ML20092G305: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 18: Line 18:
=Text=
=Text=
{{#Wiki_filter:__
{{#Wiki_filter:__
Vern,ont Yankee Nuclear Power Station Cycle 18 Core Operating Limits Report Revision 2 Preparer      1  alt h.                                                   YA0lf[
Vern,ont Yankee Nuclear Power Station Cycle 18 Core Operating Limits Report Revision 2 alt h.
VY Nuclear     /                                                   'D a t'e Engineer Coordinator Approved                                                                 F 3o/95 (3dclearEnginee(ing                                               ' Dat'e Department Director l
YA0lf[
Approved N           de                                                 O!3c[9T     l Reactor & Computer                                                 Date   i Engineering Manager August 1995 Reviewed 2MOtle./1 950 /O.f                                               7 /51/9.7 P1 ant Operati%ns                                               'D'tea Review Committee r         \_
Preparer 1
Approved g1v.tbb@M
VY Nuclear
                                                              .                                                        3)31M l
/
                                                                                                                            'Da te Pfant]alNger Approved               7      4 84/P/M f-/f(
'D a t'e Engineer Coordinator Approved F 3o/95 (3dclearEnginee(ing
Vice Pr~eside'nt                                                   Date Operations                                                                 ,
' Dat'e Department Director Approved N de O!3c[9T Reactor & Computer Date i
1 Controlled Copy No.
Engineering Manager August 1995 Reviewed 2MOtle./1 950 /O.f 7 /51/9.7
9509190223 DR       950912 ADOCK 05000271
'D'te P1 ant Operati%ns a
                            .PDR
Review Committee r
\\_
g1v.tbb@M 3)31M Approved Pfant]alNger l
'Da te Approved 4 84/P/M f-/f(
7 Vice Pr~eside'nt Date Operations Controlled Copy No.
9509190223 950912 DR ADOCK 05000271
.PDR


i I
i I
e REVISION RECORD 9
e REVISION RECORD 9
Cycle   Revision Date                     Description 14       0   10/89' Initial printing. Reviewed by PORC and approved by management.
Cycle Revision Date Description 14 0
15      0    9/90  Cycle 15 revisions. Reviewed by PORC and approved by management.
10/89' Initial printing.
15      1    11/91  Incorporate new MCPR limits to allow operation within the exposure window.
Reviewed by PORC and approved by management.
Reviewed by PORC and approved by management.
16       0   3/92   Cycle 16 revisions. Reviewed by PORC and approved by management.
15 0
17       0   7/93   Cycle 17 revisions. Reviewed by PORC and approved by management.
9/90 Cycle 15 revisions.
18       0   4/95   Cycle 18 revisions. Reviewed by PORC and approved by management.
Reviewed by PORC and approved by management.
18       1   8/95   Incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event. Reviewed by PORC and approved by management.
15 1
18       2   8/95   Incorporate the thermal-hydraulic stability exclusion region. Reviewed by PORC and       1 approved by management.                         :
11/91 Incorporate new MCPR limits to allow operation within the exposure window.
l 1
Reviewed by PORC and approved by management.
16 0
3/92 Cycle 16 revisions.
Reviewed by PORC and approved by management.
17 0
7/93 Cycle 17 revisions.
Reviewed by PORC and approved by management.
18 0
4/95 Cycle 18 revisions.
Reviewed by PORC and approved by management.
18 1
8/95 Incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event.
Reviewed by PORC and approved by management.
18 2
8/95 Incorporate the thermal-hydraulic stability exclusion region.
Reviewed by PORC and 1
approved by management.
l l
l l
1 l
1 l
)
l
l
                                                                                )
-ii-
l
                                      -ii-


o ABSTRACT This report presents the cycle-specific operating limits for the operation of Cycle 18 of the Vermont Yankee Nuclear Power Station. The limits are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region.
o ABSTRACT This report presents the cycle-specific operating limits for the operation of Cycle 18 of the Vermont Yankee Nuclear Power Station.
l l
The limits are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region.
l l
-iii-
l 1
                                                  -iii-


          *                                                                                                                                                                                        \
\\
TABLE OF CONTENTS Page REVISION RECORD . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                   ii ABSTRACT   .............................                                                                                                                              iii LIST'0F TABLES     ..........................                                                                                                                          y
TABLE OF CONTENTS Page REVISION RECORD..........................
: LIST OF' FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                 vi
ii ABSTRACT iii LIST'0F TABLES y
: LIST OF' FIGURES..........................
vi


==1.0 INTRODUCTION==
==1.0 INTRODUCTION==
. . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                        1 2.0     CORE-0PERATING LIMITS . . . . . . . . . . . . . . . . . . . . . . .                                                                                                     2 2.1 Maximum Average Planar Linear Heat Generation Rate Limits                                                                                                   ..      2 2.2 Minimum Critical Power Ratio Limits' . . . . . . . . . . . . .                                                                                                     3 2.3 l'sximum Linear Heat Generation. Rate Limits . . . . . . . . . .                                                                                                   3 2.4 Thermal-Hydraulic Stability Exclusion Region . . . . . . . . .                                                                                                     3 l
1 2.0 CORE-0PERATING LIMITS.......................
2 2.1 Maximum Average Planar Linear Heat Generation Rate Limits 2
2.2 Minimum Critical Power Ratio Limits'.............
3 2.3 l'sximum Linear Heat Generation. Rate Limits..........
3 l
2.4 Thermal-Hydraulic Stability Exclusion Region.........
3


==3.0 REFERENCES==
==3.0 REFERENCES==
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .                                                                                                      13 i
13 i
l l
l l
4 iv-g.
4 iv-g.h i
h i     . . . . . -                          m         __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ _ _ . _ _
m


                              .    .  .. .. . .      . ~ . . . . . _         _. .. -=-   - - . .    . . .. . . .._ .-      -.
. ~..... _
1                               .
_... -=-
;                                                          LIST OF TABLES             ,
1 LIST OF TABLES Number Title Page s
Number                                             Title                                           Page s                                                                                                                                 .
.i Table 2.1-1 MAPLHGP Versus Average Planar Exposure for BP8DWB311-10GZ Fuel 5
.i Table 2.1-1 MAPLHGP Versus Average Planar Exposure for BP8DWB311-10GZ Fuel                             5 1
1 Table 2.'l-; MAPLHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel 6
!                  Table 2.'l-; MAPLHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel                           6 4.
4.
j Table 2.1-3 MAPLHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel                             7
Table 2.1-3 MAPLHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel 7
,                  Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel                             8 Table 2.2-1 Minimum Critical Power Ratio Operating Limits                                             9 Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits                                      10
j f
Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel 8
Table 2.2-1 Minimum Critical Power Ratio Operating Limits 9
{.
{.
t i
Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits 10 t
i 1
i i
l 1
1 l
1 i
1 1
4 l
i 4
                                                                          .y.
.y.
e v
e v
  -_, ,,,              w                       vr .                -
w vr
Y a
-vir-Y a


LIST OF FIGURES Number                             Title         Page 2.2-1   Kf Versus Percent of Rated Core Flow Rate   11 2.4-1   Stability Power and Flow Exclusion Region   12 1
LIST OF FIGURES Number Title Page 2.2-1 K Versus Percent of Rated Core Flow Rate 11 f
1 1
2.4-1 Stability Power and Flow Exclusion Region 12 1
4
4
                                              -vi-
-vi-


1,0~ INTRODUCTION This report provides the cycle-specific limits foi operation of the Vermont Yankee Nuclear Power Station in Cycle 18.               It includes the limits for the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion regien.     If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.
1,0~ INTRODUCTION This report provides the cycle-specific limits foi operation of the Vermont Yankee Nuclear Power Station in Cycle 18.
1 This report has been prepared in accordance with the requirements of Technical Specification 6.7.A.4. The core operating limits have been developed using the NRC-approved methodologies listed in References 1 through
It includes the limits for the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion regien.
If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.
1 This report has been prepared in accordance with the requirements of Technical Specification 6.7.A.4.
The core operating limits have been developed using the NRC-approved methodologies listed in References 1 through
: 29. 34 through 36, and in Technical Specification 6.7.A.4.
: 29. 34 through 36, and in Technical Specification 6.7.A.4.
The bases for these limits are in References 20, 21. and 30 through 35.
The bases for these limits are in References 20, 21. and 30 through 35.
I l
l l..
l


l l
2.0 CORE OPERATING LIMITS The Cycle 18 operating limits have been defined using NRC-approved methodologies.
.        .                                                                              l 2.0     CORE OPERATING LIMITS The Cycle 18 operating limits have been defined using NRC-approved methodologies. Cycle 18 must be operated within the bounds of these limits and all others specified in the Technical Specifications.
Cycle 18 must be operated within the bounds of these limits and all others specified in the Technical Specifications.
2.1 Maximum Average Planar linear Heat Generation Rate Limits                     J During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for each fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in Tables 2.1-1 through 2.1-4. For ' ingle recirculation loop operation, the liniting values shall be the v- uses from these Tables listed under the heading
2.1 Maximum Average Planar linear Heat Generation Rate Limits J
      " Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83.     The source of these values is identified on each table. These tables only list the limits for fuel types in Cycle 18.         j The MAPLHGR values are usually the most limiting composite of the fuel mechanical design analysis MAPLHGRs and the Loss-of-Coolant Accident (LOCA)
During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for each fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in Tables 2.1-1 through 2.1-4.
MAPLHGRs. The fuel mechanical design analysis, using the methods in Reference 21, demonstrates that all fuel rods in a lattice, operating at the bounding power history, meet the fuel design limits specified in Reference 21.       The Vermont Yankee LOCA analysis, performed in accordance with 10CFR50, Appendix K, demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the mechanical design analysis MAPLHGR values.
For ' ingle recirculation loop operation, the liniting values shall be the v-uses from these Tables listed under the heading
The MAPLHGR actually varies axially, depending upon the specific combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node.     Each particular combination of enriched uranium and gadolinia is called a lattice type.     Each lattice type has a set of MAPLHGR values that vary with fuel burnup.     The process computer will verify that these lattice MAPLHGR limits are not violated. Tables 2.1-1 through 2.1-4' provide a limiting composite of MAPLHGR values for each fuel type, which envelope the lattice MAPLHGR values employed by the process computer. When hand calculations are required, these MAPLHGR values are used for all lattices _in the bundle.
" Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83.
The source of these values is identified on each table. These tables only list the limits for fuel types in Cycle 18.
j The MAPLHGR values are usually the most limiting composite of the fuel mechanical design analysis MAPLHGRs and the Loss-of-Coolant Accident (LOCA)
MAPLHGRs. The fuel mechanical design analysis, using the methods in Reference 21, demonstrates that all fuel rods in a lattice, operating at the bounding power history, meet the fuel design limits specified in Reference 21.
The Vermont Yankee LOCA analysis, performed in accordance with 10CFR50, Appendix K, demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the mechanical design analysis MAPLHGR values.
The MAPLHGR actually varies axially, depending upon the specific combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node.
Each particular combination of enriched uranium and gadolinia is called a lattice type.
Each lattice type has a set of MAPLHGR values that vary with fuel burnup.
The process computer will verify that these lattice MAPLHGR limits are not violated. Tables 2.1-1 through 2.1-4' provide a limiting composite of MAPLHGR values for each fuel type, which envelope the lattice MAPLHGR values employed by the process computer. When hand calculations are required, these MAPLHGR values are used for all lattices _in the bundle.
2.2 Minimum Critical Power Ratic limits During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1.
2.2 Minimum Critical Power Ratic limits During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1.
The MCPR limits are also valid during coastdown beyond 10644 mwd /St.
The MCPR limits are also valid during coastdown beyond 10644 mwd /St.
For single recirculation loop operation, the MCPR limits at rated flow shall be the values from Table 2.2-1 listed under the heading, " Single Loop Operation." The single loop values are obtained by adding 0.01 to the two loop operation values. Fcr core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by Kf, where K     r is given in Figure 2.2-1 as a function of the flow control method in use. These limits are only valid for the fuel types in Cycle 18.
For single recirculation loop operation, the MCPR limits at rated flow shall be the values from Table 2.2-1 listed under the heading, " Single Loop Operation." The single loop values are obtained by adding 0.01 to the two loop operation values.
2.3 Maximum Linear Heat Generation Rate limits During steady-state power operation, the linear Heat Generation Rate     I (LHGR) of any rod in any fuel bundle at any axial location shall not exceed the maximum allowable LHGR limits in Table 2.3-1.       This table only lists the l
Fcr core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by K,
limits for fuel types in Cycle 18.                                                 I 2.4 Thermal-Hydraulic Stability Exclusion Reoion Normal plant operation is not allowed inside the bounds of the exclusion region defined in Figure 2.4-1. These power and flow limits are applicable
f where K is given in Figure 2.2-1 as a function of the flow control method in r
use. These limits are only valid for the fuel types in Cycle 18.
2.3 Maximum Linear Heat Generation Rate limits During steady-state power operation, the linear Heat Generation Rate (LHGR) of any rod in any fuel bundle at any axial location shall not exceed the maximum allowable LHGR limits in Table 2.3-1.
This table only lists the limits for fuel types in Cycle 18.
2.4 Thermal-Hydraulic Stability Exclusion Reoion Normal plant operation is not allowed inside the bounds of the exclusion region defined in Figure 2.4-1.
These power and flow limits are applicable...


for Cycle 18. Operation inside of the exclusion region may result in a thermal-hydraulic oscillation.
for Cycle 18.
l l
Operation inside of the exclusion region may result in a thermal-hydraulic oscillation.
l l
1 9
l l
1 l
l 9
f..-
f..-
(
(
Table 2.1-1                               ,
Table 2.1-1 MAPLHGR Versus Average Planar Exposure for BP80WB311-10GZ Fuel Plant:
MAPLHGR Versus Average Planar Exposure for BP80WB311-10GZ Fuel Plant:         Vermont Yankee                                                                   Fuel Type:     BP80WB311-10GZ MAPLHGR (kW/ft)                   !
Vermont Yankee Fuel Type:
Average Planar Exposure (mwd /ST)                                             Two Loop Operation           Single Looo Operation, 0.0                                                             10.93                     9.07 200.00                                                           11.00                     9.13
BP80WB311-10GZ MAPLHGR (kW/ft)
                          '1,000.00                                                           11.13                   9.24 2,000.00                                                           11.32                   9.40 3.000.00                                                           11.52                   9.56 4,000.00                                                           11.64                   9.66 5,000.00                                                           11.77                   9.77 6,000.00                                                           11.92                   9.89 7.000.00                                                           12.11                   10.05 8,000.00                                                           12.34                   10.24 9,000.00                                                           12.59                   10.45 10,000.00                                                             12.83                   10.65 12,500.00                                                             13.00                   10.79 15,000.00                                                             12.81                   10.63 20,000.00                                                             12.24                   10.16 25,000.00                                                             11.55                   9.59 35,000.00                                                             10.24                   8.50 45,000.00                                                             8.76                     7.27 50,735.00                                                             5.91                     4.91 Source:           Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Sinole LooD ODeration, NED0-30060, Reference 30; Letter,                                                    ,
Average Planar Exposure (mwd /ST)
                        " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for                                             !
Two Loop Operation Single Looo Operation, 0.0 10.93 9.07 200.00 11.00 9.13
Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
'1,000.00 11.13 9.24 2,000.00 11.32 9.40 3.000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7.000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.91 4.91 Source:
Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Sinole LooD ODeration, NED0-30060, Reference 30; Letter,
" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
Reference 33.
Reference 33.
Technical Specification  
Technical Specification  
Line 129: Line 171:
==References:==
==References:==
3.6.G.la and 3.11.A.
3.6.G.la and 3.11.A.
I
I MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83. :
* MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.


Table 2.1-2 MAPlHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel Plant:   Vermnnt Yankee                                                                                                                               Fuel Type:       BP80WB311-11GZ MAPLHGR (kW/ft)
Table 2.1-2 MAPlHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel Plant:
Average Planar Exposure (mwd /ST)                       Two Loon Operation                                                                                               Single Loon Operation, 0.00                                                 10.93                                                                                           9.07 200.00                                                 11.00                                                                                           9.13 1,000.00                                                 11.13                                                                                         9.24 2,000.00                                                 11.32                                                                                         9.40 3,000.00                                                 11.52                                                                                         9.56 4,000.00                                                 11.64                                                                                         9.66 5,000.00                                                 11.77                                                                                         9.77 6,000.00                                                 11.92                                                                                         9.89 7,000.00                                                 12.11                                                                                         10.05 8,000.00                                                 12.34                                                                                         10.24 9,000.00                                                 12.59                                                                                         10.45 10,000.00                                                   12.83                                                                                         10.65 12,500.00                                                   13.00                                                                                         10.79 15,000.00                                                 12.81                                                                                           10.63 l
Vermnnt Yankee Fuel Type:
20,000.00                                                 12.24                                                                                           10.16 25,000.00                                                 11.55                                                                                           9.59 35,000.00                                                 10.24                                                                                           8.50 45,000.00                                                   8.76                                                                                           7.27 50,735.00                                                   5.91                                                                                           4.91 i    Source:       Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont YaJree Nuclear Power Station Single Loon Operation, NE00-30060, Reference 30: Letter,
BP80WB311-11GZ MAPLHGR (kW/ft)
                    " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
Average Planar Exposure (mwd /ST)
Two Loon Operation Single Loon Operation, 0.00 10.93 9.07 200.00 11.00 9.13 1,000.00 11.13 9.24 2,000.00 11.32 9.40 3,000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7,000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 l
20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.91 4.91 Source:
Vermont Yankee Cycle 18 Core Performance Analysis Report, i
YAEC-1908, Reference 31: Vermont YaJree Nuclear Power Station Single Loon Operation, NE00-30060, Reference 30: Letter,
" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
Reference 33.
Reference 33.
Technical Specification  
Technical Specification  
Line 141: Line 187:
==References:==
==References:==
3.6.G.la and 3.11.A.
3.6.G.la and 3.11.A.
* MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.
MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.. _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _


F Table 2.1-3 MAPLHGR Versus Average Planar Exposure for 8P80WB335-10GZ Fuel Plant:   V.ermont Yankee                             Fuel Type:   BP80WB335-10GZ MAPLHGR (kW/ft)
F Table 2.1-3 MAPLHGR Versus Average Planar Exposure for 8P80WB335-10GZ Fuel Plant:
Average Planar Exnosure (mwd /ST)             Two Loop Operation   Single loop Operation.
V.ermont Yankee Fuel Type:
0.00                   11.29                   9.37 200.00                   11.34                   9.41 1,000.00                     11.48                   9.53 2,000.00                     11.69                 9.70 3,000.00                     11.92                   9.89 4,000.00                     12.17                   10.10 5,000.00                     12.43                   10.32 6,000.00                     12.68                   10.52 7,000.00                     12.87                   10.68 8,000.00                     13.06                   10.84 9,000.00                     13.24                   10.99         ,
BP80WB335-10GZ MAPLHGR (kW/ft)
1 10,000.00                     12.99                   10.78 12,500.00                     12.84                   10.66 15,000.00                       12.65                 10.50 20,000.00                     11.93                   9.90 25,000.00                     11.26                   9.35           !
Average Planar Exnosure (mwd /ST)
1 35,000.00                       9.88                   8.20 45,000.00                       8.38                   6.96 50,593.00                       5.65                   4.69 l
Two Loop Operation Single loop Operation.
Source:     Vermont Yankee Cycle 18 Core Performance Analysis Report,           ;
0.00 11.29 9.37 200.00 11.34 9.41 1,000.00 11.48 9.53 2,000.00 11.69 9.70 3,000.00 11.92 9.89 4,000.00 12.17 10.10 5,000.00 12.43 10.32 6,000.00 12.68 10.52 7,000.00 12.87 10.68 8,000.00 13.06 10.84 9,000.00 13.24 10.99 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source:
YAEC-1908, Reference 31; Vermont Yankee Nuclear Power Station         !
Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31; Vermont Yankee Nuclear Power Station Single Loop Operation, NE00-30060, Reference 30: Letter,
Single Loop Operation, NE00-30060, Reference 30: Letter,
" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
                  " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
Reference 33.
Reference 33.
l Technical Specification  
Technical Specification  


==References:==
==References:==
3.6.G.la and 3.11.A.                     i l
3.6.G.la and 3.11.A.
MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.
MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.
l l
Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel Plant:
l l
Vermont Yankee Fuel Type:
 
BP8DWB335-11GZ MAPLHGR (kW/ft)
Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel Plant:   Vermont Yankee                               Fuel Type:   BP8DWB335-11GZ MAPLHGR (kW/ft)
Average Planar Exposure (MVd/ST)
Average Planar Exposure (MVd/ST)               Two Loop Operation   Single Loop Operation, 0.00                     11.28                 9.36 200.00                     11.33                 9.40 1,000.00                     11.43                 9.49 2,000.00                     11.60                 9.63 3,000.00                     11.80                 9.79 4,000.00                     12 04                 9.99 5,000.00                     12.30                 10.21 6,000.00                     12.53                 10.40 7,000.00                     12.73                 10.57 8,000.00                       12.94                 10.74 9,000.00                       13.13                 10.90 10,000.00                       12.99                 10.78 12,500.00                       12.84                 10.66 15,000.00                       12.65                 10.50 20,000.00                       11.93                 9.90 25,000.00                       11.26                 9.35 35,000.00                       9.88                 8.20 45,000.00                       8.38                 6.96 50,593.00                       5.65                 4.69 Source:       Vermont Yankee Cycle 18 Core Performance Analysis Report,           j YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station       '
Two Loop Operation Single Loop Operation, 0.00 11.28 9.36 200.00 11.33 9.40 1,000.00 11.43 9.49 2,000.00 11.60 9.63 3,000.00 11.80 9.79 4,000.00 12 04 9.99 5,000.00 12.30 10.21 6,000.00 12.53 10.40 7,000.00 12.73 10.57 8,000.00 12.94 10.74 9,000.00 13.13 10.90 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source:
Single Loop Operation, NE00-30060, Reference 30; Letter,
Vermont Yankee Cycle 18 Core Performance Analysis Report, j
                    " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"               l Reference 33.                                                       l I
YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Single Loop Operation, NE00-30060, Reference 30; Letter,
" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"
l Reference 33.
l I
Technical Specification  
Technical Specification  


==References:==
==References:==
3.6.G.la and 3.11.A.
3.6.G.la and 3.11.A.
* MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for       i two loop operation by 0.83.                                                   I l
MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for i
l
I two loop operation by 0.83.
! l


1 Table 2.2-1 Minimum Criticc1 Power Ratio Operating Limits MCPR Operating Limits Value of "N"                                                           Single in RBM       Average Control       Cycle Exposure     Two Loop       Loop Ecuation (A)I   Rod Scram Time           Range         Operation   Operation 2 42%       Equal to or       0.0 to 4000 mwd /St       1.39         1.40 better than       4000 to 5500 mwd /St       1.35         1.36 L.C.0.           5500 to 10644 mwd /St     1.33         1.34 3.3.C.1.1 Equal to or       0.0 to 4000 mwd /St       1.39         1.40 better than       4000 to 5500 mwd /St       1.35         1.36 L.C.0.           5500 to 9035 mwd /St       1.33         1.34   ;
1 Table 2.2-1 Minimum Criticc1 Power Ratio Operating Limits MCPR Operating Limits Value of "N" Single in RBM Average Control Cycle Exposure Two Loop Loop 2
3.3.C.1.2         9035 to 10644 mwd /St     1.34         1.35 41%       Equal to or       0.0 to 4000 mwd /St       1.39         1.40 better than       4000 to 5500 mwd /St       1.35         1.36 L.C.0.           5500 to 6500 mwd /St       1.29         1.30 3.3.C.1.1         6500 to 9035 mwd /St       1.27         1.28 9035 to 10644 mwd /St     1.32         1.33 Equal to or       0.0 to 4000 mwd /St       1.39         1.40 better than       4000 to 5500 mwd /St       1.35         1.36 L.C.0.           5500 to 6500 mwd /St       1.29         1.30 3.3.C.1.2         6500 to 8035 mwd /St       1.27         1.28 8035 to 9035 mwd /St       1.30         1.31 9035 to 10644 mwd /St     1.34         1.35 140%       Equal to or       0.0 to 4000 mwd /St       1.39         1.40 better than       4000 to 5500 mwd /St       1.35         1.36     '
Ecuation (A)I Rod Scram Time Range Operation Operation 42%
L.C.0.           5500 to 6500 mwd /St       1.29         1.30 3.3.C.1.1         6500 to 8035 mwd /St       1.25         1.26 8035 to 9035 mwd /St       1.27         1.28 9035 to 10644 mwd /St     1.32         1.33 Equal to or       0.0 to 4000 mwd /St       1.39         1.40 better than       4000 to 5500 mwd /St       1.35         1.36     l L.C.0.           5500 to 6500 mwd /St       1.29         1.30     '
Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.
3.3.C.1.2         6500 to 8035 mwd /St       1.25         1.26 8035 to 9035 mwd /St       1.30         1.31 9035 to 10644 mwd /St     1.34         1.35 Sources:     Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, Reference 32: and Vermont Yankee Nuclear Power Station Single Loop Operation, NED0-30060, Reference 30.
5500 to 10644 mwd /St 1.33 1.34 3.3.C.1.1 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.
5500 to 9035 mwd /St 1.33 1.34 3.3.C.1.2 9035 to 10644 mwd /St 1.34 1.35 41%
Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.
5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 9035 mwd /St 1.27 1.28 9035 to 10644 mwd /St 1.32 1.33 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.
5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.27 1.28 8035 to 9035 mwd /St 1.30 1.31 9035 to 10644 mwd /St 1.34 1.35 140%
Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.
5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.27 1.28 9035 to 10644 mwd /St 1.32 1.33 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.
5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.30 1.31 9035 to 10644 mwd /St 1.34 1.35 Sources:
Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, Reference 32: and Vermont Yankee Nuclear Power Station Single Loop Operation, NED0-30060, Reference 30.
Technical Specification  
Technical Specification  


==References:==
==References:==
3.6.G.la and 3.11.C.
3.6.G.la and 3.11.C.
1   The Rod Block Monitor (RBM) trip setpoints are determined by the equation shown in Table 3.2.5 of the Technical Specifications.
1 The Rod Block Monitor (RBM) trip setpoints are determined by the equation shown in Table 3.2.5 of the Technical Specifications.
2   MCPR Operating Limits are increased by 0.01 for single loop operation.
2 MCPR Operating Limits are increased by 0.01 for single loop operation.
                                              ~9-
~9-


                                          .T,able 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits Maximum Allowable Linear Fuel TyDe       Heat Generation Rate (kW/ft)
.T,able 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits Maximum Allowable Linear Fuel TyDe Heat Generation Rate (kW/ft)
BP80WB311-10GZ                   14.4 BP80WB311-11GZ                   14.4 EP80WB335-10GZ                   14.4 BP80WB335-11GZ                   14.4 Source:     NEDE-24011-P-A, Reference 21.
BP80WB311-10GZ 14.4 BP80WB311-11GZ 14.4 EP80WB335-10GZ 14.4 BP80WB335-11GZ 14.4 Source:
NEDE-24011-P-A, Reference 21.
Technical Specification  
Technical Specification  


==References:==
==References:==
2.1.A.la, 2.1.B.1, and 3.11.B.
2.1.A.la, 2.1.B.1, and 3.11.B.
1 l
1 l.
 
Kf 1.4 EQUATIONS for Kf Curves:
Kf 2 1.0
=
\\
Kf(WT>40%) = A.O.441(WT/100%)
1
~
Kf(WT<40%) =
t j,}.-....l..
..'.......l......
K f(WT> 40 %)*(1.0 +0.003 2(40.WT))
{
1.3308 l
l Where A(102.5 %)
=
A(104.5 %)
1.3406
=
1.3528 A(107.0%)
=
~
1.3793 A(ll2.0%)
=
[
l A(ll7.0%) = 1.4035 1,2,-.......
AUTOMATIC FLOW CONTROL j, j _-_......
~
MANUAL FLOjV CON'IROL j~._
Scoop. Tube S:t Point Calibration positioned such that:
l Flowmax = 102.5%/
104.5% /
l l
l
=
107.0% /
=
!!2.0%
l l
l
=
117.0 %
0.9 ~........
20 30 40 50 60 70 80 90 100 Core Flow (%) (WT)
Figure 2.2-1 L Versus Perc(.nt of Rated Core Flow Rate (Technical Specification Reference 3.11.C) 150 140
~
1l l
130 120 b
l l
l
l
 
/
  .  .                                                                                                                        1 I
l:l"
l Kf 1.4                                                                                                                  l
\\
                  .            ;                ;            ;              EQUATIONS for Kf Curves:
\\
                                                =
\\ \\;;g l<
Kf 2 1.0                                            l
4 80 M
                                                                                                                                \
y,j c
                              '                                                                                                l
y 10 8
                  ~
r s*
Kf(WT>40%) = A.O.441(WT/100%)                      1 1
.9-=
t                .            .
b 50 5
Kf(WT<40%) =                                        l j,} .-....l.. ..'.......l......                                  K f(WT> 40 %)*(1.0 +0.003 2(40.WT))                {
<5 Ep' o, i J I
                              ,                l            l              Where A(102.5 %)      =    1.3308                  l 1
A(104.5 %)    =    1.3406
                              ,                ,                                  A(107.0%)    =    1.3528                  !
                  ~
A(ll2.0%) =        1.3793
[            ,
l                      A(ll7.0%) = 1.4035 l
1,2 ,- . . . . . . . . . .
                              .                .                        .          AUTOMATIC FLOW CONTROL j , j _-_ . . . . . .  . . . . . . . . . . . . . . .            . . . . . . . . .        ... ... .....
                  ~
MANUAL FLOjV CON'IROL                                                        ,
j~._    Scoop. Tube S:t Point Calibration                      ..    '.
positioned such that:                                                      .
                                                                                                    ,            l Flowmax      = = 102.5%/                  l              l            l
                                                        = 104.5% /                    .              .            .
                  .                                    = 107.0%
                                                            !!2.0%      /            l              l            l
                  -                                    -  117.0 %                  .              .            .
0.9 ~      ....... .  .........        .........    .........    .........    .........    .........    .........
20          30            40            50          60          70          80              90        100 l Core Flow (%) (WT)
Figure 2.2-1 L Versus Perc(.nt of Rated Core Flow Rate (Technical Specification Reference 3.11.C) 150    _
                                              ~
140 130
                                              !                      1l                  l 120 b
l          l      l                            /
l<
l:l" 80 -    --
                                                                \     \           \
                                                                                          \;;g M
4 c
y 10
                                          -----                                          y    ,j 8         :                                          <
                                      "      .                                            r       s*
50 b
                                                                                      .9-=
5                                 <5 o, i J Ep' I
20
20
:              // /
// /
g i
i
J....
/ l5 J....
                                                      / l5 j                                               0     10     20       30       40       50       60     70     80           90     100   110       120 cm,mamem+
g j
i TcrrAL CORE FLOW (%)
0 10 20 30 40 50 60 70 80 90 100 110 120 cm,mamem+
Exclusion Region Boundary Equation
TcrrAL CORE FLOW (%)
;                                                    lbwer = 133.7831 - 6.61 (FLOW - 0.5) +0.113 (FLOW - 0.5)2 i
i Exclusion Region Boundary Equation lbwer = 133.7831 - 6.61 (FLOW - 0.5) +0.113 (FLOW - 0.5)2 i
Fiqure 2.4-1 Stability Power and Flow Exclusion Region (Technical Specification Reference 3.6.J) i
Fiqure 2.4-1 Stability Power and Flow Exclusion Region (Technical Specification Reference 3.6.J) i


Line 253: Line 324:


==3.0 REFERENCES==
==3.0 REFERENCES==
: 1.           Report, A. A. F. Ansari, Methods for the Analysis of Boiling Water Reactors: Steady-State Core Flow Distribution Code (FIBWR), YAEC-1234 December 1980.
1.
: 2.             Report A. A. F. Ansari and J. T. Cronin, Methods for the Analysis of Boiling Water Reactors: A System Transient Analysis Model (RETRAN),
Report, A. A. F. Ansari, Methods for the Analysis of Boiling Water Reactors: Steady-State Core Flow Distribution Code (FIBWR), YAEC-1234 December 1980.
2.
Report A. A. F. Ansari and J. T. Cronin, Methods for the Analysis of Boiling Water Reactors: A System Transient Analysis Model (RETRAN),
YAEC-1233, April 1981.
YAEC-1233, April 1981.
: 3.             Report, A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boiling Water React)rs: Transient Critical Power Ratio Analysis (RETRAN-TCPYA01), YAEC 1299P, March 1982.
3.
: 4.             Report, A. S. DiGiovine, et ii., CASM0-3G Validation, YAEC-1363-A, April 1988.
Report, A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boiling Water React)rs: Transient Critical Power Ratio Analysis (RETRAN-TCPYA01), YAEC 1299P, March 1982.
5,             Report, A. S. DiGiovine, J. P. Gorski, and M. A. Tremblay, SIMULATE-3 Validation and Verification, YAEC-1659-A, September 1988.
4.
: 6.             Report, R. A. Woehlke, et al., MICBURN-3/CASM0-3/ TABLES-3/ SIMULATE-3 Benchmarking of Vermont Yankee Cycles 9 through 13, YAEC-1683-A, March 1989.
Report, A. S. DiGiovine, et ii., CASM0-3G Validation, YAEC-1363-A, April 1988.
: 7.               Report, J. T. Cronin, Method for Generation of One-Dimensional Kinetics Data for RETRAN-02, YAEC-1694-A, June 1989.
5, Report, A. S. DiGiovine, J. P. Gorski, and M. A. Tremblay, SIMULATE-3 Validation and Verification, YAEC-1659-A, September 1988.
: 8.               Report, V. Chandola, M. P. LeFrancois and J. D. Robichaud, Application of One-Dimensional Kinetics to Boiling Water Reactor Transient Analysis Methods, YAEC-1693-A, Revision 1, November 1989.
6.
: 9.               Report, RELAP5YA, A Computer Program for Light-Water Reactor System Thermal-Hydraulic Analysis, YAEC-1300P-A, Revision 0, October 1982:
Report, R. A. Woehlke, et al., MICBURN-3/CASM0-3/ TABLES-3/ SIMULATE-3 Benchmarking of Vermont Yankee Cycles 9 through 13, YAEC-1683-A, March 1989.
7.
Report, J. T. Cronin, Method for Generation of One-Dimensional Kinetics Data for RETRAN-02, YAEC-1694-A, June 1989.
8.
Report, V. Chandola, M. P. LeFrancois and J. D. Robichaud, Application of One-Dimensional Kinetics to Boiling Water Reactor Transient Analysis Methods, YAEC-1693-A, Revision 1, November 1989.
9.
Report, RELAP5YA, A Computer Program for Light-Water Reactor System Thermal-Hydraulic Analysis, YAEC-1300P-A, Revision 0, October 1982:
Revision 1 July 1993.
Revision 1 July 1993.
: 10.             Report, Vermont Yankee BWR Loss-of-Coolant Accident Licensing Analysis Method, YAEC-1547P-A, July 1993.
10.
: 11.             Letter from R. W. Capstick (VYNPC) to USNRC, HUXY Computer Code Information for the Vermont Yankee BWR LOCA Licensing Analysis Method, FVY 87-63, dated June 4, 1987.                                             l
Report, Vermont Yankee BWR Loss-of-Coolant Accident Licensing Analysis Method, YAEC-1547P-A, July 1993.
: 12.             Letter from R. W. Capstick (VYNPC) to USNRC, Vermont Yankee LOCA Analysis Method FROSSTEY Fuel Performance Code (FROSSTEY-2), FVY 87-116, dated December 16, 1987.
11.
: 13.             Letter from R. W. Capstick (VYNPC) to USNRC, Response to NRC Reouest for   '
Letter from R. W. Capstick (VYNPC) to USNRC, HUXY Computer Code Information for the Vermont Yankee BWR LOCA Licensing Analysis Method, FVY 87-63, dated June 4, 1987.
Additional Information on the FROSSTEY-2 Fuel Performance Code, BVY 89-65, dated July 14, 1989.
12.
I
Letter from R. W. Capstick (VYNPC) to USNRC, Vermont Yankee LOCA Analysis Method FROSSTEY Fuel Performance Code (FROSSTEY-2), FVY 87-116, dated December 16, 1987.
13.
Letter from R. W. Capstick (VYNPC) to USNRC, Response to NRC Reouest for Additional Information on the FROSSTEY-2 Fuel Performance Code, BVY 89-65, dated July 14, 1989. I


I
I 14.
: 14. Letter from R. W. Capstick (VYNPC) to USNRC, Supplemental Information on the FROSSTEY 2 Fuel Performance Code, BVY 89-74, dated August 4, 1989.
Letter from R. W. Capstick (VYNPC) to USNRC, Supplemental Information on the FROSSTEY 2 Fuel Performance Code, BVY 89-74, dated August 4, 1989.
: 15. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest for Additional Information on FROSSTEY-2 Fuel Performance Code, BVY 90-045, dated April 19, 1990.
15.
: 16. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Supplemental Information to VYNPC April 19. 1990 Response Regardina F00SSTEY-2 Fuel Performance Code, BVY 90 054, dated May 10, 1990.
Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest for Additional Information on FROSSTEY-2 Fuel Performance Code, BVY 90-045, dated April 19, 1990.
: 17. Letter ' rom L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest for Additional Inforrlation on FROSSTEY-2 Fuel Performance Code, BVY 91-024, dated March 6, 1991.
16.
: 18. Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, LOCA-Related ResDonses to ODen Issues on FROSSTEY-2 Fuel Performance Code, BVY 92-39, dated March 27, 1992.
Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Supplemental Information to VYNPC April 19. 1990 Response Regardina F00SSTEY-2 Fuel Performance Code, BVY 90 054, dated May 10, 1990.
: 19. Letter from L. A. Tremblay, Jr . (VYNPC) to USNRC, FROSSTEY-2 Fuel Performance Code - Vermont Yankee Response to Remaining Concerns, BVY 92-54, dated May 15, 1992.
Letter ' rom L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest f
: 20. Report, L. Schor, et al., Vermont Yankee loss-of-Coolant Accident Analysis, YAEC-1772, June 1993.
17.
: 21. Report, General Electric Standard ADDlication for Reactor Fuel (GESTARII), NEDE-24011-P-A-10 GE Company Proprietary, February 1991, as   l amended.
for Additional Inforrlation on FROSSTEY-2 Fuel Performance Code, BVY 91-024, dated March 6, 1991.
: 22. Letter, USNRC to VYNPC, SER, November 27, 1981.                         !
18.
: 23. Letter, USNRC to VYNPC, SER, NVY 82-157, September 15, 1982.
Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, LOCA-Related ResDonses to ODen Issues on FROSSTEY-2 Fuel Performance Code, BVY 92-39, dated March 27, 1992.
24 Letter, USNRC to VYNPC, SER, NVY 85-205, September 27, 1985.
19.
l       25. Letter, USNRC to VYNPC, SER, November 30, 1977.
Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, FROSSTEY-2 Fuel Performance Code - Vermont Yankee Response to Remaining Concerns, BVY 92-54, dated May 15, 1992.
: 26. Letter, USNRC to VYNPC, SER NVY 87-136, August 25, 1987.
20.
l I
Report, L. Schor, et al., Vermont Yankee loss-of-Coolant Accident Analysis, YAEC-1772, June 1993.
: 27. Letter, USNRC to VYNPC, SER, NVY 91-26, February 27, 1991.               l l                                                                                    l
21.
: 28. Letter, USNRC to VYNPC, SER NVY 92-192. October 21, 1992.
Report, General Electric Standard ADDlication for Reactor Fuel (GESTARII), NEDE-24011-P-A-10 GE Company Proprietary, February 1991, as amended.
: 29. Letter, USNRC to VYNPC, SER, NVY 92-178, September 24, 1992.
22.
: 30. Report, Vermont Yankee Nuclear Power Station Single Looo Operation, NE00-30060, February 1983.
Letter, USNRC to VYNPC, SER, November 27, 1981.
23.
Letter, USNRC to VYNPC, SER, NVY 82-157, September 15, 1982.
24 Letter, USNRC to VYNPC, SER, NVY 85-205, September 27, 1985.
l 25.
Letter, USNRC to VYNPC, SER, November 30, 1977.
26.
Letter, USNRC to VYNPC, SER NVY 87-136, August 25, 1987.
27.
Letter, USNRC to VYNPC, SER, NVY 91-26, February 27, 1991.
I l
28.
Letter, USNRC to VYNPC, SER NVY 92-192. October 21, 1992.
29.
Letter, USNRC to VYNPC, SER, NVY 92-178, September 24, 1992.
30.
Report, Vermont Yankee Nuclear Power Station Single Looo Operation, NE00-30060, February 1983.,
4
4
: 31.       Report, M. A. Sironen, Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, January 1995.
 
: 32.       Report, B. Y. Hubbard, et al ., End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, October 1991.
31.
: 33.       Letter, P. J. Savoia to R. T. Yee, " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,* PJS 95106, July 25, 1995.
Report, M. A. Sironen, Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, January 1995.
: 34.       Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensing Methodology, NE00 31960, June 1991.
32.
: 35.       Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensino Methodology. NE00-31960, Supplement 1. March 1992.
Report, B. Y. Hubbard, et al., End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, October 1991.
: 36.       Letter, USNRC to VYNPC, SER, August 9, 1995.
33.
I 1
Letter, P. J. Savoia to R. T. Yee, " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,* PJS 95106, July 25, 1995.
1 1
34.
l i
Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensing Methodology, NE00 31960, June 1991.
i I
35.
15-
Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensino Methodology. NE00-31960, Supplement 1. March 1992.
__ ___          _. _    _                    ,. , , -}}
36.
Letter, USNRC to VYNPC, SER, August 9, 1995.
i i
I 15-
,, -}}

Latest revision as of 11:17, 13 December 2024

Rev 2 to Vynp Cycle 18 Colr
ML20092G305
Person / Time
Site: Vermont Yankee File:NorthStar Vermont Yankee icon.png
Issue date: 08/30/1995
From:
VERMONT YANKEE NUCLEAR POWER CORP.
To:
Shared Package
ML20092G272 List:
References
NUDOCS 9509190223
Download: ML20092G305 (21)


Text

__

Vern,ont Yankee Nuclear Power Station Cycle 18 Core Operating Limits Report Revision 2 alt h.

YA0lf[

Preparer 1

VY Nuclear

/

'D a t'e Engineer Coordinator Approved F 3o/95 (3dclearEnginee(ing

' Dat'e Department Director Approved N de O!3c[9T Reactor & Computer Date i

Engineering Manager August 1995 Reviewed 2MOtle./1 950 /O.f 7 /51/9.7

'D'te P1 ant Operati%ns a

Review Committee r

\\_

g1v.tbb@M 3)31M Approved Pfant]alNger l

'Da te Approved 4 84/P/M f-/f(

7 Vice Pr~eside'nt Date Operations Controlled Copy No.

9509190223 950912 DR ADOCK 05000271

.PDR

i I

e REVISION RECORD 9

Cycle Revision Date Description 14 0

10/89' Initial printing.

Reviewed by PORC and approved by management.

15 0

9/90 Cycle 15 revisions.

Reviewed by PORC and approved by management.

15 1

11/91 Incorporate new MCPR limits to allow operation within the exposure window.

Reviewed by PORC and approved by management.

16 0

3/92 Cycle 16 revisions.

Reviewed by PORC and approved by management.

17 0

7/93 Cycle 17 revisions.

Reviewed by PORC and approved by management.

18 0

4/95 Cycle 18 revisions.

Reviewed by PORC and approved by management.

18 1

8/95 Incorporate new MAPLHGR limits to account for Loss of Stator Cooling Event.

Reviewed by PORC and approved by management.

18 2

8/95 Incorporate the thermal-hydraulic stability exclusion region.

Reviewed by PORC and 1

approved by management.

l l

1 l

)

l

-ii-

o ABSTRACT This report presents the cycle-specific operating limits for the operation of Cycle 18 of the Vermont Yankee Nuclear Power Station.

The limits are the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion region.

-iii-

\\

TABLE OF CONTENTS Page REVISION RECORD..........................

ii ABSTRACT iii LIST'0F TABLES y

LIST OF' FIGURES..........................

vi

1.0 INTRODUCTION

1 2.0 CORE-0PERATING LIMITS.......................

2 2.1 Maximum Average Planar Linear Heat Generation Rate Limits 2

2.2 Minimum Critical Power Ratio Limits'.............

3 2.3 l'sximum Linear Heat Generation. Rate Limits..........

3 l

2.4 Thermal-Hydraulic Stability Exclusion Region.........

3

3.0 REFERENCES

13 i

l l

4 iv-g.h i

m

. ~..... _

_... -=-

1 LIST OF TABLES Number Title Page s

.i Table 2.1-1 MAPLHGP Versus Average Planar Exposure for BP8DWB311-10GZ Fuel 5

1 Table 2.'l-; MAPLHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel 6

4.

Table 2.1-3 MAPLHGR Versus Average Planar Exposure for BP80WB335-10GZ Fuel 7

j f

Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel 8

Table 2.2-1 Minimum Critical Power Ratio Operating Limits 9

{.

Table 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits 10 t

i i

1 l

1 1

i 4

.y.

e v

w vr

-vir-Y a

LIST OF FIGURES Number Title Page 2.2-1 K Versus Percent of Rated Core Flow Rate 11 f

2.4-1 Stability Power and Flow Exclusion Region 12 1

4

-vi-

1,0~ INTRODUCTION This report provides the cycle-specific limits foi operation of the Vermont Yankee Nuclear Power Station in Cycle 18.

It includes the limits for the maximum average planar linear heat generation rate, maximum linear heat generation rate, minimum critical power ratio, and thermal-hydraulic stability exclusion regien.

If any of these limits are exceeded, action will be taken as defined in the Technical Specifications.

1 This report has been prepared in accordance with the requirements of Technical Specification 6.7.A.4.

The core operating limits have been developed using the NRC-approved methodologies listed in References 1 through

29. 34 through 36, and in Technical Specification 6.7.A.4.

The bases for these limits are in References 20, 21. and 30 through 35.

l l..

2.0 CORE OPERATING LIMITS The Cycle 18 operating limits have been defined using NRC-approved methodologies.

Cycle 18 must be operated within the bounds of these limits and all others specified in the Technical Specifications.

2.1 Maximum Average Planar linear Heat Generation Rate Limits J

During steady-state power operation, the Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) for each fuel type, as a function of the average planar exposure, shall not exceed the limiting values shown in Tables 2.1-1 through 2.1-4.

For ' ingle recirculation loop operation, the liniting values shall be the v-uses from these Tables listed under the heading

" Single Loop Operation." These values are obtained by multiplying the values for two loop operation by 0.83.

The source of these values is identified on each table. These tables only list the limits for fuel types in Cycle 18.

j The MAPLHGR values are usually the most limiting composite of the fuel mechanical design analysis MAPLHGRs and the Loss-of-Coolant Accident (LOCA)

MAPLHGRs. The fuel mechanical design analysis, using the methods in Reference 21, demonstrates that all fuel rods in a lattice, operating at the bounding power history, meet the fuel design limits specified in Reference 21.

The Vermont Yankee LOCA analysis, performed in accordance with 10CFR50, Appendix K, demonstrates that the LOCA analysis MAPLHGR values are bounded at all exposure points by the mechanical design analysis MAPLHGR values.

The MAPLHGR actually varies axially, depending upon the specific combination of enriched uranium and gadolinia that comprises a fuel bundle cross section at a particular axial node.

Each particular combination of enriched uranium and gadolinia is called a lattice type.

Each lattice type has a set of MAPLHGR values that vary with fuel burnup.

The process computer will verify that these lattice MAPLHGR limits are not violated. Tables 2.1-1 through 2.1-4' provide a limiting composite of MAPLHGR values for each fuel type, which envelope the lattice MAPLHGR values employed by the process computer. When hand calculations are required, these MAPLHGR values are used for all lattices _in the bundle.

2.2 Minimum Critical Power Ratic limits During steady-state power operation, the Minimum Critical Power Ratio (MCPR) shall be equal to, or greater than, the limits shown in Table 2.2-1.

The MCPR limits are also valid during coastdown beyond 10644 mwd /St.

For single recirculation loop operation, the MCPR limits at rated flow shall be the values from Table 2.2-1 listed under the heading, " Single Loop Operation." The single loop values are obtained by adding 0.01 to the two loop operation values.

Fcr core flows other than the rated condition, the MCPR limit shall be the appropriate value from Table 2.2-1 multiplied by K,

f where K is given in Figure 2.2-1 as a function of the flow control method in r

use. These limits are only valid for the fuel types in Cycle 18.

2.3 Maximum Linear Heat Generation Rate limits During steady-state power operation, the linear Heat Generation Rate (LHGR) of any rod in any fuel bundle at any axial location shall not exceed the maximum allowable LHGR limits in Table 2.3-1.

This table only lists the limits for fuel types in Cycle 18.

2.4 Thermal-Hydraulic Stability Exclusion Reoion Normal plant operation is not allowed inside the bounds of the exclusion region defined in Figure 2.4-1.

These power and flow limits are applicable...

for Cycle 18.

Operation inside of the exclusion region may result in a thermal-hydraulic oscillation.

1 9

f..-

(

Table 2.1-1 MAPLHGR Versus Average Planar Exposure for BP80WB311-10GZ Fuel Plant:

Vermont Yankee Fuel Type:

BP80WB311-10GZ MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST)

Two Loop Operation Single Looo Operation, 0.0 10.93 9.07 200.00 11.00 9.13

'1,000.00 11.13 9.24 2,000.00 11.32 9.40 3.000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7.000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.91 4.91 Source:

Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Sinole LooD ODeration, NED0-30060, Reference 30; Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

I MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83. :

Table 2.1-2 MAPlHGR Versus Average Planar Exposure for BP80WB311-11GZ Fuel Plant:

Vermnnt Yankee Fuel Type:

BP80WB311-11GZ MAPLHGR (kW/ft)

Average Planar Exposure (mwd /ST)

Two Loon Operation Single Loon Operation, 0.00 10.93 9.07 200.00 11.00 9.13 1,000.00 11.13 9.24 2,000.00 11.32 9.40 3,000.00 11.52 9.56 4,000.00 11.64 9.66 5,000.00 11.77 9.77 6,000.00 11.92 9.89 7,000.00 12.11 10.05 8,000.00 12.34 10.24 9,000.00 12.59 10.45 10,000.00 12.83 10.65 12,500.00 13.00 10.79 15,000.00 12.81 10.63 l

20,000.00 12.24 10.16 25,000.00 11.55 9.59 35,000.00 10.24 8.50 45,000.00 8.76 7.27 50,735.00 5.91 4.91 Source:

Vermont Yankee Cycle 18 Core Performance Analysis Report, i

YAEC-1908, Reference 31: Vermont YaJree Nuclear Power Station Single Loon Operation, NE00-30060, Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.. _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _

F Table 2.1-3 MAPLHGR Versus Average Planar Exposure for 8P80WB335-10GZ Fuel Plant:

V.ermont Yankee Fuel Type:

BP80WB335-10GZ MAPLHGR (kW/ft)

Average Planar Exnosure (mwd /ST)

Two Loop Operation Single loop Operation.

0.00 11.29 9.37 200.00 11.34 9.41 1,000.00 11.48 9.53 2,000.00 11.69 9.70 3,000.00 11.92 9.89 4,000.00 12.17 10.10 5,000.00 12.43 10.32 6,000.00 12.68 10.52 7,000.00 12.87 10.68 8,000.00 13.06 10.84 9,000.00 13.24 10.99 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source:

Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31; Vermont Yankee Nuclear Power Station Single Loop Operation, NE00-30060, Reference 30: Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

Reference 33.

Technical Specification

References:

3.6.G.la and 3.11.A.

MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for two loop operation by 0.83.

Table 2.1-4 MAPLHGR Versus Average Planar Exposure for BP80WB335-11GZ Fuel Plant:

Vermont Yankee Fuel Type:

BP8DWB335-11GZ MAPLHGR (kW/ft)

Average Planar Exposure (MVd/ST)

Two Loop Operation Single Loop Operation, 0.00 11.28 9.36 200.00 11.33 9.40 1,000.00 11.43 9.49 2,000.00 11.60 9.63 3,000.00 11.80 9.79 4,000.00 12 04 9.99 5,000.00 12.30 10.21 6,000.00 12.53 10.40 7,000.00 12.73 10.57 8,000.00 12.94 10.74 9,000.00 13.13 10.90 10,000.00 12.99 10.78 12,500.00 12.84 10.66 15,000.00 12.65 10.50 20,000.00 11.93 9.90 25,000.00 11.26 9.35 35,000.00 9.88 8.20 45,000.00 8.38 6.96 50,593.00 5.65 4.69 Source:

Vermont Yankee Cycle 18 Core Performance Analysis Report, j

YAEC-1908, Reference 31: Vermont Yankee Nuclear Power Station Single Loop Operation, NE00-30060, Reference 30; Letter,

" Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,"

l Reference 33.

l I

Technical Specification

References:

3.6.G.la and 3.11.A.

MAPLHGR for single loop operation is obtained by multiplying MAPLHGR for i

I two loop operation by 0.83.

! l

1 Table 2.2-1 Minimum Criticc1 Power Ratio Operating Limits MCPR Operating Limits Value of "N" Single in RBM Average Control Cycle Exposure Two Loop Loop 2

Ecuation (A)I Rod Scram Time Range Operation Operation 42%

Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.

5500 to 10644 mwd /St 1.33 1.34 3.3.C.1.1 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.

5500 to 9035 mwd /St 1.33 1.34 3.3.C.1.2 9035 to 10644 mwd /St 1.34 1.35 41%

Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.

5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 9035 mwd /St 1.27 1.28 9035 to 10644 mwd /St 1.32 1.33 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.

5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.27 1.28 8035 to 9035 mwd /St 1.30 1.31 9035 to 10644 mwd /St 1.34 1.35 140%

Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.

5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.1 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.27 1.28 9035 to 10644 mwd /St 1.32 1.33 Equal to or 0.0 to 4000 mwd /St 1.39 1.40 better than 4000 to 5500 mwd /St 1.35 1.36 L.C.0.

5500 to 6500 mwd /St 1.29 1.30 3.3.C.1.2 6500 to 8035 mwd /St 1.25 1.26 8035 to 9035 mwd /St 1.30 1.31 9035 to 10644 mwd /St 1.34 1.35 Sources:

Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, Reference 31: End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, Reference 32: and Vermont Yankee Nuclear Power Station Single Loop Operation, NED0-30060, Reference 30.

Technical Specification

References:

3.6.G.la and 3.11.C.

1 The Rod Block Monitor (RBM) trip setpoints are determined by the equation shown in Table 3.2.5 of the Technical Specifications.

2 MCPR Operating Limits are increased by 0.01 for single loop operation.

~9-

.T,able 2.3-1 Maximum Allowable Linear Heat Generation Rate Limits Maximum Allowable Linear Fuel TyDe Heat Generation Rate (kW/ft)

BP80WB311-10GZ 14.4 BP80WB311-11GZ 14.4 EP80WB335-10GZ 14.4 BP80WB335-11GZ 14.4 Source:

NEDE-24011-P-A, Reference 21.

Technical Specification

References:

2.1.A.la, 2.1.B.1, and 3.11.B.

1 l.

Kf 1.4 EQUATIONS for Kf Curves:

Kf 2 1.0

=

\\

Kf(WT>40%) = A.O.441(WT/100%)

1

~

Kf(WT<40%) =

t j,}.-....l..

..'.......l......

K f(WT> 40 %)*(1.0 +0.003 2(40.WT))

{

1.3308 l

l Where A(102.5 %)

=

A(104.5 %)

1.3406

=

1.3528 A(107.0%)

=

~

1.3793 A(ll2.0%)

=

[

l A(ll7.0%) = 1.4035 1,2,-.......

AUTOMATIC FLOW CONTROL j, j _-_......

~

MANUAL FLOjV CON'IROL j~._

Scoop. Tube S:t Point Calibration positioned such that:

l Flowmax = 102.5%/

104.5% /

l l

l

=

107.0% /

=

!!2.0%

l l

l

=

117.0 %

0.9 ~........

20 30 40 50 60 70 80 90 100 Core Flow (%) (WT)

Figure 2.2-1 L Versus Perc(.nt of Rated Core Flow Rate (Technical Specification Reference 3.11.C) 150 140

~

1l l

130 120 b

l l

l

/

l:l"

\\

\\

\\ \\;;g l<

4 80 M

y,j c

y 10 8

r s*

.9-=

b 50 5

<5 Ep' o, i J I

20

// /

i

/ l5 J....

g j

0 10 20 30 40 50 60 70 80 90 100 110 120 cm,mamem+

TcrrAL CORE FLOW (%)

i Exclusion Region Boundary Equation lbwer = 133.7831 - 6.61 (FLOW - 0.5) +0.113 (FLOW - 0.5)2 i

Fiqure 2.4-1 Stability Power and Flow Exclusion Region (Technical Specification Reference 3.6.J) i

4

3.0 REFERENCES

1.

Report, A. A. F. Ansari, Methods for the Analysis of Boiling Water Reactors: Steady-State Core Flow Distribution Code (FIBWR), YAEC-1234 December 1980.

2.

Report A. A. F. Ansari and J. T. Cronin, Methods for the Analysis of Boiling Water Reactors: A System Transient Analysis Model (RETRAN),

YAEC-1233, April 1981.

3.

Report, A. A. F. Ansari, K. J. Burns and D. K. Beller, Methods for the Analysis of Boiling Water React)rs: Transient Critical Power Ratio Analysis (RETRAN-TCPYA01), YAEC 1299P, March 1982.

4.

Report, A. S. DiGiovine, et ii., CASM0-3G Validation, YAEC-1363-A, April 1988.

5, Report, A. S. DiGiovine, J. P. Gorski, and M. A. Tremblay, SIMULATE-3 Validation and Verification, YAEC-1659-A, September 1988.

6.

Report, R. A. Woehlke, et al., MICBURN-3/CASM0-3/ TABLES-3/ SIMULATE-3 Benchmarking of Vermont Yankee Cycles 9 through 13, YAEC-1683-A, March 1989.

7.

Report, J. T. Cronin, Method for Generation of One-Dimensional Kinetics Data for RETRAN-02, YAEC-1694-A, June 1989.

8.

Report, V. Chandola, M. P. LeFrancois and J. D. Robichaud, Application of One-Dimensional Kinetics to Boiling Water Reactor Transient Analysis Methods, YAEC-1693-A, Revision 1, November 1989.

9.

Report, RELAP5YA, A Computer Program for Light-Water Reactor System Thermal-Hydraulic Analysis, YAEC-1300P-A, Revision 0, October 1982:

Revision 1 July 1993.

10.

Report, Vermont Yankee BWR Loss-of-Coolant Accident Licensing Analysis Method, YAEC-1547P-A, July 1993.

11.

Letter from R. W. Capstick (VYNPC) to USNRC, HUXY Computer Code Information for the Vermont Yankee BWR LOCA Licensing Analysis Method, FVY 87-63, dated June 4, 1987.

12.

Letter from R. W. Capstick (VYNPC) to USNRC, Vermont Yankee LOCA Analysis Method FROSSTEY Fuel Performance Code (FROSSTEY-2), FVY 87-116, dated December 16, 1987.

13.

Letter from R. W. Capstick (VYNPC) to USNRC, Response to NRC Reouest for Additional Information on the FROSSTEY-2 Fuel Performance Code, BVY 89-65, dated July 14, 1989. I

I 14.

Letter from R. W. Capstick (VYNPC) to USNRC, Supplemental Information on the FROSSTEY 2 Fuel Performance Code, BVY 89-74, dated August 4, 1989.

15.

Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest for Additional Information on FROSSTEY-2 Fuel Performance Code, BVY 90-045, dated April 19, 1990.

16.

Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, Supplemental Information to VYNPC April 19. 1990 Response Regardina F00SSTEY-2 Fuel Performance Code, BVY 90 054, dated May 10, 1990.

Letter ' rom L. A. Tremblay, Jr. (VYNPC) to USNRC, Responses to Reauest f

17.

for Additional Inforrlation on FROSSTEY-2 Fuel Performance Code, BVY 91-024, dated March 6, 1991.

18.

Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, LOCA-Related ResDonses to ODen Issues on FROSSTEY-2 Fuel Performance Code, BVY 92-39, dated March 27, 1992.

19.

Letter from L. A. Tremblay, Jr. (VYNPC) to USNRC, FROSSTEY-2 Fuel Performance Code - Vermont Yankee Response to Remaining Concerns, BVY 92-54, dated May 15, 1992.

20.

Report, L. Schor, et al., Vermont Yankee loss-of-Coolant Accident Analysis, YAEC-1772, June 1993.

21.

Report, General Electric Standard ADDlication for Reactor Fuel (GESTARII), NEDE-24011-P-A-10 GE Company Proprietary, February 1991, as amended.

22.

Letter, USNRC to VYNPC, SER, November 27, 1981.

23.

Letter, USNRC to VYNPC, SER, NVY 82-157, September 15, 1982.

24 Letter, USNRC to VYNPC, SER, NVY 85-205, September 27, 1985.

l 25.

Letter, USNRC to VYNPC, SER, November 30, 1977.

26.

Letter, USNRC to VYNPC, SER NVY 87-136, August 25, 1987.

27.

Letter, USNRC to VYNPC, SER, NVY 91-26, February 27, 1991.

I l

28.

Letter, USNRC to VYNPC, SER NVY 92-192. October 21, 1992.

29.

Letter, USNRC to VYNPC, SER, NVY 92-178, September 24, 1992.

30.

Report, Vermont Yankee Nuclear Power Station Single Looo Operation, NE00-30060, February 1983.,

4

31.

Report, M. A. Sironen, Vermont Yankee Cycle 18 Core Performance Analysis Report, YAEC-1908, January 1995.

32.

Report, B. Y. Hubbard, et al., End-of-Full-Power-Life Sensitivity Study for the Revised BWR Licensing Methodology, YAEC-1822, October 1991.

33.

Letter, P. J. Savoia to R. T. Yee, " Transmittal of Modified Thermal Mechanical MAPLHGR Limits for Vermont Yankee Cycle 18 Loss of Stator Cooling Event,* PJS 95106, July 25, 1995.

34.

Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensing Methodology, NE00 31960, June 1991.

35.

Report, General Electric Nuclear Energy, BWR Owners' Group Lono-Term Solutions Licensino Methodology. NE00-31960, Supplement 1. March 1992.

36.

Letter, USNRC to VYNPC, SER, August 9, 1995.

i i

I 15-

,, -