ML20236D201

From kanterella
Jump to navigation Jump to search
Max Allowable Radioisotope Concentrations in Waste Oil/ Solvent
ML20236D201
Person / Time
Site: Big Rock Point File:Consumers Energy icon.png
Issue date: 05/05/1987
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML20236D193 List:
References
EA-TAH-87-02, EA-TAH-87-2, NUDOCS 8710280065
Download: ML20236D201 (16)


Text

i e

APPENDIX ONE  ;

i EA-TAH-87-02

" Maximum Allowable Radioisotope Concentrations in Waste Oil / Solvent" i

I i

l Performed By I m [ , Date N A F7

, Technical Review By _ _ Date- f/r t i 7

gAo2meRBalh" P

MIO387-0100B-BX01

V ..  ;

l. ' Pass 1 of 15 q l -

.EA-TAH-87-02 o

i MAXINUM ALLOWABLE RADIOISOTOPE CONCENTRATIONS IF WASTE OIL / SOLVENT d

i Problem Statement and Use of Results .'

Determine the maximum concentrations (pci/ml] of radioisotopes in vaste oil  ;

such that the annual dose from each isotope will not exceed 1 ares to a hypothetical maximally exposed individual. This information will be used to determine the maximum dose to individuals due to actual radioisotope concentrations in I

contaminated waste oil at Big Rock Point.

Input Data Major-isotopes in the contaminated waste oil from isotopic analyses of samples  !

(isotopes. listed in Table One). .t Assumptions and Methodology' Doses to s hypothetical maximally exposed individual will be conservatively  ;

calculated by assuming worst case conditions for each exposure pathway. Doses j to the individual due to standing in spilled oil; submersion in the' contaminated j oil; ingestion of oil; and inhalation of effluents due to burning the waste  !

oil will be calculated. In each case, the concentration of each isotope which  !

would result in an annual dose of 1 mrem will be determined. Assumptions used in each calculation will be given with the calculation. Isotopic and other energy dependent parameters used in the calculations are given in Table One.

Calculations A) Dose to an individual standing in an oil spill )

This dose can be estimated by assuming a disk source geometry. I

" b lt Where SA = source strength [ "cm c }

$1R/hr = particle flux necessary to produce a dose rate of Irem/hr.

R = radius of the disk r = height of dose point above disk. For a 6' tall individual, r = 3 ft. (91 cm)

1. Determine R Let the spill be 1/2" deep then R can be taken as the radius of a very short cylinder whose volume is equal to that of a 55 gallon drum.

nRah = 55 gal (3785 cc/ gal) = 208175 cc R=

= 228 cm

.5 in (2.54 cm/in) n I

i MIO387-0100B-BX01

1. '

' Pess 2 of 15

l. EA TAH-87-02 L

i-

2. Determine S g Let the concentration of each isotope equal"1 pCi/ml

pCi [ 1 Ci 1 al cm dis i disCi/sec [ F ([.5 ig}t 2.54In '

A-I el'\ IO5ci 3.7E+10 \ =4.70E+04 P sec ,

.3. Calculate-doses from ch isotope

'D( f ' ' ~

j {l t 4 OIud of f, g are yve n 6 Table One,  ;

Doses due to 1 pCi/ml of each isotope are recorded in Table Two.

4. Determine-the concentration of each isotope which alone in the oil spill will result in an annual dose to the individual of 1 mrem.

coocess ["*93 - (> "# 1) '0{,"'" ** ' " ~ ^ ~

c](29 */Q3(,5 %/ f M The calculated concentrations are recor d in Table Two.

B) Dose to an individual submerged in contaminated oil.

The dose.to an individual submerged in contaminated oil can be assumed equal to the dose at the center of a spherical source.

Let the volume of the sphere equal the volume of 20 barrels of oil. '

V:.20 (65 gr0 ( 32 85* "/yD : Vl/b (+ 0 4 cm #

so Q: -

% /0 0 Crn The dose rate at the center of the sphere can be calculated as

~

, 3* I by ( I ~ G ^"

t' [ reM~m'

.A41 %) # ** /~f where Sy=sourcestr$,gth( ] 1' A 1

B-pSkk==buildupofthefluxinthe~

absorption coef ficient of oil oil R = radius of the sphere

$1R/hr = flux necessary to produce a dose rate of trem/hr.

1. Determine S y l

Let the concentration of each isotope equal 1 pCi/ml {

S*I Of 3,7Etio l = 3 . '7 0 E + 0 4 >

y , .

MIO387-0100B-BX01 1

_ - _ _ - - J

.. I

\

8 EA-TAH-87-02 L

2. Calculate doses from each isotope.

i Values of B y and $1R/hr are energy dependent. Valves for each  !

Isotopeareskv,enknTableOne. Doses from each isotope are recorded '

in Table Three.

3. Determine the concentration of each isotope which alone in the oil will result in an annual dose of Imrus (for methodology see Part A Step 4).

4 C. Dose to an individual due to ingestion of the contaminated oil.-

Assume contaminated oil infiltrates the water system such that the hypothetical maximally exposed individual ingests a gallon of contaminated oil per year (ie, water is 1% oil).

Raipj.= Cip Uap Daipj Where Raipj = annual dose to organ j of an individual of age group a from nuclide i via pathway p in mrem / year Cip = concentration of nuclide i in the media pathway p [ g]

Uap = intake rate (usage) associated with pathway p [l/ year]

Daipj = dose factor for a specific age group a, radionuclides i, pathway p, and organ J.

1. Determine the intake rate, Uap Assuming the maximal individual of each age group ingest the same amount of oil Uap = 1 gal / year (3.785 g y ) = 3.8 1/ year
2. Determine the nuclide concentration, Cip.

Cip = 1 pCi/ml (1000 al/1)(10s pCi/pci) = 108 pCi/1

3. Calculate doses from each isotope Values of Daipj for each age group are given in Table One.

Calculated doses are recorded in Table Four.

4. Determine the concentration of each isotope which alone in the oil will result in an annual dose of 1 mrem.

I meem lYv Concenfedian UC'/mt ' / pc/,ut R mem/pr MIO387-0100B-BX01

4. 1

. Pass 4 of 15 l

- EA-TAH-87-02 .

i D.- Dose to an individual due to inhalation of effluents created through '

burning of the contaminated oil.

i Lets-assume that the hypothetical. maximally exposed individual _ breaths all j the effluents from the burning of one barrel of oil per year. The annual dose can be calculated as -

A D ja (r,0) = R,. X(r,0) DFAija l Where Ra = Annual intake for individuals in age group a in

[m3 /yr).

X(r,0) = annual average ground level concentration of nuclide i in air in sector 8 at distance r in  ;

[pci/m ),

a 1 DFAij a = Inhalation Dose Factor for radionuclides i, organ  !

j, and age' group a, in [mres/pC1). Values given in l Table One.

1. Determine the value of Ra. i Assuming each age group breaths the total effluents of one barrel per year...

Ra = 55 gal /yr (m3 /264.2 gal)(d) where d is a dilution factor. Assuming oil behaves similar to water, then d = volume of effluents / volume of liquid For water at room temperature Vg = 0.0160483 ft3 /lba at boiling Va = 26.799 ft /lba so d = 26.799/0.016048 = 1670 ,

then Ra = 348 m3 /yr

2. Determine the concentration of radionuclides, X.

Assume the maximally exposed individual is at the center of the plume,

.5 miles down wind from an elevated release of burning oil effluents.

o 7 (ge)= 1)7D04 Q; /Q [ Reg.6uMe\doh where Qi = release rate of nuclides [Ci/ year]

= 1 pCi/ml (3785 ml/ gal)(55 gal /yr)(1Ci/10epci)=0.208 Ci/yr

[X/Q] (r,0) = annual average atmosphere dispersion (sec/m3 ]

X (r,0) = annual average ground level concentration [pci/m3]

f MIO387-0100B-BX01

_____.________j

c.; .\

i

  • ~ '

,. .EA-TAH-87-02 First, determine the value .of [X/Q) (r,0) l From Reg Guide 1.111 2 N ~

D/Q]Cr,e)= 2. o 32 Nx0O' g exp

_. 2 cy,2- ,

where nij = length of time (hours) weather conditions are observed i N = total hours of valid data assume nij = N ,

0 = windspeed = 1 m/see i x = distance downwind of source =.0.5 mile = 805 m o = verticle plume spread = 50m (for stability class C) l

.h* = effective release height = 80m l GeV ' ON Bo (;mjQ(S-QO } 2(Sb* '- i D lQ g = I.40 E- o S Sec /m g,n . i (c e) = 3.DE 4 oy [ (' [,2o8 hkf,yog-og %- 7,2 E-o2

3) Calculate doses from each isotope  :

Values of D'ja are recorded on Table Five.

4) Determine the concentration of each isotope which alone in the oil will produce an annual dose of 1 mrem to the maximal individual breathing the effluents.

Conc-[pCi/ml] = (1 pCi/ml) [(1 mrem / year) +A (D ), ,,,,jy,,,))

Values of conc. [pCi/ml] are recorded in Table Five Summary and Analysis of Results Maximum concentrations [pci/ml] of radioisotopes in waste oil such that the-annual dose from any one radionuclides will not exceed 1 arem to a hypot'netical maximally exposed individual have been conservatively calculated. Worst case conditions were assumed for each exposure pathway: standing in an oil spill for one year; submersion in oil for one year; ingestion of one gallon of oil per year; and inhalation of the total effluents of one barrel of oil released R through burning. The maximum concentrations determined for each pathway are summarized in Table Six.

All of these maximum concentrations are overly conservative. It is difficult to imagine even a worker at a hazardous waste disposal site standing in an oil spill for longer than the time to clean it up - say 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. This would increase the maximum concentrations by a factor of 365 (number of days in a year) resulting in concentrations on the order of IE-03 pCi/ml.

l

.MIO387-0100B-BX01 ,

i C.__._._______

^

. l Paga 6 of 15 EA-TAH-87-02 I t - i s' also difficult to imagine any person submerged in oil for a year.

Assuming the possibility the person is submerged for one hour, the concentration necessary to produce a dose of 1 area will be increased by a factor of 8760 (number.of hours in one year), that is, the concentrations will be on the .

order of 2E -04 pCi/al.

The maximum ~ concentrations determined for the case of ingestion is also highly conserva tive. The naximally exposed individual would not drink a gallon of {

oil per year. Oil concentrations as low as 2 ppa will leave an oil film over j the water surface - it is unlikely.that anyone would drink water.with visible l signs of oil contamination. This estimate also does not take into account I radioactive decay or retention of the-isotopes during transport through the ground water. This aspect is considered in Attachment One. i i

Finally, the maximum concentrations of each isotope such that the annual dose f from each isotope does not exceed 1 mrem are given in Table Seven. The most restricting value from all pathways is listed. These concentrations are compared with measured concentrations in Big Rock Point's waste oil (Table l Eight) to estimate the annual dose to. maximally exposed individuals due to disposing of the radioactively contaminated oil at a non-radioactive materials hazardous waste disposal site (Table Nine).

TABLE SEVEN: MAXIMUM CONCENTRATIONS [pCi/ml] TO PRODUCE AN ANNUAL DOSE OF 1 mrem Isotope Mn 54 Co 60 FE 59 Cs137 Cs134 Ag110m Nb 95 Concentration [pCi/ml] 2E-04 2E-04 2E-04 2E-05 2E-05 2E-04 2E-04 References Regulatory Guide 1.109, " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I" October 1977.

Regulatory Guide- 1.111, " Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors" July 1977.

Rockwell, Theodore III. Editor, Reactor Shielding Design Manual; D. Van Nostrand Company. Inc; Princeton, New Jersey, 1st Edition.

" Radiological Health Handbook," U.S. Department of Health, Education and Welfare; Rockville, Maryland; January,1970.

l l

MIO387-0100B-BX01 L_________-__---.-_-__.

f o

7 e

g

_ a -

P .

5 5 5 5 5 4 5 4 5 - D5+ 2 - 92

- 0 5 5 0 -

0 - 0

- I -

ELE 0

ELE I -

0 0

- I -

ELE 0 0 ELE

- I -

0 9P16E7E648753' 41 7 0L1 a5L9 a 2 L 6 g6 L 2 g

'b F5 7903050031 29341 3 n 9. I 3 n 6. I 6 n 4. I 4 nu

~

~

. .I u u u N 3060900001 01 0O62G6L1 G9L1 G1L1 G3L : : - '

_ I 5 4 5 4 5 3 5 3 m 5 5 0 0 0 0 0 0 0 0 0 D : 0 0 . - I - - I - - I - - I -

_ 1 2+9 - 51 76 - ELE ELE ELE ELE 1 P 0.4E6E61 76621 31' 4L9 a5L4 a3L8 a7L2 g

_=

A E A38409050021 5

2060800001 01 0056G5L5G8L4G1 L3G2L 2 9 3 6 0.I 7 n 4. Iu 4 n 3.uI 4. un 7. I 6 nu

- .~  : -

4 4 4 4 4 4 4 4 A

5 5 0 0 0 0 0 0 0 0 T 4 ~ 0 04 J -

A D

3 Y3+ 5 - 2631 1 P60E7E7687 24693 E rE rE 'r E rE rErE rE r 8 e6 e7 e1 e4 e4 e3 e2 e F07407050041 28404.iv 0. iv 9. iv 4. iv 8. iv 7. iv 0. iv 0. vi 2

_ D s .

E C 20709000O1 01 0071 L1 L1 L1 L3L2L7L5L

_ T -

_ A

_ L -

' E 4 5 4 4 4 4 4 4 R '

5 5 0 0 0 0 0 0 0 0 7 Y- 0 0 - . - - - - - - -

Y E3 72+7 - 4264 -

ErE rE rE E E E rEr G P1 P16E7E788764786 9 e6 e9 e6 a7 e5 e1 e7 e R

E N

O - F T s OC 0

30701 6800050041 2 8 4 6 0.iv 7. iv 4. iv0 n2 n4 n1 00001 01 0071 L2L1 L1 L3B2B6L4L u o o .i v 3. i v

E S .

I' D -

N 5 4 5 5 4 5 4 5 5 0 0 0 4 0 - 0 0 0 A. 9 0 0 . -

- I - I 0 - I - - -

C 5 + 0 - 78889 ELE EL - ELE E rE I PD5E6E546531555 0L7 g4LE g8L3 g8 e5 g P eA61 908040001 1 91 O F . 0 4.I 2 n 2. I 9 n 7. I 4 nu 3. iv2 nu u u t T 41 4070O001 01 0043G1 L3G1 L2G3L5L7L c O 4 .'

S d I '

5 4 5 3 5 3 5 3 5 5 0 0 0 0 0 0 0 0 P

0 0 0 -

- I - - I - I - - I -

E N

O 6

P'Y 65E5E526508444 oA226050400001 91

+8 - 44455 ELE ELE 2L6 a6L9 a3L1 a7L2 g ELE ELE E

C 51 40700001 01 0034G7L3G1 L2G1L2G3L

. . 7 0.I 4 nu 6. I 0 nu 9. I 9 nu 5. I 2 nu i L i B F A

T 5 5 4 5 4 5 4 5 4 5 0 0 0 0 0 0 0 0 4 D 0 0 - I - - I - -

4

- - - P 5 5+9 6976 ELE ELE E rE E rE F P 5.3E6E61 7672231 0L5 g1 L8 a7 e6 a9 e4 g v2 v1 n M aA28409050021 1

3060800001 01 0051 G1 LX G2L1 L4L1 L7L 29364.I 7 n 2.

. I 4 n 0. i u u n u 9. i .u

]  : ] t r ] ] i h i ] i C ]

/ C p

] i cp~ ] p i d R i C ] i / C

/ /nC npnin/nC nsnpn 1 sapa/aC asapaea/a P

- ] eg/gsgpgeg/gr gsg g

c, / ]

j g rrsrer/r rrsrarer aO eO rO sO aO eO[ O rO 32 g / [ r- m e [ r m i 2 2 ] / 2 ] l ml[ l rl l al jl[ l t 0 - m1 z ] m1 ja[ a aaaja[ apa a

- m c- a2 c[ pc i i A i pi cjc[ cpc cicAc 7 c[ m c- m ll i iiAiaiFi i 8 e)[ c[ m cee ii atFtitAt atFtDtDt t

- fV r[ cl[ FF oo DiDi aiFiDiDi i i H eieri e[ i *

  • l r rD rD r r rt rt r A A clMh arf i ol ab abitCtC C CdCdC nC nC T rf( / e i e ol l n n l l a a

- ul R papF po F u u e e i i f f A oay1 / / / *

  • d d e e h h n n P E SHE$pppppp B BA A T T C C I I A

.l

,, EA-TAH-87 Paga 8 of 15 l

l TABLE WO: MAXIMUM ALLOWABLE CONCENTRATIONS CALCULATED FOR THE CASE OF STANDIN0 IN SPILLED OIL FOR ONE YEAR Isotope , D*[ Rem /hr] Conc *[pCi/ml]

Mn 54 3.64E-02 3.1E-06 Co 60 5.07E-02 2.3E-06 Fe 59 4.76E-02 2.4E-06 ,

Cs 137 2.99E-02 3.8E-06 l Cs 134 3.15E-02 3.6E-06 l Ag110m- '3.64E-02 3.1E-06 j Nb 95 3.38E-02 3.4E-06 1

  • Dose Rate due to 1 pCi/ml source. l

+ Concentration to produce annual dose of 1 mR. j l

1 TABLE THREE: MAXIMUM ALLOWABLE CONCENTRATIONS DETERMINED ASSUMING J AN INDIVIDUAL IS SUBMERGED IN OIL FOR ONE YEAR Isotope D*[ Rem /hr} Conc +[pCi/ml]

Mn 54 4.90 2.3E-08 Co 60 5.39 2.1E-08 Fe 59 5.19 2.2E-08 Cs 137 4.87 2.3E-08 Cs 134 4.93 2.3E-08 Ag110m 4.90 2.3E-08 Nb 95 4.90 2.3E-08

  • Dose Rate due to 1 pCi/ml source.

+ Concentration to produce annual dose of 1 mrem.

TABLE FOUR: MAXIMUM ALLOWABLE CONCENTRATIONS CALCULATED ASSUMING INDIVIDUALS BREATH THE TOTAL EFFLUENTS CREATED WEN BURNING ONE BARREL OF OIL Infant Child Teen Adult Isotope R* Conc + R* Conc + R* Conc + R* Conc + '

(area /yr] [pci/ml] [mres/yr) (pCi/ml] [ ares /yr] [pci/ml] (arem/yr) [pCi/ml] i

'n M 54 7.6E+04 1,3E-05 4.1E+04 2.4E-05 4.6E+04 2.2E-05 5.3E+04 1.9E-05 ,

.Co 60 9.8E+04 1.0E-05 1.1E+05 9.1E-06 1.4E+05 7.1E-06 1.SE+05 6.7E-06 i Fa 59 2.0F.05 5.0E-06 1.1E+05 9.1E-06 1.2E+05 8.3E-06 1.3E+05 7.7E-06 Co 137 2.3E+06 4.3E-07 1.2E+06 8.3E-07 5.7E+05 1.8E-06 4.1E+05 2.4E-06 Cs 134 2.7E+06 3.7E-07 1.5E+06 6.7E-07 7.5E+05 1.3E-06 5.6E+05 1.8E-06 Ag 110m 1.4E+05 7.1E-06 1.6E+05 6.3E-06 2.1E+05 4.8E-06 2.3E+05 4.3E-06 Nb 95 5.5E+04  ?.8E-05 6.2E+04 1.6E-05 7.4E+04 1.4E-05 8.0E+04 1.3E-05

  • Dose Rate due to a 1 pei/ml source.

+ Concentration to produce an annual dose of 1 mrem.

MIO387-0100B-BX01 t_ __ _ _ _ _ _ _ _ _ _ _ _ _ _ - _

j EA-TAH-87-02 Pcga 9 of 15 .)

l TABLE FIVE: MAXIMUM ALLOWABLE CONCENTRATIONS CALCITLATED ASSUMING INDIVIDUALS BREATH THE TOTAL EFFLUENTS CREATED WHEN BURNING ONE -1 BARREL OF OIL. J

)

. Infant Child Teen Adult

.D^ja* A Isotope Conc + D^j a* Conc + D^ja* Conc + D ja* Conc +

[ ares /yr] [pci/ml] .[ ares /yr] [pci/al] [ ares /yr] [pCi/ml] [mres/yr)-[pCi/ml] f q

.Mn 54 2.3E-02 4.3E+01 1.4E-02 7.1E+01 7.9E-03 1.3E+02 5.6E-03 1.8E+02 l Co 60 1.0E-01 1.0E+00- 6.1E-02 1.6E+01 3.5E-02 2.9E+01 2.4E-02 4.2E+01 ;

Fa 59 2.3E-02 4.3E+01 1.1E-02 9.1E+01 6'1E-03

. 1.6E+02 4.1E-03 2.4E+02]

Cs 137 1.4E-02 7.1E+01 7.8E-03 1.3E+02 3.4E-03 2.9E+02 2.5E-03 4.0E+02' Cs 134 1.6E-02 6.3E+01 8.8E-03 1.1E+02 4.5E-03 2.2E+02 3.4E-03 2.9E+02 i Ag 110m 8.4E-02 1.2E+01 4.7E-02 2.1E+01 2.7E-02 3.7E+01 1.9E-02 5.3E+01 Nb 95 1.1E-02 9.1E+01 5.3E-03 1.9E+02 3.0E-03 3.3E+02 2.0E-03 5.0E+02 t J

CDsse Rate resulting from 1 pei/ml source. '

+ Concentration to produce an annual dose of 1 mrem. ,

i TABLE SIX:

SUMMARY

OF MAXIMUM ACTIVITY CONCENTRATIONS * [pCi/ml] f Isotope Spilled Submersion Inj estion Inhalation Oil l I

Mn 54 3.1E-06 2.3E-08 1.3E-05(I,L) 4.3E+01(I,LU)

Co 60 2.3E-06 2.1E-08 6.7E-06(A,G) 1.0E+00(I,LU) ,

Fe 59 2.4E-06 2.2E-06 5.0E-06(I,L) 4.3E+01(I,LU) l Cs 137 3.8E-06 2.3E-08 4.3E-07(I,L) 7.1E+01(I,L)

Ca 134 3.6E-06 2.3E-08 3.7E-07(I,L) 6.3E+01(I,L)

Ag 110m 3.1E-06 2.3E-08 4.3E-06(A,G) 1.2E+01(I,LU)

Nb 95 3.4E-06 2.3E-08 1.3E-05(A,G) 9.1E+01(I,LU)

  • to produce an annual dose of 1 mrem. l I = Infant A = Adult l G = GI LLI L = Liver LU = Lung l l

2 MIO387-0100B-BX01

f 2 o b - - - - - - - - - - - -

N 0 -

2 1

e 7 g -

0 a m -

. P 0 - -

E

- 1 1

7 g 9 A-9 6 6 4 0 0 3 - -

] 1 - E E l -

- - - '- - - - - - - - 0

/ C m s - 4 . 9 3 9 i

S C 9 'l E p L [ -

P 768 8 68 5 M S 000 0 00 0 A N 7 - - - - - - -

S O 3 EEE - E - - EE E I 1 - 4 25 - - - - 47 - 9 L T 8 1 3 4 32 3 I A s 1 52 0 1 3 5 O R C .

T 2 33 9 1 9 1 E N T E S C 6 7 A N 0 0 W O 9 - -

C 5 .

E E F - - - - - - - - - - 9 ~-

O C e 3 9 I F 1 0 S P .

E O 1 6 S T Y O L S 6 7 8 6667 65 A I -

0 0 0 0000 00 N 0 - - - - - - - - -

A 6 E - E - - - - E - EEEE EE 4 1 4 0730 69 C o 7 5 0 0000 05 I C 3 9 9 7483 31 P . .

O 3 4 9 421 1 28 T

O 7 8 888 86677 65 S 0 0 000 00000 00 I 4 - - - - - - - - - - - -

5 E - E~ EEE EEEEE EE 5 282 - 96839 26 T n 8 1 1 62 57907 68 H M 7 1 242 96293 09 G -

I 5 9 536 43481 41 E -

E 344444444555557 L .

888888888888888 B E ///////////////

A T 4001 1 1 1 1 1 392746 T A 21 1 222222001 1 20 D ///////////////

877777777222221 0000000001 1 1 1 1 0 l

i y k O e c e l a t nl r1 2 s iA l T## a e

r nll W lk i c r I i i ll pllO a a aa iiPii r B mPP OO OO eT N u r t 2 I n rtt1 245ll ell sn 0 G i .D nn#### eet eeai

- I l uu nnannW 7 R l i yoollll nnwnn l 8 O i Ol cciiiiuud uu .

e

- O neeaaaaTTeTT mr H eORRPPPP e ar A d t es2llll ll pp eeFeet a ppnB T

- s a0iiiiiiii2ii o A UW6OOOOOOPP#PPC E

f T =

o '

1 e

3 s 1

5 0 o e

- D g

9 E 2 l 5 b - - - - - - - - - - - - - - a P N 1 t o

T 3

m 0 0 -

L 1

1

- - - - - - - - - - - E - - -

g 0 A

U A 5 D

I V

I D 4 2 1 N 3 0 0 I 1 - -

- - - - - - - - - - - E - - E D ] s 7 0 E mC S e 4 1 O r P a X [

E ' -

E 21 3 3 2 3 1 Y P 7 000 0 0 0 0 L O 3 - - - - - - -

L T 1 - EEE - - E - - - - E E - E A O 1 87 5 7 7 7 M S s I I C 1 1 1 4 5 4 7 X

A R M E P

O 3 3 T E 9 0 0 S 5 - -

S O - - - - - - - - - - E - - E -

E D e 7 0 S F O L 5 3 D A U

L N A N U A 2 3 4 223 421 N 0 0 0 0 000 000 N 6 - - - - - - - - - - - - - -

A E -- E E EEE EEE o 7 5 0 420 521 D C . .

E 1 2 5 21 9614 T

A M

I 3 4 444 4223422 T 4 0 0 000 0000000 S 5 - - - - - - - - - - - -

E E - E EEE - EEEEEEE n 9 6 67 1 381 5909

M . .

E 2 4 21 3 21 24629 N

I N

344444444555557 E 888888888888888 L E ///////////////

B T 4001 1 1 1 1 1 392746 A A 21 1 222222001 1 20 T D ///////////////

877 777777 222221 0300000001 1 1 1 1 0 l

i y k O e c e l a t nl r1 2 s iA 2 l T## a 0 e W lk

- r nll i c 7 r I i i ll pllO a 8 a aa iiPii r

- B mPP OO OOeT H N u r t A I n rtt1 245ll el l sn T G i D nn#### eet eeai A

- I R

l uu l i yool l l l nnwnn nna nnW l E O iOl cciil i uud uu .e O neeaaaaTT eTT mr eORRPPPP e ar d t eeF eet a es2lll l l l pp ppnB s e0iiiiiiii2ii o UW6OOOOOOPP#PPC

'EA-TAH-87-02 Pagn 12 of 15 ATTACHMEh7 ONE Dose to a Hypothetical Maximally Exposed Individual Due to Ingestion of Contaminated Oil Taking Into Account Retention In Soil During Ground Water Flow l Reference. (

I ANSI /ANS-2,17-1980 "American National Standards for Evaluation of Radionuclides j

- Transport in Ground Water for Nuclear Power Sites," American Nuclear Society; j LaGrange Park, Illinois, j l

Assumptions j I

Instantaneous release to ground water of entire source-term j Maximum hydraulic gradiant in direction of ground water flow Nearest potential user is at site boundary (say .5 miles)

+

+

Conservative values of hydraulic conductivity and effective porosity (ie, assuming. sandstone)  !

No isotope transport in direction perpendicular to ground water flow Calculations The concentration of radionuclides at a point 0.5 miles from the source in the

. direction of ground water flow can be calculated as:

rn' y%

(x-uf0E7erf gp - erf 2 spg y 92.

~

Cg 4 exp-Assuming an instantaneous plane source Where C = concentration of radioisotope [Ci/m 3]

m' = activity per unit area of source [Ci/m a) n = porosity of soil (void fraction of the medium) t = time since release X = distance away from source = 0.5 mile = 805 m A = radioactive decay constant of the isotope y = radius of source f = width of the source Kd = contaminant distribution coefficient (a measure and the medium, of the reaction between the take = 0.0)

R = retardation coefficient (a measure of the capability of the d

porous medium to impede, by sorption, the movement of a {

particular radionuclides carried by the fluid = j 1 +' p p d=bulkNens(K/n)=1.0)iNyofthesoil D g = dispersion coefficient (relates the concentration of a contaminant to the flux of contaminants).

a =. longitudinal dispersity (radius of the source)

VX = hydraulic velocity of ground water in the direction of flow MIO387-0100B-BX01

EA-TAR-87-02 Pasa 13 cf 15 i

Ei = D /Rdg Dg = ag V,/n U = V,/nRd l Assuming the ground is sandstone and sand is composed of quartz:

pd = 2.14 g/cc and p uartz

= 2.65 g/cc Handbook of Tables for Applied Engineering Science; CRC Press, Inc., 1979 10 grams sandstone = 4.67 cc 10 grams quartz = 3.77 cc 0.9 cc air in sandstone ,

.. Void fraction, n = 0.9ec/4.67cc = 0.19 Assuming the spill of the 55 gallon drum of contaminated oil becomes an  :

I instantaneous rectangular source....

py = 513 4 (M86 /yj ),2.o 8 nss O is 574AL's. --+- W V* *"' ' = W L +.

le t- v s L % d f. A*Wm )

Ls 2 04 cm e 2. 04 m Assume the activity of each isotope in the drum is 1 pCi/ml Total Activity = 1 pCi/ml (208175 ml)(ICi/10 8 pci) = 0.208 Ci g, Activity (Ci) _ 0.208Ci = 2.04 C /d (width of the source)(thickness of the source) (2.04m)(.05m)

Assuming there is no flow in the direction perpendicular to the ground water flow, Ey = 0. Therefore the erf terms can be neglected.

Now, lets assume the hydraulic velocity of ground water V , is 0.5 m/ day ,'

(based on flow through unconsolidated sand aquafer = 1.2 I/ day) then U= = 2.6 m/ day 01 0) l D - (2.04m)(0.5 m/ day) = 5.4 m 2/ day i x 0.19 j 2

E, = S A m / day = 5.4 m 2/ day The concentration, C, can now be calculated as:

2. o 4 N/mL [80$m ~ 2.6 4 M C o r '//'My' % + %-1 % I 4 cot.m }ws.g)nf )

L HIO387-0100B-BX01 E

t

.. h; i\.

>. 1-EA-TAH-87-02 4, Paga 14 of 15 Maximum concentrations will occur when:

805m - 2.6 m/ day (t day) = 0 + t = 310 days (m D, JOlM- c2 exp 7 0 f 310 ( Ci j/m' The concentrations of contaminants in the ground water at 0.5 miles from.the n

source are:

TABLE A1: CONCENTRATIONS OF ISOTOPES AT THE SITE BOUNDARY drinking Isotope A [ day"I ] ,C* [ pci/ml] Cip**[pCi/l] oil Cip+[pci/1] water Mn 54 2.22E-03 1.9E-02 1.9E+07 1.9E+05 Co 60 3.61E-04 3.3E-02 3.3E+07 3 3E+05 Fe 59 1.55E-02 3.0E-04 3.0E+05 3.0E+03 Cs137 6.29E-05 3.6E-02 3.6E+07 3.6E+05 ,

Cs134 '9.22E-04 2.8E-02 2.8Et07- 2.8E+05

'Ag110m 2.74E-03 1.6E-02 1.6E+07 1.6E+05 Nb 95 1.97E 8.2E-05 8.2E+04 8.2E+02

  • C (pCi/ml] = C(Ci/m 3](10 8 pCi/Ci)(im 3/10sem3 ) "
    • Cip (pCi/l] oil = C(pCi/ml](10 pCi/pci)(10 8 ml/1) 3

+ Cip (pci/l] drinking water = (1% oil in drinking water)(Cip (pCi/1] oil)

Note: Concentrations assuming initial concentration of I pCi/ml Now assuming the maximally exposed individual drinks water with these concentrations of radionuclides for a year, the dose received can be calculated as:

Raipj = Cip Uap Daipj (see page 3 of EA-TAH-87-02)

Values of Uap for drinking water are given in Reg Guide'1.109 i

Uap Adult = 370 1/yr Uap Child = 260 1/yr Teen Values of Daipj for each age group are given in Table One of EA-TAH-87-02.

Dose estimates for the ingestion pathway are recorded in Table A2 along with the concentrations of each isotope which alone will result in an annual dose of 1 mrem.

MIO387-0100B-BX01

'EA-TAH-87-02 Paga 15 of 15 v.

1 TABLE A2: DOSE ESTIMATES DUE TO INGESTION OF OIL AFTER FLOW THROUGH GROUND WATER TO THE SITE BOUNDARY q Infant Child Teen. Adult )

, Isotope R* Conct R* Conct . R* Conet . R* Conct  !

[mres/yr] [pci/ml] -[ ares /yr] [pci/ml] [ ares /yr] [pci/ml] [ ares /yr][pci/al]~l Mn 54 9.63E+02 1.0E 5.29E+02 1.9E-03 5.98E+02 1.7E-03 9.84E+02 1.0E-03 4 Co 60 2.21E+03 '4.5E-04 2.51E+03 4.0E-04 3 ;AE+03 3.2E-04 4.91E+03 2.0E-04 !

Fo 59 4.20d+01 2.4E-02 2.17E+01 4.6E-02 2.53E+01 4.0E-02. 3.77E+01 2.7E-02 i Cs 137 5.72E+04 1.7E-05 3.06E+Gi 3.3E-05 1.39E+04 7.2E-05 1.45E+04 6.9E-05.I Cs 134-  !.12E+04 2.0E-05 2.80E+04 3.6E-05 1.43E+04 7.0E-05 1.53E+04 6.5E-05 i

.Ag 110m' 1.57E+03 6.4E-04 1.8E+03 5.6E-04 2.27E+03 4.4E-04 3.58E+03 Nb 95 3.11E+00 3.2E-01 3.45E+00 2.9E-01 .4.16E+00 2.4E-01 2.8E-04{

6.37E+00 1.6E-01 4 1

  • Dasa rate produced by radioise; tope concentrations of 1 pCi/ml in waste drum TCencentration resulting in an annual dose of 1 mrem.

The most restrictive concentrations are tebulated below.

l TABLE A3: MAXIMUM CONCENTRATIONS VIA INGESTION PATHWAY Isotope Conc *[pci/all Mn 54 1.0E-03 I,L A,G 1 Co 60 2.0E-04 A,G j Fe 59 2.4E-02 I,L  !

Cs 137 1.7E-05 I,L )

Cs 134 2.0E-05 I,L 1 Ag110m 2.8E-04 A,G i Nb 95 1.6E-01 A,0 )

l

  • To provide an annual dose of 1 mrem j I

Age Group I = Infant A = Adult l Critical Organ L = Liver G = GI LLI 1 i

l l

1

-HIO387-0100B-BX01 )

. _ _ _ - _ _ _ _ - ____-________-________D