn
                                                        ~adjt    hfe65 DEc, nicAAGA ~
                                                                                  'J N26 l .0 1999 zlda ~
: 1. Functional tests              shall  be performed once per
: 2. Functional tests shall be pcr ormed be ore eac                startup with  a required frequency not to exceed once per veek.
: 3. This instrumentation is excepted from the functional test definition.
The functional test            vill  consist of in)ecting a simulated electrical si al into th                surement channel.
: 4.      ested~ing~ogic                s tern    cti    1  tee~.
L,Ay
: 5. Refer to Table 4.1.B.
: 6.      e      ic    sys      func onal tee s shaQ incl+e a cail,ibratkqn ange gcr o  erati          cycle    f time clay rc e anKtimerif ncccs1a fo~ propert f                      th  tri s terna The  functional        test vill consist    of verifying continuity across thc inhibit vith          a voltohnm)eter.
S. Instrument checks shall bc performed in accordance vith the definition of instrument check (sec Section 1.0, Definitions). hn instrument check is not applicablc to a particular setpoiat, such as Upscale, but. is a qualitative check that the instrument ie behaving and/or indicating in an acceptable manner for the particular plant condition. Instrument check ie included ia this table for convenience and to indicate that an instrument check vill be performed on the instrument. Instrument checks are not required vhen these instruments are not required to be OPERhBLE or are tripped.
: 9. Calibration frequency shall bc once/year.
: 10. Deleted
: 11. Portion of the logic is functionally tested during outage only.
: 12. The detector          vill be  inserted during each operatiag cycle* and thc proper amount of travel          into the core verified.
: 13. Functional test vill consist of applyiag simulated inputs (eee note 3)                  ~
Local alarm lights representing upscale and downscale tripe vill be verified, but no rod block vill be produced at this time. The inoperative trip vill be initiated to produce a rod block (SRM and IRM inoperative also bypassed vith the mode evitch in RUN). The functions that cannot be verified to produce a rod block directly                vill  be verified during the operating cycle.
BFH                                                    3.2/4.2-59 Unit    1 mml)@sr  HS. 1 64 PAGE          OF
 
0 UNIT 2 CURRENT TECHNICAL SP ECIFICATION MARKUP p>aa
 
DEC 0  7 89'I poJa J,2t 2~  hnytime irradiated fuel is in          4p~:~    2. With the  air sampling the reactor vessel and reactor          AC.4-on        system inoperable, grab g~l;~l;l,g    coolant tern erature is above            Sl            samples shall be obtained 212'F, both the sump and air                            and analyze    at least L.LO            samp      ng systems  shall bc                        once every      hours.
i  384            OPERABLE. From        and after thc a e  t  at one of  these systems is  made    or found to be P t'Tlob5 inoperable for any reason, the reactor may remain in P+Q          operation during the w.p sQ eA          succeeding 24 hours for thc
~ )4rsoCd                  system or ~muse for        'ump 8            the air sampling system.
e  air  sampling syst      may be r    oved  fro scrvicc fo a per    d  of  4 h urs for cali ation, f ction test and ma      tenance    thout providi        a tcmpor ry monitor.
3~  If the      condition in  1 or  2 above cannot be met, an Ae.Tlsg s                                                            fgo ~$ pfH79OCdh) Co +I s7lo orderly shutdovn shall bc c+b          initiated and the reactor                        12, goal J oat shall be placed in e COLD WR  COKDITIOI vithin          4.6.D hours.
: 1. hpproxiaately one-half of
    .6.D                                                                  all relief valves shal) be bench-checked or
: 1. When morc      than onc  relief                        replaced  vith  a valve is knovn to bc failed,                            bench-checked  valve each an    orderly shutdovn shall be                          operating cycle. hll 13 initiated      and the reactor                        valves  vill  have been dcpressurired to less than 105                          checked or replaced upon 3'~+
psig,    vithi~~hours~ The                              the completion of every relief valves arc not required                          second  cycle.
to    be OPERABLZ in the      COLD SHUTDOWN&#xc3; COMITIOS.                                2. In accordance vith Specification 1,O.W, each relief valve shall be manually opened    until
                          ~~TIP ICATJON F'og,                            thcraocouples and acoustic monitors CJJhuMc      ~  epnJ >@~
                    ~43 rm 7R< J ~qy]oQ dovnstream of the valve f
indicate steam is loving from the valve BFH                                            3.6/4.6-10            AMENMENT NO. Z Z9 Unit    2                                                                    PAGE
 
TASIE 3.2.E INSTRIICNIA        IIRT NNIfORS    tEAXAGE I    ORYKtt System    2                          Set    ints                          Action qu pment Ora n                                                                              I. se    o    erm ne  dent I f e Fl    ntegrator                      A                                                      r    tor coolant leak@a.            gAs Swp      ll Rate                                                                        2. Cons      red part of swpgystea.
TIa>>r                  >20.1 min.
Swp.Pmp      t Rate Tie>>r              <13.1 min F loor Orain                                                                                  I. Used  to determine unidentifiable Floe Integrator                                                                              reactor coolant leakage.
Smp  Fill Rate                                                                          2. Considered part of swp system.
1 Ia>>r                    >80.i in Smp Pmp Out Rate Tie>>r                %.9 sin.
L<0                            LE          or Or@el I    Air Sanpl ing        Gas and            3 Xgverage Part culate        background W
hl NOTES:
lu I
Cl (I) lkenever      a system'Is required    to be operable, there shall be one operable system either autanatlc or manual, or the action required In Section 3.6.C.2 shall be taken.
I rT><<
A
: 2)  An  alte    te system to determine the leakage      f1~~ a manual system <>her~ the tie>> betuee~wp pwp tarts ls  amitore~      The  tie>> interval <i&i determine the Ieakag~ou because the ~m>> of s    vill be knam.
{3) Upo~ecelpt of alarm,          <<n>>    te action  uill be  taken to conf I@a the alarm and assess  the      Ibilit f increaL~leakage.
BFNMlt 2
 
ININll'I@1 ANO CAI IBNAIION FNE
                                                              ~  TABIE NCV i.2.~
tN ORAKLL LEAK OEIECIIQI INSIN~IAIION sg 3.4s'. )
Function Floor Oraln Sup Flee Integrator                                                                    eaealday Air Sanpllng  Systea        SR  3..5.>                  3)      A5    once      ths L~        (g. ~
te LA4  I~a      n S            te and                                          ce/  r      c    ~    Ib9L
                          '
fiber Oraln      c                          ance/operant    cycle g.Aq I
8FNZJnlt 2
 
W'rg  /4  aU      qpc /- A'~4      0'2 g 7A r~m,~      > ivy/a        <<l ical(o'e 3 a/
am< ~raSs4,>> /4
                          <o
                              ~~~~~yC    < kCA~ZQ      ~)~~~~                  'JAN 26 1999 V.S
: l. 45. Functional 5$  3. z. Fir~
tests shall    be performed once per            P~
20    Functional tests sha          e per orme    e ore eac    startup with  a  require frequency not to exceed once per week.
3~    This instrumentation      is excepted from the functional test definition.
The  functional test will consist of injecting a simulated electrical signal into the measur 4~          ed  during logic      stem  functiiial  teh4s.
: 5.      Refer to Table 4.1.B og c system      unc onal te~ts    shall include  a o~ibration~nce ~er ope    ing cycle functio ng of the o~e      delay relays tri stems s
and timers necessary for proper .
: 7. The  functional test      will consist of verifying continuity across the inhibit with    a  volt-ohmmeter.
: 8.      Instrument checks shall be performed in accordance with the definition of instrument check (see Section 1.0, Definitions). An instrument check is not applicable to a particular setpoint, such as Upscale, but is a qualitative check that the instrument is behaving and/or indicating in an acceptable manner for the particular plant condition.
Instrument check is included in 'this table for convenience and to indicate that an instrument check will be performed on the instrument.
Instrument checks are not required when these instruments are not required to be OPERABLE or are tripped.
: 9. Calibration frequency shall        be once/year.
: 10.      Deleted Portion of the logic is functionally tested during outage only.
: 12.      The  detector will be inserted during each operating cycle and the proper amount of travel into the core verified.
: 13.      Functional test will consist of applying simulated inputs (see note 3). Local alarm lights representing upscale and downscale trips will be verified, but no rod block will be produced at this time. The inoperative trip will be initiated to produce a rod block (SRM and IRK inoperative also bypassed with the mode switch in RUN). The function that cannot be verified to produce a rod block directly will be verified during the operating cycle.
8'' /575'3,4r FA ~qz
                ~<<  ~sf'Pcr4i<
                ~~
BFN                                            3.2/4.2-59                AMENDMECRV. y    jy Unit  2 rAGF    ~ ~F~
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~OF~
 
DEC  07  1994
                                              /7lpgg5, \ 2  $  3 2~  Anytime irradiated fuel is in                              2. With the    air sampling the reactor vessel and reactor                  Req~'nd        system inoperable, grab coolant      tern erat re is above            @thon            samples shall be t
      ~      Xg.4 212'F OPERABLE.
oth the sump an air sampling systems shall be From and after the
: 8. I          obtained and analyzed at least hours.,
once every ~12 date that one of these systems is made or found to be
    $(. f LOA 5    inoperable for any reason, the P~6              reactor may remain in operation during the Pcc posed blok      succeeding 24 hours for the K Ac.A      5      sump system        or  i~oars'or                  3odAyp
    +8              the  air    sampling system.
Th    aa. sam        ng sys    em ma    be rem ved from service              or  a peri of 4 h s for calib tion,          f  ction te ting and mai tenance            ithout rovidin a tern o                moni  or.
3~  If the      condition in        1  or  2 above cannot be met, an
      /}cTlogg    orderly shutdown shall be                              , ~c Abr SlivgeWe CoAoi5ou c+u          initiated and the reactor                            >~ l2.hours and shall be placed in he COLD SKJTDOMN CONDITION within                            .6.D.
ours  e Ll                                          1. Approximately one-hal
    .6 D.                                                                          of all relief valves shall  be bench-checked When more        than one    relief                            or replaced with a valve is        known    to be failed,                          bench~hecked valve an  orderly shutdown shall be                                  each operating cycle.
initiated and the reactor                                        All 13 valves will have depressurised to less than 105                                  been checked or psig within 24 hours. The                                        replaced upon the relief'~ves are not required                                    completion of every to be OPERABLE in the COLD                                      second cycle.
SE/TDOMN CONDITION
: 2. In accordance with Specification 1.0.NM, each relief valve shall
                          ><>>'@AH'o                g                                be manually opened
                  <Hhsb    aP    T~ ggA/ lSTS                                    until  thermocouples and
                                  +hi5 Se~bo                                        acoustic monitors downstream of the valve indicate steam is flowing from the valvr NeoMENNO. Z 86 BEN Unit    3
: 3. 6/4. 6-10 i AcE~oF~'
 
0
                                                                          'ThNE 3.2.E TI5TRNKNT        THAT    ICNTTNS    LfhlNiif TIITO      tl Used to dateaine Identifiable
            ~iov    ~aor                                                                                      reactor
: 2. Considered ant Toalraoe.
of susp systea.
              ~4r                        gO. I ale.
Rap          Out Rate  llmr            ~
i <<T3.4 ale.
Floor Oraln                                                                                          l. Used to date>aine unidentifiable Flee lnte9rator                                                                                      reacior coolant leakage.
LCO      Susp Fill ILate                                                                                  2. Considered part    of susp systea.
  ~'"'~ I S~ Tlmr FLep Out gaQ Tieer LC. >
3i'I.>ibOryuel 1 Alr SapllnII              Oa tart  cu ate 0'
RIG,:
(1) lt>>never a systea ls rawlred to be terable, Mere sl>>II be one cperable systea eitber autcaatlc or aanual, or the action required le fectlon 3.C.CYshall be tahse.
{2) An a+i 1 terna ed. T ystea Im Ia deterai al uil the Teakyg ~
detaealee as    ls a Tat 1 s vo 0>>    mba suep susp be s  ts ls    ~ J
              ~
1                                                    1
{3          rece      of al      Ieaedla      tlon      1 be            to coe      the a      aed    sess    poss    llltyof        late rea sad  e A
Q b
 
hNE  .2.f N    I 1  Chil Yl F CB- .
floor Orala Sap fly'y4eyrator hir Qep I lac Systea 5g 3.,g. g                    I2)f5
                                                          . liS Kqu    t      la F      ala  t    c KN-lhlt 8 8
                                                                      )
CL)
C&#xc3;l
 
  ~o<S  ~
Only Noes      l,g~d 0 adcb<SccL i n  ~~r aPP/9  +
                                      /MALS
                                            +$
6 lbk q.2.E San+ion p,3
                                                              ~~s~tg+55y. SPeC'afio~
r<~',.                    9..5 9J                                                                                        JAN 26 tS89 Sg, 3ego 5eX                                                            day
: l. Functional tests shall be performed once per                                    5 Functional tes s e              1 be performed before each startup with              a require frequency not to exceed once per veek.
: 3. Thiy instrumentation ie excepted from the functional test                        definition.
The functional test            vill  consist of injecting a simulated            electrical signal into the measurement channel
: 4. Test      dur    g  lo                            al este.
J R~J
: 5. Refer to Table 4.1.B.
: 6.      e  logic ystem functi              1  tests    ha      c u e    ca  b  tion ~ce ger op    ating c le o time            de    y rela      and t    ers n    cesar  for prier) func    oaing    o      he  t      e  st
: 7. The    functional teat        vill consist      of verifying continuity across thc inhibit wi,th      a  volt    ohmmeter.
: 8. Instrument checks shall be performed in accordance with the definition of instrument check (ece Section 1.0, Definitions). An instrument check is not applicable to a pareicular setpoint, such ae Upscale, but is a qualitative check that the instrument is behaving and/or indicating in an acceptable manner for the particular plant condition. Instrument check is included in this table for convenience and to indicate that an instrument check will be performed on the instrument. Instrument checks arc not required when these instruments are not required to bc operable or are tripped.
: 9. Calibration frequency shall                be once/year.
: 10.    (DELETED)
: 11. Portion of the logic is functionally tested during outage only.
: 12. Thc detector        vill bc    inserted during each operating cycle and thc proper amount of travel          into the core verified.                                  C
: 13. Functional test          vill consist of applying simulated inputs (seewillnotebc 3).
Local alarm lights representing upscale and downscale trips verified, but no rod block vill be produced at this time. The inoperative trip vill be initiated to produce a rod block (SRM and IRM inoperative also bypassed with thc mode svitch in RUN). The functions that cannot be verified to produce a rod block directly vill be verified during the operating cycle.
See  Pug>'iak'on &r <tony S Gpss  +5 +
BFN                                                  3 '/4.2-58                    AMENOMERF WP. yPg Unit  3 pAGE      ~ o"~
 
0 t ADMINISTRATIVE Al BFN ISTS JUSTIFICATION 3.4.6 -
FOR CHANGES RCS LEAKAGE DETECTION INSTRUMENTATION Reformatting and renumbering are in accordance with the BMR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BMR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2  The  revised presentation of actions is proposed to explicitly identify that  LCO 3;0.3 is required to be entered    if all. required RCS leakage monitoring systems are inoperable. This action is consistent with the current requirements and is considered a presentation preference.
Therefore, this change is considered administrative.
A3    The Table  format is being deleted. This change is considered      a presentation prefer ence. Therefore, this change is considered administrative.
A4    Proposed ACTION  B is modified  by a note  that explicitly states that the provisions of 3.0.4 are not applicable.      This  explicitly allows a mode change when both the    particulate  and gaseous  primary containment monitoring channels are inoperable. This allowance is provided because, in this Condition, the drywell sump monitoring system will be available to monitor RCS leakage and the compensatory actions for the inoperable system will provide additional indication of RCS leakage.        This is an administrative change since existing Technical Specifications do not have an explicit requirement that prohibits entry into a Mode or condition when an LCO required by that Mode or condition is not satisfied. Therefore, CTS allows the actions being permitted by the note being added. This is consistent with NUREG-1433, BFN-UNITS 1, 2, 5 3                                                        Revision 0
 
JUSTIFICATION  FOR CHANGES BFN ISTS    3.4.5 - RCS LEAKAGE DETECTION INSTRUMENTATION A5    Frequency has been editorially changed from monthly to every 31 days and from every six months to every 184 days. This is an administrative change since these are equivalent time periods.
A6    The  current provision (CTS 3.6.C.2, 2nd paragraph) that allows the air sampling system to be removed from service for a period of 4 hours for calibration, functional testing, and maintenance without proyiding a temporary monitor has been eliminated. There is currently no requirement for a monitor for at least 24 hours (CTS 4.6.C.2).
Therefore, the current provision serves no purpose.
TECHNICAL CHANGE    -  NORE RESTRICTIVE The proposed      applicability of  NODES  1, 2 and 3 is more restrictive  than CTS 3.6.C. l.a applicability of "Any time irradiated fuel is in the reactor vessel and reactor coolant temperature is above 212'F." The Startup Node will now include the mode switch position of "Refuel" when the head bolts are fully tensioned. The change eliminates the potential to interpret certain plant conditions such that no MODE, or a less restrictive MODE, would exist. Currently, CTS 1.0.H allows the plant to be considered in the SHUTDOWN CONDITION and in the Shutdown Mode with the mode switch in the Refuel position (and other positions are allowed while in the Shutdown Mode) as permitted by notes to that definition.
The allowance      to place the  Mode Switch in other positions has been moved to Section 3.10, Special Operations and Section 3.3.2.1, Control Rod Block Instrumentation. Any technical changes to these allowances will be discussed in the Justification for Changes to these Sections.
M2    The frequency of grab sampling with the air sampling system inoperable has been increased from 24 hours to 12 hours. A grab sample once/12 hours provides adequate information to detect leakage during the extended (See Justification for Change L4) period of time that the        air sampling system is allowed to be inoperable.
H3    Not used.
M4    Not used.
H5    The Frequency of the channel check requirement has been changed from every 24 hours to every 12 hours, consistent with Generic Letter 88-01, Supplement 1 and NUREG-1433. This is an additional restriction on plant
    'peration.
BFN-UNITS 1, 2,  8L  3                                                    Revision  0
 
'
JUSTIFICATION  FOR CHANGES BFN ISTS      3.4.5 -  RCS LEAKAGE DETECTION INSTRUMENTATION CTS  3.6.C.3 requires an orderly shutdown be initiated and the reactor to be in the COLD SHUTDOWN CONDITION within 24 hours when certain conditions can not be met. Proposed Action C will require the plant be in MODE 3 in 12 hours and MODE 4 in 36 hours. The addition of this intermediate step to the COLD SHUTDOWN CONDITION is considered more restrictive since CTS does not require any action to have taken place within 12 hours. The allowed Completion Time is reasonable, based on operating expe} ience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
TECHNICAL CHANGE    -  LESS RESTRICTIVE "Generic" LA1  The  description of an acceptable alternate system to measure leakage has been  relocated to the Bases or procedures that support compliance with the limits for RCS Operational Leakage in proposed Specification 3.4.4.
The design features and system operation are also described in the FSAR.
Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in Chapter 5 of the Technical Specifications. Changes to the procedures and FSAR will be controlled by the provisions of 10 CFR 50.59.
LA2  The  details relating to the setpoints        have been  relocated to the procedures.        Changes  to the procedures will  be  controlled  by the licensee controlled programs.
LA3  The  details relating to actions required        upon  receipt of  an  alarm have been  relocated to procedures. Changes to the procedures          will  be controlled by the licensee controlled programs.
LA4  Details of the specifics of the functional, calibration, and logic system functional test related to the floor drain sump          fill  rate and pump out timers has been relocated to procedures          since  the  operability of the system is not dependent upon these timers. Changes to the procedures will be controlled by the licensee controlled programs.
BFN-UNITS 1, 2,  5. 3                                                        Revision 0 PAQE          0F
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.5 -  RCS LEAKAGE DETECTION INSTRUMENTATION LA5  The  drywell equipment drain  sump  monitoring system functions to quantify identified leakage. Since the purpose of this specification is to provide early indication of unidentified RCS leakage, the drywell equipment drain sump monitoring system has been relocated to the Bases or procedures that support compliance with the limits for RCS Operational Leakage in proposed Specification 3.4.4. The design features and system operation are also described in'the FSAR. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in Chapter 5 of the Technical Specifications. Changes to the procedures and FSAR will be controlled by the provisions of 10CFR50.59.
TECHNICAL CHANGE  - LESS RESTRICTIVE "Specific" Ll    The time allowed to shutdown the plant when the required actions are not met has been changed from "in the COLD SHUTDOWN CONDITION within 24 hours" to in MODE 3 (Hot Shutdown) in 12 hours and MODE 4 (Cold Shutdown) within 36 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems.      In addition, a new (more restrictive) requirement to be in MODE 3 (Hot Shutdown) within 12 hours has been added. These times are consistent with the BWR Standard Technical Specifications,    NUREG  1433.
L2    This requirement has been deleted.      An instrument check would not consistently  demonstrate  operability since normally the instruments could not be compared to any other instruments, and their reading could be anywhere on scale; thus, observing the meter would provide no valid information as to whether the instrument is OPERABLE. The CHANNEL FUNCTIONAL TEST requirement is the best indicator of OPERABILITY while operating, and this requirement is being maintained. This is also consistent with the BWR Standard Technical Specification, NUREG 1433.
BFN-UNITS 1, 2, & 3                                                      Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.4.5 -  RCS LEAKAGE DETECTION INSTRUMENTATION L3    CTS  Table 3.2.E defines the air sampling system as consisting of gas and particulate monitoring channels (i.e., both channels are required OPERABLE for the air sampling system to be considered OPERABLE).
    . Proposed LCO 3.4.5.b requires either one channel of the gas or one channel of the particulate monitoring system to be OPERABLE. This is less restrictive than CTS requirements but is acceptable since either channel is capable of indicating increased LEAKAGE rates thaf correlate to radioactivity levels of 3 times average background.
L4    The allowed outage time for the air sampling system has been changed from 72 hours to 30 days. The 30 day allowed outage time recognizes that at least one other form of leak detection is available (sump monitoring) and takes credit for the increased sampling frequency of 12 hours (versus CTS of 24 hrs). This change is consistent with NUREG-1433.
L5    The calibration frequency has been changed once pe} 3 months to once per 18 months. This new Frequency is consistent with BFN setpoint methodology, which considers the magnitude of the equipment drift in the setpoint analysis over an 18 month calibration interval. The primary containment leak detection noble gas and particulate monitor is a digital Eberline continuous air monitor (CAM) which is identical to the building effluent monitors whose calibration frequency is 18 months in accordance with the Offsite Dose Calculation Manual (ODCN) and previously required by Technical Specification Table 4.2.K until these instruments were removed by Amendment No. 216 dated September 22, 1993 (reference TS 301).      Excessive calibration can cause damage to the equipment. In addition,  plant operations could be impacted while the equipment is removed from service for calibration since    it  would not be available for leak detection.
BFN-UNITS 1, 2, 5 3                                                      Revision  0 PAGE    S    GF~
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
clPi'        z. V. 4 J  N2819%
3.6.8.                                                  4.6.B.
4~  When the reactor is                                  4~  Whenever the        reactor is not not pressurized vith fuel in                              pressurized vith fuel in the reactor vessel, except                                the reactor vessel, a during the STARHJP COHDITIOR,                            ,saaple of the reactor the reactor vater shall be                                coolant shall be analyzed maintained    vithin  the                                at least every 96 hours folloving liaita.                                        for conductivity, chloride ion content and pH.
ao  Conductivity-10 yeho/ca at 25    C
: b. Chloride  - 0'  ppa Sec  Sufkif eeHon Ar CJ4nst 5
                                                            ~'<< >< 8/9 <8 .ta this
: c. pH  shall  be betveen                      Sec gioa 5.3 and 8.6.                                          llnK A~ sR3'.v,q,l 5~  When  the tiae  liaita  or                              During      guilibriaa pover maxiinm conductivity or                                  operati        an iaotop c chloride concentration                                    ana yaia        nc liaita  are exceeded, an                                q    t t tive          ur cata orderly ahutdovn shall be                                for at    1  aat  I 31 -132 initiated iaaediately. The                                I-              I-13 reactor shall be brought to the be perfoza          eel~ on a COLD SHUTDOWN CORDITIOR                              coolan        iqaid aaaple.
aa  rapidly  aa cooldovn    rate da) s eraita.
CQuirc          A.  +s.l LCO    6. Wheneve    the reactor ia                                k4ditional coolant P 9.4        r t cal the        ta on activity                      samples shall be taken concentrations in the reactor                            vhenever the reactor Ryl'c      coolant shall not exceed the                                ctivi          ceeda equilibritm value of 3.2 pCi/ga                          pre to of dose equivalent I-131.                                equilibritm concentration specified in 3.6.B.6 c      ti        re    t:
BFR                                        3 ~ 6/4 ~ 6-7                AMENOMENT Ra.      208 Qnit 1
 
8
~ '
 
ympmg  N A. + ikey<<,'~
s 4r  Cu d.h'hA pcs(od    This  limit ma    bc exceeded for  ~  f    a. During the    ST        C  HDITIOI a maximum    of 4$ hours. During                b. ollovi    a  si    fican this activity transient the                            over        e40 iodine concentrations shall not exceed 26 pCi/gm        encver    e            c.,F lloving an,incre          c reac or    s  cr t  cal                                in the equ librium s                  pcr tc                    of gas le 1 exceed ng mor          5X    its earl                          10, 0 pCi/ ec (at the po er op  rati  n      er                            ste    get ai e)ector) cepti n fo    thc        li siodine                vithin a 48-hour period activi    limits If the concentratioa in the coolant                    d. Whenever the      equilibrium exceeds 26 pCi/gm, the reactor                        iodine limit specified
  @Tfog  shall be shut dovn, and the                            in 3.6.B.6 is exceeded.
    '8    steam line isolation valves The additional coolant        liquid samples shall be takea        at  4 hour ufik4n tQ Qurg interval or            our, or        ti LQ,                                    a sta le iodine        oncen rati    a be ov the    limit      valu (3.
or be fn NM                    pC ga)    i  establ shed.
                          'I i0hi~ 34 h~rZ                Hov cr, a      least cons cutive samples  shall  b      akea  in al cases. kn isotopic analysis 11 be performed for each sample, and quantitative measuremcnts made to determine the dose equivalent I-131 concentratioa.
: 7. When  there ia no fuel ia the                    7. When  there is no fuel in reactor vessel, technical                            the reactor vessel, specification reactor coolant                        sampling of reactor coolant chemistry limits do not apply.                        chemistry at technical specification frequency is not required.
                                                        ** or the    p rpose o      this ection sampl      frequ    cy, a s      ficant over        chang>>    is de    ed as a change        ceasel 15X    f rated p ver    ia  ess  t 1 hour.
BFI                                        3.6/4.6-8              NENOMENT    lE 2 9 8 Unit  1 PAGE      3    QF    ~
 
0 INSERT PROPOSED      NEW  SPECIFICATION    3.4.7 Insert new  Specification 3.4.7, Residual Heat Removal System-Hot Shutdown, as shown in the BFN Unit 2 Improved Technical Specifications.
PAGE~OF~
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.7 RHR SHUTDOWN COOLING SYSTEM  - HOT SHUTDOWN ECHNIC L C    GE -  0    ST IC  IV Ml    A new  Specification is being added requiring two RHR Shutdown Cooling subsystems to be OPERABLE in MODE 3 with reactor steam dome pressure less than the RHR low pressure permissive pressure. Appropriate ACTIONS and a Surveillance Requirement are also added.      This is consistent with the BWR Standard Technical Specification, NUREG 1433 and is an additional restriction on plant operation.
BFN-UNITS 1, 2, 5 3                                                      Revision 0
 
H(
INSERT PROPOSED      NEW  SPECIFICATION    3.4.8 Insert new  Specification 3.4.8, Residual Heat Removal System Cold Shutdown, as shown in the BFN Unit 2 Improved Technical Specifications.
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.8 RHR SHUTDOWN COOLING SYSTBI - COLD  SHUTDOWN TECHNICAL CHANGE  -  ORE  ES  CTIV Hl    A new  Specification is being added requiring two RHR Shutdown Cooling subsystems to be OPERABLE in NODE 4. Appropriate ACTIONS and a Surveillance Requirement are also added. This is consistent. with the BWR Standard Technical Specification, NUREG 1433 and is an additional restriction on plant operation.
BFN-UNITS I,  2, 5 3                                                Revision 0
 
I 0
 
UNIT2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
JUNP,8 tsar 3.6.B. Coo                                    4.6.B. Coo            e      t
: 4. When  the reactor  is                        4. Whenever the        reactor is not not pressurized vith fuel in                        pressurized vith fuel in the reactor vessel, except                          thc reactor vessel, a during the STARTUP COHDITIOH,                        sample of the reactor thc reactor vater shall be                          coolant shall bc analyzed maintained vithin the                                at le'ast. every 96 hours folloving limits.                                    for conductivity, chlori ion content      and pH.
: a. Conductivity-10 pmho/cm at, 25  C
: b. Chloride  0.5  ppm                      5ec 'X<sf<gi'cbio~ +< +~d~
far <TS 3.C.8 /O'.C.g
: c. pH  shall bc betveen                        His  S~4<o~
5.3 and 8.6.                                                    4r $ ~3    H.9 I sR 3.'A6 I
: 5. When thc time limits or                      5. Dur        quilibrium pover maxilla conductivity or                              o    cratio    an  iaotop c chloride concentration                              analysis          c limits are exceeded, an                                      itativc me urgents orderly shutdovn shall      be                      for at cast I-13K, I-132 initiated immediately. The                            -133 and I-1 s reactor shall be brought to                          be performed                  on a thc COLD SHUTDOMH COHDITIOH                          coolan      liquid      sample.
aa rapidly as cooldovn rate
@CO crmits.                                H3      9 Joys i ~t 34@                                                      LIj          ~
                                                                              .  +'5,
: 6. Whenever thc reactor                          6. Add    tional coolant hppl c,.        rit  ca  thc limits on    activity              samples      ahall be taken concentrations in the reactor                      vhcnever the reactor coolant shall not exceed thc                        activity      exceeds equilibrium value of 3,2 pCi/gm                            cent of dose equivalent I-131.                          equilibrium concentration 4.Al      specified in '3.6.B.6 one    ~f          o    o c      iti      are  +t:
PAGE BFH                                        3.6/4+6-7              NENOMENT RtL        Z 2g Unit    2
 
o 0
 
S cc,S;,4)..~  ~.q(
JUN 8 8 $ 994 (Q
                                    /vog  ~P    kfNet'4J Ac~
Pygmy>gQ gQ,h  c p Cl'lo fJ  This  limit may    be exceeded                  goal    a. During the    STARTUP COHDITIOH p          0                                    for L.        of 48 hours. During                                  Folloving    i4fgnffic this Lctivity transient the                                    pover change      +
iodine concentrations shall not exceed 26 pCi/gm        enever      t  e                c.      olloving  an  in    ease reactor is  critical.          e                              i  the  equilibri eac                        operated                            off    as  level excee ing more  t    5X    of    s year                                  10,0      pCi/sec (at the pover    eration        er      s                            steam et Lir e)ector) excep ion for        e e  uil brium                            vi in a 48-hour eriod.
ctivit limits        If  the iodine concentration in the coolant .                            d. Whenever the      equilibrium ETIO+ exceeds 26 pCi/gm, the reactor iodine limit specified 0      Shall be shut dona, and the                                      in 3.6.B.6 is exceeded.
steam line isolation vLlves Pep,      The additional coolant liquid A.t        samples shall be taken at 4 hour c  W.~ (2. w~                          intervals for 48 ours, or unt 1 a sta e iodine c              entration belo the limiting va e (357, o~ be I'~  AW                        yCi/gm is established.
Q  ~i& 5$ 4v~                        Hovever,          least 3 consecutive samples sha                            1 cases      ka isotopic analysis Shall be performed for each sample, and quantitative measurements made to determine the dose equivalent I-131 concentration.
Shen  there is no fuel in the                          7. When    there is no fuel in the reactor vessel, technical                                        reactor vessel, sampling of specification reactor coolant                                  reactor coolant chemistry at chemistry lild.ts do not apply.                                  technical specification frequency is not required.
For the purpose of          this section sampling    frequ,        a si ficant poser defin as L change e i ceding 1SX of r ed pover in less than 1  hour.
3 '/4.6-8                      AMEMOMENt'Mt. M M M PAGE
 
INSERT PROPOSED NEM SPECIFICATION          3.4.7 Insert new  Specification 3.4.7, Residual Heat Removal System-Hot Shutdown, as shown in the BFN Unit 2 Improved Technical Specifications.
PAGE      OF
 
JUSTIFICATiON  FOR CHANGES BFN ISTS  3.4.7 RHR SHUTDOWN COOLING SYSTEN    - HOT SHUTDOWN T C NIC L  C  GE -  0    EST  IC IV Ml    A new  Specification is being added requiring two RHR Shutdown Cooling subsystems to be OPERABLE in NODE 3 with reactor steam dome pressure less than the RHR low pressure permissive pressure. Appropriate ACTIONS and a Surveillance Requirement are also added.      This is consistent with the BMR Standard Technical Specification, NUREG 1433 and is an additional restriction on plant operation.
BFN-UNITS 1, 2, 5 3                                                      Revision 0
 
INSERT PROPOSED NEM SPECIFICATION            3.4.8 Insert  new  Specification 3.4.8, Residual Heat Removal System Cold Shutdown, as shown in the BFN Unit 2 Improved Technical Speci fi cati ons.
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.8 RHR SHUTDOWN COOLING SYSTEN  - COLD SHUTDOWN TECHNICAL CHANGE  - NORE RESTRIC  IVE Hl    A new  Specification is being added requiring two RHR Shutdown Cooling subsystems to be OPERABLE in NODE 4. Appropriate ACTIONS and a Surveillance Requirement are also added. This is consistent with the BWR Standard Technical Specification, NUREG 1433 and is an additional restriction on plant operation.
BFN-UNITS 1, 2, & 3                                                  Revision 0
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
3.6.B.                                              4.6.B. C o
: 4. Mxen thc reactor is                            4. Whenever thc        reactor is not not pressurized vith fuel in                          pressurized vith fuel in the reactor vcsscl, except                            thc reactor vessel, a during the SThRTUP COHDITIOS,                        sample of the reactor thc reactor vater shall be                            coolant shall bc analyzed maintained vithin the                                at least every 96'hours folloving limits.                                    for conductivity, chloride ion content and pH.
a    CoILductivity 10 pmho/cm  at  25~C
                                                          ~
: b. Chloride  - 0.5 ppa                      ><5+i~i~on Qe Changes
                                                          'CI'~ F 4 8/y.C..8;< +h;s Sccdon
: c. pH  shall  be betveen 5.3 and 8.6.                                            Ilfok      r 5 3 Q.g, I
: 5. When the time limits or                        5~    During      qu  libriua    povc mm~mL conductivity or                                  peration      an    sotopic chloride concentration                                aILa  s s2 limits are exceeded, an orderly shutdovn shall be tit tive        eas    cm    ts I- 32, fo at      1  ast    -131 initiated immediately. The                            I-1              I-1  4 s reactor shall bc brought to                          bc performed                    oIL a the  COLD SHUTDOWN CONDITION                          coolant      1  quid sample.
as  rapidly  as cooldovn    rate permits.                                                7$
                                                                        /5
: 6. Whenever the I
6~
e      '.Ron,l 0      coo ant
: 8. 1
(
ritic the limits on activity                        samples shall be taken 3,q,p      concentrations    in the reactor                      vhenever the reactor
            , coolant  shall  not  cxcecd the                      activity      exceeds    0
(
hyllcrk'IkPOoflibrf a ooloe of 3.2 PCi/ga                          e  en    0      e of dose equivalent I-131.                            equ      br ua concentration specified in 3 o th fo ovi c    ii        a    m BFR                                            3 '/4 '-7              AMENDMENT NL        y8y Unit  3                                                                F~GF~OF
 
n3.% 6 jets)sg lo gpooS      A4      oo gcpw  o',CcP j44s'y~S  4w (e  J4        A Qhon P    This liuent Iaay bc exceeded                            a. Duri    the  ST        CO    ITIOH for a  aaxiam of    48    hours.        During            b. Follovi      a  signi f ant this activity transient thc                                    pover          ec*
iodine concentrations shall not exceed 26    pCi/            eaevcr                    C~      llovtng an increase reactor s cr tical                      e                          the equili ri~
e    ore                      o rate                      of gas level          ceding r than 5 of i s yea y                                      10, 0 pCi/sec at the vc  opcrat oa            er        s                    ste    5et air C5 tor) e  ion, for        c c      ilib                        vithia a 48-hour riod.
a    iv ty liaits            If the i dine                                      equilibrhm concentra      on  in the coolant                      d. Whenever the I+fon exceeds 26 pCi/ga, thc reactor                    AC),
iodine limit specified
(
8 ahall bc shut down, and the                          At'H n in 3.6:B.6 is exceeded.
steaa    line isolation valves                    k.l shall    be clos                                        The additional coolant liquid samples shall be taken at 4 hour bligh'on      ~ghmr                      intcrv 1 o 48 ho s, r until stab      iod      coac trc ioa or be on        Q~                        b  lov        liat        v    e    .2 9 lPo'Hlo& 3Q ~Op                          p    /gR)    s cata    ished Ho    ver,    t least 3 c        cu s      ess      lbet              al cases          isotopic analysis be pcrforaed for each saaple, snd quantitative aeasureaents sade to detcraine the dose equivalent I-131 concentration.
: 7. When    there is no fuel in the                          7. When  there is no fuel in reactor vessel, technical                                      the reactor vessel, specification reactor coolant                                  saapling of reactor coolant cheaistry limits do not apply.                                cheaistry at technical specification frequency is not required.
g~      >WAXaNon 4 r rC~ '>l'i~ B (~oo,;s        C~g For the urpose f this section ssRpl        frcqu cyg a s      fican power                  is dc    cd as a change          ccd 15X    f rated      vcr jn    css 1 hour.
BFI                                                  3.6/4.6-8                AMENOMgg ~L      Z 81 Unit  3 Gp    g    0
 
INSERT PROPOSED      NEW  SPECIFICATION    3.4.7 Insert new  Specification 3.4.7, Residual Heat Removal System-Hot Shutdown, as shown in the BFN Unit 2 Improved Technical Specifications.
                                                    ~~CE      OF
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.7 RHR SHUTGOMN COOLING SYSTEM  -  HOT SHUTDOWN EC NICA  CHANGE -  0 E  EST  IC I Ml    A new  Specification is being  added  requiring two  RHR  Shutdown Cooling subsystems  to be OPERABLE in  MODE  3 with reactor  steam dome pressure less than the RHR low pressure permissive pressure. Appropriate ACTIONS and a Surveillance Requirement are also added.      This is consistent with the BWR Standard Technical Specification, NUREG 1433 and is an additional restriction on plant operation.
BFN-UNITS  I, 2, 5 3                                                      Revision 0
 
y(
INSERT PROPOSED NEM SPECIFICATION          3.4.8 Insert new  Specification 3.4.8, Residual Heat Removal System Cold Shutdown, as shown in the BFN Unit 2 Improved Technical Specifications.
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.8 RHR SHUTDOWN COOLING SYSTEM  - COLD SHUTDOWN ECHNICA  CHANGE -  ORE  ESTRIC IVE Ml    A new  Specification is being added requiring two RHR Shutdown Cooling subsystems to be OPERABLE in MODE 4. Appropriate ACTIONS and a Surveillance Requirement are also added. This is consistent .with the BWR Standard Technical Specification, NUREG 1433 and is an additional restriction on plant operation.
BFN-UNITS 1, 2, 5 3                                                  Revision 0 OF
 
13USTIFICATION FOR CHANGES BFN ISTS  3.4.6 -  RCS SPECIFIC ACTIVITY ADMINISTRATIVE Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical, Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
~ A2    Note  is added  to the Required Actions for Condition A to indicate that LCO 3.0.4 is not applicable.      Entry into the Applicable Modes should not be restricted since the most likely response to the condition is restoration of compliance within the allowed 48 hours. Further, since the LCO limits assure the dose due to a LOCA would be a small fraction of the 10 CFR 100 limit, operation during the allowed time frame would not represent a significant impact to the health and safety of the public. In addition, this allowance is already inherently provided by the words of Specification 4.6.B.6.a, which states that additional samples are required "during startup" when specific activity exceeds the limit. Thus, this change is a presentation preference only and is considered administrative.
A3    Existing Specification 3.6.B.6 requires that    if the Dose Equivalent I-131 cannot be restored within 48 hours, or    if an any time it exceeds 26 pCi/gm, the reactor must be shut down and all main steam lines must be isolated immediately. Proposed LCO 3.4.6, Condition B, allows the alternative of being in MODE 3 within 12 hours and Mode 4 within 36 hours under the same conditions. This option is provided for those instances when isolation of main steam lines is not desired (e.g., due to the decay heat loads). In Mode 4, the LCO requirements are no longer applicable. This change is considered administrative because existing 1.0.C. 1 would require that the reactor be placed in Mode 4 within 36 BFN-UNITS 1, 2,  8L 3                                                    Revision 0
                                                                          ~u-;D
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.4.6 - RCS SPECIFIC ACTIVITY hours  if the        requirements in  CTS  3.6.B.6 could not be met. This change is consistent with          NUREG-1433.
TECHNICAL CHANGE        -  MORE  RESTRICTIVE Ml    The Applicability has been changed to require the specific activity to be within limits in those conditions which represent a potential for release of significant quantities of radioactive coolant to the environment. Thus, MODE 3 with any steam line not isolated has been added. In addition, MODE 2 with any steam line not isolated has been added in lieu of MODE 2 when the reactor is critical. While this does allow the reactor to be critical with the main steam lines isolated while not requiring the LCO to be met, overall this change is considered more restrictive due to the MODE 2 subcritical and MODE 3 requirements.
In addition, the ACTIONS have been modified to reflect the new Applicability, and an option for exiting the applicable MODES is
      - provided for cases where isolation is not desired.
~ e      CTS  4.6.B.5 requires sampling reactor coolant to determine specific activity "during equilibrium          power operation." Proposed SR 3.4.6.1, which contains proposed requirements for sampling reactor coolant to determine specific activity, is modified by a note that requires this Surveillance to be performed only in MODE 1. This change is slightly more restrictive because sampling will be required whenever the reactor is in MODE 1 and not just when equili6rium conditions have been established. This change is consistent with NUREG-1433.-
M3    The  Surveillance Frequency has been changed from monthly to weekly (every 7 days) for consistency with NUREG-1433, Rev. 1. Since Revision 1 to the NUREG deleted the surveillance requirement to verify that reactor coolant gross specific activity is less than or equal to 100/E-bar pCi/gm every 7 days, the reactor coolant specific activity trending interval was decreased to 7 days from 31 days.
TECHNICAL CHANGE        -  LESS RESTRICTIVE "Generic" LAl    CTS  4.6.B.6 contains requirements for reactor coolant and offgas system
                  ~  ~
sampling during startup, following significant power level changes, and
                            ~
BFN-UNITS 1, 2,      8L  3                      2                            Revision  0 PAGE
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.4.6 - RCS SPECIFIC ACTIVITY following significant changes in offgas radiation levels. The results of any of these samples are intended to determine if RCS specific activity is exceeding specified limits. Experience has determined that the weekly sampling required by proposed SR 3.4.6.1 and requirements for monitoring main steam line and offgas radiation levels is sufficient to ensure RCS specific activity levels are not exceeded.        Therefore, RCS specific activity requirements for sampling stack gas, offgas and main steam line are being relocated to plant procedures and will be controlled in accordance with the licensee controlled programs. In addition, the criteria for when specific activity has been returned to limits (for 48 hours or until a stable iodine concentration below the limit has been established with at least 3 consecutive samples being taken in all cases) has been relocated to plant procedures and will be controlled by the licensee controlled programs. The method of determining dose equivalent I-131 (i.e., quantitative measurements of specific isotopes of Iodine), as described in CTS 4.6.8.5, has also been t
relocated to plant procedures. These changes are consistent with NUREG-1433.
  "Specific" Ll    Pro posed ACTION A allows the  LCO limit to  be exceeded for 48 hours provided that the specific activity does not exceed 26 pCi/gm. CTS 3.6.B.6 allows the    limit  to be exceeded during a power transient and limits the time the reactor can be operated, when the LCO RCS Specific Activity limit is    exceeded, to less than 5% of its yearly power operation. Generic Letter 85-19, "Reporting Requirements on Primary Coolant Iodine Spikes," states that this limit is not necessary because reactor fuel has improved significantly since this requirement was established, and that proper fuel management by licensees and existing reporting requirements for fuel failures will preclude ever approaching this limit. Removal of this limit is consistent with the BWR/4 Standard Technical Specifications, NUREG-1433, requirements.
L2    CTS  3.6.B.6 requires the reactor to be shut down and the'team line isolation valves to be closed immediately      if the iodine concentration exceeds 26 pCi/gm. Proposed    ACTION  B allows  12 hours to close the isolation valves or to be in Mode 3. The 12 hour Completion Time is reasonable, based on operating experience, to isolate the main steam isola'tion valves, or to achieve the required plant conditions, in an orderly manner and without challenging .plant systems. The less restrictive 12 hour Completion Time is consistent with NUREG-1433.
BFN-UNITS 1, 2, & 3                                                      Revision 0 PAGE        ~
OF
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP PAG~
 
Rl                    SAd>  Pi'yn      3.
LI    HG COHDITIOHS FOR OPERATIOH            SURVEILLAH            QUIREMEHTS 3.6                                          4.6 Applies to the opcrati    status                Applies t the period of the r actor coolant    stem.                  cxaminatio and test rcquireacnt for the rca tor coolant syst To assure  the    tegrity and sa                  To  etcrmine the ondition of operation of the    eactor coolan                the eactor coolan system and systems                                          the o cration of th safety device related to        it.
Lgy > q,q 1. The average  rate of                    1. During heatups and reactor coolant temperature    s R i.q.q,)    ooldovna the change during normal heatup                  folloving parameters or cooldowa shall not exceed                  shall be recorded and 100'P/hr when averaged over                  ,reactor coolant a one-hour period.                            temperature determined a      minute intervals ti      success rea        at each given ocation are vi        5 P.
: a. Steam Dom      Pressure (Convert      o upp  r vessel    r  gion temper    ure)
Reac    r bot    om drain tern  eratur
: c.      circul ion lo        s A and B
: d. React r vcsse bottom head tempera re
: e. Rc  ctor  ve    el shell a gaccnt          shell flange BFH                                    3 '/4.6-1                  PAGE              OF Unit 1
 
A<
: 2. Daring  all operations vith              2. Reactor vessel metal a  critical core, other than                temperature at thc for lov-level physics tests,                  outside surface of thc except vhen the vessel is                    bottom head      in the vented, the reactor vessel                    vicinity of      the control shell and fluid temperatures                  rod drive housing and shall be at or above the                      reactor vessel shell temperature of curve 03 of                    adjacent to shell Figure 3.6-1.                                flange shall bc ecorde at least every minutes daring inservice bydrostptic or leak testing        cn    e  vessel ressure    is  >  312  psig.
: 3. Daring heatup by                          3. est      ecimcns nonnuclear means, except                      repre cnt          the reactor vhen the vessel is vented                    vcss,      ba e veld      and or as indicated in 3.6.k.4,                  vel heat        ffect      xone daring cooldovn folloving                    met            1 be        tailed
  ~'" 'l naclear shutdovn, or                          in      e  r actor      esse daring lov-level physics                      a  scen      to        ves 1 tests, the reactor vessel                    v      at  the      re mi plane temperature shall be at or              R2    1  vel. The    amber and above the temperatures  of carve 0? of Figure 3.6-1 until                b e      spe in accor ens ance il  GE removing tension on the head                  repo    t        1011 .        e stud bolts as specified  in                  spe      ens hall      ce    the 3 '.k.5  ~                                    int t of ESTD            1  -82.
                                                            ;.":- 3 BFS                                    3.6/4.6-2 Unit 1                                                      IIIENDlNENTHO. 17 0
 
SEP I3 1995 4~ The  beltlinc region of reactor vessel temperatures L~o Z.9Q during inscrvice hydrostatic or leak testing shall be at
                                            )                          Nl~k, I or above the temperatures shovn on curve 41    of Figure 3.6-1. The applicability of this curve to these tests is SR        extended to nonnuclear                  P~pg~ sw      3'. Q.5.2.
~ ~"fi1,    hcatup and ambient loss cooldovn associated vith NoQ Z,    these tests only  if cooldovn the rates heatup and do  not exceed  15 P  per              S0 z. 9 f. g + 8 a I hour.                                  << ~.s.9.v + Ivy 5'R 3oH.9 1  +  No4e
: 5. Thc  reactor vcsscl head                    5. When  the reactor vessel head sg        bolting studs may bc partially                  bolting studs are tensioned 8.'f.$ .5  tensioned (four sequences of                    and the reactor is in a cold
/Vinc '2 the seating pass) provided                      condition, thc reactor vcsscl the studs and flange materials                                  eratur inacdiately are above 70 F. Before                          belov the head flange shall oading the flanges any more,                  be thc vcsscl flange and head flange must bc greater than 80 P, and must remain" above 80'P  vhilc under  full tension.
fiopssrd 4<qgswlcs r
A SRs 3.q,9.5)g+g BFS                                    3.6/4.6-3                      AMENDMBlTNO. 2  P. f Unit    1 PAGE~OF~
 
S'kc'0'ca on 3.'f.9 SR Z.S8.S+  ~o<X
: 6. The pump  in an idle                      6. Prior  o          r recirculation loop shall not        R3        startu o an            e
~n  gy,q be started unless the                            recirculation loop, the temperatures of the coolant                    temperature of the reactor vithin the idle      operati                i coolant  n the    o  era ecirc at, on loo s are                        and  idle loops shal      e vithin 50'F of each other. t                        en ly  o    e 7~  The reactor recirculation              '
: 7. Prior to starting a pumps shall not be started                    recirculation pump, unless the coolant                  +          the reactor coolant L,Co temperatures betveen the                      temperatures in the dome and the bottom head                      dome and in the bottom drain are vithin 145 F.                        head drain  shall    be compared        e o
H3 P'.po'd Acti<<s 5, 8 a-c.
PAGE      5    GF    g BFI                                      3.6/4.6-4 Unit  1
 
                                                                    ~F~~i4 c~+o        3,q. j SEP    f 3 t99$
p,y    Rgure 88k    ~
: r. v.9-/
Q~~~
Mlnlmamr  temperature for BROWNS FERRY      presrwoSNsuch        as by 8ecdon Xl.  'equlred 1  S    S                              Minimum tenpeaaure of
                                                                        $ 91~ F ls reeked for teat peale    ot1,100 pslg.
CuweNa 2 Mhlnssn tsqmaaw ter mechmkal heat~ or cooldown foioweg-1000 p                                                                      nuchar shrrtdown.
QE~~KR Minimum tsrnperature for core operadm tcrilcalibfj lncludee addllonal margh squired for 10CFR50, Appendix 6, Par. lYA3 600                                                                +teach becane affective July 26, 1983.
Notes These curves inchde i)2 PIC                                                    aNclent margh to provide protection againstfeedweter nazzie degradation. The curves CURl%l L1 4 4 ARE VALN aiow for shia in RT~
lOLTOP                                                      of the Reactorvessel NV                                                        beltilne matertals, ln 0'
S00    ~          300 accordance with Reg.
Guide 1 JR Rev. 2, to MNMUMREACTOR VESSRL METhL TXMPXRATURE III
                                                          ~          compensate for ration
                                                                                              ~ ppY.
3'. 49-I ~l Ff gur BFK                              3.6/4.6-24                    AMENOMBlt'g. 2 2      g Unf.t )
 
Sf'', 0,    'o AUG  04  1994 4.6.E.    ~Jt~g~
: 2. Whenever there        is recirculation flov vith
                                                                      ~
the reactor in thc
                      >~ 34s+;F;wg'<<gg,                                STARTUP      or RUH Mode    and
                        $ r BFA 1575                                      one  recirculation      pump 3.q.~                              is operating, the diffuser to lover                  i plenum differential prcssure shall be checked daily    and the differential pressure of an individual jet pump .in a looy shall vary from the mean        'ot S~aMi'cz4on @r Cj~~ggc                                of  all  Jet  pumy 4i  BFQ    tSvs z                                          differential      pressures in that loop      by more than 10K.
3.6.F                                                4.6.F The vith reactor shall not bc operated recirculation loop out
: l. Recirculation pump speeds onc                                                  shall be checked and logge of service for morc than 24 hours.                        at least once pcr day.
With thc reactor operating, onc recirculation loop is out of if service, the plant shall be placed in a HOT SHUTDOWN COHDITIOH vithin 24 hours unless the looy is sooner returned to service.
2~  Folloving onc    pump  operation,                    2. Ho  additional surveillance the discharge valve of the lov                            required.
speed pump may not be opened unless the speed of the faster pump is less thaa 5OX of its rated syeed.
se ~.~.v.v 3~  When  the reactor is not in thc                      3. Before    starting cithcr RUN mode, REACM POWER DPERATIOH                            recirculation pump vith both recirculation pumps out                          during  REACTOR PO of-service for        to 2 hours is                        OPERA yermitted During such interval                                  the oo        s    rge Sg        restart of the recirculation                              temperature and dome 3Aegi Q      pumps is permitted, provided the                          saturation tempcraturc.
loop discharge temperature is vithin 75'F of the saturatioa BFH                                            3.6/4.6-12            AMENDMEHT NP. 2yy Unit    1 pAGE~GP~
 
0 3.6.F 3.9 ~ 9.'9~ A/os 2 temperature of the reactor vessel              S~e Y~swkc~g'on @
vater as determined b dome pressure.        e total elapsed time          kc 9t-Iv f 5 pg p,q, ~
aa  ural circulation    aad oae pump operation must be no greater than 24 hours.
The  reactor shall not    be operated vith both recirculation      yumya out-of-service vhile the reactor 'ia in the RUB mode. Folloving a trip of both recirculation pumps vhile in the    RUN aode, immediately ate  a manual  reactor scram.
3.6.G                                                4.6.G I
The  structural integrity of      ASME            l. Iaserrice inayectioa of    MME Code  Class 1, 2, and 3 equivalent                    Code Class 1, Class  2f aad components shall be maintained ia                      Class 3 components  shall be accordance vith Syecificatioa 4.6.G                    performed  ia accordance vith throughout the life of the plant.                      Section XI of the ASIDE Boile aad Pressure Vessel Code aad a    Mith ths structural integrity                    applicable Addenda as of  any  ESNE Code  Class 1                      required by 10 CFR 50, equivalent coaponent, vhich is                    Section 50.55a(g), except part of th>> primary system, not                  Mere syecific vritten relic confozILing to the above                          haa baca graated by  HRC requirements, restore the                        yursuant to 10 CFR 50, structural integrity of the                      Section 50.55a(g)(6)(i).
affected component to vithin ita limit or maintain the                    2. Additioaal inayectiona shall reactor coolant system in                        be perforaed on certain either    a Cold Shutdova                        circumferential yipe velda to condition or less than 50'F                      provide additional protection abide the minimum temperature                    against pipe vhip, vhich required by    HUT considerations,              could  damage auxiliary  and until    each indicatioa of a                    control systems.
defect has been investigated and evaluated.
5<<    3KHiAczg'q ~
            *'TS S,S.g/q,g          y 3.6/4.6-13                  AMENOggPNg, p  p6 BFS Unit  1
                                                                          '8  OF~~
                                                              ; pA
 
ClS gg JUN 2 8 1994 3.6.B.                                                4.6.B. C  o
: 1. PRIOR TO ST    TUP and                    1. Reactor coolant shall be at steaming rates                              continuously monitored than    0,000  'ess for conductivity except vhen lb/hr, the folloving                          there is no fuel in the limits  sh  1  apply.                        reactor vessel.
: a. Cond  ctivity,                                  Whenever the pmh /cm    at  25      C 2.0                    continuous conductivity monitor is inoperable,
: b.      oride,    ppm        0.1                    a sample      f reactor coolant hall be analyze for conduct vity every 4 hour except as liste belov.        If the react r is in COLD SHUT OMH COHDITIOH, a s      e of reactor co  ant shall be lyzed for nductivity every hours.
: b. Once a veek    the continuous monitor shall  be checked vith an  in-line flo cell.
This in-line conductivity calibration hall      be performed e ery 24 hours vhen ver the reactor c lant conductiv ty is >1.0 pmho/cm    t  25 C.
: 2. At steaming rates                          2. During,  star  p  prior to greater than 100,000                            pressurizi      the reactor lb/hr, the folloving                            above atm    pheric limits shall apply.                            pressure    measurements of reac    r vater quality
: a. Conductivity,                              shall      performed to shov pmho/cm at 25            1.0              confo    ance vith 3.6.B.1 C
0.2 of li iting conditions.
: b. Chloride,    ppm BFH                                            3.6/4.6-5            AMENOMENT RO. 208 Unit  1 FASP        /    OF~~
 
DEC 0 7 L994 3.6.B.                                                4. .B. Coo 3~ ht steaming rates                                  3. whenever thc reactor greater            100,000                            is operating (including lb/hr, thc reactor                                    HOT STAHDBY CORDITIOH) vatcr qua ity may                                      m    suremcnts of reactor cxcecd S cification                                      ter quality shall. be 3.6.B.2 nly for the                                      erformed according to time  1  its specified                              the folloving schedule:
belov. Exceeding these time    imits or the follow ng                        a. Ch1oride ion content max        quality limits      s  all                        and'H sha        be be    use for placing                                      measured        least  once the reactor in the                                          every 96      ours.
CO    SHUTDOMR CO    ITIOH.                                          b. Chlori  e  ion conte  t shall  be
: a. Conductivity                                        meas  rcd at least time abov                                        eve    8 hours .
1 pmho/      at 25'C                            vh    ever reactor 2 v  ks/year.                              c    ductivity is Maxim      Limi t                                    .0 pmho/cm 10 mho/cm      at 25'C                          t  25 C.
: c. h sample of      actor
: b. Chlor de                                            coolant sha      bc co    entration time                            measured    f pi    at a ove 0.2 ppm                                least onc      every 8 2 weeks/year.                                  hours vh      ever the Maximum    Limit-                                reactor    oolant 0 ~ 5 ppmo                                    conduct    ity i,s  >1.0 pmho/      at  25 C.
: c. The  reactor shal      be placed    in thc S        WH COHDITIOR    if24-hour pH <5.6    or
                  >8.6 for a period.
BFH                                          3.6/4.6-6          AMENOMEHT NIL R      13 Unit  1
 
                                                                      ~  ~.e.c
                                                                                '.e,s'ON28m 3.6.B.                                              4.6.BE
: 4. When  t  c reactor is                            4~    cnevcr the    eactor      not not  p  csaurizcd  vith fu in                        ressurizcd    ith fuel in thc    eactor vessel, cx pt                          the reactor      csacl, dur      thc SThRHJP CO ITIOH,                      sample  of    e react r the reactor vater s ma ntaincd vithin t 1 be                    coolant  s  ll  bc at least every 96 ours lyzcd f lloving limits.                                    for conductivity, chloride ion content, and pH.
Conductivity 10 pmho/cm      t 25'C
: b. Chloride      0.5  ppm
: c. pH sha      be betvccn 5.3        8.6.
: 5. When    th time limits r                        5. During equilibrium pover conductivity or                          operation an isotopic chlor    de concentrat on                            analysis, including limi  s are cxceede , an                            quantitative miasurcmcnta ord    ly shutdovn in iatcd imacdia ely.
ll beThe                    for at least I-131, I-132, I-133, and I-134 shall re ctor shall be brought to                          be performed monthly on a the COLD SHUTDOWNS COHDITIOH                          coolant liquid sample.
aa rapidly aa cooldovn rate ermita.
: 6. Mxcnever the reactor,      is                      6. Additional coolant critical, thc limits on activity                      samples shall be taken concentrations in the rcictor                        vhencvcr thc reactor
        'oolant shall not exceed the                          activity    exceeds one equilibrium value of 3.2 pCi/gm                      percent of the of dose equivalent I-131.                            equilibrium concentration specified in 3.6.B.6 and one of the folloving conditions are met:
BFS                                        3.6/4.6-7              AMENOMENT gg,    p  O 8 Unit 1 PAep
 
3.6.B                                              4.6 3.6.B.6    (Cont'd)                                4.6.B.6  (Cont'd)
This  limit may  be exceeded                  a. During the SThEEP      COHDITIOH folloving pover transients for a maximum of 48 hours.      During              b. Folloving    a significant this activity transient the                        ponr    change~+
iodine concentrations shall not exceed 26 pCi/gm vhenever the                  c. Folloving an increase reactor is critical. The                            in the equilibrium reactor shall not be operated                        off-gas level exceeding more than 5X of its yearly                          10,000 pCi/sec (at the poser operation under this                          steam jet air ejector) exception for the equilibrium                        vithin a 48-hour period.
activity limits.      If the iodine concentration in the coolant                    d. Whenever the    equilibrium exceeds 26 @CD/gm, the reactor                      iodine limit specified shall be shut down, and the                          in 3.6.B.6 is exceeded.
steam line isolation valves 11 be closed immediately.                  The  additional coolant liquid samples    shall be taken at 4 hou intervals for 48 hours, or until a stable iodine concentration helot the liNLiting value (3.2 pCi/ga) is established.
Honver, at least 3 consecutive samples    shall be taken in all cases. ka isotopic analysis shall be performed for each sample, and quantitative measurements made to determine the dose equivalent I-131 concentrations
: 7. When      ere  i no  fu        he              7. Wh      there    no uel
          ,re    tor v sel, chni 1                                    reacto  vess 1) s  ecifi tion r seto coolant                                ling f rei tor olant eais ry    1    s do  ot apply.                    eNList    at t chni 1 specifi tion freq ency is not required.
                                                      **  For the purpose of this section on sampling frequency, a significant pover exchange>> is defined as a change excee~lng 15Z of rated pover in less than 1 hour BFH                                        3.6/4.6-8 Unit  1                                                            NENDMENT R5. Z09 N
 
Cl CTS    p.6,g NY3>m 3.6.F 3.6.F.3      (Cont'd)
ISTIC temperature of thc reactor vessel              St.'c Wus~Flc<A'a~ g,( g) water as determined by dome                      9 8F~          3,1' ) Rc c'<<culm'ova pressure. The total elapsed time in natural circulation      and one pump        ~Ps oPt<eh'~) i w +gs sccw>n operation must be no    grcatcr than 24  hours.
: 4. The reactor shall not be operated with both recirculation pumps outof-service while the reactor is in the RUH mode. Following a trip of both recirculation pumps while in the RUH mode, immediately initiate  a manual  reactor scram.
3.6.G                                                4.6.Q
: 1. The  st ctural integri        of  ASME                Inservice inspection of      AS Code C    ss 1, 2, and      equivalent                Code Clas 1, Class      2; and compon    ts shall be      intaincd in                Class 3 omponents      shall  be acco      cc with Spe    fication 4.6.G              perform d in accordance with thro    out the  lif  of the plant.                Sectio XZ of the ASME Boile and P ssure Vessel Code and
: a. Mith the stra tural integrity                    appli able Addenda as of  any  ASME  ode Class 1                      rcqu red by 10 CPR 5 ,
equivalent    omponent, which                  Sec ion 50.55a(g),        cept part of th primary system, ot                    wh re specific wri ten relief conform      to the above                        s been granted        HRC requirem ts, restore the                          rsuant to 10 C 50; structur 1 integrity of e                        ection 50.55a( (6)(i).
affectc component to w hin its 1 t or maintain e                            Additional    i    cctions    hall react    coolant syst      in                  be performed      n certa eithe a    Cold  Shutdo                          circumfercnt al pipe lds to cond tion or less          50'F                provide add tional pr tection abov the minimum t peraturc                      against pi whip, w ich required by HDT co iderations,                  could dama c auxili ry and until  each  indication of  a                  control sy    terna.
defect has been invcstigated-and evaluated.
AMENDMQP'go,    pp6 BFK                                          3.6/4.6-13 Unit  1 PAGE 5    OF    '
 
3.6.G                                          4.6.G.
3.6.G.  (Cont'd)
: b. Wl      the struct  al integrity            For Unit 1 an a        ented o  any  ASME C  e Class 2    3            inservice surveil        ce quivalent  omponent no                    program    shall  be conformi    to the ab e                    peiformed to monitor requir ents, rest e the                      pot tial'orrosive stru ural integ ty of the                    effect of chloride res          ue aff cted compo t to vithin                    released uring the i limit or solate the                        March 22,      75 fire. The ffected co onent from                      augmented        ervice all  OPERAB    systems.                      surveillance        ogram  ia specified as    f    lovs:
: a. Brows Ferry      Me      cal Ma  tenance Instruct          53, date    eptember 22, 19 5, paragra      4, defines the liquid  p    trant examinatio      required during the    f  st, second, third  and  four      refueling outages    follovi the fire restoration.
: b.      ma Ferry Mechanical Mai        ce  Instruction 46, dated      ly 18, 1975, hppendix        defines the liquid  pens        t examinations re uired during the sixth refueling outage folloving the fire
                                                        .restoration.
BFH                                    3.6/4.6-14            AMENDIHBITlS      80 6 Unit  1 PAGg
 
JOL 0 s    8%
3.6.H. ggg~                                  4.6.8. ~S During a    modes  of operatio  ,          Ea      safety-related snubber all snub crs  shall be OPE                  s 11 be demonstrated except s noted in 3.6.8.1.                  0 RABLE by performance All sa ty-related snubber                      f thc folloving a gmcnted arc 1 ted in Plant                          inservice inspect        on program Surve llance Instructio                      and thc    rcquir nts of Specificatioa .6.H/4.6.8.
: l. ith onc    or morc                      These snubber        are  listed in Instructions snubber(s) inope    ble on              Plant Survci        ance a system that i required to be OPERABLE n the                                c    0 current plant ondition, vithin 72 ho s replace                        hs  scd in this or restore    e inoperable                    s  cification, "typ of snubber(s)    o OPERABLE                          ubbcr" shall me status      perform an                        snubbers      of the      c engineer      evaluation                      design and manu acturer, on the a tached compon    t                  irrespective          capacity.
02 decl rc thc attache system inoperable                        2~    V folio the appropri      e Limit ng Condition                            Snubber are categorized statement for that system.                    as ina essiblc or acces ible during re ctor ope tion. Each o these ca egories (inacc ssible accessible)        y be nspectcd inde cndently according to c schedule dctermincd          Table 4.6.H-1.        e visual inspecti        interval for each    t  c  of snubber shall be de crmined based          on the    riteria    provid    in Ta    e  4.6.8-1 and e      first i  paction intcrv 1 termincd usi        this criteria shal        bc based upon the      pr ious inspection nterval as establis d by the requir cnts in effect before amendment        No. 210 BFH                                  3.6/4.6-15              NEMMENT IN, 2        go Unit 1 PAG~~
 
Ol 4.6  H mShhma 3~
sual inspec        ons  shall verify that        1) the snubber has no    vis le indications of  damag      or  impaired OPBRhBI TT,        (2) atta      ents to th fo        tion or su portiag st ture are              ctional, (3)    fast    rs  for the tachment o        the snubber o  the  comp    ent and to the snubber an orate are functio . Snubb rs which appear        operabl as a result f visua inspe tions s          1 be cia ified            cceptable and be  reels    ified acceptable        or the purpose of    establi      ing the next visual i paction interval provided that (1) th cause of the e)ection is clearly estab      shed and    r  edied for        t  particu r snubber for other s bbers espective o type that may be generi ally susceptible; and (2) the affected sn ber is functional y tested in the as-found ondition and determi d OPBRABLS per Specif ation 4.6 .5. h revie and evalu tion shall be p rformed              documented to )ustify co inued operation wi an unacceptab          snubber. If continued        peration c ot be gusti ied, the snu er shall        declared inope      ble and the        MITIHG COHDI IOHS POR OP            TIOH shall    be met.
BFH    3.6/4.6-16          AMB1BEEtlTHg,      2  IP
~Jnit 1 PAGE
 
C75 Z.b,h          q,g, H
: 4. 6,8 ~SggZZa 4.6.8.3 (Cont'd) hd  itional    , s    bbers a  tached        sc    ions of afety-re ated systems that ve cxp rien ed un          ected potenti lly      amagi transi ts ines t last insp      tion eriod hall      be eva    ated    for thc poa  ibil    y of  c  cealcd d      e    d func    onally tested confi if appl OPBlhB cable, ITf.
o Snub      rs vhi    have b cn mad    inopcra    e as re tr ltients of    expected isolate d      e,  o  other r om events, hen thc rovisio of 4.6. .7 and 4 6.8.8            e been m t and            other appropriate co rectivc action implem ted, sh 11 not be counte in determining        e next isual inspection interval.
BFH    3o6/4.6-17      . AMENOMENt'lN. 2      To Unit 1
: 4.                      s m ing      ch  refueling outage    a represen        tive sampl  of 10K of          e  total of e ch type of saf ty-related          ubbers in us in the pl t shall be ldll f ctionally ested either in place or n a bench test The repre      tative      s      le selected    or functi          1 testing shall incl          e  the variou  configura iona, opera ing enviro ents, and the  ange  of si    e and ca  city of  s    bbers    vithln the types.        e representat      e sample should be      ighed    t include  m    e snubb      rs from severe s      ice ar as such as near cavy e ipment.
The    roke se      ing and the secu  ity of      steners or attachment        the sn hers to the corn onent an to the snubber    chorage          all be verifie    on  snubb    rs select    for  FUH    IOKLL TBSTS.
BPH    3.6/4.6-18      AMENDMENT NO. 2 10 Unit a~OF~
1 pAG
 
Cl, 0,
 
lAN 1g        1ggg 4.6.H. ~S u  i~<<i
: 5.      C    0 C    ter The s      bber      CT OHAL TEST      hall " erif that:
: a. Activa ion restraining aetio ) is chieved in b th t ion and corn ressi      vithin the sp  cified  range,      capt t t    ine  tia  dep  dent, celer ion lim ing echani al snubb rs may be tes ed to ve fy only at activ tion takes place in oth dire tions of ravel.
: b. Sn    ber bleed or re ease vher required, i present i both c mpression and t          ion ithin the pecifi d ange.
: c. For mech      ical  sn bbers, the for      requir      to initiat .or    main  ain motion of the s bber is not g at eno            to overs ress the attached pipi or comp nent dur        therma movement, or      indica    e impendi fa ure of        e snubber.
: d.        r"snubbe s specific lly equired ot to disp ace under co tinuous lo the abi, ity of the nubber to vit tand load ithout displa ement shal be, verified.
BFH    3.6/4.6-19 Unit 1
 
              ~ 6.8.
4.6.8.5    (Con    d)
: e. cating met ds may be used to mc ure parameters indircctl or          parameters other th          those specified if  thos ,results correl ted to t          e can be speci      cd par    eters thro          estab ishcd me      ds.
6.
kn cngin        ring  eva      tion shall    b    made    of    ch    failure to  mee      the    FUR    OKhL TEST accep        ce  crit ia      to dete        e  thc ause of the fai ure.        The  result of this ysis    s    1 be  used,    if plicable        in select nubbers          be  teste      in thc subscqu          lot in        effort to detcrai c the OPE ILITY of other ubbers v ch may bc sub) t to the              e failure mod . Sclecti              of snubbers fo future te ting may a o bc b scd on th failure lysis. or each s bber that does ot meet t e FUKCTIO          TEST ace ptance criteri      , an addi onal lot equal      o 10 pere        t  of the rcaa        cr of t t type of snu ers shall e functions ly te tcd. Tes ng shall ntinue un 1 no additi 1 noperable snubbers arc found vithin s        sequent lots or all snubber of the orig                1 HJKCTI            TEST typ have been teste or all susp ct snubbcrs iden fied by the failure ana    sis    have bc        tested, as applicable.
BFH    3.6/4.6<<20                        AMENDMgPNy        ~ >>
Unit 1 PAGE~OF~
 
4.6.H.      u b 4.6.H.6  (Co    'd) any snubb        selected or functio      1  testing either fai        to lo up or fails        move,        .e.,
frozen i pl'ace, he cause vill be caused valuat        and cturer or if y manu desig      defici      cy,  all snub ers of          e same des gn subj        t  to the s    e  defec    shall      be ctiona    y tested is tes ing requi ement shall b independ nt of the r uirements stated abov for snubb rs not mee    ng the        CTIONAL TE      accept      e  criteria.
                      'r he  discov missi of loose attachmen fastener vill be e luated to dete ine vheth r the cause ay be loc ized or gener c. The r ult of the valuation use to sele ill other be su pect snu ers for v rifying e attachme t stener , as applica le.
: 7.                    S      a Fo    the snubber s) found i  operable, an engineerin valuation sh      ll  be perf med on the compo ents which are restrained y the snub er(s).
The purpo        of this engineer g evaluati n shall be to dete ine restra ed by the if  the component, S BFN    3.6/4.6-21 AMENOMBfTNg        f63 Unit 1
 
VAJA>    ivs8~
4.
: 4. 6.8.7 (Cont'd) snubber s) vere        a  ersely affect by the            operability of th snubber(          , and in orde to  e  sure that he restrained corn  onent rem's capable of
                      ,
m    ting the signed service.
8 ~    u      o a              0 S      S    b Snubbers      hich  fail    he  visual inspect on or the FUNCTI      AL TEST ac eptance a  shall be repaired      'rite or r laced. Re lacement snu ers and sn bers which ha e repairs v ch might a fact the FUN TIONAL TEST esults shall meet the FUNCTIONAL        ST criter before inst      llation i      the unit. The e snubbers shall have met        e accepta ce criteria subsequent to their most re ent      servic    , and  the FUNCTI NAL TEST        m  st have been      erformed v hin 12 mont    s before b ng installed in    he  unit.
9.
Permanent      or other        mptions from  vis al inspecti ns and/or unctional t sting for i ividual sn bers may be gr nted by th Commission if justifiabl basis for ex ption is p sented and if  applicable nubber life destructive        sting vas perform          to qualify snubber OP        BILITY for the appli able design conditio at either the BFN    3.6/4.6-22                  AMENDMQP gP.      y8g Unit 1
 
Cl 0,
 
iJAN    i 9 1989 4.6.H.
4.6.8.9    ont'd) completi      of thei fabrica ion or at subsequent date. Snubbers            exempted shel continue          o be  liste in    e plant i structions          ith fo notes in cating the tent of t exemption
: 10.            S      e            o  a C
The se    ice  life o    snubbers may b    extended b      ed on an eva    ation of th records of          ~
FU  TZONAL TEST m  intenance hi tory, and nvironmenta conditions to which the s bbers have been expos d.
elemMM        50. 18 8 BFN    3.6/4.6-23 Unit 1
 
0 0
 
JAN  i9 1888 THIS PAGE INTENTIONALLY LEET BLANK AMENOMENT NO. 1,6 8 BFH                3.6/4.6-234 Unit 1 PAGE~OF~I W
 
                                                                                                                ~        ~                                                                                                                ~ ~
    ~ ~              ~    I                                    ~      ~  ~ ~                                                  ~        ~  I~ ~                                                ~          I    ~ ~
W~  ~
                    ~~  ~                                                          ~  t        ~                                                        I  ~      ~                                                                ~    ~
I I I  ~      Il  ~ g
              ~            ~                                        ~  .    ~                  ~  ~                                                                'I  ~    ~    ~    ~          ~  ~  ~                        ~ ~    ~
                                                                                ~          ~                      ~        ~        ~        '    ~      ~  ~  ~    I              ~
                  '
I                          ~  ~          ~                          ~  ~                  ~  I    ~    ~                            ~ ~ ~                                                  ~          ~    ~
              ~    I~    ~        ~            ~
                                                    '              ~        ~                                          ~    ~    ~                                                                                ~        ~          ~,          ~
              ~  ~  ~                                                                              ~    ~  ~              ~    ~                  ~  ~                          ~    ~
                                                                                                                                                                                              ~  ~      '
                          ~      ~                                                                                                                                                      ~    ~  ~  ~          I      AI
                                  ~    ~                                          ~      ~              ~ ~              ~    ~                                                                                              ~ ~
                                                        ~  ~      ~          I        ~        ~                                        ~          ~                        ~          ~              ~  ~
                              ~    ~              ~  ~    ~              A~        ~  ~    ~  ~            ~    ~        ~                                                                          ~    ~
          ~  ~      ~                          I~ ~              ~          ~            : 'I ~        ~                                                                                      I I              I
            ~            '                  ~                                                                                                              ~          ~  I~
                                                                                                                ~    I                            ~          ~            ~  I~                ~            ~
            ~        ~  ~                              ~                    ~      ~      ~                            ~  ~                      ~ ~
                        ~            ~    '                        I~                  ~            ~            ~        ~    ~                      I            ~    ~                  ~      ~                                  ~    ~
            ~          I    ~~ '                    ~      ~      I  ~ ~                                                        I,      ~                  ~  ~              ~                              I        '
                                                                                                                          ~    ~                                                  ~    *    ~                  ~    ~        ~
 
Table 4.6.8-1 (Continued)
JOt. 0sm SHUBBER VISUAL IHSPECTIOK IHTERVAL Hote 4: If    e number  of una  eptable sn hers is    e    1  to or ess the nuaber in    lpga B but rester            the  num    r in Co      A, the next                i pection terval          1 be  the  arne  as previous inte    al.
ote 5:  f  the number of unicceptab      snubbers s equal t or, great than the number in Column , the next          pecti interval shall be tvo- rds of th previous            erval. ovever,          i  the number of una ceptable      ubbers is 1 s than t e number Column C, bu greater          the numb r in Col          B, the ext interval s    ll  be red ced proporti that is, e previo interval            ll  lly by terpolat on, be red ced by a actor that is e-third        the ratio o the diff ence be              en the number o unaccep ble snubbers found dur              the pr ious interva and the timber in Col          B to        differ e in the number  in  Col      B and C.
te 6: The  provisions of Specification 1.0.        are applicable for        all inspection intervals up to and including 48 months.
BFH                                    3.6/4.6-23c              AMENOMENT IL      2IO Unit  1                                                          PAGE
 
t The Bases Section 3.4, Reactor Coolant System  (RCS) Bases of the current Technical Specifications for this section have been completely replaced by revised Bases that reflect the format and applicable content of the proposed Browns Ferry Unit 2 Technical Specification Section 3.4, consistent with the BWR Standard Technical Specification, NUREG 1433. The revised Bases are as shown in the proposed Browns Ferry Unit 2 Technical Specification Bases.
BFN-UNITS 1, 2, 5 3                                                  Revision 0 pAGE~oF            LI
 
UNIT2 CURRENT TECHNICAL SPECIFICATIPN MARKUP
 
Cl 0
 
P,l LIMITIHt COHDITIOHS    FOR OPZRATIOH                  URVEILLAHCZ REOUIRZmHTS 3.6            S        0                          4.6              S~S        0 cab Applies o the operating status                    Applies to the periodic of the rc tor coolant system.                      examination an testing requirements for c reactor coolant system.
      ~0~v                                                ~Oa~v To assure  the integ ity and safe                      determine thc condition of operation of the rca or coolant                      th reactor coolant system and system.                                            thc operation of thc safety devices related to it.
t  0 sm 3.4.9. followed~
(
LCo 3.g,g  1. The average  rate of                      1. )During heatups and reactor coolaat temperature change during normal heatup                                      parameters or cooldom shall not exceed                    shall      be recorded and 100 F/hr vhca averaged over                    reactor coolant a oae-hour period.                  ~pl        temperature determined attic=minute intervals un                    s ve readings          each given lo tion are vithia F.
a          earn Dome    Pre sure Convert to          pcr vessel rcgi temperatur )
g.4 l Reacto bottom          drain tcmpc ature Re      rculation    1 ops B
d    Reactor ve sel bo tom head tern erature
: e. Rcacto      vessel shell adjacent to shell flange BFE                                      3. 6/4. 6-1                      A          >na ~
Unit  2
 
s
: 2. During  all operations with                Reactor vessel metal
    ~o        a critical  core, other than              temperature at the for  low-level  physics tests,              outside surface of the ezcept when the vessel is                  bottom head in the vented, the. reactor vessel                vicinity of    the control shell  and fluid temperatures              rod drive housing and shall  be at or above the                  reactor vessel shell temperature of curve 03 of                ad/scent to shell Pigure 3. 6>>1.                              flange shall be at least every minutes during inscrvice
                                                                                      ~<'2 dc hydrostat'ic or leak test        hea the vessel pressure is > 3L? psi@.
: 3. Daring heatup by                              cst spec    ens nonnuclear means, except                                    the reactor
                                                                            'eprcseat when the vessel is vented                  vessel,      e veld,        and Lco    or as indicated in 3.6.k.4,                veld he  t  affected        zone during cooldown folloving                  metal    hall  be        installed nuclear shutdown, or                        in    e reactor vc scl during lov-level physics                    a aceat to th vessel tests, the reactor vessel                    all at the re midplane temperature shall be at or                  level. Th number and above the temperatures of                  type of      ecimens        vill curve 02 of Figure 3 '-1 until              be  in    cordance vith removing tension on the head                repor KDO-10115.                  e stud bolts as specified in                  specimens shall m t the
            '
6.i  5~                                  intent of ASIAN E 85-82.
PAGE~
<<~ Jf                                        3 6/4 6-2 Unit  2                                                      AMENDMENTNO.              17 0
 
5    c  icAF>0 SEP  i 3  1995 ss    a 4  ~ The  beltline region of                  4~
reactor vessel temperatures gCo      during inservice hydrostatic) g.A      or leak testing shall bc at J          Si2>06 l No~ ]
or above thc temperatures shown on curve 41 of Figure        Hl p~,pop    sg  5. 4.9 2 3.6-1. The applicability of this curve to these tests is extended to nonnuclear SR          heatup and ambient loss 3.g.9. I,    cooldovn associated vith
~oR z.      these tests only  if the heatup and cooldovn rates do  not exceed 15 F  per              Sg K.iJ.).S d Na4. I houre                                  S'g?.q.'t-g + Uo~
sg s.g.) 7 p No+
: 5. The  reactor vessel head                  5. When the reactor vessel head bolting studs may be partially                bolting studs are tensioned tensioned (four sequences of                  and the reactor is in a cold the seating pass) provided                    condition, the reactor vessel the studs and flange materials                shell temperature haaediatcly are above 70'F. Before                        belov the head flange shall loading the flanges any morc,                  be l QO      the vessel flange and head 3qq      flange must be greater than 82 F, and must remain above 82 F vhile under full tension.
P o~H C~p e<<dc5 gc. K~ g.gq g ( pg PAGE            OP AMENDMENTNO. 239 BFK                                    3 '/4.6-3 Unit    2
 
                                                                                                  ','
                                                    '      le.~ ~~ ~
    ~+It if %t~      ~ ~
gy                            ~ ~  ~
g
                                                                                                                                    ~
              '        4                                                                ~ IAI ~                      i  ~    eP      a
~ ~      ~
TIVE
                  ~            ~
0  .
                    '%~            ~ ~
A~  '~LT~MWEW.~
                                                                                                                                                ~
XS,At                            ~
                        ~  ~A    ~  ~    ~  ~          ~
                                                                                                                      ~,    ~  ~        o              ~ f
                                      ~  ~        ~  ~  ~:          I            ~ ~                          ~      ~
                                                                                                                                  ~
                                                                                                                                      ~            ~
                                                                                                                                                      ~  ~
                                                                                                                                      ~
                                  ~    ~ ~
                                                                            ~  ~
                                                                                                  ~        .  ~                      ~            ~  ~
                                                            ~  ~        ~  ~
                    ~      ~
                                                                                                    ~                        ~  ~    ~  -'          ~
                                                                                                  ~
                                      ~  ~          ~  ~  ~
A    ~
                                                                ~        ~    ~
                    ~      ~
                                                                                  ~ ~
                                                                                                                                    ~  ~        ~  IA    ~
A      ~  '                  ~  ~
      ~
        ~  I                              ~  ~,        ~
                                                                                                                                            ~ ~
                                                                                ~
A  ~
                                                                      ~
A    ~
                                                                                                ~  ~ A              ~  ~                                ~  ~
      ~    0 I~            ~                ~ ~          ~  I      I    ~ ~
                                                                                                ~      . ~      ~          ~            ~
      ~        ~      ~                      ~      ~
                                                                                                  ~  A  ~                    ~  ~        ~
 
0
                                                  ~AI 4.6.E.  ~Je  RmSm 2~  Whenever there      is
                        ~c4 Gw~ifi<4ia~  waar 6 "~~gu recirculation flov vith 4~[                                          the reactor in thc gl57$ 3,'I    2                      SThRTUP    or RUH Node  and one  recirculation    pump is operating, thc diffuser to lover plenum    differential pressure shall be checked daily and the differential pressure of an individual get pump in a loop shall not vary from the mean of all get pump See Z~S] "Ia.h'~    4- Ct ~)~                            differential yrcsaures 8~~ Isis Z.q.i                                      in that loop by more than 10K.
3:6.F                                                      4 '.F.
: 1. The  reactor shall not bc operated                    1.. Recirculation pump speeds vith  one  recirculation loop out                          shall bc checked and logged of service for more than 24 hours.                        at least once per day.
With the reactor operating, onc recirculation loop is out of if service, the plant shall be placed in a HOT SHUTDOWH COHDITIOH vithin 24 hours unless the loop is sooner returned to service.
: 2. Folloving  one pump    operation,                    2. Ho  additional surveillance the discharge valve of the lov                            required.
speed yump may not be opened unless the speed of thc faster pump is less than 50K of its rated speed 3    When  the reacti5mis not-4n the  RUH  mode, REhCTOR    POWER                sg 3.0.R.'t OPERATIOH  vith both recircu-                        3. Before starting either lation pumps out-of-service                              recirculation pump for    to 12                                            during    REACTOR POWER such interval, restart of h'ing OPERATIOH 5g,      the recirculation pumps ia                          /Al            c        s    rgc g.], t.'f pcrmittcds provided the loop                              tcmperaturc and dome gq<c > aischirge temyerature is vithin                              saturation temperature.
75 F of the saturation temperature of the reactor BPH                                                3.6/4+6-12            AMENOMBlTg6. 22g Unit    2 PAGE ~.          OF    Q
 
s ~)Sic.$ (u~ 3.1 7 NR    i 8 1993 3.6.F 3.g,Q,f, gott 2 vessel water as determined by dome pressure.            e a    e apse    t  e  in natural circulation    and one pump                                                    J operation    must be no greater                        5tc d~gk4j~~'c~    c~ 40~r than 24 hours.
                                                                          ~ Isi5 gc/, I L~    The reactor shall not be operated with both recirculation pumps out-of-service while the reactor is in the RUN mode. Following a trip of both recirculation pumps while in the    RUN  mode,  immediately initiate    a manual    reactor scram.
4.6.G The    structural integrity of                                Inservice inspection of        ASME ASME Code Class 1, 2, and                                    Code Class 1, Class        2, and 3 equivalent components            shall                      Class 3 components        shall  be be maintained      in accordance                              performed in accordance with with Specification 4.6.G                                      Section XI of the ASME Boiler throughout the      life of      the                        and Pressure Vessel Code and plant.                                                        applicable      Addenda as    required by 10 CFR 50, Section 50.55a(g
: a. With the structural                                    except where specific written integrity of'ny        ASME                            relief has been granted by NRC Code Class    1 equivalent                            pursuant to 10 CFR 50, Section component, which is part                                50.55a(g)(6)(i).
of the primary system, not conforming to the above requirements, restore                      2.  'dditional        inspections the structural integrity of                            shall be performed on the affected component to                              certain circumferential within its limit or maintain                            pipe welds to provide the reactor coolant system in                          additional protection either  a COLD  SHUTDOWN                              against pipe whip, CONDITION    or less than 50'F                          which could damage above the minimum temperature                          auxiliary      and control required by    NDT  consider-                        systems.
ations, until each indication of a defect has been inves-tigated and evaluated.                                    II i'FN Stc. WHsgllcr,$ ~  @    g Cw5    gg  g/qg      Cg 3 6(4 6 13              AMENOMBF gy,      p 06 Unit  2 PAGE~OF
 
0
~ rrarrrr okra%Sar
~ aaemIIaaaaaa
~ aNIRIIaaarar aaaiislHrararr
~ aaHIllirr rrrsllflrraraa aasSISaaaaaa
~ rt)rlISrrraaa          ..
~ rQRRsaaaaaa                        s    I I
                    ~  ~      ~
                  ~ ~  .    ~  ~
~ allasaraaaaa
~ aIIRSaaaaaaa E%&#xc3;isrraaarr
~ Ilasaaaaaaa 5I5!3        ~
Ksa          ~ ~  I~ ~          ~  fl
 
'4 W
 
3.6.B.                                            4 '.BE
: 1. PRIOR TO ST        and              1. Reactor coolant shall be at steami    rates                        c tinuously monitored less than    00,000                          or conductivity. except vhen Ib/hr, c folloving                          there is no fuel in the limits shall apply.                        reactor vessel.
: a. onductivity,                          a. Whenever'he pmho/cm at 25  C  2.0                      continuous conductivity monitor is inopcrablc, Chloride,  ppm      0                        a sample o      reactor coolant      11 be analyz      for cond    tivity every 4      rs except as 1  tcd belov.
cactor is in COLD If the, SHUTDOWN COHDITIOEg      a of reactor        'ample coolant shall be analyzed for conductivity every 8  hours.
: b. Once a    veek  t  e continuous        nitor shall  bc    ected vith an  in-li      flov cell.
This  i    ine condu    ivity cal ration ahall be p  formed every 24 ura vhenevei the reactor coolant conductivity is >1.0 pmho/cm    at  25 C.
: 2. At steaming rates                            During startup    prior to greater than 100,000                        pressurizing thc reactor
          'b/hr, the folloving                          above atmospheric limits shall apply.                          pressurcg measurements of reactor vatcr polity
: a. Conductivity,                          shall be performed to ahov idaho/cm at 25'C    1 0                conformance vith 3.6.5.1 of limiting conditions.
: b. Chloride,  ppm      0.2 BFS                                      3.6/4.6-5            AMENpMENT RI. 224 Unit 2 PAGF        /    OF~
 
P rs'~war r I      '
I              ~vI' rr~~~-r<Tl?    4    ~  re I              I
( ~ VF ttttl~a 1IhtrJttulLeLC)K~Llt%+I'0'k'6
                                                                                                                        ~        ',. l'J:0
                                                                                                  ~ ~  ~ ~                    I
    ~  ~      ~ ~
                                                                                                        ~  ~
I~    ~
                                      ~      ~        I  ~      I~I                                      ~ ~                                                ~ ~
                                                                                                        ~                                      ~
                                                                                                                                                  '            ~
                                                                                                      ~
                ~  ~
I    ~              ~
                                                                    ~  ~
                                    ~  ~
                                                                                                              ~      II      ~                ~    ~    ~
                                                                                                                ~            ~        ~
                                                                                                                                          '            ~  ~
              ~    ~                              ~      ~
                                                                                    ~    ~                    ~        ~        ~              ~  ~      ~ ~  ~
II I                                                                                ~    ~      ~  ~
                                                                                                                                      '
I ~
                                                                                                                                                                  ~  ~
                                                                                                                                      ~      ~  ~
I ~  I                  I    ~
                                                                                                                ~        ~        ~              ~  ~
                                                                                                                ~ ~            ~
                          ~  ~  ~
                                                                                                                                          ~  ~
                            ~~            ~  ~
                                    ~  ~
                                                                                                                ~    ~  ~
I~    ~ 11          I~                                                                          II  ~  ~    rr  I
                                                      ~  ~        I~
II  ~
                                                                                                                ~    ~          l          '
                          ~      ~        ~
                                      ~    I      ~                    ~  ~
                                              ~  ~                          ~ ~ ~ I                                                ~  ~
l    M~
                                                                                                                                                ~  ~
I          ~  ~  I                                                ~    ~  ~
                                                                                                                  ~  ~  ~
                                      ~          ~        ~            ~  I    I  I
                          ~
                              '                I                                    ~ ~
                                                                      ~  ~
                                    ~ ~
                                                                                            ~ ~ ~
I o
 
3.6.B. Cao an          ist                          4.6.B. Coa          em st
: 4. When  th reactor is                            4q    enever the re ctor is not not pr ssurized vith fuel in                          pressurized v h fuel i the r actor vessel, exce t                            the reactor essel, a dur      the STARTUP CO TIOH,                      sample of      e reactor th reactor vater sha          be                    coolant      all be ana zed intained vithin    t                            at lea every 96 ho rs olloving limits.                                    for  c cdcctivity,    loride ion ontent and    pH.
: a. Conductivit 10 pmho/      at 25'C
: b. Chlori      - 0.5  ppm
: c. pH s    ll be 5.3 and Se6.
betve
: 5. When  the time lim ts or                        5. During equilibrium pover um conduct      ity or                        operation an isotopic oride conc    tration                          analysis, including imits are        ceded, an                          quantitative measurements orderly shu      ovn shall be                        for at least I-131, I-132, initiated        ediately. The                    I-133, and I-134 shall reactor        11 bc  brought to                    bc performed monthly on a 0      6.
the as COLD SHUTDOWH COHDITIOH rapidly permits.
ene as. cooldovn e reactor is rate 6.
caolant liquid sample.
Additional coolant critical,    thc limits an activity                  samples shall be taken concentrations in the reactor                        vhencver the rcactar coolant shall not exceed the                        activity    exceeds onc equilibrium value of 3.2 pCi/gm                      percent of thc of dose equivalent I-131.                            equilibrium concentration specified in 3.6.B.6      and one  of the folloving conditions are .met:
S<d'fdic~~<FiCV T<aM p'~A C RAhl
              '~
g~  ~ St h/ lg Q~
Y'4<s st=<7, g
                                                      '-1                          2 24 BFH Unit 2 3'.6/4              AMENOMENT NL pAGE          0p    if
 
0
                                                                        <~$ : 3.c. E/Mdiv JUN 2 8 )PE 3.6.B.                                              4.6.B. o 3.6.B.6    (Cont'd)                                  4.6.B.6    (Cont'd)
This  limit may  bc exceeded                  a. During the    STARTOP COHDITIOH folloving pover transients for a maxim'f    48    hours. During            b. Pollovtng    a  signfficant thfa activity transient thc                        pover change**
iodine concentrations shall not exceed 26 pCi/gm vhcnever the                  c. Folloving'n fncreaac reactor is critical. Thc                            in thc equflfbri~
reactor shall not bc opcratcd                        off-gaa level exceeding morc than SX of ita yearly                          10,000 pCf/sec (at thc povcr operation under this                          steam get air ejector) exception for thc equilibrium                      vithin a 48-hour period.
activity limits. If the iodine concentration in thc coolant                    d. Whenever the      equilibrium exceeds 26 pCi/gm, the reactor                      iodine limit apecifi'cd shall be shut dovn, and the                          in 3.6.B.6 is czcecded.
stem line isolation valves shall be closed immcdiatcly.                  Thc additional coolant      liquid samples shall be taken      at 4 hour intervals for    48  hours, or until a stable iodine concentration belov the limiting value (3.2 pCi/gm) is established.
Hovcvcr, at least 3 consecutive X6C ~TIE'ICWnoN        wc~                        simples shall be taken in all
        <~" ~~ R'4 814 Is~s                              cases. kn isotopic analysis 3.'/.6 i~ ~(g zpcvaQ                              shall bc performed for each ample, and quantitative measurements made to determine the dose equivalent I-131 concentratio
: 7. Wh    there is    o  fuel in thc                        there is no fuel in thc r actor  vesa  ,  technic  1                        eactor vcsa , aampli        of pecificat n reactor oolant                        reactor c ant ch            try t chemiatry fmits do ot apply.                        technic      specific ion frequency ia not rcquir d.
                                                    **  Por the purpose of this sectfon on sampling frequency, a significant povcr cxchu~e is defined as a change exceeding 15K of rated pover in less than 1 hour.
BFH                                        3.6/4.6-8              AMENOMEgl'ltd. 2  pg Unit 2 PAGE      V      OP  l~
 
CTS  R.C,g/+gg J
NR  i  8 Igga 3.6.F 3.6.F.3      (Cont'd)                                    Sce 34$ 4iPic4)jo~ peg W RFIV ISTIC 3.'f./ Peci~c      l7 vessel water as determined LooPS OpC~4~ i~ /hit by dome pressure.      The                                        z          ~ec4o~
total elapsed time in natural ci.rculation  and onc pump operation must be no greater than 24 hours.
: 4. The reactoi shall not be operated with both recirculation pumps out-of-service while the reactor is ia the RUN mode. Followiag a trip of both recirculation pumps while in the RUN mode, imnediately initiate a manual reactor scram 3.6 ~ G                                              4.6.G The  structural  'egrity    of                        Inservice inspection          ASME ASME Code Clas      1, 2, and                          Code Class 1, Class        , and 3 equivalent    components  shall                      Class 3 components          11 be be  maintai  d  in  accordance                        performed    in acco    ance with with Spec'cation 4.6.G                                  Section XI of t ASME Boi.ler through t the life of the                              and Pressure V esel Code and plant.                                                  applicable A eada ae required by 10 CFR 5 , Section 50.55a(g
: a. ith  the structural                              except wh e specific written integrity of    any ASME                          relief s been granted by NRC Code Class 1    equivale                          pure        to 10 CFR 50, Section component, which is      art                      50.55  (g)(6)(i).
of the primary sys not conforming to the above requirem      s, restore                    dditional inspections the structural integrity of                        shall be performed on the affected omponent to                          certain ci.rcumferent        1 within i.ts imit or maintain                      pipe welds to prov e the react    coolant system in                    addi.tioaal prote ion either  a COLD SHUTDOWN                            against pipe w p, CONDIT  N  or less than 50'F                      which could d        gc above the minimum temperature                      auxili,ary      control req red by NDT consider-                          systems.
at'ons, until each indicatio a defect has been inves tigated and evaluated.
BFN                                        3.6/4.6-13              AMENDMBfT%7. 206 Unit  2 pAGs      +      o~ ~
 
c~  a.c.g/VC    g.
MAR  I 8 1993 3.6.G 3.6.G.l  ont'd)
With the struc      al integrity of any ASME de Class 2 or 3 equivalent omponent not conformi    to the above requir ents, restore the struc al integrity of ted component to w in t'ff it  limit or isolate t e a  fected  component fr m all 0 ERABLE systems.
BFN                                    3.6/O.6-l4  AMENOMENT NO. 206 Unit  2 PAGE
 
During all mo es of operation,            Each  safety-related snubber all snubber shall be OPERABLE            shall  be demonstrated except as oted in 3.6.8.1.                OHHtkBLE    by performance All saf y-related    snubbers            of the folloving, augmented are 1 ted in Plant                        inservice insped'tion program Surv llance Instructions.                and the requirements of.
Specification 3.6.8/4.6.8.
1  With one or more                      These snub rs are listed in snubber(s) inoperabl on              Plant Su eillance Instructions.                I a system that is re ired to be OPERABLE in e current plant co ition, vithin 72  hours replace                ks used    in this or restore th inoperable                  specification, "type of snubber(s)  t  OPERABIS                  snubber" shall mean status  and    erfora an                  snubbers of the same engineer      evaluation                design and aanufac                  er, on the a tached component                  irrespective of ca city.
or decl re the attached system inoperable and                2~  V follov the appropriate Limiting Condition                        Snubbers are      ategorixed statement for that system.                as inaccess      le or acceseibl during reactor operatio . Each of these categor cs (inaccessible and ac essible) may be inspe ted independently according to the schedule determined by Table 4.6.8-1. The vi inspection interv                  for each type of                    ber shall be determined                    ed upon the criteria      rovided            in Table 4.6.8      and the            first inspection nterval determine    using this criteria shall    be based upon  th previous inspection interval as established by the requirements    in amendment No. 225 effect'efore BFH                                  3.6/4.6-15        AMENOMEHT R0,  p            25 Unit 2 PAGE~O~~
 
4.6.H.
3~
Vis        inspections shall v fy-that (1) the abber no visible indi tions of  dsaae    or iepai ed OPERLBILITY; (2) attachments      to      c foundation    o    supporting structure        e  functional, and (3)        teners for the etta'cha t of the snubber to th component and to the snub    r  anchorage are f tional.          Snubbers vhich a    ar inoperable as      a esult of visual inspectioni shall b classified unacce able          and aalu be    reclassif ed acceptable for e purpose
                          . of establis            the next visual insp ction interva.
provided        t (1) the cause of the r /ection is clearly establ hed and reaedied for        t particular    snubber and or other snubbers irr pective of type t be generically susceptible; and ) the affected snubbe is functionally          sted  in the as-found co        ition and detezained      PERABLE    per Specific      ion 4.6.8.5. k review        evaluation shall be per ormed and documented to )    tify continued ope    tion with    an unacceptable snubber            If continued operatio cannot be  /ustified, th        snubber shall  be decla      d inoperable          the LIMITIEG COSDITIOHS        R OPBIRTIOH shall  be me 0 BPS Unit 2 3.6/4.6-16                      OMENS NJ;    p 25 pAGE~OF~
 
0 4.6.8.3 (Cont'd)
                        ~ k    tionally, snubbers tached to scctio      of safety-related s tees that have experienc      unexpected potentially aaaglag transient    since the last inspect    n period shall bc evalua ed for the poss    ility  of concealed d      e and  functionally tc tcd,  if applicable,    to nfirm  OPBRABILITY nubbcrs which ha      been made  inoperable      thc result of un ected transients, solated daaage,  o  other random events,      en thc provisions of 4.6    .7 and 4.6.H. have been    ct and any o r app opriate corre ive ac ion implemen d, shall not be counte in determining      c next visual inspection      terval.
3.6/4.6<<17 NENOMENT Ng. p g5 BFH Unit 2 PAGEOS~
 
4.6.H. ~S~~s      ~
4~
ing each refuel tagc, a reprcs        ative sample of 10K o        the total of each type o safety-relet d      snubbers in use  in thc lant shall be functio ly tested either in pla or in a bench test.
The  representative sample a  ected  for functional eating shall include the various configuratio operating environm ts, and the range of size and capacf ty of scc srs sithin the types.
rcprescntat e sample should be eighed to
                        . include    orc snubbers from severe crvicc areas such as n    r heavy equipment.
stroke setting d thc security of fast rs for attachment of th snubbcrs to thc compon          and to the snubber anch age shall be verified    o    snubbcrs selected      or  FUKCTIOKlL TESTS.
BFH    3.6/4.6-18            AMENDMENT go. p p6 Unit 2 Gp~dOP~~
 
0 JAN 18      1888
                  .6.H.
5.
e  snubber FUHCTIOHhL TEST    shall verify that:
: a. hctivation (re raining action) is a ieved in both te ion and compress      n vithin  the specif    ed range,  except tha      nertia  dependent, a  eleration limiting echanical snubbers may be  tested to verify only that activation takes place in both 4
directions of trav
: b. Snubber bleed,      r release vher required, is present n both compress n and tension vithin    he  specified rang  o
: c.      or mechanical snubbers, the force required to initiate or maintain motion of the snubber not great enough to overstress the a ached piping or comp ent during, the        movement, or to ind ate impending failure f the snubber.
: d. Fo  snubbers    specifically quired no t to displace under continuous load, the ability of the snubber
                              ~
to vithstand load vithout displacement shall be verified.
BFN Unit 2 3.6/4.6-19              AMENDMENT NL    l 69 PAG~~r't:~8'
 
C C7S S.g.g 6.g P JUL  055%
              .6 H.
4.6.8.5      (Cont'.
eating methods may be used to measure parameters indirectly or parameters other than those specified if  those results c correlated to the be specified    param    ers through estab      shed methods.
6.
ka          ineering evaluation 1 be made of each failure meet the PORCTIOEhL TEST acceptance criteria to determine the cause of                e failure.
analysis shall The applicable, in sel cting be, result        this if snubbers to be t ted in the subsequent lot n an effoxt to determine th OPERABILITY of other snub rs which may be sub)ect            the same failure mode.          election of snubbers for f ure testing may also be bas          on the failure sis. For each snubber t does not meet the CTIOKAL TEST acceptance criteria,        an  additional lot equal to 10 percent of remainder of that type              f snubbers ahall be fun              ionally tested.          Testing s      1 continue until no dditional inoperable snubb s are found vithin subsequ            t lots or all snubbers        of    e  original tOICZZOELL                tyya hare been tested or        all  suspect snubbers
                                                                  )
identif d by the failure analys s have been tested, as applicable.
BFH    3.6/4.6-20              ~
AIH<n~an    e. p  pq Unit 2 PAGE~iOF            /
 
4.6.H.
4.6.H.6 (C    'd)
If any  snubber selected for functional test either fails to croup or fails to        e, i.e.,
frozen in ace, the cause vf.ll b valuated and        if caus    by manufacturer or d ign deficiency, all snubbers of the same design subject to the same defect shall be functionally tested.
This testing requirem shall  be independen      f the requirement        tated above  for  s    ers not meeting      e FUNCTIONAL TEST cceptance cri,teria.
The  discovery of loose or missing attachment fasteners vill be evaluated to determine vhether the cause may be. localize or generic. The res          of the  evaluation'l        be used to    sel    other suspect      ubbers  for veri    ng the attachment teners, as applicable.
7.
For the snubber(s)        und inoperable, an e neering evaluation s        be performed on the co      nents vhich are restra ed by the snubber(s).
Th    urpose  of this ineering evaluation shall    be to determine    if restrained by the the components BFN    3. 6/4. 6-21 NmoMen R.      I SO Unit 2 waco~                ~
 
JAN    f 9 1888 4.6.H.
4.6.H.7      t')
snubber(s)        e  adversely affecte y the inoperability of        snubber(s), and in orde ensure that the restrained component remains capable of meeting the designed servic 8 ~
u b    s Snubbers v          fail the  visual inspect        or the FUN      NAL TEST    acceptance c    teria shall    be repaired or replaced.      Replacement snubbers    and snubbers Which have  repairs vhich might affect the FUNCTIONAL T results shall meet t FUNCTIONAL TEST          teria before instal        ion in th>>
unit. Th        snubbers shall have  m    the acceptance cr    ria  subsequent to      their st recent service,      and the FUNCTIONAL TEST must have been performed      vithin  12 months before being        install in the unit.
: 9.                      V  ua anent or other exemptions from visual inspections and/or functional testing for individual      snubbers      y be granted by the      C    ssion if  a justifiable asis for exemption is        esented and if  appli ive e snubber life dest            :esting v    performed to qualify snubber OPERABILITY for the applicable design conditions at either the
                                                    ~
BFH    3.6/4.6-22              @t)MENT    NO. X6  0 Unit 2 PAGp~o
: 4. .H.
4.6.8.9 (Cont' pletion of their fabrication or at a    s  sequent date. Snubbers  so    empted shall continue      be listed in the plant      tructions with footnotes    icating the extent  o  the exemptions.
e service  life of  sn  bees may be extended  base    on an evaluation of the    ecords  of FUNCTIONAL TEST maintenance h tory, and environment    conditions to vhich the ubbers have been exp sed.
BFN    3.6/4.6-23            AMENOh)BIT ND. X6 0 Unit 2 PAGp~50F~
 
                                          'JAN 19 $888 THIS PAGE IHTEHTIORALLY LEFT BLANK NENtjMENT NO. X 6 0 BEE                3 '/4.6-23a Unit 2 rs a~~koF~S
 
ble 4.6 H-1 SHUBBER    SUAL IHSPECTIOH IHTERVAL Population            Column A            Column B          Column C or Catego Notes Extend  Interval    Repeat  Int  al    Reduce Interval 4              e Hote 1:    The  next visual inspection interval or a snubber population or category size shall be determined ased upon the previous inspection interval and the n er of unacceptable snubbers found during that interval.        ubbers may be categorized, based upon their accessibility d ing pover operation, as accessible or inaccessible. These      tegories may be examined separately or )ointly. Hovever,      e licensee must make and document        t decision before any      pection and shall use that decisio as the basis upon wh      to determine the next inspection      erval for that  categ Hote 2:    Interpola  on between population or category siz        and the number    unacceptable anubbers is permissible      Use next lover integ for the value of the limit for Col tha integer includes a fractional value A, B, or C unacceptable if snu ers as determined by interpolatio Hote 3:    If  the number of unacceptable snub rs is equal to or less than
          ,the number in Column A, the nex inspection interval may be twice the previous interval        not greater than 48 months.
BFH Unit 2 3.6/4.6-23b FINED'8~(
 
T  le 4.6.8-1 (Continued)
S    BBR VISUAL IHSPBCTIOH IHTERVAL Hote 4: If th    umber of unacceptable snub rs is equal to or less eater than the number in the number in Column B but Co      A, the next inspection        terval shall be the same as e previous interval.
Hote 5  If the  number of unacce able snubbers is equal to or greater than the number in Co        C, the next inspection int      al shall be two-third of the previous interval. How er,            'if the number of unacce able snubbers is less than the umber in Column C, but      eater than the nuaber in Col          , the next interval          be reduced proportionally by      terpolation, that is,        previous interval shall be r ced by a factor that is      e-third of the ratio of the    d  ference betveen      e number      unacceptable snubbers found uring      the previo interv  1  and the number in Column B o the difference            the numbe    in  Columns B aud C.
Hote 6: The  provisions of Specificatio 1.0.LL are applic          le for all inspection intervals up to          including 48 mon BPH                                    3.6/4.6-23c            AMENOMENT RQ. p Zg Unit 2 p.<gE~$    'F~3'
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~OF g
 
                                                                            'n LIMITIHt COHDITIOHS  FOR OPERATIOH                SURVEILLAHCE REQUIREMEHTS 4.6 Applies t the operating s atus                      plies to the p iodic of the res or coolant syst                            ination and t ting req rements for th reactor cool    t system.
To assure  the integr      and safe              To dete          the condition of operation of the react  r  coolant                the reactor oolant system          d systeme                                            the operation f the safety devices relate to        it.
ill t
: 1. The average  rate of                              !
DO  S 't.g      reactor coolant temperature            <Mgcooldoms, the change during normal heatup      c ggAQ, )    following parameters or cooldoma shall not exceed                  shall be recorded and 100 F/hr shen averaged over                    reactor coolant a one-hour period.                            temperature determined ute intervals 36          til  3 succ s ve readings a each given lo tion vithin      F.
: a. team D    e  Press  e (Conve    to upp vess    region t erature)
: b.      actor    ttom drain empera    re Reci  culatio loops A      B
: d. eactor v ssel bottom head tern erature
: e. React    vessel shell ad)a ent to shell fl    e BFS                                      3.6/4.6-1                  PAGE~pp~
Unit  3
 
5  3'.M..
: 2. During  all operations vith                          eactor vcsscl metal a critical core, other than                        temperature at the for lov-level pbysics tests,                      outside surface of the LCg      .except vhcn thc vessel is                        bottom head in thc vented, the reactor vessel                        vicinity of thc control shell and fluid temperatures                        rod drive housing and shall be at or above the                            reactor vessel shell temycratare of carve 03 of                          ad)accnt to shell Figure 3.6-1.                                      flange shall be recorded at least every            LZ minutes daring        ervice hydrostatic or test~      cn the vesee 5g g,q,fj,)~  ressurc  is  > 312 psig
: 3. Daring heatap by                            3. Test specimens nonnuclear means, exccyt                            reyresent      the reactor when the vessel is vented                          vessel, b e veld, and LCo    or as indicated in 3.6.h.4,                        veld hea    affected zone daring cooldown folloving                          metal        I be ins alled 3A g    nuclear shutdown, or                                in th reactor v sel daring lov-level physics                            aQ ent to the cssel tests, the reactor vessel                                at the c c mi plane temperature shall be at or                          level. The        be and above the temperatures of                          type  of sp  im    vill curve $ 2 of Figure 3.6-1 antil                    be in acc            vith GE removing tension on the head                        reyort lKDO-10 15. The stad bolts as specified in                          specimens shall meet the 3.6.L.5.                                            intent of hSTN E 185-82.
PAGE          OP~
BFH "                                  3 '/4 '-2                  AMENDMENTNO.      14 Unit  3                                                                                  1
 
l.i
                                                    <Pc c ''a      'P            i3  1995
: 4. The  beltline region of reactor vessel temperatures LC.O    (during inservice hydrostatic 9'g.9      or leak testing ahall be at            SRg.g.g. l  Nog  )
or above the temperatures shown on curve &#xb9;1 of Figure 3.6-1. The applicability of        p)    y p~g        sC. 9.'L9.2.
this curve  CD Chese.Ccats  is cztended to ncmnuclear 5$        heatup and aabient loss
'3A.g,        cooldom associated with
      )
NnH'.g,      these tests only  if the heatup and cooldem rates do not exceed 15 F per hour>>                                  ~R ~~9  ~ 9e (>> +bloke, sg z.q,9.a+.Mom
: 5. The  reactor vessel head                  5. When    the reactor vessel head bolting studs may be partially                    bolting studs are tensioned tensioned (four sequences of                      snd the reactor is in a Cold the seating pass) provided                        Condition, the reactor vessel Che sCuds and flange. IaCerials                            t eratur imediately are above 70 F. Before                            below'he head flange shall loading the flanges any more,                    be LC.b      the vessel flange and head 3 9.1      flange must be greater Chan 70 F, and Itust reaain above 70 P whfle under fuX1 tensicm.
Prod ~w~c~
Pr 5',g,),5>
PAGE          OF 3.6/4 '-3 AMENDMENTNg. y98 BFK Unit  3
 
ecifim  '3    I ~
                                            +@i
                                                  + 3'. o9. PJo  )
: 6. The pump  in an idle                      6. r              urfag recirculation loop shall not                  ST        of an idle be  started unless thc                        rec rculation loop, the temperatures of thc coolant                  temperature of the reactor vi in thc idle        o erat ng              coolant      the operat recirculation loo are w        5D F of each other.
and    die loops
                                                                        +y  o  c l bc
: 7. The  reactor recirculation                    Prior to atartiag a pumps shall not be started                    recircu ation pump, I Co        unless the coolant                            the reactor coolant
  $ ,4,cj      temperatures betveen the                      temperatures in the dome and bottom head                          dome and in the bottom drain are vithin 145 F.                      head drain    shall bc compare p ~~>~ Pcy IeN$
M3        p, g~~
PAGE            OP~
BPS                                        3.6/4.6W Unit  3
 
  ~a              ~
  ~ rrrasr
                .
                    ~
  ~ ara%5lrrrraa
  ~ rrraaraaaar rrr&#xc3;1!Ilaaarra rrrRIlllrrrrar
  ~ ralllllirrrara
..
  ~ raSIHIrrrarr
  ~ rarllliaaaaar
  ~ ERrfNsrrrara
  ~ aaasraaaara rrrrarraraaa
        ~ f)8raaraar
      ~ r)Asrkaarar
  ~ IIPi5.....
RI=S ~
                  ~
                  ~
 
I 4.6.E. ~Je ~~
: 2. Whenever there  is recirculation flov wit the reactor in the Sc< 'Sus+t Ei'rc4onQ~  c~ey                      STARTUP  or RUN Mode  and
                      +~ >F'N iSTS      3q.~                            one  recirculation  pump I              is operating, the diffuser to lover plenum differential pressure shall be, chcckcd daily and the differential pressure of an individual jet pump in a loop shall not vary from thc mean of all jet pump differential  pressures 5<@  5gs+iCi ca/ion Q~ cha<g~<                            in that loop  by more kr'P'hl    l5T5 SI I                                      than 10'.
3.6.F              at          0                      4.6.F    e                  0      tio
: 1. The  reactor shall not bc operated                  1. Recirculation  pump vith  onc  recirculation loop out                        speeds shall be checked of service for more than 24 hours.                      and logged at least Pith the reactor operating, if                          once per day.
one recirculation loop is out of service, the plant shall be placed in a HOT SHUTDOWH COHDITXOH    vithin 24 hours unless thc loop is sooner returned to service.
: 2. Folloving    onc-pump  operation,                    2. Ho  additional the discharge valve of the lov                          surveillance required.
speed pump may not be opened unless thc spccd of the faster pump is less than 50K of its rated speed.
                                                                    ~R
: 3. When  thc reactor is not in thc    RUH              3. Before  starting either mode, REhCTOR    POWER OPERhTIOH  with                  recirculation pump both recirculation pumps      out-of-                    during  REhCTOR POWER service for up to 12 hours      i                        OPE                &Bd' ermitted      Dur ng such interval                            e loop dis arge restart of thc recirculation pumps                      temperature and dome sR            is permitted, provided the loop                          saturation temperature.
9.g        discharge temperature is vithin 75 F  of the saturation temperature pAGE~OF~
BFH                                            3.6/4.6-12          AMENDMgfTNP. y 8$
Unit  3
 
  .6.F See V<S+Pi~gon      kr  C 3,9A,9~ Ivo& 2.                                            $ r Bpe    Isis r,v.j of the reactor vessel water as determined by dome pressure.                The a    e apse    t  e  n natural circulation      and one pump operation    must be no greater than 24 hours.
: 4. The reactor shall not be operated with both recirculation pumps out-of-service while the        reactor's in the    RUH  mode. Following a trip of both recirculation                pumps while in the RUH mode, immediately      initiate  a manual reactor scram.
3.6.G                                                          4.6.G The  structural integrity of              ASME        1. Znservice inspection of ASME Code  Class 1, 2, and    3 equivalent                      Code Class 1, Class    2, and components shall be maintained                            ~
Class 3 components    shall be in  accordance    with Specification                        performed  in accordance with 4.6.G throughout the life of the                            Section XX of the ASME Boiler plant.                                                      and Pressure Vessel Code and applicable  Addenda as required
: a. With the structural      integrity                      by 10 CFR 50, Section 50.55a(g),
of  any  ASME Code  Class 1                            except where specific written equivalent component, which                            relief has been granted by HRC is part of the primary system,                        pursuant to 10 CFR 50, Section not conforming to the above                            50.55a(g)(6)(i).
requirements, restore the structural integrity of the                      2. Additional inspections shall be affected component to within                          performed on certain its limit or    maintain the                            circumferential pipe welds reactor coolant system in either                        to provide additional a Cold Shutdown condition                              protection against pipe whip, or less than 50 F above                                which could damage auxiliary the mintunun temperature                                and control systems.
required by HDT consider-ations, until each indication of  a defect has been investigated and evaluated.
3ietifiaaiion 6r Cjgunyg for  C T5 y,i, p./q BFH                                                  3.6/4.6-13              AMENOIHEgf gg,  ypg Unit  3 A8~    $ OF~~
 
                                                                  .8 V.S.Z JUN 2 8 199$
3.6.B.                                        4.6.BE
: 1. PRIOR TO    ARTUP and              l. eactor coolant shall be at steam      rates                      continuously monitored less  t    100,000                      for conductivity except                    when lb/hr the following                      there is no fuel in the limi s shall apply.                      reactor vessel.
a    Conductivity,                      a. Whenever ghe pmho/cm at 25  C  2                      continuous onductivity monitor        inoperable,
: b. Chloride,  ppm    0.1                    a samp      of reactor cool      shall be ana    zed for c  ductivity every hours except as listed below. If the
                                            ~
I I
reactor is in COLD SHUTDOWH COHDIT105, a sample of reactor coolant shall b analyzed for conductivi                  every 8  hours.
: b.        e a week the ontinuous monitor shall  be checked                with an  in-line flow cell.
This in-line conductivity calibration shal                    be performed eve                    24 hours whenev                    the reactor coo                  t conductiv                    is  >1.0 ymho/cm    t  25iC,
: 2. kt steaming rate                    2. During st tup prior to greater than 10 ,000                    pressur ing the lb/hr, the fo owing reactor'bove tmospheric limits shal apply.                      pre ure measurements o reactor water quality
: a. Conductivity,                        hall be performed to show pmho/cm at 25'C  1.0              conformance with 3.6.B.1 of limiting conditions.
: b. Chloride,  ppm    0.2 BPK                                  3.6/4.6-5              AMENDS@ ~0.                I8 Unit  3
                                                            ~AGE        /                OF
 
Ci CTS  Z.(,8 q.a.g OEC 0  7  1994 4.6.B.
3~ ht steaming rates                              3~  Whenever the    reactor greater than 100,      0                            is operating (including lb/hr, the react                                    HOT SThHDBY COHDITIOH) water quality                                      measurements      f reactor exceed  Specifi tion                                vater quali      shall    be 3.6.B.2  only'r    the                            performed ccording to time  limits pecified                              the foll ing schedule:
belov. Exc eding these time limi or the folloving                          a.      oride ion content maximum      ality limits shall                            d pH  shall  be be caus for placing                                      measured    at least    once the re tor in the                                        every 96 hours.
COLD        OWH CORD  IOH.                                        b. Chloride ion content sha        be Conductivity                                      measured a      least time above                                    every 8 h rs 1 idaho/      at 25iC-                          vhenever reactor 2 ve    /year.                            conduc    vity is Limit                                >1.0      o/cm o/cm at 25 C                        at    'C.
                                  '0
: c.      sample of reactor
: b.        oride                                        coolant shall be concentration    ti e                          measured    for  pH  at above 0.2 p                                least once every      8 2 vecks/ye                                  hours vhenever the Maximum Lim                                    reactor coolant Oo5 ppme                                    conductivity is >1.0 idaho/cm at 25iC.
: c. The rea    or ahall be placed  in the SHUTDOWNS COHDI IOH if pH <5.6 or
              >8.6 for a 24-hour period.
BPH                                    3.6/4.6-6 N>NEON. 86      I Unit 3 PAGE
 
3.6.B.                                                .6.B. Coo      t        st
: 4. When the eactor is                                4. Whenever    t  e  react r is not not pre urized vith f 1 in                              pressuri      d  vith uel in the re tor vessel,          cept                        the rea    or ves    1, a duri      the SThRTUP      HDITIOH,                    sampl    of the eactor the    eactor vater      11 be                        cool t shall e analyzed mai  tained vithin the                                  at    east ev        96 hours fo loving limit .                                      f    conduc      vity, chloride on conten        and pH.
Conductiv    ty-25 10 pmho cm    at
: b. Chio    de  0.5
: c. p    shall  be    tveen
                  .3 and 8.6
: 5. Wh      the tim    limits or                    5.      During equilibrium pover co    ctivity or                            operation an isotopic oride c ncentration                                analysis, including limits ar exceeded, an                                  quantitative measurements ordirly      hutdovn shall be                            for at least I-131, I-132, initia ed immediately. The                              I-133, and I-134 shall react r shall be brought to                            be performed monthly on a the OLD SHUTDOWH COHDITIOH                              coolant liquid sample.
as    apidly    as cooldom    rate permits.
: 6. enever      e reactor is                      6. hdditional coolant critical,      the limits on activity                  samples shall be taken concentrations in the reactor                          vhenever the reactor coolant shall not exceed the                            activity. exceeds one equilibri~ value of 3.2 pCi/gm                          percent of the of          Section dose equivalent      I-131.                        equilibrium concentration specified in 3.6.B.6 and one of the folloving conditions are met:
S<c  3'u.~f;~/on        QP.
C~ge< t S~nt isis s,g,g BFH                                          3.6/4.6>>7              AtaENoMENT go. y8 y Unit  3 PAGE
 
3.6.B.                                          4.6.Bi 3.6.B.6 (Cont'd)                                4.6.B.6    (Cont'd)
This  liait Nay    be exceeded                  a. During the      STARTUP CORDITIOK folloving, pover transients for a aaxiarm  of 48 hours. During                b. Folloving    a  significant this activity transient the                          pover chLnge**
iodine concentrations shall not exceed 26 pCi/gw vhenever the                  c. Follovtng    .an  increase reactor is critical. The                            in the squilibritm reactor shall not be operated                        off-gas Xerel exceeding aore than 5Z of its yearly                          10,000 pCi/sec (at the pover operation undir this                          steaa )et air e)ector) exception for the equilibrium                        vithin a 48-hour period.
activity liaits.      If the iodine concentration in the coolant                    d. Whenever the      equilibrhm exceeds 26 pCi/ga, the reactor                      iodine liait specified shall be ahut dovn, and the                          in 3.6.B.6 is exceeded.
steaa line isolation valves shall be closed iwaediately.                    The  additional coolant liquid saayles shall be talon at 4 for 48 hours, or until        hour'ntervals See
        ~n V~q6<i'm~n $ r.
              >s Vs    r.q,(.;~;,
                                  ~~                  a stable iodine concentration belov the liaiting value (3.2 yCi/ga) is established.
Scc ho g                                      Hovever, at least 3 consecutii saaples shall be taken in all cases. An isotopic analysis ahall be perfozaed for each sawple, snd    quantitatire aeasureaents      aade to deteraine the dose equiralent I-131 concentration.
7~      the e  is      fuel in the              7.      en  ther    is    fuel actor  esse    , te    cal                          e  reac r v sl) pecif cati      reac  r coolant                  saapl      of r ctor c olant cheai  try  1    ts do  not apply.                  cheai ry a tschni 1 spec ficat on fra ency is t requi ed.
For the purpose of this section on saapling frequency, a significant pover exchange is defined as a change exceeding 15Z of rated pover in less than 1  hour.
BFN                                    3.6/4.6-8                  NENBMgpgQ,        z gz Unit 3
                                                                                          'AGE~OF~~
 
tl
  .6.F                            0    a 3 ',F,3      (Cont'd) of the reactor vessel water as determined by dome pressure.            The                see swiJ"cqAo*
                                                                    ~ B~H >~T~ 3'~
k,  C+~
total elapsed time in natural                                                  ~  Pgcirculq~
circulation      and one pump                                            9 p a +His 5ecti on s
operation must be no greater than 24 hours.
: 4. The  reactor shall not be operated with both recirculation pumps out-of-service while the reactor is in the RUH mode. Following a trip of both recirculation pumps while in the RUH mode, immediately      initiate  a manual reactor scram.
  ~ 6.G  S        U                                        4.6.G The  struc      ral integrity of      ASME          1. nservice        pection      f ASME Code Cla        1, 2, and  3    quivalent              Code Clas      1, Class        , and compon        s shall be      intained                  Class 3 omponents            hall  be in  acc    dance  with S ecification                  perform d in      accor ance with 4.6.G hroughout t life of th                            Sectio XI of the ASME Boiler plan  ~                                                and P essure Ves el Code              d appl  cable  Add        a  as  re    ired
: a. With the s        ctural int      rity              by      CFR 50,        ction 50 55a(g) of    any        Code Class                        ex ept  where        ecific      itten equival      t component, which                    r ief has      b      grant      by  HRC is    pa    of the pr          system,                rsuant  to    0  CFR  50,  Section not onforming to            e above                  0.55 (g)(6 (i).
re    irements, res ore the s      ctural inte ity of the                  2. Additio        inspect ons shall be ffected compo ent to with                        perform      on cert      in its limit or intain the                            circum    rential ipe welds reactor    coo    t  system    i  either          to pr ide addi ional a Cold Shu      own  conditi                      prot tion aga nst pipe whip, or less    t    50'F abov                        whi    could d ge auxiliary the min          temperatu    e                    and  control    s stems.
            ~
requir by HDT cons der-atio , until each ndication of a defect has be n investigated      and evaluated.
BFH                                              3.6/4.6-13                AMENDafEHT NO.      r 7'9 Unit    3 PAGE~OF~~
 
a  vs    3. 6.g./q, 0. 4-NY31m 3.6.G                                              4 ~ 6.G 3.6.G.l ( ont'd) b  With  t  structu al integ    ity of      ASME Co    Class 2 or 3 equ alent co onent no co forming t the abov r quirement , restor the tructura integrity of the affected  omponent    o  vith its lim    or isol  e  the affect OPE d compon syst from    l BFH                                      3+6/4+6-l~                AMENDMENT NQ. g7g Unit  3 PAGE~OF          /
 
0
: 3. 6.8. 4QQhhCXk                              4 6 8 2m8hma During all modes      operation,          Each sa    ety-rclatcd snubber all saubbcrs sha be OPERABLE                shall    e  demonstrated except as noted n 3.6.H.1.                  OPE        by performance hll safety-rcl    ed snubbers              of    e folloving augmented are listed in lant                          i    rvice inspection program Surveillance    astructions.                    thc requirement of pecification 3.6. 4.6.8.
: 1. With  o  or more                      These snubbers    ar    listed ia snubb    (s) inoperable a              Plant Surveill        e  Instructions a  sys em that is re    red to b OPERhSLE in cur cnt plant cond ion, wi in 72 hours r place                      ka use    in this o restore the i operablc                    speci icatioa, "type of ubber(s) to 0 RABLE        ~
snub er" shall mean tatus and per orm aa                      sn bcrs of the same engineeriag c aluation                      d ign and manufac rcr, on the atta cd component                      respective of c acityo or declare    e attached system ino erable and                  2~
folla        appropriate Limiting Condition                          Snubbcrs are        ategorizcd statement for that system.                  as inacccss      le or accessible uring reactor operation      Each of these categori s (inaccessible and ac    ssible)    may inspe    ed indepcnd      tly acco ing to the s cdulc det rained by Tab e
: 4. .8-1. The v ual pection int        al for each type of        ubber shall be determin        based upon the criteri provided        in Table 4:6. -1 aad the        firs iaspecti      interval determi ed using this criter a shall be based upon      c previous insp ction interval as est lishcd by the req ircmcnts in cffcct before amendmcat No. 183 BFH                                    3.6/4.6-15            IIILENOMENTNo,    y 88 Unit  3 PAGE~OF
 
Visual inspectio      shall verify that (1) e snubber has no visibl indications of Cease o layaired OPERABILI ~ (2) attachR    s to the founda on or supporting struc re are functional, and 3) fasteners for the at chment of the snubber t the component and to the ubber anchorage are functional. Snubbers which appear inoperable as a result of visual inspections shall be classified unaccep able and aay be reclassif d acceptable for e purpose of establish      the next visual insp ticm interva.
provided      t (1) the cause of the r ection is clearly establi ed and reaedied for    t  particular  snubber and  or other snubbers ir spective of type that be generically susceptible; and (2) the affected snubber is functionally tested        the as-found conditicm detezained 0          per Specification 4 .8.5.
reviev and ev uation shall be perforae    snd docuaented to gustif continued operatio with an unacce able'snubber.      If ccmt ued operation cannot be  Justified, the snubber shall be declared inoperable and the LINZTIEC COHDITIOKS FOR OPERLTIOK shall  be aet.
BP5    3. 6/4. 6-16      AMENDMENrND. Z 8g Unit 3 PAGE      9 pp    /g
 
4 6 8  Bmhhern 4.6.8.3 (Cont'd) kd    tionall      , snubb  rs a  tached        sectio      of afety-r ated        s  teaa that have        erience      unexpected poten      illy d        iag tr        eats s      ce the    ast ins ection riod                11 be ev lusted or the ssibili y of c cealed e        func onally tested conf  i if OPB app cable, to LITT.
Snab    ers vhi have be sad    inoper le as th re      t  of      expected t  ansien      ,  isolat aaage,    r  other        oa events when the rovisions of 4. .8.7 and .6.8.8 ve be      met and          other ap    opriate        rrectiv a    ion 1ap1        ented,        1 ot be co      ted in deterain          the n t visual inspect a
interv 1.
BFH    3 '/4.6>>17 AMENOMBfTNO.      I8 3 Unit 3 PAGE~oF~S
 
4.6.8.
4.
Daring      ch refue ng outage a repres tative aaapl of lOX          the total of e ch type aa      ty-relat snubbera in e in the ant shall be unctional teated either in place r in a ben teat.
The re        eaentativ    aLRple aele ed for fun ional tes ng shall 1 elude the va ious confi rations, o crating en ironILenta, and e range o size and capacity          snubbers    ithin'he type . The repres tative s pie should e veigh d to inclu e aore ubbers frc seve e aervi e areas such aa ear he            equfpaent.
The        atro  e setting                the aecuri          of fastener for atta        ent of the      bbera to        e coaiponent      to the anu      ber anchorag    shall be ve          fied  on anu  era selected for            CTIOKAL TESTS'FR 3.6/4 6-18
            ~
em0mHrHU      X83 Qnit 3 PAGc~oF
 
4.6.H. S  u    e 5.
snubber      CTIOHhL ST  shall v  rify that:
: a. Activ ion (restr ning
                          =acti    ) is achie d in oth tension and co pression vi in the ecified r e, except hat  inerti  dependent, accelerati      limiting mechanic      snubbers may be test      to verify only t at activation takes place in bot dir tions of trav l.
: b. S  ubber bleed, r elease where equired, is present    i  both compression and tension within the specified range+
: c. For  me    ical  snu  ers, the      rce require to ini ate or mai ain mo ion of the        ubber is t great eno to verstress      e attached piping or omponent during t rmal movem t, or to    i  icate imp ing failur of the snu er.
: d. For nubbers sp ifically re ired not t displace er continu      load, he  ability    f the  snubbe to vithst        load vithout displacem    t shall  be verified BFH    3.6/4.6-19            NENDMENT NO. 134 Unit e Ga~l'r~8' 3
 
0' 4.6.8.
4.6.H.S    (Co?Lt'd e    Testing methods may be used to mLcasurc p raactcrs indirectly or        aactera other than        sc spccif ic if those ed correl suits to the can be aye    iad parameters ough established aethoda.
6 X~a&a tel                ka engineeri          evaluation shall    be    de  of each  failure to ecc        e PUECTIOKAL TEST acce ance criteria to d    I%inc the cause of the ailure. The result of this analysis shall be used          if applicable, in aele snubbera to be t ted in the subsequent lo          an effort to deterainc          OPERhBILIIT of other an era which say be sub/a        to the aaae failure Selection of snubbera r future testing aalu also be aaed on the failure analysis. For each ubber that does not aee the lUKCTIOML YES          acceytance criteria,          ddltional lot equal to          yercent of the reaa        r of that type of snub      ra shall bc functi          ly tc    ed    Tcsti?Lg s ontinue until no          itional inoperable anu era are found within suba        cnt lots or all snubbcrs          the original tUKCTZ          TEST type have bean i
teat      or  all  suspect ambbers identified      by the failure analysis have been teated,          aa apylic able.
BFS        3 6/4.6-20              NENOMENT N.      y 83 Unit 3                                                  l8' pAG <~Ocean
 
19  1989
                ~ 6 oHo  'gt~
4.6.H.6    (C        d)
If any    snubber        ected for functi            testing either ils to lockup or        ls to  move,  i.e.,
ozen in place, the caus will be evaluated and          if caused by manufac            er or design    defici      y,  all snubbers          the  same desig        bject to the s        defect shall be ctionally tested.
This testing requirement shall    be independ      t of the requireme            stated above    for      bbers not meetin        e FUNCTIONAL TES      cceptance    criteria.
e discovery of loose or missing attachment fasteners will be aluate to determine w            er the cause may b          ocalized or generic            e result of the        luation will be u        to select other suspect snubbers verifying the            achment fasteners,          applicable.
7 ~
r  the snubber(s        ound inoperable,            gineering evaluation        all be perform ed on the c ponents which are restr ned by the snubber(s The urpose of this e    ineering evaluat          shal 1 b o  determine    ifhe  e compone  nts restrained      b NENDMQPNP Zeg BFN    3.6/4.6-21 Unit 3 PAGE~~~P~
 
cTS 3.4.
                                                'JAN 19 1"-P
                      .6.H.    ~~~s 4.6.8.7    (Co    d) snubber(s) vere                        ersely affected by        e  inoperability of the s ber(s), and in order to        re that the restrained co onent remains capable of ecting the designed                            ice.
8.
S  ubb    s Snubbe        vhich    fail              the visual insp    tion or the CTIONAL TEST      accepta                  e riteria shall      be re                  red or replaced.        Rep cement snubbers and s          hers vhich have repair          hich might affect t FUNCTIONAL TEST result shall meet the FUN      OHAL TEST      criteria b    ore  installation i he it. These snubb s shall have met the ac sub quent to their ptance'riteria most rec        service, and the FUNCTIO        TEST must have been      rformed vithin 12 mo        before being ins                        led the  unit.
C                0 Pe      ent or other exemptions fr      visual inspections d/or functional testing for individual snubbers                            y be. granted by the C                        ission if  a Justifiable exemption is          esented and asis for if applic        e  snubber life destruc ve      testing vas      rformed to qualify s      ber OPERABILITY for e applicable design conditions at either the
~ J BPN Unit 3 3.6/4.6-22                  NENDMENr NK X                    ac pAgE              OF
 
CVg Z.6 JAR    i9  1988 4.6.H.  ~t~
4.6.H.9 (C    'd) completion of thei fabrication or        a subsequent date. Snu        rs so exempted shall c inue to be listed in t    plant instructions with f  tnotes indicating th extent of the exemp      ns.
: 10. S                      e  ora The se      ce life of snubbers may  e  extended based on aluation of the rec s of FUNCTIONAL TESTS, maintenance his ry, and environment      conditions to vhich the nubbers have been      osed.
AMENOMENT NQ. X3 BFN    3.6/4.6-23 Unit 3 pwaa~~o>~~:
 
Cl 0
 
mrs  .c.a/v<.e JAN I 9    1989 THIS PAGE IHTEHTIOHALLX LEFT BLAHK ANENOMENT Ng. X'3 BFH                3.6/4.6-23a Unit 3 PAGE~6'F~~
 
Table 4.6.8-1 SHUBBER VISUAL IHSPECTIOH IHTERVAL Populati              Col    A            Column B          Coluan  C or Cate ry        Extend    terval    Repeat  Interval    Reduce  Interval 0
Hote 1:    The  next visual        ection interval fo a snubber population category size sha      be deterained bas      upon the previous inspection inte al and the amber            unacceptable snubbers found during        t interval. Snubb s aalu be categorized, ased upon their ac essibility during          er operation, as aces ible or inaccess le. These categori s aay be exaained sepa tely or /ointly Heaver, the        lic    ee auat aake and docua      t that decision efore auy inspecti and shall use that de sion as the baai upon which to dete          e the next inspecti      interval for        category.
Hote 2:    Inte    lation between po ation or category siz s and the n    er of unacceptable      ubbera is peraissible. Use next'lower in cger for the value f the liait for Col t integer includes a fractional value of A, B, or C cceptable if ubbers as detera      d by interpolation.
Hote 3:    If the nuaber    of    cceptable snubbers is equal to or lese than the nuaber in Co        A, the next inspect on interval cay be tvice the previ        interval but not gre ter than 48 aonths.
BPH                                      3  6/4.6-23b            AMENDMENT  N, g 83 Unit  3
 
Table 4.6.8-1 (Continued)
SSUBBER  VISU    ISSPECTI05    I      hL If    e nuaber  of    cceptable snub rs is equal o or less nenber i the number in Colum B but g eater than Co umn k, the nex inspection in erval shall b the saa              as e previous int rval.
f  the nuaber    f unacceptabl      anubbera  ia  e    to o .greater than the  n~    r in Column  C  the next inap ction in rval shall be tv thirds of the revioua inte al. Ho@ er, nuaber of      cceytable      bere ia leaa          the if er in the Column C,      t greater        the member      Golda, the next interval        1 be reduc    proporti          by int rpolation, that is, the previous terval ahall e reduc by a facto that is one-third of e ratio of e differ ce between e nuaber  of unaccepta e anubbera fo          dur    the previo inte al and the n er in Column to the ifference                    the n~ rs in Col          B and C.
yrovfakoma    f Specificati      1 O,LI  re applicab    for all inspection  int rvala  up to        including  48 aontha.
O'I 3  6I4.6-23c              NENOMEgr gp. y 88
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.4.9 -  RCS PRESSURE AND TEMPERATURE (P/T) LIMITS MINIST TIVE Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and by plant operators as well as other users.                    The therefore,'nderstandable reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.        This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
~ A~    These surveillances are a duplication of the regulations found in 10 CFR 50 Appendix H. These regulations require licensee compliance and can not be revised by the licensee. Therefore, these details of the regulations within the Technical Specifications are repetitious and unnecessary.      Furthermore, approved exemptions to the regulations, and exceptions presented within the regulations themselves, are also details which are adequately presented without repeating the details within the Technical Specifications. Therefore, retaining the requirement to meet requirements of 10 CFR 50 Appendix H, as modified by approved
                                                                                                          'he exemptions, and eliminating the Technical Specification details that are also found in Appendix H, is considered a presentation preference which is administrative in nature.
A3    For  clarity,    the terms "prior to and during startup" and "prior to" have been replaced with "15 minutes". This Frequency is effectively the same since the proposed Surveillance now must be performed no more than 15 minutes prior to startup of the idle recirculation loop. This is essentially equivalent to the current requirements.
I BFN-UNITS 1, 2,  8E 3                                                                      Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.4.9 -  RCS PRESSURE    AND TEHPERATURE  (P/T) LIHITS A4    Proposed  SR  3.4.9.4 requires verification that the difference between the reactor coolant temperature in the recirculation loop to be started and the RPV coolant temperature are within 50 F of each other. CTS 3.6.A.6/4.6.A.6 requires verification that the temperatures between the idle and operating recirculation loops are within 50 F of each'ther.
The temperature of the "operating recirculation loop" is considered e  equivalent to the RPV temperature. Therefore, this change is considered administrative.
Proposed SRs    3.4.9.5,    6 5, 7  require the reactor vessel flange and head flange temperatures be verified > 82 F, while CTS 4.6.A.5 requires the reactor vessel shell temperature immediately below the head flange be recorded. The BFN procedure that implements this requirement requires the vessel flange and head flange temperature be verified and requires the shell temperature be recorded. Since the intent of the surveillance is to verify vessel flange and head flange temperature to satisfy CTS 3.6.A.5 and both the current and the proposed SRs do this, the two are considered equivalent. As such, the proposed change is administrative.
TECHNICAL CHANGE  -  NORE RESTRICTIVE A new  Surveillance Requirement        has been added. SR  3.4.9.2 ensures the RCS pressure and temperature are within the criticality limits once within 15 minutes prior to control rod withdrawal for the purpose of achieving criticality. This is an additional restriction on plant operation.
H2    Three new Surveillance Requirements have been added. SR 3.4.9.5 ensures the vessel head is not tensioned at too low a temperature every 30 minutes. SRs 3.4.9.6 and 3.4.9.7 ensure the vessel and head flange temperatures do not exceed the minimum allowed temperature.            These are additional restrictions      on  plant operation since the current requirements have no      times specified.
M3    ACTIONS have been added        (proposed ACTIONS A, B, and C) to provide direction when the LCO is not met. Currently, no real ACTIONS are provided. These ACTIONS are consistent with the BWR Standard Technical Specification, NUREG 1433, and are additional restrictions on plant operation.
BFN-UNITS 1, 2, 5 3                                                          Revision 0 PAGE~OF~
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.4.9 -  RCS PRESSURE  AND TEMPERATURE  (P/T) LIMITS TECHNICAL CHANGE  -  LESS RESTRICTIVE "Generic" LAl  Details of the methods for performing Surveillances, and any, requirement to record data, are relocated to the Bases and procedures. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in Chapter 5 of the Technical Specifications. Changes to the procedures will be controlled by the licensee controlled programs.
"Specific" Ll    The Frequency of this Surveillance has been changed from 15 minutes to 30 minutes. Verification that RCS temperature is within limits every 30 minutes when RCS pressure and temperature conditions are undergoing planned changes is reasonable in view of the control room indication available to monitor RCS status. Also, since temperature rate of change limits are specified in hourly increments, 30 minutes permits a reasonable time for assessment and correction of minor deviations. In addition, this new Frequency is consistent with the BWR Standard Technical  SP ecification,  NUREG  1433.
  'I L2    The Frequency of this Surveillance has been changed from 15 minutes to 30 minutes. The metal temperature is not expected to change rapidly due to its large mass, thus a 30 minute Frequency is adequate. In addition, this  new Frequency  is consistent with the  BWR  Standard Technical Specification,  NUREG  1433.
BFN-UNITS 1, 2, & 3                                                      Revision 0
 
0 t  Rl  The CTS
  'ELOCATED SPECIFICATIONS
                            -
JUSTIFICATION 3.6.B/4.6.B -
FOR CHANGES COOLANT CHEMISTRY chemistry limits are provided to prevent long term component degradation and provide long term maintenance of acceptable structural conditions of the system. The associated surveillances are not required to ensure immediate operability of the reactor coolant system. Therefore, the requirements specified in current Specification 3.6.B/4.6.B did not satisfy the NRC Final Policy Statement technical specification screening criteria as documented in the Application of Selection Criteria to the Browns Ferry Unit 2 Technical Specifications and have been relocated to plant documents controlled in accordance with lOCFR50.59.
Revision  0 PAGE
 
JUSTIFICATION FOR CHANGES CTS 3.6.G/4.6.G -  STRUCTURAL INTEGRITY RELOCATED SPECIFICATIONS Rl    The structural integrity inspections are provided to prevent long term component degradation and provide long term maintenance of acceptable structural conditions of the system. The associated inspections are not required to ensure immediate operability'f the system. Therefore, the requirements specified in current Specification 3.6.G/4.6.G did not satisfy the NRC Final Policy Statement technical specification screening criteria as documented in the Application of Selection Criteria to the BFN Unit 2 Technical Specifications and have been relocated to plant documents controlled in accordance with lOCFR50.59.
BFN-UNITS  I, 2, 8L 3                                                Revision  0 peCiE~OF~          '
 
JUSTIFICATION  FOR CHANGES CTS  3.6.H/4.6.H -  SNUBBERS TECHNICAL CHANGE  -  LESS RESTRICTIVE "Generic" LAl  Snubber inspection requirements are part of the BFN Inservice Inspection (ISI) Program and are being relocated to the ISI program documents.
Requirements for the ISI Program are specified in 10 CFR 50.55a to be performed in accordance with ASIDE Section XI. NRC regulations contain the necessary programmatic requirements for ISI without repeating them in the proposed BFN ISTS.        Changes to the ISI Program are controlled in accordance    with 10 CFR 50.59.          With the removal of operability requirements from the Technical        Specifications,  snubber operability requirements will be determined in    accordance  with Technical Specification system operability requirements.
BFN-UNITS 1, 2, 5 3                                                      Revision  0
 
Section 3.4, Reactor Coolant System  (RCS) Bases The Bases  of the current Technical Specifications for this section have been completely replaced by revised Bases that reflect the format and applicable content of the proposed Browns Ferry Unit 2 Technical Specification Section 3.4, consistent with the BWR Standard Technical Specification, NUREG 1433. The revised Bases are as shown in the proposed Browns Ferry Unit 2 Technical Specification Bases.
BFN-UNITS 1, 2,  Ea 3                                          PAgp    evi sQF~
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
C 1 SpE'Cgi QLQo        .,  )
4      0                                                                        NOV    22 l988 LI TIHC    COHDITIOHS FOR OPERATIOH              SURVEILLAHCE REQUIREMEHTS 3.5                                              4,5                                        0    G Applies o the operational                            Appli        to the surv llancc status of the core and                                reqair      cats of the        rc and containmen cooling systems.                          containm t cooling s terna when the corre pending limi ng condi-tion for      o  cration is    i  effect.
To assare    the OP    ILITY of                      To  verify the PERABILITT of the the core and conta ament cooling                      core and contai cnt cooling systems under all c nditions for                      systems under al conditions for which thf.s cooling c pability is                      which this cool            capability is an  essential respons    to plant                    an essential response to plant abnormalities                                        abnormalities.
L,CD      1. The CSS  shall be OPERABLE:                      1. Core Spray System Testing.
3iS.l (1)  PRIOR TO SI'JLBTUP                              Ll      C IlI
                                                                                              ~i~u~c from a COLD COHDITIOK>    or          SR  ax.l"i        a-  Simulated          Once/I8~,
Automatic          Oyera&ag (2)  when  there is irradiate        rage CC    ~  '4  Actuation fuel in the vessel            + SR3eS    I  J test and when the reactor vessel prcssure                      SR3~ 6b.        Pump OPERA-        Per  Specifi-is greater than                                      BILITY              cation  1.0.MM atmospheric prcssure, except as specified in Specification 3.5.h.2 Co Op Val tor rate e
Per atioh, l. ~
Sycc+i-OPE      ILI 5g P,S,],6          d. System    flow    Once/W rate:    Each loop shall dclivcr at least    6250 gpm    against a system head corres-ponding to a BFH                                          3.5/4.5-1    ~
Unit  1                                                                  AMENDMENTNO.          15 9 FA+',              sF    t5
 
I S fcc,'0'c~k'on 3.S. l AUG    02 t989 105    psi 5'4          differential B.S.i. 4    prcssure bctveen the        ~
reactor vessel and the primary containment.
c hal V  ve    er ccif cati  n MM S'g P f l.2..
2~    If one    CSS  loop  is inoperable,                      Verify that                Once/
    +Cog)a)    the reactor may      remain in                          each valve operation for a period not to                              (manual, povcr-exceed 7 days rov                    /t5                  operated, or Aires    a      ac ve components in                                automatic) in the the other CSS loop and thc                                infection flovpath RHR      stem                                              that is not locked, csc              rs                        scaled, or other-e OPERAB                                              vise secured in position, is in gL/    Sc >'n /Node 3                                              its correc                g7 in Iahr                                                    positione
: 3. If Specification 3.5.A.l r                          2~    Eo    Idigio          s+gl~e Specification 3.5.A.2 c ot                                      r      ited RCIToN    bc met, the reactor shal be 84  H'laced in the            COLD SHUTDOWH COHDITIOH      vithin      ho    s.                      Sc'c  X~l'*echo~ ger        Agre'>>
S6    ca                          SPH tsTS        S.t.l
: 4. Shen the    reactor vesse pressure    is atmospheric      and irradiated fuel is in the reactor vessel at least one core spray loop        vith  one OPERABLE pump and        associated                          Except    that an automatic diesel generator shall bc                                      valve capable of automatic OPERABLE,      except  vith  the                            return to      its  ECCS position reactor vessel head        remove                            vhen an      ECCS  signal is s  ccific                                                prcscnt      may be in a as                                    position for another        mode spccificd in 3.5.A.1.                                          of operation.
SCe  34SHCfca4o~    P,~  fjgggS BvH    isis y,s.~                                              PAGE~OF~
BFH                                                  3 '/4,5-2 Unit  1                                                                        hMENDMENTNO.            16 9
 
L.l AI4l oi The RHRS  shall  be OPERABLE fP.          I. a. Simula ted          O  ce/,s Automa tie (1)  PRIOR TO STARTUP                            Actuation from a  COLD                                Test CONDITION;    or                                                            3 SRZ.S.t S b. Pump OPERA-          Per
: 2)  when  there is                              BILITY              Specification irradiated fuel in                                                1.0.
the reactor vessel and when the reactor                    C~  Motor Opera-        Per vessel prcssure is                          ted 'valve          Specification greater than                                OP ERAB ILITY        1.0.MM atmospheric, except as specified i'                  GRAS.I  4 d-  Pump  Flow          Once/9 Specifications 3.5.B.2                      Rate                mes4hc ou h  3.5.B Test Check          Per Valve                Specification l.O.MM c/e 5g35 i g fO Verify each valve that            cc (manual, power-              s operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise secured in posi-tion, ig i correct position.                Zld~w SR3,.S,I.V g. Verify LPCI                ce/
subsystem cross-tie valve is closed gull power removed f rom
    'R 3.5.l.g      /4oK                                      valve operator.
Low  pressure coolant injection                        Ex ept    hat an (LPCI) may be considered OPERABLE                      a orna    c  val  e during alignment and operation                            apab    of  a  to-for shutdown cooling with reactor                      mati retu          to  its steam dome pressure less than                          ECC    posit    on  w  en 105 psig in HOT SHUTDOWN,    if                        an    CCS s    gnal is capable of being manually                              pr sent        y b in realigned and not otherwise                            a  posit    n  fr    an  her inoperable.                                              ode  of  o e      tio BFN                                    3.5/4.5W              AMENOMENT gg,      2Pg Unit 1 PAGE
 
                                                                  ~k'cia'~Hen    P,S; /
AUG 02      tGGG s RS.XI 2~  Vith thc reactor vcsscl                          Each LPCI pump shall deliver pressur      less          105 psig,              9000 gpm against, an indicated the          may be    emoved                    system pressure  of 125, psig.
from s    rvicc ( cept hat tvo                    Tvo LPCI pumps  in thc same RHR p    ps-cont        en    cooling            loop shall deliver 12000 gpm mode      d asso    atcd    eat                agaiast an indicated system cx        ers      t r ia                        pressure of 250 psig.
OPE        ) fo    a pe  iod not to exceed        hour    vhile                    2. An air test oa the dryvcl b        dra ed of                                      aad torus headers and nozzles s    press n cham er qu          ity                  shall be conducted once/5 vatcr          fille vith                              years. A vater test may bc primary coolaa quali y                                  performed on thc torus hcadcr vater    rovide that ring                              in lieu of the air test.
coold vn tvo oops            th o e pump er lo          or o loo                              Se'e 3usRFicogon P<
vith tvo p ps, an                                        QQQC'5 gi BFN associate diesel                                                          ~5'4'ig generatorsy ia e core ray stem are OPE
: 3. If    e RHR    um  (LPCI mode) is inoperable, the reactor
          ~ may remain in operation for a  period not to exceed        7 days r                cma AcT>NJ pumps (LPCI mode) and both RHR H      access paths of the RHRS LPCI made) and the CS                          5 CC Su5AQ<a~~ At Ch~g
                                                                &~ BFu tSTS Z,S,l PERABLE.
Ll
: 4. If      2 RHR    um  s (LPCI Qei mode) become      inoperablc, the reactor shall bc placed in the  CO    SHUTDOWH COHDITIOH vithin        hours.
3'c.
Jn Noh' ia l2hrs Rnol
                                                                        -a.-L~ne~g BFH Unit 1 3.5/4.5-5 NENDMENTNO. 16 9 I
 
0 Qpccl gicahon 3,5;        )
: 8. If Specifications    3.5.B.1 t
thro  h          are ACT loQ5 B 4H.                  an    e reac  or                inMQs 3 shall  be placed in the COLD SH within WN  CONDITION hours.
                                                                "~5
                                                                          ~q    Sec'& Cicahora M~S7>> 4w    8p J4
                                                                                                    ~
l5TS    $ .%
Pb      LZ, When                      e                          9. When  the reactor vessel pressure is atmospheric and                                pressure is atmospheric, irradiated fuel is in the                                  the RHR pumps and valves reactor vessel, at least one                              that are required to be RHR  loop with two pumps or two                          OPERABLE  shall  be loops with one pump per loop                              demonstrated to be OPERABLE shall  be OPERABLE. The                              per Specification 1.0.MM.
diesel generators pumps'ssociated must also be OPERABLE.        Low pressure coolant injection (LPCI) may be considered OPERABLE during alignment and operation for shutdown cooling,    if  capable of being manually    realigned  and not otherwise inoperable.
: 10. If the conditions of                                10. No  additional surveillance Specification 3.5.A.5 are met,                            required.
LPCI and containment      cooling re not required When  there xs irradiated fuel                      11. The RHR pumps on the in the reactor and the reactor                            adjacent units which supply is not in the COLD SHUTDOWN                                cross-connect capability CONDITION, 2 RHR pumps and                                shall be. demonstrated to be associated heat exchangers and                            OPERABLE  per Specification valves on an adjacent unit                                1.0.MM when the      cross-must be OPERABLE and capable                              connect capability of supplying cross-connect                                is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-connect capabi.lity is not a short-term requirement, a component is not considered inoperable    if  cross-connect capability can be restored to service within 5 hours.)
BPN                                        3.5/4.5>>7                  NEHOMENT NO. 204 Unit 1 PAG~
 
1989
: 12. If  one RHR pump or associated.                12. Ho  additional surveillanc heat exchanger located                              required.
the unit cross collILectio the ad)a      t unit is i  operable fo any reason (i eluding val e inoperability, pip break, etc , the reactor may    emain  in  op  ation for  a  eriod not      exceed 30  day provided          remaining RHR pum    and associ    ed diesel generato      are  OPE
: 13. If  RHR cro s-connection      lov or          13. Ho  additional surveillance heat remov        capability      lost,              re uired.
the unit may remain in ope tion for a period t to exceed 10 days unless su        capability is btoredo                                    SC B.S..
: 14. 1  reci culati n    pump                    14. All recirculation  pump di  charge valves    shall                        discharge valves shall be    P        PRIOR TO                            be  tested for OPERABILI.
S          (or close    if                          during any period of permi ted el ether                        gg p g (,S COLD SHUTDOWH COHDITIOK in the speci cations)                                exceeding 48 hours,  if OPERABILITY tests have not been performed during the preceding 31 days.
BFK                                          3.5/4.5-8 Unit 1                                                                AMENDMBlr80. y 69 PG        7    oF    Is
 
SF'c;        'on 3. 5. I 4.9.4.4. (Cont'd) 5 c r~s+,'<'mt'on Q~                                    Ce  The  loss of voltage and degraded voltage relays C4+eS @r                                                    vhich start thc diesel l ~TS .St.cHon  3.3.g. (                                  gcncratora from the 4-kV shutdown boards          shall be calibrated annually for trip and reset and the measarcmcnts logged.
These relays shall be calibrated as specified in Table 4.9.k.4.c.
St. 4 Sus+4 ta fjon 5a~c's foe BFn)                          d. '4-kV a own board lSTs 3.V. 7                                voltages shall be recorded once every 12 hours.
: 5. Logic Systems                                    5. 480-V RMV Boards ID and          1E SR 3,5.l. l?                      LCt ~i%
: a. Coamon  accident signal                          ao  Once      c    0$
logic  system    is  OPZRhBLE.                                    e automat c transfer feature for 480-V    RNOV    boards ID and  321  shall be
              >NSti Acegy~ P fanctionally tested to Qe BC'N )Sy> Z,~,l        g                                verify auto-transfer capability.
b,    480-V load ahedd
            ,logic system is      OPERJUKE.
: 6. There shall be a minimum of 35,280 gallons of diesel fuel in each of the 7-day diesel-gcncrator fuel tank assemblies.
5~<  ~+if':nk'en      fv Chr~
X+A) f5'Q    jf  g NENOMEHT Ng.        y8g BPS                                      3  9/4.9-7 Unit 1 PAGE                oF    I~
 
                                                                  $ Pcc,i4    '.5'.          1 NOV  0 4 199t 3.9.h.
See  Yustihcation far    Changes
: d. The 480-V shutdown boards                5r  at=~  1sT',g,7 lh and 1B are energized.
: e. The  units  1 and 2  diesel auxiliary    boards are ized
: f. Loss of voltage and degraded voltage relays
                                                      ~Ce Su544icaHon
                                                      & so~ isis Par z.z.Li f/~
OPERhBLE on 4-kV shutdown boards h, B, C, and D.
: g. Shutdown buses 1 and 2                  5CC ScaS+kcce'gase Qg    Q/IongeS'~
energized.                                    BFN isaac p,g,~
: h. Th        react    r mo or-op rated valve RMO b ards      & 1E are ener ized, th  m tor-ge era    r  (    )
ets    I,  1D      >  and lEh se  ice
: 4. The  three 250-V unit batteries,              4. Undervoltage Relays the four shutdown board batteries, a battery charger                        a.  (Deleted) for  each batte      an assoc ated battery board          are                h. Once  every 18 conchs, OPERhBLE.                                                the conditions under which the loss of voltage and degraded voltage See g~gqg;cab'on f r Qaga W                                relays are required shall BPH 1575 3.f.g a~d 'tt.7                                  be simulated with an undervoltage on each shutdown board to demonstrate that the associated diesel generator wi'll start.
PAGE BFH                                          3.9/4.9-6            AMEHOMEHT tbtO          I8 6 Unit  1
 
NOV  18  1888
: 12. When one 480-V ahutdovn                    See X~5+pjc'Phon    5c Chants fee board is found to be ZEOPERhBLE,      the reactor                      l5 TS  B.f 7 vill be    placed in HOT STANDBY COHDITIOS        vithin 12 hours and COLD Q93TDO OIITI01 vithin 24 hours.
: 13. If    e 480-V              ard ag se is proteid  ZEO              REk    R 0        05 tinue for    a    eriod    t o exce      sev      days the    eaa 480-V            ard      sets and      ir    so cia      lo 0
: 4. Zi aag        480-    RMV aS  sets    ecoa Z50                    rea  tor
~ I shall COLD S vithin 24 pla CO urs.
in the TIO
: 5. If the    reqaireaents for operating, in the                            See  345 hPicggon for  (4~gy coaditioas specified by 3.9.B.1 through 3.9.B.14                          t))-"H  )S) S Sac@an ).E cannot be aet, an orderly shutdovn shall be initiated and the reactor shall be in the COLD SHUTDOWNS    COHDITIOK    vithin 24  hours.
PAGE    Cn  pP  l5 BFN                                          3.9/4.9-14 Unit 1 AMENDMENT NO. y5 8
 
SPCC  4    'eA  3,5, FEB 0 7 I99I 3.5.D                          0    s                  4 ~ 5.D
: 1. The equipment area co          er                      l. Each e    ipme t area coole~
asso ated vith each                                          is  opera ed    i  con)unction pump        the equipment                                    vith the quip nt served area'coo r associated                                          y that pa ticu r cooler; vith each t of core                                              erefore,      e e uipment spray pumps        and C                                    a a cooler are ested at or B and D) mu        be                                    the same freq ency s the OPERABLE at    all      mes                                pump vhich th          se e.
en the pump or p          s se ed by that speci c coole    is considered t be  OPE    LE.
: 2. When an equ      ment area cooler, is not PERABLE, the pump(s) se ed by that c    er must be co idered inop      ble for Tec ical Specific on purposes.
c.co      1. The HPCI sy      em s    all  be                            HPCI Subsystem      testing 3.s. (                      enever there      is                      . shall be. performed as irradiated fuel in the                                      follovs:
reactor vessel and the                                        +fu or Wr'f('CR4l ~7  reactor vessel pressure                  M3 S.(< r    a. Simulated          Once/18 (ll]      is greater than 150 psig,                  copse( hloR Automatic          months except    in the  COLD SHUTDOWH br sR3~(,'l        Actuation COHDITIOH    or as specified in                              Test                  3 Specification 3.5.E.2.
OPERABILITY shall be deter-"                                Pump                Per P(ep5eck  ~ok  mined    vithin 12    hours    after                        OPERA-              Specification 4~ $R3,5,(,g  reactor steam pressur              (oA                      BILITY              1.0.
reaches 150 psig from a COLD COHDITIO        r a ernat ve y                          c~  Moto    Oper-      Per RI    TO ST      P      usi an                              ted    alve      Spe    fica$ io 1 ry ste        su ly.                                0    RAB  ITY        .0.
Flov Rate at        Once/4-a            monQm sR 3,g.l,g ra      or PI3 e
oe tng pr    s re    $ 2o& lolo(s,'g r~ SR (Oow s.s,(.q lg BFH                                              3.5/4.5-13
                                                                /t(Q AMENDMEHT NO. I  S  0 Unit    1
 
Spec'4'<<a< 3',s,    (
FEB 0 7    1991 Coolant In    e sR z.s.>.8      Flov Rate at Once/18 psig        months K /4S
                                                                            +o'p    The HPCI pump shall deliver Llo          at least $ 000 gpm during each  flow rate test.
ld  ~s SR              Verify that        Once 3.5, i.w        each valve                  R3 (manual, pover-operated, or automatic) in the injection flow-path that is not locked, sealed, or othervise secured in position is in its correc      osition.
W 2 ~  If the  HPCI system      is inoperable, the react r may
~Bog //            remain  in operation d not to exceed M ays, a
prov ed t e                            R
  <~re/ Qfioa p    LPCI    an        S  are OPERABLE.                    till~~
VCce      P~
3~  If Specifications      3.5.E.l          ~~
* E  cept that an aut matic or 3.5.E.2 are not met,                                          va ve c    able aut mati retu        to s
                                                                                ~
t  e                                      ECC    posit on wh an reactor vessel pressure ~ac s                                    ECCS    ignal is pre ent shall be reduced to 150                                          may  b in a ositio for or less  vithin R4      '"'sig anothe    mode o hours.                    3&                                    operation.
F.  'eacto      Co e    splat  o    Coo        in              F. Reactor Core Iso at    o  Cooli
                                                                                      ~
: 1. The RCICS    shall  be OPERABLE                            1. RCIC Subsystem    testing shall whenever    there is irradiated                                be performed as    follows:
fuel in the reactor vessel and the reactor vessel                                          a. Simulated Auto- Once/18 pressure is above 150 psig,                                          matic Actuation months except in the COLD SHUTDOWN                                          Test CONDITION or as specified in 3.5.F.2. OPERABILITY shall BFN              e~ X~A;Rc ho<    4c'~~5                .5/4.5-14 NIENOMEMt Hp. X  80 Unit            O'C 80%  lSYS SaSo3 1
pAQF    /~ QF~~~
 
SgeCig'ro,>on g, g.
NY 1    9 l994 Six valves of the Automatic                              Durin ea            cretin Depressurization System                                      c      he  following shall  be OPERABLE:                                      tests shall be performed on the ADS:              L(
Ac~i Of (1)  PRIOR TO STARTUP      from        SR P,g  J  lg a.      A  simulated automatic a COLD CONDITION,      or, L                              actuation test shall ISb        cut~ l8  ~55.      be performed PRIOR    '.
TO (2) whenever there is                                          STARTUP      te each Qqhcqb's)iQ            irradiated fuel in the                                                  outa reactor vessel and the reactor vessel pressure                                    f  he  relief gal      s is greater than 485 ps g,                                  is  ove    d except in the      COLD SHUT-      PAfaScd  4~          4.6. .2 DOWN  CONDITION    or as          4  Sg  g,S,ll                            )9$
specified in 3.5.G.2 and 3.5.G.3 below.
2~  With one of the above required                                            al P'GTlodb    ADS    valves inoperable, E          provided the HPCI system the                              recpaka ed-.
core spray system and the LPCI system re OPERABLE, res ore the inoperable ADS valve to OPERABLE statue within 14 days or be in at                              frig s+c( Sg 3,5      /  3 WTlog        least a HOT SHUTDOWN CONDITION within the next 12 hours and 8+8          reduce reactor steam dome                                frofasect AcTloH        p ressure to ~ 495 psig within hours.          IS@
sc 3~  With two or more of the above required ADS valves R CTiDA5    inoperable, be in at least a G.
HOT SRJTDOWN CONDITION          within i2 hours    and reduce    react steam dome      pres'sure to g +95 psig within            hours.      ISo 3'4, L2, Rss~'rM      Ps@on    L)  (LCo 3.s,gg QopB 2 cubi whig 7gry Old DE 3 QPifhirt (3/r                      L I's (W A~ <nlrb)
PlODE 9 luis n 3'7/lfS          LI BFN                                                3.5/4.5-16                NENOMENT NL        2P g Unit    1                                                            PAGE        ~3    OF~5
 
S eCigca. 'on R,g 0KC  O V 894 7
    .C                                                    6~C
: 2. Anytime irradiated fuel is in                      2. With the    air sampling the reactor vessel and reactor                          system inoperable, grab coolant temperature is above                            samples shall be 212'F, both the sump and air                            obtained and analyzed sampling systems shall be                              at least    once every 24 OPERABLE. From and after the                        hours.
date  that  one of these systems is made or found to be inoperable for any reason, the reactor may remain in operation                    See  Y~sSka Hen P, Cg~~
during the succeeding 24 hours                      W    BPt4  ls75 g.q,g for the sump system or 72 hours      I for the air sampling system..        !
                                                  !
The air sampling system may be removed from service for a period of    4 hours for calibration, function testing, and maintenance without providing a temporary monitor.
: 3. If the  condition in  1 or  2 above cannot be met, an orderly shutdown shall be initiated and the reactor shall be placed in the  COLD SHUTDOWN CONDITION within  24  hours.                      4.e.D
: 1. Approximately one-hal of all relief valves
: 1. When more    than one  relief valve                    shall  be bench-checked is  known  to be failed,  an                          or replaced with a orderly  shutdown shall  be                          bench-checked valve initiated    and the reactor                            each operating cycle.
depressurized to less than 105                          All 13 valves will have psig within 24 hours. The                              been checked or relief valves are not required                          replaced upon the to be OPERABLE in the COLD                              completion of every SHUTDOWN    CONDITION.                                  second cycle.
: 2. In accordance with 4
                +~>4 "<wagon 4c SPA )sTs g~,~
CQ~                                Specification      1.0.MN ach elie va ve shall be manually opened unt        ermocoup es and Pfop6c'd        a  usti    monit      s
                                                    ~ a4            do    stre    of  t  e val e
                                                    ~ S.S.i. U      ind cate      earn  i ow      fro the        ve.
LR BFN                                        3.6/4.e-lo            AMENPlHEHT NL    2 Z3 ~3 Unit  1 PAGE    1      QF      I5
 
Rig~
SC S.S.<,1 Whenever the core spray s stems,                      e following surveillance LP  I,  HPCI, or C                ired            requirements shall be adhered to  e OPERAB    , th discharg                    to assure that the discharge pipi      from the  pum  discharg                piping of the core spray of the e systems to t e last                        systems, LPCI~ HPCI,              d RCI block v lvc shall be f led.                        are filled:
The suctio      of the IC an                        1. ve      mont                        h pumps shall      e aligned to the                                          he RHRS      LPCI and condensate storage tank, and                            Conta ament Spray) and core the pre    ure supp ession chambe                      spray system, the dischar head tank    shall  no  lly be                        pipin of these          s stem      Pll aligned to erve the discharge                                v    ed    om      e  h'gh    oin piping of th RHR and S pumps.
Th    condensate head t wa      fl    d      rm  ed may be used to serve th RHR an CS                          2. F      ow ng any    per od where the disc      ge piping      the P      hea                  LP  I or    ore s ray s t tank  i  unavailable      The                          hav    not    een  r quire to        e pressur indicators            the                        OP        LE,  he  di charg      pi    ng discharg of the RHR            CS                      of  t    ino rable syst            sha  1 pumps  sha    indicate  not  less                    be v ted f m the high                in than  liste    below.                                  prior o the eturn of the system o service.
Pl-75-20        48 psig Pl-75-48        48 psig                        3. Whenever the HPCI or RCI Pl-74-51          8 psig                            system is lined up to take P1-74-65        48 psig                            suction from the condensate storage tank, the dischar e pipin of thc HFCI an CIC bc v n p      t ft        s    t ob    rve    on a    monthly S~c    ~~ f 'cabin f    c Chavez)a                  basis.
f4'~~      )STS  3,g.y                        4.      en  th    RHRS  and    th  CSS  are r uired        o be OPERAB , the pr    sure  x dica ors whx h mon shall or th disc arge be mon tore daily li es d the pressure recor ed.
PAGE~OF                      L +
BFN                                        3  '/4.5-17            AIENOlHENT No.      2  05 Unit 1
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
5 ce Sic 4io~ '3 ~  ~
4        0            0              COO  G S  S  S p  )                      NOV    22    1988 LIMITIHG COHDITIOHS          FOR OPERATION              SURVEILLAHCE REQUIREMENTS 3.5    CO          CO              COO    G            4.5    'O                CO            COO    G MSHXILS                                                      ~SS~~S cab                                                            cab      t A  lies to    the operational                            Applies to the s            eillance st  us  of the core      and                              requirements of th core and coat    ament cooling systems.                              containment cooling ystems vhea the corresponding lim ting condi-tion for operatioa is              effect.
0  ect ve                                                  0      ect vc To assure      the OP        ILITY of                      To ve        fy the  OPERABILITY    of the thc core and conta            cnt cooling                  core an        containment cooling systems under        all  co    itions for                  systems            er all conditions for vhich this cooling cap ility is                              which        this ooling capability is an essential rcsponsc to lant                                an essential zesponse to plant abnormalities.                                              abnormalities.
ca    o                                          Sec          cto t  3.5. l ahe (1)
CSS from a shal1 be PRIOR TO STARTUP COLD CONDITION~
OPERABLE:
or there is irradiated sR  3.s.l.g 1.
a.
Core Spray System act Ao lated Automatic Actuation Testing.
g~v~enc cc]e Qpomtekag 4ppl;((4'.Ig <>> rhea                                    P,l  gQ tle4, fuel in the vessel                  *sea.s,l. t      test and when    thc reactor                                                                    P3 p "t vessel pressure                                f        Pump  Opera-    Pcr Specifi-is greater than                      PRIES I bility            catioa    1.O.MM atmospheric pressure, except as specified                                  c. otor            Per    pec  fi-in Specification                                          Op    ated        n~en l.h MN 3.5.A.2.
O pg            Valv OPERABILITY san.s.l.(, d.          System    flov    Once/M ~P'~
rate:    Each loop shall deliver at              /
qz. 4~s least 6250 gpm  against a system head  corres-ponding to a BFH                                                  3.5/4.5-1 Unit  2                                                                          AMENDMEHTNO. 15 5
 
g gC,,'fir.qC(o~ ~ < I ON
  '
~                                    S Cont'd) 105  psi g.s.t. 6    differential pressure bctveen the reactor vessel and the    primary containment.
P~    e. Ch  ck Valve        Per Speci    cati a.o.m 20  If  one CSS loop is inoperable,                                                  Once/
PA'ld 9  .the reactor may remain in                              each valve operation for      a  period not to                    (manual, pover-exceed 7 days rovidi                                  operated, or all active components in                  As          automatic) in the the other CSS loop and thc                            ~ection flovpath PCI mode                              that is not locked, and the diesel generators                              sealed, or other-are  OPERABLE.                                        vise secured in position, is in Sc    w  Ho~                              its correc            p7 IR Qrg                                position.
3~  If Specification        3.5.h.l or                        addit nal s~eQ lance Ad riOat  Specification 3.5.h.2 cannot                          is r      ire
      ~+8      be met, the reactor shal          e placed  in the    COLD SHUTDOWH COHDITIOH  vithin          hours.                      74 s4iflc44s ~ ~ Col''4<<wg+J LQ.              g4~  a~~ (srs      ~.s.~
4,  When  thc reactor vesse pressure  is  atmospheric and irradiated fuel is in the reactor vessel at least one core spray loop      vith one OPERJQKZ pump      anil associate4                          ccpt that          automatic diesel  generator shall be                                v ve capable          f autom tic OPERABLE,  ezcept      vith the                          re    rn to    its      CS  posi ion reactor vessel head remo                                  vhen        ECCS    sign      is c          ln 3.5.A. or                            presen      may be    in  a PRIOR TO STARTUP as                                      position or another            mode specified in 3.5.h.l.                    OA6 of operation.
                      +~~~>4  t,'cA(d~  4yi Qd~
                    *- gS/    Is~      ~
PAGE~QF~5 BFH                                                3. 5/4. 5-2 Unit  2 16 9 AMENDMENTNO.
 
nme  t                                                        ent oo xng The RHRS  shall be OPERABLE 0.                l. a. Simulated          ce    >g Automa tic      Opee~Ig
                )  PRIOR TO STARTUP                                  Actuation      Oyer from a COLD                                        Test CONDITION;  or S~  ~  <  l g b. Pump OPERA-      er
: 2)  when  there is                                      BILITY    'pecification irradiated fuel in                                                  1.0.MM the reactor vessel and when the reactor                          c. otor pere-      er vessel pressure is                                  ted valve        Specxf xcatxon greater than                                      OPERABIL atmospheric, except as specified in                  Sg  S.5, ).C    d. Pump  Flow      Once/&
Specifications 3.5.B.2,                            Rate                      6 through 3.5.B.7.
: e. Testa    e      Per Check            Specification A~        Valve            1.0.MN 5R 35I.'L f        Verify that            Once/04m+h each  valve (manual, po~er-operated, or                  J/  cg automatic) in the injection flow-path that is not locked, sealed, or other~isa secured in pcsi-tion,  i  in its P'7 correc      positron.            81
: g. Verify    LPCI          nce/
subsystem    cross-tie valve is closed nruj power removed from valve operator.
sR 3.</.2. So@.
Low pressure coolant injection                                  Except t >at an (LPCI) may be considered OPERABLE                              automat c valve during alignment and operation                                  capabl of auto-      '
for  shutdown cooling with reactor                              mati return to steam dome pressure less than                                  ECC  position      en 105  psig in HOT SHUTDOWN,  if                                an  CCS  signa    is capable of being manually                                      present may ve    in realigned and not otherwise                                    a position for another inoperable.                                                    mode of operation.
3.5/4.5-4                AMENPMgfT gg. 22P Unit 2
 
S  ci fic~A~w 3.5. I AUG    02 5gg 34  ~
nt                                                  ainment 0  0  ~              )
sR 3.S.
2~  With the rea tor vessel                                ach LPCI pump shall deliver pressure le        than 105 psig,                    9000 gpm against an indicated the RHRS'        be removed                          system pressure of 125 psig.
from serv ce (except that tvo                        Two LPCI pumps in thc same RHR pump -containment cooling                        loop shall deliver 12000 gpm mode        associated heat                          against an indicated system exch      ers  must remain                            pressure of 250 psig.
OPE    LE) for a per d not to ceed 24 hours hile                                  2. An air test on the dryvell b ng drained of                                              and torus headers and nozzle ppression ch        er quality                            shall be conducted once/5 vater  and primary cool filltd quality vith                                  years. h vater test may be performed on the torus header vater provi      ed  that dur                                in lieu of the air test.
cooldown      o  loops wi one pump  per oop or one oop vith  tvo pumps, an                                        See: a'aA4<J>o associated diesel generators, in th core c  < g~~      imam  r.C.2 s ra s stem a                    LZ Lf 3~  If  one  RHR    ump (LP        mode)          Pl    ~                                      e PcTI0 hl is inoperable, the reactor A    may remain in operation for a period not to cxcecd 7 days rov e        e rema n ng p,cgw  pumps (LPCI mode) and            both H    access    paths of the LPCI mode an                  S    an              s$ :AcJ o- 4'-
S,ea                        Cw~(~~
t c cse generators              remain      Sir BFN      la~    <. S. l OPERABLZ l~
: 4. If        2        umps (LPCI                                                            ance mode) become inoperable, the reactor shall be placed in thc  COLD SHUTDOWN CONDITION vithin        hours.
3b
                  $ 2.
plo6  3 is.  /2 4rS BFN                                                  3 5/4.5-5                ~(.-E~OF lP Unit  2 AMENDMENTNO.            l6 9
 
m                  Pi 4 tainmen  t                                                      inmen t
: 8. If Specifications    3.5.B.1                                                              nce Acvlo<S      through 3.5.B.7 are not met, 8+  4              aced and the    reactor                            HIOC  g shall  be placed in the                            >~  l2 6w COLD SHUTDOWN CONDITION                                                    Sce ~~s]A'zi4~  4r within      hours.                                                          C4o~igg ger Bf'N
                                                                                            <S~) Rr.~
esse                              9. When the reactor vessel pressure is atmospheric and                                    pressure is atmospheric, irradiated fuel is in the                                      the RHR pumps and valves reactor vessel, at least one                                    that are required to be RHR  loop with two pumps or two                                OPERABLE  shall  be loops with one pump per loop                                    demonstrated to be OPERABLE shall    be OPERABLE. The                                    per Specification 1.0.MM.
diesel generators  pumps'ssociated must also be OPERABLE.          Low pressure coolant injection (LPCI) may be considered OPERABLE during alignment and  operation for shutdown cooling, if capable of being manually realigned and not otherwise inoperable.
: 0. If the conditions of                                    10. No  additional survei'lance Specification 3.5.A.5 are met,                                  required.
LPCI and containment cooling are not required When    there is irradiated fuel                        11. The RHR pumps on the in the reactor and the reactor                                  adjacent units which supply is'ot in the COLD SHUTDOWN                                      cross-connect capability CONDITION, 2 RHR pumps and                                      shall be demonstrated to be associated heat exchangers and                                  OPERABLE per Specification valves on an adjacent unit                                      1.0.MM when the cross-must be OPERABLE and capable                                    connect  capability of supplying cross-connect                                      is required.
capability except as specified                                                      J in Specification 3.5.B.12 below. (Note: Because cross-connect capabili.ty is not a short-term requirement, a component is not considered inoperable    if  cross-connect capability can be restored to service within    5  hours.)
: 3. 5/4. 5-7                  AMENDMENT HD. 223 Unit 2
 
5'c i'gic<4io AUG 02        198S va  S ent
: 12. If  three RHR pumps or associated heat exchangers located on the unit cross-connection in the ad)acent uni s are operable for any r son
(  ncluding  valve inopc bility, pi e break, etc.), thc r ctor may emain in operation for a eriod not to exceed 30 day provided the remaining RHR pump and associated diesel generator are OPERABLE.
: 3. If  RHR cross connection flov or              13. No  additional sur      illance heat removal      pability is lost,                required.
the unit may re ain in operation for a period not o exceed 10 days unless such c ability is restored gg 3.5.(,5
: 4. 11  rec rcu at on    ump                    14. 411  recirculation    pump d
bc charge ERABLE vcs sh IOR TO ll                        discharge valves shall bc tested for OPERABILITY STAR      (or cl clscv scd  if                          uring any period of permit    d        re                  sq q~ ~  COLD SHUTDOMH CONDITION in these specifi tions).
                                                          ~
exceeding 48 hours,      if OPERABILITY tests have not been performed during the preceding 31 days.
3.5/4.5-8            AMENDMENT NO;    169 Unit 2 WGE
 
S ec',f<e  4'.S.
NOV 0 ~ 1991 TZOH        A>                                HTS 4
: d. The 480-V shutdown boards 2A and 2B arc energized.                    See  ~~xlP+lw cog r g- gem          ic.rs 3.8.7
: e. The  units  1 and 2    diesel auxiliary  boards are energized.
: f. Loss of voltage and-degraded voltage relays                    see ~~sligicPaw        4l  c4~Jag OPERABLE on 4-kV shutdown boards A, B, C, and D.
                                                ~    PpN  Ic7s  2.3.8.J
: g. Shutdown buses 1 and 2                    S e  ~us4Ki~k.o. 4r      n.-g~
energized.                                4<    NFL Isis 3.8.J The 480    reactor motor-opera d valve ( OV) boar s 2D & 2E        e encr ized wi motor-gen ator            g) s  s 2DH, 2D , 2EH,        d 2EA service.
The three 250-V unit batteries,              4. Undcrvoltage Relays the four shutdown board batteries, a battery charger                      a.  (Deleted) for each  battery    and ssociatc    atte    board    arc              b. Once  every 18 months, OPERABLE.                                              thc conditions under which the loss of voltage and degraded voltage relays arc required shall be simulated with an undervoltagc on each shutdown board to demonstrate that the associated diesel generator will start.
3.9/4.9-6                AMENDMgfTN0, $      9g
 
4.9.h.4. (Cont'd)
: c. The loss of voltage and degraded voltage relays which start the diesel QQ, 3~gle  ksc41  >~                          generators from the 4-kV
                                    ~                          shutdova boards shall be phag~ Qr        LJ calibrated annually for f5+/ 5CC4    l~    ~  3 8'I trip and reset and the meaaurcmenta logged.
These  relays shall be calibrated aa specified
                                                                            .h.4.c.
cc 4~L4i4<ce4 4t                        4-kV shutdown board C~~  T'5 QI- gP'tJ                  voltages shall be recorded once every.
J S      3.8.7 12 hours.
: 5. 480-V  RNOV  Boards  2D and 2E 5  Logic Systems                                                          I5 ~is.
: a. Comaon    accident signal                                                  ~P logic  system      ia  OPERABLE.                        e aut      c transfer feature for 480-V  RMDV boards  2D and 2E  shall bc functionally teated to verify auto-transfer capability.
: b. 480-V load shedding, logic system ia OPERAS.
: 6. There shall be a miniaaun of 35,280 gallons of diesel fuel in each of the 7-day diesel-generator fuel tank assemblies.
See  r~k l;o <~.            Ch.Zc~
          ~ gin irrs            R,Z.3 NEHDMEHT NO. 1. 9  I BES                                          3.9/4.9-7 Unit  2
                                                                                      .  )s
 
L
            . Whea onc 480-V shutdovn board is found to be IHOPERABLE,    thc reactor vill be    placed  in the HOT STAIBY COHDITIOH vithin 12 hours and COLD SHOTDOWH COHDITIOH  vithin 24    hours.
: 13. If onc 48I PERABLE, V  RNOV board  mg set is                  REACTOR POWER  0 ERATIOH    may cont    e  for  a period not to cccd seven daysg pr ided the rema 0-V RMOV    board      sets and  their associa    ed loads remain OHGKBLE
: 4. If  auy tvo 4 0-V RMOV board mg s s become IHOPE        , the rea or shall      placed in c
~ I 15.
COLD S vithin 24 If WH CO hours.
ITIOH thc requirements for operating in the conditions specified by 3.9.B 1 through 3.9.B.14 cannot be mct, an orderly
                                                            +C 4av ZML4iC+g~
QpW
                                                                            ~ ~h~g I S7 5 shutdovn shall be                                            5~~Qy~ p g initiated    and the  reactor shall  be  in  the COLD SHUTDOWH COHDITIOH      vithin 24  hours.
BFH                                          3 '/4.9-14 Unit 2                                                            AMENDMENT NO. Zg 4 0  OF    f5 pAGE
 
t  ~
Cl                    ~:        livia(g Iitl        I        ~
                                                          ~    ~                                      ~    ~  II      ~      ~              ~ ~
                              ~  ~          ~  I    ~                                    ~  ~                                      ~ II    ~                        ~ ~
                                                                    ~          ~        ~                              ~  ~                    t                  I
          ~    I~ I  ~        ~    ~                                        ~    II                                                    ~      ~
                                ~    ~                                                                                      ~        ~                                ~ ~
                      ~        ~          ~                                                                                                                      ~  ~ I
                                ~        I II ~                                                                                ~ ~
                                ~    ~        I                                                                                                ~      ~
                                                                                    ~ I                      ~      III  ~                ~      ~
                                ~            ~    \~I  t        ~          ~        II  ~
                              ~        ~
              ~ ~                                    ~        '
              ~      ~          ~            ~          ~  II        ~
              ~  ~                              ~  ~
              ~          ~    I~I ~                                          ~          ~
                                                                            ~  ~            'I
                  ~    ~                                                            ~  ~
                                                      ~  ~                    ~ ~
    ~ rr'                                                                                            t I O'3 I 8 0 4+ 0! I %~ ax r m i I'MrttE tr 4                                                                            I                ~    I              II      t II          ~
                                                  ~      ~                                                                                      r    I    ~
                                                                                ~            ~
                                                                            ~  ~
~ ~
                                                                                                                                                    ~    ~
                                                          ~          ~              I      ~                          ~  ~                      ~ I  ~ ~  ~
                                            ~          ~                ~        I                                                ~  ~
              ~        I              I '
                ~          ~                                        ~  ~
                                                                                                                    ~ ~  ~
h        I                                  ~      ~                    ~  ~    ~
I        ~
                            ~      I                I                                      ~ I
                                          '
                ~        I        ~                                                                              ~        ~    I  ~
                                                            ~
                                                                  '                                                                                                            .
                                    ~    '          ~
                    ~  ~
                                                                                                              ~  ~      II
                                                                                                              ~  ~
                                                                                                                                                                ~        >  ~
r
 
Cl S'
 
5'iVi'cc4io~ 3.R    /
FEB 0 7 t9gt ct on SR  S~              Flov Rate at    Once/18 448-psig        months c (45 P sip        The HPCI pump shall deliver Io                at least 5000 gpm during each flov rate test.
SR            f ~    Verify that        Once/
E.C. I. 2            each valve (manual, pover-operated, or automatic) in the injection flov-path that is not locked, sealed, or othervise secured in positio  ,  is in its correc    position.
2 ~  If the    HPCI system    is inoperable, the reactor may remain in operation for a period not to exceed                            ~ pcyio~
I    days, rovided the                            As Pro                  RHRS(LPCI      and RCICS Ahviog      are~OP        LE D                vtr  nc 3 ~  If Specifications      3.5.E.l
* ept that au automatic or 3.5.E.2 arc not mct,                                      va  e capable o      autom tic p,n iota                                                                  retu to its EC posi on g4H                              t  e
                                                    ~o PE vhen a ECCS signa is reactor vessel pressure                                      present    y be in a shall be reduced to 150                                      position or another mode psig or less vithin                                          of operation.
3'ours.
a  o      o                    F.        a  t    C              0    oo The RCICS    shall be OPERABLE                        1. RCIC Subsystem    testing shall vhenever there is irradiated                                  bc performed as      follovs:
fuel in the reactor vessel and the reactor vessel                                        a. Simulated Auto- Once/18 pressure is above 150 psig,                                        matic Actuation months except in the COLD SHUTDOWN                                        Test CONDITION    or as specified in 3.5.F.2.      OPERABILITY shall 3.5/4.5-14 AMENDMEHT NO. 190 BFN Unit  2 Sec Z~>$;~iicqfjo~  4~  C~ra egal ]g7g 5 5'3
 
FEB 0 7 199t
: 1. Six valves of                                      1. Duri      each operat the Automatic                                                c        c 0 ov ng p,g    Depressurisation System                                    tests    shall be performed shall    be OPERABLE:                                      on the ADS 4'R (1)  PRIOR TO STARTUP                                    a. A  simulated automatic from a COLD COHDITIOH,                3 5.( lO          'ctuation test shall or,                                                        be performed PRIOR      TO I                                                        (Vg~+          STARTUP      er eq p )~Q~      (2) vhenever there is                          (5 ~rg.            efuel              c irradiated fuel in the                                                rve      ~cc reactor vessel and the                                    o  the rel      val&s reactor vessel pressure                                    is    vercd  i is greater than              si                            4.6.D.
except    in the COLD SHUT-              Pro~      Ny DOWH    COHDITIOH    or as              W s~
specified in 3.5.G.2                      3.s. I. LQ and  3.5.G.3 belov.
2~  Pith    one of thc above                                                            e    ances required ADS valves inoperablc, provided the P,neo&    HPCI s stem,          e core                              P  ~~~ sf        3.s;],g spray system and the LPCI stem re OPERABLE, restore the inoperablc ADS valve to OPERABLE      status vithin 14 days or bc in M least jEcTlo 4  a HOT SHUTDOWH CO5QITIOH                                        9  o(-+    Ace(ou r=
e~H      vithin thc next lg'nours and reduce reactor team dome pressure to              sig vithin hours.              ISO 3~  Vith tvo or      more  of the    above required    ADS  valves, inoperable, Pcyso nE  be  in at least a HOT SHUTDOWN
    &        COHDITIOH      vithin  12 hours and reduce reactor        team dome pressure to              sig vithin hours.              58                  b L.5 R4'g ~ ~M Ackiy- g. I      (C Z u  3.~)
Robe    2-  1,~'7    ggg vf<    I34 s A    J7 I rs~g.lZ BFH                                              3.5/4.5-16 Unit 2
 
A DEC 0 7 l994 G COND      0  S  OR  0
  .6.C  Coo          age                              4.6.C            Co    a        a 2~    Anytime irradiated fuel fs in                            2. With the afr sampling the reactor vessel and reactor                                  system inoperable, grab coolant temperature fs above                                    samples shall be obtafned 212 F,    both the sump and air                                and analyzed at, 1cast sampling systems        shall be                                once every 24 hours.
OPERABLE. From        and  after the CC date that    one  of  these  systems I  is made    or  found    to  be inoperable for any reason, thc reactor may remain in operation durfng the I  succeeding 24 hours for the                                  S~< +'S Ja 4 C J.; ~ CO/'M O          gag I4 I    sump system    or 72 hours for                              fo~ SPV'i<7-S ~.q.g the afr sampling system.
The afr sampling system may be removed from service for a period of 4 hours for calibration, function testing j and maintenance        vithout providing    a  temporary monitor.
3~  If the    condition in      l.or 2 above cannot be met, an orderly shutdovn shall be initiated and the reactor shall be placed fn the COLD SHUTDOWNS    COHDITIOS      vithfn        4s6    D 24  hours.
Approximately one-half o f all relief valves shall be bench-checked or When more      than onc relief                                    replaced vith a valve is knovn to bc failed,                                      bench-checked valve each an  orderly shutdovn shall be                                    operating cycle. All 13 inftiated and thc reactor                                        valves    vill    have been 4eprcssurfzed to less than 105                                  checked or replaced upon psig vithin 24 hours. The                                        the completion of every relief valves are not required                                  second, cycle.
to be OPERABLZ in the COLD SHUTDOWN                                                    20    In accordance vith Speci cation 1.0.
IR 'I .S. I . LI              rclicf valve    shall Sec  ~,t;g;<;
W QFIIJ IS~
P,C<
P.Q.3
                                          ~                                  be manually o ened unt ermo coup es OJo4.  ~              ac      tic    monitors Sa 3.s.l. II          do          earn of      valv indicat steam is loving  f c8                from thc valve.
3.6/4.6<<10                    AMENbMENT NO.      2 29 BP&#xc3; Unit  2                                                                          P  GE~
 
5  ci4ica4iom 3.5.      (
AU 0 1989 3.5.                                                  4~                                        s        e
                                                              ~ ~
                                                                  ~a                                    &
S g 3.C'. l. 1 Whenever the core spray systems,                        The folloving surveillance LPCI, HPCI, or RCIC              required              requirements shall bc adhered to be OPERABLE,      the    disc                        to assure that the discharge pipi      from the pump disch ge                        piping of the core spr of th    e  systems to the las                        systems, LPCI, HPCI,            d RC  C block      lve shall    be  filled.                    are filled:
g.A 7 The  sucti        of the      IC an                      1. Every month pumps  shal      be aligned to the                            t                e RHRS  (LPCI and condensate s orage tank, and                                    Containment Spray) and core thc pressure        ppression chamber                          spray system, the discharge head tank shall ormally be aligned                              piping of these systems sha            1 to serve the dis arge piping of                                  e volte      rom  t    hig po~t th RHR and CS pum s. The                                        and  vat    flov detc      ined con    sate head t          may be used                                                                443 to s e the RHR and S discharge                          2. Fo  ov ng any period vhere pipin    if    thc PSC head tank is unav lable. The pr sure t LPCI or core spray systems hav not been r uired to be indicato on the discha e of the                                OPE    LE, the di harge, iping RHR and CS        umps shall in cate                            of th inoperable          stem hall not less th listed belov.                                      be  vent    from the    igh point prior to the return of        the Pl-75-20          48  psig                                system to    service.                    LA9'.
Pl-75-48            8  psig P1<<74-51          48  psig                                Whenever the HPCI or RCIC Pl-74-65          48  psig                                system is lined up to take suction from the condensate storage tank, thc discharge piping of the HPCI and RC s        c ve    e    rom the        gh poin    f thc  s stem had vater flov obse      d on a monthly basis.
                      ""<~~~< bio    gr Z4w- ~                    4. When  the  RHRS  and the  CSS  are
                $04    gag IgyS                                        r uired to      bc    PERAB      the pre ure indicat          vhic monit      thc dischar        lin shall be monitored daily and thc prcssure recorded.
OBFH                                                3. 5/4. 5-17 AMENDMENT tltO. I6 9 Unit  2
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
8 CO          COO                                    ~  z. i  MQV    22  1988 4.5                                    00    G MIXER kppli.es    the opcrationa                              lies to the      surve  lance status of      e core and                          rcq    rements      of thc  co e and containmcnt cooling systems.                        conta        ent cooling sys        when thc cor cspondipg limiti            condi-tion for peration is in            e feet.
To assure  the 0        LITT of                    To  veri the 0              ILITY of thc the core and containm t cooling                    core and conta              t cooling systems under all cond iona for                    systems under all onditions for which this cooling capab lity is                    which this cooling pability is an essential response to      ant                      essential response to plant abnormalities.                                      abnormalities.
t    aco 3 5'-(
: 1. The CSS (1) shall  be OPKHBLE:
PRIOR TO STARTUP from a COLD COHDITIOK,  or SR s.s.).g l.
ao Core Spray System Testing.
c+
Simulated Automatic Once/Q  ~
Q&44LC441g 9
(2) when there is irradiate                              Actuation        4p6kc Ayl'cab' '4)        fuel in the vessel            Pn~sed ]u. >          teat and when the reactor          + see.s..
vessel pressure                              b. Pump OPBM-      Pcr Specifi-is greater than              Rg    sg p.g,>,L        BILITX          cation 1.0.
atmospheric pressure, except aa specified in Specification
: c.  ~
otor 0 eratcd r Spe  ifi-ca  on 1 O.MM 3.5.k.2.                                            V ve ILIA
: d. System  flow    Once/& 8Z rate:    Each    m~?$
loop shall sZZc.l.    (            deliver at least 6250 gpm  against a system head  corres-ponding to a PAGE BFH                                          3.5/4.5-1 Unit  3                                                                NENDMENTNO.          t> O
 
Ci
                                              +F1  f 105  psi
                                                                        'diffcreatial 3 5 J ~  (
prcssure betvcea the reactor vehsel and the primary containment.
: e. stable      Per Che    Valve  Qpecifi tioa I.O.NN 5 3.5-    .>                                A3
: 2. If one  CSS  loop  is inoperable,                      Verify that the reactor may    remain in                          each valve operation for a period aot to                            (manual y povcr-exceed 7 da        rov ng                              operatcd, or 1 active components in                Bs            automatic) in the iqC+ie ~ H    the other CSS loop and th                              inJection flovpath RHR    stem      CI mod                                that is not locked, e dicsc    generator                            sealed, or othcr-are  OPERABLE.                                          vise secured in position, is in its oottsotg-Qyl 6c in hloge3                                                  position.
ZH I&bras
: 3. If Specification 3.5 h.l or                                  additi~sotssiLLanos Specification 3.5.k. cannot                              is        ired.
PC4'o nJ  be met, the reactor shal be 8+          placed    in the COLD SHOTDOWE H
COHDITI05    vithin hours.                    5cc ~~gg;ecch'oit Qc change 3C,    L2,              ~r Se+      ISV'S r,S, I
: 4.      en the reactor vessel pressure is atmospheric and irradiated fuel is in the reactor vessel at least one core spray loop vith one OPERABLE pump and associated                                Except that an automat c diesel generator shall bc                                  valve capable o autom ic OPERhBIZ, except vith the                                  r turn to its    EC  posit  on reactor vessel head remove                                  vh    aa ECCS signa is as s  ecificd in    3    h.      r                        prcscn may bc in a a                                    position for another mode specified ia 3.5.h.l Scc  gusttg ~ fio~  +  chcln)cf rr  BAN ISTIC 3.5.2 BFH                                              3,5/4.5-2 Unit  3
 
g,l qua I ~k The RHRS    shall  be OPERABLE      8.                &o  Simulated      Once/ iB,s Q2.                                                                      Automatic      ~aking PRIOR TO STARTUP                                    Actuation      Qcc1s-from a    COLD                                      Test CONDITION;    or
: b. Pump OPERA-      er Applicab  Iig (2)  when    there is                                    BILI~          Specification irradiated fuel in                                                  1.0.MM the reactor vessel and when the reactor                            c~ Motor Opera- Per vessel pressure is                                  ted valve      Specification greater than                                        OPERABILITY 1.0.MM atmospheric, except as specified in                        s83.5, l. 0    Pump  Flow    Once/W      J Specifications 3.5.$ .2                            Rate            men  ths-    4ag through 3.5.B 7.
: e. Testable        Per Check            Specification Va,lve          1. MM Sg 3.S.I.Z    Verify that          Once/
each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise correc
                                                                                'n its secured in posi-tion, position.
7 oR PC~:~y  ~ mme~~g~
St~keff valve    i~
Verify  LPCI subsystem cross-Once/
tie valve is LPC( crust g,'t ts c4scd closed  ~
removed from power
    ~C    3. S. l. Z Nsa                                                valve operator.
Low  pressure coolant injection                                  Except that an (LPCI) may be considered OPERABLE                                auto tic valve during alignment and        operation                            cap  le of auto-
        'or  shutdown cooling        with reactor                        ma  ic retu    to    ts steam dome pressure      less than                                  CS posi  on    en 105  psig in    HOT SHUTDOWN,      if                            an ECCS    igna    is capable of being manually                                        present  may be    in realigned and not otherwise                                      a position for another inoperable.                                                      mode of operation.
BFN Unit  3
: 3. 5/4. 5-4          NENOMEMT HO. I 77
 
i 0
 
skci4 ca~n      a.s.
SURVZnumCE REqUIZZmm UB  02
                                                          ~ ~  ~
                                                        ~R 2~  With the reactor          csscl                      Each LPCI pump shall deliver prc sure less t            105  psig,                9000 gpm against an indicated th    RHRS may b      removed                        system pressure    of  125 psig.
f  om  service      except          tvo              Two LPCI pumps    in the same pumps-c tainmcnt ooling                        loop shall deliver 12000 gpm mode and a ociated h at                              against an indicated system exchanger must r                                      prcssure of 250 psig.
OPEiULB        for a pc od not to cxc d 24 hour vhilc                                2. hn air test on the drywell being drained o                                            and tyne headers and nozzles supp cssion            ber quali y                          shall bc conducted once/5 va    r and    fi  ed  vith                              years. k vatcr test may be p      ry coo      t  quali                                performed on the torus header vatcr prov ded that d ing                                    in                      es cooldovn        o loops v th one See Zff5t)fi'Gabon &I pump pe loop or o              loop                                                  Chases vith        pumps,                                          ~c SP'iV (5 Tg g,g, g.q associ tcd diesc generators, in          e core spray system a e        OPBRhBLE.
3~  If  ne    RHR  um    (
1 I mode)
                                          .
  +5'o 4  is inoperable, the reactor may remain      in operation for a  period not to excccd          7 days prov    e      e rema pumps (LPCI mode) and bo access paths      of the LPCI mode      and the S and                    Sea  $~,1'C'cJitsrS    f. I a ors rema in                      gyral        3 OPE
: 4. If  any'    RHR ecome um      (LPCI inoperable, the mode reactor shall be placed in the COLD SHUTDOWH COHDITIOH vithin 24 hours.
3C Bc,;r e&e3, in Izhrs pAGE      5      oF~~
BFH                                            3. 5/4. 5-5 Unit 3                                                                    hMENGMBlTNO. t a        O
 
Cl nt                                                          ent
: 8. If Specifications  3.5.B.l through 3.5.B.7 are not met, Ron5 8+'      'a44keted      d the reactor shall be placed in the                      R in~<3      A1        Sec JuSt 4>'capon COLD SHUTDOWN CONDITION                    '~ IPhrs              Per Changes  gr  gP~
within      hours.                                                ts rs  s.s.~
3 When    e  reactor vessel                            9. When  the reactor vessel pressure is atmospheric    and                          pressure is atmospheric, irradiated fuel is in the                                the RHR pumps and valves reactor vessel, at least one                            that are required to be RHR  loop with two pumps or two                          OPERABLE    shall  be loops with one pump per loop                            demonstrated to be shall be OPERABLE. The                                  OPERABLE per diesel generators pumps'ssociated Specif ication 1.0.MM.
must also be OPERABLE. Low pressure coolagt injection (LPCI) may be considered OPERABLE during alignment and  operation for shutdown cooling, if capable of being manually realigned and not otherwise inoperable.
: 10. If the conditions of                                10. No  additional surveillance Specification 3.5.A.5 are met,                          required.
LPCI and containment coolin are not requi d When  there is irradiated fuel                          The B and D    RHR p'umps  on in the reactor and the reactor                          unit  2  which supply is not in the COLD SHUTDOWN                              cross-connect    capability CONDITION, 2 RHR pumps and                              shall  be demonstrated      to associated heat exchangers and                          be OPERABLE per valves on an adjacent unit                                Specification 1.0;MM when must be OPERABLE and capable                              the cross-connect of supplying cross-connect                              capability is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-connect capability is not a short-term requirement, a component is not considered inoperable if cross-connect capability can be restored to service within 5 hours.)
AMENDMENT NQ. g  77 BFN                                    3.5/4.5-7 Unit 3 pgsp~oF~t~
 
8 AUG 02 t989 on
: 12. If one  RHR pump    or associated located heat exchanger on the unit cross-connection in unit 2 is i perable for any reason ( eluding valve inopcrabilit pipe eak, etc.), the rc tor ma remain in operation for a eriod not to excee 30 days rovided thc remai RHR pump      d associated diese generator a OPERABLE.
3~ I        cross-co      ction flov or            13. Ho additional surveillance heat emoval capabi ty is lost,                      required.
thc un t may remain      i  peration for  a pe    od  not to exce    10 days unless such      capability is restored.                                    SR XS.
: 14. h    rec rculat n p                            14. All recirculation  pump ischarg valves shal                              discharge valves shall b  OPERAB      PRIOR  0                          be  tested for OPERABIL ST        (o    closed    f                        during any period of pe    tted  e  cvhere                            COLD SHUTDOWR COHDITIOH in t    se spe    ficatio ).
gg 3~t~    exceeding 48 hours,  if OPERABILITY tests have not been performed during thc preceding 31 days.
BFH                                      3.5/4.5-8                AMENDMENTHO. I4 0 Unit 3 PAG<~
 
S Stoic I g(
ggt'EB i  4 1995
                        <chion                                4.9.A.4. (Cont'd)
Sc<    3'us,H f-:            Qe,                                      c. The loss of    voltage ckclwy g                                                                      and degraded I ST 5    Section  3' voltage relays g (                                              which  start the diesel generators from the 4-kV shutdown boards shall  be  calibrated annually for trip and reset and thc measurements logged. These
          ~ca    >u~S'6;c    tt'nnA,                                            relays shall be 0 ng c5 g ~ p~  (et calibrated as l STS Z87                                                                specified in able 4.9.A.4.c.
: d. 4-kV shutdown board voltages shall bc recorded once every 12 hours.
: 5. 4 -V        V  pard 3Rk2E
: a. Accident signal logic system    is    OPERABLE.                  sC  r.s.i.u. a. Once c automatic
: b. 480-volt load        s e                                        transfer feature logic    system      is OPERABLE.                                for 480-V RMOV boards 3D and 3E
                >ee 3<5(inca fjin far                                              shall bc
                ~'~      (sTS S.g.(
                                          ~go                                    functionally tested to verify auto-transfer capability.
: 6. There shall bc a minimum of 35,280 gallons of diesel fuel in each of the 7-day diesel-gcncrator fuel tank assemblics.
5ea Ri
                    $ wy;p;a.4on Qr        ~~
pFg BPS                                            3 ~ 9/4 ~ 9-7 AIItEHDME&#xc3;fRtt. I8 9 Qnit 3 PAGE      8 'oF      ~~
 
8
,
 
NOV  0 4  1991
: e. Loss of voltage and degraded voltage relays OPERhBLE on 4-kV shutdown boards 3Eh, 3EB, 3EC, and 3ED.
: f. Thc 480-V  diesel                  Sec.      s  ~ << "~~        L'4~)~)
auxiliary  boards 3Eh and 3EB  are encrgizcd.              4-~    Be< (sr> s.s.7
: g. The 480-V  reactor tor-opera d valve
(    V) boards  3D  Ec 3E arc    ergized      th motor enerator          )
sets  3D    3Dh, 3ES, and 3Eh  in service.
: 4. Thc 250-V shutdown board                      4.
3EB  battery,  all  three unit battcriea, a battery                          a.    (Delctcd)
    ! charger for each battery, and associated    battery                          b. Once  every 18 months,  )
boards arc  OPERhBLE.                                    the conditions under which the loss of voltage and degraded voltage relays are regni,rcd shall Sc4  >~ski((ek,oe  fur                                    be simulated with an C44  pg                          undervoltage on each cfor  OP~ (pre    g ~ q                                  shutdown board to deaoastrate that thc associated diesel generator will start.
                                                    >< 3uStigi'agon SPu fir Cfu~eS    ~
IST5  s BPS                                    3.9/4.9W        pAGE~AMENlpjp~TN 1 5 8 Unit 3
 
                                              . SPe.c.,g;~I'on Z.5. l S  S                                    1%lOV 18 1988 PERA
: 10. When one 480-V shutdown board  is found to be inoperable, the reactor                      WStjCicah'on 4r Changing vill be  placed in  HOT                  ~r BAN I$ 75 P. g,-7 STANDBY CONDITION    vithin 12 hours and COLD SHUTDOWH OHDITIOH within 24 hours.
: 11. If on  480-V  RMOV  board      g set  s inoperab e,    REA    OR PO    OPERATIO    may co  inue for      perio    not to exceed se en days p ovided th remain ng 80-V RMOV board        sets and their associa      d load remain 0 ERABLE.
12  If  any tvo 480- RMOV board      sets ecome inop abLe, t e react        r sha    be  pla  ed  in t  e CO    SHUTDO    CONDI    OH vithin  24 h  urs.
: 13. If t e r cerements or operation in the conditions specified by              SeC g>~>.;~Hon 4. Cg~~CS 3.9.B.1 through 3.9.B.12 cannot be met, an orderly
                                                +  ~ON I ST~ SecAen Xg shutdovn shall be initiated and the reactor shall be in the COLD SHUTDOWH CONDITION      vithin 24  hours.
                                                                  'MEtf0t,1ENT M. ypg BFN Unit 3                                                  PAGE~OF
 
11 FEB P 7 t991 3 ~5 ~                                                4.5.D        u
: 1. The equipme      area cooler                            E  h equipment        rea cooler associated    vi h each RHR                            is    crated in      c      unction ump  and the e uipment                                  vith    e  equipment        erved a ea  cooler ass ciated                                  by  that articular c oler; vi    each set of core                                  therefore the equipm t spra    pumps (A an      C                              area coole        are teste at or  B    d  D) must b                                    the same fre ency as th OPERAB      at  all  tim                                  umps vhich th          serve.
vhen the ump or pum OPERABLE'.
served by hat specif cooler is c sidered be t
: 2. en an equipme      area coo er is not OPE        LE, the p p(s) served y tha cooler ust be consi ere inoperabl for Technical Specificati      purposes.
C  Co          The        system shall be                                  HPCI Subsystem          testing OPERAB        enever there is                                shall    be performed as I      irra  ated fuel    in the                                  fo      vs+
ky);cubi l  $
                  ) reactor vessel and the                                              +al or reactor vessel pressure                ~S~.~r          a. Simulated            Once/18 is greater than 150 psig,                                    Automatic            months except  in the  COLD SHUTDOWH PropoSed hk    K      Actuation CONDITION    or as specified in        4r SR.g.g.l.          Test pecification 3.5.E.2.
OPERABILITY    shall be deter-                          b. Pump                  Per Prop seA    mined  within 12 hours a te                    5R~~t.g        OPERA-                Specification Alod  Pr    reactor steam pressure 4 oM                                  BILITY                  .O.MM SR  E.g.l,8  reaches    150  psig from    a  OLD CONDITION,      r a  t          ely                      c. otor per-            e PR  R TO ST    TUP b    usi    an                          a ed Va ve            S    cif  cation aux  iary ste      sup    y.                                OP  RABIL Y          1.
: d. Flow Rate at          Once/W no    a 5/P 3.5. I .1 rect r                          3 v s    1          kz.
op    a    ng pr  s    re Prcfo+g Qpg                    qco    H l~/o.
~ ]
BFN                                            3.5/4.5-1 PlO AMENDMENT tl0      152 Unit  3 ls
 
0 on 3    So t FEg 0 7 )99t
                                                                    ~ ~
R z.s.l,g  e.
                                                                              ~Flow Rate at psig The HPCI pump Once/18 months shall Ps  g        deliver. at least 5000      gpm during, each flow rate      test.
Verify that        Once/Wm~
each valve 5R  p.g.(.~    (manual, power-operated, or automatic) in the infection flow-l.'hov    l4                        path that is not locked, sealed, or otherwise secured in position, is in its correc        osition.
A7 2~    If the  HPCI s stem            is inoperable,  t    e reactor          may remain  in  ope    ation f period not to exceed                  'ys, provided the                          RHR tfo+std          LPCI              ICS        are QCTTo&          OPE    LE er'.Ac z
                              ~  cd iR Ic  1 't 3 ~  If Specifications              3.5.E.1                          cept    hat an automatic or 3.5.E.2 are not met,                                      va ve ca      ble of utomatic PtChor15 ret rn to ts ECCS osition the                              when an ECC signal s G-0          reactor vessel pressur                                        prese  t            in H
shall be reduced to 150                '<<s                    positi may b for  a a
other m  de psig or less within 24-3g                                    of opera ion.
ours.
L2.
F. R          Co e  solation Cooli                      F. Reactor Core  Isolation Coolin t    RC CS The RCICS  shall        be OPERABLE                  1. RCIC Subsystem    testing shall whenever there        is irradiated                      be performed as      follows:
fuel in the reactor vessel and the  reactor vessel                                  a. Simulated Auto- Once/18 pressure is above 150 psig,                                  matic Actuation months except in the COLD SHUTDOWN                                  Test CONDITION or as specified in 3.5.F.2. OPERABILITY sha BFN AMENDMENT NO.      I5 2 Unit  3          Sr 8-8 l5T$        p.5 $
PAG~oF
: 1. Six valves of the Automatic                          1. Durin each        o crating k              Depressurisation System                                      cycl      e following shall    be OPERABLE:                                        tests shall be performed on the ADS:
tooaL Or (1)  PRIOR TO STARTUP          from          gg  p g1 ~oa.        A simulated automatic a COLD CONDITION,          or,                                actuation test shall be performed PRIOR      TO (2) whenever there is                                              STARTUP a ter ~ch
<PP~o&'li'Q          irradiated fuel in the                                        refute.ng outa e.
reactor vessel and the                                          nua    surveys  anc reactor vessel pressure                                      o  the bpliefgval es is greater than 485 psig,                                    is over+ in      g except in the        COLD                                  4.6. .2.
DOWN    CONDITION or as specified in 3.5.G.2          a 3.5.G.3 below.                  le    ppapSC  pie&
5  ~  Sa 3.S.l l~
: 2. With one of the aSove required
  /kh'ons      ADS  valves inoperable, provided the H CI system, the
                                                                                                    .gi core spray system and the LPCI syst          are OPERABLE, s ore        e inoperable ADS valve to      OPERABLE      status within 14 days or be in at least a HOT SHUTDOWN CONDITION                      Pcafo5cJ QcQoA F Algol        within the next 12 hours and reduce reactor s          earn dome ressure to Z              psig within ho s.            ISb g.
3L
: 3. With two or more of the above required ADS valves ikhon      inoperable, be in at least              a HOT SHUTDOWN CONDITION            within g          12 hours and reduce react steam dome pressure to g psig within            hours.
                                                  ~IW r
PC pO yA QI                          L5 R<oooor<d    pioiion  p,i pico 3.0.,3) t'ai t 4iA  7J)f5
              ~DC    '3  Lo >thin    l3  ~
              ~in:    oi oooo~    n  3 i gon<s~i.i>
BFN                                                  3.5/4.5-16 hNENOMENT NO.      178 Unit  3                                                                  ..;.;;  tx    .,--    (s
 
EC  0'7  1994 3.6.C                                                4.6.C Z. Anytime irradiated fuel is in                      2. With the air sampling the reactor vessel and reactor                          system inoperable, grab coolant temperature is above                            samples    shall  be 2LZ'F, both the sump and air                            obtained and analyzed sampling systems shall be                              at least once every 24 OPERABLE. From and after the                        hours.
date that one of these systems is made or found to be inoperable for any reason, the reactor may remain in operation during the succeeding 24 hours for the sump system or 72 hours for, thc air sampling system.                      >+c X~SWkimh on Q~            Ch~
6I ggp(    )5 fg  y  q The  air  sampling .system may be removed from    service for  a period of    4 hours  for calibration, function testing, and maintenance    vithout providing    a temporary  monitor.
: 3. If the    condition in  1 or  2 above cannot be met, an orderly shutdovn shall be initiated aad the reactor shall be placed in thc COLD SHUTDOWN CONDITION      vithin          4.6.D.
24  hours.
: 1. Approximately one-half 3.6.D.                                                                of all relief valves shall    be bench-checked
: 1. When more    thaa one  relief                          or replaced vith a valve is kaovn to be failed,                            bcnchmhecked valve an  orderly shutdovn shall bc                          each operating cycle.
initiated and the reactor                                hll  13  valves  vill hav depressurised to less than lOS                          been checked or psig vithin 24 hours        The                          replaced upon the relief valves are not required                          completion of every to be  OPERABLE in the COLD                            second cycle.
SHllTDOMN CQNDITIQN.
: 2. In accordance vith
            <<<
4< 81-N l5T5    gag'R
                  ~r;~yon g~ dtegCS
                                                          .g.]
Specification 1.0.%5 c relief valve shall be manually o cned ti    t ermo oup e an a oust c mon tore kr~rct jar fC. do str am of hc ve "sR r.5.1. Ll  ind cate stcam e lo ag f om the velvr BP&#xc3;                                        3.6/4.6-10                ANENMOrr NL      I 88 Unit  3 GOOF
 
                                                            ~Pec,          'o  ~-S-t NY      9 l994 sly.s;/.1 Whenever t      core 8    ay systems,            The  following surveillance LPCI, HPCI, r RC              required            requirements shall be adhered to be OPERAB        the  dis ar                    to assure that the discharge piping from'he ump disc rge                        piping of the core spra these systems o the las                        systems, LPCI, HPCI, and RCIC bl ck valve shall          filled.                are filled:
The s tion of the                    P            1. Eve pumps s    all  be aligned      o the                                      e RHRS        CI and condensa      storage tank, and                        Conta nment Spray) and core t e press        suppression      amber                spray systems, the dischar e hea tank s        1 normally b                          pipin of these systems shall align d to se        the dischar e                          vened        om /he h      h  pbjnt piping f the e cond and CS pump sate hea tank may be
                                                  ~                  d  wattr    fl  w %term        ed.
        'us d to se e the            aad CS                2. Following any period where the dis harge px ing      if  th PSC head                        I or    core spray sy tems tank is unava able. Th                                  have    ot    been equired o be pre88 e indica ors on th                                OPERAB        the    scharge p ing discha ge of the shall  i and CS umps icate not less than of the ino erabl be vented      f      the system    8    ll m        igh poin listed  b  ow.                                        prior to the          turn of e 8 8 tern 't Pl 0        48 p ig Pl-75-4        48 ps                      3~  Whenever the HPCI              R Pl-74-51        48 psig                          system is lined up          to take Pl-74-65        48 psig                          suction from the condensate storage tank, the dischar e piping of the HPCI d RCI e vened from t            high oint f the 8+tern          and wate low observe        on a monthly
      >< Xsgg;mg.~Jr                                              bas s.
Chu
                                      @
P~ SFN ls      T$  p.g.p                                    en the RHRS and the CS              are r uired to        b OPERABLE,        t pre ure indicat s which monit        the discha        lines shall be onitored da y and he pressu e recorded.
BFN                                          3.5/4.5-17                NENOMENTRO,      r7g Unit 3 q+Z' ~
QWI
 
JUSTIFICATION    FOR CHANGES BFN ISTS  3.5.1 -  ECCS  -  OPERATING ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is          done to make consistent  with  NUREG-1433. During  ISTS  development  certain wording preferences or English language    conventions    were  adopted  which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.        This wording is consistent with the BWR Standard  Technical  Specifications,    NUREG-1433. Since the design is already approved, adding more detail does not        result  in a technical change.
Five current LCOs, 3.5.A, 3.5.B, 3.5.E, 3.5.G, and 3.5.H, have been combined into one proposed LCO (3.5. 1). As such, the new LCO combines the three  ECCS  spray/injection Systems (HPCI, LPCI, and CS) into one LCO statement. The Bases continue to describe what components make up an ECCS subsystem. The new LCO statement also specifies that the six ADS valves are required. In addition, the ADS valve cycling requirements located in current Specification 4.6.D. 1 are included as part of ADS operability. Thus,    if  an ADS valve does not cycle, the affected ECCS system is considered inoperable and the appropriate ACTION taken.
A3    The Frequencies of "Once/operating cycle," "during each operating cycle," and "after each refueling outage" have been changed to "18
      'onths."    This is considered equivalent since 18 months is the length of an operating cycle or a refueling outage cycle.          The Frequencies of "Once/3  months"  and "Per  Specification    I.O.HM"  have  been changed to "92 days," or "In accordance with the Inservice Testing program" as appropriate. The IST program test frequency for pumps is every 3 months and is currently defined by Specification I.O.MM. Therefore, this change is considered administrative in nature.          The Frequency of "Once/month" has been changed to    "31  days."
A4    Notes allowing actual vessel injection or ADS valve actuation to be excluded from this test (simulated automatic actuation test) have been 0      added to proposed SR 3.5. 1.9 and SR 3.5. 1. 10.
BFN-UNITS 1, 2, 5 3 Since the current Revision 0 PAGE          OF
 
0~
I
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.5.1 - ECCS  - OPERATING I
requirements state the test is "simulated"      (i.e.,  valve actuation and vessel injection are inherently excluded),      this  allowance  is considered administrative in nature.
AS    Proposed Condition H provides direction for various interrelationships between HPCI and ADS, and between LPCI and CS. The Action requires entry into LCO 3.0.3 for various combinations of inoperability which are consistent with the present required actions for the same various combinations. The  actual requirements are not being changed.
A6    The  existing Applicability for Core Spray System (CSS) Operability (3.5.A.1), and Low Pressure Coolant Injection (LPCI) Operability (3.5.8. 1), requires both systems to be Operable whenever irradiated fuel is in the vessel and prior to startup from a COLD CONDITION. The proposed change (LCO 3.5. 1 Applicability) requires them to be Operable in Modes 1, 2 and 3. This change more clearly defines the conditions when CSS and LPCI are required to be Operable without changing the specific requirements which are currently located in individual specifications for each system. This change is, administrative because the same requirements for Operability currently listed in specific specifications will be labelled APPLICABILITY and apply to the entire ISTS Section 3.5. 1, ECCS-Operating. The 3.5.A.2, 3.5.B.2, and 3.5.B.7 Applicabilities  are only cross references    and have been  deleted.
A7    The  clarifying information contained in the "*" footnote has been moved to the proposed Bases for SR 3.5. 1.2. The intent of the surveillance is to assure that the proper flow paths will exist for ECCS operation. The Bases clarifies that a valve that receives an initiation signal is allowed to be in  a nonaccident position provided the valve will automatically reposition in the proper stroke time. As such, moving this clarifying statement to the Bases is an administrative change.
AS    This requirement has been deleted since      it only provides reference to another Specification, and does not provide any unique requirements.
The format of the proposed BFN ISTS does not include providing "cross references."
A9    Surveillance Requirements for HOV operability, and check valves that are required by the Inservice Testing (IST) Program, have been removed from individual Specifications. This change is considered administrative in nature since these requirements remain in the IST Program which is defined by proposed Specification 5.5.6.
BFN-UNITS 1, 2, 5 3                                                        Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 - ECCS - OPERATING A10  The  flow tests for the    HPCI System  are performed at two  different pressure ranges such that system capability to provide rated flow is tested at both the higher and lower operating ranges of the system.
Since the reactor steam dome pressure must be a 920 psig to perform SR 3.5. 1.7 and a 150 psig to perform SR 3.5. 1.8, sufficient time is allowed after adequate pressure is achieved to perform these tests. This is clarified by a Note in both SRs that state the Surveillances are not required to be performed until 12 hours after the specified reactor steam dome pressure is reached.      CTS 3.5.E. 1 already contains the context of the Note for the low pressure flow rate test. This is also consistent with interpretation of the current technical specification requirement for the high pressure flow rate test which is currently not modified by a Note.
All  The  existing Applicabilities for High Pressure Coolant Injection (HPCI)
Operability (3.5.E. 1) and ADS (3.5.G. 1) require the systems to be Operable whenever irradiated fuel is in the vessel and reactor pressure is greater than 150 psig (105 psig for ADS), except in the COLD SHUTDOWN CONDITION. The proposed change (LCO 3.5. 1 Applicability) requires HPCI and ADS to be Operable in Modes 1, 2 and 3, except when reactor steam dome pressure is < 150 psig.      (Reference Justification L5 for the. change in applicability from < 105 psig to < 150 psig for ADS.) This change more clearly defines the conditions when HPCI and ADS are required to be Operable without changing the specific requirements which are currently located in the individual specifications. This change is administrative because the same requirements for Operability currently listed in the specific specifications will be labeled APPLICABILITY and apply to the entire ISTS Section 3.5. 1,,ECCS-Operating. The 3.5.E.2, 3.5.G.2, and 3.5.G.3 Applicabilities are only cross references      and have been deleted.
A12  A finite  Completion Time has been provided to verify RCIC OPERABILITY.
The new. time is immediately and is considered administrative since this is an acceptable interpretation of the time to perform the current requirement.
A13  CTS  3.9.A.3.h (for Unit 1 and 2) and 3.9.A.3.g (for Unit 3) require 480 V reactor motor operated valve (RMOV) boards to be energized with motor-generator (MG) sets in service. CTS 3.9.B. 13 and 14 (for Unit 1 and 2) and  ll and 12 (for Unit 3) provide Required Actions for when one or any There are two 480-V AC RMOV two 480-V MG board sets become inoperable.
boards that contain MG sets in their feeder lines. The 480-V AC RMOV boards provide motive power to valves associated with the LPCI mode of the RHR system. The MG sets act as electrical isolators to prevent a BFN-UNITS 1, 2, 5 3                        3                              Revision  0 PAGE
 
JUSTIFICATION    FOR CHANGES BFN ISTS  3.5.1 -  ECCS  - OPERATING fault propagating    between  electrical divisions due to .an automatic transfer. Having an MG  set out of service reduces the assurance that full  RHR  (LPCI) capacity  will  be available when required, therefore, the unit can only operate in this condition for 7 days. Having two MG sets out of service can considerably reduce equipment availability; therefore, the unit must be placed in Cold Shutdown within 24 hours.
The'nability to provide power to the inboard injection valve and the recirculation  pump discharge valve from either 4 kV board associated with  an  inoperable MG set would result in declaring the associated LPCI subsystems inoperable and entering the Actions required for LPCI.
Since, the out of service times for LPCI and the MG sets are comparable, the deletion of the MG set actions is considered administrative.
TECHNICAL CHANGE  - MORE  RESTRICTIVE Ml    Proposed Action    H requires LCO 3.0.3 be entered immediately which requires the plant to be in MODE 2 in 7 hours and MODE 3 within 13 hours when multiple ECCS subsystems are inoperable.          This change is more restrictive because    it stipulates that the reactor shutdown be completed much  earlier  than  would  be required by the existing specifications (CTS 3.5.A.3, 3.5.B.4, 3.5.B.8, and 3.5.E.3). For CTS 3.5.G.2          it is slightly more restrictive since it requires the plant to be in MODE        2 in 7 hours where no action was required before. CTS require a shutdown to NODE 4 within 24 hours (except CTS 3.5.G.2 for ADS which also requires the plant be in NODE 3 in 12 hours) but does not stipulate how quickly MODE 3 must be reached.      Reference Comment L12 which addresses the less restrictive change of being in NODE 3 in 13 hours versus 12 hours and NODE 4 (or < 150 psig which is outside the applicability for ADS and HPCI) in 37 hours rather than 24 hours.
Surveillance requirement    SR  3.5.1.3  has been added  to verify that ADS air supply header pressure is z 90 psig. This is a new Surveillance Requirement which verifies that sufficient air pressure exists in the ADS accumulators/receivers      for reliable operation of ADS. Since this is a new Surveillance Requirement, it is an added restriction to plant operations.
N3    With the reactor pressure < 105 psig, CTS 3.5.B.2 allows the RHR System to be removed from service (except that two RHR pumps-containment cooling mode and associated heat exchangers must remain OPERABLE) for a period not to exceed 24 hours while being drained of suppression chamber quality water and filled with primary coolant quality water provided BFN-UNITS 1, 2, & 3                                                        Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 - ECCS - OPERATING that during  cooldown two loops with one pump per loop or one loop with two pumps, and associated diesel generators, in the core spray system are OPERABLE. This appears to be an exception to CTS 3.5.A.2 8 3, which only allows one CSS loop (i.e., one loop with two pumps) to be inoperable for 7 days and an immediate shutdown      if this cannot be met.
The &#xb9; Note for 3.5.B.1 allows LPCI to be considered OPERABLE .during alignment and operation for shutdown cooling with reactor steam dome pressure  < 105  psig in HOT SHUTDOWN,  if capable of being manually realigned and not otherwise inoperable. Proposed Specification 3.5.1 has a similar provision (Note to SR 3.5.1.2).      Since the proposed Specification has no provision that would allow continued operation in MODE 3 with pressure <105 psig with two CS loops with one pump per loop OPERABLE, the proposed change is considered more restrictive.
M4    An  additional requirement is being added that requires the plant to be in MODE 3 within 12 hours. This change is more restrictive because it stipulates that the reactor shutdown be completed much earlier than would be required by the existing specifications (CTS 3.5.A.3, 3.5.B.4, 3.5.B.S, and 3.5.E.3). CTS require a shutdown to MODE 4 within 24 hours but does not stipulate how quickly MODE 3 must be reached. Reference Comment L2 which addresses the less restrictive change of being in MODE 4 (or < 150 psig for HPCI and ADS) in 36 hours rather than 24 hour s.
TECHNICAL CHANGES  -  LESS RESTRICTIVE "Generic" LAl  Not used.
LA2  The  details relating to    system design and purpose have been relocated to the Bases. The design features and system operation are also described in the FSAR. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the FSAR will be controlled by the provisions of 10 CFR 50.59. ECCS system operability determinations are described in the Bases. SR 3.5. 1. 1 will ensure maintenance of filled discharge piping.
BFN-UNITS 1, 2, & 3                                                      Revision  0 PAGE jz
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5 ECCS - OPERATING LA3  Details of the methods of performing surveillance test requirements and routine system status monitoring have been relocated to the Bases and procedures.'hanges to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
LA4  Any time the OPERABILITY      of a system or component has been affected by repair,  maintenance    or  replacement  of a component, post maintenance testing is required to demonstrate OPERABILITY of the system or component. Therefore, explicit post maintenance Surveillance Requirements have been deleted from the Specifications.          Also, proposed SR 3.0.1  and  SR 3.0.4  require  Surveillances to  be current  prior to declaring components operable.
LA5  CTS  3.5.D/4.5.D, Equipment Area Coolers, are being relocated to plant procedures.      Relocating requirements for the equipment area coolers does not preclude them from being maintained operable. They are required to be operable in order to support HPCI, RCIC, LPCI and CS system operability. If they become inoperable, the operability of the supported systems are required to be evaluated under the Safety Function Determination Program in Section 5.0 of the Technical Specifications.
This change is consistent with NUREG-1433.
LA6  CTS  3.5.E specifically states that HPCI Operability can be determined prior to startup by using an auxiliary steam supply in lieu of using reactor steam after reactor steam dome pressure reaches 150 psig.
Details of the methods of performing this surveillance test requirement have been relocated to the Bases and procedures.          Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
LA7  CTS  4.5.H.l requires the discharge piping of RHR (LPCI and Containment Spray) to be vented from the high point and water level determined every month and prior to testing of these systems.          The specific requirement to vent prior to testing has been relocated to procedures. Changes to the procedures will be controlled by the licensee controlled programs.
BFN-UNITS 1, 2,  8L 3 PAGE~OF~i;;                  0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 - ECCS - OPERATING "Specific" Ll    The phrase "actual      or," in reference to the automatic initiation signal, has been added to      the surveillance requirement for verifying the ECCS subsystems/ADS      actuate  on an  automatic  initiation signal. This allows satisfactory automatic      system  initiations for other than surveillance purposes to be used to      fulfill this requirement. Operability is adequately demonstrated in either case since the ECCS subsystems/ADS itself can not discriminate between "actual" or "simulated."
L2    The time    to reach  MODE  4, Cold Shutdown (for LPCI and CS) and < 150 psig (for HPCI and ADS) has been extended        from 24 hours to 36 hours. This provides the necessary      time to shut down and cool down the plant in a controlled      and orderly manner that is within, the capabilities of the unit,  assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems. In addition, a new (more restrictive) requirement to be in MODE 3 (Hot Shutdown) within 12 hours has been added for LPCI, CS and HPCI (Reference Comment M4 above).        These times are consistent with the BWR Standard Technical Specifications,          NUREG 1433.
A new  Action (proposed ACTION 0) is being added to LCO 3.5.1 for the.
condition of an inoperable HPCI System coincident with one inoperable low pressure ECCS injection/spray subsystem.          The analysis summarized in the current SAFER/GESTR-LOCA analysis (NEDC-32484P, February 1996) demonstrates that adequate cooling is provided by the ADS system and the remaining operable low pressure injection/spray subsystems.            However, the redundancy has been reduced such that another single failure may not maintain the ability to provide adequate core cooling. Therefore, an allowable outage time of 72 hours has been assigned to restore either the inoperable HPCI system or the inoperable low pressure injection/spray subsystem to operability. This change is consistent with  NUREG-1433.
L4    The  allowable outage time for HPCI has been extended from 7 days to 14 days. Adequate core cooling can be provided by ADS and the low pressure ECCS subsystems.      The 14 days is allowed only      if all six ADS valves and the low pressure ECCS subsystems are operable.            (The exception, LCO 3.5.1, Condition D, which allows operation for 72 hours with HPCI and one low pressure ECCS subsystem inoperable is addressed in Comment L3 above.) The 14 day Completion Time is based on the reliability study that evaluated the impact on ECCS availability (Memorandum from R. L.
Baer (NRC) to V. Stello, Jr. (NRC), "Recommended Interim Revisions to BFN-UNITS 1, 2,    5. 3                                                      Revision 0 PAGE~GP~
 
0 JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 -  ECCS - OPERATING LCOs for ECCS Components," December 1, 1975).        Factors contributing to the acceptability of allowing continued operations for 14 days with HPCI inoperable include: the similar functions of HPCI and RCIC, and that the RCIC is capable of performing the HPCI function, although at a substantially lower capacity; the continued availability of the full complement of ADS valves and the ADS System's capability in response to a small break LOCA; and, the continued availability of the full complement of low pressure ECCS subsystems which, in conjunction with ADS, are capable of responding to a small break LOCA. This change is consistent with    NUREG-1433.
L5    The pressure    at which ADS is required to be operable is increased to 150 psig to provide consistency of the operability requirements for.HPCI and RCIC.equipment. Small break loss of coolant accidents are not analyzed to occur at low pressures (i.e., between 105 and 150 psig). The ADS is required to operate to lower the pressure sufficiently so that the LPCI and CS systems can provide makeup to mitigate such accidents.        Since these systems can begin to inject water into the reactor pressure vessel at pressures well above 150 psig, there is no safety significance in the ADS not being operable between 105 and 150 psig.
~
                                    \
L6    A new ACTION has    been added  (ACTION F), which allows an outage time of 72 hours when one ADS valve      and a low pressure ECCS subsystem is inoperable. Currently, there is no allowed outage time when these two items are inoperable. The analysis summarized in the current SAFER/GESTR-LOCA analysis (NEDC-32484P, February 1996) demonstrates that adequate cooling is provided by the HPCI and the remaining operable low
      'pressure injection/spray system. However, the redundancy has been reduced such    that another single failure concurrent with a design basis LOCA could result in the minimum required ECCS equipment not being available. Therefore, an allowable outage time of 72 hours has been assigned to restore either the inoperable ADS.valve or the inoperable low pressure injection/spray system. This change is consistent with NUREG-1433.
L7    Current Technical Specifications only allow one LPCI pump to be inoperable. Proposed ACTION A allows two LPCI pumps, one per loop or two in one loop, to be inoperable for seven days. The BASES for ISTS 3.5.1 Required Action A.l state that the 7 day allowed outage time is justified because in this condition, the remaining OPERABLE subsystems t      provide adequate core cooling during a LOCA. This justification is applicable for the LPCI function of RHR with one or two RHR (LPCI) pumps out of service as demonstrated by previous LOCA analyses performed for BFN-UNITS 1, 2,  8. 3                                                    Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 - ECCS - OPERATING BFN as  well  as the current SAFER/GESTR-LOCA analysis (NEDC-32484P, February 1996). Following postulated single failures, adequate core cooling can be provided by one loop of Core Spray (2 pumps) and two RHR (LPCI) pumps (either two pumps in one loop or one pump in two loops) in conjunction with HPCI and ADS. Therefore, this less restrictive change is acceptable based on the plant specific LOCA analysis perfqrmed for BFN.
L8  This change proposes to add a Note to current Surveillance Requirement 4.6.D.4 (proposed Surveillance Requirement 3.5. 1,12) which states, "Not required to be performed until 12 hours after reactor steam pressure and flow are adequate to perform the test." This change allows the Applicability of the Specification to be entered for 12 hours without performing the Surveillance Requirement. This allows for sufficient conditions to exist and allow the plant to stabilize within these conditions prior to performing the Surveillance. The normal outcome of the performance of a Surveillance is the successful            completion which proves Operability. This change represents a relaxation over existing requirements. This change is consistent with NUREG-1433.
~ L9    Existing Surveillance Requirement 4.5.E.l.d requires verification that HPCI is capable of delivering at least 5000 gpm at normal reactor vessel operating pressure. The proposed surveillance, SR 3.5. 1.7, requires verification of a minimum 5000 gpm HPCI flow rate with reactor pressure e 920 psig and < 1010 psig. The HPCI performance test at high pressure is the second part of a two part test that verifies HPCI pump performance at the upper and lower end of the range of steam supply and pump discharge pressures in which the HPCI pump is expected to perform.
Performance of the HPCI test at both ends of the expected operating pressure range confirms that the HPCI pump and turbine are functioning in accordance with design specifications. The ability of the HPCI pump to perform at normal reactor vessel operating pressure has already been demonstrated. A small decrease in the pressure to as low as 920 psig at which the performance to design specifications is verified will not affect the validity of the test to determine that the pump and turbine are still operating at the design specifications.
BFN-UNITS 1, 2,  tIL 3                                                Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 - ECCS - OPERATING L10 Existing Surveillance Requirement 4.5.C. l.e requires verification that HPCI  is capable of delivering at least 5000 gpm "at 150 psig reactor steam pressure."    The proposed surveillance, SR 3.5. 1.9, requires verification of a minimum 5000 gpm HPCI flow rate with reactor pressure at a 165 psig. This change is less restrictive because      it  could allow reactor operation at pressures up to 165 psig prior to performing the surveillance. Performance of HPCI pump testing draws steam from the reactor and could affect reactor pressure significantly. Therefore, HPCI pump testing must be performed when the Electro-Hydraulic Control (EHC) System for the main turbine is available and capable of regulating reactor pressure. Operating experience has demonstrated that reactor pressures as high as 165 psig may be required before the EHC system is capable of maintaining stable pressure during the performance of the HPCI  test.
The HPCI performance    test at low pressure is the first part of a two part  test  that verifies  HPCI pump performance at the upper and lower end of the range of steam supply and pump discharge pressures in which the HPCI pump is expected to perform.      Performance of the HPCI test at both ends of the expected operating pressure range confirms that the HPCI pump and  turbine are functioning In accordance with design specifications. The ability of the HPCI pump to perform at the lowest required pressure of 150 psig has already been demonstrated.        A small increase in the pressure at which the performance to design specifications is verified will not significantly delay or affect the validity of the test to determine that the pump and turbine are still operating at the design specifications.
Ll1 CTS  3.5.E. 1 requires  HPCI operability to be determined within 12  hours after reactor steam    dome pressure reaches 150 psig from a COLD CONDITION. The proposed Note  to SR 3.5.1.7 and 3.5. 1.8 allows X2 hours to perform the test after reactor steam dome pressure and flow are adequate. This is based on the need to reach conditions appropriate for testing. The existing allowance to reach a given pressure only partially addresses the issue. This pressure can be attained, and with little or no steam flow, conditions would not be adequate to perform the test - potentially resulting in an undesired reactor depressurization.
The proposed change recognizes the necessary conditions of steam flow and minimum pressure    as well as a maximum pressure limitation and provides consistency of presentation of these conditions. The point in time during startup that testing would begin remains unchanged. The change simply changes when the 12 hour clock for performing the test 10                              Revision 0 PAGED()        p~
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.1 >> ECCS - OPERATING must begin and permits    testing to be completed  in a reasonable  period of time.
L12  Proposed Condition H provides direction for various interrelationships between HPCI and ADS, and Between LPCI and CS. The Action requires entry into LCO 3.0.3 for various combinations of inoperability which are consistent with the present required actions for the same various combinations (CTS 3.5.A.3, 3.5.B.4, 3.5.B.8, and 3.5.E.3). However, the time to reach MODE 4, Cold Shutdown (for LPCI and CS) and < 150 psig (for HPCI) has been extended from 24 hours to 37 hours and to reach MODE 3, Hot Shutdown (for ADS only) has been extended from 12 hours to 13 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems. In addition, a new (more restrictive) requirement to be in MODE 2 in 7 hours and MODE 3 (Hot Shutdown) within 13 hours has been added (Reference Comment Ml above).      These times are consistent with the BMR Standard Technical Specifications, NUREG 1433.
~ L13  An  alternate verification to ensure the LPCI cross tie between loops is isolated has been added for Unit 3. The addition of an alternate method of satisfying the surveillance requirement is considered less restrictive. Currently, the method used for all three units is to verify the LPCI cross tie is closed and power is removed from the valve operator. Unit 3 has a manual shutoff valve install between the cross tie for  Loop I  and Loop  II. This verification ensures that each LPCI subsystem  remains independent and a failure of the flow path in one subsystem  will not affect the flow path of the other subsystem. Since the manual shutoff valve serves the same function as the power operated valve, the proposed change is considered acceptable.
BFN-UNITS 1, 2, & 3                                                      Revision 0 PAGE~(PP          (P
 
S JUSTIFICATION  FOR CHANGES BFN ISTS 3.5.1 -  ECCS  - OPERATING RELOCATED SPECIFICATIONS Rl    Browns Ferry Nuclear Plant consists    of three units. The pump suction and heat exchanger discharge lines    of one loop of RHR in Unit 1 (Loop II) are cross-connected to the pump suction and heat exchanger of Unit
: 2. Unit 2 and 3 systems are cross-connected in a similar manner.
Technical Specification requirements related to RHR cross-tie capability between units have been deleted. The standby coolant supply connection and RHR crossties are provided to maintain long-term reactor core and primary containment cooling capability irrespective of primary containment integrity or operability of the RHR System associated with a given unit. They provide added long-term redundancy to the other ECC Systems and are designed to accommodate certain situations which, although unlikely to occur, could jeopardize the functioning of these systems. Neither the RHR cross-tie nor the standby coolant supply capability is assumed to function for mitigation of any transient or accident analyzed in the FSAR. Therefore, the operability requirements and surveillances associated with the cross-connection capability have been relocated to the Technical Requirements Manual (TRM). Changes to the TRM will be controlled in accordance with 10 CFR 50.59.
0 BFN-UNITS 1, 2, 5 3                    12                            Revision  0
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
                                                              ,4 AUG    02  1989 3.5.A    Co                                        4.5.A    Co    S  a  S st      SS 4.5.A.l.d (Cont'd) 5'mS~C'~+on          @c                                105  psi Cho,+45  Q( Qpg ) 5+5 p                                dif'fcrential pressure betveen thc reactor vessel and the  primary containment.
: e. Check Valve    Per Specification 1.0.MM
: 2. If onereactor loop CSS        is inoperable,            f. Verify that            Once/Month the            may remain in                      each valve operation for a period not to                      (manual, povcr-exceed 7 days providing                            operated, or all active components in                          automatic) in the the other CSS loop and the                        injection flovpath RHR system (LPCI mode)                            that is not locked, and the diesel generators                          scaled, or other-are  OPERABLE.                                    visc sccurcd in position, is in its  correct+
position.
3~  If Specification 3.S.A.1 or                  2. Ho  additional surveillance Specification 3.5.A.2 cannot                      is required.
bc met, the reactor shall be placed  in the  COLD SHUTDOWH COHDITIOH    vithin 24 hours.
4~  When  thc reactor vessel pressure  is  atmospheric and Ql;caL: l.g  irradiated fuel is in the eactor vessel at least one LCo core spray loop    vith  one Ze 5.g OPERABLE    um      associated                      Except that an automatic eccl generator shall be                            valve capable of automati PERABLE except vit the                              return to  its  ECCS  positi reactor vcsscl head removed                          vhcn an  ECCS  signal is as specified in 3.5.A.5 r                            present  may be in a TO STARTUP as                                position for another    mode spccificd in 3.5.A.1.                                of operation.
Wc'ssFi(aH      ~*a                      S~  5<S4$ e(a~~        C~g~
4( BC'Sos l.S.J Clonic<                      BPH 15'f5 34a2.
BFH Unit 3 '/4  5-2        FAGE~oF            7 1                                                              hMENDMENT NO.      16 9
 
4l 5fec;0;c)hoz  r.s',z QEI: 15 f988 Al Mhen  irradiated fuel is in the reactor vessel and the LCo          zeac'tor vessel head is
  ~l  cab'.Lsd  removed, core spray is not required to be OPERhBLE provided the cavity is flooded, the fuel pool                    'Its PssW SR 3 S'.
gates are open and the fuel pool vater level is maintained above the lov level alarm point and rov        one      V ump ass ciate valv su ply      thc    andb coo ant s ply are OPERhBLE Pisl'sos>  ~IF Z. 5.z. S'r Profosc'L /tCT'I oW5                        GSS Mhcn  vork is in progress vhich has the potent    al to drai the vessel,      ual nitia on apabilit of ei er 1 SS L p or 1          pum    vith he ca  bility o    injec    ng va into  he re              cl assoc ate        ese generator(s) are required.
Me SusHk~m~on 0 r C~C 4o s~ >mrs z,~.~
BFK                                              3.5/4.5-3            AMENDMENT 10. y6g Unit  1
 
kl
: 8. If Specifications      3.5.B.1                8. No  additional surveillance through 3.5.B.7 are not met,                          required.
orderly shutdown shall
              ~
an initiated    and the reactor shall be placed in the COLD SHUTDOWN CONDITION be
                                                                  <r< rus+Amaon W  B<H t S'TS 'R.s.l P r r h ~
ithin  24  hours.
                                                          ~R
: 9. When    the reactor vessel                      9. When  the reactor vessel APQ'cab Jig    pressure is atmospheric and                            pressure is atmospheric, irradiated fuel is in the                              the RHR pumps eactor vessel, at least one                          that are required to e Mo            RHR  loop with two pumps or two                      OPERABLE    shall  be        Z.
: 3. 5o2.      loops with one pump per loo                            demonstrated to be OPERABLE shall    be OPERABLE.        c pumps                  per Specification 1.0.MN.
soc ate      mesc    generators ust also be OPERABLE.
prcssure coo an xngcction                          St'~ 3uSA/'cocoon Pg,r      Cha~t Nag        (LPCI) may be considered                          Ac BPN ISIS g.g.a For      OPERABLE during      alignment SR xs;zA and operation        for  shutdown cooling,      if capable    of being manually realigned and not otherwise inoperable.
LCu If thc conditions of                                                                nce Specification 3.5.A.5 are met, Hept:ab;l+      LPCI and containment        cooling arc not re uired.
When    there is irradiated fuel                11. The RHR pumps on the in the reactor and thc reactor                        adjacent units which supply is not in the COLD SHUTDOWN                            cross-connect capability CONDITION, 2 RHR pumps and                            shall be. demonstrated to be associated heat exchangers and                          OPERABLE    per Specification valves on an adjacent unit                              1.0.MN when the cross-must be      OPERABLE and    capable                  connect capability of supplying cross-connect                              is re uired capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-                pre  S~6C:~o        ger  Cha~S connect capability is not a                  4            isTs z.s.(
short-term requirement, a                          BAN component is not considered inoperable if cross-connect capability can be restored to service within 5 hours.)
BFN                                              3.5/4.5-7              'ANENOMENT NO. 2P4 Unit  1 PAGE            OF
 
4
-~i~e ~eiiL%9KI~)i~i4ar aa4I~                                                ri-                                              ~ ilier rt ~ f'lL I O'P          PL J'O'I't          O'I      9'14
                                                                                          ~      l    .      ~  .      ~-
                                                                  ~
                                                                          '
                                                                                                                                                        ~            ~
II      ~                                        ~
                                                                                                                                                                                                                        '
                                                                                                                                                                                                                                              ~
                                  .
                  ~        ~          ~
              ~      ~                      ~  II        ~            ~      II    ~      ~                                            ~  ~    ~          ~                                ~                    ~
I~
              ~      ~
                                            ~  ~      ~                                                                                                                  II ~    ~                        ~        ~
              ~      II  ~                                                                  ~        ~          ~
                ~  ~    ~
                                                                                                                                                        ~                      II
                                                                                                                  'I                                                                                                                        ~
                                                                                                                                                            ~                                                                            ~
                                                                    ~  ~                      ~  ~        ~          ~                                                                                      ~              ~
            ~
                    '                    ~        ~                      ~      ~ I
            ~      ~
I
                                ~  '
                                      ~      ~
                                                                                    ~    ~
                                                                                            ~      '
                                                                                                          ~    II    ~            Cb                                                              ~  I~                                  ~  ~
                                    ~    ~
I  .      't'                    I II            ~
                                                                                                                                                      ~            ~                                                        ~    ~
                                                ~      ~                                                            ~
                                                                                                                            '                                                                  '
                                                                                                                                                                                      ~
                                                                                                                                                                                      ~    '
                                                                                                                                                                                                                    ~                      ~    ~
                                                  ~          '              '            ~        ~
          ~                ~                                                :I'                I                                                                              ~  i    ~
                                                                                                                                                                                                '
          ~      II  ~    '          ~
                ~                                        ~  ~                                                                                                      ~~                            ~ II            ~                      ~  ~
                                              ~      ~          ~                                                                                ~          ~                                                              ~        ~
                                                                          ~      ~
                                                                                                                                                                                                                          ~            ~
                                                                          ~      ~                                                                                    ~  ~              ~  II                            ~        ~
                                                                                                                                                                                                              ~            ~
                                                                                                                                                  ~      ~      ~    '
                                                                                                                                                                                                                            ~    II
                                                                                                                                                  ~  ~      ~          ~                                                II        '
                                                                                                                                                          ~          ~  ~                                ~  ~                  II  ~
I              ~                '      ~
                                                                                                                                                                            ~          ~        ~          ~
II  ~                ~
                                                                                                                                                                        ~          II
                                                                                                                                                                                        ~
                                                                                                                                                                                        ~
                                                                                                                                                                                              ~
                                                                                                                                                                                                  ~
                                                                                                                                                                                                          ~
                                                                                                                                                                                                          'I
                                                                                                                                                                                                          '
                                                                                                                                                                                                                        ~        ~
                                                                                                                                                                                                                  ~        ~        ~
 
                                            ~< Wkstigic~
C~g5 hsc B~                    sFecl+;cg,go& 7  s I    3,ge <<(+2 R
LIMITIHG COHDITIOHS      FOR OPERATIOH                      VEILLAHCE REQUIREMEHTS 3.7                                                      4.7 cab Applies to the operating status                          Applies to thc primary and of the primary and secondary                            secondary containment containmcnt systems.                                    integrity.
OOQ~LvV To assure the integrity        of the                    To  verify the integrity of the primary and secondary                                    primary and secondary containment systems.                                    containment.
A.              C  a At any time that thc irradiated fuel is in th reactor vessel,    an    the                  S'C Z,S,2> I nuc car s      em  s pressurized                          ai  Thc suppression ov    tmos hcric ressure                                    chamber vater level S< 3.S.~.        or work is being done v                                        be checked once cr has the potential to drain                                                enever heat the vessel, thc pressure                                        s added to the su                1  vatcr level                              suppression pool by Ag ~t;~          d tern  eratur    s a      e                                testing of thc ECCS 4 Leo@, g,g  maintained    vithin    the                                    or relief valves the folloving limits.                                              pool temperature shall  be  continually monitored and shall
                                                                              'be observed and
: a. Minimum water    level ~                                logged every
                      -6.25" (differential                                      5 minutes until the pressure control >0 paid)                                heat addition is
                      -7.25" (0 paid differen-                                  terminated.
tial pressure control) b    Maximum  vater level      ~
                    ~  1N BFH                                              3.7/4.7-1 Unit  1 PAGE
 
i
: 3. .C.                        S  utdo                  4.9 ~ G~  0                    S  do Whenever the    reactor    is'n                            l. Ho additional COLD SHUTDOWH COHDITIOH        vith                            surveillance is irradiated fuel in the                                          required.
reactor, the availability of electric power shall be as specified in Section.3.9.A except as specified herein.                      See    As&#xc3;kcah~~      N  CQ  yy 8~< lS'75 Sec+io~    7,f
: l. At least tvo units 1 and 2 diesel generators and their associated 4-kV shutdown boards      shall  be OPERABLE.
: 2. An  additional source of pover energized and capable of supplying power to the units 1 and 2 shutdovn boards consisting of at least one  of the following:
: a. One  of the offsite pover sources specified in 3.9.A.1.c.
: b. A  third  OPERABLE diesel generator.
: 3. At least one 480-V shutdown board for each unit must be OPERABLE.
: 4. One  480-V  RMOV  boar    mg t  is      uire for      ach boar    (1D o    1E) ired  t    suppo  t oper tion    o  the syst      in  ac ordanc      vit 3.5.B.
3.9/4.9-15                AMENDMENT tttO, 203 BFH Unit 1                                                              ;-"..~~r'F
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~OF~
 
Cr.X'C. 4;o    3. K.Q AUG OR 1998 3 5.h                                                        4 ~ 5.h          S                SS 4-5-h    l.d  (Cont'd) 105  psi Scc. awc$ ;P,~g,.
differential pressure 8 ~~  +~    Sr's~        8  s/                                  betveen the reactor vessel and  the primary containment.
: e. Check Valve    Per Specification 1.0.MM
: 2. If  one CSS loop is inoperable,                      f. Verify that            Once/Month the reactor may remain in                                  each valve operation for a period not to                              (manual, pover-exceed 7 days providing                                    operated, or all active components in                                  automatic) in the the other        CSS  loop and the                        ~ection flovpath RHR    system (LPCI mode)                                  that is not locked, and the        diesel generators                          sealed'r other-are    OPERhBLE.                                          vise secured in position, is in its correct+
position.
30    If Specification 3.5.h.l or                          2. Ho  additional surveillance Specification 3.5.1.2 cannot                                is required.
be met, the reactor shall be placed        in the    COLD SHUTDOWN COHDITIO                        hours.
When    the reactor vessel ressure is atmospheric and irradiated fuel is in the eactor vessel at least one core spray loop vith one OPERABLE pump                assoc ated                        Except  that an automatic esel generator shall be                                    valve capable of automatic PERhBLE except vith the                                      return to  its  ECCS position" reactor vessel head removed                                    vhen an  ECCS  signal is as s    ecified in 3.5.h.5          r                        present may be in    a PRIOR TO                    as                                position for another      mode specified in 3.5.h.l.                                          of operation.
                    'st t 3 sagk i(icd i ~ 4~                  ~cc ZNsJAi~,f'>a~  g~ Ck~ggf c  C~grg        W Bf~ 1sT<    3 > I            +~    ~FIJ  Isis z.g.2 BPH                                                      3.5/4 '-2 Unit 2 hMENWENNO. 16 9
 
8 5
 
                                                                            ~Pter fi~fio~ 3. 5. ~
DEC 15 l988 When  irradiated fuel is in the reactor vessel and the Lco 3.S Z.
reactor vessel head is removed, core spray is not required to be OPERABLE provided the cavity is flooded, the fuel pool                      P~opocM Sg  8.<.B.A-gates are open and the fuel pool vater level is maintained above the lov level alarm point            and r  v  e  one          W  puhy and ssociated            alves  g suppl        the st dby coolant supply are                              'Popo~ S~ 8.S:2.~
OPERABLE.                                            CSS p<<posW ACnoaS          .
* When  vork is in progress vhich ha  the potenti      l to drai the vess  l,  manual    i  tiation capab    ity of eith          l  CSS Loop  or    RHR  pump,        ith  the capabili        of injecti            te 411 the assoc ate          ese enerator(s) are re uired s,~  z~~$ ;4Lc  4'~ 4r 0 3.F.2-
                                        ~  ~
                                                  ~
BFH                                                  3.5/4.5-3            AMENDMENT g6.  ~g8 Unit  2 PAGE~i-iF~
 
S ent                                            'nmen t
: 8. If Specifications      3.5.B.1              8. No  additional surveillance through 3.5.B.7 are not met,                    required.
an  orderly shutdown shall        be initiated    and the reactor              >< ~~s4i4c f~    4, C~rri.
shall be placed in the                    4r Bf'N I s~g COLD SHUTDOWN CONDITION within    24  hour
: 9. en the reactor vessel                    9. When  the reactor vessel pressure is atmospheric and                      pressure is atmospheric 4t't~W J.k> irradiated fuel is in the reactor vessel, at least one                      that are required to      be LCo    RHR  loop with two pumps or two                  OPERABLE    shall be 3.5.Q  loops with one pump per loop                      demonstrated to be OPERABLE shall    be OPERABLE.      e pumps              per Specification 1.0.HM.
associated      diesel generators must also            RABLE      Low pressure coolant injection (LPCI) may be, considered OPERABLE during alignment and operation for shutdown cooling,    if capable of being manually realigned and not otherwise inoperable.
CQ        O~      t e conditions o
~pl;~'.);t  ~  Specification 3.5.A.5 are met,                    404pk4%84  ~
LPCI and containment cooling re not re When  t  ere  is irradiated fuel                The RHR pumps on the in the reactor and the reactor                    adjacent units which supply is not in the COLD SHUTDOWN                      cross-connect capability CONDITION, 2 RHR pumps and                        shall be demonstrated to be associated heat exchangers and                    OPERABLE per Specification valves on an adjacent unit                        1.0.MM when the cross-must be OPERABLE and capable                      connect    capability of supplying cross-connect                        is required.
capability except hours' as specified in Specification 3.5.B.12 below. (Note: Because cross-                    Sec.QNgf<f<~$ ~  Qi connect capability is not a
( ~~~
                                                                ~4  g~>  <sees B,g short-term requirement, a                                            (
component is not considered inoperable    if  cross-connect capability can be restored to service within 5              )
BFN                                            3. 5/4. 5-7    AMENDMENTRD.      223 Unit  2
 
                                                                            ~pc< Fice y i'o~ Z. g ~
AUG 02 1989 IREMEHTS Whenever thc core spray systems,                The  folloving surveillance LPCI, HPCI, or RCIC are requi.red                requirements shall be adhered to be OPEBhBLE, the discharge                    to assure that thc discharge piping from the pump discharge                'iping of the"core spray of these systems to thc last                    systems, LPCI          , an      RCI block valve'hall be filled.                      are  filled.
Thc suction    of thc  RCIC and HPCI            1. Every month an      pr or toi e pumps  shall  be aligned to the                      t t    ng o  the      S (LPCI and condensate storage tank, and                        Cont      ent Spray) and co the pressure suppression chamber                    spra system the discharge head tank shall normally bc aligned                  p ping of these systems s a to serve the discharge piping of                3    e  ~te flo~etermi and visitor re e              ed pqint the RHR and CS pumps. The condensatc head tank may be used to scrvc thc RHR and CS discharge              2~  Folloving any per o v ere piping    if the PSC head tank is unavailable. The prcssure e,LPCI or co e spray systems ha e not been r        ired    ~  be
      'ndicators on the discharge of the                    OPE,        the dis rge ping of th inoperable system shall RHR  and  CS pumps shall indicate not  less  than listed belov.                        be vent+ from the high point prior to the return of thc Pl-75-20      48  psig                          system to Pl-75-48      48  psig Pl-74-51      48  psig                      3. Whenever the HPCI or RCIC Pl-74>>65      48  psig                          system is lined up to take suction from the condensate storage tank, the discharge piping, of thc HPCI and RCIC shall be vented from the high point of the system and vater flov observed    on a monthly basis.
Sec  a4c44i~)o Q, PL
: 4.      en  the  RHRS            e  SS  are 85~ Isrs 35/~353 QCt'r rc ired to      e OPE        LE,  he pres re indi ators            ich
                                                    ~p,)    monito the di charge              nes shall  be  onitored daily        and the prcssure recorded.
BFH                                        3.5/4.5-17 AMStNENT Rt3. I6 g Unit 2 PAGE
 
sec  wgfgq,s:~ P          5      ficRli~ 3.5,Q C4o~y  gr gru I JMX S.g.2./ f-~
ceo LIMZTIHG COHDITIOKS      FOR  OPE1RTI05                SURVEILLhHCE REQUIREMENTS
  ~ 7                                                  4~7  C Applies to the operating status                      Applies to the primary and of the primary and secondary                          secondary containment containment systems.                                  integrity.
      ~O~JJv                                                Qhiaafze To assure    thc integrity of thc                    To verify the integrity of the primary and secondary                                  primary and secondary containment systems.                                  containment.
: 1. At  amr time that the irradiated fuel is in the                SR reactor vessel and the                  as.z  I nuclear system is pressurized                        a. The suppZession above atmospheric prcssure                              chamber water level or wor s e          done whi                          b checked once er has the potential to drain                                        enever heat the vessel,'Ke prcssure                                is added to the suppression ool wats lcvc                              suppression pool by temperature                                      testing of the    ECCS ma nta    ed within the                                or relief valves the following limits.                                      pool temperature shall be continually monitored and shall bc observed and logged
: a. Minianun water level ~                              every 5 minutes
                  -6.25" (differential                                until the heat pressure control >0 paid',                          addition is
                  -7.25" (0 psid differen-                            terminated.
tial  prcssure  control.
: b. Maximum  water level ~
BFH                                          3.7/4.7-1                              OF  V Unit  2
 
                                                                      + CcifiC%4iue      Z.S. Q VAN 0 8 $ 99$
3.9.C. 0        o      C  d  udo                4.AC  0              Co d S      utdo whenever the reactor      is in                  ~~ ao  aoclltlonsl COLD SHUTDOWN COHDITIOH      vith                    surveillance is irradiated fuel in the                              required.
reactor, the availability of electric pover shall    be as specified in Section 3.9.A except as specified herein.
: l. At least tvo Units 1 and 2 diesel generators and their associated 4-kV shutdown                    Sea 3453 fscR'4d~ Vol C      lg-Jp!
boards    shall  be OPERABLE.
B~+  I~~ Seel~~
: 2. An  additional source of                                          9.f'.
pover energized and capable of supplying pover to the Units 1 and 2 shutdovn boards consisting of at least one of the folloving:
One  of the offsite pover sources spec'fied in 3.9.A.l.c.
: b. A third OPERABLE diesel generator
: 3. At least one 480-V shutdown board  for  each  unit  must be OPERABLE.
: 4. One  480-V RMOV board      set required or each        OV bo d (2D or          require to supp t operatio of the RHR system      accordance  vith 3.5.B.9.
ANENOMENT RO.      186 BFH                                          3.9/4.9-15 Unit  2 PAGE~OF~
 
4 UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
deci gi earn              AUB 02 lggg At 4.5.k 4.5.k.l.d (Cont'd) 105  psi differential GV&hkiWA on      Ar                        pressure between the C~(y g      @g  /pe g5yg                          reactor vessel 3.5.i                                            and the  yrimary contaimaent ~
: e. Testable      Per Check Valve Specification Z.O.M
: 2. If one    CSS  loop is inoperable,            f. Verify that        Onc thc reactor may remain in                            each valve operatian for a period not to                        (manual y paver exceed 7 days providing                              oyerated, or all    active components in                          automatic) in the thc other CSS loop and the                          infection flowpath RHR    system (LPCI mode)                            that is not locked, and the    dicscl generators                        sealed, or othcr-are    OPERkSLE.                                    vise secured in positiang is in its correct+
position.
: 3. If Specification      3.5.h.l or              2. No  additional surveillance Syecificatian 3.5.k.2 cannot                        is re~ired.
be met, the reactor shall be placed    in the COLD SHOTDOW&#xc3; COHDITIOE vithin 24 hours.
: 4. When    the reactor vessel yressure is atmospheric and irradiated fuel is in the reactor vessel at least one
( core syray laop vith      one Z.S ~ CO                umy      associate                      Except that an automatic esel generator shall b                              valve capable of automatic OPERABIZ exccyt vith the                              return to its ECCS position reactor vessel head rcmovcd                            when an ECCS signal is as s    ecificd in  3 AS.A.5  r                      present may bc in a RIOR                as                              position for another  mode s  ecificd in 3.5.k.l.                                of apcration.
5i-< ~u&llca,giin Qp I~~ A~ xs 55 3.5; I              See Z~sk:t';i,g~ 4 g~V Isis g.~.<
CIi-)~
BFH                                          3.5/4 '-2              PAGE~OF~
Unit 3                                                                NENONKNTNO.      1 O 0
 
Cl, Sfec.>gcW~ 3. 5.2; DEC 15 1988
* s. When  irradiated fuel is in thc reactor vessel and the LGo gg.2      reactor    vessel head ia removed, core spray is not 4'l'mb: lifp required to be OPERABLE provided thc cavity is flooded, thc fuel pool                  Pw os' gates are open and the fuel pool vater level is maintained above the lov evel alarm point ro          ne        p assoc atcd val cs s    plying      e  stan  y coo ant sup        y are                    ~s    Sg, 3.g.g,g OPE      LE
                                                            ~  cs~
                        ~oSect AC7 gong
* When    vork is in p gress vhich as  thc po ential          drain the ssel,  man  al  init tion c ability o either            CSS Loo or 1            pump, vi h the capa    ility  of a/ecting va cr into he reacto vessel c            e generator(s) are required.
Se<  3'~f;~go~      Q~ gA BFH                                            3.5/4.5-3        AMENOMENT N5. gP2 Unit  3
 
Cl
: 8. If Specifications    3.5.B.1                  8. No  additional surveillance through 3.5.B.7 are not met,                        required.
an  orderly shutdown shall    be initiated    and the reactor                  Sc< 5<sWVi ca,Ao n shall be placed in the                        &< add tsrs ~.s.
COLD SHUTDOWN CONDITION                                              ~
within    24  hours.
SR Z.5,2,S            the reactor vessel
: 9. When    the reactor vessel                            When pressure is atmospheric and                          pressure is atmospheric, irradiated fuel is in the                            the RHR pumps reactor vessel, at least one                        that are required to e LCn RHR    loop with two pumps or two                    OPERABLE    shall  be 3.
loops with one pump per loop                        demonstrated to be hall  be OPERABLE.      e pump                    OPERABLE per assoc@a    e    xesel gener    or                    Specification      1.0.MM.
must also be    OPERABLE    Low pressure coolant njection                        ~c    3'u5~'eaHo~  g I C4~
(LPCI) may be considered                            b~e    1STS  r,8.z OPERABLE during alignment sR      iand  operation for shutdown X5 2,g  cooling, if capable of being manually realigned and not otherwise inoperable.
~o        10  If the conditions of Specification 3.5.A.5 are met, A(piiu b:[Q    LPCI and containment      cooling
                ~Le not required.
en there is irradiated fuel                11. The    and  D RHR pumps  on in the reactor and the reactor                      'nit  B 2 which    supply is not in the COLD SHUTDOWN                          cross-connect      capability CONDITION, 2 RHR pumps and                            shall  be demonstrated    to associated heat exchangers and                        be OPERABLE per valves on an adjacent unit                            Specification 1.0.MM when, must be OPERABLE and capable                          the cross-connect of supplying cross-connect                            capability is required.      e'FN capability except as specified in Specification 3.5.B.12 below. (Note: Becaus~ cross-connect capability is not a short-term requirement, a e< gu~'Fi'WHon
                                                              &4 /PE      15 'f5 4r    ~p component is not considered inoperable    if cross-connect capability can    be  restored to service within    5  hours.)
AMENDMENT No. X 77 3.5/4.5-7 Unit  3
 
                                                                    'c NN 1    S 1994 5g X Whenever the core spray systems,                e  fol  owing surveillance LPCI, HPCI, or RCIC are required              requirements shall be adhered to be OPERABLE, the discharge                to assure that the discharge piping from the pump discharge                piping of the core s ray of these systems to the last                  systems, LPCI, HPCI, an              CIC block valve shall be filled-                  are fille The suction of the RCIC and HPCI                    Eve    month and      prio to t pumps shall be aligned to the                        esting    o    the    RS  (L  I  and condensate storage tank, and                        Con    ament Spra        and c re the pressure suppression    chamber                s ray s        ems  the dischar e head tank  shall normally  be                      piping of these systems shal aligned to serve the discharge                        e  v    e      rom    e  xgh po    t piping of the RHR and CS pumps.                      and wa        flow dete~ned.
The condensate head tank may be used to serve the RHR and CS                  2.      o  owing any period where the discharge piping  if  the PSC head tank is unavailable. The LPCI  or core spray syst ve not been req red to pressure indicators on the discharge of the RHR and CS pumps              2    OP      LE the disch g e P P x g of th noperable sys i
shall shall indicate not less than                        be vente        rom the high oint listed  below.                                      prior to the turn of the system to;service.
Pl-75-20      48  psig Pl-75-48      48  psig                  3. Whenever the HPCI or RCIC Pl-74-51      48  psig                        system is lined up to take PI-74-65      48  psig                        suction from the condensate
                                                        'torage        tank, the discharge piping of the HPCI and RCIC shall be vented from the high point of the system and water flow observed on a monthly basis."
: 4.      en the        RS and    he CSS are r uired      to be OP      BLE, the pre ure in cators              ich moni o the d charge ines shall e onito ed dai and the pr sure rec rded.
BP&#xc3;                                    3.5/4.5-17                NENDMHfT i(0. 1      78 Unit 3 PAGE        5    QF~
 
Skc>g~
LDGTZBC CONDITIO?N ZOR OPERLTIOS                      SURVEILLAECE REQUIREHEHTS 3.7                                                  4.7 kppliea to the operating'status                      hypliea to the primary    and of the priaary and secondary                          secondary contahunent containNent ayateaa.                                  integrity.
To assure the integrity      of the                  To  veri~  the  integrity of the priaary and secondary                                priaLary and secondary contahaent ayateaa.                                  cont ainccnt ~
: l. Lt any    togae that the GAS.S.z.
irradiated fuel ia in the                        1 reactor vessel,            e xmc e        s ea    yressurixed                    a. The auyyreaaion shore ataoapheric yreaaure                              chaaber water level or r
              ~the the vessel, e      one yotential to drain the pressure glv$
be checked once per enerer heat a added to the gdd            suppression pool water level                            suppression pool by walib&              tcRpera                                            testing, of the ECCS
~ 35'~        aa ta          within the                                or relief valves the
              'following    liaita.                                    yool temperature shall be  conthmally acmitored and shall be obaerred and logged
: a. Madam water      lerel  ~                          every 5 minutes
                  -6.25" (differential                                until the heat pressure control >0 yaid)                            addition is
                  -7.25" (0 ysid differen-                            terainated.
tial yreaaure control)
                . Maxima water level a See  Q~g f 'Non Q      Chang)~
                      ~~ '~<> 34"Z.t    +a BF5                                        3.7/4.7-1 PAGE~OF~
Unit  3
 
Cl 3.9.C. 0                      S    0                4.9.C 0                0      S  DOWN
        ~CO  DIXIE                                          ~CO )~~0 Whenever the    reactor is in the                  1. Ho additional COLD SHUTDOWH COHDITIOH        vith                      surveillance is irradiated fuel in the                                  required.
reactor,. the availability of electric pover shall be as specified in Section 3.9.A except as specified herein.                        sc'c'5%    f.'ca5~n far
                                                            +~ ><<JSVS 5 Ao q,~
c~~
: l. At least tvo Unit 3 diesel generators and their associated 4-kV shutdovn boards  shall  be OPERABLE.
: 2. An  additional source of pover energized and capable of supplying pover to the Unit 3 shutdown boards consisting of at least      one of the folloving:
: a. One  of the offsite pover sources specified in 3.9.A.l.c.
: b. A third OPERABLE diesel generator.
: 3. At least one Unit    3 480-V shutdown board must be OPERABLE.
: 4. One  480-    RNOV b  ard motor nerator (mg) se is re uired fo each        OV board (3D r 3E) r uired o suppo  t  operat on of e RHR system    n accor nce v h 3.5.B.9  ~
AMENDMEQ S~g
                                                                                    ~z  ~
BFH                                        3.9/4.9-14                          8 VIs.
Unit  3
 
13USTIFICATION FOR CHANGES BFN ISTS 3.5.2 - ECCS  - SHUTDOWN ADMINISTRATIVE CHANGES A1'eformatting      and renumbering  are in accordance with the  BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is    done to make consistent  with NUREG-1433. During  ISTS development  certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
Surveillance Requirements for MOV operability that are required by the Inservice Testing (IST) Program have been removed from individual Specifications. This change is considered administrative in nature since these requirements remain in the IST Program which is defined by proposed Specification 5.5.6.
A3  CTS  3.9.C.4 requires one 480 V reactor motor operated valve (RMOV) board motor-generator (MG) set for each RMOV board required to support the RHR System in accordance with CTS 3.5.B.9. The 480-V AC RMOV boards provide motive power to valves associated with the LPCI mode of the RHR system.
The MG sets act as electrical isolators to prevent a fault propagating between electrical divisions due to an automatic transfer.      The inability to provide power to the inboard injection valve and the recirculation pump discharge valve from either 4 kV board associated with an inoperable MG set would result in declaring the associated LPCI subsystems inoperable and entering the Actions required for LPCI.
Therefore, the deletion of the operability requirement associated with the MG sets in CTS 3.9.C.4 is considered administrative.
BFN-UNITS 1, 2, 5 3                                                      Revision 0 PAGE    /
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.5.2 -  ECCS  -  SHUTDOWN TECHNICAL CHANGE  -  MORE  RESTRICTIVE Ml    Proposed ACTIONS A, B,    C and 0 have been added to provide required actions be taken when LCO requirements can not be met. CTS 3.5.A.4 and 3.5.B.9 provide minimum requirements for ECCS subsystems when in MODE 4 and 5 (except with the spent fuel pool gates. removed and water level a the low level alarm setpoint of the spent fuel pool) but no action          if these requirements are not met. Therefore, technical specifications are violated when these requirements can not be met and the default to TS 1.0.C. 1 requires no action since the plant is already in Cold Shutdown.
While from a compliance standpoint the proposed ACTIONS are less restrictive, from an operational perspective they are more restrictive since actions are required w'here there were none before. Proposed ACTION A allows 4 hours to restore a subsystem when only one of the required subsystems is inoperable and then proposed ACTION B requires action be initiated to suspend operations with a potential for draining the reactor vessel (OPDRVs) immediately. The 4 hour Completion Time is considered acceptable based on engineering judgment that considers the remaining available subsystem and the low probability of a vessel draindown event during this period. With no required ECCS injection spray subsystems inoperable, proposed ACTION C requires action to be initiated immediately to suspend OPDRVs and at least one required subsystem be restored to OPERABLE status within 4 hours.          If one subsystem can not be restored within four hours then Proposed ACTION D requires action be initiated immediately to restore secondary containment to OPERABLE status, to restore two standby gas treatment systems to OPERABLE status, and to restore isolation capability in each required secondary containment penetration flow path not isolated.
These actions must be immediately initiated to minimize the probability of a vessel draindown and the subsequent potential for fission product release.
M2    Proposed  SR  3.5.2. 1 has been added. SR  3.5.2. 1 requires the suppression pool water be verified ~ a minimum      level every 12 hours. CTS 3.7.A.1 (8 4.7.A. l.a) requires the suppression pool be verified e -6.25" with no differential pressure control once per day at any time irradiated fuel is in the reactor vessel, and the nuclear system is pressurized or work is being done which has the potential to drain the vessel. Therefore, proposed SR 3.5.2.1 is more restrictive since the frequency of performance has been increased from once per 24 hours to once per 12 hours. In addition, CTS only requires performance during atmospheric conditions when work is being done that has the potential to drain the it 0      vessel. Therefore, the proposed SR is more restrictive since BFN-UNITS 1, 2, 5 3                                                          Revision  0 PAULO';"            6
 
Cl JUSTIFICATION FOR CHANGES BFN ISTS 3.5.2 - ECCS - SHUTDOWN requires performance during        MODES 4, and 5, except with the spent fuel storage pool gates removed and water greater than or equal to minimum level over the top of the reactor pressure vessel flange. The CTS requirement to check the maximum level during OPDRVs has not been included since Specification 3.5.2 concerns the ability to maintain reactor water level using the suppression pool as a source of water.
However, this level check is required for proposed Specifications 3.6.2.1  and  3.6.2.2  as  it relates    to Containment Systems.
M3    Proposed  SR 3.5.2.4, which requires a verification every 31 days that ECCS  injection/spray valves are in their correct position, has been added. This provides assurance that the proper flow paths will exist for ECCS operation. This is more restrictive since BFN currently only requires this check during      MODES    1, 2 and 3.
M4    An SR has been    added  to require    a system flow rate test for the Core Spray System during atmospheric          conditions. While CTS (4.5.B.9) requires flow rate testing of the RHR pumps during atmospheric conditions as well as during MODES 1, 2, and 3, it only requires CSS flow rate testing during MODES 1, 2, and 3. The addition of this requirement is more      restrictive.
TECHNICAL CHANGE    -  LESS RESTRICTIVE "Generic" LA1  CTS  4.5.H. 1 requires the discharge p'iping of RHR (LPCI and Containment Spray) to be vented from the high point and water level determined every month and prior to testing of these systems.            The specific requirement to vent prior to testing      has  been  relocated  to  procedures. Changes to the procedures will be controlled by the licensee controlled programs.
LA2  Any time the OPERABILITY      of  a  system or component has been affected by repair, maintenance or replacement of a component, post maintenance testing is required to demonstrate OPERABILITY of the system or component.      Therefore, explicit post maintenance Surveillance Requirements have been deleted from the Specifications.              Also, proposed SR  3.0.1 and SR 3.0.4 require Surveillances to          be current prior to declaring components operable.
PAGE~OF BFN-UNITS 1, 2, & 3                                                              Revision  0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.2 - ECCS - SHUTDOWN LA3  Details of the methods of performing surveillance test requirements and routine system status monitoring have been relocated to the Bases and procedures. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
"Specific" Ll  CTS  3.5.A.5 requires manual initiation capability of either 1 CSS Loop or  1  RHR pump with capability of injecting water into the reactor vessel when work is in progress which has the potential to drain the vessel.
The proposed Specification would not require the CSS or RHR (LPCI and containment cooling mode) system to be operable since LCO 3.5.2 applicability does not apply when the fuel pool gates are open and the fuel pool water level is maintained above the low level alarm setpoint.
Therefore, the deletion of this requirement is considered less restrictive. The deletion is acceptable since the coolant inventory represented by this water level is sufficient to allow operator action to terminate the inventory loss prior to fuel uncovery in case of an inadvertent draindown.
L2  The proposed  LCO  for  ECCS-Shutdown  is less restrictive since it only requires two low pressure    ECCS  subsystems  to be OPERABLE. This can be fulfilled with any combination of      RHR  and CS subsystems. That  is,  two CS subsystems  (a  CS subsystem for Specification 3.5.2 consists of at least  one pump  in  one loop), two RHR subsystems (RHR subsystem for Specification 3.5.2 consists of one pump in one loop), or one RHR subsystem and one CS subsystem OPERABLE. CTS 3.5.B.9 requires one RHR loop with two pumps or two RHR loops with one pumps per loop to be          .
OPERABLE. CTS 3.5.B.4 requires one CS loop with one pump per loop to be OPERABLE. Per CTS 3.5.A Bases the minimum requirement at atmospheric pressure is for one supply of makeup water to the core. Therefore, requiring two RHR pumps and one CS pump to be OPERABLE provides excess redundancy. In addition, since only one supply of makeup water is required, sufficient makeup water can be provided by two CS subsystems, two RHR subsystems, or one CS and one RHR subsystem.          As such, the proposed Specification ensures      redundancy  by requiring  any two low pressure ECCS subsystems to be OPERABLE.
BFN-UNITS 1, 2, & 3                                                          Revision  0
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.5.2 - ECCS - SHUTDOWN RELOCATED SPECI F I CAT IONS Rl    Browns Ferry Nuclear Plant consists      of three units. The pump suction and heat exchanger discharge lines      of one loop of RHR in Unit I (Loop II) are cross-connected to the pump suction and heat exchanger of Unit
: 2. Unit 2 and 3 systems are cross-connected in a similar mariner.
Technical Specification requirements related to RHR cross-tie capability between units have been deleted.      The standby coolant supply connection and RHR crossties are provided to maintain long-term 'reactor core and primary containment cooling capability irrespective of primary containment integrity or operability of the RHR System associated with a given unit. They provide added long-term redundancy to the other ECC Systems and are designed to accommodate certain situations which, although unlikely to occur, could jeopardize the functioning of these systems. Neither the RHR cross-tie nor the standby coolant supply capability is assumed to function for mitigation of any transient or accident analyzed in the FSAR. Therefore, the operability requirements and surveillances associated with the cross-connection capability have been relocated to the Technical Requirements Manual (TRM). Relocation to the TRM is in accordance with the "Application of Selection Criteria to BFN TS" and the NRC Final Policy Statement on Technical Specification Improvements.      Refer to the application document discussion for additional information.
BFN-UNITS  I,  2, & 3                                                    Revision  0
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE OF
 
SfCC< CiCOQO m 3      i5 i3 FEB 0 7    199$
3.5.E            es ure  Coo a  t    ectio      4.5.E              essu    e Coo a  t      ect  o S  st        C S                                    S  ste    HPC S 4.5.E.1 (Cont'd)
: e. Flow Rate at      Once/18 Sce'uste  C>>capon  go>>
150  psig        months ages    Q>> gFv4 l5TS 3,5,(                                            The HPCI pump shall deliver at least 5000 gpm during each flow rate test.
: f. Verify that            Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise secured in position, is in its correct* position.
: 2. If the  HPCI system    is                    2. No  additional surveillances inoperable, the reactor may                        are required.
remain in operation for a period not to exceed 7 days, provided the ADS, CSS, RHRS (LPCI), and RCICS are OPERABLE.
: 3. If Specifications    3.5.E.l
* Except that      an automatic or 3.5.E.2 are not met,                                valve capable of an orderly shutdown shall                              automatic return to its be  initiated  and the                                ECCS    position when an reactor vessel pressure                                ECCS    signal is present shall be reduced to 150                                may be in a position for psig or less within 24                                  another mode of hours.                                                  operation.
eactor    Co LCO      1. The RCICS  shall  be OPERABLE                        RCIC Subsystem      testing "hall P.S,>          whenever there    is irradiated                      be performed as      follows:
fuel in the reactor vessel                                    pc~i b  C J and the  reactor vessel              5'g3,5g,g      a. Simulated Auto- Once/18 pressure is above 150 psig,        A'3                      matic Actuati'on .-..oaths except in the COLD SHUTDOWN            P~ppQ Vcr            Test CONDITION  or as specified in            sR 3.5.3~
3.5.F.2. OPERABILITY    shall BFN                                          3.5/4.5- 14                    AMENDMENT Ho. g8  O Unit  1                                                              =;:r'~P          QF
 
5  ci+icgQoq Z 5'.3 NOV    24  1989 e  determined      vithin    12  hours  SP3.5.3.3      b. Pump                  Per (oped      after reactor      steam pressure                          OPERABILITY            Specifi-reaches  150  psig from      a COLD                                              cation
  "~~~~      COHDITIOH              em      veiny                                                1.0.MM PQOQ T ST        TU    by    ing Ran a~lory      ste            pl                            c. M Va tor-0 era e
d    er eci PE    BILI          cat on 1.0.MM 9z ~~T>
S R3. S,p,p    d. Flov Rate at        Once/N PAyc se4 blue.        rma re ctor              s Ai  sRRs;p,        ve sel pe ating pre ure Olo P SRP.S >.q      e. Flov Rate at        Once/18 psig          months
                                                                            ~ ILS Se 3. S,q,p      The RCIC pump      shall SR  g.g,p g      deliver at least 600 gpm during each flov test.
rlkqs 2  ~    If the  RCICS    is inoperable,          SR Z.S.'3. 2  f. Verify that            Once the reactor may remain in                                      each valve Qc7  le      operation for a period not                                      (manual, pover-A          to exceed W days        if the                                operated, or automatic) in the IQ        HPCIS    s OPERABLE      during La such time ~  ygi.,Q                                            in)ection flovpath that is not locked, 3 ~    If Specifications          .5.F.1          Be~
Aodc 3  in sealed, or other-vise secured in or 3.5.F.2 are not met, an                    IWhts            position, is in its
              ~~~k.        and the reactor be depressurized to correc      osition.
A4, shall less than    150    psig within 24'ours.
ore~~ ~                                      Except that an automatic valve capable of automatic return to its normal position    when a  signal is present    may be  in a position for another        mod of o eration.
BFH Unit  1 3.5/4.5-15                    AMENOMENT NO. I7 3 PAGE
 
8
                                                                                  >f'eciWi    an  3,5,3 m 19    1994 Hm.
5'g 8'.C.3. J
        -Whee>~        he core s ra        s  stems                The  following surveillance HPCI    or      ZC  .ar required                  requiremeats shall be adhered to      OPERAB    ,  t      dis arge                    to assure that the discharge pipin from the          pum      disc rge                  piping of the ore spray the    systems to          e la t gg(                  yetems,          , HPCI, an    RCIC b    ck va ve shall be          f lie                      a        x  ed:
The      ctioa of the      RCIC      d HPC                      Every month and prior to the pumps        11      aligned to the                            testing of the RHRS (LPCI and condeasa        storage tank,          d                        Containment Spray) and core e  pressure                  on chambe                      spray system, the discharge head tank      shall normally        be                          piping of these systems shall aligned to serve the discharge                                    be vented from the high point piping of the RHR aad CS pumps.                                  aad water flow determined.
The condensate head tank may be used to serve the RHR and CS                                      Following any period where the discharge piping          if  the PSC hea                        LPCI or core spray systems tank is unavailable. The                                          have not been required to be pressure indicators on the                                        OPERABLE, the discharge piping discharge of the RHR and CS                                      of the inoperable system shall pumps    shall indicate not less                                be vented from the high point than    listed below.                                            prior to the return of the system to serv Pl-75-20          48  psig                      5 R 3.$.3. )
Pl-75-48          48  psig                          3. Whenev                          RCIC Pl-74-51          48  peig                                  system    is lined  up  to take 1-?4-65          48  psig                                  suction from the condensate stora e tank, the discharge iingof te                    RCIC s    1    e ven ed  f  m  tge    gh po    t  o    the          a'n    at flo    obs    e  cm s  monthly as  s.
Sr+  Ycc+Q~,g
          ~~< 1ST5 3.g.)                                          4.,When the RHRS and the CSS are required to be OPERABLE, the pressure indicators which monitor the discharge lines shall be monitored daily and the pressure recorded.
BFN                                                3. 5/4. 5-17 NENOMENT NO,    2 06 Unit  1 PAGE~GP
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
            ~ w  *~
                >
 
                                                                              ~PC/i gi ~%ion 3 ~    3 (g                                        FEB 0 7    1991
  .5.E                s    Co  a t    ct  o  4.5.E                ssu    Co      t    'ect  o S  ste        C S                                S  stem      C S 4.5.E.1    (Cont'd)
: e. Flov Rate at      Once/18 150 psig          months The HPCI pump hhall deliver at least 5000 gpm during CL Dv$ 4limftow d'or                                      each flow rate test.
        <ha-P~s 4'o~ BPhl ISIS g,s.i                                          f. Verify that          Once/Month each valve (manual, pover-operated, or automatic) in thc injection flov-path that is not locked, sealed, or othervise secured in position, is in its correct+ position.
: 2. If the    HPCI system  is              2. No  additional surveillances inoperable, the reactor                      are required.
may remain in operation for a period not to exceed 7 days, provided the ADS, CSSo    RHRS(LPCI), and RCICS arc  OPERABLE.
: 3. If Specifications      3.5.E.l
* Except that an automatic or 3.5.E.2 are not met,                          valve capable of automatic an  orderly shutdovn shall                        return to its ECCS position be  initiated    and  the                        vhen an ECCS signal is reactor vcsscl pressure                          present  may be  in  a shall be reduced to 150                          position for another      mode psig or less vithin 24                            of operati l C<    1. Thc RCICS    shall  be OPERABLE            1. RCIC Subsystem    testing shall vhenever there is irradiated                      be performed as      follovs:
fuel in the reactor vessel                              Pc      or    LI and the reactor vessel              5'R3.5.3.5    a. mulated Auto- Once/18
~ppi'c4.i ~~ prcssure is above 150 psig,                              matic Actuation months except in the COLD SHUTDOWN                            Test CONDITION    or as specified in      P.,~~    Noh 3.5.F.2.      OPERABILITY shall        r sa >5.>>
BFN                                        3.5/4.5-14 NENOMENr No. 190 Unit  2      >~sM PAGE      N    OF ie 3.s3.9
 
S  CRJXiCOJAJOM NOV      24  1999 4.5.F.1        (Cont d) be determined    vithin          12  hour    SR'3.5.5.3    b. Pump Prop@~
M4e    ~        after reactor    steam pressure                                  OPERABILITY              Specifi-sg  g.s.g f      reaches 150 psig from a COLD CONDITION or a ernat ve y cation 1.0.MM RIOR~0 RRRR~Oy naROR an auxilia~ steam                                                        tor-Operat      d    Per supply.'A3 Va      e                Spec+i-OPE        LITT          ation~
: 1. O.MM 2JRRO  S s~ s.s.3.5 d.        Flov Rate      t      Once HJf Ol+O ~4          orma    react r 4    sR 8.5.3*      v sel bgcra~in re  ure                ct Zo 4o IOIO PSJ+
SR 3.S:~    'f e. Flov Rate at          Once/18 c.5      ~
sig            months
                                                                                            /45 sf'.S.X,3      Thc RCIC pump        shall SA 3.S.3. 9    deliver at least 600 gpm during each flow test.
: 2. If thereactor RCICS  is inoperable,                5'~ >  53.Z    f. Verify that            nce/
the            may remain in                                        each    valve Ac TloQ                                                                              (manual, pover-operation for a period not to exceed      days if thc                                        operated, or HP      is OPERABLE            durin                                automatic) in the such time,. ppp f,R            J'~ J~                            in)ection flovpath 4JJ                                P                                    that is not locked, If                                                                  sealed, or other-
: 3.        Specifications 3.5.F.1 or 3.5.F.2 are not met,              ~                            visc secured in position, is in its 5aQA~k and the reactor                                              correc      po  ition.
shall be depressurized to ss than 150 psig vithin-N,~ hours.
cg.4 Qp,i Except that an automatic alvc capabl of automatic r urn to its ormal pos tion vhen a signal is prese      may be in position for another            mode of operation.
AMENOMENT Na. I 76 BFH Unit  2
: 3. 5/4. 5-15
                                                                                                                ~Cji'
 
~ '
5')Ci'ccrc'u    3. 5:3 UG    02    1989 Sg 8.S.>.
he core s ray system                      e,  folloving surveillance PC    HPCI or RCIC are requ red                  requirements shall be adhered to  be OPERABLE, the        scharge                to assure that the discharge p    ing from he pump d charge                      piping of the core spra of    hest syst s to the          st                systems                HPCI    and    CIC bloc valve sh        1 be  fille                  are    filled:
The suc on of      th  RCIC and HPCI                    Every month and      prior to    the pumps sha      be  alig  ed to the                        testing of the      RHRS    (LPCI and condensate      torage tank, an                            Containment Spray) and core e  pressure suppress on chamber                        spray system, the discharge head tank shall normally be aligne                        piping of these systems shall to serve the discharge piping of                          be vented from the high point the RHR and CS pumps. The                                  and vater flav determined.
condensate head tank may be used to serve the RHR and CS discharge                  2~    Folloving any period vhere piping    if the PSC head tank is unavailable. The pressure the LPCI or core spray systems have not been required to be indicators on the discharge of the                        OPERABLE, the discharge piping RHR  and CS pumps shall indicate                          of the inoperable system shall ot less than listed btlov.                                be vented from the high point prior to the return of the Pl-75-20        48  psig                              s stem ta servict Pl-75-48        48  psig              g) gs a.)
Pl-74-51        48  psig                              Whenever the        CI or RCIC Pl-74-65        48  psi                              system    is lined    up to take suction    from the condensate storage tank, the discharge piping of the        CI an RCIC e v    ed fram      t high po      of the s tern and voter lov ob erve on a monthly See X,q4<f'c~~io    ~or C4 pg                    basis.
4r  8P N  ISTIC
: 4. When  t  e        an    t  e CSS  are required to be OPERABLE, the pressure indicators vhich monitor the discharge lines shall be monitored daily and the pressure recorded.
                                                                                                    ~
BFH                                        3.5/4.5-17 AMEHbMENTHg.      T6g Unit 2 PAGE~O
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
Cl
                                                                ~<<~ <'~ho          B.S.3 FEB 0 7 l991 3.5.E                essu    e Coolant In ection        4.S.E        i h    ressure Coolant In ectio S  st        PCIS 4.5.E.1    (Cont'd)
: e. Flow Rate at    Once/18 150  psig      months The HPCI pump    shall 5 cd +iL5+jg'gg'on fia                                          deliver at least 5000    gpm during each flow rate test.
Ch+Qc5 Pnu BPn/ ]5y5 3  5.l                                                    f. Verify that          Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise secured in position, is in its correct* position.
: 2. If the    HPCI system    is                      2. No  additional surveillances inoperable, the"reactor may                            are required.
remain in operation for a period not to exceed 7 days, provided the ADS, CSS, RHRS (LPCI), and RCICS are OPERABLE.
: 3. If Specifications        3.5.E.l
* Except that an automatic or 3.5.E.2 are not met,                                    valve capable of automatic an  orderly shutdown shall                                  return to its ECCS position be  initiated      and the                                when an ECCS signal is reactor vessel pressure                                    present  may be in a shall    be reduced to 150                                position for another    mode psig  or less within 24                                    of operation.
hours.
Lco          The RCICS        shall  be OPERABLE              1. RCIC Subsystem      testing shall X5.3          whenever there        is irradiated                  be performed a      follows:
fuel in the reactor vessel                                    A~or and the      reactor vessel            SP,g,g3.5  a. Simulated Auto- Once/18
%Plica'ikj    pressure is above 150 psig,                                matic Actuation months except      in the  COLD SHUTDOWN                          Test or as specified in            A h4w CONDITION 3.5.F.2.        OPERABILITY  shall      ~nap sl s.S.~.s yg p BFN Unit 3
                  <>Rsed.
Spy g    3
                          ~    Q~
3.5/4.5-14                  AMBDMEHTNO,
 
S s+~<;~+        ~    -~      NUV      a+ ious HS FOR OPE be determined    vithin 12 hour        5'gg g p p b    Pump                    er t 4f'~~  after reactor steam pressure                            OPERABILZ1Y            Specifi reaches 150 psig from a COLD                                                      ation SC3.g,3.9 COHDITIOH r a t          at e y                                                  .O.MM PRI    TO S  RTUP        usi an auxil        st am sup ly.                            . M  tor-Operate            r Va    e                Sp  cifi-OPE    ILITY          cat n 1.0.
Sg 3,g,pp    d. Flov Rate at          Once orma rea to rpo5rd go&      v sel oper ting sP. w,s;z.s    pr sur          zo+o fo io t'so c)
SR Z.S.P.
Flov Rate at          Once/18 q            sig            months C  rgb l.6 The RCIC pump      shall
                                                            <CrS,a.>      deliver at least 600 gpm Sg3 during each flov test.
: 2. If the  RCICS  is inoperable, the reactor may remain in Slt  'R 5.xz  f. Verify that each valve
                                                                                          'ce/
operation for a period not                                (manual, pover-to exceed      days  ifdurin the                            operated, or automatic) in the Jq    HPCIS  is OPERABLE such time.      ripe/      '~md'atcl                      in)ection flovpath L.z
: 3. If Specifications 1
3.5.F.1 Br'n    ~3 ih f2hc g that is not locked, sealed, or other-or 3.5.F.2 are not met, ee-                              vise secured in position, is in its D~~d-and        the reactor                              correc      sition.
shall  be depressurized        to                                    s less than  150  psig    vithin 2A hours.
3L            >R'ua,'l H
* cept hat a aut atic v ve c able f aut matic re urn t its n rmal po tion      en a igna is pre ent ma be in posi ion fo anoth r mo of operation.
~ J BFN Unit 3 3.5/4.5-15                    AMENDMENT HO. 144
 
                                                        ~+4 Pmfion 3.5.3 NY  i 9 894
                                                      ~RE.
WAmeovos- he core spray systems                    The  following surveillance CI  o  C C  are  equired              requirements shall be adhered to b OPERAB E, t disc arge                        to assure that the dis harge L.Al    pipi from t e p          disc arge                pipin of'he core spray of th se syst s to the la t                        systems, LPCI, HPCI, and RCIC block lve s      ll be ille                      are x e e sucti    n of th R~C    and HPC                    Every month and prior to the p  s  shal be ali ed to t e                          testing of the RHRS (LPCI and con    sate s ra e t k                                Containment Spray) and core the pressure suppression chamber                        spray systems, the discharge      ,
head tank shall normally be                              piping of these systems shall aligned to serve the discharge                          be vented from the high point piping of the RHR and CS pumps.                          and water flow determined.
The condensate head teak may be used to serve the RHR and CS                        20  Following any period where the discharge piping    if  the PSC head                    LPCI or core spray systems tank is unavailable.. The                                have not been required to be pressure indicators on the                              OPERABLE, the discharge piping discharge of'he RHR and CS pumps                        of the inoperable system shall shall indicate not lees than                            be vented from the high point listed    below.                                        prior to the return of the system      service.
Pl-75-20      48  psig Pl-75-48                          S~RB. 5.3 3    Whenever the 48  psig                                          PCI      RCIC Pl-74-51      48  peig                          system  is lined  up  to take Pl-74-65      48  psig                          suction from the condensate storage tank, the discharge pi iag of the CI an RCIC e yea e    rom g e bligh gee 3'uSb4ecaW< fpr Q)g,~~~                                  poin  of  Qe s          nK wate For Sg'H    4 5g p                                            low o serve    on a monthly bas s.
: 4. When    e RHRS and    the  CSS  ar required to be  OPERABLE,    the pressure indicators which monitor the discharge lines shall  be monitored daily and the pressure recorded.
BFN                                        3.5/4.5-17                NENOMENT tt0. I7 B Unit  3                                                            PAGE~OF~
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.3 - RCIC SYSTEM ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    The Frequency  of "Once/month" has been changed to "31 days." The Frequencies of "Once/3 months" and "Per Specification 1.0NH" have been changed to "92 days." Since the proposed frequencies are equivalent, this change is considered administrative.
A3    Notes allowing actual vessel    injection to be excluded from this test (simulated automatic actuation test) have been added to proposed SR 3.5.3.5. Since the current requirements state the test is "simulated" (i.e., valve actuation and vessel injection are inherently excluded),
this allowance is considered administrative in nature.
A4    Surveillance Requirements for HOV operability that are required by the Inservice Testing Program have been removed from individual Specifications. This change is considered administrative in nature since these requirements remain in the IST Program which is defined by proposed Specification 5.5.6.
A5    The  flow tests for the  RCIC System  are performed at two different pressure ranges  such  that system  capability  to provide rated flow is tested at both the higher and lower operating ranges of the system.
Since the reactor steam dome pressure must be &20 psig to perform SR 3.5.3.3 and &50 psig to perform SR 3.5.3.4, sufficient time is allowed after adequate pressure is achieved to perform these tests. This is clarified by a Note in both SRs that state the Surveillances are not BFN-UNITS 1, 2, 5 3                                                      Revision 0
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.5.3 -  RCIC SYSTEM required to    be performed until 12 hours after the specified reactor steam dome pressure    is reached. CTS 3.5.F. 1 already contains the context of the Note    for the low pressure flow rate test. This is also consistent with interpretation of the current technical specification requirement for the high pressure flow rate test which is currently not modified by a Note.
A6    The  clarifying information contained in the "*" footnote has been moved to the proposed Bases for SR 3.5.3.2. The intent of the surveillance is to assure that the proper flow paths will exist for RCIC System operation. The Bases clarifies that a valve that receives an initiation signal is allowed to      be in  a  nonaccident position provided the valve will automatically reposition in        the proper stroke time. Moving this clarifying    statement to the Bases is considered administrative in nature.
A7    A  finite  Completion Time has been provided to verify HPCI OPERABILITY.
the new time is immediately and is considered administrative since this is an acceptable interpretation of the time to perform the current requirement.
~ A8    CTS  3.5.F.3 requires the reactor to be depressurized to less than 150 psig when CTS 3.5.F. 1 and 2 cannot be met, while CTS 3.5.F. 1 requires RCIC to be OPERABLE when reactor vessel pressure is above 150 psig.
Proposed Required Action B.2 requires the vessel to be depressurized to x 150 psig. Since the intent of CTS is the same even though the CTS shutdown statement does not state "equal to," the addition of this requirement is considered administrative.
TECHNICAL CHANGES    -  MORE RESTRICTIVE An  additional requirement is being added that requires the plant to be in MODE 3 within 12 hours. This change is more restrictive because it stipulates that the reactor shutdown be completed much earlier than would be required by the existing specification (CTS 3.5.F.3). CTS require a shutdown to < 150 psig within 24 hours but do not stipulate how quickly NODE 3 must be reached.        Reference Comment L3 which addresses the less restrictive change of being ~ 150 psig in 36 hours rather than 24 hours.
BFN-UNITS 1, 2, 5 3                                                        Revision 0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.3 - RCIC SYSTEM TECHNICAL CHANGES    - LESS RESTRICTIVE "Generic" LAl  The  details relating to system design and purpose have been relocated to the Bases. The design features and system operation are also described in the FSAR. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the FSAR will be controlled by the provisions of 10 CFR 50.59. System operability determination, as described in the Bases and SR 3.5.3. 1, will ensure maintenance of filled discharge piping.
LA2  The  details relating to methods of performing surveillance test requirements have been relocated to the Bases and procedures.        Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
LA3  CTS  3.5.F.1 specifically states that RCIC Operability can be determined prior to startup by using an auxiliary steam supply in lieu of using reactor steam after reactor steam dome pressure reaches 150 psig.
Details of the methods of performing this surveillance test requirement have been  relocated to the Bases and procedures. Changes to the Bases will  be controlled  by the provisions of the proposed Bases Control Process in proposed    BFN ISTS Section 5.0 and changes to the procedures will be controlled    by the licensee controlled programs.
"Specific" Ll    The phrase "actual    or," in reference to the automatic initiation signal, has been added to    the surveillance requirement for verifying that the RCIC System actuates on an automatic initiation signal.        This allows satisfactory automatic system initiations for other than surveillance purposes to be used to fulfill the surveillance requirements.
Operability is adequately demonstrated in either case since the RCIC System itself can not discriminate between "actual" or "simulated."
L2    This change proposes to extend the current allowed outage time for the RCIC System from 7 days to 14 days.      The 14 days are allowed only    if the HPCI System is verified Operable immediately.        Loss. of the RCIC System will not affect the overall plant capability to provide makeup inventory BFN-UNITS 1, 2, 5 3                        3      ~
at high reactor pressure since the HPCI System is the only high pressure system assumed to function during a LOCA. However, the RCIC System is PAQE    J    pF    ~        Revision  0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.3 - RCIC SYSTEM the preferred source of    makeup  for transients  and certain abnormal events with no    LOCA (RCIC as  opposed  to HPCI is the preferred source of makeup  coolant because of its relatively small capacity, which allows easier control of the RPV water level). The 14 day completion time is also based on a reliability study that evaluated the impact on ECCS availability    (Memorandum from R. L. Baer (NRC) to V. Stello, Jr. (NRC),
      "Recommended  Interim Revisions to LCOs for ECCS Components," Oecember 1, 1975). Because of similar functions of HPCI and RCIC, and because HPCI is capable of performing the RCIC function, the allowed outage times determined for HPCI can be applied to RCIC. This change is consistent with NUREG-1433.
L3  The  time to reduce reactor steam dome pressure to a 150 psig has been extended from 24 hours to 36 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems. In addition, a new (more restrictive) requirement to be in MODE 3 (Hot Shutdown) within 12 hours has been added (See Comment Ml above).      These times are consistent with the BMR Standard Technical Specifications, NUREG 1433.
L4    Existing Surveillance Requirement 4.5.E. l.d requires verification that RCIC is capable of delivering at least 600 gpm at normal reactor vessel operating pressure. The proposed surveillance, SR 3.5.3.3, requires verification of a minimum 600 gpm RCIC flow rate with reactor pressure
    ~ 920 psig and < 1010 psig. The RCIC performance test at high pressure is the second part of a two part test that verifies RCIC pump performance at the upper and lower end of the range of steam supply and pump discharge pressures in which the RCIC pump is expected to perform.
Performance of the RCIC test at both ends of the expected operating pressure range confirms that the RCIC pump and turbine are functioning in accordance with design specifications. The ability of the RCIC pump to perform at normal reactor vessel operating pressure has already been demonstrated. A small decrease in the pressure to as low as 920 psig at which the performance to design specifications is verified will not affect the validity of the test to determine that the pump and turbine are still operating at the design specifications.
L5    Existing Surveillance Requirement 4.5.F. l.e requires verification that RCIC is capable of delivering at least 600 gpm "at 150 psig reactor steam pressure."    The proposed surveillance, SR 3.5.3.4', requires verification of a minimum 600 gpm RCIC flow rate with reactor pressure BFN-UNITS 1, 2, 5 3                                                      Revision 0
 
'
JUSTIFICATION FOR CHANGES BFN ISTS 3.5.3 - RCIC SYSTEM at 165 psig. This change is less restrictive because it could allow reactor operation at pressures up to 165 psig prior to performing the surveillance. Performance of RCIC pump testing draws steam from the reactor and could affect reactor pressure significantly. Therefore, RCIC pump testing must be performed when the Electro-Hydraulic Control (EHC) System for the main turbine is available and capable of. regulating reactor pressure. Operating experience has demonstrated that reactor pressures as high as 165 psig may be required before the EHC system is capable of maintaining stable pressure during the performance of the RCIC  test.
The RCIC performance    test at low pressure is the first part of a two part test that verifies RCIC pump performance at the upper and lower end of the range of steam supply and pump discharge pressures in which the RCIC pump is expected to perform.      Performance of the RCIC test at both ends of the expected operating pressure range confirms that the RCIC pump and  turbine are functioning In accordance with design specifications. The ability of the RCIC pump to perform at the lowest required pressure of 150 psig has already been demonstrated.      A small increase in the pressure at which the performance to design specifications is verified will not significantly delay or affect the validity of the test to determine that the pump and turbine are still operating at the design specifications.
L6    CTS  3.5.F. 1 requires operability to be determined within 12 hours after reactor steam dome pressure reaches 150 psig from a COLD CONDITION. The allowance for reactor steam dome pressure and flow to be adequate is based on the need to reach conditions appropriate for testing. The existing allowance to reach a given pressure only partially addresses the issue. This pressure can be attained, and with little or no steam flow, conditions would not be adequate to perform the test - potentially resulting in an undesired reactor depressurization. The proposed change recognizes the necessary conditions of steam flow and minimum pressure as well as a maximum pressure limitation and provides consistency of presentation of these conditions. The point in time during startup that testing would begin remains unchanged. The change simply changes when the 12 hour clock for performing the test must begin and permits testing to be completed in a reasonable period of time.
BFN-UNITS 1, 2, L 3                                                    Revision  0
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.5 -  ECCS AND RCIC SYSTEM BASES The Bases of the current Technical Specifications for this section (3.5.A, B, E, F, G, H, and 4.5) have been completely replaced by revised Bases that reflect the format and applicable content of proposed BFN-UNIT 1, 2,'and 3 ISTS Section 3.5, consistent with NUREG-1433. The revised Bases are as shown in the proposed BFN-UNIT 1, 2, and 3 Bases.
BFN-UNITS 1, '2, 5 3                                                  Revision 0 pAGF l
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
J S pdCiliCcyhon      7,C, (,/
FEB 2  ames 2.a. Primary containment        4'/~~Pl'4 4aca~y        shall be Ezo  gy,/,]          maintained at all times                      Primary co tainment n trogen vhen the reactor is critical                  consumpti n shall be
"/Pl <'~nb'ily        or vhen the reactor vater                    monitor to etermin the temperature    is  above 212 F              averag        dail nitrog and  fuel is in the reactor                  cons        tion or the ast vessel      cep v      e                    24 h      urs.      cessi    leakage erforming "open vessel"                    is ndicat        d by a physics tests at pover                        co      umpti n rate      f >    I of levels not to exceed                              e  pr    ry con ainm      t  free 5  MW(t).                      A                  lume      er 24  ours
: b. Primary containment corre temper ed f    dryv ture press re, ll integrity is con rmed if                      venti op atio ) at e maxim      allov le                      49.6 psig        Corr cted t in egrated eakage rate,                      no        1 d    ell perati Lay does no't exceed the                      pressur of 1. psig, this equi lent of          pere    t of            value s 542 CFH.                  this the pr ry co          ainmen                  value is exc eded,            e volume      r  24 h rs at the                action spec fied in 49.6 psi      design asis                      3.7.A.2.C shall be taken.
accident        essure P '.              5'R3-4  ~ ~ ~. <
Ce  If    2 makeup    to the rimary                in accordance vith the Primary ontai    ent ave aged ver                    Containment Leakage Rate 2    hours (correc ed      f                  Testing Program.
pr ssure, tempera ure,            d ven ing op ations exc ds 542 CFH,      it  must b red ce to < 42 SC vithin ~ ours
        <gioNpg or the reactor shall be emplaced  in  Hot Shu    de RGTl&t 6  )vithin the    next 3k hours
                                                            ~4 <<id'hu>~
                                                  ~2          ~n34ho,        s BFK                                            3.7/4.7-3                  NENOMEg gg,    pp8 Unit  1
 
FE822~i PAGE~OF 3.7/4.7W
 
DF<c''4'c'phon 3',(., l, 1 FEB 8 2 199j Pr,(.cour~
3.7/4.7-5 hMENOMENT NO. 228 BFS Unit 1
 
                                            ~    ~  ~
                                    <R 3.R.4  ~
I'e I
: g. Perform required local leak rate tests, nc u ng t e r mary containment air lock leakage rate testing n accor ance v t t e Primary Containment Leakage Rate Testing Program.
Yush4ca&#xc3;on gz PQ~y                  Eote:    An inoperable  air lock 0< 8gaJ ]Spy                                      door does not invalidate the previous successful performance of the overall air lock leakage  test.
The acceptance    criteria for air lock testing are: (1)
Overall air lock leakage rate is g (0.05 La)    vhen tested at g Pa.    (2) For door seal leakage, the overall air lock leakage rate is g (0.02 La) vhen the air lock is pressurized to (g 2.5 psig for at least 15 minutes).
BFH                        3.7/4.7-6                  AMENDMENT  NL? P. 8 Unit 1
 
(1)  Ef  at ny time  it is    termined  hat t    criteri    of 4.7.A.2.g 's exceeded, repairs shall be initiated immediatel (2)  Zf conformance to the criterion of pc.T(oN A 4.7.A.2.g is not demonstrated within ~i hours.
following detection of excessive local in Hob'      in                            leakage,  the
      /s. 0c~rs I ~>>< '/                        reactor shall  be
        >n gg A~~
until repairs  are effected and the local leakage meets the acceptance criterion    as demonstrated by etest.
The mann s earn one isolation valves shall be  tested at a pressure of 25 psig for leakage during each refueling outage. Zf the leakage rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,    repairs and retest shall be performed to correct the condition.
BFN                    3.7/4.7-8 Unit 1
 
When      e prima conta      ent's erti the con inment s continuo ly monit red ll for gross eakage b viev of      e  inerti reg rements. This monit ing sys            may be aken o  t of se ice for nt        e but s      1 be ret  rned t service as soon      pra    icable.
The  in rior      su    aces the d        Il and  t ab  e  the evel one foot belo    the n anal vat line        out de surfac      of th torus elov th vater ine 1 be      suall ins cted            ope sting cle or de riorat on signs st ctur              e  vith par    cul    attention to pip      conn tions and suppo    s and or signs of dist    ess or displacement.
BPS    3.7/4.7-9 Uait 1
 
3.7.k.4 (Cont'4)                                        4.7.4.4 (Coat'4)
: c. so  Cryvell-suppression                          "-ach vacuum breaka            valve chamber vacuum breakers                            shall  be        inspect~ for may 'oe  determined to be                          yroyer oyeratioa            oi  ="e yerable for opening.                          valve aaC LM in  accordance          vith Spec'ficat'on 1.Q..            C.
Q ~ gi  ~ le  li 2-d<<<<f    Spec <<<<cac<<oas  3 ~ 7.k<<< ~ aq                    a      tesc of the dr:ovel 3.7.4.4.b, or 3.7.4.4.c.                          to suppression chambe Scc                  cannot be met, the                                st~care shall be conducted W Chewy> W          aait  shaLL be placed    in a                    daring each            o B Ai ~F5 3AI. i    COLD SHUTDOWN&#xc3;  CQ5D~ON in                        Lcc c Le Leaic rate Ls                  la ~og.
an  orderly  maaaer vithin                        0.09 Lb/sec M yr~~
24  hours.                                        containment acmosyhere vi              "
1  ysi Cifie"mat'al 5.
: a. Containment atmosphere shall be                      a. The yrimary .containment reduced to Less than 4X oxygen                          oxygea concentration shall vich aitrogea gas Curing reactor                        be measured and recorde4 yover oyeration vith reactor                            daily. The oxygea cooLant yressare above 100 ysig,                      measurement shall be ad)usted except as specified in 3 ~ 7.l<<5 <<b.                  to accoaat for the aacertainty of the    metho4 used by adding a predetermined error faact'oa.
: b. Vichia the    24 hoar period                      b. The methods used to measure subsequent to ylacing the reactor                      the primary containment in th>> RN NDl foLloving a shat-                        oxygen coaceatration shall Cova the coatainmeat atmosphere
                      ~                                                be  calibrated once every oxygen coacentracioa shall be                          refueling cycle.
reduced to Less than 4% by volume and maintained Ln    this condition.
Deinerting may commence        24 hours prior to a shatCova ~
: c. If plaat    control air ts being used              c. The coatroL            air suyyly for the pneumatic coatroL valve to supply the yaeamatic coatrol system- inside primary coatainmcat,                    systes Laside the pzmaz7 the reactor shall aot ba started,                      coatainmeat shall be verif'ea                    i or Lf at yover, the reactor shall                      closed prior to reactor star=                =
be brought to a COLD SHUTDOWN                          and monthly thereafter.
CQHDIT 05 vithia 24 hours.
: d. If Specificatioa      3.7.A.5.a aad 3.7.4.5.b cannot be met, aa orderly shutdova shall be initiated aa4 the reactor shall be  in  a COLD SHUTDOWN COHDITIOI vithia    24 hours.
BFH                                              3.7/4 . 7-11            AMEi fOMENT NQ, y            g g Unit  1 PAGE                    OF          I
 
i UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
Cthe  *Op,    Qe J ~ J 2eae    Primary containment
  &0 3.k.i,J          maintained at all times                                      contai      ent nitrogen when the reactor is critical                  consum        tion  s    1 be A p )i cg b i li 4  or when the reactor water                    monit          ed  to  d termine      he temperature is above 212 F                    aver        e  daily itrog and fuel is in the reactor                    cons        ption f r the 1 st vessel      cept w                            24      ours.        cessive      eakage er orming "open vessel"                      is ndicate            by a  H physics tests at power                        co      umptio      rate of > 2X of levels not to    exceed                      t    e  prima      contai ent free 5  M(t).                          2              olume pe          24 hou
: b. Primary conta nmen ntegri is confirme Sf'rimary if (correct tempera for  d re, pre sure, venting operati ns) at ell t  e max        allo ble                    49.6 p        ig. Co rected to in egrate      leakag    rat  ,              norma          drywel opera ing La, does n    t  excee  th                  pres        re of .1 psi , this egu    alent    f2  pe  ent    f          val          is  54    SCFH. If this the    imary ontai          t                val      e  is      ceded,      e volum per 24 ours              the            act on specified in 49.6 p ig desi        basis                  3.7.h.2.C shall be taken.
ccident pressure, P .              ~ 7.C.(. l er e  I rm leakage rate testing C~  If 52  makeup    to the primary              in      accordance with the Primary con ainmen averag d over                      Containment Leakage Rate 24    urs (c recte for                      Testing Program pres ure,    t    eratu e, and venti opera ons) ceeds 542.
to S,  SC it ithinA uced ours Alarm A      /or  the reactor shall be placed in Hot Shutdown Wlnpl 8 within the next                hours              d~hl    Shu~a
                                                            '~ 36      hOl4CS hNENMENr NL      2c8 BFH                                              3.7/4.7-3 Unit  2
 
Sp<c jfirqQn Zi io. I> /
FEB 8  259s BFR    3.7/4.7W    NENDMENT NC. 243 Unit 2          PAGE~o.. 'I
 
5f ecsP:c'crgon 9.6, (. I FES 2 2 1996 4 ~ ~                  e  t BFE    3.7/4.7-5          hMENOMENT NO. 243 Unit 2
 
FEB 22$ 9S
                                          ~  ~  ~ ~
A/3 3.4. lil
: g. Perform required local leak rate tests    nc u ng    e primary containment air lock leakage rate testi    in accordance w        e Primary Containment Leakage Rate Testing Program.
Hote:  kn inoperable air lock See  ruse<'~Son  4r                              door does not c+~$ Ar /go    zsTs                            invalidate the previous successful performance 3.o, I.~                                        of the overall air lock leakage test.
The acceptance  criteria for air lock testing are: (1)
Overall air lock leakage rate is g (0.05 La) vhen tested at g Pa. (2) For door seal leakage, the overall air lock leakage rate is g (0.02 La) vhen the air lock is pressurized to (g 2.5 psig for at least 15 minutes).
NENDMENT No. 243 BFH                        3. 7/4. 7-6 Unit 2 5
 
h:      (1)  If at  any      'me  it is determi          that e crite on of 4.7 .2.g Is exceeded, repairs shall be initiated immediately.
(2) If conformance        to the CT(ofJ p, criterion of 4.7.A.2.g is not demonstrated within
                                    ~ fAp4                      hour& foilowing l            detection of excessive local leakage, the reactor r~ HojX-: g i ~ l2 N~r~                              shall    b
      +>>DC    q;    3g 4o~rg until repairs        are effected and the AC7)o~ B          local leakage meets the acceptance criterion      as demonstrated by retest.
The main    steamline isolation valves shall                be tested at a pressure of 25 psig for leakage during each refueling If the      leakage'utage.
rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,    repairs and retest shall be performed to correct the condition.
                                                  ~ kQ  MKgPJ ji(g)li~ g
                                                    ~~ >+> isrs      g .S./ g BFN                        3.7/4.7-8 Unit 2 PAGE
: j. o HmDar en the    pr        ry c    tainment          incr the ontainmena, shall              be cont uously mo tored fo'r gr s leakage by reviev o the incr stem          up r    uircmen      ~    This ear  may bc taken      ut of      ~  rvice for maint          a  but            be returned        o  serv ce as soon as      pr ticable.
e  interior            fac s of e  dzpwell            to ab    e the leve one f            t bel the no                  eater line          outside surfac        of the t belcnr          eater 1 shall be sually pected      ch opera iIlg le for    de      rioration and          signs struc        al            e  vlth parti        ar atten ion to ping          acti        and s        rts          for signs o'f d    tres or displac          t BPI    3.7/4.7-9 Unit 2
 
HOV              22  1888 5 acifica4iow    E Co      (  \
S'7 S
3.7.A.4 (Cont'd)                                        4.7.A.4 (Cont d
: c. Tvo dryvel'-suppression                        c. Each vacuum brcake" valve chamber vacuum breakers                            shall  bc inspected'or may be determined to be                            proper operation of ="e inopc abLe for opening.                            valve and limit switches in accordance with Specification L.O.HC.
gp q.Q.).
                                                                                ~
v~d&#xc3;icJ~
: d. If Specifications be3.7.A.4.a                d. A leak    test of the d Jvell to suppression chamber See                          .b, or .c cannot          met, thy CQCs+AQ                  uait shall      be placed  in a                    tructure shall  be conducted SAI isTS g.to I. 7          Cold Shutdovn condition        in                  during each an orderly      manner  vithin            Pl      Accc table    e  rare                    ~pg, 24 hours.                                          0.09 1 scc o pr mazy coatainmcat atmosphere with SEE KcCSr tFiCArcrg      ~g CAAHQ~                            si differential
                      >R QFN <srs g.c,g~
0
: a. Coatainmeat atmosphere shall bc                    a. The primary coataiameat reduced to less thaa 4X oxygen                        oxygen concentration      shal'e vith nitrogea gas during reactor                          measured and recorded pover operation Mich reactor                          daily. The oxygen
                        .coolant pressure above 100/psig,                      measurement shall bc ad)usted except as specified ia 3.7.A.S.b.                      to account"for the uncertainty of the  method used by adding a  predetermined error function.
: b. Mithin the 24-hour period                          b. The methods used to measure subsequent to placing the reactor                      the primary containment in the RUH mode folloving a shut-                      oxygen concentration shall down, the containmeat        atmosphere                be  calibrated once every oxygen coaceatration        shall  bc                  refueling cycle.
reduced to less than        4X, by volume and maintained        in this condition.
Deinerting    may commeace    24 hours prior to    a  shutdown.
: c. If plant    control air is being used              c. The control    air supply valve for the pneumatic control to supply the pneumatic control system inside primary coatainment,                    system inside the primary the reactor shall aot be started,                      containment shall be verified or  if  at pover, the reactor shall                    closed prior to reactor startup and monthly thereafter.
bc. brought to      a  Cold Shutdovn condition vithin        24 hours.
: d. If Specification        3.7.A.S.a and 3.7.A.S.b cannot bc met, an orderly shutdovn shall be initiated and the reactor shall        bc in a Cold Shutdown condition vithin  24  hours.
BFH                                              3.7/4.7-11                    ph3c'gMg! T            t'~C Unit    2 PAGE~OP
 
'
UNIT 3 CURRENT TECHNICAL SP ECIF ICATION MARKUP
 
5 Pc 4 i Ci cp  on, g  ]
2.a. Primary containment maintained at all times                        Primary c          taiament nitrogen whea thc reactor is critical                  coasumpt        n shall or when the reactor vatcr                    monitor d to dete ine thc temperature is above 212 F                    averag      daily,ni      rogen and fuel is in the reactor                    cons      ption fo the las vessel    ccpt w i e                          24      urs. Ex essivc 1                ge pcrformiag "open vessel"                      is ndicate y a N2 physics tests at pover                        c      umptio rate of 2X of levels not to exceed                              e prima          conta    ent frcc MW  t                                      volume          r  24 hou (corrc cd for                ell
: b. Primary      ontaiamcnt                                    ature, p ssure,        'cmpe i  tcgrity  s  confi      ed  if            vcn ag opera ioas) a orrecte to th  maxim    allovab    e                  49      psig.
in grated eakagc r te,                        n        1 d        ell oper iag La, does not exceed t e                        pressure f 1.1 ps g, this equi alent of 2 percen of                      value is 542 SCFH            If    this the p imary co taiament                        value    i    excccd , thc volume er 24 h urs at t e                      action specifi            in 49.6 ps g design basis                        3.7.k.2.c        sha    be taken.
ccident                P  ~          S 34  ~
er        leakage rate testing c    If H2 makeup    to    e  primary            in accordance vith the Primary c ntaiam    t aver d over                      Contaiamcnt Leakage Rate 24 hours (  orrected or                      Testing Program.
pr sure, t peratur            and vent ng opera ions) cx eds 542 S    , it      t bc reduce to < 5 SC vithin hours g  or  the reactor shall be
      '8 Swithin in c, placed      Hot Shutdovn the next
                                    /2 hours.
                                                      ~told Shukdoupn
                                                      >n 34 goer  g BFS                                          3.7/4.7-3                      lRNMNTNO. 2 03 Unit 3 PAGE              OF
 
Sk<'4  0~ Z <
FEB 2 8 SSS NIENDhfQT NQ, P 03 BFR Unit 3 3.7/4.7W PA3E~OF~
 
eted NBIDME&#xc3;F RLP 0 3 BPH    3.7/4.7-5 PAGE~OF Unit 3
: g. Perform required local leak r      eats    nc u ng t e primary containment a r lo e  rate testi    in accordance v t t e Primary Containment Leakage Rate Testing Program.
Rote:    An  inoperable  air lock door does not 5ee 3~g40; rabin&<                        invalidate the previou successful performance Ch~qcs &r SAN Xsrs Zt..l.<                of the overall air lock leakage test.
The acceptance    criteria for air lock testing are: (1)
Overall air lock leakage rate is g (0.05 La) vhen tested at g Pa. (2) For door seal leakage, the overall air lock leakage rate is g (0.02 La)
                                        @hen the air lock is pressurized to (g 2.5 psig for at least 15 minutes).
BFR                        3.7/4.7-6 NBIOMENT HO. 2  03 Unit 3                                      PAaE
: h.    (1)  If at    a    time  it is  d    ermined that the  criterion    o 4.7.A.2.g is exceeded, repairs shall be 3.nitiated immediately.
(2)    f  conformance to the    criterion of jhow'IorJ A      4.7.A.2.g is not demonstrated within
                                            ~    hour> following detection of excessive local eakage,    the pl~ 3 j~ /2 &Owed                    reactor shall      be
      ~Ho05 Q/~ 2C,A-<<
until repairs are
                            +vta4 8          effected and the local leakage meets the acceptance criterion    as demonstrated by etest.
The main      steamline isolation valves shall be tested at a pressure of 25 psig for leakage during each refueling outage.      If the  leakage rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,      repairs and retest shall be performed to correct the condition.
5j?t  j~g jiCiGaf>ow 4~ C44 p+
AI BFN l>7-s g.z./.3 BFN                3.7/4.7-8 Unit 3 PAGE
 
C  t the pr      ry con ainment  i    inerte thc ntainment hall contin usly mo ored for gros  leakage eviev of    e  inert tea aike r remcnts. This monit rial sys        may bc taken    t of sc ce for maint      e but shall be returned t service as soon as yrac    icable.
The  interior surfaces of the dryvcll and torus above the level onc foot belov the normal vater line and outside surfaces of the torus belov the water linc shall  be  visually inspected each operating cycle for deterioration and any signs of structural d4RLgc vith particular attention to pipiag connections      and.
suyports and for signa of dis'tress or displacement.
BPH    3.7/4.7-9 Unit 3
 
0 3.7.A.4 (Cont'd)                                  4.7.A.4 (Cont'd)
: c. Tvo dryvcll-suppression                  C~  Once each    operating cycle, chamber vacuum breakers                      each vacuum breaker valve may be determined to be                      shall be inspected for inoperable for opening.                      proper operation of the valve and limit svitches in  accordance with Specification      1.0.MM.
: d. If Specifications  3.7.A.4.a,            d. A leak test of thc dryvell to suppression chamber 3.7.A.4.b, or 3.7.A.4.c, Sec  '$45f&~og      cannot be met, the                          structure shall be conducted For chpggs  +r      unit shall be placed                          ur ng a o 8cN  fsrs  34(,7  in a Cold Shutdown                          Acce table leak rate is condition in an orderly                        .09 lb/sec o pr ary manner  vithin 24 hours.                    containment atmosphere        vit 1  si differential.
: 5. 0                                              5. 0
: a. Containment atmosphere shall be              a. The primary containmcnt reduced to less than 4X, oxygen                  oxygen concentration shall vith nitrogen  gas during  reactor              be measured and recorded paver operation vith reactor                    daily. The oxygen coolant pressure above 100/psig,                measuremcnt shall be ad)usted except as specified in 3.7.A.5.b.                to account for the uncertainty of the    method used by adding a  predetermined error function b.. Within the 24-hour period                    b. The methods used        to measure subsequent to placing the reactor                the primary containmcnt in the RUR mode folloving a shut-                oxygen concentration shall down, the containment atmosphere                be  calibrated once every oxygen concentration shall bc                    rcfucling. cycle.
reduced to less than 4X by volume and maintained in this condition.
Deinerting may commence    24 hours prior to a shutdown.
: c. If plant  control air is being used          c. Thc control air supply valve for the pneumatic control to supply the pneumatic control system inside primary containmcnt,              system inside the primary the reactor shall not be started,                containmcnt shall be verified or  if at pover, the reactor shall                closed prior to reactor sr.artup and monthly thereafter.
bc brought, to a Cold Shutdown condition vithin 24 hours.
Ce  3'u5hCs'cation  fir <~g<f If the  specifications of 3.7.A.5.a              ~ BPu ~5'r> Z.G.3.2.
through 3.7.A.S.b cannot be mct, an  orderly shutdown shall bc                          p~cE~oF                0 initiated and thc reactor shall    bc in a Cold Shutdown condition ithin 24 hours.
BFH                                      3.7/4.7-11 Unit  3
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.6.1.1 -  PRIMARY CONTAINMENT ADMINISTRATIVE CHANGES Al  Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is        done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.        This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2  The  definition of PRIMARY CONTAINMENT INTEGRITY has been deleted from the proposed Technical Specifications. In its place the requirement for primary containment is that        it "shall be OPERABLE." This was done because of the confusion associated with these definitions compared to its use in the respective LCO. The change is editorial in that all the requirements are specifically addressed in the proposed LCO for the primary containment along with the remainder of the LCOs in the Containment Systems Primary Containment subsection (e.g., air locks, isolation valves, suppression pool). Therefore, the change is purely a presentation preference adopted by the BWR Standard Technical Specifications,    NUREG  1433.
A3    CTS  4.7.A.2.k requirements for visual inspection of the drywell and torus surfaces are also contained in 10 CFR 50, Appendix J. These regulations require licensee compliance and cannot be revised by the licensee. These details of the regulations within CTS are repetitious and unnecessary.      Therefore, the details also found in Appendix J have been deleted. This is considered a presentation preference and as such is  considered  an  administrative change.
BFN-UNITS 1, 2,  8L 3                                                    Revision 0 PAGE~OF
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.1.1 - PRIHARY CONTAINHENT A4    CTS  3.7.A.2.b provides acceptance. criteria for integrated leak rate testing, which is redundant to those contained in Primary Containment Leakage Rate Testing Program (CTS 6.8.4.3) requirements.                The definition of L. is provided in proposed        BFN  ISTS  1. 1 and  need  not  be  repeated here. As such, this deletion is considered administrative.
A5    The acceptance criteria for the leak test of            the drywell to suppression chamber structure has been changed from 0.09            lb/sec of primary containment atmosphere at 1 psid to 0.25 inches of water for 10 minutes.
Since these values are equivalent this is considered an administrative change.
A6    CTS  4.7.A.2.h(1) requires repairs to be initiated immediately when                it is determined the criterion of 4.7.A.2.g is exceeded.              CTS 4.7.A.2.g requires  LLRTs  to  be  performed  in  accordance  with  the  Primary Containment Leakage Rate Testing Program (CTS 6.8.4.3). CTS 4.7.A.2.h(2) then allows 48 hours to demonstrate 4.7.A.2.g can be met following detection of excessive local leakage. Since repairs are typically initiated immediately and proposed BFN ISTS ACTION A will only allow 1 hour"to restore primary containment to OPERABLE status prior to requir'ing the initiation of a shutdown (reference Justification                H2 below), CTS 4.7.A.2.h(1) has been deleted.
TECHNICAL CHANGES    -  NORE RESTRICTIVE Hl    CTS  3.7.A.2.a requires the primary containment to be OPERABLE at all times when the reactor is critical or when the reactor water temperature is above 212'F and fuel is in the vessel. The proposed BFN ISTS 3.6.1.1 applicability is    HODES  1, 2, and 3. This is more restrictive since CTS does not require the primary containment to be OPERABLE when in HODE 2, not critical and < 212'F.
H2    Proposed Action A is more restrictive than CTS 3.7.A.2.c since the time allowed to reduce excessive nitrogen leakage prior to initiating a shutdown has been reduced from 8 hours to 1 hour. The time allotted to place the unit in Hot Shutdown (HODE 3) has been reduced from 16 hours to 12 hours. Proposed Action B requires the unit to be placed in Cold Shutdown (HODE 4), whereas, CTS 3.7.A.2.c only requires the unit to be placed in Hot Shutdown.
In addition,    CTS  4.7.A.2.h.(2) allows 48 hours to demonstrate conformance to Appendix J following detection of excessive local leakage BFN-UNITS 1, 2, 5 3                                                                Revision  0 PAGE      R    op 3
 
JUSTIFICATION  FOR CHANGES BFN ISTS 3.6.1.1 -  PRIMARY CONTAINMENT and then requires a plant shutdown      if conformance can not be demonstrated. CTS does not specify a completion time for shutdown and does not specify whether shutdown is to the Hot or Cold Shutdown Condition. The Proposed Actions A and B are more restrictive since they only allow 1 hour to restore primary containment and then require the unit be in MODE 3 in 12 and MODE 4 in 36 hours.
TECHNICAL CHANGES  - LESS RESTRICTIVE "Generic" LA1  The  details relating to routine monitoring of plant status and operations parameters that reflect primary containment operability and the methods of performing this monitoring have been relocated to the Bases and procedures. Acceptance criteria for primary containment N, leakage (i.e., makeup consumption) have been relocated to procedures.
Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
LCl  The  conti nuous leak rate monitor does not necessarily relate directly to primary containment operability. In general, the BWR Standard Technical Specifications, NUREG 1433, do not specify indication-only or alarm-only equipment to be OPERABLE to support operability of a system or component. Control of the availability of, and necessary compensatory activities  if not available for, indications, monitoring instruments, and alarms are addressed by plant operational procedures and policies.
Therefore, the continuous leak rate monitor, and associated alarm surveillances and actions will be relocated to a licensee controlled document. Any changes  will require  a 10 CFR 50.59 evaluation.
BFN-UNITS 1, 2, &
3'AGE                                      QP~      Revision 0
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
0 SAci 0i c~
FEB 2 2 1996 2.a. Prima      conta nment                  2. te  ated Leak Rate  estf inte  ity s aincd ll be t all mai                        imes          Primary containment nitrogen vh    the cactor is cr ical              consumption shall bc o vhen      e re      tor v ter          monitored to determine the At          cmpcr urc      i    abov 21 'P          average daily'itrogen and f el is n the ea or                    consumption for the last vcss    cxc t wh e                        24 hours. Excessive leakage perf rmi "op vcs el"                      is indicated by a H2 physics      sts a po er                  consumption rate of > 2X of levels not to exceed                      the primary containment free 5  t%(t).                                  volume per 24 hours (corrected for dryvell
: b. Primary containment                        temperature, pressure, and integrity is confirmed thc maximum allovable if        venting operations) at 49.6 psig. Corrected to integrated leakage rate,                  normal drywell operating La, does not exceed the                    pressure of 1.1 psig, this equivalent of 2 percent of.                value is 542 SCPH. If this thc primary containment                    value is exceeded, the volume per 24 hours at thc                  action specified in, 49.6 psig design basis                      3.7.L.2.C shall be taken.
accident pressure, Pa.
Perform leakage rate testing
: c. If H2 makeup      to the primary          in accordance vith the Primary containment avcragcd over                  Containment Leakage Rate 24 hours    (corrected for                Testing Program.
pressure, temperature, and venting operations) exceeds 542 SCFH,    it  must bc reduced        gee guc+4'mb'+n Ar Chanyeg to c 542 SCFH vithin 8 hours or thc reactor shall be                  4i  BF~ iSVS 3.C..i.l placed    in  Hot Shutdovn vithin    the next 16 hours.
l-co p,5,1,2. 8 lic4b.lip PI<RsR    ACT'Iow5      A+g A]
t'<opsy    AJoH    gg ~      /b;17oAS W3    'Af$4      SR 3,g,  t, f
                                                                    ~AGE          OF BFH                                            3.7/4.7-3 Unit 1
 
                                          ~  ~  ~  ~
SR3.a.(.g. I
: g. Perfo          required local leak rate tests including t e Sce XusHC'cab'on Qr @~ay                primary containment air lock leakage rate testing in
      '&< B~W tST5                            accordance with the Primary Containment Leakage Rate Testing Program.
Rote:    An inoperable    air lock 5g 3  g i g door does not invalidate the previous successful performance of the overall air lock leakage  test.
The acceptance      criteria for air lock testing are: (1)
Overall air lock leakage rate is  g (0.05 La) when tested at g Pa.      (2) For door seal leakage, the overall air lock leakage rate is g (0.02 La) when the air lock is pressurized to (g 2.5 psig for at least    15  minutes).
                                                <<e ~~Wi'ca~n Qi C4~s 8FN    ) ST$ 5,g,I~
BFH                        3 '/4.7-6                  AMENDMENT NQ. 228 Unit 1                                                PAGE~QF              g.
 
Zf at any ime i" is det ined t at the    iterio of 4.7.A.2.g exceeded,    repairs shall    be initiated immediately.
(2)    Ef conformance to the  criterion of 4;7.A.2.g is not demonstrated within ho rs following 2 4 HZ detection of excessive local leakage,    the eactor shall  be
        ~~~    3 I  I24~
      /Hop/ c/    gg ggg until repairs    are effected and the local leakage meets the acceptance criterion    as demonstrated by retest.
The main    steamline isolation valves shall be  tested at a prgssure of 25 psig for leakage during each refueling outage.      Zf the leakage rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,    repairs and retest shall be performed to correct the condition.
BFN                      P.7/4.7-8 Unit 1
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
SPCCi4iCCrf)On "7  6- I-2 FE8  P, 2%6 2.a. Primary    ontai      ent              2.
integri y    sha      be mainta ned a        all    times            Pr'imary containment nitrogen vhen    e re      tor is critical          consumption shall be I      or v en th react              vat r          monitored to dctcrmine the t cratu is a ve 2 2'F                        average daily nitrogen fuel s in e re ctor                    consumption for thc last v esel      cept        ile                  24 hours. Excessive leakage pcrfo ng "op ves el"                          is indicated by a E2 physic    tests at po er                      consumption rate of > 2X of level not to exceed                            the primary containment free volume per 24 hours (corrcctcd for dryvell
: b. Primary containment                            temperature, pressure, and integrity is confirmed the maximum allovable if        venting operations) at 49.6 peig. Corrected to integrated leakage rate,                      normal dryvell operating La, docs not exceed the                        pressure of 1.1 peig, this equivalent of 2 percent of                    value is 542 SCFH.        If this thc primary containment                        value is exceeded, the volume per 24 hours at thc                    action spccificd in 49.6 peig design basis                        3.7.k.2.C shall be taken.
accident pressure, Pa.                                  ISTIC Perform lcakagc rate testing
: c. If S2    makeup    to thc primary            in accordance vith thc Primary containment averaged over                      Containment Leakage Rate 24 hours    (corrected for                    Testing Program.
            'rcssure,      temperature,          and venting operations) excccds 542 SCFH,    it  must be reduced to < 542 SCFH vithin 8 hours
                                                            ~<~
A~
                                                                ~~iWWn 4< C~C5 8FhJ or the reactor shall bc placed in Hot Shutdovn vithin the next 16 hours.
ACO g, (o. t. 2    Ppp  )) ~g; )', P f'no@i~< RCT<o~a              /I > b Pno  sea  4u4    I tg p      Acr<o+5
            ]go g<J    5k'.6.lit        2 3.7/4.7-3 hMENMNr N. 2      c8 BFH Unit 2                                                              PAGE        R  OP~
 
I:ES 8  2896 Ai
                                          ~ ~  ~  ~
58 3.b. I~ >  ~ ~
: g. Perform required local leak rate tests, includi the 5<c 5~~$ icqgan Qr C/ggg5              primary containment air lock leakage rate testing in Qr SPN l5i5 Z.6, l.l                    accordance vith the Primary Containment Leakage Rate Testing Program.
Hote:        kn inoperable air lock door does not invalidate the previous successful performance
                                                          , of the overall air lock leakage test.
The acceptance          criteria for air lock testing are: (1)
Overall air lock leakage rate is g (0.05 La) vhen tested at g Pa. (2) For door seal leakage, the overall air lock leakage rate is g (0.02 La) vhen the air lock is pressurized to (g 2.5 psig for at least 15 minutes).
Se'e    Su5 tea'can'en    Qr'kCi~gC'5 Ai 8<N            l57<  g.g.i~
NENDMENT N.      243 BFH                          3.7/4.7-6 Unit o~~
2 pAGE      X
 
                                                                      ~ r w>>  n a.>>>,/
: h. Ql) Zf at        y time  it i dete ined that the cri erion of 4.7.A.2.g    i exceeded,      epairs shall  be  initiated immediately.
(2)  f'onformance to the criterion of Rpgu>l cA          4.7.A.2.g is not Acfi'p<<C. 2.        d      strated within ours following detection of P~pa~              excessive local RCy<<>>    Q        leakage, the reactor Ac.f>~C. I shall  b  shet-down In  ~p~    3
      ~ 2 He>>rj p go~
g                          until repairs    are
            ~4  haul                              effected and the P,c, ripe      local leakage meets b
the acceptance criterion    as demonstrated by retest.
The main  steamline isolation valves shall        be tested at a pressure of 25 psig for leakage during each refueling outage. Ef the leakage rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,    repairs and retest shall be performed to correct the condition.
SeC  Xug$,'f;~p~    g pg hr    5/WIST~ 36      1..3 BFN Unit 2 3.7/4.7-8 PAGE~0                ~
 
0 UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
2.a. Prima        ontainment                2. I  e  rated Leak Rate Testi int      ity  shal    e ntained        all times              Primary containment nitrogen hen th      eactor is itical            consumption shall be or v        the rea      r vater          monitored to determine the t'rature              above 2      F        average daily nitrogen fuel      in the      actor        consumption for the last vessel        cept v      e                24 hours. Excessive leakage perf ing "o            vessel"            is indicated by a E2 p sics tes          at pover                consumption rate of > 2X of evels no to exceed                        the primary containment free
                  %l(t)                                  volume per 24 hours (corrected for dryvell
: b. Primary containment                        temperature, pressure, and integrity is confirmed          if        venting operations) at the maximum allovable                      49.6 psig. Corrected to integrated leakage rate,                  normal dryvell operating La, does not exceed the                    pressure of 1.1 psig, this equivalent of 2 percent of                value is 542 SCFH. If this the primary containment                    value is exceeded, the volume per 24 hours at the                  action specified in 49.6 psig design basis                      3.7.k.2.c shall  be taken.
accident pressure, Pa.
Perform leakage rate testing
: c. If H2 makeup      to the primary          in a'ccordance vith the Prima containment averaged over                  Containment Leakage Rate 24 hours      (corrected for              Testing Program.
pressure, temperature, and venting operations) exceeds 542 SCFH,      it  must be reduced 5ee ~~+;4i ca fjon4r Chang to < 542 SCFH vithin 8 hours                                            ts'~
or the reactor shall be                        8@v    1ST'.C;I.I placed    in  Hot Shutdovn vithin    the next 16 hours.
                ~c. g.b, l. 2      I;i~b:l&
t'ro  scd 4'TYPES 8 FB
                ~>+<<g Sole Jyg            y    +'o<S
      %3    fno acA, Sk 3,k.l.l.
3.7/4.7-3              NBfDMNTgo. P g 3 BFS Unit 3                                                          f'ACiE~QF~
 
5
: g. Perform    equ red local le rate tests, includi the 5'cc ~wSHAcafjon Qr PQ~            primary conta nment air lock
        <~ 8<m t Srs z.c,.i.]              leakage rate testing in accordance vith the Primary Containment Leakage Rate Testing Program.
Hote:  An  inoperable  air lock door does not invalidate the previous successful performance of the overall air lock leakage test.
The acceptance  criteria for air lock testing are: (1)
Overall air lock leakage rate is g (0.05 La) vhen tested at g Pa. (2) For door seal leakage, the overall air lock leakage rate is g (0.02 La) vhen the air lock is pressurized to (g 2.5 psig for at least 15 minutes).
sec WusA'C>cab'on 0)  C~~
6R di=nr g 7S g, g.i~
NBlDMST HO. 2    03 BFR Unit 3 3.7/4.7-6        pAGE      3  OF~
 
SFe C i Pica  on p. (. I - 2 h    (1)      at    y  ti it i  dete    ined hat th  crit    ion
: 4. A.2.g      is exc ded,      epair shal    be  in tiate immed  atel 4euwcd        (2) Zf conformance      to l@hrn C.2.        the criterion of 4.7.A.2.g is not demonstrated within hours following Aft'SC4            etection of 4Abn Co)          cxcessivc local leakage, the reactor    hall
                                    )trio v        repairs are        i n o~  3 effected and th g            local leakage me        OC Q I the acceptance criterion as demonstrated    by    QZ retest.
The main    steamline isolation valves shall See 3iu+g;c~gn                          be  tested at a pressure Foe ('-~gg)cg Qg,                      of  25 psig for leakage 8<<    tsTs S.b.l.3                    during each refueling outage.      Zf the leakage
      << ~)K    sc'cking                      rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,    repairs and retest shall bc performed,to correct thc condition.
BPR Unit 3 3.7/4.7-e PAGE~~"              ~
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.1.2 -  PRIMARY CONTAINMENT  AIR LOCK ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore,
    -understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is      done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    CTS  4.7.A.2.h(1) requires repairs to be initiated immediately when it is determined the    criterion of 4.7.A.2.g is exceeded. CTS 4.7.A.2.g requires LLRTs to be performed in accordance with the Primary Containment Leakage Rate Testing Program (CTS 6.8.4.3). CTS 4.7.A.2.h(2) then allows 48 hours to demonstrate 4.7.A.2.g can be met following detection of excessive local leakage. Since repairs are typically initiated immediately and proposed Required Action C. 1 for 3.6.1.2 requires action be initiated to evaluate the primary containment overall leakage rate using the current air lock results and ACTION A of ISTS 3.6.1. 1 will only allow 1 hour to restore primary containment to OPERABLE status prior to requiring the initiation of a shutdown (reference Justification M2 for Specification 3.6. 1.1), CTS 4.7.A.2.h(1) has been deleted.
TECHNICAL CHANGES    - MORE  RESTRICTIVE The  current requirements for the air lock are located within the primary containment TS requirements.      The current definition of primary containment integrity    requires  only one air lock door to be closed and sealed (i.e., the seal mechanism intact and sealing the door). Thus, no actions are required    if one door is inoperable provided the other door is OPERABLE, since primary containment integrity only requires the one door. The proposed LCO requires the entire air lock to be OPERABLE, BFN-UNITS 1, 2, L 3                                                      Revision 0
 
JUSTIFICATION  FOR 3.6.1.2 -
CHANGES'FN ISTS              PRIHARY CONTAINHENT AIR LOCK which includes both doors, as well as the interlock mechanism and the leak-tightness of the barrel. ACTIONS are provided (proposed ACTIONS A and B) to ensure that    if one door or its interlock mechanism is inoperable, the    other  door  is closed, locked and periodically verified to be closed and locked.      If the interlock mechanism is inoperable, an allowance is provided to open the door provided a dedicated individual controls the access. Notes are provided to allow, the locked closed
    'verification to be performed administratively              if the door is in a limited access area. These two new        actions      are  not applicable, however, if  the entire air lock is inoperable (as stated in proposed Note 1 to both ACTIONS A and B). To ensure that the primary containment LCO will be entered  if  air lock leakage results in exceeding overall primary containment leakage, NOTE 2 to the ACTIONS is also included. Overall, these new ACTIONS provide additional restrictions to plant operation.
CTS  4.7.A.2.h requires repairs to be initiated immediately when it is determined that the criterion of 4.7.A.2.g is exceeded and              if conformance to these criterion is not demonstrated within 48 hours following detection of excessive local leakage, a reactor shutdown is required. ACTION C of the proposed Specification requires the licensee to initiate action to evaluate primary containment overall leakage rate using the current air lock test results immediately, verify an air lock door closed within 1 hour and restore the air lock to OPERABLE status within 24 hours. If required ACTION C and the associate Completion Time is not met, the unit must be in HODE 3 in 12 hours and HODE 4 in 36 hours. This is more restrictive than current requirements.
This change adds a Surveillance to verify the interlock mechanism works properly (only one door can be opened at a time). This will ensure that one door is always closed which maintains containment integrity. The addition of new requirements represents a more restrictive change.
The  current requirements for the air lock are located within the primary containment TS requirements (CTS 3.7.A.2.a), which requires the primary containment to be OPERABLE at all times when the reactor is critical or when the reactor water temperature is above 212'F and fuel is in the vessel. The proposed BFN ISTS 3.6.1.2 applicability is HODES 1, 2, and 3. This is more restrictive since CTS does not require the primary containment to be OPERABLE when in HODE 2, not critical, and < 212'F.
BFN-UNITS 1, 2, & 3                                                              Revision  0 P@GF    g  QF
 
UNIT 3 CURRENT TECHNICAL SP ECIF ICATION MARKUP
 
4.7.A.        a  Co  a 2oae      Primary containment                  2. te  ated Leak Rat            est integrity shall    be m> Z.<        l 3  maintained at    all  times            Primary containment nitrogen vhen thc reactor is critical              consumption shall be R pp)scab'>I i    or vhcn the reactor vater                monitored to determine the temperature    is above 212 F            average daily nitrogen and  fuel ie in thc reactor              consumption for thc last veeec                                    24 hours. Excessive leakage ing "open vessel"              ie indicated by a 82 physics tests at pover                    consumption rate of > 2X of levels not to exceed                    the primary containment free 5 HW(t).                                  volume per 24 hours (corrected for drywell
: b. Primary containment                      tcmperaturc, pressure, and integrity ie the  maximum confirmed allovablc if          venting operations) at 49.6 peig. Corrected to integrated leakage rate,                  normal dryvcll operating La, does not exceed the                  pressure of 1.1 psigf this equivalent of 2 percent of the primary containment value is 542'SCFH.      If        this value is exceeded, the volume per 24 hours at the                action specified in 49.6 psig design basis                    3.7.A.2.C shall be taken.
accident pressure, Pa.
Perform leakage rate testing C~ If E2  makeup  to the primary          in accordance with thc Primary containment averaged over                Containmcnt Leakage Rate 24 hours    (corrected for                Testing Program.
pressure, temperature, and venting operations) exceeds 542 SCFH,    it  must be rcduccd          5<< WuSW Fs'cation Q<
to < 542 SCFH within 8 hours                    BC'Sf'5 Q,Q>9'c 3,g, ~,(
or the reactor shall be placed in Hot Shutdown within the next 16 hours.
BFH                                              3.7/4.7-3            aMreMmr NO. 228            .
Unit  1 PAGE~OF
 
Cl
~,
: 4. 7.A. 2. (Cont 'd)
Zf at any time it is determined that the criterion of 4.7.A.2,g is exceeded,  repairs shall  be initiated immediately.
(2)  Zf conformance to the criterion of
      +~'e +~k&#xc3;i~4it 'Gr 6 Aptly                            4.7.A.2.g is not 4~  gf'N IsrS g.g/.Iyg~ ( p                          demonstrated within  48 hours following detection of excessive local leakage,  the reactor shall    be shut down and depressurixed until repairs    are effected and the local leakage meets the acceptance criterion  as demonstrated by retest.
sg s.6./.3. /o tK isolation valves shall be tested at a pressure of 25 psi for leakage durin    ach refuels.n p2. outa  e        t Zf e leakage rate of 1l.5 scf/hr for any one main steamline isolation valve is exceeded,  repairs and retest shall be performed to correct the condition.
BFN                              3.7/4.7-8 Unit 1
 
3.7.C 3-  Secondary containmcnt    integ-rity shall  be maintained  in the refueling xone, except    as specified in 3.7.C.4.
: 4. If refueling zone secondary containment cannot bc maintained the following conditions shall be mct:
: a. Handling of spent fuel and all operations over spent fuel pools and open reactor
                  ~elis containing fuel shall be prohibited.
: b. The standby gas  treatment system suction to thc refueling zone  vill  be blocked ~cept for a controlled leakage area sized to assure the achieving of a vacuum of at least 1/4-inch of water and not over 3 inches of
                  ~ater in all three reactor                  ey.cgt e Keac~c Suig g zones. This is only appli-                  lfd culm br<ag~g cablc  if reactor xone integrity is required.
Mhen  Primary Containment                  1. The  primary containment Integrity is required,    all                  isolation valves rimary containment isolati                    surveillance s6all    bc valves and all reactor                          performed as follows:
coolant system instrument
~36./.3      line floe check valves s 11                      a. At least once    r  o cr-bc OPERhB      except as                              ating  c  clc the OPER-specified in 3.7.D.2.                                        primary contain-ment  isolation valves
          *Locked or sea cd closed valves                            that are po~er operated may be opened on an    inter-          ~< 3,e. l,3. 5    and  automatically mittent basis under                    CR  p.g,!,~. to initiated shall be administrative control.                SP. g,v, l. 3.1 tested forinitiation simulated automatic Ac    os.
Ll SFN                                      3.7/4.7-17                  SlegMNr N0. y 8 g Unit  1
 
MckEI~
Qai SR    3.i .1.3.5 az,c,.l z        d  ia  accordance      vith Specification      lo0ol%lg    tested for closure times.
: b. In accordance with f< 8'M  HC1(op)  8                                    Specification 1.0.%5, all normally open povcr operated t'r.e4ug 8<T>oz        p                                    primary containment isolation valves shall bc (Q        r    sid kCr i~) F                                        fuactionally tested.
C~    (Deleted) f~~    s~4 AJ4~              onl5              ~<3.4.1.'3 Sindhi d
t  At leas once pcr 1<4 used      ALIAS  3+9 H    Q.TiOWX EF'CV ac                operatin c cl the l4 Bc      iSo)pHo      OP      ILITY of the PsiW~o          n      reactor coolant system tah J          instrument line floe i tlstvu~g+ /q          check valves shall be Wcc    t signai        verified.
: 2. Ia the even          any primary                          20    Mhenever a primary
    !          c      tai            olation valve                            contaiamcnt isolation valve becomes        inoperable, reactor              <<Owu<A          is inoperable, thc position operation        may  continue provided        ItC Tip P r 4t.'o~
of at least              the at least              valve, ia each line                        valv        each line having an
                                                                  ~
l~nl'how                oae having an        inoperable valve, is                          ino rable valve shall be QTlo            OPERhBLE and                        s                            ecor e daily eithers                                  Lq PyG
: a.      The  inoperablc valve is                            l(rtosed''Ps P,t,l, Z.        )
restored to OPERABLE                                                  3o 0  el i3.Z status, or                                                                      l.3.'3
: 3. 4  ~
: b.      Each  affected line is                                                3as ol
                      . isolated by use of at least                                            g,s,,  ls 3,g RC7(od one  deactivated contaiameat isolation valve secured ia the isolated position.
                                                                                  <loSed mang~l Valve>        gl;+
: 3. If Specification          3.7.D.l  and
                                                                              ~l~<~ o<<hect Vole W4~
3  7.D.2 cannot be mct, aa orderly        shutdcnm shall be                              Cl~ 4h~~gh <he Valge Sec~rg
      ~<<4" initiated            and the reactor    shall g      bc ia th          COLD SHUTDOWN CONDITION
                +it              hour's ~
L3 3.7/4.7-18 Sp&#xc3; Unit    1    He HoTSNutnowu NENOMHfT N5.        f8 9 C~on->o~ <n iZ
                  +~vs    @gal.iA i ACi "~C-
 
5ftC <4<rabO  3. t.. l.3 FEB  13      19%
3.7.F.                                            4.7.F.
        . The    primary containment purge                  l. At least once every 18 system    shall  be OPERABLE for                      months, the pressure drop PURGIHG, except as specified                          across the combined HEPA in 3.7.F.2.                                            filters and charcoal adsorbcr banks shall be
: a. The results of the ia-place                        demonstrated to be less cold DOP and hslogenatcd                          than 8.5 inches of vater hydrocarbon tests at design                        at system design flow flovs  on HEPA  filters and                      rate {g 10%).
charcoal adsorber banks shall shov g 99K DOP removal                      a. The tests and sample and g 99K halogcnated hydro-                          analysis of Specifica-carbon removal vhen tested                            tion 3.7.F.1 shall be in  accordance vith                                    performed at least once AHSI H510-1975.                                        per operatiag cycle or once every 18 months,
: b. The results of laboratory                              vhichever occurs first carbon sample analysis shall                          or after 720 hours of shov g 85K radioactive                                system operation and methyl iodide removal vhca                            following significant tested ia accordance vith                              painting, fire, or ASTN D3803.                                            chemical release in any ventilation zone commmicating        vith  the
: c. System flov rate shall bc                                systcao shown to be vithin g lOX of design flov vhea tested                        b. Cold    DOP  testing shall ia  accordance  with                                be performed      after  each ASSI H510-1975                                          complete or partial replacement of the HEP
: 2. If  the provisions of 3.7.F.l.a,                          filter bink or after b, and c cannot be aet, the                                any structural mainte-system shall be declared                                  nance on the system iaoyerable. The provisions of                              housing.
Technical Spccificatioa 1.C.l
                                'e do aot apply. PURCIHC aay coa-                          c. Halogenatcd hydrocarboa thrns using the Staadby Qas                                testing shall        be Treatment Systea                                            performed after each complete or partial ao The    18-inch primary contain-                          reylacement of the acnt isolation valves asso-                            charcoal adsorber bank ciated vith PURQIHC may be                            or after any structural open during the RUN mode                              aaintenancc on the for a 24-hour period after                            system housing.
enteriag the RUN aodc aad/or for a 24-hour period prior                S<.'e 5<bagl~Hon Q Qgg< g to entering the SHUTDOWH                    4'r  Cy5  37 F/q<7~F ln t.h<S mode.        e OPERABILITX o                St'cd on c.co Z 6.i.~                                              AhfENNOP gg. p        yp BPS                                        3.7/4.7-21 Unit  1
 
Spec>4'c<hon  g, (, ].3 APA  29  tg9t these primary
          ~'~'i'~ containment fsolation valves is governed by Technical Specification 3.7.D.
: b. Pressure control of the cont nment      i  norma ly perfo    ed  by      IHQ              Z.A (
through    2-fnch  rfmary ontainm t isol tion ives vh ch rout ef luent t the St dby Gas reatmen        System.
The      EIUNILI o    f these rimary contaf ent iso tion valves    i  governe by Technical      pecification 3.7.D.
3.7.G.
: 1. The Containment Atmosphere Dilution (CiD) System shall be OPERABLE vith:
a.
torus'.
Tvo independent systems capable supplying nftrogen to the dryvell and of Cycle each solenoid operated air/nitrogen valve through at least one complete cycle of fn full travel accordance  vfth Specification 1.0.MK, and at least once per month verify that each manual valve fn the flov path is open.
: b. A minimum    supply  of                    b. Veri that the CAD 2,500 gallons of                                  System contains a lfqafd nitrogen per                              minimum supply of systems                                          2,500 gallons of lfgafd nitrogen tvic
              <<St'. t-I C+O~  Q(                                  er veek.
C~ 4<4" BPS                                            .7/4.7-22          ENDMae NtL  Z se th6t 1                                                    PAGE~OF~
 
INSERT PROPOSED      NEW  SPECIFICATION    3.6.1.4 Insert  new Specification 3.6.1.4, "Drywell Air Temperature," as shown  in the BFH Unit 2 Improved Standard Technical Specifications.
 
0 JUSTIFICATION FOR CHANGES BFN ISTS:  3.6.1.4 - DRYMELL AIR TEHPERATURE TECHNICAL CHANGES    - NORE RESTRICTIVE Hl    A new Specification is being added requiring drywell air temperature to be 150'F. This is required since some accident analyses assum'e this temperature at the start of an accident.          Appropriate ACTIONS and Surveillance Requirements are also added. This is consistent .with the BWR Standard Technical Specifications, NUREG 1433.
0 BFN-UNITS 1, 2,  8L  3                                                Revision 0
                                                                      .u
 
0 UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE OF
 
5'eCe.hCa    Ond b f Al 4 7 A.        a    Co 2  's  Primary containment                2.      e  ae integrity shall  be LCo 3.a. l.3    maintained at all times                Primary containment nitrogen PPPli Cab t e vhen the reactor is critical            consumption shall bc or. vhen the reactor vater
          ~
monitored to determine the temperature  is above 212 F            average daily'nitrogen and fue    s in the reacto            consumption for thc last esse    ccpt w c                      24 hours.      Excessive leakage performing "open vessel"                is indicated by a H2 physics tests at power                  consumption rate of > 2X of levels not to exceed                    the primary contaiamcnt free 5  Kf(t).                              volume per 24 hours (corrcctcd for dryvell
: b. Primary containment                    temperature, pressure, and iategrity is confirmed the maximum allovable if            venting operations) at 49.6 psig. Corrected to integrated leakage rate,              normal dryvell operating La, does not exceed the                prcssure of 1.1 psig, this equivalent of 2 percent of            value is 542 SCFH.          If this thc primary containment                value is exceeded, the volume pcr 24 hours at the              action specified ia 49.6 psig design basis                3.7.h.2.C shall be taken.
accident pressure, Pa.
Perform leakage rate testing C~ If 52  makeup  to the primary          ia accordance vith thc Primary containment averaged over              Containmeat Leakage Rate 24 hours  (corrcctcd for              Tcstiag Program.
pressure, temperatures aad venting operations) exceeds 542 SCFH,  it  must bc reduced 5ee &~we'eeei n CeeChuys to < 542 SCFH vithin 8 hours or the reactor shall be                  p    BF< isis 3      r.i.l 0
placed in Hot Shutdown
                                                                                ~
within the next 16 hours.
hMENStE&#xc3;f NL    243 BPS                                      3.7/4.7-3 Unit  2                                                          FAGE~OF 7
 
                                                                      +  ciCAfiow s.C./.3 4.7.A.
4.7.A.2. (Cont'd)
(1)  If  at any time  it determined that the is criterion of 4.7.A.2.g is exceeded, repairs shall be initiated immediately.
(2) If conformance    to the
        ~c >$ 446$ io~    p                            criterion of C %~5'~ gfh/                                      4.7.A.2.g is not IS7S 3.6.I./ +3.C./.2.                            demonstrated within 48 hours following detection of excessive local leakage, the reactor shall be shut down and depressurized until repairs are effected and the local leakage meets the acceptance criterion  as demonstrated by retest.
: 3. C. /.'R The main steamlxne isolation valves shall be tested at a pressure of 25 psig for leakage during eac re ue x If the  leakage rate of 11.5 scf/hr for any one main steamline isolation valve is exceeded,    repairs and retest shall be performed to correct the condition.
BFN                          3.7/4.7-8 Unit 2 PAGE
 
3.7,C,      Se o d        Co ta    ent
: 3. Secondary containment      integ-rity shall    be maintained  in                qgP VASTlAJAR'iON FOR the refueling zone, except as                    gpwN~s Fog ZHiv              ad    3.6.V./
specified in 3.7.C.4.
: 4. If refueling      zone secondary containment cannot be maintained the folloving conditions shall be met:
: a. Handling of spent fuel and all operations over spent fuel pools and open reactor wells containing fuel shall be prohibited.
: b. The standby gas treatment system suction to the refueling    zone  vill be blocked except for a controlled leakage area sized to assure the achieving of a vacuum of at least 1/4-inch of vater and not over 3 inches of eater in all three reactor                              ms+          paa J r 'll. l, 1b zones. This is only appli-                                                    r(
cable  if  reactor zone QC,(aalesara Qrteakg integrity is re uired.
ima              e      oato                        ma        tai            t Isol      on V                                                    V    e
          ~
            . l. Shen Primary Containment                        1. The  primary containment g~li~ob. IA            Integrity is required, all                            isolation valves rimary containment isolation                        surveillance shall              be valves and all reactor                                performed as follows:
coolant system instrumen                                                                    Q~
LC.O 3. lo./, 3    line flow check valves shall                          a. At least once per o er-be OPERAB        except as                                ti          c c        the OPER-specified in 3.7.D.2.                                      ABLE primary contain-ment isolation valves
              *Locked or sealed closed valves                                    that are pover operated may be opened on an      intermittent        sR 3.4.1.3.5      and    automatically basis under administrative control.          SR  ~4.I.M        initiated shall be SR3.l'm. 1.3.7    tested for imulated go+  ( ~ +CTIONg                                      automatic initiation
                          <gag    ko SR. 3.C.t  )                                                    act+ad. or    I BFH                                              3.7/4.7-17                  NENOMEgr go.            20g Unit    2 PAGE        t        OF        I
 
'
at Vaa'yes sR 3.g,/,3p SR  ~  C.(.3.        and in accordance with g
Specification 1.0.MM, tested for closure times.
In accordance with Specification 1.0.MN, all  normally open power L5      P~P      ~    AC7.(oe 8 operated primary containment isolation valves shall be Propos        4'o6l    D                                              functionally tested.
PmposM hcT(oQ            p                                        c.    (Deleted)
Sg 3.C.l.8.8
: d. At least        nce pe
          /6      ~"o ~c'4 No>4. 2 4a ACAahP                                              o  erati      'c c    the tFCV w+Q Propos~ (" cs g l        4ci  c7cogg            4    ~
p4S>)i~
iso/aA'm o>f OPERABILITY of the reactor coolant system s:~/~~                instrument line flow 2~    In the event        any pr mary conta n
                                                                    /l~C S) vo
                                                                            $ ~
lh jfrlf~<g 2.
check valves shall be verified.
enever a primary contain-ent            o  va v becomes                            ment    isolation valve is inoperable, reactor operation may ~A/4<<cg                      inoperable, the osition of continue provided at least one                Ack~
CoA ki                                                                    t least one other valve in Ae c.
valve, in each line having an                  4.Z+C,2.      each line having an inoperable valve, is OPERABLE                                ino erable valve shall be and        thin 4  hours  either:                          recor e        ail A('TlOhLS                                                    LY P,e+                a.      The  inoperable valve is restored to OPERABLE                            ~roPoL~ Sls          3 Co. I 3 status, or 3.C, L3.2
: b.      Each  affected line is                                                S.C.J 3. 3 gcyuirQ          isolated by use of at least                                          3.4 /2. g Aa4ia~      . one  deactivated containment                                        Z.C. (  P. g R. I +C. [      isolation valve secured in the isolated positio mc  wag w~ Ip4      f,/;g
: 3. If Specification        3.7.D.1  and                      "k      i o~ +Ice(c. vg/
3.7.D.2 cannot AC.<lou be met, an orderly shutdown shall be initiated and the reactor shall P/~    +    J    ~ lr~/~ Secor~
E, be    i t      COLD SHUTDOWN COHDITIOH within          ours.
3&
BFH
                            ~'+                La          3.7/4.7-18                        AMENDMEHT NO        204 Unit  2 Pl  8 ggacVlA~~
                    ~ogo iTic 5        o;,V (2 lip,~
 
  ~ 7.F.                o  t                              4.7.F.              0
                                                                  ~Ss~te
: 1. Thc primary containment purge                    1. At least once every 18 system shall be OPERABLE for                          months, the prcssure drop PURGIHG, except as specified                          across the combined HEPA in 3..7.F.2.                                          filters and charcoal adsorber banks shall be
: a. The    results of the in-place                  demonstrated to be less cold DOP and halogenated                        than 8.5 inches of vater hydrocarbon tests at design                      at system design flov flows on HEPA filters and                        rate (g lOX).
charcoal adsorber banks shall show g 99K DOP removal                    a. The  tests and sample and g 99K halogenated hydro-                          analysis of Specifica-carbon removal vhen tested                            tion 3.7.F.1 shall be in  accordance      vith                              performed at least once AHSI H510-1975.                                        per operating cycle or once every 18 months,
: b. The  results of laboratory                            vhichever occurs    first carbon sample analysis shall                          .or after  720 hoars of shov g 85K, radioactive                                system operation and methyl iodide removal vhcn                              folloving significant tested in accordance        vith                      painting, fire, or ASTI D3803.                                            chemical release    in any ventilation xone communicating vith thc
: c. System flov rate shall be                              systems shown to be vithin g 1OX of design flov vhcn tested                      b. Cold  DOP testing shall in  accordance      vith                              be performed    after each AHSI H510-1975        ~                                complete or partial replacement of the HEPA
: 2. If the    provisions of 3.7.F.l.a,                        ~
filter  bank or after b, and c cannot be met, the                                  any structural maintc system shall be declared                                    nance on the system inoperable. The provisions of                                housing.
Technical Specification 1.C.l do not apply. PURGIHG may con-                          c. Halogeaatcd hydrocarbon tixxae using the Standby Gas                                testing shall    be Treatment System.                                            performed after each complete or partial 3o    ae    The 18-inch primary contain-                            replacement of the ment isolation valves asso-                            charcoal adsorber bank SR s.< 1.3. I  ciated vith PURGIHG may be                              or after any structural f4of~        open during the RUH mode                                maintenance on the for a 24-hour period after                              system housing.
entering the        RUN mode  and/or for  a 24-hour period.
to eater prior the SHUTDOMN SEE  &$TI Pic'&ion)
F~~ c~S      g 7~/q fog <<""-    5$
mode.        e  0        TY of                Sec4io ~
BPK Unit 2-
                    ~-'~''->      "    .... 3.7/4.7-21 NENMRf NO        231
 
APR  2 9  1991
~  '''s.                                                                          a    e these primary
      /Co  9.C.t. 3    containment isolation valves is governed by Technical Specification 3.7.D.
: b. Pressure    control of the contai      nt is normally performed by VENTING through 2- ch primary containment        olation valves vhich ute ffluent to the Standby G    Treatment Sy      em.
The    PERABILITY o these rimary contai ent isolatio valves        governed by Technical        ecification 3;7.D.
3.7.G. Co  ta      e      mos    ere                  4.7.G. Co ta    e  t t    os  ere ut    o    S ste    C                                utio    S  stem    C D
: 1. The Containment Atmosphere                        1. S  st      0  crab      t Dilution (CAD) System shall be OPERABLE vith:
: a. Tvo independent                                a. Cycle each solenoid systems capable      of                              operated air/nitrogen supplying nitrogen                                    valve through at to the dryvell and                                    least one complete torus.                                                cycle of      full travel in  accordance      vith Specification 1.0.MM, and at least once per month verify that each manual valve        in the flov path is open.
: b. A minimum    supply of                        b. Verify that the CAD 2,500 gallons of                                      System contains a liquid nitrogen per                                  minimum supply of system.                                              2,500 gallons of liquid nitrogen tvice per veek.
~ ..
Unit  2 5 E~ 0 <S TI F' C AT t o g F'o~
                                                    .7/4.7-22                AMENDMEMTN0.        I9 C9+n'~      Fag. Pp/J    <<~ Z.g.g,i      ~
7'AG~~o~~
 
0' INSERT PROPOSED    NEW  SPECIFICATION    3.6.1.4 Insert  new Specification 3.6. 1.4, "Drywell Air Temperature," as shown-in the BFN Unit 2 Improved Standard Technical Specifications.
 
JUSTIFICATION  FOR CHANGES BFN    ISTS:  3.6.1.4 -  DRYWELL AIR TEMPERATURE TECHNICAL CHANGES  -  NORE  RESTRICTIVE Hl    A new Specification is being    added requiring drywell air temperature to  be 150'F. This is required since some accident analyses assume this temperature at the start of an accident.              Appropriate ACTIONS and Surveillance Requirements are also      added. This is consistent .with the BWR Standard Technical Specifications,      NUREG 1433.
BFN-UNITS 1, 2, 5,  3                                                      Revision  0
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION
 
2oae      Primary containment              2.      te rat d  e    ate  est integrity shall  be maintained at all times                Primary containment nitrogen when the reactor is critical          consumption shall be
  +l >CA bo l e'fy or when the reactor water              monitored to determine the t'emperature is above 212 F            average daily. nitrogen and fuel is in the reactor            consumption for the last vessel                e                24 hours. Excessive leakage ing "open vessel"              is indicated by a H2 physics tests at power                consumption rate of > 2X of levels not to exceed                  the primary containment free 5 MW(t).                              volume per 24 hours (corrected for drywall
: b. Primary containment                    temperature, pressure, and integrity is confirmed the maximum allowable if          venting operations) at 49.6 psig. Corrected to integrated leakage rate,              normal drywell operating La, does not exceed the                pressure of 1.1 psig, this equivalent of 2 percent of            value is 542 SCFH. If this the primary containment                value is exceeded, the volume per 24 hours at the            action specified in 49.6 psig design basis                3.7.k.2.c shall be taken.
accident pressure, Pa.
Perform leakage rate testing co  If H2 makeup  to the primary          in accordance with the Prima containment averaged over              Containment Leakage Rate 24 hours  (corrected for              Testing Program.
pressure, temperature, and venting operations) exceeds 542 SCFH,  it must be reduced      e g~hknlfio~ kR Qagr5 to < 542 SCFH within 8 hours      foA BFQ [5+5 g,4g,/
or the reactor shall be placed in Hot Shutdown within the next 16 hours.
BFK                                        3.7/4.7-3              NENMERr go. 2 Og Unit 3                                                        ma~    ~
 
4.7.A.
4.7.A.2. (Cont'd)
: h.    (1) Zf  at any time  it is determined that the criterion of 4.7.A.2.g is exceeded, repairs shall be initiated immediately.
(2) Zf conformance to the criterion of 4.7.A.2.g is not
      ~<~ +~$ 5~~4%40~ 4" C(~~                              demonstrated within Ar it/-nl /st  y.g,/.I ~~~ I +                        48 hours following detection of excessive local leakage,  the reactor shall  be shut down and depressurized  until repairs are effected and the local leakage meets the acceptance criterion as demonstrated  by retest.
SR Z.C./3.~o main steamline isolation valves shall be tested at a pressure of 25 psig for leakage during each refuelzn outa e    Zf the leakage rate of 11. 5 scf /hr for any one main steamline isolation valve is exceeded, repairs and retest shall be performed to correct the condition.
BFN                              3.7/4.7-8 Unit 3
 
0 3.7.C
: 3. 5ccondary contaiameat integ-rity shall bc maintained in                cc  wushCi'ccgi~
the rcfueliag zone, except as specified in 3.7.C.4.                    Ch~        ~,  8c'N  isfs  w.~.q,j
: 4. Ig refueliag zone secondary containment cannot be maintained the folloving conditions shall bc met:
: a. Handliag of spent fuel and all operations over spent fuel pools and open reactor vclls coataining fuel shall bc  prohibited.
The standby gas treatment system suction to the refucliag    xone  vill bc blocked except for a controlled leakage area sized to assure the achieviag of a vacuum of at least 1/4-inch of vater aad not over 3 inches of vater in all three reactor                      epee~ geaH+v zones. This is only appli-                      pcgguW +<at'c< S cable  if  reactor zone integrity is required.
D                                                  D.
liCalsth
: l. Mxen Primary Containment                      1. The  primary containment Integrity is required, all                          isolation valves primary contaiament                                surveillance shall bc isolation valves and all                            performed as follovs: P2.
reactor coolant system Lco kc,ty      inst        t  line flov check valves shall be OPERAB ao  it  least once per o cr-atiag  cycle,    e OPER-czcept as specified ia                                                ry contain-3.7.D.2                                                  ment  isolation valves that are pover operated
          *Locked or scaled closed valve                SR ~.6.t.ws    and  automatically may be opened on an      intermittent        gag.&.L3. 0 initiated shall be basis under administrative control                            tested for simulated Pfo~ l +e ~Ti'ow5 sR 3.r .l.s.7  automatic initiation sg s,g,(,3,g                                        OD OR Lt BHl                                          3.7/4.7-17 tiait  3                                                                  NENOMENf Ntt. 16L
 
5 ec;Simeon K4                ~ l  3 NV 18 592 gl and  in  accordance                  vith Specification 1.0.$ t, tested for closure times.
: b. In accordance vith 45                                                                      Specification 1.0.MN, ro                emn g                                        all normally        open pover L        ~    seA HcHo~                                                operated primary containment isolation Filo/><<A pcVion            F                                    valves shall tested be'unctionally PapoScd    Noh        W  4  Rch'on5                        c.  (Deleted) 5                                                    Z
: d. At least once per
                        ~ oP<Srd    N&S        3+/        +AonS                          operating cycl the ECe4 a Ww        oPB                o the fo %t <5ol atia& reactor coolant system fes:how on a      instrument linc flov check valves shall be linc  ggav.
verified S
ignis
: 2. In the even                  primary contain            2. whenever a primary contain-ent isolation valv ccomes                                    ment isolation valve is o          c, reactor operation may                        inoperable, the position of continue provided at least one                    %H n        at least one                            valv in eoAcii lion  valve, in each line having an                      4,+C      each  line having an A+e.        inoperablc valve, is OPERABLE                                  ino erablc valve shall be and                      our    either:                          ordcd da y.
P cnuz A+~                        The inoperable            valve is restored to          OPBRABLB                    f Oops'tl SRs status, or                                                          3
                                                                                                  ~ 4.I.S.3 b    Each    affected linc is                                            3'o c,l,g,g EcQa6rclk        isolated by use of at least                                                .l.3.$
4@+ n    g,l+    one  deactivated containment                          L3 4al isolation valve secured the isolated position.                              <losed  ~n~)        Value,gl;nd t                3. If Specificationbc 3.7.D.lan and                            ~<a%<,~ caw.i va>n ~,~
3.7.D.2 cannot                mct,                                          ohe vaNe gecur~ot orderly shutdovn shall bc initiated and the reactor shall G              bc        th COLD SHUTDOWN( COHDITIOK vi            hours'i BPK AT >Halo~
3.7/4. 7-18                    AMENDMENT NO.                  I6 y Unit      3      <                        Coa)Dido& LR AI
                                ~s  4& l~                                                  PAGE
 
Q'e cia'I              ~ 3 FEB 1 81995
.7.F.                          t    c            4.7.F.
                                                              ~Ssteg
: 1. The  primary containment purge                l. At least once every 18 system shall be OPERABLE for                        months, the pressure drop PURGIHG, except as specified                        across the combined HEPA in 3.7.F.2.                                        filters and charcoal adsorbcr banks shall bc
: a. The  results of thc in-place                  demonstrated to bc less cold DOP and halogenated                      than 8.5 inches of vater hydrocarbon tests at design                    at system design flov flovs  on HEPA  filters and                    rate (g 10Z).
charcoal adsorber banks.
shall shov g 99Z DOP removal                  a. The    tests and sample and g 99Z halogenated hydro-                        analysis of Specifica-carbon removal vhcn tested                          tion 3.7.F.1 shall be in  accordance  vith                              performed at least once AHSI H510-1975.                                    per operating cycle or once every 18 months,
: b. The  results of laboratory                        vhichever occurs first carbon sample analysis shall                        or after 720 hours of shov g 85Z radioactive                              system operation and methyl iodide removal vhcn                          folloving significant tested in accordance  vith                        painting, fire, or k              AS'3803    ~                                      chemical rcleasc      in azar    ventilation  zone communicating      vith  thc
: c. System flov rate shall bc                          system.
shovn to be vithin g 10Z of design flov vhcn tcstcd                  ~
: b. Cold DOP testing shall in accordance vith                                bc performed after ea AHSI H510-1975  ~                                  complete or partial replacement of the HEPA
: 2. If the    provisions of 3.7.F.l.a,                        filter bank or after b, and c cannot be met, thc                              any structural mainte-systea shall be declared                                nance on thc system inoperable. The provisions      of                      housing.
Technical Specification 1.C.1 do not apply. PURCIHC may con-                      c. Halogenated bydrocarbon tinue using th>> Standby Cas                              testing shall be Treatment System.                                        performed after each Section      complctc or partial 3o  ao    The  18-inch primary contain-                      replacement of the aent isolation valves asso-                        charcoal adsorbcr bank SC p,r,~,p,I      ciated vith PURGIHG may be                        or after    axe  structura gobe,            open during the RUH mode                          aaintcnance on the for a'4-hour period after                              stem housing.
entering the RUH mode and/or          St:e <icsAfrczgc,n    Q. C+g~
for a 24-hour period prior            ~~/> >1 to entering the SHUTDOWH                            </V  VFin  P.kj) mode.      e OPERABILITX of BFI                  Lco F,y.[,y          3.7/4.7-21 AMENDMENT NO. I S  8 Unit 3
 
5(ec.i Ac~+on 3,4 ~ ( 3 2 9  1991 3.7.F.
these primary containment isolation valves is governed by Technical Specification 3.7.D.
: b. Pressure ontrol of thc ontainmcn is normally p rformed b VEHTIHG th ough 2-in primary con ainment is ation valv  s vhich ro  e efflu t to    the    andby Gas  Tr tment Sys The  OPE    ILIA of thcsc pr    ry containm      isolation valves is vcrned by Tcchnical Specification 3.7.D, 3.7.G.                                            4.7.G.
The Containment Atmosphcrc Dilation    (CAD) Systea  shall be  OPERABLE    vith;
: a. Two  independent                              a. Cycle each solenoid systems capable    of                            operated air/nitrogen supplying nitrogen                                valve through at to the dryvell and                                least onc complete torus>>                                            cycle of  full travel in  accordance  vith Specification 1.0.MM, and at least once per month verify that each manual valve in thc flov path is    open.
: b. A miniama supply    of                        b. Verify that thc    CAD 2,SOO gallons of                                  Systea contains a liquid nitrogen pcr                                minimum supply of system>>                                            2,500 gallons of liquid nitrogen tvici
          ~'~  ~~Auto~      ro, gp    cs                          cr vc ck
        ~
          &It gpN ($ y BFI                                      ~ 7/4.7-22          SWIDNrryy, g gs Unit  3
 
INSERT PROPOSED        NEW  SPECIFICATION    3.6.1.4 Insert  new  Specification 3.6. 1.4, "Drywell Air Temperature," as shown  in the  BFN Unit 2 Improved Standard Technical Specifications.
 
0' JUSTIFICATION FOR CHANGES BFN  ISTS:  3.6.1.4 - DRYWELL AIR TEMPERATURE TECHNICAL CHANGES  - NORE RESTRICTIVE Hl    A new  Specification is being added requiring drywel1 air temperature to be 150'F. This is required since some accident analyses assume this temperature at the start of an accident.          Appropriate ACTIONS and Surveillance Requirements are also added. This    is consistent with the BWR Standard Technical Specifications, NUREG 1433.
BFN-UNITS I,  2, 5 3                                                  Revision. 0 PAGE
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.1.3  -,. PRINRY CONTAINNENT ISOLATION VALVES ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance'ith the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
In addition, the PCIV LCO now exempts the reactor building-to-suppression chamber vacuum breakers and scram discharge volume vent and drain valves since they are governed by other LCOs. Any changes to the requirements for these valves are discussed in the new LCO Justification for  Changes.
A2  The  current technical specification (CTS) 4.7.D.l.a frequency of "once per operating cycle" has been changed to "In accordance with the Inservice Testing Program" for proposed SR 3.6.1.3.5 (stroke time tests). The CTS 4.7.D.l.d frequency of "once per operating cycle" has been changed to "18 months" for proposed SR 3.6. 1.3.8. Since an operating cycle is 18 months and the current IST program requires testing every 18 months, this change is considered administrative in nature. The CTS 4.7:A.2.i frequency of "each refueling outage" has been replaced with "in accordance with the Primary Containment Leakage Rate Testing Program" for SR 3.6. 1.3.10. This program requires Appendix J requirements to be met. The Appendix J requirements will always supersede the Technical Specification requirements (unless an exemption is approved) since Appendix J is the rule. Therefore, this change is purely an administrative preference in presentation.
A3    This proposed Note ("Separate Condition entry is allowed for each penetration flow path") provides explicit instructions for proper application of the actions for Technical Specification compliance.      In BFN-UNITS 1, 2, & 3                                                    Revision  0
 
JUSTIfICATION  FOR CHANGES BFN ISTS  3.6.1.3 -  PRIMARY CONTAINMENT ISOLATION VALVES conjunction with the proposed Specification 1.3 - "Completion Times,"
this Note provides direction consistent with the intent of the existing Actions for inoperable isolation valves.
A4    The proposed ACTIONS    include Notes 3 and 4. These Notes facilitate the use and understanding    of the intent to consider any system affected by inoperable isolation valves, which is to have its ACTIONS also apply      if it  is determined to be inoperable. Note 4 clarifies that these "systems" include the primary containment. With proposed LCO 3.0.6, this intent would not necessarily apply. This clarification is consistent with the intent and interpretation of the existing Technical Specifications, and is therefore considered an administrative presentation preference.
AS    The current single Action for "any primary containment isolation valve" has been divided into three ACTIONS. Proposed ACTION A for one valve inoperable in a penetration that has two valves, proposed ACTION B for two valves inoperable in a penetration that has two valves, and proposed ACTION C for one valve inoperable in a penetration that has only one valve. All technical changes are discussed elsewhere in this section.
As  such, this change is considered an administrative presentation preference.
TECHNICAL CHANGES    - MORE RESTRICTIVE Ml    CTS  3.7.D.3 requires an orderly shutdown be initiated and the reactor to be in the COLD SHUTDOWN CONDITION within 24 hours when certain conditions can not be met. Proposed Action E will require the plant be in MODE 3 in 12 hours and MODE 4 in 36 hours. The addition of this intermediate step to the COLD SHUTDOWN CONDITION is considered more restrictive since CTS does not require any action to have taken place within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
M2    CTS  applicability for PCIV operability is when primary containment integrity is required. Per CTS 3.7.A.2.a, primary containment integrity is required at all times the reactor is critical or when the reactor water temperature is > 212'F and fuel is in the reactor vessel. The proposed applicability of MODES 1, 2, and 3 is more restrictive since CTS does not require primary containment integrity when in NODE 2, not BFN-UNITS 1, 2,  8E 3                                                  Revision 0
 
JUSTIFICATION  FOR CHANGES BFN ISTS    3.6.1.3 -  PRIMARY CONTAINMENT ISOLATION VALVES 0
critical    and  (  212'F. The proposed Specification is also applicable when  associated      instrumentation is required to be OPERABLE per LCO 3.3.6. 1, which adds a MODE 4 and 5 requirement for the RHR Shutdown Cooling isolation valves. An appropriate ACTION has been added (proposed ACTION F) for when the valves cannot be isolated (since the unit is already in MODE 4 or 5, the current actions provide no appropriate compensatory measures). ACTION F requires the licensee to initiate action to suspend operations with the potential for draining the reactor vessel immediately and to restore valve(s) to OPERABLE status immediately. If suspending an OPDRV would result in closing the RHR Shutdown Cooling valves, an alternative required action is provided to immediately initiate action to restore the valves to OPERABLE status.
M3    New  Surveillance Requirements have been added. SRs 3.6. 1.3. 1, 3.6. 1.3.2 and  3.6. 1.3.3 ensure PCIVs are in their proper position or state. SRs 3.6. 1.3.4 and 3.6. 1.3.9 ensure the traversing incore probe (TIP) squib valves will actuate        if required. These SRs are additional restrictions on plant operation.
This change adds acceptance          criteria to the Surveillance requires an Operability test of the instrument line excess flow Requirement'hich check  valves (EFCVs). The acceptance criteria added requires that the EFCVs  actuate to the isolation position          on a simulated instrument line break signal. The        addition  of acceptance  criteria which did not previously exist in Technical Specifications constitutes a more restrictive    change.
TECHNICAL CHANGES    -  LESS RESTRICTIVE "Generic"  .
LA1  CTS  3.7.F.3.b provides no requirements, it just explains that the normal method of containment pressure control is through 2-inch PCIVs, which route effluent through the SGTS. Since the OPERABILITY of these valves is governed by proposed BFN ISTS 3.6. 1.3, the specification provides no requirements and has been eliminated. Any details relating to PCIV operability have been relocated to the Bases of LCO 3.6. 1.3. Placing these details in the Bases provides assurance they will be appropriately maintained since changes to these details will require a 50.59 evaluation.
BFN-UNITS 1, 2, & 3                                                                        Revision 0
 
JUSTIFICATION    FOR CHANGES BFN ISTS    3.6.1.3 -  PRIMARY CONTAINMENT ISOLATION VALVES "Specific" Ll  The phrase "actual or" in reference to the automatic isolation signal, has been added to the Surveillance Requirement for verifying that each PCIV actuates on an automatic isolation signal.            Thi's allows satisfactory automatic PCIV isolations for other than Surveillance purposes to be used to        fulfill  the Surveillance Requirements.
Operability is adequately        demonstrated    in either case since the PCIV cannot discriminate between "actual" or "simulated".
L2  The  provisions of the "*" Note of CTS 3.7.D. 1 are encompassed by Note 1 to the ACTIONS, which allows penetration flow paths to be unisolated intermittently under administrative controls (except for the 18-inch purge valve penetration flow paths). However, the ISTS allowance applies to all primary containment isolation valves (except for 18-inch purge valve penetration flow paths) not just locked or sealed closed valves. The allowance is presented in proposed ACTIONS Note 1 and in SR 3.6. 1.3.2, Note 2. Opening of primary containment penetrations on an intermittent basis is required for performing surveillances, repairs, routine evolutions, etc.
CTS  3.7.D.2.b allows isolating the primary containment penetrations with at least one deactivated valve secured in the isolated position when one PCIV is inoperable.        The proposed ACTIONS A and C of LCO 3.6. 1.3 allow the use of at least one closed and de-activated automatic valve, closed manual valve, blind flange, or check valve (for Condition A only) with flow through the valve secured. The Action utilizing a deactivated automatic or manual valve is appropriate on the basis that these isolations present a boundary which is not affected by a single failure.
The ability to utilize the valves downstream of the outboard PCIVs is an acceptable    isolation since    it meets  the acceptance  criteria of  not being affected by    a single active failure.
L4    CTS  3.7.D.2 allows reactor operation to continue when any PCIV becomes inoperable provided that at least one valve in each line having an inoperable valve is operable and within 4 hours the affected line is isolated or the inoperable valve is restored to OPERABLE status. Based on the wording, this only applies to lines with two isolation valves.
This is equivalent to proposed ACTION A, however, the proposed ACTION allows additional time to isolate the main steam lines. A Completion Time of 8 hour s for the MSLs allows a period of time to restore the MSIVs to OPERABLE status given the fact that MSIV closure will result in isolation of the MSLs and a potential for plant shutdown. For BFN-UNITS 1, 2,  8L  3                                                        Revision  0
 
0 JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.1.3 - PRINRY  CONTAINMENT ISOLATION VALVES penetration flow paths with only one PCIV, proposed ACTION C allows 4 hours to restore an inoperable valve to OPERABLE status and 12 hours to restore EFCVs in reactor instrumentation line penetrations. The four hour Completion Time is reasonable considering the relative stability of the closed system to act as a penetration boundary and the relative importance of supporting primary containment OPERABILITY during MODES 1, 2, and 3. The Completion Time of 12 hours is reasonable considering the instrument and the small pipe diameter of the affect penetr ations.
During the allowed time, a limiting event would still be assumed to be within the bounds of the safety analysis, assuming no single active failure. Allowing this extended time to potentially avoid a plant transient caused by the immediate forced shutdown is reasonable based on the probability of an event and does not represent a significant decrease in safety.
L5    In the event both valves in a penetration are inoperable, the existing Specification, which requires maintaining one isolation valve OPERABLE, would not be met and an immediate shutdown is required. The proposed ACTION (ACTION B) provides 1 hour prior to commencing a required shutdown. This proposed 1 hour period is consistent with the proposed BWR Standard Technical Specification time allowed for conditions when the primary containment is inoperable. The proposed change will provide consistency in actions for these various containment degradations.
L6  The frequency of the periodic verification required when a penetration has been isolated to comply with current Specification 3.7.0.2 has been changed from daily to monthly. These valves are        strictly controlled and are operated in accordance with plant procedures.        Daily verification that these valves are still isolated places an undue burden on plant operations and provides    little if  any gain in safety, since these valves are rarely found in the unisolated condition, once closed. Note that CTS 4.7.D.2 requires the position of one other valve in the line be "recorded" daily versus the ISTS wording of "verified." ISTS also allows  an  inoperable valve to be used    for isolating the penetration.
L7    The Note  to SR 3.6.1.3.1 allows the    SR  to not be met  (i.e., do  not have to verify closed) when the valves are open      for inerting, de-inerting, pressure control, ALARA or air quality considerations for personnel entry and for Surveillances that require the valves to be open. For these reasons, it is deemed acceptable to open the valves for short periods of time. CTS 3.7.F.3.a, which allows the 18-inch primary containment isolation valves associated with PURGING to be open during the RUN mode during a 24-hour period after entering the RUN mode and/or BFN-UNITS 1, 2, & 3                                                        Revision  0
 
JUSTIFICATION  FOR CHANGES BFN ISTS 3.6.1.3 -  PRIMARY CONTAINMENT ISOLATION VALVES for  a  24-hour period prior to entering the SHUTDOWN mode, is encompassed by the provisions of the Note. The additional exemptions allowed by the Note are acceptable since the 18-inch purge valves continue to be capable of closing in the environment following a LOCA.
The time allowed to shutdown the plant      when the required actions are not L8
    'et    has been changed from "in the    COLD SHUTDOWN CONDITION  within  24 hours" to in    MODE 3 (Hot Shutdown) in 12 hours and MODE 4 (Cold Shutdown) within 36 hours. The proposed allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. The additional 12 hours allowed to reach Mode 4 is offset by the safety benefit of being subcritical (MODE 3) in a  shorter required time.
L9'his        change adds proposed ACTION D which relaxes the allowed outage time from  4 hours to 8 hours to isolate the affected penetration      if one main steam isolation    valve  (HSIV) in one  or more penetrations is  inoperable (due to leakage or other reason).      This will allow a longer period of time to restore the HSIVs to OPERABLE status in order to prevent the potential for a plant shutdown by isolating the main steam line(s).
During the additional time allowed, a limiting event would still be assumed to be within the bounds of the safety analysis, assuming no single active failure. Allowing this extended time to potentially avoid a plant transient caused by a plant shutdown is reasonable and does not represent a significant decrease in safety.
t BFN-UNITS 1, 2, L 3                                                        Revision  0
 
4 UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
4 c.,  Cq on  76  ~ t ~
                                                                                                                  ~
JUL  17 5%
ce  t  gs Itpcc        fi d i                      a. The pressure suppression
                          .7.A 3.g bello              vo pressure                  chamber-reactor building suppress            on      ber-reactor                    vacuum breakers shall be Rg(lie b'lip building            vacuum breakers shall                  exercised in'ccordance vith 8c)oem' bc  OPERABLE at          all  times vhcn                  Specification 1.0.MM an            e PRIMARY COHTAIHMEHT IHTEQRITY                  3.a.l,5.3  assoc ate instrumentation is required. The setpoint                                  including sctpoint shall be of the differential pressure                                functionally tcstcd for SR                    instzlwcntatfon vhich actuates                            proper operation per Table 3.~.t.                the pressure suppression                                    4 7.h chamber-reactar              hi~tLag vacuum breakers              shall be pcr Table 3.7.A.
Sfz.~.t.S. ~
C'crloitj            and trios'om after the date                    b.k      s that  one          of the pressure                        determination that the 5    suppression chamber-reactor                                force required to open each Aec,                building            vacuum breakers is                    vacuum breaker (check valve) made or found to bc inoperable                              does not cxcced 0.5 psid
~ t) t'f~~
for any reason, reactor operation is permissible oaly duriag the succeeding sevca days, provided that the vill be ou'tage e made each    refueling
  )far toH$            repair procedure does not                              fop et  SR B  u+<                violate    PRIMARY COHTAIHMEHT IHTE DURITY.
4e                                                              4.
ae When  primLry contaiament is                          a. Each dryvell-suppression required, all dryvell-                                      chamber vacuum breaker suppression chamber vacmm                                  ahall  be    tcstcd in accordance brgakera shall be OPERABIZ                                  vith Specification        1.0.MM.
and positioned in the fully closed position (except daring testing) except as                              b. When  it is determinedarethat specified tn 3,7.L 4.b and                                  ceo vacmm breakers 3.74A.c., belor.                                            inoperable for opening at a time vhen OPERABILITY is b  One  dryve11-suppression                                  required, all other vacmm chamber vacuum breaker may                                  breaker valves shall be be nonfully closed so long                                  exercised immediately and 0                      as  it  is determined to be not more thea 3 open as indicated by the    position lights.
every 15 days thcrcafter until the inoperable valve haa tete rmal service BFR                                                      $ .7/4.7-10                AMENbME&#xc3;f      N, 2 2 2 Unit      1 PAGE                PP~
 
TABLE 3.7.A 1NSTRNKNTATIOH FOR CONAlliiENT SYSTENS Minima No.
Operable Per Irhdeta 1nstnaent    annel-                .5 psld                            Actuat    the pressure Pressure s ppresslon                                                    suppre sion chaiber-chamber-r actor building                                                react r building vacua b eakers                                                          vacu  breakers.
(Pdl      20, 21)
Footnote:
gapa)r n 2I hours. lf the  fun ion ls not OPERABLE ln  4 hours, declare  th systea or coeponent lnoperabl ~ .
 
TABLE  4.7.A CONTAI    T SYSTEN  INSTRlNENTATI    SURVEILLANCE REggIRENENTS n  r Ins t~nt Pressure hannel-ppression Once/aonth~l)                  Once/1d oonthsI )              No chaebe ~
actor building vacw~ o eakers (PdIS      20, 2i)
Footnotes:
(I)
~ ) -  Function    teat consists of the n ection of a siaul ed si g nal into th    electronic  trip  rcuitry in place of the sensor    gnal to verify OPKRASI ITY of the trip and alara functions.
(2) - Calibr  tion consists of the a justwent of the pri ry sensor and as ciated coeponent so that thev correspond within acceptable range and ccurac to %nolan val es of the parsee r vhich the chan el monitors, fncludin g ad]ustjaent of the electroni trip circuitry, so      at its output r ay changes state at or core conservatively than the analog equivalent of th level setting.
 
UNIT 2 CURRENT TECHNICAI SPECIFICATION MARKUP
 
e s Aa        5R  '3.
t  as  ~cifieL in                        a. The pressure suppression chamber-reactor building elo tvo pressure suppression chamber-reactor                          vacuum breakers shall be
~k.L%'q          building vacuum breakers shall                      exercised in 'accordance vith BODES    l~ g    be OPERABLE at all times vhen        5'F Specification    1.0.MM  and  t  e PRIMARY COHTAIHME2C IHTEGRITY                        associate      nstrumcntation c.l,S:3      including sctpoint shall be is required. Thc setpoint            4 of the differential pressure                        functionally tested for proper
  $g            hzstrumcntation vhich- actuates                      operation per Table 4 V.A 3.6.l.5 3        thc prcssure suppression chamber-reactor building vacuum breakers shall bc Table 3'l.L.
Pre  Sae0 Ns4C    ~ At-'TIO                              3. S.l.5 >
: b. From and after the date                                  v s      examXaacio~
that one of thc prcssure                            determination that the Li              suppression chamber-reactor                          force required to open each building vacuum breakers ia                          vacuum breaker (check valve)
P,c.riadS                                                            does not exceed 0.5 psid made or found to be inoperable for any reason, reactor                              vill bc    made each  refueling operation is permissible only                        outage.
LI p~p  ~
Ac.vroWS 8  5+8 during the succeeding seven days, provided that thc repair procedure does not
                                                                'P~p~SL        3.c.J.< I violate    PRIMARY COHTAIHMEHT IHTEQRITY.
4,                                                    4, ao Shen    primary containment is                    a. Bach dryvc11-suppression required, all dryvcll-                              chamber vacuum breaker auppression chamber vacuum                          shall be tested in      accordance breakers shall be OPERABLE                          vith Specification      1.O.MM.
and positioned in thc fully closed position (except during testing) except aa                        b. When  it  ia detenained that specified in 3.7.A.4.b and                          tvo vacmm breakers are 3.7.L.4.c. ~ belce.                                  inoperable for opening at a time vhen OPERABILITY ia
: b. Onc  dryvell-suppression                            required,    all other  vacuum chamber vacuum breaker may                          breaker valves shall bc bc  nonfully closed so long                          cxerciscd immediately and aa  it  ia determined to be not                    every 15 days thereafter until the, inoperable valve has been more thar 3 open as indicated py the position lights.                              returned to normal service.
BFS                                            3.7/4.7-10                      hMENDMBfTHO. 23 7 Unit 2            Sce ZusAC;w4gg~ t."4~~~+
4~ PF< ls7S g.g.l.g                                          .a.-.E ~OF~
 
I TABLE 3.7.A INSTRUNENTATION FOR CONTAIISENT SYSTENS Hlnlaaa No.
Operabl ~ Per rk Instrument Ch nel-                    0.5 paid                              Actuates the pressure Pressure su ress)on chamber-re tor build(ng
                                                                                                      ~
suppression chamber-vacuun b akers                                                              reactor building (PdIS    20, 21) vacua breakers.
Footnote; (l) - Raper  In 24 hours. If the  function  $ s not OPERABLE )n 24 hours, declare the systen or coeponent (noperable.
 
TABLE 4.1.A CONTAIfRiENT SYSTEH INSTRlNENTATION SURVEILLANCE REgUIRENENTS n  r    n  h  k Instrueent Channel-                      Onc  /month                    Once/18 aonths                None Pressure  suppression chaeber-reactor building vacuum breakers (PdlS<4-20, 21)
Footnotes:
(1)  - Functional  est consists of the injection of a sieulat d signal into the electronic  tr circuitry  in place of the sensor sig al to  verify OPERABILITY of the trip and alarm functions.
(2)
( )  - Calibrati    consists of the ad)ustment of the prleary sensor and associated cenponents so that the~ correspond within  a  eptabl ~ range and accuracy to known values of the paraeeter which the channel aonltors, ncluding adJusteent of the electronic trip circuitry. so that its output relay chaqges state at or sore conservatively than
-+I          the analog equivalent of the level setting.
I1J iver
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~OF~
 
sfec4iM    '.6 l 8          JUL  17 Q5 a .      cept      spec~ed                        a. The pressure suppression
                    ~  oAe3eb    clov    vo Prcssure              chamber-reactor building suppression chamber-reactor                      vacuum breakers shall be building    vacuum breakers shall                mcrciscd in accordance vith VPlimb;);      be OPERABLE at all times vhcn                    Specffication 1.0.MM            d the differential PRIMhRY COHTAIHMEHT IHTEQRITY          << gt I et eeoc ated ineteueentation ia required.      The  aetpoiat                  including setpoint shall be of tha                    prcssure              fmctfonaXXy tested for proper fastnmcntatf      on vhf ch actuates              operation per Table 4.7.A.
the pressure suppression chamber-reactor building vacuum breakers shall be per Table 3.7.A.
l Ao                  pn                      5g g.e.t..
t
: b. rom and    after thc date                  b. A                    ion an that    onc  of the pressure                      dctcrmination that thc RCho~5 suppression chamber-reactor                      force required to open each A  c-          building    vacuum breakers is                  vacuum breaker (check valve) made or found to be iaopcrable                    docs not exceed 0.5 psid for any reason, reactor                          vill be  made each    refueling pu              operation fs permissible only                    Qu'tagce during the succecdiag seven days, provided that the repair procedure does not                  ~~Posgg 8R    3 4  L  5'I 8 Or+E.        violate    PRIllkRT COHTAINHEHT IHTECRITY
: 4.                              ess 0 ae When      priory    coatafnmeat  is            a. Each dryvcll-suppression required,    all dryvell-                        chamber vacuum breaker suppressfoa chalbcr        va~                    ahall be tested in accordance breakers shaU. bc OHSABLS                        vith Speci ficatioa      1.0.MM.
sad positioned fa the fully closed posftioa (except during testing) czccpt as                    b. When  it  fs detezafncd that specified in 3.7.A.4,b aad                        tvo vacuum brcakcrs are 3.7.A.4.c belov.                                  iaoperable for opening at a time vhen OPERABILITY is
: b. One    dryvcll-suppression                        required,    all  other  vacuum chamber vaema breaker aay                        breaker valves shall be be nonfully closed so long                        ezercised hamediately and as    it  fs determined to be not aorc than 3 open as indicated every 15 days thereafter until the inoperable valve has been by the posftfon      lights.                      returned to          1 BPH Unit  3
                  ~
                  ~      ~HA.ca.hb~ f 4~,
SPe  lST5
                                          ~
3,g,t,g NPnMENT NO.      19  6
 
TABLE 3.7.A INSTRNNTATION      CONAl~ Sy5Tg6 iiiniaaa No.
Operable Per XrhJiuha Instrument Channel-                0.5 paid                            Actuates Pressure suppression                                                                e pressur suppress  on chamber-chiober<<reactor bui  Ini                                                reactor  uildini vacua breakers                                                          vacu    reakers.
(Pdl~20, 21)
Footnote:
(1)  - Repair in 21 hours. Lf the function is not OPEINBLE In 24 hours, d clare the system or component inoperabl ~ .
 
TASLF. i.l.
CONT  igiENT SYSTEM INSTRSKNATI      SURVEILLANCE REgUIRENENTS n      n  h Instant      Channel-                      Once/senth(I~                  Once/18 s>>nth Pressure suppression chaeber-reactor building vacua brea'kers (PdIS-64-20, 21)
Footnote::
(11~ - Funct  onal test consists  f the  in)ection of  sisulated signal int the electronic    trip circuitry  place of the sans    si9nal to verify    ERASILITY  of the t  p and alarm function .
(21
( ~  - Cal  bration consists o the ad)uits>>nt of he primary sensor an associated components so that            correspond ui hin acceptable ran and accuracy to own values of the pa aa>>ter erich the channel aonito, c~ ncluding a justa>>nt of the el tronic trip citcu ry. so that its outp t relay changes state at or aor conservatively than
            ~ analog equivale    of the level set ng.
tQ C>
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.1.5 REACTOR BUILDING-TO-SUPPRESSION CHAMBER VACUUM BREAKERS ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is        done  to make consistent with      NUREG-1433. During ISTS development  certain  wording preferences or English language        conventions  were adopted  which  resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.          This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    Existing  LCO    3.7.A.3 is being replaced by proposed    LCO 3.6.1.6. The proposed  LCO    will contain a  Note  stating that: "Separate Condition entry is allowed    for each line."    This note clarifies that the Conditions and Required Actions that follow may be applied to each of the two reactor building-to-suppression chamber vent paths without regard to vent path status. Each vent path contains two vacuum breakers in series. This note provides directions consistent with the intent of the Required Actions. This change is consistent with NUREG-1433.
TECHNICAL CHANGES    -  MORE RESTRICTIVE CTS  3.7.A.2.a requires the primary containment to be OPERABLE at all times when the reactor is critical or when the reactor water temperature is above 212'F and fuel is in the vessel. The proposed BFN ISTS 3.6.1.6 applicability is NODES 1, 2, and 3. This is more restrictive since CTS does not require the primary containment to be OPERABLE when in MODE 2, not critical and < 212'F.
M2    A new  Surveillance Requirement    has been added  to verify  each vacuum breaker is closed (except when they are open for performance of Surveillances) every 14 days. This is consistent with the BWR Standard Technical Specifications, NUREG 1433.
BFN-UNITS 1, 2,  8,  3                                                      Revision  0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.1.5 REACTOR BUILDING-TO-SUPPRESSION CHAMBER VACUUN BREAKERS TECHNICAL CHANGES  -  LESS RESTRICTIVE "Generic" LAl  Details of visual inspections of valves have been relocated to plant procedures. This type of inspection is more appropriately controlled  by plant procedures. The valves are still required by Technical Specifications to be cycled and their setpoint verified to ensure operability. Any changes to procedures will be controlled by the licensee controlled programs.
"Specific" Ll    Existing LCO 3.7.A.3.b identifies the currently required actions    if  one reactor building-to-suppression chamber vacuum breaker is inoperable.
If more than one vacuum breaker is inoperable, the existing specification assumes either containment integrity is lost or the ability to relieve negative pressure in the containment is lost.
Therefore, LCO 3.7.A.3.b. defaults to 1.0.C. 1 which requires that the reactor be placed in Hot Standby within 6 hours and Cold Shutdown within the following 30 hours. Proposed LCO 3.6. 1.6 recognizes that there are two vacuum breakers in series in each of two vent paths between the reactor building and suppression chamber.      As a result,  if one vacuum breaker in each vent path is not closed (Condition A), containment integrity and venting capability are still maintained and 7 days is provided to restore the redundancy for containment integrity in each vent line. Likewise,    if two vacuum breaker valves in one vent line are inoperable but closed (Condition C), containment integrity and venting capability are still maintained and 7 days is provided to restore the redundant vent path. Therefore, proposed Specification 3.6. 1.6 makes the distinction between loss of redundancy and loss of function. The existing specification fails to make this distinction between loss of function and loss of redundancy and, therefore, is unnecessarily conservative. In addition, loss of function (loss of containment integrity (Condition B) or loss of venting capability (Condition D))
will require initiating action within 1 hour instead of immediately.
Also, CTS 3.7.A.3 does not have a specific shutdown requirement, therefore, CTS 1.0.C. 1 applies. CTS 1.0.C. 1 requires the unit be placed in Hot Standby within 6 hours and Cold Shutdown within the following 30 hours. Proposed ACTION E requires the Unit to be placed in Hot Shutdown with 12 hours and Cold Shutdown within 36 hours. Proposed ACTION E is considered less restrictive since additional time is allowed prior to requiring the plant to be in a lesser Node (i.e., Proposed Action E requirement to be in Hot Shutdown in 12 hours versus the CTS requirement to be in Hot Standby in 6 hours). This change is consistent with NUREG-1433.
BFN-UNITS 1, 2, L 3
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.1.5 REACTOR BUILDING-TO-SUPPRESSION CHAMBER VACUUM BREAKERS L2    The vacuum breaker actuation instrumentation    Surveillances are proposed to be deleted from Technical Specifications.      The  requirement of SR 3.6. 1.5.3 to ensure the vacuum breakers are    full  open at 0.5 psid is sufficient. Vacuum breaker actuation instrumentation is required to be OPERABLE  to satisfy the setpoint verification Surveillance Requirement (SR 3.6.1.5.3) for the vacuum breakers.      If the vacuum breaker actuation instrumentation is inoperable, then the Surveillance Requirement cannot be satisfied and the appropriate actions must be taken for inoperable vacuum breakers in accordance with the ACTIONS of Specification 3.6. 1.5.
As a result, the requirements for the vacuum breaker actuation instrumentation are adequately addressed by the requirements of Specification 3.6. 1.5 and SR 3.6.1.5.3 and are proposed to be deleted from Technical Specifications.
BFN-UNITS 1, 2,  8L 3                                                    Revision 0 PAGE    ~    OP~
 
CURRENT TECHNICAL SPECIFICATION MARKUP
 
3.7.A                                                                  4.7.A 3~                                                              3~
aes ao  Except as specified        in                          a. Thc prcssure suppression 3.7.A.3.b bclov, tvo pressure                                chamber-reactor building suppression chamber-reactor                                  vacuum breakers shall be building    vacuum breakers shall                          exercised in accordance vith bc OPERABLE at all times vhen                                Spccificatioh 1.0.MM, and the PRIMARY COHTAIHMEHT IHTEGRITY                                associated instrumentation is required. Thc setpoint                                    including setpoint shall be of the differential pressure                                functionally tested for instDKcntatioa'vhich                                        proper operation per Table 4.7.k.
actuates'he prcssure suppression chamber-reactor        ~Bag vacuum breakers shall be pcr Table 3.7.A.
: b. Prom and after the date                                  b. A  visual examination        and that one of thc prcssure                                    dctcrmination that the suppression chamber-reactor                                  force required to open each building vacuum brcakcrs is                                  vacuum breaker (check valve) made or found to bc inoperablc                              docs not exceed 0.5 psid for any reason, reactor                                      vill be made each refueling operation is permissible only                                outagee during the succeeding seven days, provided that the repair procedure does not violate    PRIMARY COHTAIHMEHT IHTEGRITY.
SR
  ~)  >C4pif>    . When pr            containment is                      a. Each dryvell-suppression required all dryve
                    ~)
NoQP5                                                                          chamber vacuum breaker I,>+3            suppression chamber vacma                                    shall    be  tcstcd in accordance breakers shall be OPERABLE                                  vith Specification 1.0.&#xc3;M.
LI:o            sad positioned in the fully                            PAc>I>c>s+ SC, 3  6> !.6>> I closed positioa ~ocg4-3,G, I.b
: b. When tvo vac it is bre determined tha rs ar
~h                      c          n    .7. 4.
pal Q~'>>>g
                            ..c      b  er.                                          perab      for  o    ng    t a
&Cia >hg>>>IgcI, t      vhea                    is
: b. One  dryvcll suppression                                    re ired,            othe vac HQ                  chamber vacuum breaker may                                  bre      r  valv      shall be bc  nonfully closed so long                                  merc ed imm iately and 4o  jg    as  it  is determined to be not                              every        days thc inop rable ereaft uati lve ha been more thm 3 open as indicated by the position lights.                                      returaed            rmal service.
f JOt'~+ ACTIoQ A                  8.7/4.7-10 BPH          LI                                                                        hMENbME&#xc3;f 50.      222 Uait    1 4 2, pAGE~OF~+
 
0 gR 3.4. I ob  3
: c. zo  4ryvell-suyyrcssioa chamber vacuum breakers                            shaL) be inspected for may be  determined.to    be                      prayer operation of the yerable for    op~                              valve and 1&" wi-""cs ance v1
                                                                                                      ~c V~ s wQ~~
QvC~~gp    g+~
Syec''at'n      L. Q .. !.      Fo isvS S.I,<.l QC7(onl              S pec'cat'oas      3.7.4.4.a,                4. k Leak test of the dr.~cl C-              3.7.4.4.b, or 3.7.L.4.c.                            to suppression chamber cannot be met, the                                  st~cure      shaLL be conducted unit shall  be placed    ia a                              each operating cycle ~
              , COLS SHUTDOWN    CQHDITIOH  ia                    acceptable leak rate is an  orderly  manner    i%thin                      0.09 Lb/sec of yrimazy hours.      In a HoT5guTDo~A                  coatainmeat atmosphere vith 3I    L4      Andi H on Jn INA<S                  1  psi diffe cntiaL.
5 ~
: a. Containmeat atmosphere        shall  be              a. The primary coataiamcat
          'educed to less than          4%  oxygen                  oxygea concentration shall vith aitrogea      gas  during reactor                  be measured aad recorded
      ~    pover operation vith reactor                            daily. The oxygea coolaat pressure abore 100 psig,                        measurement shall be ad]usted except as syecified        in 3.l.i.5.b.                to account tor the uncertainty of the    method used by adding a predetermined    error funct'oa
: b. Within the 24-hour yeriod                            b. The methods used to measure subsequent to ylaciag the reac or                        the yrimary contaiameat ia the RUH NDE folloviag a shut-                        oxygen concentration shaLL dova, the coataiameat atmosphere                        be  calibrated once every oxygen coacentrat'oa shall be                            refueling cycle.
reduced to Less than 4" by volume aad maintained ia this condit'oa.
Deiaertiag may commence 24 hours prior to a shutdovn.
: c. If plant    control air is being used                c. The    coatrol air suyply valve for the pneumatic control to suyyly the pneumatic coatrol system ~ide primary containmcat,                        system'inside thc prmar/
the reactor shall not be started,                        containment shall bc vcr'f'cd or  if  at, pover, the reactor shall                    closed prior to:eac or star='
aad monthLy thercait .".
be brought to a COLD SHUTDOM5 CQHDI OH vithia 24 hours.
: 4. If Specification 3.7.h.S.a and                                    ~'"~urn    A r Oramong 3.7.A.5.b cannot be met, aa                                  RR 8FAl (5T5 orderly shutdova shall be initiated and the reactor shall be  ia  a COLD SHGTDOMH COHDITIOH vithia 24 hours.
BFH                                                .7/4.7-11              AMENDMENT NO        y~ 9 Unit  1 3    r'g
 
UNIT 2 CURRENT TECHNICAL SP ECIF ICATION MARKUP
 
0 0
 
s.v.a                                                        4.7.h 3~                                                    3~                  Su Except as specified      in                    a. The pressure suppression 3 'ohe3eb    beloved  tvo pressure                    chamber-reactor building suppression chamber-reactor                          vacuum breakers shall be building vacuum breakers shall                        exercised in accordance vith bc OPERhBLB at all times vhen                        Specification 1.0.MM, and the PRIORY COHThIRNEHT IHTEGRITY                        associated instrumentation is required. The setpoint                            including setpoint shall be of the differential pressure                          functionally tested for proper imtnacntation Mch- actuates.                        opcratioa par Table-4 ZA the pressure suppression chamber-reactor building vacuum breakers shall be yes Table 3'7.k.
: b. From and after the date                          b. h visual examination and that one of the pressure                              determination that the suppression chamber-reactor                          force required to open each building vacuum breakers is                          vacuum breaker (check valve) made or found to be inoperable.                      does not exceed 0.5 psid for any rcuon) reactor                              vill be        made each    refueling operation is permissible only                        outagce during thc succeeding seven days, provided that the                        Sqe a~a4'i/i'(aA'oe    For C4o~pSX repair procedure does not                      g~    BpN    (sos    a.C. (,g violate    PRINhRY COHThIHMEHT IHTEQRITY.
Al Pht
+f  ltC4~e t<                                                sp s.c./.t" ~
pcibEs        ao When    primary conta        ent  is
/~L  f              e    ed    all dryvell-                            chamber vacuum breaker suppression chamber vacuum                          shall bc tested in accordance t c,o      breakers shall be OPERABIS                          vith Specification 1.0.MM.
z.c,(.6                                              Pl and positioned in the fully                Pr~ sg,        p, g. (. g (
M <n pW4g            closed position 4emeege i'4c'~;~~                              ) exc    tas                          en    t    s    e e    ed that Curbs              aps                .7.h.i.          P l              tvo vacma b                a are 371.4      ~                                        inoperable for                  at, h                                                                      t      shen 0                is
: b. OILc  dryvcll suppression                            r br rsd,    all other valves shall b~
cd PoQ 2.        chamber vacuum breaker msy bc nonfully closed so long                            exercis          immediately and~
sR z.c,.l,b.l as    it is determ~ to be not                        every 15            s thereafter until more tban 3 open as indicated                        the inoperab            valve has been by the posit'ion lights.                            returned to normal service.
BPS            ~~op~ 4erroN A                    3.7/4.7<<10                        Nettegpgg. 2p q Unit 2 LZ      ~"0    ~ pc~<<~    8                                        PAGE          W    GF
 
S    . liea lichen      3, g. I. 6 1S88 tt    =
l        ~
4~
                                                                    ~  I, 3
: c. Tvo dryvell-suppression                          C    Each vacuum breakc          valve I Co3(.lk        chamber vacuum breakers
                                                                  ~
shall    be inspected'or may be determined to be                              proper operation of the inoperable for opening.                              valve and    limit sv'tches                                  I in accordance vxt                        SgpawsTi<iCATi4~
cification 1.0.:R                    &R-CII"+~~
IIfN sS 7 S 3.4,. I I
: d. If Speci fications 3.7.A.4. a,                        A  e    test of the d./well AfVIoH          .b,  or .c cannot be      met, the                    to suppression chamber unit shall    be pl'aced i                            structure shall      be conducted Cold Shutdovn condition        in                    during each operating cycle.
an  orderly  manner    vithin                        Acceptable leak race gs ours  ~                                          0.09 lb/sec of primary 96                        g.s s<~  ~~                containment atmosphere with 1 psi differential.
co~a 4
: 5. 0                  a                                5. 0          Co    tao Containmeat atmosphere shall be                    a. The primary containment reduced to less than 4X oxygen                            oxygen concentration vith nitrogen shal'e gas  during reactor                        measured aad recorded power operation vith reactor                              daily. The oxygea
            .coolant prcssure above 100/psig,                          measurement    shall be adjusted except as specified in 3.7.A.5:b.                        to accouat 'for thc uncertainty of the method used by adding a predetermined error function.
: b. Mithin thc 24-hour period                          b. The methods used to measure subsequent to placing the reactor                        the primary containment in the BUH mode folloving a shut-                        oxygea concentration shall dovn, the containment atmosphere                          bc  calibrated once every oxygen concentration shall bc                            refueling cycle.
reduced to less than 4X by volume and maintained      in this coaditioa.
Deinerting    may commence    24 hours prior to    a  shutdova.
: c. If plant    control air is being      used        c. The control        air  supply valve to supply the pneumatic coatrol                          for the pneumatic control system inside primary coatainment,                        system inside the primary the reactor shall aot be started,                        containment shall be verified or  if  at power, the reactor shall bc:brought to a Cold Shutdown closed prior to reactor startup and monthly thereafter.
condition vithin 24 hours.
: d. If Specificatioa      3.7.A.5.a aad 3.7.A.5.b cannot bc met, an orderly shutdovn shall be initiated and the reactor shall                              SFE'us7 IFICA7innJ F'og in a Cold Shutdown condition vithin  24  hours.
be g~nl i~        3.4.B,J QHA>GES'oR BiH Unit  2 3.7/4.7-11                        Mi'40M'.ir. i 5                          -
PPQL op~
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~OF
 
3.7.h                                                                          4.7.h 3~                                                                                                            ambe-1zuU<era aa  Except as spccificd                            in                  a. The prcssure suppression 3.7;h.3.b bclov, tvo prcssure                                          chamber-reactor building suyprcssion chamber-reactor                                            vacuum breakers shall be building      vacuum breakers shall                                    exercised in accordance vith be OPERABLZ at all times vhcn                                          Specification 1.0.MN, and the PRIMARY COHTAIHMEHT IHTEt RITY                                          associated instrumentation is required.        The                      aetpoint                  including sctpoint shall      be of tha difforcaaf.al prcssure                                          fictionally ecstcd for prop inatrL<<lcntation vhich actuates                                        operation per Table 4.7.h.
the prcssure suppression chamber-reactor building vacuu<< breakers shall be per Table 3.7.h.
                . From and      after the date                                      b. h viaual examination and that    one  of the pressure                                          determination that the suppression chamber-reactor                                            force required to open each building, vacuum breakers ia                                          vacuum breaker (check valve)
                  <<adc or found to be inoperablc                                        does not exceed 0.5 psid for any reason, reactor                                                vill be  made each    refueling oyeration ia permissible only                                          outagee during the succeeding seven days, yrovided that thc                                              5'~< 5uSACi cab'on Qr ChanyrZ repair procedure does not                                            +a di< l S Ts 3.c.!-5 violate    PRIMARY  C02ITAIHMENX'ITECRITX, 4.
se 3...c-.
  >aabalkj a      %hen  pri<<ary contain<<ent                            ~          a. Ea    dryvcll-suppression OOeS  lp.<        required                                                              chamber vacuum breaker auypreaaion cha<<ber vacmm                                              shall be tested in accordance LM          braakcra shall be OPERJBIS                                            vith Specification      1.0.MN.
and positioned in the fully tl C        I. C.
                                !\
i@hen  ~ get~~                                                Opt as              b. Shen    t  a deter<<ined that
~ir tn~            pec              .7.l.4~1                      and                  two va      breakc      are
                    .7.A..      bclov.                                                  inopcrabl    for    open ng  at  a ti<<e vhen            ILI is
    /}      b. One  dryvell-suppression                                                squired~        other v uum chamber vacmm breaker <<ay                                              b esker valv        shall b be nonfully closed so long                                            ex ciaed imm        ately aa  it  ia determined to be not                                      eve    15 days    th reafter the in erablc va ve has ecn til
                  <<orc than 3 oycn aa indicated by the position      lights.                                          return to normal ervice flo OQCA  ftg70n,                                    '/4.7-10 BFK                                                                  3                        NB:AMENT No. ~ 9 6 Unit        2    ro iong      ch'on p,a GF:~QF~
 
~ p>  ~ ~ c. Tvo  drywell-suppression chamber vacuum breakers 5  3'.t'o. I. 4 C~
                                                                          ~
Once each    operating cycle, each vacuum breaker valve may.be determined to be                              shall be inspected for inoperable for opening.                              proper operation of the valve and limit svitches 3          n accordance v t Specification    1.0.MM ..
: d. If Speci fications 3.7.A.4. a,                d. h leak test of the drywell 3.7.A.4.b, or 3.7.A.4.c,                            to suppression chamber cannot be met, the                                  structure shall      be conducted unit shall be placed                                during each operating cycle.
in a Cold Shutdown                                  Acceptable leak rate is condition in an orderly                              0.09 lb/sec of primary manner  vithin        rs          ~3'                containment atmosphere                  vith CA/                              1    si differential ye~~~f
                                  ~'hen f/n584TSecP V~S.hQ'aCHO o                wars                                                            r so~
LSqs            R.r
: a. Containment atmosp ere shall be                  a. The primary containmen reduced to less than 4X oxygen                          oxygen concentration sh 1 vith nitrogen  gas during  reactor                    be measured and recorded pover operation vith reactor                            daily. The oxygen coolant prcssure above 100/psig,                        measurement shall be ad)usted except, as specified in 3.7.A.5.b.                      to account for the uncertainty of the    method used by adding a  predetermined error function b.. Wi,thin the 24-hour period                        b. The methods used to measure subsequent to placing the reactor                        the primary containment in the RUH mode folloving a shut-                        oxygen concentration shall dovn, the containment atmosphere                        be    calibrated once oxygen concentration shall be                                          cycle. every'efueling.
reduced to less than 4X by volume and maintained    in this condition.
Deinerting may commence    24 hours prior to a shutdown.
: c. If plant  control air is being used              C~    The      control air supply valve to supply the pneumatic control                          for the pneumatic control system inside primary containment,                      system inside the primary the reactor shall not be started,                        containment shall be verified or  if at pover, the reactor shall                      closed prior to reactor startup and monthly thereafter.
be brought to a Cold Shutdovn condition within 24 hours.
: d. If the  specifications of 3.7.A.5.a through 3.7.A.5.b cannot be met, an  orderly shutdown shall    be initiated and the reactor shall        be in a Cold Shutdown condition vithin 24 hours.                                                      AMEN87tlE~IT. AO. 1              8 0 BFH                                          .7/4.7-11 Unit  3
 
I3USTIFICATION FOR CHANGES BFN ISTS 3.6.1.6 SUPPRESSION-CHAMBER-TO-DRYWELL VACUUM BREAKERS ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.        This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is'lready approved, adding more detail does not result in a technical change.
A2    The words "except when performing their intended function" have been added to preclude requiring the LCO to be met when the valves cycle automatically. Since their intent is to open when a sufficient differential pressure exists, this      change  is considered administrative only.
A3    CTS  4.7.A.4.c is performed in accordance with the Inservice Testing Program on a frequency      of every operating cycle. Proposed SR 3.6. 1.6.3 is to be performed every 18 months. Since an operating cycle at BFN is approximately 18 months, this .change is considered administrative.
TECHNICAL CHANGES    -  MORE RESTRICTIVE Ml    CTS  3.7.A.2.a requires the primary containment to be OPERABLE at all times when the reactor is critical or when the reactor water temperature is above 212'F and fuel is in the vessel. The proposed BFN ISTS 3.6.1.6 applicability is MODES 1, 2, and 3. This is more restrictive since CTS does not require the primary containment to be OPERABLE when in, MODE 2, not critical and < 212'F.
M2    A new  Surveillance Requirement (proposed      SR  3.6. 1.6.1) has been added    to verify the    vacuum breakers  are closed once every 14 days. This new        SR ensures  the "closed" requirement of the LCO statement is being met.
This is  an  additional restriction    on plant operation.
BFN-UNITS 1, 2, 5 3                                                          Revision  0 PAG~(
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.1.6 SUPPRESSION-CSNBER-TO-DRYWELL VACUUN BREAKERS M3    CTS 3.7.A.4.d requires an orderly shutdown be initiated and the reactor to be in the Cold Shutdown Condition within 24 hours when certain conditions can not be met. Proposed Action C will require the plant be in MODE 3 (Hot Shutdown Condition) in 12 hours and NODE 4 (Cold Shutdown Condition) in 36 hours. The addition of this intermediate step to the Cold Shutdown Condition is considered more restrictive since CTS does not require any action to have taken place within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
TECHNICAL CHANGES  - LESS RESTRICTIVE "Specific" Ll    Proposed ACTION A allows 72 hours to restore an inoperable vacuum breaker to OPERABLE status, with one of the required vacuum breakers inoperable for opening. This is allowed since the remaining nine OPERABLE breakers are capable of providing the vacuum relief function.
The 72 hours is considered acceptable due to the low probability of an event in conjunction with an additional failure in which the remaining vacuum breaker capability would not be adequate.
L2    Proposed Action B allows a short time to close an open vacuum breaker since there is low probability of an event that would pressurize primary containment. An open vacuum breaker allows communication between the drywell and suppression chamber airspace and, as a result, there is the potential for suppression chamber overpr essurization due to this bypass leakage  if  a LOCA were to occur. If vacuum breaker position indication is not reliable, an alternate method of verifying that the vacuum breakers are closed is to verify that a differential pressure of 0.5 psid between the suppression chamber and drywell is maintained for I hour without makeup. The required 2 hour Completion Time is considered adequate to perform this test.
L3    Existing Specification 4.7.A.4.b requires that "When it is determined that a vacuum breaker is inoperable for opening at a time when operability is required, all other vacuum breakers shall be exercised immediately and every 15 days thereafter until the inoperable vacuum breaker has been returned to normal service." This requirement is not included in NUREG-1433 and will be deleted. This change eliminates the requirement to demonstrate the OPERABILITY of the redundant vacuum breakers whenever a vacuum breaker is declared inoperable. This change acknowledges that the inoperability of a vacuum breaker is not automatically indicative of a similar condition in the redundant vacuum breakers unless a generic failure is suspected and that the periodic BFN-UNITS  I, 2, 5  3                    2                            Revision  0
                                                              =-'".F  2
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.1.6 SUPPRESSION-CHAMBER-TO-DRYWELL VACUUM BREAKERS frequencies specified to demonstrate  OPERABILITY have been shown to be adequate  to ensure equipment  OPERABILITY. Therefore, this change allows credit to be taken for normal periodic surveillance as a demonstration "
of OPERABILITY and availability of the remaining components and reduces unnecessary challenges and wear to redundant components.. This change is consistent with NUREG-1433.                                    '
L4    CTS  3.7.A.4.d requires the unit to be placed in a Cold Shutdown condition in an orderly manner within 24 hours. Proposed ACTION C is less restrictive since  it requires the unit to be placed in MODE 3 (Hot Shutdown condition) in 12 hours and in MODE 4 (Cold Shutdown condition) in 36 hours. The allowed completion times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
BFN-UNITS 1, 2,  8L 3                                                  Revision 0 PAGE~OF~
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
Cp 5Pec.,loot.o      Z (. Z i
  ~ 7                                                        4.7 ab Appli  s  to the    o  rating st    us                        plies to th primary        and of the primary        an  secondary                        s  ondary conta nment contai    ent system                                        in grity.
      ~Q(~~v To assure    t  e integrity    f the                      To  veri the integrity of the primary and econdary                                        primary d secondary containment        stems.                                  containment.
: l. At any time that the irradiated fuel is in thc AppVcab>)<ky  reactor vessel, and the nuclear system is pressurized                                a.      e  suppression above atmos heric ressure                                          chamber vater level c Such('ca@on or vor is being done vhich              6 r cnanges  p, BFg        bc checked once has the potential to drain              Is~s 3.s.x                        Whenever hea~P.s.g.q,t,)
hc vessel      the pressure                                    is added to the su pression oo              r lcvc                                suppression pool by an      empcrature    shall  be                                    testing of the ECCS maintained      vithin thc                                        or relief valves the following limits.                                                  pool temperature Sec Vusghuh'~n shall bc continually Q~ cgae6  ts        monitored and shall be observed and
: a. Minimum    vater level  ~            Pr  gFg  Zygo        logged every
                      -6.25" (differential                                        5 minutes until the prcssure control >0 psid)                                    heat addition is
                      -7.25" (0 psid differen-                                    terminated.
tial prcssure control)
AM 5'Ra.g.~,t.l f <s~
: b. Mazimum    vater level  =
lit                                                frequency -~ce/s pp~,>
3.7/4.7-1 Unit  1 PAGE        W OP>
 
0
                                                                                  ~p<<il'ca8rn  3. L.Z. /
AU8 23 1991 f4+eel    pg~',<eg Re%on
            ~  ~
BcT(oA A Cond iHOn  8          c.        ith the suppression pool p leo 3,Q,g,f water temperature > 95'F 3 initiate pool cooling and QeR~~Q                    estore the temperature fk+iOn g,2                  o g 95 F vithin 4 hours or e n at                                                    LI least    H            OWH LI            COHDITIOH      vithin thc next            Alen  pny os<A>'iE, +p~ p 6 hours and        in  the                      >5/Vo Cia;s~op h,il ACT(oe            COLD SHUTDOWH COHDITIOH 8                                                        ~<+1< on gran I o<u'ref agon vithin    the folloving                                  e 7 30 hours.
D,g 54TIOpJ                  d. With the suppression                    gCt 3.C.w.l.k Conlitjon Q C                              pool vater temperature
                                  > 105'F during testing Rca ~red            of    ECCS o      relief WvuN @el          valves,        top  all                LQ  t test ng,        it ate      oo o              follov thc
: t. act on in Specification g    ~$ 3.7.k.l.c          above.
: e.      With thc suppression                      c.co 3.6 0  1.4 pool vater temperature            )
Cond,yn P          >    110~P rOPPli a&iI '+y OHDITIOH, HOT SThHDBY Wches t g 4-g COHDITIOH      (with all control rods not inserted), or REh OWER    OPERATION        the reactor        s          c Aa~ o,i            l  scr P ~e  RCRaaio<gf  +c+jo~  g With the suppress'ion
  ~lo/V          C~;t 6'
pool vatcr temperature 120'P o ov ng E                          reactor isolation epressurize to
                                < 200 psig at normal
                        'P      coo            rates.
BFH                                                          3.7/4.7-2 AMENGMENT No. I 85 Unit  1 PAG'E
 
UNIT 2 CURRENT TECHNICAL SP ECIF ICATION MARKUP
 
LI 3.7    0                S  S                            4.7    CO              S  S b
Applies to the        crating status                      h    lies to the pr ary      and f the primary          secondary                        sec    dary containme c tainmenH syst                                          integ ty.
be    ve                                              ~0b    ~v To  assur    the integrity of      e                      To  verify th integrity of        the primary        secondary                                  rimary and secondary containment ystems.                                      containment.
ht any time that the irradiated fuel is in the Aqui'eaQ,@    reactor vessel, and the nuclear system is pressurized                            a. The suppZession above atmospheric pressure            ~~s  ~~    flclfP chamber water level or wor s e ng one which has the potential to drain A g,
                                                          ~
C,HhM<~
its).S.Z      be checked once er day. Whenever hea~SR36i~      I the vessel the pressure                                        s added to the suppressi              ater leve                              suppression pool by emperature shall be                                  testing of the ECCS maintained within the                                        or relief valves the following limits.                    em Sus TIFI c'ATI4N    pool temperature shall peg CHAN pcs            be  continually t-o g. BFN >.6 z  2      monitored and shall be observed and logged
: a. Minimum water level =                                      every 5 minutes
                  -6.25" (differential                                      until the heat pressure control >0 paid)                                addition is
                  -7.25" (0 psid differen-                                  terminated.
tial pressure control) kid. sn s.a.~.l  I  4"~
: b. Maximum  water level    ~
1 tl                                                      4  <y <WC~- n CA./Z'll l4  5 BFH                                          3.7/4.7-1 Unit  2 PAGE      A      GF    ~
 
NQY  18 ]988
                                            >iopoSc4 (2C)~'rC4 Ac+un    4  t Cvloh/ A                  ith the    suppression pool      J vater temperature          > 95'F 0~
QAClo ~
nitiate    pool    cooling  and gpgur      rQ    restore the temperature pc.kid~ A 2-      to g 95'F vithin 24 hours o be in at east t e HOT SHUTDOWH 4/          COHDITIOH vithin the next 6 hours and in the QcTr o            COLD SHUTDOWH COHDITIOH 8            vithin    the folloving gegwsr+ )le    id'.3 30 hours ith  the suppression                      g.c.z.J 6
/<I IG+    mb l'o              pool    vater    temperature
                                >  105'F    during    testing of ECCS or relief Ping,~',re>      valves, stop all Ae4;o~ e.i        testing,          t turbo 1            follov the J4.Tio~ q action in Specification 3.7.h.l.c      above.
pc.Tla<                e~  With the suppression                    geo g.c.2.l. c pool vater tern erature
                                > 110'F during the STAR                App),c,'Ll,~y OHDITIOH, HOT STANDBY                Naos l~ Z +5 COHDITIOH      (vith all control rods not inserted), or REACTOR WER OPERATIO          the reactor shall        be 7eg.
Aek~~b.
g    sc        ed i  Pr o go  ~ Pe u. t a8 A(4o e D ~
: f. With the suppression Co4<<.c      E pool vater temperature 4'>oN                            120'F folloving E                          reactor isolation epressurize to
                                  < 200 psig at norma oo ovn rates.
3.7/4.7-2                  AMENDMENT NO. y5 4 Unit    2 PAGE  ~  OF
 
0 UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
    ~ 7                                                    4.7 Appli    to the operating status                      Applies to the                  rimary and of the    rimary and second                                          econdary conta      ent containm    t  systems.                                              tegrity>>
To assure th      integrity of the                    To              ver fy the integri      of the primary and s      ondary                              primary                    secondary tainment systems    ~
containment'.
At any time that the irradiated fuel is in the pyi;(gb,f, p]    reactor vessel, and the nuclear system is pressurized          SCC $g5tgWh4+
: a. The suppression above atmospheric ressare                                              chamber water level Foi Chan)t.'<
r wor s e done which                                                be checked once er
                ~ vesselpotential to the the                  dra the pressure
                                                        & pe i5fb i S.w                          day. Whenever heaW>R w aLt s added to the ress on ol ster leve                                            suppression pool by 1  e                                        testing of the ECCS maintained within the                                                  or relief valves the
                'following limits.                                                    pool temperature shall Yuc8A'colon                be  continually Ai Chan)C'j 0 i                  monitored and shall be 1<4 34,a x                      observed and logged
: a. Ninimam water level ~                                              every 5 minutes
                    -6.25" (differential                                              until the heat pressure control >0 paid)                                        addition is
                    -7.25" (0 paid differen-                                          terminated.
tial pressure control)
Afd sP.F.( .zeal.l Arsw
: b. Haxlanm water level ~
lit                                                      FV<z~emy-once Qfpsurg BFE                                          3.7/4.7-1 Unit  3 PAGE            OF
 
SR.~;g~~          Z.g.2. t NDV    is  Z88 ProgoLcd CCq~;rc Co With the suppression pool            Lco  Z. 6.2.l.a
        '                  vater temperature          >  95 F c'.
~4> fun                        tiate pool      cooling, and restore the temperature AA4Lsrg ~ to g 95'F vithin A4tfon hL 24 hours        r e        at                                    LI east the    HOT SHOTDOW5
                                                                    &pen            oPVRRO)E ~m cWh~
CONDITION      vithin the                        cchy
                                                                                                          ~
next  6  hours and in the                      Q5/ t~ cf>u>sion 4I Bell Scolc hon    COLD SHUTDOWN        CO%)ITI01          R~c 7 AL vithin the      folio~
khaki(c      30 hours
: d. ith the    auppreaaicm 1 vater temperature
                                                                  ~ g,e.2.l.b
+bio n C.                            105'F during testing f HCCS  or relief Ro            alvea      top all
              +~one'      testing,              a  'po o    ov the ee  on in Specification 3.7.k.l.c above.
With the suppression                  L~ g,C.Z.l. c pool vater t eraturel Ipe4>n        >  )104    ur 'the S                  Afflr'CebrlS7 l' D              HDITI01, HOT STh2IDBY              muon f"a+3 CONDITION      l,'vith all ccmtrol rods not inserted), or 0 the Pea ircA  ~
hc Yon p. l reactor shall be totogc    c~,'c        hm
: f. With the suppression C~l Ken E pool vater temperature
                          >  1204F    o  lo
  ]KHo                    reactor iaolaticm, epreaaurize        o c 200    pai          norma coo    ovn  rates.
BF5 Unit    3 3,7/4.7-2                    AMENDMENT NO.        j2 9 PAGE'            OF    3
 
0 JUSTIFICATION fOR CHANGES BFN ISTS  3.6.2.1 -  SUPPRESSION  POOL AVERAGE TEHPERATURE ADHIN ISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no.technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.        This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
TECHNICAL CHANGES    - NORE  RESTRICTIVE
~ M1    Existing Specification 3.7.A. l.e modifies the applicability governing suppression    pool temperature such that the temperature limit applies only during the STARTUP CONDITION, HOT STANDBY CONDITION (with all control rods inserted), or REACTOR POWER OPERATION. Proposed LCO 3.6.2. 1, Suppression Pool Average Temperature, ACTION D is applicable in Hodes 1, 2, and    3. Therefore, this change is more    restrictive.
H2    CTS  Surveillance Requirement 4.7.A. l.a only requires continual suppression pool temperature monitoring and logging whenever heat is added to the suppression pool during testing.        Proposed SR 3.6.2.1. 1 is more restrictive since    it  also requires this verification be performed once every 24 hours in the absence of testing.
A new  Required Action has been added (proposed Required Action A.l) to verify temperature is c    110'F every hour, anytime temperature has exceeded  95'F. This is  an  additional restriction  on plant operation.
H4    When  temperature exceeds 110'F, the current requirements only require the reactor to be scrammed. Proposed Required Action D.2 requires the temperature to be verified a 120'F every 30 minutes and a cooldown to HODE 4 within 36 hours, respectively.        If temperature exceeds 120'F, the current requirements only require the RPV to be depressurized to < 200 psig at normal cooldown rates. Proposed ACTION E now requires the 200 psig limit to be attained in 12 hours, and to continue cooling down the plant to cold shutdown (HODE 4) within 36 hours. These are additional restrictions on plant operation.
BFN-UNITS 1, 2, 5 3                                                          Revision 0
 
JUSTIFICATION    FOR CHANGES BFN ISTS    3.6.2.1 -  SUPPRESSION    POOL AVERAGE TEMPERATURE The proposed ACTION (ACTION E) when pool temperature            exceeds  120'F does not depend upon whether the reactor is isolated.            If pool  temperature reaches  120'F, regardless of whether the reactor is isolated, significant heat could still be added to the suppression pool and the Required Action is appropriate.          Even with the reactor not isolated, there may be no heat rejection from the containment, as in the case of loss of condenser vacuum. Applying the actions regardless of whether the reactor is isolated does not introduce any operation which is unanalyzed. This change is more restrictive on plant operations.
TECHNICAL CHANGES    -  LESS RESTRICTIVE "Generic" LA1  Details of    how  to reduce suppression pool temperature to within the limits  have been    relocated to plant procedures. Methods for restoring pool temperature are more appropriately located in plant procedures.
Changes to the procedure will be controlled by the licensee controlled programs.
"Specific" The  Applicability for      proposed LCO 3.6.2. 1, Suppression Pool Average Temperature,    is  Modes 1,  2, and 3. However, this Applicability is modified within      LCO 3.6.2. 1 so that a lower suppression      pool temperature limit applies    if  any Operable IRM channel is on Range 7 or above.          This limit was selected so that the suppression pool temperature limits are applicable when the reactor is critical with reactor power approximately at the point of adding heat.          As a result of this qualification to the Applicability statement, suppression pool temperature is required to be maintained at a temperature of less than 95'F (or less than 105'F while performing tests that add heat to the suppression pool) only when the reactor is critical with reactor power at the approximate level where heat generated is approximately equal to normal system heat losses.              If the reactor is not critical or at a power below the point of adding heat, the suppression pool may be maintained at an average temperature up to 110'F.      This change is less restrictive because CTS 3.7.A. 1.
required the lower suppression pool temperature to be less than 95'F (or less than 105'F while performing tests that add heat to the suppression pool) even    if the  reactor is not critical or not above the point of adding heat.      If the  reactor is not critical or the reactor is below the point of adding heat, there is significantly less heat generation from decay heat than assumed in the design basis.            The suppression pool is designed  to  absorb  the  decay  heat  and  sensible  energy released during a reactor blowdown via safety/relief valves or from design basis accidents when the reactor has been operating continuously at full power for a BFN-UNITS 1, 2, 5 3                                                            Revision  0 pAGE~OF~
 
0 JUSTIFICATION  FOR CHANGES BFN ISTS 3.6.2.1 -  SUPPRESSION  POOL AVERAGE TEMPERATURE considerable period of time. Any event initiated with reactor power or reactor power history less than these conditions will place considerably less heat load on the suppression pool than a DBA LOCA. This change is consistent with NUREG-1433. In addition, the shutdown requirements,    if the temperature is not restored, have been modified to only require reducing power to below IRH Range 7 within 12 hours, consistent with the new  Applicability.
BFN-UNITS 1, 2, 5 3                                                  Revision 0
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
4.7 ab Applic to the opc ating status                          A  lies to thc        p imary and of the      imary and econdary                          se  ndary contai            t containm t systems.                                    inte  rity.
      ~0i~~v To assure the      tegrity o primary and secondary the                    To  verify        he  integrity  f the primary and          ccondary ontainmcnt systems.                                    ontainm A.
: 1. At any time that the
~)<cobe]july  irradiated fuel is in the reactor vessel, and the nuclear system is pressurized                                a. Thc suppression above atmospheric pressure                                        chamber vater level ng one vhich            JILS fjA~Oh              bc checked once per has thc potential to drain          Ar Ckg~~ Wc                  day      cne r eat Ph  IsTS 3,5,2 thc vessel      e pressure                                          s added to thc suppress  on pool vater level                                    suppression pool by an  tern cra ure shall bc                                        testing of the  ECCS maintained vithin t e                                            or relief valves the folloving limits.                  See'u~ h ~qg>~                  ool temperature shall be continually A Oa~~ &r c
monitored and shall 3, Q. 2,I SF'S75 be observed and
: a. Mininnnn vater level  ~                                      logged every
                    -6.25" (differential                                        5  minutes until the pressure control >0 psid)                                    heat addition is
                    -7.25" (0 psid differen-                                    terminat8d.
tial pressure control)
: b. Maximum  vater level  ~
1N LI    fr'~ gaioeR L~    I~<4 heres      s BFH                                        3.7/4.7-1 Unit  1                                                                      PP,QE~OF
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
0 SE'C <csdifiqih~  ~c            -P4i'.>4ira, (o  Z4'. 2.
C~4~Pt Q~ $ fhl (STT >.4,g.l A>
4.7 plies to the    opc ting status                          hppl s to the prima            and of c primary        and s condary                              scc      ry containment coat iameat systems.                                          integri 0                                                            Qhiee~~      X To assure    he iatcgrity    of                              To  verify the tegrity of the primary aa secondary                                          primary and seco ary containment      stems.                                        ontainmcnt.
P~i;ops,'/Igy  I. ht, any time    that thc                    g(      ~
irradiated fuel is in the reactor vcsscl, and the                      SR 3.<,z.z. I nuclear system is pressurized                                  ao Thc    suppgession above atmospheric prcssure                                        chamber vater level or vork is being done vhich                SM MS TIFicATIod      bc checked once per FoR CHAA WS Fog.
has the potential to drain                  LFN iSlX 3.5;2.        day. Whenever eat the vessel        e pressure                                        s a ded to the suppression pool vater level                                      suppression pool by erature hall be                                        testing of the ECCS ma nta ned vithin t e                    3eE'g EST ifiCA7lohJ      or relief valves the folloviag limits.                        FoR Hhuo'es    ~g D&l isis 3.g z I        pool temperature shall be  continually monitored and shall be observed and logged
: a. Minimum vater level      =                                      every 5 minutes
                      -6.25" (differential                                          until the heat pressure control >0 psid)                                      addition is
                      -7.25" (0 psid differen-                                      terminated.
tial pressure control)
: b. Maximum    vater level  ~
1 tt
                  ')cScd AC.TiO+    P, L~      P  opo5ed ACTioN 8 BFH                                              3.7/4.7-1 Unit    2 PAGE~OF~
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP OF 2,
pAGE
 
ace r~y~soo    kv Chape Ate                    SftCS'ECCL    9%    o 6e2 ~
ni 3.7                                                          4.7 hpplie to the operating            tates                    hppliea to the          imary and of, the p            and second                              econdary conta        ent n      containm        'aystcsls e                                      egrity.
To assure the          egrity of the                        To  ver      the integri      of the primary and sec                                              primary          secondary containment syat                                            contalnm    t.
              .. 1  it  any time that the irradiated fael la ln the                                  Maahm reactor vessel, ancL the                    SR  Z,t,.z.z,t nuclear system ls preaanrixed                                a. The suppression above atmospheric pressure                                    chamber vater level r vorR ia e
                      ~ vesselpotential to draln the the e
one pressure ch                            be checked once per day. whenever s added to the a
reaaion      ol eater level                              suppression pool by and  t    crater        1 be                                testing of the ECCS Ll:o 3'.4.2,          ma    tained            the                ~c'~4cahq            r relief valves the
                      'follovtng limits.                          +c~                    ol temperature shall SF'sis    9.g.y. be  continually monitored and shall be observed and logged
: a. Minimum vater level ~                                      every 5 minutes
                          -6.25" (differential                See aeggiaatjon      until the hea pressure control >0 paid)            6c'harta &a          addition la
                          -7.25" (0 paid differen-            bN iSv3'z.s,z.        terminat tial pressure control)
: b. Haxha~ eater level          ~
lit QLl      ~e'cct )kwon it
: c. W    &coon 8 BF&#xc3;                                              3.7/4.7-1 Unit    3
 
t                  BFN ISTS ADNINISTRATIVE CHANGES Al JUSTIFICATION 3.6.2.2 -
FOR CHANGES SUPPRESSION  POOL WATER LEVEL Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be mor e readily readable, and therefore, understandable by plant operators as well* as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection. This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
TECHNICAL CHANGES  - LESS RESTRICTIVE "Specific" The  existing Action for suppression pool water level outside limits (Specification 3.7.A. 1) allows no time to restore level. An unanticipated change in suppression pool level would require addressing the cause and aligning the appropriate system to raise or lower the pool level. These activities require some time to accomplish without undo haste. The out-of-service time is based on engineering judgement of the relative risks associated with: 1) the safety significance of the system; 2) the probability of an event requiring the safety function of the system; and 3) the relative risks associated with the plant transient and potential challenge of safety systems experienced by requiring a plant shutdown. Upon further review, and discussion with the NRC Staff, during the development of the BWR Standard Technical Specifications, NUREG 1433, a 2 hour restoration allowance was determined to be appropriate.
BFN-UNITS 1, 2, 5 3                                                    Revision 0 PAGE
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.2.2 -  SUPPRESSION  POOL MATER LEVEL L2    Per CTS,  if suppression  pool water level    is not maintained within limits, the Specification is violated    and  in accordance with TS 1.0.C.l the plant must  be placed in Hot  Standby within 6 hours and in Cold Shutdown  within the following 30 hours unless suppression pool water level is restored. This provides actions for circumstances not directly provided for in the specifications and where occurrence would violate the intent of the specification. The BFN ISTS provides Action within the Specification which could be considered less restrictive than CTS.
Action B allows 12 hours to be in MODE 3 (Hot Shutdown) and 36 hours to be in MODE 4 (Cold Shutdown). The proposed Action is considered less restrictive since 12 hours is allowed to place the unit in Hot Shutdown versus the 6 hours allowed to place the unit in Hot Standby per CTS.
BFN-UNITS 1, 2, 5 3                                                      Revision  0
 
4 UNIT I CURRENT TECHNICAL SPECIFICATION MARKUP ra
 
ent 6oc6~>3
            ~3.b Thc  RHRS  shall be OPERABLE 8.      l. a. Simulated              Once tic  'utoma Operating (1)  PRIOR TO STARTUP                        Ac tua tion            Cycle from a COLD                            Test CONDITION;  or
: b. Pump OPERA-            Pcr Rpfh mbi lily    (2)  when  there is irradiated fuel in BILITY    'pecificatio 1.0.MM the reactor vessel and when the  reactor            C~  Motor Opera-            Per vessel pressure is                      ted 'valve            Specification greater than                          OPERABILITY            1.0.MM atmospheric, except as specified in                      d. Pump  Flow            Once/3 Specifications 3.5.B.2,                Rate                    months through 3.5.B.7.
e~  Test Check              Pcr Valve                  Specification 1.O.MM Verify that                Once/Mont each valve (manual,, power-operated, or automatic) in the SW GuS+IPicah'o~  Qgggg.                injection flow-kr gpH lsd                              path that is not locked, sealed, or otherwise secured in posi-tion, is in its correct      position.
8~  Verify LPCI              Once/Month subsystem cross-maticc tie valve is closed    ~
removed from power valve operator.
Low  pressure coolant injection                    Except that an (LPCI) may bc considered OPERABLE                  automatic valve during alignment and operation                    capable of auto-for shutdown cooling with reactor                          return to i ts steam dome pressure less than                      ECCS  position when 105 psig in HOT SHUTDOWN, if                      an ECCS    signal is capable of being manually                          present may be in realigned and not otherwise                        a position for another inoperablc.                                        mode of operation.
BFN                                          3.5/4.5~      AMENDMENT NO.          2 04 Unit  1 PAGP-k OP'I
 
4
                                                                                    .2.3 AUG 02 1989 If one  RHR pump  (containment cooling mode) or associated heat exchanger is inoperable, Action/        the reactor may remain in operation for a period not to exceed 30 days provided the remaining RHR pumps (containment cooling mode)                  See Sushi<'~hboA~ Ck~n)c5 and associated heat exchanger and diesel                        W 8~hi I575 3,g,>
enera ors      d a    access paths of the RHRS (containment cooling mode) are OPERABLE.
JC1 loni 8
: 6. If tvo  RHR pumps    (containment                  a    t ona cooling mode) or associated heat exchangers are inoperable, the reactor may                          Sk'g s.z.z.
remain in operation for a                                          i period not to exceed 7 days                            ~R  a.I..Z,p,>
provided the remaining RHR pumps (containment cooling mode), the a      ciated heat exchangers      iesel generate s          all access pa      of the RHRS (containment cooling mode) are OPERABLE.
(~p If tvo  access paths of the RHRS  (containment cooling mode) for each phase of the mo      dr@we                                  Se'< gus~'fi'cab'on sup'pression chamber s rays and suppress on pool cool ng)                  CQ+~      ~    f3PA ISIS are not OPERABLE, the unit                      3.4.2.9  + 3.L,w.s may remain in operation for a period not to exceed 7 days provided at least one path for each phase of the mode remains OPERABLE.
t ~oPos~d  ACgtOg      C BFH                                              3.5/4.5-6 Unit  l
 
0
: 8. If Specifications    3.5.B.1                                              ce
  /l.77onl    through 3.5.B.7 are not met, uninitiated an orderly shutdown shall be and the reactor 847  s~p
~sftlous shall be laced in the COLD SHUTDOWN CONDITION
  ~ em~>      within      hours.
and, Bc When  the reac or vesse                    9. When  the reactor vessel pressure is atmospheric and                    prcssure is atmospheric, irradiated fuel is in the                      the RHR pumps and valves reactor vessel, at least one                    that are required to be RHR  loop with two pumps or two                OPERABLE  shall be loops with one pump per loop                    demonstrated to be OPERABLE shall bc    OPERABLE. The                    per Specification I.O.MM.
diesel generators pumps'ssociated must also be OPERABLE.      Low prcssure coolant injection (LPCI) may bc considered OPERABLE during alignment and operation for shutdown cooling,    if capable of being manually realigned and not otherwisc inoperable.
: 10. If the conditions of                        10. No  additional surveillance Specification 3.5.A.5 are met,                  required.
LPCI and containmcnt cooling are not required.
When  there is irradiated fuel              11. The RHR pumps on the in the reactor and the reactor                  adjacent units which supply is not in the COLD SHUTDOWN                    cross-connect capability CONDITION, 2 RHR pumps and                      shall bc.demonstrated to be associated heat exchangers and                  OPERABLE  per Specification valves on an adjacent unit                      1.0.MN when the  cross-must be OPERABLE and capable                    connect capability of supplying cross-connect                      is required.
capability except as specified in Specification 3.5.B.12 belo~. (Note: Because cross-                +c Uus&&aago~ W C~g~
connect capability is not a short-term requirement, a
                                                            ~  BF'9 ls rs 8.S.) y ~~.~
component is not considered inoperablc    if cross-connect capability can be restored to service within 5 hours.)
BPN                                        3.5/4.5-7          ANENOMENt'NO. 20 C Unit l.
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
ent                                  tainment Coe+hzg+
4t'0  3. Co  iQ 3
: 1. The RHRS    shall be OPERABLE              a. Simulated      Once/
Automatic      Operating (1)    PRIOR TO STARTUP                        Actuation      Cycle from a  COLD CONDITION;  or
: b. Pump OPERA-    Per there is                          BILITY          Specification ApPI;~l  till'2)        when irradiated fuel in                                      1.0.MM the reactor vessel and when the reactor                C~  Motor Opera- Per vessel pressure is                      ted valve      Specification greater than                            OPERABILITY l.O.MM atmospheric, except as specified in                      d. Pump  Flow    Once/3 Specifications 3.5.B.Z,                  Rate          months through 3.5.B.7.
: e. Testable      Per Check          Specification Valve            1.0.MM Verify that          Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked sealed or otherwise See. Zuskikeuku~ Eo  C~.~                      secured in posi-4sr SFM      (s~ 3.g.(                            tion, is in its correct    position.
gu  Verify  LPCI        Once/Month subsystem cross-tie valve is closed  ~
removed from power valve operator.
f3 Low    pressure coolant injection                        Except that an (LPCI) may be considered OPERABLE                        automatic valve during alignment and operation                            capable of auto-for shutdown cooling with reactor                        matic return to its steam dome pressure less than                            ECCS position when 105 psig in HOT SHUTDOWN,        if                      an ECCS  signal is capable of being manually                                present may be in realigned and not otherwise                              a position for another inoperable.                                              mode of operation.
BP&#xc3;                                            3.5/4.5-4    AMENOMENT KO. 2 28 Unit  2 PAGE            OF~
 
Al                                ~ AU6 02 58 S st ntainmcnt CooMn~g gQWiog p    5. If one    RHR pump  (containment cooling mode) or associated                            rctpl+pccL' heat exchanger is inoperable, thc reactor may remain in operation for a period not to exceed 30 days provided the remaining RHR pumps (containment cooling mode) and associated heat                              5ea~~s440;4('.~
exchangers        diesc                          4 ~PM Is~5 B,.zl enerators        all access of the RHRS (containment cooling mode) are OPERABLE.
6~  If  tvo RHR pumps (containment                                              ce cooling mode) or associated heat exchangers are inoperable, thc reactor may remain in operation for a                  (4L    SQ 3 t'o.2.3.
                                                                          ~
(
period not to exceed 7 days provided the remaining RHR                        sg. r.l..z.r.. z pumps (containment cobling mode), thc associated heat cxcha11gersg    csc generators                access pa      of the  BHRS (containment cooling mode) are OPERABLE.
7~    If tvo access    paths of the RHRS  (containment cooling mode)  for  each phase  of thc mode          e  sprays,                    S<e T~s7-IF'tcATIafv pop suppression chamber s ra                      cAAl4G-Eg Fyg and suppression pool cooling) are not OPERABLE, the unit                    ~ >  >ebs may remain in operation for a period not to cxcced 7 days provided at least one path for each phase of the mode remains  OPERABLE.
Propose& A<T~ad c BFH                                            3.s/4.s-6 Unit 2
:ANENDMENNO.      Ib 9
 
Cl 3.5.B ent
: 8. If Specifications  3.5.B.l                                                          ce QC jlo+      through 3.5.B.7 are not met, an orderly shutdown shall                  be
>guest~+          initiated  and the reactor shall be placed ia the QO7                OLD SHUTDOWN CONDITION C4C  Dln4td      within      hours.                        J  Z p~ )g.
o      4~~                96 9  When  the reactor vessel                        9. When    the reactor vessel pressure is atmospheric and                            pressure is atmospheric, irradiated fuel is in the                              the RHR pumps and valves reactor vessel, at least one                          that are required to be RHR  loop with two pumps or two                        OPERABLE    shall    be loops with one pump per loop                          demonstrated to be OPERABLE shall  be OPERABLE. The                            per Speci,f ication 1.0.MM.
diesel generators pumps'ssociated must also be OPERABLE.      Low pressure coolant injection (LPCI) may be considered OPERABLE during alignment and  operation for shutdown cooling, if capable of being manually realigned and not otherwise inoperable.
: 0. If the conditions of                            10. No  additional surveillance Specification 3.5.A.5 arc met,                          required.
LPCI and containment cooling are not required.
When  there is irradiated fuel                  11. The RHR pumps on the in the reactor and the reactor                        adjacent units which supply is not in the COLD SHUTDOWN                            cross-connect capability CONDITION, 2 RHR pumps and                            shall be demonitrated to be associated heat exchangers and                        OPERABLE per Specification valves on an adjacent unit                            1.0.MM when the cross-must be    OPERABLE and  capable                      connect capabi.li.ty of supplying cross-connect                            is re uired.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-conncct capability is not a
                                                                          + 7I t c A7 (yp I          'Fbg. CHh U~S short-term requirement, a                                    '~~  ~ 5. I 6 R.s. >
component is not considered inoperablc i.f cross-connect capabi.lity can be restored to servi.ce within 5 hours.)
: 3. 5/4. 5-7              AMENOMENT RU      2  23
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
SPzc, P        3 6.2.3 LCa  g.(.2+3
: 1. The RHRS    shall  be OPERABLE 8.            l. a. Simula ted      Once/
Automa tie      Operating (1)  PRIOR TO STARTUP                                Ac tua t ion    Cycle.
from a  COLD                                  Test CONDITION'r b    Pump. OPERA-    Per kyUca b;);yy      (2)  when  there is                                  BILITY          Specification irradiated fuel in                                              1.0.MM the reactor vessel and when the    reactor                    c. Motor Opera- Per vessel pressure is                            ,ted valve        Specificatio greater than                                    OPERABILITY 1.0.MM atmospheric, except as specified in                              d    Pump    Flow    Once/3 Specifications 3.5.B.2,                        Rate            months through 3.5.B.7.
e~  Testable        Per Check            Specification Va).ve          1.0.MM Verify that          Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not
                            ~K 5% S'can o                              locked, sealed,
                      ~"8 >    4'~ Bl=e )spy 3,5
(                    or otherwise secured in posi-tion, ig in its correct. position.
Verify LPCI          Once/Month subsystem cross-tie valve is closed    ~
removed from power valve operator.
Low  pressure coolant injection                              Except that an (LPCI) may be considered      OPERABLE                      automatic valve during alignment and operation                                capable of auto-
          'for  shutdown cooling with reactor                          matic return to its steam dome pressure less than                                  ECCS position when 105 psig in HOT SHUTDOWN, if                                  an ECCS signal      is capable of being manually                                      present    may be  in realigned and not otherwise                                    a  position for another inoperable.                                                      ode  of operation BFN                                          3. 5/4. 5-4        em~~er e. z 77 Unit  3 PAGE        ~    OF~
 
AUB 02 1988 5 ~  If one    RHR pump  (containmcnt        Qpl cooling    mode)  or associated heat exchanger is inoperable, BQjon P      the reactor may remain in operation for a period not to exceed 30 days provided the rcmainiag RHR pumps (containment cooliag mode) aad associated heat exchanger          diesel
                                                            ~+
                                                            &C 54s  M'cnMn  + ~~g ISIS g,g,t SION generators          all access pa      o    the RHRS (contaiamcat cooling mode) are OPERABLE.
ocHo~ 8 6~    If tvo  RHR pumps  (containment cooliag mode) or associated heat cxchaagcrs are inoyerable, the reactor may remain in operation for a                    aM sRz.r,.z.z, yeriod not to exceed 7 days                        SR S.b,g.p. m provided the rcmainiag RHR I
yes (contaiamcnt cooling mode), the associated heat exchaag era      ese g erators            all  access pa      of the  RHRS (containment cooling mode) are OPERABLE.
7~    If tvo access    paths of the RHRS  (coataiament cooling mode) for each phase of the mode          e 1 spra suppression chamber sprays                  5K ~g~ { ic~ n    QQ. Chgc5,  ~
aut suppress oa poo cooling)                ~~~ )Sent Z.<.a.q  m  Z.e.a,s are not OPERABLE, the unit may remain in operation for a yeriod not to cxcecd 7 days provided at least onc path for  each phase    of the  mode remains    OPERABLE.
rope/  QQo rl J
BF5                                            3.5/4.5-6 Unit  3                                                                NENMNTNO. SOO
 
3.5.B                                                            (
ontainm    t                                                  inment oo xng
: 8. If Specifications      3.5.B.1                        8.                              nc through 3.5.B.7 are not met, Rh'on p          orderly shutdown shall                    be initiated      and the reactor shall bc lace in the HOT Stlut~d          S        WN  CONDITION
  &4Dif>owl a4 ~ithin lghe s                  3C, hours.          Z
: 9. When    the reac or vesse                                9. When  the reactor vessel pressure is atmospheric and                                  pressure is atmospheric, irradiated fuel is in the                                    the RHR pumps and valves reactor vessel, at least one"                                that are required to be RHR loop <<ith two pumps or two                                OPERABLE  shall  be loops with one pump per loop                                demonstrated to be shall    be OPERABLE.      The                              OPERABLE per diesel generators pumps'ssociated Specification 1.0.MM.
must also be OPERABLE.          Low pressure coolant injection (LPCI) may bc considered OPERABLE during alignment and  operation for shutdown cooling, if capable of being manually rcaligncd and not otherwise inoperable.
: 0. If the conditions of                                    10. No  additional surveillance Specification 3.5.A.5 are met,                                required.
LPCI and containment cooling are not required.
When    there is irradiated fuel                        11. The B and D    RHR  pumps on in the reactor and the reactor                              unit  2  which supply is not in thc COLD SHUTDOWN                                  cross-connect    capability CONDITION, 2 RHR pumps and                                    shall  be demonstrated  to associated heat exchangers and                              be OPERABLE per valves. on an adjacent unit                                  Specif ication 1.0.MM when must be OPERABLE and capable                                  the cross-connect of supplying cross-connect                                    capability is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-conncct capability is not a                          5~4 ~usga'azfit)n 4( chgwgcc short-term requirement, a                            @'Pg      tSq S s.S.I g3.g.~
component is not considered inoperablc if cross-connect capability can be restored to service within 5 hours.)
BFN                                            3. 5/4. 5-7 AMENDMENT NO. y. 77 Unit  3 or-pp,GE
 
JUSTIFICATION FOR CHANGES BFN ISTS  3.6.2.3 - RHR SUPPRESSION POOL COOLING ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BMR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection. This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
t TECHNICAL CHANGES Ml
                    -  MORE RESTRICTIVE Surveillance Requirements (SR 3.6.2.3. 1 and 3.6.2.3.2) have been added to ensure that the correct valve lineup for the RHR suppression pool cooling subsystems is maintained and RHR pump testing is performed to ensure the RHR suppression pool cooling subsystems remain capable of providing the overall DBA suppression pool cooling requirement. This change is consistent with NUREG-1433.
M2    CTS  3.5.B.8 requires an orderly shutdown be initiated.and the reactor to be  in the Cold Shutdown Condition within 24 hours when required RHR suppression pool cooling subsystems are inoperable. Proposed Action 0 will require the plant be in MODE 3 (Hot Shutdown Condition) in 12 hours and MODE 4 (Cold Shutdown Condition) in 36 hours. The addition of this intermediate step to the Cold Shutdown Condition is considered more restrictive since CTS does not require any action to have taken place within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
BFN-UNITS 1, 2, 5 3                                                  Revision  0
 
Cl JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.2.3 -  RHR SUPPRESSION POOL COOLING TECHNICAL CHANGES  - LESS RESTRICTIVE Ll    Proposed ACTION C will allow 8 hours to restore required RHR suppression pool cooling subsystems to operable status prior to initiating a shutdown. The proposed 8 hour Completion Time provides some time to restore the required subsystems to Operable status, yet is short enough that operating an additional 8 hours is not risk significant. Only 8 hours is allowed since their is a substantial      loss'f  the 'primary containment bypass leakage mitigation function. The 8 hour restoration time is considered acceptable due to the low probability of a DBA and because alternative methods to remove decay heat from the primary containment are  still  available. In addition,    if the required subsystem(s) are restored to Operable status prior to the expiration of the 8 hours, a unit shutdown is averted. Thus, the potential of a unit scram occur ring while shutting the unit down, which then could result in a need for a subsystem when    it is inoperable, has been decreased.
L2    The time to reach NODE 4, Cold Shutdown, has been extended from 24 hours to 36 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems.      In addition, a new (more restrictive) requirement to be in NODE 3 (Hot Sh'utdown) within 12 hours has been added. These times are consistent with the BWR Standard Technical Specifications,  NUREG  1433.
BFN-UNITS 1; 2, 5 3                                                      Revision 0
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP pAGE
 
E III
 
nt
              ~ockk~
LCO ZiC  ~ 2ig l      1. The RHRS    shall be OPERABLE 8.      I. a. Simula ted            Once/
Automatic            Operating (1)    PRIOR TO STARTUP                      Ac tua tion          Cycle from a COLD                            Tes t CONDITION;  or
: b. Pump OPERA-          Per (2)    when  there is                        BILITY                Specification
~/'f licobilil-)            irradiated fuel in                                          1.0.MM the reactor vessel and when the reactor              C ~  Motor Opera-          Per vessel pressure is                      ted 'valve            Specification greater than                          OPERABILITY          1.0.MM atmospheric, except as specified in                      d~  Pump  Flow            Once/3 Specifications 3.5.B.2,                Rate                  months through 3.5.B.7.
Test Check            Per Valve                Specification 1.0.MM Verify that              Once/Month each valve (manual, power-operated, or 5c'e    SK5+0'+ on Q~ggc                          automatic) in the injection flow-8PIJ  lsd    3,g,  J                      path that is not locked, sealed, or otherwise secured in posi-tion, is in its correct    position.
Verify LPCI              Once/Month subsystem cross-tie valve is closed  gaul power removed from valve operator.
Low- pressure coolant injection
* Except that an (LPCI) may be considered OPERABLE                    automatic valve during alignment and operation                      capable of auto-for shutdown cooling with reactor                    matic return to its steam dome pressure less than                        ECCS  position when 105 psig in HOT SHUTDOWN,      if                  an ECCS  signal is capable of being manually                            present may be in realigned and not otherwise                          a position for another inoperable.                                          mode of operation.
BFN                                          3.5/4.5-4        AMNOuENT HO.
Unit    1 pp 20'ATE 5
 
AUG      02 tggg 3.5.B                      ova  S  t            4.5.B.      s    ua    ca    e ova    S  st
        ~g~
Cooling)
(LPCI and Containment                        Qg~        (LPCI and Containment Cooling) 4.5.B.1 (cont'd)
: 2. With the reactor vessel                          Each LPCI pump shall deliver pressure less than 105 psig,                      9000 gpm against an indicated the RHRS may be removed                          system pressure        of  125  psig.
from service (except that tvo                    Tvo LPCI pumps        in the same RHR    pumps-containment    cooling              loop shall deliver 12000 gpm mode and    associated heat                      against an indicated system exchangers must remain                            pressure of 250 sig.
OPERABLE)    for a period not to excccd    24 hours vhile                      2. An      r tes on the ryvel being drained of                      SR  3'L,z.g,z    and    torus headers an nozzles suppression chamber quality                            shall    be conducted once/5 vater    and  filled vith                              years.          v ter tes          c primary coolant quality                                        form    on thc oru he cr vater provided that during                    LR)      in ieu        o  th air        st.
cooldown tvo loops vith one pump per loop or one loop vith tvo pumps, and associated diesel                                    Se<    3~qqi~~~ g, g~~~
generators, in the core                                ~  B~e    icy',<.z.S spray system arc OPERABLE.
: 3. If one    RHR pump  (LPCI mode)                  3. Ho    additional surveillance is inoperable, the reactor                              required.
may remain in operation for a period not to exceed        7 days provided the remaining        RHR pumps (LPCI mode) and      both access paths of thc      RHRS (LPCI mode) and thc      CSS and thc diesel generators remain OPERABLE.
: 4. If  mqr 2 RHR pumps (LPCI                        4. Ho    additional surveillance mode) become inoperable, thc                          required.
reactor shall be placed in the  COLD SHDTDOWH COHDITIOH vithin 24 hours.
Sc~  Z~sw~
Bee    ~  sag BPH                                            3.5/4.5-5 PAGE      ~      ~'
P '"
Unit 1 QIENOMENT NO.        16 9
 
QeciQrcqg~ p.g,2 y AUG  02 t989
: 5. If one  RHR pump    (containment cooling mode) or associated heat exchanger is inoperablc, the reactor may remain in operation for a period not. to Bono/V    exceed 30 days provided the remaining RHR pumps (containment cooling mode) and associated hea cxchangers and diese enera or and all access
                                                      <<<a    SWAah'              C~
paths of the RHRS f r Qppf )5y5 3 (containment cooling mode) are OPERABLE.
: 6. If tvo  RHR pumps    (containment cooling mode) or associated heat exchangers are inoperable, the reactor may                Add s'g g.
remain in operation for a period not to exceed 7 days 8'l.n~e provided the remaining RHR yumys (containment cooling mode), the associated heat exchangers,    iese 8        enera        and  all  access pa    of the  RHRS (containmcnt cooling mode) are OPERABLE.
7~  If tvo  access paths of the RERS  (containmcnt cooling mode) for each phase of the mode dryve        prays ress on        er sprays, sad      ress on oo cooling                Sec y<s+5(~agon          Sac Changes am not E LE, thc un                          4 ~ N=o  I5T's, v.a.~.3 +3,(,z,5 msp'emain in operation for a period not to exceed 7 days provided at least one path for each yhase of thc mode remains OPERABLE.
LI    ~&58k +T (pg Q BFE                                        3.5/4.5-6 Unit 1                                                        NENDMENTNO. 16 9
 
nt                                                          nment
: 8. If Specifications      3.5.B.1 through 3.5.B.7 are not met, an  orderly shutdown shall                    be
                                                                          ~a~.          Nz kTJ0N    initiated and the reactor D    shall be placed in the                                >n +he  QT SHQYSOM COLD SH      WN  CONDITION                            &no>p'ion) )g within      ho    s.
C.2,
: 9. When        ac  or vessel                                    When  the reactor vessel pressure  is atmospheric and                                  pressure is atmospheric, irradiated fuel is in the                                      the RHR pumps and valves reactor vessel, at least one                                    that are required to be RHR  loop with two pumps or two                                OPERABLE  shall  be loops with one pump per loop                                    demonstrated to be OPERABLE shall be OPERABLE. Thc                                          per Speci.fication 1.0.MM.
diesel generators pumps'ssociated must also be OPERABLE. Low pressure coolant injection may be    considered                    'LPCI)
OPERABLE  during alignment and operation for shutdown cooling,  if  capable of being manually realigned and not otherwise inoperable.
: 0. If the condi.tions of                                    10. No  additional surveillance Specification 3.5.A.5 are met,                                  required.
LPCI and containment cooling are not required.
When  there is irradiated fuel                            11. The RHR pumps on the in the reactor and the reactor                                  adjacent units which supply is not in the COLD SHUTDOWN                                    cross-connect capability CONDITION,'    RHR pumps    and                                shall be. demonstrated to be associated heat exchangers and                                  OPERABLE  per Specification valves on an adjacent unit                                      1.0.MN when the cross-must be OPERABLE and capable                                    connect capability of supplying cross-connect                                      is required.
apability except hours' as specified in Specification 3.5.B.12 below. (Note: Because cross-                            5<< 5'w'0'ca4og connect capability is not a                              0< 5FQ ISTs z.s,l short-term requirement, a                                                        lI g > ~
component is not considered inoperable  if  cross-connect capability can be restored to service within 5            )
BFN                                          3.5/4.5-7                    'AMENDMENT NO. 204 Unit  1
 
UNIT 2 CURRENT TECHNICAL SP ECIFICATION MARKUP
 
3.5.B                                                4.5.B on ax    ent                                              nt
              ~iraq~
LCo $.42.Lt Bc'?b~)
: 1. The  RHRS  shall  be OPERABLE                1. a. Simulated      Once/
Automatic      Operating (1)  PRIOR TO STARTUP                              Actuation      Cycle from a COLD                                    Test CONDITION'r
: b. Pump OPERA-    Per a.gpss;~4 l;4p    (2)  when  there is                                BILITY          Specification irradiated fuel in                                            1.0.MM the reactor vessel and when the reactor                      Co  Motor Opera- Per vessel pressure is                            ted valve      Specif ication greater than                                  OPERABILITY 1.0.MM atmospheric, except as specified in                              d. Pump  Flow    Once/3 Specifications 3.5.B.2,                      Rate            months through 3.5.B.7.
: e. Testable        Per Check          Specification Valve          1.0.MM Verify that          Once/Month each valve (manual, power>>
operated, or automatic) in the injection flow-path that is not See.xuSC(f'~]4                                      locked, sealed, g,~.I                          or otherwise
                %~ EFW      lSrr  3.S: I                            secured in posi tion, is in its correct    position.
ge  Verify LPCI        Once/Month subsystem  cross-tie valve is closed  ~
removed from power valve operator.
Low  prcssure coolant injection                            Except that an (LPCI) may be considered    OPERABLE                      automatic valve during alignment and operation                              capable of auto-for shutdown cooling with reactor                          matic return to its steam dome pressure less than                              ECCS position when 105 psig in HOT SHUTDOWN,      if                          an ECCS  signal is capable of being manually                                  present may be in realigned and not otherwise                                a position for another inoperable.                                                  ode of oper tio BFN                                          3.5/4.5~          AMENOMBfTRo. 22S Unit  2
 
t 3.5.B
        ~~
R    du Cooling) 2.
v With the reactor vessel S
(LPCI and Containment te                  4.5.B. s Q@ESS.
ua Cooling) 4.5.B.1 (cont'd) at  e  ova Each LPCZ pump shall deliver AUG S
(LPCZ and Containment 02 t88g t
pressure less than 105 psig,                          9000 gpm against an indicated the RHRS .may be removed                              system pressure      of  125  psig.
from service (except that tvo                          Tvo LPCI pumps      in the  same RHR pumps-containment cooling                          loop shall deliver        12000 gpm mode and associated heat                                against an indicated system cxchangers must remain                                pressure of 250 psig.
OPERABLE)    for a  period not
            ,to  exceed 24 hours    vhile                          2. An      t s an th dryvel being drained of                              Sg ~~ > ~>      an    torus headers an nozzles suppression chamber quality                                    shall  be conducted once/5 vater    and filled vith                                      years.        water test    may    e coalant quality  'rimary per      cd on      6  total  heads water provided that during                                    in lie of the Sir te caoldovn tvo laops vith one pump per loop or one loop with tvo pumps, and associated diesel generators, in the core spray system are OPEUSLZ.
: 3. Zf  one RHR pump (LPCI mode)                          3.      o a        onal surveillance is inoperable,      the reactor                                required.
may remain    in operation for a  period not to exceed              7 days provided the remaining              RHR pumps (LPCI mode) and        both access paths    of the  RHRS (LPCZ mode) and      the CSS and the diesel generators remain OPERABLE
: 4. If  any 2 RHR pumps (LPCI                              4. Ho  additional survcillancc mode) bccomc inoperable, the                                required.
reactor shall be placed in the  COLD SHDTDOWH COHDZTIOH vithin 24    hours.
Qj? 48$ /'licollpa gi g4~<+
NFL ICW 3.g.(
: 3. 5/4. 5-5 AMENDMENTNO.          16 9
 
Al                                    S If one    RHR pump  (containment cooling mode) or associated                                  rgsp~.
heat ezchanger is inoperable, the reactor may remain in operation for a period not to Ac<(ad    ezceed 30 days provided the reams~        RHR pumps (containment cooling mode) and associated heat exchangers and diese                              +~ ~t g4 0(cqfi 0 n 4r generators and all access                            40(  Ep/LJ  /5~
paths of the RHRS (containment cooling mode) are OPERhBLE.
If two  RHR pumps  (containment cooling  mode) or associated
          'eat    exc8xangers are inoperable, the reactor                        Ado',  SR'.C.a.y /
                                                                        ~            P" (
in operation for a  map'emain            ~
                                                                                ~
period not to exceed 7 days provided the remaining RHR pumps (containment cooling mods) ~ the associated heat exchangers, diesel enerato s          aQ access Ac%(od      paths of the RHRS
  &        (containment cooling mode) are OPEELBLE.
70  If two access    paths of the RHRS  (containment cooling mode) for each hase of the mode dzpvell sprays suppress on chamber sprays, ress on                                5&V ~$ 7 IFJCPSTsdAJ PbR CHAhlk~
are not OPERhBLE, the unit                          <<~ BFN /sr',@ p 3 pg gg,~
may remain in operation for a period not to exceed 7 days provided at least one path for each phase of the made remains OPZMBLE.
P~q~sM      Ace>OW  ~
BF5                                                  5/4.S-6          PAGE 3
Unit 2
:AM@WarrNO. re  e
 
                                              ~A) inment                                                      inment
: e. If Specifications    3.5.B.1 through 3.5.B.7 are not met,                                        do A('(ohl    an  orderly shutdown shall                  be initiated and the reactor shall be placed n e                                pl,e  Po~ S(lu77N~hl COLD SHUTDOWN CONDITION                        CO~ O(7 Sahl  ~    Q(B~rS W~d within      hours L.Z            $4 ac  or vessel                          9. When    the reactor vesse pressure  is atmospheric and                              pressure is atmospheric, irradiated fuel is in the                                  the RHR pumps and valves reactor vessel, at least one                              that are required to be RHR  loop with two pumps or two                            OPERABLE      shall be loops with one pump per loop                              demonstrated to be OPERABLE shall  bc OPERABLE. The                              per Speci.fication 1.0.MM.
diesel generators pumps'ssociated must also be OPERABLE.        Low prcssure coolant injection (LPCI) may be considered OPERABLE during alignment and operation for shutdown cooling,  if  capable of being manually realigned and not otherwise inoperable.
: 0. If the conditions of                                10. No  additional surveillance Specification 3.5.A.S are met,                              required.
LPCI and containment cooling are not required.
When  there is irradiated fuel                    11. The RHR pumps on the in the reactor and the reactor                              adjacent units which supply is not in the COLD SHUTDOWN                                cross-connect capability CONDITION, 2 RHR pumps and                                  shall bc demonstrated to be associated heat exchangers and                              OPERABLE per Specification valves on an adjacent unit                                  1.0.MM when the cross-must be OPERABLE and capable                                connect    capability of supplying cross-connect                                  is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-                      See v.us AC cako        m ('~~,
connect capability is not a short-term requirement, a component is not considered 8(c'hl IS ~ 3'g    ( g gS. Z.
inoperable    if  cross-connect capabi.lity can be restored to service within 5 hours.)
BFN                                                .5/4.5-7          AMENDMEMT    m. 2 23
 
0' UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
Cl 4.5.B ent                                            ent
      ~CO 3 4      1.  <l be OPERABLE 0.              l.
o  o    o
: 1. The RHRS        shall                                a. Simulated      Once/
Automatic      Operating (1)        PRIOR TO STARTUP                              Ac tuation    Cycle from a  COLD                                  Tes t CONDITION'r
: b. Pump OPERA-    Per
~PfLECab,'f.Q    (2)        when  there is                                BILITY        Specification irradiated fuel in                                            1.0.MM the reactor vessel and when the  reactor                    C~  Motor Opera- Per vessel pressure is                            ted valve      Specification greater than                                  OPERABILITY 1.0.MM atmospheric, except as specified in                              d. Pump  Flow    Once/3 Speci.fications 3.5.B.2,                      Rate          months hrough 3.5.B.7.
e ~ Testable      Per Check          Specification Valve          l.O.MM Verify that        Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise
                                    ~ SwS+Ac4un                            secured in posi-4< 8 apl  )5 TS y, g  )                  tion, ig in its correct position.
go  Verify LPCI        Once/Month subsystem cross-tie valve is closed  ~
removed from power valve operator.
Low  pressure coolant injection                                Except that an (LPCI) may be considered OPERABLE                              automatic valve during alignment'nd operation                                    capable of auto-
          'for shutdown cooling with reactor                                matic return to its steam dome pressure less than                                    ECCS position when 105 psig in HOT SHUTDOWN,            if                          an ECCS signal  is in capable of being manually                                        present  may be realigned and not otherwise                                      a position for another inoperable.                                                      mode of operation.
BFN Unit
: 3. 5/4. 5-4        N@DMENr go;  I 77 3
 
                                                            '    .(o.2 9
                                                                        ~
AUB      02  I88S 4.5.B 4.5.B.1 (cont'd)
: 2. Mith the reactor vessel                      Each LPCI pump shall deliver pressure less than 105 psig,                  9000 gpa against an indicated the RHRS may be removed                      system pressure of 125 psig.
from service (except that tvo                Two LPCI pumps in the same RHR  pumps-containment  cooling              loop shall deliver 12000 gpm mode aad  associated heat                    against an indicated system cxchangers must remain                        pressure of 250 psig.
OPE)ULBLE)  for a period not to exceed 24 hours vhilc                      2.
i    hn    ir test    on thc          cl being drained of                    SRS.c.z.              torus      eadcrs and nozzle suppression chamber quality                          shall    be conducted once/5 vater  and  filled vith                              years. k v                  st  map  c primary coolant quality                              erform oa                t      h$adc vater provided that during                              lieu        th air        st.
cooldovn tvo loops with one Eussy'iF:iW'r pump per loop or one loop vith tvo pumps, and associated diesel                                        Sc<                r generators, ia the core                                  +rihtsys44 BR'STS Zi4 eX,5 spray system are OPERkBIS.
3i If oae  RHR pump  (LPCI mode)                3. Eo  additional surveillance is inoperable, the reactor                          required.
may remain  ia operation for a period not to exceed    7 days provided the rcmaixdLag  RHR pumps (LPCI mode) aad    both access paths of the    RHRS (LPCI mole) and the    CSS and the diesel generators rcmaia OPERhBLE o If any become 2  RHR pumps  (LPCI inoperable, the
: 4. Eo  additional surveillance required.
Node) reactor shall be placed in the COLD SHOTDOMH COHDITION within 24 hours.
5<8    34s~f:~~'o<4        Ch  ~s 4r    B~g lS~ 3.5 I BFS Unit 3 3.5/4.5-5
                                                                  )~*r  ~          "XC 5
a o NENDMENTNO.              ~
 
n 3.4.2.        AUB 0 2 1988 4.5 B.
: 5. If one    RHR pump  (containmcnt              5.
cooling mole) or associated heat exchanger is inoperable, the reactor may remain in operation for a period not to exceed 30 days provided the remaining RHR pumps (containment. cooling mode) and associated he cxchcuwcr      and  diesel Sc'< Du s~ Pea h'o n Qr Ai 8PN                  C~~
lST5 P.y. i generators      and  all  access pa      of the  RHRS (containment cooling mode) e OPEBkBIS 6~  If  tvo c'aoling RHR pumps    (containmcnt mode)  or assaciatcd heat cxchangers are                                                  Wt inoperable, the reactor may                  Rdd sR  s.c,z,q,i remain in operation for a period not to exceed 7 days provided the rcmaQdng RHR 4+n        pumps (containmcnt cooling 8        mode), the associated heat cxchangera        ese genera ors, and all access pa      o      e RHRS (cantainmcnt cooling mode) are OPElhLBLS.
7~  If tvo access      paths of the
                                                        '(g RHRS (cantainmcnt cooling made) for each            e of the a+de          ell  a  r ression chamber sprays, ress on oo        o              c~ 3wswf 'azgo~ g,( g~~~
are nat OPERhBLE, the unit                            ISIS g,g,Z,~~ > < z >
may remain in operation for a period not to exceed 7 days provided at least one path for each phase of the mode remains      OPERABLE.
f~w~z    Zy,c pAcE            OF5 BF5                                          3 '/4 '-6 Unit  3                                                              AMMMENTNO. 1o o
 
3.5.B                                                        4.5. B 8-    If Specifications    3.5.B.1 through 3.5.B.7 are not met,                                      ~kTCtk    o an  orderly shutdown shall                  be
            . initiated and th eactor shall be place in the                                fn He Q)QSHuygavp4        Co+DiTie COLD SHUTDOWN CONDITION                              I h IP boating AhD within  24 hours.
3 When          actor vessel                                  9. When  the reactor vessel pressure is atmospheric and                                      pressure is atmospheric irradiated fuel is in the                                        the RHR pumps and valve reactor vessel, at least one                                      that are required to be RHR  loop with two pumps or two                                  OPERABLE      shall  be loops with one pump per loop                                      demonstrated to be shall be OPERABLE. The                                            OPERABLE per diesel generators pumps'ssociated Specif ication 1.0.MM.
must also be OPERABLE. Low pressure coolant injection (LPCI) may bc considered OPERABLE    during alignment and  operation .for shutdown cooling,    if capable of being manually realigned and not otherwise inoperablc.
: 0. If the conditions of                                      10. No  additional surveillance Specification 3.5.A.5 are met,                                    required.
LPCI and containment cooling arc not required.
When    there is irradiated fuel                          11'. The  B  and  D RHR pumps  on in the reactor and the reactor                                    unit  2  which supply is not in the COLD SHUTDOWN                                      cross-connect      capability CONDITION, 2 RHR pumps and                                        shall    be demonstrated    to associated heat exchangers and                                    be OPERABLE per valves on an adjacent unit                                        Specification 1.0.MM when must be    OPERABLE and    capable                                the cross-connect of supplying cross-connect                                        capability is required.
              .capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-connect capability is not a
                                                                      ~
gl ELVA'PIcgh'oQ gr gfel~cf ggjg ]$ 'fg short-term requirement, a component is not considered inoperable    if cross-connect capability can    be  restored to service within    5  hours.
BPN                                        3.5/4.5-7 AMENOMEHT MO.      I 77 Unit  3 PAGE~Ci
 
t                    BFN ISTS ADMINISTRATIVE CHANGES Al JUSTIFICATION 3.6.2.4 -
FOR CHANGES RHR SUPPRESSION POOL SPRAY Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
TECHNICAL CHANGES    - NORE  RESTRICTIVE Surveillance Requirement (SR 3.6.2.4.1) has been added to ensure that the correct valve lineup for the RHR suppression pool spray subsystems is maintained. This ensures that the RHR suppression pool spray subsystems remain capable of providing the overall DBA suppression pool spray requirement. This change is consistent with NUREG-1433.
H2    CTS  3.5.B.8 requires an orderly shutdown be initiated and the reactor to be  in the Cold Shutdown Condition within 24 hours when required RHR suppression pool spray subsystems are inoperable. Proposed Action 0 will require the plant be in NODE 3 (Hot Shutdown Condition) in 12 hours and MODE 4 (Cold Shutdown Condition) in 36 hours.      The addition of this intermediate step to the Cold Shutdown Condition is considered more restrictive since CTS does not require any action to have taken place within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
BFN-UNITS 1, 2,  8L  3                                                  Revision  0
 
0 0
 
JUSTIFICATION FOR CHANGES ISTS  3.6.2.4 - RHR SUPPRESSION
                                                        'FN POOL SPRAY TECHNICAL CHANGES  - LESS RESTRICTIVE "Generic" LA1  Details of the methods of, performing surveillance test requirements have been relocated to the Bases and procedures.      Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
"Specific" Ll    Proposed ACTION C will allow 8 hours to restore required RHR suppression pool spray subsystems to operable status prior to initiating a shutdown.
The proposed 8 hour Completion Time provides some time to restore the required subsystems to Operable status, yet is short enough that operating an additional 8 hours is not risk significant. Only 8 hours is allowed since their is a substantial'oss of the primary containment bypass leakage mitigation function. The 8 hour restoration time is considered acceptable due to the low probability of a DBA and because alternative methods to remove decay heat from the primary containment are  still available. In addition,    if the required subsystem(s) are restored to Operable status prior to the expiration of the 8 hours, a unit shutdown is averted. Thus, the potential of a unit scram occur ring while shutting the unit down, which then could result in a need for a subsystem when    it is inoperable, has been decreased.
L2    The time to reach NODE 4, Cold Shutdown has been extended from 24 hours to 36 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. This extra time reduces the potential for a unit upset that could challenge safety systems.      In addition, a new (more restrictive) requirement to be in NODE 3 (Hot Shutdown) within 12 hours has been added. These times are consistent with the BWR Standard Technical Specifications,    NUREG  1433.
BFN-UNITS, 1, 2, 5 3                                                    Revision 0 PAGE~OF~
 
0 UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
0
                                                          ~ ~
inment                                an                    ent
: 1. The RHRS  shall be OPERABLE 8.            ~ ao    Simulated              Once/
                                                                                    'utomatic Operating (1)  PRIOR TO STARTUP                            Actuation              Cycle from a COLD                                  Test CONDITION or
: b. Pump OPERA-            Per
  ~lfl'Qh;l,g      (2)  when  there is                              BILITY                  Specification irradiated fuel in                                                  1.0.MM the reactor vessel and when the  reactor                C ~  Motor Opera-            Per vessel pressure is                          ted 'valve              Specification greater than                                OPERABILITY            1.0.MM atmospheric, except as specified in                          d~    Pump  Flow              Once/3 Specifications 3.5.B.2,                      Rate                    months through 3.5.B.7.
: e. Test Check              Per Valve                  Specification 1.O.MM Verify that                Once/Month 0
each valve (manual, power-operated, or 5'ee T~s&l~on 4r                        automatic) in the
                              ~'<<i        bar  isT>
injection f 1ow-path that is not 35,(                                    locked, sealed, or otherwise secured in posi>>
                                                                      'tion is ln its correct position.
ge    Verify  LPCI              Once/Month subsystem cross-tie valve is closed  azLd power removed from valve operator.
Low  pressure coolant injection                        E xcept that an (LPCI) may be considered OPERABLE                      automatic valve                  l during alignment and operation                          capable of auto-for shutdown cooling with reactor                      matic return to its steam dome pressure less than                          ECCS  position when 105 psig in HOT SHUTDOWN, if                            an ECCS  signal is capable of being manually                              present may be in realigned and not otherwise                            a position for another inoperable.                                            mode of operation.
BFN                                      3.5/4.5-4            AMENDMENT go.          2Pg Unit 1 PAGE
 
0 S c.4icn AUG 02 1989 3.5.B                        ova S st              4.5.B.      s dua      ea    e  ova  S  tern Qg~      (LPCI and Containment                      Qgg~    (LPCI and Containment Cooling)                                              Cooling) 4.5.B.1 (cont'd)
: 2. Mith thc reactor vessel                        Each LPCI pump shall deliver pressure less than 105 psig,                    9000 gpm against an indicated the RHRS may bc removed                        system pressure      of 125 psig.
from service (except that tvo                  Tvo LPCI pumps      in the same
        ~
RHR pumps-containment      cooling            loop shall deliver 12000 gpm mode and, associated heat                      against an indicated system exchangers must remain                          prcssure of 250 psig.
OPERABLE)    for a period not to exceed 24 hours vhile                          2. An    r    e    on the drywell being drained of                      Sc a'.a.g,g. g          orus headers and nozzles suppression chamber quality                                      e conducted once/5 vatcr    and  filled vith                              years.        vater test may be primary coolant quality                                  er ormed on the torus header.
vater provided that during                            in lieu of    the  air test.
cooldovn tvo loops vith one pump per loop or one loop vith tvo pumps, and associated diesel
                                                                        ~conge~~~Q~Q'un 4,i gl-~
Po r IS~s generators, in the core spray system are OPERABLE.
: 3. If one    RHR pump  (LPCI mode)                3. Ho  additional surveillanc is inoperable, the reactor                            r cquir ed.
may remain in operation for a period    not to exceed  7 days provided the remaining      RER pumps (LPCI mode) and      both access paths of the      RHRS (LPCI mode) and the      CSS and the diesel generators remain OPERABLE.
: 4. If any  2 RHR pumps (LPCI                      4. Ho  additional surveillanc mode) become    inoperable, thc                    required.
reactor shall    be placed  in the  COLD SHUTDOWH COHDITIOH vithin 24    hours.                              See @wc.+4;cat    <~*,    g~
                                                                + $<<        lSTS  S.S,i BFH                                            3.5/4.5-5 Unit  1 AMENDMENTNO.          16 9
 
                                                                              ~kwon 9 g,2~
AUG  02 $ 989 te ent                                      ainment
                                                              ~oIXng)
: 5. If one  RHR pump  (containment          Qg)  . o a                    ance cooling mode) or associated heat exchanger is inoperable, the reactor may remain in i9C7lorJ      operation for a period not to exceed 30 days provided the remaining RHR pumps (containment cooling mode)                  +~  3~s+ <~ah'on  4  cgqcs and associated heat exchanger          ese                      b'<6    lsT$ 3.LI enerator and all access paths of the RHRS (containment cooling mode) are OPERABLE.
: 6. If tvo  RHR pumps  (containment cooling mode) or associated heat exchangers are inoperable, the reactor may                  Rg  sa s,e, z, s.
remain in operation for a                                      ~
period not to exceed 7 days provided the remaining RHR pumps (containment cooling mode), the asso      ted heat exchaagers, d ener        and all access paths  of the  RHRS (containment cooling mode) are OPERABLE.
QAi
: 7. If tvo  access  paths of the RHRS (containment cooling mode) for each phase of the mode (dryvell sprays, uppress on        e and suppression pool cooling)
              ~
are no    PERABLE,      e    t may remain in operation for a period not to exceed 7 days provided at least one path for  each phase  of the    mode remains OPERABLE.
fpopgrA  RTI o~ <
BFH                                              3 '/4.5-6 Unit  1                                                            hMENONENT NO.      16 9
 
nment
: 8. If Specifications    3.5.B.1                                                        lance through 3.5.B.7 are not mct, an  orderly shutdown shall                  be
          ~
initiated    and the reactor                    in ~hC H  r SHOTOO~N shall be placed in the                                      in  12hrs  An/
COLD SHUTDOWN CONDITION within ~~hours.      3S
: 9. When    the reactor vessel                            9. When  the reactor vessel pressure is atmospheric and                                pressure is atmospheric, irradiated fuel is in the                                  thc RHR pumps and valves reactor vessel, at least onc                                that are required to be RHR    loop with two pumps or two                            OPERABLE    shall  be loops with one pump per loop                                demonstrated    to be OPERABL shall    bc OPERABLE. The                                pcr Specification 1.0.MM.
diesel generators pumps'ssociated must also be OPERABLE.        Low pressure coolant injection (LPCI) may be considered OPERABLE during alignment and operat'ion for shutdown cooling, i.f capable of being manually realigned and not otherwise inoperable.
: 0. If thc conditions of                                  10. No  additional surveillance Specification 3.5.A.5 are met,                              required.
LPCI and containmcnt cooling are not required.
When    there is irradiated fuel                      11. The RHR pumps on the in the reactor and the reactor                              adjacent units which supply is not in the COLD SHUTDOWN                                  cross-connect capability CONDITION, 2 RHR pumps and                                  shall be.demonstrated to be associated heat exchangers and                              OPERABLE    per Specification valves on an adjacent unit                                  1.0.MM when the      cross-must bc OPERABLE and capable                                connect capability of supplying cross-connect                                  is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-connect capability is not a                        5    CuZlkt tip'so%Iud    lsi QAwilh short-term requirement, a                          W GFW        lST'S  3'S.l + '3,5.p.
component    is not considered inoperable    if cross-connect capability can    be  restored to service within    5  hours.)
BFN                                        3. 5/4.5-7                    AMENDMENT NO. 204 Unit 1 pAGE
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
5 s.ci4icathien 3.Q.2.g ent                                    ainment
: 1. The RHRS  shall  be OPERABLE      l. a. Simulated      Once/
Automatic        Operating (1)  PRIOR TO STARTUP                      Ac tua tion      Cycle from a COLD                            Test CONDITION; or
: b. Pump OPERA-      Per (2)  when  there is                          BILITY          Specification irradiated fuel in                                      l.O.MM the reactor vessel and when the reactor              C~    Motor Opera- Per vessel pressure is                      ted valve      Specification greater than                            OPERABILITY l.O.MM atmospheric, except as specified in                      d. Pump  Flow      Once/3 Specifications 3.5.B.2,                Rate            months through 3.5.B.7.
: e. Testable        Per Check            Specification Valve            1.0.MM Verify that          Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise secured in posi-tion, is in its correct    position.
Verify    LPCI        Once/Month subsystem    cross-tie valve is closed gaul power removed from valve operator.
f$
Low  pressure coolant injection                    Except that an (LPCI) may be considered OPERABLE                  automatic valve during alignment and operation                      capable of auto-for shutdown cooling with reactor                  metic return to its steam dome pressure less than                        ECCS  position when 105 psig in HOT SHUTDOWN, capable of being manually if                    an ECCS  signal is present may be in realigned and not otherwise                        a position for another inoperable.                                        mode of operation.
BFN                                      3.5/4.5-4    AMENDMENT RO. 22S Unit 2
 
5    sf~ceAon  QC,25 OH                                                  AUG    02  t98G 3.5.B                                              4.5.B.          u            Rcmova S st KHRQ, (LPCI and Containmcnt                          QQ~S      (LPC1 and Containment Cooling)                                              Cooling) 4.5.B.1 (cont'd)
: 2. Pith the reactor vessel                        Each LPCI pump shall deliver pressure less than 105 psig,                  -
9000 gpm against an indicated the RHRS may be removed                        system pressure      of  125  psig.
from service (except that tvo                  Tvo LPCI pumps      in the    same BHR  pumps-containment    cooling              loop shall deliver        12000 gpm mode and    associated heat                      against an indicated system cxchangers must remain                            essare    of 250    sig.
3PERABLE)  for  a period not to exceed 24 hours vhile            5'R
: 2. Aa                n the dryvell being drained of                                        and  torus headers and nozzles suppression chamber qaality.        S.C.2.S'.2.      s        e  conducted once/5 vater  and  filled vith                              years.        vater test      may b primary coolant quality                                per ormed on the torus header vater yrovidcd that daring                              in lieu of the air. test.
            "ooldowa tvo loops vith one pump per loop or one loop                                      A'e WdA(Cubo    4" C~Q>S vith tvo yamps, and                                            4r  BF~ is& RC.2.$
associated diesel generators, ia the core spray system are OPERABLE.
: 3. If one  RHR pump  (LPCI mode)                  3. Ho  additional surveillance is inoperablc, the reactor                            required.
may remain in operation for a period not to exceed      ? days provided the rcmaiaiag      RHR pampa (LPCI mode) aad    both access paths of the    RHRS (LPCI mode) and the    CSS and the diesel generators remain OPERABLE
: 4. If  any 2 RHR pamys (LPCI                      4. Ho  additional surveillance mode) become inoperable, the                          required.
reactor shall be placed in the  COXu SHOTBOmr COHDITIOH vithin 24 hours.
SIP, WR+fscRL~        0o~  ~+  5'tS BI hl ISTIC 3.Q,/
BFH                                          3.5/4.5-5                      PAGE~OF~
Unit  2 AMEMMENTNO. I,6 9
 
Pl 4~  ~                            a  Sst aiamcnt 5 ~  If one  RHR pamy    (containment cooling mode) or associated heat cxchaagcr is inoperable, g(.Z(oa        the reactor may remain in A          operation for a period not to exceed 30 days provided the renmixxiag  RHR  yamys (contaiamcnt cooling mode) and associated heat cx        ers and diesel cnerato s            access paths of the RHRS (containment cooling mode) are OPERABLE.
6~    If tvo  RHR yamys (contaiamcnt                                      0    s cooling  mode) or associated
              'eat    exchaagers    are inoperable,    the  reactor in oyeration for      a map'emda period aot to exceed 7 days yrovided the remaining RHR pampa (ccmtaiameat cooling mode), the associated heat dies cnerator            1 access yaths of the    RHRS (contaiameat cooling mode) are OPERABLE.
70    If two access    paths of the RHRS  (containmcat cooliag made) for each phase of the mode (dryvell syra press cm          er syrays,                          +<sf<$~0jflow pop QLgr~~~
and suppression pool cooling                              gp'hl /57-g are not OPERABIZ, the                  t              40(
4W    9.d.g.
aalu  rennin ia oyeration for              a                          gf period aot to exceed 7 days provided at least one path for each yhase of the mode remains OPERABLE.
TroposM ALTiod      C, BFE                                                    3  5/4.5-6 Unit  2
:AMNnMan xO. ze 9
 
Qgi aa    n aiament                                                    ainmen t COUTin~g
: 8. If Specifications    3.5.B.1 through 3.5.B.7 are not met, an  orderly shutdown shall                  be initiated    and the reactor                                                  QZ' shall  bc  placed  ia t e                        ~ +4<- 8+T    $ A'ergot L2.
COLD SH within CONDITION ours.
N'~  ~Z 4c ~  w~cP ea  e  reactor vessel                            9. When  thc reactor vessel pressure is atmospheric aad                              pressure is atmospheric, irradiated fuel is in the                                the RHR pumps and valves reactor vessel, at least onc                              that are required to be RHR loop with two pumps or two                            OPERABLE    shall be loops with one    pump per  loop"                        demonstrated to bc OPERABLE shall  be OPERABLE. Thc                                  per Specification 1.0.MM.
diesel generators pumps'ssociated must also be OPERABLE.      Low pressure coolant injection (LPCI) may bc considered OPERABLE during alignment and operation    for  shutdown cooling,  if capable  of being manually realigned and not otherwise inoperable.
O  If the  conditions of                              10. No  additional surveillance Specification 3.5.A.5 are met,                            required.
LPCI and containment cooling are not required.
When  there is irradiated fuel                      ll. The RHR pumps on the in the reactor and the reactor                            adjacent units which supply is not in the COLD SHUTDOWN                              cross-connect capability CONDITION, 2 RHR pumps and                                shall be demonstrated to bc associated heat exchangers and                            OPERABLE per Specification valves on aa adjacent unit                                1.0.MM when thc crose-must be  OPERABLE and    capable                        connect    capability of supplying cross-connect                                is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-conaect capability is not a                        S    ~sVIF'~~ r>c4 FoA cls~~ayr short-term requirement, a                          Pdk sf'< Ism 3 5 ( pg g Z component is not considered inoperable    if cross-connect capability    can be  restored to icrvice within    5  hours.)
BFN                                      3.5/4.5-7                AMENDMENT HU. 2 23 Unit 2
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
Cl 0
0
 
3.5.B ent
: 1. The RHRS  shall  be OPERABLE      0.      ~ a~  Simula ted    Once/
Automatic      Operating (1)  PRIOR TO STARTUP                            Actuation      Cycle from a COLD                                  Test CONDITION;    or
: b. Pump OPERA-    Per (2)  when  there is                              BILITY        Specification
+1'cab; f;Q              irradiated fuel in                                          1.0.MM the reactor    vessel'nd when the reactor                    C~  Motor Opera- Per vessel pressure is                          ted valve      Specificatio greater than                                OPERABILITY 1.0.MM atmospheric, except as specified in                            d. Pump  Flow    Once/3 Specifications 3.5.B.2,                      Rate          months through 3.5.B.7.
e~  Testable      Per Check          Specification Valve          1.0.MM Veri,fy that      Once/Month each valve (manual, power-operated, or automatic) in the injection flow-path that is not locked, sealed, or otherwise secured in posi-ew wu>e,lsd% n    *r chn~er                          tion, ig in its 4u.  ~  iSV5 g,g,  I correct position.
Veri fy LPCI      Once/Month subsystem cross-tic valve is closed  ~
removed from power valve operator.
Low  prcssure coolant injection                          Except that an (LPCI) may be considered            OPERABLE            automatic valve during alignment and operation                            capable of auto-
            'for  shutdown cooling with reactor                      matic return to its steam dome pressure less than                            ECCS position when 105 psig in HOT SHUTDOWN,            if                  an ECCS signal is capable of being manually                                present  may be  in realigned and not otherwise                              a  position for another inoperable.                                              mode of operation.
BFN                                              3.5/4.5-4  hIENOMEe  NO; I 77 Unit  3 pAGE~oF~
 
0 5~i    'ca5o~ 7    6 2.5        AUG    02  8y 3.5.B                        v    S                4.5.B.
Q',ggQ (LPCl and Containmcnt                        Qg~        (LPCI and Containment Cooling)                                              Cooling) 4.5.B.1 (cont'd) 2~  With the reactor vessel                        Each LPCI pump shall dclivcr pressure less than 105 psig,                  9000 gpa against an indicated the BHBS may be removed                        system prcssure        of 125 psig.
from service (except that tvo                  Two LPCI pumps        in the same BHR  pamys-containment    cooling              looy shall deliver 12000 gym mode and  associated heat                    against an indicated system exchangcrs mast remain                        yressurc of 250 psig.
OPEBASLE)  for a period not to cxcecd  24 hours vhile 5R
: 2. kn      r  tits on the dryvcll being drained of                                                    hcadcrs and nozzles suppression chamber quality          34,2e5,Z        shall bc conducted once/5 vater  and  filled vith                              years. h vatcr test may be primary coolant quality                                erformed on thc torus headc vatcr provided that during                            in lieu of the air test cooldown two loops    vith one pump  per looy or one loop                                Sce XggC:caliban 4, with  two pumps, and                                        ~as
                                                                        ><4 ex+
g, g~H ISTIC associated diesel generators, in the core spray system are OPERhBLE.
3~  If one  RHR pump  (LPCI mode)                3. Eo  additional surveillance is inoyerable, the reactor                            required.
may remain in operation for a period not to exceed    7 days provided the remanding    RHR yamps (LPCI mode) and    both access paths of the    RHBS (LPCI mode) and the    CSS and the diesel generators remain OPERhBLE.
4,  If any  2 RHR pumps (LPCI inoperable, the
: 4. Eo  additional surveillance required.
mode) become reactor shall be placed in the COLD SHOTDOWH COHDITIOH within 24'ours.                            5Cc ggcHQ~
91=A  $ 75 g,g,f PAGE BFH                                        3.5/4. 5-5 Unit  3                                                              ANENDMENTNO.            ~ a o
 
U9 02 1989 4.5  B
: 5. If ane    RHR pump    (containmcnt cooling    mode)    or associated heat exchanger is inopcrablc, the reactor may remain in operation for a period not to 4cTioe    exceed 30 days yrovidcd the R
remaining RHR yumps (containment caoling mode) and associated heat 5qc Wc+Ciech'on+, gyg~g exchanger generators and          access            go~ Bw>    lsd',f.i pa      of the RHRS (containment cooling mode) are OPERABLE.
: 6. If tvo  RHR pumps    (containmcnt cooling mode) or associated                      Cegakredv heat cxchangers are                          I inoperable, the reactor may                    Ac@  51 3 6eZ S:  /
remain in operation for a period not to'exceed 7 days provided the remains~ RHR pumps (cantainmcnt cooling mode), the assoc        ed heat ers    iese cnerators and all access of the RHRS (containment cooling made) are OPERABLE.
7~    If too    access paths    of the RHRS  (containmcnt cooling mode) for each phase of the mode          ell a rays, ression chamber sprays, and suppression yool cooling)                  c< tusw~Son    Ar Qn~
ars not                  e    t            W  BF~ XSTS  9,6.Z.D ~g aalu  remain    in  operation  for a 3.6.Z. q period not to exceed 7 days provided at least one path far each phase of the mode remains    OPERABLE.
scl R& bhl c PAGE          OF BHf                                          3.5/4.5-6 Unit  3                                                                                    la o
                                                                                      'IENMENTNO.
 
axnm  nt                                                          ent If Specifications      3.5.B.l through 3.5.B.7 are not met, an  orderly shutdown shall                    be initiated    and the reactor shall be placed in                                <h +t. %g Sgk%~4 COLD S        WN CONDITION And''on  i n I2 ~rs nng within        hours.
gk
: 9. When    t e  reactor vessel                                9. When  the reactor vessel pressure    is atmospheric and.                                pressure is atmospheric, irradiated fuel is in the                                        the RHR pumps and valves reactor vessel, at least onc                                    that are required to be RHR    loop with two pumps or two                                OPERABLE  shall  be loops with one pump per loop                                    demonstrated to be shall    bc OPERABLE. The                                    OPERABLE per dicscl generators pumps'ssociated Spccif ication 1.0.MM.
must also bc OPERABLE.          Low pressure coolant injection (LPCI) may bc considered OPERABLE during alignment and  operation for shutdown cooling, if capable of being manually realigned and not otherwise inoperable.
: 0. If thc conditions of                                      10. No additional surveillance Specification 3.5.A.5 are met,                                    required.
LPCI and containment cooling are not required.
When    there is irradiated fuel                          ll. The B and  D RHR pumps on ia thc reactor and the reactor                                    unit  2 which supply is .not in the COLD SHUTDOWN                                      cross-connect  capability CONDITION, 2 RHR pumps and                                        shall bc demonstrated to associated heat exchangcrs, and                                  be OPERABLE per valves 'on an adjacent unit                                      Specification 1.0.MM when must be OPERABLE and capable                                      the cross-connect of supplying cross-connect                                        capability is required.
capability except as specified in Specification 3.5.B.12 below. (Note: Because cross-connect capability is not a                            gee ~RPcahsn 4r
                                                                ~" S+< ~5TS r.S.!+V.S>C~cs short-term requirement, a component is not considered inoperable      if cross-connect capability can      be  restored to service within      5  hours.)
AMENDMENT ND. Z 77 BEN                                      3.5/4.5-7 Unit 3
 
t ADMINISTRATIVE CHANGES Al 53USTIFICATION FOR CHANGES BFN ISTS  3.6.2.5 - RHR DRYWELL SPRAY Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no .technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection. This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
TECHNICAL CHANGES  -  MORE RESTRICTIVE Ml    Surveillance Requirement (SR 3.6.2.5. 1) has been added to ensure that the correct valve lineup for the RHR drywell spray subsystems is maintained. This ensures that the RHR drywell spray subsystems remain capable of providing the overall DBA drywell spray requirement. This change is consistent with NUREG-1433.
M2    CTS  3.5.B.8 requires an orderly shutdown be initiated and the reactor to be  in the Cold Shutdown Condition within 24 hours when required RHR drywell spray subsystems are inoperable. Proposed Action 0 will require the plant be in MODE 3 (Hot Shutdown Condition) in 12 hours and MODE 4 (Cold Shutdown Condition) in 36 hours. The addition of this intermediate step to the Cold Shutdown Condition is considered more restrictive since CTS does not require any action to have taken place L
within 12 hours. The allowed Completioo Time is reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant safety systems.
BFN-UNITS 1, 2, & 3                                                    Revision 0 PAGE~OF~
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.2.5 -  RHR DRYWELL SPRAY TECHNICAL CHANGES  - LESS RESTRICTIVE "Generic" LAl  Details of the methods of performing surveillance test requirements have been relocated to the Bases and procedures. Changes to the Bases will be controlled by the provisions of the proposed Bases Control Process in proposed BFN ISTS Section 5.0 and changes to the procedures will be controlled by the licensee controlled programs.
"Specific" Ll    Proposed ACTION C will allow 8 hours to restore required RHR drywell cooling subsystems to operable status prior to initiating a shutdown.
The proposed 8 hour Completion Time provides some time to restore the required subsystems to Operable status, yet is short enough that operating an additional 8 hours is not risk significant. Only 8 hours is allowed since their loss substantially reduces the ability to maintain primary containment within design limits. The 8 hour restoration time is considered acceptable due to the low probability of a DBA and because alternative methods to remove decay heat from the primary containment are still available. In addition,      if the required subsystem(s) are restored to Operable status prior to the expiration of the 8 hours, a unit shutdown is averted. Thus, the potential of a unit scram occurring while shutting the unit down, which then could result in a need for a subsystem when it is inoperable, has been decreased.
L2    The  time to reach NODE 4, Cold Shutdown has been extended from 24 hours to  36 hours. This provides the necessary time to shut down and cool down the plant in a controlled and orderly manner that is within the capabilities of the unit, assuming the minimum required equipment is OPERABLE. Thisextra time reduces the potential for a unit upset that could challenge safety systems. In addition, a new (more restrictive) requirement to be in NODE 3 (Hot Shutdown) within 12 hours has been added. These times are consistent with the BWR Standard Technical Specifications,  NUREG  1433.
BFN-UNITS 1, 2, & 3                                                    Revision 0 PAGE~OF          3,
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
: a. Di    erent'al pressure betveen                      a. The pressure      ct  ferential the  dwell    ancL suppression                        betveen the      Crjvell ant LCO        ~be      shall be naincainecf 3 gg g at equal to or greater psiC except as spec'ecf
                                                ~              R2.
sayyression c'"amber sha' be "
each akmh~
cl c I 2 hots <~
                                                                                          'ast  once (1) and (2) belov:
( )  Ms CI e"mc'al establish'ithin shal'e 24 hours      a  eviag oyerat~      tcRQeratur iCCj4> Irj        r cesar e The cU.fferencial pressure nay be raducecL to 1 ss than 1.1 s        4 hours r.or to a scheclalei bntdovn.
(2) This Cifferential nay be ctecrease4 co less than 1.1 ysicL for a Qo          aaxfmaa of four hours Now          Carhg requireL oyerability teston of the HPCI systea, RCIC systea auf the 4ryvell-yressare sayyression chaaber vacuaI breakers.
b  If the  differential  pressure of Specification 3.7.4.6.a and the QgT fog5 cannot be maintainecL cannoc
              @if ermcial pressure                        .It'ho~~
    +~        be restorers vithin the subsecLaenc            ~ho4, Re4~c<  7lfMnlAL /buaR fn lghrs BPH                                              3.7/4.7 12 Unit 1
(
PACE l
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
S                          aiS a
Dr i Sg Q.io.2.4
: a. Differential pressure betveen                  . a. e pressure dS ferential LCO      the dryvell and suppression                          betveen the dryvell and chamber    shall  be  maintained                    suppression chambe shall at equal to or greater than 1.1 psid except as spec'fied in (1) and (2) belov:
ach ~.
be recorded at least anc Ia 4<<~
(1) This differential shall be established vithin hours f a        eving
    ~PP  '4" '~P 24perat  ng tern erature The differential pressure may be reduced    to less than 1.1    sid  24  ours r or to  a schedu utdovn (2) This    differential    may be decreased    to less LCO      than 1.1 psid for a bloke'aximum of four hours during reqrrired operability testing of the HPCI system, RCIC system and the dryvell-pressure suppression chamber vacuum breakers.
: b. If the  differential    pressure of Specification 3.7.A.6.a QCYIohK cannot be maintained arid the 6+8        differential    pressure cannot be restored vithin the subsequent                eriod Fcd~      rNcM re4L  po~gg (5% ii l2 I<rS BFH                                          3.7/4.7-12 Unit  2
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
Al ambe
: a. Differential pressure betveen                        a. The pressure    differential the dryvell and suppression                              betveen the    dryvell and chamber shall be maintained                              suppression chamber shall at equal to or greater than                              be recorded at      ast once 1.1 psid except as specified in (1) and (2) belov:                              82 eac  sh~
ls hoclr$
(1) This differential shall be established vithin 24 hours    of  a      ev
    ~fIi%b;l,'W)        erat ng temperature and pressure          The erent  a    pressure                LI may be reduced to less than 1.1 si 24 hour r or to a scheduled utdovn.
(2)        is differential      may be decreased      to less than 1.1 psid for a Leo        maximum    of four hours Ao&I during required operability testing of the HPCI system, RCIC system and the dryvell-pressure suppression hamber vacuum breakers.
: b. If the      differential      pressure of Specification 3.7.A.6.a ACrloq      cannot be maintained and the differential pressure            cannot be restored vithin th subsequent      ska-hour pQri&                h~(.=
Rc~lllcc  ~1m~    poult'R  Q  ~ (y+J~
Ih JQ.h~i  s, BFH                                                3.7/4.7-12                  P<QE      o Unit  3
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.2.6 DRYWELL-TO-SUPPRESSION CHAMBER DIFFERENTIAL PRESSURE ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    The Frequency for verifying the pressure differential between the drywell and the suppression chamber has been changed to 12 hours from shiftly. CTS Table 1. 1 defines shiftly as at least once per 12 hours.
As such, this is a change in presentation only and is therefore administrative.
TECHNICAL CHANGES    -  LESS RESTRICTIVE Ll    The proposed    change revises the required initiation point for establishing differential pressure between the drywell and suppression chamber. By increasing the initiation point following startup to 15%
rated thermal power (RTP) (CTS initiation point is operating temperature and pressure, which is about 1% RTP), the drywell pressure and temperature will have sufficient time to stabilize prior to establishing the required differential pressure. As long as reactor power is below 155 RTP, the probability of an event that generates excessive loads on primary containment occurring within the first 24 hours of a startup or within the last 24 hours before shutdown is low. 24 hours is considered a reasonable amount of time to allow plant personnel to establish the required differential pressure.
L2    CTS  3.7.A.6.b allows 6 hours to restore the differential pressure before initiating an orderly shutdown, which requires the plant to be in Cold Shutdown within 24 hours. The proposed actions allow 8 hours to restore differential pressure and 12 hours to reduce thermal power to < 151 RTP.
Below  this  power  level, per the  proposed  Specification, the LCO is no longer applicable (See    Comment  Ll above).
PAG ~~OF~
BFN-UNITS  I,  2, 5 3                                                    Revision 0
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
APA 2 9    1993 (g'i 3.7.F.
est CR 3.7.F.3 (Continued) these primary containment isolation            Sc' 3 L5Hfs cR hoA Qr Changers valves is governed by Technical Specification Ae cT5 p q      p/q p~
3.7.D.
: b. Prcssure control of thc containment is normally performed by VEHTIHQ through 2-inch primary containment isolation valves vhich route effluent to the Standby Gas Treatment System.
The OPERABILITY  of these primary containment isolation valves is governed by Technical Specification 3.7.D.
Qi
: 1. The Containmcnt Atmosphere Dilution (CAD) System shall bc OPERABLE  with!
: a. Two  independent                            a. clc  ach s    len id systems capable  of                              0 crate    air      t    gcn supplying nitrogen                              v ve      ough    t to the dryvell and                              le  t on  comp      te torus e                                          cyc    of  ull t vcl in  a cord  cc vit ec fication 1.0.MK and at least once per 5R 3,v,z.t. 2 month verify that each manual valve in the flow path is open.
SR  zc.~,t.  (
: b. A  miniam supply of                          b. Verify that the        CAD 2,500 gallons of                                System contains a liquid nitrogen pcr                              minimum supply of systems                                          2,500 gallons of liquid nitrog          vic-er week.
BHf                                    3.7/4.7-22              mMmrN. Zsg Unit  1                                                PAGE    ~    OF~
 
2 ccig+for) g,      Q, p J DEC  07  1994
~z.c.Z.I          2. The Containment Atmosphere                          2. When FCV 84-8B      is inoper-Dilution      (CAD) System shall                          able, each solen id
    +                  be OPERABLE whenever the                                  operat d air/nitr en Applt cab; la4) reactor is in the RUN                                    valve o System B all MODE    or g~        ~+a      /M 2.                    be cycle through at least one          piete cycle f full trave and each m    ual valve in the flow path of System        B shall be verif          open  at least once per week.
: 3. If one    system    is inoperable,
                                                                          ~
the reactor may remain in                            ~<M r<d      /f2.
ifc7 /o 4                                                          Bean A,(
operation for a period of 30 days provided all active components in the other system are OPERABLE.
: 4. If Specifications          3.7.G.1 MT(od              and  3.7.G.2, or 3.7.G.3 cannot be met, an orderly 8                shutdown      shall    be  initiated and the    reactor shall      be    in        Pln pE 3 l4/Olin /2  I} cars
: 5. Pr    ry  co tainme        pre    ure shal    be  1    ted to                        LA 2 axim      of  30    sig  d  ing r  ress      izati      folio    ng a los    of  c  olant      cident.
: 6. System        may    e cons    ered OPERABLE      with  FCV  84-8B inoperable prov ded that            all active    component        in Syst      B and    all  o er
                    'ctive          mponents in System A          e OPERABLE.
: 7.      ecification 3.7.G.6            and
: 4. .G.2 are in            feet until the      rst Cold      Sh tdown    of unit    1    fter July      20, 1984 or  until    January 17, 1985 whichever occurs          first.
BFN                                                      3.7/4.7-23 Unit    1
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
5 ecjgiea4ion 9 6.3: I APR  2 9  t991 3.7.F.        a    Co    a                        4.7.F.                ot      et ue
                ~St  g                                            ~Sst g 3.7.F.3 '(Continued) these primary containment isolation valves is governed by Technical Specification 3.7.D.
Sec  ~~s4;4';(~4;    4r  e4  )e 4r    c.YS S.v.F/47,F
: b. Pressure control of the containment is normally performed by VENTING through 2-inch primary containment isolation valves vhich route effluent to the Standby Gas  Treatment System.
The OPERABILITY  of these primary containment isolation valves is governed by Technical Specification 3.7.D.
0                                os  e e      P,)      4~  ~ ~
CAD Qt,'0 3.6,3.l 1. The Containment Atmosphere Dilution (CAD) System shall be OPERABLE vith:
: a. Tvo independent                                a. Cycle  e ch solenoid systems capable  of                                  crated air/n rogen supplying nitrogen                                  va ve  thr  gh a to the dryvell and                                  lea    one c    piet torus.                                              cycle    f full    ravel in  acco dance vith S ecif          n 1.0.MM A/3.4.~.<  +      and at least once per month verify that each manual valve in the
                        ,S.l.(                                              flov path is open.
p,&
                ~~ b.                                              gg,g, l I A minimum supply  of                          b. Verify that the      CAD 2,500 gallons of                                    System contains a liquid nitrogen per                                mini&urn supply of system.                                            2,500 gallons of liquid nitro    e    vice per vee BFN                                        3.7/4.7-22                  AMENDMENT go. y9 7 Unit    2 pAGE            GF
 
5 cci ic44I  3. cn. 3. I 0)g 07    1994 Al LCo 3.4Y. l  2  The Containment Atmosphere Appfchl,4$ $    Dilution    (CAD) System shall be OPERABLE whenever the reactor i.s in the RUN MOD      er SgAN'Tup HoD6 HZ If one  system    is inoperable,                            Q~
the reactor may remain in
* Acko ~ A P Cl7oN        operation for a period of A          30 days provided all active components in the other system are OPERABLE.
4  If Specifi.cations      3.7.G.1 and 3. 7.G.2, or 3. 7.G.3 cannot be met, an orderly Ac. i (os  shutdown shall be initiated and the reactor shall be in
                                                          ]claps 3 i~
: 5. Primary    c  tainment pressure 11 be 1      ted to a um  of 30 ig durin repr    surization llowing loss  o  coolant accident.
BFN                                            3.7/4.7-23          NmwBtr HO. 229 Unit  2 pAcs          0F
 
UNIT 3 CURRENT  .
TECHNICAL SPECIFICATION MARKUP
 
SEMI  elk'hD  3 4  3 J 4'    9 )9g) 3.7.F.                                          4.7.F.
3.7.F.3 (Continued) these primary                    SCr    3<g+Cl aa$ o n Q Qz+~<
containment isolation valves is governed by              ~    C T$ 3,7. F'/9 I F
Technical Specification 3.7.D.
: b. Pressure control of the containment ls normally performed by VERTIRQ through 2-inch primary containment isolation valves vhich route effluent to the Standby Gas  Treatment System.
The OPERhBILITY    of these primary containment isolation valves is governed by Technical Specification 3.7.D,
: 1. The Containment Atmosphere Dilution (CAD) System shall be OPERABLE vith:
: a. Two iILdependent                                ae      cle ach    lenoid systems capable    of                                  crate  air    trogen, supplying nitrogen                                  v ve      ough a to the dryve11 and                                  le  t  one comple e torus o                                              cycl of    f l,tra    el in  accordance  vlth o        .MM and at least once per month verify that each manual valve in the flov path is  open.
54 3.4P'. l
: b. k    minimum supply  of                          b. Verify that the      CAD 2,S00 gallons    of                                  System contains    a liquid nitrogen per                                  minhmun supply    of systeme                                              2,500 gallons of ll  id nitrogen per ve ici BPK                                    3.7/4.7-22            'IIBfllfgffNO, g g g unit 3 PAGE~OF~
 
0 5      o EC 0  7 1994
                                            .Ai
: 2. The Containment Atmosphere Lco 7,4.3,t  Dilution  (CAD) System shall be OPERABLE whenever the reactor is in the RUN                                    RZ o~ A'soup wove II2 Ilotc A ~$ 4stwd If one system is inoperable,          hcVion A,l the reactor may remain in
  ]g4o q        operation for a period of 30 days provided all active components in the other system are OPERABLE.
4  If Specifications      3.7.G.l and  3.7.G.2, or 3.7.G.3 lkho w    cannot be met, an orderly shutdown shall be initiated 8        and the reactor shall be in N
                                                        /ID' /Q ~l NI fht g
: 5. Prima    cont 'nment    p essuxe hall  b  limit d to    a                Lgz imum rep essuri 30 p  j dur tion ollowi g
a loss f cool      t ac  dent.
BFN                                        3.7/4.7-23 AMENDMENT NO. I8 6 Unit  3                                                          phd E  3
 
t                BFN ISTS ADMINISTRATIVE CHANGES A1 JUSTIFICATION 3.6.3.1 -
FOR CHANGES CONTAINMENT AIR DILUTION SYSTEH Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    A NOTE was added    specifying LCO 3.0.4 is not applicable. Since the current Technical Specifications do not have LCO 3.0.4, stating it is not applicable constitutes an administrative change.
~ A3    Unit 1 CTS 3.7.G.6 5 7 and 4.7.G.2 have been deleted. These Specifications were special provisions that expired January 17, 1985, and therefore, no longer apply. As such, the proposed deletion is considered administrative.
TECHNICAL CHANGES    - MORE  RESTRICTIVE The  Surveillance Requirement    has been revised to include each manual, power operated,    and  automatic valve that is not locked, sealed, or otherwise secured in position.
H2    This change adds MODE 2 (STARTUP NODE) to the Applicability to go along with MODE 1 (RUN MODE) which is already required. The CAD System is required to maintain the oxygen concentration in the primary containment below the flammability limit following a LOCA. Adding a new MODE to the Applicability constitutes a more restrictive change. This change is consistent with NUREG-1433.
BFN-UNITS 1, 2,  8L 3                                                  Revision 0
 
0 JUSTIFICATION  FOR CHANGES BFN ISTS    3.6.3.1 -  CONTAINMENT  AIR DILUTION SYSTEM Proposed ACTION  C  is  more restrictive since it requires the unit to placed in  MODE  3  in  12  hours versus  CTS 3.7.G.5 which requires that an orderly shutdown    be initiated and the reactor to be in the COLD SHUTDOWN CONDITION  with'in 24 hours. In addition, since the existing Specification (CTS 3.7.G.2) is only applicable during the RUN mode (MODE 1), failure to meet the existing specification would only require the unit be placed in at least STARTUP/HOT STANDBY (MODE 2) in 24 hours since at that time CTS 3.7.G.2 is again met.
TECHNICAL CHANGES  - LESS RESTRICTIVE "Generic" LA1  This Surveillance is being relocated to plant procedures (IST program) since these valves are tested as part of the IST program. As such,          it is not needed to be specified as a specific Surveillance Requirement.
If during testing or routine use of the system they are found to be inoperable, the appropriate ACTIONS would be taken. This change is consistent with the BWR Standard Technical Specifications, NUREG 1433.
This requirement has been relocated to plant procedures.          This type of
~
LA2 action is a post-accident action routinely governed by the emergency operating procedures. Any changes to the procedures would be controlled by the licensee controlled programs.
  "Specific" I
Ll    The Frequency  of this Surveillance has been extended to 31 days, similar to other surveillances on tank content (e.g., diesel fuel oil). The nitrogen tank contents only decrease when nitrogen is being added to the drywell, and this evolution is a manually actuated and secured evolution (i.e., it is a very controlled evolution). If nitrogen was being added, it would be monitored more closely. Thus, since there are very positive means to ensure nitrogen tank volume is monitored        if being used, and volume does not decrease due to "automatic, unmonitored" use, the 31 day Frequency is considered appropriate.
BFN-UNITS 1, 2, & 3                                                          Revision 0
 
CH 3.7.4.4  (Conc,                                        4.7.L.4 (Cans'd)
: c. zo  dryveLL-suppression                        c.  "=ach  vac~    breaks    valve chamber vacuum breakers                              shall  be insyecccd    for may be    determined to be                          propex ayeracian of the oyerable fox opening.                            valve lnd lent sW-ches in  accordance    vith Spec'f'cat,'oa L.Q.. C.
: 4. If Spec'f'cac'ans 3.7.4.4.a,                    d. 4 leak test of the dz:~el See  Yuu,+h>>        3.7.4.4.b, or 3.7.4.4.c.                            ta suyyressian chamber I'~F-8~
cannoc be met, the unit shall    be placed ia a structure shall    be conduct 4 during each oyerasiag cycLe.
      <Ts 3417        COLD SHUTDOWE COND~OH in                            Acceptable leak rate is aa order'y mana                                      0.09 lb/sec eC'rimary 24  hours.                                          consainmeat, atmosphere vich si dif~a tacial.
Se 3.C.a.z, t Lfo ~A3. a. Cantainmeac acmosyhere shall be                      a. The yrimary containmenc reduced to less thaa 4Z oxygen                            oxygea coaceatration shall v                    as 4uring reaccox                    be measured            c yovex o erati x'
re+t                            il    ea s oxyg 1 be ad] ced oa                          LOAN    ig>>
except as specified        in  3~  eke  ~  ~            so acc unt or        ~      SI'in of                      by ad ing redetersdn                    in
: b. Vi~
subsequent Ql'eh'.lip in the the  24-hour yeriod co lacing the reactor
                                  . D folloving a shut dova, the containment atmosphere oxygen concentrasioa shall be
: b. The o
                                                                              ~ p tho    us    to imary cant inmen gea conc erat, an be cali ased nce very efueling cycle
                                                                                                        'l asure reduceci ro less than 4 by volume maintained in this condition.
Deiaex'cing may commence                ur prior to a shutdova.
C~ .fysuyyl          ro the pa a  r is cic be rol used        C. The    contxol air supyly valve or the pneumat c con~o1 L43      s    tea'e th reacco shall n pr caa caacai s be sca eac, ed, cern inside ch    primary ca ainment, shall e ver.'fied ar      ac po r, the        actor    sh 11              clos    priox to rea or star=.      p be b    ught to    a COLD        OM&#xc3;                      4 monthly the eaft COHDIT ON      vf.~a  24  hours.
: d. If Specificatioa      3.7.h.5.a      d            P(op  W T]o~        A L2 3.7.A.5.b cannot bc 1
mec su ovasa            be Acrtod      initiated aad the reaccor shall be in a COLD SHUTDOWN CONDITION 5      vithia 24 hours BFH                                              3.7/4.7-11              AMENOMENT >to        y> 9 Unit  1 PAGE~OF~                      .
 
NOV 22 t888 S  ec,4~6 < ~a~,Z S  ."-OR 5P RPiIOH 3.7.A.4 (Coat'd)                                          4 7.L 4 (Cont'd)
: c. Tvo dryve3~-suppression                          Co  Each vacuum breaker, valve chamber vacuum breakers                              shall be insyectcd'or may be determined to be                              proper operation of ."c inoy'erable for      oy~                            valve aacL Limit svit"'"es in  accordance    vith Specif icatioa 1.0.%$ .
5'8Z ZVs7IPICgg~g      d. Zf Syecificatioas 3.7.4.4.a,                          k leak test of the d~ell FOR CPANCrES FOR            .b, or .c cacaos be met, the                        to suyyressioa chamber BFN O'TS Z.g.l.7 unit shall be ylaced in a                            structure shall be conducted Cold Shutdovn condition            ia                duri1sg each operating cycle aa  orderly    manner  vithia                    acceptable leak rate L's 24  hours.                                          0.09 lb/sec of primary, containmcat atmosphere vith 1 psi differential.
: a. Containment atmosphere shall be S~~>>~'        primary'ontainment L Cg 3.$ .53-                                                            a. The reduced to less than 4X oxygen                          oxygen concentration          sha''
v          ro        as duriag reactor                be measured        d    c~
over oyeratio pith~eacror                              dail          e oxygen c 1 t            sacs 'lboveMOO~s except as specified in 3.7.i..b.
L42 measurem t
of ccount  'he methocL shall    b  adjusted unc ed by ad tainty g
Ll                a predetermined        error funct.'o
: b. Mithin the 24-hour pcr                                    The      thods      ed to    casus A~(ie<L;l,<g    subsequent to y aciag the reactor                        thc y      ry  c    tainme in the UH mo folloviag a shut-                                gen    acentr      ion sh  11 dova, the coatainment atmosyhere                          be    alibr tcd    onc    every oxygen conccatration shall be                            refuel reduced to less than 4X by volume aad maintained          ia this condition.
einert        may commence        4 hour yrior to      a  shutdovn.
LS        c. Zf plant control air is being used                    co The    control air suyyly valve t  supply the                tic  coa    ol              f    the pneumatic control sys    em  inside pr            cont        t,          sys cm inside thQ prima the      actor shall a      t be  start                coat      cat shallibe ver ied or  if t to a Cold be brou pover, the eactor shall utdovn close      rior to reagtor s rtuy and mon      y thereafter.
coaditioa vithin 24          hours.
: d. If  Specification 3.7.'A.5.b 3.7.JL..a    and                a~An-(oN        A canaot be me 67/54          order y s ut ovn s                e initiated and the reactor shall be 8              in a Cold Shutdovn conditioa vithia.24 hours.
BFH                                                3.7/4.7-11                  Ah!B~DMB" ~~~.
Unit  2                                                                                                yg  ~
                                                                                                                ~<
PAGE        J              t
 
NOV      22  Icy;
(
3.7.A.4 (Cont'd)                                        4.7.A.4
: c. Two  drywcll-suppression                      c. Once each            operating cycle, chamber vacuum breakers                            tach vacuum breaker valve (Cont'cc.
may bc determined to bc                            shall bc inspected for inoperable for opening.                            proper operation oi the valve and limit switches in accordance with Specification 1.0.MM, Qu5+gc4gA)
Oa~ Pa        d. If Specifications 3.7.A.4.a,                  d. A leak test of thc drywcll QFt0(5g> g.g~,g        3.7.A.4.b, or 3.7.A.4.c,                          to suppression chamber cannot be met, the                                structure shall            be conducted unit shall bc placed                              during each operating cycle.
in a Cold Shutdown                                Acceptable leak rate is condition in an orderly                            0.09 lb/scc of primary manner within 24 hours.                            containment atmosphere with 1            si differential.
I      Lac 3,e.v.z
: a. Containmcnt atmosphere shall be reduced to less than 4X oxygen t        o power operation res ure except as spec as e
during reactor t    a~o ove 00+sig n 3.7.A. .b.
5g 3 b,X 2.l L7
                                                                  ~Z
: a. The primary containment oxygen concentration be measu dail to e  urem a coun of th meth d used a pred e oxy en t  sha for th o
shall d
be a ust d unce ain y ad rmi d error function WY g
b.. Within the    2    our period                                      c meth  s used to  me    urc subsequent to placing the reactor                      th prima                coats    cnt in the UH mod following a shut-                        oxy n conc ntrati                shal
                  ~ down, thc containment atmosphere                        be ca ibrate once e                ry oxygen concentration shall be                          refuel              cycl .
reduced to less than 4X by volume and                in this condition.
4        Deinerting    may commence    24 hours to C~        plan con ro a          s e ng used            c.                control ai supply valve o  supply    e pneuma    c control                  fo thc pneumati control s tem insi        primary ntainment,                    syst              inside thc imary the reactor s      ll  not be tartcd, or i at power, he rcacto shall contai ent shall be closed p rifi r to reactor startup be bro      t to a C d Shutdo                                      d monthly thercaftcr.
condition within 24 ours.
l2
: d. If thc    specifications of 3.7.A. .a              Plop      st gh'Ogg through 3.7.A.5.b cannot bc met khon        an or cr y s ut own shall bc B
initiated and the reactor shall be in a Cold Shutdown condition                                            PAGE~OF~
within 24 hours.                                                            AMENDV:E~lT N~. 18    C' BFH                                            3. 7/4. 7-11 Unit  3
 
AlUSTIFICATION FOR CHANGES BFN ISTS 3.6.3.2 PRIMARY CONTAINMENT OXYGEN CONCENTRATION ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR  Standard  Technical  Specifications,    NUREG-1433. Since the design is already approved,    adding  more  detail  does  not result in a technical change.
A2    This statement has been deleted since      it is unnecessary. With the reactor in power operation, reactor coolant pressure will always be above 100  psig.
TECHNICAL CHANGES  -  MORE RESTRICTIVE The requirement    to place the plant in Cold Shutdown condition within 24 hours when the    limit is  not restored within the required Completion Time is revised to reflect placing the plant in a non-applicable condition.
CTS 1.0.C. 1 states action requirements are applicable during the operational conditions of each specification. Therefore, the requirement to place the plant in Cold Shutdown is not applicable        if thermal power is reduced to < 15% RTP (outside the applicable condition) within 8 hours. The current action allows 24 hours to place the plant in a non-applicable condition. As such, this is an additional restriction on plant operation.
TECHNICAL CHANGES  -  LESS RESTRICTIVE "Generic" LAl  The  details of  how to reduce oxygen concentration to less than 4% have been  eliminated from the ISTS. This type of detail will be retained in plant procedures and/or system operating instructions.
the methods of performing sorveillances has been relocated to
~ LA2  Details  on BFN-UNITS 1, 2, & 3                                                        Revision  0 PAGE~OF
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.3.2 PRIMARY CONTAINNENT OXYGEN CONCENTRATION plant procedures. Changes to plant procedures will      be controlled  by the licensee controlled programs.
LA3  Requirements for controlling the use of plant control air to supply the pneumatic control system inside the primary containment and the associated  surveillance  have been relocated to the Technical Requirements Manual (TRN).
LA4  The requirement    to record the containment oxygen concentration will    be relocated to plant procedures. Changes to plant procedures will be controlled by the licensee controlled programs.
"Specific" Ll    The 24 hour allowance for inerting on startup has been changed to allow 24 hours after exceeding 15% power instead of the current Run Mode requirement (approximately 5%). The 24 hour allowance for de-inerting on shutdown has been changed to allow 24 hours prior to reducing below 15% power. These small differences provide some added time to inert or de-inert the drywell, and provide consistency with BWR Standard Technical Specifications, NUREG-1433. These minor changes are justified,  since the time allowed without an inerted drywell is. only increased slightly, and the fact that at low power levels, hydrogen generation is very small compared to higher power levels.
L2    Currently,  no  time is provided to restore oxygen concentration to within limit prior to requiring a plant shutdown. Proposed Required Action A. 1 and associated Completion Time will allow 24 hours to restore oxygen to within the limit prior to requiring a plant shutdown. During this time, the CAD System is normally still OPERABLE, thus a means to prevent combustible mixtures still exists. This new ACTION would possibly prevent unnecessary shutdown and the increased potential for transients associated with the shutdown.
L3    The  periodic verification of oxygen concentration in the primary containment has been changed from a daily verification to a weekly verification. The primary containment is inerted to maintain oxygen concentrations within limits. The primary containment leak rate is established for each operating cycle    and any changes  during normal operation usually occur very slowly.      Other changes to primary containment integrity, such as PCIV operability problems, are indicated by other means to the plant operator and appropriate actions are contained in other technical specifications.
BFN-UNITS 1, 2, 5 3                                                      Revision  0 PAUE~OF~
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION MARKUP
 
4 4.7.B.
3.7.B.4 (Cont'd)
: b. Place  all  reactars in sc<  Duswg'~So    n *r changes at least    a HOT SHUTDOW&#xc3;                    A    e~~ iSrs Z.s,q.p COHDITIOS vithin thc next 12 hours and in a COLD SHUTDOW&#xc3;    COIITIOH vithin the  follovi    24 hours.
Secondary containment        W~~g,          1. Secondary containment 4RmSRiP                                surveillance shall be reactor zone at all times                        performed as indicated except as specified in                            belov:
3.7.C  2~                                        ,gq,          5 3b9('k
: a.      Secondary conta nmcnt
                                  >~<81                              capability to maintain
                                                                    ',1/4 inch    of vater vacuum
                                                          ~l                ca    vi i 4ns uw '~
h)    on P2          vith                  c ra    of not ore tha 12,000 cfm      sh dcmonstratc        t  cych
            &~&lTlnN g+~                  Ofba bl~                  r  ue  ng    ut    e  Qio        r Lhmw
: 2. If reactor    zone secondary                  2. Af      r a s condary containment i,aeeg+44y<cannot                    ca    tai nt v lation is be maintained the folloving                  ~2      term    ed,    he  sta dby      gas conditions shall be met:
N~k. 4  ecu;          t'., I teat    nt oper cd i ediat s stem    v  ll ly ter a
bc
: a. Suspend    all fuel  handling              the ffec ed zon s ar Lz.        operations, core altera-                      iso ated from t e re ainde tions, and activities vith                  of the econda A-CT(on/    the potential to drain any                    c tai cnt t con irm i C        reactor vessel containing                    abili to m inta n th fue .                                        rema ndcr o the scco ary t~aebwk(                            can      inmen    at 1 4-i h
: b. Restore reactor zone                          of vater      egati e pr ssurc secondary containmcnt                        under calm vind con itions AC7(g~5      integrity vithin 4 hours, or place all rcsctars in at least    a HOT SHUTDOWN COHDITI05 vithin the next 12 hours and in a COLD SHUT-DOWN COHDITI01 vithin the folloving 24 hours.
BFS Unit  1 3.7/4.7-16                    AMENDMENT NO.        I 74
 
Cl 3      Secoada      containment integ-rity s    11 be main        ined in the  r  ueliag xone except as spec    ied in 3.7. .4.
: 4. IS  refueliag    x    c secon      ry taiament c        ot  be t
atained conditions          llfollowi be    t:
g
: a. Handl    g of s t fuel and all      rations over spent fue pools an open re ctor wcl s contai ing fuel shall be  prohibit d.
: b. The  stan    y gas    tr  atmeat system      ction to        he refuel    g xone w      1  be block  d except        ra cont oiled lea          c are six to ass            the ach evtag of vacuum of at least 1/ inch of water and aot ov r 3 inch s of water ia 1 three reactor xones.
cable  ii    is is reactor one y appli-          &e xush'f
                                                                  ~ SF'SrS,
                                                                              ~~~ A  ~
C~ Q 3.4,t.p integrity is      required.
D.                                                      D
: 1. Rhea Primary Containmeat.                        l. The  primary containment Integrity is required, all                          isolation valves primary containmeat isolation                      surveillance shall    bc valves and all reactor                              performed as follows:
            , coolant system instrument line flow check valves shall                        a. ht least  once pcr  oper-bc OPERhBLEc except as                                  ating cycle, the    OPER-
              ~ pecified    ia 3.7.D.2.                              .hBLE  primary contain-ment  isolation valves
        +Locked or sealed closed valves                              that are power operated may be opened on an inter-                                  and  automatically mittent basis under                                        initiated shall be istrative control                                  tested for simulated automatic  initiati bFN Unit  1 3.7/4.7-17            AMENMER NL    I8 9 PAGE            OF
 
I
  ~
 
UNIT 2 CURRENT.
TECHNICAL SPECIFICATION MARKUP
 
Cl 0
 
S    i4co4iam 3.l      .Q. t MAR    30 1%0 3.7.B.                              S    t                4.7.B.        ta db    Gas      ea
                                                                      $2U: tt9)
,3.7.8.4 (Cont'd)
: b. Place    all  reactors in                  Qc,Suf,4i(i    cak> e~ for C~~~pg at least    a HOT SHUTDOMH                  Qr9t    td  iSTS R,C, k3 COHDITIOH vithin the next 12 hours and in a COLD SHDTDOWH COHDITIOH vi thin the folloving 24 hours.
3.7.C. S  o d      Ca  a    e  t                      4.7.C. Seep da        Co  ta        nt
: 1. Secondary containmen                          1. Secondary containment shall  be                in  the                surveillance shall be reactor zone at      all  times                    pcrfarmed as indicated except as specified        in                      bclov:
3.7.C.2.                                          >  >q,(,3+sR3 oPenRB~                        econdary containment capability to maintain
                                                              /p(    1/4 inch of water vacuum HR
(<
v th er m
c~v h bandit a system on leakag
()L 'i~
i%a ~
                                                                                                                ~
rate of not        more tha Ll        12,000 cfm        shall be demonstrated                            houP-govwn<oeJ A+~                                                        uagngou~ge >
ze                            0    )
LAO        to rc      cli
: 2. If reactor    conc secandary                2~    Aft      a se    ondary containment    4ae~~          cannot              co tainme      t viola      on  is be maintained the folloving                          termi      d, the    tandby gas Lo-          c          ns shall bc met:                        treat      nt sys      m vill b Re  i~  Ae4ia                              oper ted      i    diately fter,
: a. Suspend    all fuel handling                  th affec d zones re t'ions, QL<(ot4        apcratians, core altcra<<
and  activities vith the potential to drain any i olated from th remainder f thc conta econda cnt  t confirm ts reactor vessel containing                      abil ty to          intain e i~ka4Q                            remainder f the se anda containm t at 1/ inch
: b. Restore reactor zone                            of wate negativ pre ure A~<"            secondary cantainment                          under calm vind conditions.
A<@            integrity vithin 4 hours, or place all reactors in at least    a HOT SHUTDOWH                        4 SPY 3.4-            l l COHDITION within the next                        a,~dL    z.c,  V. (.
12 hours and in a COLD SHUT-DOW COHDITIOH        vithin    the folloving 24 hours.
BFH                                              3.7/4.7-16                      AMENOMENT gp.      y77 Unit  2 PAGE~OF~
 
                                                                    ~p<<Aicc~io~ 3.6. 4      (
SSES
: 3. Secondary c ntainment      integ-rity shall    e maintained in the rcfu    ing zone, except as, specifi d in 3.7.C.4.
: 4. If r    ueling zone secondary con ainment cannot be m  ntained the folloving nditions shall be met.
: a. Handling of spen fuel and all operations ver spent fuel pools        open reactor veils conta ing fuel shall bc prohib    ed.
: b. The  st  dby gas treatm nt syst    suction to the ref cling  zone  vill    e b  eked except  for  a ontrolled leaks area sized to assure the achieving, of vacuum of at least 1/4 inch of vater and not ov      3 inches of vater in zones.
ll  three reactor is is only appli-cable  if reactor    zone                Sec,
                                                            *~
guS g Cr+A'on Crt  A>> gCgg integrity is required.                          Ben/ isrS Z.C.l.g a    Co  ta              a  o            D. ma    Co  ta    e t Isolat  o V~a~
: 1. Shen Primary Containmcnt                      1. The  primary containment Integrity is required, all                      isolation valves primary containment isolation                    surveillance shall be valves and all reactor                          performed as follovs:
coolant system instrument line flov check valves shall                      a. At least once per oper-be OPERABLE* except as                                ating cycle, the OPER-specified in 3.7.D.2.                                  ABLE primary contain-ment isolation valves
      *Locked or sealed closed valves                              that are povcr operated may be opened on an      intermittent                      and  automatically basis under administrative control.                        initiated shall be tested for simulated automatic    initiation BiH                                        3.7/4.7-17            NENOMEHT NO. 2 04 Unit 2
 
CURRENT TECHNICAL SPECIFICATION MARKUP
 
,
3.7.B.                                    S  s                      .B.      a                    eat ent kama 3.7.B.4 (Cont'd)
: b. Place    all  reactors in                        S<~ wustj$ i ~*'o r) at least      a HOT SHUTDOWH                      CholcS Fo r GV~ ISTs COHDITIOH within the next                          3oL Qe3 12 hours and in a COLD SHUTDOWH COHDITIOH vi thin hc folloving 24 hours.
3.7.C. Seco da          Co  ta    e                          4.7.C. Seep da          Containment
: 1. Secondary containment shall be ma nta nc n the                            surveillance shall be reactor zone at all imes                            performed as indicated
>Pal'caYiliFy  'xcept        as  spccificd in                          below:
3.7.C.2.                                        SR 3.4.4I.3 8-sR        . o.l.
PcRAbl                a. Secondary containment CO  not app      ca e                              capability to maintain prior to load        ng fuel    into                  1/4 inch of vater          vacuum c  Unit    3  rca tor vcs 1,                            er    aim    vn                  lOi~n pr vided the Uni 3 rcac r                                      mp      c    di  on zone s not requir            for                      vith      system        nlea      ag second          containment                            rate of not        more tha integrity for other                                    12,000 cfm shal emonstrate at eac e e ng o tage              rior CoaD'Ihonl    g+c                    fcrobl8                  o      fu    i
: 2. If reactor      zone secon ary                      After      scco dary cont nmen viol tion is containment iaeegekty cannot bc maintained the folloving                          det rminc , the stand                    gas ons shall bc mct:                        tr atm sys vil be r+pesek Note    4o              n C.)                      o cra d imm iatel after
: a. Suspend      all fuel handling                the    fecte zones are operations, core altera-                      iso atcd f om the remainder tionsp and activities with                    of hc sc ondary thc potential to drain any                    contai      nt to onfi its reactor vcsscl containing                      abilit    to  ma tain fuels                                                  der of he se onda        e'emai tA&ilFel                        cont inmcn        at 1/ inch
: b. Restore reactor        zone                      f vater    egativ pres re secondary containment                            dcr ca      vind onditions RC&n>              integrity vithin 4 hours, or place all reactors in R.+B              at least COHDITIOH a HOT vithin SHUTDOWH the next
                                                                          ~
                                                                          /tdd Sls Xg,q, 3i6,$ , t,+
                                                                                                ~, ~
12 hours and in        a  COLD SHUT-DOWH COHDITIOH        vithin    the folloving      24 hours.
BFH                                                  3.7/4.7-16              NENOMENT NO.          159 Unit  3                                                                  WGE~OF~
 
sPec,,g      z.s.M. t econdary con          ament  integ-rity ahal        e  maintained    in the re        ling xone, exec        as spec      led in 3.7.C.4.
5 refueling xon secondary containment c          ot bc maintained          e folloviag conditio shall bc met:
ae          ling of    sp      fuel  and all    operatio      over spent fuel pools            open reactor veils co aining fuel hall bc pro      bited.
: b. Th    standby g        treatment stem suet      n to thc refucll          one  vill be blocke      except for a contr led leakage are six d to assure the a      eving, of a va          of t  least 1/4-in        of vatcr and    not over      inches of vater in      a    three reactor xoncs.          s  is only appli-              $c'w Fu~f4 cdjog Qr    Cjg~
cable      i  reactor zone                    W 8%      lsT5 3.t .I.3 intcgr ty is required.
D                                                        D.                          spa  o
: 1. When    Primary Containment                        1. Thc primary coataiameat Integrity is required, all                              isolatioa valves primary containment                                    surveillance shall    be isolation valves and all                                performed as    follovs:
reactor coolant system instrment line flov check                              a. At least once per oper-valves shall be OPERABLE*                                    ating cycle, the OPER-except as specified in                                      ABLE primary contain-3.7.D.2.                                                    ment isolation valves that are povcr operated
        <<Locked or sealed closed valves                                    and  automatically may bc opened on aa latczmittent                                  initiated shall be basis under admiaistratlve control.                              tested for simulated automatic initiation BPK                                              3.7/4.7-17 Unit  3                                                                      AMENDMENT,Ng  g6  I
 
JUSTIFICATION    FOR CHANGES BFN ISTS  3.6.4.1 -  SECONDARY CONTAINMENT ADMINISTRATIVE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    The  definition of SECONDARY CONTAINMENT INTEGRITY has been deleted from the proposed Technical Specifications. In its place the requirement for secondary containment is that      it  "shall be OPERABLE." This was done because of the confusion associated with these definitions compared to its use in the respective LCO. The change is editorial in that all the requirements are specifically addressed in the proposed LCO for the secondary containment and in the Secondary Containment Isolation Valves and Standby Gas Treatment System Specifications.        The Applicability has been reworded to be consistent with the new definitions of NODES and to have a positive statement as to when      it is applicable, not when not applicable. Therefore the change is purely a presentation it  is preference adopted by the BWR Standard Technical Specifications, NUREG-1433.
A3    Amendment 159  to Unit 3 Technical Specifications added a provision to allow separating the Unit 3 reactor zone from the secondary containment envelope under certain conditions (prior to fuel loading) to expedite Unit 3 constructions activities'during Unit 2 operation. This provision is no longer needed and can no longer be applied. Therefore the
* Note to TS 3.7.C.1 has been deleted. This change is considered administrative since    it deletes a requirement that no longer applies.
TECHNICAL CHANGES  - MORE  RESTRICTIVE Ml    This Surveillance in two parts)
(it appears has been broken to be only one Surveillance, though into two separate Surveillances, SR it is BFN-UNITS 1, 2, 5 3                                                      Revision  0 PAGE~OF~
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.4.1 -  SECONDARY CONTAINMENT 3.6. 1.4.3  and SR 3.6.1.4.4.      The tests will ensure the ability of the secondary containment to maintain I/4 inch vacuum, and in addition, SR 3.6.4.1.3 will ensure the vacuum is attained in 120 seconds, while SR 3.6.4.1.4 will ensure      it maintains the vacuum for I hour. These new requirements are additional restrictions on plant operation.
H2    The  analysis for secondary containment drawdown assumes two SGT subsystems  are needed. Thus, the test now specifies the minimum number of'operating SGT subsystems and the total flow rate. To ensure all three SGT subsystems are tested (since the test does not specify that all SGT subsystems must be tested) the Frequency is on a STAGGERED TEST BASIS, which will ensure all three SGT subsystems are tested in 2 cycles. These are additional restrictions of plant operation.
Two new    Surveillance Requirements have    been added. SR 3.6.4.1. 1 will verify that all    secondary containment hatches are closed and sealed every 31 days. SR 3.6.4.1.2 will verify that each access door is closed, except when used for opening, and then one door is closed, every 31 days. These are additional restrictions on plant operation.
M4    This change requires the movement of irradiated fuel in secondary containment and CORE ALTERATIONS to be "Immediately" suspended secondary containment is inoperable.        In addition,,action must be if "Immediately" initiated to suspend operations with the potential to drain the reactor vessel in this Condition. The current specification does not establish a time limit to suspend these activities.
Immediately suspending these activities minimizes the probability of a fission product release      if a reactivity event occurs while the secondary containment is inoperable. Also, immediately initiating action to suspend operation with the potential to drain the reactor vessel will minimize the potential for reactor vessel draindown and subsequent potential for fission release.        Imposing a time limit to suspended these activities is a more restrictive change.
The  reactor building is divided into four ventilation zones which may be isolated independently of each other. The refueling room which is common to all three units forms the refueling zone.          The individual units below the refueling floor form the other three reactor zones. The zone system is not an engineered safeguard, and the failure of the zone system would not in any way prevent isolation or reduce the capacity of the Secondary Containment System. If the internal zone boundaries should fail, the entire reactor building still meets the requirements of secondary containment.      CTS  3.7.C requires, the secondary containment integrity to    be maintained in the reactor zone and refueling zone at      all times except    as  specified in 3.7.C.2 and 3.7.C.4 respectively. If secondary containment cannot be maintained in the reactor zone, fuel BFN-UNITS  I,  2, 5 3                                                      Revision  0 PAGE
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.4.1 -  SECONDARY CONTAINMENT secondary containment must be restored within 4 hours or all reactor shall be shut down.      If secondary containment cannot be maintained in the refueling zone, the handling of spent fuel and all operations over spent fuel pools and open reactor wells shall be prohibited.
Currently, a combined secondary containment integrity test is performed to demonstrate Technical Specification operability. In addition, due to leakage between zones, zone integrity is difficult to maintain. As such, secondary containment integrity is maintained on the three reactor zones and the refueling zone at all time. Therefore, the separate Specification that only prohibits the handling of spent fuel and all operations over spent fuel pools and open reactor wells when refueling zone integrity is not maintained is not necessary and has been deleted TECHNICAL CHANGES    -  LESS RESTRICTIVE "Generic" LA1  This design detail/requirement has been relocated to the Background section of the Bases for ITS 3.6.4.3, "Standby Gas Treatment System,"
and to plant procedures governing this Surveillance Requirement.        Any changes to this requirement will require a licensee controlled program evaluation.
LA2  The requirement    to operate the Standby Gas Treatment System after a secondary containment violation is determined and has been isolated (i.e., restored) to check      if it can maintain the proper vacuum is being relocated to plant procedures. Any time the OPERABILITY of a system or component has been affected by maintenance, replacement, or repair, post maintenance testing is required to demonstrate OPERABILITY of the system or components. Explicit post maintenance surveillance testing has therefore been deleted from the Technical Specifications and will be relocated to the appropriate plant procedures. Any changes to the requirement will require a licensee controlled program evaluation. This change  is consistent with    NUREG-1433.
"Specific" L1    The proposed    surveillances for the 1/4 inch vacuum tests do not include the  restriction  on plant conditions that requires the surveillances to be performed during a refueling outage, prior to refueling.        These Surveillances could be adequately performed in other than a refueling outage without jeopardizing safe plant operations.        The control of the plant conditions appropriate to perform the test is an issue for procedures and scheduling, and has been determined by the NRC Staff to BFN-UNITS 1, 2, & 3                                                      Revision  0
 
JUSTIFICATION fOR CHANGES BFN ISTS  3.6.4.1 -  SECONDARY CONTAINMENT plant conditions appropriate to perform the test is      an issue for procedures and scheduling, and has been determined by the NRC Staff to be unnecessary as a Technical Specification restriction.        As indicated in Generic Letter 91-04, allowing this control is consistent with the vast majority of other Technical Specification surveillances that do not dictate plant conditions for the surveillances. The proposed change to the 18 month frequency also effectively increases the surveillance interval. The current Technical Specification for all three units requires performance at each refueling outage prior to refueling. Since the secondary containment is common to all three BFN units, with all three units operating, this could result in performance of the same test at an average of every 6 months. The change to the 18 month frequency will allow this test to be performed once and applied to all three units Technical Specifications. Since operating experience has shown these component usually pass the Surveillance at the 18 month frequency, the frequency is considered acceptable from a reliability standpoint.
L2    Required Action C. 1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If  moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action.      If moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operation and the inability to suspend movement of irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown. By adding an exception to LCO 3.0.3 for the failing to suspend irradiated fuel movement, an LCO 3.0.3 required reactor shutdown is avoided in MODE 1, 2, or 3. However, the plant would still be required to shutdown after 4 hours per proposed Required Actions B.l and B.2 in addition to suspending fuel movement per Required Action C.l.
BFN-UNITS 1, 2,  5, 3                                                    Revision 0 PAGp~OF~
 
UNIT 1 CURRENT TECHNICAL SPECIFICATION It MARKUP PAGF~OF~
 
                                                                                          ~3      6. Y-2.
MA 80 1980 SURVBILLASCE REQUIRENESTS 3.7.B.                                                              4.7.B.
3.7.B.4 (Cont'd)
SC'  34s~A cw6      hr C~cs
: b. Place          all    reactors in
                                                                                            <
                                                                          @~ BFrd t 5 TS Z, C.    /.Z at least            a HOT SHUTDOMH COIITIOK vithln the next 12 hours and in a COLD SHUTDOMf COlIDITI01              vithin the folloving 24 hours.
4.7.C.
Secondary contalnmcnt                integrity      1. Secondary containment shall  be maintained in the                            surveillance shall bc f~  seat L4p 3,&Ac%
reactor zone at                all times                performed as indicated
  +              except as specified in                                  bclov!
  ~i:cab'3i        3.7.C 2
: a. Secondary containment
                                            +3 k +H) Oq5                        capability to maintain hfo~
                            'jiopogCg(
P                                      1/4 inch of vater vacuum AF                                                                        under calm vlnd f~.~~~ nkk              l    h  +6o~s                        (< 5 mph) vlth conditions a system leakage rate of not    more than 12,000 cfm, shall be demonstrated at each refueling outage prior to refueling.
2~  If reactor            zone secondary,              2. hftcr  a secondary containment integrity cannot                            containment violation is be maintained the folloving                              determined, the standby gas 4 kz~~X conditions shall be mct:                                trcatmcnt system      vill    bc operated immediately after
    ~g    p. a. Suspend            all fuel handling                the affected zones are operations, core altera-                            isolated from the remainder ACT(oQ tions, and activities vith                          of the secondary b        the potential to drain any                          containment to confirm its reactor vessel containing                          ability to maintain the fue .                                              remainder of the secondary I th~ +kl containment at 1/4-inch
: b. Restore reactor zone                                of vatcr negative pres'sure ACT(o~>    secondary containment                              under calm vind conditions.
h>t        integrity vithin 4 hours, or place            all reactors in                    Sc'c >uSK Pi ecHo~
t least a HOT SHUTDOWN                              4~ I~A    t575 r,~.q,i COlIDITIOH vithin the next 12 hours and in a COLD SHUT-DOM&#xc3; CO%)ITIOUS vithin the                            k pseud  SRs  ~.6.q,a,i >3.0    7 >.z.
olloving              24  hours.
BFS                                                        3.7/4.7-16                AMENOMEHT No.        X 74 Unit    1
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE ) OF
 
LI                                                    p) 3 '.B.                                    S  s c              4.?.B.      a        Ga J.7.B.4 (Cant'd)
: b. Place  all    reactors in                        ~~~> 4 C&k>6M gyp at least COHDITIOH a HOT SHUTDOMH vithin
                              '12 hours and in a COLD the next
                                                                              ~
                                                                              ~CC.
RFIV  I ~S'.QQ3 Qg g~g~
SHDTDOMH COHDITIOH          within the folloving      24  hours.
4.7.C. Seep da        Conta      e
: 1. Secondary containment            integrity    1. Secondary cantainment roPoM                  shall be maintained in the                          surveillance shall be L,co 3.(i.4.2.            reactor zone at all times                          performed as indicated ppplic%Lal~Q              except as specified in                              belov:
3.7.C.2.
: a. Secondary containment capability to maintain 1/4 inch of vater vacuum Pr3                                                                    under calm vi.nd (c 5 mph) conditions g g    ~ g fg 4o AGTl6                                vith a system leakage rate of not morc than 12,000 cfm, shall be
                    'PropS<cg    Afoot 1                                          demonstrated at each ko Aaml o eS                                                refueling outage prior ta refueling.
If reactor    zanc secondary                  2. After  a secondary containment integrity cannot                        containment violation is be maintained the folloving                        determined, the standby gas VrspoSaD Ar~'rW hb4' conditions shall be met:                              treatment system      vill    be Qadi~ b    I operated immediately after
: a. Suspend all fuel handling                    the affected zones are Ag<latJ            operations, core altera-                      isolated from the remainder tions, and activities vith                    of thc secondary the potential to drain any                    containment to confirm its reactor vessel containing                    ability to maintain the s M~eLag tf                      remainder of the secandary containment at 1/4-inch
: b. Restore reactor zone                          of vater negative pressure LI                  secondary containment                        under calm wind conditions.
p,et(~~        integrity vithin 4 hours, A<8            or place all reactors in t least    a HOT SHUTDOMH                      See  V~stll(ca4e~      4r 'CL4~pg COHDITIOH      vithin    the next 4r  2 Fhl I s'75 g. (, t/.
12  hours    and  in  a  COLD SHUT-                                        /
DOMf COHDITIOH within the folloving 24 hours.                          +-p.s  d Ses 3.<AZ.I, Z.C,g.Z.Z.
BFH                                                    3.7/4.7-16                      MEHDMENT NO. yqy Unit    2 pp,Q~
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP PAGE OF
 
NOY  $ 8  1931 3.7.B.                          at        st                .7.B.      ta d    Gas    eatment
                                                                            ~S~t 3.7.B.4 (Cont'd)
: b. Place  all  reactors in at least    a HOT SHUTDOWH                  See  rus<4cc t)'o~    fa COHDITIOH vithin the next                    ch  nysA,~ 8su    isrs 12 hours and in a COLD                      3.4 S. 3
                                                                              ~
SHUTDOWH COHDITIOH vithin the folloving 24 hou 4.7.C. Seep da      Containment
: 1. Secondary containment integrity                Secondary containment shall bc maintained in thc                      surveillance shall      be t'i~gk                reactor    zone at  all  times                performed as indicated LCP 3.fegeL 4
~l,  Calpi (el)        except as specified in                          belov:
3.7.C.2.
: a. Secondary containment
                      + LCO    not applicable until jus                    capability to maintain rior to loadi fuel i o                            1/4 inch of vater vacuum Unit 3 reac r vessel,                        under calm vind pr o ded the Unit reacto                          (< 5 mph) conditions zone      not require for                        vith  a system inleakage scconda      containment                          rate of not more than nte  ri                  units.                  12,000 cfm, shall be demonstrated at each Pro~ +kg gM3*QW                            refueling outage prior p>      g  pM    I ~AAo~s                  to refueling.
2~ If reactor    zone secondary              2~  After    a secondary containment violation is containment integrity cannot be maintained thc folloving                      determined, the standby gas conditions shall bc mct:                        treatment system    vill    be
                >"                                                      operated immediately after P.p              a. Suspend    all fuel handling              thc affected zones are operations, core altera-                  isolated from the remainder tions, and activities vith                of thc secondary QhaH        the potential to drain any                containment to confirm its Z7      reactor vessel containing                  ability to maintain the remainder of the secondary
                  ~
i''yl4q        pg g          containment at 1/4-inch Ll          b.      cstore reactor zone                      of vater negative pressure secondary containment                      under calm vind conditions.
integrity vithin 4 hours, or place    all reactors in                  c ~64's'cR$ pa ~ ~ ~~
at least COHDITIOH a HOT vithin SHUTDOWH thc next            ~'H      6'rs g.<,q, ~
c$
12 hours and in a COLD SHUT-DOWH COHDITIOH      vithin  thc folloving    24 hours.                      MM 58~ 3.e.s.v.i,3.~.~.i.2.
BFH                                              3.7/4.7-16              NENOMENT NO. 159 Unit      3 PAGi=    >      OF
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.4.2 SECONDARY CONTAINMENT ISOLATION VALVES ADNINI STRATI VE CHANGES Al    Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is done to make consistent with NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection. This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    The  current definition of Secondary Containment Integrity requires all secondary containment    isolation valves (SCIVs) to be OPERABLE or in their isolation position. Thus, the current secondary containment Specification encompasses the SCIV requirements. It is proposed to provide a separate Specification for SCIVs for clarity. Thus, the new LCO will require all SCIVs to be OPERABLE, consistent with the current requirements. The applicability has been reworded to be consistent with the new definitions of MODES and to have a positive statement as to when it is applicable, not when it is not applicable.
A3    Proposed ACTIONS Note    2 (" Separate Condition entry is allowed for each penetration flow path") provides explicit instructions for proper application of the ACTIONS fo'r Technical Specification compliance. In conjunction with the proposed Specification 1.3 - "Completion Times,"
this Note provides direction consistent with the intent of the existing Actions for inoperable isolation valves. Similarly, proposed ACTIONS Note 3 facilitates the use and understanding of the intent to consider the operability of any system affected by inoperable isolation valves and to apply applicable Actions. With the proposed LCO 3.0.6, this intent would not necessarily apply. This clarification is consistent with the intent and interpretation of the existing Technical Specifications, and is therefore considered an administrative presentation preference.
BFN-UNITS  I,  2, & 3                                                  Revision 0
 
0 JUSTIFICATION FOR CHANGES BFN ISTS 3.6.4.2 SECONDARY CONTAINNENT ISOLATION VALVES A4    Amendment 159    to Unit 3 Technical Specifications added a provision to allow separating the Unit 3 reactor zone from the secondary containment envelope under certain conditions (prior to fuel loading) to expedite Unit 3 construction activities during Unit 2 operation. This provision is no longer needed and can no longer be applied. Therefore the
* Note to TS 3.7.C. 1 has been deleted. This change is considered administrative since    it deletes a requirement that no longer applies.
I 3
TECHNICAL CHANGES    - NORE  RESTRICTIVE Two new  Surveillance Requirements have been added to ensure SCIV operability. SR 3.6.4.2. 1 verifies that SCIVs isolate within the assumed times in accordance with the inservice testing program.        SR 3.6.4.2.2 verifies that each SCIV actuates to its isolation position on an accident signal every 18 months.      These are additional restrictions on plant operation.
This change requires the movement of irradiated fuel in secondary containment and CORE ALTERATIONS to be "immediately" suspended secondary containment is inoperable.
if In addition, action must be "immediately" initiated to suspend operations with the potential to drain the reactor vessel in this Condition. The current specification does not establish a time limit to suspend these activities.
Immediately suspending these activities minimizes the probability of a fission product release      if a reactivity event occurs while the secondary containment is inoperable. Also, immediately initiating action to suspend operation with the potential to drain the reactor vessel will minimize the potential for reactor vessel draindown and subsequent potential for fission release.        Imposing a time limit to suspended these activities is a more restrictive change.
TECHNICAL CHANGES  -  LESS RESTRICTIVE "Specific" L1    This Action has been changed to allow one valve in a penetration to be inoperable for up to 8 hours, instead of the current 4 hours. Proposed ACTION A now requires the penetration to be isolated in 8 hours.        This is justified since an OPERABLE valve in the penetration remains to isolate the penetration      if needed, thus the "leak tightness" of the secondary containment is still maintained. The isolated penetration is required to be verified every 31 days while a valve is inoperable, further ensuring the continued "leak tightness" of the secondary containment. Proposed ACTION B will verify that        if both SCIVs in a penetration are inoperable, at least one SCIV in a penetration is closed BFN-UNITS 1, 2,  5. 3                                                    Revision  0
 
JUSTIFICATION FOR CHANGES BFN ISTS 3.6.4.2 SECONDARY" CONTAINMENT ISOLATION VALVES within  4 hours. This maintains consistency with the current requirements. An allowance is proposed for intermittently opening closed secondary containment isolation valves under administrative control. The allowance is presented in proposed ACTIONS Note 1, which allows opening of secondary containment penetrations on an intermittent basis for performing Surveillances, repairs, routine evolutions, etc.
L2    Required Action D.l has been modified by    a Note stating that LCO 3;0.3 is not applicable. If moving  irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If 'moving irradiated fuel assemblies while in MODE 1, 2, or 3, the fuel movement is independent of reactor operation and the inability to suspend movement of irradiated fuel assemblies would not be a sufficient reason to require a,reactor shutdown. By adding an exception to LCO 3.0.3 for the failing to suspend irradiated fuel movement, an LCO 3.0.3 required reactor shutdown is avoided in MODE 1, 2, or 3. However, the plant would still be required to shutdown per proposed Required Actions C. 1 and C.2 in addition to suspending fuel movement per Required Action D. l. However, this shutdown is considered less restrictive since Required Action C. 1 allows the plant to be in Hot Shutdown within 12 hours versus Hot Standby within 6 hours as required by CTS 1.0.C. l. Both CTS and the proposed Required Action C.2 require the plant to be in Cold Shutdown within 36 hours.
BFN-UNITS 1, 2, 5 3                                                    Revision 0
 
UNIT I CURRENT TECHNICAL SPECIFICATION MARKUP PAGE~0>
 
o
: 2. a. The results of the in-place            2. a. The tests and sample cold DOP and halogenated                    analysis of hydrocarbon tests at g 10K                  Specification 3.7.B.2 design flow on HEPh filters                shall be performed at and charcoal adsorber banks                least once per operating shall show g99X, DOP removal                cycle or once every and g99X halogenated                        18 months  whichever hydrocarbon removal when                    occurs  first for    standby tested in accordance with                  service or after every hHSI H510-1975.                              720 hours of system operation  and  following significant painting, fire, or chemical release in any ventilation zone communicating with the system.
: b. The results of laboratory                b. Cold  DOP  testing shall carbon sample analysis                      be performed    after shall show 290K radioactive                  each complete    or partial methyl iodide removal when                  replacement of the HEPT tested in accordance with                    filter bank or after any hSTN D3803                                  structural maintenance on the system housing.
: c. System shall be shown to                  c. Halogenated hydrocarbon operate within ply design                    testing shall    be flow.                                        performed after each complete or partial replacement of the charcoal adsorber bank or after any structural maintenance on the system housing.
PAGE    ~      uF~
BPK                                    3.7/4.7-14 NENIMENT KO. 2  15 Uait 1
 
oscet Ac7-Sg Ra    KZ.I operated a ot of at least 10 hours every Prl Pn    Octad o~s'mule*~                                        month.
        'n i'i a h on s i ng v  c    Test sealing of g              ets or h using door . s pe ormc utf emic      smo      g    er to s du ing e ch          t  st pe orm        for co    ian ffca ion vi 7.B..a Spc  i k5'eci
                                                                                                          ~sn ~~<
rom aad after the date tha                ~  ao    Once  per oae train of the standby gas                            automat c          t  at on of treatmeat system is made or                            each braach of the stand<<
found to be faopcrablc for                              by gas treatmeat system any reasoa, REACTOR POWER                                              emo    tratc QTfohl      OPERATIOS and fuel handling                            from  e      unit'%contr ls.
fs permissible only durfag                Sk'xto.9.Z.
the succeeding 7 days unless                            At least once yer such      circuit is      sooaer made                  manual    oyerability o OPERABLE,      provfded that                          the byyass valve for duriag such 7 days all                                  filter cooling shall            be active componcats of the                                demonstrated.
other tvo standby gas treatment trains shall be                          c. When oae      train of the operable.                                              s      by        tre tmen
                      ~pose) <>4 A 4e~~A                                  -ey  tern be omcs          yer ble o  Of C.                                      the other        o  tr sha 1 be d        oastr      ed f'n~          ~'ir nL                              tob      0            vf        2
                    ~
lkAon Q,J                                          hours and daily ther eaf ter.
4~    Zf these coadftioas caaaot HClbnls be met:
: a.      Suspend    all fuel duffy ~o aSc+bli<5 c'~e~4 of lit'agiAk.d.
                                                                                      >~ e~sc&sdtM.Q c<rt& nned-
                                                                                                                  ~
C+Z                handling oyerations,                          dcrlg  CoREhLT<AtTIbA, O'Ollr a Q f gpg core alterations,      aad activities vfth thc potential to drain
                      ~ - any reactor vessel containing, fuel          N                            AjbtEMDMENT NO.      g 7g BEB t                                                  3.7/4.7-15 Unit  1 PAGE
 
                                                      ~ ~  ~
Jr. Plass a11 reactors in QcTIoA        at least  a HOT SHUTDOWN s          COIITIOS vithin the next 12 hours and in a COLD                            sr'uz5AwHcn f r Q~
              , SHUTDOWN CONDITION vithin                        A SFW WrS Z;e.V.t the folloving 24 hours.
3.7.C.                                              4.7.C. S  o
: 1. Secondary containment      integrity    l. Secondary containmcnt shall  be maintained in the                  surveillance shall bc reactor xone at    all  times                pcrformcd as indicated except as specified in                        belov:
3.7.C.2
: a. Secondary containment capability to maintain 1/4 inch of vatcr vacuum under calm vind
(< 5 mph)  conditions vith a system leakage rate of not  more than 12,000 cfm, shall be demonstrated at each rcfucling outage prior to refueling.
If reactor  xone secondary              2. hftcr  a secondary containment integrity cannot                  containment violation is be maintained the folloving                    determined, the standby gas conditions shall bc mct:                      treatment system  vill be operated immediately after
: a. Suspend  all fuel handling                the affected xones are operations, core altera-                  isolated from the remainder tions,  and  activities vith              of the secondary the potential to drain any                containment to confirm its r'eactor vessel containing                ability to maintain the fuel.                                    remainder of the secondary containment at 1/4-inch
: b. Restore reactor xone                      of vater negative pressure secondary containment                    under calm vind conditions.
integrity vithin 4 hours, or place all reactors in at least a HOT SHUTDOWN COHDITI01 vithin thc next 12 hours and in a COLD SHUT-DOWN  COHDITION    vithin thc folloving  24  hours.
BPK Unit  1 3.7/4.7-16                  AMENOMENT NO  I7 4
 
Cl HAR 3 0 }990
: l. Escape  ae specified in                  At least once per year, Specification 3.7.B.3 belov,              the folloving conditions all three trains of the                  shall  be demonstrated.
standby gas treatment s stem shall  be 'OPERABLS  t all              a. Pressure drop across cs v        ondary                        the combined HEPA containment  integrity is                    filters and charcoal required.                                    adsorber banks is less than 6 inches of vater at  a  flov of 9000 cfm (g 10K)  ~
: b. The  inlet heaters  on each  circuit are tested in accordance
                &+ 3~+',f-<~'on/ Qi CA~                with  hBSI 8510-1975, 4'< ZC'~ lST'5 Secgo                    and are capable of an output of at 1'east 40 RV
: c. Air distribution is uniform vithin 20X across  HEPA filters and charcoal adsorbers BPK                                    3.7/4.7-13    AMENDMENTNO. 1.74
                                                                        .-, 5' Unit 1 g
 
0' C Ts  Z g. F/q, 7, F FEB 1 3 1995 5
3.7.F.                                              4.7.F.
                                                            ~S
: 1. Thc pr      ry containment    p ge                l. At le st once every 18 system    hall  be OPERABLE for                        mont , the prcssure drop PURGI G, except as spec fied                          acr ss the combined HEPA in .7.F.2.                                            fi ters    and chare    al a  sorber banks      s  11 be
          . The  results of th in-place                          emonstrated t be less cold DOP and hal genated                          than 8.5 inch of vater hydrocarbon tes s at design                        at system de gn flow flovs  on HEPA    iltcrs  and                    rate (g    LOX).
charcoal adso      er banks shall  show      99K DOP removal                  a. Thc te s and sample and g  99K  h  logenatcd  hydro-                      analy s of Specifica-carbon rem val vhen tested                              tion .7.F.1 shall be in accord    cc  vith                                  perf  rmcd  at least once ASSI 551 -1975.                                          per operating cycle or on e every 18 months,
: b. Thc re ults of laboratory                                v ichever occurs first carbo .sample analysis shall                              r after 720 hours of shov g 85X radioactive                                  system operation and met 1 iodide removal vh                                  folloving significant te cd in accordance vit                                painting, fire, or AS    D3803 ~                                          chemical release        in any  ventilation      xo e commmicating        vit    the
: c. System flov rate s          1 be                          systio shown to be vithin        LOS of design flov vh        tested                    b. Cold    DOP  testi      shall in accordance vi                                        be performed        fter each ASSI 8510-1975.                                          complete or        artial replacement      of the  HEPA
: 2. If  the provisio        of 3.7.F.l.a,                        filter b        or after b~ and c    cannot be met, the                              any struc        al mainte-system  shall  b    declared                              nance on      e  system inoperable.        e  provisions of                        housing, TechnicaL Sp    cification 1.C.I do  not app . PURGIIC may con                          c. Haiog        tcd hydrocarbon tfaue using the Standby Cas                                  test      shall be Treatment System.                                            per    rmed  after each co lete or partial
: 3. a. The 18-inch primary contain-                              re lacement of the ment isolation valves asso-                                  rcoal adsorber bank ciatcd vith PURGIEQ may be                              o  after  any    structural opea during the RUN mode                                    intensncc on the for a 24-hour period after                              system housing.
entering the      RUB mode  and/or for  a 24-hour period      prior              SC< TuSfjCac~hy~ @~
g~
to catering the SHUTDOWH                    +'Bed    lS'Ts 8,v, t,g mode. The OPERABILITY of BFS                                          3.7/4.7-21 AMBIOVBP gg      Ej P.
Unit  1 PAGE              OF
 
UNIT 2 CURRENT TECHNICAL SPECIFICATION MARKUP
 
3~                                                4.
: 2. a. The results of the in-place                2.'a. The  tests and sample cold DOP and halogenated                        analysis of hydrocarbon tests at g 10Z                      Specification 3.7.B.2 design flov on HEPT filters                      shall  be performed at and charcoal adsorber banks                      least  once per operat shall  shov g99Z  DOP removal                    cycle or once every and g99Z  halogenated                            18 months whichever hydrocarbon removal vhen                        occurs  first for  standby tested in accordance vith                        service or after every AHSI 8510-1975.                                  720 hours  of system operation and folloving significant painting, fire, or chemical release in any ventilation rane communicating    vith  the systeme
: b. The results of laboratory                    b. Cold  DOP  testing shall carbon sample analysis                          be performed after shall shov g90Z radioactive                      each complete or partial methyl iodide removal vhen                      replacement of the    HEPT tested in accordance vith                        filter bank  or after any ASTM D3803 ~                                    structural maintenance on the system housing.
: c. System shall be  shown  to                    c. Halogenated hydrocarbon operate  vithin glOZ  design                    testing shall    be flov.                                            performed after each complete or partial replacement of the charcoal adsorber bank or after any structural maintenance on the system housing+
PISWOMEk R+g 3 1        5 BZS                                    3 7/4.7-14 Unit  2
 
5pCcificako~    g. g. gp MAR 80 1980
~ A    ~    ~  ~
H
                                                                ~R.*. 'I Pi 4po>ci 447/aAJ Q                          d. Each    train    sha 1 be operated    a  total of at least    10  hours every month.
Test sealing of gaskets for    hous      doors s  all 48'.      be  pcrfo      d  utilizi emical  sm  ke genera
                              ....*a.-.:-/.A4                          t    s  during      ch test
                                ',4'iI'yne                                per    rmed. for compl      cc  vith Speci-ficatian 4.7.B.2.a and Specification 3.7.B.2.a.
S  ~.C.V.R.
: 3. Fram and after the date that          3~ a          ce per                        W'~
one train of the standby gas                    automatic initiatio of treatment system is made or                      each branch of thc stand-found to be inoperable for                      by gas treatment system any reason, REACTOR POMER                        shall    be demonstrated OPERATIOH and fuel handling                      from          unit'~nt          s.
is permissible only during          sg.3.4,.gg.g                  /4mc  nay thc succeeding 7 days un1css                      t  leas                        41 such  circuit is  sooner made                    anual operability of OPERABLE,    provided that                      the bypass valve for during such 7 days all                          filter cooling shall be active components of the                        demonstrated.
other tvo standby gas treatment trains shall bc                  c. Mhen one      tra n o the perable.                                        tandby g s treatm s stem bec        es inope able th other      t    trains Rt5seo~    pet~~d$
tro+SLQ Ho.Af Q+g I sha 1 be demo to b    OPERABLE trated vithin 2 hours      d  daily Pr1pogcg gfg,latr~                                    thereafter.
Aero~ g, I
: 4. If these  conditions cannot be me :                                        ~ovc~f og,~;<$ Q g~
Ac<I 0 tQ          a. Suspend  all fuel b~ .~g
                                                                +ssc~klats iw d  Ca~qpg~g
                                                                                  ~    gp~,Q~
* t"  eE              handling operations, core alterations,  and activities vith  the potential to drain any  reactor vessel containing fue I-BF5                                              3.7/4.7-15                      AMENDMENT ND. g77 Unit      2                                                                    WGC        g
 
5 ccrlicp?4a w MAR    80  1980 4
cT~aH          Place  all  reactors in 8            at least  a HOT SHUTDOMH COHDITIOH  vithin  the next 12 hours and in a COLD SHUTDOWNS COHDITIOH    vi thin the folloving  24  hours.
3.7.C. S  o        C          t                      4.7.C. Seep da      Co ta
: 1. Secondary containment integrity          1. Secondary containment shall bc maintained in the                    surveillance shall be reactor  zone at  all  times                  performed as indicated cxccpt as specified ia                        belov:
3.7.C.2.
: a. Secondary containment capability to maintain 1/4 inch of vatcr vacuum under ca~ vind
(<  5  mph) conditions vith  a system leakage rate of not more than 12,000 cfm, shall be demonstrated at each refueling outage prior to rcfucling.
: 2. If reactor  zone secondary                2. After    a secondary containment integrity      cannot              containment violation is be maintained thc following                    determined, thc standby gas conditions shall be met:                      treatment system    vill  be operated immediately after
: a. Suspend  all fuel handling                the affected zones arc operations, core altcra-                  isolated from the remainder tioas, and activities vith                of the secondary thc potential to draia any                containment to confirm its reactor vessel containing                  ability to maintain the fuel.                                    remainder of the secondary containmcnt at 1/4-inch
: b. Rcstorc reactor zone                      of water negative pressure secondary containmcnt                      under calm vind conditions.
integrity vithin 4 hours, or place all reactors in at least  a HOT SHUTDOMH COHDITIOH  vithin  thc next 12 hours aad in a COLD SHUT-DOWN COHDITIOH    vithin    the folloving 24 hours.
BFH                                          .7/4.7-16                  AMENOMENT No. F77  .
Unit 2
 
Cl 0
 
MAR  80 tqso 4, ~                                    te
: 1. Except as specified    in                  1. At least once per year, r            Specification 3.7.B.3 belov,                      the folloving conditions
~
  ) t'-0 36.43          all three trains of the                          shall    be demonstrated.
standby gas treatment s stem shall    be OPERABLE  t all                    a. Pressure drop across times v en secondary                                  the combined HEPA p
                  )
containment integrity is                                filters and charcoal required.                                            adsorber banks is less than 6 inches of vater at  a  flov of 9000 cfm (g 10&#xc3;).
: b. The  inlet heaters on each  circuit are tested in accordance vith ANSI N510-1975, and are capable    of an output of at least Sot', JHp44~i cog'e~ 4r (Q                            40 kM.
4r    Bfhf IS~ gqd                              c. Air distribution is uniform vithin 20K across HEPA filters
                                                                            - and charcoal adsorbers.
Troppo'~ Sg S.$ ,6,3.2.
AMENDMENT ND. X '7 T BFH Unit    2 3.7/4.7-13              eGc        6  oF~
 
  .7.F.                                                  4.7.F.
SZRttell
: 1. The  primary contaiame            purge              l. At least once every 18 system    shall    be  OPE    LE  for                    mon        , the pressure drop PURGIHG,      except as      pecified                      acr ss the combined HEPA in 3.7.F.2.                                                f    ters and charcoal orber banks shall be
: a. The    results f the in-place                          demonstrated to be lcss-,'.-
cold DOP d halogenated                                than 8.5 inches of vatei hydrocar n tests at design                            at system design flov flovs    o    HEPA  filters  and                    rate (g 10K).
chare      1  adsorber banks sha      shov g 99K DOP removal                      a. The  tests  and sample an g 99K, halogenated hydro-                                  analysis of Specifica-rbon removal when tested                                  tion 3.7.F.1      11 be n accordance vith                                          performed at east onc AHSI H510-1975        ~                                      pcr operati      cycle or once eve      18 months,
: b. The    results of laborato                                    vhichevc    occurs first carbon sample analysi            shall                        or aft      720 hours of shov g 85K radioact e                                        syst operation and methyl iodide remo 1 vhen                                      fo ovtng significant tested in accord ce vith                                      p ating, fire, or ASTM D3803.                                                      emical release    in any ventilation zone comanmicating vith the
: c. System flo        rate shall be                              system.
showa to e        within g 10K of desi flov vhen tcstcd                              b.      Cold DOP testing shall in accordance vith                                          be performed aftc each AHSI H510-1975        ~                                        complete or par      al replacement of      e HEPA If the    provisions of 3.7.F.l.a,                            ~
filter bank        after b,  and    c cannot be met, the                                    any structu al mainte-system    shall    be declared                                    nance on      e system inoperable.        The provisions      of                      "
housing.
Technical Specification 1.C.1 do not apply. PURGIHG may coa-                              c. Halog      tcd hydrocarboa tiaue using the Standby Gas                                        tes        shall be Treatment System.                                                  pcr ormed after each complete or partial
        ~  a.      e    -    ch pr      ry conta                            replacement of the ment    isolation valves asso-                              charcoal adsorber bank ciated vith PURGIHG may be                                    or after any structural open during, the RUH mode                                    maintenance on the for a 24-hour period after                                    system housing.
entering the        RUH mode    and/or for    a 24<<hour period        prior        ~< ~HsfICicak'so~    Qr t:h~gqg to entering the SHUTDOMH                    4~ am i~~ ~~I ~
mode. The OPERABILITY of.
gg@O~              pg  I BFK-Unit 2
                                            . 3.7/4.7-21                ~1 Ny.
Vr.
 
UNIT 3 CURRENT TECHNICAL SPECIFICATION MARKUP
 
u PCCggiC'a Z, lo
                                                                            +>  3 0 1990
: l. Except as specified      in                          At least once per year, Specification 3.7.B.3 belov,                        the folloving conditions
+g  ~<<' >all three trains of the                              shall    be demonstrated.
standby gas treatment      s stem shall  be OPERABLE    at  all                      a. Pressure drop across times v en secondary                                      the combined HEPA containment integrity is                                  filters and charcoal required.                                                adsorber banks is less than 6 inches of vater at a flov of  9000 cfm (g 10K).
: b. The  inlet heaters on each  circuit are tested in accordance vith AHSI H510-1975, and are capable    of an ac    gusfigcahon    foe                        output of at least Cho~gcs  Pr  5~  t 5 Ts                        40 kM.
5ccvi ~
: c. Air distribution is uniform vithin 20K across  HEPA  filters and charcoal adsorbers.
Z    y~eP    Se  s.e.q.z,~
AMENDMENTNa. X4 $
BFI                                          3.7/4.7-13 unit  3 PAGE    A    0'
: 2. a. The results of the in-place            2. a. e tests and sample cold DOP and halogenated                    analysis of hydrocarbon tests at g 10Z                  Specification 3.7.B.2 design flow on HEPA filters                  shall be performed at and charcoal adsorber banks                  least once per operating shall show g99Z DOP removal                  cycle or once every and g99Z halogenated                        18 months  whichever hydrocarbon removal when                    occurs  first for  standby tested in accordance with                    service or after every AHSI H510-1975.                              720 hours of system operation  and  following significant painting, fire, or chemical release in any ventilation zone communicating with the system.
: b. The results of laboratory                b. Cold DOP testing shall carbon sample analysis                      be performed after shall  show g90Z radioactive                each complete    or partial methyl iodide removal when                  replacement of the HEPA tested in accordance with                    filter bank or after any ASTM  D3803.                                structural maintenance on the system housing.
: c. System shall be shown to                  c. Halogenated hydrocarbon operate within glOX design                  testing shall    be flow.                                        performed after each complete or partial replacement of the charcoal adsorber bank or after any structural maintenance on the system housing.
BPH                                    3.7/4.7-14 NENO<<Ee    NO  I8 g Unit 3
 
CO      MME    S  S    MS 5f'ec>f'cuban      3. C.Q 3            ~      3 0  I90 fAePOSeg    /CA'on    D                                  ~    ~
SR3 <.9.3',l                      /N2.
operated        ota    of at least    10 hours every month.
: e. Test sealing of gaskets On  ~ at&4 or 5i~MlR                                          r ho ing do s shall in'god      ~ianna)                                        be  pcrfo    ed  uti  izing ch    ical    moke ge era-tors duri        each    t st perfo      ed fr compli      ce v  th  Spec ficatio 4.7. .2.a            and Specification          .7.B.2.a.
5g  3'.6 v                                h
: 3. From and after the date that                      a.        ce  pcr one train of the standby gas                            automatic      initiation of treatment system is made or                              each branch of t e stand-found to be inoperable for                              by gas treatment system al                tra~
                                                          ~*
any reason, REACTOR POWER                                          e  emoqs OPERATIOH and fuel handling                                rom ca      unit& contro is permissible only during                5R ~.<.V.~V                                  ~ eoe&f thc succeeding 7 days unless such    circuit is    sooner made                      manual operability o OPERABLE,    provided that                              the bypass valve for during such      7  days  all                          filter cooling        shall    be active components of thc                                demonstrated.
other tvo standby gas treatment trains shall be                          C~          onc train of the operable.                                                st    dby g s tre ment sys em bec mes        i  perable iloys~A Nog    g  gr~,,M    46 n~                          the    ther  t  o  tra    s 04  C4E  ~ I                                                  shall    be d      nstra ed
    ~z                                                                  to be      PERAB      vithx      2 WHonC    I                                                hours          dail hereafter.
: 4. If these    conditions cannot bc mct:
: a. Suspend    all fuel                    <Ihg    IH~a oaf      4 lrrRdi'afcd Rtbh'andling                operations,            ~en        bligh ih Wc scco~y co&;hnehg C.>E          core alterations,      and          ~<  '"$ ~<F ift,7FRtlTXCWS, Or ggri ~~
activities vith      the            OT't Rlt's potential to drain any  reactor vessel containing fue            s~Miale lq Al BFH                                              3.7/4. 7-15                  AMENDMENT No.      74 g Unit  3
 
4
: b. Place  all  reactors in RChon            at least  a HOT SHUTDOWH 6              COHDITIOH within the next 5'uSfjke~ +, (~~peg 12 hours and in a COLD SHUTDOWH COHDITIOH within                  4< ~n) /5 75 3 .4 . Q. I the following 24 hours.
3.7.C. Seconda      o  a nme                    4.7.C. Seep da    Containment
* 1. Secondary containment      integrity 1. Secondary containment shall  be maintained in the              surveillance shall    be reactor zone at      all times            performed as indicated except as specified in                    below:.
3.7.C.2.
: a. Secondary containment
* LCO  not applicable until )ust              capability to maintain prior to loading fuel into                  1/4 inch of water vacuum the Unit 3 reactor vessel,                  under calm wind provided the Unit 3 reactor                  (< 5 mph)  conditions zone is not required for                    with a system inleakage secondary containment                        rate of not more than integrity for other units.                  12,000 cfm, shall be demonstrated at each refueling outage prior to refueling.
: 2. If reactor    zone secondary          2. After    a secondary containment integrity cannot              containment violation is be maintained the following              determined, the standby gas conditions shall be met:                  treatment system will be operated immediately after
: a. Suspend  all fuel handling          the affected zones are operations, core altera-              isolated from the-remainder tions, and activities with          of the secondary the potential to drain any          containment to confirm its reactor vessel containing            ability to maintain the fuel.                                remainder of the secondary containment at 1/4-inch
: b. Restore reactor zone                  of water negative pressure secondary containment              under calm wind conditions.
integrity within 4 hours, or place all reactors in at least  a HOT SHUTDOWH COHDITIOH within the next 12 hours and in a COLD SHUT-DOWH COHDITIOH within the following  24  hours.
BFH                                                              ENDMEHT NO. 159 Unit  3 was      ~op      ~
 
3.7.F.                                          4.7.F.
: 1. The  primary containment purge              1. At least once every 18 system  shall  be OPERABLE for                    months, the pressure dro PURGIHG, except as specified                      across the combined HEPA in 3.7.F.2.                                        filters and charcoal adsorber banks shall be
: a. The  results of the in-place                  demonstrated to bc less cold DOP and halogenated                      than 8.5 inches of vater hydrocarbon tests at design                  at system design flov flows on HEPA filters and                    rate (g lOZ).
charcoal adsorber banks shall shov g 99K DOP removal                  a. The  tests and sample and g 99% halogenated hydro-                        analysis of Specifica-carbon removal vhen tcstcd                          tion 3.7.F.l shall  be in accordance vith                                  performed at least once AHSI H510-1975.                                    per operating cycle or once every 18 months,
: b. The  results of laboratory                          whichever occurs first carbon sample analysis shall                        or after 720 hours of shov g 85K radioactive                              system operation and methyl iodide removal vhcn                          folloving significant tested in accordance vith                          painting, fire, or AS'3803.                                            chemical release  in any  ventilation  zone coamunicating  vith  the
: c. System flov rate shall be                          systems sham to be vithin g 10X of design flov vhen tested                    b. Cold DOP testing shall in accordance vith                                be performed after ea AHSI 5510-1975  '                                  complete or partial replacement of thc HEP
        ~ If  the provisions of 3.7.P,l.a~                          filter  bank or after b, and c cannot be met, the                              any structural mainte-system shall be declared                                nance an the system inoperable. The provisions of                            housing.
Technical Specification 1.C.1 do not apply. PURCINC may con>>                      c. Halogenated bydrocarbo tinue using the Standby Caa                              testing shall be Treatment System.                                        perfarmed after each complete ar partial
: 3. a. The 18-inch primary contain-                        replacement of the ment isolatian valves asso-                        charcoal adsorber bank ciated vith PURGIHG may be                          or after any atructura open during the RUH mode                          maintenance on the f'r a'4-hour    period after                        system housing.
entering  the  RUE mode and/or for a  24-hour  period prior to catering the SHUTDOWI The OPERABILITY  of 4  c~ I'5
                                                        %is QPgqgp~
                                                    ~~<~ S4
                                                              +~ $ w~
mode.
3.7/4.7-21 amo~ur      s0. EBS BPK                                                                \
Unit  S                                                                        I
 
t                  BFN ISTS ADMINISTRATIVE CHANGES Al JUSTIFICATION 3.6.4.3 -
FOR CHANGES STANDBY GAS TREATMENT SYSTEM Reformatting and renumbering are in accordance with the BWR Standard Technical Specifications, NUREG 1433. As a result the Technical Specifications should be more readily readable, and therefore, understandable by plant operators as well as other users. The reformatting, renumbering, and rewording process involves no technical changes to existing Technical Specifications.
Editorial rewording (either adding or deleting) is      done  to make consistent with    NUREG-1433. During ISTS development certain wording preferences or English language conventions were adopted which resulted in no technical changes (either actual or interpretational) to the Technical Specifications. Additional information has also been added to more fully describe each subsection.      This wording is consistent with the BWR Standard Technical Specifications, NUREG-1433. Since the design is already approved, adding more detail does not result in a technical change.
A2    The  technical content of this requirement is being moved to Section 5.0 of the  proposed Technical Specifications in accordance with the format of the  BWR Standard Technical Specifications,      NUREG 1433. Any technical changes to this requirement will be addressed within the content of proposed Specification 5.5.7. A surveillance requirement (proposed .SR 3.6.4.3.2) is added to clarify that the tests of the Ventilation Filter Testing Program must also be completed and passed for determining operability of the SGT System. Since this is a presentation preference that maintains current requirements, this change is considered administrative.
A3    The  description of the signal    used  to automatically  initiate  the  SGT System "actual or simulated      initiation signal"  has been added  for clarity. This is consistent with the    BWR Standard Technical Specifications,    NUREG  1433, and no change  is intended.
A new ACTION    is proposed  (ACTION D) which directs entry into LCO 3.0.3 if two or more    required standby gas treatment subsystems are inoperable in Modes 1, 2, or 3. This avoids confusion as to the proper action in Modes 1, 2, or 3 and simultaneously handling fuel, conducting CORE if ALTERATIONS, or operations with the potential for draining the reactor vessel. Since the proposed ACTION effectively results in the same action as the current specification, this change is considered administrative.
A5    The Frequency for verifying SGTS automatic initiation has been changed to 18 months from once per operating cycle. The BFN operating cycle is currently defined as 18 months. As such this is a change in presentation only and is therefore administrative.
BFN-UNITS 1, 2, 5 3                                                        Revision  0 PAcs      I    or~
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.4.3 -  STANDBY GAS TREATMENT SYSTEM TECHNICAL CHANGES  -  MORE  RESTRICTIVE This change requires the movement of irradiated fuel in secondary containment and CORE ALTERATIONS to be "Immediately" suspended secondary containment is inoperable.
if In addition, action must be "Immediately" initiated to suspend operations with the potential to drain the reactor vessel in this Condition. The current specification does not establish a time limit to suspend these activities.
Immediately suspending these activities minimizes the probability of a fission product release    if a reactivity event occurs while the secondary containment is inoperable. Also, immediately initiating action to suspend operation with the potential to drain the reactor vessel will minimize the potential for. reactor vessel draindown and subsequent potential for fission release.      Imposing a time limit to suspended these activities is a more restrictive change.
CTS  4.7.B.2.d requires each train to be operated a total of at least 10 hours each month. Proposed SR 3.6.4.3. 1 requires each train to be.
operated continuously for 10 hours. As such, the proposed SR is considered more restrictive.
TECHNICAL CHANGES  - LESS RESTRICTIVE "Generic" LA1  Details on methods of testing gasket seals for housing doors has been deleted. This type of detail will be retained in plant procedures and/or system operating instructions.
LA2  Details on the method of performing Standby Gas Treatment system surveillance requirements have been relocated to plant procedures.
Changes to the procedure will be controlled by licensee controlled programs.
"Specific" L1    The proposed change will delete the requirement to test the other SGT subsystems when one subsystem is inoperable.      The requirement for demonstrating operability of the redundant subsystems was originally chosen because there was a lack of plant operating history and a lack      of sufficient  equipment failure data. Since that time, plant operating experience has demonstrated that testing of the redundant subsystems when one subsystem is inoperable is not necessary to provide adequate assurance of system operability.
This change  will allow credit to    be taken for normal periodic surveillances  as a  demonstration of operability and availability of the BFN-UNITS 1, 2, 5 3                                                      Revision  0 PAGE
 
JUSTIFICATION  FOR CHANGES BFN ISTS  3.6.4.3 -  STANDBY GAS TREATMENT SYSTEM remaining components.      The periodic frequencies specified to demonstrate operability of the remaining components have been shown to be adequate to ensure equipment operability. As stated in NRC Generic Letter 87-09, "It is overly conservative to assume that systems or components are inoperable when a surveillance requirement has not been performed. The opposite is in fact the case; the vast majority of surveillances demonstrate the systems or components in fact are operable." Therefore, reliance on the specified surveillance intervals does not result in a reduced level of confidence concerning the equipment availability.
Also, the current Standard Technical Specifications (STS) and, more specifically, all the Technical Specifications approved for recently licensed BWRs accept the philosophy of system operability based on satisfactory performance of monthly, quarterly, refueling interval, post maintenance or other specified performance tests without requiring additional testing when another system is inoperable (except for diesel generator testing, which is not being changed).
L2    An  alternative is proposed to suspending operations      if a SGT subsystem cannot be returned to OPERABLE status within seven days, and movement          of irradiated fuel assemblies, CORE ALTERATIONS, or operations with the potential for draining the reactor vessel are being conducted. The alternative is to initiate two OPERABLE subsystems of SGT and continue to conduct the operations. Since two subsystems are sufficient for any accident, the risk of failure of the subsystems to perform their intended function is significantly reduced        if  they are running. This alternative is less restrictive than the existing requirement. However, the proposed alternative ensures that the remaining subsystems are Operable, that no failures that could prevent automatic actuation have occurred, and that any other failure would be readily detected. This change is consistent with NUREG-1433.
L3    The Required      Actions of C and E. I have been modified by a Note stating that  LCO  3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving irradiated fuel assemblies while in MODE I, 2, or 3, the fuel movement is independent of reactor operation and the inability to suspend movement of irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown. By adding an exception to LCO 3.0.3 for the failing to suspend irradiated fuel movement, an LCO 3.0.3 required reactor shutdown is avoided in MODE I, 2, or 3. However, the plant would still be required to shutdown per proposed Required Actions B. 1 and B.2 in addition to suspending fuel movement per Required Actions C. I and E. l. However, this shutdown is considered less restrictive since Required Action B. 1 allows the plant to be in Hot Shutdown within 12 hours versus Hot Standby within 6 hours as required by CTS 1.0.C. l.
Both CTS and the proposed Required Action B.2 require the plant to be in Cold Shutdown      within 36 hours.
BFN-UNITS  I, 2,  8. 3                                                    Revision 0 PAGE~OF~
 
t 0
 
JUSTIFICATION FOR CHANGES CTS 3.7.F/4.7.F - PRINRY CONTAINMENT  PURGE SYSTEN RELOCATED CHANGES Rl    CTS .3.7.F. 1 & 2 and 4.7.F requirements have been relocated to the Technical Requirements Manual (TRM). The Primary Containment Purge System is normally isolated and normally not required to be functional during power operation. It does provide the preferred exhaust path for purging the primary containment; however, the SGTS can be used to perform the equivalent function. The supply and isolation valves are depended on to function properly for containment isolation, which is covered in proposed BFN ISTS Section 3.6.1.3, Primary Containment Isolation Valves.
BFN-UNITS 1, 2, & 3                                                  Revision 0
 
Enclosure III Volume 7
 
'l TABLE OF CONTENTS Section                                                                    ~Pa    r~o 8 2.0          SAFETY LIMITS (SLs)                                            8 2.0 X.,-
8 2.1.1                Reactor Core SLs                                      8 2.0 8 2.1.2                Reactor Coolant System  (RCS) Pressure  SL          8 2.0.~7 8 3.0          LIMZTZNG CONDITION FOR OPERATION (LCO) APPLICABILITY          830"1 8 3.0              SURVEILLANCE REQUIREMENT (SR) APPLICABILITY          ~  '8 "3'. 0-1P 8  3.1            REACTIVITY CONTROL SYSTEMS                                8  3,1    3, 8  3.1.1              SHUTDOWN MARGZN (SDM)    . . . . . . .  ~              8  3.1-1 8  3.1 2              Reactivity Anomalies                                  8  3.>>    0 8
          ~
: 3. 1.3              Control Rod OPERABILITY                          .'8'.        1 13
,8  3.1.4              Control Rod Scram Times                          .'" '8  3  ~ I-?2 Ba 3.1.5              Control Rod Scram Accumulators                        8 3>>1" 29 3.'. 6              Rod Pattern Control                              .. 8'".3.-34' 3'"-39' 3.1.7              Standby Liguid Control (SLC) System          ~ ~
3.1.8              Scram Discharge Volume (SDV) Vent and Dra in Valves                                                3. 1-46 8  3.2            POWER DISTRIBUTION LIMITS                                  8  3.2-1 8  3.2. 1            AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)                                      8  3.2-1      '
8 .3 ~ 2.2            MINIMUM CRITICAL POWER RATIO (MCPR)                      3 '-4 8 3.2.3                LZNEAR HEAT GENERATION RATE (LHGR)                    8  3.2-9 8 3.2.4                Average Power Range Monitor (APRM)
Gain and Setpoints                                8;3    ~ 2 12
                                                                                    '
8  3.3            INSTRUMENTATION                                            8  3.3-1 8  3.3.1.1            Reactor Protection System (RPS)
Instrumentation                                    8 3. 3-1 8 3 ~ 3 ~ 1'.2        Source Range Monitor (SRM) Znstrumentation            8 "3.3 33 8 3.3.2.1              Control Rod Block Instrumentation                    '8 3. 3.~4?
8 3.3.2.2              Feedwater and Main Turbine Trip Instrumentation                                    8  3.3-53 3.3.3.1            Post Accident Monitoring (PAM)
Instrumentation                                    8 3.3-60
.8  3.3.3.2            Backup Control System                                  8 3 '-,71 8  3.3.4.1            End of Cycle Recirculation Pump Trip (EOC-RPT)
Instrumentation                                    8  3.3-80 B  3.3.4.2            Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT)
Instrumentation                                    8  3.3-89 3.3.5.1            Emergency Core Cooling System (ECCS)
Instrumentation                                    8  3.3-98 3.3.5.2            Reactor Core Isolation Cooling (RCIC) System Instrumentation                                    8  3.3-135 3.3.6.1            Primary Containment Isolation Instrumentation                                    8  3.3-143 3.3.6.2            Secondary Containment Isolation Instrumentation .                                  8  3.3-165 3.3.7.1            Control Room Emergency Ventilation (CREV)
System Instrumentation                            8  3.3-176 8  3.3.8 1            Loss of Power (LOP) Instrumentation                    8  3.3-188 Reactor Protection System (RPS) Electric
              ~
8  3.3.8.2                                                                      3.3-196 Power Monitoring                                  8 BFN Unit    2
 
  .1 ili
 
Section                                                                        ~Pa  e No.
B  3.4        REACTOR COOLANT SYSTEM (RCS)      .  .  ~                      B  3. 4-1 B  3.4.1          Recirculation Loops Operating                              B  3.4-1 B  3.4.2          Jet Pumps                                                  B  3.4-9 B  3.4.3          Safety/Relief Valves (S/RVs)                                B  3.4-14 B  3.4.4          RCS Operational LEAKAGE                                    B  3.4-19 B  3.4.5          RCS Leakage Detection Instrumentation                      B  3.4-25 B  3.4.6          RCS Specific Activity                                      B  3. 4-31 3.4.7          Residual Heat Removal (RHR) Shutdown B
Cooling System- Hot Shutdown                            B 3  '-35 3 '.8          Residual Heat Removal    (RHR) Shutdown Cooling System Cold Shutdown                            B  3 '-40 3.4.9          RCS Pressure and Temperature        (P/T) Limits            B  3.4-45 3.5        EMERGENCY CORE COOLING 'SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM                        B  3.5-1 B  3.5 '          ECCS Operating                                            B  3.5-1 B  3.5.2          ECCS Shutdown ~ . ~ ~ . ~          ~  ~                    B  3.5-18 B  3.5.3          RCIC System                                                B  3.5-24 B  3.6        CONTAINMENT SYSTEMS                                            B 3  '-1
                                                                                      '-1 B  3.6. 1. 1      Primary Containment                                        B 3 B  3.6.1.2        Primary Containment Air Lock                                B  3.6-6 B  3.6.1.3        Primary Containment Isolation Valves (PCIVs)                B 3. 6-14 B'  3.6.1.4        Drywell Air Temperature                                    B  3.6-28 3.6.1.5        Reactor Building-to-Suppression Chamber Vacuum Breakers                                                B  3.6-31 B 3  ~ 6. 1.6    Suppression Chamber-to-Drywell Vacuum Breakers              B  3.6-37 B  3.6.2.1        Suppression Pool Average Temperature                        B  3.6-43 B  3.6.2.2        Suppression Pool Water Level                                B  3.6-49 B  3.6.2.3        Residual Heat Removal (RHR) Suppression Pool Cooling  o ~  t ~ ~ ~  ~ ~  ~  ~  ~  ~  ~ ~ ~  ~ ~ ~ ~    3.6-52
'B  3.6.2.4        Residual Heat Removal (RHR) Suppression Pool
                      'Spray                                                  B  3.6-57 B  3.6.2.5        Residual Heat Removal (RHR) Drywel1 Spray                  B  3.6-75 B  3.6.2.6        Drywell-to-Suppression Chamber Differential Pressure  e  ~ ~ ~ ~  ~ ~  ~  ~ ~  ~ I'  ~  ~ ~ ~ ~ B  3.6-67 B  3.6.3.1        Containment Atmosphere Dilution (CAD) System                B  3.6-70 B  3.6.3.2        Primary Containment Oxygen Concentration                    B  3.6-75 B  3.6.4 '        Secondary Containment                                      B  3.6-78 B  3.6.4.2        Secondary Containment    Isolation Valves      ('SCIVs)  B  3.6-83 B  3.6.4.3        Standby Gas Treatment    (SGT) System                      B  3.6-89 B  3.7        PLANT SYSTEMS    . .  . . . .  .  .  .  ~  ~ ~  ~ ~ ~  ~ ~ ~ ~    3~7 1 B  3.7.1          Residual Heat Removal Service Water (RHRSW)  System i      e  ~  ~  ~  ~ ~  ~ ~ ~  ~ ~ ~ ~      3.7-1 3.7.2          Emergency Equipment Cooling Water (EECW) System and Ultimate Heat Sink (UHS)                                3~7 7 3.7.3          Control Room Emergency Ventilation (CREV)
S ystem                                                  B  3.7-12 B  3.7.4          Control Room Air Conditioning (AC) System                    B  3.7-19 B  3'. 7. 6      Main Condenser Offgas                                        B  3.7-30 B  3.7.7          Main Turbine Bypass System                                  B  3.7-24 B  3.7 '          Spent Fuel Storage Pool Water Level                          B  3.7-28 BFN Unit      2 4
 
ill
~I>
ili
 
  ~Sectio                                                                    Pacae    No.
B  3.8        ELECTRICAL POWER SYSTEMS                                    B 3.8-1 B'.8.1            AC Sources -Operating                                    B 3'. 8-1 B  3. 8.'2        AC Sources -'Shutdown        ~  ~ ~ ~  ~ ~ ~  ~ ~      B 3.8-28 B  3.8.3          Diesel FuelOil, Lube Oil, and    Starting Air          B 3.8-35 B  3.8.4          DC Sources  Operating                                  B 3.8-42 B  3.8.5          DC Sources -'Shutdown                                    B 3'. 8-51 B  3.8.6          Battery Cell 'Parameters                                B 3.8-55 B  3.8.7          Inverters -Operating                                    B 3.8-62 B  3.8.8,        Inverters Shutdown                                  ~  B 3.8-73 B. 3.9        REFUELING OPERATIONS                                        B 3.'9-1 B  3.9.1          Refueling. Equipment Interlocks                          B: 3.9-1 B  3.9.2          Refuel Position One-Rod-Out Interlo'ck                  B  3.9-5 B  3.9.'3.        Control Rod Position                                    B: 3.9-9 B  .3.9.4          Control Rod Position .Indication                        B 3.9-12
,B'.9.5            Control Rod OPERABILITYRefueling                        B  3.9-16 B 3~9~6            Reactor Pressure Vessel (RPV) Water Level                B 3  '-19
,B  3.9.7'        Residual Heat Removal;(RHR)    High Water Level        B 3.9-22.
3 ~ 9.8.      Residual Heat Removal (RHR) Low Water Level,.          B  3.9-26
.B    3.10      SPECIAL 'OPERATIONS  ~  ~ ~ ~ ~ ~ ~  ~ ~ ~  ~ ~ ~ . ~ ~      B  3. 10-1 B 3  ~ 10 ~ 1    Inservice Leak  and  Hydrostatic Testing Operation                                            'B  3.10-1 B  3.10.2        Reactor Mode, Switch Interlock Testing                  B  3.10-6 B  3.10.3        Single Control Rod Withdrawal' Hot Shutdown              B  3.10-11 B  3.10.4        Single Control Rod 'Withdrawal Cold Shutdown            B  3.10-16 B  3.10.5        Single Control  Rod Drive (CRD)
Removal Refueling                                    B  3.10-21
'B  3.10.6          Multiple Control Rod,Withdrawal -Refueling              B  3.10-26 3'.10-29 B  3. 10.'7        Control Rod'esting-Operating                            B B  3.10.8        SHUTDOWN MARGIN (SDM) Test Refueling                    B  3'.10-33 BFN.
Unit    2                                                            g hduncanhulbasa s.toe
 
  /J
~5) ill 4i
 
Reactor Core SLs B  2.1.1 B 2.0    SAFETY LIMITS  (SLs) 8 2. 1. 1  Reactor Core SLs BASES BACKGROUND            GDC  10 (Ref. 1) requires, and SLs ensure, that specified acceptable fuel design limits are not exceeded during steady state operation, normal operational transients,      and abnormal operational transients.
The fuel cladding integrity SL is set such that no fuel damage is calculated to occur      if the limit is not violated.
Because fuel damage is not directly observable, a stepback approach is used to establish an SL, such that the HCPR is not less than the    limit specified in Specification 2. 1. 1.2 for  General  Electric  Company (GE) fuel. MCPR greater than the  specified limit represents a conservative margin relative to the conditions required to maintain fuel cladding integrity.
The fuel cladding is one of the physical barriers that separate  the radioactive materials from the environs.      The integrity of this cladding barrier is related to its relative freedom from perforations or cracking. Although some corrosion or use related cracking may occur during the life of the cladding, fission product migration from this source is incrementally cumulative and continuously measurable. Fuel cladding perforations, however, can result from thermal stresses, which occur from reactor operation significantly above design conditions.
Mhile fission product migration from cladding perforation is just as measurable as that from use related cracking, the thermally caused c'/adding perforations signal a threshold beyond which still greater thermal stresses may cause gross,
                    'rather than incremental, cladding deterioration. Therefore, the fuel cladding SL is defined with a margin to the conditions that would produce onset of transition boiling
(,i.e., NCPR = 1.00). These conditions represent a significant departure from the condition intended by design for planned operation. The NCPR fuel cladding integrity SL ensures that during normal operation and during abnormal operational transients, at least 99.9% of the fuel rods in the core do not experience transition boiling.
{continued)
BFN-UNIT 2                                B  2.0-1                          Amendment
 
il~
i~
II
 
Reactor Core SLs B 2.
 
==1.1 BACKGROUND==
Operation above the boundary of the nucleate boiling regime (continued)    could result in excessive c1adding temperature because of the onset of transition boiling and the resultant sharp reduction in heat transfer coefficient. Inside the steam film, high cladding temperatures are reached, and a cladding-water (zirconium-water) reaction may take place.
This chemical reaction results in oxidation of the fuel cladding to a structurally weaker form. This weaker form may lose its integrity, resulting in an uncontrolled release of activity to the reactor coolant.
APPL ICABL'E      The  fuel cladding, must not sustain damage as a result        of SAFETY ANALYSES  normal operation and abnormal operational transients.          The reactor core SLs are established to preclude      violation of the fuel design criterion that an MCPR limit        is to be established, such that at least 99.9% of the        fuel rods in the core would not 'be expected to experience      the onset of transition boiling.
The Reactor    Protection System setpoints    (LCO 3.3. 1. 1, "Reactor Protection System (RPS) Instrumentation" ), in combination with other LCOs, are designed to prevent any anticipated combination of transient conditions for Reactor
                'oolant System water level, pressure, and THERMAL POWER level that .woul'd result in reaching the MCPR limit.
: 2. 1. 1. 1  Fuel Claddin    Inte  rit GE  critical power correlations    are applicable for all critical power calculations at      pressures ~ 785 psig and core flows ~ 10% of rated flow.        For operation at low pressures or low flows, another basis is used,        as follows:
The static head across the fuel bundles due onl'y to elevation effects from liquid only in the channel, core bypass region, and annulus at zero power, zero flow is approximately 4.5 psi. At all operating conditions, this pressure differential is maintained by the bypass region of the core and the annulus region of the vessel.
The elevation head provided by the annulus produces natural circulation flow conditions which have balancing pressure head and loss terms (continued)
BFN-UNIT 2                            B 2.0-2                              Amendment
 
0 0
 
Reactor Core SLs B  2.1.1 BASES inside the core shroud. This natural circulation principle maintains a core plenum to plenum pressure drop of about 4.5 to 5 psid along the natural circulation flow line of the P/F operating map. In the range of, power levels of interest, approaching 25% of rated power below which thermal margin monitoring is not required, the pressure drop and density head terms tradeoff for power changes such that natural circulation flow is nearly independent of reactor power.
This characteristic is represented by the nearly vertical portion of the natural circulation line on  the P/F operating map. Analysis has shown that the hot channel flow rate is )28,000 lb/hr in the region of operation with power -25% and core pressure drop of about 4.5 to 5 ps,id. Full scale ATLAS test data taken at pressures from 14.7 psia to 800 psia indicate that the fuel assembly  critical  power at 28,000  lb/hr is approximately  3 NWt. With the design peaking factors, this  corresponds to a core thermal power of more than 50%.      Thus operation up to '25% of rated power with    normal natural circulation available. is conservatively acceptable even    if reactor pressure is equal to or below 800 psia (the limit of the range of applicability of GETAB/GEXL for GE fuel).      If reactor power is
          -significantly less than 25% of rated (e.g., below 10% of rated), the core flow and the channel flow supported by the available driving head may be less than 28,000 lb/hr (along the lower portion of the natural circulation flow characteristic on the P/F map). However, the critical power that can be supported by the core and hot channel flow with normal natural circulation paths available remains well above the actual power conditions.
The .inherent characteristics of BWR natural circulation make power and core flow follow the natural circulation line as long as normal water level is maintained.
(continued)
BFN-UNIT 2                B  2.0-3                            Amendment
 
ik~
il~
 
Reactor Core SLs 8 2.1.1 APPLICABLE        2. l. l. I  Fuel Claddin  Inte rit    (continued)
SAFETY ANALYSES Thus, operation with core thermal power below 25% of rated without thermal, margin surveillance is conservatively acceptable even for reactor operations at natural circulation. Adequate fuel thermal margins are also maintained without further surveillance for the low power conditions that would be present      if  core natural circulation is below 10% of rated flow (the limit of applicability of the GETAB/GEXL correlations for GE fuel).
2.1.1.2      HCPR The fuel cladding integrity SL      is set  such that  no fuel damage is calculated to occur Since the parameters that if the result limit is  not violated.
in fuel damage are not directly observable during reactor operation, the thermal and hydraulic conditions that result in the onset of transition boiling have been used to mark the beginning of the region in which fuel damage could occur. Although recognized that the onset of transition boiling would not it is result in damage to BWR fuel rods, the critical power at which boiling transition is calculated to occur has been adopted as a convenient limit. However, the uncertainties in monitoring the core operating state and in the procedures used to cal'culate the critical power result in an uncertainty in the value of the critical power. Therefore, the fuel cladding integrity SL is defined as the critical power ratio in the limiting fuel assembly for which more than 99.9% of the fuel rods in the core are expected to avoid boiling transition, considering the power distribution within the core and all uncertainties.
The HCPR SL    is determined using a statistical model that combines    all the uncertainties in operating parameters and the procedures used to calculate critical power. The probability of the occurrence of boiling transition is determined using the approved General Electric Critical Power correlations.      Details of the fuel cladding integrity SL  calculation are given in Reference 2. Reference 2 also includes a tabulation of the uncertainties used in the determination of the MCPR SL and of the nominal values of the parameters used in the NCPR SL statistical analysis.
(continued)
BFN-UNIT 2                            B 2.0-4                              Amendment
 
il'I 0
 
Reactor Core SLs 8 2.1.1 BASES APPLICABLE      2. 1. 1.3      Reactor Vessel Water Level SAFETY ANALYSES (continued)  During    MODES 1 and 2 the reactor vessel water level is required to be above the top of the active fuel to provide core cooling capability. With fuel in the reactor vessel during periods when the reactor is shut down, consideration must be given to water level requirements due to the effect of decay heat. If the water level should drop below the top of the active irradiated fuel during this period, the ability to remove decay heat is reduced. This reduction in cooling capability could lead to elevated cladding temperatures and clad perforation in the event that the water level becomes ( 2/3 of the core height. The reactor vessel water level SL has been established at the top of the active irradiated fuel to provide a point that can be monitored and to also provide adequate margin for effective action.
SAFETY LIMITS    The  reactor core    SLs are  established to protect the integrity of the fuel clad barrier to the release of radioactive materials to the environs. SL 2.1. l. 1 and SL 2.1.. 1.2 ensure that the core operates within the fuel design criteria. SL 2. 1. 1.3 ensures that the reactor vessel water level is greater than the top of the active irradiated fuel in order to prevent elevated clad temperatures and resultant clad perforations.
APPLICABILITY    SLs 2. l. 1. 1, 2. 1.1.2 and 2. 1. 1.3 are applicable in  all MODES.
SAFETY  LIMIT  Exceeding an      SL may  cause  fuel  damage and create  a potential Y IOLATION S    for radioactive releases in excess of 10 CFR 100, "Reactor Site Criteria," limits (Ref. 3). Therefore, it is required to insert all insertable control rods and restore compliance with the    SLs within 2 hours.      The 2 hour Completion Time ensures that the operators take prompt remedial action and also ensures that the probability of an accident occurring during this period is minimal.
(continued)
BFN-UNIT 2                              B 2.0-5                              Amendment
 
il~
O~
 
Reactor Core SLs B 2.1.1
'BASES  (continued)
REFERENCES          l. 10 CFR 50, Appendix A, GDC 10.
: 2. GE SIL No. 516, Supplement 2, January 19, 1996.
: 3. 10 CFR 100.
BFN-UNIT 2                          B 2.0-6                          :Amendment
 
0 RCS  Pressure  SL 8 2.1.2 B 2.0    SAFETY  LIHITS (SLs)
B 2. 1.2  'Reactor Coolant System (RCS) Pressure    SL BASES BACKGROUND          The SL on  reactor steam dome pressure protects the RCS against overpressurization.      In the event of fuel cladding failure, fission products are released into the reactor coolant. The RCS then serves .as the primary barrier in preventing the release of fission products into the atmosphere. Establishing an upper limit on reactor steam dome pressure ensures continued RCS integrity.      Per 10 CFR. 50, Appendix A, GDC 14, "Reactor Coolant Pressure Boundary," and GDC 15, "Reactor Coolant System Design" (Ref. 1), the reactor coolant pressure boundary (RCPB) shall be designed with sufficient margin to ensure that the design conditions are not exceeded during normal operation and abnormal operational transients.
During normal operation and abnormal operational transients, RCS pressure  is limited from exceeding the design pressure by more than '10%, in accordance with Section    III  of the ASHE  .
Code (Ref. 2). To ensure system integrity, all RCS components are hydrostatically tested at 125% of design pressure, in accordance with ASHE Code requirements, prior to initial operation when there is no fuel in the core. Any further hydrostatic testing with fuel in the core may be done under LCO 3. 10. 1-, "Inservice Leak and Hydrostatic Testing Operation." Following inception of unit operation, RCS components shall be pressure tested in accordance with the requirements of ASHE Code, Section XI (Ref. 3).
Overpressurization of the RCS could result in a breach of the RCPB reducing the number of protective barriers designed to prevent radioactive releases from exceeding the limits specified in 10 CFR 100, "Reactor Site Criteria" (Ref. 4).
If this occurred in conjunction with a fuel cladding failure, fission products could enter the containment atmosphere.
(continued)
BFN-UNIT 2                              B 2.0-7                              Amendment
 
il il
 
RCS  Pressure  SL B 2.1.2 BASES  (continued)
APPLICABLE          The RCS safety/relief valves and the Reactor Protection SAFETY ANALYSES    System Reactor Vessel Steam Dome Pressure High Function have settings established to ensure that the RCS pressure      SL will not be exceeded.
The RCS pressure SL has been selected such that    it is at a
                  ,pressure below which    it can be shown that the integrity of the system is not endangered. The reactor pressure vessel is designed to Section III of the ASHE, Boiler and Pressure Vessel Code, 1965 Edi,tion, including Addenda through the summer of 1965 (Ref. 5), which permits a maximum pressure transient of 110%, 1375 psig, of design pressure 1250 psig.
The SL of 1325 psig, as measured in the reactor steam dome is equival'ent to 1375 psig at the lowest elevation of the RCS. The RCS is designed to the USAS Nuclear Power Piping Code, Section B31. 1, 1967 Edition (Ref. 6), and the additional requirements of GE design and procurement specifications (Ref. 7) which were implemented in lieu of the outdated B31 Nuclear Code Cases - N2, N7, N9, and N10, for the reactor recirculation piping, which permits a maximum pressure transient of 120% of design pressures of 1148 psig for suction piping and 1326 psig for discharge piping. The RCS pressure SL is selected to be the lowest transient overpressure allowed by the applicable codes.
SAFETY LIMITS      The maximum    transient pressure allowable in the RCS pressure vessel  under the ASHE Code, Section III, is 110% of design pressure. The maximum transient pressure allowable in the RCS piping, valves, and fittings is 120% .of design pressures of 1148 psig for suction piping and 1326 psig for discharge piping. Mhen the 20%. allowance (230 and 265 psig) allowed by USAS Piping Code, Section B31. 1, for pressure transients is added to the design pressures, transient pressure limits of 1378 and 1591 psig are established. The most limiting of these allowances is the 110% of design pressure for the RCS pressure vessel; therefore, the SL on maximum allowable RCS pressure is established at 1325 psig as measured at the reactor steam dome.
APPLICABILITY      SL  2. 1.2 applies in  all NODES.
(continued)
BFN-UNIT 2                              B 2.0-8                            Amendment
 
ik~
O~
 
RCS  Pressure    SL B  2.1.2 BASES    (continued)
SAFETY LIHIT          Exceeding the    RCS  pressure  SL may cause  immediate  RCS VIOL'ATI ONS          failure  and -create  a,potential for radioactive releases, in excess of 10 CFR 100, "Reactor Site Criteria,'" limits (Ref. 4). Therefore,, it is required to insert .all insertable control rods and restore compliance with the SL within 2 hours. The 2 hour Completion Time ensures that the operators take prompt .remedial action and also assures that the probabil.i.ty of an accident occurring during this period is minimal.
0 REFERENCES            l. 10 CFR 50,  Appendix A,    GDC  14,  GDC 15, and  GDC  28.
: 2. ASHE,  Boiler  and Pressure    Vessel Code, Section    III, Article  NB-7000.
: 3. ASHE,  Boiler    and Pressure  Vessel Code, Section XI, Article  IW-5000.
                    '4. 10 CFR 100.
: 5. ASHE,  Boiler and Pressure Vessel Code,:Section          III, 1965  Edition, Summer of 1965 Addenda.
: 6. ASHE, USAS,    Nuclear Power Piping Code, Section B31.1, 1967  Edition.,
: 7. BFN  General  Electric Design Specification      22A1406, "Pressure .Integrity of Piping and Equipment Pressure.
Parts," Revision 2, April 28, 1970.
BFN-UNIT 2                                  B  2.0-9                              Amendment
 
~  i il~
 
LCO Applicability B  3.0 BASES LCOs        LCO 3.0.1 through LCO 3.0.7 establish the general requirements applicable to all Specifications and apply at all times, unless otherwise stated.
LCO  3.0.1  LCO  3.0.1 establishes the Applicability statement within each  individual Specification as the requirement for when the LCO is required to be met (i.e., when the unit is in the MODES or other specified conditions of the Applicability statement of each Specification).
LCO  3.0.2  LCO 3.0.2 establishes    that upon discovery of a failure  to
          ,meet an LCO, the associated ACTIONS shall be met. The Completion Time of each Required Action for an ACTIONS Condition is applicable from the point in time that an ACTIONS  Condition is entered. The Required Actions establish those remedial measures that must be taken within specified Completion Times when the requirements of an LCO are not met. This Specification establishes that:
: a. Completion  of the Required Actions within the specified Completion Times constitutes compliance with a Specification; and
: b. Completion  of the Required Actions is not required when an LCO  is met within the specified Completion,,
Time,  unless otherwise specified.
There are two basic types of Required Actions. The first type of Required Action specifies a time limit in which the LCO must be met. This time limit is the Completion Time to restore an inoperable system or component to OPERABLE status or to restore variables to within specified limits. If this type of Required Action is not completed within the specified Completion Time, a shutdown may be required to
          .place the unit in a MODE or condition in which the Specification is not applicable. (Whether stated as a Required Action or not, correction of the entered Condition is an action that may always be considered upon entering (continued)
BFN-UNIT 2                      B 3.0-1                          Amendment
 
~ i i
 
LCO Applicability B 3.0 BASES LCO  3.0.2  ACTIONS.)    The second  type of Required Action specifies the (continued) remedial measures    that permit continued operation of the unit that is not further restricted by the Completion Time.
In this case, compliance with the Required Actions provides an acceptable level of safety for continued operation.
Completing the Required Actions      is not required when an LCO is  met or is no longer applicable, unless otherwise stated in the individual Specifications.
The nature  of some Required Actions of some Conditions necessitates that, once the Condition is entered, the Required Actions must be completed even though the associated Conditions no longer exist. The individual LCO's ACTIONS specify the Required Actions where this is the case.
An example of this is in LCO 3.4.9, "RCS Pressure and Temperature  Limits."
The Completion Times of the Required Actions are also applicable when a system or component is removed from service intentionally. The reasons for intentionally relying on the ACTIONS include, but are not limited to, performance of Surveillances, preventive maintenance, corrective maintenance, or investigation of operational problems. Entering .ACTIONS for these reasons must be done in a manner that does not compromise safety. Intentional entry into ACTIONS should not be made for operational convenience. Alternatives that would not result in redundant equipment being inoperable should be used instead.
Doing so limits the time both subsystems/divisions of a, safety function are inoperable and limits the time other conditions exist which result in LCO 3.0.3 being entered.
Individual Specifications may specify a time limit for performing an SR when equipment is removed from service or bypassed for testing.      In this case, the Completion Times of the Required Actions are applicable when this time limit expires,  if the equipment remains removed from service or bypassed.
When a change  in MODE or other specified condition is required to comply with Required Actions, the unit may enter a MODE or other specified condition in which another Specification becomes applicable. In this case, the Completion Times of the associated Required Actions would (continued)
BFN-UNIT .2                      B  3.0-2                            Amendment
 
LCO Applicability B 3.0 LCO  3.0.2    apply from the point in time that the new Specification (continued) becomes applicable and the ACTIONS Condition(s) are entered.
LCO  3.0.3    LCO  3.0.3 establishes the actions that must    be implemented when an LCO    is not  met and:
: a. An  associated Required Action and Completion Time is not met and no other Condition applies; or
: b. The  condition of the uni't is not specifically addressed by the associated ACTIONS. This means that no combination of Conditions stated in the ACTIONS can be made that exactly corresponds to the actual condition of the unit. Sometimes, possible combinations of Conditions are such that entering LCO 3.0.3 is, warranted; in such cases,  the ACTIONS specifically state a Condition corresponding to such combinations and,also that LCO 3.0.3 be entered immediately.
This Specification delineates the time limits for placing the unit in a safe NODE or other specified condition when operation cannot be maintained within the limits for safe operation as defined by the LCO and its ACTIONS. It is not intended to be used as an operational convenience that permits routine voluntary removal of redundant systems or components from service in lieu of other alternatives that would not result in redundant systems or components being inoperable.
Upon  entering LCO 3.0.3, I hour is allowed to prepare for an orderly shutdown before initiating a change in unit operation. This includes time to permit the operator to coordinate the reduction in electrical generation with the load dispatcher to ensure the stability and availability of the electrical grid. The time limits specified to reach lower NODES of operation permit the shutdown to proceed in a controlled and orderly manner that is well within the specified maximum cooldown rate and within the capabilities of the unit, assuming that only the minimum required equipment    is OPERABLE. This reduces thermal stresses on components    of the Reactor Coolant System and the potential for  a  plant upset that could challenge safety systems under (continued)
BFN-UNIT 2                          B  3.0-3                          Amendment
 
iS~
il'
 
LCO Applicability B 3.0 BASES LCO  3.0.3  conditions to which this Specification applies. The use and (continued) interpretation of specified times to complete the actions of LCO 3.0.3 are consistent with the discussion of Section 1.3, Completion Times.
A  unit  shutdown required      in accordance with LCO 3.0.3 may    be terminated and occurs:
LCO  3.0.3 exited  if any of the following
: a. The LCO  is  now met.
: b. A Condition exists      for  which the Required Actions have now been performed.
: c. ACTIONS  exist that do not have expired Completion Times. These Completion Times are applicable from the point in time that the Condition is initially entered and not from the time LCO 3.0.3 is exited.
The  time limits of Specification 3.0.3 allow 37 hours for the unit to be in NODE 4 when a shutdown is required during NODE 1 operation.        If the unit is in a lower NODE of operation when a shutdown is required, the time limit for reaching the next lower NODE applies.          If  a lower NODE is reached in    less  time  than  allowed,  however,  the total allowable time to reach MODE 4, or other applicable MODE, is not reduced. For example,          if NODE 2 is reached in 2 hours, then the time allowed for reaching NODE 3 is the next 11 hours, because the total time for reaching NODE 3 is not reduced from the allowable limit of 13 hours. Therefore,            if remedial measures are completed that would permit a return to MODE 1, a penalty is not incurred by having to reach a lower MODE of operation in less than the total time allowed.
In NODES 1, 2, and 3, LCO 3.0.3 provides actions for Conditions not covered in other Specifications. The requirements of LCO 3.0.3 do not apply in MODES 4 and 5 because the unit is already in the most restrictive Condition required by LCO 3.0.3. The requirements of LCO 3.0.3 do not apply in other specified conditions of the Applicability (unless in NODE 1, 2, or 3) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken.
(continued)
BFN-UNIT 2                          B  3.0-4                              Amendment
 
~ ~
il'
 
LCO  Applicability B  3.0 LCO  3.0.3    Exceptions to  LCO  3.0.3 are provided in instances where (continued) requiring a unit shutdown, in accordance with LCO 3.0.3, would not provide appropriate remedial measures for the associated condition of the unit. An example of this is in LCO 3.7.6, "Spent Fuel Storage Pool Mater Level."        LCO 3.7.6 has an Applicability of "During movement of irradiated fuel assemblies in. the spent fuel storage pool." Therefore, this LCO can be applicable in any or all MODES.        If the LCO and the Required  Actions  of  LCO 3.7.6  are, not met while in MODE I, 2, or 3, there is no safety benefit to be gained by placing the unit in a shutdown condition. The Required Action of LCO 3.7.6 of "Suspend movement of irradiated fuel assemblies in the spent fuel storage pool" is the appropriate, Required Action to complete in lieu of the actions of LCO 3.0.3. These exceptions are addressed in the individual Specifications.
3.0.4    LCO 3.0.4 establishes    limitations on changes in MODES or
                            't LCO other specified conditions in the Applicability when an LCO is not met.      precludes placing the unit in a different MODE or other specified condition stated in that Applicability (e.g., Applicability desired to be entered) when the following exist:
: a. Unit conditions are such that requirements of the LCO would not be met in the Applicability desired to be entered; and
: b. Continued noncompliance with the      LCO requirements,  if the Applicability wer e entered, would result in the unit being required to exit the Applicability desired to be entered to comply with the Required Actions.
Compliance with Required Actions      that permit continued operation of the unit for an unlimited period of time in a MODE or other specified condition provides an acceptable level of safety for continued operation. This is without regard to the status of the unit before or after the MODE change. Therefore, in such cases, entry into a MODE or other specified condition in the Applicability may be made in accordance with the provisions of the Required Actions.
The provisions of this Specification should not be interpreted as endorsing the failure to exercise the good (continued)
BFN-UNIT 2                        'B 3.0-5                              Amendment
 
    '
ik~
 
LCO Applicability B 3.0 LCO  3.0.4    practice of restoring systems or components to  OPERABLE (continued)  status before unit startup.
The  provisions of L'CO 3.0.4 shall not prevent changes in MODES  or other specified conditions in the Applicability that are required to comply with ACTIONS. In addition, the provisions of LCO 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from  any unit shutdown.
Exceptions to LCO 3.0.4 are stated in the individual Specifications. Exceptions may apply to all the ACTIONS or to a specific Required Action of a Specification.
LCO 3.0.4 is only applicable when entering MODE 3 from MODE 4, MODE 2 from MODE 3 or 4; or MODE 1 from MODE 2.
Furthermore, LCO 3.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODE 1, 2, or 3. The requirements of LCO 3.0.4 do not apply in MODES 4 and 5, or in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual specifications sufficiently define the remedial measures to be taken. [In some cases (e.g ,    .) these ACTIONS provide a Note that states "awhile this LCO is not met, entry into a MODE or other specified, condition in the Applicability is not permitted, unless required to comply with ACTIONS." This Note is a requirement explicitly precluding entry into a MODE or other specified condition of the Applicability.]
Surveillances do not have to be performed on the associated inoperable equipment (or on variables outside the specified limits), as permitted by 'SR 3.0. 1. Therefore, changing
              'MODES or other specified conditions whil'e in an ACTIONS Condition, either in compliance with LCO 3.0.4 or where an exception to LCO 3.0.4 is stated, is not a violation of SR 3.0.1 or SR 3.0.4 for those Surveillances that do not have to be performed due to the associated inoperable equipment. However, SRs must be met to ensure OPERABILITY prior to declaring the associated equipment OPERABLE (or variable within limits) and restoring compliance with the affected  LCO.
(continued)
BFN-UNIT 2                        B  3.0-6                          Amendment
 
0 LCO Applicability B 3.0 BASES.  (continued)
LCO  3.0.5          LCO 3.0.5 establishes  the allowance for restoring equipment to service under administrative controls when it has been removed from service or declared inoperable to comply with ACTIONS. The sole purpose of this Specification is to provide an exception to LCO 3.0.2 (e.g., to not comply with the applicable Required Action(s)) to allow the performance of testing to demonstrate:
: a. The OPERABILITY  of the equipment being returned to service; or
: b. The OPERABILITY  of other equipment; or
: c. That variables are within  limits.
The  administrative controls ensure the time the equipment is returned to service in conflict with the requirements of the ACTIONS is limited to the time absolutely necessary to perform the allowed testing. This Specification does not provide time to perform any other preventive or corrective maintenance.
An example  of demonstrating the OPERABILITY of the equipment being returned to service is reopening a containment isolation valve that has been closed to comply with Required Actions and must be reopened to perform the SRs.
An example  of demonstrating the OPERABILITY of other equipment  is taking an inoperable channel or trip system out of the tripped condition to prevent the trip function from occurring during the performance of an SR on another channel in the other trip system. A similar example of demonstrating the OPERABILITY of other equipment is taking an inoperable channel or trip system out of the tripped condition to permit the logic to function and'ndicate the appropriate response during the performance of an SR on another channel in the  same trip  system.
LCO  3.0.6          LCO 3.0.6 establishes  an exception to LCO 3.0.2 when a supported system LCO is not met solely due to a support system LCO not being met. This exception is provided because LCO 3.0.2 would require that the Conditions and (continued)
BFN-UNIT 2.                            B 3.0-7                            Amendment
 
il~
il
 
LCO  Applicability B  3.0 LCO 3.0.6    Required Actions of the associated inoperable supported (continued) system LCO be entered solely due to the inoperability of the support system. This exception is justified because the actions that are required to ensure the plant is maintained in a safe condition are specified in the support Required Actions. The potential confusion and systems'CO's inconsistency of requirements related to the entry into multiple support and supported systems'CO's Conditions and Required Actions are eliminated by providing all the actions that are necessary to ensure the plant is maintained in a safe condition in the support system's Required Actions.
However, there are instances  where a support system's Required Action may  either direct a supported system to              be declared inoperable or direct entry into Conditions and Required Actions for the supported system. This may occur immedi'ately or after some specified delay to perform some other Required Action. Regardless of whether      it  is immediate or after some delay, when a support system's Required Action directs a supported system to .be declared inoperable or directs entry into Conditions and Required Actions for a supported system, the applicable Conditions and Required Actions shall be entered in accordance with LCO  3.0.2.
Specification 5.5. 11, "Safety Function Determination Program (SFDP)," ensures loss of safety function is detected and appropriate actions are taken. Upon entry into LCO 3.0.6, an evaluation shall be made to determine  if  loss of safety function exists. Additionally, other limitations, remedial actions, or compensatory actions may be identified as a result of the support system inoperability and corresponding exception to entering supported system Conditions and Required Actions. The SFDP implements the requirements of LCO 3.0.6.
1 The SFDP  requires cross division checks to identify a loss of safety function for those support systems that support safety systems are required. The cross division check verifies that the supported systems of the redundant OPERABLE  support system are OPERABLE, thereby ensuring safety function is retained. If this evaluation determines that a loss of safety function exists, the appropriate Conditions and Required Actions of the LCO in which the loss of safety function exists are required to be entered.
(continued)
BFN-UNIT 2                        B 3.0-8                                      Amendment
 
~  ~
ll'I
 
LCO  Applicability B 3.0 BASES  (continued)
LCO  3.0.7        There are certain special tests and operations required to be performed at various times over the life of the unit.
These special tests and operations are necessary to demonstrate select unit performance characteristics, to perform special maintenance activities, and to perform special evolutions. Special Operations LCOs in Section 3.10 allow specified TS requirements to be changed to permit performances of these special tests and operations, which otherwise could not be performed  if  required to comply with the requirements of these TS. Unless otherwise specified, all the other TS requirements remain unchanged. This will ensure all appropriate requirements of the NODE or other specified condition not directly associated with or required to be changed to perform the special test or operation will remain in  effect.
The  Applicability of  a Special Operations  LCO  represents  a condition not necessarily in compliance with the normal requirements of the TS. Compliance with Special Operations LCOs is optional. A special operation may be performed either under the provisions of the appropriate Special Operations LCO or under the other applicable TS requirements.      it If is desired to perform the special operation under the provisions of the Special Operations LCO, the requirements of the Special Operations LCO shall be followed. Mhen a Special Operations LCO requires another LCO to be met, only the requirements of the LCO statement are required to be met regardless of that LCO's Applicability (i.e., should the requirements of this other LCO  not be met, the ACTIONS of the Special Operations LCO apply, not the ACTIONS of the other LCO). However, there are instances where the Special Operations LCO's ACTIONS may direct the other LCO's ACTIONS be met. The Surveillances of the other LCO are not required to be met, unless specified in the Special Operations LCO. If conditions exist such that the Applicability of any other LCO is met, all the other LCO's requirements (ACTIONS and SRs) are required to be met concurrent with the requirements of the Special Operations LCO.
BFN-UNIT 2                            B  3.0-9                              Amendment
 
il'l SR Applicability B 3.0 B  3.0  SURVEILLANCE RE(UIREMENT (SR) APPLICABILITY BASES SRs                SR  3.0.1 through SR 3.0.4 establish the general requirements applicable to al.l Specifications and apply at all times, unless otherwise stated.
SR  3.0.1        SR  3.0.1 establishes the requirement that SRs must be met during the NODES or other specified conditions in the Applicability for which the requirements of the LCO apply,.
unless otherwise specified in the individual SRs. This Specification is to ensure that Surveillances are performed to verify the OPERABILITY of systems and components, and that variables are within specified limits. Failure to meet a Surveillance within the specified Frequency, in accordance with  SR  3.0.2, constitutes    a failure to  meet an LCO.
Systems  and components are assumed to be OPERABLE when      the associated  SRs have been met. Nothing in this Specification, however, is to be construed as implying        that systems or components are    OPERABLE  when:
: a. The systems  or components are known to    be inoperable, although  still  meeting the SRs; or j
: b. The requirements of the Surveillance(s) are known to be not met between. required Surveillance performances.
Surveillances do not have to be performed when the unit is in a NODE or other specifi'ed condition for which the requirements of the associated LCO are not applicable, unless otherwise specified. The SRs associated with a Special Operations LCO are only applicable when the Special Operations LCO is used as an allowable exception to the requirements of  a  Specification.
Surveillances, including Surveillances invoked by Required Actions, do not have to be performed on inoperable equipment because the ACTIONS define the remedial measures that apply.
Surveillances have to. be met and performed in accordance with SR 3.0.2, prior to returning equipment to OPERABLE status.
(continued)
BFN-UNIT 2                            B 3.0-10'mendment
 
~,
il
 
SR Applicability B 3.0 SR  3.0.1    Upon  completion of maintenance, appropriate post maintenance (continued) testing is required to declare equipment OPERABLE. This includes ensuring applicable Surveillances are not failed and their most recent performance is in accordance with SR 3.0.2. Post maintenance testing may not be possible in the current NODE or other specified conditions in the Applicability due to the necessary unit parameters not having been established.        In these situations, the equipment may be  considered    OPERABLE  provided testing has .been satisfactorily completed to the extent possible and the equipment is not otherwise believed to be incapable of performing its function. This will allow operation to proceed to a NODE or other specified condition where other necessary post maintenance tests can be completed.
Some  examples  of this process are:
a      Control  Rod Drive maintenance during refueling that
                ~
requires scram testing at ) 800 psi. However,        if other appropriate testing is satisfactorily completed and the scram time testing of SR 3.1.4.3 is. satisfied, the control rod can be considered OPERABLE. This allows startup to proceed to reach 800 psi to perform other necessary testing.
: b. High pressure coolant injection (HPCI) maintenance during shutdown that requires system functional tests at a specified pressure. Provided other appropriate testing is satisfactorily completed, startup can proceed with HPCI considered OPERABLE. This allows operation to reach the specified pressure to complete the necessary post maintenance testing.
SR  3.0.2    SR  3.0.2 establishes the requirements for meeting the specified Frequency for Surveillances and any Required Action with a Completion Time that requires the periodic performance    of the Required Action    on a "once  per..."
interval.
SR  3.0.2 permits    a 25K extension- of the interval specified in  the  Frequency. This extension facilitates Surveillance scheduling and considers plant operating conditions that may not be suitable for conducting the Surveillance (e.g.,
(continued)
BFN-UNIT 2                          B  3.0-11                            Amendment
 
0 Il
 
SR Applicability B 3.0 BASES SR  3.0.2    transient conditions or other ongoing Surveillance or (continued) maintenance  activities).
The 25%  extension does not significantly degrade the reliability that results    from performing the Surveillance at its specified Frequency.      This is based on the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the SRs. The exceptions to SR 3.0.2 are those Surveillances for which the 25/. extension of the interval specified in the Frequency does not apply. These exceptions are stated in the individual Specifications. An example of where SR 3.0.2 does not apply is a Surveillance with a Frequency of "in accordance with 10 CFR 50, Appendix J, as modified by approved exemptions." The requirements of regulations take precedence over the TS. The TS cannot in and of themselves extend a test interval. specified in the regulations.
Therefore, there is a Note in the Frequency stating, "SR 3.0.2 is not applicable."
As  stated in SR 3.0.2, the 25% extension also does not apply to the initial portion of a periodic Completion Time that requires performance on a "once per..." basis. The 25/.
extension applies to each performance after the initial performance. The initial performance of the Required Action, whether    it  is a particular Surveillance or some other .remedial action, is considered a single action with a single Completion Time. One reason for not allowing the 25%
extension to this Completion Time is that such an action usually verifies that no loss of function has occurred by checking the status of redundant or diverse components or accomplishes the function of the inoperable equipment in an alternative    manner.
The  provisions of SR 3.0.2 are not intended to be used repeatedly merely as an operational convenience to extend Surveillance intervals (other than those consistent with refueling intervals) or periodic Completion Time intervals beyond those specified.
SR  3.0.3      SR 3.0.3 establishes the flexibility to defer declaring affected equipment inoperable or an affected variable outside the specified limits when a Surveillance has not (continued)
BFN-UNIT 2                        B  3.0-12                          Amendment
 
il~
il~
 
SR Applicability B 3.0 SR  3.0.3      been completed within the specified Frequency. A delay (continued)  period of up to 24 hours or up to the limit of the specified frequency, whichever is less, applies from the point in time that  it is discovered that the Surveillance has not been performed in accordance with SR 3.0.2, and not at the time that the specified 'Frequency was not met.
This delay period provides adequate time to complete Surveillances that have been missed. This delay period
                -permits the completion of a Surveillance before complying with Required Actions or other remedial measures that might preclude completion of the Surveillance.
The basis  for this delay period includes consideration of unit conditions,. adequate planning, availability of personnel, the time required to perform the Surveillance, the safety significance of the delay in completing the required Surveillance, and the recognition that the most probable result of any particular Surveillance being performed is the verification of conformance with the requirements.
When a  Surveillance with a Frequency based not on time intervals, but upon specified unit conditions or operational situations, is discovered not to have been performed when specified, SR 3.0.3 allows the full delay period of 24 hours to perform the Surveillance.
SR  3.0.3 also provides a time limit for completion of Surveillances that become applicable as a consequence of
                'NODE changes imposed by Required Actions.
Failure to comply with specified Frequencies for SRs is expected to be an'nfrequent occurrence. Use of the delay period established by SR 3.0.3 is a flexibility which is not intended to be used as an operational convenience to extend Surveillance intervals.
If a Surveillance is not completed within the allowed delay period, then the equipment is considered inoperable or the variable is considered outside the specified limits and the Completion Times of the Required Actions for the applicable LCO Conditions begin immediately upon expiration of the delay period.. If a Surveillance is failed within the delay period, then the equipment is inoperable, or the variable is 0                                                                    (continued)
BFN-UNIT 2                        B 3.0-13                          Amendment
 
il~
il
 
SR Applicability B  3.0 BASES SR  3.0.3    outside the specified limits and the Completion Times of the (continued) Required Actions for the applicable LCO Conditions begin immediately upon the failure of the Surveillance.
Completion  of the Surveillance within the delay period a1lowed 'by  this Specification, or within the  Completion  Time of the ACTIONS, restores compliance with SR 3.0. 1.
SR  3.0.4    SR  3.0.4 establishes the requirement that all applicable      SRs must be met before entry    into a MODE or other specified condition in the Applicability.
This Specification ensures that system and component OPERABILITY requirements and variable limits are met .before entry into:MODES or other specified conditions in the Applicability for which these systems and components ensure safe operation of the unit.
The  provisions of this Specification should not be interpreted as endorsing the failure to exercise the good practice of restoring systems or components to OPERABLE status before entering an associated MODE or other specified condition in the Applicability.
However,  in certain circumstances failing to meet an SR will not result in  SR 3.0.4 restricting a MODE change or other specified condition change. When a system, subsystem, division, component, device, or variable is inoperable or outside its specified limits, the associated SR(s) are not required to be performed, per SR 3.0. 1, which states that Surveillances do not have to be performed on inoperable equipment. When equipment is inoperable, SR 3.0.4 does not apply to the associated SR(s) since the requirement for the SR(s) to be performed is removed. Therefore, failing to perform the Surveillance(s) within the specified Frequency d'oes not result in an SR 3.0.4 restriction to changing MODES or other specified conditions of the Applicability.
However, since the LCO is not met in this instance, LCO 3.0.4 will govern any restrictions that may (or may not) apply to MODE or other specified condition changes.
The  provisions of SR 3.0.4 shall not prevent changes in MODES  or other specified conditions in the Applicability (continued)
BFN-UNIT 2                        B 3.0-14                            Amendment
 
il il 41
 
SR Applicability B 3.0 SR  3.0.4      that are required to comply with ACTIONS. In addition, the (continued) provisions of SR 3.0.4 shall not prevent changes in MODES or other specified conditions in the Applicability that result from any unit shutdown.
The  precise requirements for performance of SRs are specified such that exceptions to SR 3.0.4 are not necessary. The specific time frames and conditions necessary for meeting the SRs are specified in the Frequency, in the Surveillance, or both. This allows performance of Surveillances when the prerequisite condition(s) specified in a Surveillance procedure require entry into the MODE or other specified condition in the Applicability of the associated LCO prior to the performance or completion of a Surveillance. A Surveillance that could not be performed until after entering the LCO Applicability would have its Frequency specified such that  it  is not "due" until the specific conditions needed are met. Alternately, the Surveillance may be stated in the form of a Note as not required (to be met or performed) until a particular event, condition, or time has been reached. Further discussion of the specific 'formats of SRs'nnotation is found in Section 1.4, Frequency.
SR  3.0..4 is only applicable when entering MODE 3 from MODE 4, MODE 2 from MODE 3 or 4, or MODE 1 from NODE 2.
Furthermore, SR 3.0.4 is applicable when entering any other specified condition in the Applicability only while operating in MODE 1, 2, or 3. The requirements of SR 3.0.4 do not apply in NODES 4 and 5, or in other specified conditions of the Applicability (unless in MODE 1, 2, or 3) because the ACTIONS of individual Specifications sufficiently define the remedial measures to be taken.
BFN-UNIT 2                        B 3.0-15                          Amendment
 
ik SDM B 3.1.1 B 3.1  REACTIVITY CONTROL SYSTEMS B 3.1.1  SHUTDOWN MARGIN (SDM)
BASES BACKGROUND        SDM  requirements are specified to ensure:
a~    The  reactor can be made subcritical from all operating conditions and transients and Design Basis Events;
                                '
: b. The  reactivity transients associated with postulated accident conditions are controllable within .acceptable limits; and
: c. The reactor will be maintained sufficiently subcritical to preclude inadvertent    criticality in  the shutdown  condition.
These requirements    are  satisfied by the control rods, as described in  GDC 26  (Ref. 1), which can compensate for the reactivity effects of the fuel and water temperature changes experienced during all operating conditions.
APPLICABLE        The control rod drop accident (CRDA) analysis (Refs. 2
.SAFETY ANALYSES    and 3) assumes the core is subcritical with the highest worth control rod withdrawn. Typically, the first control rod withdrawn has a very high reactivity worth and, should the core be critical during the withdrawal of the first control rod, the consequences of a CRDA could exceed the fuel damage limits for a CRDA (see Bases for LCO 3.1.6, "Rod Pattern Control" ). Also, SDM is assumed as an initial condition for the control rod removal error during refueling (Ref. 4) and fuel assembly insertion error during refueling (Ref. 5 accidents. The analysis of these reactivity insertion events assumes the refueling interlocks are OPERABLE when the reactor is in the refueling mode of operation. These interlocks prevent the withdrawal of more than one control rod from the core during refueling.
(Special consideration and requirements for multiple control rod withdrawal during refueling are covered in Special Operations LCO 3. 10.6, "Multiple Control Rod Withdrawal - Refueling.") The analysis assumes this condition is acceptable since the core will be (continued)
BFN-UNIT 2                            B  3.1-1                            Amendment
 
0 SDM B  3.1.1 BASES APPLICABLE      shut  down  with the highest worth control rod withdrawn, has been demonstrated.
if SAFETY ANALYSES adequate    SDM (continued)
Prevention or mitigation of reactivity insertion events is necessary to limit energy deposition in the fuel to prevent significant fuel damage, which could result in undue release of radioactivity. Adequate SDM ensures inadvertent criticalities and potential CRDAs involving high worth control rods (namely the first control rod withdrawn) will not cause significant fuel damage.
SDM  satisfies Criterion    2 of the  NRC Policy Statement (Ref. 8).
LCO            The  specified SDH limit accounts for the uncertainty in the demonstration of SDM by testing. Separate SDM limits are provided for testing where the highest worth control rod is determined analytically or by measurement.      This is due to the reduced uncertainty in the SDH test when the highest worth control rod is determined by measurement.        When SDM is demonstrated by calculations not associated with a test (e.g., to confirm SDH during the fuel loading sequence),
additional margin is included to account for uncertainties in the calculation. To ensure adequate SDM during the design process, a design margin is included to account for uncertainties in the design calculations (Ref. 6).
APPLICABILITY  In  MODES 1  and 2, SDM  must be provided because subcriticality with the highest      worth control rod withdrawn is  assumed  in the CRDA analysis (Ref. 2). In MODES 3 and 4, SDM is required to ensure the reactor will be held subcritical with margin for a single withdrawn control rod.
SDM is required in MODE 5 to prevent an open vessel, inadvertent criticality during the withdrawal of a single control rod from a core cell containing one or more fuel assemblies or a fuel assembly insertion error (Ref. 5).
(continued)
BFN-UNIT 2                          B 3.1-2                            Amendment
 
0 0
 
SDM B  3.1.1 BASES  (continued)
ACTIONS            A.l With  SDM  not within the limits of the LCO in MODE 1 or 2, SDM must be restored within 6 hours. Failure to meet the specified SDM may be caused by a control rod that cannot be inserted. The allowed Completion Time of 6 hours is acceptable, considering that the reactor can still be shut down, assuming no failures of additional control rods    to insert, and the low probability of an event occurring    during this interval.
B.l If the  SDM  cannot be restored, the plant must be brought to MODE 3  in 12 hours, to prevent the potential for further reductions in available SDN (e.g., additional stuck control rods). The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach NODE 3 from full power conditions in an orderly manner and without challeng'ing plant systems.
0 C.l With SDN not within limits in MODE 3', the operator must immediately initiate action to fully insert all insertable control rods. Action must continue until all insertable control rods are ful.ly inserted. This action results in the least reactive condition for the core.
D. 1  0.2  D.3  and D.4 With SDM not within limits in NODE 4, the operator must immediately initiate action to fully insert all insertable control rods. Action must continue until all insertable control rods are fully inserted. This action results in the
                  . least reactive condition for the core. Action must also be initiated within 1 hour to provide means for control of potential radioactive releases. This includes ensuring secondary containment is OPERABLE; at least two Standby Gas Treatment (SGT) subsystems are OPERABLE; and secondary containment isolation capability (i.e., at least one secondary containment isolation valve (damper) and (continued)
.BFN-UNIT 2                                B 3.1-3                        Amendment
 
~
  ~'k~
 
SDN B 3.1.1 BASES ACTIONS    0. 1  0.'2 0.3    and  0.4  (continued) associated instrumentation are OPERABLE, or other acceptable administrative controls 'to assure isolation capability) in each associated secondary containment penetration flow path with isolation valve(s) (damper(s)) not isolated that is assumed to be isolated to mitigate radioactive releases.
This may be performed as an administrative check, by examining logs or other information, to determine            if the components  are  out  of  service  for  maintenance  or other reasons. It is not necessary to perform the surveillances needed to demonstrate the OPERABILITY of the components.
If, however, any required component 'is inoperable, then            it must be restored to OPERABLE status.          In this case, SRs may need to be performed to restore the component to OPERABLE status. Actions must continue until all required components are  OPERABLE.
E. 1  E.2  E.3  'E.4    and E.5 With SDH not within      limits in    NODE 5,  the operator must immediately suspend      CORE ALTERATIONS    that could reduce  SDM (e.g., insertion of fuel in the core or the withdrawal of control rods). Suspension of these activities shall not preclude completion of movement of a component to a safe condition. Inserting control rods or removing fuel from the core will reduce the total reactivity and are therefore excluded from the suspended        actions.
Action must also be immediately initiated to fully inse} t all insertable control rods in core cells containing one or more fuel assemblies.        Action must continue until all insertable control rods in core cells containing one or more fuel assemblies have been fully inserted. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and therefore do not have to be inserted.
Action must also be initiated within 1 hour to provide means for control of potential radioactive releases. This includes ensuring secondary containment is OPERABLE; at least two  SGT  subsystems      are  OPERABLE; and  secondary containment isolation capability (i.e., at least one secondary containment isolation valve (damper) and associated  instrumentation are        OPERABLE,  or other acceptable (continued)
BFN-UNIT 2                      '8  3.1-4                                Amendment
 
~ i.
ik Ib
 
SDM B 3.1.1 BASES ACTIONS      E. 1  E.2  E.3  E.4  and E.5  (continued) administrative controls to assure isolation capability) in each associated  secondary containment penetration flow path with isolation valve(s) (damper(s)) not isolated that is assumed to be isolated to mitigate radioactivity releases.
This may be performed as an administrative check, by examining logs or other information, to determine      if the components are out of service for maintenance or other reasons. It is not .necessary to perform the SRs needed to demonstrate the OPERABILITY    of the components. If, however, any  required component is inoperable, then    it must be restored to OPERABLE status. In this case, SRs may need to be performed to restore the component to OPERABLE status.
Action must continue until all required components are OPERABLE.
SURVEILLANCE SR  3.1.1.1 RE(UIREHENTS Adequate  SDH must be verified to ensure that the reactor can be made  subcritical from any initial operating condition.
This can be accomplished by a test, an evaluation, or a combination of the two. Adequate SDH is demonstrated before or during the first startup after fuel movement, or shuffling within the reactor pressure vessel, or control rod replacement. Control rod replacement refers to the decoupling and removal of a control rod from a core location, and subsequent replacement with a new control rod or a control rod from another core location. Since core reactivity will vary during the cycle as a function of fuel depletion and poison burnup, the beginning of cycle (BOC) test must also account for changes in core reactivity during the cycle. Therefore, to obtain the SDH, the initial measured  value must be increased by an adder, "R", which is the difference between the calculated value of maximum core reactivity during the operating cycle and the calculated BOC core reactivity. If the value of R is negative (that is, BOC is the most reactive point in the cycle), no correction to the BOC measured value is required (Ref. 7). For the SDH demonstrations that rely solely on calculation of the highest worth control rod, additional margin (0.10% M/k) must be added to the SDH limit of 0.28% M/k to account for uncertainties in the calculation.
(continued)
BFN-UNIT 2                        B 3.1-5                            Amendment
 
il~
~  i
 
SDM B  3.1.1 BASES SURVEILLANCE SR  3.1.1.1  (continued)
REQUIREMENTS The  SDM may  be demonstrated    during an in sequence control rod withdrawal, in which the highest worth control rod is analytically determined, or during local criticals, where the highest worth control rod is determined by testing.
Local critical tests require the withdrawal of out of sequence control rods. This testing would therefore require bypassing of the rod worth minimizer to allow the out of sequence withdrawal, and therefore additional requi} ements must be met (see LCO 3. 10.7, "Control Rod Testing- Operating" ).
The Frequency  of 4  hours after, reaching  criticality is allowed to provide    a reasonable amount  of time to perform the required calculations      and have  appropriate verification.
During  MODE 5, adequate SDM is required to ensure that the reactor does not reach criticality during control rod withdrawals. An evaluation of each in vessel fuel movement during fuel loading (including shuffling fuel within the core) is required to ensure adequate SDM is maintained during refueling. This evaluation ensures that the intermediate loading patterns are bounded by the safety analyses for the final core loading pattern. For example, bounding analyses    that demonstrate adequate SDM for the most reactive configurations during the refueling may be performed to demonstrate acceptability of the entire fuel movement sequence.      These bounding analyses    include additional margins to the associated uncertainties. Spiral offload/reload sequences inherently satisfy the SR, provided the fuel assemblies are reloaded in the same configuration analyzed for the new cycle. A spiral. reload sequence does not preclude the practice of bridging between SRMs and filling in the center in order to provide for conservative core monitoring during core alterations.        Removing fuel from the core will always result in an      increase  in SDM.
REFERENCES    l. 10 CFR 50, Appendix A, GDC 26.
: 2. FSAR, Section 14.6.2.
(continued)
BFN-UNIT 2                      B  3.1-6                              Amendment
 
il SDM B 3.1.1 BASES
: 3. NEDE-24011-P-A-11-US,    "General Electric Standard Appl.ication, for Reactor Fuel,"  Supplement for United States,  Section S.2.2.3. 1, November 1995.
: 4. FSAR,  Section 14.5.3.3.
REFERENCES    5. FSAR,  Section 14.5.3.4.
(continued)
: 6. FSAR,  Section 3.6.5.2.
: 7. NEDE-24011-P,-A-11, "General .Electric Standard Application for Reactor Fuel," Section 3.2.4.1, November 1995.
: 8. NRC  93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
(continued)
BFN-UNIT 2                      B 3.1-7'mendment
 
0 ik
 
Reactivity Anomalies B 3.1.2 B 3.1  REACTIVITY CONTROL SYSTEHS B 3.1.2  Reactivity Anomalies BASES BACKGROUND        In accordance with  GDC  26, GDC 28, and GDC 29 (Ref. 1),
reactivity shall be controllable such that subcriticality is maintained under cold conditions and acceptable fuel design limits are not exceeded during normal operation and abnormal operational transients. Therefore, reactivity anomaly is used as a measure of the predicted versus measured core reactivity during power operation. The continual confirmation of core reactivity is necessary to ensure that the Design Basis Accident (DBA) and transient safety analyses remain valid. A large reactivity anomaly could be the result of unanticipated changes in fuel reactivity or control rod worth or operation at conditions not consistent with those assumed in the predictions of core reactivity, and could potentially result in a loss of SDH or violation of acceptable 'fuel design limits. Comparing predicted versus measured core reactivity validates the nuclear methods used  in the safety analysis and supports the SDH demonstrations (LCO 3.1.1, "SHUTDOWN HARGIN (SDH)") in assuring the reactor can be brought safely to cold, subcritical conditions.
When  the reactor core is critical or in normal power operation, a reactivity balance exists and the net reactivity is zero. A comparison of predicted and measured reactivity is convenient under such a balance, since parameters are being maintained relatively stable under steady state power conditions. The positive reactivity inherent in the core design is balanced by the negative reactivity of the control components, thermal feedback, neutron leakage, and materials in the core that absorb neutrons, such as burnable absorbers, producing zero net reactivity.
In order to achieve the required fuel cycle energy output, the uranium enrichment in the new fuel loading and the fuel loaded in the previous cycles provide excess positive reactivity beyond that required to sustain steady state operation at the beginning of cycle (BOC). When the reactor is critical at RTP and operating moderator temperature, the excess positive reactivity is compensated by burnable absorbers (e.g., gadolinia), control rods, and whatever neutron (continued)
BFN-UNIT 2                            B  3.1-8                            Amendment
 
0
!5
 
Reactivity Anomalies B 3.1.2 BASES BACKGROUND        poisons (mainly xenon and samarium) are present in the fuel.
(continued)    The  predi'cted core reactivity, as represented by control rod density, is calculated by a 3D core simulator code as a function of cycle exposure. This calculation is performed for projected operating states and conditions throughout the cycle. The core reactivity is determined from control rod densities for actual plant conditions and is then compared to the predicted value for the cycle exposure.
APPLICABLE        Accurate prediction of core reactivity is either an explicit SAFETY ANALYSES  or implicit assumption in the accident analysis evaluations (Ref. 2). In particular, SDM and reactivity transients, such as control. rod withdrawal accidents or rod drop accidents, are very sensitive to accurate prediction of core reactivity. These accident analysis evaluations rely on computer codes  that have been qualified against available test data, operating plant data, and analytical benchmarks.
Monitoring reactivity anomaly provides additional assurance that the nuclear methods provide an accurate representation of the core reactivity.
The comparison between measured    and predicted  initial  cor e reactivity. provides a normalization for the calculational models used to predict core reactivity. If the measured and predicted rod density for identical core conditions at BOC do not reasonably agree, then the assumptions used in the reload cycle design analysis or the calculation models used
                ~
to predict rod density may not be accurate. If reasonable agreement between measured and predicted core reactivity exists at BOC,'then the prediction may be normalized to the measured value. Thereafter, any significant deviations in the measured rod density from the predicted rod density that develop during fuel depletion may be an indication that the assumptions of the DBA and transient analyses are no longer valid, or that an unexpected change in core conditions has occurred.
Reactivity anomalies satisfy Criterion    2  of the NRC  Policy Statement (Ref. 3).
(continued)
BFN-UNIT. 2                          B 3.1-9                            Amendment
 
il~
il 0
 
Reactivity Anomalies B 3.1.2 LCO            The  reactivity anomaly limit is established to ensure plant operation is maintained within the assumptions of the safety analyses. Large differences between monitored and predicted core reactivity may indicate that the assumptions of the DBA
              'nd transient analyses are no longer valid, or that the uncertainties in the "Nuclear Design Methodology" are larger than expected. A limit on the difference between the monitored and the predicted rod density corresponding to a reactivity difference of i 1% M/k has been established based on engineering judgment. A > I/o deviation in reactivity from that predicted is larger than expected for normal operation and should  therefore  be  evaluated.
APPLICABILITY  In MODE  1, most of the control rods are withdrawn and steady state operation is typically achieved. Under these conditions, the comparison between predicted and monitored core reactivity provides an effective measure of the reactivity  anomaly. In MODE 2, control rods are typically being withdrawn during a startup. In MODES 3 and. 4, all control rods are fully inserted and therefore the reactor is in the least reactive state, where monitoring core reactivity is not necessary. In MODE 5, fuel loading results in a continually changing core reactivity. SDM requirements (LCO 3. 1. 1) ensure that fuel movements are performed within the bounds of the safety analysis, and an SDM demonstration is required during the first startup following operations that could have altered core reactivity (e.g., fuel movement, control rod replacement, shuffling).
The  SDM  test, required by LCO 3.1. 1, provides a direct comparison  of the predicted and monitored core reactivity at cold conditions; therefore, the reactivity anomaly LCO is not applicable during these conditions.
ACTIONS        A.1 Should an anomaly develop between actual and expected critical rod configuration, 'the core reactivity difference must be restored to within the limit to ensure continued operation is within the core design assumptions.
Restoration to within the limit could be performed by      an evaluation of the core design and safety analysis to determine the reason for the anomaly. This (continued)
BEN-UNIT 2                        B  3.1-10                            Amendment
 
il~
0 II
 
Reactivity Anomalies B 3.1.2 BASES ACTIONS      A. 1    (continued) evaluation normally reviews the core conditions to determine their consistency with input to        design calculations.
Neasured core and process        parameters are also normally evaluated to determine that they are within the bounds            of the safety analysis, and safety analysis calculational models may be reviewed to verify that they are adequate for representation of the core conditions. The required Completion Time of 72 hours is based on the low probability of a DBA occurring during this period, and allows sufficient time to assess the physical condition of the reactor and complete the evaluation of the core design and safety analysis.
B.1 If the    core reactivity  cannot be restored to within the 1%  Zdc/k  limit,  the plant must be brought to a,NODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least NODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach NODE 3 from full power conditions. in an orderly manner and without challenging plant systems.
SURVEILLANCE SR    3.1.2.1
.REQUIRENENTS Verifying the reactivity difference between the actual critical rod configuration and the expected configuration is within the 'limits of the LCO provides added assurance that plant operation is maintained within the assumptions of the DBA and transient analyses.          The core monitoring software calculates the      k-effective  for the critical rod configuration and reactor        conditions. A comparison of this calculated k-effective at the        same  cycle exposure is used to calculate the reactivity difference.            The comparison is required    when  the core  reactivity  has potentially  changed by a  significant amount. This may occur following refueling a in which new fuel assemblies are loaded, fuel assemblies are shuffled within the core, or control rods are replaced or shuffled. Control rod (continued).
BFN-UNIT 2                          B 3.1-11                              Amendment
 
0 il
 
Reactivity Anomalies B 3.1.2 BASES SURVEILLANCE    SR  3.1.2.1    (continued)
RE(U I REM ENTS replacement refers to the decoupling and removal of a control rod from a core location, and subsequent replacement with a new control rod or a control rod from another. core location. Also, core reactivity changes during the cycle.
The 24 hour interval after reaching equilibrium conditions following a. startup is based on the need for equilibrium xenon concentrations in the core, such that an accurate comparison between the monitored and predicted rod density can be made. For the purposes of this SR, the reactor is assumed to be at equilibrium conditions when steady state operations (no control rod movement or core flow changes) at a 751'RTP have been obtained. The 1000 NWD/T Frequency was developed, considering the relatively slow change in core reactivity with exposure and operating experience related to variations in core reactivity. This comparison, requires the core to be operating at power levels which minimize the uncertainties    and measurement  errors, in order to obtain meaningful    results. Therefore, the comparison is only done when  in  NODE  1.
REFERENCES      1. 10 CFR 50,  Appendix A,  GDC 26,  GDC 28, and  GDC  29.
: 2. FSAR,  Chapter 14.6.
: 3. NRC  'No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT,2                          B 3.1-12                              Amendment
 
Cl Control Rod OPERABILITY B 3.1.3 B 3.1  REACTIVITY CONTROL SYSTEMS B 3.1.3  Control Rod OPERABILITY BASES BACKGROUND          Control rods are components of the control rod drive (CRD)
System, which    is the primary reactivity control system for the reactor. In conjunction with the Reactor Protection System, the CRD System provides the means for the reliable control of reactivity changes to ensure under conditions of normal operation,    including abnormal operational transients, that specified acceptable fuel design limits are not exceeded. In addition, the control rods provide the capability to hold the reactor core subcritical under all conditions and to limit the potential amount and rate of reactivity increase caused by a malfunction in the CRD System. The CRD System is designed to satisfy the requirements of GDC 26, GDC 27, GDC 28, 'and GDC 29 (Ref. 1).
The  CRD  System consists of 185 locking piston control rod drive  mechanisms (CRDMs) and a hydraulic control unit for each drive mechanism.      The locking piston type CROM is a double acting hydraulic piston, which uses condensate water as the operating fluid. Accumulators provide additional energy for scram. An index tube and piston, coupled to the control rod, are locked at fixed increments by a collet mechanism. The collet fingers engage notches in the index tube to prevent unintentional withdrawal of the control rod, but without restricting insertion.
This Specification, along with LCO 3. 1.4, "Control Rod Scram Times," and LCO 3.1.5, "Control Rod Scram Accumulators,"
ensure that the performance of the control rods in the event of a Design Basis Accident (DBA) or transient meets the assumptions used in the safety analyses of References 2, 3, and 4.
APPLICABLE          The  analytical methods and assumptions used in the SAFETY ANALYSES    evaluations involving control rods are presented in References 2, 3, and 4. The control rods provide the primary means for .rapid reactivity control {reactor scram),
for maintaining the reactor subcritical and for limiting the potential effects of reactivity insertion events      caused  by malfunctions in the      CRD  System.
(continued)
BFN-UNIT 2                              B  3.1-13                            Amendment
 
0 0
0
 
Control  Rod OPERABILITY B  3.1.3 APPLICABLE      The  capability to insert the control rods provides assurance SAFETY ANALYSES  that the assumptions for scram reactivity in the DBA and (continued)  transient analyses are not violated. Since the SDM ensures the reactor will be subcritical with the highest worth control rod withdrawn (assumed single failure), the additional failure of a second control rod to insert, required, could invalidate the demonstrated SDM and if potentially limit the ability of the CRD System to hold the reactor subcritical. If the control rod is stuck at an inserted position and becomes decoupled from the CRD, a control rod drop accident (CRDA) can possibly occur.
Therefore, the requirement that all control rods be OPERABLE ensures the CRD System can perform its intended function.
The  control rods also protect the fuel from damage which could result in release of radioactivity. The limits protected are the MCPR Safety Limit (SL) (see Bases for SL 2.1.1, "Reactor Core SLs" and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)"), the 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1, "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," and LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)"), and the fuel damage limit  (see Bases for LCO 3.1.6, "Rod Pattern Control" )
during reactivity insertion events.
The  negative reactivity insertion (scram) provided by the CRD  System provides the analytical basis for determination of plant thermal limits and provides protection against fuel damage limits during a CRDA. The Bases for LCO 3.1.4, LCO 3. 1.5, and LCO 3.1.6 .discuss in more detail how the SLs are protected by the CRD System.
Control rod OPERABILITY satisfies Criterion    3  of the NRC Policy Statement (Ref. 6).
LCO            The OPERABILITY  of an individual control rod is based on a combination of factors, primarily, the scram insertion times, the control rod coupling integrity, and the ability to determine the control rod'osition. Accumulator OPERABILITY is addressed by LCO 3. 1.5. The associated scram accumulator status for a control rod only affects the scram insertion times; therefore, an inoperable accumulator does not immediately require declaring a control rod inoperable.
Although not all control rods are required to be OPERABLE to (continued)
BFN-UNIT 2                        B 3.1-14                            Amendment
 
i~
0
 
Control  Rod OPERABILITY B  3.1.3 BASES LCO            satisfy the intended reactivity control requirements, strict (continued), control over the number and, distribution of inoperable control rods is required to satisfy the assumptions of the DBA and  transient analyses.
APPLICABILITY  In MODES I and 2, the, control rods are assumed to function during a DBA or transient and are therefore required to be OPERABLE in these HODES.      In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate requirements for control rod OPERABILITY during these conditions. Control rod requirements in MODE 5 are located in LCO 3.9.5, "Control Rod OPERABILITY-Refueling."
ACTIONS        The ACTIONS Table    is. modified by a Note indicating that a separate Condition entry is allowed for each. control rod.
This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable control rod. Complying with the Required .Actions may allow for continued operation, and subsequent inoperable control rods are governed by subsequent Condition entry and application of associated Required Actions.
A.l A.2    A.3  and A.4 A control rod is considered stuck    if it  will not insert by either  CRD drive water or scram pressure. With a fully inserted control rod stuck, no actions are requi'red as long as the control rod remains fully inserted.      The Required Actions are modified by a Note, which allows the rod worth minimizer (RWH) to be bypassed    if required to allow continued operation. LCO 3.3.2.1, "Control Rod Block Instrumentation," provides additional requirements when the RWH is bypassed  to ensure compliance with the CRDA analysis.
Wi,th one withdrawn control rod stuck, the local scram reactivity rate assumptions may not be met      if  the stuck control rod separation criteria are not met. Therefore, a verification that the separation criteria are met must be performed immediately. The separation criteria are not met if  a)'he stuck control rod occupies a location adjacent to
                                                                      .(continued)
BFN-UNIT 2                        B  3.1-15                              Amendment
 
O.
ik'
 
Control  Rod OPERABILITY 8 3.1.3 BASES ACTIONS    A. 1  A.2  A.3  and A.4  (continued) two "slow"  control rods, b) the stuck control rod occupies a location adjacent to one "slow" control rod, and the one "slow" control rod is a1so adjacent to another "slow" control rod, or c) the stuck control rod, occupies a location adjacent to one "slow" control rod when there is another pair of "slow" control rods adjacent to one another. The description of "slow" control rod is provided in LCO 3. 1.4, "Control Rod Scram Times." In addition, the associated control rod drive must be disa'rmed in 2 hours.
Hydraulically disarming does not normally include isolation of the cooling water. The allowed Completion Time of 2 hours is acceptable,    considering the reactor can still be shut down, assuming no additional control rods fail to insert, and provides a reasonable time to perform the Required Action in an orderly manner. The control rod must be isolated from both scram and normal insert and withdraw pressure. Isolating the control rod from scram prevents damage to the CROM.
Monitoring  of'he insertion capability      .of each withdrawn control'od    must also be performed    within  24 hour s 'from discovery of Condition A concurrent with THERMAL POWER greater than the low power setpoint (LPSP) of,the RWM.
SR 3. 1.3.2 and SR 3. 1.3.3 perform periodic tests of the control rod insertion capability of withdrawn control rods.
Testing. each withdrawn control rod ensures that a generic problem does not exist. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." The Required, Action A.3 Completion Time only begins upon discovery that THERMAL POWER is greater than the actual LPSP of the RWM since the notch insertions may not be compatible with the requirements of rod pattern control (LCO 3. 1.6) and the RWM (LCO 3.3.2. 1). The allowed Completion Time of 24 hours from discovery of Condition A concurrent with THERMAL POWER greater than the LPSP of the RWM provides a reasonable time to test the control rods, considering the potential for a need to reduce power to perform the tests.
To allow,  continued operation with    a withdrawn control rod stuck,  an  evaluation of adequate SDM is also required within 72  hours. Should a DBA or transient require a shutdown, to (continued)
BFN-UNIT 2                      8 3.1-16                              Amendment
 
il 0
 
Control Rod OPERABILITY B  3.1.3 BASES ACTIONS    A. 1  A.2  A.3 and A.4    (continued) preserve the single failure criterion, an additional control rod would have to be assumed to fail to insert when required. Therefore, the original SDM demonstration may not be valid. The SDM must therefore be evaluated (by measurement or analysis) with the stuck control rod at its stuck position and the highest worth OPERABLE control rod assumed to be fully withdrawn.
The allowed Completion Time    of 72 hours to verify SDM is adequate, considering that with a single control rod stuck in a withdrawn position, the remaining OPERABLE control rods are capable of providing the required scram and shutdown reactivity. Failure to reach MODE 4 is only likely an    if additional control rod adjacent to the stuck control rod also fails to insert during a required scram.
B 1  and B2 With two or more withdrawn control rods stuck, the stuck control rods must be isolated from scram pressure within 2 hours and the plant brought to MODE 3 within 12 hours.
The control rod must be isolated from both scram and normal insert and withdraw pressure. Isolating the control rod from scram prevents damage to the CRDM. The allowed Completion Time is acceptable, considering the low probability of a CRDA occurring during this interval. The occurrence of more than one control rod stuck at a withdrawn position increases the probability that the reactor cannot be shut down if required.      Insertion of all insertable control rods eliminates the possibility of an additional failure of a control rod to insert. The allowed Completion Time of 12 hours is reasonable, based on operating experience,  to reach MODE 3 from full power conditions in    an orderly  manner and  without challenging plant systems.
C.l  and C.2 With one or more control rods inoperable for reasons other than being stuck in the withdrawn position, operation may continue, provided the control rods are fully inserted (continued)
BFN-UNIT 2                    B 3.1-17                            Amendment
 
Control  Rod OPERABILITY B  3.1.3 BASES ACTIONS    C. 1 and C.2    (continued) within  3  hours and disarmed      (electrically or hydraulically) within  4  hours. Inserting      a  control rod ensures the shutdown and scram    capabilities are not adversely affected.
The control rod is disarmed (electrically or hydraulically) to prevent inadvertent withdrawal during subsequent operations. The control rods can be hydraulically disarmed by closing the drive water and exhaust water isolation valves while maintaining cooling water to the CRD. The control rods can be electrically disarmed by disconnecting power from all four directional control valve solenoids.
Required Action C.l is modified by a Note, which allows the RWM to be bypassed      if  required to allow insertion of the inoperable control rods and continued operation.
LCO 3.3.2.1 provides additional requirements when the RWN is bypassed to ensure compliance with the CRDA analysis.
The allowed Completion Times are reasonable, considering the small number of allowed inoperable control rods, and provide time to insert and disarm the control rods in an orderly manner and without challenging plant systems.
D.l  and D.2 Out  of sequence  control rods    may increase the potential reactivity worth of      a  dropped  control  rod during a CRDA. At
          ~ 10% RTP, the generic banked position withdrawal sequence (BPWS) analysis (Ref. 5) requires inoperable control rods not in compliance with BPWS to be separated by at least two OPERABLE control rods in all directions, including the diagonal. Therefore,        if two or more inoperable control rods are not in compliance with BPWS and not separated by at least two OPERABLE control rods, action must be taken to restore compliance with BPWS or restore the control rods to OPERABLE status.      Condition D is modified by a Note indicating that the Condition is not applicable when
          ) 10% RTP, since the BPWS is not required to be followed under these conditions, as described in the Bases for LCO 3. 1.6. The allowed Completion Time of 4 hours is acceptable, considering the low probability of a CRDA occurring.
(continued)
BFN-UNIT 2                      B  3.1-18                              Amendment
 
il Control  Rod OPERABILITY B  3.1.3 ACTIONS        E.l (continued)
If any Required Action and associated Completion Time of Condition A, C, or D are not met, or there are nine or more inoperable control rods, the plant must be brought to a NODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. This
              'ensures all insertable control rods are inserted and places the reactor in a condition that does not require the active function (i.e., scram) of the control rods. Below 10% RTP, the generic banked position -withdrawal sequence (BPWS) analysis (Ref. 5) allows a maximum of eight bypassed control rods. The number of control, rods permitted to be inoperable when operating above 10% RTP (e.g., no CRDA considerations) could be more than the value specified, but the occurrence of a large number of inoperable control rods could be indicative of a generic problem, and investigation and resolution of the potential problem should be undertaken.
The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power in an orderly manner and without challenging plant systems.
SURVEILLANCE  SR  3.1.3.1 REQUIREMENTS The  position of  each  control rod must be determined to ensure adequate information on control rod position is available to the operator for determining control rod OPERABILITY and controlling rod patterns. Control rod position may be determined by the use of    OPERABLE    position indicators, by moving control rods to a position      with  an OPERABLE indicator, or by the use of other appropriate methods. The 24 hour Frequency  of this SR  is  based on operating experience related to expected changes in control rod position and the availability of control rod position indications in the control room.
SR  3.1.3.2  and SR  3.1.3.3 Control rod insertion capability is demonstrated by inserting each partially or fully withdrawn control rod at least one notch and observing that the control rod moves.
The control rod may then be returned to its original (continued)
BFN-UNIT 2                        B 3.1-19                            Amendment
 
O~
il
 
Control Rod OPERABILITY B 3.1.3 BASES SURVEILLANCE  SR  3. 1.3.2 and SR  3. 1.3.3  (continued)
REQUIREMENTS position. This ensures the control rod is not stuck and is free to insert on a scram signal. These Surveillances are not required when THERMAL POWER is less than or equal to the
            .actual LPSP of the RWM, since the notch insertions may not be compatible with the requirements of banked position withdrawal sequence (BPWS) (LCO 3. 1.6) and the RWM (LCO 3.3.2. 1). The 7 day Frequency of SR 3.1.3.2 is based on operating experience related to the changes in CRD performance and the ease of performing notch testing for fully withdrawn control rods. Partially withdrawn control rods are tested at a 31 day Frequency, based on the potential power reduction required to allow the control rod movement and considering the large testing sample of SR 3.1.3.2. Furthermore, the 31 day Frequency takes into account operating experience related to changes in CRD performance. At any time,      if a control rod is immovable, a determination of that control rod's trippability must be made and appropriate action taken.
SR  3.1.3.4 Verifying that the scram time for each control rod to notch position 06 is c 7 seconds provides reasonable assurance that the control rod will insert when required during a DBA or transient, thereby completing its shutdown function.
This SR is performed in conjunction with the control rod scram time testing of SR 3. 1.4.1, SR 3. 1.4.2, SR 3. 1'.4.3, and SR 3.1.4.4. The LOGIC SYSTEM FUNCTIONAL TEST in LCO 3.3. 1. 1, "Reactor Protection System (RPS)
Instrumentation," and the functional testing of SDV vent and drain valves in LCO 3. 1.8, "Scram Discharge Volume (SDV)
Vent and Drain Valves," overlap this Surveillance to provide complete testing of the assumed safety function. The associated Frequencies are acceptable, considering the more frequent testing performed to demonstrate other aspects of control rod OPERABILITY and operating experience, which.
shows scram times do not significantly change over an operating cycle.
(continued)
BFN-UNIT 2                        B 3.1-20                            Amendment
 
ll~
il
 
Control  Rod OPERABILITY B'.1.3 SURVEILLANCE  SR  3.1.3.5 RE(UIREHENTS (continued) Coupling verification is performed to ensure the control rod is connected to the CRDM and will perform its intended function when necessary. The Surveillance requires verifying a control rod does not go to the withdrawn overtravel position.      The  overtravel position feature provides  a positive check    on the coupling integrity since only  an  uncoupled  CRD  can  reach the overtravel position.
The verification is required to be performed any time a control rod is withdrawn to .the "full out" position (notch position 48) or prior to declaring the control rod OPERABLE after work on the control rod or CRD System that could affect coupling. This includes control rods inserted one notch and then returned to the "full out" position during the 'performance of SR 3. 1.3.2. This Frequency is acceptable, considering the low probability that a control rod  will become uncoupled when      it is not being moved  and operating experience related to uncoupling events.
REFERENCES    1. 10 CFR 50, Appendix A, GDC 26,      GDC 27,  GDC 28, and GDC 29.
: 2. FSAR,  Section 3.4.6.
: 3. FSAR,  Section 14.5.
: 4. FSAR,  Section 14.6.
: 5. NED0-21231,  "Banked Positi,on Withdrawal Sequence,"
Section 7.2, January. 1977.
: 6. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                        B  3.1.-21                            Amendment
 
0 0'
0
 
Control Rod Scram Times B 3.1.4 B 3.1.4  Control Rod Scram Times BASES BACKGROUND          The scram  function of the Control Rod Drive (CRD) System controls reactivity changes during abnormal operational transients to ensure that specified acceptable fuel design limits are not exceeded (Ref. 1). The control rods are
                  ,scrammed by positive means using hydraulic pressure exerted on the CRD piston.
When a  scram signal is initiated, control air is vented from the scram valves, all'owing them to open by spring action.
Opening the exhaust valve reduces the pressure above the main drive piston to atmospheric pressure, and opening the inlet valve applies the accumulator or reactor pressure to the bottom of the piston. Since the notches in the index tube are tapered on the lower edge, the collet fingers are forced open by cam action, allowing the index tube to move upward without restriction because of the high differential pressure across the piston. As the drive moves upward and the accumulator pressure reduces below the reactor pressure, a ball check valve opens, letting the reactor pressure complete the scram action. If the reactor pressure is low, such as during startup, the accumulator will fully insert the control rod in the required time without assistance from reactor pressure.
APPLICABLE        The  analytical methods and assumptions used in evaluating SAFETY ANALYSES    the control rod scram function are presented. in References 2, 3, and 4. The Design Basis Accident (DBA) and transient analyses assume that all of the control rods scram at a specified insertion rate. The resulting negative scram reactivity forms the .basis for the determination of plant thermal limits {e.g., the NCPR). Other distributions of scram times (e.g., several control rods scramming slower than the average time with several control rods scramming faster than the average time) can also provide sufficient scram reactivity. Surveillance of each individual control rod's scram time ensures the scram reactivity assumed in the
                  ,DBA and  transient analyses  can be met.
{continued)
BFN-UNIT 2                            B 3.1-22                          Amendment
 
O~
I~
il
 
Control  Rod Scram Times
                                                                            ~ B 3.1.4 APPLICABLE      The scram    function of the CRD System protects the MCPR SAFETY ANALYSES Safety Limit (SL) (see Bases for SL 2. 1. 1, "Reactor Core (continued)  SLs," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (MCPR)")
and the 1% cladding plastic strain fuel design limit (see Bases  for  LCO  3.2.1,  "AVERAGE PLANAR LINEAR HEAT GENERATION RATE  (APLHGR)"), which ensure that no fuel damage will occur if  these limits are not exceeded.      Above 800 psig, the scram function is designed to insert negative reactivity at a rate fast enough to prevent the actual MCPR from becoming less than the MCPR SL, during the analyzed limiting power transient. Below 800 psig, the scram function is assumed to perform during the control rod drop accident (Ref. 5) and, therefore, also provides protection against violating fuel damage limits during reactivity insertion accidents (see Bases for LCO 3. 1.6, "Rod Pattern Control" ). For the reactor vessel overpressure protection analysis, the scram function, along with the safety/relief valves, ensure that the peak vessel pressure is maintained within the applicable ASME Code    limits.
Control rod scram times satisfy Criterion      3  of the  NRC Policy Statement (Ref. 7).
LCO            The scram times    specified in Table 3.1.4-1 (in the accompanying    LCO)  are required to ensure that the scram reactivity assumed in the DBA and transient analysis is met (Ref. 6).
To account    for single failures and "slow" scramming control rods,  the  scram  times specified in Table 3. 1.4-1 are faster than  those  assumed  in the design basis analysis. The scram times have a margin that allows up to approximately 7% of the control rods (e.g., 185 x 7% ~ 13) to have scram times exceeding the specified limits (i.e., "slow" control rods) assuming a single stuck control rod (as allowed by LCO 3. 1.3, "Control Rod OPERABILITY") and an additional control rod failing to scram per the single failure criterion. The scram times are specified as a function of reactor steam dome pressure to account for the pressure dependence of the scram times. The scram times are specified relative to measurements based on reed switch positions, which provide the control rod position indication. The reed switch closes ("pickup") when the index tube passes a specific location and then opens (continued)
BFN-UNIT 2                            B  3.1-23                            Amendment
 
il Control Rod Scram Times B 3.1.4 BASES LCO          ,("dropout") as the index tube travels upward. Verification (continued) of the specified scram times in Table 3. 1.4-1, is accomplished through measurement of the "dropout" times. To ensure that local scram reactivity rates are maintained within acceptable limits, no more than two of the allowed "slow" control rods may occupy adjacent locations.
Table 3.1.4-1 is modified by two Notes, which state that control rods with, scram times not within the limits of the table are considered "slow" and that control rods with scram times ) 7 seconds are considered inoperable as required by SR  3.1.3.4.
This LCO applies only to OPERABLE control rods since inoperable control rods will be inserted and disarmed (LCO 3.1.3)'. Slow scramming control rods can be conservatively declared inoperable and not accounted for as "slow" control rods.
APPLICABILITY In NODES 1 and 2, a scram is assumed to function during transients and accidents analyzed for these plant conditions. These events are assumed to occur during startup and power operation; therefore, the scram function of the control rods is required during these NODES. In NODES 3 and 4, the control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod bl.ock is applied. This provides adequate requirements for control rod scram capability during these conditions.
Scram requirements in NODE 5 are contained in LCO 3.9.5, "Control 'Rod OPERABILITY-Refueling."
ACTIONS      A. 1 When  the requirements of this LCO are not met, the rate of negative reactivity insertion during a scram may not be within the assumptions of the safety analysis. Therefore, the plant, must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to NODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based. on operating experience, to reach NODE 3 from full'ower conditions in an orderly manner and without challenging plant systems.
(continued)
BFN-UNIT 2                        B 3.1-24                          Amendment
 
ik '
Control  Rod Scram Times 8 3.1.4 SURVEILLANCE The  four  SRs  of this LCO are modified by a Note stating that REQUIREMENTS during  a single  control rod scram time surveillance, the CRD pumps  shall  be  isolated  from the associated scram accumulator. With the CRD pump isolated, (i.e., charging valve closed) the influence, of the CRD pump head does not affect the single control rod scram times. During a full core scram, the CRD pump head would be seen by all control rods and would have a negligible effect on the scram insertion times.
SR  3.1.4.1 The scram reactivity used in DBA and transient analyses is based on an assumed control rod scram time. Measurement of the scram times with reactor steam dome pressure a 800 psig demonstrates acceptable      scram times    for the transients analyzed in References      3 and  4.
Maximum scram    insertion times occur at      a reactor  steam dome pressure of approximately 800 psig because          of the competing effects of reactor steam dome pressure and stored accumulator energy. Therefore, demonstration of adequate scram times at reactor steam dome pressure w 800 psig ensures that the measured scram times will be, within the speci. fied limits at higher pressures.        To ensure that scram time testing is performed        within  a reasonable  time following fuel movement within the      reactor  pressure  vessel  after a shutdown  ~  120 days or longer,      control  rods  are  required  to be tested before exceeding 40% RTP        following  the  shutdown.
The SR is modified by a Note stating that in the event fuel movement is limited to selected core cells, only those CRDs associated with the core cells affected by the fuel movements are required to 'be scram time tested.            However,  if the reactor remains shutdown a        120 days,  all  control  rods are required to be scram      time  tested. This  Frequency  is acceptable considering the        additional  surveillances performed for control rod OPERABILITY, the frequent verification of adequate accumulator pressure, and the required testing of control rods affected by work on control rods or the CRD System.
(continued)
BFN-UNIT 2                        B 3.1-25                                Amendment
 
il 0
II
 
Control Rod Scram  Times' 3.1.4 BASES SURVEILLANCE SR  3.1.4.2 REQUIREMENTS Additional testing of a sample of control rods is required to verify the continued performance of the scram function during the cycle. A representative sample contains at least 10% of the control rods. This sample remains representative if  no more than 20% of the control rods in the sample tested are determined to be "slow." With more than 20% of the sample declared to be "slow" per the criteria in Table 3. 1.4-1, additional control rods are tested until this 20%  criterion (i.e., 20% of the entire sample) is satisfied, or until the total number of "slow" control rods (throughout the core from al'l Surveillances) exceeds the LCO limit. For planned testing, the control rods selected for the sample should be different for each test. Data from inadvertent scrams should be used whenever possible to avoid unnecessary testing at power, even  if the control rods with data may have been previously tested in a sample. The 120 day Frequency is based on operating experience that has shown control rod scram times do not significantly change over an operating cycle. This Frequency is also reasonable based on the additional Surveillances done on the CRDs at more frequent intervals in- accordance with LCO 3. 1.3 and LCO 3. 1.5, "Control Rod Scram .Accumulators."
SR  3.1.4.3 When  work that could affect the scram insertion time is performed on a control rod or the CRD System, testing must be done to demonstrate that each affected control rod retains adequate scram performance over the range of applicable reactor pressures from zero to the maximum permissible pressure. The scram testing must be performed once before declaring the control rod OPERABLE. The required scram testing must demonstrate that for the affected control rod the scram valves open and the scram discharge path is open. This test can be performed with the control rod inserted and the accumulator drained and isolated to minimize potential damage to the drive. The test is adequate based on a high probability of meeting the scram. time testing acceptance criteria at reactor pressures
                                      )
e 800 psig. Limits for 800 psig are found in Table 3.1.4-1.
(continued)
BFN-UNIT 2                      B 3.1-26                          Amendment
 
il~
il~
 
Control  Rod Scram Times B 3.1.4 BASES SURVEILLANCE  'SR  3.1.4.3  (continued)
RE(UI RE>IENTS Specific examples of work that could affect the scram times are (but are 'not limited to) the following: removal of any CRD for maintenance or modification; replacement of a control rod; and maintenance or modification of a scram solenoid pilot valve, scram valve, accumulator, isolation valve or check valve in the piping required for scram.
The Frequency  of once prior to declaring the affected control rod OPERABLE is acceptable because of the capability to test the control rod over a range of operating conditions and the more frequent surveillances on other aspects of control rod OPERABILITY.
SR  3.1.4.4 When  work that could affect the scram insertion time is performed on a control rod or CRD System, testing must be done to demonstrate each affected control rod is    still within the 1'imits of Table 3.1.4-1 with the reactor steam dome pressure a 800 psig. Where work has been performed at high reactor pressure, the requirements of SR 3. 1.4.3 and SR 3.1.4.4 can be satisfied with one test.      For a control rod affected by work performed while shut down, however, a zero pressure and high pressure test may be required. This testing ensures. that, prior to withdrawing the control rod for continued operation, the control rod scram performance is acceptable for operating reactor pressure conditions.
Alternatively, a control rod scram test during hydrostatic pressure testing could also satisfy both criteria.
The Frequency  of once prior to exceeding 40% RTP is acceptable because of the capability to test the control rod over a range of operating conditions and the more frequent surveillances on other aspects of control rod OPERABILITY.
REFERENCES      l. 10 CFR  50, Appendix A,  GDC  10.
: 2. FSAR,  Section 3.4.6.
: 3. FSAR,  Section 14.5.
(continued)
BFN-UNIT 2                          B 3.1-27                            Amendment
 
/i il~
il
 
Control  Rod Scram Times B 3.1'.4 BASES REFERENCES    4. FSAR,  Section 14.6.,
(continued)
: 5. NEDE-'24011-P-A-11,  "General  Electric Standard Application for 'Reactor Fuel," Section 3.2.4. 1, November 1995.
6.. Letter from  R. F. Janecek  (BWROG)  to R. W. Starostecki (NRC),  "BWR Owners  Group Revised  Reactivity Control System, Technical Specifications," .BWROG-'8754, September 17, 1987.
7.. NRC No..93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                      B 3.1-28                            ,Amendment
 
il~
~  i.
ik
 
Control Rod Scram Accumulators B  3.1.5 B 3.1  REACTIVITY CONTROL SYSTEMS B 3.1.5  Control Rod Scram  Accumulators BASES BACKGROUND        The  control rod scram accumulators are part of the Control Rod Drive (CRD) System and are provided to ensure that the control rods scram under varying reactor conditions. The control rod scram accumulators store sufficient energy to fully insert a control rod at any reactor vessel pressure.
The accumulator is a hydraulic cylinder with a free floating piston. The piston separates the water used to scram the control rods from the nitrogen, which provides the required energy. The scram accumulators are necessary to scram the control rods within the required insertion times of LCO 3.1.4, "Control Rod Scram Times."
APPLICABLE        The  analytical methods and assumptions used in evaluating SAFETY ANALYSES    the control rod scram function are presented in References 1, 2, and 3. The Design Basis Accident (DBA) and transient analyses assume that all of the control rods scram at a specified insertion rate. OPERABILITY of each individual'ontrol rod scram accumulator, along with LCO 3.1.3, "Control Rod OPERABILITY," and LCO 3. 1.4, ensures that the scram reactivity assumed in the DBA and transient analyses can be met. The existence of an inoperable accumulator may,invalidate prior scram time measurements for the associated control rod.
The scram function of the CRD System, and therefore the OPERABILITY of the accumulators, protects the HCPR Safety Limit (see Bases for SL 2.1. 1, "Reactor Core SLs" and LCO 3.2.2, "MINIMUM CRITICAL POMER RATIO (HCPR)") and 1% cladding plastic strain fuel design limit (see Bases for LCO 3.2.1,  "AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)," and  LCO 3.2.3, "LINEAR HEAT GENERATION RATE (LHGR)"), which ensure that no fuel damage will occur  if these  limits are not exceeded (see Bases for LCO 3. 1.4). In addition, the scram function at low reactor vessel pressure (i.e., startup  conditions) provides protection against violating fuel design limits during reactivity insertion accidents (see Bases for LCO 3. 1.6, "Rod Pattern Control" ).
(continued)
BFN-UNIT 2                            8  3.1-29                          Amendment
 
-45 0
ik
 
Control  Rod Scram Accumulators B  3.1.5 BASES APPLICABLE      Control rod scram accumulators satisfy Criterion      3  of the SAFETY ANALYSES NRC  Policy Statement (Ref. 4).
(continued)
LCO            The OPERABILITY  of the control rod scram accumulators is required to ensure that adequate scram insertion capability exists when needed over the entire range of reactor pressures. The OPERABILITY of the scram accumulators is based on maintaining adequate accumulator pressure.
APPLICABILITY  In  MODES 1  and 2,  the scram function is required for mitigation of  DBAs and transients, and therefore the scram accumulators  must be OPERABLE to support the scram function.
In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is. applied. Requirements for scram accumulators in MODE 5 are contained " in LCO 3.9.5, "Control Rod OPERAB I LITYRe fuel i ng.
ACTIONS        The ACTIONS Table    is modified by a Note indicating that a separate Condition entry is allowed for each control rod scram accumulator.      This is acceptable since the Required Actions for each Condition provide appropriate compensatory actions for each affected accumulator. Complying with the Required Actions may allow for continued operation and subsequent affected accumulators governed by subsequent Condition entry and application of associated Required Actions.
A.l  and A.2 With one control rod scram accumulator inoperable and the reactor steam dome pressure a 900 psig, the control rod may be declared "slow," since the control rod will      still  scram at the reactor operating pressure    but may not  satisfy  the required scram times in Table    3.1.4-1.
(continued)
BFN-UNIT 2                          B  3.1-30                              Amendment
 
I 0
 
Control  Rod Scram  Accumulators B 3.1.5 BASES ACTIONS    A. I and A.2  (continued)
Required Action A.l is modi.fied by a Note indicating that declaring the control rod "slow" only applies      if the associated control rod scram time was within the limits of Table 3.1.4-1 during the last scram time test. Otherwise, the control rod would already be considered "slow" and the further degradation of scram performance with an inoperable accumul.ator could result in excessive scram times. In this event, the associated control rod is declared inoperable (Required Action A.2) and LCO 3. 1.3 is entered. This would result in requiring the affected control rod to be fully inserted and disarmed, thereby satisfying its intended function, in accordance with ACTIONS of LCO 3. 1.3.
The allowed Completion Time of 8 hours is reasonable, based on the large number of control rods available to provide the scram function and the ability of the affected control rod to scram only with reactor pressure at high reactor pressures.
B.l B.2.1    and B.2.2 With two or more control rod scram accumulators inoperable and reactor steam dome pressure a 900 psig, adequate pressure must be supplied to the charging water header.
With inadequate charging water pressure, all of the accumulators could become inoperable, resulting in 'a potentially severe degradation of the scram performance.
Therefore, within. 20 minutes from discovery of charging water header pressure ( .940 psig concurrent with Condition B, adequate charging water header pressure must be restored. The allowed Completion Time of 20 minutes is reasonable, to place a CRD pump into service to restore the charging water header pressure,    if required. This Completion Time is based on the ability of the reactor pressure alone to fully insert all control rods.
The  control rod may be  declared "slow," since the control rod will still scram using only reactor pressure, but may not satisfy the times in Table 3.1.4-1. Required Action B.2. 1 is modified by a Note indicating that declaring the control rod "slow" only applies      if the associated control scram time is within the limits of Table 3.1.4-1 during the last scram time test. Otherwise, the control rod (continued)
BFN-UNIT 2                  B  3.1-31                              Amendment
 
  'gi tJ 0
4l
 
Control  Rod Scram  Accumulators B  3.1.5 BASES ACTIONS      B. 1  B.2. 1  and  B.2.2    (continued)
          - would already be considered "slow" and the further degradation of scram performance with an inoperable accumulator could result in excessive scram times. In          this event, the associated control rod is declared inoperable (Required Action B.2.2) and LCO 3.1.3 entered. This would result in requiring the affected control rod to be fully inserted and disarmed, thereby satisfying its intended function in accordance with      ACTIONS  of  LCO 3.1.3.
The allowed Completion Time of 1 hour is reasonable, based on the ability of only the reactor pressure to scram the control rods and the low probability of a DBA or transient occurring while the affected accumulators are inoperable.
C.l  and C.2 With one or more control rod scram accumulators inoperable and the reactor steam dome pressure < 900 psig, the pressure supplied to the charging water header must be adequate to ensure that accumulators remain charged. With the reactor steam dome pressure < 900 psig, the function of the accumulators in providing the scram force becomes much more important since the scram function could become severely degraded during a depressurization event or at low reactor pressur es. Therefore, immediately upon discovery of charging water header pressure < 940 psig, concurrent with Condition C, all control rods associated with inoperable accumulators must be verified tobe fully inserted.
Withdrawn control rods with inoperable accumulators may fail to scram under these low pressure conditions. The associated control rods must also be declared inoperable within 1 hour. The allowed Completion Time of 1 hour is reasonable for Required Action C.2, considering the low probability of a DBA or transient occurring during the time that the accumulator is inoperable.
D.l The  reactor  mode  switch must    be immediately placed in the shutdown  position  if either with Required Action and the loss of the associated CRD charging Completion Time associated pump (Required Actions B.-l and C.l) cannot be met.        This (continued)
BFN-UNIT 2                      B  3.1-32                              Amendment
 
0 Control  Rod Scram  Accumulators B 3.1.5 ACTIONS,    D.l (continued) ensures that all insertable control rods are inserted and that the reactor is in a condition that does not require the active function (i.e., scram) of the control rods. This Required Action is modified by a Note stating that the action is not applicable if all control rods associated with the inoperable scram accumulators are fully inserted, since the function of the control rods has been performed.
SURVEILLANCE SR  3.1.'5.1 REQUIREMENTS SR 3.1.5. 1 requires that the accumulator pressure be checked every 7 days to ensure adequate accumulator pressure exists to provide sufficient scram force. An automatic accumulator monitor may be used to continuously satisfy this requirement. The primary indicator of accumulator OPERABILITY is the accumulator pressure.    .A minimum accumulator pressure is specified, below which the capability of the accumulator to perform its intended function becomes degraded and the accumulator is considered inoperable. The minimum accumulator pressure of 940 psig is well below the expected pressure of 1100 psig (Ref. 1).
Declaring the accumulator inoperable when the minimum pressure is not maintained ensures that significant degradation in scram times does not occur. The 7 day Frequency has been shown to be acceptable through operating experience and takes into account indications available in the control room.
REFERENCES  1. FSAR,  Section 3.4.6.
: 2. FSAR,  Section 14.5.
: 3. FSAR,,  Section 14.6.
: 4. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                        B 3.1-33                          Amendment
 
il~
gg~
il
 
Rod  Pattern Control B 3.1.6 B '3.1  REACTIVITY CONTROL SYSTEHS B  3.1.6  ,Rod Pattern Control BASES BACKGROUND          Control rod patterns during startup conditions are controlled by the operator and the rod worth minimizer (RWH)
(LCO 3.3.2.1, "Control Rod Block Instrumentation" ), so that only specified control rod sequences and relative positions are allowed over the operating range of all control rods inserted to 10% RTP. The sequences limit the potential amount o'f:reactivity addition that could occur in the event of a Control Rod Drop Accident (CRDA).
This Specification assures that the control rod patterns are consistent with the assumptions of the CRDA analyses of References  1 and 2.
  'APPLICABLE          The  analytical  methods and assumptions      used in  evaluating 1  SAFETY ANALYSES      the  CRDA  are summarized in References withdrawal sequences.
1  and 2. CRDA analyses assume that the reactor operator follows prescribed These sequences define the potential initial conditions for the CRDA analysis. The RWH (LCO 3.3.2.1) provides backup to operator control of the withdrawal sequences to ensure that the initial conditions of the CRDA analysis are not violated.
Prevention or mitigation of positive reactivity insertion events is necessary to limit the energy deposition in the fuel, thereby preventing significant fuel damage which could result in the undue release of radioactivity. Since the failure consequences for UO~ have been shown to be insignificant below fuel energy depositions of 300 cal/gm (Ref. 3), the fuel damage limit of 280 cal/gm provides a-margin of safety from significant core damage which would result in release of radioactivity (Refs. 4 and 5). Generic evaluations (Refs. 1 and 6) of  a design basis CRDA (i.e., a CRDA resulting in    a peak fuel energy deposition of 280 cal/gm) have shown that      if the peak fuel enthalpy remains below 280 cal/gm, then the maximum reactor pressure will be less than the required ASHE Code limits (Ref. 7) and the calculated offsite doses      will be wel.l  within the required limits (Ref. 5).
(continued)
  'BFN-UNIT 2                              'B  3.1-34                              Amendment
 
0 il~
0
 
Rod Pattern Control B 3.1.6 BASES APPLICABLE        Control rod patterns analyzed in Reference 1 follow the SAFETY ANALYSES  banked position withdrawal sequence (BPWS). The BPWS is (continued)    applicable from the condition of all control rods fully inserted to 10% RTP (Ref. 2). For the BPWS, the control rods are .required to be moved in. groups, with all control rods assigned to a specific group required to be within specified banked positions (e.g., between notches 08 and 12). The banked positions are established to minimize the maximum incremental control rod worth without being overly restrictive during normal plant operation. Generic analysis of the BPWS (Ref. 8) has demonstrated that the 280 cal/gm fuel damage limit will not be violated during a CRDA while following the BPWS mode of operation.        The evaluation provided by the generi'c BPWS analysis (Ref. 8) allows a limited number (i.e., eight) and corresponding
                -
distribution of fully inserted, inoperable control rods, that are not in compliance with the sequence.
Rod  pattern control satisfies Criterion  3  of the  NRC  Policy Statement    (Ref. 9).
Compliance with the prescribed control rod sequences minimizes the potential consequences of a CRDA by limiting the initial conditions to those consistent with the BPWS.
This LCO only applies to OPERABLE control rods. For inoperable control rods required to be inserted, separate requirements are specified in LCO 3.1.3, '"Control Rod OPERABILITY," consistent with the allowances for inoperable control rods in the BPWS.
'APPLICABILITY    In MODES 1  and 2, when THERMAL POWER is x 10% RTP, the CRDA is  a  Design Basis Accident and, therefore, compliance with the assumptions of the safety analysis is required. When THERMAL POWER    is ) 10% RTP, there is no credible control rod configuration that results in a control rod worth that could exceed the 280 cal/gm fuel damage limit during a CRDA (Ref. 2). In, MODES 3, 4, and 5, since the reactor is shut down and only a single control rod can be withdrawn from a core cell containing fuel assemblies, adequate SDM ensures that the consequences of a CRDA are acceptable, since the reactor will remain subcritical with a single control rod withdrawn.
(continued)
BFN-UNIT 2                            B 3.1-35                            Amendment
 
~ i Oi 0
 
Rod Pattern Control B  3.1.6 BASES  (continued)
ACTIONS            A.l  and A.2 With one or more OPERABLE control rods not in compliance with the prescribed control rod sequence (Ref. 8), actions may be taken to either correct the control rod pattern or declare the associated control rods inoperable within 8 hours. Noncompliance with the prescribed sequence may be the result of "double notching," drifting from a control rod drive cooling water transient, leaking scram valves, or a power reduction to a -10% RTP before establishing the correct control rod pattern. The number of OPERABLE control rods not in compliance with the prescribed sequence is limited to eight, to prevent the operator from attempting to correct a control rod pattern that significantly deviates from the prescribed sequence. When the control rod pattern is not in compliance with the prescribed sequence, all control rod movement must be stopped except for moves needed to correct the rod pattern, or scram      if warranted.
Required Action    A.l is modified  by a Note which allows the RWH  to  be bypassed  to allow the affected control rods to be returned to their correct position. LCO 3.3.2. 1 requires verification of control rod movement by a second licensed operator or a qualified member of the technical staff. This ensures that the control rods will be moved to the correct position. A control rod not in compliance with the prescribed sequence is not considered inoperable except as required by Required Action A.2. The allowed Completion Time of 8 hours is reasonable, considering the restrictions on the number of allowed out of sequence control rods and the low probability of a CRDA occurring during the time the control rods are out of sequence.
B.l  and B.2 If nine  or more OPERABLE control rods are out of sequence, the control rod pattern significantly deviates from the prescribed sequence (Ref. 8). Control rod withdrawal should be suspended immediately to prevent the potential for further deviation from,the prescribed sequence. Control rod insertion to correct control rods withdrawn beyond their allowed position is allowed since, in general, insertion of (continued)
BFN-UNIT 2                              B  3.1-36                            Amendment
 
~ ~
i il
 
Rod Pattern Control B 3.1.6 ACTIONS      B. 1 and B.2  (continued) control rods  has  less impact    on control rod worth than withdrawals have.      Required Action B. 1 is modified by a Note which al.lows the  RWM to be bypassed    to allow the affected control rods to    be  returned to  their correct position.
LCO 3.3.2.1 requires verification of control rod movement        by a second licensed operator or a qualified member of the technical staff.
When  nine or more OPERABLE control rods are not in compliance with BPWS, the reactor mode switch must be placed in the shutdown position within 1 hour. With the mode switch in shutdown, the reactor is shut down, and as such, does not meet the applicability requirements of this LCO.
The allowed Completion Time of 1 hour is reasonable to allow insertion of control rods to restore compliance, and is appropriate relative to the low probability of a CRDA occurring with the control rods out of sequence.
SURVEILLANCE SR  3.1.6.1 REgUIRENENTS The  control rod pattern is verified to be in compliance with the BPWS at a 24 hour Frequency to ensure the assumptions of the CRDA analyses are met. The 24 hour Frequency was developed considering that the primary check on compliance with the BPWS is performed by the RWH (LCO 3.3.2.1), which provides control rod blocks to enforce the required sequence and is required to be OPERABLE when operating at a 10% RTP.
REFERENCES  1. NEDE-24011-P-A-11-US,      "General Electric Standard Application for    Reactor Fuel, Supplement for United States," Section 2.2.3.1,      November 1995.
: 2. Letter from T. Pickens (BWROG) to G. C. Lainas (NRC),
Amendment 17 to General Electric Licensing Topical Report, NEDE-24011-P-A, August 15, 1986.
: 3. NUREG-0979,  Section 4.2. 1.3.2, April 1983.
: 4. NUREG-0800,  Section 15.4.9, Revision 2, July 1981.
(continued)
BFN-UNIT 2                        B 3.1-37                              Amendment
 
il Rod 'Pattern Control B 3.1.6 BASES REFERENCES        10 CFR  100.11.
(continued)'.
: 6. NED0-21778-A, "Transient Pressure Rises Affected Fracture Toughness Requirements for Boiling Mater Reactors," December 1978.
: 7. .ASNE,  Boiler  and Pressure  Vessel Code.
: 8. NED0-21231, "Banked    Position Withdrawal Sequence,"
January 1977.
: 9. NRC No. 93-102,    "Final Policy Statement on Technical Specification  Improvements,"  July 23, 1993.
BFN-UNIT 2                    B  3.1-38                              Amendment
 
0'~
0
 
SLC  System B  3.1.7 B 3.1  REACTIVITY CONTROL SYSTEMS B 3.1.7  Standby Liquid Control (SLC) System BASES BACKGROUND        The SLC System  is designed to provide the capability of bringing the reactor, at any time in a fuel cycle, from full power and minimum control rod inventory (which is at the peak of the xenon transient) to a subcritical condition with the reactor in the most reactive, xenon free state without taking credit for control rod movement. The SLC System satisfies the requirements of    10 CFR  50.62 (Ref. 1) on anticipated transient without scram.
The SLC System  consists of a boron solution storage tank, two  positive displacement pumps in parallel and two explosive valves in parallel for redundancy, and associated piping and valves used to transfer borated water from the storage tank to the reactor pressure vessel (RPV). The borated solution is discharged near the bottom of the core shroud, where it then mixes with the cooling water rising through the 'core. A smaller tank containing demineralized water is provided    for testing purposes.
The  worst case sodium pentaborate solution concentration required to shutdown the reactor with sufficient margin to account for 0.05 Zb/k and Xenon poisoning effects is 9.2 weight percent. This corresponds to a 40'F saturation temperature. The worst case SLCS equipment area temperature is not predicted to fall below 50'F. This provides a 10'F thermal margin to unwanted precipitation of the sodium pentaborate. Tank heating components provide backup assurance that the sodium pentaborate solution temperature will never fall below 50'F but are not required for TS operability considerations.
APPLICABLE        The SLC System is manually initiated from the main control SAFETY ANALYSES    room, as directed by the emergency operating instructions, if the operator believes the reactor cannot be shut down, or kept shut down, with the control rods. The SLC System is used in the event that enough control rods cannot be (continued)
BFN-UNIT 2                            B 3.1-39                            Amendment
 
il~
II 0
 
SLC System B  3.1.7 BASES APPLICABLE      inserted to accomplish shutdown    and cooldown  in the normal SAFETY ANALYSES manner. The SLC System    injects borated water into (continued)  the reactor core to add    negative reactivity to compensate for all of the various reactivity effects that could occur during plant operations. To meet this objective, it is necessary to inject a quantity of boron, which produces a concentration of 660 ppm of natural boron, in the reactor coolant at 70'F. To allow for imperfect mixing, leakage and the volume in other piping connected to the reactor system, an amount of boron equal to 25% of the amount cited above is added (Ref. 2). This volume versus concentration limit and the temperature versus concentration limits in Figure 3.1.7-1 are calculated  such that the required concentration is achieved accounting for dilution in the RPV with normal water level and including the water. volume in the entire residual heat removal shutdown cooling piping and in the recirculation loop piping. This quantity of borated solution is the amount that is above the pump suction shutoff level in the boron solution storage tank. No credit is taken for the portion of the tank volume that cannot be injected.
The SLC System  satisfies Criterion  4 of the  NRC Policy Statement  (Ref. 3).
LCO            The OPERABILITY of the SLC System provides backup capability
                .for reactivity control independent of normal reactivity control provisions provided by the control rods. The OPERABILITY of the SLC System is based on the conditions of the borated solution in the storage tank and the availability of a flow path to the,RPV, including the OPERABILITY of the pumps and valves.      Two SLC subsystems are required to be OPERABLE; each contains an OPERABLE pump, an explosive valve, and associated piping, valves, and instruments and controls to ensure an OPERABLE flow path.
APPLICABILITY    In MODES 1  and 2, shutdown  capability is required. In MODES 3 and  4, control  rods  are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate controls to ensure that the reactor remains subcritical. In MODE 5, (continued)
BFN-UNIT 2                        B  3.1-40                            Amendment
 
II 0
0
 
SLC  System B  3.1.7 APPLICABILITY only a single control rod can be withdrawn from a core cell (continued) containing fuel assemblies. Demonstration of adequate SDM (LCO 3.1.1, "SHUTDOWN MARGIN (SDM)") ensures that the reactor will not become critical. Therefore, the SLC System is not required to be OPERABLE when on'ly a single control rod can be withdrawn.
ACTIONS      A.1 If  one SLC subsystem  is inoperable, the inoperable    subsystem must be restored to    OPERABLE status within 7  days. In  this condition, the  remaining OPERABLE subsystem    is adequate    to perform the shutdown function.      However, the  overall reliability is reduced because a single failure in .the remaining OPERABLE subsystem could result in reduced SLC System shutdown capability. The 7 day Completion Time is based on the availability of an OPERABLE subsystem capable of performing the intended SLC System function and the low probability of a Design Basis Accident (DBA) or severe transient occurring concurrent with the failure of the Control Rod Drive (CRD) System to shut down the plant.
B.l If  both SLC subsystems are inoperable, at least one subsystem must be restored to OPERABLE status within 8 hours. The allowed Completion Time of 8 hours is considered acceptable given the. low probability of a        DBA  or transient occurring concurrent with the failure of the control rods to shut down the reactor.
C.1 If  any Required Action and associated Completion Time is not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to MODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach MODE 3 from full power conditions in an orderly manner and without challenging plant systems.
(continued)
BFN-UNIT 2                        B 3.1-41                              Amendment
 
0 0
4l
 
SLC  System B  3.1.7 BASES SURVEILLANCE SR  3.1.7.1 RE(UIREHENTS SR  3.1.7.1 is a 24 hour Surveillance verifying the volume of the borated solution in the storage tank, thereby ensuring SLC  System OPERABILITY without disturbing normal plant operation. This Surveillance ensures that the proper borated solution volume is maintained. The sodium pentaborate solution concentration requirements (c 9.2% by weight) and the required quantity of Boron-10 (a 186 lbs) establish the tank volume requirement. The 24 hour Frequency is based on operating experience that has shown there are relatively slow variations in the solution volume.
SR  3.1.7.2 SR  3. 1.7.2 verifies the continuity of the explosive charges in the injection valves to ensure that proper operation will occur  if    required. An automatic continuity monitor may be used to continuously satisfy this requirement.        Other administrative controls, such as those that limit the shelf life of the explosive charges, must be followed. The 31 day Frequency is based on operating experience and has demonstrated the reliability of the explosive charge continuity.
SR  3'.1.7.3    and SR  3.1.7.5 SR  3. 1.-7.3 requires an examination of the sodium pentaborate solution      by using chemical analysis to ensure that the proper concentration of boron exists in the storage tank.
The concentration is dependent upon the volume of water and quantity of boron in the storage tank. SR 3. 1.7.5 requires verification that the SLC system conditions satisfy the following equation:
C )        Q          E          > =1.0
(  'f3  WT%    )( 86 GPM )( 19.8 ATOM  % )
C  = sodium pentaborate solution weight percent concentration g =  SLC system pump flow rate in gpm
                        'E =  Boron-10 atom percent enrichment in the sodium pentaborate solution (continued)
BFN-UNIT 2                          B 3.1-42                          Amendment
 
iS~
il~
il
 
SLC  System B  3.1.7 SURVEILLANCE SR  3. 1.7.3 and SR  3. 1.7.5 (continued)
REQUIREMENTS To meet 10 CFR,50.62, the SLC System must have a minimum flow capacity and boron content equivalent in control capacity to 86 gpm of 13 weight percent natural sodium pentaborate solution. The atom percentage of natural B-10 is 19.8%. This equivalency requirement is met when the equation given above is satisfied. The equation can be satisfied by adjusting the solution concentration, pump flow rate or Boron-10 enrichment. If the results of the equation are ( 1, the SLC System is no longer capable of shutting down the reactor with the margin described in Reference 2.
However, the quantity of stored boron includes an additional margin (25%) beyond the amount needed to shut down the reactor to allow for possible imperfect mixing of the chemical solution in the reactor water, leakage, and the volume in other piping connected to the reactor system.
The sodium  pentaborate solution (SPB) concentration is allowed to be > 9.2 weight percent provided the concentration and temperature of the sodium pentaborate solution are verified to be within the limits of Figure
: 3. 1.7-1. This ensures that unwanted precipitation of the sodium pentaborate does not occur.
SR 3.1.7.3 and SR 3. 1.7.5 must be performed every 31 days or within 24 hours, of when boron or water is added to the storage tank solution to determine that the boron solution concentration is within the specified limits. The 31 day Frequency of these Surveillances is appropriate because of the relatively slow variation of boron concentration between surveillances.
SR  3. 1.7.3 must be performed within 8 hours of discovery that the concentration is > 9.2 weight percent and every 12 hours thereafter until the concentration is verified to be z 9.2 weight percent. This Frequency is"appropriate under-these conditions taking into consideration the SLC System design capability still exists for vessel injection under these conditions and the low probability of the temperature and concentration limits of Figure 3. 1.7-1 not being met.
(continued)
BFN-UNIT 2                      B 3.1-43                          Amendment
 
O~
il~
0
 
SLC        System B  3.1.7 BASES SURVEILLANCE  SR  3.1.7.4 REQUIREMENTS (continued) This Surveillance requires the amount of Boron-10 in the SLC solution tank to be determined every 31 days. The enriched sodium pentaborate solution is made by combining stoichiometric quantities of borax and boric acid in demineralized water. Since the chemicals used have known Boron-10 quantities, the Boron-10 quantity in the sodium pentaborate solution formed can be calculated. This parameter is used as input to determine the volume requirements for SR 3. 1.7. 1. The 31 day Frequency of this Surveillance is appropriate because of the relatively slow variation of boron concentration between surveillances.
SR    3.1.7.6 Demonstrating that each SLC System pump develops a flow rate a  39 gpm at a discharge pressure a 1275 psig ensures that pump performance has not degraded during the fuel cycle.
This minimum pump f1ow rate requirement ensures that, when combined with the sodium pentaborate solution concentration and enrichment requirements, the rate of negative reactivity insertion from the SLC System will adequately compensate for the positive reactivity effects encountered during power reduction, cooldown of the moderator, and xenon decay. This test confirms one point on the pump design curve and is indicative of overall performance. The 18 month Frequency is acceptable since inservice testing of the pumps, performed every 92 days, will detect any adverse trends in pump performance.
SR    3.1.7.7  and SR 3.1.7.8 These  Surveillances ensure that there is a functioning flow path from the boron solution storage tank to the RPV, including the, firing of an explosive valve. The replacement charge for the explosive valve shall be from the same manufactured batch as the one fired or from another batch that has been certified by having one of that batch successfu11y fired. The pump and explosive valve be alternated such that both complete flow paths are tested'hould tested every 36 months at alternating 18 month intervals.
The Surveillance may be performed in separate steps to (continued)
BFN-UNIT 2                        B 3.1-44                                      Amendment
 
il SLC System B 3.1.7 SURVEILLANCE  SR  3. 1.7.7 and  SR  3. 1.7.8 (continued)
REQUIREMENTS prevent injecting boron into the RPV. An acceptable method for verifying flow from the pump to the RPV is to pump demineralized water from a test tank through one SLC subsystem and into the RPV. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient      if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency; therefore, the Frequency was concluded to be acceptable from a  reliability standpoint.
Demonstrating that all piping between the boron solution storage tank and the suction inlet to the injection pumps is unblocked ensures that there is a functioning flow path for injecting the sodium pentaborate solution. An acceptable method for verifying that the suction piping is unblocked is to pump from the storage tank to the storage tank. The 18 month Frequency is acceptable since there is a low probability that the subject piping will be blocked due to precipitation of the boron from solution in the piping or by other means.
SR    3.1.7.9 The  enriched sodium pentaborate  solution is made by combining stoichiometric quantities    of borax and boric acid in demineralized water. Isotopic tests on these chemicals to verify the actual B-10 enrichment must be performed at least every 18 months and after addition of boron to the SLC tank in order to ensure that the proper B-10 atom percentage is being used and SR 3. 1.7.5 will be met. The sodium pentaborate enrichment must be calculated within 24 hours and verified by analysis within 30 days.
REFERENCES    1. 10 CFR  50.62.
: 2. FSAR,  Section 3.8.4.
: 3. NRC No. 93-102, "Final Policy Statement on Technical Specification Improvements," July .23, 1993.
BFN-UNIT 2                        B 3.1-45                            Amendment
 
ik~
0'
 
SDV Vent and Drain Valves B 3.1.8 B 3.1    REACTIVITY CONTROL SYSTEMS B 3. 1.8  Scram Discharge Volume (SDV) Vent and Drain Valves BASES BACKGROUND          The SDV vent and drain valves are normally open and discharge any accumulated water in. the SDV to ensure    that sufficient volume is available at all times to allow a complete scram. During a scram, the SDV vent and drain valves close to contain reactor water. The SDV is a volume of header piping that connects to each hydraulic control unit (HCU) and drains into an instrument volume. There are two SDVs (headers) and two instrument volumes, each receiving, approximately  one  half of the control rod drive (CRD) discharges. Each instrument volume is connected to the radwaste system by a drain line containing two valves in series. Each header is connected to a common vent line with two valves in series for a total of four vent valves. The header piping is sized to receive and contain all the water discharged by the CRDs during a scram. The design and functions of the SDV are described in Reference l.
APPLICABLE          The Design Basis Accident and    transient analyses assume all SAFETY ANALYSES    of the control rods are capable of scramming. The acceptance criteria for the SDV vent and drain valves are that they operate automatically to:
: a. Close during scram to  l.imit the amount of reactor coolant discharged so that adequate core cooling is maintained and offsite doses remain within the limits of 10 CFR 100 (Ref. 3); and
: b. Open on scram  reset to maintain the SDV vent and drain path open so that there is sufficient volume to accept the reactor coolant discharged during"a-scram.
Isolation of the SDV can also be accomplished by manual closure of the SDV valves. Additionally, the discharge of reactor coolant to the SDV can be terminated by scram reset or closure of the HCU manual isolation valves. The offsite doses resulting from reactor coolant discharge from the SDV are significantly lower than the bounding doses resulting from a main steam line break outside the secondary containment (Ref. 2) and are well within the limits of (continued)
BFN-UNIT 2                              B 3.1-46                            Amendment
 
il~
il'
 
SDV  Vent and Drain Valves 8 3.1.8 BASES APPLICABLE      10 CFR 100    (Ref. 3). Adequate core cooling is by the SAFETY ANALYSES integrated operation of the Emergency Core Cooling Systems (continued)  (Ref. 4). The SDV vent and drain valves allow continuous drainage of the SDV during normal plant operation to ensure that the SDV has, sufficient capacity to contain the reactor coolant discharge dur'ing a full core scram. To automatically ensure this capacity, a reactor scram (LCO 3.3. 1. 1, "Reactor Protection System (RPS)
Instrumentation" ) is initiated          if the SDV water level in the specified  setpoint. The instrument    volume  exceeds    a setpoint  is  chosen    so  that  all  control  rods are inserted before the SDV has insufficient volume to accept a full scram.
SDV  vent and drain valves satisfy Criterion            3  of the  NRC Policy Statement (Ref. 5).
LCO            The OPERABILITY    of all SDV vent and drain valves ensures that the SDV    vent  and drain valves will close during a scram to contain    reactor    water discharged to the SDV piping.
Since  each  vent  and  drain line is provided with two valves in series,    the  single    failure of one valve in the open position  will  not  impair    the isolation function of the system. Additionally,      the  valves are required to open on scram reset to ensure that a path is available for the SDV piping to drain freely at other times.
APPLICABILITY  In MODES 1 and 2, scram may be required; therefore, the SDV vent and drain valves must be OPERABLE. In MODES 3 and 4, control rods are not able to be withdrawn since the reactor mode switch is in shutdown and a control rod block is applied. This provides adequate controls to ensure that only a single control rod can be withdrawn.- Also, during MODE 5, only a single control rod can be withdrawn from a core cell containing fuel assemblies.              Therefore, the SDV vent and  drain  valves    are  not  required  to be OPERABLE in these  MODES  since  the  reactor    is subcritical    and only one rod may be    withdrawn    and  subject  to  scram.
(continued)
BFN-UNIT 2                            B  3.1-47                                  Amendment
 
0 II 0
 
SDV Vent and Drain Valves B 3.1.8 ACTIONS    The ACTIONS Table  is modified by a Note indicating that a separate Condition entry is allowed for each SDV vent and drain line. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable SDV line. Complying with the Required Actions may allow for continued operation, and subsequent inoperable SDV lines are governed by subsequent Condition entry and application of associated Required Actions.
A.l When one SDV  vent or drain valve is inoperable in one or more  lines, the valve must be restored to OPERABLE status within 7 days. The Completion Time is reasonable, given the level of redundancy in the lines and the low probability of a scram occurring during the time the valve(s) are inoperable. The SDV is still isolable since the redundant valve in the affected line is OPERABLE. During these periods, the single failure criterion may not be preserved, and a higher risk exists to allow reactor water out of the primary system during    a  scram.
B.1 If both  valves in a line are inoperable, the line must be isolated to contain the reactor coolant during a scram.
When a line i's isolated, the potential for an inadvertent scram due to high SDV level is increased.      Required Action B. 1 is modified by a Note that allows periodic draining and venting of the SDV when a line is isolated.
During these periods, the line may be unisolated under administrative control. This allows any accumulated water in the line to be drained, to preclude a reactor scram on SDV high level. This is acceptable since the administrative controls ensure the valve can be closed quickly, by a dedicated operator,    if  a scram occurs with the valve open.
The 8 hour Completion Time      to isolate the line is based on the low probability of a scram occurring while the line is not isolated and unlikelihood of significant CRD seal leakage.
(continued)
BFN-UNIT 2                    B  3.1-48                            Amendment
 
i~
SDV Vent and Drain Valves B 3.1.8 BASES ACTIONS (continued)
If  any Required Action and associated Completion Time is not met, the plant must be brought to a NODE in which the LCO does not apply. To achieve this status, the plant must be
              .brought to at least NODE 3 within 12 hours. The allowed Completion Time of 12 hours is reasonable, based on operating experience, to reach NODE 3 from full power condi.tions in  an orderly  manner and  without challenging plant systems.
SURVE ILL'ANCE  SR  3.1.8.1 REQUIREMENTS During normal operation, the SDV vent and drain valves should be in the open position (except when performing SR 3. 1.8.2) to al,low for drainage of the SDV piping.
Verifying that each valve is in the open position ensures that 'the SDV vent and drain valves, will perform their intended functions, during normal operation. This SR does not require. any testing or valve manipulation; rather,    it involves verification that the valves are in the correct position.
The 31 day Frequency    is based on engineering judgment and    is consistent with the procedural controls governing valve operation, which ensure correct valve positions.
SR  3.1.8.2 During, a scram, the SDV vent and drain valves should close
                .to contain the reactor water discharged, to the SDV piping.
Cycling each valve through its complete range of motion (closed and open) ensures that the valve will function.
properly during a scram. The 92 day Frequency is based on operating experience and takes into account the level of redundancy in the system design.
(continued).
BFN-UNIT,2                        B 3.1-49                            Amendment
 
~ i 0
 
SDV Vent and Drain Valves B 3.1.8 BASES
'SURVE IL'LANCE SR  3.1.8.3 RE(UIREMENTS (continued)
SR  3. 1.8.3 is an integrated test of the: SDV vent and drain valves to 'verify total system performance. After receipt of a simulated or actual scram signal, the closure of the SDV vent and drain valves is verified. The closure time of 60 seconds after receipt of a scram signal is acceptable based on the bounding analysis for release of reactor coolant outside containment (Ref. 2). Similarly, after receipt of. a simulated or actual scram reset signal, the opening of the SDV vent and drain valves is verified. The LOGIC. SYSTEM FUNCTIONAL TEST in LCO 3.3. 1. 1 and the scram time testing of control rods in LCO 3. 1.3 overlap this Surveillance to provide complete testing of the: assumed safety function. The 18 month Frequency is based on the need to perform. this Surveillance under the conditions that apply during a plant outage and the potential for an.
unplanned. transient    if  the Surveillance were performed with the reactor    at  power.,  Operating experience has shown these components    usually  pass  the Surveillance when performed at the 18 month'requency; therefore, the Frequency was concluded to be acceptable from a reliability standpoint.
REFERENCES    1. FSAR,  Section 3.4.5.3.1.
: 2. FSAR,  Section 14.6.5.
: 3. 10 CFR 100.
: 4. FSAR,  Section 6.5.
: 5. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                          -B 3.1-50                            Amendment
 
il~
il~
il
 
APLHGR B 3.2.1 B 3.2  POMER DISTRIBUTION LIMITS B 3.2.1  AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)
BASES BACKGROUND        The APLHGR  is a measure of. the average LHGR of all the fuel rods in a fuel assembly at any axial location. Limits on the APLHGR are specified to ensure that the fuel design 1imits identified in Reference I are not exceeded during abnormal operational transients and that the peak cladding temperature (PCT) during the postulated design basis loss of coolant accident (LOCA) does not exceed the limits specified in 10 CFR 50.46.
APPLICABLE        The  analytical  methods and assumptions    used  in evaluating SAFETY ANALYSES    the fuel design  limits    are presented in References I and 2.
The analytical methods and assumptions used in evaluating Design Basis Accidents (DBAs), abnormal operational transients,,and normal operation that determine the APLHGR limits are presented in References I, 2, 3, and 4.
Fuel design evaluations      are performed to demonstrate that the  1% limit on  the fuel cladding plastic strain and other fuel design limits described in Reference I are not exceeded during abnormal operational transients for operation with LHGRs up to the operating limit LHGR. APLHGR limits are equivalent to the LHGR limit for each fuel rod divided by the local peaking factor of the fuel assembly. APLHGR limits are developed as a function of exposure and fuel bundle type.
LOCA analyses are then performed to ensure that the above determined APLHGR limits are adequate to meet the PCT and maximum oxidation limits of 10 CFR 50.46.        The analysis is performed using calculational models .that are consistent with the requirements of 10 CFR 50, Appendix K. A complete discussion of the analysis code is provided in Reference 5.
The PCT  following  a  postulated  LOCA is a function of the average heat generation rate of all the rods of a fuel assembly at any axial location and is not strongly influenced by the rod to rod power distribution within an assembly. The APLHGR limits specified are equivalent to the LHGR of the highest powered fuel rod assumed in the LOCA
. ~                    analysis divided by its local peaking factor. A (continued)
BFN-UNIT 2                              B  3.2-1                            Amendment
 
0 il l
 
APLHGR B  3.2.1 BASES APPLICABLE        conservative, multiplier is applied to the LHGR assumed in SAFETY ANALYSES  the LOCA analysis to account for the uncerta'inty associated (continued)    with the measurement of the APLHGR.
The APLHGR    satisfies Criterion  2 of the NRC  Policy Statement (Ref. 6)..
LCO              The APLHGR    limits specified in the    COLR are the  result of the fuel design,      DBA,  and'ransient analyses.
APPLICABILITY    The APLHGR    limits are primarily derived from fuel. design evaluations and LOCA and transient analyses that are as'sumed to occur at high power levels. Design calculations (Ref. 4) and operating experience have shown that as power is reduced, the margin to the .required APLHGR limits, increases.
This trend continues down to the power range of '5% to 15% RTP when entry into MODE 2 occurs.        When in MODE 2, the intermediate .range monitor scram function provides prompt scram initiation during any significant transient, thereby effectively removing any APLHGR limit compliance concern in MODE 2. Therefore, at THERMAL POWER levels x 25% RTP, the reactor is operating with substantial margin to the APLHGR limits; thus, this LCO is not required.
ACTIONS          A. 1 If any  APLHGR  exceeds  the required limits, an assumption regarding    an  initial  condition of the DBA and transient analyses    may  not be met. Therefore, prompt action should be taken to restore the APLHGR(s) to within the required l.imits such that the plant operates within analyzed conditions,and:
within design limits of the fuel rods. The 2 hour Completion Time is sufficient to restore the APL'HGR(s) to within its limits and is acceptable based on the low probability of a transient or DBA occurring simultaneously with the APLHGR out of specification.
(continued)
BFN-UNIT 2                            B. 3.2-2                            Amendment
 
Il il 0
 
APLHGR B  3.2.1 BASES    (continued)
ACTIONS              B.l (continued)
If the  APLHGR cannot be restored to within its required limits within the associated    Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, THERMAL POWER must be reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.
SURVEILLANCE        SR  3.2.1.1 RE(UI REM ENTS APLHGRs  are required to be  initially calculated  within 12 hours  after THERMAL POWER is w 25% RTP and then every 24 hours thereafter. They are compared to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation. The 12 hour al.lowance after THERMAL POWER a 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels.
REFERENCES            1. NEDE-24011-P-A-11 "General  Electric Standard Application for Reactor Fuel,"  November 1995.
: 2. FSAR,  Chapter 3.
: 3. FSAR,  Chapter 14.
: 4. FSAR,  Appendix N.
: 5. NEDC-32484P, "Browns Ferry Nuclear Plant Units 1, 2; and 3, SAFER/GESTR-LOCA Loss-of-Coolant Accident Analysis," Revision 1, February 1996.
: 6. NRC No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                                8 3.2-3                          Amendment
 
J, 0
 
MCPR B 3.2.2 B 3.2  POWER DISTRIBUTION LIHITS B 3.2.2  MINIMUM CRITICAL POWER RATIO (HCPR)
BASES BACKGROUND        MCPR  is a ratio of the fuel assembly power that would result in the onset of boiling transition to the actual fuel assembly power. The HCPR Safety Limit (SL) is set such that 99.9% of the fuel rods avoid boiling transition    if  the limit is not violated (refer to the Bases for SL 2. 1. 1.2). The operating limit HCPR is established to ensure that no fuel damage results during abnormal operational transients.
Although fuel damage does not necessarily occur    if  a fuel rod actually  experienced  boiling transition (Ref. 1), the critical power at which boiling transition is calculated to occur has been adopted as a fuel design criterion.
The onset  of transition boiling is a phenomenon that is readily detected during the testing of various fuel bundle designs. Based on these experimental data, correlations have been developed to predict critical bundle power (i.e.,
the bundle power level at the onset of transition boiling) for a given set of plant parameters (e.g., reactor vessel pressure, flow, and subcooling). Because plant operating conditions and bundle power levels are monitored and determined relatively easily, monitoring the MCPR is a convenient way of ensuring that fuel failures due to inadequate cooling do not occur.
APPLICABLE        The  analytical methods and assumptions used in evaluating SAFETY ANALYSES    the abnormal operational transients to establish the operating limit HCPR are presented in References 2, 3, 4, and 5. To ensure that the HCPR SL is not exceeded during any transient event that occurs with moderate frequency, limiting transients have been analyzed to determine the largest reduction in critical power. ratio (CPR). The types of transients evaluated are loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease.      The limiting transient yields the largest change in CPR (hCPR). When the largest DCPR is added to the HCPR SL, the required operating limit HCPR is obtained.
(continued)
BFN-UNIT 2                            B  3.2-4                            Amendment
 
il'l MCPR 8  3.2.2 APPLICABLE SAFETY ANALYSES (continued)
Flow dependent correction factor for MCPR limits are determined by steady state thermal hydraulic methods with key physics response inputs benchmarked using the three dimensional BWR simulator code (Ref. 6) to analyze slow flow runout transients. The flow dependent correction factor is dependent on the maximum core flow limiter setting in the Recirculation Flow Control System.
The MCPR  satisfies Criterion  2 of the NRC Policy Statement (Ref. 7).
LCO                The MCPR  operating limits spec'ified in the COLR are the resul.t of'he Design Basis Accident (DBA) and transient analysis.
APPL'I CAB IL IT Y The MCPR  operating limits are primarily derived, from transient analyses that are assumed to occur at high power levels. Below 25% RTP, the reactor is operating at a minimum recirculation pump speed and the moderator void ratio is small. Surveillance of thermal limits below.
25% RTP is unnecessary due to the large inherent, margin that ensures that the MCPR SL is not exceeded even    if a limiting transient occurs. Statistical analyses indicate that the (continued)
BFN-UNIT 2                            B 3.2-5                            Amendment
 
~  i il~
Cl
 
MCPR B 3.2.2 BASES APPLICABILITY nominal value  of the initial HCPR expected at 25% RTP is (continued) ) 3.5. Studies of the variation of limiting transient behavior have been performed over the range of power and flow conditions. These studies encompass the range of key actual plant parameter values important to typically limiting transients. The results of these studies demonstrate that a margin is expected between performance and the HCPR requirements, and that margins increase, as power is reduced to 25% RTP. This trend is expected to continue to the 5% to 15% power range when entry into NODE 2 occurs. When in HODE 2, the intermediate range monitor provides rapid scram initiation for any significant power increase transient, which effectively eliminates any HCPR compliance concern. Therefore, at THERHAL POWER levels
              < 25% RTP, the reactor is operating with substantial margin to the HCPR limits and this LCO is not required.
ACTIONS      A.1 If any  HCPR is outside the required limits, an assumption regarding an initial condition of the design basis transient analyses may not be met. Therefore, prompt action should be taken to restore the HCPR(s) to within the required limits such that the plant remains operating within analyzed conditions. The 2 hour Completion Time is normally sufficient to restore the HCPR(s) to within its limits and is acceptable based on the low probability of a transient or DBA occurring simultaneously with the HCPR out of specification.
8.1 If the  HCPR  cannot be restored to within its required limits within the associated Completion Time, the plant must. be brought to a HODE or other specified condition in which the LCO does not apply. To achieve this status, THERHAL POWER must be reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERHAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.
(continued)
BFN-UNIT 2                        B 3.2-6                          Amendment
 
i 9
0'
 
MCPR B  3.2.2 BASES  (continued)
SURVEILLANCE        SR  3.2.2.1 RE(UIREMENTS The MCPR    is required to be initially calculated within 12  hours  after THERMAL POWER is a 25% RTP and then every 24  hours  thereafter. It is compared to the specified limits in the COLR to ensure that the reactor -is operating within the assumptions of the safety analysis. The 24 hour Frequency is based on both engineering judgment and recognition of the slowness of changes in power distribution during normal operation. The 12 hour allowance after THERMAL POWER a 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels.
SR  3.2.2.2 Because  the transient analysis takes credit for conservatism in the scram speed performance, it must be demonstrated that the specific scram speed distribution is consistent with that used in the transient analysis. SR 3.2.2.2 determines the value of r, which is a measure of the actual scram speed distribution compared with the assumed distribution. The MCPR operating limit is then determined based on an interpolation between the applicable limits for Option A (scram times of LCO 3.1.4,"Control Rod Scram Times" ) and Option B (realistic scram times) analyses.      The parameter r must be determined once within 72 hours after each set of scram time tests required by SR 3. 1.4. 1 and SR 3. 1.4.2 because the effective scram speed distribution may change during the cycle. The 72 hour Completion Time is acceptable due to the relatively minor changes 'in r expected during the fuel cycle.
REFERENCES          1. NUREG-0562,    "Fuel Rod Failure As a Consequence of Departure from Nucleate Boiling or Dryout,"-June 1979.
: 2. NEDE-24011-P-A-11, "General    Electric Standard Application for Reactor Fuel,"    November 1995.
: 3. FSAR,  Chapter 3.
: 4. FSAR,  Chapter 14.
(continued)
BFN-UNIT 2                              B 3.2-7                            Amendment
 
II 0
 
MCPR B 3.2.2 BASES REFERENCES    5. FSAR, Appendix N.
(continued)
: 6. NED0-30130-A, "Steady State Nuclear Methods,"
May 1985..
: 7. NRC No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                    B 3.2-8                          Amendment
 
0 0
 
LHGR B 3.2.3 B 3.2  POWER DISTRIBUTION LIMITS B 3.2.3  LINEAR HEAT GENERATION RATE (LHGR)
BASES BACKGROUND        The LHGR  is a measure of the heat generation rate of a fuel rod in a fuel assembly at any axial location. Limits on LHGR are specified to ensure that fuel design limits are not exceeded anywhere in the core during normal operation, including abnormal operational transients. Exceeding the LHGR limit could potentially result in fuel damage and subsequent release of radioactive materials.        Fuel design limits are specified to ensure that fuel system damage, fuel rod failure, or inability to cool the fuel does not occur during the anticipated operating conditions identified in Reference    l.
APPLICABLE        The  analytical    methods and assumptions  used in evaluating SAFETY ANALYSES    the fuel system design are presented      in References 1 and 2.
The fuel assembly is designed to ensure (in conjunction with the core nuclear and thermal hydraulic design, plant equipment, instrumentation, and protection system) that fuel damage will not result in the release of radioactive materials in excess of the guidelines of 10 CFR, Parts 20, 50, and 100. The mechanisms that could cause fuel damage during operational transients and that are considered in fuel evaluations are:
: a. Rupture of the fuel rod cladding caused by strain from the relative expansion of the UO, pellet; and b;    Severe overheating    of the fuel rod cladding    caused  by inadequate cooling.
A  value of 1% plastic strain of the fuel cladding has been.
defined as the limit below which fuel damage caused by overstraining of the fuel cladding is not expected to occur (Ref. 3).
Fuel design    evaluations, have been performed and demonstrate that the    1%  fuel cladding plastic strain design limit is not exceeded during continuous operation with LHGRs up to the (continued)
BFN-UNIT 2                              B 3.2-9                              Amendment
 
ll II
 
LHGR B 3.2.3 BASES APPLICABLE      operating  limit specified in the COLR. The analysis also SAFETY ANALYSES            allowances  for short term transient operation above  'ncludes (continued)    the operating limit to account for abnormal operational transients, plus    an  allowance  for densification  power spiking.
The 'LHGR  satisfies Criterion    2  of the  NRC Policy Statement (Ref. 4).
LCO            The LHGR is a basic assumption in the        fuel design analysis.
The fuel has been designed to operate        at rated core power with sufficient design margin to the LHGR calculated to cause a 1% fuel cladding plastic strain. The operating limit to accomplish this objective is specified in the COLR.
APPLICABILITY  The LHGR  limits  are derived from fuel design analysis that is limiting at high    power level conditions. At core thermal power levels < 25% RTP, 'the reactor is operating with a substantial margin to the LHGR limits and, therefore, the Specification is only required      when the reactor is operating at a 25% RTP.
ACTIONS        A.l If any LHGR exceeds its required limit, an assumption regarding an initial condition of the fuel design analysis is not met. Therefore, prompt action should:be taken to restore the LHGR(s) to within its required limits such that the plant is operating within analyzed conditions. The 2 hour Completion Time is. normally sufficient to restore the LHGR(s) to within its limits and is acceptable based on the low probability of a transient or Design Basis Accident occurring simultaneously with the LHGR out of specification.
B.1 If the LHGR cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the (continued)
BFN-UNIT 2                          B  3.2-10                              Amendment
 
il 0
Cl
 
LHGR B 3.2.3 ACTIONS        B. 1    (continued)
LCO  does not apply.      To,achieve    this status, THERMAL  POWER is  reduced to <    25% RTP  within. 4 hours. The allowed Completion Time      is reasonable, based on operating experience,    to reduce  THERMAL POWER TO < 25% RTP    in, an orderly    manner and without. challenging plant systems.
SURVEILLANCE  SR    3.2.3.l RE(UIREMENTS The LHGR    is required to  'be  initially calculated  within 12 hours    after THERMAL POWER is a 25% RTP and then every 24 hours    thereafter. It is compared,to the specified limits in the COLR to ensure that the reactor is operating within the assumptions of the safety analysis. The 24 hour Frequency is based on both engineering judgment and recognition of the: slow changes in power distribution during normal operation.      The 12 hour allowance after THERMAL POWER a,25% RTP is achieved is acceptable given the large inherent
              'margin to operating limits at lower power levels.
REFERENCES    1.      FSAR,. Chapter 14.
            .2.      FSAR,  Chapter 3.
: 3.      NUREG-0800, Standard      Review Plan  4.2, Section  II.A.2(g), Revision      2, July 1981.
: 4.    ,NRC  No. 93-102,, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                          B 3.2-11                              Amendment
 
0 APRM Gain and Setpoints B  3.2.4 B 3.2  POWER DISTRIBUTION L'IHITS B  3.2.4  Average Power Range Monitor (APRH) Gain and Setpoints BASES BACKGROUND          The OPERABILITY  of the APRMs and their setpoints is an initial  condition of all safety analyses that assume rod insertion upon reactor scram. Applicable GDCs are GDC 10, "Reactor Design," GDC 13, "Instrumentaf.ion and Control,"
GDC 20, "Protection System Functions," and GDC 23, "Protection System Failure Modes" (Ref. 1). This LCO is provided to require the APRH gain or APRH flow biased scram setpoints to be adjusted when operating under conditions of excessive power peaking to maintain acceptable margin to the fuel cladding integrity Safety Limit (SL) and the fuel cladding 1% plastic strain limit.
The  condition of excessive power peaking is determined by the ratio of the actual power peaking to the limiting power peaking at RTP. This ratio is equal to the ratio of the core limiting HFLPD to the Fraction of RTP (FRTP), where FRTP is the measured THERMAL POWER divided by the RTP.
Excessive power peaking exists when:
NFLPD
                                                    ) 1, FRTP indicating that HFLPD is not decreasing proportionately to the overall power reduction, or conversely, that power peaking is increasing. To maintain margins similar to those at RTP conditions, the excessive power peaking is compensated by a gain adjustment on the APRHs or adjustment of the APRM setpoints. Either of these adjustments has effectively the same result as maintai'ning HFLPD less than or equal to FRTP and thus maintains RTP margins for APLHGR and HCPR.
The normally selected APRM setpoints position the, scram above the upper bound of the normal power/flow operating region that has been considered in the design of the fuel rods. The setpoints are flow biased with a slope that approximates the upper flow control line, such that an approximately constant margin is maintained between the flow biased trip level and the upper operating boundary for core flows in excess of about 45% of rated core flow. In the range of infrequent operations below 45% of rated core flow, (continued)
BFN-UNIT 2                            B 3.2-12                          Amendment
 
il~
~  ~
45
 
APRM Gain and Setpoints B  3.2.4 BASES BACKGROUND      the margin to scram is reduced .because of the nonlinear core (continued)  flow versus drive flow relationship. The normally selected APRM setpoints are supported by the analyses presented in References 1 and 2 that concentrate on events initiated from rated conditions. Design experience .has shown that minimum deviations occur within expected margins to operating limits (APLHGR and MCPR), at rated conditions for normal power distributions. However, at other than rated conditions, control rod patterns can be established that significantly reduce the margin to thermal limits. Therefore, the flow biased APRH scram setpoints may be reduced during operation when the combination of THERMAL POWER and HFLPD indicates an excessive power peaking distribution.
The APRH  neutron flux signal is also adjusted to more closely follow the fuel cladding heat flux during power transients. The APRH neutron flux signal is a measure of the core thermal power during steady state operation.
During power transients, the APRM signal leads the actual core thermal power response because of the fuel thermal time constant. Therefore, on power increase transients, the APRH signal provides a conservatively high measure of core thermal power. By passing the APRM signal through an electronic    filter with  a time constant less than, but approximately equal to, that of the fuel thermal time constant, an APRM transient response that more closely follows actual fuel cladding heat flux is obtained, while a conservative margin is maintained. The delayed response of the filtered APRM signal allows the flow biased APRM scram level's to be positioned closer to the upper bound of the normal power and flow range, without unnecessarily causing reactor scrams during short duration neutron flux spikes.
These spikes can be caused by insignificant transients such as performance of main steam line valve surveillances or momentary flow increases of only several percent.
APPLICABLE      The acceptance    criteria for the APRM gain or setpoint SAFETY ANALYSES adjustments are that acceptable margins (to APLHGR and HCPR) be maintained to the fuel cladding integrity SL and the fuel cladding  1%  plastic strain limit.
FSAR safety analyses    (Refs. 2 and 3) concentrate on the rated power condition for. which the minimum expected margin to the operating limits (APLHGR and MCPR) occurs.
(continued)
BFN-UNIT 2                          B 3.2-13                            Amendment
 
0 0
0
 
APRH Gain and Setpoints B 3.2.4 APPLICABLE      LCO  3.2.1,  "AVERAGE PLANAR LINEAR HEAT GENERATION RATE SAFETY ANALYSES (APLHGR)," and LCO      3.2.2,  "MINIMUM CRITICAL POWER RATIO (continued)  (MCPR)," limit the      initial  margins to these operating limits at rated conditions so that specified acceptable fuel design limits are met during transients initiated from rated conditions. At initial power level's less than rated levels, the margin degradation of either the APLHGR or the HCPR during a transient can be greater than at the rated condition event. This greater margin degradation during the transient is primarily offset by the larger initial margin to limits at the lower than rated power levels. However, power distributions can be hypothesized that would result in reduced margins to the pre-transient operating limit. When combined with the increased severity of certain transients at other than rated conditions, the SLs could be approached.
At substantially reduced power .levels, highly peaked power distributions could be obtained that could reduce thermal margins to the minimum levels required for transient events.
To prevent or mitigate such situations, either the APRH gain is adjusted upward by the ratio of the core limiting HFLPD to the FRTP,, or the flow biased APRH scram level is required to be reduced by the ratio of FRTP to the core limiting MFLPD. Either of these adjustments effectively counters the increased severity of some events at other than rated conditions by proportionally increasing the APRH gain or proportionally lowering the flow biased APRH scram setpoints, dependent on the increased peaking that may be encountered.
The APRH  gain and setpoints satisfy Criteria      2 and 3  of the NRC  Policy Statement (Ref. 4).
LCO            Meeting any one    of the following conditions ensures acceptable    operating  margins for events described above:
: a. Limiting excess    power peaking;
: b. Reducing the APRM flow biased neutron flux upscale scram setpoints by multiplying the APRH setpoints by the  ratio of  FRTP and  the core  limiting value of HFLPD;    or (continued)
BFN-UNIT 2                          B  3.2-14                            Amendment
 
0 0
 
APRM Gain and Setpoints B 3.2.4 BASES LCO          c. Increasing APRH gains to cause the APRH to read (continued)      a 100 times HFLPD (in %). This condition is to account for the reduction in margin to the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit.
HFLPD is the ratio of the limiting LHGR to the LHGR limit for the specific bundle type. As power is reduced, if the design power distribution is maintained, HFLPD is reduced in proportion to the reduction in power. However.,      if  power peaking increases above the design value, the HFLPD is not reduced in proportion to the reduction in power. Under these conditions, the APRM gain is adjusted upward or the APRH flow biased scram setpoints are reduced accordingly.
When the reactor is operating with peaking less than the design value, it is not necessary to modify the APRM flow biased scram setpoints. Adjusting APRM gain or setpoints is equivalent to HFLPD less than or equal to FRTP, as stated in the  LCO.
For compliance with LCO Item b (APRH setpoint adjustment) or Item c (APRM'gain adjustment), only APRHs required to be OPERABLE per LCO 3.3. 1. 1, "Reactor Protection System (RPS)
Instrumentation," are required to be adjusted. In addition, each APRH may be allowed to have its gain or setpoints adjusted independently of other APRHs that are having their gain or setpoints adjusted.
APPLICABILITY The HFLPD  limit,  APRH gain adjustment, and APRH flow biased scram and  associated setdowns are provided to ensure that the fuel cladding integrity SL and the fuel cladding 1% plastic strain limit are not violated during design basis transients. As discussed in the Bases for LCO 3.2. 1 and LCO 3.2.2, sufficient margin to these limits exists below 25% RTP and, therefore, these requirements -are only necessary when the reactor is operating at a 25% RTP.
ACTIONS      A.l If the  APRH gain or setpoints are not within    limits  while the  HFLPD has exceeded FRTP, the margin to the fuel cladding integrity  SL and the fuel cladding 1%  plastic  strain l,imit (continued)
BFN-UNIT 2                        B 3.2-15                            Amendment
 
0 II
 
APRM Gain and Setpoints B 3.2.4 BASES ACTIONS      A. 1  (continued) may be  reduced. Therefore, prompt action should'e taken to restore the  MFLPD to within  its required limit or make acceptable  APRH adjustments  such that the plant is operating within the assumed margin of the safety analyses.
The 6 hour Completion Time    is normally sufficient to restore either the  MFLPD to within limits or the APRH gain or setpoints to within limits and is acceptable based on the low probability of a transient or Design Basis Accident occurring simultaneously with the LCO not met.
B.l If MFLPD cannot be restored to within its required limits within the associated Completion Time, the plant must be brought to a MODE or other specified condition in which the LCO does not -apply. To achieve this status, THERMAL POWER is reduced to < 25% RTP within 4 hours. The allowed Completion Time is reasonable, based on operating experience, to reduce THERMAL POWER to < 25% RTP in an orderly manner and without challenging plant systems.
SURVEILLANCE SR  3.2.4.1  and SR  3.2.4.2 RE(UIREHENTS The HFLPD  is required to be calculated and compared with FRTP,  or APRH gains or setpoint, to ensure that the reactor is operating within the assumptions of the safety analysis.
These SRs are only required to determine the,HFLPD and, assuming HFLPD is greater than FRTP, the appropriate gain or setpoint, and are not intended to be a CHANNEL FUNCTIONAL TEST for the APRH gain or flow biased neutron flux scram circuitry. The 24 hour Frequency o'f SR 3.2.4. 1 is chosen to coincide with the determination of other thermal limits, specifically those for the APLHGR (LCO 3.2. 1). The 24 hour Frequency is based on both engineering judgment and recognition of .the slowness of changes in power distribution during normal operation. The 12 hour allowance after THERMAL POWER a 25% RTP is achieved is acceptable given the large inherent margin to operating limits at low power levels.
(continued)
BFN-UNIT 2                      8  3.2-16                            Amendment
 
II I~
0
 
APRH Gain and Setpoints B 3.2.4 BASES SURVEIL'LANCE SR  3.2.4. 1  and SR  3.2.4.2  (continued)
REg UIREHENTS The 12 hour 'Frequency    of  SR 3.2.4.2 requires  a more  frequent verification than if HFLPD is less than or        equal to FRP.
When HFLPD is greater than FRP, more rapid        changes  in power distribution, are typically expected.
REFERENCES    1. 10 CFR 50,    Appendix A,  GDC  10, GDC 13,  GDC  20, and GDC  23.
: 2. FSAR,  Chapter 14.
: 3. FSAR,  Chapter 3.
: 4. NRC No.,93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                        B 3.2-17                                Amendment
 
ik ib
 
RPS Instrumentation 8 3.3.1.1 B 3.3, INSTRUMENTATION B 3.3.1. 1 Reactor Protection System (RPS) Instrumentation BASES BACKGROUND        The RPS  initiates a, reactor scram when one or more monitored parameters    exceed their specified limits, to preserve the integrity of the fuel cladding and the Reactor Coolant System (RCS) .and minimize the energy      that  must be absorbed following  a  loss of coolant accident (LOCA). This can        be accomplished either automatically or manually.
The  protection    and  monitoring functions of the  RPS  have been designed to ensure safe operation of the reactor. This is achieved by specifying limiting safety system settings (LSSS) in terms of parameters directly monitored by the RPS, as well as LCOs on other reactor system- parameters and equipment performance. The LSSS are defined in this Specification as the Allowable Values, which, in conjunction with the LCOs, establish the threshold for protective system action to prevent exceeding acceptable limits, including Safety Limits (SLs) during Design Basis Accidents (DBAs).
The RPS, as described      in the FSAR, Section 7.2 (Ref. 1),
includes sensors,      relays, bypass circuits, and switches that are necessary to cause initiation of a reactor scram.
Functional diversity is provided by monitoring a wide range of  dependent and independent parameters.        The input parameters to the scram logic are from instrumentation that monitors reactor vessel water level, reactor vessel pressure, neutron flux, main steam l,ine isolation valve position, turbine control valve (TCV) fast closure (indicated by TCV low hydraulic pressure) trip oil pressure, turbine stop valve (TSV) position, drywell pressure, scram pilot air header pressure, and scram discharge volume (SDV) water level, as well as reactor mode switch in shutdown position, manual, and RPS channel test switch scram signals.
There are at least four redundant sensor input signals from each of these. parameters (with the exception of the reactor mode switch in shutdown and manual scram signals).          Host channels include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints.. When the setpoint is exceeded, the channel output relay deenergizes actuates, which then outputs an          RPS trip signal to the trip logic.
(continued)
BFN-UNIT 2                              B  3.3-1                            Amendment
 
0 RPS  Instrumentation B 3.3.1.1 BASES BACKGROUND      The RPS is comprised of two independent        trip  systems (continued)    (A and B) with two logic channels in each        trip system (logic channels Al and A2, Bl and B2) as shown in Reference 1. The outputs of the logic channels in a trip system are combined in a one-out-of-two logic so that either channel can trip the associated trip system. The tripping of both trip systems will produce a reactor scram. This logic arrangement is referred to as a one-out-of-two taken twice logic. Each trip system can be reset by use of a reset switch. If a full scram occurs (both trip systems trip),            a relay prevents reset of the trip systems for 10 seconds after the full scram signal is received. This 10 second delay on reset ensures that the scram function will be completed.
Two scram  pilot  valves are located in the hydraulic control unit for each control rod drive (CRD). Each scram .pilot valve is solenoid operated, with the solenoids normally energized. The scram pilot valves    control the  air  supply to the scram  inlet  and outlet valves    for the associated CRD.
When  either  scram  pilot valve solenoid is energized, air pressure holds the scram valves closed and, therefore, both scram pilot valve solenoids must be de-energized to cause a control rod to scram. The scram valves control the supply and discharge paths for the CRD water during a scram.            One of the scram pilot valve solenoids for each CRD is controlled by trip system A, and the other solenoid is controlled    by trip system B. Any trip of trip system A in conjunction with any trip in trip system B results in de-energizing both solenoids, air bleeding. off, scram valves opening, and control rod scram.
The backup scram    valves, which energize on a full scram signal to depressurize the scram air header, are also controlled by the RPS. Additionally, the RPS System controls the SDV vent and drain valves such that when both trip systems trip, the SDV vent and drain valves close to isolate the SDV.
APPLICABLE      The  actions of the    RPS  are assumed in the safety analyses      of SAFETY ANALYSES, References    1, 2, and 3. The RPS  initiates  a reactor  scram LCO, and        when  monitored parameter values exceed the Allowable Values, APPLICABILITY    specified by the setpoint methodology and listed in Table 3.3. 1. 1-1 to preserve the integrity of the fuel (continued)
BFN-UNIT 2                            B  3.3-2                              Amendment
 
0 RPS Instrumentation B 3.3.1.1 APPLICABLE      cladding, the reactor coolant pressure boundary (RCPB),      and SAFETY ANALYSES, the containment by minimizing the energy that must be LCO, and        absorbed  following  a LOCA.
APPLICABILITY (continued)    RPS  instrumentation satisfies Criterion 3 of the NRC Policy Statement  (Ref. 10). Functions not specifically credited in the accident analysis are retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
The OPERABILITY    of the RPS is dependent on the-OPERABILITY of the individual instrumentation channel Functions specified in Table 3.3.1.1-1. Each Function must have a required number of OPERABLE channels per RPS trip system, with their setpoints within the specified Allowable Value, where appropriate. The setpoint is calibrated consistent with applicable setpoint methodology assumptions (nominal trip setpoint).
Allowable Values are specified for each RPS Function specified in the Table. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the actual setpoints do not exceed the Allowable Value between successive CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable        if its actual trip setpoint is not within its required Allowable Value.
Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibratio'n, process, and some of the instrument errors.
The  trip  setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe (continued)
BFN-UNIT 2                          B  3.3-3                            Amendment
 
0 0
 
RPS  Instrumentation B 3.3.1.1 APPLICABLE        environmental effects (for channels that must function in SAFETY ANALYSES,  harsh environments as defined by 10 CFR 50.49) are accounted LCO, and          for.
APPLICABILITY (continued)    The OPERABILITY    of scram pilot valves and associated solenoids, backup scram valves, and SDV valves, described in the Background section, are not addressed by this LCO.
The    individual Functions are required to be OPERABLE in the NODES    or other specified conditions in the Table, which may require an RPS trip to mitigate the consequences of a design basis accident or transient. To ensure a reliable scram function, a combination of Functions are required in each NODE to provide primary and diverse initiation signals.
The    only MODES specified in Table 3.3.1.1-1 are NODES 1 (which encompasses > 30%%u RTP) and 2, and MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies.      No RPS Function is required in MODES 3 and 4 since all control rods are fully inserted and the Reactor Mode Switch Shutdown Position control rod withdrawal block (LCO 3.3.2.1) does not allow any control rod to be withdrawn. In MODE 5, control rods withdrawn from a core cell containing no fuel assemblies do not affect the reactivity of the core and, therefore, are not required to have the capability to scram.        Provided all other control rods remain inserted, no RPS function is required. In this condition, the required SDM (LCO 3.1.1) and refuel position one-rod-out interlock (LCO 3.9.2) ensure that no event requiring RPS will occur.
The    specific Applicable Safety Analyses, LCO,    and Applicability discussions are listed below on        a Function by Function basis.
Intermediate    Ran e  Monitor  IRH
: l.  ,  Intermediate    an e Mo ito  Neutron Fl x Hi  h The IRMs    monitor neutron flux levels from the upper range of the source range monitor (SRH) to the lower range of the average power range monitors (APRHs). The IRHs are capable of generating trip signals that can be used to prevent fuel damage resulting from abnormal operating transients in the intermediate power range. In this power range, the most (continued)
BFN-UNIT 2                            B 3.3-4                              Amendment
 
il il
 
RPS  Instrumentation B 3.3.1.1 BASES APPLICABLE                ntermed    te  a  e o  to  Neut o      x-SAFETY ANALYSES,  (continued)
LCO, and APPLICABILITY    significant source of reactivity change is due to control rod withdrawal. The IRM mitigates control rod withdrawal error events and is diverse from the rod worth minimizer (RWM), which monitors and controls the movement of control rods at low power. The RWM prevents the withdrawal of an out of sequence control rod during startup that could result in an unacceptable neutron flux excursion (Ref. 2). The IRM provides mitigation of the neutron flux excursion. To demonstrate the capability of the IRM System to mitigate control rod withdrawal events, generic analyses have been performed (Ref. 3) to evaluate the consequences of control rod withdrawal events during startup that are mitigated only by the IRM. This analysis, which assumes that one IRM channel in each trip system is bypassed, demonstrates that the IRMs provide protection against local control rod withdrawal errors and results in peak fuel energy depositions below the 170 cal/gm fuel failure threshold criterion.
The IRMs are    also capable of limiting other reactivity excursions during startup, such as cold water injection events; although no credit is specifically assumed.
The IRM .System    is divided into two groups of IRM channels, with four IRM channels inputting to each trip system. The analysis of Reference 3 assumes that one channel in each trip system is bypassed. Therefore, six channels with three channels in each trip system are required for IRM OPERABILITY. to ensure that no single instrument failure will preclude    a scram from this Function on a valid signal. This trip is active in each of the 10 ranges of the IRM, which must be selected by the operator to maintain the neutron flux within the      monitored level  of an IRM range.
The  analysis of Reference 3 has adequate conservatism to permit an IRM Allowable Value of 120 divisions of a 125 division scale.
The  Intermediate    Range  Monitor Neutron Flux- High Function must be OPERABLE during MODE 2 when control rods may be withdrawn and the potential for criticality exists. In HODE 5, when a cell with fuel has its control rod withdrawn, the IRMs provide monitoring for and protection against (continued)
BFN-UNIT 2                              B 3.3-5                            Amendment
 
0 ik
 
RPS  Instrumentation 8 3.3.1.1 BASES APPLICABLE              I termediate      Ran e Mo  itor  eutro    ux- i SAFETY ANALYSES, (continued)
LCO, and APPLICABILITY    unexpected    reactivity excursions.        In NODE 1, the APRN System and the      RBM  provide protection against control rod withdrawal error events and the IRMs are not required.
b      t    ed  te  Ran e Mo  to    o This  trip  signal provides assurance that        a minimum number    of IRNs are OPERABLE.        Anytime an IRN mode switch is moved to any  position    other    than  "Operate," the detector voltage drops below a preset level, or when a module is not plugged in, an inoperative trip signal will be received by the RPS unless the IRN is bypassed.          Since only one IRM in each trip system may be bypassed, only one IRN in eqch RPS trip system may be  inoperable without resulting in        an RPS  trip signal.
This Function      was  riot specifically credited in the accident analysis but    it is    retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
Six channels of Intermediate        Range  Monitor- Inop with three channels in each      trip system are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.
Since  this Function is not assumed .in the safety analysis, there is no Allowable Value for this Function.
This Function is required to be OPERABLE when the Intermediate Range Monitor Neutron Flux-High Function is required.
Avera e Power Ran      e  Monitor 2.a. vera  e Power Ran e      o itor  Neutron  F ux Hi  h Setdown The APRN channels receive input signals from the local power range monitors (LPRHs) within the reactor core to provide an indication of the power distribution and local power changes. The APRN channels average these LPRN signals to provide a continuous indication of average reactor power from  a  few percent to greater than RTP.          For operation at (continued)
BFN-UNIT 2                              B  3.3-6                                Amendment
 
J I
I, il 0
 
RPS  Instrumentation B 3.3.1.1 BASES APPLICABLE              vera e Powe Ran      e  o  ito    e  t  o    u      h SAFETY ANALYSES, ~Setdo      (continued)
LCO, and APPLICABILITY    low power (i.e., NODE 2), the Average Power Range Monitor Neutron Flux-High, Setdown Function is capable of generating a trip signal that prevents fuel damage resulting from abnormal operating transients in this power range. For most operation at low power levels, the Average Power Range Monitor Neutron Flux- High, Setdown Function will provide a secondary scram to the .Intermediate Range Monitor Neutron Flux-High Function because of the relative setpoints. With the  IRNs at Range 9 or 10,      it is  possible that the Average Power Range Monitor Neutron        Flux-High,      Setdown Function will provide    the primary    trip  signal      for a corewide increase in power.
No specific safety analyses take direct credit for the Average Power Range Monitor Neutron Flux-High, Setdown Function. However, this Function indirectly ensures that before the reactor mode switch is placed in the run position, reactor power does not exceed 25/. RTP (SL 2.1.1.1) when operating at low reactor pressure and low core flow.
Therefore, it indirectly prevents fuel damage during significant reactivity increases with THERMAL POWER
                < 25K RTP.
The APRN System    is divided into two groups of channels with three  APRN  channel  inputs to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRN channel      in  a  trip  system can cause the associated    trip  system  to trip.      Four channels of Average Power Range Monitor Neutron Flux-High, Setdown with two channels in each trip system are required to be OPERABLE to ensure that no single failure will preclude a scram from this Function    on a  valid signal.      In addition, to provide adequate coverage of the entire core, at least 14 LPRN inputs are required for each APRN channel, with at least two LPRN inputs from each of the four axial levels at which the LPRNs are located.
The  Allowable Value is based on preventing significant increases in power when THERMAL POWER is < 25% RTP.
The Average Power Range Monitor Neutron Flux-High, Setdown Function must be OPERABLE during NODE 2 when control rods may be withdrawn since the potential for              criticality    exists.
(continued)
BFN-UNIT 2                            B  3.3-7                                    Amendment
 
0'
~ ',
0
 
RPS  Instrumentation B 3.3.1.1 BASES APPLICABLE        .a    vera e 'Power    a  e Mon  tor    t o  F  xi SAFETY ANALYSES, Setdown    (continued)
LCO, and APPLICABILITY    In  MODE 1, the Average Power Range Monitor Neutron Flux-High Function provides protection against reactivity transients and the RWM and rod, block monitor, protect against control rod withdrawal error events.
                  .b. Avera e Power an e      onitor  Flow Biased  S'ated T ermal Powe      Hi h The Average Power Range      Monitor Flow Biased Simulated Thermal Power-High      Function  monitors neutron flux to approximate    the  THERMAL  POWER  being transferred to the reactor coolant. The APRM neutron flux is electronically filtered with a time constant representative of the fuel heat transfer dynamics to generate a signal proportional to the THERMAL POWER in the reactor. The trip level is varied as a function of recirculation drive flow (i.e., at lower core flows, the setpoint is reduced proportional to the reduction in power experienced as core flow is reduced with a fixed control rod pattern) but is clamped at an upper limit that is always lower than or equal to the Average Power Range Monitor Fixed Neutron Flux- High Function Allowable Value. The 'Average Power Range 'Monitor Flow Biased Simulated Thermal Power-High Function provides protection against transients where THERMAL POWER increases slowly (such as the loss of feedwater heating event) and protects the fuel cladding integrity by ensuring that the MCPR SL is not exceeded.        During these events, the THERMAL POWER increase does not significantly lag the neutron flux response and, because of a lower trip setpoint, will initiate a scram before the high neutron flux scram. For rapid neutron flux increase events, the THERMAL POWER lags the neutron flux and the Average Power Range Monitor Fixed Neutron Flux-High Function will provide a scram signal before the Average Power Range Monitor Flow Biased Simulated Thermal Power-High Function setpoint is exceeded.
The APRM System    is divided into two groups of channels with three  APRM  channel  inputs to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of (continued)
BFN-UNIT 2                            B  3.3-8                              Amendment
 
ik 0
 
RPS  Instrumentation B 3.3.l.l APPLICABLE      2.b. Avera e Power Ran e    Monitor Flow Biased Simulated SAFETY ANALYSES, Thermal Power- Hicih      (continued)
LCO, and APPLICABILITY    Average Power Range Monitor Flow Biased Simulated Thermal Power- High with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.        In addition, to provide adequate coverage      of the entire core,  at least 14 LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located. Each APRM channel receives a total drive flow signal representative of total core flow.
The  total drive flow signals are generated by two flow units, one of which supplies signals to the trip system A APRMs, while the other one supplies signals to the trip system B APRMs. Each flow unit signal is provided by summing up the flow signals from the two recirculation loops. Each required Average Power Range Monitor Flow Biased Simulated Thermal Power- High channel requires an input from its associated OPERABLE flow unit.
The clamped  Allowable Value is based on analyses that take credit for the  Average Power Range Monitor Flow Biased Simulated Thermal Power-High Function for the mitigation of the loss of feedwater heating event. The THERMAL POWER time constant of < 7 seconds is based on the fuel heat transfer dynamics and provides a signal proportional to the THERMAL POWER. The term "W" in the equation for determining the Allowable Value is defined as total recirculation flow in percent of rated.
The Average Power Range Monitor Flow Biased Simulated Thermal Power- High Function is required to be OPERABLE in MODE  I  when there is the possibility of generating excessive THERMAL POWER and    potentially exceeding the SL applicable to high pressure and core flow conditions (MCPR SL). During NODES 2 and 5, other IRM and APRN Functions provide protection for fuel cladding integrity.
2.c. Avera e Power Ran  e  Monitor Fixed Neutron Flux-~Hi    h The APRM channels    provide the primary indication of neutron flux within the core and respond almost instantaneously to neutron flux increases.      The Average Power Range Monitor
 
Fixed Neutron Flux High Function is capable of generating a (continued)
BFN-UNIT 2                          B  3.3-9                              Amendment
 
0 0
0
 
RPS Instrumentation B'.3.1.1 BASES APPLICABLE      2,c Avera e    Powe    n e  onitor ixed eutron    F  u SAFETY ANALYSES,    (continued)
LCO, and APPLICABILITY    trip  signal to prevent fuel damage or excessive RCS pressure. For the overpressurization protection analysis of Reference 4, the Average Power Range Monitor Fixed Neutron Flux-High Function is assumed to terminate the main steam isolation valve (MSIV) closure event and, along with the safety/relief valves (S/RVs), limits the peak reactor pressure vessel (RPV) pressure to less than the ASME Code limits. The control rod drop accident (CRDA) analysis (Ref. 5) takes credit for the Average Power Range Monitor Fixed Neutron Flux-High Function to terminate the CRDA.
The APRM System  is divided into two groups of channels with three  APRM channels inputting to each trip system. The system is designed to allow one channel in each trip system to be bypassed. Any one APRM channel in a trip system can cause the associated trip system to trip. Four channels of Average Power Range Monitor Fixed Neutron Flux- High with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. In addition, to provide adequate coverage of the entire core, at least 14 LPRM inputs are required for each APRM channel, with at least two LPRM inputs from each of the four axial levels at which the LPRMs are located.
The  Allowable Value is based on the .Analytical Limit assumed in the  CRDA analyses.
The Average Power Range  Monitor Fixed Neutron Flux-High Function is required to be OPERABLE in MODE 1 where the potential consequences of the analyzed transients could result in the SLs (e.g., MCPR and RCS pressure) being exceeded. Although the Average Power Range Monitor Fixed Neutron Flux-High Function is assumed in the CRDA analysis, which is applicable in MODE 2, the Average Power Range Monitor Neutron Flux-High, Setdown Function conservatively bounds the assumed trip and, together with the assumed IRM trips, provides adequate protection. Therefore, the Average Power Range Monitor Fixed Neutron Flux-High Function is not required in MODE 2.
(continued)
BFN-UNIT 2                          B 3.3-10                            Amendment
 
il RPS Instrumentation B 3.3.1.1 APPLICABLE          d    ve  a e  Power Ran e  Mo ito Oow    scale SAFETY ANALYSES, LCO, and          This signal ensures that there is adequate Neutron APPLICABILITY    Monitoring System protection    if  the reactor mode switch is
  ,(continued)    placed in the run position prior to the APRHs coming on scale. With the reactor mode switch in run, an APRM downscale signal coincident with an associated Intermediate Range Monitor Neutron Flux-High or Inop signal generates a trip signal. This Function was not specifically credited in
                  .the accident analysis but    it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
The APRM System    is divided into two groups of channels with three inputs into each trip system. The system is designed to allow one channel in each trip system to be bypassed.
Four channels of Average Power Range Monitor-Downscale with two channels in each trip system arranged in a one-out-of-two logic are'.required to be OPERABLE to ensure that no single failure will preclude a scram from this Function on a valid signal. The Intermediate Range Monitor Neutron Flux-High and Inop Functions are also part of the OPERABILITY of the Average Power Range Monitor-Downscale
                'Function (i.e.,    if either of these IRN Functions cannot send a signal to the Average Power Range Monitor-Downscale Function, the associated Average Power Range Monitor -Downscale channel is .considered inoperable).
The  Allowable Value is based upon ensuring that the APRNs are in the  linear scale range when transfers are made between APRNs and IRNs.
This Function is required to be OPERABLE in NODE 1 since this is when the APRNs are the primary indicators of reactor power.
2.e. vera  e Power Ran e Monitor    Ino This signal provides assurance that a minimum number of APRMs are OPERABLE.      Anytime an APRH mode switch is moved to any  position  other than  "Operate," an APRN module is unplugged,  the  electronic  operating voltage is low, or the APRH has too few LPRH inputs (< 14), an inoperative trip signal will be received by the RPS,'nless the APRN is bypassed. Since only one APRN in each trip system may be bypassed, only one APRN in each trip system may be (continued)
BFN-UNIT 2                            B 3.3-11                              Amendment
 
il RPS  Instrumentation B 3.3.1.1 APPLICABLE      2.e;  Avera e Powe        an e Monitor no    (continued)
SAFETY ANALYSES, LCO, and        inoperable without resulting in an RPS trip signal. This APPLICABILITY    Function was not specifically credited in the accident analysis, but    it  is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
Four channels of Average Power Range Monitor- Inop with two channels in each trip system are required to be OPERABLE to ensure that no single failure will preclude a scram from this Function on a valid signal.
There  is  no  Allowable Value  for this Function.
This Function is required to be      OPERABLE  in the  NODES  where the APRM Functions are required.
3    eactor Vesse      Steam Dome Press  e i An  increase in the RPV pressure during reactor operation compresses    the steam voids and results in a positive reactivity insertion. This causes the neutron flux and THERMAL POWER transferred to the reactor coolant to increase, which could challenge the integrity of the fuel cladding and the RCPB. The Reactor Vessel Steam Dome Pressure-High Function initiates a scram for transients that result in a pressure increase, counteracting the pressure increase by rapidly reducing core power. For the overpressurization protection analysis of Reference 4, reactor scram (the analyses conservatively assume scram on the Average Power Range Monitor Fixed'eutron Flux-High signal, not the Reactor Vessel Steam Dome Pressure -High signal), along with the S/RVs, limits the peak RPV pressure to less than the ASHE Section III Code limits.
High reactor pressure signals are initiated from four pressure transmitters that sense reactor pressure.            The Reactor Vessel Steam Dome Pressure-High Allowable Value            is chosen to provide a sufficient margin to the ASME Section    III Code limits during    the event.
Four channels    of Reactor Vessel Steam Dome Pressure-High Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to
('continued)
BFN-UNIT 2                            B 3.3-12                              Amendment
 
0 RPS Instrumentation 8 3.3.1.1 APPLICABLE      3. Reactor Vessel Steam      Dome Pressure- hicih      (continued)
SAFETY ANALYSES, LCO, and        ensure  that    no  single instrument fai1ure will preclude a APPLICABILITY    scram from  this Function      on a va1id signal.      The Function is required to be OPERABLE in        NODES  1  and  2 when  the RCS is pressurized    and  the  potential  for  pressure  increase  exists.
: 4. Reactor Vessel Water Level      -  Low    Level 3 Low RPV water level indicates the, capability to cool the fuel may be threatened. Should RPV water level decrease too far, fuel damage could result. Therefore, a reactor scram is  initiated    at Level 3 to substantially reduce the heat generated in the fuel from fission. The Reactor Vessel Water Level Low, Level 3 Function is assumed in the analysis of the recirculation line break (Ref. 6). The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the Emergency Core Cooling Systems (ECCS), ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
Reactor Vessel Water Level Low, Level 3 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level, (variable leg) in the vessel.
Four channels      of Reactor Vessel Water Level Low, Level 3 Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal.
The Reactor Vessel      Water Level Low, Level 3 Allowable Value is selected to      ensure  that (a) during normal operation the steam dryer skirt is        not uncovered (this protects available recirculation pump      net  positive  suction head (NPSH) from significant carryunder), and (b) for transients involving loss of all normal feedwater flow, initiation of the low pressure  ECCS    subsystems  at Reactor Vessel Water-      Low Low Low, Level    1  will  not  be required.
The .Function    is required, in NODES 1 and 2 where considerable energy exists in the RCS resulting in the limiting transients and accidents. ECCS initiations at Reactor (continued)
BFN-UNIT 2                              B 3.3-13                                  Amendment
 
!I i~
II
 
RPS  Instrumentation B 3.3.1.1 BASES APPLICABLE              actor  esse    Wate  L'eve  ow  eve    3  (continued)
SAFETY ANALYSES, LCO, and          Vessel Water Level Low Low, Level 2 and Low Low Low, APPLICABILITY    Level 1 provide sufficient protection for level transients in all other  NODES.
: 5. ai  Stea    Iso at  o  Valve C os e HSIV  closure results in loss of the main turbine and the condenser as a heat sink for the nuclear steam supply system and indicates a need to shut down the reactor to reduce heat generation. Therefore, a reactor .scram is initiated on a Hain Steam Isolation Valve-'Closure signal before the HSIVs are completely closed in anticipation of the complete loss of the normal heat sink and subsequent overpressurization transient. However, for the overpressurization protection analysis of Reference 4, the Average Power Range Monitor Fixed Neutron Flux- High Function, along with the S/RVs, limits the peak RPV pressure to less than the ASME Code limits. That. is, the direct scram on position switches for
                ,MSIV closure events is not assumed in the overpressurization analysis. Additionally, MSIV closure is assumed in the transients analyzed in Reference 7 (e.g., low steam line pressure, manual closure of MSIVs, high steam line flow).
The reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the ECCS, ensures that the fuel peak cladding temperature remains below the l-imits of 10 CFR 50.46.
NSIV  closure signals are initiated from position switches located on each of the eight HSIVs. Each HSIV has two position switches; one inputs to RPS trip system A while the other inputs to RPS trip system B. Thus, each RPS trip system receives an input from eight Hain Steam Isolation Valve Closure channels, each consisting of one position switch. The logic for the Hain Steam Isolation Valve- Closure Function is arranged such that either the inboard or outboard valve on three or more of the main steam lines must close in order for a scram to occur.
The Hain Steam    Isolation Valve -Closure Allowable Value is specified to ensure that a scram occurs prior to a significant reduction in steam flow, thereby reducing the severity of the subsequent pressure transient.
(continued)
BFN-UNIT 2                            B 3.3-14                              Amendment
 
i Cl
 
RPS  Instrumentation B 3.3.1.1 BASES APPLICABLE      5. ai    Steam  Isolat  o 'ive Closu      e  (continued)
SAFETY ANALYSES, LCO, and        Sixteen channels of the Hain Steam Isolation Valve- Closure APPLICABILITY    Function, with eight channels in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude the scram from this Function on a valid signal. This Function is only required in NODE 1 since, with the HSIVs open and the heat generation rate high, a pressurization transient can occur            if the NSIVs close. In NODE 2, the heat generation rate is low enough so that the other diverse RPS functions provide sufficient protection.
6        e        ess  e High pressure      in the drywell could indicate a break in the RCPB. A reactor scram is initiated to minimize the possibility of fuel damage and to reduce the amount of energy being added to the coolant and the drywell. The Drywell Pressure-High Function is a secondary scram signal to Reactor Vessel Mater Level Low, Level 3 for LOCA events inside the drywell. However, no credit is taken for a scram initiated from this Function for any of the DBAs analyzed in the FSAR. This Function was not specifically credited in the accident analysis, but        it  is retained for the overall redundancy    and  diversity  of  the  RPS as required by the NRC approved    licensing basis.
High drywell pressure signals are initiated from four pressure transmitters that sense drywell pressure.              The Allowable Value was selected to be as low as possible and indicative of.a      LOCA inside primary containment.
Four channels of Drywell Pressure-High Function, with two channels in each trip system arranged in a one-out-of-two logic, are required. to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. The Function is required in NODES 1 and 2 where considerable energy exists in the RCS, resulting in the limiting transients        and  accidents.
(continued)
BFN-UNIT 2                              B 3.3-15                                Amendment
 
ik RPS Instrumentation B 3.3.1.1 APPLICABLE      7a    b    Scr    'sc ar  e Volume  Water vel SAFETY ANALYSES, LCO, and        The SDV  receives the water displaced by the. motion of the APPLICABILITY    CRD  pistons during a reactor scram. Should this volume (continued)    fill  to a point where there is insufficient volume to accept the displaced water, control rod insertion would be hindered. Therefore, a reactor scram is initiated while the remaining free volume is still sufficient to accommodate the water from a full core scram. The two types of Scram Discharge Volume Water Level -High Functions are an input to the RPS logic. No credit is taken for a scram initiated from these Functions for any of the design basis accidents or transients analyzed in the FSAR. However, they are retained to ensure the RPS remains OPERABLE.
SDV  water level is measured by two diverse methods. The level in each of the two SDVs is measured by two float type level switches and two thermal probes for a total of eight level signals. The outputs of these devices are arranged so that there is a signal from a level switch and a thermal probe to each RPS logic channel. The level measurement instrumentation satisfies the recommendations of Reference 8.
The  Allowable Value is chosen low enough to ensure that there, is sufficient    volume in the SDV to accommodate the water from a full scram.
Four channels    of each type of Scram Discharge Volume Water Level  -High Function, with two channels of each type in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from these Functions on a valid signal. These Functions are required in MODES 1 and 2, and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and other specified conditions when control rods are withdrawn. At all other times, this Function    may be  bypassed.
: 8. Turbine Sto    Valve Closure Closure of the TSVs results in the loss of a -heat sink that produces reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, a reactor scram is initiated at the start of TSV closure in anticipation of (continued)
BFN-UNIT 2                            B 3.3-16                          Amendment
 
ik~
Cl
!5
 
RPS  Instrumentation B '3.3.1.1 BASES APPLICABLE        8      rb e Sto  V lve C  osure SAFETY ANALYSES,  (continued)
LCO, and APPLICABILITY    the transients that would result from the closure of these valves. The Turbine Stop Valve-Closure Function is the primary scram signal for the turbine trip event analyzed in Reference 7. For this event, the reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the End of Cycle Recirculation Pump Trip (EOC-RPT) System, ensures that the MCPR SL is not exceeded.
Turbine Stop Valve-Closure signals are initiated from position switches located on each of the four TSVs. Two independent position switches are associated with each stop valve. One of the two switches provides input to RPS trip system A; the other, to RPS trip system B. Thus, each RPS trip system receives an input from four Turbine Stop
                        -
Valve Closure channels, each consisting of one position switch. The logic for the Turbine Stop Valve-Closure Function is such that three or more TSVs must be closed to produce a scram. This Function must be -enabled at THERMAL POWER h 3K RTP. This is. normally accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, opening the turbine bypass valves
                .may  affect this function.
The Turbine Stop  Valve-Closure Allowable Value is selected to be high. enough  to detect imminent TSV closure, thereby reducing the severity of the subsequent pressure transient.
Eight channels of Turbine Stop Valve- Closure Function, with four channels in each trip system, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function    if any three TSVs should close. This Function is required, consistent with analysis assumptions, whenever THERMAL POWER is > 3&#xc3; RTP. This Function is not required when THERMAL 'POWER is (
the Reactor Vessel Steam Dome Pressure-High and the 3M'TP'ince Average Power Range Monitor Fixed Neutron Flux-High Functions are. adequate to maintain the necessary safety margins.
(continued)
BFN-UNIT 2                          B 3.3-17                                      Amendment
 
il 0
 
RPS  Instrumentation B 3.3.1.1 APPLICABLE      9. Turb  e Control Valve  ast Closure  Tri  0 SAFETY ANALYSES,    essure  ow LCO, and APPLICABILITY    Fast closure of the TCVs results in the loss of a heat sink (continued)    that produces'reactor pressure, neutron flux, and heat flux transients that must be limited. Therefore, a reactor scram is initiated on TCV fast closure in anticipation of the transients that would result from the closure of these valves. The Turbine Control Valve Fast Closure, Trip Oil Pressure- Low Function is the primary scram signal for the generator load rejection event analyzed in Reference 7. For this event, the reactor scram reduces the amount of energy required to be absorbed and, along with the actions of the EOC-RPT System, ensures that the HCPR SL is not exceeded.
Turbine Control Valve Fast Closure, Trip Oil Pressure- Low signals are initiated by the electrohydraulic control (EHC) fluid pressure at each control valve. One pressure transmitter is associated with each control valve, and the signal from each transmitter is assigned to a separate RPS logic channel. This Function must be enabled at THERMAL POWER 2 3N'TP.      This is normally accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, opening the turbine bypass valves may  affect this function.
The Turbine Control Valve Fast Closure,  Trip Oil Pressure- Low Allowable Value is selected high enough to detect imminent TCV fast closure.
Four channels  of Turbine Control Valve Fast Closure, Trip Oil Pressure-  Low Function with two channels in each trip system arranged in a one-out-of-two logic are required to be OPERABLE to ensure that no single instrument'failure will preclude a scram from this Function on a valid signal. This Function is required, consistent with the analysis assumptions, whenever THERHAL POWER is 2 30K RTP. This Function is not required when THERNL POWER is ( 30% RTP, since the Reactor Vessel Steam Dome Pressure-High and the Average Power Range Nonitor Fixed Neutron Flux-High Functions are adequate to maintain the necessary safety margins.
(continued)
BFN-UNIT 2                          B 3.3-18                            Amendment
 
RPS Instrumentation B 3.3.1.1 APPLICABLE        0    e ctor  Mode  Switch S utdown  os t SAFETY ANALYSES, LCO, and        The Reactor Mode Switch -Shutdown Position Function provides APPLICABILITY    signals, via the manual scram logic channels, directly to (continued)    the scram pilot .solenoid power circuits. These manual scram logic channels are redundant to the automatic protective instrumentation channels and provide manual reactor trip capability. This Function was not specifically'redited in the accident analysis, but it is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
The  reactor  mode  switch is a single switch with four channels, each    of  which provides input into one of the  RPS logic channels.
There is no Allowable Value for this Function, since the channels are mechanically actuated based solely on reactor mode  switch position.
Two  channels of Reactor Mode Switch -Shutdown Position Function, with one channel in each trip system, are available and required to be OPERABLE. The Reactor Mode Switch -Shutdown Position Function is required to be OPERABLE in MODES 1 and 2, and MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are 'the MODES and other specified conditions when control rods are withdrawn.
: 11.      ua  Sera The Manual Scram push button channels provide signals, via the manual scram logic channels, directly to the scram pilot solenoid power circuits. These manual scram logic channels are redundant.to the automatic protective instrumentation channels and provide manual reactor tri'p capability. This Function was not specifically credited in the accident analysis but  it  is retained for the overall redundancy and diversity of the RPS as required by the NRC approved licensing basis.
There is one Manual Scram push button channel for each of the two RPS manual scram logic channels. In order to cause a scram  it is necessary that each channel in .both manual
                .scram trip systems be actuated.
(continued)
BFN-UNIT 2                            B 3.3-19                          Amendment
 
ik~
i 0
 
RPS  Instrumentation 8 3.3.1.1 APPLICABLE      ll. Manual Scram    (continued)
SAFETY ANALYSES, LCO, and        There is no Allowable Value for this Function since the APPLICABILITY    channels are mechanically actuated based solely on the position of the    push  buttons.
Two  channels of Manual Scram with one channel in each manual scram trip system are available and required to be OPERABLE in NODES 1 and 2, and in NODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the NODES and other specified conditions when control rods are withdrawn.
: 12. RPS  Channel Test Switches There are four    RPS  Channel Test Switches,  one associated with each of the four automatic scram logic channels (Al, A2, Bl, and B2). These keylock switches allow the operator to test the OPERABILITY of each individual logic channel without the necessity of using a scram function trip. When the RPS Channel Test Switch is placed in test, the associated  scram  logic channel is deenergized    and OPERABILITY  of the channel's scram contactors      can be confirmed. The 'RPS Channel  Test Switches are not specifically credited in the accident analysis.          However, because  the Manual Scram Function at Browns Ferry Nuclear Plant is not configured the same as the generic model in Reference 9, the RPS Channel Test Switches are included in the analysis in Reference 11. Reference        ll  concludes that the Surveillance Frequency extensions for      RPS  functions, described in Reference. 9, are not affected by      the  difference in configuration since each automatic      RPS  channel    has a test switch which is functionally the      same  as the  manual    scram switches in the generic model. Weekly        testing  of  scram contactors is credited in Reference 9 with supporting the Surveillance Frequency extension of the RPS, functions. .
There is no Al.lowable Value for this Function since the channels are mechanically actuated solely on the position          of the switches.
Four channels of the RPS Channel Test Switch Function with two channels in each trip system arranged in a one-out-of-two logic are available and required to be OPERABLE. The function is required in NODES 1 and 2, and in NODE 5 with (continued)
BFN-UNIT 2                            B 3.3-20                                Amendment
 
0>>
il
 
RPS Instrumentation B 3.3.1.1 APPLICABLE        12. PS C a ne    Test Switches      (continued)
SAFETY ANALYSES, LCO, and          any control rod withdrawn from a core          cell containing    one or APPLICABIL'ITY  more fuel assemblies, since these are            the  NODES and  other specified conditions      when  control rods are withdrawn.
                                                              'b
: 13. o  Sc am    lot  A r  Header  ressur The Low Scram    Pilot  Air. Header Pressure trip performs the same  function  as  the high water level in the scram discharge instrument volume for fast        fill events in which the high level instrument response time may not be adequate. A fast fill  event is postulated for certain degraded control air events in which the scram outlet valves unseat enough to allow 5 gpm per drive leakage into the scram discharge volume but not enough to cause rod insertion.
The  Allowable Value is chosen low enough to ensure that there is sufficient volume in the SDV to accommodate the water from    a full    scram.
Four channels    of  Low Scram    Pilot Air Header Pressure Function, with two channels in each trip system arranged in a one-out-of-two logic, are required to be OPERABLE to ensure that no single instrument failure will preclude a scram from this Function on a valid signal. The Function is required in NODES I and 2, and in MODE 5 with any control rod withdrawn from a core cell containing one or more fuel assemblies, since these are the MODES and othe'pecified conditions when control rods are withdrawn. At all other times, this Function may be bypassed.
ACTIONS          A Note has been      provided to modify the ACTIONS related to RPS  instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. -However, the Required Actions for inoperable RPS instrumentation channels provide appropriate (continued)
BFN-UNIT 2                            B  3.3-21                                Amendment
 
0 0
 
RPS  Instrumentation B 3.3.1.1 ACTIONS      compensatory measures for separate inoperable channels.          As (continued) such, a Note has been provided that allows separate Condition entry for each inoperable    RPS  instrumentation channel.
Because  of the diversity of sensors available to provide trip  signals and the redundancy of the RPS design, an allowable out of service time of 12 hours has been shown to be acceptable (Ref. 9) to permit restoration of any inoperable channel to OPERABLE status. However, this out of service time is only acceptable provided the associated Function's inoperable channel is in one trip system and the Function still maintains RPS trip capability (refer to Required Actions B.l, B.2, and C.l Bases).        If the inoperable channel cannot be restored to OPERABLE status within the allowable out of service time, the channel or the associated trip system must be placed in the tripped condition per Required Actions A.l and A.2. Placing the inoperable channel in trip (or the associated trip system in trip) would conservatively .compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. Alternatively,        if it  is not desired to place the channel (or trip system)      in  trip (e.g.,
as in the case where placing the inoperable channel in trip would result in a full scram), Condition D must be entered and its Required Action taken.
              ~B. d 8.2 Condition  B  exists when, for any one or more Functions, at least  one  required channel is inoperable in each trip system. In this condition, provided at least one channel per trip system is OPERABLE; the RPS still maintains trip capability for that Function, but cannot accommodate a single failure in either trip system.
Required Actions    B.l and B.2 limit the time the RPS scram logic, for    any Function, would not accommodate single failure in    both trip systems (e.g., one-out-of-one and one-out-of-one arrangement for a typical four channel Function). The reduced reliability of this logic arrangement was not evaluated in Reference 9 for the        12  hour (continued)
BFN-UNIT 2                        B 3.3-22                              Amendment
 
il~
Oi 0
 
RPS Instr umentation B  3.3.1.1 ACTIONS    ~d            (    3    dl Completion Time. Mithin the 6 hour allowance, the associated Function will have all required channels        OPERABLE or in trip (or any combination) in one trip system.
Completing one  of these Required Actions restores    RPS  to a reliability level    equivalent to that evaluated in Reference 9, which justified a 12 hour allowable out of service time as presented in Condition A. The trip system in the more degraded state should be placed in trip or, alternatively, all the inoperable channels in that trip system should be placed in trip (e.g., a trip system with two inoperable channels could be in a more degraded state than a trip system with four inoperable channels      if  the two inoperable channels are in the same Function while the four inoperable channels are all in different Functions). The decision of which trip system is in the more degraded state should be based on prudent judgment and take into account current plant conditions (i.e., what NODE the plant is in).
If  this action would result in a scram or RPT,    it  is permissible to place the other trip system or its inoperable channels in trip.
The 6 hour Completion Time    is judged acceptable  based on- the remaining capability to trip, the diversity of the sensors, available to provide the trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of a scram.
Alternately,  if it  is not desired to place the inoperable channels  (or one trip system) in trip (e.g., as in the case where placing the inoperable channel or associated trip system in trip would result in a scram or RPT), Condition D must be entered and its Required Action taken.
Required Action C.l is intended to ensure that appropriate actions are taken    if  multiple, inoperable, untripped channels within the same trip system for the same Function result in the Function not maintaining RPS trip capability.
A Function is considered to be maintaining RPS trip capability when sufficient channels are OPERABLE or in trip (continued)
BFN-UNIT 2                    B  3.3-23                            Amendment
 
0 0,
 
RPS  Instrumentation B 3.3.1.1 BASES ACTIONS    ~C.    (continued)
(or the associated    trip system  is in trip),    such  that both trip  systems    will generate  a trip  signal from the given Function on    a  valid signal.
The Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities. The 1 hour Completion Time is acceptable        because  it  minimizes risk while allowing time for restoration or tripping of channels.
Required Action D.l directs entry into the appropriate Condition referenced in Table 3.3.1.1-1. The applicable Condition specified in the Table is Function and HODE or other specified condition dependent and may change as the
          ,Required Action of a previous Condition is completed.            Each time an inoperable channel has      not  met  any  Required  Action of Condition A, B, or C and the associated Completion Time has expired, Condition D will be entered for that channel and provides for transfer to the appropriate subsequent Condition.
E.l    .1  and G. 1 If the  channel(s) is not restored to OPERABLE status or placed in trip (or the associated trip system placed in trip) within the allowed Completion Time, the plant must be placed in a NODE or other specified condition in which the LCO does not apply.      The allowed Completion Times are reasonable, based on operating experience, to reach the specified condition from full power conditions in an orderly manner and without challenging plant systems.            In addit'i'on, the Completion Time of Required Action E.l is consistent with the Completion Time provided in LCO 3.2.2, "HINIHUH CRITICAL  POWER  RATIO (HCPR);."
If  the channel(s) is not restored to OPERABLE status or placed in trip (or the associated trip system placed in (continued)
BFN-UNIT 2                        B 3.3-24                                Amendment
 
I 0
il
 
RPS  Instrumentation B 3.3.1.1 BASES ACTIONS      g,l (continued) trip) within the    allowed Completion Time, the plant must be placed in  a NODE  or other specified condition in which the LCO does not apply.        This is done by immediately initiating action to fully    insert    all insertable control rods in core cells containing one or more fuel assemblies. Control rods in core cells containing no fuel assemblies do not affect the reactivity of the core and are, therefore, not required to be inserted. Action must continue until all insertable control rods in core cells containing one or more fuel assemblies are fully inserted.
SURVEILLANCE As noted  at the beginning of the SRs, the SRs for each RPS REQUIREMENTS instrumentation Function are located in the SRs column of Table 3.3.1.1-1.
The Surveillances are modified by a Note        to indicate that when a channel is placed in an inoperable        status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6  hours, provided the associated      Function, maintains    RPS trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 3) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the RPS will trip when necessary.
SR  3.3 1.1.
Performance    of the  CHANNEL CHECK  once every 24 hours ensures that  a  gross  failure of instrumentation has not occurred.          A CHANNEL  CHECK. is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels  monitoring    the same parameter should read approximately    the  same  value. Significant deviations between  instrument    channels  could be an indication of excessive instrument      drift  in one of the channels or (continued)
BFN-UNIT 2                        B  3.3-25                              Amendment
 
I!
Cl
 
RPS  Instrumentation B 3.3.1.1 SURVEILLANCE SR  3.3.1.1.1    (continued)
RE(UIREMENTS something even more serious. A CHANNEL CHECK will detect gross channel failure; thus,      it  is key, to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement  criteria  are determined by the plant staff based on a combination    of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside        its limit.
The Frequency  is  based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.
SR  3.3.1.1.2 To ensure  that the APRMs are accurately indicating the true core average power, the APRMs are calibrated to the reactor power .calculated from a heat balance.        LCO 3.2.4, "Average Power Range Monitor (APRM) Gain and Setpoints," allows the APRMs to be reading greater, than actual THERMAL POWER to compensate for localized power peaking. When this adjustment is made, the requirement for the APRMs to indicate within 2% RTP of calculated power is modified. to require the APRMs to indicate within 2% RTP of calculated MFLPD. The Frequency of once per 7 days is based on minor changes in LPRM sensitivity, which could affect the APRM reading, between performances of SR 3.'3. 1. 1.7.
A  restriction to satisfying this      SR when < 25% RTP    is provided that requires the      SR  to be met only at a .25% RTP because it is diffi'cult to accurately maintain APRM indication of core THERMAL POWER consistent with, a heat balance when < 25% RTP. At low power levels, a high degree of accuracy is unnecessary because of the large, inherent margin to thermal limits (MCPR and APLHGR). At ~ 25% RTP, the Surveillance is required to have been satisfactorily performed within the last 7 days, in accordance with SR 3.0.2. A Note is provided, which allows an increase in THERMAL POWER    above 25%  if the  7 day  Frequency  is not  met (continued)
BFN-UNIT 2                      B  3.3'-26                              Amendment
 
0'~
      '
L
 
RPS          Instrumentation B 3.3.1.1 BASES SURVEILLANCE SR  3.3. 1. 1.2  (continued)
RE(UIREMENTS per  SR 3.0.2. In  this event, the  SR must be performed within  12 hours    after reaching or    exceeding 25% RTP. Twelve hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.
SR  3.3.1.1.3 A CHANNEL FUNCTIONAL TEST      is performed on each required channel to ensure      that the entire .channel will perform the intended function.
Any  setpoint adjustment shall be consistent with the assumptions    of the current plant specific setpoint methodology.
As  noted,  SR  3.3.1. 1.3 is not required to be performed when entering  MODE 2  from MODE 1, since testing of the MODE 2 required  IRM  Functions cannot be performed in MODE 1 without utilizing    jumpers, lifted leads, or movable links. This allows entry. into MODE 2      if the 7 day Frequency is not met per SR 3.0.2. In this event, the SR must be performed within 12 hours after entering MODE 2 from MODE 1. Twelve hours is based on operating experience and: in consideration of providing a reasonable time in which to complete the SR.
A  Frequency of 7 days provides an acceptable level of system average unavailability over the Frequency interval and is based on  reliability analysis      (Ref. 9).
SR  3.3.1.1.4 A CHANNEL FUNCTIONAL TEST      is performed on each required channel to ensure      that the entire channel wi.l.l perform. the intended function. A Frequency of 7 days provides an acceptable level of system average availability over the Frequency and is based on the reliability analysis of Reference 9.      (The  RPS  Channel Test Switch                      Function's CHANNEL FUNCTIONAL TEST      Frequency was  credited in the analysis to extend      many  automatic scram Functions'requencies.)
0                                                                                            (continued)
BFN-UNIT 2                        B 3.3-27                                                  Amendment
 
'~
Ik
 
RPS  Instrumentation B 3.3.1.1 BASES SURVEILLANCE    S    3.3        and  S    3 3    1 6 REQUIREMENTS (continued) These    Surveillances are established to ensure that no gaps in  neutron  flux indication exist from subcritical to power operation for monitoring core reactivity status.
The  overlap between    SRMs  and IRMs  is required to  be demonstrated to ensure that reactor power will not be increased into a neutron flux region without adequate indication. This is required prior to withdrawing SRMs from the fully inserted position since indication is being transitioned from the SRMs to the IRMs.
The  overlap between IRHs and APRMs is of concern when reducing power into the IRM range. On power increases, the system design will prevent further increases (by initiating a rod block)
              .between if  adequate overlap is not maintained. Overlap IRMs and APRHs    exists  when  sufficient  IRMs and APRMs concurrently have onscale readings such that the transition between MODE 1 and MODE 2 can be made without either APRH downscale rod block, or IRH upscale rod block. Overlap between SRHs and IRHs      similarly exists  when,  prior to withdrawing the SRHs from .the fully inserted position, IRHs are above mid-seal'e on range 1 before SRHs have reached the upscale rod block.
As  noted,  SR  3.3.1.1.6 is only required to      be met  during entry into  NODE 2 from MODE 1.      That  is, after the overlap requirement has been met and indication has transitioned to the IRHs, maintaining overlap is not required (APRMs may be reading downscale once in MODE 2).
If overlap  for  a  group  of channels is not demonstrated (e.g.,  IRH/APRH  overlap), the reason for the failure of the Surveillance should be determined and the appropriate channel(s) declared inoperable. Only those appropriate channels that are required in the current NODE or condition should be declared inoperable.
A  Frequency of 7 days is reasonable based on engineering judgment and the reliability .of the IRMs and APRHs.
(continued)
C BFN-UNIT 2                          B  3.3-28                              Amendment
 
!l~
i~
0
 
RPS  Instrumentation 8 3.3.1.1 BASES SURVEILLANCE  SR  3.3.1.1.7 REQUIREMENTS (continued)  LPRH gain settings are determined from the local flux profiles measured by the Traversing Incore Probe (TIP)
System. This establishes the relative local flux profile for appropriate representative input to the APRM System.
The 1000 effective Full power hours Frequency is based on operating experience with LPRH sensitivity changes.
SR    3.3.1.1.8      SR  3.3.1.1.12    and SR  3.3.1.1.16 A CHANNEL FUNCTIONAL TEST          is performed  on each  required channel    to ensure that the entire channel will perform the intended function. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint .methodology. The 92 day Frequency of SR 3.3. 1. 1.8 is based on the rel.iability analysis of Reference 9.
The 184 day Frequency        of SR  3.3. 1. 1.16 for the scram pilot air  header  1'ow pressure    trip  function is based on the functional reliability        previously demonstrated by this function, the need for minimizing the radiation exposure associated with the functional testing of this function, and the increased risk to plant availability while the plant is in a half-scram condition during the performance of the functional testing versus the limited increase in reliability that would be obtained by the more frequent functional testing.
The 18 month Frequency        of SR 3.3. 1. 1. 12 is based on the need to perform this Surveillance under the conditions that apply during a. plant outage and the potential for an unplanned transient    if  the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the  18 month Frequency.
SR    3.3.1.1.9    SR    3.3.1.1.10  and SR    3.3.1.1.13 A CHANNEL CALIBRATION        is a complete check of the instrument loop  and  the  sensor. This  test verifies that the channel responds    to  the  measured  parameter    within the necessary range and accuracy.        CHANNEL  CALIBRATION  leaves the channel (continued)
BFN-UNIT 2                            B 3.3-29                                Amendment
 
il~
.i
 
RPS  Instrumentation B 3.3.1.1 SURVEILLANCE  SR  3.3. 1. 1.9  SR  3.3. 1. 1.10 and SR  3.3. 1. 1. 13 (continued)
REgUIREHENTS adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.      For the APRH Simulated Thermal Power-High Function, SR 3.3.1.1.9 also includes calibrating the associated recirculation loop flow channel. For HSIV-Closure, SDV Water Level-High (Float Switch), and TSV-Closure Functions, SR 3.3.1.1.13 also includes physical inspection and actuation of the switches.
Note  1  to  SR  3.3.1.1.9 states that neutron detectors are excluded from    CHANNEL CALIBRATION because they are passive devices, with minimal drift, and because of the difficulty of simulating a meaningful signal. Changes in neutron detector sensitivity are compensated for by performing the 7 day calorimetric calibration (SR 3.3.1. 1.2) and the 1000 effective full power hours LPRH calibration against the TIPs (SR    3.3.1.1.7). A second  Note  for SR 3.3.1.1.9      is provided that requires the        APRH and IRH SRs    to  be performed within  12  hours  of entering    HODE 2 from HODE 1.      Testing  of the  NODE 2 APRH    and IRH Functions cannot be performed          in HODE 1  without utilizing jumpers, lifted leads, or movable 1;inks. This Note allows entry into NODE 2 from NODE 1            if the associated'requency is not met per SR 3.0.2. Twelve hours is based on operating experience and in consideration of providing a reasonable time in which to complete the SR.
            'he  Frequency of SR 3.3.1. 1.9 is based upon the assumption of  a 92  day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3. 1. 1. 10 is based upon the assumption of a 184 day calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis. The Frequency of SR 3.3.1. 1.13 is based upon the assumption of an 18 month    calibration interval in the determination of the magnitude    of .equipment drift in the setpoint analysis.
SR  3.3.1.1'.11 The Average Power Range Honitor Flow Biased Simulated Thermal Power- High Function uses the recirculation loop drive flows to vary the trip setpoint. This SR ensures that the total loop drive flow signals from the flow units used to vary the setpoint are appropriately compared to a (continued)
BFN-UNIT 2                          B 3.3-30                                Amendment
 
0 RPS Instrumentation B 3.3.1.1 SURVEILLANCE  SR  3.3.1.1.11    (continued)
RE(UIR EVENTS The Frequency  of,18 months is based on system design considerations which do not support flow unit bypass during operation. Thus, this calibration is performed during refueling outages.
SR  3.3.1.1.14 The LOGIC SYSTEM FUNCTIONAL TEST .demonstrates the OPERABILITY of the required    trip  logic for a specific channel. The    functional  testing  of control rods (LCO 3.1.3),  and  SDV vent  and  drain valves  (LCO 3.1.8),
overlaps this Surveillance to provide complete testing of the assumed safety function.
The 18 month Frequency    is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient        if the Surveillance were performed with the reactor at power.
Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.
SR  3.3.1.1.15 This SR ensures that scrams initiated from the Turbine Stop Valve Closure and Turbine Control Valve Fast Closure, Trip Oil Pressure Low Functions will not be inadvertently bypassed. when THERMAL POWER is    ) 30% RTP. This involves margins for calibration of the bypass    channels. Adequate the instrument setpoint methodologies      are  incorporated  into the actual setpoint.
If any  bypass channel's setpoint is nonconservative (i.e.,
the Functions are bypassed at a 30% RTP, either due to open main turbine bypass valve(s) or other reasons), then the affected Turbine Stop Valve- Closure and Turbine Control Valve Fast Closure, Trip Oil Pressure- Low Functions are considered inoperable. Alternatively, the bypass channel can be placed in the conservative condition (nonbypass).          If placed in. the nonbypass condition (Turbine Stop Valve .Closure and Turbine Control Valve Fast Closure, Trip (continued)
BFN-UNIT 2                        B 3.3-31                              Amendment
 
il~
RPS  Instrumentation B 3.3.1.1 BASES SURVEILLANCE    SR  3.3.1.1.'15    (continued)
REQUIREMENTS.
Oil Pressure Low Functions are enabled), .this        SR  is met and the channel is considered OPERABLE.
The Frequency  of  18  months, is, based on engineering judgment and reliability of. the components.
REFERENCES      1. FSAR,  Section'..2.
: 2. FSAR, Chapter    14.
: 3. NED0-23842,  "Continuous Control    Rod  Withdrawal in the Startup Range," April 18, 1978.
: 4.  .FSAR,  Appendix N.
: 5. FSAR,  Section )4.6.2.
: 6. FSAR,  Section 6.5.
: 7. FSAR,  Section 14.5.
: 8. P. Check (NRC)    letter to,G..Lainas    (NRC),, "BWR Scram Discharge System Safety      Evaluation," December '1, 1980.
: 9. NEDC-30851-P-A , "Technical Specification Improvement Analyses for,BHR Reactor Protection System,"
March 1988.
              .10. NRC  No. 93-102, "Final Policy Statement:on Technical Specification Improvements," July '23, 1993.
: 11. NED-32-0286, "Technical      Specification Improvement Analysis for Browns. Ferry Nuclear Plant, Unit 2,"
October 1995.
BFN-UNIT '2                        B  3.3-32                                Amendment
 
il SRH Instrumentation B 3.3.1.2 B 3.3  INSTRUMENTATION B 3.3.1.2  Source Range Monitor (SRH) Instrumentation BASES BACKGROUND          The SRHs  provide the operator with information relative to the neutron flux level at very low flux levels in the core.
As such, the SRH indication is used by the operator to monitor the approach to criticality and determine when criticality is achieved. The SRHs are maintained fully inserted until the count rate is greater than a minimum allowed count rate (a control rod block is set at this condition). After SRH to intermediate range monitor (IRM) overlap is demonstrated (as required by SR 3.3. 1.1.5), the SRMs are normally fully withdrawn from the core.
The  SRM subsystem of the Neutron Monitoring System (NHS), as described in Reference 1, consists of four channels. Each of the SRM channels can be bypassed, but only one at any given time, by the operation of a bypass switch. Each channel includes one detector that can be physically positioned in the core. Each detector assembly consists of a miniature fission chamber with associated cabling, signal conditioning equipment, and electronics associated with the various SRH functions. The signal conditioning equipment converts the current pulses from the fission chamber to
                  ,
analog DC currents that correspond to the count rate. Each channel also includes indication, alarm, and control rod blocks. However, this LCO specifies OPERABILITY requirements only for the monitoring and indication functions of the SRHs.
During refueling, shutdown, and low power operations, the primary indication of neutron flux levels is provided by the SRMs or special movable detectors connected to the normal SRH  circuits. The SRHs provide monitoring of reactivity changes  during fuel or control rod movement and give the control room operator early indication of subcritical multiplication that could be indicative of an approach to criticality.
APPLICABLE          Prevention and mitigation of prompt reactivity excursions SAFETY ANALYSES    during refueling and low power operation is provided by LCO 3.9. l, "Refueling Equipment Interlocks"; LCO 3.1.1, (continued)
BFN-UNIT 2                            B 3.3-33                          Amendment
 
il ik
 
SRM Instrumentation B 3.3.1.2 BASES APPLICABLE      "SHUTDOWN MARGIN (SDM)"; LCO 3.3. 1.1, "Reactor Protection SAFETY ANALYSES System (RPS) Instrumentation"; IRM Neutron Flux-High and (continued)  Average Power Range Monitor (APRM) Neutron Flux-High, Setdown Functions; and LCO 3.3.:2. 1, "Control Rod Block Instrumentation."
The SRMs have no  safety function and, are not assumed to function during any FSAR design basis accident or transient analysis. However, the SRMs provide the only on scale monitoring of neutron flux levels during startup and refueling. Therefore, they are being retained in Technical Specifications.
LCO            During startup in  MODE 2, three of the four SRM channels are required to be OPERABLE to monitor the reactor flux level prior to and during control rod withdrawal, subcritical multiplication and reactor criticality, and neutron flux level and reactor period until the flux level is sufficient to maintain the IRMs on Range 3 or above. All but one of the channels are required in order to provide a representation of the overall core response during those periods when reactivity changes are occurring throughout the core..
In MODES 3 and 4, with the reactor shut down, two SRM channels provide redundant monitoring of flux levels in the core.
In MODE 5, during a spiral offload or reload, an SRM outside the fueled region will no longer be required to be OPERABLE, since  it is not capable of monitoring neutron flux in the fueled region of the core. Thus, CORE ALTERATIONS are allowed in a quadrant with no OPERABLE SRM in an adjacent quadrant provided the Table 3.3. 1.2-1, footnote (b),
requirement that the bundles being spiral reloaded or spiral offloaded are all in a single fueTed region containing at least one OPERABLE SRM is met. Spiral reloading and offloading encompass reloading or offloading a cell on the edge of a continuous fueled region (the cell can be reloaded or offloaded in any sequence).
In nonspiral routine operations, two SRMs are required to be OPERABLE  to provide redundant monitoring of reactivity (continued)
BFN-UNIT 2                        B 3.3-34                            Amendment
 
~  i il~
 
SRM Instrumentation B 3.3.1.2 LCO          changes occurring in the reactor core. Because of the local (continued) nature of reactivity changes during refueling, adequate coverage is provided by requiring one SRM to be OPERABLE in the quadrant of the reactor core where CORE ALTERATIONS are being performed, and the other SRH to be OPERABLE in an adjacent quadrant containing fuel. These requirements ensure that the reactivity of the core will be continuously monitored during CORE ALTERATIONS.
Special movable detectors, according to footnote (c) of Table 3.3.1.2-1, may be used in place of the normal SRH nuclear detectors. These special detectors must be connected to the normal SRH circuits in the NMS, such that the applicable neutron flux indication can be generated.
These special detectors provide more flexibility in monitoring reactivity changes during fuel loading, since they can be positioned anywhere within the core during refueling. They must still meet the location requirements of SR 3.3.1.2.2 and all other required SRs for SRMs.
For an SRH channel to be considered OPERABLE,    it must  be providing neutron flux monitoring indication.
APPLICABILITY The SRMs are  required to  be OPERABLE in MODES 2, 3, 4, and 5 prior to the  IRMs being on scale on Range 3 to provide for neutron monitoring. In MODE 1, the APRHs provide adequate monitoring of reactivity changes in the core; therefore, the SRMs are not required. In MODE 2, with IRMs on Range 3 or above, the IRHs provide adequate monitoring and the SRHs are not required.
ACTIONS      A.l  and B.l In MODE 2, with the IRMs on Range 2 or below, SRMs provide the means of monitoring core reactivity and criticality.
With any number of the required SRHs inoperable, the ability to monitor neutron flux is degraded. Therefore, a limited time is allowed to restore the inoperable channels to OPERABLE  status.
(continued)
BFN-UNIT 2                      B 3.3-35                            Amendment
 
i ik
 
SRM  Instrumentation B 3.3.1.2 ACTIONS    A.l  and B. 1    (continued)
Provided at least one SRH remains OPERABLE, Required Action A. 1 allows 4 hours to restore the required SRHs to OPERABLE status.        This time is reasonable because there is adequate capability remaining to monitor the core, there is limited risk of an event during this time, and there is sufficient time to take corrective actions to restore the required SRMs to OPERABLE status or to establish alternate IRM monitoring capability.            During this time, control rod withdrawal    and  power  increase    is not precluded by this Required Action. Having the ability to monitor the core with at least one SRH, proceeding to IRH Range 3 or greater (with overlap required by SR 3.3.1.1.5), and thereby exiting the Applicability of this LCO, is acceptable for ensuring adequate core monitoring and allowing continued operation.
With three required        SRMs  inoperable, Required Action B.l allows no positive changes in reactivity (control rod withdrawal must be immediately suspended) due to inability to monitor the changes. Required Action A.l still applies and allows 4 hours to restore monitoring capability prior to requiring control rod insertion. This allowance is based on the limited risk of an event during this time, provided that no control rod withdrawals are allowed, and the desire to concentrate efforts on repair, rather than to immediately shut down, with no SRMs OPERABLE.
C.1 In MODE 2,  if thewithin required the number    of  SRHs  is not restored to allowed Completion Time, the OPERABLE status reactor shall      be  placed    in  MODE  3. With all control rods fully inserted,      the  core  is  in  its  least reactive state with the most margin      to  criticality.      The  allowed Completion Time of 12 hours    is  reasonable,      based  on  operating    experience, to reach MODE    3  in  an  orderly    manner    and  without  challenging plant systems.
D. 1 and D.2 With one or more required SRMs inoperable in MODE 3 or 4, the neutron flux monitoring capability is degraded or nonexistent. The requirement to fully insert all insertable (continued)
BFN-UNIT 2                        B 3.3-36                                      Amendment
 
ili SRM  Instrumentation B 3.3.1.2 BASES ACTIONS      D. 1 and  0.2  (continued) control rods ensures that the reactor will be at its minimum reactivity level while no neutron monitoring capability is available. Placing the reactor mode switch in the shutdown position prevents subsequent control rod withdrawal by maintaining a control rod block. The allowed Completion Time of 1 hour is sufficient to accomplish the Required Action, and takes into account the low probability of an event requiring the SRM occurring during this interval.
E.l  and E.2 With one or more required    SRM  inoperable in              MODE  5, the ability to detect local reactivity    changes            in the core during refueling is degraded. CORE ALTERATIONS must be immediately suspended and action must be immediately initiated to insert all insertable control rods in core cells containing one or more fuel assemblies. Suspending CORE ALTERATIONS prevents the two most probable causes of reactivity changes, fuel loading and control rod withdrawal, from occurring. Inserting all insertable control rods ensures that the, reactor will be at its minimum reactivity given that fuel is present in the core. Suspension of CORE ALTERATIONS shall not preclude completion of the movement of a component to a safe, conservative position.'ction (once required to be initiated) to insert control rods must continue until all i'nsertable rods in core cells containing one or more fuel assemblies are inserted.
SURVEILLANCE As noted  at the beginning of the SRs, the SRs for each SRM RE(UIREMENTS Applicable MODE or other specified conditions are found in the SRs column of Table 3.3. 1.2-1.
SR  3.3.1.2.1  and SR  3.3.1.2.3 Performance  of the  CHANNEL CHECK  ensures            that a gross failure of instrumentation has not      occurred.              A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar. parameter on another channel.                    It is based on the assumption that instrument                  channels (continued)
BFN-UNIT 2                      B 3.3-37                                          Amendment
 
lli Q
0
 
SRH  Instrumentation B 3.3.1.2 BASES SURVEILLANCE  SR  3.3.1.2.1  and SR  3.3.1.2.3    (continued)
RE(U IREHENTS monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious.      it A CHANNEL CHECK will detect gross channel failure; thus, is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement  criteria are determined by the plant staff based on a  combination of the channel instrument uncertainties, including indication and readability.        If a channel is outside the criteria,    it  may be an indication that the instrument has drifted outside its limit.
The Frequency of once every 12 hours for SR 3.3.1.2.1 is based on operating experience that demonstrates channel failure is rare. While in HODES 3 and 4, reactivity changes are not expected; therefore, the 12 hour Frequency is relaxed to 24 hours for SR 3.3.1.2.3. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.
SR  3.3.1.2.2 To  provide adequate coverage of potential reactivity changes in the core, when the fueled region encompasses more than one SRH, one SRH .is required to be OPERABLE in the quadrant where CORE ALTERATIONS are being performed, and the other OPERABLE SRH must be in an adjacent quadrant containing fuel. Note 1 states that the SR is required to be met only during CORE ALTERATIONS. It is riot required to be met at other times in NODE 5 since core reactivity changes are not occurring. This Surveillance consists of a review of plant logs to ensure that SRHs required to be OPERABLE for given CORE ALTERATIONS are, in fact, OPERABLE.          In the event that only one SRH is    required  to be OPERABLE  (when  the fueled region encompasses only      one SRH),  per  Table  3.3.1.2-1, footnote (b), only the a. portion. of this SR is required.
Note 2 clarifies that more than one of the three requirements can be met by the same OPERABLE SRH. The 12 hour Frequency is based upon operating experience and supplements operational controls over refueling activities (continued)
BFN-UNIT 2                        B 3.3-38                                Amendment
 
ili il,'
 
SRM Instrumentation B 3.3.1.2 SURVEILLANCE SR  3.3.1.2.2  (continued)
REQUIREMENTS that include steps to ensure that the  SRMs required by the LCO are in the proper quadrant.
SR  3.3.1.2.4 This Surveillance consists of a verification of the SRM instrument readout to ensure that the SRM reading is greater than a specified minimum count rate, which ensures that the detectors are indicating count rates indicative of neutron flux levels within the core. With few fuel assemblies loaded, the SRMs will not have a high enough count rate to satisfy the SR. Therefore, allowances are made for loading sufficient "source" material, in the form of irradiated fuel assemblies, to establish the minimum count rate.
To  accomplish this, the SR is modified by Note 1 that states that the count rate is not required to be met on an SRM that has less than or equal to four fuel assemblies adjacent to the SRM and no other fuel assemblies are in the associated core quadrant. With four or less fuel assemblies loaded around each SRM and no other fuel assemblies in the associated core quadrant, even with a control rod withdrawn, the configuration will not be critical. In addition, Note 2 states that this requirement does not have to be met during spiral unloading. If the core is being unloaded in this manner, the various core configurations encountered will not be  critical.
The Frequency  is based upon channel redundancy and other information available in the control room, and ensures that the required channels are frequently monitored whi.le core reactivity changes are occurring. When no reactivity changes are in progress, the Frequency is relaxed from 12 hours to 24 hours.
SR  3.3.1.2.5 and SR  3.3.1.2.6 Performance of a CHANNEL FUNCTIONAL TEST demonstrates the associated channel will function properly. SR 3.3.1.2.5 is required in MODE 5, and the 7 day Frequency ensures that the channels are OPERABLE whi.le core reactivity changes could be in progress. This Frequency is reasonable, based on (continued)
BFN-UNIT 2                      B 3.3-39                          Amendment
 
ik~
il~
 
SRM  Instrumentation B  3.3.1.2 BASES SURVEILLANCE SR  3.3. 1.2.5  and SR    3.3.1.2.6      (continued)
REQUIREMENTS operating experience      and on  other Surveillances (such        as a CHANNEL CHECK),    that  ensure  proper functioning between CHANNEL FUNCTIONAL TESTS.
SR  3.3.1.2.6 is required in        MODE 2  with  IRMs on Range 2    or below, and in    MODES 3  and 4. Since core    reactivity    changes do  not normally take place in MODES 3 and 4 and core reactivity    changes are due only to control rod movement in MODE 2, the Frequency has been extended from 7 days to 31 days. The 31 day Frequency is based on operating experience and on other Surveillances (such as CHANNEL CHECK) that ensure proper functioning between CHANNEL FUNCTIONAL TESTS.
Verification of the signal to noise ratio also              ensures  that the detectors are inserted to an acceptable operating level.
In a fully withdrawn condition, the detectors are sufficiently removed from the fueled region of the core to essentially eliminate neutrons from reaching the detector.
Any count rate obtained while the detectors are fully withdrawn is assumed to be "noise" only.
The Note  to the Surveillance allows the Surveillance to              be delayed,  until entry into the specified condition of the Applicability (THERMAL POWER decreased to IRM Range 2 or below). The SR must be performed within 12 hours after IRMs are on Range    2  or below. The allowance to enter the Applicability    with  the 31 day Frequency not met is reasonable,    based    on the limited time of 12 hours allowed after entering    the  Applicability    and the inability to perform  the  Surveillance    while  at  higher power levels.
Although  the  Surveillance    could  be  performed while on IRM Range 3,  the  plant    would  not  be  expected    to maintain steady state  operation    at  this  power  level. In  this  event, the 12 hour Frequency is reasonable,          based on the SRMs being otherwise verified to be OPERABLE (i.e., satisfactorily performing the CHANNEL CHECK) and the time required to perform the Surveillances.
SR  3.3.1.2.7 Performance of a CHANNEL CALIBRATION at a Frequency of 92 days verifies the performance of the SRM detectors and (continued)
BFN-UNIT 2                        B  3.3-40                                  Amendment
 
ik~
il~
 
SRM Instrumentation B 3.3.1.2 SURVEILLANCE  SR    3.3.1.2.7 RE(UIREMENTS                    (continued)'ssociated circuitry. The Frequency considers the plant conditions required to perform the test, the ease of performing the test, and the likelihood of a change in the system or component status.                        The neutron detectors are excluded from the CHANNEL,CALIBRATION (Note 1) because they cannot readily be adjusted. The detectors are fission chambers that are des'igned to have a relatively constant sensiti.vity over the range and with an accuracy specified for  a  fixed useful                      life.
Note 2    to the Surveillance allows the Surveillance to be delayed    until entry into, the specified condition of the Applicability. The SR must be performed in MODE 2 within 12 hours of entering MODE 2 with IRMs on Range 2 or below. The al.lowance to enter the Applicability with the 18 month Frequency .not met is reasonable, based on the limited time of 12 hours allowed after entering the Applicability and the inability to perform the Surveillance while at higher power levels. Although 'the Surveillance could be performed while on IRM Range', the plant would not be expected to maintain steady state operation at this power level. In this event, the 12 hour 'Frequency is reasonable, based on the SRMs being otherwise verified to be OPERABLE (i.e., satisfactorily performing the CHANNEL CHECK) and the time required to
              .perform the Surveillances.
REFERENCES    1. FSAR,  Section 7.5.4.
BF.N.-UNIT 2                                          B  3.3-41                        Amendment
 
~ i i
ik
 
Control  Rod Block Instrumentation B 3.3.2.1 B 3.3  INSTRUMENTATION B 3.3.2.1  Control  Rod  Block Instrumentation BASES BACKGROUND          Control rods provide the primary means for control of reactivity changes. Control rod block instrumentation includes channel sensors, logic circuitry, switches, and relays that are designed to ensure that specified fuel design limits are not exceeded for postulated transients and accidents. During high power operation, the rod block monitor (RBM) provides protection for control rod withdrawal error events.'uring low power operations, control rod blocks from the rod worth minimizer (RWM) enforce specific control rod sequences designed to mitigate the consequences of the control rod drop accident (CRDA). During shutdown conditions, control rod blocks from the Reactor Mode Switch- Shutdown Position Function ensure that all control rods remain inserted to prevent inadvertent criticalities.
The purpose  of the RBM is to limit control rod withdrawal      if local. ized neutron flux exceeds a predetermined setpoint during control rod manipulations. It is assumed to function to block further control rod withdrawal to preclude a MCPR Safety Limit (SL) violation. The RBM supplies a trip signal to the Reactor Manual Control System (RHCS) to appropriately inhibit control rod withdrawal during power oper ation above the low power range setpoint. The RBM has two channels, either of which can initiate a control rod block when the channel output exceeds the control rod block setpoint. One RBM channel inputs into one RMCS rod block circuit and the other RBM channel inputs into the second RMCS rod block circuit. The RBM channel signal is generated by averaging a set of local power range monitor (LPRM) signals at various core heights surrounding the control rod being withdrawn. A signal from one average power range monitor (APRM) channel assigned to each Reactor Protection System (RPS) trip system supplies a reference signal for the RBM channel in the same trip system. If the APRM is indicating less than the low power setpoint, the RBM is automatically bypassed.        The RBM is also automatically bypassed    if  a  peripheral control  rod is selected (Ref. 1).
(continued)
BFN-UNIT 2                            B 3.3-42                              Amendment
 
il~
0
 
Control  Rod Block Instrumentation B  3.3.2.1 BASES BACKGROUND        The purpose  of the RWM is to control rod patterns during (continued)    startup and'hutdown, such that only specified control rod sequences and relative positions are allowed over the operating range from all control rods inserted to lOX RTP.
The sequences effectively limit the potential amount and rate of reactivity increase during a CRDA. Prescribed control rod sequences are stored in the RWM, which will initiate control rod withdrawal and insert blocks when the actual sequence deviates beyond allowances from the stored sequence. The RWM determines the actual sequence 'based position indication for each control rod. The RWM also uses feedwater flow and steam flow signals to determine when the reactor power is above the preset power level at which the RWM  is automatically bypassed (Ref.. 2). The    RWM  is  a  single channel system    that provides input into both    RMCS  rod block circuits.
With the reactor mode switch in. the shutdown position, a control rod withdrawal block is applied to all control rods to ensure that the shutdown condition is maintained. This Function, prevents inadvertent criticality as the result of a control rod withdrawal during MODE 3 or 4, or during MODE 5 when  the reactor  .mode switch is required to be in the shutdown  position. The reactor mode switch. has two channels, each inputting into a separate RHCS rod block circuit. A. rod block in either RMCS circuit will provide          a control rod,block to all control, rods.
APPLICABLE        l. od Block Monitor SAFETY. ANALYSES, LCO, and          The RBH is designed    to prevent violation of the HCPR APPLICABILITY    SL and the cladding    lh plastic strain fuel design limit that may result from a single control rod withdrawal error (RWE) event. The analytical methods and assumptions used in evaluating the RWE event are summarized in Reference 3. A statisti'cal analysis of RWE events was performed to determine the RBH response for both channels for each event.
From these responses, the fuel thermal 'performance as a function of RBM Allowable Value was determined. Note that the RBH setpoint is flow-biased until implementation of ARTS improvements described in Reference 3. However, the generic RWE analysis in Reference 3 is currently applicable to establish required conditions for      RBM OPERABILITY..
(continued)
BFN-UNIT 2                            B 3.3-43                              Amendment
 
ik~
Control  Rod  Block Instrumentation B 3.3.2.1 APPLICABLE              d  lock  o  tor (continued)
SAFETY ANALYSES, LCO, and        The  RBH  Function satisfies Criterion    3  of the NRC  Policy APPLICABILITY    Statement  (Ref. 10).
Two  channels .of the  RBH  are required to be  OPERABLE,  with their setpoints within the appropriate Allowable Value to ensure that no single instrument failure can preclude a rod from this Function. The setpoints are calibrated              'lock consistent with applicable setpoint methodology (nominal trip setpoint).
Nominal trip setpoints      are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Values between successive CHANNEL CALIBRATIONS. Oper ation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable.
Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor power), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g.,
trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters .obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined accounting for the remaining instrument error s (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration toler ances, instrument drift, and severe environmental effects (for channels that must function in, harsh environments as defined by 10      CFR  50.49) are accounted    for.
The RBH is assumed to mitigate      the consequences  of an RWE event when operating > 2%'TP.          Below this  power  level, the consequences of an RWE event will not exceed the HCPR SL and, therefore, the RBH is not required to be OPERABLE (Ref. 3). When operating < 9N RTP, analyses (Ref. 3) have shown  that with an initial HCPR h 1.70, no RWE event will result in exceeding the HCPR SL. Also, the analyses demonstrate that when operating at > 9'TP with HCPR > 1.40, no RWE event will result in exceeding the HCPR (continued)
BFN-UNIT 2                          B  3.3-44                              Amendment
 
Qi il~
il
 
Control  Rod Block Instrumentation B  3.3.2.1 APPLICABLE      1    od 8 ock    onitor (continued)
SAFETY ANALYSES, LCO, and        SL  (Ref. 3). Therefore, under these conditions, the          RBH is APPLICABILITY    also not required to be OPERABLE.
: 2. od  Wo  th inimize The  RWM  enforces the banked position withdrawal sequence (BPWS)  to ensure that the initial conditions of the CRDA analysis are not violated. The analytical methods and assumptions used in evaluating the CRDA are summarized in References 4, 5, 6, and 7. The BPWS requires that control rods be moved in groups, with all control rods assigned to a specific group required to be within specified banked positions. Requirements that the control rod sequence is in compliance with the BPWS are specified in LCO 3.1.6, "Rod Pattern Control."
The  RWM Function satisfies Criterion 3      of the NRC  Policy Statement (Ref. 10).
Since the    RWM is designed to act as a backup to operator control of the rod sequences, only one channel of the RWM is available and required to be OPERABLE (Ref. 7). Special circumstances provided for in the Required Action of LCO 3.1.3, "Control Rod OPERABILITY," and LCO 3.1.6 may necessitate bypassing the RWM to allow continued operation with inoperable control rods,,or to allow correction of a control rod pattern not in compliance with the BPWS. The RWM may be bypassed    as .required by these conditions, but then  it  must be considered inoperable and the Required Actions of this LCO followed.
Compliance with the    BPWS,  and  therefore  OPERABILITY  of the RWM,  is required in    MODES 1 and  2 when THERMAL POWER    is
( 10% RTP. When THERMAL POWER    is > I'll RTP, there is no possible control rod configuration that results in a control rod worth that could exceed the 280 cal/gm fuel damage limit during a CRDA (Refs. 5 and 7). In MODES 3 and 4, all control rods are required to be inserted into the core; therefore, a CRDA cannot occur. In MODE 5, since only a single control rod can be withdrawn from a core cell containing fuel assemblies, adequate SDH ensures that the consequences of a CRDA are acceptable, since the reactor will be subcritical.
(continued)
BFN-UNIT 2                          B 3.3-45                              Amendment
 
ik~
0 0
 
Control  Rod  Block Instrumentation B 3.3.2.1 BASES APPLICABLE      3. e ctor  Mode Sw  t Shutdow    Posit'on SAFETY ANALYSES, LCO, and        During  MODES 3 and 4, and during MODE 5 when the reactor APPLICABILITY    mode  switch is required to be in the shutdown position, the (continued)    core  is assumed to be subcritical; therefore, no positive reactivity insertion events are analyzed. The Reactor Mode Switch-Shutdown Position control rod withdrawal block ensures that the reactor remains subcritical by blocking control rod withdrawal, thereby preserving the assumptions of the safety analysis.
The Reactor Mode Switch -Shutdown    Position Function satisfies Criterion 3 of the NRC  Policy Statement (Ref. 10).
Two  channels are required to be OPERABLE to ensure that no single channel failure will preclude a rod block when required. There is no Allowable Value for this Function since the channels are mechanically actuated based solely on reactor mode switch position.
During shutdown conditions (MODE 3, 4, or 5), no positive reactivity insertion events are analyzed because assumptions are that control rod withdrawal blocks are provided to prevent criticality. Therefore, when the reactor mode switch is in the shutdown position, the control rod withdrawal block is required to be OPERABLE. During MODE 5 with the reactor. mode switch in the refueling position, the refuel position one-rod-out interlock (LCO 3.9.2, "Refuel Position One-Rod-Out Interlock" ) provides the required control rod withdrawal blocks.
With one RBM channel inoperable, the remaining OPERABLE channel is adequate to perform the control rod block function; however, overall reliability is reduced because a single failure in the remaining OPERABLE channel can result in no control rod block capability for the RBM. For this reason, Required Action A. 1 requires restoration of the inoperable channel to OPERABLE status. The Completion Time of 24 hours is based on the low probability of an event occurring coincident with a failure in the remaining OPERABLE channel.
(continued)
BFN-UNIT 2                          B  3.3-46                            Amendment
 
0 Control  Rod Block Instrumentation B 3.3;2.1 ACTIONS (continued)
If  Required Action A.l is not met and the associated Completion Time has expired, the inoperable channel must be placed in trip within 1 hour.      If both RBM channels are inoperable, the RBM is not capable of performing its intended function; thus, one channel must also be. placed in trip. This initiates a control rod withdrawal block, thereby ensuring that the RBM function is met.
The  1 hour Completion Time is intended to allow the operator time to evaluate and repair any discovered inoperabilities and is acceptable because    it minimizes risk while allowing time for restoration or tripping of inoperable channels.
C.l    C.    .1 C. . .2  a d  C.2.
With the  RWM inoperable during a reactor startup,    the operator is still capable of enforcing the prescribed control rod sequence. However, the overall reliability is reduced because a single operator error can 'result in violating the control rod sequence. Therefore, control rod movement must be immediately suspended      except by scram.
Alternatively, startup    may  continue  if at least 12 control rods have already been withdrawn, or a reactor startup with an inoperable RWM during withdrawal of one or more of the first 12 rods was not performed in the last 12 months.
These requirements minimize the number of reactor startups initiated with the RWM inoperable. Required Actions C.2.1.1 and C.2.1.2 require verification of these conditions by review of plant logs. and control room indications. Once Required Action C.2.1.1 or C.2.1.2 is satisfactorily completed, control rod withdrawal may proceed in accordance with the restrictions imposed by Required Action C.2.2.
Required Action C.2.2 allows for the RWM Function to be performed manually and requires a double check of compliance with the prescribed rod sequence by a second licensed operator (Reactor Operator or Senior Reactor Operator) or other qualified member of the technical staff (e.g., a qualified shift technical advisor or reactor engineer).
(continued)
BFN-UNIT'                        B 3.3-47                              Amendment
 
~ i 0
 
Control  Rod  Block Instrumentation B 3.3.2.1 BASES ACTIONS    C      .2      C    1.      d C.2.    (continued)
The  RWM may be bypassed  under these conditions to allow continued operations. In addition, Required Actions of LCO 3. 1.3 and LCO 3.1.6 may require bypassing the RWM, during which time the RWM must be considered inoperable with Condition C entered and its Required Actions taken.
With the  RWM inoperable during a reactor shutdown, the operator is still capable of enforcing the prescribed control rod sequence. Required Action 0.1 allows for the RWM Function to be performed manually and requires a double check of compliance with the prescribed rod sequence by a second licensed operator (Reactor Operator or Senior Reactor Operator) or other qualified member of the technical staff.
The RWM may be bypassed under these conditions to allow the reactor shutdown to continue.
            .1  nd With one Reactor Mode Switch -Shutdown Position control rod withdrawal block channel inoperable, the remaining OPERABLE channel is adequate to perform the control rod withdrawal block function. However, since the Required Actions are consistent with the normal action of an OPERABLE Reactor Mode Switch Shutdown Position Function (i.e., maintaining all control rods inserted), there is no distinction between having one or two channels inoperable.
In both cases (one or both channels inoperable),      suspending all control rod withdrawal and initiating action      to fully insert all insertable control rods in core cells      containing one or more fuel assemblies will ensure that the      core  is subcritical with adequate SDM ensured      by LCO  3.1.1. Control rods in core  cells containing no fuel    assemblies do not affect the reactivity of the core and      are therefore not required to be inserted. Action must      continue until all insertable control rods in core cells containing      one  or more fuel assemblies are    fully inserted.
(continued)
BFN-UNIT 2                    B 3.3-48                              Amendment
 
ili i
 
Control  Rod  Block Instrumentation B 3.3.2.1 SURVEILLANCE As  noted at the beginning of the SRs, the SRs for each RE(UIREMENTS Control  Rod Block instrumentation Function are found in the SRs column of Table 3.3.2. 1-1.
The  Surveillances are modified by a second Note (Note 2) to indicate that when an RBM channel is placed in an inoperable status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains control rod block capability. Upon completion of the Surveill'ance, or expiration. of the 6 hour al,lowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken.
This Note is based on the reliability analysis (Ref. 9) assumption of the average time required to perform a channel.
Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that a control rod block will be initiated when necessary.
SR  3.3.2.1.1 A CHANNEL -FUNCTIONAL TEST      is performed for each RBM channel to ensure  that  the  entire  channel    will per'form the intended function. It    includes  the  Reactor  Manual Control System input.
Any  setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology. The Frequency. of 92 days is based on reliability analyses (Ref. 8).
SR  3.3.2.1.2  and SR    3.3.2.1.3 A CHANNEL FUNCTIONAL TEST      is performed for the        RWM  to ensure that the entire    system  will  perform the intended function.
The  CHANNEL  FUNCTIONAL    TEST  for the RWM is performed by attempting  to  withdraw  a  control  rod not in compliance with the prescribed    sequence    and  verifying    a control rod block occurs. This    test  is  performed    as  soon  as possible after the applicable conditions      are  entered.      As  noted in the SRs, SR 3.3.2. 1.2 is not required      to  be. performed    until 1 hour after any control rod is      withdrawn    at  a  10%  RTP  in MODE 2.
As noted, SR 3.3.2.1.3 is      not  required    to  be  performed    until (continued)
BFN-'UNIT 2                      B 3.3-49                                    Amendment
 
il~
0 0
 
Control  Rod  Block Instrumentation B  3.3.2.1 BASES SURVEILLANCE SR  3.3.2. 1.2  and SR    3.3.2. 1.3  (continued)
REQUIREMENTS 1  hour  after THERMAL POWER    is reduced to a  10% RTP  in MODE  1. This allows entry into MODE 2 for SR 3.3.2.1.2, and THERMAL POWER reduction to a 10% RTP for SR 3.3.2.1.3, to perform the required Surveillance        if the 92 day Frequency is not met per SR 3.0.2. The 1 hour allowance is based on operating experience and in consideration of providing a reasonable time in which to complete the SRs. The Frequencies are based on reliability analysis (Ref. 8).
SR  3.3.2.1.4 A CHANNEL CALIBRATION      is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy.      CHANNEL CALIBRATION leaves the channel adjusted. to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.
As noted, neutron detectors are excluded from the CHANNEL CALIBRATION because they are passive devices, with minimal drift,    and because of the  difficulty  of simulating a meaningful signal.      Neutron detectors are adequately tested in  SR  3.3.1.1.2  and SR  3.3.1.1.7.
The Frequency    is based upon the assumption of a 184 day calibration interval in, the determination of the magnitude of equipment drift in the setpoint analysis.
SR  3.3.2.1.5 The  RWM  is automatically bypassed when power is above a specified value. The power level is determined from feedwater flow and steam flow signals. The automatic bypass setpoint must be verified periodically to be ) 10% RTP. If the RWM low power setpoint is nonconservative, then the RWN is considered inoperable. Alternately, the low power setpoint channel can be placed. in the conservative condition (nonbypass). If placed in the nonbypassed condition, the SR is met and the RWM is not considered inoperable. The Frequency is based on the trip setpoint methodology utilized for the    low power setpoint- channel.
(continued)
BFN-UNIT 2                        B 3.3-50                              Amendment
 
il ll 0
 
Control  Rod Block Instrumentation B  3.3.2.1 SURVEILLANCE  S    3.3.2.
REQUIREMENTS (continued) A CHANNEL FUNCTIONAL TEST      is performed for the Reactor Mode
 
Switch Shutdown Position        Function  to ensure that the entire channel will perform the intended function. The CHANNEL FUNCTIONAL TEST for the Reactor Mode Switch -Shutdown Position Function is performed by attempting to withdraw any control rod with'the reactor mode switch in the shutdown position. and verifying a control rod block occurs.
As noted    in the  SR,  the Surveillance is not required to be performed until 1 hour after the reactor mode switch is in the shutdown position, since testing of this interlock with the reactor mode switch in any other position cannot be performed without using jumpers, lifted leads, or movable links. This allows entry into NODES 3 and 4        if the 18 month Frequency is not. met per SR 3.0.2. The 1 hour allowance is based on operating experience and in consideration of providing a reasonable time in which to complete the SRs.
The 18 month Frequency      is based on the need  to perform this Surveillance under the conditions that apply during a plant
              .outage and the potential for an unplanned transient        if the Surveillance were performed with the reactor        at power.
Operating experience has shown these components usually pass the Surveillance when performed at the 18 month Frequency.
SR  3  3.2.1 7.
The  RWM will only    enforce the proper control rod sequence      if the rod sequence is properly input into the RWM computer.
This SR ensures that the proper sequence is loaded into the RWM so that  it  can perform its intended function. The Surveillance is performed once prior to declaring RWM OPERABLE following loading of sequence into RWM, since this is when rod sequence input errors are possible.
REFERENCES    1. FSAR,  Section 7.5.8.2.3.
: 2. FSAR,  Section 7.16.5.3.1.k.
(continued)
BFN-UNIT 2                          B 3.3-51                            Amendment
 
/Q~
ik~
il
 
Control Rod Block Instrumentation B 3.3.2.1 BASES REFERENCES      3. NEDC-32433P,  "Haximum Extended Load Line Limit and (continued)        ARTS Improvement Program Analyses for Browns Ferry Nuclear Plant Unit 1, 2 and 3," April 1995.
: 4. NEDE-24011-P-A-US, "General Electrical for Reload Fuel," Supplement Standard'pplication for United States,  (revision specified in the  COLR).
: 5.  "Modifications to the Requirements for Control Rod Drop Accident Mitigating Systems," BMR Owners'Group, July 1986.
: 6. NEDO-21231', "Banked  Position Withdrawal Sequence,"
January 1977.
: 7. NRC'ER, "Acceptance of Referencing, of Licensing Topical Report NEDE-24011-P-A," "General Electric Standard Application for Reactor Fuel, Revision 8, Amendment 17," December 27., 1987.
: 8. NEDC-30851-P-A, Supplement 1, "Technical Specification Improvement Analysis for BWR Control Rod Block
                  'nstrumentation," October 1988.
              '9. GENE-770-06-1, "Addendum to Bases for Changes to Surveillance Test Intervals and Allowed Out-of-Service Times for Selected Instrumentation Technical Specifications,"    February 1991.
: 10. NRC  No. 93-102,  "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                        B  3.3-52                                            Amendment
 
~ i 0
 
Feedwater and Main Turbine High Water Level    Trip Instrumentation B 3.3.2.2 B 3.3  INSTRUMENTATION B 3.3.2.2  Feedwater and Main Turbine High Water Level    Trip Instrumentation BASES BACKGROUND        The feedwater and main    turbine high water level trip instrumentation is designed to detect a potential failure of the Feedwater Level Control System that causes excessive feedwater flow.
With excessive feedwater flow, the water level'n the reactor vessel ri'ses toward the high water level reference point, causing the trip of the three feedwater pump turbines and the main turbine.
Reactor Vessel Water Level High signals are provided by level sensors that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level in the reactor vessel (variable leg). Two channels of Reactor Vessel Water Level High instrumentation per trip system are provided as input to a two-out-of-two initiation logic that trips the three feedwater pump turbines 'and the main turbine. There are two  trip  systems,  either of which will initiate    a trip.
The channels    include electronic equipment (e.g., trip units) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs a main feedwater and turbine trip signal to the trip logic.
A  trip of the feedwater pump turbines limits further increase in reactor vessel water level by limiting further addition of feedwater to the reactor vessel. A trip of the main turbine and closure of the stop valves protects the turbine from damage due to water entering the turbine.
APPLICABLE          The feedwater  and main turbine high water level trip SAFETY ANALYSES      instrumentation is assumed to be capable of, providing a turbine trip in the design basis transient analysis for a feedwater controller failure, maximum demand event (Ref. I).
The reactor vessel high water level trip indirectly initiates a reactor, scram from the main turbine trip (above 30% RTP) and trips the feedwater pumps, thereby terminating (continued)
BFN-UNIT 2                              B 3.3-53                            Amendment
 
il~
i ik
 
Feedwater and Hain Turbine High Water Level      Trip Instrumentation B 3.3.2.2 BASES APPLICABLE        the event. The  reactor scram mitigates the reduction in SAFETY ANALYSES  HCPR.
(continued)
Feedwater and main turbine high water level      trip instrumentation satisfies Criterion    3  of the  NRC Policy Statement (Ref. 3).
LCO              The LCO  requires two channels of the Reactor Vessel Water Level High instrumentation per trip system to be OPERABLE to ensure that no single instrument failure will prevent the feedwater pump turbines and main turbine trip on a valid Reactor Vessel Water Level High, signal. Both channels in either trip system are needed to provide trip signals in order for the feedwater    and main turbine trips to occur.
Each channel  must have  its setpoint set within the specified Allowable Value of SR    3.3.2.2.3. The Allowable Value is set to ensure that the thermal limits are not exceeded during the event. The actual setpoint is calibrated to be consistent with the applicable setpoint methodology assumptions. 'ominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between successive, CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable.
Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis.        The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. A channel is inoperable    if its actual trip setpoint is not within its required Allowable Value. The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, (continued)
BFN-UNIT 2                            B 3.3-54                            Amendment
 
O~
ll
 
Feedwater and Hain Turbine High Mater Level      Trip Instrumentation B 3.3.2.2 BASES LCO              instrument drift, and severe environmental effects (for (continued)    channels that must function in harsh environments as defined by 10 CFR 50.49) are accounted for.
APPLICABILITY    The feedwater and main    turbine high water level trip instrumentation is required to 'be OPERABLE at a 25% RTP to ensure that the fuel cladding integrity Safety Limit and the cladding 1% plastic strain, limit are not violated during the feedwater controller failure, maximum demand event. As discussed in the Bases for LCO 3.2.1, "Average Planar Linear Heat Generation Rate (APLHGR)," and LCO 3.2.2, "MINIMUM CRITICAL POWER RATIO (HCPR)," sufficient margin to these limi.ts exists below 25% 'RTP; therefore, these requirements are only necessary when operating at or above this power level.
A  Note.has been provided to modify the ACTIONS related to feedwater and main turbine high water level trip instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition 'has .been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in: separate entry into the Condition. Section 1.3 also specifies 'that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable feedwater and main turbine high water level trip instrumentation channels provide appropriate compensatory measures for separate inoperable channels.        As such, a Note has been provided that allows separate Condition entry for each inoperable feedwater and main turbine high water level trip instrumentation channel.
A.
1'ith
* one channel inoperable in one trip  system, the remaining two OPERABLE    channels in the  other  trip system can provide the required trip signal.      However, overall instrumentation reliability is reduced because a single failure in one of the two channels of that trip system (continued)
BFN-UNIT 2                            B 3.3-55                            Amendment
 
il~
ll'l
 
Feedwater and Hain Turbine High Water Level      Trip Instrumentation B 3.3.2.2 BASES ACTIONS        A. l  (continued) concurrent with feedwater controller failure, maximum demand event, may result in the instrumentation not being able to perform its intended function. Therefore, continued operation is only allowed for a limited time with one channel inoperable.      If the inoperable channel cannot be restored to OPERABLE status within the Completion Time, the channel must be placed in the tripped condition per Required Action A. l. Placing the inoperable channel in trip would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue with no further restrictions.
Alternately,    if it  is not desired to place the channel in trip (e.g.,    as in  the  case where placing the inoperable channel in trip would. result in a feedwater or main turbine trip), Condition C must be entered and its Required Action taken.
The Completion Time      of 7 days is based on the low probability of the event occurring coincident with        a single failure in a'remaining OPERABLE channel.
B.l With one or more channels inoperable in each trip system, the feedwater and main turbine high water level trip instrumentation cannot perform its design function (feedwater and main turbine high water level trip capability is not maintained). Therefore, continued operation is only permitted for a 2 hour period, during which feedwater and main turbine high water level trip capability must be restored. The .trip capability is considered maintained when sufficient channels are OPERABLE or in trip. such that the feedwater and main turbine high water level trip logic will generate a trip signal on a valid signal. This requires that two channels in one trip system be OPERABLE or in trip.
If the required channels cannot be restored to OPERABLE status or placed in trip, Condition      C must be entered and its Required Action taken.
The 2 hour Completion Time is sufficient for the operator to take corrective action, and takes into account the 1-ikelihood of an event requiring actuation of feedwater and main  turbine high water level    trip  instrumentation occurring (continued)
BFN-UNIT 2                          8  3.3-56                            Amendment
 
~ i i
 
Feedwater and Main Turbine High Water Level      Trip Instrumentation B 3.3.2.2 BASES ACTIONS          B. 1  (continued) during this period. It is also consistent with the 2 hour Completion Time provided in LCO 3.2.2 for Required Action A. 1, since this instrumentation's purpose is to preclude a MCPR violation.
C.1 With the required channels not restored to OPERABLE status or placed in trip, THERMAL POWER must be reduced to
                < 25% RTP within 4 hours.      As discussed in the Applicability section of the Bases, operation below 25% RTP results in sufficient margin to the required limits, and the feedwater and main turbine high water level trip instrumentation is not required to protect fuel integrity during the feedwater controller failure, maximum demand event. The allowed Completion Time of 4 hours is based on operating experience to reduce THERMAL POWER to < 25% RTP from full power conditions in    an orderly  manner and  without challenging plant systems.
SURVEILLANCE    The Surveillances are modified by a Note      to indicate that RE(UIREMENTS    when a channel is placed in an inoperable      status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6  hours provided the associated Function maintains feedwater and main    turbine high water level trip capability. Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 2) assumption of the average time required to perform channel Survei.llance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the feedwater pump turbines and main turbine will trip when necessary.
SR    3.3.2.2.1 Performance -of the CHANNEL CHECK once every 24 hours ensures that  a gross failure of instrumentation has not occurred.        A (continued)
BFN-UNIT 2                            B 3.3-57                            Amendment
 
~ i Feedwater and Main Turbine High Water Level          Trip Instrumentation B 3.3.2.2 BASES SURVEILLANCE    SR  3.3.2.2.1    (continued)
REQUIREMENTS CHANNEL CHECK    is normally    a  comparison  of the parameter indicated    on one  channel to    a  similar parameter on other channels. It is based on    the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive instrument drift in one of the channels, or something even more serious.          A CHANNEL CHECK  will detect gross channel failure; thus,          it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION.
Agreement    criteria  are determined by the plant staff based on a combination    of the channel instrument uncertainties, including indication and readability. If a channel is outside the criteria, it may be an indication that the instrument has drifted outside          its limits.
The Frequency    is  based on operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channel status during normal operational use of the displays associated with the channels required by the LCO.
SR  3.3.2.2.2 A CHANNEL FUNCTIONAL TEST        is performed on each required channel  to  ensure  that  the  entire channel will perform the intended  function. Any  setpoint  adjustment shall be consistent    with  the  assumptions    of the current plant specific setpoint      methodology.
The Frequency    of  92 days    is  based on  reliability analysis (Ref. 2).
SR  3.3.2.2.3 CHANNEL CALIBRATION      is a  complete check    of the instrument loop and  the sensor. This        test  verifies  the channel responds  to the measured      parameter  within  the necessary range and accuracy.        CHANNEL CALIBRATION    leaves the channel adjusted to account      for instrument    drifts  between successive (continued)
BFN-UNIT 2                            B 3.3-58                                Amendment
 
il~
0
 
Feedwater and Hain Turbine High Mater Level    Trip Instrumentation B 3.3.2.2 BASES SURVEILLANCE    SR  3.3.2.2.3    (continued)
REQUIREMENTS calibrations consistent with the plant specific setpoint methodology.
The Frequency  is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.
SR  3.3.2.2.4 The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required    trip logic for a specific channel. The system functional test of the feedwater and main turbine valves is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST to provide complete testing of the assumed safety function. Therefore, if  a valve is incapable of operating, the instrumentation would also be inoperable.
associated The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient    if the Surveillance were performed with the reactor at power. Operating experience has shown that these components usually pass the Surveillance when performed at the 18 month Frequency.
REFERENCES      1. FSAR,  Section 14.5.7.
: 2. GENE-770-06-1,    "Bases for Changes to Surveillance Test Intervals  and Allowed  Out-Of-Service Times for Selected Instrumentation Technical Specifications,"
February 1991.
: 3. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                            B 3.3-59                            Amendment
 
0 PAM Instrumentation B 3.3.3.1 B 3.3.3. 1 Post Accident Monitoring (PAM) Instrumentation BASES BACKGROUND      The primary purpose    of the PAM instrumentation is to display plant  variables  that  provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Events.
The instruments that monitor these variables are designated as Type A, Category 1, and non-Type A, Category 1, in accordance with Regulatory Guide 1.97 (Ref. 1).
The OPERABILITY    of the accident monitoring instrumentation ensures  that there is sufficient information available on selected plant parameters to monitor and assess plant status and behavior following an accident.      This capability is consistent with the recommendations of Reference 1.
APPLICABLE      The  PAM'nstrumentation LCO ensures the OPERABILITY of SAFETY ANALYSES  Regulatory Guide 1.97, Type A variables so that the control room operating staff can:
                  ~    Perform the diagnosis specified in the Emergency Operating Instructions (EOIs). These variables are restricted to preplanned actions for the primary success path of Design Basis Accidents (DBAs), (e.g.,
loss of coolant accident (LOCA)), and
                  ~    Take the  specified, preplanned, manually controlled actions for which no automatic control is provided, which are required for safety systems to accomplish their safety function.
The  PAM  instrumentation  LCO  also ensures OPERABILITY of Category 1, non-Type    A', variables  so that the control room operating staff can:
                  ~    Determine whether systems important to safety are performing their intended functions; j
(continued)
BFN-UNIT 2                            8 3.3-60                            Amendment
 
lli 0
 
PAN Instrumentation B 3.3.3.1 BASES APPLICABLE      ~    Determine the potential    for causing  a gross breach of SAFETY ANALYSES        the barriers to radioactivity release; (continued)
                ~    Determine whether    a gross breach of    a barrier  has occurred; and
                ~    Initiate action  necessary  to protect the public    and for  an estimate of the magnitude    of, any impending threat.
The plant specific Regulatory Guide 1.97 Analysis (Ref. 2)
                .documents the process that identified Type A and Category 1, non-Type A, .variables.
Accident monitoring instrumentation that satisfies the definition of Type A in Regulatory Guide 1.97 meets Criterion 3 of the NRC Policy Statement (Ref. 6). Category 1, non-Type A, instrumentation is retained in Technical Specifications (TS) because they are intended to assist operators in minimizing the consequences of accidents.
Therefore, these Category 1 variables are important for reducing public risk.
LCO              LCO  3.3.3. 1 requires two OPERABLE channels for all but one Function to ensure that no single failure prevents the operators from being presented with the information necessary to determine the status of the plant and to bring the- plant to, and maintain it in, a safe condition following that accident. Furthermore, provision of two channels allows a CHANNEL CHECK during the post accident phase to confirm the validity of displayed information.
The  exception to the two channel requirement is primary containment isolation valve (PCIV) position. In this case, the important information is the status of the primary containment penetrations.      The LCO requires one position indicator for each active (e.g., automatic) PCIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of passive valve or via system boundary .status. If a normally active PCIV is known to be closed and deactivated, position indication is not needed to determine status.      Therefore, the position (continued)
BFN-UNIT 2                          B 3.3-61                              Amendment
 
~  i il~
 
PAM Instrumentation B 3.3.3.1 BASES LCO            indication for closed      and deactivated .valves is not required (continued)  to be OPERABLE.
The  following list is a discussion of the specified instrument Functions listed in Table 3.3.3.1-1.
: 1. Reactor Steam  Dome  Pressure Reactor steam dome pressure is        a Category ) variable provided to support monitoring        of Reactor Coolant System (RCS) integrity and    to verify operation of the Emergency Core Cooling Systems      (ECCS). Two independent pressure transmitters with    a  range of 0 psig to 1200 psig monitor pressure. Wide range indicators are the primary indication used by the  operator during      an accident. Therefore, the  PAM Specification deals specifically with this portion of the instrument channel.
: 2. Reactor Vessel Water Level Reactor vessel water level is a Category I variable provided to support monitoring of core cooling and to verify operation of the ECCS. Two different range water level channels  (Emergency Systems and Post-accident Flood Range) provide the PAM Reactor Vessel Water Level Functions. The water level channels measure from I/3 of the core height to 221 inches above the top of the active fuel. Water 1'evel is measured by two independent differential pressure transmitters for each required channel. The output from these channels is indicated on two independent indicators, which is the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.
The  reactor vessel water level instruments are not compensated  for variation in reactor water density.
Function 2.a is calibrated to be most accurate at operational pressure and temperature while Function 2.b is calibrated to be most accurate for accident conditions.
{continued)
BFN-UNIT 2                        B  3.3-62                              Amendment
 
ik~
il>>
O~
 
PAM. Instrumentation B 3.3.3.1 LCO          3. Su  ression Pool Mater Level (continued)
Suppression pool water level is a Category 1 variable pr'ovided to detect a breach in the reactor coolant pressure boundary (RCPB). This variable is also used to verify and provide long term surveillance of ECCS function. The wide range suppression pool water level measurement provides the operator with sufficient information to assess the status of both the RCPB and the water supply to the ECCS. The wide range water level indicators monitor the suppression pool water level from two feet from the bottom of the pool to five feet above normal water level. Two wide range suppression pool water level signals are transmitted from separate differential pressure transmitters and are continuously recorded and displayed on one recorder and one indicator in the control room. The recorder and indicator are the primary indication used by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.
: 4. Or well Pressure Drywell pressure is a Category 1 variable provided to detect breach of the RCPB and to verify ECCS functions that operate to maintain RCS integrity. Two different ranges of drywell pressure channels (normal and wide range) receive signals that are transmitted from separate pressure transmitters and are continuously recorded and displayed on two control room recorders and two control room indicators. These recorders and indicators are the primary indication used 'by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.
: 5. Primar  Containment Area Radiation  Hi h Ran e Primary containment area radiation (high range) is provided to monitor the potential of significant radiation releases and to provide release assessment for use by operators in determining the need to invoke site emergency plans. Two high range primary containment area radiation signals are transmitted from separate radiation detectors and are continuously recorded and displayed on two control room recorders. These recorders are the primary indication used (continued)
BFN-UNIT 2                        B 3.3-63                          Amendment
 
il~
il~
 
PAM  Instrumentation B 3.3.3.1 BASES LCO        5. Primar Containment Area Radiation    Hi h Ran e (continued) by the operator during an accident. Therefore, the PAM Specification deals specifically with this portion of the instrument channel.
: 6. Primar  Containment  Isolation Valve  PCIV  Position PCIV  position is provided for verification of containment integrity. In the case of PC IV position, the important information is the isolation status of the containment penetration. The LCO requires one channel of valve position indication in the control room to be OPERABLE for each active PCIV in a containment penetration flow path, i.e.,
two total channels of PCIV position indication for a penetration flow path with two active valves. For containment penetrations with only one active PCIV having control room indication, Note (b) requires a single channel of valve position indication to be OPERABLE. This is sufficient .to redundantly verify the isolation status of each isolable penetration via indicated status of the active valve, as applicable, and prior knowledge of passive valve or system boundary status. If a penetration flow path is isolated, position indication for the PCIV(s) in the associated penetration flow path is not needed to determine status. Therefore, the position indication for valves in an isolated penetration flow path is not required to be OPERABLE.
The  indication for each PCIV consists of green and red indicator lights that illuminate to indicate whether the PCIV is fully open, fully closed, or in a mid-position.
Therefore, the PAM specification deals specifically with this portion of the instrument channel.
: 7. Dr well and Torus  H dro en Anal zers Drywell and torus hydrogen analyzers are Category 1 instruments provided to detect high hydrogen or oxygen concentration conditions that represent a potential for containment breach. The drywell and torus hydrogen concentration recorders al]ow the operators to detect trends in hydrogen concentration in sufficient time to initiate (continued)
BFN-UNIT 2                    B 3.3-64                              Amendment
 
~  i ik~
 
PAM Instrumentation B 3.3.3.1 BASES LCO        7. Dr well and Torus  H dro en Anal zers    (continued) containment atmospheric dilution    if containment atmosphere approaches combustible limits. Hydrogen concentration indication is also important in verifying the adequacy of mitigating actions. High hydrogen concentration is measured by two independent analyzers and continuously recorded and displayed on one control room recorder and one control room
          .indicator. The analyzers have the capability for sampling both the drywell and the torus. These indicators are the primary indication used by the operator during an accident.
Therefore, the  PAN Specification deals specifically with this portion of the instrument channel.
: 8. Su  ression Pool Water  Tem erature Suppression pool water temperature is a Category 1 variable provided to detect a condition that could potentially lead to containment breach and to verify the effectiveness of ECCS actions taken to prevent containment breach.      The suppression pool water temperature instrumentation allows operators to detect trends in suppression pool water temperature in sufficient time to take action to prevent steam quenching vibrations in the suppression pool. Sixteen temperature sensors are arranged in two groups of two independent and redundant. channels, located such that they are sufficient to provide a reasonable measure of bulk pool temperature. The outputs for the sensors are recorded on two independent recorders in the control room. These recorders are the primary indication used by the operator during an accident. Therefore, the PAN Specification deals specifically with this portion of the instrument channels.
: 9. Dr well Atmos here Tem erature Drywell atmosphere temperature is a Category 1 vari able provided to detect a condition that could potentially lead to containment breach and to verify the effectiveness of ECCS actions taken to prevent containment breach.      Two wide range drywell atmosphere temperature signals are transmitted from separate temperature transmitters and are continuously recorded and displayed on one control room recorder and one control'oom indicator. The recorder and indicator are the primary indications used by the operator during an accident.
(continued)
BFN-UNIT 2                  B 3.3-65                              Amendment
 
4I~
ik~
0'
 
PAM Instrumentation B 3.3.3.1 BASES LCO          9. Dr well Atmos here Tem erature      (continued)
Therefore, the  PAM  Specification deals specifically with this portion of the instrument channel.
APPLICABILITY The PAM instrumentation LCO    is applicable in MODES 1 and 2.
These variables are related    to the diagnosis and preplanned actions required to mitigate DBAs. The applicable DBAs are, assumed to occur in MODES 1 and 2. In MODES 3, 4, and 5, plant conditions are such that the likelihood of an event that would require PAM instrumentation is extremely low; therefore, PAM instrumentation is not required to be OPERABLE in these MODES.
ACTIONS      Note 1 has been added    to the ACTIONS to exclude the MODE change restriction of    LCO 3.0.4. This exception allows entry into the applicable MODE while, relying on the ACTIONS even though the ACTIONS may eventually require plant shutdown. This exception is acceptable due to the passive function of the instruments, the operator's ability to diagnose an accident using alternative instruments and methods, and the low probability of an event requiring these instruments.
Notes 2 and 3 have been provided    to modify the ACTIONS related to  PAM instrumentation channels. Section 1.3, Completion Times, specifies that once a Condition has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable PAM instrumentation channels provide appropriate compensatory measures for separate Functions. As such, Note 2 has been provided to allow separate Condition entry for each inoperable PAM Function. Note 3 has been provided for Function 6 to allow separate Condition entry for each penetration flow path.
(continued)
BFN-UNIT 2                      B  3.3-66                              Amendment
 
Cli ggi ll~
 
PAM Instrumentation B 3.3.3.1 BASES ACTIONS      A. 1 (continued)
When one  or more Functions have one required channel that is inoperable, the required inoperable channel must be restored to OPERABLE status .within 30 days. The 30 day Completion Time is based on operating experience and takes into account the remaining OPERABLE channels (or, in the case of a Function that has only one required channel, other non-Regulatory Guide 1.97 instrument channels to monitor the Function), the passive nature of the instrument (no critical automatic action is assumed to occur from these instruments), and the low probability of an event requiring PAN instrumentation during this interval.
B.l If a  channel has not been restored to OPERABLE status in 30 days,  this Required Action specifies initiation of action in accordance with. Specification 5.6.6, which requires a written report to be submitted to the NRC. This report discusses the alternate method of monitoring, the results of the root cause evaluation of the inoperability, and i'dentifies proposed restorative actions. This action is appropriate in lieu of a shutdown requirement, since alternative actions are identified before loss of functional capability, and given the likelihood of plant conditions that would require information provided by this
              -instrumentation.
C.1 When one  or more Functions have two required channels that are inoperable    (i.e., two channels inoperable in the same Function), one channel in the Function should be restored to OPERABLE status within 7 days.      The Completion Time of 7  days .is based on the    relatively low probability of              an event requiring    PAN  instrument operation and the availabil-ity of alternate means to obtain the required information. Continuous operation with two required channels in'operable in a Function is not acceptable because the alternate indications may not fully meet all performance qualification requirements applied to the PAM Therefore, requiring restoration of one
                                                                'nstrumentation.
inoperable channel of the Function limits the risk that the (continued)
BFN-UNIT 2                        B  3.3-67                                        Amendment
 
ili ili ili
 
PAN  Instrumentation B 3.3.3.1 BASES ACTIONS    C. 1  (continued)
PAM  Function will be in a degraded condition should an accident occur. Condition C is modified by a Note that excludes hydrogen monitor channels.        Condition D provides appropriate Required    Actions  for two  inoperable hydrogen monitor  channels.
D. 1 When  two hydrogen monitor channels are inoperable, one hydrogen monitor channel must be restored to OPERABLE status within 72 hours. The 72 hour Completion Time is based on the low probability of the occurrence of a LOCA,that would generate hydrogen in amounts capable of exceeding the flammability limit; and the length of, time after the event that operator action would be required to prevent hydrogen accumulation from exceeding      this limit.
E.l This Required Action directs entry into the appropriate Condition referenced in Table 3.3.3.1-1. The applicable Condition referenced in the Table is Function dependent.
Each time an inoperable channel has not met any Required Action of Condi,tion C or 0, as applicable, and the associated Completion Time has expired, Condition E is entered for that channel and provides for transfer to the appropriate subsequent Condition.
F. 1 For the, majority of Functions in Table 3.3.3.1-1,        if any Required Action and associated Completion Time of Condition C or D are not met, the plant must be brought to a NODE in which the LCO not apply.        To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.
(continued)
BFN-UNIT 2                      B 3.3-68                              Amendment
 
i ili il~
 
PAN  Instrumentation B 3.3.3.1 BASES ACTIONS      G.l (continued)
Since alternate means of monitoring primary containment area radiation have been developed and tested, the Required Action is not to shut down the plant, but rather to follow the directions of Specification 5.6.6.      These  alternate means may be temporarily installed    if the normal PAN channel cannot be restored to OPERABLE status within the allotted time. The report provided to the NRC should discuss the alternate means used, describe the degree to which the alternate means are equivalent to the installed PAN channels,  justify  the areas in which they are not equivalent, and provide a schedule for restoring the normal PAN channels.
SURVEILLANCE  SR  3.3.3.1.1 REQUIREMENTS Performance  of the CHANNEL CHECK for each required PAN instrumentation channel once every 31 days ensures that a gross failure of instrumentation has not occurred. A CHANNEL CHECK is normally a comparison of the parameter.
indicated on one channel against a similar parameter on other .channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between instrument channels could be an indication of excessive"instrument drift in one of the channels or something even more serious. A CHANNEL CHECK will detect gross channel failure; thus, it is key to verifying the instrumentation continues to operate properly between each CHANNEL CALIBRATION. The high radiation instrument channels should be compared to each other or to other containment radiation monitoring instrumentation.
Agreement  criteria  are determined by the plant staff, based on a  combination of the channel instrument uncertainties, including isolation, indication, and readability. If a channel is outside the criteria, it may be an indication that the sensor or the signal processing equipment has drifted outside its limit.
The Frequency  of 31 days  is based upon plant operating experience, with regard to channel OPERABILITY and drift, which demonstrates that failure of more than one channel of (continued)
BFN-UNIT 2                        B 3.3-69                            Amendment
 
O~
il
 
PAN  Instrumentation B 3.3.3.1 BASES SURVEILLANCE SR  3.3.3.1.1    (continued)
RE(UIRENENTS a given Function in any 31 day      interval is rare. The CHANNEL CHECK supplements less      formal, but more frequent, checks of channels during normal operational use of those displays associated with the required channels of this LCO.
SR  3.3.3.1.2  and SR    3.3.3.1.3 A CHANNEL CALIBRATION      is a complete check  of the instrument loop, including the sensor.      The test verifies the channel responds to measured parameter with the necessary range and accuracy. For the PCIV position function, the CHANNEL CALIBRATION consists of verifying the remote indications conform to actual valve positions.
The 92 day Frequency for CHANNEL CALIBRATION of the Drywell and Torus Hydrogen Analyzer is based on operating experience and vendor recommendations.      The 18 month Frequency for CHANNEL CALIBRATION of all other PAN instrumentation in Table 3.3.3. 1-1 is based on operating experience and consistency with    BFN  refueling cycles.
REFERENCES  1. Regulatory Guide 1.97, "Instrumentation for Light Water Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident,"
Revision 3, Hay 1983.
: 2. TVA  Letter from L. M. Hills to H. R. Denton (NRC) dated April 30, 1984.
: 3. NRC  Letter from S.C. Black to S. A. White (TVA), NRC Regulatory Guide 1.97 SER letter, dated June 23, 1988.
: 4. TVA  General Design Criteria No. BFN-50-7307, Revision 4, "Post-Accident Honitoring," dated June 22, 1993.
: 5. NRC  Letter from  Joseph F. Williams to Oliver D.
Kingsley,  Jr.,  "Regulatory Guide 1.97 - Boiling Water Reactor Neutron Flux Monitoring For the Browns Ferry Nuclear Plant, Units 1, 2, and 3," dated May 3, 1994.
: 6. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                      B  3.3-70                              Amendment
 
0 Backup Control System B 3.3.3.2 B 3.3  INSTRUMENTATION B 3.3.3.2  Backup Control System BASES BACKGROUND        The Backup Control System    provides the control room operator with sufficient instrumentation and controls to place and maintain the plant in a safe shutdown condition from a location other than the control room. This capability is necessary to protect against the possibility of the control room becoming inaccessible.      A safe shutdown condition is defined as MODE 3. With the plant in MODE 3, the Reactor Core  Isolation Cooling  (RCIC) System, the safety/relief valves,  and  the Residual Heat Removal System can be used to remove core decay heat and meet all safety requirements.
The long term supply of water for the RCIC and the ability to operate the RHR System for decay heat removal from outside the control room allow extended operation in MODE 3.
In the event that the control room becomes inaccessible, the operators can establish control at the backup control panel and place and maintain the plant in MODE 3.. Not all controls and necessary transfer switches are located at the backup control panel. Some controls and transfer switches will have to be operated locally at the switchgear, motor control panels, or other local stations. The plant automatically reaches MODE 3 following      a  plant shutdown  and can be maintained  safely in MODE 3 for    an  extended period  of time.
The OPERABILITY  of the Backup Control System control and instrumentation Functions ensures that there is sufficient information available on selected plant parameters to place and maintain the plant in MODE 3 should the control room become inaccessible.
APPLICABLE        The Backup Control System    is required to provide equipment SAFETY ANALYSES    at appropriate lo'cations outside the control room with a design capability to promptly shut down the reactor to MODE 3, including the necessary      instrumentation and controls, to maintain the plant in a safe condition in MODE  3.
(continued)
BFN-UNIT 2                            B  3.3-71                              Amendment
 
4I Backup Control System B 3.3.3.2 BASES APPLICABLE      The  criteria governing the design and the specific system SAFETY ANALYSES requirements of the Backup Control System are located in (continued)  10 CFR 50, Appendix A, GDC 19 (Ref. 1) and Reference 2.
The Backup Control System .,is considered      an  important contributor to reducing the risk of accidents; as such,          it meets Criterion 4 of the NRC Policy Statement (Ref. 3).
LCO            The Backup Control System LCO provides the requirements for the OPERABILITY of the instrumentation and controls necessary to place and maintain the plant in NODE 3 from a location other than the control room. The instrumentation and controls typically required are listed in Table B 3.3.3.2-1.
The  controls, instrumentation,      and transfer switches are those required    for:
                ~    Reactor pressure vessel    (RPV)  pressure control;
                ~    Decay heat removal;
                ~    RPV  inventory control;    and
                ~    Safety support systems,    for the  above  functions, including Residual Heat Removal (RHR) Service Water, Emergency Equipment Cooling Water, and onsite power, including the diesel generators.
The Backup Control System is OPERABLE        if  all instrument control and control channels needed to support the backup function are OPERABLE. In some cases, Table B 3.3.3.2-1 may indicate that the required information or control capability is available from several'lternate sources. In these cases, the Backup Control System is OPERABLE as long as one channel of any of the alternate information or control sources  for each Function  is  OPERABLE.
The Backup Control System instruments and control circuits covered by this LCO do not need to be energized to be considered OPERABLE. This LCO is intended to ensure that the instruments and control circuits will be OPERABLE          if plant conditions require that the Backup Control System be placed in operation.                      I (continued)
BFN-UNIT 2                          8  3.3-72                              Amendment
 
/gi Backup Control System B 3.3.3.2 BASES  (continued)
APPLICABILITY      The Backup Control System LCO is        applicable in    MODES
: 2. This is required so that        the plant can be placed and 1'nd maintained in    MODE 3  for  an  extended period of time from a location other than the control        room.
This  LCO is not applicable    in  MODES  3, 4, and 5. In these MODES, the plant is already        subcritical    and  in a condition of  reduced Reactor Coolant System energy.            Under these conditions, considerable time is available to restore necessary instrument control Functions          if control room instruments or control becomes unavailable. Consequently, the TS do not require OPERABILITY in MODES 3, 4, and 5.
ACTIONS            A Note  is included that excludes the MODE change restriction of  LCO  3.0.4. This exception al.lows entry into an applicable MODE while relying on the ACTIONS even though the ACTIONS may eventually require a plant shutdown.            This exception is acceptable      due  to  the  low  probability  of an event requiring    this  system.
Note 2 has been provided to modify the ACTIONS related to Backup Control System Functions.          Section 1.3, Completion Times,  specifies  that  once  a  Condition    has been entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable Backup Control System Functions provide appropriate compensatory measures for separate Functions.
As such, a Note has been provided that allows separate Condition entry for each inoperable Backup Control System Function.
A.1 Condition A addresses the situation where one or more required Functions of the Backup Control System is inoperable. This includes any Function listed in Table B .3.3.3.2-1, as well as the control and transfer switches.
(continued)
BFN-UNIT 2                              B 3.3-73                                  Amendment
 
ili il~
il
 
Backup Control System B 3.3.3.2 ACTIONS      A. 1  (continued)
The Required  Action is to restore the Function to OPERABLE status within 30 days. The Completion Time is based on operating experience and the low probability of an event that would require evacuation of the control room.
If the Required Action and associated Completion Time of Condition A are not met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours. The allowed Completion Time is reasonable, based on operating experience, to reach the required MODE from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE  SR  3.3.3.2.1 RE(UI REMENTS Performance  of the  CHANNEL CHECK  once every 31 days ensures that  a gross  failure of instrumentation has not occurred.      A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious.      A CHANNEL CHECK will detect gross  channel  failure;  thus,  it is key to verifying the instrumentation continues to operate properly between each CHANNEL'ALIBRATION.
Agreement  criteria are determined by the plant staff based on a  combination of the channel instrument uncertainties, including indication and readability.      If  a channel is outside the criteria,    it  may be an indication that the sensor or the signal processing equipment has drifted outside its limit. As specified in the Surveillance, a CHANNEL CHECK is only required for those channels that are normally energized.
(continued)
BFN-UNIT 2                        B 3.3-74                            Amendment
 
ili if'l
 
Backup Control System 8 3.3.3.2 SURVEILLANCE SR  3.3.3.2. 1  (continued)
REQUIREMENTS The Frequency    is  based upon    plant operating experience that demonstrates    channel  failure is rare.
SR  3.3.3.2.2 SR 3.3.3.2.2 verifies each required Backup Control System transfer switch and control circuit performs the intended function. This verification is performed from the backup control panel and locally, as appropriate. Operation of the equipment from the backup control panel is not necessary.
The Surveillance can be satisfied by performance of a continuity check. This will ensure that if the control room becomes inaccessible, the plant can be placed and maintained in MODE 3 from the backup control panel and the local control stations. Operating experience demonstrates that Backup Control System control channels usually pass the Surveillance when performed at the 18 month Frequency.
SR  3.3.3.2.3  and SR    3.3.3.2.4 CHANNEL CALIBRATION      is  a complete check  of the instrument loop and the sensor. The test verifies the channel responds to measured parameter values with the necessary range and accuracy.
The Frequency    of SR 3.3.3.2.3 is based upon the assumption of a 184 day    calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.
The 18 month Frequency of SR 3.3.3.2.4 is based upon operating experience and consistency with the typical industry refueling cycle.
REFERENCES  l. 10 GFR 50,    Appendix A,    GDC 19.
: 2. FSAR  Section 7. 18.
: 3. NRC  No..93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                        B  3.3-75                              Amendment
 
il~
O~
 
Backup Control System B  3.3.3.2 Table B 3.3.3.2-1 (Page 1 of 4)
Backu  Control System Instrumentation and Controls REQUIRED NUMBER FUNCTION                                  OF CHANNELS Instrument Parameter
: 1. Reactor Water Level Indication                              1
: 2. Reactor Pressure Indication                                1
: 3. Suppression Pool Temperature Indication                    1 4~  Suppression Pool Level Indication                          1
: 5. Drywell Pressure Indication                                1
: 6. Drywell Temperature Indication                              1
: 7. EECW  Flow  Indication                                      2 (1/Header)
: 8. RCIC Flow  Indication                                      1
: 9. RCIC  Turbine Speed Indication                              1
: 10. RCIC  Turbine Trip Alarm                                    1 RCIC  Turbine Bearing Oil High Temperature                  1 Alarm  .
Transfer Control Parameter
: 12. MSRV Transfer & Control                                    3 (1/MSRV)
: 13. MSIV  Transfer  &  Control (Closure Only)                  8 (1/MSIV)
: 14. Main Steam Drain Line    Isolation Valves                  2 (1/valve)
: 15. RHRSW Pumps                                                12 (1/pump)
: 16. RHRSW Discharge    Valves for                                2 RHR Loop I Heat    Exchangers                          (1/valve)
: 17. RCW  Pumps  1D and  3D                                      2 (Trip Function Only)                                  (1/pump)
BFN-UNIT 2                            B 3.3-76                          Amendment
 
Oi Backup Control System B 3.3.3.2 Table  B  3.3.3.2-1 (Page 2 of 4)
Backup Control System    Instrumentation and Controls REQUIRED NUHBER FUNCTION                                      OF CHANNELS Transfer Control Parameter continued
: 18. 4-kV Fire Pumps A, B, and C                                    3 (1/pump)
: 19. Recirculation  System Sample Line    Isolation                2 Valves                                                    (1/valve)
: 20. EECW  Sectionalizing Valves                                    8 (1/val ve)
: 21. RHRSW  to EECW Motor-Operated                                  2 Crosstie Valves                                          (1/valve)
: 22. EECW Supply to RBCCW Heat Exchangers                            6 (1/val ve)
: 23. Recirculation  Pump  Discharge Valve                          1 (RHR Loop  I LPCI)
: 24. RWCU  Drain to Hain Condenser Hotwell Isolation Valve
: 25. RWCU  Drain to Radwaste Isolation Valve                        1
: 26. RBCCW Pump Controls                                            2 (1/pump)
: 27. Drywell Cooler RBCCW                                          10 Flow Control Valves                                      (1/cool er)
: 28. Drywell Cooler Fan Controls                                    10 (1/cool er)
: 29. RHR  Shutdown Cooling Inboard Containment                      1 Isolation Valve
: 30. RHR  Shutdown Cooling Outboard Containment Isolation Valve
: 31. RCIC Steam  Supply  Isolation Valves                          2 (1/valve)
: 32. RCIC Steam Pot    Drain Line                                    1 Steam Trap Bypass BFN-UNIT 2                            B 3.3-77                            Amendment
 
ili ll 4
ggi
 
Backup Control System B  3.3.3.2 Table  B 3.3.3.2-1 (Page 3 of 4)
Backup Control System    Instrumentation and Controls REQUIRED NUNBER FUNCTION                                    OF CHANNELS Transfer Control Parameter      continued
: 33. RCIC  Steam Pot Drain to Main                                  1 Condenser  Isolation                                    (1  switch for 2  valves)
: 34. RCIC  Drain to Radwaste Isolation                              1 (1  switch for 2  valves)
: 35. RCIC  Turbine Steam Supply Valve                                1
: 36. RCIC  Turbine Stop Valve                                        1
: 37. RCIC  Pump Suction From Suppression    Pool                    2 (1/val ve)
: 38. RCIC Pump  Suction From                                        1 Condensate  Storage Tank
: 39. RCIC Lube Oil Cooler Cooling Water Supply
: 40. RCIC Pump Minimum Flow Bypass
: 41. RCIC Pump  Discharge
: 42. RCIC  Test Return to
                'Condensate  Storage Tank
: 43. RCIC Injection Valve to Reactor Vessel
: 44. RCIC  Barometric Condenser Condensate  Pump
: 45. RCIC  Barometric Condenser Vacuum    Pump
: 46. HPCI Turbine Steam Supply Valve (Isolation Function Only)
: 47. RHR Pump Controls                                              4 (1/pump)
: 48. RHR  Loop I Motor Operated    Val'ves                          17 (1/val ve)
BFN-UNIT 2                            B 3.3-78                            Amendment
 
~ i i
 
Backup Control System B 3.3.3.2 Table B 3.3.3.2-1 (Page 4 of 4)
Backup Control System  Instrumentation and Controls REQUIRED NUHBER FUNCTION                                    OF CHANNELS Transfer Control Parameter    continued
: 49.  -Core Spray Pumps (Trip  8 Lock-out Function Only)                        (1/pump)
: 50. CRD Pump  1B                                                  1
: 51. CRD Pump  Discharge Valves                                    2 (1/valve)
: 52. Scram Discharge Volume    Isolation                          1 Pilot  Valve BFN-UNIT 2                            8 3.3-79                            Amendment
 
il~
3g~
il
 
EOC-RPT  Instrumentation B 3.3.4.1 B 3.3.4.1  End of Cycle Recirculation    Pump Trip  (EOC-RPT) Instrumentation BASES BACKGROUND        The EOC-RPT instrumentation initiates a recirculation pump trip  (RPT) to reduce the peak reactor pressure and power resulting from turbine trip or generator load rejection transients to provide additional margin to core thermal        HCPR Safety Limits (SLs).
The need  for the additional negative reactivity in excess of that normally inserted on a scram reflects end of cycle reactivity considerations. Flux shapes at the end of cycle are such that the control rods may not be able to ensure that thermal limits are maintained by inserting sufficient negative reactivity during the first few feet of rod travel upon a scram caused    by Turbine Control Valve (TCV) Fast Closure, Trip Oil Pressure - Low or Turbine Stop Valve (TSV) Closure. The physical phenomenon involved is that the void reactivity feedback due to a pressurization transient can add positive reactivity at a faster rate than the control rods can add negative reactivity.
The EOC-RPT instrumentation, as shown in Reference 1, is composed of sensors that detect initiation of closure of          the TSVs or fast closure of the TCVs, combined with relays, logic circuits, and fast acting circuit breakers that interrupt  power from the recirculation pump motor generator (MG)  set generators to each of the recirculation pump motors. The channels include electronic equipment (e.g.,
trip  relays) that compares measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an EOC-RPT signal to the trip logic. When the RPT breakers trip  open, the  recirculation pumps coast down under their own  inertia. The EOC-RPT has two identical    trip  systems, either of  which can actuate an RPT.
Each EOC-RPT  trip  system  is a two-out-of-two logic for each Function; thus, either,two TSV Closure or two TCV Fast Closure, Trip Oil Pressure Low signals are required for a trip system to actuate. If either trip system actuates, both recirculation pumps will trip. There are two EOC-RPT breakers in series per recirculation pump. One trip system trips one of the two EOC-RPT breakers for each recirculation (continued)
BFN-UNIT 2                            8  3.3-80                              Amendment
 
il~
iS~
ik
 
EOC-RPT  Instrumentation B 3.3.
 
==4.1 BACKGROUND==
pump, and  the second    trip  system  trips the other    EOC-RPT (continued)    breaker  for  each  recirculation    pump.
APPLICABLE      The TSV Closure and the TCV Fast Closure,        Trip Oil SAFETY ANALYSES, Pressure Low Functions are designed to        trip  the LCO, and        recirculation    pumps  in the event of a turbine trip or APPLICABILITY    generator load rejection to mitigate the increase in neutron flux, heat flux, and reactor pressure, and to increase the margin to the NCPR SL, The analytical methods and assumptions used in evaluating the turbine trip and generator load rejection are summarized in References 2, 3, and 4.
To mitigate pressurization transient effects, the EOC-RPT must  trip the recirculation pumps after initiation of closure movement of either the TSVs or the TCVs. The combined effects of this trip and a scram reduce fuel bundle power more rapidly than a scram alone, resulting in an increased margin to the NCPR SL. Alternatively,, MCPR limits for an inoperable EOC-RPT, as specified in the COLR, are sufficient to prevent violation of the NCPR Safety Limit.
The EOC-RPT function is automatically disabled when turbine first stage pressure is < 30% RTP.
EOC-RPT  instrumentation satisfies Criterion        3  of the  NRC Policy Statement (Ref. 6).
The OPERABILITY of the EOC-RPT is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function must have a required number of OPERABLE channels in each      trip  system, with their setpoints within the specified Allowable      Value  of SR 3.3.4. 1'.3. The setpoint is calibrated consistent with applicable setpoint methodology assumpti'ons    (nominal  trip setpoint).      Channel OPERABILITY also includes the associated EOC-RPT breakers.
Each channel (including the associated EOC-RPT breakers) must also respond within its assumed response time.
Allowable Values are specified for each EOC-RPT Function specified in the LCO. Nominal trip setpoints are specified in the setpoint calculations. A channel is inoperable              if its actual trip setpoint is not within its required Al-lowable Value. The nominal setpoints are selected to ensure that the setpoints-do not exceed the Allowable Value (continued)
BFN-UNIT 2                            B 3,3-81                                  Amendment
 
~  i II
 
EOC-RPT  Instrumentation B 3.3.4.1 APPLICABLE      between successive        CHANNEL CALIBRATIONS. Operation with a SAFETY ANALYSES, trip setpoint    less conservative than the nominal trip LCO, and        setpoint, but within its Allowable Value, is acceptable.
APPLICABILITY    Each Allowable Value specified is more conservative than the (continued)    analytical limit assumed in the transient and accident analysis in order to account for instrument uncertainties appropriate to the Function. Trip setpoints are those predetermined values of output at which an action should take place. The'setpoints are compared to the actual process parameter (e.g., TSV position), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip relay) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors.            The trip setpoints are then determined accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and severe environmental effects (for channels that must function in harsh environments as defined by 10  CFR  50.49) are accounted        for.
The  specific Applicable Safety Analysis, LCO,            and Applicability discussions are listed below on              a  Function by Function basis.
Alternatively, since this instrumentation protects against                a MCPR SL violation, with the instrumentation inoperable, modifications to the MCPR limits (LCO 3.2.2) may be applied to allow this LCO to be met. The MCPR penalty for the EOC-RPT inoperable condition is specified in the COLR.
Turbine Sto      Valve- Closure Closure of the TSVs and a main turbine trip result in the loss of a heat sink that produces reactor pressure, neutron flux, and heat flux transients that must            be limited.
Therefore,    an  RPT    is  initiated  on  TSV  Closure  in anticipation    of  the    transients  that  would  result  from closure  of  these  valves.      EOC-RPT  decreases  reactor    power and  aids  the  reactor      scram  in ensuring  that  the  MCPR  SL is not  exceeded    during    the  worst case  transient.
(continued)
BFN-UNIT 2                              B  3.3-82                                  Amendment
 
il~
EOC-RPT Instrumentation B 3.3.4.1 BASES APPLICABLE        Turbine Sto    Valve- Closure    (continued)
SAFETY ANALYSES, LCO, and          Closure of the  TSVs is determined by measuring the position APPLICABILITY    of  each  valve. There are two separate position switches associated with each stop valve, the signal from each switch being assigned to a separate trip channel. The logic for the TSV Closure Function is such that two or more TSVs must be closed to produce an EOC-RPT. This Function must be enabled at THERMAL POWER a 30% RTP. This is normally
                .accomplished automatically by pressure transmitters sensing turbine first stage pressure; therefore, opening the turbine bypass valves may affect this function. Four channels of TSV Closure, with two channels in each trip system, are available and required to be OPERABLE to ensure that no single instrument failure will preclude an EOC-RPT, from this Function on a valid signal. The TSV- Closure Allowable Value is selected to detect imminent TSV closure.
This protection is required, consistent with the safety analysis assumptions, whenever THERMAL POWER is w 30% RTP.
Below 30% RTP, the, Reactor Vessel Steam Dome Pressure -High and the Average Power Range Monitor (APRM) Fixed Neutron Flux- High Functions "of the Reactor Protection System (RPS) are adequate to maintain the necessary margin to the MCPR Safety. Limit.
Turbine Control Valve Fast Closure        Tri Oil Pressure-    Low Fast closure of the TCVs during a generator load rejection results in the loss of a heat .sink that produces reactor pressure, neutron flux, and heat flux transients. that must be limited. Therefore, an RPT is initiated on TCV Fast
                                                -
Closure, Trip Oil Pressure Low in anticipation of the transients that would result from the closure of these valves. The EOC-RPT decreases reactor power and aids the reactor scram in ensuring that the MCPR SL is not exceeded during the worst case transient.
Fast closure of the    TCVs  is determined  by measuring the electrohydraulic control. fluid    pressure at each control valve. There is one pressure transmitter associated with each control valve, and the signal from each transmitter is assigned to a separate trip channel. The logic for the TCV Fast Closure, Trip Oil Pressure Low Function is such that two or more TCVs must be closed (pressure transmitter trips)
(continued)
BFN-UNIT 2                            B 3.3-83                              Amendment
 
il~
gg~
 
EOC-RPT Instrumentation B 3.3.4.1 BASES APPLICABLE      Turbine Control Valve Fast Closure    Tri Oil Pressure-    Low SAFETY ANALYSES, (continued)
LCO, and APPLICABILITY    to produce  an EOC-RPT. This Function must be enabled at THERMAL POWER  a 30% RTP. This is normally accomplished automatically by pressure transmitters sensing turbine first stage pressure;  therefore, opening the turbine bypass valves may affect this function. Four channels of TCV Fast Closure, Trip Oil Pressure Low, with two channels in each trip system, are available and required to be OPERABLE to ensure that no single instrument failure will preclude an EOC-RPT from this Function on a valid signal.      The TCV Fast Closure, Trip Oil Pressure Low Allowable Value is selected high enough to detect imminent TCV fast closure.
This protection is required consistent with the safety
                                                      )
analysis whenever THERNAL POWER is 30% RTP. Below 30% RTP,  the Reactor Vessel Steam Dome Pressure High and the APRN  Fixed Neutron Flux- High Functions of the RPS are adequate to maintain the necessary safety margins.
ACTIONS          A Note has been provided to modify the ACTIONS    related to EOC-RPT instrumentation channels. Section 1.3,  Completion Times, specifies that once a Condition has been    entered, subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable EOC-RPT instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable EOC-RPT instrumentation channel.
A.l With one or more channels inoperable, but with EOC-RPT trip capability maintained (refer to Required Actions B. 1 and B.2 Bases), the EOC-RPT System is capable of performing the intended function. However, the reliabi-lity and redundancy (continued)
BFN-UNIT 2                          B 3.3-84                            Amendment
 
il~
/Q~
ik
 
EOC-RPT    Instrumentation B 3.3.4.1 ACTIONS    A. 1  (continued) of the    EOC-RPT    instrumentation is reduced such that a single failure in the        remaining trip system could result in the inability of the EOC-RPT System to perform the intended function. Therefore, only a limited time is allowed to restore compl.iance with the LCO. Because of the diversity of sensors available to provide trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of an EOC-RPT, 72 hours is provided to restore the inoperable channels (Required Action A. I) or apply the EOC-RPT inoperable NCPR limit.
Alternately, the inoperable channels may be placed in trip (Required Action A.2) since this would conservatively compensate for the inoperability, restore capability to accommodate a single fai,lure, and allow operation to continue. As noted, placing the channel in trip with no further restrictions is not allowed              if  the inoperable channel is the        result  of  an  inoperable    breaker, since this may not adequately        compensate    for  the  inoperable    breaker (e.g., the      br'eaker  may  be  inoperable    such  that  it  will not open). If  it  is  not  desired    to place  the  channel  in trip (e.g.,    as  in  the  case  where    placing  the  inoperable  channel in trip would result in an RPT, or              if the inoperable channel is the result of an inoperable breaker), Condition C must be entered and its Required Actions taken.
B.l  and  8.2 Required Actions B. I and B.2 are intended to ensure that appropriate actions are taken            if  multiple, inoperable, untripped    channels    within    the  same  Function result in the Function    not  maintaining    EOC-RPT    trip  capability. A Function    is  considered    to  be  maintaining    EOC-RPT trip capability      when    sufficient    channels    are  OPERABLE    or in trip, such  that  the    EOC-RPT  System    will  generate    a  trip  signal from  the  given    Function    on  a  valid  signal  and  both recirculation pumps can be tripped. Alternately, Required Action B.2 requires the NCPR limit for inoperable EOC-RPT, as  specified in the COLR, to be applied. This also restores the margin to NCPR assumed in the safety analysis.
The 2 hour Completion Time.            is sufficient time for the operator    to  take    corrective    action, and takes into account (continued)
BFN-UNIT 2                          B  3.3-85                                    Amendment
 
ili ili
 
EOC-RPT  Instrumentation B 3.3.4.1 BASES ACTIONS      B. 1 and B.2    (continued) the likelihood of an event requiring actuation of the
            .EOC-RPT  instrumentation during this period. It is also consistent with the 2 hour Completion Time provided in LCO 3.2.2 for Required Action A. 1, since this instrumentation's purpose is to preclude a NCPR violation.
C.l With any Required Action and associated Completion Time not met, THERMAL POWER must be reduced to < 30% RTP within 4 hours. The allowed Completion Time of 4 hours is reasonable, based on operating experience, to reduce THERMAL POWER to < 30% RTP from full power conditions in an orderly manner and without challenging plant systems.
SURVEILLANCE  The Surveillances are modified by a Note          to indicate that when a channel is placed in an inoperable          status solely for performance of required Surveillances, entry into associated Conditions and Required Actions may be delayed for up to 6  hours provided the associated      Function maintains EOC-RPT trip capability.      Upon  completion of the Surveillance, or expiration of the    6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken. This Note is based on the reliability analysis (Ref. 5) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the recirculation pumps will trip when necessary.
SR  3.3.4.1.1 A CHANNEL FUNCTIONAL TEST      is performed on each required channel  to  ensure  that  the  entire channel will perform the intended function. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.
The Frequency    of 92 days  is  based on  reliability analysis of Reference  5.
(continued)
BFN-UNIT 2                        B 3.3-86                                Amendment
 
15~
gg~
 
EOC-RPT  Instrumentation B 3.3.4.1 BASES SURVEILLANCE  SR  3.3.4.1.2 REQUIREMENTS (continued) This SR ensures that an EOC-RPT initiated from the, TSV- Clbsure and TCV Fast Closure, Trip .Oil Pressure Low Functions will not be inadvertently bypassed when THERMAL POWER is w 30% RTP.        This involves calibration of the bypass channels. Adequate margins for the instrument setpoint methodologies are incorporated into the actual setpoint.
If  any bypass channel's setpoint is nonconservative (i.e.,
the Functions are bypassed at a 30% RTP, either due to open main turbine bypass valves or other reasons), the affected TSV Closure and TCV Fast Closure, Trip Oil Pressure- Low Functions are considered inoperable. Alternatively, the bypass channel can, be placed in the conservative condition (nonbypass).      If  placed in the nonbypass condition, this SR is met with the channel considered OPERABLE.
The Frequency      of 18 months is based      on engineering judgment and  reliability of the components.
SR  3.3.4.1.3 CHANNEL CALIBRATION        is a complete check of the instrument loop and the,    sensor. This test verifies the channel responds to the      measured    parameter within the necessary range and    accuracy.      CHANNEL  CALIBRATION leaves the channel adjusted  to  account    for  instrument  drifts between successive calibrations      consistent    with  the  plant  specific setpoint methodology.
The Frequency      is based upon the assumption of an 18 month calibration    interval    in the determination of the magnitude of equipment      drift  in the setpoint analysis.
SR    3.3.4.1.4 The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required          trip  logic for a specific channel. The      system    functional  test  of the pump breakers is included  as  a  part  of  this  test,  overlapping  the LOGIC SYSTEM  FUNCTIONAL    TEST,  to  provide  complete  testing  of the associated safety function. Therefore,            if  a breaker is incapable  of  operating,    the  associated  instrument  channel(s) would also    be  inoperable.
(continued)
BFN-UNIT 2                          B  3.3-87                                Amendment
 
iSi ggi 0
 
EOC-RPT  Instrumentation B 3.3.4.1 SURVEILLANCE SR  3.3.4.1.4    (continued)
RE(UIREMENTS The 18 month Frequency      is  based on the need  to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient          if the Surveillance were performed'ith the reactor at power.
Operating experience .has shown these components usually pass the Surveillance when .performed at the 18 month Frequency.
REFERENCES  1. FSAR,  Figure 7.9-2    (EOC-RPT  logic diagram).
: 2. FSAR,  Section 7.9.4.5.
: 3. FSAR,  .Sections  14.5. 1. 1 and 14.5. 1.3.
: 4. FSAR,  .Section 4.3.5.
: 5. GENE-770-06-1,    "Bases For Changes To Surveillance Test Intervals    And  Allowed Out-Of-Service Times 'For Selected  Instrumentation Technical Specifications,"
February 1991.
: 6. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-'UNIT 2                      B 3.3-88                              Amendment
 
ili
~ i 0
 
ATWS-RPT  Instrumentation B 3.3.4.2 B '3. 3  INSTRUMENTATION B  3.3.4.2  Anticipated Transient Without      Scram  Recirculation  Pump Trip (ATWS-RPT) Instrumentation BASES BACKGROUND          The ATWS-RPT System    initiates  an RPT, adding negative reactivity, following events in which a scram does not (but should) occur, to lessen the effects of an ATWS event.
Tripping the recirculation pumps adds negative reactivity from the increase in steam voiding in the core area as core flow decreases. When Reactor Vessel Water Level Low or Reactor Steam Dome Pressure High setpoint is reached, the recirculation    pump  motor breakers  trip.
The ATWS-RPT System (Ref.      I) includes sensors, relays, bypass  capability, circuit breakers, and switches that are.
necessary to cause initiation of an RPT. The channels include electronic equipment (e.g., trip units) that compares  measured input signals with pre-established setpoints. When the setpoint is exceeded, the channel output relay actuates, which then outputs an ATWS-RPT signal to the trip logic.
The ATWS-RPT    consists of two independent trip systems, with two channels of Reactor Steam Dome Pressure High and two channels of Reactor Vessel Water Level Low in each .trip system. Each ATWS-RPT trip system is a two-out-of-two logic for each Function. Thus, either two Reactor Water Level Low or two Reactor Pressure -High signals are needed to trip a trip system. The outputs .of the channels in .a trip system are combined in a logic so that either trip system will trip both recirculation pumps (by tripping the respective motor breakers)'
There are two motor breakers      provided for each of the two recirculation pumps for a total of four breakers. The output of each trip system is provided to both recirculation pump  breakers.
(continued)
BFN-UNIT 2                                B 3.3-89                            Amendment
 
ili iS~
45
 
ATWS-RPT  Instrumentation B 3.3.4.2 BASES  (continued)
APPLICABLE          The 'ATWS-RPT  is not  assumed  in the safety analysis. The SAFETY 'ANALYSES,    ATWS-RPT  initiates  an RPT  to aid in preserving the integrity LCO, and            of the fuel cladding following events in which a scram does APPLICABILITY        not, but should, occur. Based on its contribution to the reduction of overall plant risk, however, the instrumentation meets Criterion      4'f  the NRC Policy Statement (Ref. 3).
The OPERABILITY of the ATWS-RPT is dependent on the OPERABILITY of the individual instrumentation channel Functions. Each Function must have a required number of OPERABLE channels in each      trip  system, with their setpoints within  the  specified  Allowable  Value  of SR 3.3.4.2.3. The setpoint is calibrated consistent with applicable setpoint methodology assumptions      (nominal  trip setpoint). ATWS-RPT Channel OPERABILITY also includes the associated recirculation    pump  motor breakers. A channel is inoperable if  its actual trip setpoint Allowable Value.
is not within its required Allowable Values are specified for each ATWS-RPT Function specified in the LCO. Nominal trip setpoints are specified in the setpoint calculations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS. Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable.
Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g., trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors.
The trip setpoints. are then determined accounting for the remaining instrument. errors (e.g., drift). The trip
                  =
setpoints derived in this manner provide adequate protection because instrumentation uncertainties, process effects, calibration tolerances, instrument drift, and environmental effects are accounted for.
(continued)
BFN-UNIT 2                                B 3.3-90                              Amendment
 
iki ik~
0
 
ATWS-RPT  Instrumentation B 3.3.4.2 BASES APPLICABLE      The  individual Functions are required to be OPERABLE in SAFETY ANALYSES, MODE 1  to protect against catastrophic/multiple failures of LCO, and        the Reactor Protection System by providing a diverse trip APPLICABILITY    to mitigate the consequences of a postulated ATWS event.
(continued)    The Reactor Steam Dome Pressure High and Reactor Vessel Water Level Low Functions are required to be OPERABLE in MODE 1, since the reactor is producing significant power and the recirculation system could be at high flow. During this MODE, the potential exists for pressure increases or low water level, assuming an ATWS event. In MODE 2, the reactor is at low power and. the recirculation system is at low flow; thus, the potential is low for a pressure increase or low water level, assuming an ATWS event. Therefore, the ATWS-RPT is not necessary.      In MODES 3 and 4, the reactor is shut .down with all control rods inserted; thus, an ATWS event is not significant and. the possibility of a significant pressure increase or low water level is negligible. In MODE 5, the one rod out interlock ensures that the reactor remains subcritical; thus, an ATWS event is not significant. In addition, the reactor pressure vessel (RPV) head is not fully tensioned and no pressure transient threat to the reactor coolant pressure boundary (RCPB) exists.
The  specific Applicable Safety Analyses      and LCO discussions are  listed  below on  a Function by Function basis.
: a. Reactor Vessel Water Level    - Low Low RPV  water level indicates the capability to cool the fuel    may be threatened. Should RPV water level decrease too far, fuel damage could result.
Therefore, the ATWS-RPT System is initiated at Level        2 to aid in maintaining level above the top of the active fuel. The reduction of core flow reduces the neutron flux and THERMAL POWER and, therefore, the rate of coolant boiloff.
Reactor vessel water level signals are      initiated  from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.
(continued)
BFN-UNIT 2                            8 3.3-91                              Amendment
 
ili il~
 
ATMS-RPT  Instrumentation
                                                                            .B 3.3.4.2 APPLICABLE      a. Reactor Vessel Water Level    -  Low SAFETY ANALYSES,      (continued)
LCO, and APPLICABILITY        Four channels of Reactor Vessel Water Level Low, with two channels in each trip system, are available and required to be OPERABLE to ensure that no single instrument failure can preclude an ATWS-RPT from this Function on a valid signal. The Reactor Vessel Mater Level Low Allowable Value is chosen so that the system will not be initiated after a Level 3 scram with feedwater still available, and for convenience with the reactor core isolation cooling initiation.
: b. Reactor Steam    Dome Pressure-~Hi    h Excessively high RPV pressure may rupture the RCPB.
An  increase in the RPV pressure during reactor operation compresses the steam voids and results in a positive reactivity insertion. This increases neutron flux and THERMAL POWER, which could potentia'lly result in fuel failure and overpressurization.          The Reactor Steam Dome Pressure High Function initiates an RPT for transients that result in a pressure increase, counteracting the pressure increase by rapidly reducing core power generation.        For the overpressurization event, the RPT aids in the termination of the ATWS event and, along with the safety/relief valves, limits the peak RPV pressure to less than the ASNE Section III Code limits.
The Reactor Steam Dome Pressure High        signals are initiated  from four pressure transmitters that monitor reactor steam dome pressure. Four channels of Reactor Steam Dome Pressure High, with two channels in each trip system, are available and are required to be OPERABLE to ensure that no single instrument failure can preclude an ATWS-RPT from this Function on a The Reactor Steam Dome Pressure High valid'ignal.
Allowable Value is chosen to provide an adequate margin to the ASNE Section III Code limits.
ACTIONS          A Note has been provided    to modify the    ACTIONS  related to ATWS-RPT instrumentation    channels. Section 1.3, Completion (continued)
BFN-UNIT 2                          8 3.3-92                                Amendment
 
il~
i ib
 
ATWS-RPT    Instrumentation B  3.3.4.2 BASES ACTIONS      Times, specifies that once a Condition has been entered, (continued) subsequent divisions, subsystems, components, or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies that Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition, However, the Required Actions for inoperable ATWS-RPT instrumentation channels provide appropriate compensatory measures for separate inoperable channels. As such, a Note has been provided that allows separate Condition entry for each inoperable ATWS-RPT instrumentation channel.
A.l  and A.2 With one or more channels inoperable, but with ATWS-RPT capability for each Function maintained (refer to Required Actions..B. 1 and C. 1 Bases), the ATWS-RPT System is capable of performing the intended function. However, the reliability and redundancy of the ATWS-RPT instrumentation is reduced, such that a single failure in the remaining trip system could result in the inability of the ATWS-RPT System to perform the intended function. Therefore, only a limited time is allowed to restore the inoperable channels to OPERABLE status.      Because of the diversity of sensors available to provide trip signals, the low probability of extensive numbers of inoperabilities affecting all diverse Functions, and the low probability of an event requiring the initiation of ATWS-RPT, 14 days is provided to restore the inoperable channel (Required Action A. 1). Alternately, the inoperable channel may be placed in trip (Required Action A.2), since this would conservatively compensate for the inoperability, restore capability to accommodate a single failure, and allow operation to continue. As noted, placing the channel in trip with no further restrictions is not allowed  if  the inoperable channel is the result of an since this may not adequately compensate inoperable  breaker, for the  inoperable    breaker  (e.g., the breaker may be inoperable  such  that  it will  not open). If      it  is not desired to place    the  channel  in  trip  (e.g.,  as  in the case where placing    the  inoperable  channel    would  result  in an RPT), or  if the  inoperable  channel Condition is  the  result entered of  an its inoperable breaker,                D  must  be          and Required Actions    taken.
(continued)
BFN-UNIT 2                        B  3.3-93                                  Amendment
 
~ ~
I~
 
ATWS-RPT Instrumentation B 3.3.4.2 ACTIONS        B.l (continued)
Required Action B. 1 is intended to ensure that appropriate actions are taken    if multiple, inoperable, untripped channels within the same Function result in the Function not maintaining  ATWS-RPT trip capability. A Function is considered to be maintaining ATWS-RPT trip capability when sufficient channels are OPERABLE or in trip such that the ATWS-RPT System will generate a trip signal from the given Function on a valid signal, and both recirculation pumps can be tripped. This requires one channel of the Function in each trip system to be OPERABLE or in trip, and the recirculation pump motor breakers to be OPERABLE or in trip.
The 72 hour Completion Time    is sufficient for the operator to take corrective action (e.g., restoration or tripping of channels) and takes into account the likelihood of an event requiring actuation of the ATWS-RPT instrumentation during this period and that one Function is still maintaining ATWS-RPT trip capability.
C.1 Required Action C. 1 is intended to ensure that appropriate Actions are taken    if multiple, inoperable, untripped channels within both Functions result in both Functions not maintaining ATWS-RPT trip capability. The description of      a Function maintaining ATWS-RPT trip capability is discussed in the Bases for Required Action B. 1 above.
The  1 hour Completion Time is sufficient for the operator to take corrective action and takes into account the likelihood of an event requiring actuation of the ATWS-RPT instrumentation during this period.
D.1 With any Required Action and associated Completion Time not met, the plant must be brought to a MODE or other specified condition in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 2 within 6 hours. The allowed Completion Time of 6 hours is
              . reasonable, 'based on operating experience, both to reach MODE 2 from full power conditions and to remove a (continued)
BFN-UNIT 2                          B 3.3-94                          Amendment
 
ili ATMS-RPT  Instrumentation B 3.3.4.2 BASES ACTIONS      D. l  (continued) recirculation pump from service in    an orderly  manner and without challenging plant systems.
SURVEILLANCE The Surveillances are modified by a Note      to indicate that
'REQUIREMENTS when a channel is placed in an inoperable      status solely for performance of required Surveillances, entry into the associated  Conditions and Required Actions may be delayed for up to 6 hours provided the associated Function maintains ATWS-RPT trip capability.      Upon completion of the Surveillance, or expiration of the 6 hour allowance, the channel must be returned to OPERABLE status or the applicable Condition entered and Required Actions taken.
This Note is based'n the reliability analysis (Ref. 2) assumption of the average time required to perform channel Surveillance. That analysis demonstrated that the 6 hour testing allowance does not significantly reduce the probability that the recirculation pumps will trip when necessary.
SR  3.3.4.2.1 Performance  of the  CHANNEL CHECK  once every 24 hours ensures that a gross  failure of instrumentation has not occurred.        A CHANNEL CHECK is normally a comparison of the parameter indicated on one channel to a similar parameter on other channels. It is based on the assumption that instrument channels monitoring the same parameter should read approximately the same value. Significant deviations between the instrument channels could be an indication of excessive instrument drift in one of the channels or something even more serious.      A CHANNEL CHECK will detect gross channel failure; thus,    it is key to verifying the instrumentation continues to operate properly, between each CHANNEL CAL I BRAT ION.
Agreement  criteria  are determined by the plant staff based on a combination of the channel instrument uncertainties, including indication and readability.      If  a channel is outside the criteria, it may be an indication that the instrument 'has drifted outside its limit.
(continued)
BFN-UNIT 2                      B 3.3-95                              Amendment
 
ili
~ ~
 
ATWS-RPT Instrumentation B 3.3.4.2 BASES SURVEILLANCE SR  3.3.4.2. 1  (continued)
REQUIREMENTS The Frequency  is based upon operating experience that demonstrates channel failure is rare. The CHANNEL CHECK supplements less formal, but more frequent, checks of channels during normal operational use of the displays associated with the channels required by the LCO.,
SR  3.3.4.2.2 A CHANNEL FUNCTIONAL TEST      is performed on each required channel to ensure    that the entire channel will perform the intended function. Any setpoint adjustment shall be consistent with the assumptions of the current plant specific setpoint methodology.
The Frequency  of  92 days  is based on the  reliability analysis of 'Reference 2.
SR  3.3.4.2.3 A CHANNEL CALIBRATION    is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the .necessary range and accuracy.      CHANNEL CALIBRATION leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.
The Frequency  is based upon the assumption of an 18 month calibration interval in the determination of the magnitude of equipment drift in the setpoint analysis.
SR  3.3.4.2.4 The LOGIC SYSTEM FUNCTIONAL TEST demonstrates the OPERABILITY of the required      trip  logic for a specific channels    The system functional test of the pump breakers is included as part of this Surveillance and overlaps the LOGIC SYSTEM FUNCTIONAL TEST    to provide complete testing of the assumed  safety function. Therefore,      if a breaker is incapable of operating, the associated instrument channel(s) would be inoperable.
(continued)
BFN-UNIT 2                      B  3.3-96                            Amendment
 
ili 5QI
 
ATWS-RPT Instrumentation B  3.3.4.2 SURVEILLANCE SR  3.3.4.2.4    .(continued)
REQUIREMENTS The 18 month Frequency is based on the need to perform this Surveillance under .the conditions that apply during a plant outage and the potential for an unplanned transient        if the Surveillance were performed with the reactor at power.
Operating experience has shown these components usually pass the Surveillance when performed. at the 18 month Frequency.
REFERENCES  1. FSAR  Section 7, 19.
: 2. GENE-770-06-1,    "Bases for Changes To Surveillance Test Intervals  and Al.lowed  Out-of-Service Times For Selected Instrumentation Technical Specifications,"
                  'February 1991.
: 3. NRC  No. 93-102, "Final Policy Statement on Technical Specification Improvements," July 23, 1993.
BFN-UNIT 2                        B 3.3-97                            Amendment
 
Oi
~ i
 
ECCS  Instrumentation B 3.3.5.1 B 3.3  INSTRUMENTATION B 3.3.5.1  Emergency Core Cooling System (ECCS)      Instrumentation BASES BACKGROUND        The purpose    of the ECCS instrumentation is to initiate appropriate responses from the systems to ensure that the fuel is adequately cooled in the event of a design basis accident or transient.
For most anticipated operational occurrences and Design Basis Accidents (DBAs), a wide range, of dependent and independent parameters are monitored.
The ECCS    instrumentation actuates core spray (CS), low pressure coolant injection (LPCI), high pressure coolant injection (HPCI), Automatic Depressurization System (ADS),
and the diesel generators (DGs). The equipment involved with each of these systems is described in the Bases for LCO 3.5. 1, "ECCS-Operating."
Core  S ra  S  ste The  CS System may be initiated by automatic means.        Each pump can be controlled manually by      a control .room  remote switch. Automatic  initiation occurs for conditions of
 
Reactor Vessel Water Level Low Low Low, Level 1 or both Drywell Pressure-High and Reactor Steam Dome Pressure- Low.
Reactor water level and drywell pressure are monitored by four redundant transmitters, which are, in turn, connected to four trip units. The outputs of these trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic (i.e., two trip systems) for each Function. The Reactor Steam Dome Pressure Low variable is monitored by two transmitters for each subsystem. The outputs from these transmitters are connected to relays arranged in a one-out-of-two logic.
The high drywell pressure initiation signal is a sealed in signal and must be manually reset. Upon receipt of an initiation signal,    if normal AC power is available, the four core spray pumps start one at a time, in order, at 0, 7, 14, and 21 seconds.      If normal AC power is not available, (continued)
BFN-UNIT 2                              B 3.3-98                              NENDMENT
 
il~
ik~
0
 
ECCS  Instrumentation B 3.3.
 
==5.1 BACKGROUND==
Core  S ra    S  stem    (continued) the four core spray      pumps  start  seven seconds    after standby power becomes      available.    (The LPCI pumps    start as soon as standby power      is available.)
The  CS test line isolation valve is closed            on a CS initiation signal to allow full          system flow assumed      in the accident analyses.
The  CS pump    discharge flow is monitored by a flow switch.
When the pump is running and discharge flow is low enough so that pump overheating may occur, the minimum flow return line valve is opened. The valve is automatically closed                if flow is above the minimum flow setpoint to allow the full system flow assumed in the accident analysis.
The  CS System    logic also receives, signals from transmitters which monitor the pressure        in the reactor to ensure that, before the injection valves open, the reactor pressure has fallen to a value below the CS System's maximum design pressure. Reactor pressure is monitored by four redundant transmitters, which are, in turn, connected to four trip units (two per subsystem). The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two logic for each CS subsystem.
Low  Pressure Coolant In 'ection      S  stem The LPCI  is  an  operating mode of the Residual Heat Removal (RHR) System,    with two LPCI subsystems.        The LPCI subsystems may be initiated by      automatic  or  manual  means. Automatic initiation occurs for      conditions    of  Reactor  Vessel  Water
 
Level Low Low Low, Level 1        or  both    Drywell  Pressure  -High and Reactor Steam Dome Pressure          Low. Each  of these    diverse variables is monitored by four        redundant    transmitters, which, in turn, are connected to four trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two- taken twice logic (i.e., two trip systems) for each Function.
(continued)
BFN-UNIT 2                      B  3.3-99                                  Amendment
 
~  i ik~
il
 
ECCS  Instrumentation B 3.3.5.1 BASES BACKGROUND Low  Pressure  Coolant I  ection  S  stem    (continued)
Once an  initiation signal is received by the LPCI control circuitry, the signal is sealed in until manually reset.
Upon receipt of an initiation signal, if normal AC powe} is available, the four RHR (LPCI) pumps start one at a time, in order,'t 0, 7, 14, and 21 seconds. If normal AC power is not available, the four pumps start simultaneously, with no delay, as soon as the standby power source is available.
Each LPCI subsystem's    discharge flow is monitored by a flow switch. When a pump is running and    discharge flow is low enough  so that pump overheating may      occur, the respective minimum flow return line valve is opened.        If  flow is above the minimum flow setpoint, the valve is        automatically closed. However, LPCI flow rates assumed in the LOCA analyses can be achieved with the minimum flow valve in the open  position.
The  RHR test line suppression pool cooling isolation, valve, suppression pool spray isolation valves, and containment spray isolation valves (which are also PCIVs) are also closed on a LPCI initiation. signal to allow the full system flow assumed in the accident analyses and maintain primary containment isolated in the event LPCI is not operating.
The LPCI System monitors    the pressure in the reactor to ensure. that, before an injection valve opens, the reactor pressure has fallen to a value below the LPCI System's maximum design pressure.      The variable is monitored by four redundant transmitters, which are, in turn, connected to multiple trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken .twice logic. Additionally, these instruments function to initiate closure of the recirculation pump discharge valves to ensure that LPCI flow does not bypass the core when it injects into the recirculation lines.
Low  reactor water level in the shroud is detected by two additional instruments which inhibit the manual initiation of other modes of RHR (e.g., suppression pool cooling) when (continued)
BFN-UNIT 2                    B 3.3-100                                NENDHENT
 
il~
il~
 
ECCS  Instrumentation B 3.3.
 
==5.1 BACKGROUND==
Low  Pressure Cool nt In 'ection    S  ste  (continued)
LPCI  is required. Manual  overrides for the    inhibit logic are provided.
i    es ure Coola    t    ect o    S  ste The HPCI System may be initiated by either automatic or manual means. Automatic initiation occurs for conditions        of Reactor Vessel Water Level Low Low, Level 2 or Drywell Pressure-High. Each of these variables is monitored by four redundant transmitters, which are, in turn, connected to multiple trip units. The outputs of the trip units are connected to relays whose contacts are arranged in a one-out-of-two taken twice logic for each Function.
The HPCI pump discharge    flow is monitored by a flow switch.
Upon  automatic initiation, when the pump is running and discharge flow is low enough so that pump overheating may occur, the minimum, flow return line valve is opened. The valve is automatically closed      if  flow is above the minimum flow setpoint to allow the full system flow assumed in the accident analysis.
The HPCI  test line isolation valve is closed        upon  receipt of a HPCI  initiation  signal to allow the      full system flow assumed  in the accident analysis.
The HPCI System also monitors      the water levels in the HPCI pump  supply header from the condensate storage tank (CST) and the suppression pool because these are the two sources of water for HPCI operation. Reactor grade water in the CST is the normal source. Upon receipt of a HPCI initiation signal, the CST suction valve is automatically signaled to open (it is normally in the open position) unless both suppression pool suction valves are open.          If  the water level in the HPCI pump supply header from the CST falls below a preselected level, first the suppression pool suction valves automatically open, and then the CST suction valve automatically closes. Two level switches are used to detect low water level in the, HPCI pump supply header from the CST. Either switch can cause the suppression pool suction valves to open and the CST suction valve to close.
(continued)
BFN-UNIT 2                    B  3.3-101                                AMENDMENT
 
il~
ili
 
ECCS  Instrumentation B 3.3.5.1 BASES BACKGROUND        r s    e Coo  ant I ec 'o    S  ste    (continued)
The suppression pool suction val.ves also automatically open and the CST suction valve closes          if  high water level is detected, in the suppression pool. To prevent losing suction to the pump, the suction valves are interlocked so that one suction path must be open before the other automatically closes.
The HPCI provides makeup water        to the reactor until the reactor vessel water level reaches the Reactor Vessel Water Level -High, Level 8 trip, at which time the HPCI turbine trips,. which causes the turbine's stop valve to close. The logic is two-out-of-two to provide high reliability of the HPCI System.      The HPCI, System automatically restarts
 
if a Reactor Vessel Mater Level Low Low,            Level  2  signal    is subsequently received.
tomatic  De  ressur zat    on S ste The ADS may be initiated by either automatic or manual means. Automatic initiation occurs when signals indicating Reactor Vessel Water Level Low Low Low, Level 1; Drywell Pressure-High or ADS High Drywell Pressure Bypass Timer; confirmed Reactor Vessel Water Level Low, Level 3; and CS or LPCI Pump Discharge Pressure-High are all present and the ADS Initiation Timer has timed out. There are two transmitters each for Reactor Vessel Water Level Low Low Low, Level 1 and Drywell Pressure-High, and one transmitter for confirmed Reactor Vessel Water Level Low, Level 3 in each of the two ADS trip systems.            Each of these transmitters connects to a trip        unit,  which then drives a relay whose contacts form the        initiation    logic.
Each ADS    trip  system includes a time delay between satisfying the initiation logic        and  the actuation of the ADS valves. The ADS Initiation Timer          time  delay setpoint chosen is long enough that the HPCI has        sufficient    operating time to recover to a level above Level 1, yet            not  so long that the LPCI and CS Systems are unable          to  adequately cool the fuel  if the HPCI fails to maintain that level. An alarm in the control room is annunciated when either of the ADS Initiation Timers is timing. Resetting the ADS initiation signals resets the ADS Initiation Timers.
(continued)
BFN-UNIT 2                      B  3.3-102                                  NENDHENT
 
il~
ggi 0
 
ECCS  Instrumentation B 3.3.
 
==5.1 BACKGROUND==
t      ress        o  S ste    (continued)
The ADS also monitors the discharge pressures        of the four LPCI pumps and the four CS pumps.      Each ADS    trip  system includes two discharge pressure permissive switches from two of the four CS pumps (A and B for one trip system and C and D for the other trip system) and one discharge pressure permissive switch for each LPCI pump. The signals are used as a permissive for ADS actuation, indicating that there is a source of core coolant available once the ADS has depressurized the vessel. CS pumps (A or B and either C or D) or any one of the four LPCI pumps is sufficient to permit automatic depressurization.
The ADS  logic in each trip system is arranged in two strings. Each string has a contact from each of        the following variables: Reactor Vessel Water Level Low            Low Low, Level 1; Drywell    Pressure-High; or Low Water Level Actuation Timer. One      of the two strings in each trip system must also have a confirmed Reactor Vessel Water Level Low, Level 3. All contacts in both logic strings must close, the ADS initiation timer must time out, and a CS or LPCI pump discharge pressure signal must be present to initiate an ADS trip system. Either the A'r B trip system will cause all the ADS relief valves to open. Once the Drywell Pressure-High signal, the ADS High Drywell Pressure Bypass Timer, or the ADS initiation signal is present,        it  is individually sealed in until manually reset.
Manual  inhibit  switches are provided in the control room        for the  ADS; however, their function. is not required for ADS OPERABILITY (provided ADS is not    inhibited  when  required to be OPERABLE).
Diesel Generators The DGs may be initiated by either automatic or manual means. Automatic initiation occurs for conditions of Reactor Vessel Water Level Low Low Low, Level 1 or both Drywell Pressure- High and Reactor Steam Dome Pressure-Low.
The DGs are also initiated upon loss of voltage signals.
(Refer to the'Bases for LCO 3.3.8.1, "Loss of Power (LOP)
Instrumentation," for a discussion of these signals.) Each of these diverse variables is monitored by four redundant transmitters, which are, in turn, connected to four          trip (continued)
BFN-UNIT 2                    B 3.3-103                              AMENDMENT
 
ili ggi il
 
ECCS  Instrumentation B 3.3.
 
==5.1 BACKGROUND==
d            (    (    dl units. The outputs of the four    trip units  are connected to relays  whose contacts are connected      to a one-out-of-two taken twice logic to initiate, all eight DGs {A, B, C, D, 3A, 3B, 3C, and 3D). The DGs receive their initiation signals from the CS System initiation logic. The DGs can also be started manually from the control room and locally from the associated DG room. The DG initiation signal is a sealed in signal and must be manually reset. The DG initiation logic is reset by resetting the associated ECCS initiation logic.
Upon receipt of a loss of coolant accident (LOCA) initiation signal, each DG is automatically started, is ready to load in approximately 10 seconds, and will run in standby conditions (rated voltage and speed, with the DG output breaker open). The DGs will only energize their respective Engineered Safety Feature buses        if a  loss of  offsite  power occurs.    (Refer to Bases    for LCO  3.3.8.1.)
mer e c    E u'ent    Coolin    ater    ECM  S stem The  EECW System,  which distributes cooling water supplied by the  RHR Service  Water System pumps that are assigned as the principal supply to the EECW System (RHRSW pumps A3, B3, C3 and D3), may be initiated by automatic or manual means.
Automatic initiation occurs for conditions of Reactor Vessel Mater Level Low Low Low, Level 1 or Drywell Pressure-High with a Reactor Steam Dome Pressure-Low permissive. Each of these diverse variables is monitored by four redundant transmitters, which are, in turn, connected to four trip units. The EECM System receives its initiation signals from the DG initiation logic and the CS System initiation logic.
The two RHRSW pumps (83 and D3) assigned to EECM and powered from shutdown boards in Units 1 and 2 will start automatically in less than 32.5 seconds after starting of a diesel generator or 30 seconds for a core spray pump in Units 1 and 2. The two RHRSW pumps (A3 and C3) assigned to EECW and powered from shutdown boards in Unit 3 will start automatically in less than 32.5 seconds after starting of a diesel generator or 30 seconds for a core spray pump in Unit
: 3. In addition, the signals that start the A3 and C3 pumps and the B3 and D3 pumps also start the Bl and Dl pumps and the Al and Cl pumps, respectively, when they are valved into the EECW header.
(continued)
BFN-UNIT 2                    B 3.3-104                                AMENDMENT
 
il~
ECCS Instrumentation B 3.3.5.1 BASES  (continued)
APPLICABLE          The  actions of the ECCS are explicitly assumed in the safety SAFETY ANALYSES,    analyses of References 1, 2, and 3. The ECCS is initiated LCO, and            to preserve the integrity of the fuel cladding by limiting APPLICABILITY      the post LOCA. peak cladding temperature to less than the 10 CFR 50.46 limits.
ECCS  instrumentation satisfies Criterion 3 of the NRC Policy Statement    (Ref. 5). Certain instrumentation Functions are retained for other reasons and are described below in the individual Functions discussion.
The OPERABILITY of the ECCS    instrumentation is dependent upon the OPERABILITY of the    individual instrumentation channel Functions specified in Table    3.3.5.1-1. Each Function must have a required number    of OPERABLE channels, with their setpoints within the specified Allowable Values, where appropriate. The setpoint is calibrated consistent with applicable setpoint methodology assumptions (nominal trip setpoint). Each ECCS subsystem must also respond within its assumed response time. Table 3.3.5.1-1, footnote (b),, is added to show that certain ECCS instrumentation Functions are also required to be OPERABLE to perform DG initiation and actuation of other Technical Specifications (TS) equipment.
Allowable Values are specified for each ECCS Function specified in the table. Nominal trip setpoints are specified in the setpoint cal'culations. The nominal setpoints are selected to ensure that the setpoints do not exceed the Allowable Value between CHANNEL CALIBRATIONS.
Operation with a trip setpoint less conservative than the nominal trip setpoint, but within its Allowable Value, is acceptable. A channel is inoperable    if  its actual trip setpoint is not within its required Allowable Value. Trip setpoints are those predetermined values of output at which an action should take place. The setpoints are compared to the actual process parameter (e.g., reactor vessel .water level), and when the measured output value of the process parameter exceeds the setpoint, the associated device (e.g.,
trip unit) changes state. The analytic limits are derived from the limiting values of the process parameters obtained from the safety analysis. The Allowable Values are derived from the analytic limits, corrected for calibration, process, and some of the instrument errors. The trip setpoints are then determined, accounting for the remaining instrument errors (e.g., drift). The trip setpoints derived (continued)
BFN-UNIT 2                              B 3.3-105                            NENDNENT
 
ili ili
 
ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE      in this  manner provide adequate protection because SAFETY ANALYSES, instrumentation uncertainties, process effects, calibration LCO, and        tolerances, instrument drift, and severe environment errors APPLICABILITY    (for channels that must function in harsh environments as (continued)    defined by 10 CFR 50.49) are accounted for.
In general, the individual Functions are required to be OPERABLE    in the MODES or other specified conditions that may require ECCS (or DG) initiation to mitigate the consequences of a design basis transient or accident. To ensure reliable ECCS and DG function, a combination of Functions is required to provide primary and secondary initiation signals.
The  specific Applicable Safety Analyses, LCO,      and Applicability discussions are listed. below on        a  Function by Function basis.
Core  S ra      d Low Pressure  Coo  ant In 'ectio  S  stems 2.a. Re  cto Vesse    Water  eve -Low Low Low      Level  1 Low  reactor pressure vessel (RPV) water level indicates that the, capability to cool the fuel may be threatened.            Should RPV water level decrease too far, fuel damage could result.
The low pressure    ECCS,  associated  DGs, and EECW System      are initiated at Level 1 to ensure that core spray and flooding functions are available to prevent or minimize fuel damage.
The Reactor Vessel Water Level Low Low Low, Level          1  is  one of the Functions assumed to be OPERABLE and capable            of initiating the ECCS during the transients analyzed in References 1 and 3. In addition, the Reactor Vessel Water Level Low Low Low, Level 1 Function is directly assumed in the analysis of the recirculation line break (Ref..2). The core cooling function of the ECCS, along with the scram action of the Reactor Protection System (RPS), ensures that the fuel peak'cladding temperature remains below the limits of  10 CFR  50.46.
Reactor Vessel Water Level Low Low Low, Level 1 signals are initiated from four level transmitters that sense the difference between the pressure due to a constant column of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.
(continued)
BFN-UNIT 2                            B 3.3-106                                AMENDMENT
 
iS~
ECCS  Instrumentation B  3.3.5.1 BASES APPLICABLE                      Re cto    Ve  sel Water    eve    ow    ow  ow    eve SAFETY ANALYSES,  (continued)
LCO, and APPLICABILITY    The Reactor Vessel Mater Level Low Low Low, Level              I Allowable Value is chosen to allow time, for the low pressure injection/spray subsystems to activate and provide adequate cooling.
Four channels of Reactor Vessel Water Level Low Low Low, Level I'unction are only required to be OPERABLE when the ECCS, DG(s), or EECW System are required to be OPERABLE to ensure that no single instrument failure can preclude ECCS, DG, and EECM initiation. Refer to LCO 3.5.1 and LCO 3.5.2,
                -"ECCS-Shutdown," for Applicability Bases for the low pressure ECCS subsystems; LCO 3.7.2, "Emergency Equipment Cooling (EECW) Systems and Ultimate Heat Sink (UHS)," for Applicability Bases for        EECW System; and LCO 3.8.1, "AC Sources  -Operating";    and LCO 3.8.2, "AC Sources -Shutdown,"
for Applicability      Bases for the DGs.
I  b    .b    Dr  e      essure    i High pressure    in the drywell could indicate a break in the reactor coolant pressure boundary (RCPB). The low pressure ECCS,  associated    DGs, and EECM System    are  initiated    upon receipt of the Drywell Pressure-High Function in order to minimize the possibility of fuel damage. The Drywell Pressure-High Function, along with the Reactor Pressure- Low Function, is directly assumed in the analysis of the recirculation line break (Ref. 2). The core cooling function of the ECCS, along. with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
High drywell pressure signals are initiated from four pressure transmitters that sense drywell pressure.              The Allowable Value was selected to be as low as possible and be indicative of    a LOCA    inside .primary containment.
The Drywell Pressure-High Function is required to be OPERABLE when the ECCS, DG, or EECM System are required to be OPERABLE in conjunction with times when the primary containment is required to be OPERABLE. Thus, four channels of the CS and LPCI Drywell Pressure-High Function are required to be OPERABLE in.NODES        I,  2, and 3 'to ensure that no single instrument failure can preclude ECCS, DG, and (continued)
BFN-UNIT 2                            B 3.3-107                                  NENDMENT
 
il~
0
 
ECCS  Instrumentation B 3.3'.5.1 BASES APPLICABLE                        e    Pr  ssure-          (continued)
SAFETY ANALYSES, L'CO, and        EECW  System initiation. In        NODES 4 and 5, the Drywell APPLICABILITY    Pressure-High    Function    is  not  required, since there is insufficient energy in the reactor to pressurize the primary containment to Drywell Pressure-High setpoint. Refer to LCO 3.5.1 for Applicability Bases for the low pressure ECCS subsystems, LCO 3.7.2'for Applicability Bases for the EECW System, and to LCO 3.8.1 for Applicability Bases for the DGs.
                        .c. eactor    S earn    ome  Pressu e  ow      'ect  on Permissive and  ECCS    I tiation Low  reactor steam    dome pressure signals are used as permissives for    the  low pressure ECCS subsystems.        This ensures that, prior to opening the injection valves of the low pressure ECCS subsystems, the reactor pressure has fallen to a value below these subsystems'aximum design pressure. The Reactor Steam Dome Pressure- Low is one of the Functions: assumed to be OPERABLE and capable of permitting initiation of the ECCS during the transients analyzed in References 1 and 3. In addition, the Reactor Steam Dome Pressure- Low Function is directly assumed in the analysis of the recirculation 'line break (Ref. 2). The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
The Reactor Steam Dome      Pressure- Low signals are initiated from fout pressure transmitters that sense the reactor dome pressure.
The  Allowable VaTue is low enough to prevent overpressurizing the equipment in the low pressure ECCS, but high enough to ensure that the ECCS injection prevents the fuel peak cladding temperature from exceeding the limits of 10 CFR 50.46.
Four channels  of Reactor      Steam Dome Pressure Low Function are only required to be OPERABLE when the ECCS is'required to be OPERABLE to ensure that no single instrument failure can preclude ECCS initiation. Refer to LCO 3.5. 1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
(continued)
BFN-UNIT 2                          B  3.3-108                                NENDHENT
 
~  i 45
 
ECCS Instrumentation 8 3.3.5.1 BASES APPLICABLE SAFETY ANALYSES, LCO, and        The minimum    flow instruments are provided to protect the APPLICABILITY    associated CS pumps from overheating when the pump is (continued)    operating and the associated injection valve is not fully open. The minimum flow line valve is opened when low flow is sensed, and the valve is automatically closed when the flow rate is adequate to protect the pump. The CS Pump Discharge Flow- Low Function is assumed to be OPERABLE and capable of closing the minimum flow valves to ensure that the CS flows assumed during the transients and accidents analyzed in References 1, 2, and 3 are met. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46.
One  flow switch per CS subsystem is used to detect the associated    subsystems'low rates. The logic is arranged such that each flow switch causes its associated minimum flow valve to open. The logic will close the minimum flow valve once the closure setpoint is exceeded.        The Pump Discharge Flow- Low Allowable Values are high enough to ensure that the pump flow rate is sufficient to protect the pump, yet low enough (based on engineering judgment) to ensure that the closure of the minimum flow valve is initiated to allow full flow into the core.
Each channel of Pump Discharge Flow- Low Function (two CS channels) is only required to be OPERABLE when the associated ECCS is required to be OPERABLE to ensure that no single instrument failure can preclude the ECCS function.
Refer to LCO 3.5. 1 and LCO 3.5.2 for Applicability Bases for the low pressure ECCS subsystems.
Coolant In 'ection
                ~P<<-
l.e 2.f.      Core i
S  ra and Low Pressure Il  l    R1 The  reaction of the low pressure ECCS pumps to an initiation signal depends on the availability of power. If normal power (offsite power) is not available, the four RHR (LPCI) pumps  start simultaneously after the standby power source (four  diesel  generators) is available while the CS pumps start  simultaneously    after a seven-second time delay. This (continued)
BFN-UNIT 2                          B  3.3-109                            AMENDMENT
 
0 ECCS  Instrumentation B 3.3.5.1 BASES APPLICABLE      l.e 2.f. Core  S  ra  and Low Pressure  Coolant In 'ection SAFETY'NALYSES, LCO, and APPLICABILITY  time delay .allows the start of LPCI pumps to avoid (continued)    overloading the diesel generators.        When normal power is available, the CS and RHR pump starts are staggered by shutdown board (i.e., A pumps start at 0 seconds, B pumps start at 7 seconds, C pumps start at 14 seconds, and 0 pumps start at 21 seconds). The purpose of this time delay, when power is being provided from the normal power source (offsite), is to stagger, the start of the CS and LPCI pumps, thus  limiting the starting transients        on  the 4. 16    kV shutdown buses.      The CS and LPCI Pump Start -Time Delay Relays are assumed to be OPERABLE in the accident and transient analyses requiring ECCS initiation. That is, the analyses assume that the pumps will initiate when required and excess loading will not cause failure of the power sources.
There are four CS      Pump and  six LPCI Pump Start -Time Delay Relays when power      is being provided from the normal power source, one in each of the pump start logic circuits (LPCI pumps C and D have two time delay relays).            While each time delay relay is dedicated to a single pump start logic, a single failure of a CS or LPCI Pump Start -Time Delay Relay could result in the loss of normal power to a 4. 16 kV shutdown board due to a voltage transient on the associated shutdown bus (e.g., as in the case where ECCS pumps on one shutdown bus start simultaneously due to an inoperable time delay relay). This would result in the affected board being powered by the associated diesel.        Ther'efore, the worst case single failure would be failure of a single pump to start due to a relay failure leaving seven of the eight low pressure ECCS pumps OPERABLE; thus, the single failure criterion .is met (i..e., loss of one instrument does not preclude  ECCS  initiation). Since the  CS  pumps are 50%
capacity  pumps,  the LOCA analysis    does not take      credit for  a CS loop  if  one  of the pumps is inoperable.        Therefore, a loss of one
: 4. 16 kV shutdown board failure      results  in  the RHR pump and one CS loop (two        CS pumps)  for  the  LOCA analysis. The Allowable        Value  for the  CS  and  LPCI  Pump (continued)
BFN-UNIT 2                          B  3.3-110                                  AMENDMENT
 
i il
 
ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE      l.e 2.f.      Core S  ra  and Low Pressure    Coolant In 'ection SAFETY ANALYSES, LCO, and APPLICABILITY    Start  Time Delay Relays      is chosen to be long enough so that most of the starting transient of the first set of pumps is complete before starting the second set of pumps on the same
: 4. 16 kV shutdown bus and short enough so that ECCS operation is not degraded.
There are also four CS and six LPCI Pump Start-Time Delay Relays when power is being provided by the standby source, one in each of the pump start logic circuits (LPCI pumps C and 0 have two time delay relays).          While each relay is dedicated to a single pump        start  logic, a single failure of a Pump  Start-Time    Delay  Relay  could result in the failure of the two low pressure ECCS pumps (CS and LPCI) powered from the same shutdown board, to perform their intended function (e.g., as in the case where both ECCS pumps on one shutdown board start simultaneously due to an inoperable time delay relay). This still leaves six of eight low pressure ECCS pumps OPERABLE; thus, the single failure criterion is met (i.e., loss of one instrument does not preclude ECCS initiation). As stated above, since the LOCA analysis does not take credit for a CS loop        if one of the pumps is inoperable, the loss of a 4. 16 kV shutdown board effectively results in the loss of one LPCI pump and one CS loop (two CS pumps). The Allowable Value for the CS and LPCI Pump Start-Time Delay Relays is chosen to be long enough so that most of the starting transient for the LPCI pump is complete before starting the CS pump on the same 4. 16 kV shutdown board and short enough so that ECCS operation is not degraded.
Each CS and LPCI Pump Start -Time Delay Relay Function is required to be OPERABLE only when the associated CS and LPCI subsystems are required to be OPERABLE. Refer to LCO 3.5. 1 and LCO 3.5.2 for Applicability Bases for the CS and LPCI subsystems.
2.d. Reactor Steam Dome Pressure-        Low  Recirculation Dischar e Valve Permissive Low, reactor steam    dome  pressure signals are used as permissives for recirculation discharge valve closure. This ensures that the LPCI subsystems inject into the proper RPV (continued)
BFN-UNIT 2                            B  3.3-111                                ANENDHENT
 
il ib
 
ECCS Instrumentation B 3.3.5.1 BASES APPLICABLE      2.d. Reactor Steam Dome Pressure- Low Recirculation SAFETY ANALYSES, Dischar e Valve Permissive        (continued)
LCO, and APPLICABILITY    location  assumed  in the safety analysis. The Reactor Steam Dome Pressure  Low is one of the Functions assumed to be OPERABLE and    capable of closing the valve during the transients analyzed in References 1 and 3. The core cooling function of the ECCS, along with the scram acti'on of the RPS, ensures that the fuel peak cladding temperature remains below the limits of 10 CFR 50.46. The Reactor Steam Dome Pressure Low Function is directly assumed in the analysis of the recirculation line break (Ref. 2).
The Reactor Steam .Dome    Pressure- Low signals are initiated from four pressure transmitters that sense the reactor dome pressure.
The  Allowable Value is chosen to ensure that the valves close prior to commencement of LPCI injection flow into the core, as assumed in the safety analysis.
Four channel's of the Reactor Steam Dome Pressure Low Function are only required to be OPERABLE in NODES 1, 2, and 3 with the associated recirculation pump discharge valve open.. With the valve(s) closed, the function of the instrumentation has been performed; thus, the Function is not required. In NODES 4 and 5, the loop injection location is not critical since LPCI injection through the recirculation loop in either direction will still ensure that LPCI flow reaches the core (i.e., there is no significant reactor steam dome back pressure).
2.e.. Reactor Vessel Water Level    - Level 0 The Level 0 Function is provided as a permissi,ve to allow the RHR System to be manually aligned from the LPCI mode to the suppression pool cooling/spray or drywell spray modes.
The permissive ensures that water in the vessel is approximately two thirds core height before the manual transfer is allowed. This ensures that LPCI is available to prevent or. minimize fuel damage. This function may be overridden during accident conditions as allowed by plant procedures. Reactor Vessel Water Level Level 0 Function is implicitly assumed in the analysis of the recirculation line break (Ref. 2) since the analysis assumes that no LPCI flow diversion occurs when reactor water level is below Level 0.
(continued)
BFN-UNIT 2                          B  3.3-112                            AMENDMENT
 
hli
    'l~
i5
 
ECCS,Instrumentation B 3.3.5.1 BASES APPLICABLE      2.e. Reactor Vessel Water Level  - Level  0  (continued)
SAFETY ANALYSES, LCO, and        Reactor Vessel Water Level Level 0 signals are initiated APPLICABILITY    from two level transmitters that sense the difference between the pressure due to a constant column .of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel. The Reactor Vessel Water Level Level 0 Allowable Value is chosen to allow the low pressure core flooding, systems to activate and provide adequate cooling before allowing a manual transfer.
Two  channels of the Reactor Vessel Water Level Level 0 Function are only required to be OPERABLE in MODES 1, 2, and 3. In MODES 4 and 5, the specified initiation time of the LPCI subsystems    is not assumed, and other administrative controls are adequate to control .the valves. that this Function isolates (since the systems that the valves are opened for are not required to be OPERABLE in MODES 4 and 5 and are  normally not used).
HPCI S stem 3.a. Reactor Vessel Water Level  -  Low Low  Level  2 Low RPV  water level indicates that the capability to cool the fuel may be threatened.      Should RPV water level decrease too far, fuel damage could result. Therefore, the HPCI System is initiated at 'Level 2 to,maintain level above the top of the active fuel. The Reactor Vessel Water Level. Low
                'Low, Level 2 is one of the Functions assumed to be OPERABLE and capable of initiating HPCI during the transients analyzed in References 1, 2, and 3. The core cool'ing function of the ECCS, al'ong with the scram action of the RPS, ensures that the fuel peak cladding temperature remains below .the limits,of 10 CFR 50.46.
Reactor Vessel Water Level Low Low, Level,      2  signals are initiated'rom four level transmitters that        sense the difference between the pressure due to a      constant column    of water (reference leg) and the pressure due to the actual water level (variable leg) in the vessel.
The Reactor Vessel Water Level. Low Low, Level 2      Allowable Value is high enough such .that for complete loss        of (continued)
BFN-UNIT 2                          B  3.3'-113                              AMENDMENT
 
ili il~
 
ECCS  Instrumentation B 3.3.5.1 APPLICABLE          3.a. Reactor Vessel Water Level -            Low Low    Level  2 SAFETY ANALYSES,      (continued)
LCO, and APPLICABILITY      feedwater flow, the Reactor Core Isolation Cooling (RCIC)
System    flow with    HPCI assumed    to  fail will  be  sufficient to avoid  initiation of    low pressure      ECCS  at Reactor Vessel Water Level Low Low Low, Level            l.
Four channels of Reactor Vessel Water Level Low Low,
                  'Level 2 Function are required to be OPERABLE only when HPCI is required to be OPERABLE to ensure that no .single instrument failure can preclude HPCI initiation.                Refer to LCO 3.5. 1 for HPCI.Applicability Bases.
3.b. Dr well Pressure-      Hicih High pressure      in the drywell could indicate a break in the RCPB. The HPCI System      is initiated upon receipt of the Drywell Pressure High Funct'ion in order to minimize the possibility of -fuel damage. The core cooling function of the ECCS, along with the scram action of the RPS, ensures that the fuel peak cladding, temperature remains below the
                -
limits of      10 CFR  50.46.
High drywell pressure        signals are initiated from four pressure    transmitters    that  sense drywell pressure.        The Allowable Value was        selected    to  be  as low  as  possible  to  be indicative of a      LOCA  inside  primary    containment.
Four channels      of the Drywell Pressure High Function are required to be OPERABLE when HPCI is required to be OPERABLE to ensure that no single instrument failure can preclude HPCI  initiation.      Refer to  LCO  3.5.1 for  HPCI  Applicability Bases.
3.. R          V<<III            I    1-~Hih High  RPV water level indicates that sufficient cooling water inventory exists in the reactor vessel such that there is no danger to the fuel. Therefore, the Level 8 signal is used to trip the HPCI turbine to prevent overflow into the main steam lines (MSLs). The Reactor Vessel Water Level                  High, Level 8 Function is not assumed in the accident and transient analyses.        It was    retained since    it is  a (continued)
BFN-UNIT 2                                B 3.3-114                                  AMENDMENT
 
ili
<g>>
il
 
ECCS  Instrumentation B 3.3.5.1 BASES APPLICABLE      3.c. Reactor Vessel Water Level      - Hi  h    Level 8 SAFETY ANALYSES,    (continued)
LCO, and APPLICABILITY    potentially significant contributor to risk, thus              it meets Criterion 4 of the NRC Policy Statement (Ref. 5).
Reactor Vessel Water Level-High, Level 8 signals for HPCI are initiated from two level transmitters from the narrow range water level measurement instrumentation.              The Reactor
                                      -
Vessel Water Level High,        Level 8  Allowable    Value  is chosen to prevent  flow  from  the  HPCI  System  from  overflowing    into the NSLs.
Two channels of Reactor Vessel Water Level High, Level 8 Function are required to be OPERABLE only when HPCI is required to be OPERABLE. Refer to LCO 3.5.1 for HPCI Applicability Bases.
3.d. Condensate  Header Level    -  Low Low  level in. the  CST  indicates the unavailability of          an adequate supply of makeup water from this            normal source.
Normally the suction valves between HPCI and the              CST  are open and, upon    receiving    a HPCI  initiation    signal,  water  for HPCI injection would be taken from the CST.              However,  if the water level in the HPCI pump supply          header    from  the  CST falls below a preselected level, first the suppression pool suction valves automatically open, and then the CST suction valve automatically closes. This ensures that an adequate supply of makeup water is available to the HPCI pump. To prevent losing suction to the pump, the suction valves are interlocked so that the suppression pool suction valves must be open before the CST suction valve automatically closes.
The Function is implicitly assumed in the accident and transient analyses (which take credit for HPCI) since the analyses assume that the HPCI suction source is the suppression pool.
Condensate  Header Level Low      signals are initiated from two level switches. The      logic is arranged      such that either level switch can    cause  the  suppression    pool  suction valves}}

Latest revision as of 01:45, 7 January 2025

Proposed Conversion from Current TSs to Improved STS Consistent w/NUREG-1433,rev 1
ML18038B754
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 09/06/1996
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML18038B753 List:
References
RTR-NUREG-1433 NUDOCS 9609190176
Download: ML18038B754 (68)


Text