ML093130440: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(3 intermediate revisions by the same user not shown)
Line 13: Line 13:
| document type = Report, Technical
| document type = Report, Technical
| page count = 24
| page count = 24
| project =
| stage = Other
}}
}}


=Text=
=Text=
{{#Wiki_filter:Docket No. 50-271 BVY 09-063 Attachment 6 Vermont Yankee Nuclear Power Station Proposed Technical Specification Change No. 287 GNF Summary of Technical Basis for SLMCPR Values (Non-Proprietary Version)Attachment 6 . Vermont Yankee Nuclear Power Station Docket No. 50-271 BVY 09-063 Proposed Techrlical Specification Change No. 287 GNF Summary of Technical Basis for SLMCPR Values (Non-Proprietary Version)
{{#Wiki_filter:Docket No. 50-271 09-063 BVY 09-063 Attachment Attachment 6 .
GNF NON-PROPRIET, ARY [NFORMATION Class I GNF Attachment 9/21/2009 GNF-0000-0100-8106 eDRFSection:
Vermont Yankee Nuclear Power Station Technical Specification Proposed Techrlical Specification Change Change No. 287 GNF Summary of Technical                    Values Technical Basis for SLMCPR Values (Non-Proprietary Version)
0000-01.00-8106-RO GNF Additional Information Regarding the Requested Changes to the Technical Specification SLMCPR Vermont Yankee Cycle 28 Vermont Yankee Cycle 28 Page I of 23 GNE" HORMA]10Nl CFass E GNP' AMaelilment 9/2.112009:
GNF-OOOO-O 100-8 r 06 eDRFSection:
0000-0100-8106-RO GNF Additional Information Regarding the Requested Changes to the Technical Specification SLMCPR Vermont Yankee Cycle 28 Vermont Yankee Cycle 28 Page 1 of23 GNF NON-PROPRIETARY JINFORMATION Class .GNF AttachmentPROPRIETARY INFORMATION NOTICE This document is the GNF non-proprietary version of the GNF proprietary report. From the GNFF proprietary version, the information denoted as GNIF proprietary (enclosed in double brackets) was deleted to generate this version,..
Important Notice Regarding Contents of this Report Please Read Carefully The only undertakings of Global Nuclear Fuel-Americas, LLC (GNF-A) with respect to information in this document are contained in contracts between GNF-A and its customers, and nothing contained in this document shall be construed as changing those contracts.
The use of this information by anyone other than those participating entities and for any purposes other than those for which it is intended is not authorized; and with respect to any unauthorized use, GNF-A makes no representation or warranty, and assumes no liability as to .the completeness, accuracy, or usefulness of the information contained in this document.Page 2 of 23 GrNFNON::'PRJi)17''lmaTARY liNilFORMAlITONi Class: K GTNiFt AHadlment . P n'OpDTCT*/t DY* T/ii;,1lE:OD1'LIri/t'T'FO*
il\,liN*O*TIC'C*
:
t
! Ji' 'll"l1 : 1, 'Ji:j, This: document is the GNP non-propri.etaJIy weliSion ofthe GNF proprietary report. From the GNF proprietaJIy version, the information denoted as: GNF proprietaJIy (endosed in double brackets) was deleted to generate this version .. Important Notice Regardi.ng Contents of this Report Please Read Carefully The only undertakings of Global Nuclear Fuel-Americas, .L.LC (GNF-A) with respect to information in this document are contained in contracts between GNF-A and its customers, and nothing contained in this document shall be construed as changing those contracts.
The use of this information by anyone other than those participating entities and for any purposes other than those for which it is intended is not authorized; and with respect to any unauthorized use, GNF-A makes no representation or warranty, and assumes no liability as to the completeness, accuracy, or usefulness of the information contained in this document.
Page 2 of 23 GNF NON'-PROPRIEFTEY I FORMATION!
Class I GN' Attachment Table of Contents 1.0 METHODOLOGY
....................................................................................................................................
4 2.0 DISCUSSION
.............................. ................
.......................................................................
4 2.1. MAJOR CONTRIBUTORS TO SLMCPR CHANGE ..........................................................................................
4 2.2. DEVIATIONS IN NRC-APPROVED UNCERTAINTIES
....................................................................................
5 2.2.1. R -Factor. ................................................................................................................................................
5 2.2.2. Core Flow Rate and Random Effective TIP Reading ..................................
5 2.3. DEPARTURE FROM NRC-APPROVED METHODOLOGY
..............................................................................
5 2.4. FUEL AXIAL POWER SHAPE PENALTY
.............................................................................
........................
6 2.5. METHODOLOGY RESTRICTIONS
......................................................................................................................
7 2.6. MINIMUM CORE FLOW CONDITION
................................................................................................................
7 2.7. LIMITING CONTROL ROD PATTERNS ..............................................................................................................
7 2.8. CORE MONITORING SYSTEM ....................... ! .................................................................................................
7 2.9. PO W ER/F LOW M AP .........................................................................................................................................
7 2.10. CoRE LOADING DIAGRAM
......................................................................................................................
7 2.11. FIGURE REFERENCES
...................................
...............................
......................
............
7 2.12. ADDITIONAL SLMCPR LICENSING CONDITIONS
................................................................................
7 2.13. SU M M AR Y ..................................................................................................................................................
8


==3.0 REFERENCES==
GNF NON:-PROPRE1Efll'~Y GNE"                    [NFORMATION NON-PROPRIET,ARY HORMA]10Nl Class I CFass E GNF GNP' Attachment AMaelilment 9/2.112009:
9/21/2009 GNF-OOOO-O 100-8 r06 GNF-0000-0100-8106 eDRFSection: 0000-0100-8106-RO eDRFSection: 0000-01.00-8106-RO GNF Additional Information Regarding      Regarding the Requested Changes to the Technical              Specification SLMCPR Technical Specification          SLMCPR Vermont Vermont Yankee Cycle 28 Vermont Vermont Yankee Cycle 28 Yankee Cycle                                                      Page I1 of23 of 23


................................................................................................................................................
GrNFNON::'PRJi)17''lmaTARY GNF NON-PROPRIETARY JINFORMATION liNilFORMAlITONi Class K.
9 List of Figures FIGURE 1. CURRENT CYCLE CORE LOADING DIAGRAM .........................................................................................
Class:
10 FIGURE 2. PREVIOUS CYCLE CORE LOADING DIAGRAM ..............................................................................................
GTNiFt GNF Attachment AHadlment .
11FIGURE 3.
P: n'OpDTCT*/t PROPRIETARY
FIGURE 4.1 FROM NEDC-3260 I-P-A .....................................................................................................
                          ~"  ~':, ~,  DY* T/ii;,1lE:OD1'LIri/t'T'FO*
12 FIGURE 4. FIGURE 111.5-1 FROM NEDC-32601P-A
                                              !l1l"U.-'~ t /~vlrl, Ji' il\,liN*O*TIC'C*
......................
INFORMATION            !  'll"l1 NOTICE
.........................................................................
: 1,      'Ji:j, This  document is the GNF This: document                non-proprietary weliSion GNP non-propri.etaJIy  version of        the GNF ofthe    GNF proprietary            report. From the proprietary report.
13 FIGURE 5. FIGURE 111.5-2 FROM NEDC-32601P-A  
GNFF  proprietary version, the information GNF proprietaJIy                information denoted denoted as      as: GNIF GNF proprietary          (enclosed in double proprietaJIy (endosed            double brackets) was deleted to generate this version,..
................................................................................................
version.
14 List of Tables TABLE 1. DECIPIN FCOE.TA L .DESCRIPTION OF CORE ................................................................................................................................
Important Notice Regarding Regardi.ng Contents of this Report Please Read            Carefully Read Carefully The only undertakings undertakings of Global Nuclear Fuel-Americas, Fuel-Americas, .L.LC      LLC (GNF-A) with respect to information information in this document are contained contained in contracts between GNF-A and its customers, and                    and nothing contained contained in this document shall be construed as changing    changing those contracts. The use of this information by anyone other than those participating entities and for any purposes              purposes other than those for which it is intended is not authorized; and with respect to any unauthorized      unauthorized use, GNF-A GNF-A makes no representation representation or warranty, and assumes no liability as to the              .the completeness, accuracy, accuracy, or usefulness of the information information contained in this document.
a...15 TABLE 2. SLMCPR CALCULATION METHODOLOGIES
Page 2 of 23
.............................................................................................
16 TABLE 3. MONTE CARLO CALCULATED SLMCPR vs. ESTIMATE ..........................................................................
17 TABLE 4. NON-POWERDISTRJB1ITION UNCERTAINTIES
...............................................
19 TABLE5. POWER DISTRIBUTION UNCERTAINTIES
......................
.........................
...........................
21 TABLE 6. CRITICAL POWER UNCERTAINTIES
...................
....... ................
.........
..........................
23 Table of Contents Page 3 of 23 GNFNON::"PROPruEll'ruty liNiIfOR:MA1i10N E GN!lF Att!aellmenF


===1.0 METHODOLOGY===
GNF      NON'-PROPRIEFTEY IliNiIfOR:MA1i10N GNFNON::"PROPruEll'ruty                                    FORMATION!
C~ass:
Class        I E
GN' Att!aellmenF GN!lF        Attachment Table of Contents 1.0       METHODOLOGY METHODOLOGY ..........................................................................................................................................
                                      ....................................................................................................................................                        44 2.0      DISCUSSION      ...................................................................................................................................................
DISCUSSION ..............................              . ...............                              .......................................................................          4 2.1.
2.1. MAJOR CONTRIBUTORS CONTRIBUTORS TO SLMCPR          SLMCPR CHANGE .............                        : ................................................................................ 4 2.2.      DEVIATIONS IN DEVIATIONS    INNRC-APPROVED NRC-ApPROVED UNCERTAINTIES                                      .................................................................................... 55 UNCERTAINTIES .........................................................................................
2.2.1.      R-Factor R -Factor. .................................................................................................................................................
                              ................................................................................................................................................                    5 2.2.2.
2.2.2.      Core Core How Flow Rate and      and Random Effective TIP Reading                  Reading.............................................................................
                                                                                                            ..................................                                                    5 2.3.      DEPARTURE FROM DEPARlURE                NRC-APPROVED METHODOLOGY FROM NRC-ApPROVED                          METHODOLOGY ..............................................................................
                                                                                                    .................................................................................... 5 2.4.            AXIAL POWER SHAPE PENALTY FUEL AxIAL                                                  .............................................................................                  ........................ 6 PENALTY ............................................................................................................
2.5. METHoDOLOGY                                      ......................................................................................................................
METHODOLOGY RESTRICTIONS ......................................................................................................................                                        7 2.6.      MINIMUM CORE FLOW CONDITION MINIMUM                                                ................................................................................................................
CoNDITION ................................................................................................................                            7 2.7. LIMITING CONTROL                                          ..............................................................................................................
CONTROL ROD PATTERNS ..............................................................................................................                                        7 2.8.            MONITORING SySTEM CORE MONITORING                            ....................... !, .................................................................................................
SYSTEM .......................              .................................................................................................. 7 2.9. POWERlFWW POWER/FLOW MAP            .........................................................................................................................................
M AP ..........................................................................................................................................                      7 2.10.              LOADING DIAGRAM CoRE LoADING                            ......................................................................................................................
DIAGRAM ..........................................................................................................................                            77 LL.
2.11.
: 2.          FIGURE                          ................................... .              .............................. ......................
FIGURE REFERENCES ..................................................................................................................................          ............ 77 2.12.        ADDITIONAL SLMCPR ADDITIONAL                                                                        ................................................................................ 7 SLMCPR LICENSING CONDITIONS .......................................................................................
2.13.
2.13.       


..........................................................................................................................................
==SUMMARY==
4 2.0 DISCUSSION
 
...................................................................................................................................................
SU M M ARY ...................................................................................................................................................
4 2.1. MAJOR CONTRIBUTORS TO SLMCPR CHANGE .............  
                            ..................................................................................................................................................                     8 3.0                            ................................................................................................................................................
: ................................................................................
REFERENCES.................................................................................................................................................                               9 List of Figures FIGURE FIGURE I. 1. CURRENT CYCLE CORE CURRENT                CORE LOADING DIAGRAM .........................................................................................
4 2.2. DEVIATIONS IN NRC-ApPROVED UNCERTAINTIES
                                                                                      .............................................................................................. 10          10 FIGURE FIGURE 2.                 CYCLE CORE LOADING PREVIOUS CYCLE                    LoADING DIAGRAM                      ..............................................................................................11 DIAGRAM ..............................................................................................                       11 FIGURE FIGURE 3. FIGURE 4.1 FROM NEDC-3260 I-P-A                            .....................................................................................................
.........................................................................................
I-P-A .........................................................................................................                     12 12 FIGURE 4. FIGURE 111.5-1 FROM NEDC-3260IP-A FIGUREIII.5-1                NEDC-32601P-A ......................
5 2.2.1. R-Factor ..............................................
                                                                              ...................... l,.........................................................................
...................................................................................................
                                                                                                          ............................................................................. 13      13 FIGURE 5.
5 2.2.2. Core How Rate and Random Effective TIP Reading .............................................................................
FIGURE        FIGURE Ill.5-2                                                  ................................................................................................
5 2.3. DEPARlURE FROM NRC-ApPROVED METHODOLOGY
NEDC-32601P-A .....................................................................................................
....................................................................................
111.5-2 FROM NEDC-3260IP-A                                                                                                                                                14 14 List of Tables TABLE 1. DECIPIN                FCOE.
5 2.4. FUEL AxIAL POWER SHAPE PENALTY ............................................................................................................
TABLE 1. DESCR1PTION OF CORE.............................................................................................................................. ?,a...15 TAL .DESCRIPTION OF CORE ................................................................................................................................
6 2.5. METHoDOLOGY RESTRICTIONS
                                                                                                                                                                                              .. 15 TABLE 2. SLMCPR TABLE        SLMCPR CALCULATION METHODOLOGTES      METHODOLOGIES .............................................................................................
......................................................................................................................
                                                                                    ................................................................................................ 16 TABLE 3. MONTE CARLO TABLE                CARLo CALcULATED CALCULATED SLMCPR VS.                        vs. ESTIMATE              ..........................................................................
7 2.6. MINIMUM CORE FLOW CoNDITION
ESTIMATE ..............................              ;............................................... 17 TABLE        NON-POWERDISTruBUTION UNCERTAINTIES TABLE 4. NON-POWERDISTRJB1ITION                                                        ...............................................
................................................................................................................
UNCERTAINTIES ..............................................................................................                              19 TABLE 5. POWER DISTRIBUTION TABLE5.                                                                      ...................... .........................
7 2.7. LIMITING CONTROL ROD PATTERNS ..............................................................................................................
DISTRIBUTION UNCERTAINTIES ...................................                                                        .          . ......................... 21 TABLE 6. CRITICAL POWER 6.CRInCAL                                                ................... .......              ................                  .........    ..........................23 UNCERTAINTIES ..................................................................................................................
7 2.8. CORE MONITORING SySTEM ....................... , ..................................................................................................
PO\VER UNCERTAINTIES                                                                                                                                                      23 Table of Contents Contents                                                                                                                                                    Page 3 of        of23  23
7 2.9. POWERlFWW MAP ..........................................................................................................................................
 
7 2.10. CoRE LoADING DIAGRAM ..........................................................................................................................
GNF NON-PROPRIETARY IINlIFORMA1l10Nl GNFNON:'PROPR.EIEIrMV          INFORMATION Cl1ass IfI Class:
7 2. L L. FIGURE REFERENCES
G1NlF GNF Ati1iachmmt Attachment 11.0 M~thodology 11.,0;    Methodology .
..................................................................................................................................
GNF peri'mmed GNIF      performed the Verm.ont Vermont Yankee C.ycle Cycle 28 Safety Safety Umit Limit .Minimum Minimum C.ritical, Critical Power Ratio Ratio (SLMCPR) calculation in accordance (SILMCPR)                            accordance to NEUB-24011l.-P:..A NEDE-240I1-P-A '"General "General Electri.c Electric Standatrdi Standard Application for Reactor Fuel" Application                    Fuel" (Revision 16) using the following NRC-approved NRC-approved methodologies:
7 2.12. ADDITIONAL SLMCPR LICENSING CONDITIONS
methodologies and uncertainties:
.......................................................................................
      " NEDC-32601P-A "Methodology
7 2.13.  
    .NEDC-32601P-A            "Methodology and Uncertainties Uncertai nties for Safety Limit MCPR Evaluations'"
Evaluations" (August 1999).
    *" NEDC-32694P-A "Power    "Power Distribution Uncertainties Uncertainties for Safety Limit MCPR 1999).
Evaluations" (August 1999),            .
    *" NEDC-32505P-A NEDC-32505P-A "R-Factor "R-Factor Calculation Calculation Method for GEll,  GEl 1, GEI2 GE12 and GE13 Fuel"  Fuel" (Revision (Revision 1,1, July 1999).
      **  NEDO-10958-A "General NEDO-10958-A      "General Electric.BWR ElectricBWR Thermal Thermal Analysis Basis (GETAB):
(GETAB): Data, Correlation Correlation and Design Application" Application" (January (January 1977).
Table 2 identifies identifies the actual methodologies methodologies used for the previous Cycle 27 and the current Cycle 28 SLMCPR calculations.
2.0 Discussion In this discussion, the TLO nomenclature nomenclature is used for two recirculation recirculation loops in operation, operation, and the SLO nomenclalure nomenclature is used for one recirculation loop in operation.
2.1.
2.1. Major Contributors to SLMCPR Change                      Change In general, the calculated safety safety limit is dominated by two key parameters:
parameters: (1)(I) flatness of the core core bundle-by-bundle bundle-by-bundle MCPR distribution, and (2) flatness of            o( the bundle bundle pin-by-pin pin-by-pin power/R-powerlR.-
factor distribution. Greater Greater  flatness  in either  parameter    yields either parameter yields      more  rods susceptible susceptible to boiling boiling transition and thus a higher      calculated SLMCPR higher calculated    SLMCPR. MIP (MCPR Importance  Importance Parameter) measures measures the core bundle-by-bundle bundle-by-bundle MCPR  MCPR distribution distribution and RIP (R-factor (R-factor Importance Importance Parameter)
Parameter) measures measures the  the bundle bundle pin-by-pin      power/R-factor distribution. The impact pin-by-pin power/R-factor                              impact of the fuel loading loading pattern pattern    on  the calculated  TLO    SLMCPR calculated TLO SLMCPR            using  rated  core  power  and  rated  core core  flow  conditions conditions has been correlated correlated to the parameter parameter MIPRIP, which combines  combines the MIP and RIP values.
Table Table 33 presents presents the  MIP and the MIP        RIP parameters and RIP    parameters for the previous previous cycle cycle and the current cycle along along with the TLO 11.0 SLMCPR SLMCPR estimate estimate using the MIPRIP MIPRIP correlation. If the minimum core flow case          case is applicable, the TLO SLMCPR SLMCPR        estimate  is  also  provided provided for that case although the  the MIPRIP correlation correlation is onlyonly applicable applicable to the rated rated core flow case. This is done only to provide    provide some some reasonable      assessment  basis reasonable assessment basis 'Of    of  the minimum      core core  flow  case trend. In  addition,  Table  3 presents Table presents estimated estimated impacts on    en the 11.0 TLO SLMCPR SLMCPR due  due to methodology methodology deviations, deviatiens, penalities,      and/or penalities,andior uncertainties    deviations uncertainties deviations      from    approved approved    values.      Based on the MIPRIP correlation
                                                                                            ,correlation and and any any impacts impacts due due to  deviations from to deviations          approved values, from approved      values, a .final final estimated estimated TLO SLMCPR SLMCPR is determined.
determined.
Methodology Methodology                                                                                            Page  4 of 23 Page40f23


==SUMMARY==
NOt'[..PROPR]EIj'~Y I!NJFORMAlITON GNF NON-PROPRIETARY              NFORMATION Class, Clasg, [
  ...................................................................................................................................................
GNF Attachment GN,, Attacnme1i1t' Table Tab~e    3  also  provides    the  actual    calculated,  M.'onte Carlo calculated. Monte                SLMCPRs. Given C'ati~Oi SJLMCPRs.      Given the bias and tlRcertainty in the MIPR[P uncertainty                        correlation K[
8
MIPRIP correlation          ((                                        t3))) and the inherent
{J}))            inherent vati'iation in the Monte variation            Monte: Carlo results ((                {3'))~,
11)) the. change in the Vermont the: change          Vermont Yankee Yankee Cycle 28 calculated Monte Carlo TLO SLMCPR using rated core calculated                                                          COlle power and rated core flow conditions is          is:
consistent              corresponding estimated TLO consistent with the corresponding                        no SLMCPR SLMICPR value.
2.2. Deviations                  NRC-Approved Uncertainties Deviations in NRC-Approved                          Uncertainties NRC-approved uncertainties along with values actually used. A Tables 4 and 5 provide a list of NRC-approved Tables NRC-approved values follows; all of which are conservative discussion of deviations from these NRC-approved                                                            conservative NRC-approved values. Also, estimated impact on the SLMCPR relative to NRC-approved                                                            SLMCPR is provided            Table provided in Table
'3 for each deviation.                                      .
2.2.1.
2.2.1.        R-Factor R-Factor generically increased the GEXL R-Factor uncertainty At this time, GNF has generically                                                      uncertainty from ((
(3})) to account for an increase in channel bow due to the emerging (3}]) to account for an increase in channel bow due                                                  phenomena emerging unforeseen phenomena corrosion-induced channel bow, which is not accounted called control blade shadow corrosion-induced                                                    accounted for in the  the channel bow uncertainty uncertainty component                approved R-Factor uncertainty.
component of the approved                        uncertainty. The step "0  "a RPEAK" RPEAK" NEDC-3260IP-A, which has been provided in Figure 4.1 from NEDC-32601P-A,                                        provided for convenience in Figure 3 of          of this attachment,      is affected  byy b  this  deviation. Reference Reference      4  technically  justifies  that  a  GEXL    R-uncertainty of ((I Factor uncertainty          ((      63})))) accounts                            uncertainty of up to ((
channel bow uncertainty accounts for a channel                                                ( 3 ))).
{3})).
Currently, Vermont Yankee has not experienced Currently,                                                                                          corrosion-induced experienced any control blade shadow corrosion-induced channel bow and is not expected to experience        experience    any  in  Cycle  28  to  the  extent    that would would invalidate the approved R-Factor uncertainty.
invalidate 2.2.2.        Core Flow Rate and Random      Random Effective Effective TIP Reading Reading At this time, GNF has not been able to show that the NRC-approved        NRC-approved process to calculate the '
SLMCPR only at the rated core power SLMCPR                                        power and rated core flow condition is adequately bounding calculated at rated core power and minimum core flow, see Reference relative to the SLMCPR calculated                                                                          Reference 5. 5.
The minimum core flow condition can be more limiting due to the control rod pattern used.
GNF has modified the NRC-approved NRC-approved process for determining determining the SLMCPR SLMCPR to include include analyses analyses at the rated core power and minimum licensed core flow point in addition to analyses at the rated core power and rated core flow point. GNF believes                                              conservative and may believes this modification is conservative justification that the original in the future provide justification                                      NRC-approved process is adequately original NRC-approved                            adequately bounding.
The available flow range at rated power, 99%                  100% rated core flow, does not warrant 99% to 100%                                      warrant analysis at the minimum core flow point.
2.3.      Departure from NRC-Approved 2.3. Departure                      NRC-Approved Methodology    Methodology No departures from  from NRC-:approved          methodologies were used in the Vermont Yankee NRC-approved methodologies                                                  Yankee Cycle 28 SLMCPR calculations.
Discussion                                                                                                  Page 5 of 23
 
GN NON-PROPRllJE:1f~'t?
GNf  NON-PROPR[ETARY IITNilFORMlAll0N IFORMATION Class Class: fI GNIF GlNiF Attachment-Amiadmr:1ilit Fuel Axial Power Shape 2.4. F'uel,                        Shape' Penalty Penalty At mils At  this time, GNF has detetmined determined that that highetr higher uncertainties          non-conservative biases utlcel11arnmt1es: and mOl1-conservative              in the biases: Ln  tlte; GEXL correlations GEXIL    correlations for the various:
various types.
types of aoo:i:aI!
axial power shapes shapes (i.e (i.e_,.* inlet, cosine, outlet  and oudet and[
hump) could potentially exist double hllmp)                          exist relative to to the,  NRC-approved methodology values~
tlte NRC'-appFOved.                        values, see see References 3, References    3~ 6, 7 and 8.
: 8. The folowing foHowing table tab;le identifies, by marking marking with an,  an "X",
                                                                                              <<X", this potential potential!
product line currently being for each GNF pFOduct                      being offered:.
offered:
((
((
{3}1
                                                                                                                    ))
Axial bundle power shapes corresponding corresponding to the limiting SLMCPR control blade patterns are determined determined using the PANACEA PANACEA 3D core simulator. These axial power shapes are classified          classified in accordance accordance to the following table:
((
I
      . \                                                                                                      l3}))
If the limiting bundles bundles in the SLMCPR SLMCPR calculation calculation exhibit an axial power shape    shape identified by this table, GNF penalizes table.        penalizes: the GEXL critical power uncertainties to conservatively conservatively account for the      the impact of the axial power shape. TableTable 6 provides a list of the GEXL critical power uncertainties uncertainties determined determined in accordance accordance to the NRC-approved          methodology contained NRC-approved methodology            contained in NEDE-24011-P-A NEDE-2401 1-P-A along with values actually used.
bundle~ the fuel axial power shapes in the SLMCPR For the limiting bundles,                                              SLMCPR analysis              examined to analysis were examined determine determine the presence of axial powerpower shapes identified in the above table. These power shapes were not found; therefore~
therefore, no power shape penalties penalties were applied applied to the calculated calculated Vermont Yankee    Cycle &#xfd;28 SLMCPR values.
Yankee Cycle.28 Discussion                                                                                            Page 6 of 23 Page*60f23
 
GNF NON'-PROPR]E[Jl'~Y GNP    NON-PROPRETiARY JiN!JFORMAlITONl mORMATION Class,E C~ass  I GNF, A1it!aemment GNF  Attachment-2.56. M'ethodology 2.5.,                        Restrictions Methodology Restrictions The, four restrictions identified on Pag~:
The;                                      Page. 3 of lNlRC"s NRC's Safety Evaluation Evaluation relating to the Genefal:
General Electric Licensing Topical Reports NEDC-J26@ilP~
Efectric                                    NEDC-32601 P. NEDC-32694P, and Amendment    Amendment. 25 to NEDE-2401 1-P-A (March 11, NEDE-24011-P-A                11, 1999) are addressed En  in References 1,2,3, t, 2, 3, and 9.
No new GNF fuel designs are being intmduced  introduced Inin Vermont Yankee Cycle 28~      28; therefore, the the:
NEDC-32505-P-A statement" NEDG-32505-P-A      statement "... if new fuet
                                    ... if      fuel is introducted, GENE must confirm that the revised R-Factor method is still valid based on new test data    data"n is not applicable. The GNF2 product line considered a new fuel design relative to the GE14 is not considered                                          GEl4 product line, as both consist of 10 x 10    10 lattice designs.
2.6. Minimum Core Flow Condition          Condition The available flow range at rated power, 99% to 100%    100% rated core flow, does not warrant analysis analysis at the minimum core flow point.
2.7. Limiting Control Rod Patterns          Patterns The limiting control rod patterns used to calculate the SLMCPR reasonably assures that at least 99.9% of the fuel rods in the core would not be expected expected to experience experience boiling transition during
  ~ormal normal operation or anticipated operational operational occurrences during the operation of Vermont Yankee Cycle 28.
2.8. Core Monitoring System For Vermont Yankee Cycle 28, the 3D Monicore    Monicore system will be used as the core monitoring system.
2.9. Power/Flow PowerlFlow Map    Map
. The utility has provided provided the current and previous cycle cycle power/flow map in a separate attachment.
2.10. Core Loading Loading Diagram Diagram Figures 1I and 2 provide the core loading loading diagram for the current and previous cycle respectively, which are the Reference Reference Loading Pattern as defineddefined by NEDE-2401 NEDE-24011-P-A1-P-A. Table Table 1 provides a description description of the core.
2.11.
2.11. Figure References References Figure 3 is Figure 4-1 4.1 from NEDC-32601-P-A.
NEDC-3260l-P-A Figure 4 is Figure      Figure II.5-1 ID.S-l from NEDC-32601P-NEDC-3260lP-A. Figure Figure 5 is Figure ID.S-2
                            -1.5-2from NEDC-32601P-A.
NEDC-32601P-A.
2.12. Additional        SLMCPR Licensing Conditions Additional SLMCPRLicensing                      Conditions For Vermont Vermont Yankee Yankee Cycle Cycle 28, the additional additional SLMCPR SLMCPR licensing licensing condition condition (Reference (Reference 10)
: 10) that the SLMCPR SLMCPR shallshaU be established established iby by adding 0.02 to the cycle-specific cycle-specific TLO TLO SLMCPR SLMCPR value value Discussion                                                                                        Page 7 of 23
                                                                                  \
 
GNF NON-PROPRIETARY INFORMATION GNFNOWr:'PROPmE1fARll'mIFORMAlITON
                                    .              <=~fLSs*i Class  T GNlF Attachment G-NF  Atrnadlmem1t calealatedi calculated uSIng using the    NRC-applTOved methodo~<!lgiies\
the. NRC-approved    methodolofies doeamented documented in  in NEDE-24011-P-A          beetil!
NEDE-240 11-P-A has been applied    (see TaMe applied, (see    Table J).3). This adder does:
does not:
not appUy apply totEl> the: c:yde,..speciifi.c the,cyle-                  SLMCPR,. because specific SLO SLMCPR,    because; s1![ch such, operation.                Technical Specifi.~on peration would by Technical        Specification \be be Diimilted limited t<!l' to less than.
than the t1593 MNWt llowelr 593 MWt power, tmreslit<!lld specifi.ed in Reference threshold specified          Reference 10.
                                      ]Oi.
2.13... Summary 2.,13 The requested changes to the TechnicalTechnical Specification Specification SLMCPR SL-MCPR values are 1.09 for TLO and      and 1.10 for SLO for Vermont 1.10                  Vermont Yankee Cycle Cyde 28.
Discussion                                                                                        Page 8 of23 of 23
 
GNF NON-PROPRIETARY INiFORMAlITONi GNFNON-PROPR:JjE'Ii~.RY      INFORMATION' Class,((
CFas$
GNF Attaellrn:ent G'NlF Attachment-3.0 References 3'.,0    References 1 Letter, Glen A.
1..               A. Watford  (GNF-A) to &#xfd;U.S_
(GNP-A)              Nuclear Regulatory Commission Document U. S. Nudeali                                Document Pulsifer (NlRC)"
Control Desk with attention to R. Pu]siJfetr  (.NRC), '"Continnati "Confirmation      10x lO on of lOx  10 Fuel Design Applicability to Improved SLMCPR" Applicability                SLMCPR, Power Distribution and. and R-Factor Methodologies''',
Methodologies",
FLN-2001-016, September 24, 200L  2001- ,
: 2. Letter, Glen A. Watford (GNP-A)
: 2.                             (GNF-A) to US.U.S. Nuclear Regulatory Commission Document to J. Donoghue (NRC), "Confirmation Control Desk with attention toJ.                           "Confirmation of the Applicability of the GEXL 1414 Correlation and Associated R-F  R-Factor    Methodology for Calculating actor Methodology        Calculating SLMCPR Values in Cores Containing GE14 Fuel", FLN-2001-017, October 1,2001.           1, 2001.
: 3. Letter, Glen A. Watford (GNP-A)
(GNF-A) to US.U.S. Nuclear Regulatory Commission Commission Document Control Desk with attention to Joseph E. E. Donoghue (NRC), "Final"Final Presentation Material for GEXL Presentation - February 11,2002",
11, 2002", FLN-2002-004, FLN-2002-004, February 12,2002.
12, 2002.
: 4. Letter, John F. Schardt (GNF-A) to U.S. Nuclear Regulatory Commission                Document Commission Document Control Desk with attention to Mel B. Fields (NRC), "Shadow C()ntrol                                                    "Shadow Corrosion Effects on SLMCPR Channel Bow Uncertainty",
Uncertainty", FLN-2004-030,        November 10; FLN-2004-030, November          10, 2004.
: 5. Letter, Jason S.
: 5.               S. Post (GENE) to US. U.S. Nuclear Regulatory Commission Document Control Desk  with attention to  Chief, Information Desk with attention Chief, Information Management Management Branch, et al. (NRC), "Part 21 Final Report:
Final Report: Non-Conservative Non-Conservative SLMCPR", MFN 04-108, September    September 29,2004.
29, 2004.
: 6. Letter, Glen A. Watford (GNF-A) to U.S. US. Nuclear Regulatory Commission            Document Commission Document Control Control Desk with attention to Alan Wang (NRC), "NRC Technology Update-        Update -
Proprietary Slides-Proprietary          July 31 -August Slides-July                  1, 2002", FLN-2002-015,
                                      -August 1,2002",        FLN-2002-015, October.31, October.31, 2002.
: 7. Letter, Jens G. Munthe Andersen Andersen (GNF-A)
(GNF-A) to US. U.S. Nuclear Nuclear Regulatory Regulatory Commission Document Control Desk with attention to Alan Wang (NRC), "GEXL                Correlation for "GEXL Correlation IOXI0 lOX 10 Fuel",
Fuel", FLN-2003-005, FLN-2003-005, May 31,  31, 2003.
: 8. Letter, Andrew A. Lingenfelter Lingenfelter (GNF-A)
(GNF-A) to US. U.S. Nuclear Nuclear Regulatory Regulatory Commission Document Control Desk with cc to MC Honcharik Document                                    Honcharik (NRC), "Removal "Removal of Penalty Being Applied to GE14 GEl4 Critical Critical Power Correlation for Outlet Outlet Peaked Axial Power      Shapes",
Power Shapes",
FLN-2007-03 FLN-2007-031,  1, September September 18,2007.
: 9. Letter, Andrew A. Lingenfelter Lingenfelter (GNF-A)
(GNF-A) to U.S. Nuclear Regulatory Regulatory Commission Commission Document Document Control Desk with cc to MC Honcharik Honcharik (NRC), "GNF2 "GNF2 Advantage Advantage Generic Generic Compliance  with Compliance with NEDE-24011-P-A (GESTAR n), NEDC-33270P, Revision June NEDE-2401    1-P-A  (GESTAR      I1), NEDC-33270P,    Revision    2, June 2009 2009 and and GEXL    Correlation for GEXL Correlation      for GNF2    Fuel, NEDC-33292P, GNF2 Fuel,    NEDC-33292P, Revision Revision 3, 3~ June June 2009",
2009",
MFN 09-436, June MFN            June 30, 2009.
: 10. Letter, Richard  n. Ennis (NRC)
Richard B.         (NRC) to Michael Michael Kansler (Entergy Nuclear Nuclear Operations, Operations~ Inc.),
Inc.)~
        "Vermont  Yankee  Nuclear  Power    Station  - Issuance    of Amendment    Re:
        "Vennont Yankee Nuclear Power Station - Issuance of Amendment Re: Extended Power  Extended Uprate (TAC No.No. MC0761)"m MC0761)"m March 2, 2006.
References References                                                                                      RPage 9 of 23 P~e90f23
 
GNP    NON~PROPRlJElj'k\lRYllNFORM&1ITONi GNF NON-PROPRIETARY                  INFORMATION Class t CFassE GN*F AtJtaenm:ent GNP'      Attachment F,  nF
    ~12                                        nF              nL              N-N      IEI jo                        Ir D*1[fF] nF    [Gfl n,'M      [11)  EIEHt                  nFF&#xfd;Sj [EF] [ 0 Lin, W1 fl wffl 38                    E!    Ffl                                                        0 R 1fl FEI F1E a 6 a 1 0 r
E                                                        na        no r 36                  D ffl'IR n1flul  Fri]      Mil    on            El  El nG
                                                                                                --1 71 ns K
F 0
F  F8                        WElln                p G
8              P 32 2o-@rlq1 M  EC]    8    A I H
                                                  -    El J
E                    n M.K  M          nB    C    I' 30 28--]    RF0 R M        E                      K] D          KI              q  M  MA il MA :81 Em-E,+]Imfl h
El  M j
ED          M1 8 26-- M*L] @1'I][:D                                                                                    &#xfd;D Ej T EHln El% nmiN P  FE] nK                              J  K j              ro A    H    0    G  ni ML                      L    J nG n 0    nH    A    K FA 22 - MiH W% EA                                        'J+I EL Ej        -0    Mi  =t,1  KEA 21 20 - R R E]R n@Dj                  J nH EM      ] nK nJ                    nJ nK M RtHI Mi              RJ [ 11] ML    RF 16--RG                                rffl E-PIE                            rEl ED: IE Yin rEl
                                          -1 MM nK 0 EflK M Mji 8 0~~~
ED Ifl F,              &#xfd;j H&#xfd; nH                        =-1 F--P EG I M 000000    M Me4rL-          H                                            A          c mEEI 12
                      ~~~
G      rB] r8l, I rM] in F                                              MFil    9 [flF 8 1iFG1 10              EE ti 0[I]~1IJrI1[!]
                                &#xfd;j    Bi        =8-1                nMI    L on =11    RB dol 06:
IF&#xfd;r-r]
8                    II 0~~
R EF I IH"    I nM nM MB                                i M nM B                  [1] FEJ 6-                        ~[&#xa3;J[I]IIJ MI Y =Ji&#xfd; F=                                MI FG=1' I                  [IJ
[flF  [flD      L                L On  El 2                      I EF:- j I
1  3  5    71    9  11  13  15    17      19    21    23  2S 25  27  29  31    33  3S 35  31 37  39  'II 11    '\3 13 FUEl FUEL TYPE AA= = 6NF2-PI00628'103-1'l66.0-100T2-1S0-T6-32S9 6NF2-PI00628iO3-IG6.0-10OT2-150-T6-3259                        H := 6EI'l-PIODNAB'l21-16GZ-IOOT-ISO-T6-308'l 6EIi-PIODNABi21-160Z-IOOT-150-T6-308i 8B == GNF2-PIOOG2B'lO'l-I'lGZ-IOOT2-1S0-fS-3260 6NF2-PIOD628Oi-IAGZ-1OOT2-150-T6-3260                          II =  6NF2-PI0OG28iO3-1166.O-1OOT2-15O-T6-3261 z 6NF2-PIOOG2B'103-1166.0-IOOT2-1S0-T6-3261 C=  = GNF2-PIODG28387-1SGZ-I00T2-1S0-T6-2977-LUA GNF2-PIODG28387-!SGZ-10OT2-1SO-T6-2977-LUA                    J =
J  = GNF2-PtOD62B404-i9GI-IOOT2-150-TS-3262 GNF2-PIOD$2840-1SGZ-IOOT2-1SO-T$-3262 D == 6El'l-PlOONAB'l22-i'lGZ-i001-!50-T6-296S D    6EIi-PIOONABa22-IiGZ-1001-1SO-T6-2965                          K := 6El'l-PlOONAB388-1566.0-100T-lSO-TS-308S 6EIi-PIOONA8388-1566.,-IOOT-150-l6-3086 E = GEI4-PIOONA8383-116S.0-!OOT-lSO-T6-2865 GE1I-PlO1A8383-176.0-*.     0OT-150-16-2865                  lL = 6EII-PIODNABi20-156Z-IOOT-1S0-T6-3085 6Ei~-PI00NAB420-16Gl-l00T-lS0-T6-308S FF = 6E14-PIOODNA38e-ISGZ-IOOT-1S0-"T-2988 G&#xa3;14-PIODNAB388-15GI-I00T-ISO-T6-29S8                          H = GE1I-PIOHNA9388-iCGZ-lOOT-ISO-T6-3087 M  =  GEl~-PIODNA8388-16GZ-100T-lSO-T6-3087 G = 6El'l-PIOONAB389-156l-!OOT-150-T6-2969 GEIi-PIONA8388-156Z-IOOT-150-Ts-2959
: 1. Current Cycle Core Loading Diagram Figure i.Current References References                                                                                                      Page Pa,ge 10 of23of 23
 
GNF NON~PROPRIB1f;,A)RY NON-PROPRIETARYW                  IFORMAION!
llNiFORMAlfION CEass tI Class, GNlF GN* A1!fadlm:ent Attachment, 44                                                                    I[LD!`        [BE]'
El 42 42                                                        El END,, EfEl Ej Tj ln&#xfd; 40 40                                    [EL] [EK] ES I' ED[AD'[FEC2 [EH] (EA] &#xfd; H [HBj B K L E-ITI-9 t N                    M -F[D Mj-PID BF0, E      E 38 38                                                                                        Leim        IND U0                F1 36 36                        J    H    FGJ                        PA    EDEGDEGIEDII                  I EDE(] Sm FG JEH ] [,Dt j "j &#xfd;L, L                    EA 34 34                                  El          [E]          FioI:Fq, AL-jL            Ot          EITD EMS o
B E (DI nN                                                [AE]F20]
32                      Eill IEI Ip ILE21P[D                                FA El Q    [AE] F202J]I[oH [EN]II[E] E [H]
LI                            101LB 30                  19 [Ell D 00SF2GI                          L&#xfd; TAO,  rE ElpoEl                      F211D        !10      101E]  ID[9
[AD    FWI [HE] H G A EO]
28              ll IEj,-Un ElH N Lhj    EA ] pEO 01Lj &#xfd;jIUjLhjF1EIF21E1 r7,
[9    Li          Lj    El F20          EM IEI [EIIE WiM [q 26          ELREI El El
[DA+
F2 ] &#xfd;E ID            7[D        M A eal    G e[o          [HE]
i  NED 7FL I A E [E]
24          B      E 12HJIIIEI LTH (E]  [ME]
[9    L;j PGJ [DO [AE][ME]
LEM    F21                L&#xfd;+J&#xfd;Lj [ H ]I [HE] [0E]j[AE] [OE] [GD [MH]j[H] [ED r-B-1 M F2-] r[g 0=[E-]
22          (DBI (E]                  G      0    A      0 El[5 M C C F+/-m]l [E] (7D 7[D A          eJG LI          [ 09
[ME] Bm El    A M    G [EE] 0 (GqLie EI] A EIIE 20 20          011 IEI ILUDIE1019 L      E                                110[EZG;] [AE]  21 E
18          [EDI [HH]                  A      0]                            MEHHea      Li G      A 10 I An 0                        H [Ep [D 16                      [BE] [EE]            [AE] F20 ] "GF20] [EE] [!OEI [OE] [ED [OD [GE] [OD [ADEI] EE ] [BE] [CE]
19  LULWEEIL, E&#xfd;jl E        I [H] [H] [7]
2JIL--J 14                            IDFLI                                          LeIn                    ME          IWO po 12                      [EK]I[GE]      M      G    [EN]II      F20 ]  PIGF071      [OD [GE] F20] [AD [E] [DI[o [G
                                                      -JIID 10                      [JDTEEH
                          - - ] El FEI E] IE]
Lek]                                IM-T-0 I    M M [ID N [EE]
8                          [E] [2DE]I[GE]      [FEE]II[EE]    N
[HUI ED[E]    MIE9              1119 UID EILL) 6                                                              H A H
[all-                H                K 19 El FLIE] IflI[B]
4                                                            SH II(E] [E]II[KE] [flEILEH 2                                                            [DIEL] ((E]IRB]
1      3    5    7      9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Fuel Type Fuel  Type A=GE14-FPIODNAB422-16G7-IOOT-150-T6-2862 AcGEI4*P    IODNAB422* I 6G7... I 001'-1 SG-T6*2862          (Cycle 2.)25,)  l=G'  14-P IODNAB42 1-l6GZ-!00T-1 50-T6-3084 I=GI~14*PIODNAB421*16GZ*IOOT*ISO*T6*3084                  (Cycle (Cycle 27) 27)
B=GE  14-PI ODNAB3S3-14G6.0-IOOT- 150-T6-2864 (Cycle B=GEI4-PIODNAB383-14G6.G-IOO1'-ISO-1'6-2864                  (Cyclc2S) 25)    J=GE14-PIODNAB3g3-14G6.0-IOOT-lSO-T6-2864 J=GE  14*P IODNAB383-14G6.0-100T-ISO-1'6-2&64            (Cycle  25)
(C~'clc25)
C=OGI'4-PIOZ)NAB383-13G6.0-tOOT-150-T6-2863 C=GBI4-PIOI)NAB383-13G6.o-IOO1'-150-T6-2863                  (Cycle (Cycle 25)      K=GEI14-PIODNA13383-13G6.0-100T-150-T6-2863 K~GEI4-P\oDNAI)383-13G6.0-IOOT-150-T6-2863                (Cycle (Cycle 25)
Dt=NI.F2-PiODG2B387-15G%-OOT2-t SO-T6-2977-I.UA
():.GNF2-PIODG2B387-15GZ-100T2-1              50-T6-2977-LUA (Cyclc(Cycle    I..==E  t4-Plt0DNA13383-17G6.0-100T1-t50-T6-2865 L-GE 14-1'1  OONAB383-17Q6.O-JOOT-1 50-1'6-2865          (Cycle (Cyclc 25) 25)
: 26)                                                                                    14-P I ODNAB388-M=GE 14-1'                  ! 5G6.0-lO00T-150-1'6-3086 ODNAB388-15G6.0-1      00,.-150*,.6*3086  (cycle  27)
(Cyclc27)
E=GEI4-PiOt)NAB422-14GZ-100T-Il50-T6-2965 E=GEI4-P1ODNAB422-14G7.... 100T-150-1'6-2965                (Cycle (Cycle 26)26)    N=GE14-PIODNAB420-16GZ,100.lT-150-46-3085 N=GE14*PI0I)NAB420*16GZ-IOOT-ISO-T6-3085                  (Cycle (Cyclc 27) 27)
F=GE  14-PIOI)NA13383-1706.O-i0OT- t 50-T6-2865 (Cycle FcGE 14*PIOI)NA13383-17G6,o-IOOT-ISO-T6-2865                (Cycle 25)25)    O=GE 14-1 ! 0D)NAB388- i6GZ- 100T-I 50-T6-3087 O=GEI4-PIODNAB388-16GZ-1OOT*.50-T6-3087                  (Cycle (Cycle 27) 27)
G=GE 14-P IODNAB388-    MSGZ-I OOT-150-T6-2968 G=GEI4-PIODNAB388-15GZ-1OO1'-ISO-1'6-2968                    (Cycle (Cycle 26) li=GE li==GE 14*1'1 O0DNAB388-15GZI 4-Pl O])NAB388-1            D100T-I 50-T6-2969 507... 1001--150-1'6*2969        (Cycle 26)
(Cycle Figure 2. Previous Cycle Core Loading Figure2.                                                       Loading DiagramDiagram
: 2. Previous 'Cyde Figure 2.1Previolls          Cycle Oore Core Loading Diagram                                                                    lP.~ge I111I of 23 Page
 
., ~,
GNFNON~PROPR:lEli~Y GNF NON-PROPRIETARY JlNiFCDR:lVfiA1ITCDN INFORMATION, C~ass; E Class,  I GNF,  Attachment GNF A1it!aenmeRt:
lIE 1311]
Figure 3. Figure 4.1 from NEDC-32601-P-A NEDC-32601-P-A Figure 3. Figure 4-1 4_1 from NEDC-32601-P-A                            .Page Page 12 of 23
 
GNFNON:"PROPRffilfPffi:Y GNF NON-PROPRIETARY llNlFORMAlITON!
NFORMAT*ION Ctass'[
Class [
GNF AttacImtent GNlF Attachment
[Ii 13)))
Figure 4. Figure IlI.S-l 111.5-1 from NEDC-32601P-A NEDC-32601P-A Figure 4. Figure 1115-1 RL5-1 from NEDC-32601P-A NBDC-32601P-A                          P4ge    of23 Page 13 of 23


==3.0 REFERENCES==
GNFNON-PROPR:lEIr~Y GNF NON'-PROPRIETARY nNJFORMAlITONf NFORNATIONI CFass Class LI GNF' GNP' Attachment At!t!ad!tmetLt.
nn t3)))
Figure 5. Figure 111.5-2 111.5-2 from NEDC-32601P-A NEDC-32601P-A Figure 5. Figure m.S-2  from NBDC-32601P-A M1.5-2 mom  NEDC-32601P-A                            Page 14 of23 of 23


.................................................................................................................................................
GNF GNF NON-PROPRIETARY NON-PROPRIETARY INFORMATION INFORMATION Class I GNF Attachment Attachment Table Table 1. Description Description of Core Previous Previous Cycle          Previous Previous Cycle Cycle Rated Rated    Current Current Cycle Cycle              Current Current Cycle                    Cycle Rated Description Description        Minimum Core Flow Minimum                    Core Flow Limiting Limiting    Minimum Core Flow Minimum        Flow              Core Flow                Flow Limiting  Limiting Limiting Limiting Case                  Case Case              Limiting Limiting Case                                              Case Case Number of Bundles Number      Bundles in the                      368                                              368 368 368 368                                              368 Core Limiting Limiting Cycle Exposure Point (ie, Point  (Le.                       N/A                        EOC                    N/A N/A      ,                                            EOC O C/MOC/E BOC/MOCIEOC)
9 List of Figures FIGURE I. CURRENT CYCLE CORE LOADING DIAGRAM ..............................................................................................
B              OC)                                                                                . . . .... ..........................
10 FIGURE 2. PREVIOUS CYCLE CORE LoADING DIAGRAM ..............................................................................................
Cycle Cycle Exposure Exposure at Limiting Point                    N/A                       10600 10600                  N/A                                                   '10600 l0600 (MWdlSTU)
11 FIGURE 3. FIGURE 4.1 FROM NEDC-3260 I-P-A .........................................................................................................
(MWd/STU)                                                                                                                                                ...       ..
12 FIGURE 4. FIGUREIII.5-1 FROM NEDC-3260IP-A  
d_", .* _~_    ,,_,,_
......................
    % Rated Core Flow                  N/A N/A                          100 100                    N/A N/A'                                                      100 100
l, .............................................................................
                                                                                                                      .~ .." .. --  .     -.. --,-           ._,.- -
13 FIGURE 5. FIGURE Ill.5-2 FROM NEDC-3260IP-A
Reload Fuel Type                                GE14 GE14                                              GNF2 GNF2 Latest Reload Batch                              32.6                                              31.5 32.6                                              31,5 Fraction, %
.....................................................................................................
Latest Reload Average Average Batch Weight %                                  4.01                                              4.04 Enrichment Enrichment Core Fuel Fraction:
14 List of Tables TABLE 1. DESCR1PTION OF CORE ..............................................................................................................................
GEl4 GE14                                            0.989                                            0.674 GNF2                                            0.011                                            0.326 0.326 Average Weight %
?, .. 15 TABLE 2. SLMCPR CALCULATION METHODOLOGTES
Core Average                                    3.99                                              4.01 3.99                                              4.01 Enrichment Enrichment Table 1. 1. Description of Core                                                                                                                            Page 15 of 23
................................................................................................
16 TABLE 3. MONTE CARLo CALcULATED SLMCPR VS. ESTIMATE ..............................
; ...............................................
17 TABLE 4. NON-POWERDISTruBUTION UNCERTAINTIES
..............................................................................................
19 TABLE 5. POWER DISTRIBUTION UNCERTAINTIES
...................................
; .....................................................................
21 TABLE 6.CRInCAL PO\VER UNCERTAINTIES
..................................................................................................................
23 Table of Contents Page 3 of23 GNF NON-PROPRIETARY INFORMATION Cl1ass I G NF Attachment 11.0 Methodology GNF performed the Vermont Yankee Cycle 28 Safety Limit Minimum Critical Power Ratio (SLMCPR) calculation in accordance to NEDE-240I1-P-A "General Electric Standard Application for Reactor Fuel" (Revision
: 16) using the following NRC-approved methodologies and uncertainties: " NEDC-32601P-A "Methodology and Uncertai nties for Safety Limit MCPR Evaluations" (August 1999)." NEDC-32694P-A "Power Distribution Uncertainties for Safety Limit MCPR Evaluations" (August 1999)." NEDC-32505P-A "R-Factor Calculation Method for GEl 1, GE12 and GE13 Fuel" (Revision 1, July 1999).* NEDO-10958-A "General ElectricBWR Thermal Analysis Basis (GETAB): Data, Correlation and Design Application" (January 1977).Table 2 identifies the actual methodologies used for the previous Cycle 27 and the current Cycle 28 SLMCPR calculations.


==2.0 Discussion==
GNF NON-PROPRIETARY GNF  NON-PROPRIETARY INFORMATION INFORMATION Class I GNF Attachment GNF  Attachment Table Table 2.
In this discussion, the TLO nomenclature is used for two recirculation loops in operation, and the SLO nomenclalure is used for one recirculation loop in operation.
: 2. SLMCPR SLMCPR Calculation Calculation Methodologies Methodologies
                                                                                                                                                                                      ..  -  .~
Previous Cycle Cycle        Previous Previous Cycle Rated Rated          Current Current Cycle Cycle                Current Curr~nt Cycle      Cycle Rated Description Description              Minimum Core Minimum      Core Flow                    Limiting Core Flow Limiting        Minimum Core Flow Minimum          Flow              Core Flow Limiting Core          Flow        Limiting Limiting Case                      Case                    Limiting Case                                      Case Limiting Case                    Case                    Limiting Case                                      Case Non-power Distribution Non-power      Distribution                      NEDC-32601-P-A                                          NEDC-32601-P-A U  e. ai ........
Uncertainty__y                      .....        NEDC-32601-P-A                                          NEDC-32601-P-A UncertaiI!ty                      _  _    _ _ _ _ _  _ _  _ _ _  _ _ _  _ _  _  _ _ _  _ _ _ _  _ _  _ _ _  _  _ _  _    _    _      _  _    _    _      _    _      _    _      _
Distribution Power Distribution                                NEDC-32601-P-A                                          NEDC-32601-P-A NEDC-32601-P-A                                          NEDC-32601-P-A Methodology Methodology                                                                                                NEDC...2601.-P.A                              .. -        -
Distribution Power Distribution                                NEDC-32694-P-A                                          NEDC-32694-P-A NEDC-32694-P-A                                          NEDC-32694-P-A Uncertainty ......
Uncertainty                                      __ED        _-32694-P-ANEDC-32694-__A                            " "-'",,-,.  ,-_.""",,- -,,-~
Core Monitoring System                                3D 3D Monicore Monicore                                            3D 3D Monicore Monicore
                                                                                                                                                      --~ -      - -.-          --
Table 2. SLMCPR Calculation        Methodologies Calculation Methodologies                                                                                                          Page page 10      16 Qf2~  of 23


===2.1. Major===
GNF NON-PROPRIETARY GNF  NON-PROPRIETARY INFORMATION  INFORMAnON Class I GNF Attachment Attachment Table 3.
Contributors to SLMCPR Change In general, the calculated safety limit is dominated by two key parameters:
: 3. Monte Monte Carlo Carlo Calculated Calculated SLMCPRSLMCPR vs. Estimate Previous Previous Cycle              Previous Cycle  Cycle Rated            Current Current Cycle        Current Current Cycle Cycle Rated Description Description      Minimum Minimum Core Flow Flow            Core Flow Limiting Limiting        Minimum Core  Core Flow Flow  Core Core Flow Limiting Limiting
(1) flatness of the core bundle-by-bundle MCPR distribution, and (2) flatness of the bundle pin-by-pin power/R-factor distribution.
[I
Greater flatness in either parameter yields more rods susceptible to boilingtransition and thus a higher calculated SLMCPR. MIP (MCPR Importance Parameter) measures the core bundle-by-bundle MCPR distribution and RIP (R-factor Importance Parameter) measures the bundle pin-by-pin power/R-factor distribution. The impact of the fuel loading pattern on the calculated TLO SLMCPR using rated core power and rated core flow conditions has been correlated to the parameter MIPRIP, which combines the MIP and RIP values.Table 3 presents the MIP and RIP parameters for the previous cycle and the current cycle along with the TLO SLMCPR estimate using the MIPRIP correlation.
((
If the minimum core flow caseis applicable, the TLO SLMCPR estimate is also provided for that case although the MIPRIP correlation is only applicable to the rated core flow case. This is done only to provide some reasonable assessment basis of the minimum core flow case trend. In addition, Table 3 presents estimated impacts on the TLO SLMCPR due to methodology deviations, penalities, and/or uncertainties deviations from approved values. Based on the MIPRIP correlation and any impacts due to deviations from approved values, a final estimated TLO SLMCPR is determined.
      ""   -                      Limiting Case Limiting  Case                            Case                    Limiting Case Limiting
Methodology Page 4 of 23 GNFNON:'PROPR.EIEIrMV IINlIFORMA1l10Nl Class: If G1NlF Ati1iachmmt 11.,0; . GNIF peri'mmed the Verm.ont Yankee C.ycle 28 Safety Umit .Minimum C.ritical, Power Ratio (SILMCPR) calculation in accordance to NEUB-24011l.-P:..A
__________________ __________________[___________________ __________________
'"General Electri.c Standatrdi Application for Reactor Fuel" (Revision
Case              Case Case
: 16) using the following NRC-approved methodologies:
                                                                                              \
and uncertainties: .NEDC-32601P-A "Methodology and Uncertainties for Safety Limit MCPR Evaluations'" (August 1999).
I                          +                                  I                              t
* NEDC-32694P-A "Power Distribution Uncertainties for Safety Limit MCPR Evaluations" (August 1999), .
___________________        I                        .1. __________________              1 __________________          1 vs. Estimate Table 3. Monte Carlo Calculated SLMCPR VS.                                                                                           Va&#xfd;e 17 of 23
* NEDC-32505P-A "R-Factor Calculation Method for GEll, GEI2 and GE13 Fuel" (Revision 1, July 1999).
* NEDO-10958-A "General Electric.BWR Thermal Analysis Basis (GETAB): Data, Correlation and Design Application" (January 1977). Table 2 identifies the actual methodologies used for the previous Cycle 27 and the current Cycle 28 SLMCPR calculations.  


===2.0 Discussion===
NON-PROPRIETARY INFORMATION GNF NON-PROPRIETARY  INFORMATION Class I Attachment GNF Attachment Table 3. Monte Carlo Calculated Calculated SLMCPR vs. Estimate
                                                                                                      "  " .. ~
Previous Cycle        Previous Previous Cycle Rated Rated      Current Cycle          Current Cycle Rated Description Description          Minimum Minimum Core Flow        Core Flow Limiting    Minimum Core Flow          Core Flow Limiting              Limiting Limiting Limiting Case                Case              Limiting Case                                  Case Case I                                                4.                    J
                                                                                                    --,--~.~-.-,,~,-,
                                                                                                        .~
(J}ll "Il Table 3.
: 3. Monte Carlo Calculated SLMCPR vs.
VS. Estimate .                                                                                    P.
Valge, 1$ of,23


In this discussion, the TLO nomenclature is used for two recirculation loops in operation, and the SLO nomenclature is used for one recirculation loop in operation.  
GNF NON-PROPRIETARY NON-PROPRIETARY INFORMA INFORMATIONnON Class I GNF Attachment Table 4. Non-Power Non-Power Distribution Uncertainties Nominal (NRC-        Previous Cycle        Previous Cycle    Current Cycle  1        Current Cycle            Cycle Approved) Value        Minimum Core          Rated Core Flow    Minimum Core          Rated Core Flow
                              +/-    (%)
                              ++/-cr (0/0)      Flow Limiting Case      Limiting Case  Flow Limiting Case          Limiting Case GETAB GETAB Feedwater Feedwater F          Flow eedw tFlow              1.76                N/A                      N/A                N/A                              N/A Measurement__________        1.76                N/A          __________ N/A    __________ N/A      _____                  N/A  _____
Measurement Peedwater Feedwater Temperature Temperature                  0.76                N/A                      N/A                N/A                              N/A Measurement Measurement Reactor Reactor Mea      Pressure Pressure sure                0.50 0.50                N/A N/A                      N/A N/A                N/A                              N/A Measurement Measurement                                                                                                                                      ,
Core Inlet Temperature                  0.20                N/A                      N/A                N/A                              N/A Measurement Measurement                                                                                            -,.,  -""""--
w _ _ '"  ~ __" ___
                                                                                                                                              - ~-,
Total Core Flow        6.0 SLO / 2.5 TLO           N/A N/A                      N/A N/A                N/A                              N/A Measurement 6.0 SLO I 2.5 TLO                                                      N/A                              N/A Measurement Channel Flow Area Area            3.0                N/A                      N/A                N/A                              N/A Variation 3.0                N/A                      N/A            - N/A                                N/A Friction Factor              10.0                N/A                      N/A                N/A                              N/A Multiplier 10.0                N/A                      N/A                N/A                              N/A            -
Channel Channel Friction              5.0 5.0 N/A N/A                      N/A N/A                N/A N/A                              N/A N/A Factor Multiplier              5.0.N/.N/A./A.N/
Non-Power Distribution Uncertainties Table 4. Non-Power                                                                                                                  Page 19 of Page,          of23 23


===2.1. Major===
GNF GNF NON-PROPRIETARY NON-PROPRIETARY INFORMATION INFORMAnON Class Class I                                                                                                                                  .
Contributors to SLMCPR Change In general, the calculated safety limit is dominated by two key parameters: (I) flatness of the core bundle-by-bundle MCPR distribution, and (2) flatness o( the bundle pin-by-pin factor distribution.
GNF GNF Attachment Attachment Table Table 4. Non-Power Non-Power Distribution Distribution Uncertainties Uncertainties Nominal Nominal (NRC-  (NRC-       Previous Previous Cycle Cycle          Previous Previous Cycle Cycle      Current Current Cycle    Cycle                          Current Currel.lt Cycle              Cyde Approved)
Greater flatness in either parameter yields more rods susceptible to boiling transition and thus a higher calculated SLMCPR MIP (MCPR Importance Parameter) measures the core bundle-by-bundle MCPR distribution and RIP (R-factor Importance Parameter) measures the bundle pin-by-pin power/R-factor distribution.
Approved) Value  Value    Minimum Minim urn Core Core        Rated Rated Core Core Flow Flow  . Minimum Minimum Core        Core                  Rated Ra,ted Core            Core Flow          Flow a (%)
The impact of the fuel loading pattern on the calculated TLO SLMCPR using rated core power and rated core flow conditions has been correlated to the parameter MIPRIP, which combines the MIP and RIP values. Table 3 presents the MIP and RIP parameters for the previous cycle and the current cycle along with the 11.0 SLMCPR estimate using the MIPRIP correlation.
                                          +/- CJ (%)          Flow  Limiting Case Flow Limiting      Case      Limiting Limiting CaseCase    Flow Limiting Flow  Limiting Case        Case                    Limiting Limiting Ca,se                Case NEDC-32601-P-A NEDC-32601-P-A 3                      3 Feedwater Feedwater Flow  Flow                        ((3}))                      j
If the minimum core flow case is applicable, the TLO SLMCPR estimate is also provided for that case although the MIPRIP correlation is only applicable to the rated core flow case. This is done only to provide some reasonable assessment basis 'Of the minimum core flow case trend. In addition, Table 3 presents estimated impacts en the 11.0 SLMCPR due to methodology deviatiens, penalities,andior uncertainties deviations from approved values. Based on the MIPRIP ,correlation and any impacts due to deviations from approved values, a .final estimated TLO SLMCPR is determined.
{3 I))                      {3}))          ((            {31))                                    ((                  P}J] )
Methodology Page40f23 GNF NON-PROPRIETARY NFORMATION Class, [GN,, Attachment Table 3 also provides the actual calculated, M.'onte Carlo SLMCPRs.
Measurement Measurement
Given the bias and uncertainty in the MIPR[P correlation
((                        ((                          ((                      ((                                                      ([
[[ t3)]] and the inherent variation in the Monte: Carlo results [[ 11]] the. change in the Vermont Yankee Cycle 28calculated Monte Carlo TLO SLMCPR using rated core power and rated core flow conditions is consistent with the corresponding estimated TLO SLMICPR value.2.2. Deviations in NRC-Approved Uncertainties Tables 4 and 5 provide a list of NRC-approved uncertainties along with values actually used. A discussion of deviations from these NRC-approved values follows; all of which are conservative relative to NRC-approved values. Also, estimated impact on the SLMCPR is provided in Table'3 for each deviation.
Feedwater Feedwater Temperature Temperature                        ((((    {3}))
2.2.1. R-Factor At this time, GNF has generically increased the GEXL R-Factor uncertainty from
{3}))          ((((    {31))
[[(3}]] to account for an increase in channel bow due to the emerging unforeseen phenomena called control blade shadow corrosion-induced channel bow, which is not accounted for in the channel bow uncertainty component of the approved R-Factor uncertainty. The step "a RPEAK" in Figure 4.1 from NEDC-32601P-A, which has been provided for convenience in Figure 3 of this attachment, is affected byy this deviation.
{3)))                ((((    {3}))
Reference 4 technically justifies that a GEXL R-Factor uncertainty of [[I ]] accounts for a channel bow uncertainty of up to [[ (3)]].Currently, Vermont Yankee has not experienced any control blade shadow corrosion-induced channel bow and is not expected to experience any in Cycle 28 to the extent that wouldinvalidate the approved R-Factor uncertainty.
{3,))          ((((          {J}))
2.2.2. Core Flow Rate and Random Effective TIP Reading At this time, GNF has not been able to show that the NRC-approved process to calculate the SLMCPR only at the rated core power and rated core flow condition is adequately bounding relative to the SLMCPR calculated at rated core power and minimum core flow, see Reference 5.The minimum core flow condition can be more limiting due to the control rod pattern used.GNF has modified the NRC-approved process for determining the SLMCPR to include analyses at the rated core power and minimum licensed core flow point in addition to analyses at the rated core power and rated core flow point. GNF believes this modification is conservative and may in the future provide justification that the original NRC-approved process is adequately bounding.The available flow range at rated power, 99% to 100% rated core flow, does not warrant analysis at the minimum core flow point.2.3. Departure from NRC-Approved Methodology No departures from NRC-approved methodologies were used in the Vermont Yankee Cycle 28 SLMCPR calculations.
13)))                                    ((((              {3}))
Discussion Page 5 of 23 GNF NOt'[ ..
131))
I!NJFORMAlITON Clasg, [ GNF Attacnme1i1t' 3 also provides the actual calculated.
Measurement Measurement Reactor Reactor Pressure Pressure                                                                                ]3}))
Monte SJLMCPRs.
{3}))                        PI))                                    ((1]{3}]1 Measurement Measurement
Given the bias and tlRcertainty in the MIPRIP correlation K[ {J}]] and the inherent vati'iation in the Monte Carlo results [[
(( {3}))
the: change in the Vermont Yankee Cycle 28 calculated Monte Carlo TLO SLMCPR using rated COlle power and rated core flow conditions is: consistent with the corresponding estimated no SLMCPR value. 2.2. Deviations in NRC-Approved Uncertainties Tables 4 and 5 provide a list of NRC-approved uncertainties along with values actually used. A discussion of deviations from these NRC-approved values follows; all of which are conservative relative to NRC-approved values. Also, estimated impact on the SLMCPR is provided in Table '3 for each deviation. . 2.2.1. R-Factor At this time, GNF has generically increased the GEXL R-Factor uncertainty from [[ (3}]) to account for an increase in channel bow due to the emerging unforeseen phenomena called control blade shadow corrosion-induced channel bow, which is not accounted for in the channel bow uncertainty component of the approved R-Factor uncertainty.
((_[_____((_3}]__}        ((      {31))                ((                      ((                        _
The step "0 RPEAK" in Figure 4.1 from NEDC-3260IP-A, which has been provided for convenience in Figure 3 of this attachment, is affected b 6 this deviation.
((                [__ _                _
Reference 4 technically justifies that a GEXL Factor uncertainty of [[ 3}]] accounts for a channel bow uncertainty of up to [[ {3}]]. Currently, Vermont Yankee has not experienced any control blade shadow corrosion-induced channel bow and is not expected to experience any in Cycle 28 to the extent that would invalidate the approved R-Factor uncertainty.
                                                                                                                                                                      -"''''_''''-.".    "   '~~.--
2.2.2. Core Flow Rate and Random Effective TIP Reading At this time, GNF has not been able to show that the NRC-approved process to calculate the ' SLMCPR only at the rated core power and rated core flow condition is adequately bounding relative to the SLMCPR calculated at rated core power and minimum core flow, see Reference
Core Core Inlet Inlet Temperature Temperature                            0.2 0.2                     N/A N/A                          0.2 0.2                     N/A N/A                                                          00.2  2 M  e a su r e m e n t Measurement                                                                                                ___ _      ............. .. . .....
: 5. The minimum core flow condition can be more limiting due to the control rod pattern used. GNF has modified the NRC-approved process for determining the SLMCPR to include analyses at the rated core power and minimum licensed core flow point in addition to analyses at the rated core power and rated core flow point. GNF believes this modification is conservative and may in the future provide justification that the original NRC-approved process is adequately bounding.
                                                                                                                                                                      ---.~-         ,-,   ~
The available flow range at rated power, 99% to 100% rated core flow, does not warrant analysis at the minimum core flow point. 2.3. Departure from NRC-Approved Methodology No departures from NRC-:approved methodologies were used in the Vermont Yankee Cycle 28 SLMCPR calculations.
Total Total Core Core FlowFlow        6.0 SLO / 2.5 TLO                  N/A               6.0 SLO / 2:5 TLO                  N/A                              6.0 SLO /2:5 TLO Measurement                    6.0 SLO/2.5 TLO                    N/A                6.0 SLO 12:5 TLO                  N/A                              6.Q 5LO 12,5 TLO Measurement Channel Channel Flow Flow Area Area                                            1311]
Discussion Page 5 of 23 GN NON-PROPR[ETARY IFORMATION Class f GNIF Attachment-2.4. Fuel Axial Power Shape Penalty At this time, GNF has determined that higher uncertainties and non-conservative biases in the GEXL correlations for the various types of axial power shapes (i.e_, inlet, cosine, outlet and double hump) could potentially exist relative to the, NRC-approved methodology values, see References 3, 6, 7 and 8. The folowing table identifies, by marking with an, "X", this potential for each GNF product line currently being offered:[[Axial bundle power shapes corresponding to the limiting SLMCPR control blade patterns are determined using the PANACEA 3D core simulator. These axial power shapes are classified in accordance to the following table:
((_ _ {3}n 3E))                                                131))                                                                                       0[ ]
If the limiting bundles in the SLMCPR calculation exhibit an axial power shape identified by this table, GNF penalizes the GEXL critical power uncertainties to conservatively account for the impact of the axial power shape. Table 6 provides a list of the GEXL critical power uncertainties determined in accordance to the NRC-approved methodology contained in NEDE-2401 1-P-A along with values actually used.For the limiting bundles, the fuel axial power shapes in the SLMCPR analysis were examined to determine the presence of axial power shapes identified in the above table. These power shapes were not found; therefore, no power shape penalties were applied to the calculated Vermont Yankee Cycle &#xfd;28 SLMCPR values.Discussion Page 6 of 23 GNf IITNilFORMlAll0N Class: I GlNiF Amiadmr*:1ilit F'uel, Axial Power Shape' Penalty At mils time, GNF has detetmined that highetr utlcel11arnmt1es:
((        {3}))          ((      {31))                ((      {3}))
and mOl1-conservative biases: Ln tlte; GEXIL correlations for the various: types. of aoo:i:aI!
((__              {3}))
power shapes (i.e .* inlet, cosine, oudet and[ double hllmp) could potentially exist relative to tlte NRC'-appFOved.
Variation Variation                          ((_((__3_))_((                                  _3_              ))          ((_              }))    _[__                                          _ _))
methodology see References 6, 7 and 8. The foHowing tab;le identifies, by marking with an <<X", this potential!
Friction Friction Factor Factor                          3,))                  13[]
for each GNF pFOduct line currently being offered:.
{3}))                        {3}))                        {3 1))
[[ {3}1 ]] Axial bundle power shapes corresponding to the limiting SLMCPR control blade patterns are determined using the PANACEA 3D core simulator.
((                  01))
These axial power shapes are classified in accordance to the following table: [[ I . \ l3}]] If the limiting bundles in the SLMCPR calculation exhibit an axial power shape identified by this table. GNF penalizes:
M  ultiplier Multiplier
the GEXL critical power uncertainties to conservatively account for the impact of the axial power shape. Table 6 provides a list of the GEXL critical power uncertainties determined in accordance to the NRC-approved methodology contained in NEDE-24011-P-A along with values actually used. For the limiting the fuel axial power shapes in the SLMCPR analysis were examined to determine the presence of axial power shapes identified in the above table. These power shapes were not found; no power shape penalties were applied to the calculated Vermont Yankee Cycle.28 SLMCPR values. Discussion Page*60f23 GNF NON-PROPRETiARY mORMATION Class, I GNF, Attachment-2.56. Methodology Restrictions The, four restrictions identified on Page. 3 of NRC's Safety Evaluation relating to the General Electric Licensing Topical Reports NEDC-32601 P. NEDC-32694P, and Amendment.
((        {3}))          ((                          ((                      ((                                                      ([               {3}JJ Channel Channel Friction Friction                  5.0                      N/A                          5.0                    N/A Factor    Multiplier                      5.0                      N/A                          5.0                    N/A                                                          5,0 Factor Multiplier                                                                                                                                                                    ...   ***  _'' __ m **** _
25 to NEDE-2401 1-P-A (March 11, 1999) are addressed in References t, 2, 3, and 9.No new GNF fuel designs are being introduced in Vermont Yankee Cycle 28; therefore, the: NEDC-32505-P-A statement
Table Table 4. Non-Power Non-Power Distribution Distribution Uncertainties Uncertainties                                                                                                                              Page, 20 of 23
"... if new fuel is introducted, GENE must confirm that the revised R-Factor method is still valid based on new test data" is not applicable.
The GNF2 product line is not considered a new fuel design relative to the GEl4 product line, as both consist of 10 x 10 lattice designs.2.6. Minimum Core Flow Condition The available flow range at rated power, 99% to 100% rated core flow, does not warrant analysis at the minimum core flow point.


===2.7. Limiting===
NON-PROPRIETARY INFORMATION GNF NON-PROPRIETARY              INFORMATION Class I GNF Attachment Table 5. Power Distribution Distribution Uncertainties
Control Rod Patterns The limiting control rod patterns used to calculate the SLMCPR reasonably assures that at least 99.9% of the fuel rods in the core would not be expected to experience boiling transition during normal operation or anticipated operational occurrences during the operation of Vermont Yankee Cycle 28.2.8. Core Monitoring System For Vermont Yankee Cycle 28, the 3D Monicore system will be used as the core monitoring system.2.9. PowerlFlow Map The utility has provided the current and previous cycle power/flow map in a separate attachment.
                                                                                                                                                          .. ~~    ~
2.10. Core Loading Diagram Figures I and 2 provide the core loading diagram for the current and previous cycle respectively, which are the Reference Loading Pattern as defined by NEDE-2401 1-P-A. Table 1 provides a description of the core.2.11. Figure References Figure 3 is Figure 4-1 from NEDC-32601-P-A.
Nominal Nominal (NRC-              Previous Cycle                  Previous Cycle                Current Cycle                 Current Cycle, Current                        Cycl~
Figure 4 is Figure II.5-1 from NEDC-32601P-A. Figure 5 is Figure -1.5-2 from NEDC-32601P-A.
Description Description        Approved) Value            Minimum Minim urn Core                Rated Core Flow                Minimum Core            Rated Rated                    Core          Flow mow
2.12. Additional SLMCPR Licensing Conditions For Vermont Yankee Cycle 28, the additional SLMCPR licensing condition (Reference
                                  + a (%)
: 10) that the SLMCPR shall be established by adding 0.02 to the cycle-specific TLO SLMCPR value Discussion Page 7 of 23 GNP JiN!JFORMAlITONl E GNF A1it!aemment 2.5., M'ethodology Restrictions The; four restrictions identified on 3 of lNlRC"s Safety Evaluation relating to the Genefal: Efectric Licensing Topical Reports NEDC-32694P, and Amendment 25 to NEDE-24011-P-A (March 11, 1999) are addressed En References 1,2,3, and 9. No new GNF fuel designs are being intmduced In Vermont Yankee Cycle therefore, the NEDG-32505-P-A statement" ... if new fuet is introducted, GENE must confirm that the revised R-Factor method is still valid based on new test data n is not applicable.
tG(%)                Flow Limiting Case                  Limiting Case  Case      Flow Limiting Case              Limiting Case GETAB/NEDC-32601-P-A GETABINEDC-32601-P-A GEXL R-Factor R-Factor              ((      {3}))
The GNF2 product line is not considered a new fuel design relative to the GE14 product line, as both consist of 10 x 10 lattice designs. 2.6. Minimum Core Flow Condition The available flow range at rated power, 99% to 100% rated core flow, does not warrant analysis at the minimum core flow point. 2.7. Limiting Control Rod Patterns The limiting control rod patterns used to calculate the SLMCPR reasonably assures that at least 99.9% of the fuel rods in the core would not be expected to experience boiling transition during operation or anticipated operational occurrences during the operation of Vermont Yankee Cycle 28. 2.8. Core Monitoring System For Vermont Yankee Cycle 28, the 3D Monicore system will be used as the core monitoring system. 2.9. Power/Flow Map . The utility has provided the current and previous cycle power/flow map in a separate attachment.
{3}))                N/A                                  N/A                      N/A                                      N/A Random Effective Effective      2,85 SLO/1.2 TLO                    N/A N/A                                  N/A N/A                      N/A N/A                                      N/A N/A 2.85 SLO/1.2 TLO TIP Reading Reading          _  _ _  _  _    _  _ _  _  _  _  _  _    _  _  _  _  _________
2.10. Core Loading Diagram Figures 1 and 2 provide the core loading diagram for the current and previous cycle respectively, which are the Reference Loading Pattern as defined by NEDE-24011-P-A Table 1 provides a description of the core. 2.11. Figure References Figure 3 is Figure 4.1 from NEDC-3260l-P-A Figure 4 is Figure ID.S-l from A. Figure 5 is Figure ID.S-2 from NEDC-32601P-A.
Systematic Effective Systematic  Effective              8.6                      N/A                                  N/A                      N/A                                      N/A 8.6                      N/A                                  N/A                      N/A                                      N/A TIP Reading                                                                                                                              "-.,,. -" ... "._... "."."-----,,---,,           "  .----..
2.12. Additional SLMCPRLicensing Conditions For Vermont Yankee Cycle 28, the additional SLMCPR licensing condition (Reference
NEDC-32694~P-A, NEDC-32694-P-A, 3DMONICORE3DMONICORE GEXL R-Factor                 ((      {3}))
: 10) that the SLMCPR shaU be established iby adding 0.02 to the cycle-specific TLO SLMCPR value Discussion , \ Page 7 of 23 GNF NON-PROPRIETARY IN FORMATION Class T G-NF Attachment calculated using the NRC-approved methodolofies docume nted in NEDE-240 11-P-A has been applied, (see Table 3). This adder does not apply to the, cyle- specific SLO SLMCPR, because such, peration would by Technical Specification be limited to less than the 1593 MNWt power, threshold specified in Reference 10.2.13. Summary The requested changes to the Technical Specification SL-MCPR values are 1.09 for TLO and 1.10 for SLO for Vermont Yankee Cycle 28.Discussion Page 8 of 23 GNFNOWr:'PROPmE1fARll'mIFORMAlITON .
(3)))
GNlF Atrnadlmem1t calealatedi uSIng the. NRC-applTOved doeamented in NEDE-24011-P-A has beetil! applied (see TaMe J). This adder does: not: appUy tEl> the: c:yde,..speciifi.c SLO SLMCPR,. because; s1![ch operation.
{3}))                              {}][
would by Technical
{3}))                    {3}J]
\be Diimilted t<!l' less than. the t 593 MWt llowelr tmreslit<!lld specifi.ed in Reference
3)]j GEXL R-F actor                ((                          ((                                  ((                      ((      1[{}][
]Oi. 2.,13 .. Summary The requested changes to the Technical Specification SLMCPR values are 1.09 for TLO and 1.10 for SLO for Vermont Yankee Cyde 28. Discussion Page 8 of23 GNF NON-PROPRIETARY INFORMATION' Class, [GNF Attachment-
(([                  1,]
{3}JJ
                                                                                                                                        ~-.    .     -
Random    Effective Random Effective        2.85 SLO/1.2 TLO                    N/A                    2.85 SLO/1.2 TLO                        N/A            2,85 SLO/l 2 TLO 2.85 SLO/1.2 TLO                    N/A                    2.85 SLO/l.2 TLO                        N/A            2.85 SLO/L2 1'1,0 TIP Reading TIP Integral                ((        {3}))
131]              ((      {3 1))                    ((
((        {3 1))jI]
133)) j3}))      ((      {31))                    ((                      {~}))
i-]
                                                                                                                                        .-->-.--.~--.- ..-
Four Bundle Power Distribution                            (3}])                                                        {3 I ))                  {3}J]
E(([
((                          ((                                                                                            ((                      m]J
[r((
{3}))
Surrounding Surrounding TIP              ((          3                ((     {3)))                              13}))                    131))                    ((                      13)))
Location Location Contribution to Bundle Power                            {Jl))                    {3 1))                              {31 n                    {3}))
Uncertainty Due to Uncertainty
((                          ((                                ((                        ((                                ((                      {31))
LPRMUpdate LPkM    Update ........
Table 5. Power Distribution Uncertainties Table 5.                                                                                                                                                                 Page 21 of page                of2J    23


==3.0 References==
GNF NON-PROPRIETARY GNF     NON-PROPRIETARY INFORMATION INFORMATION Class I
1 Letter, Glen A. Watford (GNF-A) to &#xfd;U.S_ Nuclear Regulatory Commission Document Control Desk with attention to R. Pulsifer (.NRC), "Confirmation of 10x 10 Fuel Design Applicability to Improved SLMCPR, Power Distribution and R-Factor Methodologies", FLN-2001-016, September 24, 2001-2. Letter, Glen A. Watford (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with attention to J. Donoghue (NRC), "Confirmation of the Applicability of the GEXL 14 Correlation and Associated R-Factor Methodology for Calculating SLMCPR Values in Cores Containing GE14 Fuel", FLN-2001-017, October 1, 2001.3. Letter, Glen A. Watford (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with attention to Joseph E. Donoghue (NRC), "Final Presentation Material for GEXL Presentation
* GNF Attachment Attachment Table 5. Power Table 5.               Distribution Uncertainties Power Distribution             Uncertainties
-February 11, 2002", FLN-2002-004, February 12, 2002.4. Letter, John F. Schardt (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with attention to Mel B. Fields (NRC), "Shadow Corrosion Effects on SLMCPR Channel Bow Uncertainty", FLN-2004-030, November 10, 2004.5. Letter, Jason S. Post (GENE) to U.S. Nuclear Regulatory Commission Document Control Desk with attention to Chief, Information Management Branch, et al. (NRC), "Part 21 Final Report: Non-Conservative SLMCPR", MFN 04-108, September 29, 2004.6. Letter, Glen A. Watford (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with attention to Alan Wang (NRC), "NRC Technology Update -Proprietary Slides- July 31 -August 1, 2002", FLN-2002-015, October.31, 2002.7. Letter, Jens G. Munthe Andersen (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with attention to Alan Wang (NRC), "GEXL Correlation for IOXI0 Fuel", FLN-2003-005, May 31, 2003.8. Letter, Andrew A. Lingenfelter (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with cc to MC Honcharik (NRC), "Removal of Penalty Being Applied to GE14 Critical Power Correlation for Outlet Peaked Axial Power Shapes", FLN-2007-03 1, September 18,2007.9. Letter, Andrew A. Lingenfelter (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with cc to MC Honcharik (NRC), "GNF2 Advantage Generic Compliance with NEDE-2401 1-P-A (GESTAR I1), NEDC-33270P, Revision 2, June 2009 and GEXL Correlation for GNF2 Fuel, NEDC-33292P, Revision 3, June 2009", MFN 09-436, June 30, 2009.10. Letter, Richard B. Ennis (NRC) to Michael Kansler (Entergy Nuclear Operations, Inc.),"Vermont Yankee Nuclear Power Station -Issuance of Amendment Re: Extended Power Uprate (TAC No. MC0761)"m March 2, 2006.References RPage 9 of 23 3'.,0 References INiFORMAlITONi CFas$ [ G'NlF Attaellrn:ent 1.. Letter, Glen A. Watford (GNP-A) to U. S. Nudeali Regulatory Commission Document Control Desk with attention to R. Pu]siJfetr (NlRC)" '"Continnati on of lOx lO Fuel Design Applicability to Improved SLMCPR" Power Distribution and. R-Factor Methodologies''', FLN-2001-016, September 24, 200L , 2. Letter, Glen A. Watford (GNP-A) to US. Nuclear Regulatory Commission Document Control Desk with attention toJ. Donoghue (NRC), "Confirmation of the Applicability of the GEXL 14 Correlation and Associated R-F actor Methodology for Calculating SLMCPR Values in Cores Containing GE14 Fuel", FLN-2001-017, October 1,2001. 3. Letter, Glen A. Watford (GNP-A) to US. Nuclear Regulatory Commission Document Control Desk with attention to Joseph E. Donoghue (NRC), "Final Presentation Material for GEXL Presentation
                                                                                                                                        <T'~ ___ ** _ . _ . _ . ___
-February 11,2002", FLN-2002-004, February 12,2002. 4. Letter, John F. Schardt (GNF-A) to U.S. Nuclear Regulatory Commission Document C()ntrol Desk with attention to Mel B. Fields (NRC), "Shadow Corrosion Effects on SLMCPR Channel Bow Uncertainty", FLN-2004-030, November 10; 2004. 5. Letter, Jason S. Post (GENE) to US. Nuclear Regulatory Commission Document Control Desk with attention to Chief, Information Management Branch, et al. (NRC), "Part 21 Final Report: Non-Conservative SLMCPR", MFN 04-108, September 29,2004. 6. Letter, Glen A. Watford (GNF-A) to US. Nuclear Regulatory Commission Document Control Desk with attention to Alan Wang (NRC), "NRC Technology Proprietary Slides-July 31 -August 1,2002", FLN-2002-015, October.31, 2002. 7. Letter, Jens G. Munthe Andersen (GNF-A) to US. Nuclear Regulatory Commission Document Control Desk with attention to Alan Wang (NRC), "GEXL Correlation for lOX 1 0 Fuel", FLN-2003-005, May 31, 2003. 8. Letter, Andrew A. Lingenfelter (GNF-A) to US. Nuclear Regulatory Commission Document Control Desk with cc to MC Honcharik (NRC), "Removal of Penalty Being Applied to GEl4 Critical Power Correlation for Outlet Peaked Axial Power Shapes", FLN-2007-031, September 18,2007. 9. Letter, Andrew A. Lingenfelter (GNF-A) to U.S. Nuclear Regulatory Commission Document Control Desk with cc to MC Honcharik (NRC), "GNF2 Advantage Generic Compliance with NEDE-24011-P-A (GESTAR n), NEDC-33270P, Revision 2, June 2009 and GEXL Correlation for GNF2 Fuel, NEDC-33292P, Revision June 2009", MFN 09-436, June 30, 2009. 10. Letter, Richard n. Ennis (NRC) to Michael Kansler (Entergy Nuclear "Vennont Yankee Nuclear Power Station -Issuance of Amendment Re: Extended Power Uprate (TAC No .. MC0761)"m March 2, 2006. References GNF NON-PROPRIETARY INFORMATION Class tAttachment
~12 jo 38 E!36 D F1E 32 M 30 M E 2o-@rlq1 28--] RF 0 R 26-- M*L] @1'I]22 -MiH W%20 -R R E ]R 16--RG 12 G 10 EE ti 8 II R nF nL I r D *1 [fF] nF [Gfl n,'M [11)Ffl r Lin, W1 fl wffl E a 6 a 1 0'IR n1flul on ffl Fri] Mil F F8 EC] 8 A I H J-El E K] D KI E, +]Imfl[:D P FE] nK j A H 0 G ni L'J+I M EA n@Dj J nH EM ] nK nJ rffl E- PIE-1 M M ED Ifl F, &#xfd;j 4rL- H H&#xfd;M Me&#xfd;j F rB] r8l, I rM] in Bi =8-1 EF I I H" I nM nM MB MI Y =Ji&#xfd;[flF [flD L EIEHt WElln El%nMI L F, nF N-N El El n M.Kq M h jEl M J K ro L J EL Ej nJ nK rEl nK 0 nH M on =11 i B F=MIL On EF:- j IEI nFF&#xfd;Sj [EF] [ 0 0 R 1fl FEI K p G F 0 na no nG--1 r 71 ns 8 P M nB C I'MA il MA :81 Em-ED M 1 8 nmiN &#xfd;D Ej T nG 0 nH A K An F-0 Mi =t, 1 KEA 21 EHln M RtHI ED: IE EflK M A Fil 9 RB 06: dol M FG=1'El I Mi RJ [ 11 ] ML RF Yin rEl Mji 8 EG I M=-1 F--P c m EEI[flF 8 1i FG1 IF&#xfd;r-r]nM [1] FEJ 6-2 I I1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 11 13 FUEL TYPE A = 6NF2-PI00628iO3-IG6.0-10OT2-150-T6-3259 H = 6EIi-PIODNABi21-160Z-IOOT-150-T6-308i 8 = 6NF2-PIOD628Oi-IAGZ-1OOT2-150-T6-3260 I z 6NF2-PI0OG28iO3-1166.O-1OOT2-15O-T6-3261C = GNF2-PIODG28387-!SGZ-10OT2-1SO-T6-2977-LUA J = GNF2-PIOD$2840-1SGZ-IOOT2-1SO-T$-3262 D = 6EIi-PIOONABa22-IiGZ-1001-1SO-T6-2965 K = 6EIi-PIOONA8388-1566.,-IOOT-150-l6-3086 E
0OT-150-16-2865 L = 6EII-PIODNABi20-156Z-IOOT-1S0-T6-3085 F 6E14-PIOODNA38e-ISGZ-IOOT-1S0-"T-2988 M = GE1I-PIOHNA9388-iCGZ-lOOT-ISO-T6-3087 G GEIi-PIONA8388-156Z-IOOT-150-Ts-2959 Figure 1. Current Cycle Core Loading Diagram References Page 10 of 23 GNP CFassE GNP' AtJtaenm:ent 000000
[IJ 1 3 5 1 9 11 13 15 17 19 21 23 2S 27 29 31 33 3S 31 39 'II '\3 FUEl TYPE A = 6NF2-PI00628'103-1'l66.0-100T2-1S0-T6-32S9 B = GNF2-PIOOG2B'lO'l-I'lGZ-IOOT2-1S0-fS-3260 C = GNF2-PIODG28387-1SGZ-I00T2-1S0-T6-2977-LUA D = 6El'l-PlOONAB'l22-i'lGZ-i001-!50-T6-296S E = GEI4-PIOONA8383-116S.0-!OOT-lSO-T6-2865 F = G&#xa3;14-PIODNAB388-15GI-I00T-ISO-T6-29S8 G = 6El'l-PIOONAB389-156l-!OOT-150-T6-2969 H : 6EI'l-PIODNAB'l21-16GZ-IOOT-ISO-T6-308'l I = 6NF2-PIOOG2B'103-1166.0-IOOT2-1S0-T6-3261 J = GNF2-PtOD62B404-i9GI-IOOT2-150-TS-3262 K : 6El'l-PlOONAB388-1566.0-100T-lSO-TS-308S l =
H =
Figure i.Current Cycle Core Loading Diagram References Pa,ge 10 of23 GNF NON-PROPRIETARYW IFORMAION!
Class, tAttachment, 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 19 ll I Ej,-Un E LREI B E 12HJIIIEI (DBI (E]L E 011 IEI[EDI [HH]19 El[EL] [EK] ES I'E E Mj- PID J H FGJ o El [E] AL-j B E (DI nN Eill IEI Ip ILE21 P[D[Ell D 00SF2GI Lhj p r7, H N EA ] EO [DA+El 01Lj F2 ] &#xfd;EEl El ID LTH PGJ [DO [AE][ME] [ME] L;j F21 (E] [9 LEM G 0 A 0 A LI eJG [ 09 ILUDIE1019 110 A 0][BE] [EE] [AE] F20 ] "G LULWEEIL, 2JIL--J E&#xfd;jl E I [H] [H] [7]ID FLI[EK]I[GE]
M G [EN]II----JIID[JDTEEH ] El FEI E] IE][E] [2DE]I[GE]
[FEE]II[EE]
FLIE] IflI[B][LD!` [BE]'I El END,, EfEl Ej Tj ln&#xfd;ED[AD'[FEC2
[EH] (EA] &#xfd; H [HBj B K L BF0, E-ITI-9 t N M -F[D Leim IND U0 F1 L F I : , L EA FG JEH ] [,Dt PA EDEGDEGIEDII I EDE(] Sm j "j &#xfd;L io Fq, Ot EITD EMS TAO, FA[AE]F20] [AE] F202J]I[oH
[EN]II[E]
E [H]El LI Q 101LB L&#xfd; rE ElpoEl F211D !10 101E] [9[AD FWI [HE] H G A EO] F20 EM&#xfd;jIUjLhjF1EIF21E1 El IEI [EIIE[9 Li Lj WiM [q 7[D M A G e[o I A E [E]eal [HE] 7FL L&#xfd;+J&#xfd;Lj [ H ]I [HE] [0E]j[AE]
[OE] [GD [MH]j[H] [ED r-B-1 El[5 M C C F+/-m]l [E] (7D 7[D F2-] r[g 0=[E-][EZG;] [AE] [ME] m A G [EE] 0 (GqLie B El M EI] A E 21 EIIE Li M i NED ID ME ea 1 0 0 [Ep HH G A I An H [D F20] [EE] [!OEI [OE] [ED [OD [GE] [OD [ADEI] EE ] [BE] [CE]LeIn ME IWO po F20 ] PIGF071 [OD [GE] F20] [AD [E] [DI[o [G Lek] I M-T -0 N I M M [ID N [EE][HUI ED MIE9 1119 UID EILL)[E] [all- 19 El H A H H K SH II(E] [E]II[KE]
[flEILEH[DIEL] [[E]IRB]1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Fuel Type A=GE14-FPIODNAB422-16G7-IOOT-150-T6-2862 (Cycle 2.) l=G' 14-P IODNAB42 1-l6GZ-!00T-1 50-T6-3084 (Cycle 27)B=GE 14-PI ODNAB3S3-14G6.0-IOOT-150-T6-2864 (Cycle 25) J=GE14-PIODNAB3g3-14G6.0-IOOT-lSO-T6-2864 (Cycle 25)C=OGI'4-PIOZ)NAB383-13G6.0-tOOT-150-T6-2863 (Cycle 25) K=GEI14-PIODNA13383-13G6.0-100T-150-T6-2863 (Cycle 25)Dt=NI.F2-PiODG2B387-15G%-OOT2-t 50-T6-2977-LUA (Cycle I..==E t4-Plt0DNA13383-17G6.0-100T1-t50-T6-2865 (Cycle 25)26) M=GE 14-P I ODNAB388-
! 5G6.0-lO00T-150-1'6-3086 (cycle 27)E=GEI4-PiOt)NAB422-14GZ-100T-Il50-T6-2965 (Cycle 26) N=GE14-PIODNAB420-16GZ,100.lT-150-46-3085 (Cycle 27)F=GE 14-PIOI)NA13383-1706.O-i0OT-t 50-T6-2865 (Cycle 25) O=GE 14-1 ! 0D)NAB388-i6GZ- 100T-I 50-T6-3087 (Cycle 27)G=GE 14-P IODNAB388-MSGZ-I OOT-150-T6-2968 (Cycle 26)li=GE 4-Pl O0DNAB388-15GZI D100T-I 50-T6-2969 (Cycle 26)Figure 2. Previous Cycle Core Loading Diagram Figure 2. Previous Cycle Core Loading Diagram Page I I of 23 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 GNF llNiFORMAlfION CEass I GNlF A1!fadlm:ent 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Fuel Type AcGEI4*P IODNAB422*
I 6G7 ... I 001'-1 SG-T6*2862 (Cycle 25,) (Cycle 27) B=GEI4-PIODNAB383-14G6.G-IOO1'-ISO-1'6-2864 (Cyclc2S)
J=GE 14*P I ODNAB383-14G6.0-100T -ISO-1'6-2&64 C=GBI4-PIOI)NAB383-13G6.o-IOO1'-150-T6-2863 (Cycle 25) (Cycle 25) ():.GNF2-PIODG2B387-15GZ-100T2-1 SO-T6-2977-I.UA (Cyclc L-GE 14-1'1 OONAB383-17Q6.O-JOOT-1 50-1'6-2865 (Cyclc 25) 26) M=GE 14-1' I ODNAB388-15G6.0-1 00,.-150*,.6*3086 (Cyclc27)
E=GEI4-P1ODNAB422-14G7
.... 100T-150-1'6-2965 (Cycle 26) N=GE14*PI0I)NAB420*16GZ-IOOT-ISO-T6-3085 (Cyclc 27) FcGE 14*PIOI)NA13383-17G6,o-IOOT-ISO-T6-2865 (Cycle 25) O=GEI4-PIODNAB388-16GZ-1OOT*.50-T6-3087 (Cycle 27) G=GEI4-PIODNAB388-15GZ-1OO1'-ISO-1'6-2968 (Cycle 26) li==GE 14*1'1 O])NAB388-1 507 ... 1 001--150-1'6*2969 (Cycle 26) Figure2. Previous Cycle Core Loading Diagram Figure 2.1Previolls
'Cyde Oore Loading Diagram 111 of 23 GNF NON-PROPRIETARY INFORMATION, Class, I GNF, Attachment lIE 13 1 1]Figure 3. Figure 4.1 from NEDC-32601-P-A Figure 3. Figure 4-1 from NEDC-32601-P-A.Page 12 of 23.,
JlNiFCDR:lVfiA1ITCDN E GNF A1it!aenmeRt:
Figure 3. Figure 4.1 from NEDC-32601-P-A Figure 3. Figure 4_1 from NEDC-32601-P-A Page 12 of 23 GNF NON-PROPRIETARY Class [GNF Attachment
[Ii 13)]]Figure 4. Figure 111.5-1 from NEDC-32601P-A Figure 4. Figure 1115-1 from NEDC-32601P-A P4ge 13 of 23 GNFNON:"PROPRffilfPffi:Y llNlFORMAlITON!
Ctass'[ GNlF AttacImtent Figure 4. Figure IlI.S-l from NEDC-32601P-A Figure 4. Figure RL5-1 from NBDC-32601P-A Page 13 of23 GNF NON'-PROPRIETARY NFORNATIONI Class L GNF' Attachment t3)]]Figure 5. Figure 111.5-2 from NEDC-32601P-A Figure 5. Figure M1.5-2 from NEDC-32601P-A Page 14 of 23 nn nNJFORMAlITONf CFass I GNP' At!t!ad!tmetLt.
Figure 5. Figure 111.5-2 from NEDC-32601P-A Figure 5. Figure m.S-2 mom NBDC-32601P-A Page 14 of23 GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 1. Description of Core Previous Cycle Previous Cycle Rated Current Cycle Current Cycle Rated Description Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Case Case Limiting Case Case Number of Bundles in the 368 368 Core 368 368 Limiting Cycle Exposure Point (ie, N/A EOC N/A EOC B O C /M O C /E O C ) ....... ..........................
Cycle Exposure at Limiting Point N/A 10600 N/A '10600 (MWd/STU)% Rated Core Flow N/A 100 N/A 100 Reload Fuel Type GE14 GNF2 Latest Reload Batch 32.6 31.5 Fraction, %Latest Reload Average Batch Weight % 4.01 4.04 Enrichment Core Fuel Fraction: GEl4 0.989 0.674 GNF2 0.011 0.326 Core Average Weight
% 3.99 4.01 Enrichment Table 1. Description of Core Page 15 of 23. GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 1. Description of Core Previous Cycle Previous Cycle Rated Current Cycle Current Cycle Rated Description Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Case Case Limiting Case Case Number of Bundles in the 368 368 Core Limiting Cycle Exposure Point (Le. N/A EOC N/A , EOC BOC/MOCIEOC)
." Cycle Exposure at Limiting Point N/A 10600 N/A l0600 (MWdlSTU) d_", .* ,,_,,_ " -,,-. -... .. % Rated Core Flow N/A 100 N/A' 100 .. " .. --. -.. --,-._,.--Reload Fuel Type GE14 GNF2 ---,,-----_ .. _---------------. .. Latest Reload Batch 32.6 31,5 Fraction, % . -. .. Latest Reload Average Batch Weight % 4.01 4.04 Enrichment
,,---Core Fuel Fraction:
GE14 0.989 0.674 GNF2 0.011 0.326 Core Average Weight % 3.99 4.01 Enrichment Table 1. Description of Core GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 2. SLMCPR Calculation Methodologies Previous Cycle Previous Cycle Rated Current Cycle Current Cycle Rated Description Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Case Case Limiting Case Case Non-power Distribution NEDC-32601-P-A NEDC-32601-P-A Uncertainty__
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _U e. ai y ........ .....Power Distribution NEDC-32601-P-A NEDC-32601-P-A Methodology NEDC...2601.-P.A Power Distribution NEDC-32694-P-A NEDC-32694-P-A Uncertainty
......__ED _-32694-P-ANEDC-32694-__A Core Monitoring System 3D Monicore 3D Monicore Table 2. SLMCPR Calculation Methodologies page 16 of 23 Description Non-power Distribution UncertaiI!ty Power Distribution Methodology Power Distribution Uncertainty Core Monitoring System GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 2. SLMCPR Calculation Methodologies
.. -Previous Cycle Previous Cycle Rated Current Cycle Cycle Rated Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Case Case Limiting Case Case NEDC-32601-P-A NEDC-32601-P-A NEDC-32601-P-A NEDC-32601-P-A
.. -_ .... -.... -----NEDC-32694-P-A NEDC-32694-P-A " "-'",,-,.
,-_.""",,-
-----. __ . 3D Monicore 3D Monicore ---.---Table 2. SLMCPR Calculation Methodologies Page 10 GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 3. Monte Carlo Calculated SLMCPR vs. Estimate Previous Cycle Previous Cycle Rated Current Cycle Current Cycle Rated Description Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Case Case Limiting Case Case[I __________________
__________________[___________________
__________________
I + I t___________________
I .1. __________________
1 __________________
1 Table 3. Monte Carlo Calculated SLMCPR vs. Estimate Va&#xfd;e 17 of 23 Description
"" -[[ GNF NON-PROPRIETARY INFORMA nON Class I GNF Attachment Table 3. Monte Carlo Calculated SLMCPR vs. Estimate Previous Cycle Previous Cycle Rated Current Cycle Minimum Core Flow Core Flow Limiting Minimum Core Flow Limiting Case Case Limiting Case \ Table 3. Monte Carlo Calculated SLMCPR VS. Estimate Current Cycle Rated Core Flow Limiting Case GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 3. Monte Carlo Calculated SLMCPR vs. Estimate Previous Cycle Previous Cycle Rated Current Cycle Current Cycle Rated Description Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Case Case Limiting Case Case I 4. J"Il Table 3. Monte Carlo Calculated SLMCPR vs. Estimate P.Valge, 1$ of,23 Description GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 3. Monte Carlo Calculated SLMCPR vs. Estimate Previous Cycle Previous Cycle Rated Current Cycle Minimum Core Flow Core Flow Limiting Minimum Core Flow Limiting Case Case Limiting Case Table 3. Monte Carlo Calculated SLMCPR VS. Estimate .. " " .. ... -_. _._ .... " .. .. Current Cycle Rated Core Flow Limiting Case ...... ,."._----._-_
.... -...............
_._. --(J}ll GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 4. Non-Power Distribution Uncertainties Nominal (NRC- Previous Cycle Previous Cycle Current Cycle 1 Current Cycle Approved)
Value Minimum Core Rated Core Flow Minimum Core Rated Core Flow++/- (%) Flow Limiting Case Limiting Case Flow Limiting Case Limiting Case GETAB Feedwater Flow F eedw t 1.76 N/A N/A N/A N/A Measurement__________
__________
__________ _____ _____
Feedwater Temperature 0.76 N/A N/A N/A N/A Measurement Reactor Pressure Mea sure 0.50 N/A N/A N/A N/A Measurement Core Inlet Temperature 0.20 N/A N/A N/A N/A Measurement Total Core Flow 6.0 SLO / 2.5 TLO N/A N/A N/A N/A Measurement Channel Flow Area 3.0 N/A N/A N/A N/A Variation Friction Factor 10.0 N/A N/A N/A N/A Multiplier Channel Friction 5.0 N/A N/A N/A N/A Factor Multiplier 5.0.N/.N/A./A.N/
Table 4. Non-Power Distribution Uncertainties Page, 19 of 23 GNF NON-PROPRIETARY INFORMA nON Class I GNF Attachment Table 4. Non-Power Distribution Uncertainties Nominal (NRC-Previous Cycle Previous Cycle Current Cycle Approved)
Value Minimum Core Rated Core Flow Minimum Core +/- cr (0/0) Flow Limiting Case Limiting Case Flow Limiting Case GETAB Feedwater Flow 1.76 N/A N/A N/A Measurement Peedwater Temperature 0.76 N/A N/A N/A Measurement Reactor Pressure 0.50 N/A N/A N/A Measurement Core Inlet Temperature 0.20 N/A N/A N/A Measurement Total Core Flow 6.0 SLO I 2.5 TLO N/A N/A N/A Measurement Channel Flow Area 3.0 N/A N/A N/A Variation
-Friction Factor 10.0 N/A N/A N/A Multiplier Channel Friction 5.0 N/A N/A N/A Factor Multiplier Table 4. Non-Power Distribution Uncertainties Current Cycle Rated Core Flow Limiting Case N/A N/A N/A , N/A -,., -""""--w __ '" __ " ___ -N/A N/A ... -N/A -N/A Page 19 of23 GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 4. Non-Power Distribution Uncertainties Nominal (NRC- Previous Cycle Previous Cycle Current Cycle Current Cycle Approved)
Value Minimum Core Rated Core Flow Minimum Core Rated Core Flow a a (%) Flow Limiting Case Limiting Case Flow Limiting Case Limiting Case NEDC-32601-P-A Feedwater Flow {3 3 j [[ [[ )Measurement Feedwater Temperature
[[ {3}]] [[ {3)]] [[ {3,]] [[ 13)]] [[ 131]]Measurement Reactor Pressure ]3}]] [[1]Measurement
[[_[_____[[_3}]__}
_ [__ _ _Core Inlet Temperature 0.2 N/A 0.2 N/A 0 2 M e a s u r e m e n t _ _ _ _ ........ ... .. .. .
..... .........Total Core Flow 6.0 SLO / 2.5 TLO N/A 6.0 SLO / 2:5 TLO N/A 6.0 SLO /2:5 TLO Measurement Channel Flow Area 3E]] 1311] 131]] 0[ ]Variation
[[_[[__3_]]_[[
_3_ ]] [[_ _ _ }]] _[__ __ _ _]]Friction Factor 3,]] 13[] [[ 01]]M ultiplier ---------- ----
Channel Friction 5.0 N/A 5.0 N/A Factor Multiplier Table 4. Non-Power Distribution Uncertainties Page, 20 of 23 GNF NON-PROPRIETARY INFORMA nON Class I GNF Attachment Table 4. Non-Power Distribution Uncertainties Nominal (NRC-Previous Cycle Previous Cycle Current Cycle Approved)
Value Minim urn Core Rated Core Flow . Minimum Core +/- CJ (%) Flow Limiting Case Limiting Case Flow Limiting Case NEDC-32601-P-A Feedwater Flow [[ {3}]] [[ {3 I]] [[ {3}]] [[ {3 1]] Measurement Feedwater Temperature
[[ {3}]] [[ {31]] [[ {3}]] [[ {J}]] Measurement Reactor Pressure [[ {3}]] [[ {31]] [[ {3}]] [[ PI]] Measurement Core Inlet Temperature 0.2 N/A 0.2 N/A Measurement Total Core Flow 6.0 SLO/2.5 TLO N/A 6.0 SLO 12:5 TLO N/A Measurement Channel Flow Area [[ {3}]] [[ {31]] [[ {3}]] [[ {3}n Variation Friction Factor [[ {3}]] [[ {3}]] [[ {3}]] [[ {3 1]] Multiplier Channel Friction 5.0 N/A 5.0 N/A Factor Multiplier Table 4. Non-Power Distribution Uncertainties
.. --.... -.. _ .. Currel.lt Cyde Ra,ted Core Flow Limiting Ca,se ([ P}J] [[ {3}]] [[ {3}]1 -"''''_''''-.". "
-0.2 > -_._.,. -
,-, 6.Q 5LO 12,5 TLO --[[ {3}]] --([ {3}JJ 5,0 ... *** _'' __ m **** _
GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 5. Power Distribution UncertaintiesNominal (NRC-Previous Cycle Previous Cycle Current Cycle Current Cycle,Description Approved)
Value Minimum Core Rated Core Flow Minimum Core Rated Core Flow+ a (%) Flow Limiting Case Limiting Case Flow Limiting Case Limiting Case GETAB/NEDC-32601-P-A GEXL R-Factor [[ {3}]] N/A N/A N/A N/A Random Effective 2,85 SLO/1.2 TLO N/A N/A N/A N/A TIP Reading _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _________
Systematic Effective 8.6 N/A N/A N/A N/ATIP Reading NEDC-32694-P-A, 3DMONICORE GEXL R-Factor [[ (3)]] 1[{}][ {}][ 3)]j [ 1,]Random Effective 2.85 SLO/1.2 TLO N/A 2.85 SLO/1.2 TLO N/A 2,85 SLO/l 2 TLOTIP Reading TIP Integral [[ 131] [[ 133]] [[ j3}]] [[ jI] [[ i-]Four Bundle Power Distribution Surrounding TIP [[ 3 [[ {3)]] [r 13}]] E[ 131]] [[ 13)]]Location Contribution to Bundle Power Uncertainty Due to LPkM Update ........Table 5. Power Distribution Uncertainties page 21 of 23 GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 5. Power Distribution Uncertainties Nominal (NRC-Previous Cycle Previous Cycle Current Cycle Description Approved)
Value Minim urn Core Rated Core Flow Minimum Core tG(%) Flow Limiting Case Limiting Case Flow Limiting Case GETABINEDC-32601-P-A GEXL R-Factor [[ {3}]] N/A N/A N/A Random Effective 2.85 SLO/1.2 TLO N/A N/A N/A TIP Reading Systematic Effective 8.6 N/A N/A N/A TIP Reading 3DMONICORE GEXL R-F actor [[ {3}]] [[ {3}]] [[ {3}]] [[ {3}J] Random Effective 2.85 SLO/1.2 TLO N/A 2.85 SLO/l.2 TLO N/A TIP Reading TIP Integral [[ {3}]] [[ {3 1]] [[ {3 1]] [[ {31]] Four Bundle Power Distribution
[[ (3}]) [[ {3}]] [[ {3 I]] [[ {3}J] Surrounding TIP Location Contribution to Bundle Power [[ {Jl]] [[ {3 1]] [[ {31 n [[ {3}]] Uncertainty Due to LPRMUpdate Table 5. Power Distribution Uncertainties
.. Current Rated Core mow Limiting Case N/A N/A N/A "-.,,. -" ... "._ ... "."."-----,,---,, " .----.. [[ {3}JJ . -2.85 SLO/L2 1'1,0 , ----.. -. -, [[
.. -[[ m]J [[ {31]] "._-,,---Page 21 of2J GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 5. Power Distribution Uncertainties Nominal (NRC- Previous Cycle Previous Cycle Current Cycle Current Cycle Description Approved)
Value Minimum Core Rated Core Flow Minimum Core Rated Core Flow a a (%) Flow Limiting Case Limiting Case Flow Limiting Case Limiting Case Contribution toBundle Power Due to [[ 1 [[ {3}] [[ 0]1 Er ,]]] [[ Failed TIP Contribution to Bundle Power Due to [" TiI Er 3 [[ 01]] Er 03 Er 1]Failed LPRM Total Uncertainty in Calculated Bundle [[ {3} Er ]3}] Er {]i [[ {31]] [[ 131]]Power Uncertainty of TIP Signal Nodal [[ 03}1] Er {31]i [[ {3}] E[ (31] E[ 1]]Uncertainty Table 5. Power Distribution UncertaintiesPage, 22 of 23 GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 5. Power Distribution Uncertainties Nominal (NRC-Previous Cycle Previous Cycle Current Cycle Description Approved)
Value Minimum Core Rated Core Flow Minimum Core +/- (J (%) Flow Limiting Case Limiting Case Flow Limiting Case Contribution to Bundle Power Due to [[ {3 1]] [[ {31]] [[ {3 1]] [[ {31]] failed TIP -Contribution to Bundle Power Due to [[ {3}]] [[ PI]] [[ {3}]] [[ {3}]) Failed LPRM Total Uncertainty in -Calculated Bundle [[ {3 1]] [[ {3 1]] [[ {3 1]] [[ {3}]] Power Uncertainty of TIP Signal Nodal [[ {3}]] [[ {3 I]] [[ {3}]] [[ m]J Uncertainty d.N. _. -Ta15le 5. Power Distribution Uncertainties  
*'
* ___ ** _._._. ___
* _._
* _._
_.-----" Current Cyde Core FIQw Limiting " ._ .. " ... _ ... " '" m """"n "m_ , [[ (3})] [[ {3 1]] [[ {3 t]] -
                                                                                                                                                                                  .~--. _.-----"
-[[ 1 3 lJ]
Nominal (NRC-Nominal          (NRC-        Previous Cycle Previous    Cycle            Previous Cycle Previous                  Current Cycle Current                              Current Current Cycle                        Cyde Description Description        Approved)
GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 6. Critical Power Uncertainties Previous Cycle Previous Cycle Current Cycle Current Cycle Nominal Value Description a Value Minimum Core Rated Core Flow Minimum Core Rated Core Flow Flow Limiting Case Limiting Case Flow Limiting Case Limiting-Case
Approved) Value      Value    Minimum Core Minimum        Core        Rated Core  Core Flow    Minimum Core Minimum    Core                  R~ted Core Flow Rated                        Core             FIQw
[[J Table 6. Critical Power Uncertainties Page 23 of 23 Nominal Value Description  
                                    +/- a(J (%)
+/- (J (%) [[ Table 6. Critical Power Uncertainties GNP NON-PROPRIETARY INPORMA TION Class I GNP Attachment Table 6. Critical Power Uncertainties Previous Cycle Previous Cycle Minimum Core Rated Core Flow Flow Limiting Case Limiting Case . -.... .. ---
(%)          Flow Limiting Flow  Limiting Case  Case      Limiting Case Limiting      Case    Flow Limiting Case Flow Limiting      Case                Limiting Case Limiting C~se m   """"n "m_ ,
Current Cycle Current Cyde Minimum Core Rated Core FI()w Flow Limiting Case LimitingXase  
Contribution to Contribution
--" '-.--.-..
{3 1))                                                  {3 1))                                                                                (3})],))]
Page 23 of23}}
Bundle Power Bundle  Power Due to      ((((                          ((    {31))
{3}]                ((
((                      Er((  1{31))                                    ((
((                    '*']
0]1 failed Failed TIP Contribution to Contribution to Bundle Power Due to Bundle                        (([" {3}))                  Er((  PI))
3TiI                  ((((  {3}))          Er((  {3}])
01))                                          Er((            {31]
03  1))
Failed LPRM LPRM Uncertainty in Total Uncertainty                                                                                                          -
Calculated Bundle Calculated Bundle          ((            {3 1))
{3} ]3}]        ((Er  {3 1))              Er((      {]i
{3 1))
131))        ((    {31))
{3}))                                        ((                  {3 t))
Power
                                                                                                                                                    -    ,-.--~
Uncertainty of TIP Uncertainty    TIP Signal Nodal                  ((
((        {3}))            ((Er  {3 I ))
{31]i                  ((    {3}))
03}1]
{3}]          ((E[ m]J (31]                                          ((E[             131))lJ]
Uncertainty Uncertainty                                                                                                                d.N. _. -
Ta15le Table 5. Power Distribution Uncertainties                                                                                                                                        Page, 22 of 23
 
GNP NON-PROPRIETARY GNF NON-PROPRIETARY INFORMATION INPORMATION Class Class I GNF GNP Attachment Attachment Table Table 6.
: 6. Critical Critical Power Power Uncertainties Uncertainties
                                                                                                                  . -.... ,,-~
                                                                                                                              ~ ..-- - ,--.~-  ---~----<~--,--
Nominal              Previous Cycle Previous              Previous Cycle Previous            Current Current Cycle Cycle    Current Current Cycle         Cyde Nominal Value Value Description                             Minimum Core          Rated Core Rated Core Flow     Minimum Core Minimum   Core   Rated Core Rated    Core Flow             FI()w Description
                                +/- (Ja (%)
Value    Minimum Flow Limiting Case Flow Limiting Case Limiting Case Limiting Case Flow Limiting Case Flow Limiting Case Limiting-Case LimitingXase             --" '-.--.- .. ---~-.-.-.---~-~-
((
((J Table 6. Critical Power Uncertainties Uncertainties                                                                                Page 23 of                      of23     23}}

Latest revision as of 22:36, 21 March 2020

GNF-0000-0100-8106, Gnf Additional Information Re Requested Changes to the Technical Specification SLMCPR, Vermont Yankee Cycle 28.
ML093130440
Person / Time
Site: Vermont Yankee Entergy icon.png
Issue date: 09/21/2009
From:
Global Nuclear Fuel - Americas
To:
Office of Nuclear Reactor Regulation
References
GNF-0000-0100-8106
Download: ML093130440 (24)


Text

Docket No. 50-271 09-063 BVY 09-063 Attachment Attachment 6 .

Vermont Yankee Nuclear Power Station Technical Specification Proposed Techrlical Specification Change Change No. 287 GNF Summary of Technical Values Technical Basis for SLMCPR Values (Non-Proprietary Version)

GNF NON:-PROPRE1Efll'~Y GNE" [NFORMATION NON-PROPRIET,ARY HORMA]10Nl Class I CFass E GNF GNP' Attachment AMaelilment 9/2.112009:

9/21/2009 GNF-OOOO-O 100-8 r06 GNF-0000-0100-8106 eDRFSection: 0000-0100-8106-RO eDRFSection: 0000-01.00-8106-RO GNF Additional Information Regarding Regarding the Requested Changes to the Technical Specification SLMCPR Technical Specification SLMCPR Vermont Vermont Yankee Cycle 28 Vermont Vermont Yankee Cycle 28 Yankee Cycle Page I1 of23 of 23

GrNFNON::'PRJi)17lmaTARY GNF NON-PROPRIETARY JINFORMATION liNilFORMAlITONi Class K.

Class:

GTNiFt GNF Attachment AHadlment .

P: n'OpDTCT*/t PROPRIETARY

~" ~':, ~, DY* T/ii;,1lE:OD1'LIri/t'T'FO*

!l1l"U.-'~ t /~vlrl, Ji' il\,liN*O*TIC'C*

INFORMATION  ! 'll"l1 NOTICE

1, 'Ji:j, This document is the GNF This: document non-proprietary weliSion GNP non-propri.etaJIy version of the GNF ofthe GNF proprietary report. From the proprietary report.

GNFF proprietary version, the information GNF proprietaJIy information denoted denoted as as: GNIF GNF proprietary (enclosed in double proprietaJIy (endosed double brackets) was deleted to generate this version,..

version.

Important Notice Regarding Regardi.ng Contents of this Report Please Read Carefully Read Carefully The only undertakings undertakings of Global Nuclear Fuel-Americas, Fuel-Americas, .L.LC LLC (GNF-A) with respect to information information in this document are contained contained in contracts between GNF-A and its customers, and and nothing contained contained in this document shall be construed as changing changing those contracts. The use of this information by anyone other than those participating entities and for any purposes purposes other than those for which it is intended is not authorized; and with respect to any unauthorized unauthorized use, GNF-A GNF-A makes no representation representation or warranty, and assumes no liability as to the .the completeness, accuracy, accuracy, or usefulness of the information information contained in this document.

Page 2 of 23

GNF NON'-PROPRIEFTEY IliNiIfOR:MA1i10N GNFNON::"PROPruEll'ruty FORMATION!

C~ass:

Class I E

GN' Att!aellmenF GN!lF Attachment Table of Contents 1.0 METHODOLOGY METHODOLOGY ..........................................................................................................................................

.................................................................................................................................... 44 2.0 DISCUSSION ...................................................................................................................................................

DISCUSSION .............................. . ............... ....................................................................... 4 2.1.

2.1. MAJOR CONTRIBUTORS CONTRIBUTORS TO SLMCPR SLMCPR CHANGE .............  : ................................................................................ 4 2.2. DEVIATIONS IN DEVIATIONS INNRC-APPROVED NRC-ApPROVED UNCERTAINTIES .................................................................................... 55 UNCERTAINTIES .........................................................................................

2.2.1. R-Factor R -Factor. .................................................................................................................................................

................................................................................................................................................ 5 2.2.2.

2.2.2. Core Core How Flow Rate and and Random Effective TIP Reading Reading.............................................................................

.................................. 5 2.3. DEPARTURE FROM DEPARlURE NRC-APPROVED METHODOLOGY FROM NRC-ApPROVED METHODOLOGY ..............................................................................

.................................................................................... 5 2.4. AXIAL POWER SHAPE PENALTY FUEL AxIAL ............................................................................. ........................ 6 PENALTY ............................................................................................................

2.5. METHoDOLOGY ......................................................................................................................

METHODOLOGY RESTRICTIONS ...................................................................................................................... 7 2.6. MINIMUM CORE FLOW CONDITION MINIMUM ................................................................................................................

CoNDITION ................................................................................................................ 7 2.7. LIMITING CONTROL ..............................................................................................................

CONTROL ROD PATTERNS .............................................................................................................. 7 2.8. MONITORING SySTEM CORE MONITORING ....................... !, .................................................................................................

SYSTEM ....................... .................................................................................................. 7 2.9. POWERlFWW POWER/FLOW MAP .........................................................................................................................................

M AP .......................................................................................................................................... 7 2.10. LOADING DIAGRAM CoRE LoADING ......................................................................................................................

DIAGRAM .......................................................................................................................... 77 LL.

2.11.

2. FIGURE ................................... . .............................. ......................

FIGURE REFERENCES .................................................................................................................................. ............ 77 2.12. ADDITIONAL SLMCPR ADDITIONAL ................................................................................ 7 SLMCPR LICENSING CONDITIONS .......................................................................................

2.13.

2.13.

SUMMARY

SU M M ARY ...................................................................................................................................................

.................................................................................................................................................. 8 3.0 ................................................................................................................................................

REFERENCES................................................................................................................................................. 9 List of Figures FIGURE FIGURE I. 1. CURRENT CYCLE CORE CURRENT CORE LOADING DIAGRAM .........................................................................................

.............................................................................................. 10 10 FIGURE FIGURE 2. CYCLE CORE LOADING PREVIOUS CYCLE LoADING DIAGRAM ..............................................................................................11 DIAGRAM .............................................................................................. 11 FIGURE FIGURE 3. FIGURE 4.1 FROM NEDC-3260 I-P-A .....................................................................................................

I-P-A ......................................................................................................... 12 12 FIGURE 4. FIGURE 111.5-1 FROM NEDC-3260IP-A FIGUREIII.5-1 NEDC-32601P-A ......................

...................... l,.........................................................................

............................................................................. 13 13 FIGURE 5.

FIGURE FIGURE Ill.5-2 ................................................................................................

NEDC-32601P-A .....................................................................................................

111.5-2 FROM NEDC-3260IP-A 14 14 List of Tables TABLE 1. DECIPIN FCOE.

TABLE 1. DESCR1PTION OF CORE.............................................................................................................................. ?,a...15 TAL .DESCRIPTION OF CORE ................................................................................................................................

.. 15 TABLE 2. SLMCPR TABLE SLMCPR CALCULATION METHODOLOGTES METHODOLOGIES .............................................................................................

................................................................................................ 16 TABLE 3. MONTE CARLO TABLE CARLo CALcULATED CALCULATED SLMCPR VS. vs. ESTIMATE ..........................................................................

ESTIMATE ..............................  ;............................................... 17 TABLE NON-POWERDISTruBUTION UNCERTAINTIES TABLE 4. NON-POWERDISTRJB1ITION ...............................................

UNCERTAINTIES .............................................................................................. 19 TABLE 5. POWER DISTRIBUTION TABLE5. ...................... .........................

DISTRIBUTION UNCERTAINTIES ................................... . . ......................... 21 TABLE 6. CRITICAL POWER 6.CRInCAL ................... ....... ................ ......... ..........................23 UNCERTAINTIES ..................................................................................................................

PO\VER UNCERTAINTIES 23 Table of Contents Contents Page 3 of of23 23

GNF NON-PROPRIETARY IINlIFORMA1l10Nl GNFNON:'PROPR.EIEIrMV INFORMATION Cl1ass IfI Class:

G1NlF GNF Ati1iachmmt Attachment 11.0 M~thodology 11.,0; Methodology .

GNF peri'mmed GNIF performed the Verm.ont Vermont Yankee C.ycle Cycle 28 Safety Safety Umit Limit .Minimum Minimum C.ritical, Critical Power Ratio Ratio (SLMCPR) calculation in accordance (SILMCPR) accordance to NEUB-24011l.-P:..A NEDE-240I1-P-A '"General "General Electri.c Electric Standatrdi Standard Application for Reactor Fuel" Application Fuel" (Revision 16) using the following NRC-approved NRC-approved methodologies:

methodologies and uncertainties:

" NEDC-32601P-A "Methodology

.NEDC-32601P-A "Methodology and Uncertainties Uncertai nties for Safety Limit MCPR Evaluations'"

Evaluations" (August 1999).

  • " NEDC-32694P-A "Power "Power Distribution Uncertainties Uncertainties for Safety Limit MCPR 1999).

Evaluations" (August 1999), .

  • " NEDC-32505P-A NEDC-32505P-A "R-Factor "R-Factor Calculation Calculation Method for GEll, GEl 1, GEI2 GE12 and GE13 Fuel" Fuel" (Revision (Revision 1,1, July 1999).

(GETAB): Data, Correlation Correlation and Design Application" Application" (January (January 1977).

Table 2 identifies identifies the actual methodologies methodologies used for the previous Cycle 27 and the current Cycle 28 SLMCPR calculations.

2.0 Discussion In this discussion, the TLO nomenclature nomenclature is used for two recirculation recirculation loops in operation, operation, and the SLO nomenclalure nomenclature is used for one recirculation loop in operation.

2.1.

2.1. Major Contributors to SLMCPR Change Change In general, the calculated safety safety limit is dominated by two key parameters:

parameters: (1)(I) flatness of the core core bundle-by-bundle bundle-by-bundle MCPR distribution, and (2) flatness of o( the bundle bundle pin-by-pin pin-by-pin power/R-powerlR.-

factor distribution. Greater Greater flatness in either parameter yields either parameter yields more rods susceptible susceptible to boiling boiling transition and thus a higher calculated SLMCPR higher calculated SLMCPR. MIP (MCPR Importance Importance Parameter) measures measures the core bundle-by-bundle bundle-by-bundle MCPR MCPR distribution distribution and RIP (R-factor (R-factor Importance Importance Parameter)

Parameter) measures measures the the bundle bundle pin-by-pin power/R-factor distribution. The impact pin-by-pin power/R-factor impact of the fuel loading loading pattern pattern on the calculated TLO SLMCPR calculated TLO SLMCPR using rated core power and rated core core flow conditions conditions has been correlated correlated to the parameter parameter MIPRIP, which combines combines the MIP and RIP values.

Table Table 33 presents presents the MIP and the MIP RIP parameters and RIP parameters for the previous previous cycle cycle and the current cycle along along with the TLO 11.0 SLMCPR SLMCPR estimate estimate using the MIPRIP MIPRIP correlation. If the minimum core flow case case is applicable, the TLO SLMCPR SLMCPR estimate is also provided provided for that case although the the MIPRIP correlation correlation is onlyonly applicable applicable to the rated rated core flow case. This is done only to provide provide some some reasonable assessment basis reasonable assessment basis 'Of of the minimum core core flow case trend. In addition, Table 3 presents Table presents estimated estimated impacts on en the 11.0 TLO SLMCPR SLMCPR due due to methodology methodology deviations, deviatiens, penalities, and/or penalities,andior uncertainties deviations uncertainties deviations from approved approved values. Based on the MIPRIP correlation

,correlation and and any any impacts impacts due due to deviations from to deviations approved values, from approved values, a .final final estimated estimated TLO SLMCPR SLMCPR is determined.

determined.

Methodology Methodology Page 4 of 23 Page40f23

NOt'[..PROPR]EIj'~Y I!NJFORMAlITON GNF NON-PROPRIETARY NFORMATION Class, Clasg, [

GNF Attachment GN,, Attacnme1i1t' Table Tab~e 3 also provides the actual calculated, M.'onte Carlo calculated. Monte SLMCPRs. Given C'ati~Oi SJLMCPRs. Given the bias and tlRcertainty in the MIPR[P uncertainty correlation K[

MIPRIP correlation (( t3))) and the inherent

{J})) inherent vati'iation in the Monte variation Monte: Carlo results (( {3'))~,

11)) the. change in the Vermont the: change Vermont Yankee Yankee Cycle 28 calculated Monte Carlo TLO SLMCPR using rated core calculated COlle power and rated core flow conditions is is:

consistent corresponding estimated TLO consistent with the corresponding no SLMCPR SLMICPR value.

2.2. Deviations NRC-Approved Uncertainties Deviations in NRC-Approved Uncertainties NRC-approved uncertainties along with values actually used. A Tables 4 and 5 provide a list of NRC-approved Tables NRC-approved values follows; all of which are conservative discussion of deviations from these NRC-approved conservative NRC-approved values. Also, estimated impact on the SLMCPR relative to NRC-approved SLMCPR is provided Table provided in Table

'3 for each deviation. .

2.2.1.

2.2.1. R-Factor R-Factor generically increased the GEXL R-Factor uncertainty At this time, GNF has generically uncertainty from ((

(3})) to account for an increase in channel bow due to the emerging (3}]) to account for an increase in channel bow due phenomena emerging unforeseen phenomena corrosion-induced channel bow, which is not accounted called control blade shadow corrosion-induced accounted for in the the channel bow uncertainty uncertainty component approved R-Factor uncertainty.

component of the approved uncertainty. The step "0 "a RPEAK" RPEAK" NEDC-3260IP-A, which has been provided in Figure 4.1 from NEDC-32601P-A, provided for convenience in Figure 3 of of this attachment, is affected byy b this deviation. Reference Reference 4 technically justifies that a GEXL R-uncertainty of ((I Factor uncertainty (( 63})))) accounts uncertainty of up to ((

channel bow uncertainty accounts for a channel ( 3 ))).

{3})).

Currently, Vermont Yankee has not experienced Currently, corrosion-induced experienced any control blade shadow corrosion-induced channel bow and is not expected to experience experience any in Cycle 28 to the extent that would would invalidate the approved R-Factor uncertainty.

invalidate 2.2.2. Core Flow Rate and Random Random Effective Effective TIP Reading Reading At this time, GNF has not been able to show that the NRC-approved NRC-approved process to calculate the '

SLMCPR only at the rated core power SLMCPR power and rated core flow condition is adequately bounding calculated at rated core power and minimum core flow, see Reference relative to the SLMCPR calculated Reference 5. 5.

The minimum core flow condition can be more limiting due to the control rod pattern used.

GNF has modified the NRC-approved NRC-approved process for determining determining the SLMCPR SLMCPR to include include analyses analyses at the rated core power and minimum licensed core flow point in addition to analyses at the rated core power and rated core flow point. GNF believes conservative and may believes this modification is conservative justification that the original in the future provide justification NRC-approved process is adequately original NRC-approved adequately bounding.

The available flow range at rated power, 99% 100% rated core flow, does not warrant 99% to 100% warrant analysis at the minimum core flow point.

2.3. Departure from NRC-Approved 2.3. Departure NRC-Approved Methodology Methodology No departures from from NRC-:approved methodologies were used in the Vermont Yankee NRC-approved methodologies Yankee Cycle 28 SLMCPR calculations.

Discussion Page 5 of 23

GN NON-PROPRllJE:1f~'t?

GNf NON-PROPR[ETARY IITNilFORMlAll0N IFORMATION Class Class: fI GNIF GlNiF Attachment-Amiadmr:1ilit Fuel Axial Power Shape 2.4. F'uel, Shape' Penalty Penalty At mils At this time, GNF has detetmined determined that that highetr higher uncertainties non-conservative biases utlcel11arnmt1es: and mOl1-conservative in the biases: Ln tlte; GEXL correlations GEXIL correlations for the various:

various types.

types of aoo:i:aI!

axial power shapes shapes (i.e (i.e_,.* inlet, cosine, outlet and oudet and[

hump) could potentially exist double hllmp) exist relative to to the, NRC-approved methodology values~

tlte NRC'-appFOved. values, see see References 3, References 3~ 6, 7 and 8.

8. The folowing foHowing table tab;le identifies, by marking marking with an, an "X",

<<X", this potential potential!

product line currently being for each GNF pFOduct being offered:.

offered:

((

((

{3}1

))

Axial bundle power shapes corresponding corresponding to the limiting SLMCPR control blade patterns are determined determined using the PANACEA PANACEA 3D core simulator. These axial power shapes are classified classified in accordance accordance to the following table:

((

I

. \ l3}))

If the limiting bundles bundles in the SLMCPR SLMCPR calculation calculation exhibit an axial power shape shape identified by this table, GNF penalizes table. penalizes: the GEXL critical power uncertainties to conservatively conservatively account for the the impact of the axial power shape. TableTable 6 provides a list of the GEXL critical power uncertainties uncertainties determined determined in accordance accordance to the NRC-approved methodology contained NRC-approved methodology contained in NEDE-24011-P-A NEDE-2401 1-P-A along with values actually used.

bundle~ the fuel axial power shapes in the SLMCPR For the limiting bundles, SLMCPR analysis examined to analysis were examined determine determine the presence of axial powerpower shapes identified in the above table. These power shapes were not found; therefore~

therefore, no power shape penalties penalties were applied applied to the calculated calculated Vermont Yankee Cycle ý28 SLMCPR values.

Yankee Cycle.28 Discussion Page 6 of 23 Page*60f23

GNF NON'-PROPR]E[Jl'~Y GNP NON-PROPRETiARY JiN!JFORMAlITONl mORMATION Class,E C~ass I GNF, A1it!aemment GNF Attachment-2.56. M'ethodology 2.5., Restrictions Methodology Restrictions The, four restrictions identified on Pag~:

The; Page. 3 of lNlRC"s NRC's Safety Evaluation Evaluation relating to the Genefal:

General Electric Licensing Topical Reports NEDC-J26@ilP~

Efectric NEDC-32601 P. NEDC-32694P, and Amendment Amendment. 25 to NEDE-2401 1-P-A (March 11, NEDE-24011-P-A 11, 1999) are addressed En in References 1,2,3, t, 2, 3, and 9.

No new GNF fuel designs are being intmduced introduced Inin Vermont Yankee Cycle 28~ 28; therefore, the the:

NEDC-32505-P-A statement" NEDG-32505-P-A statement "... if new fuet

... if fuel is introducted, GENE must confirm that the revised R-Factor method is still valid based on new test data data"n is not applicable. The GNF2 product line considered a new fuel design relative to the GE14 is not considered GEl4 product line, as both consist of 10 x 10 10 lattice designs.

2.6. Minimum Core Flow Condition Condition The available flow range at rated power, 99% to 100% 100% rated core flow, does not warrant analysis analysis at the minimum core flow point.

2.7. Limiting Control Rod Patterns Patterns The limiting control rod patterns used to calculate the SLMCPR reasonably assures that at least 99.9% of the fuel rods in the core would not be expected expected to experience experience boiling transition during

~ormal normal operation or anticipated operational operational occurrences during the operation of Vermont Yankee Cycle 28.

2.8. Core Monitoring System For Vermont Yankee Cycle 28, the 3D Monicore Monicore system will be used as the core monitoring system.

2.9. Power/Flow PowerlFlow Map Map

. The utility has provided provided the current and previous cycle cycle power/flow map in a separate attachment.

2.10. Core Loading Loading Diagram Diagram Figures 1I and 2 provide the core loading loading diagram for the current and previous cycle respectively, which are the Reference Reference Loading Pattern as defineddefined by NEDE-2401 NEDE-24011-P-A1-P-A. Table Table 1 provides a description description of the core.

2.11.

2.11. Figure References References Figure 3 is Figure 4-1 4.1 from NEDC-32601-P-A.

NEDC-3260l-P-A Figure 4 is Figure Figure II.5-1 ID.S-l from NEDC-32601P-NEDC-3260lP-A. Figure Figure 5 is Figure ID.S-2

-1.5-2from NEDC-32601P-A.

NEDC-32601P-A.

2.12. Additional SLMCPR Licensing Conditions Additional SLMCPRLicensing Conditions For Vermont Vermont Yankee Yankee Cycle Cycle 28, the additional additional SLMCPR SLMCPR licensing licensing condition condition (Reference (Reference 10)

10) that the SLMCPR SLMCPR shallshaU be established established iby by adding 0.02 to the cycle-specific cycle-specific TLO TLO SLMCPR SLMCPR value value Discussion Page 7 of 23

\

GNF NON-PROPRIETARY INFORMATION GNFNOWr:'PROPmE1fARll'mIFORMAlITON

. <=~fLSs*i Class T GNlF Attachment G-NF Atrnadlmem1t calealatedi calculated uSIng using the NRC-applTOved methodo~<!lgiies\

the. NRC-approved methodolofies doeamented documented in in NEDE-24011-P-A beetil!

NEDE-240 11-P-A has been applied (see TaMe applied, (see Table J).3). This adder does:

does not:

not appUy apply totEl> the: c:yde,..speciifi.c the,cyle- SLMCPR,. because specific SLO SLMCPR, because; s1![ch such, operation. Technical Specifi.~on peration would by Technical Specification \be be Diimilted limited t<!l' to less than.

than the t1593 MNWt llowelr 593 MWt power, tmreslit<!lld specifi.ed in Reference threshold specified Reference 10.

]Oi.

2.13... Summary 2.,13 The requested changes to the TechnicalTechnical Specification Specification SLMCPR SL-MCPR values are 1.09 for TLO and and 1.10 for SLO for Vermont 1.10 Vermont Yankee Cycle Cyde 28.

Discussion Page 8 of23 of 23

GNF NON-PROPRIETARY INiFORMAlITONi GNFNON-PROPR:JjE'Ii~.RY INFORMATION' Class,((

CFas$

GNF Attaellrn:ent G'NlF Attachment-3.0 References 3'.,0 References 1 Letter, Glen A.

1.. A. Watford (GNF-A) to ýU.S_

(GNP-A) Nuclear Regulatory Commission Document U. S. Nudeali Document Pulsifer (NlRC)"

Control Desk with attention to R. Pu]siJfetr (.NRC), '"Continnati "Confirmation 10x lO on of lOx 10 Fuel Design Applicability to Improved SLMCPR" Applicability SLMCPR, Power Distribution and. and R-Factor Methodologies,

Methodologies",

FLN-2001-016, September 24, 200L 2001- ,

2. Letter, Glen A. Watford (GNP-A)
2. (GNF-A) to US.U.S. Nuclear Regulatory Commission Document to J. Donoghue (NRC), "Confirmation Control Desk with attention toJ. "Confirmation of the Applicability of the GEXL 1414 Correlation and Associated R-F R-Factor Methodology for Calculating actor Methodology Calculating SLMCPR Values in Cores Containing GE14 Fuel", FLN-2001-017, October 1,2001. 1, 2001.
3. Letter, Glen A. Watford (GNP-A)

(GNF-A) to US.U.S. Nuclear Regulatory Commission Commission Document Control Desk with attention to Joseph E. E. Donoghue (NRC), "Final"Final Presentation Material for GEXL Presentation - February 11,2002",

11, 2002", FLN-2002-004, FLN-2002-004, February 12,2002.

12, 2002.

4. Letter, John F. Schardt (GNF-A) to U.S. Nuclear Regulatory Commission Document Commission Document Control Desk with attention to Mel B. Fields (NRC), "Shadow C()ntrol "Shadow Corrosion Effects on SLMCPR Channel Bow Uncertainty",

Uncertainty", FLN-2004-030, November 10; FLN-2004-030, November 10, 2004.

5. Letter, Jason S.
5. S. Post (GENE) to US. U.S. Nuclear Regulatory Commission Document Control Desk with attention to Chief, Information Desk with attention Chief, Information Management Management Branch, et al. (NRC), "Part 21 Final Report:

Final Report: Non-Conservative Non-Conservative SLMCPR", MFN 04-108, September September 29,2004.

29, 2004.

6. Letter, Glen A. Watford (GNF-A) to U.S. US. Nuclear Regulatory Commission Document Commission Document Control Control Desk with attention to Alan Wang (NRC), "NRC Technology Update- Update -

Proprietary Slides-Proprietary July 31 -August Slides-July 1, 2002", FLN-2002-015,

-August 1,2002", FLN-2002-015, October.31, October.31, 2002.

7. Letter, Jens G. Munthe Andersen Andersen (GNF-A)

(GNF-A) to US. U.S. Nuclear Nuclear Regulatory Regulatory Commission Document Control Desk with attention to Alan Wang (NRC), "GEXL Correlation for "GEXL Correlation IOXI0 lOX 10 Fuel",

Fuel", FLN-2003-005, FLN-2003-005, May 31, 31, 2003.

8. Letter, Andrew A. Lingenfelter Lingenfelter (GNF-A)

(GNF-A) to US. U.S. Nuclear Nuclear Regulatory Regulatory Commission Document Control Desk with cc to MC Honcharik Document Honcharik (NRC), "Removal "Removal of Penalty Being Applied to GE14 GEl4 Critical Critical Power Correlation for Outlet Outlet Peaked Axial Power Shapes",

Power Shapes",

FLN-2007-03 FLN-2007-031, 1, September September 18,2007.

9. Letter, Andrew A. Lingenfelter Lingenfelter (GNF-A)

(GNF-A) to U.S. Nuclear Regulatory Regulatory Commission Commission Document Document Control Desk with cc to MC Honcharik Honcharik (NRC), "GNF2 "GNF2 Advantage Advantage Generic Generic Compliance with Compliance with NEDE-24011-P-A (GESTAR n), NEDC-33270P, Revision June NEDE-2401 1-P-A (GESTAR I1), NEDC-33270P, Revision 2, June 2009 2009 and and GEXL Correlation for GEXL Correlation for GNF2 Fuel, NEDC-33292P, GNF2 Fuel, NEDC-33292P, Revision Revision 3, 3~ June June 2009",

2009",

MFN 09-436, June MFN June 30, 2009.

10. Letter, Richard n. Ennis (NRC)

Richard B. (NRC) to Michael Michael Kansler (Entergy Nuclear Nuclear Operations, Operations~ Inc.),

Inc.)~

"Vermont Yankee Nuclear Power Station - Issuance of Amendment Re:

"Vennont Yankee Nuclear Power Station - Issuance of Amendment Re: Extended Power Extended Uprate (TAC No.No. MC0761)"m MC0761)"m March 2, 2006.

References References RPage 9 of 23 P~e90f23

GNP NON~PROPRlJElj'k\lRYllNFORM&1ITONi GNF NON-PROPRIETARY INFORMATION Class t CFassE GN*F AtJtaenm:ent GNP' Attachment F, nF

~12 nF nL N-N IEI jo Ir D*1[fF] nF [Gfl n,'M [11) EIEHt nFFýSj [EF] [ 0 Lin, W1 fl wffl 38 E! Ffl 0 R 1fl FEI F1E a 6 a 1 0 r

E na no r 36 D ffl'IR n1flul Fri] Mil on El El nG

--1 71 ns K

F 0

F F8 WElln p G

8 P 32 2o-@rlq1 M EC] 8 A I H

- El J

E n M.K M nB C I' 30 28--] RF0 R M E K] D KI q M MA il MA :81 Em-E,+]Imfl h

El M j

ED M1 8 26-- M*L] @1'I][:D ýD Ej T EHln El% nmiN P FE] nK J K j ro A H 0 G ni ML L J nG n 0 nH A K FA 22 - MiH W% EA 'J+I EL Ej -0 Mi =t,1 KEA 21 20 - R R E]R n@Dj J nH EM ] nK nJ nJ nK M RtHI Mi RJ [ 11] ML RF 16--RG rffl E-PIE rEl ED: IE Yin rEl

-1 MM nK 0 EflK M Mji 8 0~~~

ED Ifl F, ýj Hý nH =-1 F--P EG I M 000000 M Me4rL- H A c mEEI 12

~~~

G rB] r8l, I rM] in F MFil 9 [flF 8 1iFG1 10 EE ti 0[I]~1IJrI1[!]

ýj Bi =8-1 nMI L on =11 RB dol 06:

IFýr-r]

8 II 0~~

R EF I IH" I nM nM MB i M nM B [1] FEJ 6- ~[£J[I]IIJ MI Y =Jiý F= MI FG=1' I [IJ

[flF [flD L L On El 2 I EF:- j I

1 3 5 71 9 11 13 15 17 19 21 23 2S 25 27 29 31 33 3S 35 31 37 39 'II 11 '\3 13 FUEl FUEL TYPE AA= = 6NF2-PI00628'103-1'l66.0-100T2-1S0-T6-32S9 6NF2-PI00628iO3-IG6.0-10OT2-150-T6-3259 H := 6EI'l-PIODNAB'l21-16GZ-IOOT-ISO-T6-308'l 6EIi-PIODNABi21-160Z-IOOT-150-T6-308i 8B == GNF2-PIOOG2B'lO'l-I'lGZ-IOOT2-1S0-fS-3260 6NF2-PIOD628Oi-IAGZ-1OOT2-150-T6-3260 II = 6NF2-PI0OG28iO3-1166.O-1OOT2-15O-T6-3261 z 6NF2-PIOOG2B'103-1166.0-IOOT2-1S0-T6-3261 C= = GNF2-PIODG28387-1SGZ-I00T2-1S0-T6-2977-LUA GNF2-PIODG28387-!SGZ-10OT2-1SO-T6-2977-LUA J =

J = GNF2-PtOD62B404-i9GI-IOOT2-150-TS-3262 GNF2-PIOD$2840-1SGZ-IOOT2-1SO-T$-3262 D == 6El'l-PlOONAB'l22-i'lGZ-i001-!50-T6-296S D 6EIi-PIOONABa22-IiGZ-1001-1SO-T6-2965 K := 6El'l-PlOONAB388-1566.0-100T-lSO-TS-308S 6EIi-PIOONA8388-1566.,-IOOT-150-l6-3086 E = GEI4-PIOONA8383-116S.0-!OOT-lSO-T6-2865 GE1I-PlO1A8383-176.0-*. 0OT-150-16-2865 lL = 6EII-PIODNABi20-156Z-IOOT-1S0-T6-3085 6Ei~-PI00NAB420-16Gl-l00T-lS0-T6-308S FF = 6E14-PIOODNA38e-ISGZ-IOOT-1S0-"T-2988 G£14-PIODNAB388-15GI-I00T-ISO-T6-29S8 H = GE1I-PIOHNA9388-iCGZ-lOOT-ISO-T6-3087 M = GEl~-PIODNA8388-16GZ-100T-lSO-T6-3087 G = 6El'l-PIOONAB389-156l-!OOT-150-T6-2969 GEIi-PIONA8388-156Z-IOOT-150-Ts-2959

1. Current Cycle Core Loading Diagram Figure i.Current References References Page Pa,ge 10 of23of 23

GNF NON~PROPRIB1f;,A)RY NON-PROPRIETARYW IFORMAION!

llNiFORMAlfION CEass tI Class, GNlF GN* A1!fadlm:ent Attachment, 44 I[LD!` [BE]'

El 42 42 El END,, EfEl Ej Tj lný 40 40 [EL] [EK] ES I' ED[AD'[FEC2 [EH] (EA] ý H [HBj B K L E-ITI-9 t N M -F[D Mj-PID BF0, E E 38 38 Leim IND U0 F1 36 36 J H FGJ PA EDEGDEGIEDII I EDE(] Sm FG JEH ] [,Dt j "j ýL, L EA 34 34 El [E] FioI:Fq, AL-jL Ot EITD EMS o

B E (DI nN [AE]F20]

32 Eill IEI Ip ILE21P[D FA El Q [AE] F202J]I[oH [EN]II[E] E [H]

LI 101LB 30 19 [Ell D 00SF2GI Lý TAO, rE ElpoEl F211D !10 101E] ID[9

[AD FWI [HE] H G A EO]

28 ll IEj,-Un ElH N Lhj EA ] pEO 01Lj ýjIUjLhjF1EIF21E1 r7,

[9 Li Lj El F20 EM IEI [EIIE WiM [q 26 ELREI El El

[DA+

F2 ] ýE ID 7[D M A eal G e[o [HE]

i NED 7FL I A E [E]

24 B E 12HJIIIEI LTH (E] [ME]

[9 L;j PGJ [DO [AE][ME]

LEM F21 Lý+JýLj [ H ]I [HE] [0E]j[AE] [OE] [GD [MH]j[H] [ED r-B-1 M F2-] r[g 0=[E-]

22 (DBI (E] G 0 A 0 El[5 M C C F+/-m]l [E] (7D 7[D A eJG LI [ 09

[ME] Bm El A M G [EE] 0 (GqLie EI] A EIIE 20 20 011 IEI ILUDIE1019 L E 110[EZG;] [AE] 21 E

18 [EDI [HH] A 0] MEHHea Li G A 10 I An 0 H [Ep [D 16 [BE] [EE] [AE] F20 ] "GF20] [EE] [!OEI [OE] [ED [OD [GE] [OD [ADEI] EE ] [BE] [CE]

19 LULWEEIL, Eýjl E I [H] [H] [7]

2JIL--J 14 IDFLI LeIn ME IWO po 12 [EK]I[GE] M G [EN]II F20 ] PIGF071 [OD [GE] F20] [AD [E] [DI[o [G

-JIID 10 [JDTEEH

- - ] El FEI E] IE]

Lek] IM-T-0 I M M [ID N [EE]

8 [E] [2DE]I[GE] [FEE]II[EE] N

[HUI ED[E] MIE9 1119 UID EILL) 6 H A H

[all- H K 19 El FLIE] IflI[B]

4 SH II(E] [E]II[KE] [flEILEH 2 [DIEL] ((E]IRB]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 Fuel Type Fuel Type A=GE14-FPIODNAB422-16G7-IOOT-150-T6-2862 AcGEI4*P IODNAB422* I 6G7... I 001'-1 SG-T6*2862 (Cycle 2.)25,) l=G' 14-P IODNAB42 1-l6GZ-!00T-1 50-T6-3084 I=GI~14*PIODNAB421*16GZ*IOOT*ISO*T6*3084 (Cycle (Cycle 27) 27)

B=GE 14-PI ODNAB3S3-14G6.0-IOOT- 150-T6-2864 (Cycle B=GEI4-PIODNAB383-14G6.G-IOO1'-ISO-1'6-2864 (Cyclc2S) 25) J=GE14-PIODNAB3g3-14G6.0-IOOT-lSO-T6-2864 J=GE 14*P IODNAB383-14G6.0-100T-ISO-1'6-2&64 (Cycle 25)

(C~'clc25)

C=OGI'4-PIOZ)NAB383-13G6.0-tOOT-150-T6-2863 C=GBI4-PIOI)NAB383-13G6.o-IOO1'-150-T6-2863 (Cycle (Cycle 25) K=GEI14-PIODNA13383-13G6.0-100T-150-T6-2863 K~GEI4-P\oDNAI)383-13G6.0-IOOT-150-T6-2863 (Cycle (Cycle 25)

Dt=NI.F2-PiODG2B387-15G%-OOT2-t SO-T6-2977-I.UA

():.GNF2-PIODG2B387-15GZ-100T2-1 50-T6-2977-LUA (Cyclc(Cycle I..==E t4-Plt0DNA13383-17G6.0-100T1-t50-T6-2865 L-GE 14-1'1 OONAB383-17Q6.O-JOOT-1 50-1'6-2865 (Cycle (Cyclc 25) 25)

26) 14-P I ODNAB388-M=GE 14-1'  ! 5G6.0-lO00T-150-1'6-3086 ODNAB388-15G6.0-1 00,.-150*,.6*3086 (cycle 27)

(Cyclc27)

E=GEI4-PiOt)NAB422-14GZ-100T-Il50-T6-2965 E=GEI4-P1ODNAB422-14G7.... 100T-150-1'6-2965 (Cycle (Cycle 26)26) N=GE14-PIODNAB420-16GZ,100.lT-150-46-3085 N=GE14*PI0I)NAB420*16GZ-IOOT-ISO-T6-3085 (Cycle (Cyclc 27) 27)

F=GE 14-PIOI)NA13383-1706.O-i0OT- t 50-T6-2865 (Cycle FcGE 14*PIOI)NA13383-17G6,o-IOOT-ISO-T6-2865 (Cycle 25)25) O=GE 14-1 ! 0D)NAB388- i6GZ- 100T-I 50-T6-3087 O=GEI4-PIODNAB388-16GZ-1OOT*.50-T6-3087 (Cycle (Cycle 27) 27)

G=GE 14-P IODNAB388- MSGZ-I OOT-150-T6-2968 G=GEI4-PIODNAB388-15GZ-1OO1'-ISO-1'6-2968 (Cycle (Cycle 26) li=GE li==GE 14*1'1 O0DNAB388-15GZI 4-Pl O])NAB388-1 D100T-I 50-T6-2969 507... 1001--150-1'6*2969 (Cycle 26)

(Cycle Figure 2. Previous Cycle Core Loading Figure2. Loading DiagramDiagram

2. Previous 'Cyde Figure 2.1Previolls Cycle Oore Core Loading Diagram lP.~ge I111I of 23 Page

., ~,

GNFNON~PROPR:lEli~Y GNF NON-PROPRIETARY JlNiFCDR:lVfiA1ITCDN INFORMATION, C~ass; E Class, I GNF, Attachment GNF A1it!aenmeRt:

lIE 1311]

Figure 3. Figure 4.1 from NEDC-32601-P-A NEDC-32601-P-A Figure 3. Figure 4-1 4_1 from NEDC-32601-P-A .Page Page 12 of 23

GNFNON:"PROPRffilfPffi:Y GNF NON-PROPRIETARY llNlFORMAlITON!

NFORMAT*ION Ctass'[

Class [

GNF AttacImtent GNlF Attachment

[Ii 13)))

Figure 4. Figure IlI.S-l 111.5-1 from NEDC-32601P-A NEDC-32601P-A Figure 4. Figure 1115-1 RL5-1 from NEDC-32601P-A NBDC-32601P-A P4ge of23 Page 13 of 23

GNFNON-PROPR:lEIr~Y GNF NON'-PROPRIETARY nNJFORMAlITONf NFORNATIONI CFass Class LI GNF' GNP' Attachment At!t!ad!tmetLt.

nn t3)))

Figure 5. Figure 111.5-2 111.5-2 from NEDC-32601P-A NEDC-32601P-A Figure 5. Figure m.S-2 from NBDC-32601P-A M1.5-2 mom NEDC-32601P-A Page 14 of23 of 23

GNF GNF NON-PROPRIETARY NON-PROPRIETARY INFORMATION INFORMATION Class I GNF Attachment Attachment Table Table 1. Description Description of Core Previous Previous Cycle Previous Previous Cycle Cycle Rated Rated Current Current Cycle Cycle Current Current Cycle Cycle Rated Description Description Minimum Core Flow Minimum Core Flow Limiting Limiting Minimum Core Flow Minimum Flow Core Flow Flow Limiting Limiting Limiting Limiting Case Case Case Limiting Limiting Case Case Case Number of Bundles Number Bundles in the 368 368 368 368 368 368 Core Limiting Limiting Cycle Exposure Point (ie, Point (Le. N/A EOC N/A N/A , EOC O C/MOC/E BOC/MOCIEOC)

B OC) . . . .... ..........................

Cycle Cycle Exposure Exposure at Limiting Point N/A 10600 10600 N/A '10600 l0600 (MWdlSTU)

(MWd/STU) ... ..

d_", .* _~_ ,,_,,_

% Rated Core Flow N/A N/A 100 100 N/A N/A' 100 100

.~ .." .. -- . -.. --,- ._,.- -

Reload Fuel Type GE14 GE14 GNF2 GNF2 Latest Reload Batch 32.6 31.5 32.6 31,5 Fraction, %

Latest Reload Average Average Batch Weight % 4.01 4.04 Enrichment Enrichment Core Fuel Fraction:

GEl4 GE14 0.989 0.674 GNF2 0.011 0.326 0.326 Average Weight %

Core Average 3.99 4.01 3.99 4.01 Enrichment Enrichment Table 1. 1. Description of Core Page 15 of 23

GNF NON-PROPRIETARY GNF NON-PROPRIETARY INFORMATION INFORMATION Class I GNF Attachment GNF Attachment Table Table 2.

2. SLMCPR SLMCPR Calculation Calculation Methodologies Methodologies

.. - .~

Previous Cycle Cycle Previous Previous Cycle Rated Rated Current Current Cycle Cycle Current Curr~nt Cycle Cycle Rated Description Description Minimum Core Minimum Core Flow Limiting Core Flow Limiting Minimum Core Flow Minimum Flow Core Flow Limiting Core Flow Limiting Limiting Case Case Limiting Case Case Limiting Case Case Limiting Case Case Non-power Distribution Non-power Distribution NEDC-32601-P-A NEDC-32601-P-A U e. ai ........

Uncertainty__y ..... NEDC-32601-P-A NEDC-32601-P-A UncertaiI!ty _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Distribution Power Distribution NEDC-32601-P-A NEDC-32601-P-A NEDC-32601-P-A NEDC-32601-P-A Methodology Methodology NEDC...2601.-P.A .. - -

Distribution Power Distribution NEDC-32694-P-A NEDC-32694-P-A NEDC-32694-P-A NEDC-32694-P-A Uncertainty ......

Uncertainty __ED _-32694-P-ANEDC-32694-__A " "-'",,-,. ,-_.""",,- -,,-~

Core Monitoring System 3D 3D Monicore Monicore 3D 3D Monicore Monicore

--~ - - -.- --

Table 2. SLMCPR Calculation Methodologies Calculation Methodologies Page page 10 16 Qf2~ of 23

GNF NON-PROPRIETARY GNF NON-PROPRIETARY INFORMATION INFORMAnON Class I GNF Attachment Attachment Table 3.

3. Monte Monte Carlo Carlo Calculated Calculated SLMCPRSLMCPR vs. Estimate Previous Previous Cycle Previous Cycle Cycle Rated Current Current Cycle Current Current Cycle Cycle Rated Description Description Minimum Minimum Core Flow Flow Core Flow Limiting Limiting Minimum Core Core Flow Flow Core Core Flow Limiting Limiting

[I

((

"" - Limiting Case Limiting Case Case Limiting Case Limiting

__________________ __________________[___________________ __________________

Case Case Case

\

I + I t

___________________ I .1. __________________ 1 __________________ 1 vs. Estimate Table 3. Monte Carlo Calculated SLMCPR VS. Vaýe 17 of 23

NON-PROPRIETARY INFORMATION GNF NON-PROPRIETARY INFORMATION Class I Attachment GNF Attachment Table 3. Monte Carlo Calculated Calculated SLMCPR vs. Estimate

" " .. ~

Previous Cycle Previous Previous Cycle Rated Rated Current Cycle Current Cycle Rated Description Description Minimum Minimum Core Flow Core Flow Limiting Minimum Core Flow Core Flow Limiting Limiting Limiting Limiting Case Case Limiting Case Case Case I 4. J

--,--~.~-.-,,~,-,

.~

(J}ll "Il Table 3.

3. Monte Carlo Calculated SLMCPR vs.

VS. Estimate . P.

Valge, 1$ of,23

GNF NON-PROPRIETARY NON-PROPRIETARY INFORMA INFORMATIONnON Class I GNF Attachment Table 4. Non-Power Non-Power Distribution Uncertainties Nominal (NRC- Previous Cycle Previous Cycle Current Cycle 1 Current Cycle Cycle Approved) Value Minimum Core Rated Core Flow Minimum Core Rated Core Flow

+/- (%)

++/-cr (0/0) Flow Limiting Case Limiting Case Flow Limiting Case Limiting Case GETAB GETAB Feedwater Feedwater F Flow eedw tFlow 1.76 N/A N/A N/A N/A Measurement__________ 1.76 N/A __________ N/A __________ N/A _____ N/A _____

Measurement Peedwater Feedwater Temperature Temperature 0.76 N/A N/A N/A N/A Measurement Measurement Reactor Reactor Mea Pressure Pressure sure 0.50 0.50 N/A N/A N/A N/A N/A N/A Measurement Measurement ,

Core Inlet Temperature 0.20 N/A N/A N/A N/A Measurement Measurement -,., -""""--

w _ _ '" ~ __" ___

- ~-,

Total Core Flow 6.0 SLO / 2.5 TLO N/A N/A N/A N/A N/A N/A Measurement 6.0 SLO I 2.5 TLO N/A N/A Measurement Channel Flow Area Area 3.0 N/A N/A N/A N/A Variation 3.0 N/A N/A - N/A N/A Friction Factor 10.0 N/A N/A N/A N/A Multiplier 10.0 N/A N/A N/A N/A -

Channel Channel Friction 5.0 5.0 N/A N/A N/A N/A N/A N/A N/A N/A Factor Multiplier 5.0.N/.N/A./A.N/

Non-Power Distribution Uncertainties Table 4. Non-Power Page 19 of Page, of23 23

GNF GNF NON-PROPRIETARY NON-PROPRIETARY INFORMATION INFORMAnON Class Class I .

GNF GNF Attachment Attachment Table Table 4. Non-Power Non-Power Distribution Distribution Uncertainties Uncertainties Nominal Nominal (NRC- (NRC- Previous Previous Cycle Cycle Previous Previous Cycle Cycle Current Current Cycle Cycle Current Currel.lt Cycle Cyde Approved)

Approved) Value Value Minimum Minim urn Core Core Rated Rated Core Core Flow Flow . Minimum Minimum Core Core Rated Ra,ted Core Core Flow Flow a (%)

+/- CJ (%) Flow Limiting Case Flow Limiting Case Limiting Limiting CaseCase Flow Limiting Flow Limiting Case Case Limiting Limiting Ca,se Case NEDC-32601-P-A NEDC-32601-P-A 3 3 Feedwater Feedwater Flow Flow ((3})) j

{3 I)) {3})) (( {31)) (( P}J] )

Measurement Measurement

(( (( (( (( ([

Feedwater Feedwater Temperature Temperature (((( {3}))

{3})) (((( {31))

{3))) (((( {3}))

{3,)) (((( {J}))

13))) (((( {3}))

131))

Measurement Measurement Reactor Reactor Pressure Pressure ]3}))

{3})) PI)) ((1]{3}]1 Measurement Measurement

(( {3}))

((_[_____((_3}]__} (( {31)) (( (( _

(( [__ _ _

-"'_'-.". " '~~.--

Core Core Inlet Inlet Temperature Temperature 0.2 0.2 N/A N/A 0.2 0.2 N/A N/A 00.2 2 M e a su r e m e n t Measurement ___ _ ............. .. . .....

---.~- ,-, ~

Total Total Core Core FlowFlow 6.0 SLO / 2.5 TLO N/A 6.0 SLO / 2:5 TLO N/A 6.0 SLO /2:5 TLO Measurement 6.0 SLO/2.5 TLO N/A 6.0 SLO 12:5 TLO N/A 6.Q 5LO 12,5 TLO Measurement Channel Channel Flow Flow Area Area 1311]

((_ _ {3}n 3E)) 131)) 0[ ]

(( {3})) (( {31)) (( {3}))

((__ {3}))

Variation Variation ((_((__3_))_(( _3_ )) ((_ })) _[__ _ _))

Friction Friction Factor Factor 3,)) 13[]

{3})) {3})) {3 1))

(( 01))

M ultiplier Multiplier

(( {3})) (( (( (( ([ {3}JJ Channel Channel Friction Friction 5.0 N/A 5.0 N/A Factor Multiplier 5.0 N/A 5.0 N/A 5,0 Factor Multiplier ... *** _ __ m **** _

Table Table 4. Non-Power Non-Power Distribution Distribution Uncertainties Uncertainties Page, 20 of 23

NON-PROPRIETARY INFORMATION GNF NON-PROPRIETARY INFORMATION Class I GNF Attachment Table 5. Power Distribution Distribution Uncertainties

.. ~~ ~

Nominal Nominal (NRC- Previous Cycle Previous Cycle Current Cycle Current Cycle, Current Cycl~

Description Description Approved) Value Minimum Minim urn Core Rated Core Flow Minimum Core Rated Rated Core Flow mow

+ a (%)

tG(%) Flow Limiting Case Limiting Case Case Flow Limiting Case Limiting Case GETAB/NEDC-32601-P-A GETABINEDC-32601-P-A GEXL R-Factor R-Factor (( {3}))

{3})) N/A N/A N/A N/A Random Effective Effective 2,85 SLO/1.2 TLO N/A N/A N/A N/A N/A N/A N/A N/A 2.85 SLO/1.2 TLO TIP Reading Reading _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _________

Systematic Effective Systematic Effective 8.6 N/A N/A N/A N/A 8.6 N/A N/A N/A N/A TIP Reading "-.,,. -" ... "._... "."."-----,,---,, " .----..

NEDC-32694~P-A, NEDC-32694-P-A, 3DMONICORE3DMONICORE GEXL R-Factor (( {3}))

(3)))

{3})) {}][

{3})) {3}J]

3)]j GEXL R-F actor (( (( (( (( 1[{}][

(([ 1,]

{3}JJ

~-. . -

Random Effective Random Effective 2.85 SLO/1.2 TLO N/A 2.85 SLO/1.2 TLO N/A 2,85 SLO/l 2 TLO 2.85 SLO/1.2 TLO N/A 2.85 SLO/l.2 TLO N/A 2.85 SLO/L2 1'1,0 TIP Reading TIP Integral (( {3}))

131] (( {3 1)) ((

(( {3 1))jI]

133)) j3})) (( {31)) (( {~}))

i-]

.-->-.--.~--.- ..-

Four Bundle Power Distribution (3}]) {3 I )) {3}J]

E(([

(( (( (( m]J

[r((

{3}))

Surrounding Surrounding TIP (( 3 (( {3))) 13})) 131)) (( 13)))

Location Location Contribution to Bundle Power {Jl)) {3 1)) {31 n {3}))

Uncertainty Due to Uncertainty

(( (( (( (( (( {31))

LPRMUpdate LPkM Update ........

Table 5. Power Distribution Uncertainties Table 5. Page 21 of page of2J 23

GNF NON-PROPRIETARY GNF NON-PROPRIETARY INFORMATION INFORMATION Class I

  • GNF Attachment Attachment Table 5. Power Table 5. Distribution Uncertainties Power Distribution Uncertainties

<T'~ ___ ** _ . _ . _ . ___

  • _._

.~--. _.-----"

Nominal (NRC-Nominal (NRC- Previous Cycle Previous Cycle Previous Cycle Previous Current Cycle Current Current Current Cycle Cyde Description Description Approved)

Approved) Value Value Minimum Core Minimum Core Rated Core Core Flow Minimum Core Minimum Core R~ted Core Flow Rated Core FIQw

+/- a(J (%)

(%) Flow Limiting Flow Limiting Case Case Limiting Case Limiting Case Flow Limiting Case Flow Limiting Case Limiting Case Limiting C~se m """"n "m_ ,

Contribution to Contribution

{3 1)) {3 1)) (3})],))]

Bundle Power Bundle Power Due to (((( (( {31))

{3}] ((

(( Er(( 1{31)) ((

(( '*']

0]1 failed Failed TIP Contribution to Contribution to Bundle Power Due to Bundle (([" {3})) Er(( PI))

3TiI (((( {3})) Er(( {3}])

01)) Er(( {31]

03 1))

Failed LPRM LPRM Uncertainty in Total Uncertainty -

Calculated Bundle Calculated Bundle (( {3 1))

{3} ]3}] ((Er {3 1)) Er(( {]i

{3 1))

131)) (( {31))

{3})) (( {3 t))

Power

- ,-.--~

Uncertainty of TIP Uncertainty TIP Signal Nodal ((

(( {3})) ((Er {3 I ))

{31]i (( {3}))

03}1]

{3}] ((E[ m]J (31] ((E[ 131))lJ]

Uncertainty Uncertainty d.N. _. -

Ta15le Table 5. Power Distribution Uncertainties Page, 22 of 23

GNP NON-PROPRIETARY GNF NON-PROPRIETARY INFORMATION INPORMATION Class Class I GNF GNP Attachment Attachment Table Table 6.

6. Critical Critical Power Power Uncertainties Uncertainties

. -.... ,,-~

~ ..-- - ,--.~- ---~----<~--,--

Nominal Previous Cycle Previous Previous Cycle Previous Current Current Cycle Cycle Current Current Cycle Cyde Nominal Value Value Description Minimum Core Rated Core Rated Core Flow Minimum Core Minimum Core Rated Core Rated Core Flow FI()w Description

+/- (Ja (%)

Value Minimum Flow Limiting Case Flow Limiting Case Limiting Case Limiting Case Flow Limiting Case Flow Limiting Case Limiting-Case LimitingXase --" '-.--.- .. ---~-.-.-.---~-~-

((

((J Table 6. Critical Power Uncertainties Uncertainties Page 23 of of23 23