ML24263A255

From kanterella
Jump to navigation Jump to search
02 Doug Eskins NRC September 2024 NRC Ai Public Workshop 09-17-2024
ML24263A255
Person / Time
Issue date: 09/17/2024
From: Doug Eskins
Office of Nuclear Regulatory Research
To:
References
Download: ML24263A255 (1)


Text

Characterizing Nuclear Cybersecurity Using AI/ML NRC AI Workshop Sept. 17, 2024 Doug Eskins, NRC

Project Start: Oct 2022 Project Finish: May 2024

Project Team NRC

  • Kaitlyn Cottrell (AI/ML)
  • Anya Kim (cybersecurity)

Purdue University

  • Prof. Stylianos Chatzidakis (Dir Nuclear Engineering Radiation Lab)
  • 5 graduate students (nuclear, AI, M&S)

Identify Nuclear AI-CyS Use Case Data Collection

& Model Training Performance Evaluation &

Gap Analysis Develop &

Document Insights Normal States Off Normal States Cyber Events Normal Operations Other Events Project Overview OBJECTIVES (1) Explore the use of AI/ML to classify nuclear cybersecurity states (2) Develop insights for assessment of nuclear AI-CyS

- Real data

- Algorithm performance

- Data Management Challenges and Insights Example event progression 40000 35000 30000 25000 20000 15000 10000 5000 0

0 20 60 80 Null values 40 Features Overall Null Values

- Data artifacts

- Robustness

- Explainability

Composite Classifier

Reports

  • Research Plan Development (TLR-RES/DE-2024-003a), ML23040A168
  • Identification of a Representative Use Case (TLR-RES/DE-2024-003b),

ML23062A349

  • Identification of AI-ML Technology (TLR-RES/DE-2024-003c),

ML23102A182

  • Use Case Implementation (TLR-RES/DE-2024-003d), ML24052A002
  • Performance Evaluation and Gap Analysis (TLR-RES/DE-2024-003e),

ML24193A007

  • Final Report: Characterizing Nuclear Cybersecurity States using AI-ML (TLR-RES/DE-2024-003), ML24193A008