ML20247E456
| ML20247E456 | |
| Person / Time | |
|---|---|
| Site: | 07109230 |
| Issue date: | 07/18/1989 |
| From: | FRAMATOME COGEMA FUELS (FORMERLY B&W FUEL CO.) |
| To: | |
| References | |
| 25733, NUDOCS 8907260176 | |
| Download: ML20247E456 (62) | |
Text
{{#Wiki_filter:, - -wa y,- ya au 'A 900KUED g + g, yssac ).n.. C \\ g}(19 N 8 \\1 'is 1sion le 2 i Om -X l&anaa 3rdsen.;l$$339 )l ' e J ~ 2 ta i6ifte B&W Fuel J y uin,, f NRC - Transportation B ar July 18,1989
- p.w).Q
'c };jy..a4 kt s! . " c' O ( / s ,# e , p +&gy, p r ,/ c. O ,, f f; f / 3 g k N 'k BR-100 Rail / Barge Transportation Cask q ;- ypy ft, ; ; h i b. r. :~, " i. ! \\ O } ' > ;4 C , i t) i I i 0 8907260176 890718 PDR ADOCK 0710"g230 25733 C eDC
R T P N T U P I E O O L C N B L I L E A A V E R O T R S G M E E S T ) R S N Y A E DI T L LH R N E s T HWIT A AI I L S S C E R A L T A O \\ M R E F R C N \\ E N W H O R O N T C O H ) / D F S L A ND R E O I L E OE E T T E L R T L O A B N H R A E N ( T S D U TMR LE B UPE E I \\N( I I S HR N H 0K N S DSR I A 0S I A KE B L A E M SG 1 L E M E R E RC T A L A B B N S G N B / AR O E S V S / O O S XG E MllR OR LN EA E CA I j P RR( AT LB S' / S I f W/ DA L P &I R A A T E E KR \\ K H C N AS S O O L \\' B '\\ C T E U B F 0 A 0 L N E B1 BAV O S M RE f E OL '/ R B R M W E P S S S E I 1 2A L FU E n RL B O E M F S R S S ' f E ER A ITW I I T L B E M V I A2 U L C5 F ~ TC ~ ~ AP M I D G I U L LP E R D U L S I O E H L S C
a: .Q~ BWFC PRESENTATIONS TO NRC JULY 18,1989 LV_iEJETING AGENDA INTRODUCTION P. C. CHILDRESS CASK DESCRIPTION E. J. McGUINN CASK TESTING PROGRAM: GENERAL OVERVIEW R. L. FISH BORATED CONCRETE T.A.THORNTON IMPACT LIMITER - Testing R. F. ROCHOW - Analysis M.K.PUNATAR Q B.BRENNEMEN BORON CARBIDE CERMET R. L. FISH VERIFICATION TEST STRATEGY E. J. McGUINN WRAP-UP AND P. C. CHILDRESS l QUESTIONS / ANSWERS ) 1 I l I O J b
I B&W FUEL COMPANY ATTENDEES. PAUL CHILDRESS, Project Manager ED McGUINN, Licensing Coordinator BOB FISH, Materials and Testing TOM THORNTON, Ceramics-Borated Concrete HAWK ROCHOW, Impact Limiter Design O BRIAN BUTLER, impact Limiter Testing MAHENDRA PUNATAR, Structural Analysis BEN BRENNEMAN, Impact Limiter Analysis l
B&W FUEL COMPANY OBJECTIVES O 1. Present latest BR-100 desigri, explain changes, obtain feedback 2. Present overall testing program strategy - obtain feedback 3. Present details on concrete testing and impact limiter testing programs - obtain feedback i O 4. Present information on new cermet material - obtain feedback 5. Firm up SARP requirements for BR-100 O
.A c O BR-100 DESIGN DESCRIPTION . CHANGES (since March 14 meeting) o BASKET - Unitized Basket w/o Spreader Mechanisms j I Criticality Control: B C Cermet Revised Fuel Cell Design CASK BODY O Additional Gamma Shielding on Bottom Deleted Neutron Shielding on Bottom Increased Bottom Plate Thickness-o SHIELD PLUG Lead Gamma Shielding Deleted Neutron Shielding O 1 i i 1
O O U L P L R L O J 1 L t i O E l C S L I LB R A N R N A E U V G T R O U E T T M O N E E T R L DI A E LH N E ET T I I [g S HW SR S GE I S E R UT L L S A O T L A k E E P( g, f. L M R F N RC E T ^ /, IA E N L ) B N D T H O A E A E S T C TM / 4 L IU L 2 .,.[#q - N( E ND I ( 7r OE SH LE D 9 L
- i RT DS A
H U I S ll .r. T E _g R K O SG 0K R i a E S B E 0S N A L 's / B A I M N 1 g AR M VO RC L A ( E 1 M B E G EA E T / RR S XGS 6 S 6, p'. OR E /_- CA L N f LB IA ',:/,4 O G M ,,,J I T T W/S E / K l S & A B [ l A ^ .J KR L E 9' U C N F O O EL CT B A B V ~ 0 O x A 0 M B 1 E /. R h$ N S I RE e OLB S R M E I WE IL Y PS B S M 12A E RL S N O E S F U A F L 9- 'i 't t l b I ivl A2 G n C5 U i t t O P F l D l L U E S t l O i L S C lr
O BR-100 CASK DESIGN o Cask Body - Stainless Steel Containment Boundary - Multi-Layer Construction - Lead Gamma Shield - Thermal / Neutron Shield 4 o Basket Design - Aluminum-Construction Fuel Cells O For.ners - Unitized Basket Design - Neutron Poison Material (Boron Cermet) o Closure Lid and Bolts o Shield Plug o impact Limiter - Innovative, Lightweight Designs - Development and Testing Program O i
BR-100 CASK MATERIALS ' Component . Material Inner & Outer Shells 304L'SS Closure Lid XM-19 Closure Bolts inconel 718 ! Closure. Seals Viton Ohield Plug Casing 304L SS Gamma Shield Lead i 1 Thermal / Neutron Shield Borated Concrete / Copper Trunnions 410 SS Fuel Basket Aluminum 6061 Criticality Control B.C/ Aluminum Cermet impact Limiter Balsa / Redwood /Kevlar O 1 - _ _ _ _ -_ _ _ __ -_
BR-100 Cask -- Longitudinal Section 4 [ Ib \\ j l 9N 9$< W A SWM L f.ki aB l] (3 Q Q k I
- a..
$t Adh g'F, - !.1;; i ! Il! 251.5 s a [ij. ';j overati s,*L 2 ! s' 24 5 h $l! o-s to 1e1 l Ifj! c* g '1;l 2 tas 1;! ts.t sh eg fl3 l ,a i _s
- 1 hk V
bew,ww,,asx A ww/w/m/as 1 l L _ _ -_- -- 1
t O Closure Bolt Seal Check Port Face Seals Drain System Quick Disconnect Valves Sh d ug /1 / / f E5 / ,, c., c' ') ')- / :.i ,/,/ Upper Grid 7/,. ' [/q j n as e 1 s F5 e,/x, / h;, Fuel Cells v N BR-100 Cask -- Seal Region O
v O~. t \\l n 3: /,1. c.;:p -l,l0 ll.$W.,. e2 L 3: E[;. [yf . k. l}e.y. Y R,.;Qg y ,;{:e -24, km . M, s jl ".{e v ..E Y g -p-_--]~7 ; gem 4 -4 -[- !-1-- - +>.--!---l!-- - Lv; ' ddy p l O e .D i [j [, !.l.j+! y 6x ) dy yo g y., o NUN 't. i .I I l l l 1,M'dl gr 1 c T--} y ' k;i.o W . Ul. do. 1 &1 .L _. l l -o W>I. -. i.--l,l. - -.- ). i u., Ji l J! 7 t.y 'j i i O 4. =-n ?ly n O %b. '
- O i
( C 2 i i M YG j l i o o I '?" g T,il, i ",,'is. ,:h's. Q. ' y ' f . f ** 4 ~~MK?..N:::. /n/ I au)
O 9 e t N k T 8 log 5 5 =W W5 2 45 5*5 m-0 05 w2 C5 EE 885 V WE Y a 6- < h h' [ c'8 E'8 l 8 88 s g sa; 8ut U* .,14 m tn ~ m UN>T+ p er,~ l, t -r N .x -~ u,m 'N 5;#,?# / O N ' -;, c, s N i s ,s-a , 2,ws, x N m -m N 8 f h 2 i 8 s 8 s E d 5 G H I T. ', \\ } gf W s N# [2 O i ,L.-{-j-7 \\ O QT. 6 x m O O
l A o )n o i t = ar N. c.,. O y e, 1 'g a a u c, %c, s g g pC', p-
- i v,.t' i
3 e? f n ,2=,' t. o sh* s, C / N ~W' 5 R Q, W r 5 oB r
- 4
/ j 9 [ 'g: 2 ? 3 5
- N h_*-
(
- a.
d k k*c " _., r ^ 'a h s 's' 'd a .f,, j 9 f-s C ,. y Y',.,g
- r. /,
g
- q
.v f ,s h4 0 E,,Q q I 0 s 1 -R B o
y 1 O BASKET DESIGN o Design Features - Unitized Basket Design d 1 - All Aluminum Construction i - Fuel Cell w/ B,C Cermet 4 O o Design Criteria - Maintain Heat Transfer Path - Max Aluminum Temperature of 350 F - Support Fuel Payload - Sub-critical Array At All Times O
i BR-100 Fuel Cell nJ r l .,..-~. / \\ / \\ l h Aluminum /B C 4 Cermet Plate O Basket Array 1 O, ,,,, %,,,.,,17 i W l
- e U
s /r ~ h f ~ i l i / \\ ,,,,,y ,,,,,f l O Fuel Cell Cross Section l
- b .u )R / f W 9 'p )v ~. j ' 9 V 'i i t ,Q ,p/.' P pg P ',,6 /p\\ 6tp$ s,% r (
- o
,Nj,,'?. 4,f no 3E 9o 'o O 'a, it ' b c b e _o s, o S s s 7l + I 'i s O sA O 'A, a 0 s s o:' o 4- ,I 4 1 r b ~ s-C 4_d F s' +l i t $ e '- ~ 'd e Oy h 4~9M _1 i m,u k 4 +1 l_ / s g q J< r a 'f / s a B L q, ',[, 8. '. 'i,*. l # s ^ .,Y t= s) %~'.'_._.v.,s ) [ c.i v' =., nf e l r_ Ie~ - ~: }l i 0 y i l _li ,.I ( ( ( l 'a k-yo '5 ,'2, .t,'* s i l i
- O gg_1oo Certification Issues o
Thermal Switch / Neutron Shield: Characterize Performance l o Basket Design i Cermet / Criticality Control O o impact Limiter: Performance Material Properties i o Burnup Credit ( O
O BR-100 CASK TESTING Engineering Tests o Purpose - Provide Cask Design Support o Resuits Materials Property Data Component Behavior Data Design Verification Tests o Purpose - Confirm Cask Accident Performance o Results Cask Mechanical Response to Hypothetical Accidents - Acceptance Tests o Purpose - Confirm Functional and Operational Performance o Results Cask Component / System Operational Suitability O
O BR-100 ENGINEERING O TESTS O
I il l o ~ O no i t a tne mu co D s t t ne s m e u c s )s T o n e D ar g u lP d t n g n n n e t e s i a sc i m eo t r r t l r e eP e s o y Tr V v ep Oe e v P r nt iu Te l s i n ge q ag cn R nT e i i i E R nd g h u n g cl E in e cn T (i re e en g g m" i r n a E B / l ia R 0 0 1 n R y Aa QlP B O 3his f
~ BR-100 O ENGINEERING _IESTS FUEL BASKET PERFORMANCE Aluminum Wear and Corrosion Fuel Cell Structural Behavior IHERMAL/ NEUTRON SHIELD PERFORMANCE Concrete Mechanical, Thermal, Shielding Shield Thermal and Structural Behavior O IMPACT LIMITER PERFORMANCE Wood Mechanical and Thermal Kevlar Mechanical Impact Limiter Structural Behavior i NEUTRON ABSORBER PERFORMANCE Mechanical Behavior Corrosion Behavior Neutron Attenuation SEAL PERFORMANCE Seal Configuration Behavior O
l THERMAL /NE_UTRON SHIELD DESIGN FEATURES Attenuate Neutrons High Thermal Conductivity - Normal Operation Insulating Effect During Fire Accident Compressive Properties Used in impact & Puncture Analyses Homogeneous Properties Non-Corrosive Verifiable Properties Up To 250*F l l l l l O ________________________-___________--__-_____--_D
F .v O CASK SHIELD MATERIAL SPECIFICATIONS Inner Shell - 304L Stainless Steel Plate: ASME SA-240 UNS No. S30403 Solution Annealed Gamma Shield - Lead: ASTM B29-79 Neutron Shield - Borated Concrete: BWFC Spec. 08-1174391 O Thermal Fins - Copper Sheet: ASTM B152 UNS No. C10200 Oxygen-Free, Hot-rolled & Annealed Outer Shell - 304L Stainless Steel Plate: ASME SA-240 UNS No. S30403 Solution Annealed 0
O" SHIELD CONSTITUENTS TESTING PURPOSE: To provide borated concrete compositional, thermal, and mechanical data for shield design and performance anayisis. To provide detailed materials specifications and fabrication methodology. Provide detailed analytical procedures for manufacturing QA. 1. Concrete Constituents Tests 2. Concrete Elemental Content Tests 3. Concrete Accelerated Aging Development 4. Concrete Compressive And Flexural Strength Tests O s. Conc,ete neutron shieiding Errectiveness Test 6. Concrete Thermal Properties Tests 7. Concrete Thermal Cycle Tests j I i O
L O CONCRETE CONSTITUENTS TESTS i i PURPOSE: To develop detailed constituents (Aluminous cement, Hydrated Alumina, Colemanite) chemical analysis methods. l To verify elemental compositions of constituents. l l METHODOLOGY: Wet chemistry analytical techniques based on ASTM C114, C169. j n v EXPECTED RESULTS: l Chemical compositions of commercially available constituent j materials. Analytical procedures suitable for materials acquisition QA. STATUS: Analytical techniques developed. i Analyses ongoing. o
____,___.___m_
r-- - 'e O _ CONCRETE ELiiMENTAL CONTENT TESTS PUH. To develop detailed concrete chemical analysis methods. To verify concrete composition vis-a-vis the s concrete. METHODOLOGY: Wet chemistry analytical techniques based on ASTM C114, n() C169. Concrete mixing procedure per BWFC specification 08-1174391. Flowability test per ASTM C939. " Dried" concrete samples produced by heating 2 hours at 350*C " Aged" concrete samples produced by methodology deve at LRC. EXPECTED RESULTS: Verification of concrete composition meeting the requirements 08-1174391. Analytical procedure verified for use as part of subsequent concreto and shield testing. O t
o n i CONCRETE ACC_ELERATED AGING TESTING I PURPOSE: To provide a methodology for producing in a short time the long term aged condition of the concrete. j METHODOLOGY: i ' Concrete aging due to calcium aluminate hydrate transformation to higher density hydrate - results in strength reduction. Combinations of high temperature, humidity, and thermal cycling in environmental chamber at LRC. Compressive strength used as a measure of " aging." DTA as verification of " aging." EXPECTED RESULTS: Procedure for " aging" suitable for the production of aged concrete samples for subsequent properties testing. STATUS: Starts 8/89. l O l
,.. a. - ~.,., eff4L 4 t
- O CONCRETE COMPRESSIVE AND fiEXURAL STRENGTH TESTS PURPOSE:
l To provide values for the compressive strength d concrete for strength, and Young's modulus for th 1 I METHODOLOGY: dried, and Room temperature measurements on as<ured, artificially aged samples. ll ged samples. O 250*F measurements on as cured and artificia y a thodology. Compressive testing per ASTM C39 or equiva 3 or equivalent Flexural testing (three-point bend) per ASTM C methodology. EXPECTED RESULTS: modulus Compressive strength, flexural strength, and i data. STATUS: 1 Begins 7/89. O e (. N
l ) . 6 ]. .O CONCRETE NEUTRON SHIELDING EFFECTIVENESS TEST 4 PURPOSE: To determine the uniformity of dispersion of Boron and water content in the concrete after pouring / settling, curing, drying, aging, and thermal cycling. METHODOLOGY: An 18 foot long column of concrete will be poured from multiple separate concrete mix batches, cured, and samples from top ive and bottom examined for water / Boron content, and compress strength. Two centrally located sections from the column will be, n respectively, artificially aged and dried, followed by water / Boron v content analysis. Small cylindrical specimens will cast for heat treatment (~250 F) and freeze / thaw cycling per ASTM C666 and tested for water / Boron content and homogeneity. EXPECTED RESULTS: Demonstration of the maintenance of uniform, nominal water and Boron content through pouring, curing, aging, and thermal cycling. STATUS: Begins 9/89. O
r j 0; CONCRETE THERMAL PROPERTIES TESTS i PURPOSE: To obtain data concerning the thermal conductivity, specific heat, and thermal expansion coefficient of the borated concrete under as-cured,- dried, and total water loss conditions. ] METHODOLOGY: A radial flow thermal conductivity apparatus at B&W's ARC with an internal heat source and concrete-embedded thermocouple will be used to measure thermal conductivity over the range O' to 210*F. O A drop calorimeter calibrated with NIST standards to measure specific heat over the range O' to 210*F. A quarts dilatometer will be used to measure thermal expansion on bar samples of concrete over the range O' to 210*F. EXPECTED RESULTS: Thermal property data suitable as input to shield thermal performance analyses. STATUS: Began 6/89. l 0 ____m._____
I F ' O! CONCRETE THERMAL CYCLE TESTS - PURPOSE: To provide data concerning any volumetric changes and changes in mechanical properties of the concrete which result from thermal cycling. To establish the heat (s) of transformation of the concrete. METHODOLOGY: Freeze / thaw cycling per ASTM C666 (Relative Dynamic Modulus). Q Thermal cycling between -40 F and +250 F followed by volumetric measurement. DTA of small concrete samples. EXPECTED RESULTS: Data concerning mechanical and structural response of the concrete to thermal cycling suitable for shield design evaluation. STATUS: Begins 9/89. O
O SHIELD CONFIGURATION TESTING PURPOSE: To provide data suitable for the analysis of the shield thermal response (during both normal and fire accident conditions), and thermal cycling effects on the shield materials and materials interfaces. O-To provide mechanicalimpact response data suitable to calibrate structural analyses of the shield impact / puncture resistance. 1. Shield Thermal Performance Test l 2. Shield Thermal Cycle Test l 3. Shield impact Test 1 O
g i = O SHIELD THERMAL PERFORMANCE TEST l PURPOSE: To obtain data for the thermal boundary conditions (heat flux, 3 temperature) at designated locations within a prototypical shield geometry' under both steady-state (normal) and fire accident conditions. To provide an analysis / evaluation of the thermal response of the shield configuration suitable as input to detailed thermal analysis of the entire cask. u i METHODOLOGY: O Test section to consist of a prototypical configuration of stainless steel outer shell, as-cured borated concrete with embedded copper fins, lead, and stainless steel inner shell. Test section instrumented with thermocouple and/or heat flux gages. Exposure sequence as follows: - Steady-state operation with the inner stainless steel face exposed to a typical maximum cask heat flux condition. - Fire test for 30 minutes with the stainless steel face exposed at approximately 1500 F. - Controlled cooldown after the fire condition for 8-10 hours. - Steady-state operation with the inner stainless steel face "S"'" ** Posed to the typical maximum heat flux. ,0 I 1
SHIELD THERMAL PERFORMANCE TEST, cont'd. EXPECTED RESULTS: Measured thermal boundary conditions which support thermal analyses demonstrating the ability of the shield design to meet cask thermal performance requirements. Observations of the response of the cask shield materials and materials interfaces to normal and fire accident conditions. \\ STATUS: Started 7/89. O O
Fire Test Configuration Vent High Emittance Paint Plug - p'f!' O Sjm:i$@@(4 5 b,Y,,I ? h j<
- { '
j ..j Lead W.., 'i
- 3...... 3 Stalniess Steel
- .pfjfg,,$, f.!
EME8E8 Furnace (~h 5 l
SHIELD TEST CONFIGURATION High Emittance Paint +--- 1/8" -+ Stainless Steel 1.75 Metal = 0.4' TYP - 0.2" T(P v -0.5" dia Plug u ~ Concrete = TYP 0.08" = ,2[ Copper 4.5-Fins 'E ~ = , 2, - O 0.4* TYP lTYP o 11.75" o 02"TYP Lead 4.5" l m Stainless Steel 3.o. m ,8" O
a O _ COPPER FIN ATTACHMENI J Attachment of capper fins to ! cad shield is performed just prior to l concrete pour. l l Clean both lead and copper. Dip attachment end of fin in high purity tin bath. I Hold fin in position on Icad. i Draze fin to lead by melting lead (ASTM B29-79) filler metal along base of fin. Clip right angle fins to brazed fins to hold in position during concrete pour. O l O 1
k ~ 6 o SHIELD THERMAL CYCLE TESTS PURPOSE: To provide visual, microscopic, and/or compositional examinations of the shield internal structure after thermal and freeze / thaw cycling. METHODOLOGY: Shield configuration samples approximately 6"x6"x6" consisting of stainles.s steel, concrete (both as-cured and artificially aged) with embedded copper fins, lead, and stainless steel. Exposure sequence as follows: O - 2 cycles from -40*F to 210*F (outside surface) - 20 freeze / thaw cycles l - 2 cycles from -40*F to 210 F (outside surface) EXPECTED RESULTS: Visual, microscopic, and/or compositional examinations indicating the maintenance of the design integrity of the shield configuration. STATUS: Starts 9/89 O l
'4 O-SHIELD IMPACT IESI PURPOSE: Provide data / observations concerning the extent of damage to the steel / concrete shield structure after impact. Provide data for code analyses comparison of impact response. METHODOLOGY: 10 combinations of stainless steel / concrete / lead / stainless steel circular layers with varying layer thicknesses. "O Striking of top layer with a flat-faced cylindrical steel peg dropped from a known height. Height of impacter rebound measured. EXPECTED RESULTS: To be provided by Finite Element Analysis. STATUS: Begins 8/89. O
'l1 I' ~ -o 4/ 1 1_ 1 O 2 0 2 / s ) 1 0 n e 0 1 e g s m u ) a i e c g h e cn 0 1 0 p 2 s 1 i( ( ll l l a e e ss 2 2 r e e e 8 / / t t o n / 1 1 f S S k 1 1 1 ) se s x c "5 st s e e i r h 0 e i r l l T t 1 n cdn S a T 8 n a a i i 0 a o et E M / 1 1 ( r t 1 SCLS T e t n y e [- E e a e R m L 6 2 2 h 1 / / O S U c / 1 1 i s i T e 3 l C p 1 1 e 3 e N S tS U t 6 P s 1 s e / s T 3 1 1 e ln i 6 a t 1 2 S / / 3 1 e 1 gua 6 G 2 1 0 / 2 /3 1 1 )reya L mo ttoB ( l s e e l e e e t t t S )e r S a lP sy e s t s r sa e e a eL r l O l l c d n u np n a a i c i r ao o e t tT iC S( C L S I Illi lll Lljl lllljllfll! ll l ll
+. h.. IMPACT LIMITER 4
- o. Design Features
- Lightweight Design - Balsa / Redwood Energy Absorber - Kevlar Composita Casing - Quick Acting Attachment Mechanism o Design Criteria O '- Limit Loads Imposed on Cask - Protect Trunnions - Provide. Thermal Protection for Seals - Remain Attached to Cask Body During Accident Loadings i o Development Strategy L - Extensive Testing - Material Characteristics - Component Performance - Support Cask Analysis Effort 1 O
O sc Ao S B s L L s) A nt O of 0 G n 0 i t0 o 0 N a3 i r( t G 4 e a I r l l V S ea e) F A E ci p l 0 D ex eo DA c, R eu T L t g D IR O G A e t ME 'O R k0 tf IT U s6 n LI a. el R T B, d( M C TI 3 U l i a ct HL l R ei ci G T ud Am Fa IT 9 S i R EC l i t a WA E Y ig mg P F m r TM S i0 o0 L8 N2 EI I G T RR V A AE S TP o o ~ C A y V I g
F T N E uO D P I u M O AL r ( A os ) R H mp t A T ri r k L H l Ah o s C V P S sf a k E E O ly e e tf C K R tsd o d e i vr ce h e h_ la m E io u f r a th lo T ph h tf dt o e c t E r hp c on e (8 NE l r 'i - O T e eT) es re e r C nD t e Pms f e L N teP S Y ( on pe ,P i + n y e ri t ov l N H h PLsfl p d E E N e i n a ~ H le r t aer ne a e y p n gervD Y g t. ni y ~ P em N lo snkce X ic hp i H P a ad r ti crdt O se A N P srai a P et S R H eoJAl e E do l y aO A Vo aB / r P Mkdn R dp 3 f anin A e Y ago L ey o M L osF , l V c1 i i O rl ers E xr O P Pl,cos K ee C usa (i p tHt p m F do e esss O r l R S l t Y moen up E E al rra E o l X B S uoeeir F hf I U BBHATT I Si O F L T P D N N E I E G M R I / A R S 9 R U E A C D A o o o uVE< ll 1l
O E'T S E T D ) E B R C Q M L N L E R / O E R O 2 C E F T H D S T E S E G B V C F N R O E N B O R A L F H T C / S N T S 0 I G S 2 E N O E R E T R ( R U O T D T L T SS E C E S I R U E R ES O R T O A HA L T S O D L TB I S I A N V M ST T D A I EH E H O S MG E R T II B U C TE O R W N T E Y 5 A N H Y X L C O G X O SA C I P AU S H O E FQ E S I / E T S S 3 R R A E I E A AN N L S L LA I M E T / V V M A G S E S EN A E A O R K E KO L S T C A G N o A A o o o o T V N D V A A OE V S D I A D
1
- k. '
,;@6
- 3 M
Ns .s ,s : "s =N a . N ~*3; y )' , /. ,67 ' '/,j., , ',f'/ y- ','.'.9' y?,7(j', s\\. l,k.(l:'lh l? ih ,4,b ( f jfi hh'j / A':' s V Gi .f.,Y,?,,,)h /, $m %',@. < / < // g "l',Iy[",'f',,,f?jj//,/ t STEEL OUTER SKIN KEVLAR' LAMINATE IMER SKIN (OXYGEN SHIELD). (5TRUCTURAL) , /. , / g /,// CCWOSITE FOR REDWOOD OR OTFER jf,e f' /'. .,/ .x< /./4,,5.9 SIDE Ilf'ACT // '/ ~,; ff'./ /. BALSA WOOD CORE . >, ' '- o (W/ OR W/O KEVLAR GUSSETS) ./;9:,. / //,, A' 2,,.
- ,7 p
- /, i:/g/,*i,,() y
,M ' // -p.. A y_^,-' / :/ _,, f,';,,, ,/ / > ) } ,m; .+ -s 1 i CONCEPT A 1 a 4 l ________.._____________.a
i 1 4 i ,V g-F KE'A AR LAMINATE (WITh UV BARRIER) * <' '/ IttER STEEL TIERMAL BARRIER Y BALSA CORE l5 : INSULATION (le. BALSA) ('T s .\\d h / ./ ,,s o / ,,(
- i;
i j s } ./ jg , / y ;. l,ry, _g Q%! l',/ '_;_ s l CONCEPT f5 n/ l f
( h I' b ET RE o P \\ @arme = arma e L e e ELRWE -d 5 a / 3\\ 3 l M i am g j,/ \\N lli N O a y==,. / m bt?M9wt$ \\ wel 8 l ) Z l ~ { a. m b m s m m m E i-o i 1 I i
' E N G :: N EE9:: N G ~~ ES-- 390GRAV O WOODS WOODS / WRAPS e m m o n c v v v I 'n J. r# SCOPING TESTS v O v v BALSA REDWOOD KEVLAR STEEL- \\ BASIC MATERIAL PROPERTIES \\ CRUSHING BEHAVIOR \\ OVERALL EVALUATION (KEVLAR) \\ [ ;__ PURSUE KEVLAR7 - YES \\ \\) MODEL TESTS (l/4 SCALE) } SIDE DROP (ie O deg) 4 STATIC-TESTING / / x. q) -J T~-M FORCE / DISP. CURVES g ATTACHMENT VERIFICATION 4 STAND VERIFICATION i .y /l .., x} N. ^ DYNAMIC TESTING 'N I A '}; PROGRAM [, REFINE EOUATIONS W / BENCHMARK CODE 4 y REVISE DESIGNS [ [J OVERALL INTEGRITY -.._- L a O STATIC VS DYNAMIC COMPARISONS 'l 2._--__--___--_
1 i O 1 DYNAMIC TEST OBJECTIVES j i i o To Observe Kevlar Material Characteristics Under Dynamic Loading 4 To Compare Static and Dynamic o O Energy Absorption Characteristics of Specimens O
OBSERVATIONS { O ( Kevlar Material Reacted Similarly in Dynamic o and Static Loadings - No Erratic, Unpredictable Failure Dynamically Loaded Specimens Deformed o Less than Static for a Given Energy Level Dynamically Loaded Specimens will Absorb o More Energy than Static for a Given Deformation .O Therefore: o Kevlar Performed Intended Function of Containing Energy Absorber Using Less Mass Than Required by Metal Casings impact Limiter can be Made Lighter for o r Dynamic Loadings 4 Kevlar/ Wood Properties Predictable and o Compatible with Modeling Techniques O
+ ?O IMPACT LIMITER S Model Testing O Approximately Quarter Scale Static & Dynamic Test O
4 a IMPACT LIMITER ANALYSIS ILAN o l O sawrue company
f I e 6 O NEUTRON ABSORBER DEVELOPMENT O O
l ~ O q ALUMINUM /B,C CERMET NEUTRON AEEQRBER Aluminum-Infiltrated. B,C Matrix Cold Press Pure Aluminum Powder Natural B.C Powder M.ix Uniformly & Press j 4 v' Green Body f S
- v.. w.m e..,
.., ::, <,m. ...,.. s.ww.u.. y,;,.. <....,,,., Sinter Pressure 1200 C e s / V Active Preform Infiltration Vacuum 800-900"C s / V p;,,g Product Specifiable Up To 70% B,C B' Areal Density: 0.1 inch ~ 0.047 gm/cm' s O
iq[ a j, fk.I! 7 NEUTRON ABSORBER SCOPING TESTS x l Feasibility Measure - Bending Deflection Ductility ,w. Bend Test - Various B,C Compositions - Test Temperature at 250 F O - Rapid Deflection Rate - As-Fabricated - Thermal Cycle Effect (-40 F to +400 F)- - Vibration Effect O
O Neutron Absorber Material Tests
- Send Testing
) 1 - Temperature 250F and 400F - Deflection Rate 1
- Thermal Cycle Testing j
- Temperature Range -40F to 400F i - Microstructural Exam i - Bend Test O e Vibration Testing - Temperature -40F and 400F - Microstructural Exam - Bend Test
- Neutron Attenuation
- Corrosion Testing
- Corrosion Rate - Leachants fish 22
O BR-100 CASK TESTING Engineering Tests o Purpose - Provide Cask Design Support o Results Materials Property Data Component Behavior Data g$ Design Verification Tests o Purpose - Confirm Cask Accident Performance o Results Cask Mechanical Response to Hypothetical Accidents - Acceptance Tests o Purpose - Confirm Functional and Operational Performance o Results Cask Comparient/ System Operational Suitability L
l VERIFICATION TEST STRATEGY g I Programmatic Issues o Develop Test Plan Approved by DOE Review with NRC i o Select Test Site o Develop -Testing Procedures o o Conduct Tests Model Fabrication o Quarter Scale Model o Cask Body Fabricated by ROBATEL in France i o Other Cask Components Fabricated by BWFC 1 O
p Ol VERIFICATION TESTING o Free Drop Test Nine Meter Drop to Flat, Unyielding Surface i. Top / Bottom Side O t;iiq u e O o Puncture Test l 1 One Meter Drop Onto Six-inch Diameter Steel i Bar i Side { Top / Bottom l O j
VERIFICATION TESTING g SCHEDULE i START MODEL DESIGN JULY 89 . RELEASE MODEL DESIGN FOR FABRICATION OCT 89 .O COMPLETE MODEL FABRICATION SEPT 90 START VERIFICATION TESTING NOV 90 FINAL TEST REPORT JAN 91 SARP SUBMITTED MAR 91 0 ,}}