ML20217F932
| ML20217F932 | |
| Person / Time | |
|---|---|
| Site: | Paducah Gaseous Diffusion Plant |
| Issue date: | 09/30/1996 |
| From: | Rachel Johnson, Schmidt R MARTIN MARIETTA ENERGY SYSTEMS, INC. |
| To: | |
| Shared Package | |
| ML20217F916 | List: |
| References | |
| M084801-SAR-62-R01, M0848401-SAR-62, M84801-SAR-62-R1, M848401-SAR-62, NUDOCS 9708070053 | |
| Download: ML20217F932 (93) | |
Text
_
I 1:nclosurc $ to GDI' 97 0136 DAC M0848401 SAR-62," Source Terms for l'aducah valuation liasis Seismic Event," Lockheed Martin l
,nergy Systems, Inc., Revision 0 I
9700070053 97C731
~
PDR ADOCK 07007001 C
PDR cg3
5+FT005163 i
e DAO-Mosessos sAR-ee OAK RIDGE K-25 SITE Source Terms for R..,,,,....,,.g Paducah Evaluation-Basis Seismic Event Russell We schmidt september 30,1998 O
I CAUTION FOR IN1TRNAL USE ONLY Tids docunwnt has not bna grr.3 final pates clearance and is for imemal vac only. If tius daounent is to be given pubhc release, it amat be cisared through the site Tishnical Infonnation OfDcs which will see that (tw proper pates and techrucal information revient oss congleted in accordance with Energy Systems Polwy.
e MANAGED BY LOCKHEED MARTM ENERGYSYSTEMS, NC.
FOR THE UNITED STATES DEPARTMENT OF ENERGY ucnusn (w ses
e i
s O
i DISCLANER This toport was propwed as an account of work sponsored by en esency of the United States Gowenmen*, Neither the United $lets: Government nor any synty thereof, not any of their employees. mdes any wertanty, espens or implied, or sieumes any lept liebillty or responsibility for the accuracy, completeness, or um-luiness of any information, cpparetus, product, or process disclosed, or represents that its use would not infrmge privetely owned rights. Reference herem to any specific commercial product, process, or service by trade name, trademark, menu-facturer, or otherwise, does not necoseerily constitute or imply its endorsevnent, recommendation, et levering by the United States Government or any agency thwoof. The views and opinions of authors espremed hereen do not necoseerily state or reflect these of the United States Government or any synty thwoof.
l O
s MARTIN MARIETTA ENERGY SYSTEMS, INC.
DESIGN ANALYSIS AND CALCULATIONS.(DAC)
TITLE APPROVAL "fe'p'temOr 30, 1996
'^"
PRO. LECT ho/ TITLE CALC NO; Source Terms Paducah Evaluation Basis Seismic Event DAC. -. M0848401-SAR-62 LOCATION SITE BUILDINGts) OR ARLA ESO PGDP Process & Cylinder Handling p;
TEAM PC RED
- SUPV, Russell W. Schmidt Russell W. Schmidt
- OLPT, D41U DL$tGNERS (CONTRIBUTING)
GDP SAR Upgrade Program Apphes to Project
- WBS/ftems/ Systems:
And Reports /Dwgs/ Rey, No.:
Signature / Date REV. O REV.1 REV. ?
REV.3 Prepared by:
3 Lead Designer /lFA Date:
f-Ad-F4 Other Designers:
Review. Approvals:
Checked by:
@@[.q 9 3 jb Approved by RED:
f[ r [4s-M f-J#-fg*
Approved by Supervisor: MMhd's
,c3 do [g(,
Reviewed by PE:
[O[@M /.7/-FC Other:
PAGE NO.
CONTENTS DESCRIPTIDN (List Attachments) 1.
Introduction and Objectives 2.
Basis for Analysis 8.
Calculations 18.
Attachments
- 19. - Cascade Gradient for 3040 MW (11 pages)
- 30. - Cascade Gradient for 2200 MW (11 pages)
- 41. - Blender Model (11 pages)
- 52. - Isentropic Compressible Flow from a Breach in the Diffusion Process (2 pages)
- 54. - CYLIND Inputs and Results for a 48G Tails Cylinder (10 pages) 64 - DYLIND Inputs and Results for a 48X Product Cylinder (10 pages)
- 74. - Condenser Release Calculations (3 pages)
O
- 77. - Circuit Balance Calculations (7 pages)
\\_)
- 84. - Compressor Data from K/ETO-95 (10 pages)
List this DAC on contents page ucwisois te I t Don
e DAC-M0848401 SAR42 Oe Central Engineering SenIces Technical Progranks and Senices Source Terms for Paducah Evaluation-Basis Seismic Event Russell W. Schmidt Septemter 30,1996 4
Review and Approval Review Comments Appended [] Yes [ X) No Preparer:
h Date:
~N ~f I L
Russell W. Schmidt bN
, k Date: i-30-7b Reviewer:
Roten O. Johnson B [3n[ef, Department Manager:
trW 1 -
bl L.
Date:
Tony A.
- Iedi,
k I
/
GDP SAR vade Program FOR DiiERNAL USE ONLY This exument has eut been given 6nal paws clearance and is for inwrnal use only. If this docunwns is to be given public release, it sanst be cleared through the site Technical inkvmauan Ofke wWeb will see that the pnper patent and technical information reviews ers couplewd in accordance with Energy Systems Pohey.
Prepared by MARTIN MAR 1TTA ENERGY SYSTEMS, INC.
managing the Oak Ridge K 25 Site Oak Ridge National Laborotory Oak Ridge Y.12 Plant erwist Coraract DE AC05 840R2l400 p
for the U,$. DEPARTMDir OF ENER0Y
g4&l6TWEi@
A..
O source Terms for Paducah Evaluation-Basis Seismic Event DAC M0848401.SAR 02 September 30,1000 1.
Introduction and Objective The purpose of this study is to conservatively estimate the release that might result from an evaluatirn basis earthquake at the Paducah Gaseous Diffusion Plant (PGDP), while maintaining as much realism as possible.
The uranium enrichment facilities at Paducah, Kentucky are leased by the United States Enrichment Corporation (USEC) from the US Department of Energy (DOE). The Paducah Gaseous Diffusion Plant is located near the New Madrid fault. Therefore, it would be affected by a strong earthquake in the New Madrid region. Structural evaluations have been performed to estimate the damsge to the Paducah plant which might result from an evaluation basis earthquake. During the structural evaluations potentially serious weaknesses in the '00' process building structures were identiSed. Work is underway to o
correct these problems. The following analysis is based on damage estimates performed assuming that these modifications to the '00' buildings are complete as currently designed.
The Paducah plant consists of two overlapping cascades, each of which is comprised of two O
main process buildings one containing the largest,'000' size equipment, and another containing smaller,'00' size equipment (the upper cascade also includes an additional process building containing much smaller 'O' equipment). The '00' buildings each contain four process units, in normal operation, two of the units are used in the enricher, to further enrich the UF flowing from the top of the '000' building, and the other two are used in the stripper, to 4emove additional 885U from the depleted UF. Dowing from the bottom of the
'000' building. The process piping connecting these buildings are called tie lines. Each tie line consists of two pairs of pipes: an A and 11line pair connecting the top of the '000' building to the '00' enricher, and an A and B line pair connecting the bottom of the '000' building with the '00' stripper. The flow rates in these lines are typically 80 to 90 pounds of UF, per second, can be as much as 145 pounds of UE per second at maximum power levels.
in comparison, the lines connecting the two cascades and the tieline between the upper cascade 'O' and '00' building carry Dows of a few pounds per second at most. Figure 1 shows the two cascades and their component buildings in relation to the UE Dows through the plant.
Source Terms for Paducah Page 1_ of M I
Evaluation-Hasis Seismic Event Prepared by [d Date T-Jo-M DAC M0848401 SAR 6 :
Checkedby Q Date 4 30-%
l l
Figure 1: Paducah Plant Upper and Lower Cascades Paducah Plant Product
'O' C-310 W
C-335 Enricher I
a
/
i Bottom Cascade Overlap Stream j
gum
'00*
C-331 T)00" C-337 Enriche,r x
Normal
+
I Normal Upper Cascade Feed.
B A
Feed.
]
Tie-Lines B
A
/
000* C-333 1
4
/
t i
Lower Cascade w C-335 B
A f
Top Cascade Overlap Stream C-331 Stri Paducah i
- Plant Tails 1
Source Terms for Paducah Page
- of9 3 Evaluation-Basis Seismic Event Prepared by DateY'*-
DAC-M08484014AR-62 Checked by MDA Date 7-30-T4 0
11.* Basis for Analysis
.g
, _ e. _....ti t.s This analysis is based on structural analysis of the main Paducah process and auxiliary buildings. The estimated damage to the enrichment cascade (buildings C 331.
C 333, C 335, and C 337) is summarized in the cumulative effects reports for the '00' (C 331 and C 335) and '000'(0 333 and C 337) buildingd". Damage estimates for the withdrawal buildings (C 310/C 310a and C 315) are based on the cumulative effects reports for C 3105 and C 315*. Other facilities at Paducah with the potential to release UF, would not be damaged seriously enough to cause a release.
Power Levels and Pressure Gradiant.s The release from a given failure depends primarily on the pressure inside the process eq$,dpment. A diffusion plant is made up of a large number of stages connected in series 2
to form a cascade. The pressure at any stage is directly proportional to the amount of UF, in the stage. The power level is also directly proportional to the US inventory. The plant changes power levels by adding or removing inventory. Therefore the highest power levels and the highest pressures occur in the stages with the largest inventory. A pressure gradient is maintained across the cascade. Pressures (and therefore inventories and power levels) are highest near the normal feed point, and taper down to the product and tails withdrawal points at the ends of the cascade.
The cascade is operated at relatively low pressures, in a diffusion stage pressure is highest at the compressor discharge and in the B (depleted) side of a diffunion stage.
O The compressor maintains pressures on the A (enriched) side of the stage a factor of approximately 5 lower than the pressures on the B side. The A side of the stage is always far below atmospheric pressure, while the B side may exceed atmospheric pressure in some stages at high plant power levels, in order to avoid the possibility of liquid UF,in the cascade, high side pressures are kept below the 22 psia triple point pressure of UF,. Because of the factor of 5 pressure difference between the A side and the B side, the maximum A side pressure is around 4 psia. If power is removed from the stage compressors the pressures on the A and B side will rapidly reach an equilibrium pressure, which will always be well below atmospheric pressure (14.7 psis).
The Paducah plant has a design power level of 3040 MW. At 3040 MW most of the '000' equipment and some of the '00' equipment would be above atmospheric pressure on the B side. Current plant con 6guration and demand are such that plant power levelis unlikely to exceed 2200 to 2500 MW in the near future. At 2200 MW much of the '000' buildings are above atmospheric pressure, but the tie lines and '00' buildings are below atmospheric pressure. This has the effect of significantly reducing the source term from seismic damage.
Analysis of the releases from the Paducah process buildings was performed at both Source Terms for Paducah Evaluation Basis Seismic Event Prepared by bS Page p*ofy* s O
Date 88 DAC M0848401 SAR 62 Checked by tReg Date 9-to-f t.
3040 MW and at 2200 htW. The press are gradients used were based on typical operation at these power levels, using a reasonable combination of product, feed, and tails flow rates and assays. The actual gradients in use at any specific power level will vary somewhat depending on cascade conditions such as the equipment available; the product, feed, and tails streams; and the recent and projected cascado power levels. The 2200 MW gradient used limited above atmospheric pressure to the '000' buildings, while the 3040 MW gradient did not. The gradients for 3040 MW and 2200 MW are included as attachments 1 and 2, respectively.
O, Plant and Eaulument Data Equipment and piping sim and configuration data were obtained from pertinent drawings. The equipment examined includes withdrawal equipment, process equipment, and piping.
D, Physical Pronerty Data Data for the density and vapor pressure of UE was taken from NUREG/CR 4300,
- Calculational Methods for Analysis of Postulated UE Releases'*.
E, Codes and Techniques Several codes and techniques were used to develop the source terms. A
- blender" model was developed to analyze releases from the tie lines in which UE is released from the B line and air is simultaneously ingested into the A line. This analysis was supported with analysis using a simplified circuit balance model. The CYLIND code was used to calculate rates and conditions for releases from product and tails cylinders. The improved Multisite Productivity Program (IMPP) was used to calculate the pressures and interstage flow rates that are the basis for the cascade releases. Various other calculations were perionned to support these main techniques.
Blender Model As discussed below, when fed streams of different compositions a diffusion stage acts as a large blender. When both the A. and B lines are broken in a locatirm where the cascade is above atmospheric pressure on the high pressure side, air will be ingested through the A line into the bottom stage above the break, while UE will be supplied to the stage from the cascade above, This model looks at the cascade above a broken tie line A B pair as a series of blenders, mixing the input streams and splitting the combined flow into A and B streams for feed to the stages above and below. The model shows how the concentration of US released through the open B line is reduced at each time step due to the dilution by the air sucked into the A line.
This model does not attempt to calculate the results of the reaction between UVand any moisture in the air. The UE releases calculated in this manner are conservative (that is, larger than would occur in practice) for several reasons. UV reacts with moisture in the air to form 4 moles of HF and 1 mole of UQF, for each mole of US.
Page _1. of.7_3 Source Terms for Paducah Evaluation-Basis Seismic Event Prepared by b S Date f-W N DAC.M0848401.SAR-62 Checked by tiOg Date 9 30-96
The formatior afIIF increases the concentration oflight gas in the cascade, diluting OO the UF beyond what is calculated by the model. When the reaction occurs inside the process equipment, the UO,F. formed is likely to be deposited on the barrier or elsewhere within the process equipment, greatly reducing the amount of uranium released into the building. Such plugging would also reduce the Dow through the equipment, further reducing the release rate. Finally, the additionallight gas (liF) would increase the probability of compressor surging. A surging compressor would eliminate the pressure difference driving the release.
Calculations using the blender model are included as attachment 3.
CYLIND Code The primary tool used to calculate release rates from UE cylinders is the CYLIND code developed for the US Nuclear Regulatory Commission (NRC). This code is documented in NUREGICR 43G(f". The code models the release of pure UP from a cylinder through either a breach in the cylinder itself or through a broken or misvalved piping system.
The estimation of such release rates is complicated by UE phase behavior. Two or possibly three phases of UP. will usually be present inside the cylinder; the phase composition of the UF will be constantly changing along the release pathway; and,if liquid UF alone enters the release pathway, two phase Dow may be induced at any point in the pathway where the pressure drops below the liquid saturation pressure.
Special considerations must be made when the flow at any point in the pathway approaches the UF triple point. CYLIND uses mass and energy balances around the m
cylinder and associated piping along with detailed UF physical property models to track the cylinder pressure and the phase and temperature changes in both the UF, remaining in the cylinder and the UF, released to the atmosphere.
To estimate release rates through a breach or piping system, CYLIND first assumes a UF. velocity through the release path. Standard multi phase flow calculations are then performed to get the pressure diop across each segment of the release path. The UF.
velocity is corrected until the calculated pressure drop across the release path equals the actual pressure difference between the cylinder and the surroundings. The release rates calculated by CYLIND are reasonably consistent with other multi phase release models, although the pure vapor release rates generated by CYLIND are somewhat higher than standard equations for single phase riow through an orifice.
There have been some improvements to the version of CYLIND being used for this analysis. The primary modifications involve the PIPSYS subroutine, which evaluates releases through a piping system. The version of CYLIND documented in NUREG/CR 4300 would attempt to divide by zero in certain piping system configurations. These errors have been corrected, and the modifications are documented in a letter from J. H. Clinton to R. W. SchmidP.
Source Terms for Paducah g
Page.l. of D Evaluation-Basis Seismic Event Prepared by -. KbI Date t'J"W
\\
DAC-M0848401.SAR 62 Checked by G ott Date % 30-%'
U
Irnproved A1ultisite Productivity Prograin(Ih!PP)
IhfPP is the standard productivity code developed for use at the GDPs. The latest version is F3.7.(f".This code was used to prepare flowsheets for Padecah operating at 3040 hiW and 2200 AfW. The flowsheets provide pressures and interstage Dow rates for each cellin the cascade. This data can be used to estimate cellinventories and release rates. The Dowsheets used in the analysis are given in attachments 1 and 2.
Circuit Italance Calculations Simplified circuit balance calculations were performed to check the results provided by the blender model. The circuit balance calculates pressures and flows throughout the stage, in order to handle mixtures of air and UF0, simple correlations were developed to relate stage characteristics to the UFO concentration in the stage. These correlations were based on work using the DYNADEC compressor mode!". Example circuit balance calculations are included in attachment 8. A description of the compressor data used for the correlations is included as attachment 9.
E D2neral Assumnlinns General assumptions, applicable to all of the scenarios unless specifically excepted, were:
1.
Atmospheric pressure is 14.7 psia 2.
All cylinders are assumed to haw the minimum volume speciGed for their type
- 3.
All full cylinders contain the maximum mass of US allowed for their typd*
4.
Withdrawal releases begin with a liquid US ternperature of 180'F, which is the maximum normal operating temperature for such operations.
Source Terms for Paducah M
Page _f_ of13 Evaluation-Basis Seismic Event Prepared by KRS Date f Se
Date 9-30-96
" Q, Hererences 1.
- Cumulative Effects Report for IMducah Gaseous Diffusion Plant '000' Buildings C.333 and C.337 Piping and Equipment"; D. R. Denton; lockheed h1artin Energy Systems, Inc, Oak Ridge, TN; 1990.
" Cumulative El(cets Report for Paducah Gaseous Diffusion Plant '00'Buildiregs 2.
C 331 and C 335 Piping and Equipment"; D. R. Denton: Lockheed h1artin Energy Systems, Inc, Oak Ridge, TN; 1990.
3.
" Cumulative Effects Estimate for ihducah Gaseous Diffusion Plant Building C 310 Piping and Equipment"; D. R. Denton; l/>ckheed h1artin Energy Systems, Inc, Oak Ridge, TN; 1990.
4.
" Cumulative Effects Estimate for ihducah Gaseous Diffusion Plant Building C 315 Piping and Equipment"; D. R. Denten: Lockheed Martin Energy Systems, Inc, Oak Ridge, TN; 1999.
l 5.
NUREGICR 4360
- Calculational Afethods for Analysis of Postulated U4' Releases";
W. R. Williams; Martin Marietta Energy Systems, Inc. Oak Ridge, TN; September 1985.
l 6.
Letter, James H. Clinton to Russell W. Schmidt, "Afaking CYLIND Operable for Attached Piping Systems", Lockheed Martin Energy Systems, Inc., March 19,1990 7.
Distribution Letter from D. M. Kelleher, " Improved Afultisite Productivity Program (IAfPP) Version F3.7.v', Oak Ridge National Laboratory / Martin Marietta Energy Systems, Inc., September 10,1994 8.
IUETO.95, Interim Edition, Appendix E "The Characteristics of Axial Flow Compressors and their Stable Operation in a Gaseous Diffusion Plant"; 1). W.
Langenberg, R. O. Friedrich, and D. C. Lannom; Martin Marietta Energy Systems, Inc. Oak Ridge, TN; March 1993.
9.
ANSI N14.1 1990 " Uranium Hexafluoride.1Mckaging for hansport"; American National Standards Institute, Inc.; June 21,1990
- 10. " Chemical Process Safety: Fundamentals with Applications"; Daniel A. Crowl &
Joseph F. Iouvar; PTR Prentice Hall, Englewood Cliffs, NJ; 1990
.1.
"Afathead 6.0 Plus", MathSoft Inc., Cambridge, MA; 1995
- 12. "Aficrosoft Excel 7,0", Microsoft Inc., Redmond, WA; 1995 n
Source Terms for Paducah j
Page of12 V)
Evaluation-Basis Seismic Event Prepared by E 6> S Date ph-M I
DAC M0848401.SAR.62 Checked by
' 6to k Date 9-30-96 y
III. Calculations A,
Process Buildine Releases Evaluation of Cascade Releases The effect of a hole in the process equpment depends on the pressure in the process at that location. If the process is operazing below atmospheric pressure, air will flow into the process. Past experience with hrge air leaks into the cascade show that with a sizeable leak, air will displace the US in that region of the process, creating a " bubble" oflight gas. Compressors within the bubble will surge as the density of the gas they are pumping drops. The reaction between US and the moisture in the air takes place at the air UF. interface. Given the large volume of the cascade, a great deal of air will flow into the process unless the leak is stopped. After the Dow is halted, it takes hours for UF. or its reaction products to migrate through the ingested air to the vicinity of the hole. Because of these characteristics, a hole into the process in a below. atmosphere location is not expected to cause any significant release, except in the unusual situation of a piece of equipment or piping that is severed on both ends, allowing the UF.
contained within to flow out via gravity.
Isolated holes in a location where the pressure is above atmospheric pre sure will result in a release of UF to the building. The initial release rate can be readily calculsted using textbook equations for unchoked, isentropic compressible flow. The flow is not choked because the pressure in the cascade is normally never high enough to generate sonic velocity in a release (for a release to 1 atmosphere pressure, the g
pressure in the process would have to exceed 24.8 psia to generate choked flow). If the Dow through the hole is much less than the flow through tha equipment, the release rate can be treated as constant at the initial rate, if the initial release rate is more than ten to twenty percent of the equipment flow, the response of the equipment should be considered. In general the release rate will drop off significantly as the pressure in the process dropr. Attachment 4 shows the flow rate to the atmosphere through a small (5 in') hole for a range of system pressures.
The largest failures expected in the evaluation basis seismic event involve the tielines connecting the '00' and '000' buildings. Analysis of the tielines and their connection to the '00' and '000' buildings results in a prediction that both the A and B lines in each of the four pairs f'00' to '000' tielines will be completely severed. When PGDP is operating at moderate power levels (up to 1200 2500 MW) both the A and B ticlines will be below atmospheric pressure, and as discussed above the only release will be the UF actually in the lines themselves. At higher power levels the B tielines will be above atmospheric pressure. In this circumstance the release to the atmosphere is certainly bounded by the normal UF. flow through the broken B line, but because of the effect of the air ingested through the A line that bound is at least an order of magnitude too high.
Source Terms for Paducab fbi Pye _p*of.f)
Evaluation-Basis Seismic Event Prepared by A
When a hnle in a B line with a pressure above one atmosphere is combined with a hole (G
in the corresponding A.line, the ingestion of air through the A line acts to limit the
)
release through the B line. In this case, UE flows from the B line while the A line pulls air into the process. Within seconds the stage feeding the hole in the B line is partially filled with air, and the supply to the hole becomes a mix of UE and air. As air continnea to flow into the process, the concentration of US at the B line hole drops rapidly. This process is modeled with a series of simple blenders.
Summary of Pmeess Buildine Failures The identified failures in the '000' process building are allin the unit bypass lines between units 1 and 6. This is where the tie line to the '00' building enters and connects to the '000' equipment. Each tie line consists of 4 major pipes: two A lines and two B lines. One A & B pair connects '000' unit I with the stripper section of the '00' building, while the other A&B pair connects '000' unit 6 to the enricher section of the
'00' process building. The identified failures result in breaking all four process lines between the first or last stage in the '000' building and the tie line. In essence, this is a full tie line break inside the '000' building. Figure 2 shows the generallayout of a '000' process building, while figure 3 shows the specific location of the breaks in the '000' buildings.
The identified failures in the '00' process building are again primarily located near the tie lines. The line layout is scmewhat more complicated than in the '000' building l A because of the split between the enricher section and the stripper section in the '00'
()
building. Each of the 4 major tie lines connects to a header that allows a connection to any of three of the four '00' units. Seismic induced failures occur at various locations in the header lines and in the regular unit bypass lines. The effect is to sever the two lines flowing into the building at the '00' end as well as at the '000' end.
Additional failures in the '00' buildings include the cell bypass A line between cells 7 and 9 and cells 10 and 8 in each of the four units in each building. These A line failures are well below atmospheric pressure and result in no release. Another potential release is a small tear in a B-line expansion joint in C S31.4.3 stage 5. This location is near the top of the enricher and would be below atmospheric pressure even at maximum power.
In addition the small size of the tear would not allow significant flow through the opening.
Figure 4 shows the layout of the '00' process buildings. Figure 5 shows the specific location of the predicted failures in the C 331 and C 335 buildings.
Except for the damage to the ends of the tie lines, none of the projected failures result in a signi6 cant release of UF, to the atmosphere. The tie line between '000' and '00' process buildings are below atmospheric pressure at power levels up to about 2200 MW. Therefore, in the 2200 MW case the only release is the inventory of the lines Source Terms for Paducah j
Page h_ of U
[,]
Evaluation-Basis Seismic Event Prepared by
^b#
Date f
- S*
- M V
DAC-M0848401 SAR 62 Checked by RfA Date 9-10-Ho V
themselves. Since the lines are completely severed on one or both ends, the UVin the lines must be asaumed to be released. At 3040 MW the B lines are above atmospheric pressure, and the effect is a release from the B line while the A line sucks in a's, as described above. The release rate starts very high (at the tie line flow rate, which averages 142.5 lb/see for the 4 pairs of tielines a5 3040 MW) but rapidly drops off as the source stages fill with air. After 10 minutes the release rate is negligible because the UF,in that location has been almost completely displaced by air.
The Blender model estimates that after 600 seconds (10 minutes) the cumulative release from a broken tie line pair is equal to 01.3 seconds of normal flow. For the average 142.5 lb/sec flow rate, this is about 8750 pounds of UE. Each cascade has two tie line pairs (one pair connecting the top of the '000' building to the '00' enricher, and the other pair connecting the bottom of the '000' building to the '00' stripper). Therefore the total release is approximately 17,500 pounds of UE per cascade.
O Page of _L3 Source Terms for Paducah Evaluation-Basis Seismic Event Prepare
- by -- [M Date
>"-Fd DAC M0848401 SAR 62 Checked by Date 9-30-94
Figure 2: Paducah '900' Process Building YMiEQl,, jUnitS[6sityj@. j[jy;jjjjjunitSjd16@Mli hiL]!.gunRoljiF1dPdsJ j
l l
j j
j j
j l
f_b$7(W gj
- g Tse-e j
j j
Source Terms for Peducah Page _11_ of_f_J O#
Evaluation-Basis Sciende Event Prepared by Date F S* -*
- DAC-M0848401-SAR-62 Checked by Date 9-So-?(e
Figure 3: Breaks in '000' Piping at TieLine Connection To *000' Unit 6 Cell 2 Cell 1 4 k 4 k e
8 ts
!3:
A-Line from *000* Unit G to '00* Enricher e
h e
Unit j $
l Bypass e e s
Lines e
- O O
y B-Line from '00* Enricher to VOO* Unit 6 e
e l 3 *---
B-Line from V00' Unit 1 to V(r Stripper y.
[
o B-Booster V
'3 i
Pump r
l4 l
Unit i
.e, e
Bypass lE Lines A-Line from Vo* Stripper to VOO' Unit 1 e
1 r 1 r To '000* Unit 1 Cell 1 Cell 2 Source Terms for Paducah Page_12_ofD Evaluation-Basis Seismic Event Prepared by S
Date P b-FG DAC-M0848401-SAR-62 Checked by N
Date 9-So-76 U
Figure 4: Paducah '00' Process Building Layout a
e a
Cell 10 Cell 9
@ Cell 10 Cc'I 9 h' Cell 10 Cell 9 5 Cell 10 Cell 9 5
e e
8 j
Cell 8 Cell 7 g
Cell 8 Cell 7 g
Cell 8 Ce!!7 C
Cell 8 Cell 7 i
.I s
s R
Cell 6 Cell 5 Ce!i 6 Cell 5 Cell 6 CeII5 $
Cell 6 Cell 5 3
c c
c c
c Cell 4 Cell 3 I
Cell 4 Cell 3 I
Cell 4 Ce!!3 e
Cell 4 Cell 3 b
b b
i i
e e
e 4
CeII2 Cell 1 Cell 2 Ce!!1 Cell 2 Cell 1 Ce!!2 CeII1 Source Terms for Paducsh Pap.1Lof?_J Evaluation 4 asis Seismic Event Prepared by M0S Date T 8* W DAC-MM434014AR-62 Checked by M
Date 9-30-fle t
I
Figure 5: Failures in Paducah '00' Process Piping 10 9
10-9 10 9'
10 9
D G
D G
n G
n G
G p
9 9
9 O
q 18 7
'8 7is
'8 I
- 7 "-
8
jf fi-
- L?v L
4 L.5 e
es ce
- 63
{
5
'6
{
.5~
'!6,;
{
5.
6
{
j5,
.t..-
o o
1 -.
2 o
4 3 CD
.4 3
14 3
4
-:3 '
~.
' :. r.
...i.a..
- 2 -
1..
!2 1
-125-1 2
.1
.na.
. u t.3 a...
A dLe.1 B
JM A
d66 E
JM A
did E
dM A
ale a
JM 30" A, u Tmm
'N
'% m m
'N
%mm T u
'% m
'N mm u v
Bypass'To
)"'
)
)
)
)"'
)
To Prod 30" B Taas ww ma n l
) y*
mm y n, v Bypass 1r d'
p d'
1 r j
)d' JL lI G
J LT 30" A Evicher _TJL N
'N T 4_
g T.e-Une l%ader - j v
dk
/
/
30"B Enrickw _ u T u u
Tme4_ine Header '
/
3r Jk 26* A St pper _i I y
'N,
Te-Une Header -
)
,) ~
1 P y
N Cknedva%
T h R ader -_
J L
'N 4 _
33" B Stnoper
}
/
)kO N openvah 30" A 30"B Stnpper
@ Releswin C 331 Enncher n
n (Expanded from p R=JesseinC-335 24*Te Une) 20" B Erricher "
"24" A Senpper Source Terme for Paducah a
Page l of f)_
Evaluation-Basis Seism'c Even?
P er2redby NG S Date T->*-FC DAC-MOS48401-SAR-G2 Checked by SA Date 3 '10-7fe v
e
)L Withdrawal Facilltv Relemat.s r.
Sunuparv of WithdraweGilldinn Fallures in the Paducah product and tails withdrawal buildings (C.310 and C 315), the failures predicted in the cumulative effects reports involve the Normetex withdrawal pumps, the accumul'itor vessels, and the condensers. The Normetex pumps will fall over beceuse of support failures. This will not result in a leak from the process, since the suction pressure le well below atmospheric preuure. The discharge from the Normetex i
pumps goes into the UF, condensers, which will fall off of their cradles, breaking the att ached piping. The cortents of tha condensers will be released into the withdrawal buih' ins Uquid Uh from the condensers normally flows through the accumulators, wh'dt 'dod yy hru into product and tails cyhnders. The accumulators are also l
l predicted to frd off of their supports, breaking attachs; piping.
The source terni for the withdrawal buildings includes the contents of the condensers, the contents of the accumulators, and backDow from the cylinder being filled. If a cylinder is in place being filled, the accumulator will normally contain very little UFO.
If a cylinder is being replaced the accumulator will collect the Dow until the new
- yhnder is valved in. Since the accumulator and the cylinder are never full at the same time, and the cylinder offer the largest mass routinely availa'o.e, the event was assumed to occur while a n3arly full cylinder was connected to tha accumulatnr, with minimal accumulator inventory. The release from the cylinders vas allowed to continue for 30 minutes. The CYLIND code was used to evaluate the flow of UV vapor from full product and tails cylinder into the withdrawal buildings. The CYLIND calculations for the 480 tails cylinder and the 48X product cylinder are included in O
attachments 5 and 6, respectively. The calculation for the contents of the UF, condensers are included in attachment 7.
Source Terms for Paducah -
O of 9 3 pU Pagep*NC Evaluation Basis Seismic Event Prepared by A D te DAC M0848401.SAR 62 Checked by b\\
Date 9-D-fla U
O L Ecsults 2200 MW Case:
The '00' buildings and the tie lines are all below atmospheric pressure. Therefore, there are no releases from any process building (C 331,0 333, C 335. C 337)llowever, the tie lines are completely severed, so their entire in.... wry must be assumed to be released. The tie line inventory at 2200 MW is approximately 2000 lb of UE. shows a breakdown of the inventory by individual line, 2040 MW Case (Maxim um Powerk At 3040 MW the D tie lines are above atmospheric pressure, resulting in a release that is largo at first but rapidly decreases due to air sucked in through the A line. The total release is 8,750 lbs of UFO per tieline pair, or 17,500 lbs per cascade, in addition, the tie line contents are lost. The tie line inventory at 3040 MW is approximately 3200 lb of UF,. Attachment 1 shows a breakdown of the inventory by individualline.
Both cases include the release from the withdrawal facilities. These releases include 1500 lb of UF, from the condensers and 1100 lb of UF, from the cy inder/ accumulator in the C 310 product withdrawal facility and 3090 lb of US from the condensers and 1110 lb of UF, from the cylinder / accumulator in the C 315 tails withdrawal facility.
The results are summarized in Table 1.
O Evaluation-Basis Seismic Event Prepared by /C b S Page_1J_504'3 Source Terms for Paducah 4
of Date 7 -
C DAC M0848401 SAR 62 Checked by titGh Date 9-3 8-9(o U
Tchte 1. Summary of Seismic Source Terms -
Paducah Plant after Modifications llullding Function Source 3040 MW 2200 MW Duration Temp Vapor Ib UF, Ib UF.
min
'F C 337 Upper Cascade '000' Process Piping 17,500 0
10 290.0 100%
Tie Line 600 400 10 290.0 100%
C335 Upper Cascade '00' Process Piping 0
0 10 290.0 100 %
Tie IJne 600 400 10 290.0 1001 Upper Cascade Total 18,700 800 C 333 lower Cascade '000' Process Piping 17,500 0
10 290.0 100%
Tie Line 1,000 600 10 290.0 100%
C 331 lower Cascade '00' Process Paping 0
0 10 290.0 100%
i TieIJne 1.000 600 10 290.0 100%
Lower Cascade Total 19,600 1,200 C 310 Product Withdrawal Condenser (Sum of 2) 1,500 1,500 2
180.0 49%
4RX Cylinder 1.100 1,100 30 180.0 100 %
C-310 Duilding Total 2.600 2,000 C 315 Tails Withdrawal Condenser (Sum cf 3) 3,090 3,690 2
180.0 49%
480 Cylinder 1,110 1,110 30 180.0 100%
C-315 Ilullding Total 4,800 4.800 l'lant Total 45,600 9.400 O
Source Terms for Paducah O
Page _1L of f3 Evaluation-Basis Seismic Event Prepared by ^jOS Date ? > M DAC M0848401 SAR 62 Checked by UtM Date 1.186 V
IV.' Attachments Contents
- 1. Cascade Gradient for 3040 MW
- 2. Cascade Gradient for 2200 MW
- 3. Blender Model
- 4. Isentropic Compressible Flow from a Breach in the Diffusion Process
- 5. CYLIND Input and Results for 48G Tails Cylinder
- 6. CYLIND Input and Results for 48X Product Cylinder
- 7. Condenser Release Calculations 8.
Circuit Balance Calculations 0, Compressor Data from IUETO 95 9
i Source Terms for Paducah Pageg**of1344 Evaluation-Basis Seismic Event Prepared by M
Date l
DAC MOS48401.SAR 62 Checked by -
Date 9-I.84/o
O l
Cascade Gradient for 3040 MW Source Terms for Paducah O
Page.1& off)).
Evaluation-Basis Seismic Event Prepared by
_[RS Date t-# *F' DAC MOS48401 SAR 62 Checked by M.oi.
Date 9-30-%
U
inv:ntory Summary for the Paducah Plant 3040 MW O-Upper Cascade:
1510 MW Nominal Cascade. 3040 MW Plant Un4 Total Oper Total Oper Average Average Average Total Top Inven.
Name Cells Cells Stages Stages P2, pela P1, psia Psd, psia Pwr, MW Assay Lbv C 3101 4
4 24 24 4.71 0.76 2.54 3.32 2.48%
1,091 C 335-4 10 9
100 90 10.20 2.17 5.39 65.31 0.00 %
26,635 C 335 3 10 10 100 100 18.20 3.87 9.61 127.36 1.85%
51,939 C 337-6 10 9
80 72 15.71 3.08 7.37 148.06 1.49%
80,071 C 337 5 10 10 80 80 16.92 3.32 7.94 182.05 1.28%
98,453 C 337 4 10 9
80 72 18.58 3.64 8.72 177.64 1.09%
96,067 C 337 3 10 10 80 80 19.58 3.84 9.18 207.87 4 94 %
112.416 C 337 2 10 10 80 80 16.80 3.29 7.88 182.05 0.80%
98,450 C 3371 10 10 80 80 16.91 3 32 7.93 178.77 0.69 %
96,681 C 335-2 10 10 100 100 18.25 3.88 9.04 127.96 0.59%
52,183 C 3351 10 8
100 80 9.24 1.97 4.88 53.80 0.49%
21,940 Total 104 99 904 858 15.75 3.17
't.72 1.454.20 2.48%
735.925 Lower Cascade:
1530 MW Nominal Cascade, 3040 MW Plant Unit Total Oper Total Oper Average Average Average Total Top inven.
Name Cells Cells Stages Stages P2, psia P1, psia Ped, psia Pwr, MW Assay Lbs C 3314 10 7
100 70.00 7.92 1.69 4.18 40.66 0.00 %
16,579 C-3313 10 10 100 100.00 16.05 3.42 8.48 112.90
. 06%
46,040 C-333-0 10 9
80 72.00 18.60 3.65 8.73 174.60 0.00 %
94,423 C-333 5 10 10 80 80.00 19.61 3.85 9.20 207.87 0.76 %
112,416 C 3334 10 10 80 80.00 19.43 3.81 9.11 207.87 0.67 %
112,416 O
C 333 3 10 10 80 80.00 19.46 3.82 0.13 207.87 0.58 %
112,416 C-333-2 10 9
80 72.00 19.09 3.74 8.95 183.80 0.51 %
99.401 C 3331 10 10 80 80.00 18.03 3.54 8.46 191.90 0.44 %
103,782 C 3312 10 10 100 100.00 18.55 3.95 9.79 130.35 0.39 %
53,156 C-331 1 10 4
100 40.00 8.71 1.85 4.60 25.79 0 33 %
10,517 Total 100 89 880 774 17.31 3 48 8.41 1,483.61 1.06 %
761,146 Building Totals Unit Total Oper Total Oper Average Average Average Total Top
- inven, Name Cells Cells Stagos Stages P2, psia P1, pela Pad, psia Pwr, MW Assay Lbs C 310 4
4 24 24 4.71 0.76 2.54 3.32 2.48%
1,091 C 337 60 58 480 464 17.43 3 42 8.17 1,076.44 1.49%
582,137 C-335 40 37 400 370 14.33 3.05 7.57 374.44 1.85%
152,697 C 333 60 58 480 464 19.05 3.73 8.93 1,173.92 0.76 %
634,854 C-331 40 31 400 310 14.07 2.99 7.43 309.69 1.00 %
126,292 Total 204 188 1,784 1,632 16.49 3.32 8.05 2,937.81 2.48 % 1,497,071 O
RWS@GDPSAR 8/8/96
Power Distribution Report for Cascade 1 - Paducah Upper Cascade 1510 F#/ Nonwnal Cascade. 3040 FEN Plant Section Oper.
Stage Pressure (P2. psla)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dVIdMW Assay Sect.
Unit Cum.
P2 P1 Psd C-310-1. 7 6
5.000 5.100 5.000 0.862 0.862 182.5 4.0 148%
283 1.091 283 5.00G 0.80S 2.700 C-310-1. 5 6
4.910 4 910 4.900 0.853 1.715 180.5 12.5 2.44 %
280 563 4 910 0.792 1 651 C-310-1. 3 6
3.810 3.810 3.803 0.734 2.449 155.3 31.8 2.42%
241 804 3.P10 0 615 2.057 C-310-1.1 6
5.110 5.110 5.100 0.874 3.323 185.0 35.7 2.40%
287 1.091 5.110 0.824 1 759 C-335-4. 2 0
11200 3.000 0 26.635 1.091 0 000 0.000 0.000 C-335-4. 4 10 5.336 12.500 3.000 3.991 7.314 500.5 4.7 2.33 %
1.628 2.718 5.305 1.135 2.817 C-335-4. 6 10 6.801 11600 3.000 4.913 12.227 619.6 4.7 2.27%
2.004 4.722 6.801 1.447 3.591 C-335-4. 8 10 8.104 12.700 3 000 5.742 17.969 725.3 4.7 122%
2.342 7.064 8.104 1.724 4279 C-335-4.10 10 9.158 12.600 3.000 6.500 24.469 820.3 4.7 2M7%
2.651 9.714 9.158 1 949 4 835 C-335-4. 9 10 10.461 13.3GO 3.00 7.352 31.8~.1 933.1 4.7 2.12%
2.998 12.712 10 481 2.230 5 534 C-335-4. 7 10 12.065 13.500 3.000 8.224 40.045 1.065.2 4.7 2.05%
3.354 16.066 12.065 2.567 6.370 C-335-4. 5 10 13.006 13.500 3.000 9.184 49230 1.169.7 4.7 2.00 %
3.745 19.811 13 006 2.767 6 S67 C-335-4. 3 10 13.366 13.500 3.000 9.883 59.112 1.258.6 4.7 1.94 %
4.030 23.842 13.366 2.844 7.057 C-335-4.1 10 13.500 13.500 3 000 9.524 68 637 1.230.0 62 1.89 %
3.884 27.726 13.500 2.872 7.128 C-335-3. 2 10 14.000 14.000 3.000 9.771 78.408 1.2612 7.1 1.85 %
3.983 5~.939 31.710 14 000 2.979 7.392 C-335-3. 4 10 16.000 16 000 3.000 11.118 89.526 1.431.1 6.2 1.80%
4.534 36.244 16.000 3.404 8.448 C-335-3. 6 10 18.000 18 000 3.000 12.772 102297 1.639.6 4.9 1.76 %
5208 41.453 18 000 3.830 9.504 C-335-3. 8 10 19 027 19.100 3 000 13.386 115.683 1.715.7 5.0 1.71 %
5.459 46.911
- 9027 4.048 10.046 C-335-3.10 10 19.384 19 400 3.000 13.386 129.069 1.715.7 5.9 1.67%
5.459 52.370 19.384 4.124 10235 C-335-3. 9 10 18.995 19.000 3.000 13.386 142.455 1.715.7 6.7 1 64 %
5.459 57.829 13.995 4.041 10.029 C-335-3. 7 10 19.137 19200 3 000 13.386 155 841 1.715.7 7.6 1.60 %
5.459 63.288 19 137 4 072 10.104 C-335-3. 5 10 19.069 19.100 3.000 13.386 169.227 1.715.7 8.6 1.57 %
5.459 68.747 19.069 4 057 10 068 C-335-3. 3 10 19.128 19200 3.000 13.386 182.613 1.715.7 9.7 1.54 %
5.459 74205 19.128 4 070 10.100 C-335-3.1 10 19232 19.300 3.000 13.386 195 999 1.715.7 10.9 1.51 %
5.459 79.664 19232 4.092 10.154 C-337-6. 2 8 15.330 15.400 3.000 16.157 212.156 2.598.0 4.8 1.49%
8.738 80.071 88.402 15.330 3.006 7.190 C-337-6. 4 8 15.428 15.500 3.000 16.157 228 313 2.598.0 5.5 1.46%
8.738 97.140 15.428 3.025 7236 C-337-6. 6 8 15.116 15.200 3.000 16.157 244.470 2,598.0 6.2 1.44 %
8.738 105.877 15.116 2.964 7.089 C-337-6. 8 8 15.029 15.100 3.000 16.157 260.627 2.598 0 5.9 1.41%
8.738 114.615 15 029 1947 7.049 C-337-6.10 8 16.088 16.100 3.000 16.157 276.784 2.598.0 6.4 1.39%
8.733 123.353 16.088 3.155 7.545 C-337-6. 9 8 15.068 15.100 3.000 16.157 292.941 2.598.0 7.2 1.37%
8.738 132.090 15.068 2.955 7.067 C-337-6. 7 0
14.400 3.000 0
132.090 0.000 0.000 0.000 C-337-6. 5 8 15.827 15.900 3.000 16.157 309.098 2.598.0 8.4 1.35%
8.738 140.828 15 827 3.103 7.423 l
C-337-6. 3 8 16.416 16.500 3.000 17.008 326.106 2.718.7 7.5 1.33 %
9.198 150.026 16 416 3219 7.699 l
C-337-6.1 8 17.081 17.100 3.000 17.953 344.059 2.868.7 6.8 1.31%
9.709 159.735 17.081 3.349 8 011 Pag f11 IMS @ GDP 4/8/96
o Q
o~~
Power Distritmtion Report for Cascade 1 - Paducah Upper Cascade 1510 MW NommalCascade 3040 MWPlant Section Oper.
Stage Pressure (P2, psia)
Section (MW)
Stage L./
1, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dV!dMW Assay Sect.
Unit Cusn.
P2 P1 Pod C-337-5. 2 8 17.832 17.900 3.000 18.898 362.957 3.013.0 6.7 1.28% 10,220 98,453 169.955 17.832 3.496 8.363 C-337-5. 4 8 17.777 17.800 3 000 18.898 381.855 3.013.0 7.0 126% 10220 180.175 17.777 3.486 8.337 C-337-5. 6 8 18.075 18.100 3.000 18.898 400.754 3.013.0 7.2 124% 10.220 190.395 18 075 3.544 8.477 C-337-5. 8 8 17.045 17.100 3.000 18.898 419.652 3.013.0 6.6 1.22% 10.220 200,615 17.045 3.342 7.994 C-337-5.10 8 17.326 17.400 3.000 18.898 438.550 3,013.0 6.5 1.20% 10220 210.835 17.326 3.397 8.?26 C-337-5. 9 8 16.09C 16.100 3.000 17.512 456.062 2,822.8 8.2 1.18%
9,470 220.306 16.096 3.156 7.549 C-337-5. 7 8
16.6.'O 16.700 3.000 17.512 473.574 2,822.8 9.0 1.16%
9.470 229,776 16.640 3.263 7.804 C-337-5. 5 8 16.390 16.400 3.000 17.512 491.086 2,822.8 8.9 1.15%
9.470 239.247 16.390 3.214 7.687 C-337-5. 3 8 16.165 16.200 3.000 17.512 508.598 2,822.8 88 1.13%
9.470 248.717 16.165 3.170 7.581 C-337-5.1 8 15.854 15.900 4.700 17.512 526.109 2,822.8 8.4 1.11 %
9.470 258,188 15.854 3.109 7436 C-337-4. 2 8 17.535 17.600 4.540 18.898 545.008 3.045.6 7.4 1.09%
10220 96.067 268,408 17.555 3.438 8224 C-337-4. 4 8 17.746 17.800 4.540 18 898 563.906 3,045.6 7.5 1.07%
in 220 278,628 17.746 3 E.0 8.323 C-337-4. 6 8 17.712 17.800 4.540 18.898 582.804 3.045.6 7.5 1.06%
10220 288.848 17.712 3.473 8.307 C-337-4. 8 8. 18.111 18.200 4.520 18.898 601.702 3,045 6 8.4 1.04 %
10220 299.068 18.111 3.551 8.494 C-33 T-4.10 8 18.370 18.400 4.510 18.898 620.600 3.045.6 8.5 1.02 %
10220 309288 18.370 3.602 8.616
^
C-337-4. 9 8 19.939 20.000 4.500 20.787 641.387 3.354.9 6.3 1.01 %
11242 320,530 19.939
?.910 9.351 C-337-4. 7 8 19.601 19.700 4.390 20.787 662.174 3,354.9 5.8 0.99%
11.242 331,771 19.601 3 843 9.193 C-337-4. 5 8 19.094 19.100 4.290 20.787 682.961 3,354.9 5.6 0 97%
11,242 343,013 19.094 3.744 8.955 C-337-4. 3 0
19.900 4290 0
343.013 0.000 0.000 0.000 C-337-4.1 8 19.136 19.200 4220 20.787 703.747 3.354.9 5.6 0.96 %
11.242 354254 19.136 3.752 8.975 C-337-3. 2 8 19.393 19.400 4.170 20.787 724.534 3.354.9 5.8 0.94 %
11.242 112.416 365,496 19.393 3 803 9 095 C-337-3. 4 8 15.568 19.600 4 310 20.787 745.321 3,354.9 5.8 0.92 %
11242 376,738 19.568 3 837 9.177 C-337-3. 6 8 20.059 20.100 4.310 20.787 766.108 3.354.9 6.1 0.91 %
11.242 387,979 20 059 3.933 9.408 C-337-3. 8 8 19.554 19.600 4 560 20.787 786.895 3.354.9 5.9 0.89 %
11.242 399221 19.554 3.834 9.171 C-337-3.10 8 19.449 19.500 4.610 20.787 807.682 3.354.9 6.0 0.88 %
11242 410.462 19.449 3 814 9.122 C-337-3. 9 8 19.493 19.500 4.530 20.787 828.469 3,354.9 6.4 0.86 %
11242 421.704 19.493 3.822 9.142 C-337-3. 7 8 19.401 19.500 4.530 20.787 849256 3.354.9 6.4 0.85%
11242 432,946 19.401 3.804 9.099 C-337-3. 5 8 19.562 19.600 4.350 20.787 870.043 3.354.9 6.6 0.84 %
11.242 444,187 19.562 3.836 9.175 C-337-3. 3 8 13.991 20.000 4.350 20.787 890.830 3.354.9 6.9 0.82 %
11242 455.429 19.991 3.920 9.376 C-337-3.1 8 19.315 19.400 4.120 20.787 911.617 3,354.9 6.6 0.81%
11.242 466.670 19.315 3.787 9 059 C-337-2. 2 8 16.035 16.100 4.120 17.511 929.128 2,815.3 102 0.80 %
9.470 98.450 476,140 16.035 3.144 7.520 C-337-2. 4 8 '16.477 16.500 4.000 17.511 946.639 2,822.6 10.2 0.79 %
9,470 485.610 16.477 3231 7.728 C-337-2. 6 8 16.410 16.500 4.000 17.511 964.150 2,822.6 10.2 0.77%
9.470 495.080 16.410 3218 7.696 C-337-2. 8 8 16.342 16.400 4.000 17.511 981.661 2,822.6 10.3 0.76 %
9.470 504.550 16.342 3204 7.664 C-337-2.10 8 16.161 16200 4.020 17.511 099.172 2.822.6 10.1 0.75 %
9,470 514.020 16.161 3.169 7.580 Page 3 of 11 RWS @ GDPSar, 8/8/96
Power Distribution Report for Cascade 1 - Paducah Upper Cascade 1510 f,1W Nominal C=mfe. 3040 f tW Plant Section Oper.
Stage Pressure (P2, psla)
Section (MW)
Stage inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dVIdMW Assay Sect.
Unit Cum.
P2 P1 Psd C-337-2. 9 8 17.316 17.400 4.190 18.898 1,018.070 3.013.0 8.3 0.7.;%
10220 524240 17.316 3.395 8.121 C-337-2. 7 8 17.179 17200 4.170 18.898 1.036 968 3.013 0 8.3 0.73 % 10220 534.460 17.179 3.368 8.057 C-337-2. 5 8 17.548 17.600 4.000 18.898 1.055.866 3.013.0 8.5 0.72% 10.220 544.680 17.548 3.441 8 230 C-337-2. 3 8 17.146 17200 4.000 18.898 1.074.764 3.013.0 8.3 0.71 %
10.220 554,900 17.146 3.362 8 041 C-337-2.1 8 17.341 17.400 2.500 18.998 1.093.662 3.013.0 8.3 0.70 %
10.220 565.120 17.341 3.400 8.133 C-337-1. 2 8 17.532 17.600 2.500 18.898 1,112.560 3.013.0 8.0 0.69%
10.220 96.681 575,340 17.532 3.438 8223 C-337-1. 4 8 16.668 16.700 2.500 17.764 1.130.324 2.839.1 9.5 0.68 %
9,607 584.947 16.668 3268 7.817 C-337-1. 6 8 16.649 16.700 2.500 17.764 1,14d.088 2.839.1 9.0 0.67%
9.607 594.554 16.649 3265 7.808 C-337-1. 8 8 16.757 16.800 2.500 17.764 1.165.852 2.839.1 8.5 0.66 %
9.607 604,161 16.757 3.286 7.859 C-337-1.10 8 17.139 17200 2.500 17.764 1.183.616 2.839.1 7.7 0.65%
9.607 613,767 17.139 3.361 8.038 C-337-1. 9 8 17.123 17.200 2.500 17.764 1201.380 2.839.1 6.9 0.64 %
9.607 623.374 17.123 3.357 8.031 C-337-1. 7 8 16.804 16.900 2.500 17.764 1.219,144 2,839.1 6.4 0.63 %
9.607 632.981 16.804 3295 7.881 C-337-1. 5 8 16.472 16.500 2.500 17.764 1236.SG8 2,839.1 5.9 0.62%
9,607 642,588 16.472 3.230 7.725 C-337-1. 3 8 16.691 16.700 2.500 17.764 1254.672 2.839.1 5.5 0.60 %
9.607 652.195 10.691 3273 7.828 C-337-1.1 8 17.253 17.300 2.500 17.764 1.272 436 2.839.1 5.1 0.59 %
9.607 661.801 17253 3.383 8 092
. C-335-2. 2 10 18.991 19.000 2.500 13.386 1,285.822 1,715.7 15.0 0.59%
5.459 52.183 667260 18 991 4.041 10 027, C-335-2. 4 10 19 030 19 100 2.500 13.386 1299.208 1,715.7 13.6 0.58 %
5.459 672,719 19.030 4.049 10.045 C-335-2. 6 10 18.944 19.000 2.500 13.386 1,312.594 1,715.7 122 0.57 %
5,459 678.178 18.944 4.031 10 002 C-335-2 8 10 18.957 19.000 2.500 13.386 1.325.980 1,715.7 10.9 0.56 %
5,459 683,637 18 957 4.033 10.009 C-335-2.10 10 19.039 19.100 2.500 13.386 1.339.366 1,715.7 9.8 0.55%
5.459 689,095 19 039 4.051 10.053 C-335-2. 9 10 19.080 19 100 2.500 13.386 1.352.752 1.715.7 8.6 0.54 %
5.459 694.554 19.080 4.060 10.074 C-335-2. 7 10 18.983 19.000 2.500 12.992 1.365.744 1.667.0 82 0.53 %
5298 699.852 18.983 4.039 10.023 C-335-2. 5 10 18.508 18.600 2.500 12.992 1.378.736 1,667.0 68 052%
$298 705.150 18.508 3 938 9.772 C-335-2. 3 10 16 600 16 600 2.500 11.356 1,390 093 1,461.3 8.3 0.51 %
4.631 709.781 16 600 3.532 8.765 C-335-2.1 10 14.353 14.400 2.500 10.307 1.400.400 1.328.7 8.1 0.50%
4.203 713.985 14.353 3.054 7 578 C-335-1. 2 10 12.054 12.100 2.500 8.858 1.409.258 1.109.5 9.5 0.49%
3.612 21.940 717.597 12.054 2.565 6.365 C-335-1. 4 10 12.054 12.100 2.500 8.858 1.418.116 1.109.5 74 0.48 %
3.612 721.209 12.054 2.565 6.365 C-335-1. 6 10 12.054 12.100 2.500 8.858 1.426.974 1,109.5 5.4 0.46%
3.612 724.822 12.054 2.565 6.365 C-335-1. 8 10 11.531 12.600 2.500 8.136 1.433.109 1,022.5 4.7 0.45%
3.318 728,139 11.531 1.453 6.088 C-335-1.10 10 9.839 12.600 2.500 6.967 1.442.076 878.4 4.7 0.44 %
2.841 730.981 9.839 2.093 5.195 C-335-1. 9 10
'7.945 12.600 2.500 5.677 1,447.753 717.0 4.7 0.43%
2,315 733 296 7.945 1.690 4.195 C-335-1. 7 10 5.720 12.600 2.500 4.199 1,451.952 527.5 4.7 0.42%
1,712 735.008 5.720 1.217 3.020 C-335-1. 5 10 2.740 12.600 2.500 2249 1.454201 273.6 4.7 0.41%
917 735.925 2.740 0.583 1.447 C-335-1. 3 0
12.600 2.500 0
735.925 0.000 0.000 0.000 C-335-1.1 0
11.200 2.500 0
735.925 0.000 0.000 0.000 P
f11 9
RWS @ GDP 9/S/96 m
......,.............,,t,,.
O O
~
O~
~
Power Distribution Report for Cascade 2 - Paducah Lower Cascade 1530 MWNominal Cascade 3040 MW Plant Section Oper.
Stage Pressure (P2, psla)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dV/dMW Assay Sect.
Unit Cum.
P2 P1 Ped C-331-4. 2 0
11.200 3.000 0 16,579 0
0.000 0.000 0.000 C-331-4. 4 0
12.600 3 000 0
0 0.000 0.000 0.000 C-331-4. 6 0
12.600 3.000 0
0 0.000 0.000 0.000 C-331-4. 8 10 3.000 12.600 3.000 2.417 2.417 295.7 3.0 1.24 %
986 986 3.000
'1638 1.584 0-331-4.10 10 4.867 12.600 3.000 3.639 6.056 454.8 4.1 1.21 %
1,484 2,470 4.067 1.036 2.570 C-331-4. 9 10 6.715. 12.600 3.000 4.855 10.911 612.2 4.1 1.18%
1.980 4,450 6.715 1.429 3.546 C-331-4. 7 10 8.053 11.600 3.000 5.962 16.873 753.0 4.1 1.16%
2,431 6.881 8.053 1.713 4.252 C-331-4. 5 10 9.517 12.100 3.000 6.989 23.862 881.1 4.1 1.13 %
2,850 9,731 9.517 2 025 5.025 C-331-4. 3 10 11.243 12.600 3.000 7.935 31.797 997.9 4.1 1.11 %
3,236 12,967 11.243 2.392 5.936 C-331-4.1 10 12.054 12.100 3.000 8.858 40.655 1,109.5 4.3 1.08%
3.612 16,579 12.054 2.565 E.365 C-331-3. 2 10 11.998 12.000 3.000 8.425 49.080 1,090.8 6.6 1.06 %
3,436 46,040 20,015, 11.998 2.553 6.335 C-331-3. 4 10 11.935 12.000 3.000 8.425 57.505 1,090.8 8.5 1.04 %
3,436 23.451 11.935 2.539 6.302 C-331-3. 6 10 13.276 13.300 3.000 9.055 66.560 1.170.7 9.4 1.02 %
3,693 27,143, 13.276 2.825 7.010 C-331-3. 8 10 14.640 14.700 3.000 10.134 76.694 1,306.9 8.7 1.00%
4,133 31 M6 14 E40 3.115 7.730 C-331-3.10 10 15.398 15.400 3.000 11.189 87.883 1,440.1 8.0 0.98 %
4,563 35,839 15.398 3 276 8.130 C-331-3. 9 10 17.655 17.700 3.000 12.362 100.245 1,588.3 7.8 0.96 %
5,041 40,880 17.655 3.756 9.322 C-331-3. 7 10 19.007 19.100 3.000 13.291 113.536 1,704.0 7.6 0.94 %
5,420 46,300 19.007 4.044 10.036 C-331-3. 5 10 18.343 18.400 3.000 13.339 126.875 1,709.9 8.6 0.93 %
5,440 51,740 18.343 3.903 9.685 C-331-3. 3 10 19.241 19.300 3.000 13.339 140.214 1,709.9 10.4 0.91%.
5.440 57,179 19.241 4.094 10.159 C-331-3.1 10 19.052 19.100 3.000 13.339 153.553 1,709.9 12.0 0.90 %
5.440 62,619 19.052 4.054 10.059 C-333-6. 2 0
18.300 3.000 0 94,423 62,619 0.000 0.000 0.000 C-333-6. 4 8 17.765 18.500 3.000 18.065 171.G18 2,906.8 4.1 0.88 %
9,770 72,388 17.765 3.483 8.332 C-333-6. 6 8 18.595 18.600 3.000 18.702 19C.320 3,012.0 4.8 0.87%
10.114 82,503 18.595 3.646 8.721 C-333-6. 8 8 17.966 18.000 3.000 18.702 209.022 3,012.0 5.3 0.85%
10,114 92,617 17.966 3.523 8.426 C-333-6.10 8 17.760 17.800 3.000 18.702 227.724 3,012.0 5.8 0.84 %
10,114 102.731 17.760 3.482 8.329 C-333-6. 9 8 17.636 17.700 3.000 18.841 246.565 3,035.0 6.2 0.82 %
10,189 112,920 17.636 3.458 8.271 C-333-6. 7 8 18.649 18.700 3.000 19.609 266.174 3.161.8 6.2 0.81 %
10,605 123,524 18.649 3.657 8.746 C-333-6. 5 8 19.439 19.500 3.000 20.403 286.577 3.290.6 6.0 0.79 %
11,034 134,558 19.439 3.812 9.117 C-333-6. 3 8 19.864 19.900 3.000 20.787 307.364 3,351.3 62 0.78%
11,242 145,800 13.864 3.895 9.316 C-333-6.1 8 19.770 19.800 3.000 20.787 328.151 3.351.3 6.8 0.77 %
11.242 157,042 19.770 3.876 9.272 C-333-5. 2 8 19.773 19.800 3.000 20.787 348.938 3,351.3 7.4 0.76%
11,242 112.416 168,283 19.773 3.877 9.274 C-333-5. 4 8 19.699 19.700 3.000 20.787 369.725 3,351.3 8.0 0.75%
11,242 179,525 19.699 3.863 9.239 C-333-5. 6 8 19.135 19.200 3.000 20.787 390.512 3,351.3 8.3 0.74 %
11,242 190,766 19.135 3.752 8.974 C-333-5. 8 8 19.385 19.400 3.000 20.787 411.299 3,351.3 9.2 0.73 %
11,242 202,008 19.385 3.801 9.092 C-333-5.10 8 19.657 19.700 3.000 20.787 432.086 3,351.3 10.1 0.72 %
11.242 213.250 19.657 3.854 9219 Page 5 of 11 RWS@GDPSar 8/8/96
Power Distribution Report for Cascade 2 - Paducah Lower Cascade 1530 MW Nominal Cascado. 3040 MW Plant Section Oper.
Stage Pressure (P2. psla)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Locatloa Stages Current Max Min Current Total Hp dVidMW Assay Sect.
Unit Cum.
P2 P1 Psd C-333-5. 9 8 19.630 19.700 3.000 20.787 452.873 3,369.5 10.3 0.71 %
11,242 224,491 19 630 3.849 9.206 C-333-5. 7 G 19.684 19.700 3.000 20.787 473.660 3,369.5 10.2 0.70%
11.242 235,733 19.684 3.860 9.232 C-333-5. 5 8 19.828 19.900 3.000 20.787 494.447 3,369.5 10.3 0.69%
11,242 246,974 19.828 3.888 9.299 C-333-5. 3 8 19.716 19.800 3.000 20.787 515.234 3,369.5 10.1 0.68 %
11,242 258,216 19.716 3.866 9.247 C-333-5.1 8 19.621 19.700 3.000 20.787 536.021 3,369.5 9.9 067%
11,242 269.458 19 621 3.847 9.202 C-333-4. 2 8 19.543 19 600 3.000 20.787 556.808 3,269.5 9.8 0.67%
11.242 112,416 280,699 19.543 3.832 9.166 C-333-4. 4 8 19.367 19.400 3.000 20.787 577.595 3,369.5 9.6 0.66 %
11.242 291,941 19.367 3.797 9.083 C-333-4. 6 8 19.527 19 600 3.000 20.787 598.382 3,369.5 9.6 0.65%
11,242 303.182 19.527 3.829 9.158 C-333-4. 8 8 19.546 19 600 3.000 20.787 619.169 3,369.5 9.5 0.64 %
11,242 314,424 19.546 3.833 9.167 C-333-4.10 8 19.140 19.200 3.000 20.787 639.956 3,369.5 92 0.63%
11.242 325,666 19.140 3.753 8.977 C-333-4. 9 8 19.535 19.600 3.000 20.787 660.743 3,369.5 9.3 0.62 %
11.242 336,907 19.535 3.830 9.162 C-333-4. 7 8 19.443 19.500 3.000 20.787 681.530 3,369.5 9.2 0.61%
11.242 348,149 19.443 3.812 9.119 C-333-4. 5 8 19.138 19.200 4.370 20.787 702.317 3,369.5 8.9 0.61%
11,242 359,390 19.138 3.753 8.976 C-333-4. 3 8 19.657 19.700 4.310 20.787 723.104 3,369.5 9.2 0 60%
11,242 370,632 19.657 3.854 9.219 C-33341 8 19.443 19.500 4.330 20.787 743.891 3,369.5 8.9 0.59%
11,242 381,874 19.443 3.812 9.119 C-333-3. 2 8 19.547 19.600 4.380 20.787 764.678 3,369.5 8.9 0.58 %
11,242 112,416 393,115 19.547 3.833 9.168 C-333-3. 4 8 19.486 19.500 4.350 20.787 785.465 3,369.5 8.8 0.57 %
11.242 404,357 19.486 3.821 9.139 C-333-3. 6 8 19.420 19.500 4.430 20.787 806.252 3,369.5 8.6 0.57 %
11.242 415,599 19.420 3.808 9.108 C-333-3. 8 8 19.520 19.600 4.770 20.787 827.039 3,369.5 8.6 0.56 %
11.242 426,840 19.520 3.827 9.155 C-333-3.10 8 19.301 19.400 4.930 20.787 847.826 3,369.5 8.4 0.55%
11,242 438,082' 19.301 3.785 9.052 C-333-3. 9 8 19.564 19.600 4.930 20.787 868.613 3,369.5 8.4 0 54 %
11.242 449,323 19.564 3.836 9.176 C-333 3. 7 8 19.426 19.500 4.750 20.787 889.400 3,369.5 8.3 0.54 %
11,242 460,565 19.426 3.809 9.111 C-333-3. 5 8 19.412 19.500 4.750 20.787 910.187 3,369.5 8.2 0.53%
11,242 471,807 19.412 3.806 9.104 C-333-3. 3 8 19.453 19.500 4.470 20.787 930.97, 3,369.5 8.1 0.52 %
11,242 483,048 19.453 3.814 9.123 C-333-3.1 8 19.509 19.600 4.470 20.787 951.761 3,369 5 8.0 0.51 %
11,242 494.290 19 509 3.825 9.150 C-333-2. 2 8 19.416 19.500 4.340 20.787 972.548 3,369.5 7.9 0.51 %
11.242 99.401 505,531 19.416 3.807 9.106 C-333-2. 4 8 18.902 19.000 4.560 20.239 992.787 3,262.2 8.5 0.50 %
10,945 516.477 18.902 3.706 8.865 C-333-2. 6 0
18.900 4.560 0
516.477 0.000 0.000 0.000 C-333-2. 8 8 18.874 18.900 4.900 20.239 1,013.026 3,262.2 8.3 0.49%
10,945 527,422 18.874 3.701 8.852 C-333-2.10 8 18.931 19.000 4.930 20.239 1,033.265 3,262.2 8.3 0.49%
10,945 538,367 18.931 3.712 8.879 C-333-2. 9 8 18.997 19.000 4.930 20.460 1,053.725 3,299.7 7.9 0.48%
11.065 549,432 18.997 3.725 8.910 C-333-2. 7 8 19.155 19.200 4.570 20.460 1,074.185 3,299.7 7.9 0.47%
11,065 560,497 19.155 3.756 8.984 C-333-2. 5 8 19.220 19.300 4.290 20.460 1,094.645 3,299.7 7.9 0.46%
11,065 571,561 19.220 3.769 9.014 C-333-2. 3 8 19.111 19.203 4.120 20.460 1.115.105 3.299.7 7.7 0.46%
11,065 582,626 19.111 3.747 8.963 C-333-2.1 8 19.210 19.300 4.000 20.460 1,135.565 3,299.7 7.6 0.45%
11,065 593.691l 19.210 3.767 9.009 Pag f11 RWS@GDP
/8/96
/-
N)
Q N_.
Power Distribution Report for Cascade 2 - Paducah Lower Cascade 1530 MW Nom nalCascade 3040 MW Plant Section Oper.
Stage Pres?ure (P2, psla)
Section (MW)
Stage inventory, Lb UF, Stage Pressures Location Stages Current Max Min Current Total Hp dVIdMW Assay Sect.
Unit Cum.
P2 P1 Psd C-333-1. 2 8 19.167 19.200 2.500 20 447 1,156.012 3,297.6 7.5 0.44%
11,058 103,782 604.749 19.167 3.758 8.989 C-333-1. 4 8 19.280 19.300 2.500 20.447 1,176.459 3,297.6 7.5 0.44 %
11.058 615,806 19.280 3.780 9.042 C-333-1. 6 8 19.188 19.200 2.500 20347 1,196.906 3,297.6 7.3 0.43 %
11.058 626.864 19.188 3.762 8.999 C-333-1. 8 8 19.255 19.300 2.500 20.447 1.217.353 3,297.6 7.2 0.42%
11.058 637,922 19.255 3.775 9.031 C-333-1.10 8 19.197 19.200 2.500 20.447 1,237.800 3,297.6 7.1 0.42 %
11.058 648,980 19.197 3.764 9.003 C-333-1. 9 8 18.219 18.300 2.500 19.465 1,257.265 3,138.2 8.1 0.41%
10.527 659.506 18.219 3.572 8.545 C-333-1. 7 8 15.148 15.200 2.500 16.251 1,273.516 2,607.4 11.3 0.41%
8,789 668.295 15.148 2.970 7.104 C-333-1. 5 8 13.997 14.000 2.500 15.023 1,288.539 2,413.9 12.4 0.40%
8.124 676,419 13.997 2.745 6.565 C-333-1. 3 8 18.525 18.600 2.500 19.465 1,308.004 3,138.2 6.3 U.40%
10,527 686,946 18.525 3.632 8.688 C-333-1.1 8 18.336 18.400 2.500 19.465 1,327.469 3.138.2 5.5 0.39 %
10.527 697,473 18.336 3.595 8.600 C-331-2. 2 10 18.946 19.000 3.820 13.339 1,340.808 1,709.9 17.1 0.39 %
5,440 53,156 702.912 18.946 4.031 10.003 C-331-2.4 10 18.786 18.800 3.680 13.339 1,354.147 1,709.9 14.7 0.38 %
5.440 708,352 18.786 3.997 9.919 C-331-2. 6 10 18.819 18.900 3.800 13.339 1,367.486 1,709.9 12.0 0.38 %
5.440 713,792 18.819 4.004 9.936 C-331-2. 8 10 18.901 19.000 1.800 13.339 1,380.825 1,709.9 10.8 0.37 %
5,440 719,231 18.901 4.021 9.980 C-331-2.10 10 18.822 18.900 3.540 13.339 1,394.164 1,709.9 9.1 0.37%
5.440 724,671 18.822 4.005 9.938 C-331-2. 9 10 19.055 19.100 3.220 13.339 1,407.503 1,709.9 7.6 0.36 %
5.440 730,111 19.055 4.054 10.061 C 331-2. 7 10 18.910 19.000 2.910 13.339 1,420.842 1,709.9 6.1 0.36 %
5,440 735,550 18.910 4.023 9.984 C-331-2. 5 10 19.051 19.100 2.640 13.339 1.434.181 1,709.9 4.9 0.35%
5,440 740,990 19.051 4.053 10.059 C-331-2. 3 10 17.756 18.300 1.800 12.786 1,446.966 1,641.4 4.1 0.34 %
5,214 746,204 17.756 3.778 9.375 C-331-2.1 10 16.419 16.500 1.800 10.850 1,457.816 1,397.3 4.8 0.34 %
4,425 750.629 16.419 3.493 8.669 C-331-1. 2 10 13.259 13.400 1.800 9.406 1,467.222 1,215.C 4.1 0.33%
3,836 10.517 754,464 13.259 2.821 7.001 C-331-1. 4 10 10.631 13.200 1.800 7.748 1,474.970 984.9 4.1 0.32 %
3.160 757.624 10.631 2.262 5.613 C-331-1. 6 10 7.487 13.200 1.800 5.661 1,480.631 709.0 4.1 0.31%
2,309 759.933 7.487 1.593 3.953 C-331-1. 8 10 3.465 13.200 1.800 2.975 1,483.606 357.4 4.1 0.30 %
1,213 761,146 3.465 0.737 1.830 C-331-1.10 0
13.700 1.800 0
761.146 0.000 0.000 0.000 C-331-1. 9 0
12.400 1.800 0
761.146 0.000 0.000 0.000 C-331-1. 7 0
12.000 1.800 0
761,146 0.000 0.000 0.000 C-331-1. 5 0
12.400 1.800 0
761,146 0.000 0.000 0.000 C-331-1. 3 0
12.400 1.800 0
761,146 0.000 0.000 0.000 C-331-1.1 0
11.200 1.800 0
761,146 0.000 0.000 0.000 Page 7 of 11 RWS@GDPSar 8/8/96
e
$$5 l
l l
l l
i N tc.n l
l l
l l
l l
y SCC-O l
l l
g
'sec.o ef
'9CC-O t
i l
hCe.g l
I i
e h e,.,
l hcc.,
l I
- h ec.o f
j f'
H
' h ee.o 8 Nec.3 j
E
' hee.o 0 a
" Q J
- h ee.o i%
l'
/
6 g.dte.g 8
4 l
/
E
- hte.o l
I g.,'AEC-O l
f J
< n ce.,
s TCp.g l
I
- hec,o l
l l
l i
l l
6 y CC-O l
l O
y 2
e v
ev c
~
VISd
. -... -. ~_
PSIA
{
5 0
o N
s o
m o
C-331-1. 9 l
l l
l l
l l
i C-331-1. 2 l
l l
a C-331-2. 9 C-331-2. 2
\\
C-333-1. 9 I
i C-333-1. 2 8
i ct i
eo C-333-2. 9 r-O C-333-2. 2 l"
- l 0
C-333-3. 9 l" C-333-3. 2 I
2o e
a u
C-3334. 9 i
e i
5:
C-333-4. 2
.u E
C-333-5. 9 C
E I
C-333-5. 2 1
C-333-6. 9 l
C-333-6. 2 I
m g
C-331 3. 9 j
j go C-331-3. 2 u
I I
g C-331-4. 9 gag
^
f k
C-3314. 2 e
-.m
e--*==-=---=
Paducah '00' to *000' Tie Line Inventory - 3040 MW Pressures (except intet pressure) and Flows are from IMPP Process Pipe Tie Line Line Pressures, psia Inv.
Fiow Holdup Velocity Buildings Section Stream Dia,in Length, ft Vol, ft' Source inlet Outlet Avg T,'F Z
Dens, Ib/ft' lbs Ib/sec seconds ft/sec l
C-335 to Enricher A (to 335) 30 200 982 3.01 4.58 4.09 4.34 200 0.9927 0.2172 213 141 1.51 132 C-337 8 (to 337) 20 200 436 19.23 16.34 15.33 15.84 290 0.9819 0.7058 308 141 2.18 92 Stripper A (to 337) 24 200 628 4.04 5.61 3.38 4.49 200 0.9924 0.2252 142 144 0.98 203 8 (to 335) 24 200 628 17.25 19.32 18 99 19.16 290 0.9782 0.8570 538 144 3.75*
53 C-331 to Enricher A(to 331) 30 314 1,541 3.48 4.80 4.05 4.43 200 0.9925 0.2219 342 142 2.41 130 C-333 8 (to 333) 20 314 685 19.05 19.12 17.77 18.44 290 0.9790 0.8243 565 142 3.98 79 Stripper A (to 333) 24 314 986 4.03 6.31 3.60 4.95 200 0.9916 0.2485 245 143 1.71 183 B (to 331) 24 314 986 18.34 19.46 18.95 19.20 290 0.9782 0.8590 847 143 5.93 53 6,874 3,200 1,140 Note: Source and Outlet pressures correspond to the pressures in the T)0* and *000* process equipment at either end of the pipeline.
The inlet pressure, calculated externa!!y, is the pressure needed to achieve the required flow at the stated temperature and outlet pressure.
Where the inlet pressure is higher than the source pressure, a booster pump is employed. Where the source pressure is greater than the required isitet pressure, control valves are used to control the flow.
1 lb/sec = 245.4406 lb-mol/ day of UF6 RWS@GDP 8/8/96
,t
-1 I
h O
F 7
s 1
.L 4
i f
g.
Cascade Gradient for 2200 MW g
h s
a 4
k i
i m
j 4
4 j
Source Terms for Paducah Page of_t3 gj Date p-Ja-F s Evaluation-Basis Seismic Event Prepared by
- DAC-M0848401-SAR 62 Checked by
&V Date 4-30-4. L j
v I
O e
O 9
4 0
l l
_ =_
i -
Inv0nt:ry Summery for the Paducah Plant - 2200 MW p
Upper Cascade:
1070 MW Nominal Cascade, 2200 MW Plant Unit Total Oper Total Oper Average Average Average Total Top
- inven, J
Name Cells Cells Stages Stages P2, psia P1, psia Psd, psia Pwr, MW Assay Lbs C-310-1 4
3 24 18 4.61 0.74 2.49 2.46 0.00%
808 i
C-335-4 10 5
100 50 4.99 1.06 2.64 19.28 0.00%
7,860 C-335-3 10 10 100 100 10.46 2.23 5.52 74.24 2.02 %
30.277 C-337 6 10 8
80 64 10.14 1,99 4.75 85.57 1.60 %
46,274 i
C-337 5 10 10 80 80 13.13 2.58 6.16 141.86 1.38 %
76,717 C 337-4 10 8
80 64 16 43 3.22
, 7,71 139.89 1,16 %
75.654 C-337 3 10 10 80 80 16.66 3.27 7.82 178.17 1.02 %
96,356 C 337 2 10 10 80 80 14.95 2.93 7.01 162.18 0.87 %
87,708 C-337-1 10 10 80 80 12.55 2.46 5.89 133.39 0.73 %
72,138 C-335 2 10 10 100 100 10.91 2.32 5.76 77.42 0.63%
31,571 C 3351 10 4
100 40 4.25 0.90 2.24 13.36 0.52 %
5,447 Total 104 88 904 756 11.99 2.39 5.80 1,027.82 2.02 %
530,811 i
Lower Cascade:
1130 MW Nominal Cascade,2200 MW Plant l
Unit Total Oper Total Oper Average Average Average Total Top inven.
Name Cells Cells Stages Stages P2, psia P1, psia Psd, psia Pwr, MW Assay Lbs C 331-4 10 0
100 0.00 0.00 0.00 0.00 0.00 0.00%
0 C-3313 10 10 100 100.00 8.52 1.81 4.50 61.59 1.05 %
25,114 C-333-6 10 10 80 80.00 12.41 2.43 5.82 130.40 0.86 %
70,521 C-333-5 10 10 60 80.00 16.10 3.16 7.55 171.85 0.73 %
92,934 C-333-4 10 9
80 72.00 18.50 3.63 8.68 178.41 0.00 %
96,485 i
C-333-3 10 10 80 80.00 18.50 3.63 8.68 197.81 0.55 %
106,973 C-333-2 10 9
80 72.00 16.00 3.14 7.50 154.86 0.48%
83,749 C-333-1 10 10 80 80.00 12.55 2.46 5.88 134.78 0.42 %
72,888 C-331-2 10 9
100 90.00 8.74 1.86 4.62 56.94 0.36 %
23,218 C-331 1 10 0
100 0.00 0.00 0.00 0.00 0.00 0.00%
0 Total 100 77 880 654 13.90 2.76 6,64 1,086.63 1.05 %
571,884 Building Totals Unit Total Oper Total Oper Average Average Average Total Top inven.
Name Cells Cells Stages Stages P2, psia P1, psia Psd, psia Pwr, MW Assay Lbs C-310 4
3 24 18 4.61 0.74 2.49 2.46 0.00%
808 l
C-337 60 56 480 448 14.03 2.75 6.58 841.07 1.60%
454,848 C-335 40 29 400 290 8.82 1.88 4.65 184.29 2.02 %
75,155 C-333 60 58 480 464 15.62 3.06 7.33 968.11 0.86 %
523,551 C-331 40 19 400 190 8.63 1.84 4.56 118.52 1.05%
48.332 Total 204 165 1,784 1,410 12.88 2.56 6.20 2,114.44 2.02 % 1,102,694 4 V RWS@GDPSAR 8/8/96
Power Distribution Report for Cascade 1 - Paducah Upper Cascade 1070 MW Nominal Cascade,2200 MW Plant Section Oper.
Stage Pressure (P2, psla)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dV/dMW Assay Sect.
Unit Cum.
P2 P1 Psd C-310-1. 7 0
5.100 5.000 0
808 0
0.000 0.000 0.000
)
C-310-1. 5 6
4.900 4.910 4.900 0.852 0.852 180.2 3.4 2.48%
280 280 4.900 0.790 2.646 C-310-1. 3 6
3.810 3.810 3 800 0.734 1.585 155 3 13.8 2.44%
241 521 3.810 0.615 2.057 C-310-1.1 6
5.110 5.110 5.100 0.874 2.459 185.0 17.5 2.41 %
287 808 5.110 0.824 2.759 f
C-335 4. 2 0
10.200 3.000 O
7.860 808 0.000 0.000 0.000 C-335-4. 4 10 3.039 11.000 3.000 2.472 4.931 302.9 7.7 2.35%
1,008 1,816 3.039 0.647 1.605 C-335-4. 6 0
11.000 3.000 0
1,816 0.000 0.000 0.000 C-335-4. 8 0
11.000 3.000 0
1,816 0.000 0.000 0.000 C-335-4.10 0
11.000 3.000 0
1,816 0.000 0.000 0.000 C-335-4. 9 0
11.000 3.000 0
1,816 0.000 0 000 0.000 C-335-4. 7 10 4.311 11.000 3.000 3.213 8.145 413.4 7.7 2.27%
1,310 3.126 4.311 0.917 2.276 C-335-4. 5 10 5.168 11.000 3.000 4.036 12.181 496.4 7.7 2.20%
1,646 4,772 5.168 1.100 2.729 C-335-4. 3 10 5.624 11.000 3.000 4.537 16.718 561.8 7.8 2.14 %
1,850 6.622 5.624 1.197 2.969 C-335-4. I 10 6.830 11.000 3.000 5.017 21.735 648.8 7.7 2.08 %
2,046 8,668 6.830 1.453 3 606 C-335-3. 2 10 7.818 11.500 3.000 5.620 27.354 727.6 7.8 2.02 %
2,292 30.277 10.960 7.818 1.663 4.128 C-335-3. 4 10 8.717 11.500 3.000 6.202 33.557 803.8 77 1.96 %
2.529 13,489 8.717 1.855 4.603 C-335-3. 6 10 9.206 11.500 3.000 6.672 40.229 865.1 7.7 1.91 %
2.721 16.210 9.206 1.959 4.861 C-335-3. 8 10 10.108 11.500 3.000 7.224 47.453 936.6 7.7 1.87%
2.946 19.156 10.108 2.151 5.337 C-335-3.10 10 11.256 11.500 3.000 7.857 55.310 1.018.2 7.6 1.82%
3.204 22,360 11.256 2.395 5.943 C-335-3. 9 10 11.500 11.500 3.000 8.183 63.493 1,060.0 7.9 1.77 %
3,337 25.697 11.500 2.447 6.072 C-335-3. 7 10 11.500 11.500 3.000 8.123 71.616 1,052.3 9.5 1.73 %
3,313 29,009 11.500 2.447 6.072 C-335-3. 5 10 11.500 11.500 3.000 8.152 79.768 1,055.9 10.8 1.70%
3,324 32,334 11.500 2.447 6 072 C-335-3. 3 10 11.500 11.500 3.000 8.127 87.895 1,052.8 12.4 1.66 %
3,314 35,648 11.500 2.447 6.072 C-335-3.1 10 11.500 11.500 3.000 8.084 95.978 1.047.2 14.4 1.63%
3.297 38,945 11.500 2.447 6 072 C-337-6. ')
8 8.797 12.500 3.000 9.460 105.438 1,523.2 7.7 1.60%
5,116 46,274 44,061 8.797 1.725 4.126 C-337-6. 4 8
9.361 12.500 3.000 9.958 115.396 1,604.5 7.7 1.57 %
5,385 49,446 9.361 1.835 4.390 C-337-6. 6 8
9.659 12.500 3.000 10.519 125 914 1,695.8 7.7 1.54 %
5,689 55,135 9.659 1.894 4.530 C-337-6. 8 8
9 470 12.500 3.000 10.293 136.207 1,659.0 7.7 1.51 %
5,566 60,701 9.470 1.857 4.441 C-337-6.10 8 10.562 12.500 3.000 10.723 146.930 1,729.0 7.7 1.49%
5,799 66,500 10.562 2.071 4.954 C-337-6. 9 0
12.500 3.000 0
66,500 0.000 0.000 0 000 C-337-6. 7 0
12.500 3.000 0
66,500 0 000 0.00C 0000 C-337-6. 5 8 11.196 12.500 3.000 11.497 158.426 1,854.8 7.7 1.46%
6.218 72,718 11.196 2.195 5.251 C-337-6. 3 8 10.951 12.500 3.000 11.400 169 826 1,837.1 7.7 1.43%
6,165 78.883 10.951 2.147 5.136 C-337-6.1 8 11.085 12.500 3.000 11.716 181.542 1,886.6 7.7 1.41 %
6,336 85.219 11.085 2.174 5.199 Pa of 11 RWS @ GDP 8/8/96
U d
v Power Distributien Report for Cascade 1 - Paducah Upper Cascade 1070 MW Nominal Cascade,2200 MW Plant Section
- Oper, Stage Pressure (P2, psia)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dV/dMW Assay Sect.
Unit
- Cum, P2 P1 Psd C-337-5. 2 8 11.732 13 500 3.000 12.483 194.025 2,005.8 7.7 1.38%
6.751 76,717 91,970 11.732 2.300 5.502 C-337-5. 4 8 12.058 14.000 3.000 12.874 206.899 2,066.3 7.7 1.36 %
6.962 98,932 12.053 2.3G4 5.655 C-337-5. 6 8 12.770 14.500 3.000 13.384 220.283 2,145.0 7.7 1.33%
7.238 106,170 12.770 2.504 5.989 C-337-5. 8 8 12.022 15.000 3.000 13.420 233.702 2,150.5 7.7 T.31%
7.258 113.427 12.022 2.357 5.638 C-337-5.10 8 12.470 15.500 3.000 13.659 247.362 2,187.5 7.7 1.29 %
7.387 120.814 12.470 2.445 5.848 C-337-5. 9 8 12.933 16.000 3 000 14.129 261.491 2.281.6 7.7 1.27%
7,641 128,455 12.933 2.536 6.066 C-337-5. 7 8 14.299 16.500 3.000 15.088 276.579 2,435.4 7.7 1.24 %
8,160 136,615 14.299 2.804 6.706 C-337-5. 5 8 14.374 17.000 3.000 15.396 291.975 2,484.9 7.7 1.22 %
8.326 144,941 14.374 2.818 6.741 C-337-5. 3 8 14.463 17.000 3.000 15.703 307.678 2,534.0 7.7 1.20%
8,492 153,433 14.463 2.836 6.783 C-337-5.1 8 14.213 17.000 4.700 15.723 323.401 2.537.2 7.7 1.18%
8.503 161,936 14.213 2.787 6.666 C-337-4. 2 8 14.993 17.000 4.540 16.260 339.661 2,613.3 7.7 1.16%
8,793 75,654 170,730 14.993 2.940 7.032 C-337-4. 4 8 15.731 17.000 4.540 16.845 356.506 2,707.0 7.7 i.14 %
9,110 179,839 15.731 3.085 7.378 C-337-4. 6 8 16.189 17.000 4.540 17.351 373.857 2,789.1 7.7 1.12 %
9,383 189,223 16.189 3.174 7.593 C-337-4. 8 8 17.000 17.000 4"20 17.796 391.653 2,862.2 8.6 1.11 %
9.624 198,847 17.000 3.333 7.973 C-337-4.10 8 17.000 17.000 4.:,10 17.556 409.209 2.822.7 9.5 1.09%
9,494 208,341 17.000 3.333 7.973 C-337-4. 9 8 17.000 17.000 4.500 17.833 427.042 2.868.4 9.2 1.07%
9,644 217,985 17.000 3.333 7.973 C-337-4. 7 8 17.000 17.000 4.390 18.130 445.172 2,917.5 8.1 1.06 %
9,805 227,790 17.000 3.333 7.973 C-337-4. 5 8 16.549 17.000 4.290 18.122 463.294 2,916.2 7.7 1.04 %
9,800 237,590 16.549 3.245 7.761 C-337-4. 3 0
17.000 4.290 0
237,590 0.000 0.000 0.000 C-337-4.1 0
17.000 4.220 0
237,590 0.000 0.000 0.000 C-337-3. 2 8 16.793 17.000 4.170 18.107 481.400 2,913.7 7.7 1.02 %
9,792 96,356 247.383 16.793 3.293 7.876 C-337-3. 4 8 16.897 17.000 4.310 18.058 499.459 2,905.6 7.7 1.01%
9,766 257.148' 16.897 3.313 7.925 C-337-3. 6 8 17.000 17.000 4.310 17.739 517.198 2.852.9 8.1 0.99%
9,593 266,742 17.000 3.333 7.973 C-337-3. 8 8 16.652 17.000 4.560 17.P22 535.019 2,866.5 7.7 0.97%
9,638 276,380 16.652 3.265 7.810 C-337-3.10 8 16.408 17.000 4.610 17.663 552.682 2,840.3 7.7 0.96 %
9,552 285,932 16.408 3.217 7.695 C-337-3. 9 8 16.766 17.000 4.530 18.002 570.685 2.896.3 7.7 0.94 %
9,735 295,667 16.766 3.287 7.863 C-337-3. 7 8 16.510 17.000 4.530 17.824 588.508 2.866.8 7.7 0.93%
9.639 305,307 16.510 3.237 7.743 C-337-3. 5 8 16.618 17.000 4.350 17.791 606.299 2,861.4 7.7 0.91 %
9,621 314,928 16.618 3.258 7.794 C-337-3. 3 8 17.000 17.000 4.350 17.800 624.100 2,862.9 7.8 0.90 %
9,626 324,554 17.000 3.333 7.973 C-337-3.1 8 15.994 17.000 4.120 17.368 641.46S 2,792.0 7.7 0.88 %
9,393 333,947 15.994 3.136 7.501 C-337-2. 2 8 15.346 17.000 4.120 16.784 658.252 2,697.1 7.7 0.87%
9,077 87,708 343,024 15.346 3.009 7.197 C-337-2. 4 8 15.684 17.000 4.000 16.678 674.930 2,689.8 7.7 0.85%
9,019 352,043 15.684 3.075 7.356 C-337-2. 6 8 15.487 17.000 4.000 16.538 691.467 2,667.4 7.7 0.84 %
8.944 360,987 15.487 3.037 7.263 C-337-2. 8 8 15.284 17.000 4.000 16.391 707.858 2,644.0 7.7 0.82 %
8,864 369,851 15.284 2.997 7.168 C-337-2.10 8 14.941 16.500 4.020 16.205 724.064 2.614.3 7.7 0.81 %
8,7C4 378,615 14.941 2.930 7.007 j
Page 3 of 11 RWS @ GDPSar, 8/8/96
Power Distribution Report for Cascade 1 - Paducah Upper Cascade 1070 MW Nominal Cascade 2200 MW Plant Section Oper.
Stage Pressure (P2, psia)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dVidMW Assay Sect.
Unit Cum-P2 P1 Psd C-337-2. 9 8 14.877 16.000 4.190 16.260 740.324 2,598.2 7.8 0.80%
8,793 387,408 14.877 2.917 6.977 C-337-2, 7 8 14.639 15.500 4.170 16.127 756.451 2,576.8 7.7 0.78 %
8,721 396,130 14.639 2.870 6.866 i
l C-337-2. 5 8 14.886 15 000 4.000 16.059 772.509 2,565.8 7.7 0.77 %
8,685 404,814 14.886 2.919 6.982 C-337-2. 3 8 14.323 14.500 4.000 15.819 788.328 2,527.4 7.7 0.76 %
8.555 413.369 14.323 2.808 6.717 C-337-2.1 8 14 000 14.000 2.500 15.32i 803.650 2.447.9 8.6 0.75 %
8,286 421.655 14 000 2.745 6.566 C-337-1. 2 8 13.500 13.500 2.500 14.622 818.271 2,337.4 9.4 0.73 %
7,908 72,138 429.56 13.500 2.647 6.332 C-337-1, 4 8 13.500 13.500 2.500 14.466 832.738 2,313.1 9.6 0.72 %
7.823 437,386 11500 2.647 6.332 C-337-1. 6 8 13.500 13.500 2.500 14.483 847.220 2.315.7 9.2 0.71%
7,832 445,218 13.500 2.647 6.332 C-337-1. 8 8 13.500 13.500 2.500 14.388 861.608 2,300.8 8.7 0.70%
7,781 452.999 13.500 2.647 6.332 C-337-1.10 8 12.500 12.500 2.500 13.011 874.619 2,087 4 9.7 0.69%
7,036 460,035 12 500 2.451 5 863 C-337-1, 9 8 12.500 12.500 2.500 13.033 887.652 2,090.8 8.6 0.68%
7,048 467,084 12.500 2.451 5.863 C-337-1. 7 8 12.306 12.500 2.500 13.079 900.731 2,096.0 7.8 0.67%
7.073 474.157 12.306 2.413 5.772 C-337-1. 5 8 11.605 12.500 2.500 12.560 913.291 2,017.7 7.7 0.65%
6,792 480.949 11.605 2.275 5 443 C-337-1. 3 8 11.304 12.500 2 500 12.077 925.368 1,942.8 7.7 0.64 %
6,531 487,480 11.304 2.216 5.302 C-337-1.1 8 11.274 12.500 2.500 11.872 937.039 1,879.7 7.7 0.63%
6.312 493,793 11.274 2.211 5.288 C-335-2. 2 10 11.500 11.500 2.500 8.185 945.224 1,060.2 24.0 0.63%
3,338 31,571 497.130 11.500 2.447 6.072 C-335-2. 4 10 11.500 11.500 2.500 8.168 953.393 1,058.1 21.0 0.62 %
3,331 500,461 11.500 2.447 6.072 C-335-2. 6 10 11.500 11.500 2.500 8.205 961.597 1,062.7 17.8 0.61 %
3,346 503,807 11.500 2.447 6 072 C-335-2. 8 10 11.500 11.500 2.500 8.199 969.797 1,062.0 15.2 0.60 %
3,344 507,151 11.500 2.447 6.072 C-335-2.10 10 11.500 11.500 2.500 8.165 977.961 1,057.6 13.0 0.59 %
3,330 510,481 11.500 2.447 6.072
{
C-335-2. 9 10 11.500 11.500 2.500 8.147 986.109 1,055.4 10.8 0.58 %
3,322 513,803 11.500 2.447 6 072 C-335-2. 7 10 11.500
'1.500 2.500 7.952 994.060 1,030.4 9.5 0.57 %
3,243 517.046 11.500 2.447 6.072 C-335-2. 5 10 10.839 11.500 2.500 7.703 1,001.764 999.4 7.7 0.56 %
3,141 520.187 10.839 2.30G 5.723 C-335-2. 3 10 9.934 11.500 2.500 6.905 1,008.669 895.3 7.7 0.55%
2,816 523.003 9.334 2.114 5.245 C-335-2.1 10 7.828 11.500 2.500 5.788 1,014.456 749.6 7.7 0.53 %
2,360 525.363 7.828 1.666 4.133 C-335-1. 2 10 6.417 11.000 2.500 4.884 1,019.340 615.8 7.7 0.52 %
1,992 5,447 527,355 6.417 1.365 3.38S C-335-1. 4 0
11.000 2.500 0
527.355 0.000 0.000 0.000 C-335-1. 6 10 4.780 11.000 2.500 3.775 1.023.115 472.5 7.7 0.51 %
1,539 528,894 4.780 1.017 2.524 C-335-1. 8 0
11.000 2.500 0
528,894 0.000 0.000 0.000 C-335-1.10 0
11.000 2.500 0
528,894 0.000 0.000 0.000 C-335-1. 9 0
11.000 2.500 0
528,894 0.000 0.000 0.000 C-335-1. 7 10 3.289 11.000 2.500 2.605 1,025.720 320.4 7.7 0.50 %
1,062 529,957 3.289 0.700 1.737 C-335-1. 5 10 2.500 11.000 2.500 2.094 1,027.814 253.1 2.9 0.48%
854 530,811 2.500 0.532 1.320 C-335-1. 3 0
11.000 2.500 0
530,811 0.000 0.000 0.000 C-335-1.1 0
10.200 2.500 0
530.811 0.000 0.000 0.000 Pag i11 RWS @ GDP V8/96
m p~
Power Distribution Report for Cascade 2 - Paducah Lower Cascade 1130 MW Nominal Cascade,2200 MW Plant Section Oper.
Stage Pressure (P2, psla)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dV/dMW Assay Sect.
Unit Cum.
P2 P1 Psd C-331-4. 2 0
10.700 3.000 0
0 0
0.000 0.000 0.000 C-33i-4. 4 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4. 6 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4. 8 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4.10 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4. 9 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4. 7 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4. 5 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4. 3 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-4.1 0
11.000 3.000 0
0 0.000 0.000 0.000 C-331-3. 2 10 3.000 11.500 3.000 2.449 2.449 312.5 3.4 1.05%
999 25,114 999 3.000 0.638 1.584 C-331-3. 4 10 3.904 11.500 3.000 3.055 5.505 392.7 7.3 1.02 %
1,246 2,245 3.904 0.831 2.061 C-331-3 6 10 5.998 11.500 3.000 4.313 9.818 557.0 7.3 1.00 %
1,759 4,003 5.998 1.276 3.167 C-331-3. 8 10 7.521 11.500 3.000 5.385 15.202 696.9 7.3 0.97%
2,196 6,199 7.521 1.600 3.971 C-331-3.10 10 8.417 11.500 3.000 6.269 21.471 812.4 7.3 0.95%
2,556 8,756 8.417 1.791 4.444 C-331-3. 9 10 10.376 11.500 3.000 7.369 28.840 955.5 7.3 0.93 %
3,005 11,761 10.376 2.208 5.479 C-331-3. 7 10 11.500 11.500 3.000 8.121 36.961 1,052.0 7.8 0.91 %
3.312 15,073 11.500 2.447 6.072 C-331-3. 5 10 11.500 11.500 3.000 8.441 45.403 1,092.8 8.9 0.90 %
3,442 18,515 11.500 2.447 6.072 C-331-3. 3 10 11.500 11.500 3.000 8.052 53.455 1,043.2 13.3 0.88%
3,284 21,799 11.500 2.447 6.072 C-331-3.1 10 11.500 11.500 3.000 8 131 61.586 1.053.3 16.1 0.87 %
3,316 25,114 11.500 2.447 6.072 C-333-6. 2 8 10.080 11.000 3.000 10.501 72.087 1,697.5 7.3 0.86 %
5.679 70,521 30,793 10.080 1.976 4.728 C-333-6. 4 8 10.899 11.000 3.000 11.186 83.272 1,810.3 7.3 0.84 %
6,049 36,843 10.899 2.137 5.112 C-333-6. 6 8 11.000 11.000 3 000 11.150 94.423 1,805.1 90 0.83%
6,030 42,873 11.000 2.157 5.159 C-333-6. 8 8 12.275 13.500 3.000 12.843 107.266 2,078.8 7.3 0.81 %
6,945 49,818 12.275 2.407 5.757 C-333-6.10 8 12.726 13.500 3.000 13.473 120.738 2,178.3 7.3 0.80 %
7.286 57.104 12.726 2.495 5.968 C-333-6. 9 8 13.099 13.500 3.000 14 033 134.821 2,273.9 7.3 0.79%
7,616 64,720 13.099 2.568 S.i43 C-333-6.' 7 8 13.500 13.530 3.000 14.304 149.125 2,308.4 8.1 0.77 %
7,736 72.456 13 500 2.647 6.332 C-333-6. 5 8 13.500 13.500 3.000 14.293 163.418 2,306.8 9.2 0.76 %
7,730 80,186 13.500 2.647 6.332 C-333 6. 3 8 13.500 13.500 3.000 14.249 177.667 2.299.8 10.4 0.75%
7.706 87,892 13.500 2.647 6.332 C-333-6.1 8 13.500 13.500 3.000 14.320 191.987 2.311.0 11.4 0.74 %
7.744 95,636 13.500 2.647 6.332 C-333-5.2 8 14.000 14.000 3.000 14.850 206.837 2,393.6 11.7 0.73 %
8,031 92,934 ?O3,667 14.000 2.745 6.566 C-333-5. 4 8 14.500 14.500 3 000 15.442 222.279 2.486.0 11.8 0.72 %
8,351 112,018 14.500 2.843 6.801 C-333-5. 6 8 15.000 15.000 3.000 16.451 238.730 2,645.3 10.9 0.71 %
8,897 120,914 15.000 2.941 7.035 C-333-5. 8 8 15.500 15.500 3.000 16.765 255.495 2,695.4 10.8 0.70 %
9,067 129,981 15.500 3.039 7.270 C-333-5.10 8 16.000 16.000 3.000 17.052 272.546 2,741.5 10.8 0.69%
9,222 139,203 16.000 3.137 7.504 Page 5 of 11 RWS@GDPSar 8/8/96
Power Distribution Report for Cascado 2 - Paducah Lower Cascade 1130 MW Nominal Cascade,2200 MW Plant Section Oper.
Stage Pressure (P2, psia)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures l
Location Stages Current Max Min Current Total Hp dV/dMW Assay Sect.
Unit Cum.
P2 P1 Psd C-333-5. 9 8 16.500 16.500 3.000 17.611 290.158 2.844.4 10.1 0.68%
9,524 148,727 16.500 3.235 7.739 C-333-5. 7 8 17.000 17.000 3.000 18.068 308.226 2,920.3 9.7 0.67%
9,771 158,498 17.000 3.333 7.973 C-333-5. 5 8 17.000 17.000 3.000 17.941 326.167 2.899.2 10.0 0.66 %
9.702 168.200 17.000 3.333 7.973 C-333-5. 3 8 17.500 17.500 3.000 18.540 344.707 2,999.2 9.3 0.66 %
10,026 178,227 17.500 3.431 8.208 C-333-5.1 8 18.000 18.000 3.000 19.126 363.832 3,097.5 8.6 0.65%
10.343 188,570 18.000 3.529 8.442 C-333-4. 2 0
18.500 3.000 0 96,485 188,570 0.000 0.000 0.000 C-333-4. 4 8 18 500 18,500 3.000 19.876 383.708 3,222.3 7.5 0.64 %
10.749 199,319 18.500 3.627 8.677 C-333-4. 6 8 18.500 18.500 3.000 19.719 403.427 3,196.4 8.0 0.63%
10.664 209,983 18.500 3.627 8.677 C-333-4. 8 8 18.500 18.500 3.000 19.700 423.127 3,193.4 8.1 0.629 10,654 220,637 18.500 3 627 8.677 C-333-4.10 8 18.500 18.500 3.000 20.104 443.231 3,259.7 7.4 0.61 %
10.872 231,509 18.500 3.627 8.677 C-333-4. 9 8 18.500 18.500 3.000 19.711 462.942 3,195.1 8.2 0.60%
10,660 242,169 18.500 3.627 8.677 C-333-4. 7 8 18.500 18.500 3.000 19.801 482.743 3,210.0 8.1 0.59 %
10,708 252,877 18.500 3.627 8.677 i
C-333-4. 5 8 18.500 18.500 4.370 20.106 502.849 3,260.1 7.7 0.58 %
10.873 263,750 18.500 3.627 8.677 C-333-4. 3 8 18.500 18.500 4.310 19.593 522.442 3,175.6 8.7 0.57 %
10.596 274,346 18.500 3.627 8.677 C-333-4.1 8 18.500 18.500 4.330 19.801 542.243 3,210.0 8.4 0.56 %
10,708 285,055 18.500 3.627 8.677 C-333-3. 2 8 18.500 18.500 4.380 19.699 561.942 3,193.1 8.7 0.55%
10,653 106,973 295,708 18.500 3.627 8.677 C-333-3, 4 8 18.500 18.500 4.350 19.758 581.701 3,203.0 8.7 0.35%
10,685 306,393 18.500 3.627 8.677 C-333-3. 6 8 18.500 18.500 4.430 19.823 601.524 3,213.7 8.6 0.54 %
10,720 317.113 18.500 3.627 8.677 C-333-3. 8 8 18.500 18.500 4.770 19.725 621.250 3,197.5 8.9 0.53 %
10,667 327,781 18.500 3.627 8.677 C-333-3.10 8 18.500 18.500 4.930 19.941 641.191 3,233.1 8.6 0.52 %
10,784 338,565 18.500 3.627 8.677 C-333-3. 9 8 18.500 18.500 4.930 19.683 660.874 3,190.5 9.2 0.51 %
10,645 349,209 18.500 3.627 8.677 C-333-3. 7 8 18.500 18.500 4.750 19.818 680.692 3,212.8 9.0 0.51 %
10,718 359,927 18.500 3.627 8.677 C-333-3. 5 8 18.500 18.500 4.750 19.831 700.524 3.215.0 9.1 0.50 %
10,725 370,651 18.500 3.627 8.677 C 333-3. 3 8 18.500 18.500 4 470 19.792 720.315 3.208.4 9.3 0.49%
10,704 381,355 18.500 3.627 8.677 C-333-3.1 8 18.500 18.500 4.470 19.736 740.051 3,199.2 9.5 0.49%
10,673 392,028 18.500 3.627 8.677 C-333-2. 2 8 18.000 18.000 4.340 19 318 759.369 3.129.7 10.1 0.48%
10,447 83,749 402,475 18.000 3.529 8.442 C-333-2. 4 8 17.500 17.500 4.560 18.743 778.112 3,026.0 9.9 0.47%
10,136 412,612 17.500 3.431 8.208 C-333-2. 6 0
17.000 4.560 0
412,612 0.000 0.000 0 000 C-333-2. 8 8 17.000 17.000 4.900 18.240 796.352 2,946.0 10.0 0.47%
9.864 422.476 17.000 3.333 7.973 C-333-2.10 8 16.500 16.500 4.930 17.659 814.011 2,853.2 10.2 0.46 %
9.550 432,026 16.500 3.235 7.739 C-333-2. 9 8 16.000 16.000 4.930 17.362 831.374 2.791.8 10.1 0.45%
9.389 441,415 16.000 3.137 7.504 C-333-2. 7 8 15.500 15.500 4.570 16.698 848.072 2,684.8 10.3 0.45%
9,030 450,445 15.500 3.039 7.270 C-333-2. 5 8 15.000 15.000 4.290 16.114 864.186 2,591.8 10.4 0.44 %
8,714 459,160 15.000 2.941 7.035 C-333-2. 3 8 14.500 14.500 4.120 15.673 879.859 2,522.4 10.1 0.44 %
8,476 467.636 14.500 2.843 6.801 C-333-2.1 8 14.000 14.000 4.000 15.054 894.914 2,425.5 10.3 0.43%
8,141 475,777 14.000 2.745 6.566 0
Pag 6f11 RWS@GDPW9/8/96
V V
V Power Distribution Report for Cascade 2 - Paducah Lower Cascade 1130 MW Nominal Cascade, 2200 MW Plant Section Oper.
Stage Pressure (P2, psla)
Section (MW)
Stage Inventory, Lb UF.
Stage Pressures Location Stages Current Max Min Current Total Hp dV/dMW Assay Sect.
Unit Cum.
P2 P1 Psd C-333-1. 2 8 13.500 13.500 2.500 14.541 909.454 2,345.4 10.3 0.42%
7,864 72,888 483,641 13.500 2.647 6.332 C-333-1. 4 8 13.500 13.500 2.500 14.451 923.905 2,331.4 9.6 0.42%
7,815 491,456 13.500 2.647 6.332 C-333-1. 6 8 13.500 13.500 2.500 14.524 938.429 2,342.7 8.6 0.41 %
7,855 499.311 13.500 2.647 6.332 C-333-1. 8 8 13.500 13.500 2.500 14.471 952.900 2,334.5 7.9 0.40%
7,826 507,136 13.500 2.647 6.332 C-333-1.10 8 13.398 13.500 2.500 14.407 967.308 2.324.5 7.2 0.40%
7,791 514,928 13.398 2.627 6.284 C-333-1. 9 8 12.706 13.500 2.500 13.687 980.994 2,211.9 7.3 0.39%
7,402 522.330 12.706 2.491 5.959 C-333-1. 7 8 12.271 13.500 2.500 13.214 994.208 2,126.3 7.3 0.38 %
7,146 529,476 12.271 2.406 5.755 C-333-1. 5 8 11.616 13.500 2.500 12.523 1,006.731 2,016.0 7.3 0.38%
6,772 536,248 11.616 2.278 5.448 C-333-1. 3 8 11.172 13.500 2.500 11.856 1,018.586 1,920.4 7.3 0.37%
6,412 542,660 11.172 2.191 5.240 C-333-1.1 8 10.313 13.S;.0 2.500 11.105 1,029.691 1,797.5 7.3 0.36%
6,006 548,666 10.313 2.022 4.837 C-331-2. 2 10 11.500 11.500 3.820 8.176 1.037.867 1,059.0 17.4 0.36 %
3,334 23,218 552,000 11.500 2.447 6.072 C-331-2. 4 0
11.500 3.680 0
552,000 0.000 0.000 0.000 C-331-2. 6 10 11.500 11.500 3.800 8.230 1,046.097 1,066.0 13.6 0.35%
3,356 555,356 11.500 2.447 6.072 C-331-2. 8 10 11.500 11.500 1.800 8.195 1,054.292 1,061.5 10.8 0.35%
3,342 558,698 11.500 2.447 6.072 C-331-2.10 10 11.500 11.500 3.540 8.229 1,062.521 1,065.8 8.1 0.34 %
3,356 562.054 11.500 2.447 6.072 C-331-2. 9 10 10.583 11.500 3.220 7.509 1,070.030 973.4 7.3 0.33 %
3.062 565.116 10.583 2.252 5.588 C-331-2. 7 10 8.667 11.500 2.910 6.272 1,076.302 812.9 7.3 0.33%
2.558 567,674 8.667 1.844 4.576 C-331-2. 5 10 6.762 11.500 2.640 4.960 1,081.262 641.4 7.3 0.32 %
2,023 569,696 6.762 1.439 3.570 C-331-2. 3 10 4.374 11.500 1.800 3.461 1,084.723 445.9 7.3 0.31%
1,411 571,108 4.374 0.931 2.309 C-331-2.1 10 2.315 11.500 1.800 1.903 1,086.626 239.5 7.3 0.30%
776 571,884 2 315 0.493 1.222 C-331-1. 2 0
11.000 1.800 0
0 571,884 0.000 0.000 0.000 C-331-1. 4 0
11 000 1.800 0
571,884 0.000 0.000 0.000 C-331-1. 6 0
11.000 1.800 0
571,884 0.000 0.000 0.000 C-331-1. 8 0
11.000 1.800 0
571,884 0.000 0.000 0.000 C-331-1.10 0
11.000 1.800 0
571,884 0.000 0.000 0.000 C-331-1. 9 0
11.000 1.800 0
571,884 0.000 0.000 0.000 C-331-1. 7 0
11.000 1.800 0
571,884 0.000 0.000 0.000 C-331-1. 5 0
11.000 1 800 0
571,884 0.000 0.000 0.000 C-331-1. 3 0
11.000 1.800 0
571.884 0.000 0.000 0.000 C-331-1.1 0
10.200 1.800 0
571,884 0.000 0.000 0.000 Page 7 of 11 RWS@GDPSar 8/8/96
PSIA o
N e
J-A s
a s
U C.335-1.9 k,
k i
k C.335 1.2 k,
C.335-2. 9
,e i
i C-335 2. 2
\\e C-337-i 9 i
)
m C-3371.2 I
o k.
5 a
C.337 2. 9 o3
~
c y
C-337 2,2 e
g 1
O m
C-337-3 9 m
1 i
o
\\
k C-337 3. 2 e
i 1,
o C-337-4 9 mc
{
j
/
C-337 4. 2 to o
C-337 5. 9 i
4 C-337 5. 2 k
i C-3374 9
~
7 I
I m
~~
i i
i i.
C-3374. 2 k
{
k k
k, k,
i C.335-3. 9 C 335 3. 2 i
m i
us C-335-4. 9 in c Gi k
i.
,y y
i ' 8. 3 5
5 I
1 8
C.335 4. 2
~
h
l l
l l
t PSIA l
I n
o m
a o
m o
w a
o m
o l
O !.
l l
l l
l-l l
l l
C-331-1. 9 i
l l
l l
l l
l l
l 5
C-331-1. 2 l
l l
l l
l l
l l
l l
l l
l l
C-331 2. 9 l
l l
l l
l l
l
{
{
{
{
C-331-2. 2 '
l l
l l
C-333-1. 9 l
l l
l l
l a
C-333-1. 2 l
l l
ma.
c n
C-333-2. 9 e
- r l
r i
O C-333-2. 2 l
i O
m C-333-3. 9 m
n 8
m I
r-o.
t 8 C-333-3. 2 N.
"O
\\
5' 3
l 3
e i
C-333-4. 9 m
i c
3 a
C-333-4. 2 w
N l
o C-333-5. 9 l
O l
E l
E C-333-5. 2 l
l l
l l
l l
l l
l C-333-6. 9 l
l l
t 1
l l
l C-333-6, 2 l
l l
l x
l l
l l
l 5
C-331-3. 9 4
l l
l l
G l
l l
l l
I c) a C-331-3. 2 m
l l
l u) i f
f C-331-4. 9 OOg l
l l
l l
i i
{
323
.i 1
C-331-4. 2 l
l l
l l
l l
- i l
Paducah '00' to '000' Tie Line inventory - 2200 MW Pressures (except iniet pressure) and Flows are from IMPP Process Pipe Tie Line Line Pressures, psia inv.
Flow Holdup Velocity Buildings Section Stream Dia,in Length, ft Voi,it' Source inlet Outlet Avg T,'F Z
Dens,Ib/ft' Ibs Ib/sec seconds ft/sec C-335 to Enricher A (to 335) 30 200 982 1.72 2.75 2.45 2.60 200 0.9956 0.1298 127 86 1.48 13'S C-337 8 (to 337) 20 200 436 11.50 9.43 8.80 9.11 260 0.9882 0.4204 1R3 86 2.13 94 Stripper A(to 337) 24 200 628 2.45 3.49 2.21 2.85 200 0.9952 0.1423 89 89 1.01 198
(
B (to 335) 24 200 628 11.27 11.70 11.50 11.60 260 0.9850 0.5368 337 89 3.80 53 l
C-331 to Enricher A(to 331) 30 314 1,541 2.14 2.92 2.45 2.68 200 0.9954 0.1340 207 87 2.37 133 C-333 8 (to 333) 20 314 685 11.50 11.70 10.90 11.30 260 0.9854 0.5227 358 87 4.10 77 Stripper A (to 333) 24 314 986 2.45 3.87 2.02 2.95 200 0.9950 0.1473 145 88 1.64 191 B (to 331) 24 314 986 10.31 11.81 11.50 11.65 260 0.9849 0.5394 5'37 88 6.02 52 6,874 1,980 701 Note: Source ared Outtet pressures correspond to the pressures in the *00' and '000* process equipment at either end of the pipeline.
The inlet pressure, calculated extema!!y, is the pressure needed to achieve the reqWed flow at the stated temperature and outlet pressure.
Where the inlet pressure is hicher than the source pressure, a booster pump is employed. Where the source pressure is greater than the required inlet pressure, control valves are used to control the flow.
1 lb/sec = 245.4406 lb-mol/ day of UF6 RWS@GDP 13/9 6
{-
)
i-p.
1 i
i f
i J
i, i
i I
i Blender Model i
l l
i Source Terms for Paducah Page iL, of _t>
Evaluation-Basis Seismic Event Papand by bI Date P-Jd-84 x
DAC-M0848401 SAR 62 Checked by
$3Ar".
Date 9-3e-4b u
Q 4
O O
4 Y
O
Release from Broken
.O Inter-Building Tie Lines v
Stage Converter
- Cass st.&
C o ressor y # ( ' ' ' '
A stage J
A]
N[@"-W"-
-t -
- (
/^V; f
A#-
-2,ses
\\
pq -
- j 7^\\
3
% r~ n n r~
O
'~ ******
Air contmues to
('
flow @ the
/A{
cascade, h ir d*
residence tmo in each stage is 2.7 seconds.
$$S0$
H
.Wk
)
Half of the airl
((A\\
l UF6 mix is led to ll
)
the next stage up mr u,.,,,. S
-.d -
UF6 from the 4--
- - - - - -i Half of the air /
(;
)%,
stage ah in UF6 ma is
(
/A\\':~
1 released through d
the open B line CeR Recycle ll B Outlet A Inlet l(
mo o^
JL Severed Tie Lines e(s)
UF,/ Air mix released Air ingested c>.
e from above atmosphere into A-Line B Line
~
Each column represents 2.7 seconds - the residence tirne for a single stage.
't g
i g.
WA iM!E 'B E!
ME 9Bf W lillE
!E M>x
\\
\\
p+dg=fBA.
i
.q a;;pp3q ihad.y-sqptyi ip(T.mt!F irrsgtf lp"g s i eara dam:v Eiain M'.*
mii suiin ix
~.ng;
,~
gg M.8x
~
@;. g ;
nwsy;;
lch
@julmy ni j;
jg.g a r
$;g;que 4-9 dk Mix
\\
R1glaM3 fifEREBrd Weg:t%ili6t t,EJtW#RI L8 g.'*
Tv twe Mix 4
r M.ix 50 %
38 %
38%
31 %
31 %
27 %
27 %
r Mix p
s p
UF6 s
p UF6 s
p UF6 s
p UF6 s
p UF6 s
p UF6 s
p UF6 s
3r
,r
'r 1r 9P ir 1r
,r Ak Mix Ak Mix Ak Mix Air Mix Ak Mix Air Mrx Ak Mix Ak Mix Propagation of UF,- Air Mix through the Stages above a Tie Line Break h
=-
The"Clender" Appro:ch
{
TConst :2.7 sec Time required to replace the inventory in a stage -
l /-
FlowRate = 142.5 Ib Average Normal Flow rate through the ticline t
see 4
i 0.8
\\
X(t).*
Concentration of UF in the release as a function of time 6
J
(/.7 sec t
Curve fit from Blender Model
~
2 i
r"~~
CX(t) - FlowRate 2.629 sec.
- 0.001 t - 2.479 sec Cumulative release of UF as a function citime S
Curve fit from blender model time : 2 sec. 600 sec 4
h h
k h
h h
08 06 X(ume) 0.4 -
0.2 -
t i
i i
t 0;
t.
f, f.
I, g
3 3
o
,0 E"
mm 4
1*10 i
i i.
i i
i i
i i
2000 6000 CX(ume)
Ib 4000
~
2000
~
fg 0,
'o g
a s
a v
,O G
u-mm
Concentration cod erm:lative release rates for selected potats la time UF Concentration Cumulative mass released Cumulative Mass Released 6
in release from Blender Model using normal flowrate X(l sec) = 1.3145 CX(1 sec) = 21.2325 alb FlowRate 1 sec = 142.5*1b X(2 sec) = 0.9295 CX(2 sec) = 176.2679*1b FlowRate 2 sec = 285 'Ib X(3 sec) = 0.7589 CX(3 sec) = 295.1975'Ib FlowRate 3 sec = 427.5 lb X(4 sec) = 0.6573 CX(4 sec) = 395.4375+1b FlowRate 4 s:c = 570*lb X(5 sec) = 0.5879 CX(5 sec) =483.7337+1b FlowRate 5 sec = 712.5'lb X(6 sec) = 0.5367 CX(6 sec) = 563.546 alb FlowRate 6 sec = 855 *1b X(7 sec) =0.4968 CX(7 sec) = 636.9294'Ib FlowRate 7 sec = 997.5 lb X(300 sec) = 0.0759 CX(300 sec) = 6092.8177'Ib FlowRate 300 sec = 42750*lb X(600 sec) = 0.0537 CX(600 sec) = 8737.8272 *lb FlowRate 600 sec = 85500 lb CX(600 sec) = 61.3181'sec Cumulative release at 600 seconds (10 minutes)
~MowRate is equivalent to 61.3 seconds of normal flow.
O O
msn
. o ewg
~
s ooooooooooooooooooo gag o gg.-n= k E
I sesssssssssssessss ooooo e
o sssse s
mNn oee ooooodoooooddddd
'I
-s
-m
. o ggggogs-pggssgooooooooooooooooooooooooo g
"nEEk.0 ooooooo$$3ESIIS"""""""""""*"""""*"""""""
o N
dem ododood g
s o hkes$c es
- sp g
soooooooooooooooooooooooooo o g
gg o.E S
Iss.ssssssssss ssssssssssss o
_d
-n3Es.
s E
em docodoo ooddoo e -
Nwo o o e
me s
e oooooooooooooooooooooooqoo o g ogk g-y g
v c
o sisssse sssssssssssssseswee 3
sE s
e m
gg d o c o d o d o o o o.o oo a
wg w o egN oge-m oooooooooooooooooooooo.oooo g
,Nh o g,3.Ikgk.E..g..
e o
WWssss,sssssssssss4 no@
o g
ogg o
oooooooo oo
=
gss e o ggN gn*
ooooooooooooooooooooooooooo
_g-o v
n gk o
N o. $
,,N E*E susssssssssssssssses+ssesse s w.o onn oo ocodoododd
-w O
mm.
n o ggggg was cooooooooooooooooooooooooooo l
hhk
@EER$ooooooo hh8 o
- ""~~~~~"*"
onn oooo 4
N o gNgwgewnsamooooooooooooooooooooooooooooo
@ sasssssssssssssssssssssssssss ao o
3 oNN oooo ocoo o
E
-Nsm w o -New em g$oooooooooooooooooooooooooooooo em l
qgg o gg$Q gg e
o sassssssssssssssssesssssssssss s Nm&
N w. W h
.o*
og-oooooooo.do
.& hhh E $ hhhkk
.k"hhh
$$h hhh h3 hhbhSh h
hh$h h E
6,N
~w...
d doooodoo 8--
m o gNgos ooo sg g2 gE..e.cocoooooooooooooooooooooooov
.M @ g R,e o
o mvseM EE t
m ooo oooooooo
=
a o g geswgooooooooooooooooooooooooooooooooo ggg o
.g 3
o E
NNe N.No. *E--
..----.....----r-,.
s com ooo oco a
wwm s e conohhoooooooooooooooooooooooooooooooooo B"U o S $. E E ssss-sss----------------------
essa o
a g
9 h "o n
ho am ooo ao oo en w o menceooooooooooooooooooooooooooooooooooo
-g o gggk sssssssssssssssssssssssssssssssssse o E
s 2
"o o m.
o" o h ooo Ne ggg o ngspoooooooooooooooooooooooooooooooooooo g
e e
o ncon--
m.,
j 2E" j
6 0
2 3*N 3' 8 20E$$$$$$$$$$$"'.$$$$$$$$$$$$$$$$$$$$$$$$ $
ne=
3 e;
o o
.g I" $ $E333333333333333333333$$$$$$$$333333333 3
) 2"E W$
s o
o w'
=
w m
a k
g"y E E$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $
5 on 2
1 E
=~~
- - o oooooooooooooooooooooooooooooooooooooooo R
ogN 5
a s.-s+ssss.+esssseesessseee-sssas+esseese os g
=
Q
\\vla o
y5" ES
-aa***~~**;00:estaeananammmaaREngn=mn==s n
E wo E.233 E" "8
Simple Fit 01789 0 1746 0.1706 01668 0.1633 0.16 01569 0.154 0.1512 0 1486 0 1461 0.1437 0.1414 0.1393 01372 0.1352 0.1333 0 1315 0 1298 Int Fit 16.7861 17.2605 17 7237 18 1764 18 6192 19 0529 19 478 19 8949 20 3041 20.706 21.101 21 4894 21 8716 22.2478 22.6183 22.9833 23.3431 23.698 24 048 Int Data: 16 805 17.2807 17.7349 18 189 18 6241 19 0593 19 4778 19 8962 20 2997 20.7032 21.0933 21.4833 21.8612 22.2391 22.6058 22.9726 23.3291 23.6857 24.0329 Mixing Stage 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 0
00 00 0.0 00 00 00 00 00 0.0 00 00 0.0 00 00 0.0 0.tt 0.0 00 00 1
0.1762 0.1762 0.1682 C.1682 0.1612 0.1612 0.155 0.155 0 1494 01494 0.1445 0.1445 0.1399 01399 0.1358 0.1358 0.1321 0.132t 0.1286 2
0 3524 0 3364 0 3364 0 3224 0.3224 0.31 0 31 0.2989 0.2989 0.2889 0 2889 0 2799 0.2799 0.2717 0.2717 0e641 0.2641 0.2572 0.2572 3
0 4966 0.4966 0.4765 0 4765 04587 0.4587 0 4428 0.4428 0 4284 0 4284 0 4153 0.4153 0 4034 0.4034 0.3924 0.3924 0.3823 0.3823 0.3729 4
0 6407 06167 06167 05951 0 5951 0.5756 0.5756 05579 0.5579 05417 05417 05269 05269 0.5131 0.5131 0.5004 0.5004 0.4886 0.4886 5
0.7368 0.7368 0.7137 0.7137 06925 0 6925 0 6731 0.6731 0.6551 0.6551 0.6384 0.6384 06229 0.6229 0.6085 06085 0 595 0 595 0.5823 6
08329 0 8108 0 8108 0.79 0.79 0.7705 0.7705 0.7522 0.7522 0 7351 0.7351 0.719 0.719 07038 0.7038 0.6895 0.6895 0 676 0.676 7
0 8847 0 8847 0 8662 0 8662 08484 0 8484 0.8314 0.8314 0.8151 0 8151 0.7995 0.1995 07847 0.7847 0 7705 0.7705 0.757 0.757 0.7441 8
n.9364 0 9216 0 9216 0 9069 0.9069 0 8922 0 8922 0.8779 08779 0.864 0 864 0 8504 0.8504 0 8372.0 8372 08245 0.8245 0 8123 0.8123 9
09586 0 9586 0 9475 0 9475 0.9361 0 9361 0 9245 0 9245 0 9128 0 9128 0.9013 0 9013 0 8898 0 8898 0 8786 0 8786 0 8675 0 8675 0 8567 10 0 9808 0.9734 09734 0 9653 0.9653 0.9567 0.9567 0.9478 0.9478 0 9386 09386 0.9292 09292 09199 0 9199 0.9105 09105 0.9011 0.9011 11 0.9882 0.9682 0.9831 09831 09773 0 9773 0 971 0.971 09643 0.9643 0.9572 0.9572 09499 0.9499 09424 0 9424 0.9345 0.9348 0.927 12 0.9956 0 9928 0 9928 0.9894 0.9894 0 9854 0 9854 0.9808 0 9808 0 9759 09759 0 9706 09706 0.9649 0.9649 0 959 0 959 0.953 0.953 13 0.9974 0.9974 0 9957 0.9957 0.9934 0 9934 0.9906 0.9906 0.9875 0.9875 0.9839 0.9839 0 9799 0 9799 0.9757 09757 0 9712 0 9712 0 9664 14 0 9993 0 9985 0.9985 0 9974 0 9974 0 9959 0.9959 0.9941 0 9941 0.9919 0 9919 09893 0.9893 0.9865 0.9865 0.9833 0.9833 0.9799 0 9799 15 0 9496 0.99 % 0.9991 0 9991 0 9985 0 99'5 0 9975 0.9975 0.9963 0 9963 0 9948 0 9948 0.953 0.993 0.991 0.991 0.9887 0.9887 0.9861 16 0.9999 0.9998 0 9998 0 9995 0 9995 0.9991 09991 0.9985 0.9985 0 9977 0.9977 09967 0.9%7 0.9954 0.9954 0.994 0.994 0 9924 0.9924 17 10 1.0 0 9999 0 9999 0.9997 09997 0.9995 09995 0.9991 0.9991 0 9986 0 9988 0.9979 0 9979 0.9971 09971 0.9961 09961 0.9949 18 1.0 1.0 10 0.9999 0 9999 0,9998 0.9998 0.9997 09997 09995 0 9995 09991 0 9991 09987 09987 0 9981 0.9981 0.9974 09974 19 1.0 1.0 1.0 1.0 1.0 1.0 0 9999 0 9999 0.9998 0.9998 09997 0 9997 C.9995 0 9995 0 9992 09992 0.9988 0.9988 0.9983 20 10 1.0 1.0 1.C 1.0 1.0 1.0 1.0 1.0 0 9999 0 9999 0.9998 0.9998 0 9997 0.9997 09995 0.9995 0.9992 0 9992 21 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999 0.9999 09999 0.9999 0.9998 0 9998 0.9997 0.9997 0.9995 22 1.0 10 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 9999 0 9999 0.9999 0 9999 0.9998 0.9998 23 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.S999 0.9999 0.9999 24 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1,0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 26 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 27 1.0 10 10 10 1.0 1.0 1.0 1.0 t.0 1.0 1.0 10 1.0 1.0 10 1.0 1.0 1.0 10 25 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 29 1.0 10 10 1.0 1.0 10 1.0 10 1.0 1.0 10 i.0 1.0 1.0 1.0 1.0 1.0 1.0 10 30 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 10 1_0 1.0 10 1.0 10 1.0 1.0 1.0 1.0 31 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
?o 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 32 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 09 1.0 10 1.0 1.0 1.0 1.0 1.0 33 1.0 1.0 10 1.0 1.0 10 1.0 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 34 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 35 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 36 1.0 10 1.0 10 1.0 1.0 to 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 10 37 10 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 to 1.0 1.0 to 38 10 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 39 1.0 10 1.0 1.0 10 1.0 1.0 10 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 40 1.0 10 1.0 10 1.0 1.0 1.0 1.0 1.0 10 to 10 1.0 1.0 1.0 10 1.0 1.0 1.0 41 1.0 1.0 10 10 10 to 10 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 10 1.0 10 10 9
9 O
O RW5@G
^ 8 @96
m q
Simple Fit:
0 1281 0.1265 0.1249 0.1234 0 122 0 1206 0 1193 0.118 0.1167 0.1155 0.1143 0.1131 0.112 0.1109 0.1099 0.1089 0.1079 0.1069 0.106 Int Fit:
24 3934 24 7344 25 0711 25 4037 25.7323 26 0571 26 3782 26 6957 27.0098 27.3205 27.6279 27.9322 28 2335 28 5318 28 8272 29 1198 29 4096 29.6969 29.9815 Int Data: 24 3801 24 7186 25.0571 25 3875 25 718 26.0409 26 3638 26 6797 26.9956 27305 27.6143 27.9174 28.2206 28.5179 28 8152 29.107 293988 29 6854 29.972 l
Mixing 1
Stage 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 0
00 0.0 0.0 00 00 00 00 00 00 0.0 00 00 0.0 00 00 00 00 0.0 0.0 1 0.1286 0.1254 0.1254 0.1224 0.1224 0.1196 0.1196 0.117 0.117 0.1146 0.1146 0.1123 0.1123 0.1101 0.1101 0.1081 0.1081 01061 0.1061 2 0 2507 0.2507 0.2448 0.2448 0.2392 0 2392 0.234 0.234 0.2291 0 2291 0.2246 02246 0.2202 C.2202 0.2162 0.2162 021?3 0.2123 02006 3 0 3729 03642 0.3642 0356 0.356 0.3484 0 3484 03413 03413 03345 03345 0.3282 03282 0 3222 03222 03165 03165 03111 0.3111 4 0 4778 04776 0 4673 0.4673 0 4576 0.4576 0.4485 0 4485 0 4399 0.4399 0 4318 0 4318 0.4242 0 4242 0 4169 0.4169 0 4099 0 4099 0.4034 5 0.5823 0.5704 0.5704 0.5592 0 5592 0 5486 0.5486 0 5386 0 5386 OS291 0 5291 0 5201 0 5201 0.5115 0.5115 0 5034 0.5034 0 4956 0.4956 6 0 6632 0 6632 0 6511 0.6511 06396 0 6396 0 6287 06287 06183 0 6183 0 6084 06084 0.5989 0.5989 0.5899 0.5899 0.5812 0 5812 0573 7 0.7441 0.7318 0.7318 0.72 0.72 0 7088 0.7088 0.698 0.698 0.6877 0.6877 06778 06778 0.6683 0.6683 0.6591 0 6591 0 6503 0.6503 8
0.8004 0 8004 0 789 0.789 0.7779 0.7779 0.7673 0 7673 0.757 0.757 0.7471 0.7471 0 7376 0.7376 0.7283 0.7283 0.7194 0.7194 0.7108 9
0.8567 0.8461 0 8461 0 8359 0.8359 0 8258 0 8258 0 8161 0 8161 0 8006 0 8066 0.7974 0 7974 0.7884 0.7884 0.7797 0.7797 0.7712 0.7712 to 08919 0.8919 0 8827 0.8827 08737 0.8737 0 8648 0,8648 0 8561 0.8561 0.8476 08476 08392 0 8392 0831 0.831 0 823 0.823 0 8151 11 0.927 0 9193 0 9193 0 9116 0.9118 0.9039 0 9039 0 8962 0 8962 0.8886 0.8886 0 8811 0 8811 0 8737 0.8737 0 8663 0 8663 0.8591 0.8591 12 09467 0 9467 09404 0 9404 0 934 0934 09275 0.9275 0 9211 09211 09146 0 9146 0.9081 0.9081 09016 0.9016 08952 0.8952 08888 13 0.9664 0.9615 0 9615 0 9564 0 9564 0.9512 0.9512 0 9459 0 9459 0 9405 0 9405 0 9351 0 9351 0 9296 09296 0 9241 0 9241 0.9186 0.9186 14 0 9763 0.9763 0.9725 0 9725 0.9685 0.9685 0.9643 0 9643 0 96 0.96 0 9556 0.9556 0.9511 0 9511 0.9466 0 9466 0.9419 0.9419 0.9373 15 0 9861 0.9834 0.9834 0 9805 0 9805 0 9774 0.9774 0 9741 0 9741 0 9707 0 9707 0.9672 0 9672 0 9635 0.9635 0.9598 0 9598 0.956 0.956 16 0.9905 0.9905 0.9885 0.9885 0.9863 0 9863 0.9839 0.9839 0.9814 0.9814 0 9787 0 9787 0 9759 0.9759 0 973 0 973 0 97 0 97 09669 17 09949 0.9936 0 9936 09921 0 9921 0 9904 0 9904 0.9886 0.9886 0 9867 0.9867 0.9847 0.9847 09825 0.9825 0.9802 09802 0 9778 0.9778 18 0 9966 0.9966 0 9957 0.9957 0.9946 0 9946 0.9934 0.9934 0.9921 09921 0 9906 0 9906 0.989 0.989 0.9873 0.9873 0 9855 0 9855 0.9837 19 0 9983 0 9978 0 9978 0.9971 0.9971 0.9963 0.9963 0 9955 0 9955 0.9945 0.9945 0.993; O9934 0 9922 0.9922 0.9909 0.9909 0.9895 0 9895 20 0 9989 0 9989 0.9985 0 9985 0.9981 0.9981 0.9975 0.9975 0.9969 09%9 09962 0.9962 0.9954 0.9954 0.9945 0.9945 0.9935 09935 0 9925 21 0 9995 0.9993 0 9993 0 9991 0 9991 0 9987 0.9937 0 9984 0.9984 0.9979 0.9979 0.9974 0.9974 0.9968 0.9968 0 9962 0 9962 0.9954 0.9954 22 0.9997 0.9997 0 9996 0.9996 0.9994 0 9994 0.9992 0.9992 0 9989 0 9989 0 9986 0.9996 0 9982 0 9982 0 9978 0.9978 0.9973 0.9973 0.9968 23 0.9999 0 9998 0.9998 0.9997 09997 09996 0.9996 0.9995 0.9995 0.9993 0.9993 0.9991 09991 0.9988 0 9988 09985 0.9985 0.9982 09982 24 0.9999 0 9999 0.9999 0.9999 0 9998 0 9998 0.9998 0 9998 0 9997 0.9997 0.9995 Ofs995 0.9994 0.9994 0.9992 0.9992 0 999 0.999 0.9987 25 10 1.0 1.0 M 999 0 9999 0.9999 0.9999 0 9998 0 9998 09998 0 9998 0.9997 0 9997 0.9996 0 9996 0 9995 0 9995 0 9993 0 9993 26 1.0 1.0 1.0 10 1.0 1.0 0.9999 0 9999 0.9999 0.9999 0.9999 0.9999 0 9998 0.9998 0.9997 0.9997 09996 0 9996 0 9995 27 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998 0.9998 0.9998 28 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999 0.9999 0.9999 0 9999 'O.9999 0.9999 0.9998 29 10 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 9999 0 9999 0.9999 0.9999 30 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 31 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 3.0 1.0 10 1.0 1.0 1.0 1.0 1.0 10 32 10 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 10 1.0 1.0 33 10 10 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 34 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 35 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.3 1.0 1.0 1.0 1.0 1.0 10 10 1.0 10 36 1.0 1.0 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 10 1.0 37 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1,0 1.0 38 10 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 39 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 40 1.0 1.0 1.0 1.0 1.0 10 10 1.0 10 10 1.0 1.0 10 1.0 1.0 10 1.0 1.0 10 41 1.0 1.0 1.0 10 10 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 RWS@GDPSAR 8/8/96
Simple j
Fit:
0.105 0.1042 0.1033 0.1024 0.1016 0.1008 0.1 0 0992 0.0985 0.0977 0.097 0.0963 0 0956 Int Fit:
30 2637 30 5434 30.8207 31.0957 31.3684 31.6389 31.9073 32.1735 32A377 32.6999 32.9601 33.2184 33.4748 Int Data: 30.2537 30.5353 30 8123 31.0893 31.3617 316342 31.9025 32.1707 32A349 32.6991 32.9593 33.2196 33.4762 i
Mixing Stage 58 59 60 61 62 63 64 65 66 67 68 69 70 0
00 0.0 0.0 0.0 0.0 00 00 00 00 0.0 0.3 00 0.0 1
0.1043 0.1043 0.1026 0.1026 0.1009 0.1009 0.0993 0 0993 0.0978 0.0978 0.0964 0.0964 0.095 2
0.2086 0.2052 0 2052 0.2018 0.2018 0.1987 0.1987 0.1957 0.1957 0 N8 0.1928 0.1901 0.1901 3
0.306 0.306 0.3011 0 3011 0.2965 0 2965 0292 0292 0.2878 C 1 0.2837 0 2837 0.2798 4
0.4034 0.3971 0.3971 0.3911 0.3911 0.3853 0.3853 0.3799 0.3799 OA 0.3746 0.3695 0.3695 5
0.4882 0.4882 0.481 0.481 0.4742 0.4742 04677 04677 0.4614 0 4614 0.4554 0 4554 0.4496 6
0.573 0.565 0.565 0.5574 0 5574 0.55 0.55 0 543 0.543 0.5382 0.5362 0.5296 0.5296 7
0.6419 06419 06337 0.6337 0.6258 0.6258 0.6183 0 6183 0 6109 0.6109 06039 0 6039 0.597 4
8 0.7108 0.7024 0.7024 06943 16943 0.6865 0.6865 0.6789 0.6789 0.6716 06716 0 6644 0.6644 l
9 0.763 0.763 0.7549 0.7549 0.7471 0.7471 07396 0.7396 0.7322 0.73?2 0.725 0.725 0.718 10 0.8151 0.8075 0.8075 0.8 0.8 0.7926 0.7926 0.7855 0.7855 0.7785 0.7785 0.7716 0.7716 11 0.852 0.852 0.845 0.845 0.8381' 0.8381 0.8314 0 8314 0.8247 0.8247 0.8182 0.8182 0 8118 12 0 8888 0.8325 0.8825 0.8763 0.8763 0.8701 0.8701 0 864 0.864 0.8579 0 8579 0.352 0.852 13 0 9131 0 9131 0 9075 0.9075 0.902 0.902 0 8966 0.8966 0.8911 0.8911 0.8857 0.8857 08804 14 0.9373 0 9326 0.9326 0.9278 3.9278 0.9231 0.9231 0.9183 0 9183 0.9136 0.9136 0.9088 0.9088 15 0.9521 0.9521 0.9481 0.9481 0.9441 0.9441 0 9401 0.9401 0.936 0.936 0.9319 0.9319 0.9278 16 0.9669 0.9637 09637 0.9604 0.9604 0.957 0.957 0.9536 0.9536 0.9502 0.9502 0.9467 0.9467 17 0.9753 0 9753 0 9727 0.9727 0.97 0.97 0.9672 09672 09644 0.9644 0.9615 0.9615 0.9586 18 0.9837 0.9817 0.9817 0.9796 0.9796 0 9774 0.9774 0.9752 0.9752 09729 0.9729 0.9705 0.9705 19 0.9881 09881 0.9865 0.9865 0.9849 0.9849 0.9831 0.9831 0 9813 0.9813 0.9795 0.9795 0.9775 20 0.9925 0.9914 0.991< 0.9901 0.9901 0.9889 0.9889 0.9875 0.9575 0 9861 0.9861 0.9846 0.9846 21 0 9946 0 9946 0.9938 0 9938 0.9929 0.9929 0.9919 0.9919 0.9908 0.9908 0.9897 0.9897 0.9385 22 0.9968 0 9962 0.99S2 0.9956 0.9956 0 9948 0 9948 0 9941 0.9941 0.9933 0.9933 0.9924 0.9924 23 0.9978 0.9978 0.9973 0.9973 0.9968 0 9968 0 9963 0 9963 0.9957 0.9957 0.9951 0.9951 0.9944 24 0.9987 09985 0.9985 0.9981 0.9981 0.9978 0.9978 0.9974 0.9974 09%9 0.9969 0.9965 0 9965 25 0.9991 0.9991 0.9989 0 9989 0.9987 0.9987 09984 0.9984 0 9981 0.9981 0.9978 0.9973 U 9975 26 0.9995 0 9994 0 9994 0.9993 0.9993 0.9991 0.9991 0.9989 0.9989 0.9987 0.9987 0.9984 0.9984 27 09997 0.9997 0.9996 0.9996 0 9995 0.9995 0.9994 0.9994 0.9992 0.9992 0.9991 0.9991 0.9989 28 0 9998 0.9998 0.9998 0.9997 0.9997 0.9997 0.9997 0.9996 0.9996 0.9995 0.9995 0.9994 0.9994 29 0.9999 0 9999 0.9999 0.9999 0.9998 0.9998 0.9998 0 9998 0.9997 0.9997 0.9996 0.9996 0.9996 30 1.0 0.9909 0.9999 09999 0.9999 0 9999 0 9999 0.9998 0.9998 0 9998 0.9998 0.9998 0.9998 31 1.0 1.0 1.0 1.0 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9998 32 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 33 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0 1.0 1.0 0.9999 34 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 35 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 36 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10 10 1.0 1.0 37 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 38 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 39 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 40 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 41 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1 O' 10 1.0 1.0 1.0 1.0 9
6_
RWS@GD 8/8/96
-=
- -- ' ' - ' ' ~ ' ' ' - -
- ' ' ' " ~ ~ ' ""
(
B Concentration of UF. In the Release f om the Bottom of a Cascade of Mixing Stages l
1.0 i
+ Mixing Resu::s 0.9 mS
= OW@@
Power Fit of Mixing Results j
)
0.8 i r i
0.7 e
o 5 0.6 3
I E
g 0.5
+
.2 L
I I
g 0.4
+
m.
E t
l 03 y = 0.8249x*"
l 0.2 R* = 0.9944
-__Z
______ZEECCCC2 r
- -- __*meeti 01 Est:h X Unit = 1 Timestep 0.0 t
S S
S S
U N
N E
S S
S E
E E
6 3
5 R
f Time Step l
e
Cumulative UF, Release from the Bottom of a Cascade of Mixing Stages 35.0 Curve Fit Cumula*5re Rehase = Flow Rate * { 2 629*(sqrt(TSMp*2.7) - 1)) - 0.001TTStep*21) + 0.15 }
30.0 I
25.0 I
E Each Y Unit is E
Currudative Release / Fbw Rate eE 20.0 I
=2 3
E 3
o 15.0
+
i i2 E
t e
10.0 i
5.0 4
Each X Unit = 1 Ts%
1 Tuneskp-21 Seconds 0.0 S
C S
N N
N E
M S
U E
E E
5 R
Time Step e
G 9.
l
O l.
O Isentropic Compressible Flow from a Breach in the Diffusion Process Source Terms for Paduca'h~~
O g
Page Q 'of22 Evaluation-Basis Seismic Event Prepared by Date r Jo P4 DAC M0848401 SAR 62 Checked by mot
._, Date 9-28-f 6 U
Flow cf UF W or Through a Hole in Process Equipment 6
P rduations from Crowl & 1 ouvar," Chemical Process Safety: Fundamentals with Applications". Prentice.llall.1990 Chapter 4. equations 4 38 (page 99) and 4-40 (page 100) for isentropic expansion of an ideal gas through a hole.
Speelfy required input valuest E
R ideal :10.73 g IdealGas Constant MW 7 352.02 Molecular weight of normal assay UF, y 21.069 Ilest capacity ratio for UT vapor at these conditions 6
P atm I atm Atmospheric pressure T = 7$0 R Absolute Temperature C
2 0.61 Orifice flow coefficient o
2 A * $ in Ilotearea P,r{l$.k} psi Range of system pressures n 2 0.. l$0 Evaluate the Free and Choked vapor flow rates for the range of pressures P atm 2)
/;,1,!
Pchoked
- f2MW
/Patml(/PatmO '
/ y
/2 Q free (P) : C A P j k ideal Tly-1 ", kT)
' (T)
(y. I o
/,
l t+1 O
p Pchoked " 24 853' PSI y.yw
<g g O
Q choked (P) ' C A P g ideal T \\1-1 i o
Q(P) -if(P>Pchoked Qchoked(P).O ree(P))
f 6
Pchoked psi 3
4 y,
l o,
l, l,
l, l,
jv j,
),
j, j,
j>
),
),
j,
),
, o
/
System Pressws, psu RWS@GDPSAR 9/29/96
O O
crLin o 1 out a a a...it.ro,
48G Tails Cyli der i
Source Terms for Paducah O
4
- Page f */ of fJ Evaluation Basis Selsmic Event Prepared by AbI Data T'Je f d DAC M0848401 SAR 62 Checked by M
Date 9-3#4/e v
Input file for-Seismic release from a 48G Tails cylinder, 12 via 0.652* Figtall
& CARD 1
. TITLE = 'C-310 Seismic: 48G Cylinder at 12, 180F, via 0.652 ID pigtall'
/
4 CARD 2-ISEN =.1. '
ICYL
=0 IVERT = 0 IPIG '= 8
/-
ECARD3 MTOT = 28000.0 VOL
= 142.4 DIACYL = 48.0 LCYL
= 135.98 17.00-RHOLE
=
0.875 DHOLE
=
/
& CARD 4 MTOT -- Card 4 is skipped
/
4 CARDS 0.0 PVOL
=
TVOL = 100.0 XLVOL =
1.0 0.0 Mar
=
ALPHA =
0.0
/
ECARD6 PAMB = 14.7 Card 6 is skipped
/
ECARD7 PIPING = 1 0.500 0.875 2 0.316 0.875 3 0.222 0.652 1 5.500 0.652 2 0.653 0.652 2 0.331 1.000 1 10.000 1.000 2 1.000 14.700
/
& CARD 8 5.0 DELT
=
MAXTIM = 1805.0
/
Page: 1
~~-
- ~ -
~
TITLE: C-310 Seismic: 48G Cylinder at 12, 180 F, via 0.652 ID pigtail CYLIND... 06-11-1996... 17:13:01
"' CONDITION OF UF6 IN CONTAINMENT "* **
FATHWAY INIIT
""*" CCNDITION OF OF6 EXHAUSTED ""*""
FLOW TIME
" * " " '
- MASS (LB) **'
TEMP PRES RELEASE PRES RATE
- RELFASE RATE (LB/SEC1 TEMP PRES (SEC)
SOLID LIQUID VAPOR TOTAL IDEG F)
(PSIA)
PHASE (PSIA) BASIS SOLID LIQUID VAPOR TO7AI.
1DEG F1 (PSIA)
O.
.0 27968.5' 31.5 28000.0 180.000 37.878 VAPOR 37.878 PDC
.000
.000
.681
.681 179.161 14.700 5.
.0 27965.1 31.5 27996.6 179.968 37.859 VAPOR 37.859 PDC
.000
.000
.681
.681 179.130 14.700 10.
.0 27961.6 31.6 27993.2 179.935 37.839 VAPOR 37.839 PDC
.000
.000
.681
.681 179.098 14.700 15.
.0 27958.2 31.6 27989.8 179.903 37.820 VAPOR 37.820 PDC
.000
.000
.680
.680 179.066 14.700
-20.
.0 27954.8 31.6 27986.4 179.871 37.801 VAPOR 37.801 PDC
.000
.000
.680
.600 179.035 14.700 25.
.0 27951.3 31.6 27983.0 179.839 37.783 VAPOR 37.783 PDC
.000
.000
.680
.6EO 179.003 14.700 30.
.0 27947.9 31.7 27979.6 179.806 37.764 VAPOR 37.764 PDC
.000
.000
.679
.679 17B.971 14.700 35.
.0 27944.5 31.7 27976.2 179.774 37.745 VAPOR 37.745 PDC
.000
.000
.679
.679 178.940 14.700
-40.
.0 27941.1 31.7 27972.8 179.742 37.726 VAPOR 37.726 PDC
.000
.000
.679
.679 178.908 14.700 45.
.0 27937.7 31.7 27969.4 179.710 37.707 VAPOR 37.707 PDC
.000
.000
.678
.678 178.876 14.700 50.
.0 27934.2 31.8 27966.0 179.678 37.688 VAPCR 37.688 PDC
.000
.000
.678
.678 178.845 14.700 55.
.0 27930.8 31.8 27962.6 179.646 37.669 VAPOR 37.669 PDC
.000
.000
.678
.678 178.813 14.700 60.
.0 27927.4 31.8 27959.2 179.613 37.650 VAPOR 37.650 PDC
.000
.000
.677
.677 178.782 14.700 65.
. 0 27924.0 31.8 27955.8 179.581 37.631 VAPOR 37.631 PDC
.000
.000
.677
.677 178.750 14.700 70.
.0 27920.6 31.9 27952.5 179.549 37.612 VAPOR 37.612 PDC
.000
.000
.676
.676 178.718 14.790 75.
.0 27917.2 31.9 27949.1 179.517 37.593 VAPOR 37.593 PDC
.000
.000
.676
.676 178.687 14.700 80.
.0 27913.8 3'.9 27945.7 179.485 37.575 VAPOR 37.575 PDC
.000
.000
.676
.676 178.655 14.700 85.
.0 27910.4 31.9 27942.3 179.453 37.556 VAPOR 37.556 PDC
.000
.000
.676
.676 178.624 14.700 90.
.0 27907.0 32.0 27938.9 179.421 37.537 VAPOR 37.537 PDC
.000
.000
.675
.675 178.592 14.700 95.
.0 27903.6 32.0 27935.6 179.383 37.518 VAPOR 37.518 PDC
.000
.000
.675
.675 178.561 14.700 100.
.0 27900.2 32.0 27932.2 179.356 37.499 VAPOR 37.499 PDC
.000
.000
.674
.674 178.529 14.700 105.
.0 27896.8 32.0 27928.8 179.324 37.481 VAPOR 37.481 PDC
.000
.000
.674
.674 178.498 I4.700 110.
.0 27893.4 32.1 27925.5 179.292 37.462 VAPOR 37.462 PDC
.000
.000
.674
.674 178.466 14.700 115.
.0 27890.0 32.1 27922.1 179.260 37.443 VAPOR 37.443 PDC
.000
.000
.673
.673 178.435 14.700 120.
.0 27886.6 32.1 27918.7 179.228 37.425 VAPOR 37.425 PDC
.000
.000
.673
.673 178.403 14.700 125.
.0 27803.2 32.1 27915.4 179.196 37.406 VAPOR 37.406 PDC
.000
.000
.673
.673 178.372 14.700 130.
.0 27879.8 32.2 27912.0 179.164 37.387 VAPOR 37.397 PDC
.000
.000
.672
.672 178.341 14.700 135.
.0 27876.4 32.2 27908.6 179.132 37.368 VAPOR 37.368 PDC
.000
.000
.672
.672 178.309 14.700 140.
.0 27873.1 32.2 27905.3 179.100 37.350 VAPGd 37.350 PDC
.000
.000
.671
.671 178.278 14.700 145.
.0 27869.7 32.2 27901.9 179.068 37.331 VAPOR 37.331 PDC
.000
.000
.671
.671 178.246 14.700 150.
.0 27866.3 32.3 27898.6 179.036 37.313 VAPOR 37.313 PDC
.000
.000
.671
.671 178.215 14.700 155.
.0 27862.9 32.3 27895.2 179.005 37.294 VAPOR 37.294 PDC
.000
.000
.670
.670 178.184 14.700 160.
.0 27859.5 32.3 27891.9 178.973 37.275 VAPOR 37.275 PDC
.000
.000
.670
.670'178.152 14.700 165.
.0 27856.2 32.3 27888.5 178.941 37.257 VAPOR 37.257 PDC
.000
.000
.670
.670 178.121 14.700 170.
.0.27852.0 32.4 27885.2 178.909 37.238 VAPOR 37.238 PDC
.000
.000
.669
.669 178.090 14.700 175.
.0 27849.4 32.4 27881.8 178.877 37.220 VAPOR 37.220 PDC
.000
.000
.669
.669 178.058 14.700 180.
.0 27846.1 32.4 27878.5 178.845 37.201 VAPOR 37.201 PDC
.000
.000
.668
.668 178.027 14.700 185.
.0 27842.7 32.4 27875.1 178.813 37.183 VAPOR 37.183 PDC 000
.000
.668
.668 177.9?6 14.700 190.
.0 27839.3 32.5 27871.8 178.781 37.164 VAPOR 37.164 PDC
.000
.000
.668
.668 177.964 14.700 195.
.0 27836.0 32.5 27868.4 178.750 37.146 VAPOR 37.146 PDC
.000
.000
.667
.667 177.931 14.700 200.
.0 27832.6 32.5 27865.1 178.718 37.127 VAPOR 37.127 PDC
.000
.000
.667
.667 177.902 14.700 205.
.0 27829.2 32.5 27861.8 178.686 37.109 VAPOR 37.109 PDC
.000
.000
.667
.667 *77.871 14.700 210.
.0 27825.9 32.6 27858.4 178.654 37.090 VAPOR 37.090 PDC
.000
.000
.666
.666 177.839 14.700 215.
.0 27822.5 32.6 27855.1 178.622 37.072 VAPOR 37.072 PDC
.000
.000
.666
.666 177.808 14.700 1
220.
.0 27819.2 32.6 27851.8 178.591 37.053 VAPOR 37.053 PDC.
.000
.000
.665
.665 177.777 14.700 l
225.
.0 27815.8 32.6 27848.5 178.559 37.035 VAPOR 37.035 PDC
.000
.000
.665
.665 177.746 14.700 Page: 1
230.
.0 27812.5 32.7 27845.1 178.527 37.016 VAPOR 37.016 FDC
.000
.000
.665
.665 177.715 14.700 235.
.0 27309.1 32.7 27841.8 178.495 36.998 VAPOR 36.998 FDC
.000
.000
.664 664 177.684 14.700 240.
.0 27805.8 22.7 27838.5 178.464 36.980 VAPOR 36.980 FDC
.000
.000
.668
.664 177.652 14.700 245.
.0 27802.4 32.7 27835.2 178.432 36.961 VAPOR 36.961 FDC
.000
.000
.664
.664 177.621 14.700 250.
.0 27799.1 32.7 27831.9 178.400 36.943 VAPOR 36.943 FDC
.000
.000
.663
.663 177.590 14.7PO 255.
.0 27795.8 32.8 27828.5 178.369 36.925 VAPOR 36.925 PDC
.000
.000
.663
.663 177.559 14.700 260.
.0 27792.4 32.8 27825.2 178.337 36.906 YAPOR 36.906 FDC
.000
.000
.662
.662 177.528 14.700 265.
.0 27789.1 32.8 27821.9 178.305 36.888 VAPOR 36.888 FDC
.000
.000
.662
.662 177.497 14.700 270.
.0 27785.8 32.8 27818.6 178.274 36.870 VAPOR 36.870 PDC
.000
.000
.662
.662 177.466 14.700 275.
.0 27782.4 32.9 27815.3 178.242 36.852 VAPOR 36.852 FDC
.000 000
.661
.661 177.435 14.700 280.
.0 27779.1 32.9 27812.0 178.210 36.833 VAPOR 36.833 PDC
.000
.000
.661
.661 177.404 14.700 285.
.0 27775.0 32.9 27808.7 178.179 36.815 VAPOR 36.815 FDC
.000
.000
.661
.661 177.373 14.700 290.
.0 27772.4 32.9 27805.4 178.147 36.797 VAPOR 36.797 FDC
.000
.000
.660
.660 177.341 14.700 295.
.0 27769.1 33.0 27802.1 178.116 J6.779 VAPOR 36.779 PDC
.000
.000
.660
.660 177.310 14.700 300.
.0 27765.8 33.0 27798.8 178.084 36.760 VAPOR 36.760 PDC
.000
.000
.660
.660 177.279 14.700 305.
.0 27762.5 33.0 27795.5 178.052 36.742 VAPOR 36.742 PDC
.C00
.000
.659
.659 177.248 14.700 310.
.0 27759.1 33.0 27792.2 178.021 36.724 VAPOR 36.72g FDC
.000
.000
.659
.659 177,217 14.700 315.
.0 27755.8 33.1 27788.9 177.989 36.706 VAPOR 36.706 FDC
.000
.000
.659
.659 177.186 14.700 320.
.0 27752.5 33.1 27785.6 177.958 36.688 VAPOR 36.688 FDC
.000
.000
.658
.658 177.156 14.700 325.
.0 27749.2 33.1 27782.3 177.926 36.670 VAPOR 36.670 FDC
.000
.000
.658
.658 177.125 14.700 330.
.0 27745.9 33.1 27779.0 177.895 36.651 VAPOR 36.651 FDC
.000
.000
.658
.658 177.094 14.700 335.
.0 27742.6 33.1 27775.7 177.863 36.633 VAPOR 36.633 FDC
.000
.000
.657
.657 177.063 14.700 340.
.0 27739.3 33.2 27772.4 177.832 35.615 VAPOR 36.615 FDC
,000
.003
.657
.657 177.032 14.700 345.
.0 27736.0 33.2 27769.1 177.800 36.597 VAPOR 36.597 FDC
.000
.000
.656
.656 177.001 14.700 350.
.0 27732.7 33.2 27765.9 177.769 36.579 VAPOR 36.57?
FDC
.000
.000
.656
.656 176.970 14.700 355.
.n 2772?.4 33.2 27762.6 177.738 36.561 VAPop 36.561 PDC
.000
.000
.656
.656 176.939 14.700 360.
.0 27726.0 33.3 27759.3 177.706 36.543 VAPOR 36.543 FDC
.000
.000
.655
.655 176.908 14.700 365.
.0 27722.8 33.3 27756.0 177.675 36.525 VAPOR 36.525 FDC
.000
.000 655
.655 176.877 14.700 370.
.0 27719.5 33.3 27752.8 177.643 36.507 VAPOR 36.507 FDC
.000
.009
.655
.655 176.847 14.700 375.
.0 27716.2 33.3 27749.5 177.612 36.489 VAPOR 36.489 FDC
.000
.000
.654
.654 176.816 14.700 380.
.0 27712.9 33.3 27746.2 177.581 36.471 VAPOR 36.471 FDC
.000
.000
.654
.654 176.785 14.700 385.
.0 27709.6 33.4 27742.9 177.549 36.453 VAPOR 36.453 PDC
.000
.000
.654
.654 176.754 14.700 390.
.0 27706.3 33.4 27739.7 177.518 36.435 VAPOR 36.435 FDC
.000
.000
.653
.633 176.723 14.700 395.
.0 27703.0 33.4 27736.4 177.486 36.417 VAPOR 36.417 PDC
.000
.000
.653
.653 176.692 14.700 400.
.0 27699.7 33.4 27733.1 177.455 36.399 VAPOR 36.399 FDC
.000
.000
.652
.652 176.662 14.700 405.
.0 27696.4 33.5 27729.9 177.424 36.381 VAPOR 36.381 PDC
.000
.000
.652
.652 176.631 14.700 410.
.0 27693.1 33.5 27726.6 177.393 36.363 VAPOR 36.363 FDC
.000
.000
.652
.652 176.600 14.700 415.
.0 27689.9 33.5 27723.4 177.361 36.346 VAPOR 36.346 FDC
.000
.000
.651
.651 176.569 14.700 420.
.0 27686.6 33.5 27720.1 177.330 36.328 VAPOR 36.328 PDC
.000
.000
.651
.651 176.539 14.700 425.
.0 27683.3 33.5 21716.8 177.299 36.313 VAPOR 36.310 rDC
.000
.000
.651
.651 176.508 14.700 430.
.0 27680.0 23.6 27713.6 177.267 36.292 VAPOR 36.292 FDC
.000
.000
.650
.650 176.477 14.700 435.
.0 27676.8 33.6 27710.3 177.236 36.274 VAPOR 36.274 FDC 000
.000
.650
.650 176.447 14.700 440.
.0 27673.5 33.6 27707.1 177.205 36.256 VAPOR 36.256 FDC
.000
.000
.650
.650 176.416 14.700 445.
.0 27670.2 33.6 27703.8 177.174 36.239 VAPOR 36.239 FDC
.000
.000
.649
.649 176.385 14.700 450.
.0 27666.9 33.7 27700.6 177.143 36.221 VAPOR 36.221 FDC
.000
.000
.649
.649 176.355 14.700 455.
.0 27663.7 33.7 27697.4 177.111 36.203 VAPOR 36.203 PDC
.000
.000
.649
.649 176.324 14.700 46C.
.0 27660.4 33.7 27694.1 177.000 36.185 VAPOR 36.185 FDC
.000
.000
.648
.648 176.293 14.700 465.
.0 27657.2 33.7 276?O.9 177.049 36.167 VAPOR 36.167 FDC
.000
.000
.64U
.648 176.263 14.700 470.
.0 27653.9 33.7 27687.6 177.018 36.150 VAPOR 36.150 FDC
.000
.000
.647
.647 176.232 14.700 475.
.0 27650.6 33.8 27684.4 176.987 36.132 VAPOR 36.132 PDC
.000
.000
.647
.647 176.202 14.700 480.
.0 27647.4 33.8 27681.2 176.956 36.114 VAPOR 36.114 FDC
.000
.000
.647
.647 176.171 14.700 485.
.0 276(4.1 33.8 27677.9 176.925 36.097 VAPOR 36.097 FDC
.000
.000
.G46
.646 176 140 14.700 Page: 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
490.
.0 27640.9 33.8 27674.7 176.893 36.079 VAPOR 36.079 FDC
.000
.000
.646
.646 176.110 14.700 495.
.0 27637.6 33.8 27671.5 176.862 ?6.061 VAPOR 36.061 FDC
.000
.000
.646
.646 176.079 14.700 500.
.0 27634.4 33.9 27668.2 176.831 34.044
%APOR 36.044 FDC
.000
.000
.645
.645 176.049 14.700 505.
.0 27631.1 33.9 27665.0 176.800 36.026 VAPOR 36.026 PDC
.000
.000
.645
.645 176.018 14.700 510.
.0 27627.9 31.9 27661.8 176.769 36.008 VAPOR 36.008 FDC
.000
.000
.645
.645 175.988 14.700 515.
.0 27624.6 33.9 27658.6 176.738 35.991 VAPOR 35.991 FDC
.000
.000
.644
.644 175.957 14.700 520.
.0 27621.4 33.9 27655.3 176.707 35.973 VAPOR 35.973 PDC
.000
.000
.644
.644 175.927 14.700 525.
.0 27618.1 34.0 27652.1 176.676 35.956 VAPOR 35.956 FDC
.000
.000
'644
.644 175.896 14.700 530.
.0 27614.9 34.0 27648.9 176.645 '35.938 VAPOR 35.938 FDC
.000
.000
. 64 3
.643 175.866 14.700 535.
.0 27611.7 34.0 27645.7 176.61C 35.921 VAPOR 3*.921 FDC
.000
.000
.643
.643 175.835 14.700 540..
.0 27608.4 34.0 27642.5 176.583 35.903 VAPOR 35.903 PDC
.000
.000
.642
.642 175.805 14.700 545.
.0 27605.2 34.1 27639.3 176.552 35.885 VAPOR 35.885 FDC
.000
.000
.642
.642 175.775 14.700 550.
.0 27602.0 34.1 27636.1 176.521 35.868 VAPOR 35.868 FDC
.000
.000
.642
.642 175.744 14.700 555.
.0 27598.7 34.1 27632.8 176.490 35.850 VAPOR 35.850 PDC
.000
.000
.641
.641.175.714 14.700 560.
.0 27595.5 34.1 27629.6 176.459 35.833 VAPOR 35.833 FDC
.000
.000
.641
.641 175.683 14.700 565.
.0 27592.3 34.1 27626.4 176.428 35.815 VAPOR 35.815 FDC.
.000
.000
.641
.641 175.653 14.700 570.
.0 27589.1 34.2 27623.2 176.397 35.796 VAPOR 35.798 FDC
.000
.000
.640
.640 175.623 14.700 575.
.0 27585.8 34.2 27620.0 176.367 35.781 VAPOR 35.781 PDC
.000
.000
.640
.640 175.592 14.700 580.
.0 27582.6 34.2 27616.8 176.336 35.763 VAPOR 35.763 FDC
.000
.000
.640
.640 175.562 14.700 585.
.0 27579.4 34.2 27613.6 176.305 35.746 VAPOR 35.746 FDC
.000
.000
.639
.639 175.532 14.700 590.
.0 27576.2 34.2 27610.4 176.274 35.728 VAPOR 35.728 FDC
.000
.000
.639
.639 175.501 14.740 595.
.0 27573.0 34.3 27607.2 176.243 35.711 VAPOR 35.711 PDC
.000
.000
.639
.639 175.471 14.7CO 600.
.0 27569.8 34.3 27604.0 176.212 35.694 VAPOR 35.694 FDC
.000
.000
.638
.638 175.441 14.700 605.
.0 27566.5 34.3 27600.8 176.181 35.676 VAPOR
'35.676 PDC
.000
.000
.638
.638 175.410 14.700 610.
.0 27563.3 34.3 27597.7 176.151 35.659 VAPOR 35.659 FDC'
.000
.000
.638
.638 175.380 14.700 615.
.0 27560.1 34.3 27594.5 176.120 35.641 VAPOR 35.641 FDC
.000
.000
.637
.637 175.350 14.700 620.
.0 27556.9 34.4 27591.3 176.089 35.624 VAPOR 35.624 FDC
.000
.000
.637
.637 175.320 14.700 025.
.0 27553.7 34.4 27588.1 176.058 35.607 VAPOR 35.607 FDC
.000
.000
.637
.637 175.289 14.700 630.
.0 27550.5 34.4 27584.9 176.027 35.590 VAPOR 35.590 rDC
.000
.000
.636
.636 175.259 14.700 635.
.0 27547.3 34.4 27581.7 175.997 35.572 VAPOR 35.572 FDC
.000
.000
.636
.636 175.229 14.700 640.
.0 27544.1 34.4 27578.6 175.966.35.555 VAPOR 35.555 FDC
.000
.000
.636
.636 175.199 14.700 645.
.0 27540.9 34.5 27575.4 175.935 35.538 VAPOR 35.538 FDC
.000
.000
.635
.635 175.169 14.700 650.
.0 27537.7 34.5 27572.2 175.905 35.520 VAPOR 35.520 PDC
.000
.000
.635
.635 175.138 14.700 655.
.0 27534.5 34.5 27569.0 175.874 35.503 VAPOR 35.503 FDC
.000
.000
.635
.635 175.108 14.700 660.
.0 27531.3 34.5 27565.9 175.843 35.486 VAPOR 35.486 FDC,
.000
.000
.634
.634 175.078 14.700 665.
.0 27528.1 34.5 27562.7 175.812 35.469 VAPOR 35.469 FDC
.000
.000
.634
.634 175.048 14.700 670.
.0 27525.0 34.6 27559.5 175.782 35.452 VAPOR 35.452 FDC
.000
.000
.634
.634 175.018 14.700 675.
.0 27521.0 34.6 27556.3 175.751 35.434 VAPOC 35.434 FDC
.000
.000
.633
.633 174.988 14.700 600.
.0 27518.6 34.6 27553.2 175.720 35.417 VAPOR 35.417 FDC
.000
.000
.633
.633'174.959 14.700 685.
.0 27515.4 34.6 27550.0 175.690 35.400 VAPOR 35.400 PDC
.000
.000
.632
.632 174.927 14.700 690.
.0 27512.2 34.6 27546.9 175.659 35.303 VAPOR 35.383 FDC
.000
.000
.632
.632 174.897 14.700 695.
.0 27509.0 34.7 27543.7 175.629 35.366 VAPOR 35.366 FDC
.000
.000
.632
.632 174.867 14.700 700.
.0 27505.9 34.7 27540.5 175.598 35.349 VAPOR 35.349 FDC
.000
.000
.631
.631 174.837 14.700 705.
.0 27502.7 34.7 27537.4 175.567 35.332 VAPOR 35.332 FDC
.000
.000
.631
.631 174.807 14.700 710.
.0 27499.5 34.7 27534.2 175.537 35.314 VAPC2 35.314 PDC
.000
.000
.631
.631 174.777 14.700 715.
.0 27496.3 34.7 27531.1 175.506 35.297 VAPOR 35.297 PDC
.000
.000
.630
.630 174.747 14.700 720.
.0 27493.2 34.0 27527.9 175.476 35.280 VAPOR 35.280 FDC
.000
.000
.630
.630 174.717 14.700 725.
.0 27490.0 34.8 27524.8 175.445 35.263 VAPOR 35.263 FDC
.000
.000
.630
.630 174.687 14.700 730.
.0 27486.8 34.8 27521.6 175.415 35.246 VAPOR 35.246 FDC
.000
.C00
.629
.629 174.657 14.700 735.
.0 27483.7 34.8 27518.5 175.384 35.229 VAPOR 35.229 FDC
.000
.000
.629
.629 174.627 14.700 740.
.0 27480.5 34.8 27515.3 175.354 35.212 VAPOR 35.212 FDC
.000
.000
.629
.629 174.597 14.700 745.
.0 27477.3 34.9 27512.2 175.323 35.195 VAPOR 35.195 PDC
.000
.000
.628
.628 174.567 14.700 Page: 3
750.
.0 27474.2 34.9 27509.0 175.293 35.178 VAPOR 35.178 FDC
.000
.000
.628
.628 174.537 14.700 755.
.0 27471.0 34.9 27505.9 175.262 35.161 VAPOR 35.161 FDC
.000
.000
.628
.628 174.507 14.700 760.
.0 27467.9 34.9 27502.8 175.232 35.144 VAPOR 35.144 FDC
.000
.000
.627
.627 174.477 14.700 765.
.0 27464.7 34.9 27499.6 175.201 35.127 VAPOR 35.127 FDC
.000
.000
.627
.627 174.447 14.700 770.
.0 27461.5 34.9 27496.5 175.171 35.110 VAPOR 35.110 FDC
.000
.000
.627
.627 174.418 14.700 775.
.0 27458.4 35.0 27493.4 175.140 35.093 VAPOR 35.093 FDC
.000
.000
.626
.626 174.388 14.700 700.
.0 27455.2 35.0 27490.2 175.110 35.077 VAPOR 35.077 FDC
.000
.000
.626
.626 174.358 14.700 785.
.0 27452.1 35.0 27487.1 175.000 35.060 VAPOR 35.060 FDC
.000
.000
.626
.626 174.328 14.700 790.
.0 27448.9 35.0 27484.0 175.049 35.043 VAPOR 35.043 PDC
.000
.000
.625
.625 174.298 14.700 795.
.0 27445.8 35.0 27480.8 175.019 35.026 VAPOR 35.026 FDC
.000
.000
.625
.625 174.268 14.700 800.
.0 27442.7 35.1 27477.7 174.989 35.009 VAPOR 35.009 FDC
.000
.000
.625
.625 174.238 14.700 805.
.0 27439.5 35.1 27474.6 174.958 34.992 VAPOR 34.992 FDC
.000
.000
.624
.624 174.209 14.700 810.
.0 27436.4 35.1 27471.5 174.928 34.975 VAPOR 34.975 FDC
.000
.000
.624
.624 174.179 14.700 815.
.0 27433.2 35.1 27466'.4 174.890 34.958 VAPOR 34.958 FDC
.000
.000
.624
.624 174.149 14.700 020.
0 27430.1 35.1 27465.2 174.867 34.942 VAPOR 34.942 FDC
.003
.000
.623
.623 174.119 14.700 825.
.0 27427.0 35.2 27462.1 174.837 34.925 VAPOR 34.925 PDC
.000
.000
.623
.623 174.089 14.700 830.
.0 27423.8 35.2 27459.0 174.007 34.908 VAPOR 34.900 PDC
.000
.000
.622
.622 174.060 14.700 835.
.0 27420.7 35.2 27455.9 174.776 34.891 VAPOR 34.891 FDC
.000
.000
.622
.622 174.030 14.700 840.
.0 27417.6 35.2 27452.8 174.746 34.875 VAPOR 34.875 FDC
.000
.000
.622
.622 174.000 14.700 845.
.0 27414.4 35.2 27449.7 174.716 34.858 VAPOR 34.858 FDC
.000
.000
.621
.621 173.971 14.700 850.
.0 27411.3 35.2 27446.6 174.686 34.841 VAPOR 34.841 PDC
.000
.000
.621
.621 173.941 14.700 855.
.0 27408.2 35.3 27443.5 174.655 34.824 VAPOR 34.824 PDC
.000
.000
.621
.621 173.911 14.700 860.
.0 27405.1 33.3 27440.4 174.625 34.800 VAPOR 34.808 FDC
.000
.000
.620
.620 173.881 14.700 865.
.0 27402.0 35.3 27437.3 174.595 34.791 VAPOR 34.791 FDC
.000
.000
.620
.620 173.852 14.700 870.
.0 27398.8 35.3 27434.2 174.565 34.774 VAPOR 34.774 PDC
.000
.000
.620
.620 173.822 14.700 875.
.0 27395.7 35.3 27831.1 174.535 34.758 VAPOR 34.758 FDC
.000
.000
.619
.619 173.792 14.700 880.
.0 27392.6 35.4 27428.0 174.505 34.741 VAPOR 34.741 PDC
.000
.000
.619
.619 173.763 14.700 885.
.0 27389.5 35.4 27424.9 174.474 34.724 VAPOR 34.724 FDC
.000
.000
.619
.619 173.733 14.700 890.
.0 27385.4 35.4 27421.8 174.444 34.708 VAPOR 34.700 rDC
.000
.000 618
.618 173.708 14.700 895.
.0 27383.3 35.4 27418.7 174.414 34.691 VAPOR 34.691 PDC
.000
.000
.618
.618 173.674 14.700 900.
.0 27380.2 35.4 27415.6 174.384 34.675 VAPOR 34.675 FDC
.000
.000
.618
.618 173.644 14.700 905.
.0 27377.1 35.4 27412.5 174.354 34.658 VAPOR 34.658 PDC
.000
.000
.618
.618 173.615 14.700 910.
.0 27374.0 35.5 27409.4 174.324 34.641 VAPOR 34.641 FCC
.000
.000
.617
.617 173.585 14.700 915.
.0 27370.8 35.5 27406.3 174.294 34.625 VAPOR 34.625 FDC
.000
.000
.617
.617 173.556 14.700 920.
.0 27367.7 35.5 27403.2 174.264 34.608 VAPOR 34.600 PDC
.000
.000
.617
.617 173.526 14.700 925.
.0 27364.6 35.5 27400.2 174.234 34.592 var'OR 34.592 FDC
.0D9
.000
.616
.616 173.496 14.100 930.
.0 27361.5 35.5 27397.1 174.203 34.575 VAPOR 34.575 PDC
.000
.000
.616
.616 173.467 14.700 935.
.0 27358.4 35.5 27394.0 174.173 34.*59 VAPOR 34.559 PDC
.000
.000
.616
.616 173.437 14.700 940.
.0 27355.4 35.6 27390.9 174.143 34.542 VAPOR 34.542 PDC
.000
.000
.615
.615 173.408 14.700 945.
.0 27352.3 35.6 27387.8 174.113 34.526 VAPOR 34.526 PDC
.000
.000
.615
.615 173.378 14.700 950.
.0 27349.2 35.6 27384.8 174.083 34.509 VAPOR 34.509 FDC
.000
.000
.615
.615 173.349 14.700 955.
.0 27346.1 35.6 27381.7 174.053 34.493 VAPOR 34.493 FDC
.000
.000
.614
.614 173.319 14.700 960.
.0 27343.0 35.6 27378.6 174.023 34.476 VAPOR 34.476 FDC
.000
.000
.614
.614 173.290 14.700 965.
.0 27339.9 35.7 27375.6 173.993 34.460 VAPOR 34.460 PDC
.000
.009
.614
.614 173.261 14.700 970.
.0 27336.8 35.7 27372.5 173.963 34.443 VAPOR 34.443 PDC
.000
.000
.613
.613 173.231 14.700 975.
.0 27333.7 35.7 27369.4 173.933 34.427 VAPOR 34.427 FDC
.000
.000
.613
.613 173.202 14.700 980.
.0 27330.6 35.7 27366.4 173.904 34.411 VAPOR 34.411 PDC
.000
.000
.613
.613 173.172 14.700 985.
.0 27327.6 35.7 27363.3 173.874 34.394 VAPOR 34.394 FDC
.000
.000
.612
.612 173 143 14.700 990.
.0 27324.5 35.7 27360.2 173.844 34.378 VAPOR 34.378 FDC
.000
.000
.612
.612 173.113 14.700 995.
.0 27321.4 35.8 27357.2 173.814 34.361 VAPOR 34.361 PDC
.000
.000
.612
.612 173.084 14.700 1000.
.0 27318.3 35.8 27354.1 173.784 34.345 VAPOR 34.345 FDC
.000
.000
.611
.611 173.055 14.700 1005.
.0 27315.3 35.8 27351.1 173.754 34.329 VAPOR 34.329 PDC
.000
.000
.611
.611 173.025 14.700
wg 1010.
.0 27312.2 35.8 27348.0 173.724 34.312 VAPOR 34.312 PDC
.000
.000
.611
.611 172.996 14.700 1015.
.0 27309.1 35.8 27344.9 173.694 34.296 VAPOR 34.296 PDC
.000
.000
.610
.610 172.967 14.700 1020.
.0 27306.1 35.8 27341.9 173.664 34.280 VAPOR 34.28G FDC
.000
.000
.610
.610 172.937 14.700 1025.
.0 27303.0 35.9 27338.8 173.635 34.253 VAPOR 34.263 FDC
.000
.000
.610
.610 172.900 14.700 1030.
.0 27299.9 35.9 27335.8 173.605 34.247 VAPOR 34.247 FDC
.000
.000
.609
.609 172.879 14.700 1035.
.0 27296.9 35.9 27332.8 173.575 34.231 VAPOR 34.231 FDC
.000
.000
.609
.609 172.849 14.70C 1040.
.0 27293.8 35.9 27329.7 173.545 34.215 VAPOR 34.215 FDC
.000
.000
.609
.609 172.820 14.700 1045.
.0 27290.7 35.9 27326.7 173.515 34.198 VAPOR 34.198 PDC
.000
.000
.608
.608 172.791 14.700 1050.
.0 272S7.7 35.9 27323.6 173.486 34.182 VAPOR 34.182 FDC
.000
.000
.608
.608 172.762 14.700 1055.
.0 27204.6 36.0 27320.6 173.456 34.166 VAPOR 34.166 PDC
.000
.000
.E08
.608 172.732 14.700 1060.
.0 27281.6 36.0 27317.5 173.426 34.150 VAPOR
.34.150 PDC
.000
.000
.607
.607 172.703 14.700 1065.
.0 2727C.5 36.0 27314.5 173.396 34.134 VAPOR 34.134 PDC
.000
.000
.607
.607 172.674 14.700 1070.
.0 27275.5 36.0 27311.5 173.367 34.117 VAPOR 34.117 FDC
.000
.000
.607
.607 172.645 14.700 1075.
.0 27272.4 36.0 27308.4 173.337 34.101 VAPOR 34.101 PDC
.000
.000
.606
.606 172.616 14.700 1080.
.0 27269.4 36.0 27305.4 173.307 34.085 VAPOR 34.085 FDC
.000
.000
.606
.606 172.586 14.700 1085.
.0 27266.3 36.1 27302.4 173.278 34.069 VAPOR 34.069 FDC
.000
.000
.606
.606 172.557 14.700 1090.
.0 27263.3 36.1 27299.4 173.248 34.053 VAPOR 34.053 PDC
.000
.000
.605
.605 172.528 14.700 1095.
.0 27260.2 36.1 27296.3 173.218 34.037 VAPOR 34.037 FDC
.000
.000
.605
.605 172.499 14.700 1100.
.0 27257.2 36.1 27293.3 173.189 34.020 VAPOR 34.020 FDC
.000
.000
.605
.605 172.470 14.700 1105.
.0 27254.2 36.1 27290.3 173.159 34.004 VAPOR 34.004 PDC
.000
.000
.604
.604 172.441 14.700 1110.
.0 27251.1 36.1 27287.3 173.129 33.988 VAPOR 33.988 PDC
.000
.000
.604
.604 172.411 14.700 1115.
.0 27248.1 36.2 27284.2 173.100 33.972 VAPOR 33.972 FDC
.000
.000
.604
.604 172.382 14.700 1120.
.0 27245.1 36.2 27281.2 173.070 33.956 VAPOR 33.956 PDC.
.000
.000
.603
.603 172.353 14.700 1125.
.0 27242.0 36.2 27278.2 173.041 33.940 VAPOR 33.940 PDC
.000
.000
.603
.603 172.324 14.700 1130.
.0 27239.0 36.2 27275.2 173.011 33.924 VAPOR 33.924 FDC
.000
.000
.603
.603 172.295 14.700 1135.
.0 27236.0 36.2 27272.2 172.981 33.908 VAPOR 33.909 FDC
.000
.000
.602
.602 172.266 14.700 1140.
.0 27232.9 36.2 27269.2 172.952 33.892 VAPOR 33.892 PDC
.000
.000
.602
.602 172.237 14.700 1145.
.0 27229.9 36.3 27266.2 172.922 33.876 VAPOR 33.876 PDC.
.000
.000
.602
.602 172.208 14.700 1150.
.0 27226.9 36.3 27263.1 172.893 33.860 VAPOR 33.860 PDC
.000
.000
.601
.601 172.179 14.700 1155.
.0 27223.9 36.3 27260.1 172.863 33.844 VAPOR 33.844 FDC
.000
.000
.601
.601 172.150 14.700 1160'.
.0 27220.8 36.3 27257.1 172.834 33.828 VAFOR 33.828 PDC
.000
.000
.601
.601 172.121 14.700 1165.
.0 27217.8 36.3 27254.1 172.804 33.812 VAPOR 33.812 PDC
.000
.000
.601
.601 172.092 14.700 1170.
.0 27214.8 36.3 27251.1 172.775 33.796 VAPOR 33.796 PDC
.000
.000
.600
.600 172.063 14.700 1175.
.0 27211.8 36.3 27248.1 172.745 33.780 VAPOR 33.780 FDC
.000
.000
.600
.600 172.034 14.700 1180.
.0 27208.8 36.4 27245.1 172.716 33.764 VAPOR 33.764 FDC
.000
.000
.600
.600 172.005 14.700 1185.
.0 27205.7 36.4 27242.1 172.686 33.748 VAPOR 33.748 PDC
.000
.000
.599
.599 171.976 14.700 1190.
.0 27202.7 36.4 27239.1 172.657 33.733 VAPOR 33.733 FDC
.000
.000
.599
.599 171.947 14.700 1195.
.0 27199.7 36.4 27236.1 172.627 33.717 VAPOR J3.717 FDC
.000
.000
.599
.599 171.918 14.700 1200.
.0 27196.7 36.4 27233.1 172.598 33.701 VAPOR 33.701 PDC
.000
.000
.599
.599 171.889 14.700 1205.
.0 27193.7 36.4 27230.1 172.568 33.685 VAPOR 33.685 FDC
.000
.000
.598
.598 171.860 14.700 1210.
.0 27190.7 36.5 27227.2 172.539 33.669 VAPOR 33.669 FDC
.000
.000
.598
.598 171.831 14.700 1215.
.0 27187.7 36.5 27224.2 172.510 33.653 VAPOR 33.653 PDC
.000
.000
.598
.598 171.802 14.700 1220.
.0 27184.7 36.5 27221.2 172.480 33.637 VAPOR 33.637 PDC
.000
.000
.597
.597 171.773 14.700 1225.
.0 27181.7 36.5 27218.2 172.451 33.622 VAPOR 33.622 PDC
.000
.000
.597
.597 171.745 14.700 1230.
.0 27178.7 36.5 27215.2 172.421 33.606 VAPOR 33.606 FDC
.000
.000
.597
.597 171.716 14.700 1235.
.0 27175.7 36.5 27212.2 172.392 33.590 VAPOR 33.590 FDC
.000
.000
.596
.596 171.687 It.700 1240.
.0 27172.7 36.6 27209.2 172.363 33.574 VAPOR 33.574 PDC
.000
.000
.596
.596 171.658 14.700 1245.
.0 27169.7 36.6 27206.3 172.333 33.558 VAPOR 33.558 FDC
.000
.000
.595
.595 171.629 14.700 1250.
.0 27166.7 36.6 27203.3 172.304 33.543 VAPOR 33.543 PDC
.000
.000
.595
.595 171.6c0 14.700 1255.
.0 27163.7 36.6 27200.3 172.275 33.527 VAPOR 33.527 FDC
.000
.000
.595
.595 171.572 14.700 1260.
.0 27160.7 36.6 27197.3 172.245 33.511 VAPOR 33.511 PDC
.000
.000
.594
.594 171.543 14.700 1265.
.0 27157.7 36.6 27194.4 172.216 33.495 VAPOR 33.495 FDC
.000
.000
.594
.594 171.514 14.700 Page: 5 L_
1270.
.0 27154.8 36.6 27191.4 172.187 33.480 V;POR 33.480 FDC
.000
.000
.594
.594 171.485 14.700 1275.
.0 27151.8 36.7 27188.4 172.158 33.464 VAPOR 33.464 FDC
.000
.000
.593
.593 171.456 14.700 1280.
.0 27148.8 36.7 27185.5 172.128 33.448 VAPOR 33.448 FDC
.000
.000
.593
.593 171.428 14.700 1285.
.0 27145.8 36.7 27182.5 172.099 33.433 VAPOR 33.433 FDC
.000
.000
.593
.593 171.399 14.700 1290.
.0 27142.8 36.7 27179.5 172.070 33.417 VAPOR 33.417 FDC
.000
.000
.592
.592 171.370 14.700 1295.
.0 27139.9 36.7 27176.6 172.041 33.401 VAPOR 33.401 FDC
.000
.000
.592
.592 171.342 14.700 1300.
.0 27136.9 36.7 27173.6 172.012 33.386 VAPOR 33.386 FDC
.000
.000
.592
.592 171.313 14.700 1305.
.0 27133.9 36.7 27170.6 171.982 33.370 VAPOR 33.370 FDC
.000
.000
.591
.591 171.284 14.700 1310.
.0 27130.9 36.8 27167.7 171.953 33.355 VAPOR 33.355 FDC
.000
.000
.591
.591 171.236 14.700 1315.
.0 27128.0 36.8 27164.7 171.924 33.339 VAPOR 33.339 FDC
.000
.000
.591
.591 171.227 14.700 1320.
.0 27125.0 36.8 27161.8 171.895 33.323 VAPOR 33.323 FDC
.000
.000
.590
.590 172.198 14.700 1325.
.0 27122.0 36.8 27158.8 171.866 33.308 VAPOR 33.308 FDC
.000
.000
.590
.5?O 171.170 14.700 1330.
.0 27119.1 36.8 27155.9 171.837 33.292 VAPOR 33.292 FDC
.000
.000
.590
.590 171.141 14.700 1335.
.0 27116.1 36.8 27152.9 171.800 33.277 VAPOR 33.277 FDC
.000
.000
.590
.590 171.112 14.700 1340.
.0 27113.1 36.9 27150.0 171.778 33.261 VAPOR 33.261 FDC
.000
.000
.589
.589 171.094 14.700 1345.
.0 27110.2 36.9 27147.0 171.749 33.246 VAPOR 33.246 rrC
.000
.000
.589
.589 171.055 14.700 1350.
.0 27107.2 36.9 27144.1 171.720 33.230 VAPOR 33.230 FDC
.000
.000
.589
.389 171.027 14.700 1355.
.0 27104.3 36.9 27141.1 171.691 33.215 VAPOR 33.215 EDC
.000
.000
.388
.588 170.998 14.700 1360.
.0 27101.3 36.9 27138.2 171.662 33.199 VAPOR 33.199 FDC
.000
.000
.588
.588 170.969 14.700 1365.
.0 27098.3 36.9 27135.3 171.633 33.184 VAPOR 33.184 FDC
.000
.000
.388
.588 170.941 10.700 1370.
.0 27095.4 36.9 27132.3 171.604 33.168 VAPOR 33.168 FDC
.000
.000
.587
.587 170.912 14.700 1375.
.0 27092.4 37.0 27129.4 171.575 33.153 VAPOR 33.153 FDC
.000
.000
.587
.587 170.884 14.700 1380.
.0 27089.5 37.0 27126.5 171.546 33.137 VAPOR 33.137 FDC
.000
.000
.587
.587 170.855 14.700 1385.
.0 27016.5 37.0 27123.5 171.517 33.122 VAPOR 33.122 FDC
.000
.000
.586
.586 170.827 14.700 1390.
.0 27083.6 37.0 27120.6 171.488 33.106 VAPOR 33.106 FDC
.000
.000
.586
.386 170.798 14.700 1395.
.0 27080.6 37.0 27117.7 171.459 33.091 VAPOR 33.091 FDC
.000
.000
.586
.586 170.770 14.700 1400.
.0 27077.7 37.0 27114.7 171.430 33.076 VAPOR 33.076 FDC
.000
.000
.586
.586 170 741 14.700 1405.
.0 27074.8 37.0 27111.8 171.401 33.060 VAPOR 33.060 FDC
.000
.000
.585
.585 170.713 14.700 1410.
.0 27071.8 37.1 27100.9 171.372 33.045 VAPOR 33.045 FDC
.000
.000
.585
.585 170.684 14.700 1415.
.0 27068.9 37.1 27106.0 171.343 33.029 VAPOR 33.029 TDC
.000
.000
.585
.585 110.656 14.700 1420.
.0 27065.9 37.1 27103.0 171.314 33.014 VAPOR 33.014 FDC
.000
.000
.584
.584 I?;.627 14.700 1425.
.0 27063.0 37.1 27100.1 171.245 32.999 VAPOR 32.999 rDC
.000
.000
.584
.384 270.599 14.700 1430.
.0 27060.1 37.1 27097.2 171.256 32.983 VAPOR 32.983 FDC
.000
.000
.384
.584 170.571 14.700 1435.
.0 27057.1 37.1 27094.3 171.228 32.968 VAPOR 32.968 FDC
.000
.000
.584
.584 170.542 14.700 1440.
.0 27054.2 37.1 27091.3 171.199 32.953 VAPOR 32.953 FDC
.000
.000
.383
.583 170.514 14.700 1445.
.0 27051.3 37.2 27000.4 171.170 32.937 VAPOR 32.937 FDC
.000
.000
.5F3
.583 170.485 14.700 1450.
.0 27048.4 37.2 27085.5 17*.141 32.922 VAPOR 32.922 rDC
.000
.000
.583
.583 170.457 14.700 1455.
.0 27045.4 37.2 27082.6 171.112 32.907 VAPOR 32.907 PDC
.000
.000
.582
.582 170.429 14.700 1460.
.0 27042.5 37.2 27079.7 171.083 32.892 VAPOR 32.892 FDC
.000
. COO
.582
.582 170.400 14.700 1465.
.0 27039.6 37.2 27076.8 171.054 32.876 VAPOR 32.876 FDC
.000
.000
.582
.582 170.372 14.700 1470.
.0 27036.7 37.2 27073.9 171.026 32.861 VArr" 32.861 FDC
.000
.000
.581
.581 170.344 14.700 1475.
.0 27033.7 37.2 27071.0 170.997 32.846 VAPok 32.846 PDC
.000
.000
.581
.581 170.315 14.700 1480.
.0 27030.8 37.2 2/068.1 170.968 32.831 VAPOR 32.831 FDC
.000
.000
.581
.581 170.287 14.700 1485.
.0 27027.9 37.3 27063.2 170.939 32.815 VAPOR 32.815 rDC
.000
.000
.581
.581 170.259 14.700 1490.
.0 27025.0 37.3 27062.3 170.910 32.800 VAPOR 32.800 PDC
.000
.000
.580
.580 170.230 14.700 1495.
.0 27022.1 37.3 27059.4 170.882 32.785 VAPOR 32.785 FDC
.000
.000
.580
.500 170.202 14.700 1500.
.0 27019.1 37.3 27056.5 170.853 32.770 VAFOR 32.770 PDC
.000
.000
.580
.580 170.174 14.700 1505.
.0 27016.2 37.3 27053.6 170.824 32.755 VAPOR 32.755 PDC
.000
.000
.579
.579 170.146 14.700 1510.
.0 27013.3 37.3 27050.7 170.795 32.739 VAPOR 32.739 FDC
.000
.000
.579
.579 170.117 14.700 1515.
.0 27010.4 37.3 27047.8 170.767 32.724 VAPOR 32.724 FDC
,.000
.000
.579
.579 170.089 14.700 1520.
.0 27007.5 37.4 27044.9 170.738 32.709 VAPOR 32.709 FDC
.000
.000
.578
.578 170.061 14.700 1525.
.0 27004.6 37.4 27042.0 170.709 32.694 VAPOR 32.694 rDC
.000
.000 578
.578 170.033 14.700
1530.
.0 27001.7 37.4 27039.1 170.680 32.679 VAPOR 32.679 PDC
.000
.000
.578
.578 170.004 14.700 1535.
.0 26998.8 37.4 27036.2 '170.652 32.664 VAPOR 32.664 FDC
.000
.000
.577
.577 169.976 14.700 1540.
.0 26995.9 37.4 27033.3 170.623 32.649 VAPOR 32.649 PDC
.000
.000
.577
.577 169.948 14.700 1545.
.0 26993.0 37.4 27030.4 170.594' 32.634 VAPOR 32.634 FDC
.000
.000
.577
.577 169.920 14.700 1550.
.0 26990.1 37.4 27027.5 170.566 32.619 VAPOR 32.619' FDC
.000'
.000
.577
.577 169.992 14.700 1555.
.0 26987.2 37.5 27024.7 170.537 32.604 VAPOR 32.604 PDC
.000
.000
.576
.576 169.864 14.700 1560.
.0 26984.3 37.5 27021.8 170.508 32.588 VAPOR 32.588 FDC
.000
.000
.576
.576 169.835 14.700 1565.
.0 26981.4 37.5 27018.9 170.480 32.573 VAPOR 32.573 PDC
.000
.000
.576
.576 169.807 14.100 1570.
.0 26978.5 37.5 27016.0 170.451 32.558 VAPOR 32.558 FDC
.000
.000
.575
.575 169.779 14.700 1575.
.0 26975.6 37.5 27013.1 170.423 32.543 VAPOR 32.543 PDC
.000
.000
.575
.575 169.751 14 700 1580.
.0'26972.8 37.5 27010.3 170.394 32.528 VAPOR 32.528 FDC
.000
.000
.575
.575 16?.723 11.700 1585.
.0 26969.9 37.5 27007.4 170.366 32.513 VAPOR 32.513 FDC
.000
.000
.574
.574 169.G'sS 14.700 j
1590.
.0 26967.0 37.5 27004.5 170.337 32.498 VAPOR 32.498 rDC
.000
.000
.57e
.574 169.667" 14.700 1595.
.0'26964.1 37.6 27001.7 170.308 32.483' VAPOR 32.483 FDC
.000
.000 573
.573 169.639 14.700 1600.
.0 26961.2 37.6 26998.0 170.280 32.469 VAPOR 32.469 PDC
.000
.000
.573
.573 169.611 14.700 1605.
.0 26958.3 77.6 26995.9 170.251 32.451 VAPCR 32.454 PDC
.000
.000
.5 73
.573 169.583 14.700 1610.
.0 26955.5 37.6 26993.1 170.223 32.439 VAPOR 32.439 "9C
.000
.000
.572
.572 169.555 14.700 1615.
.0 26952.6 37.6 26990.2 170.194 32.424 VAPOR 32.424 rDC
.000
.000
.572
.572 16?.527 14.700 1620.
.0 26949.7 37.6 26987.3 170.166 32.405 V;.PCP 32.409 FDC
.000
.000
.572
.572 169.499 14.700 1625.
.0 26946.8 37.6 26984.5 170.138 32.394 VAP0R 32.394 FDC
.000
.000
.572
.572 169.471 14.700 1630.
.0 26944.0 37.6 26901.6 170.109 32.379 VAPOR 32.379 FDC
.C00
.000
.571
.571 169.443 14.700 1635.
.0 26941.1 37.7 26978.8 170.031 32.364 VAPOR 32.364 FDC
.000
.000
.571
.571 169.415 14.700 1640.
.0 26938.2 37.7 26975.9 170.052 32.349 VAPOR 32.349 PDC
.000
.000
.571
.571 169.387 14.700 1645.
.0 26935.4 37.7 26973.1 170.024 32.335 VAPOR 32.335 FDC
.000
.000
.570
.570 169.359 14.700 1650.
.0 26934.5 37.7 26970.2 169.995 32.320 VAPOR 32.320 PDC
.000
.000
.570
.570 169.331 14.700 1655.
.0 26929 6 37.7 26967.4 169.967 32.305 VAPOR 32.305 PDC
.000
.000
.570 570 169.303 14.700 1660.
.0 26926.8 37.7 26964.5 169.939 32.290 VAPOR 32.290 PDC
.000
.000
.569
.569 169.275 14.700 1665.
.0 26923.9 37.7 26961.7 169.910 32.275 VAPOR 32.275 FDC
.000
.000
.569
.569 169.247 14.700 1670.
.0 26921.1 37.8 26958.8 169.882 32.260 VAPOR 32.260 FDC
.000
.000
.569
.569 169.219 14.700 1675.
.0 26918.2 37.8 26956.0 169.854 32.246 VAPOR 32.246 FDC
.000
.000
.5 68
.568 169.192 14.700 1680.
.0 26915.4 37.8 26953.1 169.825 32.231 VAPOR 32.231 FDC
.000
.000
.564
.568 169.164 14.700 1685.
.0 26912.5 37.8 26950.3 169.797 32.216 VAPOR 32.216 PDC
.000
.000 568
.568 169.136 14.700 1690.
.0 26909.6 37.8 26947.4 169.769 32.201 VAPOR 32.201 FDC
.000
.000
.568
.568 169.108 14.700 1695.
.0 26906.8 37.8 26944.6 169.740 32.187 VAPOR 32.187 PDC
.000
.000 567
.567 169.000 14.700 1700.
.0 26904.0 37.8 26941.8 169.712 32.172 VAPOR 32.172 FDC
.000
.000
.567
.567 169.052 14.700 1705.
.0 26901.1 37.8 26938.9 169.684 32.157 VAPOR 32.157 PDC
.000
.000
.567
.567 169.025 14.700 1710.
.0 26898.3 37.8 26936.1 169.655 32.143 VAPOR 32.143 PDC
.000
.000
.566
.566 168.997 14.700 1715.
.0 26895.4 37.9 26933.3 169.627 32.128 VAPOR 32.128 PDC
.000
.000
.566
.566 Ite.969 14.700 1720.
.0 26892.6 37.9 26930.4 169.599 32.113 VAPOR 32.113 PDC
.000
.000
.566
.566 168.941 14.700 1725.
.0 26889.7 37.9 26927.6 169.571 32.098 VAPOR 32.098 PDC
.000
.000
.566
.566 168.913 14.700 1730.
.0 26886.9 37.9 26924.8 169.542 32.084 VAPOR 32.094 PDC
.000
.000
.565
.565 168.886 14.700 1735.
.0 26884.1 37.9 26922.0 169.514 32.069 VAPOR 32.069 FDC
.000
.000
.565
.565 168.858 14.700 1740.
.0 26881.2 37.9 26919.1 169.486 32.055 VAPOR 32.055 PDC
.000
.000
.565
.565 168.830 14.7C0 1745.'
.0 26878.4 37.9 26916.3 169.458 #32.040 VAPOR 32.040 FDC
.000
.000
.564
.564 168.803 14.700 1750.
.0 26875.5 37.9 26913.5 169.430 32.025 VAPOR 32.025 FDC
.000
.000
.564
.564 168.775 14.700 1755.
.0 26872.7 38.0 26910.7 169.401 32.011 VAPOR 32.011 FDC
.000
. 0 '?
.564
.564 168.747 14.700 1760.
.0 26869.9 38.0 26907.9 169.373 31.996 VAPOR 31.996 FDC
.000
.000
.564
.564 168.719 14.700 1765.
.0 26867.1 38.0 26905.0 169.345 31.981 VAPOR 31.981 FDC
.000
.000
.563
.563 168.692 14.700 1770.
.0 26864.2 38.0 26902.2 169.317 31.967 VAPOR 31.967 PDC
.000
.000
.563
.563 168.664 14.700 1775.
.0 20061.4 38.0 26899.4 169.289 31.952 VAPOR 31.952 FDC
.000
.000
.563
.563 168.636 14.700 1780.
.0 26858.6 38.0 26096.6 169.261 31.938 VAPOR 31.938 FDC
.000
.000
.562
.562 168.609 14.700 1785.
.0 26855.7 38.0 26893.8 169.232 31.923 VAPOR 31.923 PDC
.000
.000 562
.562 168.581 14.700 Page: 7
1790.
.0 26852.9 38.0 26891.0 169.204 31.909 VAPOR 31.909 FDC
.000
.000
.562
.562 168.553 14.700 1795.
.0 26850.1 38.1 26888.2 169.176 31.894 VAFOR 31.894 FDC
.000
.000
.562
.562 168.526 14.730 1800.
.0 268e7.3 38.1 26885.4 169.148 31.880 VAFOR 31.880 FDC
.000
.000
.561
.561 168.498 14.700
O.
CYLIND Input and Results for y
48X Product Cylinder 1
Source T rms for Paducah ro.
.i.....>-..
e..
b,
^3 Page V of 3 e.
-> - c
' DAC M0848401 SAR 62 Checked by 6 tag D te falo-fle
~
O i
(.
Input file for felsmic release from a 48X IIU cylinder, 12 via 0.652" Pigtail CCARD1 TITLE = 'C-310 Seismic: 48X Cylinder at 12, ISOF, via 0.652 ID pigtail'
/.
CCARD2
[
ISEN
=1 ICYL
=5 IVERT = 0 l-IFIG
=8 r
/
CCARD3 MTOT - Card 3 is skipped l
VOL
= 142.7 DIACYL = 48.0 l
LCYL
- 136.27 17.00
[
RHOLE
=
0.875 DHOLE-
=
/
ECARD4
[
MTor - Card 4 is slipped
/
sCARDS I
'VOL =
0.0 TVOL = 180.0 XLVOL =
1.0
[
0.0 ew ALPHA =
0.0
/
i'
& CARD 6 PAMB = 14.7 Card 6 is skipped
/
CCARD7 i'
PIPING = 1 0.500 0.875 2 0.316 0.875 l
3 0.222 0.652
}
1 5.500 0.652 r
l 2 0.653 0.652 2 0.331 1.000 1 10.000 1.000 I
2 1.000 14.700 l
i
/
ECARD9 l
DELT 5.0
=
MAxTIM = 1905.0
/
l I
i i
.Pmge: 1 i
1 e
- ~,,,.
.s l
l TITLE: C-310 Selsmic: 48X Cylinder at 12, 190F, via 0.652 ID pigtail CTLDID... 06-11-1?96.. 16:14:28 "m"
CONDITION OF UF6 IN CONTAINMENT *'""
FATHNAY INLET
- *"" CONDITION OF UF6 EKHAUSTED """*
- FLOtt TIME
" " * " " MASS (LB) * * * * " " "
TEMP.
FRES RELEASE FPES RATE
- "* RELEASE RATE (LP/SEC)
TEMP FRES (SEC)
SOLID LIQUID VAPOR TOTAL (DEG F)
(PSIA)
FRASE (PSIA) BASIS SOLID LIQUID VAPOR TOTAL (DEG F1 (PSIA)
O.
.0 21002.2 27.8 21030.0 180.000 37.878 VAPOR 37.878 FDC
.000
.000
.681
.681 179.161 14.700 5.
.0 20998.8 27 8 21026.6 179.957 37.852 VAPOR 37.852 FDC
.000
.000
.681
.681 179.119 14.700 10.
.0 20995.4 27.8 21023.2 179.914 37.827 VAPOR 37.827 PDC
.000
.000
.680
.680 119.077 14.700 15.
.0 20992.0 27.8 21019.8 179.871 37.802 VAPOR 37.802 PDC
.000
.000
.680
.680 179.035 14.700 20.
.0 20988.5 27.9 21016.4 179.828 37.776 VAPOR 37.776 FDC
.000
.000
.679
.679 178.993 14.700 25.
.0 20985.1 27.9 21013.0 179.785 37.751 VAPOR 37.751 PDC
.000
.000
.679
.679 178.951 14.700 30.
.0 7C981.7 27.9 21009.6 179.743 37.726 VAPOR 37.726 FDC
.000
.000
.679
.679 178.900 14.700 l
35.
.0 20978.3 27.9 21006.2 179.700 37.701 VAPOR 37.701 PDC
.000
.000
.678
.678 178.866 14.700 l
40.
.0 20974.9 27.9 21002.8 179.657 37.676 VAPOR 37.676 FDC
.000
.000
.678
.678 178.824 14.700
[
45.
.0 20371.5 20.0 20999.4 179.614 37.650 VAPOR 37.650 FDC
.000
.000
.677
.677 178.782 14.700 t
50.
.0 20968.0' 28.0 20996.0 179.571 37.625 VAPOR 37.625 FDC
.000
.000
.677
.677 178.740 14.700 55.
.0 20964.6 28.0 20992.7 179.529 37.600 VAPOR 37.600 FDC
.000
.000
.676
.676 178.698 14.700 60.
.0 20961.2 20.0 20989.3 179.486 37.575 VAPOR 37.575 PDC
.000
.000
.676
.616 178.656 14.700 65.
.0 20957.8 28.1 20985.9 179.443 37.550 VAPOR 37.550 FDC
.000
.000
.675
.675 178.614 14.700 70.
.0 20954.4 28.1 20982.5 179.400 37.525 VAPOR 37.525 FDC
.000 000
.675
.675 178.572 14.700 75.
.0 20951.0 28.1 20919.1 179.358 37.500 VAPOR 37.500 FDC
.000
.bdo
.674
.674 178.531 14.700 80.
.0 20947.6 28.1 20975.8 179.315 37.475 VAPOR 37.475 FDC
.000
.0eo
.674
.674 178.489 14.700 85.
.0 20944.3 28.1 20972.4 179.272 37.450 VAPOR 37.450 PDC
.000
.000
.673
.673 178.447 14.700 90.
.0 20940.9 28.2 20969.0 179.230 37.425 VAPOR 37.425 PDC
.000
.000
.673
.673 178.405 14.700 95.
.0 20937.5 28.2 20965.7 179.187 37.401 VAPOR 37.401 FDC
.000
.000
. 6 72
.672 178.363 14.700 100.
.0 20934.1 28.2 20962.3 179.145 37.376 VAPOR 37.376 FDC
.000
.000
.672
.672 178.321 14.700 105.
.0 20930.7 28.2 20958.9 179.102 37.351 VAPOR 37.351 FDC
.000
.000
.671
.6il 178.280 14.700 110.
.0 20927.3 28.3 20955.6 179.060 37.326 VAPOR 37.326 FDC
.000
.000
.671
.671 178.238 14.700 115.
.0 20924.0 28.3 20952.2 179.017 37.301 VAPOR 37.301 FDC
.000
.000
.670
.670 178.196 14.700 120.
.0 20920.6 28.3 20948.9 178.975 37.277 VAPOR 37.277 FDC
.000
.000
.670
.670 178.154 14.700 125.
.0 20917.2 28.3 20945.5 178.932 37.252 VAPOR 37.252 FDC
.000
.000
.669
.669 178.113 14.700 130.
.0 20913.8 28.3 20942.2 178.890 37.227 VAPCR 37.227 PDC
.000
.000
.669
.669 178.071 14.700 135.
.0 20910.5 28.4 20938.8 178.847 37.202 VAPOR 37.202 PDC
.000
.000
.668
.668 178.029 14.700 140.
.0 20907.1 28.4 20935.5 178.805 37.178 VAPOR 37.178 FDC
.000
.000
.668
.668 177.988 14.700 145.
.0 20903.8 28.4 20932.2 178.763 37.153 VAPOR 37.153 FDC
.000
.000
.667
.667 177.946 14.700 150.
.0 20900.4 28.4 20928.8 178.720 37.129 VAPOR 37.129 PDC
.000
.000
.667
.667 177.904 14.700 155.
.0 20897.0 28.5 20925.5 178.678 37.104 VAPOR 37.104 FDC
.000
.000
.666
.666 177.863 11.700 160.
.0 20893.7 28.5 20922.2 178.636 37.079 VAPOR 37.079 FDC
.000
.000
.666
.666'177.821 14.700 165.
.0 20890.3 28.5 20918.8 178.593 37.055 VAPOR 37.055 FDC
.000
.000
.665
.665 177.780 14.700 170.
.0 20887.0 28.5 20915.5 178.551 37.030 VAPOR 37.030 PDC
.000
.000
.665
.665 177.738 14.700 175.
.0 20883.6 28.5 20912.2 178.509 37.006 VAPOR 37.006 FDC
.000
.000
.664
.664 177.697 14.700 180.
.0 20880.3 28.6 20908.9 178.467 36.981 VAPOR 36.981 FDC
.000
.000
.664
.644 177.655 14.700 185.
.0 20877.0 28.6 20905.5 178.425 36.957 VAPOR 36.957 FDC
.000
.000
.664
.664 177.614 14.700 190.
.0 20873.6 28.6 20902.2 178.392 36.933 VAPOR 36.933 PDC
.000
.000
.663
.663 177.573 14.700 195.
.0 20870.3 28.6 20898.9 178.340 36.908 VArOR 36.908 FDC
.000
.000
.663
.663 177.531 14.700 200.
.0 20866.9 28.6 20895.6 178.298 36.884 VAPOR 36.884 PDC
.000
.000
.662
.662 177.490 14.700 205.
.0 20863.6 28.7 20892.3 178.256 36.860 VAPOR 36.860 FDC
.000
.000
.662
.662 177.448 14.700 210.
.0 20060.3 28.7 20889.0 178.214 36.835 VAPOR 36.835 PDC
.000
.000
.661
.661 177.407 14.700 215.
.0 20857.0 28.7 20885.7 178.172 36.811 VAPOR 36.811 FDC
.000
.000
.661
.661 177.366 14.700 220.
.0 20853.6 28.7 20802.4 178.130 36.787 VAPOR 36.787 FDC
.000
.000
.660
.660 177.324 14.700 225.
.0 20850.3 28.7 20879.1 178.088 36.763 VAPOR 36.763 FDC
.000
.000
.660
.660 177.283 14.700 Page: 1
_ _ _ ~
l' l
230.
.0 20847.0 28.8 20375.8 170.046 36.738 VAPOR 36.738 FDC
.000
.000
.659
.659 177.242 14.700 235.
.0 20843.7 28.8 20072.5 178.004 36.714 VAPOR 36.714 PDC
.000
.000
.659
.659 177.201 14.700 240.
.0 20840.4 28.8 20069.e 177.962 36.690 VAPOR 36.690 FDC
.000
.0C3
.658
.658 177.160 14.700 245.
.0 20837.0 28.8 20065.9 177.920 36.666 VAPOR 36.666 FDC
.000
.000
.658
.658 177.118 14.700 250.
.0 20833.7 28.9 20062.6 177.878 36.642 VAPOR 36.642 FDC
.000
.000
.657
.657 177.077 14.700 255.
.0 20830.4 28.9 20859.3 177.836 36.618 VAPOR 36.618 PDC
.000
.000
.657
.657 177.036 14.700 260.
.0 20827.1 28.9 20856.0 177.794 36.594 VAPOR 36.594 PDC
.000
.000
.656
.656 176.995 14.700 265.
.0 20823.8 28.9 20052.7 177.752 36.570 VAPOR 36.570 FDC
.000
.000
.656
.656 176.954 14.700 270.
.O 20820.5 28.9 20049.5 177.711 36.546 VAPOR 36.5C6 FDC
.000
.000
.655
.655 176.913
- 4.700 275.
.0 20017.2 28.9 20046.2 177.669 36.522 VAPOR 36.522 PDC
.000
.000
.655
.655 176.872 14.700 280.
.0 20813.9 29.0 20842.9 177.627 36.498 VAPOR 36.498 FDC
.000
.000
.654
.654 176.831 14.700 285.
.0 20810.6 29.0 20839.6 177.585 36.474 VAPOR 36.474 FDC
.000
.000
.654
.654 176.790 14.700 290.
.0 20807.4 29.0 20836.4 177.544 36.450 VAPOR 36.450 FDC
.000
.000
.653
.653 176.749 14.700 295.
.0 20804.1 29.0 20833.1 177.502 36.426
- APOR 36.426 FDC
.000
.000
.653
.653 176.708 14.700 300.
.0 20000.8 29.0 20829.8 177.460 36.402 VAPOR 36.402 FDC
.000
.000
.653
.653 176.667 14.700 305.
.0 20797.5 29.1 20026.6 177.419 36.378 VAPOR 36.378 FDC
.000
.000
.652
.652 176.626 14.700 310.
.0 20794.2 29.1 20023.3 177.377 36.354 VAPOR 36.354 FDC
.000
.000
.652
.652 176.585 14.700 315.
.0 20790.9 29.1 20820.0 177.335 36.331 VAPOR 36.331 rDC
.000
.000
.651
.651 176.544 14.700 320.
.0 20787.7 29.1 20816.8 177.294 36.307 VAPOR 36.307 FDC
.000
.000
.651
.651 176.503 14.700 325.
.0 20784.4 29.1 20813.% 177.252 36.283 VAPOR 36.283 FDC
.000
.000
.650
.650 176.462 14.700 330.
.0 20781.1 29.2 20810.3 177.211 36.260 VAPOR 36.260 FDC
.000
.000
.650
.650 176.421 14.700 335.
.0 20777.9 29.2 20807.0 177.169 36.236 VAPOR 36.236 PDC
.000
.000
.649
.649 176.381 14.700 340.
.0 20774.6 29.2 20803.0 177.128 36.212 VAPOR 36.212 FDC
.000
.000
.649
.649 176.340 14.700 345.
.0 20771.3 29.2 20800.6 177.08C 36.189 VAPOR 36.189 FDC
.000
.000
.648
.648 176.299 14.700 350.
.0 20768.1 29.2 20797.3 177.045 36.165 VAPOR 36.165 FDC
.000
.000
.648
.648 176.258 14.700 355.
.0 20764.8 29.3 20794.1 177.003 36.141 VAPCR 36.141 FDC
.000
.000
.647
.647 176.218 14.700 360.
0 20761.6 29.3 20790.8 176.962 36.118 VAPOR 36.118 FDC
.000
.000
.647
.647 176.177 14.700 365.
.0 20758.3 29.3 20787.6 176.920 36.094 VAPOR 36.094 FDC
.000
.000
.646
.646 176.136 14.700 370.
.0 20755.1 29.3 20784.4 176.879 36.071 VP I OR 36.071 ruC
.000
.000
.646
.646 176.096 14.700 375.
.0 20751.8 29.3 20781.1 176.838 36.047 VAPOR 36.047 FDC
.000
.000
.645
.645 176.055 14.70G 380.
.0 20748.6 29.4 20777.9 176.796 36.024 VAPOR 36.024 FDC
.000
.000
.645
.645 176.014 14.700 385.
.0 20745.3 29.4 20774.7 176.755 36.000 VAPOR 36.000 FDC
.000
.000
.644
.644 175.974 14.700 390.
.0 20742.1 29.4 20771.5 176.714 35.977 vhPOR 35.977 FDC
.000
.000
.644
.644 175.933 14.700 395.
.0 20738.8 29.4 20768.2 176.672 35.953 VAPOR 35.953 FDC
.000
.000
.643
.643 175.893 14.700 400.
.0 20735.6 29.4 20765.0 176.631 35.930 VAPOR 35.930 FDC
.000
.000
.643
.643 175.852 14.700 405.
.0 20732.4 29.4 20761.8 176.590 35.907 VAPOR 35.907 FDC
.000
.000
.643
.643 175.812 14.700 410.
.0 20729.1 29.5 20758.6 176.549 35.883 VAPOR 35.883 FDC
.000
.000
.642
.642 175.771 14.700 415.
.0 20725.9 29.5 20755.4 176.507 35.860 VAPOR 35.860 FDC
.000
.000
.642
.642 175.731 14.700 420.
.0 20722.7 29.5 20752.2 176.466 35.837 VAPOR 35.837 FDC
.000
.000
.641
.641 175.690 14.700 425.
.0 2P719.5 29.5 20749.0 176.425 35.814 VAPOR 35.814 TDC
.000
.000
.641
.641 175.650 14.700 430.
.0 20716.2 29.5 20745.8 176.384 35.790 VAPOR 35.790 FDC
.600
.000
.640
.640 175.609 14.700 435.
.0 20713.0 29.6 20742.6 176.343 35.767 VAPOR 35.767 FDC
.000
.000
.640
.640 175.569 14.700 440.
.0 20709.8 29.6 20739.4 176.302 35.744 VAPOR 35.744 FDC
.000
.000
.639
.639 175.529 14.700 415.
.0 20706.6 29.6 20736.2 176.261 35.721 VAPOR 35.721 PDC
.000
.000
.639
.639 175.488 14.700 450.
0 20703.4 29.6 20733.0 176.220 35.698 VAPOR 35.698 FDC
.000
.000
.638
.638 115.448 14.700 455.
.0 20700.2 29.6 20729.8 176.179 35.675 VAPOR 35.675 FDC
.000
.000
.638
.638 175.408 14.700 460.
.0 20697.0 29.6 20726.6 176.138 35.652 VAPOR 35.652 FDC
.000
.000
.638
.638 175.367 14.700 465.
.0 20693.8 29.7 20723.4 176.097 35.628 VAPOR 35.628 FDC
.000
.000
.637
.637 175.327 14.700 470.
.0 20690.5 29.7 20720.2 176.056 35.605 VAPOR 35.605 PDC
.000
.000
.637
.637 175.287 14.700 475.
.0 20687.3 29.7 20717.0 176.015 35.582 VAPOR 35.582 PDC
.000
.000
.636
.636 175.247 14.700 480.
.0 20684.1 29.7 20713.9 175.974 35.559 VAPOR 35.559 FDC
.000
.000
.636
.636 175.207 14.700 485.
.0 20681.0 29.7 20710.7 175.933 35.536 VAPOR 35.536 FDC
.000
.000
.635
.635 175.166 14.700
490.
_C 20677.8 29.8 20707.5 175 892 35.513 VAPOR 35.513 FDC
.000
.000
.635
.635 175.126 14.700 495.
.0 20674.6 29.8 20704.3 175.851 35.491 VAPOR 35.491 PDC
.000
.000
.634
.634 175.086 14.700 500.
.0 20671.4 29.8 20701.2 175.810 35.468 VAPOR 35.468 FDC
.000
.000
.634
.634 I'5.046 14.700 505.
.0 20668.2 29.8 20698.0 173.770 35.445 VAPOR 35.445 PDC
.000
.000
.633
.633 175.006 14.700 510.
.0 20665.0 29.8 20694.8 175.729 35.422 VAPOR 35.422 FDC
.000
.000
.633
.633 174.966 14.700
$15.
.0 20661.E 29.8 20691.7 175.688 35.399 VAPOR 35.399 PDC
.000
.000
.632
.632 174.926 14.700 520.
.0 20658.6 29.9 20688.5 175.647 35.376 VAPOR 35.376 PDC
.000
.000
.632
.632 174.886 14.700 525.
.0 20655.5 29.9 20685.3 175.607 35.353 VAPOR 35.353 FDC
.000
.000
.632
.632 174.846 14.700 530.
.0 20652.3 29.9 20682.2 175.566 35.231 VAPOR 35.331 PDC
.000
.000
.631
.631 174.806 14.700 535.
.0 2064?.1 29.9 20679.0 175.525 35.308 VAPOR 35.308 FDC
.000
.000
.631
.631 114.766 14.'00 540.
.0 20646.0 29.9 20675.5 175.485 35.285 VAPOR 35.285 FDC
.000
.000
.630
.630 174.726 14.700 545.
.0 20642.8 29.9 20672.7 175.444 35.263 VAPOR 35.263 FDC
.000
.000
.630
.630 174.686 14.700 550.
.0 20639.6 30.0 20669.6 175.403 35.240 VAPOR 35.240 FDC
.000
.000
.629
.629 174.646 14.700 555.
.0 20636.5 30.0 20666.4 175.363 35.217 VAPOR 35.217 FDC
.000
.000
.629
.629 174.606 14.700 560.
.0 20633.3 30.0 20663.3 175.322 35.195 VAPOR 35 195 EDC
.000
.000
.628
.628 174.566 14.700 565.
.0 20630.1 30.0 20660.1 175.222 35.172 VAPOR 35 172 FDC
.000
.000
.628
.628 174.526 14.700 570.
.0 20627.0 30.0 20657.0 175.241 35.149 VAPOR 35.149 FDC
.000
.000
.627
.627 174.486 14.700 575.
.0 20623.8 30.0 20653.9 175.201 35.127 VAPOR 35.127 FDC
.000
.000
.627
.627 174.447 14.700 58C.
.0 20620.7 30.1 20650.7 175.160 35.104 VAPOR 35.104 FDC
.000
.000
.626
.626 174.407 14.700 585.
.0 20617.5 30.1 20647.6 175.120 35.082 VAPOR 35.082 FDC
.000
.000
.626
.626 174.367 14.700 590.
.0 20614.4 30.1 20644.5 175.079 35.059 VAPOR 35.059 PDC
.000
.000
.626
.626 174.327 14.700 595.
.0 20611.2 30.1 20641.3 175.039 35.037 VAPOR 35.037 PDC
.000
.000
.625
.625 174.288 14.700 600.
.0 20608.1 30.1 20638.2 174.998 35.014 VAPOR 35.014 PLC
.000
.000
.625
.625 174.248 14 700 605.
.0 20605.0 30.1 20635.1 174.958 34.992 VAPOR 34.992 FDC
.000
.000
.624
.624 174.208 14.700 610.
.0 20601.8 30.2 20632.0 174.918 34.970 VAPOR 34.970 PDC
.000
.000
.624
.624 174.169 14.700 615.
.0 20598.7 30.2 20628.9 174.877 34.947 VAPOR 34.947 FDC
.000
.000
.623
.623 174.129 14.700 620.
.0 20595.6 30.2 20625.7 174.837 34.925 VAPOR 34.925 PDC
.000
.000
.623
.623 174.089 14.700 625.
.0 20592.4 30.2 20622.6 174.797 34.903 VAFOR 34.903 FDC
.000
.000
.622
.622 174.050 14.700 630.
.0 20589.3 30.2 20619.5 174.756 34.880 VAPOR 34.880 PDC
.000
.000
.622
.622 174.010 14.700 635.
.0 20586.2 30.2 20616.4 174.716 34.858 VAPOR 34.858 PDC
.000
.000
.621
.621 173.971 14.700 640.
.0 20583.0 30.3 20613.3 174.676 3c.836 VAPOR 34.836 PDC
.000
.000
.621
.621 173.931 14.700 645.
.0 20579.9 30.3 20610.2 174.636 34.813 VAPOR 34.813 PDC
.000
.000
.621
.621 173.892 14.700 650.
.0 20576.8 30.3 20607.1 174.595 34.791 VAPOR 34.791 FDC
.000
.000
.620
.620 173.852 14.700 655.
.0 20573.7 30.3 20604.0 174.555 34.769 YAPOR 34.769 PDC
.000
.000
.620
.620 173.813 14.700 660.
.0 20570.6 30.3 20600.9 174.515 34.747 VAPOR 34.747 FDC
.000
.000
.619
.619 173.773 14.700 665.
.0 20567.5 30.3 20597.8 174.475 34.725 VAPOR 34.725 PDC
.000
.000
.619
.619 173.73g 14.700 670.
.0 20564.4 30.3 20594.7 174.435 34.703 VAPOR 34.703 PDC
.000
.000
.618
.618 173.694 14.700 675.
.0 20561.2 30.4 20591.6 174.395 34.681 VAPOR 34.681 PDC
.000
.000
.618
.618 173.655 14.700 600.
.0 20558.1 30.4 20588.5 174.355 34.658 VAPOR 34.658 FDC
.009
.000
.618
.618 173.616 14.700 685.
.0 20555.0 30.4 20585.4 174.315 34.636 VAPOR 34.636 FDC
.000
.000
.617
.617 173.576 14.700 690.
.0 20551.9 30.4 20582.3 174.275 34.614 VAPOR 34.t14 PDC
.000
.000
.617
.617 173.537 14.700 695.
.0 20548.8 30.4 20579.3 174.235 34.592 VAPOR 34.592 FDC
.000
.000
.616
.616 173.498 14.700 700.
.0 20545.7 30.4 20576.2 774.195 34.570 VAPOR 34.570 PDC
.000
.000
.616
.616 173.458 14.700 705.
.0 20542.6 30.5 20573.1 174.155 34.548 VAPOR 34.548 PDC
.000
.000
.615
.615 173.419 14.700 710.
.0 20539.6 30.5 20570.0 174.115 34.526 VAPOG 34.526 FDC
.000
.000
.615
.615 173.380 14.700 715.
.0 20536.5 30.5 20566.9 174.075 34.504 VAPOR 34.504 PDC
.000
.000
- 514
.614 173.341 14.700 720.
.0 20533.4 30.5 20563.9 174.035 34.483 VAPOR 34.483 PDC
.000
.00C
.614
.614 173.301 14.700 725.
.0 20530.3 30.5 20560.8 173.995 34.461 VAPOR 34.461 FDC
.000
.000
.614
.614 173.262 14.700 730.
.0 20527.2 30.5 20557.7 173.955 34.439 VAPOR 34.g39 PDC
.000
.000
.613
.613 173.223 14.700 735.
.0 20524.1 30.5 20554.7 173.915 34.417 VAPOR 34.417 FDC
.000
.000
.613
.613 173.184 14.700 740.
.0 29521.0 30.6 20551.6 173.875 34.395 VAPOR 34.395 PDC
.000
.000
.612
.612 173.145 14.700 745.
.0 20518.0 30.6 20546.5 173.836 34.373 VAPOR 34.373 PDC
.000
.000
.612
.612 173.106 14.700 Page: 3
i l
750.
.0 20514.9 30.6 20545.5 173.796 34.352 VAPOR 34.352 PDC
.000
.000
.611
.611 173.066 16.700 755.
.0 20511.8 30.6 20542.4 173.756 34.330 VArca 34.330 PDC
.000
.000
.611
.611 173.027 14.700 760.
.0 20508.8 30.6 20539.4 173.716 34.308 VAPOR 34.308 roc
.000
.000
.610
.610 172.988 14.700 765.
.0 20505.7 30.6 20536.3 173.677 34.286 VAPOR 34.286 FDC
.000
.000
.610
.610 172.949 14.700 770.
.0 20502.6 30.7 20533.3 173.637 34.265 VAPOR 34.265 PDC
.000
.000
.610
.610 172.910 14.700 775.
.0 20499.6 30.7 20530.2 173.597 34.243 VAPC7 34.243 PDC
.000
.000
.609
.609 172.87~.
14.700 780.
.0 20496.5 30.7 20527.2 173.558 34.221 VAPOR 34.221 FDC
.000
.000
.609
.609 172.832 14.700 785.
.0 20493.4 30.7 20524.1 173.518 34.200 VAPOR 34.200 FDC
.000
.000
.608
.608 172.7?3 14.700 790.
.0 20490.4 30.7 20521.1 173.478 34.173 VAPOR 34.178 PDC
.000
.000
. 608
.6CB 172.754 14.700 795.
.0 20487.3 30.7 10518.1 173.439 34.157 VAPOR 34.157 FDC
.000
.000
.607
.607 172.716 14.700 800.
.0 20484.3 30.7 20515.0 173.399 34.135 VAPOR 34.135 FDC
.000
.000
.607
.607 172.677 14.700 805.
.0 20481.2 30.8 20512.0 173.3E0 34.113 VAPOR 34.113 FDC
.000
.000
.606
.606 172.638 14.700 810.
.0 20478.2 30.8 20509.0 173.320 34.092 VAPOR 34.092 FDC
.000
.000
.606
.606 172.599 14.700 815.
.0 20475.1 30.8 20505.9 173.281 34.070 VAPOR 34.070 FDC
.000
.000
.606
.606 172.560 IC.700 820.
.0 20472.1 30.8 20502.9 173.241 34.049 VAPOR 34.049 FDC
.000
.000
.605
.605 172.521 14.700 825.
.0 20469.1 30.8 20499.9 173.202 34.028 VAPOR 34.028 FDC
.000
.000
.605
.605 172.483 14.700 830.
.0 20466.0 30.9 20496.8 173.162 34.006 VAPOR 34.006 FDC
.000
.000
.604
.604 172.444 14.700 835.
.0 20463.0 30.8 20493.8 173.123 33.985 VAFOR 33.985 FDC
.000
.000
.604
.604 172.405 14.7DO 840.
.0 20!60.0 30.9 20490.8 173.003 33.963 VAPOR 33.963 FDC
.000
.000
.603
.673 172.366 14.700 845.
.0 20456.9 30.9 20487.8 173.044 33.942 VAPCR 33.942 FDC
.000
.000
.603
.603 172.328 14.700 850.
.0 20453.9 30.9 20484.8 173.005 33.921 VAPOR 33.921 FDC
.000
.000
.603
.603 172.289 14.700 855.
.0 20450.9 30.9 20481.8 172.965 33.899 VA?CR 33.899 FDC
.000
.000
.602
.602 172.250 14.700 860.
.0 20447.8 30.9 20478.7 172.926 33.878 VAPOR 33.878 FDC
.000
.000
.602
.602 172.212 14.700 865.
.0 20444.8 30.9 20475.7 172.887 33.857 VAPOR 33.857 FDC
.000
.000
.601
.601 172.173 14.700 870.
.0 20441.8 30.9 20472.7 172.847 33.835 VAPOR 33.835 FDC
.000
.000
.601
.601 172.134 14.700 875.
.0 20438.8 30.9 20469.7 172.808 33.814 VAPOR 33.814 FDC
.000
.000
.601
.e01 172.096 14.700 880.
.0 20435.8 31.0 20466.7 172.769 33.793 VAPOR 33.793 FDC
.000
.000
.600
.600 172.357 1s.7 00 885.
.0 20432.7 31.0 20463.7 172.730 33.77' VAPOR 33.772 FDC
.000
.000
.600
.600 172.019 14.700 890.
.0 20429.7 31.0 20460.7 172.690 33.751 VAPOR 33 151 FDC
.000
.000
.600
.600 171.980 14.700 895.
.0 20426.7 31.0 20457.7 172.651 33.729 VAPOR 33.729 FDC
.000
.000
.59?
.5?9 171.941 14.700 900.
.0 20423.7 31.0 20454.7 172.612 33.708 VAPOR 33.708 FDC
.000
.000
.5?9
.599 171.903 14.700 905.
.0 20420.7 31.0 20451.7 172.573 33.687 VAPOR 33.687 FDC
.000
.000
.598
.598 171.864 14.700 910.
.0 20417.7 31.0 20448.7 172.534 33.666 VAPOR 33.666 FDC
.000
.000
.5?8
.598 171.826 14.700 915.
.0 20414.7 31.1 20445.8 172.494 33.645 VAPOR 33.645 FDC
.000
.000 5!7
.597 171.788 14.700
- 4
.0 20411.1 31.1 20442.8 172.455 33.624 VAPOR 33.624 PDC
.000
.000
.597
.597 171.749 14.70r 92'
.0 20408.7 31.1 20439.0 172.416 33.603 VAPOR 33.603 FDC
.000
.000
.591
.597 171.711 14.700 93,
.0 20405.7 31.1 20436.8 172.377 33.582 VAPOR 33.582 FDC
.000
.000
.596
.596 171.672 14.700 935.
.0 20402.7 31.1 20433.8 172.338 33.561 VAPOP 33.561 FDC
.000
.000
.595
.595 171.634 14.700 940.
.0 20399.7 31.1 20430.8 172.299 33.540 VAPOR 33.540 FDC
.000
.000
.595
.595 171.596 14.700 945.
.0 20396.7 31.1 20427.9 172.260 33.519 VAPOR 33.519 FDC
.000
.000
.595
.595 171.557 14.700 950.
.0 20393.7 31.1 20424.9 172.221 33.498 VAPOR 33.498 FDC
.000
.000
.594
.594 171.519 14.700 955.
.0 20390.8 31.2 20421.9 172.182 33.477 VAPOR 33.477 FDC
.000
.000
.594
.594 171.481 14.700 960.
.0 20387.8 31.2 20419.0 172.143 33.456 VAPOR 33.456 FDC
.000
.000
.533
.593 171.442 14.700 965.
.0 20394.0 31.2 20416.0 172.104 33.435 VAPOR 33.435 PDC
.000
.000
.593
.593 171.404 14.700 970.
.0 20381.8 31.2 20413.0 172.066 33.415 VAPOR 33.415 FDC
.000
.000
.592
.592 171.366 14.700 1
975.
.0 20378.9 31.2 20410.1 172.027 33.394 VAPOR 33.394 FDC
.000
.000
.592
.592 171.328 14.700 l
980.
.0 20375.9 31.2 20407.1 171.988 33.373 VAPOR 33.373 PDC
.000
.000
.592
.5?2 171.290 14.700 i
935.
.0 20372.9 31.2 20404.1 171.949 33.352 VAPOR 33.352 FDC
.000
.000
.591
.591 171.251 14.7De 990.
.0 20369.9 31.3 20401.2 171.910 33.332 VAPOP 33.332 FDC
.000
.000
.591
.591 171.213 14.700 995.
.0 20367.0 31.3 20398.2 171.871 33.311 VAPOR 33.311 FDC
.000
.000
.590
.590 171.175 14.700 1000.
.0 20364.0 31.3 20395.3 171.833 33.290 VAPOR 33.290 FDC
.000
.000
.590
.590 171.137 14.700 1005.
.0 20361.0 31.3 20392.3 171.794 33.269 VAPOR 33.269 FDC
.000
.000
.589
.589 171.099 14.700
--.mme.
e---
1010.
.0 20358.1-31.3 20389.4 171.755 33.249 VAFOR 33.249 FDC
.000
.000
.589
.589 171.061 14.700 1015.
.0 20355.1 31.3 20386.4 171.717 33.228 VAFOR 33.228 FDC
.000
.000
.589
.589 171.023 14.700 1020.
.0 20352.2 31.3 20303.5 171.678 33.207 VTFOR 33.207 FDC
.000
.000
.588
.588 170.985 14.700 1025.
.0 20349.2 31.3 20380.6 171.639 33.187 VAPOR 33.187 FDC
.000
.000
.588
.588 170.947 14.700 1030.
.0 20346.3 31.4 20377.6 171.601 33.166 VAPOR 33.166 FDC
.000
.C00
.587
.387 170.909 14.700 1035.
.0 20343.3 31.4 20374.7 171.562 33.146 VAPOR 33.146 FDC
.000
.000
.587
.587 170.871 14.700 1940.
.0 20340.4 31.4 20371.8 171.523 33.125 VAPOR 33.125 FDC
.000
.000
.587
.587 170.833 14.700 1045.
.0 20337.4 31.4 20368.8 171.485 33.105 VAFOR 33.105 FDC
.000
.000
.586
.586 170.795 18.700 1050.
.0 20334.5 31.4 20365.9 171.446 33.084 VAPOR 33.084 FDC
.000
.00?
.586
.586 170.757 14.700 1055.
.0 20331.5 31.4 20363.0 171.408 33.064 VAPOR 33.064 FDC
.000
.000
.585
.585 170.719 14.700 1060.
.0 20328.6 31.4 20360.0 171.369 33.043 VAIVR 33.043 FDC
.000
.000
.585
.585 170.681 14.700 1065.
.0 20325.7 31.4 20357.1 171.331 33.023 VAFOR 33.023 FDC
.000
.000
.585
.585 170.644 14.700 1Gio.
.0 20322.7 31.4 20354.2 171.292 33.002 VAIVR 33.002
- DC
.000
.000
.584
.584 170.606 14.700 1075.
.0 20319.8 31.5 20351.3 171.254 32.982 VAFOR 32.982 FDC
.000
.000
.584
.584 170.568 14.700 1000.
9 20316.9 31.5 20348.3 171.215 32.96i VAFOR 32.961 FDC
.000
.000
.583
.583 170.530 14.700 1085.
.0 20313.9 31.5 20345.4 172.177 32.941 VAPOR 32.941 FDC
.000
.000
.583
.583 110.492 14.700 1090.
.0 20311.0 31.5 20342.5 171.138 32.921 VAPOR 32.921 FDC
.000
.000
.583
.583 170.455 14.700 1095.
.0 20308.1 31.5 20339.6 171.100 32.900 VAPOR 32.900 FDC
.000
.000
.582
.582 170.417 14.700 1100.
.0 20305.2 31.5 20336.7 171.062 32.880 VAPOR 32.880 FDC
.000
.000
.582
.582 170.379 14.700 1105.
.0 20302.3 31.5 20333.8 171.023 32.860 VAPOR 32.860 FDC
.000
.000
.581
.581 170.341 24.700 1110.
.0 20299.3 31.5 20330.9 170.985 32.840 VAPOR 32.840 FDC
.000
.000
.581
.581 170.304 14.700 1115.
.0 20296.4 31.6 20328.0 170.947 32.819 VAFOR 32.819 FDC
.000
.000
.581
.581 170.266 14.700 1120.
.0 20293.5 31.6 20325.1 170.908 32.799 VAFOR 32.799 FDC
.000
.000
.580
.580 170.228 14.700 1125.
.0 20290.6 31.6 20322.2 170.870 32.779 VAIVR 32.779 FDC
.000
.000
.580
.580 170.191 14.700 2
1130.
.0 20287.7 31.6 20319.3 170.832 32.759 VAFOR 32.759 FDC
.000
.000
.579
.579 170.153 84.700 1135.
.0 20284.8 31.6 20316.4 170.793 32.738 VAPOR 32.738 FDC
.000
.000
.579
.579 170.116 13.700 1140.
.0 20281.9 31.6 20313.5 170.755 32.718 VAPOR 32.718 FDC
.000
.000
.579
.579 170.078 14.'00 1145.
.0 20279.0 31.6 20310.6 170.717 32.698 VAPOR 32.698 FDC
.000
.000
.578
.578 170.080 14.703 1153.
.0 20276.1 31.6 20307.7 170.679 32.678 VAPOR 32.678 FDC
.000
.000
.578
.573 170.003 1*.700 1155.
.0 20273.2 31.6 20304.8 170.641 32.658 VAPOR 32.658 FDC
.000
.000
.577
.577 169.365 14.700 1160.
.0 20270.3 31.7 20301.9 170.603 32.638 VAPOR 32.638 PDC
.MO
.000
.577
.577 169.528 14.700 1165.
.0 20267.4 31.7 20299.0 170.564 32.618 VAPOR 32.618 FDC
.000
.000
.576
.376 '69.890 14.700 1170.
.0 20264.5 31.' 20296.1 170.526 32.598 VAFOR 32.598 FDC
.000
.000
.576
.576 169.853 14.700 1175.
.0 20261.6 31.7 20293.3 170.488 32.578 VAFOR 32.578 FDC
.000
.000
.576
.576 169.816 14.700 1180.
.0 20258.7 31.7 20290.4 170.450 32.558 VAPOR 32.558 FDC
.000
.000
.575
.575 169.778 14.700 1185.
.0 20255.8 31.7 20287.5 170.412 32.538 VAMR 32.53F FDC
.000
.000
.575
.575 169.741 14.700 1190.
.0 20252.9 31.7 20284.6 170.374 32.518 VAPOR 32.518 FDC
.000
.000
.574
.574 169.703 14.700 1195.
.0 20250.0 31.7 2c281.8 170.336 32.498 VAFO9 32.498 PDC
.000
.000
.574
.574 169.666 14.700 1200.
.0 20247.2 31.7 20278.9 170.298 32.478 VAFOR 32.478 FDC
.000
.000
.573
.573'169.629 14.700 1205.
.0 20244.3 31.0 20276.0 170.260 32.458 VAPOR 32.456 F"C
.000
.000
.573
.573 169.591 14.700 1210.
.0 20241.4 31.8 20273.2 170.222 32.438 VAPOR
- 32. 08 FDC
.000
.000
.572
.572 169.554 14.700 1215.
.0 20238.5 31.8 20270.3 170.184 32.418 VAFOR 3.2.418 FDC
.000
.000
.572
.572 169.517 14.700 1220.
.0 20235.7 31.8 20267.4 170.146 32.399 VAPOR 32.399 FDC
.000
.000
.572
.572 169.480 14.700 1225.
.0 20232.8 31.8 20264.6 170.109 32.379 VAPOR 32.379 FDC
.000
.000
.571
.571 169.442 14.700 1230.
.0 20229.9 31.8 20261.7 170.071 32.259 VAPOR 32.359 FDC
.000
.000
.571
.571 169.405 14.700 1235.
.0 20227.1 31.8 20258.9 170.033 32.339 VAPOR 32.339 FDC
.000
.000
.570
.570 169.368 14.700 1240.
.0 20224.2 31.8 20256.0 169.995 32.320 VAPOR 32.320 FDC
.000
.000
.570
.570 169.331 14.700 1245.
.C 20221.3 31.8 20253.2 169.957 32.300 VAPOR 32.300 FDC
.000
.000
.570
.570 169.294 14.700 1250.
.0 20218.5 31.9 20250.3 169.920 32.280 VAPOR 32.280 FDC
.000
.000
.569
.569 169.257 14.700 1255.
.0 20215.6 31.9 20247.5 169.862 32.260 VAPOR 32.260 FDC
.000
.000
.569
.569 169.219 14.700 1260.
.0 20212.9 31.9 20244.6 169.844 32.241 VAPOR 32.241 FDC
.000
.000
.568
.568 169.182 14.700 1265.
.0 20209.9 31.9 20241.8 169.806 32.221 VAPOR 32.221 FDC
.000
.000
.568
.568 169.145 14.700
~
Fage: 5
1270.
.0 20207.1 31.9 J0.39.0 169.769 32.202 VAPOp 32.202 pdc
.000
.00)
.568 568 169.108 14.700 1275.
.0 20204.2 31.9 20236.1 169.731 32.182 VAPOR 32.182 FDC
.000
.000
.567
.567 169.071 14.700 1280.
.0 20201.4 31.9 20233.3 169.693 32.162 VAPOR 32.162 FDC
.000
.000
.567
.567 169.034 14.700 1285.
.0 20198.5 31.9 20230.4 169.656 32.143 VAPOR 32.143 FDC
.000
.000
.566
.566 168.997 14.700 1290.
.0 20195.7 31.9 20227.6 169.618 32.123 VAPOR 32.123 PDC
.000
.000
.566
.566 168.960 14.700 1295.
.0 20192.8 31.9 20224.0 169.581 32.104 VAPOR 32.104 FDC
.000
.000
.566
.566 168.923 14.700 1300.
.0 20190.0 32.0 20222.0 169.543 32.084 VAPOR 32.084 FDC
.000
.000
.565
.565 168.886 14.700 1305.
.0 20187.2 32.0 20219.1 169.505 32.065 VAPDR 32.065 FDC
.000
.000
.565
.565 168.849 14.700 1310.
.0 20184.3 32.0 20216.3 169.468 32.045 VAPOR 32.045 PDC
.000
.000
.564
.564 168.813 14.700 1315.
.0 20181.5 32.0 20213.5 169.430 32.026 VAPOR 32.026 PDC
.000
.000
.564
.564 168.776 14.700 1320.
.0 20178.7 32.0 20210.7 169.393 32.006 VAPOR 32.006 FDC
.000
.000
.564
.564 168.739 14.700 1325.
.0 20175.8 32.0 20207.8 169.355 31.987 VAPOR 31.987 FDC
.000
.000
.563
.563 168.702 14.700 1330.
.0 20173.0 32.0 20205.0 169.318 31.967 VAPOR 31.967 FDC
.000
.000
.563
.563 168.665 14.700 1335.
.0 20170.2 32.0 20202.2 169.281 31.948 VAPOR 31.948 FDC
.000
.000
.563
.563 168.628 14.700 1340.
.0 20167.4 32.0 20199.4 169.243 31.929 VAPOR 31.929 FDC
.000
.000
.562
.562 168.592 14.700 1345.
.0 20164.5 32.1 20196.6 169.206 31.909 VAPOR 31.909 FDC
.000
.000
.562
.562 168.555 14.700 1350.
.0 20161.7 32.1 20193.8 169.168 31.890 VAPOR 31.890 FDC
.000
.000
.561
.561 168.518 14.700 1355.
.0 20158.9 32.1 20191.0 169.131 31.871 VAPOR 31.871 PDC
.000
.000
.561
.561 168.481 14.700 1360.
.0 20156.1 32.1 20188.2 169.094 31.851 VAPOR 31.851 FDC
.000
.000
.561
.561 168.445 14.700 1365.
.0 20153.3 32.1 20185.4 169.056 31.832 VAPOR 31.832 FDC
.000
.000
.560
.560 168.408 14.700 1370.
.0 20150.5 32.1 20182.6 169.019 31.813 VAPOR 31.813 FDC
.000
.000
.560
.560 168.371 14.700 1375.
.0 20147.7 32.1 20179.8 168.982 31.194 VAPOR 31.794 FDC
.000
.000
.560
.560 168.334 14.700 1380.
.0 20144.8 32.1 20177.0 168.944 31.774 VAPOR 31.774 FDC
.000
.000
.559
.559 168.298 14.700 1385.
.0 20142.0 32.1 20174.2 168.907 31.755 VAPOR 31.755 FDC
.000
.000
.559
.559 168.261 14.700 1390.
.0 20139.2 32.1 20171.4 16P.870 31.736 VAPOR 31.736 FDC
.000
.000
.558
.558 168.225 14.700 1395.
.0 20136.4 32.1 20168.6 168.833 31.717 VAPOR 31.717 PDC
.000
.000
.558
.558 168.188 14.700 1400
.0 20133.6 32.2 20165.0 168.795 31.698 VAPOR 31.698 FDC
.000
.000
.558
.558 168.151 14.700 1405.
.0 20130.8 32.2 20163.0 168.758 31.679 VAPOR 31.679 FDC
.000
.000
.557
.557 168.115 14.700 1410.
.0 20128.0 32.2 20160.2 168.721 31.660 VAPOR 31.660 FDC
.000
.000
.557
.557 168.078 14.700 1415.
.0 20125.3 32.2 20157.4 168.684 31.640 VAPOR 31.640 FDC
.000
.000
.556
.556 168.042 14.700 1420.
.0 20122.5 32.2 20154.7 168.647 31.621 VAPOR 31.621 FDC
.000
.000
.556
.556 168.005 14.700 1425.
.0 20119.7 32.2 20151.9 168.610 31.602 VAPOR 31.602 FDC
.000
.000
.556
.356 167.969 14.700 1430.
.0 20116.9 32.2 20149.1 168.573 31.583 VAPOR 31.583 PDC
.000
.000
.555
.555 167.932 14.700 1435.
.0 20114.1 32.2 20146.3 168.536 31.564 VAPOR 31.564 FDC
.000
.000
.555
.555 167.896 14.700 1440.
.0 20111.3 32.2 20143.5 168.499 31.545 VAPOR 31.545 FDC
.000
.000
.554
.554 167.859 14.700 1445.
.0 20108.5 32.2 20140.8 168.461 31.526 VAPOR 31.526 FDC
.000
.000
.554
.554 167.823 14.700 1450.
.0 20105.8 32.3 20138.0 168.424 31.507 VAPOR 31.507 FDC
.000
.000
.554
.554 167.787 14.700 1455.
.0 20103.0 32.3 20135.2 168.388 31.489 VAPOR 31.489 PDC
.000
.000
.553
.553 167.750 14.700 1460.
.0 20100.2 32.3 20132.5 168.351 31.470 VAPOP 31.470 FDC
.000
.000
.553
.553-167.714 14.700 1465.
.0 20097.4 32.3 20129.7 168.314 31.451 VAPOR 31.451 PDC
.000
.000
.552
.552 167.678 14.700 1470.
.0 20094.7 32.3 20126.9 168.277 31.432 VAPOR 31.432 FDC
.000
.000
.552
.552 167.641 14.700 1475.
.0 20091.9 32.3 20124.2 168.240 31.413 VAPOR 31.413 FDC
.000
.000
.551
.551 167.605 14.700 1480.
.0 20089.1 32.3 20121.4 168.203 31.394 VAPOR 31.394 PDC
.000
.000
.551
.551 167.569 14.700 1485.
.0 20086.4 32.3 20118.7 168.166 31.375 VAPOR 31.375 FDC
.000
.000
.551
.551 167.533 14.700 1490.
.0 20083.6 32.3 20115.9 168.129 31.357 VAPOR 31.357 PDC
.000
.000
.550
.550 167.496 14.700 1495.
.0 20080.8 32.3 20113.2 168.092 31.338 VAPOR 31.338 PDC
.000
.000
.550
.550 167.460 14.700 1500.
.0 20078.1 32.3 20110.4 168.056 31.319 VAPOR 31.319 PDC
.000
.000
.549
.549 167.424 14.700 1505.
.0 20075.3 32.3 20107.7 168.019 31.300 VAPOR 31.300 FDC
.000
.000
.549
.549 167.388 14.700 1510.
.0 20072.6 32.4 20104.9 167.982 31.282 VAPOR 31.282 FDC
.000
.000
.549
.549 167.352 14.700 1515.
.0 20069.8 32.4 20102.2 167.945 31.263 VAPOR 31.263 FDC
.000
.000
.548
.548 167.316 14.700 1520.
.0 20067.1 32.4 20099.4 167
' 31.244 VAPOR 31.244 FDC
.000
.000
.548
.548 167.280 14.700 1525.
.0 20064.3 32.4 20096.7 167 31.226 VAPOR 31.226 PDC
.000
.000
.547
.547 167.243 14.700
1530.
.0 20061.6 32.4 20094.0 167.835 31.207 VAPOR 31.207 FDC
.000
.000
.547
.547 167.207 14.700 1535.
.0 20058.8 32.4 20091.2 167.799 31.188 VAPOR 31.188 FDC
.000
.000
.547
.547 167.171 14.700 i'
1540.
.0 20056.1 32.4 20088.5 167.762 31.170 VAPOR 31.170 EDC
.000
.000
.546
.546 167.135 14.700 1545.
.0 20053.4 32.4 20085.8 167.725 31.151 VAPOR 31.151 FDC
.000
.000
.546
.546 167.099 14.700 1550.
.0 20050.6 32.4 20083.0 167.689 31.132 VAPOR 31.132 PDC
.000
.000
.545
.545 167.063 14.700 1555.
.0 20047.9 32.4 20080.3 167.652 31.114 VAPOR 31.114 PDC
.000
.000
.545
.545 167.027 14.700 i
1560.
.0 20045.1 32.4 20077.6 167.616 31.095 VAPOR 31.095 PDC
.003
.000
.545
.545 166.991 18.700 1
1565.
.0 20042.4 32.5 20074.9 167.579 31.077 VAPOR 31.077 FDC
.000
.000
.544
.544 166.956 14.700 1570.
.0 20039.7 32.5 20072.1 167.543 31.058 VAPOR 31.058 FDC
.000
.000
.544
.544 166.920 14.700 1575.
.0 20037.0 32.5 20069.4 167.506 31.040 VAPOR 31.040 PDC
.000
.000
.543
.543 166.884 14.700 i
1580.
.0 20034.2 32.5 20066.7 167.470 31.021 VAPOR 31.021 PDC
.000
.000
.543
.543 166.848 14.700 1585.
.0 20031.5 32.5 20064.0 167.433 31.003 VAPOR 31.003 PDC
.000
.000
.543
.543 166.812 14.700 4
1590.
.0 20020.8 32.5 20061.3 167.397 30.985 VAPOR 30.985 FDC
.000
.000
.542
.542 166.776 14.700 1595.
.0 20026.1 32.5 20058.6 167.360 30.966 VAPOR 30.966 FDC
.000
.000
.542
.542 166.740 14.700 1600.
0 20023.3 32.5 20055.9 167.324 30.948 VAPOR 30.948 PDC
.000
.000
.542
.542.166.705 14.700 1605.
.0 20020.6 32.5 20053.2 167.288 30.929 VAPCR 30.929 PDC
.000
.000
.541
.541 166.669 14.700 1610.
.0 20017.9 32.5 20050.4 167.251 30.911 VAPOR 30.911 FDC
.000
.000
.541
.541 166.633 14.700 1615.
.0 20015.2 32.5 20047.7 167.215 30.893 VAPOR 30.893 FDC
.000
.000
.541
.541 166.597 14.700 1620.
.0 20012.5 32.5 20045.0 167.170 30.874 VAPOR 30.874 FDC
.000
.000
.540
.540 166.562 14.700 1625.
.0 20009.8 32.5 20042.3 167.142 30.856 VAPOR 30.856 FDC
.000
.000
.540
.540 166.526 24.700 l
1630.
.0 20007.1 32.6 20039.6 167.106 30.838 VAPOR 30.838 FDC
.000
.000
.539
.539 166.490 14.700 4
1635.
.0 20004.4 3z.6 20036.9 167.070 30.820 VAPOR 30.820 PDC
.000
.000
.539
.539 ?66.455 14.700 l
1640.
.0 20001.7 32.6 20034.2 167.033 30.801 VAPOR 30.801 FDC
.000
.000
.539
.539 166.419 14.700 1645.
.0 19999.0 32.6 20031.6 166.997 3D.783 VAPOR 30.783 PDC
.000
.000
.538
.538 166.383 14.700 1650.
.0 19996.3 32.6 20028.9 166.961 30.765 VAPOR 30.765 FDC
.000
.000
.538
.538 166.348 14.700 i
1 1655.
.0 19993.6 32.6 20026.2 166.925 30.747 VAPOR 30.747 FDC
.000
.000
.538
.538 166.312 14.700 1660.
.0 19990.9 32.6 20023.5 166.888 30.728 VAPOR 30.728 PDC
.000
.000
.537
.537 166.276 14.700 1665.
.0 19988.2 32.6 20020.8 166.852 30.710 VAPOR 30.710 PDC
.000
.000
.537
.537 166.241 14.700 l
1670.
.0 19985.5 32.6 20018.1 166.816 30.692 VAPOR 30.692 PDC
.000
.000
.537
.537 166.205 14.700 t
1675.
.0 19982.8 32.6 20015.4 166.700 30.674 VAPOR 30.674 FDC
.000
.000
.536
.536 166.170 14.700 1650.
.0 19980.1 32.6 20012.7 166.744 30.656 VAPOR 30.656 FDC
.000
.000
.536
.536 166.134 14.700 j
1685.
.0 19977.4 32.6 20010.1 166.700 30.638 VAPOR 30.638 PDC
.000
.000
.535
.535 166.099 14.700 1690.
.0 19974.7 32.7 20007.4 166.672 30.623 VAPOR 30.620 PDC
.000
.000
.535
.535 166.063 14.700 1695.
.0 19972.1 32.7 20004.7 166.636 30.602 VAPOR 30.602 PDC
.000
.000
.535
.535 166.028 14.700 1700.
.0 19969.4 32.7 20002.0 166.600 30.584 VAPOR 30.584 FDC
.000
.000
.534
.534 165.992 14.700 4
1705.
.0 19966.7 32.7 19999.4 166.564 30.566 VAPOR 30.566 PDC
.000
.000
.534
.534 165.957 14.700 1710.
.0 19964.0 32.7 19996.7 166.528 30.548 VAPOR 30.548 PDC
.000
.000
.534
.534 165.922 14.700 1715.
.0 19961.3 32.7 19994.0 166.492 30.530 VAPOR 30.530 FDC
.000
.000
.533
.533 165.686 14.700 1720.
.0 19958.7 32.7 19991.4 166.456 30.512 VAPOR 30.512 PDC
.000
.000
.533
.533 165.851 14.700 1
1725.
.0 19956.0 32.7 19988.7 166.420 30.494 VAPOR 30.494 PDC
.000
.000
.532
.532 165.815 14.700 j
1730.
.0 19953.3' 32.7 19986.0 166.384 '30.476 VAPOR 30.476 FDC
.000
.000
.532
.532 165.780 14.70s 1735.
.0 19950.7 32.7 19983.4 166.348 30.458 VAPOR 30.450 PDC
.000
.000
.532
.532 165.745 14.700 l
1740.
.0 19948.0 32.7 19980.7 166.312 30.440 VAPOR 30.440 PDC
.000
.000
.531
.531 165.709 14.700 1
1745.
.0 19945.3 32.7 19978.1 166.276 30.422 VAPOR 30.422 PDC
.000
.000
.531
.531 165.674 14.700 1750.
.0 19942.7 32.7 19975.4 166.240 30.404 VAPOR 30.404 PDC
.000
.000
.531
.531 165.639 14.700 1755.
.0 19940.0 32.7 19972.8 166.204 30.386 VAPOR 30.386 FDC
.000
.000
.530
.530 165.604 14.700 1760.
.0 19937.4 32.8 19970.1 166.169 30.369 VAPOR 30.369 FDC
.000
.000
.530
.530 165.568 14.700 i-1765.
.0 19934.7 32.8 19967.5 166.133 30.351 VAPOR 30.351 FDC
.000
.000
.529
.529 165.537 14.700 l
1770.
.0 19932.0 32.8 19964.8 166.097 30.333 VAPOR 30.333 FDC
.000
.000
.529
.529 165.498 14.700 1775.
.0 I?929.4 32.8 19962.2 166.061 30.315 VAPOR 30.315 PDC
.000
.000
.529
.529 165.463 14.700 j
1780.
.0 19926.7 32.8 19959.5 166.026 30.297 VAPOR 30.297 PDC '
.000
.000
.528
.528 165.428 14.700 l
1785.
.0 19924.1 32.8 19956.9 165.990 30.280 VAPOR 30.280 PDC
.000
.000
.528
.528 165.393 14.700 i
Page: 7 i
l
i i
)
1790.
.0 19921.4 32.8 19954.2 165.954 30.262 VAPOR 30.262 PDC
.000
.000
.527
.327 165.358 14.700 1795.
.0 19918.8 32.8 19951.6 165.918 30.244 VAPOR 30.244 FDC
.000
.000
.527
.527 165.323 14.700 1000.
.0 19916.2 32.8 19949.0 165.883 30.227 VAPOR 30.227 PDC
.000
.00v
.527
.527 165.287 14.700 1
)
I t
i i
1 l
k I
t t
i l
l i
I i
i a
l 4
a i
Page: 8 e
9 9.
O l.
O co a..... a.i.... c i i.,,,,,
Source Terms for Paducah
~
Evaluation-Basis Seismic Event -
Prepared by
[OS Page of 9_3 I
O Date J* -9 C DAC M0848401 SAR-62 Checked by Rai Date 9-b-91 y
v-
Invent:ry in UF, Withdrawal Condenser Shify initial conditions
[Q T p
- 180 Temperature ('F)-
T * (Tp + 459.67) R Dsmall = 11 in Small condenser dianwier Dlarge
- 14 in Large condenser diameter L
- 12.5 A Condenser length Calculate the Density of Liquid Ur (all correlations are from NUREO!CR4360) s p s (250.6- 0,1241 T p-2.62010'd T p ),
2 p = 219.7732
- Density of UF, Liquid Calculate the volume of the condensers. use fonnula for pressure vessel with spherical heads 8'D small' L-2'd
- T)'D*
10 Vsmall '
3 4
- ll V5mai = 8,1703 A 8'
L [3 -
Diarge Vlarge " 1319939'A' V large "
Estimate the volume occupied ley UF Liquid. Shell & tube heat exchanger, with UF in the tubes.
6 6
Dtube :0.73 in t w.j = 0.05 in N small = 90 Lhody
- 10.5 A N arge = 150 l
/Dtube 2 twnji)2
.Ytube 8
'lbody Vtube = 41,81067'in' 4
Dsmall
-UVsmall * (Nsmall Vtube t Ysmall) - n-4-Lbody W small " 3 4'*44 'A' U small i UV small p Usmall = 751.28J45 'Ib UV rg, (N arge*Vtube t Vlarge) - 8'
'l 3
i l
body UV gug, = 5.60433 'A Ularge UV l,ge p Ularge = 1231.68261 *lb
- II. o.4 34 I"8'.0,4243g Vsmall Vlarge l
l
'.A
[U
V~por/ Solid Split for Flashing Liq';ld UF,(Ccrre:atio2 from NUREG/CR4360)
~
Equation 40, page 18, NUPJG 4360 gives a single equation for the mass fraction of a saturated liquid source release that flashes to vapo upon release to the atmosphere. The temperature is expressed in 'R.
2 VapFrac(T).0.244302 - 8.s1871+10 T 8.5706210 '.T _1.0253610 d
2 T
t 134. 250 Temperature, 'F T -(t - 4)9.67)
Temperature, 'R i
0" i
i i
i i
i i
i i
i i
06 0.ss I
os i>
ons on 0 35,,y
[,v
,',v
,',y l,y
[,y
,',y
),
j,,
[u ju ju 50 g
Temtem a.*r VapFrac/ Tao' = 49.101 '%
Vapor Fraction for 180'F Saturated Liquid VapFrac'T o' = 62 4742'%
Vapor Fraction for 240*F Saturated Liquid p
9
O
]
Circuit Balance Calculations Source Terms for Paducah Pagel off.63 Evaluation Basis Seismic Event Prepared by
/0I O.
Date
- 8 ** P '
DAC M0848401 SAR 62 Checked by Chi Date 9-58-M gj
~
O O
~O Simplified Circuit Balance Calculation XB" XA PB +1 age N P
,A N
N TB +1 N
TA W B +1 XAB N
}
N N
WA 3 3 3 3 3 3 3 4 3 3 $ $
]
N PAB N
TAB
- - - --!- '- -l 4 i 4 i- -:- - - - -
i N
N/
i i i i i i i i i i i i WAB
.i.!.!
- i.i.i.!.;.i i
N
=t r
=
=
=
gg RB N
4 PB.
u VBES N
TB N
PRA WB" i
N VAS t
V7__g N
/l i
XAN-1 A,$
y 4,
TAN-1 WA 3 y
i i
I
Simplified UF, Stg] Circuit Balance - far UF / Air Mixttires 6
Specify initial conditions f
X A0 0
~
O]
Molar Concentration of UF in the A feed str"m to stars 1 6
XB2 : 1 Molar Co.rcentration of' / in the B feed strean.c tage I 6
X B3 0.5932 Molar Concentration of UF in the B feed stream io stage 2 6
PA0 = 14.2 psi Pressure of the A-stream feeding stage 1 open to atmosphere 3
ft Specify Stage Operation Constants efm : Ig Q Ao : 88000 cfm Compressor A Barrel Volumetric Flow at A Inlet Conditions Pr A0 : f.0492 Pressure ratio across the A Barrel with pure UF6 7FA ': 200 A-Stream Temperature ('F)
TA * (TFA - 459.67) R QBAO : 39000 cfm Combined A & B Barrel Volumetric Flow at B Inlet Conditions Pr B0 : 1.13 Pressure Ratio across the B Barrel with pure UF6 TFB = 290 B Stream Temperature ('F)
TB (Tpg + 459.67) R TFatm 120 Temperature ofingested air Tatm*(TFatm + 459.67) R Basic Physical Constantst MW Air 28.96 Molecular weight of Air MW UF6 : 352.02 Molecular weight of normal assay UF.
3 R
a i - 489230-Non-ideality parameter used to calculate the UF compressibility factor, Z n
6 3
y,y p3j.fg fMWUF6 Stage separation factor
" it. al 10.73 0.75 I M W ea as stant a
Tb mole R A*r of Air from UF t
s 6
Define Necessary and Useful Functions P\\
l+ai-[.
PMW UF6 Density of UF at T and P.
6 n
P UF6(T, P)
Non-ideality correlation for UFe from NUREG/CR-4360 PMWAir p Air (T.P)
Density of Air at T & P, from the ideal gas law T
XMWUF6 * (I - X)*MW Air MWr( X)
Molecular weight ratio of UF Air mixture to pure UF6 6
O A0 MWr(X)
Compressor A Suction as a function of Concentration A
3
'Pr A0 - 3) MWr(X)I Pressure ratio across the compressor A barrel as a function of X Pr A(X) l QgA(X)
QBAO MWr(X)
Compressor B Equivalent Suction as a function of Concentration 3
Pr B(X) 1 (Pr B0 - 3) MWr(X)
Pressure ratio across a compressor B Barrel as a function of X Pr A0 Pr B0 - 1 3
l.,}
Csys Csys = 2.85*10-6 g System Resistance Line Constant O 0 ',; M% UF6
(./
A testbal.med Page1 RWS@GDPSAR 8/8/96
C:le lan tl e Density cnd Flow 12 the Stage 1 A 1:let Stream Pr Al' Pf A(XAO)
P' A1 = 1.0955 Pressure ratio across the A barrel of the stage I compressor TA0 ; Tatm TA0 = 579.67 *R Temperature in stream A0 lb Density of UF at A inlet T P, and X pUA0
- P UF6(T n, P n*XAO)
PUA0 = 0 6
A A
(note P'X = UF6 Partial pressure in mix)
Ib Density of Air at A Inlet T, P, and X pAA0 P Air [ TAO.PA0'(I - X, A0,PAA0 = 0.0661 *p (note P'(1 X) = Air partial pressure in mix)
Q A0 Q A(XAD)
Q A0 = 7239.5887'cfm A inlet Volume Flow Rate Ib WAir A0 9 0'PAA0 W^lf A0 = 7.9775 *-
Mass flow rate of Air in the A inlet stream A
lb WUF6Ao : Q A0'PUA0 WUF6A0 = 0 +7c Mass flow rate of UF in the A-inlet stream 6
Calculate the Density and Flow in the Stage 1 B-Inlet Stream XBAl : 0.702219 Estimated Concentration of UF in the combined A&B 6
Pr B1 : Pr B(XBAl)
Pr Bl = 1.0805 Pressure ratio across the B barrel of the stage I compressor TB2 : T3 TB2 = 749.67 +R Temperature in stream B2 PB2 : PA0 Pr Al PB2 = 15.5568 ' psi Pressure in stream B2 lb Density of UF at B-inlet T P, and X PUB 2 ' P UF6(TB2,PB2 XB2)
PUB 2 = 0.6931
- 6 p,
Ib Density of Air at B-Inlet T. P, and X pAB2 : P Air [TB2,PB2'(1 - X B2[AB2 = 0 *p (note P'(1 X) = Air partial pressure in mix)
Ib Density of UF at B-inlet T P, and A inlet X pUBAO P UF6(TB2,PB2 XAO) PUBAO=0 6
2 (note P'X = UF partial pressure in mix) 6 lb Density of Air at A Inlet T, P, and A inlet X pABA0 P Air [TB2,PB2*(1-XAO),PABAO = 0.056 ap (note P'(1-X) = Air partial pressure in mix)
WUF6 A0 WAirAo QBAO PI BA0 PABA0 9 BAO = 8546.1846 'cfm Stream A0 flow at B-barrel conditions
+
Q B2 OBA(X BA1)-OBAO QB2 = 19795.773 acfm Volun,e flow rate of B stream only Ib WAir B2 Q B2'PA B2 W^lf B2 = 0 +-
Mass flow rate of Air in the B-inlet stream Ib WUF6B2 9 B2' PUB 2 WUF6B2
- 228.6721 *g Mass flow rate of UF in the B-inlet stream 6
e l
1 testbal.med Page 2 RWS@GDPSAR 8/8/96 l
Ccle: lab the Density c d How la the Stage 1 Ccapressor Discharge Stream P gij z PB2 Pr B1 PABl = 16.8096
- psi Compressor Discharge Pressure in Stage I A
WAir ABI r WAir A0 + W^if B2 WAir ABI " 7 9775
- Mass flow rate of alt in the stage I compressor discharge ABI = 228.6721
- Ib WUF6ABI : WUF6A0 + VW6B2 WUF6 Mass flow rate of UF in the stage I compressor discharge 6
Ib WABI ' W^lf ABI + WUF6ABl W
~
ABI = 236.5496 *g Total mass flow re.te in the stage I compressor discharge WUF6ABl X ggj =
XABI = 0.702219 Molar concentration of UFe in the stage I comp. discharge WUF6 ABI+WAIfABl*(ywgg,)
Calculate the concentrations and flows la the sta :e 1 converter discharge / stage 2 compressor section A stream XABI
_XAl XA1 = 0.5932 Molar concentration of UF in the stage 1 A stream 6
x ABi + (i - xai) +-
Pr A2 : Pr A(XAg)
Pr A2 = 3.0088 Pressare Ratio across the stage 2 compressor A barrel QAl QA(XA1)
QA1 = 55148.1182 *cfm Flow across stage 1 barrier, from compressor curve MW Ag:MWUF6*XAl + MWAir'(I - XA1)
Average molecular weight of stage 1 A discharge stream Pr AB)
- 1 + Csys-Q A3 - lMWAg Pr ABI = 3.3345 Pressure ratio across stage I barrier needed to get Q4:
OP PABI P A1 = 5.0412
- psi Pressure in stage 1 converter A discharge Al : Pr ABI A1 = 0.1495
- lb PUAl
- P UF6(TA> pal'XAl)
PU Density of UF in the stage 1 A discharge stream 6
Ib pA Al - P Airj TA,PAj-(1 - XAl)PAAl = 0.0084 aq Density of Air in the stage I A discharge stream ft WAir Al = 7,7116
- Ib Mass flow rate of air out stage 1 A stream
-- WAir A j QA3pAAt lb WUF6Al OAl pUAl WUF6A1 = 137.3964 *g Mass flow rate of UF out stage i A stream 6
Calculate the concentrations and flows in the stage I converter discharge B stream Ib WUF6 B1 WUF6ABI - WUF6Al WUF6B1 = 91.2757 *-
Mass flow rate of UF out stage 1 B stream 6
I WAir B1. WAir ABl - WAIF Al WAIF BI = 0.2659+ bMass flow rate of air out stage i B stream WUF6B1 XBI
/MW UF6\\
WUF6B1, WAirBl' MWAir f.
PABI P
Bl ' Pr B(XBI)
I testbal.med -
Page 3 RWS@GDPSAR 8/8/96 l
Calculate Stage 2 Pr A2 = 3.0088 pal + 5.0412
- psi Q A1 = $5148.1182 *cfm XAg = 0.5932 Calculate the Density and Flow in the Stage 2 B-Inlet Stream XBA2 = 0.5932 Estimated Concentration of UF in the combined A&B 6
Pr B2
- PT B(XBA2)
Pr B2 = 1.0645 Pressure ratio across the B barrel of the stage 2 compressor T33 m TB TB3 = 749.67 'R Temperature in stream B3 Pg3 pal Pr A2 PB3 = 15.168. psi Pressure in stream B3 lb Density of UF at B-inlet T P, and X PUB 3 PUF6(TB3,PB3 X33)
PUB 3 = 0.3979' 6
p Ib Density of Air at B-Inlet T. P, and X pAB3 : P Air [TB3' PB3'(I - XB3)P,AB3 = 0.0222 *p (note P'(1 X) = Air partial pressure in mix)
I Density of UF at B inlet T P, and A-inlet X PUBAl PUF6(TB3,PB3 XAg) pUBAl = 0.3979
- b 6
Ib Density of Air at A Inlet T. P, and A inlet X pABAl P Air [TB3,P g3-(1 - XAl),PABAl = 0.0222 *p (note P*(1 X) = Air partial pressure in mix)
WUF6A; WAirAl QBAl QBAl = 41548.5719'efm Stream Al flow at B-barrel conditions
+
pUBAl PABAl Q B3 QBA(XBA2) - QBA1 QB3 = -17108.5728 acfm Volume flow rate of B-stream only WAir B3 Q B3'PA B3 WAir B3 = -6.3343 *g Mass flow rate of Air in the B-inlet stream Ib WUF6 B3 Q B3' PUB 3 WUF6B3 = -113.45 'g Mass flow rate of UF in the B-inlet stream 6
Calculate the Density end Flow in the Stage 2 Compressor Discharge Stream PAB2 - PB3 Pr B2 PAB2 = 16.1462
- psi Compressor Discharge Pressure in Stage 2 l
WAir AB2 W^lfAI 4 WAirB3 WAir AB2 = 1.3773 b Mass flow rate of air in the stage 2 compressor discharge Ib WUF6AB2
%TF6Al ' WUF6 B3 WUF6AB2 = 23.9464 'g Mass flow rate of UF in the stage 2 compressor discharge 6
Ib WAB2 - WAir AB2 + %W6AB2 WAB2 = 25.3237 +-
Total mass flow rate in the stage 2 compressor discharge WUF6 AB2 XAB2 MW UF6\\ ^
WUF6 AB2 + WAir AB2' ' gg, g O
testbal.med Page 4 RWS@GDPSAR 8/8/96
Calculate the concentrations and flows la the 6tage 2 converter discharge / stage 3 compressor suction A stream I
XAB2 l
OXA2
- X
~XA2 = 0.4694 Molar concentration ofUF in the stage 2 A stream AB2+(I*XAB2)'h 6
Pr A3 : Pr A(XA2)
Pr A3 = 2.4879 Pressure Rat:0 across the stage 3 compressor A barrel Q A2 ~* Q A(XA2)
QA2 = 45146.1295'cfm Flow across stage 2 barrier, from compressor curve MWA2 MWUF6'XA2 + MW Air'(I - XA2)
Average molecular weight of stage 2 A discharge stream Pr AB2 : I - Csys-Q A2%lMWA2 Pr AB2 = 2.7291 Pressure ratio across stage 2 barrier needed to get Qu PAB2 P
PA2 = 5.9163
- psi Pressure in stage 2 converter A discharge A2 ' Pr AB2, A2 = 0.1388
- Ib pUA2
- P UF6 (TA*PA2'XA2)
PU Density of UF in the stage 2 A discharge stream 6
1 pAA2
- P Air [TA,PA2'(I - XA2)pAA2 = 0.0128
- b Density of Air in the stage 2 A discharge stream I
W^lf A2 = 9.6646
- b Mass flow - ate of air out stage 2 A stream WAl;A2 sQA2'PAA2 4
Ib WUF6A2 " OA2 *PUA2
%W6 A2 = 104.4064 *-
Mass flow rate of UF out stage 2 A stream 6
Cr O.:aulate the concentrations sad flows la the stage 2 converter discharge B stream B2 = -80.46
- b l
Q %W6B2 2 WUF6AB2 - WUF6A2 %W6 Mass flow rate of UF out stage 2 B stream 6
WAir AB2 - WAir A2 WAir B2 = -8.2873
- Ib Mass flow rate of air out stage 2 B stream WAir B2 WW6B2 XB2 gwUF6\\
%W6 B2* W^lfB2' gw Air /
PAB2 PB2 Pr3(X B2)
I testbal.med Page 5 RWS@GDPSAR B/8/96 i
l
1 e
i a
II I
t i
l Compressor Data from K/ETO-95, 4
i '
Appendix E 1
i i
1 4
1 r
4 i
H I
j i
Source Terms for Paducah Date g**-F C Page of.fl Evaluation-Basis Seismic Event Prepared by (M
\\
DAC-M0848401 SAR 62 Checked by
&^\\
Date 9-30-96 U
w s-
4 1, '
K/EID-95, Interim Fditina T
Technical Analysis and Operations i
i
'IIIE HF-UF, PHASE EQUIUBRIA AND *nIE SFlRC110N OF OPERATING CONDTITONS FOR UF, WITHDRAWAL AND STORAGE SYSTEMS IN LOW-ENRICHMENT GASEOUS DIFFUSION CASCADES J
E. J. Barber 4
with appendices by i
D. W. Langenberg R. O. Friedrich I
D. C. Lannom R. Van Winkle W. D. Goode i
i E. J. Barber
- \\
i 1
i O
!b J
i l
Date Published-March 1993 l
4 d
i i
Prepared by the URANIUM ENRICHMEN'I' ORGANIZATION i
Oak Ridge, Tennessee 37831-T66 managed by MAR 11N MARIEITA ENERGY SYSTEMS, INC.
for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-760R00001
O ME s,,,
WP:
'IEE CHARACIERErrICS OF AXIAL FLOW COMPRESSORS AN D T1mmt STABIE OPERATION IN A GASEOUS DIFFUSION PLANT O
1, 109 ll Appealix E i
j
'IIIE CHARACIEREI1G OF AXIAL FIDW COMPRESSORS AND 'INEIR STABIE OPERA *I10NIN A GASEOUS DIFFUSION FIANT i
By D. W. Langenberg, R. O. Friedrich, and D. C. T==_a
(
)
Tachnical Analysis and Operation m 1
l.
[
- To operate properly in a gaseous diffusion plant, a compressor must be able to deliver a
' constant volume of gas smoothly at a predet. dad pressure ratio
- against a fined fkm i
j resistance.
Since these requirements are known in advance, the axial Gow compressors employed are designed to operate at these conditions and to tolerate at least some deviation j
in these values. Impurities in the cascade gas stream can change the ability of the c
[
to deliver the proper gas Dow at the prescribed pressure ratio and can alter the Dow L
rai=* mace against which the compressor must operate stabl". This apg=-% is concerned with j
factors affecting the L.ble compression ratios and the flow pW m of surge and l-notating star which limit the a'uility of the compressors to deliver the i-sidiM Dow.
}
'Ibe pressure ratio produced by an axial Dow compressor ?- ;+ + upon many variables, l
including the =nW weight of the gas being compressed. 'Ibe pressure ratio capabG a constant speed compressor riimininha as the malacular weight of the process gas is reduced.
{
During normal operation in pure UFs, an axial flow compressor typical of those used in the low enrichment section of the gaseous ddfusion cascade will produce a compression rati about 5.5, whereas the pressure ratio of the same machine is quite smaH, roughly L1 t l
when operated in a pure light gas such as HF or N.
c 4
For a fixed gas composition, the pressure ratio increases as the compressor is throttled 1
(e.g., by plugging the barrier). However, the pressure ratio cannot be increased without limit.
l In pure UF., the peak pressure ratio of the GDP axial compressors varms from about 6.5 to 9.5, Eg= "== on the design. If the== chine pumps pure HF, its maximum pressure ratio wG1
. be roughly L2. When the compressor is throttled beyond the point at which the maximum pressure ratio is reached, the operation of the system will hacame unstable. The phanamaan resulting from this instability can take one of two forms, known as surge and totadag star.
L The point of incipient instabGity is usually called the surge point, in spite of the fact that a l'
transgression beyond this limit may lead to rotating stall rather than surge. In the following L
hW a cesapressor operating in rotating stall will be called a staBed compressor Operators of GDP compressors will usually say that a stalled w e.ar is "in===4y."
i Both surge and rotating stall impair the performance of the compressor. Both pt sw L
also increase the risk of compressor failure by increasing blade temperatures and causing vibratory stresses in the blades. Whether the compressor is stalled or surging, the amplitude L
j
%e pressure ratio for the purposes of this discussion is d*Anad as the ratio of the pres the compressor ducharge flange to the pressure at the main inlet Dange where the ennched stream i
from the stage below enters the compressor.
1
110 of the vibratory blade stress is five times higher than the amplitude of the vibratoty stress which occurs during normal operation. Herefore, when surge or rotating stall occurs, the operator will take corrective action as soon as possible to restore stable operation. A more detailed discussion of surge and rotating stall may found in K/ETO.86.'3 Although the Dow at a single point within a stalled compressor varies dramatically due to the passage of the stall cells, the total Dow rate remains constant in time once the Dow pattern becomes fully developed.' he pressure ratio also remains constant in time after the initial transient dies away and the stall cells have reached their fully developed configuration. When an axial Dow compressor operatea in the rotating stall regime, the Dow rate, pressure ratio, and the efDeiency of the ~Nne are much lower than the values that are typical of stable operation. Table E.1 compares the performance of a stalled GDP compressor with the performance of the same machine at its normal stable operating point. He table was prepared from experimental data for the T7 compressor, a 00-size machine with a propensity for operation in rotating stall. Differences between surge and rotating stall are shown in Fig. E.1.
Table E.1. Comparison of 004 tac T7 compressor perfonaance at its normal operating point with performaam exhibited daring rotating stall
@c prooms gas is pure UF,)
Performance at normal Typical performance in operating point rotating stall A. stream inlet volume flow rate, ft'Anin 43,000 25,000 Overall static pressure ratio 53 3.7 Overall isentrupic ef5ciency, %
83 50 In rotating stall, standard instruments for measuring the steady state performance of a comprcasor can be used to determine a meaningful operating point, as indicated in the right hand column of Table E.1. During surge, on the other hand, the total Dow rate and the pressure ratio undergo large amplitude oscillations. For a typical GDP compressor, the period of these oscillations is roughly 10 seconds. The amplitude of the volume Dow oscillation is of the same order as the normal volume Dow swallowed during stable operation.
For the 00-size machine in Table E.1, the vo?ume flow will vary from a maximum of 43,000 cu ft/ min to a ininimum value near zero (or even negative) during each surge cycle.
- A obtained by integration over the entire annular cross.section of the ocmpressor flow path.
h is a short initial transient during which the rotating stall pattern develops. The time scale for stall cell development is on the o-lcr of a few rotor rotations. Even in the low speed GDP compressors (the slowest machines are the 1200 rpm 000. size compressors) the stall cell development time is probably less than a semnd.
DIFFERENCES BETWEEN SURGE AND ROTATING STALL nw o c-1 INITIAL TRANSIENT OSCILLATORY MOTION MOTION OF OPERATING h
OF OPERATING POINT POINT s
?
DUR NG SURGE l
g 5
b"~
b
/
b',, SECONDARY i
W
/
CHARACTERISTIC
/
PRIMARY
/
\\,
/
+ CHARACTERISTIC p/
o.
INLET VOLUME FLOW RATE, Q INLET VOLUME FLOW RATE Omln ROTATING REGION OF LOW FLOW l'l>
~
)
REGION OF
\\
AXIS OF ROTATION
~
> 4" COMPRESSOR ANNULUS HyH FLOW LARGE AMPLITUDE AXIALLY CIRCUMFERENTIALLY OSClLLATING FLOW NONUNIFORM FLOW SURGE ROTATING STALL
112 Similarly the pressure ratio will vary from a minimum of roughly 3 to a maximum of 7 during the cycle. nese values assume, as does Table E.1, that the compressor is pumping pure UF..
If P. contaminant with a low molecular weight (designated as a light gas) is added to the proxss gas, the values of maximum volume Dow rate, maximum pressure ratio, and minimum pressure ratio will au diminish as the concentration of light gas increases. Figures E2 and E.3 Glstrate the effect of adding HF to UF. on the pressure ratios and on the stable range, which, for GDP compressors is defined by the expression (Stable Range) = (r - r.)/r (E-1) where ris the barrier permeability at the operating conditions ofinterest, and r, is the banier permeability at the surge point.
nus the stable range is a measure of the margin between the current operating point and the point at which the compressor will surge or go into rotating stall. He effects of N and O are similar and additive to the effects of HF.
2 2
During normal operstion with normal barrier, a GDP compressor operates stably in pu.e UF..
He compressor wiDialso operate stably on a gas oflow molecular weight although with a very signiScant reduction in the compression ratio; however, it is known from experience that the rapid introduction of a low molecular weight gas into a high molecular weight one in a compressor causes the compressor to surge. His may ciccur if the A stream and B-stream feeds to the compressor differ too much in their effective molecular weights. Surging may also occur when water or water vapor leaks into the c==de into the cascade plugging the barrier. This condition impedes the delivery of an upstream Dow, starving the upstream compressor which causes it to surge. Meanwhile the compressor below the plugged condition experiences a decrease in operating range, eventually leading to a surging condition. Before either of these conditions become serious enough to threaten the integrity of the ranchine, operators v.ould isolate, shut down, and by-pass the affected cell (s).
O
[
orgzto c-2 ovarall PrCOcCro Ratic 1C1 ComprCOsor C3 O Function of CF ConoCCtrctico cnd Cyr, ten assiGttnoa Ct Operating Cnd Surga Poit;to FS1 HF.-
UF6 Mixtures System Resistance WP Mot e PERCE4TME
~
e Comens.ssen taaracTemisTics - DY*JAott O~
e SYSTEM EE5 67MdC E PORE OF, 3
{
1 E
f b~
udEs n y r g o g I M A TC O,,'
zo As id kI8^-f'57
--Twnigw Ltp
. g p
i g
(
3
[
& w
0 0
5 10 15 20 25 30 35 40-Mole Percentage HF The process gas is assumed to be a binary mixture of HF and UF.
The stable range is estima'ed from DYNADEC compressor performance calculations and approximate circuit balance calculations (ala Pasquier).
G G
G.
Compresxr Ccrrelations with Lights Concentration a.
QaBase 88,000 Constant 2.85E-06 TA 600
,O QbBase 39,000 MWU 352.02 TB 750 PrB0 1.13 MWL 28.96 XL MW Qa
-Ob Prb Pra Pratio BFlow boa 0%
352.02 88,000 39,000 1.130 5.049 5.706 19,195 0.97 10%
319.71 79,924 35,421 1.113 4.560 5.073 15,503 0.78 i
20%
287.41 71,848 31,842 1.096 4.080 4.471 11,831 0.59 30%
255.10 63,772 28,263 1.080 3.613 3,903 8,206 0.41 40%
222.80 55,696 24,683 1,065 3.162 3.569 4,669 0.23 50 %
190.49 47,620 21,104 1.052 2.732 2.873 1,295 0.07 l
60%
158.18 39,544 17,525 1.039 2.326 2,417
-1,791
-0.09 70 %
125.88 31,468 13,946 1.028 1.952 2.006
-4,374
-0.24 80%
93.57 23,392 10,367 1.018 1.616 1.645
-6,081
-0.37 90%
61.27 15,316 6,788 1.009 1.329 1.342
-6,307
-0.48 100 %
28.96 7,240 3,208 1.003 1.108 1,111
-4,219
-0.57 Pratio = 1 + Constant
- sqrt(MW)
- Qa Qa = QaBase * (MW / MWU)
Pratio = 1 + (Pratio01) * (MW/MWU)^1.5 t
Qb = QbBase * (MWI MWU)
Prb = 1 + (PrB01) * (MWIMWU)^1.5
'N RWS@GDPSAR 8/9/96
.- _------ ---- l