NUREG/CR-0843, (U)Consequences of Sabotage of Nonpower Reactors- Unclassified Version

From kanterella
(Redirected from NUREG/CR-0843)
Jump to navigation Jump to search
NUREG/CR-0843, (U)Consequences of Sabotage of Nonpower Reactors- Unclassified Version
ML23284A354
Person / Time
Issue date: 06/30/1979
From: Bern Stapleton
NRC/NSIR/DSO/ISB
To:
References
LA-7845-MS NUREG/CR-0843
Download: ML23284A354 (1)


Text

(

NUR EG/CR-0843 LA-7845-MS Informal Report AN I

Consequences of Sabotage of Nonpower Reactors

'.,_~ 1 ~

Ciassifi~ By: /, h *'... ~.* L h:lassifyOn: ( **----

R. J. Jiacolettl G. E. Cort AM.Gage J.M. Graf L J. Walke-M1n1.11cript submitted: May 1979 Date published: June 1979

{ X..! Originati:.g Agency's Oe~erminatiOII lUnOBJ.L SECUBITY lliF0WTIOX Unauthorized disclosure su~;ect m*

~mmistratlve and Crlminzl 2nd:ions.

ft~l!if~

~..

(,,.

I

..~ **,*> ~*,1;.: c'.* ')-,* a ** -

-*_:, ( ;'L,

,t.h'rC.:

?,/'< -.-, ~/

J,_,t PreS)lr'ICffOr oerM1tive*__

Divillon of Clperattna Raaol'I Classrnen.,

(Name and T1Uel...,

us Nuda* R-.,i.ory 0Dmmiaaon W1Uhfngt011, DC 20565 NRC FIN No. A 7104-7 C,=ssitied ey ___ _

D Declassify or on_ __

0 ~e

,, '* :e

, ~;r.t: :

!:'eri

~r.o...~J

./

i

"'"'tTS-.rt'"ATa:*

............. TDF ISIIIII...

f:ONTaACT _..,......... M

~ Orlijir:aUr.g Agam:y"s Oete**mim:Uon Required JflffFii!M Si I iC!AE SSE Sldt I - SE@Ski I i kili I 28 INPGQMA I id@

  • r f "'? ' i 0: I :Sti!Z.SSLS!:Zi Oto Shi. I iiti!dt I Lb ii ii Giiiiik iim * *.;..
  • * :U fll'ASStFIED.

J V

L INTRODUCTJON CONSEQUENCES OF SABOTAGE OF NONPOWER RE.ACl'ORS by R. J. Jiaeolettl G, E. Cort A. M. Cage J. N, Ora!

L. J. Wlllcer ABSTllACT A stud'/ or the possible cor.equences or the sabotare of nonpower reactors is presented. The study Is based on I review or the avail.able Uterature and documentation for S8 nonpower reactor Installations. Isotopic fission product release tnctlons fr1t each fuel fonn were obtained by literature search and represent the best experimental data avallable.

Calcu.latians of filllOII product inventories and Nluses were made with specific models developed fer the

  • study.

The atmmpherlc dispersions and populaUon dole calculations report d were made with standard rnodel'- The sabot.are scenarics df'veloped tor the wrious c:laaa of nonpoY,er reactons are based on the general desiJ'n eharae-ter.lstlcs of the class er on those or a reaJ or hypothetical tnstaDatlon, wnlch represents a class maximum. It is conclude(!

that, within ttw -strainU of this study, only one nonpower l'eactor il'lstallation ha an)' potential for the release of sirniticant amounts of fission froduct materials in thl" event of saboteie, It Is renerally recornized that the rabotqe or large nuclear power reactors oould lud to m,nificanl ealculations and evaluations are as realistic as \\he 11v111lable information permits; ho*ever1 where.-pecmc informaUon ls not avallable1 the lnClit conservative approach has been Lmed to insure that the consequences would not l>e underestimated.

releuec of radioaetlve ruslcn product materiala, Nonpower ructors operate at much lower power levels and eencratc !'.s,ion pn,cS1,11;;t lnvcntorla Uwl are abOUt 3 orders of mll(llltude smaller and have not been C:Oll51dered credible tarcets of sabotage attack, In Uus context1 nbotage 1s defined u deliberate act to endanger the p.iblic health and safety by the dispersal or radioactive risslon product materials. This study wu conducted to produce a re.alisUc evaluation or the consequences of sabotage or nonpower reactor f1clllti*

and the dfecu on the public health and arety. The sabot-re attack modes coMidered aN thoff that could ruult in the release of fmlon products from the N&ctor fuel fn the core or In atorage at the normal location In the facWty. The thett or reactor fuel and eny subsequent dispersal or,ts radioactive contait llave not been considered. The assumptions apPlied in the Nonpower rca<:tors have been brudly duslflell by the Nuclear Regulatory Commission (NRC) according to the fuel form used or tht primuy containment dniin, There ue consideteble design vari1tions wllhlll the designated cl~ea, and eaah cl~ ~en a wide ~e of power Jevels. No &tsl.rn provision Is made for the oonvttsicn ol the ther11al enero 1enerated1 hence tha dulgnation or the NeCtor u nonpower.

'ftle four oJu:ses Included In this 1tudy are AON, TRJGA, POOL1 and TANK. The evaluation or eac:h Cld iS presented as

  • separe.te section or this report. n,e same calculative methods and general usumptions concern~ sabotage were used In all of the evaluations..

The ubotage scenarios are based on the _assump-tioni that

ouo sg, 2

11.

CALCULA flVE METHODS A. Fission Pro4lct Inventory and lteluse Fission product lnventori* were calculated with a computer program, FlSPRO, 1 whim eomputes Isotopic coneenb'atlol!S fc, fiscien yi-1d and thffe-lsotope chlJn dec!ay, lneorpontl~ an arbitrlll'J operatlqi *dledule and powff Jevel, 'nlere II no allow~ In the code ror fuel depletlai or fissfOll prvdUct removal by nelltl'Oft ablol"ptlon.

The calcutathe raw* of ns,ao have been conflrmeo by eornpullon with the Nlults or other spectal purpose computtr eodtl tbat eomputa_ flaion prodllct lrwentorls as part or other calculations. All core fm!Ofl product lnventorla

  • ere computed assuml~ en tn-eore histoc-y equ.lvalent to <<,reater than the hl(hest reported for that c1ul.

Litenture

&LlfvttY'S were eondu.cted to o1>1-ln information on lllslcn p,aduet releues t<< each fuel form. Measured llotople rel-fNotl-wen ~

to eornpute fi.lel material releuu tG tht containment when available; ottiel"1'*e, the wry consenatiw release fr-aotlors rtven In Rer. I were llled. Some of the containment ttr'tleturet are,peeitiaaJly desiptd ffll the reactor fn~D1tlon1 In other ~

the tffctor Is i!lsllllled In a structure desiped for other purposes.

The release or flalcri proclUcts f,om the containment was asnamed &o be at Jround kvd without delay where tile buOdl"' leak rate data were not available. 1n Ulote cues wht!re I containment structure Ju.le rate is tnowll.

the llolopic release f,om the bulldi!II was ee.lc:U11ted with the follow~ equatloru where R9

  • Isotopic llulldi~ rdcue In Ume lntenal (CO,
  • bulldJ'W lNlc rat. c.*l),
  • Isotopic dee&J eorstant + I.. <s-1),
  • l>uDdinc isotopic lnYentory at btllMI~

of time interval (CO, and t(i)

  • time interval Cs).

This equaticn ii dl!rlved from the followins,s e

~

  • I L l(t)dt, (2) 0 wheN It Is usv,ud that aD of \\be ilotvplc fuel melt re1.... Inventory enten ttie bllillilnl air at Ume t
  • 0 and there Is no ln-buDd~ eieanup << plateoui. The

~lcue ti assumed 1D be at,round level. The C!'Jll-cwated b\\lDdi,.r releai* are hlch because the main.

isotopic cr,ntrlbUtors to the lmlled dose, the iodines, are usvmed to be releued wltllout plateout, which would reduce ttielr release by at least

  • factor of 2.

B. Atmospheric Dispel'llon 11le -.bOtce seenarlos tor 111np0wer reactor*

,ault In releua of n.ton promcts Ill

  • short U.e enCI eoncornltant atmoephel'let dlspenlons with time,cale:a fl'OTTI *,.. tnlnut*...,_.,..,,,. short*term Oa1111i111 plwnc models of atm°'flherh: dlspenlOII appl~

to tttis time rqe (that ts, 1qer UMln U>e IMc.ta-t&Jt.aus putt lltuatlOD and thortar than the monUll.31 averere period). The most wldaly wed equation fo,r mort*term relative atmospherlc dlsptrslon factors u that rtvan ill Ref. ** Eq. 1.111.

(3) iFPlll'bi 11 lllbt Jl!b:SI I !CB!ILB..061 Oi(Jiikiib:C

I !Sb aG i L ii ii C 1 dill 1 1 liiJif!u~lREn' (

where X

Q ay Oz ii h

" atmospheric concentration (CVm3).

c SOUl'te strength (Cl/a),

" horizontal 1tAJ1dard deviation of plume spread (m),

" vertical standard devjation or plume spread (m),

"' ave-rage wind speed (m/,), and

= effective release he(fht (m),

NRC has specllied methods o! ealculati~ atinoe-pheric dbpersions tor power reactor aecident conditions. These methods e&n be applied to nonpower reactors as weD b@c1UH the *quaU~

aD.01111 fer differences In release rate, effective release elevation, plume rise, building sue, and ten-aln ro1.11hness. One of these methods uses a probeblllty dlstrlt>ution of x/Q that b calculatec:I lrom the Joint frequency d1s1ributlll'I of

"'Ind speed and atmospheric stability. x/Q values at 5 an(l

$0'll probablUtieJ. are determined lot several dls1anees, and redial plots of X/Q valu.es are prepared that are Independent or wind dlrection. The second method Is a calculatlcn or X/Q valu-..s rcr the ~*d

  • worst-case" meteorology that is defined to have stable conditions and the lowest wind speeds.

Atmospheric dkperslm In the surface lay* is Increased by bulldi~, and the dispersion models a.CC!Ount for this Increase by appropriate incre.511:1 in the

,1tandud dev atlons (o's) or plume spread, The BriC£s equations tor the standard deviations were selected lcr the atmospheric dispersiai calc:ulatjons in urban situations. Releases from a building are usually trapped In an atmospheric wake on the downwind side of the buDding (Ref. 4) II the release Is near the r,ound surface (h ~ 0), << at any heicht lower than the build~

height, provided the efnuent b nonbuoyant d hu a low vertical ex:lt speed.

In these analyses, the asumptions 81'8 that the release Is et grcund leval and the e!Ouent is rmnbuoyant.

The Cl!fOl'd method far estlmeting bu0djng wake 1ft cts (Ref, 4) lnc:reasu the dispersion by lnwee1lng the 0 *.a by Eq. (4), or (4) which modifies F.q. (3) to (S) where the ols are those used in Eq. (3), A is the ve.rtiO&I cross-section area of the building, and c is an arbitrary constant equal to o.s.

The wake correction L! a murimum near the buildq where the a'5 are small, bu~

the correction has little ettect at large distances where J Js Jarrer t~ cA/-.. The relative atm0.1pheric con-centratJon near I buDdirl: 1n the wake approaches the value XIO.

  • c: !,,.

The bue ot

  • low-level atmospheric temperature inversion restricts the vertical spread of a plume or contaminated air, The accepted method or calculati~

relative atmospheric dispersion fecton WQl under 1

)ow-level inve~ion ls to truncate the I values at i:

fractions of the Inversion heirht at ceruin downwind distances.

The truncation values and disu.nces ar*

determined by the Gaussian shape of the plume in the vertical direction. t~e lnere~e of r& wJth cl.istanee, ano the heifht (L) of the invu11on bae above the ground.

At downwind distanees, between Xi ~d 2 XL' which are determined from the 'lruncated value of t:* the following equations are "'eci. for di.Stances, X, sreater Ulan XL but las than 2 XL, I

11U

  • 0.47 L, for distances pater than 2 XL' t~ au
  • 0.80 L.

Thest truncation values and distances were 111ed 1n 111J or the ealeulatlons..

C. Calculated Release Dose.s There are lwo mejoT pathways fot tadiolorlce.1 dose from I reseous or airborne pal'ticulate release or radioecUvc matct1al. The first pathway is referred to u Immersion because the receptor Is lmmened in the radioactive cloud and irradiated by it, The radiatiOA aource is extemal t.o the receptor, and tile receiveo dose Is referred to as the external dose. 'lb.ls is lhe principal dOH pathway for the noble rases. The l.e(!Ond major pathway is Inhalation, which p,oduees an lnternai dose. Radio ctive material In the eloud

  • Inhaled by the receptor Airi~ the time or cloud pusqe, Tbe radioactive materiel inhaled by the receptOI' can be 3

Ur!ClASSlFIED BBL S:tti 5£631lii I itllk!ZS lit! Silitlki!Sil

partially retained in tht wnrs an_d air passa1es, and then move to other lntemel m11ans throu,ti the cJrculatory system. The material can accum&ilatc in a apeclfic orian and irt'adlate It, as is the case wUh iodine and the th_yrcld or.ran. There are other uternal and tntemal d0&e pathways, uch as upmure to radioactive mate-ii.I deposited on the ground and the qestlan of food and water ccntaini.lC the radioactive materlalL These are 1eneraUy less Important than lmmersicn and lmalatton.

The ealculatlCll or the radiation sources In a cloud In relationship to a receptor is vepy eompllcated.

. However, Wilen the physical dtmen.dons of the radlo-acUve elClld er* Jll"r* compared tc the mt.an free path of U111 Ndlatlo,,, the lmmer-sion ito.e may be approxl-inated ~ lntqraticn over the distribution of lOU1'1:!e5 In a hembpherlc:al volume or Infinite radius, The approJd-matlon i. represented by the equation5 D'

  • G.25 E x, where D' -= ram ma cbse rate In tissue trom a aeml*

lnflnlte cloud (ra.d/s).

E

  • avera,e gamma energy per dJslnterratlcn (MeV/dlliintteratlon), and X "' concentratlcn of pmrna emitter In the eloud (Ci/m 3).

(6)

The concentration, x,. or each radionuclide In the cloud b calculated by multlplylJ¥ the releue rate, Q, by the relative atmospheric disper,icn

factor, x/Q.

The average energy per disintegration 15 known and may be round In listl,.:s or the properties or the radlonucUdes.6 NRC has publ~hed a set or dose conversion feeto" 7 (DCP) that allC> may be used to calculate an approlimate dose rate with the eq1111tion

D
  • 0 X/Q DC7 31 686, _

(7) where D

  • lmmeNlon dose rate (mrem/yr),
  • release rate (CVyr),

Q X/Q

  • relathe atmCJSpherlc Oispenion factor (1/ml),

DCF

  • dose conversion r,ctor (mrem/yr / pCi/m J~ and 31 886 = dimensional constant CpCI yr/ Ci a).

When £qc. (6) and (7) ue used to compute lmmenion dose, there arc on~ amall difference In the results (about 1D'16). Thi DCF's In Eq. (6) ~re thole for a km depth 1n the tissue (the senetlcalJy lignl!ieant CIOSe),

whldi accounts (or the differences in the results. The lmmer*lon doses reported here were computed with Eq. (7~ whleb Is consistent with other.NRC evaluations.

The inhalation doses were computed usflv the standard models from the publications of the Inter-national Commission on Radiological Protection. 8-lC.

Again, NBC DCF's have been used in the Cllewatlom h:>

be consistent with other NRC evaluations.

Tb*

Inhalation doses report~d heN have been computed wit.al the rate equaU011 II

  • Q X/Q IICF !Ill. 3.652.5 s IOU, r

where Dr Q

"' lnhaleticn dose rate (mrem/yr),

"' release rate (Ci/s),

X/Q s relative atm05pherlc ~_per,Jon faetor Cltm3>,

Cl)

DCF "' NRC dose eonverslon factor (mrem/pCi inhaled),

ea

  • brcathi~ rate (2.28 x 10,.&/0), and ll.6525x1oll c clfmensional coflltant (pa m lcs/Cl t yr),

The Intemati.on&l Commlaion on RadlolO&"lCal Protec:-

tlon8 recommends a br-eathi~ rate of,.,7 JC 1..,& m3,'I c-, x 10'.&Jcl) ror exposures or shOrt iu-ation (hours).

However, the release 111nd sllbsequent exposure eona-

&ldered here is for a period or days; there!cre, u--e breathq rate for the *1t.1nclard man"11 was telecte: Cl tor use in the ealculaUons..

The calculations of inhalatlpn and immersion doles were made with a computer prorrem b.a1ed c::.n Eq, (7) and (8). Tbe isotopic bulldq releases (Q) wez-e

~mputed aceordln, to tht! methods riven In ~

A1 tho relallw atmospheric disperslori factors were eompuie,a aeC!OJ"dilw to ti* methods Jiven 1n Sec. B. n. do2iie conversion factor were obtained from.Ref. 'l. AU c,f the.ae are *~11ic 10 the ~actor fuel form and lite.

except for the OCH conversion ractol'5.

D. core Temperature Hi.Story Calculations The air-cooled temperature history or t~

uranlulft"1ll.lumtnum (U-Al) plate element core wu ea.l-eulated with a general purpose, two-dimensJonaal.

heat-conduction computer pNlp'am.12 This fuel rcrm is employed In the POOL* ar>d TANK-class reactors. T.,_

objective of this modeli11r rtudy ~*as to predict t..a\\e occurrence and extent of tuel meltJni because or Llhe reduced abDlty to remove decay heet, With U1e coola.nl UNCLASSfRED

ct I :ODlz CCL 6142 I mM..., l(JJI IV') u,,..

SLCU:Cii I :Ctdti EB 1141 ll~iFIED.

drained, the temperatures or the fuel elements and r.urrounding structure will rise from their normal valu*

at rates that depend, In part, on the dec*y heatlrw nte end on the mass and specific t)at of the fuel. As the t~mperatures increase, he*t wm be lelSt flom the fuel elements to the surroundinp throu,h the combined mechanisms of thermal radiation and natural oonvectlon o! the air. Dependl..:- on the 1.nlUal operatlrw power, the time since staltdown, and other factors, the rate of hut JDSS wm at some point ln the transient become

  • exaeUy In balance with the rate or heat rener1tle1t from radioactive decay. Core temperatures wm then begin to decreue, and the extent or eort melti~ can be determined f,om the maximum temperatures.

n,e anal}'Sls was conducted with an existl,c two-dimensional, finite-element eomputar Pl"OSl'*m modified to conform to the problem, The fuel plates and eoolant ehannels are not modeled Individually in the eode beeau,e of Umltatlons an computer time and memory.

Instead, the core Ill "homocenlzed" by eomblnq the fuel, structure, and coolant ehannels, accoreling to their respective volume traeUons, Into two composite materials. One compaslte material, occupy--

Ire the rerf 011 where fufl ensts In the core, contains uranium and Is the source of decay heat. The other material d09S not contain uranium and represents the upper and lower unfueled sectims of the elements and the nonfueled renector.

The atrangement of fuel elements, reflector, shim safe~ (or "control") rod elements, and eJCl)eriments In I typical 'V--Al-fueled reactor Is very tltx:lble and 11.t>Ject to chrige; lhb Is one of the major advanu,es of the design. Fer this analysis, all experiments are omitted from the core bccal.l3e their prcaen~ would provide aCIClitlcnal u.nful!led material to absorb heat and "dltee the overaD fuel and power density. An additional conservatism In the model ls the auumptlon that all shim aafety rods are fuDy withdrawn 11> that their fuel follower sections are inserted into the eore. Buth

  • configuration ls lnooneeivable for a shutdown,eaetor, but It does represent an upper limit f<<' the amount of fuel pruent. The number of fuel elements In a reacta-vu-1*, but 24 plus 6 ahJm se!ety roc1s13 an t)'PICIJ, and have been used In the model, Tile normal rectan,ular arrangement of the 76 mm2 fuel demenU is converted Into I rlght-elrC\\IJar cylinder or the same volume ln the homogenized model, which produces the conservative condition of minimum lateral surface area tot
  • heat talifi.

transfer. The homorenized CON ts subdivided into a serl* of rlni-shapad f1.11lta elements as depicted In Fig. 1, with ~ axis of symmetry alq the vertical centerline, Heat transfer from the top, bottom, &!'.'Cl sides to the 11111Toundl~s occurs by tberme.l rtdltUon and mtural convection.

Air nows by natural con-vectiOII throu,h the coolant pusqes and Is treated iD the homogenized model as described below, The problem or heat trl.l\\Sfer t,y natural (or "free*)

eonvecrti011 between heated vertical plates bas been lnvestJrlttd ln m1111y recent analytical, numerlee.1, and experimental studies (ltefs. U and 1s, for example).

These studlac ate based on uniform wall heat Du.xes or UllJtcrm wan temper*tures and do not consider the internal heat ~cneratlao, heat storqe, and ccnduction wt~

the plate and aim>U~ structure.

These rcta-enc:a do provloe useful llmJtl~ cases that were used as eheckS on the model's validity.

The basic assumption ln the model Is that the air now and resultl,e-heat transfer within the ecn are governed by a balance between bouyancy forces and the viscoua drllC, plus accelertticn momentum C!N.l!le wJthin a typical *averare" channel. 'nie eore pNGUNt drop is calculated with the followl,c e,r,preaioo, 5

. ur [CLASSIFIED s: t :Oil tt 552 Si tE I 0ZC0iti I I ht& I Lb 1141 bitlii'A I :Oil

Si I :01!1& SSL S:ki SLSSilii I ii&ZAILB :::: OitililfflUSSJFJ[D where AP

  • pressure m-op across the C!Ol'e, L
  • lenftll or core, p = ah density (1, 2, and
  • signify channel
0) inlet, channel exit, and in the volumt cun-oundl~ the C!Ol'e, respectively; a bar signifies the averare value aloav the ch&nnel lqth),

I

= rravitaUonal conatant, t

.. Fann~ friction factor bu1d on the av1tere Reynolds number tn the channel, and DB = channel tiyOraullc diameter, An expression for the averare air veloclty is obtained usuml~ the air density at the channel lnlet

<i,1) is equal to the air density in the volume surround!~

the core (p_), the ras is Ideal. and pressure ditreNAces ere,man. The resultant expreJ1Slon is (JO) where*

T : c** temperature, with the saroe signifioanca tor subscripts and bar as before.

The velocity was cale11lated at eaeh time step with the friction factor c&lculated in the previous time step.

. Tile now velocity increaus with time, end the frletion factor decreases with increul,v velocity. Therefore, the ealculatlv. results lll'e eonsa-vatlve because hlfher than actual friction factors were IDed. The air velocity and heat removal are bucd on the averqe temperatiire of the core, and, as a result, the convective oooUrc Is hs than upected In the hottest rerlans, which Is an additional et>nservatism.

6 In the eore model, the actual gu velocity is converted to an equivalent velocity f~ the tiomo-genl2ed core to achieve lhe same enero transpc,rt, or v

  • v Cpc:cJ/<Pc:>,

e CU)

= average density, volume traction, and specific heat capacity for the air; and

= Equivalent velocity and density '

and specmc heat capacity for the

'homogenized core.

The thermophysleal propll"tl* for the hom~

genlzed core are determlm:d from appropriate,relght-lnc functions, based on the 'VOlme occupied by the air, aluminum, ano uranium. For example, the equivalent density and specltic heat cap&clty tor the homorenlud eore are (12)

(13)

  • here Nbscrlpt.s 1, 2, and 3 represent aluminum, air, and uranium. The volume tractions, c, are 0.394. 0.604, and 0.001, respectiveJ,y.

The etc.cu..

thermal eonductlvity.of the homqrenlzecl core Is bued en the usumptlon that the dlapenied phue (aJ.r) can be represented by lumped-parallel or Kties.... t.tanca.16 For example, ln the direction parallel to the fuel plats (that ts, the vertical Olrectlonl, the effecUve thermal.

conductl'rity Is (14) where 1 is thl thermal conductMty. In the horizontal.

direcUon perpendicular to the fuel plates. wheN U.

plates and void spaces are in series, it is In the horizontal direction parallel to the aurtaee or the fuel plates, Eq. (14) is applicable for calC\\llatlJW the etfectlve thermal conductJvlty It the affect of the aide:

plates on each fuel plate Is neglected (a conservative usumptlon}. Because the elements can be ariented w the eore with the fuel plates &J.wned In either of twe>

directions, and bffeuse the uisymmetric model or U.

core requires that only one value of thermll aon-d11CUvlty ln the horizontal direction ma,Y be used at &nl7 point &Jq a radi111, the seometrlc mean or the errectlve conductivities obtained from Eqs. (H) and (1$>

Is awU*ble.l'1 Si I :Si!:Z 562 S:tEI SLCS:lii I ttt&!ES lit! Gitiii'AliG:C

21!21 I

& Si!!! I I &Li Li as ii ii C iiii!A 116 it The heat tr11nsrcr by conduction thnneh the atr In th: void spaces b augmented by thermal radiation from cine fuel plate to the next. Thts erreet Is accounted tor in the model by addinc the molecular conduotivlty fer air in the i*P to the etlective conductance for thermal radiation, which ls 2

4 o 'l',c. - 1),

Whel"t a = Stefan-Boltzmen constant, T "' 1verare temperetu,e or the fuel plates on eJther side or the 1ap, and e

  • total hemispherical em1ttance for thermal radla\\lan ICC" the fuel plateL The outer IIW'faca of the homoge11lzed co,e a,e cooled Simultaneoualy by thermal radiatlan to the SUM'Oundlngs and the natural circulation of air In the tank. The normal totel emittance 18 on the oxidized aluminum is taken as 0.2 at 367 K, lncreasin, to 0.33 at 811 K. The hemispherical emittance 1s.. umed to be equal to the normal emittance (a conservative aaump-tion). The emittance is lncreu~ to 0.72 on the top and bottom J;UJ'(aMS of ll* COie to &CC!OUllt 1or the "black body" tadlatlon from the coolant channels.

The heat uanster coefficient an the top and aide 1urteca ol the core caused by natural circulation ts found from tile lollowJ"° Nu.sseJt numt,er correl*tioru19 Jtu

  • c (lla)*,

(16)

  • hete Nu "' Nusselt number, Ra = Rayleigh number, and c,m = constants based on the value or Ra and on th@ m1entatlCl'I or the surrac:e.

The total power In the core at time t from radioadlve decay of the fission products is calculat~ by where t is ffven in seconds after shutdown, and P and PO a,e the power levels after and ~re,,. shutdown, respeetlwely.

ThJs 9quatlon a.louly parallels. the Untermeyer-WeDl formula for an equD.ibrlum Inventory of ti:saion producu over the !'al1".e 100 to 106 1 (2'11 h),

and It produces heating rites that are higher than the well-known Way-Wigner formula.

The heetlr-g rates caused by radioactive decay thro1.;11b0ut the active core I are dJstrlbUted radially* and axially, according to the operating fissim density.

1n the redial direction, "fuel-stufni~"

makes predicUan of "typical" distribution of heati~ rates difficult, 10 radial

$' pe~ factor* *or 1.0 is used. This could easily be modlCied If a parlicul11 core Joacli~ were to be studied, ln the axial dlrectle>n, the heatln&' distribution ts a modified oosine ihape.13 The axlll peak-to-average heat!~ rate ls 1,494 and Js reachec:I at 0.4111

/11 below the top or the fueled portion of the core.

Because the model of the core combines the fuel plat*,

structure, and coolant channels In one homogeneous material, the heatq: cannot t,e lsol*ted in the "meat"

.,!f the fuel plates. This means that the local tran&vene

/:, temperature difference between the center or a too plate and the Ct!nter or the adjacent coolant charulel Is not calculated. For the avera,e volumetrla heaUq; rate, the fuel plate could be

  • maximum of '1 H hotter than cslcw.ted by the model at 1$ min after *hutdown.

Ja This temperature difference wW decrcue over tJme beeaUN of the decreue In 'decaJ power 11ven by Eq. (l'l).

When mu:lmum core temperatures art reached (-3 h), the maximum temperature dlCference Is less Ulan ~ K.

The calculative model took this into

,,Jj acaount by speclfyl~ tbat fuel meltq occurs at

  • temperature,., K cooler than literature values..

The core heat-up for

  • 2-MW reactor, sta.rtq from an Initial unlform temperature of 311 K at 15 min alter shutdown with tte coolant drined, is dest.!T'ibed ln
31, Fi,s. 2-i.

Fiture 2 s.how the temperature o! the hottest point h'I Uw core versus time after ehutdown.

100D,----,-.._-

100 i i E.

.. *oo


l' 1**1ht HOK

  • 11*

zoo ~...,.,...~__.,..,.._....,.,,__...:-_.i.,_-..J 0

2000 *COO 1000 1000 IOODO IIOOG i Tl** at11, llwttl1*w 111

}.i; Fig, i. 1'emperature at center or 2-MW reactor core ver..u.s lime alter shutdown.

r,---... --........,,. L~-~.;~:* :_J~~~ : ~: *-*-

7 UNCLASSIFIED I S:?1 L 11111 I

IHI I 1!121122 Li! S!lltllti!Si!

B a

tzbm iii! stttf~Cdtss1nED.

\\

Pig. 3. Jsotherms at CODD s, for 2-MW reactcr 15 min after shutdown.

IO r-""T"-r-"T~r---r--r---r--r-----.

'; IO

  • .. * = 10 10 a** 11.. 11..,.1111..,,,,.r,...,
        • -** **t**...........

C-ct1M..

tlH1 Ire* iilltrNI II**

1114161 T*** au,, Shu1'0*11 0,1 Fir. 4, Heat balance versus time.

Ffg. s. Volume of homogenized core above indieated temperature.

I 11le temperature lncreeses rapidly at

first, and

. stabilizes near th& fuel meJtJ~ temperature M23 K) in about 2 h. Figure 3 is a plot ot Ute isotherms 4000 s af'ler shutdown. There is a steep radial temperature 5

gradient at the oute.r ~e or the core and ~eneetiir,.

caused by the relatively lo** ther-ma.l C!Onduetlvlty in* the horizontal (or-radial) direction. Figure 4 shows the heat.

balance versus time; the heat generated by radioactive-decay eventually becomes eciuaJ to end, finally, Jes than the sum o! the heat removal by radlaUoll/'

convection from the varlcus surfaces. In Fl(, I, the eore volume (homogenized) that Is at or above a give:.

temperature versus time iS Shown graphic&ll:,.

The:

total homogenized volume that contains !ueJ is 0,1075 m3, and, or ttus, the volume fraction or uranium Js. 0.365'K.. Prom theae numbers, the appropriate eore melt fractions can be determ1ned. With core melti,w et 923 K, only fl.003 m3 melts, or about !lilt, of tht core-volume.

').. c::i A paPametric study was made with the CIIDlpu--

tational model for power levels In th-! range of 2 tc>

10 MW and stwtoown times In the ranre o! IOO tc>

2 x 106 1.

The results are lhown graphically ln Pig,,_

Tile solid line In the riJuN! Is an analytical cornlatiorL

...._ S ~rived from a heat balance and f.q. (17). [!Jris:;

correlation can be used to Interpolate or extrapolate=

the.numerical results, and could be used to derl,e a salt=

per.iodic check interval so that any.sabotage would ~

discovered before the core melt oecu~ The enalyti~

]~ COM'elation Is 0.17321 P Ct o.739-t 0.739>

o 2

l tz c core power-level before shutdown (W),

= time interval between shutdown and loss of water from the cor-e (s}, and e time interval between shutdown md presumed meltlrw (s).

U!!ClASSUlED ouo 5RJ

ouo 5Rt a

a st Gs ii a a: :_ii!! : DmLASS'lFJ£.fi*

10 II a -

., I a..

l,11otpllcDI ct,,.,.,....

  • c_,.,," -*i.,*l*ll..,

~ lli9M *tlliRI le 0IOY.)

o No 111e1tl1 0,~o,...--,~o.----o~:---......,,=-_.....,=--*,o,

,~.

10

,o Tf1111 Shiu lti114'**11 l1)

Pig. G. Power versus time since shutdown when coolant level drops below eo,e.

G-------,-.,....... -t

,*... ~.... _ :.~..... *.

- -- '"'~ *.... ri-..:...,,'-.:o C

~ -.. *..

~

Fig. 'I. Fr-ection or fuel melted ve.rsus time since shutdown when coolant level drops below core.

A. Introduction There are H licensed AGN-class reactors in the US; their locations are listed In Table L All are usm tor training at *-*u,e various universities, The AGlii--201

  • ..... *: * * ""C-:---
    • , I I

I.

f 0_:..~~ ~.... _.: * * -~*_:i I

t,r::,,..,,,,.-=::::::...._......1._....L_..... -

I

_.).

Fie, I, lsolhet'ms at U h fer t.J..MW reaetcr *IPGSed at I.I h afte-thrtdown - water leYel at bottom of fue plates.

TABLE I AGN REACTDBS Authorlnd Llosmce Im ~

Power1 w Unlnmty et Olclaho1111a AON-211 M-112

~

Unlv..sltJ' or"" Mateo AOH*lll I0--162 I

On!versltY or Ctlh AGtrl-!01 14),,71 I

Texas A&M OntvanltJ AGtrl-201 SO-SI I

Calltol'ftla State Po)ytechnle Colltge AON*201 SO-SN OJ.

C&thollc Ulllveralty AON-201

$0-7'1 0.1 CoJorado Stall lJnlftl'Slty AGN*tOl so.. a 0.1 OHl'lil Institute ef TtehnoloC)'

AGN*20l SO-JTI I.I Idaho State Unillef'ldty AON-201 50-Dt 0.1 ONIOII State Vnlversity AON*201 50-101 D.1 1\\llkeree Institute AON-201 SODI D-1 tlnlverslty er Delawar<<

AON-lal

$0-II a.1 10

( models ll't ID physically identical except for 1hleldi"-

1na ter!I.L The ll-em-h.,, by 25-cm-dim co,e Cftr, 9) oondsts of poJyethal disks oontalnq %Hi enriche Cl UO!, A SO-Cm-thick 1Nphlt1 reflector and a -~*d

{' aluminum core tank 111rrou.nd the c~. Lead 1hl*ldlrC, 10-Cm*thlck. Sl!ff'OUndl U. ear* tank and Us 1-d a9 sunoundad by SS cun of water (for airthoriied powe, e>f D..1 W) ar et Jeut U om or concrele (for author.11'.ed power or O or u W). hcal.llle or U1e law power level, ao

/t:,eooll~ S)'llem is nectllll'J, A horlzonlal 2,km-diani e.ntrlll *JPCIIII" facUltf tube Is the only ll'ddd penetration 1o the core ether than the fOllJ' eont!'Ol md 1afety rods. The concrete lhicldlJc II also penetrated bJ four IIIDrlzontal lo-cm-diam lnltru entatlml ~cl J Tfsperlmentatlan acces ports that terminate tn U.e rraphJte al'lleldq. Thi concrete toi-waa.r) sh.laldl.aw -.

4anta1Md b)' I -~ ltftl tank, 2 m.. b by 2 111 dla,n.

The oweraU mus or \\be reactor "'"* lnc.luclimW

~iiji -*-*

---=---

--*--~


1-----~

Pie. t. AGN-201 Nactcr.

l--*---

c---

--c.

c..i:":r-

OSS:6101, I ICE OW lf SSSI IRIFf REh,siEI Ulfil AF :e8ffl'lffl!fft1 r

61 I IOIAZ SSE OICE I SECOld I I l<EEA I.Cb IICI URIOIA I £14 tes thl1 reactor UM wu 1lmflar to previous years.

The reaetcr cenerated 117 Wh in H h of oper'1/4lon, which Is the AON reactor eluS.

The reaotor2' cener-ated ao Wb durf~ Uie ame year. Por purposes or 11

12 If TABLED AON MAXIMUM CREDIBLE FISSION PRODUCT INVENTORY lnveratccy

~

(Cf) 81'-IS 2.02r10-s Kr-lSm S.SlllD-3.

K....asm Lllx10-2 Kr-IS 1.22x10°"

B,....,

0.0 Kr-1'1 L4'1x10-S Kr-88 1.12110*2 s...a

~.011110*!

81"-t{J 1-10.10*1 Zt-95 l.4&x10-s N15 S.4'1,;10*3 l\\v-103

U4X10-s ltv-1111 S.4lxto"..

t-l2t 2-zax10*10 Te--13lm 1.lbt0"'2 1-Ul 3.Ux:10-3 Te--132 1,54x10*2 J-JH 1.ssx:10*2 1-113 i,S9xl0"2 X..-133 9.911Xl0"2

,C.-134 T.lh1~

l-US 6.B3irt0*t J:.-135 T.'4xtll"2 c,-.1311 l.lllxl0"2 C.-137 1.1Dxt02 h-140 1.01x10*2 La-141 4.51x10*2 Ce-ltl 6.57xJo"1 C.-144 4.11x10-1

\\

D. Site CondiUons and Atmospheric Dispersion Bee.use or their compact size and low power, ttw AON,eactors have been in&lalled in a va.rlet1 of physical Joeatio111.. It ~

that no sfnslt alte can be ealled typical. Most ot the ACN rea.etONI ue loealed iD buvDy eonstructed area of buDdirrp or In heavily eorutructtd build._

Ttie ah~le 15--W AGN*lll reactor (au Table n ts In a water pool lnO bl not typical oftllld-.

The N1ctor locatlon leleci.d ror meteorolo,ic&l alcwaUons II In t~area. Joint frequency disU'ibutians of wind speed 111G dlrectioll for.

each ltablllty clam for two power reaoton located in tJie vtelntty or 11 used In the calculation ol ~Q'L Brigs lrban danducl deviatJON or plunic apreacl

, were med in the u.loulations '° model the aaume>e to the thyrold or SO0ren> ar Jes. At a hou1I~ area 200 m away trom the reaetDl',

the total thyroid mst would be I than S mrem. The lnttilatlon wllOle-i>ody dose {aolid line 1n Pig. 12) II lea than 1.0 nirem et 10 m from -the tll!Ildl~. (At 200 m, the lnhal.aUCfl whole-body dose Is le1S than D.1 mrem; the dose UmJt specified ln Ref, 25 is 25 rem.)

The dOISes at infinite time trom rround contuninatian were calculated as

  • funcU011 of dist.an~

from the reaetcr bUDdin, ror tM undl,-. m-** The dose trom ground eoritamhw.tlon from Nla11e of the vaJ>lOU!I lnve.ntoriat wu ealeulated and found w ti.

wlgnl!lcant even for-the maxlrnurn pcm(ble Inventory.

Cal4:lllaUcn of the 0oee from lmmenJgn In the plwne Indicates that It Is also hslgnUicant tn comparison wtth tlle others cGfllldere.

The nalcn pl'Odllet Inventories c&IC!llllted I<< the 5, to, and 1001'> OJtJ cycles were 1110 med to eompute the same doses; the results are shown ln fjp. 11 and 12 to permit eomparison with the mexlm1un credible dale, These duty eyeles e not coraittered tftdlble tor the AGN Installations; that wep,e revl wed. '!'he caleuJated ctoses are pPeSented to indicate the relationship bctwft duty cycle and expected i!OH up 1o operation at. tuU o'r------------,

,or

., __ c.. '*""'"'.,.

o_,_ c...,._..,,,,.

1111...,.,_ C... )*IOCl'*Wlr~

c,_.. t,........._................,

10"4 '-------..i--------

lO 100 ID00 Oil1tlftcllffll Ffe. 12. lnhllat on whol~ dost -

AON--daas reactor.

J power, H h a day, 36S days a year. 'The calculated dole 61, of C!OUl"Se, subject to the restraints of U.... u111e.d 11botage *~narlo and fbllon product releue fraetian1; Ulen wert held constant ror an mey eyels.

JV.

THE TRJCA-CLASS REACTORS A. Introduction There are Z4 TRIGA-cl&SS research reactDn ln operation uuourhout the I.JS. The liotMecl opuatJni reactor ther mal power Je,,el varies from U! kW to 1.s MW (see Table Ill). Of the H reactors included in thh study, 2 are rated at LS MW. 9 at 1.0 11w. and Ule 13

.88RBRl\\L TABLEm TRIOA CUSS REACTORS Licensee Oeneral Atomic Compeny llnlv11'1l\\y of DliDOk Orezon Sttte Unirenlty Tuu Al!cM Onlven:lty Unlval"Slt)' of Wiseonsin Wuhl.nston State Onlverslty Penn State DnivenJity lJnlvenltJ of California-Berkeley Armed Potees aa~iobloJoo RIIW'oh Institute Northl'Op Cfll'Par*tla11 tJS OeolcviOll Survey Kansas State 'Dnlverlity Michllan State Unlwnlty a.. d CoJl1p on1wmtyor Ca.Ufomla-Jrvlne Univ~ of Tua Unlverdty of Mc-ylmMI AeroJet General CCrpcraUor, General Atomle Compal!y Cor~~ Vniver1lty University of Arizorla Unlvenfty of tJtah Dow Cllemieal Corsxr*tion Vettf'aris Adminl11Mtic:11 l>ocket Number _

50-183 51).151 S0.-2U 50-121 50-1511

  • 21 Ill-I S0-224 50-1'10 511'7 so-aH.*

S0-111 so-n, so-2a so--n*

S0-112 50-111 50-221 S0*18 5~157 50-lU SNOT S0.2H S0-1Sl AuthDl'ued Power Level, kW 15D0 1sao 1000 1aoo 1000 UICID 1000 10011 lODD 1000 1000 HO 2H 251 uo 150 250 no 250 100 100 100 10D II remlinuw 13 are rated between H od DOkW. Thel TRIOA-c:lae reactar 15 I awimming-pool reactor (lhal Is, the prlncipe.! vertical bloklgical radlatlcn lfllelCI ii light water, uauaUy In an e*entiall)' opa,i pool Of' tank abOUt 7 or Im c,eep), Each Installation Is dJffe:rent, bill) tl'lere a-.. at !Mil rour belie reactor * *ltn tJPeS, The reeetor eores ere either cylilldrical or rec:~ moct of the eyllndrioal eores a,e enelased bl a eaMeCI Cftphite radial reflector *. ~ The basic deSisn tn,as alm have instaDatlon-tpeelffc Yatlations. It Is tllenifo,,e no#

pc,Hible to seleet a *ir*I* re ~tor of the TJUOA eJall u typlcw for the p1rpcs* of thk study.

Th report II based on e uleetlon or n,a,dmums ln the T!UOA-cllA reactors; the analysis presented Is fer ~

-~mpallt" TRIGA reactor lnltall~tlon. ~

rue ear or the GA reactors Is a lOl homoreMOUS fuel-moderator form developed by the General Atomlo Company.

1n the fwel form, the zirconium hydride mOderator ii combined with about I wtll6 enrietted uranium (either 20 or 7D'6). The TJUOA..

Ji> fu.l element Is cylindrical; the.olld cylindrical fuel form (uout :a.s, em diam by about li.6 cm lofW) Is eoatalned In

  • 11,T&-mar-tblck alumlnUm or aialnlat--

ateel eyllndricll aJ)ell With abOUt l,'16 cm ot 1t111>hlle -

the tap anc, tiottom as end reneetors. The ovet'all I,!1enrtti or Ute aaled eleinent, with locatl,w filnures, 1s about 71 em. The elements are located In

  • core r,idl (either elrowar or reetan,Ular) as,1,.1, etemenu or u.

module1 of four eletnenu 11'1 a f1'1d adapter. There are aome mall variatiou In fuel dimen1lonc, but th~

~deacrlbel t* basic fuel form. Lltl!l"Ature exu:u an both theoretical and nperlmental work with tMs fuel fwm and the TRJG~ elements..

IPPIII! :t *** 11111 lllbllil I ::2211:zs 11!1 Sttiltlillbil

iFS:Si Ji i :SE Sil J IT J I ii:&

f I I

IFPlll!i!L BCE Ci!Zi czss:e:. I ll&E'AILB "" Oitliikllbll

(

c. Fission Prcduet lnventoi:, and R. eue The annllll operaticra repc,rU tor TRICA-clals re1cton contain blpJy variable aperating bistori*.

Total yearly eoero renePatlon at the aame lh:eneed power varies by u much as 2 orders or rnacnltude. The operatJon reports tor the ola* do Indicate a na&ldmum

$--day operat~ week, but the react<<* wJUl _the bighest operatiJr& tuna are not those wiU'I the biehen power levels. The cateulatlon of the maximum crecUble fission product inventory for the TRJGA clall wu tberelore based on a composite or the highest recorded yurly q>eratlng history and the hlfhest llcemecl power level; the product or the two II Vie inuim11111 credible,early averqe reootded the available operation NpOIUJ It ii OeaJcnetcd u the TAIGA achewle, aoG wW be 10 cited.

Fmlan product inventory caleul1tions were made Cot rour cues:

1.

The maximum credlbJe Inventory,

  • 2.

The muJmum operatlOII sel>eclule inYentort.

15

IPPIII tb SIi Ilk I SESC!lil I ilEEAtbS hf! C litlb:lllldllWldi

. n,e 10,r, GltY-c!Jcle equivalent or mlninaun I inventCII")', and

.C.

The 1009' Glty-c)'cl* or maximum possible inventory.

The maximum cttdible lm~tcry etlealatla11 ii b.-.cl 1111 ~,

tht computed maximum enaPI)' sen-tl1111 Nt.e, 2'750 MWh/yr, and the TRIOA schedule. This ii lW II at t.5 MW, wllld1 Is equivalent to Cl operat.q pow*

lnel of 11' kW cm the TIUOA adlaOule. *,-.. IJ Ult TNGA-da* reactor bale ease; tt II both reallirtJe and>6 crecllble. The maximum operation achedl.lle Inventory II based en the TJUGA lehtdule with opetaUCII at the maximum c1.. authorized power Jewl. u 11w. Ill this case, tht energy reneratlon rate Is 4613 MWh/1"1 the flssl<<1 p,oduct inventor, Is realistic, but not enu,..,.1~

credible, ~ven the recorded ~al'IY.. neraUon hls\\cra of thla elell. Ttw "1.lnimum lnnntory Is ~

Oft the

'l'RJOA sehe&iie with op**tlon at noarw.

Thb Ss

-<<;ulval11nt to opcraticn at 1,S MW tor 171 h/yr, or

  • 1°"

Alty c:ycle. The 10,r, Gitrcyclc CIUll'IY,eneratJon rate-.) 0 13H t.1Whf),r, Is eiase to the avera,e for tJdl e1us, which mates thll Inventory a llliti minlmUlll, Tht 100~

cut:, cycle, oont111.1owi operation of the reaotor, procluees tbe mutmum posd>le lllllon prodYct ln\\'t!fttory for operatlan at 1.S MW.

AllhDICtl lt 11,..)cf' eonsidtred nelth* Nalistlo nor credible, tbe 1011'.16 llJtY cycle is authorized; the resultant fial1111 ~t inventor, ls a true 11wdnn1m.

n.e rnufmum C!Ndlble rialon p,oduct inventory at the time of eabot

  • wu calculated for the followi~

TABLE IV TRIGA MAXIMUM CREDmu:

~ION PRODUCT JNVENTOllY

~

x.-us J-lU J-1!5 Xe-Ul Ba-140 c.-uc

%.r-11 Nll-iJ Ce-10 J-132 Te-132 La-141 Ce-1'4 Te-131m Jlu.101 1-Ul

~8

~&m ar-tO C.-1'1 Kr-11m R.u-106 Br-U Kt-17 Kr-15 1-121 8,-1'1 lnventoey (CO 3.lt'lUUI' Ut2'1JtJD4 2.61Hx10' S.021Tx10' 1.115~0' 1.1asJt104 1.HS61t104 J.11491104 un2z104 1.stssx1O4 U601xl04 U4Mxl04 USHxtO4 u2211x104 1.21M!d0' uaeaa101 1,0HhlO!

s.,001x101 4.0997X10S s.H21x101 3.4Htxi01 1.n1ex103 1.o.ux103 8.3tllxt02 4.42'lh102 1.7967xto2 7.1112-lt...

D.

.........- The bllildi* conutnq tlle

  • ~,,.
  • mlnl11u11 venteal ~

NCtlonaJ area or IU mt. Tht nieteoro 11!&1 ta-1o the environment from the b11Ddifll are Jaseout and,o include the ~.

xenon, Iodine. and bn>mlne Isotopes listed In Table rv. The fPaetlcn of the cora tn*entorJ of these llotopee reltaffd to the bulldl* and the environment b as11111ed w be 1,5 x 10.s,.. reported In Ile!. H.

,,t selected. and tl'le joint trequency distrlbutlona o wJAcl speed end ~

ror eadl stat>Wty lllullfleaU.

were eed In the caJowation of relative etmocpherie c!Jspet'Slon factors (x/Q).

Btl&P urbtn atandaNI clevletlc,ns of plume spreed were used In the calculetlom Ai)to model the assumed surraee,eluse in u urban.,.,

Caleulatlens of x/Q W4" m11de for the 5 an6 ~096 probal>Dlty levels and the worst-cue conditloN. A plot

'l..

16

.88MflD!lfflAL iiFIII 'LI ill I Ilk 111 NP(II Rli 1,10 iii! S!C::11 i!iSI!

or the calculated x/Q Yaluu as a funetlan of distance J from the g~und leftl release point is shown ln Ftr. IS.

E. Dos* Ca.leulaU<<m Results The h1hal1tlon cbses rc.slllUng from the calculated

/

b11Ddinf: tele&M or tile tiul011 pro<!Uet inventories *re~

lihown CTAPhlcally as a function or diStance in Fi,s. 1' and 15, The doses resUltinJ rrom the buDding release of the mmmum credible fission product inventory are shown u 10lid lines, The dales result~ from the buDdq release of the other c&lculated fission product/6 lnvanlol'les are ahowri u clotted lines 8Jld ve been included. tor comperlsoll. The doles ealeulated f* the 10n 41ty eycle are 2crd4!n of mapitude small* than the limits si-n In Ref. ti.

IO", ____ _.. __

..__...__...J 10

,0 100 1100 1000 !000 IQ000 )Q,000 !00.000

.J>lato~ CmJ Fi,. lS. Ralat a as a a; ass 2i ii; : t 12£1 ii as !itt &!iii!! ii :Sil 101,-------------------

l:l _____ toa, l*llifl.......,,,

Q ___ to.et- _

6 *..... *****,... So__,,.._., q,ei.

IO$ o-.. et-...._ c:n,cr1111t....,_,

,o** ~------""-------j 10 100 IOOO l)is--(ffiJ Fig, 14. Inhalation ~Jd dDMi TRIGA-clal,-no,.

101 r---------,.-------

o ___ _ _ caw 19 llif\\."--7.

(:) ______

Col* 2*Mo.._-.,.,.,fi"IICIII0.-1Ma-.f'it' 6 * *,.,. ** "' CoN 3* 10()'11,*&IIJC,Cle 0 --- NC:t* llltoatmuffl Cl'ltlltlll ~

1092-:-----------------.....J 10 100 t>lstonca tm) 1000

'"* u. lnhl!ation Whole-t)ody...

TRJQA-elass reactor.

11

V.

THE POOL-CµSS REACTORS A, lntromction The POOL elus of nonpower r*actor& lncllldol le.lo Nll!ton that vary alplticantly irl deslJn ma applfeatian.

The lic=ensed power 1...i or operetJon r..,a from 111 kW to SO MW. The reactoN are* located throllfholft the eontJnentaJ us and have

  • broad we speotrum.

At one end or this spectrum an t~

ruet~ that ll't usecl In _tralnq and l'SNJ'eh on minimal operatlllJ 1chedules, and at the other end.,,.

thote that are ueo en a 2*h/day lhlft tchedule to TABL£V POOL Cl.ASS REACTORS l,lffnMe Docket Number General Electric P..'10 N1uona1 Bureau or Standards 5114 Dnion Carbide I0-54 Rhode Jlluld I.EC 50-US University of Mietalpn*

11-2 Olli*.etalty of Virainll1 5H2 Lowell Te,llnolotriaal Institute 5D-2U Bimr:oetc and WDcm

>>-ti tlniversftJ of Milsourl-Bolla 50-113 lhli*ersity of Washqtm S~U9 Oeneral Electl'lc 60-'l'a Iowa Stai. Uni¥entty S0-111 Ohio State Vnivenity 50-110 Purdwe OniYera:lty 50-112 Worchester P~,Yl*dmlc Institute M>-la4 Westinpouae*

50-8'1' a Open-pool deaJsn, Autl\\orlud Power Level, lcW soaoo 10000 IDDO 2000 2000 2000 1000 1000 200 100 100 10 10 10 10 10

/

0 provh1e ll'tadiation services and to procilee isolDJ)IS on a eommercial buls. 'l'he POOL dassiti*Uori is ae,m.,. l:,

. what m.lsleedinr b*cause i-then hllU of ttie rectorw F*Phlte--renectett with rniph.lt~loaded dummy ele-ments located at the eore edses, or ccolant-retleetac:I.

The total number of fuel elements in a eore MCI tb.e rumber of plates in a fuel element are variable. This fuel IOMII is employed worldwide and hu been th e lubject of 8 alsnlticant amour,t of NSeUC!h ainN l~

development ln the late 11,0._ et Olk RI* N*Uona.J

!Aboratory. The tl*Al element ii oommonly raferred t. e>

  • the MTR type, IS aJ'1f In open llOOlt: the reactor =res are cooled In a pool er. ~aolant. but oftei the core
  • and coolant are In a
  • elated vessel or slr-ueture and the eooJant iS pumpm t)?rvlllfl
  • Mparate heat-exch111ge ayatem. Somettm*

an open pool of Ufht water 21 employed a a bulk Irradiation ftA!Dlty adjacent to the eoN...i or

  • thermal C!Olumn. Some of the reactors are eooled with light watet} othen a~ cooled with heavy wate,,

Tll)le v Is

  • list or lhe reactors In the clua with their licenaed powet leNll.

coolant llciw a.u_~.?,... The reactor eore can be 18 Tt,e POOL--clus reactor desipl vary lllrnf(a-cantJy, and no lingle ar hypottllltlcal eompoa!t.e lnstallatJcin is representative or the d&l8. The sabotag-*

  • ttaek WlnenblUUes are correspondiJwly qu.lL*

different. For the purposes or thJs study, two easer wW be considerecl: an open or awimm!nr-Paol te1ctc',

cooled and moderated with USht wa~er, and a r:1a1e-cl structure or veael ~actor, cooled and moderated witJ\\

heavy water. Both types ue ~~led In u,e bf&'hlal' power-rated reactors in lhe ctaa (2.50 MW}.

A literature survey wu ecnduc:ted to citttaun Information on f1aiori product reJeaae tor the D*AI tue>;

some 60 references *~ rewlewecs.

TIie l'tleae c.t

IIFFlil,t.Uli llfJtP/

IIHWl\\lfl. ffl!l!ii~B lltFORN1"1[1!1'1!ffll!ftl[

  • .,,,lf-_.

~--

(

I fission products from the luel ls shown to be a fllnCllan or temperat11re, time, and state or oxidation. However, It is raasonable to conclude tl'at no si,nlrieant reltue or fisslon products wm oeeur below tht,eported me1U~ point temperatw-e {-9%3 K).

There ii 11tt1e5 aireement In the reported release tractions tor apec:lflc Isotopes when the fuel ls melted, but the test condlticns are nol the same ln the reported eJpe"iments. The foDowf~ fuel-melt rat-f19etj-have been Nleeted u,epresentau,.. of U-f<< 0-Al fuel melted ln &in, o noble pNS 1.0, lodlnes D.10, telluriums 0.01, and ttrontlums and ea!ums D.001. The reported nJ..

es wtn ot>talneO 1110er operlment.i eondlUons t.tat IN Qlllte different from itae anticJ?ated tn tht out ot' eore lea of coolant by sabotage.

The llr-coo~J:>

eonditJol'II and heat-transfer eapabillUas of an element lb free alr cir In a f11m1et.,. quite dlffeNnt that\\ tlloaa fer the element Ill plaet ln the core, A qnltieant e,cperlment&l effort would be required to quantify m,y ecnelatlon, between the reporttii resuus and tbole for~

ass:s:r: ;155 2211 u sss::n:nr ss: tr5s :::ses:2251s:*

TIie hfshest lfcerNd powet le\\l'el of reactors In the cJus tbat are in q,e pools Is 214W. Fi(un 11 II a of the 19

Traveling br1dgf Suspens1on frellll!

Standard concrete Pool outlet header to heat exchanger 811PIIIAL ~8E! 81ft:

8l!!8tf_AI*: P\\l!!!EA I Lb i:C: OICIUIA 11014

TABJ..£VI PJS.;JON PRODUCT lNVENTOJUES IH CURIES 2-MW OPEN-POOL REACTOR (lOClf. MELT)

~

Fuel Melt

&otope

~

Fuel Melt Releue Xe-u, e.uzoxul'

  • : 9.132DXUI!!

ll.1320x103 Xe-13:1 1.1021x105 1.1D2BXU4 1.1021x104 RMI 8.3T9&x103 S.3'1Hxu2 l.3796xt03 Kr-17 U383x102 5.9.18lXUl1 5.9S83J:l01 Kr---15 U'182x102 6.2T82x1D1 6.2182%101 K.r-a5m

£.3644x103

'-S&UdG2 6.36Ua:l02 K,.._,3m 2..,317xl03 1.Ul7xlo2 2.,u1a:102 I-13S

,.11o&x10"

.7108x1D 3

,.noax102 1-138 1.,u,.10 I.S1-&'lx10' t.U'1d02 J-1U G.8:UOx10" 1.snox103 6.1230x102 1-131 4,0lllxlo' f..6181Xl03 f..U81Xl02 J-129 9.32.0XlO 9.J249x10*5 ll.32tixlO°'

8.r-83 8.9035xl02 8.90lSxl01 l.9D35xl0t T~l32 6.6359x104 6,1359x!03 6.135b101 Te--13lm 3.91&2x10' 3.97&2.x103 a.n&2.1101 C9-l37 4.B95BxJ.03 4,8958X102 4.19HX10*l C.-136 9.892bl04 9.892&x103 9.89:SxlOCI Sr-110 U39'x103

  • c.9394%102 t,9394xlD-l Sr-89 7.4174%104

'1.U'l4x10a 1.,uu10° included because the teleued amounts IU'e

'l'abJe VJ Is -<<;1,1ivalent to this inventory rnUltiplJed by the tuel nielt traction, arbltnrDy ut at 0.1. Tbe isotDplc fuel-melt release inventory a the fuel melt inventory extremely *mall.,

multiplied by the air melt Isotopic rel~ fractions IOJt</f>

frequency distribution of w.lnd speed and dlrecticn for the various speclesi It Is also hown in Table VL The

~ach stability cluslCi~tlon were \\l&ed I~ the ealculatlon l&otople Cuel melt release Inventory is Hsumed to enter or relative atmospnerfc dlsper.ston (actors (~Q), which the buDdi"l air. TM calculated dally *Isotopic release are shown rr&phlcally in Fif, 17. Calculatitins were from the buDdlng ror a 10"/day le.ale tat~ fs shown in made for the 5 a11d SO% probabUity levels and the Table vn.

The calculated buildlnr releases are hiihW worst~ase condition. Briggs urban standard dniatiom becwse the main tsctoplc contributors to the lnhalel1

,J,Of plume spread were used In the ealewations becaU&e do.se, the lodins, are u.~umed to be released wJtbout the re!etor building is a.i:surnec:t to be located in an ena plateout.

The oo,Eiunte, t:trontlUITIS, l-12lil, *nd Br-8:!f;<

or IIIJ'i'I! buildings.

r......

__ \\a..-,-,-...

l*

"I~

21

\\

,uu,n WIii.ihie n*ta11 PIDll9Ct llabn III ann MW Ol'lft-fOIII. lr.ACTOa (l!JI MLTJ IUIUIJI: UUUI 1411 Of 1u,-,

!!r.

IN

!!=!!!

~ ~ !!=!!

!?:!}!

c....,....,,

l*UI

~ !:!.!!.

!!::.!?!

~

I u.,.

H,ltl 2.m

...,. "*'°'

lt.lJI I

...,1o1 1',111....,._,.,

l,Jtl 1.118 t,Wf

,~,-

t,.OIJ J,eJI

.,,.,n 1.111 11,111 l.ffl 1.111

'-DOI ao.011

,.11,

  • o.n,..,..

l.tfl i.,n

,.au 1

un

,.n, r.:-...:

'*'°'

l,tt3 I.IU

.,_~......

U4.Ut 1,1ft

'*'°'

C--:J

  • .10

'Ill.JU o.ou

,.,u

~--

s;;

u tf,fll 1.IM

,.to1 t,241

~~

II

'1,111

  • ~

,-:3 ll,11t 1.m

,.u, 1,111 r_,.,

."'J II u.,n 1,121 J.Ht
.".J E:3.
  • .,oi Ult

,.1u I.OIi 9

II 1.JH fllT&

lt *.,..,..,,

...,.ftJ U,lfl

,O,VJJ 1., **

t,V7' J2..,..,._,,..,,..,.,

U.1'71 IO, UO 1.,..

11,:MJ

'*'°'.,.,..

ao.1111

iliflll tb Ull lllbt I 11 *Nil I Rllsr I SI 1111 C ii!iih i!Sit C

TABLE VW CALCULAT£D DOSZS Z-WW REACTOR TOTAL IU:LEAS~

Jnl".aJatlan Dislaftee Thyroid (km)

Crem) lnhaletlon Whole Body (rem) lmmcraJon

{Nm)

$ io 5016 ~/Q V.ALU!S (TOTAL B.EL&.UE) 6 e, Au.aft C-lllaa, Ii...,-....

, *** 0,.., *.,..

'°"'

  • 10,................,._,__

ID 10 tOt IPIIIO

~.000 ~"'9!> IDPOII -,-

ID I CTAN f!l la)

Fir, 17. Relative at

!actoN (X/Q STAR data.

fll

4. Dose CalcuatJon Results.

'"1e isotop o /

buDdl. N!INHS JIYM IJ\\ Table VD and the X/Q 'Nl from Pts. 27 wae wed in the oalClllatles1 or u.

lnhalatlOfl and lmmer1lon da&es reswt~ from the caJQllated releucs, Ttle calclllated ** Nllultl for ttrtS' 2*MM reactor relt-a IYnction of downwind CSJltanee.-e riven In Table vm.

C. 1he Clote6-V....t I>*p

'J'he reactors Ill the POOL clut thlt _.. in d~

YUIU are also thoN with the hirhest Uefflled aper- / t:,

atlrc po.,w levels, & to SO MW. Pot thlt evaluation,

  • JD-MW reactor power Juel was aelected
  • lt ts the

..aeton of tllis t,pe that.. ID 0.010 0.010 0.100 0.300 1.000 J.000 10.000 SO.ODO 100.000 11.010

.030 UOD 0,300 J.000 a.ooo 10.000 ao.ooo 100,000 0.010 0,03 0.100 D.300 1.000 l,OOCI 10.000 JO.ODO JOO.ODO 208,00D 0,11900 0.15100 1'1,000 o.uaoo 0.1010D auoo D.1D2D0 0.02100 5.990 0.01710 0.004~

o.sz1 O.GOU5 0.000,0 G.104 o.ooon 0.00001 0,040 0.00012 0.00003 0.020 0.00016 0,0000%

0.001 O,ODODJ 0.00001 I",c/Q VALUES {TOTAL lt£LEA8E) lUCl.000 6,0600 0,79000 1270.toO c..z*oo 0.55300 45UOO 1.5200 0.11100 t9.IOD 0.3330 O.OUIO JUDO 0.0485 O,OOIS2 2.IDO D..01197 G.00126 o.s*s ll..0011 o.ooou 0,172 0.0006 0.00001 0,091 0.0003 0.00004 5116 lr/Q VALVD (FIRST 2-h JI.El.EASE) 22.6000 14,tDOD 1.uoo 1.1100 D.18'0 0.0301 D.00ti2 0.0019 O.OOU 0,0STI0 0.03610 D,OU10 0.00210 0.000'2 0.D0001 D,ODG02 D.00001 0.00000 0.01'40 0.05170 0.01120 o.oouo D,00051 0J>O0lS 0.00002 001 0.00000

1.

'IllermaJ eo.Jumn dDor

z.

Fuel element

s.

Emer1eney coolln, distrJbullan pen

4.

fuel element transfer arm

5.

Poisoned hoJd-down t~es f<<- removable Hperlmental thimbles

6.

ElitpcritHntaJ thimbles, 2*1/2 in-1.4.

7.

Center shield plur

a.

Secol\\d-Door Htvice tnneh

9.

ReOeet.ar vmlcal Uilmble port JO.

lmer emerreney eooli~ tank IL Shim aal~y rod arm

u.

CO2 tDled area

n.

Removable experimental thlmblea, 4 In. o.d. x 3-112 in. Ld.

1'.

Thermal shield

15.

Reeetor VflMl

16.

Fuel tlernent transfer chute Fil. 11, The elcud-vessel dtqn..

N alac:o 1hown In Table IX.

u,p c bu rs rel_ee9e lmentory tor

  • 1.25'11:o/dlly l*k Ntt IS shown In
  • 24 Table X. The ealculated daDy IAtople Nleue from U..

buDdhw Is based ai

  • 10°'6 melt of the con.

I. Site CondlUons and Atmoiphe:rlc lll.speraionl-The elOle6-ffael dnl&D, wind

  • peed a.no dlreet1on rot each

.stCWt_,

IFFIII ii £12 11 Lt. SEOH!I I !t&B!!EB iii! S:l!iiiii:C!i

  • arr11tr"1L blOI lfHz'tE IIUUAl"Jllt Al!!~Jtifl!!l!I IIIFSIEIIIAI 1614 TABLE JX FISSION PRODUCT INVENTORIES IN CURIES lCl~MW CLOSED-VESSEi, iuctoR (1001. MELT)

Fuel Melt

~ ~

F1iel Melt ReJeut Xe--1S5 t.37118:dtl!I

~.37Hx105

(.37Uxl05 Xe-lS!

!.6U4x10S 3.124b:1D1 s.nux101 Kr-18 t.1888x104 t.l89b:104 t.l898x104 Kr--8'1

  • t.9&9hl.03 2.HHxl03 a.96szx103 Hr-115 6_,lUx1C12 1.:121sx10'

&,5Zl5x:102 Kr-asm 3.ll13Xl04 3.1813xltl4 3.18UxtD4 Kr-83m 1.2158dD4 L2l58x104 l.21Hx1D4 J.135

.u,zx105 Z.S44b105 2.$442110' 1-1)3 J.62241105 Ui%%4Xl05
u224x104 1-132 2.15B6x105 2.158'xt05 2.15Hx104 1-131 l.3Hh105 1.SB41x10$

1.38,tlhl:104 J-129 8.2O05:slG t.2006:dO 9.2009:IH-5

  • Br-n

,U517x10+S 4.45111tl03 t.<<u1x112 Te--132 2.10Hx10!

2.10Mx10S Z.102411:103 Te-Ulm L5044x105 1.5044x105 1.$04411:103 Cs-137 4.120hl03 t.92oax103 t.9%418 Cs-136 3.11HxlD5 3.119&xl05 3.llt8d02 Sr-91>

4.97llxt03

,.1111x101

-t.1'111 51--B9 2.3476x106 2.3478xUJ6 2.34'16xl02 classltication were 1.med in the ealculaUon of relative I atmospheric disperslcn !actors WQ). C&JcuJatlcns were made ror the s and SOC/6 pl'Obablllty levels and the worst-ea.e eondition.

Pasqunl-Olfford standard d!via-,

tlons or plume spread were 111ed In tt,e calculallaas; tilt!)

Pasquill-Gifford standard deviations were de~lopcd to model the c:onditlol'II or a nonbuoyant 1n1rlac:e releua In open country. 1'1le caJeulated 1./Q \\lllutt e,e lbOwn 1rephlcaUy In Fig. It,

, A

    • Dose CIJculaUve lles\\llts.

Tne Isotopic,6 bUUdi,C releases 11ven in Table X and ttie t/Q valua ftorn Ptr. 19 were !&led in the eeleulatlon or tht lnh&J*Uon and Immersion dasa reaultl,-

from the

~lculated release1. The ealeulated dose reaults CCI' the,,

10-MW reactor releases II a r11netie11 or downwin&e 0 W 10

(.

61.. &ul*** ***till.,.,......,, *._,

C "W*nt HII' P*ttt*lllor, 11* O.tt **

  • ID'II. aui.1*1 H*lllllt*,* r..,_..,H, ID JO tOO allll 1,000 ~.OCMI ropoo ao.oc,o, IDO,DOO DISTANCE lfllJ

IFFIII LSIISl!Li szuz:::. : :elilsm ash bil;l/;SSf fJE!)

ii i..

21 I

..., 8 !,) =: = i

,..... --- "0

.:. =~--***

26 Si I 101::z SOL cttti 6¢$.S!lll i..il.¢¢3/4123 ildl Sitili'Ailbll E.

.... -i i --

i --*

1'! -

! i

~.. * *

  • i.

Dist.anee (km}

D.OUI o.uo O.UH>

D.SDO UOD a.ooo ID.ODO 10.000 10tl.OOO 0.010 o.oso 0,10D D.30D l.OCIO 3.DOO 10.000 D.000 UID.000 TABLE XI CALCULATED DOS~

1D-M\\I' REACTOR TOTAL RELEASES lnhalatlari Tt11roJd (rem)

JhhalaUClh Whole Body (rem)

Immersion (rem) 5011 X/Q VALUES (TOTAL RELEASE) 1967.000

,U300 L463G 18'T.OOO 4.4300 i.sno 1290.0DO UGOO 0.9500 7U.Of0 1.7130 o.ssoo tst.000 0.3120 O.Ultl 33.200 0.0711 0.0250 6.1'10 D,01411 0,0050 1.417 D.0035 0.0010

  • 0.215 0.000'1 0.0002 Iii X/Q VALUES (TOTAL RELEASES) 28S0D.O 11.000 11.uo MSDO.O 9.000 11.300 lH'IO.U CS.'IGO 1'.1'70 13300.0 SLl70 1.110

,uo.o lLIIIC) 1C'10 US3.fl 3.247 J.007 146.0 0.51111 G.JIS 11.,

O.HI O.NS JU 0.028 n.oog

!i~ x/Q VALU~ (FIRST 2-h RELEASE) 0.010 536.000 1,2500 2.IODO o.oso

.C25.00D 0.111,0 2.2000 0.100 326.000 0.'570 1.7090 0.300 245.DOD 0.5180 1,2800 I.DOD 129.000 o.sooo 0.6710 a.ooo 23.20D O.OSSI o.1200 u.ooo 4.30D 0.0100 0.0220 ao.ooo 1.070 0,0OZJ O.DIIH 100.000 D.200 o.ooos 0.0010 sss:2111 ::es a;;;;; ssrnn zu a I RPI 1 I

(_

TKE TANK-CI..ASS ft.EACIOR.5 lntroe!Uctlon The TANK elm of nonpower reactors includes m reacton that.are located on urdver1lty cempusu aid ue 1119d In rneardi and trainq Pf'Ofl'&N, Tile Ucersecl power level or oi>eration varies from 0.1 W ID Ji 1D IIW. Table XD eontaiN

  • lilt or the,oetors ln tile cl.. with their licensed power Javell of operatlon. 1lie reacton -,e In clONd ftSSelJ Md, when necaaary, ere cooled with Ml")' water pumped throuJh a heat achqe aystem. TtleN reacton employ 1he aame fuel I<; fo~m as the POOJ.,-dus reaetors* the rlat-pbte U-AJ type. The number at plates In I Ivel element is vlll'Jl.ble, The coolant Oow Is axlaL The total number of fuel elements In* &Slte and ttle.number of plates ma fuel element are I flmeUon of the power level and dalJ

~a cycle.

The results or tbe heat-transfer model at.udy r1 this fHl form established that the optratiJw pow.

level limit fo, C!Ol'e melt undel al,-eooled eondltica TABLEm TANK C1.tASS Jl%ACTOJU Licensee University of MINourl/Columbia Ge<<rJla InstJtute or T*ehnol~

Maaach111ett1 Institute of Technolcey tJnlveralty of Kansas University or Dlinoll Manhattan CoUere Docket

~

50-LII 50-110 50-20 50-148 Sfl-356 50-1911 Authorised Power J.evel, kW 10 000.

HOG.

IDDD.

250.

10.

0.0001 Z7

l.

Hutexchanl*

2.

Thermal column

s.

RtDectGr&eme C.

Fuel 11')PClft I.

PHI eone I.

lrftdiatfan t*llitJ Coolant plplsw Pool coolant Inlet Z8 27712191 1127 SIP ii 1111 IT Rib,11 tilt lii!iiiii!Sii

l.

V.-tical eJIPi!rlment&l laclltl*

I.

Control rodl

-~

Ccn lank

4.

GNl)l'llte,eDeetcit

5.

E,ipan,ianl!na Coolant mlct TtermaJ Sl\\ltlO Core

9.

Hori&Ontll tJll)ftlmentaJ faelUty

10.

Concrete lhlclOUW Ptar. 21. Sohematl.o of the I-MW TANK-cl.>> r.. ctor.

  • l f
  • t f
    • 1*
  • t Ji*en bi "table xm. The t1ael-melt lnventary 1hotm fn(.

Table XDI Is equl¥&Jent to this inventory mllll.iplied by

  • fuel-melt fraction (1.0 In this ease).

TM lllotopie fuel-melt reluH lnvenlol')'

  • the foal-malt fnvenwy multlplied by the ab--meJt Isotopic releuc fraclioiw for the vulcus 1pec:lta; It >> alao JIYCn In Table XIII. Tne}IJ llotople_ fuel-melt reluae Inventory entes the bUlldl,s aJr.

The calculated* CIIDy isotopic release f,om the for Nleeted llc,tcpes IJ shown Ill TQ!e XV.,,_

f*l-mdt lrwe,,tory, tht lsot.oc,lc fuel-melt rel...

lllventorJ. Ind tte

  • lllotopfto baDdirw,.1.......,0 ealeullt.., In Ult 1am, m&M*
  • thoM t* the 10-11" PUetM, *xeept that the buDdifW releuc 1111te wu

.. sumed t.o be 1.511!./daJ. 1he fuel-melt lnYentor, and the 19otoplc fuel-melt release tnventory are,tven bl Table xv. The aal111.1llted dally Isotopic release fromJI Ille bUUdl~ B rfven In Table XVI.

({ TABLE XJII l'JSSlON PRODUCT IHVENTOJiJ~ IN CURI~

10-MW TA.JUC-<:LASS REACTOR (lOOW. 14.El.T)

Fuel elt

~ 9!!!

Fuel Melt Release Ie-1!5 4.56'Tx105 UH7Xl0$

4.S6'7x10S lte-lU 4.3231xl05

,.12llx105 4.HH&lOS lr-11 4.lHIJCU4 4.ltllEJ04 4.lltbl04 1....,,

2.Ht2xl03 LHt:z103 a.tstzxio3 Kr**II 1,0017xl02

  • .* 087X102

,.0011x1112 Kr-Um 1.11ux104 3,lll2XJ. 4 1.1n2a11*

Kram l,2111¥10*

J.2:l&BxJG.

1.Z15txH4 1-ns J,3>>41U0 15 2..usu10' UHCltJ.14 Maa U44h:101 l.2'411105 U'4W04 1-132 UH2x105 Z.1152x10, l.BtS2&104 1-1.31 1.n11x106 l,77Blxl05 1.71111104 M2t 1.5950110-4 5.!IIISOXlQ-4 5.StsDxlo*5 19!-U 4.CS17xl03 4,41il7xl03

.....,111.102 Te-131 t.lHOxlOI z.1110.1101 2.ll7Dxlll1 T... 1um 1.1031&101 1.80Ulll0!

uonsio' Cl-1S7 i.oot2x10' a.00t2x103

a.000110° CS-13' a.to111101 3, 01Jx105 3.90811102 lr-90 s.ou1x101 3.0351xt03 3.03Hxt011 Sr-18 UHSx.101 U2'5x1DS 2.12ss.io2 21

~~~~~~~~

..., i

'T

  • 91\\

-:s::.::

If\\ -

~..;

30 8FFIOll1b lslli: 1116¥ IIOURl::Plf ftl!b"a,1!8 IIIPOFUY1Sctl91t

  • ... i 5

i 5 s

,:.. i

... t..

i g

i i 5

... =

i I

ii -

I !

8PfllOif1L UBE 814LV eeou,u, I rtl!6ac,Tl!!J ll4F6rtM*TIOl4 C.

l@ll1.JlfflM:

TAJ!Lt XV FlSSION PRODUCT IN'VENTORJES IN CURIES S-MW TANH-CLASS JU~ACTOR (100'1(, MELT)

PueJ M~lt

~ ~

Fuel Melt Releue Xe-lSS 2.u2*x105 2.28Hx105 2.28Hx10$

Xe--13S

Olfl19x1O5 2.l619xl05 2.16l9x1D5 Kr-88 2.D949xJ04 2.0949x104 2.0H9x104 Ki-17 1.4B46xtD3 1.4846x103 U8'6x103 Kr-BS 3.8S78x1D 2 3.85'1Birl02 3,8&18xl02 Ki-&Sm
  • l.!9llxlD4 l.591lxl04 l,Sfllx104 K!'-83m 6.0711:llCl0 3 6.0'193xl03 U1'193xl03 J-136 1.11'lxt05 1.1 ff7x1O5 1,17'17xl0,t 1-ua 2,1:Zlxlo5 2.1221xl0!1 Z.122lxl0,t J-132 l,447Clx:l05 l.447GX1O5 1,4416xto4 J-131 B,BHnlD,t 8.IBUX104 8.8942xl03 1-129 5.U95x10-4 S.4395x1D..,.

U39Sx1D-s

  • Br-83 2.2259xIGS 2.22&tx1D3 2.2259xl02 Te-132 U08S1t1D5 1,4085xl05 1,t085xl03 Te-Ulm ~.Sl5'U04 9,515xl0 4 l.5154xlD2 Cl-137
2. 9098x:lO3 2.9098xt03 U098xlOG Cs-136 1.IIS&h:105 l,IS64x1G5 1.H64x10 %

Sr-90 2.93!16:tt03 2.9:196xt03

  • 2.1396x10° Sr--89 u23ax105 u2ux10 5 U238x1D2 best aveDlllle ror the reactor location. Calcwl&tions of relative atmosphll'lc faetol'S (x/Q} wete made tm-the 5 and SO%

prob&bnity levels a11d

~ wcint-eueJb condition.

P.uquW-Oifford standard deviations or plume spread w*re used In the caleulatlom to model the assumed nanbouyant surface release In open eountry.

The calculated X/Q value:.,. a

  • tunctlcn or distance-'

rrom the ground level release

point, are shown'!li lf'IPhfCIIDy in Fi(, 22.

0 were selected as repre-The~i~

... 0 - !l'llo,CIO

~WW11"-IQ

~,~pg 10 JO 100 300 1000 ;'5,000 10,000 ~

J0QOOO Dist11nta 11111 FJg. 22, Relative atm0&pheric dispersion faeton;g:

frequency distributions of wind apeeCI 1111d direction for each 5tBblllty classlflcauon were used in the calculation or relative atmospt,er1e dispersion factors (~Q). Brigs urban standard deviations of plume spread were used.in the calculations to model the auumed surface release ln 1,11 urban area. Calculati011S of K./Q WeN made for the 5 and so~ prol>al>Wty levels and the worst-cue conditions. The calculated x/Q values, es a funetit1n of distance from the r,ound level release point, are ahown craphlt?aB)"' In Fig. u.

E. Calculated Release J)ases The uotopic building relelllle riven In T&t)les XIV and XVI and the X/Q values or Sec. D were used in the caiculation or racliatiOfl daseS.

The calc:4llated dase l'e$\\llts tar the total release or

  • 10-MW reactor u **

IO 100 1000 Distonc;e (1t1l Fig, 2.3, Relati-factors 100,000 08Ufl0@MLL 31

-* *esrns:r: ITS SPli )(

QSQl:SlliifliiliblifliD IFIPURFHifl!UFI

IFPlll::b UI[ Ol!Et 32 8Ffii8if1L UO!! OULV 0200:u:: :&zx: cs*_"' ~J'jJ!$_s/F/£D ii?*!.... *..

i1: *...

~

  • L ;; -

D

j! * !

-1... s,

i ~ 6 iii

!js : *t I!..:

.. I.

l ~

,Ills

? ~ -

D -

... i

~ *

  • 1= I:

...... 4 lit**

.. 1. s 0 ; ;;

0 r..

.. !!I i

~

st -.. *...

- I.. ~

0,:

0.. =.. l

,,;,; D * *

- * ~.. *

iii ;; ;;
*

... ~ i ~..

i 0

~

r::

~ ~ s 5 OI!

OEOUPWE1C.:tcD{I CB_iiji P:S*~!AJ 1£>1!

  • 0
  • i.. i

~

~ ~ ij

... i -

'S...

s

=:

... ~

~

~

D *

!l l!

-~ -

s r: '"'

=

~

D ij i It

  • i ll :..

~

t

~

~

~

~

~

I!

~

s:;

I I

~

~

~

D 0

ii ii

i
i 1

I

= I I

I

~

i i

Si i !Iii iL SSE Silt I CESStti I I "- ~

  • _..,......,,,.,..,,.,.....

. ~~ Jwu functlan cf <t>wnwind &$lance from a gmund-level 1 l'tlea&e point ate slloWl'I-in Table XVJI; thlH for the S*MW reactor arc shown in Table xvm.

TA!ILE xvm CALCULATED DOSES S-MW TAN ti-CLASS llEACTOJt RELEASE TABLEXVD CALCULATED I>OSPS lo-MW TANR-CLAs-5 REACT'OR RELEASE Distance (km) 0.010 0.030 0.100 0.300 1,000

  • . ooo 10.000 30.0ClO 100.000 0.010 0.030 0.100 0.300 1.000

!.000 10.000 SO.ODO 1~.000 IMelatfon Thyroid (rem) 116'.&02 1653.223 129S,H4 650.S45 105.920 14.139

  • 2.6'11 o.sso 0.152 lnhalatiOll Whole &ody

<rem)

,.021 3.739&

2.9284.

1.4611 0.2388 0.0311 0.0061 0.001, 0.0003 Immersion (rem) 1.15()0 1.0700 0.8420 0.,210 0,0689 0.0092 0.0018.

0.000*

0.0001 5~ x/Q YALU~ (TOTAL RELEASE}

9432.8'1'1

%1.373 e.1300 7664.212 17.lU 4.9801) 6956,747 JS.761 4.520()

U29.418 7.t96 2.2200 943.289 2.113 D,6180 188.SS'I 0.-04 D.1230 34.193 0.076 0.0222.

,.cu 0.01'1 0.0050 LH3 0.004 0.0012 5~ X/Q VALVES (PlRST 2-h RE.I.EA.SE)

  • 0:010*

o.o:so.

0.100 0.SOO 1.000 a.ooo 10.000 30.00D 100.000 343.000 0.'1170 1,'1900 279.000 0.6480 1,4500 253.000 0.5880 1.3200 125.000 0.2890 0.6480

K.300 0.0191 0.1790 1.a10 o.01~,

o.one 1.2110 0.0020 0.0015 G.279 1),0006 0,0015 0.061 0.0002 0.0004 Inhalation Distance Th_yroid (1cm)

(rem)

Inhalation Whole Body (rem)

Immersion (Nm) 0.010 0.030 0.100 G.300 1.000 3,000 10.000 30.000 100.000 o.oio o.o~o 0.100 0.300 1.000 3.000 10.000 JO.ODO 100.0(lO

  • 50~ x/Q VALVES (TOTAL rt£LEASE) 206.000 D.14'10 0-11700 155,000 0.5630 0.08110 74.900 0.2120 o.o,iso 15.too o.osn 0.00103 2.250 0,0082 O.OOltt O,S43 0.0020 0.00031 0.122 0.000, 0.00001 0.066 0.0002 0.00004 0,032 0.0001 0,00002 S16 x/Q VALUES (TOT.AL °ll£L£ASE) 1220~000

,.u20 0.'900 936.000 3.3900 0~310 4'9.000 1.6300 O.2$S0 lU,000 0,4070 0,0637 lUOO o.oscs 0.0085 3.000 0,0109 0,0017 0.749 0.0027 0.000-t D,3'14 D,0014 0.0002 0.206 f).0001 0.0001 5'.16 X/Q VALUES (FIRST 2-h RELEASE) 0.010 0.030 0.100 0.300 1.000 3.000 10.000 30.000

  • 100.000 13.9000 1D. 7000 S.1200 l.2800 0.1710 0.0340 o.ooas 0.0043 o.oou 0,031'10 0.02'40 0.01170 0.00290 0,00040 0,00008 0.00002 0.00001 0.00001 0,4060 1).3130 0.1500 0.0038 f).0050 0.0010 0.0003 0.0001 0.0001 VJL GENERAL SVMMAR~ AND CONCLUSIONS This study is based on a review_ of the available JI/ lit.nature and documentation for 58 nonpowcr reactor

~

33

-* I l'V'I""'-...,...,.,_.,,_,l'I~ I SECOM I I iCE& I ED IICI OIC:O:A I 1014

st 116111£ 662 c::z:

CCOOiti I I :cit&£ IZUIDB lnstaD*tions.

The isotopic rJSliCll product release /

fractions tor adl tllCl form w!re &110 obi&lned by review or u,e approprlatt lltcratvre 111CS ~preaent the best ~xperimentaJ data avaDable. Elperlmtntal data an the effects of an explCllian a1 the lb'ucture and th&)

fission product release properties of the fuel forms &N not avaDal>le. The abotare acen&rlcs developed f<<

eaeh reactor ela are l>ued on the 1eneral deslpl characterJstles of tJie etus er en ~

ot an lnstaDatlpn considered typical. The e&leulatlon of the1;

,fiasicn product Inventories tor each class Is bued en maximums; maximum ll<<nsed power levels, mU111111m repcrted operatt,c sebedules, 111d mUimum fuel rcrm llllffll,II.

This produces a mnlm111n credible filslon product inventory fer the claa that Is not r,ecaaa,oy/f typical. Tbe aleulatlon or atmospheric dJlpersiom or reltMe II bued cin meteorolqrld.l data for the location of an appropriate lnst&llatlon or the cla.D, or a location 1lmllar to It. The radiation dDR ealeulatlans far each

~* are INtHd on the ealculated llaion product,lo Inventory, the "IMll"!--' fuel fCl'ln *topic release fraetlora, and the caleuletecl atmcepherlc dllper~

for & Mlec:ted afte.

The.. umptJans applied arc rusonable, but *-- Intended to produee eo11,el"Yattve1y bigtl ruults to avoid wu:1trestimatl<<1 of sabota,eJS' REFERENCES

1.

R *.J,.JucoletU end P, G, Balley, "FISPB01 A Simplified Computer l>l"Olfl'Affl for General PUl'pCIIHt Fission Product Formattcn and Decay Calcu-lations," LA report (to be put,lished).

bi I :SIJtt 562 6h21 6£60:d I I :CLEA I ED IIU: O:C:ii'A 11014

Q_~~ICIAL: U~ilii QNbY

&i!GURlfY RELATED INF9RMATffir,~~ rv*-~-. _ *-

tjji*. ' ;;J. * *,

\\l,U.*-*.: ~...,tl-t)~.

5.

Ii.

'l.

B.

9.

J.0.

11,

12.
13.
u.

J. J. DiNunno, R. E. Baker, F. D. Ande!'$on, and R. L. Waterfield, "Calculation of Distance Faetors for Power and Test Reactors," US AEC report Tl~1'844 (1962).

L. M. Carruthers and* C, E. Lee, "LARC-1: A Los Alamos Release Calculation Program for Fission Product Transport In HTGRS Durillg tte LOFC Accident,ft LA-NUREG-6563-MS (19'16).

F.

A. Gifford, *An Outline or Theories or Di!f'usi~

ln the Lower Atm01Sphere,"

in Meteorology and Atomic £ne~, D. H. Slade, Ed.

(US AEC Technical ln ormation

Center, Oak Rl(ie, Tennessee, 1968), Chap, 3.

H. Slade, Ed., Meteorology and Atomic Energy, US Atomic Energy Commission, p. 339 (1968).

C. 1\\1. Lederer, J. M. Hollander, and L Perlman, Table of Isotopes (J, Wiley & Sons, New York, New York, 1967).

Regulatory Guide 1,109, NJtC.

International Commission on Radiological Protec-tion Report, ICRP2.

lnternationl\\l Commission on Radiological Protec-tion Report, ICRP6.

lnternatiooal Commission on Radiological Protec-tion Report, ICRPIO.

Radiologica.l Health Handbook, us* Department of Health, Education, and Welfare (1970).

R.

G. Lawton, "The A YER Heat Conduction Computer Program,* LASL report LA-5613-MS (May 1974).

T. r'. Hamrick and J. H, Swanks, "The Oak Ri~e Research Reactor -

A Functional Description,"

Oak Rl~e National Laboratory report ORNL-4169 (Vol. 1) (September 1968),

J. R. R. Bodoia and J. F. Osterle, "The Develop-ment of Free Convection Between Heated Vertical Pt.tes," J. of Heat Transfer, V.14, pp. 40-44 (1962).

15.

W.

Aung, L.

S.

Fletcher, and Y.
Sernas, "Developing Laminar Free Convection Between Verticsl Flat Plates with Asymmetric Heati~:

Int. J. of Heat and Mass Tre.nsler, V.15, pp. 2293-2308 (1972).

J6.

P. J. Schneider, "Conduction," in HandbOOk or Heat Transfer, W. H. Rohse~ow and J. !'. Hartnett, Eds. <McGraw-Hill, 1913), Chap,3, pp.3-122,

11.

A. E. Powers, "Thermal Conductivity in Aggre-gates," Knolls A tom le Power Laboratory Report, KAPL-2145 (1961).

IFFlll!!L UIZ SI.Li SEUSltll I ICLEXIED lili O:C:O:Aiib:C 18

  • Y. S, Touloukian and I). P. DeWitt, Eds., "Thermal Radiative Properties," Thermophvsical Properties of Matter, Vol. 7 (Plenum Press, 1970).
19.
20.
21.
22.
23.

24,

25.
26.
27.

R. D. Cess, "FreE Convection Boundary I.Ayer Heat Transfer," ln'~Handbook of Heat Transfer,~

W. H. Rohsenow and J, P. Hartnett, Eds. (McGraw--:*

Hill, 1913), Chap, 6, pp. 6-1 to 6-16, J. F. Wett, Jr., "Surface Temperatures o! Irra-diated ORR Fuel Elements Cooled in Stagnant Air," Oak Ridge National Laboratory report ORNL-2892 (April 1960).

"The AGN-201 Reactor Muwal," published by staff of Aerojet General Nucleonic:s Corporation, San Ramon, California, July 1957, NRC Docket File 50-59.

G. W. Parker and C. J. Barton, "Fission-Product Release," in The Technology of Nuclear Reactor Safetv Reactor Materials and

.E~ineeruig, T. J. Thompson 1111d J. 0, Beckerly, Eels, ( he M.1,T.

Press, Cambriqre, Massachusetts, 1973), Chap. 111, pp. 526-618.

J. B. Zgliczynski, Annual Operations Report of the Texas A~M University AG.N-201 Tra.ining Reactor, NRC License R-23, June l, 1976 -

May 31, 1977, NRC Docket 50-$9.

Letter from Gary M. Sundquist, University of Utah, to Don K. Davis, Nuclear Regulatory Com-mission, dated October 13, 1977, NRC Docket 50-72.

Title 10 Code of Fede~al Regulations, Part 100.

F. C. Fousher and R. H. Peters, "Summary of TRIGA Fuel Fission Product Release Experi-ments,*

TRIGA

Reactors, Gull Energy and Environmental Systems, Inc. report GULF-EEs-AlOBOl (1971).

Hazards Summary, FNR, University of Michigan, NRC Docket 50-2.

!iazards Summary, UVAJI., University of VirJlnla, NRC Docket 5<H!2.

29.

FSAR National Bureau of Standards Reactor, US Department of Commerce, NBS report 8998, NRC Docket 50-184.

30, A. H. Emmons, D. G. Fitzgerald, and E. L. Cox, "University of Missouri Research Reactor Facility Hazards Summary Report," NRC Docket $0-186, 1973.

31.

W. W. Graham and D. M. Walker, Eds., "Safety Analysis Report !or the S MW Georgia Tech Research Reactor/ NRC Docket 50-160, 1967.

35

": :S!Jm Jez s:rn: czss:u:: 1chzx:zs au o:c:::x::o:c DISTRIBUTION Nuclear Regulatory Commission, Category AN plus incident~l copies Technical Information Center, Oak Ridge, Tennessee Los Alamos Scientific Laboratory 36 OFFICIO:. lliii oa1:.¥ iliGUAlliY A6bAiJiili8 0ff8AM.Atl!8U Copies 183 2

100 285