ML20236D138

From kanterella
Jump to navigation Jump to search
Requalification Exam Rept 50-373/OL-87-02 for Both Units on 870601-11.Exam results:10 Senior Reactor Operators (Sros) Passed Written Exam & 11 Passed Oral Exams.Nine SROs & Seven Reactor Operators Passed Overall
ML20236D138
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 07/22/1987
From: Burdick T, Keeton J, Mark King, Lanksbury R, Morgan T
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION III)
To:
Shared Package
ML20236D093 List:
References
50-373-OL-87-02, 50-373-OL-87-2, NUDOCS 8707300321
Download: ML20236D138 (150)


Text

{{#Wiki_filter:(- , l I 40 1 I U.S. NUCLEAR REGULATCRY COMMISSION i c REGION III ' j Report No. 50-373/0L-87-02 j Docket Nos. 50-373; 50-374 Licenses No. NPF-11; NPF-18 Licensee: Commonwealth Edison Company j Post Office Box' 767 J Chicago, IL 60690 Facility Name: LaSalle County Station , i Examination Administered At: Wilmingtor and Marseilles, Illinois l Examination Conducted: June 1-11, 1987 Examiners: YdfM dfot $7/27/FF R. D. Lanksbury Date Chief Examiner bd. VA M'L/f 7 i J. Keeton Date I f/ "p W22lO M. King Date i i hI T. Mor~gan *

                                          &                                      9/2 T-/P'7 Date         a f

Approved By: k[f/2 #N 9/2 Z /77 l T. M. Burdick, Chief Date I l Operating Licensing Section Examination Summary { Examination administered on June 1-11, 1987 (Report No. 50-373/0L-87-02)) i ! Written, oral and' simulator requalification examinations were administered f to 11 Senior Reactor Operators (SR0's) and to seven Reactor Operators (R0's). Results: Ten SR0's passed the written examination, ten passed the simulator - i examination and 11 passed the oral exairination. A total of nine SRO's passed overall. All seven R0's passed all portions of the examination. l . L 1 i 8707300321 870723 PDR ADOCK 05000373 V PDR 4 L j

         .n.- - :                  ,
        /Nh;-                       ,

T '

   ., t -
                                                                         . REPORT DETAILS 1.-         Examiners
                                       *R.      D. Lanksbury,' Region III-J. M..Keeton,? Region.III M. King, ..-INEL -

M. Spencer,INEL'

                                       'T.~ Morgan, INEL
  • Chief Examiner
               ..           2.      " Examination' Review.
                                    ' Copies of,the written examulation and answer key were given to the' facility personnel for review at the conclusion'of the written:
                                      ' examination. . : Facility personnel provided their comments.to the-                   ,
                                   , examiners.on June.8, 1987. Their comments as well as.the resolution                    j 4     are enclosed asl attachments'to this report.
3. Exit Meeting- I
                                    .0n June:12, 1987, . an Exit Meeting was hald.          The following personnel 1

were present at this meeting: Commonwealth Edison Company

                                                                                                                              )

R.' H. Holyoak, Production Training Manager C. M. Allen, Nuclear' Licensing D..L. Farrar,. Technical, Services. Manager 1; , R. D.' Bishop, LaSalle Services Superintendent R. D. Crawford, LaSalle Training Supervisor G; J. Diederich, Station Manager D. A. Brown, QA Superintendent S..R. Harmon, Operations Training Group Leader R. 0. Armitage, Lead License Instructor ' i USNRC

                                    'C.       W..Hehl, Chief, Operations Branch R. D._Lanksbury, Chief Examiner J. M.-Keeton, Examiner
                                   - M. J. Jordan, LaSalle Senior Resident Inspector The'following topics were discussed at the Exit. Meeting:

a .- The examiners noted that the.only generic weakness observed during the exam process was the use of the newly developed and implemented 1 . Emergency Operating Procedure (EOP) flow charts. During transients

                                                ' req'uiring entry into the E0P's, many.of.the SR0's used the flow charts 2
t. ,
                                                                                             .                             s   D Q, y                    '

1 i h '

                                         . sole:1y or to too great a degree. The new flow charts are still in the developmental stage and:are designated.as.an' operator, aid. In addition, the flow charts do not'contain all of the information that is-contained in the E0P's'themselves. 1he purpose of the flow charts
                                           .is to help'the operator.workLhis way through the procedures, not to                  1
                                         . take their place.

l

                              ' b .'       During the previous examinations given April.20-23, 1987, the examiners' had noted 'that the. facility's E0P iformat. was not' easy for.

thefcandidates.te utilize during transient events-(see. Examination? Report'No.- 50-373/0L'-87-01 for details). InLresponse to this' concern, i 1the: facility developed E0P flow charts, as notedrin Item a'above' as ,

                                         -an interim solution. The examiner noted that significant improvement
                                          ;was observed during this examination,;as compared to the previous-                     ,

examination,'in the use of.the E0P's,and considered!that the new ' flow charts were a major contributor to-this improvement. , ,

     .'+                                             ..
\
c. The' examiners had two procedural concerns as a result'of the
                                          . examination process. :The~first dealt with the adequacy of a station
   ,                                     ! procedure,(LOP-PR-08, Revision 2, dated November.1983, "Startup and'
    ,                                      Operation of the Standby Gas.. Treatment Process Radiation Monitoring                    i Systems")'used during surveillance on the Standby Gas Treatment-System. During the performance of the surveillance, two of the'             ..
                                                                                                                                ]l examiners noted that this procedure was.not. usable as it. referenced                      '

a~ piece ~of equipment no longer installed in the. plant. 'The examiners s n' , . requested _ the -licensee _ to review this procedure for 'ade-quacy in ' light- 3

                                          'of the current plant installed equipment.                                                j l'

The second procedural cor.cern' dealt with the. adequacy of. instruction to. isolate a reactor recirculation pump. LOA 1(2)H13-P602A204, RR

                                       ' Pump.1A(2A) Seal Trouble, states, "Be prepared to isolate.the loop,"

but contains no;further guidance as to when or how to perform the isolation. .The facility noted that_a procedure did exist for how to isolate the loop (LOP-RR-02, ." Draining a Reactor Recire. Pump , for' Maintenance,") but committed to review the LOA for necessary .!

                                          ' changes to clarify this.                                                                >
                                                                                                                                    \

l l y . j, 3-t

.4 i; Facility: LaSalle County Station Examiners: R. Lanksbury, J. Keeton, M. Spencer, M. King, and T. Morgan

       ~ Dates of Evaluation:      June 1-11,,1987 Areas Evaluated:         X      Written              X               Oral   X      Simulatur
t.  !

Examination Resultr.: l l R0 SRO Total Evaluation Pass / Fail- Pass / Fail Pass / Fait (S,.M, or U) Written Examination 7/0 10/1 17/1 S 3 Operating Exainination Oral 7/0 11/0 18/0 S I Simulator 7/0 10/1 17/1 S Evaluation of facility written examination grading N/A Overall Program Evaluation Satisfactory 1 Marginal- Unsatisfactory ,(List major deficiency areas with brief descriptive comments) { Submitte Forwarded: A ved: f WS R. D. L nkabury

                        -f l~ e              Kf.W)

T. M. Burdic (C.

                                                                                                     . Hehl d\
                                                                                                                   .J
                                                                                                                                                +

4 ( 4 )

1 x  ! t' ATTACHMENT'l

                            )LRITTEN EXAMINATION COMMENTS AND RESPONSES                                        I GENERAL. COMMENTS
  ,                          FfR EXAMINATIONS ADMINISTERED JUNE 1, 1987                                      )

1 Docket Nos. 30-373;'50-374 SHEET 1 of 2 COMMENT: Many " initial" trair.ing objectives are identified to " enable" i high level skills. . Once the higher level skills are in place,  ! these initial building block concepts no longer have the .!

,                        operational significance they did in initial training.                                j Incumbant operaters have attained the higher skill levels                           1 and requalification treining stresses more performance based                        j objectives as opposed to fundamental building block concepts.                      j NRC testing still. m ems to stress these fundamental cbjectives.                   l RESPONSE:      The NRC exams cre prepared in accordance with 10 CFR 55.21/.22,                    l NUREG-1021 (ES-107, ES-202, ES-203, ES-204, and ES-403), and                       '

NUREG-1123. The NRC examiners are aware of your concerns and are striving to increase the emphasis on performance based . testing. However, as you are aware, this is a very difficult  ! transition especially wMn the training material provided for exam preparation is broad bascd as it currently is. This then lehves the examiner with the task of determining what is or is not appropriate'for the purpose of determining the examinee's knowledge level within the guidelines of the documents mentioned  ; above. Extrapolation of that information must be made to i determine if the facility.requalification program maintains ] the operator's base knowledge level such that safe operation or the facility is assured. Fundamental knowledge, which you l refer to as building blocks, must be maintained otherwise the

                         " higher level skills" will have no basis and weaken operator response to situations that have no " cookbook" resolution.                        i.

COMMENT: NRC testing currently appears to penalize equally for conservative as well as non-conservative judgements. Conservative judgements are considered acceptable from a public safety standpoint. This philosophy has been reinforced to LaSalle operators via corporate and station manageinent as well as through training. RESPONSE: This comment is not correct. Conservative answers that are a not correct, but reasonably close will receive more potential I l credit than an reasonably close non-conservative answer. See the Comment and Response to SR0 Question 8.09 and 8.12 also. )

                                                                                                             )

I l l L .._..._______o

          ._                                                                                                                     1
             .o
(

ATTACHMENT 1 SHEET 2 of 2 i l 1 COMMENT: In an. attempt to provide more operator oriented questions, in l depth questions are being1 utilized which require interpretation l of facility reference l materials. Alth'ough we do not dispute this i approach, problems arise when only partia'l reference materials are made available for use i p A much broader resource base,n is making judgements available or interpretations. to operators in actual

                                   . plant conditions.
                ' RESPONSE:         Comment' acknowledged. Due to the nature of-the' written i                                examination process, only limited amounts of materials for these types of questions can reasonable be provided. It is the                               !

Region's opinion that sufficient materials have been provided, whenccupledwiththeknowledgethatanoperatorshouldhave, i to answer any of the' questions given.  !

s.  !

i I i l l I' 4 l' ( 3 i l i

                                                                                                                   .__._________j

'4 ATTACHMENT 2 WRIFTEN EXAMINATION COMMENTS AND RESPONSE 5 REACTOR OPERATOR REQUALIFICATION EXAMINATION ADMINISTERED JUNE 1, 1987 l Docket Nos. 50-373; 50-37S SHEET 1 of 11 COMMENT: 1.02 The answer key was r.henged from the LaSalle Question and Answer Profile. - The facility review believes that-full credit should be given for any reasonable discussion of the same concept. This would include the LaSalle Exambank answer as folicws: " Initial count rate does not affect the amount of reactivity required to go critical. The I higher the count rate, the higher the count rate when  ; criticality is reached." j s RESPONSE: Comment acknowledged. Full credit will be given for a correct discussion of the concept including those answers in the LaSalle question bank. COMMENT: 1.08 b. Also ticcept for full credit if candidate states "Ge.dolinia" which is a burnable poison. RESPONSE: Comment acknowledged. "Gadolinia" is acceptable in lieu of " burnable poison." COMMENT: 1.09 a. Full credit should be granted for some error in the extrapolation process when numbers are taken off the steam tables (For example, full credit should be given for an answer within reasonable error temperatures listed - such as 97 or 98 is acceptable for 96,95 since the actual math involved i not what is being tested). LaSalle grading has reflected these allowances, but for more consistency our exambank will be revised to include these comments on the answer key. RESPONSE: Comment acknowledged. The range of acceptable error 15 F was inadvertently omitted froM the answer key. l COMMENT: 2.02 b. Examiner should accept other reasonable answers I concerning the effects on the off gas condenser i such as changing flow rates in the off gas system, 1 loss of condensing effect in the off gas condenser, J loss of vacuum, etc. I 1 1 l!

                                                                                                 ---_____._-.______m___

p lt: L , ;p c h' A, 6 h , y pf _; A17ACHMENT 2 , SHEET 2 of 11  ! Lu l g i' l RESPONSE: Comment acknowledged. Other reasonable answers are acceptable and examples have been added to the answer key. , ( COMMEN7:_ 2.03 The question as worded could lead the examinee to several areat of thought. Vapor binding is comparable to cavitation or loss of NPSH so any reasonable discussion to prevent , cavitation and vapor binding should be accepted. These  ! weas may include cliscussion on condensate depression  !

                                        ,  0,ubcooling of the condensate), maintaining adequate                                                   '

4~ hotwell level and maintaining adequate NPSH.  ; Three of the seven candidates asked for clarification on this question and were told that the answer key was not V looking for condensate depression. Since this information  ! was not distributed as'a general clarification to all > candidates, the facility states that these type of ' anseers should be acceptable for full credit. Since three  ; candidates asked for clarification this is indicative that  ! there was confusion as to.what the examiner was looking r for and a general clarification should have been made

  • to all candidates.

RESPONSE: Comment acknowledged. Partial credit will be given for a discussion of NPSH, hotwell level, etc., although, the question is in the system design section of the exam and  ; NPSH'will not preclude gases coming out of solution and. i s: causing' vapor binding in condensate pumps. t COMMENT: 2.04 b. The cnswer key is wrong as typed. The correct answer i shoulo be "True." The Unit 1 Low Charging Header t s Pressure Scram was installed under Modification

                ,                                No. 1-1-82-305 during the first refueling outage.                                                ,

Modification was singed as complete on May 8, 1987, l

              \

however, the modification was installed and operational in April of 1986. Training was done April of 1986 and then again in September of 1986 prior to Unit I restart following the refuel outage. Please see attached referenced No. 1A and'No. 1B for copies of the training notifications. (LaSalle Lesson Plans are currently under revision and this change is being incorporated.)  ; RESPONSE: Comment acknowledged. The answer key has been corrected. l i I L

a - y i b;

      ;s" f ATTACHMENT 2                                                           THEET 3 of.11 a          > s.

COMMENT: 2.04- d .' The exami_ner should accept False-for this answer if

                      ,                          .the statement is clarified. The speed control valves
                                                 .are_an integral part of the directional control. valves which are mounted on a plate in. front of the HCU.

Speed is adjusted by throttling these valves not the

                                                ' manual header stop valves on the drive and/or Exhaust Header which are loccted above the HCU skid (i.e., each               ;

HCU has individual manual header stop valves). .If the candidate explains how speed is adjusted by using the

                                                  " directional control valve" speed adjust, then he has
                                                -demonstrated that he understands how this task is performed and credit _should be given (see Reference No. 2 attached).

RESPONSE: Comment acknowledged. The question clearly states "in.the hydraulic control units." COMMENT: 2.05 a. Credit should be given for.saying Temperature Sensors in the exhaust hoods, or thermocouple, thermostat is

   ,_                                             actually a typing error in our. lesson. plan.

RESPONSE: Comment acknowledged. Answer key has been corrected. COMMENT: 2.05 b. The TP0 listed states " Discuss exhaust hood limits and possible' consequences if exceeded."' The intent of<this TP0 is that the' student should know when the

               ,                                 Turbine Trip is initiated on high hood temperature
                                                -(225 F). It'is not operationally significant that the candidates know the'120 F setpoint where-the valve.

starts to open. (The valve. starts to open @ 120 F and

                                                                                                                     .i '

if full open @ 180 F.) The annunciator will alarm

                                                 @ 175 F.and the annunciator procedure will direct the                  ;

operator to monitor temperatures and'take actions  ! accordingly (i.e., open the hood spray bypass valve  ! if. temperature gets too high). Based on this, the 120 F for initiation of hood spray should be deleted and the point value of the question should be decreased to 1.'5. total points. RESPONSE: Comment acknowledged. Answer key _ changed to only accept , turbine trip at 225 F and point value for question reduced +

                                                                                                                     ~!

to 1.5 total. j i c f'5

k' i 4 a ATTACHMENT 2 SHEET 4 of 11 COMMEKT: 2.05 c. The examiner should accept for full credit any reasonable statements about turbine damage due to overheating. The answer key has picked out a few specific words from the LaSalle lesson plan and indicated that these be required for full credit.  ; We do not believe this was the examiners intention  ! and have included, as an attachment, a page form that  ! lesson plan that states exhaust hood sprays cool the last stage buckets of the turbine (see Reference No. 3 attached). Any discussion concernir,g hood temperature problems occurring at low load or no load operation is also acceptable for full credit. Attached is a copy of LOA-TG-01 that states there is a concern about elevated hood temperatures during these conditions. (See Reference No. 4 attached.) i RESPONSE: Comment acknowledged. Any reasonable response relating  ! to potential turbine damage will be acceptable. COMMENT: 2.08 c. The facility would like to point out there is a case { of several terminology differences concerning this ' answer. The procedure refers to one of these trips i as a " generator ground overvoltage" which is the same as the answer key. The lesson plan refers to this trip as a " Neutral Ground" and common electrical terminology also refers to this trip as a " neutral overcurrent." j All of these terms should be accepted for full credit. Attached (References No. 5 and No. 6) are pages from the lessoa plan and the Standby Procedure for "0"  : Diesel to support allowances, but for more consistency I our exambank will be revised to include these comments a on the answer key.  ! RESPONSE:~ Comment acknowledged. The examiner is aware of terminology differences and the other acceptable i answers have been included on the answer key. COMMENT: 3.03 a. The Auto Trip Unit shown in Figure 6-3 (Reference  ! No. 7) " Master Controller," also prevents excessive output signals form the Master Controller, by tripping at 106% and isolating the Master Controller. As both the Flux Demand Limiter and the Auto Trip Unit (ATU) meet the intent of the question asked, either should be accepted as a full credit answer.

.O ATTACHMENT 2 SHEET 5 of 11 RESPONSE: Comment acknowledged. The ATU will also be accepted for full credit. The answer key has been revised. COMMENT: 3.03 b. By definition, feedback signals are applied to the input of a process or system. Stating that a I feedback signal is applied to the. output of.a process, confuses and misleads the examinee. As used, the term "provided to" is unclear as to its meaning, and the

                           . action that is taking place. The question also                                                             i directs the examinee to focus his attention on                                                              !

the Flux Controller. RESPONSE: Comment partially acknowledged. Also by definition, the output of a process is the input of another process. Refer to Figure 6-5 of Reference 7. The summing network at the input to the Loop Flow Controller combines the output from  ; the Recirc Loop Flow transmitter. liowever, partial credit ' will be allowed for correct feedback to the flux controller. The question will be reviewed for possible rewording in the question bank. COMMENT: 3.03 c. This question contains the same working problem f as Part b above. Reasonable discussions regarding j feedback in the Servo-Controller should be considered acceptable. NOTE: Several examinee's asked for clarification  ; on this question and felt that the examiner  ! would only " read back the question" to them. It seems that there was enough general confusion regarding the wordinglaf this question to warrant a geraral clarification statement to the group taking the exam. (See Reference No. 7) RESPONSE: See Response to 3.03b. NOTE: The examiner also stated that output of one circuit provides input to another. COMMENT:

      ~~~

3.04 a. This question is not written in a manner to elicit the somewhat narrow response required by the answer key.  ! Other parameters sensed and evaluated by the control system include: Condenser Vacuum, Load Limit / Select signals, Bypass Jack signals, Turbine Runback / Trip

i g j l ATTACHMENT.2 SHEET 6 of 11 signals, etc. As these are parameters, and they meet [ the conditions given in the question, they should be 4 considered as full credit answers. (See Figure 8a.) RESPONSE: Comment partially acknowledged. Other specific valid

                                  '" parameters" will be acceptable. Answer key has been revised and the question will be reviewed prior to uploading to question bank.

COMMENT: 3.04 b. As worded, this question does not clearly indicate the concept that is being tests. The vague usage of the words " control circuit" and " control scheme" is confusing. All reasonable and valid " control circuits" locked out by the EHC control system when synchronous speed is selected and' generator OCB's are closed should be accepted for full credit. These circuits include: all valver closed, chest /shell warming and accelerat on circuits (see Reference No. 8b). RESPONSE: Comment partially acknowledged. Other valid control circuits that are locked out will be accepted and have been added to the answer key. COMMENT: 3.05 a. During shutdown or standby conditions, 0% speed drop is selected IAW LOP-DG-07 (see Reference-No. 9), and should also be accepted for full credit. RESPONSE: Comment acknowledged. Additional responses have been  ; added to the answer key. ' COMMENT: 3.06 Part a. and b. As the enforcement of a Rod Block is considered to be a " trip," Rod Block should be an acceptable answer to Part a. If Rod Block has been used in Part_'a, an acceptable answer for Part b would be a discussion to the effect that the startup will be held up/ delayed as control rods may not be withdrawn until the Rod Block has been cleared. RESPONSE: Comment acknowledged. Answer key has been revised.

ATTACHMENT 2 SHEET 7 of 11 COMMENT.: 3.06 c. The answer key contain, an obvious typographical error and should be corrected to read "3 out of 4." RESPONSE: Comment acknowledged. Answer key has been corrected. COMMENT: 3.07 The wording of this question may nit elicit a response to the depth required by the answer key. A response indicatdag that the examinee would use the function switch in the count position should be acceptable for full credit as it shows the examinee understands the concept of "how" co find the number of LPRM's. The term "most convenient" is also used in this question with no reference to a standard by which it is to be judged. Examinees stating that they would use backpanel status lights or function switches should also receive full credit. RESPONSE: Comment not accepted. Knowing that placing the function switch to " count" does no mean the examinee can determine the number of LPRM unless he states which meter and how to interpret the reading. Full credit is allowed for correctly stating the use of the backpanel lights. COMMENT: 3.09 b) As this question dealt with control rods having withdraw errors only, the section of answer key ' aiscussing insert errors should be deleted. RESPONSE: Comment acknowledged. Answer key has been revised. COMMENT: 4.01 a. The LaSalle administrative exposure limit is a daily whole body dose equivalent of 50 mrem. This exposure limit is controlled by Type I RWP. For personnel to exceed a daily whole body dose of 50 mrem, supervisor approval is required. This approval is documented by the use of a Type II RWP. The exposure limit a person may receive working under a Type II RWP is based on Radiation Chemistry Management or other plant management personnel approval based on expected exposure that will be received while performing the work. The statement on the answer key "4 hours if under Type II RWP" should not be required for full credit. Also 1.25 rem is also a LaSalle Administrative Limit. If correct calculating is done for 1.25 then credit should be granted.

L { 4 ATTACHMENT 2 SHEET 8 of 11 l

      . RESPONSE:
         ~             Comment partially acknowledged.       Answer key was revised to show thtt either or both responses are acceptable for full credit. Other responses will be acceptable if assumptions are clearly stated.

COMMENT: 4.01 b. The major importance of this question is that personnel leave the area and notify the Rad / Chem Departinent. The concern being radiation exposure of the worker involved. If the worker can expeditiously return to the job without causing a delar in work notification of supervisor is not as important as the rad concern. The majority of the credit should be for leaving the area and notifying the Rad / Chem Department. RESPONSE: Comment not accepted. See SR0 comment for Question 7.07.b. COMMENT: /.02 b. If the examinee answers No, but clarifies that he would concurrently do Step C.9.a. and address the new entry condition into LGA-01, full credit should be given. The intent of the question is to determine if the operator knows he must go back in the procedure to address the second entry condition into LGA-01. Restart of the procedure at the initial step of LGA-01 at Steps C1, 2 and 3 only takes him back to steps he knows he's already accomplished. The way the question is worded could mislead'one to think it is addressing " stopping RPV Depressurization" in Step C.8.a and to restart the procedure in its entirety to address both entry conditions. If the examinee interpreted the question this way, he would say no, the procedure is not restarted initially, but rather , both entry conditions are addressed concurrently at appropriate steps within the procedure. See attached Reference No. 10 from LGA General Precaution Lesson Plan, General Precaution No. 4. RESPONSE: Comment partially acknowledged. The answer key indicates that "No" is an acceptable response and will be revised to indicate that any reasonable response is acceptable if the assumptions are clearly stated. COMMENT: 4.03 The facility review feels the key words'" Auto-Mode" need not be mentioned for full credit. Simply the operator is looking for two independent indications that the ECCS System  ;

r i 4 ATTACHMENT 2 SHEET 9.of 11 has misoperated and should be accepted for full credit. If the operator confirms two independent indications that the system has misoperated, he may place the system to manual, along with assuring adequate core cooling. RESPONSE: Comment acknowledged. Answer key revised to indicate

                               " Auto-Mode" is :,ot necessary for full credit.

COMMENT: 4.06 b. If the examinee states No, do.not close the SRV;s-after and ADS initiation, but further clarifies unless directed to by the LGA overriding caution to stay above 57 psig RCIC isolation setpoint, full credit should be given. RESPONSE: Comment acknowledged. Answer key revised to include I RCIC caution. ' t 4.08 The facility requests the point value for this question COMMENT: be reduced from a 2.0 value (.5 each) to 1.0 value (.25 each). The basis for this point value reduction stems , from the fact the K/A Catalogue rates the ability to take  ! protection actions called for in the facility. emergency plan a "No. 2.9." An asterisk signifies that more than 15% of the raters indicated that the knowledge or ability is not required for the R0 or SR0 position at their plant because it is the responsibility of someone else rated by more than 20% of the raters that the level of knowledge , or ability required by an SR0 is different than the level i required by an RSO. The emergency action levels of our GSEP are all the responsibility of the Shift Engineer (SG) and will not be normally delegated. If under extreme abnormal , circumstances, they were delegated, the responsibility ) would be handed over to the Shift Control Room Engineer, Unit 1 and/or Unit 2 Shift Foreman, then last to the a j Reactor Operator. Reactor Operators have not, at LaSalle, determined EAL's for GSEP, and unless all SRO's are dead or otherwise incapacitated will not classify events. RESPONSE: Comment acknowledged. Point value of question reduced as requested. h_____________

y_ _ - - - - _ 4 v. ATTACHMENT 2 SHEET 10.of 11 1 The facility review feels:that the time frame of

                                                   ^

COMMENT: 4.09. a. three minutes be deleted from the question. .This is worth .5 point value, and is not knowledge the:

                                             . operator needs to know. This operating ordt.r directs the operator to remain in the diesel generator room until the lube oil. pressure gauge goes-to zero. This confirms the. lube oil pressure switch has closed, which is what the operator needs to do, not wait three minutes.

As can be seen in'the attached copy of the Special. Order, the wording is approximately three minutes later says approximately two. minutes 46 seconds. This " time" actually varies with each D/G and'is'not'a setpoint and not subject to memorization. -(See Reference-No. 11 attached.) RESPONSE: Comment partially acknowledged. Any reasonable discussion of the reason for the "Special Operating Order" that include the elements of time delay, circuitry involved, and inability to restart the diesel will be acceptable and graded accordingly. COMMENT: 4.09 b. The facility review feels full credit shoul'd be given if the examinee states the exception to this operator order is for the protection of equipment, facility, or personnel. These situations describe emergency cases. RESPONSE: Comment acknowledged. Any situation describing  ! any emergency is acceptable fot full credit. (NOTE: This question will be deleted from the question bank.) COMMENT: 4.11 c. The facility review agrees that system operation [ would not be maintained if the operator blindly J followed LOP-RX-01 while 'B' RHR was running for ] example, in Suppression Pool Cooling. However, this . part of the question should be deleted as the candidate could answer False, as the answer key states, OR True. If the examinee assures that .'B' RHR is running in Suppression Pool for example, the Precaution D.3 and after Step F.2.b are put into the procedure so as to i warn the operator not to put the transfer switches to emergency and transfer control to the remote shutdown panel. The operator would first place the valves ) I and/or sump control switches to positions on the I remote shutdown panel that would maintain the system lineup, then place the transfer switch to the I J

p: m - 1

                    .*                                                                     I  <

y w e i~ . L 6 e

        ~ '-

ATTACHMENT:2 - SHEET 11'of 11

            ~.
 < .                                                     emergency. position. See attached plant electrical drawings.(Reference No. 13) for reference that:
                                                       ' system operation can be maintained if the precautions -

are adhered to and above description is followed for. RHR SP. Cooling from the remote shutdown panel. Also,. attached is LOP-RX-06 (Reference No.'12) SP Cooling Operation from'the-Remote:S/D. Panel. . NO RESPONSE: Comment-not accepted. . Question 1is clearly stated and comes directly from procedure, only the word."not".was

                                                          ~
      .r..
                             ,                     dropped as'a distractor making the statementLFalse.

s I e v k V m c__ . I

                                                                                                                      -l

x-w, - J i p ,. s

                                                                    .. ATTACHMENT 3~                                          !

i- , ,1

        ;e                                                                                                                     <
                                               . WRITTEN EXAMINATION COMMENTS AND' RESPONSES SENIOR' REACTOR OPERATOR ~J REQ'ALIFICATION EXAMINATION ADMINISTERED 0N JUNE 1, 1987 i

[ Docket'Nos. 50-373; 50-374' SHEET 1 of'25 ' l l t COMMENT: 5.01 This question has three (3) parts, but the answer key has four (4) parts. The correct answers to the questions asked are as follows:

a. True (T)

L b. False (F) c.- True (T) , (It'looks as if either a or b in the answer key was an extra.) RESPONSE: Comment accepted. The question was modified form'.e four part to a three part question and Answer b was inadv.ertently j not deleted from the answer key. The answer key has been ' modified. COMMENT: 5.02 The: intent KA 2920WK114 does not apply in this case. The K/A statement reads " Explain the process'and reasons for the Reactor Operator to compensate for the time dependent j behavior'of Xenon - 135 concentration in the reactor."  ; The time dependent fluctuations in Xenon concentration l for which the operator has to compensate are short term fluctuations due'to power changes. The changes in equilibrium Xenon reactivity over core age are operationally insignificant. The same Xenon curves arc used to predict Estimated Critical Rod position at the beginning and at the end of core life. Additionally, it is still enclear which way. equilibrium Xenon would shift as the core ages. There is no reference to the changes in equilibrium Xenon over core life in the LaSalle Reactor Physics Review Lesson Plan as the answer key' infers. Even after consulting the Nuclear Engineering Department, there is no clear answer as to whether equilibrium Xenon reactivity will increase or decrease. i a:

            'L-____-___:_--___:-

ATTACHMENT 3 SHEET 2 of 25 I A logical explanation can be made which would cause Xenon l to DECREASE because of an increase in thermal flux rather than INCREASE as the answer key indicates. The explanation goes as follows: since we're looking at equilibrium conditions, we have to assume that the power levels are the same. If the power levels are the same, then the fission rates are the same (approximately 200 Mev/ fission). j Since Xenon production is proportional to the fission rate, ' the production terms would be the same. However, since the flux has increased at the E0L, and since flux is one of the removal mechanisms, it can be argued that equilibrium Xenon 3 concentration will DECREASE rather than increase as the answer key indicates. Question 5.02 should be deleted. .; i RESPONSE: Comment accepted. Due to lack of adequate reference material to substantiate an answer, tnis question has f: been deleted from the answer key. ' 1 i COMMENT: 5.05 None of the selections are always true. Statements "c" , and "d" can be considered true given certain assumptions, l 1 Selection "c" - not always true because of the last part of the statement "the magnitude of the period determined by the amount of negative reactivity inserted." This is not always a true statement. After enough negat;ve reactivity is added to shutdown the reactor, the period ) after the pronpt drop will be determined by the delayed neutron precursors - regardless of any additional negative reactivity addition. Selection "d" - the first part of Statement "d" may be considered to be true if "immediately" is assumed to mean after the prompt drop. The second part is true, if 'it is assumed that enough reactivity has been added to shutdown the reactor. Since none of the selections are always true 7.nd since Selections "c" and "d" can be true (depending upon the assumptions made), credit should be granted for either "c" or "d." See Reference No. 1 from Rx. Theory Review L.P. RESPONSE: Comment accepted. The answer key has been modified to accept either c or d as the correct answer. This question will be reviewed for changes to make only one answer acceptable in the future.

m

        -.-                                                                                  j ATTACliMENT 3                                                    SHEET 3 of 25
  ,+

COMMENT

  • 5.06 The answer g*ven.to this problem is correct. However, l several comments need tc be made regarding the grading j of the work shown by the examinee = and the pointing of the answer key.  ;
1. First, 0.25 point is given for assuming a 100% rated fi core flow value of 108.5 Mlbm/hr. The grading should allow 10.5 Mlbm/hr. for this core flow figures as the j examinee may round of this figure.  !
                           '2. Second, 0.25 point is given for reading the graph          l (Figure 5.08) to'get the appropriate Kf value for          l each condition. For Condition 1 of a band of 1.16         i to 1.19 (or 10.015) seems reasonable for Condition 2 a band of 1.03 to 1.07 (or 10.02) should be accepted (a larger band for Condition 2 because rated core flow was 74.6% not an even number with a vertical line like 50% for Condition 1 - see attached Figure 5.08 which is in Reference No. 2,
3. Third, in Condition 2 calculation a typo exists. .)

In figuring the percent core flow, 81 divided by 1' 108.5 is 74.6 or 74.7% not 73.7%.

4. Fourth, once the Kf values for each condition are obtained'from'the graph, the method shown on the i answer key to reach a conclusion is not the only j possible approach. At least two alternate methods using MFCPR can also be used. The first of the alternates is to take the Kf, calculate the Operating
                                             ~

l Limit MCPR and then calculate the MFCPR for each condition:  ; i MFCPR = MCPR limit MCPR actual For Condition 1, the MFCPR = 1.481 + 1,57 = 0.94 j For Condition 2, the MFCPR = 1.323 + 1.44 = 0.92 From this, it can be seen that Condition 1 is closer to its MCPR limit. (These values for MCPR limit and MFCPR will vary some depending on what Kf reading was made off the graph. Also, see Comment No. 5 below , using 1.26, 1.24 or other value for the minimum MCPR limit value.) l I i

                                 - - _ - _ _ , - - - _ _ .          . _ = _ . - _ _ - . . - _ .
                                                                                                    =-        - - - - _ _ -
r. .

[-

 't'
 ..?D D ATTACHMENT 3.                                                                           SHEET 4 of 25 I

The second alternate approach'is a modification of' calculating the MFCPR. Note that: MFCPR'= MCPR limit = (Kf) (Non-Kf-corrected MCPR limit) j MCPR actual MCPR actual In both Condition 1 and 2, the uncorrected MCPR. y

                             . limit (called the min MCPR' limit in the answer i                              key) is the same and can be ignored. Instead, by-calculating the ration of Kf divided by'the actual MCPR, you can see which is larger and thus which condition is closer to its 13mit:

For Condition 1, the ratio = 1.175 + 1.'57 = .748 For Condition'2, the ratio = 1.05 + 1.44 = .729-Thus', any calculations similar to those two alternative calculations should be-accepted for full credit. Also, any other unique method similar to those or to the answer key should be , accepted. I

5. Fifth, the answer key and discussions above start D ,

with uncorrected MCPR limit (min. MCPR limit in the answerLkey) of.1.26. This is the correct value for

                             .the minimum uncorrected MCPR limit for Unit.1 (see-Reference No. 2). However,-other numbers could be chosen. The current minimum MCPR on Unit 2 is 1.24                                              -

(see Reference No. 2). After' fuel load,. Unit'2's will . I change to 1.25 (see Reference No.'2). Other numbers , besides 1.26 should be accepted without penalty, if! I the calculations are. correct, In real. life, the ~ surveillance starts with the operator getting a-  ; value for ave' rage scram times (T) from the Nuclear.. ' Engineer. He takes this and the percentage core flow tt. the Technical Specification graphs- to first get an . uncorrected MCPR limit and then a Kf. Multiplying  ! these numbers he gets the MCPR limit (see Reference  ! No. 2 which is Pages 9 and 10.of LOS-AA-S1 which describe this process). The operator is not required to memorize the Technical Specification graph which  ; F' changes with every refueling outage. As neither the Unit 1 or Unit 2 graphs for MCPR versus average scram times were given (Reference No. 2), any assumed .t values should be allowed for full credit in this .) problems calculations. I 1 l l i-l 4

                                                                                                                    .,3

l '. m I ATTACHMENT 3 SHEET 5 of 25 l

6. Sixth and'1ast, the_ answer key ascigns 0.5 point fcr assuming a value for the uncorre ped MCPR limit (min MCPR limit on answer key). This'ls not a good-distribution. Everything else in the calculation is worth 0.25 point, except the final answer. The examinee does not really even need this number to do the problem as can be seen from the second l alternative solution shown above in the fourth comment above. This half point should be dropped from this question or it should be reassigned to-other parts of the calculations (for example, l getting a correct value the MCPR limit, or the i MFCPR, or the Atio of Kf to the actual MPCR).

RESPONSE: 2. Comment accepted. Tolerance was inadvertently omitted from the answer key. The answer key  ; has been modified. i

2. Comment accepted. An allowance for reading a graph is always given in grading examinations, but was not  ;

included on the answer key. The allowances given are i reasonable and have been added to the answer key.

3. Comment accepted. The typo has been corrected on the answer key. q
4. Comment accepted. Other reasonable approaches to coming to the correct conclusion given were full credit. A note to this effect has been addea to the answer key, j l
5. Comment partially accepted. A MCPR value of 1.26 )

or 1.24 will be accepted without penalty since the question did not specify a particular unit. In  ; addition, if the examinee choose to correct MCPR for 1 average scram times, and so stated, full credit will j be given. Any other values for MCPR will not be i accepted since the question clearly states to use  ! Technical Specification limits and the intent of l the question, in part, see if they knew this value. i

6. Comment accepted. The answer key has been modified I to redistribute the points. j l

1 COMMENT: 5.07 The question asks for the change in plant thennodynamic efficiency when extraction steam is lost to the high pressure heater. If the examinee answers no and explains that the feedwater is now colder (subcooling increased) J L:

L ATTACHMENT 3 SHEET 6 of 25 1 and will require more heat or energy addition by the reactor, thus causing plant efficiency to decrease, should be accepted for full credit. Also, credit should be given for the full observation that as subcooling increases so too does reactor power which could explain.the increase , in generator power and decrease in overall efficiency. _j The answer key reflects 0.5 points for defining thermo efficiency which should not be required for full credit. The examinee shows an understanding of the concept of efficienc/ by correctly explaining that plant efficiency  ; decreases on a loss of feedwater, which is what the l question asks for. In addition, the question did not ask to explain why generator megawatts increased, but the answer key reflects 0.5 point for an explanation. See attached Reference No. 3. RESPONSE: Comment partielly accepted. The answer give in the first part of the first paragraph is acceptable for why efficiency decreases and in similar wording to that in the answer key. The second part of this paragraph is an acceptable answer for why MWs increases and again is similar wording to that in the answer key. The examiner agrees with the licensee's comment on the definition of thermo efficiency and the answer key has been modified to delete this for credit and the question point value has been reduced by 0.5 points. The examiner disagrees with the comment that the question did not ask for why generator megawatts increased. At the end of the question in parenthesis is, " Include what caused electrical output to increase." l COMMENT: 5.08 a. Per clarification given to J. Williams by I R. Lanksbury, this problem could be solved either as  ! a Keff change (dk) or as a reactivity change (dk/k). ( Full credit should be given then to any candidate who f l correctly ::alves the problem either way. The answer l key solves the problem as a Keff change. What follows i is the solution as a reactivity change: o . l Given: Keff2 = 0.96 CR1 (1-Keff2 = CR2 (1-Keff2 )  ! L CR 1 = 10 CPS ) p = (Keff-1)/Keff l Keff = 1/(1 p) 3 i 1 l l E- ----- - _- - - i

            *4
 .4 ATTACHMENT 3                                                    SHEET 7 of 25 i

Solution: p1 = (Kefft- 1)/Keff 1

                                                                         =  (0.96 -1)/0.96 = (-0.04)/

0.96 = (-0.417) p2 = p1 + 0.035 = (-0.0417) + (0 ^M) = (-0.0067) Keff2.= 11/(1 p2) = 1/(1-(-0.006/ u = 1/1.0067=0.993 L CRs (1-Keff2 ) = CR2 (1-Keff2 ) (10 CPS) (1-0.96) = CR2 (1-0.993)  ; (10 CPS) (0.04)/(0./0066) = CR2 CR2 = 0.4/0.0066

  • 60.4 CPS RESPONSE: Comment accepted. The above methodology and answer )

will be accepted for full credit. The question has a been modified to require it to be done per the answer key. COMMENT: 5.09 b. Also accept Gado1'nea (Gd) as an acceptable alternative to " burnable poisons." RESPONSE: Comment accepted. This answer is considered the same as saying burnable poisons.  ! l COMMENT: 6.01 a. Also, accept 15%. 15% is.an APRM fixed scram along j with 118%. The 15% is functional when the mode switch j is not in run~and the 118% is functional with the mode switch in run.  ;

b. Also, accept other common. terms for Recric Loop flow elements on suction side of pumps, such as RR loop flow transmitters, RR loop flow elements, F:ecric flow elbows, or RR suction flow elbows. j

, c. The actual time Alay.for the flow biased scram is dependent on the actual amount of flux present, but i may permit just exceeding the flow biased scram { setpoints for four time constants. Based on this, i the number approximately six seconds should not be i repaired for full credit. See attached Reference No. 4. RESPONSE: a. Comment not accepted. The question implied the mode ' switch was in RUN. None of the examinees answered 15% so it must have been clear to them. However, the question has been modified to ensure in the future that there is no doubt. 1 l l l

y +
                                 ,3 ,

g3 ::. : . , 1 . ATTACHMENT. 3.' SHEET 8 of-25 t-

                                                       . b.   : Comment partially. accepted.            Other.. common terms will be accepted,.but they must state.that source of flow
                                                               ..is;from' pump suction, c.

Comment not accepted. The sixLsecond time never was

   .O
                                                                . required for full, credit - it was in parenthesis for the examiner use only.

COMMENT:

                               ~

6.02' 1. Question 6.02 asked for three of six loads.on Bus 14.2Y. First, it should be seen that'one of the loads. listed-is the.Recirc MG' Set B. 'This^1s synonymous with saying 142Y is the power supply for the B Recirc.' pump. Thus, "B Recirc Pump" Ahould be accepted as an' alternate answer for "Recirc MG Set B."-

2. Second, the' list of sixLloads is really incomplete.

Looking at the AC Distribution Lesson Plan, Pages 42-48

(see Refdrence' No. 5), 'several 'other loads should also be accepted. 'I
                                                              .(a) Switchgear 136X
                                                               '(b). Switchgear 136Y
                                                               .(c) .Switchgear 134X
                                                                                                                                      ., i
                                                              '(d) Switchgear 134Y:

o . ,. (e) . Bus Tie to 142X and- l

                                           ~

(f) Bus Tie.to:242Y (or Unit Crosstie Breaker).  :

                                                              , NOTE:       .R.LLanksbury did give.T. Carr an individual-                !

clarification 'on this question ~ to the effect ' l

                                                                            'that electrical switchgear should not,be                    3 listed as loads (and so this would exclude Items 1-4), However, this clarification'was not made to the whole group.        These are important loads and all six (6) of the above        H items should be added to the answer key with           l b                                                        any three.(3) of the resulting 12 answers               '

acceptable for full credit.

                             . RESPONSE:                 1.    . Comment accepted.            Synonymous terminology will be accepted.

i t 1

         ,o

T l w

                       ' ATTACHMENT 3                                                                                SHEET 9 of 25 o

8i

2. l Comment'not accepted. .The question asked for
                                               ~ component levels (i.e.,; pumps, motors, etc;).

Clarification'is not ocrmally provided to.the entire g,roup. in: order to minimize. distractions unless enough individuals have shown by this' question that.it is needed. The question has.been modified to provide 1 more clarification for future use. ' COMMENT: 6.03 The question asks for three conditions which will result in an IRM' Inoperative Rod Block. The terminology used at LaSalle'for the three conJitions listed on'the answer key

                                        'is an'IRM-Inop Rod Block. The use of the word inoperative
                                        'could have been confusing to some of the examinees. Any condition (s) that could cause the IRM's to fail to meet the Technical Specification definition'of Operable should also be allowed for. full credit. One example of this is the IRM-detector not full'in rod block. Another would be'downscale.                                                i The lesson plan-lists the signals for IRM Inop as follows:

IRM'Hi Hi/Inop ~ actuates _for the following conditions

                                               '120/125lof full scale Module Unplugged Mode Switch not in operate High voltage power supply low The. control room alarm comes up when any of the abcVe
 ,'                                     " signals are,present.      See Reference No.         .

6.- RESPONSE: Comment not. accepted. -The use of the word " inoperative" vs'"non" is not considered to be confusing. Conditions that could cause the IRM's to fail to meet the Technical Specification definition of operable do no necessa~rily 4

                                        ^ cause an inop trip and therefore will not be accepted if                                                 .i they do not. The items listed by the facility from the lesson plan are for and IRM Hi Hi/Inop alarm and do'not necessarily cause an inop trip. For example, 120/125 of l.'                                       full. scale isla reactor scram trip. The answer key lit,ts the IRM icop trips just'like what is listed on Pages 12-23                                                 ,

of the lesson plan. COMMENT: 6.04 This question ' asked for -four items: (1) Control Valve

         ;                               position; (2) Bypass Valve position; (3) Reactor power, and (4) Reactor pressure on each of the four (4) parts I.                                         to this question. A question asked by J. Arnold was
       /

4 C y q,

i

                                                                                                                               .                        1 N                                             ATTACHMENT 3 SHEET 10 of 25'
                                                                                                                                                        'l
"                                                                                                ~
answered by R. Lariksbury that all four were ' required. l The' answer key does not call out these.four items on J "

each part. The question should be graded for all four items as shown below. .'

a. (1) Control Valves go-5% closed (0.125.pt.)

(2) One. Bypass Valve opens'(0.125 pt.) (3) Reactor power stays the same~(0.125'pt.) (4) Reactor pressure remains'the same (0.125'pt.)

b. (1) Control Valves go 5%' closed (0.125 pt.)

(2) -Bypass Valves stay closed (0.125 pt.)-

                ,                                                              (3) Reactor power will increase (and then a scram makes decrease (0.125 pt.)

(4) 'Recctor. pressure.will' increase (0.125 pt.)

                                                                        .c.    (1) Control Valves open to 100% (0.125 pt.) - Assumes
                                                                                      ' load limit is at 100%. If load limit above
                                                                                     -100%, then CVs open and B/P close'to yield total
                                                                                     -105% flow.                                                         !

(2) Bypass Valves open 5% (1 valve - because for t Max Combined Flow at 105%) (0.125 pt.) i

                                                                           ,   (3) ' Reactor power decreases (0.125 pt,.)

l' (4) Reactor' pressure decreases (0.125 pt.) The answer key talks about a 800 psid pressure.

                                                                                                                     ~

NOTE: error for Answer c. This is incorrect. See attached Figure 6.04 which.with Figure 26 (Reference No. 7) shows that the pressure error developed is 950 psid. This should not be required for full credit, but if someone brings this up and does not get the answer correct, this should be allowed for partial credit. I

d. (1) Control Valves closed 10% (to 90%) (0.125 pt.) ,

I A (2) Only two Bypass Valves will be open (0.125 pt.) 1 1 s

m 1 Q > 7 e- . . _ 4 .

)
  <j      ,         p                                                      <
                                                                                                                                                                                        ,q a      ..

j ATTACHMENT 3 SHEET 11 of,25

                                                                                                                                                                                         -l C                                                                                                                                                                                           l c                                                                       ,

1 L

                                                   .(3) Reactor power will remain the same (0.125 pt.)

(4). iteactor pressure will remain the same j (0.125 pt.-). l The examinee might answer this Part d 'two other ways.'. 1 10ne way is to predict that the sudden opening of two Bypass [' Valves would cause a level swell sufficient ~to reach RPV, level in excess of 55-1/2". This control, valve closure,

                                           '(2) two Bypasses still open; (3) Reactor' power to zero'(0)
                                                                 ~

percent, and (4) Reactor. pressure decreasing (due.to open Bypasses), s A third way to look at the problem is to see.the valve opening and bleeding down main steam line pressure to 854 lbs.. This would result in a Group Isolation.(MSIV's  ; and MSL' Drains) and a Reactor Scram ~. -(1) The Control ~  !

                                           . Valves would close; (2) the two Bypasses stay.open;.                                                                                          !

(3) Reactor power goes.to zero.(0), and (4) Reactor pressure would drop, then rise rapidly with.MSIV closure, and = finally hold fairly: steady as .SRV's 'open to hold-

                                          , pressure within the bound of LLS (Low-Low-Set) on the
                                          'SRV's.

LPart d the' answer key mentions.th'at the Control Valves , close'to 90% to maintain Reactor pressure'at 920 psig. It is true that the' valves close'to maintain reactor-

pressure. However, the pressure setpoint set at 920 psig does not hold reactor pressure at 920 lbs. At 100% power, i the: steam throttle prsssure in the main. steam line near the turbine ~will rise'to 950 lbs. This develops'a 30 psid error to open the control valves (see Figure 26-2, Reference No. ) and Figure 6.04 for Normal-Full Power
                                          - Configuration TReference No. . ). Reactor pressure will                                                                                       s' be at about 1005 lbs. (developing driving head across the-Main steam lines).-

RESPONSE: Comment accepted. The answer key has been modified to . reflect this comment on distribution and to correct the l two trips. The question has also been modified to state  ! what the load limit and max. combined flow are set at.  ! COMMENT: 6.05 Also, accept the following to cause the RSCS to apply a rod block. i [, 4 _ - - - _ - - - - - _ _ . _ _ - - _ - - _ _ - - .-_N__--__..-__.'

[ , i ATTACHMENT 3 SHEET 12 of 25 Withdraw Error (Withdrawn past withdraw limit) Insert Error (Inserted past insert limit) Hardware malfunction (RSCS failure, logic failure) RPIS Failure (two consecutive inop need switches) Selecting a rod that is not in the current group. See attached Reference No. 8. RESPONSE: Comment accepted. The above answers are considered to be synonymous with the answer key. COMMENT: 6.06 Let's look at flowpatn of CRD during normal operation (see Figure 8-2 CRD Hydraulics - Attachment No. _ ). Flow goes through pump, after filters, a fixed amount of RR seals then tow possible paths (1) To Drive / Cooling water lines or (2) to the cnarging header. Since the accumulator's are normally charged and the scram valves i are closed, THERE IS NORMALLY NO FLOW THROUGH THE CHARGING WATER LINE. Now let's ~1ook at the flowpath through the Drive / Cooling water lines. Flow goes through F002A CRD Flow control valve to either (1) Drive Water line (2) through stabilizing valves or (3) throufi the Drive Water Pressure Control Valve. The directional control valves are' closed since there is no rod motion, so there is no flow in the drive water line. There is a fixed amount of flow through the Stabilizing Valve which goes to i the cooling water return. There is flow through the F003,  ! Drive We.ter Pressure Control Valve which returns to the l cooling water return line through the CRD mechanism to the i vessel. The only flowpath for CRD water is a small fixed ' amount to the RR seals with the majority of the flow to i tne vessel through the cooling water line. Since the  ; cooling water return is the caly significant flowpath for the water when no rods are being moved, then Cooling Water flow and Total CRD flow have to be the same, l Now let's look at a simplified diagram for the following 1 discussion: l l I i i 1 1 l _ l l j l ll1 I l l l><l_ l><l l l CRD F002 F003 I I I Pump Flow Pressure CRD Control Control Mech

r-1 ATTACHMENT 3 SHEET 13 of 25 l When the F003 Valve is throttled down to raise drive pressure, it creates a resistance to flow. If F002 is in AUT0, it will throttle OPEN to reestablish flow back to the original valve. As long as the pressure drop from throttling the F003 valve can be offset by the automatic opening of the F002 valve, flow will remain constant (both cooling aj total flow since they are the same). Once the F003 valve is throttled enough that the F002 valve can no longer compensate for the pressure drop, (i.e. , it is full open) then flow (both cooling and total) will decrease (due to the head loss from the throttled F003 valve). Based on the above, if the license holder assumes the F002 Valve is in AUT0 then the correct answer to Part b would be either:

b. 1. No change or b. 1. No change
2. No change 2. Decrease q
3. No change 3. Decrease j Either answer should be accepted for full credit.

A similar question was asked on the June 1986 exam. The comment that both flows should be the same was disallowed. We did not and do not agree with the disposition of our comment; however, at that time we had no other resources short of protesting the exam. Reference No. 9, contains a CRD system drawing, the June 1986 question, answer, comment anct resolution. Please reconsider the answer.  ; RESPONSE: Comment accepted. The answer key has been modified to reflect the above. COMMENT: 6.07 The question'has three parts. The answer key has four parts. The following three areas should be appropriate for ar.swering the three questions as they were asked:

a. Accept either - SPM inop trip OR Rod Block Trip.
b. Accept either - Startup may not continue because of the rod block OR Startup may not continue becruse SRM operability requirements for startup are not met.

1

c. Range 8 or above OR > Range 7 acceptable.

1 I e e l' ATTACHMENT 3 SHEET 14 of 25 , 1 i l RESPONSEL Comment accepted. The question originally had four parts.  ! When it was modified to be a three part question, the i answer key was inadvertently not changed. The answer l key _for Parts'a and b have been modified to include i the alternate answers provided.  ! l COMMENT: 6.08 If the purpose of the ARM system was. stated, credit should j be given. The question as worded was not clear as to whether the purpose of the ARM systerr or the meter pegger "

                                                  -circuit was rcquired. R. Morgan asked for clarification from R. Lanksbury. It was clarified for Morgan that the question vias aimed at the purpose of.the-meter pegger,         j It was not clarified for the rest of the class.

Also the description of the meter pegger should not have j to be to the detail of the answer key. In addition, the break down of the point value for the description of the operation should not be to such a small detail. If'the , circuit is explained by saying "it provides indication of a high radiation field by pegging the meter high when the GM tube saturates" or similar wording full credit should l be given.  ; See' attached Reference No. 10. RESPONSE: Comment not accepted. The examiners disagree with the , comment on the clarity of the question. This question was taken verbatim from the LaSalle Exambank. In addition, f the question specifically asks the purpose of and to  ? describe the operation of the MPC - not the ARM. As noted.  ! in a previous response, a clarification is not normally j provided to the whole group based upon a question from a  : single individual in order to minimize distractions. As in all cases, the answer key is a guide, as is the point breakdown, and exact wording is not required as long as the i examinee demonstrates sufficient knowledge. The breakdown of point value is used as a guide by the grader on what was considered important parts to be provided in the examinee's answer and how much to deduct if they are not there. The explanation of the circuit provided above is not sufficit.nt to get full credit, j

r m

            .?'-
  ' 1.7 f;

E

       ....                                                                                                          i i
t. :

l. ATTACHMENT 3 SHEET 15 of 25-6.09 Credit should be allowed for any two of. three COMMENT: a. < (all are Group 4 isolation signalt)T  ! VR isolation i VQ isolation VG start (SBGTS) NOTE: When_SBGTS auto starts, both trains always  !

                                                         -start. Question does not specifically ask                 j for how many trains start; so "VG Start"                   j should be acceptable.                                      ;

RESPONSE: Comment accepted. The answer key has been modified to reflect the above comment. COMMENT: 7.03 Credit should also be given if the MCPR safety limit and MCPR operation limit are provided as two separate answers , as listed'in the attached Technical Specifications. In addition, the APRM Flux Noise and Core Plate D/P should be treated as two separate answers. The Technical Specifications limits operation of the RR Flow Control systen to Master Manual so this should also be an acceptable answer.

                                      ' Technical Specifications require the action for single recirc pump operation to be performed within four hours which allows the operator time to perform action with a                       !

normal operating procedure, i.e., LGP's, so the setpoints and units applicability should not'be required for full  ! credit. See Reference No. 12.

                     . RESPONSE:       Comment accepted.      The answer key has been modified to reflect the above comment. In addition, the question has                     :

also been changed to reflect the greater number of possible  ! answers and to delete the requirements to include setpoints and unit applicability. The facility should modify LGP 1-1 to reflect these Technical Specification requirement for the RR Flow Control system to be in Master Manual. COMMENT: 7.05 1. Several comments can be made about the answer key on this question. First, credit should be given for saying something like " Verify SRV's cycle to maintain ' reactor pressure. The answer key follows the LOA and 3

                                                                                                                   -i
                                                                                                          ...=_=_1

D uf m

                                             < r ,
. p :

m . 1 ':- (igi e 1 ' q ATTACHMENT 3 . SHEET l'6 of?25' e  !. ,

                                                                                                               ,                                 t
                                                                 ? lists the< specific pressure region and pressure meter
                                                                 .to use. These.should not have to be maintained for full credit;             <.
2. 'Secon'd, the answer lists Diesels 0, 1A, 2A, 1B u,
                              ,                                   and 28. If.the' examinee.says start ~the Diesel                                :

generators,.this'should be sufficient for full j

                                                                ~c redit        he'should not havesto list out all the diesels.                                                                     .

E 3. Last, the examinee may say-"ver,ify that diesels ' start," instead ; cf " Attempt to start. " _ " Verify" ~ l

                                                                'here means the same as " attempt to start."'.See
                                                                . Reference No. 13'for LaSa11e's definition of
                                                                -. VERIFY.

RESPONSE: 1.  : Comment partially accepted. The answer key has been. modified to 'not require the specific pressure region. The pressure meter was never required.for cradit and was-included in parenthesis for the examiners use during grading:only. Comment acceptedi- Listing.of each EDG is 2. not required for full credit.

3. Comment accepted. This.is considered to be synonymous terminology to thel answer key.

COMMEy1 7.06 Any reasoriable answer which. mentions the possibility of exceeding.the' negative design pressure of the containment . should be accepted for.. full. credit. Note that the answer key references the generic'G.E.'E0P' o Fundamentals. This~is not a reference common to LaSalle: license ~ holders since it is. based on the Generic. Emergency- 1

- Procedure Guidelines. The Guidelines are generically written so-that only applicable portions are incorporated t into the plat specific procedures. The model plant for i
  **                                                      Revision 3 of the Guidelines-(the parent document for the                            -1 current LGA's)~is Hatch. Hatch has a Mark I containment.

LaSalle has a Mark II containment. After the calculations for the SIPL curve'were completed, the limiting conditions , which define the shape.of our curve turned out to be a i different phenomenon from the limiting conditions for-Mark I plants. Notice that the Ge Fundamentals curve plots SUPPRESSION CHAMBER PRESSURE against DRYWELL TEMPERATURE. The limiting LaSalle curve plots SUPPRESSION l t

                                                                                                                                               .y l
                       . ._ ,     _ = . __              ,                                                                -       ---_   - _ n
       ' - ,;                                                                                                        -j
     .        p
                         '                                                                                            ]
                                                                                                                      )

ATTACHMENT: 3 ' ' SHEET 17 of 25 CHAMBER PRESSURE against SUPPRESSION CHAMBER AIR 'i TEMPERATURE. This ensures that enough non-condensibles i are still present in the Suppression Chamber to adequately repressuriza the Drywell upon condensation of drywell atmosphere (i.e., after a LOCA). In summary, the license holders need not specifically icention " evaporative and convective cooling which - exceed tha relief capacity of the vacuum breakers" because the , shape of the SIPL curve is specifically based upon the ' most limiting transient for LaSalle. See Reference 'No. 14.

RESPONSE

              ~~

Comment partially accepted. Answer that discuss the possibility of exceecing the negative design pressure of the containment and include a discussion about the l non-condensibles will receive full credit. The answer key has been modified to reflect this. It should be noted that the facility did not provide any bases for their E0P's- . in the set of reference material provided to the Region. I Per discussion with the Training Department, there  ! apparently is not up-to-date version available. The facility should generate this documentation and provide it for future examinations. l COMMENT: .7.07 a. The LaSalle Administrative Exposure Limit is a daily whole body dose equivalent of 50 mrem. This exposure' limit is controlled by Type I RWP. -For personnel to exceed a daily whole body dose of 50 mrem, supervisor approval is required. This approval is documented by

                                       'the use of a Type II RWP. The exposure limit a person may receive working under a Type II RWP is based on l                                        Radiation Chemistry Management or other plant management personnel approval based on expected exposure that will be received while performing the work.                                        ;

The statement on the answer key "four hours if 1 under the Type II RWP" should not be required ' for full credit. Also 1.25 rem is also a LaSalle Administrative Limit. If correct. calculation i is done for 1.25 then credit should be granted.  !

b. The major importance of this question is that

) personnel leave the area and notify the Rad / Chem Department. The concern being the radiation exposure of the worker involved. If the worker can

t;'  ; ' , w , [' ' ATTACHMENT 3- - SHEET 18 of 25 exped'itiously return to the job ~without causing a delay.in work notification of supervisor is not as important as the rad concern. . The majority of.'the credit should be fore leaving the area-and notifying the Rad Chem Department. RESPONSE: ' a. Comment partially accepted. The answer for a.1 had l an "0R" responses so both portions were not' required for full credit. However,-the answer key was' modified to put the second portion of the. answer in parenthesis.

                                                   -In addition, the comment on the answer. key for.a.2 is not accepted since the question specifically refers to NRC limits - not'LaSalle Administrative Limits, y-                             b'.-      Comment not accepted. The majority (75%) of the answers credit;is.for the part noted by the facility.

The notification.of'the: individuals supervisor is a procadure requirement and therefore will not be deleted. In addition, the' answer key, as in_the procedure, does not state when the~ individual must make this notification - only that he must do it.

                   ' COMMENT: '7.08        a.       This is a LaSalle question. We have two comments on grading the question. ECCS flowpath valves should be allowed full credit. There areisome valves which'are on the locked valve list and which input to ESF status panel. For example., Valves 1(2)E12-F092A/B/C LPCI Injection Manual Stops are on'the locked valve list' U                                                   and also input to the ESF status panel. (Reference
                                                  'No. 15).

In addition, the mention of the break away locks on the Fire Pro.tection valves was not' asked for and

                                                  'should not be required for credit, m 6                                                'See Re'ference No. 15.

m RESPONSE: Comment partially accepted. With respect to the comment in'the first paragraph, the examiners disagree, LAP 204-1

                        ,               . requires that valves as specified in the answer key must be locked. All of the criteria listed on:the' answer key for ECCS valves must.be provided.to get full credit. With respect to the second comment, the examiners agree. This portion of the answer should have been included in parenthesis as guidance for the grader. The answer key has'been' modified to do this.
         ~

J

r ;4 1 . 6

                                                           )?                       ,.
                                     . ?, ,                                      s D
           *-.     .3                               ,        ,

ATTACHMENT 3 SHEET 19 of 25 COMjENT: 7.10 a. The question asks how does the operatorc. reset the ADS timer. The answer is to " push the RPV. level reset x pushbuttons." The answer key also adds "before the timer times out." This should not be required for-full credit as the question assumes the timer has

             ,                                                       not timed out yet.
          ,_e pb                                                               AFso accept don't close the SRV's'after an b.
 ,                                                                  ' ADS actuation unless either (1) directed by an LGA caution (adequate. cooling with Motor driven pumps) to stay a.bove 57 No.

(RCIC isolation) or (2) misoperation in AUTO mode confirmed by 1

                                                                           .at lea:tttwo independent indications.                 )
                                                                            ,                                                      i See Reference No. 22.
         <,               ' RESPONSE:                          a. Comment accepted. .The answer key has been modified to delete "before the timer times out."                      i i                                     b. Comment accepted.      The answer key has been modified 3

to accept this answer as an alternate. 41 } 1: h- L COMMENT: 8.01 In the explanation given as to why this procedure change

       ,q                    ,

would involve an unresolved safety concern, the only reason T i given is the decrease in margin of safety as defined in the

               ' \ ,X Technical Specification bases. An equally good reason is.

that raising the scram setpoint may affect assumptions made ] 2 in the Accident Analyses done for the plant. Either answer . should be acceptable for full credit. RESPONSE: Comment accepted. The answer key has been modified to accept this as an alternate answer.

                                                                                                                                  }

JCOMMENT: 8.02 The question asks for immediate operator actions,, when the i Technical Specification involved (see Reference No. 16) is .

                    .F                                         a thirty (30) minute action statement. If tho examinee             f I                                          mentions the appropriate ~ action (restore the temperature
                 ,.                                            snd/or pressure to within limits) without saying the thirty (30) minute time frame, full credit should be given. The question does not ask for a time frame and in fact, may conf"se the examinee because it uses the more conservative i.
          /

blN s  ! '\ v..

    s g ATTACHMENT 3                                                     SHEET 20 of 25-
                                   "immediately" versus the Technical Specification 30 minutes.
                                 .Also; should the i   examinee give valid actions which do not necessarily have to be done with the 30-minute time' frame, these should also be accepted. .(For example, perform an engineering an'alysis to determine effects of the-out-nf-limit condition or determine the reactor coolant l,                                  system remains acceptable for continued operations.)
  !               RESPONSE:      .' Comment accepted. .The answer key.has.been modified to not require the mention of the time constraint for full credit.

In addition,.if-the examinee provides action in addition to those required to be'in 30 minutes.no points will be deducted. COMMENT: 8.04 The answer. key, says that the water is kept 23' above the top..of the~ active fuel in the pool."to ensure;that sufficient water is available to remove 99% (0.34) of the assumed 10% o iodine gap (0.33)' released from the rupture of an irradiated j

                                 ' fuel: assembly-(0.33)." The three parts.of this answer are                                        '
                                 -(1) water absorption;-(2).of radioactive gases; (3) from a refueling accident (when dropped a bundle). Any discussion                                         ,

which contains t: ese elements should be -acceptable for full l cradit. Knowing the reciting specific details as "99%" and "10% fodine' gap" is of little operational value. At least partial credit should be given for discussions'containing (1) adequate water volume to cool the fuel pool and/or (2) radiation shielding effect of water for operators when moving fuel in the pool and vessel. These considerations were also part of the design of the fuel pool (and the subsequent Technical Specification limits) even though they are'not the most limiting. At least partial credit should also be given for saying the level is required to maintain pool level at that level which is consistent with accident analysis as stated in Technical Specification (see Reference No. 17). RESPONSE: Comment partially accepted. . The answer key has been modified to state that answers ' reflecting a knowledge that l the basis is to allow sufficient water for absorption of 1 radioactive gasses released as the result of a fuel bundle

;                                 rupture are acceptable. However, answers that discuss other reasons, such as those given in the comment, will not be accepted since the question' asks for the Technical                                                l Specification basis. In addition, no documentation was provided to substantiate that there concerns were considered in the Technical Specification basis.                                                 .i

ATTACHMENT 3. SHEET 21 of 25 j

     ' COMMENT: 8.07 b. The question states initial " notification" has been
                        .made. " Notification: may lead the candidate to think                ;

that initial notification may not include initial i recommended protective actions. The facility review i feels that partial credit should be riven under Part b  ; if the candidate answers with the following recommended nrotective actions. 1 Recommended NARS Form 9C, D, and F. (2) S) P). Shelter entire Zone X (0-2 miles). Shelter 3 3 downwind sectors' Zona Y (2-5 miles). Protect three' downwind Zone Z (5-10 miles). Further recommended actions would be taken as Containment Rad levels. changed and/or containment pressures changed (or a reasonable discussion on this order). This indicates the candidate knew how to classify the event and the proper action to take. A major portion of the credit should be granted since the knowledge level is demonstrated as appropriate. 1 Full credit should be given under Part b of the question if the candidate gives the correct answer, but for the wrong classification. For example, a candidate that mistakenly classifies Part a as a Site Emergency would then also miss Part b since the recommended actions would be different for a Site Emergency. Since this " double jeopardy" exists, full credit should be given for the following recommended actions under Part b if Site Emergency is classified under Part a: i (From GSEP Table 6.3-1 attached.) Three Site Emergency (2) (S) P) P) NARS Form 9.C and D Shelter entire Zone X (0-2 miles) Prepr.re three downwind sectors of Zone Y (2-5 miles) Prepare three downwind sectors of Zone Z (5-10 miles) Finally, full credit should be given if the candidates used the distances of the zone instead of saying X, Y and Z. f

                                                                   - -- - _ _ - _ _ _ a

l y i . 1 l ATTACHMENT 3 SHEET 22 of 25 l 1 l j For example, X = 0-2 miles Y = 2-5 miles Z = 5-10 miles The alphabetic designation of the three downwind q sectors (M, N, and P) should not be required for 3 full credit since the reference for determining the designation was not provided. R_ESPONSE: Comment partially accepted. Implicate in notification was that it.was.a NARS notification (however, for future use "NARS" has been added to.the question. L2P-1200-5, Figure 6.3-1, (provide to the examinee as part of the exam) for a General Emergency gives the initial protective action to be given with the initial notification and then. status to evaluate the condition per the remainder of three flow charts after the initial notification. The examinees had sufficient information provided to tell them that they should be basing their recommendations upon the remainder of the flow chart. In addition, the examinee could go the wrong way in the flow chart and still come up with the initial protective actions and there would be no way to determine this and this assesses his capability to perform this function. Full credit will be given for Part b if the candidate errors in Part a and the answer in b is correct for the answer provided for a. COMMENT: 8.09 This question has recently been used by us on the Requal Quiz and raised a storm of controversy among license holders and those involved in Technical Specification interpretations for the station. Some of those taking the exam were among these involved in the discussion. The application of Technical Specification 3.0.5 in this instance is currently under review for an official interpretation by station management. One point of view is, that you would follow 3.0.5 just like the current answer key. However, two men  ; involved in the original writing of 3.0.5 say this  ! Specification applies until a second specification cnmes , into play (such as the SBLC inop, eight hours to restor as in Technical Specification 3/4.1.5 - see Reference No. 19 Page 2). They maintain that the correct answer is thus an eight hour timeclock per the SBLC Technical Specification. How do you grade the question? No official interpretation  ; is in writing yet. The examinees who bring up both  ! Specifications and take 3.0.5 (the more conservative l

                                                                                                       }

l y ,

e. '

i ATTACHMENT 3 SHEET 23 of 25 l 1 l 1 action) should get full credit. Those who go with the SBLC i Specification and bring up the 3.0.5 Specification should j get at least majority credit on the question (if not full  ; credit). The issue becomes whether they know they were in j 3.0.5 before the SBLC pump becomes inoperable due to tne water spray raised the issue of whether you go to the SBLC  ; Specification or stay in 3.0.5 (see Reference No. 19). Another comment'needs to be made. A typo exists in the I answer key whether it says be in "startup within the next j seven hours." The Specification says ir, "the next six j hours." (See attached Reference No. 19, Page 1).  ! I RESPONSE: . Comment partially accepted.- Per a D. Gable letter dated j January 15, 1987, the station and the examinees were directed to take the most conservative interpretation per Technical Specifications. Therefore while an " official interpretation" i of the Technical Specification themselves may not exist sufficient information was available to allow the question to be answered per the answer key. 70% credit will be given if the answer shows that they were in 3.0.5 prior to the pump getting sprayed, but then went to the SBLC action - j statement. The typo in the answer key has been corrected. ) I COMP.ENT: 6.10 This question asks for specific details from LAP-1600-2 concerning when a piece of equipment ". . . placed in P.T.L., bypass, or made inoperable. One exception specifically identified in LAP-1660-2 is the case of the diesel fire pumps. The facility review does not feel that discussions limited to only LAP-1600-2 should be restricted in the answer key. There are other instances when a system is considered ". . . unable to initiate on an auto initiation  ; signal, . . ." and is not declare inoperable. Consider the Special Order (attached) that requires an operator to be present at the diesel generator skid during shutdown of the diesel. The diesel generator ir, " unable to initiate on an auto start" but is not declared inoperable for that approximately three minutes, since the operator is there to take action should the auto start signal come in. Attached also please find a copy of LAF-22-4, Degraded Equipment Log. This procedure has several areas of discussion concerning when equipmont is declared Inop. including the above statement about the diesel fire  ; pumps. As can be seen, there are many considerations  ; about how and when to declare equipment inoperable and i [ <

o-l ATTACHMENT 3 SHEET 24 of 25 1 since the diesel fire pumps are an odd case they are covered in several operating procedures. Another example (also attached) is one of the operating surveillance that also addresses this case. The point to be made is that operating procedures adequately cover the exemption of the fire pumps such that note memory of this item is not necessary. Therefore, any reasonable discussion concerning other system should be acceptable if the basis for the discussion is given and is accurate. See Reference No. 20. RESPONSE: Comment partially accepted. Other examples given by the examinee will be evaluated on a case-by-case basis. The facility -should review LAP-1600-2 for a procedure change since it would appear to not be complete.

              ' COMMENT:  8.12  We agree that the answer to the question is correct as stated. We also agree 1. hat this is a very clear, well-written question.              We are asking, however, that consideration be given to allowing credit for requirements to the actions taken in response to 3.03. For example, in Part 1 if the licensee holder said " Unacceptable" and then went on to explain that he did not take credit for unused portions of the allowable time frar,es, he should be allowed credit for foitowing through on his assumptions.
                      .         To significantly detract points for taking a conservative approach to applying 3.03 timeclocks does not seem to be consistent with the " conservative operational philosophy" so highly stressed by our management and the NRC.                                             The license holders were supplied with Specification 3.03 as-a reference. If the license holder was to calculate the cllowable timeclocks for situations similar to those in the questicn, he would have access to Specification 3.03 and the basis for 3.03 and LAP-1600-11T (Technical Specification Interpretations).                                            He would also have                                           l access to the opinions of Upper Management. It would not be considered appropriate to make a judgement based solely upon Specification 3.03 unless there was no doubt that the                                                                              i interpretation was accurate. The attached letter frem the
                               . Nuclear Assistant Vice President and General Manager                                                                                   ,

amplifies this approach "I'm directing all Stations i to apply the most conservative interpretation of the l Technical Specification requirements which may arise." j j l, i l _ . - _ - _ _ _ _ _ - - - _ _ __J

g7 . m - - p P- , E . 0- .-  : cf L:*J y De=

                                                                                                                                                                                 ] .,
                     ' ATTACHMENT 3-                                                              : SHEET 25'of 25                                                                -)-

4 h-

-The' question was worded "Using the attach'd e copy of. 1 Technical' Specification 3.0.3."'
Since only 3.03 was :l providedl(not'the basis or.the interpretation) it'would- H a not'be' unsafe orleven. inappropriate =for a. license. holder to take the' conservative route, See, Attachment 21 for.' supporting references.  ;

RESPONSE: . Comment. partially accepted. Partial credit will be allowed.

for^an answer;not using the.left
over time however, full credit isinot justified since the examinee should be.

3 l - familiar with the' existing' Technical Specification .

                                            . interpretations. The comment about the use.of the                                                                                 ~'

referenced D. Gab'le letter is not valid in this case. ~ While.the'1etter does state what the facility has included. in quotes,.it:goes on tb say'that is does not apply.if an u ' NRC interpretation exists. Such an interpretation does-exist.in LAP-1600-11T, Page 7,:and is based on a March 23, 1983 NRC letter. t o I

 )

U. MAdith S. NUCLEAR REGULATORY COMMISSION CUEY REACTOR OPERATOR REQUALIFICATION EXAMINATION FACILITY: _LASALLE_1L2_____________ REACTORrTYPE: _gWR-GEQ_________________ '

                                                                                                                        -{ t. ? g DATE ADMINISTERED: 87/06/011                             t'""

EXAMINER: _KEETQN z _J.s

                                                                                                                        $[]

CANDIDATE: '

         'INDIBUgIlgNg_IQ_g8NQJpBIg1 Road the attached instruction page caref ully.                                       This. examination replaces the current cycle facility                               administered requalification examination.

Retraining requirements for failure of. this examination are the same as for. failure of a requalification examination prepared and administered by

         'your     training- staff.                    Points' for each. question                             are indicated       in ,  i
         = parentheses after-the questi on .                          The passing grade requires at least 70%                           j
in each category and a final grade of at least 80%. Examination papers ]
         'will be picked up four (4) hours after the examination starts.                                                                !
                                                                % OF CATEGORY         % OF           CANDIDATE'S         CATEGORY

__Y86UE_ _IRI66 ___SQQBE___ _y@6UE__ ______________C6IEGQBY_____________ _13tE9__ _2619Z ___________ ________

1. PRINCIPLES OF NUCLEAR POWER PLANT OPERATION,' THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW
       -(4.7I                                             ________ 2.             PLANT DESIGN INCLUDING SAFETY                         f
  . _ _. 0_ _7 2_ 0_ _ _ _ 2_ 5 3_ ___________

_1 AND EMERGENCY SYSTEMS _1E_99__ _241 29 ___________ ________ 3. INSTRUMENTS AND CONTROLS I4, So y _t5rpp__ _29.Z3 _______,___ ________ 4. PROCEDURES - NORMAL, ABNORMAL,. EMERGENCY AND RADIOLOGICAL ) CONTROL } 5A70 Totals _12_2F_ _ ___________ ________% Final Grade I All work done on this examination is r.y own. I have neither given nor-received aid. j cL - g)g'2 7, ___________________________________ V 4 4/* - Candidate's Signature"

                                                                                                                 'wt e
                                   / % 2 $l 5YOP                                                                                             gf o                            _ . _ _ . . _               .           .

3

u NRC RULES AND GUIDELINES'FOR LICENSE EXAMINATIONS l lDuhing-the. administration of this examination the f ollowing rules apply: ,

    '1..< Cheating on the examination means an' automatic denial of your application
          ~
            'and ' coul d resul t - i n..-more severe penal ti es.
    ;2..      Restroom trips are to be limited.and onl y one candidate l$t jaD time may leave.       You.must. avoid all contacts with anyone outsidei the. exami nation l,             room to avoid even~the appearance or possibility of cheatipi.
                                                                                 .m.
                                                                             .. . g 7
3. Use black ink or' dark pencil gely to f acilitate legible' reproductions. l l

1' 4 Print your name;in the blank provided on the cover sheet of the

ex ami na t i on .
5. Fill in the'date on.the cover sheet of the examination (if necessary).
6. ' Use onl y' the paper provided f or answers.

l 7 '. Print your name in the upper right-hand corner of the first page of each - section of the antwer sheet. -

    'B.       Consecutively number each answer sheet, write "End of Category __" as
          . a p p r op r i a t e., start each category on a new page, write only on gne side of the paper", and write "Last Page" on the last answer sheet.

9.- Number.each answer. as to category and-number, for example, 1.4, 6. 3. '

      !O. Skip at.least threg lines between each answer.
11. Separate answer sheets from pad and place finished answer sheets face  ;

down on your desk or table. f

    .12..Use abbreviations only if they are commonly used in facility LLigrature.
13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required. l
14. Show all calculations, methods, or assumptions used to obtain an answer to' mathematical probl ems whether indicated in the question or not.
15. Par ti al credit may be gi ven. Therefore, ANSWER ALL PARTS Or THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
16. If parts of the ex aminati on are not clear as to intent, ask questions of the examiner only.
17. You must sign the statement on the cover sheet that indicates that the l work is your own and you have not received or been given assistance in l completing the examination. This must be done after the examination has  !

been compl et ed . "'t  ; 1 f m mw o ,-.

                                                /   UU l.          Ln     COR                    l 4
10. When you complete your examination, you shall:
a. Assemble your examination as f ollows:

(1) Exam questions on top. (2) Exam aids - figures, tables, etc. , ,; ,

                                                                   "4-(3)   Answer pages including figures which are part'oiIthe answer.

if.

b. Turn in your copy of the examination and all pages used to answer the examination questions.
c. Turn in all scrap paper and the balance of the paper that you did not use for an s.wer i n g the questions.
d. Leave the examination area, as defined by the examiner. If after l eavi ng , you are f ound in this' area while the examination is still in progress, your license may be denied or revoked.-

g $ kY% 4 e 1 l l l ______-_- A

suemeeeeeeeeeeemeseeeeemseeeeeeeceewomoeomemooomc. -- -

j. j .;TUERMQDYNAMICS S HEAT TRANSFER AND FLUID FLOW-
   '        Y,                ,'                                                                                     J
                   9  .
                    !OUESTION. 1.01                  (2.00)
                                                                                                . +
                       . STATE:wh' ether each of the.following changes will (INCREASE,~dDECREASE, or NOT AFFECT) AVAILABLE recirculation pump Net Positive:Su(tion Head-
          .1 :             (NPSH):                                                       l       fy9                ]

FeedEater temperature increases

                       .a.'                                                                 [',

l

                       'b.        Reacter pressure decreases c.. Reactor water. level increases
d. Recircula* ion pump speed decreases cf:

,p.

{... QUESTION .

1.02 (1.00) 4 . . p 1s Keff DEPENDENT ON or' INDEPENDENT OF-source neutrons? (p. .Briefly-EXPLAIN yourLanswer. '

QUESTION 1.03 (1.50)

Answer each of the following TRUE or FALSE:

a. Slowing tne rate.of a power decreasei lowers'the height of the .

g' resultant ~. Xenon peak. 1 [. '

b. The resultant' Xenon peak due to a scram from 50% power i s larger than one from.100*/. power.

J.

c. During an' increase in power from equilibrium Xenon conditions, Xenon concentration initially decreases.

M ASE COPY s: h (:dv' ssV', -

                                                                                          . b,:kh
                                                                                          .q-       . , .

E v (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****) s .. . . _ __ _ . _ _ . . . . . . - i

con auwea_-- _.

          ' 2C&GUWM1Gvaavss ue=a M       iSb
                                  - ( 2,00) i SOUESTION        1.04 El STATE whether each of the s f o11'owi ng Concerning pump characteristics,                                        &#/     : p
       'is TRUE or FALSE:                                                      .

y

                                                                                   .t;p q  i 4.

The total brake horsepower for two identical pumps operat ng in i p ar all el is twice the individual brake horsepower f orf^ 'a.;$ " 'Oingle pump _ supplying the same capacity. L in all ECCS systems to minimize Minimum flow valves are provided b. the time the pump is' running with shutoff head. E c. Even with the recirculation pumps off, the jet pumps will enhance natural circulation flow.

s:
               ' Centrifugal pump runout mayorresult         in pump cavitation, shearing              -
                                                                                                           }

(

d. stator winding damage. u 7r. of the pump-motor coupling, . if
                                                                                                              }j

- W, 1 il

     ' QUESTION       1.05           (1.50)

I

will cause (INCREASE, DECREASE, ,

bi Increasing recirculation pump speed f ollowing parameters? t. or REMAIN the SAME) in each of the

a. Actual bundle power i
b. Critical power  !:
         'c.     ' Critical power ratio l

IsA (1.00) 7

       . QUESTION. 1.06                                                                                          )

A neutron source producing 90 A. reactor has a K effective of 0.91. There is.no other neutrons per generation is installed in the core.. ~ source of neutrons present in the core arid no other reac t i vi ty additions. At WHAT neutron level will the neutron populati on stabilize? i e

                                                                                    -y 1

l,

                                                                                 *****)

(***** CATEGORY 01 CONTINUED ON NEXT PAGE .\

                                                                                                                 )

1 l i 1 _-- --_a

o c ammoeeeseeeeeemeseeeeeeuweseeee-eamemmememmemomo IdESU99W901GE.t_dE_ 9 E Ob E 1 E!: 99

     ' QUESTION      1.07           (1.50)
                                                                                                  ]

STATE whether'the reactor is SUBCRITICAL, CRITICAL, or SUPERCRITICAL for each of the'following: (IMMEDIATE CONDITION) j;' {[

a. . Reactor.was stable.at 10% power,. Voids just increasedf{%.
  • Y 1

' J!

b. The reactor is on a constant heatup rate of 50 degrees-F/hr.

t

c. During a startup, the reactor is at the point of adding heat  !

and period is: infinite. l 1 k

     . QUESTION' 1.08               (1.50)

!?:'

       . Assume the initial reactor' core was loaded to an effective
multiplication. factor (Keff) of 1.257.
                                                                                        .         i
a. Since Keff in.an operating reactor is 1.000, STATE FOUR reasons }

WHY the' core is loaded with so much excess Keff. Confine your answers.to factors which affect reactivity, i.e., DON'T include things such as more economical, longer times between refuel,' etc. (1.0)

b. LIST TWO methods of compensating for this excess reactivity in the reactor. (0,5)
     ' QUESTION      1.09           (1.50)

LOA-RX-01 delineates the procedure to shutdown and cooldown the plant f oll owing a centrol room evacuation. (State any assumptions made.)

a. Using~the following pressures (available l oc al l y) and times, CALCULATE the reactor coolant cooldown rate. (1.0)

TIME initial: Reactor Pressure = 400 psig TIME ini tial + 1 hr: Reactor Pressure = 122 psig

b. DOES this cooldown rate EXCEED any limits? (0.5)

QUESTION 1.10 (1.00) ym- s 2%g Does a powe- change from 40% power to 30% power take LONGER, SHORTER, or the SAME, as a power change from 40% power to 50% power 7: (Assume constant rod speed.) EXPLAIN your answer. (***** END OF CATEGORY 01 *****) i

                              . . .    ~           -

j

2 c._ P_ ( A G I ,_ D,_E_ S I G N ,,1 N ( l EM_E_R_@E_ _ E PAGE 5 .-

    'i.
        -QUESTION                  2.01                     .1.50)

( The Low Pressure.. Core. Spray (LPCS) system contains an air-operated acheck valve (FOO6).' 'U< ,f' LIST..THREE signals that'will automatical?y close this valve 7;

           ~(INCLUDE SETPDINTS)                                                                                                                                                    A:

4' [- , ,i L ' QUESTION 2.02 (2.00) With.~ regard to the DFF-GAS System: a.. WHY does the' Pre-heater.use steam instead of electric heaters?

           'b.      WHAT would happen if the Off-Gas Condenser level. control valve                                                                                                                .i failed open and the condenser completely drained?

7

c. WHAT is.the purpose of the' Charcoal beds?
d. .WHAT prever!ts releasing charcoal dust to the main stack?
         -QUESTION' .2. 03 .                                 (1.00)
           ; Describe HOW vapor binding is prevented in the' condensate. pumps.

QUESTION 2.04 '( 2.' 00 ) Answer each of the following TRUE'or FALSE:

a. The CRD pump will ' TRIP on low suction pressure.
          -b.       A l ow CRD headerJpressure will cause a SCRAM if the mode switch i s -in Ref uel or Startup on'both Unit 1 and Unit 2.
c. CRDM accumulators are CHARGED with air from the service and
                   -instrument air system.
d. SPEED CONTROL of the CRDM is accomplished by throttling valves in the hydraulic control units.
                                                                                                                                                                       ?*,                          i i

QJ' i (***** CATEGORY O2 CONTINUED ON NEXT PAGE *****)

eomaceamooweegeememeaeeeceaemmeemceeeemmewmemeemommmeme -- - f% W

    .~ QUESTION        2.05 ljAdiu CO9, (Gree)                                                       l
        ^            .                                                  .
        .You are in'the process of a turbine"heatup and roll and,have'been requested to monitor turbine exhaust hood t emp er at ur es.4 ! ,- ~          [g 1,c -     @q
a. WHAT'senFds the exhaust hood temperatures and,WHEREiarsi/they sensed? ,0.5)

( $ *!i y ? 3

                                                                                   .:c;.
                                                                                 \ ;; p .
       'b.      For an increasing temperature in the hood, LIST.any automatic
               .acti on (s) that occur:and.at WHAT temperature (s).                        O,fr (do NOT include alarms)'.                                                ++-si
c. WHAT protective function does the exhaust spray system provide? (0.5) l 1
     .DUESTION         2.06                (1.00) i        Concerning the RCIC System:                                                                    )
a. STATE the --operati ng equi pment that will ' trip when RCIC injects
               'into the vessel.                                                                       <

1

b. WHAT. signals are used to initiate these trips?
     'OUESTION- 2.07                       (2.00)                                                      !

Concerning the relief valve LOW-LOW SET (LLS) function: i hb a. WHAT is the purpose?

b. WHAT actuates the LLS?
       .c.      HOW does the LLS perform its purpose?
        'd. The LLS a tuates on (MANUAL, AUTOMATIC, or EITHER) operation of the relief valves.                  (CHOOSE ONE)
                                                                               -:, 1 :.

aa r$ I (***** CATEGORY O2 CONTINUED ON NEXT PAGE *****) l l l

=               ______:_=_r            _--:__-                  =                                       l
m. 23, P(99T_DEglgNildg6UDINg_gSEEIy_6ND_gDEBgEdQY_gygIgdg- PAGE 7-1
          .:n\

r -

                                            .,t  .4 A w.,      .
                                                                             %  *y                                 )
           'DUESTION           2.09         (1.75)                                      I.

1, [Concerni ng L the ' 0" Diesel'Oenerator: e

a. DESCRIBE the load sequencing following a loss'of pdwe to 141Y wh i'l e t a LOCA signal is'present. INCLUDE any time delay,s and
                      -major equipment involved.

z (0.5) 37 b.. LISTf.THREE DG. trips that are NOT bypassed during LOCA conditions?-

                      . ( 0. 7 51 -
c. LIST, TWO di esel . trip signals thatoWILL TRIP the "O" DG but NOT the "D" DG7 . ( 0. 5 )
  .o N 4.1 E11           GUESTION. 2.09                 (1.00)'                                                          -

U ,.The "A":TDRFP is operating in Single Element Automatic. The "B" TDRFP is reset with the discharge. valve closed. All MDRFP auto start ' i interlocks.are met:with its.M/A station in manual atJ0%. The "A" LTDRFP. trips, i: With NO OPERATOR ACTION, will the reactor scram on. low level? If it?WILL,.then WHY? If it WILL NOT'not, then WHY NOT? (Assume.the reactor is at 30% of. rated power at the time the "A".TDRFP trips.) f ' GUESTION 2.10 -(1.00) The fuel channel serves FIVE f uncti ons. LIST FOUR. i

                                                                                           /

9

                                                                                            .)'

(***** END OF CATEGORY O2 *****)  ! i

     . ..z    z. z..    .. z    .                                                    --  . ,

1 MASTEk COPY I QUESTION 3.01 (1.00) 4

      -On a' complete loss of Instrument Air, STATE HOW each of.,the following valves FAIL: (OPEN or SHUT)                                     .%t.S
                                                                   .R,,&.v ..p L y
1. Scram inlet valve. }w!.N, .3 {ff 4-inlet and{/tou,
2. Reactor water cleanup filter /demin. bt valves.
                                                                                 '                ]

i

3. Cutboard MSIV valves. ]

1 4 Turbine Building Closed Cooling Water Temperature Control Valve. i I

                                                                             ~
                                                                                                'I
    .QUESTION    3.02         (1.00)                                                              j 1
  ,    LIST TWO conditions that will cause.       Reactor Water Cleanup (RWCU) system blowdown flow control valve (FOSS) to auto close.

{ i I QUESTION 3.03 (1.50) With respect to the Recirculation Flow Control System:

a. WHAT circuit p' events excessive demand on the output of the 1 master controller? l 4
b. WHAT feedback signal is provided to the output of the flux tontroller?
c. WHAT feedback is provided to the output of the loop controllers?

QUESTION 3.04 (2.50) Concerning the Electrohydraulic Control System (EHC):

a. WHAT THREE parameters are sensed and evaluated by the control system? (1.5) i
b. With the main generator " synched" to the grid, WHAT control circuit is effectively out of the control scheme, ,

and WHY? (1.0) ( a (***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

y zz- a====uua= w === wa======. --

        ~

MASTER COPY  ; 1 QUESTION 3.05 (1.50) Concerning the HPCS Diesel Generator Governor: - -

a. DESCRIBE the conditions WHEN 0% and 50% Droop willibe p ,'

t sed?u$.:Y7 ;,geg g

                                                                         ,cq          y;.

WHAT is the normal Droop setting? '[ff,((

y. f,'[w.

b.

c. WHY is Droop controlled?

I t

                                                                                                        /

QUESTION 3.06 (2.00) ji A reactor startup.is in progress and YOU are withdrawing rods to fE bring the reactor critical. The "A" SRM is bypassed so the IMs can troubleshoot the power supply. The IM mistakenly takes the "B" SRM

  • l[" operate switch to standby and starts troubleshooting its power supply.
}

y,

.;. a.      WHAT specific plant / system TRIP did this cause?                                          j '

l' . ^'

b. HOW did this trip specifically affect the plant startup?

{ e c. EXPLAIN the Technical Specification implications of his actions.

d. On WHAT :R11 rane,e woul d the above trip have been automatically bypassed?

sg DUESTION 3.07 (1.00) -fys4p K AOW AishtfedplwIef/N can the numbermek f of LPRMs actually providing an input to an APRM

;-    channel be most conveniently determined?

hh a 4 "e QUESTION 3.08 (1.50) Concerning the Rod Block Monitor (RBM) system. FILL IN THE BLANVS with an appropriate word, phrase, or number.

a. The THREE upscale rod blocks f or two loop recirc operation are 0.66 Wr + (1) __________.

0.66 Wr + (2) __________. 0.66 Wr + (3) ___,,______.

b. The TWO RBM auto-bypasses are (1) __________ and (2U .

h_ ', ' ?qi

c. For RBM channel A, the alternate ref erence f or APRM Cf. C i s APRM Ch. __________. L. ' 4 l

(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****)

1 M~A--S~t.mr.bs COPY

         -QUESTION' 3.09                (1.50)
Regarding the Rod Worth Min.imizer.(RWM): ,, g - c y,y
a. WHAT is the TRANSITION 20NE?-

lhf / Gj;.f jJ4 ld f i

          .b.-         With a wi thdrawal : error existing below thelLPSP,            sy'J  ls L WHICH rods can be moved and in WHAT DIRECTION?                   [j '
c. WHAT will pressing the ROD TEST button (switch) on the 1H13-P603 panel. allow?
 ,        QUESTION           3.10       (1.50) y P            -

y The Narrow. Range selector . switch on the 1H13-P603 panel i.s selected. - p :ta " A *' Narrow Range l evel . "A"' Narrow Range level fails downscale. IDENTIFY whether EACH.of the following WILL-or WILL NOT occur. [{l F (Assume no Operator acti on. ).

a. __________ ~ Reactor recirculation pumps 1A and 18 downshift.-

b.~__________ 1/2 Scram.

c. __________; PCIS Group VI (shutdown cooling) isolation, j
d. __________ Reactor Vessel Low Level Alarm (Level 4).
e. __________

PCIS Group VII (TIPS) isolation,

f. __________

RRLC Level Setpoint setback. t af ,. 2 ,

                                                                                , , . . " ~

we o r

                                                                                                        }

l (***** END OF CATEGORY 03 *****) l-1 l

4!__EB9CEDUBES_;_Ng5[863_9Byg80863_ Edge @EGCy,@ND PAGE 11

       -       89D196991C96_CgNTOg6 E                              MASTER COPY OUESTION      4.01        (2.00) a '. HOW long can an operator stay in a     LS mrem /hr radi[ti'on[fi el d WITHOUT. exceeding:                                      7p; j p
1) A LaSalle administrative exposure limit?

w +;

2) A NRC quar terly exposur e li mi t if you already received DNE rem this quarter?

(Assume that a NRC Form 4 is compl eted and lifetime exposure limit will not be exceeded.)

b. YOU are working in a group of FOUR people recharging CRD accumul ators when . you accidentally drop your pocket dosimeter.

YOUR dosimeter is now reading FULL SCALE while the other THREE dosimeters for members of your team are reading FIVE mrem. , According to LRP-1000-1, Radiation Protection Standards, } WHAT i s (are) the MOST CORRECT action (s) you will take? QUESTION- 4.02 (2.00)

a. Other than "As directed," WHAT are the entry conditions to LGA-01, Level / Pressure Control?
b. If you are executing step C.8.a "Depressurize the RPV" in procedure LGA-01 and another (not the initial one) entry conoition to LGA-01 is met, ARE you required to restart the procedure at the initial step? (YES/NO)

PROVIDE the reason for your response. QUESTION 4.03 (1.00) According to the LGA General Precautions, under emergency conditions, WHEN can an ECCS component be placed in MANUAL or secured? LIST TWO conditions. QUESTION 4.04 (1.00)

                                                                                ~

Step C.2.a. of LGA-03 directs the operator to close any' stuck open SRVs. WHAT are TWO methods by which the operator can attempt to close

         .a stuck open SRV?                                               ,

1 (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) (- a- -

       .        6091969 Gig 86_QgNJBQL-MASTE COP) l       ; QUESTION         4.05              . (1.00)
                                                                                   /b4 In:accordance with LDA-FW-01, " Loss of Feedwater Heater >(sk],'{Q}

ii

                                                                                   ^
          ~WHAT TWO conditions require the operator toMANUALLYscr4AYh[

the reactor? 5.- iyT A

                                                ,                                  9b;1 {" 4
                                                                                   $il-lYi kW <

QUESTION 4.06- (1.50) In LGA-01, " Level / Pressure Control," Step C.7.a. states: IF RPV water level can be maintained above -lui inches, js AND , i s.

 ;,        The ADS timer has initiated,

'L-I Then PREVENT automatic RPV depressurization by RESETTING the. ADS timer. ,

a. HOW does the operator reset the ADS timer? (Be specific) (0.5)

{- b, Suppose the operator failed to reset the ADS timer and the ADS l SRVs opened. SHOULD the operator reset the ADS timer now and 'I cl ose the SRVs? WHY or WHY NOT? (1.0) i QUESTION 4.07 (1.00) J'9 . LOA -MS-01, " Main Steam Isol ation Bypass f or Emergency Depressurization," cautions the operator that under THREE conditions, .bs .this procedure should not be used. p ^r Af LIST TWO of the THREE conditions. (K.y e . G r:. > y (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) l

L.__P QCEQU$ 5f;,,NgSU86t,,99$9Bd863_EDE EN _8Ng PA E 1

         ,       RADIOLOGIg6L_ggNTRgL MASTE COPi OUESTIGN ~ 4.00          (     t
       ,     STATE WHICH; Emergency Classification is appropriate forfeach of the
            . f ollowing definitions:                                          ,;  ,
a. Events are in progress'or have occurred which involve actual or c potential snbstential. degradation of the l evel of safety of the I
                  . plant. .                                                                          j b.:   Events are in progress or have occurred which indicate a                         j potenti al' 'degradati on of the l evel . of safety of the plant.                  I
c. Events are; in. progress or ' have occur. red which involve actual or  !

imminent substantial core' degradation or melting with the , potential for loss of containment integrity. .

d. Events are in progress or have occurred which invol ve an actual or'likely major. failure of plant functions needed for p r,ot ec t i on
                  'of the public.                                                                  .j QUESTION .4.09           (1.50)

Special Operating Order 87-15 states that diesel generators should not be shut down within-F1VE minutes of each other. 1

a. DESCRIBE WHAT system features make this necessary. (1.0)

(Include any time constraints.)

b. STATE any exception to this-statement. (0.5)

QUESTION: 4.10 (1.00) According to LAP-220-2, Unit Operators' Log, LCO time clocks are di vi d ed into TWO categories. DEFINE each category. M i 1

                                                                                                   ' i.

i (*A*** CATEGORY 04 CONTINUED ON NEXT PAGE *****) l r

n w ; . ... . . j . ., . _ . . ; ;. _. _ . , , , _ . . _ . . . , - ,_ ,._._.; ;..:. 2;_ s;:...,_. ,, ,;...... g r-

    ,.     .,4 . - . PROCEDURES'-~NORMALi,ABNQR h _gMgRGENgy_AND
                                                                                                                                          .PAGE- ' 14 -

i ~n " RADIOLOGICAL CONTROL 3 L., p. OOESTION 4.11 J 1 (1i50) E. CCF i

                                                                                                                        ,     y} r
                                                                                                                         *a ,

Answer each ' of _. the f o11 cwing..TRUE or FALSE: ;ggp 7.s; ,, Accord ng to; LOP-RX-03,, Transfer of Shutdown Control to . the 4; Remote 1 Shutdown Panel: J/J

                                                                                                                                 ?                             ;
  '           'a.      Placing a-transfer switch tb " EMERGENCY"'will override automatic but not protective features of the associated components.
c. .

b.. If-it is known that RCIC is running,' transfer of control _should be in accordant.e with this. procedure.to maintain-system operation.

  .s
               ;c.,      'If."B"-RHR is transferred in accordance with this procedure, the system operation will be maintained.

h. i i t i p' ' i gj

                                                                                                                                                              -i i

sz , >.. e s

                                                                                                                          +.

eg i

                                                                                                                                                               \l l

i

     ,                                            (***** END OF CATEGORY 04 *****)

(******?****** END OF EXAMINATION ***************) l 1

                                                                                                      - - _ . . -_---___-...__.-_--___-_-_-____--A

iz__ESINGLE(EQ_QE_NgCLE@6_EQWE6_E(@N1_QEE6@llgN t PAGE 15 IUEQUQDIN@ digs t_6E@l_16@NSEE6_@ND_E(ylD_E6QW

       . ANSWERS --- LASALLE 162                            -87/06/01-KEETON,                             J.

MASTER COPY.. , ANSWE.11 1.01 (2.00) - :N

                                                                                                                ., y . . ..'<
a. DECREAce'
b. DECREASE ' '
                                                                                                                    ',a
c. INCREASE
d. INCREASE (0.5 pts each)

REFERENCE LaSalle: Fluid Flow and Heat Transfer, pp 64-70, TPO M13 202OO1K101 202OO1K103 202OO1K105 202OO1K122 ...(KA'S) c.

 ?

ANSWER 1.02 (1.00)

       . INDEPENDENT OF (0.5)

Keff (the neutr.on life cycle) sion neutrons in the self gustain onl(M4crred@edb (0.5) y consi ders f ip/cj ce rrsc7 fe5/#d'5c5 4cc*/ e {wr full cred/ ').i -n ,g r eac t i on . REFERENCE

  • LaSalle Reactor Theory, LO N's 7.e and 15.b 292OO3K101 2920C Or'104 ...(KA'S)

ANSWER 1.03 (4.30)

a. True
b. False
c. True

( O.5 pts each) REFERENCE LaSal l e: Reactor Theory, Lb #21 292OO6K105 292OO6K106 292OO6K107 ...(KA'S) l l l t fh'

                                                                                                                    'n l                                                                                                                      '

s

l___CBldGIP(CE_Q[_NUQ(E@B_PQWgg_P(@NI_QEgg@IlgN t PAGE 16 a It!E60QQyN@ dig @t_ HEAT ' TRANSFER AND FLUID FLOW

                                                                            ,r ANSWERS.-- LASALLE 1L2.                                               -87/06/01-KEETON,                                                         J.
 ' ANSWER                  1.04 M-STEE COPY (2.00) f4g- i'['

q - '; ;g

a. False ~ ' ' Jp
b. True ,, , ' i f f 1

c.- False

     'd.       True
             -( O.5 pts each)                                                                                                                                                                       i REFERENCE                                                                                                                                                                                     !

LaSalle: Fluid Flow and Heat Transfer, TPO I.c. . t 293OO9K105 293OO9K106 293OO9K111 ...(KA'S) , l ANSWER 1.05 (1.50)

a. Increase .
b. Increase. )
c. Decrease

( O.5 pts each) REFERENCE LaSalle: Core Thermal Hydraulics, TPO tt5 202OO1K102 293OO9K123 293OO9K141 ...(KA'S)

' ANSWER                   1.06-          ( 1. 0 0-)

CR = 5 1-Keff CR = 90 1-.91 CR = 90 (0.5)

                            .09
f. )

CR = 1000 counts / generation (0.5)  % ,

                                                                                                                                                      ;&h          .a                                l
                                                                                                                                                       !2! ~

1 __EBING1ELES_QE_Nyg(EQ6_EgWE6_C(@dl_QEES@IlgN t PAGE .17 ISESdQQ18901Get_SE@l_IB@dQEEB_@dQ_E691Q_E6QW ANSWERS - 'LASAL & 87/O T , . REFERENCE LaSalle: Duestion and Answer Profile, Physics Review '+, - r 292OO3K102 ...(KA'S) 3:Jy jf. '

                                                                  . ,n. !. $([, --
                                                                           't < ,s-g.

1 4, *' ,i:{l; ANSWER 1.07. (1.50)

a. Subcritical ba Supercritical l
c. Critical

( O.5 pts each) REFERENCE LoSalle: Reactor Physics Review, LO 7 <

                                                                                                                      ~

292OOSK105 ...(KA'S) ANSWER 1.08. (1.50) 1 ao 1. Fuel depletion

2. Xenon  :
3. Samarium -
4. Fission product poisons (accept if don't list Xe or Sm)
5. Negative reactivi ty due to voids
6. Negative reactivity due to doppler
7. Negative reacti vity due to moderator temperature (Any 4 O O.25 pts each)
b. 1. Control rods
2. Burnable poisons e/v//h/
3. Recirc. Flow (Any 2 a O.25 pts each)

REFERENCE .LaSalle Question and Answer Profile, Physics Review I 292OO2K112 ...(KA'S) 1 j k 1(~f a 9 ,s

                                                                         ')~.I        =

35% ,.'%

                                                                    ??             t' l

{ l i

n_n-- _ _ _ _ _--__--- -- r

        - n'. , <ISEBdQQXN@dlGL,_SE61_IE6NSEGE_6MQ_E6glQ_E6QW ANSWERS..-- LASALLE-1&2;                    -87/06/01-KEETON,   J.                          .!
          ~

MASTER COPY - ANSWER 1.09 ( 1. 50 ) . N.wfl.53-

a i <3
a. Assume Patm = 14.7 psia at T initial; .h [i,t ).) .f .pp4 f%,.., I P = 400 psig = 414.7 psia at T initial; j.pnf j .

P = 122 psi g = 136.7 psia at T ini tial + 60 min A 'i O.5) i P sat of 414.7 psia e T sat of 448.14 F-P sat of 136.7 psia = T sat of 351.19 F

                    . Delta T = 449.14'- 351.19 = 96.95 gdegrees F/ hour            (O.5)                 -(

[1 2 f *F I .b. NO, the limit is 100 degreet F/hr. (0.5) (Will accept Yes i f part a. answer is incorrectly calculated - s and above 100 degrees F/hr.) 4 REFERENCE / 4 LaSalle:. Question and Answer Profile, Requal Thermodynamic and I s L.P., Rev..1 293OO3K123' ,...(KA'S) 4 ( ANSWER ' .1. 10 ( 1. '00 )  ! Longer (O.5)- because the power down transient is limited by the decay of the long-lived delayed neutron precursors where the power'up transient is dependent on1y on' prompt neuteons and short-1ived delay neutron 'l precursors. (0.5) l'

  ;+

REFERENCE LaSalle: Question and Answer Profile 292OO3K106 ...(KA'S) l I g.n ,

                                                                            .jk _ .                         e
                                                                            .    .                         i i

1 1 2___---_---__-________

       .ese wem eeeeeeeeeeeeyw meme w w w = -amo-co - oo.                                              ,

1 ANSWERS ---LASA LE & ., . -07/ O E , J. . i ANSWER 2.01 -(1.50) _, m g ,S D N 11 -50 inches-reactor water l evel 4[by,M T y,(( '

2. 1.69 psig in the drywell i ':
3. Manual pushbutton-(B and/or D)

(.~O.5 pts each) [h

                                                                                        %y      ,

t; . REFERENCE LaSalle: System Description, Chapter 38, TPO 4 209001 GOO 7 ....(KA'S) t I ANSWER. -2.02 (2.00) h. [ a. ..To' eliminate an er p1 psi on h a:: ar d . ( O .jg,. b b. Gases would return tg ma(o condenser (, vacuum would decre,ase) [orF -(si45 L Flow pm+es malddueufe) ep., g

c. Adsorbs. radioactive gases to allow. decay before exhausting to
                                       ~

the main stack. (0,5)

 ,,       d.            The afterfilters.           (0.5) r REFERENCE LaSalle: ' System Description, Chapter 31, TPO 4 271000 GOO 7                   271000K301          271000K404       ...(KA'S)

ANSWER 2.03 (1.0C) m Continuous venting (0.5) of the suction / .scharge piping and pump case to the main condenser (0.t9

 '        REFERENCE LaSalle: . System Description, Chapter 27, 256000 GOO 7                   ...(KA'S)

ANSWER 2.04 (2.00)

a. True
         @             E r l : :- - Tru c.
c. . Fa3 se
d. True- 1
                                                                                        #   8

10.5 pts each) Yl:h w

    .m           _ ___                           __

q mmeee-mmmme-memmmmmmmmmmmmmmmm

             ~ ANSWERS -- LASALLE'102                                                 -87/06/01-KEETON,                J.

,m

 ?_             201OO1K412           ,

MASTER COPY

                     .Salle: System Description, Chapter 8, TPO 4 and 5.

201001K501 s... (KA'S) 3y y, , ,;4. q i

                                                                                                                                                     ]
                                                                                                                       ' : 'QW
                                                                                                                            ,                        i jj$~o                                                                    fY hil,                 l ANSWER            2.05             (Er W )                                                                   ND       A
                        ~[f.ermocoef     l        
                                                                                                                       'N N Y
e. "c m ,t_tce%.(0.25) in the exhaust hood of the ("A," "B," "C") . low pressure turbine,. (0.25) 4 K -420 degreet F '^ 25' ' -
b. _

L ..www =, g i o r iniciace> w . -2 2 . K 225 degrees F (0.25) - turbine trip on high exhaust hood temperature (0.25).

c. Minimize distortion of the low pressure hood and shell structure
             .            (t hat coul d - caus o r bb'n                  and im                      b ar          leading                          l
      .,                   hay 8tt fq/ #se          kahN       or         c & proper l$nces abli          e. n  t &/( c. red) tN.(0. 5) f         REFERENCE          ,

'fg; LaSalle Systbm Description, Chapter 23, pp. 23-25, TPO:li, 3c, and 5. 245000G007 '45000K405 2  !...(KA'S) 7 L

  !                                                                                                                                                 I ANSWER           2.06             (1.00)
           ,     s.       Trips Main Turbine (0.25) and both Feedwater Turbines (0.25).
b. Opening of injection Valve (E51-FO13) (0.25) and/or Testable Check Valve (E51-F066) (as indicated by valve limit switches:

(0.25). -[~ REFERENCh , s j; LaSal l e: Question and Answer Profile, Sys 41

 'h              217000K102               217000K404                   . ., . ( K A ' 5 ) ,

rr ' q ' i E' - [> K ANSWER 2.07 (b. O'O,;3 lf p t . i p a. To minimize containment f atigue f rom duty cycles. (Al m accept reduces relief vah e ' cycli ng. ) (0.5) , [ b. LLS logic is armed whenever any two or more of the sa f ety/ relief '

e. valveu are si gnaled' to open' 5 (0.5) . 1
          ' l' c .        By changing the open an t' reclosing pressures.at which the valves associated with the LLS operate.                                   (0,5)
d. Either (0.5)
                                                                                                                                     \
       ,;          REFERENCE                                                                                                                        1 LaSalle: Question and Answer Profile, Sys 37 R1                                                                    ;

1 239002K401 239002K402 ...(KA'S) -;p 0 V fI, ?! ' x \  ;,M; fi [k h- k

                                                                                                                      '.yQ; i,

f f

P yl_D_E,Sl@N,,I Ng(UQlyG,_@@EE,11_96Q_[M[R_@[Ugy_@y@lgM_@ . 'PAGE 21 ANSWERSD-- LASALLE 1&2 -87/06/01-KEETON, J. MASTEi COPi

      ~

ANSWER ;2.08 (1.75) ' . .l ; w 4; -

c. LPCS. pump starts immediately (0.25), 1A RHR pump s' tarts after 5 sec TD. (0.25) -4 ^:
b. Overspeed, emergency stop P.B., and differential current
                                                                                    //'

c. (0.25 pts each). . Underfrequenc 'and enerator ground 4 tseM overvol tage )(A144 djf )' (O.25 pts eac ). p%tlep!<das w n ) REFERENCE LaSa11er Question and Answer Profile, Systems Chapter 47 and DGs, Rev. 1. 264000K402 264000K405 ...(KA'S) s F ANSWER 2.09 . (1.00) Yes (0.25). . Y .The MDFRP auto htarts but will not feed the vessel because the I My Actuatcr Sel ec t or switch is selected to the "A" TDRFP (0.75). REFERENCE LaSal l e: Question and Answer Profile, System Description , Chapte- 29, Rev 1 259001K301 259001K401 ...(KA'S) .t 4% i ANSWER 2.10 (1.00)

 ,      -1. Channels coolant up through the bundle.

j;" 2. Betring surface for control rod blades.

3. . Protects fuel during fuel handling.

u 4. Primary resistan:e to lateral loading on fuel assembly.

5. Insures correct clearance for control rod clade (button spacers).

(Any 4 0 0.25 pts each) REFERENCE LaSalle: Question and Answer Profile, System Description LP, Chapter 4, Rev. 1, Page 18 290002 GOO 7 292OOO2K40 ...(KA*S)

                                                                                  4.'

i

1__.1NgISyDENIg_9Np,CQNISOLp PAGE 22 ?,

         ' ANSWERS _-- LASALLE IL2                  -87 / 06 / 01 - KEET ON ,   J.

MAS ~L CO?1

       ~

ANSWER 3.01 (1.00) y, .

1. Open .; 4~.
2. Shut  ?
3. Shut ,;
4. Open i' * ?/'

(0.25 pts each) f REFERENCE LaSal l e: System Description, Chapter 68, pp. 15, 18, 19, and 20 TPD:3b, 6b, 7a. 204000K604 212OOOK115 223OO1K613 239001K602- ...(KA'S) 't

 \

ANSWER 3.02 (1.00) i

~
1. Low pressure in piping upstream of the FCV
2. High pressure in piping downstream of the FCV g (0.5 ptseach)

REFERENCE LaSalle: System Description, Chapter 9, pp. 18, 21, 22, and 34, TPO:2j, 4a, and 6a. 204000 GOO 7 204000K404 ...(KA'S) ANSWER 3.03 ti.50) l I I

a. Flux Demand limiter h uhaiN M#/
b. Loop flow or Retirc. flow
c. Fl ow control valve posi tion f eedback. ( Al so accept velocity feedback)

(0.5 pts each) REFERENCE LaSalle: System Description, Chapter 6, TPO 3. 202OO2K400 202OO2K502 ...(KA'S) I 9 V y. i

3 __1NEIQgdENIQ_QND_CONISOLS PAGE 23

.. 1 ANSWERS -- LASALLE 1&2 -87/06/01-KEETON, J.
      ~

M -\Sih COP /1 ANSWER 3.04 (2.50) p.y,y.> '

a. . Throttle (or Reactor) pressure (#sp aces Generator Load (MWe)
  • M U$(**[r f**I / 'b f

kj Thr us e A,w4eg l Turbine Speed Byssy/4,ef:,) fj.,f (0.5 pts each) >l-

b. Speed control c i r c ui t N
                                                              '(O. 5) .[54e//Wre/y " *s 44*/enedb t.d,4/shes edeseh _             l Because, if the main generator is " tied to the grid, the main                                                      l generator cannot spin any faster or slower than grid frequency                                                      ;

(0.5). l REFERENCE i LaSalle: System Description, Chapter 26, TPO 1, 2, and 4. 241000K102 241000K108 241000K120 241000K505 ...(KA'S) 'l i' i t i-ANSWER 3.05 (1.50)  !

a. 1. 50% Droop is used when operating in parallel with other powerg sources. (O.25)
2. 0% Droop is used when suppl ying a% gby (/b*#%,'d n isolated bus (0.25)
b. 0% Droop. (0.5) ~
c. To compensate for droop in speed created by an increase in load on an isol ated bus, and prevent D/G overload when paralleled with  !

another power source. (0.5) REFERENCE LaSal l e: . System Description, Chapter 47, TPO 4 209002 GOO 7 209002K104 ...(KA'S) ANSWER 3.06 (2.00) .

                                                                                                                  #      $M a.-    SRM Inop. Tr i p .I4b                                                        !      #

ff

b. Inop trip on SRM's causes a Rod Dlock.b M' Y
c. The LCO for SRM startup operability that requires /y of 4 SRMs to be operational is not met. The action requirements for this LCO must be implemented until the IM's mistake is corrected and "B" SRM i s operati onal again.
c. Range 8 or above ( > Range 7 acceptable).

(0.5 pts each) REFERENCE LaSalle: Question and Answer Profile, System Description Chapter 11, Rev. 1 ,2 j, Technical Specification 3.3.26 ,i ' 2150040011 215004K101 215004V401 215004K406 ...(KA*S)

      - 3:__INSIB90ENIf_ANp_CONIBgLS-                                                               .PAGE 24 ANSWERS;-- LASALLE 1&2                           87/06/01-KEETON,     J.

7 )

        ~

MAc % LUr i ANSWER. 3.07 (1.00) m j Place the APRM f uncti on swi tch . to the: count posi tion. (Oe 34)d)9

                                                                                         ] rMet er.

I indicatesfnumber of assigned-LPRMs which are in operatee(0.;33) 5% per.LPPM (0.33) .(3ee .which LPRMs assigned.to that chandgl. are in: operate using'backpanel status lights or' function: switch.)-

 .          REFERENCE LaSalle: Question and Answer Penfile, Lic. System Description, Chapter 13, Rev. 1 215005K104.        . . . .( K A ' S )
       ' ANSWER         3.00                (1.50) a.,   (1). O'.38                                                 g
                  '(2)    0.'30 (3)    0.22.                                                                              \s (0.25 pts each in any order)
b. (1) APRM < 30%

(2) Edge Rod selected (0.25 pts each)

          .c. . E   .(0.25)

REFERENCE

          -LaSalle       Question and Answer Profile, System Description Chapter 15, 12/95
          '215002 GOO 7         215002K104         ...(KA'S)

ANSWER' 3.09 (1.50) 6

          .a.

The operati..,g region between the LPSP and the LPAP-(between 20% and 30% power as indicated by the FWCS steam flow l instruments). (0.5)

b. Any ' r ods havi ng -i-a;cr i cr cr; .a,- bc ..thdr; - . 0, ~ une roa w A rn
                  =4he- wi t h d r a w er r or may be inserted.   (0.5)
c. Allows movement of one (and only one) rod to any position provided the other rods are f ully inserted. (0.5)
            -REFERENCE                                                                                          '

LaSalle: Question and Answer Profile, LaSall e System Description, Chapter 18 *~? 37 201006K101 201006K104 201006K406 ...(KA'S) .

                                                                                  %,12 'Q                         ;

qq q 1

L-o ~3:__1NsISUDEUIg_699_CgyIggLg PAGE 25 ANSWERS -~ LASALLE 1L2 -87/06/01-KEETON,- J. nn. M A bim.. COPt ANSWER 3.10 (1.50) . w , + ,3 . . J,n x;; ?qjgl

a. Will J t.- < y
b. Will Not M'I,Ig :hC
c. Wi11.Not. 9-' af rj i .
                          .d. Will                                                          Fd l              f
e. Will Not
                          -f. Will

( O.25 pts each) REFERENCE LaSal l e: Guestion and Answer Profile, System Design, Ctapter 31, Rev. 1 259002 GOO 7 259002K101 259002K103 259002K115 ...(KA*S) i h-e.

       .I,
  • i
j. ,

t "9 5 .. h.s. t e i 4 c

                                                                                                           '" ^

g

                                                                                                . -=
                                                                                                               ,F ggs '

__.____.._-__m._ _ _ . _ - _ _ _ _ _ _ . _ _ _ _ . _ _ _ . _ _ _ _ _ _ _ _ _ _ _ J

   - _eoessseeeesesemeeeeseeocemeaemmeomemcemo00 mamma
     .        099196991G96_G9NISQL                                                                     q
        .t
                                                                                                       )

ANSWERS'-- LASALLE ik2 -87/06/01-KEETON, J. Ob y J \Ab s - . d; + .' ANSWER 4.01 (2.00) is(; yk

                                                                                             ,- l }T
                '1 )     2 hours            4 hours if under Type II' Radiation 4.

PerAit)(0.5) 1 (Of}er respite nny'laf/c Xnswfmas art cleerly afNd lN}: 2)' -00 hours (0.5)

b. Immediat ely leave the area (0.5) and noti f y your - i mmedi a te sup ervi sor_ (O;,25) snd Radiation-Chemistry (O r25 b.
        ~ REFERENCE LaSalle: LRF-1000-1, pp. 24 and 32.

294001K103 294001K104. ...(KA'S) + tI- .p

j. ANSWER 4.02 (2.00) ,

F .e. 1. Boron,has not been injected. p 2. RPV wat'er level < 12.5 in.  ; [ 3. RPV pressure > 10431psig j + 4. Drywell pressure > 1.69 psig ( O.25 pts each) 1

b. Yes, to ensure that the. intent of steps previously perf ormed wovid'not be altered due to the new entry condition.

(Will accept: ,N o, if , ADS blowdown is in progress, you are directed not to terminate until completed.) (1.0) lowr *s*wses y nuepio44 W emp% are.r/9 sf Aed) 1 REFERENCE / LaSalle LGA-01, pg. 2 General Electric: EDP Fundamentals Bases for EOPs. 295025G011 295031G011 ...(KA'S)

~

ANSWER 4.03' (1.00' i 1.' Mi sop er a t i on (i.n AUTO mod confirmed.

2. Adequate core cooling is assured. i

( O.5 pts each)  ! REFERENCE LaSalle: Qu est i on and Answer Profile, LGA-GPM11 209002EOO1 ...(KA'S)

                                                                                         @v . .& -d;   I L

(. \ "

                                                                                        .- es
   . mommmmmemommema mmmmmmmmmm-mmo
           ' 6091969 GIG 06_QgNIBQL.

I

                                                         -07/06/ni-KEETON,   J.

ANSWERS--LASALM1d2ASm. i - COPi

                                                                               +     ,<

ANGWER 4.04 '( 1. 00) ..) , i

1. Pull associated SRV's control power fuses. (0.5) [ h,l[ . I 2.. Cycle handswitch for associated SRV (AUTO to OPEN' ~and"back to AUTO). (0.5) 'l' l

REFERENCE 1 LaSal l e: Question and Answer Profile, LOA-NB-02 239002 GOO 7 ...(KA'S) ANSWER 4.05 (1.00) 1 . '- If feedwater temperature drops more-than 100 degrees F. (0.5) f 2. High level is apparent a n any heater (0.2) neither its 'i extraction steam non return'(0.15) nor extraction steam inlet valve can be closed (0.15). ( O.5 pts'each) REFERENCE-LaSalle: Question and Answer Profile, LOA-FW-01, Rev. 9 .l' 241000K112 259001K305 259001K312 ...(KA'S) ANSWER 4.06 (1.50)

,,     a.       By pressing the RPV level reset p.b. before timer " times" out.
,i              (0.5)
b. No (0.5)

General Precaution 425 tells the operator not-to.close the SRVs af ter an ADS actuati on. The intent is to prevent multiple ADS actuations that may overstress and cause failures pf-RPV a d/or containment c omp' on ( en t s .M,. O dtd/d 2M 4 M 67 /C/C Q 0, y )(W~)g p0s j REFERENCE l LaSalle: Question and Answer Profile, LGA-01/ Gen Caut 15 210000K402 218000K501 ...(KA'S) {g, N  % {q .. TO;.;'y , ei 1 m_ __2

4c__ES9GEQQBEQ_;_NQBM@(t_8BNgBU@6t_EdEBQENQY_@NQ PAGE 28

      -      809196921G86_QQNIBQL, ANSWERS -- LASALLE 1&2                                            -87/06/01-KEETON,            J.

ANSWER 4.07 MASTu COP't (1.00)' l f *jg l i 2+% .)

1. MSIVs closed due to MSL Hi Radiation (or fuel damagefindicated) 2.. ~High steam' flow i sol ati on received (or MSL break indicdted)
3. Containment radiation level is greater than full poweri background .

(not f ollowing expected trend or analyses indicate T.S. release limits'will be exceeded). (Any 2 & O.5 pts each) REFERENCE LaSalle: Question and Answer Profile, LDA-MS-01, Rev. 5  !

  ,     239001G013                  239001K407                    ...(KA'S)                                                           !

ANSWER 4.08 ( ) C-  !

a. Al er t , ,,
b. (Notification of) Unusual Event i r. General Emergency
d. Site Area Emergency

( 5 pts each) REFERENCE

                                                                                                                                    ~

LaSal l e: LZP-12OO-1, Attachment B. 294001A116 ...(KA'S) , b O

  @                                                                     e h0 " e 9'"

J ANSWER 4.09 (1.50) he-am L .  !

a. The* diesel generators cannot be restarted within,3 min (0,5),

because of a pressure switch connected in series w3th the air start circuit. If an emergency start is received during j cpas,tdowp, a lockout ccu (0.5), c6

  • s/odoNesseeI*waWN Circuitry /Nuolved, andrenNyp & ar do&M es$his ofco sceyhbfe) l REFER NCE LaSalle: LAP-1600-1, Special Operating Drder #87-15.

264000 GOO 1 264000K408 ...(KA'5) f uq  ! f* A f

                                                                                                     +;f , F                          j
                                                                                                       ,
  • fr
                                                                                                      ;         1 C

C

7.m _- _ . ;- .,-_. , m ___ _ __ 7 _ ._.__,_ _ _ _ _ _ _ _._ _

4. L P_ B Q g E_ Q y g g g _ ; i N_ g S d @ L_ g _ Q @ N g d d @ L,. t _ E M E E @ E N g ! _ A N_ Q PAGE 29-
         '-:           BSD196991G86_QQNIBg(-
            ! ANSWERS'-- LASALLE-1L2'
                                      ~
       #                                                                                         -87/06/01-KEETON,            J.

Mac-a % COPr Q N- l

         -ANSWER-                  4.10                      (1.00) y;t
                                                                                                                            . , g%.

i j<

                                                                                                                            -       +nh Short-duration <'4                         hours, and Long' duration ' > 4 hours.fi(Of5 dts each)                                                          !

lt REFERENCE- ' Q" ~ '}I;

              'LaSalle: LAP-22Or2-2010010005                         206000 GOO 5                  218000 GOO 5                     ...(KA'S) i:

ANSWER' -4.11 (1.50) d" a .- False ,

                                                                                                                                                                        'i
             .b.-          True                                                                                                                                           ]

1

   ;.           c '.       False                                                                                                                                      ,

p , (0.5 ptseach)-

REFERENCE-g ,LaSalle: LOP-R'X-03, D.

T*i 295016K201' ...(KA'S)

l 4

l 1 h 4

                                                                                                                              #        h~

y i i 1

TEST CROSS REFERENCE .PAGE 1 00ESTION I VALUE REFERENCE 01.01' 2.00 KMJOOO1145 01.02 1.00 KMJOOO1146 *~ 01.03. 1.50 KMJOOO1147 LO1.04 2.00 .KMJOOO1148 ,. 37

   ~01.05          1.50  -KMJ0001149                                                   y 01.06         1.00   KMJOOO1150                                     ;gyjg>./-,.

01.07 1.50 KMJOOO1151 "b.1>NII 01'.08 1.50 -KMJOOO1152 ' D 01.09 1.50 KMJOOO1153+' l 01.10 1.00- KMJOOO1154 14.50 ** O2.01 1.50 KMJOOO1155. 02.02 2.00 KMJOOO1156&' 02.03 1.00 KMJOOO1157 02.04 2.00 KMJOOO1158 02.05 2.00 KMJOOO1159" 02.06 1.00 KMJOOO1160 02.07 2.00 KMJOOO1161 4 '%g*" 02.08 1.75 KMJOOO11626" r^ h '3pf

   -02.09          1.00  .KMJOOO1163 02.10         1.00 ~~KMJOOO1164 15.25 i

03.01 ~1.00 KMJOOO1165 03.02 1.00 KMJOOO1166 "" 03.03 1.50 KMJ OOO 1167 03.04 2.50 KMJOOO1168 - 03.05 1.50 KMJOOO1169-03.06 2.00 KMJOOO1170 ' 03.07 1.00 KMJOOO1171*' i 03.08 1.50 KMJOOO1172  ! 03.09 1.50 KMJOOO1173 "" I 03.10 1.50 KMJOOO1175  ! 15.00  ! 04.01 2.00 KMJOOO1176 v  ! 04.02 2.00 KMJOOO1177 "' i 04.03 1.00 KMJOOO1178 "' 04.04 1.00 KMJOOO1179 04.05 1.00 KMJOOO11BO  ! 04.06 1.50 KMJOOO1181 "~ f 04.07 1.00 KMJOOO1182 04.08 2.00 KMJOOO1153 ' , 04.09 1.50 KMJOOO1184 "' *' I 04'10

        .          1.00   KMJOOO1185                                        ,l 04.11         1.50   KMJOOO1186
  • Os  !
            ------                                                       -r
                                                                                -}'  ,

l 5.5O s~ l 60.25

1

                        -                                       EQUATION SHEET y a s/t                                    Cycle efficiency o (Network f = ma                                                          out)/(Energyin) u = ag .             s = Vot + E atz E = mc2 KE = 5 av2           a = (Vf .- Vo)/t                  A = AN               A = Ane- At     ]

PE = agh w = e/t A An2/tg = 0.693/tg-Vf = Vo + at , W = .6 tgeff=[(tg)(t)3 b I

                                                                                          [(tg) + (t b)3 AE = 931 Am                                                j , jg e-Ix Q = mCpat
                                                                                                                      )

6=UAat I = Ioe *

  • Pwr = Wfah I = Io 10-x/TVL TVL = 1.3/p  !

HVL = -0.693/p P = Po10sur(t) P = Po et/T SUR = 26.06/T SCR = S/(1 - Keff) CRx = S/(1 - Keffx) SUR = 26p/t* + ( s p )T CR t (1 - Keffg) = CR 2 (1 - keff2) ) T = (t*/p) + [(s'- p)/ip) M = 1/(1.- Keff) = CR1/CRo T = 1/(p 's) M = (1 - Keffo)/(1 - Keff1) T = (8 - p)/(Ap) ., SDM = (1 - Keff)/Keff , p = (Keff-1)/Keff = AKeff/Keff A* = 10-5 seconds I = 0.1 seconds-1 ) p = [(1/(T Keff)] + [se ff/(1 + IT))

                                                                                 'Ijd =1 1 d22 2                  i P = (zeV)/(3 x 1010)                                    11d1 2=1d22 I = aN                                                 R/hr = (0.5 CE)/d 2(meters)        ,

l R/hr = 6 CE/d2 (feet) Water Parameters Miscellaneous Conversions 1 curie = 3.7 x 1010dps l 1 gal.-= 8.345 lbm. 1 gal. = 3.78 liters 1 kg = 2.21 lbm 1 ft3 = 7.48 galt ' I hp = 2.54 x 103 Btu /hr Density = 62.4 lbm/ft 1 sw = 3.41 x 106 Btu /hr-Density = 1 gm/cm3 1 in = 2.54 cm Heat of vaporization = 970 Btu /1bm *F = 9/5'C + 32 Heat of fusioa = 144 Btu /1bm *C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg. 1 BTU = 778 ft-1bf 1_ft H2O = 0.433 1bf/in2 I l I l

y _ --- m . ' t

                                                                                                                                                                         .re 9, 4                                                                                                                                                                           Q TeWe 1. Setuteted Steem: Temperature TeMe l

saamary Estrupy ans press i,=W venuse Set lat. 1emp . Set Set Set. lose Lb pes $st rser Ienn used sin..e. .r, ve a "1",e fe.es *f", us.ed. ti.ep va.por . i se.in.

                                                                 't            't          -it!." !Ni Wii                         tif           :!!a 13                 - !'

g 1:::

                                                *:!!!!"E:i"E:!

1:::r,  :  : tr. .!:ii imi is :::: t:=  : i

                 -             ::t:1                                                                                              , .             = u.                    .

1

                                                                .. ..                        c.,       i.n.               .                                                                !
                               .uiu ui.0i.

nl:l Hi!! !!!! Itti !E! !=! . is: Llin t!=  !!!

                 !!            tinli            t E! IE! 1 ii                               lini !!!! IWi                         lE !M is                                !!
'!!O!- Ult!! !! 1 !!!! "Ei j!!inij M  ::
                                                                             !Ei                                                  til!

ll".'!21 l4: lini.i 4280 3 g!!!! leell "" 1202.2 {t i.fi1 0A(E! ist&A le tAtti 1.tgep g t#.!! 1:lta! !!!! lin! -'

                                                                                          ' lu         12! !E!

e i l: l all1 11:!P!

=i.o
                                                 "=

L R:, El am. .u =U m it u. !=. w. m. gi  :: 15: Ei

  • i E
1:=!!!
                                  =

Ulll: 1:= gi

                                                                 ,,, i         ,,,

6 73.9 i = I"'i 4 940 ) $ i A t:: E 1AMO " "=# 18 15

                                                                                                                                                                           *MA RA             t.7e61         6014867         673
                      !           !! n 0 Ri
  • E !:!j !"ti 5: '" g <

1 g!.u?!.I,,s!, i.m.i II.!!, t, [!=,,,i.!!!.6" ! m I li, S 1 U.!: a, la I.ni. m , tinl! Biti: iti !!!  !!! it!! 'ti! *!ll! !"" '""

                                                                                                !.!! El llli l2 E $
         !                         ""?!          niilli           ut!

370.5

                                                                                *i,
70. 3 19362'!!$U 1200 .3517 4 j S 016123 i

t t.s ll1 teet24 lain 6 014110 n!!!!! !!!i !!il 360 . alc. 47 899 N 12: !!R: 1937 1 H.1 1995 1530 1g l1ll1litlim If ' IU: 1E1 litt titi 1 1.! 11tll Ri { El M Hitlii !!! C'd "' t  !!!! IB  !!ti IT a M 'i ' t! T "i

                                                                                                                                         'En
         '!         !!!                !!"              !!            li!          !2          g,U  7 ii i,117 8
                                                                                                                       . lli            Sil                                l          l
                                       ,AIO8            16   ).   ,   14JO           421 1984 g

Ri '2l? E RC En l'!M

                                                                                                                                     ""y"!

3 ai litt, i L o

                     *'                E                              n          it                                                  R
                                                                                                                                     +=                            ,

Bi a =i 'l i.!. . .

                                                                                                   "       liit! '!!!!                P'*? ' n
                   .E!                !In           tit ! Ei! lE!!                                                       l'"            !I Ri               **"i          gititi.a                     !!U!                      glii                         J.l its                                                                                                   !
                                                                                                                                      '                            7 leas 12 tat litil                         .         15J     !!

mA ' 1u 1n . 10.o 2"4 1 f! 12 iou lIt.i .. 7 ll 1 i . i it! '15! Itui llil !!t 11!: *! &l n . i

151 1.

71M 14N3 97 85 'l727 17 95 I.A k l 6 R$ als75

                      =                =                   m Ea                       ai                          i        in:                 ,

E! iMi g!!ll Pe M En gi !!!!!

                      =,

t= I!a - mn. a me.7 in E: lin.i. u i im3

                                        !!R           u!!E                :                     in:                I !!!!               tE            g       g:              g              <
                       =                !=

u0 u= =o = al um m: m., "Ri. III

                                                                                                                            !1 'luutill: IE.12                                 E             l
                                                                                                                                                                                   ~
                  'he geht sessa sur aulastsatt I

%--__ m. '

                                                           ?                                                                                                     m a
                                                                                                                                                                                  \

a' .I  ! , TeMe 1. Betweted Steem: Tempeestwo Tame-CNeehemsf

                                                           . 5profg Weemme                            Enthalpy                                 (atropf Ats Press                                                                       Set              $41                1st      temp Temp        Lb pet         Set                     $st           Set
             +

vapor Lased Evap ' Vapor Laced Eve, Vapor fehr fahr $q M . Luled Ives t p e, via og he h eg ha 6, 86a la' I 98 77- 2 '38 2 i L 631 14400 ' Allt INA f 14610 9811 44440 fille 14522- 4 172 N 189 0 N0 'I L462 13413 5 191 8 180 88 M9 198 01 152 01 4 MS I u tb4 ISM 4 tes t A- 203 16534 - 4 232 88 8h 1CDS 1 5279 .WI g g M8 M7 16M 7 44 353 16M9 42A71 42 638 IM 02 IM 03 5 3 r 40 5 1,41.3 lu?M 11213 , 9 NS4 , 904 1 1 421 42707 15148 '17tM 15 8 EM0- 16577 40 M1 # 957 It004 28 t M7 337 m 3be 140 05 082 I 1 42 9 l Jett it?J2 40 IIIe i 16505 981.6 1 43 7 IJ048 IJ017 ,1055 s 34A 1 RJA le t6e 16500 lull M8 $7A24 Ms 53be 162 05 144 06 9804 1,44 4 l 2079 1J052 ,1 831 W8 tWA M8 18 405

                                          !!D8       4 416624 M 964          M 970        let 90         979 1 1,412                42910 1ANC           i.7798    9ES
                                                                                                                                                                                    ]

Nu ii SM 40 ion um mM - tnt ii 0 um .u ime

                                                                                                                                                  # 97 I Me8 me 34A                             i a       12 512     Stie6M 31 135           31151        17234          9754 !!473                   630VI Ne 162  NA78          IM 14         t?? 8 1849 0                43061       i4571 1 7632 13 M8     6 016591 JJ        M 006      $014719            792  36 799        18017 ' 970 3 1850 5                       43121 ! #47 17M8              211A
                                                                                                                                                                  'MA M8            15 901    s 016747 - 878 MSM                 a  19420         M7J ll52A                    SJ441 1 4323 11505 23 148       19823          965 2    l'   53 4 .         SJN! lA201 I M42          ' IItJ 17106     $116DS 23 131                         le2J7          9 26 1        54 9           63300 SAOB1 11380            IN G J.       ism 6     s014d05 21 629          21.M5                                                                                  SK8 20 015    6816tM 3056 2 073                     IM 31          900 0 i M3                   SJJ51 lJt61 11320 957 4 3 578                  43417 IJB42 1FM0             SBla
                !                 A        21 M7 DJ16
                                                      $41654 18 MI Bel 4NS 1744 38118 17.471 200 35 30440          GM 8 1 182                   4.3476 IJ725 11201           W l                                                                                                                      1 % 33 IJIO9 11142           301 0 M tE8      6 016926 KN4            M321         20845          M21 - IING 30F 8 E076       60 6958 15J43           15J60        212 50         949 6 1862 0                 03%I 1J494 11085             344 1 946 4 1163 4                 SJ649 13379 8 7074           Seti N Mb       to 6990 M M4            84 31         216 56 43706 IJM4 14977              22J
                                                      *0 7022 13 54           1334         220 62         te4 l 1864 7 NtJ          55 es3 224 69        M24 lle61                    13763 IJIM 14917              N6A
                  >           24            38ABI     E4W 7055 12 520         12.5M 43819 tJef3 14062             300 MA            5 427     1017099         iH5 Il 762            228 76 23283 938 6 1167 4 635 9 3168 7                 SJ876 lin3 1 4000             248 248           370M      4017123          1 975   11 **2                                                                                388 633 1 IIMO                  6 3932 IJs23 1A7%

W # S00 ten?'57 0.358 S T34 N 375 9 55 JM el N099 930 3 !!?IJ SJes) 12715 1A702 272 ) 272J 43 N9 4 011193 64043 LJeo? IM50 215A

               $              2E0           E147      4 017228        1 862     8 100       M508           927.5 1145 6        73 8         4 4008                        NLA es.7M4          1827      4444        M917                                                                     Nu 48J00                                                                         750          84154     1flot 1

i,25 1 Abet M A

                                         . b414

( 01730 11200 in4 7 1, .8453 2533 257 lIn 17 x, wo8 m i6.M W A 98 350 5 1738 71301 7,2475 MI5 915 9 De tant IJte 18449 WrJ MA

                                            $1.054        01741 L4259          14433          h54          913.0 1.71 6                44317 IJet2 16400                                          i k                                           .

44372 1.1979 14351 NBA 6 01745 4 4483 6 4658 - 269 7 910 0 11797 34J

                         ,                 67 0D5 6 fl30         273 8        907 0 130D 9                 B4426 1: 8n 11303                                 'k ti llt     601749 4 0955                                      1940 110 0                   84479 1 ,776 1 6256           28                  '

5 75 433 601M3 5 7655 5 7530 278 0 44533 1 676 1A209 312.8 7ttb3 6 01757 54M4 54PJ 287 1 9010 11833 ma 1A 206 3 007.9 1104 1 4 45s6 1.:l5Ka IA162 0 01761 51673 S lett f 84 N8 4 01766 41961 4 9138 200 4 004 8 1152 4 4640 1.l 477 14116 sitJ e 28 5 443 091 6 1886 2 44032 1.1378 14071 RB4A 94 0?6 telno 44418 4A595 204 6 ftR 7 M5 11871 44745 1.130 14025 bra l, ' IENS talH4 44WO 4 4208 005.3 InGL2 44798 1.1163 13081 NBA 16 97 401U9 4.1798 4 1966 3D2 9 44050 IM4 1356 agu L 11 270 1 01783 19681 33859 3073 082 1 185 1 I 64902 13500 13082 astA 401757 370M 1 7874 allI3 875 8 3590 1 344J 117 382 4 01792 33N4 ' 34013 315.5 $M S 1891 0 ' 449b4 last4 13049 IM 430 401M7 34018 3 4258 319 7 8 72.2 8191 3 43N6 14M9 IMI6 318A IJ1.143 hat 1182 7 4568 14705 1143 $24 lEIM telWI 1M23 32003 ' ]23 9 ars t NSS 14016 45110 lail 13721 MA  ; 64424 401N6 1N63 11044 mA f 2M 332 3 062 1 l' 94 4 45161 14%!? 136M l 38 153 010 4 01811 23362 Nu 3 m2 ts2lt issu la Nu l mA im m3 wm faa? ulu aw 5 M08 055 l 1 15 9 4 1263 IC32 15805 StA j 1N 113 8 018?) 24091 2A873 M50 ml8 I m7 45314 lap 40 15654 mA in 644 48t026 2.Sei 2x31 - 348 lE517 0 $1611 2.4279 2 4462 Mt3 tes I 1 lt7 4 tSMS 1 3:44 15513 536 GM 5 litto & Mil 13067 1 9473 W 28 195 729 4 01436 2J 70 2 3353 tecJ llN 7 6 6466 tats 6 33432 geu  ; M8 305194 4 81642 u,20 2J304 - 357 9 EM16 4 5376 1 5392 ma i

                                        , 215170         40lN7 2.! 26           fl3tl          22J          SDJ 33983                                                 NtJ                            f 28                                                                           033 4 119 9                  EW7 19786 11352 225 516      telt53 2 9 .04         20M9           386 5 37t8         SFlf 1,200 4                 (Ml? 4 9096 1.5313           MJ                             j RA8          21193        6 81050 1 9291         It4U
                                                                                                                                                  $        ti??4      W                             f 58           M71H         8 31,06,4 l A,H.4 30 15,5v 375 1 me           Spit m0 1201    im 0,            66667on  ..M07 i m4           ou A       3 7M         t00 i6                 3 1201 9           6 5786 0 9429 15195           W SA           278 400      wS5 19877              170H           3B3 8         018.2 014 1 12624                 EMI6 0$141 1.$157             411A SIA          N2Att        teles! 1A152           16HO           380 1 M2.5          310.2 1202A                 4.9966 4 2253 13118           4963 4WA          3 Half       4 81067 13463          1551 l

386 9 N62 12031 4L30'S R$145 1,0000 WA I MA NtfE0 481094 7 48E8 1 897 e4A 4 9864 L30n 1J042 eu gJtt 401N0 8 4104 14374 d013 g2 12835 E E ml$ E IN IN Ea! 414A red !?se 709 7 1204.2 E E 1E 4 4112 & Nil 1A03 AIM M8 SE03 4 81919 1 14087 IJtenb LS141 43729 1A000 44BJ 8 81926 1 19761 111647 Alt o 765 4 12044 458 all M 4235 Mll 1204 6 4 8210 60643 LAB 53 4443 0144 307 M 4 01933 11474 1.50006 776 7 1204 7 4 82 % 43557 1 815 eau 4 81640 1.102 2 1.12152 420 0 StA 4EA 464 00 4;25 77/ 8 1294 8 & &308 44471 IA778 SA 431 14 481947 1 35764 lanti 767 3 12e4A 44356 SANS 1A74) WA i j i W 45 73 4 81954 IJ151A 13M12 437A

                                                                                                                                                                                                     )

to . l

                                                                                                                                                                          .a
                                                                     .                      a t
d a

r . l

                                                                                                                                     .=e..      - -- - nw                                                  ,%w                                     w-        --
 . amoun a , en en.._ _ - -           .==**6 e op=== % *H>gne % ease e ww eme.e=ese _ -                              _
                                                                           , ,, a l

f ,j l, d ynge g, sense, yid steam:Tewoorstwo TeWe{ ^U" 'l 528W MW hag Abe Pfeu 3pecdsc wenie Set g,g let yY tyd T, T L ggg T;' 't, T 'T T,, O "I

                                             .,              . . ,          11         ,co -

s=u

                                                                                                                >>                        ;- ;                                                     ,4      ,,   15             m                      '

1. Im ==2 =)

                                                                                                             =                             ,

4, i of m ES J M h gg7 ggypd $3e et 454 3 ' FM 6 lits !6 7971 Atti 58 WJ - MS 15 al SM714 4 41717 M613 4 75627 eti dn$ FM 7 - 7M 7 $ feb UW5 FIN '. 4 18 W A444 WA G4A 1010 #7 73M) 67t658 774 6 1303 1 7W $ 3614 64087 S4 l SA M794 &n820 478 5 2 42 4 7%29 1 AIM , els 03 4 32 7115 1202.7 SLS At taw 65 fLM100 i 47.9 714 3 1302.2 i tWID LM63 l Arts 4553 900E tapet3 686448 SAMt? 4g2 7 700 0 1201 7 IJBM FM7 4 3:053 44703s i IulD87 7271 . 4 58 s run 7t # 75 783 7 1291 1 Flp ,4321 fil 40 48f067 44epo 9023 WE2 122 5- 'L7tal F57 77 08F072 4.ht?lt 44079 $p7J 4827 litta 'L70Eb LMBO 1A455 A

                                            . Sala            784 M -     tessel 488957 &MD/t                                                                                                                 3 41 4 tiden    . lit.8                       7A 90 0,                                         nn i 7133                m M8              11253                1 w                           a                                                                         m m     4,           a 44.im     3 it
                                                                                                      ,e5        m                      s7u ren gmlSM       "'                     '

aM3 ni E! 12 Uli! Rn tii! 13F 150 " 4.!! Mi5 En ti - *U 25 W' 'En 3429 40 100

                                                                                            ??

less 42717 50

                                                                                                                                             )

91 9 M4 7625 4 8311 L 2 17 8E8 18? 4 41400 LWJ 4 7675 4 4222 L.3797 WIA 1962 10 72 A , M4 1987M IM 4 37966 840140 8824 gr5J 1187 7 4M25 44132 IJF57 4 EMM 94041 l # 16 W 9 18

                                                              !!33 M IIMilo 4 02207 8 38607 SJB7 4 4 82221 EMot9 13n20 5 74
                                                                                                                 $M.5 4115 115 3 611 5 1104 5                                             1 7725           *1575 13M            A 4 82235 8 33741 63h075                                      543 1132 7                                               6 7775 54           1207 /2                                            l'713                                                                           t1825 &lM6 1mer                 Elta EftA          IM6.N        6 82249 63M29 4 34678                9837                    3072 11049 l*                    ' IRA           178b 74      6 82264 SJ1142 SJMN                                                                                                   4 276 03673 tage Soll                   sett IL7t e                                              $7827 4 3500 las?                  A 58            1376 17      6 82279 429037 8 22216                944                    9824 1 Mt                                                EM75 LMB 5 tJE64
                        !                        SLt           18677        4 42295 $20% E3'9et                   WILI                   SN 7 1 MJ                                                                   LJ83B M4           14110        402311 E2Mc8 the19                    E7                     sett i MS-                                                                  12M WA            let1J       $32378 kN499 42527                    ellA                   feta 1,112 N6A           1487A        4 02345 R2H25 &2m0 4171                     Hal 11677                                               481M R$1M 1J3B                     A 1

IM32 4 82364 624384 LMN7 W2J 1145 1 4 8187 430B7 IJilm 4 ha 8 8238? E23374 4 25757 422 9 tsND Sass? 13:3s I DS 1689 7 eras su6 1142 4 ESPN 64006 IJim 92A i ens twJ te74a2 82nN 674rw 634A 524 7 1850 5 Seta { im61 1 82422 621442 423065 LAM 8 & 4794 IJ141 tila 4 87444 8 20536 4 22950 440A 615 6 1156 4 e 006A 1735.9 1 9403 446M lat? MA f 4d49 506 3 11531 OsA tam 46 L' tEll 423e81 4064 IlM 8 E0458 4 4543 1241 MS

                           .                    Es              1786 9 1990       f 3748 118737 621276                 Ell 467 1546 )                                               6214 6 4474 ljW WA                                                              9 43                                                                             SA71 654 IJBM                  SIA WA              IN24        4 425)4 1 7000 SJ07td                                       476 4 18421                                                                             MA 4 8?539 & 7044 Litet3 GES S WIA             1947A                                           572 4                   e51 11311                                                8528 SA251 1270                                           ,

WA 2012A 442506 062N 818732 SWJ- } 6711 544 31217 6586 641M IJ3F1 1 Saf55 &lH27 41 5?) 44J I 1129 0 44015 12751 058 fett 414644 4 17248 E9 21113

                                                                                     ? !!!         !!E           E                       El     iii'.i                                           U46n         tilu lE
                                                                 'en 2301 7          128 412387 415115                274                    e61 1113.1                                              48B31 53El? 1867 7313                    362.1 30835                                             4 9137 43210 LJH7 8 82054 Elet29 413857                                        Sti? 3W 9                                               4 9212 tJeb4 12m

( M8 8008 1 43311 4 88514 LIMM ML2 4 8287 4352 (J175 OIBA gitA Peul 84at70 4 88799 Ell 7EB Mt2 Stt3 NBA Il 58 36364 tats 5 42720 tm Mtl 3341 lest5 19447 4F537 Laget M8 2706 6 4 43037 4 88000 111117 242 29t2 3068 4 MA Al 2782.1 4 83114 40n49 aleek3 Das 28.2 3047.0 6 9535 42337 L2872

                                }                 WLa 683204 6865E tm7H                                                                                                    Esp 4 42110 1JM4 20574                                            7983                    asil 8583.6                                            4 9749 titel Lasel i                                 3D45       4 53313 405797 telle                  244                     212J le17J
                                '                                 N134       0 83455 8ast16 44471 SP24                    1727 OI5J                                               4W01 E1400 Lim MA             18B43       4 81862 48 357 68M19                 835A                     M47 SM 7                                               14BD6 klM6 l 1257              MLA U

MA 3135 5 ta3BN $33173 SSIM7 6 42 382 8 966 2 laim em76 Liten MA j WL8 31772 SWIN 882192 43p00 8710 634 SM 4 Im29 hab27 tm R47* MA 31913 SM427 481304 82730 WLO SA 986 0 1512 68000 1512 2 47' 33012 4 00078 63300 4504 r l *Cntzal inoperetere U 1

                                                                                                                                                                                                                                                 ,     s -        l L

L - - - - - _ . _ _ _ - _ _ _ _ _ _ - _ _ _ - _ _

                                                                                                                                                                                                                                    .u                     _ - - - - . . - -            _-

e e .p ..e. *w w.ea.+ u s.me.see 4 [ n.,,__- a

                                                                              *7 Nh       *
                                                                                                                                                                                                                                                                            ?;

TeWe 2: Setwated Steam: Prettwo Table Ul lathelpy (alpsyy

             '                                                             Specific Wolume                                                                                                        Set                                   $st               Ass Press                          f I0dp                                                              Set                    $st                                 Sal.
  • b htSS $8t.

liep Liged Esse taper SWle in 4 ll iMe la Ish' Leemd Evet tapet I d h ig Wpg Sg 8lg Sg P P I 't 'it . 't

                                                                                                                                          ,        .,,                ,,,,                         no                        7,            ,
                                                              .m                                                                                                                                                                          g.8,,

F 2 4 gf

                                                .,8 Js2                              gg; 4                  i    tg42              ; '
                                                                                                                                                                                                                                                                             ,i M3              14032               15.5                                       47423 3
gg6 3 L8B25 2870 506 14071 14 6 Et i 326 0781 la 161E 50 3 00 73 .

La  ? tJ l il 74 l ;349 . Dat) 6# SIS 20 31 1 RA 43 12 24 16407 92 404

                                                                                                         .'.,420 1                     6126                                     e                       t    83t-                   3                79 Stal           e i

Mk '

                                            'LlJ1                                                           0799                  Sl;                                      to                      L.   >lM               A447          ..

{ Mas 40 Fit 782 60.9 L3137 .A415 ,7552 HJ & 4121 7 . A3 M ' J9o . E8  ! 16726 I l# 27 501 ILu3 13358 ue62 1 7:20 3A 38 227 96 4010tM 36870 M887 3 44 1 43682 U313 1395 33 1 t0174r s $37M6 13706 218 1 9452 as l as It0M 933 6 es 8 63stl !Jeed lA765 88 5 725 4 017141 1947M 14 4065 236 1 74 1 4 4112 IJ4M 1806 E4 4067 4 5140 flof 92J 9 SA 35182 4017"74 915 4 US U L2167 - 14440 332 7) 8 817383 .!M2 7.17M 362.2 Il 13316

               .            38                               40lM82                  1185                  (2050                           7        97J                     E6                                         13W5 Es                            l N293                                                                                                      509                    ,83 1                  8434                 11675            15W 312A4              4 017573                646M                  $4718                           I l                                                1.1470          14113                     as                          j N019               4017H9                  4 Ant                 4AB53                   380 7            946                    ig5 3                  4 4643
                                                                                                                                                                                                                                                                                           /

1su 14M3 Ime4 taan isas m8A 327 s2 telne ui33 4 010 toes

  • set 5 3e68 6

1 at tam um usa 0

                                                                                                                                                                                                                                        !Jg79 sm8 1

1 ms m479 tm17s2 1Ano 333 34127 4 81780 t 7 H275 212 4 $na , 30 4 19 1315 IJsl3 333 i 158 44364 &#44 8t90 4723 1 11.7

                 ;         924             34723               8 91796 SJ010                 Sfl90                    325 0           580               1 .93 0                     & S071           '1581               13752                  tes 3SA              E304               4 81003 534                                           & 5141                1964           IJet5 IIta            36443               4 81409                2 00M m% enn E0139                    330 4 mi              m0                 1 1 94.1 5i                tua                   im35           tm                      m IIts.                         j l          me               muS                Em                                                                                    34A                 1 96 0                    k.W99                 1222            tmel                   tha                          i Salt?!                2A6%                  24738                    341 2                                                                                                                      tme tha              5842                                                                                     34L2            307                I     .96 9                4 5328                1m15           1243 te1827                2.5129                2A312                                                                                                                                               mA                           ]

tas an.08 L8i&33 2347 22330 300.9 4447 1l974 453e4 13113 1340s mA 37M3 g m5 mu si.3 .u. 4,m nes. .n

                  .        =>               mim                 w u9                   ima man                                        350 9          839 3               1199 0                     1 5490               Est23               3413               stas MILS              3Bh91               4 01644             2.!U73 2 18217                                                                      li9t6                      &%40 ' E9534                          1 U4                  mi                           r
                  .                                                  1850 1AEU9 ; 48629                                               364 2          185 4                                                                                                                                     l N9 88                                                                                                  1U      3           1200 l                      &%88                49748            1 70               1855            :.3 7901                 31046                  7'98 3                                                                                                'J299
                  +

A/2J i M4 4 a56M 19865  ! J9 1960 JIM 9 ;264 0 . 52 17 MI NA 11 1 .t679 j 1 8 4097 1965 18 9 c.A L 15 ' L5722 _ rIO d 4444 8 70 4 ,SJ l9 1 t5764 .O

                                              # 140                      875                   137             11813                                                                                                                             le6
                                                                        .tu                                                                 .i             5.1             . 3                       iL5005                      1           .                                  l            1 I                         41147                                    . let '.                                              6
                                                                                                                                                      . i L2.0               J026                       'LS$44                     1           k25 41425                       005          ,           7          .

E E E5 IE E EEE , EEEB

                                                                                                                                                                                                        ,m                 a.,.                -                  -.

l m, .,6,, S ,9,4 ,_ l .,,79 .,7 3 2:

7. ,,

E i .2 t= 9 E

                                                                                                                                                                                                                                                                  =A i

A. Bi, Nu au20 12,0,3 60 susm!i 62 &M975 En an7 nu non um enu .4 m 1 041 GBA m 494 89 4 02032 0 60816 6 70843 481 9 720 9 1202 8 1201.8 4 4828 18828 6 7552 E73M 14A4 M9 t j a NAS 491 6 7142 4 MA 903 08 LO2050 6 63505 k2556 38 180 9 393 1200 7 1 7022 E7210 ' 1 4232 6 42069 838800 640M9 1A163 3 13 ms 511 84 tat t sees l' 95 4 . t7111 EM61 lAfe6 ms ms 61821 te2087 E54e09 assM6 518 4 6793 8 98 0 47107 test m3

                            -W                    62534            431C5 851197 3 53302 te2123 647968 030D91                                                526 7              W97                 8 96 4 M7 knP9               46M3 6 4512 1 812 1R70                gas 63195                                                                                                    500                                           4 7358 38                                   RS2141 8 45064 647205                                               SM7                                    1 36476               1210              MA
  • gaJ 63839 642 6 504 1 92 9 474M mas 4 021 % 4424.4 444H6 tJa5:

j, ms 544 58

                                                   $6053            tarin teso47 4422N                                                  te01               sett                     91 4
                                                                                                                                                                                '. 89 1 4 7507 t?578 tsM4 ts216               u?M               M4 twas                                                                                                        967.5             631 5                                                                                uTN               IIE8                       ,

18 $6628 4 82195 E37063 14W58 E221 1 .87 0 47647 44091 M8 ) 96132 4 82214 4M359 435)73 Stil

                                                                                                                                                                                                          &n14              19869               1383 ItEs                                                                                                        571.9             6110 - 11848 MA                    967.19            482232 4J4013 6 35245                                                                                                                                                                         938 8038                 1:    82 6                Engo               $350               us2
                                                                                                                                         $7E8                                                                                                    IEU               t=8 tatt                  $72J8             4 82250 4 22306 834W                                                 5856             2946                 l'80 2                    8780               43733 1A25              M8 tatA                  SM 42             6 82269 SJ0722 432991                                                682.3            5054                  1    N8                  E7006              SM20 ImM               M9 gega t               $3232             4 82288 819253 631537                                                695 8             6745                 1    75 3                1 7956             8.9 07 M8 -

tems as707 4 32307 4278U &29911 tbl?8

  • sus 3 9674 3 72 8 43026 33387 13423 1EU M tage let 70 LO2327 S.26664 611 7 868 4 1 70 1 taas 4 1281 IEN W ms gnas 18620 59 402M6 4 21172 426601 442m '4235 42Ull 618 0 5494 3403 1 6?4 64 5 GA142 48199 6 5182 83076 2 74 2

87 32387 3159 62 % 45 30

                                                  . 611 3               '5 1                                                                                                                                                    '

m63 i.4755  : Jift 138 3713 5 13t 55 6 1 iLOb2 MIS iJe4% l c e263 1 tmA t'7it

                                                       'lW                 u247             1L    9M0                J   El                     5                8                     52.3                I  Lh41) 3m3                                     i
                                       !                                    fN               '[M '                                              !                                                          I E!

i Blu du N t = 1"ni 2i til o 21 2 s,!juj t= =.n t= . a6a = m,0n mi a2 am 7. i m,=i e.5,, am la & Sm an0 248 1 iS3 7 2 31 63630 l 8 1297 & 14076 Fit 0 3m3 E2.ll  : y 12730 Fil 7 5Ia 9003 3 491M 4 3306 1345 W I 3.3 gEtiI 9 8U!?99 t' 338 gen 2 0 as247 42977 R25

                      <          me                  $7391                          M tm172          165 a llM
                                                                                                                  & 2110                     744 5 757.3 337 4 312J                1864 7                     atM6             42M1 Utb6 7

m 323 679 S3 4 85029 71.7; a r$30$ 770 7 351 1065 8 6968 47801 M8C W mA 3486 480lM 1951 847 1839 8 1948 4 2215 U619 m 4131 ms 3022 6 83262 4a6158 88D420 tam 23 82073 48500 201 8 M84 18M 3 9 9728 1.13U SIRA I' m mu3 E03681 talN1 f4M52 SM O M43 983 3 4 9014 135) 11 1832 W i gangs 73028 18h.08 4 06412 1 01191 6 tate 63 SMS 361 L0 331 6 SJLO 1m12 tan 00 1512 w 986 0 4050?$ 6 80000 SA6078 735 47 U

                           =critai pemm 1

, I l

r; c

   ,.' i
         'n             -

4. 4 Entropy, Stu/h. F

                 .0 1.1   1.2   1.3  1. 1.,  1.6       1.,      1. 1     2. 2.1    22       2.3 A                       /M//N                    ,_

Ab,M,7A h,/ i Nn , , n

                                                                                       // N
                                                                                                       ,,,,    ~.
           ,,,                            /VMDei /728[(Isooi            7% / /hki
                                         ///2LE / N // T,W/
                                                   /

l 7s // M f I soo

                                                                                                    ^

{

                                        /ll$N/ H //7%J
                                                                     /

7% / /14/ / 1:W

                                                                                             '       I 13,0
                                                                ^

N NU 7 13,0

           ,,                       //E/ON7                                                            , , ,
                              .#rl26 DhkW                   'V
                                                                      'b M

u 7"L i 1~ , l f///B;QQ'N y %j7n"/ 7 ~l "" ff/M h% 2husW MR7?W Y%&{7 n

            "~                                                                                          ""
            '"          anwm Nn                                                                         ~
                                                                                                        ~
             ~       RWMD5<                                                                             ~
             ~      #37x'M&27Y                                                                          ~
          '~       MMWM                                                                                 ~
                   %%%6M7/                                                                              ~         '
             " M.....A W M m ,
+ gl
       .                                                                                                          u l

EQUATION sangy  ;

    $*-                                                  p,              p, E'=YC*_    .

y

            .R = kg Qu                                                 at,,,
           /       k a -1                                                                                            (

l'eff Me .[+N; Q

  • AC AY y

Q = u A AT

           'C4= Igi-xan) 4 7~ = 4 7; + A T1 N"      :.!f[- htt) 9"k^AI       ,

C4 g 4 O- 4 ,) f,_. ,,y pi a 4 A ^^  !

              <p ,

p, }; e % r77 s / - /* _ stuat/anaous c ,, a,.,k,,,

                           ,1 ,,+ ,2 l0 kT    ' $+A-                           / 0r ,7 3 / /f                                             i
                                 ~e) T+ 1              /das        .p.sv em                                        ;

t Ygy ~.- f jf { a

                                                        *C = $)+(*F-J.1) of                                                                                               i E "
  • 0*"N /srs . ierpk .19 97a, ny' << As
                                                         /*'i = 0* Ng*k) (d* W /s*' % My)                         -\

yt, 4,. p,,.,4,., - i n < o . a. m ,.,; \ i,s. . r.usis /MW- s.w xto'isra,/xx  ! a /. = s. ,r /,6,

                                                         / Ct    -    3. 7x to'* dp iy/t'
             /      = 7. s'tya/

b u eify S n.</ S g. ( ,1 g p ,3 [ l Ass ><-se d Va /.ne s

                                                                                                                   )

l J p , o.coss j p, - o. co ro

                                                         .h,y a o./ uc!

0 A ' " /0WJec ' spec'o Ac hed cycily , j o gru/,g.o,\ / o f dire {.

p..s

      .g.

on Tebte 1. Satuested Staem: Temperature Tobio-centhed 5pecdic Volume Inih8tpy Enric0y aos hess. I e* Tems it Otr $at $41 $at b0wd Ivap

                                                                                                                        $at V800f
                                                                                                                                            $a' litud (va0 Va00r Sat       7mp Fant V400f

(  : Fant . $q in L:6 ell (v40 h he h ig l b leg 1 t 1 .  ? 't 'is 't

                                       !$110       0 016510 - 5021                  22       48 g0         9m2            M2              0 2631      5400        8111     tue 1&B imJ              7 850    601692 att?!              gf89 80 50 01 52 01 989 9 907 s MO 39 0 02t42 0 t694 5413 5344 8075 8040 t82 8 led 3 -

18u &JBJ 00165M 48 232 44 400 tus 0016M? 44 J83 M 02 tell .40 5 02725 5279 8004 letA & nes 42 630 was gg5 3 .41.3 62754 5213 1969 int tES .&M7 0.016560 42 421 0 016572 4t MI 40 967 58 04 ~ $44 I 42 1 02787 5148 7934 tu t ime t 340 60 05 982 0 42 9 0 7818 5082 7900 162 8 is 8 9 747 0 016586 30 337 M 354 le 148 0 816598 37 MS 37 424 42 0$ 981 6 43 I 0 2848 5' 0! ? 7065 194 8 tesa M4 198 8 ' 10 405 0 016411 ' 36 M4 M 3M M 06 900 4 0 2879 4952 7431

                      . tal                                                                 ,M ot          979 1 -                                   4808 1 7798           let t istA           18 068     0 014624 M 9M M 970                                               .

45 2 E2910 leu I M6 0 010637 33 622 336M 68 09 9779 146 0 0 2940 1 4824 ' 7764 200 4 aos 6 2 512 0 0lMM 31 135 al 151 .72 11 975 4 1475

  • 00 , ! 4497 7698 204 0 9728 h 306 ,7632 MB8 0 Oluti Mas 3 M4 28862 f t 878 .76 14 149 0 1 4571
                                                                                             .80 17         970 3       150 5             0 312    1 4447       ,7564       2t t e 212J             46M      0 016719 26 792           16 799 214J                                  -

0 016747 24 878 24894 i44 20 967 8 ,152 0 0 314 1 4323 1 1505 itu .5 901 saa 17108 4815715 23.131 23 148 18823 9642 1;53 4 03241 14201 F442 223 234 4 18 5 % n416006 21 W9 2t 545 192.27 962 6 !!M 9 03M0 1 4081 . ?MO  !!4 0 2318 20 015 00148,8 200M 20 073 IM31 960 0 1 M3 0 3359 1 3961 7320 230 8 23tJ f t M7 60168H 11701 14 118 20n35 9574 1 57 8 014 L 7 1 3642 :7260 232 8 60168D5 17 464 17 671 204 40 954 8 1 .59 2 0 M76 1.3725 1 7201 298J 228 23.214 aus 24 984 0 016926 ( 304 & 321 208 45 952 I 140 6 0 3533 ' Mel 1 7142 Mit ' 344J 26 826 6 016958 5 243 .5.200 262 50 949 5 142 0 0 359I Je94 1 7085 M40 ' 3 eta 2t ?M 8 016990 .4 264 4 281 216 56 946.4 1634 0 3649 3379 7028 fue 3 017022 3 MS .3 375 220 62 944 8 164 7 03706 J266 6972 212 8 26tJ 30 883 201A 33001 4017085 ,2.520 L2.538 224 69 N14 ,lEl 03763 J154 5917 198 8 3018 35 427 0 0 7009 1 745 11 762 228 76 9M4 ' 167 4 fl3819 3063 ' 6062 308 8 37 894 00 F123 .1 025 11 042 232 83 935 9 ts8 7 0 3876 2933 6804 164 8 304 8 letA 40 500 0 0 7157. 4 354 18 375 236 91 933 1 170 0 0 3932 .2823 6755 les t 43249 00t F193 9 738 9 755 240 99 130 3 ,171 3 03947 1 715 4702 272 8 2 71.0 0 017228 9 162 5 180 245 00 927 5 ,172 5 0 4043 ,2607 6650 276 0 2 78.8 44 147 7818 49 200 0 017264 0 627 8 644 249 I? 924 6 l' 73 8 0 4090 2501 16599 !st8 2M 8 52 414 0 01730 8 1280 $ 1453 2533 9217 1 75 0 04154 . 23M 16548 264 0 2M) 55 795 0 01734 7604 76807 2574 918 8 1 16 2 04208 2290 1 6498 tst t 291 1 593 0 0 01738 72301 72475 261 5 915 9 1 77 4 0 4263 2186 16449 f t! 8 298 8 63 OM 0 01741 6 8259 6 8433 265 6 9130 1 735 04317 2002 1 6400 tot 8 1 269 7 ' 910 0 :179 7 L 6351 3M 4 MA 6440 6 4658 0 4372 97,9

      /
m. 6,7 nit 005 0 0001,7,45 49 6 0955 Sim 273 8 907 0 .9 OMM 87 uC3 M48
      .V                W             75 433       0 01753 57655            5 74J0 54742 278 0 282 1 904 0 901 0 182 0 14J i 34479 0 4533 176 676 62 %

4209 3e8 0 3r2 8 31tJ 79 953 0 01757 5 4566 .

                                                                                                                                                               ,6162       314 8 0 01761 5 1673           51849          206 3           897 9    .184 1               0 4546    l 1576 31H           84 644 894 8                         04640           4??   .6116       329 8 3MJ           89 643       0 01766 4SMI             4 9138          290 4                      185 2
                                                                                                                                                               ,6071       324 0 324 0     - 94 826         0 01770 4 MIS            4 6595          294 6          891 6       186 2             04692          l378 2987          848 5    .1872                04745          .280      6025     328 8 37tA       100 245         0 01774 44030            4 4208
                                                                                                                                                        ,143               332 0 4 1966           302 9         885 3    ,188 2               04798                    5961 18tJ       105 907         0 01779 4 1784                                                                                              ,5936       Int 0 0l783 3 Mal           3 9459           30? !         882 1    ,189 6               04850           orJ 3E8        111 820 311 3         8788        190 1             04902 1 0990             5892     348 8 0 01787 3 7499 tota           17 997                               3 7878 315 5         875 5        191 0            049M 1 0894              5449     M48 M4A            24 430       0 01792 3 5434          3 6013 218            33143        0 01797 34078           3 42i8           319 7         872       ,191 1              0 5006 19799             5806      348 0 228            38 138       0 01801 32423           3 2603           323 9         860 9     :192 7              0 5058 10705 1 5763                isti 0 01806 1 0863          310M             328 1          865 5 119J 6                 0 5110 1 0611          l5721       12 8 308.0          45 424 Int          ;53 010        0 01911 29392           2 9573           332 3          862 1 1194 4                 0 5161 '       0517      % 78      3e80 bi           160 903        0 01816 2 8002           2 8184          336 5          858 6 1l95 2                  0 5212        0424      507       364 6 308 0          69 113       0 01821 2 6691           26473           340 8          855 1 llM S                   0 5253        0332       5595     Mel 8516 IIM 7                    0 5314     i O240      ,5554       372 4 372 0        177 648        0 01826 2 5451           2 % 33          345 0
                                      ,86 517       0 01631 2 4279           2 4462           349 3         848 l    1197 4               0 5345     l0148       i5513       378 4 87tJ seta        195 729        0.018M 2 3110 23M3                        353 6         844 5       1900              0 5416 I 0057 '          5473     300 0 als 4       205 294        8 01442 2 2120 2 2304                     3579          440 8       lu 7              0 5466 09M6 '            5432      3e4 e SEA         215220         40lM7 2413 2 1311                         M22           4372        199 3             0 5516 0 9876            5392      3e84 aptJ        225 516        0 01053 2 01M            2OM9             Me5           633 4      .199 9             0 M47 0 9786             1352      setA 4 01058 1 9291                            370 4         421 7      ,200 4             O M17 OMM                1313      35 0 M8J         2M 193                                   1 9477
                                                                    ,NM 0630         375 1         825 9 1701 0                  0 5667 O M07 '            5274     sola etta.       247 259        0 01864
                                                                    , 7640       1827         379 4         822 0 1201 5                   0 57I7 0 9518            5234     444 8                                 j 404 8       258 725        0 01810 4E8         270 600        0 01475           6877     . 70M          383 8          818 2 1201 9                  0 5766 0 9429            5195     das t 412A        282 894         0 01441          6152     . 0 40         388 1          814 2 1202 4                  0 5416 09341           .5157      4t2 8
                                                                               , M51          392 5          810.2     1202 8              0 5466 0925J           ,5118      sitt 4164        295 617         0 01887          5463 esta         301700         0 01094 1 4800              4997         396 9          006 2     '203 1              0 5915 0 9155            5000     efte 424 8        322 396        0 01900 l ette              4374         40l 3          302 2        20J 5            0$N4 0 9077              5042     474 8 42tk         3M 443         0 01906 1 3591              3787         405 7          796 0      .203 7             0 6014 0 8900            5004      424.8 432J      h 35100           0 01913 IJ0266 132179                    410 1          7919       .204 0             0600 0 0903              asse     432 8 428             366 03      0 01919 124887 126006                    414 6          789 7      ,204 2             0 6112 0 8016          .4928       4M 8 44W             381 54      0 OllM l       19761     Ji&BF           419 0          785 4 h204 4                  0 6161 0 8729 l          4090      448 0 eMA             3 ?? M      0 01933         14814    ,14806           423 5         78t l        2046             0 6210 00M3 '            4853      4M 8 448J            414 09      00lM0           10212   ,12152            424 0         776 7        204 7            0 6259 0 8557            4815      M48
                                                                              ,07711           432 5          172 3      l204 8            0 u08 O M71             ,4778      esta                                  j ettA            43t 4        0 01947       05764 4814            44173        0 019 %       Ol518     i OM72           437 0          7674       l204 8            E63M 0 4305 1 4741                 488A so V

1

e.
  • t
      =>

Table 1. Saturated Steam: Temperature Table-Conthwed Enthalpy intropy O Aos Press Sat. 50ecific volvme

                                                                              $at           $41                         San            $81                 $41            femo

(' Tems fahr LO Oer 5e in L0und v, Eva0 Vs00' L 'O u'd 88 Ess0 V40er

                                                                                                          " '8             t L 0uia Eva0 Va0er le         l's       is fam t

t p via 8 441 5 M32 1204 4 0 6405 0 429' . 47W 4ett esta sets 7 00lM1 0974L3 0 90424 444 754 6 O W54 0 4213 4#1 e64A se48 485 96 ' 0 019M 09355 0 95557 450 754 0 '.204 2046 7 0 6502 0 8128 4629 est edBA 504 88 6 01979 0 49086 0 81462 7493 .2045 &&SSL 0 8042 4592 4728 0 01984 08tWS 0 44329 455 2 472 8 524 67 459 9 744 5 ,204 3 0 6599 0 1956 , 4555 47ts 448 545 11 0 01982 6 82954 a64950 0 02000 0 79718 0 81717 464 5 TJ16 204 1 0 4648 0 1871 1 4514 408 9 det 0 Se615 0 W96 0 7735 4441 404 4 0 8200s 0 74813 0 73522 4691 734 7 203 8 4esa 54r81 729 7 .203 5 0 6745 - 0 1700 4444 aese 0 02017 S ?M41 0 7M54 473 8 est e 41010 724 6 ,203 8 0 6793 0 7614 .4407 set 9 633 03 0 02026 0 707M 0 12820 478 5 es! 8 443 2 719 5 62t12 7 0 M42 0.7528 .4370 sets sett $54 41 0 02034 0 68065 0 70100 4879 714 3 .202 2 0 8890 67443 4333 SIBA Sete 6a086 0 02043 0 4H44 0 67492 O H39 0.7357 42e. 904 A 705 14 0 02053 0 :293s 0 64998 492 7 109 0 .201 7 se48 e'7 6 703 7 ,201 1 0 6947 0 7271 42M ISA teL8 73140 0 02062 0 60530 0 62592 07036 6 7185 4221 at2A 751 72 0 02077 0 58210 0 80289 502 3 694 2 n200 5

               $128 0 02081 0 55997 0 54079              507 1        692 7      ,69L8             t?005 0.7099        .4143          SilJ litt                 7M 76 Satt                812 53           0 02001 053N4 0 55H4                  512 0       647.0         1M 0           0 7133 0.7013                       lita 441 04           0 02 .02   0 51814 0 53914            516 9       481 3         19E2           0 1182 0 49M       '.4146 4100          8MA SM S 0 02 12   0 49043 0 51955             521 8       6755          197 8          8 7231 0 6439       . 40M           IltA 948                 8 70 !!

0 7200 0 6752 14032 esta 531J 900 34 0 02.23 9 47947 0 50070 526 8 669 6 IM4 58L8 93117 0 02 M 0 46123 0 48257 531.7 #38 ,195 4 0 1329 &W64 IJM3 SIRA 8675 94 3 t?370 0 6577 1.30M teL8 leta 962 79 0 02144 0 44367 0 465!3 SM 8 84dA 0 02157 8 42677 0 44434 544 8 HIJ $3 8 0 7427 0 6489 3915 seal 995 22 0 7478 O H00 3874 ' tela 0 021H 0 41048 0 '3217 544 9 645 0 91 9 tota 1029 49 634 5 .,90 6 0 7525 0 6318 M37 981 4 802J 1062 59 0 02182 03M79 6 41440 552 0 U20 1,09 A NBA 1091 2 0 02194 0.37946 040the H7J 4 7575 R&222 3197 904 8 M24 625J 1877 4 7525 44132 8.3757 8084 IIL8 L133 38 0 02207 0.34M7 0 38754 170 10 0 02221 6 35059 0J 7320 M76 6415 186 1 0 7674 0 6041 1.3714 080 8 184 8 tes e 588 0 207 12 0 02235 03 Del 0 35975 572 9 511 5 1845 0 7725 0 5950 1 M75 572 8 246 26 0 02249 0 32429 0 14478 578 3 604 f 182 7 0 7775 05aH 1.J634 572.8 543 7 587.2 ,180 9 0 7525 4 5766 1. >92 I?L.8 576 8 285 74 0 02264 011162 03M26 589 i $49 9 l' 79 0 0784 0 5673 3550 las e SM 8 1326 17 0 02279 0 29937 0 32216 24s 0 7927 0 5540 3507 0 02295 0 28153 0 31048 SH 6 542 4 76 9 les t .367 7 seta M48 410 0 0 02311 0 27608 0 29919 600 1 514 7 74 8 0 1978 0 5485 3464 M28 4533 0 02328 026499 024827 605 i 566 8 72 6 0 4030 0 5390 . 3420 582 1 l' 411 4 558 8  :.70 2 0 8082 0 5293 M75 506 8 3 H80 497 8 0 02345 0 25425 0 27770 k l 550 6 167 7 0 8134 0 5146 .3M0 eas t 000 0 15432 0023W 0 24344 0.26747 6171 32p see s 0 02382 0 23374 0 25757 6229 542 2 ,165 1 0 8187 0 5097 Dj toe s let t 1589 7 16373 0 02402 0 223M 0 24796 628 8 SM4 162 4 0 8240 04997 0 8294 0 4494 32 38

                                                                                                                                                              ,3190 est 812 8 812 8               1646 l           0 02422 0 21442 0 13865              048          524 7             159 5
                                                                                                                                                              ,3141 1735 9           0 02444 020516 0.22960               640 8        515 6            .156 4     0 048 04794                            818 8 418.8 646 9        506 3 l           153 2      0 840; 04689           3092           f*t 8 utt                1786 9           0 02466 0 1 % 15 0 22001 ti4 e              !!39 0           0 02489 0 8737 0 21226               4531         496 4 '           149 8      0 4458 0 4543          3041           624 8 486 7                        0 8514 04414           2988           s28 0 824 9              18974            0 02514 0 .7850 0 203M                659 5                         146 1 0 !$71 04M4          .2934            432 0 6459        476 4             142 2 532 I              19470            0 02539 0 7044 0 19543                                                         0 8628 0 4251        L 2879           83L8 4M t               2002 8           0 025W 0 ,6226 0 18792                672 4       465 7            L1341 0 8686 0 a134 '        2821           pte 0 02895 0     5427 0 18023            879 1        454 6 1133 7 Hs0                2059 9 4431           117*
  • 0 8746 0 4015 2761 644 8 M40 21183 - 6 02625 0 4644 017269 685 9 N&t 0 02657 0 1876 0.165)4 692 9 431 1 '.24 0 0 6806 03093 2699
                   ' 448 8               2178 1                                                                                          0 8468 0 3767           2634          432 8 0 02691 0    ,3124 0 15816            100 0        411 7 1118 7 Eif f              2239 2
                                                                       ,2387 O lHIS             7074         405 7 til31                 0 8931 03631          ,2567            634 8 434 8              23017            0 02728 0 714 9        392 1 1107 0                0 8995 0 3502 ' fits                   sett aus t              2365 7          0 02768 0 11643 0 14431                                                        0 9064 03161            2425           esc 8 0 02811 010947 0        ;3757        722 9        377 7 1100 4 664 0              24;; l 361 ! 1093 5                0 9137 0 3210           2347           estI 844 8              24981            0 02858 0 10229 0         3087        732 5 0 9212 0.3054           2266           8720 25666            0 02911 0 09514 0         2424        740 2       3457 1085 9
                       $72 0                                                                                                             0 9287 0 2892 1 2179                   475 8 878 0              2636 b           0 02970 0047M 0          ,1769        749 2       328 5 10776 758 5       310.1 1068 5                0 9365 02720 '          2086           sett set t              27046            6 03037 0 00080 0 11117                                                       O M47 0 2137 .1984                     004.0 IMS                27821            6 03144 0 07349 0 10463               768.2       2902 1058 4 774 8       264.2 1047 0                 0 9535 0 2337 .1872                   atte tat t              28574            0 03204 0 06S95 0 09799                                                                                              E.A 6 03313 0 05797 0 09110               790 5        2431 3033 6                 O M34 02110 ,1744 ett e              2934 5                                                                                          0 9741 61841 1.1591                   EIBA 3013 4          O d3455 0 04116 0 0837(               804 4        212 8 1017 2 OSL8 172 7 995 2                 0 9901 0 1490           1190           1sE8 30H 3            0 03642 0 03857 0 07519               422 4 7eLa 835 0        144 7 979 7                   0006 01244            1252           1stJ 782 8             3135 5           603824 0 03173 0 06997                                                           0169 0 0476           1046           104.8 794 4              3177 2          0 04108 0 02192 00000                 892          102 0 954 2 15 0 0 04427 0 01304 0 05730               473 0         61 4            9344        .0329 0 0527          0856 7EEA               3194 3                                                                                          , 0612 60000                          IE47*

19647* 3208 2 0 05078 0000ml 0 05078 9000 00 906 0 .0612

                        ' Crit cal temperature U

O v

3- Toble 2: Saturated Strem: Prenews Table Dl1118197 (fttropy Q- $pecsflC Volume Set Sat. 40 Press. lat. Sat. 5at. Abs Pres 8 Tefue Sat. bguio Ltt$q in. f 4'd pged Eve 9 Veper U080 l'80 V8Per (va0 V40er Lb/l4186. hg s eg sg p

        /
          %'               p                t             vg             V gg       vg          hg                 h ,g                                   Bg
        'b;               SW                        i   in            3; a2 4          4'  0 0007              .075 5        075 5                   0 0000      p l872         2 1872                 a utte .

I

                                    .lt                at             135               5  27 382               080          0874                    0 0542      J0425 ' 2 0967                        0 25 SM        i                                 141 5           5  47 623               044 e)       095 3                   O M25          9446        2 0310                 8 90 sau            t             ui g$                                                      l                                                      8}            N
                                               . !$,                  U
                                                                                                                .h                                                  hi
                         .t'l .       Ib m                 m.4          ;!g
                                                                                                  ,N                2             41                    M.                          #'9              te, l4MS
                                      '1  .            ui             ;h712         L               >           9 70a             50 h                  ;

131 4447 7%8 34 sm IBA , I'O L 728 ;I L2 4 JW . 81Ml M9? .50 9 0 3137 4415 1552 lit IM 27 180 i L156 3 0 3354 3M2 1 7320 itt - 29 227 N &0' MM 20 070 20007 M52 .lM i 0 M82 3313 6996 30a asa 250 M 00 7000 137268 13 74M 218 9 ets t" 4tt 26725 00 7151 10 47W 1049e6 2MI 933 4 M8 O M24 feed 6743 201 02 to 1274 4 4967 250 2 923 9 74 1 0 4112 2474 65 # 38 4 ) 984 $5140 ' E4 292 78 00 7983 7 1562 i l7h 262 2 915 4 77 6 04273 .2167 6440 00 0 7te 302 93 00.7402 6 1875 6 2090 272 7 1078 30 6 O ult 1905 6316 98 8 SA 312 04 0 0 7573 5 45M 54711 282 [ 900 9 43 1 0 4534 1675 6208 N8

                                                                                                                                 ,85 3                0 464J         1470            6113             GBA L                       34          32028            0 017659        4 8779    4 8953        290 s             094 4 32782            0 017740        4 4133    4 4310        298 5             888 6              87 2               0 4743        1244             6027           1RA
                     'lta                                                                                                                                                            5950           tthe 194A         2J4 79             0 01782        4 8308 ' 4 0404         306 8              IBJ l             et 9               0 4214         t115 Fl2?                $01700         3 7007    3 7275       312 6              877 4             90 4               0 4919        0080             5879           IRf laa                                                                                                                                                      1 5813             128 154          M7.33              0 01798       34M4       14M4         319 0              5728              91 7               0 4998        0815 325 0              ent 0             93 0               0 5011        0881         1 5752             14G Nts           353 M             6 01008         3 2010    3 2100 19695              18tA 1814         368 43             6 01000       2 9058     3 0lM        330 4              M34               M1                 0 5141        One M3 55 -            0.01815        2 81H     2 8338       3Mi                859 0             95 1               0 5206        0435          i M41             1EA las                                                                                                  .

11E4 1788 3E842 0 01821 2 66M 267M Mll 854 8 96 0 0 52H .0322 l uti 433 373 00 0 01027 2.5129 1 5312 346 2 850 7 l98 9 0 5J28 L O215 1964J fE8 1 846 7 J97 6 0 5304 1.0113 1.5498 INA lEs 377.53 601433 2.304i 2 4030 350 9 301 80 0 01690 2.2600 22873 355 5 842 8 198 3 0 5438 1 0016 1 5454 aus sms 0 5400 1 5413 tite

                        !ste         306 91             0 01044 2 16373 P18217                 3M 9              839 1           199 0                            0 9023 399 80             0 01850      2.087M M00829             M42               435 4           IM6                  O H40       096M            1 5374             23 4 25te                                                                                                                          0 %e8       0 9748              53M            238 8 IIts         393 70             6 01865         97901    .98648        36s 3              831 8          200 1 IIS                                            82                                             0                                                               h                       a 20l "t!
                          >          :n"                                in '       i!i!!       lil!               !!!!           ni                    82 !!n!                        tin            mi
                        !Ist         allo 41425 h't.!!!

0.880 0 0,885 83169 51597 65049

                                                                                 .59482 387 1 390 8 865 8 812 0 202 $

202 6 0 5805 0 54u 09M1 0 9291 5166 5135 200 8 20e 8 FILO 9  ! h l-s C42 180 4 12046 0 6217 0.8630 1 4847 4e88 est 444 60 0 01934 1 14162 1 16095 a . 4738 408A dett 45628 0 019 % 1 01224 1 03179 493 7675 204 8 0 6360 0 8378 4to9 SIB 8 449 5 204 7 6 6490 0 8144 sett 467 01 0 01975 0 90787 0 92752 755 [ 741 s 2083 = OHij 0 7936 4547 Ists .i Sett 476 M 0 01994 0 82183 0 84177 440 9

                                                       !0 4                                   28               !!aN        !                   4304            Fels V              798 0         503 08             0 020$0 0 63505 0 655 %               all e              710 2       .2018                    0 6928 0 7022 0 7377 0 7210              4212        ' 7M 6 0 02069 0 58840 0 60949               500 9              699 8         200 7 FM 9          510 8.                                                                                                           0 1111     0 7051               4163           sees 509 8              689 6          199 4 '

tell 518 21 0 02087 0 54809 0 568N 98 0 - 0 7197 0 6899 .4096 3M S 52524 0 02105 0 51197 0 53302 518 4 679 5 360 0 669 7 96 4 0 7279 06753 a 4032 905 8 531 5 0 02123 0 47968 0 50091 . 526 7 tes t M00 94 7 0 7354 0 6612 3970 tes e 53821 0 02141 0 45064 - 047205 534 7 448 8 542 6 650 4 92 9 ' '4 34 0 6416 3910 lesse testa 544 58 0 02159 0 424M 0445M 640 9 91 0 v 7507 063u 3451 taste

                     'see t          550 53             0 02177- 0 40047 0 42224              550 8 6315             .ti l               0 7578      0 6216              37M          1188 8 5%28                0 02195 0 37863 0 40058              557 5 lis t
                                                                                              %44                 622 2        .187 0                 0 7647      0 6091              3738         1124 lite t .         M182               0 02214 0 35859 0 30073                                               ,164 8                 0 7714      0 5969              3663         139ts 56719              $ 02232 0 34013 0 36245               571 9              613 0
                     ?!98 8 182 6                0 7780      0 5850              3630          12W 8 .
                                      $72 38             0 02250 0 32306 0 34 % 6              578 0              603 8 12$s t
                                                                                               $85 6              %46             180 2               0 784J      0 57)3              35H           13se e t3ge t        - 57742               0 02269 0 30722 032MI                                    585 4        1778                   0 7906      0 % 20             .3525          13W e 542 32             0 02288 0 29250 0 31537               592 3 13M e                                                                                        576 5             75 J              0 7966      05507                3474         1481 0 54707              0 02307 0 27871 0 30178               590 8                           .

1448 0 72 8 0 8028 0 5397 3423 1468 9 0 02327 026%4 02f911 605 ) 5674

                                                                                                                                                                                                 ' llee t leas t          591 70                                                                                        10 1               0 8085      0 5288              3373 0 02346 0 25372 0 17719               611 7              558 4        ,

lues. 59420 618 0 5494 67 4 08142 0 5182 .3324 Ilu s tHet 600 H 0 02366 0 24235 0 4 % 01 540 3 64 5 0 8199 0 5076 , 3274 teest 604 87 0 23159 0 25545 624 2 test e lilli  !?!?! 8 0238708:11 ilil# .tsi  !!'e M .Iut 8!% 80 tiil! l1:U lijn tiW S8i" W,'! liint tiij WI lit aim imi !M l'"! iti tuli 18d L""n 81N ta4 int 82 8M 80n M !Il E! . tM  !!M 8 tm 8 E Di!  %!  !!!n 8:s! WI 'llt: 3

                      =i               et                 m: : l2406      =i 0 n                mi !!!l            m,               ni                 :=

0 8929 in 0 3640 M2569 mi

                                                                                                                                                                                                     ! sus 2308A            655 M             0 02727 0                  5!!3       107 2              406 0 .           13 1
                                                                                                                                  ,,03 1                                              .2440          24ms 0 9031      0 343G 34E4             M2 ll             0 02790     d. ll287 0    ,4076       719 0              384 8 0'  3064       7317               3616            M3                   0 9139     0 3206            '2M5            !sese ague             664 11            0 02859 0 10209                                                         ,062 }0               0 9247     0 2977               2225         MSA 0 02938 0 09172 0           2110      744 5              3374 ama              67391                                                                                     .069 7                0 9356      02741               2097         27mA 219tB            679 53            00b29 0 08165 0 .llM                  757 3 770 /

312 3 255 ) >055 8 0 9468 02491 954 3WA feeBO 684 96 6 33134 0 07171 0 0305 1039 8 0996 0 2215 003 3g5A 0 63282 0 06158 0 09420 705 l 254 7 154 690 #'2 001 0 218 4 1020 ' 0 9728 OlMI ,619 mBA IWA- 695 33 0 03428 0 05073 0 08500 169 3 993 3 0 9914 0 1460 L373 sina 70028 0 0M41 0 03771 0.07452 824 0 21E8 875 5 %I 9316 1 0351 0 0482 0832 33Es 31Et 705 08 4 04472 0 61191 0 05663 00 906 0 1 0612 0 0000 ,0612 33m2* 0.05078 9050 SE2' 70547 0 05078 0 00000 s3

                  ' Critical pressure O

t

           ~

V I i U. G. NUCLEAR REGULATORY COMM)SSION 1 SENIOR REACTOR OPERATOR REQUALIFICATION EXAMINATION  ! FACILITY: LAS6LLE 1&2 f REACTOR TYPE: _BWB GEk..______.__._____ DATE ADMINISTERED: _HZ/flh401 EXAMINER: .LAH5 M QB L._h. _ _ . _ CANDIDATE: _ _ _ _ . INSIBMCTJgNS_IQ_GANDIDAIE. s Read the attached instruction page carefully. This examination replaces the current cycle facility administered requalification. examination. Retraining requirements for failure of this examination are the same as. for failure of a requalification examination prepared and administ,ered by ] your training staff. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70%  ! in each category and a final grade of at least 80%. Examination papers will be picked up four (4) hours after the examination starts.

                                                                                            % OF i

CATEGORY *4 OF CANDIDATE'S CATEGORY VALUE TOTAL SgQBE.__ _ _VALUE_._, _ CATEGC)BY I45 2.4.0 i _ M .._ MdIE ._ -_ ._.._______5. THEORY OF NUCLE.AR POWER PLANT l OPERATION, FLUIDS, AND  ! THERMODYNAMICS 25 4 _16 30.. M . __ _ _ _ _ _ _ _ . 6. PLANT SYSTEMS DESIGN. CONTROL, j AND INSTRUMENTATION 2C L _1 b bO J W . . . _ _ . . . _ _ _ . ____.._'l PROCEDUF.ES - NORMAL, ABNORMAL,  ! EMERGENCY AND RADIOLOGICAL CONTROL 24.8

       ._ lb.#                   EffG      . . _ . . _ _ _ . _ _ _ _ ,               .._.__.._8.                       ADMINISTRATIVE FROCEDURD' .                                                  ,

CONDIT]ONS, AND LIMITAT10N.,  ! 60 5 ,

       .Mf0$_                              . . . . _ _ . _ _ . . . _ _ _             _..____ _ _%                      Tota 1s Final Grade All work done on this examination i s niy own .                                                                               J have neither given nor received aid.

_ . . ~ . . . - . . . _ _ . _ _ _ - _ . _ _ _ . . . . . - . - _ _ . . _ . Candidate's Signature

              ..       I'
                              !      c'    ~
                                                                                ,n t;                     .                                         /

s .

           ..      h      a       $ 'L  '

sa. q,

l 4# + j i NEC RULES AND _ GUIDELINES FOR LICENSE EXAMINATIONS I During the administration of this examination the following rules apply:

               - 1.                  Cheating on the examination means an automatic denial of your application and could result in more severe penalties,
2. Restroom trips are to be limited and only one candidate at a time may le.: ave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.
3. Use black ink or dark pencil only to facilitate legible reproductions.
4. Prj nt your name in the blank provided on the cover sheet of the examination.
5. Fill in the date on the cover sheet of the examination (if necessary).
6. Use only the paper provided-for answers.

7. Print your name in the upper right-hand corner of the first page of each section of the answer sheet.

8. Consecutively number each answer sheet, write "End of Category _" as appropriate, start each category on a n w page, write orlly gn gne pic!q of the paper, and write "Last Fage' on the last answer sheet,.
9. Number each answer as to category and number, for example, 1.4. 6.S.
10. Ski p a t 'least .thtee lines between each answer.
11. Separate answer sheets from pad and place finished answer sheeta face down on your desk or table.
12. Use abbreviations only if ~ they are commonly used in f acility Lilera19te.
13. Tim point value for each question is indicated in parentheses af ter the
                                    -question and can be used as a guide for the depth of answer required, 14, Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
16. Partial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
10. It parts of the examination are not clear as to intent, ask questions of the m mingr only.

17 You must sign the stat.ement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examin6 tion. This must be done after the examination h.n .s been completed.

18. When you complete your examination, you shall:
e. Assemble your examination as follows:

(1) Exam questions on top. 1 l (2) Exam aids - figures, tables, etc. l (3) Answer pages including figures which are part of the answer.

b. . Turn in your copy of the examination and ali pages used to answer t.be examinat ion questions .
c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions. 1
d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is st.ill in progress, your license may be denied or revoked.

m, y a ,- - -- - --- - - - - -- - - - - - - - - - - - -

                                     >   +    _r:

q

            '1"          THKQBE9E_HUAE68._EOWER EkaHI OPERAT10H1_EL_ HIRE 1_AND                                           ;FAGE    T ;l IHEBMQDYNAtLIGE .                                                                                 >

y kb QUESTION- 5.01; ( 1 l. 50. ) L 9

                                       ~

1 Answer lthe f ollowing: TRUE or: FALSE:

                                                                                                                             .              J
          ,      E(a)iSlowing the rate of a power decrease lowers the-                                                '
                          " height of the resultant Xenon peak.
                 '(b) The resultant Xenon. peak due to a scram from 50%                                                                       !
                          , power is larger'than one from 100% power.

(c) During an' increase in power from equilibrium.  ;

                           . Xenon conditions, Xenon. concentration initially decreases.                                                                                                    .;
                                                                                                                        .                     1
             ' QUESTION              5.02                  (     50)'

Which of the following-best describes the behavior.of equilibrium Xenon reactivity over core life?

a. It sCREASEE because of 3he increased fuel burn-up, .j
b. It pKC ThMc ' e decrease in plutoriium-Xenon -

yiel ..

c. It INCREASES because ~of . the increase in thermal' flux.
d. 'It-INCREASES because.of the decrease in.the delayed neutron. -!

fraction. QUESTION b.03 ( 60)- Of the following'operat.1.ons, which ONE-will have a negative

ef.fect (reducing effect) on available Net Positive Suction  ;

Head-(NPSH) of a given centrifugal pump: i la)- Throttling open +.he pump's suction valve.

                  '(b)-Throttidng open the pump's discharge valve, d                (c) Decreasing-the pump's' speed.                                                                                             .

1 (d) Decreasing the temperature of t.he fluid (water) being pumped. . W m ..

                                             -(***4* CATEGORY 05 CONTINUED ON NEXT PAGE *44H )

__a

I t_T.UEORY OF: NUghEAB_POWEB_PLAHI OPERAIIO_L._ELU1DS t_ABD ~ PAGE' '3'

IBE80QDYNAMICS i
  ' QUESTION           5.04                             ( .50)
                                                            ~

Consider a real plant system (NON-1 DEAL) with two j centrifugal pumps in parallel,-one of which is running at ) 1800 RPM. The second pump is started and run at 1800 RFM. i System flow will be... I SELECT THE CORRECT ANSWER (a) more than double the original flow due to decreased flow resistance. (b)'slightly less'than. double the original flow due to  ! increased flow' resistance, i I (c) the same since only the dicharge head changes.  ; (d)' reduced by one-half due to increased discharge head. .) i l

                                                                                                    ,li     (

QUESTION b.0b ( .60)

         'The reactor is critica] at 106 cps.                                Which of the.following best describes the behavior of neutron power following a prompt                                           .;

insertion of negative reactivity?

a. Neutron power drops immediately to " Beta" (delayed neutron i fraction) times-the neutron power prior to the prompt l
              ' insertion of negative reactivity.
b. Neutron power decreases linearly with time after the initial prompt drop.
         .c. After the initial prompt drop, neutron power. decreases on                                              !

a constant negative period; the-magnitude Of the period determined by the amount of negative reactivity inserted. i d, Because only delayed neutrons are left immediately after a negative reactiv3ty insertion, neutron power decreases on an 60-second period regardlesc of the size of the nega-tive reactivity insertion, (***** CATEGORY 05 CONTINUED ON NEXT PAGE **44+)

L d k&_._IHEOBY_QE NUCLE 68_EQWKB_Ek6MI_QEER6IlONt_EkUIDSx_AND PAGE 4

          'IHEFUQUYNAUICS;
    ' QUESTION     5.06          (2.00)

Given'the followingftwo-(2') conditions and using the supplied information (also see Fig. 5,08), determine which condition is operating more closely-to its'MCPR limit. (Show all. work and state any assumptions - use on1v  ; plant rated parameters & T.S. limit.s in your assumptions - assume in both j~ cases that recire, flow contro) is in manual.)

        ~

T Condition 1 Condition 2 Rx' dome pressure = 950 psig Rx dome pressure = 980 psig Core flow : b4,25 M1b/hr ' Core flow = 81 M1b/hr Rx power = 1660 MW Rx power = 2490 MW P-1 MCPR = 1.57. P-1 MCPR = 1.44 i QUESTION .5;07 (2.50) While LaSalle U-2 is operating at 90% pwr, extraction steam to the highest pressure feedwater heater is removed. .An engineer observed that the turbine load increased by 20 MW electric and concluded that this action hat. improved (increased) the plant.'s thermodynamic efficiency (not, heat rate); 1s this conclusion correct? Explain your answer fully. (Include what caused electrical output to increase.) QUESTION b.08 (2.00) Prior to startup$(all contro) rods full'in), the SRM count rate is'10 CPS , and k effective is 0.96, f 1

6. lf control rods are pulled to give a dK of +0.035, what count rate 1 on the SRM's should be expected when the period becomes infinite? l t

I

  ~
b. If additional control rods are pulled to achieve criticality,.would
                                                                                                        ]

the time required to reach an infinite period after each rod pull be i GREATER or LESS THAN the time for previous rods? Assume all rod j pulls are equal. Give the reason tor your answer. l l I 1 l (4444+ CATEGORY Ob CONTINUED ON NEXT PAGE ****4) {

4L__IHEQBY._QE__ NUCLE 68_EO_WER_ELANT OPMBATIoN1_ELUIDeuhNQ PAGE 5 ISEBdQDXH6dlCE

   . QUESTION   5.09        (1.25)

Assume the initial reactor core was loaded to an effective multiplication  !

     ' factor (Keff) of 1'.267.
a. Since Keff in an operating reactor is 1.000, state 3 reasons why the core is loaded with so much excess Keff. Confine your answers to-factors which affect reactivity, i.e., DON'T include things such as more economical, longer times between refuel, etc. (0.75)
b. List 2. methods of compensating for this excess reactivity in the reactor. (0.50)

QUESTION 5.10 (2.25) Assume that the reactor is being started up from Cold Shutdown and a rod [ drop accident occurs early in the startup. Of the VOID, DOPPLER, and ' TEMPERATURE-COEFFICIENTS, which will act first, second, and third to limit  ! the rapid power rise? EXPLAIN YOUR ANSWER. QUESTION b.13 ( 1.50)

                                                                                          ~k Fo31owing an auto initiation of RCIC at a reactor pressure of 800 psig,                i reactor pressure decreases to 400 psig. Indicate how the following                 i parameters would change (INCREASE, DECREASE, NO CHANGE) due to the decrease in reactor pressure.

Assume the RCIC System is operating as designed (Flow Controller is in-automatic set at 600 g;>m). , 1

a. RCIC F. low to the Reactor
                                                                                              )
b. RC]C Pump Di.scharge Head
c. RCIC Turbine RPM 'I 1

I 1 l l I 1 (*4*4* END OF CATEGORY Ob 4*a+=) ___ __ _ j

g ;v- :p m - - - - '- L q~ l7 " q ypp . + m' # , ,

                                                                                                                                               )

dN '

                                            ,n.

1 ' N t [a ]4 3 I

           ~6 . _ELANT ' SYSTEM _DEdigML CONIB9Lt AMILINSTRUMENTATI_gH         _                                 T. [,-            \     PAGE             6
                                                                                                                 . \;w
                                                                                                                     ' / [(
                                                                                                                           ?

y, 4 i s j

           ~ QUESTION               6.01               (2 00) 2 The Ar'RM scram function actually conalsts of two separate setpoir4ts :                                                                                                                                      I
a. FILL 2N THE BLANKS:
                                                 ii                 ',,                    1                                                                     ;

Flow Hiased Scram - r.._(1) _ 4 w+ .__(2)__%

                                                                                   ~

(0.25) t Fixed Scram J>\,.(3)_ % ( O . 26 )~ .

               .                                             s .
                                                                                                                                                                 -j
b. LIST the specific location (s) of the sensor (s) which measure l

the variable "w". 1 (0.5). ' v<

c. While <operatYitg akbhpower, one MSIV fails shut resulting in O[y a brief (~ 1 sehrand) flux spike to 121% power. STATE.which of the two scram.setpoints msntioned above (one or both) should
                    !..                                                                                                                                     .[#
                       - itii ti a te ',a rent e.rl.' sc ram . ~ JUSTIFY your choice.
                      ,3,,                                                                                                                         (1.0)4 1

q ,s - 1 .. L tc l QUEST.' ION 6.02 (1.50) List three (3) of the six (6) major 4160 Vac COMPONENT .[ loadc supplied by bua 142Y (Division 2). f QUESTIQN 6.03 (1.50) ,

                                                                                                           +

1 WNat'Niree (3) conditions will result in an IRM inoperative \ cod s s blockv 4 4 y ff i 3 (i j S 3 . , QUESTION 6.04 (2.00) , < The reactor is at 100% power with the generator synched to the grid. Electrohydraulic Control (EHC) load set is 105%. By , using the attached EHC diagram (Fig. 6.04), explaiti what would happen (contro) valve / bypass valve position, Rx pwr and pressure) in the

      ,7 following circumstances:
    .        .                                                           ,                         b
          '/ 4           a.      Load limit potentirmete r reduced to 9b%.
                                                                   'l      .

i

                                                                                                                                                               ),
b. Maximum conibined flow' limit potentj omete'r reduced to 95%. '

a "A" pressure regulator (setpoint) fails low. t . d. Failure of two (2) bypass valves full open. ' I T, 1 (***** CATEGORY 06 CONT 18UED ON NEXT PAGE u 4 4 4-) 4 t

!L_._HAUT SYEIEDS_DESlh_QOUIhh_AUD_ItEIBUMEUIAI193 PAGE 7 o QUESTION 6.05 (2.00) What four (4) conditions will cause the RSCS to apply a rod bloch to a control rod? QUESTION 6.06 (2.00) Concerning the CRD Hydraulic System:

a. The reactor operator is going to increase drive pressure to the HCU. Would you as the acting SRO direct him to open or close the drive water pressure control valve? (0,5)
b. Explain'how your action in Part a has changed the following flow rates (increase, decrease, no change). (1.5)
1. Scram valve charging flow
2. CRD total system flow
3. Cooling flow QUESTION 6 . 0 '/ ( .75)

A reactor startup is in progress and the NSO is withdrawing rods to bring the reactor critical. The "A' SRM is bypassed so the IM's can troubleshoot the power supply. The IM mistakenly takes the "B" SRM operate switch to standby and starts troubleshooting its power supply.

a. What specific plant system trip did this cause?
b. How did this trip specifically affect the plant startup?
c. On what 3RM range would the above trip have been automatically bypassed?

OUESTION 6.08 (1.00) Regarding ARM's, state the purpose and describe the operation of the meter pegger circuit. (+44++ CATEGORY 06 CONTINUED UN NEXT PAGE +**+4i

r- , o L_ _EL AMI_SYfiTEdsLDEliMNmCONIBh._6 t!ILit!EIMME NI6ILON PAGE 8 QUESTION 6.09 (1.00)- When the reactor building exhaust plenum Process Rad Monitor Hi-Hj setpoint is exceeded:

a. What two (2) automatic actions occur"
b. What is this setpoint?

QUESTION 6.10 ( 75)  ! gsin in> L th h pla t iast m m a b b oa3 A ow can the number of LPRM's actually providing an input to an APRM channel be most conveniently determined in the control room? QUESTION 6.11 (1.00) hist three (3) PRIMARY CONTAINMENT parameters that can be read at the

         'Bemote Shutdown Panel.

I i l I f l (44+4+ END OF CATEGORY 06 *n44) L

7. PROCEDUBES __N,QRM6kt_ABNQRM6hu, EMERGENCY AND PAGE 9 BAQIQLQGJ. Chb _gQGIBQL QUESTION 7.01 (1.00)

LOA-MS-01, " Main Steam Isolation Bypass for Emergency Depressurication,' 1 cautions the operator that under three-(3) conditions, this procedure j should not be used. List two (2) of the three (3) con diti o.is , 1 QUESTION  ?.02- (1.00) 4 LOP-DG-02, Startup of Diesel Generator 1A(2A) 1DG01K(2DG01K), lists.a precaution.to not.open the crankcase vents for at least two hours if a High Crankcase Pressure Alarm occurs. Why is this precaution given?

    . QUESTION    7.03             (2.00)

Reactor power operation with one recirculation pump is permitted, provided i six (6) conditions exist. List four (4) of these six (6) conditions, and include setpoints (include unit applicability if not both units).

    . QUESTION     7.04            (1.50)

In accordance with LOA-NB-11, " Preventing ADS' Auto Actuation," answer whether the following are TRUE or FALSE,

a. Use of the /DS Inhibit Switch shall only be used when directed by the LGA'c.
b. If an ADS is in progress, use of the ADS Inhibit Switch will stop an ADS in progress.
c. If the ADS Inhibit Switch is in the " inhibit position", a manual l ADS can still be accomplished by using the Divisional arm and depress pushbuttons.

a QUESTION 7.05 (2.50)

        ~ List a]1 of the immediate actions required by LOA-AP-08, " Total Loss of AC Power."

1 I 1 J l l 4 I I (****4 CATEGORY 07 CONTINUED ON NEXT PAGE *****) l

3 1 I .- 1 L

  'O           J
         .289CElQ8EO   - NQ8MAkt_6BNORM6kz_EME89EEGX_68Q                                  PAGE 10 )
        . RAD 19h09196L_GQtlTROL QUESTION      7.00-         (1.50) 1 LGA-03, Primary' Containment Contro], requires that several conditions'be                      {

met in' order to initiate-DW spray. Une of these conditions is that i suppression chamber air TEMPERATURE and PRESSURE are BELOW the Drywell j Spray Initiation Pressure Limit (See attached Figure 7.06). WHAT is the  ; concern and WHY is there a concern for being below this limit prior to ( initiating DW spray? i QUESTION 7.07 (2.00)

a. HOW long can an operator stay in a 25 mrem /hr radiation field without ,

exceeding: (Assume'an.NRC Form 4 is on file and the lifetime

           , exposure 1imit will not be exceeded.)
1. A LaSalle administrative exposure limit?
2. A NRCl quarterly exposure limit if you had already received one (1) rem this quarter 7
b. You are' working in a group of four people recharging CRD accumulators when you accidentally drop your pocket dosimeter. The dosimeter is now reading full scale while the other three dosimeters for members of your team are reading 5 mrem. According to LRP-1000-1, Radiation Protection Standards, WHAT is the most correct ,

action (s) you will take?  ! QUESTION 7.08 (1.50) According to LAP-240-1, Use Of Locks On Valves, there are four (4) types rf valver. that are required to be locked,

a. Name the four (4) categories.
    -b. Under what two (2) conditions can a Locked Valve be reposit$oned'?

QUESTIOP' 7.09 (1.00) In accordance with LOA-FW-01, Loss of Feedwater Heaters, what two (2) conditions wil] require the operator to manually scram the reactor 9 (**444 CATEGORY 07 CONT 1NUED ON NEXT PAGE **444)

c- . 1 l l E 2 ERQQEDUSES - l{0806Lt_6BNOBU6L1_EMEBGEUQY_6SD 1NVIE 11- 1 R6U10LOGIQ6L CONIBQL i i l QUESTION' 7.;10 (1.50) In LGA-01' Level / Pressure Control, Step C 7.a. states "IF'RPV water level can be maintairied above -1til inches, AND j The ADS t.imer has been initiated, Then PREVENT automatic RPV depressurization by RESETTING the ADS timer."

a. How does the opere or recet the ADS timer? (Be specific) (0.5)
b. Suppose the operator failed to reset the ADS timer and the ADS SRV's opened. Should the operator reset the ADS timer now and close.the SRV's? Why or Why Not? (1.0) i l

(***** END OF CATEGOR'i D7 *****) 1

(1, . L [ d ; I  ! D. ADMJUISTRATIVE_PBQCEDHBES1 _ CONDITIONS, AND LIMITATIQHS PAGE 12  ; ! 1 1 GUESTION 8.01 (1.50) I 1 You, as the Shift Supervisor, are reviewing a procedure change I to a Technical Speci.fications surveillance which changes the setpoint.of the Reactor Vessel Steam Dome Pressure High 4 i Scram from.less than or equal to 1043 psig to 1061 psig plus or minue 5 psig. Does this procedure change involve an unreviewed safety question ccncern? Explain your answer. I QUESTION 8.02 (1.00) If any of the RCS Pressure / Temperature limits are exceeded (limit curves shown on figure / ?.0;L ), what immediate ACTION (S) is(are) required per Technical Specifications? QUESTION 8.03 (1.50) Concerning the control of overtime per LAP-100-17, Guideline For Personnel That, Perform Safety Related Functions: (a) What is the longest period of consecutive hours that an individual may be scheduled to work (excluding shift turnover time)? (b) What is the maximum number of hours that an individual may work in a 48 hour period (excluding shift turnover time)? (c) What is the minimum break time required between work periode, including shift turnover time? QUESTION 8.04 (1.00) What is the basis or reason for maintaining a minimum water level of at least 23 feet over the top of the active fuel in the spent fuel storage pool, and at least 22 feet over the reactor pressure vessel flange, per Technical Specifications? (++444 CATEGORY 06 CONTINUED ON NEXT PAGE 4**t*)

l l 3 ____.61]M 1 H]ETB AT I V E PROCEDURES & CONDlIlCl.L_At JD LIMITATIONS .PAGE 13 1. QUESTION' 8.05 (1.00) An RWP is required to be terminated under one or more of four (4) conditions. LIST three (3) of these conditions. l QUESTION .8.06 ( .75) 1 Which one.of the following GSEP events, at a MINIMUM, requiro.3 the Acting Station Director to notify state and local agencies directly by dialing code 25 on the NARS phone?

1. Unusual Event:  ;
2. Alert.  !
3. Site Emergency
                    '4. General Emergency-
5. Transportation Accident QUESTION 8.07 (2.00)

The plant scrammed due to personnel error during survei31ance testing. During-the scram recovery you are informed that the Station' Vent Stack WRGM has been reading 2.2. E8 and the SBGT Vent Stack WRGM has been reading. 4.8 E8 for the past 3 minutes. The wind speed is 10 mph from the east and' the containment rad level is 600 R/ hour. All other plant conditions are normal at this time. Initial notification has been made. (LZP 1200-3 and 1200-5 are attached.)

a. What GSEP c3 ossification is necessary? Explain why you choose the classification.
b. What protective actions are required? -(Give more than the NARS Form number and letter.)
                                                                                                                             )

1 1 (****+ CATEGORY 08 CONTINUED ON NEXT PAGE 44474 ) 1 i

                                                                                                                              )

I

                          . ,                                  1
             ,t          +;

Ri_.6DUlHMIB6HXE_EBQREDMBEL CONDlHQUEuAUD LIMITATIONS' PAGE 14-p/f QUESTION .8,08' ' ( ' . 7 f> ) Intac'cordanceEwith1LZP-1110-1, Station Director: (Acting Station Director)

        ,           . Implementing ~; Procedure, as Acting Station Director, prior to announcing anlassembly:and sounding-the siren, you:should:
. ~ .

SELECT THE CORRECT ANSWER ul , LNotify state. agencies.

2. l Ensure.that security preparations have been made.

3s ; Notify the Radwaste Control ~ Room Operator.

4. Innounce over the-PA system that only essential personnel should' E , , assemble.

Y r

                  . QUESTION =18.09                  (2.00)-                                                                   !

_Us'ing' the ' attached Technical Specification pages,; answer the' following:

          -k-        You have completed all requirements of shift turnover and have taken-overlthe shift with the following conditions:

Unit 1-is steady. state at 80% power. All systems are normal-except for

                    'D/G 1A which'is out.of' service for maintenance and has been for eight
                  , hours.           All' required surveillance have been completed. .The eight hour surveillance run'for-D/G-0 is not due until. late in the shift.

You receive ' a call' from an electrical maintenance f oreman advising .you q that.he is up'by SBLC and you have a problem. A service water: pipe has just started leaking and sprayed water all.over the SBLC pump "A" motor. In his: estimation,-it will take approximately five days to repair.

                    -What are your TechnicalLSpecification requirements for this condition?

Explain your: answer. Included are pages from your Tech Specs. Do not go into'your actions for work requests, outages, etc. but confine your

                     ' answers to Tech; Spec requirements.
                  -QUESTION            8.10          (1.00)
                     'AP L        L1600'-2, Conduct of Operations, specifies that equipment placed in

, .P . T i L . ,= h y p a s s , or made unable to initiate on an auto initiation signal, unless identified in Technical Specifications, shall be considered inoperable. One piece of equipment is listed as an exception to this requirement if a certain requirement is met. What is the. piece of

                    -equipmenti and what is the additional requirement imposed in order to Edeclare itDoperable?
     ,                                      (***d4 CATEGORY 08 CONTINUED ON NEXT PAGE        d4***)

1 i L__A.1MINISIBATIVE_EBggEDJJBES1 CONQlIlgN.L _AND LIMITATIONS PAGE 15 j J l l QUESTION 8.11 (1.00)  ! Per LFP-100-1, Master Refuel Procedure, what three (3) immediate actions are required if a fuel bundle is dropped? QUESTION 8.12 (1.50) Using the attached copy of Technical Specification 3.0.3, determine if the following situations are acceptable (justify your answer):

1. The unit is in run when an event occurs which requires entry into 3.0.3. The event was discovered at 6:27 a.m. and action-per 3.0.3 was initiated at 7:02 a.m. At 9:32 a.m., the unit was in startup and at 5:02 p.m., it was in hot shutdown. At 12:00 noon on the following day, the~ unit was in cold shutdown.
2. The unit is in startup when an event occurs which requires entry into 3.0.3. The event was discovered at 8:34 p.m. and action per 3.0.3 was initiated at 9:11 p.m. At 7:06 a.m., the following day, the unit <

was in hot shutdown and at 5:10 a.m. the day after that, it was in cold shutdown. i l 1 i l (*444* END OF CATEGORY 08 *4***) (4*d4********* END OF EXAMI N AT ION * * * * * * * * * * * * * * * ) j _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - . _ - - - ]

                                                                                                                                                                  ~~                   ~       --

L . . . , . . . - 1 .

                                                                                                                                                                        ' T.               .

R l: I

                                                                                                                                                                                                                                    \

4- (E s) 3/4.0 APplICA8ILITY i i LIMITING CON 0! TION.FOR OPERATION ! i' -

        !                                                          3.0.1 Compliance with the Limiting Conditions for Operation contained in the 7                                                            succeeding Specifications is required during the OPERATIONAL CONDITIONS or other                                                                              i I                                                         conditions speciffed therein; except that upon failure to meet the Limiting Conditions for Operation, the associated ACTION requirements shall be set. -

[. 3.0.2 Noncompliance with a 5,Mn:ification shall exist when the requirements of i

i. the Limiting Condition for Operation and associated ACTICN requirements are

not set .within the specified time . intervals. ~ If the Limiting Condition for Operation is restered prior to. expiration of the specified time intervals, completion of the ACTION requirements is not required. 3.0.3 When a Limiting Condition for Operation is not met, except as provided -- in the associated' ACTION requirements, within one hour action shall be initiated to place the unit in an OPERATIONAL CONDITION in which the- Specification does not apply by placing it, as applicable, in:

          ',                                                                                             1.          At least STARTUP within the next 6 hours,
2. At least HOT SHUTDOWN within the following 6 hours, and ~
3. At least COLD SHUTDOWN within the subsequent 24 hours.

4 j Where corrective esasures are completed that permit operation under the ACTION requirements, the ACTION may be taken in accordance with the specified time .;' { '

                           <                                           limits as seasured freer the time of failure to meet the Limiting Condition for s                                                         Operation. Exceptions to these requirements lare stated in the individual                                                                                    .

Specifications. This specification is not applicable in OPERATIONAL CONDITION 4 or 5. f 3.0.4 Entry into kn OPERATIONAL CONDITION or other s'pecified condition shall  ; not be made unless the conditions for the~ Lhsiting Condition for Operation are i met without reliance on provisions contained in the ACTION requirements. This - l l provision shall not prevent passage through OPERATIONAL CONDITIONS as required l to comply with a eTrpN requjresents. Exceptions to these requirements are stated in the f e.uidual :gecifications.

        -l i

3.0.5 When a system, subsystem, train, component or device is determined to be inoperable solely because its emergency power source is inoperable, or solely because its. normal power source is inoperable, it may be considered OPERA 8LE for the purpose of satisfying the requirements 'of its applicable limiting condition for Operation provided: (1) its corresponding norpal or , emergency power source is OpfRA8LE; and (2) all of its redundant system (s),  ! subsystes(s), train (s), component (s) and device (s) are OPERA 8LE, or likewise i satisfy ~the requirements of this specification. Unless both conditions (1) and (2).are satisfied, within 2 hours action shall be initiated to place the 1

                                  -                                      unit in an OPERATIONAL CONDITION in which the acclicable Limiting Condition j             

for Oparation does not apply by placing is, as applicable, in:- At least STARTUP within f.he next 5 hours; 1. l 's . 2. At least HOT SHUTDOWN within the following 6 hours, and

  !-                                                                                                         3.       At least COLD SHUTOOWN within the subsequent 24 hours.                                           .
         %.'                                                              This specification is not applicable in OPERATIONAL CONDITION 4 or 5.

LA SALLE ' UNIT 1 3/4 0-1 6

                                                                                                                                                                                                                              ...i
                              ..               --- - -                                       ..~            ,.

r.r . APPLICABILITY l l I SURVEILLANCE REQUIREMENTS 1 4,0.1 Surveillance Requirements shall be set during the OPERATIONAL CONDITIONS or other conditions specified for individual Limiting Conditions for Operation

    ;                                   unless otherwise stated in an individual Surveillance Requirements.

4.0.2 Each Surveillance Requirement shall be performed within tne specified l

    ,                                   time interval with:                                                                                j a.-      A maximum allowable extension not to exceed 25% of the surveillance q

interval, but

b. The caenined time interval for any 3 consecutive surveillance int -vals  :

shall not exceed 3.25 times the specified surveillance intarval. 1 4.0.3 Failure to perform a Surveillance Requirement within the specified time 1 J interval'shall constitute a failure to meet the OPERABILITY requirements for a Limiting condition for Operation. Exceptions to these requirements art stated ( J in the individual Specifications. Surveillance requirements do noc nave to be perfonned on inoperable equipment. 1

      -                                  4.0.4 ' Entry into an OPERATIONAL CONDITION or other specified condition shall                    i
   ,'                                    not be made unless the Surveillance Requirement (s) associated with the Limiting
   .e-                                   Condition' for Operation have been-performed within the stated surveillance interval or as otherwise specified.

(- 4.0.5 Surveillance Requirements for inservice inspection and testing of ASME Code Class 1, 2, & 3 components shall be applicable as follows:

a. Inservice inspection of ASME Code Class 1, 2, and 3 components and  !

inservice testing of ASME Code Class 1, 2, and 3 pumps and valves

       ;         i, shall be performed in accordance with section XI of the ASME Boiler
        '                                               and Pressure Vessel Code and applicable. Addenda as required by j

10 CFR 50, Section 50.55a(g), except where specific written relief has been granted by the Commission pursuant to 10 CFR 50, Section 50.55a(g) (6) (1).

    . i.                                                 Surveillance intervals specified in Section XI of the ASNE So11er i                                      b.

I and Presshre Vessel Code and applicable Addenda for the inservice . I inspection and testing activities required by the A5ME Soiler and i Pressure Vessel Cods and applicable Addenda shall be applicaole as j 'follows in these Technical Specifications: ,

 '.I                                                     ASHE So11er and Pressure vessel           R'equired frequencies Code and applicable Addenda               for performing inservice l                                                                                        inspection and testing'                   i terminology for inservice i

inspection and testino activities activitios - l I - Weekly At least once oer 7 days f At leut once ;ar 31 days Man:aly

           !                                             QuJrtdely or every* 3 'Ront.'.S           At 142M Ones 3dr C 01/5 Semiannually or every 6 conths           At leu: onca ;u id4 e.4s f-                                              Every 9 months      _

At.least once per 276 days Yearly or annually At least once per 366 days .. LA SALLE - UNIT 1 3/4 0-2

                          ~
                                            .a    n.                                                   -       --

l: j . APPLICA8ILITY- ,

                                         $ SURVEILLANCE REQUIREMENTS (Continued)
                                                                        .i                 .                                                                                  i
c. The' provisions of
  • specification 4.0.2 are applicable to the above required frequencies for performing inservice inspection and tasting activities. ,
d. Performance of the above inservice inspection and testing activities shall be in addition to other specified Surveillance Requirements. j
e. Nothing in the ASME Boiler and Pressure Vessel Code shall be construed ,

to supersede the requirements of any Technical Specification. ] j i

      /^                                                                                                                                                                      l

(- . l I t C

        ,                                                                                                                                                                     i i

t E

  • e .

8 {

                                       =

( i LA SALLE - UNIT 1 3/4 0-3 l t i m

                                                                                        ?N-
                                                                                                 .                            l f   -

REACTIVITY CONTROL SYSTEM 3/4.1. 5 STAM08Y Lt0UID CONTROL SYSTEM , LIMITING CONDITION FOR OPERATION . 3.1.5 The standby liquid control systes shall be OPERA 8LE. APPLICA81LITY: OPERATIONAL CONDITIONS 1, 2, and 5". i 1 I M: I

a. In OPERATIONAL CONDITION 1 or 2:
1. With one motor operated suction valve, one pump and/or one explosive valve inoperable, restore the inoperable suction valve, pump and/or explosive valve to OPERA 8LE status within 7 days or be in at least HOT SHUTDOWN within the next 12' hours. l 1
2. With the standby liquid contro* system inoperable, restore the system to OPERABLE status within 8 hours or be in at least HOT q SHUTDOWN within the next 12 hours.

l i

b. In OPERATIONAL CONDITION 5*: .j
1. With one motor operated suction valve, one pump and/or one ev. plosive velve inopera' ale, restore the . inoperable suction valve,

(.' pump and/cr. explosive valve to OPERA 8LE status within 30 days or. insert all insertaole control rods within the next hour. ,

2. With the standby liquid control system inoperable, insert '

all insertable control rods within 1 hour. l

5,,U1REILLANCE REQUI AEMENT5 4.1.5 The sta adby liquid control system shall be c' demonstrated OPERABLE:
                              . a. At, least once per 24 hours by verifying that;
1. The available volume and temperature of the sodium pentaborate solution are within the limits of Figures 3.1.5-1 and 3.1.5-2, and
2. The heat tracing circuit is OPERA 8LE by verifying the indicated temperature to be > 60*F on the local indicator.
                   "With any control rod withdrawn. Not applicable to control roc- smoved per Specification 3.9.10.1 or 3.9.10.2.

LA SALLE - UNIT 1 3/4 1-19 /mendment No.16 y . .. . . . . . . . _ . _

I . j i REACTIVITY CONTROL SYSTEM l SURVEILLANCE REQUIREMENTS (Continued)  !

b. At least once per 31 days by;  !
 +                                                                                                                                \
1. Starting both pumps and r. circulating demineralized water l to the test tank.  !
2. Verifying the continuity of the explosive ch:rge.

J. Determining that the concentration of boron in solution is within the limits of Figure 3.1.5-2 by chemical analysis."

4. Verifying that each valve in the flow path that is not locked, sealed or otherwise secured in position, is in its correct position. .
c. At least once per 18 months during shutdown by; l
1. Initiating one of the standby liquid control system loops,  !

including an explosive valve, and yeaitying that a flow path j from the pumps to the reactor pressuse vessel is available by . pumping demineralized water into the reactor vessel. The 'j replacement charge for the explosive valve shall be from the 8 O same manufactured batch as the one fired or from another batch f

           '   -                                          which has; been certified by having c1e of that batch successfully       j fi red. Both injection loops shall be tested in 36 months.              l
2. Demonstrating that whc.n tested pursuant to Specification 4.0.5, the sinimum flow requirement of 41.2 gpm at a pressure of greater than or equal to 1220 psig is set.
3. Demonstrating that the pump relief valve'setpoint is less than I or equal to 1400 psig.and verifying that'the relief valve does not actuate during recirculation to'the ' test tank.
4. ** Demonstrating that all heat traced piping between the storage
    ;                                                     tank and the reactor vessel is unblocked by verifying flow from l                                                     the storage tank to the motor operated suction valve and then
    '                                                     draining and flushing the piping with demineralized water.

j 5. Demonstrating that the storage tank heate'es are OPERA 8LE by verifying the expected tamBerature rise for the sodium i pentaborate solution in the storage tank aftar the heaters are energized.  ;

     !                   "This test shall also be pe-formed anyt dme water or boron is added to the                                 )

8 solution or , hen the solution tac;eaature der:s below t."e limit of Figure 3.1.5-1.

     '           s       "This test shall also be performed unenever the heat tracing circuit has s'                  'been found to be inoperable and may be performed by any series of secuential, overlapping or total flow path steps such that tne entire flow path is included.
            '            LA SALLE - UNIT 1                                             3/4 1                       8
                          =N
                           - - -u---___         ____-                            _

t ,, . . - . - ,

  ' i                                                                                                                                                                                                                                                 .                .                 .

3

   .,c l

t , C

  • I
                                                                                                                                            ,                               ..                          t                           l                             ..       .
                                                                                                                                                                                                                                                                                                                                     ...                                                             .Sy.

1...J . . . . .. .... i

                                                                                                                                                                                                                                                                                                                                          .           .t..
                                                                                                                                                                                                              ... . .. ._.                          . . . .....,                       ..a
                                                                                                       .                                                                                                                             g
                                                                                                                                                                          ..                   . . . ' ......,,,m..
                                                                                                                                                                                                                                                                                    -                          .                                                                                \
                                                                                    ,                                       .                                                                                                                              . . .                                                                   i                       g g
                                                                                                                                                                                                                                                                                                                                                                                             .g 1

I' . r.==l. . .

                                                                                                                                                                                                                                                                                      .. . . . .=
                                                                                                                                                                                                                                                                                                                                                                                           ..                                       g p.
                                                                                                                                                                                                                                                                                                                                                            .- . . . .                                                              E
                                                                                                                                  ,, J'                                                           ..
                                                                                                           ,                                                                                         .        ...                                                                                                                                           .i .
                                                                                                                                   .,. . f*                                                                                                                                      .

w

                                                                                                  ..                                                                                                                                                                                                                                                                                   .                                            g
                                                                                                                                                                                                                       . .          ...                                                              .                                                                                        .                                     =

W

                                                                                                                                                                                                                                                                                                                                                                                       .                                              g
                                                                                                                                                                                                                                                                                                              .                                  .~..~--

1 p

                                                                                                                                                                       - . . , . ._;,-*=*
                                                                                                                  . ;.. .x                                        ,.n
                                                                                                                                                                                                                                                    +
                                                                                                                                                                                                                                                                                 ..t.....           .               .
                                                                                                                                                                                                                                                                                                                                         . .::.r.
                                                                                                                                                                                                                                                                                                                                               --         . .l::"                                         g                            4 g
                                                                                                                                                                                                                                                                                   . . . .. .                                                                                                     . C'Q
                                                                                                                                                                                                                                                                                                                                            .                                                                                         p.
                                                                                                                                  ,                ,,               .,~.                  .                              .                                                             .

e4 3

                                                                                                                                                                                                                                                                ...w" .
                                                                                                                                                                                                                                                                                                                                                                                                                     ,               w O.
                                                                                                                    ..,                 .s *..                         ..                                                .                                          ... ..

4

            +.

l y N e'd

                                                                                                                                                                                             .n                 ** -==                                  .
7. .
                                                                                                                                                                                                                                                                                                            . :l* *;
                                                                                                                                                                                                                                                                                                                  . .                                   . ... .                .                   l                > we
                                                                                                                                                                                                                               *                                                                  l * :'. ". . ". . * .". . * *
  • j - S
                                                                                                                                       .,}.,.

3 W.

                                                                                                                                                                                                                                                                                                                                                                               ~. t                               M                    M*

s

                                                                                                                                                                                                                                                                                                                    .e.=   ..
                                                                                                                                                                                                                                                                                                                                          .~.   .

M C

                                                                                                                                                                                                                                                                                                                                                                                                                     . ga 4 .

w j . . . n. e

      \.                                                                                                                                                                                                                                                                                                                                        .' 6                                _
                                                                                                                                                                                                                                                                                                                                                                                                                  .d.3 g 3.

y .

1. * ; ; " ' ?.

W s. W r

                                                                                                                  .a c.a - .

W u. g

                                                                                                                 >. W. so.

G. dC 4 '

                                                                                                                                                                               +                          -...

g -i 1 w .*:C W

                                                                                                                                                                                                                                                                                                                            .:                  :       4,                          . .= l t         l M=4 ay                            p.
.y a

W a a, . .

                                                                                                                                                                                                                                                                                                                      . :.                   . : .:.                                                                a                     a
                                                                                                                                                                       - .: : ~:.: :. v u

n ,.

                                                                                                                                                .'O *.': . . .;........
                                                                                                                                                                                                                                .                               f.,
                                                                                                                                                                                                                                                                                =             ,I
                                                                                                                                                                                                                                                                                                                                         **'"I.*.**. .,.
=

W C 41 W i

                                                                                                                                                                                                  ,m                     ..

g  ; i

                                                                                             . . . . . . .. ' ?

g

                                                                                                         .               c
.:.:.. : :. c.,
               ?                                                                                                           ,,
                                                                                                                                                                                                                                                                    .,                                 .. ...       :.c                 . . -

3 J .. ., . , W 1 p . .. f, . g. 3- * *j ..... ..,.. . . ** . 6

                                                                                                                                                                                  !. =.. :, . * .           .                                4
                                                                                                                                                                                                                                                                                                                                                                                                                                           .S.

e

                                                                                                                                                                                                                                                                                                                    .+.
                                                                                                                                                                                                                                                                                                                            .                  1 . .                                .                            .
                                                                                                                                                                                                                                                                                                                                                                                                                                     .@m
                                                                                                                                                                                                                                 ;,,                                                                                      ... ..                                       ... . .      .                   o V4 u'\

s I *. 1

                                                                                                                                                                                                                            . f. .
                                                                                                                                                                                                                                                                                                        ; =.' . .

j

                                                                           .                                              6 a
                                                                                                                                                                                   .s. . .                                                           a                                                  4 a ;.                              *                      .

l . l l .

                                                                                                                                                                             ..                         .                                                                    l                           }              .
                                                                               ,             s
                                                                                             -                        a                              E                         h                              8,                            E                          =                           ~                                  =                           '
                                                                                                                                                                                                                                                , 4 ,1 h . . . *. I                                   .I [
                   '..                +

eM g ). s. . . r- -  %.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             +
                     .a L.A SALLE . UNIT 1                                                                                                                                            .3/4 1-21
                                                                                                                                                                                                                                    .                                                                                                                                                                                                                                                                         i
t. - =

s 3 (. - '

                                                                                                                                                                                                                                        ;1
                                                                                  .t t'
                                                                                                                                                                                                                   ~ .I
  • f y

E ., I 85 i l t . 8>- a I-

            ,-                                                                                                                                                                                                                        l
                                                                                                       &                                                                                                                              j l         /
                       .                                                                    I
                                                                                                                              .                           I.

e

o. . . . , ..

e< = , . y* l; e - az n - E i g* - i . w- - t i . .e. 5* - f o, j' u-

                                                                                                                                                                                                                                  ~   '

c- ~= . a' j . .

                                                                                                                                                                      - a                                                  m   .

t NC e 1 g y n a= i-g Ep g. E .

            -                                                                                                                                                             -,                                               M
                                                                                                                                                                      -                                     w . a.d
         . .. -          .R.                                                                                                                        ,,,                3-a
                                                                                                                                                                                                          =#

e u.a e 6

                                                    .                                                                                                                                                        < C            s
                                                                                            -                                                                         Jd                                     b &
        . ..                                                        .                                                                           .                         =                                                .Cl           -
                                                                                                                                                        .                 .                                 _g       W     u.

3 e >= 4 0 t' *

  • ad
                                                                                                                                                                                                              .      u
  • 2 C N C U U I. ~; Q
                                                                                                                                   .                                   =                                    a. .g -
i. a2 I  !

t i

                                                                                                                            ' . $ E.

a$

           .,                                                                                                                   .y.

a

                                                                                                                                                                                                                                      =

1, Io 2w i

             ,                                                                                                   /, .

w

                                                                                                                                                    ~
         '}                                                                                                         >

l-

                                                                                                                    =s d.

1' 4 t I d8 g l

= = =. >

j . 1 veoism as m:wverumasmos moumes  ; I l 1

            ! LG s           us LA SALLE - Uf!!T 1                                      3/* 1-22 i

r 'N ag e ma,e , as aism a

  • man 4- e =

wmw G

i i

                ~

9 , [ ;['I; ' h 3/4.8 ELECTRICAL POWER S'/STDjS, . 3/4.8.1 A.C. SOURCE 3 A.C. SOURCES - OPERATING L -l LIMITIN3 CofCITION FOR OPERATION 3.8.L1 As a minimum, the following A.C. electrical power sources.shall be CPERA8LE: ~ I

a. Two physically independent' circuits b3 tween the offsite transmission network and the onsita Class 1E .tistrisution systes, and
b. Separate and independent' diesel generators 0, u, 2A and 18 with:

f L For diesel generator 0, IA and 2A: [ a) A scparate day fuel tank containing a ain'aum of 250 gallons of fuel. , b) . A separata fuel storage systas containing a minimum of b 31,000 gallons of fuel. I 2. For diesel generator 18, a separate fuel storage tank / day tank l ! containing a sinimum of 29,750 gt11ons of fuel.  !

 ;e                                   3. A separate fuel transfer pump.
     .                   APPLICA8ILIT'I: ' OPERATIONAL CONDITIONS 1, 2, and 3.                    .

j ACTION:

a. With either one offsite circuit or diesel generator 0 or IA of the
l. above required A.C. electrical power' sources . inoperable, demonstrate -

l the OPERA 81LITY of the remaining A.C.. sources by .perfoming Surveil-i j L.' lance Requirements 4.8.L1.la within 1 hour, and 4.8.L1.2a.4, i! for one diesel generator at a time, lwithin eight hours, and at. least L once per 8 hours thereafter; restore at least two offsite circuits and diese'd generators 0 and 1A to 08ERABLE statu within 72 hours or L o be in at least HOT SHUTDOWh within the next 12 hurs and in COLD SHUTDOWN within the following 24 hours. , V b.. With one offsite circuit and diesel generator 0 or IA of the above required A.C. electrical power scuress inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance [' Requirements 4.8.1.Lla within 1 hcur, and 4.8.1.L2a.4, for one 1  : [ ! diesel generator at a time, within six hours, and it least once per ' 8 hours thereafter; restore at leant one of the inoperable A.C. E sources to OPERA 8LE status within 32 hours or be in at least NOT SHUTDOWN within the next 12 hours and in. COLD SHUTDOWf within the L

  • following 24 hours. Aestore at least two offsite circuits and diesel generators 0 and 1A to OPERABLE status witnin 72 hours fres
l. the time of initial loss or be in at least H&T SHUTDOWN within the next 12 hours and in COLD SHUTDOW within the following 24 hours.

LA SALLE - UNIT 1 3/4 8-1 Amendment No. 18 _ .____....________... . . . _ _ _ . . . ~.L. .

/

JLECTRICALPOWERSYSTEMS

                                                                                                         ~

LIMITING CONDITION FOR OPErtATION (Continued) , ACTION (Continued)

c. With both of the above required offsite circuits inoperable, demon-strate the OPERA 8ILITY of the remaining A.C. sources by performing  !

Surveillance itequirement 4.8.LL2a.4, for one diesel generator at a . ties, within eight hours, and at least once per 8 hours thereafter, unless the diesel generators are already operating; restore at Ioast 3 one of the inoperable offsite circuits to OPERA 8LE status within - 24 hours or be in at least HOT SHUTDOWN within the next 12 hours. With only one of'fsite circuit restored to OPERA 8LE status, restore at least two offsite circuits to OPERABLE status within 72 hours l from time of initial loss or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.  ;

d. With diesel generators 0 and 1A of the above required A.C. electrical  !

power sources inoperable, demonstrate the OPERABILITY of the remain-ing A.C. sources by performing Surveillance Requirements 4.8.LLla within 1 hour and 4.8.LL 2a.4, for one diesel generator at a time, within four hours and at least once per 8 hours thereafter; restore at least one of the. inoperable diesel generators C and 1A to OPERA 8LE statur within 2 hours or he in at least H0T SHUTDOWN within the next 12 hours and in COLD. SHUTDOWN within the following 24 hours. Restore both diesel generators 0 and 1A to OPERA 8LE status within [ 72 hours from ties of initial loss or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours. i j

e. Wittr diesel generator 18 of the above required A.C. electrical power 1 sources inoperable, demonstrate the OPERABILITY..of the remaining A.C. sources by performing Surveillance Requirements 4.8.LLla /
                                                                                    ~

within 1 hour, and 4.8.LL2a.4, for one. diesel generator at a time,.within six hours, and at least once per 8 hours thereafter; restore the inoperable diesel generator 18 to OPERA 8LE status within 72 hours or declare the HPCS system inoperable and take the ACTION required by Specification 3.5.L

f. With diesel generator 24 of the above required A.C. electrical power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.LLla and 4.8.LL2.a4, for diesel generator 1A, within one hour, and at least once.per 8 hours thereafter; restore the inoperable diesel generator 2A to 0PERA8LE status 'within 72 hour' or declare standby gas treatment system subsystes 8 Unit 2 drywell and suppression chamber hydrogen recombiner system, and control room and auxiliary, electric equipment room emergency filtration system train 8 inoperable and take the ACTION required by Specifications 3. 6. 5. 3, 3. 6. 6. L ,

and 3.7.2; continued performance of Surveillance Requirements 4.8.LLla. and 4.8.LL2a.4 for diesel generator 1A is not required

     -                       provided the above systems are dolcared inoperable and the ACTION of their respective specifications is takan.

LA SALLE - UNIT 1 3/4 8-2 Amendeent No. 18 eense. -

7 ..

                    ~

l l ELECTRICAL POWER SYSTEMS I SURVEILLANCE REQUIREMENTS I 4 4.8.1.1.1 Each of the above required independent circuits between the offsite transmission network and the onsite class 1E distribution system shall be:

a. Determined OPERABLE at least once per 7 days by veHfying correct breaker alignments and indicated power availability, and
h. Demonstrated OPERA 8LE at least once par 18 months duHng shutdown by j i
  • manually transferHng unit power supply from the nomal circuit to
      ;                              the alternate circuit.

4.8.1.1.7 Each of the above required diesel generators shall be demonstrated OPERABLE:

a. In accordance with the frequency specified in Table 4.8.1.1.2-1 on a STAGGERED TEST BASIS by:

L VeHfying the fuel level in the day fuel tank.  ; Z. Verifying the fuel level in the fuel storage tank. l

3. Verifying the fuel transfer pump starts and transfers fuel from the storage system to the day fust tank.
4. Verifying the diesel starts from ambient condition and accelerates l to 900 rps + 55, -21 in less than or equal to 13 seconds." The l generator voltage and frequency shall be 4160 2 150 volts and  ! l 64 4- 3.0, -LZ Hz within 13 seconds" after the start signal. i
        .                                                                                                                          i i.. -                         5. VeHfying. the diesel generator is synchronized, loaded to greater                  I than or equal to 2500 km within 60' seconds,* and operatas with             l

( this load for at least 60 minutes. l

6. Verifying the diesel generator is aligned to provide standby power to the associated emergency busses.
7. Verifying the pressure in all diesel generator air start receive's -

to be greater than or equal to 200 psig. l

b. At least onca per 31 days and after each operation of the diesel where the period of operation was greater than or equal to 1 hour by checking for and removing accumulated water from the day fuel tanks.
c. At least once per 91 days and from new fuel oil prior to addition to l the storage tanks by verifying that a sample obtained in accordance .

j with ASTM-0270-1975 has a water and sediment content of less than or J i

                                      . equal to 0.05 volume percent and a kinematic viscosity 9 40*C of
         '                             greater than or equal to 1.9 but less than or equal to 4.1 when         -

tasted in accordance with ASTM-0975-77,. and an impuM ty level of i less than 2 ag. of insolubles per 100 al. when tasted in accordance j [ with ASTM-02274-70. n "These diesel generator starts from ambient conditions shall be performed at i least once per 184 days in these surveillance tests. All other engine starts for the purpose of this surveillance tasting shall be preceded by an engine prelube perf od and/or other wamup procedures recessended by the manufacturer so that mechanical stress and wear on the diesel engine is'ainimized. . LA SALLE - UNIT 1 3/4 8-3 I Amendment No.16 I g i - - ~ --

 ,           ELECTRICAL POWER SYSTEMS SURVEILLANCE REQUIREMENTS (Continued)
d. At least once per 18 months
  • during shutdown by: l
1. Subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for this class of standby service.
2. Verifying the diesel generator capability to reject a load of greater than or equal to 1190 kw for diesel generator 0, greater than or equal to 638 kw for diesel generators lA and 2A, and greater than or equal to 2381 kw for diesel generator 18 while maintaining engine speed less than or equal to 75% of the difference between nominal speed and the overspeed trip setpoint or 15% above nominal, whichever is less.
3. Verifying the diesel generator capability to reject a load of 2600 kw without tripping. The generator voltage shall not exceed 5000 volts during and following the load rejection.
4. Simulating a loss of offsite power by itself, and: .

a) For Divisions 1 and 2 and for Unit 2 Division 2:

1) Verifying de-energization of the emergency busses and load shedding from the emergency busses.
2) Verifying the diesel generator starts on the auto-start signal, energizes the emergency busses with permanently
    -                                     connected loads within 13 seconds, energizes the auto-                              .

I connected loads and operates for greater than or equal

  • to 5 minutes while its generator is so loaded. After energization, the steady state voltage and frequency of the emergency busses shall be maintained at 41C0 m 150 volts and 6011.2 Hz during this test.
                ,              b)    For Division 3:                       -
1) Verifying de-energization of.the emergency bus.
2) Verifying the diesel generator starts on the auto-start -

signal, energizes the emergency bus with its loads with-in 13 seconds and operates for greater than or equal to 5 miinutes while its generator is so loaded. Afto energization, the steedy state voltage and frequency of the emergency bus shall be maintained at 4160 2 150 volts and 60 t 1.2 Hz during this test.

5. Verifying that on an ECCS actuation test signal, without loss of offsite power, diesel generators 0, IA and 1E start on the
           -                   auto-start signal and operate on standby for greater than or equal to 5 minutes. The generator voltage and frequency shall be 4160 + 416, -150 volts and 60 + 3. 0, -1. 2 Hz within 13 seconds after the auto-start signal; the steady state generator voltage and frequency shall be maintained within these limits during this test.

l "The specified 18 month interval may be waived for Cycle 1 provided the

   /           surveillance is performed during Refuel 1.

(. . LASALLE-UNIT 1 3/4 8-4 Amendment No. 24

                                                                 - - " - -      _ . _ ______m_   _ _ _ _ _ _ _ _ _ _ _     _m
                                                                                                 ~.

q l

                                                                                                                               )
                                                                                                                               }

r ELECTRICAL POWER SYSTEM _S l 4 SURVEILLO CE REQUIREMENTS (Continued) I l  !

6. $1mulating'a loss of offsite power in conjunction with an ECCS actuation test signal, and:

a) For Divis?ons 1 and 2: , t

1) Veritting de-energization of the emergency busses and ~

load ahedding from the emergency busses.

2) Verifying the diesel generator starts on the auto-start j 4
 -                                                signal, energizes the emergency busses with permanently connected loads within 13 seconds, energizes the                             i' auto-cennected emergency loads through the load                              1 sequencar and operates for greater than or equal to 5 minut's while its generator is loaded with the emergeniy loads. After energization, the steady state voitage and frequency of the emergency busses shall be maintained at 4160 2 416 volts and 60 21.2 Hz                      !

during this test. , For Division 3: b) 1

1) Verifying de energization of the emergency bus. /
2) Verifying the diesel generator starts on the auto-start ) '

signal, eneerlizes the emergency bus with its loads within 13 seconds and operates for greater than or ~ f. equal to 5 minutes while its generator is loaded with { the emergency loads. After energization, the steady q F state voltage and frequency of the emergency bus ) shall be maintained at 4160 2 416 volts and 60 2 L2 Hz j i during this test.

7. Verifying that all diesel generator 0, lA and 18 automatic trips l '

except the following are automatically bypassed on an ECCS actuation signal:

                                                                                       ~

j a) For Divisions 1 and 2 - engi.ne overspeed, generator differential current, and emergency manus 1 stop. b) For Division 3 - engine overspeed, generator differential . or ewercurrent, and emergency manual stop.

8. Verifying the diesel generator operates for at least 24 hours. l During the first 2 hours of this test, the diesel generator shall be loaded to greater tfx or equal to 2960 kw and during the remaining 22 hours of this test, the diesel generator shall be loaded to 2660 h. The generator voltage and frequency shall be 4160 + 420, -150 volts and 60 + 3.,0, -1.2 Hz within 13 seconds
                                 .after the start signal; the steady state generator voltage and frequency shall be maintained within these limits during this test. Within 5 minutes after completing this 24 hour test, perform Surveillance Requirement 4.8.1.1.2.d.4.a).2) and b).2).*

LA SALLE - UNIT 1 3/4 8-5 Amendment No.18

                                                    ,                                                                              1
                                                                                                              .                    i ELECTRICAL POWER SYSTEMS SURVEILLANCE REQUIREMENTS (Continued)
                                                                                                                        ~

I

9. Verifying that the auto-connected loads to each diesel generator do not exceed the 2000 hour rating of 2860 kW.

I

10. Verifying the diesel generator's capability to:

a) Synchronize with the offsite power source while the generator is loaded with its emergency loads upon a simulated

    '                                           restoration of offsite power,                                         .

b) Transfer its loads to 'the offsite power source, and c) Se restored to its standby status. j ' 11. Verifying that with diesel generator 0,1A and 18 operating in a test mode and connected to its bus: a) For Divisions 1 and 2, that a simulated ECCS actuation signal overrides the test mode by returning the diesel generator to standby operation. b) For Division 3, that a simulated trip of the diesel generator overcurrent relay trips the SAT feed breaker to bus 143 and that the diesel generator continues to supply normal bus loads. I

12. Verifying that ther automatic load sequence timer is OPERA 8LE with the intarval between each load block within i 10% of its

[ design interval for diesel generators 0 and 1A,

13. tarifying that the following diesel generator lockout features l

prevent diesel generator operation only when required: a) Generator underfrequency. b) Low lube oil pressure. . c) High jacket cooling temperature d) Generator reversp power. e) Generator overcurrent. f) Generator loss of field. g) Engine cranking lockout. 1 "If Surveillance Requirement 4.8.1.1.2.d.4a)2) and/or b)2) are not satisfactorily Instead, completed, it is cet necessary to repeat the preceding 24 hour test. the diesel generator may be operated at 2600 kW for 1 hour or ,until operating .l temperature has stabilized. . (" N. 3/4 8-6 Amendment No. 18

              .         LA SALLE - UNIT 1

E1ECTRICAL POWER SYSTEMS

              . . . .       SURVEILLANCE RE0VIREMENTS (Continued)                                                             __
e. At least once per 10 years or after any modifications whi could affect diesel generator. interdependence by starting diesel :gener-ators 0, lA and 1B simultaneously, during shutdown, and verifying that all three diesel generators accelerate to 900 rpm + 5 -2% in less than or equal to 13 seconds.
f. At least once per 10 years by:
1. Draining each fuel oil storage tank, removing the accumulated sediment and cleaning the tank using a sodium hypochlorite or equivalent solution, and
2. Performing a pressure test of those portions of the diesel fuel oil system designed to Section III, subsection ND, of the ASME Code in accordance with ASME Code Section 11, Article IWD-5000.

4.8.1.1.3 Reports - All diesel generator failures, valid or non-valid, shall be reported to the Commission pursuant to Specification 6.6.C within 30 days. l Reports of diesel generator failures shall include the information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977. If the number of failures in the last 100 valid tests, on a per nuclear unit basis, is greater than or equal to 7, the report shall be supplemented to f' include the additional information recommended in Regulatory Position c.3.b of Regulatory Guide 1.108, Revision 1, August 1977. T ABLE 4. 8.1.1. 2-1 DIESEL GENERATOR TEST SCHEDULE Number of Failures in Last 100 Valid Tests

  • Test Frequency
                                         <1                                       At least once per 31 days 2                                    At least once per 14 days 3                                    At least once per 7 days
                                         >4                                       At least once per 3 days
                                   " Criteria for determining number of failures and number of valid tests shall.be in accordance with Regulatory Position C.2.e of Regulatory Guide 1.108, Revision 1, August 1977, where the last 100 tests are determined on a per nuclear unit basis. With the I                                     exception of the semi-annual fast start, no starting time re-l                                     quirements are required to meet the valid test-requirements.of

(% Regulatory Guide 1.108. LA SALLE - UNIT 1 3/4 8-7 Amendmant No. 23

1 x e

. A CAUTION                                 e12w-2
                                                                                 ""** i*" '

cTHIS  : DOCUMENT / DRAWING IS

                                                                                         ,  , 26, igs6-1 IT SHALL NOT-BE USED FOR MAIN-TENANCE, OPERATION, DESIGN OR ASME/CLASSIFICATION TECH SPEC           RELATED ACTIVITIES-OF A NOBLE GAS RELEASE A. FURPOSE The purpose of this procedure is to aid.in the initial GSEP classification of a Noble gas release by the GSEP Station Director (or Acting Station Director). This procedure provides a manual means of evaluating a release in the event that normal release rate indication is not available.
8. REFERENCES
1. GSEP Environmental Director (ED) Emergency Plan Implementing Procedures (EPIP). l
2. Generating Stations Emergency Plan (GSEP).
3. LzP 1110-1, " Station Director (Acting Station Director) Implementing ;j Procedure".
4. AIR 01-84-161,
5. ,LCP 310-26, " Sampling the U-1/2 Vent Stack Effluents during U-1/2
  'I                     Station Vent Stack WRGM Sampling System Failure."
6. LCP-310-2"I, " Monitoring the U-1/2 station vent Stack and the U-1/2 Standby Gas Treatment using the Preplanned Alternate Method".  ;

PREREQUISITES . ,; C.

1. None. .

D. PRECAUTIONS

                                      -                                                                                j h                    1. None.

[- E. LIMITATIONS AND ACTIONS

1. The gaseous release from the plant is from two monitored pathways, the Station Vent Stack and the Standby Gas Treatment Vent Stack. If l
  • the Standby Gas Treatment system is in operation, ensure that the

} release rate responses of both the Standby Gas Treatment Vent Stack wide range gas monitor and the Station Vent Stack wide range gas monitor are'added together to determine the total gaseous effluent release rate from the plant. f i 3

                                                                                                          ~_

DOCUMENT ID 0006Z/0440A ._ o i

                                                                                                       -_--________-_2
                                                                                                                                        ^
       ,:'                                       i LEP-1200-2 Revision 3 7                                                                                                                          September 26, 1986 l~                                                                                                                         2 f

l

           .f-Nm During operation of'the Standby Gas Treataent System, the Control-
                         'Roon Operator must. visually scan the stack effluents and the standby' gas treatment effluents or reference the process computer.(Pt. EM C219) " Total:10CFR20 Gas" to determine the total. gaseous effluent release rate.
2. After classification of release, re-evaluate in'accordance with l

Ref erence - l'. . F. PROCEDURE

                                                                                                                                                                                         .l
1. Plant Gaseous. Effluent Releases: -]
                           -a.. Release rates are determined from the vent Stack Wide Range '

Noble Gas Effluent Activity monitor (OD18-R522) andf/or the SBGT Wide Rar.ge Noble Gas Effluent Activity Monitor (OD18-R520) located in the Control Room on panels OPM14J and OPM15J. respectively.

                                 .1)     If the plant-gaseous offluent release raee exceeds.1.3E7                                                                                      iO uct/sec for 30 minutes declare a SITE EMERGENCY.                                                                                            q
       't a)        iIf' the . release rate is : cycling at the 1.3E7 uC1/sec -

EAL Value, visually estimate the averace release rate over a 30 minute period. _ If the estimated average release rate exceeds 1.3E7 uC1/sec declare a SITE s EMERGENCY. J l

2) If the plant. gaseous effluent release ratefexceeds 1.3E8 uC1/sec for 2 minutes declare'a SITE EMERGENCY.  ;

a) If the release rate is cyclina at the'1.3E8 uci/sec EAL value, visually estimate the average release rate over a 2 minu:a perkd. If the estimated average

                                                     . release rate exceeds 1.3E8 uC1/sec declare a SITE EMERGENCY.
3) If for a'given mean wind speed in Elp.hi t the plant gaseous effluent release rate exceeds the uci/sec value, Q, obtained from the Gaseous Effluent Release Rate vs. Mean Wind Speed (mph) Chart (Attachment A), declare a GENERAL EMERGENCY.

D C 1 MENT ID 00062/0440A , _ _ _ _ - - - - - _ - _ _ _ - _ - _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -_m

ff t.zP-1200-2 , k Revision 3 September'26,.~1986 y' 3 E2IE Attachments B and c can be used as a quick reference to stack , monitor alarms and SBcT monitor alarms. I

                            'b.'     If the Stack Wide Range Nchle Gas.Etfluent Activity Monitor is-
                                     $aoperable, refer to' Reference 5 or 6 as an alternate method to   l determine the' release rate.
c. If the Standby Gas Treatment Vent Stack Wide Range Noble Gas '

Effluent Activity Monitor is inoperable,' refer to Reference 6 as J l an alternate method to determine the release' rate.

2. ' Implement.the action required-in accordance with Reference 3. I
                                                                                                                   .f
3. The Environs Director should re-evaluate the rel' ease in accordance j
                                                                              ~

with Reference 1. . These procedures should also be used if the other systens: fail. . u <,  : R' -4. Plant Gaseous Effluent Release bases. l

a. Site Emergency 30 minute release rate bases.  ;

E .1) Release duration 30 minutes.

2) Kalease rate >1.3E7 uci/sec.- i
3) Adverse meteorology.

_,*y

   ,        x                         Site Emergeng 2 minute release rate base's, i

_b. i

1) Release duration 2 minutes.
                                                                                                                  .i
2) Release rate. >1.3E8 uci/sec.
3) Adverse meteorology.
c. ' General Emergency release rate bases.
1) 9 = release rtte in uci/sec.
2) U = mean. wind speed in miles / hour.
3) o uci/sec > 4,$g7 U uph  ;

i ( . . l DOCUMENT ID 0006Z/0440A -_ bt i d 'L .

((:,a[' ' " ... ', a

             . i LIP-1200-2 Revision 3-
}...                                                                September 26, 1986 r, ' .

4 , G.- CHECKLISTS 1.- None.

h. TECHNICAL SPECIFICATICW REFERENCES 1.- Noce.-
        /

l i _ j ,' u.' kI i 1 DOCUMENT ID 0006Z/0440A  ! J

               ..a.                                                                       _i I
                                                                                                                                                     . r-
                                                                                              'y;                                                            '                                                                                                          G .i
                        >;e                                                                                                                                                                                                                                                                                                                                                                       e
                      ' J ; . .. .                                                            .
                                                                                                                   , t

_~V s.a i.; . ., 1.- #

               %l                     +                                                                                                                                                      ' lj:"(.            ,                                                                       +                                                                                                                       _. ,                             j
                             ,,l                                                                                                                                                                               *a
                                     ?
                                                                                                                  .                    -.                                                     ' i i       V 1.ZP-1200-2 . i J ,.                                                                               '
                                                                                                                                                                                                                                   \          ' ATT,gc3p ay A                                                                                                                                                  /
                                                                                           .             '.                                                                        f3    '

4 e Revision -3 fu - pggg qq= j.

                                                                                                                                                                                                                                                                                          **                                                                                                                                     'TJ
                               't                                                                             -_

h ,,, 7 d

                                                                                                   )-                                                                                                                                                                                                                           . . .                           . _:..._.                                                                         >
                                                                                                                                                                                                                                                        - . ._ ?======:             _=. .=. .=. _2,z             .             ;; 35 3 55;g m 2- G- ....
           .                                                                                                                                                                                  .r                ....._.._.._~._         _
c. . . . . _ - .
                                                                                                                                                                                                                                                                                                                                                                                                                             ,,,.J.

S.- .l l

                                                                                                                                                                                                                                                                                                                                                                                                                              .-            .\

C,.*, -

                                                                                                                                               =====

t ,, , o, g . f . 1 M 1

                                                                                                                                                                  &w         m -- u y

_ r _, i h g t ,,3,,n a s n: . i < . 6 n R i g' . t i o . p , e g ) , . .F.- ...t

                                                                                                                                                                                                                                          . . . u                   . . ,7                 . .                       ,                 . ..                                                                                                    )

a

                                    -                                                                                s,                  . . . ....                                 , , ,               .u.....                                                                                                      s.                      e i . .. . i                                                         . .e                         <

s.6 -g m.i .. . .t. e a i ,6 s,. ii i . i . .=:.

                                                                                                                                                                                                                                                                                                                                                                                                                  =.

4 . g

                                                                                                                                                                                                                                                                                                                . " ..                                       k sib
  • 4 ' - +"
                                                                                                                                                                                                                                                                                     =~&ln'                '
-i. ;i: . :

( .m=- 5:7,=g'h;-z_

i f r . ; . - - -f . 7 . . =g ,

e$ n  :.E- =F:~.;

                                                                                                                                                                                                                                                                                                                                                                                                     '                                         i qa t                                                            *iii.                                                                                                                                                                            . -          :: EE- 2 = ' ===5 EE-~iE                                             ======fEZn
l. ""

_ y.*;

                                     ,                                                                                                                                                                                                                                                                              . ,g,,-2= - -
s. 3  %***:'"* 3 u

W a . 2 _

                                                                                                   $.d:

a 55ND l [ [ . .

                                                                                                     =
a. .r- -
                                                                                                                                                                                           -m-                                   "
                                                                                                                                                                                   .M                                                                                                                                               -._,,,,_
                                        ,                                                              g                                                                                       _
                                        .                                   s-
                                                                                                  .g.                         -

__+ 4 - r.

                                                                               .                                                                                                                                   7..                                                                                                                                                                         ?+
g a =_
                                                                                                                                                                                                                          , -=
                                                                                "Q$.                                                              - - .-                                                                                         --

[g9 ., { , n is . . ,

                                        .                                        ,gg                                                                 ,

i,-

                                                                                                                                                                       . i %                      i . i..                       .
                                                                                                                                                                                                                                                                                                    ,                .... .                           .,4                 , , .                              . . , .
                                   -,                                            g y.g            3 :<                            ........#.u                                               .... .                                    .*                                                                             ,e,,,,1                          ,. .i ...                                    ,                  ,,i
                                                                                                                                              . , e.,: , 4,                         > .i....                                 ii.,",                 .1    ii,               .i,, ..
                                                                                                                                                                                                                                                                                                                                                                                                                      ;..x
                                    *0                                           Og5                                  g4                                                                                                                             ww-+                     =
                                                                                                                                                                                                                                                                                       %.                                                                        3,.            .

l j , . 5+o aIa

                                                                                                                      .,                                                                                                                        E == =r -iE _ _. . .^ 1, 2 --

hg,._.=-,-===.-i.=. A..-

                                                                                                                                                                                                                                                                                                                       = . - - :---
                                                                                                                                                                                                                                                                                                                                            ;. c . -
                                                                                                                                                                                                                                                                                                                                                     +Q- _. ;--
                                                                                                                                                                                                                                                                                                                                                               ..x
                                                                                                                                                                                                                                                                                                                                                                            -~ _w_ 4 .,p                     _
                                                                                                                                                                                                                                                                                                                                                                                                                      , ._ -r;:a=-

g

                                          ,                                            n5e                    .'s pg .

e _ =d _

                         .                                       t,                                                                                                                                                                     _ _ , , .
                                                                         ' f,, , g,                                                                                                                                                                                                                                                                                                                               -s
                                                                                                                        "                                                                                                                                                                                                                                              - - m,                                                             .

f

                    . t .;)3               .                                               gn                           --

j i 9.ses.._. ge.,

                                                                                                                                                                                                                                                                                                                                                                         .._a._..
                                                                                                                                                                                                                                                                                                                                                                                                                                     . :g.
                                                            .                                                                                                                                                                                                                        u~; . _ _-_ . _ _ :-_ _ . _ _ _                                                                                      __
                                                                                                                                                                                                              ,W a _

z - = - =====_=_:=- _ . _ _ - ==- _ := =:=:= ====g

                                                                                                                                    ~

3 d ~ ~-- h . 2

              . ,,n*

5-. .-m.,- i

                                                                                                                                                                                                                                                                                     -                       - ===~ ::. __m . __ a _ :
                                                                                                                                                                                                                   ~,,r-* p, l             ,               e ll                                                                                                                                                      n-g                        4
                                                                                                                            ~
                                                                                                                                                           -.5.,,         -_
                                                                                                                                                                                                                                - 2.                                                                         -
                                                                                                                                  -                                 -9.g..                                                                                                                                _

t,  :

                                     't                                                                                       __
                                                                                                                                              -.                      = =1                            .'*.'.".
                                                                                                                                                                                                          ,                                                                                                                                                                                                1,,

t ., .: _ _ --w , . . I. . ' 1 i

                                                                                                                                    =p.r4
                                                                                                                                                                       .        4                      ' '
                                                                                                                                                 , .******'*"j'""                                .

N', ,,, , , l , .

                                                                                                                                                                                                                                                                                                                                                                   .cr...,
                                                                                                                                                                 $                 I                        .                      . . ,                                           ,
                                                                                                                                             , . ,           C;,,,                . . "!N   ..              ., ,                   ... . .                       .
                                                                                                                                                                                                                                                                                                               .,,,i                   .     .,i..i_,,,i,                . . _

e i,6 .... i. .... . , , ,,, 6 , i .4 4, i ..,..., ...,...., ,ii....

                                                                                                                                                             .         >>         .t .iiiii. .. ..ii....
                                                                                                                                        "ut.                     --

20 25 30 35 40 65 50 I ' . i 1 '

                                                                                                                                                               .;t :10                                  5                      to                15
  • i, '
                                                                                                                                                                                                                                                                 ..U =_,MEAN WIND $ PEED IN MPH                                                                           -. ..                                                                   \

1

                                                      '
  • O W8 N ' 1 e Op= . sa ,p
                                                                                                                                                                        .,                                                                                                                                                                                                         .                 we .mq -
      .. -                                       i-.-                     . . . . . . .. .                                            .

_____,________________________,,..,.___._,_____.._,____________________J

l e

  • m e  : -: ..  ;
                                    ~                                                                                                                   --=.                           __ _                                                                                              -
                                                                                                                                                                                                                                                                                   '.. .                l
       ;                            e                                                                                                                                                                                                                                                 n ..

Nm"u o a - ~: _. i .R.

                              .m5  Ag .                                                                                                                                                                                                                                               ....~

i Lyg m U u. .me l 1 _f!!=

                                                                                                                                                                                                                                ..            m 3                                                                                          - c:                                          ,                                                                                    .

i

  • 7
      'i.

I i

                                                                                                = =:s w@                    -
                                                                                                                    .= =

l g

                                                              =z === = 1                                    A
                                                                                            .                  o                      .

eb .

                                                                                          =_.-
                                                                                                                                                                                                                                                                                             *t*.
                                                                                                                                                                                                                                                                                         <=
  • j '_ -- m x M dj
                                               ---             =n . .C4                        -
                                                                                                       -<[ ~ .               g'.,                -e               ._                                                        --
                                                                                                                                                                                                                                                                                       -S*.t-
                                 .     ,                                                                                     -w
                                                                      -: .s-i g :._.__                                     .

g . g a c _ g .

                                                                                                                                                                                                                                                                                  --!    ' T
                                                                                                                                         ~    ~*~         -

1'~ -

                                                        - --.a.
                                                                                         .-~2                                           " 8.e b - _ .                                                                                                                                              _
                    ;                            = dd--- < j -g"*I    -

m

                                                                                                   ,w -.*.s _

_ g g=- ,

                  .                                                                                                                        %?.                          .

s' i i . -

                                                                                                                                                                                                                                            ..-        i
l. t"
                                                                                                                                            -p5-c             .4 b
                                                                =l d                        '~.       .l           i,          ,,
              .,. I                                        ..

i 5i {, 't J

                                                                                                                         ......,.                    s           . . . . . . .. .                                                                            .......                                 ,

11 ...... . < e o [ e....., O C W-C. m O m m

W
  • o e s / t o n NI E S Y E *l E ni 'A O Y1 S
                   ;l                                                                                                        .

lI , - .

                                                                                                                                                                                                                                                                                               . ~~"]*
                      - - ~                          ~- - - -- -. .                              . . . . . . .
                                                                                                 .                                 ... .                                             - ~-                                                                                      .--.......~__
                                                                                                                                                                                         ~ - ~ - - - ~ - - - - - - - , _ _ _ _ _ ____ _

i

t. j
 .-                                                                                                                                                                                                                                                                i, ;      .

i I. 1 E

                                                                                                                                                 ~ ~ '
                                                                                                                                                          ~= .h~          ---                                                                           u.?
f. ..E,C' '

7" zi H .!. -l. s Ltis - ' daar -e m.m

                                                                                          =                                 __. c .
                                                                                                                                                                          ==>
                                                                                                                                                                                                                                                                                           \ '

4gg

                                                                                                                                    .m n                    .

y

  • W .

qk,1

                                                                                                                       . i!F_ts Al w

z --

t. -  :-- - -- ._ - __-
                   . E.         -

y .- i _v _ .--

g. __ . .

w

                                                                                                                                                                                                                                                                                           \

i C . a d' . - l ,_, .

                                                                                                                                                                              ^

e

                                                                                                                            ~=ar.350 l                                     +

2 ' s. ._ Zii-

                                                                                                                              . .au.-    -
                                                                                ..               w                       -

6:z g_ _ .

                                                                                                                  --- S Z '                                                       _
                                                                                                                                   . -. :n                                                                                                                                                i
                                                                  - .. ..                   r Q.          .

t Y *>ae - j , C U C C o W W W m w . (: k- ' oes/ ton NI 3 s V 313 H . S .I. D S -- q ee .*9

                                                                 '6 4

CAUTION '3'-'200-5 R2 vision 2 a:nuary 27, 1987

            .               'THIS DOCUMENT / DRAWING 'IS FOR                                .

ADMINISTRATIVE REFERENCE ONLY, 1 7' iT SHALL NOT BE USED F03 MAIN-TENANCE, OPERATION, DESIGN OR ASME/ TECH' SPEC RELATED ACTIVITIES GSEP GUIDELINES Pun RECOMMENDED OFFSITE PROTECTIVE ACTIONS A. PURPOSE The purpose'of this procedure is to outline the guidelines for recommending offsite protective actions. B. REFERENCES

                  . l '. Generating' Stations tanergency Plan (GSEP) Sect. 6.3.
2. AIR 01- 83 32106. US.NRC Inspection Report 373/83-21
3. AIR 01-81-317, US NRC Inspecticn Report 50-373/81- 14 and 50-374/

81-09.  ;

4. AIR 373-100-86-0205. U.S. NRC Inspection Report 50-373/86002.

C. PREREQUISITES

1. None. ,

[ , D. PRECAUTIONS

1. None.

LIMITATION!? AND ACTIONS E.

1. State and local governments have the responsibility to coordinate actions taken to protect the public during' emergency situations.

l i F. PROCEDURE

1. Only the Station Director or Acting Station Director can make.a determination as to what recommended offsite protective actions are j made to offsite agencies. The transmission of the recommende (

actions to the offsite agenciet can be delegated. j l H9Tl Recommending protective actions to offsite agencies cannot be delegated to any individual other then the Acting Station Director l (Reference 3). 1

                    '2.    " Attachment A- is to be used when making recoasnended protective                             )

actions for a General Emergency.  !

                                                                                                                         )

l 1 l DOCUMENT ID 00092/0440A i ______ __ __ _ o

              - =__ . . _ - _ _ _        _       ___     __    _   __   __        _ _ _ ___
         "m                          '
             --..,                           .t
                                                                                                  - LZP-1200-5;
     <J
                                                                                                   'R vision 2
             +

Jr.nu ry 27,;1987 2

r n.
                          -3.          " Attachment'B" is to be used when making recommended ~ protective actions for Gasecus' Release when dose projections are available.
4. - " Attachment C" is,to be;used when making recommended protective actionsifor protection against ingestion of contamination for the
                                    -offsite public.
5. " Attachment-D";is to be used as a~ summary of possible offsite protective actions to be recommended or implemented during an emergency.-
6. The evacuation time.e'stimates provided in " Attachment E" should be considered when making. recommended protective actions *. Evacuation time estimates are provided for normal'and. adverse = weather conditions, f 'G. CHECKLISTS' 4

1.. None. . i

                    -H.- TECHNICAL SPECIFICATION REFERENCES
1. None.

4 i-1 a 1 i

                                                                                                                           )

i (

       '\..

DOCUMENT ID 0009Z/0440A j

)..

c
      ='

FIGURE 6.3:1 . . RECOMMENDED PROTECTIVE ACTIONS - GENERAL EMERGENCY

                                                                                                                                  -                                                                            LIP-1200-5
                                                                                                                                '*au =*

Revistan 2 l January 27, 1987

                                                                                                                                   . .. .                                                                      2 3                                                                                                              .. - . ~

_ l?h

                                                                   ""l:'"'     -
  • A.- . .

gn

                                                                                                                                       ~.                                                                                                              .
                                                                                                                                                                            '                                         e
                                                                 ,.          4.                  ,
                                                                                                                                                                                       .                         .:.r.
                                                                                                                                                                                                              ...r
                                                                                                    .                                                                                     "            .          1:
m. #.. qa 2.n *
                                                                                    - *         ::=':                                                                                    1 ,,
                                                                                                         .T                                                                           ...                                <

o T.'.,2.""

                                                                                            - ':1. ../
                                                                                                        ~                                                                                ,.
                                                        .r:'

m dy.: *. " , . ,, n .. .\ J

                                                                                                                                                          -                   r.,:             ~-                    ;-                                   i P,-                                            ,

a. uv ,,,,, ,

                                                                                 '                                                                                                                                    u
                                                                                                                                       .. .                               ...n                             , *= c
                                                                                                                                                                                                                 .e                                        4
                                                                                                                                                                                                                  \

il

                                                                 =                                        =
                                                                                                                                                                                         ,,                               .                               l)
                                                         , = = =

do,, ... J i l,

                           '.S 7, $."'
                                                                                                                                        . . .I.=.

W 78, *e.*.7 m

                       '8"                                  mee s
                                                                                                                                                                                                                     . . .e       ,,
4. .
                                                                 .qg i>

f epga Mm.a . H .5 a.II.se n. . D. M magr?.sseE cf aep.p ts e"A m.mege.e.4 g .07 m..e ir M@ .0. .M . . . M N .0N . . .

                                                  .       (8 H s                         W . .mW g d          an.1
                                                 .Q         .14 . g .4 t .g 33 gav N.g.e g3 s                4.We6 38 4.m.s'.W...
p. E. Cl.m g 1g
                                                                                                                                                          'f L                                                               d i

(38 A 9. M.M.gM 1 5.R.N e.Che.gte. meins:.. >a . == s a e sue me ei. l

  • I Nott fut5 FLomonadlf is DEllGNto 70 Ae fut USEn MA AN mCREAsmG stvEnft CON 0m0N FeA A DEcaEA5mc stysmfy CONolfee. PAAftCULAnti A C0ectica THAT Couta LEA 0 TO A 00WNGAACHIG OF THE CLA551ACAfl0N ANO SUSSEQUENT REDUCfl0N m ING MCOMMENDE0 MIOTICfivt ACTIONS. Cort 3ULTAfiON wift.

APUE10MilAff GOVERNMENTAL 0.FHCIALS tlllECOMut40W NF04E IIEPonfmG 04 IIAAS 00 407 CON 5uti ON NARS. Ulf AN Alit #4Affy CCMMUNIC Sv5ftM aEA0 G5tp SECf10NS ANO 6 F0ll A5515fANCI N0ft.: tvaCUAT11pl seeElf isoft0.15 V*tt RECOsM8(N0(0 Pa0ftCfivt ACfl0N ONtv WHE88 WEAIMER CON 0lfl0N$ PtRMit A40 AN tvACUAfiost fiME ANAlf515 CUB senMS ff A5 ft4E PREF IF ZONAL ANEAS T fenE0 ANO 2 AmtCHOICE. IN imSCON5m OTHENWISt 0A IOWA THEN IME SHfLT[mMG l$ INE RECOMMENOAIlON FORM10ftCTIVE ACTION EVACUAflDN SHOULO EEftNO 010 n,Ya(COMMEND. 70 TH( AassGE A! IF EVACUAfl0N 15 AECOMMEN.J T ANO aniCM fist el. 4s0.OJECffD 005E 15 i HEM wt OR $ flE p. CUT *O 5 estIS if THE " AANGt" 10 Duf 10 to15 Metts laaf If2015 mset LONE T.2 A.M INVH010 wusCH(vtR 15 TH( GatAff A AANGt. 5HILIERIN f w h i

GSEP Tabb 6,31 Recommended Protective Actions For Actual or Imminent 7 Gaseous Release Conditions LIP-1200-5

  ,-                                                                                                        accommenced peor Accoa, Revision 2 January 27, 1987     .

Protected Doses (Re* ($ Shelter. E Evacuation. 4 l in Zona Areas X, Y & 2. 88 j wnee 8cov Thyrned '#'n '10 m'o ong) acte . ' '. 5S0 NAR$ Form Acceent 1 y 2 Sectens 9 X Y' =2 X Y 2 Class *caten. I 0. I119 A 1 Unusual Event It) Ouse Protecten work is not insnoo: C.R L is < 200 R/hr Change acceent class to (2) 121 Not fasned and C AL is > 200 R/hr acert: see 0*ow

                                                                               < 2.5 Anywhere in to nie tone               10                        (3) 9 A
                                         #31 < 0.5 Any               Any 3 2.5 Anywhere                  Change accident class .c              (4) ta) > 0.5 Any               Any mart: (Sec. 2 (4))

a5 Anywnere Change accusent class to 15

15) >1 Any Any site emergency. (Sec 31611 -
60. 1119 A 2 Alert t1) Not Fasneo and
  • j C R L e < 200 R/hr Not Fasnec and (P) P) P) I2)98
  • 12)

C.RL rs 200 400 R/hr i Change acceent class to (3) - (3) Not Fasned and , site emergency. (Sec. 3 till C R L rs > 400 R/hr ' Any Any <5 Anywnere (P) P) PI HI 9 8 tan < 1 , Change accioent cians to i5t -

15) >1 Any Any 35 Anywnere sde emergency. (Sec 3 e6 I
                                                                                                                                                                                           --F (P)        P)       P)                 op 9 8 3 Sde                    (1)          hot Fasneo and                                                                                                                       }

Emergency C R.L is < 400 R/hr I Not Fasned arid ($) P) M (219 C & 0 (2) k C.R L is 400 2000 R/hr (3) Not Fashed and ($) ' P) P) (3) 9 C & D , C.R.L is > 2000 R/hr ano contamment int,egrity emsts (4) 7.or Fasned and Ctiange acocent class to (u) - general emergency, go C R L e > 2000 R/ht and contanment etegrdy is lost or loss is enmment enmeateiy to Fig. 6.31-(5) < 1 Any Any <5 Anywhere (P) P) P) (t t.8  ;

                                                            <t        Any         35       <5       Any            (E*)* $*)           P) ,l             (5) 9 C. M. & F
46) > t
                                                                        <1.0      >5       >5       <$                      E*)        5)                (T) 9 C. M. J. & G (7) > 1         31                                               , (t')                  ,

(8) > 5 Any Any > 25 Any Any Change acccent class to (On - general emergency (Sec. 4 (51) 1 11

4. Genera (1) Go to Fig. 6 31 Immediatay before attamotmg to Emergency mame cose orwecnons (Steos (2) througti (6) snould be used only in coniuncton witn F1. 6.31)
                                                                                 ) 5 < 5 Any                        (E*)        Si        P)              (2) 9 C. H & F (2) > 1       <1       Any (E')        E*)       Si              n) 9 C. M. L & G (3) > t at             <1           3 5 3 5 <5
                                                                                 > $ > E 35                         (E*)        E*)'      E*)             (4) 9 C. M.1 & K Hi > t        >1 >1 (E*)       (E*)       E*)             (5) 9 C. t & K (5) > $ 31 <1                      3 25 3 5 <5 (6) 9 C & new code (6735 35 31                        3 25 3 25 35                       (E*)       IE*)       (E*)

neeced for 010 mdes evacuation Foot Notes: The symbol "( I" reoresents the entire rassus of as sectors of the oesgnmed aonal area. wnere a sagte ")" represents the three

  • oewnwmd sectors erly of the otsagnated aonal asa Example. (5) S) P). The tonowmg recommeridaten rs (S)- snetter 0-2 mde ramus.
                                    $1 snuter 2 5 nia three downwand sectors. P) Prepare for possible wuen 510 mde mree downwmd sectors.

C.R.L - Contamment ramaten ievel (R/ht) l l R - Range (Mdes) I 58 - Sde Boundary  ! Any - Any cose ir:rrspectrre of cuantary

  • Evacuaten wnen noted is the recommence 0 protective acton onry when weather conditons permit and an evacuaten time analysis conhrms it l as me :reserred choce. einerwse sheitermg ts tne protective acten to recommend if evacumen is m .. , a lor ronal areas y ano Z and l- ** it Zons areas Y and Z are a wisconsm or towa. men me recommenomen for evacumma snoulo euend oniy to ine range at wncn ine orar!ctea i

case is t mem w8 or 5 Rem myroid. wnicnever es me greater range. Shettering is toe trotective acteri trom mis range out to 5 rmses 4 me l

                            " range * .s m Ione y and out to 10 mdes ilit is e 7one Z.
          *           **    Progettet poses are maos for ac1ue er imminent reesse conddens and should De Dased on a 6 hour def ault pered il fne release ternnaten time s unenrmm (Use 4 two 12) pour default period lot winds mio lowa or Waconse l Propected dose rates are atso based on the most hkeiy reigase pumt and Itie esrstmg sde meteorciog<a1 concilmas J

the aones X ' ano 2 are 1 w sde Douficary out to 2 mises (fiot *Cludmg 2 Imiel V w 2 mots put to 5 meses (not mctuomo 5 mee) Z w 5 rues out to 10 mues (mciuomg to indest lr 1  : e'

l i r

                                                                            .4
                                                                                                                                                                                              .I       ,

n AD .e

                          -                                                                                                                                                                                                                                                                              j
                              *                    'w.e  .

I i'

 ' e                                                   .
'I                        L.            eNW N

sgw. ' eO 5

                                                   >,                                                                                                                                                                                                                                              3
                            =           N =d          w.                                                                                                                                                                                              e                                              1
                         ,c             ** me                                                                                                                                                                                                         &                   e                         }

b 1' > =3 &cg Im 4W .s$ne ~f 1 II- N*e

                                        =J E 2 m c

3

                                                                                                                 , uc o==.5e             6.

e T

                                                                                                                                                                                                                                                      *                                          '4 y

1 E en C &, ae E e W == .T. 1

                           -                                                                          ==

E >==m.=* gm 3 l g-C e m d- e v e r e- u e E w e e I.m al e a a e g- g.ifa w ms sssssn n d a uo g .g ee o g .e m e

                                                      .3.wSSy      y el.se==.mu====    *                                   .        e E he                                                ee                         e k                          ha
                                                                                                       .f ew 4         .
                                                                                                                                    .    #                                        02                        C                     k       T W           C C

C v 3Ee S p gy sw g ed - - 4- w tw ' 2 - the O W M == 0 == g g =e ., M == 5 n. m GI * * * * * = g y Tl v on U E. h an e h. 3 e ==

                                                                                                                                                                                                                .. c                                   E
l c awl C C ** C M = cl C ad e t .e, 3 O m u u es *. Ea ;ll; C

c C '* .a b V >* =J. a m *=== == - e n. 4

  • W *e c @

6 cy = $ ,yg . .e. g. *= -C-. *. o. T 5 o .. ed$

                                                           ====

3 p m

                                              ' == l l

[ e m. g g g

  • s U

a0 es-

                                                                                                                                                                  =*                     -

5*W

                                                                                                                                                                                               --            o ==

i . e C .aE a. m ee.- u .d ., .e e e . i d Wi el.

                                                            >                                         .og *W=              .,. g,, *M=

g ,,g, M C .e == 5 .weme e C me 5 .s e= h. * = .

                                                                                                                                                                                                                                                                                                   )

o- =s C

                                                                                                                                                                                                                       >4             6.

c - .C 5=*8 e

                            *g.

Wi - el

                                                .3. *= ~3                                               ~ Qg3 E g C'                    ==                -

Wi o5m U e W*E .

                                                                                                                                                                                                   .en e

U g 1 iC

                                                                                                       -* '5 we                                                                     c e    C              DI                      .==a#WT             E * . =ed= =
  • E"enewus a C v p e o c.m..e,e u
                            .                    5ee
                                                == == h l              == ==w== ==                      U         c&& 4                   a.

si

                                                                                                                                                        .,11              >w g                   C.               O. g                      =                              y e = 4 == =g ==           g =5 em *o  C
                            *= -                                    a.                                                                                                                                                                                   d ens == =                       9T                                                                       E b
                                                 .n         ..ty y y Q y              .                .k O

E.s"j.d e N == C

                                                                                                                                                         >l UI        @ U >

a v

4. 4. = h. =-U == S .z =s e h. e c *= ..

C: C C ** g av & g'

                                                                                                                                                                  .e eW i

y g 5 e C: W W G. e == E O""'=Q=*

                                                   # X =di f*

N 4D h U CA C 0 mm .C & o

6. m>0 ee 5a o ==
                                                                                                                                                                                                                                                                          .=

c

  • li
                            -                    01.e
                                                 >*    a el C* =O                       *
  • e == ==

CT Q. .O *c* *o* & == C L s= w k .0 C 4 oN E .*

  • n
                                                =a!      = 3t c w ass == *p'
                                                                               ?==    c N                                          ,y,,
                                                                                                                                         =s=

nei 1

  • bc
                          'k **
                                                                                                        & = **

h & E' g *. a= l .m= a.e .O # ==c )* C e e L .e .= a e i e

. 3: .. -
                                                                                                                                   $" u 2                     wi == ei                                                        E
  • e  !
                            ==

C

                                                 >i e j
e. e. .w. f -T e -
                                                                                                                                                                                                                                                       .=
                                                                                                                                                                                                                                                                          .n    N
                            -                    -e 5 A P ol
                                                                                                     .-               -o*  a
  • g -N
                                                                                                                                                                                                                                                                           ,g
                     -. aT. -                            - 6                                          'e              e .=.*."                                                                                                                                                   w a                                                                                     uv                                                                                                                                    e e                 T i
                     =g C ,3 =" . *c ad -a
                                                                                                                                                                                                   *                                                   *=                   C0
                                                                                                                                                                                                                                                                            =

l i'

" C I, C; * * *
                                                                                                                                                                                                           -g
                                                                                                                                                                                                                                                       ==                       C E'%.                                                                                                                                                                                                                                                   r d' r$

l

                                                            .      = = - - - -                         -                   -       eg                                                                         c                                         y                                          4

_C u. s s. s s s.a e s == = s E=>e -

                                                                                                                           *g C. 2 e E a

E T. w 5

                                                                                                                                                                                                           .a w

O h. 5 O e i C b "e# i N. N. N. N N. e-w 2 . ."" . E N 3: @@ f D e- 4. A em 8 w s6 ad's e E ew ed == y Q T g ee

                                                                                                                                                                                                    ' .O e a. > c T -,

ar. 3 - a== o.C, E b ml == m e C e W @ =O * > @ -d al and =

t. .o. m ed e g g
                                                                                                         > m                                                     - n.          . ew        -

e a. = a .=. .. e3 m. W c ,O el3>sgg m *== -+

                                                            =        C. ==. N. O. ==.                                                                                                                                                                   3 g

E*CCCOO - *5 e c .. - Ce E T .= .=a* g w== TI e e v' e. T = c *O 4" a

                             ==                                                                                   T e8 e                                  cl      T 'g W                               e = een               A        ==                0@                  OE            ,
                          . =.:                                                                                                           ,-e            .ei                               E           aeo                    =

e c - - c G = r.a: e C,e . = l na =e o eeC

                                                                                                                                                                    =             ww 5               3 5" =e                .>=                     Re 0                                                                          - y eWC                =g=.     =c=wv          -        eao                         f. u ==8w ..m8.ma u*                        z .= -                   **

w g Uc eQ  %

                                                                                                                       .g.T& g
                                                                                                                                     .          0 L   m1 as W
                                                                                                                                                                   .* e e               @         tw m                                           egE
g. CW
a. T u *y -- Cg w
                                                              =                                                                     -               --              8*

u .um. e=Ya--c eC - s g, e& {g e .=,c= .s.- a, c' c 51 = g x

                              =                               .e.        > >

e

                                                                                                         -             m .e _. m .=- .              -.
                                                                                                                                                    - >            - ee=o        == m
                                                                                                                                                                                                      == c -
                                                                                                                                                                                                     -u5                     eIw5 eelm c r.
  • c.e*C* *C. *O =. 5 v e

C C - - 8a m.. U c E T a= a *5 >, g g. W Tpf L =e >og"" --

                                                                                                                                     >g        een  C .3            e G. E
                                                                                                                                                                    >                                 'e                deo                 ed e 2.=a                      ==                                          m             y                             e e             C T .c*               e          == v s= == G V>m                                  .e,. w              V sa O Ca el-cc               yn. e. .. V        8dG- "=C          *    > >             EwCe                              o>0=                             e          -            o            W .e.

H. c.s ut C. . ==c-W a g ==i .e w-os d ' C. 31

                                    =
                                                             =.=ai-  > EE*E                             'e
                                                                                                          .        e-=-

5*** "u.e>.l

                                                                                                                                                                    **
  • U 8 eB-.* .c
                                                                                                                                                                                                      '"vuT
                                                                                                                                                                                                      -e-.
                                                                                                                                                                                                                ==           w     E'  T >
  • O *'

ea- u n. == - 8

                                                                                                                                                                                                                                                                                - u*
                                    - as                      -     E55                                   p'           =#

es 3 o == ** W" O e ea E: g y .,. O U(( = ,$3m }E 4 t ., w y .R, ,e a m

                                                                                                                                                                                                             =
                                                                                                                                                                                                              ,= 3 e, .m, = ==         > 5" .*m *d       u"5                 C CE                                                                    . *
  • e -

u ,0, .e, , == C 8 m == ==

g. g = = b & ., 33 ThDU
  • T*f e" =e m aa m as e.T 6 == & 2 es C==0**ed-e. m w e >W .e TEe..@

e

                                    %g'., gp d.                                                                                    == Wy                                                                                                                                           e.

ga = my e en *==

                                                                                                          @                         **         es    e               e = as                   . m.

E 3.3 == o ens eWw> 3 4ws >= .O .=' ** T ee** A 31 T l >T &lC. *V' MOW w a. e .c w c .e .l .=

  • 5
t. .K O .w.
                                                                                                                  - e                               ~d                                                  *-

E. s.

e. ~' o O' O O cl o ..m.m i.
                                                                                                                                                                                    =              e o - w w o u'e e o b ew aC3b e Q O b m to T b >e==-                                                            3e           .ed m C;                                                                    E *=                            eU                                                                                                              8 mO
                                  ' 3 .D.    =d                                                           * > II *" w O
                                                                                                          > 4 WI I* g == c                                                                                                                               h          ===       C e.

i na e Gu e == T m

                                                                                                          # =*                       @       *=      u                                                                                                                      == s_

g% .. ei- e e eS 6" be e g 3 as e g eO 3 t U-c C. Ti mes == MCe C ,p, wang vv

                                                                                                                                                                                                                                                         ,,. e im         U V a

t=".l @ en e .g tw 3 C C j

                                                             .sa i 8'n   em == CP e
  • 8l s 4 }

p == 1 I I e 2 e - .== e. O c. e

                                                                                                                                                                                                                                                                                                  ~
                  ~                       .;
  • e m en w > 0 n. e = 0 .

e ** E.

  • C C f.'i == U V I.*, L* * ** Q == W Q ee _. E 1
                                                                                                                                                                             .ee l
                                ;;li My D

527 0 :n2

                    '7 1

8 9 0 o 2iy _ 1 sa M Pvn iu Z ea -- lll l{lllllll.l lt l l { lllllg t . s e n MLR r s i ge ee f u x y nv ii vc ru o i r kd ad e e f d o n hoor s nt n D t r oa , a

 -                                   E a)                    ir r o           yp        f            l          in                   n D r n                                                                                          o a                       o                                                        e t r Nio                     d                          e           r          ce                 i r

E pi , l d t mk ee t t ut a u Mst u n Mf dt rl s Nec ol ri a t o t a n o Or e t f m ,ni c s i p- r C eit er m a x o E . o l sd cmse s do . e f R lop r e uab zs t e osa et edt uie t r , n r e s Er Dt d t cason sl c nno o c u n e n o nl n oti epc ner o ,r aca ,i eg s o u i Ooo cnmh nse nt' dni p l p t Y Tcr y eac d uenl i , oa ,w x c svt n n i n l o e h A C Nsh sensuel mo t m t

                      !      N       Ost                 er oaot pei                                            ae                   ol rp            e         i                                 e NE             I e(                cpc                 pupd                    t          nd                                  n                                          v OU             Tc                                                  e a          mn                   t              e         w                               i
                      ! R             Ccs                c               hmt i i s t
                                                                                                 ,   n          eo                   np            u           s                              t TE             Aai                a_      e,  r d c u          t           ri             d c                   oe            l p          e                               c CM                        x        , r as              r sd em                           n                    ced                       s                                e AE             F , a                                                                      o Orley              retu ss  *-          ob et a ut 1 t                      cg s

s , t n a e t o RN , sa1 i n e r VA Sth t sit n[ o s

                                                                                                                  ,i                  en            u l

e P 1 El p l ad ce uc ,i ep ,ce nw co q r

              .        TG             L eo               h             ,d ud m                                   oo                   ci             e                                         d n

TN I Phr Msp sf r od easd f er ovt e il t p at a s s u a e I TR A ,ot pr onc , a , n b u o . OU X , , a pr or n np ni u s t R D E nn n oswd e l p pcuo o i i e om s n e oo _ iw i il l l' D i i me ia t t d i . d

l. l af s t add n l t RE t t t oer accoat a a t n an a t t nn i A TT ac u l or f

c n;a co oe U t l t N ue cef s hi eo odl oc e cn s l A iE l Ft # ct ao _ ak r st thl co eof l ef s s s n vr vauo an i t e Ro a eo o _ETst Wu t F OlF. Ep CoR Df o , e t r i . P llllllllljl l ai t5 t M lllllll lI ll e r v c7

i. I r

el r en A9 l B e tl r d r d e o 1 I R r aoo e e e SO us d d ws n s o d j o mf o v", G n n r r n a . i OD e p a a deo f oe p f ono . s t s PE . nhis m d d ct D s a el s o en e s e at st no r au f di o FN OH Y s j t r e r u de s eo uis o ot ia i r i r t e od M A a yk i u s oopr sre rn e e rj YM Wgr o dl oi r t a o or s ff uh oer pt d o ei p p Pc i R O l i bm f w p sg x af i pm t AC Tf a y e fI ME Ao,eef e f f x e fd eu emo r e et r m o HR P nnt l o o o yn oer t or ynn p mn e v i t l a r l! SE Eoiao s doo io ae Ridl hn ne n l o nayh oiil e Tc o D o ol o oit iionbt m c t ul F t t ouw i ibi t btial t a i - e n nc 0 S al c a t mr e T t e at a 1 O l o P aiut c s t e t sht e ee s el l a saek etha esl r l oa e o ph t - e s t d i MN X hdte g g oh gnt t a c E Inaar n noip hen a e c A rp i D I n g je_n I vI hn Wi I ceu lllllllli Wdi m e i

                                                                                                                                                         'a h

p s a a P E S llli llllllllI

  • h e h t s F B p t P (

T

                                                                                                                                          )

s a p o E A'

  • M y y i m S

A Y ) I o) R a c d r e " e l C

  • DH t s y

I TEd n e T l c i i p N 0 s RS S e m a n EE3 r u MA sa GA0 g r g c e T GS RI I rd r e r EP u Ni3 t e t n i e N RA oo T o0 EP s n > p E Ri t h l N h3 r r y f D MP I e E I t T e I I E 5 0 v 1 2 3

  • R C 1 2 3 3 o * #

C 0 ( ( A ( l'l i l 1 1 l(lll

f- , ATTACHMENT E L2P-1200-5

                                                             ,                                                                    Rsvision 2 January 27, 1987

'( x ,. , l L ,/, , t-~-l~. I {

                                                                                                                 % ,,4 4                                 /                       g                              e.\               %

I / [ * \  !

                                        /                                              g                E                             \
                ,,             ,%ss mN,"*/f" l 5' ;t.                                                                                    \                                             '

f - S

                                                       % .- .t i= == g l m

l g . i* CN e 1 t l \ g I / \ E t i l E l'*g[% E s \ in e,.a i i d { g QSTATg  ! l

                            -t  Gj'j3* n s _ t _ _--                              --          - -

r r.= -- y

                           ,,s                          5                _T _         g             8                  l I                                                         \%

e 8 g

                      \                                     s1                     ,,,,l},Y          u j                                      vp1
                       \                                       \                                               /    mi....a cm S             %                                                            ca 29
                                                                             ' **u ene as # #                     g                   *
                                                                                                                                               /

g ---

n.  :: /

s I .

                                                                                                                                         /

6 .: .s ',sy T *l s l #

  • tan % m om i

EST ESTi mTE- ESTIMATED #AX-GEMRAL PECIAL 4  ! FACILITIES o 1 ,2 3 S Ptru.ATIOc ' ' ' ' EVACuaTIDs TIE tGILIIATIS m E enLE5 gm tH3.Rs i Ting oCURS 1 1 2

                                                                         -                Note: This figure represents an excer-II                     g
                                                                         -                            from " Evacuation Time Estimates fc
3. !!! 2
                                                                          -                           Areas Near Nuclear Power Plants -
1. VI 2 Dresden. Quad Cities. Zion. Lara.1 11.!v 2
                                                                          -                           County Stations." dated 3/11/80.

II. V 2 2.!!I.VII 9  ! 3 2

         ,      .        1.V!.x                                             -
                     !!.!v.v!!I                    lo
   ...                  zz.v.tx                    to i                                                                                                                 LASALLE STATION                                                    !
                                                                                                                  ESTIM ATED SECTOR EVACUATION TIMES i
                                                                                                                                                                                       }

y

r_, ,

     ,     W       , , ,
                                                       ,1;
                                                                       " ATTACHMENT, E '..-(Con t ' d) l                                        ,'
                                                                                                                         ;L2P-1200-5;
                                                                                                                                                ~

g -Revision 2-January 27, 1987 , c(;. _?: a -s:

                                                                                  ! EVACUATION TIME ESTIMATE

.o Evacuation Times with Respect

                                                                               -To Sector. Sections-(Hours).

0 - 2 Mile 2 - 5 Miles- .'5 '10 Miles J '? p. Sector '

                                                                    ' Radius:                Downwind Sectors          Downwind Sectors, A                         .2<                        2            ,
                                                                                                                              '9-i

! r Bl 2 2 9' C 2 2 '9 D 2 2 - 9

e. E 2 2 9-F' '2 2- 10 G 2 2 .10 H 2 .2 10  ;

i.: 2 '2 10 K 2 2 c 10 < i

                                                                                              ^
                                                                                                                                                                                                       ~

L' 2'- 10 q M, 2 '2 10  : N 2 2 10 P 2 -2' '8 ' O 2 2 8 l R 2 2 8 When evacuation times are being determined for several sectors use th '

most conservative times for each sector or portion of the sector.

J

     . . _ .D ~

6 l

                                                                                                                                           .-         1

1 t t amao sovieH

                      ,                      ETETW(

527 . .

           - - 2) 0 n                l            e 0 oya                           m 2i rn                          i 1 sai                          T            ~

iuf P vn( n Z ea o LRJ9 i e .

                        .'              t                s a        .n      r R          u   d o         e c    el          v                           5               5     5      5 9             2 El         a   t t        d r)                    9    1          9    1     1      1                  7 i

T v aal A es . . . . A E mue h ra 0 0 0 0 0, 0 8 6 1 1 H i cvet u r t aamac L W e svri eI I E h EETTW(

    "                          S        t      -

R a E e V W D e A N t ) GO I f e s N T y ne I RA 4 ot UT A d t n i u D_S d eai

                                  ,Y     e               t zM NT       t                 ai(                           -

a ml . 0 0 0 0 0 0 0 0 0 ON U d. ii e 2 2 2 2 2 2 2 2 2 N I t b m

         )         O           TO       i s oi d         I           AC       t s               EMT
  • T L t A U E E n T P LL o S O

( C . PA S n 7 o T L A i ) E N A s R L t . U a e T L O E E cf t G C Ni i O u Ei n G T I f H l E. isi l C t L EF t sM oe( A A i O l T S T S N. cx s T dE e A A F E. e t L Ol l t nu EM ain 0 5 0 '5 0 0 0 0 0 m i 8 4 8 7 5 5 2 5 7 M 0 i eM - 1 1 I T 1 t m si5 NN 1 E T1 OI I I T T I A UW C A V E D E T A M I T nn S d e oo i i E t t t ~ a aa 0 0 5 5 5 5 5 2 5 0 m ul 5 5 2 6 1 9

                             .                        i0 cu                      5               0,    7     2      1 5,    7, t 8 ap s9 vo                                      1                              5     9 E1 EP I

I l' V, X, r s s_ I I I I V I

                                                                                                                ,   V,    s_

e l l I V I e V, o e , I I l I I t l I 1 I I I I i c i I I 1 M s s e M M s r s r s r s r r r S r r 0

                                                                     /    2       o       o 5      o    o      o       o 1       o     o e     -    t      t     -   t    t      t      t     -     t     t n   0       c       c 0      c    c      c       c 0        c    c
 ;1 o           e       e   -

e e e e e e S S S S S S S S _ , Z r

g g S g T .' I  % .- M s I e g L v r  % u g C N i O R

          ,                 K l                      g I

o ., T O t r n  % U T o

  • B I

C A C g \ w  % R F o  %

 - T    f l

F SI K i t c g

                                        %                e a                          v D                         m r

u t o .s C . R A% u r f K E W  %

                                             \l         t o

r n o O  % C P w

                         %                               o

-

  • l F

l a g u - w 3 n a M

                 - b                                           1          0 5       4              3 -

2 1 1 1 1 1 1 i _x (

        $E ,                                 a cE     ,6              #a&j F ' .
              *A -

l T4 I

                        ,                                                                                                                                     g a                                                                                            e
                                                                     ,                                                                                                                                                             i

_ )

                                       '.                                                                                           y                      .
.. f                      ~.                                                                             ,-

t< x , J

                                                                                                                                     =ll b

Ws j . .

                                                                                                                                                     ~ss                        gas                  ds
a s s l-m
                                                                                                  ,                                  ;ii                 m                                                 -
                                                                                                   !                  s              5l*                            -                M h _E' ,- j
                                                                                                                                                                                             "             o g

c .) . j

                                            ]'                                       gg (                             l              5     !" 5l                    gl*

o j'

                                                                                                                                                         "                                                                   .: 1
                                            !.c<>
                                                                   '                   gi@i@l1l{g                                          '                                                 ,

g 4> ,!  !.

                                                                                                                                                         -                                !.=g.                           g
                                                                                                                             .: = "        20 ::

an ,

                                                                                                                                 .                       .                                                                    i) 2
                                                                           )    ' 2                . m      ,s!g                                                                                                              e.

M.aM I l

                                                                           ~~
                                                                                          -]gj==,                        v__                             l-               #o
                                                -                                                  ,w --y,_--.                                                            u I.

s

                                             .[ 8 s                                                                                                                                                                a osd l
                                             .riak. g
                                                           !s  e                                       !!__ge5 hMhi               _".
                                                                                                                                                                          ,e
                                                                                                                                                                             +

3

                                                                                                                                                                                                   ~~          ~
f.  !
                                                        '  - IF.
                                                                                               .         _l            ,

e w . og g ,  ! 4 5 d2 % { ' (

                                                                                                                                                                                                                                    )

op 2." $*2 ) f K o/0 [.

                                                                                                                                                                                                                                    ]

_\ < -

g -.
                                                        "                                                         "          gb                                                zg                    g5                              l
a. .
t. . g
                                                                                       ,                     f.                               ,                         -- 3 3                      g3 1
                                                  . , 4)

J

                                                                                                           -(u                                                                                 , m
                                                                                                                                                                              .                                                       l
                            ..                         .m      <                                                  m.                                                 p            .g            n     . .g}
                                                                                                                                                ~

{a -

                                            .(*;_g_l j           "         -o.               "

ige): ,

                                                                                                                       .y g
                                                                                                                                                                                   ==

g . .I n g d g W l- 4 I Es We lg! l$ lggll l 55 lE . N. $!g s - g -

  • g g

[ . ,. 1 . .

                                                                                                                                                                                                                                     \

i LGA -G3 (SIPL? . ~ 4 DRYWELL SPRAY INITIATION PRESSURE LIMIT 1 300 WMMMMMMMEWMMMMMMMWWWMMMMMM@@MM I MMMMMMMMMMMMMMG@@MMMMMMMMMMM l MMMMGMMMMMMMMMMMMMMER MMMMMMMMMMMMMMsMMMMMMMMMMMMpe- f

                                                                                                                  "                                     i I

MMMMMMMMMMMMMMMMMMMMMMMMM*  ! 85 MMMMMMMMMMMMV P fI r MMMMMMMMMMMMMMMMMMMP ' c MMMMMMMMMMMMEEMMMP' l

             '         MMMMMMMW
             $    200
  • MWMMMMMMMMMM7 E MMMMMW t l

MMMMM 7 4 5

MMMMM7 '

4 150

  • MEMMMMM7 l
             !          MMMMV
             "          MMMMT E         MMMM

[d 10 0 E ~$NMY s l a MMMF' , MMW l HMis 50 j MMMI j mwww t l 0- 30 40 50 60 0 10 20 , (psig) , SUPPRESSION CHAMBER PRESSURE

                 !bi4/ss                                              E$iis                               FQ. 7.o c                                     f i
                                                      '             ^----- -~________                  __

0 ,

                                                                                                                            . A. IfelflAL sv& TEM tevCHQtLs? -
                             ..                                                                                                           yast?
 ,            .     '-                                                                                                            s. laseTIALnoN.NucLAAA
                                                                               "                                                         M4ATING ufJa7 C- INITIAL kWCL E AA (*.CMi Cnt71CAU t"?tyeatt0 Cet                                   ;

N00 === A[ N ,,

  • rllC j, 7l G8 8WR UC1?!$3NG
                                                                                                                                      . TOPICAb MEPCAT
  • 3 g ,

m400 21778 A . 8 I N,3 c . A. E. C Lf%ttTT .AFTEM - AM ASEWM401:6*7CCA4 i COME 6tLTuM4 uust: 4 nan . l f L j , estfuns7t.re swen . enou An immAL .

     .t                             ,             ,            min                                   f                                    87mot ## #8 i                                                                                          f             j
        .             _                                                                            r             p                                                    -

o

                      -                                  monastrums                                                                                                                                 ,
        ',                a                                 UNIT                             N]\ r j                                                                                   !

m j; seco - i

                         ,8.-                                                     l          l             l                          .           .                                       ...
                                                                                                                                                                                              ~

i

                                                                               /            / /                                                        _
                                                                                                                                                                                              =
                      .g E
                                                                                                      /                                                                                    .

f f

                    ,.N, t
                   'l                                                    /            f                                                                                 -.     .

l .

                                                       -            [               t PsanwArta moz::ta uusTs uu7              ~

are. 1 i

         .i i                            a        -

i ' i -} i is .e l I I I

                                                                  ,oo                  .                               =                     .                               -

Reactor Vessel Metal Temperature ('F)  ; I MINIMUM REACTOR VE5SEL METAL TEuPSKATU?.E v5.

                          ',                                                                 REACTOR VE?5EL PRESSURE                                                                               i  '
           ;1                            -                                                            Figure 8.02.
                                                                                                       -                                                                                           s if                                         LA SALLE - UNIT 1                                                   3/4 4-18                                                                ,

i l-

11QUAw u ntanr -- - - - -

                                                                                      -~- -         -                                 -- -

f a ma y a s/t' Cycle efficiency-= (Network cut)/(Energy in) w -mg s = Vot + 1 at2 E = mc2 KE = 5 mv2 a = (Vf - Vo)/t A = AN A = Age-At PE = agh Vf=Vo + at w = e/t A = An2/tg = 0.693/tg , W = -YY tgeff = [(tg) (t h)3 [(tg) + (t b)3 AE = 931 Am j, e-Ix-

              ~

Q" = mCpAt 62 UAat I = Ice ~"X Pwr = Wf6h I Io 10-x/TVL l TVL = 1.3/p P = Po 10sur(t) HVL = -0.693/p P = Po et/T SUR = ZS.06/T SCR = S/(1 - Keff) .l CRx = S/(1 - Keffx) . SUR = 26p/ * + ( 6 p )T CRj (1 - Keff j ) = CR 2 (1 - keff2) f

      -T = (t*/p) + [(a - p)/ip]                              M = 1/(1.- Keff) = CR1/CRo T = f/(p     's)                                       M = (1        .Keffo)/(1 - Keffj)                                             j
     , T = (8 - p)/(Ap).      ,                               SOM a (1 - Keff)/Keff                                                           )

p = (Keff-1)/Keff = AKeff/Keff ** = 10-5 seconds l

           ~                                                                                                                               '

i.= 0,.1. seconds-1 p = [(1/(I Keff)3 + [5eff/(1 + IT))

                                                            'I d) t    =1d-22 2                                                          l P = (IeV)/(3 x 1010)                                   11d1 2=1d22 I = aN                                                 R/hr = (0.5 CE)/d 2(meters)

R/hr = 6 CE/d2 (feet) Water Parameters Miscellaneous Conversions l 1 gal. = 8.345 lbm. I curie = 3.7 x 1010dps I gsl. = 3.78 liters 1 kg = 2.21 lbm 1 ft3 = 7.48 galt.' I hp = 2.54 x 103 Btu /hr Density = 62.4 lbm/ft 1 mw = 3.41 x 106 Btu /hr

       ~ Density = 1 gm/cm3                                    1 in = 2.54 cm Heat of vaporization = 970 Btu /1bm                    'F = 9/5*C + 32 Heat of fusion = 144 Btu /1bm                          'C = 5/9 (*F-32) 1 Atm = 14.7 psi = 29.9 in. Hg.                        1 BTU = 778 ft-1bf 1 ft H 2O = 0.433 lbf/in2 s

ex-h

K n et ' '! J; ,

                                                                                                                                                                                                  *                            \

{  ! b . j i l

  • 40 . ,

l f'- " TeMe 1. Setweted fiteem: Temperetwo TeWe  ! 3pecific V06mme Enthalpy Estrepy ' set. Ats Press Temp Temp- - L6 per . Set. lat. . ' let. Set. Set. lL d. Evep Veper Liged Evep Ve0er fahr fehr 14 in. Lited . Ewe Vapor s, f 8 l e 't 'is - 58 i # fs 8t. Sa 8a l s 3304 7 - 40179 19715 1975 5 0 0000 2/873 2 1473 NA* Sta' 4 00059 - 0 0160?? 3304 7 0 0041 21762 2 100? OLA 40160?! 3061 9 3061 9 1 996 1874 4 ' 19744 MA 6 08000 19732 10772 6 0081 21651 2 l?It SA SSA . 4 10195 40160?0 1839 0 SMO 4 006 4 0122 2. l541 2.16 0 NA l l 38.8 411N9 ul6019 26M i M34.2 4 018 1972.1 1078 3 i 8 027 1971 0 1079 0 0 0162 21432 > 21594 48 4tA 4 87163 8 016019 . M45 8 M45 8 6 0?02 2. 525 2'.527 4tA l alA $014019 22724 2272 4 30 035 1969 8 1079 9  ! till4J 1964 7 10003 6 0242 2. 217 2 4M ' 44J 44 4 0 14192 0 016019 2112 8 2112 0 12 041

                                                                                                                                              - 0 0202 - 2               2.'30           SA                                    !

48 8 15314 4 014020 IM53 1%57 14 047 19676 1914 til . 48A 16 051 '1964 10824 4 032! 2. 006 2. 327 l 4Le El6514 . 4016021 1830 0 1830 0 1704 0 l&O54 &#5.3 ' 10834 0 0361 2.0001 2 M2 NA E3 0 17796 ' 40160?3 1704.8 20.057 19642 10842 0 8400 2 0790 2. 197 etJ j SIA 4 19165 . & 016074 19N 2 1509.2 SMM 2 0695 2 IM StA i SJ0625 44160?6 1402 4 84024 22.064 19631 1951 RA I 44.0 4014028 1383 6 1383 6 3 59 18619 1806 0 1 9470 2A593 2 0 70 ' OSA & 22183 4016031 1292.2 1292.2 M.060 1960.0 1006A 40bl4 2.0491 2. 008 ha  ! 884 $23043 852 2.0M1 2A046 . GBA I 4810033 1207 6 12074 '

  • 20A60 1860 7 1987 *
                               - SSA            0 15611 1 014036 1129 2. ' 1129 2                300b9        ?tS85 1986                6 0693 2.0791 2M                        MA 82A           4 27494 -                                                                                        0 0632 2 0192 2.MM .-                   04A E29897 -         &O140N 1054 5             1956.5         32 068       19674 1009 5 GSA 4016043         tm0         9001         E066         18663 10004               10670 20094 2A764                       Et NA            4J1626                                                                                           4 0708 JJ996 2A704                      ES GSA          4 33009           0816046         026.5       9MS          36.064 - 19552 19212
                .                                                                                                                                &ONS 1.9000 2 545                        348 148           0.36292          401650          068 3       068 4        EM2          1864 0 ' 1992.1 ftA 8                                                8016064         084 3       814.3        40 049       1E29 1803.0               4 0783 1 9004 2Ab87 72A          SABS44 764.1        42.046       1061.8 IM38               0521 1.9708 20k29                        MJ 94A        . telMO            60640b4         764.1 E058 IM14 2 8472                         NA MA           0 44429          8414063         717 4       717 4        44 043       Im07 19947                                                         Ea                              .!

0 8895 1220 2.0415

               }                                                                 673.8       6 73.9 ;     46 940       1949 5 10pil I                  El           04N61          ' 6 014067 -

48 037 19484 19964 0 0932 1 H26 2 Ogs9 OSA E8 E50683 0 016072 633 3 633 3

                +

595 5 90 033 1047J 1997J 4 0069 8 9334 2 0MI EA GIA 4 54093 ' 4 016077 : 595 5 6 1006 IA242 2 0?40 GSA to t 1 57702 0 414082 ' 560 3 540 3 52.029 ' 3046.1 19982 E8 0 016087 527 5 527 5 54 026 19450 1999 0 0 1043 1 9151 2 0193 ES 4 61518 E022 19439 1999.9 & l079 1.9060 2Alse EA 50 6 66 % 1 t016093 496 8 496 8 58 018 1042.7 l'.00 8 t' ll5 1A970 2A006 EA

               ,                   N9            4 09813          tol6099        468 1       464 1 1,01 6         & 152 IA001 2Am3                         StJ EN313            4 016105       441 3       4413          00 014       19416
              ",                   SIA 416 3      416 3         62.010       9040 5 1      02 5       & 108 3792 4AND                          S4A 4                   SJ            4790b2 -         & 01611 392 8      392 9         64 006       8039 3 i r3              0 224 A704 1A0?8                         et E4            G#077            4 01611 66 003       103t2
  • liO42 4 ,260 ' 1 8617 1.9076 Es l NJ 6 09356 6016123 370 9 370.9 I'
                                                                                                                                                   .                   .                                                       )
                                                                                                                                                                                                                               ]

i 4 25C 4 67 999 10371 1051 ~ & ;295 1A530 1325 . taa ISO 6 94024 1 916130 - 350 4 6 331 1 9444 19775 IRA - 4, tefA IA0759 0 016137 331 3 33L1 M 995 ' 1035 9 3 05 9 sets 3111 leM 8 8 06 0 &.366 13354 1A725 le4A 1069H . 4 016144 3131 296 18

                                                                                                         ' 71 992 73 99      1833 6 1      07A        4'402 1A273 13675                       the               f tWA                1.lM1         0 016151 206 le                                                     E5         41437 IA198 Imil                        154
                  +

SE4 LJ010 6 016156 20028 20t JO 75 98 1932.5 - 1 M'J9 1931 4 08.3 ' &l472 ISO

               ?                  1968               11750         4016'65 M137                               77 90 10.2                      '.SIM   1A577 30?! 1528             ftta 6 016 73 25137            25138            79 90      8030 2                   $1507 4                   Il2A              (AJS                                                                1029 1 1       11 0      a1542             3938 lAWO             9968 IMA-                            SA16 to . 23811           21622            81 97 4                                     1 4299 40I6 80 225A4 ' 275A5                      83 97      1977.9         13.9      41577 156 1A433                         3160 ftEA Ilta 14 33 1.0009        4416 it6      21420 !!421                  Ob37       10E4. .l      ,12 3      41611 J774 1m                           140-4 416204 20325 23326                       47 97      3625 6 11116             41646 13083 1st                                                             i tRA'             14827 et 96 - 1024 S . 3114 4              41000 1.M13                                                    l
                                                                                                                                                                                                                          -l 122A             13091,        4 016213 19294            l6295                                                 41715 13513                    7        9 60 8016221 38313             .3124            04 96      1873.3 11113                                                     158 194J           ' 1 A001 4 016229 17448 - Il74A9                    E96        1922 2 1116 1                IM9
  • 3453 1502 i 9I INA I 90 %

SLt6 1921.0 tilla IN3 1374 13857 958 j IRA 2.1088 6016234 -16545 16547

               ]r                                                                                                                                                                          MA 8814147 157J2 15733                       9796        1019 8    l' IF A        41817 1295 8.A812
                 <j                 128              2.2210 4018 7 I l&6             &lEl 1217 1m                                8 3445        4486256 149 64            let 66           90 05 1                  13tA 4416265 84240             14241          101 95       1817.5 ! Its             time ' 1840 km lata                4717                                                                                       41918            J063     1. 5 00 -
                 '!'                IE8               24047         4 416274 IM 55            135 57         18195 - 1816 4 1 203 4151             .A006 157 SES               23438         6816284 129 09            129 il         80kW         B015.2 !!21.1 22.0        41905            M10 is                tea 1448 m
  • 0092 t.au 8446293 122 98 uluu all 23 00 un 107 9 m.6 ~ le n 4.0, a

1 I m 18 m 0 taJ tota i 4 016312 II N  !!! 76 til 5 30 11 3 216 1 V4A 1 1997 I .M4 4254 SEI 3J651 401u22 lESS let.M 80 ma I.S8

                                     =                w8i           uiun iti                  at.n           l13a.96 m'u0 5 naJ                     uia                             7 100L2 1 ft1               4 2150 .         A&I6 1m                15e 1910             3 7144        401043          9705        9787 l3795 4.

BAiuN S 0456 Y Sm l

m. u.6 i =6 b2 uM8 . mi. E" Ma i tEl utta ma' 0043 125 5 1803 4 11214 42281 .AM5 1mM IISA 4 5197 0 416384 mA6 nGr2 1:E2 emis six tas7 tela i

iE8 4Ni4 teine5 nn nn 129 96 1801 0 1134A 42345 3103 Lates 24 10tA 1 9'22 6 416406 7390 7392 S 2377 1A052 lage S6a i

                                                    ' 12124         8 816417        70 70       70 72         131 96        000 3 Il31J                                                      Ma 404 4 -

8816428 6747 4744 133 97 956 11324 &Nel 13068 1571 M8 IES 5 4623 9874 !!33 4 &N4l 13E2 14883 SEA 1 7223 4 414440 E74 6480 135.97 137.li 906.2 ILMJ &M73 IA022 158 - 1364 - 1 9926 4416451 Sted 42A6 IRA BA1640 H 43 M45 '13tte 005 0 l'50 42906 147bt l 17te u136 9038 1 E8 42537 1A004 1Al21 1983 l SMA k3466 4 416474 56 95 E97 14 L AS 13616 talte tas IM4 6.4000 0 0 4406 54M 54 61 143.99 9026 i E6 120

           ~ '                                                       0414498        5235         52J6          145.99       091 4 I .37A                            lAMG Lal47                                            -

Ilta 71M0 N

                               *the pales sasun m suumane j

l

c , ,

                                                             .a                                                                                                    .,,,..
                 .                                                                                                                                                                     1 es -                  !

[ .Tetd81. Satureted Steam: Temperature Tetde-Conthesed  :

                                                                                                                                                                              ~'        I A05 Piess -               5pecifg velome                       intinsipy
                                                                                                                                      $3t Entro0y ' $41              Temp
                  '            Temp      (b per             $al                   $41          $41                     $41 .                                                           4 fahr       $g in          is0uid       (vap      Vapot -      Li0uid       leap - Vapcf              lieved Evap Vev .                    f ahr -        g l-          p              u,         vig         og        -he            A qg          hg          s,          6ig       sg            i   _

IE8 25110 - 4014510 - 9021 27 48 00 900 2 N2 02631 1 5400 Alin 15 0 l 1010 7 050 0 816522 - 48 I?? - [ I89 50 01 909 0 39 0 02ut ~ 15413 4075 let 8 2 tes t 8 203 00165M . 46232 88 ? - 52 0) 9878 MS> 0 2694 SM6 40d 194 8

                             '958              8 %8     0016M7 44 38j           44 400        54 02       906 5            40 5     0 2125    5279         46 4        M88'             j SES,            SW1      4 016 % 9 42423         4208'        156 03       905.3          141 3      0.2 M6    5213 11 % 9 -            Mt8               ,

9088 9 M0 0 816572 40 Wl . 40 957 - 158 04. 904 I 42 1 - 0 2787 1 5148 1704 . 800 0 - 90tJ 9 47 4016585 39 337 M 354 140 05 982 0 42 9 01818 1 5082 4 7900 tTil i 37824 162 05 98161 43 7 0 2048 3.5017 ' 1 75 5 58 I les A - le 148 4 416598 -. 37 804 tha 19505 40lHi t - EM8 M 364 164 06 900 4 44 4 0 2879 1 4952 1 7831 98 3 6 016624 M 954 M 970 1H 08 979 1 1 452 E2910 1.4888 : 17794 setA 1 15A 11 058 NBA . 1 526 0 014637 33 622 334M 168 09 9M9. 146 0 0 2940 148N 1744 . MI S k N64 172 ll 9M4 1475 OJ00 1 4697 11698 Se4A

                                             .2 512 - ' 0016E4 31 135 31151                               948          149 0        0 306    1 4571 . ! ?637            300 0                       J NBA           23 %8      80lu91 . 20 062         28878        176 14                                                                                                 J 212 4        146%        0 016719 M 782 , M 799               18017        970 3        150 5 -      0 312    1 4447' 17%8               292A 2141         15901       6 016747 N 878          24A94
  • 18420 96T8 .3524 ' ' 0 318 1 4323 11:05 ft&8 l 338A 17 186 - 4016U5 23 131 23 144 0823 E52 53 4 0.3241 ~l4201 1 7442 IIIe l D4A le5% 4 016805 21 529 21 545 9217 M26 54 9 03300 1 4081 1 7300 2M 8 )

2314 20 015 6 016434 20 0 % 20 073 96 31 960 0 ~ %3 OJ359 IJ961 11320 2314 1 IIIA 21 % 7 4 016864 18 706 18 718 20035 9574 l'57.8 0 3417 IJM2 17M0 332.0 l 43475 !J725 11204 1764- 17.471 954 8 IL59 2 338A 3E8 23.216 - & 016895 204 40 ] l l M 968 60169*6 16 304 16 321 20845 952 1 1160 6 0 3533 1 3609 11142 M48 MLS M4a M 8?6 0 016 % 8 15143 15 260 - 212 50 949 5 1162 0 0 3591 1.3494 - ! 7085 944.0 l MB8 29 796 6 016990 94.264 14 281 216 56 946 3 110 4 0 3649 . IJ379 1 7028 348 8 52.8 110 883 6 017022 13 358 13 3M 220 02 . 944 1 II64 7 0 3706 IJM6 1A972 152.4 i IISA 33 094 & 0170 % 12 520 12538 224 69 Mle llEl 0 3763 13154 16917 fee t i i

  • M80 35 e27 4 017009 11145 ,1 762 220 76 93J 6 :1674 0 3815 1J063 1 6862 200 8 ,

348 37 894 4 017123 11 025 ;1 042 23283 959 ' 168 7 0 3816 81933 1 6808 364 9 i Mia 40 500 6 017167 1,0 358 l0 375 236 91 933 l 170 0 0M32 - {1823 1655 let 8 4 271J 43249 0 017193 9 738 . 9 M5 ~ 240 99 930 3 i171 3 03987 12715 1 6702 272 8  ! ' 218A - 46147 6 017228 9 162 9 180 N508 927 5 !!72 5 04043 12607 14650 218 8 3E0 49 200 4 017264 9 627 1 644 24917 924 6 1738 0 4098 ' i 1501 16599 300 0 0 01736 - $1280 8 1453 253 3 921 7 1 75.0 0 4154 ' 2MS - 16548 304 0 l' 304 8 3018 - 52 414 55 795- 0017J4 7 6634 7 64^7 257 4 918 8 176 2 0 4208 1290 4498 300 0 j p 303.8 59 350 4 01738 71301 714M 261 5 915 9 In4 0 426D fl86 6449 382 8 d 913 0 - 1786 1,4317 12082 .6400 198 9 -

                  <              NES        63 004        4 01741 6A259          6 8433.       265 6                                                                                                ,
                                                                                                                                                     .                                               s I

b W 67005 0 01745 . 6 4483 6 4658 269 7 . 910 0 179 7 0 4372 1l979 ' 6351 We b~ 0 01749 . 6 09 % 6 !130 273 8 907 0 1909 0 4426 1 07 H03 304 0

               ,               34A         71 119 9040         182 0      - 0 4479          FN     6256        set t               [

MA 75 433 0 01753 5 7655 5 7830 278 0 901 0 . .1631 0 4533

                                                                                                                                              ..676       .6209        312 8 3-312A        70 %) .        00lM7 5 4566          54742         282 1
                                                                                                                                                   ;576'  .4162         alle g

316A M 688 0 01761 ' 51673 SIN 9 206 3 89T9 ' .lH I 0 4586 ,

             .- p 5 642          4 01766 4 8961        4 9138        290 4     . 994 8        1852         0 4640          477 1 6116          320 8 f

3018 ' 0 4692 .178 16071 AN 8 304A N 826 E01770 4 6418 4 6595 294 4 891 6 .106 2 401U4 4 4030 4 4208 2987 808 5 ,1371 04745 280 6025 Sits h'4 attA 3BIA 190 245 16 907 &01U9 4 1788 4 1966 302 9 8853 3812 04798 L83 541 SI2A L ', M88 SOLA  !!! 820 0 01783 3 9681 3 9859 3071 882 1 !!09 1 0 4450 .iOO6

                                                                                                                                                .         _5936 I

301A 117 992 0 01787 3 7699 3 7878 311 3 8788' 1190.1 -04M2 1.0990 15a92 948 4 3e4A iM 430 0 0l792 3 5834 3 6013 315 5 '8M 5 1191.0 04%4 1 0094 15N9 M4A 319 7 8721 till t 0 5006 1 0799 1 5406 M48 Seta 133 143 0 01797 ' 3 4078 3 4258 524 M1A IM134 - 4 01801 31423 32603 3239 ' 064 9 11921 0 5058 18705 15M3 i NEA 145 424 0131806 3 0062 31044 328 1 865 5 11936 05tl0 18611 15721 308A 4 01811 29M2 2 9573 332 3 862 1 1944 0.5141 D517 15678 Seta Ll Nta 153010 AM2 0 5212 .0424 15637 544 304 8 160 903 . 0 01816 2 8002 24144 196 5 858 6

                 '                                                                                         SMl         .195 9       05M3      ,8332 15595                Ntt
                        >;      MA        169 113         8 01821 2 6691        2A473          340 8 IH448           6 01826 2.5451        2 % 33 '       345 0       851 6       ,196 7       &$314     :4240 15554               3724
                  !>            SMA                                                                                    ,1974         05365 1 0148 15513                 3MA 344       186 517         0 01831     2.4279    2 4462         349 3        648 1 MA        iM 729          4018M 23170 2 3153                   353 6        044 5      . 98 0     0 5416 12057 :          5473        set t                     1 28        205 294          &01842 2 2120         22304         3579         040 8           98 7     6 5466 0 9966 '        5432         24.0 SU1                      0 5516 0 9876         .5M2         180A MA     . 215 220           40lN7 2.1126          2 1311        3622                     . 99 3 0SM7 0 9786           , 5352        352A 0 01853 2 OlN                       364 5        833 4           99 9 31A       225 516                                2 0369
                                                                                                                        ,200 4       0 % 17 0 9696         i3313         M8A MA                         6 01858               194U          370.8        829 7 D6193                        1.$211 h                                                                                                                                                      M8 WJ        M7259            0 01064 104 4           3630        375 1        8?59 :201 0              0 % 67 0 9607 1 5274 822 0          EIS       0 5717 09518 1 5234                 #44 SA        258 725          041870 I M80             78N        379 4 0 5756 0 9429 151M                  e6 M8        270 600          6018M         68U        7064        383 8       818 2 -        201 9 4152       6340       384 1        814 1          202 4     0 5816 0 9341 1 5157                4?tA 414A       382 894         4 01681 4MA       295 417           &G1887       5463       5651        M2.5        810 2         .202 8     4 5466 0 9253 1 5118                414 0 4E4        301700           &018W l 4008         i er           396 9       8062           703 1     0 5915 0 9165 1.5000                 438 e                     i 404J       322 391          0 01900 1 4184       1 4374        4013          002 2        ,203 5     05%4 090H 15042                      434 0 i

0 01906 1 3591 1 3782 405 7 798 0 203 7 0 6014 0 9990 1 5004 MA 1 4RA 336 463 0 6063 C H03 i 49e6 432 4 40!A 35l12 & #1913 1J0'66 IJ2179 4301 793 9 204 0 414 6 789 1 ,204.2 E6112 0 8816 IA928 4E8 4EA M603 0 01919 114887 1 26406 es&G 381 W 4 01926 1 19761 121687 419 0 705 4 1204 4 0 6141 0 8729 4090 400 4 4235 781 1 U04 6 0 6210 0 8643 4853 444 8 esta M7% 0 01933 1 14874 4 16806 8 6259 08%) ,.4815 4eS e l 4EA 414 09 6 01940 1 10212 1 82152 428 0 776 7 1204 7 c25 7ns 1204 8 tuot Os4n lan8 m2A ens ci i4 Osiwi 105i+4 1 Anti 406A W 448 73 $A1954 bil518 1 03472 437A 767A 1204 8 4.63% _CA385 1 4741 1 h

                                                       .m.e W N4-4-      .e4g I
            -              _z _.

1

                                                                                                                                                                            . . . . .                  j a

k 5-' 1eM91. Setuested Steenn Tomemoretuve TeWe-Centhod faltepy D11681p7 temp

                                                 , Abt hess                   5peClist V91eme
                                                                                                                                    $4)           $st              Iet                     'h
                                                                                               $81         $st                                  liged frap Vape#               T8N lemp              lb per              sat                             Liged inp Yapw liged        (vap      Vapot                                                           sia    8a           8 f8N               So ln                                                  hs           h ts         hg            si
                                        !                   p              v,         g            og 4 4405 &$299 1 4794         m                h,          /

441 3 M32 12048 tu% u2n 14E7 ate ' WS 466 67 S0lMI $l7f53 49M24 44i nu n=7 20 WA a5* uin9 ema n5557 450 1 754 0 1204 6 4 6502 83127 4 4629 MS$1 8A042 $ 4592 472A I 4I18 504 83 telS76 6 39885 491E2 455 2 M93 1204 5 ~CM j 471 9 624 67 E41984 40045 9 31329 4599 7443 - 1204 3 46599 8 79 % 1 45 % l 4MA 54531 4 AIM 2 0A2t58 E44950 4018 g. 464 5 n96 ' 204 1 oE48 an71 1A518 ettA ens 5s6 15 6 02000 079n6 CAi717 FM 7 203 8 9E% 07MS A444 4481

  • 587 81 6 02009 07E13 07E22 469 i 729 7 l203 5 0 6745 SD00 4N 4 4tA
                                                                                                                                                                                              '          i 404 8                                                                  473 6 4K8                   61010         6020i1 0 7 % 41 0 75658                         724 6 1203 [             0 6793 0 7614 1447         42H                           l AR2A                  633 03        4 02026 0 70794 t??l20 4785 4832         719 5 1202.s             6 6842 475?S 1.4370                            l W8                    656 61        1 02034 84d065 010100                                                                                SIEA 714 3 1202 2            66a90 67443 1 4333          24A 487.9                                 SH39 4 7357 1 4296 808 8                 680 86        0 02043 8 65448 6 67492            4g2 7         709 0 1201 7                                        WBA 705 78        4 02053 042938 4 44991                           703 7 1201 1            0.6987 0 7271 1A258          011A
                                 ' 884 8                                                                  497.5                                 RMM 01485 1.4221 308 0                731 40        6 02062 160530 4 62592              502 3        648 1 1200 5                                         Sits 512A                  15712         4A2072 9 58218 4 60249             $01.1        802 1 !!968             0.M85 E7099 1A183 516A                 74416         4 02041 M5997 050079                                                                                   gata                      i S 72      l' 99 0       4 7133 8 7013 1A146           SMA                       l
                                                                                                       . 512.0                                 0 7182 CA926 1A108
                                    $368                  812 53        0A2091 653064 45$456 6 42102 1 51814 6 53916
                                                                                                           $169         481J l         96 2 973       4 7231 64139 1 4070          $18A                      l ta4A                  941.04                                           521 8        6M.5       1                                           832.0 0 02112 0 49843 451955                          469 6 I         96 4     0 7280 04752 1 4032 tit e                 870 31 402123 0 47947 0 50070
                                                                                                           $268 1,% 4         4 7329 E6&5 IJ993             GILA 832A                 900.34                                            631 1        663 6 88 8                 53117         4A2134 6 46123 0 48257                                                                                 64H E75 !!94 3              4 7378 945D 1J954 53 0                                   03427 0 6489 1 3915          544A 948 8                 962 79       60214 OA4367 0 46513                5418         451J 1893.1                                           SetA
            . i 93512         6 02157 0426U 0 44834              546 9 . M50 1191 9                    0 7476 0 6400 IJ876          8pA
                                     $44A                                                                                                         6 7525 0 6311 IJB37 I                    644 0               1026 49         9 02169 0 41048 ' 0 43217          552 0        E34 5 1190 6                                           utA thfA                1062 50         0 0?l82 R39479 041E0               5571         432 4 1189.2             01575 06222 .1J797 30 0                109735          0.02194 4 37966 0 40160                                                                                IISA H24          625J       l'   87 7     SM25 0A132 1J757              854 8 3133 38        0 0??07 036507 0 38734                          518.5       1 86 1       0 7674 0 6041 1J716           SetA SeiJ                                                                  W16                                   &M25 05920 13675 170 10       8 02221 0J5099 CJ732C              5729         4115 1          84 5                                   872A                    3 354 8 188 8                .207 72       0 02235 433141 435975               57t3         604 5 I       .42 7     0DM 03859 J634                 SMA 246 26       0 02249 032429 4 34678              543 7        5972       1,80.9        4 7825 15766 J592 572A SMA                  i28534        4 02264 0J1162 0J3426                                                                                   3010 589 1        549 9 if 790             0 7876 05673 13550            Seta 1326 17         0A2279 429937 032216                            582 4       l'369        1 7927 05580 13507            GRA Sest                                                                   594 6 0.7976 0 5485 IJ464 tots                 13611          0 02295 628753 431048 6 02311 027608 6 29919 600 1        574 7 1 14 8             E0030 15390 1 3420 We
                '                      0918                1410 0                                            5051         966.8       1126                                       8018                   l 1453 3         0 02324 026499 01st27              bile         558.8 l i?0.2            48082 0.5293 IJ375 SE2A teu                 1497J          E02345 015425 CJn10
                                                                                                                                                *
  • l
                  }                                                                                                                                                            WAA 6171         550 6        1677       0 8134 451 % 13330             #4A                   3 esti                  ,5432         0 02364 0 24384 026747             622 9        5421         l45 1       0.8187 05097 :    3244 W8

[ e4A 589 7 E32382 423314 0.25757 628 8 533 6 62 4 0 8240 04997 .3238

                                                                                                                                                                  .3190        tilA                    )

637J 0 02402 022394 014796 .59 5 0 8294 04996 ' 8018 634 8 $24 7 ED48 0 4794 IJ141 81H ,

                                    $12A                   .686 1       6 02422 021442 013865              640 8         5156       ,;56 4
                                    $16A                   l735 9       0 02444 020516 0.22960 3092       Sie 8             l   1 a                                     .

5003 18532 0 6403 0 4689 >

                                                                                                                                                                                                     )

646 9 824A GN8 1786 9 6024E O' 9615 022081 653.1 496 6 .149 8 6 8454 ' 0 4583 .3 041 828 8

                  +

6 02489 0 8737 . 021226 ,14 1 &$514 0 4474 .2988 'i 04A 16190 659 5 486 7 832A SilA 12924 0 02514 & 7880 0 20394 E1.9 4764 il42 2 0 8571 04364 :12934 88EJ 4 sit s 1947.0 40?$39 0'3044 E19583 672 4 E57 113& 1 4 8628 44251 12879 SitA 2002 8 0 02 % 6 4 16226 418792 estA i

                 ,j                                                                                         6791          454 8 11332             88686 0 4194 11821            e44A 2059 9        4 02595   0'  5427 ' t' 0021 443.1 l'29 0            4 8746 0 4015 1.2761          seis G480                                                     0' 7269       685 9 1118 3        1 02625 0:4644                                   431.1 1 24 0            4 0006 03893 11699            52A                  ;
                  }                  444A 441 9                 2178 1 -      lLO2657 & 18 76 & 6534 4 0?691 0 .3124 0'i5816 692.9 700 0        418 7 1 18 7            6 0568 03767 IJ634 4 8938 OJ637 12%7              WA                  l 52A                   2239 2                                                        4051 , !,13 1 LO2728 0 ,2387 a15115
                   .I                                                                                        707.4 WW                    23011 392 1 1107 0             8 9995 43502 12498            WLS
                  )g                  MS                    2365 7       4A2768 Ell 663 OL4431 4 02818 0.80947 4.3/57 714.9 U2.9         3NJ 1100 6               0 9064 43361 11425 4 913/ 03210 1347 54A utA                 i 3                 seda                  24311                                            731 5        362.1 1063 5                               12 %        $72J 4 02858 410229 E.3087                           3451 1085 9              4 9212 03tb4 ,2179 f                                       2498 1                                                                                                                                   a uit                                                                    740 2                                                               9MA 872A                  2566 6        1 02911 0 09514 &12424              7491        3265 30n.6               0 9287 12892 L                                                     LO2970 108799 0.l1769 e                Gita                  2636.8 49M5 02720 IJ006               utA                1 Ma$          310 1 1068 5                                           N4A 27086         6 03037 Res000 Ollll?               M81          2002 1058 4             8 9447 02537 1.1984 NBA                                                                                                         4 9535 82337 1.1872            00LS 27821        4 03114 407349 0 10463              77t3         2682 1047.0                                            MA I                 804A GIRA                  2857 4       8 03204 4A6595 0 09799              790 5        243 1 1033 6            49634 42110 1.1744             NEA g                                                    603313 105797 0 09110                            2128 10171              0 9749 E1841 1.1591 stA                   2934 5 4 034 % E04916 6 08371 804 4 stA                   3013 4 0 9901 01490 1!M0             NLA e                                                    822 4       1721 - 9952                                            N2A                l NES                   36MJ          063662 - E03857 6 07519             835 0        144 7 979 7             1 0006 0 1246 1.1252           It4A              ,

1 0169 0A876 1 3046 j* 3tta 384 4

                                                             $135 5 31DJ
                                                                           & O3824 403173 0 06997 0 041(4 022192 E0000                3542 873 0 102 0 63 4 956 2 934 4      1 0329 0A527 10B56 M8 NL47*

MLA 3198.3 0.04427 601304 E05730 906.0 04 906 0 3.0612 0.0000 1.0612 l W 47* 3208J ' O.05078 OD0000 E05078

                                         *Critacal temperStwe                                                                                                                                        !

1 1 1

                                                                                                                                                                                                     )

i

                                                                                                                                                                                                                                                                 ,; ,,w, 4

50 TeWe 2: Saturated Sinw Pre 00ure TeWe (nthalpy tatropy

                                                                              $pecific V9 deme $st.                                              Sat.                    Sal.                                            Set                                    Abt hess
            ,                                     Temp                148                                        Sat                                                                                                                                            La/sq In.               I Abs hest                                                                                       trop                                    Oged           (sep                        vapor 14/$q in.         fahr            Lated            Evap         vapor          L ud                            Ve p
            ,                                                                                                                      fi ls                                    8(             S gg                                    Bg' P               I                'l             ' ig          's               I                                     s 3367 4         3 0001          0715              075 5                 0 0000           1872                     f lon                                             OJet:5 02eI43      32 018           00160M           3302 4 0 0542           8425                     2 0t57                                            4J5 27387           060 1            :047 4 SM          $9 323           0 0lt332          4235 5       1255 5 0495             9446                     2 03,0                                             &St 641.5        641 5        47621          10486              096 3                                                                                                              14 E88        79 5 %           0 016071                                                                                             0 376            $4%                                 9781 13         $0174            4 0161 %            13 59     33340           6973          lam I                   05 8 e643                                   4.4 34 1            0 349            8094 la         16224            0 016407            3 515      135n          13020          1000 9 0 28M            504                                   78 79                               tes 38 404       38 420        1612e           9 21                    43 3                                                                                                       14 ass                 ,

MJ 19321 0 016592 199 130.17 970 3 305 g3121 444 7%e 143e6 1200 0 0167 9 26 782 4415 11 %2 14A 290 18121 M97 30.9 0 3137 11A 13.03 6 016126 26J74 . 1M27 EGI 1%3 0 3358 IJ962 TUO NA 38 0 227 % 00164M 20 070 20 087 0 3682 IJ313 09 % ma i 214 9 9452 154 1 ass 2$0 H 0 017009 13 7264 13 74J6 0 3921 12444 4765 eta 3 933 6 69 8 418 26725 00l 7151 104?M 104%5 236 s 74 8 0 4112 11474 45e6 me l 001274 4 4967 E5840 250 2 923 9 318 281.02 915 4 N6 0 #273 11167 4440 at ett 232 11 to 7383 7.1%2 7.lTM 262 2 .

                                                                                                                                                                                                                              .6316                                 Es 9073            c      00 6            6 4411          1.1905 75A          30193             00 7442          & l875       6.2050            72 7 et !         300 9           1,83 1                 0 4534          3 1675                             .4208                                    as 48 3         312 04            t o 7573         5 45 %       5 4711 0 4643          1.1470                         1 6183                                       35 0 4tH9         4AJ53           290 7          894 6           1185.3 Sta           32020            0.017659 298 5          888 6              1871                 0 4143         1.1284                                   60n                               sul 32732            0 01U40          4 4133       4 4310                                                                                                                     , S%0                                 11eA teli 305 3           es31                 :48 9             0 4534         18115 114 8          334 79             4 01782         4.0306      4 M64                                                                                   A960                               ,5879                                 138A 34127              0.01709         3 7097      3 7275          312 6          $UJ                . 90 4            0 4919 laas 114e                                                                                         8728                    91 7            0 4998            0815                         1 5813 i

34733 0 01796 34M4 3 4544 319 0 . 14 4

               ;                    19' t                                                                         3250            868 0          1193 0                  0 5071          .4681                           15712 353 04             0 01403         3 2010      3 2490                                                                                                                                                           Ite s 1418 330 6           M34                  1 94 )            O H41          Lo%4                             1 56 %

35843 & 01009 2 9958 3 0139 Ige t 1M8 3J61 859 0 .195 ) 0 5206 1 9435 15648 et t 363 55 0 01815 2 4155 2 83 % Ilsa 341.2 854 8 1% 0 0 5269 0322 1.% 91 iA4 36842 0 01828 2 65 % 2 6738 1st 346.2 850 7 196 9 6 5328 A235 1.% 43 tell 3408 0 01427 2.5t N 2.5312 846 7 191.6 0 5384 . All3 15498 198J 3N13 0 01833 23847 2 4030 350 9 19t8

               ;                                                                                                                                                         0 5438          1.0016                           15454                                    see8 38tA0              0 01839        21689        2 2813          355 5          842 8            !!98 3 300 0                                                                                                                                0 5490         0 9923                             1 5413                                   21s t 359 9          839 1            1199 0 188            'J85 91             0 01844 2 16313 f t4217                                                                           0SMO           O 9434                             IS374                                    220 0 359 88             0 01450       2.0609 2 00629                M42            835 4            1199 6
                                                                                                                                                                                                                           !.53M                                    236 8 19 8 364 3          831 8             1200 1                0 % 88        0 9748 '

230 0 393 70 0 018 % 1 91991 1 39446 828 4 1200 6 6 % 34 0 9665 1 5299 set t 297J1 0 01860 1J9909 1 51769 372 3 tese

               '                    Met                                                             44317          316 4          8210              1201 1                0 % 79         0 9585                             15264 2N8             400 97             0 0' 065      122452                                                                               057M           0 9504                             15230                                   act e 379 9          821 6             1201 5 188 8           9444               00 870 1 7 % 48              77418 818 3             1201 9                0 5764         0 9433                             1 5197                                  tits 1730             to 875          49137        71013          313 6                                                                                                                                            mtJ q-                    21eJ                                                                           347             Sill             1202 )                p 5005         0.9M1                               1 5166 Nee                18 07           R0.8%           63169        65049 812 0             1202.6               k5a44          49291                               1A135                                  sett 414h               0.018;)       13n97          59482          390 2m8 tot 9             1202 9               4 5082         0 92?3                               ' 6105                                seta
                   '                                41735              0 01889       1.52384      1 54274          394 0                                                                                                                                            att 8 3 eta                                                                         409 8           794.2              1204 0              0 6059         0 4909                              3 4964 let 8          431 '3              4 01917        3442         32 % 4 1204 6              0 4217         at;30,                               3 4447                                das
  • 16095 424 2 780 4 esta 444 60 0019M .14162 8 8378 4738 404 0 4373 yc7 5 204 8 0 6360 0019M l 01224 1 83179 0 6490 E8148 4639 es e 1 4s48 45678 449 5 755 ) 204 7 4547 tes t b

d tel s 46701 0 01975 0 90787 0 92762 460 9 743 3 204 3 0 6611 0 7936 4461 as8 SW 9 476 94 0 01994 0 82163 0 84177 203 7 0 6723 0 1738 7' 0.02013 0 74962 0 76975 4?! 7 732 0 07%2 4381 958 4 see e 486 20 481 9 720 $ 202 8 0 6828 494 89 0 02032 0 68811 0 10843 4 6928 'O 73n  ! 4304 les8 p SH 8 4916 710 2 1201 8

  • 208 8 '50308 0 02050 0 63505 6 6 % 56 >

01210 1 4232 758 8 4 500 9 699 8 1200 7 0 7022 gen s 798 8 510 84 0 02069 0 58880 0 60949 689 6 199 8 0 7111 0 7051 84163 4 $1511 0 02087 0 54809 &M896 509 8 6 7197 0 6899 1 4096 mes

                +                       est a                                                                         518 4           679 5                 1980                                                                                                         98t mee            $25 24            4 02105 0 51197 453302                                                            l   96 4 -      0 7279          0 6753                                       I 4032 526 7           669 7                                                                                                                              cut est 8          53) 95            0 02123 047%8 %50091                        534 7 ' 660 0                             94 7        0 1358          0 6612                                       13970 4 02141 0 45064 0 47205                                                                                           4 6416                                        13910                       Net t 6                       208             53& 39 542 6           4504                ,     92 9        0 7434 IJa$l                       tends tese               544 58           0 02150 0424M S 44596                                       640 9              l      11 0        0 ?$07           0 6344 i

4 tute  % 053 0021U 0 40047 0 42224 0 80054 550 1 557 5 631 5 1189 1 87578 aul6 13794 Ilse 4 It at e b618 0 021 % 0.37863  ! !B7 0 0 7647 4 6091 1J738

                 &                     lis t                                                                          564 8           6221                                                                                                 IJ68J                        IJets
                   '.                  1150 0            56132            0 02214 6J5859 0340H                        578 9           613 0              1184 8              ante            0 5969 j                     1200 8            % 7.19           0 02232 0J4013 036245                                                                                                                                                                         tatA
                                                                                                                                                          '882 6             O nao           0 5850                                         13630 5 78 s           603 3                                                                                                                            lasta 12W 8             572Ja            002M0 032306 6345 %                                          594 6                  180 2          0 7843          &5733                                           1.3577 Sn.42             6 02269 030722 032991                       585 6 IH8                            0 5620                                          13525                      lasts                  ,
                       '               lasta                                                                           592 3           585 4                                 8 7906 IJ474                       14ett 18M 8             58232             0 42288 0 29250 431537                      598 8           576 5                  1753           0 7966          0 5507 00D07 0 27871 6 33178                                                              '

g5397 13423 utta 1408 8 58707 8 605 3 5674 12 8 0 80?6 4 02327 026544 8 28911 0 5288 8 1373 19018 84WI 591 70 - 611 1 M84 70 1 0 8085 5 % 20 0 32345 0253n 0 1 # 19 .67 4 0 8142 0 5't2 IJ324 feetA 1981 8 614 0 549 4 Met 8 33p f 600 59 OtaM6 0142 % 016601 624 2 540 3 164 5 0619) & 5076 1 3274 teles lage t 40487 0 02387 &23159 01 % 45 1616 082M 1 3225 0.24 % l , 630 4 531 3 0497g gas 1.3176 11mA MW8 609 05 0 02407 022143 636 5 522 2 154 6 0 8309 17888 ,61313 R$2428 021178 CJM01 17e18

                                                                                                                                                                 %8           0 8363          0 8765                                             1 3123 642 5           5131                                                                                                      13079                   Hess 17J88             617 12           0 02450 &20263 022713                        448 5           503 8                     52 3        0 8417          4 4662 2 30             Met 8 lee 8 8          621 02           6 02472 4 6390 014861                        654 5           4946                     49 0         0 8410          04%i                                                                        INEA tut 8            624 83           0 024            0358 011052                                 485 2                     456         0 8522          0 4459                                                      1981 624 %            0 0251           D61 010278                  660 4 475 8                     42 0        8 8574          04358                                               11931                   19818 (GER 8 t#48             E3212             0 02'41         6999 &       %40            6f6 3 0 8625          0 42 % . 1 2881                                                             38t 6?66 &        8531          6721            864 2                                                                                                              17e0            met 8 fees 8           415 80            4 02565 750!          6438            446 7                   D'MOS 3       0 8727          0 4053 1616            82nf U088             642 76            0A7615 0 4685 6                             6956            426 7                  0221            0 8828          0 384r ffet 0           b49 45            8 0 & 69 4 3FA3 0             6272 707.2          406 n                1113 2            4 8929          03640                                                1.n69                  83stJ stets fatti             6 % 89           0 02727 & 2406 El5133                                        3e414                il017            6 9031          0J430                                                 12460 festa            66211            4 02790 4 .1287 a l4076                      719 0 Insta l  093 3         0 8139          03206                                                 11345 3068          731 7           361 6                                                                                                                             seats festa            664 11           E02859 0 10209 0                             744 5           3374                 :052 0           0 9247          019n                                                   12225 0 02938 0 09112 0              2110 6 5356          0.2741                                                 IJo97                21stA 4                    3est a           67391                                          .llH           757.3           312J                   .069 7 3esti 21sta            679 53           0 23029 0 48165 0                            N07             285 )                  10 % 8         t9468           01411                                                   1.1958 684 96           0 03134 401171 8              t0305 0 % 88          02215                                                   1.1803              ant 8 3amt                                                                           785 1           254 7                  1039 8 1.1619              aseta Im64            61022             0 03?62 6 06154 4 09420                                                            1020 3          69728          & l891                                                                                              l 3eeft           69533             0 83428 0 05073           0.08500           001 8           218 4 9933           E9914          0                                                        1 8373              UE8                    L 824 0            169 3                                                                                                                             SistJ Mett             70018            EOM41 0 43771 SD?452                        875 5             54 8                  S31 6          1 0351          0.048                                                    8 0132 705 08           6 44472 6 01191 0 05663                                                             W60            1 9612         0 0000                                                    8 4612             Stat.2*

32st e &b5018 - 906 0 &O 82012' 70547 6 05078 0.00000

                                   *Critmal pressure l
                          %.'m4*
                       <                                                                                                                    i o        2.1         22       2.y g.o        i.       1.2   1.3   1.4   1.s             1         1.8   1.9
                                                                     ^%/NJ/M                  /N /         /     /%
                                                                                                                                  ,_       i xfb^6_/ A/ ! N          f /              /
                                                                                                              // d/1i00 N/            io60
                   ,_                                    AldOhNK                           / N/ /r%
                                                                                     // s / /hk/                          / wo ;
                                                                                                                                  ,_      1  I
                   ,_                                   //V/2Sch 7s/ /N/ //                          NL      f fi/    /i 800 '
                                                                                                                                  ,.s,
                                                                                                                                          'j
                                                       /ll'WN.1/s /N// Q'/W-/7b 7

1

                   ,_                                          i                                                                   ,.
                                                     /                                                 /           /                      L g3g
                                                                            /x                  /                               I 1350 K / / /M           /       /        / ^ 600/
                                                 /)!'E/0$7 N
                                                     /
                   ,_                                                                          l'*YJ/                             ,_
                                                /M'        Nd                                     *[27)

Mr2B = Q'Y W M' 77 i C fEBEMfW79~! ""

                   .                     //MM h%WW/M                                                                                       ;
                                                                                   /        -

MMW7)@7 M 1050

                    ~         MMNMW N                                                                                              ~

\ IBMM&M ~ l JMXMWDY ~ > JBM7>(M l 79 L 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 22 2.3 ( Entropy. 8tuIlb, F l L o

l

         '6. _THEgBY_QE__Np_0 LEAR POWEB_fLbET OPEBATI E _ELUI E AND      PAGE  36    l IDEBM90YBad193                                                           i ANSWERS -- LASALLE 1&2                  -87/06/01-LANKSBURY, R.

ANSWER 5.01 (1.60) (a) TRUE 1 vbv TIl0Z.-- l (.h) FALSE C QN) TRUE REFERENCE' LaSalle Reactor Physics Review , , 292006K105 292006K111 292006K112 ...(KA'S) l l ANSWER 6.02 ( .50) I c. REFERENCE LaSalle Reactor Physics Review 292006K114 ...(KA'S) ANSWER 5.03 ( .50) (b) REFERENCE r General Electric Thermodynamics, Heat Transfer, and Fluid Flow; LaSallo l Fluid Flow and Heat Transfer 291006K106 291006K113 ...(KA'S) i ANSWER- 6.04 ( ,So) (b) REFERENCE General E]ectric Thermodynamic, Heat Transfer, and Fluid Flow; LaSalle Fluid F]ow and Heat Transfer 291004K110 293006K113 ...(KA'S) i l

fu _ THE0hL9E._NRQLEAR _EQ}iER_ELANT _QEMBhllpNt_ELUIDS t AHQ PAGE l '/ l ISE8MODYNAMIGS ANSWERS -- LASALLE .1&2 -87,'06/01-LANKSBURY , R. l ANSWER 5.05 ( ,50) . c.g 6 REFERENCE LaSalle Reactor Physics Review 292003K107 ...(KA'S) ANSWER 5.06 (2.00) i.G Assuming 100% core flow is 108.5A M1b/hr [+0.25) and min MCPR (limit)

1. 2 6 3[.+0.25]

tu..t0 on L 14(.Maltz) For Condition 1:

           % core flow = 54.25/108.5 = 60%

ions from Figure b.08 Kf = 1,17bA [+ 0 . 2 5] M MPCR(limit) = 1.26(1,175) = 1.481 , DMCPR = 1.57 - 1.481 : 0.089 For Condition 2: 4

           % core flow = 81/108.5 = 7X.7%
  • k . 02.

from Figure 5.08 Kf = 1.05n[_+0.26] MPCR(limit) : 1.26(1.05) : 1.323 gg g, e laid m rde mi DMCPR = 1.44 - 1.323 = 0.117 ugdut nongartug sit 3ktt 33 u 1. gr A Therefore - Condition 1 is closer to limits [+ 0 35]j gg,t ud. (+0.25 for math - errors will be considered in above answer). (,,ctL., reue.mLAe netk & c4 ce*6 3 ., tk< (cree t aaswo w;h nhc be AoephA.) t REFERL:NCE General Electric Thermodynamics, Heat Transfer, and Fluid Flow; LaSalle Fluid Flow and Heat Transfer; LaSalle Tech. Specs. 3/4.2.3 393009K123 . .(KA'S)

x

                       <l_

di f . 2 3,'  ; f

-}
      .,E@                    THEORY OF. NUCLFARLPOWER PdANT_QPERATIO'N. FLUJDL AND L                                                  .PAGE1 18L;   '
          'g                 :IMEBU9MNod1Cg u

EANSWERS'--TL'ASALLE 1&2: ,

                                                                                                   -87/0.6/01-LANKdBURY, R.              6-
                 ~
                   ? ANSWER-                    5.071,                  (2.50)                                                                     o
                     ;Nol[0,b].(ThermoLefficiencyisa' comparison.ofEnergyIn'to
                                                                                                                                                   ~I
                                                                     . Thel increase in~ output results from.no                                      1 Energy.being        Out .[.D.dris.)ted                   to the' high pressure --feedwater heater [o.G Ana 6cremA RI
              ,      isteam                             diver
                       -[0.~ 5) .. - Because the f eedwater is now cooler, more ' anergy f rom . f" awe to urter -

fechwde temp,,

                                                                                                 ~

the. reactor is' required to; bring the water up;to saturation a ' temperature--[0.6]..thus'thermo' efficiency is down.[0.5). ,j

                     .' REFERENCE LaSallel Fluid Flow and Heat Transfer;                                       General Electric Thermodynamics,              o
Heat Transfer, and Fluid Flow l "293007K113. ...(KA'S) ]
 .c-
                'LANSWER                        5.08'                   (2.00)-                                                                     4 i

a '. K2 =-K1.+LdK =.0.96 + 0.035 = 0.995 (0.~25)' Chl'(L-ki)'= CR2(1-KO)- CR1(P hl-) = CR2 l I1-K2)  : CR2 : 10 (1-0.96) 4 ______._____________-- (0.25) i 1-0.995 , q CR2 = 80 cpa (0.50) i

b. Greater-[0.25]. The fractional change'in neutron population per
                                   . generation becomes less as you approach criticality (Keff=1).

Therefore, it requires a longer period of time for neutron , pof>ulation to stabilize [0.75). Also accept answers-which explain ) that.there are more generations to go through prior to population

   ,i                               stabilisations.

REFERENCE LaSalle. Reactor Physics Review ATT .10-6 ,,, 292003K101 292008K104 ..(KA'S) l

        .                                                                                                                                            I

' l . ., , i ' ,% ,

       .*                                                                                                ,,t!

LIu.'__IdEQBYdQEdiocLEABL: POWER PL6BT' OPE 8611QM[ FLd1D J d6HD .PAGEiY19.j ISEEM0JYNAMICS; ,

   ,              TANSWERSS .LASALLEEl&2-
                                                                                              -87/06/01-LANKSBURY, R",37-      .
                                                                                                                             ~.
                                                                                 .\                                        j 'i f '                                           ;
                                                                                                                           $N - c 3
                                                                   ,                                                         Q.fh ,f
                                                                                                                                                                                                      ~

l 3 1

(l'.25)-
               ' ANSWER,                  5.09;                                                                                                                                                               J
                     .al      j (0 f 26 point's5 each)' c Any 3' _of '.the f ollowing:

4 11 '. ~ Fuel' depletion g.cq,/ q.

2. -Xenon  ;

4 HJ 3, Samarium 4, Fission product' poisons iaccept'if' don't list Xefor Sm) 5.

                                                                                            ~
                                           ' Negative reactivity.;due;to voids
6. . Negative reactivity due to doppler.. 1 1

I

7; Negative reactivity due to moderator. :temperat.tre l

1

b. ~.(0.25"' points each) -Any 2 of.the'3 below;- -

1 l '. ControlLRoda H

2.  : Burnable Poisons ,
                                                                                                                                                                                                        ~'

4: 3. Recirculation Flow o-

   ^ '
                     ' REFERENCE-LaSalle Reactor Physics Review
                    '292004K101~-                        292004K105                 292004K110          292006K101-                          292006K108-                                                 :

2.92007 K101 ' ...(KA'S)' I o

                                                                                                                                                                                                        'l   t t

s i

U L him . l-U . . L h__THEQhLOE_NQQLEAR POWER PLANT OPEBAI19L_ELHJIS1_4ND PAGE 20 ISEBU9DXNAMLCS Li

           .ANSWERSL-- LASALLE.1&2                             -87/06/01-LANKSBURY, R.                          1 i

t l

         ' ANSWER        - b .10 -         '(2.2'b)                                                               i
                                                                                                                .i Correct, order is worth P.75 point (-0.25 for each item out of order).                        The explanations are worth 0.50 points each.
a. DOPPLER;is the first to add negat3ve reac'ivity. t The increase in power level causes a rise in fuel temperature and a corree.ponding i addition of negative reactivity due to Doppler defect.
b. MODERATOR. TEMPERATURE COEFFICIENT is next as there is a time delay l (fuel time. constant) for the heat generated in the fuel pellet to reach.the' coolant in the channel and cause the temperature to t '

increase.

c. VOID' COEFFICIENT is last as the moderator temperature has to increase
                    .to the point of saturation before voids are formed in appreciable quantity.        (Also accept if there are no voids early in startup.)                       ;

l REFERENCE

            -LaSalle Reactor Physics Review
  .m,        292004K101-           292004K106           292004K130     292008K102      292008K127                 ;
             ...(KA'S)                                                                                            ;

L~ i

         . ANSWER          5.11             (1.50)
           .a.       No Change
b. Decrease 1
c. Decrease REFERENCE LaSa.13e Fluid Flow and Heat Transfer 292006K108 ...(KA'S) i t
  #^                                                                                                              l

ik.__E14EI__ SYSTEMS DESIGIL _goNTROL1 AND_INf2TRLJtLENTAllQB PAGE.- 21 i 4 ANSWERS -- LASALLE'1&2 -87/06/01-LANKSBURY, R.

                                                                                                          -q r

ANSWER 6.01 (2.00)

             .06 i w 4 51%
     - a.                                                                 (0.25) 11875                                             (0.25)
b. Recire Loop flow eler.ents on su; tion ' side of pump. (0.5)
c. Only the 118% fixed scram [0.5]. This is because the flow biased scram droorporates a time delay into its actuation (~ 6 seconds, representative of the fuel thermal time constant) [0.b].

REFERENCE LaSalle System Description Chapter 5 and 14 .i 215000K101 215005K402 ...(KA'S) ANSWER 6.02 (1.50) < Any three of the following @ 0.5 each: RHR Pump 1B RHR Pump 1C  ; Supp Pool C/U Pump A CRD Pump 1B Recire. MG Set B Primary Cont, Chiller B REFERENCE LaSalle System Description Chapter 42 201001K201 203000K201 262001K301 ...(KA'S) ANSWEN 6.03 (1.50) Detector High Volts bow

       - Module Unplugged
        !RM Mode (Function) Switch not in operat,e REFERENCE Lass 11e System Description Chapter 12                                                               4 21 BOO 3K401       .  .(KA'G)                                                                        l

__.____________._____j

h PAGE 22 L.__n68.T.;EXSIEt1LDEE19Ni._C9BIEDLu_a8D JNSTBl!tlE_.316I1QB , ANSWERS -- LASALLE$1&2 -87 /06/01'-LANKSBURY , R. i: C I ANSWEE 6.04 (2.00) o ,

a. Control' valves close 5% [0,126], open one bypass valve

[0.12h3v answer on dia .

                                       , fy (or similaEt sten uaeLo.tas] ,ca[ ram) .N prewe sen W M'l0MG l                                             pose l
b. . Control. valves cluse 5% [0 C5], reactor scram. probable (,pe <, i.e.nni)

! [p.t25] 41e to increasing pressurev cince bypass valves will not be open [ 0.J 2 b ] . g (0M53

                                                      -                                                     450
c. Will develop a .pt ensure error of -6H+9- paid -[ 1]. This will be -_

a demand ~for maximum opening of all valves [.1]. However, due to the action of the maxim 1p combined flow limiter -b+3, control val,%es will go'to 100% [.1W, d ;.-.A-and bypass valves to .% [ . W. Reck pcwee will deccent LO.iU3 an1 recte preme w;ll dec,., se (o.t253, i.. d. 90% [0.125] to maintain Rx pressure Control at 920 ps:v gMg pyose 0 320)to. Tkt two bgpass valves ecmain opeo [p.n253 an A re4r Powe w;ll nemin censloat [o.l253, REFERENCE LaSalle System Description Chapter 26 24buouKbO3 24 5000KiiU E ...(KA'S) ANSWER 6.Ub (2.00) l 1. When a control rod reaches one of its group bank positions.

2. When a control rod's movements do not meet the RPC rod pattern criteria.

1'

3. When a contro) rod bypassed an even reed switch that has l

failed trea position indication Le been Jost or failed).

4. When the M C has failed or cannot find a corrnet core red pat te rn .

REFERENCE LaSa.lle Syctem Description Chapter 19

                                                                                                                                  ...(KA'SJ L                201004K401                  201004E4u;.                     %U10u4K403                             201004EC03 l

p __,fLANT SYSIEMS DESIGN, CONTBQL1_ ANI),._INSIBWENTAIlgd PAGE 23 ANSWERS -- LASALLE 1&2 -87/06/01-LANKSBURY, R. e , ANSWER 6.06 (2.0u)

a. close (+0.5) l
b. 1. no change (+0.b) 1. NoCA'aac (.+ON
2. no chan e (+0.5) -M 2. b ec **se (.* 00 3, U S T 1 {- (+0.5) 3. Occreta (t os )

(If part a is answered,open, thenvi:.mc ; for b. 0 mil be avveyLud) ontg 'no cAsage ' taill be Acce pt< & fo- b.i,t. 4 3) REFERENCE LaSalle Dystem Description Chapter 8 201001K507 .. (KA'S)  ! ANSWER 6.07 ( .7.5) l

a. SRM Inop. Trip o rt. Ro t 6tock Tri p
b. Inop trip on SRM's ..:auses a Rod Block, on. Stady og mt centMe. bewa Ts sgnoperailit3 -epi.e w b a
v. T L ! '" % v SRM operability is now not being met f or *+ nr+ t:p, win di requires 3 of 4 SRM's to be uvo M -The action requirements for i this LCO woul.sLJ:we _ Lv ve implemented unti .

istake was i c y ~~a Es "B" SRM was operational again. I C. .

          #       . Range 8 or above OR > Range 7 acceptable.

l REFERENCE LaSalle System Description, Chapter 11, and Technical Specification 3.3.26 215000G005 215004A202 215004K401 ...(KA'S) ANSWER 6.06 (1.00) The meter pegger is a D.C. current amplifier. If the radiation intensity goes too high,[.12b] the interval between pulses in the G-M i tube becomes very small. When a G-M tube saturates, [.125] it will go into a steady D.C. conduction and the tube will stop producing pulses, which causes the meter to go downscale [0.25]. Also . accept discussion of

           " bl ar.ko u t " for (0.5 pt) credit because of a lack of pulses.                  The l           meter pegger prevents this from happening by previding a signal to drive l           the meter upscale in the event the G-M tube saturates [0.50].

l l REFERENCE LaSalle System Description, Chapter 71 272000G00Y .. (KA'S) I ! - - - - _ _ _ _ _ _ _ _ _ .__________J

, ,,; , ,;;_ + ,

             $ DEL 6EI _SXMFJS DESIGN,4 CQHTROL, AUD_lHE RUMEUIAIlQU                                                                                PAGE': N4
                ; ANSWERS -- LASALLE'l&2                                          -87/06/01-LANKSBURY, R.                                                        ]
             ' l, ;
             ? ANSWER                 6.09                ( 1. 00 ),
                 . a' <:4      1.        ? gr~T I'! iovia Livu will vuum                  disclation of VR =.d                                '/Or.

f';.25)

                            .2.        % k t;.% e4 v cQ mai 9               ~"rN""          tart. M0.2F'
 ,,                                                                            'Olpnet 1b ".

3 E.r hth)JUL)f ?ECT L2 e e.ts 10 MR/HR. (0,5) iREFERENCE! lLaSalle System Description,' Chapter 72 272000K106' 272000K205' ...(KA'S) ANSWER 6.10- ( .75) Place..the function switch to the count position on the meter' unit (0.25]. l

                 ' Meter indicates. number of assigned'LPRM's which are in operate [0.25]-- 5%
                 . pe'r =- LFRM - [ 0. 2 5 ] . . .         ._ .      .

(ALSO ACCEFT. CHECKING WHICH:LPRM'S' ASSIGNED TO THAT-CHANNEL ARE IN OPERATE USING.LPRM.BACKPANEL STATUS LIGHTS OR LPRM FUNCTION SWITCH.)

                   . REFERENCE LaSalle System Description, Chapter 13                                                                                                       .

215000G007 215005A404 215005K501 215005K506 ...(KA'S) ANSWER '6.11 - (1.00)  ! Any (three -(3)/ @ O.33 ' 1 '. suppression Fool-' Level 1

2. Suppression Pool Teraperature
                  ;3;          Suppression Chamber Temperature
4. D/W. Temperature i.b -D/W Pressure REFERENCE EL'aSalle-System Description, Chapter 74
                   -295_016A204                  296016A206.             ...(KA'S)

! + __ ____ _ ___ _ . _ _ _ _ __ _ _ _

1

                                                                                                                                                   ~!
7. PS99ED.l!BES - NORMAL _6BN_QBMbh_ EMERGE 89 LAND PAGE 25 1 EADlOLOGICAL CONT 89L j ANSWERS -- LASALLE 1&2 -87/06/01-LANKSBURY, R.

l ANSWER 7.01 -(1.00) I,

1. MSIV's closed due to MSL Hi Radiation (or. fuel damage indicated)
2. High steam fl'ow isolation received (or MSL bresk indicated) I
3. Conta'nment i radiation level is greater than full power background (or not following expected trend or-analyses indicate T.S release lim 3ts will not be exceeded). J (Any 2 @ 0.5 pts each)

REFERENCE LaSalle LOA-MS-01 . 239001G013 239001K407 ...(KA'S) ANSWER 7.02 (1.00) To prevent a possible exp]osion. i REFERENCE LaSalle LOP-DG 1 264000G010 .

                     .(KA'S)

I

                                                                                                                                                   -i i

L_._EB9.0EDUBES - NOBdbLubBUQRMAbuEMERg_EECl_AND PAGE 26 E6D10 LOGICAL CONTROL ANSWERS -- LASALLE 1&2 -87/06/01-LANKSBURY, R. 1 ANSWER 7.03 (2.00) lap 4 @ os eaM - S<rpet.h

0TE .

asa weit c1eb'c4itt e~! ptutd regird e -- 041&nti pt .treMt , r npx:,t f or c:e

              +, p    rom-               O ; p+1 fer e              .
1. The steady state thermal power doesn't exceed 50% of rated - Unit 2 only.
               '2 . RR pump drive flow in the active loop does not exceed 30375 GPM (75%).

kcrea4 %' .os

3. The' Minimum Critical Power Ratio (MCPR) Safety Limit (T.S. 2.1.2)A 4 -a+rd Operating Limit (T.S. 3.2.3).w e increased by 0.01.

G#. The MAPLHGR limits are reduced by a factor of 0.85. setpoi,d, r eduJd b mE.M. M. The APRM flow-biased scramAand.(JP,od block setpoints and 1,he RISM.i 7, @ etpoints are reduced by b.3%. 9.B . The APRM flux noise is not greater than M pm k-t.o-neakg ewd 4, Ciplate d/p noise is not greater than 1 psi peak-to-peak (T.S. 3/4.4.1.1) - Unit 2 only. l0 X. Whenever operating within the stability surveillance region, perform the applicable stability surveillance for the unit ( LOS -RR-SR1 for Unit 1, LOS-RR-SR2 for Unit 2). II, RR 41w cod *oi sple m trew to Made. Flasud , REFERENCE LaSalle LGP 1-1 202001G005 .. (KA'S) ANSWER 7.04 (1.50)

a. True
b. False
c. True (3 @ 0.5 each)

REFERENCE LaSalle LOA-NB-11 218000K402 218000K403 295007G010 ...(KA'S)

L_ _EBQ9EDURE%L.;_NQBMAL.,._6BNQBM6huEMEBQENCY AND PAGE 27 B6DIQLQG.lR6b CONIBQh ANSWERS -- LASALLE 1&2 -87/06/01-LANKSBURY, R. ANSWER 7.05 (2.50)

1. VERIFY Reactor Scram in accordance with LGP 3-2.
2. INITIATE RCIC.
3. VERIFYSafetyReliefValvesOPENtomaintainpressure(between900and 1000 psig /as indicated on the RCIC Steam Sttpply Pressure Meter at panel 1(2) H13-P601).
4. ATTEMPT TO START Diesel Generators "O", "1A", "2A", "1B", and "2B".
5. NOTIFY Shift Supervisor.

(5 @ 0.5 pts each) REFERENCE LaSalle LOA-AP-08 29 BOO 3G010 ..(KA'G) ANSWFR 7.06 (1.50) nd. allow sn44ic.iest non-condcohle) b be p-cwl the c orubincd i' tts +- an e summen [k>n co- 4<bove f..h A this rsc limit ht u maye+thr glW Baore O ne AcuAedabs e% e4.tLe initi citi SpSty ' w e w i <, C ,,m

              .#_ %Eid 3N_ _959 8N. E..kMd'CI..dO..i _~ E ^ ^ 2 .' E.
                             -        ~      .           .~    v    m.
                                                                                              ~.~ E^ E mm^ 3. .5. ~ 72 ym uy m                   _

7""7 5 - h4 ve [0.75). As a result, containment negative design pressure may be exceeded, leading to containment failure [0.75]. (Exact wording not required for full credit.) REFERENCE LaSalle LGA- 03; GE EOP Fundamentals l 295028G007 ...(KA'S) 1 l l ANSWER 7.07 (2.00)

a. 1. 2 hours % 4 hours if under Type 11RadiationPermit).(0.5)
2. 80 hours (due to Form-4). (0.b)
b. Immediately leave the area [0.5] and notify your immediate su pe rv i s..o r

{0.261 and Radiat. ion-Chemistry 'O.2b).

r~F , - l I 7', EE99EDUBES - NOBM6L1_6BNORMAba._EMERGENgX,6N,D PAGE 28  ! BbDIOLOGICAL CONTROL. ANSWERS -- LASALLE 1&2 -87/06/01-LANKSBURY, R. REFERENCE LaSalle LRF-1000-1. i 294001K103 294001K104 ...(KA'S) l l 1 ANSWER 7.08 (1.50) (0.25 pts each)  ;

                                                                                                        \
a. 1. ECCS valves - that don't input to ESF status panel and could  !

compromise system operability.

2. Controlled release path to environs.
3. .FireProtection'ValvesI,allowedbreakawaylocks).
4. 'Others as determined by the Operations Engineer.
b. 1. Approved procedure
2. Outage Checklist (Also accept LO^-LV-SR1 (with operator in continuous attendance))

REFERENCE LaSalle LAP-240-1 294001K101- ...(KA'S) ANSWER 7.09 (1.00)

1. If f eedwater temperature drops mc.re than 100 degrees F. (0.5)
2. High level is apparent inanyheater(0.25)/andneitherits extraction steam non-return nor its extraction steam inlet valve can ce closed [0.25].

REFERENCE LaSalle LOA-FW-01 241000K112 259001K305 259001K312 ...(KA'S) I

- - . ~ . --       -

l

_y l

   >*                                .                                                                                                     'l L__EBOGEDUBES - NORUakt_ABNORU6ht EMERGENCY-AND                                                                           PAGE 2E '
               ' BAD 19b93LG6L_G9EIB9L
           ~ ANSWERS -      LASi6LE 1&2                        -87/06/01-LANKSBURY, R.

l

        ' ANSWER          7.10         '(1.50)                                                                                               i
                                         .1 A bs .                     i reset p.b,s    .A b(o5).
a. By depressing theAR: '/ .' : ci u ',:m c tua " t i; . . .; v .. L .

(n 53

b. No, [0.6]. ' General Precaution #15 tells the operator.not to.close the SRV's after an ADS actuation. The intent is to prevent multiple ADS actuations which might overstress and cause failures of RPV  ;

and/or containment components [0.5]. ) O A.  :

          . REFERENCE LaSalle LGA-01/ Gen Caut it>

218000K402 218000K601 ...(KA'S) h k g 4;-a % au2t l ' aoa su .or 2.) m;sopes ta m ; tke aA ~ k a 2 ieepea A indatico Los] , i i l 1

l p ,; o I h 3mbDMlHISIBATIVE PJQCEILURES; CQ@lIlQSSa AND LIMITATIONS PAGE 30: n . L .JANSWERS "-~- l LASALLE' 1&2 .-87/06/01-LANKSBURf. R. l'  ; I ANSWER -8,01 ('1'.50) l ., Yes-[0.5], the procedure change does involve an unreviewed safety concern. L The change decreases the margin of safety as defined in the basis- a forLthe1 Technical Soecifieations [1.0). ? (Othe - (. cered artwm hck as raiki"3 the so am httec,'^E **$ '4 kt au umptw.o muse in REFERENCE tL< accided analg $is will abe be aaepte4Q I? LaSalle TS 2.2.1 and' Bases;~10CFR50.59(A)(2) L 212000G006 294001A103 ...(KA'S) n

          'NSWER A              8.02          (1.00)
            ' Restore the temperature and/or pressure to within.the limits
         . (within30 minutes)

REFERENCE. LaSalle. Tech.' Specs. 3.4.6.1-216000G005 - ...(KA'S) ANSWER 8.03 (1.50) (a)'16. hours (b) ,24' hours (c) 8' hours

            ' REFERENCE-
LaSalle LAP-100-17  ;
            ~294003G103          ...(KA'S)
                                                                                                                          ]
                                                                                                                               )

ANSWER 8.04 (1.00) l l To ensure that. sufficient' water depth is available to remove 99%. [0.34]-of the assumed .10% iodine gap activity [0.33] released from the. rupture of an irradiated fuel assembly [0.33). '

           .(Answco ' re4lec tiw3 A kno.oled3        e tLat tke bases (1. to allow w4(itient taale      G.. abse.-btio.s       J r            REFERENCE of rtd; endive gaues ve(ee$ch in Eke event of a b( budk raptw*t are Technical Specifications Bases 3/4.9.9                       Acc ept able ) ,

233000 GOO 6 ...(RA'S) l { I _ _ _---____________-______-._____________J

L __6Dd HJfSIBATIVE fBOCEDURES2 CONDITIQNS, AND __ LIMILAIIONS ' AGE 31 ANSWERS ~-- LASALLE 1&2 -87/06/01-LANKSBURY, R. ANSWER 8.06 (1.00) ANY THREE (3) OF THE FOLLOWING:

a. Cancellation of job
b. Job completion
c. Expiration
d. Changing conditions REFERENCE l LaSalle LAP-100-22 ,

294001K103 ...(KA'S). ANSWER 8.06 ( .75)

4. General Emergency REFERENCE l -LaSalle LZP-1110-1
          -294001A116      ...(KA'S)

ANSWER 8.07 (2.00)

a. General Emergency per LZP-1200-2, Attachment A. The plot of Release Rate vs. Mean Wind Speed puts you in this category. (1,0)
b. The recommended protective act'.ons would be 90, H and F from Figure 6.3-1. Evacuate the entire radius of zone X, shel-ter the three downwind sectors of zone Y, and prepare for actions in the three downwind sectors of zone Z. (Downwind sectors are M, N, and P.)

(0.20 pt. for each cone; 0.16 pt. for affected sectors.) REFERENCE LaSalle LZP't. 1200-2, 5 294001A108 294001A116 ...(KA'S)

      'h     q; q

y ,.

           ?# ;    ADM LtLI ETBon.LE_fBOC EDU RES1_09@lH9B S , A M _.L I U 1 H H O N S                      _PAGE 32, ANSWERS -- LASALLE 1&2--                                   -87/06/01-LANKSBURY,.R.                     1 t

b ' ANSWER 8.08 ( .75)  ! l' L '2. j u REFERENCE  ! LaSalle LZP-1110-1 294001A116 ...(KA'S) ANSWER 8.09 (2.00)

               ~SBLC pump "A" is now considered inoperable-[0.5].                           This would put you into a.7., day. time clock'except D.G 1A is out of service which brings Specifi-cation 3.0.6 into play [0.5].                       Condition 2 of 3.0.5 is now not. met'and so
             -you must within~2 hours. start action to be.in at least startup within the next /4 hours -[0. 51 - and at' least hot shutdown within the following 6 hours

[0.5]. (v.t\aiseacurt.a% uswer stati3 ELit tLe soi.c sgs. wo not inor, prior to tLe mt,- spetg due to TS Sio.S. ud tAe fini result ms B A 5. to Six It ca REFERENCE be W Het sht A.w, w3Ain tAe next it has . per T S ald. A 1 for 70 % ena ,t.) _ LaSalle Technical Specifications 3.0.6, 3.1.5, and 3.8.1.1 211000G005 264000G005 ...(KA'S) ANSWER 8.10 (1.00) The Diesel Fire Pump [0.34] - may be considered operable if an individual is assigned to start.the equipment.when required'[ 66].

             ' REFERENCE LaSalle LAP 1600-2 294001A113                     ...(KA'S)

ANSWER 8 .1.1 - (1.00)

1. Evacuate all unnecessary personnel from the refuel floor.
2. Notify the S.E.
3. Notify Rad Protection (3'@ 0.33 pts each)

REFERENCE

             -LaSalle LFP-100-1 295023G011                     ...(KA'S) 1 l
                                                                       -__--______-___________A

[ t B. ADdlEISIRAIllElBgcEptJBE_ggup1I1gm_oHILLIdlTATIgriS FAGE 33

   , ANSWERS -- LASALLE 1&2                    -67/06/01-LANKSBURY, R.                 I l
                                                                                       )

i d ANSWER 8.12 (1.50)

3. Acceptable (0.25). Action to comply with 3.0.3 took place within 1 1 I

hour, the unit was in startup within 6 hours, in hot shutdown within -l 9 1/2 hours (6 hours + the time remaining from the 6 hours to s tar t.u p ) of being in startup, and was in cold shutdown within 24  ; hours of being in hot shutdown [0. 6) . (,,4tici cre61t wm be pudeh ik % ' extm the 4e beim W 5taA9 is n t una). ,

2. Not acceptable [0.2b]. All times were acceptable except for the time )

from startup to hot shutdown. The 6 hours from 3.0.3 to be in ' startup cannot be added to the 6 hours to be in hot shutdown [0 5).

    ' REFERENCE LaSalle Technical Specification 3.0.3; LaSalle LAP-1600-11T 294001A103       . .(KA'S) 1 l

H { i

                                                                                       '1 t
}}