ML21133A140

From kanterella
Jump to navigation Jump to search
and Independent Spent Fuel Storage Installation (ISFSI) - 2020 Annual Radioactive Effluent Release Report and 2020 Annual Radiological Environmental Operating Report
ML21133A140
Person / Time
Site: Ginna  Constellation icon.png
Issue date: 05/11/2021
From: Swift P
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Material Safety and Safeguards, Office of Nuclear Reactor Regulation
References
Download: ML21133A140 (305)


Text

Paul M. Swift Site Vice President R.E. Ginna Nuclear Power Plant 1503 Lake Rd Ontario NY 14519 Exelon Generation © 315 *791 5200 Office www.exeloncorp com paul.sw ft 'ii exeloncorp com May 11, 2021 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 R.E . Ginna Nuclear Power Plant Renewed Facility Operating License No. DPR-18 NRC Docket No. 50-244 Independent Spent Fuel Storage Installation (ISFSI)

NRC Docket No. 72-67

Subject:

2020 Annual Radioactive Effluent Release Report and 2020 Annual Radiological Environmental Operating Report Enclosed is the Annual Radioactive Effluent Release Report (ARERR) for 2020 for the R.E. Ginna Nuclear Power Plant and Independent Spent Fuel Storage Installation (ISFSI).

This report is being submitted in accordance with 10 CFR 50.36a(a)(2) and Technical Specifications (TS) Sections 5.5.1.c and 5.6.3.

No (0) revisions to the Offsite Dose Calculation Manual (ODCM) and one (1) revision to the Process Control Program (PCP) occurred during the 2020 reporting period. In the ARERR, ODCM revisions are described in Section 10.0 and PCP revisions are described in Section 11.0. Submitted as Appendices to the ARERR are (A) the Annual Report on the Meteorological Monitoring Program and, (B) a complete, legible copy of the entire ODCM, as required by TS 5.5.1.c (no annotations due to no changes during the reporting period) .

Also enclosed is the Annual Radiological Environmental Operating Report (AREOR) for 2020, submitted in accordance with Technical Specification Section 5.6.2.

There are no regulatory commitments contained in this submittal. Should you have any other questions regarding this submittal, please contact Kyle Garnish at 585-469-2837.

Respectfully, Paul M. Swift ps/arw

May 11, 2021 U.S. Nuclear Regulatory Commission Page 2 Attachments:

1) Annual Radioactive Effluent Release Report, January 1, 2020 - December 31, 2020 App. A, Annual Report on the Meteorological Monitoring Program at the Ginna Nuclear Power Plant [p. 32 of PDF file]

App. B, Copy of the latest revision (36) of the ODCM in the reporting period (no annotations due to no changes) [p. 79 of PDF file]

2) Annual Radiological Environmental Operating Report, January 1, 2020 - December 31, 2020 [p.200 of PDF file]

cc: NRC Regional Administrator, Region I (wlo)

NRC Project Manager, Ginna (w/o)

NRC Senior Resident Inspector, Ginna (w/o)

NYS Office of Emergency Management (electronic)

Division of Homeland Security and Emergency Services 1220 Washington Avenue Building 22, Suite 101 Albany, NY 12226-2251 Attn .: Gary Machina NYS Department of Public Service (electronic) 3 Empire State Plaza, 10th Floor Albany , NY 12223 Attn .: Bridget Frymire American Nuclear Insurers (electronic) 95 Glastonbury Blvd.

Glastonbury, CT 06033 Attn .: Edward Everett NYS Division of Homeland Security and Emergency Services (electronic)

Attn : Radiological Preparedness Department 1220 Washington Avenue Building 7A Suite 710 Albany, NY 12242 Tim Kohlmeier, Office of Emergency Management (electronic)

Monroe County Office of Emergency Management 1190 Scottsville Rd ., Suite 200 Rochester, NY 14624 George Bastedo, Director, Office of Disaster Preparedness (electronic)

Wayne County Emergency Management 7376 Rt. 31, Suite 2000 Lyons, NY 14489-9174











$77$&+0(17











$118$/5$',2$&7,9(())/8(175(/($6(5(3257

-$18$5<+/-'(&(0%(5



 

5(*LQQD1XFOHDU3RZHU3ODQW//&



ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT:

JANUARY 1, 2020 - DECEMBER 31, 2020 MAY 2021 R.E. Ginna Nuclear Power Plant 1503 Lake Road Ontario, New York 14519

TABLE OF CONTENTS 1.0 Introduction ........................................................................................................................1 2.0 Supplemental Information ................................................................................................1 2.1 Regulatory Limits ....................................................................................................1 2.2 Effluent Concentration Limits .................................................................................2 2.3 Release Rate Limits Based on Average Nuclide Energy .........................................3 2.4 Measurements and Approximations of Total Radioactivity ....................................3 2.5 Batch Releases .........................................................................................................3 2.6 Abnormal Releases ..................................................................................................4 3.0 Summary of Gaseous Radioactive Effluents ...................................................................4 4.0 Summary of Liquid Radioactive Effluents ......................................................................4 5.0 Solid Waste .........................................................................................................................4 6.0 Lower Limit of Detection ..................................................................................................4 7.0 Radiological Impact ...........................................................................................................4 7.1 Total Dose ................................................................................................................5 8.0 Meteorological Data ...........................................................................................................5 9.0 Land Use Census Changes ................................................................................................5 10.0 Changes to the Offsite Dose Calculation Manual ...........................................................6 11.0 Changes to the Process Control Program ........................................................................6 12.0 Major Changes to Radwaste Treatment Systems ...........................................................6 13.0 Inoperable Monitors ..........................................................................................................7 14.0 Changes to Previous Annual Radioactive Effluent Release Reports ............................7 15.0 Groundwater Monitoring..................................................................................................7 16.0 Offsite Dose Due To ISFSI.....8 17.0 Offsite Dose Due to Carbon-14 .........................................................................................8 17.1 Gaseous Effluents ....................................................................................................9 17.2 Liquid Effluents....9 R.E. Ginna Nuclear Power Plant i ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

LIST OF TABLES Table 1A Gaseous Effluents - Summation of all Releases ..........................................................10 Table 1B Gaseous Effluents - Continuous and Batch Releases ..................................................11 Table 2A Liquid Effluents - Summation of all Releases .............................................................13 Table 2B Liquid Effluents - Continuous and Batch Releases .....................................................14 Table 3 Solid Waste and Irradiated Fuel Shipments .................................................................16 Table 4A Radiation Dose to Maximum Individual Receptor from Gaseous Effluents ...............19 Table 4B Radiation Dose to Maximum Individual Receptor from Liquid Effluents ..................23 Table 5 Groundwater Monitoring Wells ................................................................................24 Table 6 Offsite Dose Due to Carbon-14 in Gaseous and Liquid Effluents ..............................25 Appendix A, Annual Report on the Meteorological Monitoring Program at the Ginna Nuclear Power Plant Appendix B, R.E. Ginna Nuclear Power Plant Offsite Dose Calculation Manual, Revision 36 R.E. Ginna Nuclear Power Plant ii ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

1.0 INTRODUCTION

R.E. Ginna Nuclear Power Plant (Ginna) has prepared this Annual Radioactive Effluent Release Report (ARERR) in accordance with the requirements of Technical Specification Section 5.6.3.

This report, covering the period from January 1, 2020 through December 31, 2020, provides a summary of the quantities of radioactive gaseous effluents. liquid effluents, and solid waste released from the plant presented in the format outlined in Appendix B of Regulatory Guide 1.21, Revision 1, June 1974.

All gaseous and liquid effluents discharged during this reporting period complied with the limits of the Ginna Technical Specifications as defined in the Offsite Dose Calculation Manual (ODCM). The ODCM is Ginna procedure CY-GY-170-300, Offsite Dose Calculation Manual (ODCM) R.E. Ginna Nuclear Power Plant.

2.0 SUPPLEMENTAL INFORMATION 2.1 Regulatory Limits The ODCM limits applicable to the release of radioactive material in liquid and gaseous effluents are:

2.1.1 Fission and Activation Gases The instantaneous dose rate, as calculated in the ODCM, due to noble gases released in gaseous effluents from the site shall be limited to a release rate that would yield

< 500 mrem/yr to the total body and < 3000 mrem/yr to the skin if allowed to continue for a full year.

The air dose, as calculated in the ODCM, due to noble gases released in gaseous effluents from the site shall be limited to the following:

(I) During any calendar quarter to < 5 mrad for gamma radiation and to

< 10 mrad for beta radiation.

(ii) During any calendar year to < 10 mrad for gamma radiation and to

< 20 mrad for beta radiation.

2.1.2 Radioiodine, Tritium, and Particulates The instantaneous dose rate, as calculated in the ODCM, due to radioactive materials released in gaseous effluents from the site as radioiodine species, radioactive materials in particulate form, and radionuclides other than noble gases with half-lives greater than eight days shall be limited to a release rate that would yield < 1500 mrem/yr to any organ if allowed to continue for a full year.

R.E. Ginna Nuclear Power Plant 1 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

Dose to an individual from radioiodine, radioactive materials in particulate form, and radionuclides other than noble gases with half-lives greater than eight days released with gaseous effluents is calculated in accordance with ODCM methodology. The dose to an individual shall be limited to:

(i) During any calendar quarter to < 7.5 mrem to any organ.

(ii) During any calendar year to < 15 mrem to any organ.

2.1.3 Liquid Effluents The release of radioactive liquid effluents shall be such that the concentration in the circulating water discharge does not exceed 10 times the limits specified in Appendix B, Table II, Column 2 and notes thereto of 10 CFR 20, as explained in Section 4 of the ODCM. For dissolved or entrained noble gases the total activity due to dissolved or entrained noble gases shall not exceed 2E-04 uCi/ml.

The dose or dose commitment to an individual from radioactive materials in liquid effluents released to unrestricted areas is calculated according to ODCM methodology and is limited to:

(i) During any calendar quarter to < 1.5 mrem to the total body and to < 5 mrem to any organ, and (ii) During any calendar year to < 3 mrem to the total body and to < 10 mrem to any organ.

2.2 Effluent Concentration Limits (ECLs) 2.2.1 For gaseous effluents, effluent concentration limits (ECLs) are not directly used in release rate calculations since the applicable limits are stated in terms of dose rate at the unrestricted area boundary, in accordance with Technical Specification 5.5.4.g.

2.2.2 For liquid effluents, ECLs ten times those specified in 10 CFR 20, Appendix B, Table II, column 2, are used to calculate release rates and permissible concentrations at the unrestricted area boundary as permitted by Technical Specification 5.5.4.b. A value of 2E-04 uCi/ml is used as the ECL for dissolved and entrained noble gases in liquid effluents.

R.E. Ginna Nuclear Power Plant 2 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

2.3 Release Rate Limits Based on Average Nuclide Energy The release rate limits for fission and activation gases from the R.E. Ginna Nuclear Power Plant are not based on the average energy of the radionuclide mixture in gaseous effluents; therefore, this value is not applicable. However, the 2020 average beta/gamma energy of the radionuclide mixture in fission and activation gases released from Ginna is available for review upon request.

2.4 Measurements and Approximations of Total Radioactivity Gamma spectroscopy was the primary analysis method used to determine the radionuclide composition and concentration of gaseous and liquid effluents. Composite samples were analyzed for Fe-55, Ni-63, Sr-89, and Sr-90 by a contract laboratory. Tritium and alpha analyses were performed using liquid scintillation and gas flow proportional counting respectively.

The total radioactivity in effluent releases was determined from the measured concentration of each radionuclide present in a representative sample and the total volume of effluents released.

2.5 Batch Releases 2.5.1 Liquid

1. Number of batch releases: 8.40 E+01
2. Total time for batch releases (Minutes): 1.17 E+04
3. Maximum time for a batch release (Minutes): 7.09 E+02
4. Average time for batch releases (Minutes): 1.39 E+02
5. Minimum time for a batch release: 2.10 E+01
6. Average effluent release flowrate into the discharge 2.62 E+02 canal (Liters per Minute):
7. Average dilution flowrate of discharge canal during 1.21 E+06 effluent releases (Liters per Minute):

2.5.2 Gaseous

1. Number of batch releases: 3.40 E+01
2. Total time for batch releases (Minutes): 5.27 E+05
3. Maximum time for a batch release (Minutes): 4.46 E+04
4. Average time for batch releases (Minutes): 1.55 E+04
5. Minimum time for a batch release (Minutes): 8.20 E+01 R.E. Ginna Nuclear Power Plant 3 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

2.6 Abnormal Releases In 2020, there were no abnormal releases of gaseous effluents.

3.0

SUMMARY

OF GASEOUS RADIOACTIVE EFFLUENTS The quantities of radioactive material released in gaseous effluents are summarized in Tables 1A and 1B. Plant Vent and Containment Vent releases are modeled as mixed mode and the Air Ejector is modeled as a ground level release.

4.0

SUMMARY

OF LIQUID RADIOACTIVE EFFLUENTS The quantities of radioactive material released in liquid effluents are summarized in tables 2A and 2B.

5.0 SOLID WASTE The quantities of radioactive material released in shipments of solid waste transported from Ginna during the reporting period are summarized in Table 3. Principal nuclides were determined by gamma spectroscopy and non-gamma emitters were calculated from scaling factors determined by an independent laboratory from representative samples of that waste type.

A vendor uses a volume reduction process for most of the site-generated Dry Active Waste (DAW) prior to transporting it to a permitted landfill for disposal.

6.0 LOWER LIMIT OF DETECTION The required Lower Limit of Detection (LLD), as defined in Table 2-1 of the ODCM, was met on all effluent samples in 2020.

7.0 RADIOLOGICAL IMPACT An assessment of doses to the hypothetical maximally exposed individual member of the public from gaseous and liquid effluents was performed for locations representing the maximum calculated dose in occupied sectors. Meteorological sectors to the north from NW through ENE are entirely over Lake Ontario, while the remaining meteorological sectors to the south (WNW through E) are over land. In all cases, doses were well below Technical Specification limits as defined in the ODCM. Doses were assessed based upon historical meteorological conditions considering the noble gas exposure, inhalation, ground plane exposure, and ingestion pathways.

The ingestion pathways considered were the fruit, vegetable, fish, drinking water, goat's milk, cow's milk, and cow meat pathways.

Results of this assessment are presented in Tables 4A and 4B. Population doses are inferred from the population density, distance from the plant, and drinking water source.

R.E. Ginna Nuclear Power Plant 4 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

7.1 Total Dose 40 CFR 190 limits the total dose to members of the public due to radiation and radioactivity from uranium fuel cycle sources to:

< 25 mrem total body or any organ and;

< 75 mrem thyroid for a calendar year.

Using the maximum exposure and uptake pathways, the maximum liquid pathways, including C-14 dose, and the maximum direct radiation measurements at the site boundary, yield the following dose summaries to the hypothetical maximally exposed individual member of the public. The maximum total body dose is determined by summing the hypothetical maximum direct radiation dose exposure and the total body dose from gaseous and liquid pathways. Dose to any real member of the public should be conservatively bounded by these calculated doses:

Maximum Annual Total Body Dose: 5.58E-01 mRem

[Sum of 5.50E-01 (Direct Radiation Dose), 7.80E-03 (Total Body Liquid Dose),

and 1.35E-05 (Total Body Gas Dose)]

Maximum Annual Organ Dose: 2.36E-02 mRem (Adult, Gastrointestinal)

Maximum Annual Thyroid Dose: 1.07E-02 mRem (Child) 8.0 METEOROLOGICAL DATA The annual summary report of meteorological data collected during 2020 is included with this report, as Appendix A, Annual Report on the Meteorological Monitoring Program at the Ginna Nuclear Power Plant by Murray and Trettel, Incorporated.

9.0 LAND USE CENSUS CHANGES In September 2020, third-party contractors working under Ginna Chemistry conducted a Land Use Survey to identify the location of the nearest milk animal, the nearest residence, and the nearest garden greater than 500 square feet in each of the nine sectors within a five-mile radius of the power plant. The Land Use Survey is conducted in accordance with Ginna procedures (Reference #4). If changes are noted in the annual Land Use Survey, alterations to Ginnas REMP program would be made to ensure sampling practices cover these new areas of potential public exposure.

Over the past year, the following land use observations were made within a 5-mile radius of the power plant:

R.E. Ginna Nuclear Power Plant 5 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

The nearest residence remains in the SSE sector, approximately 610 meters from the reactor.

Single-family home / senior housing subdivision / development construction was observed near the plant on LaFrank Drive (Ontario), and South of Route 104 near Tops Plaza (Ontario).

Lake Front Estates and Summer Lake subdivisions continue to expand along with the southeast corner of Lake Road and Slocum Road.

New housing / lots being developed near Webster Park (WNW), Woodard Rd (W),

County Line Road (W), near Webster Golf Course (W), Lakeside Rd. (SW), Centennial Village (SSW), and Community Ridge Apartments off Walworth-Ontario Rd. (SSE).

Other single-family home construction was observed sporadically within 5-miles of the plant.

The 120-acre commercial hydroponic farm continues production of AGRI-GROW tomatoes year-round at East end of Dean Parkway. (North of Route 104).

Commercial fishing information was collected from the New York State Department of Environmental Conservation (NYSDEC) which shows activity only in the Eastern basin of Lake Ontario. Commercial fishing operations have not changed in the last five-years and no commercial fishing takes place within 5-miles of Ginna.

No new agricultural land use was identified.

No new food producing facilities were identified as the commercial hydroponic farm is not currently growing produce.

No new milk producing animals were identified.

10.0 CHANGES TO THE OFFSITE DOSE CALCULATION MANUAL There were no changes to the Offsite Dose Calculation Manual (ODCM) in 2020. The most recent revision of the ODCM (Revision 36) was made effective on 12/27/2018 and is included within this report as Appendix B.

11.0 CHANGES TO THE PROCESS CONTROL PROGRAM There was one change to the Process Control Program during 2020. An ultraviolet (UV) light and Ozone treatment skid was installed within the Radwaste Treatment System to treat process water during Refueling Outages. This skid reduced effluents from the station as the water was repurposed rather than being released.

12.0 MAJOR CHANGES TO RADWASTE TREATMENT SYSTEMS There was one change to the Radwaste Treatment Systems during 2020. An ultraviolet (UV) light and Ozone treatment skid was installed within the Radwaste Treatment System to treat process water during Refueling Outages. This skid reduced effluents from the station as the water was repurposed rather than being released.

R.E. Ginna Nuclear Power Plant 6 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

13.0 INOPERABLE MONITORS There were two occurrences in 2020 which did not meet the performance requirements stated within the ODCM for radiation monitoring and sample collection:

On 4/4/20, during a routine source check of Radiation Monitor R-14A (High-Range Effluent Monitor, Plant Vent), R-14A failed the Iodine source check (Channel 3, Probe 1). The acceptance criteria for this check was 2272.5 counts per minute (CPM) and the average net value was 2260 CPM. Radiation Monitor R-14A was out of service (OOS) until a successful source check was passed on 4/14/20. The time period of being OOS for 10-days is not in accordance with the limits established within the ODCM. No further actions were required after 4/14/20 and the monitor continued to perform in a satisfactory fashion for the rest of 2020.

On 11/26/20, Radiation Monitor R-32 (B Steam Line Monitor) was taken OOS due to repeated electronic indication failures on local digital displays. Analog outputs continued to function normally both locally and remotely, however the instrument was removed from service conservatively for repairs. Intermittent fault alarms were fixed on 12/11/20 and the time period of 15-days is not in accordance with the limits established within the ODCM. No further actions were required after 12/11/20 and the monitor continued to perform in a satisfactory fashion for the rest of 2020.

14.0 CHANGES TO PREVIOUS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORTS None.

15.0 GROUNDWATER MONITORING In accordance Ginnas Chemistry procedures, environmental groundwater monitoring wells are sampled on a routine frequency. In 2020, third-party contractors working under Ginna Chemistry collected and analyzed samples from a total of 14 groundwater monitoring wells:

GW01: Warehouse Access Road (Control)

GW03: Screenhouse West, South Well GW04: Screenhouse West, North Well GW05: Screenhouse East, South GW06: Screenhouse East, Middle GW07: Screenhouse East, North GW08: All Volatiles Treatment Building GW10: Technical Support Center, South GW11: Southeast of Contaminated Storage Building (CSB)

GW12: West of Orchard Access Road GW13: North of Independent Spent Fuel Storage Installation (ISFSI)

R.E. Ginna Nuclear Power Plant 7 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

GW14: South of Canister Preparation Building GW15: West of Manor House GW16: Southeast of Manor House Groundwater samples are analyzed for tritium to a detection limit of 200 pCi/L. Beginning in 2020, gamma analysis was reduced from an annual periodicity due to the adoption of a new procedure EN-GI-408-4160 as gamma has not been detected in groundwater monitoring well samples in over 10 years.. In 2020, groundwater samples identified tritium concentrations ranging from 163 - 347 pCi/L. These low-level concentrations are consistent with concentrations associated with gaseous tritium precipitation recapture. The analytical results for groundwater monitoring well samples collected during 2020 are presented in Table 5.

16.0 OFFSITE DOSE DUE TO ISFSI A review of direct radiation between the Ginna ISFSI facility and the nearest residents was conducted. Environmental TLD station 64 is the highest direct radiation dose offsite and is the basis for the maximum direct radiation dose reported in 7.1 A review of TLD stations 14, 15, 16 since fuel was first stored in the ISFSI in 2010 indicate no change in offsite direct radiation dose as measured by TLDs.

Ginna ISFSI design is such that effluent releases of noble gases are precluded.

17.0 OFFSITE DOSE DUE TO CARBON-14 A study of Carbon-14 in effluent releases from Ginna was conducted in 1982 by Charles Kunz of New York State Department of Health, Center for Laboratories and Research. Results of this study are used as the basis for current Carbon-14 production and releases at Ginna. Using the Carbon-14 releases measured in the Kunz study at 4.3 Curies, adjusted for power uprate from 490 MWe to 580 MWe, and adjusted for increased capacity factor and 18-month fuel cycles, leads to a conservative estimate of 6.8 Curies released in gaseous effluents in 2020. Kunz further determined the chemical form of the Carbon-14 at Ginna to be approximately 10% Carbon Dioxide (CO2).

As a cross-check, the EPRI Carbon-14 Source Term Calculator was used to estimate Carbon-14 releases from Ginna, using Ginna specific reactor core data and reactor coolant chemistry to estimate the products of the activation reactions. The resulting estimate of 6.9 Curies per Equivalent Full Power Year (EFPY) agrees with the Kunz data, adjusted for current operating cycles.

R.E. Ginna Nuclear Power Plant 8 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

17.1 Gaseous Effluents Dose due to Carbon-14 in gaseous effluents was calculated using the following conditions:

a. 6.8 Curies of C-14 were released to the atmosphere in 2020.
b. There was a refueling outage in 2020. However, according to the Kunz study it has little or no impact on the C-14 effluents and was not considered in this report.
c. 10% of the C-14 was in the chemical form of carbon dioxide (CO2), which is the only dose contributor. The bulk of C-14 is released in the chemical form of methane (CH4).

Methane would exhibit high upward velocity due to its low density relative to air.

Additionally, CH4 does not have an uptake pathway for humans.

d. Meteorological dispersion factor, (X/Q), at the site boundary to the hypothetical maximally exposed member of the public is 2.43E-07 sec/m 3.
e. Dose calculations and dose factors are from Regulatory Guide 1.109 methodology.
f. Pathways considered were inhalation, milk consumption, and vegetation ingestion.
g. The critical receptor is a child at the site boundary in the ESE direction.

See Table 6 for an estimate of Carbon-14 in gaseous effluents during 2020.

17.2 Liquid Effluents Dose due to Carbon-14 in liquid effluents was calculated using the following conditions:

a. The liquid waste processing system at Ginna has not been evaluated for efficiency of removal of Carbon-14. Therefore, no removal term was used in estimation of offsite dose.
b. Average concentration of C-14 in wastewater as measured in the Kunz study was adjusted for current operating conditions and was 6.0E-07 uCi/cc.
c. 2.86E+06 liters of liquid waste (with the potential to contain C-14) were released with a total dilution flow of 1.82E+12 liters.
d. Average diluted concentration of C-14 released was 9.46E-13 uCi/cc.
e. Liquid effluent dilution factor for potable water pathway is 200.
f. Liquid effluent dilution factor for fish pathway is 1.
g. Dose calculations and dose factors are from Regulatory Guide 1.109 methodology.
h. The critical receptor is a child for the fish consumption pathway and the infant is the critical receptor for the potable water pathway.

See Table 6 for an estimate of Carbon-14 in liquid effluents during 2020.

R.E. Ginna Nuclear Power Plant 9 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 1A EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES 2020 Effluent Type Units 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Est. Total Error, A. Fission & Activation Gases

1. Total release Ci 3.46E-01 2.69E-01 7.96E-02 8.30E-02 1.50E+01
2. Average release rate for period uCi/sec 4.39E-02 3.42E-02 1.01E-02 1.05E-02
3. Percent of technical specification limit  % 6.97E-06 5.43E-06 1.60E-06 1.67E-06 B. Iodines
1. Total iodine-131 Ci 0.00E+00 1.07E-07 0.00E+00 0.00E+00 1.50E+01
2. Average release rate for period uCi/sec 0.00E+00 1.36E-08 0.00E+00 0.00E+00
3. Percent of technical specification limit  % 0.00E+00 2.96E-05 0.00E+00 0.00E+00 C. Particulates
1. Particulates with half-lives > 8days Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.50E+01
2. Average release rate for period uCi/sec 0.00E+00 0.00E+00 0.00E+00 0.00E+00
3. Percent of technical specification limit  % 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4. Gross alpha radioactivity Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 D. Tritium
1. Total release Ci 2.98E+01 3.42E+01 2.50E+01 1.64E+01 9.20E+00
2. Average release rate for period uCi/sec 3.78E+00 4.34E+00 3.17E+00 2.08E+00
3. Percent of technical specification limit  % 4.42E-04 5.08E-04 3.71E-04 2.43E-04 Notes: Isotopes for which no value is given were not identified in applicable releases.

R.E. Ginna Nuclear Power Plant 10 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 1B EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS - CONTINUOUS AND BATCH RELEASES 2020 Nuclides Released Units Continuous Mode Batch Mode 1st 2nd 3rd 4th 1st 2nd 3rd 4th Quarter Quarter Quarter Quarter Quarter Quarter Quarter Quarter

1. Fission Gases Argon-41 Ci 4.61E-03 6.24E-02 2.15E-02 3.98E-02 4.15E-02 Krypton-85 Ci Krypton-85m Ci Krypton-87 Ci Krypton-88 Ci Xenon-131m Ci Xenon-133 Ci 7.08E-03 1.11E-01 1.02E-01 Xenon-133m Ci Xenon-135 Ci Xenon-135m Ci Xenon-138 Ci Total for period Ci 0.00E+00 1.17E-02 0.00E+00 0.00E+00 1.73E-01 1.24E-01 3.98E-02 4.15E-02
2. Iodines Iodine-131 Ci 5.34E-08 Iodine-132 Ci Iodine-133 Ci 9.88E-09 Iodine-135 Ci Total for period Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.33E-08 0.00E+00 0.00E+00 R.E. Ginna Nuclear Power Plant 11 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 1B (Continued)

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT GASEOUS EFFLUENTS - CONTINUOUS AND BATCH RELEASES 2020 Nuclides Released Units Continuous Mode Batch Mode 1st 2nd 3rd 4th 1st 2nd 3rd 4th Quarter Quarter Quarter Quarter Quarter Quarter Quarter Quarter

3. Particulates Strontium-89 Ci Strontium-90 Ci Cesium-137 Ci Cobalt-57 Ci Cobalt-58 Ci Cobalt-60 Ci Unidentified Ci Total for period Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4. Tritium Hydrogen-3 Ci 1.49E+01 1.71E+01 1.24E+01 8.18E+00 1.43E-02 1.13E-02 4.56E-02 1.94E-02 Note: Isotopes for which no value is given were not identified in applicable releases.

R.E. Ginna Nuclear Power Plant 12 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 2A EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES 2020 Effluent Type Units 1st 2nd 3rd 4th Est. Total Error, Quarter Quarter Quarter Quarter  %

A. Fission & Activation Products

1. Total Release (not including tritium, gases, Ci 0.00E+00 3.85E-03 3.67E-04 7.46E-05 9.90E+00 alpha)
2. Average Diluted concentration uCi/ml 0.00E+00 9.82E-12 7.14E-13 1.47E-13
3. Percent of applicable limit  % 0.00E+00 9.82E-05 7.14E-06 1.47E-06 B. Tritium
1. Total Release Ci 1.81E+02 9.34E+01 3.12E+01 8.37E+00 9.20E+00
2. Average Diluted Concentration uCi/ml 4.47E-07 2.38E-07 6.06E-08 1.66E-08
3. Percent of applicable limit  % 4.47E-03 2.38E-03 6.06E-04 1.66E-04 C. Dissolved and Entrained Gases
1. Total Release Ci 0.00E+00 3.45E-04 0.00E+00 0.00E+00 9.90E+00
2. Average Diluted Concentration uCi/ml 0.00E+00 8.78E-13 0.00E+00 0.00E+00
3. Percent of applicable limit  % 0.00E+00 4.39E-07 0.00E+00 0.00E+00 D. Gross Alpha Radioactivity
1. Total release Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 E. Vol. of Waste Released (prior to dilution) Liters 1.10E+08 8.23E+07 1.40E+08 1.11E+08 F. Vol. of Dilution Water Used During Period Liters 4.05E+11 3.92E+11 5.14E+11 5.06E+11 Note: Isotopes for which no value is given were not identified in applicable releases.

R.E. Ginna Nuclear Power Plant 13 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 2B EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS - CONTINUOUS AND BATCH RELEASES 2020 Nuclides Released Units Continuous Mode Batch Mode 1st 2nd 3rd 4th 1st 2nd 3rd 4th Quarter Quarter Quarter Quarter Quarter Quarter Quarter Quarter Fission & Activation Products Chromium-51 Ci Manganese-54 Ci Iron-55 Ci Iron-59 Ci Cobalt-57 Ci Cobalt-58 Ci 2.24E-04 Cobalt-60 Ci 9.28E-06 Zinc-65 Ci Strontium-89 Ci Strontium-90 Ci Niobium-95 Ci Molybdenum-99 Ci Zirconium-95 Ci Silver-110m Ci Antimony-122 Ci Tellurium-123m Ci 2.99E-03 3.67E-04 7.46E-05 Antimony-124 Ci Antimony-125 Ci Tellurium-125m Ci 3.47E-04 Iodine-131 Ci Iodine-132 Ci 1.55E-04 Tellurium-132 Ci 1.27E-04 Iodine-135 Ci Cesium-134 Ci Cesium-136 Ci Cesium-137 Ci R.E. Ginna Nuclear Power Plant 14 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 2B (Continued)

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT LIQUID EFFLUENTS - CONTINUOUS AND BATCH RELEASES 2020 Nuclides Released Units Continuous Mode Batch Mode 1st 2nd 3rd 4th 1st 2nd 3rd 4th Quarter Quarter Quarter Quarter Quarter Quarter Quarter Quarter Barium/Lanthanum-140 Ci Cerium-141 Ci Total (above) Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.85E-03 3.67E-04 7.46E-05 Unidentified (from total Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 above)

Tritium Hydrogen-3 Ci 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.81E+02 9.34E+01 3.12E+01 8.37E+00 Dissolved and Entrained Gases Xenon-133 Ci 3.45E-04 Xenon-135 Ci Note: Isotopes for which no value is given were not identified in applicable releases.

R.E. Ginna Nuclear Power Plant 15 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 3 EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT SOLID WASTE AND IRRADIATED FUEL SHIPMENTS 2020 A. SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (Not Irradiated Fuel)

1. Type of Waste Units 12 Month Period Est. total Error (%)

A - Spent Resins, Filter Sludge, Evaporator Bottoms, m3 5.83E+00 --

Etc. Ci 6.88E-01 --

B - Dry Active Waste (DAW), Contaminated m3 3.10+02 --

Equipment, Etc. Ci 1.45E-01 --

C - Irradiated Components, Control Rods, Etc. m3 None --

Ci m3 None --

D - Other: Sources, Filters Ci None --

R.E. Ginna Nuclear Power Plant 16 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 3 (Continued)

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT SOLID WASTE AND IRRADIATED FUEL SHIPMENTS 2020

2. Estimate of Major Nuclide Composition by Type of Waste Isotope Unit Class A Class B Type C Type D H-3  % 9.07 C-14  % 3.84 Cr-51  % 1.67 Mn-54  % 1.88 Fe-55  % 2.84 Fe-59  % 0.03 Co-57  % 0.10 Co-58  % 2.85 Co-60  % 15.94 Ni-59  % 0.34 Ni-63  % 47.04 Zn-65  % 2.29 Sr-90  % 0.15 Zr-95  % 0.77 Nb-95  % 1.32 Tc-99  % 0.05 Ag-110m  % 0.10 Sn-113  % 0.06 Sn-117m  % 0.02 Te-123m  % 0.03 Sb-124  % 0.25 Sb-125  % 3.34 I-129  % 0.05 Cs-137  % 5.81 Ce-144  % 0.05 Pu-241  % 0.09 Total  % 99.98 Note: Isotopes for which no value is given were not identified in applicable releases.

R.E. Ginna Nuclear Power Plant 17 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 3 (Continued)

EFFLUENT AND WASTE DISPOSAL ANNUAL REPORT SOLID WASTE AND IRRADIATED FUEL SHIPMENTS 2020 Mode of Type of Container Solidification

  1. of Shipments Processing Destination Transportation Agent 6 Sole Use Truck Metal Containers None Energy Solutions, Bear Creek 4 Sole Use Truck Plastic Containers None Energy Solutions, Bear Creek 1 Sole Use Truck High Integrity Container None Energy Solutions (Treatment Facility)

B. IRRADIATED FUEL SHIPMENTS (Disposition)

Mode of

  1. of Shipments Destination Transportation None N/A N/A R.E. Ginna Nuclear Power Plant 18 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 4A Radiation Dose to Maximum Individual Receptor from Gaseous Effluents First Quarter 2020 (Units In milliRem)

All All Adult Teen Child Infant Gamma Air Beta Air THYRD THYRD THYRD THYRD N 1.68E-06 8.70E-07 1.86E-04 2.04E-04 2.80E-04 7.09E-08 NNE 1.41E-06 7.29E-07 1.56E-04 1.71E-04 2.35E-04 5.94E-08 NE 1.62E-06 8.40E-07 1.80E-04 1.97E-04 2.71E-04 6.85E-08 ENE 2.06E-06 1.07E-06 2.29E-04 2.50E-04 3.44E-04 8.70E-08 E 3.75E-06 1.94E-06 4.16E-04 4.56E-04 6.26E-04 1.58E-07 ESE 4.77E-06 2.47E-06 5.29E-04 5.80E-04 7.96E-04 3.48E-04 SE 2.89E-06 1.50E-06 3.20E-04 3.51E-04 4.82E-04 1.22E-07 SSE 1.19E-06 6.16E-07 1.32E-04 1.44E-04 1.98E-04 5.02E-08 S 2.08E-06 1.08E-06 2.31E-04 2.53E-04 3.47E-04 8.79E-08 SSW 2.08E-06 1.08E-06 2.31E-04 2.53E-04 3.47E-04 8.79E-08 SW 2.08E-06 1.08E-06 2.31E-04 2.53E-04 3.47E-04 8.79E-08 WSW 2.22E-06 1.15E-06 2.46E-04 2.70E-04 3.70E-04 9.37E-08 W 1.41E-06 7.32E-07 1.57E-04 1.72E-04 2.36E-04 5.96E-08 WNW 1.19E-07 6.18E-08 1.32E-05 1.45E-05 1.99E-05 5.04E-09 NW 3.91E-07 2.03E-07 4.34E-05 4.75E-05 6.53E-05 1.65E-08 NNW 1.22E-06 6.33E-07 1.35E-04 1.48E-04 2.04E-04 5.16E-08 MAX. 4.77E-06 2.47E-06 5.29E-04 5.80E-04 7.96E-04 3.48E-04 Note: Shaded regions indicate areas over Lake Ontario.

R.E. Ginna Nuclear Power Plant 19 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 4A (Continued)

Radiation Dose to Maximum Individual Receptor from Gaseous Effluents Second Quarter 2020 (Units In milliRem)

All All Adult Teen Child Infant Gamma Air Beta Air THYRD THYRD THYRD THYRD N 7.92E-07 6.28E-07 2.16E-04 2.36E-04 3.25E-04 1.46E-04 NNE 6.63E-07 5.26E-07 1.81E-04 1.98E-04 2.73E-04 1.22E-04 NE 7.65E-07 6.07E-07 2.08E-04 2.28E-04 3.14E-04 1.41E-04 ENE 9.72E-07 7.71E-07 2.65E-04 2.90E-04 3.99E-04 1.79E-04 E 1.77E-06 1.40E-06 4.82E-04 5.28E-04 7.27E-04 3.25E-04 ESE 2.25E-06 1.78E-06 6.13E-04 6.72E-04 9.24E-04 4.14E-04 SE 1.36E-06 1.08E-06 3.71E-04 4.06E-04 5.59E-04 2.51E-04 SSE 5.60E-07 4.44E-07 1.53E-04 1.67E-04 2.30E-04 1.03E-04 S 9.81E-07 7.78E-07 2.67E-04 2.93E-04 4.03E-04 1.81E-04 SSW 9.81E-07 7.78E-07 2.67E-04 2.93E-04 4.03E-04 1.81E-04 SW 9.81E-07 7.78E-07 2.67E-04 2.93E-04 4.03E-04 1.81E-04 WSW 1.05E-06 8.30E-07 2.85E-04 3.12E-04 4.30E-04 1.93E-04 W 6.66E-07 5.28E-07 1.81E-04 1.99E-04 2.74E-04 1.23E-04 WNW 5.62E-08 4.46E-08 1.53E-05 1.68E-05 2.31E-05 1.04E-05 NW 1.84E-07 1.46E-07 5.02E-05 5.51E-05 7.58E-05 3.40E-05 NNW 5.76E-07 4.57E-07 1.57E-04 1.72E-04 2.37E-04 1.06E-04 MAX. 2.25E-06 1.78E-06 6.13E-04 6.72E-04 9.24E-04 4.14E-04 Note: Shaded regions indicate areas over Lake Ontario.

R.E. Ginna Nuclear Power Plant 20 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 4A (Continued)

Radiation Dose to Maximum Individual Receptor from Gaseous Effluents Third Quarter 2020 (Units In milliRem)

All All Adult Teen Child Infant Gamma Air Beta Air THYRD THYRD THYRD THYRD N 1.00E-06 3.54E-07 1.56E-04 1.71E-04 2.35E-04 1.03E-04 NNE 8.41E-07 2.97E-07 1.31E-04 1.43E-04 1.97E-04 8.60E-05 NE 9.70E-07 3.42E-07 1.51E-04 1.65E-04 2.27E-04 9.91E-05 ENE 1.23E-06 4.35E-07 1.92E-04 2.10E-04 2.88E-04 1.26E-04 E 2.24E-06 7.91E-07 3.49E-04 3.82E-04 5.25E-04 2.29E-04 ESE 2.85E-06 1.01E-06 4.44E-04 4.86E-04 6.68E-04 2.91E-04 SE 1.73E-06 6.09E-07 2.68E-04 2.94E-04 4.04E-04 1.76E-04 SSE 7.10E-07 2.50E-07 1.10E-04 1.21E-04 1.66E-04 7.26E-05 S 1.24E-06 4.39E-07 1.93E-04 2.12E-04 2.91E-04 1.27E-04 SSW 1.24E-06 4.39E-07 1.93E-04 2.12E-04 2.91E-04 1.27E-04 SW 1.24E-06 4.39E-07 1.93E-04 2.12E-04 2.91E-04 1.27E-04 WSW 1.33E-06 4.68E-07 2.06E-04 2.26E-04 3.10E-04 1.36E-04 W 8.44E-07 2.98E-07 1.31E-04 1.44E-04 1.98E-04 8.63E-05 WNW 7.13E-08 2.52E-08 1.11E-05 1.22E-05 1.67E-05 7.29E-06 NW 2.34E-07 8.25E-08 3.64E-05 3.99E-05 5.47E-05 2.39E-05 NNW 7.30E-07 2.58E-07 1.14E-04 1.24E-04 1.71E-04 7.46E-05 MAX. 2.85E-06 1.01E-06 4.44E-04 4.86E-04 6.68E-04 2.91E-04 Note: Shaded regions indicate areas over Lake Ontario.

R.E. Ginna Nuclear Power Plant 21 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 4A (Continued)

Radiation Dose to Maximum Individual Receptor from Gaseous Effluents Fourth Quarter 2020 (Units In milliRem)

All All Adult Teen Child Infant Gamma Air Beta Air THYRD THYRD THYRD THYRD N 1.05E-06 3.69E-07 1.03E-04 1.12E-04 1.54E-04 6.73E-05 NNE 8.77E-07 3.09E-07 8.60E-05 9.41E-05 1.29E-04 5.64E-05 NE 1.01E-06 3.57E-07 9.91E-05 1.08E-04 1.49E-04 6.50E-05 ENE 1.28E-06 4.53E-07 1.26E-04 1.38E-04 1.89E-04 8.26E-05 E 2.34E-06 8.25E-07 2.29E-04 2.51E-04 3.44E-04 1.50E-04 ESE 2.97E-06 1.05E-06 2.91E-04 3.19E-04 4.38E-04 1.91E-04 SE 1.80E-06 6.35E-07 1.76E-04 1.93E-04 2.65E-04 1.16E-04 SSE 7.41E-07 2.61E-07 7.26E-05 7.94E-05 1.09E-04 4.76E-05 S 1.30E-06 4.57E-07 1.27E-04 1.39E-04 1.91E-04 8.34E-05 SSW 1.30E-06 4.57E-07 1.27E-04 1.39E-04 1.91E-04 8.34E-05 SW 1.30E-06 4.57E-07 1.27E-04 1.39E-04 1.91E-04 8.34E-05 WSW 1.38E-06 4.88E-07 1.36E-04 1.48E-04 2.04E-04 8.90E-05 W 8.80E-07 3.11E-07 8.63E-05 9.44E-05 1.30E-04 5.66E-05 WNW 7.44E-08 2.62E-08 7.29E-06 7.98E-06 1.10E-05 4.78E-06 NW 2.44E-07 8.60E-08 2.39E-05 2.62E-05 3.59E-05 1.57E-05 NNW 7.61E-07 2.69E-07 7.46E-05 8.17E-05 1.12E-04 4.90E-05 MAX. 2.97E-06 1.05E-06 2.91E-04 3.19E-04 4.38E-04 1.91E-04 Note: Shaded regions indicate areas over Lake Ontario.

R.E. Ginna Nuclear Power Plant 22 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 4B Radiation Dose to Maximum Individual Receptor From Liquid Effluents for 2020 (Units in milliRem)

Adult Teen Child Infant First Quarter T. Body 8.28E-04 6.29E-04 6.23E-04 1.78E-04 GI-LLI 8.28E-04 6.29E-04 6.23E-04 1.78E-04 Thyroid 8.28E-04 6.29E-04 6.23E-04 1.78E-04 Second Quarter T. Body 6.83E-03 5.32E-03 5.40E-03 1.37E-03 GI-LLI 2.04E-02 1.57E-02 8.99E-03 1.37E-03 Thyroid 7.24E-03 5.71E-03 5.92E-03 1.37E-03 Third Quarter T. Body 1.13E-04 8.66E-05 8.70E-05 2.34E-05 GI-LLI 2.12E-04 1.66E-04 1.17E-04 2.34E-05 Thyroid 1.17E-04 9.06E-05 9.22E-05 2.34E-05 Fourth Quarter T. Body 3.00E-05 2.30E-05 2.30E-05 6.29E-06 GI-LLI 5.01E-05 3.91E-05 2.91E-05 6.29E-06 Thyroid 3.08E-05 2.38E-05 2.41E-05 6.29E-06 R.E. Ginna Nuclear Power Plant 23 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

Table 5 Groundwater Monitoring Wells1 Location Sample Date2 Tritium (pCi/l)

GW01: Warehouse Access Road (Control) 7/22/2020 < 161 GW03: Screenhouse West, South Well2 1/17/2020 < 425 2/21/2020 < 427 3/23/2020 < 190 7/24/2020 < 157 10/12/2020 258 GW04: Screenhouse West, North Well 3/23/2020 < 186 7/21/2020 < 158 10/12/2020 < 193 GW07: Screenhouse East, North (24.0) 7/21/2020 163 GW08: All Volatiles Treatment Building2 1/17/2020 < 428 2/21/2020 < 428 3/23/2020 312 7/21/2020 336 10/12/2020 239 GW10: Technical Support Center, South 3/23/2020 321 7/21/2020 304 10/12/2020 347 GW11: Southeast of Contaminated Service Building (CSB) 3/23/2020 < 186 7/21/2020 < 162 10/12/2020 243 GW12: West of Orchard Access Road 7/23/2020 < 160 GW13: North of Independent Spent Fuel Storage Installation (ISFSI) 7/22/2020 < 159 GW14: South of Canister Preparation Building 3/23/2020 < 182 7/21/2020 < 155 10/12/2020 < 194 GW15: West of Manor House 7/22/2020 < 159 GW16: Southeast of Manor House 7/22/2020 < 160 1

New revision of EN-GI-408-4160 implemented on 07/01/20, reducing sampling locations, required analysis, and frequencies.

2 Site GW monitoring suspended due to ongoing COVID-19 pandemic. Sampling and analyses resumed during Q3 2020.

R.E. Ginna Nuclear Power Plant 24 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020

TABLE 6 Offsite Dose Due to Carbon-14 in Gaseous and Liquid Effluents MAXIMUM DOSE VALUES DUE TO C-14 IN GASEOUS EFFLUENTS IN 2020 Organ Age Group mRem/yr NRC Reg. Guide 1.109, Annual Bone Dose Child 1.94E-02 NRC Reg. Guide 1.109, Annual Total Body/Organ Dose Child 3.86E-03 MAXIMUM DOSE VALUES DUE TO C-14 IN LIQUID EFFLUENTS IN 2020 Organ Age mRem/yr NRC Reg. Guide 1.109, Annual Bone Dose Child 3.67E-04 NRC Reg. Guide 1.109, Annual Total Body/Organ Dose Child 7.33E-05 R.E. Ginna Nuclear Power Plant 25 ARERR Docket No. 50-244 01/01/2020 - 12/31/2020











$77$&+0(17 FRQWLQXHG 

$5(55$SSHQGL[$











$118$/5(3257217+(0(7(252/2*,&$/021,725,1*

352*5$0$77+(*,11$18&/($532:(53/$17



 

5(*LQQD1XFOHDU3RZHU3ODQW//&



Annual Report On the Meteorological Monitoring Program At the Ginna Nuclear Power Plant 2020 prepared for Exelon Nuclear Warrenville, IL 60555 by Murray and Trettel, Incorporated 600 First Bank Drive, Suite A Palatine, IL 60067 (84 7) 963-9000 e-mail: mt@weathercommand.com web : http://www. weathercommand .com For Exelon Use Only Reviewed By~

Date: J /11 Uc2- (

I I MuT'ray & Trettel, Inc. 600 FiT'st Bank Dl"ive, S11ite A Palatine, l//inois 60067 (847) 963-9000

Table of Contents Section Description List of Tables .................................................... ....................................... ii 1 Introduction ............................................................................................ 1 2 Summary ............... ................................................................................. 2 3 Data Acquisition ...................................................................................... 3 4 Data Analysis ....... .. .. .......................................................................... ..... 4 5 Results .. ......................................... .......... .. ............................................. 7 Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

ii List of Tables Number Description Page 1 Instrument Locations............................................ ................................. 3 2 Data Loggers .. ........................... .. ... .. ..... ....... .. ... ...... .. ... .. .... .................. 3 3 Wind Direction Classes ........................................................................ 5 4 Wind Speed Classes . ........................................................................... 5 5 Atmospheric Stability Classes ................... .... ....................................... 6 6 D/Q Plant Vent Release ... .. .................................. ................................. 8 7 X/Q Plant Vent Release .................................. ...................................... 9 8 D/Q Containment Vent Release .......................................................... 10 9 XIQ Containment Vent Release .......................................................... 11 10 D/Q Air Ejector Release ...................................................................... 12 11 XIQ Air Ejector Release ...................................................................... 13 12 Special X/Q and D/Q Release ....... .............. .. .. ... .. ...................... 14 13 Data Recovery Summary ................................ .................................... 16 14 Precipitation Totals .............................................................................. 18 15 Annual Joint Frequency Tables ........................................................... 20 Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

1

1. Introduction The purpose of the meteorological program being conducted at the Ginna Plant site is to provide information sufficient to assess the local weather conditions and to determine the degree of atmospheric dispersion of airborne radioactive effluent from the station.

The meteorological tower is 300 ft. high and is instrumented at three levels. Wind speed and direction, and ambient temperature are measured at 33 ft., 150 ft., and 250 ft.

Differential temperatures, referenced to 33 ft., are measured at 150 ft. and 250 ft.

Precipitation is measured at ground level.

Joint frequency stability wind rose tables of wind direction, wind speed, and stability are routinely tabulated from hourly measurements. The annual tables are included in this report.

Descriptions of the instruments and data computers are given in Section 3 (Data Acquisition) of this report. Data reduction and processing are described in Section 4 (Data Analysis). The results given in Section 5 of this report include X/Q and D/Q data results and site meteorology.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

2

2. Summary The Ginna Plant meteorological monitoring program produced 96,395 hours0.00457 days <br />0.11 hours <br />6.531085e-4 weeks <br />1.502975e-4 months <br /> of valid data out of a possible 96,624 priority parameter hours during 2020, which represents an overall data recovery rate of 99.7%. Priority parameters are all parameters except precipitation.

The stability wind rose tables included in this report have been generated using the 33 ft.

wind data with the 150-33 ft. differential temperature data, the 150 ft. wind data with the 150-33 ft differential temperature data and the 250 ft. wind data with the 250-33 ft.

differential temperature data.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

3

3. Data Acquisition Wind speed and direction are measured with Climatronics F460 wind sensors . The wind speed sensors have a starting speed of0.5 mph (0.22 mps), a range of Oto 100 mph (0 to 44.7 mps), and a system accuracy of +/-1.0 mph at 100 mph (+/-0.45 mps at 44.7 mps). The wind direction sensors have a threshold speed of0.5 mph (0.22 mps), a range ofO to 540°, and a system accuracy of +/-5°.

Ambient and differential temperature are measured with the Climatronics 100093 system. Ambient temperature is measured within the range of -20 to 120°F (-28.9 to 48.9°C) with an accuracy of +/-0.5°F

(+/-0.3°C). Differential temperature is measured within the range of -1 O to 20°F (-5.6 to 11.1°C) with an accuracy of +/-0.18°F (+/-0.10°C). Precipitation is measured with a Climatronics tipping bucket rain gauge and is measured in increments of one one-hundredth of an inch with a system accuracy of +/-0.01"

(+/-0.25mm).

The meteorological data are collected and stored by Campbell Scientific CR3000 and CR850 data loggers. The data loggers measure the analog voltages of the instruments and record the digital equivalent within the range of 0 to +5 volts. Data are obtained from the Campbell Scientific CR850 by a direct dial telephone hookup to an in-house computer system.

Table 1 Instrument Locations Measurement Sensor Type Location Elevation Wind Speed Climatronics 100075 F460 Tower 250 ft.

Wind Direction Climatronics 100076 F460 Tower 250 ft.

Differential Temperature Climatronics 100093 Tower 250 ft.

Wind Speed Climatronics 100075 F460 Tower 150 ft.

Wind Direction Climatronics 100076 F460 Tower 150 ft.

Differential Temperature Climatronics 100093 Tower 150 ft.

Wind Speed Climatronics 100075 F460 Tower 33 ft.

Wind Direction Climatronics 100076 F460 Tower 33 ft.

Ambient Temperature Climatronics 100093 Tower 33 ft.

Precipitation Climatronics 100097-1 Meteorological Ground Tipping Bucket Rain Gage shelter roof Table 2 Data Loaqers Sampling Measurement Logger Type Frequency Winds, Temperatures, Campbell Scientific CR3000 (A & B) and CR850 1 sec.

and Precipitation Winds, Temperatures, Johnson Yokogawa Corp. Digital Recorder 10 sec.

and Precipitation Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

4

4. Data Analysis The meteorological data are collected via modem connection to a Campbell Scientific CR850 data logger. Data are sampled once per second. The data are then stored in the meteorological data base and hourly listings of the data are generated. The data listings are examined by qualified personnel and any apparent problems are brought to the attention of the Project Manager or Environmental Meteorologist and the Instrument Maintenance staff.

Hourly values of wind speed, wind direction, ambient temperature, differential temperature, and precipitation are obtained through measurements taken at the site.

The standard deviation of wind direction (sigma) is derived. The wind direction variation is described in terms of the standard deviation of the direction about the mean direction.

The MIDAS computer derives an hourly value of wind sigma.

The data base files are edited approximately once a week. Missing values are replaced with back up data values, when available. Invalid data are deleted from the data base.

When an hourly value is missing or invalid, the numeral 999 is entered into the computer data file in the appropriate location.

A professional meteorologist reviews the data, calibration findings, equipment maintenance reports, and other information and determines which data are valid. Only the valid data are retained in the data base.

Joint frequency stability wind rose tables of hourly data measured at the site are generated. These tables indicate the prevailing wind direction, wind speed, and stability classes measured during the period of observation as well as the joint frequencies of occurrence of the wind direction, wind speed, and stability classes. The values are also used as input to the atmospheric transport and diffusion models. Wind direction, wind speed, and stability classes are given in Tables 3, 4, and 5.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

5 Table 3 Wind Direction Classes IF 348.75° < WO -< 11.25° THEN Class is N IF 11.25° < WO -< 33.75° THEN Class is NNE IF 33.75° < WO -< 56.25° THEN Class is NE IF 56.25° < WO -< 78.75° THEN Class is ENE IF 78.75° < WO -< 101.25° THEN Class is E IF 101.25° < WO -< 123.75° THEN Class is ESE IF 123.75° < WO -< 146.25° THEN Class is SE IF 146.25° < WO -< 168.75° THEN Class is SSE IF 168.75° < WO -< 191.25° THEN Class is s IF 191.25° < WO -< 213.75° THEN Class is SSW IF 213.75° < WO -< 236.25° THEN Class is SW IF 236.25° < WO -< 258.75° THEN Class is WSW IF 258.75° < WO -< 281.25° THEN Class is w IF 281.25° < WO -< 303.75° THEN Class is WNW IF 303.75° < WO -< 326.25° THEN Class is NW IF 326.25° < WO -< 348.75° THEN Class is NNW Table 4 Wind Speed Classes IF ws -< 0.50 m/s THEN Class is 1 IF 0.50 m/s < ws -< 1.0 m/s THEN Class is 2 IF 1.1 m/s < ws -< 1.5 m/s THEN Class is 3 IF 1.6 m/s < WS -< 2.0 m/s THEN Class is 4 IF 2.1 m/s < WS -< 3.0 m/s THEN Class is 5 IF 3.1 m/s < ws -< 4.0 m/s THEN Class is 6 IF 4.1 m/s < WS -< 5.0 m/s THEN Class is 7 IF 5.1 m/s < ws -< *6.0 m/s THEN Class is 8 IF 6.1 m/s < ws -< 8.0 m/s THEN Class is 9 IF 8.1 m/s < ws -< 10.0 m/s THEN Class is 10 IF 10.0 m/s < ws THEN Class is 11 Murra y & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

6 Table 5 Atmospheric Stability Classes Differential Temperature Differential Temperature Differential Temperature Interval Interval (in °F over the Interval (in °F over the Class (in °C/1 OOm) <1l 150-33ft. range) (2) 250-33ft. range) <2l Extremely Unstable AT~ -1.9 AT~ -1.2 AT ~ -2.3 Moderately Unstable -1.9 <AT ~-1.7 -1.2 < AT~ -1.1 -2.3 < AT -< -2.1 Slightly Unstable -1.7 <AT~ -1.5 -1.1<AT~ -1.0 -2.1 < AT < -1.8 Neutral -1.5 <AT~ -0.5 -1.0< AT~ -0.3 -1.8 < AT < -0.6 Slightly Stable -0.5 < AT ~ 1.5 -0.3< AT~ 1.0 -0.6 < AT < 1.8 Moderately Stable 1.5< AT~ 4.0 1.0 <AT~ 2.6 1.8 < AT -< 4.8 Extremely Stable 4.0 <AT 2.6< 'AT 4.8 < AT

<1l from ANSI/ANS 2.5

<2 l ANSI/ANS 2.5 intervals scaled for instrument heights on the Ginna meteorological tower Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

7

5. Results 5.1 X/Q and D/Q The ground and mixed mode values for X/Q and D/Q can be found in tables 4-9.

The following program was used to calculate X/Q and D/Q values:

1. XOQDOQ: Computer Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations (NUREG/CR-2919).

The program is based on the theory that material released to the atmosphere will be normally distributed (Gaussian) about the plume centerline. A straight-line trajectory is assumed between the point of release and all receptors.

The program implements the assumptions outlined in Section C of NRC Regulatory Guide 1.111. In evaluating routine releases from nuclear power plants, it primarily is designed to calculate annual relative effluent concentrations, X/Q values and annual average relative deposition, D/Q values.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

Table 6 D/Q PLANT VENT 2020 Page 8 DIRECTION 804m l1609m l2416m l3218m l4022m l4827m IS632m l6436m l7240m l8045m D/Q N 3.20E-09 1.59E-09 9.52E-10 6.25E-10 4.43E-10 3.32E-10 2.59E-10 2.08E-10 1.71E-10 1.43E-10 NNE 1.78E-09 8.13E-10 4.74E-10 3.lOE-10 2.19E-10 1.64E-10 1.28E-10 1.03E-10 8.45E-11 7.07E-11 NE 3.00E-09 1.39E-09 8.12E-10 5.30E-10 3.75E-10 2.81E-10 2.19E-10 1.76E-10 1.45E-10 1.21E-10 ENE 3.65E-09 1.84E-09 1.09E-09 7.18E-10 5.09E-10 3.82E-10 2.98E-10 2.40E-10 1.97E-10 1.65E-10

,E 4.34E-09 2.26E-09 1.36E-09 8.91E-10 6.31E-10 4.72E-10 3.72E-10 2.98E-10 2.46E-10 2.0SE-10 ESE 8.SOE-09 4.13E-09 1.95E-09 1.25E-09 8.87E-10 6.53E-10 4.99E-10 4.09E-10 3.42E-10 2.94E-10 SE 8.40E-09 3.lOE-09 1.63E-09 1.02E-09 6.94E-10 S.llE-10 4.38E-10 3.SOE-10 3.23E-10 2.82E-10 SSE 4.35E-09 1.42E-09 7.96E-10 5.08E-10 3.58E-10 2.63E-10 2.23E-10 2.33E-10 1.77E-10 1.SOE-10 s 2.93E-09 1.18E-09 6.08E-10 3.84E-10 2.66E-10 2.16E-10 1.89E-10 1.69E-10 1.45E-10 1.21E-10 SSW 2.13E-09 8.35E-10 4.84E-10 3.08E-10 2.18E-10 1.62E-10 1.30E-10 1.29E-10 1.19E-10 1.0SE-10 SW 4.43E-09 1.78E-09 9.27E-10 5.94E-10 4.08E-10 3.16E-10 2.59E-10 2.08E-10 1.85E-10 1.75E-10 WSW 2.87E-09 1.16E-09 6.27E-10 4.07E-10 2.82E-10 2.12E-10 1.66E-10 1.35E-10 1.19E-10 1.03E-10 w 2.07E-09 9.69E-10 S.47E-10 3.63E-10 2.60E-10 1.96E-10 1.54E-10 1.24E-10 1.02E-10 8.58E-11 WNW 4.06E-10 3.00E-10 1.96E-10 1.34E-10 9.72E-11 7.40E-11 5.83E-11 4.71E-11 3.88E-11 3.25E-11 NW 8.13E-10 4.94E-10 3.13E-10 2.13E-10 1.54E-10 1.17E-10 9.23E-11 7.46E-11 6.lSE-11 5.lSE-11 NNW 2.80E-09 1.34E-09 7.91E-10 5.17E-10 3.65E-10 2.74E-10 2.13E-10 1.71E-10 1.41E-10 1.18E-10

Table 7 X/Q PLANT VENT 2020 Page 9 DIRECTION 804m l1609m l2416m l3218m l4022m l4827m l5632m l6436m l7240m l8045m X/Q N 1.27E-07 1.23E-07 1.08E-07 9.05E-08 7.65E-08 6.55E-08 5.69E-08 5.0lE-08 4.46E-08 4.0lE-08 NNE 7.60E-08 7.74E-08 7.56E-08 6.88E-08 6.14E-08 5.47E-08 4.90E-08 4.41E-08 4.00E-08 3.64E-08 NE 1.18E-07 1.27E-07 1.21E-07 1.07E-07 9.39E-08 8.26E-08 7.32E-08 6.55E-08 5.90E-08 5.35E-08 ENE 1.25E-07 1.21E-07 1.09E-07 9.35E-08 8.08E-08 7.06E-08 6.24E-08 5.58E-08 5.02E-08 4.56E-08 E 1.53E-07 1.34E-07 1.09E-07 8.87E-08 7.39E-08 6.28E-08 5.70E-08 4.98E-08 4.61E-08 3.94E-08

'ESE 1.72E-07 1.81E-07 9.74E-08 8.30E-08 8.56E-08 7.71E-08 5.87E-08 5.98E-08 5.49E-08 5.0lE-08 SE 1.96E-07 1.17E-07 8.99E-08 6.96E-08 5.70E-08 5.25E-08 4.58E-08 4.06E-08 3.78E-08 3.42E-08 SSE 1.47E-07 8.02E-08 6.41E-08 5.87E-08 5.0lE-08 4.24E-08 3.79E-08 3.86E-08 3.04E-08 2.71E-08 s 9.72E-08 9.35E-08 6.58E-08 6.47E-08 5.60E-08 5.30E-08 4.63E-08 4.09E-08 3.54E-08 3.07E-08 SSW 5.64E-08 4.20E-08 4.99E-08 4.79E-08 4.03E-08 3.53E-08 3.19E-08 3.0GE-08 2.82E-08 2.58E-08 SW 8.71E-08 6.59E-08 5.55E-08 5.45E-08 4.39E-08 4.llE-08 3.78E-08 3.23E-08 2.84E-08 2.63E-08 WSW 6.33E-08 5.97E-08 4.68E-08 4.93E-08 3.80E-08 3.50E-08 2.97E-08 2.68E-08 2.56E-08 2.30E-08 w 6.52E-08 7.51E-08 5.79E-08 5.llE-08 4.50E-08 4.00E-08 3.58E-08 3.24E-08 2.95E-08 2.71E-08 WNW 1.45E-08 3.25E-08 3.34E-08 2.96E-08 2.56E-08 2.23E-08 1.96E-08 1.74E-08 1.56E-08 1.41E-08 NW 2.72E-08 4.08E-08 4.17E-08 3.81E-08 3.38E-08 3.00E-08 2.67E-08 2.39E-08 2.16E-08 1.96E-08 NNW 9.30E-08 7.83E-08 6.48E-08 5.38E-08 4.55E-08 3.92E-08 3.43E-08 3.05E-08 2.73E-08 2.47E-08

Table 8 D/Q CONTAINMENT VENT 2020 Page 10 DIRECTION 804m l1609m l2416m l3218m l4022m l4827m IS632m l6436m l7240m l8045m D/Q N 1.63E-08 5.23E-09 2.63E-09 1.60E-09 1.08E-09 7.87E-10 6.00E-10 4.73E-10 3.84E-10 3.18E-10 NNE 1.lOE-08 3.SOE-09 1.76E-09 1.07E-09 7.23E-10 5.25E-10 4.00E-10 3.16E-10 2.57E-10 2.13E-10 NE 1.81E-08 5.76E-09 2.89E-09 1.76E-09 1.19E-09 8.64E-10 6.58E-10 5.20E-10 4.22E-10 3.SOE-10 ENE 1.64E-08 5.28E-09 2.66E-09 1.62E-09 1.lOE-09 7.99E-10 6.lOE-10 4.82E-10 3.92E-10 3.25E-10 E 1.65E-08 5.28E-09 2.65E-09 1.61E-09 1.09E-09 7.94E-10 6.09E-10 4.82E-10 3.94E-10 3.27E-10 ESE 1.88E-08 6.04E-09 3.0lE-09 1.83E-09 1.24E-09 9.0lE-10 6.88E-10 5.45E-10 4.SlE-10 3.86E-10 SE 1.40E-08 4.37E-09 2.18E-09 1.33E-09 8.98E-10 6.93E-10 5.46E-10 4.33E-10 3.52E-10 2.91E-10 SSE 7.0lE-09 2.19E-09 1.09E-09 6.78E-10 5.13E-10 3.76E-10 2.87E-10 2.27E-10 1.83E-10 1.52E-10 s 5.13E-09 1.62E-09 8.0SE-10 5.00E-10 4.02E-10 3.0lE-10 2.30E -10 1.81E-10 1.47E-10 1.21E-10 SSW 3.97E-09 1.34E-09 6.78E-10 4.69E-10 3.35E-10 2.48E-10 1.92E-10 1.52E-10 1.23E-10 1.02E-10 SW 7.95E-09 2.65E-09 1.32E-09 8.0lE-10 5.43E-10 4.40E-10 3.38E-10 2.67E-10 2.17E-10 1.80E-10 WSW 6.24E-09 2.03E-09 1.0lE-09 6.17E-10 4.18E-10 3.04E-10 2.33E-10 1.86E-10 1.53E-10 1.29E-10 w 8.14E-09 2.65E-09 1.31E-09 7.98E-10 5.42E-10 3.95E-10 3.0lE-10 2.38E-10 1.94E-10 1.61E-10 WNW 3.43E-09 1.13E-09 5.74E-10 3.SlE-10 2.38E-10 1.74E-10 1.33E-10 1.0SE-10 8.56E-11 7.13E-11 NW 4.29E-09 1.43E-09 7.29E-10 4.47E-10 3.0SE-10 2.22E-10 1.70E-10 1.35E-10 1.lOE-10 9.14E-11 NNW 9.90E-09 3.17E-09 1.59E-09 9.68E-10 6.56E-10 4.77E-10 3.63E-10 2.87E-10 2.33E-10 1.93E-10

Table 9 X/Q CONTAINMENT VENT 2020 Page 11 DIRECTION 804m l1609m l2416m l3218m l4022m l4827m l5632m l6436m l7240m l8045m X/Q N l.39E-06 5.47E-07 3.28E-07 2.28E-07 l.72E-07 l.37E-07 l.12E-07 9.45E-08 8.13E-08 7.lOE-08 NNE l.14E-06 4.79E-07 3.03E-07 2.16E-07 l.65E-07 l.32E-07 l.09E-07 9.19E-08 7.92E-08 6.93E-08 NE l.75E-06 7.12E-07 4.40E-07 3.llE-07 2.37E-07 l.89E-07 1.56E-07 l.32E-07 l.14E-07 9.93E-08 ENE l.SlE-06 6.62E-07 4.18E-07 2.97E-07 2.26E-07 l.79E-07 1.47E-07 l.24E-07 l.06E-07 9.26E-08 E l.26E-06 5.02E-07 3.07E-07 2.lSE-07 l.63E-07 l.29E-07 l.08E-07 9.09E-08 7.95E-08 6.79E-08 ESE 8.59E-07 4.79E-07 2.49E-07 l.89E-07 l.69E-07 1.40E-07 l.07E-07 9.82E-08 8.56E-08 7.SOE-08 SE 6.31E-07 2.66E-07 l.79E-07 l.31E-07 l.02E-07 8.70E-08 7.20E-08 6.07E-08 5.26E-08 4.SSE-08 SSE 5.12E-07 2.0SE-07 l.34E-07 l.07E-07 8.26E-08 6.SlE-08 5.35E-08 4.48E-08 3.76E-08 3.23E-08 s 4.87E-07 2.98E-07 l.65E-07 l.24E-07 9.28E-08 7.43E-08 5.93E-08 4.87E-08 4.08E-08 3.SOE-08

'SSW 2.42E-07 l.47E-07 1.44E-07 l.lSE-07 8.71E-08 6.94E-08 5.73E-08 4.86E-08 4.12E-08 3.56E-08 SW 4.67E-07 2.23E-07 l.38E-07 l.03E-07 7.48E-08 6.07E-08 4.99E-08 4.12E-08 3.49E-08 3.02E-08 WSW 4.18E-07 2.14E-07 l.34E-07 l.17E-07 8.52E-08 7.25E-08 5.91E-08 5.lOE-08 4.61E-08 4.03E-08 w 9.41E-07 3.98E-07 2.40E-07 l.75E-07 l.37E-07 l.12E-07 9.41E-08 8.09E-08 7.07E-08 6.26E-08 WNW 4.78E-07 l.90E-07 l.16E-07 8.12E-08 6.19E-08 4.96E-08 4.12E-08 3.SlE-08 3.04E-08 2.68E-08 NW 5.30E-07 2.38E-07 1.53E-07 l.lOE-07 8.SOE-08 6.83E-08 5.67E-08 4.82E-08 4.17E-08 3.66E-08 NNW 7.98E-07 3.18E-07 1.98E-07 l.41E-07 l.09E-07 8.74E-08 7.25E-08 6.16E-08 5.34E-08 4.69E-08

Table 10 D/Q AIR EJECTOR 2020 Page 12 DIRECTION 804m l1609m l2416m l3218m l4022m l4827m l5632m l6436m l7240m l8045m D/Q N 1.84E-08 5.81E-09 2.90E-09 1.76E-09 1.19E-09 8.60E-10 6.54E-10 5.15E-10 4.17E-10 3.45E-10 NNE 1.29E-08 4.08E-09 2.03E-09 1.23E-09 8.33E-10 6.04E-10 4.59E-10 3.62E-10 2.93E-10 2.42E-10 NE 2.04E-08 6.43E-09 3.21E-09 1.95E-09 1.32E-09 9.53E-10 7.25E-10 5.71E-10 4.62E-10 3.82E-10 ENE 1.90E-08 6.00E-09 2.99E-09 1.81E-09 1.23E-09 8.88E-10 6.76E-10 5.32E-10 4.31E-10 3.56E-10 E 1.85E-08 5.85E-09 2.91E-09 1.77E-09 1.20E-09 8.66E-10 6.58E-10 5.19E-10 4.20E-10 3.47E-10 ESE 2.08E-08 6.56E-09 3.27E-09 1.98E-09 1.34E-09 9.72E-10 7.39E-10 5.82E-10 4.71E-10 3.90E-10 SE 1.52E-08 4.79E-09 2.39E-09 1.45E-09 9.79E-10 7.lOE-10 5.40E-10 4.25E-10 3.44E-10 2.85E-10 SSE 7.86E-09 2.48E-09 1.24E-09 7.50E-10 5.07E-10 3.67E-10 2.79E-10 2.20E-10 1.78E-10 1.47E-10 s 6.23E-09 1.97E-09 9.80E-10 5.94E-10 4.02E-10 2.91E-10 2.21E-10 1.74E-10 1.41E-10 1.17E-10 SSW 5.20E-09 1.64E-09 8.17E-10 4.96E-10 3.35E-10 2.43E-10 1.85E-10 1.45E-10 1.18E-10 9.74E-11 SW 9.32E-09 2.94E-09 1.46E-09 8.88E-10 6.0lE-10 4.35E-10 3.31E-10 2.61E-10 2.llE-10 1.75E-10 WSW 7.84E-09 2.47E-09 1.23E-09 7.47E-10 5.05E-10 3.66E-10 2.78E-10 2.19E-10 1.78E-10 1.47E-10 w 1.lOE-08 3.48E-09 1.74E-09 1.05E-09 7.12E-10 5.16E-10 3.92E-10 3.09E-10 2.50E-10 2.07E-10 WNW 5.15E-09 1.62E-09 8.lOE-10 4.91E-10 3.32E-10 2.41E-10 1.83E-10 1.44E-10 1.17E-10 9.65E-11

'NW 6.34E-09 2.00E-09 9.96E-10 6.04E-10 4.09E-10 2.96E-10 2.25E-10 1.77E-10 1.44E-10 1.19E-10 NNW 1.15E-08 3.63E-09 1.81E-09 1.lOE-09 7.41E-10 5.37E-10 4.09E-10 3.22E-10 2.61E-10 2.16E-10

Table 11 X/Q AIR EJECTOR 2020 Page 13 DIRECTION 804m l1609m l2416m l3218m l4022m l4827m l5632m l6436m l7240m l8045m X/Q N 2.77E-06 9.54E-07 5.21E-07 3.41E-07 2.47E-07 1.89E-07 1.52E-07 1.26E-07 1.06E-07 9.16E-08 NNE 2.54E-06 8.83E-07 4.85E-07 3.19E-07 2.31E-07 1.79E-07 1.44E-07 1.19E-07 1.0lE-07 8.7 1E-08 NE 3.74E-06 1.30E-06 7.08E-07 4.64E-07 3.35E-07 2.58E-07 2.07E-07 1.71E-07 1.45E-07 1.25E-07 ENE 3.86E-06 1.29E-06 6.88E-07 4.44E-07 3.18E-07 2.42E-07 1.93E-07 1.58E-07 1.33E-07 1.14E-07 E 2.68E-06 9.09E-07 4.92E-07 3.21E-07 2.31E-07 1.77E-07 1.41E-07 1.16E-07 9.83E-08 8.45E-08 ESE 2.49E-06 8.45E-07 4.58E-07 2.98E-07 2.15E-07 1.64E-07 1.32E-07 1.08E-07 9.16E-08 7.88E-08 SE 1.51E-06 4.97E-07 2.67E-07 1.73E-07 1.24E-07 9.47E-08 7.55E-08 6.22E-08 5.24E-08 4.51E-08 SSE 1.07E-06 3.52E-07 1.88E-07 1.22E-07 8.72E-08 6.65E-08 5.30E-08 4.36E-08 3.67E-08 3.16E-08 s 1.28E-06 4.llE-07 2.15E-07 1.37E-07 9.72E-08 7.36E-08 5.83E-08 4.77E-08 4.00E-08 3.44E-08 SSW 1.18E-06 3.96E-07 2.12E-07 1.37E-07 9.79E-08 7.46E-08 5.94E-08 4.88E-08 4.llE-08 3.53E-08 SW 1.09E-06 3.44E-07 1.81E-07 1.16E-07 8.28E-08 6.30E-08 5.0lE-08 4.llE-08 3.46E-08 2.98E-08 WSW 1.43E-06 4.86E-07 2.68E-07 1.76E-07 1.28E-07 9.89E-08 7.96E-08 6.60E-08 5.60E-08 4.84E-08 w 2.76E-06 9.65E-07 5.36E-07 3.56E-07 2.59E-07 2.0lE-07 1.62E-07 1.35E-07 1.15E-07 9.92E-08 WNW 1.14E-06 3.98E-07 2.23E-07 1.48E-07 1.09E-07 8.43E-08 6.82E-08 5.68E-08 4.84E-08 4.19E-08 NW 1.52E-06 5.23E-07 2.87E-07 1.89E-07 1.37E-07 1.06E-07 8.49E-08 7.03E-08 5.96E-08 5.15E-08 NNW 1.90E-06 6.58E-07 3.60E-07 2.37E-07 1.71E-07 1.32E-07 1.06E-07 8.75E-08 7.42E-08 6.40E-08

Table 12 Page 14 Distance to Air Ejector Containment Vent Plant Vent Direction Nearset Residence (m)

X/Q (sec/m 1 )

I D/Q (m-2)

X/Q (sec/m 1 )

I D/Q (m-2)

X/Q (sec/m 1 )

I D/Q (m-2)

E 1170 l.48E-06 l.OOE-08 7.51E-07 9.0lE-09 l.46E-07 3.13E-09 ESE 1660 8.06E-07 6.22E-09 4.56E-07 5.73E-09 l.72E-07 3.92E-09 SE 840 1.41E-06 l.42E-08 5.93E-07 l.30E-08 l.83E-07 7.92E-09 SSE 610 l.68E-06 l.22E-08 6.76E-07 l.08E-08 l.49E-07 5.65E-09 s 1500 4.60E-07 2.22E-09 3.14E-07 l.82E-09 9.25E-08 l.32E-09 SSW 620 l.76E-06 7.89E-09 3.42E-07 5.93E-09 6.95E-08 2.83E-09 SW 740 l.26E-06 l.07E-08 5.19E-07 9.06E-09 8.98E-08 4.90E-09 WSW 900 l.19E-06 6.53E-09 3.66E-07 5.23E-09 5.66E-08 2.65E-09 w 1330 1.28E-06 4.81E-09 4.89E-07 3.67E-09 7.27E-08 l .21E-09 Distance to Air Ejector Containment Vent Plant Vent Direction Nearest Milk Producing Animal (m)

X/Q (sec/m 1 )

I D/Q (m-2)

X/Q (sec/m 1 )

I D/Q (m-2)

X/Q (sec/m 1 )

I D/Q (m-2)

ESE 8240 7.62E-08 3.74E-10 7.26E-08 3.70E-10 4.87E-08 2.84E-10 Distance to Air Ejector Containment Vent Plant Vent Direction Nearest Garden (m)

X/Q (sec/m 1 )

I D/Q (m-2)

X/Q (sec/m 1 )

I D/Q (m-2)

X/Q (sec/m 1 )

I D/Q (m-2)

E 610 4.13E-06 2.89E-08 l.89E-06 2.56E-08 l.64E-07 5.35E-09 ESE 430 6.69E-06 5.56E-08 2.24E-06 4.98E-08 3.46E-07 l.58E-08 SSE 660 1.48E-06 l.08E-08 6.21E-07 9.59E-09 1.46E-07 5.15E-09

15 5.2 Instrument Maintenance In June, a calibration of the Primary Tower and Backup Tower was performed.

In July, at the Primary Tower, the Alpha 250ft wind direction lost a tail piece. The issue was fixed in August.

No other problems were encountered with the equipment, and at the end of the year, no problems were evident at the site.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

16 5.3 Data Recovery The record of data recovery for the year is summarized in Table 12.

Table 12 Ginna Site Data Recovery Summarv 2020 Recovered Recovered Lost Percent Measurement Elevation Hours Percent Hours Changed Wind Speed 33 ft. 8779 99.9 5 0.1 Wind Speed 150 ft. 8779 99.9 5 5.2 Wind Speed 250 ft. 8779 99.9 5 0.1 Wind Direction 33 ft. 8779 99.9 5 0.1 Wind Direction 150 ft. 8779 99.9 5 1.2 Wind Direction 250 ft. 8605 98.0 179 2.1 Ambient Temperature 33 ft. 8779 99.9 5 0.5 Ambient Temperature 150 ft. 8779 99.9 5 0.5 Ambient Temperature 250 ft. 8779 99.9 5 0.5 Differential Temperature 150-33 ft. 8779 99.9 5 0.7 Differential Temperature 250-33 ft. 8779 99.9 5 1.1 Precipitation 10 ft. 8779 99.9 5 0.1 AVERAGE* 99.7

  • average of priority parameters (all except precipitation)

Valid Recovered Lost Hours Percent Hours Lower Level Joint Frequency % 8779 99.9 5 Middle Level Joint Frequency % 8779 99.9 5 Upper Level Joint Frequency % 8605 98.0 179 Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

17 5.4 / Stability Wind Rose Data The annual stability wind roses are given at the end of this report. Wind speed classes have been altered to reflect the sensor threshold.

For the year, winds measured at 33 ft. most frequently came from the south southwest

( 11.11 % ) and most frequently fell into the 2.1-3.0 mis wind speed class (24.18% ).

Calms (wind speeds at or below the sensor threshold) were measured 0.00% of the time and speeds greaterthan 10.0 mis were measured (1.75%) of the time. Winds measured at 150 ft. most frequently came from the west northwest (10.66%) and most frequently fell into the 6.1-8.0 mis wind speed class (20.07% ). Calms were measured 0.00% of the time and speeds greater than 10.0 mis were measured (9.11 %) of the time. Winds measured at 250 ft. most frequently came from the west northwest

( 11.66%) and most frequently fell into the 6.1-8.1 mis wind speed class (24.16% ).

Calms were measured 0.00% of the time and speeds greater than 10.0 mis were measured (14.53%) of the time.

Stability based on the 150-33 ft. differential temperature most frequently fell into the neutral classification and stability based on the 250-33 ft. differential temperature most frequently fell into the neutral classification.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

18 5.5 Precipitation Table 13 Precipitation Totals (Inches) - 2020 Ginna Site Month Total January 2.26 February 1.99 March 1.83 April 3.40 May 1.70 June 1.35 July 3.93 August 3.83 September 2.05 October 3.91 November 2.62 December 2.76 TOTAL: 31.63*

  • Indicates some precipitation missing.

Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

2020 Joint Frequency Tables Murray & Trettel, Inc. 600 First Bank Drive, Suite A Palatine, Illinois 60067 (847) 963-9000

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan Dec for years 2020 - 2020 A11 Stabilities Elevations:: Winds 33ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5. 1- 6.1 - 8.1- >10 .00 Sector <0.50 1.0 1.5 2.0 3.0 4. 0 5.0 6.0 8.0 10 .0 Total N 0 7 35 53 83 41 14 0 0 0 0 233 NNE 0 8 23 53 152 99 55 17 24 1 5 437 NE 1 7 19 42 57 67 70 45 54 27 33 422 ENE 0 14 26 90 98 52 48 38 58 13 2 439 E 1 6 36 39 148 79 74 45 11 0 0 439 ESE 0 15 15 27 65 43 8 1 0 0 0 174 SE 1 14 25 30 57 44 32 12 11 1 0 227 SSE 1 21 43 40 77 76 63 61 60 28 4 474 s 1 16 56 72 170 158 172 99 100 27 2 873 SSW 0 14 80 166 322 171 125 66 27 5 0 976 SW 0 12 87 157 318 198 100 62 35 3 0 972 WSW 0 9 19 40 156 141 147 149 116 30 28 835 w 0 11 24 28 91 168 179 126 149 29 6 811 WNW 1 13 20 35 173 153 148 114 154 75 74 960 NW 0 12 25 58 122 64 37 31 31 7 0 387 NNW 0 13 18 38 34 13 2 0 0 0 0 118 Tot 6 192 551 968 2123 1567 1274 866 830 246 154 8777 Hours of Calm 2 Hours of Variable Direction 0 Hours of Valid Data . 8779 Hours of Missing Data 5 Hours in Period .. . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan *Dec for years 2020

  • 2020 Stability Class A Extremely Unstable based on Lapse Rate Elevations:: Winds 33ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5* 1.1* 1.6* 2.1* 3.1* 4.1* 5.1* 6.1* 8.1* >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 1 7 27 10 6 0 0 0 0 51 NNE 0 0 1 1 23 31 20 6 16 1 3 102 NE 0 0 0 0 8 31 43 31 31 12 21 177 ENE 0 0 1 1 17 12 16 20 34 7 1 109 E 0 0 0 0 1 1 2 8 7 0 0 19 ESE 0 0 0 1 0 3 0 0 0 0 0 4 SE 0 0 0 1 1 3 6 1 2 0 0 14 SSE 0 0 0 1 2 6 9 10 6 0 0 34 s 0 0 0 1 2 10 8 9 1 0 0 31 SSW 0 0 0 0 6 8 11 0 0 0 0 25 SW 0 0 0 0 9 11 10 7 1 0 0 38 WSW 0 0 0 0 3 5 10 8 10 1 0 37 w 0 0 0 1 2 8 16 8 2 0 0 37 WNW 0 0 0 6 73 75 64 34 58 16 26 352 NW 0 0 4 21 40 21 5 2 6 1 0 100 NNW 0 0 0 9 15 2 2 0 0 0 0 28 Tot 0 0 7 50 229 237 228 144 174 38 51 1158 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 1158 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan Dec for years 2020 - 2020 Stability Class B Moderately Unstable based on Lapse Rate Elevations:: Winds 33ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10. 00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 5 9 14 19 4 0 0 0 0 51 NNE 0 0 1 6 47 22 15 6 3 0 1 101 NE 0 0 0 5 16 13 10 2 1 2 6 55 ENE 0 0 0 1 6 8 9 8 8 2 1 43 E 0 0 0 0 2 1 8 11 3 0 0 25 ESE 0 0 0 0 1 1 0 0 0 0 0 2 SE 0 0 0 1 3 2 0 0 0 0 0 6 SSE 0 0 3 0 9 7 5 6 2 2 0 34 s 0 0 1 0 0 4 6 10 2 1 0 24 SSW 0 0 0 1 3 8 7 4 0 0 0 23 SW 0 0 0 1 6 12 5 8 1 0 0 33 WSW 0 0 0 0 4 7 6 6 6 4 0 33 w 0 0 0 0 5 7 15 5 2 2 0 36 WNW 0 0 0 4 12 11 11 9 19 13 6 85 NW 0 2 2 10 10 9 5 10 13 3 0 64 NNW 0 0 3 5 2 8 0 0 0 0 0 18 Tot 0 2 15 43 140 139 106 85 60 29 14 633 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 633 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Class c Slightly Unstable based on Lapse Rate El evati ans:: Winds 33ft Stability 150ft Wind Wind Speed Range Cm/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 4 5 10 4 3 0 0 0 0 26 NNE 0 0 0 9 13 8 10 2 2 0 0 44 NE 0 0 0 2 8 3 4 3 4 1 1 26 ENE 0 0 1 4 5 8 9 4 5 0 0 36 E 0 0 0 0 5 6 4 4 0 0 0 19 ESE 0 0 0 0 1 0 0 0 0 0 0 1 SE 0 0 0 0 0 1 1 0 0 0 0 2 SSE 0 0 0 1 4 5 4 2 1 2 0 19 s 0 0 0 0 4 0 3 2 3 0 0 12 SSW 0 0 1 0 5 2 5 2 2 0 0 17 SW 0 0 1 0 10 1 5 5 0 0 0 22 WSW 0 0 0 1 2 1 3 5 4 2 1 19 w 0 0 0 2 3 6 5 4 5 3 0 28 WNW 0 0 4 5 8 7 3 6 5 2 8 48 NW 0 0 4 3 9 5 1 7 2 1 0 32 NNW 0 0 3 1 2 1 0 0 0 0 0 7 Tot 0 0 18 33 89 58 60 46 33 11 10 358 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 358 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site: : Ginna Primary Period : : Months Jan - Dec for years 2020 - 2020 Stability Class D Neutral based on Lapse Rate Elevations:: Winds 33ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1

  • 3.1* 4.1* 5.1* 6.1* 8.1* >10 .00 Sector <0 .50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 3 12 19 29 8 1 0 0 0 0 72 NNE 0 6 12 26 59 30 9 3 2 0 1 148 NE 0 4 8 17 19 15 10 7 16 9 5 110 ENE 0 5 2 28 31 16 9 6 9 4 0 110 E 1 2 11 11 61 37 28 17 1 0 0 169 ESE 0 4 2 9 28 26 6 1 0 0 0 76 SE 0 1 7 8 28 29 21 11 8 1 0 114 SSE 0 3 9 13 24 39 33 31 48 23 4 227 s 0 2 14 11 47 41 58 30 69 26 2 300 SSW 0 1 12 12 38 32 35 18 9 4 0 161 SW 0 0 13 28 44 51 39 26 30 3 0 234 WSW 0 3 4 12 30 51 60 109 81 21 26 397 w 0 4 9 13 41 87 97 95 128 24 6 504 WNW 1 4 5 11 47 43 43 39 61 39 33 326 NW 0 4 12 13 47 23 23 11 10 2 0 145 NNW 0 5 8 15 13 2 0 0 0 0 0 43 Tot 2 51 140 246 586 530 472 404 472 156 77 3136 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 3136 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site: : Ginna Primary Period:: Months Jan - Dec for years 2020

  • 2020 Stability Class E Slightly Stable based on Lapse Rate Elevations:: Winds 33ft Stability' 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 3 13 11 3 0 0 0 0 0 0 30 NNE 0 2 7 10 7 8 1 0 1 0 0 36 NE 0 2 5 6 2 3 2 2 2 3 0 27 ENE 0 4 7 16 15 4 3 0 1 0 0 50 E 0 0 10 9 30 16 23 3 0 0 0 91 ESE 0 3 6 12 27 12 2 0 0 0 0 62 SE 0 3 7 12 20 7 4 0 1 0 0 54 SSE 1 7 12 13 19 17 12 11 3 1 0 96 s 0 2 13 22 57 77 86 47 25 0 0 329 SSW 0 3 15 31 92 83 59 41 16 1 0 341 SW 0 4 33 57 159 116 41 16 3 0 0 429 WSW 0 5 6 22 81 72 68 21 15 2 1 293 w 0 6 10 11 32 55 45 14 12 0 0 185 WNW 0 6 7 5 27 14 23 26 10 5 1 124 NW 0 5 1 5 10 6 2 1 0 0 0 30 NNW 0 4 3 7 1 0 0 0 0 0 0 15 Tot 1 59 155 249 582 490 371 182 89 12 2 2192 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 2192 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan

  • Dec for years 2020
  • 2020 Stability Class F Moderately Stable based on Lapse Rate Elevations:: Winds 33ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5* 1.1* 1.6* 2.1* 3.1- 4.1* 5.1* 6.1* 8.1- >10 .00 Sector <0 .50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 1 0 1 0 0 0 0 0 0 0 2 NNE 0 0 0 0 2 0 0 0 0 0 0 2 NE 1 1 2 9 3 2 1 0 0 0 0 19 ENE 0 3 9 13 11 3 2 0 1 0 0 42 E 0 2 7 4 15 13 7 2 0 0 0 50 ESE 0 5 4 5 7 1 0 0 0 0 0 22 SE 0 6 7 6 4 1 0 0 0 0 0 24 SSE 0 7 17 9 9 0 0 1 0 0 0 43 s 0 4 8 11 30 22 11 1 0 0 0 87 SSW 0 4 13 33 85 26 8 1 0 0 0 170 SW 0 4 21 38 63 7 0 0 0 0 0 133 WSW 0 0 6 4 28 5 0 0 0 0 0 43 w 0 0 4 1 5 4 1 0 0 0 0 15 WNW 0 2 4 3 2 2 2 0 1 0 0 16 NW 0 1 2 6 4 0 0 0 0 0 0 13 NNW 0 1 1 1 0 0 0 0 0 0 0 3 Tot 1 41 105 144 268 86 32 5 2 0 0 684 Hours of Calm 1 Hours of Variable Direction 0 Hours of Val id Data . . 685 Hours of Missing Data . 5 Hours in Period . . . . 8784

Joint Frequency Distribution Site : : Ginna Primary Period: : Months Jan - Dec for years 2020 - 2020 Stability Class G Extremely Stable based on Lapse Rate Elevations:: Winds 33ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5 - 1.1- 1.6- 2.1- 3.1- 4.1- 5.1 - 6.1- 8.1- >10.00 Sector <O . 50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 0 0 1 0 0 0 0 0 0 0 1 NNE 0 0 2 1 1 0 0 0 0 0 0 4 NE 0 0 4 3 1 0 0 0 0 0 0 8 ENE 0 2 6 27 13 1 0 0 0 0 0 49 E 0 2 8 15 34 5 2 0 0 0 0 66 ESE 0 3 3 0 1 0 0 0 0 0 0 7 SE 1 4 4 2 1 1 0 0 0 0 0 13 SSE 0 4 2 3 10 2 0 0 0 0 0 21 s 1 8 20 27 30 4 0 0 0 0 0 90 SSW 0 6 39 89 93 12 0 0 0 0 0 239 SW 0 4 19 33 27 0 0 0 0 0 0 83 WSW 0 1 3 1 8 0 0 0 0 0 0 13 w 0 1 1 0 3 1 0 0 0 0 0 6 WNW 0 1 0 1 4 1 2 0 0 0 0 9 NW 0 0 0 0 2 0 1 0 0 0 0 3 NNW 0 3 0 0 1 0 0 0 0 0 0 4 Tot 2 39 111 203 229 27 5 0 0 0 0 616 Hours of Calm 1 Hours of Variable Direction 0 Hours of Valid Data . 617 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site :: Ginna Primary Period :: Months Jan Dec for years 2020 - 2020 All Stabilities Elevations: : Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1. 0 1. 5 2.0 3. 0 4.0 5.0 6.0 8.0 10.0 Total N 0 5 14 29 59 33 41 27 42 12 4 266 NNE 0 9 7 16 41 34 32 20 37 17 12 225 NE 0 5 11 9 61 58 51 43 69 50 49 406 ENE 0 9 8 24 72 59 46 52 48 17 12 347 E 1 10 19 39 81 100 115 94 23 5 0 487 ESE 0 3 12 15 56 57 56 28 4 0 0 231 SE 0 5 15 19 63 61 58 33 12 11 3 280 SSE 0 6 9 17 45 60 62 93 116 57 44 509 s 5 5 12 21 54 78 100 139 246 120 38 818 SSW 1 6 11 10 54 79 98 126 139 37 9 570 SW 6 7 11 18 48 111 200 212 208 56 23 900 WSW 8 13 18 17 43 89 164 125 204 76 66 823 w 3 7 12 12 56 64 109 112 232 126 88 821 WNW 0 12 8 25 51 74 93 83 182 149 243 920 NW 0 8 15 23 78 70 53 60 123 74 171 675 NNW 0 6 15 26 54 50 46 39 47 42 24 349 Tot 24 116 197 320 916 1077 1324 1286 1732 849 786 8627 Hours of Calm .. 152 Hours of Variable Direction 0 Hours of Valid Data . 8779 Hours of Missing Data 5 Hours in Period .. . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Cl ass A Extremely Unstable based on Lapse Rate Elevations:: Winds 150ft Stability 150ft Wind Wind Speed Range Cm/s)

Direction 0.5- 1.1- 1.6* 2.1- 3.1- 4.1- 5.1- 6.1- 8.1* >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 0 0 6 10 11 8 6 5 1 47 NNE 0 0 0 0 4 7 10 4 10 12 7 54 NE 0 1 0 0 3 25 21 24 38 28 32 172 ENE 0 0 0 0 9 10 13 32 28 12 3 107 E 0 0 0 0 1 3 8 9 4 2 0 27 ESE 0 0 0 0 1 0 1 0 0 0 0 2 SE 0 0 0 1 1 2 4 2 1 1 0 12 SSE 0 0 0 1 1 3 2 9 13 5 1 35 s 0 0 0 1 1 4 11 5 8 1 0 31 SSW 0 0 0 0 2 7 6 6 2 0 0 23 SW 0 0 0 0 1 5 9 10 8 3 0 36 WSW 2 0 0 1 2 3 3 9 9 6 4 39 w 0 0 0 0 1 3 4 9 8 4 0 29 WNW 0 0 0 0 11 23 44 24 64 39 66 271 NW 0 0 0 2 40 38 24 20 30 15 26 195 NNW 0 0 1 3 13 22 12 3 6 8 8 76 Tot 2 1 1 9 97 165 183 174 235 141 148 1156 Hours of Calm 2 Hours of Variable Direction 0 Hours of Valid Data . 1158 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site : : Ginna Primary Period : : Months Jan - Dec for years 2020 - 2020 Stability Class B Moderately Unstable based on Lapse Rate Elevations:: Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1 - 6.1- 8.1- >10 . 00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 1 0 5 20 9 3 7 11 4 0 60 NNE 0 0 0 2 13 8 7 3 15 2 3 53 NE 0 1 0 2 13 8 5 6 7 2 6 50 ENE 0 0 0 1 3 6 7 4 8 1 3 33 E 0 0 0 0 1 5 8 15 3 2 0 34 ESE 0 0 0 0 2 0 0 1 0 0 0 3 SE 0 0 0 0 3 3 1 0 0 0 0 7 SSE 0 0 1 1 0 10 5 4 9 1 2 33 s 0 0 0 0 0 1 3 2 12 3 1 22 SSW 0 0 2 0 0 3 3 5 3 0 0 16 SW 0 0 0 2 2 4 7 4 7 5 0 31 WSW 0 0 2 0 1 4 6 6 5 4 4 32 w 0 0 0 0 0 5 4 8 13 1 1 32 WNW 0 0 0 0 0 6 4 9 13 14 24 70 NW 0 0 2 2 11 8 5 3 6 10 38 85 NNW 0 0 2 3 16 5 2 4 4 8 11 55 Tot 0 2 9 18 85 85 70 81 116 57 93 616 Hours of Calm 17 Hours of Variable Direction 0 Hours of Valid Data . 633 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Cl ass c Slightly Unstable based on Lapse Rate Elevations:: Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 0 6 3 2 6 1 4 3 1 26 NNE 0 0 0 2 4 3 1 2 5 1 1 19 NE 0 0 0 0 10 3 2 1 5 3 1 25 ENE 0 0 0 4 4 7 4 2 5 0 0 26 E 0 0 0 0 3 8 7 4 2 1 0 25 ESE 0 0 0 0 0 0 1 0 0 0 0 1 SE 0 0 0 0 0 2, 0 1 0 0 0 3 SSE 0 0 0 0 3 4 1 4 3 0 2 17 s 0 0 0 0 3 1 0 3 2 2 1 12 SSW 0 0 0 0 1 3 2 2 4 1 0 13 SW 0 0 1 0 1 9 1 1 6 3 0 22 WSW 0 2 0 1 0 1 1 0 5 2 4 16 w 0 0 0 0 4 2 5 2 8 3 2 26 WNW 0 0 0 3 2 4 4 4 5 4 8 34 NW 0 0 1 4 4 2 5 2 8 5 19 50 NNW 0 0 0 2 5 7 2 3 4 8 2 33 Tot 0 2 2 22 47 58 42 32 66 36 41 348 Hours of Calm 10 Hours of Variable Direction 0 Hours of Valid Data . 358 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Cl ass D Neutral based on Lapse Rate Elevations:: Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 1 6 9 19 8 16 10 19 0 2 90 NNE 0 5 3 7 6 10 10 7 5 2 1 56 NE 0 1 6 4 20 12 13 6 13 13 8 96 ENE 0 2 2 10 27 21 6 6 5 2 6 87 E 0 4 3 13 22 38 38 27 9 0 0 154 ESE 0 0 1 5 17 26 26 9 2 0 0 86 SE 0 1 7 6 24 21 25 20 8 9 3 124 SSE 0 1 2 5 17 21 29 32 47 44 36 234 s 2 1 7 7 23 35 23 34 69 66 35 302 SSW 0 0 1 3 18 21 21 17 32 10 5 128 SW 0 3 1 6 21 31 32 29 52 27 21 223 WSW 4 7 8 6 13 21 35 29 115 52 47 337 w 1 3 5 4 23 16 30 50 139 104 83 458 WNW 0 6 0 6 15 14 19 34 54 64 124 336 NW 0 4 6 4 11 13 15 28 65 34 65 245 NNW 0 2 9 10 12 9 19 23 31 16 3 134 Tot 7 41 67 105 288 317 357 361 665 443 439 3090 Hours of Calm 46 Hours of Variable Di~ection 0 Hours of Valid Data . 3136 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan *Dec for years 2020

  • 2020 Stability Class E Slightly Stable based on Lapse Rate Elevations:: Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5* 1.1* 1.6* 2.1* 3. 1* 4.1* 5.1* 6.1* 8.1* >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 2 5 7 4 3 5 1 1 0 0 28 NNE 0 1 3 4 10 4 4 3 2 0 0 31 NE 0 1 2 2 5 4 2 2 4 4 2 28 ENE 0 1 2 3 11 7 10 5 2 1 0 42 E 0 1 2 4 16 20 17 20 2 0 0 82 ESE 0 0 3 2 18 15 18 13 2 0 0 71 SE 0 2 3 6 16 15 12 4 3 1 0 62 SSE 0 2 5 1 7 10 12 22 36 6 3 104 s 2 0 1 7 13 25 40 61 122 47 1 319 SSW 1 5 2 4 16 21 31 53 67 24 4 228 SW 6 0 3 2 13 41 86 120 123 18 2 414 WSW 2 3 5 6 15 24 65 62 68 12 7 269 w 1 3 3 3 11 19 34 36 60 14 2 186 WNW 0 3 4 4 10 16 14 11 43 26 20 151 NW 0 1 2 6 10 6 4 6 13 10 23 81 NNW 0 1 1 3 3 6 11 6 2 2 0 35 Tot 12 26 46 64 178 236 365 425 550 165 64 2131 Hours of Calm . . 61 Hours of Variable Direction 0 Hours of Valid Data . 2192 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan Dec for years 2020 - 2020 Stability Class F Moderately Stable based on Lapse Rate Elevations: : Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5* 1.1

  • 1.6- 2.1
  • 3.1* 4.1
  • 5.1- 6.1- 8.1* >10.00 Sector <0 .50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 1 2 1 4 1 0 0 1 0 0 10 NNE 0 2 1 1 3 0 0 0 0 0 0 7 NE 0 0 2 1 5 2 2 2 2 0 0 16 ENE 0 1 2 2 7 3 3 1 0 1 0 20 E 1 2 4 8 14 16 16 14 2 0 0 77 ESE 0 0 2 4 7 7 3 1 0 0 0 24 SE 0 0 2 2 8 11 9 2 0 0 0 34 SSE 0 3 0 4 7 7 7 10 1 1 0 40 s 1 1 1 2 5 5 13 25 27 1 0 81 SSW 0 0 1 1 8 10 18 25 23 2 0 88 SW 0 3 2 4 6 8 47 39 7 0 0 116 WSW 0 0 0 0 4 14 37 13 2 0 0 70 w 0 0 0 3 7 9 11 6 3 0 0 39 WNW 0 3 2 5 5 7 5 1 1 2 1 32 NW 0 1 1 0 1 3 0 0 1 0 0 7 NNW 0 0 0 4 4 0 0 0 0 0 0 8 Tot 2 17 22 42 95 103 171 139 70 7 1 669 Hours of Calm 16 Hours of Variable Direction 0 Hours of Valid Data .. 685 Hours of Missing Data . 5 Hours in Period . . . . 8784

Joint Frequency Distribution Si te : : Ginna Primary Period:: Months Jan Dec for years 2020

  • 2020 Stability Cl ass G Extremely Stable based on Lapse Rate Elevations:: Winds 150ft Stability 150ft Wind Wind Speed Range (m/s)

Direction 0.5* 1.1* 1.6* 2.1- 3.1* 4.1

  • 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 0 1 1 3 0 0 0 0 0 0 5 NNE 0 1 0 0 1 2 0 1 0 0 0 5 NE 0 1 1 0 5 4 6 2 0 0 0 19 ENE 0 5 2 4 11 5 3 2 0 0 0 32 E 0 3 10 14 24 10 21 5 1 0 0 88 ESE 0 3. 6 4 11 9 7 4 0 0 0 44 SE 0 2 3 4 11 7 7 4 0 0 0 38 SSE 0 0 1 5 10 5 6 12 7 0 0 46 s 0 3 3 4 9 7 10 9 6 0 0 51 SSW 0 1 5 2 9 14 17 18 8 0 0 74 SW 0 1 4 4 4 13 18 9 5 0 0 58 WSW 0 1 3 3 8 22 17 6 0 0 0 60 w 1 1 4 2 10 10 21 1 1 0 0 51 WNW 0 0 2 7 8 4 3 0 2 0 0 26 NW 0 2 3 5 1 0 0 1 0 0 0 12 NNW 0 3 2 1 1 1 0 0 0 0 0 8 Tot 1 27 50 60 126 113 136 74 30 0 0 617 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 617 Hours of Missing Data 5 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 All Stabilities Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 3 15 14 48 30 40 40 53 17 10 270 NNE 0 4 6 18 44 32 36 24 34 11 15 224 NE 1 6 8 17 61 43 55 46 46 48 35 366 ENE 0 7 19 35 86 77 81 65 67 25 24 486 E 0 9 22 26 52 72 74 51 33 1 0 340 ESE 0 1 10 15 44 31 48 48 40 4 0 241 SE 0 4 11 8 37 45 54 62 77 26 20 344 SSE 1 2 7 10 26 36 57 55 124 83 77 478 s 1 5 5 15 32 36 57 55 151 177 134 668 SSW 0 4 8 11 30 43 65 64 186 153 37 601 SW 0 4 5 11 22 57 67 114 350 163 36 829 WSW 1 2 5 6 23 41 85 153 323 139 118 896 w 0 7 5 8 31 45 68 122 247 159 160 852 WNW 0 6 11 12 44 66 95 101 163 151 354 1003 NW 0 7 11 18 55 62 36 50 116 88 174 617 NNW 0 4 9 20 51 45 48 40 69 46 56 388 Tot 4 75 157 244 686 761 966 1090 2079 1291 1250 8603 Hours of Calm 2 Hours of Variable Direction 0 Hours of Valid Data . 8605 Hours of Missing Data 179 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Class A Extremely Unstable based on Lapse Rate Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range (m/s)

Direction 0.5- 1. 1- 1.6- 2.1- 3.1- 4 . 1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 0 0 0 0 2 0 0 0 0 2 NNE 0 0 0 0 0 0 0 1 3 1 0 5 NE 0 0 0 0 0 1 3 1 4 7 5 21 ENE 0 0 0 0 2 0 5 3 18 4 13 45 E 0 0 0 0 0 0 0 0 2 0 0 2 ESE 0 0 0 0 0 0 0 0 0 0 0 0 SE 0 0 0 0 0 0 1 0 0 0 0 1 SSE 0 0 0 0 0 0 1 0 0 0 0 1 s 0 0 0 0 0 1 0 0 0 0 0 1 SSW 0 0 0 0 0 0 0 0 0 0 0 0 SW 0 0 0 0 0 0 0 0 0 0 0 0 WSW 0 0 0 0 0 0 1 1 3 0 0 5 w 0 0 0 0 0 0 0 0 1 0 0 1 WNW 0 0 0 0 0 2 14 11 23 13 22 85 NW 0 0 0 0 8 15 14 8 13 7 8 73 NNW 0 0 0 0 3 9 7 7 2 0 0 28 Tot 0 0 0 0 13 28 48 32 69 32 48 270 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 270 Hours of Missing Data 179 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Class B Moderately Unstable based on Lapse Rate Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range {m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1* 8.1* >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 0 0 0 2 1 2 0 0 2 7 NNE 0 0 0 0 0 0 4 1 1 0 0 6 NE 0 0 0 0 0 1 6 1 6 8 2 24 ENE 0 0 0 0 1 1 0 8 3 4 2 19 E 0 0 0 0 1 0 0 0 0 0 0 1 ESE 0 0 0 0 0 0 0 0 0 0 0 0 SE 0 0 0 0 0 0 1 1 2 0 0 4 SSE 0 0 0 0 0 0 2 0 1 0 0 3 s 0 0 0 0 0 1 0 2 1 0 0 4 SSW 0 0 0 0 0 0 0 0 0 0 0 0 SW 0 0 0 0 0 0 0 2 3 0 0 5 WSW 0 0 0 0 0 0 0 0 1 0 0 1 w 0 0 0 0 0 0 1 0 0 0 0 1 WNW 0 0 0 0 0 1 11 1 3 8 13 37 NW 0 0 0 0 3 4 0 2 0 0 1 10 NNW 0 0 0 0 2 2 2 2 1 2 1 12 Tot 0 0 0 0 7 12 28 22 22 22 21 134 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data .. 134 Hours of Missing Data . 179 Hours in Period . . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan - Dec for years 2020 - 2020 Stability Class c Slightly Unstable based on Lapse Rate Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2. 1- 3.1- 4.1- 5.1- 6.1- 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10 .0 Total N 0 0 0 0 3 2 6 4 9 5 2 31 NNE 0 0 0 0 1 5 5 3 2 2 2 20 NE 0 0 0 0 2 2 4 8 13 9 3 41 ENE 0 0 0 0 5 1 5 6 9 6 3 35 E 0 0 0 0 1 1 3 2 3 0 0 10 ESE 0 0 0 0 0 0 0 0 0 0 0 0 SE 0 0 0 0 0 1 3 5 5 1 0 15 SSE 0 0 0 0 0 1 4 2 6 5 2 20 s 0 0 0 0 1 0 5 4 4 4 0 18 SSW 0 0 0 0 0 4 2 1 5 0 0 12 SW 0 0 0 0 0 0 3 4 2 5 0 14 WSW 0 0 0 0 0 3 2 4 8 2 2 21 w 0 0 0 0 0 0 1 2 4 2 0 9 WNW 0 0 0 0 2 6 5 8 13 8 20 62 NW 0 0 0 0 8 5 2 2 7 7 13 44 NNW 0 0 0 1 8 5 6 0 7 5 12 44 Tot 0 0 0 1 31 36 56 55 97 61 59 396 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 396 Hours of Missing Data 179 Hours in Period .. . 8784

Joint Frequency Distribution Site: : Ginna Primary Period : : Months Jan Dec for years 2020

  • 2020 Stability Class D Neutral based on Lapse Rate Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range (m/sl Direction 0.5- 1.1* 1.6* 2.1- 3.1* 4.1* 5.1* 6.1- 8.1* >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 0 8 7 33 20 23 26 41 11 6 175 NNE 0 2 3 10 27 19 19 11 27 8 13 139 NE 0 2 3 5 38 19 25 22 13 17 18 162 ENE 0 1 4 13 38 38 43 28 27 9 5 206 E 0 2 3 8 19 34 36 21 11 1 0 135 ESE 0 0 3 3 11 12 24 22 19 2 0 96 SE 0 1 3 2 13 24 17 31 35 16 18 160 SSE 0 0 3 3 13 21 28 26 52 42 54 242 s 0 1 1 7 13 15 25 20 45 34 80 241 SSW 0 1 2 5 5 19 23 25 45 13 7 145 SW 0 2 0 3 6 27 22 35 84 37 21 237 WSW 0 1 0 3 9 17 33 27 121 94 101 406 w 0 1 3 1 14 18 24 48 119 113 131 472 WNW 0 3 2 2 17 28 31 37 68 71 215 474 NW 0 4 4 7 13 24 14 34 81 62 135 378 NNW 0 1 5 14 18 18 29 26 54 36 38 239 Tot 0 22 47 93 287 353 416 439 842 566 842 3907 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . 3907 Hours of Missing Data 179 Hours in Period . . . 8784

Joint Frequency Distribution Site : : Ginna Primary Period:: Months Jan

  • Dec for years 2020
  • 2020 Stability Class E Slightly Stable based on Lapse Rate Elevations:: Winds 250ft Stability 250 ft Wind Wind Speed Range (m/s)

Direction 0.5* 1.1* 1.6* 2.1* 3.1* 4.1* 5.1

  • 6.1 - 8.1* >10 .00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 1 3 6 4 4 7 7 2 1 0 35 NNE 0 1 2 4 10 7 7 6 1 0 0 38 NE 0 3 2 6 7 10 10 5 6 6 7 62 ENE 0 3 7 6 13 24 16 14 6 0 1 90 E 0 2 6 2 10 16 13 14 10 0 0 73 ESE 0 0 3 5 17 12 13 17 13 1 0 81 SE 0 3 3 3 8 8 15 13 20 7 2 82 SSE 0 2 2 3 6 7 10 12 40 27 19 128 s 0 0 1 3 9 4 16 11 71 106 52 273 SSW 0 2 3 3 10 10 26 22 79 79 22 256 SW 0 1 3 5 6 16 31 42 168 100 14 386 WSW 0 0 3 1 9 10 35 90 133 40 15 336 w 0 3 1 4 10 21 21 35 90 42 28 255 WNW 0 3 3 4 14 20 18 29 50 44 73 258 NW 0 2 5 6 14 12 5 4 14 10 16 88 NNW 0 2 3 2 11 6 4 5 5 3 3 44 Tot 0 28 50 63 158 187 247 326 708 466 252 2485 Hours of Calm 1 Hours of Variable Direction 0 Hours of Valid Data . 2486 Hours of Missing Data 179 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period:: Months Jan Dec for years 2020 - 2020 Stability Class F Moderately Stable based on Lapse Rate Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range (m/s)

Direction 0.5- 1.1- 1.6- 2.1- 3.1- 4.1- 5.1- 6.1- 8.1- >10. 00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 1 4 1 5 1 0 1 1 0 0 14 NNE 0 0 1 2 4 0 1 2 0 0 0 10 NE 1 1 1 6 8 6 3 5 2 0 0 33 ENE 0 3 7 9 19 7 8 1 1 2 0 57 E 0 3 7 6 9 10 13 11 4 0 0 63 ESE 0 0 3 3 9 4 7 2 6 1 0 35 SE 0 0 2 1 12 7 10 8 8 2 0 50 SSE 1 0 1 3 4 3 7 10 9 6 1 45 s 1 3 1 2 5 6 6 7 21 23 2 77 SSW 0 0 0 2 5 3 7 9 28 29 5 88 SW 0 1 2 1 3 7 7 16 64 11 1 113 WSW 0 0 2 1 2 7 9 22 49 3 0 95 w 0 0 0 1 1 2 10 25 23 1 0 63 WNW 0 0 4 2 9 8 9 10 5 7 7 61 NW 0 1 2 4 7 1 1 0 0 2 1 19 NNW 0 1 1 2 6 3 0 0 0 0 2 15 Tot 3 14 38 46 108 75 98 129 221 87 19 838 Hours of Calm 1 Hours of Variable Direction 0 Hours of Valid Data . 839 Hours of Missing Data 179 Hours in Period . . . 8784

Joint Frequency Distribution Site:: Ginna Primary Period : : Months Jan

  • Dec for years 2020
  • 2020 Stability Class G Extremely Stable based on Lapse Rate Elevations:: Winds 250ft Stability 250ft Wind Wind Speed Range (m/sl 0

Direction 0.5* 1.1* 1.6* 2.1* 3.1* 4.1* 5.1* 6.1* 8.1- >10.00 Sector <0.50 1.0 1.5 2.0 3.0 4.0 5.0 6.0 8.0 10.0 Total N 0 1 0 0 3 1 1 0 0 0 0 6 NNE 0 1 0 2 2 1 0 0 0 0 0 6 NE 0 0 2 0 6 4 4 4 2 1 0 23 ENE 0 0 1 7 8 6 4 5 3 0 0 34 E 0 2 6 10 12 11 9 3 3 0 0 56 ESE 0 1 1 4 7 3 4 7 2 0 0 29 SE 0 0 3 2 4 5 7 4 7 0 0 32 SSE 0 0 1 1 3 4 5 5 16 3 1 39 s 0 1 2 3 4 9 5 11 9 10 0 54 SSW 0 1 3 1 10 7 7 7 29 32 3 100 SW 0 0 0 2 7 7 4 15 29 10 0 74 WSW 1 1 0 1 3 4 5 9 8 0 0 32 w 0 3 1 2 6 4 11 12 10 1 1 51 WNW 0 0 2 4 2 1 7 5 1 0 4 26 NW 0 0 0 1 2 1 0 0 1 0 0 5 NNW 0 0 0 1 3 2 0 0 0 0 0 6 Tot 1 11 22 41 82 70 73 87 120 57 9 573 Hours of Calm 0 Hours of Variable Direction 0 Hours of Valid Data . . 573 Hours of Missing Data . 179 Hours in Period . . . . 8784















$77$&+0(17 FRQWLQXHG 

$5(55$SSHQGL[%











$1127$7('&23<2)2'&05(9,6,21





 

5(*LQQD1XFOHDU3RZHU3ODQW//&



&<*,

5HYLVLRQ

3DJHRI



2))6,7('26(&$/&8/$7,210$18$/ 2'&0 

5(*,11$18&/($532:(53/$17

No document summarizing changes is included, because there have been no ODCM changes since the last annual submittal.

7$%/(2)&217(176



 2SHUDELOLW\DQG6XUYHLOODQFH5HTXLUHPHQWV



 'HILQLWLRQV



 /LVWRI$FURQ\PV



 5$',2$&7,9(/,48,'())/8(176

  &RQFHQWUDWLRQ &)5 

  'RVH &)5$SSHQGL[, 

  7RWDO'RVH &)5 

  /LTXLG(IIOXHQWV5HOHDVH3RLQWV

  /LTXLG(IIOXHQWV0RQLWRU6HWSRLQWV

  /LTXLG(IIOXHQW5HOHDVH&RQFHQWUDWLRQV

  /LTXLG(IIOXHQW'RVH



 5$',2$&7,9(*$6(286())/8(176

  '(/(7('

  'RVH5DWH

  'RVH &)5$SSHQGL[, 

  7RWDO'RVH &)5 

  *DVHRXV(IIOXHQW5HOHDVH3RLQWV

  *DVHRXV(IIOXHQW0RQLWRU6HWSRLQWV

  *DVHRXV(IIOXHQW'RVH5DWH

  *DVHRXV(IIOXHQW'RVHV



 5$',2$&7,9(())/8(17021,725,1*,167580(17$7,21

  /LTXLG(IIOXHQW0RQLWRUV

  *DVHRXV(IIOXHQW0RQLWRUV

  5DGLDWLRQ$FFLGHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

  $UHD5DGLDWLRQ0RQLWRUV



 5$':$67(75($70(17

  /LTXLG5DGZDVWH7UHDWPHQW6\VWHP

  *DVHRXV5DGZDVWH7UHDWPHQW6\VWHP

  6ROLG5DGZDVWH6\VWHP

  &RQILJXUDWLRQ&KDQJHV

  3URFHVV&RQWURO3URJUDP

&<*,

5HYLVLRQ

3DJHRI



 5$',2/2*,&$/(19,5210(17$/021,725,1*

  0RQLWRULQJ3URJUDP

  (QYLURQPHQWDO0RQLWRU6DPSOH/RFDWLRQV

  /DQG8VH&HQVXV

  ,QWHUODERUDWRU\&RPSDULVRQ3URJUDP



 5(3257,1*5(48,5(0(176

  $QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW

  $QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUW

  6SHFLDO5HSRUWV



5()(5(1&(6



 

&<*,

5HYLVLRQ

3DJHRI

),*85(6

)LJXUH /LTXLG5DGZDVWH7UHDWPHQW6\VWHPV(IIOXHQW3DWKVDQG&RQWUROV

)LJXUH *DVHRXV5DGZDVWH7UHDWPHQW6\VWHPV(IIOXHQW3DWKVDQG&RQWUROV

)LJXUH /RFDWLRQRI2QVLWH$LU0RQLWRUVDQG'RVLPHWHUV

)LJXUH /RFDWLRQRI)DUPVIRU0LON6DPSOHVDQG2QWDULR:DWHU'LVWULFW,QWDNH

)LJXUH /RFDWLRQRI2IIVLWH'RVLPHWHUV

)LJXUH /RFDWLRQRI2IIVLWH$LU0RQLWRUV

 



7$%/(6

7DEOH 5DGLRDFWLYH/LTXLG:DVWH6DPSOLQJDQG$QDO\VLV3URJUDP

7DEOH 5DGLRDFWLYH*DVHRXV:DVWH6DPSOLQJDQG$QDO\VLV3URJUDP

7DEOH 0HWHRURORJLFDO'DWDDQG/RFDWLRQVRI5HFHSWRUVIRU6HWSRLQW&DOFXODWLRQV

7DEOH 'RVH)DFWRUVWRWKH&KLOGIRU1REOH*DVHVDQG'DXJKWHUV

7DEOH 'RVH3DUDPHWHUVIRU5DGLRQXFOLGHVDQG5DGLRDFWLYH3DUWLFXODWH*DVHRXV

(IIOXHQWV

7DEOH 3DWKZD\'RVH)DFWRUV'XHWR5DGLRQXFOLGHV2WKHU7KDQ1REOH*DVHV

7DEOH 5DGLRDFWLYH/LTXLG(IIOXHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

7DEOH 5DGLRDFWLYH/LTXLG(IIOXHQW0RQLWRULQJ6859(,//$1&(5(48,5(0(176

7DEOH 5DGLRDFWLYH*DVHRXV(IIOXHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

7DEOH 5DGLRDFWLYH*DVHRXV(IIOXHQW0RQLWRULQJ6859(,//$1&(5(48,5(0(176

7DEOH 5DGLDWLRQ$FFLGHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

7DEOH 5DGLDWLRQ$FFLGHQW0RQLWRULQJ6859(,//$1&(5(48,5(0(176

7DEOH $UHD5DGLDWLRQ0RQLWRU6859(,//$1&(5(48,5(0(176

7DEOH 5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP

7DEOH /RFDWLRQ'LUHFWLRQDQG'LVWDQFHVWR6DPSOH3RLQWV

7DEOH 'HWHFWLRQ&DSDELOLWLHVIRU(QYLURQPHQWDO6DPSOH$QDO\VLV/RZHU/LPLWRI

  'HWHFWLRQ //' 

7DEOH 5HSRUWLQJ/HYHOVIRU5DGLRDFWLYLW\&RQFHQWUDWLRQVLQ(QYLURQPHQWDO6DPSOHV

7DEOH '4DQG;4\HDU$YHUDJH3ODQW9HQW

7DEOH '4DQG;4\HDU$YHUDJH&RQWDLQPHQW9HQW

7DEOH '4DQG;4\HDU$YHUDJH$LU(MHFWRU9HQW

7DEOH 5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP6XPPDU\

&<*,

5HYLVLRQ

3DJHRI

 23(5$%,/,7<DQG6859(,//$1&(5(48,5(0(176



7KH23(5$%,/,7<UHTXLUHPHQWVLQWKLVPDQXDOIROORZWKHVDPH/&2DSSOLFDELOLWLHVDV

WKH,PSURYHG7HFKQLFDO6SHFLILFDWLRQVZLWKWKHH[FHSWLRQRI



D /&2ZKLFKUHODWHVWRWKHIDLOXUHWRPHHWD5HTXLUHG$FWLRQDQGWKH

DVVRFLDWHGSODQWVKXWGRZQDFWLRQV

E /&2ZKLFKUHODWHVWRFKDQJLQJ02'(6ZLWKLQRSHUDEOHHTXLSPHQWDQG

F /&2ZKLFKGHDOVVROHO\ZLWK,76/&2VRQVXSSRUWVXSSRUWHGV\VWHP

LQRSHUDELOLWLHV



7KHIDLOXUHWRPHHWDQ\5HTXLUHG$FWLRQIRUZKLFKQRDGGLWLRQDO$&7,216DUHSURYLGHG

VKDOOUHVXOWLQFRQWLQXHGHIIRUWVWRPHHWWKHVSHFLILHG5HTXLUHG$FWLRQ$SODQWVKXWGRZQ

WRH[LWWKH02'(RI$SSOLFDELOLW\LVQRWUHTXLUHGXQOHVVGLUHFWHGE\SODQWPDQDJHPHQW

7KLVGRHVQRWHQGRUVHWKHSUDFWLFHRIIDLOLQJWRPHHWVSHFLILHG5HTXLUHG$FWLRQV

7KH6859(,//$1&(5(48,5(0(176LQWKLVPDQXDOIROORZWKHVDPH65

DSSOLFDELOLWLHVDVWKH,PSURYHG7HFKQLFDO6SHFLILFDWLRQVZLWKWKHH[FHSWLRQRI



D 65ZKLFKUHODWHVWRFKDQJLQJ02'(6ZLWKLQFRPSOHWHVXUYHLOODQFHV

&<*,

5HYLVLRQ

3DJHRI

 '(),1,7,216



7KHGHILQHGWHUPVRIWKLVVHFWLRQDSSHDULQFDSLWDOL]HGW\SHDQGDUHDSSOLFDEOH

WKURXJKRXWWKHVHFRQWUROV7HUPVXVHGLQWKHVHFRQWUROVDQGQRWGHILQHGKHUHLQ

KDYHWKHVDPHGHILQLWLRQDVOLVWHGLQWKH7HFKQLFDO6SHFLILFDWLRQVDQGRUWKH

7HFKQLFDO5HTXLUHPHQWV0DQXDO,IDFRQIOLFWLQGHILQLWLRQH[LVWVWKHGHILQLWLRQLQ

WKH7HFKQLFDO6SHFLILFDWLRQVWDNHVSUHFHGHQFH



 $&7,21



$&7,21VKDOOEHWKDWSDUWRID&RQWUROWKDWSUHVFULEHVUHTXLUHGDFWLRQVWREH

WDNHQXQGHUGHVLJQDWHGFRQGLWLRQVZLWKLQVSHFLILHGFRPSOHWLRQWLPHV



 &+$11(/&$/,%5$7,21



$&+$11(/&$/,%5$7,21VKDOOEHWKHDGMXVWPHQWDVQHFHVVDU\RIWKH

FKDQQHOVXFKWKDWLWUHVSRQGVZLWKLQWKHUHTXLUHGUDQJHDQGDFFXUDF\WRNQRZQ

YDOXHVRILQSXW7KH&+$11(/&$/,%5$7,21VKDOOHQFRPSDVVWKHHQWLUH

FKDQQHOLQFOXGLQJWKHVHQVRUVDQGDODUPLQWHUORFNGLVSOD\DQGRUWULSIXQFWLRQV

DQGPD\EHSHUIRUPHGE\DQ\VHULHVRIVHTXHQWLDORYHUODSSLQJRUWRWDOFKDQQHO

VWHSVVXFKWKDWWKHHQWLUHFKDQQHOLVFDOLEUDWHG



 &+$11(/&+(&.



$&+$11(/&+(&.VKDOOEHWKHTXDOLWDWLYHDVVHVVPHQWRIFKDQQHOEHKDYLRU

GXULQJRSHUDWLRQE\REVHUYDWLRQ7KLVGHWHUPLQDWLRQVKDOOLQFOXGHZKHUH

SRVVLEOHFRPSDULVRQRIWKHFKDQQHOLQGLFDWLRQDQGRUVWDWXVZLWKRWKHU

LQGLFDWLRQVDQGRUVWDWXVGHULYHGIURPLQGHSHQGHQWLQVWUXPHQWFKDQQHOV

PHDVXULQJWKHVDPHSDUDPHWHU



 '26((48,9$/(17,



'26((48,9$/(17,VKDOOEHWKDWFRQFHQWUDWLRQRI, PLFUR&XULHJUDP 

ZKLFKDORQHZRXOGSURGXFHWKHVDPHWK\URLGGRVHDVWKHTXDQWLW\DQGLVRWRSLF

PL[WXUHRI,,,,DQG,DFWXDOO\SUHVHQW7KHWK\URLGGRVH

FRQYHUVLRQIDFWRUVXVHGIRUWKLVFDOFXODWLRQVKDOOEHWKRVHOLVWHGLQ,&53

6XSSOHPHQWWR3DUW3DJHVWDEOHHQWLWOHG&RPPLWWHG'RVH

(TXLYDOHQWLQ7DUJHW2UJDQVRU7LVVXHVSHU,QWDNHRI8QLW$FWLYLW\ 5HIHUHQFH

 



 )5(48(1&<127$7,21



7KH)5(48(1&<127$7,21VSHFLILHGIRUWKHSHUIRUPDQFHRI6XUYHLOODQFH

5HTXLUHPHQWVVKDOOFRUUHVSRQGWRWKHLQWHUYDOVGHILQHGDVIROORZV



&<*,

5HYLVLRQ

3DJHRI



127$7,21 )5(48(1&<

6 $WOHDVWRQFHSHUKRXUV

' $WOHDVWRQFHSHUKRXUV

 $WOHDVWRQFHSHUGD\V

0 $WOHDVWRQFHSHUGD\V

4 $WOHDVWRQFHSHUGD\V

6$ $WOHDVWRQFHSHUGD\V

5 $WOHDVWRQFHSHUPRQWKV

68 3ULRUWRHDFKUHDFWRUVWDUWXS

1$ 1RWDSSOLFDEOH

3 &RPSOHWHGSULRUWRHDFKUHOHDVH

< $WOHDVWRQFHSHU\HDUV



 )81&7,21$/7(67



$)81&7,21$/7(67VKDOOEHWKHLQMHFWLRQRIDVLPXODWHGVLJQDOLQWRWKH

FKDQQHODVFORVHWRWKHVHQVRUDVSUDFWLFDEOHWRYHULI\23(5$%,/,7<RIDODUP

LQWHUORFNGLVSOD\DQGRUWULSIXQFWLRQV7KH)81&7,21$/7(67VKDOOLQFOXGH

DGMXVWPHQWVDVQHFHVVDU\RIWKHDODUPLQWHUORFNGLVSOD\DQGRU7ULS6HWSRLQWV

VXFKWKDWWKHVHWSRLQWVDUHZLWKLQWKHUHTXLUHGUDQJHDQGDFFXUDF\



 /2:(5/,0,72)'(7(&7,21



7KH/2:(5/,0,72)'(7(&7,21 //' LVWKHVPDOOHVWFRQFHQWUDWLRQRI

UDGLRDFWLYHPDWHULDOLQDVDPSOHWKDWZLOO\LHOGDQHWFRXQWDERYHV\VWHP

EDFNJURXQGWKDWZLOOEHGHWHFWHGZLWKSUREDELOLW\ZLWKRQO\SUREDELOLW\RI

IDOVHO\FRQFOXGLQJWKDWDEODQNREVHUYDWLRQUHSUHVHQWVDUHDOVLJQDO7KH//'LV

GHILQHGDVDSULRUL EHIRUHWKHIDFW OLPLWUHSUHVHQWLQJWKHFDSDELOLW\RID

PHDVXUHPHQWV\VWHPDQGQRWDVDSRVWHULRUL DIWHUWKHIDFW OLPLWIRUDSDUWLFXODU

PHDVXUHPHQWWKHPLQLPXPGHWHFWDEOHDFWLYLW\ 0'$ 



 0(0%(5 6 2)7+(38%/,&



0(0%(5 6 2)7+(38%/,&VKDOOLQFOXGHDOOSHUVRQVZKRDUHQRW

RFFXSDWLRQDOO\DVVRFLDWHGZLWKWKHSODQW7KLVFDWHJRU\GRHVQRWLQFOXGH

HPSOR\HHVRIWKHOLFHQVHHLWVFRQWUDFWRUVRUYHQGRUV$OVRH[FOXGHGIURPWKLV

FDWHJRU\DUHSHUVRQVZKRHQWHUWKHVLWHWRVHUYLFHHTXLSPHQWRUWRPDNH

GHOLYHULHV7KLVFDWHJRU\GRHVLQFOXGHSHUVRQVZKRXVHSRUWLRQVRIWKHVLWHIRU

UHFUHDWLRQDORFFXSDWLRQDORURWKHUSXUSRVHVQRWDVVRFLDWHGZLWKWKHSODQW



 2))6,7('26(&$/&8/$7,210$18$/



7KH2))6,7('26(&$/&8/$7,210$18$/ 2'&0 VKDOOFRQWDLQWKH

PHWKRGRORJ\DQGSDUDPHWHUVXVHGLQWKHFDOFXODWLRQRIRIIVLWHGRVHVUHVXOWLQJ

&<*,

5HYLVLRQ

3DJHRI

IURPUDGLRDFWLYHJDVHRXVDQGOLTXLGHIIOXHQWVLQWKHFDOFXODWLRQRIJDVHRXVDQG

OLTXLGHIIOXHQWPRQLWRULQJ$ODUP7ULS6HWSRLQWVDQGLQWKHFRQGXFWRIWKH

5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP 5(03 7KH2'&0VKDOODOVR

FRQWDLQGHVFULSWLRQVRIWKH5DGLRDFWLYH(IIOXHQW&RQWUROVDQG5DGLRORJLFDO

(QYLURQPHQWDO0RQLWRULQJ3URJUDPDQGGHVFULSWLRQVRIWKHLQIRUPDWLRQWKDWVKDOO

EHLQFOXGHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWDQGWKH

$QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWDVUHTXLUHGE\7HFKQLFDO

6SHFLILFDWLRQ



 23(5$%/(23(5$%,/,7<



$V\VWHPVXEV\VWHPWUDLQFRPSRQHQWRUGHYLFHVKDOOEH23(5$%/(RUKDYH

23(5$%,/,7<ZKHQLWLVFDSDEOHRISHUIRUPLQJLWVVSHFLILHGIXQFWLRQ V DQG

ZKHQDOOQHFHVVDU\DWWHQGDQWLQVWUXPHQWDWLRQFRQWUROVHOHFWULFSRZHUFRROLQJRU

VHDOZDWHUOXEULFDWLRQRURWKHUDX[LOLDU\HTXLSPHQWWKDWDUHUHTXLUHGIRUWKH

V\VWHPVXEV\VWHPWUDLQFRPSRQHQWRUGHYLFHWRSHUIRUPLWVIXQFWLRQ V DUH

DOVRFDSDEOHRISHUIRUPLQJWKHLUUHODWHGVXSSRUWIXQFWLRQ V 



 23(5$7,21$/02'(02'(



$Q23(5$7,21$/02'( LH02'( VKDOOFRUUHVSRQGWRDQ\RQHLQFOXVLYH

FRPELQDWLRQRIFRUHUHDFWLYLW\FRQGLWLRQSRZHUOHYHODQGDYHUDJHUHDFWRUFRRODQW

WHPSHUDWXUHVSHFLILHGLQ7DEOHRI7HFKQLFDO6SHFLILFDWLRQV



 385*(385*,1*



385*(RU385*,1*VKDOOEHDQ\FRQWUROOHGSURFHVVRIGLVFKDUJLQJDLURUJDV

IURPDFRQILQHPHQWWRPDLQWDLQWHPSHUDWXUHSUHVVXUHKXPLGLW\FRQFHQWUDWLRQ

RURWKHURSHUDWLQJFRQGLWLRQLQVXFKDPDQQHUWKDWUHSODFHPHQWDLURUJDVLV

UHTXLUHGWRSXULI\WKHFRQILQHPHQW



 5$7('7+(50$/32:(5 573 



573VKDOOEHDWRWDOUHDFWRUFRUHKHDWWUDQVIHUUDWHWRWKHUHDFWRUFRRODQWRI

0:W



 6,7(%281'$5<



7KH6,7(%281'$5<VKDOOEHWKDWOLQHEH\RQGZKLFKWKHODQGLVQHLWKHURZQHG

QRUOHDVHGQRURWKHUZLVHFRQWUROOHGE\WKHOLFHQVHH



 6285&(&+(&.



$6285&(&+(&.VKDOOEHWKHTXDOLWDWLYHDVVHVVPHQWRIFKDQQHOUHVSRQVH

ZKHQWKHFKDQQHOVHQVRULVH[SRVHGWRDVRXUFHRILQFUHDVHGUDGLRDFWLYLW\

&<*,

5HYLVLRQ

3DJHRI



 6859(,//$1&(5(48,5(0(17



6859(,//$1&(5(48,5(0(176VKDOOEHPHWGXULQJWKH23(5$7,21$/

02'(6RURWKHUFRQGLWLRQVVSHFLILHGIRULQGLYLGXDO&21752/6XQOHVVRWKHUZLVH

VWDWHGLQDQLQGLYLGXDO6859(,//$1&(5(48,5(0(17(DFK6859(,//$1&(

5(48,5(0(17VKDOOEHSHUIRUPHGZLWKLQWKHVSHFLILHGWLPHLQWHUYDOZLWK



 $PD[LPXPDOORZDEOHH[WHQVLRQQRWWRH[FHHGRIWKHVXUYHLOODQFH

LQWHUYDOEXW

 7KHFRPELQHGWLPHLQWHUYDOIRUDQ\WKUHHFRQVHFXWLYHVXUYHLOODQFH

LQWHUYDOVVKDOOQRWH[FHHGWLPHVWKHVSHFLILHGVXUYHLOODQFHLQWHUYDO



 7+(50$/32:(5



7+(50$/32:(5VKDOOEHWKHWRWDOUHDFWRUFRUHKHDWWUDQVIHUUDWHWRWKH

UHDFWRUFRRODQW



 815(675,&7('$5($



$Q815(675,&7('$5($VKDOOEHDQ\DUHDDWRUEH\RQGWKH6,7(

%281'$5<DFFHVVWRZKLFKLVQRWFRQWUROOHGE\WKHOLFHQVHHIRUSXUSRVHVRI

SURWHFWLRQRILQGLYLGXDOVIURPH[SRVXUHWRUDGLDWLRQDQGUDGLRDFWLYHPDWHULDOVRU

DQ\DUHDZLWKLQWKH6,7(%281'$5<XVHGIRUUHVLGHQWLDOTXDUWHUVRUIRU

LQGXVWULDOFRPPHUFLDOLQVWLWXWLRQDODQGRUUHFUHDWLRQDOSXUSRVHV



 9(17,/$7,21(;+$86775($70(176<67(0



$9(17,/$7,21(;+$86775($70(176<67(0VKDOOEHDQ\V\VWHP

GHVLJQHGDQGLQVWDOOHGWRUHGXFHJDVHRXVUDGLRLRGLQHRUUDGLRDFWLYHPDWHULDOLQ

SDUWLFXODWHIRUPLQHIIOXHQWVE\SDVVLQJYHQWLODWLRQRUYHQWH[KDXVWJDVHVWKURXJK

FKDUFRDODGVRUEHUVDQGRU+(3$ILOWHUVIRUWKHSXUSRVHRIUHPRYLQJLRGLQHVRU

SDUWLFXODWHVIURPWKHJDVHRXVH[KDXVWVWUHDPSULRUWRWKHUHOHDVHWRWKH

HQYLURQPHQW6XFKDV\VWHPLVQRWFRQVLGHUHGWRKDYHDQ\HIIHFWRQQREOHJDV

HIIOXHQWV(QJLQHHUHG6DIHW\)HDWXUHV$WPRVSKHULF&OHDQXS6\VWHPVDUHQRW

FRQVLGHUHGWREH9(17,/$7,21(;+$86775($70(176<67(0

FRPSRQHQWV



 9(17,1*



9(17,1*VKDOOEHWKHFRQWUROOHGSURFHVVRIGLVFKDUJLQJDLURUJDVIURPD

FRQILQHPHQWWRPDLQWDLQWHPSHUDWXUHSUHVVXUHKXPLGLW\FRQFHQWUDWLRQRURWKHU

RSHUDWLQJFRQGLWLRQLQVXFKDPDQQHUWKDWUHSODFHPHQWDLURUJDVLVQRWSURYLGHG

RUUHTXLUHGGXULQJ9(17,1*9HQWXVHGLQV\VWHPQDPHVGRHVQRWLPSO\D

YHQWLQJSURFHVV

&<*,

5HYLVLRQ

3DJHRI



 :$67(*$6+2/'836<67(0



$:$67(*$6+2/'836<67(0VKDOOEHDQ\V\VWHPGHVLJQHGDQGLQVWDOOHG

WRUHGXFHUDGLRDFWLYHJDVHRXVHIIOXHQWVE\FROOHFWLQJ5HDFWRU&RRODQW6\VWHP

RIIJDVHVDQGSURYLGLQJIRUGHOD\RUKROGXSIRUWKHSXUSRVHRIUHGXFLQJWKHWRWDO

UDGLRDFWLYLW\SULRUWRUHOHDVHWRWKHHQYLURQPHQW



&<*,

5HYLVLRQ

3DJHRI

 /,672)$&521<06



' )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWRIDWOHDVWRQFH

SHUKRXUV

'4 'HSRVLWLRQSDUDPHWHU

( (DVW

(1( (DVW1RUWKHDVW

(6( (DVW6RXWKHDVW

+&:7 +LJK&RQGXFWLYLW\:DVWH7DQN

,&53 ,QWHUQDWLRQDO&RPPLVVLRQRQ5DGLRORJLFDO3URWHFWLRQ

//' /RZHU/LPLWRI'HWHFWLRQ

0 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWDWOHDVWRQFHSHU

GD\V

0'$ 0LQLPXP'HWHFWDEOH$FWLYLW\

1 1RUWK

1$ 1RW$SSOLFDEOH

1$ 1RW$SSOLFDEOH

1( 1RUWKHDVW

1,67 1DWLRQDO,QVWLWXWHIRU6WDQGDUGVDQG7HFKQRORJ\

11( 1RUWK1RUWKHDVW

11: 1RUWK1RUWKZHVW

1: 1RUWKZHVW

2'&0 2IIVLWH'RVH&DOFXODWLRQ0DQXDO

3 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWRIEHLQJ

SHUIRUPHGSULRUWRHDFKUHOHDVH

3&3 3URFHVV&RQWURO3URJUDP

4 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWDWOHDVWRQFHSHU

GD\V

5 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWDWOHDVWRQFHSHU

PRQWKV

&<*,

5HYLVLRQ

3DJHRI

5(03 5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP

573 5DWHG7KHUPDO3RZHU

6$ )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWDWOHDVWRQFH

GD\V

6( 6RXWKHDVW

6 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWRIDWOHDVWRQFH

SHUKRXUV

6 6RXWK

66( 6RXWK6RXWKHDVW

66: 6RXWK6RXWKZHVW

68 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWRIEHLQJ

SHUIRUPHGSULRUWR

6: 6RXWKZHVW

 )UHTXHQF\1RWDWLRQQRWLQJDVXUYHLOODQFHIUHTXHQF\UHTXLUHPHQWDWOHDVWRQFHSHU

GD\V

 :HVW
1: :HVW1RUWKZHVW
6: :HVW6RXWKZHVW
4 'LVSHUVLRQSDUDPHWHU

< $WOHDVWRQFHSHU\HDUV

&<*,

5HYLVLRQ

3DJHRI

 5$',2$&7,9(/,48,'())/8(176



 &21&(175$7,21 &)5 



 &21752/6



 7KHUHOHDVHRIUDGLRDFWLYHOLTXLGHIIOXHQWVVKDOOEHVXFKWKDWWKHFRQFHQWUDWLRQLQ

WKHFLUFXODWLQJZDWHUGLVFKDUJHGRHVQRWH[FHHGWHQWLPHVWKHFRQFHQWUDWLRQ

YDOXHVVSHFLILHGLQ$SSHQGL[%7DEOH&ROXPQWR&)53DUW

)RUGLVVROYHGRUHQWUDLQHGQREOHJDVHVWKHWRWDODFWLYLW\GXHWR

GLVVROYHGRUHQWUDLQHGQREOHJDVHVVKDOOQRWH[FHHG(&LPO



 $33/,&$%,/,7<$WDOOWLPHV



 $&7,21



,IWKHFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOLQWKHFLUFXODWLQJZDWHUGLVFKDUJH

H[FHHGVWHQWLPHVWKHFRQFHQWUDWLRQYDOXHVRI$SSHQGL[%7DEOH&ROXPQRI

&)5PHDVXUHVVKDOOEHLQLWLDWHGWRUHVWRUHWKHFRQFHQWUDWLRQWRZLWKLQWKHVH

OLPLWVLPPHGLDWHO\



 $&7,21



,IWKHFRQFHQWUDWLRQZKHQDYHUDJHGRYHURQHKRXUH[FHHGVWHQWLPHVWKHDSSOLFDEOH

FRQFHQWUDWLRQVVSHFLILHGLQ$SSHQGL[%RI&)53DUW7DEOH&ROXPQDWWKH

SRLQWRIHQWU\WRUHFHLYLQJZDWHUVVXEPLWWRWKHFRPPLVVLRQDVSHFLDOUHSRUWZLWKLQ

GD\V



 6859(,//$1&(5(48,5(0(176



 5DGLRDFWLYHOLTXLGZDVWHVVKDOOEHVDPSOHGDQGDQDO\]HGDFFRUGLQJWRWKH

VDPSOLQJDQGDQDO\VLVSURJUDPRI7DEOH7KHUHVXOWVRISUHUHOHDVHDQDO\VHV

VKDOOEHXVHGZLWKWKHFDOFXODWLRQDOPHWKRGVLQ6HFWLRQWRDVVXUHWKDWWKH

FRQFHQWUDWLRQDWWKHSRLQWRIUHOHDVHLVOLPLWHGWRWKHYDOXHVLQ6HFWLRQ

5DGLRDFWLYH/LTXLG(IIOXHQWV&RQWUROV 



 %$6(6



7KLVFRQWUROLVSURYLGHGWRHQVXUHWKDWWKHFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOV

UHOHDVHGLQOLTXLGZDVWHHIIOXHQWVWR815(675,&7('$5($6ZLOOEHOHVVWKDQWKH

FRQFHQWUDWLRQOHYHOVVSHFLILHGLQ&)5$SSHQGL[%7DEOH&ROXPQ7KLV

OLPLWDWLRQSURYLGHVDGGLWLRQDODVVXUDQFHWKDWWKHOHYHOVRIUDGLRDFWLYHPDWHULDOVLQ

ERGLHVRIZDWHULQ815(675,&7('$5($6ZLOOUHVXOWLQH[SRVXUHVZLWKLQ  WKH

6HFWLRQ,,$GHVLJQREMHFWLYHVRI$SSHQGL[,&)5WRD0(0%(52)7+(

38%/,&DQG  WKHOLPLWVRI$SSHQGL[%&)5WRWKHSRSXODWLRQ7KH

FRQFHQWUDWLRQOLPLWIRUGLVVROYHGRUHQWUDLQHGQREOHJDVHVLVEDVHGXSRQWKH

DVVXPSWLRQWKDW;HLVWKHFRQWUROOLQJUDGLRLVRWRSHDQGLWV03&LQDLU

&<*,

5HYLVLRQ

3DJHRI

VXEPHUVLRQ ZDVFRQYHUWHGWRDQHTXLYDOHQWFRQFHQWUDWLRQLQZDWHUXVLQJWKH

PHWKRGVGHVFULEHGLQ,QWHUQDWLRQDO&RPPLVVLRQRQ5DGLRORJLFDO3URWHFWLRQ ,&53 

3XEOLFDWLRQ



 

&<*,

5HYLVLRQ

3DJHRI

 '26( &)5$33(1',;, 



 &21752/6



  7KHGRVHRUGRVHFRPPLWPHQWWRD0(0%(52)7+(38%/,&IURP

UDGLRDFWLYHPDWHULDOVLQOLTXLGHIIOXHQWVUHOHDVHGWR815(675,&7('$5($6

VKDOOEHOLPLWHG



  $ GXULQJDQ\FDOHQGDUTXDUWHUWRPUHPWRWKHWRWDOERG\DQGWR

PUHPWRDQ\RUJDQDQG



   % GXULQJDQ\FDOHQGDU\HDUWRPUHPWRWKHWRWDOERG\DQGWR

PUHPWRDQ\RUJDQ



 $33/,&$%,/,7<$WDOOWLPHV



 $&7,21



KHQHYHUWKHFDOFXODWHGGRVHUHVXOWLQJIURPWKHUHOHDVHRIUDGLRDFWLYHPDWHULDOVLQ

OLTXLGHIIOXHQWVH[FHHGVDQ\RIWKHDERYHOLPLWVD6SHFLDO5HSRUWVKDOOEHVXEPLWWHG

WRWKH&RPPLVVLRQZLWKLQWKLUW\GD\VZKLFKLQFOXGHVWKHIROORZLQJLQIRUPDWLRQ



  LGHQWLILFDWLRQRIWKHFDXVHIRUH[FHHGLQJWKHGRVHOLPLW



 FRUUHFWLYHDFWLRQVWDNHQDQGRUWREHWDNHQWRUHGXFHWKHUHOHDVHVRI

UDGLRDFWLYHPDWHULDOLQOLTXLGHIIOXHQWVWRDVVXUHWKDWVXEVHTXHQWUHOHDVHVZLOO

UHPDLQZLWKLQWKHDERYHOLPLWV

 

 7KHUHVXOWVRIWKHUDGLRORJLFDODQDO\VHVRIWKHQHDUHVWSXEOLFGULQNLQJZDWHU

VRXUFHDQGDQHYDOXDWLRQRIWKHUDGLRORJLFDOLPSDFWGXHWROLFHQVHHUHOHDVHV

RQILQLVKHGGULQNLQJZDWHUZLWKUHJDUGWRWKHUHTXLUHPHQWVRI&)5

6DIH'ULQNLQJ:DWHU$FW



 $&7,21



'XULQJDQ\PRQWKZKHQWKHFDOFXODWHGGRVHWRD0(0%(52)7+(38%/,&

H[FHHGVWKHDQQXDOOLPLW PUHPWRWKHWRWDOERG\RUPUHPWRDQ\

RUJDQ SURMHFWHGFXPXODWLYHGRVHFRQWULEXWLRQVIURPOLTXLGHIIOXHQWVVKDOOEH

GHWHUPLQHGIRUWKDWPRQWKDQGDWOHDVWRQFHHYHU\GD\VIRUWKHQH[WPRQWKV



 6859(,//$1&(5(48,5(0(176



3RVWUHOHDVHDQDO\VHVRIVDPSOHVFRPSRVLWHGIURPEDWFKUHOHDVHVVKDOOEH

SHUIRUPHGLQDFFRUGDQFHZLWK7DEOH7KHUHVXOWVRIWKHSRVWUHOHDVHDQDO\VHV

VKDOOEHXVHGZLWKWKHFDOFXODWLRQDOPHWKRGVLQ6HFWLRQWRDVVXUHWKDWWKHGRVH

FRPPLWPHQWVIURPOLTXLGVDUHOLPLWHGWRWKHYDOXHVLQ6HFWLRQ 'RVH

&RQWUROV 

&<*,

5HYLVLRQ

3DJHRI



 %$6(6



7KLVFRQWUROLVSURYLGHGWRLPSOHPHQWWKHUHTXLUHPHQWVRI6HFWLRQV,,$,,,$DQG

,9$RI$SSHQGL[,&)57KLVFRQWUROLPSOHPHQWVWKHJXLGHVVHWIRUWKLQ

6HFWLRQ,,$RI$SSHQGL[,7KH$&7,21VWDWHPHQWVSURYLGHWKHUHTXLUHGRSHUDWLQJ

IOH[LELOLW\DQGDWWKHVDPHWLPHLPSOHPHQWWKHJXLGHVVHWIRUWKLQ6HFWLRQ,9$RI

$SSHQGL[,WRDVVXUHWKDWWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOLQOLTXLGHIIOXHQWVWR

815(675,&7('$5($6ZLOOEHNHSWDVORZDVUHDVRQDEO\DFKLHYDEOH$OVRZLWK

/DNH2QWDULRGULQNLQJZDWHUVXSSOLHVSRWHQWLDOO\DIIHFWHGE\SODQWRSHUDWLRQVWKHUH

LVUHDVRQDEOHDVVXUDQFHWKDWWKHRSHUDWLRQRIWKHSODQWZLOOQRWUHVXOWLQUDGLRQXFOLGH

FRQFHQWUDWLRQVLQWKHILQLVKHGGULQNLQJZDWHUWKDWDUHLQH[FHVVRIWKHUHTXLUHPHQWV

RI&)57KHGRVHFDOFXODWLRQPHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0

LPSOHPHQWWKHUHTXLUHPHQWVLQ6HFWLRQ,,,$RI$SSHQGL[,WKDWFRQIRUPDQFHZLWKWKH

JXLGHVRI$SSHQGL[,EHVKRZQE\FDOFXODWLRQDOPRGHOVDQGGDWDVXFKWKDWWKH

DFWXDOH[SRVXUHRID0(0%(52)7+(38%/,&DSSURSULDWHSDWKZD\VLVXQOLNHO\WR

EHVXEVWDQWLDOO\XQGHUHVWLPDWHG7KHHTXDWLRQVVSHFLILHGLQWKH2'&0IRU

FDOFXODWLQJWKHGRVHVGXHWRWKHDFWXDOUHOHDVHUDWHVRIUDGLRDFWLYHPDWHULDOVLQ

OLTXLGHIIOXHQWVDUHFRQVLVWHQWZLWKWKHPHWKRGRORJ\SURYLGHGLQ5HJXODWRU\*XLGH

&DOFXODWLRQRI$QQXDO'RVHVWR0DQIURP5RXWLQH5HOHDVHVRI5HDFWRU

(IIOXHQWVIRUWKH3XUSRVHRI(YDOXDWLQJ&RPSOLDQFHZLWK&)5$SSHQGL[,

5HYLVLRQ2FWREHUDQG5HJXODWRU\*XLGH(VWLPDWLQJ$TXDWLF

'LVSHUVLRQRI(IIOXHQWVIURP$FFLGHQWDODQG5RXWLQH5HDFWRU5HOHDVHVIRUWKH

3XUSRVHRI,PSOHPHQWLQJ$SSHQGL[,$SULO



 

&<*,

5HYLVLRQ

3DJHRI

 727$/'26( &)53$57 



 &21752/6



7KHDQQXDO FDOHQGDU\HDU GRVHRUGRVHFRPPLWPHQWWRDQ\0(0%(52)7+(

38%/,&GXHWRUHOHDVHVRIUDGLRDFWLYLW\DQGWRUDGLDWLRQIURPXUDQLXPIXHOF\FOH

VRXUFHVVKDOOEHOLPLWHGWROHVVWKDQRUHTXDOWRPUHPVWRWKHZKROHERG\RUDQ\

RUJDQH[FHSWWKHWK\URLGZKLFKVKDOOEHOLPLWHGWROHVVWKDQRUHTXDOWRPUHPV



 $33/,&$%,/,7<$WDOOWLPHV



 $&7,21



LWKWKHFDOFXODWHGGRVHVIURPWKHUHOHDVHRIUDGLRDFWLYHPDWHULDOVLQOLTXLG

HIIOXHQWVH[FHHGLQJWZLFHWKHOLPLWVRI6HFWLRQ 'RVH&RQWUROV SUHSDUHDQG

VXEPLWWRWKH&RPPLVVLRQZLWKLQGD\VD6SHFLDO5HSRUWWKDWGHILQHVWKH

FRUUHFWLYHDFWLRQVWREHWDNHQWRUHGXFHVXEVHTXHQWUHOHDVHVWRSUHYHQWUHFXUUHQFH

RIH[FHHGLQJWKHDERYHOLPLWVDQGLQFOXGHVFKHGXOLQJIRUDFKLHYLQJFRQIRUPDQFH

ZLWKWKHDERYHOLPLWV&DOFXODWLRQVZKLFKLQFOXGHGLUHFWUDGLDWLRQFRQWULEXWLRQVIURP

WKHXQLWDQGIURPDQ\UDGZDVWHVWRUDJHVKDOOEHSHUIRUPHGWRGHWHUPLQHWRWDOGRVH

WRDPHPEHURIWKHSXEOLF7KLV6SHFLDO5HSRUWDVGHILQHGLQ&)5 F 

VKDOOLQFOXGHDQDQDO\VLVWKDWHVWLPDWHVWKHUDGLDWLRQH[SRVXUH GRVH WRD

0(0%(52)7+(38%/,&IURPXUDQLXPIXHOF\FOHVRXUFHVLQFOXGLQJDOOHIIOXHQW

SDWKZD\VDQGGLUHFWUDGLDWLRQIRUWKHFDOHQGDU\HDUWKDWLQFOXGHVWKHUHOHDVHV

FRYHUHGE\WKLVUHSRUW,WVKDOODOVRGHVFULEHOHYHOVRIUDGLDWLRQDQGFRQFHQWUDWLRQVRI

UDGLRDFWLYHPDWHULDOLQYROYHGDQGWKHFDXVHRIWKHH[SRVXUHOHYHOVRU

FRQFHQWUDWLRQV,IWKHHVWLPDWHGGRVH V H[FHHGVWKHDERYHOLPLWVDQGLIWKHUHOHDVH

FRQGLWLRQUHVXOWLQJLQYLRODWLRQRI&)5KDVQRWDOUHDG\EHHQFRUUHFWHGWKH

6SHFLDO5HSRUWVKDOOLQFOXGHDUHTXHVWIRUDYDULDQFHLQDFFRUGDQFHZLWKWKH

SURYLVLRQVRI&)56XEPLWWDORIWKHUHSRUWLVFRQVLGHUHGDWLPHO\UHTXHVW

DQGDYDULDQFHLVJUDQWHGXQWLOVWDIIDFWLRQRQWKHUHTXHVWLVFRPSOHWH



 6859(,//$1&(5(48,5(0(176



  &XPXODWLYHGRVHFRQWULEXWLRQVIURPOLTXLGDQGJDVHRXVHIIOXHQWVIRUWKH

FXUUHQWFDOHQGDUTXDUWHUDQGWKHFXUUHQWFDOHQGDU\HDUVKDOOEHGHWHUPLQHGLQ

DFFRUGDQFHZLWK6859(,//$1&(5(48,5(0(176DWOHDVWRQFH

HYHU\GD\VLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVRI

6HFWLRQRIWKH2'&0



  &XPXODWLYHGRVHFRQWULEXWLRQVIURPGLUHFWUDGLDWLRQIURPWKHXQLWDQGIURP

UDGZDVWHVWRUDJHVKDOOEHGHWHUPLQHGIURPHQYLURQPHQWDOGRVLPHWHUGDWDDW

OHDVWTXDUWHUO\



 %$6(6



&<*,

5HYLVLRQ

3DJHRI

7KLVFRQWUROLVSURYLGHGWRPHHWWKHGRVHOLPLWDWLRQVRI&)5WKDWKDYHEHHQ

LQFRUSRUDWHGLQWR&)5E\)57KHVSHFLILFDWLRQUHTXLUHVWKH

SUHSDUDWLRQDQGVXEPLWWDORID6SHFLDO5HSRUWZKHQHYHUWKHFDOFXODWHGGRVHVGXHWR

UHOHDVHVRIUDGLRDFWLYLW\DQGWRUDGLDWLRQIURPXUDQLXPIXHOF\FOHVRXUFHVH[FHHG

PUHPVWRWKHZKROHERG\RUDQ\RUJDQH[FHSWWKHWK\URLGZKLFKVKDOOEHOLPLWHGWR

OHVVWKDQRUHTXDOWRPUHPV,WLVKLJKO\XQOLNHO\WKDWWKHUHVXOWDQWGRVHWRD

0(0%(52)7+(38%/,&ZLOOH[FHHGWKHGRVHOLPLWVRI&)5LIWKHSODQW

UHPDLQVZLWKLQWZLFHWKHGRVHGHVLJQREMHFWLYHVRI$SSHQGL[,DQGLIGLUHFWUDGLDWLRQ

GRVHVDUHNHSWVPDOO7KH6SHFLDO5HSRUWZLOOGHVFULEHDFRXUVHRIDFWLRQWKDW

VKRXOGUHVXOWLQWKHOLPLWDWLRQRIWKHDQQXDOGRVHWRD0(0%(52)7+(38%/,&WR

ZLWKLQWKH&)5OLPLWV)RUWKHSXUSRVHVRIWKH6SHFLDO5HSRUWLWPD\EH

DVVXPHGWKDWWKHGRVHFRQWULEXWLRQVIURPRWKHUXUDQLXPIXHOF\FOHVRXUFHVLV

QHJOLJLEOH,IWKHGRVHWRDQ\0(0%(52)7+(38%/,&LVHVWLPDWHGWRH[FHHGWKH

UHTXLUHPHQWVRI&)5WKH6SHFLDO5HSRUWZLWKDUHTXHVWIRUDYDULDQFH

SURYLGHGWKHUHOHDVHFRQGLWLRQVUHVXOWLQJLQYLRODWLRQRI&)5KDYHQRW

DOUHDG\EHHQFRUUHFWHG LQDFFRUGDQFHZLWKWKHSURYLVLRQVRI&)5DQG

&)5FLVFRQVLGHUHGWREHDWLPHO\UHTXHVWDQGIXOILOOVWKHUHTXLUHPHQWV

RI&)5XQWLO15&VWDIIDFWLRQLVFRPSOHWHG7KHYDULDQFHRQO\UHODWHVWRWKH

OLPLWVRI&)5DQGGRHVQRWDSSO\LQDQ\ZD\WRWKHRWKHUUHTXLUHPHQWVIRU

GRVHOLPLWDWLRQRI&)5DVDGGUHVVHGLQ6HFWLRQ 5DGLRDFWLYH/LTXLG

(IIOXHQWV&RQWUROV DQG6HFWLRQ 'RVH5DWH&RQWUROV $QLQGLYLGXDOLVQRW

FRQVLGHUHGD0(0%(52)7+(38%/,&GXULQJDQ\SHULRGLQZKLFKKHVKHLV

HQJDJHGLQFDUU\LQJRXWDQ\RSHUDWLRQWKDWLVSDUWRIWKHQXFOHDUIXHOF\FOH

 

&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRDFWLYH/LTXLG:DVWH6DPSOLQJDQG$QDO\VLV3URJUDP

/LTXLG 6DPSOLQJ 0LQLPXP 7\SHRI $FWLYLW\ /RZHU

5HOHDVH )UHTXHQF\ $QDO\VLV $QDO\VLV /LPLWRI

7\SH )UHTXHQF\ 'HWHFWLRQ

//' 

µ&LPO  D 

%DWFK5HOHDVH E 

 3 3 3ULQFLSDO*DPPD (

 (DFK%DWFK (DFK%DWFK DQG,

(PLWWHUV G (

 3 0 'LVVROYHGDQG (

(QWUDLQHG *DVHV

%DWFK:DVWH 2QH%DWFK0

  • DPPD(PLWWHUV 

5HOHDVH 3 0 + (

7DQNV (DFK%DWFK &RPSRVLWH F  *URVV$OSKD (

3 4 6U6U (

(DFK%DWFK &RPSRVLWH F  )H (

&RQWLQXRXV5HOHDVH H 

 &RQWLQXRXV  : 3ULQFLSDO*DPPD (

 H &RPSRVLWH F  DQG,

(PLWWHUV G (

 &RQWLQXRXV  : 'LVVROYHGDQG (

H &RPSRVLWH F  (QWUDLQHG*DVVHV



  • DPPD(PLWWHUV 

5HWHQWLRQ

7DQN &RQWLQXRXV 0 + (

H &RPSRVLWH F  *URVV$OSKD (

&RQWLQXRXV 4 6U6U (

H &RPSRVLWH F  )H (

 0RU6 0RU6 3ULQFLSDO*DPPD (

 *UDE I  *UDE I  DQG,

(PLWWHUV G (

6HUYLFH I I 'LVVROYHGDQG (

DWHU (QWUDLQHG*DVVHV

&9)DQ *DPPD(PLWWHUV 

&RROHU

DQG6)3+[ I I + (

OLQHV 

  • URVV$OSKD (

I I 6U6U)H (

(





 

&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ



D 7KH//'LVWKHVPDOOHVWFRQFHQWUDWLRQRIUDGLRDFWLYHPDWHULDOLQDVDPSOHWKDWZLOO

\LHOGD QHWFRXQWDERYHV\VWHPEDFNJURXQGWKDWZLOOEHGHWHFWHGZLWK

SUREDELOLW\ZLWKRQO\ SUREDELOLW\RIIDOVHO\FRQFOXGLQJWKDWDEODQNREVHUYDWLRQ

UHSUHVHQWVDUHDOVLJQDO 7KH//'LVGHILQHGDVDQDSULRUL EHIRUHWKHIDFW OLPLW

UHSUHVHQWLQJWKHFDSDELOLW\RID PHDVXUHPHQWV\VWHPDQGQRWDVDQDSRVWHULRUL

DIWHUWKHIDFW OLPLWIRUDSDUWLFXODUPHDVXUHPHQWWKHPLQLPXPGHWHFWDEOHDFWLYLW\

0'$ 



 )RUDSDUWLFXODUPHDVXUHPHQWV\VWHP ZKLFKPD\LQFOXGHUDGLRFKHPLFDO

VHSDUDWLRQ 



KHUH



//' WKHORZHUOLPLWRIGHWHFWLRQDVGHILQHGDERYHDV&LSHUXQLW

PDVVRU YROXPH



6E WKHVWDQGDUGGHYLDWLRQRIWKHEDFNJURXQGFRXQWLQJUDWHRURIWKH

FRXQWLQJ UDWHRIDEODQNVDPSOHDVDSSURSULDWHDVFRXQWVSHU

GLVLQWHJUDWLRQ



9 WKHVDPSOHVL]HLQXQLWVRIPDVVRU

YROXPH 



( WKHFRXQWLQJHIILFLHQF\



< WKHIUDFWLRQDOUDGLRFKHPLFDO\LHOGZKHQ

DSSOLFDEOH (LVWKHQXPEHURI

GLVLQWHJUDWLRQVSHUPLQXWHSHU&L



 WKHGHFD\FRQVWDQW



W WKHWLPHHODSVHGVLQFHVDPSOHWLPH



 7KHYDOXHRI6E XVHGLQWKHFDOFXODWLRQRIWKH//'IRUDSDUWLFXODUPHDVXUHPHQW

V\VWHP VKDOOEHEDVHGRQWKHDFWXDOREVHUYHGYDULDQFHRIWKHEDFNJURXQG

FRXQWLQJUDWHRUWKH FRXQWLQJUDWHRIWKHEODQNVDPSOHVDVDSSURSULDWHUDWKHU

WKDQRQDQXQYHULILHGWKHRUHWLFDOO\SUHGLFWHGYDULDQFH ,QFDOFXODWLQJWKH//'IRUD

UDGLRQXFOLGHGHWHUPLQHGE\ JDPPDUD\VSHFWURPHWU\WKHEDFNJURXQGVKDOO

LQFOXGHWKHW\SLFDOFRQWULEXWLRQRIRWKHU UDGLRQXFOLGHVQRUPDOO\SUHVHQWLQWKH

VDPSOHV 7\SLFDOYDOXHVRI(9DQG<VKRXOGEH XVHGLQWKHFDOFXODWLRQ

 

&<*,

5HYLVLRQ

3DJHRI

 7KHEDFNJURXQGFRXQWUDWHLVFDOFXODWHGIURPWKHEDFNJURXQGFRXQWVWKDWDUH

GHWHUPLQHGWREHZLWKLQRQH):+0HQHUJ\EDQGDERXWWKHHQHUJ\RIWKH

JDPPDUD\SHDN XVHGIRUWKHTXDQWLWDWLYHDQDO\VLVIRUWKLVUDGLRQXFOLGH



E $ EDWFK UHOHDVH LV WKH GLVFKDUJH RI OLTXLG ZDVWHV RI D GLVFUHWH YROXPH 3ULRU WR

VDPSOLQJ IRU DQDO\VLV HDFK EDWFK VKDOO EH LVRODWHG WKHQ WKRURXJKO\ PL[HG

DFFRUGLQJWRWKHIROORZLQJ



 $ %0RQLWRU7DQNVVKDOOEHPL[HGE\UHFLUFXODWLQJIRUDWOHDVWKRXUV

 7KH+LJK&RQGXFWLYLW\:DVWH7DQN +&:7 VKDOOEHPL[HGE\UXQQLQJWKH

SXPSDQG DLUEORZHUIRUDWOHDVWPLQXWHV +&:7LVRODWLRQGRHVQRW

LQFOXGHSHULRGLFSXPSGRZQRIWKH$97VDPSOHVLQNVXPS

 6WHDP*HQHUDWRUEDWFKUHOHDVHVGXULQJVKXWGRZQFDQQRWEHDGHTXDWHO\

PL[HGE\ UHFLUFXODWLQJ $VDPSOHVKDOOEHWDNHQGXULQJPLGUHOHDVHDQG

DQDO\]HG

 7KHRXWVLGH&RQGHQVDWH6WRUDJH7DQNFDQQRWEHDGHTXDWHO\PL[HGE\

UHFLUFXODWLQJ $VDPSOHVKDOOEHWDNHQGXULQJPLGUHOHDVHDQGDQDO\]HG

 7KHVOXGJHODQFHWUDLOHUVKDOOEHPL[HGE\UHFLUFXODWLQJIRUDWOHDVW

PLQXWHV



F $FRPSRVLWHVDPSOHLVRQHLQZKLFKWKHTXDQWLW\RIOLTXLGVDPSOHGLVSURSRUWLRQDO

WRWKH TXDQWLW\RIOLTXLGZDVWHGLVFKDUJHGDQGLQZKLFKWKHPHWKRGRIVDPSOLQJ

HPSOR\HG UHVXOWVLQDVSHFLPHQZKLFKLVUHSUHVHQWDWLYHRIWKHOLTXLGVUHOHDVHG

'HFD\FRUUHFWLRQV DUHFDOFXODWHGIURPWKHPLGSRLQWRIWKHVDPSOLQJSHULRG



G 7KHSULQFLSDOJDPPDHPLWWHUVIRUZKLFKWKH//'VSHFLILFDWLRQZLOODSSO\DUH

H[FOXVLYHO\ WKHIROORZLQJUDGLRQXFOLGHV



 0Q)H&R&R=Q&V&VDQG&H &HVKDOOEH

 PHDVXUHGWRD//'RI( 



 7KLVOLVWGRHVQRWPHDQWKDWRQO\WKHVHQXFOLGHVDUHWREHGHWHFWHGDQGUHSRUWHG

2WKHU QXFOLGHVZKLFKDUHPHDVXUDEOHDQGLGHQWLILDEOHWRJHWKHUZLWKWKHDERYH

QXFOLGHVVKDOO DOVREHLGHQWLILHGDQGUHSRUWHG 1XFOLGHVZKLFKDUHEHORZWKH

//'IRUWKHDQDO\VHV VKRXOGEHUHSRUWHGDVOHVVWKDQWKH//'DQGVKRXOGQRWEH

UHSRUWHGDVEHLQJSUHVHQWDW WKH//'OHYHO 7KHOHVVWKDQYDOXHVVKRXOGQRWEH

XVHGLQWKHUHTXLUHGGRVHFDOFXODWLRQV



H $FRQWLQXRXVUHOHDVHLVWKHGLVFKDUJHRIOLTXLGZDVWHVRIDQRQGLVFUHWHYROXPH

HJ IURP D YROXPH RU V\VWHP WKDW KDV DQ LQSXW IORZ GXULQJ WKH FRQWLQXRXV

UHOHDVH 'HFD\ FRUUHFWLRQV ZLOO EH FDOFXODWHGEDVHGRQ DOO VDPSOHV FROOHFWHG

GXULQJWKHUHOHDVH



&<*,

5HYLVLRQ

3DJHRI



I 6HUYLFHZDWHUVDPSOHVVKDOOEHWDNHQDQGDQDO\]HGRQFHSHUKRXUVLIDODUP

VHWSRLQW LVUHDFKHGRQFRQWLQXRXVPRQLWRU 6HUYLFHZDWHUVDPSOHIUHTXHQF\IRU+

JURVVDOSKD 6U6UDQG)HZLOOEHLQFUHDVHGWRSURGXFHDFRPSRVLWH

ZKHQHYHUSULQFLSDO JDPPDHPLWWHUVDUHGHWHFWHG 7KHDQDO\VLVIUHTXHQF\ZLOOEH

PRQWKO\IRU+DQGJURVV DOSKDDQGTXDUWHUO\IRU6U6UDQG)H

ZKHQHYHUSULQFLSDOJDPPDHPLWWHUVDUH GHWHFWHG

&<*,

5HYLVLRQ

3DJHRI

 /,48,'())/8(1765(/($6(32,176



7KHUHDUHWKUHHQRUPDOUHOHDVHSRLQWVIRUOLTXLGUDGLRDFWLYHHIIOXHQWVIURPWKHSODQW

WKDWHPSW\ LQWRWKHGLVFKDUJHFDQDO 7KHVHDUHWKH5DGZDVWH7UHDWPHQW

'LVFKDUJH5HWHQWLRQ7DQNGLVFKDUJHDQGWKH$OO9RODWLOH7UHDWPHQW'LVFKDUJH

(DFKRIWKHVHLVDPRQLWRUHGUHOHDVHOLQHWKDW FDQEHLVRODWHGEHIRUHWKHUHOHDVH

UHDFKHVWKHGLVFKDUJHFDQDO 7KHUHLVDOVRDUHOHDVHSRLQW IRUWKHVHUYLFHZDWHU

OLQHVXVHGIRUFRROLQJWKHKHDWH[FKDQJHUVWKDWLVDPRQLWRUHGUHOHDVHOLQH EXWLV

QRWLVRODWDEOH ,IWKHUHLVDQDODUPRQWKHVHUYLFHZDWHUPRQLWRULWLVQHFHVVDU\WR

VDPSOH HDFKKHDWH[FKDQJHUVHSDUDWHO\WRGHWHUPLQHZKLFKKDVDOHDNDQGWKHQ

LVRODWHWKHDIIHFWHG KHDWH[FKDQJHU 7KHSUHVVXUHRIWKHVHUYLFHZDWHUV\VWHP

IORZZRXOGQRUPDOO\IRUFHZDWHU IURPWKHFOHDQVHUYLFHZDWHUVLGHLQWRWKH

FRQWDPLQDWHGVLGHRIWKHKHDWH[FKDQJHU 'LOXWLRQRI OLTXLGHIIOXHQWLVSURYLGHGE\

WKHGLVFKDUJHFDQDO 7KHGLVFKDUJHFDQDOIORZLVQRPLQDOO\ (JSPIRUHDFK

FLUFXODWLQJZDWHUSXPS 'XULQJRSHUDWLQJSHULRGVWZRFLUFXODWLQJZDWHU SXPSV

DUHLQRSHUDWLRQ 'XULQJVKXWGRZQSHULRGVRQHFLUFXODWLQJZDWHUSXPSLV

RSHUDWHG ,I QHLWKHUFLUFXODWLQJZDWHUSXPSLVRSHUDEOHGLOXWLRQLVSURYLGHGE\

RSHUDWLRQRIRQHWRWKUHHVHUYLFHZDWHUSXPSVZKLFKSURYLGHQRPLQDOO\(

JSPHDFK



&<*,

5HYLVLRQ

3DJHRI

 /,48,'())/8(176021,7256(732,176

 

 $ODUPDQGRUWULSVHWSRLQWVIRUUDGLDWLRQPRQLWRUVRQHDFKOLTXLGHIIOXHQWOLQHDUH

UHTXLUHG 3UHFDXWLRQVOLPLWDWLRQVDQGVHWSRLQWVDSSOLFDEOHWRWKHRSHUDWLRQRI

  • LQQD6WDWLRQOLTXLGHIIOXHQW PRQLWRUVDUHSURYLGHGLQSODQWSURFHGXUH3

5$',$7,21021,725,1*6<67(0 6HWSRLQWYDOXHVDUHFDOFXODWHGWRDVVXUH

WKDW DODUPDQGWULSDFWLRQVRFFXUSULRUWRH[FHHGLQJWHQWLPHVWKHHIIOXHQW

FRQFHQWUDWLRQRI$SSHQGL[ %7DEOH&ROXPQRI&)5DW

WKHUHOHDVHSRLQWWRWKHXQUHVWULFWHGDUHD )RUDGGHGFRQVHUYDWLVPOLTXLGHIIOXHQW

UHOHDVHUDWHVDUHDGPLQLVWUDWLYHO\VHWVRWKDWRQO\IUDFWLRQVRIWKHDSSOLFDEOH

PD[LPXPHIIOXHQWFRQFHQWUDWLRQVFDQEHUHDFKHGLQWKHGLVFKDUJH FDQDO



7KH&DOFXODWHGDODUPDQGWULSDFWLRQVHWSRLQWVIRUHDFKUDGLRDFWLYHOLTXLGHIIOXHQW

OLQHPRQLWRU DQGIORZGHWHUPLQDWLRQPXVWVDWLVI\WKHIROORZLQJHTXDWLRQ









(TXDWLRQ  

 

 :KHUH



& WKHHIIOXHQWFRQFHQWUDWLRQZKLFKLPSOHPHQWVWHQWLPHV&)5

OLPLWIRUXQUHVWULFWHG DUHDVLQ&LPO



F WKHVHWSRLQWRIWKHUDGLRDFWLYLW\PRQLWRUPHDVXULQJWKHUDGLRDFWLYLW\

FRQFHQWUDWLRQLQ WKHGLVFKDUJHOLQHSULRUWRGLOXWLRQDQGVXEVHTXHQW

UHOHDVHLQ&LPO



) WKHGLOXWLRQZDWHUIORZDVGHWHUPLQHGSULRUWRWKHUHOHDVHSRLQW

LQYROXPHSHUXQLW WLPH



I WKHOLTXLGZDVWHIORZDVPHDVXUHGDWWKHGLVFKDUJHSRLQWLQ

YROXPHSHUXQLWWLPHLQ WKHVDPHXQLWVDV)

 

 /LTXLGHIIOXHQWEDWFKUHOHDVHVIURP*LQQD6WDWLRQDUHGLVFKDUJHGWKURXJKDOLTXLG

ZDVWHGLVSRVDOPRQLWRU 7KHOLTXLGZDVWHVWUHDP I LVGLOXWHGE\ ) LQWKHSODQW

GLVFKDUJHFDQDOEHIRUHLW HQWHUV/DNH2QWDULR



 



&<*,

5HYLVLRQ

3DJHRI

 7KHOLPLWLQJEDWFKUHOHDVHFRQFHQWUDWLRQ F FRUUHVSRQGLQJWRWKHOLTXLGZDVWH

PRQLWRUVHWSRLQW LVFDOFXODWHGIURPWKHDERYHH[SUHVVLRQ 6LQFHWKHYDOXHRI I LV

YHU\VPDOOLQFRPSDULVRQWR ) DQGWULWLXPFDQQRWEHDFFRXQWHGIRUWKH

H[SUHVVLRQEHFRPHV









(TXDWLRQ  

 :KHUH



& [WKHDOORZDEOHFRQFHQWUDWLRQRI&VDVJLYHQLQ$SSHQGL[%

7DEOH&ROXPQ RI&)5[  7KLVYDOXHLVQRUPDOO\

PRUH UHVWULFWLYH WKDQ WKH FDOFXODWHG PL[HG LVRWRSLF UHOHDVH

FRQFHQWUDWLRQ$ZHLJKWHGDYHUDJHH[FOXGLQJ6EIURPGDWD

LQGLFDWHGDUHOHDVHFRQFHQWUDWLRQRI[&LPO 6HH'$53

  7KLVVKRXOGEHUHYLHZHGDVDQDQQXDOEDVLVDQGWKHPRUH

FRQVHUYDWLYHYDOXH EHWZHHQWKHWZREHXWLOL]HG



) WKHGLOXWLRQIORZDVVXPLQJRSHUDWLRQRIRQO\FLUFXODWLQJZDWHUSXPS

JSP 



F WKHOLPLWLQJEDWFKUHOHDVHFRQFHQWUDWLRQFRUUHVSRQGLQJWRWKHOLTXLG

PRQLWRUVHWSRLQW 



I WKHPD[LPXPZDVWHHIIOXHQWGLVFKDUJHUDWHWKURXJKWKHGHVLJQDWHG

SDWKZD\



 DFRQVHUYDWLVPEDVHGRQWKHSRVVLELOLW\RIOLTXLG

GLVFKDUJHVRFFXUULQJ VLPXOWDQHRXVO\PLQXV 7RWDO

,QVWUXPHQWDO8QFHUWDLQW\ 

 HJ OLPLW7,8 



7&) WKH7ULWLXP&RUUHFWLRQ)DFWRUEDVHGRQWKHPD[LPXP

FRQFHQWUDWLRQRIGLOXWHG5&6+ GLYLGHGE\+(&/7KH

PD[LPXP8)6$55&6WULWLXPFRQFHQWUDWLRQLV&LPO 7KH

PRQLWRUVHWSRLQWDJDLQVWJDPPDHPLWWHUVPXVWEHUHGXFHG

SURSRUWLRQDOWRWKH UDWLRRIWULWLXPLQWKHZDVWHVWUHDPWRZKLFKWKH

PRQLWRUZLOOQRWUHVSRQG





&<*,

5HYLVLRQ

3DJHRI

7KHOLPLWLQJUHOHDVHFRQFHQWUDWLRQ F LVWKHQFRQYHUWHGWRDVHWSRLQWFRXQWUDWH

E\WKHXVHRI WKHPRQLWRUFDOLEUDWLRQIDFWRUGHWHUPLQHGSHUWKHLQGLYLGXDOPRQLWRU

FDOLEUDWLRQSURFHGXUH 7KH H[SUHVVLRQEHFRPHV









(TXDWLRQ  



 ([DPSOH /LTXLG5DGZDVWH0RQLWRU5 

 

 $VVXPLQJIRUH[DPSOHWKDWWKHPD[LPXPSXPSHIIOXHQWGLVFKDUJHUDWH I LV

JSPDQGWKH 5&6WULWLXPFRQFHQWUDWLRQLV&LPOWKHQWKHOLPLWLQJEDWFKUHOHDVH

FRQFHQWUDWLRQ F ZRXOG EHGHWHUPLQHGDVIROORZV







 7KHPRQLWRU5DODUPDQGWULSVHWSRLQW LQFSP LVWKHQGHWHUPLQHGXWLOL]LQJWKH

PRQLWRUFDOLEUDWLRQIDFWRUFDOFXODWHGLQSODQWSURFHGXUH&3,0215 $VVXPLQJ

DFDOLEUDWLRQIDFWRURI







 DQGDOLPLWLQJEDWFKUHOHDVHFRQFHQWUDWLRQGHWHUPLQHGDERYHWKHDODUPDQGWULS

VHWSRLQWIRU PRQLWRU5ZRXOGEH





 

 7KHVHWSRLQWYDOXHVIRUWKHFRQWDLQPHQW)DQ&RROHUPRQLWRU 5 6SHQW)XHO3LW

+HDW ([FKDQJHU6HUYLFH:DWHU0RQLWRUV 5$DQG5% 6WHDP*HQHUDWRU

%ORZGRZQ0RQLWRU



 5 WKH5HWHQWLRQ7DQN0RQLWRU 5DQGWKH$OOYRODWLOH7UHDWPHQW:DVWH

'LVFKDUJH0RQLWRU 5 DUHFDOFXODWHGLQDVLPLODUPDQQHUXVLQJHTXDWLRQ  

VXEVWLWXWLQJDSSURSULDWHYDOXHVRI I DQGWKHFRUUHVSRQGLQJFDOLEUDWLRQIDFWRU



 (IIOXHQW0RQLWRU:DUQLQJDODUPVHWSRLQWVDUHVHWDWRQHKDOIRIWKHWULSVHWSRLQW

LWKDOOFDOFXODWLRQVHTXDOWKLVLVDZDUQLQJWKDWRIWKHUHOHDVHOLPLWKDVEHHQ

UHDFKHGDWDVLQJOH UHOHDVHSRLQW

&<*,

5HYLVLRQ

3DJHRI

 /,48,'())/8(175(/($6(&21&(175$7,216

 

 /LTXLGEDWFKUHOHDVHVDUHFRQWUROOHGLQGLYLGXDOO\DQGHDFKEDWFKUHOHDVHLV

DXWKRUL]HGEDVHG XSRQVDPSOHDQDO\VLVDQGWKHH[LVWLQJGLOXWLRQIORZLQWKH

GLVFKDUJHFDQDO 3ODQWSURFHGXUHV HVWDEOLVKWKHPHWKRGVIRUVDPSOLQJDQG

DQDO\VLVRIHDFKEDWFKSULRUWRUHOHDVH $UHOHDVHUDWHOLPLWLVFDOFXODWHGIRUHDFK

EDWFKEDVHG XSRQDQDO\VLVGLOXWLRQIORZDQGDOOSURFHGXUDOFRQGLWLRQVEHLQJPHW

EHIRUHLWLVDXWKRUL]HGIRU UHOHDVH 7KHZDVWHHIIOXHQWVWUHDPHQWHULQJWKH

GLVFKDUJHFDQDOLVFRQWLQXRXVO\PRQLWRUHGDQG WKHUHOHDVHZLOOEHDXWRPDWLFDOO\

WHUPLQDWHGLIWKHSUHVHOHFWHGPRQLWRUVHWSRLQWLVH[FHHGHG $ UHOHDVHPD\

FRQWLQXHVXEMHFWWRJUDEVDPSOHDQDO\VLVDQGPRQLWRULQJLQDFFRUGDQFHZLWK7DEOH





 7KHHTXDWLRQXVHGWRFDOFXODWHDFWLYLW\LV



 *DPPD6SHFWURVFRS\











(TXDWLRQ  

&<*,

5HYLVLRQ

3DJHRI

 /,48,'())/8(17'26(



 7KHGRVHFRQWULEXWLRQUHFHLYHGE\WKHPD[LPDOO\H[SRVHGLQGLYLGXDOIURPWKH

LQJHVWLRQRI/DNH 2QWDULRILVKDQGGULQNLQJZDWHULVGHWHUPLQHGXVLQJWKH

IROORZLQJPHWKRGRORJ\ 7KHVHFDOFXODWLRQVZLOODVVXPHDQHDUILHOGGLOXWLRQIDFWRU

RILQHYDOXDWLQJWKHILVKSDWKZD\GRVHDQGDQ DYHUDJHDQQXDOGLOXWLRQIDFWRU

RIEHWZHHQWKHSODQWGLVFKDUJHDQGWKH2QWDULR:DWHU'LVWULFWGULQNLQJZDWHU

LQWDNHORFDWHGDSSUR[LPDWHO\PHWHUVQRUWKHDVW GHJUHHV RIWKHGLVFKDUJH

FDQDO 7KHDYHUDJHDQQXDOGLOXWLRQIDFWRURIZDVGHULYHGIURPWKHGULIWDQG

GLVSHUVLRQVWXG\GRFXPHQWHGLQUHIHUHQFH



 'RVHFRQWULEXWLRQVIURPVKRUHOLQHUHFUHDWLRQERDWLQJDQGVZLPPLQJKDYHEHHQ

VKRZQWREH QHJOLJLEOHLQWKH$SSHQGL[,GRVHDQDO\VLVUHIHUHQFHDQGGR

QRWQHHGWREHURXWLQHO\HYDOXDWHG 6KRUHOLQHVHGLPHQWVDPSOHVGRZQVWUHDPIURP

WKHSODQWZLOOEHFROOHFWHGDWOHDVWVHPLDQQXDOO\IRUWKH5DGLRORJLFDO(QYLURQPHQWDO

0RQLWRULQJ3URJUDPDVDFRQVHUYDWLVP 3UHVHQFH RIUDGLRDFWLYLW\DERYH

EDFNJURXQGZLOOUHVXOWLQFDOFXODWLRQRIGRVHFRQWULEXWLRQIURPWKHVHSDWKZD\V

7KHUHLVQRNQRZQKXPDQFRQVXPSWLRQRIVKHOOILVKIURP/DNH2QWDULRWKHUHIRUH

WKLV SDWKZD\LVQRWWDNHQLQWRFRQVLGHUDWLRQLQGRVHFDOFXODWLRQV



 7KHGRVHFRQWULEXWLRQWRDQLQGLYLGXDOZLOOEHGHWHUPLQHGWRHQVXUHWKDWLWFRPSOLHV

ZLWKWKH VSHFLILFDWLRQRI6HFWLRQ 'RVH&RQWUROV  2IIVLWHUHFHSWRUGRVHV

ZLOOEHGHWHUPLQHGIRUWKHOLPLWLQJDJHJURXSDQG RUJDQXQOHVVFHQVXVGDWDVKRZ

WKDWDFWXDORIIVLWHLQGLYLGXDOVDUHWKHOLPLWLQJDJHJURXS



 7KHIROORZLQJH[SUHVVLRQLVXVHGWRFDOFXODWHLQJHVWLRQSDWKZD\GRVHFRQWULEXWLRQV

IRUWKHWRWDO UHOHDVHSHULRGIURPDOOUDGLRQXFOLGHVLGHQWLILHGLQOLTXLGHIIOXHQWV

UHOHDVHGWRXQUHVWULFWHGDUHDV









(TXDWLRQ  



 :KHUH

 

' WKHFXPXODWLYHGRVHFRPPLWPHQWWRWKHWRWDOERG\RUDQ\

RUJDQWIURPWKHOLTXLG HIIOXHQWVIRUWKHVXPPDWLRQRIWKHWRWDO

WLPHSHULRGLQPUHP







WM WKHOHQJWKRIWKHMWKWLPHSHULRGRYHUZKLFK&LM DQG)M DUH

DYHUDJHGIRUDOOOLTXLG UHOHDVHVLQKRXUV



&<*,

5HYLVLRQ

3DJHRI



 

&LM  WKHDYHUDJHFRQFHQWUDWLRQRIUDGLRQXFOLGHLLQXQGLOXWHGOLTXLG

HIIOXHQWGXULQJWLPH SHULRGWMIURPDQ\OLTXLGUHOHDVHLQ&LPO



$L WKHVLWHUHODWHGLQJHVWLRQGRVHFRPPLWPHQWIDFWRUWRWKHWRWDOERG\

RUDQ\RUJDQIRU HDFKLGHQWLILHGSULQFLSDOJDPPDDQGEHWDHPLWWHU

LQPUHPKUSHU&LPO 6HHHTXDWLRQ  

 

)M  WKHGLVFKDUJHFDQDOGLOXWLRQIDFWRUIRU&LM GXULQJDQ\OLTXLGHIIOXHQW

UHOHDVH GHILQHG DVWKHUDWLRRIWKHPD[LPXPXQGLOXWHGOLTXLGZDVWH

IORZ GXULQJ UHOHDVH WR XQUHVWULFWHG UHFHLYLQJ ZDWHUV 7KH GLOXWLRQ

IDFWRUZLOOGHSHQGRQWKHQXPEHURIFLUFXODWLRQSXPSVRSHUDWLQJDQG

GXULQJ LFLQJ FRQGLWLRQV WKH SHUFHQWDJH RSHQLQJ RI WKH UHFLUFXODWLQJ

JDWH 5HIHUHQFHFXUYHVDUHSUHVHQWHGLQSODQWSURFHGXUH&+5(76

/,45(/($6(









(TXDWLRQ  



  :KHUH



$L WKHVLWHUHODWHGLQJHVWLRQGRVHFRPPLWPHQWIDFWRUWRWKHWRWDOERG\

RUWRDQ\RUJDQIRUHDFKLGHQWLILHGSULQFLSDOJDPPDDQGEHWD

HPLWWHULQPUHPKUSHU&LPO



NR  WKHXQLWVFRQYHUVLRQIDFWRU( (S&L&L[

(PONJKU\U 



8Z  DUHFHSWRUSHUVRQ VZDWHUFRQVXPSWLRQE\DJHJURXSIURP7DEOH

(RI5HJXODWRU\*XLGH



'Z  WKHGLOXWLRQIDFWRUIURPWKHQHDUILHOGDUHDRIWKHUHOHDVHSRLQWWR

SRWDEOHZDWHULQWDNH7KH VLWHVSHFLILFGLOXWLRQIDFWRULV 7KLV

IDFWRULVIRUWKHILVKLQJHVWLRQSDWKZD\



8)  DUHFHSWRUSHUVRQ VILVKFRQVXPSWLRQE\DJHJURXSIURP7DEOH

(RI5HJXODWRU\ *XLGH



%)L  DELRDFFXPXODWLRQIDFWRUIRUQXFOLGHLLQILVKLQS&LNJSHUS&L/

IURP7DEOH$RI 5HJXODWRU\*XLGH



&<*,

5HYLVLRQ

3DJHRI

')L LVWKH GRVHFRQYHUVLRQIDFWRUIRUWKHLQJHVWLRQRIQXFOLGHLIRUD

UHFHSWRUSHUVRQLQSUHVHOHFWHGRUJDQWLQPUHPS&LIURP7DEOHV

((((RI5HJXODWRU\ *XLGH



7KHPRQWKO\GRVHFRQWULEXWLRQIURPUHOHDVHVIRUZKLFKUDGLRQXFOLGHFRQFHQWUDWLRQV

DUHGHWHUPLQHGE\SHULRGLFFRPSRVLWHVDPSOHDQDO\VLVPD\EHDSSUR[LPDWHGE\

DVVXPLQJDQDYHUDJH PRQWKO\FRQFHQWUDWLRQEDVHGRQWKHSUHYLRXVPRQWKO\RU

TXDUWHUO\FRPSRVLWHDQDO\VLV +RZHYHULQWKH$QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUWWKHFDOFXODWHGGRVHFRQWULEXWLRQVIURP WKHVHUDGLRQXFOLGHVVKDOOEHEDVHG

RQWKHDFWXDOFRPSRVLWHDQDO\VLV



 ([DPSOH

 

 &RPSXWLQJWKHGRVHWRWKHZKROHERG\YLDWKHILVKDQGGULQNLQJZDWHUSDWKZD\V

DVVXPLQJDQ LQLWLDO&VGLVFKDUJHFRQFHQWUDWLRQRI(&LPO



 *LYHQWKHIROORZLQJGLVFKDUJHIDFWRUVIRUH[DPSOHZKHUH



WL  KRXUWKHGXUDWLRQRIWKHUHOHDVH 

&LM  (&LPO

)M  OLTXLGZDVWHIORZ  JSP  (

GLOXWLRQIORZ ]  JSP

]  1HDUILHOGGLOXWLRQ IRU*LQQD  

'Z    



DQGWDNLQJWKHIROORZLQJYDOXHVIURP5HJXODWRU\*XLGHZKLFKFRQFHUQWKH

FULWLFDOUHFHSWRUZKLFKLVFRQVLGHUHGWREHWKHFKLOGLQWKLVFDVH



 8:  O\HDU

 8)  NJ\HDU

 %)L S&LNJSHUS&LO

 ')L  (PUHPS&L



 7KHQWKHVLWHUHODWHGLQJHVWLRQGRVHFRPPLWPHQWIDFWRU$LLVFDOFXODWHGDV

IROORZV



&<*,

5HYLVLRQ

3DJHRI





 $QGWKHZKROHERG\GRVHWRWKHFKLOGLVWKHQ









 7KHGRVHFRQWULEXWLRQIURPDQ\RWKHULVRWRSHVZRXOGWKHQQHHGWREHFDOFXODWHG

DQGDOOWKHLVRWRSLFFRQWULEXWLRQVVXPPHG







&<*,

5HYLVLRQ

3DJHRI

 5$',2$&7,9(*$6(286())/8(176



 '(/(7('





 

&<*,

5HYLVLRQ

3DJHRI

 '26(5$7(



 &21752/6



7KHLQVWDQWDQHRXVGRVHUDWHGXHWRUDGLRDFWLYHPDWHULDOVUHOHDVHGLQ JDVHRXV

HIIOXHQWVIURPWKHVLWHWRDUHDVDWRUEH\RQGWKH6,7( %281'$5<VKDOOEHOLPLWHG

WRWKHIROORZLQJYDOXHV



 7KHGRVHUDWHIRUQREOHJDVHVVKDOOEHPUHP\UWRWKH WRWDOERG\DQG

PUHP\UWRWKHVNLQDQG



 7KHGRVHUDWHIRU,,WULWLXPDQGIRUDOOUDGLRDFWLYH PDWHULDOVLQ

SDUWLFXODWHIRUPZLWKKDOIOLYHVJUHDWHUWKDQGD\VVKDOOEHPUHP\U

WRDQ\RUJDQ



 $33/,&$%,/,7< $WDOOWLPHV



 1RWH )RUXQSODQQHGUHOHDVHRIJDVHRXVZDVWHVFRPSOLDQFHZLWK6HFWLRQ

'RVH5DWH&RQWUROV PD\EH FDOFXODWHGXVLQJDQQXDODYHUDJH;4

&RPSOLDQFHZLWK6HFWLRQ 'RVH5DWH&RQWUROV VKDOOEH GHWHUPLQHG

E\FRQVLGHULQJWKHDSSOLFDEOHYHQWLODWLRQV\VWHPIORZUDWHV7KHVHIORZUDWHV

VKDOOEHGHWHUPLQHGDWWKHIUHTXHQF\UHTXLUHGE\7DEOH 



 $&7,21 



 ,IWKHFDOFXODWHGGRVHUDWHRIUDGLRDFWLYHPDWHULDOVUHOHDVHGLQJDVHRXV HIIOXHQWV

IURPWKHVLWHH[FHHGVWKHOLPLWVRI6HFWLRQ 'RVH5DWH&RQWUROV PHDVXUHV

VKDOOEH LQLWLDWHGWRUHVWRUHUHOHDVHVWRZLWKLQOLPLWV7KHHIIOXHQWFRQWLQXRXV

PRQLWRUVOLVWHGLQ7DEOHWKDWKDYHSURYLVLRQVIRUWKHDXWRPDWLF WHUPLQDWLRQRI

JDVGHFD\WDQNVKXWGRZQSXUJHRUPLQLSXUJHUHOHDVHV VKDOOEHXVHGWROLPLW

UHOHDVHVZLWKLQWKHYDOXHVHVWDEOLVKHGLQ6HFWLRQ 'RVH5DWH&RQWUROV ZKHQ

PRQLWRUVHWSRLQWYDOXHVDUHH[FHHGHG



 6859(,//$1&(5(48,5(0(176



  7KHGRVHUDWHGXHWRQREOHJDVHVLQJDVHRXVHIIOXHQWVVKDOOEHGHWHUPLQHG WR

EHZLWKLQWKHDERYHOLPLWVLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVRI6HFWLRQRIWKH2'&0



 7KHGRVHUDWHGXHWRUDGLRDFWLYHPDWHULDOVRWKHUWKDQQREOHJDVHVLQ

JDVHRXVHIIOXHQWVVKDOOEHGHWHUPLQHGWREHZLWKLQWKHDERYHOLPLWVLQ

DFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVRI6HFWLRQRIWKH

2'&0E\REWDLQLQJUHSUHVHQWDWLYHVDPSOHVDQGSHUIRUPLQJDQDO\VHVLQ

DFFRUGDQFHZLWKWKHVDPSOLQJDQGDQDO\VLVSURJUDPVSHFLILHGLQ7DEOH







&<*,

5HYLVLRQ

3DJHRI

 %$6(6



 7KLVFRQWUROLVSURYLGHGWRHQVXUHWKDWWKHGRVHDWDQ\WLPHDWDQGEH\RQG WKH6,7(

%281'$5<IURPJDVHRXVHIIOXHQWVZLOOEHZLWKLQWKHDQQXDO GRVHOLPLWVRI&)5

$SSHQGL[%7DEOH&ROXPQ 7KHVHOLPLWV SURYLGHUHDVRQDEOHDVVXUDQFH

WKDWUDGLRDFWLYHPDWHULDOGLVFKDUJHGLQ JDVHRXVHIIOXHQWVZLOOQRWUHVXOWLQWKH

H[SRVXUHRID0(0%(52)7+( 38%/,&LQDQ815(675,&7('$5($HLWKHU

ZLWKLQRURXWVLGHWKH6,7( %281'$5<WRDQQXDODYHUDJHFRQFHQWUDWLRQV

H[FHHGLQJWKHOLPLWV VSHFLILHGLQ$SSHQGL[%7DEOHRI&)5 )RU

0(0%(562)7+( 38%/,&ZKRPD\DWWLPHVEHZLWKLQWKH6,7(%281'$5<WKH

RFFXSDQF\RIWKH0(0%(52)7+(38%/,&ZLOOXVXDOO\EHVXIILFLHQWO\ORZWR

FRPSHQVDWHIRUDQ\LQFUHDVHLQWKHDWPRVSKHULFGLIIXVLRQIDFWRUDERYHWKDWIRUWKH

6,7(%281'$5< ([DPSOHVRIFDOFXODWLRQVIRUVXFK0(0%(56 2)7+(

38%/,&ZLWKWKHDSSURSULDWHRFFXSDQF\IDFWRUVVKDOOEHJLYHQLQ WKH2'&0 7KH

VSHFLILHGUHOHDVHUDWHOLPLWVUHVWULFWDWDOOWLPHVWKH FRUUHVSRQGLQJJDPPDDQGEHWD

GRVHUDWHVDERYHEDFNJURXQGWRD 0(0%(52)7+(38%/,&DWRUEH\RQGWKH

6,7(%281'$5<WROHVV WKDQRUHTXDOWRPUHPV\HDUWRWKHZKROHERG\RUWR

OHVVWKDQRUHTXDOWRPUHPV\HDUWRWKHVNLQ 7KHVHUHOHDVHUDWHOLPLWVDOVR

UHVWULFWDW DOOWLPHVWKHFRUUHVSRQGLQJWK\URLGGRVHUDWHDERYHEDFNJURXQGWRDFKLOG

YLDWKHLQKDODWLRQSDWKZD\WROHVVWKDQRUHTXDOWRPUHPV\HDU





&<*,

5HYLVLRQ

3DJHRI

 '26( &)5$SSHQGL[, 



 &21752/6



7KHGRVHGXHWRQREOHJDVHVUHOHDVHGLQJDVHRXVHIIOXHQWVWRDUHDVDWRU EH\RQG

WKH6,7(%281'$5<VKDOOEHOLPLWHGWRWKHIROORZLQJ



  'XULQJDQ\FDOHQGDUTXDUWHUWRPUDGIRUJDPPDUDGLDWLRQ DQGWR

PUDGIRUEHWDUDGLDWLRQ



  'XULQJDQ\FDOHQGDU\HDUWRPUDGIRUJDPPDUDGLDWLRQDQG WRPUDG

IRUEHWDUDGLDWLRQ



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



KHQHYHUWKHFDOFXODWHGGRVHWRD0(0%(52)7+(38%/,&UHVXOWLQJ IURPQREOH

JDVHVH[FHHGVWKHOLPLWVRI6HFWLRQ 'RVH&RQWUROV D6SHFLDO5HSRUWVKDOO

EH VXEPLWWHG WR WKH &RPPLVVLRQ ZLWKLQ  GD\V ZKLFK LQFOXGHV WKH IROORZLQJ

LQIRUPDWLRQ



 ,GHQWLILFDWLRQRIWKHFDXVHIRUH[FHHGLQJWKHGRVHOLPLW



 &RUUHFWLYHDFWLRQVWDNHQDQGRUWREHWDNHQWRUHGXFHUHOHDVHV RIUDGLRDFWLYH

PDWHULDOLQJDVHRXVHIIOXHQWVWRDVVXUHWKDW VXEVHTXHQWUHOHDVHVZLOOEH

ZLWKLQWKHDERYHOLPLWV



 $&7,21



'XULQJDQ\PRQWKZKHQWKHFDOFXODWHGGRVHWRD0(0%(52)7+( 38%/,&

H[FHHGVWKWKHDQQXDOOLPLWVRI6HFWLRQ 'RVH&RQWUROV  PUDG

JDPPDRUPUDGEHWD SURMHFWHGFXPXODWLYHGRVHFRQWULEXWLRQVIURPJDVHRXV

HIIOXHQWVVKDOOEHGHWHUPLQHGIRUWKDWPRQWKDQGDWOHDVWRQFHHYHU\ GD\VIRUWKH

QH[WPRQWKV



 6859(,//$1&(5(48,5(0(176



 &XPXODWLYHGRVHFRQWULEXWLRQVIRUWKHFXUUHQWFDOHQGDUTXDUWHUDQGFXUUHQW FDOHQGDU

\HDUIRUQREOHJDVHVVKDOOEHGHWHUPLQHGLQDFFRUGDQFHZLWKWKH PHWKRGRORJ\DQG

SDUDPHWHUVRI6HFWLRQRIWKH2'&0DWOHDVWRQFH HYHU\GD\V



 %$6(6



7KLVFRQWUROLVSURYLGHGWRLPSOHPHQWWKHUHTXLUHPHQWVRI6HFWLRQV,,% ,,,$DQG

,9$RI$SSHQGL[,&)5 7KHFRQWUROLPSOHPHQWVWKH JXLGHVVHWIRUWKLQ

6HFWLRQ,%RI$SSHQGL[, 7KH$&7,21VWDWHPHQWV SURYLGHWKHUHTXLUHGRSHUDWLQJ

&<*,

5HYLVLRQ

3DJHRI

IOH[LELOLW\DQGDWWKHVDPHWLPHLPSOHPHQW WKHJXLGHVVHWIRUWKLQ6HFWLRQ,9$RI

$SSHQGL[,WRDVVXUHWKDWWKHUHOHDVH RIUDGLRDFWLYHPDWHULDOLQJDVHRXVHIIOXHQWV

WR815(675,&7('$5($6ZLOOEHNHSWDVORZDVUHDVRQDEO\DFKLHYDEOH 7KH

6859(,//$1&( 5(48,5(0(176LPSOHPHQWWKHUHTXLUHPHQWVLQ6HFWLRQ,,,$RI

$SSHQGL[ ,WKDWFRQIRUPDQFHZLWKWKHJXLGHVRI$SSHQGL[,EHVKRZQE\

FDOFXODWLRQDO SURFHGXUHVEDVHGRQPRGHOVDQGGDWDVXFKWKDWWKHDFWXDOH[SRVXUH

RID 0(0%(52)7+(38%/,&WKURXJKDSSURSULDWHSDWKZD\VLVXQOLNHO\WREH

VXEVWDQWLDOO\XQGHUHVWLPDWHG 7KHGRVHFDOFXODWLRQPHWKRGRORJ\DQG SDUDPHWHUV

HVWDEOLVKHGLQWKH2'&0IRUFDOFXODWLQJWKHGRVHVGXHWRWKH DFWXDOUHOHDVHUDWHV

RIUDGLRDFWLYHQREOHJDVHVLQJDVHRXVHIIOXHQWVDUH FRQVLVWHQWZLWKWKH

PHWKRGRORJ\SURYLGHGLQ5HJXODWRU\*XLGH&DOFXODWLRQRI$QQXDO'RVHVWR

0DQIURP5RXWLQH5HOHDVHVRI5HDFWRU (IIOXHQWVIRUWKH3XUSRVHRI(YDOXDWLQJ

&RPSOLDQFHZLWK&)5 $SSHQGL[,5HYLVLRQ,2FWREHUDQG

5HJXODWRU\*XLGH 0HWKRGVIRU(VWLPDWLQJ$WPRVSKHULF'LVSHUVLRQRI

  • DVHRXV(IIOXHQWVLQ 5RXWLQH5HOHDVHVIURP/LJKW:DWHU&RROHG5HDFWRUV

5HYLVLRQ,-XO\  7KH2'&0HTXDWLRQVIRUGHWHUPLQLQJDLUGRVHVDWWKH6,7(

%281'$5<DUHEDVHGRQKLVWRULFDODYHUDJHDWPRVSKHULFFRQGLWLRQV



 &21752/6



7KHGRVHWRD0(0%(52)7+(38%/,&IURP,,WULWLXPDQGIRUDOO

UDGLRDFWLYHPDWHULDOVLQSDUWLFXODWHIRUPZLWKKDOIOLYHVJUHDWHUWKDQHLJKW GD\V

UHOHDVHGZLWKJDVHRXVHIIOXHQWVIURPWKHVLWHVKDOOEHOLPLWHGWRWKH IROORZLQJ



  GXULQJDQ\FDOHQGDUTXDUWHUWRPUHPWRDQ\RUJDQ



  GXULQJDQ\FDOHQGDU\HDUWRPUHPWRDQ\RUJDQ



 $33/,&$%,/,7<$WDOOWLPHV



 $&7,21 



KHQHYHUWKHFDOFXODWHGGRVHWRD0(0%(52)7+(38%/,&UHVXOWLQJ IURP

UDGLRQXFOLGHVRWKHUWKDQQREOHJDVHVH[FHHGVWKHOLPLWVRI6HFWLRQ &RQWUROV 

D 6SHFLDO5HSRUWVKDOOEHVXEPLWWHGWRWKH&RPPLVVLRQZLWKLQGD\VZKLFK

LQFOXGHVWKHIROORZLQJLQIRUPDWLRQ



 ,GHQWLILFDWLRQRIWKHFDXVHIRUH[FHHGLQJWKHGRVHOLPLW



 &RUUHFWLYHDFWLRQVWDNHQDQGRUWREHWDNHQWRUHGXFHUHOHDVHV RIUDGLRDFWLYH

PDWHULDOLQJDVHRXVHIIOXHQWVWRDVVXUHWKDW VXEVHTXHQWUHOHDVHVZLOOEH

ZLWKLQWKHDERYHOLPLWV



 $&7,21 

 

 'XULQJDQ\PRQWKZKHQWKHFDOFXODWHGGRVHWRD0(0%(52)7+( 38%/,&

H[FHHGVWKWKHDQQXDOOLPLWRI6HFWLRQ &RQWUROV  PUHP SURMHFWHG

&<*,

5HYLVLRQ

3DJHRI

FXPXODWLYHGRVHFRQWULEXWLRQVIURPJDVHRXVHIIOXHQWVVKDOOEHGHWHUPLQHG IRUWKDW

PRQWKDQGDWOHDVWRQFHHYHU\GD\VIRUWKHQH[WPRQWKV



6859(,//$1&(5(48,5(0(176



&XPXODWLYHGRVHFRQWULEXWLRQVIRUWKHFXUUHQWFDOHQGDUTXDUWHUDQGFXUUHQW FDOHQGDU

\HDUIRU,RGLQH,RGLQHWULWLXPDQGUDGLRQXFOLGHVLQ SDUWLFXODWHIRUPZLWK

KDOIOLYHVJUHDWHUWKDQGD\VVKDOOEHGHWHUPLQHGLQ DFFRUGDQFHZLWKPHWKRGRORJ\

DQGSDUDPHWHUVRI6HFWLRQRIWKH2'&0 DWOHDVWRQFHHYHU\GD\V



%$6(6



7KLVFRQWUROLVSURYLGHGWRLPSOHPHQWWKHUHTXLUHPHQWVRI6HFWLRQV,,& ,,,$DQG

,9$RI$SSHQGL[,&)5 7KHFRQWUROLPSOHPHQWVWKH JXLGHVVHWIRUWKLQ

6HFWLRQ,,&RI$SSHQGL[, 7KH$&7,21VWDWHPHQWV SURYLGHWKHUHTXLUHG

RSHUDWLQJIOH[LELOLW\DQGDWWKHVDPHWLPHLPSOHPHQW WKHJXLGHVVHWIRUWKLQ6HFWLRQ

,9$RI$SSHQGL[,WRDVVXUHWKDWWKHUHOHDVH RIUDGLRDFWLYHPDWHULDOLQJDVHRXV

HIIOXHQWVWR815(675,&7('$5($6ZLOOEHNHSWDVORZDVUHDVRQDEO\

DFKLHYDEOH 7KH6859(,//$1&( 5(48,5(0(176LPSOHPHQWWKH

UHTXLUHPHQWVLQ6HFWLRQ,,,$RI$SSHQGL[ ,WKDWFRQIRUPDQFHZLWKWKHJXLGHVRI

$SSHQGL[,EHVKRZQE\FDOFXODWLRQDO SURFHGXUHVEDVHGRQPRGHOVDQGGDWDVXFK

WKDWWKHDFWXDOH[SRVXUHRID0(0%(52)7+(38%/,&WKURXJKDSSURSULDWH

SDWKZD\VLVXQOLNHO\WREH VXEVWDQWLDOO\XQGHUHVWLPDWHG 7KHGRVHFDOFXODWLRQ

PHWKRGRORJ\DQG SDUDPHWHUVHVWDEOLVKHGLQWKH2'&0IRUFDOFXODWLQJWKHGRVHV

GXHWRWKH DFWXDOUHOHDVHUDWHVRIWKHVXEMHFWPDWHULDOVLQJDVHRXVHIIOXHQWVDUH

FRQVLVWHQWZLWKWKHPHWKRGRORJ\SURYLGHGLQ5HJXODWRU\*XLGH &DOFXODWLRQ

RI$QQXDO'RVHVWR0DQIURP5RXWLQH5HOHDVHVRI5HDFWRU (IIOXHQWVIRUWKH

3XUSRVHRI(YDOXDWLQJ&RPSOLDQFHZLWK&)5 $SSHQGL[,5HYLVLRQ,

2FWREHUDQG5HJXODWRU\*XLGH 0HWKRGVIRU(VWLPDWLQJ$WPRVSKHULF

'LVSHUVLRQRI*DVHRXV(IIOXHQWVLQ 5RXWLQH5HOHDVHVIURP/LJKW:DWHU&RROHG

5HDFWRUV5HYLVLRQ,-XO\  7KHVHHTXDWLRQVDOVRSURYLGHIRUGHWHUPLQLQJ

WKHDFWXDOGRVHV EDVHGXSRQWKHKLVWRULFDODYHUDJHDWPRVSKHULFFRQGLWLRQV 7KH

UHOHDVH UDWHFRQWUROVIRU,RGLQH,RGLQHWULWLXPDQGUDGLRQXFOLGHVLQ

SDUWLFXODWHIRUPZLWKKDOIOLYHVJUHDWHUWKDQGD\VDUHGHSHQGHQWXSRQWKH H[LVWLQJ

UDGLRQXFOLGHSDWKZD\VWRPDQLQWKHDUHDVDWRUEH\RQGWKH6,7( %281'$5<

7KHSDWKZD\VH[DPLQHGLQGHYHORSPHQWRIWKHFDOFXODWLRQVZHUH



 ,QGLYLGXDOLQKDODWLRQRIDLUERUQHUDGLRQXFOLGHV

 'HSRVLWLRQRIUDGLRQXFOLGHVRQWRJUHHQOHDI\YHJHWDWLRQZLWK

VXEVHTXHQWFRQVXPSWLRQE\PDQ

 'HSRVLWLRQRIUDGLRQXFOLGHVRQWRJUDVV\DUHDVZKHUHPLON DQLPDOVDQG

PHDWSURGXFLQJDQLPDOVJUD]HIROORZHGE\KXPDQ FRQVXPSWLRQRIWKDWPLON

DQGPHDW

&<*,

5HYLVLRQ

3DJHRI

 'HSRVLWLRQRIUDGLRQXFOLGHVRQWKHJURXQGIROORZHGE\ VXEVHTXHQW

KXPDQH[SRVXUH

&<*,

5HYLVLRQ

3DJHRI

 727$/'26( &)5 



 &21752/6



 7KHDQQXDO FDOHQGDU\HDU GRVHRUGRVHFRPPLWPHQWWRDQ\0(0%(52) 7+(

38%/,&GXHWRUHOHDVHVRIUDGLRDFWLYLW\DQGWRUDGLDWLRQIURPXUDQLXP IXHO F\FOH

VRXUFHVVKDOOEHOLPLWHGWROHVVWKDQRUHTXDOWRPUHPVWRWKH ZKROHERG\RUDQ\

RUJDQH[FHSWWKHWK\URLGZKLFKVKDOOEHOLPLWHGWROHVV WKDQRUHTXDOWRPUHPV



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



 :LWKWKHFDOFXODWHGGRVHVIURPWKHUHOHDVHRIUDGLRDFWLYHPDWHULDOVLQ JDVHRXV

HIIOXHQWVH[FHHGLQJWZLFHWKHOLPLWVRI6HFWLRQVDQG &RQWUROV  SUHSDUH

DQGVXEPLWWRWKH&RPPLVVLRQZLWKLQGD\VD6SHFLDO5HSRUWWKDW GHILQHVWKH

FRUUHFWLYHDFWLRQVWREHWDNHQWRUHGXFHVXEVHTXHQWUHOHDVHV WRSUHYHQWUHFXUUHQFH

RIH[FHHGLQJWKHDERYHOLPLWVDQGLQFOXGHVFKHGXOLQJ IRUDFKLHYLQJFRQIRUPDQFHZLWK

WKHDERYHOLPLWV &DOFXODWLRQVZKLFK LQFOXGHGLUHFWUDGLDWLRQFRQWULEXWLRQVIURPWKH

XQLWDQGIURPDQ\UDGZDVWH VWRUDJHVKDOOEHSHUIRUPHGWRGHWHUPLQHWRWDOGRVHWRD

0(0%(52)7+( 38%/,&7KLV6SHFLDO5HSRUWDVGHILQHGLQ&)5 F 

VKDOOLQFOXGH DQDQDO\VLVWKDWHVWLPDWHVWKHUDGLDWLRQH[SRVXUH GRVH WRD0(0%(5

2)7+(38%/,&IURPXUDQLXPIXHOF\FOHVRXUFHVLQFOXGLQJDOOHIIOXHQW SDWKZD\V

DQGGLUHFWUDGLDWLRQIRUWKHFDOHQGDU\HDUWKDWLQFOXGHVWKH UHOHDVHVFRYHUHGE\WKLV

UHSRUW ,WVKDOODOVRGHVFULEHOHYHOVRIUDGLDWLRQ DQGFRQFHQWUDWLRQVRIUDGLRDFWLYH

PDWHULDOLQYROYHGDQGWKHFDXVHRIWKH H[SRVXUHOHYHOVRUFRQFHQWUDWLRQV ,IWKH

HVWLPDWHGGRVH V H[FHHGVWKH DERYHOLPLWVDQGLIWKHUHOHDVHFRQGLWLRQUHVXOWLQJ

LQYLRODWLRQRI&)5 KDVQRWDOUHDG\EHHQFRUUHFWHGWKH6SHFLDO5HSRUWVKDOO

LQFOXGHD UHTXHVWIRUDYDULDQFHLQDFFRUGDQFHZLWKWKHSURYLVLRQVRI&)5

6XEPLWWDORIWKHUHSRUWLVFRQVLGHUHGDWLPHO\UHTXHVWDQGDYDULDQFHLV JUDQWHG

XQWLOVWDIIDFWLRQRQWKHUHTXHVWLVFRPSOHWH



 $&7,21 



 7KLVUHSRUWVKDOOLQFOXGHDQDQDO\VLVZKLFKGHPRQVWUDWHVWKDWUDGLDWLRQ H[SRVXUHWR

DOO0(0%(562)7+(38%/,&IURPWKHSODQWDUHOHVVWKDQWKH&)5OLPLWV

2WKHUZLVHWKHUHSRUWVKDOOUHTXHVWDYDULDQFHIURP WKHFRPPLVVLRQWRSHUPLW

UHOHDVHVWRH[FHHG&)53DUW 6XEPLWWDO RIWKHUHSRUWLVFRQVLGHUHGDWLPHO\

UHTXHVWE\WKH15&DQGDYDULDQFHLVJUDQWHGXQWLOVWDIIDFWLRQRQWKHUHTXHVWLV

FRPSOHWH



 6859(,//$1&(5(48,5(0(176



 &XPXODWLYHGRVHFRQWULEXWLRQVIURPOLTXLGDQGJDVHRXVHIIOXHQWVVKDOOEH

GHWHUPLQHGLQDFFRUGDQFHZLWK6HFWLRQVDQG 6XUYHLOODQFH

5HTXLUHPHQWV DWOHDVWRQFHHYHU\GD\VLQDFFRUGDQFHZLWKWKH

PHWKRGRORJ\DQGSDUDPHWHUVRI6HFWLRQRIWKH2'&0

&<*,

5HYLVLRQ

3DJHRI



 &XPXODWLYH GRVH FRQWULEXWLRQV IURP GLUHFW UDGLDWLRQ IURP WKH XQLW DQG IURP

UDGZDVWH VWRUDJH LQFOXGLQJ ,6)6, VKDOO EHGHWHUPLQHGIURP HQYLURQPHQWDO

GRVLPHWHUGDWD DWOHDVWTXDUWHUO\



 %$6(6



7KLVFRQWUROLVSURYLGHGWRPHHWWKHGRVHOLPLWDWLRQVRI&)5WKDW KDYH

EHHQLQFRUSRUDWHGLQWR&)5E\)5 7KHVSHFLILFDWLRQ UHTXLUHVWKH

SUHSDUDWLRQDQGVXEPLWWDORID6SHFLDO5HSRUWZKHQHYHUWKHFDOFXODWHGGRVHVGXHWR

UHOHDVHVRIUDGLRDFWLYLW\DQGWRUDGLDWLRQIURP XUDQLXPIXHOF\FOHVRXUFHVH[FHHG

PUHPVWRWKHZKROHERG\RUDQ\ RUJDQH[FHSWWKHWK\URLGZKLFKVKDOOEHOLPLWHGWROHVV

WKDQRUHTXDOWR PUHPV ,WLVKLJKO\XQOLNHO\WKDWWKHUHVXOWDQWGRVHWRD0(0%(52)

7+( 38%/,&ZLOOH[FHHGWKHGRVHOLPLWVRI&)5LIWKHSODQWUHPDLQV ZLWKLQWZLFH

WKHGRVHGHVLJQREMHFWLYHVRI$SSHQGL[,DQGLIGLUHFWUDGLDWLRQ GRVHVDUHNHSWVPDOO

&XPXODWLYHGLUHFWUDGLDWLRQGRVHIURPHQYLURQPHQWDOGRVLPHWHUVVKDOOEHXVHGWRHQVXUH

WKDWGRVHOLPLWVRI&)5DUHPHW 7KH6SHFLDO5HSRUWZLOOGHVFULEHDFRXUVHRI

DFWLRQ WKDWVKRXOGUHVXOWLQWKHOLPLWDWLRQRIWKHDQQXDOGRVHWRD0(0%(52) 7+(

38%/,&WRZLWKLQWKH&)5OLPLWV )RUWKHSXUSRVHVRIWKH6SHFLDO5HSRUWLWPD\

EHDVVXPHGWKDWWKHGRVHFRQWULEXWLRQVIURPRWKHU XUDQLXPIXHOF\FOHVRXUFHVLV

QHJOLJLEOH ,IWKHGRVHWRDQ\0(0%(52) 7+(38%/,&LVHVWLPDWHGWRH[FHHGWKH

UHTXLUHPHQWVRI&)5WKH 6SHFLDO5HSRUWZLWKDUHTXHVWIRUDYDULDQFH SURYLGHG

WKHUHOHDVH FRQGLWLRQVUHVXOWLQJLQYLRODWLRQRI&)5KDYHQRWDOUHDG\EHHQ

FRUUHFWHG LQDFFRUGDQFHZLWKWKHSURYLVLRQVRI&5DQG&)5 FLV

FRQVLGHUHGWREHDWLPHO\UHTXHVWDQGIXOILOOVWKHUHTXLUHPHQWV RI&)5XQWLO15&

VWDIIDFWLRQLVFRPSOHWHG 7KHYDULDQFHRQO\UHODWHVWRWKHOLPLWVRI&)5DQGGRHV

QRWDSSO\LQDQ\ZD\WRWKH RWKHUUHTXLUHPHQWVIRUGRVHOLPLWDWLRQRI&)5DV

DGGUHVVHGLQ6HFWLRQ 5DGLRDFWLYH/LTXLG(IIOXHQWV&RQWUROV  DQG6HFWLRQ

'RVH5DWH&RQWUROV  $QLQGLYLGXDOLVQRWFRQVLGHUHGD0(0%(52)7+(38%/,&

GXULQJDQ\SHULRGLQZKLFKKHVKHLVHQJDJHGLQFDUU\LQJRXWDQ\RSHUDWLRQ WKDWLVSDUWRI

WKHQXFOHDUIXHOF\FOH





&<*,

5HYLVLRQ

3DJHRI

7DEOH



5DGLRDFWLYH*DVHRXV:DVWH6DPSOLQJDQG$QDO\VLV3URJUDP



  • DVHRXV 6DPSOLQJ 0LQLPXP 7\SHRI$FWLYLW\ /RZHU/LPLWRI

5HOHDVH7\SH )UHTXHQF\ $QDO\VLV $QDO\VLV 'HWHFWLRQ //' 

)UHTXHQF\ &LFF  D 

&RQWDLQPHQW 3 3 3ULQFLSDO*DPPD (

3XUJH (DFK3XUJH EF  (PLWWHUV H  (

  • UDE6DPSOH +

$X[LOLDU\ 0 E  0 E  3ULQFLSDO*DPPD (

%XLOGLQJ *UDE6DPSOH (PLWWHUV H  (

9HQWLODWLRQ +

 &RQWLQXRXV G   : EL  , (

 &KDUFRDO , (

 SOH

6DP

 &RQWLQXRXV G   : EL  3ULQFLSDO*DPPD (

 3DUWLFXODWH (PLWWHUV H 

$OO5HOHDVH 6DPSOH

7\SHV &RQWLQXRXV G  0 *URVV$OSKD (

DVOLVWHGDERYH &RPSRVLWH

 3DUWLFXODWH

 6DPSOH

&RQWLQXRXV G  4 6U 6U (

&RPSRVLWH

3DUWLFXODWH

6DPSOH

$LU(MHFWRU 0 EI *UDE 0 EI  3ULQFLSDO*DPPD (

6DPSOH (PLWWHUV H  (

, K  (

+ J 

$OO5HOHDVH &RQWLQXRXV G  1REOH*DV %HWDRU*DPPD (

7\SHVOLVWHG 0RQLWRU

DERYH

  • DV'HFD\7DQN 3 3 3ULQFLSDO*DPPD (

(DFK7DQN*UDE (DFK7DQN (PLWWHUV H 

6DPSOH

&<*,

5HYLVLRQ

3DJHRI

7DEOH



7DEOH1RWDWLRQ



D 7KHORZHUOLPLWRIGHWHFWLRQ //' LVGHILQHGLQ7DEOH1RWDWLRQ D RI7DEOH



E $QDO\VHVVKDOODOVREHSHUIRUPHGZKHQWKHPRQLWRURQWKHFRQWLQXRXVVDPSOHU

UHDFKHV LWVVHWSRLQW



F 7ULWLXPJUDEVDPSOHVVKDOOEHWDNHQDWOHDVWWKUHHWLPHVSHUZHHNZKHQWKHUHDFWRU

FDYLW\LVIORRGHG



G 7KHUDWLRRIWKHVDPSOHIORZUDWHWRWKHVDPSOHGVWUHDPIORZUDWHVKDOOEHNQRZQIRU

WKH WLPHSHULRGFRYHUHGE\HDFKGRVHRUGRVHUDWHFDOFXODWLRQPDGHLQDFFRUGDQFH

ZLWK 6HFWLRQVDQG &RQWUROV 



H 7KHSULQFLSDOJDPPDHPLWWHUVIRUZKLFKWKH//'VSHFLILFDWLRQZLOODSSO\DUH

H[FOXVLYHO\ WKHIROORZLQJUDGLRQXFOLGHV



  •  .UP;H;HPDQG;HIRUJDVHRXVHPLVVLRQV
  •  ,0Q)H&R&R=Q0R&V&V&H

DQG&HIRUSDUWLFXODWHHPLVVLRQV

 

 7KLVOLVWGRHVQRWPHDQWKDWRQO\WKHVHQXFOLGHVDUHWREHGHWHFWHGDQGUHSRUWHG

2WKHU QXFOLGHVZKLFKDUHPHDVXUDEOHDQGLGHQWLILDEOHWRJHWKHUZLWKWKHDERYH

QXFOLGHVVKDOO DOVREHLGHQWLILHGDQGUHSRUWHG 1XFOLGHVZKLFKDUHEHORZWKH//'

IRUWKHDQDO\VHV VKRXOGQRWEHUHSRUWHGDVEHLQJSUHVHQWDWWKH//'OHYHOIRUWKDW

QXFOLGH :KHQXQXVXDO FLUFXPVWDQFHVUHVXOWLQ//'VKLJKHUWKDQUHTXLUHGWKH

UHDVRQVVKDOOEHGRFXPHQWHGLQ WKH$QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUW



I $LUHMHFWRUVDPSOHVDUHQRWUHTXLUHGGXULQJFROGRUUHIXHOLQJVKXWGRZQV



J $LUHMHFWRUWULWLXPVDPSOHLVQRWUHTXLUHGLIWKHVHFRQGDU\FRRODQWDFWLYLW\LVOHVVWKDQ

(&LJP



K $LUHMHFWRULRGLQHVDPSOHVVKDOOEHWDNHQDQGDQDO\]HGZHHNO\LIWKHVHFRQGDU\

FRRODQW DFWLYLW\H[FHHGV(&LJP



L $QDO\VHVVKDOOEHFRPSOHWHGZLWKLQKRXUVDIWHUFKDQJLQJRUDIWHUUHPRYDOIURP

VDPSOHU 6DPSOLQJVKDOODOVREHSHUIRUPHGDWOHDVWRQFHSHUKRXUVIRUDWOHDVW

GD\VIROORZLQJHDFKVKXWGRZQVWDUWXSRU7+(50$/32:(5FKDQJHH[FHHGLQJ

5$7(' 7+(50$/32:(5ZLWKLQDKRXUSHULRGDQGDQDO\VHVVKDOOEH

FRPSOHWHGZLWKLQ KRXUVRIFKDQJLQJ :KHQVDPSOHVFROOHFWHGIRUKRXUVDUH

DQDO\]HGWKHFRUUHVSRQGLQJ//'VPD\EHLQFUHDVHGE\DIDFWRURI 7KLV

UHTXLUHPHQWIRULQFUHDVHGVDPSOHIUHTXHQF\GRHVQRWDSSO\LI  DQDO\VLVVKRZV

WKDWWKH'26((48,9$/(17, FRQFHQWUDWLRQLQWKHUHDFWRUFRRODQWKDVQRW

LQFUHDVHGPRUHWKDQDIDFWRURIDQG   WKHQREOHJDVPRQLWRUVKRZVWKDWHIIOXHQW

&<*,

5HYLVLRQ

3DJHRI

DFWLYLW\KDVQRWLQFUHDVHGPRUHWKDQDIDFWRURI 

&<*,

5HYLVLRQ

3DJHRI

 *$6(286())/8(175(/($6(32,176

 

 7KHUHDUHWKUHHUHOHDVHSRLQWVFRQWLQXRXVO\PRQLWRUHGIRUQREOHJDVHVFRQWDLQPHQW

YHQWSODQW YHQWDQGDLUHMHFWRU 7KHFRQWDLQPHQWYHQWDQGSODQWYHQWDUHDOVR

FRQWLQXRXVO\PRQLWRUHGIRU UDGLRLRGLQHVDQGSDUWLFXODWHV 6LQFHWKHDLUHMHFWRULVD

VWHDPUHOHDVHSRLQWFRQWLQXRXVUDGLRLRGLQHDQGSDUWLFXODWHPRQLWRULQJLVQRW

UHTXLUHGZKHQWKHVHFRQGDU\FRRODQWDFWLYLW\LVOHVV WKDQ(&LJP )ORZ

UDWHVWKURXJKWKHYHQWVDUHPHDVXUHGSHULRGLFDOO\ 'XULQJVKXWGRZQWHPSRUDU\

WUDLOHUVPD\EHEURXJKWRQVLWHWKDWDOVRUHTXLUHPRQLWRULQJDQGFKDUDFWHUL]DWLRQRI

WKHLUUHOHDVHVVXFKDVWKH&2 GHFRQWUDLOHU



 4XDUWHUO\SODQWPHDVXUHPHQWVRIRQHZHHNGXUDWLRQIRUWKHSDUWLFXODWHDQGLRGLQH

UHOHDVHGLQ WKHVWHDPE\WKHDLUHMHFWRUGHPRQVWUDWHWKDWVDPSOLQJWKLVSDWKZD\IRU

SDUWLFXODWHDQGLRGLQH LVQRWQHFHVVDU\VLQFHWKHVHUHOHDVHVDUHOHVVWKDQRI

WKH3ODQW9HQW 7KHUHOHDVHVDUH FRUUHODWHGWREORZGRZQDFWLYLW\IRUGHWHUPLQLQJ

DFWLYLW\LQVWHDPUHOHDVHV 'XULQJVKXWGRZQ DQGVWDUWXSVSHFLDOV\VWHPVDUHLQ

XVHWKDWPD\UHOHDVHVPDOODPRXQWVRIUDGLRDFWLYLW\LQ VWHDPUHOHDVHV 7KLVLV

DFFRXQWHGIRUE\XVLQJRSHUDWLRQDOGDWDDQGDFWLYLW\LQWKHVRXUFHRI WKHVWHDP

  • UDEVDPSOHVDUHREWDLQHGZKHQSUDFWLFDEOH



 ,IDQXQPRQLWRUHGUHOHDVHSRLQWLVLGHQWLILHGDFDOFXODWLRQLVSHUIRUPHGWRGHWHUPLQH

WKH UDGLRDFWLYLW\WKDWLVUHOHDVHG 7KHFDOFXODWLRQLQFOXGHVDFRQVHUYDWLYHHVWLPDWH

RIVRXUFHWHUP LIVDPSOHGDWDLVQRWDYDLODEOHDQGDFRQVHUYDWLYHHVWLPDWHRIIORZ

UDWHDQGGXUDWLRQLIPHDVXUHPHQWRIIORZDQGGXUDWLRQDUHQRWDYDLODEOH ,IWKH

UHOHDVHLVFRQWLQXRXVLWLVLQFOXGHGLQ WKHPRQWKO\UHSRUWWKDWDFFRXQWVIRUUHOHDVHV

IURPWKHVLWHIRUFDOFXODWLQJGRVHVWRWKHJHQHUDO SXEOLF

&<*,

5HYLVLRQ

3DJHRI

 *$6(286())/8(17021,7256(732,176



$ODUPDQGRUWULSVHWSRLQWVIRUVSHFLILHGUDGLDWLRQPRQLWRUVDUHUHTXLUHGRQHDFK

QREOHJDV HIIOXHQWOLQHIURPWKHSODQW 3UHFDXWLRQVOLPLWDWLRQVDQGVHWSRLQWV

DSSOLFDEOHWRWKHRSHUDWLRQRI *LQQD6WDWLRQJDVHRXVHIIOXHQWPRQLWRUVDUHSURYLGHG

LQSODQWSURFHGXUH3 6HWSRLQWVDUH FRQVHUYDWLYHO\HVWDEOLVKHGIRUHDFK

YHQWLODWLRQQREOHJDVPRQLWRUVRWKDWGRVHUDWHVLQXQUHVWULFWHGDUHDVFRUUHVSRQGLQJ

WR&)53DUW$SSHQGL[,OLPLWVZLOOQRWEHH[FHHGHG 6HWSRLQWVVKDOOEH

GHWHUPLQHGVRWKDWGRVHUDWHVIURPUHOHDVHVRIQREOHJDVHVZLOOFRPSO\ZLWK

6HFWLRQ 'RVH5DWH&RQWUROV    7DEOHSURYLGHVWKHJDVHRXVDQG

SDUWLFXODWHPHWHRURORJLFDODVVXPSWLRQXVHGLQ GHYHORSPHQWRIWKH3VHWSRLQWV



 7KHFDOFXODWHGDODUPDQGWULSDFWLRQVHWSRLQWVIRUHDFKUDGLRDFWLYHJDVHRXVHIIOXHQW

PRQLWRU PXVWVDWLVI\WKHIROORZLQJHTXDWLRQ











(TXDWLRQ  



  :KHUH

FY  VHWSRLQWLQFSP

4LY  UHOHDVHUDWHOLPLWE\VSHFLILFQXFOLGH L LQ&LVHFIURPYHQW Y  

I  GLVFKDUJHIORZUDWHLQFIP

N  XQLWVFRQYHUVLRQIDFWRULQFFVHFFIP

.  FDOLEUDWLRQIDFWRULQ&LFFFSP@



7KHJHQHUDOPHWKRGRORJ\IRUHVWDEOLVKLQJSODQWYHQWLODWLRQPRQLWRUVHWSRLQWVLV

EDVHGXSRQD YHQWFRQFHQWUDWLRQOLPLWLQ&LFFGHULYHGIURPVLWHVSHFLILF

PHWHRURORJ\DQGYHQWUHOHDVHFKDUDFWHULVWLFV



$GGLWLRQDOUDGLDWLRQPRQLWRUDODUPDQGRUWULSVHWSRLQWVDUHFDOFXODWHGIRUUDGLDWLRQ

PRQLWRUV PHDVXULQJUDGLRLRGLQHVUDGLRDFWLYHPDWHULDOVLQSDUWLFXODWHIRUPDQGWR

UDGLRQXFOLGHVRWKHU WKDQQREOHJDVHV 6HWSRLQWVDUHGHWHUPLQHGWRDVVXUHWKDW

GRVHUDWHVIURPWKHUHOHDVHRI WKHVHHIIOXHQWVVKDOOFRPSO\ZLWK6HFWLRQ 'RVH

5DWH&RQWUROV  





&<*,

5HYLVLRQ

3DJHRI

7KHUHOHDVHUDWHOLPLWIRUQREOHJDVHVVKDOOEHFDOFXODWHGE\WKHIROORZLQJHTXDWLRQ

IRUWRWDO ERG\GRVH













(TXDWLRQ  



 1RWH $QRFFXSDQF\IDFWRURILVDVVXPHG 7KLVPD\EHPRGLILHGIROORZLQJUHYLHZV

RIWKH DUHDLQTXHVWLRQDQGE\WKHIROORZLQJHTXDWLRQIRUVNLQGRVHV















(TXDWLRQ  



 :KHUH



4LY  WKHUHOHDVHUDWHRIUDGLRQXFOLGH L IURPYHQW Y ZKLFKUHVXOWVLQDGRVHUDWHRI

 PUHP\UWRWKHZKROHERG\RUPUHP\UWRWKHVNLQRIWKHFULWLFDO

UHFHSWRULQ&L VHF



.L   WKHWRWDOERG\GRVHIDFWRUGXHWRJDPPDHPLVVLRQVIRUHDFKLGHQWLILHGQREOH

JDVUDGLRQXFOLGHLQPUHP\USHU&LPIURP7DEOH



/L   WKHVNLQGRVHIDFWRUGXHWREHWDHPLVVLRQVIRUHDFK LGHQWLILHGQREOHJDV

UDGLRQXFOLGH LQPUHP\USHU&LPIURP7DEOH



0L   WKHDLUGRVHIDFWRUGXHWRJDPPDHPLVVLRQVIRUHDFKLGHQWLILHGQREOHJDV

UDGLRQXFOLGH LQPUDG\USHU&LPIURP7DEOH 8QLWFRQYHUVLRQFRQVWDQW

RIPUHPPUDG FRQYHUWVDLUGRVHWRVNLQGRVH



4 Y  WKHKLJKHVWFDOFXODWHGDQQXDODYHUDJHGLVSHUVLRQSDUDPHWHUIRU

HVWLPDWLQJWKHGRVH WRWKHFULWLFDORIIVLWHUHFHSWRUIURPYHQWUHOHDVHSRLQW Y 

LQVHFP 7KH ;4 Y LV FDOFXODWHGE\WKHPHWKRGGHVFULEHGLQ5HJXODWRU\

  • XLGH



 1REOHJDVPRQLWRUVHWSRLQWVDUHFRQVHUYDWLYHO\VHWDFFRUGLQJWRSURFHGXUH3

5$',$7,21021,725,1*6<67(0WRFRUUHVSRQG WRIUDFWLRQVRIWKHDSSOLFDEOH

&)53DUWGRVHOLPLWVIRUXQUHVWULFWHGDUHDV )UDFWLRQVDUH VPDOOHQRXJKWR

&<*,

5HYLVLRQ

3DJHRI

DVVXUHWKHWLPHO\GHWHFWLRQRIDQ\VLPXOWDQHRXVGLVFKDUJHVIURPPXOWLSOH UHOHDVH

SRLQWVEHIRUHWKHFRPELQHGGRZQZLQGVLWHERXQGDU\FRQFHQWUDWLRQFRXOGH[FHHG

DOORZDEOHOLPLWV $GGLWLRQDOFRQVHUYDWLVPLVSURYLGHGE\EDVLQJWKHVHVHWSRLQWVXSRQ

LQVWDQWDQHRXV GRZQZLQGFRQFHQWUDWLRQV 5HOHDVHUDWHVGXULQJWKHUHPDLQGHURID

JLYHQ\HDUFRPELQHGZLWK DQ\LQIUHTXHQWUHOHDVHVDWVHWSRLQWOHYHOVZRXOGUHVXOWLQ

RQO\DYHU\VPDOOIUDFWLRQRIWKH &)53DUWDQQXDOOLPLWV



 +LVWRULFDOO\[HQRQKDVEHHQWKHSULQFLSDOILVVLRQSURGXFWQREOHJDVUHOHDVHG

IURPDOOYHQWV DQGLVDSSURSULDWHIRUXVHDVWKHUHIHUHQFHLVRWRSHIRUHVWDEOLVKLQJ

PRQLWRUVHWSRLQWV 7KH ZKROHERG\GRVHZLOOEHOLPLWLQJDQGWKH;HUHOHDVH

UDWHOLPLWLVFDOFXODWHGE\VXEVWLWXWLQJ WKHDSSURSULDWHYDOXHVLQWRHTXDWLRQ   $IWHU

WKHUHOHDVHUDWHOLPLWIRU;HLVGHWHUPLQHG IRUHDFKYHQWWKHFRUUHVSRQGLQJYHQW

FRQFHQWUDWLRQOLPLWVDUHFDOFXODWHGEDVHGRQDSSOLFDEOH YHQWIORZUDWHV 'XULQJ

SHULRGVRIKLJKPDNHXSZDWHUXVDJHDUJRQIURPDLUVDWXUDWHG PDNHXSZDWHU

EHFRPHVWKHSULQFLSOHUDGLRJDVRIFRQFHUQDQGPD\EHXVHGDVWKHUHIHUHQFH

LVRWRSHIRUHVWDEOLVKLQJVHWSRLQWV &DOLEUDWLRQIDFWRUVLQ&LFFSHUFSPDUHXVHGWR

FRQYHUW OLPLWLQJYHQWFRQFHQWUDWLRQVWRFRXQWUDWHV



 ([DPSOH 3ODQW9HQW0RQLWRU5



 8VLQJ;HDVWKHFRQWUROOLQJLVRWRSHIRUWKHVHWSRLQWDQGDVVXPLQJDPHDVXUHG

DFWLYLW\RI (&LFFDQGDUDWHPHWHUUHDGLQJRIFSPDERYHEDFNJURXQG

WKHHIILFLHQF\FDQEH FDOFXODWHGXVLQJDPHDVXUHGYHQWIORZRI(FIP.L

IURP7DEOHRI(DQGD ;4 Y IRUWKHVLWHERXQGDU\RI(WKH

5HOHDVH5DWH/LPLWLVFDOFXODWHGDQGWKHQWKHVHWSRLQWGHWHUPLQHG









 8VLQJ(TXDWLRQ









 



&<*,

5HYLVLRQ

3DJHRI

 8VLQJ(TXDWLRQ









 3HU SURFHGXUH 3 5 LV VHW DW  RI WKLV YDOXH RU ( FSP IRU QRUPDO

RSHUDWLRQ  RIWKHUHOHDVHUDWHOLPLWLVDFRQVHUYDWLVPEDVHGRQWKHSRVVLELOLW\RI

WZRUHOHDVHSRLQWVVLPXOWDQHRXVO\DWWKHLUVHWSRLQWVIRUDWRWDORIRIWKHUHOHDVH

UDWHOLPLW



 (IIOXHQW0RQLWRU:DUQLQJDODUPVHWSRLQWVDUHVHWDWRQHKDOIRIWKHWULSVHWSRLQW :LWK

DOOFDOFXODWLRQVHTXDOWKLVLVDZDUQLQJWKDWRIWKHUHOHDVHOLPLWKDVEHHQ

UHDFKHGDWDVLQJOH UHOHDVHSRLQW







&<*,

5HYLVLRQ

3DJHRI

7DEOH



0HWHRURORJLFDO'DWDDQG/RFDWLRQVRI5HFHSWRUVIRU6HW3RLQW&DOFXODWLRQV



3URFHVV0RQLWRUV

0RQLWRU 5DGLRLVRWRSH  *HRJUDSKLF 5HOHDVH3RLQW  ;4 '4 P  )ORZ

/RFDWLRQ YHQW  VHFP 

'LVW'LUHFWLRQ  FIP 

5$ 5DGLRLRGLQH  PLOH( &RQWDLQPHQW  ( 

5% 5DGLRLRGLQH  PLOH(6( 3ODQW  ( 

5 &V  PLOH( &RQWDLQPHQW  ( 

5 ;H  PLOH11( &RQWDLQPHQW (  

5 &V  PLOH(6( 3ODQW  ( 

5 ;H  PLOH(6( 3ODQW (  

5 ;H  PLOH11( $LU(MHFWRU (  

$FFLGHQW0RQLWRUV

0RQLWRU 5DGLRLVRWRSH  *HRJUDSKLF 5HOHDVH3RLQW  ;4 '4 P  )ORZ

/RFDWLRQ YHQW  VHFP 

'LVW'LUHFWLRQ  FIP 

5$ PLOH( &RQWDLQPHQW  ( 

5DGLRLRGLQH 

5$ PLOH( &RQWDLQPHQW  ( 

3DUWLFXODWH&V 

5$ PLOH11( &RQWDLQPHQW (  

1REOH*DV;H 

5$ PLOH(6( 3ODQW  ( 

5DGLRLRGLQH 

5$ PLOH(6( 3ODQW  ( 

3DUWLFXODWH

&V 

5$ PLOH(6( 3ODQW (  

1REOH*DV

H 

5 PLOH11( $LU(MHFWRU (  

5&6$FFLGHQW 0L[ 

&<*,

5HYLVLRQ

3DJHRI







7DEOH

FRQWLQXHG 



)XUWKHUGHWDLOVIRXQGLQSURFHGXUH3



,,+DQGSDUWLFXODWHVZLWKKDOIOLIHVJUHDWHUWKDQGD\VXWLOL]HVWKH

IROORZLQJHTXDWLRQ







)RU1REOH*DVHV







3L  )RRGDQGJURXQGSDWKZD\VLQP PUHP\HDUSHU&LVHF

.L  PUHP\HDUSHU&LP

4LY 5HOHDVHUDWHLQXQLWVRI&LVHF

&<*,

5HYLVLRQ

3DJHRI



 *$6(286())/8(17'26(5$7(



  • DVHRXVHIIOXHQWPRQLWRUVHWSRLQWVDVGHVFULEHGLQ6HFWLRQRIWKLVPDQXDODUH

HVWDEOLVKHG DWFRQFHQWUDWLRQVZKLFKSHUPLWVRPHPDUJLQIRUFRUUHFWLYHDFWLRQWR

EHWDNHQEHIRUHH[FHHGLQJ RIIVLWHGRVHUDWHVFRUUHVSRQGLQJWR&)53DUW

OLPLWDWLRQV3ODQWSURFHGXUHVHVWDEOLVKWKHPHWKRGVIRUVDPSOLQJDQGDQDO\VLVIRU

FRQWLQXRXVYHQWLODWLRQUHOHDVHVDQGIRU FRQWDLQPHQWSXUJHUHOHDVHV 3ODQW

SURFHGXUHVDOVRHVWDEOLVKWKHPHWKRGV IRUVDPSOLQJDQGDQDO\VLVSULRUWRJDV

GHFD\WDQNUHOHDVHV 7KHLQVWDQWDQHRXVGRVHUDWHLQ XQUHVWULFWHGDUHDVGXHWR

XQSODQQHGUHOHDVHVRIDLUERUQHUDGLRDFWLYHPDWHULDOVPD\EHFDOFXODWHGXVLQJ

DQQXDODYHUDJH;4 V 'RVHUDWHVVKDOOEHGHWHUPLQHGXVLQJWKHIROORZLQJ

H[SUHVVLRQV



)RUQREOHJDVHV







(TXDWLRQ  



7RWDOJDPPDDQGEHWDGRVHWRWKHVNLQ









(TXDWLRQ  



 WRWDOERG\GRVH





)RU,,WULWLXPDQGDOOUDGLRDFWLYHPDWHULDOVLQSDUWLFXODWHIRUPZLWKKDOI

OLYHVJUHDWHUWKDQGD\V









(TXDWLRQ  



 :KHUH



.L  WKHWRWDOERG\GRVHIDFWRUGXHWRJDPPDHPLVVLRQVIRUHDFK

LGHQWLILHGQREOHJDVUDGLRQXFOLGH L LQPUHP\USHU&LP IURP

7DEOH





/L  WKHVNLQGRVHIDFWRUGXHWREHWDHPLVVLRQVIRUHDFKLGHQWLILHGQREOH

JDVUDGLRQXFOLGH L LQPUHP\USHU&LP IURP7DEOH

&<*,

5HYLVLRQ

3DJHRI



0L  WKHDLUGRVHIDFWRUGXHWRJDPPDHPLVVLRQVIRUHDFKLGHQWLILHGQREOH

JDVUDGLRQXFOLGH L LQPUDG\USHU&LPIURP7DEOH 8QLW

FRQYHUVLRQFRQVWDQWRIPUHPPUDG FRQYHUWVDLUGRVHWRVNLQ

GRVH

3L  WKHGRVHSDUDPHWHUIRUUDGLRQXFOLGH L RWKHUWKDQQREOHJDVHVIRU

WKHLQKDODWLRQ SDWKZD\LQPUHP\USHU&LP 7KHGRVHIDFWRUV

DUHEDVHGRQWKHFULWLFDOLQGLYLGXDO RUJDQDQGWKHFKLOGDJHJURXS

3L LVIXUWKHUGHILQHGDV3L S&LX&L %5 ')$L  ZKHUH%5LV

WKHEUHDWKLQJUDWHIRUDFKLOGLQP\UDQG')$LLVWKHGRVHIDFWRUIRU

WKH FKLOGLQPUHPS&L



4 Y  WKHKLJKHVWFDOFXODWHGDQQXDODYHUDJHUHODWLYHFRQFHQWUDWLRQIRU

DQ\DUHDDWRU EH\RQGWKHXQUHVWULFWHGDUHDERXQGDU\LQVHFP



 :Y  WKHKLJKHVWDQQXDODYHUDJHGLVSHUVLRQSDUDPHWHUIRUHVWLPDWLQJWKH

GRVHWRWKH FULWLFDOUHFHSWRULQVHFP IRUWKHLQKDODWLRQSDWKZD\

DQGLQP IRUWKHIRRGDQGJURXQGSDWKZD\V



 4LY  WKHUHOHDVHUDWHRIUDGLRQXFOLGH L IURPYHQW Y LQ&LVHF







&<*,

5HYLVLRQ

3DJHRI

 *$6(286())/8(17'26(6



 7KHDLUGRVHLQXQUHVWULFWHGDUHDVGXHWRQREOHJDVHVUHOHDVHGLQJDVHRXVHIIOXHQWV

IURPWKH VLWHVKDOOEHGHWHUPLQHGXVLQJWKHIROORZLQJH[SUHVVLRQV



 'XULQJDQ\FDOHQGDU\HDUIRUJDPPDDLUGRVH









(TXDWLRQ  



 'XULQJDQ\FDOHQGDUTXDUWHUIRUJDPPDDLUGRVH







(TXDWLRQ $ 





 'XULQJDQ\FDOHQGDU\HDUIRUEHWDDLUGRVH







(TXDWLRQ 





 'XULQJDQ\FDOHQGDUTXDUWHUIRUEHWDDLUGRVH











(TXDWLRQ$ 





 :KHUH

 

 0L   WKHDLUGRVHIDFWRUGXHWRJDPPDHPLVVLRQVIRUHDFKLGHQWLILHGQREOHJDV

UDGLRQXFOLGH LQPUDG\USHU&LPIURP7DEOH

 

 1L   WKHDLUGRVHIDFWRUGXHWREHWDHPLVVLRQVIRUHDFKLGHQWLILHGQREOHJDV

UDGLRQXFOLGHLQ PUDG\USHU&LPIURP7DEOH

 

 

&<*,

5HYLVLRQ

3DJHRI

4 Y IRUYHQWUHOHDVHV 7KHKLJKHVWFDOFXODWHGDQQXDODYHUDJHUHODWLYH

FRQFHQWUDWLRQIRU DQ\DUHDDWRUEH\RQGWKHXQUHVWULFWHGDUHDERXQGDU\LQ

VHFP

 

 '  WKHWRWDOJDPPDDLUGRVHIURPJDVHRXVHIIOXHQWVLQPUDG



 '  WKHWRWDOEHWDDLUGRVHIURPJDVHRXVHIIOXHQWVLQPUDG

 

 4LY  WKHUHOHDVHRIQREOHJDVUDGLRQXFOLGHVLLQJDVHRXVHIIOXHQWVIURPYHQWVLQ

&L5HOHDVHVVKDOOEHFXPXODWLYHRYHUWKHWLPHSHULRG



 ( WKHLQYHUVHRIWKHQXPEHURIVHFRQGVLQD\HDU



 7KHGRVHWRDQLQGLYLGXDOIURP,,WULWLXPDQGDOOUDGLRDFWLYHPDWHULDOVLQ

SDUWLFXODWH IRUPZLWKKDOIOLYHVJUHDWHUWKDQGD\VLQJDVHRXVHIIOXHQWVUHOHDVHG

IURPWKHVLWHWRXQUHVWULFWHGDUHDVVKDOOEHGHWHUPLQHGXVLQJWKHIROORZLQJ

H[SUHVVLRQ



 GRVHGXULQJDQ\FDOHQGDU\HDU









(TXDWLRQ  



 GRVHGXULQJDQ\FDOHQGDUTXDUWHU











(TXDWLRQ$

 



 :KHUH



',  WKH WRWDO GRVH IURP , , WULWLXP DQG DOO UDGLRDFWLYH PDWHULDOV LQ

SDUWLFXODWHIRUP ZLWK KDOIOLYHV JUHDWHU WKDQ  GD\V LQ JDVHRXV HIIOXHQWV LQ

PUHP



5L WKHGRVHIDFWRUIRUHDFKLGHQWLILHGUDGLRQXFOLGH L LQPPUHP\USHU&LVHFRU

PUHP \USHU&LPIURP7DEOH



Y  WKH DQQXDO DYHUDJH GLVSHUVLRQ SDUDPHWHU IRU HVWLPDWLQJ WKH GRVH WR DQ

LQGLYLGXDODW WKHFULWLFDOORFDWLRQLQVHFP IRUWKHLQKDODWLRQSDWKZD\DQGLQ

&<*,

5HYLVLRQ

3DJHRI

P IRUWKHIRRGDQG JURXQGSDWKZD\V



4LY  WKHUHOHDVHRI,,WULWLXPDQGDOOUDGLRDFWLYHPDWHULDOVLQSDUWLFXODWH

IRUPLQ JDVHRXVHIIOXHQWVZLWKKDOIOLYHVJUHDWHUWKDQGD\VLQ&L 5HOHDVHV

VKDOOEHFXPXODWLYHRYHUWKHGHVLUHGWLPHSHULRGDVDSSURSULDWH

&<*,

5HYLVLRQ

3DJHRI

7DEOH

'RVH)DFWRUVWRWKH&KLOG)RU1REOH*DVHVDQG'DXJKWHUV 



5DGLR 7RWDO%RG\'RVH 6NLQ'RVH)DFWRU *DPPD$LU'RVH %HWD$LU'RVH

QXFOLGHV )DFWRU.L /L PUHP\USHU )DFWRU0L )DFWRU1L

PUHP\U &LP  PUDG\U PUDG\U

SHU&LP  SHU&LP  SHU&LP 

.UP (   ( (

.UP ( ( ( (

.U ( ( ( (

.U ( ( ( (

.U ( ( ( (

.U ( ( ( (

.U ( ( ( (

HP ( ( ( (
H ( ( ( (
HP ( ( ( (
HP ( ( ( (
H ( ( ( (
H ( ( ( (
H ( ( ( (

$U ( ( ( (



  7KHOLVWHGGRVHIDFWRUVDUHIRUUDGLRQXFOLGHVWKDWPD\EHGHWHFWHGLQJDVHRXV

HIIOXHQWV7KHVHGRVHIDFWRUVIRUQREOHJDVHVDQGGDXJKWHUQXFOLGHVDUHWDNHQIURP

7DEOH%RI5HJXODWRU\*XLGH 5HIHUHQFH  $VHPLLQILQLWHFORXGLV

DVVXPHG

  ( x 

&<*,

5HYLVLRQ

3DJHRI

7DEOH

'RVH3DUDPHWHUVIRU5DGLRQXFOLGHVDQG5DGLRDFWLYH3DUWLFXODWH*DVHRXV (IIOXHQWV 



5DGLR 3L,QKDODWLRQ 3L )RRG  5DGLR 3L,QKDODWLRQ 3L )RRG 

QXFOLGHV 3DWKZD\V *URXQG QXFOLGHV 3DWKZD\V *URXQG

PUHP\USHU3DWKZD\V P[ PUHP\USHU 3DWKZD\V P[

&LP  PUHP\U SHU &LP  PUHP\U SHU

&LVHF  &LVHF 

+ ( ( &GP ( (

& ( ( 6Q ( (

&U ( ( 6E ( (

0Q ( ( 7HP ( (

)H ( ( 7HP ( (

&R ( ( 7H ( (

&R ( ( &V ( (

=Q ( ( &V ( (

5E ( ( &V ( (

6U ( ( %D ( (

6U ( ( &H ( (

< ( ( &H ( (

=U ( ( 1S ( (

1E ( ( , ( (

0R ( ( , ( (

5X ( ( 8QLGHQWLILHG ( (

5X ( (   

$JP ( (   



  7KHOLVWHGGRVHSDUDPHWHUVDUHIRUUDGLRQXFOLGHVWKDWPD\EHGHWHFWHGLQJDVHRXV

HIIOXHQWV 7KHVHDQGDGGLWLRQDOGRVHSDUDPHWHUVIRULVRWRSHVQRWLQFOXGHGLQ7DEOH

PD\EHFDOFXODWHGXVLQJWKHPHWKRGRORJ\GHVFULEHGLQ185(*6HFWLRQ

 5HIHUHQFH 

&<*,

5HYLVLRQ

3DJHRI







7DEOH

3DWKZD\'RVH)DFWRUV'XHWR5DGLRQXFOLGHV2WKHU7KDQ1REOH*DVHV 



5DGLR ,QKDODWLRQ 0HDW *URXQG3ODQH &RZ0LON&KLOG /HDI\

QXFOLGHV 3DWKZD\5L 3DWKZD\5L 3DWKZD\5L 3DWKZD\5 P 9HJHWDEOHV

L

PUHP\USHU P[PUHP\U P[PUHP\U [PUHP\U SHU 3DWKZD\5L

&LP  SHU&LVHF  SHU&LVHF  &LVHF  P[PUHP\U

SHU&LVHF 

+ ( (  ( (

&U ( ( ( ( (

0Q ( ( ( ( (

)H ( ( ( ( (

&R ( ( ( ( (

&R ( ( ( ( (

=Q ( ( ( ( (

6U ( ( ( ( (

6U ( (  ( (

=U ( ( ( ( (

, ( ( ( ( (

, ( ( ( ( (

&V ( ( ( ( (

&V ( ( ( ( (

&V ( ( ( ( (

%D ( ( ( ( (

&H ( ( ( ( (



  $GGLWLRQDOGRVHIDFWRUVIRULVRWRSHVQRWLQFOXGHGLQ7DEOHPD\EHFDOFXODWHG

XVLQJWKHPHWKRGRORJ\GHVFULEHGLQ185(*6HFWLRQ UHIHUHQFH 

&<*,

5HYLVLRQ

3DJHRI

 5$',2$&7,9(())/8(17021,725,1*,167580(17$7,21



 /,48,'())/8(17021,7256



 &21752/6

 7KHUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVVKRZQ LQ7DEOH

VKDOOEH23(5$%/(ZLWKWKHLU$ODUP7ULSVHWSRLQWVVHWWR HQVXUHWKDWWKH

OLPLWVRI6HFWLRQ 5DGLRDFWLYH/LTXLG(IIOXHQWV&RQWUROV DUHQRWH[FHHGHG

7KH$ODUP7ULS VHWSRLQWVRIWKHVHFKDQQHOVVKDOOEHGHWHUPLQHGDQGDGMXVWHGLQ

DFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0



 $33/,&$%,/,7< $WDOOWLPHV



 1RWH 7KH5DGLRDFWLYH(IIOXHQW0RQLWRULQJ,QVWUXPHQWDWLRQPD\EHUHPRYHGIURP

VHUYLFHIRUVKRUWSHULRGVRIWLPHZLWKRXWWKHLQVWUXPHQWDWLRQEHLQJ FRQVLGHUHG

LQRSHUDEOHIRUPRQWKO\TXDUWHUO\WHVWLQJ 3UHYHQWDWLYH FRUUHFWLYHPDLQWHQDQFHRU

FDOLEUDWLRQVUHTXLUHLQVWUXPHQWDWLRQWREH GHFODUHGLQRSHUDEOH



 $&7,21 



 :LWKDUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHO$ODUP 7ULS

VHWSRLQWOHVVFRQVHUYDWLYHWKDQUHTXLUHGE\WKHDERYHFRQWURO LPPHGLDWHO\

VXVSHQGWKHUHOHDVHRIUDGLRDFWLYHOLTXLGHIIOXHQWVPRQLWRUHG E\WKHDIIHFWHG

FKDQQHORUGHFODUHWKHFKDQQHOLQRSHUDEOHRUFKDQJHWKH VHWSRLQWVRLWLV

DFFHSWDEO\FRQVHUYDWLYH



 $&7,21 

 

 :LWKOHVVWKDQWKHPLQLPXPQXPEHURIUDGLRDFWLYHOLTXLGHIIOXHQW PRQLWRULQJ

LQVWUXPHQWDWLRQFKDQQHOV23(5$%/(WDNHWKH$&7,21VKRZQ LQ7DEOH

5HVWRUHWKHPLQLPXPQXPEHURILQVWUXPHQWDWLRQFKDQQHOV WR23(5$%/(VWDWXV

ZLWKLQGD\VRUH[SODLQLQWKHQH[W$QQXDO 5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUW

SXUVXDQWWR6HFWLRQRIWKH 2'&0ZK\WKLVLQRSHUDELOLW\ZDVQRWFRUUHFWHGLQD

WLPHO\PDQQHU



 6859(,//$1&(5(48,5(0(176



(DFKUDGLRDFWLYHOLTXLGHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVKDOOEH

GHPRQVWUDWHG23(5$%/(E\SHUIRUPDQFHRIWKH&+$11(/&+(&. 6285&(

&+(&.&+$11(/&$/,%5$7,21DQG&+$11(/ )81&7,21$/7(67DWWKH

IUHTXHQFLHVVKRZQLQ7DEOH





&<*,

5HYLVLRQ

3DJHRI

 %$6(6

 7KHUDGLRDFWLYHOLTXLGHIIOXHQWLQVWUXPHQWDWLRQLVSURYLGHGWRPRQLWRUDQG FRQWURODV

DSSOLFDEOHWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQOLTXLG HIIOXHQWVGXULQJDFWXDORU

SRWHQWLDOUHOHDVHVRIOLTXLGHIIOXHQWV 7KH$ODUP7ULSVHWSRLQWVIRUWKHVHLQVWUXPHQWV

VKDOOEHFDOFXODWHGDQGDGMXVWHGLQ DFFRUGDQFHZLWKWKHPHWKRGRORJ\DQG

SDUDPHWHUVLQWKH2'&0WRHQVXUH WKDWWKH$ODUP7ULSZLOORFFXUSULRUWRH[FHHGLQJ

WKHOLPLWVRI&)5



 7KH23(5$%,/,7<DQGXVHRIWKLVLQVWUXPHQWDWLRQLVFRQVLVWHQWZLWKWKH

UHTXLUHPHQWVRI*HQHUDO'HVLJQ&ULWHULDDQGRI$SSHQGL[$WR &)5





&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRDFWLYH/LTXLG(IIOXHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

  • URVV$FWLYLW\0RQLWRUV /LTXLG  0LQLPXP $FWLRQ

&KDQQHOV

23(5$%/(

D &RQWDLQPHQW)DQ&RROHUV 5   

E /LTXLG5DGZDVWH 5   

F 6WHDP*HQHUDWRU%ORZGRZQ 5  D 

G 6SHQW)XHO3RRO+HDW([FKDQJHU 5$5%   

H 7XUELQH%XLOGLQJ)ORRU'UDLQV 5   

I +LJK&RQGXFWLYLW\:DVWH 5   



 

&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ



D 1RWUHTXLUHGZKHQVWHDPJHQHUDWRUEORZGRZQLVEHLQJUHFRYHUHGLHQRWUHOHDVHG





$FWLRQ ,IWKHQXPEHURI23(5$%/(FKDQQHOVLVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKLVSDWKZD\PD\

FRQWLQXHSURYLGHGWKDWDWOHDVWRQFHSHUKRXUVJUDEVDPSOHV DUHDQDO\]HGIRU

LVRWRSLFFRQFHQWUDWLRQRUJURVVUDGLRDFWLYLW\ EHWDRU JDPPD DWDORZHUOLPLWRI

GHWHFWLRQ //' RIDWPRVW(&LJP



$FWLRQ ,IWKHQXPEHURI23(5$%/(FKDQQHOVLVOHVVWKDQUHTXLUHGE\WKHPLQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWHIIOXHQWUHOHDVHVIURPWKHWDQN PD\

FRQWLQXHSURYLGHGWKDWSULRUWRLQLWLDWLQJDUHOHDVH



  1RWH :KHQFRXQWLQJLQGHSHQGHQWVDPSOHVIRUDJUHHPHQW GRXEOLQJWKH

DFFHSWDQFHFULWHULRQIRUORZ (&LPO  DFWLYLW\VDPSOHVIURP

WRUHVXOWVLQDFRQVHTXHQFHDW WKHUHOHDVHSRLQWRI 7KH

H[SDQGHGDFFHSWDEOHFULWHULRQ IRUORZDFWLYLW\VDPSOHVLVHPSOR\HGWR

FRPSHQVDWHIRU LQFUHDVHGLPSDFWRIVDPSOLQJDQGFRXQWLQJHUURURQ

DFFHSWDQFH



 $WOHDVWWZRLQGHSHQGHQWVDPSOHVRIWKHWDQN VFRQWHQWVWDNHQDWOHDVW 

PLQXWHVDSDUWDUHDQDO\]HGDQGDJUHHZLWKLQRIWRWDODFWLYLW\ LI

WRWDODFWLYLW\PLQXVQREOHJDVHV(&LPO DQG

 $WOHDVWWZRWHFKQLFDOO\TXDOLILHGPHPEHUVRIWKH)DFLOLW\6WDII

LQGHSHQGHQWO\UHYLHZDQGDSSURYHWKHDQDO\WLFDOUHVXOWVDQG

 $WOHDVWWZRWHFKQLFDOO\TXDOLILHGPHPEHUVRIWKH)DFLOLW\6WDII

LQGHSHQGHQWO\YHULI\WKHGLVFKDUJHOLQHYDOYLQJ



$FWLRQ :KHQ6WHDP*HQHUDWRU%ORZGRZQLVEHLQJUHOHDVHG QRWUHF\FOHG DQGWKH QXPEHU

RIFKDQQHOV23(5$%/(LVOHVVWKDQUHTXLUHGE\WKH0LQLPXP &KDQQHOV

23(5$%/(UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKLVSDWKZD\PD\ FRQWLQXHSURYLGHG

JUDEVDPSOHVDUHDQDO\]HGIRULVRWRSLFFRQFHQWUDWLRQDWDORZHUOLPLWRIGHWHFWLRQ

//' RIDWPRVW(&LJUDP



 $WOHDVWRQFHSHUKRXUVZKHQWKHFRQFHQWUDWLRQRIWKHVHFRQGDU\FRRODQWLV

!&LJUDP '26((48,9$/(17, 

 $WOHDVWRQFHSHUKRXUVZKHQWKHFRQFHQWUDWLRQRIWKHVHFRQGDU\

FRRODQWLV&LJUDP '26((48,9$/(17, 

 

&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRDFWLYH/LTXLG(IIOXHQW0RQLWRULQJ6859(,//$1&(5(48,5(0(176

  • URVV$FWLYLW\0RQLWRU /LTXLG  &KDQQHO 6RXUFH )XQFWLRQDO &KDQQHO

&KHFN &KHFN 7HVW &DOLEUDWLRQ

D &RQWDLQPHQW)DQ&RROHUV 5  'H 0F 4E 5G

E /LTXLG5DGZDVWH 5  'H 0F 4D 5G

F 6WHDP*HQHUDWRU%ORZGRZQ 5  'H 0F 4D 5G

G 6SHQW)XHO3RRO+HDW([FKDQJHU 5$ 'H 0F 4E 5G

5% 

H 5HWHQWLRQ7DQN 5  'H 0F 4D 5G

I +LJK&RQGXFWLYLW\:DVWH 5  'H 0F 4D 5G

J 'LOXWLRQ)ORZ5DWH'HWHUPLQDWLRQ 1$ 1$ 1$ 5I





 

&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ

D 7KH)81&7,21$/7HVWVKDOODOVRGHPRQVWUDWHWKDWDXWRPDWLFLVRODWLRQRIWKLVSDWKZD\

DQGFRQWUROURRPDODUPZLOORFFXULIDQ\RIWKHIROORZLQJFRQGLWLRQVH[LVW

 ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKHDODUPDQGRUWULSVHWSRLQW

 3RZHUIDLOXUH 9HULILHGLQVDPHIXQFWLRQDOWHVWDV$ODUP7ULSVHWSRLQWGXHWR

QRUPDOO\HQHUJL]HGUHOD\ 



E 7KH)81&7,21$/7HVWVKDOODOVRGHPRQVWUDWHWKDWFRQWUROURRPDODUPRFFXUVLIDQ\RI

WKHIROORZLQJFRQGLWLRQVH[LVW

 ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKHDODUPVHWSRLQW

3RZHUIDLOXUH 9HULILHGLQVDPHIXQFWLRQDOWHVWDV$ODUPVHWSRLQWGXHWRQRUPDOO\

HQHUJL]HGUHOD\ 





F 7KLVFKHFNPD\UHTXLUHWKHXVHRIDQH[WHUQDOVRXUFHGXHWRKLJKEDFNJURXQGLQWKH

VDPSOHFKDPEHU



G 6RXUFHXVHGIRUWKH&+$11(/&$/,%5$7,21VKDOOEHWUDFHDEOHWRWKH1DWLRQDO,QVWLWXWH

IRU6WDQGDUGVDQG7HFKQRORJ\ 1,67 RUVKDOOEHREWDLQHGIURPVXSSOLHUV HJ$QDO\WLFV 

WKDWSURYLGHVRXUFHVWUDFHDEOHWRRWKHURIILFLDOO\GHVLJQDWHGVWDQGDUGVDJHQFLHV



H $SSOLHVRQO\GXULQJUHOHDVHVYLDWKLVSDWKZD\



I  )ORZUDWHIRUWKHGLVFKDUJHFDQDOGLOXWLRQZKLFKLVDSSOLHGWRDOOOLTXLGHIIOXHQWSDWKZD\V

VKDOOEHGHWHUPLQHGDWWKHIUHTXHQF\VSHFLILHG



&<*,

5HYLVLRQ

3DJHRI

 *$6(286())/8(17021,7256



 &21752/6



7KHUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOV VKRZQLQ

7DEOHVKDOOEH23(5$%/(ZLWKWKHLU$ODUP7ULSVHWSRLQWV VHWWRHQVXUHWKDW

WKHOLPLWVRI&RQWURO6HFWLRQ 'RVH5DWH&RQWUROV DUHQRWH[FHHGHG 7KH

$ODUP 7ULSVHWSRLQWVRIWKHVHFKDQQHOVPHHWLQJ&RQWURO6HFWLRQ 'RVH5DWH

&RQWUROV VKDOOEHGHWHUPLQHG DQGDGMXVWHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\

DQGSDUDPHWHUVLQWKH 2'&0



 $33/,&$%,/,7< $VVKRZQLQ7DEOH

 

 1RWH 7KH5DGLRDFWLYH(IIOXHQW0RQLWRULQJ,QVWUXPHQWDWLRQPD\EHUHPRYHGIURP

VHUYLFHIRUVKRUWSHULRGVRIWLPHZLWKRXWWKHLQVWUXPHQWDWLRQEHLQJ FRQVLGHUHG

LQRSHUDEOHIRUZHHNO\JUDEILOWHURUFDUWULGJHFKDQJHVRU PRQWKO\TXDUWHUO\WHVWLQJ

ZLWKWKHH[FHSWLRQRIWKH5$55VNLG 3UHYHQWDWLYHFRUUHFWLYH

PDLQWHQDQFHFDOLEUDWLRQVDQGPRYLQJILOWHU UHSODFHPHQWVUHTXLUHLQVWUXPHQWDWLRQ

WREHGHFODUHGLQRSHUDEOH



 $&7,21 



LWKDUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHO

$ODUP7ULSVHWSRLQWOHVVFRQVHUYDWLYHWKDQUHTXLUHGE\WKHDERYH VSHFLILFDWLRQ

LPPHGLDWHO\GHFODUHWKHFKDQQHOLQRSHUDEOH



 $&7,21 



 :LWKOHVVWKDQWKHPLQLPXPQXPEHURIUDGLRDFWLYHJDVHRXVHIIOXHQW PRQLWRULQJ

LQVWUXPHQWDWLRQFKDQQHOV23(5$%/(WDNHWKH$&7,21VKRZQ LQ7DEOH

5HVWRUHWKHPLQLPXPQXPEHURILQVWUXPHQWDWLRQFKDQQHOV WR23(5$%/(VWDWXV

ZLWKLQGD\VRULIQRWH[SODLQLQWKHQH[W$QQXDO 5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUWSXUVXDQWWR6HFWLRQRIWKH 2'&0ZK\WKLVLQRSHUDELOLW\ZDVQRW

FRUUHFWHGLQDWLPHO\PDQQHU



 6859(,//$1&(5(48,5(0(176

 

 (DFKUDGLRDFWLYHJDVHRXVHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHO VKDOOEH

GHPRQVWUDWHG23(5$%/(E\SHUIRUPDQFHRIWKH&+$11(/ &+(&.

6285&(&+(&.&+$11(/&$/,%5$7,21DQG&+$11(/ )81&7,21$/

7(67DWWKHIUHTXHQFLHVVKRZQLQ7DEOH



 %$6(6

7KHUDGLRDFWLYHJDVHRXVHIIOXHQWLQVWUXPHQWDWLRQLVSURYLGHGWRPRQLWRU DQG

FRQWURODVDSSOLFDEOHWKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQJDVHRXV HIIOXHQWV

GXULQJDFWXDORUSRWHQWLDOUHOHDVHVRIJDVHRXVHIIOXHQWV 7KH $ODUP7ULSVHWSRLQWV

&<*,

5HYLVLRQ

3DJHRI

IRUWKHVHLQVWUXPHQWVVKDOOEHFDOFXODWHGDQGDGMXVWHG LQDFFRUGDQFHZLWKWKH

PHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0WR HQVXUHWKDWWKH$ODUP7ULSZLOORFFXU

SULRUWRH[FHHGLQJWKHOLPLWVRI&)57KH23(5$%,/,7<DQGXVHRIWKLV

LQVWUXPHQWDWLRQLVFRQVLVWHQWZLWK WKHUHTXLUHPHQWVRI*HQHUDO'HVLJQ&ULWHULD

DQGRI$SSHQGL[$ WR&)5







&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRDFWLYH*DVHRXV(IIOXHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

3ODQW9HQWLODWLRQ D K  0LQLPXP $FWLRQ

&KDQQHOV

23(5$%/(

D ,RGLQHVDPSOHU 5%RU5$,2'1   L  

E 3DUWLFXODWH6DPSOHU 5RU5$3$57   L  

F 1REOH*DV$FWLYLW\ 5RU5$*$6   E  

G &RQWDLQPHQW1REOH*DV$FWLYLW\ 5  GH  

 RU &RQWDLQPHQW3DUWLFXODWH

6DPSOHU 5 



&RQWDLQPHQW3XUJH F K  0LQLPXP $FWLRQ

&KDQQHOV

23(5$%/(

D ,RGLQH6DPSOHU 5$RU5$,2'1   L  

E 3DUWLFXODWH6DPSOHU 5RU5$3$57   I  

F 1REOH*DV$FWLYLW\ 5RU5$*$6   I  



$LU(MHFWRU0RQLWRU J K  0LQLPXP $FWLRQ

&KDQQHOV

23(5$%/(

1REOH*DV$FWLYLW\ 5RU5   

&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ

D 5HTXLUHGDWDOOWLPHV



E 2QO\UDGLDWLRQPRQLWRU5KDVDQLVRODWLRQVLJQDO,I5$*$6LVEHLQJXVHGWR

PRQLWRUEDWFKJDVUHOHDVHVWKHFRQWHQWVRIWKHWDQN V PD\EHUHOHDVHGWRWKH

HQYLURQPHQWSURYLGHGWKDWSULRUWRLQLWLDWLQJWKHUHOHDVH

 $WOHDVWWZRLQGHSHQGHQWVDPSOHVRIWKHWDQN VFRQWHQWVDUHDQDO\]HGDQG

 $WOHDVWWZRWHFKQLFDOO\TXDOLILHGPHPEHUVRIWKHIDFLOLW\VWDIILQGHSHQGHQWO\

YHULI\WKHUHOHDVHUDWHFDOFXODWLRQVDQGGLVFKDUJHYDOYHOLQHXS



F 5HTXLUHGLQ02'(6DQG



G 7KHPLQLSXUJHV\VWHPDOORZVWKHUHOHDVHRI&RQWDLQPHQWDWPRVSKHUHWKURXJK WKH

SODQWYHQW &)5W\SHUHOHDVHVYLDPLQLSXUJHDUHOLPLWHGE\DQLVRODWLRQVLJQDO

JHQHUDWHGIURP6DIHW\,QMHFWLRQ &)5UHOHDVHVWKURXJKWKH PLQLSXUJHDUH

FRQVLGHUHGWREHVLPLODUWRRWKHUSODQWYHQWLODWLRQUHOHDVHVDQGDUH PRQLWRUHGE\5

5DQG5% 5$PD\EHXVHGDVDVXEVWLWXWHIRU5VLQFHDXWRPDWLF

LVRODWLRQLVDYDLODEOHIURPWKH5RU5PRQLWRUVLIWKH DFWLYLW\LQ&RQWDLQPHQW

LQFUHDVHV 7KHUHIRUHHLWKHU5RU5LVUHTXLUHGWR VDPSOH&RQWDLQPHQWGXULQJD

PLQLSXUJHUHOHDVH $XWRPDWLFLVRODWLRQRIPLQLSXUJHIRU&)5SDUWW\SHUHOHDVHV

LVFRQVLGHUHGXQQHFHVVDU\GXHWRWKHORZ IORZDVVRFLDWHGZLWKPLQLSXUJHWKH

FRQWLQXRXVPRQLWRULQJIURP5RU5 DQGWKHRULJLQDOPHDVXUHPHQWEHIRUHWKH

SXUJHEHJLQV 7RHQVXUHWKH&RQWDLQPHQWVDPSOHPRQLWRUHGE\5RU5LV

UHSUHVHQWDWLYHRIWKHFRQWDLQPHQW DWPRVSKHUHDWOHDVWRQHFRQWDLQPHQWUHFLUFXODWLRQ

IDQLVUHTXLUHGWREHLQRSHUDWLRQGXULQJPLQLSXUJHRSHUDWLRQ



H ,IWKH5$55VNLGLVQRW23(5$%/(LWLVSRVVLEOHWRVXEVWLWXWHWKH5

%55VNLGZKHQWKH5$VNLGLV23(5$%/( 7KHVHWSRLQWVIRUWKH 5

$55VNLGZRXOGEHXVHG 7KHUHZRXOGEHQRDXWRPDWLFFRQWDLQPHQW

LVRODWLRQFDSDELOLW\IURPWKHUDGLRDFWLYHHIIOXHQWPRQLWRULQJLQVWUXPHQWDWLRQ ZKHQXVLQJ

5%55VNLGIRUFRQWDLQPHQWOHDNDJHPHDVXUHPHQWV 7KLVFDQQRWEHXVHG

LI&RQWDLQPHQW9HQWLODWLRQ,VRODWLRQLVUHTXLUHG



I ,IFRQWDLQPHQWYHQWLODWLRQLVRODWLRQLQVWUXPHQWDWLRQLVUHTXLUHGE\/&2IRU FRUH

DOWHUDWLRQRUPRYHPHQWRILUUDGLDWHGIXHOLQFRQWDLQPHQW5$VNLGFDQQRW EHXVHG

LQSODFHRIWKH5$55VNLG



J 5HTXLUHGRQO\ZKHQ$LU(MHFWRULVRSHUDWLQJ



K *DVHRXVHIIOXHQWPRQLWRUVDUHQRWFRQVLGHUHGLQRSHUDEOHGXHWRFKDQJHVLQYHQWLODWLRQ

IORZ 5HGXFHGIORZLQWKHYHQWLODWLRQPDNHVWKHPRQLWRUVHWSRLQWPRUH FRQVHUYDWLYH



&<*,

5HYLVLRQ

3DJHRI



L 0LQLPXP FKDQQHOV 23(5$%/( IRU 3ODQW 9HQW ,RGLQH 3ODQW 9HQW 3DUWLFXODWH DQG

&RQWDLQPHQW3XUJH,RGLQHUHIHUV WRWKH VDPSOHFROOHFWLRQ V\VWHP  QRWWKH UDGLDWLRQ

PRQLWRU



$FWLRQ ,IWKHQXPEHURI23(5$%/(FKDQQHOVLVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWHIIOXHQWUHOHDVHVYLDWKLVSDWKZD\PD\

FRQWLQXHSURYLGHGLRGLQHDQGSDUWLFXODWHVDPSOHVDUHFRQWLQXRXVO\FROOHFWHG

ZLWK DOWHUQDWHVDPSOLQJHTXLSPHQWDVUHTXLUHGLQ7DEOH 7KLVVKRXOGEH

FRPSOHWHGZLWKLQRQHKRXU



$FWLRQ ,IWKHQXPEHURI23(5$%/(FKDQQHOVLVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWFRQWLQXRXVHIIOXHQWUHOHDVHVYLDWKLV

SDWKZD\ PD\FRQWLQXHSURYLGHGJUDEVDPSOHVDUHWDNHQDQGDQDO\]HGIRU

LVRWRSLFDFWLYLW\ DWOHDVWRQFHSHUKRXUV1REDWFKJDVUHOHDVHVDUHWREH

PDGHZLWKRSHUDEOH FKDQQHOVOHVVWKDQUHTXLUHGPLQLPXPFKDQQHOVRSHUDEOH



$FWLRQ ,IWKHQXPEHURI23(5$%/(FKDQQHOVLVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWRUDWOHDVWRQHFRQWDLQPHQWUHFLUFIDQ

FRROHU LVQRWLQRSHUDWLRQZLWKLQKRXUWHUPLQDWHDQ\PLQLSXUJHUHOHDVHLQ

SURFHVV



$FWLRQ ,IWKHQXPEHURI23(5$%/(&KDQQHOVLVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWDQGWKH6HFRQGDU\$FWLYLW\LV(&L

JPHIIOXHQWUHOHDVHVPD\FRQWLQXHYLDWKLVSDWKZD\SURYLGHGJUDEVDPSOHVDUH

DQDO\]HGIRULVRWRSLFFRQFHQWUDWLRQDWOHDVWRQFHSHUKRXUV ,IWKHVHFRQGDU\

DFWLYLW\LV!(&LJPHIIOXHQWUHOHDVHVYLDWKLVSDWKZD\PD\FRQWLQXHIRU

XSWRGD\VSURYLGHGJUDEVDPSOHVDUHWDNHQHYHU\KRXUVDQGDQDO\]HG

ZLWKLQKRXUV



$FWLRQ ,IWKHQXPEHURI23(5$%/(FKDQQHOVLVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV2SHUDEOHUHTXLUHPHQWWHUPLQDWHWKHSXUJHZLWKLQKRXU $OVRUHIHU

WR /&2LIFRUHDOWHUDWLRQVRUPRYHPHQWRILUUDGLDWHGIXHOLQFRQWDLQPHQW

LVLQ SURJUHVV











&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRDFWLYH*DVHRXV(IIOXHQW0RQLWRULQJ6859(,//$1&(5(48,5(0(176



3ODQW9HQWLODWLRQ &KDQQHO 6RXUFH )XQFWLRQDO &KDQQHO

&KHFN &KHFN 7HVW &DOLEUDWLRQ

 D ,RGLQH6DPSOHU 5%  :H 1$ 1$ 5F

E ,RGLQH6DPSOHU 5 :H 1$ 1$ 5F

$,2'1 

F 3DUWLFXODWH6DPSOHU 5  :H 1$ 1$ 5F

G 3DUWLFXODWH6DPSOHU 5 :H 1$ 1$ 5F

$3$57 

H 1REOH*DV$FWLYLW\ 5  'H 0 4D 5F

I 1REOH*DV$FWLYLW\ 5 'H 0 4E 5F

$*$6 

J )ORZ5DWH'HWHUPLQDWLRQ 1$ 1$ 1$ 5G

&RQWDLQPHQW3XUJH &KDQQHO 6RXUFH )XQFWLRQDO &KDQQHO

&KHFN &KHFN 7HVW &DOLEUDWLRQ

D ,RGLQH6DPSOHU 5$  :H 1$ 1$ 5F

E ,RGLQH6DPSOHU 5 :H 1$ 1$ 5F

$,2'1 

F 3DUWLFXODWH6DPSOHU 5  :H 0 4D 5F

G 3DUWLFXODWH6DPSOHU 5 :H 0 4E 5F

$3$57 

H 1REOH*DV$FWLYLW\ 5  'H 0 4D 5F

I 1REOH*DV$FWLYLW\ 5 'H 0 4E 5F

$*$6 

J )ORZ5DWH'HWHUPLQDWLRQ 1$ 1$ 1$ < G 

$LU(MHFWRU0RQLWRU &KDQQHO 6RXUFH )XQFWLRQDO &KDQQHO

&KHFN &KHFN 7HVW &DOLEUDWLRQ

D 1REOH*DV$FWLYLW\ 5  'H 0 4E 5F

E 1REOH*DV$FWLYLW\ 5  'H 0 4E 5F

F )ORZ5DWH'HWHUPLQDWLRQ 1$ 1$ 1$ 5I



&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ



D 7KH)81&7,21$/7(67VKDOODOVRGHPRQVWUDWHWKDWDXWRPDWLFLVRODWLRQRIWKLV

SDWKZD\ DQGFRQWUROURRPDODUPRFFXULIDQ\RIWKHIROORZLQJFRQGLWLRQVH[LVW

 ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKHDODUPDQGRUWULSVHWSRLQW

 3RZHUIDLOXUH 9HULILHGLQVDPHIXQFWLRQDOWHVWDV$ODUP7ULS6HWSRLQWGXHWR

QRUPDOO\HQHUJL]HGUHOD\ 



E 7KH)81&7,21$/7(67VKDOODOVRGHPRQVWUDWHWKDWFRQWUROURRPDODUPRFFXUVLI

DQ\RIWKHIROORZLQJFRQGLWLRQVH[LVW

 ,QVWUXPHQWLQGLFDWHVPHDVXUHGOHYHOVDERYHWKHDODUPVHWSRLQW

 3RZHUIDLOXUH 9HULILHGLQVDPHIXQFWLRQDOWHVWDV$ODUP6HWSRLQWGXHWR

QRUPDOO\HQHUJL]HGUHOD\ 



F 6RXUFHXVHGIRUWKH&KDQQHO&DOLEUDWLRQVKDOOEHWUDFHDEOHWRWKH1DWLRQDO

,QVWLWXWHIRU 6WDQGDUGVDQG7HFKQRORJ\ 1,67 RUVKDOOEHREWDLQHGIURPVXSSOLHUV

HJ$PHUVKDP WKDWSURYLGHVRXUFHVWUDFHDEOHWRRWKHURIILFLDOO\GHVLJQDWHG

VWDQGDUGVDJHQFLHV



G )ORZUDWHIRUPDLQSODQWYHQWLODWLRQH[KDXVWDQGFRQWDLQPHQWSXUJHH[KDXVWDUH

FDOFXODWHGE\WKHIORZFDSDFLW\RIYHQWLODWLRQH[KDXVWIDQVLQVHUYLFHDQGVKDOOEH

GHWHUPLQHG DWWKHIUHTXHQF\VSHFLILHG



H $SSOLHVRQO\GXULQJUHOHDVHVYLDWKLVSDWKZD\



I )ORZUDWHRIWKH$LU(MHFWRUYHQWVKDOOEHGHWHUPLQHGZLWKWKHSODQWLQRSHUDWLRQ

DWWKH IUHTXHQF\VSHFLILHG









&<*,

5HYLVLRQ

3DJHRI

 5$',$7,21$&&,'(17021,725,1*,167580(17$7,21



 &21752/6



7KHUDGLDWLRQDFFLGHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVVKRZQLQ7DEOH

VKDOOEH23(5$%/(DFFRUGLQJWRWKHIROORZLQJVFKHGXOH



 $33/,&$%,/,7<



 &RQWDLQPHQW3XUJH 5$ 0RGHVDQGZKHQWKHSXUJH IODQJHVDUH

UHPRYHG

 3ODQW9HQW 5$ $OOPRGHV

 $LU(MHFWRU 5DQG5 :KHQDLUHMHFWRULVRSHUDWLQJ

 $0DLQ6WHDP/LQH 5 0RGHVDQG

  %0DLQ6WHDP/LQH 5 0RGHVDQG



1RWH 7KH5DGLDWLRQ$FFLGHQW0RQLWRULQJ,QVWUXPHQWDWLRQPD\EHUHPRYHGIURP

VHUYLFHIRUVKRUWSHULRGVRIWLPHZLWKRXWWKHLQVWUXPHQWDWLRQEHLQJ

FRQVLGHUHGLQRSHUDEOHIRUZHHNO\JUDEILOWHURUFDUWULGJHFKDQJHV

3UHYHQWDWLYHPDLQWHQDQFHDQGFDOLEUDWLRQVUHTXLUHLQVWUXPHQWDWLRQWREH

GHFODUHGLQRSHUDEOH



 $&7,21 



LWKOHVVWKDQWKHPLQLPXPQXPEHURIUDGLDWLRQDFFLGHQWPRQLWRULQJ

LQVWUXPHQWDWLRQFKDQQHOV23(5$%/(WDNHWKH$&7,21VKRZQLQ7DEOH



 6859(,//$1&(5(48,5(0(176



 (DFKUDGLDWLRQDFFLGHQWPRQLWRULQJLQVWUXPHQWDWLRQFKDQQHOVKDOOEH

GHPRQVWUDWHG23(5$%/(E\SHUIRUPDQFHRIWKH&+$11(/&+(&.DQG

&+$11(/&$/,%5$7,21DWWKHIUHTXHQFLHVVKRZQLQ7DEOH



 %$6(6



5DGLDWLRQDFFLGHQWPRQLWRULQJLQVWUXPHQWDWLRQLVSURYLGHGWRPRQLWRUDV DSSOLFDEOH

WKHUHOHDVHVRIUDGLRDFWLYHPDWHULDOVLQJDVHRXVHIIOXHQWV GXULQJDFWXDORUSRWHQWLDO

UHOHDVHVRIJDVHRXVHIIOXHQWV 7KH$ODUP VHWSRLQWVIRUWKHVHLQVWUXPHQWVVKDOOEH

FDOFXODWHGDQGDGMXVWHGLQ DFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH

2'&0WRHQVXUH WKDWWKH$ODUPZLOORFFXUSULRUWRH[FHHGLQJWKHOLPLWVRI&)5

 7KH23(5$%,/,7<DQGXVHRIWKLVLQVWUXPHQWDWLRQLVFRQVLVWHQWZLWKWKH

UHTXLUHPHQWVRI*HQHUDO'HVLJQ&ULWHULDDQGRI$SSHQGL[$WR &)5





&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLDWLRQ$FFLGHQW0RQLWRULQJ,QVWUXPHQWDWLRQ

,QVWUXPHQW 0LQLPXP $FWLRQ

&KDQQHOV

2SHUDEOH

D &RQWDLQPHQW3XUJH%HWD3DUWLFXODWH D 

5$3$57 

&RQWDLQPHQW3XUJH,RGLQH 5 D 

$,2'1  &RQWDLQPHQW3XUJH*DV D 

5$*$6  

E 3ODQW9HQW%HWD3DUWLFXODWH 5  

$3$57  3ODQW9HQW,RGLQH 5  

$,2'1   



3ODQW9HQW*DV 5$*$6 

F $LU(MHFWRU/RZUDQJH*DV 5   

$LU(MHFWRU*ODQG6HDO([KDXVW+LJKUDQJH  

  • DV 5 

G $0DLQ6WHDP/LQH 5   

H %0DLQ6WHDP/LQH 5   







&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ

D 2QO\ZKHQWKHVKXWGRZQSXUJHIODQJHVDUHUHPRYHGRWKHUZLVHLQVWUXPHQWDWLRQ NHSW

LQ67$1'%<PRGH



$FWLRQ :LWKWKHQXPEHURI23(5$%/(FKDQQHOVOHVVWKDQUHTXLUHGE\WKH0LQLPXP

&KDQQHOV23(5$%/(UHTXLUHPHQWVHLWKHUUHVWRUHWKHLQRSHUDEOHFKDQQHO V WR

23(5$%/(VWDWXVZLWKLQGD\VRIWKHHYHQWRULIQRWUHVWRUHGSUHSDUHDQG

VXEPLWZLWKLQWKHIROORZLQJGD\VD6SHFLDO5HSRUWWRWKH&RPPLVVLRQ

RXWOLQLQJWKHDFWLRQWDNHQWKHFDXVHRIWKHLQRSHUDELOLW\DQGWKHSODQVDQG

VFKHGXOHIRU UHVWRULQJWKHV\VWHPWR23(5$%/(VWDWXV ,IWKHFKDQQHO V LV

LQRSHUDEOH JUHDWHUWKDQGD\VEXWOHVVWKDQGD\VUHSRUWWKHFDXVHRIWKH

LQRSHUDELOLW\ DQGWKHDFWLRQVWDNHQLQWKH$QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUW



$FWLRQ 5LVUHOLHGXSRQWRWUHQGDQGTXDQWLI\SULPDU\WRVHFRQGDU\OHDNDJH ,I5

 LVQRW23(5$%/(ZLWKWKHDLUHMHFWRULQVHUYLFHWKHQHQWHUSURFHGXUHV

&+5(76506,123DQG&+

&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLDWLRQ$FFLGHQW0RQLWRULQJ6XUYHLOODQFH5HTXLUHPHQWV



5DGLDWLRQ$FFLGHQW0RQLWRULQJ,QVWUXPHQWDWLRQ &KDQQHO &KDQQHO

&KHFN &DOLEUDWLRQ

D &RQWDLQPHQW3XUJH 5$  0 5D

E 3ODQW9HQW 5$  0 5D

F $LU(MHFWRU 5  0 5D

G $LU(MHFWRU*ODQG6HDO([KDXVW 5  0 5D

H $0DLQ6WHDP/LQH 5  0 5D

I  %0DLQ6WHDP/LQH 5  0 5D



D 6RXUFHXVHGIRUWKH&+$11(/&$/,%5$7,21VKDOOEHWUDFHDEOHWRWKH

1DWLRQDO ,QVWLWXWHIRU6WDQGDUGVDQG7HFKQRORJ\ 1,67 RUVKDOOEH

REWDLQHGIURPVXSSOLHUV HJ$QDO\WLFV WKDWSURYLGHVRXUFHVWUDFHDEOHWR

RWKHURIILFLDOO\GHVLJQDWHG VWDQGDUGVDJHQFLHV





&<*,

5HYLVLRQ

3DJHRI

 $5($5$',$7,21021,7256



 6859(,//$1&(5(48,5(0(176



&+$11(/&$/,%5$7,21&+$11(/&+(&.DQGD)81&7,21$/ 7(67RI

WKHDUHDUDGLDWLRQPRQLWRUVVKDOOEHSHUIRUPHGDVVSHFLILHGLQ 7DEOH

&<*,

5HYLVLRQ

3DJHRI

7DEOH

$UHD5DGLDWLRQ0RQLWRU6XUYHLOODQFH5HTXLUHPHQWV

,QVWUXPHQW &KDQQHO )XQFWLRQDO &KDQQHO

&KHFN 7HVW &DOLEUDWLRQ

D &RQWURO5RRP 5 ' 4 5

E &RQWDLQPHQW  5 ' 4 5

F 5DGLRFKHPLVWU\/DE 5 ' 4 5

G &KDUJLQJ3XPS5RRP 5 ' 4 5

H 6SHQW)XHO3RRO 5 ' 4 5

I 1XFOHDU6DPSOH5RRP 5 ' 4 5

J ,QFRUH'HWHFWRU$UHD 5 ' 4 5

K 'UXPPLQJ6WDWLRQ 5 ' 4 5

L /HWGRZQ/LQH0RQLWRU 5 ' 4 5

M &RPSRQHQW&RROLQJ:DWHU    

+HDW([FKDQJHU  5 ' 4 5

N $97'0L[HG%HG 5 1$ 4 1$

O 1XFOHDU6DPSOH5RRP:LGH    

5DQJH0RQLWRU 5 1$ 4 1$

P &RQWDLQPHQW6SUD\3XPS:LGH    

5DQJH$UHD0RQLWRU 5 1$ 4 1$

Q 3$663DQHO:LGH5DQJH$UHD  5 1$ 4 1$

0RQLWRU

 :KLOHQRWDQDUHDPRQLWRUE\VWULFWGHILQLWLRQLWVHUYHVDVDQLQGLFDWRURI

LQWHUQDO OHDNDJHDQGSURYLGHVDQLVRODWLRQVLJQDOIRUWKHFRPSRQHQW

FRROLQJV\VWHP

&<*,

5HYLVLRQ

3DJHRI

 5$':$67(75($70(17



 /,48,'5$':$67(75($70(176<67(0



 &21752/6



7KH/LTXLG5DGZDVWH7UHDWPHQW6\VWHPVKDOOEH23(5$%/(DQG DSSURSULDWH

SRUWLRQVRIWKHV\VWHPVKDOOEHXVHGWRUHGXFHUHOHDVHVRI UDGLRDFWLYLW\ZKHQWKH

SURMHFWHGGRVHVGXHWRWKHOLTXLGHIIOXHQWWR 815(675,&7('$5($6ZRXOG

H[FHHGPUHPWRWKHZKROHERG\RUPUHPWRDQ\RUJDQLQDGD\

SHULRG



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



LWKUDGLRDFWLYHOLTXLGZDVWHEHLQJGLVFKDUJHGZLWKRXWWUHDWPHQWDQGLQ H[FHVVRI

WKHDERYHOLPLWVDQGDQ\SRUWLRQRIWKH/LTXLG5DGZDVWH 7UHDWPHQW6\VWHPZKLFK

FRXOGUHGXFHWKHUDGLRDFWLYHOLTXLGZDVWH GLVFKDUJHGQRWLQRSHUDWLRQSUHSDUHDQG

VXEPLWWRWKH&RPPLVVLRQZLWKLQ GD\VD6SHFLDO5HSRUWWKDWLQFOXGHVWKH

IROORZLQJLQIRUPDWLRQ



 ([SODQDWLRQRIZK\OLTXLGUDGZDVWHZDVEHLQJGLVFKDUJHG ZLWKRXW

WUHDWPHQWLGHQWLILFDWLRQRIDQ\LQRSHUDEOHHTXLSPHQWRU VXEV\VWHPVDQG

WKHUHDVRQIRUWKHLQRSHUDELOLW\

 $FWLRQ V WDNHQWRUHWXUQWKHLQRSHUDEOHHTXLSPHQWWR 23(5$%/(

VWDWXVDQG

 6XPPDU\GHVFULSWLRQRIDFWLRQ V WDNHQWRSUHYHQWUHFXUUHQFH



 6859(,//$1&(5(48,5(0(176



  'RVHVGXHWROLTXLGUHOHDVHVWR815(675,&7('$5($6VKDOOEH

SURMHFWHGDWOHDVWRQFHSHUGD\VLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\

DQGSDUDPHWHUVLQWKH2'&0ZKHQ/LTXLG5DGZDVWH7UHDWPHQW6\VWHPV

DUHQRWEHLQJIXOO\XWLOL]HG

 7KHLQVWDOOHG/LTXLG5DGZDVWH7UHDWPHQW6\VWHPVKDOOEHFRQVLGHUHG

23(5$%/(E\PHHWLQJ6HFWLRQ 5DGLRDFWLYH/LTXLG(IIOXHQWV

&RQWUROV DQG6HFWLRQ 'RVH&RQWUROV 



 %$6(6



7KH23(5$%,/,7<RIWKH/LTXLG5DGZDVWH7UHDWPHQW6\VWHPHQVXUHV WKDWWKLV

V\VWHPZLOOEHDYDLODEOHIRUXVHZKHQHYHUOLTXLGHIIOXHQWVUHTXLUH WUHDWPHQWSULRUWR

UHOHDVHWRWKHHQYLURQPHQW 7KHUHTXLUHPHQWWKDWWKH DSSURSULDWHSRUWLRQVRIWKLV

V\VWHPEHXVHGZKHQVSHFLILHGSURYLGHV DVVXUDQFHWKDWWKHUHOHDVHVRI

UDGLRDFWLYHPDWHULDOVLQOLTXLGHIIOXHQWVZLOO EHNHSWDVORZDVLVUHDVRQDEO\

DFKLHYDEOH 7KLVVSHFLILFDWLRQ LPSOHPHQWVWKHUHTXLUHPHQWVRI&)5D

&<*,

5HYLVLRQ

3DJHRI

  • HQHUDO'HVLJQ&ULWHULRQ RI$SSHQGL[$WR&)5DQGWKHGHVLJQREMHFWLYH

JLYHQLQ6HFWLRQ,,'RI$SSHQGL[,WR&)5 7KHVSHFLILHGOLPLWVJRYHUQLQJ

WKHXVHRI WKHDSSURSULDWHSRUWLRQVRIWKH/LTXLG5DGZDVWH7UHDWPHQW6\VWHPZHUH

VSHFLILHGDVDVXLWDEOHIUDFWLRQRIWKHGRVHGHVLJQREMHFWLYHVVHWIRUWKLQ 6HFWLRQ

,,$RI$SSHQGL[$WR&)5IRUOLTXLGHIIOXHQWV

&<*,

5HYLVLRQ

3DJHRI

)LJXUH



/LTXLG5DGZDVWH7UHDWPHQW6\VWHPV(IIOXHQW3DWKVDQG



&RQWUROV



&<*,

5HYLVLRQ

3DJHRI



  *$6(2865$':$67(75($70(176<67(0



 &21752/6



7KH*DVHRXV5DGZDVWH7UHDWPHQW6\VWHPDQGWKH9HQWLODWLRQ([KDXVW

7UHDWPHQW6\VWHPVKDOOEH23(5$%/(DQGDSSURSULDWHSRUWLRQVRIWKHVH

V\VWHPVVKDOOEHXVHGWRUHGXFHUHOHDVHVRIUDGLRDFWLYLW\ZKHQWKH SURMHFWHG

GRVHVLQGD\VGXHWRJDVHRXVHIIOXHQWUHOHDVHVWRDUHDVDWDQGEH\RQGWKH

6,7(%281'$5<ZRXOGH[FHHG

 PUDGWRDLUIURPJDPPDUDGLDWLRQRU

 PUDGWRDLUIURPEHWDUDGLDWLRQRU

 PUHPWRDQ\RUJDQRID0(0%(52)7+(38%/,&



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 

 

 :LWKUDGLRDFWLYHJDVHRXVZDVWHEHLQJGLVFKDUJHGZLWKRXWWUHDWPHQWDQGLQ H[FHVV

RIWKHDERYHOLPLWVSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQZLWKLQ GD\VD

6SHFLDO5HSRUWWKDWLQFOXGHVWKHIROORZLQJLQIRUPDWLRQ

 ([SODQDWLRQRIZK\JDVHRXVUDGZDVWHZDVEHLQJGLVFKDUJHG ZLWKRXW

WUHDWPHQWLGHQWLILFDWLRQRIDQ\LQRSHUDEOHHTXLSPHQWRU VXEV\VWHPVDQG

WKHUHDVRQIRUWKHLQRSHUDELOLW\

 $FWLRQ V WDNHQWRUHVWRUHWKHLQRSHUDEOHHTXLSPHQWWR 23(5$%/(

VWDWXVDQG

 6XPPDU\GHVFULSWLRQRIDFWLRQ V WDNHQWRSUHYHQWUHFXUUHQFH



 6859(,//$1&(5(48,5(0(176



 'RVHVGXHWRJDVHRXVUHOHDVHVWRDUHDVDWDQGEH\RQGWKH6,7(

%281'$5<VKDOOEHSURMHFWHGDWOHDVWRQFHSHUGD\VLQDFFRUGDQFH

ZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH2'&0ZKHQ*DVHRXV

5DGZDVWH7UHDWPHQW6\VWHPVDUHQRWEHLQJIXOO\XWLOL]HG

  7KHLQVWDOOHG*$6(2865$':$67(75($70(176<67(0DQG

9(17,/$7,21(;+$86775($70(176<67(0VKDOOEHFRQVLGHUHG

23(5$%/(E\PHHWLQJ6HFWLRQVDQG &RQWUROV 



 %$6(6



7KH23(5$%,/,7<RIWKH*DVHRXV5DGZDVWH7UHDWPHQW6\VWHPDQGWKH

9HQWLODWLRQ([KDXVW7UHDWPHQW6\VWHPHQVXUHVWKDWWKHV\VWHPVZLOOEH DYDLODEOH

IRUXVHZKHQHYHUJDVHRXVHIIOXHQWVUHTXLUHWUHDWPHQWSULRUWR UHOHDVHWRWKH

HQYLURQPHQW 7KHUHTXLUHPHQWWKDWWKHDSSURSULDWHSRUWLRQV RIWKHVHV\VWHPVEH

XVHGZKHQVSHFLILHGSURYLGHVUHDVRQDEOHDVVXUDQFH WKDWWKHUHOHDVHVRI

UDGLRDFWLYHPDWHULDOVLQJDVHRXVHIIOXHQWVZLOOEHNHSW DVORZDVLVUHDVRQDEO\

DFKLHYDEOH 7KLV&RQWUROLPSOHPHQWVWKH UHTXLUHPHQWVRI&)5D

&<*,

5HYLVLRQ

3DJHRI

  • HQHUDO'HVLJQ&ULWHULRQRI$SSHQGL[ $WR&)5DQGWKHGHVLJQ

REMHFWLYHVJLYHQLQ6HFWLRQ,,'RI$SSHQGL[,WR&)5 7KHVSHFLILHGOLPLWV

JRYHUQLQJWKHXVHRIDSSURSULDWH SRUWLRQVRIWKHV\VWHPVZHUHVSHFLILHGDVD

VXLWDEOHIUDFWLRQRIWKHGRVH GHVLJQREMHFWLYHVVHWIRUWKLQ6HFWLRQV,,%DQG,,&RI

$SSHQGL[,WR&)5 IRUJDVHRXVHIIOXHQWV



&<*,

5HYLVLRQ

3DJHRI



)LJXUH



  • DVHRXV5DGZDVWH7UHDWPHQW6\VWHPV(IIOXHQW3DWKVDQG



&RQWUROV



&<*,

5HYLVLRQ

3DJHRI



 62/,'5$':$67(6<67(0



 &21752/6



 7KHVROLGUDGZDVWHV\VWHPVKDOOEHXVHGDVDSSOLFDEOHLQDFFRUGDQFHZLWK

WKH3URFHVV&RQWURO3URJUDPIRUWKHVROLGLILFDWLRQDQGSDFNDJLQJRI

UDGLRDFWLYHZDVWHWRHQVXUHPHHWLQJWKHUHTXLUHPHQWVRI&)5SULRU WR

VKLSPHQWRIUDGLRDFWLYHZDVWHVIURPWKHVLWH



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



,IWKHSDFNDJLQJUHTXLUHPHQWVRI&)5DUHQRWVDWLVILHGVXVSHQG VKLSPHQWV

RIGHILFLHQWO\SDFNDJHGVROLGUDGLRDFWLYHZDVWHVIURPWKHVLWH XQWLODSSURSULDWH

FRUUHFWLYHPHDVXUHVKDYHEHHQWDNHQ

&<*,

5HYLVLRQ

3DJHRI



 &21),*85$7,21&+$1*(6



 &21752/6



0DMRUFKDQJHVWRWKH5DGLRDFWLYH:DVWH7UHDWPHQW6\VWHPV /LTXLG 6ROLGDQG

  • DVHRXV VKDOOEHUHSRUWHGWRWKH&RPPLVVLRQE\WKHLQFOXVLRQRIDVXLWDEOH

GLVFXVVLRQRUE\UHIHUHQFHWRDVXLWDEOHGLVFXVVLRQRIHDFK FKDQJHLQWKH$QQXDO

5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWIRUWKHSHULRGLQ ZKLFKWKHFKDQJHVZHUH

PDGH 0DMRUFKDQJHVWR5DGLRDFWLYH:DVWH 7UHDWPHQW6\VWHPV /LTXLG

  • DVHRXVDQG6ROLG VKDOOLQFOXGHWKH IROORZLQJ



 &KDQJHVLQSURFHVVHTXLSPHQWFRPSRQHQWVDQGVWUXFWXUHV IURPWKRVHLQ

XVH HJGHOHWLRQRIHYDSRUDWRUVDQGLQVWDOODWLRQ RIGHPLQHUDOL]HUV 



 &KDQJHVLQWKHGHVLJQRI5DGLRDFWLYH:DVWH7UHDWPHQW 6\VWHPVWKDWFRXOG

VLJQLILFDQWO\DOWHUWKHFKDUDFWHULVWLFVDQGRU TXDQWLWLHVRIHIIOXHQWVUHOHDVHG



 &KDQJHVLQV\VWHPGHVLJQZKLFKPD\LQYDOLGDWHWKHDFFLGHQW DQDO\VLV

HJFKDQJHVLQWDQNFDSDFLW\WKDWZRXOGDOWHUWKH FXULHVUHOHDVHG 



1RWH 7KH5DGLRDFWLYH:DVWH7UHDWPHQW6\VWHPVDUHWKRVHV\VWHPVXVHGWR

PLQLPL]HWKHWRWDODFWLYLW\UHOHDVHGIURPWKHVLWH



1RWH &KDQJLQJWKHILOWHUVXVHGUHSODFHPHQWUHVLQVRUPLQRUPRGLILFDWLRQV SLSH RUYDOYH

GLPHQVLRQV RU PDQXIDFWXUHUV  GXH WR PDLQWHQDQFH DFWLYLWLHV ZRXOG QRW EH

FRQVLGHUHGDPDMRUFKDQJH



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



7KHGLVFXVVLRQRIHDFKFKDQJHVKDOOFRQWDLQ

 DVXPPDU\LQDFFRUGDQFHZLWK&)5RIWKHHYDOXDWLRQ WKDWOHGWR

WKHGHWHUPLQDWLRQWKDWWKHFKDQJHFRXOGEHPDGH

 VXIILFLHQWGHWDLOHGLQIRUPDWLRQWRVXSSRUWWKHUHDVRQIRUWKH FKDQJH

 DGHWDLOHGGHVFULSWLRQRIWKHHTXLSPHQWFRPSRQHQWVDQG SURFHVVHV

LQYROYHGDQGWKHLQWHUIDFHVZLWKRWKHUSODQWV\VWHPV

 DQHYDOXDWLRQRIWKHFKDQJHZKLFKVKRZVWKHSUHGLFWHG UHOHDVHVRI

UDGLRDFWLYHPDWHULDOVLQOLTXLGDQGJDVHRXVHIIOXHQWV IURPWKRVHSUHYLRXVO\

SUHGLFWHG

 DQHYDOXDWLRQRIWKHFKDQJHZKLFKVKRZVWKHH[SHFWHG PD[LPXP

H[SRVXUHVWRLQGLYLGXDOVLQDOO815(675,&7(' $5($6DQGWRWKH

0(0%(562)7+(38%/,&IURPWKRVHSUHYLRXVO\HVWLPDWHG

 GRFXPHQWDWLRQRIWKHIDFWWKDWWKHFKDQJHZDVUHYLHZHGDQGIRXQG

DFFHSWDEOHE\WKH3ODQW2SHUDWLRQV5HYLHZ&RPPLWWHH

&<*,

5HYLVLRQ

3DJHRI

 352&(66&21752/352*5$0



D 7KH3URFHVV&RQWURO3URJUDP 3&3 VKDOOEHDGRFXPHQWRXWOLQLQJWKHPHWKRGRI

SURFHVVLQJZHWRUGU\VROLGZDVWHVDQGIRUVROLGLILFDWLRQRIOLTXLGZDVWHV ,WVKDOO

LQFOXGHWKHSURFHVVSDUDPHWHUVDQGHYDOXDWLRQPHWKRGVXVHGWRDVVXUHPHHWLQJ

WKHUHTXLUHPHQWVRU &)53DUWSULRUWRVKLSPHQWRIFRQWDLQHUVRI

UDGLRDFWLYHZDVWHIURPWKHVLWH



E /LFHQVHHPD\PDNHFKDQJHVWRWKH3&3DQGVKDOOVXEPLWWRWKH&RPPLVVLRQ

ZLWKWKH 5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWIRUWKHSHULRGLQZKLFKDQ\

FKDQJH V LVPDGHDFRS\ RIWKHQHZ3&3DQGDVXPPDU\FRQWDLQLQJ



 VXIILFLHQWO\GHWDLOHGLQIRUPDWLRQWRVXSSRUWWKHUDWLRQDOHIRUWKHFKDQJH



 DGHWHUPLQDWLRQWKDWWKHFKDQJHZLOOQRWUHGXFHWKHRYHUDOO

FRQIRUPDQFHRIWKH VROLGLILHGZDVWHSURGXFWWRH[LVWLQJFULWHULDIRU

VROLGZDVWHVDQG



 GRFXPHQWDWLRQRIWKHIDFWWKDWWKHFKDQJHKDVEHHQUHYLHZHGDQGIRXQG

DFFHSWDEOHE\WKHRQVLWHUHYLHZIXQFWLRQ



F /LFHQVHHLQLWLDWHGFKDQJHVVKDOOEHFRPHHIIHFWLYHDIWHUUHYLHZDQG

DFFHSWDQFHE\WKH 3ODQW2SHUDWLRQ5HYLHZ&RPPLWWHH

&<*,

5HYLVLRQ

3DJHRI

 5$',2/2*,&$/(19,5210(17$/021,725,1*



  021,725,1*352*5$0



 &21752/6



7KH5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP 5(03 VKDOOEH FRQGXFWHG

DVVSHFLILHGLQ7DEOHDWWKHORFDWLRQVJLYHQLQ)LJXUHV DQG



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



 ,IWKHUDGLRORJLFDOHQYLURQPHQWDOPRQLWRULQJSURJUDPLVQRWFRQGXFWHGDV

VSHFLILHGLQ7DEOHSUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQLQWKH

$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWDGHVFULSWLRQRIWKH

UHDVRQVIRUQRWFRQGXFWLQJWKHSURJUDPDVUHTXLUHGDQGWKHSODQVIRU

SUHYHQWLQJDUHFXUUHQFH 'HYLDWLRQVDUHSHUPLWWHGIURPWKHUHTXLUHG

VDPSOLQJVFKHGXOHLIVSHFLPHQVDUHXQREWDLQDEOHGXHWRKD]DUGRXV

FRQGLWLRQVVHDVRQDODYDLODELOLW\RUWRPDOIXQFWLRQRIDXWRPDWLFVDPSOLQJ

HTXLSPHQW ,IWKHODWWHUHIIRUWVVKDOOEHPDGHWRFRPSOHWHFRUUHFWLYHDFWLRQ

SULRUWRWKHHQGRIWKHQH[WVDPSOLQJSHULRG 6DPSOLQJSHULRGVIRUWKLV

VSHFLILFDWLRQDUHXVXDOO\RIRQHZHHNGXUDWLRQ ,IFRQWLQXRXVZDWHU

VDPSOLQJHTXLSPHQWLVRXWRIVHUYLFHWKHPLQXWHDOLTXRWVDPSOLQJ

SHULRGGRHVQRWPHDQWKDWJUDEVDPSOHVPXVWEHWDNHQHYHU\PLQXWHV

EXWRQHJUDEVDPSOHRQFHHDFKZHHNLVVXIILFLHQWXQWLOWKHDXWRPDWLF

VDPSOLQJHTXLSPHQWLVUHVWRUHGWRVHUYLFH



 ,IWKHOHYHORIUDGLRDFWLYLW\DVDUHVXOWRISODQWHIIOXHQWVLQDQHQYLURQPHQWDO

VDPSOLQJPHGLXPDWRQHRUPRUHRIWKHORFDWLRQVVSHFLILHGH[FHHGVWKH

UHSRUWLQJOHYHOVRI7DEOHZKHQDYHUDJHGRYHUDQ\FDOHQGDUTXDUWHU

SUHSDUHDQGVXEPLWWRWKH&RPPLVVLRQZLWKLQGD\VIURPUHFHLSWRIWKH

ODERUDWRU\DQDO\VLVD6SHFLDO5HSRUWWKDWLGHQWLILHVWKHFDXVH V IRU

H[FHHGLQJWKHOLPLW V DQGGHILQHVWKHFRUUHFWLYHDFWLRQVWREHWDNHQWR

UHGXFHUDGLRDFWLYHHIIOXHQWVVRWKDWWKHSRWHQWLDODQQXDOGRVH WRD

0(0%(52)7+(38%/,&LVOHVVWKDQWKHFDOHQGDU\HDUOLPLWVRI6HFWLRQV

DQG &RQWUROV 



KHQPRUHWKDQRQHRIWKHUDGLRQXFOLGHVLQ7DEOHDUHGHWHFWHGLQWKH

VDPSOLQJPHGLXPWKLVUHSRUWVKDOOEHVXEPLWWHGLI







KHQUDGLRQXFOLGHVRWKHUWKDQWKRVHLQ7DEOHDUHGHWHFWHGDQGDUHWKH

UHVXOWRISODQWHIIOXHQWVWKLVUHSRUWVKDOOEHVXEPLWWHGLIWKHSRWHQWLDODQQXDO

GRVHWRD0(0%(52)7+(38%/,&IURPDOOUDGLRQXFOLGHVLVJUHDWHUWKDQ

&<*,

5HYLVLRQ

3DJHRI

WKHFDOHQGDU\HDUOLPLWRI6HFWLRQVDQG &RQWUROV  7KLV

UHSRUW LVQRWUHTXLUHGLIWKHPHDVXUHGOHYHORIUDGLRDFWLYLW\ZDVQRWWKH

UHVXOWRI SODQWHIIOXHQWVKRZHYHULQVXFKDQHYHQWWKHFRQGLWLRQVKDOOEH

UHSRUWHG DQGGHVFULEHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ

5HSRUW



7KHPHWKRGRORJ\DQGSDUDPHWHUVXVHGWRHVWLPDWHWKHSRWHQWLDODQQXDO

GRVHWRD 0(0%(52)7+(38%/,&VKDOOEHLQGLFDWHGLQWKLVUHSRUW



 :LWKPLONRUIUHVKOHDI\YHJHWDEOHVDPSOHVXQDYDLODEOHIURPRQHRUPRUHRI

WKHVDPSOLQJORFDWLRQVLQGLFDWHGRQ)LJXUHDGLVFXVVLRQVKDOOEH

LQFOXGHGLQWKH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWZKLFK

LGHQWLILHVWKHFDXVHIRUWKHXQDYDLODELOLW\RIVDPSOHVDQGLGHQWLILHVORFDWLRQV

IRUREWDLQLQJUHSODFHPHQWVDPSOHV ,QVHOHFWLQJUHSODFHPHQWVDPSOHV

FRQVLGHUWKHLPSOLFDWLRQVRIFROOHFWLQJVDPSOHVRXWVLGHWKHQRUPDO5(03

LQJHVWLRQSDWKZD\ ,QSDUWLFXODUUHFRJQL]HWKDWSHUHQQLDOYHJHWDWLRQIURP

UHODWLYHO\XQGLVWXUEHGDUHDVLVOLNHO\WRKDYHKLJKHUFRQFHQWUDWLRQVRI&V

WKDQYHJHWDWLRQJURZQLQVRLOWKDWLVUHJXODUO\GLVWXUEHGE\FXOWLYDWLRQ

DQGKDUYHVWLQJDFWLYLWLHV ,IDPLONRUOHDI\YHJHWDEOHVDPSOHORFDWLRQ

EHFRPHVXQDYDLODEOHWKHORFDWLRQIURPZKLFKVDPSOHVZHUHXQDYDLODEOH

PD\WKHQEHGHOHWHGSURYLGHGWKDWDFRPSDUDEOHORFDWLRQLVDGGHGWRWKH

UDGLRORJLFDOHQYLURQPHQWDOPRQLWRULQJSURJUDPDVGHVFULEHGLQWKH2'&0

XQOHVVQRRWKHUVDPSOHORFDWLRQLVDYDLODEOH



 6859(,//$1&(5(48,5(0(176



7KHUDGLRORJLFDOHQYLURQPHQWDOVDPSOHVVKDOOEHFROOHFWHGSXUVXDQWWR 7DEOH

IURPWKHVSHFLILFORFDWLRQVJLYHQLQWKHWDEOHDQGILJXUH V JLYHQLQWKH2'&0DQG

VKDOOEHDQDO\]HGSXUVXDQWWRWKHUHTXLUHPHQWVRI7DEOH DQGWKHGHWHFWLRQ

FDSDELOLWLHVUHTXLUHGE\7DEOH



 %$6(6



7KH5(03UHTXLUHGE\WKLV&RQWUROSURYLGHVUHSUHVHQWDWLYHPHDVXUHPHQWV RI

UDGLDWLRQDQGRIUDGLRDFWLYHPDWHULDOVLQWKRVHH[SRVXUHSDWKZD\VDQG IRUWKRVH

UDGLRQXFOLGHVWKDWOHDGWRWKHKLJKHVWSRWHQWLDOUDGLDWLRQ H[SRVXUHVWR0(0%(56

2)7+(38%/,&UHVXOWLQJIURPSODQWRSHUDWLRQ 7KLVPRQLWRULQJSURJUDP

LPSOHPHQWV6HFWLRQ,9%RI$SSHQGL[,WR &)5DQGWKHUHE\VXSSOHPHQWV

WKH5(76E\YHULI\LQJWKDWWKH PHDVXUDEOHFRQFHQWUDWLRQVRIUDGLRDFWLYHPDWHULDOV

DQGOHYHOVRIUDGLDWLRQ DUHQRWKLJKHUWKDQH[SHFWHGRQWKHEDVLVRIWKHHIIOXHQW

PHDVXUHPHQWV DQGWKHPRGHOLQJRIWKHHQYLURQPHQWDOH[SRVXUHSDWKZD\V

  • XLGDQFHIRU WKLVPRQLWRULQJSURJUDPLVSURYLGHGE\WKH5DGLRORJLFDO$VVHVVPHQW

%UDQFK7HFKQLFDO3RVLWLRQRQ(QYLURQPHQWDO0RQLWRULQJ5HYLVLRQ 1RYHPEHU









&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP

(;32685(3$7+:$< 180%(52)6$03/(6  6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( 6$03/(/2&$7,216 D  &2//(&7,21 2) $1$/<6,6

)5(48(1&<

 $,5%251(   

D 5DGLRLRGLQH LQGLFDWRU 6DPSOHUV  &RQWLQXRXVRSHUDWLRQRIVDPSOHUZLWK 5DGLRLRGLQHFDQLVWHU $QDO\]HZLWKLQ

 FRQWURO 6DPSOHU  VDPSOHFROOHFWLRQDWOHDVWZHHNO\ D  GD\VRIFROOHFWLRQIRU,

   

E 3DUWLFXODWH LQGLFDWRU 6DPHDVDERYH 3DUWLFXODWHVDPSOHU $QDO\]HIRU

FRQWURO JURVVEHWDUDGLRDFWLYLW\KRXUV

IROORZLQJILOWHUFKDQJH F  3HUIRUP

JDPPDLVRWRSLFDQDO\VLVRQHDFK

VDPSOHIRUZKLFKJURVVEHWDDFWLYLW\

LV!WLPHVWKHPHDQRIRIIVLWH

VDPSOHV 3HUIRUPJDPPDLVRWRSLF

DQDO\VLVRQFRPSRVLWH E\ORFDWLRQ 

VDPSOHDWOHDVWRQFHSHUGD\V G 

 ',5(&7 LQGLFDWRU 'RVLPHWHUVDWOHDVWTXDUWHUO\ *DPPDGRVHTXDUWHUO\

5$',$7,21 E  FRQWURO

SODFHGJUHDWHUWKDQPLOHVIURP

SODQWVLWH 

  :$7(5%251(   

FRQWURO 6KRUHPRQW  &RPSRVLWH VDPSOHFROOHFWHGRYHUD *URVVEHWDDQGJDPPDLVRWRSLF

D 6XUIDFH H 

SHULRGRIGD\V I  DQDO\VLVRIHDFKFRPSRVLWHVDPSOH

 LQGLFDWRU &RQGHQVHU:DWHU'LV

FKDUJH   7ULWLXPDQDO\VLVRIRQHFRPSRVLWH



  VDPSOHDWOHDVWRQFHSHUGD\V G 



  



LQGLFDWRU 2QWDULR:DWHU'LVWULFW 6DPHDVDERYH I   6DPHDVDERYH

E 'ULQNLQJ  

 ,QWDNH 

  

 6HPLDQQXDOO\ *DPPDLVRWRSLFDQDO\VLVRIHDFK

FRQWURO 6KRUHPRQW 

F 6KRUHOLQH6HGLPHQW

LQGLFDWRU 2QWDULR:DWHU'LVWULFW  VDPSOH G 

%HDU&UHHN   

 

 &RPSRVLWHVDPSOHWREHFROOHFWHGE\FROOHFWLQJDQDOLTXRWDWLQWHUYDOVQRWH[FHHGLQJKRXUV

&<*,

5HYLVLRQ

3DJHRI



(;32685(3$7+:$< 180%(52)6$03/(6  6$03/,1*$1' 7<3($1')5(48(1&<

$1'256$03/( 6$03/(/2&$7,216 D  &2//(&7,21 2) $1$/<6,6

)5(48(1&<

 ,1*(67,21   

D 0LON 6XSSOHPHQWDO $WOHDVWRQFHSHUGD\V *DPPDLVRWRSLFDQG,DQDO\VLV

 -XQHWKURXJK2FWREHU   RIHDFKVDPSOH GJ 

  

6XSSOHPHQWDO $WOHDVWRQFHSHUGD\V *DPPDLVRWRSLFDQG,DQDO\VLV

1RYHPEHUWKURXJK0D\   RIHDFKVDPSOH GJ 

 

E )LVK FRQWURO 7ZLFHGXULQJILVKLQJVHDVRQLQFOXGLQJ  *DPPDLVRWRSLFDQDO\VLVRQHGLEOH

 LQGLFDWRU 2IIVKRUHDW*LQQD  DWOHDVWIRXUVSHFLHV SRUWLRQVRIHDFKVDPSOH GJ 

  

F )RRG3URGXFWV FRQWURO $QQXDODWWLPHRIKDUYHVW *DPPDLVRWRSLFDQDO\VLVRQHGLEOH

LQGLFDWRU 2QVLWH  6DPSOHIURPWZRRIWKHIROORZLQJ SRUWLRQRIHDFKVDPSOH GJ 

  DSSOHV 

  FKHUULHV 

  2WKHUFURSVJURZQRQ 

 VLWHE\ FRQWUDFWIDUPHU 

  

FRQWURO $WWLPHRIKDUYHVW 2QHVDPSOHRI *DPPDLVRWRSLFDQDO\VLVRQHGLEOH

LQGLFDWRU  EURDGOHDIYHJHWDWLRQ  SRUWLRQRIHDFKVDPSOH GJ 

1HDUHVWRIIVLWHJDUGHQZLWKLQPLOHV  RWKHUYHJHWDEOH

LQWKHKLJKHVW'4PHWHRURORJLFDO

VHFWRURURQVLWHJDUGHQ 



 OHDYHVIURPGLIIHUHQWSODQWVSHFLHVFRPSRVLWHG

&<*,

5HYLVLRQ

3DJHRI

7DEOH



7DEOH1RWDWLRQ



D 6SHFLILFSDUDPHWHUVRIGLVWDQFHDQGGLUHFWLRQVHFWRUIURPWKHFHQWHUOLQHRIWKH

UHDFWRU DQGDGGLWLRQDOGHVFULSWLRQZKHUHSHUWLQHQWVKDOOEHSURYLGHGIRUHDFKDQG

HYHU\VDPSOH ORFDWLRQLQ7DEOHLQDWDEOHDQGILJXUHVLQWKH2'&0

'HYLDWLRQVDUHSHUPLWWHGIURP WKHUHTXLUHGVDPSOLQJVFKHGXOHLIVSHFLPHQVDUH

XQREWDLQDEOHGXHWRFLUFXPVWDQFHV VXFKDVKD]DUGRXVFRQGLWLRQVVHDVRQDO

XQDYDLODELOLW\LQFOHPHQWZHDWKHUDQGPDOIXQFWLRQRIDXWRPDWLFVDPSOLQJ

HTXLSPHQW ,IVSHFLPHQVDUHXQDYDLODEOHGXHWRVDPSOLQJ HTXLSPHQWPDOIXQFWLRQ

HIIRUWVKDOOEHPDGHWRFRPSOHWHFRUUHFWLYHDFWLRQSULRUWRWKH HQGRIWKHQH[W

VDPSOLQJSHULRG $OOGHYLDWLRQVIURPWKHVDPSOLQJVFKHGXOHVKDOOEHGRFXPHQWHG

LQWKHQH[W$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW ,WLVUHFRJQL]HG

WKDWDWWLPHVLWPD\QRWEHSRVVLEOHRUSUDFWLFDEOHWRFRQWLQXHWRREWDLQVDPSOHVRI

WKHPHGLDRIFKRLFHDWWKHPRVWGHVLUHGORFDWLRQRUWLPH ,QWKHVHLQVWDQFHV

VXLWDEOH DOWHUQDWLYHPHGLDDQGORFDWLRQVPD\EHFKRVHQIRUWKHSDUWLFXODUSDWKZD\

LQTXHVWLRQ DQGDSSURSULDWHVXEVWLWXWLRQVPDGHZLWKLQGD\VLQWKHUDGLRORJLFDO

HQYLURQPHQWDO PRQLWRULQJSURJUDPDVGHVFULEHGLQWKH2'&0 6XEPLWLQWKHQH[W

$QQXDO5DGLRDFWLYH (IIOXHQW5HOHDVH5HSRUWGRFXPHQWDWLRQIRUDFKDQJHLQWKH

2'&0LQFOXGLQJDUHYLVHG ILJXUH V DQGWDEOHIRUWKH2'&0UHIOHFWLQJWKHQHZ

ORFDWLRQ V ZLWKVXSSRUWLQJLQIRUPDWLRQLGHQWLI\LQJWKHFDXVHRIWKHXQDYDLODELOLW\RI

VDPSOHVIRUWKHSDWKZD\DQGMXVWLI\LQJ WKHVHOHFWLRQRIWKHQHZORFDWLRQ V IRU

REWDLQLQJVDPSOHV



E 2QHRUPRUHLQVWUXPHQWVVXFKDVDSUHVVXUL]HGLRQFKDPEHUIRUPHDVXULQJDQG

UHFRUGLQJGRVHUDWHFRQWLQXRXVO\PD\EHXVHGLQSODFHRIRULQDGGLWLRQWR

LQWHJUDWLQJGRVLPHWHUV )RUWKHSXUSRVHVRIWKLVWDEOHDGRVLPHWHULVFRQVLGHUHG

WREHRQHSKRVSKRUWZR RUPRUHSKRVSKRUVLQRQHSDFNHWDUHFRQVLGHUHGWREH

WZRRUPRUHGRVLPHWHUV )LOP EDGJHVVKDOOQRWEHXVHGIRUPHDVXULQJGLUHFW

UDGLDWLRQ 7KHVWDWLRQVLVQRWDQDEVROXWHQXPEHU 7KHQXPEHURIGLUHFW

UDGLDWLRQPRQLWRULQJVWDWLRQVPD\EHUHGXFHGDFFRUGLQJWRJHRJUDSKLFDOOLPLWDWLRQV

HJVRPHVHFWRUVPD\EHRYHUZDWHUVRWKDWWKHQXPEHU RIGRVLPHWHUVPD\EH

UHGXFHGDFFRUGLQJO\ 7KHIUHTXHQF\RIDQDO\VLVRUUHDGRXWIRU GRVLPHWU\V\VWHPV

ZLOOGHSHQGXSRQWKHFKDUDFWHULVWLFVRIWKHVSHFLILFV\VWHPXVHGDQG VKRXOGEH

VHOHFWHGWRREWDLQRSWLPXPGRVHLQIRUPDWLRQZLWKPLQLPDOIDGLQJ



F $LUERUQHSDUWLFXODWHVDPSOHILOWHUVVKDOOEHDQDO\]HGIRUJURVVEHWDUDGLRDFWLYLW\

RU PRUHKRXUVDIWHUVDPSOLQJWRDOORZIRUUDGRQDQGWKRURQGDXJKWHUGHFD\

,IJURVVEHWD DFWLYLW\LQDLUSDUWLFXODWHVDPSOHVLVJUHDWHUWKDQWLPHVWKH\HDUO\

PHDQRIFRQWURO VDPSOHVJDPPDLVRWRSLFDQDO\VLVVKDOOEHSHUIRUPHGRQWKH

LQGLYLGXDOVDPSOHV



G *DPPDLVRWRSLFDQDO\VLVPHDQVWKHLGHQWLILFDWLRQDQGTXDQWLILFDWLRQRIJDPPD

HPLWWLQJ UDGLRQXFOLGHVWKDWPD\EHDWWULEXWDEOHWRWKHHIIOXHQWVIURPWKHIDFLOLW\



&<*,

5HYLVLRQ

3DJHRI



H 7KHFRQWUROVDPSOHVKDOOEHWDNHQDWDGLVWDQFHEH\RQGVLJQLILFDQWLQIOXHQFHRI

WKHGLVFKDUJH7KHLQGLFDWRUVDPSOHVKDOOEHWDNHQLQDQDUHDEH\RQGEXWQHDU

WKHPL[LQJ ]RQH



I $FRPSRVLWHVDPSOHLVRQHLQZKLFKWKHTXDQWLW\ DOLTXRW RIOLTXLGVDPSOHGLV

SURSRUWLRQDOWRWKHTXDQWLW\RIIORZLQJOLTXLGDQGLQZKLFKWKHPHWKRGRIVDPSOLQJ

HPSOR\HG UHVXOWVLQDVSHFLPHQWKDWLVUHSUHVHQWDWLYHRIWKHOLTXLGIORZ ,QWKLV

SURJUDPFRPSRVLWH VDPSOHDOLTXRWVVKDOOEHFROOHFWHGDWWLPHLQWHUYDOVWKDWDUH

YHU\VKRUW HJKRXUO\ UHODWLYHWRWKHFRPSRVLWLQJSHULRG HJPRQWKO\ LQRUGHU

WRDVVXUHREWDLQLQJDUHSUHVHQWDWLYHVDPSOH



J 7KHGRVHVKDOOEHFDOFXODWHGIRUWKHPD[LPXPRUJDQDQGDJHJURXSXVLQJWKH

PHWKRGRORJ\DQGSDUDPHWHUVLQWKH2&'0

&<*,

5HYLVLRQ

3DJHRI

 (19,5210(17$/021,7256$03/(/2&$7,216



$OOVDPSOHORFDWLRQVDUHVSHFLILHGRQ7DEOHDOLVWRIGLUHFWLRQDQGGLVWDQFHWR

VDPSOHSRLQWV ,QGLFDWRUDQGFRQWUROVDPSOHVUHTXLUHGE\WKHHQYLURQPHQWDO

SURJUDPDUHQRWHGE\DQ,RUD&



)LJXUHVKRZVWKHRQVLWH VDPSOHORFDWLRQVIRUDLUERUQHSDUWLFXODWHVUDGLRLRGLQH

DQGGLUHFW UDGLDWLRQ $OVRLQGLFDWHGRQ)LJXUHLVWKHRQVLWHYHJHWDEOHJDUGHQ

DVZHOODVWKHSODFHPHQWRISRVWDFFLGHQWGRVLPHWHUVORFDWLRQVDQG

'RVLPHWHUORFDWLRQVDUHFRORFDWHGZLWKWKHDLUPRQLWRUVDPSOHUV 7KH

RQVLWHJDUGHQLVORFDWHGLQWKH6(VHFWRUQHDUWKH FORVHVWUHVLGHQWZKRLVWKHUHDO

PD[LPDOO\H[SRVHGLQGLYLGXDOUDWKHUWKDQLQWKH(6(VHFWRUZKLFKKDVWKHKLJKHVW

'4



)LJXUHJLYHVWKHORFDWLRQRIWKHPLONKHUGVQHDUWKHSODQW 2QWKLVPDSLV DOVR

LQFOXGHGWKH2QWDULR:DWHU'LVWULFWLQWDNHSXPSLQJVWDWLRQZKHUHODNHZDWHULV

VDPSOHG SULRUWRWUHDWPHQW



)LJXUHVKRZVWKHRIIVLWHFRQWUROORFDWLRQVIRUGLUHFWUDGLDWLRQDVPHDVXUHGE\

GRVLPHWHUV



)LJXUHVKRZVWKHRIIVLWHVDPSOHORFDWLRQVIRUDLUERUQHSDUWLFXODWHVDQG

UDGLRLRGLQH 6DPSOHVWDWLRQVDQGDUHVLWXDWHGQHDUSRSXODWLRQFHQWHUV

HEVWHUDQG:LOOLDPVRQORFDWHG DSSUR[LPDWHO\PLOHVIURPWKH*LQQD6LWH

'RVLPHWHUORFDWLRQVDUHFRORFDWHGZLWKDLU PRQLWRUVDPSOHUV



 2QVLWHUHIHUVWRWKHDUHDVXUURXQGLQJWKH*LQQD3ODQWERXQGHGE\*LQQD

SURSHUW\ OLQHV 2IIVLWHUHIHUVWRWKHDUHDEH\RQGWKHLPPHGLDWH*LQQD

SURSHUW\

$LU6DPSOHUZDVUHORFDWHGLQIRUUHOLDEOHHOHFWULFSRZHUVRXUFH

7/'UHPDLQVLQLWVRULJLQDOORFDWLRQIRUFRQVLVWHQF\RIGLUHFWUDGLDWLRQ

WUHQGLQJ



&<*,

5HYLVLRQ

3DJHRI

7DEOH

/RFDWLRQ'LUHFWLRQDQG'LVWDQFHVWR6DPSOH3RLQWV

$LU6DPSOH/RFDWLRQV

6WDWLRQ 7\SH &RRUGLQDWHV &RRUGLQDWHV 'LUHFWLRQ 'LVWDQFH

/DWLWXGH1  /RQJLWXGH:  GHJUHHV  PHWHUV 

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 &    

 ,    

 &    

 ,    

 &    

 ,    

DWHU6DPSOH/RFDWLRQV

6WDWLRQ 7\SH &RRUGLQDWHV &RRUGLQDWHV 'LUHFWLRQ 'LVWDQFH

/DWLWXGH1  /RQJLWXGH:  GHJUHHV  PHWHUV 

6KRUHPRQW &    

2QWDULR:DWHU ,    

'LVWULFW,QWDNH

&LUFXODWLRQ:DWHU 6    

,QWDNH

&LUFXODWLRQ:DWHU ,    

'LVFKDUJH

'HHU&UHHN 6 3RLQWVGRZQ 3RLQWVGRZQVWUHDP 1$ 1$

VWUHDP IURP2XWIDOO

IURP2XWIDOO

0LON6DPSOH/RFDWLRQV

6WDWLRQ 7\SH &RRUGLQDWHV &RRUGLQDWHV 'LUHFWLRQ 'LVWDQFH

/DWLWXGH1  /RQJLWXGH:  GHJUHHV  PHWHUV 

)DUP$ 6    

)DUP% 6    

&<*,

5HYLVLRQ

3DJHRI





3URGXFH6DPSOHV

'HVFULSWLRQ 7\SH &RRUGLQDWHV &RRUGLQDWHV 'LUHFWLRQ 'LVWDQFH

/DWLWXGH1  /RQJLWXGH:  GHJUHHV  PHWHUV 

2QVLWH*DUGHQV ,    

   

   

3XUFKDVHGIURP &    

IDUPV!PLOHV

)LVK6DPSOHV 6HGLPHQW6DPSOHV

'HVFULSWLRQ 7\SH 'HVFULSWLRQ 7\SH

'LVFKDUJH3OXPH , 2:'6KRUHOLQH ,

/DNH2QWDULR!PLOHV & 6KRUHPRQW !PLOHV  &

HVW

RI*LQQD

/DNH2QWDULR%HQWKLF 6

'RVLPHWHU6DPSOH/RFDWLRQV

6WDWLRQ 7\SH &RRUGLQDWHV &RRUGLQDWHV 'LUHFWLRQ 'LVWDQFH

/DWLWXGH1  /RQJLWXGH:  GHJUHHV  PHWHUV 

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 &    

 ,    

 &    

 ,    

 &    

 ,    

 ,    

 ,    

 ,    

&<*,

5HYLVLRQ

3DJHRI

'RVLPHWHU6DPSOH/RFDWLRQV &RQWLQXHG 

6WDWLRQ 7\SH &RRUGLQDWHV &RRUGLQDWHV 'LUHFWLRQ 'LVWDQFH

/DWLWXGH1  /RQJLWXGH:  GHJUHHV  PHWHUV 

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 &    

 &    

 &    

 &    

 &    

 &    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

 ,    

7DEOH1RWHV

/DWLWXGHDQGORQJLWXGHFRRUGLQDWHVDUHEDVHGRQ:RUOG*HRGHWLF6\VWHPRI :*6 

GDWXP

'LUHFWLRQVDQG'LVWDQFHDUHQRWHGIURPWKHFHQWHUOLQHRIWKHUHDFWRU

, ,QGLFDWRU6DPSOH

& &RQWURORUEDFNJURXQGVDPSOH

6 6XSSOHPHQWDOVDPSOH

&<*,

5HYLVLRQ

3DJHRI

)LJXUH





/RFDWLRQRI2QVLWH$LU0RQLWRUVDQG'RVLPHWHUV



&<*,

5HYLVLRQ

3DJHRI

)LJXUH

/RFDWLRQRI)DUPVIRU0LON6DPSOHVDQG2QWDULR:DWHU'LVWULFW

,QWDNH





&<*,

5HYLVLRQ

3DJHRI

)LJXUH

/RFDWLRQRI2IIVLWH'RVLPHWHUV





&<*,

5HYLVLRQ

3DJHRI

)LJXUH

/RFDWLRQRI2IIVLWH$LU0RQLWRUV





&<*,

5HYLVLRQ

3DJHRI



7DEOH



'HWHFWLRQ&DSDELOLWLHVIRU(QYLURQPHQWDO6DPSOH$QDO\VLV

/RZHU/LPLWRI'HWHFWLRQ //' 



$QDO\VLV :DWHU $LUERUQH )LVK 0LON )RRG 6KRUHOLQH

S&LO  3DUWLFXODWH S&LNJ  S&LO  3URGXFWV 6HGLPHQW

2U*DV ZHW S&LNJ  S&LNJ 

S&LP  ZHW GU\

JURVVEHWD D (

+ 

 D 

0Q  

)H  

&R  

=Q  

=U1E  E 

,  (  

&V   D  (    



%D/D  E   E 

&<*,

5HYLVLRQ

3DJHRI



7DEOH



7DEOH1RWDWLRQ



D //'IRUGULQNLQJZDWHU

E 7RWDOIRUSDUHQWDQGGDXJKWHU





7KH//'VKDOOEHFDOFXODWHGDVGHVFULEHGLQ1RWDWLRQ D WR7DEOH

&<*,

5HYLVLRQ

3DJHRI

7DEOH

5HSRUWLQJ/HYHOVIRU5DGLRDFWLYLW\&RQFHQWUDWLRQV

LQ(QYLURQPHQWDO6DPSOHV



$QDO\VLV :DWHU $LUERXUQH )LVK 0LON %URDG /HDI

S&LO  3DUWLFXODWH RU S&LNJZHW  S&LO  9HJHWDEOHV

  • DV S&LNJZHW 

S&LP 

+ (

0Q  (

)H  (

&R  (

&R  (

=Q  (

=U1E  D 

,    (

&V   (  (

&V   (  (

%D/D  D  

&<*,

5HYLVLRQ

3DJHRI

7DEOH

7DEOH1RWDWLRQ



D 7RWDOIRUSDUHQWDQGGDXJKWHU



'HFD\FRUUHFWLRQLQDQDO\VLVRIHQYLURQPHQWDOVDPSOHVLVWDNHQIURPWKHHQGRIWKHVDPSOLQJ

WLPHQRWIURPWKHPLGSRLQWRIWKHVDPSOHSHULRG

&<*,

5HYLVLRQ

3DJHRI

7DEOH

'4DQG;4<HDU$YHUDJH

3ODQW9HQW



'LVWDQFHWRVHFWLRQERXQGDU\LQPHWHUV

'LUHFWLRQ P P P P P P P P P P

'4

1 ( ( ( ( ( ( ( ( ( (

11( ( ( ( ( ( ( ( ( ( (

1( ( ( ( ( ( ( ( ( ( (

(1( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( ( (

(6( ( ( ( ( ( ( ( ( ( (

6( ( ( ( ( ( ( ( ( ( (

66( ( ( ( ( ( ( ( ( ( (

6 ( ( ( ( ( ( ( ( ( (

66: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (
 ( ( ( ( ( ( ( ( ( (
1: ( ( ( ( ( ( ( ( ( (

1: ( ( ( ( ( ( ( ( ( (

11: ( ( ( ( ( ( ( ( ( (

&<*,

5HYLVLRQ

3DJHRI



'LUHFWLRQ P P P P P P P P P P

4

1 ( ( ( ( ( ( ( ( ( (

11( ( ( ( ( ( ( ( ( ( (

1( ( ( ( ( ( ( ( ( ( (

(1( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( ( (

(6( ( ( ( ( ( ( ( ( ( (

6( ( ( ( ( ( ( ( ( ( (

66( ( ( ( ( ( ( ( ( ( (

6 ( ( ( ( ( ( ( ( ( (

66: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (
 ( ( ( ( ( ( ( ( ( (
1: ( ( ( ( ( ( ( ( ( (

1: ( ( ( ( ( ( ( ( ( (

11: ( ( ( ( ( ( ( ( ( (

&<*,

5HYLVLRQ

3DJHRI

7DEOH

'4DQG;4<HDU$YHUDJH-

&RQWDLQPHQW9HQW



'LVWDQFHWRVHFWLRQERXQGDU\LQPHWHUV

'LUHFWLRQ P P P P P P P P P P

'4

1 ( ( ( ( ( ( ( ( ( (

11( ( ( ( ( ( ( ( ( ( (

1( ( ( ( ( ( ( ( ( ( (

(1( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( ( (

(6( ( ( ( ( ( ( ( ( ( (

6( ( ( ( ( ( ( ( ( ( (

66( ( ( ( ( ( ( ( ( ( (

6 ( ( ( ( ( ( ( ( ( (

66: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (
 ( ( ( ( ( ( ( ( ( (
1: ( ( ( ( ( ( ( ( ( (

1: ( ( ( ( ( ( ( ( ( (

11: ( ( ( ( ( ( ( ( ( (

&<*,

5HYLVLRQ

3DJHRI



'LUHFWLRQ P P P P P P P P P P

4

1 ( ( ( ( ( ( ( ( ( (

11( ( ( ( ( ( ( ( ( ( (

1( ( ( ( ( ( ( ( ( ( (

(1( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( ( (

(6( ( ( ( ( ( ( ( ( ( (

6( ( ( ( ( ( ( ( ( ( (

66( ( ( ( ( ( ( ( ( ( (

6 ( ( ( ( ( ( ( ( ( (

66: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (
 ( ( ( ( ( ( ( ( ( (
1: ( ( ( ( ( ( ( ( ( (

1: ( ( ( ( ( ( ( ( ( (

11: ( ( ( ( ( ( ( ( ( (

&<*,

5HYLVLRQ

3DJHRI

7DEOH

'4DQG;4<HDU$YHUDJH

$LU(MHFWRU



'LVWDQFHWRVHFWLRQERXQGDU\LQPHWHUV

'LUHFWLRQ P P P P P P P P P P

'4

1 ( ( ( ( ( ( ( ( ( (

11( ( ( ( ( ( ( ( ( ( (

1( ( ( ( ( ( ( ( ( ( (

(1( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( ( (

(6( ( ( ( ( ( ( ( ( ( (

6( ( ( ( ( ( ( ( ( ( (

66( ( ( ( ( ( ( ( ( ( (

6 ( ( ( ( ( ( ( ( ( (

66: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (
 ( ( ( ( ( ( ( ( ( (
1: ( ( ( ( ( ( ( ( ( (

1: ( ( ( ( ( ( ( ( ( (

11: ( ( ( ( ( ( ( ( ( (

&<*,

5HYLVLRQ

3DJHRI



'LUHFWLRQ P P P P P P P P P P

4

1 ( ( ( ( ( ( ( ( ( (

11( ( ( ( ( ( ( ( ( ( (

1( ( ( ( ( ( ( ( ( ( (

(1( ( ( ( ( ( ( ( ( ( (

( ( ( ( ( ( ( ( ( ( (

(6( ( ( ( ( ( ( ( ( ( (

6( ( ( ( ( ( ( ( ( ( (

66( ( ( ( ( ( ( ( ( ( (

6 ( ( ( ( ( ( ( ( ( (

66: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (

6: ( ( ( ( ( ( ( ( ( (
 ( ( ( ( ( ( ( ( ( (
1: ( ( ( ( ( ( ( ( ( (

1: ( ( ( ( ( ( ( ( ( (

11: ( ( ( ( ( ( ( ( ( (

&<*,

5HYLVLRQ

3DJHRI

 /$1'86(&(1686



 &21752/

  

 $/DQG8VH&HQVXVVKDOOEHFRQGXFWHGDQQXDOO\EHWZHHQ-XQHDQG 2FWREHU

DQGVKDOOLGHQWLI\ZLWKLQDGLVWDQFHRIPLOHVWKHORFDWLRQLQHDFK RIWKH

PHWHRURORJLFDOVHFWRUVRIWKHQHDUHVWPLONDQLPDOWKHQHDUHVW UHVLGHQFHDQGWKH

QHDUHVWJDUGHQRIJUHDWHUWKDQVTXDUHIHHW SURGXFLQJEURDGOHDIYHJHWDWLRQ

,QOLHXRIDJDUGHQFHQVXVEURDGOHDI YHJHWDWLRQVDPSOLQJRIDWOHDVWWKUHH

GLIIHUHQWNLQGVRIYHJHWDWLRQPD\EH SHUIRUPHGLQDQRQVLWHJDUGHQORFDWHGLQWKH

PHWHRURORJLFDOVHFWRUZLWKWKH KLJKHVWDYHUDJHDQQXDOJURZLQJVHDVRQGHSRVLWLRQ

SDUDPHWHU '4 25 DQRWKHUORFDWLRQZLWKDKLJKHU'4WKDQWKHORFDWLRQRIWKH

PD[LPDOO\ H[SRVHGLQGLYLGXDO 



 $33/,&$%,/,7< $WDOO7LPHV



 $&7,21 



 :LWKD/DQG8VH&HQVXVLGHQWLI\LQJDORFDWLRQ V WKDW\LHOGVDFDOFXODWHG

GRVHRUGRVHFRPPLWPHQWJUHDWHUWKDQWKHYDOXHVFXUUHQWO\EHLQJ

FDOFXODWHGLQ6HFWLRQ 6XUYHLOODQFH5HTXLUHPHQWV RIWKH2'&0

LGHQWLI\WKHQHZ ORFDWLRQ V LQWKHQH[W$QQXDO5DGLRDFWLYH(IIOXHQW

5HOHDVH5HSRUW



 :LWKD/DQG8VH&HQVXVLGHQWLI\LQJDORFDWLRQ V WKDW\LHOGVDFDOFXODWHG

GRVHRUGRVHFRPPLWPHQW YLDWKHVDPHH[SRVXUHSDWKZD\ JUHDWHU

WKDQDWDORFDWLRQIURPZKLFKVDPSOHVDUHFXUUHQWO\EHLQJREWDLQHGLQ

DFFRUGDQFHZLWK6HFWLRQ 5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ

&RQWUROV DGGWKHQHZORFDWLRQ V ZLWKLQGD\VWR WKH5(03GHVFULEHG

LQWKH2'&0LISHUPLVVLRQIURPWKHRZQHUWRFROOHFW VDPSOHVFDQEH

REWDLQHGDQGVXIILFLHQWVDPSOHYROXPHLVDYDLODEOH 7KH VDPSOLQJ

ORFDWLRQ V H[FOXGLQJ&RQWUROORFDWLRQ V KDYLQJWKHORZHVW FDOFXODWHG

GRVHRUGRVHFRPPLWPHQW V YLDWKHVDPHH[SRVXUHSDWKZD\ PD\EH

GHOHWHGIURPWKLVPRQLWRULQJSURJUDPDIWHU2FWREHURIWKH\HDU LQZKLFK

WKLV/DQG8VH&HQVXVZDVFRQGXFWHG 6XEPLWLQWKHQH[W$QQXDO

5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWGRFXPHQWDWLRQIRUDFKDQJHLQWKH

2'&0LQFOXGLQJDUHYLVHGILJXUH V DQGWDEOH V IRUWKH2'&0UHIOHFWLQJ

WKHQHZORFDWLRQ V ZLWKLQIRUPDWLRQVXSSRUWLQJWKHFKDQJHLQVDPSOLQJ

ORFDWLRQ V 



 6859(,//$1&(5(48,5(0(176

 

 7KH/DQG8VH&HQVXVVKDOOEHFRQGXFWHGEHWZHHQ-XQHDQG2FWREHU RIHDFK

\HDUXVLQJDPHWKRGWKDWZLOOEHVWSURYLGHWKHQHFHVVDU\ LQIRUPDWLRQVXFKDVE\

GRRUWRGRRUVXUYH\YHKLFXODUVXUYH\DHULDO VXUYH\RUE\FRQVXOWLQJORFDO

DJULFXOWXUDODXWKRULWLHV 7KHUHVXOWVRIWKH /DQG8VH&HQVXVVKDOOEHLQFOXGHGLQ

WKH$QQXDO5DGLRORJLFDO (QYLURQPHQWDO2SHUDWLQJ5HSRUWSXUVXDQWWR6HFWLRQ

RIWKH2'&0

&<*,

5HYLVLRQ

3DJHRI

 %$6(6



7KLVVSHFLILFDWLRQLVSURYLGHGWRHQVXUHWKDWFKDQJHVLQWKHXVHRIDUHDVDW RU

EH\RQGWKH6,7(%281'$5<DUHLGHQWLILHGDQGWKDWPRGLILFDWLRQVWRWKH 5(03

JLYHQLQWKH2'&0DUHPDGHLIUHTXLUHGE\WKHUHVXOWVRIWKLVFHQVXV ,QIRUPDWLRQ

IURPPHWKRGVVXFKDVWKHGRRUWRGRRUVXUYH\ YHKLFXODUVXUYH\DHULDOVXUYH\RU

IURPFRQVXOWLQJZLWKORFDODJULFXOWXUDO DXWKRULWLHVVKDOOEHXVHG 7KLVFHQVXV

VDWLVILHVWKHUHTXLUHPHQWVRI 6HFWLRQ,9%RI$SSHQGL[,WR&)5

5HVWULFWLQJWKHFHQVXVWRJDUGHQVRIJUHDWHUWKDQVTXDUHIHHWSURYLGHV

DVVXUDQFHWKDWVLJQLILFDQW H[SRVXUHSDWKZD\VYLDOHDI\YHJHWDEOHVZLOOEH

LGHQWLILHGDQGPRQLWRUHG VLQFHDJDUGHQRIWKLVVL]HLVWKHPLQLPXPUHTXLUHGWR

SURGXFHWKHTXDQWLW\ NJ\HDU RIOHDI\YHJHWDEOHVDVVXPHGLQ5HJXODWRU\

  • XLGHIRU FRQVXPSWLRQE\DFKLOG 7RGHWHUPLQHWKLVPLQLPXPJDUGHQVL]H

WKH IROORZLQJDVVXPSWLRQVZHUHPDGH  RIWKHJDUGHQZDVXVHGIRU

JURZLQJEURDGOHDIYHJHWDWLRQ LHVLPLODUWROHWWXFHDQGFDEEDJH DQG  WKHUH

ZDVDYHJHWDWLRQ\LHOGRINJP

&<*,

5HYLVLRQ

3DJHRI

 ,17(5/$%25$725<&203$5,621352*5$0



 &21752/

 

$QDO\VHVVKDOOEHSHUIRUPHGRQDOOUDGLRDFWLYHPDWHULDOVVXSSOLHGDVSDUW RIDQ

,QWHUODERUDWRU\&RPSDULVRQ3URJUDPWKDWFRUUHVSRQGWRVDPSOHV UHTXLUHGE\WKH

5(03DQGWKDWKDVEHHQDSSURYHGE\WKH&RPPLVVLRQLI VXFKDSURJUDPH[LVWV



 $33/,&$%,/,7< $WDOOWLPHV



 $&7,21 



LWKDQDO\VHVQRWSHUIRUPHGDVUHTXLUHGDERYHUHSRUWWKHFRUUHFWLYH DFWLRQVWDNHQ

WRSUHYHQWUHFXUUHQFHWRWKH&RPPLVVLRQLQWKH$QQXDO 5DGLRORJLFDO(QYLURQPHQWDO

2SHUDWLQJ5HSRUWSXUVXDQWWR6HFWLRQ ,QWHUODERUDWRU\&RPSDULVRQ3URJUDP+/-

&RQWURO RI WKH2'&0



 6859(,//$1&(5(48,5(0(176

 

 7KH,QWHUODERUDWRU\&RPSDULVRQ3URJUDPLVGHVFULEHGLQDQGLPSOHPHQWHG E\

SURFHGXUH&+4&,17(5/$% $VXPPDU\RIWKHUHVXOWVREWDLQHGDV SDUWRIWKH

DERYHUHTXLUHG,QWHUODERUDWRU\&RPSDULVRQ3URJUDPVKDOOEH LQFOXGHGLQWKH

$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW SXUVXDQWWR6HFWLRQ

,QWHUODERUDWRU\&RPSDULVRQ3URJUDP+/-&RQWURO RIWKH2'&0



 %$6(6



7KHUHTXLUHPHQWIRUSDUWLFLSDWLRQLQDQDSSURYHG,QWHUODERUDWRU\ &RPSDULVRQ

3URJUDPLVSURYLGHGWRHQVXUHWKDWLQGHSHQGHQWFKHFNVRQWKH SUHFLVLRQDQG

DFFXUDF\RIWKHPHDVXUHPHQWVRIUDGLRDFWLYHPDWHULDOVLQ HQYLURQPHQWDOVDPSOH

PDWULFHVDUHSHUIRUPHGDVSDUWRIWKH4XDOLW\$VVXUDQFHSURJUDPIRU

HQYLURQPHQWDOPRQLWRULQJLQRUGHUWRGHPRQVWUDWH WKDWWKHUHVXOWVDUHYDOLGIRUWKH

SXUSRVHVRI6HFWLRQ,9%RI$SSHQGL[, WR&)5

&<*,

5HYLVLRQ

3DJHRI

 5(3257,1*5(48,5(0(176

  $QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUW

$Q$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWFRYHULQJWKHRSHUDWLRQRI

WKHXQLW GXULQJWKHSUHYLRXVFDOHQGDU\HDUVKDOOEHVXEPLWWHGSULRUWR0D\RI

HDFK\HDU 7KH$QQXDO 5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWVKDOOLQFOXGH

VXPPDULHVLQWHUSUHWDWLRQVDQG DQDO\VLVRIWUHQGVRIWKHUHVXOWVRIWKHUDGLRORJLFDO

HQYLURQPHQWDOVXUYHLOODQFHDFWLYLWLHVIRUWKH UHSRUWSHULRGLQFOXGLQJDFRPSDULVRQ

ZLWKEDFNJURXQG FRQWURO VDPSOHVDQGSUHYLRXVHQYLURQPHQWDOVXUYHLOODQFHUHSRUWV

DQGDQDVVHVVPHQWRIWKHREVHUYHGLPSDFWVRIWKHSODQWRSHUDWLRQ RQWKH

HQYLURQPHQW 7KHUHSRUWVKDOODOVRLQFOXGHWKHUHVXOWVRIWKH/DQG8VH&HQVXVDV

UHTXLUHG

7KLVUHSRUWVKDOOLQFOXGHDQ\QHZORFDWLRQ V LGHQWLILHGE\WKH/DQG8VH&HQVXV

ZKLFK\LHOGD FDOFXODWHGGRVHRUGRVHFRPPLWPHQWJUHDWHUWKDQWKRVHIRUPLQJ

WKHEDVLVRI6HFWLRQ 5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ&RQWUROV 

7KHUHSRUWVKDOODOVRFRQWDLQDGLVFXVVLRQZKLFKLGHQWLILHVWKHFDXVHVRIWKH

XQDYDLODELOLW\RI PLONRUOHDI\YHJHWDEOHVDPSOHVDQGLGHQWLILHVORFDWLRQVIRU

REWDLQLQJUHSODFHPHQWVDPSOHVLQ DFFRUGDQFHZLWK6HFWLRQ 5DGLRORJLFDO

(QYLURQPHQWDO0RQLWRULQJ&RQWUROV 

7KH$QQXDO5DGLRORJLFDO(QYLURQPHQWDO2SHUDWLQJ5HSRUWVKDOOLQFOXGHWKHUHVXOWV

RIDQDO\VLV RIDOOUDGLRORJLFDOHQYLURQPHQWDOVDPSOHVDQGRIDOOHQYLURQPHQWDO

UDGLDWLRQPHDVXUHPHQWV WDNHQGXULQJWKHSHULRGSXUVXDQWWRWKHORFDWLRQV

VSHFLILHGLQWKHWDEOHVDQGILJXUHVRI6HFWLRQRIWKH2'&0WKHVXPPDUL]HG

DQGWDEXODWHGUHVXOWVRIWKHVHDQDO\VHVDQGPHDVXUHPHQWV VKDOOEHLQWKHIRUPDW

RI7DEOHGHULYHGIURPWKH5DGLRORJLFDO$VVHVVPHQW%UDQFK7HFKQLFDO3RVLWLRQ

5HYLVLRQ1RYHPEHU ,QWKHHYHQWWKDWVRPHUHVXOWVDUHQRWDYDLODEOHIRU

LQFOXVLRQZLWKWKHUHSRUWWKHUHSRUWVKDOOEHVXEPLWWHGQRWLQJDQGH[SODLQLQJWKH

UHDVRQVIRUWKH PLVVLQJUHVXOWV 7KHPLVVLQJGDWDVKDOOEHVXEPLWWHGDVVRRQDV

SRVVLEOHLQDVXSSOHPHQWDU\ UHSRUW

7KHUHSRUWVKDOODOVRLQFOXGHWKHIROORZLQJ



D DVXPPDU\GHVFULSWLRQRIWKHUDGLRORJLFDOHQYLURQPHQWDOPRQLWRULQJ

SURJUDPLQFOXGLQJD PDSRIDOOVDPSOLQJORFDWLRQVNH\HGWRDWDEOHJLYLQJ

GLVWDQFHVDQGGLUHFWLRQVIURPWKH UHDFWRUFHQWHUOLQHDQG



E WKHUHVXOWVRIWKHOLFHQVHHSDUWLFLSDWLRQLQDQ,QWHUODERUDWRU\&RPSDULVRQ

3URJUDPDQGWKH FRUUHFWLYHDFWLRQVWDNHQLIWKHVSHFLILHGSURJUDPLVQRW

EHLQJSHUIRUPHGDVUHTXLUHGE\ 6HFWLRQ ,QWHUODERUDWRU\&RPSDULVRQ

3URJUDP+/-&RQWURO 



F DGLVFXVVLRQRIDOOGHYLDWLRQVIURPWKHVDPSOLQJVFKHGXOHVSHFLILHGLQ

7DEOH



&<*,

5HYLVLRQ

3DJHRI



G DGLVFXVVLRQRIDQ\HQYLURQPHQWDOVDPSOHPHDVXUHPHQWVWKDWH[FHHGWKH

UHSRUWLQJOHYHOV EXWDUHQRWWKHUHVXOWRISODQWHIIOXHQWVDVUHTXLUHGLQWKH

VHFRQG$&7,21RI6HFWLRQ



H DGLVFXVVLRQRIDOODQDO\VHVLQZKLFKWKHUHTXLUHG//'ZDVQRWDFKLHYDEOH

&<*,

5HYLVLRQ

3DJHRI

 $118$/5$',2$&7,9(())/8(175(/($6(5(3257

 

 7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWFRYHULQJWKHRSHUDWLRQRIWKHXQLWGXULQJ

WKHSUHYLRXV FDOHQGDU\HDURIRSHUDWLRQVKDOOEHVXEPLWWHG SULRUWR0D\HDFK

\HDU 7KLVUHSRUWVKDOO LQFOXGHDVXPPDU\RQDTXDUWHUO\EDVLVRIWKHTXDQWLWLHV

RIUDGLRDFWLYHOLTXLGDQGJDVHRXV HIIOXHQWVDQGVROLGZDVWHUHOHDVHGDVRXWOLQHGLQ

5HJXODWRU\*XLGH5HYLVLRQZLWKGDWD VXPPDUL]HGRQDTXDUWHUO\EDVLV

IROORZLQJWKHIRUPDWRIWKH$SSHQGL[WKHUHRI)RUVROLGZDVWHV WKHIRUPDWIRU7DEOH

LQ$SSHQGL[%VKDOOEHVXSSOHPHQWHGZLWKWKUHHDGGLWLRQDOFDWHJRULHV FODVVHV

RIVROLGZDVWHV DVGHILQHGE\&)5 W\SHRIFRQWDLQHU HJ/6$7\SH$

7\SH% HWF DQGVROLGLILFDWLRQDJHQWRUDEVRUEHQW HJ3RUWODQGFHPHQW 

 

 7KH5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOOLQFOXGHDQDVVHVVPHQWRIUDGLDWLRQ

GRVHVIURP WKHUDGLRDFWLYHOLTXLGDQGJDVHRXVHIIOXHQWVUHOHDVHGIURPWKHXQLW

GXULQJHDFKRIWKHSUHYLRXV IRXUFDOHQGDUTXDUWHUVDVRXWOLQHGLQ5HJXODWRU\

  • XLGH5HYLVLRQ ,QDGGLWLRQWKHVLWH ERXQGDU\PD[LPXPQREOHJDV

JDPPDDLUDQGEHWDDLUGRVHVVKDOOEHHYDOXDWHG 7KHDVVHVVPHQWRIUDGLDWLRQ

GRVHVVKDOOEHSHUIRUPHGLQDFFRUGDQFHZLWK&RQWUROVDQG 7KLV VDPH

UHSRUWVKDOOLQFOXGHDQDQQXDOVXPPDU\RIKRXUO\PHWHRURORJLFDOGDWDFROOHFWHG

RYHUWKH SUHYLRXVFDOHQGDU\HDU 7KH5DGLRDFWLYH(IIOXHQW5HOHDVH 5HSRUWVKDOO

LQFOXGHDGLVFXVVLRQZKLFKLGHQWLILHVWKHFLUFXPVWDQFHVZKLFKSUHYHQWHGDQ\

UHTXLUHGGHWHFWLRQOLPLWVIRUHIIOXHQWVDPSOHDQDO\VHVEHLQJPHW7KLVUHSRUWVKDOO

DOVRLQFOXGH DQDVVHVVPHQWRIWKHUDGLDWLRQGRVHVIURPUDGLRDFWLYHJDVHRXVDQG

OLTXLGHIIOXHQWVWR0(0%(562)7+(38%/,&GXHWRWKHLUDFWLYLWLHVLQVLGHWKH

6,7(%281'$5<GXULQJWKHUHSRUWSHULRG7KHDVVHVVPHQWRIUDGLDWLRQGRVHV

VKDOOEHSHUIRUPHGLQDFFRUGDQFHZLWKWKHPHWKRGRORJ\DQGSDUDPHWHUVLQWKH

2'&0

 

 7KH$QQXDO5DGLRDFWLYH(IIOXHQW5HOHDVH5HSRUWVKDOODOVRLQFOXGHDQDVVHVVPHQW

RIUDGLDWLRQ GRVHVWRWKHOLNHO\PD[LPXPH[SRVHG0(0%(52)7+(38%/,&

IURPUHDFWRURSHUDWLRQ LQFOXGLQJGRVHVIURPHIIOXHQWUHOHDVHVDQGGLUHFW

UDGLDWLRQIRUWKHSUHYLRXVFDOHQGDU\HDUWR GHPRQVWUDWHFRPSOLDQFHZLWK&)5





 7KLVUHSRUWVKDOOLQFOXGHDOLVWDQGGHVFULSWLRQRIXQSODQQHGUHOHDVHVIURPWKHVLWH

WR 815(675,&7(' $5($6 RI UDGLRDFWLYH PDWHULDOV LQ JDVHRXV DQG OLTXLG

HIIOXHQWVPDGHGXULQJWKH UHSRUWLQJSHULRG

 

 7KLVUHSRUWVKDOOLQFOXGHDQ\FKDQJHVPDGHGXULQJWKHUHSRUWLQJSHULRGWRWKH

2IIVLWH'RVH&DOFXODWLRQ0DQXDO 2'&0  /LFHQVHHPD\PDNHFKDQJHVWRWKLV

2'&0DQGVKDOOVXEPLWWRWKH &RPPLVVLRQZLWKWKH5DGLRDFWLYH(IIOXHQW5HOHDVH

5HSRUWIRUWKHSHULRGLQZKLFKDQ\ FKDQJH V LVPDGHDFRS\RIWKHQHZ2'&0

DQGDVXPPDU\FRQWDLQLQJ

 

&<*,

5HYLVLRQ

3DJHRI



D VXIILFLHQWO\GHWDLOHGLQIRUPDWLRQWRVXSSRUWWKHUDWLRQDOHIRUWKHFKDQJH



E DGHWHUPLQDWLRQWKDWWKHFKDQJHZLOOQRWUHGXFHWKHDFFXUDF\RUUHOLDELOLW\RI

GRVHFDOFXODWLRQVRUVHWSRLQWGHWHUPLQDWLRQVDQG



F GRFXPHQWDWLRQRIWKHIDFWWKDWWKHFKDQJHKDVEHHQUHYLHZHGDQGIRXQG

DFFHSWDEOHE\WKH 3ODQW2SHUDWLRQV5HYLHZ&RPPLWWHH



/LFHQVHHLQLWLDWHGFKDQJHVVKDOOEHFRPHHIIHFWLYHDIWHUUHYLHZDQGDFFHSWDQFHE\

WKH3ODQW 2SHUDWLRQV5HYLHZ&RPPLWWHHRQDGDWHVSHFLILHGE\WKHOLFHQVHH



 7KLV UHSRUW VKDOO LQFOXGH DQ\ FKDQJHV PDGH GXULQJ WKH UHSRUWLQJ SHULRG WR WKH

3URFHVV&RQWURO 3URJUDP 3&3  7KLVUHSRUWVKDOOLQFOXGHDGLVFXVVLRQRIDQ\PDMRU

FKDQJHVWRWKHUDGLRDFWLYH ZDVWHWUHDWPHQWV\VWHPV



 7KH 5DGLRORJLFDO (QYLURQPHQWDO 2SHUDWLQJ 5HSRUW DQG WKH $QQXDO 5DGLRDFWLYH

(IIOXHQW 5HOHDVH 5HSRUW ZLOO EH SUHSDUHG DQG VXEPLWWHG WR WKH 86 1XFOHDU

5HJXODWRU\&RPPLVVLRQ 'RFXPHQW&RQWURO'HVN:DVKLQJWRQ'&DQGD

FRS\WRWKH5HJLRQDO$GPLQLVWUDWRURI WKH8615&5HJLRQ,





&<*,

5HYLVLRQ

3DJHRI

 63(&,$/5(32576



  • XLGDQFH LV JLYHQ IRU HDFK RI WKHVH UHSRUWV LQ WKH DSSOLFDEOH &RQWURO 7KH

IROORZLQJJHQHUDO JXLGHOLQHVDUHLQFOXGHGKHUHIRUFDOFXODWLQJGRVHWRDQH[SRVHG

LQGLYLGXDORUWKH0(0%(56 2)7+(38%/,&IRUSUHSDUDWLRQRI6SHFLDO5HSRUWV



D 7KHPD[LPDOO\H[SRVHGUHDO0(0%(52)7+(38%/,&ZLOOJHQHUDOO\EH

WKHVDPHLQGLYLGXDOFRQVLGHUHGLQWKH2'&0



E 'RVHFRQWULEXWLRQVWRWKHPD[LPDOO\H[SRVHGLQGLYLGXDOQHHGRQO\EH

FRQVLGHUHGWREH WKRVHUHVXOWLQJIURPWKH*LQQDSODQWLWVHOI$OORWKHU

XUDQLXPIXHOF\FOHIDFLOLWLHVRURSHUDWLRQVDUHRIVXIILFLHQWGLVWDQFHWR

FRQWULEXWHDQHJOLJLEOHSRUWLRQRIWKHLQGLYLGXDO VGRVH



F )RUGHWHUPLQLQJWKHWRWDOGRVHWRWKHPD[LPDOO\H[SRVHGLQGLYLGXDOIURPWKH

PDMRUJDVHRXV DQGOLTXLGHIIOXHQWSDWKZD\VDQGIURPGLUHFWUDGLDWLRQGRVH

HYDOXDWLRQWHFKQLTXHVXVHGLQ SUHSDULQJWKH6SHFLDO5HSRUWZLOOEHWKRVH

GHVFULEHGLQWKH2'&0RURWKHUDSSOLFDEOH PHWKRGVZKHUHDSSURSULDWH



G 7KHFRQWULEXWLRQIURPGLUHFWUDGLDWLRQPD\EHHVWLPDWHGE\HIIOXHQW

GLVSHUVLRQPRGHOLQJRU FDOFXODWHGIURPWKHUHVXOWVRIWKHHQYLURQPHQWDO

PRQLWRULQJSURJUDPIRUGLUHFWUDGLDWLRQ



&<*,

5HYLVLRQ

3DJHRI

7DEOH

5DGLRORJLFDO(QYLURQPHQWDO0RQLWRULQJ3URJUDP6XPPDU\

5(*,11$18&/($532:(53/$17

'RFNHW1R:$<1(1(:<25.

3DWKZD\6DPSOHG 7\SH$QG //' ,QGLFDWRU /RFDWLRQ:LWK+LJKHVW$QQXDO &RQWURO

8QLW2I 7RWDO /RFDWLRQV 0HDQ

/RFDWLRQV

0HDVXUHPHQW 1XPEHU 2I 0HDQ D 

$QDO\VHV 5DQJH 1DPH'LVWDQFH 0HDQ D 5DQJH 0HDQ D 5DQJH

$QG'LUHFWLRQ

$LU 3DUWLFXODWH *URVV%HWD     

S&L&X0 



  • DPPD6FDQ     



,RGLQH *DPPD6FDQ     

'LUHFW 'RVLPHWU\ *DPPD     

5DGLDWLRQ PUHPTXDUWHU 

DWHU 'ULQNLQJ *URVV%HWD     

S&LOLWHU 



  • DPPD6FDQ     



 ,RGLQH     



6XUIDFH *URVV%HWD     

S&LOLWHU 



 *DPPD6FDQ     

 ,RGLQH     



6KRUHOLQH6HGLPHQW *DPPD6FDQ     

0LON S&LOLWHU  ,RGLQH     

  • DPPD6FDQ     

)LVK *DPPD6FDQ     

9HJHWDWLRQ *DPPD6FDQ     



D 0HDQDQGUDQJHEDVHGRQGHWHFWDEOHPHDVXUHPHQWVRQO\ )UDFWLRQRIGHWHFWDEOHPHDVXUHPHQWVDWVSHFLILHGORFDWLRQVLQSDUHQWKHVHV



&<*,

5HYLVLRQ

3DJHRI

 5()(5(1&(6



 5(*LQQD1XFOHDU3RZHU3ODQW8QLW1R$SSHQGL[$WR

2SHUDWLQJ/LFHQVH1R'35 7HFKQLFDO6SHFLILFDWLRQV

5RFKHVWHU*DVDQG(OHFWULF&RUSRUDWLRQ'RFNHW



 8615&3UHSDUDWLRQRI5DGLRORJLFDO(IIOXHQW7HFKQLFDO

6SHFLILFDWLRQVIRU1XFOHDU3RZHU3ODQWV185(* 2FWREHU

 



 8615&&DOFXODWLRQRI$QQXDO'RVHVWR0DQIURP5RXWLQH

5HOHDVHVRI5HDFWRU(IIOXHQWV IRUWKH3XUSRVHRI(YDOXDWLQJ

&RPSOLDQFHZLWK &)53DUW$SSHQGL[,5HJXODWRU\ *XLGH

5HYLVLRQ 2FWREHU 



 5(*LQQD1XFOHDU3RZHU3ODQW7UDFHU'LOXWLRQ6WXG\IRUWKH7RZQ

RI2QWDULR0XQLFLSDO 'ULQNLQJ:DWHU,QWDNH+\GUR4XDO,QF 0D\

 



 5(*LQQD1XFOHDU3RZHU3ODQW&DOFXODWLRQVWR'HPRQVWUDWH

&RPSOLDQFHZLWKWKH 'HVLJQ2EMHFWLYHVRI&)53DUW

$SSHQGL[,5RFKHVWHU*DVDQG(OHFWULF&RUSRUDWLRQ -XQH 



 8615&0HWKRGVIRU(VWLPDWLQJ$WPRVSKHULF7UDQVSRUWDQG

GLVSHUVLRQRI*DVHRXV(IIOXHQWVLQ5RXWLQH5HOHDVHVIURP/LJKW

DWHU&RROHG5HDFWRUV5HJXODWRU\*XLGH 5HYLVLRQ -XO\

 



 5(*LQQD1XFOHDU3RZHU3ODQW,QFLGHQW(YDOXDWLRQ*LQQD6WHDP

  • HQHUDWRU7XEH)DLOXUH,QFLGHQW-DQXDU\5RFKHVWHU*DV

DQG(OHFWULF&RUSRUDWLRQ $SULO 



 3HOOHWLHU&$HWDO6RXUFHVRI5DGLRLRGLQHDW3UHVVXUL]HG

DWHU5HDFWRUV(35,13 1RYHPEHU 



 185(*2IIVLWH'RVH&DOFXODWLRQ0DQXDO*XLGDQFH

6WDQGDUG5DGLRORJLFDO(IIOXHQW &RQWUROVIRUSUHVVXUL]HG:DWHU

5HDFWRUV



 ,QWHUQDWLRQDO&RPPLVVLRQRQ5DGLRORJLFDO3URWHFWLRQ3XEOLFDWLRQ

6XSSOHPHQWWR3DUW, /LPLWVIRU,QWDNHRI5DGLRQXFOLGHVE\

RUNHUV -XO\ 





&<*,

5HYLVLRQ

3DJHRI





 ,QWHUQDWLRQDO&RPPLVVLRQRQ5DGLRORJLFDO3URWHFWLRQ ,&53 3XEOLFDWLRQ

³3HUPLVVLEOH 'RVH)RU,QWHUQDO5DGLDWLRQ'



 1XFOHDU5HJXODWRU\&RPPLVVLRQ5HJ*XLGH³0HDVXULQJ(YDOXDWLQJDQG

5HSRUWLQJ 5DGLRDFWLYH0DWHULDOLQ/LTXLGDQG*DVHRXV(IIOXHQWVDQG6ROLG

DVWH'5HYLVLRQ-XQH 



 1XFOHDU5HJXODWRU\&RPPLVVLRQ5HJXODWRU\*XLGH³(VWLPDWLQJ$TXDWLF

'LVSHUVLRQ RI(IIOXHQWVIURP$FFLGHQWDODQG5RXWLQH5HDFWRU5HOHDVHVIRUWKH

3XUSRVHRI,PSOHPHQWLQJ$SSHQGL[,'5HYLVLRQ$SULO



 7LWOH&RGHRI)HGHUDO5HJXODWLRQ3DUW &)5 6WDQGDUGVIRU3URWHFWLRQ

$JDLQVW 5DGLDWLRQ



 7LWOH&RGHRI)HGHUDO5HJXODWLRQ3DUW &)5 /LFHQVLQJ

5HTXLUHPHQWVIRU /DQG'LVSRVDORI5DGLRDFWLYH:DVWH



 7LWOH&RGHRI)HGHUDO5HJXODWLRQ3DUW &)5 3DFNDJLQJDQG

7UDQVSRUWDWLRQRI 5DGLRDFWLYH0DWHULDO



 7LWOH&RGHRI)HGHUDO5HJXODWLRQ3DUW &)5 1DWLRQDO3ULPDU\

'ULQNLQJ :DWHU6WDQGDUGV



 7LWOH&RGHRI)HGHUDO5HJXODWLRQ3DUW &)5 (QYLURQPHQWDO

5DGLDWLRQ3URWHFWLRQ6WDQGDUGVIRU1XFOHDU3RZHU2SHUDWLRQV















$77$&+0(17











$118$/5$',2/2*,&$/(19,5210(17$/23(5$7,1*

5(3257

-$18$5<+/-'(&(0%(5











5(*LQQD1XFOHDU3RZHU3ODQW//&



$118$/5$',2/2*,&$/

(19,5210(17$/23(5$7,1* 5(3257

-$18$5< - '(&(0%(5

0$<

5(*LQQD1XFOHDU3RZHU3ODQW

/DNH5RDG 2QWDULR1HZ<RUN

-DQXDU\ +/- 'HFHPEHU

'RFNHW1RV

7$%/(2)&217(176

/,672)),*85(6  LL

/,672)7$%/(6 LLL

 (;(&87,9(6800$5<

 ,1752'8&7,21

 6WDWLRQ'HVFULSWLRQ

 3URJUDP'HVFULSWLRQDQG %DFNJURXQG 

 3URJUDP 2EMHFWLYHV 

 352*5$0'(6&5,37,21 

 6DPSOH&ROOHFWLRQ DQG$QDO\VLV 

 'DWD,QWHUSUHWDWLRQ

 4XDOLW\$VVXUDQFH3URJUDP 

 /DQG8VH6XUYH\ 

 3URJUDP([FHSWLRQV 

 &RUUHFWLRQVWR3UHYLRXV5HSRUWV

 5(68/76$1'',6&866,216 

 $TXDWLF(QYLURQPHQW 

D 6XUIDFHDQG'ULQNLQJ:DWHU

E $TXDWLF2UJDQLVPV 

F 6KRUHOLQH6HGLPHQW 

 $WPRVSKHULF(QYLURQPHQW 

D $LU,RGLQH 

E $LU3DUWLFXODWH)LOWHUV 

 7HUUHVWULDO(QYLURQPHQW 

D 9HJHWDWLRQ 

E 0LON 

 'LUHFW5DGLDWLRQ 

 *URXQGZDWHU

 6XPPDU\DQG&RQFOXVLRQ 

 5()(5(1&(6

$SSHQGL[$ 5(036DPSOH/RFDWLRQV 

$SSHQGL[% 5(03$QDO\WLFDO5HVXOWV

$SSHQGL[& 4XDOLW\$VVXUDQFH3URJUDP 

$SSHQGL[' /DQG8VH6XUYH\ 

$SSHQGL[( ,QWHUSUHWDWLRQVDQG*UDSKLFDO5HSUHVHQWDWLRQV<<<<<<<<<<<<<<<<<<<<<<<<<<

L

January 1 - December 31, 2020 Docket Nos. 50-244 LIST OF FIGURES Figure Title Page A-1 Map of New York State and Lake Ontario Showing Location of R.E. Ginna Nuclear Power Plant ........................................................................................................................20 A-2 Onsite Sample Locations ...................................................................................................21 A-3 Offsite Sample Locations (TLDs and milk farms within 5 miles).....................................22 A-4 Water Sample, Milk Farms and TLD Locations................................................................23 E-1 E-Series 1, Table B-1 (Gross Beta Values for Surface and Drinking Water)....72 E-2 E-Series 2, Table B-5 / B-6 (Beta in Air Particulates)...76 E-3 E-Series 3, Table B-12 (Direct Radiation).81 E-4 E-Series 4, Table B-13 (Tritium in Groundwater).....94 ii

January 1 - December 31, 2020 Docket Nos. 50-244 LIST OF TABLES Table Title Page 1 Synopsis of R.E. Ginna Nuclear Power Plant Radiological Environmental Monitoring Program..............................................................................................................................12 2 Annual Summary of Radioactivity in the Environs of the R.E. Ginna Nuclear Power Plant

............................................................................................................................................13 A-1 Locations of Environmental Sampling Stations for the R.E. Ginna Nuclear Plant..............17 B-1 Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water

............................................................................................................................................26 B-2 Concentration of Gamma Emitters in the Flesh of Edible Fish ...........................................29 B-3 Concentration of Gamma Emitters in Sediment...................................................................30 B-4 Concentration of Iodine-131 in Filtered Air (Charcoal Cartridges).....................................31 B-5 Concentration of Beta Emitters in Air Particulates - Onsite Samples .................................34 B-6 Concentration of Beta Emitters in Air Particulates - Offsite Samples .................................38 B-7 Concentration of Gamma Emitters in Air Particulates.........................................................40 B-8 Concentration of Gamma Emitters in Vegetation Samples..................................................42 B-9 Concentration of Gamma Emitters (including I-131) in Milk .............................................43 B-10 Typical MDA Ranges for Gamma Spectrometry.................................................................44 B-11 Typical LLDs for Gamma Spectrometry .............................................................................45 B-12 Direct Radiation ...................................................................................................................46 B-13 Groundwater Monitoring Wells ...........................................................................................50 C-1 Results of Participation in Cross Check Programs...............................................................54 C-2 Results of Quality Assurance Program ................................................................................58 C-3 Teledyne Brown Engineerings Typical MDAs for Gamma Spectrometry .........................65 D-1 Land Use Survey Distances..................................................................................................68 iii

January 1 - December 31, 2020 Docket Nos. 50-244

1. EXECUTIVE

SUMMARY

The Radiological Environmental Monitoring Program (REMP) is a comprehensive surveillance program, which is implemented to assess the impact of site operations on the environment and compliance with 10 CFR 50 Appendix I and 40 CFR 190. Samples are collected from the aquatic and terrestrial pathways applicable to the site. The aquatic pathways include Lake Ontario fish, surface waters, groundwater, and lakeshore sediment. The terrestrial pathways include airborne particulate and radioiodine, milk, food products, and direct radiation.

Results of the monitoring program for the 2020 operational period for R.E. Ginna Nuclear Power Plant are included in this report. This report presents a synopsis of the REMP (Table 1),

summary of the detectable activity analytical results (Table 2), sampling locations (Appendix A),

compilation of the analytical data (Appendix B), results of the Quality Assurance Program (Appendix C), and results of the Land Use Survey (Appendix D). Interpretation of the data and conclusions are presented in Appendix E and also in the body of this report.

The results of the REMP verify that the effluent releases did not impact the environment with a measurable concentration of radioactive materials and/or levels of radiation that are higher than expected. The 2020 results for all pathways sampled were consistent with the previous five-year historical results and exhibited no adverse trends. The results of the REMP continue to demonstrate that the operation of the plant does not result in a measurable dose to a member of the general population, or adversely impact the environment as a result of radiological effluents.

The program continues to demonstrate that the dose to a member of the public, as a result of the operation of R.E. Ginna Nuclear Power Plant, remains significantly below the federally required dose limits specified in 10 CFR 20 and 40 CFR 190.

1

January 1 - December 31, 2020 Docket Nos. 50-244

2. INTRODUCTION 2.1 Station Description R.E. Ginna Nuclear Power Plant (Ginna), owned by Exelon Generation, is an operating nuclear generating facility consisting of one pressurized water reactor. Ginna achieved criticality in September 1969 and commenced commercial operation in July 1970. The location of the plant in relation to local metropolitan areas is depicted in Appendix A, Figure A-1.

2.2 Program Description and Background The Annual Radiological Environmental Operating Report (AREOR) is published in accordance with Section 8.0 of the Offsite Dose Calculation Manual (ODCM, Ref. 1) and the Plants Technical Specifications (Ref. 2). This report describes the REMP, and its implementation as required by the ODCM. The environmental surveillance data collected during this reporting period were compared with that generated in previous periods whenever possible to evaluate the environmental radiological impact of the R.E. Ginna Nuclear Power Plant. Results of the monitoring program for the pre-operational and previous operational periods through 2019 have been reported in a series of previously released documents.

The REMP is implemented to measure radioactivity in the aquatic and terrestrial pathways. The aquatic pathways include Lake Ontario fish, surface waters, groundwater, and lakeshore sediment. Measurement results of the samples representing these pathways contained only natural background radiation or low concentrations of Cs-137 resulting from past atmospheric nuclear weapons testing. Terrestrial pathways monitored included airborne particulate and radioiodine, milk, food products, and direct radiation.

2.3 Program Objectives The objectives of the REMP for the R.E. Ginna Nuclear Power Plant are:

a. Measure and evaluate the effects of plant operation on the environment.
b. Monitor background radiation levels in the environs of the Ginna site.
c. Demonstrate compliance with the environmental conditions and requirements of applicable state and federal regulations, including the ODCM and 40 CFR 190.
d. Provide information by which the general public can evaluate environmental aspects of the operation of R.E. Ginna Nuclear Power Plant.

2

January 1 - December 31, 2020 Docket Nos. 50-244

3. PROGRAM DESCRIPTION 3.1 Sample Collection and Analysis The locations of the individual sampling stations are listed in Table A-1 and shown in Figures A-2 and A-3. All samples were collected and analyzed by Exelon personnel or its contractors in accordance with Ginna procedures (Ref. 3).

During 2020, 1296 samples were collected for analysis by gross beta counting, tritium, and/or gamma spectroscopy. These included 89 surface water samples, 13 fish samples, 4 sediment samples, 623 air particulate samples, 311 air iodine samples, 26 vegetation samples, 38 milk samples, 28 groundwater samples, and 164 dosimeter measurements. Deviations from the REMP sampling schedule are described in section 3.5. This monitoring program satisfied the minimum number of samples required by the ODCM for all pathways.

Third-party contractors working under Ginna Chemistry personnel collected all REMP samples.

Analysis was performed at either Ginnas onsite laboratory (groundwater samples),

Environmental Dosimetry Company in Sterling Massachusetts (direct radiation samples), or Exelon Industrial Services - Ft. Smallwood Environmental Laboratory in Baltimore, Maryland (surface and drinking water, aquatic organisms, shoreline sediment, air particulate filters, air iodine, and vegetation samples). A summary of the content of the REMP and the results of the data collected for indicator and control locations are provided in Tables 1 and 2.

3.2 Data Interpretation Many results in environmental monitoring occur at or below the minimum detectable activity (MDA). In this report, all results below the relevant MDA are reported as being "not detected. Typical MDA values are listed in Appendix B, Table B-10.

3.3 Quality Assurance Program Appendix C provides a summary of Exelon Industrial Services (EIS) - Ft. Smallwood Environmental Laboratorys quality assurance program for 2020. It consists of Table C-1, which represents a compilation of the results of the EIS - Ft. Smallwood Environmental Laboratorys participation in an inter-comparison program with Environmental Resource Associates (ERA) located in Arvada, Colorado and Analytics, Inc. located in Atlanta, Georgia and Eckert and Ziegler Analytics, Inc. (EZA) located in Atlanta, Georgia. Table C-2 compiles the results of the Exelon Industrial Services Ft. Smallwood Laboratorys participation in a split sample program with Teledyne Brown Engineering located in Knoxville, Tennessee. Table C-3 identifies a list of typical MDAs achieved by Teledyne Brown for Gamma Spectroscopy.

All the EIS - Ft. Smallwood Environmental Laboratory results contained in Table C-1 agree with the inter-comparison laboratory results within the range of +/-2 (standard deviation) between the analytical values or agree with the ranges established in the NRC Resolution Test Criteria.

3

January 1 - December 31, 2020 Docket Nos. 50-244 All the results contained in Table C-2 agree within the range of +/-2 of each other with their respective Ft. Smallwood Environmental Laboratory original, replicate and/or Teledyne Brown Engineerings split laboratory samples.

3.4 Land Use Survey In September 2020, third-party contractors working under Ginna Chemistry conducted a Land Use Survey to identify the location of the nearest milk animal, the nearest residence, and the nearest garden greater than 500 square feet in each of the nine sectors within a five-mile radius of the power plant. The Land Use Survey is conducted in accordance with Ginna procedures (Reference #4). If changes are noted in the annual Land Use Survey, alterations to Ginnas REMP program would be made to ensure sampling practices cover these new areas of potential public exposure. The results of the annual land use census are provided in Appendix D.

Over the past year, the following land use observations were made within a 5-mile radius of the power plant:

The nearest residence remains in the SSE sector, approximately 610 meters from the reactor.

Single-family home / senior housing subdivision / development construction was observed near the plant on LaFrank Drive (Ontario), and South of Route 104 near Tops Plaza (Ontario).

Lake Front Estates and Summer Lake subdivisions continue to expand along with the southeast corner of Lake Road and Slocum Road.

New housing / lots being developed near Webster Park (WNW), Woodard Rd (W),

County Line Road (W), near Webster Golf Course (W), Lakeside Rd. (SW), Centennial Village (SSW), and Community Ridge Apartments off Walworth-Ontario Rd. (SSE).

Other single-family home construction was observed sporadically within 5-miles of the plant.

The 120-acre commercial hydroponic farm continues production of AGRI-GROW tomatoes year-round at East end of Dean Parkway. (North of Route 104).

Commercial fishing information was collected from the New York State Department of Environmental Conservation (NYSDEC) which shows activity only in the Eastern basin of Lake Ontario. Commercial fishing operations have not changed in the last five-years and no commercial fishing takes place within 5-miles of Ginna.

No new agricultural land use was identified.

No new food producing facilities were identified as the commercial hydroponic farm is not currently growing produce.

No new milk producing animals were identified.

4

January 1 - December 31, 2020 Docket Nos. 50-244 3.5 Program Exceptions The reportable items in the Annual Environmental Radiological Operating Report under procedure CHA-RETS-VARIATION are as follows:

On 2/10/20, when collecting the Webster Water Authority weekly supplemental sample, it was noted that only 2 liters of sample was collected in the compositor. This collection volume is less than the required minimum of 4 liters of sample volume. There were no issues with the collection equipment and the source of the low sample volume was determined to be the relocation of sample hosing by Webster Water personnel which inadvertently eliminated sample flow. An additional 4 liters of sample were obtained via grab sample to supplement the volume collected for the week of 2/3/20 - 2/10/20.

Sampling was restored to normal collection the following week and no further conditions adverse to quality existed.

On 6/15/2020 when collecting weekly REMP air samples, the environmental air sample monitor at Environmental Sample Station #4 (ES4) was found off. The ground fault circuit interrupter (GFCI) was reset successfully and the pump resumed operation. For the sample period of 6/8/20 - 6/15/20, a total of four (4) hours of run time was recorded collecting five (5) m3 (177 ft3) of sample for the week. This volume does not meet the Lower Limit of Detection (LLD) requirements. Sample collection returned to normal the following week and no further conditions adverse to quality existed. The likely cause of the event was adverse weather in the summer impacting power supply to the sample station.

3.6 Corrections to Previous Reports There are no corrections necessary to any previously submitted Annual Radiological Environmental Operating Report (AREOR).

5

January 1 - December 31, 2020 Docket Nos. 50-244

4. RESULTS AND DISCUSSIONS All environmental samples collected during the year were analyzed in accordance with Exelon analytical procedures (Ref. 5). The analytical results for this reporting period are presented in Appendix B and the detectable activity results are also summarized in Table 2. For discussion purposes, the analytical results are divided into five categories: Aquatic Environment, the Atmospheric Environment, the Terrestrial Environment, Direct Radiation, and Groundwater.

4.1 Aquatic Environment The aquatic environment surrounding the plant was monitored by analyzing samples of surface and drinking water, Lake Ontario fish, and shoreline sediment. These samples were obtained from various sampling locations near the plant.

4.1.a Surface and Drinking Water Monthly composite samples are collected from Lake Ontario at an upstream control location (Monroe County Water Authority - Shoremont) and a downstream indicator location (Ontario Water District Plant - OWD) and analyzed for gross beta activity (Table B-1). A supplemental sample is also collected at the upstream location of the Webster Water Authority. A grab sample of Deer Creek is collected and analyzed monthly for gross beta activity (Table B-1). Lake Ontario is a primary indicator for sampling due to the close proximity to the station as well as the Lake providing recreational activities which could be a means of public exposure. Additionally, liquid releases from the station enter Lake Ontario waters, which leads to sampling of this environment, in all its forms, to be a priority.

In 2020, the gross beta averages for the upstream Lake Ontario monitoring locations (controls) and downstream Lake Ontario monitoring locations (indicators) were 2.09 pCi/Liter and 2.11 pCi/Liter, respectively. Gross beta analysis of the monthly composite samples showed no statistically significant difference in activity between the control and indicator locations that would indicate plant related activity higher than background.

The average gross beta concentration seen in the Mill Creek samples (control) and the Deer Creek (indicator) samples were 4.80 pCi/Liter and 4.23 pCi/Liter, respectively. Results from Deer Creek (indicator) and Mill Creek (control) are higher than other surface water samples within the REMP program due to naturally occurring radiological daughter products from radon within the soil being introduced into the samples. These naturally occurring radiological daughter products would exist in this environ at these same levels even if Ginna had never been built. Gross beta analysis of the samples showed no statistically significant difference in activity between the control and indicator locations that would indicate plant related activity higher than background.

6

January 1 - December 31, 2020 Docket Nos. 50-244 Gamma isotopic analysis is performed on each monthly composite sample. These are listed in Table B-1 and are separated by source of sample. During 2020, no sample results indicated detection of gamma activity above MDA.

Tritium analysis was performed on all water samples on a monthly basis. Composites are made from the monthly samples and a portion filtered to remove interferences for analysis by beta scintillation. These are listed in Table B-1 and are separated by source of sample. During 2020, no surface water or drinking water sample results indicated tritium activity above regulatory limits.

4.1.b Aquatic Organisms Indicator fish are caught in the vicinity of the Discharge Canal and analyzed for radioactivity from liquid effluent releases from the plant. The fish are filleted to represent that portion which would normally be eaten and represents the likely pathway for human exposure. Additional fish are caught more than 15 miles away to be used as control samples and are prepared in the same manner.

At a minimum, four different edible species of fish are analyzed during each half-year from the indicator and background locations. Fish are caught by a third-party vendor under the supervision of R.E. Ginna Nuclear Power Plant Chemistry personnel and are analyzed by gamma spectroscopy after being held for periods typically less than two weeks to keep the LLD value for the shorter half-life isotopes realistic. Detection limits could also be affected by small mass samples, (< 2000 grams), in some species. gamma isotopic concentrations (pCi/kilogram wet) are listed in Table B-2.

During 2020, none of the indicator samples indicated activity other than naturally occurring radionuclides.

4.1.c Shoreline Sediment Samples of shoreline sediment are taken upstream (Town of Greece near Slater Creek) and downstream (Near the Ontario Water District) of R.E. Ginna Nuclear Power Plant. The control sample is typical of the lake bottom, rich in mollusk shells and rocky particulate. These samples are analyzed for radionuclides that a member of the public would be expected to encounter during swimming and wading activities. Similarly, indicator samples are collected at the Bear Creek boat dock as this is another recreational area accessible to the public.

Results of the gamma isotopic analysis for sediment are included in Table B-3. During 2020, all sediment samples indicated that gamma emitters were below detection limits.

4.2 Atmospheric Environment Radioactive particles in air are collected by drawing approximately one standard cubic foot per minute (SCFM) through a two-inch diameter particulate filter. The volume of air sampled is measured by a dry gas meter and corrected for the pressure drop across the filter. The 7

January 1 - December 31, 2020 Docket Nos. 50-244 filters are changed weekly and allowed to decay for three days prior to counting to eliminate most of the natural radioactivity such as the short half-life decay products of radon. The decay period is used to give a more sensitive measurement of long-lived man-made radioactivity.

A ring of six sampling stations is located on the plant site from 180 to 440 meters from the reactor centerline near the point of the maximum annual average ground level concentration, one additional sampling location is located on-site at 770 meters, and two others offsite at approximately seven miles. In addition, there are three sampling stations located approximately seven to 16 miles from the site that serve as control stations. The arrangement of air sampling stations in concentric rings around the station would ensure the environment would be appropriately monitored if a radiological release were to occur. See Figure A-2 and Figure A-4.

4.2.a Air Iodine Radioiodine cartridges are placed at six locations. These cartridges are changed and analyzed each week. No positive analytical results were found on any sample. A list of values for these cartridges is given in Table B-4.

4.2.b Air Particulate Filters The major airborne species released as gaseous effluents are noble gases and tritium. Most of this activity is released in a gaseous form; however, some radioiodine is released as airborne particulate and some of the particulate activity is due to short lived noble gas decay products.

Tables B-5 provides a list of gross beta analysis values for the on-site sample stations. Table B-6 is a list of gross beta analysis values for the off-site sample stations.

Based on the weekly comparisons, there was no statistical difference between the control and indicator radioactive particulate concentrations. The average for the control samples (i.e., offsite sampling locations) was 0.024 pCi/m3 and the averages for the indicator samples (i.e., onsite sampling locations) was 0.023 pCi/m3 for the period of January to December 2020. Maximum weekly concentrations for all control stations and all indicator stations were 0.077 pCi/m3 and 0.063 pCi/m3, respectively.

The particulate filters from each sampling location were saved and a 13-week composite was made. A gamma isotopic analysis was performed for each sampling location and corrected for decay. No positive analytical results were found on any sample. The results of these analyses are listed in Tables B-7.

4.3 Terrestrial Environment Crops are grown on the plant property in a location with a highest off-site meteorological deposition parameter, and samples of the produce are collected at harvest time for analysis.

Control samples are purchased from farms greater than 10 miles from the plant.

8

January 1 - December 31, 2020 Docket Nos. 50-244 4.3.a Vegetation There was no indication in the vegetation samples of activity greater than naturally occurring background levels. Both onsite (indicator) and offsite (control) vegetation samples are rinsed prior to sampling as this is the expected behavior to be exhibited by a member of the public prior to consuming any produce. Analyses revealed that there was no difference in the radiological activity observed in the indicator and control sampling locations. Gamma isotopic data is provided in Table B-8.

4.3.b Milk Although there are no indicator dairy herds located within five miles from the plant, Ginna has elected to continue sampling the milk pathway as a supplemental sample to satisfy this potential exposure pathway to a member of the public. This pathway is specific to gaseous radiological releases from Ginna station that could deposit onto the grazing pastures of dairy farms. When these grazing cows are milked, any potential radiological exposure received by the cow could enter the human pathway.

In 2020, milk samples were collected monthly during November through May from the indicator farm and biweekly during June through October. Samples are collected twice as frequently in the summer as the likelihood of cows grazing and not consuming stored feed is higher during this time. A control farm sample is taken for each monthly sample and once during each biweekly period. The milk is analyzed for Iodine-131 and also analyzed by gamma spectroscopy.

During 2020, no samples indicated I-131 activity above detection levels. There was no difference in the radiological activity observed in the indicator and control sampling locations. Table B-9 provides a listing of all samples collected and analytical results.

4.4 Direct Radiation Thermoluminescent Dosimeter (TLDs / Dosimeters) are placed as part of the environmental monitoring program. 41 dosimeter badges are currently placed in four rings around the plant.

These rings range from less than 1,000 feet to 15 miles and have been dispersed to give indications in each of the nine land-based sectors around the plant should an excessive release occur from the plant. Badges are changed and read after approximately three months exposure.

Each direct radiation sampling location is described in Table A-1 and identified in Figure A-2.

In 2019, Ginna adopted Exelon procedure CY-AA-170-1001, Environmental Dosimetry Performance Specifications, Testing, and Data Analysis, which included new methodology for determining dose attributable to facility operations. As part of this methodology, the direct radiation dose to the general public is now determined in accordance with the Environmental Protection Agency (EPA) guidance 40 CFR 190, Environmental Radiation Protection Standards for Nuclear Power Operations. This methodology incorporates the concepts established in ANSI/HPS N13.37, Environmental Dosimetry as established in NRC Regulatory Guide 4.13, Environmental Dosimetry - Performance, Specifications, Testing, and Data Analysis.

9

January 1 - December 31, 2020 Docket Nos. 50-244 In accordance with the measures set forth in this new methodology for reporting ambient gamma radiation, Ginna evaluated the last 5 years of TLD data to establish a background dose and baseline dose for each TLD location in the REMP. Detectable Facility Dose is now classified as any normalized net dose above the baseline (i.e. background) and is reported both quarterly and annually for each location. Therefore, the mean dose for both Indicator and Control locations will no longer be reported.

This new methodology of reporting Quarterly and Annual Normalized Net Dose for each location is reported in Table B-12, Direct Radiation. One location showed a net positive normalized dose in 2020 (TLD-13, +0.55 mRem) from Ginna operations in 2020.

4.5 Groundwater Groundwater monitoring wells have been established in close proximity to the station and are routinely sampled by a third-party vedor under the supervision of Ginna personnel. In 2020, samples were analyzed from a total of 12 groundwater monitoring wells as GW05 and GW06 were not sampled:

GW01: Warehouse Access Road (Control)

GW03: Screenhouse West, South Well GW04: Screenhouse West, North Well GW05: Screenhouse East, South (15.5)

GW06: Screenhouse East, Middle (20.0)

GW07: Screenhouse East, North (24.0)

GW08: All Volatiles Treatment Building GW10: Technical Support Center, South GW11: Contaminated Storage Building, SE (24.0)

GW12: West of Orchard Access Road GW13: North of Independent Spent Fuel Storage Installation (ISFSI)

GW14: South of Canister Preparation Building GW15: West of Manor House GW16: Southeast of Manor House Tritium is sampled for at nuclear facilities due to the migration capabilities of the isotope.

Essentially, tritium, when in an aqueous form, flows like water and can be found in surface water, groundwater, and atmospheric environs due to evaporative processes found in nature.

Nuclear stations place a sensitivity on detecting tritium in the environment as it is an efficient marker to show if radioactivity has been introduced on-site or off-site. Groundwater samples are analyzed for tritium to a detection limit of 200 pCi/L. Beginning in 2020, gamma analysis was reduced from an annual periodicity due to the adoption of a new procedure EN-GI-408-4160 as gamma has not been detected in groundwater monitoring well samples in over 10 years. In 2020, groundwater samples identified tritium concentrations ranging from 163 - 347 pCi/L. These low-level concentrations are consistent with concentrations associated with gaseous tritium precipitation recapture. The analytical results for groundwater monitoring well samples collected 10

January 1 - December 31, 2020 Docket Nos. 50-244 during 2020 are presented in table B-13. Further groundwater information can be found within the detailed E-Series 4 at the end of this report.

4.6 Summary and Conclusion Operation of the R.E. Ginna Nuclear Power Plant produced radioactivity and ambient radiation levels significantly below the limits of the ODCM and 40 CFR 190. The analytical results from the Radiological Environmental Monitoring Program indicate the operation of the R.E. Ginna Nuclear Power Plant had no measurable radiological impact on the environment or measurable build-up of plant-related radionuclides in the environment. The results also indicate operation of the plant did not result in a measurable radiation dose to the general population above natural background levels.

Additionally, the 2020 results are consistent with data for the past seven years and exhibited no detectable increases or adverse trends. Further explanation on REMP data can be found in Appendix E.

5. REFERENCES
1. Procedure CY-GI-170-300, Offsite Dose Calculation Manual (ODCM) R.E. Ginna Nuclear Power Plant, Revision 36 (Effective Date: 12/27/2018)
2. R.E. Ginna Nuclear Power Plant, Technical Specification 5.6.2; Annual Radiological Environmental Operating Report.
3. Procedure CY-AA-170-100, Radiological Environmental Monitoring Program.
4. Procedure CH-ENV-LAND-USE, Land Use Census; Completed September 2020.
5. Exelon Industrial Services - Ft. Smallwood Environmental Laboratory Procedures Manual, General Services Department.

11

January 1 - December 31, 2020 Docket Nos. 50-244 Table 1 Synopsis of R.E. Ginna Nuclear Power Plant Radiological Environmental Monitoring Program Sample Type Sampling Number of Number Collected Analysis Analysis Number Analyzed Frequency1 Locations Frequency1 Aquatic Environment Surface & Drinking M/C 7 89 Gamma MC/M 89 Water 89 Gross Beta MC/M 89 89 Tritium M/Q 89 Fish2 A 4 13 Gamma A 13 Shoreline Sediment SA 2 4 Gamma SA 4 Groundwater M/Q 12 28 Tritium M/Q/A 28 Atmospheric Environment Air Iodine3 W 6 311 I-131 W 311 Air Particulates4 W 12 623 Gross Beta W 623 48 Gamma QC 48 Direct Radiation Ambient Radiation Q 41 164 TLD Q 164 Terrestrial Environment Milk5 M/BW 2 38 Gamma M/BW 38 Vegetation6 M 4 26 Gamma M 26 1 W=Weekly, BW=BiWeekly (15 days), M=Monthly (31 days), Q=Quarterly (92 days), SA=Semiannual, A=Annual, C=Composite 2 Twice during fishing season including at least four species.

3 The collection device contains activated charcoal.

4 Beta counting is performed 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following filter change. Gamma spectroscopy performed on quarterly composite of weekly samples.

5 Bi-Weekly during growing season.

6 Annual at time of harvest. Samples include broad leaf vegetation.

12

January 1 - December 31, 2020 Docket Nos. 50-244 Table 2 Annual Summary of Radioactivity in the Environs of the R.E. Ginna Nuclear Power Plant Medium or Pathway Type and Total Lower Limit of Indicator Locations Location with Highest Annual Control Locations Sampled (Unit of Number of Analyses Detection (LLD) Mean (F)/Range1 Highest Annual Mean (F) / Range1 Mean (F)/Range Measurement) Performed Mean Name/Distance &

Direction2 Aquatic Environment Surface & Drinking Gamma (89) 2.3 (Cs-137) -- (51/51) -- -- (13/13) -- (25/25)

Water Tritium (89) 2000 -- (51/51) -- -- (13/13) -- (25/25)

(pCi/L)

Surface & Drinking Gross Beta (89) 0.5 2.61 (51/51) Mill Creek - 4.80 (12/12) 3.39 (25/25)

Water, (1.21 - 7.56) SW (1.91 - 8.31) (1.53 - 8.31)

(pCi/L)

Sediment Gamma (4) 17 (Cs-137) -- (2/2) -- -- (2/2) -- (2/2)

(pCi/kg) --(2/2) --(2/2) --(2/2)

Fish Gamma (13) 15 (Cs-137) -- (5/5) -- -- (5/5) -- (8/8)

(pCi/kg) --(5/5) -- (5/5) -- (8/8)

Groundwater3 Tritium (28) 200 324 (3/27) GW10 324 (3/3) --(1/1)

(pCi/L) (0.064 km ENE) (304 - 347) (--)

Direct Radiation Ambient Radiation Dosimeters (164) -- 14.8 (128/128) Env. Station 13 23.8 (4/4) 13.2 (36/36)

(mR/91 days) (10.0-32.7) 0.77 km SSW (19.2-32.7) (9.9-15.3) 13

January 1 - December 31, 2020 Docket Nos. 50-244 Table 2 Annual Summary of Radioactivity in the Environs of the R.E. Ginna Nuclear Power Plant Medium or Pathway Type and Total Lower Limit of Indicator Locations Location with Highest Annual Control Locations Sampled (Unit of Number of Analyses Detection (LLD) Mean (F)/Range1 Highest Annual Mean (F) / Range1 Mean (F)/Range Measurement) Performed Mean Name/Distance &

Direction2 Atmospheric Environment Air Iodine I-131 (311) 0.002 -- (259/259) -- -- (52/52) -- (52/52)

(10-2 pCi/m3) -- (259/259) -- (52/52) -- (52/52)

Air Particulates Gross Beta (623) 0.5 2.3 (467/467) Env. Station 3 - 2.4 (52/52) 2.4 (156/156)

(10-2 pCi/m3) (1.1 - 6.3) 0.44 km ESE (1.2 - 5.9) (1.1 - 7.7)

Air Particulates Gamma (48) 1.8 (Cs-137) -- (36/36) -- -- (4/4) -- (12/12)

(10-3 pCi/m3) -- (36/36) -- (4/4) -- (12/12)

Terrestrial Environment Milk Gamma (38) 0.01 (I-131) -- (19/19) -- -- (19/19) -- (19/19)

(pCi/L) -- (19/19) -- (19/19) -- (19/19)

Vegetation Gamma (26) 27 (Cs-137) -- (18/18) -- -- (6/6) --(6/6)

(pCi/L) -- (18/18) -- (6/6) --(6/6) 1 Mean and range based upon detectable measurements only. Fraction (F) of detectable measurements at specified location is indicated in parentheses 2 From the center point of the containment building.

3 Most of the groundwater sample results for calculations were less-than detectable numerical values.

-- No detectable activity at specified location.

14

January 1 - December 31, 2020 Docket Nos. 50-244 APPENDIX A REMP Sample Locations Summary of Appendix A Content Appendix A contains information concerning the environmental samples which were collected during this operating period.

Sample locations and specific information about individual locations for Ginna are provided in Table A-1.

Figure A-1 shows the location of the R.E. Ginna Nuclear Power Plant in relation to New York State and Lake Ontario. Figures A-2, A-3, and A-4 show the locations of the power plant sampling sites in relation to the plant site at different degrees of detail.

15

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE OF CONTENTS - SAMPLING LOCATIONS Table Title Page A-1 Locations of Environmental Sampling Stations for the R.E Ginna Nuclear Power Plant ...17 Figure Title Page A-1 Map of New York State and Lake Ontario Showing Location of R.E. Ginna Nuclear Power Plant ...................................................................................................................................20 A-2 Onsite Sample Locations......................................................................................................21 A-3 Offsite Sample Locations (TLDs and milk farms within 5 miles) .......................................22 A-4 Water Sample, Milk Farms and TLD Locations ..................................................................23 16

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE A-1 Locations of Environmental Sampling Stations for the R.E. Ginna Nuclear Plant Station Description Distance Direction Meters Miles Sector Air Samplers 2 Manor House Yard 360 0.22 E 3 North of Training Center Parking Lot 220 0.14 ESE 4 East of Training Center Parking Lot 320 0.20 SE 5 Creek Bridge 180 0.11 SSE 6 Onsite-SW side of plant parking lot 300 0.19 SW 7 Onsite-utility pole along West plant fence 240 0.15 WSW 8 Seabreeze 19840 12.33 WSW 9 Webster 11150 6.93 SW 10 Walworth 12730 7.91 S 11 Williamson 11540 7.17 ESE 12 Sodus Point 25170 15.64 E 13 Substation 13 770 0.48 SSW Direct Radiation 2 Onsite-Manor House Yard 360 0.22 E 3 Onsite-In field approximately 200 ft SE of station #2 440 0.27 ESE 4 Onsite- East of Training Center Parking Lot 320 0.19 SE 5 Onsite-Between creek and plant entry road 180 0.11 SSE 6 Onsite-SW side of plant parking lot 300 0.19 SW 7 Onsite-utility pole along West plant fence 240 0.15 WSW 8 Topper Drive-Irondequoit, Seabreeze Substation #51 19840 12.33 WSW Phillips Road-Webster, intersection with Highway #104, 9 11150 6.93 SW Substation #74 10 Atlantic Avenue-Walworth, Substation #230 12730 7.91 S 11 W. Main Street-Williamson, Substation #207 11540 7.17 ESE 12 Seaman Avenue-Sodus Point-Off Lake Road by 12 25170 15.64 E Sewer district, Substation #209 13 Onsite - South of Meteorological Tower 260 0.16 WNW 14 NW corner of field along lake shore 860 0.53 WNW Field access road, west of orchard, approximately 3000' 15 920 0.57 W West of plant SW Corner of orchard, approximately 3000' West of 16 1030 0.64 WSW plant, approximately 200' North of Lake Road Utility pole in orchard, approximately 75" North of Lake 17 510 0.32 SSW Road 18 Substation 13A fence, North Side 730 0.45 SSW 19 On NW corner of house 100' East of plant access road 460 0.29 S Approximately 150' West of Ontario Center Road and 20 650 0.40 SSE approximately 170' South of Lake Road 17

January 1 - December 31, 2020 Docket Nos. 50-244 Station Description Distance Direction Meters Miles Sector North side of Lake Road, approximately 200' East of 21 660 0.41 SE Ontario Center Road 22 North side of Lake Road, SE, property corner 920 0.57 SE East property line, midway between Lake Road and 23 780 0.49 ESE Lake shore 24 Lake shore near NE corner of property 730 0.45 E 25 Substation #73, Klem Road, adjacent to 897 Klem Road 14000 8.70 WSW 26 Service Center, Plank Road, West of 250 14600 9.07 SW Atlantic Avenue at Knollwood Drive utility pole, North 27 14120 8.77 SSW side of road Substation #193, Marion, behind Stanton Ag. Service, 28 17450 10.84 SE North Main Street Substation #208, Town Line Road (CR-118), 1000 '

29 14050 8.73 ESE North of Route 104 30 District Office, Sodus, on pole, West side of bldg. 20760 12.90 ESE Lake Road, pole 20' North of road, 500' East of Salt 31 7330 4.56 W Road Woodard Road at County Line Road, pole @ Northwest 32 6070 3.77 WSW corner.

County Line Road at RR tracks, pole approximately 100' 33 7950 4.94 SW East along tracks 34 Pole at Route 104, Lincoln Road, SW Corner. 6520 4.05 SSW Transmission Right of Way, North of Clevenger Road 35 7490 4.65 SSW on pole.

Substation #205, Route 104, East of Ontario Center 36 5480 3.41 S Road, North side of fence.

37 Railroad Avenue, pole at 2048 5770 3.59 SSE 38 Fisher Road at RR Tracks, pole East of road 6910 4.29 SE Seeley Road, Pole South side 100' West of intersection 39 6930 4.31 ESE with Stony Lonesome Road 40 Lake Road at Stoney Lonesome Road, pole at SE corner 6440 4.00 E 63 Westside of warehouse access road 740 0.46 SW 64 Westside of direct road, adjacent to orchard 1190 0.74 W Fish Lake Ontario Discharge Plume 2200 1.37 ENE Russell Station 25600 15.9 W 18

January 1 - December 31, 2020 Docket Nos. 50-244 Produce (Vegetation)

Indicator and background samples of various produce are collected from gardens grown on company property and purchased from farms >10 miles from the plant.

Station Description Distance Direction Meters Miles Sector Onsite Supplemental Garden (E) 610 0.38 E Onsite Supplemental Garden (ESE) 430 0.27 ESE Onsite Supplemental Garden (SSE) 660 0.41 SSE Water Shoremont/MCWA 27150 16.87 W Ontario Water District 2220 1.38 ENE Circ Water Intake 1070 0.66 N Circ Water Discharge 110 0.07 NNE Deer Creek Points Points ESE downstream downstream of Outfall of Outfall 006 006 Sediment Lake Ontario Discharge Plume 2200 1.37 ENE Russell Station 25600 15.91 W Benthic 1070 0.66 N Milk Field Craft Farm, Williamson (Indicator) 8240 5.12 ESE Schultz Farm, S. Sodus (Control) 19030 11.82 SE 19

January 1 - December 31, 2020 Docket Nos. 50-244 Figure A-1 Map of New York State and Lake Ontario Showing Location of R.E. Ginna Nuclear Power Plant 20

January 1 - December 31, 2020 Docket Nos. 50-244 Figure A-2 Onsite Sample Locations 21

January 1 - December 31, 2020 Docket Nos. 50-244 Figure A-3 Offsite Sample Locations (TLDs and Milk Farms within 5 Miles) 22

January 1 - December 31, 2020 Docket Nos. 50-244 Figure A-4 Water Sample, Milk Farms and TLD Locations 23

January 1 - December 31, 2020 Docket Nos. 50-244 APPENDIX B REMP Analytical Results Summary of Appendix B Content Appendix B is a presentation of the analytical results for the R.E. Ginna Nuclear Power Plant radiological environmental monitoring programs.

24

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE OF CONTENTS - ANALYTICAL RESULTS Table Title Page B-1 Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water

............................................................................................................................................26 B-2 Concentration of Gamma Emitters in the Flesh of Edible Fish ...........................................29 B-3 Concentration of Gamma Emitters in Sediment...................................................................30 B-4 Concentration of Iodine-131 in Filtered Air (Charcoal Cartridges).....................................31 B-5 Concentration of Beta Emitters in Air Particulates - Onsite Samples .................................34 B-6 Concentration of Beta Emitters in Air Particulates - Offsite Samples .................................38 B-7 Concentration of Gamma Emitters in Air Particulates.........................................................40 B-8 Concentration of Gamma Emitters in Vegetation Samples..................................................42 B-9 Concentration of Gamma Emitters (including I-131) in Milk .............................................43 B-10 Typical MDA Ranges for Gamma Spectrometry.................................................................44 B-11 Typical LLDs for Gamma Spectrometry .............................................................................45 B-12 Direct Radiation ...................................................................................................................46 B-13 Groundwater Monitoring Wells ...........................................................................................50 25

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-1 Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water (Results in units of pCi/L +/- 2)

Sample Code Sample Date Cs-137 Tritium Gamma Emitters2 Gross Beta CIRC-IN Circulating Water Inlet - N 1/6/2020 < 2.3 < 967

  • 2.85 +/- 0.71 2/3/2020 < 2.3 < 953
  • 1.53 +/- 0.64 3/2/2020 < 2.3 < 930
  • 2.26 +/- 0.68 3/30/2020 < 2.3 < 930
  • 2.15 +/- 0.67 4/27/2020 < 2.3 < 938
  • 1.30 +/- 0.61 5/26/2020 < 2.3 < 825
  • 2.40 +/- 0.66 6/22/2020 < 2.3 < 826
  • 1.53 +/- 0.63 7/21/2020 < 2.3 < 827
  • 2.60 +/- 0.70 8/18/2020 < 2.3 < 829
  • 2.02 +/- 0.61 9/14/2020 < 2.3 < 823
  • 2.12 +/- 0.65 10/12/2020 < 2.3 < 831
  • 2.11 +/- 0.68 11/9/2020 < 2.3 < 834
  • 2.25 +/- 0.66 12/7/2020 < 2.3 < 834
  • 2.95 +/- 0.68 CIRC-OUT Circulating Water Outlet - N 1/6/2020 < 2.3 < 957
  • 2.30 +/- 0.67 2/3/2020 < 2.3 < 954
  • 2.08 +/- 0.68 3/2/2020 < 2.3 < 928
  • 2.51 +/- 0.69 3/30/2020 < 2.3 < 925
  • 1.59 +/- 0.63 4/27/2020 < 2.3 < 937
  • 2.15 +/- 0.67 5/26/2020 < 2.3 < 820
  • 2.14 +/- 0.65 6/22/2020 < 2.3 < 829
  • 1.69 +/- 0.64 7/21/2020 < 2.3 < 824
  • 1.32 +/- 0.61 8/18/2020 < 2.3 < 827
  • 1.80 +/- 0.59 9/14/2020 < 2.3 < 825
  • 1.48 +/- 0.60 10/12/2020 < 2.3 < 834
  • 2.58 +/- 0.71 11/9/2020 < 2.3 < 832
  • 2.34 +/- 0.67 12/7/2020 < 2.3 < 828
  • 2.79 +/- 0.67 DC Deer Creek - ESE3 1/2/2020 < 2.3 < 975
  • 6.49 +/- 1.71 2/11/2020 < 2.3 < 972
  • 3.46 +/- 1.57 3/18/2020 < 2.3 < 932
  • 4.00 +/- 1.57 4/14/2020 < 2.3 < 941
  • 2.84 +/- 1.50 5/6/2020 < 2.3 < 837
  • 4.51 +/- 1.55 6/4/2020 < 2.3 < 835
  • 3.28 +/- 1.55 7/16/2020 < 2.3 < 840
  • 7.56 +/- 1.81 8/12/2020 < 2.3 < 835
  • 4.57 +/- 1.51 9/3/2020 < 2.3 < 835
  • 4.48 +/- 2.00 10/21/2020 < 2.3 < 835
  • 1.21 +/- 1.86 11/19/2020 < 2.3 < 837
  • 3.24 +/- 1.89 12/15/2020 < 2.3 < 833
  • 5.15 +/- 1.95 26

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-1 Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water (Results in units of pCi/L +/- 2)

Sample Code Sample Date Cs-137 Tritium Gamma Emitters2 Gross Beta MCWA Monroe County Water/Shoremont, Greece - W1 1/6/2020 < 2.3 < 967

  • 3.09 +/- 0.73 2/5/2020 < 2.3 < 959
  • 2.09 +/- 0.68 3/2/2020 < 2.3 < 924
  • 1.87 +/- 0.65 3/30/2020 < 2.3 < 935
  • 3.09 +/- 0.73 4/27/2020 < 2.3 < 938
  • 1.95 +/- 0.65 5/26/2020 < 2.3 < 822
  • 1.90 +/- 0.63 6/22/2020 < 2.3 < 828
  • 1.87 +/- 0.66 7/20/2020 < 2.3 < 825
  • 1.68 +/- 0.63 8/17/2020 < 2.3 < 826
  • 2.02 +/- 0.61 9/14/2020 < 2.3 < 824
  • 1.90 +/- 0.63 10/12/2020 < 2.3 < 833
  • 1.68 +/- 0.65 11/12/2020 < 2.3 < 838
  • 1.53 +/- 0.61 12/7/2020 < 2.3 < 831
  • 2.52 +/- 0.66 ML Mill Creek - SW1 1/2/2020 < 2.3 < 977
  • 4.99 +/- 1.61 2/11/2020 < 2.3 < 959
  • 3.22 +/- 1.55 3/18/2020 < 2.3 < 929
  • 1.91 +/- 1.41 4/14/2020 < 2.3 < 937
  • 2.38 +/- 1.46 5/6/2020 < 2.3 < 840
  • 5.41 +/- 1.61 6/4/2020 < 2.3 < 832
  • 5.05 +/- 1.67 7/16/2020 < 2.3 < 839
  • 5.19 +/- 1.65 8/12/2020 < 2.3 < 831
  • 3.66 +/- 1.44 9/1/2020 < 2.3 < 835
  • 7.69 +/- 2.18 10/21/2020 < 2.3 < 826
  • 8.31 +/- 2.34 11/19/2020 < 2.3 < 839
  • 4.55 +/- 1.97 12/15/2020 < 2.3 < 835
  • 5.21 +/- 1.95 W

Webster (Supplemental) 1/6/2020 < 2.3 < 969

  • 1.97 +/- 0.65 2/3/2020 < 2.3 < 950
  • 1.16 +/- 0.61 3/2/2020 < 2.3 < 926
  • 1.60 +/- 0.63 3/30/2020 < 2.3 < 934
  • 2.13 +/- 0.67 4/27/2020 < 2.3 < 935
  • 1.60 +/- 0.63 5/26/2020 < 2.3 < 828
  • 1.76 +/- 0.62 6/22/2020 < 2.3 < 830
  • 2.23 +/- 0.68 7/20/2020 < 2.3 < 823
  • 2.15 +/- 0.67 8/17/2020 < 2.3 < 830
  • 1.73 +/- 0.59 9/14/2020 < 2.3 < 827
  • 1.81 +/- 0.62 10/12/2020 < 2.3 < 838
  • 1.32 +/- 0.62 11/12/2020 < 2.3 < 838
  • 2.01 +/- 0.64 12/7/2020 < 2.3 < 828
  • 2.35 +/- 0.64 27

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-1 Concentration of Tritium, Gamma Emitters and Gross Beta in Surface and Drinking Water (Results in units of pCi/L +/- 2)

Sample Code Sample Date Cs-137 Tritium Gamma Emitters2 Gross Beta OWD Ontario Water District - NE 1/6/2020 < 2.3 < 969

  • 2.23 +/- 0.67 2/3/2020 < 2.3 < 953
  • 2.52 +/- 0.70 3/2/2020 < 2.3 < 929
  • 2.28 +/- 0.68 3/30/2020 < 2.3 < 923
  • 1.83 +/- 0.65 4/27/2020 < 2.3 < 943
  • 1.66 +/- 0.64 5/26/2020 < 2.3 < 822
  • 2.47 +/- 0.67 6/22/2020 < 2.3 < 826
  • 1.82 +/- 0.65 7/20/2020 < 2.3 < 828
  • 1.68 +/- 0.63 8/17/2020 < 2.3 < 828
  • 2.09 +/- 0.61 9/14/2020 < 2.3 < 832
  • 1.48 +/- 0.60 10/12/2020 < 2.3 < 833
  • 2.02 +/- 0.67 11/12/2020 < 2.3 < 841
  • 2.86 +/- 0.70 12/7/2020 < 2.3 < 831
  • 2.35 +/- 0.64 1 Control Location 2 All Non-Natural Gamma Emitters < MDA.

3 The cause of the elevated Gross Beta analysis for Deer Creek and Mill Creek in July 2020 and September 2020 is due to seasonal stagnation of the creek allowing for accumulation of natural beta emitters in the low water level.

28

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-2 Concentration of Gamma Emitters in the Flesh of Edible Fish (Results in units of pCi/kg (wet) +/- 2)

Sample Code Sample Date Sample Type Gamma Emitters (Cs-137)

CONTROL1 Local Sites in Control 6/16/2020 Largemouth Bass

  • Sectors GREECE1 Control 6/14/2020 Lake Trout
  • 6/14/2020 Rainbow Trout
  • 6/14/2020 Chinook Salmon
  • HAMLIN1 Control 9/21/2020 Brown Trout
  • 9/21/2020 Rainbow Trout
  • 9/21/2020 White Sucker Fish
  • 9/21/2020 Pike
  • NORTH North Sector 1/7/2020 Rainbow Trout
  • 1/7/2020 Brown Trout
  • 1/9/2020 CISCO
  • 1/9/2020 Smallmouth Bass
  • 10/22/2020 Smallmouth Bass
  • 1 Control Locations include Greece, NY and Irondequoit, NY.

29

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-3 Concentration of Gamma Emitters in Sediment (Results in units of pCi/kg (wet) +/- 2)

Sample Code Sample Date Gamma Emitters (Cs-137)

EAST - Shoreline 5/22/2020

  • East Sector 7/31/2020
  • Greece1 - Shoreline 5/22/2020
  • Control 7/31/2020
  • 1 Control Location 30

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-4 Concentration of Iodine-131 in Filtered Air (Charcoal Cartridges)

(Results in units of 10-2 pCi/m3 +/- 2)

Start Date Stop Date STATION-02 STATION-04 STATION-07 STATION-081 STATION-09 STATION-11 Manor House Training Center West Fence Seabreeze Webster Williamson Yard Parking Lot Line 1/2/2020 1/8/2020 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 1/8/2020 1/14/2020 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 1/14/2020 1/22/2020 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 1/22/2020 1/27/2020 < 0.002 < 0.002 < 0.002 1/22/2020 1/28/2020 < 0.002 < 0.002 < 0.002 1/27/2020 2/3/2020 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 2/3/2020 2/11/2020 < 0.002 < 0.002 < 0.002 2/4/2020 2/11/2020 < 0.002 < 0.002 < 0.002 2/11/2020 2/17/2020 < 0.002 < 0.002 < 0.002 2/11/2020 2/18/2020 < 0.002 < 0.002 < 0.002 2/17/2020 2/24/2020 < 0.002 < 0.002 < 0.002 2/18/2020 2/25/2020 < 0.002 < 0.002 < 0.002 2/24/2020 3/2/2020 < 0.002 < 0.002 < 0.002 2/25/2020 3/3/2020 < 0.002 < 0.002 < 0.002 3/2/2020 3/9/2020 < 0.002 < 0.002 < 0.002 3/3/2020 3/10/2020 < 0.002 < 0.002 < 0.002 3/9/2020 3/16/2020 < 0.002 < 0.002 < 0.002 3/10/2020 3/17/2020 < 0.002 < 0.002 < 0.002 3/16/2020 3/23/2020 < 0.002 < 0.002 < 0.002 3/16/2020 3/24/2020 < 0.002 3/17/2020 3/24/2020 < 0.002 < 0.002 3/23/2020 3/30/2020 < 0.002 < 0.002 < 0.002 3/24/2020 3/31/2020 < 0.002 < 0.002 < 0.002 3/30/2020 4/6/2020 < 0.002 < 0.002 < 0.002 3/31/2020 4/7/2020 < 0.002 < 0.002 < 0.002 4/6/2020 4/13/2020 < 0.002 < 0.002 < 0.002 4/7/2020 4/14/2020 < 0.002 < 0.002 < 0.002 4/13/2020 4/20/2020 < 0.002 < 0.002 < 0.002 4/14/2020 4/21/2020 < 0.002 < 0.002 < 0.002 4/20/2020 4/27/2020 < 0.002 < 0.002 < 0.002 4/21/2020 4/28/2020 < 0.002 < 0.002 < 0.002 4/27/2020 5/4/2020 < 0.002 < 0.002 < 0.002 4/28/2020 5/5/2020 < 0.002 < 0.002 < 0.002 5/4/2020 5/11/2020 < 0.002 < 0.002 < 0.002 5/5/2020 5/12/2020 < 0.002 < 0.002 < 0.002 5/11/2020 5/18/2020 < 0.002 < 0.002 < 0.002 5/12/2020 5/19/2020 < 0.002 < 0.002 < 0.002 5/18/2020 5/26/2020 < 0.002 < 0.002 < 0.002 5/19/2020 5/27/2020 < 0.002 < 0.002 < 0.002 31

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-4 Concentration of Iodine-131 in Filtered Air (Charcoal Cartridges)

(Results in units of 10-2 pCi/m3 +/- 2)

Start Date Stop Date STATION-02 STATION-04 STATION-07 STATION-081 STATION-09 STATION-11 Manor House Training Center West Fence Seabreeze Webster Williamson Yard Parking Lot Line 5/26/2020 6/1/2020 < 0.002 < 0.002 < 0.002 5/27/2020 6/2/2020 < 0.002 < 0.002 < 0.002 6/1/2020 6/8/2020 < 0.002 < 0.002 < 0.002 6/2/2020 6/9/2020 < 0.002 < 0.002 < 0.002 2

6/8/2020 6/15/2020 < 0.002 < 0.002 6/9/2020 6/16/2020 < 0.002 < 0.002 < 0.002 6/15/2020 6/22/2020 < 0.002 < 0.002 < 0.002 6/16/2020 6/23/2020 < 0.002 < 0.002 < 0.002 6/22/2020 6/29/2020 < 0.002 < 0.002 < 0.002 6/23/2020 6/30/2020 < 0.002 < 0.002 < 0.002 6/29/2020 7/6/2020 < 0.002 < 0.002 < 0.002 6/30/2020 7/7/2020 < 0.002 < 0.002 < 0.002 7/6/2020 7/13/2020 < 0.002 < 0.002 < 0.002 7/7/2020 7/14/2020 < 0.002 < 0.002 < 0.002 7/13/2020 7/20/2020 < 0.002 < 0.002 < 0.002 7/14/2020 7/21/2020 < 0.002 < 0.002 < 0.002 7/20/2020 7/27/2020 < 0.002 < 0.002 < 0.002 7/21/2020 7/28/2020 < 0.002 < 0.002 < 0.002 7/27/2020 8/3/2020 < 0.002 < 0.002 < 0.002 7/28/2020 8/4/2020 < 0.002 < 0.002 < 0.002 8/3/2020 8/10/2020 < 0.002 < 0.002 < 0.002 8/4/2020 8/11/2020 < 0.002 < 0.002 < 0.002 8/10/2020 8/17/2020 < 0.002 < 0.002 < 0.002 8/11/2020 8/18/2020 < 0.002 < 0.002 < 0.002 8/17/2020 8/24/2020 < 0.002 < 0.002 < 0.002 8/18/2020 8/25/2020 < 0.002 < 0.002 < 0.002 8/24/2020 8/31/2020 < 0.002 < 0.002 < 0.002 8/25/2020 9/1/2020 < 0.002 < 0.002 < 0.002 8/31/2020 9/8/2020 < 0.002 < 0.002 < 0.002 9/1/2020 9/9/2020 < 0.002 < 0.002 < 0.002 9/8/2020 9/14/2020 < 0.002 < 0.002 < 0.002 9/9/2020 9/15/2020 < 0.002 < 0.002 < 0.002 9/14/2020 9/21/2020 < 0.002 < 0.002 < 0.002 9/15/2020 9/23/2020 < 0.002 < 0.002 < 0.002 9/21/2020 9/28/2020 < 0.002 < 0.002 < 0.002 9/23/2020 9/29/2020 < 0.002 < 0.002 < 0.002 9/28/2020 10/5/2020 < 0.002 < 0.002 < 0.002 9/29/2020 10/6/2020 < 0.002 < 0.002 < 0.002 10/5/2020 10/12/2020 < 0.002 < 0.002 < 0.002 10/6/2020 10/13/2020 < 0.002 < 0.002 < 0.002 10/12/2020 10/19/2020 < 0.002 < 0.002 < 0.002 10/13/2020 10/20/2020 < 0.002 < 0.002 < 0.002 10/19/2020 10/26/2020 < 0.002 < 0.002 < 0.002 10/20/2020 10/27/2020 < 0.002 < 0.002 < 0.002 32

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-4 Concentration of Iodine-131 in Filtered Air (Charcoal Cartridges)

(Results in units of 10-2 pCi/m3 +/- 2)

Start Date Stop Date STATION-02 STATION-04 STATION-07 STATION-081 STATION-09 STATION-11 Manor House Training Center West Fence Seabreeze Webster Williamson Yard Parking Lot Line 10/26/2020 11/2/2020 < 0.002 < 0.002 < 0.002 10/27/2020 11/3/2020 < 0.002 < 0.002 < 0.002 11/2/2020 11/9/2020 < 0.002 < 0.002 < 0.002 11/3/2020 11/10/2020 < 0.002 < 0.002 < 0.002 11/9/2020 11/16/2020 < 0.002 < 0.002 < 0.002 11/10/2020 11/17/2020 < 0.002 < 0.002 < 0.002 11/16/2020 11/23/2020 < 0.002 < 0.002 < 0.002 11/17/2020 11/24/2020 < 0.002 < 0.002 < 0.002 11/23/2020 11/30/2020 < 0.002 < 0.002 < 0.002 11/24/2020 12/1/2020 < 0.002 < 0.002 < 0.002 11/30/2020 12/7/2020 < 0.002 < 0.002 < 0.002 12/1/2020 12/8/2020 < 0.002 < 0.002 < 0.002 12/7/2020 12/14/2020 < 0.002 < 0.002 < 0.002 12/8/2020 12/15/2020 < 0.002 < 0.002 < 0.002 12/14/2020 12/21/2020 < 0.002 < 0.002 < 0.002 12/15/2020 12/22/2020 < 0.002 < 0.002 < 0.002 12/21/2020 12/28/2020 < 0.002 < 0.002 < 0.002 12/22/2020 12/29/2020 < 0.002 < 0.002 < 0.002 1Control Location 2Sampler Malfunction / Low Flow 33

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-5 Concentration of Beta Emitters in Air Particulates - Onsite Samples (Results in units of 10-2 pCi/m3 +/- 2 Uncertainty)

Start Date Stop Date STATION-02 STATION-03 STATION-04 STATION-05 STATION-06 STATION-07 STATION-13 Manor House East Field Training Center Creek Bridge Main Parking West Fence Substation 13 Yard Parking Lot Lot Line 1/2/2020 1/8/2020 2.5 +/- 0.2 2.5 +/- 0.2 2.2 +/- 0.1 2.4 +/- 0.2 2.2 +/- 0.1 2.4 +/- 0.2 2.6 +/- 0.2 1/8/2020 1/14/2020 1.8 +/- 0.1 1.8 +/- 0.2 1.7 +/- 0.1 1.9 +/- 0.2 1.7 +/- 0.1 2.0 +/- 0.2 2.0 +/- 0.2 1/14/2020 1/22/2020 2.1 +/- 0.1 2.2 +/- 0.2 2.0 +/- 0.1 2.4 +/- 0.2 2.1 +/- 0.1 2.3 +/- 0.1 2.4 +/- 0.1 1/22/2020 1/27/2020 2.0 +/- 0.2 1.8 +/- 0.2 1.6 +/- 0.1 1.8 +/- 0.2 1.5 +/- 0.1 1.6 +/- 0.2 1.7 +/- 0.2 1/27/2020 2/3/2020 1.5 +/- 0.1 1.5 +/- 0.2 1.3 +/- 0.1 1.4 +/- 0.1 1.3 +/- 0.1 1.5 +/- 0.1 1/28/2020 2/4/2020 1.5 +/- 0.1 2/3/2020 2/11/2020 1.7 +/- 0.1 1.9 +/- 0.2 1.5 +/- 0.1 1.8 +/- 0.1 1.6 +/- 0.1 1.7 +/- 0.1 2/4/2020 2/11/2020 1.8 +/- 0.1 2/11/2020 2/17/2020 2.4 +/- 0.2 2.4 +/- 0.2 2.3 +/- 0.1 2.6 +/- 0.2 2.4 +/- 0.1 2.6 +/- 0.2 2/11/2020 2/18/2020 2.6 +/- 0.2 2/17/2020 2/24/2020 2.8 +/- 0.2 2.9 +/- 0.2 2.5 +/- 0.1 2.8 +/- 0.2 2.7 +/- 0.1 3.0 +/- 0.2 2/18/2020 2/25/2020 2.8 +/- 0.2 2/24/2020 3/2/2020 2.9 +/- 0.2 2.7 +/- 0.2 2.5 +/- 0.1 2.7 +/- 0.2 2.6 +/- 0.1 2.7 +/- 0.2 2/25/2020 3/3/2020 2.6 +/- 0.2 3/2/2020 3/9/2020 2.3 +/- 0.1 2.3 +/- 0.2 2.2 +/- 0.1 2.4 +/- 0.1 2.2 +/- 0.1 2.4 +/- 0.1 3/3/2020 3/10/2020 2.3 +/- 0.1 3/9/2020 3/16/2020 2.2 +/- 0.1 2.3 +/- 0.2 2.0 +/- 0.1 2.2 +/- 0.2 2.1 +/- 0.1 2.3 +/- 0.2 3/10/2020 3/17/2020 2.2 +/- 0.1 3/16/2020 3/23/2020 2.3 +/- 0.1 2.4 +/- 0.2 2.2 +/- 0.1 2.3 +/- 0.2 2.4 +/- 0.1 2.4 +/- 0.2 3/17/2020 3/24/2020 2.1 +/- 0.2 3/23/2020 3/30/2020 1.2 +/- 0.1 1.2 +/- 0.2 1.2 +/- 0.1 1.3 +/- 0.1 1.2 +/- 0.1 1.4 +/- 0.1 3/24/2020 3/31/2020 1.2 +/- 0.1 34

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-5 Concentration of Beta Emitters in Air Particulates - Onsite Samples (Results in units of 10-2 pCi/m3 +/- 2 Uncertainty)

Start Date Stop Date STATION-02 STATION-03 STATION-04 STATION-05 STATION-06 STATION-07 STATION-13 Manor House East Field Training Center Creek Bridge Main Parking West Fence Substation 13 Yard Parking Lot Lot Line 3/30/2020 4/6/2020 1.3 +/- 0.1 1.4 +/- 0.2 1.2 +/- 0.1 1.3 +/- 0.1 1.2 +/- 0.1 1.5 +/- 0.1 3/31/2020 4/7/2020 1.6 +/- 0.1 4/6/2020 4/13/2020 2.5 +/- 0.2 2.5 +/- 0.2 2.3 +/- 0.1 2.3 +/- 0.2 2.4 +/- 0.1 2.5 +/- 0.2 4/7/2020 4/14/2020 2.4 +/- 0.2 4/13/2020 4/20/2020 2.2 +/- 0.1 2.2 +/- 0.2 2.1 +/- 0.1 2.2 +/- 0.2 2.3 +/- 0.1 2.2 +/- 0.2 4/14/2020 4/21/2020 2.4 +/- 0.2 4/20/2020 4/27/2020 2.2 +/- 0.1 2.4 +/- 0.2 2.1 +/- 0.1 2.4 +/- 0.2 2.3 +/- 0.1 2.4 +/- 0.2 4/21/2020 4/28/2020 2.4 +/- 0.2 4/27/2020 5/4/2020 1.5 +/- 0.1 1.6 +/- 0.2 1.4 +/- 0.1 1.6 +/- 0.1 1.4 +/- 0.1 1.4 +/- 0.1 4/28/2020 5/5/2020 1.4 +/- 0.1 5/4/2020 5/11/2020 1.4 +/- 0.1 1.5 +/- 0.2 1.2 +/- 0.1 1.4 +/- 0.1 1.4 +/- 0.1 1.4 +/- 0.1 5/5/2020 5/12/2020 1.4 +/- 0.1 5/11/2020 5/18/2020 1.7 +/- 0.1 1.7 +/- 0.2 1.7 +/- 0.1 1.7 +/- 0.1 1.7 +/- 0.1 1.8 +/- 0.1 5/12/2020 5/19/2020 2.1 +/- 0.1 5/18/2020 5/26/2020 1.9 +/- 0.1 2.0 +/- 0.2 1.7 +/- 0.1 2.0 +/- 0.1 1.8 +/- 0.1 2.0 +/- 0.1 5/19/2020 5/27/2020 2.1 +/- 0.1 5/26/2020 6/1/2020 1.7 +/- 0.1 1.8 +/- 0.2 1.6 +/- 0.1 1.6 +/- 0.2 1.7 +/- 0.1 1.5 +/- 0.2 5/27/2020 6/2/2020 1.5 +/- 0.1 6/1/2020 6/8/2020 2.5 +/- 0.2 2.4 +/- 0.2 3.0 +/- 0.3 2.5 +/- 0.2 2.2 +/- 0.1 2.4 +/- 0.2 6/2/2020 6/9/2020 2.2 +/- 0.1 1

6/8/2020 6/15/2020 1.3 +/- 0.1 1.3 +/- 0.2 1.3 +/- 0.1 1.2 +/- 0.1 1.2 +/- 0.1 6/9/2020 6/16/2020 1.4 +/- 0.1 6/15/2020 6/22/2020 2.0 +/- 0.1 1.9 +/- 0.2 1.7 +/- 0.2 2.0 +/- 0.1 1.9 +/- 0.1 2.0 +/- 0.2 6/16/2020 6/23/2020 2.1 +/- 0.1 6/22/2020 6/29/2020 2.3 +/- 0.2 2.2 +/- 0.2 2.4 +/- 0.3 2.7 +/- 0.2 2.3 +/- 0.1 2.2 +/- 0.2 6/23/2020 6/30/2020 2.1 +/- 0.1 35

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-5 Concentration of Beta Emitters in Air Particulates - Onsite Samples (Results in units of 10-2 pCi/m3 +/- 2 Uncertainty)

Start Date Stop Date STATION-02 STATION-03 STATION-04 STATION-05 STATION-06 STATION-07 STATION-13 Manor House East Field Training Center Creek Bridge Main Parking West Fence Substation 13 Yard Parking Lot Lot Line 6/29/2020 7/6/2020 2.3 +/- 0.2 2.5 +/- 0.2 2.1 +/- 0.2 2.7 +/- 0.2 2.4 +/- 0.1 2.4 +/- 0.2 6/30/2020 7/7/2020 2.4 +/- 0.1 7/6/2020 7/13/2020 2.7 +/- 0.2 2.8 +/- 0.2 2.8 +/- 0.3 3.4 +/- 0.2 3.2 +/- 0.2 3.1 +/- 0.2 7/7/2020 7/14/2020 2.8 +/- 0.2 7/13/2020 7/20/2020 2.6 +/- 0.1 2.5 +/- 0.2 2.3 +/- 0.3 2.3 +/- 0.1 2.7 +/- 0.2 2.6 +/- 0.2 7/14/2020 7/21/2020 2.5 +/- 0.2 7/20/2020 7/27/2020 2.1 +/- 0.1 2.2 +/- 0.2 2.0 +/- 0.3 2.1 +/- 0.1 2.2 +/- 0.1 2.3 +/- 0.2 7/21/2020 7/28/2020 2.2 +/- 0.1 7/27/2020 8/3/2020 1.9 +/- 0.1 2.1 +/- 0.1 1.9 +/- 0.2 1.9 +/- 0.1 1.9 +/- 0.1 2.0 +/- 0.1 7/28/2020 8/4/2020 1.8 +/- 0.1 8/3/2020 8/10/2020 2.2 +/- 0.1 2.2 +/- 0.2 2.3 +/- 0.3 2.1 +/- 0.1 2.1 +/- 0.1 2.2 +/- 0.2 8/4/2020 8/11/2020 2.9 +/- 0.2 8/10/2020 8/17/2020 3.0 +/- 0.2 3.2 +/- 0.2 2.8 +/- 0.3 2.9 +/- 0.2 3.2 +/- 0.2 3.2 +/- 0.2 8/11/2020 8/18/2020 2.4 +/- 0.1 8/17/2020 8/24/2020 2.6 +/- 0.1 2.8 +/- 0.2 2.9 +/- 0.3 2.6 +/- 0.1 2.9 +/- 0.1 2.9 +/- 0.2 8/18/2020 8/25/2020 3.2 +/- 0.2 8/24/2020 8/31/2020 2.1 +/- 0.1 2.5 +/- 0.2 2.1 +/- 0.3 2.3 +/- 0.1 2.3 +/- 0.1 2.4 +/- 0.2 8/25/2020 9/1/2020 1.8 +/- 0.1 8/31/2020 9/8/2020 2.1 +/- 0.1 2.3 +/- 0.1 2.0 +/- 0.2 2.2 +/- 0.1 2.2 +/- 0.1 2.3 +/- 0.1 9/1/2020 9/9/2020 2.1 +/- 0.1 9/8/2020 9/14/2020 1.7 +/- 0.1 1.8 +/- 0.2 1.7 +/- 0.3 1.8 +/- 0.1 1.9 +/- 0.1 1.9 +/- 0.2 9/9/2020 9/15/2020 1.6 +/- 0.1 9/14/2020 9/21/2020 1.5 +/- 0.1 1.4 +/- 0.1 1.2 +/- 0.2 1.3 +/- 0.1 1.5 +/- 0.1 1.4 +/- 0.1 9/15/2020 9/23/2020 1.9 +/- 0.1 9/21/2020 9/28/2020 5.4 +/- 0.2 5.9 +/- 0.2 5.7 +/- 0.3 5.6 +/- 0.2 6.0 +/- 0.2 5.8 +/- 0.2 9/23/2020 9/29/2020 5.7 +/- 0.2 36

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-5 Concentration of Beta Emitters in Air Particulates - Onsite Samples (Results in units of 10-2 pCi/m3 +/- 2 Uncertainty)

Start Date Stop Date STATION-02 STATION-03 STATION-04 STATION-05 STATION-06 STATION-07 STATION-13 Manor House East Field Training Center Creek Bridge Main Parking West Fence Substation 13 Yard Parking Lot Lot Line 9/28/2020 10/5/2020 1.5 +/- 0.1 1.7 +/- 0.1 1.2 +/- 0.2 1.6 +/- 0.1 1.6 +/- 0.1 1.7 +/- 0.1 9/29/2020 10/6/2020 1.4 +/- 0.1 10/5/2020 10/12/2020 2.3 +/- 0.1 2.5 +/- 0.2 2.3 +/- 0.2 2.3 +/- 0.1 2.5 +/- 0.1 2.5 +/- 0.2 10/6/2020 10/13/2020 2.2 +/- 0.1 10/12/2020 10/19/2020 2.0 +/- 0.1 2.2 +/- 0.1 2.3 +/- 0.2 2.2 +/- 0.1 2.2 +/- 0.1 2.3 +/- 0.2 10/13/2020 10/20/2020 2.1 +/- 0.1 10/19/2020 10/26/2020 1.9 +/- 0.1 2.0 +/- 0.2 1.6 +/- 0.3 1.7 +/- 0.1 1.9 +/- 0.1 2.0 +/- 0.2 10/20/2020 10/27/2020 1.9 +/- 0.1 10/26/2020 11/2/2020 2.4 +/- 0.1 2.4 +/- 0.2 2.1 +/- 0.2 2.5 +/- 0.1 2.4 +/- 0.1 2.5 +/- 0.2 10/27/2020 11/3/2020 2.5 +/- 0.1 11/2/2020 11/9/2020 5.2 +/- 0.2 5.6 +/- 0.2 5.2 +/- 0.3 5.1 +/- 0.2 5.4 +/- 0.2 5.6 +/- 0.2 11/3/2020 11/10/2020 5.6 +/- 0.2 11/9/2020 11/16/2020 2.9 +/- 0.1 3.1 +/- 0.2 3.0 +/- 0.3 3.1 +/- 0.2 3.1 +/- 0.2 3.2 +/- 0.2 11/10/2020 11/17/2020 3.1 +/- 0.2 11/16/2020 11/23/2020 2.4 +/- 0.1 2.7 +/- 0.2 2.4 +/- 0.2 2.7 +/- 0.1 2.6 +/- 0.1 2.6 +/- 0.2 11/17/2020 11/24/2020 2.2 +/- 0.1 11/23/2020 11/30/2020 3.5 +/- 0.2 3.7 +/- 0.2 3.4 +/- 0.3 3.5 +/- 0.2 3.7 +/- 0.2 3.7 +/- 0.2 11/24/2020 12/1/2020 3.5 +/- 0.2 11/30/2020 12/7/2020 1.9 +/- 0.1 2.1 +/- 0.1 1.8 +/- 0.2 1.9 +/- 0.1 2.0 +/- 0.1 2.1 +/- 0.1 12/1/2020 12/8/2020 2.0 +/- 0.1 12/7/2020 12/14/2020 3.8 +/- 0.2 3.9 +/- 0.2 4.0 +/- 0.3 3.9 +/- 0.2 3.9 +/- 0.2 4.3 +/- 0.2 12/8/2020 12/15/2020 4.2 +/- 0.2 12/14/2020 12/21/2020 2.1 +/- 0.1 2.1 +/- 0.1 2.1 +/- 0.3 2.0 +/- 0.1 2.0 +/- 0.1 2.1 +/- 0.1 12/15/2020 12/22/2020 2.4 +/- 0.1 12/21/2020 12/28/2020 2.7 +/- 0.1 2.7 +/- 0.2 2.4 +/- 0.3 2.6 +/- 0.1 2.8 +/- 0.1 2.9 +/- 0.2 12/22/2020 12/29/2020 2.4 +/- 0.1 1 Sampler malfunction/low flow. See Section 3.5 for additional information.

37

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-6 Concentration of Beta Emitters in Air Particulates - Offsite Samples (Results in units of 10-2 pCi/m3 +/- 2 Uncertainty)

Start Date Stop Date STATION-081 STATION-09 STATION-101 STATION-11 STATION-121 Seabreeze Webster Walworth Williamson Sodus Point 1/2/2020 1/8/2020 2.3 +/- 0.1 2.3 +/- 0.2 2.5 +/- 0.1 2.5 +/- 0.2 2.3 +/- 0.1 1/8/2020 1/14/2020 1.7 +/- 0.1 1.7 +/- 0.2 1.8 +/- 0.1 1.8 +/- 0.2 1.9 +/- 0.1 1/14/2020 1/22/2020 2.1 +/- 0.1 2.0 +/- 0.1 2.2 +/- 0.1 2.1 +/- 0.1 2.2 +/- 0.1 1/22/2020 1/27/2020 1.6 +/- 0.1 1/22/2020 1/28/2020 1.4 +/- 0.1 1.6 +/- 0.2 1.5 +/- 0.1 1.6 +/- 0.2 1/28/2020 2/4/2020 1.4 +/- 0.1 1.4 +/- 0.1 1.4 +/- 0.1 1.5 +/- 0.1 1.6 +/- 0.1 2/4/2020 2/11/2020 1.5 +/- 0.1 1.5 +/- 0.1 1.5 +/- 0.1 1.5 +/- 0.1 1.8 +/- 0.1 2/11/2020 2/18/2020 2.3 +/- 0.1 2.3 +/- 0.2 2.6 +/- 0.1 2.4 +/- 0.2 2.7 +/- 0.1 2/18/2020 2/25/2020 2.9 +/- 0.1 2.9 +/- 0.2 2.9 +/- 0.1 2.9 +/- 0.2 2.9 +/- 0.1 2/25/2020 3/3/2020 2.2 +/- 0.1 2.3 +/- 0.2 2.4 +/- 0.1 2.6 +/- 0.2 2.5 +/- 0.1 3/3/2020 3/10/2020 2.2 +/- 0.1 2.3 +/- 0.1 2.2 +/- 0.1 2.4 +/- 0.1 2.2 +/- 0.1 3/10/2020 3/17/2020 2.1 +/- 0.1 2.1 +/- 0.2 2.2 +/- 0.1 2.1 +/- 0.1 2.3 +/- 0.1 3/17/2020 3/24/2020 1.9 +/- 0.1 2.0 +/- 0.2 2.0 +/- 0.1 2.2 +/- 0.2 2.2 +/- 0.1 3/24/2020 3/31/2020 1.1 +/- 0.1 1.2 +/- 0.1 1.2 +/- 0.1 1.1 +/- 0.1 1.1 +/- 0.1 3/31/2020 4/7/2020 1.5 +/- 0.1 1.5 +/- 0.1 1.5 +/- 0.1 1.5 +/- 0.1 1.9 +/- 0.1 4/7/2020 4/14/2020 2.3 +/- 0.1 2.4 +/- 0.2 2.2 +/- 0.1 2.4 +/- 0.2 2.4 +/- 0.1 4/14/2020 4/21/2020 2.2 +/- 0.1 2.2 +/- 0.2 2.3 +/- 0.1 2.5 +/- 0.2 2.4 +/- 0.1 4/21/2020 4/28/2020 2.3 +/- 0.1 2.4 +/- 0.2 2.3 +/- 0.1 2.4 +/- 0.2 2.3 +/- 0.1 4/28/2020 5/5/2020 1.4 +/- 0.1 1.3 +/- 0.1 1.3 +/- 0.1 1.4 +/- 0.1 1.5 +/- 0.1 5/5/2020 5/12/2020 1.3 +/- 0.1 1.4 +/- 0.1 1.3 +/- 0.1 1.3 +/- 0.1 1.2 +/- 0.1 5/12/2020 5/19/2020 1.9 +/- 0.1 1.9 +/- 0.1 1.9 +/- 0.1 2.0 +/- 0.1 2.0 +/- 0.1 5/19/2020 5/27/2020 2.0 +/- 0.1 2.1 +/- 0.1 1.9 +/- 0.1 2.2 +/- 0.1 2.0 +/- 0.1 5/27/2020 6/2/2020 1.5 +/- 0.1 1.5 +/- 0.2 1.4 +/- 0.1 1.4 +/- 0.2 1.4 +/- 0.1 6/2/2020 6/9/2020 2.1 +/- 0.1 2.7 +/- 0.2 2.2 +/- 0.1 2.4 +/- 0.2 2.2 +/- 0.2 6/9/2020 6/16/2020 1.2 +/- 0.1 1.3 +/- 0.1 1.2 +/- 0.1 1.2 +/- 0.1 1.4 +/- 0.1 6/16/2020 6/23/2020 2.7 +/- 0.2 2.3 +/- 0.2 2.0 +/- 0.1 2.2 +/- 0.1 2.1 +/- 0.2 6/23/2020 6/30/2020 2.9 +/- 0.2 2.2 +/- 0.2 2.1 +/- 0.1 2.4 +/- 0.2 2.1 +/- 0.2 6/30/2020 7/7/2020 3.1 +/- 0.2 2.5 +/- 0.2 2.1 +/- 0.1 2.2 +/- 0.1 2.2 +/- 0.2 7/7/2020 7/14/2020 3.6 +/- 0.2 2.9 +/- 0.2 2.7 +/- 0.2 2.7 +/- 0.1 2.6 +/- 0.2 7/14/2020 7/21/2020 3.2 +/- 0.2 2.5 +/- 0.2 2.6 +/- 0.2 2.5 +/- 0.1 2.5 +/- 0.2 7/21/2020 7/28/2020 2.9 +/- 0.2 2.3 +/- 0.2 2.3 +/- 0.1 2.3 +/- 0.1 2.2 +/- 0.2 7/28/2020 8/4/2020 2.3 +/- 0.2 1.8 +/- 0.1 2.0 +/- 0.1 1.9 +/- 0.1 1.8 +/- 0.1 8/4/2020 8/11/2020 3.9 +/- 0.2 3.1 +/- 0.2 2.9 +/- 0.2 2.8 +/- 0.1 2.8 +/- 0.2 8/11/2020 8/18/2020 3.1 +/- 0.2 2.5 +/- 0.2 2.6 +/- 0.2 2.5 +/- 0.1 2.4 +/- 0.2 8/18/2020 8/25/2020 4.2 +/- 0.2 3.1 +/- 0.2 3.1 +/- 0.2 3.0 +/- 0.2 3.1 +/- 0.2 8/25/2020 9/1/2020 2.3 +/- 0.2 1.8 +/- 0.1 1.9 +/- 0.1 1.9 +/- 0.1 1.7 +/- 0.1 9/1/2020 9/9/2020 2.7 +/- 0.2 2.3 +/- 0.1 2.2 +/- 0.1 2.3 +/- 0.1 2.1 +/- 0.1 9/9/2020 9/15/2020 1.9 +/- 0.2 1.8 +/- 0.2 1.6 +/- 0.1 1.6 +/- 0.1 1.5 +/- 0.2 9/15/2020 9/23/2020 2.5 +/- 0.2 2.1 +/- 0.1 2.0 +/- 0.1 1.8 +/- 0.1 1.7 +/- 0.1 9/23/2020 9/29/2020 7.7 +/- 0.3 6.3 +/- 0.3 6.0 +/- 0.2 5.8 +/- 0.2 5.4 +/- 0.2 38

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-6 Concentration of Beta Emitters in Air Particulates - Offsite Samples (Results in units of 10-2 pCi/m3 +/- 2 Uncertainty)

Start Date Stop Date STATION-081 STATION-09 STATION-101 STATION-11 STATION-121 Seabreeze Webster Walworth Williamson Sodus Point 9/29/2020 10/6/2020 1.8 +/- 0.2 1.5 +/- 0.1 1.4 +/- 0.1 1.5 +/- 0.1 1.6 +/- 0.1 10/6/2020 10/13/2020 2.9 +/- 0.2 2.3 +/- 0.2 2.3 +/- 0.1 2.3 +/- 0.1 2.1 +/- 0.1 10/13/2020 10/20/2020 3.0 +/- 0.2 2.4 +/- 0.2 2.4 +/- 0.1 2.3 +/- 0.1 2.2 +/- 0.2 10/20/2020 10/27/2020 2.5 +/- 0.2 2.0 +/- 0.2 2.0 +/- 0.1 1.9 +/- 0.1 1.8 +/- 0.1 10/27/2020 11/3/2020 3.3 +/- 0.2 2.6 +/- 0.2 2.4 +/- 0.1 2.5 +/- 0.1 2.6 +/- 0.2 11/3/2020 11/10/2020 7.1 +/- 0.3 6.0 +/- 0.2 5.7 +/- 0.2 5.6 +/- 0.2 5.4 +/- 0.2 11/10/2020 11/17/2020 4.1 +/- 0.2 3.1 +/- 0.2 3.2 +/- 0.2 3.1 +/- 0.1 3.0 +/- 0.2 11/17/2020 11/24/2020 2.7 +/- 0.2 2.1 +/- 0.1 2.2 +/- 0.1 2.0 +/- 0.1 2.2 +/- 0.2 11/24/2020 12/1/2020 4.4 +/- 0.2 3.4 +/- 0.2 3.2 +/- 0.2 3.3 +/- 0.2 3.3 +/- 0.2 12/1/2020 12/8/2020 2.4 +/- 0.2 2.0 +/- 0.1 2.1 +/- 0.1 1.8 +/- 0.1 2.0 +/- 0.1 12/8/2020 12/15/2020 5.4 +/- 0.2 4.3 +/- 0.2 4.3 +/- 0.2 4.1 +/- 0.2 4.1 +/- 0.2 12/15/2020 12/22/2020 3.3 +/- 0.2 2.4 +/- 0.2 2.4 +/- 0.1 2.1 +/- 0.1 2.7 +/- 0.2 12/22/2020 12/29/2020 2.9 +/- 0.2 2.2 +/- 0.2 2.3 +/- 0.1 2.1 +/- 0.1 2.2 +/- 0.2 1Control Location 2Sampler Malfunction / Low Flow.

39

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-7 Concentration of Gamma Emitters in Air Particulates (Results in units of 10-3 pCi/m3 +/- 2)

Location Description Sample Date Gamma Emitters (Cs-137) (I-131)

STATION-02 Manor House Yard 3/30/2020 < 1.8 < 0.002 6/29/2020 < 1.8 < 0.002 9/28/2020 < 1.8 < 0.002 12/28/2020 < 1.8 < 0.002 North of Training 3/30/2020 STATION-03 Center Parking Lot < 1.8 < 0.002 6/29/2020 < 1.8 < 0.002 9/28/2020 < 1.8 < 0.002 12/28/2020 < 1.8 < 0.002 Training Center 3/30/2020 STATION-04 Parking Lot < 1.8 < 0.002 6/29/2020 < 1.8 < 0.002 9/28/2020 < 1.8 < 0.002 12/28/2020 < 1.8 < 0.002 STATION-05 Creek Bridge 3/30/2020 < 1.8 < 0.002 6/29/2020 < 1.8 < 0.002 9/28/2020 < 1.8 < 0.002 12/28/2020 < 1.8 < 0.002 STATION-06 Main Parking Lot 3/30/2020 < 1.8 < 0.002 6/29/2020 < 1.8 < 0.002 9/28/2020 < 1.8 < 0.002 12/28/2020 < 1.8 < 0.002 STATION-07 West Fence Line 3/30/2020 < 1.8 < 0.002 6/29/2020 < 1.8 < 0.002 9/28/2020 < 1.8 < 0.002 12/28/2020 < 1.8 < 0.002 STATION-081 Seabreeze 3/31/2020 < 1.8 < 0.002 6/30/2020 < 1.8 < 0.002 9/29/2020 < 1.8 < 0.002 12/29/2020 < 1.8 < 0.002 STATION-09 Webster 3/31/2020 < 1.8 < 0.002 6/30/2020 < 1.8 < 0.002 9/29/2020 < 1.8 < 0.002 12/29/2020 < 1.8 < 0.002 STATION-101 Walworth 3/31/2020 < 1.8 < 0.002 6/30/2020 < 1.8 < 0.002 9/29/2020 < 1.8 < 0.002 12/29/2020 < 1.8 < 0.002 40

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-7 (Continued)

Concentration of Gamma Emitters in Air Particulates (Results in units of 10-3 pCi/m3 +/- 2)

Location Description Sample Date Gamma Emitters (Cs-137) (I-131)

STATION-11 Williamson 3/31/2020 < 1.8 < 0.002 6/30/2020 < 1.8 < 0.002 9/29/2020 < 1.8 < 0.002 12/29/2020 < 1.8 < 0.002 STATION-121 Sodus Point 3/31/2020 < 1.8 < 0.002 6/30/2020 < 1.8 < 0.002 9/29/2020 < 1.8 < 0.002 12/29/2020 < 1.8 < 0.002 STATION-13 Substation 13 3/31/2020 < 1.8 < 0.002 6/30/2020 < 1.8 < 0.002 9/29/2020 < 1.8 < 0.002 12/29/2020 < 1.8 < 0.002 1 Control Location 41

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-8 Concentration of Gamma Emitters in Vegetation Samples (Results in units of pCi/kg (wet) +/- 2)

Sample Code Sample Date Sample Type Gamma Emitters (Cs-137) (I-131)

CONTROL1 Local Sites in Control Sectors 7/9/2020 Greens < 27 < 20 7/30/2020 Zucchini < 27 < 20 7/30/2020 Tuber (potato) < 27 < 20 7/30/2020 Onion (root) < 27 < 20 9/1/2020 Pears < 27 < 20 9/1/2020 Tomato < 27 < 20 9/15/2020 Apples < 27 < 20 9/15/2020 Grapes < 27 < 20 EAST East Sector 7/1/2020 Greens < 27 < 20 7/23/2020 Zucchini < 27 < 20 7/23/2020 Onion (root) < 27 < 20 7/23/2020 Tuber (potato) < 27 < 20 9/4/2020 Grapes < 27 < 20 9/14/2020 Apples < 27 < 20 ESE East South East Sector 7/1/2020 Greens < 27 < 20 7/23/2020 Zucchini < 27 < 20 7/23/2020 Tuber (potato) < 27 < 20 7/23/2020 Onion (root) < 27 < 20 8/17/2020 Tomato < 27 < 20 9/4/2020 Grapes < 27 < 20 SSE South South East Garden 7/1/2020 Greens < 27 < 20 7/23/2020 Zucchini < 27 < 20 7/23/2020 Onion (root) < 27 < 20 7/23/2020 Tuber (potato) < 27 < 20 8/31/2020 Pears < 27 < 20 9/14/2020 Apples < 27 < 20 1 Control Location 42

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-9 Concentration of Gamma Emitters (including I-131) in Milk (Results in units of pCi/Liter +/- 2)

Sample Code Sample Date Gamma Emitters Cs-137 (I-131)

FARM_A (FIELD CRAFT)

ESE Supplemental 1/13/2020 < 0.4 < 0.01 2/10/2020 < 0.4 < 0.01 3/9/2020 < 0.4 < 0.01 4/6/2020 < 0.4 < 0.01 5/4/2020 < 0.4 < 0.01 6/1/2020 < 0.4 < 0.01 6/15/2020 < 0.4 < 0.01 6/29/2020 < 0.4 < 0.01 7/13/2020 < 0.4 < 0.01 7/27/2020 < 0.4 < 0.01 8/10/2020 < 0.4 < 0.01 8/24/2020 < 0.4 < 0.01 9/8/2020 < 0.4 < 0.01 9/21/2020 < 0.4 < 0.01 10/5/2020 < 0.4 < 0.01 10/19/2020 < 0.4 < 0.01 11/2/2020 < 0.4 < 0.01 11/30/2020 < 0.4 < 0.01 12/28/2020 < 0.4 < 0.01 FARM_B (SCHULTZ1)

South Sodus Control 1/13/2020 < 0.4 < 0.01 2/10/2020 < 0.4 < 0.01 3/9/2020 < 0.4 < 0.01 4/6/2020 < 0.4 < 0.01 5/4/2020 < 0.4 < 0.01 6/1/2020 < 0.4 < 0.01 6/15/2020 < 0.4 < 0.01 6/29/2020 < 0.4 < 0.01 7/13/2020 < 0.4 < 0.01 7/27/2020 < 0.4 < 0.01 8/10/2020 < 0.4 < 0.01 8/24/2020 < 0.4 < 0.01 9/8/2020 < 0.4 < 0.01 9/21/2020 < 0.4 < 0.01 10/5/2020 < 0.4 < 0.01 10/19/2020 < 0.4 < 0.01 11/2/2020 < 0.4 < 0.01 11/30/2020 < 0.4 < 0.01 12/28/2020 < 0.4 < 0.01 1 Control Location 43

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-10 Typical MDA Ranges for Gamma Spectrometry Shoreline Surface Water, Vegetation Selected Air Particulates Fish (pCi/kg) Groundwater Milk Oysters Sediment Soil (pCi/kg)

Drinking Water (pCi/kg)

Nuclides (10-3 pCi/m3) Wet (pCi/L) (pCi/L) (pCi/kg) (pCi/kg) Dry (pCi/L) Wet Dry Na-22 0.34 - 1.33 2.7 - 6.0 12.1 - 28.0 2.78 - 5.94 4.9 - 8.5 13.4 - 19.5 46.4 - 77.4 36.4 - 92.4 8.9 - 54.1 K-40 5.65 - 24.6 16 - 182 2,747 - 4,505 21.5 -66.4 1,286 - 1,529 1,269 - 2,069 781 - 13,761 789 - 10,713 671 - 11,829 Mn-54 0.32 - 1.16 2.7 - 5.6 9.8 - 19.6 2.86 - 5.14 3.6 - 6.6 10.8 - 16.4 41.4 - 67.1 37.4 - 91.9 10.3 - 53.0 Fe-59 1.01 - 8.52 5.6 - 13.2 31.6 - 93.2 6.04 - 11.7 9.2 - 15.9 29.3 - 56.7 142 - 251 96.4 - 389 22.0 - 151 Co-58 0.38 - 2.07 2.7 - 5.6 10.9 - 28.3 2.86 - 5.27 3.7 - 6.3 10.5 - 19.3 53.7 - 82.9 44.6 - 133 10.9 - 59.8 Co-60 0.28 - 1.09 2.8 - 5.5 10.9 - 24.3 3.01 - 5.38 4.1 - 7.2 11.7 - 17.0 38.6 - 57.9 32.8 - 85.8 12.9 - 55.0 Zn-65 0.81 - 3.10 5.5 - 11.4 23.3 - 57.2 6.41 - 14.4 9.4 - 16.1 22.0 - 43.3 112 - 198 96.4 - 275 24.7 - 116 Ag-110m 0.33 - 1.06 2.42 - 4.96 8.2 - 18.1 2.79 - 5.06 3.26- 5.64 8.7 - 16.0 36.6 - 175 40.7 - 99.4 10.1 - 61.4 Zr-95 0.72 - 3.88 4.7 - 10.2 20.0 - 47.1 5.62 - 8.75 5.8 - 11.5 19.0 - 34.0 93.5 - 151 84.6 - 261 19.3 - 116 Nb-95 0.56 - 4.91 2.9 - 6.0 13.7 - 42.7 3.3 - 5.88 3.9 - 6.5 13.9 - 24.3 82.1 - 157 61.5 - 227 10.9 - 90.5 Ru-106 3.00 - 12.1 23.8 - 48.1 77.1 - 197 25.6 - 45.3 29.3 - 51.8 88.0 - 141 327.0 - 570 314.0 - 840 92.9 - 541 I-1311 2.73 - 914 0.52 - 11.7 21.4 - 2,340 4.87 - 9.04 0.5 - 7.03 22.4 - 107 470 - 2,040 139 - 8,060 13.4 - 854 Cs-134 0.47 - 0.88 3.2 - 5.7 7.8 - 16.0 2.92 - 5.48 4.09 - 4.82 9.7 - 16.5 43.3 - 82.4 33.4 - 109 11.1 - 58.1 Cs-137 0.46 - 0.88 3.7 - 5.9 3.8 - 17.5 2.97 - 5.43 4.08 - 5.29 10.0 - 16.7 38.4 - 65.4 39.1 - 135 11.1 - 62.3 La-140 2.01 - 116 5.05 - 11.5 15.9 - 444 4.87 - 10.3 4.89 - 6.28 24.1 - 80.4 368 - 773 136 - 1,820 9.1 - 388 Ba-140 2.01 - 116 5.05 - 11.5 15.9 - 444 5.86 - 26.0 4.89 - 6.28 24.1 - 80.4 368 - 773 136 - 1,820 9.1 - 388 Ce-144 1.12 - 3.27 16.8 - 36.7 38.1 - 70.9 17.8 - 32.0 20.5 - 31.0 42.6 - 72.6 208 - 279 191 - 414 46.6 - 289 Cr-51 4.90 - 45.0 23.2 - 50.6 93.0 - 395 26.7 - 42.1 30.4 - 46.8 97.0 - 199 711 - 1,110 489 - 1,810 93.9 - 850 1 The MDA range for I-131 on a charcoal cartridge is typically 5.22 x 10-3 to 1.37 x 10-2 pCi/m3.

44

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-11 Typical LLDs for Gamma Spectrometry Air Surface Water, Selected Fish pCi/kg Groundwater Oysters pCi/kg Precipitation Soil pCi/kg Vegetation pCi/kg Particulates Drinking Water Nuclides (wet) pCi/L (wet) pCi/L (dry) (wet) 10-3 pCi/m3 pCi/L Na-22 5 5.3 12 5.3 12 9.1 78 27 Cr-51 74 37 76 37 76 62 452 174 Mn-54 4.6 4.7 13 4.7 13 7.4 63 19 Co-58 6.7 4.3 12 4.3 12 8.2 78 23 Fe-59 20 11 27 11 27 18 123 57 Co-60 3.5 4.8 12 4.8 12 7.5 59 24 Zn-65 8.9 11 27 11 27 17 162 55 Nb-95 9.8 4.5 13 4.5 13 9.5 73 25 Zr-95 11 7.9 18 7.9 18 14 117 34 Ru-106 43 38 111 38 111 62 624 174 Ag-110m 4.2 4.3 11 4.3 11 6 65 20 Te-129m 101 56 118 56 118 90 833 263 I-131* 90 0.8 11 6.4 11 0.8 58 42 Cs-134 4.7 4.7 11 4.7 11 6.7 66 18 Cs-137 4.2 5.1 11 5.1 11 6.9 78 21 Ba-140 47 23 39 23 39 46 103 111 La-140 47 9.2 15 9.2 15 13 103 30 Ce-144 15 23 45 23 45 37 288 70

  • The LLD for I-131 measured on a charcoal cartridge is 3.7 x10-2 pCi/m3 45

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-12 Direct Radiation 2020 Quarterly Dose (mrem/ 91 days) 2020 Location Quarterly Quarterly QTRLY mrem / 91 Days Quarterly Standard Facility CVQ Value Baseline, Deviation, Dose, FQ

+3 SDs TLD 1st QTR 2nd QTR 3rd QTR 4th QTR AVG MAX BQ (mrem) SQ (mrem) (mrem) 2 12.3 +/- 0.5 15.2 +/- 0.4 16.2 +/- 0.7 16.9 +/- 1.1 15.1 16.9 13.2 1.46 0.11 17.58 ND 3 13.0 +/- 0.5 16.4 +/- 0.6 16.0 +/- 0.9 17.4 +/- 1.0 15.7 17.4 13.7 1.53 0.11 18.28 ND 4 11.4 +/- 0.8 14.9 +/- 0.4 14.8 +/- 0.5 16.4 +/- 1.1 14.4 16.4 12.4 1.55 0.12 17.08 ND 5 12.6 +/- 0.7 15.9 +/- 0.4 15.9 +/- 0.9 17.3 +/- 0.7 15.4 17.3 13.2 1.64 0.12 18.10 ND 6 10.1 +/- 0.6 13.3 +/- 0.3 12.9 +/- 0.6 14.4 +/- 0.8 12.7 14.4 10.6 1.60 0.15 15.38 ND 7 11.2 +/- 0.5 14.7 +/- 0.7 14.8 +/- 0.6 16.1 +/- 0.7 14.2 16.1 12.2 1.58 0.13 16.90 ND 81 11.2 +/- 0.6 14.3 +/- 0.6 14.2 +/- 0.8 14.5 +/- 0.6 13.6 14.5 11.9 1.28 0.11 15.73 ND 9 11.2 +/- 0.5 14.1 +/- 0.4 14.4 +/- 1.0 14.3 +/- 0.9 13.5 14.4 11.6 1.38 0.12 15.68 ND 101 10.4 +/- 0.5 13.3 +/- 0.6 13.4 +/- 0.5 14.1 +/- 0.7 12.8 14.1 11.0 1.31 0.12 14.93 ND 11 10.4 +/- 0.6 14.0 +/- 0.7 13.6 +/- 0.8 14.1 +/- 0.6 13.0 14.1 11.3 1.29 0.11 15.16 ND 121 11.1 +/- 0.5 14.7 +/- 0.4 14.8 +/- 0.6 15.2 +/- 0.6 14.0 15.2 12.4 1.31 0.11 16.38 ND 13 19.2 +/- 1.0 22.0 +/- 0.6 21.2 +/- 1.1 32.7 +/- 2.2 23.8 32.7 20.1 3.44 0.17 30.41 ND 14 10.9 +/- 0.4 15.7 +/- 0.6 15.5 +/- 0.6 16.4 +/- 0.8 14.6 16.4 12.9 1.63 0.13 17.78 ND 15 12.9 +/- 0.9 16.8 +/- 0.7 16.3 +/- 0.5 17.1 +/- 1.2 15.8 17.1 13.9 1.53 0.11 18.50 ND 16 13.0 +/- 0.5 16.2 +/- 0.6 16.3 +/- 0.4 16.8 +/- 0.8 15.6 16.8 13.6 1.42 0.10 17.85 ND 17 12.1 +/- 0.5 15.9 +/- 0.5 15.5 +/- 0.5 16.1 +/- 0.6 14.9 16.1 13.0 1.49 0.11 17.47 ND 18 10.2 +/- 0.9 13.9 +/- 0.6 13.4 +/- 0.5 13.0 +/- 0.7 12.6 13.9 10.9 1.34 0.12 14.95 ND 19 10.1 +/- 0.6 13.1 +/- 0.3 13.3 +/- 0.3 13.6 +/- 0.6 12.5 13.6 10.8 1.33 0.12 14.73 ND 20 13.3 +/- 1.1 15.7 +/- 0.8 15.6 +/- 0.6 16.6 +/- 0.7 15.3 16.6 13.0 1.56 0.12 17.66 ND 21 12.0 +/- 0.8 15.4 +/- 0.5 15.0 +/- 0.5 16.2 +/- 0.6 14.6 16.2 12.8 1.43 0.11 17.11 ND 22 10.5 +/- 0.5 13.7 +/- 0.4 14.0 +/- 0.5 14.8 +/- 0.5 13.3 14.8 11.7 1.31 0.11 15.62 ND 23 11.8 +/- 0.6 15.7 +/- 0.5 17.3 +/- 1.0 17.0 +/- 1.2 15.5 17.3 13.4 1.73 0.13 18.55 ND 24 12.6 +/- 0.9 16.3 +/- 1.0 15.4 +/- 0.7 16.8 +/- 0.7 15.3 16.8 13.2 1.54 0.12 17.83 ND 251 10.5 +/- 0.6 13.9 +/- 0.7 13.9 +/- 0.4 14.6 +/- 0.7 13.2 14.6 11.4 1.39 0.12 15.60 ND 261 10.2 +/- 0.6 12.8 +/- 0.4 13.6 +/- 0.6 13.9 +/- 0.6 12.6 13.9 10.6 1.44 0.14 14.87 ND 46

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-12 Direct Radiation 2020 Quarterly Dose (mrem/ 91 days) 2020 Location Quarterly Quarterly QTRLY mrem / 91 Days Quarterly Standard Facility CVQ Value Baseline, Deviation, Dose, FQ

+3 SDs TLD 1st QTR 2nd QTR 3rd QTR 4th QTR AVG MAX BQ (mrem) SQ (mrem) (mrem) 1 27 10.5 +/- 0.7 14.0 +/- 0.6 14.8 +/- 0.5 15.3 +/- 0.7 13.7 15.3 11.5 1.64 0.14 16.46 ND 281 10.2 +/- 0.4 14.9 +/- 1.0 13.5 +/- 0.4 15.3 +/- 0.7 13.5 15.3 11.5 1.63 0.14 16.36 ND 291 10.5 +/- 0.6 13.9 +/- 0.7 14.5 +/- 0.6 15.2 +/- 0.8 13.5 15.2 11.4 1.56 0.14 16.13 ND 301 9.9 +/- 0.6 12.9 +/- 0.7 12.6 +/- 0.6 13.4 +/- 0.6 12.2 13.4 10.3 1.35 0.13 14.39 ND 31 12.7 +/- 0.8 16.1 +/- 0.7 16.4 +/- 0.4 16.6 +/- 1.1 15.5 16.6 13.5 1.58 0.12 18.23 ND 32 10.7 +/- 0.6 14.1 +/- 0.4 14.6 +/- 0.7 14.8 +/- 0.7 13.5 14.8 11.6 1.44 0.12 15.91 ND 33 10.7 +/- 0.6 13.3 +/- 0.4 13.7 +/- 0.6 14.0 +/- 0.6 12.9 14.0 10.9 1.50 0.14 15.44 ND 34 12.8 +/- 0.6 16.9 +/- 0.5 17.2 +/- 0.5 17.2 +/- 0.6 16.0 17.2 13.7 1.67 0.12 18.75 ND 35 12.5 +/- 0.8 16.1 +/- 0.6 16.3 +/- 0.5 16.2 +/- 0.6 15.3 16.3 13.2 1.64 0.12 18.14 ND 36 11.1 +/- 0.6 14.0 +/- 0.6 14.2 +/- 1.0 14.9 +/- 0.6 13.5 14.9 11.5 1.44 0.13 15.83 ND 37 10.1 +/- 0.6 12.9 +/- 0.3 12.8 +/- 0.6 14.0 +/- 0.7 12.5 14.0 10.8 1.35 0.12 14.85 ND 38 12.6 +/- 1.0 15.9 +/- 0.5 15.7 +/- 0.6 16.5 +/- 0.6 15.2 16.5 13.1 1.50 0.11 17.62 ND 39 12.5 +/- 0.6 15.4 +/- 0.8 15.6 +/- 0.8 16.0 +/- 0.8 14.9 16.0 12.7 1.50 0.12 17.20 ND 40 10.6 +/- 0.5 14.5 +/- 0.6 14.2 +/- 1.0 14.7 +/- 0.6 13.5 14.7 11.3 1.54 0.14 15.91 ND 63 12.6 +/- 0.6 17.2 +/- 1.2 16.7 +/- 0.8 15.8 +/- 1.0 15.6 17.2 13.4 1.62 0.12 18.30 ND 64 13.9 +/- 0.7 18.3 +/- 0.5 17.8 +/- 0.8 17.6 +/- 0.7 16.9 18.3 14.6 1.73 0.12 19.80 ND 1 - Control Location 47

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-12 Direct Radiation 2020 Annual Dose (mrem/ year)

YRLY 2020 Annual Baseline, Annual Standard Deviation, Values Annual Facility TLD (mrem) BA (mrem) SA (mrem) CVA +3 SDs Dose, FA 2 60.6 50.7 0.76 0.02 52.96 ND 3 62.8 52.1 1.45 0.03 56.48 ND 4 57.5 47.7 0.39 0.01 48.82 ND 5 61.7 50.5 0.76 0.02 52.79 ND 6 50.8 39.8 1.00 0.03 42.78 ND 7 56.8 46.2 0.98 0.02 49.15 ND 81 54.2 45.6 0.92 0.02 48.36 ND 9 54.0 44.0 0.68 0.02 46.09 ND 101 51.1 41.8 0.98 0.02 44.73 ND 11 52.1 43.1 0.79 0.02 45.47 ND 121 55.9 48.1 0.87 0.02 50.69 ND 13 95.1 73.5 7.37 0.10 95.63 YES 14 58.5 49.3 1.66 0.03 54.31 ND 15 63.2 53.6 0.81 0.02 56.00 ND 16 62.3 52.3 0.87 0.02 54.88 ND 17 59.6 49.8 0.88 0.02 52.43 ND 18 50.5 42.0 0.28 0.01 42.87 ND 19 50.1 41.3 0.75 0.02 43.52 ND 20 61.2 49.4 0.95 0.02 52.26 ND 21 58.5 49.2 1.38 0.03 53.34 ND 22 53.0 45.0 0.63 0.01 46.90 ND 23 61.8 51.0 1.19 0.02 54.63 ND 24 61.0 50.4 1.39 0.03 54.59 ND 251 52.8 43.6 1.10 0.03 46.88 ND 261 50.5 41.0 1.82 0.04 46.42 ND 48

January 1 - December 31, 2020 Docket Nos. 50-244 Table B-12 Direct Radiation 2020 Annual Dose (mrem/ year)

YRLY 2020 Annual Baseline, Annual Standard Deviation, Values Annual Facility TLD (mrem) BA (mrem) SA (mrem) CVA +3 SDs Dose, FA 271 54.6 43.9 1.02 0.02 46.93 ND 281 53.9 43.6 1.01 0.02 46.60 ND 291 54.1 43.2 1.49 0.03 47.64 ND 301 48.7 39.2 0.85 0.02 41.72 ND 31 61.9 51.3 1.92 0.04 57.05 ND 32 54.1 44.0 1.22 0.03 47.63 ND 33 51.8 41.5 1.30 0.03 45.44 ND 34 64.0 52.3 1.22 0.02 55.95 ND 35 61.2 50.8 2.05 0.04 56.98 ND 36 54.1 43.9 0.64 0.01 45.85 ND 37 49.9 41.4 0.79 0.02 43.76 ND 38 60.8 50.1 0.90 0.02 52.80 ND 39 59.5 48.6 0.64 0.01 50.49 ND 40 54.1 42.9 0.95 0.02 45.73 ND 63 62.2 51.0 1.48 0.03 55.43 ND 64 67.5 55.4 1.71 0.03 60.54 ND 1 - Control Location 49

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE B-13 Groundwater Monitoring Wells Location1 Sample Date2 Tritium (pCi/l)

GW01: Warehouse Access Road (Control) 7/22/2020 < 161 GW03: Screenhouse West, South Well 1/17/2020 < 425 2/21/2020 < 427 3/23/2020 < 190 7/24/2020 < 157 10/12/2020 258 GW04: Screenhouse West, North Well 3/23/2020 < 186 7/21/2020 < 158 10/12/2020 < 193 GW07: Screenhouse East, North (24.0) 7/21/2020 163 GW08: All Volatiles Treatment Building 1/17/2020 < 428 2/21/2020 < 428 3/23/2020 312 7/21/2020 336 10/12/2020 239 GW10: Technical Support Center, South 3/23/2020 321 7/21/2020 304 10/12/2020 347 GW11: Southeast of Contaminated Service Building (CSB) 3/23/2020 < 186 7/21/2020 < 162 10/12/2020 243 GW12: West of Orchard Access Road 7/23/2020 < 160 GW13: North of Independent Spent Fuel Storage Installation (ISFSI) 7/22/2020 < 159 GW14: South of Canister Preparation Building 3/23/2020 < 182 7/21/2020 < 155 10/12/2020 < 194 GW15: West of Manor House 7/22/2020 < 159 GW16: Southeast of Manor House 7/22/2020 < 160 1

Site GW monitoring suspended due to ongoing COVID-19 pandemic. Sampling and analyses to resume during Q3 2020.

2 New revision of EN-GI-408-4160 implemented on 07/01/20, reducing sampling locations and frequencies.

50

January 1 - December 31, 2020 Docket Nos. 50-244 APPENDIX C Quality Assurance Program Summary of Appendix C Content:

Appendix C is a summary of Exelon Industrial Services (EIS) laboratorys quality assurance program. It consists of Table C-1 which is a compilation of the results of the EIS laboratorys participation in an interlaboratory comparison program with Environmental Resource Associates (ERA) located in Arvada, Colorado and Eckert and Ziegler Analytics, Inc. (EZA) located in Atlanta, Georgia. It also includes Table C-2, which is a compilation of the results of the EIS laboratorys participation in a split sample program with Teledyne Brown Engineering located in Knoxville, Tennessee. Finally, Table C-3, is a list of the power plant's ODCM required LLDs, all of which are achieved by both EIS laboratory and Teledyne Brown Engineering for the analyses reported.

The EIS laboratory's results contained in Table C-1, intercomparison results, are in full agreement when they were evaluated using the NRC Resolution Test Criteria1 except as noted in the Pass/Fail column and described below. The EIS Laboratory's results are provided with their analytical uncertainties of two-sigma. When evaluating with the NRC Resolution Test a one-sigma uncertainty is used to determine Pass or Fail and noted accordingly.

The Gross Beta result for ERA Study Rad 121 (reference date 4/3/2020) passed the low-end limit of the vendor acceptance criteria but failed the NRC Resolution Test Criteria. Low recovery of activity in sample preparation is the likely cause of the low result reported and NRC Resolution Test Criteria failure. It was determined that glassware used in preparation was cleaned with Nitric acid except the volumetric pipets which were rinsed with Deionized (DI) water only. The glass was potentially not as clean and could retain micro-droplets of activity on the glass. Going forward, volumetric pipets are rinsed with Nitric acid to remove mineral deposit and activity that might be retained on the glass during use and preventing a clean delivery of the sample. This event has been entered into the Corrective Action Program for tracking and to prevent future occurrence.

Two of the EZA crosscheck studies (reference date 12/3/2020) reported values for Zn-65 that failed NRC acceptance criteria for Filter E13067 and Milk, E13070. The root cause for both studies is the evaluation spreadsheet which was used contained an error in mapping the raw data cell to the calculated data cell. The spreadsheet was not properly peer reviewed and verified. The cell was mapped to the Co-60 raw data and not the Zn-65 raw data. Had this cell been mapped to the correct raw data, the result and uncertainty would have passed NRC acceptance criteria with less than 10% difference from the True value. This event has been entered into the Corrective Action Program and the spreadsheet tool has been corrected and validated to prevent recurrence of this error.

The EIS laboratory results contained in Table C-2 are intercomparison results for routine samples analyzed for replicate and split analyses and evaluated for beta and non-natural gamma emitters. The EIS laboratorys results are provided with their analytical uncertainties of two-sigma. When evaluating with the NRC Resolution Test a one-sigma uncertainty is used to determine Pass or Fail and noted accordingly. In the event there are no non-natural isotopes detected, the samples are reported <MDA and designated as Pass.

51

January 1 - December 31, 2020 Docket Nos. 50-244 All the results contained in Table C-2 agree with their respective EIS laboratory original, replicate and/or Teledyne Brown Engineerings split laboratory samples. The original, replicate, and split analysis of soil collected on May 26, 2020 at SFS3 indicated Non-Plant related Cs-137 at low levels and these results Pass the NRC Resolution Test Criteria 1. The Cs-137 detected is consistent with weapons related fallout previously identified in the environs around Calvert Cliffs Nuclear Power Plant, which is used as part of the R.E. Ginna Nuclear Power Plant Quality Assurance Program.

The replicate and split analysis of soil collected on May 26, 2020 at SFS5 indicated low level, Non-Plant related Cs-137 and these results Pass the NRC Resolution Test Criteria 1. The original sample did not indicate Cs-137 above the Minimum Detectable Activity (MDA) of the analysis. In this case the replicate and split results also Pass the NRC Resolution Test Criteria 1, as specified in the rule. When compared to the MDA of the original analysis, the positive result is less than five-times the MDA value.

The low-level Cs-137 observed in these soil analyses is consistent with weapons related fallout previously identified in the environs around Calvert Cliffs Nuclear Power Plant, which is used as part of the R.E. Ginna Nuclear Power Plant Quality Assurance Program.

All air particulate samples contain Beta emitters and are reported with a two-sigma uncertainty. The original and replicate analyses are evaluated for agreement using the NRC Resolution Test Criteria 1.

These samples must be composited for further analysis and this precludes them from being split for analysis of beta emitters. Filters and other samples whose nature generally preclude sample splitting are marked ** in the Split Analysis column.

1 NRC Inspection Manual, Inspection Procedure 84750, March 15, 1994 52

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE OF CONTENTS - ANALYTICAL RESULTS Table Title Page C-1 Results of Participation in Cross Check Program............................................................................ 54 C-2 Results of Quality Assurance Program ............................................................................................ 58 C-3 Teledyne Brown Engineerings Typical MDAs for Gamma Spectrometry .................................... 65 53

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C-1 Results of Participation in Cross Check Program Reported Sample Type and Cross Check Lab Sample Date Isotope Observed Laboratory's Units Results Results 4/6/2020 Water - pCi/L Co-60 50.7 +/- 3.4 50.3 Zn-65 87.8 +/- 9.4 86.8 Cs-134 46.5 +/- 2.5 46.3 Cs-137 225 +/- 8.5 234 Ba-133 40.1 +/- 3.5 41.8 I-131 29.7 +/- 4.0 28.9 4/6/20201 Water - pCi/L Gross Beta 43.3 +/- 2.1 60.5 6/4/2020 Air Filter-pCi Cs-134 82.9 +/- 4.3 95.2 Cs-137 64.0 +/- 6.5 67.5 Ce-141 71.5 +/- 5.1 75.5 Cr-51 115.1 +/- 23.7 167 Mn-54 87.3 +/- 7.2 87 Co-58 60.7 +/- 6.7 65.4 Fe-59 65.8 +/- 7.9 65.7 Co-60 124.9 +/- 6.5 127 Zn-65 136.0 +/- 16.6 146 6/4/2020 Air Filter-pCi Cs-134 83.9 +/- 6.7 95.2 Cs-137 70.9 +/- 9.0 67.5 Ce-141 68.0 +/- 7.9 75.5 Cr-51 134.6 +/- 45.2 167 Mn-54 91.8 +/- 10.6 87 Co-58 67.3 +/- 9.0 65.4 Fe-59 72.4 +/- 13.3 65.7 Co-60 125.2 +/- 9.4 127 Zn-65 154.1 +/- 22.0 146 6/4/2020 Air Filter-pCi Cs-134 81.4 +/- 4.3 95.2 Cs-137 71.8 +/- 6.5 67.5 Ce-141 79.4 +/- 6.2 75.5 Cr-51 179.2 +/- 36.5 167 Mn-54 94.1 +/- 7.5 87 Co-58 62.1 +/- 7.3 65.4 Fe-59 71.7 +/- 8.8 65.7 Co-60 136.4 +/- 6.9 127 Zn-65 152.5 +/- 16.2 146 6/4/2020 Air Filter-pCi I-131 82.5 +/- 10.5 91.7 I-131 87.6 +/- 20.0 91.7 I-131 88.1 +/- 21.8 91.7 I-131 86.2 +/- 15.2 91.7 6/4/2020 Water-pCi/L Gross Beta 273 +/- 4.9 272 54

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Participation in Cross Check Program Reported Sample Type and Cross Check Lab Sample Date Isotope Observed Laboratory's Units Results Results 6/4/2020 Milk - pCi/L I-131 80.8 +/- 19.9 81.5 Cs-134 142 +/- 12.4 146 Cs-137 97.9 +/- 18.3 104 Ce-141 107 +/- 15.8 116 Cr-51 223.1 +/- 69.0 256 Mn-54 154.1 +/- 19.1 134 Co-58 107.1 +/- 17.5 100 Fe-59 96 +/- 20.8 101 Co-60 200.1 +/- 16.5 195 Zn-65 224.6 +/- 41.4 225 6/4/2020 Milk - pCi/L I-131 81.2 +/- 24.2 81.5 Cs-134 131 +/- 8.3 146 Cs-137 102 +/- 14.0 104 Ce-141 106 +/- 20.2 116 Cr-51 250.3 +/- 96.6 256 Mn-54 132.5 +/- 15.6 134 Co-58 101.2 +/- 14.8 100 Fe-59 99.1 +/- 17.7 101 Co-60 195.3 +/- 13.4 195 Zn-65 188.8 +/- 32.1 225 6/4/2020 Milk - pCi/L I-131 71.4 +/- 26.3 81.5 Cs-134 125 +/- 10.3 146 Cs-137 98.9 +/- 14.2 104 Ce-141 114 +/- 22.8 116 Cr-51 251.1 +/- 101.1 256 Mn-54 123.9 +/- 18.6 134 Co-58 99.2 +/- 13.9 100 Fe-59 103.9 +/- 20.0 101 Co-60 198.5 +/- 15.0 195 Zn-65 211.2 +/- 33.7 225 6/4/2020 Milk - pCi/L I-131 87.3 +/- 29.3 81.5 Cs-134 128 +/- 8.6 146 Cs-137 101 +/- 12.5 104 Ce-141 118 +/- 17.5 116 Cr-51 230.9 +/- 94.6 256 Mn-54 130.4 +/- 13.9 134 Co-58 94.9 +/- 12.0 100 Fe-59 106 +/- 16.5 101 Co-60 181 +/- 11.9 195 Zn-65 200 +/- 26.4 225 55

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Participation in Cross Check Program Reported Sample Type and Cross Check Lab Sample Date Isotope Observed Laboratory's Units Results Results 6/4/2020 Water-pCi/L I-131 63.9 +/- 26.5 80.5 Cs-134 150.2 +/- 12.3 148 Cs-137 108.9 +/- 15.6 105 Ce-141 115.8 +/- 18.0 117 Cr-51 208.2 +/- 91.6 259 Mn-54 128.7 +/- 17.4 135 Co-58 91.4 +/- 18.3 102 Fe-59 115.8 +/- 24.6 102 Co-60 200.6 +/- 16.2 198 Zn-65 217.8 +/- 41.6 227 6/4/2020 Water-pCi/L I-131 67.4 +/- 22.0 80.5 Cs-134 150.5 +/- 9.1 148 Cs-137 106 +/- 13.5 105 Ce-141 125.8 +/- 17.5 117 Cr-51 215.8 +/- 71.1 259 Mn-54 158.5 +/- 15.7 135 Co-58 100.2 +/- 14.5 102 Fe-59 118.6 +/- 17.3 102 Co-60 204.2 +/- 12.4 198 Zn-65 210.9 +/- 27.9 227 6/4/2020 Water-pCi/L I-131 90.3 +/- 20.4 80.5 Cs-134 140.7 +/- 9.6 148 Cs-137 104.7 +/- 13.5 105 Ce-141 119.4 +/- 17.5 117 Cr-51 229.3 +/- 75.1 259 Mn-54 150.2 +/- 15.4 135 Co-58 109.9 +/- 12.7 102 Fe-59 105.6 +/- 16.8 102 Co-60 187.8 +/- 12.4 198 Zn-65 220.6 +/- 28.1 227 9/10/2020 Filter - pCi Beta 174 +/- 2.8 162 Beta 175 +/- 2.8 162 9/14/2020 Filter-p/Ci Cs-134 270.5 +/- 7.9 296 Cs-137 438.7 +/- 17.1 413 Am-241 26.1 +/- 8.5 22.2 Co-60 527.6 +/- 14.7 497 Zn-65 528.1 +/- 31.9 500 56

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Participation in Cross Check Program Reported Sample Type and Cross Check Lab Sample Date Isotope Observed Laboratory's Units Results Results 10/2/2020 Water-pCi/L I-131 27.5 +/- 7.9 28.2 Ba-133 33.3 +/- 5.1 37 Cs-134 53.7 +/- 4.6 52.7 Cs-137 135.5 +/- 9.6 131 Co-60 68.6 +/- 5.6 60.5 Zn-65 149.9 +/- 17.1 162 12/3/2020 Filter-p/Ci Cs-134 79.3 +/- 4.6 84.5 Cs-137 92.3 +/- 8.3 99.9 Ce-141 77.1 +/- 5.7 78.4 Cr-51 183.6 +/- 30.4 199 Mn-54 109.2 +/- 9.1 112 Co-58 64.3 +/- 7.5 66.1 Fe-59 100.7 +/- 10.7 87.9 Co-60 116.9 +/- 7.5 119 Zn-65 105.2 +/- 7.5 149 12/3/20201 Filter-p/Ci Cs-134 72.2 +/- 3.8 84.5 Cs-137 95 +/- 5.8 99.9 Ce-141 83.9 +/- 4.8 78.4 Cr-51 196.8 +/- 26.2 199 Mn-54 125.3 +/- 7.0 112 Co-58 63 +/- 5.1 66.1 Fe-59 111.1 +/- 7.8 87.9 Co-60 123.7 +/- 4.8 119 Zn-65 111.3 +/- 4.8 149 12/3/2020 Beta-pCi/L Cs-137 300 +/- 5.1 277 12/3/2020 Charcoal-pCi I-131 73.4 +/- 7.6 78.3 I-131 79.4 +/- 6.6 78.3 12/3/20201 Milk-pCi/L I-131 83.3 +/- 12.2 91.9 Cs-134 89.6 +/- 5.6 108 Cs-137 120.1 +/- 10.4 127 Ce-141 106.2 +/- 14.0 100 Cr-51 231.2 +/- 52.2 253 Mn-54 146 +/- 12.4 143 Co-58 72.7 +/- 9.5 84.3 Fe-59 115.6 +/- 14.2 112 Co-60 150.2 +/- 8.9 152 Zn-65 135.2 +/- 8.9 190 1 See discussion at the beginning of the Appendix 57

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C-2 Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result2 Units Location Date Analysis Analysis Analysis Analysis Air Filter - A1 1/6/2020 Gross Beta 10-2 pCi/m3 1.4 +/- 0.1 1.4 +/- 0.1 **

-2 3 Air Filter - A2 1/6/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.4 +/- 0.1 **

Air Filter - A3 1/6/2020 Gross Beta 10-2 pCi/m3 1.4 +/- 0.1 1.4 +/- 0.1 **

-2 3 Air Filter - A4 1/6/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.4 +/- 0.1 **

-2 3 Air Filter - A5 1/6/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.5 +/- 0.1 **

-2 3 Air Filter - SFA1 1/6/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.5 +/- 0.1 **

-2 3 Air Filter - SFA2 1/6/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.5 +/- 0.1 **

Air Filter - SFA3 1/6/2020 Gross Beta 10-2 pCi/m3 1.5 +/- 0.1 1.5 +/- 0.1 **

-2 3 Air Filter - SFA4 1/6/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.4 +/- 0.1 **

3 Air Iodine - A1 1/6/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A2 1/6/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A3 1/6/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A4 1/6/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A5 1/6/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 1/6/2020 I-131 pCi/m <MDA <MDA **

-2 3 Air Filter - A1 2/10/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.4 +/- 0.1 **

-2 3 Air Filter - A2 2/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.4 +/- 0.1 **

Air Filter - A3 2/10/2020 Gross Beta 10-2 pCi/m3 1.5 +/- 0.1 1.6 +/- 0.1 **

-2 3 Air Filter - A4 2/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.3 +/- 0.1 **

-2 3 Air Filter - A5 2/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.5 +/- 0.1 **

-2 3 Air Filter - SFA1 2/10/2020 Gross Beta 10 pCi/m 1.6 +/- 0.1 1.5 +/- 0.1 **

-2 3 Air Filter - SFA2 2/10/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.5 +/- 0.1 **

Air Filter - SFA3 2/10/2020 Gross Beta 10-2 pCi/m3 1.4 +/- 0.1 1.2 +/- 0.1 **

-2 3 Air Filter - SFA4 2/10/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.5 +/- 0.1 **

3 Air Iodine - A1 2/24/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A2 2/24/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A3 2/24/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A4 2/24/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A5 2/24/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 2/24/2020 I-131 pCi/m <MDA <MDA **

58

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result2 Units Location Date Analysis Analysis Analysis Analysis Water - WA2 4/3/2020 Gamma pCi/L <MDA <MDA <MDA Water - WA1 4/3/2020 Gamma pCi/L <MDA <MDA <MDA 3

Air Iodine - A1 4/6/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A2 4/6/2020 I-131 pCi/m3 <MDA <MDA **

Air Iodine - A3 4/6/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A4 4/6/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A5 4/6/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 4/6/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - SFA2 4/6/2020 I-131 pCi/m3 <MDA <MDA **

Air Iodine - SFA3 4/6/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - SFA4 4/6/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A1 5/4/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A2 5/4/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A3 5/4/2020 I-131 pCi/m3 <MDA <MDA **

Air Iodine - A4 5/4/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A5 5/4/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 5/4/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA2 5/4/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - SFA3 5/4/2020 I-131 pCi/m3 <MDA <MDA **

Air Iodine - SFA4 5/4/2020 I-131 pCi/m3 <MDA <MDA **

1 Soil - SFS3 5/26/2020 Cs-137 pCi/kg 168 +/- 58.3 215 +/- 67.2 209 +/- 34.0 1

Soil - SFS5 5/26/2020 Cs-137 pCi/kg <MDA 76.0 +/- 34.8 81.2 +/- 24.8

-2 3 Air Filter - A1 6/8/2020 Gross Beta 10 pCi/m 1.8 +/- 0.1 1.8 +/- 0.1 **

Air Filter - A2 6/8/2020 Gross Beta 10-2 pCi/m3 2.0 +/- 0.1 2.0 +/- 0.1 **

Air Filter - A3 6/8/2020 Gross Beta 10-2 pCi/m3 1.8 +/- 0.1 1.8 +/- 0.1 **

-2 3 Air Filter - A4 6/8/2020 Gross Beta 10 pCi/m 1.8 +/- 0.1 1.8 +/- 0.1 **

-2 3 Air Filter - A5 6/8/2020 Gross Beta 10 pCi/m 1.9 +/- 0.1 2.0 +/- 0.1 **

-2 3 Air Filter - SFA1 6/8/2020 Gross Beta 10 pCi/m 2.2 +/- 0.1 2.1 +/- 0.1 **

Air Filter - SFA2 6/8/2020 Gross Beta 10-2 pCi/m3 2.1 +/- 0.1 2.0 +/- 0.1 **

Air Filter - SFA3 6/8/2020 Gross Beta 10-2 pCi/m3 2.2 +/- 0.1 2.0 +/- 0.1 **

-2 3 Air Filter - SFA4 6/8/2020 Gross Beta 10 pCi/m 2.2 +/- 0.1 2.0 +/- 0.1 **

59

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result2 Units Location Date Analysis Analysis Analysis Analysis Oysters - IA3 6/8/2020 Gamma pCi/kg <MDA <MDA <MDA Oysters - IA6 6/8/2020 Gamma pCi/kg <MDA <MDA <MDA Bottom Sed. -WBS4 6/8/2020 Gamma pCi/kg <MDA <MDA <MDA Bottom Sed. -WBS2 6/8/2020 Gamma pCi/kg <MDA <MDA <MDA Air Iodine - A1 6/15/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A2 6/15/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A3 6/15/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A4 6/15/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A5 6/15/2020 I-131 pCi/m3 <MDA <MDA **

Air Iodine - SFA1 6/15/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - SFA2 6/15/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA3 6/15/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA4 6/15/2020 I-131 pCi/m <MDA <MDA **

Air Filter - A1 6/29/2020 Gamma pCi/m3 <MDA <MDA <MDA Air Filter - A2 6/29/2020 Gamma pCi/m3 <MDA <MDA <MDA 3

Air Filter - A3 6/29/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - A4 6/29/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - A5 6/29/2020 Gamma pCi/m <MDA <MDA <MDA Air Filter - SFA1 6/29/2020 Gamma pCi/m3 <MDA <MDA <MDA Air Filter - SFA2 6/29/2020 Gamma pCi/m3 <MDA <MDA <MDA 3

Air Filter - SFA3 6/29/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - SFA4 6/29/2020 Gamma pCi/m <MDA <MDA <MDA

-2 3 Air Filter - A1 7/6/2020 Gross Beta 10 pCi/m 1.6 +/- 0.1 1.6 +/- 0.1 **

Air Filter - A2 7/6/2020 Gross Beta 10-2 pCi/m3 1.9 +/- 0.1 2.0 +/- 0.1 **

Air Filter - A3 7/6/2020 Gross Beta 10-2 pCi/m3 1.8 +/- 0.1 1.8 +/- 0.1 **

-2 3 Air Filter - A4 7/6/2020 Gross Beta 10 pCi/m 1.9 +/- 0.1 2.0 +/- 0.1 **

-2 3 Air Filter - A5 7/6/2020 Gross Beta 10 pCi/m 1.8 +/- 0.1 1.8 +/- 0.1 **

-2 3 Air Filter - SFA1 7/6/2020 Gross Beta 10 pCi/m 2.0 +/- 0.1 2.0 +/- 0.1 **

Air Filter - SFA2 7/6/2020 Gross Beta 10-2 pCi/m3 2.0 +/- 0.1 1.8 +/- 0.1 **

Air Filter - SFA3 7/6/2020 Gross Beta 10-2 pCi/m3 1.9 +/- 0.1 2.0 +/- 0.1 **

-2 3 Air Filter - SFA4 7/6/2020 Gross Beta 10 pCi/m 1.9 +/- 0.1 1.7 +/- 0.1 **

60

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result Units Location Date Analysis Analysis Analysis Analysis Air Iodine - A1 7/6/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A2 7/6/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A3 7/6/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A4 7/6/2020 I-131 pCi/m <MDA <MDA **

Kale - IB4 7/27/2020 Gamma pCi/kg <MDA <MDA <MDA Kale - IB7 7/27/2020 Gamma pCi/kg <MDA <MDA <MDA Kale - IB10 7/27/2020 Gamma pCi/kg <MDA <MDA <MDA Shoreline Sed. -East 7/31/2020 Gamma pCi/kg <MDA <MDA <MDA Spot - IA2 8/5/2020 Gamma pCi/kg <MDA <MDA <MDA Spot - IA5 8/5/2020 Gamma pCi/kg <MDA <MDA <MDA Oysters - IA3 8/5/2020 Gamma pCi/kg <MDA <MDA <MDA Oysters - IA6 8/5/2020 Gamma pCi/kg <MDA <MDA <MDA Air Filter - A1 8/10/2020 Gross Beta 10-2 pCi/m3 1.3 +/- 0.1 1.2 +/- 0.1 **

-2 3 Air Filter - A2 8/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.5 +/- 0.1 **

-2 3 Air Filter - A3 8/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.3 +/- 0.1 **

-2 3 Air Filter - A4 8/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.3 +/- 0.1 **

-2 3 Air Filter - A5 8/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.4 +/- 0.1 **

Air Filter - SFA1 8/10/2020 Gross Beta 10-2 pCi/m3 1.6 +/- 0.1 1.6 +/- 0.1 **

-2 3 Air Filter - SFA2 8/10/2020 Gross Beta 10 pCi/m 1.4 +/- 0.1 1.4 +/- 0.1 **

-2 3 Air Filter - SFA3 8/10/2020 Gross Beta 10 pCi/m 1.3 +/- 0.1 1.4 +/- 0.1 **

-2 3 Air Filter - SFA4 8/10/2020 Gross Beta 10 pCi/m 1.5 +/- 0.1 1.4 +/- 0.1 **

3 Air Iodine - A1 8/10/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A2 8/10/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A3 8/10/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A4 8/10/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A5 8/10/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 8/10/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - SFA2 8/10/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - SFA3 8/10/2020 I-131 pCi/m <MDA <MDA **

Grapes - East 9/4/2020 Gamma pCi/kg <MDA <MDA <MDA 61

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result Units Location Date Analysis Analysis Analysis Analysis Vegetation - SFB3 9/8/2020 Gamma pCi/kg <MDA <MDA <MDA Vegetation - SFB3 9/8/2020 Gamma pCi/kg <MDA <MDA <MDA Milk - Farm A 9/8/2020 Gamma pCi/L <MDA <MDA <MDA Milk - Farm B 9/8/2020 Gamma pCi/L <MDA <MDA <MDA 3

Air Iodine - A1 9/8/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A2 9/8/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A3 9/8/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A4 9/8/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A5 9/8/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 9/8/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA2 9/8/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA3 9/8/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - SFA4 9/8/2020 I-131 pCi/m3 <MDA <MDA **

-2 3 Air Filter - 11S2 10/5/2020 Gross Beta 10 pCi/m 1.8 +/- 0.2 1.8 +/- 0.2 **

-2 3 Air Filter - 1A 10/8/2020 Gross Beta 10 pCi/m 2.5 +/- 0.2 2.5 +/- 0.2 **

-2 3 Air Filter - E1-2Q 10/8/2020 Gross Beta 10 pCi/m 2.4 +/- 0.2 2.4 +/- 0.2 **

-2 3 Air Filter - 11S2 10/12/2020 Gross Beta 10 pCi/m 2.9 +/- 0.2 3.2 +/- 0.2 **

Water - MCWA 10/12/2020 Gross Beta pCi/L 1.68 +/- 0.65 1.55 +/- 0.65 **

Water - OWD 10/12/2020 Gross Beta pCi/L 2.02 +/- 0.67 1.82 +/- 0.67 **

Water - WWW 10/12/2020 Gross Beta pCi/L 1.32 +/- 0.62 1.84 +/- 0.67 **

Water - CIRC-IN 10/12/2020 Gross Beta pCi/L 2.11 +/- 0.67 205 +/- 0.68 **

Water - CIRC-OUT 10/12/2020 Gross Beta pCi/L 2.58 +/- 0.71 2.20 +/- 0.70 **

Air Filter - 1A 10/14/2020 Gross Beta 10-2 pCi/m3 2.2 +/- 0.2 2.3 +/- 0.2 **

-2 3 Air Filter - E1-2Q 10/15/2020 Gross Beta 10 pCi/m 2.3 +/- 0.2 2.3 +/- 0.2 **

-2 3 Air Filter - 11S2 10/19/2020 Gross Beta 10 pCi/m 1.6 +/- 0.2 1.9 +/- 0.2 **

62

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result Units Location Date Analysis Analysis Analysis Analysis Air Iodine - A1 10/19/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A2 10/19/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A3 10/19/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A4 10/19/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A5 10/19/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 10/19/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA3 10/19/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - SFA4 10/19/2020 I-131 pCi/m3 <MDA <MDA **

-2 3 Air Filter - 1A 10/21/2020 Gross Beta 10 pCi/m 2.6 +/- 0.2 2.4 +/- 0.2 **

Surface Water - DC 10/21/2020 Gross Beta pCi/L <MDA <MDA **

Surface Water - ML 10/21/2020 Gross Beta pCi/L 8.31 +/- 2.3 5.71 +/- 2.2 **

-2 3 Air Filter - E1-2Q 10/22/2020 Gross Beta 10 pCi/m 2.2 +/- 0.2 2.1 +/- 0.2 **

Air Filter - 11S2 10/26/2020 Gross Beta 10-2 pCi/m3 1.4 +/- 0.2 1.3 +/- 0.2 **

-2 3 Air Filter - ES02 10/27/2020 Gross Beta 10 pCi/m 1.9 +/- 0.1 1.9 +/- 0.1 **

-2 3 Air Filter - ES03 10/27/2020 Gross Beta 10 pCi/m 2.0 +/- 0.2 1.9 +/- 0.1 **

-2 3 Air Filter - ES04 10/27/2020 Gross Beta 10 pCi/m 1.6 +/- 0.3 1.6 +/- 0.3 **

-2 3 Air Filter - ES05 10/27/2020 Gross Beta 10 pCi/m 1.7 +/- 0.1 1.8 +/- 0.1 **

Air Filter - ES06 10/27/2020 Gross Beta 10-2 pCi/m3 1.9 +/- 0.1 1.9 +/- 0.1 **

-2 3 Air Filter - ES07 10/27/2020 Gross Beta 10 pCi/m 2.0 +/- 0.2 2.0 +/- 0.2 **

-2 3 Air Filter - ES08 10/27/2020 Gross Beta 10 pCi/m 2.5 +/- 0.2 2.6 +/- 0.2 **

-2 3 Air Filter - ES09 10/27/2020 Gross Beta 10 pCi/m 2.0 +/- 0.2 2.1 +/- 0.2 **

-2 3 Air Filter - ES10 10/27/2020 Gross Beta 10 pCi/m 2.0 +/- 0.1 1.8 +/- 0.1 **

Air Filter - ES11 10/27/2020 Gross Beta 10-2 pCi/m3 1.9 +/- 0.1 1.7 +/- 0.1 **

-2 3 Air Filter - ES12 10/27/2020 Gross Beta 10 pCi/m 1.8 +/- 0.1 1.8 +/- 0.1 **

-2 3 Air Filter - ES13 10/27/2020 Gross Beta 10 pCi/m 1.9 +/- 0.1 1.8 +/- 0.1 **

-2 3 Air Filter - 1A 10/29/2020 Gross Beta 10 pCi/m 2.0 +/- 0.2 2.0 +/- 0.2 **

-2 3 Air Filter -E1-2Q 10/29/2020 Gross Beta 10 pCi/m 1.6 +/- 0.2 1.5 +/- 0.2 **

Water - WA2 10/30/2020 Gamma pCi/L <MDA <MDA NA Water - WA1 10/30/2020 Gamma pCi/L <MDA <MDA NA

-2 3 Air Filter - 11S2 11/3/2020 Gross Beta 10 pCi/m 1.8 +/- 0.2 1.7 +/- 0.2 **

Water - WA2 11/27/2020 Gamma pCi/L <MDA <MDA <MDA Water - WA1 11/27/2020 Gamma pCi/L <MDA <MDA <MDA 63

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE C Continued Results of Quality Assurance Program Sample Type and Sample Type of Original Replicate Split Result Units Location Date Analysis Analysis Analysis Analysis Air Iodine - A1 12/14/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A2 12/14/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - A3 12/14/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - A4 12/14/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - A5 12/14/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA1 12/14/2020 I-131 pCi/m <MDA <MDA **

3 Air Iodine - SFA2 12/14/2020 I-131 pCi/m <MDA <MDA **

Air Iodine - SFA3 12/14/2020 I-131 pCi/m3 <MDA <MDA **

3 Air Iodine - SFA4 12/14/2020 I-131 pCi/m <MDA <MDA **

Milk - Farm A 12/28/2020 I-131 pCi/L <MDA ** <MDA 3

Air Filter - A1 12/28/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - A2 12/28/2020 Gamma pCi/m <MDA <MDA <MDA Air Filter - A3 12/28/2020 Gamma pCi/m3 <MDA <MDA <MDA 3

Air Filter - A4 12/28/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - A5 12/28/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - SFA1 12/28/2020 Gamma pCi/m <MDA <MDA <MDA 3

Air Filter - SFA2 12/28/2020 Gamma pCi/m <MDA <MDA <MDA Air Filter - SFA3 12/28/2020 Gamma pCi/m3 <MDA <MDA <MDA 3

Air Filter - SFA4 12/28/2020 Gamma pCi/m <MDA <MDA <MDA 1 See discussion at the beginning of the Appendix.

    • The nature of these samples precluded splitting them with an independent laboratory.

64

January 1 - December 31, 2020 Docket Nos. 50-244 Table C-3 Teledyne Brown Engineerings Typical MDAs for Gamma Spectrometry Selected Bay Water Fish Shellfish Sediment Vegetation Particulates Nuclides pCi/l pCi/kg pCi/kg pCi/kg pCi/kg 10-3 pCi/m3 H-3 175 -- -- -- -- --

Na-22 1 8 3 12 6 5 Cr-51 12 105 4 104 50 63 Mn-54 1 9 3 12 5 4 Co-58 1 9 4 9 4 5 Fe-59 3 28 9 24 10 12 Co-60 1 9 4 12 5 6 Zn-65 2 20 8 25 10 9 Nb-95 1 12 7 14 6 9 Zr-95 2 18 8 20 9 9 Ru-106 9 75 30 90 41 40 Ag-110m 1 10 10 10 5 4 Te-129m 16 131 60 162 79 95 I-131 4 65 30 35 22 74 Cs-134 1 8 4 10 5 4 Cs-137 1 9 4 10 5 4 BaLa-140 3 32 15 25 14 36 Ce-144 7 40 16 54 26 18 65

January 1 - December 31, 2020 Docket Nos. 50-244 APPENDIX D Land Use Survey Summary of Appendix D Content:

Appendix D contains the results of a Land Use Survey conducted around R.E. Ginna Nuclear Power Plant during this operating period. A discussion of the results is included in Section 3.4 of this report.

66

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE OF CONTENTS - LAND USE SURVEY Table Title Page D-1 Land Use Survey Distances..................................................................................................68 67

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE D-1 Land Use Survey Distances Sector Distance to Distance to Nearest Garden Distance to Milk Producing (Direction in Nearest (Latitude N, Longitude W) Animals Degrees) Residence (Latitude N, Longitude W) 610 m E

1170 m Onsite Supplemental Garden N/A (94)

(43.27727, 77.30140) 430 m ESE 1660 m Onsite Garden N/A (111)

(43.27627, 77.30389)

ESE 8240 m 840 m N/A (119) (43.24196, 77.21978) 660 m SSE 610 m Onsite Supplemental Garden N/A (145)

(43.27278, 77.30413)

S 1500 m N/A N/A SSW 620 m N/A N/A SW 740 m N/A N/A WSW 900 m N/A N/A W 1330 m N/A N/A 68

January 1 - December 31, 2020 Docket Nos. 50-244 Discussion A Land Use Survey was conducted to identify, within five miles, the location of the nearest milk animal, the nearest residence, and the nearest garden greater than 500 square feet in each of the nine sectors over land. The position of the nearest residence and garden and animals producing milk for human consumption in each sector out to five miles is given in the above Table D-1.

Changes from Previous Years:

The nearest residence remains in the SSE sector, approximately 610 meters from the reactor.

Single-family home / senior housing subdivision / development construction was observed near the plant on LaFrank Drive (Ontario), and South of Route 104 near Tops Plaza (Ontario).

Lake Front Estates and Summer Lake subdivisions continue to expand along with the southeast corner of Lake Road and Slocum Road.

New housing / lots being developed near Webster Park (WNW), Woodard Rd (W),

County Line Road (W), near Webster Golf Course (W), Lakeside Rd. (SW), Centennial Village (SSW), and Community Ridge Apartments off Walworth-Ontario Rd. (SSE).

Other single-family home construction was observed sporadically within 5-miles of the plant.

The 120-acre commercial hydroponic farm continues production of AGRI-GROW tomatoes year-round at East end of Dean Parkway. (North of Route 104).

Commercial fishing information was collected from the New York State Department of Environmental Conservation (NYSDEC) which shows activity only in the Eastern basin of Lake Ontario. Commercial fishing operations have not changed in the last five-years and no commercial fishing takes place within 5-miles of Ginna.

No new agricultural land use was identified.

No new food producing facilities were identified as the commercial hydroponic farm is not currently growing produce.

No new milk producing animals were identified.

Milk Animal Locations Schultz Farm - 450 Boston Road, Ontario NY Field Craft Farm (supplemental sample) - 6747 Salmon Creek Road, Williamson NY No new milk producing animals were identified in the 2020 survey.

69

January 1 - December 31, 2020 Docket Nos. 50-244 APPENDIX E Interpretations and Graphical Representations Summary of Appendix E Content:

To better illustrate that the continued operation of the R.E. Ginna Nuclear Power Plant (Ginna) has no statistically significant impact on the surrounding environment, Appendix E contains the results of the last eight years of Radiological Environment Monitoring Program (REMP) data.

Where applicable (when analytical results produced a measured numerical value), trends have been produced to show values that have been observed in the various environs surrounding Ginna. A discussion of these results will accompany each series of trends to enhance understanding of the REMP program.

70

January 1 - December 31, 2020 Docket Nos. 50-244 TABLE OF CONTENTS -

INTERPRETATIONS AND GRAPHICAL REPRESENTATIONS Table Title Page E-1 E-Series 1, Table B-1 (Gross Beta Values for Surface and Drinking Water)....................72 E-2 E-Series 2, Table B-5 / Table B-6 (Beta in Air Particulates).76 E-3 E-Series 3, Table B-12 (Direct Radiation).81 E-4 E-Series 4, Table B-13 (Tritium in Groundwater).94 71

January 1 - December 31, 2020 Docket Nos. 50-244 E-Series 1 Table B-1 (Gross Beta Values for Surface and Drinking Water)

Ginnas Offsite Dose Calculation Manual (ODCM) is written in accordance with specifications contained within 10 CFR 20 and the Branch Technical Position document published by the NRC in 1979. This document specifies Gross Beta in Surface Water samples to be detected to a Lower Limit of Detection (LLD) of 4 pCi/l. Since that time, detection capabilities have improved which allow values to be measured lower than the required 4 pCi/l.

The trends below include the Gross Beta averages (from 2012-2020) for Ginnas surface water samples (Circ - In, Circ - Out, MCWA, Deer Creek, Mill Creek, OWD, and Webster). An elevated Gross Beta result inconsistent with the trend would indicate radionuclides in the sample which would require further analysis. From 2012 through 2020, no such results have been measured within Ginnas REMP program.

Results from Deer Creek (indicator) and Mill Creek (control) are higher than other surface water samples within the REMP program due to naturally occurring radiological daughter products within the soil being introduced into the samples. It is worth noting that these naturally occurring radiological daughter products would exist in this environ at these same levels even if Ginna had never been built. These samples are obtained to evaluate the potential for public exposure due to the surface water (Mill Creek, Circ-In, Circ-Out, and Deer Creek) and drinking water pathway (Monroe County Water Authority, Webster Water Authority, and Ontario Water District). These locations are chosen as a member of the public is most likely to encounter water which has left Ginna property via these sample streams.

Trend B-1 Control and Indicator Averages (2012-2020) shows the relationship between the control samples (Mill Creek, MCWA, and Webster Water Authority) and the indicator samples (Circ-In, Circ-Out, Deer Creek, and OWD). This trend illustrates that there is no statistically significant difference between control and indicator samples for Gross Beta in Surface water from 2012-2020.

72

January 1 - December 31, 2020 Docket Nos. 50-244 B-1 Control and Indicator Averages (2012-2020)

Controls Indicators 5.00 4.50 4.00 3.50 3.00 Gross Beta (pCi/l) 2.50 2.00 1.50 1.00 0.50 0.00 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year 73

January 1 - December 31, 2020 Docket Nos. 50-244 Circ - In Gross Beta (2012-2020) Circ - Out Gross Beta (2012-2020) 7.00 7.00 6.00 6.00 5.00 5.00 Gross Beta (pCi/l) Gross Beta (pCi/l) 4.00 4.00 3.00 3.00 2.00 2.00 1.00 1.00 0.00 0.00 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Deer Creek Gross Beta (2012-2020) OWD Gross Beta (2012-2020) 7.00 7.00 6.00 6.00 5.00 5.00 Gross Beta (pCi/l) Gross Beta (pCi/l) 4.00 4.00 3.00 3.00 2.00 2.00 1.00 1.00 0.00 0.00 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 74

January 1 - December 31, 2020 Docket Nos. 50-244 MCWA Gross Beta (2012-2020) Mill Creek Gross Beta (2012-2020) 7.00 7.00 6.00 6.00 Gross Beta (pCi/l) Gross Beta (pCi/l) 5.00 5.00 4.00 4.00 3.00 3.00 2.00 2.00 1.00 1.00 0.00 0.00 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Webster Gross Beta (2012-2020) 7 6

Gross Beta (pCi/l) 5 4

3 2

1 0

2012 2013 2014 2015 2016 2017 2018 2019 2020 Year 75

January 1 - December 31, 2020 Docket Nos. 50-244 E-Series 2 Table B-5 / Table B-6 (Beta in Air Particulates)

Ginnas Offsite Dose Calculation Manual (ODCM) is written in accordance with specifications contained within 10 CFR 20 and the Branch Technical Position document published by the NRC in 1979. This document specifies Gross Beta in Air Particulate samples to be detected to a Lower Limit of Detection (LLD) of 1.0 X 10-2 pCi/m3. Accordingly, analyses performed as part of the REMP at Ginna satisfy this requirement.

The trends below include the Gross Beta averages (from 2012-2020) for Ginnas air particulate samples (Station-02 through Station-13). An elevated Gross Beta result inconsistent with the trend would indicate radionuclides in the sample which would require further analysis. From 2012 through 2020, no such results have been measured within Ginnas REMP program.

Sampling locations (Station-02 through Station-13) are noted below, and their classification as either a control or an indicator. These locations were selected to show areas where breathable air, which has the potential to be in communication with air released from Ginna, could lead to public exposure. Some locations (such as Station-08, Seabreeze and Station-12, Sodus Point) are sampled due to recreational activities in the area and their associated sensitivity.

Station Manor House Yard, Ginna Property (Indicator)

Station North of Training Center Parking Lot, Ginna Property (Indicator)

Station East of Training Center Parking Lot, Ginna Property (Indicator)

Station Bridge Near Deer Creek, Ginna Property (Indicator)

Station Southwest of Plant Parking Lot, Ginna Property (Indicator)

Station Utility Pole West of Parking Lot, Ginna Property (Indicator)

Station Seabreeze (Control)

Station Webster (Indicator)

Station Walworth (Control)

Station Williamson (Indicator)

Station Sodus Point (Control)

Station Substation 13 (Indicator)

Trend B-5 / B-6 Control and Indicator Averages (2012 - 2020) shows the relationship between the control samples (Station-08, Station-10, and Station-12) and the indicator samples (Station-02, Station-03, Station-04, Station-05, Station-06, Station-07, Station-09, and Station-11). This trend illustrates that there is no statistically significant difference between control and indicator samples for Gross Beta in Air Particulates from 2012-2020.

76

January 1 - December 31, 2020 Docket Nos. 50-244 B-5 / B-6 Control and Indicator Averages (2012-2020)

Control Indicator 5.0 4.5 4.0 3.5 Beta in 10-2 pCi/m3 3.0 2.5 2.0 1.5 1.0 0.5 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year 77

January 1 - December 31, 2020 Docket Nos. 50-244 Station-02 Beta (2012-2020) Station-03 Beta (2012-2020) 5.0 5.0 4.5 4.5 4.0 4.0 Beta in 10-2 pCi/m3 Beta in 10-2 pCi/m3 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Station-04 Beta (2012-2020) Station-05 Beta (2012-2020) 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 Beta in 10-2 pCi/m3 Beta in 10-2 pCi/m3 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 78

January 1 - December 31, 2020 Docket Nos. 50-244 Station-06 Beta (2012-2020) Station-07 Beta (2012-2020) 5.0 5.0 4.5 4.5 4.0 4.0 Beta in 10-2 pCi/m3 Beta in 10-2 pCi/m3 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Station-08 Beta (2012-2020) Station-09 Beta (2012-2020) 5.0 5.0 4.5 4.5 4.0 4.0 Beta in 10-2 pCi/m3 3.5 Beta in 10-2 pCi/m3 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 79

January 1 - December 31, 2020 Docket Nos. 50-244 Station-10 Beta (2012-2020) Station-11 Beta (2012-2020) 5.0 5.0 4.5 4.5 4.0 4.0 Beta in 10-2 pCi/m3 Beta in 10-2 pCi/m3 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Station-12 Beta (2012-2020) Station-13 Beta (2012-2020) 5.0 5.0 4.5 4.5 4.0 4.0 Beta in 10-2 pCi/m3 Beta in 10-2 pCi/m3 3.5 3.5 3.0 3.0 2.5 2.5 2.0 2.0 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 80

January 1 - December 31, 2020 Docket Nos. 50-244 E-Series 3 Table B-12 (Direct Radiation)

In 2019, Ginna adopted Exelon procedure CY-AA-170-1001, Environmental Dosimetry Performance Specifications, Testing, and Data Analysis, which included new methodology for determining dose attributable to facility operations. As part of this methodology, the direct radiation dose to the general public is now determined in accordance with the Environmental Protection Agency (EPA) guidance 40 CFR 190, Environmental Radiation Protection Standards for Nuclear Power Operations. This methodology incorporates the concepts established in ANSI/HPS N13.37, Environmental Dosimetry as established in NRC Regulatory Guide 4.13, Environmental Dosimetry - Performance, Specifications, Testing, and Data Analysis.

The values below have been maintained and include the average quarterly exposure (in millirem) for Ginnas direct radiation monitoring locations. This quarterly average is averaged for the year to facilitate trending.

Direct radiation is the measurement that a member of the public would experience due to being near a source of radioactivity, such as a nuclear power plant in addition to natural sources. These natural sources are present throughout the environment (examples include being near bedrock rich in granite, being in the presence of the sun, radon gas emerging from layers of earth, etc.)

and the direct radiation measurement Ginna collects is to determine if there is any statistically significant additional exposure from the operations of the nuclear facility.

Trend B-12 Control and Indicator Averages (2012-2020) shows the relationship between the control samples (TL-08, TL-10, TL-12, TL TL-30) and the indicator samples (TL TL 07, TL-11, TL TL-24, TL TL-40, TL-63, and TL-64). This trend illustrates that there is no statistically significant difference between control and indicator samples for direct radiation exposure in millirem from 2012-2020.

81

January 1 - December 31, 2020 Docket Nos. 50-244 B-12 Control and Indicator Averages (2012-2020)

Control Indicator 20.0 18.0 16.0 14.0 12.0 mR / 90 Days 10.0 8.0 6.0 4.0 2.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year 82

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-02 TLD-03 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-04 TLD-05 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 83

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-06 TLD-07 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-08 TLD-09 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 84

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-10 TLD-11 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-12 TLD-13 (2012-2020) (2012-2020) 20.0 25.0 15.0 20.0 mR / 90-Days mR / 90-Days 15.0 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 85

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-14 TLD-15 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for TLD- Average TLD mR / 90 Days for 16 TLD-17 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 86

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-18 TLD-19 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-20 TLD-21 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 87

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-22 TLD-23 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-24 TLD-25 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 88

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-26 TLD-27 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-28 TLD-29 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 89

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-30 TLD-31 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-32 TLD-33 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 90

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-34 TLD-35 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-36 TLD-37 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 91

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-38 TLD-39 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year Average TLD mR / 90 Days for Average TLD mR / 90 Days for TLD-40 TLD-63 (2012-2020) (2012-2020) 20.0 20.0 15.0 15.0 mR / 90-Days mR / 90-Days 10.0 10.0 5.0 5.0 0.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year Year 92

January 1 - December 31, 2020 Docket Nos. 50-244 Average TLD mR / 90 Days for TLD-64 (2012-2020) 20.0 15.0 mR / 90-Days 10.0 5.0 0.0 2012 2013 2014 2015 2016 2017 2018 2019 2020 Year 93

January 1 - December 31, 2020 Docket Nos. 50-244 E-Series 4 Table B-13 (Tritium in Groundwater)

Ginnas Offsite Dose Calculation Manual (ODCM) is written in accordance with specifications contained within 10 CFR 20 and the Branch Technical Position document published by the NRC in 1979. This document specifies Tritium and Gamma in Groundwater samples to be detected to a Lower Limit of Detection (LLD) of 2,000 pCi/l. Since that time, detection capabilities have improved which allow values to be measured lower than the required 2,000 pCi/l and Ginna measures tritium concentration down to an LLD of 200 pCi/l utilizing vendor laboratories.

The trends below include the tritium averages (from 2012-2020) for Ginnas groundwater samples (GW01, GW03 - GW08, GW GW16). A tritium value of greater than 20,000 pCi/l (20,000 pCi/l value from Environmental Protection Agency EPA standards) would indicate radionuclides in the sample which would require further analysis and offsite reporting. From 2012 through 2020, no such results have been received from Ginnas REMP program.

Tritium (H-3) is a radioactive form of Hydrogen and, when detected in the environment at high-levels (greater than 2,000 pCi/l), can be an indication that plant effluents may have been introduced into the environment. Tritium is sampled for at nuclear facilities due to its exposure capabilities for members of the public. Essentially, Tritium, when in an aqueous form, flows like water and can be found in surface water, groundwater, and atmospheric environs due to evaporative processes found in nature. Nuclear stations place a sensitivity on detecting Tritium in the environment as it is an efficient marker to show if radioactivity has been introduced off-site.

In general, results shown below are less-than values (< LLD). However, the sample result for groundwater monitoring well GW04 from 1/30/2013 was2,520 pCi/l. This value was the result of atmospheric recapture of gaseous tritium which accumulated in snow located around the facility.

As this snow melted during this sampling period, this recaptured tritium was introduced into the groundwater and captured via our groundwater sampling program. This value of 2,520 pCi/l is roughly 8-times lower than the reportable limit of 20,000 pCi/l. This recapture phenomenon was also experienced for the GW10 sample collected on 12/13/2019 (result of 603 pCi/L).

Additionally, groundwater monitoring well GW14 on 3/11/2014 was counted to an LLD of 2,000 pCi/l rather than the LLD of 500 pCi/l. Actual result was a less than value of < 1,950 pCi/l.

Subsequent samples were collected to ensure there was no detectable tritium in the environment and these samples returned values of less than 500 pCi/l.

Ginna groundwater monitoring well GW01 (West of the station) is the control location for sampling and due to the sampling frequencies of this program, it is difficult to graphically compare the control samples against the indicator samples. Since 2012, the average tritium concentration in control samples was < 443 pCi/l whereas the average tritium concentration in indicator samples (Groundwater Monitoring Well GW GW08, GW10-GW16) was < 444 pCi/l. This result demonstrates that there is no statistically significant difference between control and indicator samples for Ginnas groundwater samples for the REMP.

94

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW01 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date Tritium in Groundwater Well GW03 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date 95

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW04 3000 2500 2000 Tritium in pCi/l See explanation in Appendix E 1500 1000 500 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date Tritium in Groundwater Well GW05 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date 96

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW06 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date Tritium in Groundwater Well GW07 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date 97

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW08 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date Tritium in Groundwater Well GW10 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date 98

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW11 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

1/1/2012 5/15/2013 9/27/2014 2/9/2016 6/23/2017 11/5/2018 3/19/2020 Date Tritium in Groundwater Well GW12 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

11/22/2013 4/6/2015 8/18/2016 12/31/2017 5/15/2019 9/26/2020 Date 99

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW13 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

11/22/2013 4/6/2015 8/18/2016 12/31/2017 5/15/2019 9/26/2020 Date Tritium in Groundwater Well GW14 3000 2500 Tritium in pCi/l 2000 1500 See explanation in Appendix E 1000 500 0

11/22/2013 4/6/2015 8/18/2016 12/31/2017 5/15/2019 9/26/2020 Date 100

January 1 - December 31, 2020 Docket Nos. 50-244 Tritium in Groundwater Well GW15 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

11/22/2013 4/6/2015 8/18/2016 12/31/2017 5/15/2019 9/26/2020 Date Tritium in Groundwater Well GW16 2000 1800 1600 1400 Tritium in pCi/l 1200 1000 800 600 400 200 0

11/22/2013 4/6/2015 8/18/2016 12/31/2017 5/15/2019 9/26/2020 Date 101