ML20236R999
| ML20236R999 | |
| Person / Time | |
|---|---|
| Site: | Zion File:ZionSolutions icon.png |
| Issue date: | 02/28/1986 |
| From: | Gazica M, Jones G, Ruco R AEA O'DONNELL, INC. (FORMERLY SMC O'DONNELL, INC. |
| To: | |
| Shared Package | |
| ML20236R975 | List: |
| References | |
| NUDOCS 8711240161 | |
| Download: ML20236R999 (76) | |
Text
{{#Wiki_filter:-g /f//ffWCS ?- ~ EVALUATION.0F THE PRESSURIZER SAFETY AND RELIEF VALVE DISCHARGE PIPING SUBSYSTEM ZION STATION UNITS 1 AND 2 PHASE I - ELASTIC ANALYSIS llm Prepared for COMMONWEALTH EDIS0N COMPANY Chicago, Illinois 60690 (Under P. O. No. 805890) February 1986 WJ / % Pk D z-L-ec j)/O n/,/Vf Prepare [By/Date Quality Assurance /Date (! b fSh 6 N tructural Analysis ThermalHydrauIicAnalysis V Jy/Date Verified By/Date } ) /Lf%(, kLE 2%cc h'-b-U, AppkvedBy/Date 8 Project Secre{ary/DYte O'DONNELL & ASSOCIATES, INC. ENGINEERING DESIGN U' ANAL YSIS SER VKES 241 CURRY HOLLOW ROAD PITTSOURGH, PENNSYLVANIA 15236 (412) 655 1200 (412) 653 6110 TWK 71M67 4BS7 1719-400-001-00 PROPRIETARY R 8711240161 871119' DR ADOCK 050 25
-PROPRIETARY EVALUATION OF THE PRESSURIZER SAFETY AND RELIEF VALVE DISCHARGE PIPING SUBSYSTEM ZION STATION UNITS 1 AND 2 PHASE ~I - ELASTIC ANALYSIS TABLE OF CONTENTS Page
1.0 INTRODUCTION
6 1.1 Summary 6 _1.2-
Background
7 '1.3 Description of the Zion Pressurizer Discharge Piping Subsystem 9 1.4 Scope of Work 10 2.0 ANALYSES 13 2.1 Procedure' 13 2.2 Validation 1S 2.3 Thermal Hydraulic Model 16 2.4 REPIPE (Force Resolution) Model 21 2.5 Structural Model 21 2.6 Pipe Stress Evaluation 25 3.0' RESULTS AND DISCUSSION 27 3.1 Thermal Hydraulic Results 27 3.2 Stress Results 29 T.0 REFERENCES 31 TABLES 35 FIGURES 44 1 1719-400-001-00 PROPRIETARY Page 2 of 76
PROPRIETARY l LIST OF TABLES Page TABLE l' FLUID INITIAL CONDITIONS 35 l . TABLE 2 MATERIAL DATA 36
- TABLE 3 ELEMENT DATA FOR STRUCTURAL MODEL 37 TABLE 4 CLASS 1 PIPING STRESS
SUMMARY
41 . TABLE 5 CLASS 3 PIPING STRESS
SUMMARY
42 I O 1719-400-001-00 PROPRIETARY Page 3 of 76
PROPRIETARY LIST OF FIGURES Page FIGURE l' DISCHARGE PIPING SUBSYSTEM SCHEMATIC 44 1 -FIGURE 2. SAFETY VALVE PIPING SCHEMATIC 45 FIGURE 3 RELIEF VALVE PIPING SCHEMATIC 46 FIGURE
- 4. LOOP SEAL WATER INITIAL TEMPERATURES 47 FIGURE 5 THERMAL HYDRAULIC MODEL 48 FIGURE
- 6. VALVE STEM POSITION DURING EPRI/CE TEST 917 COMPARED WITH VALVE STEM POSITION USED IN
-RELAPS/M001 MODEL 54 FIGURE 7: STRUCTURAL MODEL 55 FIGURE 8 ' ISOMETRIC VIEW 0F STRUCTURAL MODEL 59 FIGURE 9 PLAN VIEW 0F STRUCTURAL MODEL 60 l FIGURE 10 SAFETY VALVE MODEL 61 FIGUREL11. N0DE LOCATIONS FOR STRUCTURAL MODEL 62 FIGURE 12 TYPICAL MASS FLOW RATES IN SAFETY VALVE PIPING 66 FIGURE 13 TYPICAL MASS FLOW RATES IN HEADER PIPING 67 FIGURE'14. TYPICAL DENSITY TRANSIENTS IN SAFETY VALVE PIPING 68 FIGURE'15 TYPICAL DENSITY TRANSIENTS IN HEADER PIPING 69 FIGURE 16 TYPICAL PRESSURE TRANSIENT IN SAFETY VALVE 70 FIGURE.17 TYPICAL PRESSURE TRANSIENT IN SAFETY VALVE PIPING 71 FIGURE 18 TYPICAL FORCE TRANSIENT FOR HEADER PIPING-NODE 254FX 72 FIGURE 19 TYPICAL FORCE TRANSIENT FOR HEADER PIPING-N0DE 254FZ 73 FIGURE 20 TYPICAL FORCE TRANSIENT FOR HEADER PIPING SHOWING MATHEMATICAL INSTABILITY - N0DE 263FX 74 1719-400-001-00 PROPRIETARY Page 4 of 76
PROPRIETARY b FIGURE. 21 TYPICAL FORCE TRANSIENT FOR HEADER PIPING AFTER CURVE SM0OTHING - N0DE 263FX 75 FIGURE.22 TYPICAL STRESS TRANSIENTS FOR SELECTED HEADER PIPING ELEMENTS 76 1719-400-001-00 PROPRIETARY Page 5 of 76
~ PROPRIETARY EVALUATION OF THE PRESSURIZER SAFETY AND RELIEF VALVE DISCHARGE PIPING SUBSYSTEM ZION STATION UNITS 1 AND 2 L PHASE I - ELASTIC ANALYSIS 1.0L INTRODUCTION This report constitutes' the O'Donnell & Associates, Inc. (ODAI) ' e'ngineering support.for the Commonwealth Edison Company's response to the 4 United States Nuclear. Regulatory Commission (NRC) plant-specific submittal request for piping evaluation and is applicable to the Zion Station, Units 1 and 2, pressurizer safety and relief valve discharge piping subsystem. The evaluation addressed the worst case transient (faulted condition) for a typical pressurized water reactor (PWR). As explained in Section 2.3, the worst case transient occurs when all three of the safety values open simultaneously so that a slug-flow condition is produced in the discharge piping subsystem. The documentation of the analysis methods, the modeling input, assumptions = and techniques used in the evaluation of the discharge piping. subsystem.under the faulted condition are included in this report. 1.1 ' Summary Evaluation of the discharge piping subsystem for the faulted condition required the following steps. a. Determination of the thermal hydraulic conditions throughout the subsystem, b. Determination of the dynamic forces (force time history) throughout the subsystem caused by the slug flow. c. Determination of the stress levels in the subsystem produced by the dynamic forces. d. Comparison of the stress levels with code allowable stresses for the faulted condition. 1719-400-001-00 PROPRIETARY Page 6 of 76
PROPRIETARY g The comparison of the stress levels with the code allowable stresses for' the ' faulted condition showed that 3 components were overstressed 2.0 to 2.5 times beyond the allowable limit and one component was overstressed 3.5 times beyond the allowable limit. l Because the resulting stresses did not meet the code allowable stress, Phase 11 of this project is recommended to satisfactorily analyze the subsystem. The major task of the Phase 11 effort will be an inelastic. T' analysis. Properly executed, inelastic analyses are acceptable for both Jcode purposes and NRC purposes. -1.2
Background
.The pressurizer safety and relief valve discharge' piping subsystem for PWRs provides overpressure protection for the reactor coolant system. A water-loop seal is maintained upstream of each pressurizer safety valve to prevent a steam interface at' the valve seat. This loop seal essentially eliminates the possibility of safety valve leakage. Although this . arrangement maximizes the plant availability, the 1oop seal, driven by high system pressure upon actuation of' the valves, is postulated to result in a slug-flow condition which can generate substantial thermal hydraulic forces in the discharge piping subsystem and its supports. Subsequent to the Three Mile Incident, the NRC issued NUREG-0737, Section LII.D.1, " Performance Testing of BWR and PWR Relief and Safety Valves," [ Reference 1) which requires all operating plant licensees and applicants to conduct testing to qualify the reactor coolant system relief and safety valves under expected operating conditions for design-basis transients and accidents. In addition to the qualification of valves, the - functionability and structural integrity of the as-built discharge piping and supports must also be demonstrated on a plant-specific basis. 1719-400-001-00 PROPRIETARY Page 7 of 76
PROPRIETARY l h 'In' response to these. requirements, a program for the performance testing of. PWR safety and relief valves was formulated by'the Electric Power Research Institute -(EPRI) [ References 2 and 3]. The primery objective of ' the EPRI Test Program was to provide full-scale test data confirming the functionability of the reactor coolant system power-operated relief valves and spring-loaded safety valves for expected operating and accident conditions. The second objective of the program was to obtain sufficient thermal hydraulic load data to permit confirmation of the piping analysis models that may' be utilized for the plant-unique analysis of safety and relief valve discharge piping systems. A thermal hydraulic computer code, RELAP5/M001, [ Reference 4] was validated using the data collected during the test program, and its use for plant-specific piping assessments was confimed [ Reference 5]. An additional computer code, REPIPE [ Reference 6], was developed to convert themal hydraulic results of pressure time histories from RELAPS/M001 into force ~ time histories compatible with the input requirements of structural analysis codes. The capability of utilizing RELAP5/ MOD 1 and REPIPE in the performance of plant-unique analyses was also demonstrated [ Reference 7]. The origical pressurizer safety and relief valve discharge piping 56 system was designed by Sargent & Lundy and analyzed by Stone and Webster ', Reference 8] prior to the new accident conditions postulated by NUREG-0737. These conditions allow for the possibility of a slug flow condition (as described above) to occur in the discharge piping subsystem in the unlikely event that 'all three safety valves are actuated simultaneously. Stone & Webster and Sargent & Lundy [ Reference 9] performed the plant-specific analysis of the Zion Units 1 & 2 safety and relief valve discharge piping subsystem for the postulated slug flow accident condition. Their conclusions were that several components of the piping system would be ~ overstressed. Sargent & Lundy further concluded that this overstressed 1719-400-001-00 PROPRIETARY Page 8 of 76
PROPRIETARY-condition could'not be eliminated by additional or relocated supports, and ' that a portion of.the piping must be rerouted. Other conclusions reached by Sargent & Lundy include: "that the safety and relief discharge piping system is adequately designed for the relief valve transients, including the_ simultaneous operation of both relief valves. Furthermore, the operation of any one of the safety valves will not result in an overstress condition for the discharge piping. It is only in the' case where all three safety valves actuate simultaneously (which is extremely unlikely' given their + 1% set pressure tolerance) that there is any. possibility of an portion of the discharge piping being overstressed. Furthermore,-it is not apparent that the extent or orientation of the overstresses predicted would necessarily produce piping distortions that l would have to be assumed as a challengt. to flow through the piping. On this basis alone, the continued operation of the Zion plant is felt to be justified in the. period before the modifications proposed (by Sargent & Lundy)' for the-safety and relief valve piping system are finalized and implemented." 1.3 Description of the Zion Pressurizer Discharge Piping Subsystem The Zion pressurizer safety and relief valve piping system provides over pressure. protection for the reactor coolant system. This system is equipped with three safety valves and two power-operated relief valves. The three discharge lines downstream of the safety valves feed into a common header. The two discharge lines downstream of the relief valves join together at a tee. Downstream of this tee the discharge line feeds into the same header as the three safety discharge lines. The header line then feeds into a relief tank. Figure 1 depicts an isometric view of the subsystem while Figures 2 and.3 present schematic views of the system. The diameters of the discharge lines for the relief and safety valves are 3 and 6 inches, respectively. The header is a 12 inch pipe that terminates at a sparger 1719-400-001-00 PROPRIETARY Page 9 of 76
i. f PROPRIETARY-n submerged in the relief tank. The relief tank has a volume of 1,800 ft 'an'd contains'1,400 ft3 of water under normal conditions. LAs discussed in Section'1.2, a water-loop seal is maintained upstream of each' safety. valve. The adequacy of these valves was demonstrated in the EPRI Test Program, and they have been highly reliable in actual Zion r operation. The relief' valves are set to actuate at a pressure 150 psi below .the setpoint of the safety valves. The actuation of only one of the relief ' valves will by design preclude a challenge to the safety valves. In the many' years of reactor operation, the extremely few transients that could have' challenged the safety valves have been successfully reversed by the relief valves. The probability of the two relief valves failing to operate ~0 on demand is conservatively estimated to be 2.0 x 10 , which indicates a rate' event. This low probability is borne out by the operating experience of all Westinghouse PWR plants, particularly four-loop plants, in that there has.never been an event that has led to a challenge of the safety valves. '1.4' Scope of Work The purpose of this project (as conducted by ODAI) was to review the Stone & Webster and the Sargent & Lundy analyses in order to determine where excess conservatism was used with respect to the Zion Units 1 and 2 of Commonwealth Edison Company and re-analyze the discharge piping subsystem using more current and more realistic assumptions and analysis techniques. The ODAI work scope for the evaluation of the pressurizer safety and relief - valve discharge piping subsystem was divided into two phases. Two phases were desirable because satisfactory completion of Phase I would have the potential of eliminating the need for Phase II. The following tasks have been completed as part of the Phase I activities: 1719-400-001-00 PROPRIETARY Page 10 of 76
h PROPRIETARY a. An independent detailed study and review of the Stone & Webster and Sargent & Lundy reports. This review focused on those areas 'where overconservative assumptions and/or techniques were used. b. The thermal hydraulic analysis was redone using the RELAP5/M001 and.'REPIPE computer codes. Undue conservatism in Part (a) was identified and removed from this re-analysis. The results of this analysis were the appropriate dynamic forces actin? on the discharge piping system as a result of the slug flow event. -c. 'The dynamic forces determined in Part (b) have been used as input to the ANSYS Finite Element program [ Reference 10]. An elastic finite element analysis of the discharge piping subsystem has been performed. - Again, undue conservatism has been removed from this analysis. d. The results of Part (c) have been compared against the applicable 'section of the ASME Boiler and Pressure Vessel Code [ Reference 11]. Phhse II of this project is required to satisfactorily analyze the piping subsystem because the elastic stresses calculated in Phase I exceed the ASME Code allowable stresses. The satisfactory completion of Phase II will show that the proposed rerouting of the header is unnecessary. Since it is in the realm of the present technology to prove that rerouting is unnecessary, the major task of Phase 11 is an inelastic analysis. Properly executive, inelastic analyses are acceptable for both ASME Code purposes and NRC purposes. The following tasks, as applicable, will comprise Phase 11 of this work scope: a. Perform an inelastic piping analysis of the complete pressurizer safety and relief valve discharge piping subsystem. This analysis 1719-400-001-00 PROPRIETARY Page 11 of 76
PROPRIETARY 3- _ ill use discrete beam and spring finite elements to represent the w piping and supports. l b. As required by the results of Phase I, detailed three-dimensional finite element inelastic analyses will be made of the areas of l-high stress. 1 c. The 'results of the inelastic analyses will be compared with the appropriate ASME Code Limits and NRC Requirements. q. d. . Review the analysis.and the results with the NRC and Commonwealth Edison Company. e. Aid Commonwealth Edison Company in preparing a formal report to the NRC based on the results of Phase II. 1719-400-001-b0 PROPRIETARY Page 12 of 76
d PROPRIETARY 1 Y! t J ' 2.0 ' ANALYSES. 'The-evaluation of the discharge piping subsystem consists of the five step process-outlined.in Section 1.1. The actual procedure followed is - given below. 2.1 l Procedure The procedure used to perform this evaluation is based on the method used in the many thermal hydraulic analyses of safety / relief valve piping l systems as found in the literature'(see References 5, 9, 16, 17, 18 and 19). The steps followed are given below: An ANSYS finite element structural model of the piping system was a. developed. (See Section 2.5). This is the most logical first step b'ecau'se the ultimate goal of the entire analysis is to verify that the stress. levels in the piping system are in compliance with the ASME Boiler and Pressure Vessel Code. Therefore, the thermal hydraulic model which provides the input to the ' structural model must be compatible with the structural model. The guidelines delineated in References 6 and 20 were followed to ensure the the compatibility of the structural and thermal hydraulic model. b. A RELAPS/ MOD 1 finite difference model of the piping system following the guidelines of References 6 and 20 was developed. RELAP5/M001 was written to investigate the thermal hydraulic response of light water reactors to a loss-of-coolant accident (LOCA). Its original intent was not for the determination of pressure waves in piping systems. As a result it has capabilities which are not necessary for the solution of . preesure surge problems, e.g. RELAP5/M001 contains internal heat generation and reactor kinetics data which are not needed in relief valve applications. RELAP5/M001 does not give reaction forces due to pressure surges. Therefore a post-processor such as REPIPE is needed to accept the RELAP5/M001 thermal hydraulic output and resolve it to 1719-400-001-00 PROPRIETARY Page 13 of 76
L b ' PROPRIETARY m w ~ . forces. The application of RELAP5/ MOD 1 to problems similar to the relief valve discharge line problem (the safety / relief valve discharge in pressurized water reactors) has been discussed before in Reference (18. Control Data Corporation (CDC) maintains RELAP5/M0D1 on its CYBERNET system and has written the post-processor REPIPE which determines the fluid forces. c. Using the thermal hydraulic output from RELAP5/M001 as input to REPIPE, ~ the force time history for all of the locations of interest were calculated.- REPIPE_is a post-processor computer code that converts the thermal hydraulic output of RELAP5/ MOD 1 into force time histories at desired locations. The required output from RELAPS/ MODI consists of the pressure, density, _ velocity, area and flow of the fluid volumes from which REPIPE calculates the wave force and the blowdown force. These force time histories are generated between two arbitrary junctions in the thermal hydraulic model. The common analytical approach is to perform structural evaluations with the forces acting along the axis of. piping elements. Therefore, the RELAP5/M001 thermal hydraulic output was converted into forces using REPIPE. The force time histories-generated by REPIPE were composed of the sum of the wave and blowdown forces. Reference 6 discusses the calculations of each of these forces. The REPIPE output consists of the x, y and z components of the sum of these forces relative to the absolute coordinate system used in the ANSYS structural model. d. The force time histories obtained from REPIPE were used as the forcing function input to the ANSYS structural model of Step (a) above in order to determine the stress levels of the piping subsystem. These force time histories will also be used in Phase II, thus eliminating the need of_ repeating'the RELAP5/M001 and REPIPE analyses. The ANSYS computer program is a large-scale, general purpose computer program for the solution of several classes of engineering analyses. Analysis - 1719-400-001-00 PROPRIETARY Page 14 of 76
PROPRIETARY-capabilities include: static and dynamic; elastic and plastic; small and large deflections; linear and nonlinear. The library of finite elements-includes: elastic pipe, tee, elbow, beam and shell elements; plastic pipe elbow, beam and shell elements; substructure (superelements); spring; mass elements. The loading on the structure may be in the fonn of forces, displacements, pressures, temperatures or response spectra. ANSYS is a verified and quality assured computer program for Nuclear Safety Related analyses. e. For the stress levels obtained from the ANSYS dynamic analysis of the piping subsystem, a comparison was made with the ASME Code allowable stress values. This comparison was made by the use of an ODAI developed post-processing routine. This routine was specifically . designed for the post-processing of ANSYS solutions of piping systems in order. to make the solutions more meaningful for code interpretation and evaluations. The.results are presented for the faulted condition as. governed by the ASME Boiler and Pressure Code, Section III, Subsection NB (Class 1 components) and Subsection ND (Class 3 ~ components). Because the slug flow event is classified as an occasional load, (Level D Service), NB-3656 applies for the seismic ' Class 1 piping (i.e. piping upstream of the safety / relief valves) and ND-3655 applies for the nonseismic Class D piping (i.e. piping downstream of the safety / relief' valves and the header) per Reference 11. 2.2 Validation The validation of the thermal hydraulic codes (RELAPS/ MOD 1 and REPIPE) has been stated in Section 1.2 and 2.1 and is documented in Reference 31. The validation of the structural code (ANSYS) has been stated in Section 2.1. The ODA! post-processing routine was verified via comparisons with hand calculations. The entire pressurizer safety and relief valve discharge piping subsystem is a safety-related system, and all analysis effort 1719-400-001-00 PROPRIETARY Page 15 of 76
PROPRIETARY l '. l
- associated with' this project are in accordance with the requirements of 10CFR50, Appendix B.
In addition, the requirements of the 00AI Quality Assurance Manual [ Reference 21] and Commonwealth Edison Company Supplement have' also been.followed. ' 2.3 Thermal Hydraulic Model A sketch of the' thermal hydraulic model showing the size and number of fluid control volumes is given in Figures 4 and 5. In the development of the. thermal hydraulic model, consideration had to be given to the selection of the worst. case transient, pressurizer conditions and valve data. These items and other details of the model are given below. 2.3.1 Selection of Worst Case Transient A generic analysis of:the valve inlet fluid conditions for Westinghouse plants is given in References 13 and 14. These studies clearly indicate that the most severe rate of pressurization and the highest pressure result from the locked rotor and loss-of-load events, respectively. The possibility of liquid being vented through the valves for a feedwater line break, for an extended high-pressure injection event, or for a cold over-pressurization transient event are discussed on a generic basis for Westinghouse plants in References 13 and 14. A Zion plant-unique probabilistic assessment of the possibility of the flow of liquid through the valves was performed in Reference 15. This study determined that the total probability of liquid flow through the valves for these events is on tne order of 1 x 10-7 These analyses considered single active failure and single operator error in the determination of the event probability. The discharge of liquid from safety and relief valves in the Zion plant has been shown to be an extremely unlikely event. The estimated frequencies are based on conservative data and assumptions, and they are sufficiently low that even order-of-magnitude errors would not affect the qualitative conclusion. 1719-400-001-00 PROPRIETARY Page 16 of 76
m PROPRIETARY The' question of whether the pressurizer liquid level increases because of spray actuation (therefore representing some potential for safety and relief: valve liquid discharge) was considered from a qualitative standpoint. The perspective is that it is extremely unlikely that any spray-induced leve1' increase would be sufficient to actually result in liquid discharge through the-safety or relief valves. The effect of the sprays is to condense steam in the pressurizer and to thereby, in the majority of cases analyzed, curtail-the overpressure. transient before the safety or relief . valve actuation' pressure is recognized. For any-remaining cases in which safety and relief valve actuation cannot be entirely ruled out, the liquid . level contribution of the pressurizer sprays is not expected to be severe enough to produce liquid. discharge through the safety and relief valves. The analyses of References 13,14, and 15 serve as the basis of neglecting the. transients that result in liquid flow through the valves. As a result of the above considerations, it was determined that the loss-of-l load'or: locked rotor event produced the limiting conditions for steam discharge through the safety and relief valves. 2.3.2 Peak Pressure and Pressurization Rate The generic analysis [ References 13 and 14] for the four-loop plant predicted a peak pressure of 2,555 psia for the loss-of-load case. The Zion plant specific loss-of-load analysis presented in the FSAR determined the peak pressure to be 2,532 psia. The maximum pressurization rate results .from a locked rotor event. For the generic analysis, a pressurization rate of 144 psi /sec is predicted, while the Zion FSAR analysis estimates the pressurization rate to be 80 psi /sec. These analyses also confirmed that .only steam is vented from the pressurizer in these cases. I l l 1719-400 001-00 PROPRIETARY Page 17 of 76
l ('j. PROPRIETARY 4 J.3.3' Valve ' Opening Time, Fluid Conditions at Valve Opening, Valve 2 l Resistances and Flow Rates p
- The ' actual valve stem position (of the safety valve) versus time for EPRI/CE Test _917 [ Reference 14] is shown in Figure 6.
The time history . consists of. two. distinct periods, the simmering time period and pop time period. -For Test 917, a simmering time of 0.9077 seconds and a pop time of W - 0.01475 seconds were measured. The valve fully opened upon steam flow after the loop seal water had cleared the valve as a result of the simmering ~ process. The-valve opening characteristics employed in the RELAP5/M001 valve model are superimposed over the data in Figure 6. The valve model used in the analysis employed conservative values of 0.88 second and 0.0145 second for the simmer and pop periods. The fluid conditions in the - RELAPS/ MOD 1.model were based on the actual plant data as obtained from Reference 22. These conditions are given in Table 1 and Figure 4. The loop seal water was modeled with all the water in place upstream of the valve. The valves were'modeled using the validated RELAP5/M001 valve 2 component. For this component a full open flow area of 0.025 ft, a valve discharge coefficient (C ) f 0.8 and the opening time given above were D used. The results of the model gave a steady state steam flow rate of 129.3 - lb,/sec which corresponds to 111% of the valve flow rating (manufacturer's rating is 420,000 lb,/hr). Combining the equation for the definition of the mass flow rate, 6 = pVA [ Reference 33] with the fact that the pressure drop through the valve is proportional to the energy lost, AP ~ pV2/2 [ Reference 33], the flow rate at any instant of time is determined by the following equation: A = AC /2 PAP D w 'd 1719-400-001-00 PROPRIETARY Page 18 of 76
(' PROPRIETARY g. where A is the. flow area, C is the valve discharge coefficient, p is the D density and AP. is the pressure drop through the valve. By using the values of A, C, p and AP calculated by RELAP5/M001, one obtains the same value of D m as calculated by RELAPS/ MOD 1. ' 2. 3.4' Modeling Details a. The pressurizer was modeled as an infinite source of saturated steam at the safety valve setpoint pressure (2499.7 psia). The piping components between the pressurizer and loop seal were set at the-same initial conditions as the pressurizer. The piping network downstream of the safety valves was modeled as an air-water mixture with a noncondensible quality of 0.94408 and 0.97823, which corresponds to 1001, relative humidity at 110*F and 80*F respectively. The initial temperature and pressure for the downstream piping are given in Table 1. b. The safety valve discharge piping analysis was based on the simultaneous: actuation of three safety valves as required by NUREG-0737 [ Reference 13 c. The sparger in'the relief tank was modeled as a piping component having the actual volume and flow area for the sparger but with an exit flow area equal to the total sparger exit area. The loss coefficient was modeled as appropriate for the exit area of the
- sparger, if d.
' Heat transfer from the outside surface of the pipes and valves to the ambient surroundings and heat transfer within the pipes was ignored because of the short duration of the transient. As shown in Reference 5, this produces conservative results. 1719-400-001-00 PROPRIETARY Page 19 of 76
PROPRIETARY s i e. Fittings such'as valves, reducers, and elbows were modeled by appropriate flow loss coefficients. Piping segments were assigned a roughness of 0.00015 feet, corresponding to commercial steel pipe. ' A maximum time step size of 1 x 10-3 second and a minimum of f. 1 x 10~9 second were specified for the problem. RELAP5/M001 selects a time step between these values based on built-in criteria. The determination of the maximum time step was based on past experience and preliminary results of the maximum velocity in the piping system.. The maximum time step should be chosen such that' the Courant-time step limitation is not exceeded. The minimum time step controls the solution during the water-to-steam transition for discharge through the valve. A time step as small as 1 x 10~9 second was required for the code to achieve a stable solution for this condition. 1719-400-001-00 PROPRIETARY Page 20 of 76
\\1 PROPRIETARY - 2~4 REPIPE (Force Resolution) Model A~ sketch of the thermal.. hydraulic model showing the-locations for the force' calculations by REPIPE is given in Figure 7. As explained in Section . 2.1.c,.REPIPE was used. to calculate the force time history as composed of -the wave and blowdown forces at the locations given in Figure 7. 2.5 Structural Model The piping subsystem was modeled from the pressurizer nozzle connections to the relief tank nozzle. This model of the entire se.fety and - relief valve piping system'was used in the structural analyses to account for interaction between.the various portions of the system. The piping isometric.is given in Figure 1. Figures 7 through 9 show in more detail the three major portions of the system: the safety valve piping, the relief . valve. piping, and the common header, which terminates at the relief tank. The. structural model of the safety valve is given in figure 10. Figure 11 -indicates the node locations for the structural model. ' Each. safety valve branch typically consists of 6 inch Schedule 160 insulated stainless steel piping, including a 180' short-radius return bend . that forms the loop seal upstream of each safety valve. The modeling used for' each safety valve is explained in Section 2.5.1 below. Each safety valve is supported by a pipe stanchion connected to the loop seal immediately below the safety valve inlet nozzle. (See Section 2.5.1 for o modeling details.) The piping downstream of the safety valves to the header is uninsulated 6 inch Schedule 40 stainless steel. The piping upstream of the relief valves is insulated 3 inch and 6 inch Schedule 160 stainless steel. The relief and block valve structural models are constructed in a y, manner similar to that of the safety valves discussed in Section 2.5.1. The - piping downstream of the relief valves is uninsulated 3 inch and 6 inch Schedule 40 stainless steel. The piping downstream of the relief and safety valves connects to a common header that is routed vertically downward to the relief tank. - The header piping is uninsulated 12 inch Schedule 40 stainless 1719-400-001-00 PROPRIETARY Page 21 of 76 .--_----__.__,-a_.---_-__a.
PROPRIETARY k steel. In the model, the header was considered anchored at the relief tank nozzle. Pipe -data relevant to the structural modeling, including the material; identification, were specified by References 23 and 24 and are summarized in Table 2. Since Zion is an operating plant, the as-built piping and pipe support configurations were used to model the system [ References 25, 26, 27 and 28]. The Stone & Webster support modification drawings 79-14 [ Reference 28] take precedence' over the Sargent & Lundy Reactor Coolant System Support drawings [ Reference.27] and the Kellogg drawings [ Reference 25] take precedence over the Sargent & Lundy drawing [ Reference 26]. Individual pipe support drawings were' used to determine the location and orientation of the restraint. Also:the Field Walk-Down Package given in Reference 8 was used when appropriate. Since the pressurizer and relief tank diameters are more than three times the diameter of the piping, connections at the pressurizer . nozzles and relief tank were' considered to be anchors in the model. 2.5.1 Modeling Details For this structural analysis, the straight pipe sections were modeled as ' elastic pipe elements, the pipe tees were modeled as elastic pipe tee elements, the valves and pipe supports were modeled as explained below, the pipe elbows were modeled as elastic ' pipe elbow elements. For all items of the piping subsystem, the standard structural modeling practices were followed in developing the ANSYS structural model of the discharge piping system. These include, but are not limited to, the following: a. Pipe Supports The mass of the support clamps and the mass of the dynamic portion of the support attached to the pipe were modeled as a lumped mass and placed on the pipe node at or very near to its physical location. The values for the masses were obtained from References 27 and 28. A node at its physical location corresponding to the centerline of the pipe 1719-400-001-00 PROPRIETARY Page 22 of 76
'i. PROPRIETARY was used to represent the end of the support attached to the pipe. A node at its' physical location was used to represent the end of the support not attached to the pipe. This node was constrained in all degrees of freedom. Of prime importance was the use of an ANSYS spring element to connect the two nodes of the support. The values for the spring constants were obtained from References 8 and 29. The constant force supports were modeled as a lumped mass to represented the weight of the pipe clamp and the dynamic portion of the support. The values of the forces and the masses were obtained from References 27 and 28. The masses and forces were placed on the pipe nodes at or very near to their physical locations. b. Pressurizer and Relief Tank Connections The locations of the pressurizer and relief tank connections were represented by pipe nodes at their physical locations corresponding to the centerline of the pipe. These nodes were constrained in all degrees of freedom. c. Yalves All of the valves were modeled using three relatively stiff beam elements and a mass. element at the valve center of gravity as follows: one beam element running from the node at the valve inlet to the node at the valve outlet, one beam element running from the node at the valve inlet to the node at the valve center of gravity and one beam element running from the node at the valve outlet to the node at the valve center of gravity as shown in Figure 10. The values for the locations of the nodes at the center of gravities, inlets and outlets and the values for the masses were obtained from References 26 and 29. d. Safety' Valve Stanchions The safety valve stanchion was modeled as a two node beam element. One node was attached to the center line of safety valve inlet piping 1719-400-001-00 PROPRIETARY Page 23 of 76
p .y y
- E bg PROPRIETARY
.. a. g. { {' ~ 4 h ' correspobing to pts physical location. The'other node was at the b Janchor end1 of theIstanchion at its physical location and was i . constrained in all ' degrees of1 freedom. Data for the safety valve i stanchions wereLobtained from References 9 and 28. is e.- Thermal Hydraulic' Forces
- TheTforces were : applied directly 'to. the nodal locations of interest
.t, [ . (this included locations of high stress levels.). As mentioned above- . theEguidelines given in Reference 6 and 20 were'followed in developing the' structural model so that the ' ANSYS model nodes. included the L ' locations of high; stress levels. As mentioned above, REPIPE calculated g, i the? wave. and blowdown ' forces ; for the desired locations and then the j k force time history was applied to the ANSYS structural model in order to determine the stress levels of the discharge piping system. n ' A' sketch of the st' uctural' mo' el showing the node locations is given in r d Figure 11? and the' list of piping elements is given in Table 3. ie 2.5.2 Structural Analyses. Static. (Dead Weight), ' modal and dynamic analyses were performed using ANSYS'as-given below. L' a.: The static analysis for the dead weight load was performed using the ' STATIC routine of ANSYS. b. The ' modal analysis for the piping subsystems was performed using the MODAL routine of ANSYS. c. Thellinear transient dynamic analysis for the piping subsystem used the thermal-hydraulic transient loads due to the safety value actuation. ) j i An integration time step of 0.001 second and the damping value of 2% as 4 ) specified.in Refe.rence 32 were used. 3 i 4 1719-400-001-00 PROPRIETARY Page 24 of 76
y%_ . of g i 1 M PROPRIETARY. 1 i 2 2;5'.3' Plant' Operating Conditions Four typesJ of plant operating conditions may exist. This evaluation 1 considered only; the: faulted conditions. Faulted conditions are defined as j I those combinations of' condition's associated with extremely. low probability, i.e.,. postulated events whose consequences'are such that the integrity and operability of the! n'ucle'ar energy system may be impaired to the extent that V 'public health land : safety considerations are involved. The safety valve k . transient' loads and the relief valve transient loads are classified as ) faulted condition ' loads. 2.5.4 Load Conditions For' the faulted condition caused' by the slug' flow, the evaluation of b tNs: subsystin included the weight.and the thermal hydraulic conditions ~ (i.eQ temperature, pressure and slug flow forces). The peak pressures used n inithe: faulted condition: stress calculation'were 2,750 psia for the piping upstream ofithe' valves and 700; psia: for the piping downstream of the valves. The'specified. temperature as given in Table 2 were used in the evaluation. The safety.and relief valve discharge lines were evaluated for thrust loadings cau' sed by the slug flow resulting from the simultaneous actuation of thef safety valves. ' 2.6. ' Pipe Stress' Evaluation The piping between the ' pressurizer nozzles and the pressurizer relief -tank was analyzed to satisfy the requirements of the appropriate equations -of. the ASME Code,~ Section 111 for the faulted conditions as produced by the postulated slug flow. Per Reference 11 this type of event is classified as an. occasional load (Level D Service). Therefore NB-3656 applies for the seismic Class 1 piping (piping upstream of the safety / relief valves) and ND-D' ' 3655' applies for: the nonseismic Class 3 piping (piping downstream of the l 1 safety / relief valves and the header). From Reference 11, the load f combination;for the faulted conditions consists of the sum of the sustained l . loads during normal plant operation and the dynamic load caused by the slug i 1719-400-001-00 PROPRIETARY Page 25 of 76 j.
w, ::m r= \\ q.j! $ }EY :q. h g PROPRIETARY .j a i s l <
- l flow'asidefined in;Section' 2.5.4
- Also, pe.riReference 11, the_ peak pressure J
"must.be.Lused for the nonseisniic piping. ~ i ~,;
- f ;'
} t= p TFor' the pipirig upstream' of. the safety / relief' valves, NB-3656 states , '"y !that the~' allowable. stress for. the' faulted condition is 3;0. S, but not <l'
- greater'.than"2.0'S. While for..the' piping downstream of the safety / relief y
y.
- valvesi
- and the header, ND-3655 states that the allowable stress for the y[
! faulted condition isL '2.4 S but not ' greater: thani 2.0' S. h y K;~ ~ For the materials under consideration for this analysis, values of the 6f. temperature are given in Table 2.. f.g. }l allowable' stress (S ) as.. a function: A a 1 I g I i 1. i., I 't ( ). g- ? 1719'-400-001-00 PROPRIETARY Page 26 of 76 Ll
-m ,p Np .e m 1.a' PROPRIETARY m: s e i3.0)JRESULTSAND' DISCUSSIONS. The evaluation of the piping-discharge subsystem first required
- Tanalyses'.to determine the' thermal hydraulic conditions and the' stress levels Jthroughout"the entire-subsystem'and then.the comparison of the stress levels with code' allowable;..stressesc 'The results-of these analyses and the
.y icomparison. withi the allowable stresses 'are: given below. L t. ' ',
- 3.1 cThermal Hydra'ulic Results and Discussion The RELAPS/M001: thermal hydraulic results 'for the safety valve and header piping are based on the model shown in Figure 5.. As shown by Figure p *i5,!thksafety valve" piping is composed of three-discharge lines that merge 7
31nto; the header. Typical mass flowJrates in the safety valve piping and header are. shown-in Figures 12 and'13 respectively. In Figure 12 junction 1800 represents ~
- the safety valve while ' junctions 910,1956 and 2921 represent the three locations where the. three discharge' lines from the three safety valves Ljoint' the header.. In Figure 13, junction 2200 represents the location in thelheadeh downstream of the combined flow of two safety valves, junction 3701l represents the location!in the header downstream of the combined flow cf'threeTsafety valves lines, junction 4501 represents the location near the beginning of the! horizontal' portion of the header and junction 4520
. represents the location near the end of the horizontal portion of the ~ s M header. - As shown in Figures' 12 and 13, the periods of high and low mass ' flow. rates. indicate the passage of the liquid portion of the loop seal. The spike,at approximately 0.9 second for the safety valve (je 'ction 1800) is due to the flow as the valve moves to the full open posith. After the !1oop, seal water is discharged, the' flow rates' quickly converge to the steady-state isteam flow rate of the ~ safety valve. The steady-state steam q flow rate was calculated to be 129.3 lbm/sec, which corresponds to 111% of
- the manufacturer.'s. rated flow rate and is the value specified for the analysis' by Reference 12. Figures 12 and 13 clearly illustrate that the l
w 1719-400 001-00 PROPRIETARY Page 27 of 76 4.. ___
aw-y^ff> i c PROPRIETARY i 9 - t m j p' y 1 u, Lloop) seal water slugs from,two of the three safety valve lines (junctions ] ' 920 f an'd. 2921) ' merge in' the header piping '(junction 2200). This combined f ^ . water slug likewise merges with the water slug from the third safety valve ~ ' loop seal -(junction 1956) further down the header piping (junction 3701). ] 4 F
- The; reconstitution of.the water slug.in the header piping is judged to
- represent the most severe loading co'ndition for the piping discharge J subsystem.
' Figure 14 provides a typical density' transient for one of the loop aseals.. Here it'is seen that the volumes initially contain water, which is . discharged. through' the safety valve = as it is replaced by the steam. Figure 15 provides the density transient for the same header volumes of Figure 13. ' As previously shown by Figure.13, Figure 15..also indicates the passage of -the' liq'uid' portion of the loop seal through the subsystem. L m . Typical. pressure transients for one. of the discharge lines are shown in LFigure 16)(safety valve) and Figure 17 '(volumes. downstream of the safety ~ o . valve)...The. volumes downstream of the valve exhibit a rapid increase in pressure as the: valve opens, which is. followed by a gradual approach to the final' quasi-steady-state pressure. The pressure spike for the safety valve (Figure '16) is characteristic for safety valve systems which have a cold loop seal water temperature [ Reference 30]. l The loop seal water temperature is a significant factor because upon actuation of the safety valve, a high temperature causes a large portion of the. loop seal water to flash to steam, while.for a low temperature,the majority of the water remains liquid. The flow of steam in the discharge g, .x.. system produces lower thermal hydraulic forces than the slug flow of water. This 'has been shown by the results of Reference 19 for a theoretical study L Lof a. similar discharge piping system. The results from Reference 19 f indicated that the thermal hydraulic forces for a system with a cold loop seal (as~ for the Zion Plant) can be three times as large as for a hot loop 1719-400-001-00 PROPRIETARY Page 28 of 76 L l = _ _ _
1 W l 5 PROPRIETARY { !l \\ .(: seal.. Additional work by'EPRI [ Reference 5] has shown that the predicted Y thermal' hydraulic forces: for a cold loop seal are larger. than for a hot loop { seal, and 'also. larger 'than the experimentally-measured forces. In order to ob'tain. agreement between the' predicted and measured forces in the vicinity. of theo safety valve,. Reference'5' distributed the loop seal liquid downstream'.of the ~ safety valve. Because the'0DAI analysis did not- - distribute; the loop seal liquid, downstream of. thel safety valves, it is felt' - 1 'that the calculated thema1. hydraulic forces in the vicinity 'of the safety valves are higher than the actual. forces. In order to fully access the effect of the loop seali temperature, a sensitivity study is proposed as part 'of the Phase. II effort:of this project..The sensitivity study will also determine the effect of not explicitly modeling the one RELAP5/M001 branch 'at? the junctionLof the discharge' line (component 19) and the vertical header (component 37). Because of. the magnitude of the 'overstress -(values given in Section.3.2), the results of the sensitivity study will not change the
- conclusions reached in Phase I which show the need to perform Phase 11 'of this" project.
- Typical results ~ for the REPIPE thermal hydraulic forces acting on the
- header are: shown in. Figures 18 to 21. for the analysis of the safety valve and header. piping.1 These figures show that the thermal hydraulic forces can be; quite large but act 'over 'a short time period as governed by the slug fl ow. Figures 20 and 21 have been included to show the presence of spurious -spikes (Figure 20) due to the occurrence of a mathematical instability in the RELAPS/ MOD 1 results. Because these spikes do not occur physically, they . were removed to produce a realistic force transient (e.g., Figure 21)' for input to the ' stress analysis. +. L3.2 - Stress Results . The as-built configuration for the piping discharge subsystem as shown in Figures 7 to 11 was modeled using the ANSYS computer code as described in Section 2.5.1. The conditions given in Section 2.5.4 were used to determine L F. 1719 400-001-00 PROPRIETARY Page 29 of 76 l -___.-_---_----_-_-s
7 m,, n 7 .] W+ .PROPRIETAR. jl M >i I m ~ 1 .i -Ni l theistressilevelsLas; governed by the Code requirements given in Section 2.6. j / y ?Th& stress 11evels were' compared with the allowable stresses given in. Table h 12. EThe ASME Code,iS'ection 111,1978LWinter ' Edition (Reference 11); was used Jto define the---stress Lindices.and. equations covering;the faulted condition. 6' lFigurei22: gives"a Ltypical Tstress : transient forl selected header piping j ~ --elements.' Forithel faulted conditions evaluated, Table 4.gives the Class 1 j L Pipilng:(piping ' upstream of Lthe' safety. valves) stress summary and Table 5 ( v S lgives theiClass >3; Piping -(piping' downstream of the safety valves and the header).. stress summary.: As.shown'in Tables 4 and 5, 3.: components are a Voyerstressed 2.0 to12.5 times beyond.the.' allowable limit and one ' component 9, .is overstressed 3.5L timestbeyond the allowable limit.- Of these 4 highly L str.ess' components one is an' elbow (element. number 1) in the safety line piping:(Class 1' service) at-the pressurizer, one is a pipe segment (element ~ 3 inumber 200)tjoining the vertical header (Class 3 ' service) and the. remaining. 1 2:are. elbows :(elements = numbers 247 and 264)'in the. horizontal header (Class (3 service). < 1 - The overstress' condition for element' number 1 is caused by the -; combination of.. the elevated temperature (668 F) and the absence of supports in. its 2 immediate vicinity. Element number 200 is overstressed mainly
- because.of.the lack of, supports'in its immediate vicinity. The overstress il condition.for the elbows:in the horizontal header-(elements 247 and 264) is caused mainly by the thermal' hydraulic forces generated by the slug flow.
Because components three to four times over the allowable limit have been frequently. qualified.to Section 111 of the ASME Code by a plastic analysis, it'is therefore recommended that' Phase II of this project be performed. Phase II. of this' project will. address the qualification of the discharge piping subsystem by. a combination of plastic analysis and the addition of 4 supports.- a I I 1719-400-001-00 PROPRIETARY Page 30 of 76 i ___.m.__. ._u
y s I PROPRIETARY .u 10, 14.0^
REFERENCES:
L1.o LUnited:StatesfNuclear Regulator. Commission, " Clarification of the TMI 1- ' i: ' Action: Plan' Requirements," NUREG-0737, Item II D.1, NRC Docket Numbers s .50-295 and'50-304, November 1980.- L2. Ele'ctric Power Research1 Institute. "EPRI PWR Safety and Relief Valve-J '4 '. Test: Program,. Safety and. Relief Valve. Test Report," EPRI NP-2628-LD, L EPRI Project V102, Interim Report, September 1982. l [ 13. Electric: Power Research Institute.. "EPRI/CE _ PWR Safety Valve. Test ' Report;"/ Volumes 'l-10, EPRI Project V102-2, -Interim Report,1983. Y.; Ransom, LV.!H..et al., "RELAPS/ MOD 1 Code Manual," Volumes 1-2, NUREG/CR-4 L1826,zEGG-2070, March 1982; I5.. House,LR. K.;et al;,n" Application of RELAP5/ MOD 1 for Calculation of .l ' Safety and ReTmalve Discharge Piping Hydrodynamic Loads.," EPRI NP-4 2479, EPRI' Project. V102-28,. Final Report, December 1982. M.Norton, P."J., L" User's. Manual for Program REPIPE,". Utilities Service - Center, CDC,.1Rockville, Maryland. 7.-. Electric Power Research-Institute, " Dynamic Loading on Pressurizer-Safety and _ Relief Valve Discharge Line Due to Valve Actuation," EPRI . Project V1-2-45,. Final Report,l submitted for publication in January '1983.. n -8. --' Books 1 through 6, inclusive, of Stone & Webster, " Zion Station Pipe . Stress and Support. Analysis. Report," Number 13430RC - 2, 3, 4, 5, Revision 0, dated January -17, -1983, Commonwealth Edison Job Order 13430.01,for Reactor Coolant (Pressurizer 1RC002 to Pressurizer Relief Tank.1RC003). +
- 9. lSargent &:Lundy Report SL 4283 dated May 2,1984, " Evaluation of the Pressurizer Safety and Relief Valve Discharge Piping System - Zion Stations l' and 2. <
- 10..ANSYS Engineering Analysis System, Revision 4.1, Swanson Analysis
. Systems,' Inc., Houston, - Pennsylvania. M '11. - ASME: Boiler and Presscre Vessel Code, Section III, Subsection NB and Subsection ND, 1978. 7, 112.' NRC~1etter dated February 19, 1985, Docket No. 50-295 and 50-304 to Mr. ' D. 'L. Farrar, CECO from Mr. S. A. Yarga, NRC Licensing Division. l I i l.- l l \\; i h 1719-400-001-00 PROPRIETARY Page 31 of 76 j f l l 1
N PROPRIETARY 1 ? l '13 Westinghouse Nuclear Energy Systems, " Review of Pressurizer Safety Valve Performance as-Observed in the EPRI Safety and Relief Valve Test ' Program," WCAP-10105, June 1982. 1 14. Electric Power Research Institute, " Valve Inlet Fluid Conditions for Pressurizer Safety and Relief Valves in Westinghouse-Designed Plants,"EPRI NP-2296, EPRI Project V102-19, Final Report, December 1982. 15.. Science Applications, Inc., "Probabilistic Evaluation of High Pressure Liquid Challenges to Safety / Relief. Valves in the Zion, Byron /Braidwood l PWR Plants," June 25,.1982. - 16. Motloch, C. G., Van Blaricum, C. H., and Naraum, R. E., "RELAPS/ANSYR/ANSYS Hydrodynamic Force Calculation of the Electric Power Research Institute Safety and Relief Valve Discharge Test (CE Test-No. 1027)," El-83-12', December 1983.
- 17. Cajigas, J. M., " Verification of the RELAPS-FORCE Hydraulic Force Calculation Code," Gilbert Associates, Inc., May 1984.
- 18. Semprucci, L. B. and Holbrook', B. P., "The Application of RELAP4/REPIPE to determine Force Time Histories on Relief Valve Discharge Piping," ASME, PVP-33, June 1977. . 19. Strong,.B. R., Jr. and Baschiere, R. J., " Steam Hammer Design Loads for Safety / Relief Valve Discharge Piping," ASME, PVP-33, June 1977.
- 20. Criteria = and Guidelines for the Design of Safety and Relief Valve Installation in Westinghouse Pressurized Water Reactor Plants,"
l Westinghouse Electric Corporation, NES, PWR Systems Division, October 1972.
- 21. O'Donnell & Associates, Inc., Quality Assurance Manual, Revision 5, dated January 15, 1985.
- 22.. Graesser, K.
L., (Zion Station Superintendent) to Butterfield, L. D., 1 (CECO), Letter November 9,1982, " Unit 2 Pressurizer Safety Valve Loop ) Seal Temperatures." { ) 23. " Zion Piping Design Table 'E' Stainless Steel," five pages dated ) February 15, 1969, revised December 30, 1970, numbered X-2242 and X-j 2245. 24. " Zion Piping Design Table 'L' Stainless Steel," six pages dated I February 15, 1969, revised December 30, 1970, numbered X-2242 and X-2245. { 1 1719-400-001-00 PROPRIETARY Page 32 of 76
PROPRIETARY l25. - Kell'ogg Company Power Piping Division, Job No. N8342, System #34 Reactor Coolant, Drawings: '150 1-34-15 Rev. 2 150 1-34-22 Rev. 1 150 1-34-20 ~Rev. - 150 1-34-23 key. 3 150-'l-34-21 Rev. 1 -150 1-24-24 Rev. 1 .26..Sargent a Lundy Drawing M-418, Pressurizer Piping Analytical Data
- Isometric, Zion Station Unit 1, Sheet No.1, Rev. D, dated July 31, 1979.
l
- 27. i:Sargent' & Lundy: Reactor Coolant System Support Drawings:
-Hanger No. Date Hanger No. Date i 1RC146-FRI-8-25-77 RCH-1008 12-18-72 1RC146-SR1 4-21-77 RCH-1009 1-28-74 1RC147-SR1 4-21-77 RCH-1014 10-27-72 1RC147-SR2 4-21-77 RCRS-1112 11-20-72 1RC151-RV1 4-21-77 RCRS-1114 6-02-71 1 1RC157-RV1 8-25-77 RCRS-1115 11-20-72 1RC157-RV2 4-21-77 RCRS-1119 2-16-73 RCH-1005 10-27-72 RCRV-001 12-21-72 RCH-1007 1-12-73
- 28.. Stone & Webster Bulletin 79-14 Modification Support Drawings:
' Hanger No. Date RCH1006 2-10-81
- RCH1010 1-30-81 RCRS1117 1-30-81 RCRS1118 1-30-81 RCRS1120 2-04-81 RCRS1121 1-30-81
'RCRS1122 1-30-81 RCRS1123 2-04-81 RCRS1117A 7-22-81 RCRS1117B 7-22-81 RCRS1118A 7-22-81 RCS1011 RCS1012 RCS1013 1719-400-001-00 PROPRIETARY Page 33 of 76 j L
ymy; '.- i'< n,,,,, r / jp a ll A. s. W sm
- s?
, PROPRIETARY , y. ~j s c.1; -- l;}.
- 29.. lSargent. &$Lundy ReportjNd.1 037064,- Project No.. 6320-00. ; Dynamic
,L , i PipingL Due t to Valve Actuation, dated August.1982. - Analysis 1offTypical.. Pressurizer Safety and, Relief. Valve Discharge f. e g; 9' S30L:--Private; communication,-Dr. Choi,' Combustion Engineering, Inc., Windsor, Connecticut; January. 7,1986L l;g n31.6 Patrick, B.. H. :(CDCTCYBERNET Quality Assurance Manager). to Raco, R. 'J. T
- ODAI), Letter -3334J' 5,--January 114,1986.
a<,.. l L32.; ' Us S. - Atomic-Energy Commission l Regulatory Guide 1.60,. Revision 1, o cg Q December-1973. [ S-3'3. Streeter,. V. L.. FLUID. MECilANICS, 4th Edition, McGraw Hill Book Co., ~ l.New York, New York, 1900. + . c 7 'i~
- g. t t
I 4 i r.o. < f i 1719-400-001 PROPRIETARY Page 34 of 76 m_1.
w 7c c ly,,t., fl(( }'l.;l'QlV .hi h w .&,.., n.. PROPRIETARY u s"l ei.,Qiq 9 X A: 79.g. 1 3: ' TABLE'l e s s Fluid Initial Conditions y< +, b Item (s)' Conditions-lf.; 1 . p ,,l/ . ~.,. . Saturated steam at the safety 5 L1.; F,luid,in pressurizer and fluid. upstream of the loop seals . valve set. point pressure -(2499.7 psia) L.4 Fluid in the loop seals-See Figure 4'for temperatures 2 ~,;.. e
- ;
- l s<
t m :.x ' .' 3...Fluid downstream.of the safety Air-water mixture at 100% v'alves and:inside the: relative humidity at 110*F
- containment.-
and 14.7. psia f4. Fluid outside' of the: containment Air-water mixture at 100% lbut lnot Lin' the' relieff tank. relative humidity at 80*F and 14.7 psia ( I' 3 ( { . 5., o Fluid inside 'the relief tank Water at 80*F,~ air at 80*F { \\ t 1 ) 1 y t'- .) 1 a l l 1 1 1 j 1 ! 'i 1 l
- 1719-400-001 00 PROPRIETARY Page 35 of 76 r
j> 1#. a_ -_ _ ____ - ___
PROPRIETARY ' TABLE 2 Material Data Nominal Wall 1 . Size Pipe Thickness Temperature ] Location (in.) Schedule (in.) Material Range (*F) Upstrewn'of-Safety / Relief j . Val ves' 6 160 0.718 SA-376 TP316 120-668 l 4 . Upstream'of Relief Valves 1 3 160 0.437 SA-376-TP316 120-668 Downstream of. Relief: Valves 3 40 0.216 SA-312 TP304 110 Downstream of- - Safety. Relief Val ves - 6 .40 0.280 SA-312 TP304 110 Header: 12 40 0.406 SA-358 316 80-110 SA-358 316 .SA-312 TP304 SA-376 TP316 Temp. S 1 b A A A (*F) (ksi) (ksi) (ksi) ,100-45.1 45.1 60.0 200 45.1 42.7 51.6 300 44.2 39.8 46.6 400 42.8 38.9 42.8 500 39.8 38.2 39.8 1 600 37.6 36.4 37.6 650 37.0 35.8 37.0 700 36.2 35.4 36.2 4-(1) ND-3655 Nonseismic Class D Service (Faulted Conditions) (2) NB-3656 Seismic Class D Service (Faulted Conditions) h l 2 f 1719-400-001-00 PROPRIETARY Page 36 of 76 l l 4
PROPRIETARY TABLE 3 Piping Elements Element No.= Nodd Numbers
- Element Type i
1-101. 102 ELB0W 2 102. 104 ELB0W -l 3~ 104 105 PIPE 4? 105-106 ELB0W '5 106 '107 ELB0W 6' 107 108-PIPE i 7 108 '109 PIPE i 8 109 110 ELB0W .9 '110 111 ELBOW 10' 111 112 PIPE l 16 115 116. PIPE i 17 116 117 ELB0W 18 117 -118 ELB0W 21' 118 119 PIPE j '22 119 120 ELBOW 24' 120 121-PIPE i 251 121 155 PIPE 28 131 ~ 132 ELB0W 29 132 133 PIPE 30 133 134 ELB0W .31~ 134 135 PIPE 1 32 135 '136 ELBOW 33 136 137 PIPE 34 137 138-PIPE 35. .138 139 ELBOW 36 139 140 ELB0W 38 140 -141 PIPE 43 144 145 PIPE 44 145.146 ELB0W 471 146 147 PIPE 48 147 148 ELB0W 51 148 150. PIPE 52' 150 151 PIPE 53 151 152 PIPE 54 152 153 ELB0W 55 153 154 PIPE 56 155 154 PIPE 57 301 302 ELBOW .58 302 303 PIPE 59 303 304 PIPE
- See Figure' 11 for node locations 1719-400-001-00 PROPRIETARY Page 37 of 76 j
F l 1
Wnc ;g^R, y4 w p .l ,,m 'l , b " :hWs [O " PROPRIETARY p .uj .: o 'm-y j 4 1 m m}. - y ,p i DTABLE 3..(Page 2.of 4) 1 + i 1 L Piping' Elements I l W.: ' IElement No. : Node ' Numbers
- Element Type q
1 2 ::g+ g..;;;4'Q 603 304 505~ ELB0W k g% 1 . ' [61; 1305M306" ' PIPE !621 ' /306 (308 PIPE' 4 MJ 63! W "308l:T309: PIPE-M y l68T ^ 311C !312:: PIPE .:312 ( J 313 ELBOW r 469 :,, 73.- 313i 317. PIPE ^..: [*m *,,
- 78,.
L: 319j320i ELB0W. { -
- i. 1801
'320's321- ' PIPE 'L
- 81?
321" 322 PIPE '821 l322;'323 PIPE 183 323?2324' PIPE 3 j 'i,84 1 J 324. ': 325_ PIPE 'W.., 'L88/ L32503271 ELB0W p 1:-:n , 89 ' ,:327M328: PIPE. ~ 90; 328)-329 PIPE H > '.941
- 329: 332 PIPE 95 1332:- 334--
ELB0W 96l 334--0335 PIPE-g .m i97. 1335. 336 337 338 TEE
- 100L
-337 f340 PIPE-1101-'
- 306.-?361 PIPE s
,. m
- 106
363 364 PIPE s110.. 364. 367-ELB0W ^ y - lili 367 -368 PIPE r i s 120' L370 '372: ELB0W 121-1372 373. ELB0W '123: 373 374-PIPE 124: 374':375 PIPE 125 375 '376. PIPE
- 126 376. 377-PIPE m'
1 '127: 377.378 PIPE '128l 378s 379 PIPE 1129 379:=338' PIPE / 130: 340.341 PIPE m ::131 - 341 342 ELB0W t132L 342. 344 PIPE 133' 344 345 PIPE +
- Seel Figure 11 for node locations 4
i. in f:n
- 1...
If jy h s.,,[ (1719-400-001-00 PROPRIETARY Page 38 of 76 1 L
J;p y; y ~ - - - ~ - - - ~ - - - - - - - >y 1 ^ g,Q,. i w g, M PROPRIE1ARY ) ,,V 4 i 4 i r 2 i ,4 2-
- .c.
4"* -TABLE 3 (Page 3 of '4) w Piping Elements > N ' Eleme~nONo.. Node Numbers
- Element Type.
124' L345' 346-PIPE Si
- 135 1
-346' 347 ELB0W-1 136 % >.347~L348.- PIPE L137-T154~ 348J PIPE. -138?
- 180 :181-ELB0W j
7 !139) .181) 183: ELB0W l 140.- l183, 184 PIPE i 4 o. ~ 1141u .184:.185 ELBOW 4 !142 ' lL185~ 186' PIPE' 1143: 186 187 PIPE a m' l145j
- 187.' 188l PIPE 146T t188 189 ELB0W P
s' l147J 189 190-PIPE l148
- 190< 191; ELB0W
- 149J 191f.192' PIPE 4150 '
,1922 193 PIPE N 1511 193'L194
- .ELB0W
^ 4
- 152 194.'195 ELB0W 153 195 196 PIPE 159;
'199'-200 PIPE ~160? 200.201 'ELB0W 163' .201: 202: . PIPE W '1644 -202 -203 PIPE 165- '2031 204-ELB0W 166 204~ 205 PIPE '.169 -205-l206 PIPE A 1701:
- 206 207 PIPE P'l171' 207 208 PIPE 1
172 n 208' 209. ELBOW 175 ~ 209: 210 PIPE 1761 -210 :211-PIPE l 211 :212 PIPE il77J 4
- 180~
l212 214-PIPE -183: '.214 215 PIPE 185-215 216 ELB0W 9 188: 216 218-ELB0W ] 'i 1911 218-220 PIPE .194 220- 221 PIPE
- See Figure 11 forl node locations 1
) i s 1 l I 1719-400-001'-00 PROPRIETARY Page 39 of 76 l l ? r .b
_---_--_i
crem y p. .w N#f,l :{ .} F PROPRIETARY: ^ 'g o-a; .j -TABLE 13-l(Page 4 of 4). ] 9T; " Piping Elements 1 @[ ' Element No.H Node: Numbers
- Element Type 3
l '195J 221h'222L PIPE J y" 'I
- 198-2222 223 PIPE
- 199 L.
1223 :224-ELB0W 200J x 224.- J 225 - PIPE. )
- 201" D225' 348 PIPE i
202
- 225, 226-
' PIPE 1
- 205-226 235i PIPE j
- 208:
- 235~.236r PIPE j
s ~ 209i .236 237 PIPE q J 237L238 PIPE 210 211L -238 239= PIPE. 1214:e 241:!'242.- . PIPE 2 L216 '242' 243 PIPE . 227 '- 243 244' PIPE [ > 220'. 1244 i246-PIPE 223' .246. 248-- PIPE l-224 s
- 248;."249-ELB0W
'M -225:
- 249 250-PIPE 226:
250l 251 ELB0W ?2274 251:.-252: PIPE 252 253, ELB0W ~229: ~ 254-ELB0W 232i 253 233L -254' 255 PIPE >H 236- '255 257 PIPE ~, ~237. '257. 258 PIPE '240 258. 263. PIPE L 241'- 263 264 ELBOW 244' ~2641 265-PIPE 246: 265' 269 PIPE 247:: '269' 270. ELB0W-
- 252 270 272' PIPE 1255 272 274:
PIPE l256 274.' 278' PIPE
- 2571
-278. 279 ELB0W 260: 279 280 PIPE 263-
- 280' 281 PIPE
-264. 281 -285 ELBOW 265-285 286-PIPE . See Figure 11 for ' node locations 1-1719-400-001 PROPRIETARY Page 40 of 76 L N=
{ n4 y e f 1 's ~ j I _ ~ ; i h! ]' 't ,,,u s g c,., ~ L'. pW,r PROPRIETARY w, j e&? E > Q,. t ,Q' c. e c c '- - e, y et. em e. Ne t m' x %:). ' -Q. _ 4 ? ?J =, eOe e." e e.
- o. N.
k. . - oo e i e e ^=o m e-e,s %; .u se e. e.e e. es e o - e. 'Oeg( l I m ; ' 3 e e ...e t-e o e q f o e 4 O eno e 4 4 e e e d > Wt e e e e O, @ ee se O m se 8= O es se > *= eft = N 4 t " b :'- . e - se y eme m y y e se e e e sw g a e e #g se ys r y, m yg g ..M'. .w u' e ; N 8te 4 N. 8ts N N N es O es es we N N== es es N N es se es es se sw m m m yn yg p g y e ee me se se se se es me se. e e e e O e e e. ee e e e e ee e e e e e o e e e E.'== m e - - asesaosesemeseense e-e e e e,ee se,e se se se se se,o ao se se se en ee ese se.e.,e,e,e ' R ed e me se se se se
- 3., J
- c, U se.
e , y e.7 sw gar M. M - ' + ;] e .s.. -.- e-e = 4 e. trt e e e m e e e m e om a e we e m yt e ett 4 e m ee e m p m N no > e e.o e. e e e e. e.. e. e e e e e se. e s e.. e'e o ese e e o .z
- e.
- 59., e eyp a es e h N se e e e M o ** e et > *= em e e e e e O e e e e e es e o em em. N yt p p a se - f2 q.~.'l 4L
- \\ W 85
% M o o Ifi rt e e en F e eft N m N o e pt a m P > e em e o me N e e e yt e. es a ,.. > e N N se es me N e es 3 *t #86 m eft e e em se e o o trt e et et a m e e p e est N e J& f
- y p.-
'U: .e. et '
- B e 4 as m ftf ftf m e e e M me = ee #w es m yt *= N m m me N se me se m en et se me e y en
%qr'2M'- , e. j >,) kJ 7 N . e
- .. ] j.
1 g. n-A g, y_ i >c 0 c Q i.. - " e,..- i:e> .. se e'. e e e .'e e. e
- e. e e... e. e e. s s. e e e..
e e e a. N N d a 4 m y e N N e e *= yt yg e yt p e p m m p e yi== m m N e o e ', ( ha S e j ; *N o se e W F e e N es a trl e se. > N e e e N em 5 se== N N en aNeevtateem 2 J. e
- F es se es e e e e N en e N N o e e e e e e em eft e o me ** e e e es o N e.
e ', N A es e e 3== se e e e e # et e m== em se se N O e O e o We in 9 O O e e a e ' M i e i S I e 4 4 0 e e > d d om e em 4 o f%s N en e yn om P e e 4 e WW N e O ** e e em N m en ' 3 ee e- > en se se me N e e art a se se me se se se set et e m se se se se se es es N N N N N et a pt ,s - )g. E, ,e.1 g ,4 e 3 i =,.
- 0
.s . M; e, g; c w. a= cs t e sw e = 4 an e e a 4 = = ew = 4 c an e e e = =. =es =es =es =se=== =mie se an e N e e e e . O '. . O e<
aeWiee4
es se se tr5 e N e e e e we w ee an e fu e e e e e D"4 h.e ** e ' > *= > e e ett we m se 9 rie== e= e Un art e m os F > e= > em > om em en e o s e '^ m m m m e w e e e e m e m m e e m en c e m e m m m m m e m at rt yt m== y H-a et e e e e em es e ett a>e .a> a e a= se e at e om e= a e 4 e a e a e p es e e a em en y eeeeer . O .E .z. [> -O b- ' e ef.;i fa ' W e '; e;- - e ' O O O o trt Wt o o art e O O O O pt Wt O O eft te o o o O O o O O O eft ert O O en.m. -Q,.
- m; n e -. e e e n o m. m m m e m o e m c ee nt e m e e e e e e e e e m o.e m m m e
. e-L% e * *
- e eeeeeeoeeeeeeeeeeeeeeeee e* f tee 44 e e e e es e e Fte m = d e e se e e Wt e M N e e e e e e e e es e e re e m s
y '4 ', 3 b' em es e, e e44 ymenseseese ee eeNesseseesee aea3ee ae#ggeeaoe.N- $"se ' i E a p.' ~Oe a= 3 , 2
- U-
%U r P(- - 01 . e.. O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - r ri -. e *** * * * **** e e * **
- e e o e e e e e e e e e o e
_,4 ;, lbf ' - WS r - We ** e '
- eJ tog e e, ' O O O O O O o O O O O O O O O o O O o o O O O o O o O O O O O o O O o M ' ' 3 eie..
Ift rt en art.arttPt art Wt an W5 art eft IP5 art W5 W5 r et art to rt Wt W5 om em e=== ee > em em em em ein om en, an tp Ft W5 en e W e c = #w m m ev ew m m ew m ar m = #w = ew s = = = = = = = = m m = p a.4 st art yt rt r e av TE
- = esem em = > em em em en
. o s-a a en e. em em em e
= *= em e *
g m m m m m ew. 47 s w .a n
- e C
eo . e. 3 o e. ea e' + e'" D'Q;l:g>-:.us es',.,- m'a - e evoceooseOeoepeOOmecesOeOOoececomeO 4 e e o rt a c o m m o d o e o e c o m m o e c o a c o c e a e c o m m e
- 3d
. eaw e '., o c u m. ; e.- or e e e o m e o O N os o m o e c e O o N N o m e O o o o o o o o o o ew m o. g CO - : ' s ee me e ? =. emo. e >. c. o ' e en se me se es
- e. ce.s o.. o e. o.. c. o. m m. o. m.. O.n. o. o. s.e *. o e. o o. m. sw o.
' Gr n s em 2, e -
- b; + D
'e e= O o.. e s e e e e e-e N N es se se se se se es ao N ew as se se.e== ee me se se me we se se N % ee La q.s g- : e s ee - ,e, ' ,g f-c > se O., -.. V 1 -: M -; -um- ,s :. o o o o o o o o o o o o o o o O 2 o o o o o o o o o o o o o o o o o O ooooooCoCocooCoOoooooooooooooooooco e sea - @: > e9 3 me,' p u,j ?,. J B.e > e n'i e -.. o o O o U o o o o o O o o o o o o o o C o o o O o o o o o o o o o o o e e O o. art 3. o E -,,a
- eo o se e e. et.t o. O. W.D o. ar.t o en O W4 e. o O. ar.t o. O e O. e e. tr.t o. ar.t O. eft en. o. O e.
'4 i es e e-e e e e. e e e e e e W +-FQ ' ': e i O O ee se O se o se O se O O ae se O **== O *e o O O se O e* O O es se O-W r $se es g m..O, se. .E o. c.. e -cococooooooooooooeocoooooooooooooco t.D. es e m . a.m. e. e, ooosOOoooooOOooooooooooooooooDooooo z,,,, u. s. J '- a ee oooeoooeeooooocooeeoooooooooooooeeo-e -- e e se O e -. O. O. O. o. o. O. e e O o o. O o. O O o o e. O o o o o o o. o o o. o o o. o. o. o. m. c o. e e ve e v e ree e e ce ee e e - e L i.t ' ( .O r-' m o.. ;. w. a e-e ' eromeOOmaceOeDeoceaceecepooeoeOceae o - kee - ~ .e ss. e, e . m y mg e. - e st u e. .e4 't . M :,' es u -' e. - 4.- - O O o O o O c o O O O O O o o o 5 0 o O O O rt S C O D O C 0 0 0 O S e's . eg eO . J,'2 m e e e e e e e e e e e e e e e e m e e e e e e e e e e e et e e e e e i J en* ee e we sese es m .N,y y y e ' ' >.... oe ee se me se se ao ao se se se se se me me ** es me se se se me ao es one se es se es se ee>>>>>>>>>pm.e= L
- - er en Q
-m m; .e s e > e.ne=. >e. em. k> >>>>e>>>>em in. e ........ e e.......... ,' ex _. ee e' CCCCCooCCCoCCCCoCoCCCCCCCOoCCCoCoCC U e
- e
=- U, 2 -e.- CD e e- . o- .e. .g ' so......e ,O,O O.O.O,0,0,o,0,0,0,0,0 0,0,0,0o,S.O.o S.o.O,O,o,O,8,0,0,0,0,O,O,o e n y p m- .,U. O..,e ~~~~~~~~~~~~.t.~~~~~~~~~~~~~~~~~~~~~~ e c e ...........a.e............ ,ee, O. e. .e... .e m e: e m e. - w. e We a s w a z w w n e iw iw s w w w aw s s eu s s w s w w w n w a w w m s w e o e noao oaa aCOtOaaao . es - ce. .e -- e. - e,O.& e O :s.a.,o a,o e-. - -,O Cee - e t - e - - -. a O.a. a o o a >.. J..J. & J J & & J.J E J, & J & J & &.J. J, L J J & J & E & J & e ee e m ' i -e e. i ,e J&&JJA O-
- e. 6 -. e - ww w
e noe. w - te mw w w - g r .. e -mme,,_e,O.e,mmmmmme..e,0.e-me.~. .O.aa Owemmee mm w. 3 ..e m m m.e.ees. e. ee s.c om.s ee o , e
- e. e...e
.. e vw ,+ + y'. ~^? f - 1719-400-001-00 PROPRIETARY Pace 41 of 76 s l
- e..
?f
~~ l PROPRIETARY I 1 i i ~ .e
- e..m 1
.~~ s e m .-e ~ o.. m ..-e .- e -m-- m a_. 3. e i e d e l oo0co..mNooomemMm-mer am omNkemot d'J 2 P. e. # w e e s s e r m a m o m > > e s g > > > m. M. m. N N > n hCost ee.m.. M. e a sch e .eeNeces . 3. o 3 3. m. a. m o. 3. J. o. @. o. N. N. o N. m o. o. o. w. o..o. o o o. o. o. o. o. m m. m m. m. m. o o. o. o. o m m. m N o m. m. m. e s, sw e e e e e w e e e v e e e e e g g. e a m mmmm== memmmmmmmmmmm-m-mmmmmmmmmmmmmmmmmmmmmmmmmm e. = w e 6 e 8 e s I e .e .......e e.4#N#.s.c%e coeerg. eepes==.m.mo. mee>>>Me.oWMbamm>.co o. s .E m e swem mmN.M m. g m e. e C h
- e. e N eommp
. Se ..oe ocemaeme.Nw a ypep = L #. N.e. cram N o m C N e m. e. e. h u p h m e. e. e. N r. h > c. e h. m e r c. N o t o M ~ N 7 e eee. men.omm .s
- e. m m m 4 4 w % m e 4. m. e m.mer.mmm mmmW N wm em elc e.e. m..e m m m,
i e . W 3MM9m mMr.co o o oeo d e e
- F de wwwN J
n' e e w e o e e e e .e e.....................**.....................* c e -m p r. 7 > o r s e m o. o.... o. o. M e m m m m o r e Mm e.. m m m e e. c. c. N e. p u. o N N M..me.oMemro ) 4 eAA> >ANm> -2 e 9 f 3~ PO W N. a.m. NNP.Nhh m e -> >e#~ d t eC eNmtecomvee d
- g.. e. k k. > r c e N k e. m.~ereoMhnh~MM.eemecemo.e.eme e
s. e 9 oJMP 7eO~m e r A. e. e m m m Me > = = N e e N > > > c o r e v > = m m m.e. M A N m N M e p N N o e N N. Wwm>.ch e. N g I J e m #rOk r 4 4 -meesh m m>> ees 3m e Wmmm m wem me amM Mmm wmmmmmmNNMMNMMNMMm g a men e i e m' 1 .Z e C' . si e. c m o c.o c o c. c o c o n o.c c o o. o o o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o e 4 ess sg 4 sasus em y a s s s s s s s s s s s s s e s e s s e s e.e m m m m m m N N m m i m e s s e.. m...
- c. o
- s. s. e. s. s. t. e. e. b. e. e. s. t. e. e..m s. @........... r. e.. E. e. e. e. e. e. e. e. w e. w E
.m m m. E W w .H eae r e c. e. m. e. e. c. e. s es e ,O ' e J e e .a e ~.* .O^c e Q = e O 3 1. o.o. o.o.o.o.o.o. o. o.o o.o o.o o. o o o o.o. o o o. o o o o.o o o.o. o o o o.o o o o o o o.o.o o.o.o. m s e CJ cc .w ov. as e a ea --a
- a a-r ee r e c o c o o 3 n r o.o o o o o o o.n.o o o. m =o o o o o o o o o o o o o o o o o o o o o o o o o o o o s
e o .e. mae.
m--Amm
--m-m-. = ---m------m--m-w-mmmmm--m 'H o sa ww-m mm m m mmmmmm-.mm mmm mm==mmm-mmmmmmmmmmmmmmmmmmm 4 mJ r ce l D =s. e -= e. .q e -
- o. s. 3. a. 3 2. a. o. a. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o. o.
k. . e 8 .o s am e asaooooonosooooooooooooooooooooooooooooooooooooooo m .. < e cecccocccooooooooooooooooooooooooooooooooooooooooo g \\j N .a 1 ~~~~~~~~~~~n~~~nnnnn~nnnnummuun~~nn~~~nunnn m e ~ ~~~~~ ~ O i c f ' 4D to- .l O O:> u.s. y e p E a a e seeam > >, n>MooaMooaMooMooooooooooMMooooMooooooooooo i J g
- c. a.
.e ce ceac,ce.ceecoeocoeoceooooooooooecoooceoooccococco
- c.. A. c.. c. c. e.. o.. o. c. c.. c. o. o.. c. o.. o. o. o. o. o. c. o. o. c. o.. c. o. o. o. o.. o. o. o. o. o. o. o. o.
.C I, m o >ss e s woe 2 s at ooseoooeooeooooooooooe oooceooooooooooo qg.e* m g a men.-..e -e-mewmemmemmmmmmemww--mmmemammmmme-mm-mme f
=== e a l e m a-3 n e 4 e se e W m A e t -. y a7A ,e VL - o s a eeccccc ccccccocococccoocooococooocoooconoccocoooce m'a e amonoaaosooooovooooooooooooooooooooooooooooooooooo 4 eem-e y ecccccococcoccccocccoooooooococcoooooooooocooooooo C at~ e .e
- e. r. r. e. r. e. e. r. n. e. r. e. r. e. c. e. e. e. e e. e. e. e.'e. e. e. e. e. e. c. r. e. e. e. e. e e. e. e. e e. e e e. e. e e. e. c. e.
e l E e - ve e. e e e e e w p .e.u - r ' e oooooooooooooooooooooooooooooooooooooooooooooooooo E j i e o M. e m e..s ' e. cecccccccoccocccocooococcoooocooocoooooooooooococe e. e ooooosso2ooooooooooooooooooooooooooooooooooooooooo W .c g 4. e ecoccCoCroooooooooooooooooooooooo0000000o000000000 se e a
- s. o. o L
s e
- o. o. o. o c. a s. o. o. o. o. o. o. o.o. o o. o. o. o. o. o. o. o. o o. o. o. o. o. o. o. o. o o. o. o. o. o. o. o. o. o o o. o. o.
We c-e~ e e e r e re o e c o o ? o e o o m e o o o e'o o e o o o o o o o o o o r e o o o o e o o o o o o o o o o o O 1 A 1.a e we e m 4-j en s e b 4 I na e g ~ y v% e W ..e esaoo=ooooooooooo a s c c c C e c. o. c c o. c C C c. C C. o o o o o o o o o o o o o o o o o o o o o o o o. o o. o o. o. o o o. o m '.s e e ' mw s CCCooCCcCCcooCococoooCC g l M w s4 ees ce 3 me eo
- n. %. N. N. n. N.. A. s.s. N. e. s. s. m. s..o e e e e e e e e e e e e e e e e e e e e e e m o o.o o.o o o.o o. o i
b ~e . m. m. m. m. m. m. m. m. m. m. =. =. =. N. w. s. m. =. =. m. m. m. m........ 3 1 r c c c c c c c c c c c c o c c o c o c c o c c o o o o o o c c c o c o o o c c o c o c o c s e e cco m m a P 1 e N c e w - e SSSoSopioGoooooooooooooooooooooooooooooooooooooooo l g ~ < < < p e, e i ,.,.e . a..... ~.,. r r e c r e c e,o r e c e e e e e e e e e e e e e e e e e e e e o o o o o o e ~~~~~~ ~~~~~~N~ N~~~~~~~~~NN~~N~~~~~~~~ececeeeece C e s........~.......................~.~.~.~.~..~.~.. . m. 3 m e ,e .....~...................... ......................ms~~~~~~~~ l e m -m--m-mm-- m .e. e. .e. .......~...... ihmmm mmmmm.. W e 2 'e -.c.o s o s s.s o a o a s a 7.s m a c a s o h a m a o t & & a t c o n & & L o, t a k a a t t a k a a m e .-a---a
s-----ee----
~~~~~- o
_J.J a.J 4 h 1 ssJ E J& a m J4 & a J & m J a 4 & & Ja & & a m J J & a & % J& & & & & & & & & & & q e ~ - m mm o g e e e -.--sA%s. .m~M . m s.,- .,.co. rerecee.m
- e. com~e.~omeem.ce,Fom~eeeom.c.
e -m mmm.m.mmm.esszeece coccoomm-mm wmmmma-mm ~~~~~~~~~~ c e e x + + 1719-400-001-00 PROPRIETARY Page 42 of 76 i
- s,==, . y. ,A Q >^, '._g' 1 'q ..n v 6 ',. s -: 9=q i, r m PROPRIETARY r 0 'f.
- ,S, y
ff) ~J i.' ^) l 4e[ i k.} lil. .. m N 1 3 - N ' eo8 e .e.o ,e,eoee
- e. c e se.e a
f 4ee me G ' N - ** en e e en s.m se N. N N e es e e
- o..a. e. es -
e e e e e ,.o4 6, .e > 0 oo e. ee N es me - .e es en m ee me e ee I':!. 4'. F F e o o >= em e, o o N N o. e e e e e e e e S ** 4 Em@ FNNeNmmCCmeL - - -e N.e - - - N. e.N N N v. N==.E e.e e N N N N N N e .s ee N N N N. N. N WU$ and ' ' E ua 9 e e se e.- e e e e e e e me ee.e op me,e.e.e.e se se se me.o me .e e e e ee e t
- .e se se ao o.e.ie o
0 ve - ' me n 9 3 4 '. se. '. em ' e. S 0 3' 4 B 9 ..-e ......... e . e
- se trn trl. M.e o e. o. o. P P e e o M e e ke.e.e ee'
'e. ep 9~. -e o e me N m [
- e 9 '
mm e NNe>@ # e e 9 > N N P set .F.- - U.M = c ar6.>>*=ep e .e > pm m e e me, o N st e et ne.r p. > M e. N ** > pm % N N trl 8" e N m e e e e e. me me P #6 #5 N.e se me. e e .A B e et m N e 5 W. 4. i "t ' " ~ e8 M tr' P tre e e e trt art t 8= t -, ^. <r 9 as g ., f. e* 'S 4 .w.m ' g 3 e-e e 9 - e.. e......~.. e o e. e....e. o o o o em.ee e e e em > o e s=a= o o e e e e e N' 'o 0 ' >8em e.= ** e e e e em
- e. 4 3 'a en.se me N N N, a. srt O N N. P P *t =t e e *t 8rt.*.* N N @
et ee#.e 8 2e 4 t e. pm > m e se==.* me e e e e, e o e py e rg N e .e arg een p ug gr e e *= ee me o e, e art ert. ED se N p.t are e. e a,rt e.. se n. o2e 9 ". I 9
- @ art e e e e s e e er e art > > > e
.n 1 mr m e m m e=.is ee =e en est== p..e se
- ts 1
N
- E-4
- *e se
- N N N N esesfW N N m
/ . Z. 9 m. ..o ' i - H w a ...... e.... e.. e. ,p. - - e.a xe coococooocoooooooooccocoo t 'i ~ s. E 'e: N N N.* es s%e 0% 0% N. t% N N. ee.N N.N N N N N N.o.e % N.N.N N0 N N ' O es.* $ -e o e.e se. .e se. eme e es we ese me so me e e o.M 9. Za E e erl e et e art e. e. #.5 a.rt a.rt e. art #t ett ert e #t en e #t art e art #.1 o., -. .A 8 e Weeone eeeeeeeeeeee g '. e. 9-em ' e 8 1 F 4Y'.~ 'O: o t se ' .e . ya,. >- e b .e e .,,)' oc' - 9 ocooooooooooooooooooooooo i. >ss e he ' e 'o*o o 0 en o e o e e' e ee e e ee e * * ** e e ee e e .N 'a, me z-z oooo =e **.e me ** *e ee.o o o o o o o o o o o o o o o o o o ses 4.9 8. e== p e en e e e a e e en s e e e e e. i el E, ' a.ma 0 ee.* se es me.e se es wF >X: O 9 . ps.s,e y Fe e es o 0 N' E 4a'
==*.. ei.e e o o. o. o. o. o. o. o. o. o. o o. o. o. o. o. o o. o. o. o. o. o o. o. .o. w e e e e W%. u.e s ea n s-ooooooooooooooooooooooooo ,1 l' O.- a.- 2 s s. .o..c.o. - >.o..o o..o..o..o. o..o..o..o.o.o..o..o.o. > e. e..o. 8. wee oo ooo o e o M a e n:. ,'14 N cf oa ' e t, C (; J ^ - cf,, c g' o m-e-r u. u - at. cn - ' E .4 e a sooeoeoeeooooooooooseoomo, e- . p: g a maw . e cooeceoeeooocecoecocecoeo so s-oooNoNoNNooooNooNoooNooc g o me u N . Ce . M ,.wpos s - o. o. o.o. o. o. e.o o o. o o.o o.o. o. o o. o. o. o o. o. o. o. n 't .e - es ew.e N N N.o.e e e a ee e e e e e e - m. en a .s e - so N es N.ese-N==N-g m o 5 UJ. et o #. 9 . Cg ' mo u en e ococooococcoooooooooooooo p et es e ooooooooooooooooooooooooo H.- mee-e coccoococoooocooooooooooo C D as-e .e e e e e. e e. e e. e. e. e. e e. e. e. e. e. e e. e. e. e. e. no.t e. e ee nt e e e e o e e g e ao s-ooooooooooooooooooooooooo
==- a g i .Zi g g y== L 5 - >ee o.4 - o a-ooooocooooocoeoooeooeoeoo o 'a- .z 4 s ooooooooooooooooooooooooo
- "he*.es...o.m e '- - o o. o o o o o o. o. o o o. o. o o o o o. o. o. o. o o. o o.
e 6. ooooCocoooooooooCCoGocooo b C n e e - e e o e e ee
- e e
e o (~ . g. M st -e S &o 2- ,9 o o o es o e o.m.e o u o o m o o e o o o m o o N o y - ' w .e .o e a e'.=.ed m nU 9 p q =c ; U.as.a. I M E .o o..o.o o.o.o o. o.o o o..o.o o..o o.o o.o o. o o o..o -e ..e e e,J u e ooooooooooooooooooooooooo s. - e e e. e. e e e e. e e e e e. e. e e. e. e e e e e e. e. e Le e e 3 0 e e e e a e e e e e e o e o e e ed .e.' 6 CocoCCoooCoooCocoCCCCoooo C71 en ' s em g. o.e - e - oooooooooooooooossooooooo oc 8 ..e ooooooooooooooooooooooooo - w -*ori eeeeeeeeeeeeereceeeeeeeee C u + e os e- >>>>>>>>>e>>>>>e>s>>e.ee>>
- U et o
S
- ....e
..*.*e r' }i' gp. - e N.o es.o e en e.e es en me N N N N N N.e se ce me se sie es se.e== g NNNNNNNNN NNNNNNNNN ? e se e me me ** E o et 4 !t 1 3 ' es 2' w-e w w een a w a w a m w w w is, w w w a w an, w w w w a w ,.e 8 o.o,.oo. ..o...o,...ot.o. so o.- s. s.., s. w w. .. s.. s s.e.--,--o.- .s..s w , ww-w w w b H j om. >,N o-o Ne .n. N N N N N N N - - m e e e e e c e,. > o m..m e. e, w et. e .,. NNNNNNNNNNNNNNNNNNNNNNNNN m w + 1719-400 001-00 PROPRIETARY Page 43 of 76
PROPRIETiiRY i [l: .lAI 'I c,. I-P- \\ S/V is ar e line u' R/V S/V R/ P Rebel s alve g,, 'A g descharge hne j I 'd l -r A ..a / I L rr W 9 -![ ' E-p Header P j i { s l l C d. Y 90 1 RELIEF TANK S P PRESSURIZER S SAFETY VALVE SUPPORT '= = R/V = RELIEF VALVE S/V = SAFETY VALVE FIGURE 1 DISCHARGE PIPING SUBSYSTEM SCHEMATIC 1719-400-001-00 PROPRIETARY Page 44 of 76 [ ta_
- ., 4 Y
PROPRIETARY' 6.Incn OD pipe 9 - -e --e - # M
- 6. inch OD pipe 6 inch OD pipe p
g.- ---. e. - -- -- 4p .ij. Pressurizer - Safety f. Safety i valve j Safety, +.- O
- A valve C 6-inch
'h valve ,, OD pipe 1 m i u 4 e g O O 6.Anch .OD pipe Red ucer a I Relief valve system a m u 6-inch OD pipe 4 r i
- 12. Inch
,OD pipe e . Elbow or pipe bend. Sparger m Reflet tank FIGURE 2 SAFETY VALVE PIPING SCHEMATIC . 1719-400-001-00 PROPRIETARY Page 45 of 76
..p,. 1 PROPRIETARY Red uction l , R e d uc e r tee - 7 = Relief l i valve Block v ve N 6.Inc h . 00 pipe T Relief volve
- 3. inch Pres surizer
. O D pipe O D pipe
- 6. Inch.
OD pim Heducer Safety: velve, .-,r system Reduction Safety 4 valve eyetem
- 12. Inch OD pipe r;
e { _h Elbow or iP pe bend Relief tank FIGURE 3 RELIEF VALVE PIPING SCHEMATIC 1719-400-001-00 PROPRIETARY Page 46 of 76 ____-=_:_.
w PROPRIETARY i j 668.0 y ,/ .(-1.0) 325.4
- k
(-1.0) 241.4 i 115.0 l (-1.0) \\ h~ FLOW 157.4 l (-1.0) (+1.88) 120.0 151.0 I ) (+0.44) 129.1 (+0.54) 132.4 / \\ (0.54) (0.54)- 139.6 136.1 l (XX)'= FLOW LENGTH.IN FEET l TEMPERATURE lN 'F d XX =
- 1.
ALL-FLOWS START AT THE PRESSURIZER I
- 2. ~ A + SIGN INDICATES AN ELEVATION INCREASE 3.
A . SIGN INDICATES AN ELEVATION DECREASE 4. N0 SIGN INDICATES NO ELEVATION CHANGE . FIGURE 4 LOOP SEAL WATER INITIAL TEMPERATURES
- 1719-400-001-00 PROPRIETARY Page 47 of 76
'L_m.
m 4 x
- e PROPRIETARY-g.,.r.; a isb a;;
.p + (; 8.84 . m. I 25' n g 1 N '.4. 99. 4.99 b' 17 b PRESSU IZER-b 14 1.11 ~ 1.14 -4.99 Ch i 31.88 h M fl.88 3 '. +1.88 Os 'Mcg '1 +0Q8_ ~+0.98 -1.053 9 +0.98 O 1.08 .1. 08 - ~ Q -2.136 C' - 1 g 1.08 [ h. b -1.316 L8 g -52165) .4.35 -1.375 j 11.78 .6.61 5.96' 8.31-g l A -1.753 .~4.8 @ -2.438 1 g 'REldP FLOW' LENGTHS.. -45.27 1.f ALLiFLOW START: AT4 THE PRESSURIZER I i = 2.'A + SIGN INDICATES'AN ELEVATION: INCREASE '/. I 4 3. A V SIGN INDICATES'AN ELEVATION DECREASE ] '4. NO SIGN < INDICATES ~NO ELEVATION CHANGE -3.192-0;. s .1 18.583 7.582
- b. RELAP VOLUME:
3.5 b 1RELAP' BRANCH-8.0 . h.RELAP JUNCTION -10.569 ^
- OhREL'APVALVE
+- 17.681 I i FIGURE Sa THERMAL HYDRAULIC MODEL 9 l I 1719-400-001-00-- PROPRIETARY Page 48 of 76 ) l l c ___1_..:.
r-1 g.., .c ~ - - - ~ - - - - - - - - - ,.f ;f .? < 1;l '
- T m t) s
,WR PROPRIETARY i n 'a jlQ n; ' ' 1.06 L1.95 '1.61 i
- l ', :(FIGl SD)}(FI'G. 5C)j e
502-I 503 I 504 ? 4 45' 45't 45'- 5 .f.g -c mi. -1.0 0 5 97 Y., .: H
- 2,
+3.77 .y .n . /, .q;y ( t 1; N3.0' 5 -1.0 0 6 A O.4 1 37 0.37 903-l-902 l.901 h. 5 9 7 f 0 40.421-0 +1.88-4 y W 4 1 +- 9 i 0 -0.421' 2 ~ s 5 -1.00 0 9 5 8 0 -0.474 1 +0.44 e.e5 0.5.- i0.54 0.45= 6 3 '909: ' l. 908 - l 907 5 s,. 9 5 -0*99 0 1 -0.~ 527 -: 1 +0.54 g o 2 1 511 l 510 9 il -0.527f 0.54 0.54 t 4 ..1 -1,316-0 h@375 1 I@ )
- 4 -1.
11;78-6.61-FLOW LENGTH l0 3002 . l 3003 *--f VOLUME NUMBER C* 45' 6 2 31 9.F.
- 3
- 0 -2144-g]h.
W d33/ FIGURE-Sb . THERMAL HYDRAULIC MODEL ~7 - 1. 88 ' l 0 ] lj il (Fl.G. [5E) ) 1719-400-001-00 PROPRIETARY Page 49 of 76 ___________J
PMME R %'c ' Gqgl,;m',,., % PROPRIETARY n!= J-s y;, , :]n.: e ;q+r .y. ?
- 7.,
u.9 ,g-3__
- w.,
l ,y'X x 2.56
- 1. 3 2 '
-2503l2502- ,8 .g ",R4.u; w w 2SQ b i -l.0 5 .Y 0 %., s, 4 2 +3.77 yy;,> ; m 2 A '3 .. n -1.0 5 0 [ b-5 N,' [, d.37- 0.37 0.37 ~ E}. 2901 l'2902 - l 2903 N' 110 3 0 2 2 f,<
- 3,88
-0.31 6 0 0 &+ W 2 gl. 4 2 7 .], ; ^ ^, .-l.0 5 o. 0 f +0.44 l .0.357 2 5 ~2 2 + f ~+0.54 -0.357 9 5 .99 1 0 m' O 1 g 8 2 ]', 2509 l2510 -0.357 9 0 0.54! 0.54-2 i 2 n;h, 9 -0.357 0:49i O.5't 0.5' 0.465 -0.465: 0.4657 0.465-0.5 0.5 8 N 2910 lc 2911 l-2912 l 2913-l 2914 l:2915 ~ l 2916 LI 2917 L. ~ l2918 l } 45' 9 y g 9 0 9 -0.4 E Qsp D- + .p. p. k 45' m.. y 4 -1.375 0 _b FIGURE Sc THERMAL HYDRAULIC MODEL l 1719-~400-001-00 PROPRIETARY Page 50 of 76 y,,. 1 0 1 a i I }
i PROPRIETARY 1.37 4.24 2.17-1.06 ~ ! 1505 l 1504 ! 15031 1502 ' 7/ ,1 j,0; j I~ -1.0 45' N y 0.5 0.32 0 32 f
- 3'77
-1.0 1903 11907 I1901 h 2 +1.88 .l.0 -0.584 j @ +0.44 5 -0.584 -1.0 4 -0.584 +0.54 0.99 3 0 1512l 1511 -0.584 0.54 0.54 -0.491 -0.584 -0.584 -0.584 23.2* 8END OUT 0F PLANE -0.584 .5 .5 .5 .5 .5 46 .5 .5 4 .5 .5 .5 1913 {19141191511916 l1917 l1918 l1919 l1920 l1921 12022 l 1923 l1924 l .5 .5 .5 .5 .5 .5 .5 405.405 .5 .5 .5 .5
- .5
.5 .5 l1925 l 19261 1927l 19281 19 ?911930 l1931 l1932 l1933 l 1934l 1935 l 1936 l193711938 11920 l 1940l 1941 f - 584 L .5 .5 .56 .56 .56 .56 .56 .5 .5 h .584 .584 1945 l 1946 l 1947 l1948 l 1949 l 1950 l 1951 l 1952 l 1953 4 j#$4 .,s84 L .621 .584 '#S6 .621 45-l*' @ 3 h -3.07 1 FIGURE Sd THERMAL HYDRAULIC MODEL 1719-400-001-00 PROPRIETARY Page 51 of 76 ) ) .__.____D
- g. --
m- ~ 'k PROPRIETARY 1" 1 .i O.; i l '[ ) ^ T 4 [ -3.07 }s '- 3. 07 ' ~ ~ -3.07 -g -3.07 { -3.07 f 9 { -3.07L [ -3.07 i _.L 4 f Y -3.07 b 0 -3.07' _5. T 3 -3.07' [ -3.07 -i -3.07 -2.2 0 1. 4-3 I -2.28-7 -3 4 1 07 .854' 854 O. .854 i 8 45 i {- .854 I 48 5 0 -2.34 I 1 2.34 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.0 4502 14503 14504 14505 l4506 l4507 14508 14509 (4510 l + (FIG. Sf) .o. I FIGURE 5e THERMAL HYDRAULlC MODEL i 1719-400-001-00 PROPRIETARY Page 52 of 76 i
m .-Ip[ l, ,v 21 l.. $;p,, if fe,1 -t Q. ~ v. w
- PROPRIETARY- '
x[.;y(,. +1 '.{ ; t s + ,q. 't p+ '4 T < .:.s i!) <. r. _..'.u l e cg, ; L dpi-e j'nUR
- t 9
? v t,c
- .c tl?
t .y4
- ?'y'
[ i {' ,p ) i., y .., w. _.g. d9 ,_ 74, 1 , ) -l, w' ['". A 'v, .y n T:l f s. g.. bl, ';[.. '[ 0. ~ ') 4510 - . _4Sj, _1. 7 ; 7.W* 1
- 9; 9
? f[ '" '\\ "*90'. 4S]p
- 1. 7, _
9 Nf l;e, ' f]
- S13 E0 C
'4 p '7 S20. '*90'
- 90' j #907
- 4518 - l 4517
- l. 4 516 - -- l. 4515 '-
- 41.75 O'+
1 .1.75-2.125 2.125 2.0 4
- s..
. ?-1.412 5 -y - t
- o..
xo _2 q a: 1 b.[ 1, -+h. %^ e 7 J .5 . *IN X-Z' PLANE: / q'g*' -1 ' 2 2
- VERTICAL IN.:Y< DIRECTION a-l Z
X. 4 gM '5 I41' RJs @7 -12 995 y:& 2 w> f,,g. .(4 jyTEpp 3 4 ER)" g .5 p% ..g o ' 4 2 9 ,,Q., m _.E +1.714 >e 0 4 a
- n. :.y 5
g 1 ! il
- o.-2.0s
'2
- 90'
-h 4 o
- rs,
m, e .e.0 0 "2.6j4. '4S,9 1 E. 6]4 4S39 E. 6]4
- S3]
g E 6]4 453p
- 90*
E.6]4 4S)33 d,! s 46 ' E 6]4 i e l... ' ?_ q j b ,? ' 4": ', ll, 9 (r ' "f, - FIGURE Sf THERMAL HYDRAULIC MODEL m. ,f' 'i ,1719-400-001-00. PROPRIETARY Page 53 of 76 ) u ')' t,. y ?l> -g l i r 3 i a 3
m v.- 4. PROPRIETARY. j EPRl/CE VALVE TEST ,-o s: l l LCD/ICSI NO. :5/CM DI-07/9t? o, vntvt Mrc.: (n000 h I' I SEnlAL NO. 56964U0006G -{ .j f f*y' " '*;' - 1C51 Onit i li/9/81 0 rm g 1 E.51..~.....I s.2 3.14 : IIM 28 <t ....... o v s wo y . 1. ? is I RELAPS/ MODI MODEL
- t. -
we I m , c2 ' -{ *
- j'
,g e.,, m9 .l. e E v)' e .l i o l, I t n n x ',r e .l l l l l r ww l -l
- 3. o
.g'- sn l .c w. l h 1>g .l-l _sm l , ao .t. .l -l t p o.. l g;- .' V' ' l u. -w- }f. .lf
- m j
{- l l } o. t. h. 20. l j' j j i. i. A; a ) 6'y ,----h._-- 'o o. - i -- 4 '80.00 U.20 11.00 l'0.00 10.40 18.00 l'9.20 l'9.60 2'0.00 e. SECONOS c SIMMER TIME - i i POP TIME 1 4 I i i ) i 1 p q g i 1 1 FIGURE 6 VALVE STEM POSITION DURING EPRl/CE TEST 917 COMPARED WITH VALVE STEM POSITION USED IN E RELAPS/M001 MODEL i i 1719-400-001-00 PROPRIETARY Page 54 of 76 i- }' 1
PROPRIETARY l 1 y s 1 3 \\. 51 1 X U g TO F URE 7b m SV ' O TQ FIGURE 7b H G .) H l ) .l l 8 l -H SV j j TO FIGURE 7b i DOWNSTREAM SAFETY VALVE PIPING 6 INCH NOMINAL OD 0.280 INCH WALL
- SUPPORT MASS LOCATION O rLUID FLORCE LOCATION O FLUID FORCE AND SUPPORT MASS LOCATION
}
- VALVE MASS LOCATION H HEADER PER FIGURE 7d
() R RELIEF PIPING PER FIGURE 7c j l I l l t 1 l l FIGURE 7a STRUCTURAL MODEL I 1719-400-001-00 PROPRIETARY Page 55 of 76 ) l
--r-m PROPRIETARY r O 'l O l O an UPSTREAM SAFETY VALVE PIPING g 6 INCH NOMINAL 00 O 718 !NCH WALL + SUPPORT MASS LOCATION l .O O FLUl0 FORCE LOCATION l O I o 2 .w 3 ) I Y l ) o I l \\, 7 O l l 4 O l o O / s i FIGURE 7b STRUCTURAL MODEL 1719-400-001-00 PROPRIETARY Page 56 of 76 m__ _.
w;n g n sc., = gwq' ef.'7y. ' (':qw + s -r--' g f. j-T -l M y ]m,. ' I g -u t-t. !?') ~ k i k_2 e td:jp.. Dh, g ' W i M'* PROPRIETARY 9
- s lin L
"l a c.,o e Vr A L.;/ :. e s,, pL;. r c p N. -: e,, r m.m. w a %s a r[p ) I* he s R@ '; iie,s--e q. iM f(ym'N. n, s .T tp. ", / b. rWi i e,... NOVB. -^ e r _rM,, ',, ' u-x , S.,. '00'M .g m. MOBV-s 4 ' y.l ' y;f pp .g. i 4'.y .,p [J:'qm; 9 '.l, \\ y e -t + .~p0Ry
- L L(
- ] ;
e n;, .Y" PORY t gn., _. 4 s
- r, W..
.,a - -w-w. gH- 'D \\- '_g - j.) :). ,g:SG.(
- s,
- a t
--f'E I Wg c{ k ' >, TS S < ? 4 .r!,F ; " > W
- Mg, 4
.. X-Kev
- e. i-
,s. ....h g + c ,4 w=, f _9-t ,( J; s r
- n.,
3 cp i f 1:1.;.. ] N j,- ' -.: x
- k 5
d.s;,. i,M.) i t 1 4 j ), i ,,s 9 g' ' s ~u-f.a 9 + ,). ,.f , [.,'f..J (k. h c u. l f,-, t.., h r mc [p'[ g I dan l ,[ b_, r; as o n;. n.,. 4.. 7 *,g'#" .q. 4 - j( x ~~
- W E
- REL1EF PlPING -
p' 1 5,m - jAjogjJ6INCHNOMINAL 00, 0.718 INCH WALL' ' i., ~ Cits Di.: 3.5 INCH NOMINAL OD, [7j: l@ 33 L' l B to L110.437. INCH WAlli. mip? "," '. 9-R; LEsto F" 3.5?]NCH NOMINAL'00 G'to'K 10.?]6 INCH WALL' <-s..- i.' 'n F to Jh l6 IM H NOMINAL'0D 0.280 INCH' WALL'. 3 I .. o SUPPORT MA551 LOCATION: ,w,...., M[, Q 4' , 011010 For<CE LOCATION 4 c -y. ,i 8 'k 9 f d.) $.'l 6j m.,. .g-,s pA lG
- }. -'
,.W m.. t
- ' i, f [-
~A +[' /..f. I F,,? y ,,f s 3 ,a;. ,'} -t FIGURE 7c STRUCTURAL MODEL 1 97194400-00.1-00'- ' PROPRIETARY Page 57 of 76 m, -'?, 2 i I l t ,,g., ' n
- i I'
m s:... <
mem-- PROPRIET!sRY l N l s I R . j r. H> s HEADER PlPING 12 INCH NOMINAL OD 0.406 INCH WALL e SUPPORT MASS LOCATION O FLUID FORCE LOCATION @ FtVID FORCE AND _l 5UPPORT MASS LOCATION Y /\\ I O '00 S O ( i l 1 (, <R r' i FIGURE 7d STRUCTURAL MODEL i 1719-400-001-00 PROPRIETARY Page 58 of 76 l ( i N _ _ _ _ _ _ _ _ _ _ __ - A
F: PROPRIETARY ~ w-I ol r / 4 y b
- 1 g.
e: v I y-g .lr, l Y X 2 i i +- f i I FIGURE 8 ' ISOMETRIC VIEW 0F STRUCTURAL MODEL 1719'-400-001-00 PROPRIETARY Pa9e 59 of 76 ' l
iipS-PROPRIETARY. -l 1 4': t s ,o S,- i s ,\\. \\ a-v 1 \\ + .g [ \\ r \\ \\ 4 \\ \\ \\ -\\ \\ l l l i l-FIGURE.9 PLAN VIEW OF STRUCTURAL MODEL ll-I .1719-400-00lLOO PROPRIETARY Page 60 of 76 n 1. l: lt l== -. -.
PROPRIETARY i cf nf.
- c;
/ O diT} E k Fr O ~ center et gr vity l \\ M 'f^.> h bliEEl N 7 4 9 <\\ Y' lc ms er,b
- outiet j
3:#J! tr o
- d/u a y/
f : l / anlet i i FIGURE 10 SAFETY VALVE MODEL 1719-400-001-00 PROPRIETARY Page 61 of 76 - - -_ a
1 . - A. ] s_. PROPRIETARY 4 i N Y 116 ,114 j 112 ll7 111 o I43 145 119 "dge o120 (FIG. lib) 18 146 " 344 121 o 14 139 153 140 (FlG. lib) 154 2 151 147. 150 /R
- 34g, 148 215 223 214 222 224
'225 198 216 212 221 220 199 o 211 H 200 Ni 196 218 195 210 I9# 209 201 (FIG lib) o 208 I DOWNSTREAM SAFETY YALVE PIP!NG 207 202<. N0DE LOCATION AXX NODE NUMBER H HEADER PER FIGURE Ild 206 { R RELi[F PIPING PiR fIGUR[ lit l i 205 l 203 204' I l i i l l l l FIGURE 11a NODE LOCATIONS FOR STRUCTURAL MODEL 1719-400-001-00 PROPRIETARY Page 62 of 76 l l l l l L -- _.
g: . tm
- w..
. PROPRIETARY 135 134 '136 133 132 i 137 l 138 "141 dN3I i i 06 J
- 107 105 UPSTREAM SAFETY valve PIPING NODE LOCATION e
XXX NODE NUMBER ,108 oll2 lli o 109 104 f s 110 l 102 i 101 y., 181 183 180 184 1 185 ) r 186 5 187 iL 188 ] \\ 190 l X j ,191 ' 19? ) ,,196 '193 i 19 ', s o d L) i 1 a i FIGURE 11b N0DE LOCATIONS FOR STRUCTURAL MODEL 1719-400-001-00 PROPRIETARY Page 63 of 76 l
m., ~ w , a -: %' 41:je,?q' ? - PROPRIETARY' Says ,s e M 2 7..' -e g; Tdfi ' y <: ,r ' ' " 'i..
- --f,*'-
30s.306 30 y,< 30H-Y 309 o 304 362 + 312 373o 372 'lh ' II 361 " 303 .p,:q 363 ..64 370 1" 313 318' 302< 368 Y ' d. 65 o374 f$1 .,H ;. 319'
- j, 33 31J 0
a 121;
- ,1
/,ic LS :o155- .[\\ '375. ..Ti be l541 . p. o320 34 346--
- 348:
,376 o + . 5: J:1 225E 345' ' ' 321 ,377
- H.-
1 ' bd-~ 144 K ,322 1 > 1 '378 ' 342* >4 REllEF PlPING' y
- 323
.- +) N00E LOCATION o379 XXX NODE NUMBER I 340 ,. e 338 lb. >324 337 136 i 35 4 334
- t 1
325 332 329 3 328 327 1 u- 't FIGURE 11c N0DE LOCATIONS FOR STRUCTURAL MODEL l1719-400-001-00 PROPRIETARY Page 64 of 76 c., 1 :: m Li_._._
en. ,1c PROPRIETARY " 121 " 155 SN 154 R Sk 225 i e226 235 HEADER P] PING NODE LOCATION ? 236 XXX NODE NUMBER 237 l 238 o 239 o i ,241 I Y i 242 i l 243 i. 244 246 248 o s 750 249 h "251 264 3 258 265 257 269 255 252 270 272 { 253 /54 ";; N [ i FIGURE 11d NODE LOCATIONS FOR STRUCTURAL MODEL 1719-400-001-00 PROPRIETARY Page 65 of 76
.] PROPRIETARY l ) l t i 2800.0 - l L 2100.0 - 0- e WLOWJ 9100000 ~ t o-e WLOWJ 18000000 s A-* WL(NJ 19560000
- WLCMJ 29210000
- 1400.0 - .7 l1 700.0 - ifB j b h-0.04 de l j -730.0 0.0 0.3 0.8
- 0. 9 1.2 TDE (SCC)
FIGURE 12 TYPICAL MASS FLOW RATES IN SAFETY VALVE PIPING 1719-400-001-00 PROPRIETARY Page 66 of 76 I L_-
PROPRIETARY I t i I a000.0- \\\\ . B. uno,o. w WLOHJ 37010000 h i M
- -*WL(NJ 45010000 -
+--+ Pf'LOWJ 45200000 ' 2 00.0 - o y2 ^ c.o -
- i ::::::::::::h :::::::::::::::
-F~>' l f -2000.0 0.0 0.3 0.8 c.9 1.2 TDE (SCC) j i ) J 't 1 i 1 i FIGURE 13-TYPICAL MASS FLOW RATES IN HEADER PIPING 1719-400-001-00 PROPRIETARY Page 67 of 76 1 I w__-____ l
i=: ap PROPRIETARY d y 2 ,,k ' ' 00.0 - 5555555$#ii il";4%^ ~~- l .,A ' S--eRHO 15060000 4 q; M RHO 15100000 f H RHO 17010000 t. 3 40.0 - M RHO 19570000 o .g. i ;., <g v 20.0-o 2 ;;::::: _ .I 4 . c.o D0 0.3 c.s o'. s g'. 2 TIMC (SEC) FIGURE 14 TYPICAL DENSITY TRANSIENTS IN SAFETY VALVE PIPING 1719-400-001-00 PROPRIETARY Page 68 of 76 .J
y m u PROPRIETARY: l C 1 ..; n i 1 q ) M J ) i i i 32.0- -l 1 h ,'n. U g - 24.0-t e-aRHO 14010000 1 u { e -oRHO 37010000 6--* RHO 45010000 i
- RHO 45200000 g
) bi %I 4 8.0 - ? ', i ,.t d. ', 2:2-p' 0.0 - 0.0 ' O.3 0.8 0.9 1.2 TIME (SCC) ~. \\llLl FIGURE 15 TYPICAL DENSITY TRANSIENTS IN HEADER PIPING l 1719-400-001-00 PROPRIETARY Page 69 of 76 u
.. n=-- ng ;., Mi *. ' PROPRIETARY-I et. s o. t' L': y _. 4
- l
( 6 r n12... j,
- f'
+ 2750 PSIA 1 M ' ,Ta'_ _^ ' J ~e go.
- g.
p -- ~ ' x ~
- [ 2100.0-
{ L j i 15 5.0-i s 15E 0 0.0 o.3 0.8
- 0. 9 1.2 TIPC (SCC) g 1
l i i FIGURE 16 TYPICAL PRESSURE TRANSIENT IN SAFETY VALVE i -1719-400-001-00 PROPRIETARY Page 70 of 76 l.. l L 1
.,. j. PROPRIETARY i 1 1 I 1 w-670 PSIA o 000.0 - n .~ u--eP 19010000 - D 400.0-o-eP 19410000 5 6-*P 19570000 W 's g h g 200.0 - + 0.0 0.3 0.8 0.9 1.2 T!!E (SEC) FIGURE 17 TYPICAL PRESSURE TRANSIENTS IN SAFETY VALVE PIPING 1719-400-001-00 PROPRIETARY Page 71 of 76 1 i i L ] )
r UL PROPRIETARY s -o. . geeg ~1B000 -nA000' ^ f ~:2000 o -0000. i .2
- d. -d3000 a;
e i 'E6000= -l .3 -44000 w 1
- NI lL e
l l.a. -8 . TIME (SEC) _ar. 1.11 1.13 1.14 1.15 1.17 1.18 1.19 1.21 1.22 1.24 1.25 ) o l i o. FIGURE 18' TYPICAL FORCE TRANSIENT FOR HEADER PIPING l N0DE 254X i i 1719-400-001-00 PROPRIETARY Page 72 of 76 i i h
- p:
9 S ... PROPRIETARY: i 'l j '1 l 1 f. ,jm 1' '220000 m j20000 i '1 0 ) e l .. y. 1 i 1,20000
- lr.
120000 l n co F, N _'d I S0000 l '., -1 l ::. w ' E t i I E ::: > TIME (SEC) = 1.111.131 141.151.171.181.191.211.221.241.25 1 ' FIGURE 19 TYPICAL FORCE TRANSIENT FOR HEADER PIPING N0DE 254FZ 1 1 ~1719-400-001-00 PROPRIETARY Page 73 of 76 o -g e <I... J
'Ap g . PRO.PRIETARY x<h L/ r. .segeee j . 60000 yl:. 20000 ,l 4 l .280000-i iM0000-220000? i i &3seeee 1 ) 1200001 l 1 m. E a i 1 l l . TIME (SEC) e i i 1.11'i.13 1.14 1.15 1.17 1.18 1.19 1.21 1.22 1.24 1.25 l i FIGURE 20-TYPICAL FORCE TRANSIENT FOR HEADER PIPING SHOWING MATHEMATICAL INSTABILITY - N0DE 263FX '1719-400-001-00 PROPRIETARY Page 74 of 76 .) l _,
- c..
m'S.;"h.';n. ', ' _~ Y i-' 1 4 1~4 PROPRIETARY $W,,' M, + b'd 1 ' }i _, .r.,, N-I L u.. .: i. - 1 n -. I ~ ' rd@@$0S
- j.; > s
\\ e ~ ,d ') , d, l).3.cg O. [ggeene g. in y .;mg! 4 .1 I E N 'gggg ' [, I .. ~. m;., s m g.3m R U20000- .w- . y i '- .-O x?: 8 I:(OV k c 1 . m-c . TIME (SEC) i'.11 1.13 1'.14 1.15 1.17 1.18 1.19 1.21 1.22 1.24 1.25-f T \\'. ] F1 h ., -{ 'r/ a FIGURE.21 TYPICAL FORCE TRANSIENT FOR HEADER PIPING
- A AFTER CURVE SM0OTHING - N0DE 263FX
.o '1719-400-001-00 PROPRIETARY Page 75 of 76 ) u.
~ PROPRIETARY' I pi: 1 I -4 i
- i)]'
i1 j i i120000 Sig FX gg 263 FX A0000 o. O' 4 240 FX 40000 ?>. t n 46 FX { g -j l $u g3g,eeee 1 -: 00000 l } r T' M >TIPE (SEC) 1.111.131 141.151 171.181.191.211.221.241.25 l l ) l 1 l >5 FIGURE 22 TYPICAL STRESS TRANSIENTS FOR l SELECTED HEADER PIPING ELEMENTS 1 l l - 1719-400-001-00 PROPRIETARY Page 76 of 76 u
gg, >- r,,. r_.. ---,~w---m-
- ~
l ATTACHMENT 3 t e i i I 1 sf i I l l I l l l l l .I i 1 4 - - - - - - - - - - - - - - - - - - - - - - - - - - - -}}