ML20244A776

From kanterella
Jump to navigation Jump to search
Responds to Open Item Noted in Insp Repts 50-266/89-05 & 50-301/89-05 Re Failure to Perform 10CFR50.59 Reviews for Several Mods Which Changed Out Low Pressure & High Pressure Feedwater Heaters.Insp Rept Error Noted.Ser 89-013 Encl
ML20244A776
Person / Time
Site: Point Beach  NextEra Energy icon.png
Issue date: 04/03/1989
From: Fay C
WISCONSIN ELECTRIC POWER CO.
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
CON-NRC-89-039, CON-NRC-89-39 VPNPD-89-209, NUDOCS 8904180187
Download: ML20244A776 (29)


Text

_ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Wisconsin Electnc eamcower 231 W. MICHIGAN, P.O. BOX 2046. MILWAUKEE, WI 53201 (414) 221-2345 VPNPD-89-209' 10 CFR 2.790 NRC-89-039-April 3, 1989 U.

S.' NUCLEAR REGULATORY COMMISSION Document Control Desk Mail Station P1-137 Washington, D.

C.

20555 Gentlemen:

DOCKETS 50-266 AND 50-301 REPLY TO INSPECTION REPORTS

.50-266/89005(DRS);50-301/89005(DRS)

POINT BEACH NUCLEAR PLANT, UNITS 1 AND 2 This letter responds to your referenced inspection report dated March 2, 1989, which requested a response to an open item regarding the failure to perform 10 CFR 50.59 reviews for l

several modifications which changed out the low-pressure and high-pressure feedwater heaters in Units 1 and 2.

Page 5 regarding identification of the open. item for Unit 1 incorrectly lists the docket number as 50-461; the correct number is 50-266.

i-In accordance with your request to respond to the open item l

and to furnish you a copy of the 10 CFR 50.59 evaluation, enclosed is a copy cf Safety Evaluation Report 89-013 and associated technical supporting documentation.

We trust submittal of' the requested safety evaluation report

-closes the identified open items.. Should you have questions or concerns arising from your' review of this document, please contact us.

Very trul

yours, h

,fa -

u

/

C. W.

a Vice President Nuclear Power y

Enclosure g

Copies to NRC Regional Administrator, Region III NRC Resident Inspector

)

h D

G

Page 1 of 3 NUCLEAR POWF.R DEPARTMENT 10CFR50.59 PEPORT Ser. el 89-013 lpeterence Document slSee below I (Attach additional pages if necessary)

Section I - Determination af Safety Evaluation is Required Brief Description of Proposed Change, Test. or Experiments Replace / upgrade feedwater heaters Unit 1 MRs 84-169/170,82-083, 85-059, Unit 2 MRs A4-171/179. R9-nna. Aq_ncn 1.

Will any system, structure, or component (SSC), as described in the PBNP FSAR, including its figures, be altered?

YES L NO 2.

Could, within reasonable possibility, the proposed change affect the function y

or method of a SSC which is described in the FSAR?

YES NO 3.

Will any procedure or procedures as described in the PBUP FSAR be altered?

YES X

NO 4.

Will a test or experiment which is not described in the FSAR be performed?

YES 1 NO 5.

Will a prior documented technical commitment to the NRC be altered?

YES X

NO 6.

Is a potential change to the facility or its operation as described in the FSAR involved?

X YES NO 7.

Is an evaluation required (are any of the above questions answered YES)?

Y YES NO NOTE: If no, then provide basis for decision in summary section.

List the licensing basis documents ana sections where the system, structure, component, procedure, test, or experiment is described.

(FSAR Chapters I thru 15 and appendices, and technical NBC commitments).

Chapter 10 Chapter 14 Section 11 - Determination if an Unreviewed Safety Qvestion is Involved:

1.

Does the proposed activity increase the probability of occurrence of an accident previourly in the SAP 7 YES X

NO List the accident (s) previously evaluated in the SAR with which the proposed change to the SSC er procedure, or the proposed test or experiment cou.d aave any possible bearing, effect, or association, and describe the bearing, effect, or association. Describe why and/or how the probability of occurrence will or will not be increased.

14.1.6, " Reduction in Feedwater Enthalpy Incident." No changes were made in feedwater heater design to increase the chance of causing a loss of flow resulting in opening of bypass valve.

i 2.

Does the proposed activity increase the consequences cf an necident previously evaluated in the SA37 YES X

N3 Describe why and/or how the consequences of the accident (s) listed in el will er will not be increased.

Because the reduction in steam generator feedwater temperature is no worse with the new feedwater heaters.

3.

Does the propnsed activity increase the probah 1 3 of occur ~rbnee of a malfuwtnen of eqalpment reportant to bofety previously evaluated in the 3?.P?

YES 1

'r List the malfunction (s) of equipment previously evaluated in the SAR with which the proposed change tr 'the SSC or procedure, er the preposed test or experiment could have any posstble bearingt, effert, or aurociation, ono describe the bearing, effect or association. Describt why and/or how the probability of occurrence will or will not be increased.

None i

1 For-cr w 4

p..

i l

Page 2 of 3 i

4.

Does tha proposed activity increase the consequences of a malfunction of g

l:

equipmant important to safety previously evaluated in the SAIG YES NG

\\

l l

Describe why and/or how the consequences of the malfunction (s) listed in 83 will or will not be l

increased.

i i

l Not applicable J

5.

Does the proposed activity create the possibility of an accident of a different j

type than any previously evaluated in the SAR?

YES X NO L? 4t any possible accident that may be created as a result of the proposed activity. Describe sny and/or how each accident is or is not of a different type than any previously evaluated in the SAR.

Not applicable I

6.

Does the proposed activity create the possibility of a malfunetton of equipment important to safety of a different type than any previously evaluated in the SAR?

YES y NO List any possible malfunction of equipment that may be created as a result of the proposed activity. Describe now and/or why each malfunction is or is not of a different type tnan any i

previously evaluated in the SAR.

j

.aduces the potential for steam generator tubing degradation from corrosion.

7 Does the proposed activit y reduce the marain of safety as defir.ed in the basis for any technical specification?

YES X NO List any technical specification with which the proposed change, test, or experiment has any bearing, association, or effect, and describe the bearing, association, or effect. Describe why and/or how the margin of safety as defined in the basis for the technical specifications listed will not be reduced.

Accident in question is bounded by a 10% step load change.

DOES THE CHANCE, TEST, OR EXPERIMENT INVOLVE AN UNREVIEWED SArETY OUESTION?

yES X NO Section III - Determination af a Technical Spec 5f acation char. ' is Involved Doen the change, test, or experiment involve a change in the technical specifications?

YES L NG If a change is required, briefly describe what the change should be and why it is required.

YES NO Form CP b 3.1 Rev. 2

SER 89-013 Page 3 Section I'V - Evaluation Summary - (Attach additional pages if necessary)

To alleviate feedwater heater tubing degradation and remove copper-bearing materials from the feedwater train, modifications84-169, 84-170,82-083, and 85-059 for Unit 1-(84-171,84-172, 82-084, and 85-060 for Unit 2). basically -

replaced the feedwater heaters. The new feedwater heaters were not identical

. replacements.

During the NRC inspection of modifications in Fet'ruary,1989, (see inspection

. report), it was noted that no 10 CFR 50.59 evaluation was performed on the feedwater heater replacement / upgrade modifications.

It was also noted that feedwater heater replacement / upgrade could impact safety analysis 14.1.6, >

.." Reduction in Feedwater Enthalpy Incident." Thus,- the fellowing will J serve.to -

document.the acceptability, from a licensing basis standpoint, of the feedwater heater replacement / upgrade efforts.

'The new feedwater heaters incorporate stainless steel tubing (304 or 439, depending upon~the specific feedwater heater) for increased corrosion resistance.

These materials do not transfer heat as readily as the original materials did (copper-bearing alloys)..Thus, the new feedwater heater sizes were increased (as physical constraints allowed), tube wall thicknesses were minimized and tube numbers were increased to maximize performance.

The new or resulting-feedwater heaters either met or exceeded original design and construction codes and-standards.

The " Reduction'in Feedwater Enthalpy Incident" accident (FSAR Section 14.1.6) basically determines;the steam generator feedwater temperature reduction and resulting primary system response for an opening of the low pressure feedwater heater bypass valve at full power. The bypass path will' allow a certain -

percentage of feedwater flow to bypass the gland steam condenser / air ejector. inter and after-condenser, condensate cooler, and Nos. I through 4A&B feedwater heaters.

The flow. split percentage is dependent on the pressure drop of the piping system

-and heat,exchangers. The resulting flow is then pumped through-the Nos. 5 feedwater heaters to the steam generators. The analysis shows that this event only results in a worst case transient of approximately 2% nuclear power, and is bounded by the " Excessive Load Increase" analysis (FSAR Section 14.1.7), which is a 10% nuclear power transient.

The changes in the feedwater heat exchangers were reviewed qualitatively to determine the possible impacts on the subject analysis. The intention is to show that the critical parameters did not change significantly with the feedwater heater replacement / upgrade. The critical parameters for this evaluation are the change in pressure from the No. I feedwater heater inlet to the No. 4 feedwater heater outlet, the feedwater temperature at the No. 4 feedwater heater outlet and the heat ~ transfer capability of the No. 5 feedwater heater. These parameters were reviewed. from a design and operational perspective.

It should be noted that the contributions from the condensate cooler, gland steam condenser and air ejector, inter and after-condenser were ignored as their overall impact is small.

I

i SER 89-013 Page 4 l

l The overall design heat transfer rate for the combination of the Nos. I through 4 feedwater heaters shows a very slight (2.8%) increase with the newer units versus I

the original units.

It should be noted that this apparent increase is not truly significant as it is mostly due to inputting operational data into the feedwater heater design specifications for the new units versus the Westinghouse thermal kit values for the original units. The terminal temperature differences are not as good with the newer units versus the original units.

It is assumed that the accident analysis is based on the Westinghouse thermal kit values.

The resulting real change is not significant as the feedwater flow temperature at the No. 4 i

feedwater heater output has not changed significantly (1972-3 field data:

340-343 F; 1987-88 field data: 342-343 F).

The pressure differential across the combination Nos. I through 4 feedwater heater train has not changed significantly as evidenced by operational data (No.1 fendwater heater inlets were 280 psig and No. 4 feedwater heater outlets were 220 psig during the periods of 1972-73 and 1987-88).

The overall design heat transfer rate for the No. 5 feedwater heaters increased

('7.7%) with the new units. As with the low pressure feedwater heaters, a portion of this increase is due to the use of operational data in the design specification versus Westinghouse thermal kit information. The terminal temperature difference for the new unit is better than the old unit. The real change is a very slight increase in the No. 5 feedwater heater performance as evidenced by field data for the feedwater outlet temperature (425'F for the period of 1972-73 and 425-428 F) for the period of 1987-88).

It can be seen that the critical parameters have not changed significantly.

Since the critical parameters have not changed, the basis for the original " Reduction in Feedwater Enthalpy Incident" analysis has not been affected, the original analysis is still valid.

The material change resulted in removal of cepper-bearing alloys from the feedwater system. This served to minimize oxygen transport to the steam generators by removing the copper oxide transport mechanism.

It also allowed a shift in feedwater pH which minimizes steel corrosion. The intended result was to enhance steam generator tubing reliability by minimizing corros!on.

These feedwater heater replacement / upgrades have no other impacts upon the accident analyses or nuclear safety-related rystems.

The change does not pose an unreviewed safety question. The probability of occurrence or the consequences of an accident or malfunction of equipment important to safety is not increased. The change does not create the possibility for an accident or malfunction which has not been previously evaluated.

The margin of safety as defined in the Technical Specifications is not reduced.

Prepared by Idb

        1. f Date 02/20/89 Reviewed by b $

QJ Date 02/23/89 for the MSS (see attached serial review)

MSS #

89-06 Manager - PBNP Approval (See attached serial review)

Date 03/21/89 In lieu of MSS and Manager signatures, attach EQR-26d if serial review has been conducted.

1

=;-

POINT BEACH NUCLEAR PLANT o

DOCUMENTATION OF SERIAL REVIEW & APPRC7AL DOCUMENT. SER 89-013, 10 CF2 50.59 REPORT FOR 72EDWATER HEATER REPLACEMENTS / UPGRADES (MRs 84-169/170,-82-083,85-059 f

f U4-1/1/1/2, 64-U04, Ub-Ubu)

Revision M/f Date A////

Date Performed (If applicable) Unit /

2 NOTE:

1.

-THIS-FORM MAY BE USED TO RECORD THE SERIAL REVIEW AND APPROVAL OF DOCUMENTS WHICH REQUIRE SUPERVISORY STAFF REVIEW AND MANAGER APPROVAL.

2.

THE PROVISIONS O' 10 CFR 50.59 APPLY TO ALL CHANGES AND MUST BE i

EVALUATED AND PCJU)ENTED IN ACCORDANCE WITH QP 3-3, " AUTHORIZATION OF CHANGES, TES JND EXPERIMENTS." ATTACH QP 3.3.1 IF REVIEW IS REQUIRED.

j 3.

TECHNICAL SPECIFICATION 15.6.8 APPLIES FOR ALL PROCEDURAL CHANGES. A QUORUM OF MSS MEMBERS (FCUR) MUST REVIEW THE PROPOSED CHANGE PRIOR TO APPROVAL BY THE MANAGER.

4.

FOLLOWING COMPLETION PROCEDURES ARE TO BE ROUTED TO THE SUPERVISOR -

.1 STAFF SERVICES. ALL OTHER DOCUMENTS ARE TO BE ROUTED TO THE ADMINISTRATIVE SPECIALIST - EQRS Date 3 /9 By A]

General Superintendent Date

.$d'f[f/

By Supt - Operations 3//389 By e

M Supt - EQRS Date E

Date By Supt - Maint & Const Date By Supt - Chemistry j

Date By Supt - Health Physics

? h /f9-By Supt - I&C Date Date By Supt - Reactor Engineering Date By Supt - Training Date By Title Date By Title

%4 Manager - PBNP

.Date v

i3 M

Approved y

\\

Noted for Record: MSSM 89./&

By(M//,,,W'n EQR-26d (08-88)

\\

lN7ERNAL CORRESPONDENCE TO:

W.

B.

Fromm FROM:

R.

P. Wood i

DATE:

February 23, 1989

SUBJECT:

FEEDWATER' HEATER REPLACEMENT / UPGRADE 10 CFR 50.59 EVALUATION COPY TO:

An analysis to verify the assumptions in the 10 CFR 50.59 review regarding change in design performance of feedwater heaters was conducted.

This analysis calculated overall heat transfer coefficient I

and heat transfer rate of the feedwater heaters based on Westinghouse thermal kit data and the design parameters of the feedwater heaters.

In this analysis, operational data was not used.

Rather, the Westinghouse thermal kit data was used for both the new and old HX calculations.

(Operational data had higher or equal steam inlet temperatures, which made the heat transfer rate appear higher than calculated in this analysis.)

The calculations showed that performance of the new feedwater heaters was nearly equal to that of the old heaters.

The results are as tabulated below:

Change in Heat Transfer Rate EWli Old to New Feedwater Heater 1

+.3%

2

+.2%

3

.2%

4

+.03%

5

+.9%

This shows that the critical parameters change even less than as determined in the 10 CFR 50.59 review and that the assumptions are therefore valid.

/

i 4 3GJ5

_________-_-__-_____-_______._.__N

s b'

l HEAT, EXCHANGER PROGRAM lRESULTS

-j iOLDL#E: FWH TYPE OF.'H' EAT: EXCHANGER:

U-tube, 2-zone FWH e

' ANALYSIS' METHOD:~

1.

DESIGN-FLUIDiTYPE ON tube SIDE:

Water

" FLUID TYPE:ON shell SIDE:

Steam j

LTUBE MATERIAL:- AdmiralityL NUMBER ~OF' TUBE COLUMNS =- 30 TRANSVERSE TUBE PITCH-(inches)

.8125-

~

=

NUMBER OF;BAFFLESLIN THEl condensing ZONE =

9 a

NUMBER OF BAFFLES IN.THE drain cooling ZO!!E =

9

~

' NUMBER OF TUBES =

884 NUMBER OF-PLUGGED TUBES =

0 Inner TUBE DIAMETER (inches) =

.576 Outer TUBE DIAMETER (inches)

=..625

. TUBE LENGTH (ft)'=

38

- LENGTH.0F1 DRAIN COOLING ZONE(ft) =

8 INLET ~ FLUID TEMP. ON tube SIDE (F) =

89.9

-INLET. TEMP'..OF.THE EXTRACTION STEAM (F)'=-160.6 INLET, QUALITY'OF THE EXTRACTION STEAM

= 0.750

. INLET, TEMP. OF-THE DRAINS - (F) = 168. 0 -

-OUTLET FLUID TEMP. ON tube' SIDE (F). = 143.1-OUTLET FLUID TEMP ON shell SIDE <(F) = 106.0 TUBE SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s) =

5.9 SHELL(SIDE FLUID.VELOCITYoIN'THE drain cooling 1 ZONE-(ft/s) 1.8

=

TUBE SIDE FLUID-VELOCITY IN.THE condensing ZONE (ft/s)

= '

6.0-MASS FLOW RATE ON. tube SIDE'(lbm/h)'=- 0. 217.6 8 E+ 07 -

. MASS 1 FLOW RATE OF THE-EXTRACTION STEAM-(lbm/h) = 0.12215E+06

-MASS / FLOW RATE OF THE DRAINS (lbm/h) = 0.22485E+06 SHELL SIDE H. T. COEFF. FOR drain cooling ZONE '(Btu / (h ft^2 F) ) = ' 666. 3 -

'SHELL SIDE HEAT TRANSFER COEFF.'FOR' condensing ZONE (Btu / (h f t^ 2 F) ) = 1109.0 TUBE SIDE H.-T. COEFF. FOR drain cooling-ZONE (Btu / (h ' ft^2 F)) =

1528.4

< TUBE' SIDE HEAT TRANSFER COEFF. FOR condensing: ZONE (Btu /(h ft^2 F))

' 1636.2

=

.OVERALL' HEAT ~ TRANSFER-COEFF. IN drain cooling ZONE - (Btu / (h. ft^2. F) ) '=

445.0

~OVERALL' HEAT TRANSFER'COEFF. IN condensing ZONE:(Btu /(h ft^2.F)) =

624.4-HEAT TRANSFER RATE'IN condensing ZONE (Btu /h) = 0.93444E+08 HEAT' TRANSFER RATE IN drain cooling' ZONE (Btu /h) = 0.18920E+08 I

s l

l

' HEAT' EXCHANGER PROGRAM RESULTS

'NEW'#1.FHW j

l TYPE OF HEAT EXCHANGER:

U-tube, 2-zone FWH ANALYSIS METHOD:

1.

DESIGN FLUID TYPE ON tube SIDE:

Water FLUID TYPE ON shell' SIDE:

Steam TUBE MATERIAL:

304 Stainless steel NUMBER OF TUBE COLUMNS =

30 TRANSVERSE TUBE PITCH (inches)

.8125

=

NUMBER OF. BAFFLES IN THE condensing ZONE =

12 NUMBER OF BAFFLES IN THE drain cooling ZONE =

16 TNUMDER OF TUBES =

924 NUMBER OF PLUGGED TUBES =

0 Inner _ TUBE DIAMETER (inches)

.59

=

Outer TUBE. DIAMETER (inches) =. 625 TUBE LENGTH.(ft) 37

=-

LENGTH OF DRAIN COOLING ZONE (ft) 8

=

INLET FLUID TEMP. ON tube SIDE (F) 89.9

=

INLET TEMP. OF THE EXTRACTION STEAM (F) = 160.6 INLET QUALITY OF THE EXTRACTION STEAM

= 0.750 INLET TEMP. OF THE DRAINS (F) = 168.0 0UTLET FLUID TEMP. ON tube SIDE (F) = 143.1 1

OUTLET. FLUID TEMP ON shell SIDE (F) = 105.0 TUBE SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s) 5.4 c

SHELL SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s) 3.1

=-

TUBE SIDE FLUID VELOCITY IN THE condensing ZONE (ft/s) 5.4

=

MASS FLOW RATE ON tube SIDE -(lbm/h) = 0.21168E+07 MASS FLOW RATE OF THE EXTRACTION STEAM (1bm/h) = 0.12215E+06 MASS FLOW RATE OF THE. DRAINS (lbm/h) = 0.22485E+06 SHELL SIDE.H. T. COEFF. FOR drain cooling ZONE (Btu /(h yt^2 F))

823.6

=

SHELL SIDE HEAT TRANSFER COEFF. FOR condensing ZONE. (Btu / (h. ft^2 F)) = 1103.3 TUBE SIDE H. T.

COEFF. FOR drain cooling ZONE (Btu /(h ft^2 F))

1412.6

=

TUBE SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu / (h ft^2 F) )

1513.2

=

OVERALL HEAT TRANSFER COEFF. IN drain cooling ZONE (Btu /(h ft^2 F))

465.8

=

OVERALL HEAT TRANSFER COEFF. IN condensing ZONE (Btu / (h f t^2 F) )

558.9

=

HEAT TRANSFER RATE IN condensing ZONE (Btu /h) = 0.93444E+08 HEAT TRANSFER RATE IN' drain cooling ZONE (Btu /h) = 0.19267E+08 Y-

/

r.

4 iHEAT EXCHANGER PROGRAMLRESULTS'

'OLD".#2 FWH' 2 TYPE =OF HEAT EXCHANGER:' U-tube,-2-zone FWH ANALYSIS METHOD:-

1 DESIGN FLUID TYPE ON tube SIDE:

Water FLUID TYPE ON shell-SIDE:

Steam (TUBE MATERIAL:' Admirality..

4 NUMBER ~OF. TUBE COLUMNS ~.=. 22-

TRANSVERSE TUBE PITCH:(inches)

.9375

~

=~

NUMBER OF BAFFLES.IN THE condensing ZONE = L12 NUMBER OF' BAFFLES IN THE drain cooling' ZONE =

11 NUMBERtOF TUBES'.=

504 L

NUMBER OF PLUGGED TUBES =

0 l

Inner TUBE' DIAMETER (inches)

.701

=

Outer TUBE: DIAMETER-(inches).=

.75 TUBE LENGTH (ft)- =

39.0833 l

LENGTH OF' DRAIN. COOLING ZONE (ft) 5

=-

INLET FLUID TEMP.-ON, tube SIDE (F) = 155.6 INLET TEMP.:OF THE EXTRACTION STEAM (F) = 213.8 INLET. QUALITY OF THE EXTRACTION STEAM

= 0.960 INLET-TEMP. OF THE DRAINS (F) = 222.0 OUTLET FLUID-TEMP. ON tube SIDE -(F) = 207.9 LOUTLET FLUID TEMP ONJahell SIDE (F) =-171.0

' TUBE SIDE FLUID VELOCITY.IN THE-drain cooling ZONE (ft/s) 7.1

=

SHELL SIDE. FLUID: VELOCITY IN THE drain cooling ZONE (ft/s) 4.2

=

TUBE SIDE - FLUID. VELOCITY IN THE condensing: ZONE ' (ft/s)

=~ 7.2 MASS FLOW RATE'ON tube SIDE.(lbm/h) = 0.21168E+07-MASS-FLOW RATE OF THE EXTRACTION STEAM (1bm/h) = 0.10803E+06

' MASS FLOW RATE OF THE DRAINS-(lbm/h) = 0.11682E+06

.SHELL SIDE H. T. COEFF. FOR drain cooling. ZONE -(Btu / (h ft^2 F)) L =

922. 5 SHELL SIDE HEAT TRANSFER'COEFF. FOR condensing ZONE (Btu /(h ft^2 F)) = 1221.1 TUBE SIDE H. T..COEFF. FOR drain 1 cooling ZONE:(Btu /(h-ft^2 F)) =

2077.2 TUBE SIDE HEAT TRANSFER COEFF. FOR~ condensing ZONE (Btu /(h ft^2 F))

2264.1

=

OVERALL HEAT TRANSFER COEFF.. IN drain cooling ZONE.(Btu / (h ft^2 F)) ' =

611.4

'OVERALL' HEAT TRANSFER COEFF. IN condensing ZONE (Btu / (h f t^2 F))

753.1

=

HEAT TRANSFER RATE <IN condensing ZONE (Btu /h) = 0.10148E+09 HEAT TRANSFER RATE IN drain cooling ZONE:(Btu /h) = 0.96789E+07 L

-HEAT' EXCHANGER-PROGRAM RESULTS i

L NEW #2 FWH l

TYPE OF HEAT EXCHANGER:

U-tube, 2-zone FWH i

3 ANALYSIS METHOD:

1 DESIGN I

' FLUID TYPE ON tube SIDE:

Water FLUID TYPE ON shell SIDE:. Steam i

TUBE MATERIAL:

.304 Stainless steel NUMBER OF TUBE COLUMNS =

26 l

' TRANSVERSE TUBE PITCH (inches)==

.8125 l

-NUMBER OF BAFFLES IN THE condensing ZONE =

12 I

NUMBER OF BAFFLES IN THE drain cooling ZONE =

11 NUMBER OF TUBES =

661 NUMBER OF PLUGGED TUBES =

0 Inner TUBE DIAMETER (inches)

.59

=

Outer TUBE DIAMETER (inches)

.625

=

TUBE LENGTH (ft)

'37.9167

=-

LENGTH OF. DRAIN COOLING ZONE (ft)

=

5 i

' INLET FLUID TEMP. ON tube SIDE (F) = 155.6 INLET-TEMP. OF THE EXTRACTION STEAM (F) =.213.8 INLET QUALITY OF THE EXTRACTION STEAM

= 0.960 l1NLET TEMP. OF THE DRAINS -(F) = 222.0 OUTLET FLUID TEMP. ON tube SIDE (F) = 208.0 OUTLET FLUID TEMP ON shell SIDE (F) = 170.0 TUBE SIDE FLUID VELOCITY IN THE drain. cooling ZONE (ft/s) 7.7

=

SHELL SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s) 3.6

=

TUBE SIDE FLUID VELOCITY IN THE condensing ZONE (ft/s) 7.7

=

MASS FLOW RATE ON tube SIDEc(lbm/h) = 0.21168E+07 MASS FLOW RATE _OF THE EXTRACTION STEAM (lbm/h) = 0.10803E+06 MASS FLOW RATE OF THE DRAINS-(lbm/h) = 0.11682E+06, SHELL SIDE H. T.LCOEFF. FOR drain cooling ZONE (Btu / (h ft^2 F))

911.2

=

SHELL SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu / (h f t^2 F)) = 1289.3 TUBE SIDE H. T. COEFF. FOR drain cooling ZONE- (Btu /(h ft^2 F))

2280.8

=

TUBE, SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu /(h ft^2 F))

2486.5 i

=

OVERALL HEAT. TRANSFER COEFF. IN drain cooling ' ZONE- (Btu /(h ft^2 F))

573.2 l

=

'OVERALL HEAT TRANSFER COEFF. IN condensing ZONE (Btu / (h f t^2 F) )

722.3 j

=

HEAT TRANSFER-RATE IN condensing ZONE (Btu /h) = 0.10148E+09 l

HEAT TRANSFER RATE IN' drain cooling ZONE (Btu /h) = 0.99040E+07

+. 27, i

l 1

l 1

i x

. HEAT EXCHANGER PROGRAM RESULTS OLD~#3 FNH

. TYPE OF HEAT. EXCHANGER:

U-tube, 2-zone FWH

. ANALYSIS METHOD:

1 DESIGN FLUID TYPE ON tube SIDE:

Water FLUID TYPE ON shell SIDE:

Steam

' TUBE MATERIAL:' Admirality NUMBER OF TUBE COLUMNS =

27 l

TRANSVERSE TUBE PITCH (inches)

.8125

=

NUMBER OF BAFFLES IN THE condensing ZONE =

13 NUMBER OF BAFFLES IN THE. drain cooling ZONE =

6 NUMBER OF TUBES =

718 NUMBER OF PLUGGED TUBES =

0 Inner TUBE DIAMETER (inches)

.576

=

Outer TUBE DIAMETER (inches)

.625

=

TUBE LENGTH'(ft) 27.75

=

LENGTH OF DRAIN COOLING ZONE-(ft) 2

=

rINLET FLUID TEMP. ON tube SIDE (F) = 208.8 INLET TEMP. OF THE EXTRACTION STEAM (F) = 300.0 INLET QUALITY OF THE EXTRACTION STEAM

= 1.010 INLET TEMP. OF THE DRAINS (F) = 300.0 OUTLET FLUID TEMP. ON tube SIDE'(F) = 265.1 OUTLET FLUID TEMP ON shell SIDE (F) = 189.0 TUBE SIDE FLUID VELOCITY IN.THE drain cooling ZONE (ft/s) 7.6

=

'SHELL SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s) 5.6

=

TUBE SIDE FLUID VELOCITY IN THE condensing ZONE (ft/s) 7.7

=

MASS FLOW RATE ON tube SIDE (lbm/h) = 0.21168E+07 MASS FLOW RATE OF THE EXTRACTION STEAM (lbm/h) = 0.~11682E+06 MASS FLOW RATE.0F THE DRAINS (lbm/h) = 0.00000E+00 SHELL SIDE H. T.

COEFF. FOR drain cooling ZONE (Btu /(h ft^2 F)) = 1108.0 SHELL SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu / (h f t^2 F)) = 1332.2

-TUBE SIDE H. T.

COEFF. FOR drain cooling ZONE (Btu /(h ft^2.F))

2630.9

=

TUBE SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu /(h'ft^2 F))

2868.3

=

739.9 i

OVERALL. HEAT TRANSFER COEFF. IN drain cooling ZONE (Btu / (h f t^2 F))

=

OVERALL HEAT TRANSFER COEFF. IN condensing ZONE (Btu /(h ft^2 F))

858.0

=

HEAT TRANSFER RATE IN condensing ZONE (Btu /h) = 0.10743E+09 HEAT TRANSFER RATE IN drain cooling ZONE (Btu /h) = 0.1J163E+08 l

t 1.

i i

c.,

u' t

y o

HEAZ EXCHANGER PROGRAM-RESULTS NEWf#3sFWH TYPE--OF HEAT EXCHANGER:

U-tube,.2-zone FWH

.. ANALYSIS METHOD:-

1 DESIGN b

FLUID TYPE-ON. tube. SIDE:- Water

FI,UID TYPE.ON.shell SIDE:

Steam

, TUBE: MATERIAL: ' -304-Stainless-steel

NUMBER OF. TUBE COLUMNS =

27

! TRANSVERSE TUBE.: PITCH (inches)

.8125:

=

NUMBER.OF BAFFLES IN THE condensing, ZONE =. 13 NUMBER OF BAFFLES'IN THE drain cooling ZONE =

6 1

NUMBER; OF TUBES. =. 722 NUMBER OF, PLUGGED TUBES'.=

0 Inner TUBE! DIAMETER (inches) =

.59 Outer TUBE DIAMETER-(inches)'= -.625

~

1 TUBE LENGTH <(ft) =

38.33 LENGTH OF. DRAIN COOLING ZONE (ft) 2.5.

=

INLET FLUID TEMP.; ON tube SIDE. (F) = 208.8

. INLET TEMP. OF THE EXTRACTION STEAM (F) = 300.0 INLET QUALITY OF..THE EXTRACTION STEAM

= 1.010 INLET TEMP. OF THE1 DRAINS (F) = 300.0

. OUTLET. FLUID TEMP. ON tube SIDE (F) : = 2 65. 0 -

OUTLET FLUID TEMP ON shell SIDE-(F) = 191.0

-TUBE SIDE FLUID VELOCITY-IN THE drain-cooling ZONE (ft/s) =

7.2 SHELL SIDE FLUID VELOCITY.IN THE drain-cooling ZONE (ft/s)'=

4.5

-TUBE SIDE FLUID. VELOCITY IN :THE condensing ZONE '(ft/s) 7.3

=

' MASS FLOW: RATE ON, tube ~ SIDE (lbm/h) = 0.21168E+07 h; -

MASS-FLOW RATE OF-THE EXTRACTION STEAM (1bm/h) = 0.11682E+06 eMASS FLOW' RATE OF THE DRAINS-(lbm/h) = 0.00000E+00

-SHELL' SIDE H. T. COEFF. ' FOR drain cooling ZONE - (Btu / (h ' ft^2 F) ) = 1013. 8 jc SHELL. SIDE HEAT TRANSFER COEFF. FOR ' condensing ZONE (Btu / (h ft^2 F)) =.14 84. 3 =

TUBE' SIDE'H.-T. COEFF.. FOR ' drain cooling ZONE. (Btu / (h. ft^2 ~ F) ) ' =

2508.0 TUBE' SIDE HEAT TRANSFER COEFFe FOR1 condensing ZONE (Btu /(h ft^2 F)) =

2733.9 lOVERALL HEAT TRANSFER'COEFF.'IN drain cooling ZONE (Btu /(h ft^2 F))

628.3

=

OVERALL HEAT TRANSFER COEFF. IN condensing ZONE. (Btu / (h f t^2 F) ). =.803.9-HEAT TRANSFER RATE IN condensing ZONE-(Btu /h) = O.10743E+09

(

HEAT TRANSFER RATE IN drain cooling ZONE (Btu /h) = 0.12928E+08 l'

l

.17o

_ =

_ _ _.- _ _ = _ _ - - -

'. '.hi.

M.g MEAT EXCHANGER PROGRAM RESULTS-OLD '.# 4 ' FWH L M1 4

TYPE'OF HEAT EXCHANGER:

U-tube,:cond. FWH J ANALYSIS: METHOD:

1-DESIGN'

FLUIDLTYPE'ONitube SIDE: -Water-FLUID TYPEtON-shellLSIDE:

Steam TUBE MATERIAL: 190-10 Copper-Nickel NUMBERLOF-TUBE: COLUMNS:=. 29-TRANSVERSE ~ TUBE-PITCH-(inches)~= ~.8125-7L NUMBER OFEBAFFLES IN THE condensing ZONE =

9

.f

]

NUMBER 0F; BAFFLES INlTHE' drain cooling ZONE =

01 NUMBER OF-TUBES =L 725 NUMBER ~OF PLUGGED.TUBESi=- 0 LInner TUBE' DIAMETER'(inches) =

.576-Outer TUBE. DIAMETER.(inches)

.625

=

' TUBE LENGTH.(ft)

=?

29.25 LENGTH OF DRAIN. COOLING-ZONE'(ft) =

'O LINLET FLUID' TEMP. ON tube SIDE (F).= 263.3 zINLET TEMP.fOF THE EXTRACTION. STEAM'(F) = 347.8-INLET' QUALITY'OF THE EXTRACTION' STEAM- = 0.890-

INLET. TEMP.;OF.THE DRAINS.(F) = 356.5
OUTLET FLUID TEMP.-ON. tube SIDE (F)'=.343.6

' OUTLET FLUID TEMP'ON shell SIDE _-(F) = 347.8' TUBE SIDE FLUID VELOCITY IN THE' drain cooling ZONE (ft/s) =

'0.0

-SHELL SIDE FLUID VELOCITY IN THE drain' cooling, ZONE (ft/s) 0.0-

=

. TUBE SIDE FLUID-VELOCITY IN.THE condensing ZONE.(ft/s)

7.8

=

. MASS FLOWJRATE ON tube SIDE (lbm/h).'= 0.21168E+07 MASS FLOW-RATE OF THE-EXTRACTION STEAM'(lbm/h) =.0.21916E+06 MASS' FLOW-RATE OF THE DRAINS (lbm/h) = O.54204E+06

-SHELL SIDE H. lf. COEFF. FOR drain cooling ZONEJ (Btu /(h ft^2 F))

=-

0.0

' SHELL SIDE HEAT ' TRANSFER COEFF. FOR condensing ZONE ' (Btu / (h ft^2 F) ). = 1157. 2 TUBE' SIDE H. T.

COEFF..FORLdrain cooling' ZONE (Btu /(h ft^2 F)) =

0.0 TUBELSIDE HEAT-TRANSFER COEFF. FOR condensing ZONE - (Btu / (h ft^2. F) )' =

3124.5-OVERALL' HEAT TRANSFER'COEFF..IN drain cooling-ZONE (Btu / (h f t^2 F) )L =

n.0c OVERALL HEAT TRANSFER COEFF. IN condensing ZONE _lBtu/ (h __ft^2 F) )

769.2f

=-

-HEAT TRANSFER RATE IN condensing ZONE-(Btu /h)

~

+0

=

HEAT TRANSFER RATE IN drain' cooling ZONE (Btu /h) 0.00000 +00

=

[]

.,)

HEAT EXCHANGER PROGRAM RESULTS

j 1

J NE"i#4~FWH' W

i TYPE OF' HEAT EXCHANGER:.U-tube, cond. FWH-

' ANALYSIS METHOD:

1 DESIGN

-FLUID TYPE ON tube SIDE:. Water FLUID TYPE ON-shell SIDE:

Steam TUBE MATERIAL:

304L. Stainless steel'

. NUMBER OF. TUBE' COLUMNS = ~29

.8125

'I TRANSVERSE' TUBE PITCH-(inches)

=

-NUMBER.OF BAFFLES IN-THE condensing ZONE =

'9

NUMBER OF BAFFLES'IN THE drain' cooling ZONE =

0..

' NUMBER OF TUBES ~=

778-NUMBER.OF PLUGGED TUBES =

0 Inner. TUBE DIAMETER ~(inches) =

.59

.625 d

-Outer TUBE DIAMETER (inches)

=

TUBE ' LENGTH..( f t) 30.'0833

=

LENGTH OF DRAIN COOLING; ZONE-(ft) =

0 INLET FLUID TEMP. ON tube-SIDE (F) = 263.3

-INLET TEMP.'OF THE EXTRACTION STEAM (F) = 347.8-

' INLET QUALITY 0F THE EXTRACTION STEAM = 0.890 INLET TEMP. OF THE DRAINS (F):=.356.6 OUTLET FLUID TEMP. ON tube SIDE (F) = 343.6

' OUTLET FLUID TEMP ON.shell SIDE.(F) = 347.8 TUBE SIDE FLUID-VELOCITY IN THE drain cooling ZONE (ft/s) ~

0.0

=

SHELL SIDE FLUID VELOCITY'IN THE drain cooling ZONE (ft/s) =

0.0

' TUBE SIDE-FLUID VELOCITY IN THE condensing ZONE.(ft/s) 7.0

=

' MASS FLOW RATE ON tube SIDE (lbm/h) = 0.21168E+07' MASS-FLOW RATE OF THE-EXTRACTION STEAM (lbm/h)' = 0.21916E+06 MASS FLOW. RATE OF THE DRAINS (lbm/h) 0.54204E+06

=

SHELL SIDE H.:T. COEFF. FOR' drain. cooling ZONE (Btu /(h ft^2 F))

0.0

=

SHELL SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu /(h ft^2 F)) = 11i5.0-TUBE SIDE H. T. COEFF. FOR drain cooling ZONE - (Btu /(h ft^2 F))

0.0'

=

TUBE SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu / (h~ ft^2 F) ) =

2828.1 OVERALL HEAT' TRANSFER : COEFF. -IN drain cooling ZONE. (Btu / (h ft^2. F) )_=.l_i.Q. U '

-OVERALL HEAT TRANSFER COEFF. IN condensing ZONE _ (Btu / (h f t^2 F) ) = [ 710. 01 HEAT TRANSFER' RATE IN condensing ZONE (Btu /h) =l 0.17534E+09 )

HEAT TRANSFER RATE IN drain cooling ZONE (Btu /h) = v.6vvuuk+00 h

N M % 4< r k.'m.% pc a.s u % &4:4 %h.

v MO zf

t. oYo

HEAT EXCHANGER PROGRAM RESULTS OLD #5 FWH TYPE OF HEAT EXCHANGER:

U-tube, 2-zone FWH 1

]

ANALYSIS METHOD:

1 DESIGN FLU 7,D TYPE ON tube SIDE:

Water FLUID TYPE.ON shell SIDE:

Steam TUBE MATERIAL:

90-10 Copper-Nickel

]

NUMBER OF TUBE COLUMNS =

34 TRANSVERSE TUBE' PITCH (inches) =

.8125 NUMBER OF BAFFIES IN THE condensing ZONE.=

9 NUMBER OF BAFFLES IN THE drain cooling ZONE =

10

' NUMBER OF TUBES = =1149 NUMBER OF PLUGGED TUBES =

0-Inner TUBE DIAMETER (inches)

.576

=

Outer TUBE DIAMETER (inches).=

.625 TUBE LENGTH (ft) 34.20833.

=

LENGTH OF DRAIN COOLING ZONE (ft) 7

=

INLET FLUID TEMP. ON tube SIDE (F) = 346.5 f

INLET TEMP. OF THE EXTRACTION STEAM (F) = 436.9 INLET QUALITY OF THE EXTRACTION STEAM

= 0.936 INLET TEMP. OF THE DRAINS-(F) = 436.9 1

t OUTLET FLUID TEMP. ON tube SIDE (F) = 423.2 OUTLET FLUID TEMP ON shell SIDE (F) = 36 TUBE SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s)

=

7.6

)

SHELL SIDE FLUID VELOCITY IN THE drain cooling ZONE (ft/s) 5.6

=

TUBE SIDE FLUID VELOCITY IN THE condensing ZONE (ft/s) 7.8

=

MASS FLOW RATE ON tube SIDE (lbm/h) = 0.31585E+07 MASSfFLOW RATE OF THE EXTRACTION STEAM (lbm/h) = 0.29676E+06 MASS FLOW RATE OF THE DRAINS (lbm/h) = 0.24033E+06 SHELL SIDE H. T. COEFF. FOR drain cooling ZONE (Btu /(h ft^2 F)) = 1092.0 SHELL SIDE HEAT TRANSFER COEFF. FOR condensing ZONE (Btu / (h f t^ 2 F) ) = 1191.9 TUBE SIDE H. T. COEFF. FOR drain cooling ZONE (Btu /(h~ft^2 F))

3242.6

=

TUBE SIDE HEAT TRANSFER COE/F. FOR condensing ZONE (Btu /(h ft^2 F))

3377.2

=

F))}=174678

~

~

'OVERALL HEAT TRANSFER COEFF. IN drain cooling ZONE (Btu /(h ft^2 800.7]

OVERALL HEAT TRANSFER COEFF. IN condensing ZONE (Btu / (h f t^2 F))

=

HEAT TRANSFER RATE IN condensing ZONE (Btu /h) =io.31936E+091 U1817E+0h HEAT TRANSFER RATE IN drain cooling ZONE (Btu /h)

=

w t

,9

-HEAT / EXCHANGER PROGRAM RESULTS:

l NEWL#5 FWH L

TYPE OF : HEAT. EXCHANGER:' U-tube, 2-zone FWH E

ANALYSIS METHOD:

1.

' DESIGN FLUID TYPE ON tube SIDE: _ Water-FLUID TYPE ON shell SIDE: ' Steam TUBE MATERIAL:

'304 Stainless steel NUMBER OF TUBE COLUMNS ~=

34-TRANSVERSE. TUBE PITCH (inches) =-.8125

' NUMBER OF BAFFLES IN THE condensing ZONE =

9 NUMBER OF BAFFLES IN THE drain cooling ZONE =

9

  • :MUMBER OF TUBES =

1147-NUMBER OF PLUGGED-TUBES =

0 Inner! TUBE DIAMETER (inches)

.589

=

Outer TUBE DIAMETER.(inches)

=

.625 TUBE LENGTH-(ft) =

48.5833 o

. LENGTH OF. DRAIN COOLING ZONE (ft)

_10

=

INLET. FLUID TEMP.,ON tube SIDE (F) = 346.5

' INLET TEMP. OF THE EXTRACTION STEAM (F).= 436.9

. INLET QUALITY OF THE EXTRACTION STEAM = 0.936

INLET TEMP. OF THE DRAINS (F) ' = 436.9[423.8 )

OUTLET FLUID TEMP. ON tube SIDE (F)

=

OUTLET FLUID TEMP ON shell SIDE (F) - = 3 61. 0

" TUBE SIDE FLUID VELOCITY IN THE drain cooling ZONE'(ft/s).=

7.3

'SHELL SIDE 7LUID VELOCITY IN THE drain cooling ZONE (ft/s) =

3.6 TUBE SIDE. FLUID VELOCITY IN THE condensing ZONE (ft/s) =

7.5

. MASS FLOW RATE.ON tube SIDE (lbm/h)'=.O.31585E+07 MASS FLOW RATE OF THE EXTRACTION STEAM (lbm/h) = 0.29676E+06

-MASS FLOW RATE OF;THE. DRAINS'(lbm/h) = 0.24033E+06 SHELL SIDE.H. T. COEFF. FOR drain cooling ZONE (Btu /(h ft^2.F))

' 911.7

=

-SHELL SIDE HEAT. TRANSFER.-COEFF. FOR condensing ZONE (Btu /(h ft^2 F)) =.1339.5 TUBE l SIDE H. T. COEFF; FOR drain' cooling ZONE (Btu /(h ft^2 F))

3120.4

=

. TUBE' SIDE HEAT TRANSFER-COEFF. FOR condensing ZONE (Btu /(h ft^2 F))

3251

= M.0

=-

OVERALLLHEAT' TRANSFER COEFF. IN drain cooling ZONE (Btu /(h ft^2 F))

OVERALL HEAT' TRANSFER COEFF..IN condensing ZONE-tu t^

F)) = \\Mf HEAT TRANSFER RATE;IN condensing ZONE (Btu /h)

=,_0.219 W +09 -

< HEAT TRANSFER RATE'IN' drain cooling ZONE (Btu /h) =T6~44092E+08f 9

NO I bd 44 M c,oth['ic k-f,>

lo eJ',

T.,

W b4 u

<.6.c is d'A41y 19 h w mdl,'g Q b^'N TQ h( b

'm.

e W4.My y o._4 w W % A.

c,_

mWA + ~m e_.

u e. "1 %

l I

. INTERNAL CORRESPONDENCE 3

TO:

W.

B.

Fromm FROM:

S. M. Barkhahn j

DATE:

February 8, 1989

SUBJECT:

COMPARISON OP OLD VERSUS NEW FWH DATA COPY TO:

i I did a comparison of old versus new feedwater heater data per your request.

I could not find any old data on differential pressure across the Nos. 1 through 3'feedwater heaters, but was able to find data on the differential pressure across the Nos. 1 through 4 feedwater heaters.

.The old data is from Unit i during 1972 and 1973.

The new data is from the last two years on Unit 1.

The old data showed that the No. 1 feedwater heater inlet pressure was about 280 psig and the No. 4 feedwater outlet pressure was' about 220 psig, although this varied from'206.to 232 psig.

The new data is 280 psig on the No. 1 feedwater heater inlet pressure and 220 psig on the No. 4 feedwater outlet pressure.

These values varied 15'psig.

The No. 3 feedwater heater outlet temperature old' data varied from 270 to 282 F, but was usually in the 273-277*F range.

The new data indicates about 280'F from the same instrument point.

I i

The No. 4 feedwater heater outlet temperature old data was about 3 4 0-3 4 3"F.

The new data is about 3 4 2-3 4 3 *F.

The No. 5 feedwater heater outlet temperature old data was about 4 2 5*F.

The new data is about 425 to 428 F.

It should be noted that other component performances, such as turbines and MSRs, would affect these values.

At the time of the old data, the unit was usually running at about 3% less power than now.

However, this should not have much affect, considering the variation in the values given above.

A 15'F drop in feedwater temperature to the steam generators at full power will result in a 2% increase in power if the l

feed flow does not change.

w Let me know if you need any additional data.

bh er a s es I

Original Nawa Op2 rating Design Design' 1972-73 1987-88 No. 1 Feedwater Heater T

89.9 94.8 g

T,,

155.6 155.3 TTD 5.0 7.4 DP (psi) 13.08 11.7 Heat Xfr (x10')

139 134.3 Inlet Press 280 280 No. 2 Feedwater Heater T

155.6 155.3 g

T 208.8 208.6 TF6 5

7.6 DP (psi) 12.68 18.6 Heat Xfr (x10')

113 118.8 No. 3 Feedwater Heater T

208.8 208.6 g

T,a 263.3 267.0 273-277 280 TTD 5.0 5.1 DP (psi) 12.88 15.8 Heat Xfr (x10')

117 131.3 No. 4 Feedwater Heater T

263.3 263.3**

g T,a 242.8 342.8 340-343 342-343 TTD 5.0 5.1 DP (psi) 13.14 10.4 6

Heat Xfr - (x10 )

174 174 Outlet. Press 220 220 HEAT XFR NOS. 1-4 FWH 543x10' 558. 4x10' +2. 8%

No. 5 Feedwater Heater T

346.5 346.5 m

T,n 431.9 438.6 425 425-428 TTD 5.0 2.0 DP (psi) 14.42 20.0 6

Heat Xfr (x10 )

288 310.2

+7.71%

"New Design" parameters were based on operational data provided to the heat exchanger manufacturer during the design phase (versus Westinghouse thermal kit design parameters).

"New Design" parameters for the Nos. 4 feedwater heaters were not based on operational information due to timing of replacement.

Ntid/ /VU.

/ M4M.

~

una,,

as.D.U.ff..M. me.S.IEN.F.7 OO O

A 1HX MA i Wr ee e a

a es -e

,,e,, s1 uao2

' * ^*"'8* cd "".

1HX-nA i 2Hx-l' mersentM IcEaTis"rY'c4 eau UNIT 8l 85-l9si # 85 19t

FEEDWATER HEATER SPECIFICATION SHEET UNIT *2.

No. 85-190L2,85-1901 e

e cusioennn WIS Co Al&IAl ELte rene PodlR Co.

en.n teo.

s

.TAvion Po ee) T BC 4cN uwer eso. I L'2 enoueny eso. /tof-JL

_m Amr LocAview Tulo AfVHS Wl5Co a/ 5/A/

oavn

  • -i * -#f e

e onnvecs or unts REPt. ACLMGolT hadDLE LM te COHe40d SNELL W, Tot LP L trnan eso.

i e

eens, GT"!D x 44 4 "

sves, naans.urnt u-rsist oso costa. altu seo.or uwers 2 ausLLaruwt y

suaracnir "*

/13/E

.M.

//Vd/

in ev. sunracn/uwer 2 2.6E4 iUt.22942 of I f

PERFORMANCE OF ONE UNIT 1

su m-e s mes o.u.a.,_m.se

.rs-

= =.. -

,sse.avse e

vera e6use entesimo eine.

// 7 73Z Za.7e7 244 fe/

2. 22 S. ooo j

ie i=6svsatwa6ev erwie

/o 69. S

/3z.8

/3f.0

< 52 8 is outseeswrm se, ovvis 72.o

/2 3. V sai.svvsmessavv s r

tdz.7 i /dz.7 ear..

tv.s is ouv6sv ese.eseavues r

/ov./

/sg.3 i.

ensnavias esseeves paa

5. o (.

1 is avsess or easese ese easu Two 7046s 2

j io ve6esire av.inse.

6. 33 av ee r.

enseeves one

==

eae

.si 4.o

//,. 7 e.

""'si'u'3""

?,'

"',":','J "M F,"ee'7r F.:Ofe v=.- au i ;

e.

. a. ese.. or.

se s ei co..~ mai.e, a a sa.ooo zu.s ses szso 6,zs. 12 1 se ici omain coeuwe escreea i 22. 93(p, oo o 24 5 t'2 8 2o2L 3 75 "

//.

CONSTRUCTION OF EACH SHELL

{ as ese.en eesseums paa So N/5

/4 as vser posseums es.e 75 623 di k

se ese.

vse.essavues r

eruaos owner 3oo easu 3oo 23o f se senaseviene. essa sm Zo"of ) to "

out 8'

/O" sa /Z" sur g, se ant aw eyes

, n vuese et 924 u s's. 62s owe 20 AVG.

Esa m 4'44

  • m.

mesa.B/2 C '

i se eseue m.m v.us.-

en e6 e vevens ruot pass 6sa m

/6i se e =munie.-ae.s mene u o.v.e A4D

==> evest cun. opsc.

y ee s==,

=,vr ruu e,wavse

=== v =6: segw.ieu==.s So ooo se erosos asusvse paeve saaesses eeni - eae.eenae se pasres anaamse e an e g

1 as eaer mars a v s.

.m ensa m marse.u so wese SA 26BTP 439 St.Itf FlG re sunt pu; J M CO at EQ ual.-

M se nnee r

,$$ S/6 70 f.75~

.z $"

rouM TO MestwAT D.J. STL. GAD bb b

  • L

{se mee., S M I A T SA 515 -70 S-

.iz s -

tu= = ww =*n *=v ROLLED se ensu eovse gy 1,5 yi*/ 6 vues e astavsphav Nc A)E e av vues sumiurn A 283

.us-vv's ** e=su ouweeve Exisy/dG g.a u eneeemarruse p 283 3 ys-ensu n emme mur 5LAJGED w

eaaaam.

54 S/4-7o

/. o -

. / z r-vm w e=== am meeves scamsPVC 4 sc 4 L utA h**

Meneerst eeven SA S/6 -70 Z. o-

. iz s" WITH 18" r. D. C AS KE rC D M4A/k/Ay' 8 as emaeue A gg3

.zg:.375-

'"ese*esene.contee6emessovos A5-4io as, ja emese.su, earr6 A 240 TP So4 2s-mv ese er vuess eu== sv easi.vese 4 merau.so e**ese

,g.

'i **

ensu ursvr vavai s.amur.

r,,3 7,./ G e ees6 me.

as vuessies asuse ways: namur. Ors r,a e, em me.

k se eruse asseeeeense: 10% oc atoo,nrtD wr$ AJD BOL15 con FLndGlD Cod.lEC T,0.is g if T'Une" f*t tsG4 85-1901-AO2

  • mav. 2

% ao s1%Rtc r io scrs oc sosue rs roots:cac rae oraana a

SWEET I ose 2 W

/Sl'3l%

ees. e,o.see.a

k o

I 9e FEEDWATER HEATER 4/3/68 WISCONSIN MICHIGAN POWER COMPANY n.3 Customer Heat Balance CT-1861'4 ti g 16-A-6266-1,-2

. No Inquiry or Spw#1 L.P. Feedwater Heater Apparat...

To6.1 11.000_,

Area, Sq. ft.

2.385 s #-a.

8.615 qq;4 u.,,

Drda C~ti Ver =1 brison* 1 X

a Vertical Later Position-Tabe Plate at Ta -

PERFORMANCE rueu

mau, 2,116,846 % g 57.8 %/lb.

Teodwate 122,154.5 % 4070.2 h!!b.

Steam 224,654

%y..33 5 w h Drains to Later 26.210

% /hrj 30.6 mg Other k w

.:f.> {,; 1,. 80 J ' psia

=

Steam Pressure at hater Inlet 160.6

_y 89.O

_y Saturated Temperature at beter Inlet 160.6 y

155 b T

Temperature In.

AC ' 4 T

i Temperature Out

+5.O fy Oudet Foodwahr 10.O -T Terminalh,0

G Drain Cooler Ayya.s g4gsoc@601 13 100 %/hr.

Totalhat Transferred M

Velocity in Tubee Pressure Drop in Tubes, at average operating temperature 230

_y Design Temperature SM 300_y,_.ti 300 _y m

400 p,tg 50 g,,

600 p gg Desier. Pressure 75 M,,

Tset Promure CONSTRUCTION BETAILS Steel 1/2 8= y w.t 67 8'i-Tu='--

n in O

10" Vent 1"

& 2 Shell:Insida 1t=

4-20" f

10" ra n das.,

a Cc==+ ' Steam aM f

Stse1 Tube '9====1 M2e.1 Internal 12"

_g c,..,.*,n, w Number of P1 -

2

_ M.s a X

%mispher.e 1 e 1 a.~.

Typ.: mig SEIIIU1 ppk l'a /M " Tf.fugl Tube Chanaal Covers W6eE=1 Tubes: M w.uil

.Admiraitv a,p _. 6 /6_

i. Gauge No.- 13_ AVG -

SW Nember, Tota! @.d4 U 's Average f.tiective Lesetk 4.Jt f/

Tube Plata: EterW.-

St**1 Steel Bafflee: Ete 'ai Stee1

-Tube Chazn.1 Welded Joint Tube Supports: Wierial._m Weided Je3nt Gaskets: Eterial, Shel!

102,000 4

81,_000 lbe. Operatits 143 060 i

)

Weights: T.mpty_a.my.m s e 50,000 (Tube

% yt,g Bundle)

~

mmcgrUmgocasame ~ ~

v -

C4 UNIT 9 2 m, s. s4srs:ws :vs.

tos mosta ce s"*

2HX-17A i 7.HM o a. non uen.

a. J,, s,s J ton m utan ca ea u UNITOt

~

FGE2 WATER HEATE2 SPECIFICATION SHEET UNIT *2 aos no 85-190],85-190) a CusTOMEm h/l SC O Mas M ELEcTas c POWE4 Co.

POLE No.

e station Po Mr BEacu uwei wo. 1 & 2.

enoumr wo. /2o9-JL

  • _. PLANT LOCATtoN TWO RIVEA &,

W/S co#3 / a/

OATE 8 - /* - #5' e

samvecE 09 UNeiRLPlect.MialT SUnJDLL LP-2 to4 ConMo4 SHlLL 60*7M L P-t sTEu no.

e esza 6 7' ID X W55" TYPE 440Am s#JTAL L170Bf #A/ COMD. NECM me.or uwers 2 susLLseuwn SumFActiswaLL er,VJ Ev. f3 /./.

inw ay. sueFACE/uNf?

/[p4 90 tEIV.

/(,7 3 2 E

PERFORMANCE OF ONE UNIT

""~

ensu mes vues mes e

e6use esecusarse orsaat o.attes

,sgg waggg e

vera6 P6use satsmime s/ne.

//J.487

/3/. V/ Y 2,2&5.000 se i=6sv savnaw, ovvis f114.3

/B7. f

/z 3 4

~

i ownst swwwaw, ervis

/J V.o

/76 6

.s

=m.4tu.

r ria.z.

. z/4.z. av..

ess a

.s evne

s. arum r

/ 6./

z ees.,

.4 m.a,.

s a

.o..

/

.o

.e uma. e,,a

.s.

su r.w to M c,s 2

se

vs6ecer, rv.iese.

B. 87 av e.

eu.

.a.

.c. /. t

/s. 4,

"'?

i,"*,".*?" *W s%"2%

AT=*.'

""'s',=t**

v=

=== !

Y..

. a.

. ov.

..v e se

< e, c.mu~s ~e uct o.,

ioco eso,oao 2 4.z.

[,oi 73it 4zs-i2 s A as een measu ceoume escreen

/2.343,000 2.75 48 4 93 4 l* 3 7C "

It i

}

l t

CONSTRUCTION OF,EACH SHELL o-ss esosom passeums poes So

  1. /5 &

[ as vser passeums pose 75 623 4 to se essiam vanessavvns r

eve ses ensev 300 ensu 300 230

{so w.scriesse; eens em / g (7.). W eur &

8" out

/ 2. "

=

s.

sw sw av fuese. see.

(,g, /

V e.e..(,gg"awa 20 avg 6smera

& S S

  • evn.

eivem.s/25" t y se assue ommuus 6smetu enc 6eswoouseyes Fut,L JD4gs 6smerm /oy-I

. se cessevauctsem-nous escrien was neveneen AMO was sves.

cuer. opsc.

] so weients: seenvy run er watse asasevasi.s emissawsume6s So. oo O g s, ev.s..suma...ve m e.e., _

e.es.a se,a-ma so.s.,

sa part as4'seea6 twai.

g saemsts m'aWaE

~

es vuese

$n 268 TP'43 SKlWIR & oSAtitnC JM CO 02 (_0WL.

ll

~

~

' as

  • vesse r.o.

~ s A sg6.yo 4 nS ~

.g5-cjN?i'ET5 HoWAy 04_s74,3 E&_A.sL_] !

k se 982, 5 M n't T 5 A.jf S - 70 5"

.i2 s"

' v ** 'un *"**' 8'"'

Ao&L6O Mw ensu cova*

Ers.57sA/(a

'u88 *d887 e'8"6^'

MOMf

' or sun eupoenn A 28S 4zy e m eren u eu m m Egos ris.16 kse coeu earessa A 233 37g-ens u to steetJess6v f(. A n)(, & C,

(

'~~

emanns6 SA $/f. ;ro p-

.,t S ~ i 'm ** *"*a *"* 88 eevas H E MisPM E 4 8c 4 L AI5'E 4 se se HA G eV sevse

$p $lf,7y

2. 0 -

.,7 5-wq ryd (g f.b. (,ASLT'Gb M AhlMI A 4'

,k, a 4 emmeve q 233 25".375-nnsmeencome.conteesenesesuas A5-W o att ameemesusar marr6s A 240 ff 3o4 28-aumesa er vuese suas see eeect.vese W iaevanse se*=se _

omeu earstv va6vs, mamur. Em ria/C, asessa me.

s as vuessess asuse va6vs, asamur. E xis m/ 6 esees6 ae.

'$ se ovuse accseeenese R& CE R 70 SM66 7 / of*2.

85-1901-AO2* m.2 SHEET 2 or2 roamwo see.*

g gg

Q

&, syG-eg y.

pr. pwl '

v:

FEEDWATER REATER Custonner WISCONSIN MICHIGAN POWER COMPANY n.u 4/3/68 Inquiry or Spee. Na Heat Balance GT-ldel3 7 ~ No 16-A-o2co-1,-2 l

Appara,.

  1. 2 L.P. Feedwater Heater s

Area, Sq. ft.

Drain Ce16-915 c '

'; 6'.835 r j-a 7,ui 7,750 m.a-ut x

y.r 1

ee Vertical Heater Position-Tabe Plate at Te--.

  • r---

u 1 c.i.;

PERF8tMANCE m.

Feeduler 1.08.033% jk,1121?1m,g,116,846 h /hr-123. %/lb.

cc:,k...

{C 2 Steam Drains to Heater

.16.521m%,166.9 S/!b.

Other Mew h /hr "

h'!!b.

w e;2 L,u. y Steam b - at Heater Inlet 15 Saturated Temperature at Later Inlet 213 8: - pala 9-Temperature In

_- 214;8*

9 155.6 Temperature Out 166.6-9 20S.8 y

.y G

Total Heat Transdorred i

Drain Cooler Appr-L 10.0 9

yag

,,u.

4.o

.y X

Velocity la Tubes

%/hr.6

- 00 12./w@60*Y t

Pressure Drop in Tubes, at average operating temperature oe g

Design Temperature SW T, s at~ '

  • T 7

Design Pressure Test Pressure W

Hg y-Mg 80587850710N BETAILS '

  • *Ske11: Inside Au s

56'--

5-F=w ui cm...-um e Steam Inle.

2-16" m g., u 8"

n in 0 '+

8" Ven+ 1 " & ? - 1/2 '

ra Tube Channel: M=h-t=1 cennectiones rois Internal

=

rwas 12" Number ed Passes-2 Tp Bob 8

  1. w-1= r Pwd9

%mienhe ?

x TuSe Chanel Cuver: Mateif='

604 0 's _m__-

,,,p k.%

19 /16 "Ng'dar Tubes: Mata

,1 Admj nity s

Number, To i e

3/4 t-Gene No.-

16 A E nWG Averop Ifhtaeleagi 90

'L L.

A Tube Plaw: Wtedet BafEest Wieris1 Tube Suppe:ts: Eterd=1 Gukets: Wierial !b" Tube Cha - -1 I

  • Weights: Tmpty_

h Operr.tir4_

  • s.

l JF Rmovable See -

h Maad-d w

'bs.

  • See Data Sheet for #1 L.P. Feedwater Heat _e.r

++#1 & #2 L.P. Feedwater Heaters in Common Shell.

')

y y }

,e nnn s

& Y h $

fft/ N

~

eh nc

.s_ou.s.m.. -s-ss w ee ns o s ee

.. s.s, 408 Am0868s CA petMe MME LOS A CA 00084 INX 19A IHX-19 f

FEEoWATER NEATER SPECIFICATION SHEET q

8 5 1913, 8 5-1914 a

cuevowan Wf ScoM31Al ELEc Ta ic, POW E 4 Co.

en.m me.

// e9

  • .37.F88=

'powT ar.aeu unwr me.

I seeuene me.

. __pi.ani Locaview Two Rivt.ea wiscowa:N mavn

' 9-w e

sanvocaer una REPL ACE MEM T 8t/AlOL.E L P-34 Er 3 &

vrais me.

e esas. 42" Ib u W.o-ryps, uneimdT4. U-708E M cc40. W4.CK seo.or unns i s=== a ->uww sunnemer-o-Vi E 2 n.

92aF

.am.

eueraesiusen

/A 2 N n.

/8406

.t"T PERFORMANCE OF ONE UNIT eme66 mes vues mes nu.e e.seuurse esas maa.as esse waren

.o was nu.o satse.no erme.

/3/. 4/4 2.2ts,000

.e u.s.se surnau.v sevie

//BA. #

/7d.t ie evnse surma 6pv er.uis

/ a 7. /

235.9 es

.mervs essavves r

300 272. I ear..

2 oA. 6 is evna vomassavves r

2/89 267.0

.a assearine esseeves es*

  1. 33

..a

.. su rwe souas 2

.e v.ee.o

,v.e s.sz av es.

/. /

/g.8 essesves esen-po.

.a.

es

"sR,T'.t""

'."4TJ *!

s%"J'A e'IC2.8

= =.

==

.e

.a =so=e uv...

se

....e u..

me.e.,

ien, ae,. o ao e e.2 6si Bss6

.L W l3 gy s.

... s o.m s

.. ev.e z os, ao za.3 4yz ss.6 37s 6

CONSTRUCTION OF EACH SNELL

~

u

s..

so a ir --

as vser posseums me..

73 623

~~-

u

..so,.

s

..- iso 8su ase zas u

v.

e : -

.. /s-e v 6, 6-

.a

/z-eve ir u

n=

na au s,

vv 72 2. u

.. 6 2 s e-.

2o au/c, 6====

+& o me.

=== 3/zs E '

= me e o me rus s.

pnss

=== sa-u no es.

es

.m.-a

.. vee 4ao

..e.

.e ruu w war,se memowae6s geenLievasi.s Zl,7.oo so ws ente,amerv ae ovesse asusvse name==== eso. - naeseeme== esere mannae.se e as

,paer s.avse.aa, ene.

w" i emesses marssia eo vuees

$n 268 7PA39 covEF N /MNwh'

3.,

S sa

.ase r s an 59L -70

+ S TS

.Zs " DMWST

.Lfr CUD ASS. d i

~

OC E WORL 6

_*amAexdlapeet SA 3 # $- 7o N3ff

.It 5 rum m evas e= set,g=v Ro L sfA__ '

se vues eussy Svensse A/ o A/( '

se ensu seven EXe57/as6 g

E y;5 7g-g, ae vues sweposea M 2$3 41g-vves er e su screemet se teses ear,rg.se A

~2 6 3

'375" sa8u es esim es.av yfLDAD ee emanns6 5A g16-7e.

. yf

. fL S

  • me w man. ano moeues WgHisP HERICA G H& Ab h

MAWWAY cowse 5A 8 /6 - 7o 1.E2 5 '

. #2.5 wer# /C J.D.Cr4.5EETfD NANN 4V at owneee A 2a f TS-

  • vs m en cese o m.eno6 eae ssoves A s - v s o as

.me. esus t 8.sens A f,40___7"f a y

.Zg-mvmesa er tvess.u e av. e:.wees #. meta 66se sea.es, "

44 de e su earsev wasyth us pr.

ry a g $4)(,

eesa. e.

se vues. sos asuse va6ver maseve. E r #5 7 ald seen. m.

f ao erusa assseeen.sen 10 7e of RgeusRgry 6)Jr$ AAID SO L Ts Co A fL ANGED coddic.rooses,11/6C PL UG '

49 5dfu SFoot F.Et.D WELD E D B y cu sto M E R, ctos uas PLA rt.-

85-1913 - A02*nev. o de SfAAL5; Mo.% rs of GAsxt T3 Teocy enil rust E Mn.DLR Fees.

0. 00s a F

i

\\ W

$1

'[ ' '

, s.

ze.' '

?

>::s -

. W$C SIN N

_A

' NW Inquiry er Spes,

' '1s.*1.;A.

7 1.-2

f Appara Area, Sq. R.

avmm%~*t '-

l ^,

r-.

'I Drela t ' C,3 w, '4 0 ~]

Norisoak1' 1

2'-

yg

^

gh 3.*

,,,,,-'.'s-l, iq.

.a

'4 db.';..

1' N

j.h,.. '

f.e

f. uess A,+.,-

Feedwater

j.

.j n /hr.. _^ < s v m llb. ;

sseam u

ISIM.......9'- ~**'G".C - -

m.-

,.c. r Drdas to Heder

.,'f

?

.~..; -

~

I?

m, yw u-.

y

?

,.-6 f.:.r Steam Pressure at Heater talet

' O.

.W. ',

Saturated Tempe Temperature Is, rature.'.at We. ster r

^

. ~ -

T'-

.I r;.., _

Temperature Out T. =y' r

m.a n

"*"' ^" ^

'T

- ^^

-u u

w

'y s v.

Drain Cooler E=--a-L' C,0 7 _

gg y g,y F

.u r ~ -

Velocity in Tubes.

f Pressure Dropla Tubes /

'V ? ' d - Jqpe @ 60*F

, at avesage.

i

%p.w, '- vv

{

^

Design Temperatur, as.4' 9u350>

5 gg, k..*..

~285 ag,, %

' 73

,3. c :s Mw

.y w

Test Proerure T

NM

..p4.%

.c x.,,. r.-

{

..1

. z.,,

4 W3b;..,.

sum m au y

/8 u % Steel c...wo.., w v u e 15eemme 2u= - W.-o Aa-y 1" & 1. 6 "

n Tuk ci.....i.

um si -

se 1 w. w as:

. r e w % :;g..

-c.A r.u es o e *.re.e.==3 o aw+w. ~ EtN& ~

Number el?- - -

2' w p.'r.v..

~ -

w nts w-t m,,,,

x i

Tub Chad h u > -i_

Steel ewy g yh mgege;

__ *g' a;Am 4,,,,.

vga 33/16, o.s GnaseNo z- ~**"*

g.

Member, T+'

2 ard5/8 k

JWG Aesage R&cthqi Lane.6 im_ --t- - s,:,

3 ruw me : u- % 1 Ateel Ba ber W w i stmer v -

f-g Tuk Supports: Wh'8*1 Aha*I j

Gaskeu: Wterial, h 'S

; 'dII '; 20" '

mh. wChaare!"W640okf-Et Weights; {,ggty.,.

6

. a vM g

yg, y

,hD BihA em ik=- O => = * -

-" ' v" p - aw g e -W,6t; 3,.M tw y h a %' ___

1h.

m. m

,_s

-G. 000 io.

ear wie N 4 W g '

.y s

W W;di5i' M N s? h W 3/5f,c

r

.L e..

c. ?

n

+.- m Nw

~z

.. : Ac.

.i..

?., ep/(.a.. y i.

,f.,

M}

9 j

e4. ~

- Nt.l,

,w h

WbhbHSdfM b.

.'.['

laquiry or 8

e.

Apper

.; A.

71.2 ' :(

Area,Sq.k.

wwn.w.-

1 gm';;

?y Drala m ese r

e-e.

4, g3 j.,.,..

g.

Vertical 2 Easter M-J

..,3.<-

tm er

y.
  • t, n n,, e.

~.

.?.e.

.. - v, a

m A., r >.

r..

Feedwahr

%f, g;%. O g, sman

~.:

n.n

.[ W p

,e Dr.as e m.w, Ogker ry, 1
l w

.m swam Pro m W Eeder saturated Temperature'd Bester

.N' F

6..

P TemperstmIsi M;tg..F E

^^^.0

'y

,L T m,mem o.

.y.

'. Y c.f,,.

e--

.y p,..;

Dr418 C00Ier aw TmuseTr m. NI-

~.0

'F 1

Veloalty la Tubes 2 3 (.

~

A g 'g eoay Pream Dropla Tabegld avusage F> M w

~.

a De.,. Tempeture

. su * >OpMoi y'w~, 400- aa.

%9.,nv u 285 Design Pressure

., e &

.y 3 r :-

Test Presem

. Ji'

g.,

W

- free- ;w!

.h

  • ,, 4. :,

.A

..a Shdl. Inside b

~ IIIb "

y 6....

c _ _ _ 7 g, uw'

' a. u Steel e.,

..% s u..' 6 " '" y 1" & 1. 5 "

Tube M----1. u. si - se. 1 w.__, y-w wgggg,

e, m. v.u -mon a. rue.ww w a w + +. s 4 4,tc Numbe 26 y,.r of y- -

-C.g* ' u.

s m

. mp.u.....~, pg;..,

3 x

Tube M Cover: ""

EteeDey - < f g,;, -

Tubes: u.ua.t

' 'init y L <-sS @... g -

g jj 16" g

Nauber, M' _N M" Q.D, '::#:

h. Gauge W -_

3WG

\\

Anesee 55eatW -- * 'A9-.9 "+&'M..,.

,.,y, m u._ a m ax i

m m g-seemin e -

~<

Tubs Supports: u L_-,

A t g,j

\\

Gaskets: Whela;, mit -Wo.kac 1:1:1

'ube F'

'.,"J'IM Juid

~

,,4:

. ;v: u...g

.a Weightr.: Empt*'.

- - > ~. ~, ~ _

, h Cr - - ~ - -

>'~

N.

n

~

c. - - - - - -

O I I A YW

' -._. r,

O N YY $

n' n

v

.k

shM'

_,' :,4. '

- ]

hbY d

"S T 2 U T H 2 R S W2LLS FEEDWATER HEATER SPECIFICATION SHEET 3-82-06-53338 Ni scon sin El ec tric Power Company _____, son __

CUSTOM ER y,,,_,

ACCRESS 4863-C6 i

emoposat PLANT LOC ATION Two Rivers. Wisconsin oATr flay 7,1932 i

senvice or uNet Replacement Heater No. 4 ITEM N O-

4. 0 Al t. =2 2

size 46-361 Tv er U-Tutse One Zone P osrTrow Horizontal I,

3 sumrACc PcR UNIT 7,873.

so.77 err 7,966.

so. rT. tot AL 4

No oruNits PERFORMANCE CF ONE UNIT swtLL stot Tuer seer 4

FLulo clRCuLATro STEAM oRAINs FEco W ATcR s

TeTAL rLuio rNTraiwo n ewn.

219,153.

542,039.

2,116,846.

iNurt rNTwALPy

sTue, 1089.90 328.40 232.00 ouTLc7 cNTw ALev eTuen 314.20 315.40 e

iNLeTTrurenATu==

  • r 347.8

( 3 4 7. 8 SAT.> 356.50 263.30 ouTLsT TrupcmATune

  • r 347.80 342.80 I

io eme= ATimo u.erssume

e. s. i. A.

131.00 i

is uvwec= or

  • Asses eraswett One Zone (no shrouds)

Two is vcLociw

w. p. s.

7.22 AT s e. o n. : 1.0 i

52

>=cssunc enor

e. s. i.

tA)

(c8 10.4.

I HEAT EXCHANGEo suRrACE M T o TR AN srER

  • R ATE sTurwm so. rT.
  • r eTu/sn iso. rt.. r 34 cA. oEsuPERNEATiNG srCTioN is ces coNocNs:No secTioN 174,000,000.

7,873.

28.12 786.

is ici oR AIN coouNo sEcTioN

-=

CONSTRUCTION OF ONE SHELL swrLL stor Tuer stoc i,

ocsIcN PREssuRC Psi 175.

400.

I in Test emessume es:

263.

600.

i i,

otsicN TcMPcRATun r

400.

370.

I to Tuees W 55 A688-304 No. 7 7 80 ' s o. o. 5 / 8

s. w. a 2 0Av e.s. c. T. L.*

30-1 *ivew 13/16

.I si swcLL Steel i.e.

46 TwicxNess 4 (A-285-C)l sucLL covea Steel wrLoco To swcLL swcLL skimT Steel 3 Thk ( A-2SS-C )

23 cN ANNc6 csai Steel ID 46 cwANNet covem Steel i

24 Tune sucets Steel

'M e:

NorwenT sArruc. sTNLs sTe cd 2 ) 3 / S !-

25 surromT PLATES sterL Air Vent Pine Dia. 220 secucNTAL sArrLE None j

26 r.wa ou es

<A)

Nono (C3 None j

s 27 _Tvec Je:NTs, swrLL ss oc Welded **

Tuscstor Hemispherical (16" c::en tyj )

to cas4rts. swtLL None cwANNet.

Spiral Wound Gasket i

77 coeccT:ows rTr.AM *lN LCr (

}6 DR A ms. lNLCT 10 semics Weld Ends

)g oM AiNs a ouTLc7 12_

sCR8cs WeIC End

{

si reco wAtta.ewtrT 12 out Ler 12 _

scRies Weht Ends l

f 22 cecc crovincucNvs ASME CODE SECTION v!!I, DIY, i & HEAT EXCW,.GE INSili'JTE 33 wcicwT s swtu. Ano sumote auwoLe oNLv r

WA*

.-._uL_L_ o._f---_,cA _

34 Acccssomts: swcLL sAscTv v4Lvc By Others Tur,c sinc neurs vAuve ey U*ners 33 SwcLL omAiNem 8 */ O t F AIS swrLL cAc7 Glass By ~d t e,e r s j

34 acwAmxs; < spa tNescATT.s starss recLetvrNo (r. a s.Not c Ar ts mAoiocareNiNo

)

37

~ u ' Tuscs

  • vill oc ov4L c Acr wwcet provinto To cou pcNs ATc rom ecNo TwiNN No

~~l

{

3 s c. T. L.. STR A. cst crricrevt Tvec LcNcra l

"Sta tniess steel flame protecting cano provi% at cu; point.

'E.w pel 1 'fatarnal' shroud orovided in outlet pa ss of c hannel.

~L g y %~.

2. Tubes are of feed wa t e r heater cuality mAtarble
3. Rendt street rel ieved A# tor handina Ed re ne e.

, es

ou)

AfD. '{

F*UM

~

. CON.TRCL #M.L.tp.

e FEEDWATER BEATER j

Customer._

WISCONSIN MICHIGAN POWER COMPANY n.x _4/3/68 I

Inquiry or Spec. No Heat Balance CT-16613 fu g_16-A-6266-1,-2 Apparatua

  1. 4 L.P. Feedwater Heater Area, Sq. tt.

prata %ii.,.

r y a -- s =,, 6.940 n-p. w.se.

To.i o.940 mw.ag.1 x

ver a, i e

Vertical Later Position-Tube Plate at Ta.

PitFotalANCE mal Feedwater won 2,116,846,L /hr 232.On g*

Steam 219,155.5t'lhr 1089.9m.,,g Drains to Heater 542,039

/hr 326,4ms'lh.

/

Other mw t'/hr

    • u/1h.

Steam Pressure at Later Inlet 131

--s.

Saturated Temperature at Later Inlet 347.6 y

i Temperature In -

347.8 9

263.3 j

.y Temperature Out 347 6 9

%2. B ey 2

Drain Cooler Appra-ak T

T.nnwl D15erence, Outlet Feedwater

+5.O y

{

Total hat Transferred 174 x 106 **u/hr*

i Velocity in Tubee

8. ;Q*Jeoc@60*F Pressure Drop in Tubes, at average operating temperature 11 14 p.8 Design Temperature Shir. 400 y, et it 400_v 370 ey Design Pressure 175 s

400 e,.

1 Test Pressure 265 M

600 y

)

CON 8TRICTLON BETAILS I

Shell: Inside Af=

42 8-nea6-

~4/8 4._ u.a 4.1 Steel k

Connections: Steam f.ta 16" 10 " n in O.

12" y,ae 1"

)

n ins f.

ra ra Tube Channel: www.1 Steel

&ga 12" j

Connections: In:e*

12" Number of P -

2 l

Type: Bo16A awe.1= al- -

tv bd Tube Channel Cover

.i Sffe1 L s phavi =1 X

Tubes: Ete

.1 D-Copper-Nickel j

s 13 /1p ",,7,,,,,31,,

e seus

)

Nember, To,

725 U's O.D

_6/8

GaugeNo 18

_AVO._

nwa 8-Average Effective !4n#k 29 _ y 9

u Tube Platee: Eted=1 Steel i

Babs: Stedet Steel Tube,$upports: Wte:41 Stee1 Gaskets: Wterial, noti Welded Joint 76 t%..cl Welded Joint Weights: Empty 23.700 the. Operatir.g,

31.000 is,.

Removam Sec+4a. 5.500 (She1})_

is w 43.000__

3 3,,

i 1

7

- - - --~~~

,4

p. a aos eies ' e namn, estmessen setet o e m see.asso "AS BUILT" Epp MEA 1 MCIP8 CATION #4Ef7 M

8 /

85-H-110-1AB asvoessa WISCIMEIN E _ EC' 'RIC POWER COMPANY oats NOVEMBER 25. 1985 eust. m e.eso.

anoeses TWO R VERS. WISCCNSIN cust.omosa no. B.83714-S PLautLacaTien rv RT BEACH NLCLEAR PLANT peoposak eso. on-330-85 UN T NO. 1 JD0 No. 85-H-110 t

agavece or usee?

HIGH PRE N TERS NO. EA & NO. ER rTsu eso. ms tAmatav 1 a

mas

41. tat Type n Ti.k.

essons.

An

's guePass past SMsLL spp. 1A&30

m. FT.

TOTAL 1866n M. FT.

e eso. OF '1MsLLs Psa uNat TWO sec. or asse Ts ONE osevices mer4.aatal PERFORMANCE OF ONE SHELL seeLL sees tuas sans s 96use esecuLatse ste m emaine e paso matsa e

tovat povos setsmesse gime.

121. e647 san tts.4 1_1La_471 7

eestet satm acev stu/s 1:1 54.3

~ 504.4 319.9 e

ouvLat setwaLev stu/s 328.6 A1A_1 e

seekst feesesnatuas op.

AA 0. 6 8 A An. E'

    • t.8 34 6.5 j

to outtav teases natuas 356.5 Ata A si ensaatiese passouas 17n.n mate is to sounessa of Pames Tim van.

he sa ve6ocity

  • tssee.

a.65 392.6-se paassoas oaor par w

  1. 8 5.0 20.0 Se eSat elseasuSee sumpace u.v.a.

Teatsspam sats sappLe sappLe Stunen.

30. pt, op.

eeU/ma/80.9vJep. eiasines cut t t

tai OssuPsansatsees sections J

to goesseesseses sectices 23 15s.000

.15310 21.2 7e6 es esa omain coo 6ews section 11.936.000 312n 13.2 501 CONSTRUCTION - EACH SHELL seen mos vues sios e

assionessesuas Pa.e.

425 1600 si vast pasasuas es.s.

640 2400 m

essas= vsesesmatuas op.

500 450 m

fuess m A&a8-304 (.05Me) ese 1147 uo Sfg

o. p.

. 036 wa L L =4 n** Lassevd Ane 7" sim.

as sessLL StesL 51"

s. D.

l Petcw 13/16 e

a casLLcoven stsso-metoso tosusLL onsLL saint

... 1 as c=a==st sai eseso oma==sLcowsa sessL st _tues enests etsst w/SS OVERLAY enenswesusut sapets stai=Lesssess6 as ~sueeont eatus - press sin sap pos-stsec esseeswtat sapp 6s - stsso mi uteel a senovas w r

es tres aosens-smets, aos v.1ded tuos sies hemisphernal as esasu tv-sesto emann.s o 16" MW w/ gasket as _commsctegnes: stem.ewhat 12" lomaius-ewtet 10" esaias W. L

~

as emase&outsst 12" esenes

v. L j

es

_,esstimatsa-e=Lav i4",ign evitet_

is eeniss w.E.

J B

coes asou(asy,s,wts; _asass 1983 Esettaa VIII. Divisign I

]

m _westass-ems _LL asco epwsos 71500 suwoos

.63200.

putt es marna i16,2on j

vues sees asLise vatvsg Ft asessnesses; asesLL tayr,vatve m

ensLL amatessa seeLLL saes stass 1

asesanas. ~~hham waldad e.nd rolled into tubesheet.,

f

~

e 8

  • A 041. 5 t h / hr 8 421 RTU/lb A

th.11 railars MIN. HYDRO TEST TFMP_ -

60*F

\\

e

.4.

as Two Shell Cut h nds Provided SCHEMATIC DWG. NO. FW-1024 i

w as s.:

2-1 -l j

  • j-K

~

w

'M M

'; f r; % :W (g @.y e

(

.FEEDVAgI).'IEATER.

WISCONSINMICHIGANTdQERTdidkNY-1 C +..

P hquiry or Spee.g H PHEAT BALANCE 'CT-16613u r -

n.u

,:4/3/68 I'

Apparatn=

Area, Sq. ft.

. PeadwataP Mantav.*'i u.'16.A-6265-1,-2 7

( e..

p Drain CaeJ<

2,389 ew.__ d 1o;447; c1 m,<

i x

'yg.,12,836 yp,

-~ -

Vertical h6*e Postuna Tube Plde n Ta "*;., " "" =r -

m / g,,s p.

'PitfttEANCE.

Feedwater

.4 de., i.. C3,158.473 % 3319. 2 m /lb' Steam 296.764 154 h f u

Drains to Later 240.999.6 m h 504.4 E g,p

.L Other kw 4.941.S'id/hr'421'.O mCMg,

' ;' Pa&W.g;%?; ;U Steam Promure at EderInlet

a. ' ^

49614' i.yg.370 Nf6 q>

!.6 Saturated Temperature at Leer Mt

+

Temperature In Temperature Out 496.99.y.;4 146.g ygypy956.Sw+.yt.,,iW.O

.y l

M' ' ~

491.9

.y Drdn Car AW 10.0 1*r S i

T

?-[ M.., hM.&.t Total Lat Tranderred r~d "

+5.0 w.

x-105"

.r Velocity in Tubu i.i g Pronure Drop in Tubes, at average opuaMag tasapae=+nv=

14,4nsc@60*r I

ni 2

x>.

Dodga Temperature Sktr+

500.y.a.,I500h.y Design Pressure 450 425-

.r Tat Pressure 1,600 a.,,,

w 640

.4 2.400 ;., ",

C8N8TRICT18N BETAILS Shell: Inside 6a 51

e. s. C -

'; 7/8 Connections: Ste r

12"-

4._u, %,

Steel Tube Chusel. Waard,,am.ia

%. -. 9. loa

"-A~ ~ O,.e Conne+<a e h6 14" 12"

y.,

2-1" steel Me 14" Number of P-2 Type: Boli.A es. l %

Tube e%a- ' Covers u.mt Tte'el -

pw tr-g yi x

Tuba: Wfsg.1 80-20 Cu N1

~~

N.taber, 7o42' 1 149 %.O.D-6 78 pea 17/16"

~

gg Average Effective Lang4h 34 n

2-1/2 in.

8-Gange No:-

18 AvhBVG Tube Plata: Wieri,1 Jtee1 Ba$w. Wient Steel Tube Supports: Wtarf.1 Stee1

^

l Gaskats: Wierial, mti Welded Joint

(

Tube Ek- '=4 M51.ts), Mnt Weigh: Erepty 58,000

)

Removable Sectica lgMOO (She11) 1% Operaung 70,000_

% y3 a.a 91,005" f