ML18267A089: Difference between revisions
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
StriderTol (talk | contribs) (Created page by program invented by StriderTol) |
||
(One intermediate revision by the same user not shown) | |||
Line 16: | Line 16: | ||
=Text= | =Text= | ||
{{#Wiki_filter: | {{#Wiki_filter:Environmentally Assisted Fatigue (EAF) Research and Related ASME Activities, NRC Public Meeting, September 25, 2018 Development of New Design Fatigue Curves in Japan | ||
- Discussion of Best Fit Curves based on Fatigue Test Data - | |||
Seiji Asada Yun Wang Mitsubishi Heavy Industries, Ltd. Hitachi, Ltd. | |||
Masahiro Takanashi Kentaro Hayashi IHI Corporation The Kansai Electric Power Co., Inc. | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 0 | |||
18 | |||
Outlines | |||
* Introduction | |||
* Fatigue Tests Using Small Specimens [*1] | |||
* Large-Scale Fatigue Tests Using Carbon and Low-Alloy Steel Plates [*2] | |||
* Large-Scale Fatigue Tests Using Stainless Steel Piping [*3] | |||
* Conclusions (Notes) | |||
The details of the above fatigue experimental tests are shown in the following 2018 PVP papers. | |||
[*1] Wang, Yun, et al., Development of New Design Fatigue Curves in Japan - | |||
Discussion of Best-Fit Curves Based on Fatigue Test Data With Small-Scale Test Specimen -, PVP2018-84052, ASME, 2018. | |||
[*2] Takanashi, M., et al., Development of New Design Fatigue Curves in Japan | |||
-Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates -, PVP2018-84456, ASME, 2018. | |||
[*3] Bodai, M., Development of New Design Fatigue Curves in Japan - | |||
Discussion of Best-Fit Curves Based on Fatigue Test Data with Large-Scale Piping -, PVP2018-84436, ASME, 2018. | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1 | |||
Introduction | |||
* The DFC1/DFC2 subcommittee has not only developed a new fatigue evaluation method but also produced beneficial outcomes. To support this study, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect. | |||
* Fatigue life of a small specimen is generally defined as the number of cycles by 25% load drop, and this is considered to correspond to 3mm-deep crack in the test specimen. | |||
* Hence, the fatigue lives of the large-scale fatigue tests are compared with the best-fit curve developed by the DFC1 subcommittee and the fatigue lives obtained by the small specimen fatigue tests. | |||
* In this presentation, the fatigue tests using small specimens and large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping are summarized. | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 2 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 2 | |||
Fatigue Tests Using Small Specimens [*1] | |||
* Materials [wt%] | |||
Material C Si Mn P S Ni Cr Mo Cu Fe SUS316LTP 0.012 0.44 1.76 0.024 0.000 14.47 17.38 2.62 Bal. | |||
STPT370 0.200 0.25 0.82 0.014 0.001 Bal. | |||
SQV2A 0.18 0.24 1.43 0.005 0.002 0.66 0.11 0.520 0.001 Bal. | |||
SCM435H 0.37 0.28 0.76 0.014 0.011 0.08 0.91 0.15 Bal. | |||
Elongation Reduction of Material su (MPa) s0.2 (MPa) | |||
(%) Area (%) | |||
SUS316LTP 556 (480) 238 (175) 53 (35) 86 STPT370 493 (370) 272 (215) 32 (30) 68 SQV2A 597 (550-690) 450 (345) 26 (18) 77 SCM435H 1074 (930) 991 (785) 17 (15) 58 | |||
[Notes] | |||
- SUS316LTP (SA312 TP316L) was taken from the large-scale piping. | |||
- STPT370 (SA106) is a carbon steel piping. | |||
- SQV2A (SA533 Gr.B Cl.1) was taken from the large-scale Low-Alloy Steel (LAS) plate. | |||
- SCM435H is a Cr-Mo steel with high tensile strength. | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 3 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 3 | |||
Fatigue Tests Using Small Specimens [*1] (continued) | |||
* Fully Reversed Axial Fatigue Tests SUS316LTP STPT370 BFC of DFC Subcommittee (u = 556 MPa) BFC of DFC Subcommittee (u = 493 MPa) | |||
[Best-Fit Curve of DFC Subcommittee] [Best-Fit Curve of DFC Subcommittee] | |||
For Stainless Steels For CS&LAS Steels | |||
= . x . + . = . x . | |||
+ . + | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 4 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 4 | |||
Fatigue Tests Using Small Specimens [*1] (continued) | |||
* Fully Reversed Axial Fatigue Tests (continued) | |||
SQV2A SCM435H BFC of DFC Subcommittee (u = 597 MPa) BFC of DFC Subcommittee (u = 1074 MPa) | |||
[Best-Fit Curve of DFC Subcommittee] | |||
For CS&LAS Steels | |||
= . x . + . + | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 5 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 5 | |||
Fatigue Tests Using Small Specimens [*1] (continued) | |||
* Fully Reversed Axial Fatigue Tests (continued) | |||
SUS316LTP (ta=0.15%, Nf=1.06x106 cycles) STPT370 (ta=0.135%, Nf=5.40x105 cycles) | |||
SQV2A (ta=0.15%, Nf=1.89x107 cycles) SCM435H (ta=0.3%, Nf=1.01x105 cycles) | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 6 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 6 | |||
Fatigue Tests Using Small Specimens [*1] (continued) | |||
* Mean Stress Correction Modified Goodman Approach 800 Fatigue Endurance Limit (MPa) u =1000 MPa Gerber | |||
= = y =0.72 u Peterson 1 600 w0 =0.45 u S-W-T Mod. Goodman Gerber Approach y y | |||
= | |||
400 1 | |||
Peterson Approach 200 7 | |||
= | |||
8 1 + 0 0 200 400 600 800 1000 1200 Smith-Watson-Topper Approach Mean Stress (MPa) | |||
= = + | |||
: Stress Amplitude, : Equivalent Stress Amplitude, | |||
: Mean Stress, : Maximum Stress Amplitude, : Tensile Strength | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 7 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 7 | |||
Fatigue Tests Using Small Specimens [*1] (continued) | |||
* Mean Stress Correction SUS316LTP STPT370 SQV2A SCM435H Conservative | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 8 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 8 | |||
Large-Scale Fatigue Tests Using CS&LAS Plates [*2] | |||
* Test Specimen and Test Machine Stress Concentration Factor = 1.27 | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9 | |||
Large-Scale Fatigue Tests Using CS&LAS Plates [*2](continued) | |||
* Test Results Upper strain Strain amp. Mean strain ID Mat. Aim | |||
(%) (%) (%) | |||
CS1 CS Size effect 0.24 0.24 0 CS2 CS Mean stress 0.3 0.24 0.06 LAS1 LAS Size effect 0.22 0.22 0 LAS2 LAS Size effect 0.18 0.18 0 LAS3 LAS Mean stress 0.3 0.22 0.08 LAS4 LAS Mean stress 0.3 0.18 0.12 | |||
[*] Fatigue Life: Crack penetrated the plate width or the load decreased | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 10 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 10 | |||
Large-Scale Fatigue Tests Using Stainless Steel Piping[*3] | |||
* Test Specimen and Test Machine u8 Point B X (Edge) 50.6 u10 - u14 Load u6 u7 [Load Cell] | |||
Point A (Center) u9 40.5 Strain Gages Thermocouple 3 | |||
23 u1 u2 u4 u5 216.3 d1 d2 d3 d4 d5 L | |||
Notched Portion 170.3 216.3 3,000 Displacement, a | |||
[Actuator] | |||
Stress Concentration Factor = 1.39 | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 11 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 11 | |||
Large-Scale Fatigue Tests Using SS Piping[*3](continued) | |||
* Test Specimen and Test Machine Strain Mean Strain Amplitude TP-A +/-0.44% No TP-B +/-0.44% No TP-C +/-0.25% No TP-D +/-0.25% +2.25% | |||
TP-E +/-0.5% +2.0% | |||
TP-F +/-0.2% +2.3% | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 12 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 12 | |||
Large-Scale Fatigue Tests Using SS Piping[*3](continued) | |||
The fatigue lives of pipes for 3 mm crack and through-wall crack (TWC) are compared with the fatigue lives of the small specimens and the estimated best fit curve developed by the DFC subcommittee. | |||
10.0 SUS316L SUS316LTP (in air) | |||
Strain, Range at 1/2N or 1/2N25, (%) | |||
: Pipe [No Mean Stress, 3mm crack] | |||
: Pipe [No Mean Stress,3 TWC] | |||
TP-A ( , ) 20 1/2N or 1/2 N25 A | |||
: Pipe [Mean Stress, 3mm crack] | |||
: 0.98%, 1.00% | |||
0.981.00 3 | |||
: Pipe [Mean Stress, TWC] | |||
20 | |||
: Small Specimens (N25) | |||
N25 | |||
--- :TS542MPa Estimated Best Fit Curve (TS=542MPa) 1.0 TP-F of Through F | |||
Wall Crack( ): | |||
[estimated from the average of 20 AE20 ratio between 3mm crack and 3 | |||
TWC for TP-A to TP-E] | |||
0.868 0.1 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Number of Cycles Ncycle | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 13 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 13 | |||
Large-Scale Fatigue Tests Using SS Piping[*3](continued) | |||
[Fatigue Test] Target strain amplitude = +/-0.44% | |||
Observation on Notched Portion by replica printing Cracks Number of Cycles: 8,000 Number of Cycles: 9,000 Number of Cycles: 10,000 Number of Cycles: 11,450 | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 14 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 14 | |||
Large-Scale Fatigue Tests Using SS Piping[*3](continued) | |||
[Fatigue Test] Target strain amplitude = +/-0.44% (continued) | |||
Observation of Fracture Surface (beach marking) 3 4 5 6 | |||
7 8 | |||
3 2 1 3 | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 15 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 15 | |||
Large-Scale Fatigue Tests Using SS Piping[*3](continued) | |||
* The data of the tested pipes are plotted for nominal strain amplitude and nominal mean stress calculated from the loads at 3 mm crack depth with mean stress correction. | |||
* The S-W-T approach is more appropriate than the Modified Goodman approach | |||
: TP-A (0%) | |||
Nominal Stress Amplitude, a (MPa) | |||
: TP-B (0%) | |||
: TP-C (0%) | |||
: TP-D (2.25%) | |||
: TP-E (2%) | |||
: TP-F (2.3%) | |||
[Note] ( )= Mean Strain | |||
: S-W-T | |||
: Modified Goodman Nominal Mean Stress | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 16 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 16 | |||
Conclusions | |||
* To support the new fatigue evaluation method by DFC1/DFC2 subcommittee, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect. | |||
The fatigue lives of not only the small specimens but also the CS & LAS plates and the stainless steel pipes are close to the best-fit curve developed by the DFC1 subcommittee, and the size effect can be considered as negligible. | |||
The mean stress effect is remarkable in materials with higher tensile strength. The correction of mean stress effect with the S-W-T approach shows good agreement with the BFCs. | |||
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 17 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 17 | |||
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 18}} |
Latest revision as of 17:18, 2 February 2020
ML18267A089 | |
Person / Time | |
---|---|
Issue date: | 09/24/2018 |
From: | Robert Tregoning NRC/RES/DE |
To: | |
Shared Package | |
ML18267A083 | List: |
References | |
Download: ML18267A089 (19) | |
Text
Environmentally Assisted Fatigue (EAF) Research and Related ASME Activities, NRC Public Meeting, September 25, 2018 Development of New Design Fatigue Curves in Japan
- Discussion of Best Fit Curves based on Fatigue Test Data -
Seiji Asada Yun Wang Mitsubishi Heavy Industries, Ltd. Hitachi, Ltd.
Masahiro Takanashi Kentaro Hayashi IHI Corporation The Kansai Electric Power Co., Inc.
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 0
Outlines
- Introduction
- Fatigue Tests Using Small Specimens [*1]
- Large-Scale Fatigue Tests Using Carbon and Low-Alloy Steel Plates [*2]
- Large-Scale Fatigue Tests Using Stainless Steel Piping [*3]
- Conclusions (Notes)
The details of the above fatigue experimental tests are shown in the following 2018 PVP papers.
[*1] Wang, Yun, et al., Development of New Design Fatigue Curves in Japan -
Discussion of Best-Fit Curves Based on Fatigue Test Data With Small-Scale Test Specimen -, PVP2018-84052, ASME, 2018.
[*2] Takanashi, M., et al., Development of New Design Fatigue Curves in Japan
-Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates -, PVP2018-84456, ASME, 2018.
[*3] Bodai, M., Development of New Design Fatigue Curves in Japan -
Discussion of Best-Fit Curves Based on Fatigue Test Data with Large-Scale Piping -, PVP2018-84436, ASME, 2018.
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1
Introduction
- The DFC1/DFC2 subcommittee has not only developed a new fatigue evaluation method but also produced beneficial outcomes. To support this study, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.
- Fatigue life of a small specimen is generally defined as the number of cycles by 25% load drop, and this is considered to correspond to 3mm-deep crack in the test specimen.
- Hence, the fatigue lives of the large-scale fatigue tests are compared with the best-fit curve developed by the DFC1 subcommittee and the fatigue lives obtained by the small specimen fatigue tests.
- In this presentation, the fatigue tests using small specimens and large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping are summarized.
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 2
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 2
Fatigue Tests Using Small Specimens [*1]
- Materials [wt%]
Material C Si Mn P S Ni Cr Mo Cu Fe SUS316LTP 0.012 0.44 1.76 0.024 0.000 14.47 17.38 2.62 Bal.
STPT370 0.200 0.25 0.82 0.014 0.001 Bal.
SQV2A 0.18 0.24 1.43 0.005 0.002 0.66 0.11 0.520 0.001 Bal.
SCM435H 0.37 0.28 0.76 0.014 0.011 0.08 0.91 0.15 Bal.
Elongation Reduction of Material su (MPa) s0.2 (MPa)
(%) Area (%)
SUS316LTP 556 (480) 238 (175) 53 (35) 86 STPT370 493 (370) 272 (215) 32 (30) 68 SQV2A 597 (550-690) 450 (345) 26 (18) 77 SCM435H 1074 (930) 991 (785) 17 (15) 58
[Notes]
- SUS316LTP (SA312 TP316L) was taken from the large-scale piping.
- STPT370 (SA106) is a carbon steel piping.
- SQV2A (SA533 Gr.B Cl.1) was taken from the large-scale Low-Alloy Steel (LAS) plate.
- SCM435H is a Cr-Mo steel with high tensile strength.
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 3
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 3
Fatigue Tests Using Small Specimens [*1] (continued)
- Fully Reversed Axial Fatigue Tests SUS316LTP STPT370 BFC of DFC Subcommittee (u = 556 MPa) BFC of DFC Subcommittee (u = 493 MPa)
[Best-Fit Curve of DFC Subcommittee] [Best-Fit Curve of DFC Subcommittee]
For Stainless Steels For CS&LAS Steels
= . x . + . = . x .
+ . +
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 4
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 4
Fatigue Tests Using Small Specimens [*1] (continued)
- Fully Reversed Axial Fatigue Tests (continued)
SQV2A SCM435H BFC of DFC Subcommittee (u = 597 MPa) BFC of DFC Subcommittee (u = 1074 MPa)
[Best-Fit Curve of DFC Subcommittee]
For CS&LAS Steels
= . x . + . +
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 5
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 5
Fatigue Tests Using Small Specimens [*1] (continued)
- Fully Reversed Axial Fatigue Tests (continued)
SUS316LTP (ta=0.15%, Nf=1.06x106 cycles) STPT370 (ta=0.135%, Nf=5.40x105 cycles)
SQV2A (ta=0.15%, Nf=1.89x107 cycles) SCM435H (ta=0.3%, Nf=1.01x105 cycles)
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 6
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 6
Fatigue Tests Using Small Specimens [*1] (continued)
- Mean Stress Correction Modified Goodman Approach 800 Fatigue Endurance Limit (MPa) u =1000 MPa Gerber
= = y =0.72 u Peterson 1 600 w0 =0.45 u S-W-T Mod. Goodman Gerber Approach y y
=
400 1
Peterson Approach 200 7
=
8 1 + 0 0 200 400 600 800 1000 1200 Smith-Watson-Topper Approach Mean Stress (MPa)
= = +
- Stress Amplitude, : Equivalent Stress Amplitude,
- Mean Stress, : Maximum Stress Amplitude, : Tensile Strength
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 7
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 7
Fatigue Tests Using Small Specimens [*1] (continued)
- Mean Stress Correction SUS316LTP STPT370 SQV2A SCM435H Conservative
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 8
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 8
Large-Scale Fatigue Tests Using CS&LAS Plates [*2]
- Test Specimen and Test Machine Stress Concentration Factor = 1.27
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9
Large-Scale Fatigue Tests Using CS&LAS Plates [*2](continued)
- Test Results Upper strain Strain amp. Mean strain ID Mat. Aim
(%) (%) (%)
CS1 CS Size effect 0.24 0.24 0 CS2 CS Mean stress 0.3 0.24 0.06 LAS1 LAS Size effect 0.22 0.22 0 LAS2 LAS Size effect 0.18 0.18 0 LAS3 LAS Mean stress 0.3 0.22 0.08 LAS4 LAS Mean stress 0.3 0.18 0.12
[*] Fatigue Life: Crack penetrated the plate width or the load decreased
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 10
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 10
Large-Scale Fatigue Tests Using Stainless Steel Piping[*3]
- Test Specimen and Test Machine u8 Point B X (Edge) 50.6 u10 - u14 Load u6 u7 [Load Cell]
Point A (Center) u9 40.5 Strain Gages Thermocouple 3
23 u1 u2 u4 u5 216.3 d1 d2 d3 d4 d5 L
Notched Portion 170.3 216.3 3,000 Displacement, a
[Actuator]
Stress Concentration Factor = 1.39
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 11
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 11
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
- Test Specimen and Test Machine Strain Mean Strain Amplitude TP-A +/-0.44% No TP-B +/-0.44% No TP-C +/-0.25% No TP-D +/-0.25% +2.25%
TP-E +/-0.5% +2.0%
TP-F +/-0.2% +2.3%
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 12
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 12
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
The fatigue lives of pipes for 3 mm crack and through-wall crack (TWC) are compared with the fatigue lives of the small specimens and the estimated best fit curve developed by the DFC subcommittee.
10.0 SUS316L SUS316LTP (in air)
Strain, Range at 1/2N or 1/2N25, (%)
- Pipe [No Mean Stress, 3mm crack]
- Pipe [No Mean Stress,3 TWC]
TP-A ( , ) 20 1/2N or 1/2 N25 A
- Pipe [Mean Stress, 3mm crack]
- 0.98%, 1.00%
0.981.00 3
- Pipe [Mean Stress, TWC]
20
- Small Specimens (N25)
N25
--- :TS542MPa Estimated Best Fit Curve (TS=542MPa) 1.0 TP-F of Through F
Wall Crack( ):
[estimated from the average of 20 AE20 ratio between 3mm crack and 3
TWC for TP-A to TP-E]
0.868 0.1 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Number of Cycles Ncycle
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 13
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 13
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
[Fatigue Test] Target strain amplitude = +/-0.44%
Observation on Notched Portion by replica printing Cracks Number of Cycles: 8,000 Number of Cycles: 9,000 Number of Cycles: 10,000 Number of Cycles: 11,450
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 14
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 14
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
[Fatigue Test] Target strain amplitude = +/-0.44% (continued)
Observation of Fracture Surface (beach marking) 3 4 5 6
7 8
3 2 1 3
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 15
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 15
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
- The data of the tested pipes are plotted for nominal strain amplitude and nominal mean stress calculated from the loads at 3 mm crack depth with mean stress correction.
- The S-W-T approach is more appropriate than the Modified Goodman approach
- TP-A (0%)
Nominal Stress Amplitude, a (MPa)
- TP-B (0%)
- TP-C (0%)
- TP-D (2.25%)
- TP-E (2%)
- TP-F (2.3%)
[Note] ( )= Mean Strain
- S-W-T
- Modified Goodman Nominal Mean Stress
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 16
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 16
Conclusions
- To support the new fatigue evaluation method by DFC1/DFC2 subcommittee, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.
The fatigue lives of not only the small specimens but also the CS & LAS plates and the stainless steel pipes are close to the best-fit curve developed by the DFC1 subcommittee, and the size effect can be considered as negligible.
The mean stress effect is remarkable in materials with higher tensile strength. The correction of mean stress effect with the S-W-T approach shows good agreement with the BFCs.
© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 17
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 17
© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 18