ML24263A255

From kanterella
Jump to navigation Jump to search
02 Doug Eskins NRC September 2024 NRC Ai Public Workshop 09-17-2024
ML24263A255
Person / Time
Issue date: 09/17/2024
From: Doug Eskins
Office of Nuclear Regulatory Research
To:
References
Download: ML24263A255 (1)


Text

Characterizing Nuclear Cybersecurity Using AI/ML

NRC AI Workshop Sept. 17, 2024 Doug Eskins, NRC Project Start: Oct 2022 Project Finish: May 2024 Project Team

NRC

  • Kaitlyn Cottrell (AI/ML)
  • Anya Kim (cybersecurity)

https://engineering.purdue.edu/NE/news/2023/us-nrc-Purdue University visits-the-school-of-nuclear-engineering

  • Prof. Stylianos Chatzidakis (Dir Nuclear Engineering Radiation Lab)
  • 5 graduate students (nuclear, AI, M&S)
  • Modeling and Simulation Project Overview

Identify Data Collection Performance Develop &

Nuclear AI- & Model Evaluation & Document CyS Use CaseTrainingGap Analysis Insights

OBJECTIVES Cyber Events (1) Explore the use of AI/ML to classify Off Normal StatesOther nuclear cybersecurity Events states (2) Develop insights for Normal StatesNormal Operations assessment of nuclear AI-CyS Challenges and Insights Example event progression

- Real data - Data artifacts

- Algorithm performance - Robustness

- Data Management - Explainability

40000 Overall Null Values 35000 30000 25000 20000 15000 10000 5000 0

0 20 60 8040 Features Composite Classifier Reports

  • Research Plan Development (TLR-RES/DE-2024-003a), ML23040A168
  • Identification of a Representative Use Case (TLR-RES/DE-2024-003b),

ML23062A349

  • Identification of AI-ML Technology (TLR-RES/DE-2024- 003c),

ML23102A182

  • Use Case Implementation (TLR-RES/DE-2024- 003d), ML24052A002
  • Performance Evaluation and Gap Analysis (TLR-RES/DE-2024- 003e),

ML24193A007

  • Final Report: Characterizing Nuclear Cybersecurity States using AI-ML (TLR-RES/DE-2024- 003), ML24193A008