ML18267A089: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 09/24/2018
| issue date = 09/24/2018
| title = 1130 Large Scale Fatigue Test in Japan
| title = 1130 Large Scale Fatigue Test in Japan
| author name = Tregoning R L
| author name = Tregoning R
| author affiliation = NRC/RES/DE
| author affiliation = NRC/RES/DE
| addressee name =  
| addressee name =  
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:0© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.Seiji Asada Yun WangMitsubishi Heavy Industries, Ltd.Hitachi, Ltd. Masahiro TakanashiKentaroHayashiIHI Corporation The Kansai Electric Power Co., Inc.Development of New Design Fatigue Curves in Japan-Discussion of Best Fit Curves based onFatigue Test Data -Environmentally Assisted Fatigue (EAF) Research and Related ASME Activities,NRC  Public Meeting, September 25, 2018 1© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.1OutlinesIntroductionFatigue Tests Using Small Specimens [*1]Large-Scale Fatigue Tests Using Carbon and Low-Alloy Steel Plates [*2]Large-Scale Fatigue Tests Using Stainless Steel Piping [*3]Conclusions(Notes)The details of the above fatigue experimental tests are shown in the following 2018 PVP papers.[*1] Wang, Yun, et al., -Discussion of Best-Fit Curves Based on Fatigue Test Data With Small-Scale Test Specimen --84052, ASME, 2018.[*2] Takanashiof New Design Fatigue Curves in Japan -Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates --84456, ASME, 2018.[*3] Bodai, M-Discussion of Best-Fit Curves Based on Fatigue Test Data with Large-Scale Piping --84436, ASME, 2018.
{{#Wiki_filter:Environmentally Assisted Fatigue (EAF) Research and Related ASME Activities, NRC Public Meeting, September 25, 2018 Development of New Design Fatigue Curves in Japan
2© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.2Introduction The DFC1/DFC2 subcommittee has not only developed a new fatigue evaluation method but also produced beneficial outcomes. To support this study, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.Fatigue life of a small specimen is generally defined as the number of cycles by 25% load drop, and this is considered to correspond to 3mm-deep crack in the test specimen. Hence, the fatigue lives of the large-scale fatigue tests are compared with the best-fit curve developed by the DFC1 subcommittee and the fatigue lives obtained by the small specimen fatigue tests.In this presentation, the fatigue tests using small specimens and large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping are summarized.
  - Discussion of Best Fit Curves based on Fatigue Test Data -
3© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.3Fatigue Tests Using Small Specimens [*1]Materials MaterialCSiMnPSNiCrMoCuFeSUS316LTP0.0120.441.760.0240.00014.4717.382.62Bal.STPT3700.2000.250.820.0140.001Bal.SQV2A0.180.241.430.0050.0020.660.110.5200.001Bal.SCM435H0.370.280.760.0140.0110.080.910.15Bal.Materialu(MPa)0.2(MPa)Elongation(%)Reduction of Area (%)SUS316LTP556 (480)238 (175)53 (35)86STPT370493 (370)272 (215)32 (30)68SQV2A597 (550-690)450 (345)26 (18)77SCM435H1074 (930)991 (785)17 (15)58[Notes]-SUS316LTP (SA312 TP316L)was taken from the large-scale piping.-STPT370 (is a carbon steel piping.-SQV2A (SA533 Gr.BCl.1)was taken from the large-scale Low-Alloy Steel (LAS) plate.-SCM435H is a Cr-Mo steel with high tensile strength.[wt%]
Seiji Asada                            Yun Wang Mitsubishi Heavy Industries, Ltd.                         Hitachi, Ltd.
4&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.4Fatigue Tests Using Small Specimens [*1] (continued)Fully Reversed Axial Fatigue Tests SUS316LTPSTPT370BFC of DFC Subcommittee (u= 556 MPa)BFC of DFC Subcommittee (u= 493 MPa)[Best-Fit Curve of DFC Subcommittee]For Stainless Steels[Best-Fit Curve of DFC Subcommittee]For CS&LAS Steels 5&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.5Fatigue Tests Using Small Specimens [*1] (continued)Fully Reversed Axial Fatigue Tests (continued)SQV2ASCM435HBFC of DFC Subcommittee (u= 597 MPa)BFC of DFC Subcommittee (u= 1074 MPa)[Best-Fit Curve of DFC Subcommittee]For CS&LAS Steels 6&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.6Fatigue Tests Using Small Specimens [*1] (continued)Fully Reversed Axial Fatigue Tests (continued)SUS316LTP (ta=0.15%, Nf=1.06x106cycles)STPT370 (ta=0.135%, Nf=5.40x105cycles)SQV2A (ta=0.15%, Nf=1.89x107cycles)SCM435H (ta=0.3%, Nf=1.01x105cycles) 7&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.7Fatigue Tests Using Small Specimens [*1] (continued)Mean Stress CorrectionModified Goodman ApproachGerber ApproachPeterson ApproachSmith-Watson-Topper Approach: Stress Amplitude, : Equivalent Stress Amplitude, : Tensile Strength Mean Stress  (MPa)0200400600800100012000200400600800u=1000MPay=0.72uw0=0.45uGerberPetersonS-W-TMod.GoodmanyyFatigue Endurance Limit  (MPa) 8&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.8Fatigue Tests Using Small Specimens [*1] (continued)Mean Stress CorrectionSUS316LTPSTPT370SCM435HSQV2AConservative 9&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.9Large-Scale Fatigue Tests Using CS&LAS Plates [*2]Test Specimen and Test Machine Stress Concentration Factor = 1.27 10&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.10Large-Scale Fatigue Tests Using CS&LAS Plates [*2](continued)Test Results IDMat.AimUpper strain (%)Strain amp.(%)Mean strain(%)CS1CSSize effect0.240.240CS2CSMean stress0.30.240.06LAS1LASSize effect0.220.220LAS2LASSize effect0.180.180LAS3LASMean stress0.30.220.08LAS4LASMean stress0.30.180.12[*]Fatigue Life: Crack penetrated the plate width or the load decreased 11&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.11Large-Scale Fatigue Tests Using Stainless Steel Piping[*3]Test Specimen and Test Machine Notched Portion170.3216.3216.3233Point A(Center)Point B(Edge)XLoad [Load Cell]Strain GagesDisplacement, a[Actuator]u1u2u4u5d1d2d4d5d3ThermocoupleLu8u10 u14u9u6u7Stress Concentration Factor = 1.39 12&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.12Large-Scale Fatigue Tests Using SS Piping[*3](continued)Test Specimen and Test Machine Strain AmplitudeMean StrainTP-A?<0.44%NoTP-B?<0.44%NoTP-C?<0.25%NoTP-D?<0.25%+2.25%TP-E?<0.5%+2.0%TP-F?<0.2%+2.3%
Masahiro Takanashi                              Kentaro Hayashi IHI Corporation               The Kansai Electric Power Co., Inc.
13&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.13Large-Scale Fatigue Tests Using SS Piping[*3](continued)The fatigue lives of pipes for 3 mm crack and through-wall crack (TWC) are compared with the fatigue lives of the small specimens and the estimated best fit curve developed by the DFC subcommittee.Number of CyclesStrain, Range at 1/2Nor 1/2N25, (%)SUS316LTP (in air): Pipe [No Mean Stress, 3mm crack]: Pipe [No Mean Stress, TWC]: Pipe [Mean Stress, 3mm crack]: Pipe [Mean Stress, TWC]: Small Specimens (N25)---: Estimated Best Fit Curve (TS=542MPa)TP-A (  ,  ): 0.98%, 1.00%TP-F of Through Wall Crack( ):[estimated from the average ofratio between 3mm crack andTWC for TP-A to TP-E]
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.
14&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.14Large-Scale Fatigue Tests Using SS  Piping[*3](continued)[Fatigue Test] Target strain amplitude = ?<0.44%Observation on Notched Portion by replica printingNumber of Cycles: 10,000Number of Cycles: 11,450Number of Cycles: 8,000Number of Cycles: 9,000Cracks 15&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.15Large-Scale Fatigue Tests Using SS Piping[*3](continued)[Fatigue Test] Target strain amplitude = ?<0.44% (continued)Observation of Fracture Surface (beach marking)1323345678 16&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.16Large-Scale Fatigue Tests Using SS Piping[*3](continued)The data of the tested pipes are plotted for nominal strain amplitude and nominal mean stress calculated from the loads at 3 mm crack depth with mean stress correction.The S-W-T approach is more appropriate than the Modified Goodman approach: TP-A (0%): TP-B (0%): TP-C (0%): TP-D (2.25%): TP-E (2%): TP-F (2.3%)[Note] ( )= Mean Strain: S-W-T: Modified GoodmanNominal Mean StressNominal Stress Amplitude, a(MPa) 17&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.17ConclusionsTo support the new fatigue evaluation method by DFC1/DFC2 subcommittee, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.ThefatiguelivesofnotonlythesmallspecimensbutalsotheCS&LASplatesandthestainlesssteelpipesareclosetothebest-fitcurvedevelopedbytheDFC1subcommittee,andthesizeeffectcanbeconsideredasnegligible.Themeanstresseffectisremarkableinmaterialswithhighertensilestrength.ThecorrectionofmeanstresseffectwiththeS-W-TapproachshowsgoodagreementwiththeBFCs.
  &#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                           0
18&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.}}
 
Outlines
* Introduction
* Fatigue Tests Using Small Specimens [*1]
* Large-Scale Fatigue Tests Using Carbon and Low-Alloy Steel Plates [*2]
* Large-Scale Fatigue Tests Using Stainless Steel Piping [*3]
* Conclusions (Notes)
The details of the above fatigue experimental tests are shown in the following 2018 PVP papers.
[*1] Wang, Yun, et al., Development of New Design Fatigue Curves in Japan -
Discussion of Best-Fit Curves Based on Fatigue Test Data With Small-Scale Test Specimen -, PVP2018-84052, ASME, 2018.
[*2] Takanashi, M., et al., Development of New Design Fatigue Curves in Japan
              -Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates -, PVP2018-84456, ASME, 2018.
[*3] Bodai, M., Development of New Design Fatigue Curves in Japan -
Discussion of Best-Fit Curves Based on Fatigue Test Data with Large-Scale Piping -, PVP2018-84436, ASME, 2018.
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                           1
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                         1
 
Introduction
* The DFC1/DFC2 subcommittee has not only developed a new fatigue evaluation method but also produced beneficial outcomes. To support this study, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.
* Fatigue life of a small specimen is generally defined as the number of cycles by 25% load drop, and this is considered to correspond to 3mm-deep crack in the test specimen.
* Hence, the fatigue lives of the large-scale fatigue tests are compared with the best-fit curve developed by the DFC1 subcommittee and the fatigue lives obtained by the small specimen fatigue tests.
* In this presentation, the fatigue tests using small specimens and large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping are summarized.
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.           2
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.         2
 
Fatigue Tests Using Small Specimens [*1]
* Materials                                                                                                 [wt%]
Material                  C                Si            Mn    P    S      Ni    Cr      Mo    Cu      Fe SUS316LTP                  0.012            0.44            1.76 0.024 0.000    14.47 17.38    2.62        Bal.
STPT370                  0.200            0.25            0.82 0.014 0.001                              Bal.
SQV2A                  0.18            0.24            1.43 0.005 0.002    0.66  0.11    0.520 0.001    Bal.
SCM435H                    0.37            0.28            0.76 0.014 0.011    0.08  0.91      0.15        Bal.
Elongation  Reduction of Material                                  su (MPa)           s0.2 (MPa)
(%)       Area (%)
SUS316LTP                                  556 (480)         238 (175)         53 (35)       86 STPT370                                  493 (370)         272 (215)         32 (30)       68 SQV2A                              597 (550-690)           450 (345)         26 (18)       77 SCM435H                                  1074 (930)         991 (785)         17 (15)       58
[Notes]
- SUS316LTP (SA312 TP316L) was taken from the large-scale piping.
- STPT370 (SA106) is a carbon steel piping.
- SQV2A (SA533 Gr.B Cl.1) was taken from the large-scale Low-Alloy Steel (LAS) plate.
- SCM435H is a Cr-Mo steel with high tensile strength.
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                     3
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                     3
 
Fatigue Tests Using Small Specimens [*1] (continued)
* Fully Reversed Axial Fatigue Tests SUS316LTP                                                      STPT370 BFC of DFC Subcommittee (u = 556 MPa)                         BFC of DFC Subcommittee (u = 493 MPa)
[Best-Fit Curve of DFC Subcommittee]                                   [Best-Fit Curve of DFC Subcommittee]
For Stainless Steels                                            For CS&LAS Steels
    = . .                                 + .  = . x    .
                                                                                                      + .  +
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                     4
  &#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                    4
 
Fatigue Tests Using Small Specimens [*1] (continued)
* Fully Reversed Axial Fatigue Tests                                        (continued)
SQV2A                                                              SCM435H BFC of DFC Subcommittee (u = 597 MPa)                               BFC of DFC Subcommittee (u = 1074 MPa)
[Best-Fit Curve of DFC Subcommittee]
For CS&LAS Steels
                                                    = . x    .    + .  +
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                           5
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                           5
 
Fatigue Tests Using Small Specimens [*1] (continued)
* Fully Reversed Axial Fatigue Tests                         (continued)
SUS316LTP (ta=0.15%, Nf=1.06x106 cycles)                     STPT370 (ta=0.135%, Nf=5.40x105 cycles)
SQV2A (ta=0.15%, Nf=1.89x107 cycles)                       SCM435H (ta=0.3%, Nf=1.01x105 cycles)
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                         6
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                         6
 
Fatigue Tests Using Small Specimens [*1] (continued)
* Mean Stress Correction Modified Goodman Approach                                                                                 800 Fatigue Endurance Limit (MPa) u =1000 MPa    Gerber
        =        =                                                                                               y =0.72 u      Peterson 1                                                                              600      w0 =0.45 u    S-W-T Mod. Goodman Gerber Approach                                                                                                                      y  y
                          =
400 1
Peterson Approach                                                                                        200 7
        =
8  1 +                                                                                  0 0  200  400  600  800  1000  1200 Smith-Watson-Topper Approach                                                                                            Mean Stress (MPa)
        =    =    +
: Stress Amplitude,  : Equivalent Stress Amplitude,
: Mean Stress,                                : Maximum Stress Amplitude,  : Tensile Strength
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                                                         7
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                                                       7
 
Fatigue Tests Using Small Specimens [*1] (continued)
* Mean Stress Correction SUS316LTP  STPT370 SQV2A SCM435H Conservative
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                     8
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                   8
 
Large-Scale Fatigue Tests Using CS&LAS Plates [*2]
* Test Specimen and Test Machine Stress Concentration Factor = 1.27
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9
  &#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9
 
Large-Scale Fatigue Tests Using CS&LAS Plates [*2](continued)
* Test Results Upper strain        Strain amp. Mean strain ID                  Mat.                        Aim
(%)                   (%)           (%)
CS1                    CS                      Size effect    0.24                  0.24            0 CS2                    CS                      Mean stress    0.3                  0.24          0.06 LAS1                  LAS                      Size effect    0.22                  0.22            0 LAS2                  LAS                      Size effect    0.18                  0.18            0 LAS3                  LAS                      Mean stress    0.3                  0.22          0.08 LAS4                  LAS                      Mean stress    0.3                  0.18          0.12
[*] Fatigue Life: Crack penetrated the plate width or the load decreased
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                           10
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                         10
 
Large-Scale Fatigue Tests Using Stainless Steel Piping[*3]
* Test Specimen and Test Machine u8 Point B X                  (Edge) 50.6 u10 - u14                  Load u6              u7          [Load Cell]
Point A (Center) u9 40.5                                                Strain Gages  Thermocouple 3
23                                                            u1 u2      u4 u5 216.3                                                          d1 d2 d3 d4 d5 L
Notched Portion 170.3  216.3 3,000 Displacement, a
[Actuator]
Stress Concentration Factor = 1.39
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                                   11
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                                 11
 
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
* Test Specimen and Test Machine Strain Mean Strain Amplitude TP-A                         +/-0.44%       No TP-B                         +/-0.44%       No TP-C                         +/-0.25%       No TP-D                         +/-0.25%     +2.25%
TP-E                         +/-0.5%     +2.0%
TP-F                         +/-0.2%     +2.3%
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                       12
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                     12
 
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
The fatigue lives of pipes for 3 mm crack and through-wall crack (TWC) are compared with the fatigue lives of the small specimens and the estimated best fit curve developed by the DFC subcommittee.
10.0 SUS316L SUS316LTP  (in air)
Strain, Range at 1/2N or 1/2N25, (%)
: Pipe [No Mean Stress, 3mm crack]
: Pipe [No Mean Stress,3 TWC]
TP-A ( , )              20 1/2N or 1/2 N25 A
: Pipe [Mean Stress, 3mm crack]
: 0.98%, 1.00%
0.981.00          3
: Pipe [Mean Stress, TWC]
20
: Small Specimens (N25)
N25
                                                                                                                          ---   :TS542MPa Estimated Best Fit Curve (TS=542MPa) 1.0 TP-F of Through F
Wall Crack( ):
[estimated from   the average of 20 AE20 ratio between   3mm crack and 3
TWC for TP-A     to TP-E]
0.868 0.1 1.E+02  1.E+03            1.E+04            1.E+05            1.E+06              1.E+07 Number of Cycles Ncycle
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                                                                                     13
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                                                                                                     13
 
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
[Fatigue Test] Target strain amplitude = +/-0.44%
Observation on Notched Portion by replica printing Cracks Number of Cycles: 8,000    Number of Cycles: 9,000 Number of Cycles: 10,000 Number of Cycles: 11,450
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                           14
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                         14
 
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
[Fatigue Test] Target strain amplitude = +/-0.44% (continued)
Observation of Fracture Surface (beach marking) 3  4  5 6
7 8
3        2 1 3
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                 15
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                15
 
Large-Scale Fatigue Tests Using SS Piping[*3](continued)
* The data of the tested pipes are plotted for nominal strain amplitude and nominal mean stress calculated from the loads at 3 mm crack depth with mean stress correction.
* The S-W-T approach is more appropriate than the Modified Goodman approach
: TP-A (0%)
Nominal Stress Amplitude, a (MPa)
: TP-B (0%)
: TP-C (0%)
: TP-D (2.25%)
: TP-E (2%)
: TP-F (2.3%)
[Note] ( )= Mean Strain
: S-W-T
: Modified Goodman Nominal Mean Stress
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                              16
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.                                              16
 
Conclusions
* To support the new fatigue evaluation method by DFC1/DFC2 subcommittee, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.
The              fatigue lives of not only the small specimens but also the CS & LAS plates and the stainless steel pipes are close to the best-fit curve developed by the DFC1 subcommittee, and the size effect can be considered as negligible.
The              mean stress effect is remarkable in materials with higher tensile strength. The correction of mean stress effect with the S-W-T approach shows good agreement with the BFCs.
&#xa9; 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.              17
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.            17
 
&#xa9; 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 18}}

Latest revision as of 18:18, 2 February 2020

1130 Large Scale Fatigue Test in Japan
ML18267A089
Person / Time
Issue date: 09/24/2018
From: Robert Tregoning
NRC/RES/DE
To:
Shared Package
ML18267A083 List:
References
Download: ML18267A089 (19)


Text

Environmentally Assisted Fatigue (EAF) Research and Related ASME Activities, NRC Public Meeting, September 25, 2018 Development of New Design Fatigue Curves in Japan

- Discussion of Best Fit Curves based on Fatigue Test Data -

Seiji Asada Yun Wang Mitsubishi Heavy Industries, Ltd. Hitachi, Ltd.

Masahiro Takanashi Kentaro Hayashi IHI Corporation The Kansai Electric Power Co., Inc.

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 0

Outlines

  • Introduction
  • Fatigue Tests Using Small Specimens [*1]
  • Large-Scale Fatigue Tests Using Carbon and Low-Alloy Steel Plates [*2]
  • Large-Scale Fatigue Tests Using Stainless Steel Piping [*3]
  • Conclusions (Notes)

The details of the above fatigue experimental tests are shown in the following 2018 PVP papers.

[*1] Wang, Yun, et al., Development of New Design Fatigue Curves in Japan -

Discussion of Best-Fit Curves Based on Fatigue Test Data With Small-Scale Test Specimen -, PVP2018-84052, ASME, 2018.

[*2] Takanashi, M., et al., Development of New Design Fatigue Curves in Japan

-Discussion of Best-Fit Curves Based on Large-Scale Fatigue Tests of Carbon and Low-Alloy Steel Plates -, PVP2018-84456, ASME, 2018.

[*3] Bodai, M., Development of New Design Fatigue Curves in Japan -

Discussion of Best-Fit Curves Based on Fatigue Test Data with Large-Scale Piping -, PVP2018-84436, ASME, 2018.

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 1

Introduction

  • The DFC1/DFC2 subcommittee has not only developed a new fatigue evaluation method but also produced beneficial outcomes. To support this study, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.
  • Fatigue life of a small specimen is generally defined as the number of cycles by 25% load drop, and this is considered to correspond to 3mm-deep crack in the test specimen.
  • Hence, the fatigue lives of the large-scale fatigue tests are compared with the best-fit curve developed by the DFC1 subcommittee and the fatigue lives obtained by the small specimen fatigue tests.
  • In this presentation, the fatigue tests using small specimens and large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping are summarized.

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 2

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 2

Fatigue Tests Using Small Specimens [*1]

  • Materials [wt%]

Material C Si Mn P S Ni Cr Mo Cu Fe SUS316LTP 0.012 0.44 1.76 0.024 0.000 14.47 17.38 2.62 Bal.

STPT370 0.200 0.25 0.82 0.014 0.001 Bal.

SQV2A 0.18 0.24 1.43 0.005 0.002 0.66 0.11 0.520 0.001 Bal.

SCM435H 0.37 0.28 0.76 0.014 0.011 0.08 0.91 0.15 Bal.

Elongation Reduction of Material su (MPa) s0.2 (MPa)

(%) Area (%)

SUS316LTP 556 (480) 238 (175) 53 (35) 86 STPT370 493 (370) 272 (215) 32 (30) 68 SQV2A 597 (550-690) 450 (345) 26 (18) 77 SCM435H 1074 (930) 991 (785) 17 (15) 58

[Notes]

- SUS316LTP (SA312 TP316L) was taken from the large-scale piping.

- STPT370 (SA106) is a carbon steel piping.

- SQV2A (SA533 Gr.B Cl.1) was taken from the large-scale Low-Alloy Steel (LAS) plate.

- SCM435H is a Cr-Mo steel with high tensile strength.

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 3

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 3

Fatigue Tests Using Small Specimens [*1] (continued)

  • Fully Reversed Axial Fatigue Tests SUS316LTP STPT370 BFC of DFC Subcommittee (u = 556 MPa) BFC of DFC Subcommittee (u = 493 MPa)

[Best-Fit Curve of DFC Subcommittee] [Best-Fit Curve of DFC Subcommittee]

For Stainless Steels For CS&LAS Steels

= . x . + . = . x .

+ . +

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 4

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 4

Fatigue Tests Using Small Specimens [*1] (continued)

  • Fully Reversed Axial Fatigue Tests (continued)

SQV2A SCM435H BFC of DFC Subcommittee (u = 597 MPa) BFC of DFC Subcommittee (u = 1074 MPa)

[Best-Fit Curve of DFC Subcommittee]

For CS&LAS Steels

= . x . + . +

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 5

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 5

Fatigue Tests Using Small Specimens [*1] (continued)

  • Fully Reversed Axial Fatigue Tests (continued)

SUS316LTP (ta=0.15%, Nf=1.06x106 cycles) STPT370 (ta=0.135%, Nf=5.40x105 cycles)

SQV2A (ta=0.15%, Nf=1.89x107 cycles) SCM435H (ta=0.3%, Nf=1.01x105 cycles)

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 6

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 6

Fatigue Tests Using Small Specimens [*1] (continued)

  • Mean Stress Correction Modified Goodman Approach 800 Fatigue Endurance Limit (MPa) u =1000 MPa Gerber

= = y =0.72 u Peterson 1 600 w0 =0.45 u S-W-T Mod. Goodman Gerber Approach y y

=

400 1

Peterson Approach 200 7

=

8 1 + 0 0 200 400 600 800 1000 1200 Smith-Watson-Topper Approach Mean Stress (MPa)

= = +

Stress Amplitude,  : Equivalent Stress Amplitude,
Mean Stress,  : Maximum Stress Amplitude,  : Tensile Strength

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 7

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 7

Fatigue Tests Using Small Specimens [*1] (continued)

  • Mean Stress Correction SUS316LTP STPT370 SQV2A SCM435H Conservative

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 8

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 8

Large-Scale Fatigue Tests Using CS&LAS Plates [*2]

  • Test Specimen and Test Machine Stress Concentration Factor = 1.27

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 9

Large-Scale Fatigue Tests Using CS&LAS Plates [*2](continued)

  • Test Results Upper strain Strain amp. Mean strain ID Mat. Aim

(%) (%) (%)

CS1 CS Size effect 0.24 0.24 0 CS2 CS Mean stress 0.3 0.24 0.06 LAS1 LAS Size effect 0.22 0.22 0 LAS2 LAS Size effect 0.18 0.18 0 LAS3 LAS Mean stress 0.3 0.22 0.08 LAS4 LAS Mean stress 0.3 0.18 0.12

[*] Fatigue Life: Crack penetrated the plate width or the load decreased

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 10

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 10

Large-Scale Fatigue Tests Using Stainless Steel Piping[*3]

  • Test Specimen and Test Machine u8 Point B X (Edge) 50.6 u10 - u14 Load u6 u7 [Load Cell]

Point A (Center) u9 40.5 Strain Gages Thermocouple 3

23 u1 u2 u4 u5 216.3 d1 d2 d3 d4 d5 L

Notched Portion 170.3 216.3 3,000 Displacement, a

[Actuator]

Stress Concentration Factor = 1.39

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 11

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 11

Large-Scale Fatigue Tests Using SS Piping[*3](continued)

  • Test Specimen and Test Machine Strain Mean Strain Amplitude TP-A +/-0.44% No TP-B +/-0.44% No TP-C +/-0.25% No TP-D +/-0.25% +2.25%

TP-E +/-0.5% +2.0%

TP-F +/-0.2% +2.3%

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 12

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 12

Large-Scale Fatigue Tests Using SS Piping[*3](continued)

The fatigue lives of pipes for 3 mm crack and through-wall crack (TWC) are compared with the fatigue lives of the small specimens and the estimated best fit curve developed by the DFC subcommittee.

10.0 SUS316L SUS316LTP (in air)

Strain, Range at 1/2N or 1/2N25, (%)

Pipe [No Mean Stress, 3mm crack]
Pipe [No Mean Stress,3 TWC]

TP-A ( , ) 20 1/2N or 1/2 N25 A

Pipe [Mean Stress, 3mm crack]
0.98%, 1.00%

0.981.00 3

Pipe [Mean Stress, TWC]

20

Small Specimens (N25)

N25

--- :TS542MPa Estimated Best Fit Curve (TS=542MPa) 1.0 TP-F of Through F

Wall Crack( ):

[estimated from the average of 20 AE20 ratio between 3mm crack and 3

TWC for TP-A to TP-E]

0.868 0.1 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 Number of Cycles Ncycle

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 13

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 13

Large-Scale Fatigue Tests Using SS Piping[*3](continued)

[Fatigue Test] Target strain amplitude = +/-0.44%

Observation on Notched Portion by replica printing Cracks Number of Cycles: 8,000 Number of Cycles: 9,000 Number of Cycles: 10,000 Number of Cycles: 11,450

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 14

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 14

Large-Scale Fatigue Tests Using SS Piping[*3](continued)

[Fatigue Test] Target strain amplitude = +/-0.44% (continued)

Observation of Fracture Surface (beach marking) 3 4 5 6

7 8

3 2 1 3

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 15

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 15

Large-Scale Fatigue Tests Using SS Piping[*3](continued)

  • The data of the tested pipes are plotted for nominal strain amplitude and nominal mean stress calculated from the loads at 3 mm crack depth with mean stress correction.
  • The S-W-T approach is more appropriate than the Modified Goodman approach
TP-A (0%)

Nominal Stress Amplitude, a (MPa)

TP-B (0%)
TP-C (0%)
TP-D (2.25%)
TP-E (2%)
TP-F (2.3%)

[Note] ( )= Mean Strain

S-W-T
Modified Goodman Nominal Mean Stress

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 16

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 16

Conclusions

  • To support the new fatigue evaluation method by DFC1/DFC2 subcommittee, a Japanese utility project performed not only large scale fatigue tests using carbon & low-alloy steel flat plates and austenitic stainless steel piping but also fatigue tests using small specimens to obtain not only basic data but also fatigue data of mean stress effect.

The fatigue lives of not only the small specimens but also the CS & LAS plates and the stainless steel pipes are close to the best-fit curve developed by the DFC1 subcommittee, and the size effect can be considered as negligible.

The mean stress effect is remarkable in materials with higher tensile strength. The correction of mean stress effect with the S-W-T approach shows good agreement with the BFCs.

© 2018 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 17

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 17

© 2016 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved. 18