ML18267A097: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:© 2018 Electric Power Research Institute, Inc. All rights reserved.Seiji AsadaMitsubishi Heavy Industries, Ltd.Gary StevensTechnical Executive, EPRIEAF Research and Related ASME Activities, NRC Public MeetingSeptember 25, 2018Non-Isothermal EAF Testing for 316 Stainless Steel in Simulated PWR Environment 2© 2018 Electric Power Research Institute, Inc. All rights reserved.OutlinesObjectivesExperimental ProcedureTest ConditionTest MatrixComparison of Experimental Fatigue Lives and PredictionsMeasurement of Crack Growth RateBeachmarkObservationExtended WKR Method to Non-Isothermal Condition Conclusions 3© 2018 Electric Power Research Institute, Inc. All rights reserved.ObjectivesFatigue Gap Analysis and Roadmapfor Future Research, -Isothermal S-Limited data available on the influence of variable temperature and variable strain rate within test cycles and of the influence of out-of-phase variations of temperature and strain rateInfluence of in-phase and out-of-phase temperature and strain variations to be identified by comparison with isothermal tests.Austenitic stainless steels in PWR environmental are highest priorityNon-isothermal & isothermal testing has been performed to address Gap 15.
{{#Wiki_filter:Non-Isothermal EAF Testing for 316 Stainless Steel in Simulated PWR Environment Seiji Asada Mitsubishi Heavy Industries, Ltd.
4&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.R20GL(24mm)30160122061726Experimental ProcedureSpecimenT/C Extensometer(GL : 24mm)Induction heaterWater EnvironmentSimulates PWR primary water 500 ppm H3BO3as B 2 ppm LiOHas Li. Dissolved oxygen (DO) :< 0.005 ppmDissolved hydrogen (DH): 30 cc/kg H2OMaterialType 316 Stainless SteelCSiMnPSNiCrMoMin>+>+>+>+>+10.0016.002.00Max0.081.002.000.0450.03014.0018.003.00Heat0.040.610.920.0380.00110.2216.862.06m (Aqua regialiquid for 10 s) 5&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Test ConditionIsothermal fatigue test & Non-isothermal fatigue testTemperature: 100>l325 &#xba;C.Strain amplitude (a):0.6 %The period t1, t3, t3123are parameters.I1-1~4[addressed to positive strain rate changes]NI2-1~4Non-NI3-1Non-isothermal test with very high strain rate in compression (Very FastFast)NI4-1Non-isothermal test with the same condition of NI2-1 adding beach markingMeasure crack shape for fatigue lifeFastFastOut of phase (NI2-1)Strain Rate: SlowFast[Out-of-Phase]100Temp.(&#xba;C)325a132aTimeFastSlowStrain (%)0.61321=600sec2=480sec3=1000 secOut of phase (NI2-4)Strain Rate: FastFast[In-Phase]
Gary Stevens Technical Executive, EPRI EAF Research and Related ASME Activities, NRC Public Meeting September 25, 2018
6&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Test MatrixNoTemp.()Strain amp.(%)Temp. change PatternStrain rate change  PatternPeriod (sec)Strain rate (%/sec>'t1t2t3I1-11000.60ConstantSlow-fast60048010000.0010.00250.0006I1-23250.60ConstantSlow-fast60048010000.0010.00250.0006I1-31000.60ConstantFast-fast60048010000.0010.00250.0006I1-43250.60ConstantFast-fast60048010000.0010.00250.0006NI2-1100-3250.60Out of phaseSlow-fast60048010000.0010.00250.0006NI2-2100-3250.60In-phaseSlow-fast60048010000.0010.00250.0006NI2-3100-3250.60In-phaseFast-fast60048010000.0010.00250.0006NI2-4100-3250.60Out of phaseFast-fast60048010000.0010.00250.0006NI3-1100-3250.60Out of phaseVery fast-fast600480300.0010.00250.02NI4-1100-3250.60Out of phaseSlow-fast60048010000.0010.00250.0006 7&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Comparison of Experimental Fatigue Lives and PredictionsStrainTempI1-2StrainTempI1-1IsothermalIsothermalIsothermalIsothermalNon-IsothermalOut-of-PhaseNon-IsothermalOut-of-PhaseNon-IsothermalOut-of-PhaseNon-IsothermalIn-PhaseNon-IsothermalIn-PhaseI1-3StrainTempI1-4StrainTempStrainTempNI2-1&NI4-1NI2-2StrainTempNI2-3StrainTempNI2-4StrainTempNI3-1StrainTemp100100010000I1-1I1-2I1-3I1-4NI2-1NI2-2NI2-3NI2-4NI3-1NI4-1Isothermal ConditionNon-Isothermal ConditionFatigue Life in PWR environmentPrediction by Draft NUREG/CR-6909 Rev.1Prediction by JSME S NF1-2009Experimental Fatigue lifeFactor of 2 with respectto NUREG 8&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Comparison of Experimental Fatigue Lives and Predictions(continued)Considering the characteristic of the used material The experimental fatigue lives of non-isothermal conditions showed longer fatigue lives than the predictions.1.E+021.E+031.E+041.E+021.E+031.E+04Experimental Life (cycles)meanfactor of 2factor of 2[I1-1] 100 &#xba;C Constant Slow-fast[I1-2] 325 &#xba;C Constant Slow-fast[I1-3] 100 &#xba;C Constant Fast-fast[I1-4] 325 &#xba;C Constant Fast-fast[NI2-1] 100-325 &#xba;C Out of phase Slow-fast[NI2-2] 100-325 &#xba;C In-phase Slow-fast[NI2-3] 100-325 &#xba;C In-phase Fast-fast[NI2-4] 100-325 &#xba;C Out of phase Fast-fast[NI3-1] 100-325 &#xba;C Out of phase Slow-fast[NI4-1] 100-325 &#xba;C Out of phase Slow-fastAustenitic SSDraft NUREG CR6909 Rev.1 ExpressionsPredicted Life with factor (x0.52) (cycles)00.20.40.60.811.2I1-1I1-2I1-3I1-4Nleak/NwpPrediction by Draft NUREG/CR-6909 Rev.1Prediction by JSME S NF1-20090.77 for JSME0.52 for Draft NUREG 9&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Measurement of Crack Growth RateTypical striation widths were measured and da/dNdata were obtained. da/dNof the isothermal tests show the dependency on temperatureda/dNof the non-isothermal tests are close to that of 100 &#xba;C isothermal tests.Striation widthD!D D~D!D D~1.E-041.E-031.E-021.E-011.E+000.010.11da/dN (mm/cycle)Crack Depth, a (mm)  I1-1 Constant Slow-fast 100 I1-2 Constant Slow-fast 325  I1-3 Constant Fast-fast 100  I1-4 Constant Fast-fast 325NI2-1 Out of phase Slow-fast 325100NI2-2 In phase Slow-fast 100325NI2-3 In phase Fase-fast 325100NI2-4 Out of phase Fast-fast 100325NI3-1 Out of phase Slow-fast 325100NI4-1 Out of phase Slow-fast 32510011.125 10&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.The 4thbeachmark was identified, but the 1st beachmark could not be found.The 2ndand 3rdbeachmarks could be identified only a few portion, and so the crack depths are estimated. Multiple crack coalescence may have been occurred around the 2ndto 3rdbeachmarks.012300.20.40.60.81Crack depth,  a[mm]Fatigue  life ratio,N/Nleak(No.2)(No.4)0.2(No.1)(No.3)Calculated by Best FittingBeachmark Observation of NI4-1 11&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Kamaya et al.(*1)proposed stress intensity factor The stress intensity factor range () is transformed into the apparent effective strain intensity factor range ((eff)) by the following equation. By using (eff), da/dNcan be predicted.Next, the relations between measured da/dNand (eff)from the Japanese project data(*2)and I1-1~4 for isothermal testingby hollow specimens, of which material, strain rate and temperature condition are identified, are compared with the above correlation between da/dNand (eff).Because of plastic region, specimen shape, aspect ratio and so on, these prediction was not consist with measured da/dNand should be corrected.Dcpis defined as the plastic correction factor. Then (eff)can be converted to (eff)Extended WKR Method to Non-Isothermal Condition1.E-041.E-031.E-021.E-011.E-041.E-031.E-021.E-01Measured da/dN (mm/cycles)Analysis da/dN (mm/cycles)JPN Project100&deg;C 0.6% 0.004%/s.325&deg;C 0.6% 0.004%/s100&deg;C 0.6% 0.4%/s325&deg;C 0.6% 0.4%/sIsothermal TestsI1-1(100&deg;C)I1-2(325&deg;C)I1-3(100&deg;C)I1-4(325&deg;C)*1: Kamay, M., PVP2016-63434, ASME, 2016.*2: JNES, Report on Environmental Fatigue Tests of Nuclear Power Plant Materials for Reliability Verification [General Version] 2006FYDcp=0.628JPN PJ (*2) 12&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.The WKR method is extended to non-isothermal condition.STwas modified to reflect the effect of temperature change; STi.E, was modified to reflect the effect of temperature change; Ei.Proposed expanded WKR method>&for NI evaluation>'Extended WKR Method to Non-Isothermal Condition(continued)Temp.ST(Tc) 13&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Extended WKR Method to Non-Isothermal Condition(continued)1.E-041.E-031.E-021.E-011.E+001.E-041.E-031.E-021.E-011.E+00Measuredda/dN (mm/cycle)Extended WKR da/dN (mm/cycle)I1-1I1-2I1-3I1-4NI2-1NI2-2NI2-3NI2-4NI3-1NI4-1 14&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.The comparison between the experimental fatigue lives and the predicted fatigue lives with the factor that considered the material variability showed that the experimental fatigue lives of non-isothermal condition were greater than the predicted fatigue lives.The da/dNcurves of the non-isothermal tests do not show great difference while those of the isothermal tests depended on the temperature and the strain history. It is suggested that the effect of EAF on fatigue crack growth for non-isothermal condition is different from isothermal condition and/or the relation between microstructurally small crack (MSC) stage (Stage I) and crack growth stage (Stage II) for non-isothermal condition is different from isothermal condition.The WKR method was modified to apply to non-isothermal condition by incorporating and plastic correction. This extended WKR method was applied to the isothermal and non-isothermal tests and could estimate the test data with the factor of 2.Conclusions 15&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Backup Slides 16&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Test FacilityWater temp.Outer surface temp.Loop control panelFatigue test control unitElectric powerFlowLoadDisp.StrainTime synchronizationSpecimenT/C ExtensometerGL : 24mmInduction heaterFlowFatigue test sectionHeaterInduction heateroutputElectric poweroutputInputoutputTest control unit.
                                              &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
17&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Observation of Crack Surfaces Crack surface of NI2-1 has relatively large arc-like sub cracksThe axial distance between the main crack and the sub crack of NI2-1 was larger than those of NI3-1 and NI4-1.Main crack growth could be effected by interference by sub cracksAbout  4mmMainCrackSubCrackAbout  1.5mmMainCrackSubCrackAbout  0.5mmMainCrackSubCrackNI2-1NI3-1NI4-1 18&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.Proposal to incorporate the effect of non-isothermal condition into UFen;If the crack growth is dominant, NIcan be expressed by only crack growth life. If the extended WKR method is improved and an appropriate initial crack is assumed, then Stage II fatigue life can be calculated and NIcan be obtained.Proposal of a New MethodCorrection factor for NI conditionStage I fatigue life under NI conditionStage I fatigue life under isothermal conditionStage II fatigue life under NI conditionStage II fatigue life under isothermal condition 19&#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.}}
 
Outlines Objectives Experimental Procedure Test Condition Test Matrix Comparison of Experimental Fatigue Lives and Predictions Measurement of Crack Growth Rate Beachmark Observation Extended WKR Method to Non-Isothermal Condition Conclusions 2
                          &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Objectives In November 2012, EPRI gap report, Environmentally Assisted Fatigue Gap Analysis and Roadmap for Future Research, Roadmap, 1026724, Final Report was issued.
Gap 15 Non-Isothermal S-N Testing
    - Limited data available on the influence of variable temperature and variable strain rate within test cycles and of the influence of out-of-phase variations of temperature and strain rate
    - Influence of in-phase and out-of-phase temperature and strain variations to be identified by comparison with isothermal tests.
    - Austenitic stainless steels in PWR environmental are highest priority Non-isothermal & isothermal testing has been performed to address Gap 15.
3
                                  &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Experimental Procedure Water Environment Specimen Simulates PWR primary water 6
500 ppm H3BO3      as B 2 ppm LiOH as Li.
Induction                                                                                              Dissolved oxygen (DO)         :< 0.005 ppm heater                                                                                                Dissolved hydrogen (DH) : 30 cc/kg H2O GL(24mm) R20 30                                    Material 160      12 Type 316 Stainless Steel Extensometer                                                                            C      Si    Mn        P      S      Ni      Cr      Mo T/C (GL : 24mm)                                                                    Min                                        10.00  16.00    2.00 17                          Max      0.08  1.00  2.00    0.045    0.030  14.00  18.00    3.00 Heat      0.04  0.61  0.92    0.038    0.001  10.22  16.86    2.06 26                    20 (Note) Average grain size: 30 m (Aqua regia liquid for 10 s) 4
                                    &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Test Condition                                                                                                                    Out of phase (NI2-1)
Strain Rate: Slow-Fast Out of phase (NI2-4)
Strain Rate: Fast-Fast
[Out-of-Phase]                            [In-Phase]
Isothermal fatigue test & Non-isothermal fatigue test                                                                           Fast a                                      a Temp.(&#xba;C) 325    0.6 Temperature:                  100325 &#xba;C.                                                                                                                                    2    3 Strain (%)
Strain amplitude (a):       0.6 %                            100                                                                  1              2                    1 2    3 1              3 The period t1, t3, t3 and strain rate 1, 2, 3 are parameters.                                                                               2                  1 Fast  Time 3
Fast 0.6 t1=600 sec
      - I1-1~4                                                                      Slow t2=480 sec Isothermal(I) tests with strain change patterns of Slow-Fast and Fast -Fast                                                                                                      t3=1000 sec
[addressed to positive strain rate changes]
      - NI2-1~4 Non-Isothermal(NI) tests with strain change patterns of Slow-Fast and Fast -Fast
      - NI3-1 Non-isothermal test with very high strain rate in compression (Very Fast-Fast)
      - NI4-1 Non-isothermal test with the same condition of NI2-1 adding beach marking Measure crack shape for fatigue life 5
                                            &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Test Matrix Temp. Strain    Temp.               Strain rate                                  Period (sec)            Strain rate (%/sec No          amp. change                  change
()    (%)  Pattern                  Pattern                          t1                t2  t3 I1-1    100    0.60  Constant                Slow-fast                        600                480 1000 0.001        0.0025    0.0006 I1-2    325    0.60  Constant                Slow-fast                       600                480 1000 0.001        0.0025    0.0006 I1-3    100    0.60  Constant                Fast-fast                      600                480 1000 0.001        0.0025    0.0006 I1-4    325    0.60  Constant                Fast-fast                      600                480 1000 0.001        0.0025    0.0006 Out of NI2-1 100-325  0.60                          Slow-fast                        600                480 1000 0.001        0.0025    0.0006 phase NI2-2 100-325  0.60  In-phase                Slow-fast                        600                480 1000 0.001        0.0025    0.0006 NI2-3 100-325  0.60  In-phase                Fast-fast                      600                480 1000 0.001        0.0025    0.0006 Out of NI2-4 100-325  0.60                            Fast-fast                      600                480 1000 0.001        0.0025    0.0006 phase NI3-1 100-325  0.60  Out of phase Very fast-fast                              600                480  30  0.001        0.0025      0.02 Out of NI4-1 100-325  0.60                          Slow-fast                        600                480 1000 0.001        0.0025    0.0006 phase 6
                                    &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Comparison of Experimental Fatigue Lives and Predictions Non-Isothermal          Non-Isothermal    Non-Isothermal      Non-Isothermal    Non-Isothermal Isothermal                                Isothermal        Isothermal                Isothermal              Out-of-Phase              In-Phase          In-Phase            Out-of-Phase      Out-of-Phase I1-1                       I1-2                       I1-3                    I1-4      NI2-1&NI4-1                  NI2-2                    NI2-3      Temp NI2-4        NI3-1 Temp Temp                                                                                                                                                  Temp Temp                                                Temp Temp                                                                                                                                      Temp Strain              Temp Strain                                                                                                                                                                        Strain Strain Strain                  Strain                                              Strain        Strain              Strain 10000 Prediction by Draft NUREG/CR-6909 Rev.1 Prediction by JSME S NF1-2009 Experimental Fatigue life Fatigue Life in PWR environment 1000                                                                                                                                                                Factor of 2 with respect to NUREG 100 I1-1          I1-2             I1-3          I1-4            NI2-1          NI2-2            NI2-3         NI2-4         NI3-1        NI4-1 Isothermal Condition                                                      Non-Isothermal Condition 7
                                                                                              &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Comparison of Experimental Fatigue Lives and Predictions (continued)
Considering the characteristic of the used material 1.2                                                                                            1.E+04                                                                          mean Predicted Life with factor (x0.52) (cycles)
Prediction by Draft NUREG/CR-6909 Rev.1                                                                Austenitic SS Prediction by JSME S NF1-2009                                                                          Draft NUREG CR6909 Rev.1                                        factor of 2 1
Expressions                                                      factor of 2 0.77 for JSME 0.8                                                                                                                                                                            [I1-1] 100 &#xba;C Constant Slow-fast Nleak/Nwp
[I1-2] 325 &#xba;C Constant Slow-fast 0.6 0.52 for Draft NUREG                                                                      1.E+03                                                                          [I1-3] 100 &#xba;C Constant Fast-fast 0.4                                                                                                                                                                            [I1-4] 325 &#xba;C Constant Fast-fast
[NI2-1] 100-325 &#xba;C Out of phase Slow-fast 0.2                                                                                                                                                                            [NI2-2] 100-325 &#xba;C In-phase Slow-fast
[NI2-3] 100-325 &#xba;C In-phase Fast-fast 0
I1-1     I1-2      I1-3      I1-4                                                                                                                                    [NI2-4] 100-325 &#xba;C Out of phase Fast-fast 1.E+02 1.E+02                                  1.E+03                    1.E+04  [NI3-1] 100-325 &#xba;C Out of phase Slow-fast Experimental Life (cycles)                       [NI4-1] 100-325 &#xba;C Out of phase Slow-fast The experimental fatigue lives of non-isothermal conditions showed longer fatigue lives than the predictions.
8
                                                                                                                  &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Measurement of Crack Growth Rate Typical striation widths were measured and da/dN data were obtained.
da/dN of the isothermal tests show the dependency on temperature da/dN of the non-isothermal tests are close to that of 100 &#xba;C isothermal tests.
I1-1 Constant Slow-fast 100 1.E+00 I1-2 Constant Slow-fast 325 I1-3 Constant Fast-fast 100 I1-4 Constant Fast-fast 325 NI2-1 Out of phase Slow-fast 325100 NI2-2 In phase Slow-fast 100325 1.E-01      NI2-3 In phase Fase-fast 325100 NI2-4 Out of phase Fast-fast 100325 NI3-1 Out of phase Slow-fast 325100 Striation width                                                            NI4-1 Out of phase Slow-fast 325100
 
da/dN (mm/cycle) 1.E-02
 
1.E-03 1.125
 
1 1.E-04 0.01                  0.1                        1 Crack Depth, a (mm) 9
                                            &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Beachmark Observation of NI4-1 The 4th beachmark was identified, but the 1st beachmark could not be found.
The 2nd and 3rd beachmarks could be identified only a few portion, and so the crack depths are estimated.
Multiple crack coalescence may have been occurred around the 2nd to 3rd beachmarks.
3        (No.1)
Calculated by Best Fitting Crack depth, a [mm]
2 1
(No.2)
(No.3)          (No.4) 0.2 0
0      0.2           0.4            0.6      0.8            1 Fatigue life ratio, N /Nleak 10
                                                                                        &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Extended WKR Method to Non-Isothermal Condition JPN PJ (*2)
* Kamaya et al.(*1)proposed stress intensity factor
() =
* The stress intensity factor range (K) is transformed into the apparent effective strain intensity factor range (K(eff))
by the following equation. By using K(eff), da/dN can be predicted.                                                                                                                                                                         1.E-01
 
JPN Project
()
                        =                                                                                                                                                                              100&deg;C 0.6% 0.004%/s.
325&deg;C 0.6% 0.004%/s 100&deg;C 0.6% 0.4%/s
* Next, the relations between measured da/dN and K(eff)                                                                                                                                           325&deg;C 0.6% 0.4%/s Isothermal Tests Measured da/dN (mm/cycles) from the Japanese project data(*2) and I1-1~4 for isothermal                                                                                                                                     I1-1(100&deg;C)
I1-2(325&deg;C) testing by hollow specimens, of which material, strain rate                                                                                                                        1.E-02 I1-3(100&deg;C) and temperature condition are identified, are compared                                                                                                                                            I1-4(325&deg;C) with the above correlation between da/dN and K(eff).
* Because of plastic region, specimen shape, aspect ratio and so on, these prediction was not consist with measured                                                                                                                          1.E-03 da/dN and should be corrected.
* Dcp is defined as the plastic correction factor. Then K(eff)                                                                                                                                                              Dcp=0.628 can be converted to K(eff)                                                                                                                                                            +2
 
() =                  ()                  =                                                                                                    1.E-04 1.E-04    2 1.E-03        1.E-02        1.E-01
      *1: Kamay, M., PVP2016-63434, ASME, 2016.
Analysis da/dN (mm/cycles)
      *2: JNES, Report on Environmental Fatigue Tests of Nuclear Power Plant Materials for 11        Reliability Verification [General Version] 2006FY
                                                                                            &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Extended WKR Method to Non-Isothermal Condition (continued) 500                                                              1 The WKR method is extended to non-isothermal condition.                                                                                                  450 400 NI2-1 Out-of-phase Slow-Fast 100-325 N=1 0.8 0.6 350                                                              0.4 Temperature ()
300                                                              0.2 Strain (%)
250                                                              0 200                                                              -0.2 150                                                              -0.4 100                                                              -0.6 2516 Temp. exp                ;  150    343                                                                                                50                    Water temperature              Strain      -0.8
                                  +273 0                                                                -1 2516 ST(Tc)                5 3.39 x 10 x exp                      0.0301( +273) ; 20  < 150                                                                      0        500        1000          1500        2000    2500
                                                    +273 Elapsed time per cycle (s)
ST was modified to reflect the effect of temperature change; STi
      .Youngs modulus, E, was modified to reflect the effect of temperature change; Ei.
Proposed expanded WKR methodfor NI evaluation da
            =  C x dN 0.3 2.25                                                            2.55                                                                        2.55            K()        K()
1
              =0                x  x          K ()          K ()                      K ()  K ()                                                      x                i+1              i 12                                    i+1                  0                                      i                                  0                            ti+1 ti 12
                                                                        &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Extended WKR Method to Non-Isothermal Condition (continued) 1.E+00 I1-1 Measured da/dN (mm/cycle)
I1-2 1.E-01                                                                                        I1-3 I1-4 NI2-1 1.E-02 NI2-2 NI2-3 1.E-03                                                                                        NI2-4 NI3-1 NI4-1 1.E-04 1.E-04      1.E-03                    1.E-02                    1.E-01      1.E+00 Extended WKR da/dN (mm/cycle) 13
                                                            &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Conclusions The comparison between the experimental fatigue lives and the predicted fatigue lives with the factor that considered the material variability showed that the experimental fatigue lives of non-isothermal condition were greater than the predicted fatigue lives.
The da/dN curves of the non-isothermal tests do not show great difference while those of the isothermal tests depended on the temperature and the strain history.
It is suggested that the effect of EAF on fatigue crack growth for non-isothermal condition is different from isothermal condition and/or the relation between microstructurally small crack (MSC) stage (Stage I) and crack growth stage (Stage II) for non-isothermal condition is different from isothermal condition.
The WKR method was modified to apply to non-isothermal condition by incorporating K and plastic correction. This extended WKR method was applied to the isothermal and non-isothermal tests and could estimate the test data with the factor of 2.
14
                                      &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Backup Slides 15
      &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Test Facility Fatigue test Flow                                      section Flow          Induction heater                                                      Specimen Induction Extensometer                  heater T/C GL : 24mm Heater output Input Water temp.                        Load output Electric power Disp.
Outer surface temp.
Strain output                    Fatigue test control unit Electric power Test control unit.
Loop control panel                          Time synchronization 16
                                  &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Observation of Crack Surfaces NI2-1                                                NI3-1                                NI4-1 Main                                                                                    Main Crack                                                                    Sub Crack Crack Sub Crack Main                                      Sub Crack                                      Crack About                                                            About                        About 4mm                                                              0.5mm                        1.5mm Crack surface of NI2-1 has relatively large arc-like sub cracks The axial distance between the main crack and the sub crack of NI2-1 was larger than those of NI3-1 and NI4-1.
Main crack growth could be effected by interference by sub cracks 17
                                              &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
Proposal of a New Method Proposal to incorporate the effect of non-isothermal condition into UFen;
                                          =  x , x Correction factor for NI condition Stage I fatigue life under                                                                    Stage II fatigue life under isothermal condition                                                                          isothermal condition
                                                                , + ,
                                                        =
                                                                  , + ,
Stage II fatigue life under Stage I fatigue life under NI condition                                                                    NI condition If the crack growth is dominant, NI can be expressed by only crack growth life.
                                                                              ,
                                                              =
                                                                              ,
If the extended WKR method is improved and an appropriate initial crack is assumed, then Stage II fatigue life can be calculated and NI can be obtained.
18
                                            &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.
 
TogetherShaping the Future of Electricity 19
                &#xa9; 2018 Electric Power Research Institute, Inc. All rights reserved.}}

Revision as of 15:18, 20 October 2019

1015 Ni EAF Testing
ML18267A097
Person / Time
Issue date: 09/24/2018
From: Robert Tregoning
NRC/RES/DE
To:
Shared Package
ML18267A083 List:
References
Download: ML18267A097 (19)


Text

Non-Isothermal EAF Testing for 316 Stainless Steel in Simulated PWR Environment Seiji Asada Mitsubishi Heavy Industries, Ltd.

Gary Stevens Technical Executive, EPRI EAF Research and Related ASME Activities, NRC Public Meeting September 25, 2018

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Outlines Objectives Experimental Procedure Test Condition Test Matrix Comparison of Experimental Fatigue Lives and Predictions Measurement of Crack Growth Rate Beachmark Observation Extended WKR Method to Non-Isothermal Condition Conclusions 2

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Objectives In November 2012, EPRI gap report, Environmentally Assisted Fatigue Gap Analysis and Roadmap for Future Research, Roadmap, 1026724, Final Report was issued.

Gap 15 Non-Isothermal S-N Testing

- Limited data available on the influence of variable temperature and variable strain rate within test cycles and of the influence of out-of-phase variations of temperature and strain rate

- Influence of in-phase and out-of-phase temperature and strain variations to be identified by comparison with isothermal tests.

- Austenitic stainless steels in PWR environmental are highest priority Non-isothermal & isothermal testing has been performed to address Gap 15.

3

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Experimental Procedure Water Environment Specimen Simulates PWR primary water 6

500 ppm H3BO3 as B 2 ppm LiOH as Li.

Induction Dissolved oxygen (DO)  :< 0.005 ppm heater Dissolved hydrogen (DH) : 30 cc/kg H2O GL(24mm) R20 30 Material 160 12 Type 316 Stainless Steel Extensometer C Si Mn P S Ni Cr Mo T/C (GL : 24mm) Min 10.00 16.00 2.00 17 Max 0.08 1.00 2.00 0.045 0.030 14.00 18.00 3.00 Heat 0.04 0.61 0.92 0.038 0.001 10.22 16.86 2.06 26 20 (Note) Average grain size: 30 m (Aqua regia liquid for 10 s) 4

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Test Condition Out of phase (NI2-1)

Strain Rate: Slow-Fast Out of phase (NI2-4)

Strain Rate: Fast-Fast

[Out-of-Phase] [In-Phase]

Isothermal fatigue test & Non-isothermal fatigue test Fast a a Temp.(ºC) 325 0.6 Temperature: 100325 ºC. 2 3 Strain (%)

Strain amplitude (a): 0.6 % 100 1 2 1 2 3 1 3 The period t1, t3, t3 and strain rate 1, 2, 3 are parameters. 2 1 Fast Time 3

Fast 0.6 t1=600 sec

- I1-1~4 Slow t2=480 sec Isothermal(I) tests with strain change patterns of Slow-Fast and Fast -Fast t3=1000 sec

[addressed to positive strain rate changes]

- NI2-1~4 Non-Isothermal(NI) tests with strain change patterns of Slow-Fast and Fast -Fast

- NI3-1 Non-isothermal test with very high strain rate in compression (Very Fast-Fast)

- NI4-1 Non-isothermal test with the same condition of NI2-1 adding beach marking Measure crack shape for fatigue life 5

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Test Matrix Temp. Strain Temp. Strain rate Period (sec) Strain rate (%/sec No amp. change change

() (%) Pattern Pattern t1 t2 t3 I1-1 100 0.60 Constant Slow-fast 600 480 1000 0.001 0.0025 0.0006 I1-2 325 0.60 Constant Slow-fast 600 480 1000 0.001 0.0025 0.0006 I1-3 100 0.60 Constant Fast-fast 600 480 1000 0.001 0.0025 0.0006 I1-4 325 0.60 Constant Fast-fast 600 480 1000 0.001 0.0025 0.0006 Out of NI2-1 100-325 0.60 Slow-fast 600 480 1000 0.001 0.0025 0.0006 phase NI2-2 100-325 0.60 In-phase Slow-fast 600 480 1000 0.001 0.0025 0.0006 NI2-3 100-325 0.60 In-phase Fast-fast 600 480 1000 0.001 0.0025 0.0006 Out of NI2-4 100-325 0.60 Fast-fast 600 480 1000 0.001 0.0025 0.0006 phase NI3-1 100-325 0.60 Out of phase Very fast-fast 600 480 30 0.001 0.0025 0.02 Out of NI4-1 100-325 0.60 Slow-fast 600 480 1000 0.001 0.0025 0.0006 phase 6

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Comparison of Experimental Fatigue Lives and Predictions Non-Isothermal Non-Isothermal Non-Isothermal Non-Isothermal Non-Isothermal Isothermal Isothermal Isothermal Isothermal Out-of-Phase In-Phase In-Phase Out-of-Phase Out-of-Phase I1-1 I1-2 I1-3 I1-4 NI2-1&NI4-1 NI2-2 NI2-3 Temp NI2-4 NI3-1 Temp Temp Temp Temp Temp Temp Temp Strain Temp Strain Strain Strain Strain Strain Strain Strain Strain 10000 Prediction by Draft NUREG/CR-6909 Rev.1 Prediction by JSME S NF1-2009 Experimental Fatigue life Fatigue Life in PWR environment 1000 Factor of 2 with respect to NUREG 100 I1-1 I1-2 I1-3 I1-4 NI2-1 NI2-2 NI2-3 NI2-4 NI3-1 NI4-1 Isothermal Condition Non-Isothermal Condition 7

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Comparison of Experimental Fatigue Lives and Predictions (continued)

Considering the characteristic of the used material 1.2 1.E+04 mean Predicted Life with factor (x0.52) (cycles)

Prediction by Draft NUREG/CR-6909 Rev.1 Austenitic SS Prediction by JSME S NF1-2009 Draft NUREG CR6909 Rev.1 factor of 2 1

Expressions factor of 2 0.77 for JSME 0.8 [I1-1] 100 ºC Constant Slow-fast Nleak/Nwp

[I1-2] 325 ºC Constant Slow-fast 0.6 0.52 for Draft NUREG 1.E+03 [I1-3] 100 ºC Constant Fast-fast 0.4 [I1-4] 325 ºC Constant Fast-fast

[NI2-1] 100-325 ºC Out of phase Slow-fast 0.2 [NI2-2] 100-325 ºC In-phase Slow-fast

[NI2-3] 100-325 ºC In-phase Fast-fast 0

I1-1 I1-2 I1-3 I1-4 [NI2-4] 100-325 ºC Out of phase Fast-fast 1.E+02 1.E+02 1.E+03 1.E+04 [NI3-1] 100-325 ºC Out of phase Slow-fast Experimental Life (cycles) [NI4-1] 100-325 ºC Out of phase Slow-fast The experimental fatigue lives of non-isothermal conditions showed longer fatigue lives than the predictions.

8

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Measurement of Crack Growth Rate Typical striation widths were measured and da/dN data were obtained.

da/dN of the isothermal tests show the dependency on temperature da/dN of the non-isothermal tests are close to that of 100 ºC isothermal tests.

I1-1 Constant Slow-fast 100 1.E+00 I1-2 Constant Slow-fast 325 I1-3 Constant Fast-fast 100 I1-4 Constant Fast-fast 325 NI2-1 Out of phase Slow-fast 325100 NI2-2 In phase Slow-fast 100325 1.E-01 NI2-3 In phase Fase-fast 325100 NI2-4 Out of phase Fast-fast 100325 NI3-1 Out of phase Slow-fast 325100 Striation width NI4-1 Out of phase Slow-fast 325100

da/dN (mm/cycle) 1.E-02

1.E-03 1.125

1 1.E-04 0.01 0.1 1 Crack Depth, a (mm) 9

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Beachmark Observation of NI4-1 The 4th beachmark was identified, but the 1st beachmark could not be found.

The 2nd and 3rd beachmarks could be identified only a few portion, and so the crack depths are estimated.

Multiple crack coalescence may have been occurred around the 2nd to 3rd beachmarks.

3 (No.1)

Calculated by Best Fitting Crack depth, a [mm]

2 1

(No.2)

(No.3) (No.4) 0.2 0

0 0.2 0.4 0.6 0.8 1 Fatigue life ratio, N /Nleak 10

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Extended WKR Method to Non-Isothermal Condition JPN PJ (*2)

  • Kamaya et al.(*1)proposed stress intensity factor

() =

  • The stress intensity factor range (K) is transformed into the apparent effective strain intensity factor range (K(eff))

by the following equation. By using K(eff), da/dN can be predicted. 1.E-01

JPN Project

()

= 100°C 0.6% 0.004%/s.

325°C 0.6% 0.004%/s 100°C 0.6% 0.4%/s

  • Next, the relations between measured da/dN and K(eff) 325°C 0.6% 0.4%/s Isothermal Tests Measured da/dN (mm/cycles) from the Japanese project data(*2) and I1-1~4 for isothermal I1-1(100°C)

I1-2(325°C) testing by hollow specimens, of which material, strain rate 1.E-02 I1-3(100°C) and temperature condition are identified, are compared I1-4(325°C) with the above correlation between da/dN and K(eff).

  • Because of plastic region, specimen shape, aspect ratio and so on, these prediction was not consist with measured 1.E-03 da/dN and should be corrected.
  • Dcp is defined as the plastic correction factor. Then K(eff) Dcp=0.628 can be converted to K(eff) +2

() = () = 1.E-04 1.E-04 2 1.E-03 1.E-02 1.E-01

  • 1: Kamay, M., PVP2016-63434, ASME, 2016.

Analysis da/dN (mm/cycles)

  • 2: JNES, Report on Environmental Fatigue Tests of Nuclear Power Plant Materials for 11 Reliability Verification [General Version] 2006FY

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Extended WKR Method to Non-Isothermal Condition (continued) 500 1 The WKR method is extended to non-isothermal condition. 450 400 NI2-1 Out-of-phase Slow-Fast 100-325 N=1 0.8 0.6 350 0.4 Temperature ()

300 0.2 Strain (%)

250 0 200 -0.2 150 -0.4 100 -0.6 2516 Temp. exp  ; 150 343 50 Water temperature Strain -0.8

+273 0 -1 2516 ST(Tc) 5 3.39 x 10 x exp 0.0301( +273) ; 20 < 150 0 500 1000 1500 2000 2500

+273 Elapsed time per cycle (s)

ST was modified to reflect the effect of temperature change; STi

.Youngs modulus, E, was modified to reflect the effect of temperature change; Ei.

Proposed expanded WKR methodfor NI evaluation da

= C x dN 0.3 2.25 2.55 2.55 K() K()

1

=0 x x K () K () K () K () x i+1 i 12 i+1 0 i 0 ti+1 ti 12

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Extended WKR Method to Non-Isothermal Condition (continued) 1.E+00 I1-1 Measured da/dN (mm/cycle)

I1-2 1.E-01 I1-3 I1-4 NI2-1 1.E-02 NI2-2 NI2-3 1.E-03 NI2-4 NI3-1 NI4-1 1.E-04 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 Extended WKR da/dN (mm/cycle) 13

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Conclusions The comparison between the experimental fatigue lives and the predicted fatigue lives with the factor that considered the material variability showed that the experimental fatigue lives of non-isothermal condition were greater than the predicted fatigue lives.

The da/dN curves of the non-isothermal tests do not show great difference while those of the isothermal tests depended on the temperature and the strain history.

It is suggested that the effect of EAF on fatigue crack growth for non-isothermal condition is different from isothermal condition and/or the relation between microstructurally small crack (MSC) stage (Stage I) and crack growth stage (Stage II) for non-isothermal condition is different from isothermal condition.

The WKR method was modified to apply to non-isothermal condition by incorporating K and plastic correction. This extended WKR method was applied to the isothermal and non-isothermal tests and could estimate the test data with the factor of 2.

14

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Backup Slides 15

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Test Facility Fatigue test Flow section Flow Induction heater Specimen Induction Extensometer heater T/C GL : 24mm Heater output Input Water temp. Load output Electric power Disp.

Outer surface temp.

Strain output Fatigue test control unit Electric power Test control unit.

Loop control panel Time synchronization 16

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Observation of Crack Surfaces NI2-1 NI3-1 NI4-1 Main Main Crack Sub Crack Crack Sub Crack Main Sub Crack Crack About About About 4mm 0.5mm 1.5mm Crack surface of NI2-1 has relatively large arc-like sub cracks The axial distance between the main crack and the sub crack of NI2-1 was larger than those of NI3-1 and NI4-1.

Main crack growth could be effected by interference by sub cracks 17

© 2018 Electric Power Research Institute, Inc. All rights reserved.

Proposal of a New Method Proposal to incorporate the effect of non-isothermal condition into UFen;

= x , x Correction factor for NI condition Stage I fatigue life under Stage II fatigue life under isothermal condition isothermal condition

, + ,

=

, + ,

Stage II fatigue life under Stage I fatigue life under NI condition NI condition If the crack growth is dominant, NI can be expressed by only crack growth life.

,

=

,

If the extended WKR method is improved and an appropriate initial crack is assumed, then Stage II fatigue life can be calculated and NI can be obtained.

18

© 2018 Electric Power Research Institute, Inc. All rights reserved.

TogetherShaping the Future of Electricity 19

© 2018 Electric Power Research Institute, Inc. All rights reserved.