ML20215A451

From kanterella
Jump to navigation Jump to search
Nonproprietary Noise,Fault,Surge & Radio Frequency Interference Test Rept
ML20215A451
Person / Time
Site: South Texas STP Nuclear Operating Company icon.png
Issue date: 11/30/1986
From: Ciaramitaro W, Nasrallah C, James Smith
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19292G423 List:
References
WCAP-11341, NUDOCS 8612110292
Download: ML20215A451 (271)


Text

,

l WCAP-11341 WESTINGHOUSE CLASS 3 j 1

l 1

i I

NOISE, FAULT, SURGE, AND  !

RADIO FREQUENCY INTERFERENCE TEST REPORT Westinghouse Eagle-21 Digital Family as used in ODPS, PSMS, RVLIS, and ICCM I

l Prepared by: C. N. Nasrallah e

  • Reviewed by: J. R. Smith Approved by; bd. hN.b) e --

j j j Approved by: I ~

/ N W. Claramitaro, Manager A. E.elanchard, Manager '

{

Sensor & Instrumentation Instrumentation and Control l Development Development Engineering l

November 1986 o

WESTINGHOUSE POWER SYSTEMS Pittsburgh, Pennsylvania 15230 8612110292 861205 PDR TOPRP EMVWEST R PDR ,,

ABSTRACT This report documents the Noise, Fault, Surge, and Radio Frequency Interference (RIF) Test Program. The primary objective of this test program was to demonstrate that the system under test remained fully operational and i accurate when subjected to noise, fault, surge withstand, and RFI testing.

Other objectives were to demonstrate that the simulated inputs and actual outputs of the system were not affected by the tests and that the isolation barriers prevented any propagation of noise or faults through the system.

The Noise, Fault, Surge, and RFI Test Program convincingly demonstrated that the system performance met its defined acceptance criteria and did not degrade even when subjected to abnormal electrical conditions which far exceed those that can be reasonably postulated.

4 i

l

=

l iii \

1 0645N:4

r ACKNOWLEDGEMENTS The author wishes to express his appreciation to T. Weldon, C. Antoniak, J. Mesmeringer, Dr. V. Liepa, M. Kuttner, J. Hafera, C. Higgins, and D. Testa ,

whose help was instrumental in completing the testing and writing for this report.

1 0645N:4 l

.. TABLE OF CONTENTS

, Section Title Page 1 INTRODUCTION .

2 SYSTEM CONFIGURATION 2.1 System Description 2-1 2.2 System Layout 2-4 2.3 Cable Connections 2-11 2.3.1 Field Cable Connection 2-11 2.3.2 Alternative Configurations 2-11 3 ISOLATION DEVICES PHILOSOPHY 3.1 Description 3-1 4 TEST DESCRIPTION 4.1 Noise and Fault Tests 4-1 4.1.1 Noise Tests 4-1 4.1.1.1 Description 4-1 4.1.1.2 Test Outline 4-1 4.1.1.2.1 Random Noise Test 4-5 4.1.1.2.2 Crosstalk Noise - Chattering Relay Test 4-5 4.1.1.2.3 Military Specification Noise Test 4-8 4.1.1.2.4 High Voltage Transient Noise Test 4-8 4.1.2 Fault Tests 4-11 4.1.2.1 Description 4-11 4.1.2.2 Test Outline 4-11

. 4.1.2.2.1 Short Circuit 4-13 4.1.2.2.2 Common Mode Fault Tests 4-13 4.1.2.2.3 Line-to-Line Fault Tests 4-18

\

l l

0645N:4 )

TABLE OF CONTENTS (Cent) f Title Page Section Surge Withstand Capability (SWC) Test 4-29 4.2 Description 4-29 4.2.1 Test Outline 4-29 4.2.2 Common Mode Test 4-30 4.2.2.1 Transverse Mode Test 4-30 4.2.2.2 Implementation of Test Procedures 4-30 4.2.3 4.3 Radio Frequency Interference (RFI) St.sceptibility Test 4-33 Test Methodology 4-33 4.3.1 Test Location 4-33 4.3.2 Test Equipment 4-33 4.3.3 Test Procedure 4-34 4.3.4 Calibration Test 4-34 4.3.5 Modulation Test 4-37 4.3.6 Keying Test 4-42 4.3.7 .

5 TEST SETUP AND MONITORING ~

Test Setup 5-1 5.1 System Connections 5-1 5.1.1 Simulated Input signals 5-4 5.1.2 Data Acquisition System and Analog Outputs 5-4 5.1.3 Tape Recorder 5-4 5.1.3.1 Data Logger 5-11 5.1.3.2 Test Monitoring 5-14 5.2 Display Monitoring 5-14 5.2.1 Data Link Tester 5-15 5.2.2 Analog Output 5-15 5.2.3 6 ACCEPTANCE CRITERIA ~

Description 6-1 6.1 Noise and Fault Acceptance Criteria 6-1 6.1.1 '

Surge Withstand Acceptance Criteria 6-1 6.1.2 Radio Frequency Interference Acceptance Criteria 6-1 6.1.3 vi 0645N:4

TABLE OF CONTENTS (Cont)

Section Title Page 7 TEST RESULTS 7.1 Description 7-1 7.2 Noise and Fault Test Results 7-1 7.2.1 Noise Test Results 7-1 7.2.1.1 Random Noise Te.st Results 7-1 7.2.1.2 Crosstalk Noise -- Chattering Relays 7-1 7.2.1.2.1 Ac Chattering Relay 7-1 7.2.1.2.2 Oc Chattering Relay 7-2 7.2.1.3 Military Specification Noise 7-2 7.2.1.3.1 Noise Source No. 1 7-2 7.2.1.3.2 Noise Source No. 2 7-2 7.2.1.4 High Voltage Transient Noise 7-2 7.2.2 Fault Test Results 7-2 7.2.2.1 Short Circuit Fault 7-2 7.2.2.2 Common Mode Fault 7-3 7.2.2.2.1 250 Vdc 7-3 7.2.2.2.2 580 Vac 7-3 7.2.2.3 Line-to-Line Fault 7-3 7.2.2.3.1 Internal Fuse Installed 7-3 7.2.2.3.2 Internal Fuse Shorted 7-4 7.3 Surge Withstand Fault Test Results 7-5 7.3.1 Common Mode 7-5 7.3.2 Transverse Mode 7-5 7.4 Radio Frequency Interference Test Results 7-5 7.4.1 Modulation Tests 7-5 l 7.4.1.1 3 V/m Field Strength 7-5 l

7.4.1.1.1 Vertical Polarization 7-5 7.4.1.1.2 Horizontal Polarization 7-5 7.4.1.2 10 V/m Field Strength 7-6 7.4.1.2.1 Vertical Polarization 7-6 7.4.1.2.2 Horizontal Polarization 7-6 7.4.1.3 20 V/m Field Strength 7-6 e

vii 0645N:4

l l

TABLE OF CONTENTS (Cont)

Title Pace Section Vertical Polarization 7-6 7.4.1.3.1 7-6 7.4.1.3.2 Horizontal Polarization 7-7 7.4.2 Keying Test 3 V/m Field Strength 7-7 7.4.2.1 7-7 7.4.2.1.1 Vertical Polarization 4 Horizontal Polarization i 7-7 7.4.2.1.2 10 V/m Field Strength 7-7 7.4.2.2 Vertical Polarization 7-7 7.4.2.2.1 Horizontal Polarization 7-7 7.4.2.2.2 8 CONCLUSION Appendix A List of Noise, Fault, Surge and Radio Frequency Interference Tests '

Appendix B Fault Test, Fuse Shorted Photographs Appendix C Microprocessors and I/O Boards Description '

Appendix 0 Test Procedures Appendix E System Configuration Drawings Appendix F Test Equipment viii 0645N:4

, LIST OF ILLUSTRATIONS Figure Title Page 2-1 Block Diagram of Typical RPU/DPU Architecture 2-2 2-2 Typical Block Diagram of RPU and DPU Subsystems 2-3 2-3 Test Configuration Schematic 2-5 2-4 RPU/DPU Split Bay Cabinet 2-6 4-1 Random Noise Test Connections 4-6 4-2a Crosstalk Noise - Chattering de Relay Test Connections 4-7 4-2b Crosstalk Noise - Chattering ac Relay Test Connections 4-7 4-3 Military Specification Noise Sources 4-9 4-4 High Voltage Transient Noise Test Connections 4-10 4-5 Short Circuit to Ground Test Injection / Ret: order 4-14 4-6 250 Vdc Common Mode Fault Test 4-15 4-7 Oc Power Supply Fault Connections 4-17 4-8 580 Vac Common Mode Fault Test 4-21 4-9 Ac Fault Connections 4-22 4-10 Transformer Connection for the 580 Vac Fault Source 4-23 4-11 125 Vac Line-to-Line Fault Test 4-24 4-12 Transformer Connection for the 125 Vac Fault Source 4-25 4-13 125 Vdc Line-to-Line Fault Test 4-26 4-14 250 Vdc Line-to-Line Fault Test 4-27 4-15 580 Vac Line-to-Line Fault Test 4-28 4-16A Common Mode Surge Withstand Capability Test Connection 4-31 4-168 Transverse Mode Surge Withstand Capability Test Connection 4-31 b

4-16C Block Diagram of Surge Hithstand Capability (SWC) Test 4-32 4-17 Radio Frequency Interference Equipment Test Setup 4-35 f 4-18 Radio Frequency Field Calibration 4-36 f

1 ix 0645N:4

(

?

LIST OF ILLUSTRATIONS (Cont)

Title Page

. Figure 4-19 Block Diagram of Radio Frequency Interference Calibration Tests 4-38 Cabinet Subject to Radio Frequency Field 4-39 4-20 4-21 - Block Diagram of Radio Frequency Interference Modulation Tests 4-40 4,-22 Block Diagram of Radio. Frequency Interference Keying. Tests 4-44 Cabinet and Field Cable Setup 5-2

~

5-1 Noise, Fault, and Surge Test Equipment Setup 5-3 5-2 4-20 mA Tran5mitter Simulator 5-7 5-3 5-4 Resist'or Temperature Detector (RTD) 5-8 5-5 4-20 mA Current Loop Output 5-9 5-6 . Analog Output Channel Recording 5-12 5-7 Contact Output Connection 5-13 5-8 Fault Test Data Sheet 5-16 -

Noise Test Data Sheet 5-17 5-9 ~~

, 5-9A . Surge Test Data Sheet 5-18 Tape Recorder Log Sheet 5-19 s 5-10 5-11 Page 1 Primary Data 5-20 5-12 Page 3 Primary Data 5-21 5-13 Page 8 CCW and RHR Data 5-22 5-14 Page 2 DPU Status 5-23 5-15 Psge 3 RPU St'at'us 5-24 s-

.i b

g.

a .- r i

/ .

x 06,45N: 4,"<'

)

t, .

. LIST OF TABLES Table Title Page 2-1 Circuit Board Locations,.,RPU 2-7

~

2-2 Circuit Board Locations, DPU 2-8 2-3l ,

Circuit Board Locations, Display Units 2-9 2-4. I/0' Board Configuration 2-10 4-1 I/O Component Tested in Noise and Fault Test 4-2 4-2 Noise Injection Field Connections 4-3 4-3 Alternate RPU TB101 and 102 _, 4-4

4-4 Fault Injection Field Connections 4-12 e 4 Keying Test Frequencies 4-43

(* 5-1 Simulation of Normal Parameter Values 5-5 5-2 Tape Recor'ed d Data 5-10 7-1 Noise Tests 7-8 7-2 Radio Frequency Interference Noise Test 7-9

,7-3 Fault Test 7-10 7-4 i Line-to-Line Fault Fuse Installed 7-12 7-5 Line-to-Line Fault Fuse Shorted 7-14 f

,p. ,

,.- 's

\ ~

Xi 0645N:4

l SECTION 1 INTRODUCTION The Noise, Fault, Surge and Radio Frequency Interference (RFI) Test Program is applicable to the following Westinghouse Eagle 21 Digital Family systems:

e Qualified Display Processing System (ODPS) e Plant Safety Monitoring System (PSMS) e Reactor Vessel Level Instrumentation System (RVLIS-86) e Inadequate Core Cooling Monitor (ICCM)

The primary objective of the program was to demonstrate that the system under test remained fully operational and accurate when subjected to noise, fault, surge withstand, and RFI testing.

, Other objectives included virifying that the simulated inputs and actual outputs were not affected by the tests, and that the isolation barriers

, prevented any propagation of noise or faults through the system.

The remainder of this report provides detailed discussions of all aspects of the testing, including supporting illustrations and tables. The information

~

is presented in the following order:

, e Section 2 shows the configuration of the representative system used for test implementation. Descriptions of the system hardware and layout, and field cable connections are also included.

e Section 3 defines the philosophy upon which the isolation methods and devices were based.

s e Section 4 contains a general description of each type of test (i.e.,

, noise, fault, surge withstand, and RFI) and outlines the procedures and methods used during testing.

1-1 0645N:4

r-e Section 5 describes the test system connections, the simulated input i

signals, and the methods and equipment used to monitor, record and document the status of the system, the test data, and the test results. -l l

e Section 6 defines the acceptance criteria that the test results were required to meet.

o Section 7 provides a detailed description of the noise, fault, surge withstand, and RFI test results. Tables presented at the end of the section and in Appendix A contain data that support the test effects.

e Section 8 presents the conclusions reached as a result of this testing program.

l 1-2 0645N:4

,- SECTION 2 SYSTEM CONFIGURATION 2.1 SYSTEM DESCRIPTION The system under test was configured as a Class 1E data acquisition system similar to a portion of a QDPS or PSMS, consisting of a remote processing unit (RPU), a database processing unit (DPU), and a display module. The RPU and DPU were put into the upper half and lower half, respectively, of a standard Westinghouse split-bay seismic cabinet.

Each section of the cabinet was powered by a power supply module located in the upper part of that section. The [ ] processor boards of the RPU and the

[ ),,, processor boards of the DPU were installed in the card cages, and I/O boards were located in termination frames in the rear of the cabinet to provide the interface between the field signals and the processor input / output interface.

Figure 2-1 shows the typical architecture of both RPU and DPU subsystems and the internal processors and input / output modules. Figure 2-2 illustrates an I/O and communication block diagram of the system. The interconnections designated "B" were " buffered" electrical separations only, while the isolation barriers had the "I" symbol indicating the existance of physical separation also.

The RPU of the system performed data acquisition on the simulated analog inputs and sent the accumulated data to the DPU. The DPU performed a variety of signal processing and then transmitted the data to the system display module via the DPU/ display data link.

A detailed description of the processor and I/O boards is given in Appendix C.

I t

l 1

i 2-1 0645N:4

a DATA LINK ,.

INPUTS / OUTPUTS a o n

. u l 9

[n TEST TERM. DATA LINK _

ISOL. _

-u n If il CPU MEMORY FU C S COMMUN.

o o MICROPROCESSOR

. m o

= BUS ll If Il il DIGITAL A/D D/A DIGITAL I/O CONVERT. CONVERT. I/O ,

o n u u TEST FUNCTIONS E I DIGITAL ANALOG SIGNAL SIGNAL -

COND. COND. .

n n n o neee n neeen DIGITAL ANALOG PLANT PLANT INPUTS / INPUTS /

OUTPUTS OUTPUTS Figure 2-1. Block Diagram of Typical RPU/DPU Architecture 006 A 19566-27 2-2

' i ll l

' i; Y c

. A

~ L ai P

~SI

^

a r

~D fp p- R O

TR AE LF OF SU A I ID "t

sa 7

l 18 D s

, m e

t s

E y s

b

, l l I u J , l J S U

- l

) - ) _ P

. A C D

- WX E l

,L

. A

- N q hC - NI _ d E N r"1 I aa6 U P

I U n

- D (

O N

O A

R T A "- gD P A R

T _ U a

( (

P R

rl L r l I

r. 1

] l L f o

3 m

]i L I

- l l l I i a

r r

)T [ _

g

. C A u i

a

,I _ D N $

TYo O

k C _ c o

= - _

l B

E - _

_ l a

, l l 1 J E , c D S 5 l

J , I l

o ] J i R I [ p A y

- l

_ O S

- _ - l

_ T

- *x E l

_ [

8- O o5 A

- A. _ - "- iE E N l

ss6 I I

U P

/

I 2 U P

s 2

- U NO l

_ R #^ - R _ - " a r _ 2 e

u t

- _ E T - _ - _ e r

O u rl l 1 L N f r l L rI l ;L g i

F S

R O O '"

S N '

E "

S '

< 7 J l

E .

~ l N

. ~ O H _

(

{ L g

'2.2 SYSTEM LAYOUT

^

Figure 2-3'shows the system test configuration schematic which contains an RPU and DPU with their associated status panels and I/O boards, a display module .

and keyboard, RPU/DPU field cable connections, and a data link tester. The figure shows the patch panel on which the simulated input signal and analog output signal of the system were mounted. In addition, it shows the data acquisition system which consists of a digital data logger, buffer amplifiers and a tape recorder. Figure 2-4 shows the front and the side view of the RPU/0PU split bay cabinet.

l Tables 2-1 and 2-2 list the respective processor boards and input / output boards for the RPU/DPU test configuration. Table 2-3 lists the processor boards in the display.

The configurations of boards listed in Tables 2-1 and 2-2 were defined by configuration drawing 2033550 and 2033551, design Specifications 955882 and 955905, and Table 2-4, respectively. The configuration drawings are included in Appendix E. The generic designations listed in the table became specific components fcr test configuration slot locations by virtue of specification data relating to jumpers, switches, and components which effect input / output functions and/or digital address designators for the respective multibus slot or I/O frame locations (TB).

~ '

2-4 0645N:4

-O

- 2'"

-cr .

--8:2  ;

h>%: r

  • C P5 ouz av$$$ . .fc.

..3 4

!!i ? h -g!

i!

"t ge-t 3~3

~

~ w12 N tid a s .,

E b C 5 -g- W E

hs?

ugh no

,a s- .,

== = r<. - 2 A-s g<

y-san T g Is l w gz .-

d-

-= _-

e

.._c u

gu z >- '

m ,  % e.

a

..l.,

mm 1

um bN h 1 ~

t l

<n r- -------

wr------ --. e


M-- -----  !-- , .o Ir ,

il ll I

  • l' e ll .- 11 ..

I _ c II :" ll i l *

= m ll ll

= h I c '

pe  %

.. e  ? 9 a 11 2 Ep - ll 2 3y - i -

g 11 ( 11 3 Y l e ~

u ll 11 5 I S

  • M I I. _ _ _ _ _ _. _ _..a.L _ _ _ _ _ e u ______...._at_____. . _ __dl

__ ,e I

m t e Q M

$ L 9 9 d N 4t, vive caveu c are n o rm s <

1 2 U @

  • C b l *f a 3

% *  ;".; O

. .c.

g f I 2

s w L2k~ 47 y

-5E tt 21

< ~e S~d o> 9S O _s W

t

+ e E k Zw" kE 4N P# e -

C W

IJ t' -u o 8 r 2{ 3- 22[1]  !

T I r

~

4M '; i 006 A 19566 26 2-5

.i-

_ 3.C

~

Figure 2-4. RPU/DPU Split Bay Cabinet 2-6 0645N:4

TABLE 2-1 CIRCUIT BOARD LOCATIONS, RPU Chassis Slot or Circuit Board Type Quantity Termination Frame Processor Boards (See Note)

Main processor Memory non-volatile Self health Programmable digital I/O Programmable A/D A/D D/A RAM memory.

Data link communications EPROM _

8.C a.C Input / Output Boards (See Note) 2334063G01 RS-422 Data link 1 TB101 2344004G01 Digital contact output 1 TB108 2344001G02 Digital contact input 1 TB105 2033170G01 Appendix R current loop input 2 TB103,* TB109*

2033172G01 Appendix R RTD 2 TB104, TB107 2D31856G01 Current loop output 1 TB106 2D32406G01 RS-422 Encode / Decode data link 1 TB102

  • Configuration TB107 output derived the output of TB103; TB109 was

. configured as an " analog repeater."

NOTE: P.C. board configuration per Design Specification 955882 and Table 2-4, 2-7 0645N:4

TABLE 2-2 .

CIRCUIT BOARD LOCATIONS, DPU Chassis Slot or Circuit Board Type Quantity Termination Frame Processor Boards (See Note)

Main processor Memory non-volatile Self Health l Programmable I/O i D/A RAM memory l Data link communications EPROM

- 3.C

- -a.C

~

Input / Output Boards (See Note) 3 TB201, TB202, 2032406G01 RS-422 Encode /

Decode data link TB203 2344004G01 Digital contact output i TB205 2344002G01 High . level voltage output 1 TB204 NOTE: P.C. board configuration per Design Specification 955905 and Table 2-4.

2-8 0645N:4

. TABLE 2-3 CIRCUIT BOARD LOCATIONS, DISPLAY UNIT Chassis Slot or Circuit Board Type Quantity Termination Frame Main processor EPROM Communications Interface relocate 2033043 RAM memory

~ -

8,C - 4,C

Reference:

Assembly Drawing 1721E43G01 and Keyboard Drawing 1849E07G01.

2-9 0645N:4

TABLE 2-4 .

1/0 BOARD CONFIGURATION Location in Board Configuration System Under As Listed In Design Test Specification Modification E

TB101 TB103 TB102 TB101 i8103 TB118 TB104 TB120 Tb105 TB106 TB106 TB126 TB107 TB121 TB108 TB105 TB119 Except jumper analog TB109 repeating -

E TB202 TB101 TB201 TB103 TB203 TB108 TB204 TB114 TB205 TB111 2-10 0645N:4

2.3 CABLE CONNECTIONS 2.3.1 Field Cable Connection i .-

l The field cable system connection was implemented in a way to provide a -

j separation between the 1E system input and the non-1E system output. The l field cables of the simulated signals and the analog and digital outputs were a nominal 40-foot length. Shields and grounding were standard installation

practice. Field cables used 22 gage twisted shielded wire, except digital contact input / output used two unshielded conductors. Field cable connections are shown in Appendix E.

I j 2.3.2 Alternative Configurations To allow testing of all I/O configurations, two alternative configurations of data link boards were required during testing to accommodate each transmit and receive channel of the RS-422 Encode / Decode data link and RS-422 data link I/O boards. The data link boards were not removed from their termination frames but the internal cabling interface to the communication control processor board was changed.

I l

l l

l l

?

! 2-11 l

0645N:4

__. _ _ _ _ _ _ _ _ _ - - _ _ . _ _ _ . _ _ _ _ . _ . _I

SECTION 3 -

ISOLATION DEVICES PHILOSOPHY

3.1 DESCRIPTION

System design made principal use of the input / output (1/0) boards to effect IE separation functions and also provided separation of the processor elements from field cabling connections. The processor elements were electrically buffered from all input and output functions at the I/O board interface.

-~

3.C The 1E functions were additionally buffered frem design bases faults on all non-1E 1/0 connections by surge protection and fault limiting devices. The non-1E function may or may not have been lost dependent on the nature of the fault or transient. (Where internal fuses were normally provided as fault-limiting devices, these were short circuited for worst case test representation.) Surge protection per IEEE-472-1974 was provided in all field input / output connections.

In cases where connection between different IE trains or to non-1E equipment is required, physical separation s normally provided within the cabinet by 8

means of terminal boxes and flexible metal conduit between field connections and I/0 terminals. Testing was performed with that configuration for a representative number of cases to prove the wiring, and then the remainder of the testing employed signal injection directly onto the I/O board terminal block connections.

e 3-1 0645N:4

SECTION 4 TEST DESCRIPTION 4.1 NOISE AND FAULT TESTS The purpose of the noise and fault tests was to demonstrate that a noise or fault injected into the non-1E input / output wiring would not affect or degrade Class IE system performance. The simulated signal was retained in place through the entire test.

The system I/O components used for isolation or fire protection buffering are identified in Table 4-1. These components had both noise and faults applied.

The table lists the maximum credible fault voltages for each case.

4.1.1 Noise Tests 4.1.1.1 Description The noise tests were designed to ensure that separation criteria were met for the system by demonstrating that noise injected into the non-1E field wiring was not propagated through the isolator or picked up wire to wire. Magnetic or capacitive coupling from adjacent wiring in cable trays were considered in the test setup.

Radiated noise was individually applied for 2 minutes to each defined non-1E field wire listed in Tables 4-2 and 4-3. The effects of the test were observed and recorded on data sheets.

4.1.1.2 Test Outline Four types of radiated noise testing were implemented, as follows:

, 1. Random Noise Test

2. Crosstalk Noise - Chattering Relay Test
3. Military Specification Noise Test
4. High Voltage Transient Noise Test 4-1 0645N:4

o m TABLE 4-1

,Y I/O COMPONENTS TESTED IN NOISE AND FAULT TESTS A

I/O Board Assembly Drawing Maximum Credible Fault Type of I/O Board and Revision Vdc Vac 1

High level voltage output 2344DO2G01 Rev. 3 250 580

Current loop output 2031856 Rev. 2 250 580

] D1gital contact output 2344DO4G01 Rev. 1 250 580 i Normally closed i Normally opened il Digital contact input 2344001GO2 Rev. 2 250 580

RS-422 Encode / Decode Data Link 2D32406G01 Rev. 2 Transmit 250 580

, Receive 25G 580

RS-422 Data Link 2334063G01 Rev. 4 l Transmit '.50 580 Receive 250 580 j Appendix R current loop input 2D33170GO1 Rev. 2 Current loop output 125 125 Test inj ect ton 125 125 Test interlock 125 125 i Appendix R RTD 2033172GOI Rev. 2
ru Current loop Output 125 125 Test injectton 125 125

~i Test interlock 125 125 I

i 4

}

1 1

E 9 0

  • 9 9 9

.- + -

n table 4-2 NOISE INJECTION FIELD CONNECTIONS Terminal Block Connections I/O Isolation Section Reference H1 Lo 54. Isolator Type I/O Board Function RPU TB102 2 3 NC RS-422 Encode / Decode Data Link 2D32406 Data link TX DPU TB2O3 2 3 NC RS-422 Encode / Decode Data Link 2D33406 Data link TX RPU TB101 19 20 NC RS-422 data itnk 2334D63 Data link RX DPU TB203 16 1, NC RS-422 Encode / Decode Data Link 203340S Data link Train C display DPU TB203 2 3 NC RS-422 Encode / Decode Data Link 2D33#O6 Data Itnk Train A/ Train C DPU TB203 5 6 NC RS-422 Encode / Decode Data Link 2033406 Data link Train C/ Train A DPU DISPLAY Train C connector SWDK 2D33403 Data link Train C/ display ,

DPU TB204 5 6 N/A High level Voltage Output 2344DO2 Output DPU TB205 8 9 N/A Digital Contact Output (open) 2344DO4 Output DPU TB205 8 10 N/A Digital Contact Output (closed) 2344DO4 Output RPU TB103 11 12 NC Appendix R current loop input 2033170 Output (nonrepeating)

RPU TB104 12 13 NC Appendix R RTD 2D33172 Output RPU TB105 5 6 N/A Digital Contact Input (Snput open) 2344 DOI Input RPU TB105 5 6 N/A Digital Contact Input (input 2344 DOI Input closed)

RPU TB106 5 6 NC 4-20 mA Current Loop Output 2D31856 Output

-(powered)

RPU TB108 5 6 N/A Digital Contact Output (NO) 23344DO4 Output RPU TB108 5 7 N/A Digital Contact Output (NC) 23344DO4 Output RPU TB109 11 12 NC Appen'ix d R Current Loop Input 2D31856 Output (analog repeating) 0645N:4

X X T R n k k n

o i n t i

' l I t

c a n a u t t a

F a _

D D _

nd t

ora 3 6

6 0

t o D 4 aB 4 2 t 3 3 oO 3 0 s/ 2 2 II 2

0 a 1

t D a N D A .

e l e d 3O p o I y c 4B T k e T n D .

E r i /

LU o L e BP Ot d a

AR T

/ a Il t co E o a n .

T s D E A I N 2 2 R 2 2 E 4 4k T - - n L S Si A R RL

h. C C S N N s

n o

t to 3 0 cL 2 e

n n

o C I 2 9 H 1 e

l c

_ a n nke .

icr 1 2 moe rl f 0

1 0

1 eBe 8 8 T R 1 1 4:

n

_ i o N t

5 U s 4 c t 6

e P P 0 S R R l

Each of the above noise sources was energized through a 40-foot antenna wire

], which was adjacent to the 40-foot non-1E field signal wiring being tested.

Refer to Tables 4-2 and 4-3 for each field wiring cable subjected to noise

1. tests. The antenna was terminated to optimize coupled noise effects. A  ;

detailed description of the noise test implementation is given in the Noise Test Procedure section of Appendix D.

Identical simulated input signals and computer enterad values were used throughout all the phases of noise testing. Data obtained prior to, during,

and following noise testing served as a point of reference and comparison for i interpreting results.

4.1.1.2.1 Random Noise Test This noise source was generated by a random noise generator [

C The radiated random noise characteristics are as follows:

Peak value: 20 V

, Frequency: 10 kHz - 10 MHz Figure 4-1 shows the random noise test connections.

4.1.1.2.2 Crosstalk Noise - Chattering Relay Test A de and an ac relay were used to generate a radiated crosstalk noise. The l 4

relays were set in a " chattering" or " buzzer" mode by wiring the normally- l I

closed relay contacts in series with the relay coil. The following types of l

relays were used during the crosstalk noise-chattering relay test:

l

1. Relay with a 118 Vac coil, 0.3 amp nominal
, 2. Relay with a maximum rating of 600 Vde, 125 Vdc coil, 0.22 amp nominal i

, Figure 4-2a shows the de crosstalk noise - chatteririg relay test connections.

Figure 4-2b shows the ac crosstalk no be - chattering relay test connections.

l l

4-5 l 0645N:4

-n...- . - _ . -- - -- - . . - _ . , . - - _ . ..n--n _.....,,-_..,,_-_m... . . - - , _ _ - - , ,--.,--n -..-._.c c. , . - ,n_,_-

l LOAD SYSTEM UNDER TEST j

~- ~

RANDOM POWER NOISE  :

AMPLIFIER'_
  • GENERATOR + - 40-FOOT ANTENNA n7 .

Figure 4.1 Random Noise Test Connections ,

oos.4 19566,1 46

LOAD SYSTEM UNDER TEST RELAY l 12SVDC O POWER SUPPLY:

y t 40-FOOT i

4-2a. Crosstalk Noise - Chattering de Relay Test Connections

. LOAD SYSTEM UNCER TEST RELAY l l18VAc= 0 POWER SUPPLY: g 40-FOOT Figure 4-2b. Crosstalk Noise - Chattering ac Relay Test Connections 4-006 A.196661 47

4.1.1.2.3 Military Specification Noise Test Military specification noise testing was performed using switched cycling noise sources with the characteristics of Noise Sources No.1 and No. 2 in ,

Military Specification MIL-N-199008.

The characteristics for Noise Source No. I were:

Voltage: 115 Vdc Inductance: 3H Resistance: 500 ohm The characteristics for Noise Source No. 2 were:

Voltage: 115 Vac Inductance: 100 mH Resistance: 2 ohm Figure 4-3 shows the military specification noise sources.

4.1.1.2.4 High Voltage Transient Noise Test This noise source was generated from a surge transient generator (

Ic The high voltage transient noise characteristics were as follows::

Peak value: 3.3 kV Frequency: 1.25 MHz Repetition rate: 120 Hz Figure 4-4 shows the high voltage transient noise test connections.

4-8 0645N:4

E C NOISE SOURCE NO.I Si

/ l l -

l15 VOLTS I0%, RE F ER I15 VOLTS 60HZ 5% I

  • l g' SUPPLY l l I l-1 I I I

!  ! SYSTEM

^ LOAD  !  ! UNOER 4 l l TEST I i 1 1 NOISE SOURCE NO.2 I I Si

/_  !,  !,

l15 VOLTS 110%. l l 8 60HZ 5% g L2 I I r

! NOISE SOURCE !

l OUTPUT CABLE I i 40-FT ANTENNA i figure 4.3. Military Specification Noise Sources

LOAD SYSTEM UNDER TEST l

ISOLATION NETWORK SURGE GENERATOR

+

o ISO o , 40-FOOT ANTENNA Figure 4-4. High Voltage Transient Noise Test Connections 006 A.195661 4-10

4.1.2 Fault Tests

\'

4.1.2.1 Description To ensure that faults injected into non-1E field wiring did not propagate to the 1E system, credible faults were applied to each type of non-1E connection.

Faults were applied to the respective terminals via non-1E isolated or else through the cabinet terminal junction box which passed the signal into the I/O component via flexible metal conduit. Refer to Tables 4-3 and 4-4 for each field wiring cable subjected to destructive and nondestructive fault tests. In l addition to the field wiring listed in Tables 4-2 and 4-3, the test injection and test interlock of the RTD and current loop input Appendix R I/O boards were subjected to the same fault tests. Faults were individually applied for 2 minutes to each defined non-1E field wire listed in Table 4-3 and 4-4.

4.1.2.2 Test Outline Types of faults included short circuits, representative applied common mode fault voltages, and representative line-to-line transverse mode fault voltages.

Direct current voltages were applied in both positive and negative polarity. The fault voltages employed were 125 Vac, 60 Hz, 580 Vac, 60 Hz,125 Vdc and 250 Vdc.

An exception to the general non-1E isolation test values was the case of fire protection buffering, in which a credible fault was defined to be 125 Vdc and 125 Vac by virtue of same-train IE installation routing.

Faults were applied to all test terminals in the following sequence: first, short circuit, next, common mode (nondestructive) line-to ground and finally, normal mode line-to-line fault (destructive) in order to minimize repairs and replacement. A detailed description of the fault tests implementation is given in the Fault Test Procedure section, Appendix D.

Normal pre-test conditions were ensured by monitoring the display and analog output signals. Data recorders were run 2 minutos prior to, during, and following each fault test. Repairs and replacement were performed and logged before proceeding to the next test in the fault test sequence.

4-11 0645N:4

T ABL E 4-4 FAULT INJECT ION F IELD CONNECTIONS Terminal I/O Isolatton Block Connections Isolator Type I/O Board Function Reference Hi Lo Sn.

Section 2032406 Data link TX 2 3 NC RS-422 Encode / Decode Data Link RPO T8102 2334063 Data Itnk RX 19 20 NC RS-422 Data Link RPU T8101 Data Itnk Train C/ display 2D33403 Train C connector SWDK-C 2D33406 DISPLAY RS-422 Encode / Decode Data Link 2344002 Output 5 6 N/A Hign Level Voltage Output DPU T8204 203317G Output 11 12 NC Appendix R Current Loop Input RPU T8103 ( nonrepeat ing) 2033170 Input 5 6 NC Appendix R Current Loop Input T8103 (nonrepeating) 2033170 Input 8 9 NC Appendix R Current Loop Input T8f03 (nonrepeating) 2D33172 Output 12 13 NC Appendia R RfD 2D33172 Input i' RPU T8104 NC Appendia R RID Input T8104 6 7 2D33172

[] T8104 8 9 NC NC Appendix R RID Appendix R RTD 2033172 Input 18104 10 11 2344D01 Input 5 6 N/A Digital Contact input (input RPU T8105 closed) 2031856 Output 6 NC 4-20 mA Current Loop Output T8106 5 RPU ( power ed) 23344DO4 Output 5 6 N/A Digital Contact Output (NO)

RPU T8108 23344DO4 Output 5 7 N/A Digital Contact Output (NC)

RPU T8108 Output Appendix R Current Loop Input 2D31856 12 NC RPU T8109 ft (analog repeating) f 064SN:4 A -

i h,  ! -

r . .
,

[- 77

' ~

, ,, j/ > .

- ~

, a -

,p,p -

,;./

e 4.1.'2.2.1 Short Circuit j ,

't h Intheshortcircuitfaulttest,thehigh,bedlowterminalsofasignalwere

{'" switched to earth ground at' fault time. 'An event mark was recorded on channel 4ofthetaperecorderindicatibgthebeginningandendoftheshortcircuit s ' fault being applied to the test injection points. Refer to Tables 4-3 and 4-4 r

g.,

', for.tes,t injection points. Refer to Figure 4-5 for the short circuit to

.-(ground test injection /redordde connection schematic.

,.3 .

4.1.2.2.2 Common Mode Fault Tests '

. L r ,,' l'

' 'I ." 1. 2. 2.'2.1 250 Vdc Common Mode Fault Test e, . . . ,

a, To the field. connections , /

of th I/O boards as shown in Tables 4-3 and 4-4, the

f.  %, tomman raode hultt' vere applied to the test injection points as follows:

r

,,L } '

r ..a> '

"1. With the 250 V negatite potential of the de power supply applied to l/

(, f f

ea$thgrourd,thepositivepot,entialweiappliedtothehighterminal i'

y of the test injection point. (RefertoFigure4-6a.)

f. g/
2. Withthe250Vnegativepotenthalofthedepowersupplyappliedto ,

I

/ earth ground, the positive po'tential 'was applied to the low terminal

{ of the test injection point. ("Re'fer to Figure 4-6b.)

r

3. With the 250 V positive potential of the de power supply applied to eart,h ground, the negative patential was applied to the high terminal

'y I ;, \ , ' f C.t, of(thetestinjectionpoint. (Refer to Figure 4-6c.)

f - , 3

, i o;I. '

> l /

<j i. With the 250 V,positivietre.tential of the de power supply applied to

f. +

j' earth grou6d,Jt he negative potential was applied to the low terminal df the test injection point. (Refer to Figure 4-6d.)

T , ; - A G! glr 61-7shows.thedepower, suppl,yfaultconnections.

(

e c' < r , ,

)

t'

) t 4 f

( * '

y J f

I .

i as j '

b ', 4-13 0645N:4+

l m, , ' a/- -

l ,'1 1

l

f

/

H ,

> -c

>- : s L sN I/0 O I I

I O l .

I I

72T s

o ~ "

TAPE 5.m L LOK > RECORDER I/2W ) .

CH.NO.I 9V l

l Figure 4-5. Short Circuit to Ground Test Injection / Recorder l

4~14 006 A 19566 9 L

H '

-

F I/O

=' T Figure 4-6a. 250 Vdc Common Mede Fault Test H ,

I L

s

' l VF I/O 1

=  ::=

l

~

Figure 4-6b. 250 Vdc Common Mode Fault Test OO6-A-1956611 4-15

l H

/

s L

- m F I/O

+

2 2 Figure 4-6c. 250 Vdc Common Mcde Fault Test e

H ,

i

=_; ' ,

F I/O

+

5 5 Figure 4-6d. 250 Vdc Common Mode Fault Test OO6 A 19566-11 4-16

20A (LINE PROTECTOR)

% 0.c.

2\  %  : 3 POWER I l

suppty - -

' pFAULT CONNECTION I 125 OR 250V l l 1

20A MAX ~

3 dr

%  :)

FOUR CAPACITORS 3300 uF EACH i

~

Figure 4-7. Oc Power Supply Fault Connections I

l j

006 A 19566 6A 4-17

4.1.2.2.2.2 580 Vac Common Mode Fault Tests The 580 Vac common faults were applied to the test injection points as follows:

1. The neutral line of the 580 V fault source was connected to earth ground and the hot line was connected to the high terminal of the test injection point. (Refer to Figure 4-8a.)
2. The neutral line of the 580 V fault source was connected to earth ground and the hot line was connected to the low terminal of the test injection point. (Refer to Figure 4-8b.)

Figure 4-9 shows the ac fault connections. Figure 4-10 shows the transformer connection for the'580 Vac fault source.

4.1.2.2.3 Line-to-Line Fault Tests Two types of line-to-line fault tests were conducted. The first type was implemented with the normal fuses internal to the I/O board circuitry -

installed according to design specifications. The second type was implemented with the fuses shorted by aluminum foil as a worst-case condition. Photographs in Appendix 8 show the I/O boards, types of faults and evidence of the fault effects while the fuses were shorted.

The components affected during the fuse shorted line-to-line fault tests are listed in the Test Effects column in Table A-13.

Note that during the de fuse shorted test, earth ground was connected to the negative potential of the de power supply. During the ac fuse shorted test, the ground was connected to the neutral line of the ac source. The de power supply capability was 20 amp maximum continuous before current limiting took effect. Four 3300 uF capacitors were in parallel with the power supply output to ensure high initial current capacity. .

4-18 0645N:4

4.1.2.2.3.1 125 V'c a Line-to-Line Fault Tests For this test, the neutral terminal of the 125 Vac source was connected to

, ground via a time delay 20 amp fuse. The faulted high and low terminals of the I/O boards listed in Tables 4-3 and 4-4 were switched via a circuit breaker to the " hot line" and earth ground. Figure 4-11 shows the ac fault connection. Figure 4-12 shows the transformer connection for the 125 Vac fault source.

! 4.1.2.2.3.2 125 Vdc Line-to-Line Fault Tests l The line-to-line faults were applied to the test injection points as follows:

1. The negative potential of the de power supply was connected to earth ground. The line-to-line fault was injected into the high and low l terminals of the test injection points. (Refer to Figure 4-13a).
2. The positive potential of the de power supply was connected to earth l- ground. The line-to-line fault was injected into the high and low terminals of the test injection points. (Refer to Figure 4-13b).

4.1.2.2.3.3 250 Vdc Line-to Line Fault Tests The line-to-line faults were applied to the test injection points as follows:

1. The negative potential of the de power supply was connected to earth ground. The l'ine-to-line fault was injected into the high and low terminals of the test injection point. (Refer to Figure 4-14a).
2. The positive potential of the de power supply was connected to earth ground. The line-to-line fault was injected into the high and low terminals of the test injection point. (Refer to Figure 4-14b).

4-19 0645N:4 l

4.1.2.2.3.4 580 Vac Line-to-Line Fault Tests For this test, the neutral terminal of 580 Vac source was connected to ground ~l via a 20 amp fuse. The faulted high and low terminals of the I/O boards ,

listed in Tables 4-3 and 4-4 were switched via circuit breaker to the " hot line" and earth ground. Figure 4-15 shows the ac fault connection. Figure 4-10 shows the transformer connection for the 580 Vac fault source.

)

)

w

~

. 0645N:4

/

>-- H '

c L w

VF I/O

Figure 4-8a. 580 Vac Common Mcde Fault Test

- I H

l e / \

> - -c L VF I/0

. Figure 4-8b. 580 Vac Common Mede Fault Test l

l l

006 A 1956612 4-21

277V o o 60A (T.D.)

20A (LINE PROTECTOR) g :S C ECTION y .

Figure 4-9. Ac Fault Connections ,

~

006 A 19566-6

120 c i 2240 l IO c l 3220 104e o208 I

m W l !0 E

277 VAC  !

$ $ 580 VAC INPUT 3 120 c l 2240 g OUTPUT E I e lIOc l 2220 -

-l04c 3208 0e L- 30 5

ELECTROSTATIC SHIELD l

l

[ Figure 4-10. Transformer Connection for the 580 Vac Fault Source 006 A 19566 7 4-23

l H j V L o- - = m N

N -

I/O

=

=

Figure 4-11. 125 Vac Line-to-Line Fault Test OO6-A 1956615

l 120 e 3240 1

I IO c o220 l

IO4e l o208 I

I I

c 30 125 VAC l -

OUTPUT 277 VAC I20 e I o240 - INPUT I

-l I O c l 3220 l

104e o208 l

1 0e h-_ oO '

=

t>

ELECTROSTATIC SHIELD

. Figure 4--12. Transformer Connection for the 125 Vac Fault Source OO6- A.19566-7 4-25

+ H .

o- - :

V L N

N I/O

l Figure 4-13a. 125 Vdc Line-to-Line Fault Test l

.l

- H

/

a- - : /

l V L 4

N N

I/O

=

Figure 4-13b. 125 Vdc Line-to-Line Fault Test 006 A 1956613 4.pg

H

/

+ >- / )

l V

>- : N N

N I/O l

- =

Figure 4-14a. 250 Vdc Line-to-Line Fault Test H

/

>~ : /

V L

>~

4 N

N I/0

- =

Figure 4-14b. 250 Vdc Line-to-Line Fault Test 006-A 1956614 4-27

/

H ,

o- - =

V L o- - = x N

N I/0 .

~

=

Figure 4-15. 580 Vac Line-to-Line Fault Test ,

4~26 006-A 19566-15 A

4.2 SURGE WITHSTAND CAPABILITY (SWC) TEST i

4.2.1 Description The SWC tests were conducted under normal operating conditions of the system in accordance with IEEE 472-1974. The purpose of this test was to determine:

(1) that no component failures occurred, and (2) that no input / output was affected except the data link when the surge was directly applied to it.

4.2.2 Test Outline l

The surge.was input in common mode and transverse mode into the termination of the inputs / outputs. The duration was 2 seconds at a 120 Hz repetition rate.

l Circuits were surge tested at 125 percent of the standard surge voltage (3.3 kV instead of 2.5 kV).

l Each of the following seven groups of circuitry was tested within the specified cenditions:

l

1. Data communication (RS-422 Data Link, Encode / Decode data link) '
2. Input current circuits (Appendix R RTD and current loop input)
3. Input voltage circuits (Appendix R RTD)
4. Digital contact (digital contact input / output)
5. Output current circuits (current loop output)
6. Output voltage circuits (high' level voltage output)
7. Ac power line (cabinet, display)

Tables 4-3 and 4-4 define each field wire subjected to the surge tests. The test injection and test interlock of the RTO and current loop input Appendix R I/0 boards were subjected to the same surge tests.

A detailed description of the SWC test implementation is given in the Surge

- Withstand Test Procedure section of Appendix D.

l 4-29 0645N:4 1

{

I 4.2.2.1 Common Mode Test i for this test, one terminal of the test generator was connected to each input or output connection of the I/O board. The other terminal of the test

  • generatcr was connected to the ground of the surge generator. An isolating '

-inductor (for example, an RF choke rated at 10 amp, 2000 V, 370 uH) was inserted in each cable lead to the normal signal source or load.

4.2.2.2 Transverse Mode Test For this test, the terminals of the test generator were connected to the high and low of of the I/O beard terminal connection. An isolating inductor (10 amps, 2000 V, 370 uH) was inserted in each lead to the normal signal source or load.

4.2.3 Implementation of Test Procedures The surge withstand capability test was carried out by using a surge generator

[ ]c The output .-

. voltage of the surge generator was set to 3.3 kV at an impedance of 150 chm.

Figure 4.16A shows common mode surge withstand capability test connection, and Figure 4.168 shows transverse mode surge withstand capability test connection. ,

The isolation network box was used to set common mode or a transverse mode.

Figure 4-16C shows a block diagram of the equipment connections which were implemented during the SWC test. Refer to Appendix 0 for the surge test procedure which shows all the test injection points that were subjected to the surge.

The duration of the surge on the test injection point was continuous for 2 seconds. Each test was carried out in the common mode and in the transverse mode. The monitored output of the surge generator was fed to channel number .

one of the tape recorder. .

4-30 0645N:4

,,-,_,-,_.---._.-----...._v--

l H

/

>-c /

L Vs I/0 N*

E _-

Figure 4-16A. Common Mode Surge Withstand Capability Test Connection.

4

+ H

/

>- = '

Vs L

I/O N*

W W Figure 4.168. Transverse Mode Surge Withstand Capability Test Connection, f.

f i

co6-A 19566-to 4-31

-- - - ~ _ _ _ _ _ _ _ _ . _ _

O U

I .

M Q

e U

3 m

v b

a er=

m op oc a

C U

V c

C oa M

.C a

se O

O L

3 M

C .

E to L

G

.Ce C

.nl U

O U

W l

T C

L 3

.e b

O W

w LO O

4-32

4.3 RADIO FREQUENCY INTERFERENCE (RFI) SUSCEPTIBILITY TEST

~

The purpose of the RFI susceptibility this test was to evaluate the

, performance of the system when subjected to electromagnetic fields such as generated from portable radio transceivers or any other devices that generate l

continuous wave radiated electromagnetic energy.

l J 4.3.1 Test Methodology i

l l The RFI susceptibility tests were conducted in accordance with SAMA Standard PMC 33.1-1978. The classes of field strengths the system was subjected to were 3 V/m and'10 V/m over the entire frequency range of 20 MHz to 1 GHz, and l l 20 V/m over the frequency range of 20 MHz to 500 MHz.

l Two types of tests were performed. In the first, referred to as a l " modulation" test, a computer controlled sweep of the signal generator was l utilized,[

l ] In the second test, referred to as a " keying" test, the signal

j. generator output was turned on and off at one second intervals and with very short rise and fall times to simulate the keying of a transceiver. [

]D.C l 4.3.2 Test Location The tests were carried out in a shielded enclosure (anechoic chamber)

(

]c l 4.3.3 Test Ecuipment Two types of antennae were used during the testing. A biconical antenna covered frequencies ranging from 20 MHz to 160 MHz, and a log periodic antenna covered frequencies ranging from 160 MHz to 1 GHz.

I.

i 4-33 0645N:4 I

Two power amplifiers were used to cover the whole frequency range. The first amplifier covered 20 MHz to 500 MHz; the second amplifier covered 500'MHz to 1 .

GHz. ___

F-

~~

D.C 4.3.4 Test Procedure Calibration testing was conducted to generate a calibration data file for the control computer for the signal generator. Once calibration testing was completed, modulation and keying tests were performed on the system cabinet and on the system display.

A detailed description of the radio frequency interference test implementation is given in the Radio Frequency. Interference Test Procedure section of .

Appendix 0.

Refer to Appendix 0 for the test procedures for the RFI susceptibility tests.

4.3.5 Calibration Test The calibration data files were generated for 3 V/m,10 V/m, and 20 V/m over the entire frequency band (20 MHz to 1 GHz), for both vertical and horizontal polarizations, for use in implementing the modulation and keying tests.

Figure 4-18 is a photo of the anechoic chamber showing the log periodic antenna in the horizontal polarization calibration [

Ic 4-34 0645N:4 a

C, b

e p

u t

e S

t s

e _

T t _

n e

m i

p -

u -

q .

E -

e c

n e

r f

e r

t e _

n I

y c

, n e _

u _

q .

e _

o r F _

i o _

d a

R 7

1 4

e r

u g

i F

v

. 4

_. _ N 5

4 6

0 ia

C. .

D n

o .

i t

a r

b i

l a _

C _

d l

i e

F y

c n

e u 4 q

e r

F .

=

i o ,

d a

R 8

1 4

e _

r u

g i

_. F 4

4 N

_ 5 4 _

_. 6 0 _

aam -

1 ; i i
i;I!!! ! ; !I il . l 1ll11<

1 i

' Dr l

- D.C Figure 4-19 is a block diagram which illustrates all the interconnections between equipment used in the RFI calibration tests for generating the

j. calibration data file.

l

,e D.C l

4.3.6 Modulaticn Test I l

l l

I l

i l

l D.C ,

i l

l

! 0645N:4

3 e

l i

~

J D.c -

Figure 4-19. Black Diagram of Radio Frequency Interference Calibration Tests 4-38 0645N:4

C, b

d l

i e

F y

c n

e u

q e

r F

i o

d a

R t

o t

c j

e b

u S

. t e

n i

b a

C 0

2 4

e _

r u

g .

i F

4

_ _ N 5

4 6

0 iO

_ j i

i I

~DC Figure 4-21. Block Diagram of Radio Frequency Interference Modulation Tests 4-40 0645N:4

'?

F . .

l 18,

v. ) Hs. _

,j,..

. ~

i \ ,

.t s 14r '\' < ( - .

.. '/ ;

egi Q !q ,'  ;/

4 -

  • j ,,,

b I dl  ?- g 4 /.1 , '; ,,, '

+. /  !

,, ,,f , 3 eff: ' e e ;;,. 4 l\l ,

j'

? :* , , \' , .

e  ? - , -

,. ,,g' + 1

,(

1 \ l 1

/:

1 '

1'r ,

r g *#

-s ag ,

i, f l

~'. 1

)i+

v ,, c d .y .s of lj' o .,.

s' r.<.

9 _.

,4; . , . , . ,

0.c r ,1 p * .

f The system display was usej te monitor system performance and the simulated Y input'hhentarget'ingthecabinet. A tape recorder was used to record the analog data, and a data logger was.'Jsed to obtain a printout for pre-test and r post-test data. Refer to Table 5-2, Analog Output Tables, for the recorded l cha'anoi s.

B

,.. t Fol'owing 'tne cabinet test, the system display was subjected, in the vertical andhorizontalpolarizitions,tothesameRFfieldstowhichthecabinethad been'subje2ted. The disolay was subjected to the RF field on both the front I

and back sides. Table 5-2 shows the modulation tests performed on the display.

While targeting the display, it was monitored with a video camera and observed on a TV monitor. During the test, the analog outputs of the cabinet I/O were i

recorded on a tape recorder.

d h

l 4-41 0645N:4

)

l

1 1

4.3.7 Keying Test

._ b.C Figure 4-22 is a block diagram which shows the interconnections between equipment used for the RFI keying tests.

bC i

4-42 0645N:4

l. .

l l

l 'l I  ;

! TABLE 4 ,

!e. KEYING TEST FREQUENCIES I 1 l

l -

I I

l

!~

[

i l

f I

1 l'

l

~

~bC l

6 l

f .

I Ir o-I~

i i

1 4-43

-0645N:4

=I i

i.

l i,

i I '

1 i

l I

i t

l

~D.C I

Figure 4-22. Block Diagram of Radio Frequency t

' . Interference Keying Tests i

i t

I 1

l 4-44 l 0645N:4

SECTION 5 TEST SETUP AND MONITORING 5.1 TEST SETUP The test setup consisted of a Remote Processing Unit (RPU) and a Database Processing Unit (OPU) housed in a split-bay cabinet. Field cables (bundled) were routed to a patch panol. The analog signals were taken from the patch panel and fed into a digital data logger, and through a buffer amplifier to a tape recorder. Figure 5-1 shows the cabinet and field cable setup. Figure 5-2 shows the test equipment setup (patch panel, tape recorder, data logger and noise sources). Refer also to Figure 2-3 in Section 2, which shows system hardware and field cable connections, including the data acquisition and monitoring system.

5.1.1 System Connections System connections throughout the test were implemented via the patch panel.

Some of the input / output signals from the system I/O boards were routed normally; those that were always considered to be isolat2d were routed through flexible metal conduits inside the cabinet to junction boxes. The RPU/DPU field connections to the I/O terminations are shown in detail in Appendix E.

The routing configuration and the separation of the field connection cables were implemented according to standard nuclear power plant practices.

l Two alternative configurations of the data link boards were used. An RS-422 data link board was installed in TB101, while an RS-422 Encode / Decode data link was installed in TB102. Both boards stayed in place, but the connection l

. to the processor was changed to allow each board to be tested for transmitting I

and receiving. The rest of the I/O connections remained in place, as

{

, described in Section 2, System Configuration.

l 5-1 0645N:4

i l

i .

i

- c -

Figure 5-1. Cabinet and Field Cable Setup 5-2 0645N:4

. c p

t u

e S

t n

e m

p i

u E

q t

s e

T e

g r

u S

d n

a -

t l

u a

F

- e

_ s i

o N

2 5

e

_. r u

g i

f 4

N 5

4 6

0 n

u0w

i. ;;i !i 1ili111 1. } e iI,1 i ) ,.i.!,.1 1)1I!Ii1; ,1s41i ,i.i41 t t:!. . j 1lli

1 5.1.2 Simulated Inout Signals In order to replicate normal system operation, signals representing temperature, pressurizer level, and RHR flow were simulated and input to the '

RPU. Table 5-1 shows the simulated parameter values. Potentiometers were used to set temperature values; other values were set by fixed resistors. The potentiometers and fixed resistors were mounted on the patch panel. Simulated sensor inputs were adjusted to " normal" milliampere or resistance values for sensors and RTDs, respectively. Contact inputs were single pole, double-throw switches set to " normal" status. Simulated inputs were retained throughout testing except when that specific field cable was a line-to-line fault injection point. Forty-foot cables connected the patch panel to the I/O terminal connections of the RPU/0PU.

Figure 5-3 shows a simulated sensor input signal for a resistance temperature detector (RTD). Figure 5-4 shows a 4-20 mA transmitter simulator.

5.1.3 Data Acquisition System and Analog Outouts The data acquisition system provided a record of all analog outputs during '

each test. The data acquistion system consisted of a tape recorder and a digital data logger. The tape recorder was interfaced to the patch panel through buffer amplifiers. The data logger was connected directly to the panel.

Figure 5-5, 5-6, and 5-7 show the technique used for monitoring analog current loop output, analog output, and digital contact input / output signals.

5.1.3.1 Tape Recorder A( ),,c tape recorder was used to record the outputs of the system.

The noise or fault signal was recorded on channel 1; the other channels were used for the system analog I/O (refer to Table 5-2). (

]e.c ,

5-4 0645N:4

~

TABLE 5-1 SIMULATION OF NORMAL PARAMETER VALUES Reference Parameter Display Sensor Connection Identification Units Range Simulation Outout Set TB204 FI-417A 100% 0-120% N/A 8.33 V Computer set value TB204 FI-437A 100% 0-120% N/A 8.33 V- Computer set value TB205 System alarms N/A N/A N/A Normally open TB103 LT-467 56% 0-100% Fixed N/A (2,3) Pressurizer resistor level TB103 TE434 4.09 V (11,12)

TB103 PT-406 RCS 1981 0-3000 Fixed N/A 16.26 mA (16,17) Wide range psig psig resistor pressure TB103 TE444 4.09 V (26,27)'

TB104 TE414 RCS T c

540*F 0-700*F Potentiometer 4.09 V 411.4 chm Loop 1 TB104 TE424 RCS T c

540*F 0-700*F Potentiometer 4.09V 411.4 chm l Loop 2 TB105 LSH7803 Pump 18 N/A Closed contact N/A (2,3) Sump H TB105 LSHH7803A Pump N/A Closed contact N/A (5,6) IB Sump H.H.

P4-B Reactor N/A Closed contact N/A l

~

trip switchgear TRN-S l'

l 5-5 i 0645N:4 l

TABLE 5-1 (Cont)

SIMULATION OF NORMAL PARAMETER VALUES Display Sensor Reference Parameter Units Range Simulation Outout Set Connection Identification 130*F 50* to N/A 1.91 V Computer TB106 PMY-868 RHR (2,3) temperature 400*F set value 100 0-700 N/A 1.57 V Computer TB106 PMY-862 RHR (5, 6) pressure psig psig set value 540*F 0-700*F Potentiometer TB103 411.4 chm TB107 TE434 RCS T Loop 3 c (11, 12) 540*F 0-700*F Potentiometer TB103 411.4 ohm TB107 TE444 RCS T c Loop 4 (25,26)

TB108 EN1, 2 and 3 N/A N/A Nor- N/A mally open FT868 RHR Pump 464 0-4000 Fixed resistor 1.0 V 4.0 mA TB109 B flow ,

5-6 0645N:4

1 1

I 1

/\

/

I/O TERMINAL f) } I% PRECISION CONNECTIONS RESISTOR i

\ m k/

V

\

Figure 5-3. 4-20 mA Transmitter Simulator l

\

i 006 A 19sse 25 5-7

/g A

-B

/

0-1000 OHM PRECISION (0.1%)

I/O TERMINAL POTENTIOMETER CONNECTIONS

) D V

Figure 5-4. Resistance Temperature Detector (RTO) 006 A 19566 25A 5-8

l l

i l

l

- GROUND y TO BUFFER AMPLIFIER AND n fg[ DATA LOGGER I/O TERMINAL f I) I) 250 OHM

. CONNECTIONS 0.1% 1/2 WATT kl V

k l-V 3 Figure 5-5. 4-20 mA Current Loop Output 006 A 195'66 24 5-9

TABLE 5-2 TAPE RECORDED DATA Tape Recorder Re ference I/O Function TB Connection Channel I Noise / source N/A _

DC 5-10 0645N:4

The differential outputs of the system were fed through buffer amplifiers, which also converted the signals from differential to single ended. Each signal was fed through one buffer amplifier, except the contact input, which l was fed through two buffer amplifiers in series for attenuation purposes.

Figure 5-6 shows a typical connection for an analog output channel. Figure '

5-7 shows the contact output connection to the buffer amplifier.

5.1.3.2 Data Logger The digital data logger was used for pre-test and post-test verificaticn of analog output status. Prior to each test, it was used to generate a printout for all [ ],,c channels to verify that the analog output values were normal.

After each test, another printout of the data for all [ ]c,c channels was generated to verify that the analog signal levels had not changed during testing. These printouts were then attached to the backs of the data sheets.

The data logger was not connected during testing.

4 l

l l

I 5-11 0645N:4

)

i

A II I/O TERMINAL > TAPE RECORCER CONNECTIONS 7

\ ll

/

FIELD CABLE

~

LOAD IMPEDANCE -

BUFFER AMPLIFIER Figure 5-6. Analog Output Channel Recording .

006 A 19566 2' 5-12

1 I

i l

l l

l. >

l l

'. l l

i

!. i

\ l l

l l

/

I/O TERMINAL LOK CONNECTIONS +g y f f TAPE RECCqCER i

N  :

, BATTERY .,1.,

3-N BUFFER AMPLIFIER l

l l

l l.

Figure 5-7. Contact Output Connection 006 A.19566 21 A 5-13 L. .. . . - - ._.._-.--..N-.-._.-.--. . - - - - . . - . - - - - - - - , - - - . - - - . - -. - - - -

5.2 TEST MONITORING The tests were monitored in accordance with the acceptance criteria outlined in Section 6. The system display, data link tester and analog ouput signals '

were monitored to ensure that the system and its input /ouput remained functional and accurate throughout the noise, fault, surge and radio frequency 1 interference testing. ,

The tape recorder was run 2 minutes prior to testing, 2 minutes during noise or fault,_ application, and 2 minutes after testing. The recorded cutputs were Information monitored and all observed effects were no'ted on data sheets.

specified on the data sheets included the type of test performed, the beginning and end of the recording footage, where the noise or fault was applied, and remarks and test observations. Figure 5-8 shows a sample noise test data sheet; Figure 5-9 shows a sample fault test data sheet; Figure 5-9A  ;

shows a sample surge test. data sheet.

Log sheets were also kept during testing. The log sheets showed the test set, '

date, and time; the beginning and end of the recording footage; and the gain .;

and frequency setting for each buffer amplifier. Figure 5-10 shows a . sample l log sheet. The data sheets and log sheets were compa. red to ensure the -l accuracy of the record keeping.

5.2.1 Display Monitoring

^

~

Thesystemdisplaymodulewasusedtomonito'r$1slmulatedsignals,the status of the RPU and the~DPU, and the status of the RPU/DPU and DPU/ display data linns. The display pages were checked before and after testing to ensure that the noise, fault, surge and radio frequency interferenco did not affect the simulated input or propagate through the system.

The actual values of the simulator signals appeared on the following display pages selected from the Detail Data Menu:

5-14 0645N:4

e PAGE 1 PRIMARY DATA -- This display showed PT406 wide range pressure; TE414 wide range temperature loop 1; TE424 wide range temperature loop 2, TE434 wide range temperature loop 3; and TE444 wide range temperature loop 4 (Figure 5-11).

e PAGE 3 PRIMARY DATA -- This display showed LT467 pressurizer level (Figure 5-12).

e PAGE 8 CCW, RHR DATA -- This display showed FT868 Residual Heat Removal flow (Figure 5-13).

The status of the RPU and DPU appeared on the following display pages selected from the Diagnostic Summary Menu:

JI PAGE 2 OPU STATUS -- This display showed the hardware and software status of the DPU (Figure 5-14).

e PAGE 3 APC-1 STATUS -- This display showed the hardware and software

, status of the RPU (Figure 5-15).

The status of the RPU/0PU and the OPU/ display data links appeared on the bottem of each page of the display.

5.2.2 Data Link Tester The data link tester was used to monitor the RPU/0PU data link and the RPU/ERF (Emergency Response Facility) data link. The data link tester also provided the capability to monitor the real time clock link between the RPU and DPU and to monitor the contact input simulated signal. These capabilities were not available on the system display.

5.2.3 Analog Outout The analog output signals were monitored during the entire test using a digital voltmeter. This ensured that the accuracy of the output had not degraded during testing.

5-15 0645N:4

~'

v Procedure Rev.

Date Test # ,

. TYPE AC , DC' SHORT CIRCUIT ,

NINUS GROUND COMMON MODE GROUNO CONNECTED TO VOLTS PLUS LINE TO LINE V0LTS (+) TO (+) (+)TO(-)

VOLTS (-) 70 (+) (-) 70 (-)

TYPE POINT I/O MODULES TB PRE-TEST DATA LCGGER CALIBRATION VERIFICATION REMARKS G

DISCONNECT DATA LOGGER TAPE RECORDER FOOTAGE BEGIN END' SET #

DISPLAY PAGE

  • RTC BYTE CONTACT #1 IN BYTE #2 CRT OBSERVATION POINTS TEST OBSERVATIONS:

POST-TEST OBSERVATIONS (DISPLAY AND STATUS):

POST-TEST DATA LOGGER CALIBRATION VERIFICATION:

l PERFORMED VERIFIED _

I -

- Figura 5-8. Fault Test Data. Sheet

! 5-16 j 0645N:4 l

u .. . , . .~... . ___ _ _ . _ .__.._. __ ___-_..... _ _ _

Procedure Rev.

Oate:

Test #:

TYPE l* RANDOM NOISE MIL N10099 #1 CROSSTALK NOISE MIL N19900 #2 SURGE TRANSIENT TEST INJECTION POINT IB# TYPE POINT # ORAWING CONFIGURATION TABLE Al A2 PRE-TEST l DATA LCGGER DATA VERIFICATION

  • PRINT OUTPUT r SYSTEM STATUS: OPU RPU DISPLAY DATA LINK DISPLAY TYPE VALUE PAGE 1 PT406 TEd14 TETZ4 TE434 TE444 PAGE 3 LT467 '.PAGE B FT868 DATA LINK DATA BYTE RTC CONTACT #1 & #2 REMARKS AND TEST OBSERVATION DISCONNECT DATA LOGGER ,

TEST l

TAPE RECORDER FOOTAGE BEGIN END SET #

SPEED TIME

, SYSTEM STATUS: OPU RPU DISPLAY DATA LINK DISPLAY TYPE VALUE PAGE 1 PT406 TE414 TE424 TE434- TE444 PAGE 3 LT467 PAGE B FT868

. DATA LINK OATA BYTE RTC CONTACT #1 & #2 REMARKS AND TEST OBSERVATION I

POST-TEST DATA LCGGER DATA VERIFICATION * . PRINT OUTPUT #

l SYSTEM STATUS: OPU RPU DISPLAY 9ATA LINK

! OISPLAY TYPE VALUE PAGE 1 PT406 TE414 TE171 TE434 TE444

! PAGE 3 LT467 PACE 3 FT868

( DATA LINK OATA BYTE RTC CONTACT 41 & #2 REMARKS AND TEST OBSERVATION PERFORMER VERIFIER NOTE:

Figure 5-9. Noise Test Data Sheet 5-17 0645N:4

1 Procedure Rev.

TYPE NORMAL MODE I/O CARO TYPE P/N

COMMON MODE TB CONNECTION PRE TEST DATA LOGGER VERIFICATION.

REMARKS DISCONNECT DATA LOGGER TAPE RECORDER'F00TAGE BEGIN END DISPLAY PAGE

~

RTC BYTE CONTACT #1 IN BYTE #2 CRT OBSERVATION POINTS TEST OBSERVATIONS:

POST TEST OBSERVATIONS (DISPLAY _ANO STATUS):

PbSTTESTDATALOGGERVERIFICATION:

PERFORMER VERIFIER Figure 5-9A. Surge Test Data Sheet 5-18 0645N:4

c, b

i;;

t e

e h

S g

_ /

o L

r e

d r

_ o _

_ c

_ e R

e p

a T

0 _

1 5 _

_ e _

r _

_ u g

i _

_ f _

_ , - 4

_ N 5

4 6

0 TG

l 4

1 i

1 4.D.C Figure 5-11. Page 1 Primary Data 5-20 0645N:4

t 1

t.

I l

I i

?-

1 l

1 0

l

~

l

~ 4.0.C l

l-

. Figure 5-12. Page 3 Primary Data I

5-21 j 0645N:4 t

I

  • l l

l i

s r

~

.i R

l i

I I

- 4.0.c Figure 5-13. Page 8 CCW and RHR Data 5-22 0645N:4

.I .

i l

1 i

I I

t l

I l

I i

~

a,0,c Figure 5-14. Page 2 DPU Status 5-23 0645N:4

l l

)

1 l

/

I t

i 3.0.C Figure 5-15. Page 3 RPU Status 5-24 0645N:4

SECTION 6

., ACCEPTANCE CRITERIA

6.1 DESCRIPTION

The general acceptance criterion far the 1E safety related system is that the system shall remain operational in the event of credible noise or fault injected from the non-1E isolated wiring or to the terminal connection of the I/O board. Specific acceptance criteria for the noise and fault, surge withstand and radio frequency interference tests are defined in the following paragraphs.

6.1.1 Noise and Fault Acceptance Criteria The system shall continue to operate with proper data transfer and within the specified accuracy during' noise and fault testing. No channels in trains other than the train in which the noise or fault is injected shall be affected. For example, when applying the test signal to an isolated output, the 1E input shall not be affected. When applying the test signal to a non-1E input, the 1E inputs and outputs of the system shall'not be affected.

6.1.2 Surge Withstand Acceotance Criteria The system shall continue to operate with the proper data transfer and within the specified accuracy during surge withstand testing. No channel in the same or other train, including the channel being surged, shall be affected, with the exception of surge application to a data link channel, in which case the data flow may stop until the surge is removed.

6.1.3 Radio Frequency Interference Acceptance Criteria l, The system shall continue to operate with proper data transfer and within the specified accuracy at an RF field of 3 V/m over the frequency band of 20 MHz to 1 GHz with cabinet doors closed.

6-1 0645N:4

4 4

t SECTION 7 a TEST RESULTS i

7.1 DESCRIPTION

t The results of the system noise and fault tests are based on the acceptance criter~ia defined in Section 6. The observations of the display, the data link

$ tester';,and the analog signal recording before, during, and after each noise and fau!t test showed no effect on the continuous operation of the RFU, DPU,

' display or input / output signals (analog / digital). Tables 7-1 through 7-5 show 3the results for each type of I/O and display subjected to the tests. The following is a detailed description of the noise and fault test results.

l .i

'/ 7.24; NOISE AND FAULT TEST RESULTS l

7.2.1 Noise Test Results '

l* 7.2.1.1 Random Noise Test Results '

l

')

No effects were observed on the system performance during the test. Refer to

-Table'7-1 for compliance to passed / failed criteria and to Table A-1 for test effects. )

7.2.1.2 Crosstalk Noise -- Chattering Relays ;

7.2.1.2i1 Ac Chattering Relay No effects were observed on the system performance during the testI Refer to Table 7-1 for compliance to passed / failed criteria and to Table A-2 for test l

effects. '

1 t l l

J 7-1 0646N:4 l

7.2.1.2.2 Oc Chattering Relay No effects were observed on the performance of the system I/O and processors i during the test. [ '

],,c Refer to Table 7-1 for '

compliance to passed / failed criteria and to Table A-3 for test effects.

7.2.1.3 Military Specification Noise 7.2.1.3.1 Noise Sourca No. I No effects were observed on the system performance during the test. Refer to ,

Table 7-1 for compliance to passed / failed criteria and to Table A-4 for test effects.

7.2.1.3.2 Noise Source No. 2 No effects were cbserved on the system performance during the test. Refer to Table 7-1 for compliance to passed / failed criteria and to Table A-5 for test . ;

effects. . .

7.2.1.4 High Voltage Transient Noise l No effects were observed on the performance of the system I/O and processors ,

during the test. (

) Refer to Table 7-1 for compliance to passed / failed criteria and to Table A-6 for test effects. ,

7.2.2 Fault Test Results 7.2.2.1 Short Circuit Fault

- i No ef;fects were observed on the system performance during the test. Refer to Table 7-3 for compliance to passed / failed criteria and to Table A-10 for test effects.

7-2 0646N:4

7.2.2.2 Common Mode Fault 7.2.2.2.1 250 Vdc No effects were cbserved on the system performance during the test. Refer to Table 7-3 for compliance to passed / failed criteria and to Table A-11 for test effects.

7.2.2.2.2 580 Vac No effects were observed on the system performance durin,g the test. Refer to Table 7-3 for compliance to passed / failed criteria and to Table A-11 for test effects.

7.2.2.3 Line-to-Line Fault 7.2.2.3.1 Internal Fuse Installed

. 7.2.2.3.1.1 125 Vac Fault No effects were observed.on the system performance during the test. Refer to Table 7-4 for compliance to passed / failed criteria and to Table A-12 for test effects.

7.2.2.3.1.2 125 Vdc Fault No effects were observed on the system performance during the test. Refer to Table 7-4 for compliance to passed / failed criteria and to Table A-12 for test effects.

7.2.2.3.1.3 250 Vdc Fault No effects were observed on the system performance during the test. Refer to Table 7-4 for compliance to passed / failed criteria and to Table A-12 for test effects.

7-3 0646N:4

7.2.2.3.1.4 580 Vac Fault No effects were observed on the system performance during the test. Refer to l

Table 7-4 for compliance to passed / failed criteria and to Table A-12 for test _

effects.

7.2.2.3.2 Internal Fuse Shorted 7.2.2.3.2.1 125 Vac Fault No effects were observed on the system performance during the test. Refer to Table 7-5 for compliance to passed / failed criteria and to Table A-13 for test effects.

7.2.2.3.2.2 125 Vdc Fault 0

No effects were observed on the system performance during the test. Refer to Table 7-5 for compliance to passed / failed criteria and to Table A-13 for test effects.

7.2.2.3.2.3 250 Vdc Fault No effects were observed on the system performance during the ' test.

~

Refer to Table 7-5 for compliance to passed / failed criteria and to T5ble A-13 for test effects.

7.2.2.3.2.4 580 Vac Fault No effects were observed on the system performance during the test. Refer to Table 7-5 for compliance to passed / failed criteria and to Table A-13 for test effects.

7-4 0646N:4

f 7.3 SURGE WITHSTAND FAULT TEST RESULTS 7.3.1 Common Mode No effects were observed on the performance of the system I/O and processors l

during the test. [

],, Refer to Table 7-3 for l compliance to passed / failed criteria and to Table A-9 for test effects.

l

7.3.2 Transverse Mode l

l No effects were observed on the system performance during the test. Refer to l Table 7-3 for passed / failed criteria and to Table A-9 for test effects.

7.4 RADIO FREQUENCY INTERFERENCE TEST RESULTS 7.4.1 Modulation Tests ,

. 7.4.1.1 3 V/m Field Strength 7.4 1.1.1 Vertical Polarization No effects were observed on the system performance during the test. Refer to Table 7-2 for compliance to passed / failed criteria and to Table A-7 for test effects.

7.4.1.1.2 Horizontal Polarization No effects were observed on the system performance during the test. Refer to Table 7-2 for compliance to passed / failed ~ criteria and to Table A-7 for test effects.

7-5 0646N:4

7.4.1.2 10 V/m Field Strength 7.4.1.2.1 Vertical Polarization

~

The RPU/0PU performed properly during the test except in the range [

],,, Refer to Table 7-2  ;

for compliance to passed / failed criteria and to Table A-7 for test implementation and effects.

l l

7.4.1.2.2 Horizontal Polarization The RPU/0PU performed properly during the test except in the range [

],,c The display module performed properly except in the range [

Refer to Table 7-2 for compliance to passed / failed criteria and

],,c to Table A-7 for test effects.

7.4.1.3 20 V/m Field Strength 7.4.1.3.1 Vertical Polarization .

The RPU/DPU performed properly during the test except in the range [

),,c Refer to Table 7-2 for compliance to passed / failed criteria and to Table A-7 for test implementation and effects.

7.4.1.3.2 Horizontal Polarization The RPU/DPU performed properly during the test except in the range (

),,c Refer to Table 7-2 for compliance to passed / failed criteria and to Table A-7 for test implementa-tion and effects.

7-6 0646N:4

7.4.2 Keying Test

. 7.4.2.1 3 V/m Field Strength 7.4.2.1.1 Vertical Polarization No effects were observed on the system performance during the test. Refer to Table 7-2 for compliance to passed / failed criteria and to Table A-8 for test effects.

7.4.2.1.2 Horizontal Polarization No effects were observed on the system performance during the test. Refer to Table 7-2 for compliance to passed / failed criteria and to Table A-8 for test effects. '

l 7.4.2.2 10 V/m Field Strength I i

, 7.4.2.2.1 Vertical Polarization No effects were observed on the system performance during the test. Refer to Table 7-2 for passed / failed criteria and to Table A-8 for test effects.

7.4.2.2.2 Horizontal Polarization No effects were observed on the system performance during the test. Refer to Table 7-2 for passed / failed criteria and to Table A-8 for test effects.

l v

7-7 0646N:4

TABLE 7-1 NOISE 1ES15 High Voltage Random Noise Crosstalk Notse Williary Specificallon Noise Translent Noise I/O Board AC T5Ts oc T518 Source 85 ISTa source 82 ISI* ISIS Description Isla Passed H104 Passed N102 Passed N101 Passed N57 Passed N42 Passed NIO3

1. RS422 Data link (transmit)

Passed H34 Passed N17 Passed N75 Passed N66 Passed N5O Passed IGS

2. RS422 Data Innk (receive)
3. Encode / Decode RS422 Data lir.k (transmit) H32 Passed M12 Passed N79 Passed N65 Passed N49 Passed N92 3a. baud rate 19.2 K Passed Passed H29 Passed MI3 Passed N77 Passed N62 Passed N46 Passed N89 3D. baud rate 800 K
4. Encode / Decode RS422
  • Data link (receive) N100 Passed N98 Passed N97 Passed N58 Passed N43 Passed N99 da. baud rate 19.2 K Passed Passed H30 Passed M14 Passed N76 Passed HG3 Passed N47 Passed N90 4D. Daud rate 800 K Passed N19 Passed N2 Passed N67 Passed N51 Passed N35 Passed N81
5. Appendla R Current loop input Passed H2O Passed N3 Passed N69 Passed H52 Passed H36 Passed Ntf2
6. Appendla R Rio Passed H21 Passed N4 Passed N73 Passed H53 Passed N37 Passed N87
7. Digital Contact input 4-20 mA Current loop Passed H22 Passed NS Passed N70 Passed M54 Passed N38 Passed N83 8.

y output

" Digital contact output 9.

Passed N24 Passed N6 Passed N79 Passed NSS Pasted N39 Passed N85 9a. Nr)rmally Closed Passed N40 Passed NB6 Passed N25 Passed N7 Passed N72 Passed N56 9D. Normally open Passed Passed NI6 Passed N68 Passed NS$ Passed N45 Passed H84

10. Appendla R Currant loop H23 Input (repeater)

Passed H28 Passed N15 Passed N74 Passed Passed N44 Passed N94 St. High voltage level output i2. .

O.C

. = SpeClal NonreQuired Test Nolt- i.

I'

]b,C i

0646N:4

. 4 . . . .

TABLE 7-2 RADIO FREOUf;NCY INTERFERENCE NOISE TEST anodulation Test Keving Test Vertical florizontal VertScal Hor t zont al Polartzat' ton Polarizatton Polarlzatton Polar 1tatton Frequency Sand Frequency Band Frequency 8and Frequency Band a b c a b c a b c a b c Cabinet processor Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Class 1 and I/O 3 V/m System display Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed Passed module Cabinet OK OK/ OK OK OK/ OK OK OK OK OK OK On processor Encept Emcept and I/O f f y Class 2 L L s 10 V/m b,c b.c .

W Systen dtsplay OK/ OK OK OK OK/ OK OK OK OK OK OK OK module Except acep b,c L Ib,c Cabinet N/T OK OK OK OK/ OK N/T N/T N/T N/T N/T N/T processor 160-300 300-500 except 300-500 and I/O 1942 leir

{ ]D'C Isir Class 3 20 V/m System display N/T N/T N/T N/T N/T N/T N/T N/T N/T N/T N/T N/T module Frequency band a = 20 Retz - 50 AIHz b = $0 Miz - 300 letz c = 300 letz - 1 GHz N/I = Not Tested . i 0567N:4

IABLE 7-3 FA. ULT TESTS 250 cc Common abde 580 vac Common esode

- PS to GND + PS to CND Neutral to GNO Surge withstand + PS to I/O - PS to I/O Hot to I/O Comann Iransverse Short Description stode TSta enode TSia Ctrcuit ISia Into H ISie Into L ISia Into H 1$18 Into L T$ie Into H TSia Into L TSia

1. RS422 Data link Passed $42 Passed $45 Passed SH10 Passed C42 Passed C43 Passed C44 Passed C45 Passed C68 Passed C69 output ( t ransmit )
2. RS422 Data link Passed $39 Passed $40 Passed SH10A Passed C246 Passed C247 Passed C248 Passed C249 Passed C74 Passed C75 (receive) i
3. Encode / Decode Passed 538 Passe:I $37 Passed SH9 Passed C244 Passed C245 Passed C242 Passed C243 Passed C72 Passed C73 RS422 Data Ilok (transmit)
4. Encode / Decode Passed 543 Passed 544 Passed SHS Passed C46 Passed C47 Passed C48 Passed C49 Passed C70 Passed C71 RS422 Data link (receive)
5. Appendia R current loop loput 5a - (output) Passed 510 Passed 59 Passed SH2 Passed CIS Passed C16 Passed C17 Passed C18 Passed CSS Passed C56 SD - (output) Passed $11 Passed $112 NfR N/R N/A N/R N/R N/R N/R w 6. Appendia R RTD 8 6a - output Passed 53 Passed $4 Passed SH3 Passed C2O Passed C21 Passed C22 Passed C23 Passed C57 Passed C58 Passed 56 Passed SS N/N N/R N/R N/R N/R N/R N/R

$ 6b - enttation 6c - sense Passed $7 Passed 58 N/R N/R N/R N/R N/R N/R N/R

7. Digital contact Passed $14 Passed 513 Passed SHS Passed C24 Passed C25 Passed C26 Passed C27 Passed C59 Passed C60 Input
8. 4-20 mA current Passed S2 Passed St Passed SH4 Passed C28 Passed C29 Passed C30 Passed C31 Passed C61 Passed C62 loop output
9. Digital contact output 9a - Normally Passed $15 Passed $16 Passed SH6 Passed C32 Passed C33 Passed C34 Passed C35 Passed C63 Passed C65 closed Passed C36 Passed C37 Passed C38 passed C39 Passed C64 Passed C65 90 - Normally Passed S18 Passed $17 Passed SH7 open
10. Appendix R Current loop input (repeater) 10a - output Passed S19 Passed S2O Passed SHS Passed C40 Passed C41 Passed C38 Passed C39 Passed C66 Passed C67 100 - in;Ast Passed 522 Passed $25 N/R N/R N/R N/R N/R N/R N/R l

N/R = Not Required 0646N:4

4 TABLE 7-3 (CONT)

FAULT TESi$ .

250 de Common neode 580 vac Common anode

- PS t o GND + PS to GND Neutral t o GND Surge Withstand

  • PS to I/O - PS to I/O Hot to I/O Common Iransverse Short Descripttoo aAode 151# Mode TSta Circutt iSTs into H TST# Into L 7518 Into H TSia into L Isis Into H IST8 Into L TS1*
11. Hign level Passed 524 Passed 525 Passed Sh1 Passed C11 Passed Cl2 Passed Cf3 Passed C4 Passed C53 Passed C54 voltage output .-
12. *

~

~ D.C

13. Appendla R Passed 527 Passed 528 Passed SH78 Passed C81 Passed C82 Passed C79 Passed C80 Passed C76 Passed C77 current loop input (test injectton)
14. Appendia R Passed $30 Passed $29 Passed 589 Passed CSS Passed C86 Passed C83 Passed C84 Passed C87 Passed C88 current loop input (test interlock)
15. Appendia R RfD (Test injectlon) 15a - exstation Passed $31 Passed $32 Passed SH90 Passed C100 Passed C101 Passed C96 Passed C97 Passed C92 Passed C93 Passed C102 Passed C103 Passed C98 Passed C99 Passed C94 Passed f.95 Y 15b - sense Passed S34 Passed S33 Passed SMB1
16. Appendia R RfD Passed $35 Passed 536 Passed SHl10 Passed C106 Passed C107 Passed CIO4 Passed CLOS Passed C108 Passed C109 (test interlock)
17. Ac power llM x 17a - cabinet Passed $48 Passed $47 N/R N/R N/R N/R N/R N/R N/R 17b - display Passed 550 Passed 549 N/R N/R N/R N/R , N/R N/R N/R
  • 4
  • = Special Nonrequired Test N/R = Not Required NOTE: 1 ( Ic D

0646N:4

TABLE 7-4 LINE-10-LINE F AULT FUSE INST ALLED 250 Vdc 580 Vac 125 Vdc GND Connect ed t o P .S. GND Connected to Neutral GND Connected toNegative P.S. TSI a Negative TST a TST a 125 ac IST # TST s Positive TST # Positive Description Passed LIB 8 Passed L186 Passed L190 Ll73 Passed L175 Passed LI7S Passed

1. R$422 Data Innk (transmit) Passed Ll56 Passed L157 Passed L169 L136 Passed L137 Passed L120 Passed
2. R$422 Data link (receive) L155 Passed L158 Passed L168 Passed Lt38 Passed Passed Ll35 3 Encode / Decode Passed L119 R$422 Data link (transmit) Lt72 Passed L189 Passed L187 Passed Ll91 Passed L174 Passed 4 Encode / Decode Passed Lt?6 R$422 Data link (receive) Passed Ll41 Passed L142 Passed Ll62 L160 Passed L122 Passed- L112 Passed
5. Appendin R Current loop input Passed Ll44 Passed Ll43 Passed L163 L124 Passed Lt23 Appendia R Passed Lit 3 Passed 6.

Passed L164 y RID Lt25 Passed L126 Passed L145 Passed L146 Passed L114 Passed N 7. Olgttal contact input Passed L148 Passed L147 Passed L165 Lt28 Passed L127 Passed L115 Passed

8. 4-20 mA current loop output

'9. Olgital Contact Passed L151 Passed L167 L131 Passed LISO output Passed L129 Passed 9a-Normally Passed L196 -

Ll49 /assed L152 Passed L166 closed Passed Lt32 Passed Passed L130 90-Norma 11y Passed L117 opened Passed L153 Passed L170 L133 Passed L154 Passed L134 Passed

10. Appendix R Passed L118 .

Current loop Input (repeater) 0646N:4

TABLE 7-4 (CONT)

LINE-TO-LINE F AULT FUSE INSTALLED 125 Vdc 250 Vdc 580 Vac 125 ac GND Connect to P.S. . GNO Connect to P.S. GNO Connected to NeutraI Descrsptton TST a Positive TSI # Negative TST a Postttwe TSI # Negattwe IST

  • TST a Hlgn level Passed L111 Passed L159 Passed Ll21 Passed Ll40 Passed L139 Passed L161 II.

voitage output 124. Encode / Decode Passed L233 Passed L245 Passed L234 N/R' N/R N/R RS422 Data Link

(I/O BOARD)

Passed L235 Passed L178 Passed Ll77 N/R N/R N/R

13. Appendia R current 1000 input (test injectlon)

Passed L236 Passed Ll79 Passed L180 N/R N/R N/R

14. Appendla R current loop input (test Interlock) w 15. Appendia RTD 8

(test U injectton) 15a-encitation Passed L238 Passed L182 Passed L182 N/R N/R N/R ISD-sense Passed L239 Passed Lt85 Passed Ll83 N/R N/R N/R Appendla R Passed L237 Passed L240 Passed L181 N/R N/R N/R 16.

RfD (test interlock)

'N/R = Not Required

These fault tests were performed on a separate data link board transmit channel connected as Train C to the display module. Faults from a postulated source inside the Train C DPU were tested. I$animum Credible fault voltages of 125 Vac and 125 Vdc were assumed. The faults were appiled directly to the isolation barrier components (optical isolators) for worst case conditions.

0646N:4

TABLE 7-5 LINE-TO-LINE FAULT FUSE SHORTED I/O Board Descriptton 125 Vdc TST # 125 Vac TST a 250 Vdc T5T

1. RS422 Data llok Passed L201 Passed L209 Passed L216 Passed L223 transmit
2. RS422 Data link Passed L228 Passed L226 Passed L230 Passed L232 receive
3. Encode / Decode RS422 Passed L227 Passed L225 Passed L229 Passed L238 Data 11nk (transmit )

4 Encode / Decode RS422 Passed L2OO Passed L210 Passed L217 Passed L224 Data link (receive)

. 5. Appendix R current Passed L198 Passed L206 N/R* N/R 1000 input

6. Appendix R RTD Passed L199 Passed L207 N/R N/R
7. Digital contact input Passed L193 Passed L203 Passed L212 Passed L219

! 8. 4-20 mA Current loop Passed L197 Passed L204 Passed L213 Passed L220

' output 7 9. Digital contact output Passed L195 Passed L208 Passed L215 Passed L222 Z 9a-Normally closed 9b-Normally open Passed L196 Passed L205 Passed L214 Passed L221

10. Appendix R current N/R N/R N/R N/R loop input
11. High voltage level Passed L192 Passed L202 Passed L211 Passed L218 output 12A. Encode / Decode N/R N/R N/R N/R RS422 Data link (1/0 BOARD)

'N/R = Not Required .

NOTE: The negative line of the de power supply was connected to the negative terminal during the 11ne-to-11ne fuse shorted test.

0646N:4 . . . , , ,

, t , . . e TABLE 7-5 (CONT)

LINE-TO-LINE FAULT FUSE SHORTED 1/0 Board Description 125 Vdc TST s 125 Vac TST a, 250 Vdc. TST a 580 Vac TST a

13. Appendix R N/R N/R N/R N/R current loop input (test injectton) 14 Appendix R N/R N/R N/R N/R current loop input (test interlock)
15. Appendix RTD (test injectlon) 154-excitation N/R N/R N/R N/R I5b-sense N/R N/R N/R N/R
16. Appendix R N/R N/R N/R N/R RTD (test interlock) 7 G

0646N:4

i .

SECTION 8 CONCLUSION The evidence in this report shows that the system remained functional within its specified accuracy, and met the acceptance criteria of isolation between the Class 1E safety. instrumentation and Non-Class 1E instrumentation.

The test conclusively demonstrated that the system continued to operate when subjected to the following:

e Maximum credible fault voltage of 250 Vdc and 580 Vac e Maximum continuous fault current of 20 amperes e Maximum surge withstand' capability of 3.3 kV e Radio frequency interference of 3 V/m field strength in the frequency band 20 MHz to l'GHz and 10 V/n field strength above 76 MHz to 1 GHz, and 20 V/m field strength above 76 MHz to 500 MHz e Random noise e Crosstalk noise - chattering relays e Military specification noise j e High voltage transient noise  !

l In no case was the performance of the system degraded.by abnormal electrical conditions imposed on the isolated input / output field wiring. No changes in  ;

the design are necessary. In particular:

e The processors of the RPU, DPU and display continued to operate undisturbed.

e The output to the operator display was continuous and accurate.

e The noise, fault, and surge transients were not propagated through the

, isolation circuitry or picked up wire to wire.

8-1 0646N:4

e The analog and digital (contact input / output) signals to other 1E systems were continuous and accurate. .-

In summary, the noise, fault, surge, and radio frequency interference test '

program convincingly demonstrated that the system performance did nct degrade even when subjected to abnormal electrical conditions which far exceed those that can be reasonably postulated.

j

! 8-2 l 0646N:4 l

APPENDIX A LIST OF NOISE, FAULT, SURGE, AND RADIO FREQUENCY INTERFERENCE TESTS This appendix contains the following tables:

Table Title A-1 Random Noise Tests A-2 AC Crosstalk Noise Tests -- Chattering Relays A-3 DC Crosstalk Noise Tests -- Chattering Relays A-4 Military Specification Noise Source #1 Tests A-5 Military Specification Noise Source #2 Tests A-6 High Voltage Noise Test A-7 Radio Frequency Modulation Test A-8 Radio Frequency Keying Test A-9 Surge Withstand Fault Tests A-10 Short Circuit Fault Test A-11 Common Mode Fault Test A-12 Line-To-Line Fault Test Fuse Installed A-13 Line-To-Line Fault Test Fuse Shorted 0646N:4

e S

e 4

5 e

e 4

e e

D

. h , n . .

+ _

IABLE A l RANDOM NOISE TESIS l

i TEST TYPE OF TEST INJECTION TEST

  • NUMBER I/O BOARO POINT EFFECT N19 APPENDIX R CURRENT LOOP INPUT TB103-li 12 NO,EFFECT l

N2O APPENDIX R RTO T8104-12.13 NO EFFECT,

(

  • N21 DIGITAL CONIACT INPUT 10105-5,6 NO EFFECT N22 4-20 mA CURRENT LOOP OUTPUT 18106-5.6 NO EFFECT N23 APPENDIX R CURRENT LOOP INPUT 18I09-11,12 NO EFFECT N24 DIGITAL CONTACI OUIPUT T8108-5,7 NO EFFECT N25 DIGITAL CONIACT OUTPUT. T8108-5.6 NO EFFECT 18205-8,10 NO EFFECT

( N26 DIGITAL CONTACI OUTPUI TH2OS-8,9 NO EFFECT N27 DIGITAL CONIACT OUTPUT N28 HIQt LEVEL VOLTAGE OUTPUT 18204-5,6 NO EFFECT N29 RS-422 ENCODE / DECODE DATA LINK 18203-2,3 NO EFFECT N30 RS-422 ENCODE / DECODE DAT A LINK T82O3-5,6 NO EFFECT N31 RS-422 ENCDDE/ DECODE DATA LINK TH2O3-16,17 NO EFFECT

)

N32 RS-422 f NCODE/ DECODE DAT A 1. INK T0102-2.3 NO EffECT

'N33 DISPLAY .SDWK-C NO f.FFECT N34 RS-422 DATA LINK T8101-19.20 NO EFFECT N34 RS-422 ENCODE / DECODE DAT A LINK TD201-2,3 NO EFFECT N100 RS-422 ENCODE / DECODE DAT A LINK 18102-19,20 NO l.FFECT N104 RS-422 DATA L' INK T8108-2.3 NO E FFECT

  • = Special ikwir equ ired lest o

0646N:4

.. - . . . . - ~

TABLE A 2 AC CROSSTALK NOISE TESTS - CHATTERING RELAYS 4

TYPE OF - TEST INJECTION TEST TEST 1/0 BOARD POINT EFFECT

, NUMBER APPENDIX R CURRENT LOOP INPUT TB103-11,12 NO EFFECT N1 TB103-11.12 NO EFFECT N2 APPENDIX R CURRENT LOOP INPUT APPENDIX R RTD TB104-12.13 NO EFFECT j N3 TB105-5,6 NO EFFECT N4 DIGITAL CONTACT INPUT T8106-5,6 NO EFFECT N5 4-20 mA CURRENT LOOP OUTPUT TBIO8-5,7 NO EFFECT N6 DIGITAL CONTACT OUTPUT TBIO6-5,6 NO EFFECT N7 DIGITAL CONTACT DUTPUT TB205-8,30 NO EFFECT N8 DIGITAL CONTACT DUTPUT T8205-8,9 NO EFFECT N9 DIGITAL CONTACT DUTPUT 18203-16,17 NO EFFECT NIO RS-422 ENCODE / DECODE DATA LINK f Nil RS-422 ENCODE / DECODE DATA LINK TB203-16,17 NO EFFECT 18102-2,3 NO EFFECT Nt2 RS-422 ENCODE / DECODE f N13 RS-422 ENCODE /DEC00E DATA LINK 182O3-2,3 NO EFFECT T8203-5,6 NO EFFECT N14 RS-422 ENCODE / DECODE DATA LINK 18204-5,6 NO EFFECT N15 HIGH LEVEL VOLTAGE DUTPUT T8109-11.12 NO EFFECT j N16 APPENDIX R CURRENT LOOP INPUT 18101-19,20 NO EFFECT I N17 RS-422 DATA LINK TB201-2.3 NO EFFECT N17 RS-422 ENCODE / DECODE DAT A LINK SWDK-C NO EFFECT

  • N18 DISPLAY T8102-19,20 NO EFFECT I

N98 RS-422 DATA LlHK T8101-2,3 NO EFFECT 4

N102 RS-422 DAT A LINK

  • = Special Nonrequired Test j ___.

l 0646N:4 , ,

~

. O , . . .

TABLE A 3 DC CROSSTALK NOISE TESTS - CHATIERING RELAYS TEST TYPE OF TEST INJECilON TEST NUMBER I/O BOARD POINI EFFECT N67 APPENDIX R CURRENT LOOP INPUT TBIO3-11.12 NO EFFECT N68 APPENDIX R CURRENT LOOP INPUT 18109-11.12 NO EFFECT N69 APPENDIX R RID 18104-12.13 NO EFFECT N70 4-20 mA CURRENT LOOP OUTPUT 18106-5.6 NO EFFECT N71 DIGITAL CONTACT OUTPUT 18108-5.7 NO EFFECT N72 DIGITAL CONTACT OUTPUT TB108-5.6 NO EFFECT N73 DIGITAL CONTACT' INPUT 18105-5.6 NO EFFECT N74 HIGH LEVEL VOLTAGE OUTPUT TD204-5.6 NO EFFECT N75 RS-422 DATA LINK 18101-19.20 NO EFFECT RS-422 ENCODE / DECODE DAT A LINK 18201-2,3 NO EFFECT N75 RS-422 ENCODE / DECODE DAT A LINK 182O3-5.6 NO EFFECT N76 RS-422 ENCODE / DECODE DATA LINK 182O3-16.17 NO EFFECT N77 RS-422 ENCODE / DECODE DATA LINK 182O3-2,3 NO EFFECT N78 RS-422 ENCODE / DECODE DATA LINK 10102-2,3 NO EFFECT N79 ~~

D.C N96 RS-422 ENCODE / DECODE DATA LINK 18102-19.20 NO EFFECT N97 RS-422 ENCODE / uf CODE DAT A LINK 18102-19.20 NO EFFECT RS-422 DATA 1 INK 10101-2,3 NO EFFECT N101

  • = Special Nonrequired Test 0646N:4

TABLE A 4 MILITARY SPECIFICATION NOISE SOURCE si TESIS

]

TEST TYPE OF TEST INJECTION TEST NUMBER I/O BOARD POINT EFFECT NSI APPENDIX R CURRENT LOOP INPUT T8103-11,13 NO EFFECT N52 APPENDIX R RID TBIO4-12,13 NO EFFECT N53 DIGITAL CONTACT INPUT 18l05-5,6 NO EFFECT N54 4-20 mA CURRENT LOOP OUTPUT TBIO6-5,6 NO EFFECT NSS DIGITAL CONTACT OUTPUT T8108-5,7 NO EFFECT N56 DIGITAL CONIACT OUTPUT 18108-5,6 NO EFFECT T'8101-2,3 j[ N57 RS-422 DATA LINK 18102-19,20 NO EFFECT NO EFFECT N58 RS-422 ENCODE / DECODE DATA LINK H59 APPENDIX R CURRENT LOOP INPUT 18109-11,92 NO'EFFECT N60 HIGt LEVEL VOLTAGE DUTPUT TB204-5,6 NO EFFECT

  • N61 DISPLAY SWDK-C NO EFFECT N62 RS-422 ENCODE / DECODE DATA LINK T82O3-2,3 NO EFFf CT N63 RS-422 ENCODE / DECODE DAT A LINK T8203-5,6 NO EFFECT N64 RS-422 DATA LINK T8101-19,20 NO EFFECT l

N65 RS-422 ENCODE / DECODE DATA LINK 18102-2,3 NO.EFFECT

(' T8101-19,20 N66 RS-422 DATA LINK NO EFFECT l 1B201-2,3 NO EFFECT

!' N66 RS-422 ENCODE / DECODE DAT A LINK

  • = Special Nonrequired Test l

0646N:4

TABLE A 5 MILITARY SPECIFICATION NOISE SOURCE #2 TESTS TEST TYPL OF TEST INJECTION TEST NUMBER I/O DOARD POINT EFFECT N35 APPENDIX R CURRENT LOOP INPUT T B l.03 - I I .12 ,

NO EFFECT N36 APPENDIX R RTD T8104-12,13 NO EFFECT N37 DIGITAL CONTACT INPUT TBIOS-5,6 NO EFFECT N38 4-20 mA CURRENT LGOP OUTPUT TBIO6-5,6 NO EFFECT N39 DIGITAL CONTACT OUTPUT T8108-5,7 NO EFFECT N40 DIGITAL CONTACT OUTPUT TDIO8-5,6 NO EFFECT N41 APPENDIX R CURRENT LOOP INPUT T8tO9-ll 12 NO EFFECT N42 RS-422 DATA LINK TBIOI-2,3 NO EFFECT N43 RS-422 ENCODE / DECODE DAT A LINK T8102-19,20 NO EFFECT l

N44 tilGH LEVEL VOLTAGE OUTPUT T8204-5,6 NO EFFECT l

  • N45 DISPLAY SWDK-C NO EFFECT N46 RS-422 ENCODE / DECODE DATA LINK TB203-2,3 NO EFFECT j N47 RS-422 ENCODE / DECODE DATA LINK TD203-5,6 NO EFFECT N48 RS-422 ENCODE / DECODE DAI A LINK T8203-16.17 NO EFFECT N49 RS-422 ENCODE / DECODE DATA LINK TB102-2,3 NO EFFECT NSO RS-422 OATA LINK TBIOI-19,20 NO EFFECT H50 RS-422 ENCODE / DECODE DAT A LINK TB2OI-2,3 NO EFFECT
  • - Special Nonrequired test 0646N:4

TABLE A-6 HIGH VOLTAGE TRANSIENT NOISE TESTS TEST TEST INJECTION TEST TYPE OF POINT EFFFCT NUMBER I/O BDARD T8103-ll,12 NO EFFECT N81 APPENDIX R CURRENT LOOP INPUT NO EFFECT TBIO4-II,12 N82 APPENDIX R RfD NO EFFECT TS106-5,6 N83 4-20 mA CURRENT LOOP OUTPUT NO EFFECT TB109-II,12 N84 APPENDIX R CU,RRENT LOOP INPUT NO EFFECT 70108-5,7 NBS DIGilAL CONTACT OUTPUT NO EFFECT 18108-5,6 N86 DIGITAL CONTACT OUTPUT NO EFFECT T0105-5,6 N87 DIGITAL CONTACT INPUT NO E F F ECT THIOS-5,6 N88 DIGITAL CONIACT INPUT NO EFFECT T0203-2,3 N89 RS-422 ENCODE / DECODE DATA LINK NO EFFECT TD203-5,6 N90 RS-422 ENCODE / DECODE DAT A LINK NO EFFECT l

T02OJ-16,17 N91 RS-422 ENCODE / DECODE DAT A LINK NO EFFECT TBIO2-2,3 N92 RS-422 ENCODE / DECODE DATA LINK __

+ __

b,c T8204-5,6 NO EFFECT N94 HIGH LEVEL VOLTAGE OUTPUT NO EFFECT TBIOI-19,20 N95 HS-422 DATA LINK NO EFFECT TB2OI-2,3 N95 RS-422 ENCODE / DECODE DATA LlHK NO EFFECT TOIO2-19,20 N99 RS-422 Et"' ODE / DECODE DAT A LINK NO EFFECT 10101-2,3 NIO3 RS-422 DATA LINK .-- _.-

+ = Special Nontequired test _. _.

0646N:4 a .

~

. s

  • i . .

TABLE A-7 RADIO FREQUENCY MODULAi!ON TESIS TEST a FIELD FREQUENCY BAND ANif NNA POLARIZATION TARGET TEST EFFECT RF 1 3 V/m 20 - 160 MHZ BICONICAL VERT CADINET FRONT, DOORS OPEN NO EFFECT RF 2 3 V/m 20 - 160 MHZ BICONICAL HORZ CADINFi FRONT, DOORS OPEN NO EFFECT RF 3 3 V/m 160 - 500 MHZ LOG PERIODIC HORZ CADINET FRONT, DOORS OPEN NO EFFECT KF 4 3 V/m 500 - IGHZ LOG PERIODIC HORZ CADINE T FRONT , DOORS OPEN NO EFFECT RF 5 3 V/m 160 - 500 MHZ LOG PERIODIC VERI CADINLT FRONT, DOORS OPEN NO EFFECT RF 6 3 V/m 500 - IGHZ LOG PERIODIC VERT CADINE T F RONI, DOORS OPEN NO EFFECT RF 7 10 V/m 160 - 500 MHZ LOG PERIODIC VERI CABINE T F RONT , DOORS CLOSED NO EFFECT RF 8 10 V/m 160 - 500 MHZ LOG PERIODIC HORZ CABINE T FRONI, DOORS CLOSED NO EFFECT RF 9 10 v/m 20 - 160 MHZ 8! CONICAL VERT CADINET FRONT, DOORS CLOSED NO EFFECT RF 10 10 V/m 20 - 160 MHZ BICONICAL HORZ CADINET FRONT, DOORS CLOSED NO EFFECT RF 11 10 V/m 20 - 160 MHZ BICONICAL HORZ CABINET SIDE A. DOORS CLOSED

~

RF 12 10 V/m 20 160 MHZ BICONICAL VERT CAHINET SIDE A. DOORS CLOSED NO EFFECT b,c RF 13 10 V/m 160 - 500 MHZ LOG PERIODIC HORZ CADINET SIDE A. DOORS CLOSED NO EFFECT ,

RF 14 10 V/m 160 - 500 MHZ LOG PERIODIC VERT CADINET SIDE A, DOORS CLOSED NO EFFECT RF 15 10 V/m 500 - IGHZ LOG PERIODIC VERT CADINET SIDE A. DOORS CLOSED NO EFFECT RF 16 10 V/m 500 - 1GHZ LOG PERIODIC HORZ CADINET SIDE A, DOORS CLOSED NO EFFECT 37 RF 17 10 V/m 160 - 500 MHZ LOG PERIODIC HORZ CADINET DACK, DOORS CLOSED NO EFFECT l

-J RF 18 10 V/m 500 - 1GHZ LOG PERIODIC HORZ CABINET DACK, DOORS CLOSED NO EFFECT RF 19 10 V/m 160 - 500 MHZ LOG PERIODIC VERI CADINET DACK, DOORS CLOSED NO EFFECT RF 20 10 V/m 500 - 1GHZ LOG PERIODIC VERT CABINET BACK, DOORS CLOSED NO EFFECT RF 21 10 V/m 20 - 160 MHZ BICONICAL HORZ CABINET DACK, DOORS CLOSED -- -~

RF 22 10 V/m 20 - 160 MHZ BICONICAL VERT CADINET HACK, DOORS CLOSED RF 23 3 V/m 20 - 160 MHZ BICONICAL VERT CADINET DACK, DOORS OPEN NO EFFECT D,c RF 24 3 V/m 20 - 16G MHZ BICONICAL HORZ CADINET DACK, DOORS OPEN NO EFFECT RF 25 3 v/m 160 - 500 MH LOG PERIODIC HORZ CADINET DACK, DOORS OPEN NO EFFECT .

RF 26 3 V/m 500 - IGHZ LOG PERIODIC HORZ CABINET HACK, DOORS OPEN NO EFFECT l RF 27 3 V/m 500 - 1GHZ LOG PERIODIC VERT CADINEI HACK, DOORS OPEN NO EFFECT l RF 28 3 V/m 160 - 500 MHZ LOG PERIODIC VERT CABINET DACA, DOORS OPEN NO EFFECT RF 29 10 V/m 160 - 500 MHZ LOG PERIODIC VERT CADINET SIDE B. DOORS CLOSED NO EFFECT RF 30 10 V/m 500 - IGHZ LOG PERIODIC VERI CADINET SIDE D, DOORS CLOSED NO EFFECT RF 31 10 V/m 500 - ICHZ LOG PERIODIC HORZ CADINET SIDE D. DOORS CLOSED NO EFFECT ,

RF 32 10 V/m 160 - 500 MHZ LOG PERIOn!C HORZ CADINti SIDE D. DOORS Cl0 SED NO EFFECT l RF 33 10 V/m 20 - 160 MHZ DICONICAL VERI CAHINLI SIDE B DOORS CLOSED -- --

RF 34 10 V/m 20 - 160 MHZ DICONICAL HORZ CADINET SIDE B, DOORS CLOSED RF 35 10 V/m 20 - 160 MHZ DICONICAL VERT CAHINE T S10E' D, DOORS OPf N RF 36 10 V/m 20 - 160 MH7 HICONICAL HORZ CADINil SIDE 0, DOORS OPIN NO EFFECT RF 37 10 V/m 160 - 500 MHZ LOG PFRIODIC HORZ CAHINFI SIDE B, DOORS OPEN NO EFFECT RF 38 10 V/m 500 - IGHZ LOG PERIOulC HORZ CADINET SIDE B. DOORS OPtN NO EFFECT 0646N:4

1 IABLE A-7 RADIO FREQUENCY MODUL AllON TESTS (CONIINUED)

TEST TARGET TEST EFFECT a FIELD FREQUENCY BAND ANT E NNA POLARIZATION VERT CABINET SIDE B DOORS OPEN NO EFFECT RF 39 10 V/m 500 - 1GHZ LOG PERIODIC NO EFFECT LOG PERIODIC VERT CABINET SIDE B. DOORS OPEN RF 40 10 V/m 160 - 500 MHZ VERT CABINET FRONT, DOORS OPEN NO EFFECT CF 41 10 V/m 160 - 500 MHZ LOG PERIODIC NO EFFECT VERT CABINE T FRONT , DOORS OPEN RF 42 10 V/m 500 - 1GHZ LOG PERIODIC NO EFFECT LOG PERIODIC HORZ CABINLT FRONT , DOORS OPEN RF 43 to V/m 500 - IGHZ HORZ CABINET FRONT, DOORS OPEN __ NO EFFECT __

RF 44 to v/m 160 - 500 MHZ LOG PERIODIC BICONICAL VERT CABINET FRONT, DOORS OPEN RF 45 to V/m 20 - 160 MHZ

~"~

D*C BICONICAL HORZ CABINET FRONT, DOORS OPEN "" NO EFFECT RF 46 10 V/m 20 - 160 MHZ- HORZ CABINLT FRONI, DOORS CLOSED NO EFFECT RF 47 10 V/m 500 - 1GHZ LOG FERIODIC CABINET FRONT , DOORS CLOSED NO EFFECT LOG PERIODIC VERT RF 48 10 V/m 500 - IGHZ VERI CABINET BACK, OOORS OPEN NO EFFECT RF 49 10 V/m 500 - 1GHZ LOG PERIODIC CABINET BACK, DOORS OPEN NO EFFECT LOG PERIODIC VERT RF SO 10 V/m 160 - 500 MHZ HORZ CABINET BACK, DOORS OPEN NO EFFECT RF 51 10 V/m 160 - 500 MHZ LOG PERIODIC CABINET BACK, DOORS OPEN NO EFFECT LOG PERIODIC HORZ RF 52 10 V/m 160 - 500 MHZ HORZ CABINET BACK, DOORS OPEN NO EFFECT RF 53 to V/m 20 - 160 MHZ BICONICAL CABINfT BACK, DOORS OPEN 20 - 160 MHZ BICONICAL VERT RF 54 10 V/m D=C VERT DISPLAY, FRONT NO EFFECT RF 55 3 V/m 20 - 160 MHZ BICONICAL N3 EFFECT BICONICAL HORZ DISPLAY, FRONT RF 56 3 V/m 20 - 160 MHZ DISPLAY, FRONT N3 EFFECT RF 57 3 V/m 160 - 500 MHZ LOG PERIODIC HORZ HORZ DISPLAY, FRONT NO EFFECT RF 58 3 V/m 500 - 1GHZ LOG PERIODIC NO EFFECT LOG PERIODIC VERT DISPLAY, FRONT RF 59 3 V/m 500 - 1GHZ VERT DISPLAY, FRONT NO EFFECT RF 60 3 V/m 160 - 500 MHZ LOG PERIODIC NO EFFECT LOG PERIODIC VERT DISPLAY, BACK RF 61 3 V/m 500 - IGHZ VERT DISPLAY, BACK NO EFFECT RF 62 3 V/m 160 - 500 MHZ LOG PERIODIC NO EFFECT LOG PERIODIC HORZ DISPLAY, BACK RF 63 3 V/m 160 - 500 MHZ HORZ DISPLAY, BACK NO EFFECT RF 64 3 V/m 500 - IGHZ LOG PERIODIC NO EFFECT HORZ DISP 8AY, DACK RF 65 10 V/m 500 - IGHZ LOG PERIDOIC DISPLAY, DACK 60 EFFECT LOG PERIODIC HORZ RF 66 10 V/m 160 - 500 MHZ VERI DISPLAY, BACK NO EFFECT RF 67 10 V/m 160 - 500 MHZ LOG PERIODIC NO EFFECT LOG PERIODIC VERT DISPLAY, BACK RF 68 10 V/m 500 - 1GHZ VERT DISPIAY, DACK HO EFFECT RF 69 3 V/m 20 - 160 MHZ BICONICAL 60 EFFECT BICONICAL HORZ DISPLAY, BACK ""

RF 70 3 V/m 20 - 160 MHZ DISPLAY, BACK

~~

20 - 160 MHZ BICONICAL HORZ RF 71 10 V/m BICONICAL VERT DISPLAY, DACK RF 72 10 V/m 20 - 160 MHZ i __

-- n,c

, 0645N:4 .

t s , . e '

T

. TABLE A-7 HADIO FREQUENCY MODULAllON TESTS (CONTINUED)

TEST s FIELD FREQUENCY BAND AN T E NN A POtARIZATION TARGET TEST EFFECT 20 - 160 MHZ BICONICAL VERT DISPLAY, FRONT NO EFFECT RF 73 10 V/m DISPLAY, FRONT 20 - 160 MHZ BICONICAL HORZ NO EFFECT RF 74 10 V/m DISPLAY, FRONT M3 EFFECT OF 75 10 V/m 160 - 500 MHz LOG PERIODIC HORZ RF 76 10 V/m 500 - IGHZ LOG PERIODIC HORZ DISPLAY, FRONI __ H3 EFFECT _.

RF 77 10 V/m 160 - 500 MHZ LOG PERIODIC VERT DISPLAY, FRONT VERT DISPLAY, FRONT

"~

R3 EFFECT ~~ D.c RF 78 10 'V/m 500 - IGHZ LOG PERIODIC RF 79 20 V/m 160 - 500 MHz LOG PERIODIC VERT DISPL'AY, F RONT

{ ~]

bC RF 81 20 V/m 160 - 500 MHZ LOG PERIODIC VERT CABINET, FRONT DOORS CLOSED N3 EFFECT RF 82 20 V/m 160 - 500 MHZ LOG PERIODIC VERT CABINET. FRONT, DOORS OPEN N3 EFFECT LOG PERIODIC HORZ CADINET, FRONT, DOORS OPEN N3 EFFECT RF 83 20 V/m 16G - 500 MHZ CADINET , F RONI . DOORS CLOSED NO EFFECT RF 84 20 V/m 20 - 160 MHZ DICONICAL HORZ T

e 0646N:4

jf ,

- J TADLE A-8 RADIO FREQUENCY KEYING TEST ,

w TEST TEST EFFECT FIELD BAND ANIENNA POLARIZATION T ARGE T

_s ~

- ~

LOG PERIODIC HORZ CABINET FRONT. DOORS OPEN NO EFFECT RFK 1 3 v/m CADINET FRONT DOORS OPEN NO EFFECT RFK 2 3 V/m LOG PERIDOIC HORZ LOG PERIODIC HORZ CABINET FRONT, DOORS OPEN NO EFFECT ---

RFK 3 3 V/m NO EFFECT RFK 4 3 V/m LOG PERIODIC HORZ CABINET FRONT. DOORS DPEN LOG PERIODIC HORZ CABINET FRONI. DOORS OPEN NO EFFECT RFK 5 3 V/m HORZ C ABINET FRONT . DOORS OPEN NO EFFECT RFK 6 3 V/m LOG PERIODIC LOG PERIODIC HORZ CABINE T FRONT. DOORS CLOSED NO EFFECT 10 V/m RFK 7 NO EFFECT RFK 8 10 V/m LOG PERIODIC HG22 CABINET FRONT. DOORS CLOSED '

LOG PERIODIC HORZ CABINE T FRONT. DOORS CLOSED NO EFFECT RFK 9 10 V/m NO EFFECT 10 v/m LOG PERIODIC HORZ CABINE1 FRONT. DOORS CLOSED RFK IO CABINdi FRONT. DOORS CLOSED NO EFFECT _

RFK 11 10 V/m LOG PERIODIC HORZ LOG PERIODIC HORZ CABINET FRONT DOORS CLOSED NO EFFECT RFK 12 10 V/m NO EFFECT RFK 13 10 V/m LOG PERIODIC HORZ CABINET FRONI. DOORS OPEN LOG PERIODIC HOPZ CABINET FRONT . JD00RS -OPEH NO EFFECT RFK 14 10 V/m NO EFFECT to V/m LOG PERIODIC HOHZ CABINET FRONT. DOORS OPEN RFK 15 C4blNET FRONT DOORS OPEN NO EFFECT RFK 16 10 V/m LOG PERIODIC HORZ LOG PERIODIC HORZ CABINET FRONT. DOORS OPtM~ NO EFFECT --

'~

RFK 17 10 V/m NO EFFECT

~

10 V/m LOG PERIODIC HORZ CABINET FRONT. DOORS OFEN RFK 18 NO EFFECT RFK 19 3 V/m LOG PERIODIC HORZ ' CADINET FRONT. DOORS OPEN LOG PERIODIC HORZ CADINET FRONT. DOORS OPEN NO EFFECT RFK 19 3 V/m CAulNET FRONT. DOORS OPEN NO EFFECT 3 V/m LOG PERIODIC HDR2 37 RFK 20 HORZ CABINET FRONI . DOORS OPEN NO EFFECT e4 RFK 21 3 V/m LDG PERIODIC 10G PERIODIC HORZ CABINET FRONI DOORS OPEN NO EFFECT C3 RFK 22 10 V/m NO EFFECT 10 V/m IOG PERIODIC VERT 'CADINET FRONT. DOORS OPEN RFK 23 NO EFFECT RFK 24 3 V/m TOG PERIODIC VERI CABINET FRONI. DOORS OPEN LOG PERIODIC VERT CAhlNET FRONT. DOORS DPEN NO EFFECT

  • RFK 25 3 v/m VERT CABINE T FRONT DOORS OPEN NO EFFECT RFK 26 10 V/m LOG PERIODIC NO FIFECT 10 V/m LOG PER10blC VERT CADINET FRONT DOORS OPEN RFK 27 CABINET FRONT. DOORS OPEN JW) f f F ECT RFK 28 3 V/m LDG PENS 00lc VERI LOG PERIODIC VERT CADINET FRONT. DOORS OPEN N0 fFfECT RFK 29 3 V/m VERT CABINET FRONT DOORS OPEN NO EFFECT RFK 30 3 V/m LOG PERIODIC VERI CADINLT FRONT. DOORS OPEN NO EFFECT RFK 31 3 V/m LOG PERIODIC LOG PERIODIC VERT CABINET FRONT. DOORS OPEN N0 EFFECT

'RFK 32 3 V/m VERT CADINET FRONT. DOORS OPLN NO EFFECT RFK 33 10 V/m LOG PERIODIC 'i VERI CADINET FRONI . DOORS OPEN NO EFFECT RFK 34 'O V/m LOG PFRIODIC VERT CADINET FRONT. DOORS OPEN NO EFFECT RFK 35 10 V/m LOG PERIODIC VERI CADINET FRONT DOORS OPEN NO EFFECT RFK 36 10 V/m LOG PERIODIC VERT CADINET FRONT. DOORS OPEN NO EFFECT RFK 37 10 V/m LOG PERIODIC NO EFFECT IO V/m LOG PERIODIC VERI CADINET FRONT DOORS OPEN RFK 38 HORZ CAUINET FRONI DOORS OPEN NO EFFECT RFK 39 3 V/m IOG PLRIODIC NO EFFECT LOG PERIODIC HORZ CADINET FRONT DOORS OPfN RFK 40 3 v/m HORZ CADINII FRONI DOORS OPIN NO EFFECT RFK 41 3 V/m

  • IOG PFRIODIC NO EFFECT TOG PLRIODIC HORZ CADINE T F RONT . DOORS OPfN RFK 42 3 V/m HORZ CADINF 1 FRONT . DOORS OPE N NO EFFECT RFK 43 3 V/m - - b,c LOG PERIODIC 0646N:4 . .

~

IABLE A-8 RADIO FREQUENCY KEYING TEST (CONTINUEO)

TEST a FIELD BAND ANI E NNA POLARIZATION T ARGE T TEST EFFECT ,

~ ~

LOG PERIODIC HORZ CABINET C LGNT, DOORS OPEN NO EFFECT RFK 44 3 V/m CABINET FRONT, DOORS OPEN RFK 45 10 V/m LOG PERIODIC HORZ NO EFFECT -

RFK 46 10 V/m LOG PERIODIC HORZ CABINE T FRONT, DOORS OPEN NO EFFECT LOG PERIODIC HORZ CABINET FRONT, DOORS OPEN NO EFFECT RFK 47 10 V/m CABINE T FRONT , DOORS OPEN RFK 48 10 V/m LOG PERIODIC HORZ NO EFFECT LOG PERIODIC HORZ CABINET FRONT, DOORS OPEN NO EFFECT RFK 49 10 V/m CABINE T FRONT, DOORS OPEN LOG PERIODIC HORZ NO EFFECT

, RFK SO 10 V/m CABINET FRONT, DOORS OPEN NO EFFECT RFK 51 3 V/m LOG PERIODIC HORZ LOG PERIODIC HORZ CABINET FRONT, DOORS OPEN NO EFFECT RFK 52 3 V/m CABINET FRONT, DOORS OPEN NO EFFECT RFK 53 10 V/m LOG PERIODIC HORZ LOG PERIODIC HORZ CABINET FRONT, DOORS OPEN NO EFFECI RFK 54 10 V/m CABI NE T F RONT , DOORS OPEN NO EFFECT RFK 55 3 V/m BICONICAL VERT BICONICAL VERT CABINET FRONT, DOORS OPEN NO EFFECT RFK 56 3 V/m CADINET FRONT, DOORS OPEN NO EFFECT RFK 57 3 V/m BICONICAL VERT BICONICAL VERI CADI NE T F RONT , DOORS OPE N NO EFFECT RFK 58 3 V/m CABINET FRONT, DOORS GPEN NO EFFECT RFK 59 3 V/m BICONICAL VERT BICONICAL VERI CADINET FRONT, DOORS OPEN NO EFFECT RFK 60 3 V/m CABINET FRONT, DOORS OPEN NO EFFECT RFK 61 3 V/m BICONICAL VERT DICONICAL VERT CADINET FRONT, DOORS OPEN NO EFFECT

. RFK 62 3 V/m CABINF.T F RONT, DOORS OPEN NO EFFECT RFK 63 3 V/m B! CONICAL VERT l VERI CABINET FRONT, DCORS OPEN NO EFFECT

]f re RFK 64 RFK 65 10 V/m 10 V/m BICONICAL BICONICAL VERT CADINET FRONT, DOORS OPEN NO EFFECT

"* BICONICAL VERT CABINET FRONT, DOORS OPEN NO EFFECT RFK 66 10 V/m CADINET FRONT, DOORS OPEN NO EFFECT RFK 67 10 V/m BICONICAL VERT BICONICAL VERT CABINET FRONT, DOORS OPEN NO EFFECT RFK 68 10 V/m CABINET FRONT, DOORS OPEN NO EFFECT RFK 69 10 v/m BICONICAL VERT BICONICAL VERI CAulNET FRONT, DOORS OPEN NO EFFECT RFK 70 10 v/m CADINET f RONT, DOORS OPEN NO EFFECT RFK 71 10 V/m BICONICAL VERI BICONICAL VERI CADINE T FRONT, DOORS OPEN NO EFFECT RFK 72 10 V/m CABINE T FRONT , DOORS OPEN NO EFFECT RFK 73 3 V/m DICONICAL HORZ BICONICAL HORZ CADINE T FRONT, DOORS OPEN NO EFFECT RFK 74 3 V/m CABI NE T F RONT , DOORS OPE N NO EFFECT RFK 75 3 V/m BICONICAL HORZ DICONICAL HORZ CADINET F RONT , DOORS OPEN NO EFFECT RFK 76 3 V/m CADINET FRONI, DOORS OPEN NO EFFECT RFK 77 3 V/m DICONICAL HORZ DICONICAL HORZ CABINE T FRONT, DOORS OPE N NO EFFECT RFK 78 3 V/m CAUINCI FRONT, DOORS OPIN NO EFFECT RFK 79 3 V/m blCONICAL HORZ DICONICAL HORZ CADINET FRONI, DOORS OPEN NO EFFECT RFK 80 3 V/m C AD I NE T F RONT , DOORS OPI N NO EFFECT RFK 81 3 V/m DICONICAL HOR / '

DICONICAL HORZ CAUINET FRONT, DOORS OPIN NO EffECT RFK 82 10 V/m C AlllNE I FRONT, DOORS OPtN NO EFFECT RFK 83 10 V/m DICONICAL HORZ DICONICAL HORZ CAHINEI IRONI, DOORS OPIN NO EFFECI j RFK 84 10 V/m CAlllNE I FRONI, IXX)RS OPEN NO EFFECT RFK 85 to V/m BICONICAt IMIRZ DICONICAL IMIRZ CADINLI FRON1, DOORS OPtN NO EFFECT j RFK 86 10 V/m CAHINE I FRONl, DOORS OPEN NO EFFECT RFK B7 10 V/m HICONICAL IK)RZ g ,

0646N:4

TABLE A-8 RADIO FREQUENCY KEYING TEST (CONTINUEDI l TEST T ARGE T TEST EFFECT FIELO BAND ANI E NN A POLARIZATION CABINET FRONT, DOORS OPEN . NO EFFECT RFK 88 10 V/m ~ ' BICONICAL BICONICAL HORZ HORZ CAD] NET FRONT, DOORS OPEN NO EFFECT RFA 89 10 v/m HORZ CADINET FRONT. DOORS OPEN NO EFFECT RFK 90 10 V/m alCONICAL NO EFFECT BICONICAL HORZ DISPLAY. FRONT RFK 91 3 V/m HORZ DISPLAY, FRONI NO EFFECT RFK 92 3 V/m BICONICAL DISPiAY, FRONI NO EFFECT BICONICAL HORZ CFK 93 3 V/m HORZ DISPLAY. FRONT NO EFFECT RFK 94 3 V/m DICONICAL NO EFFECT BICONICAL HORZ DISPLAY. FRONT RFK 95 3 V/m HORZ DISPLAY. FRONT NO EFFECT RFK 96 3 V/m BICONICAL DISPLAY, FRONT NO EFFECT 0! CONICAL HORZ RFK 97 3 V/m HORZ DISPLAY, FRONT NO EFFECT l RFK 98 3 V/m BICONICAL DISPLAY, FRONT NO EFFECT BICONICAL HORZ i RFK 99 3 V/m HORZ DISPLAY, FRONT NO EFFECT RFK 100 10 V/m BICONICAL DISPLAY, FRONI NO EFFECT l

BICONICAL HORZ RFK 101 10 V/m HORZ DISPLAY, FRONT NO EFFECT RFK 102 10 V/m BICONICAL DISPLAY, FRONT NO EFFECT B! CONICAL HORZ kFK 103 10 V/m HORZ DISPLAY, FRONI NO EFFECT RFK 104 10 V/m DICONICAL DISPLAY, FRONI NO EFFECT BICONICAL HORZ RFK 105 10 V/m HORZ DISPLAY. FRONT NO EFFECT RFK 106 10 V/m BICONICAL DISPLAY, FRONI NO EFFECT StCONICAL HORZ RFK 107 10 V/m HORZ DISPLAY, FRONT NO EFFECT RFK 108 10 V/m OICONICAL NO EFFECT 37 'BICONICAL VERT DISPLAY. FRONI re RFK 109 3 V/m VERT DISPLAY, FRONT NO EFFECT PJ RFK 110 3 V/m BICONICAL DISPLAY, FRONT NO EFFECT DICONICAL VERT RFK 111 3 V/m VERT DISPLAY. FRONT NO EFFECT RFK 112 3 V/m DICONICAL NO EFFECT DICONICAL VERI DISPLAY. FRONT RFK 113 3 V/m VERI DISPLAY, FRONT NO EFFECT RFK 114 3 V/m DICONICAL DISPLAY, FRONI NO EFFECT DICONICAL VERT RFK 115 3 V/m DISPLAY. FRONT NO EFFECT BICONICAL VERT RFK 116 3 V/m VERT DISPLAY. FRONI NO EFFECT RFK 117 3 V/m UICONICAL DISPLAY, FRONT NO EFFECT 8! CONICAL VERT RFK 118 10 V/m VERT DISPLAY, FRONI NO EFFECT RFK 119 10 V/m O! CONICAL DISPLAY, FRONI NO EFFECT DICONICAL VERT RFK 120 10 V/m VERT DISPLAY, FRONT NO EFFECT RFK 121 10 V/m DICONICAL NO EFFECT O! CONICAL VERI DISPLAY. FRONT RFK 122 10 V/m VEHi DISPLAY. FRONT NO EFFECT RFK 123 10 V/m DICONICAL DISPLAY, FRONT NO EFFECT DICONICAL VERT RFK 124 10 V/m VERI DISPLAY, FRONI NO EFFECT '

RFK 125 10 V/m DICONICAL DISPLAY, FRONT NO EFFECT O! CONICAL VERT RFK 126 10 V/m HORZ DI SPL AY. F RONI NO EFFECT RFK 127 3 V/m LOG PFRIOolC NO EFFECT LOG PERIODIC HORZ DISPLAY. FRONI RFK 128 3 V/m HGWZ DISP 1AY, FRONI NO EFFECT RFK 129 3 V/m LOG PLRIODIC DISPLAY, FRONI NO EFFECT LOG PERIODIC HORZ RFK 130 3 V/m HORZ DISPLAY, FRONI NO EFFECT RFK 131 3 V/m LOG PERIODIC

- -- b,c 0646N:4 ' f. .

TABLE A-8 RADIO FREQUENCY KEYING TEST (CONTINUED)

TEST s FIELD DAND AN T E NN A POLARIZATION TARGET TEST EFFECT

- ~

RFK 132 3 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT AFK 133 to V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT RFK 134 10 V/m LOG PERIODIC FORZ DISPLAY, FRONI NO EFFECT RFK 135 10 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 136 10 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 137 10 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT RFK 138 10 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 139 3 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECI RFK 140 3 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT RFK 141 10 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 142- 10 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 143 3 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 144 3 v/m LOG PtRIODIC HORZ - DISPLAY, FRONT NO EFFECT RFK 145 10 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT RFK 146 10 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT RFK 147 3 v/m LOG PERIODIC HORZ DISPLAY, FRONT NG EFFECT RFK 148 3 V/m LOG PSRIODIC HO9Z DISPLAY, FRONT NO EFFECT RFK 149 3 v/m LOG PERIOc C HORZ DISPLAY, FRONT NO EFFECT RFK 150 3 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 151 3 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 153 3 V/m LOG PERIOa:C HORZ DISPLAY, FRONT NO EFFECT 37 DISPLAY, FRONI NO EFFECT re RFK 153 to V/m LOG PERIODIC HORZ Ld RFK 154 10 V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 155 10 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT RFK 156 10 V/m LOG PERIODIC HORZ ' DISPLAY, FRONI NO EFFECT RFK 157 IO V/m LOG PERIODIC HORZ DISPLAY, FRONI NO EFFECT RFK 158 10 V/m LOG PERIODIC HORZ DISPLAY, FRONT NO EFFECT

-- - hc 0646N:4

TABLE A-9 SURGE WITHSTAND F AULT TESTS TYPE OF TEST TESI TEST TEST EFFECT MDDE I/O BOARD INJECTION POINT

^

[B806-5,6 NO EFFECT S1 TRANS 4-20 mA CURRENT LOOP OUIPUT 18106-5,6 NO EFFECT S2 COM 4-20 mA CURRENI LOOP OUIPUT APPENDIX R RfD 1B104-11,12 NO EFFECT S3 COM APPENDIX R RfD 18104-11,12 NO EFFECT S4 TRANS T8104-4,5 NO EFFECT SS TRANS APPENDIX R RID TBIO4-4,5 NO EFFECT 56 CDM APPENDIX R RID NO EFFECT APPENDIX R RfD 18104-2,3 S7 COM 18104-2,3 NO EFFECT S6 TRANS APPENDIX R RID 18103-11,12 NO EFFECT S9 TRANS APPENDIX R CURRENT LOOP INPUT APPENDIX R CURRENT LOOP INPUI 18103-11,12 NO EFFECT 510 COM T8103-2,3 NO EFFECT 511 COM APPENDIX R CURRENT LOOP INPUT 18103-2,3 NO EFFECT 512 TRANS APPENDIX R CURRENT LOOP INPUT TBIOS-5,6 NO EFFECT S13 TRANS DIGITAL CONTACT INPUT 18105 5,6 NO EFFECT S14 COM DIGITAL CONIACT INPUT TBIO8-5,7 NO EFFECT SIS COM DIGilAL CONIAri OUTPUI 18108-5,7 NO EFFECT S16 TRANS DIGITAL CONTACI OUTPUT 18108-5,6 NO EFFECT S17 TRANS DIGITAL CONTACI OUTPUT TBtO8-5,6 NO EFFECT stb COM DIGITAL CONIACT OUTPUT 18109-11,12 NO EFFECT 519 COM APPENDIX R CURRENT LOOP INPUT 18109-11,12 NO EFFECT S20 TRANS APPENDIX R CURRENT LOOP INPUT APPENDIX R CURRENT LDOP INPUT 18109-2,3 NO EFFECT S21 TRANS TB109-2,3 NO EFFECT S22 COM APPENDIX R CURRENT LOOP INPUI APPENDIX R CURRENT LOOP INPUT 18109-16,17 NO EFFECT 3" S23 COM TD109-16,17 NO EFFECT eb S24 TRANS APPENDIX R CURRENT LOOP INPUI 10204-5,6 NO EFFECT

    • S25 TRANS HIGl LEVEL. VOLTAGE OuiPUT 18204-5,6 NO EFFECT S26 COM HIGl LEVEL VOLIAGE OUTPUT TB109-5,6 NO EFFECT S27 COM APPENDIX R CURRENT LOOP INPUT 18109-5,6 NO EFFECT S28 TRANS APPENDIX R CURRENT LOOP INPUI 18109-8,9 NO EFF ECT S29 TRANS APPENDIX R CURRENT LOOP INPUI APPENDIX R CURRENI LOOP INPUI 18109-B,9 NO EFFECT S30 COM 18104-6,7 NO EFF ECT S31 COM APPENDIX R RID TB104-6,7 NO EFFECT S32 TRANS APPENDIX R RID 18104-8,9 NO EFFECT S33 TRANS APPENDIX R RID 18104-8,9 NO EFFECT S34 COM APPENDIX R RID 10104-10,11 NO EFFECT S35 COM APPENDIX R RID TRANS APPENDIX R RID 18104-10.11 NO EFFECT S36 18102-2,3 NO EFFECT S37 TRANS RS 422 ENCDDE/ DECODE DAT4 LINK T8102-2,3 NO EFFECT S38 COM RS 422 ENCODE / DECODE DATA LINK 18101-10,20 NO EFFECT S39 COM RS-422 DATA LINK 1010l-10,20 NO EFFECT S40 TRANS RS 422 DATA IINK 18101-2,3 NO EFFECI' 541 TRANS RS 422 DAIA LINK 18101-2,3 NO EFFECT S42 COM RS-422 DAIA LINK 18102-10,20 NO EFF ECT

$43 COM RS 422 ENCDOF/ DECODE DAIA LINK 18102-19,20 NO EFFEC 1 544 1RANS RS-422 ENCOUL/ DECODE DA1 A LINK NO EFFECT DISPLAY SWDK-C

  • S45 TRANS
  • = Special Nonrequired Test 0646N:4 ' a .

=

a -

c.

D

]

, ~

TTTT CCCC T EEEE TC FFFF SE FFFF EF EEEE TF E OOOO NNNN I

N I

O P HHIH T WWMW SN

) EO D TI E T KKKK U C LLLL N E BBBB I J I N N I O

-C (

S I

S 9E

- T

  • A T

EL l Lt BA s

AF T

D EEEE N NNNN A IIII T LLLL S

H D RRRR T FR EEEE I OA WwWw W O ODOD ED PPPF E P G YO TTYY R T/ EEAA J

t I NNLL S IIPP DBSS AAII CCDD t

s e

T d

TE S S e N N r SD AMAM i EO RORO u TM TCTC q e

' r n

o N

l

' i a

c 4 e  :

p S N T

1 e90 6 S = 4 Ef [ 7445 T -

4S55 6

0 T0

TABLE.A-10 SHORT CIR'.Uli FAULT TEST TYPE OF TEST TEST TEST

  • I/O DOARD INJECTION POINT EFFECT SHI HIGi LEVEL VOLTAGE OUTPUT T8204-5.6 NO EFFECT SH2 APPENDIX R CURRENI LDOP INPUT 18103-11.12 -NO EFFECI SH3 APPENDIX R RID TBIO4-12.13 NO EFFECT SH4 4-20 nA CURRENT LOOP OUTPUT 18106-5.6 NO EFFECT SHS APPENDIX R CURRENT LOOP INPui 18109-11.12 NO EFFECT SH6 DIGITAL CONTACT OUTPui 18108-5.7 NO EFFECT SH7 DIGITAL CONTACT OUIPUT TB108-5.6 NO EFFECT SH8 DIGITAL CONTACT IN#UT TB105-5.6 NO EFFECT SH9 RS-422 ENCODE / DECODE DAT A LINK TB102-19.20 NO EFFECT SH9 RS-422 ENCODE / DECODE DATA LINK TB201-2.3 NO EFFECT SHIO RS-422 DATA LINK 18101-2.3 NO EFFECT SH10A RS-422 DATA LINK TB101-19.20 NO EFFECT DISPLAY SWDK-C NO EFFECT
  • SH19 3 SH78 APPENDIX R CURRENT LOOP INPUT Tb103 19.20 NO EFFECT SH89 APPENDIX R CURRENT LOOP INPUT TB103-22.23 NO EFFECT SH90 APPENDIX R RTO TBIO4-6.7 NO EFFECT SH91 APPENDIX R RID TBIO4-8.9 NO EFFECT SH110 APPENDIX R RfD TB104-10.11 NO EFFECT j
  • = SpeClal NonreQulred Test EK .

l 0646N:4

O O' 4 D y_ f J

TADLE A-11 COMMON MODE F AULi IEST

-GROUND LINE-TO-LINE TYPE OF IfST IEST TEST VOLTAGE CONN .

TO CONNECTION 1/O DOARD INJECTION POINT EFFECT a LEVEL

+ to H HIGH I EVEL VOLTAGE DUTPUT 18204-5,6 NO EFFECT CII 250 DC -

'TD204-5,6 NO EffECT C12 250 DC -

+ to L HIGH LEVEL VOLTAGE OUTPUI HIGH LEVEL VO8.IAGE DUIPUT 10204-5,6 NO EFFECT .

C t3 250 DC + - to H

+ - to L HIGt LEVEL VOLI AGE OtHPili 18204-5,6 NO EFFECT C14 250 DC CIS 250 DC -

+ to H APPENDIX R CURRENT LOOP IN TB103-il.12 NO EFFECT

+ to L APPENDIX R CURRENT LOOP IN 18103-11,12 NO EFFECT C16 250 DC -

10103-11.12 NO EFFECT CI7 250 DC + - to H APPENDIX R CURRENT LOOP IN APPENDIX R CURRENT LOOP IN 18103-11,12 NO EFFECT C18 250 DC + - to L APPENDIX R RTO 'TBIO4-12,I3 NO EFFECT C2O 250 DC -

+ to H 250 DC -

+ to L APPENDIX R RID 10104-12.13 NO EFFECT C21 10104 12.13 NO EFFECT C22 250 DC + to H APPENDIX R RfD

- to L APPENDIX R RID 18104-12.13 NO EffECT C23 250 DC +

+ to H DIGITAL CONIACT INPUT 1D105-5,6 NO [fFECT C24 250 DC -

10105-5.6 NO EFFLCT C25 250 DC -

+ to L DIGliAL.CONIACI INPUT

+ - to H DIGliAL CONIACI INPUT 10105-5,6 NO EFFECI 3 C26 250 DC 10105-5,6 NO EFFECT

' C27 250 DC + - to L DIGITAL CONIACT INPUT 250 DC -

+ to H 4-20 mA CURRENT LOOP OUTPUT T0106-5.6 NO EFFECT C28 Ill 106 -5. 6 NO EFFECT C29 250 DC -

+ to L 4-20 mA CURRENT LOOP DUIPUT 250 DC + - to H 4-20 mA CURRENT LOOP OUTPUI Ill106-5. 6 NO EFFECT C30 TBIOG-5.6 NO EFFECT C31 250 DC + - to L 4-20 mA CURRENT LOOP OUTPUT DIGITAL CONIACI OUTPUI 10108-5,7 NO E f f f C T C32 250 DC -

+ to H

+ + to L DIGITAL CONTACT OUTPUI 10808-5,7 NO EFFECI C33 250 DC 10108-5,7 NO EffECT C34 250 DC + - to H DIGliAL CONTACT OUIPUT

+ , to L DIGITAL CONTACT OUTPUT 10108-5,7 NO EFFECT C35 250 DC 10108-5,6 NO EFFECT C36 250 DC -

+ to L DIGIIAL CONIACT GUIPUI DIGliAL CONIACI OUIPUT 10108-5,6 NO EFFECT C37 250 DC + - to L APPENDIX R CURRENT LOOP INPUT 10109 11,12 NO EFFECT C38 250 DC -

+ to il IlllO9 11.12 NO EFFECT C39 250 DC -

+ to L APPENDIX R CURRENI LOOP INPUT

- to H APPENDIX R CURRENI LOOP INPUT ID100 ll,12 NO FF F LCi C40 250 DC +

lf1109 11.12 NO EffECl~

250 DC + - to L APPENDIX R CURRfNI LOOP INPUT C41 250 DC -

e to il RS-422 DAIA LINK 10101 2.3 NO EFifCI C42 Ill101 2.3 NO EffECT C43 250 DC -

- to H RS-422 DAIA iINK Ill l01 2.3 NO EffECT C44 250 DC +

10101 2,3 NO Ef f ECI C45 250 DC + - to 1 RS-422 DAT A I INK 0646N:4

i i

TABLE A-ll COnsasON RIODE F AULT 1EST ICONilNUED)

GROUND VOLTAGE CONN L I NE -T O-LI NE . TYPE Of TEST . TEST TEST . INJECilON POINT 'EFFECT-a LEVEL TO CONNECTION I/O BOARD

+ to H RS-422 ENCODE /DEC00t DATA LINK TBIO2-19,20 NO EFFECT C46 250 DC -

1b102-19,20 NO EFFECT C47 250 DC -

+ to L _ RS-422 ENCDDE/ DECODE DAT A LINK

+ - to H RS-422 ENCODE /DECDDE DAT A LINK 18102-19,20 NO EFFECT C48 250 DC 18102-19,2O NO EFFECT C49 250 DC + - to L RS-422 ENCGDE/ DECODE DAT A LINK

+ to H DISPLAY SWDK-C FUSE BLOWN

  • CSO 250 DC -

SWDK-C FUSE BLOWN 250 DC + to L DISPLAY

'CSI -

DISPLAY SWDK-C NO EFFECT

  • CSI 250 DC + - to H

+ - to L DISPLAY SWOA+C NO EFFECT

  • CS2 250 DC

+ to H .HIGH LEVEL VOLTAGE DUTPUT TB204-5,6 NO EFFECT C53 580 AC NEUTRAL TB204-5,6 NO EFFECT C54 580 AC NEUIRAL + to L HIGH LEVEL VOLTAGE DUTPUT NEUTRAL + to H APPENDIX R CURRENT LOOP INPUT 18103-11,12 NO EFFECT CSS 580 AC 18103-11,12 NO EFFECT C56 580 AC NEUIRAL + to L APPENDIX R CURRENT LOOP INPUT

+ to H APPENDIX R RID 18104-12,13 NO EFFECT C57 580 AC NEUIRAL APPENDIX R RID 18104-12,13 NO EFFECT C58 580 AC NEUIRAL + to L

> + to H DIGITAL CONTACT 18105-5,6 NO EFFECT JL C59 580 AC NEUTRAL 18105-5,6 NO EFFECT oo C60 580 AC NEUIRAL + to L DIGITAL CONIACT

+ to H 4-20 mA CURRENI LOOP DUTPUT 18106-5,6 NO EFFECT C61 580 AC NEUIRAL

+ to L 4-20 mA CURRENI LOOP OUIPUT 18106-5,6 NO EFFECT C62 580 AC NEUIRAI.

+ to H DIGITAL CONTACT DuiPUT 18108-5,7 NO EFFECT C63 580 AC NEUIRAL

+ to L DIGliAL CONIACT OUTPUT 18 08-5,6 NO EFFECT i C64 580 AC NEUIRAL 18108-5,7

+ to L DIGITAL CONIACT OUTPUI NO EFFECT C65 580 AC NEUTRAL

  • to H APPENDIX R CURRENT LOOP INPUT 18109-11,12 NO EFFECT j C66 580 AC NEUT RAL 10109-11,12 NO EFFECT C67 580 AC NEUIR AL + to L APPENDIX R CURRENI LOOP INPUT i

+ to H RS-422 DATA LINK 18101-2,3 NO EFFECT

[ C68 580 AC NEUTRAL 18101-2,3 NO EFFECT C69 580 AC NEUTRAL + t o 1. RS-422 DAT A LINK

+ to H RS-422 ENCODE / DECODE DAT A LINK TBIO2-10,20 NO EFFECT I C70 580 AC NEUIRAL l

+ to L RS-422 ENCDDE/ DECODE DATA LINK 18102-10,20 NO EFFECT l C71 580 AC NEUTRAL 18102-2,3 NO EFFECT 580 AC NEUIRAL

  • to H RS-422 E NCODE/ DECODE DATA LINK C72 10102-2,3 NO EFFECT 580 AC NEUIRAL + to L RS 422 ENCODE /DECDDE DAT A LINK C73 RS-422 DAIA LINK 18101-19,20 NO EF F LCI C74 580 AC NEUIR AL + to H RS-422 DAI A LINK - 18101-19,20 NO EFFECT C75 580 AC NEUIRAL + to 1 0646N:4 r = * , , ,

% D p b a .s

_ TABLE A-11 COAAION MODE F/ ULT TEST (CONTINUED)

GROUND TEST VOLTAGE CONN LINE-TO-LINE TYPE Of IEST TEST a tEVEL TO CONNE CT ION I/O BOARD INJECilON POINT EffECT

+C75A 580 AC NEUIRAL + to H --- DISPLAY SWDK-C FUSE BLOWN C75B 580 AC NEUIRAL + to t --- DISPLAY SWDK-C FUSE BLDWN ,

C76 580 AC NEUIRAL + to H APPENDIX R CURRENT LOOP INPUI 18103-19,20 NO EffECT C77 580 AC NEUIRAL + to L APPENDIX R CURRENT LOOP INPUT 18103-10,20 NO EffECT C78 250 DC -

+ to L APPENDIX R CURRENT LOOP INPUI 10103-19,20 NO Ef f ECT C79 250 DC -

+ to H APPENDIX R CURRENT LOOP INPUT 10103-19,20 NO EffECT C80 250 DC -

+ to L APPENDIX R CURRENT LOOP INPUT 18103-19,20 NO EffECI C81 250 DC + - to H APPENDIX R CURRENT LOOP INPUI T0103-19,20 NO EFFECT C82 250 DC + - to L APPEN0!X R CURRENT LOOP INPUT 10103-19,20 NO EFFECT C83 250 DC -

+ to is APPENDIX R CURRENT LOOP INPUI 18103-22.23 NO Ef f ECT C84 250 DC + to 1 APPEN0lX R CURRENT LOOP INPUT 10103 22.23 NO EffECT C85 250 DC + - to H APPENDIX R CURRENT LOOP INPui 10103-22,23 NO EffECT C86 250 DC + - to L APPENDIX R CURRENT LOOP INPUI 111103-22.23 NO EFFICT C87 580 AC NEUTRAL + to H APPE NDI X R CURRENI LOOP INPUT 1t1103-22,23 NO EffECT C88 580 AC NEUIRAL + to L APPENO!X H CURRENT LOOP INPUT ItllO3-22.23 NO EffECT C92 580 AC NFUTRAL + to H APPE NDIX' R R f D 10104-6,7 NO EFFECT 3>

APPENDIX R RID 10104-6,7 NO EffECT

/.

uo C93 C94 580 AC 580 AC NEUIRAL NEUTRAL

+

+

to to L

H APPENDIX R RID 10104-8,9 NO EFFECT C95 580 AC NEUIRAL + to L APPENDIX R RID TDIO4-8,9 NO EffECT C96 250 DC -

+ to it APPEN0lX R HID TD104-6,7 NO EffECT C97 250 DC -

+ to L. APPENDIX R RID 18104-6,7 NO EFFECT 250 DC -

+ to H APPENDIX R Rf D 10104-8,9 NO EFFECT C98 C99 250 DC -

+ to L APPENDIX R RID 18104-0,9 NO EffECT C100 250 DC + - to it APPENOlX R RID T0104-6,7 NO EffECT C101 250 DC + - to L APPE NOl X R HID 10104-6,7 NO EffECT CIO2 250 DC + - to H APPENDIX R RfD 10104-8.9 NO EffECT 250 DC + - to L APPENDIX R RID TDIO4-8,9 NO Ef fECT C103 250 DC -

+ to H APPENDIX R RID 10104-10,11 NO EFFECT C104 C105 250 DC -

+ to L APPENDIX R RID 10104-10,13 NO EFFECT C106 250 DC + - to H APPE NDIX R RID 10104-10,11 NO EffECT 250 DC + - to L APPENDIX R RID 11110 4- 10 ,11 NO Ef f ECI C107 C108 580 AC NEUTRAL

  • t o 11 APPENDIX R RID 11$ 104 - 10.11 NO Ef f ECT C109 580 AC NEUIRAL + to L APPENDIX H RID IDIO 4-10,11 NO EffECI C242 250 DC + - to H RS422 ENCODE / DECODE DAT A INPUI 18102-2,3 NO EffECT C243 250 DC + - to L RS422 ENCODE / DECODE DATA INPUI 10102-2,3 NO EffECT 250 DC + to il RS422 ENCODE /DFCODE DATA INPUT 11110 2- 2, 3 NO E f f E C T C244 -

250 DC + to L RS422 EnCODr/ DECODE DATA INPUT 10102-2,3 NO Ef f E CT C245 -

10101-10,20 C246 250 DC -

+ to H RS422 ENCODf / DECODE DATA INPUI NO Ef f ECT C247 250 DC -

  • to L RS422 INCOOL/DtCODE DATA INPUI 10101-19,20 NO Ef f ECI C248 250 DC + - to it RS422 ENCODE / DECODE DATA INPUI 10101-10,20 NO EffECT RS422 INCODE/DfCODE DATA INPUI lil101-10,20 NO El f t CT C249 250 DC + - to L 0646N:4

TABLE A-12 LINE-TO-LINE FAULT TEST' FUSE INSTALLED

-GROUND TEST CONNECTE D TEST VOLTAGE TYPE OF TEST EFFECT INJE CT ION / POINT TO a LEVEL I/O BOARD 18204-5,6 NEUIRAL __.

Lill 125 AC HIGH LEVEL VOLTAGE OUTPUT NEUIRAL L112 125 AC APPENDIX R CURRENT LOOP INPUI 18103-11.12 I T8804-12,13 NEUTRAL Lil3 125 AC APPENDIX R RI.D NEUIRAL DIGITAL CONTACT INPUT 18105-5,6 L114 125 AC (8106-5,6 NEUIRAL LIIS 125 AC- 4-20 MA CURRENT LOOP OUTPUI TB108-5,7 NEUTRAL i L116 125 AC DIGITAL CONTACT OUTPUT NEUT RAL DIGITAL CONTACT OUIPUT TBIO6-5,6 L 117 125 AC TB109-11,12 NEUT RAL Lil8 125 AC APPENDIX R CURRENT LOOP INPUT NEUTRAL I RS-422 ENCODE / DECODE DATA LINK 18102-2,3 ,

L119 125 AC T8101-19,20 NEUTRAL L120 125 AC RS- 422 DAT A LINK TB204 5,6 OF PS L121 125 DC HIGH LEVEL VOLTAGE OUTPUT - OF PS APPENDIX R CURRENT LOOP INPUT TB103-11,12 L122 125 DC TB104-12,13 - (F PS L123 125 DC APPENDIX R RTD + OF PS TBIO4-12,13 L124 125 DC APPENDIX R RID + OF,PS 18105-5,6 L125 125 DC DIGITAL CONTACT INPUT 18105-5,6 - OF PS Ll26 125 DC DIGITAL CONTACT INPUI 18106-5,6 - OF PS 3> L127 125 DC 4-20 MA CURRENT LOOP OUTPUT + OF PS 4-20 NA CURR[NI LOOP OUTPUT 18106-5,6-

[h L128 125 DC 18108-5,7 + OF PS C) L129 125 DC DIGITAL CONTACT OUTPUT

  • OF PS TBIO6-5,6 L130 125 DC DIGITAL CONIACT OUTPUT - OF PS TBIO8-2,4 L131 125 DC DIGITAL CONTACI OUTPUI 18108-2,3 - OF PS Ll32 125 DC DIGITAL CONTACT OUTPUT - OF PS APPENDIX R CURRENI LOOP INPUI (8109-11,82 L133 125 DC TB109-11,82 + OF PS Ll34 125 DC APPENDIX R CURRENT LOOP INPUT + OF PS 18102-2,3 L135 125 DC RS-422 ENCODE / DECODE DAT A LINK T8101-19,20 + OF PS L136 125 DC RS-422 DATA LINK IBIOI-19,20 - OF PS L137 125 DC RS-422 DATA LINK 18102-2,3 - OF PS L138 125 DC RS-422 ENCODE / DECODE DATA LINK - OF PS HIGH LEVEL VOLTAGE OUTPUT TB204-5,6 L139 250 DC TB204-5,6 + OF PS L140 250 DC HIGH LEVEL VOLTAGE OUIPUT T8103-11,12 + OF PS L141 250 DC APPENDIX R CURRENT L OOP INPui - OF PS APPENDIX R CURRENT LOOP INPUT 10103-11,12 L142 250 DC 18I04-12,13 - OF PS L143 250 DC APPENDIX R RID 18104-12,13 + Of PS L144 250 DC APPENDIX R RID + OF PS 18106-5,6 L145 250 DC DIGITAL CONTACT INPUT IB105-5,6 - OF PS Ll46 250 DC DIGITAL CONIACT INPUI 18106-S,6 - OF PS L147 250 DC 4-20 MA CURRENI LOOP OUIPUI 18106-5,6
  • DF PS L148 250 DC 4-20 MA CURRENT LOOP OUIPUI -

b,c 0546N:4 s e . , , ,

  • * .p' e p ,

a TABLE A-12 LINE-TO-LINE F AULT TEST FUSE INSTALLED (CONTINUED)

GROUND TEST VOLTAGE TYPE OF TEST CONNECT ED s LEVEL I/O BOARD INJECTION / POINT TO TEST EFFECT T8108-5,6 + DF PS I L149 250 DC DIGITAL CONTACT OUTPUT L150 250 DC DIGITAL CONTACT OUTPUT 18108-2,4 + OF PS LISI 250 DC DIGITAL CONIACT OUTPUT 18108-R,3D - OF PS Ll52 250 DC DIGITAL CONTACT OUTPUT TBIO8-II 12 - DF PS L153 250 DC APPENDIX R CURRENT LOOP . INPUI 18109-11,12 - OF PS L154 250 DC APPENDIX R CURRENT LOOP INPUI TB109-11.12 + Of PS t l55 250 DC RS-422 ENCODE / DECODE DAT A LINK 18102-2,3 + OF PS L156 250 DC RS-422 DAT A LINK T8101-19,20 + OF PS L157 250 DC RS-422 DATA LINK 18101-19,20 - OF PS L158 250 DC RS-422 ENCODE / DECODE DATA LINK TB102-2,3 - 0F PS L159 250 DC HIGH LEVEL VOLTAGE OUTPUT TB204-5,6 + OF PS L160 125 DC APPENDIX R CURRENT LOOP INPUT 18103-11.12

  • DF PS L161 580 AC HIGH LEVEL VOLTAGE OUTPUT T8204-5,6 NEUTRAL L162 580 AC APPENDIX R CURRENT LOOP INPUT 18103-11,12 NE UTRAL q= L163 580 AC APPENDIX R RID TBIO4-12.13 NEUT RAL S3 L164 580 AC DIGITAL CONTACT INPUT TB105-5,6 NEUTRAL L165 580 AC 4-20 mA CURRENT LOOP OUTPUI 18106-5,6 NEUTRAL L166 580 AC DIGITAL CONTACT OUTPUT T8108-5,6 NEUIRAL L167 580 AC DIGITAL CONTACT OUTPUT 18108-5,7 NE UIRAL 580 AC RS-422 ENCODE / DECODE DAT A LINK TBIO2-2,3 NE UTRAL L168 580 AC RS-422 DAT A LINK TB101-19,20 NE UIR AL L169 L170 580 AC APPENDIX R CUPRENT LOOP INPUT TB109-il.12 ' NEUTRAL L171 125 DC RS-422 DATA LINK TD101-2, 3 - OF PS L172 125 DC RS-422 ENCODE /bECODE DAT A LINK 18102-19,20 - OF PS Ll73 125 DC RS-422 DATA LINK 10101-2,3 + OF PS L174 125 DC RS 422 ENCODE / DECODE DAlA 1. INK 18102-19.20 + OF PS 125 AC RS -422 DAT A LINK 10101-2,3 NEUTRAL Ll75, L176 125 AC RS -422 E NCODE /DE CODE DA T A L I NK 18102-19,2O NE U T RAL L177 125 DC APPENDIX R CURRENT L OOP INPUI 111103- 5,6 - UF PS L178 125 DC APPENDIX R CURRENT LOOP INPui 18103-5,6
  • OF PS - - o,c 0646N:4

TABLE A-12 LINE-TO-LINE FAULT TEST FUSE INSTALLED (CONTINUED)

GROUND TYPE OF TEST CONNECTED TEST VOLTAGE TEST EFFECT I/O 80ARD INJECTION / POINT TO

  1. LEVEL 125 DC APPENDIX R CURRENT LOOP INPUT T8103-8.9 + OF PS L179 ,

L180 125 DC APPENDIX R CURRENI LOOP INPHI T8103-8.9 - 0F PS

  • 125 DC APPENDIX R RID 18104-10.11 - DF PS L181 - DF PS L182 125 DC APPENDIX R RID 18104-6.7 APPENDIX R RID T8104-8.9 - DF PS L183 125 DC + OF PS L184 125 DC APPENDIX R RTD 18104-6.7 APPENDIX R RTO 18104-8.9 + OF PS L185 125 DC - OF PS RS-422 DATA LINK T8101-2,3 L186 250 DC - OF PS L187 250 DC RS-422 ENCODE / DECODE DATA LINK 18102-19.20 RS-422 DATA LINK T8tOI-2.3 + OF PS L188 250 DC + OF PS L189 250 DC RS-422 ENCODE / DECODE DATA LINK 18102-19.20 Ll90 580 AC RS-422 DATA LINK T8tOI 2.3 NEUTRAL RS-422 ENCODE /DECDDE DATA LINK 18102-19.20 NEUIRAL L191 580 AC L194 125 DC RS-422 ENCODE / DECODE DATA LINK TX CHANNEL. OPTICAL - OF PS ISOLATOR PIN 2 AND 3 IN SERIES WITH RESISTOR 3=

125 AC RS-422 ENCODE / DECODE DATA LINK TX CHANNEL OPTICAL - OF PS 4

I na L233 ISOLATOR PIN 2 AND 3 TX CHANNEL. OPTICAL - DF PS L234 125 DC RS-422 ENCODE / DECODE DATA LINK I

I ISDLAIDR PIN 7 AND 3' T8103-5.6 NEUTRAL L235 125 AC APPENOlX R CURRENT LOOP INPUT T8103-8.9 NEUTRAL L236 125 AC APPENDIX R CURRENT LOOP INPUT T8104-10 Il . NE UIR AL L237 125 AC APPENDIX R RfD APPENDIX R RID T8104-6.7 NEUIRAL L238 125 AC NEUT RAL L239 125 AC APPENDIX R RID T8104-8.9 APPENDIX R RTD T8104-10.11 + OF PS L240 125 DC L241 125 DC RS-422 ENCODE / DECODE DATA LIhn IX CHANNEL. OPTICAL + OF PS -

~

ISOLATOR PIN 2 AND 3 b,c 0646N:4  % , ,

% o y e o e TABLE A-13 LINE-TO-LINE F AULT TEST FUSE SHORTED GROUND VOL T AGE TYPE OF TEST CONNECIED TEST LEVEL I/O BOARD INJECTION / POINT 10 TEST EFFFCT

_a

~~ ~~

L192 125 DC HIGH LEVEL VOLT AGE OUIPUT IB 2O4-5,6 - OF PS L193 125 DC DIGITAL CONIACI INPUT TB 105-5,6 - OF PS DIGliAL CONTACT OUTPUT 18 108-5,6 - OF PS L195 125 DC L196 125 DC DIGITAL CONTACT OUTPUT TB 108-8,10 - OF PS L197 125 DC 4-20 mA CURRENT LOOP OUTPUT TB 106-5,6 - OF PS 125 DC APPENDIX R CURRENT LOOP INPUT TB 103 11.12 OF PS L198 L199 125 DC APPENDIX R RfD TB 104-12,13 - OF PS L2OO 125 DC RS-422 ENCODE / DECODE DATA LINK 18 102-19,20 - OF PS L201 125 DC RS-422 DATA LINK 18 101-2,3 - OF PS 3=

HIGH LEVEL VOLTAGE OUTPUI TB 204-5,6 NEUIRAL E L202 125 AC DIGITAL CONTACI INPUT 18 105-5,6 NEUIRAL L203 125 AC NEUfHAL 125 AC 4-20 mA CURRENI LOOP OUIPUT 18 106-5,6 L204 i NEUIRAL 125 AC DIGITAL CONTACT OUIPUI TB 108-5,6 L205 APPENDIX R CURRENT LOOP INPUT TB 103-11,12 NEUIRAL L206 125 AC APPENDIE R RfD ID 104-12,13 NEUIRAL L207 125 AC DIGITAL CONTACI OUIPUT in 108-11,13 NEUIRAL L208 125 AC RS-422 DATA L ilJK ID 101-2,3 NEUIRAL L209 125 AC RS-422 ENCODE / DECODE DAIA LINK 10 102-10,20 NEUIRAL L210 125 AC HIGH LEVEL VOLIAGE OUTPUI IB 204-5,6 - OF PS L211 250 DC I

l D,C 0646N:4

TABtE A-13 ICONT)

LINE-TO-LINE F AULT TEST FUSE SHORTED CROUND CONNE CIED TEST TEST EFFECT TYPE OF TO TEST VOLTAGE INJE C T ION /POINI a LEVEL I/O BOARD ~~

~

TB 105-5.6 - OF PS 250 DC DIGITAL CONTACT INPUT TB 106-2.3 - OF PS L212 L213 250 DC 4-20 mA CURRENI LOOP OUIPUI TB 108-16.17 - OF PS L214 250 DC DIGITAL CONTACT OUTPUT

- OF PS TB 108 - 39.21 L215 250 DC DIGITAL CONTACT OUIPUT

- Of PS 10 101-16.17 L216 250 DC RS-422 DAit LINK

- OF PS TB 102-19.20 L217 250 DC RS-422 ENCODE / DECODE DAT A LINK TB 204-5,6 NEUTRAL L218 580 AC HIGH LEVEL VOLTAGE OUTPUT NEUIRAL Ta 105-11.12 L219 580 AC DIGITAL CONTACT INPUT NEUIRAL T8 106-5.6 L220 580 AC 4-20 mA CURRENT LOOP OUTPUT 2n NEUTRAL TB 108-19.20 L221 580 AC DIGITAL CONTACT DUIPUT NEUTRAL TD 108-25.27 L222 580 AC DIGITAL CONTACT OUTPUT NEUTRAL TB 101-2.3 L223 580 AC RS-422 DATA LINK NEUIRAL TO 102-5.6 L224 580 AC RS-422 ENCODE / DECODE DATA LlHK NEUIRAL IH 102-16.17 L225 125 AC RS-422 ENCODE / DECODE DATA LINK NEUTRAL TH 101-19.20 L226 125 AC RS-422 DAIA LINK 10 102-2.3 - OF PS L227 125 DC RS-422 ENCODE / DECODE DATA LINK TD 101-5.6 - OF PS

D.C 0646N:4 r -

. .. = .

%

  • p a ., ,

9' i

TABLE A-13 (CONT)

LINE-TO-LINE F AULT TEST

. FUSE SHORTED 4

GROUND VOLTAGE TYPE OF TEST CONNECT ED TEST s LEVEL 1/0 BOARD INJECilON/ POINT TO TEST EFFECT L229 250 DC' RS-422 ENCDDE/ DECODE DAT A LINK 18 102-2,3 - OF PS f

L230 250 DC RS-422 DATA LINK TB 101-5.6 - OF PS l

L231 580 AC RS-422 ENCODE / DECODE DATA LINK TB 102-16,17 NEUTRAL L23: 580 AC RS-422 DATA LINK TB 101-19,20 NEUT R AL ,i i

DC i

d

'I n>

! LD 1

1 l

i i

i 0646N:4

O 1

l SS T

t I

l

APPENDIX B FAULT TESTS, FUSE SHORTED PHOTOGRAPHS This appendix contains the following figures:

Figure B-la. Fault Test, Fuse Shorted: 580 Vac Fault Into RS-422 Encode / Decode Data Link Receive Channel (Front, S/N 87)

Figure B-lb. Fault Test, Fuse Shorted: 580 Vac Fault Into RS-422

. Encode / Decode Data Link Receive Channel (Back, S/N 87)

Figure B-2a. Fault Test, Fuse Shorted: 580 Vac Fault Into RS-422 Data Link Transmit Channel (Front, S/N 102)

Figure B-2b. Fault Test, Fuse Shorted: 580 Vac Fault Into RS-422 Data Link Transmit Channel (Back, S/N 102)

Figure B-3a. Fault Test, Fuse Shorted: 580 Vac Fault Into Digital Contact Input (Front, S/N 253)

. Figure B-3b., Fault Test, Fuse Shorted: 580 Vac Fault Into Digital Contact Input (Back, S/N 253)

- Figure B-4a. Fault Test, Fuse Shorted: 250 Vac Fault Into Current Loop Output (Front, S/N 40)

Figure B-4b. Fault Test, Fuse Shorted: 250 Vac Fault Into Current Loop Output (Back, S/N 40)

Figure B-Sa. Fault Test, Fuse Shorted: 580 Vac Fault Into High Level Voltage Output (Front, S/N 42)

Figure B-5b. Fault Test, Fuse Shorted: 580 Vac Fault Into High Level Voltage Output (Back, S/N 42)

Figure B-6a. Fault Test, Fuse Shorted: 580 Vac Fault Into Digital Contact "utput (Front, S/N 39)

Figure B-6b. Fault Test, Fuse Shorted: 580 Vac Fault Into Digital Contact Output (Back, S/N 39) l 0646N:4

s i

1 i

i 1

I i

)

1 4

1 1

4 i

1 i =

A i

}

l t

i 1

j ._._

t o .c I

i Fault Test,. Fuse Shorted: 580 Vac fault into Figure B-la.

RS-422 Encode / Decode Data Link Receive Channel (Front, S/N 87) j l .0539N:4

l1ij1l c,

b

)

o 7 t 8 n

i N

/

t S l

u ,

a k f c a

c B I a (

V l

0 e 8 n 5 n a

h

C d

t e ev r i o e h c S e R

e s k u n F i L

t a .

s t e a T D t e ,

l d

. u o a c F e D

/

. e b d l o

- c B n E

e r 2 u 2 g 4 i -

F S R

- 4 N

9

. 3 5

0 na c

l ll11lll

i A

1 4

)

j .

i

)

i d

1 m,

4 w .

9 i

i 1

i i

l i

i 1

i-

_ b,c 1

1

Figure B-2a. Fault Test, fuse Shorted: 580 Vac fault into RS-422 Data Link Transmit Channel (Front, S/N 102) l 0646N:4

U e

I F .

o O

e.,

C

. m 4.E A

- N 3 O m ~

6 Z

U N CW O 3 CD U W 9 CD w

O C

-* C L C O C L L WQ

@ d m .e 3 E 6 W C

m >-

Q

>- 3 a .C e

3 9 9 6 w C

C

.,Q N N N I v CD f M

C &

L 3

CS

.e 6

l I Y..

v Q

B-4

c, _

- _b x .

t o

I n

9 t

l u

a f

)

c 3 _

a 5 V 2 -

0 N _

8 / .

5 S

t d n t

e or r F o(

h S t

. e p u

s n u I f

t

, c

. t a s

e n t .

T o C

t l l u at a

F i g

i a

. D -

3 B -

e r

u g

i =

F 4

N 9

3 5 _ .

0

?w

{ "U.

I O

O a

.C.=

dud e

)

C 6

U C ^

> M W

O N CO W 2 N

W "O

  • QM ad u L C O CD

.C w W .a O 3 m C.

3 C 6 =

e .a ed U M C a C =d

>- C O

=a U 3 F C C 6 e

.=,-

. .O-

  • O

.O A

I O

Q L

3 O

em 6

e t

I e CD m

W O

B-6

l lllll. \

lll:llll:llll1l!l!l l lll

_ . c.

. 6 t

o I

n t

l u

a F

c )

a 0 V 4

'f N 5 /

2 S

t d n e o t r r F o (

h

. S t e p u

s t u u f O

, p

. t o s o e L T

t

. t n l e u r a r F u C

a 4

B e

r u

g i

F 4

N 9

3 5

0 9~

^u.

I O

O a

C

)

  • C 6

(J C ^

> O v

C LO Z N N L/)

a c u*G L O O w

.C t/) *d 3

Q Q.

m s 3 3 6 O

+ CL

& O .

mO C &

W ea ma C '

- Q 3 6

  • G L 6 3 C) v i

O O

L 3

O 4

v..

G m

LO O i B-8

. s , ..

. -e .

i 4

l i.

l;

}

i 2

l co.

e i

i I

1 i

~

h,c 1

l figure B-Sa. fault Test', fuse Shorted: 580 Vac fault into liigh Level Voltage Output (front, S/N' 42) f

!e 0539N:4

s i

O O

a C

M 3

9 6 e N

O v 4

> Z N

OW CO O

  • 3 U

.. en "C3 C3 Q w a

b M O 3

.C CL D

"3 Q O e

3 Q 6 O M C Q >

3 Q

@ J 6

A O

O i

O Q

b 3

0 E.

I .

g Ce m

W O

B-10

. .. _, { -

4

'lm i

co t

i b,C figure B-6a. fault Test., fuse Shorted: 580 Vac fault into Digital Contact Output (front, S/N 39) 0539N:4

q _

c,

- b t

o n

I t

l u

a F

c )

a 9 V 3

. 0 N

- 8 /

5 S

.  : k d c e a t B r (

o h t S u p

e t s u

, u O F

t

. , c

. t a .

s t T

e no C

t l l .

. u at a

F i g

i

. D b

6 B

e r

- u g

- i

. f

_ 4 N

9 3

5 0

TIG

! ; 1

l APPENDIX C MICROPROCESSORS AND l/O BOARDS DESCRIPTION 1

1 This appendix contains the following information:

t i e Input / Output I/O Board Description e High voltage level output e Appendix R Current-lcop input e Appendix R RTO l e 4 to 20 mA current-loop output e Digital contact input e Digital contact output l e RS 422 Encode / Decode Datalink e RS 422 Datalink e Microprocessor Board Description '

1 i

ic 0646N:4

SIGNAL CONDITIONING BOARD DESCRIPTIONS Appendix R Current Loop Signal Conditioning Board The Westinghouse Appendix R current loop input (CLI) board (2D33170G01) is capable of receiving up to two analog signals as inputs. The signal from the board, to the processor chassis, is scaled to the 0 to +5 volt range.

This type of board provides analog signal conditioning sufficient to meet the fire separation criteria of 10CFR50, Appendix R for parameters essential for safe cold shutdown.

Each current loop input of each board has a matching field side current loop output which provides the isolation for the 7300 sories process cabinets.

This " repeater" function is a hard-wired jumper selectable feature of the Appendix R CLI board.

Appendix R RTD Signal Conditioning Board

, The Westinghouse Appendix R RTD input board (2033172G01) is capable of receiving up to two four-wire RTD inputs. The signal from the board to the processor chassis is scaled to the O to +5 volt range.

This type of board provides analog signal conditioning sufficient to meet the fire separation criteria of 10CFR50, Appendix R for parameters essential for safe cold shutdown.

Each RTD input has a matching current loop output which is used to provide the isolation for the 7300 series process cabinets. Because of the nonlinear nature of RTD signals, the repeater function is not a hard-wired feature of the board. The input signal is digitized and converted to engineering units by the APC processor. The linear temperature scale is then converted to an analog 0 to 10 volt signal which is used to drive the current loop output channel of the Appendix R RTD board.

C-1 l 0646N:4 i

The Appendix R RTD board has two jumper configurable ranges. Either a 100 or 200 ohm RTD can be used as an input. When a 100 ohm platinum RTD is selected as the input, the nominal current excitation source is set to 1.95 mA, and for a 200 ohm RTD is set to 0.95 mA. The board also provides the selection of the

  • type of low pass filtering for inputs, either 0.5 Hz or 5.0 Hz.

Adjustable trim pots are provided on the field side outputs for selecting the appropriate gain and offset.

Digital Contact Input Board Each Westinghouse digital contact input board receives eight digital input signals and outputs logic-level (0 or 1) reproductions of these signals.

Two models are available: Model 2344001/G01 is a passive circuit receiving externally powered contact closure inputs; Model 2344001/G02 is an active circuit generating an isolated energizing voltage of 48 Vdc for each channel.

High Level Voltage Output Board The Westinghouse voltage output board (2344002G01) is capable of providing four 0 to 10 V voltage outputs. The nominal input range of this board, from the computer side, is 0 to 10 volts.

4 to 20 mA Current loop Output Board The Westinghouse current loop output board (2031856G01) is capable of delivering four current loop outputs. The nominal input range of this board, ,

from the computer side, is 1.92 to 9.6 volts which corresponds to an output of 4 to 20 mA.

The output of the CLO board is jumper configurable and can be used as an active or passive output.

C-2 0646N:4

Digital Contact Output Board Each Westinghouse 2344004 series digital contact output board converts eight

~

digital signals (0 volt and 5 volt) to provide eight form C contact outputs to the associated field wiring.

RS-422 Encode / Decode Data Link Each Westinghouse 2D32406 series RS-422 Encode / Decode data link board provides two transmit and two receive channels for synchronous or asynchronous operation. Each channel is electrically isolated through optical isolators.

RS-422 Data Link The RS-422 data link board provides two input and two output RS 422 communica-tion channels to the processor and makes the data in the controller side available as RS-232. Each input and output. signal is isolated from the other input and output signals to the board, from the cabinet power supply, and from

. the output signals.

C-3 0646N:4

MICROPROCESSOR BOARD DESCRIPTIONS 9

a.C C-4 0646N:4-

a.C

'C-5 0646N:4

1 l

l l

1 i

~

+,

a,c C-6 0646N:4

F-a.C C-7 0646N:4

m 1

1 1

a.c C-8 0646N:4

! \

I APPENDlX D l TEST PROCEDURES l-l i This appendix contains the following test procedures:

1 e Part D1 -- Noise Test Procedure '

e Part 02 -- Fault Test Procedure (The shielding test in the fault test procedure was not performed.)

e Part 03 -- Surge Withstand Test Procedure e Part 04 -- Radio Frequency Interference Test Procedure l

l l

0646N:4

PART 01 NOISE TEST PROCEDURE l

. 1 0646N:4

l I&CDE/SID(86)-112 l l

CNN 050586-0 DATE REVISION NO.

. 7/17/86 0 l l

4 i i

\

NOISE TEST PROCEDURE '

FOR PSMS, QOPS, RVLIS-86 AND ICC-86 l

l i APPROVALS 1.

ORIGINAL REV. O REV. 1 REV. 2

~

AUTH0R C. N.'Nasrallah REVIEWED J. R. Smith MANAGER W. Ciaramitaro QUALITY

. ASSURANCE R. Saupe l

~

0646N:4 l

- - , _ - -l

1.0 INTRODUCTION

This procedure details the electrical interference " noise" tests to be applied to a test configuration representative of a variety of plant ~

eauipment arrangements as described in References 1 and 2.

The test configuration is documented in sketches CNN61086, CNN62086, and CNN62286, Sheets 1 and 2, which become part of these test records as modified by this procedure and the references above.

2.0 PREPARATION FOR TEST 2.1 Prepare configuration record sheet per Table 3-4, Page 17, Reference 1, for each P.C. board in the configuration. Identify QA records files. Record all test observations in a " Permanent Record Book."

2.2 Connect the field cabling to sensor simulation, load simulation, contact input (SPDT) simulation, contact output loads, and remote -

interlock / test injection per Attachment B.

2.3 Perform calibration of the system as follows:

2.3.1 Load plant software to OPU and RPU. Obtain printout of

" PROM" operating software for test records.

2.3.2 a. Perform, verify, and record "self cal" values.

b. Input analog (voltage and current) and resistance values corresponding to 0 - 100% of scale in 20%

increments and record.

2.3.3 Perform and verify calibration of analog repeater function module slot TB109. Record values 0, 20, 40, 60, 80, and

~

100% FS.

D1-2 0646N:4

2.3.4 Set up " normal" operate simulation parameter per Table 01-1.

2.3.5 Verify that analog output parameters and display values agree with Table 01-1.

a. Make a printer plot output record of all display pages per above. ,
b. Connect digital data logger and record " normal" analog output values. Per Table 01-1, disconnect digital da'ta logger. (Note: Digital data logger is to be pretest and post-test verification of system status only. It will be disconnected during noise tests.)
c. Connect tape recorder per Attachment C and record for six (6) minutes.
d. Play back above data on Visicorder and verify

~

calibration of record / playback data system. (Compare with data logged values (b) above.)

e. Recalibrate, if necessary, and make a " reference" cross calibration of (b), (c), and (d) above.

2.3.6 Make a six (6) minute tape record of above, except turn off RPU at two (2) minutes into the run (monitor switch) and turn back on at four (4). minutes into the run. Record observations.

2.3.7 Repeat the above except turn off DPU (monitor switch) at I

O

+2 minutes and restore at +4 minutes. Record observations.

! 2.3.8 Reconnect the digital data logger and display plotter and record values. Values should agree + 0.5% FS with 2.3.5(b) above.

01-3 0646N:4

3.0 NOISE TEST PROCEDURE SEQUENCE 3.1 Pretest Using digital data logger and display observation, verify " normal" condition of systems per calibration values of 2.3.8 above, and Table 01-1.

3.2 Disconnect data logger and verify " antenna" connections and configuration for each injection point of Attachment A.

3.3 Connect noise source; verify readiness of tape recorder data logger system. Enter identifying records in tape recorder log.

3.4 Sat the display unit to observe the page indicating the respec-tive parameter subject to noise injection (where applicable), and record any change in the error message in the APC status block during each test.

3.5 Run the tape recorder for two (2) minutes for pretest data, apply the noise source for two (2) minutes, and stop the recorder after -

a two (2) minute post-test period. Record all observed effects if any on system display, monitoring oscilloscope and digital CRT.

(TB202 16-17 " buffered" data link).

3.6 Observing the display, oscilloscope, and CRT data monitor for system continuity, note and record observations.

NOTE: Continuity of System Functionality of I/O such as "RTC" not addressed by analog or display page outputs to be software addressed and observations recorded via using

" buffer" connected CRT monitor. Record the address function and operating status observed. ..

3.7 If observation indicates an anomaly during the test, tape -

recorded data should be played back on the Visicorder and observations recorded before proceeding.

D1-4 0646N:4

3.8 Reconnect the data logger and confirm that the calibrations are retained + 0.5%. Verify display data supports the calibration data. Record any discrepancies.

3.9 With the system confirmed to be in the pretest condition, proceed to the next test.

4.0 RANDOM NOISE TEST 4.1 Connect the [ ],,c (20V peak,10 kHz to 10M Hz) and antenna assembly cable to first terminal of Table D1-2, and test per sequence 3.0 above.

4.2 Repeat above for each TB designation of Table D1-2.

5.0 CROSSTALK NOISE TEST 5.1 Connect the 118 volt AC chattering relay and antenna assembly cable to the first terminal of Table D1-2, and test per sequence 3.0 above.

5.2 Repeat the above for each TB designation of Table 01-2.

5.3 Repeat 5.1 and 5.2 above except use 125V DC chattering relay.

6.0 MIL N19900 NOISE TEST l 6.1 Connect the ' noise source 1" and antenna assembly cable to the first terminal of Table D1'-2 and test per sequence 3.0 above.

l 6.2 Repeat above for each TB designation of Table 01-2.

l 6.3 Repeat 6.1 and 6.2 above except use " noise source 2."

i D1-5 0646N:4

7.0 SURGE TRANSIENT GENERATOR 7.1 Connect the [ ),,, surge _ generator (3.3 kV peak, 1.25M Hz at 120/sec. rep. rate) and antenna assembly cable to first terminal '

of Table D1-2 and test per sequence 3.0 above.

7.2 Repeat above for each TB designation of Table D1-2.

8.0 ALTERNATE DATA LINK I/O CONFIGURATION 8.1 Reconfigure RPU data links I/O boards per " alternate" Attachment B and field connections per Attachment A. Table 01-2.

9.0 TEST ALTERNATE CONFIGURATION 9.1 Repeat tests 4.0 through 7.0 above, except test connections and sequence per Attachment A, Table 01-2.

10.0 POST TEST 10.1 Repeat system calibration per Section 2.3. Note comparison.

10.2 Play back tape-recorded results on a Visicorder and record all observed anomalies.

D1-6 0646N:4

TABLE D1-1 SIMULATION NORMAL PARAMETER VALUES Reference Parameter Display Sensor Connection Identification Units Rznge Simulation Output Set TB204 FI-417A 100% 0-120% N/A 8.33 V Computer set.value TB204 FI-437A 100% 0-120% N/A 8.33 V Computer set value TB205 System alarms N/A N/A N/A Normally open TB103 LT-467 56% 0-100% Fixed N/A (2,3) Pressurizer resistor level TB103 TE434 4.09 V (11,12)

TB103 PT-406 RCS '1981 0-3000 Fixed N/A 16.26 mA (16,17) Wide range psig psig resistor pressure TB103 TE444 4.09 Y (26,27)

TB104 TE414 RCS T 540*F 0-700*F Potentiometer 4.09 V 411.4 ohm Loop 1 c TB104 TE424 RCS T 540*F 0-700*F Potentiometer 4.09V 411.4 ohm c

Loop 2 TB105 LSH7803 Pump 1B N/A Closed contact N/A (2,3) Sump H TB105 LSHH7803A Pump N/A Closed contact N/A (5,6) 1B Sump H.H.

P4-B Reactor N/A Closed contact N/A trip switchgear TRN-S TB106 PMY-868 RHR 130*F 50 to N/A 1.91 V Computer

- (2,3) temperature 400*F set value TB106 PHY-862 RHR 100 0-700 N/A 1.57 V Computer (5,6) pressure psig psig set value D1-7 0646N:4

TABLE 01-1 (Cont)

SIMULATION NORMAL PARAMETER VALUES ..

Display Sensor Reference Parameter Output Set Connection Identification Units Range Simulation 540*F 0-700*F Potentiometer TB103 411.4 ohm TB107 TE434 RCS T C Loop 3 (11,12) 540*F 0-700*F Potentiometer TB103 411.4 ohm TB107 TE444 RCS T C Loop 4 (25,26) _

EN1, 2-and 3 N/A N/A Nor- N/A TB108 mally open FT868 RHR Pump 464 0-4000 Fixed resistor 1.0 V 4.0 mA TB109 i B flow

~

0646N:4

Procedure Rev.

Date:

Test #:

TYPE RANDOM NOISE MIL N10099 #1 CROSSTALK NOISE MIL N19900 #2 SURGE TRANSIENT TEST INJECTION POINT TB# TYPE POINT # DRAWING CONFIGURATION TABLE Al A2 PRE-TEST DATA LOGGER DATA VERIFICATION

  • PRINT OUTPUT #

SYSTEM STATUS: DPU RPU DISPLAY DATA LINK DISPLAY TYPE VALUE PAGE 1 PT406 TE414 TE424 TE434 IE444 PAGE 3 LT467 PAGE B FT868 DATA LINK DATA BYTE RTC CONTACT #1 & #2 REMARKS AND TEST OBSERVATION DISCONNECT DATA LOGGER TEST TAPE RECORDER FOOTAGE BEGIN END SET #

SPEED TIME

. SYSTEM STATUS: DPU RFU DISPLAY DATA LINK DISPLAY TYPE VALUE PAGE 1 PT406 TE414 TE424 TE434 TE444 PAGE 3 LT467 PAGE B FT868 DATA LINK DATA BYTE RTC CONTACT #1 & #2 REMARKS AND TEST OBSERVATION POST-TEST DATA LOGGER DATA VERIFICATION

  • PRINT OUTPUT #

SYSTEM STATUS: DPU RPU DISPLAY DATA LINK DISPLAY TYPE VALUE PAGE 1 PT406 TE414 TE424 TE434 TE444 PAGE 3 LT467 PAGE B FT868 DATA LINK DATA BYTE RTC CONTACT #1 & #2 REMARKS AND TEST OBSERVATION PERFORMER VERIFIER NOTE:

Figure D1-1. Noise Test Data Sheet 01-9 0646N:4

c i

REFERENCES

1. I&CDE/SID(86)-099, " Preliminary Test Plan Reference 6ocument 00PS Noise and Fault Testing," dated June 20, 1986. .
2. I&CDE/SID(86)-108, " Noise and Fault Testing Digital Data Link Isolators (QOPS)," dated June 27, 1986.

D1-10 0646N:4

ATTACHMENT A NOISE INJECTION " ANTENNA" CONNECTIONS NOTE: " Antenna" .for noise injection is to be 40 foot of unshielded single conductor cable routed adjacent to external field cable ,

terminated at the identified test field terminals. The " antenna" and test cable is to be separated from balance of simulated field cabling for effect analysis purposes. The test cable connection within the cabinet is to be conduit routed consistent with " isolated" installation design (Reference 1).

This attachment contains the following tables: .

e Table D1-2 Noise Injection Field Connections e Table D1-3 Alternate Configuration RPU TB101 and 102 i

e Antenna to be source impedance terminated or shorted to earth ground D1-11 0646N:4

TABLE 01-2 NOISE INJECTION FIELD CONNECTIONS Terminal Block Connections I/O Isolation Section Reference HI Lo Sn. Isolator Type I/O Board Function TD102 2 3 NC RS-422 Encode / Decode Data Link 2D32406 Data link TX RPU TB201 2 3 hC RS-422 Encode / Decode Data Link 2033406 Data link TX DPU RPU TB101 19 20 NC RS-422 data Itnk 2334063 Data link RX DPU TB203 16 17 NC RS-422 Encode / Decode Data Link 2D33406 Data link Train C display DPU TB203 2 3 NC RS-422 Encode / Decode Data Link 2D33406 Data link Train A/ Train C DPU TB203 5 6 NC RS-422 Encode / Decode Data Link 2D33406 Data link Train C/ Train A DISPLAY Train C connector SWDK 2D33403 Data 11nk Train C/ display DPU DPU TB204 5 6 N/A High Level Voltage Output 2344DO2 Output Ej DPU TB205 8 9 N/A Digital Contact Output (open) 2344DO4 Output DPU TB205 8 10 N/A Digital Contact Output (closed) 2344DO4 Output TB103 11 12 NC Appendix R current loop input 2033170 Output RPU (nonrepeating)

T8104 12 13 NC Appendix R RTD 2033172 Output RPU RPU TB105 5 6 N/A Digital Contact Input (input open) 2344D01 Input TB105 5 6 N/A Digital Contact Input (input 2344D01 Input RPU closed) 5 6 NC 4-20 mA Current Loop Output 2D31856 Output RPU TB106 e

(powered)

RPU TB108 5 6 N/A Digital' Contact Output (NO) 23344DO4 Output RPU TB108 5 7 N/A Digital Contact Output (NC) 23344DO4 Output RPU TD109 11 12 NC Appendix R Current Loop Input 2D31856 Output (analog repeating) j 0646N:4 .

N k

lll 1 lI ll ll1 4Ill llIl jIl

(

X X T R n k k i

o i n i n

t l l c

n a a u t t F a a D D nd or t a 3 6 6 0 t o 0 4

. aB 4 2 2 l 3 3 0 oO 3 D 1

s/ 2 2 II D

N A

1 0

1 t a

B a T D 3P U

e e p d 1

- R y o DN c T k e O -

n D s EI r i /

LT BA o L e 0t d AR TU

/a a o Il t c G o a n

, I s D E F I N 2 2 O 2 2 C 4 4k E S Si

-n T R RL A

N R

E T

L A

h. C C S N N s

n lo t o 3 0 cL 2 e

n n

o C 1 2 9 H 1 e

l c

a- n

  • nke icr 1 2 moe rlf 0

1 0

1 eBe B B

_ T R T T e

~ n i

o 4:

  • t N c U U 6 e P P 4 S R R 6 0

oYC

ATTACHMENT B-FIELD CONNECTIONS AND SIMULATION .1 This attachment contains the following figures: ,

e Figure D1-2 Legends and Symbols for Field Connections Diagrams e Figure D1-3 RPU Field Connections (2 sheets) e Figure D1-4 RPU Alternate Field Connections, RPU Data Links e Figure D1-5 DPU Field Connections e Figure 01-6 4-20 mA Transmitter Simulator l e Figure D1-7 4-20 mA Current Loop Output o Figure D1-8 Resistance Temperature Detector (RTD) e Figure D1-9 Analog Output Channel Recording e Figure 01-10 Contact Output Connection e Figure D1-11 Dummy Load Ter.mination, RS-422 Data Links e Figure 01-12 " Appendix R" Cards, Remote Calibrate Simulation I

l f

01-14 0646N:4 1

e s

a,e.c Figure 01-2. Legends and Symbols for Field Connections Diagram 01-15 0646N:4

i

- ' a.c.: .

Figure 01-3. RPU Field Connections (sheet 1 of 2)

~

l 01-16 064SN:4

1 i

e W

l e

e a.b.C Figure 01-3. RPU Field Connections (sheet 2 of 2)

D1-17 0646N:4

' a,b.c Figure 01-4. RPU Alternate Field Connections, RPU Data Links (TB101 and 102 Only)

D1-18 0646N:4

l

, - a,o c Figure 01-5. DPU Field Connections D1-19 0646N:4 l

4 I/O TERMINAL l I) 1% PRECISION RESISTOR CONNECTIONS

\ m

~

k/

v ,

Figure D1-6. 4-20 mA Transmitter Simulator 01-20 0567N:4

l 1

- GROUND y TO BUFFER AMPLIFIER AND n n[ DATA LOGGER

[) I)

I/O TERMINAL 250 OHM CONNECTIONS O.1% I/2 WATT kl ( l- 3 V V I

T i

i 9

Figure 01-7. 4-20 mA Current Loop Output 01-21 0567N:4

I

/\ A B

/

0-l000 OHM PRECISION (0.1%)

I/O TERMINAL POTENTIOMETER

(- CONNECTIONS C

=

D .

i Figure 01-8. Resistance Temperature Detector (RTO) l l-l 01-22 l 0567N:4

l A

II I/O TERMINAL CONNECTIONS > TAPE RECCRDER 7

h (\/)

-!=-

~

. /

FIELD CABLE LOAD IMPEDANCE BUFFER AMPLIFIER l

l l

Figure 01-9. Analog Output Channel Recording 01-23 0567N:4

LOK I/O TERMINAL > TAPE RECORDER CONNECTIONS +g y , f

, . BATTERY g-BUFFER AMPLIFIER Figure 01-10. Contact Output Connection 01-24 0567N:4

f C

[) I) 100 Q 1/2 WiS%

c ()

v -

()

v APPLIED TO DATA LINKS EXCEPT THCSE EFFECTING INTER CONNECTIONS IN TEST CONFIGURATION Figure D1-11. Dummy Load Termination, RS-422 Data Links 0567N:4

o4 b A o4 o4 B 04 TEST RTD INJECTION CAL.

o: O o4 o4 C oc o4 0 o TEST INTERLOCK o4 O '

f TYPICAL MULTICONOUCTOR CABLE REMOTE GROOVE ,

4-20 MA/O-lOV CAL.

TEST o )4 on -

CURRENT OR VOLTAGE INJECTION SOURCE

= 04 O *4 0 o

. TEST INTERLOCK o e O d Figure 01-12. " Appendix R" Cards, Remote Calibrate Simulation 1

01-26 0567N:4

4 ATTACHMENT C  ;

TRANSIENT DATA RECORDING SYSTEM CONNECTIONS AND SCALING l

This attachment contains the following:

l e Table 01-4 Tape-Recorded Data- ,

i l

l l

l l

l 1

l l

l 01-27 0646N:4

TABLE D1-4 TAPE-RECORDED DATA ,

Tape Recorder Reference I/O Function TB Connection Channel 1 Noise / source N/A e,c D1-28 0646N:4

W PART 02 FAULT TEST PROCEDURE (The shielding test in the fault test procedure was not performed.)

0642N:4 j

1 I&CDE/SID(86)-123

. l DATE REVISION NO.

7/30/86 0 FAULT TEST PROCEDURE FOR PSMS, QDPS, RVLIS-86 AND ICC-86 APPROVALS ORIGINAL REV. O REV. 1 REV. 2 AUTHOR C. N. Nasrallah REVIEWED J. R. Smith MANAGER W. Ciaramitaro QUALITY ASSURANCE R. Saupe J

02-1 0642N:4

---g-

  • .-- - - . , a ,-,----,,--,,,-,--------,---,n-,,-,---,w-n--, , , -_--

1.0 INTRODUCTION

~

This procedure details the electrical fault tests to be applied to a test configuration representative of a variety of plant equipment '

)E arrangements as described in References 1 and 2.

The test configuration is documented in sketches CNN61086, CNN62086, and CNN62286, Sheets 1 and 2, which become part of these test records as modified by this procedure and references above.

2.0 PREPARATION FOR TEST 2.1 Verify record sheet per Table 3-4, Page 17, References 1 and 3, for each P.C. board in the configuration. Identify 0A reccrds files. Record all test observations in a " Permanent Record Book."

2.2 Connect the field cabling to sensor simulation, load simulation, contact input (SPDT) simulation, contact output loads, and remote interlock / test injection per Reference 3. -

2.3 Perform calibration of the system as follows:

2.3.1 Load plant software to DPU and RPU. Obtain printout of

" PROM" operating software for test records.

2.3.2 a. Perform, verify, and record "self cal" values.

b. Input analog (voltage and current) and resistance values corresponding to 0 - 100% of scale in 20%

increments and record.

2.3.3 perform and verify calibration of analog repeater function module slot TB109. Record values 0, 20, 40, 60, 80, and 100% FS.

02-2 0642N:4

2.3.4 Set up " normal" operate simulation parameter per Table 02-1.

2.3.5 Verify that the analog output parameters and display values agree with Table D2-1.

a. Make a printer plot output record of all display pages per above.
b. Connect digital data logger and record " normal" analog output values. Per Table D2-1, disconnect the digital data logger. (Note: Digital data logger to be pretest and post test verification of system status only. It shall be disconnected during fault tests.)
c. Connect tape recorder per Table 02-2 and record for six (6) minutes.  !
d. Play back the above data on Visicorder and verify calibration of record / playback data system.

(Compare with data logged values (b) above.)

e. Recalibrate, if necessary, and make a " reference" cross calibration of (b), (c), and (d) above.

2.3.6 Make a six (6) minute tape record of above except turn off RPU at two (2) minutes into the run (monitor switch) and turn back on at four (4) minutes into the run. Record observations.

1 2.3.7 Repeat the above except turn off DPU (monitor switch) at

+2 minutes and restore at +4 minutes. Record observations.

02-3 0642N:4

i

~

TABLE 02-1 SIMULATION NORMAL PARAMETER VALUES .

Display Sensor Reference Parameter Units Range Simulation Output Set Connection Identification 0-120% N/A 8.33 V Computer TB204 FI-417A 100%

set value 0-120% N/A 8.33 V Computer TB204 FI-437A 100%

set value N/A N/A N/A Normally TB205 System alarms open LT-467 56% 0-100% Fixed N/A TB103 (2,3) Pressurizer resistor level TB103 TE434 4.09 V (11,12)

PT-406 RCS 1981 0-3000 Fixed N/A 16.26 mA TB103 (16,17) Wide range psig psig resistor pressure TB103 TE444 4.09 V (26,27) 540'F 0-700*F Potentiometer 4.09 V 411.4 chm TB104 TE414 RCS T c

Loop 1 540*F 0-700*F Potentiometer 4.09V 411.4 chm TB104 TE424 RCS T c Loop 2 TB105 LSH7803 Pump 18 N/A Closed contact N/A (2,3) Sump H TB105 LSHH7803A Pump N/A Closed contact N/A (5,6) IB Sump H.H.

P4-B Reactor N/A Closed contact N/A trip switchgear .

TRN-S 130*F 50' to N/A 1.91 V Computer .

TB106 PMY-868 RHR (2,3) temperature 400*F set value 1

02-4 0642N:4

TABLE D2-1 SIMULATION NORMAL' PARAMETER VALUES (CONT)

Reference Parameter Display Sensor Connection Identification Units Range Simulation Output Set TB106 PHY-862 RHR 100 0-700 N/A 1.57 V Computer (5,6) pressure psig psig set value TB107 TE434 RCS T 540*F 0-700*F Potentiometer c TB103 411.4 ohm Loop 3 (11,12) -

TB107 TE444 RCS T 540*F 0-700*F Potentiometer e TB103 411.4 ohm Loop 4 (25,26)

TB108 EN1, 2 and 3 N/A N/A Nor- N/A mally open TB109 FT868 RHR Pump 464 0-4000 Fixed resistor 1.0 V 4.0 mA B flow 02-5 0642N:4

i TABLE D2-2 TAPE-RECORDED DATA .

Tape Recorder Reference I/O Function TB Connection Channel Fault / source N/A 1

~

b.C 02-6 0642N:4

2.3.8 Reconnect digital data logger and display plotter and record values. Values should agree + 0.5% FS

. with 2.3.5(b) above.

2.3.9 Using a shorted cable, verify maximum fault current and time duration per Attachment B. Verify that "line" protector fuses blow. Refer to Figures 02-4 and 02-5.

3.0 FAULT TEST PROCEDURE SEQUENCE 3.1 Protest Using digital data logger and display observation, verify "narmal" condition of systems per calibration values of 2.3.8 above, and Table 02-1.

3. 2. Disconnect the data logger and verify " fault" connections and configuration for each injection po. int of Attachment A.

3.3 Connect fault source; verify connection of recorder per Table D2-3 and readiness of tape recorder data logger system. l Enter identifying records in tape recorder log.

3.4 Set the display unit to observe the page indicating the respective parameter subject to fault injection (where applicable), and record any change in the error message in the APC status block during each test.

3.5 Run the tape recorder for two (2) minutes for pretest data, apply fault source for two (2) minutes, and stop recorder after a two (2) minute post test period. Record all observed effects i if any on system display, monitoring oscilloscope and digital

  • l CRI (TB202 16-17 " buffered" data link).

l D2-7 0642N:4 -

3.6 Observing the display, oscilloscope, and CRT data monitor for system continuity, note and record observations. .

Note: Continuity of System Functionality of 1/0 such as "RTC" '

not addressed by analog or display page outputs to be software addressed and observations recorded using

" buffer" connected CRT monitor. Record address function and operating status observed.

3.7 If observation indicates an anomaly during the test, tape recorded data should be played back on the Visicorder and observations recorded before proceeding.

3.8 Reconnect the data logger and confirm calibrations are retained

+ 0.5%. Verify that the display data supports the calibration data. Record any discrepancies.

3.9 With system confirmed to be in pretest condition, proceed to the next test.

4.0 Go to 5.0 Short Circuit.

5.0 SHORT CIRCUIT 5.1 The (+) "high" (-) " low" terminals of TB102 Table A-1 to be switched to earth ground at fault time and switched event marked on recorder channel number 1 (Figure 02-1).

(NOTE: The normal load or input simulator on analog channels will be retained in place for this testing to record recovery following short circuit time interval.)

5.2 Repeat above for each TB designation of Table D2-4.

CAUTION: CONNECTIONS IN PLANT COULO USE EARTH CONNECTION ON REMOTE EQUIPMENT. FOR PURPOSES OF THESE TESTS (6 AND 7) SIMULATED i

LOADING SHALL BE FLOATING. (DISCONNECT 4-20 mA EARTH GROUND).

02-8 0642N:4

TABLE D2-3 TAPE RECORDER CONNECTION AND RELOCATION DURING FAULT TESTS Tape Recorder Reference Connections Channel I/O Function T.B. Connection Remarks 1 Fault Source Test Reference r

_ D.C

  • Relocation only when fault injection is applied to these terminals 02-9 0642N:4

l 6.0 250 V0LT DC COMMON MODE The following tests are to be applied to field connections connected to I/O modules per Table D2-4 to each (+) high and (-) low term and -

250-volt fault voltage source and test per -sequence 3.0 above as follows:

6.1 With 250-volt negative potential applied to earth ground, switch

(+) fault voltage to (+) higher terminal (TB102 Table D2-4).

6.2 Repeat 6.1 above except switch fault to (-) low terminal (TB102).

6.3 With 250 volt positive potential applied to earth ground switch

(-) fault voltage to (+) high terminal. TB102.

6.4 Repeat 6.3 above except fault voltage switched to (-) low terminal. TB102.

Repeat 6.1 to 6.4 above for each TB designation of Table D2-4.

6.5

~

7.0 580V AC COMMON MODE FAULT TEST 7.1 With a 580 volt fault source lead connected to earth ground and test sequence per 3.0 above, switch 580 volt fault source to the

(+) high terminal of Table D2-4 (TB102).

7.2 Repeat 7.1 above, except switch fault source to (-) low terminal per Table D2-4.

LINE-TO-LINE FAULTS CAUTION: The following tests are destructive of isolation components, wiring, and circuitry. Simulated inputs or load terminations are to be disconnected and recorder channels -

relocated and restored from fault terminals to alternate terminals per Table D2-3. Wire size from fault source to be 16 awg min. with a length of 40 feet.

02-10 0642N:4

l l

4 .

f l

I 1

HI O h< <

l 1

FAULT TB 4 i i

Le LO

-0 ' '

I e I?

'* 0 > >->

' TAPE

! RECORDER 10K d I 1/2W9 CH. #1 l

>)

9V i

]

Figure D2-1. Short Test Tape Recorder Event Marker 4

D2-11 0638N:4

Tests are to be conducted twice. The initial tests of Section 8 through 15 will be fuse protected as per original design

  • configuration (Test Series A).

Following the above fault test series, I.O. board fuses interfacing respective fault terminals of Tables 02-4 to 02-7 to be shorted out at I/0 beard fuse holders. Fault interruption in this case will be either due to I/O board circuit / component failures and/or the fault source protective fuse (20 amp).

Repeat testing Section 8 through 15 (Series B) with the reduced I/O board protection.

Following each test repair or replace boards as required to restore to original condition before proceeding to the next test.

8.0 125 VOLT DC LINE-TO-LINE FAULT TEST 8.1 Connect the (-) negative lead wire of the 125 volt de 20 amp fused fault source to earth ground and with the test sequence '

3.0 above, switch fault voltage plus (+) to (+) high and minus

(-) to (-) low terminals (source line to isolator lines).

8.2 Repeat 6.1 above except reverse fault source polarities.

8.3 Repeat 8.1 and 8.2 for each TB of Table D2-4.

9.0 125V AC LINE-TO-LINE FAULT 9.1 For this test, one terminal of the 125 volt AC source to be connected to earth ground. The (+) high and (-) low terminals af Table 02-4 are switched to the " hot line" and earth ground respectively, observing the test sequence 3.0 above, beginning with TB102. .

l 9.2 Repeat above for each TB designated in Table D2.4 MAXIMUM CREDIBLE FAULTS e l CAUTION: THE FOLLOWING TESTS APPLY ONLY TO A FEW SELECTED l TERMINALS (Tables 02-6 and 02-7). s 10.0 250 VOLT DC LINE TO LINE FAULT TEST 10.1 Connect the (-) negative lead wire of the 250 volt DC 20 amp i

fused source fault to earth ground and with the test sequesnce . l 3.0 above, switch fault voltage plus (+) to (+) high and minus

(-) to (-) low terminals (source line to isolator lines). ,

10.2 Repeat 10.1 above except reverse fault source polarities.

10.3 Repeat 10.1 and 10.2 for each TB of Table D2-6.

11.0 580V AC LINE-TO-LINE FAULT

~

11.1 For this test, one terminal of the 580 volt AC source is to be connected to earth ground. The fault (+) high and (-) low i terminals of Table D'2-6 are switched to the " hot line" and earth  ;

ground, respectively, observing the test sequence 3.0 above, with TB102.

I l 11^.2 Repeat above for each TB designated in Table D2-6.

12.0 ALTERNATE CONFIGURATION RPU 12.1 Reconfigure RPU data link modules and interconnections per Table 02-5 and repeat fault tests 5.0 through 9.0 except apply to TB test points of Table D2-5.

l 0642N:4

13.0 ALTERNATE CONFIGURATION MAXIMUM, CREDIBLE FAULTS 13.1 With equipment arrangement in alternate configuration per 12.0 above, repeat fault tests 10.0 and 11.0 except apply to TB test -

points of Table D2-7.

14.0 "CLI" APPENDIX R BOARD TEST INJECTION MODE 14.1 Set test permissive switches remote (TB109, 5 and 6) and location (J3, 3 and 4 shorted) to test position.

14.2 Perform remote calibration check to verify that "on test" conditions are established.

14.3 Perform common mode and line fault tests per Section 5 through 8 with connections to TB103-19 (+) and TB103-20 (-).

14.4 Restore above test permissive switch to off (normal).

14.5 Repeat tests Section 5 through 8 above except apply to TB103-22

(+) and TB103-23 (-).

14.6 Replace fuses on CLI I/O board installed in TB109 with shcrted fuses per above (F5 and F8), and repeat tests 14.3 through 14.5 (Series B tests).

15.0 RTO APPENDIX R BOARD TEST INJECTION MODE 15.1 Set test permissive switches remote (TB104, 10 and 11) and local (J3, 3 and 4) to test position.

15.2 Verify channel 1 "on test" status by remote calibration check.

02-14 0642N:4

15.3 Apply common mode and fault tests Section 5.0 through 8.0 to 9

TB104-8 (+) and TB104-9 (-).

15.4 Repeat 15.3 above except apply to TB104-6 (+) and TB104-7 (-).

15.5 Restore the above test permissive switch to normal.

15.6 Apply common mode and fault tests Section 5 through 8 to TB104-10 (+) and TB104-11 (-).

15.7 Replace design fuses with shorted fuses on RTO I/O board (FS, F8 and F10) in TB104 position and repeat tests 15.3 through 15.6. -

16.0 SHIELD FAULT TESTS Note: This testing, Sections 15 through 22, is dependent on the manner in which field cable shields are terminated on respective field terminations. Shields must be reconnected

~

from the manner defined in the reference test configuration (pigtail to the ground bus) to that which may be employed in 4 other plants for these tests. That'is, the adjacent terminal bicek screw connection associated with respective analog signals rather than "pigtailed" to cabinet ground bus.

Field connections affected in the above manner are routed to earth ground via copper clad traces on the respective P.C. boards. Testing is required to demonstrate that cabinets field wired in this manner retain isolation in the event of an accidental fault applied to the insulated shield wiring. For this case, the accident is assumed to occur with a single contact of the shield to the " hot line" of a grounded fault source.

D2-15 0642N:4

I l

16.1 Reconnect field cable shields to respective adjacent TB screw connection on: .

DPU: TB201-4, TB201-21, TB-202-4, TB203-4, TB203-7, TB203-18 TB-204-4, TB204-7 RPU: TB101-4, TB102-4, TB102-21 TB103-1, TB103-14, TB103-15, TB103-28*

TB104-1, TB104-14, TB104-15, TB104-28, TB106-4, TB106-7*

TB107-1, TB107-14, TB107-15, TB107-28, TB109-4, TB109-13*

  • Note: Cabinet wiring calls for direct connection to <

cabinet ground bus in all cases for these boards.

With the alternate termination of field shield wiring per above proceed with testing as follows:

17.0 125 VOLT OC SHIELD FAULT TEST 17.1 Connect the negative lead wire of the 125 volt de 20A fused fault source to earth ground at cabinet bus.bar (with display unit ground similarly connected). Following test sequence of 3.0 above, switch the +125 voit de fault to the insulated shield wire connected to TB102-21 of Table 02-8.

17.2 Repeat 17.1 above for each shield terminal of Table D2-8.

18.0 125 VOLT AC SHIELO FAULT TEST 18.1 Repeat 17.1 and 17.2 above except use 125 volt ac grounded 20A fused fault source and " hot line" connected to shield terminals of Table 02-8.

j D2-16 0642N:4 .

19.0 SHIELD FAULTS, ALTERNATE RPU CONFIGURATION 19.1 With RPU reconfigured per Table D2-9, repeat shield fault

~

testing 17 and 18 above except apply to shield terminals of Table D2-9.

20.0 250 VOLT DC SHIELO FAULTS 20.1 Connect the negative lead wire of the 250 Volt de 20A fused fault source to earth ground per 17.1 above and per test sequence 3.0 switch 250V de fault to shield terminal TB102-21 per Table 02-10.

20.2 Repeat 20.1 above for each TB designation of Table D2-10.

i 21.0 580 VOLT AC, SHIELD FAULTS  ;

Repeat fault tests 20.0 above except using 580 volt ac 20A fused fault source ground and hot line switched fault respectively applied to terminals of Table D2-10 in test sequence 3.0.

I 22.0 250V DC/580V AC SHIELD FAULTS; ALTERNATE CONFIGURATION 22.1 Reconfigure RPU datalink per Table 02-11 .and repeat shield fault tests 20 and 21 above, except apply to shield TB designations of Table D2-11.

D2-17 0642N:4

- - - _ - _ - - - ~ _ . . _ _ _ _

pl m J Procedure Rev.

Date Test #

I/O Module ,

TYPE AC- . DC SHORT CIRCUIT ,

MINUS GROUND COMMON N0DE GROUND CONNECTED TO VOLTS PLUS LINE TO LINE VOLTS (+) T0 (+) (+) TO (-)

VOLTS (-) T0 (+) (-) T0 (-)

TYPE POINT I/O MODULES TB PRE-TEST DATA LOGGER CALIBRATION VERIFICATION REMARKS DISCONNECT DATA LOGGER END SET #

TAPE RECORDER F00lAGE BEGIN ___

DISPLAY PAGE .

CONTACT #1 IN BYTE #2 RTC BYTE CRT OBSERVATION POINTS TEST OBSERVATIONS:

POST-TEST OBSERVATIONS (DISPLAY AND STATUS):

POST-TEST DATA LOGGER CALIBRATION VERIFICATION:

PERFORMED VERIFIED Figure 02-2. Fault Test Data Sheet D2-18 0642N:4 t

r REFERENCES

1. I&CDE/SID(86)-099, " Preliminary Test Plan Reference Document QDPS Noise and Fault Testing," dated June 20, 1986.
2. I&CDE/SID(86)-108, " Noise and Fault Testing Digital Data Link Isolators (QDPS)," dated June 27, 1986.
3. Noise Test Procedure for PSMS, QDPS, RVLIS-86 and ICC-86, I&CDE/SID(86)-112.

l i

l l

D2-19 0642N:4

l l ATTACHMENT A FAULT CONNECTIONS This attachment contains the following tables and figures:

e Table 02-4 Field Connections Fault Testing e Table 02-5 Alternate Configuration RPU TB101 and 102 e Table 02-6 Field Connections for 250 VOC and 580 VAC Faults e Table 02-7 Alternate Configuration RPU TB101 and 102 e Figure 02-3 Typical Block Diagram of RPU and DPU Subsystems e Figure 02-4 dc Power Supply Fault Connections e Figure 02-5 ac Fault Connections 02-20 0642N:4 A

e * , s' . e TABLE D2-4

. FIELD CONNECTIONS FAULT TESTING T e~rmina l Block Connections I/O Isolation Sectjon Reference Hi Lo Sh. Isolator Type I/O Board Function RPU TB102 2 3 NC RS-422 Encode / Decode Data Link 2032406 Data link TX DPU TB201 2 3 NC RS-422 Encode / Decode Data Link 2033406 Data link TX RPU. TB101 19 20 NC RS-422 data 11pk 2334D63 Data link RX DPU TB203 16 17 NC RS-422 Encode / Decode Data Link 2033406 Data link Train C display DPU 18203 2 3 NC RS-422 Encode / Decode Data Link 2D33406 Data link Train A/ Train C DPU 7B203 5 6 NC RS-422 Encode / Decode Data Link 2033406 Data Itnk Train C/ Train A DPU DISPLAY Train C connector SWDK 2D33403 Data link Train C/ display DPU TB204 5 6 N/A High Level Voltage Output 2344DO2 Output P3 DPU TD205 8 9 N/A Digital Contact Dutput (open) 2344DO4 Output DPU TB205 8 10 N/A Digital Contact Output (closed) 2344DO4 Dutput RPU TB103 11 12 NC Appendix R current loop input 2D33170 Output (nonrepeating)

RPU TB104 12 13 NC Appendix R RTD 2D33172 Output RPU 18105 5 6 N/A Digital Contact Input (input open) 2344D01 Input RPU TB105 5 6 N/A Digital Contact Input (Input 2344D01 Input closed)

RPU TB106 5 6 NC 4-20 mA Current Loop Output 2D31856 Output *

(powered)

RPU TB108 5 6 N/A Digital Contact Output (NO) 23344DO4 Output RPU TB108 5 7 N/A Digital Contact Output (NC) 23344DO4 Output RPU TD109 11 12 NC Appendix R Current Loop Input 2031856 Output (analog repeating) 0642N:4

\I iil X X T R n k k o i n i n

t t I l c

n a a u t t F a a D D nd or t a 3

6 6

0 t o D 4 2 aB 4 2 0 l 3 3 1 oO 3 0 s/ 2 2 D II N

A 51 0 a 21 D8 t a

1 E D LU BP e AR e d T p o E y c T T k e A n D N r i / ,

R o L e E Ot d .

T /a a o L Il t c A o a n s D E ,

I 2 2 2 2 4 4k

- n S Si R RL

~

n. C C S N N s

n i

o to 3 0 cL 2 e

n n

o C

i 2 9 H 1 e

l c a n nke i cr 1 2 moe rlf 0

1 0

1

. eBe B B T R T T 4

n N t

o 2 t 4 c U U 6 e P P 0 s R R Eb lIllI(1 l lIllllllllllfllllllllf l

=

._m.,-. - -

TABLE D2-6 FIELD CONNECTIONS FOR 250 VDC and 580 VAC FAULTS Terminal connections Block I/O Isolation Non IE/ App. R Sectton Reference Hi Lo Sh. Isolator Type I/O Board Functton RPU TB102 2 3 NC RS-422 Encode / Decode Data Link 2D32406 Data Link TX/RTC RPU TB101 19 20 NC RS-422 Data Link 2334D63 Data Link ERF DPU TB204 5 6 N/A O-10V Output 2344002 Output RPU TB105 5 6 N/A Digital Contact Input (Input 2344001 Input Open)

RPU TB106 5 6 NC 4-20 mA Out'put (Powered) 2031856 Output RPU TB108 5 6 N/A Digital Contact Output (NO) 23344DO4 Output O RPU TB108 5 7 N/A Digital Contact Output (NC) 23344004 Output U,

a 0642N:4

TABLE D2-7 ALTERNATE CONFIGURATION RPU TBIOl AND 102 Terminal Connections Block I/O Isolation Non IE/ APP. R Section Reference H1 Lo Sh. Isolator Type- I/O Board Function RPU TBIO1 2 3 NC RS-422 Data Link 2334D63 Data Link TX

- RPU TB102 19~ 20 NC RS-422 Encode / Decode Data Link 2032406 Data Link RX Note: Caution: For line-to-line faults, disconnect from DPU.

IE3

'db 0642N:4

. 7 )

Y C A

N I

A

, - T R

- R O

r TR AE LF OF SU A

k ID sa h"

h h 1e s

m t

e y

E b s

u S

i l l I J , l J

. U P

- i

. ) - ) - D

. A C

- X c W N i

,L Ij I U A

- N I

gC - N U I d

n a

P A gD P E G A D u(

r*1_. D R T

(

h "

(

R T - U P

R

- _ - - f rl l l L ]gJ r l L O I

m B ]g{jl _ a

! I l l l g r

. g

a T

C _ _ i A U D N

, j3 _ k

. Th0 O

c Cf _ O

=

l B

E - _

l a

c i

, E , l g l

l l J D S O l

J i

- J p y

R I A O T

- i

_ O B

- _ - ) _

E

- X c 5 R 4 A N .

W i

_ jl I U

- OO

/ - U

- _ - l

_ 3 E N .

i

' g I I P I P U ON P 2

- D ON (

R E O - R _ - R N _ D s G .

(

E N e

- _ T A O H

_ - _ r u

rl l l L N r l L rl l L i g

F S

R O

S L N A E N

< S J

l l l

E _

~ l .

N .

~ O N

(

I l L o " _

a

/

20A (LIFE PROTECTOR)

+ ,\

't D.C.

' ' 1 )

POWER SUPPLY  :; ; kFAULT CONNECTION 125 OR 250V

't

,N g _h

'Ar ,

FOUR CAPACITORS 3300 uF EACH ,

i l

l Figure D2-4. de Power Supply Fault Connections c

~0 0638N:4

h 277V U U 60A (7,D,)

20A (LINE PROTECTOR)

't =)

l

=

) FAULT CONNECTION

't  :

t Figure 02-5. aC Fault Connections i

0638N:4

f I ATTACHMENT B DESCRIPTION OF FAULT SOURCE POWER SUPPLIES -- AC FAULT The ac fault will be generated using a [

), kva transformer. The primary voltage used will be 277 V ac from a 480 V Y-connected facilities transformer source applied to the test transformer primary or secondary for respective test voltages. The short circuit impedance of the transducer will permit 7 to 10 times rated current delivery to a short circuit (75,000 volt amperes nominally).

Dual primaries each tapped at 104, 110, and 120 volts, along with dual secondaries with corresponding 208, 220, and 240 volt tops, provide the desiied range adjustments. Applieo voltages may exceed ratings by 10 percent without saturation effects.

The de fault source is a variable voltage 300 V filtered power supply [ ,

],,, Peak fault currents will be delivered from electrolytic filter capacitors and further energy ,

makeup will be maintained by 3 phase full-wave SCRs regulated at the set current limit (20 amperes). A short circuit fault current of several hundred amperes and time duration is determined by the 3300 of filter capacitors equivalent series resistance (ESR rating).

Note: Employing a shorted 40-foot length of two conductor cable, measure and record maximum deliverable currents and time duration with 20 ampere line protection.

Caution: Line protection fuse must blow to proceed with test.

l 02-28 0642N:4

ATTACHMENT C FAULT APPLICATION TO SHIELDS This attachment contains the following tables:

e Table 02-8 Field Connections Fault Testing of Shields e Table D2 Alternate Configuration RPU TB101 and 102 e Table D2-10 Field Connections for 250 VDC and 580 VAC Faults of Shields e Table D2-11 Alternate Configuration RPU TB101 and 102 I

I

>- j D2-29 0642N:4

TABLE D2-8 FIELD CONNECTIONS FAULT TESTING OF SHIELDS Terminal connections I/O Isolation Non IE/ App. R Block Section Reference H1 Lo Sh. Isolator Type I/O Board Function RPU TB102 19 20 21 Encode / Decode ,2D33406 Data Link RX/RTC (1) (NOTE)

RPU TB101 2 3 4 RS-422 Data Link 2334D63 Data Link ERF DPU DISPLAY Train C Shield Encode / Decode 2033406 Data Link Train C/

Connector Display TB204 5 6 7 O-10V Output 2344DO2 H.V. Output DPU OPU TB103 11 12 1 APP. R. 4-20 mA Dut 2033170 Output (Nonrepeating)

TB104 12 13 1 APP. R RTD 2D33172 Output RPU RPU TB106 5 6 7 4-20 mA Dutput (Powered) 2D31856 Output I$

TB109 11 12 13 APP. R 4-20 mA (Analog 2D31856 Output RPU Repeating)

Note: Caution: For line-to-line faults, disconnect from DPU.

' Ground Fault Injection Terminal 0642N:4

,.. . . . \ .

l il!IllJll lI g

R X X p

R T p k k An n n

/o i i Et L L 1 t c a at nn t ou a a NF D D nd or t a 3 6 t o 6 0 aB D 4 l

4 2 oO 3 3 s/ 3 0 II 2 2 k

i n

L 2

0 1

a t

O a

D N

A e d

1 0 o c

1 8

k e T

n D i /

e U

e p L e d

9P

- R y a o 2

T t c .

DN r a n U D E P e

EI O o D t 2 2 LT a 2 2 m BA l 4 4 o AR Oo - - r TU /s S S f G II R R I

t F c N e O n C n E h. o T S 1

2 4 c A

s i

N d R s E n ,

T o s L

A t

o 0 3 t t L 2 l c u e a n f n

o e C i 9 2 n l H 1 i a

l n

- i t

o mr

- e e e T c n l

a n i n n e l

t o

ikr 1 2 r 0

mce rof 0

1 0 1 o ce t

F el e 8 8 j TBR T T n

I n

i o t a t lu u a a F n C d

o 4 t  : nu N t

c U

P U t e or 2 e R P o G 4 S

  • R N ' 6 0

l ll

l C

T 1 R

R / F X R

. R E t p p u

p k k An n n t

/o i i u Et L L O t u

I t a a p c .

nn t a

t a V.

t u

ou D D H O NF nd or t a 6 3 2 6 to 0 6 O 5 aB 4 D D 8 l 3 4 4 1 oO 3 3 4 3 s/ D 3 3 D II 2 2 2 2 S

D L k E

I n i

H L S

F a )

d t

O a e D r S e T e w d

L U o o

. c P A

F e k (

D n t

/ i C e e L u A p V p d t .

y o a up u t

0 T c t O

8 n a t u

05 r E D 1 o O A

- D t 2 2 m .

2N a 2 2 V DA l 4 4 0 0 .

Oo - - 1 2

/s S S - - U .

EC R R O 4 P U LD II D P BV D A m T0 5

o r om 2 f r f

R .

4 7 7 t O h 1 c t F S 2 e c n e S

s n n N

O n oc n o

I o s c T t o L

0 2

3 6 6 i s C t d i E c d N e ,

N n s ,

O n t s C o 9 2 5 5 l t l C I u l a D H 1 a ua n L f i E f m I

- d r F l e e e n 1 T

e i h 1 n l c s - o a n c t i n e 2 1 4 6 r t i

mce kr 0 0 0 20 o - c rof 1 1 1 F en j e .

B B B B el e TBR T T T T 1 I

n

1 n

o r t i o l t F u -

) u a E a F 4 T C  :  :

n O n d N o N  : i o nu 2 t (

e t o 4 6

t c U) U U u t u r _

o a G 0 e P1 P P a p N C '

- S R( R D OM l

. . .. m - _ . _ . _ . _ .. . m

, t , .s 4

e.

TABLE D2-11 ALTERPeATE CONFIGURATION PPU TBIOl AND 102 Terminal Connectlons Block .

I/O Isolatton Non IE/ App. R Sectton Reference H1 Lo Sh. Isolator Type I/O Board Functton

  • RPU/DPU T8101 19 20 21 RS-422 Data Link 2334D63 Data Link RX i

RPU (2) TB102 2 3 4 Encode / Decode 2032406 Data Link TX Note: Cautton: For ground faults, d1sconnect from DPU.

  • Ground Fault Injectton Terminal o

?

w W

-l 0642N:4

PART D3 SURGE WITHSTAND TEST PROCEDURE 0642N:4

I&CDE/SID(86)-128 DATE REVISION NO.

7/25/86 0 SURGE WITHSTAND TEST PROCEDURE F0R PSMS, 00PS, RVLIS-86 AND ICC-86 APPROVALS ORIGINAL REV. O REV. 1 REV. 2 AUTHOR C. N. Nasrallah REVIEWED J. R. Smith NANAGER W. Ciaramitaro QUALITY ASSURANCE R. Saupe 03~1 0642N:4

~

1.0 INTRODUCTION

This procedure details the electiical IEEE-472 surge withstand tests to be applied to a test configuration representative of a variety of '

plant equipment arrangements as described in References 1 and 2.

A representative sample of field terminations only are to be tested owing to similarity and prior testing both in bench test and qualification system configurations.

The test configuration is documented in sketches CNN61086, CNN62086, and CNN62286, Sheets 1 and 2, which become part of these test records as modified by this procedure and references above.

2.0 PREPARATION FOR TEST 2.1 Connect the field cabline; to sensor simulation, load simulation, contact input (SPDT) simulation, contact output loads, and remote interlock / test injection per Reference 3.

2.2 Perform calibration of the system as follows:

2.2.1 Load plant software to OPU and RPU. Obtain printout of

" PROM" operating software for test records.

2.2.2 a. Perform, verify, and record "self cal" values.

b. Input analog (voltage and current) and resistance values corresponding to 0 - 100% of scale in 20%

increments and record.

2.2.3 Perform and verify calibration of analog repeater function module slot TB109. Record values 0, 20, 40, 60, 80, and 100% FS.

03-2 0642N:4 ,

2.2.4 Set up " normal" operate simulation parameter per Table 03-1.

2.2.5 Verify that the analog output parameters and display values agree with Table D3-1.

a. Make a printer plot output record of all display pages per above.
b. Connect digital data logger and record " normal" analog output values. Per Table 03-1, disconnect digital data legger. (Note: Digital data logger to be pretest and post-test verification of system status only. It shall be disconnected during surge tests.)
c. Connect tape recorder per Table 03-2 and record for six (6) minutes.
d. Play back the above data on Visicorder and verify calibration of record / playback data system.

(Compare with data logged values (b) above.)

e. Recalibrate, if necessary, and make a " reference" cross calibration of (b), (c), and (d) above.

2.2.6 Make a six (6) minute tape record of above except turn off RPU at two (2) minutes into the run (monitor switch) and turn back on at four (4) minutes into the run. Record observations.

2.2.7 Repeat above except turn off DPU (monitor switch) at +2 minutes and restore at +4 minutes. Record observations.

03-3 0642N:4

. \

2.2.8 Reconnect digital data logger and display plotter and record values. Values should agree + 0.5% FS with 2.3.5(b) above.

3.0 SURGE TEST PROCEDURE SEQUENCE 3.1 Pretest Using digital data logger and display observation, verify

" normal" condition of systems per calibration values of 2.3.8 above, and Table 03-1.

3.2 Disconnect data logger and verify surge generator connections and configuration for each injection point of Attachment A.

3.3 Connect surge generator source, verify connection of recorder per Table D3-1 and readiness of tape recorder data logger system. Enter identifying records in tape recorder log.

CAUTION: Observe alternate recorder ennnection for surge ,

application to respective record terminals (Table 03-3).

3.4 Set the display unit to observe the page indicating the respective parameter subject to fault injection (where applicable), and record any change in the error message in the APC status block during each test.

3.5 Run the tape recorder for two (2) minutes for pretest data, apply the surge source for two (2) seconds, and stop the recorder after a two (2) minute post-test period. Record all observed effects if any on system display, monitoring osci.lloscope and digital CRT, (TB202 16-17 " buffered" data link).

3.6 Observing the display, oscilloscope, and CRT data monitor for .

system continuity, note and record cbservations.

1 D3-4 0642N:4 .

Note: Continuity o# System Functionality of I/O such as "RTC" not addresse' by analog or display page outputs to be software ado.essed and observations recorded using

" buffer" connected CRT monitor. Record the address function and operating status observed.

3.7 If observation indicates an anomaly during the test, tape-recorded data should be played back on the Visicorder and observations recorded before proceeding.

3.8 Reconnect the data logger ~and confirm calibrations are retained

+ 0.5%. Verify display data supports the calibration data.

Record any discrepancies. '

3.9 With system confirmed to be in pretest condition, proceed to the next test.

3.10 For surge tests applied to data links terminated in " dummy loads," verify post test operability by reconnecting to CRT display and observe transmitted format and/or reconfigure system o

to verify operability of tested receive channel.

4.0 SURGE WITHSTAND TEST CAUTION: Observe all precautions against high voltage hazards per the [ ] Instruction Manual.

4.1 Adjust the [ ],,, surge generator for 150 chm source impedance, line frequency repetition rate, and 2.0-second timed cycle operation at a crest value between 2.5 and 3.3 kv.

Connect a oscilloscope to J-102 " output monitor" (one volt /kv) for observation during test.

4.2 Connect the high and low [  ;

.],,c Connect both l chasses to earth ground.

I D3-5

0642N:4

4.3 Using a dummy load of approximately 1,000 ohm (10 each 100 ohm carbon resistor x 1 watt in series) connected to " equipment under test" terminations 1 and 2, run two cycles set for " normal mode" to verify approximate impulse amplitude and time durations.

4.4 Locate surge generator and isolation network to access cabinet terminal blocks with isolation network test cables. Connect both chassis grounds to the cabinet ground bus (near earth connecting cable) using short straight connecting wires (Reference Figure 03-2).

4.5 Remove hi (+) and lo (-) cable connections from TB204, 5 and 6 and connect to " power" terminations ( ,)

respectively. Co~nnect [

),,, to terrtinal block connections 5 and 6, respectively. .

4.6 [ .

],,c run test per sequence 3.0 above.

4.7 Repeat 4.6 except [

  • l d.c 4.8 Remove test cable connections and reconnect field cable to test terminals. Repeat connections and test each TB terminal pair of Table 03-4 per 4.5 through 4.7 above.

5.0 RTD APPENDIX R BOARD TEST INJECTION MODE 5.1 Set test permissive switches remote (TB104, 10 and 11) and local (J3, 3 and 4) to test position.

5.2 Verify channel 1 "on test" status by remote calibration check.

5.3 Apply coinmon mode and surge tests Paragraph 4.6 and 4.7 to TB104-8

(+) and TB104-9 (-).

03-6 0642N:4

5.4 Repeat 5.3 above except apply to TB104-6 (+) and TB104-7 (-).

'~

5.5 Restore above test permissive , switches to normal and repeat testing Paragraphs 4.6 and 4.7 except apply to TB104-10 (+) and TB104-11 (-).

6.0 "CLI" APPENDIX R BOARD TEST INJECTION MODE 6.1 Set test permissive switches remote (TB109, 5 and 6) and ,

location J3, 3 and 4 shorted) to test position.

6.2 Perform remote calibration check to verify that "on test" conditions are established.

6.3 Perform common mode and line surge tests per Paragraphs 4.6 and 4.7 with connections to TB109-5 (+) and TB109-6 (-).

6.4 Restore above test permissive switch to off (normal).

6.5 Repeat tests Paragraph 4.6 and 4.7 above except apply to TB103-8

~

(+) and TB109-9 (-).

7.0 OATA LINK SURGE TESTS Application of surge testing to data links requires an alternate procedure in that data communications must be interrupted for test injection [

l e.c l

7.1 Disconnect field cables of T8102, 16 ar.d 17 per Table 03-5 and connect [ ),,c c respective TB connections. [ t i

'],,ctest per 4.6 above (reference Figure 03-2). '

99 s

03-7 0642N:4

i l

l 7.2 Reconnect [

),,,

repeat test per 4.7 above.

7.3 Reconfigure RPU data link I/O boards per Table 03-5 and repeat 7.1 and 7.2 for designated TB connectors of Table D3-5.

s 03-8 0642N:4 ,

Procedure Rev.

TYPE TRANSVERSE MODE DATE COMMON MOCC TEST NUMBER T8 CONNECTION I/O CARD TYPE P/N PRE _ TEST DATA LOGGER VERIFICATION REMARKS DISCONNECT DATA LOGGER TAPE RECORDER FOOTAGE BEGIN END SCT #

DISPLAY PAGE RTC BYTE CONTACT #1 IN BYTE #2 CRT OBSERVATION POINTS TEST OBSERVATIONS:

POST TEST OBSERVATIONS (DISPLAY AND STATUS):

POST TEST DATA LOGGER VERIFICATION:

PERFORMER VERIFIER Figure 03-1. Surge Test Data Sheet 03-9 0642N:4

REFERENCES

1. I&CDE/SID(86)-099, " Preliminary Test Plan Reference Document 00PS Noise and Fault Testing," dated June 20, 1986..
2. I&CDE/SID(86)-108, " Noise and Fault Testing Digital Data Link Isolators (QDPS)," dated June 27, 1986.
3. Noise Test Procedure for PSMS, 00PS, RVLIS-86 and ICC-86, I&CDE/SIO(86)-112.
4. ANSI /IEEE C37.90-1974 (IEEE STD. 472-1974) " Guide for Surge Withstand Capability (SWC) Tests."

03-10 0642N:4

TABLE 03-1 SIMULATION NORMAL PARAMETER VALUES Reference Parameter Display Sensor Connection Identification Units Range Simulation Output Set TB204 FI-417A 100% 0-120% N/A 8.33 V Computer set value TB204 FI-437A 100% 0-120% N/A 8.33 V Computer set value TB205 System alarms N/A N/A N/A Normally open TB103 LT-467 56% 0-100% Fixed N/A (2,3) Pressurizer resistor level TB103 TE434 4.09 V (11,12)

TB103 PT-406 RCS 1981 0-3000 Fixed N/A 16.26 mA (16,17) Wide range psig psig resistor

, pressure TB103 TE444 4.09 V (26,27)

TB104 TE414 RCS T 540*F 0-700'F Potentiometer c 4.09 V 411.4 ohm Loop 1 TB104 TE424 RCS T 540*F 0-700*F Potentiometer c 4.09V 411.4 ohm Loop 2 TB105 LSH7803 Pump 1B N/A Closed contact N/A (2,3) Sump H TB105 LSHH7803A Pump N/A Closed contact N/A (5,6) 1B Sump H.H.

P4-B Reactor N/A Closed contact N/A trip switchgear

, TRN-S TB106 PMY-868 RHR 130*F 50* to N/A 1.91 V Computer (2,3) temperature 400*F set value T8106 PMY-862 RHR 100 0-700 N/A 1.57 V Computer (5,6) pressure psig psig set value 0642N:4 03-11

TABLE D3-1 (Cont)

SIMULATION NORMAL PARAMETER VALUES Display Sensor Reference Parameter Output Set Units Range Simulation Connection Identification 540*F 0-700*F Potentiometer TB103 411.4 cha TB107 TE434 RCS T c (11,12)

Loop 3 0-700*F Potentiometer TB103 411.4 ohm TE444 RCS T c 540*F TB107 Loop 4 (25,26)

EN1, 2 and 3 N/A N/A Nor- N/A TB108 mally open FT868 RHR Pump 464 0-4000 Fixed resistor 1.0 V 4.0 mA TB109 B flow 0642N:4 D3-12

TABLE D3-2 TAPE-RECORDED DATA Tape Recorder Reference Channel I/O Function TB Connecticn 1 Noise / source N/A 0

~

I

~

D.c l

0642N:4 D3-13 1

TABLE D3-3 -

TAPE RECORDER AND RELOCATION SURGE TEST Tape Reference Connections Recorder Remarks Channel I/O Function T.B. Connection Surge Generator

  • Test Reference 1 __

~ D.C

  • Relocation only when surge injection is applied to these terminals ,

0642N:4 03-14

1 ATTACHMENT A l SURGE CONNECTIONS l

This attachment contains the following: i

~ l e Table 03-4 Field Connections Surge Testing o Table D3-5 Field Connections Surge Testing of Data Links e Table D3-6 Alternate Configuration RPU TB101 and 102 e Figure D3-2 Block Diagram of Surge Withstand Capability (SWC) Test e Figure 03-3 Typical Block Diagram of RPU and DPU Subsystems l

. l I

0642N:4 D3-15 m .. __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _

TABLE D3-4 FIELD CONNECTIONS SURGE TESTING Terminal Isolatton Connecttons I/O I/O Board Function Block Sh. Isolator Type Reference H1 Lo Section 2032406 Data link Tx 2 3 NC RS-42? Encode / Decode Data Link TB102 RPU 2334D63 Data link RX 19 20 NC RS-422 Encode / Decode Data Link RPU TB101 Data 11nk Train C/ display 2D33403 Train C connector SWDK 2033406 DPU DISPLAY RS-422 Encode / Decode Data Link 2344DO2 Output 6 N/A O-10V Output TB204 5 DPU Output Appendix R 4-20 mA Output 2033170 II 12 NC RPU TB103 (nonrepeating) 2033170 Input 5 6 NC Appendix P. 4-20 mA Output RPU TB103 (nonrepeating) 2033170 Input 8 9 NC Appendix R 4-20 mA Output Y RPU TB103 (noncepeating) 5 NC Appendix R RTD .2D33172 Output TBIO4 12 13 RPU Input Appendix R RTD 2033172 6 7 NC RPU TB104 Input Appendix R RTD 2033172 TB104 8 9 NC RPU Input Appendix R RTD 2D33172 10 11 NC RP,U TB104 Input 5 6 N/A Digital Contact input (input open) 2344D01 RPU TB105 Output 4-20 mA Current Loop Output 2D31856 TB106 5 6 NC RPU (powered) 23344DO4 Output 5 6 N/A Digital Contact output (NO)

RPU TB108 Output Digital Contact output (NC) 23344D04 TB108 5 7 N/A RPU Output Appendix R 4-20 mA 2D31856 11 12 NC RPU TB109 (analog repeating)

J e

X X T R n k k i

o n

l. i n

t l 1 c

n a a u t t F a a D D nd ora 3 6 i

6 0 S to D 4 K aB 4 2 N 3 3 I

L loo s/

3 2

D 2

II A

T A

D F

O a

t G

a D

N 5T I

e e d

3E S p y o DT c

T k e EE r n D

  • i /

LG BR Ot o L e d

AU TS

/a a o Il t c S

o s

a n o D E N I O 2 2 I 2 2 T 4 4k C - - n E S Si N R RL N

O C

D L .

E I .

F n C C S N N s

n t

o to 3 0 cL 2 e

n n

o C 1 2 9 H 1 e

l c

a n ,

e nke icr 1 2 moe rlf 0

1 0

1 eBe 8 B T R 1 T -

e _

n 4 i

o N

t 2 _

c U U 4 _

e P P 6 . _

S R R 0 _

8b

d e

i P

l P

i .<

J b,c l

! Figure D3-2. Block Diagram of Surge Withstand Capability (SWC) Test I

1 -

t i D3-18 0642H:4

(- . -

a

,- - - - - i r - - ---- - i DEWX DEWX D A l l l l l (NON lEl l l (NON lEl l l l 1 r I L____J L _ __i",1 . J l l '

l

[1] [I]

E= B I~~7 IIg  : DPU-A E'

FPU-B (TRAIN A)

(NON IE) t_ _ J SENSORS NOTE 1/0 50ARD CONTACT I-- 7 o L 4G OR 015E DISPLAY y IN/OUT AN S $hou ) -

3 l TRAIN C) g i L___J c_[]

r--- i l l r gh ,

RPU-A 5 -d l DPU-C l l (TRAIN C) 1s ISOLATOR l l Os DUFFER L __ _ _ _ J I L-___J l

r--- , I l l l l g. _ _ _ _ _ ;

(HON IE)

L____J i

Figure 03-3 Typical Block Diagram of RPU and DPU Subsystems

PART 04 RADIO FREQUENCY 1NTERFERENCE TEST PROCEDURE l

l t

t l

l l

4 l

0638N:4

. DATE REVISION NO.

8/5/86 0 RADIO FREQUENCY INTERFERENCE TEST PROCEDURE FOR PSMS, 00PS, RVLIS-86 AND ICC-86 f

APPROVALS ORIGINAL REV. O REV. 1 REV. 2 AUTHOR C. N. Nasrallah REVIEWED J. R. Smith MANAGER W. Ciaramitaro QUALITY ASSURANCE F.. Saupe

~

0642N:4

1.0 INTRODUCTION

~

This procedure details the Radio Frequency Interference (RFI) tests to be applied to a test configuration representative of a variety of "

plant equipment arrangements as described in References 1 and 2.

Tests are to be conducted per the intent of SAMA Standard PMC 33.1-1978 level a, b, and c and bands a, b, and c.

The test configuration is documented in sketches CNN61086, CNN62086, and CNN62286, Sheets 1 and 2, which become part of these test records as modified by this procedure and references above.

Caution:

Test facility regulations are to be followed with regard to personnel safety in radiation fields.

2.0 PREPARATION FOR TEST 2.1 Prepare test configuration simulation connections per Reference 1. '

Record all supportive test observations, including test equipment, description, calibration date, and calibration due date in a

" Permanent Record Book."

2.2 Locate the test cabinet and display unit in RFI screen room and route field cabling to simulation and test monitor / recording.

Simulation and contact input equipment are located outside the screen room. Verify system operability per Reference 1 and as follows:

When the RPU/0PU cabinet is the test target, the keyboard may be cabled for remote control of the display unit paging and ~

remote video camera observation / recording during testing. The keyboard will be relocated to the proximity of the display unit

  • with nominal connecting cable (approximately 15 feet) when the field is targeting the display unit.

04-2 0642N:4

Cabinet ground bus and display chassis are to be connected to the facility ground plane via short bonding cables (routed in

+

conduit if necessary). Power line earth grounds should be included in ground plane connections. Equipment ac power will te routed below the ground plane and/or flex conduit shielded to the respective equipment under test.

2.2.1 Load modified software to DPU and RPU.

l 2.2.2 Set up " normal" operate simulation parameter per Table D4-1.

l l 2.2.3 Verify that the analog output parameters and display values agree with Table D4-1.

a. Make a printer plot output photograph or video record of all display output pages per aoove.

, b. Connect the digital data logger and record " normal" analog output values. Per Table D4-1, disconnect the digital data logger. (Note: Digital data logger is to be pretest and post-test verification of system status only. It shall be disconnected during tests).

c. Connect the tape recorder per Attachment A and record for six (6) minutes. l

{

d. Play back the above data on the Visicorder and

, verify calibration of record / playback data system.

(Compare with data logged values (b) above.)

. e. Recalibrate, if necessary, and make a " reference" cross calibration.

I D4-3 i 0642N:4 l

TABLE D4-1 SIMULATION NORMAL PARAMETER VALUES

.l

~

Display Sensor Reference Parameter Units Range Simulation Output Set Connection Identification 100% 0-120% N/A 8.33 V Computer l TB204 FI-417A set value 100% 0-120% N/A 8.33 V Computer TB204 FI-437A set value N/A N/A N/A Normally TB205 System alarms open 18103 LT-467 56% 0-100% Fixed N/A (2,3) Pressurizer resistor level TB103 TE434 4.09 V (11,12)

PT-406 RCS- 1981 0-3000 Fixed N/A 16.26 mA TB103 (16,17) Wide range psig psig resistor pressure .

TB103 TE444 4.09 V (26,27)

TE414 RCS T 540*F 0-700*F Potentiometer 4.09 V 411.4 ohm TB104 c Loop 1 TE424 RCS T 540*F 0-700*F Potentiometer 4.09V 411.4 ohm TB104 C Loop 2 TB105 LSH7803 Pump 18 N/A Closed contact N/A (2,3) Sump H TB105 LSHH7803A Pump N/A Closed contact N/A (5,6) IB Sump H.H.

P4-8 Reactor N/A Closed contact N/A trip switchgear TRN-S .

TB106 PMY-868 RHR 130*F 50* to N/A 1.91 V Computer (2,3) temperature 400*F set value .

TB106 PHY-862 RHR 100 0-700 N/A 1.57 V Computer (5,6) pressure psig psig set value J 04-4 0642N:4 ,

TABLE 04-1 (Cont)

SIMULATION NORMAL PARAMETER VALUES Reference Parameter Display Sensor Connection Identification Units Range Simulation Output Set TB107 TE434 RCS T 540*F 0-700*F Potentiometer c TB103 411.4 ohm Loop 3 (11,12)

TB107 TE444 RCS T 540*F 0-700*F Potentiometer e T8103 411.4 ohm Loop 4 (25,26)

T8108 EN1, 2 and 3 N/A N/A Nor- N/A mally open TB109 FT868 RHR Pump 464 0-4000 Fixed resistor 1.0 V 4.0 mA B flow 04-5 0642N:4 R

2.2.4 Make a six (6) minute tape record of above, except turn off RPU at (2) minutes into the run (monitor switch) ,

and turn back on at four (4) minutes into the run.

Record observations. ,

Repeat the above except turn off DPU (monitor switch) l 2.2.5 at +2 minutes to restore at +4 minutes. Record observations.

2.2.6 Reconnect the digital data logger and display plotter and record values. Values should agree + 0.5% FS with 2.2.3 above.

2.2.7 With the equipment in normal operating condition, measure radiated field strength and spectrum emanating from equipment cabinet and display at 1 meter all four sides and above.

3.0 RFI TEST PROCEDURE SEQUENCE 3.1 Protest With RPU, DPU, and display unit in the screen room and simulated field connections and recorders outside, and using, digital data logger and display observation, verify " normal" condition of systems per calibration values of 2.2.6 above and Table 01-1.

3.2 Disconnect the data logger and verify tape recorder connections.

3.' 3 Connect RFI antenna source; verify readiness of tape recorder data system. Enter identifying records in the tape recorder ,

log.

l 04-6 0642N:4

3.4 Set the display unit to observe a page indicating a key

" parameter subject to RFI injection disturbance, and record any change in the error message in the APC status block during each

. test. Locate field monitors at "non-targeted" assemblies RPU, DPU, or display units and observe during testing. Record y observed' readings.

J 3.5 Run the tape recorder for two (2) minutes for pretest data, apply the noise source for the time duration of the field level and frequency sweep, and stop the recorder after a two (2) minute post test period. Record all observed effects if any on system display, monitoring oscilloscope, and digital CRT 4

(TB202 16-17 " buffered" data link).

3.6 Observing the display, oscilloscope, and CRT data monitor for system continuity, note and record observations.-

l 4

2 Note: Continuity of System Functionality of I/O such as "RTC" not addressed by analog or display page outputs is'to be software addressed and observations recorded using externally mounted " buffer" connected CRT monitor.

Record address function and operating status observed.

3.7 If observation indicates an anomaly during the test, tape-1 recorded data should be played back on the Visicorder and observations recorded before proceeding.

3.8 Reconnect the data logger and confirm that pretest calibrations l are retained + 0.5%. Verify that the display data supports

! the calibration data. Record any discrepancies.

3.9 With the system confirmed to be in pretest condition, proceed t.

to the next test.

l-l l

i 04-7 0642N:4 1 i ._ __ _ . _ _ . _ _ . - - _-__

3

)

)

4.0 RFI TEST CLASS 1 4.1 With the RPU section front of the cabinet as the target of the test facility antenna, test per sequence 3.0 above at 3V/ meter ~

horizontal field over the frequency band "a" 20 to 50 MHz.

4.2 Repeat 4.1 above, except band "b" 50 to 300 MHz.

4.3 Repeat 4.1 above, except band "c" 300 to 1000 MHz.

4.4 Repeat 4.1 through 4.3, except doors front and rear open. If there is no observable effect, go to 5.0 " Class 2" test.

4.5 Repeat 4.1 through 4.3. except vertical field.

5.0 RFI TEST CLASS 2 5.1 With the RPU section front of the cabinet as the target of the test facility antenna, test per sequence 3.0 above at 10V/ meter -

horizontal field over the frequency band "a" 20 to 50 MHz.

5.2 Repeat 5.1 above, except band "b" 50 to 300 MHz.

5.3 Repeat 5.1 above, except band "c" 300 to 1000 MHz.

5.4 Repeat 5.1 through 5.3, except vertical field.

6.0 Repeat 5.0, except with cabinet doors front and rear in the open position.

7.0 Repeat 5.0 through 6.0, except cabinet rotated 90' from initial orientation above.

~

8.0 Repeat 5.0 through 6.0, except cabinet rotated 180* from initial orientation. ,

04-8 0642N:4 .

9.0 Repeat 5.0 through 6.0, except cabinet rotated 270' from initial orientation.

9.1 Repeat 9.0, except target antenna to top cable entry.

10.0 RFI Test, Display Unit 10.1 Rearrange the antenna and cabinet to target the test field upon the front of the Display Unit chassis, and repeat respective test fields and spectrums 4.0 through 9.0 above (including skip to 5.0 Class 2 level if "no effect" per 4.4 above).

10.2 Repeat above except:

a. Rotate 90'
b. Rotate 180*
c. Rotate 270*
d. Target antenna from above display unit

.11.0 RFI CLASS 3 (OPTIONAL)

Note: This testing is to be conducted based on having completed tests at Class 2 field levels with minimal effect on system performance (door: closed) to determine operating margins.

11.1 Repeat the testing of the cabinet and Display Unit with field and equipment orientations above, except the field strength is to be 20V/moter.

11.2 If equipment performance is affected under any door closed condition, reduce the field level to determine effect threshold level between 10 and 20V/ meter.

04-9 0642N:4

12.0 MODIFICATIONS ,

In the event of unacceptable performance effects at level 1 or 2 field exposures, experimental effort will be undertaken to isolate -

and/or shield the affected component or components. If possible, duplicate the observed effect with a communication transceiver for

- subsequent factory testing of production equipment, including possible modifications thereof to minimize such effects.

1 1 .

04-10 0642N:4

REFERENCES

1. I&CDE/SID(86)-112, " Noise Test Procedure for PSMS, QDPS, RVLIS-86, and ICC-86," dated July 2, 1986.
2. I&CDE/SID(86)-099, " Preliminary Test Plan Reference Document QDPS Noise and Fault Testing," dated June 20, 1986.
3. I&CDE/SID(86)-108, " Noise and Fault Testing Digital Data Link Isolators (QDPS)," dated June 27, 1986.

D4-11 0642N:4 l

ATTACHMENT A ,

TRANSIENT DATA RECORDING

! SYSTEM CONNECTIONS '

AND SCALING l

This attachment contains the following:

e Table 04-2 Tape-Recorded Data e Figure D4-1 Analog Output Channel Recording e Figure 04-2 Contact Output Connection D4-12 0642N:4

~

e TABLE 04-2 TAPE RECORDED DATA Tape Recorder Reference Channel I/O Function TB Connection 1 Noise / source N/A e

l i*

I - e.c 04-13 0642N:4

A II I/O TERMINAL > TAPE RECORDER CONNECTIONS / -

N ii + '

/

FIELD CABLE LOAD IMPEDANCE ,

BUFFER AMPLIFIER .

i ..

Figure 04-1. Analog Output Channel Recording ,

04-14 0638N:4 1

e l

l l

l I/O TERMINAL l ~ \

CONNECTIONS +g y > TAPE RECORDER 7

\ _

, BATTERY a=

> 1 J

e

. BUFFER AMPLIFIER I

i

)

, Figure 04-2. Contact Output Connection 4

04-B 0638N:4 i

APPENDlX E SYSTEM CONFIGURATION DRAWINGS Appencix E contains the following figures:

Figure E-1 Noise and Fault Test RPU Configuration Drawing Figure E-2 Noise and Fault Test OPU Configuration Drawing Figure E-3 Legends and Symbols for Field Connections Diagram Figure E-4 RPU Field Connections, Sheet 1 of 2 RPU Field Connections, Sheet 2 of 2 4

Figure E-5 RPU Alternate Field Connections, RPU Data Links (T8101 and 102 Only)

Figure E-6 DPU Field Connections

)

l \

l I

0642N:4

t i

I l

C l

l l

1 1

l 1

e

- a,e.c l

Figure E-1. Noise and Fault Test RPU Configuration Drawing E-1

a,e.c Figure E-2. Noise and Fault Test OPU Configuration Drawing E-2 0642N:4

o _

1 1

1 1

e l

l l

a.D.C Figure E-3. Legends and Symbols for Field Connections Diagram 0642N:4

u.

E s

l' 1- ,,

4 4

3 r-4 s

4 a

i l

4 i

4 i

t a

i

  • 4 1' -

.+

.i .

t l

i I, r 1

1-4 1

I

.i 4

L i ~

l ,!

5

{

2.b.C l

I j Figur's E-4. RPU Field Connections, Sheet 1 of 2 .

E-4 l 0642N:4 -

1 i

. . . - . . . _ . , , . . . , . .+-~...-..~.---.w.,,.,w m, wr -~,,,-..-~-..#-..-...-- - - - - - . . . - - - , , - - , - - ~--.-4-..-- - - + ..- -. , -..-- .. _ -. - ..

)' )

~

\

l 1

l l l l

e l

l

.o \

1 i

4 0

~ a.D.C Figure E-4. RPU Field Connections, Sheet 2 of 2 E-5 0642N:4

e

  • l e

3,D.C ,

Figure E-5. RPU Alternate Field Connections, RPU Data Links (TB101 and 102 Only)

E-6 0642N:4 .

o i

O l

1 i

1 l

o l

4

_ a.b.C Figure E-6. OPU Field Connections 0642N:4

APPENDIX F 0

TEST EQUIPMENT LIST

!O Table F-1 describes the test equipment.

1 s

o

!e l

e 1

1 0642N:4 ,

i TA8LE F-1

! TEST EQUIPMENT LIST Description Equipment /Nodel No. .

Test Use

,o I

10 l*

l

o D.C f

0642N:4

l TA8LE F-1 TEST EQUIPMENT LIST (CONT)

Description Equipment /Nodel No.

Test Use 'c s!

l e,c

?,

(

F-2 0642N:4

_ _ _ _ _ _ _ _ . _ _ _ _ . . . _ _ _ _ _ . . _ . - _ _ . _ _ _ . _ _ _ _ _ _ _ _ . . . . . _ . _ . . . _ _ _ _