ML21222A174

From kanterella
Jump to navigation Jump to search
List of Changes for the NAC-UMS FSAR Amendment 9, CAR 21-02 Resolution Submittal Revision 21A & List of Effective Pages and FSAR Changed Pages for the NAC-UMS FSAR Amendment 9, CAR 21-02 Resolution Submittal Revision 21A
ML21222A174
Person / Time
Site: 07201015
Issue date: 07/31/2021
From:
NAC International
To:
Office of Nuclear Material Safety and Safeguards
References
ED20210111
Download: ML21222A174 (39)


Text

Enclosure 1 to ED20210111 Page 1 of2 Enclosure 1 List of Changes for the NAC-UMS FSAR Amendment 9, CAR 21-02 Resolution Submittal Revision 2 lA (Docket No 72-1015)

NAC International July 2021

Enclosure 1 to ED20210111 Page 2 of2 List of Changes for the NAC-UMS FSAR, Amendment 9, CAR 21-02 Resolution Submittal, Revision 21A Chapter/Page/ Source of Change:

Description of Change Figure/Table .*

Note: The List of Effective Pages and the Chapter Table of Contents, List of Figures and List of Tables have been revised accordingly to reflect the list of changes detailed below, if needed.

Chanters 1 thru 3 - no changes Chanter 4 Page 4.1-7 Amendment 9, 21A Modified Table 4.1-4 where indicated.

Page 4.4-1 Amendment 9, 21A Modified text in the last sentence of Section 4.4 where indicated.

Page 4.4.1-23 Amendment 9, 21A Modified Table 4.4.1.2-1 where indicated.

Added text to the end of the paragraph at the top of the page Page 4.4.1-28 Amendment 9, 21A where indicated.

Page 4.4.1-37 Amendment 9, 21A Replaced Fi!!1ll'e 4.4.1.5-1 where indicated.

Deleted text at the end of the last paragraph on the page where Page 4.4.3-1 Amendment 9, 21A indicated.

Page4.4.3-10 Amendment 9, 21A Replaced Fi!!1ll'e 4.4.3-5 where indicated.

Page4.4.3-16 Amendment 9, 21A Modified table 4.4.3-3 where indicated.

Pages 4.4.3-17 thru 4.4.3-18 Amendment 9, 21A Modified Tables 4.4.3-5, 4.4.3-6 and 4.4.3-7 where indicated.

Pages 4.4.3-21 thru 4.4.3-22 Amendment 9 21A Modified Tables 4.4.3-13 and 4.4.3-14 where indicated.

Pages 4.4.5-2 thru Modified and deleted text in the last two paragraphs of Section 4.4.5-3 Amendment 9, 21A 4.4.5.1 where indicated.

Chanters 5 thru 10 - no changes Chanter 11 Page 11.2.7-1 Amendment 9, 21A Modified embedded table in Section 11.2.7.3 where indicated.

Chanters 12 thru 13 - no changes

Enclosure 2 to ED2021011 l Page 1 of 1 Enclosure 2 List of Effective Pages and FSAR Changed Pages for the

. Revision 2 lA (Docket No 72-1015)

NAC International July 2021

  • July 2021 Revision 21A NAC-UMS Universal Storage System FINAL SAFETY
  • ANALYSIS REPORT for the UMS Universal Storage System Docket No. 72-1015 ANAC
  • i i INTERNATIONAL At lanta Co rporate Headquarters: 3930 East Jones Bridge Road , Norcross, Georgia 30092 USA Phone 770-447-1144, Fax 770-447-1797, www.nacintl.com

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A List of Effective Pages Chapter 1 1.5-12 thru 1.5-16 ..................... Revision 0 1-i .............................................. Revision 3 1.5-17 ........................................ Revision 3 1-ii .......................................... Revision 10 1.5-18 thru 1.5-20 ..................... Revision 0 1-1 ............................................ Revision 0 1.5-21 ........................................ Revision 6 1-2 ............................................ Revision 5 1.5-22 ........................................ Revision 4 1-3 thru 1-9 ............................... Revision 8 1.5-23 thru 1.5-26 ..................... Revision 0 l.l-1 .......................................... Revision 3 1.5-27 ........................................ Revision 3 1~ 1-2 .......................................... Revision 4 1.5-28 ........................................ Revision 8 1.1-3 .......................................... Revision 3 1.5-29 ........................................ Revision 0 1.1-4 .......................................... Revision 0 1.5-30 ........................................ Revision 8 1.2-1 thru 1.2-2 ......................... Revision 3 1.5-31 thru 1.5-32 ..................... Revision 0 1.2-3 .......................................... Revision 8 1.5-33 ........................................ Revision 3 1.2-4 thru 1.2-6 ......................... Revision 3 1.5-34 ........................................ Revision 5 1.2-7 .......................................... Revision 8 1.5-35 ........................................ Revision 0 1.2-8 thru 1.2-9 ......................... Revision 3 1.5-36 ........................................ Revision 3 1.2-10 ........................................ Revision 8 1.5-37 thru 1.5-38 ................... Revision 10 1.2-11 thru 1.2-12 ..................... Revision 6 1.5-39 thru 1.5-43 ..................... Revision 0 1.2-13 ........................................ Revision 8 1.5-44 ........................................ Revision 8 1.2-14 thru 1.2-27 ..................... Revision 6 1.5-45 thru 1.5-46 ..................... Revision 0 1.2-28 ...................................... Revision 10 1.5-47 ........................................ Revision 3 1.2-29 ........................................ Revision 6 1.5-48 ........................................ Revision 8 1.3-1 .......................................... Revision 4 1.5-49 thru 1.5-54 ..................... Revision 0 1.3-2 .......................................... Revision 5 1.6-1 .......................................... Revision 8 1.3-3 .......................................... Revision 4 1.7-1 .......................................... Revision 3 1.4-1 thru 1.4-2 ......................... Revision 0 1.7-2 thru 1.7-3 ......................... Revision 4 1.5-1 .......................................... Revision 0 1.8-1 ........................................ Revision 12 1.5-2 ........................................ Revision 11 1.8-2 .......................................... Revision 7 1.5-3 .......................................... Revision 0 1.5-4 ........................................ Revision 11 31 drawings (see Section 1.8) 1.5-5 .......................................... Revision 8 1.5-6 thru 1.5-7 ......................... Revision 0 Chapter2 1.5-8 .......................................... Revision 6 2-i ............................................. Revision 3

  • 1.5-9 ........................................ Revision 13 1.5-10 ........................................ Revision 0 1.5-11 ... :.................................... Revision 3 1

2-ii ............................................. Revision 6 2-iii ............................................ Revision 3 2-iv .......................................... Revision 11

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A List of Effective Pages (continued) 2-1 ............................................. Revision 8 3 .2-1 .......................................... Revision 0 2-2 ............................................. Revision 5 3.2-2 thru 3.2-4 ......................... Revision 3 2-3 ............................................. Revision 3 3.3-1 thru 3.3-15 ....................... Revision 3 2.1-1 .......................................... Revision 5 3.3-16 ........................................ Revision 8 2.1.1-1 thru 2.1.1-4 ................... Revision 8 3.4.1-1 .................................. Amendment 2 2.1.2-1 thru 2.1.2-3 ................... Revision 8 3.4.1-2 ....................................... Revision 4 2.1.3-1 thru 2.1.3-4 ................... Revision 8 3.4.1-3 thru 3.4.1-4 .............. Amendment 2 2.1.3-5 ....................................... Revision 3 3.4.1-5 ....................................... Revision 3 2.1.3-6 ....................................... Revision 8 3.4.1-6 thru 3.4.1-8 ................... Revision 4 2.1.3-7 thru 2.1.3-8 ................... Revision 3 3.4.1-9 ..................................... Revision 11 2.1.3-9 ....................................... Revision 5 3.4.1-10 thru 3.4.1-12 ............... Revision 3 2.1.3-10 thru 2.1.3-14 ............... Revision 3 3.4.2-1 ....................................... Revision 8 2.2-1 ..................................... Amendment 1 3.4.2-2 ....................................... Revision 4 2.2-2 thru 2.2-3 ......................... Revision 0 3.4.3-1 ....................................... Revision 4 2.2-4 .......................................... Revision 5 3.4.3-2 thru 3.4.3-3 ................... Revision 3 2.2-5 .......................................... Revision 3 2.2-6 thru 2.2-10 ....................... Revision 0 2.2-11 ........................................ Revision 3 2.3-1 thru 2.3-2 ....................... Revision 11 3.4.3-4 ....................................... Revision 0 3.4.3-5 thru 3.4.3-22 ................. Revision 3 3.4.3-23 thru 3.4.3-26 ............... Revision 6 3.4.3-27 ..................................... Revision 3 2.3-3 thru 2.3-4 ......................... Revision 3 3.4.3-28 ..................................... Revision 4 2.3-5 thru 2.3-6 ......................... Revision 6 3.4.3-29 thru 3.4.3-98 ............... Revision 3 2.3-7 .......................................... Revision 0 3 .4.4-1 ....................................... Revision 0 2.3-8 thru 2.3-9 ......................... Revision 3 3.4.4-2 thru 3.4.4-7 ................... Revision 3 2.3-10 ........................................ Revision 0 3.4.4-8 thru 3.4.4-9 ................. Revision 12 2.3-11 ........................................ Revision 5 3.4.4-10 ..................................... Revision 0 2.3-12 thru 2.3-19 ................... Revision 11 3.4.4-11 thru 3.4.4-18 ............... Revision 3 2.3-20 ........................................ Revision 3 3.4.4-19 ..................................... Revision 8 2.4-1 .......................................... Revision 3 3.4.4-20 ..................................... Revision 3 2.4-2 thru 2.4-4 ......................... Revision 0 3.4.4-21 thru 3.4.4-38 ............... Revision 0 2.5-1 thru 2.5-2 ......................... Revision 3 3.4.4-39 thru 3.4.4-48 ............... Revision 3 3.4.4-49 thru 3.4.4-51 ............... Revision 0 Chapter3 3.4.4-52 thru 3.4.4-64 ............... Revision 3 3-i ............................................. Revision 3 3.4.4-65 ..................................... Revision 0 3-ii ........................................... Revision 11 3.4.4-66 thru 3.4.4-69 ............... Revision 3 3-iii thru 3-viii ........................... Revision 3 3.4.4-70 thru 3.4.4-74 ............... Revision 0 3.1-1 thru 3.1-7 ......................... Revision 3 3.4.4-75 thru 3.4.4-77 ............... Revision 3 2

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A List of Effective Pages (continued) 3.4.5-1 ....................................... Revision 3 4.4.1-7 .................................. Revision 21A 3 .5-1 .......................................... Revision 4 4.4.1-8 .................................. Amendment 2 3.6-1 .......................................... Revision 8 4.4.1-9 ....................................... Revision 5 3.6-2 .......................................... Revision 4 4.4.1-10 thru 4.4.1-22 ............... Revision 3 3.6-3 .......................................... Revision 8 4.4.1-23 ................................ Revision 21A 3.6-4 thru 3.6-5 ......................... Revision 3 4.4.1-24 thru 4.4.1-26 ............... Revision 3 3.6-6 ..................................... Amendment 1 4.4.1-27 ..................................... Revision 4 3.6-7 thru 3.6-8 ......................... Revision 3 4.4.1-28 ................................ Revision 21A 3.7-1 thru 3.7-2 ......................... Revision 3 4.4.1-29 ..................................... Revision 3 3.7-3 thru 3.7-4 ......................... Revision 8 4.4.1-30 ..................................... Revision 4 3.8-1 ........................................ Revision 11 4.4.1-31 thru 4.4.1-34 ............... Revision 3 3.8-2 thru 3.8-20 ....................... Revision 9 4.4.1-35 ..................................... Revision 4 3.8-21 thru 3.8-26 ................... Revision 11 4.4.1-36 ..................................... Revision 3 4.4.1-37 ................................ Revision 21A Chapter 4 4.4.1-38 ..................................... Revision 7

  • 4-i thru 4-iv ............................... Revision 3 4-v ............................................ Revision 7 4-vi ............................................ Revision 8 4.1-1 .......................................... Revision 3 4.4.1-39 thru 4.4.1-40 ............... Revision 3 4.4.1-41 thru 4.4.1-43 ............... Revision 4 4.4.1-44 thru 4.4.1-49 ............... Revision 3 4.4.2-1 ....................................... Revision 0 4.1-2 thru 4.1-3 ......................... Revision 8 4.4.3-1 .................................. Revision 21A 4.1-4 .......................................... Revision 0 4.4.3-2 thru 4.4.3-4 ................... Revision 4 4.1-5 .......................................... Revision 4 4.4.3-5 thru 4.4.3-9 ................... Revision 3 4.1-6 .......................................... Revision 7 4.4.3-10 ................................ Revision 21A 4.1-7 ..................................... Revision 21A 4.4.3-11 thru 4.4.3-13 ............... Revision 3 4.1-8 .......................................... Revision 5 4.4.3-14 thru 4.4.3-15 ............... Revision 5 4.2-1 thru 4.2-3 ......................... Revision 3 4.4.3-16 thru 4.4.3-18 .......... Revision 21A 4.2-4 .......................................... Revision 0 4.4.3-19 thru 4.4.3-20 ............... Revision 3 4.2-5 .......................................... Revision 4 4.4.3-21 thru 4.4.3-22 .......... Revision 21A 4.2-6 .......................................... Revision 0 4.4.4-1 ....................................... Revision 0 4.2-7 .......................................... Revision 7 4.4.5-1 ....................................... Revision 8 4.3:.1 thru 4.3-3 ......................... Revision 3 4.4.5-2 thru 4.4.5-3 .............. Revision 21A 4.4-1 ..................................... Revision 21A 4.4.5-4 ....................................... Revision 8 4.4.1-1 ....................................... Revision 3 4.4.5-5 ....................................... Revision 3 4.4.1-2 ....................................... Revision 4 4.4.6-1 ....................................... Revision 0 4.4.1-3 ....................................... Revision 7 4.4.7-1 ....................................... Revision 3 4.4.1-4 thru 4.4.1-6 ................... Revision 0 4.5-1 .......................................... Revision 5 3

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A List of Effective Pages (continued) 4.5-2 thru 4.5-3 ......................... Revision 4 5.5-3 thru 5.5-4 ......................... Revision 7 4.5-4 ..................................... Amendment 2 5.5-5 thru5.5-7 ......................... Revision 3 4.5-5 .......................................... Revision 3 5.5-8 thru 5.5-10 ....................... Revision 8 4.5-6 .......................................... Revision 4 5.6-1 ..................................... Amendment 1 4.5-7 .......................................... Revision 3 5.6.1-1 ....................................... Revision 4 4.5-8 .......................................... Revision 8 5.6.1-2 .................................. Amendment 1 4.5-9 thru 4.5-10 ....................... Revision 3 5.6.1-3 ....................................... Revision 4 4.5-11 thru 4.5-16 ................ Amendment 2 5.6.1-4 .................................. Amendment 1 4.5-17 ........................................ Revision 7 5.6.1-5 ....................................... Revision 4 4.5-18 thru 4.5-19 ..................... Revision 3 5.6.1-6 thru 5.6.1-8 ................... Revision 3 4.6-1 thru 4.6-2 ......................... Revision 3 5.6.1-9 thru 5.6.1-10 ............ Amendment 1 4.6-3 .......................................... Revision 0 5.6.1-11 thru 5.6.1-12 ............... Revision 8 4.6-4 .......................................... Revision 8 5.6.1-13 thru 5.6.1-22 .......... Amendment 2 5.6.1-23 thru 5.6.1-24 ............... Revision 3 Chapter 5 5.6.1-25 ................................ Amendment 2 5-i ............................................. Revision 8 5-ii ............................................. Revision 3 5-iii ............................................ Revision 8 5-iv thru 5-v .............................. Revision 3 5.6.1-26 thru 5.6.1-27 ............... Revision 3 5.6.1-28 thru 5.6.1-34 .......... Amendment 2 5.7-1 thru 5.7-2 ......................... Revision 0 5.7-3 .......................................... Revision 8 5-vi thru 5-viii ........................... Revision 8 5-ix ........................................... Revision 3 Chapter 6 5.l-1 ........................................ Revision 12 6-i ............................................ Revision 3 5.1-2 thru 5.1-12 ....................... Revision 7 6-ii ............................................. Revision 8 5.2-1 thru 5.2-36 ....................... Revision 8 6-iii thru 6-vii ............................ Revision 3 5.3-1 thru 5.3-10 ....................... Revision 3 6.1-1 thru 6.1-2 ......................... Revision 8 5.3-11 thru 5.3-12 ..................... Revision 4 6.1-3 thru 6.1-6 ......................... Revision 3 5.3-13 thru 5.3-21 ..................... Revision 3 6.2-1 .......................................... Revision 5 5.3-22 thru 5.3-23 ..................... Revision 4 6.2-2 thru 6.2-3 ......................... Revision 3 5.3-24 ........................................ Revision 3 6.3-1 thru 6.3-2 ......................... Revision 3 5.3-25 thru 5.3-26 ..................... Revision 4 6.3-3 ........................................ Revision 10 5.3-27 thru 5.3-32 ..................... Revision 3 6.3-4 thru 6.3-6 ......................... Revision 3 5.4-1 thru 5.4-4 ......................... Revision 3 6.3-7 .......................................... Revision 7 5.4-5 .......................................... Revision 7 6.3-8 .......................................... Revision 4 5.4-6 thru 5.4-27 ....................... Revision 3 6.3-9 thru 6.3-18 ....................... Revision 3 5.5-1 .......................................... Revision 8 6.4-1 .......................................... Revision 4 5.5-2 .......................................... Revision 3 6.4-2 thru 6.4-16 ....................... Revision 3 4

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 2 lA List of Effective Pages (continued) 6.4-17 ........................................ Revision 0 Chapter8 6.4-18 thru 6.4-40 ..................... Revision 3 8-i ........................................ Amendment 1 6.5-1 thru 6.5-49 ....................... Revision 3 8-ii ............................................. Revision 5 6.6-1 ..................................... Amendment 2 8-1 thru 8-2 ............................... Revision 5 6.6.1-1 thru 6.6.1-2 ................... Revision 8 8.1-1 .......................................... Revision 8 6.6.1-3 .................................. Amendment 2 8.1.1-1 ....................................... Revision 8 6.6.1-4 ....................................... Revision 4 8.1.1-2 ....................................... Revision 5 6.6.1-5 thru 6.6.1-7 ................... Revision 8 8.1.1-3 ....................................... Revision 4 6.6.1-8 ....................................... Revision 3 8.1.1-4 thru 8.1.1-7 ................... Revision 8 6.6.1-9 thru 6.6.1-10 ............ Amendment 2 8.1.1-8 thru 8.1.1-10 ................. Revision 5 6.6.1-11 ..................................... Revision 8 8.1.1-11 ..................................... Revision 6 6.6.1-12 thru 6.6.1-14 .......... Amendment 2 8.1.2-1 thru 8.1.2-2 ................... Revision 8 6.6.1-15 ..................................... Revision 4 8.1.3-1 thru 8.1.3-2 ................... Revision 8 6.6.1-16 thru 6.6.1-21 .......... Amendment 2 8.2-1 .......................................... Revision 6 6.6.1-22 ..................................... Revision 3 8.2-2 .......................................... Revision 5

  • 6.6.1-23 thru 6.6.1-24 .......... Amendment 2 6.7-1 .......................................... Revision 0 6.7-2 .......................................... Revision 5 6.8-1 .......................................... Revision 7 8.3-1 .......................................... Revision 4 8.3-2 thru. 8.3-4 ......................... Revision 3 8.4-1 .......................................... Revision 0 6.8-2 thru 6.8-51 ....................... Revision 0 Chapter 9 6.8-52 thru 6.8-66 ..................... Revision 3 9-i ............................................. Revision 7 9 .1-1 .......................................... Revision 4 Chapter 7 9.1-2 .......................................... Revision 8 7-i thru 7-ii.. .............................. Revision 4 9.1-3 .......................................... Revision 4 7.1-1 thru 7.1-2 ......................... Revision 8 9 .1-4 .......................................... Revision 5 7.1-3 .......................................... Revision 4 9.1-5 .......................................... Revision 4 7.1-4 .......................................... Revision 8 9.1-6 thru 9.1-7 ....................... Revision 10 7.1-5 .......................................... Revision 4 9.1-8 .......................................... Revision 7 7.1-6 .......................................... Revision 8 9 .1-9 .......................................... Revision 4 7.1-7 thru 7.1-9 ......................... Revision 4 9.1-10 ........................................ Revision 6 7 .2-1 .......................................... Revision 3 9 .2-1 .......................................... Revision 7 7.2-2 .......................................... Revision 8 9.2-2 .......................................... Revision 9 7.3-1 ... ~ ...................................... Revision 8 9.2-3 .......................................... Revision 7 7.4-1 .......................................... Revision 8 9.3-1 .......................................... Revision 8 7.5-1 .......................................... Revision 4 9.3-2 .......................................... Revision 5 5

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A List of Effective Pages (continued)

Chapter 10 11.1.6-1 ................................ Amendment 1 10-i ...................................... Amendment 1 11.2-1 ................................... Amendment 1 10-ii ........................................... Revision 3 11.2.1-1 thru 11.2.1-7 .............. ; Revision 3 10.1-1 ........................................ Revision 3 11.2.2-1 ..................................... Revision 8 10.1-2 ........................................ Revision 6 11.2.3-1 ..................................... Revision 3 10.2-1 thru 10.2-2 ..................... Revision 3 11.2.3-2 ..................................... Revision 0 10.3-1 ........................................ Revision 3 11.2.4-1 thru 11.2.4-11 ............. Revision 3 10.3-2 thru 10.3-3 ..................... Revision 6 11.2.4-12 ................................. Revision 13 10.3:-4 ........................................ Revision 0 11.2.4-13 thru 11.2.4-21 ........... Revision 0 10.3-5 thru 10.3-6 ..................... Revision 3 1.2.4-22 thru 11.2.4-24 ............. Revision 3 10.3-7 ........................................ Revision 0 11.2.4-25 ................................... Revision 7 10.3-8 thru 10.3-9 ..................... Revision 3 11.2.4-26 thru 11.2.4-27 ........... Revision 3 10.4-1 thru 10.4-5 ..................... Revision 3 11.2.5-1 ..................................... Revision 0 10.5-1 ................................... Amendment 1 11.2.6-1 thru 11.2.6-2 ............... Revision 3 10.6-1 ........................................ Revision 0 11.2.6-3 ................................... Revision 13 Chapter 11 11-i ....................................... Amendment 1 11-ii ........................................... Revision 3 11.2.6-4 ..................................... Revision 0 11.2.6-5 ..................................... Revision 3 11.2.7-1 ................................ Revision 21A 11.2.7-2 ..................................... Revision 3 11-iii .......................................... Revision 5 11.2.8-1 ..................................... Revision 5 11-iv .......................................... Revision 8 11.2.8-2 ..................................... Revision 0 11-v ........................................... Revision 3 11.2.8-3 thru 11.2.8-5 ............... Revision 3 11-vi .......................................... Revision 8 11.2.8-6 ..................................... Revision 5 11-vii thru 11-x ......................... Revision 3 11.2.8-7 ..................................... Revision 3 11-1 ........................................... Revision 0 11.2.8-8 thru 11.2.8-10 ............. Revision 5 11.1.1-1 ..................................... Revision 6 11.2.8-11 thru 11.2.8-12 ......... Revision 13 11.1.1-2 ..................................... Revision 3 11.2.9-1 ..................................... Revision 0 11.1.1-3 thru 11.1.1-6 ............... Revision 0 11.2.9-2 thrul 1.2.9-4 ................ Revision 3 11.1.2-1 ..................................... Revision 6 11.2.9-5 ................................... Revision 13 11.1.2-2 ..................................... Revision 0 11.2.9-6 thru 11.2.9-7 ............... Revision 3 11.1.2-3 ..................................... Revision 3 11.2.10-1 thru 11.2.10-3 ........... Revision 0 11.1.3-1 ..................................... Revision 3 11.2.10-4 ................................. Revision 13 11.1.3-2 thru -11.1.3-3 ............ Revision 12 11.2.11-1 ................................... Revision 0 11.1.3-4 thru -11.1.3-16 ............ Revision 3 11.2.11-2 thru 11.2.11-4 ........... Revision 3 11.1.4-1 thru 11.1.4-2 ............... Revision 6 11.2.11-5 thru 11.2.11-7 ........... Revision 0 11.1.5-1 thru 11.1.5-2 ............... Revision 0 11.2.11-8 thru 11.2.11-11 ......... Revision 3 6

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A List of Effective Pages (continued) 11.2.11-12 ................................. Revision 0 11.2.15-33 thru 11.2.15-35 .. Amendment 2 11.2.11-13 ............................... Revision 13 11.2.16-1 thru 11.2.16-10 ......... Revision 8 11.2.11-14 ................................. Revision 3 11.3-1 ........................................ Revision 3 1 l.2.12-1 ................................... Revision 0 11.3-2 thru 11.3-3 ..................... Revision 0 11.2.12-2 ................................... Revision 7 11.3-4 ........................................ Revision 3 11.2.12-3 thru 11.2.12-10 ......... Revision 3 11.3-5 ........................................ Revision 8 11.2.12-11 thru 11.2.12-12 ....... Revision 0 Chapter 12 11.2.12-13 thru 11.2.12-14 ....... Revision 3 12-i thru 12-ii ....................... Amendment 1 ll.2.12-15thru 11.2.12-17 ..... Revision 12 12-1 ........................................... Revision 5 11.2.12-18 ................................. Revision 0 12-2 thru 12-3 ........................... Revision 8 11.2.12-19 thru 11.2.12-20 ....... Revision 3 12-4 ........................................... Revision 3 11.2.12-21 ................................. Revision 0 12A-1 thru 12A-2 ...................... Revision 3 11.2.12-22 ................................. Revision 3 12B-1 thru12B-2 ....................... Revision 3 11.2.12-23 ................................. Revision 0 12C-l ......................................... Revision 0 11.2.12-24 thru 11.2.12-70 ....... Revision 3 12C-2......................................... Revision 8

  • 11.2.12-71 ............................... Revision 13 1 l.2.13-1 ................................... Revision 6 11.2.13-2 ................................. Revision 13 11.2.13-3 ................................... Revision 0 12C 1-1.. ..................................... Revision 3 12C2- l.. ..................................... Revision 8 12C2-2 ....................................... Revision 3 12C3-1 thru 12C3-8 .................. Revision 0 11.2.14-1 ................................... Revision 8 12C3-9 thru 12C3-28 ................ Revision 8 11.2.14-2 ................................... Revision 3 12C3-29 thru 12C3-30 ............ Revision 13 11.2.15-1 thru 11.2.15-2 ........... Revision 3 12C3-31.. ................................. Revision 14 11.2.15-3 .............................. Amendment 1 12C3-32 thru 12C3-34 .............. Revision 8 11.2.15-4 .............................. Amendment 2 12C3-35 thru 12C3-37 ............ Revision 13 11.2.15-5 thru 11.2.15-6 ........... Revision 8 12C3-38 thru 12C3-40 .............. Revision 8 ll.2.15-7thru 11.2.15-13 .... Amendment 1 11.2.15-14 thru 11.2.15-17 ....... Revision 3 Chapter 13 11.2.15-18 thru 11.2.15-22 .. Amendment 1 13-i thru 13-ii ............................ Revision 0 11.2.15-23 thru 11.2.15-24 .. Amendment 2 13 .1-1 thru 13 .2-7 ..................... Revision 0 11.2.15-25 ................................. Revision 4 13.2-8 ........................................ Revision 3 11.2.15-26 ............................ Amendment 2 13.3-1 ...................................... Revision 10 11.2.15-27 ............................ Amendment 1 11.2.15-28 ............................ Amendment 2 11.2.15-29 ................................. Revision 4 11.2.15-30 thru 11.2.15-31 ....... Revision 3 11.2.15-32 ................................. Revision 4 7

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Table 4.1-4 Summary of Thermal Evaluation Results for the Universal Storage System:

PWRFuel Lon2-Term Condition:

Maximum Temperatures (°F)

Concrete Heat Transfer Support Desi1m Condition Bulk Local Disks Disks(!) Canister<2l Fuel Clad Normal (76°F Ambient) 135 186 599 601 351 648 Allowable 150 200 650 650 800 752 Short-Term Condition:

Maximum Temperatures (°F)

Heat Transfer Support Desi1m Condition Concrete Disks Disks(!) CanisterC2) Fuel Clad Off-Normal

- Halflnlets Blocked 191 600 602 351 649 (76°F Ambient)

Off-Normal

- Severe Heat 228 626 628 382 672 (106°F Ambient)

  • Off-Normal

- Severe Cold

(-40°F Ambient Accident

- Extreme Heat (133°F Ambient) 17 262 502 648 504 650 227 409 562 692 Accident

- Fire 244 639 641 391 688 Allowable 350 750 800 800 1058 Maximum Temperatures op)

Transfer

- Vacuum Drying NIA 630 634 369 706 Transfer

- Backfilled with NIA 676 679 455 717 Helium Allowable 350 750 800 800 752

1. SA 693, 17-4PH Type 630 SS.
2. SA240, Type 304L SS (including canister shell, lid and bottom plate) .
  • 4.1-7

FSAR- UMS Universal Storage System October 2005 Docket No. 72-1015 Revision 5 Table 4.1--5 Summary of Thermal Evaluation Results for the Universal Storage System:

BWRFuel Lone-Term Condition:

Maximum Temperatures (°F)

Concrete Heat Transfer Support Design Condition Bulk Local Disks Disks{ll Canister<2l Fuel Clad Normal (76°F Ambient) 136 192 612 614 376 642 Allowable 150 200 650 700 800 752 Short-Term Condition:

Maximum Temperatures (°F)

Heat Transfer Support Design Condition Concrete Disks DisksC 1l CanisterC2l Fuel Clad Off-Normall

- Half Inlets Blocked 195 612 614 373 642 (76°F Ambient)

Off-Normal

- Severe Heat 231 638 640 405 667 (106°F Ambient)

Off-Normal

- Severe Cold 20 504 505 252 540

(-40°F Ambient)

Accident

- Extreme Heat 266 662 664 432 690 (133°F Ambient)

Accident

- Fire 244 652 654 416 682 Allowable 350 750 700 800 1058 Maximum Temperatures (°F)

Transfer

- Vacuum Drying NIA 653 659 267 733 Transfer

- Backfilled with NIA 683 686 462 733 Helium Allowable 350 750 700 800 752

1. SA 533, Type B, CS.
2. SA240, Type 304L SS (including canister shell, lid and bottom plate).

4.1-8

FSAR- UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A 4.4 Thermal Evaluation for Normal Conditions of Storage The finite element method is used to evaluate the thermal performance of the Universal Storage System for normal conditions of storage. The general-purpose finite element analysis program ANSYS is used to perform the finite element evaluations .

  • 4.4-1

TIDS PAGE INTENTIONALLY LEFT BLANK

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Table 4.4.1.2-1 Effective Thermal Conductivities for PWR Fuel Assemblies Conductivity Temperature (°F)

(Btu/hr-in-°F) 223 415 611 812 Kxx 0.018 0.026 0.037 0.051 Kyy 0.018 0.026 0.037 0.051 Kzz 0.136 0.124 0.118 0.117 Note: x, y and z are in the coordinate system shown in Figure 4.4.1.2-1.

  • 4.4.1-23

FSAR - UMS Universal Storage System March2004 Docket No. 72-1015 Revision 3 Table 4.4.1.2-2 Effective Thermal Conductivities for BWR Fuel Assemblies Conductivity Temperature (°F)

(Btu/hr-in-°F) 186 389 593 799 Kxx 0.021 0.029 0.041 0.056 Kyy 0.021 0.029 0.041 0.056 Kzz 0.181 0.165 0.157 0.156 Note: x, y and z are in the coordinate system shown in Figure 4.4.1.2-3.

4.4.1-24

FSAR - UMS Universal Storage System November 2004 Docket No. 72-1015 Revision 4 4.4.1.3 Three-Dimensional Transfer Cask and Canister Models The three-dimensional quarter-symmetry transfer cask model is a representation of the PWR canister and transfer cask assembly. A half-symmetry model is used for the BWR canister and transfer cask. The model is used to perform a transient thermal analysis to determine the maximum water temperature in the canister for the period beginning immediately after removing the transfer cask and canister from the spent fuel pool. The model is also used to calculate the maximum temperature of the fuel cladding, the transfer cask and canister components during the vacuum drying condition and after the canister is backfilled with helium. The transfer cask is evaluated separately for PWR or BWR fuel using two models. For each fuel type, the class of fuel with the shortest associated canister and transfer cask is modeled in order to maximize the contents heat generation rate per unit volume and minimize the heat rejection from the external surfaces.

The models for PWR and BWR fuel are shown in Figures 4.4.1.3-1 and 4.4.1.3-2, respectively.

ANSYS SOLID70 three-dimensional conduction elements, LINK31 (PWR model) and MATRIX50 (BWR model) radiation elements are used. The model includes the transfer cask and the canister and its internals. The details of the canister and contents are modeled using the same methodology as that presented in Section 4.4.1.2 (Three-Dimensional Canister Models).

  • Effective thermal properties for the fuel regions and the fuel tube regions are established using the fuel models and fuel tube models presented in Sections 4.4.1.5 and 4.4.1.6, respectively. The effective specific heat and density are calculated on the basis of material mass and volume ratio, respectively.

Radiation across the gaps was represented by the LINK31 elements or the MATRIX50 elements, which used the gray body emissivities for stainless and carbon steels. Convection is considered at the top of the canister lid, the exterior surfaces of the transfer cask, as well as at the annulus between the canister and the inner surface of the transfer cask. The combination of radiation and convection at the transfer cask exterior vertical surfaces and canister lid top surface is taken into account in the model using the same method described in Section 4.4.1.2 for the three-dimensional canister models. The bottom of the transfer cask is modeled as being in contact with the concrete floor. In the PWR configuration analysis, for the condition when the canister is filled with water at the start of the transfer operation, natural circulation of the water is taken into account by adjusting the effective conductivities in the fuel and water regions based on a classical energy balance calculation of the canister contents. Water circulation is not considered in the BWR configuration analysis. Volumetric heat generation (Btu/hr-in3) is applied to the active fuel region based on a total heat load of 23 kW for both PWR and BWR fuel. The model 4.4.1-27

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21 A considers the active fuel length of 144 inches and an axial power distribution, as shown in Figures 4.4.1.1-3 and 4.4.1.1-4 for PWR and BWR fuel, respectively. Note that thermal conductivity of air is considered for the media inside the canister for the vacuum condition for the PVvR model.

An initial temperature of 100°F is considered in the entire model on the basis of the typical average water temperature in a spent fuel pool. For the design basis heat loads, the thermal transient analysis is performed for 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> (PWR) and 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br /> (BWR) with the water inside the canister, 27 hours3.125e-4 days <br />0.0075 hours <br />4.464286e-5 weeks <br />1.02735e-5 months <br /> (PWR) and 25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> (BWR) for the vacuum condition, and 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> (PWR) and 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> (BWR) for the helium condition, followed by a steady-state analysis (in helium condition). Different time durations are used for the transient analyses for the reduced heat load cases, as specified in Section 4.4.3.1. The temperature history of the fuel cladding and the basket components, as well as the transfer cask components, is determined and compared with the short-term temperature limits presented in Tables 4.4.3-3 and 4.4.3-4.

Note that the first phase of the thermal transient analysis considers that the canister is filled with water, including the period of canister draining as described in Step 12 of Section 8.1.1. A typical transportable storage canister drain-down process (performed by suction or by a blow-down gas pressure) ranges from 1 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />. The thermal analysis basis of assuming a water condition during drain-down is acceptable due to the following conservatisms in the thermal transient analysis for the transfer operation:

(1) The system as analyzed does not include the rejection of heat from the system due to the removal of water, which has significant thermal capacitance; (2) The energy absorbed by the change in the state of residual water to steam, as the pressure is reduced during the vacuum drying phase of the transient, is ignored in the analysis; and (3) No contact is considered between components in the transportable storage canister in the thermal model.

4.4.1-28

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Figure 4.4.1.5-1 Two-Dimensional PWR (17 x 17) Fuel Model 4.4.1-37

FSAR - UMSUniversal Storage System November 2008 Docket No. 72-1015 Revision 7 4.4.1.6 Two-Dimensional Fuel Tube Models The two-dimensional fuel tube model is used to calculate the effective conductivities of the fuel tube wall and BORAL plate. These effective conductivities are used in the three-dimensional canister models (Section 4.4.1.2), the three-dimensional transfer cask and canister models (Section 4.4.1.3) and the three-dimensional periodic canister internal models (Section 4.4.1.4).

A total of three models is required: one PWR model and two BWR models (one with the neutron absorber plate, one without the neutron absorber plate), corresponding to the enveloping configurations of the 7x7, 8x8 and 9x9 BWR fuels .

In the neutron absorber evaluation, the configuration shown in the fuel tube models in Figures 4.4.1.6-1 and 4.4.1.6-2 (for PWR and BWR fuel , respectively) incorporates the BORAL core matrix sandwiched between two layers of aluminum cladding. The thermal properties of BORAL are presented in Table 4.2-10.

As shown in Figure 4.4.1.6-1 , the PWR model includes the fuel tube, the BORAL plate (including the core matrix sandwiched by aluminum cladding), the stainless steel cladding and the gap between the stainless steel cladding and the support disk or heat transfer disk. Four types of media are considered in the gaps: helium, water, a vacuum and saturated steam.

ANSYS PLANE55 conduction elements and LINK31 radiation elements are used to construct the model. The model consists of six layers of conduction elements and two radiation elements (radiation elements are not used for water condition) that are defined at the gaps (two for each gap). The thickness of the model (x-direction) is the distance measured from the outside face of the fuel assembly to the inside face of the slot in the support disk (assuming the fuel tube is centered in the hole in the disk). The gap size between the neutron absorber plate and the stainless steel cladding is 0.003 inch. The height of the model is defined as equal to the width of the model.

4.4.1-38

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A

  • 4.4.3 Maximum Temperatures for PWR and BWR Fuel Temperature distribution and maximum component temperatures for the Universal Storage System under the normal conditions of storage and transfer, based on the use of the transfer cask, are provided in this section. Components of the Universal Storage System containing PWR and BWR fuels are addressed separately. Temperature distributions for the evaluated off-normal and accident conditions are presented in Sections 11.1 and 11.2.

Figure 4.4.3-1 shows the temperature distribution of the Vertical Concrete Cask and the canister containing the PWR design basis fuel for the normal, long-term storage condition. The air flow pattern and air temperatures in the annulus between the PWR canister and the concrete cask liner for the normal condition of storage are shown in Figures 4.4.3-2 and 4.4.3-3, respectively. The temperature distribution in the concrete portion of the concrete cask for the PWR assembly is shown in Figure 4.4.3-4. The temperature distribution for the BWR design basis fuel is similar to that of the PWR fuel and is, therefore, not presented. Table 4.4.3-1 shows the maximum component temperatures for the normal condition of storage for the PWR design basis fuel. The maximum component temperatures for the normal condition of storage for the BWR design basis fuel are shown in Table 4.4.3-2.

  • As shown in Figure 4.4.3-3, a high-temperature gradient exists near the wall of the canister and the liner of the concrete cask, while the air in the center of the annulus exhibits a much lower temperature gradient, indicating significant boundary layer features of the air flow. The temperatures at the concrete cask steel liner surface are higher than the air temperature, which indicates that salient radiation heat transfer occurs across the annulus. As shown in Figure 4.4.3-4, the local temperature in the concrete, directly affected by the radiation heat transfer across the annulus, can reach 186°F (less than the 200°F allowable temperature). The bulk temperature in the concrete, as determined using volume average of the temperatures in the concrete region, is 135°F, less than the allowable value of 150°F.

Under typical operations, the transient history of maximum component temperatures for the transfer conditions (canister, inside the transfer cask, containing water for 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> for PWR and 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br /> for BWR, vacuum for 27 hours3.125e-4 days <br />0.0075 hours <br />4.464286e-5 weeks <br />1.02735e-5 months <br /> for PWR and 25 hours2.893519e-4 days <br />0.00694 hours <br />4.133598e-5 weeks <br />9.5125e-6 months <br /> for BWR, and in helium for 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> for PWR and 16 hours1.851852e-4 days <br />0.00444 hours <br />2.645503e-5 weeks <br />6.088e-6 months <br /> for BWR) is shown in Figures 4.4.3-5 and 4.4.3-6 for PWR and BWR fuels, respectively. The maximum component temperatures for the transfer conditions (vacuum and helium conditions) are shown in Tables 4.4.3-3 and 4.4.3-4, for PWR and BWR fuels, respectively. Note that the media inside the canister is considered to be saturated steam during the first four hours of the vacuum condition for BWR fuels .

4.4.3-1

FSAR- UMS Universal Storage System November 2004 Docket No. 72-1015 Revision 4 The maximum calculated water temperature is 203°F for both the PWR and BWR fuels at the

  • end of 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br /> based on an initial water temperature of 100°F.

4.4.3.1 Maximum Temperatures at Reduced Total Heat Loads This section provides the evaluation of component temperatures for fuel heat loads less than the design basis heat load of 23 kW. Transient thermal analyses are performed for PWR fuel heat loads of 20, 17.6, 14, 11 and 8 kW to establish the allowable time limits for the vacuum condition in the canister as described in the Technical Specifications for the Limiting Conditions of Operation (LCO), LCOs 3.1.1 and 3.1.4. The time limits ensure that the allowable temperatures of the limiting components - the heat transfer disks and the fuel cladding - are not exceeded. A steady-state evaluation is also performed for all the heat load cases in the vacuum condition and all the heat load cases in the helium condition. If the steady-state temperature calculated is less than the limiting component allowable temperature, then the allowable time duration in the vacuum or helium conditions is defined to be 600 hours0.00694 days <br />0.167 hours <br />9.920635e-4 weeks <br />2.283e-4 months <br /> (25 days) based on the 30 day time test for abnormal regimes as described in PNL-4835 [34].

The three-dimensional transfer cask and canister model for the PWR fuel configuration, described in Section 4.4.1.3, is used for the transient and steady-state thermal analysis for the reduced heat load cases. To obtain the bounding temperatures for all possible loading configurations, thermal analyses are performed for a total of 14 cases as tabulated in the following table. The basket locations are shown in Figure 4.4.3-7. Since the maximum

. temperature for the limiting components (fuel cladding and heat transfer disk) always occurs at the central region of the basket, hotter fuels (maximum allowable heat load for 5-year cooled fuel: 0.958 kW= 23 kW/24) are specified at the central basket locations. The bounding cases for each heat load condition are noted with an asterisk (*) in the tabulation which follows. Six cases (cases 3 through 8) are evaluated for the 17.6 kW heat load condition. The first four cases (cases 3 through 6) represent standard UMS system fuel loadings. The remaining two cases (cases 7 and 8) account for the preferential loading configuration for Maine Yankee site-specific fuel (Section 4.5.1.2), with case 8 being the bounding case for the Maine Yankee fuel.

4.4.3-2

FSAR - UMS Universal Storage System March2004 Docket No. 72-1015 Revision 3 Figure 4.4.3-4 Concrete Temperature (°F) Distribution During the Normal Storage Condition: PWR Fuel ANSYS5.2 DEC 221938 11:49:11 PLOf NO. 19 NODAL SOLUTION STEP=4 SUB=1 TEfv'P S11/N =76 SMX =163.419 A =82.134 B =94.4Cl3 C =1C:S.672 D =118.941 E =131.3J9 F =143.478 G =155.747 H =163.016 I =18'.l.285 G

T anperaure dstrirufon (F) in the ca,cre!e

  • 4.4.3-9

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Figure 4.4.3-5 History of Maximum Component Temperature (°F) for Transfer Conditions for PWR Fuel with Design Basis 23 kW Uniformly Distributed Heat Load 900  !

roat~r

-- -- I Vac4um - ,. I

~elium i .

800 I

~

700 600

/

L/--

I Fu~.l Sup port o* :sks Q)

~ 500 Y/

+>

111 400

/// ---1 Can ister slhell f-1 Q)

,.V/ ~~ I t

E-t 300

.-- u ~  ! ~

--c:ElF-1< --I-ffilei:-1Sftel:

- Gam~a/Neutiron Sh~elds i

1 200

~ -:::r:-- :l,-V'

.- *- i  !:

j 100

,_-__.- I  ! i

! I

: i:  !:

0  ! j I

I I I I

I 0 10 20 30 40 50 60 70 80 90 100 Time (hours)

Notes:

1. This graph corresponds to a canister containing water for 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br />, vacuum for 27 hours3.125e-4 days <br />0.0075 hours <br />4.464286e-5 weeks <br />1.02735e-5 months <br /> and 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> in the helium condition. The results correspond to a uniformly distributed decay heat load of23 kW.
2. "TFR" refers to the transfer cask.

4.4.3-10

FSAR- UMS Universal Storage System October 2005 Docket No. 72-1015 Revision 5 Table 4.4.3-2 Maximum Component Temperatures for the Normal Storage Condition - BWR Maximum Temperature Allowable Temperatures Component (OF) (OF)

Fuel Cladding 642 752 Heat Transfer Disk 612 650 Support Disk 614 700 Top Weldment 361 800 Bottom Weldment 276 800 Canister Shell 376 800 Canister Structural Lid 180 800 Canister Shield Lid 185 800 Concrete 192 (local) 200 (local) 136 (bulk*) 150 (bulk)

  • The volume average temperature of the concrete region is used as the bulk concrete temperature .
  • 4.4.3-15

FSAR- UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21 A Table 4.4.3-3 Maximum Component Temperatures for the Transfer Condition - PWR Fuel with Design Basis 23 kW Uniformly Distributed Heat Load Maximum Temperature (°F) Allowable Comp1rment Vacuum 1 Helium 1 Temperature (°F)

Fuel 706 717 752 Lead 194 273 600 N eutro.n Shield 192 269 300 Heat Transfer Disk 630 676 750 Support Disk 369 679 800 Canister 219 455 800 Trans:fo:r Cask Shells 706 301 700

1. See Figure 4.4.3-5 for history of maximum component temperatures.

Table 4.4.3-4 Maximum Component Temperatures for the Transfer Condition - BWR Fuel with Design Basis 23 kW Uniformly Distributed Heat Load Component Fuel Lead Maximum Temperature (°F)

Vacuum 1 703 137 Helium 1 708 252 Allowable Temperature(°F) 752 600 Neutr,on Shield 135 249 300 Heat Transfer Disk 645 683 750 Suooort Disk 646 686 700 Canister 267 462 800 Transfer Cask Shells 153 286 700

1. See Figure 4.4.3-6 for history of maximum component temperatures.

4.4.3-16

FSAR- UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Table 4.4.3-5 Maximum Limiting Component Temperatures in Transient Operations for the Reduced Heat Load Cases for PWR Fuel Water Vacuum Helium Maximum Maximum Max. Temp. / Temp.

Temperature (0 F) Temperature(0 F) at Steady-state (0 F)

Heat Heat Heat Heat Load Duration Transfer Duration Transfer Duration Transfer (kW) (hours) Fuel Disk (hours) Fuel Disk (hours) Fuel Disk 23.0 20 190 189 27 706 630 20 7172 676 2 20.0 23 188 188 30 692 607 600 1 692/704 628/661 17.6 27 188 187 33 680 587 600 1 680/669 621/621 14.0 30 178 177 40 658 551 600 1 658/611 566/557 11.0 35 169 168 52 634 513 600 1 634/555 527/493 8.0 40 155 155 103 602 458 600 1 602/486 472/411

1. Duration is defined based on a test time of 30 days for abnormal regimes, as described in PNL-4835 [34].
2. Since the time m helium 1s limited for the 23 kW configuration, only the maximum temperatures are listed.
  • 4.4.3-17

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Table 4.4.3-6 Maximum Limiting Component Temperatures in Transient Operations for the Reduced Heat Load Cases for PWR Fuel after In-Pool Cooling In-Pool (helium) Vacuum Helium End Temperature Maximum Max. Temp. / Temp.

jOF) Temperature (°F)2 at Steady-state (°F)

Heat Heat Heat Heat Load Duration Transfer Duration 1 Transfer Duration Transfer (kW) (hours) Fuel Disk (hours) Fuel Disk (hours) Fuel Disk 23.0 24 482 405 14 706 630 20 7174 676 4 20.0 24 468 387 17 692 607 6003 704/704 661/661 17.6 24 455 373 20 680 587 6003 680/669 621/621 14.0 24 435 349 26 658 551 6003 658/611 566/557 11 24 413 323 38 634 513 600 3 634/555 527/493 8 24 379 280 89 602 458 600 3 602/486 472/411 I. The maximum allowable time in the Technical Specification for this condition is equal to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> less than the maximum allowable time shown in this table. This 2-hour reduction allows the handling time required to enter the next stage.

2. The maximum temperatures at the end of the first vacuum (Table 4.4.3-5) are conservatively presented.
3. Duration is defined based on a test time of30 days for abnormal regimes as described in PNL-4835.
4. Since the time in helium is limited for the 23 kW configuration, only the maximum temperatures are listed.

Table 4.4..3-7 Maximum Limiting Component Temperatures in Transient Operations for the Reduced Heat Load Cases for PWR Fuel after Forced-Air Cooling Forced-Air (helium) Vacuum Helium End Temperature Maximum Max. Temp. / Temp.

jOF) Temperature (0 F) 2 at Steady-state (°F)

Heat Heat Heat Heat Load Duration Transfer Duration 1 Transfer Duration Transfer (kW) (hours) Fuel Disk i (hours) Fuel Disk (hours) Fuel Disk 717 4 676 4 C

23.0 24 608 552 5 706 630 20 20.0 24 577 515 8 692 607 6003 704/704 661/661 17.6 24 551 486 11 680 587 600 3 680/669 621/621 14.0 24 511 438 18 658 551 600 3 658/611 566/557 11 24 473 392 29 634 513 6003 634/555 527/493 8 24 422 331 80 602 458 6003 602/486 472/411 I. The maximum allowable time in the Technical Specification for this condition is equal to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> less than the maximum allowable time shown in this table. This 2-hour reduction allows the handling time required to enter the next stage.

2. The maximum temperatures at the end of the first vacuum (Table 4.4.3-5) are conservatively presented.
3. Duration is defined based on a test time of 3 0 days for abnormal regimes as described in PNL-483 5.
4. Since the time in helium is limited for the 23 kW configuration, only the maximum temperatures are listed.

4.4.3-18

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Table 4.4.3-11 Maximum Limiting Component Temperatures in Transient Operations after Helium for BWR Fuel after In-Pool Cooling In-Pool (helium) Helium End Temperature Max. Temp.

(OF) (OF)l Heat Heat Heat Load Duration Transfer Duration Transfer (kW) (hours) Fuel Disk (hours) Fuel Disk 23 24 489 444 16 708 683 20 24 477 431 30 694 661

1. The maximum temperatures at the end of helium in Table 4.4.3-8 are conservatively used.

Table 4.4.3-12 Maximum Limiting Component Temperatures in Transient Operations after Helium for BWR Fuel after Forced-Air Cooling Forced-Air (helium)

Helium End Temperature Max. Temp.

jOF) (OF)l Heat Heat Heat Load Duration Transfer Duration Transfer (kW) (hours) Fuel Disk (hours) Fuel Disk 23 24 630 598 16 708 683 20 24 601 566 30 694 661

1. The maximum temperatures at the end of helium in Table 4.4.3-8 are conservatively used.

Table 4.4.3-13 Maximum Limiting Component Temperatures in Transient Operations after Helium for PWR Fuel after In-Pool Cooling In-Pool (helium) Helium End Temperature Max. Temp.

jOF) (OF)l Heat Heat Heat Load Duration Transfer Duration Transfer (kW) (hours) Fuel Disk (hours) Fuel Disk 23 24 483 405 20 717 676

  • 1. The maximum temperatures at the end of helium in Table 4.4.3-5 are conservatively used.

4.4.3-21

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21 A Table 4.4.3-14 Maximum Limiting Component Temperatures in Transient Operations after Helium for PWR Fuel after Forced-Air Cooling Forced-Air (helium) Helium End Temperature Max. Temp.

jOF) (OF)l Heat Heat Heat Load Duration Transfer Duration Transfer (kW) (hours) Fuel Disk (hours) Fuel Disk 23 24 616 560 20 717 676

1. Tliie maximum temperatures at the end of helium in Table 4.4.3-5 are conservatively used .

4.4.3-22

FSAR - UMS Universal Storage System January 2009 Docket No. 72-1015 Revision 8 4.4.5 Maximum Internal Pressures The maximum internal operating pressures for normal conditions of storage are calculated in the following sections for the PWR and BWR Transportable Storage Canisters.

4.4.5.1 Maximum Internal Pressure for PWR Fuel Canister The internal pressures within the PWR fuel canister are a function of fuel type, fuel condition (failure fraction), bumup, UMS canister type, and the backfill gases in the canister cavity. Gases included in the canister pressure evaluation include rod-fill, rod fission and rod backfill gases, canister backfill gases and burnable poison generated gases. Each of the fuel types expected to be loaded into the UMS canister system is separately evaluated to arrive at a bounding canister pressure.

Fission gases include all fuel material generated gases including long-term actinide decay generated helium. Based on detailed SAS2H calculations of the maximum fissile material mass assemblies in each canister class, the quantity of gas generated by the fuel rods rises as burnup

  • and cool time is increased and emichment is decreased. To assure the maximum gas is available for release, the PWR inventories are extracted from 60,000 MWd/MTU burnup cases at an emichment of 1.9 wt. % 235 U and a cool time of 40 years. Gases included are all krypton, iodine, and xenon isotopes in addition to helium and tritium (3H). Molar quantities for each of the maximum fissile mass assemblies are summarized in Table 4.4.5-1. Fuel generated gases are scaled by fissile mass to arrive at molar contents of other UMS fuel types.

Fuel rod backfill pressure varies significantly between the PWR fuel types. The maximum reported backfill pressure is listed for the Westinghouse 17xl 7 fuel assembly at 500 psig. With the exception of the B&W fuel assemblies, which are limited to 435 psig, all fuel assemblies evaluated are set to the maximum 500 psig backfill reported for the Westinghouse assembly.

Backfill quantities are based on the free volume between the pellet and the clad and the plenum volume. The fuel rod backfill gas temperature is conservatively assumed to have an initial temperature of 68°F .

  • 4.4.5-1

FSAR- UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A Burnable poison rod assemblies (BPRAs) placed within the UMS storage canister may contribute additional molar gas quantities due to (n,alpha) reactions of fission generated neutrons with 10B during in-core operation. 10B forms the basis of a portion of the neutron poison population. Other neutron poisons, such as gadolinium and erbium, do not produce a significant amount of helium nuclides (alpha particles) as part of their activation chain. Primary BPRAs in existence include Westinghouse Pyrex (borosilicate glass) and WABA (wet annular burnable absorber) configurations, as well as B&W BPRAs and shim rods employed in CE cores. The CE shim rods replace standard fuel rods to form a complete,assembly array. The quantity of helium available for release from the BPRAs is directly related to the initial boron content of the rods and the release fraction of gas from the matrix material in question. Release from either of the low temperature, solid matrix materials is likely to be limited, but no release fractions were available in open literature. As such, a 100% release fraction is assumed based on a boron content of 0.0063 g/cm 10B per rod, with the maximum number of rods per assembly. The maximum number of rods is 16 for Westinghouse core 14x14 assemblies, 20 rods for Westinghouse and B&W 15x15 assemblies, and 24 rods for Westinghouse and B&W 17xl 7 assemblies. The length of the absorber is conservatively taken as the active fuel length. CE core shim rods are modeled at 0.0126 g/cm 10B for 16, 12, and 12 rods applied to CE manufactured 14x14, 15x15 and 16xl6 cores, respectively.

The canister backfill gases are conservatively assumed to be at 250°F, which is significantly below the canister shell maximum initial temperature of 369°F at the end of vacuum drying. The initial prnssure of the canister backfill gas is 1 atm (0.0 psig). Free volume inside each PWR canister class is listed in Table 4.4.5-2. The listed free volumes do not include fuel assembly components since these components vary for each assembly type and fuel insert. Subtracting out the rod and guide tube volumes and all hardware components arrives at free volume of the canisters including fuel assemblies and a load of 24 BPRAs. For the Westinghouse BPRAs, the Pyrex volume is employed since it displaces more volume than the WABA rods.

The total pressure for each of the UMS payloads is found by calculating the releasable molar quantity of each gas (30% of the fission gas and 100% of the rod backfill adjusted for the 1%

fuel failure fraction), and summing the quantities directly. The quantity of gas is then employed in the ideal gas equation in conjunction with the average gas temperature at normal operating conditions to arrive at system pressures. The normal system pressure calculation for maximum system pressure limits assumes the average PWR gas temperature to be 420°F. The actual calculated gas temperature determined by the three-dimensional canister model is 420°F for the 4.4.5-2

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A normal storage condition. Each of the UMS PWR fuel types is individually evaluated for normal condition pressure, and sets the maximum normal condition pressure at 4.21 psig. A summary of the maximum pressure in each PWR canister class is shown in Table 4.4.5-3. The table also includes the fuel type producing the listed maximum pressures.

4.4.5.2 Maximum Internal Pressure for BWR Fuel Canister BWR canister maximum pressures are determined in the same manner as those documented for the PWR canister cases. Primary differences between PWR and BWR analysis include a maximum normal condition average gas temperature of 410°F, rod backfill gas pressures of 132 psig, and limits pressurizing gases to fission gases (including helium actinide decay gas), rod backfill gases, and canister backfill gas. The 132 psig employed in this analysis is significantly higher than the 6 atmosphere maximum pressure reported in open literature. BWR assemblies do not contain an equivalent to the PWR BPRAs and, therefore, do not require 10B helium generated gases to be added. Fissile gas inventories for the maximum fissile material assemblies in each of the three BWR lattices configurations (7x7, 8x8, and 9x9) are shown in Table 4.4.5-4. Free volumes, without fuel components, in UMS canister classes 4 and 5 are shown in Table 4.4.5-5 .

Maximum pressures for each canister class are listed in Table 4.4.5-6. The maximum normal condition pressure of 3.97 psig is based on a GE 7x7 assembly, designed for a BWR/2-3 reactor, with gas inventories conservatively taken from a 60,000 MWD/MTU source term. The normal condition pressure for a UMS storage canister containing the GE 9x9 fuel assembly with 79 fuel rods is 3.96 psig. Similar fuel masses and displaced volume account for similar canister pressures .

  • 4.4.5-3

FSAR-UM S Universal Storage System January 2009 Docket No . 72-1015 Revision 8 Table 4.4 . 5-1 PWR Per Assembly Fuel Generated Gas Inventory (Fission Gas Basis -

60 GWd/MTU, 1.9 wt% 235 U)

Array Assy Type MTU Moles 14x14 WE Standard 0.4144 35.52 15x15 B&W 0.4807 41.32 16x16 CE (System 80) 0.4417 38.10 17x17 WE Standard 0.4671 40.18 Table 4.4 . 5-2 PWR Canister Free Volume (No Fuel or Inserts)

Canister Class 1 2 3 B asket Volume (in3 ) 69800 74490 77460 Canister Height (inch) 175.05 184.15 191.75 Canister Free Volume w/o Fuel (liter) 7970 8400 8770 Table 4.4 . 5-3 PWR Maximum Normal Condition Pressure Summary C anister Class Fuel Type Pressure (psig) 11-

,.c. lass 1 WE 17x 17 Standard 4.20

,.c. lass 2 B&W 17x17MarkC 4.21 Class 3 CE 16.x 16 System 80 4.11 4.4.5-4

FSAR - UMS Universal Storage System July 2021 Docket No. 72-1015 Revision 21A

  • 11.2.7 Maximum Anticipated Heat Load (133°F Ambient Temperature)

This section evaluates the Universal Storage System response to storage operation at an ambient temperature of 133°F. The condition is analyzed in accordance with the requirements of ANSI/ANS 57.9 to evaluate a credible worst-case thermal loading. A steady-state condition is considered in the thermal evaluation of the system for this accident condition.

11.2.7.1 Cause of Maximum Anticipated Heat Load This condition results from a weather event that causes the concrete cask to be subject to a 133°F ambient temperature with full insolation.

11.2.7.2 Detection of Maximum Anticipated Heat Load Detection of the high ambient temperature condition will be by observation of the site ambient temperature.

  • 11.2.7.3 Analysis of Maximum Anticipated Heat Load Using the same methods and thermal models described in Section 11.1.1 for the off-normal conditions of severe ambient temperatures (106°F and -40°F), thermal evaluations are performed for the concrete cask and the canister with its contents for this accident condition. The principal PWR and BWR cask component temperatures for this ambient condition are:

133°F Ambient Allowable Component Max Temp. (°F) Max Temp. (°F)

PWR BWR PWR BWR Fuel Cladding 692 690 1058 1058 Support Disks 650 664 800 700 Heat Transfer Disks 648 662 750 750 Canister Shell 409 432 800 800 Concrete 262 266 350 350

  • 11.2.7-1

FSAR - UMS Universal Storage System March2004 DocketN~). 72-1015 Revision 3 This evaluation shows that the component temperatures are within the allowable temperatures for

  • the extreme ambient temperature conditions.

Thermal stress evaluations for the concrete cask are performed using the method and model presented in Section 3.4.4. The concrete temperature results obtained from the thermal analysis for this accident condition are applied to the structural model for stress calculation. The maximum stress, 7,869 psi in the reinforcing steel, occurs in the circumferential direction. The margin of safety is 54,000 psi/7,869 psi -1 = +5.9. The maximum compressive stress, 808 psi, in the concrete occurs in 1he vertical direction. The maximum circumferential compressive stress in the concrete is 116 psi. The margin of safety is [0.7(4,000 psi)/808 psi] -1 = +2.5. These stresses are used in the loading combination for the concrete cask shown in Section 3.4.4.2.

11.2.7.4 Corrective Actions The high ambient temperature condition is a natural phenomenon, and no recovery or corrective actions arc required.

11.2.7.5 Radiological Impact There are no dose implications due to this event.

  • 11.2.7-2

Enclosure 3 to ED20210111 Page 1 of2 Enclosure 3 Supporting Calculations for the

  • NAC-UMS FSAR Revision 21A (Docket No 72-1015)

NAC International July 2021

Enclosure 3 to ED20210111 Page 2 of2 Supporting Calculations for the NAC-UMS FSAR, Revision 21A List of Calculations:

I. EA790-3006 RI

2. EA790-3506 R5
3. EA790-3206 R7 CALCULATIONS WITHHELD IN THEIR ENTIRETY PER 10 CFR 2.390