ML20213D328

From kanterella
Jump to navigation Jump to search
Viewgraphs Entitled, Safety/Relief Valve Discharge Loads, Improved Definition & Application Methodology to Mark II Containments
ML20213D328
Person / Time
Site: Columbia Energy Northwest icon.png
Issue date: 09/18/1980
From:
BURNS & ROE CO.
To:
Shared Package
ML17275A626 List:
References
CON-WNP-0312, CON-WNP-312 NUDOCS 8010090574
Download: ML20213D328 (69)


Text

{{#Wiki_filter:_.,.. - 4 4 m -) 0 l ) 1 n l i:: i U SRV DISCHARGE LOADS e i 'I:4PRGVE3 DE?iNITION AilD APPLICATION liETHOECLOGY / TO " ARK II CONTA!llliENTS i. 1 f

e.

I' PRE?AF.ED 3Y n 4 BURNS AlD ROE, II!C. 1, F 4 FOR APPLICATI0rl 70 e WASHINGTON PUBLIC POWER SUPPLY SYSTEl1 WNP-2 2 b i d E 69/ 80100906)fgd 5

m, .s i q SRV DISCHARGE F/ENT DESCR!aED IN OFFR - RE/. 3 IN SU" MARY, AFTER SR'l ACTUATIO'I THE FCLLOWI? G E!E.'iTS TAKE PLACE SEQUENTIALLY. SRV OPENS; STEAli FR0ii MAI'! STUli LI'IES PLOWS INTO AND ?.iESSURIZES THE SRV DISCHARGE LINE (SR'/DL); UATER INITIALLY Ill SRVDL iS DISCHARGED INTO SUPPRESSION POOL; - AIR INITIALLY Ifl SR'/DL IS DISCHARGED Ii1TO SUPPRESSION POOL; STEAli FLOWS THROUGH GUE?!CHER HOLES AND CONDENSES IN TH SUPPRESSION POOL.

n P9ESENT say DiscuARGE LOAD EE:tN!T!0t1 THE LOAD IS DEFINED AS SRV " AIR SUBSLE'.' LOAD AfiD IS SPECIFIED AS A " RIGID WALL" PRESSURE LOAD ACTING 0l1 THE SUPPRESSI0tt ? COL WeiiED PERIi1ETER. THE LOAD SPECIFICATION IS DESCRI3ED I! DFFR-?.E/. 3 AflD C0flSISTS OF THE FOLL0t!IllG ELEMENTS: I. ?EAK (POSITIVE A'lD NEGATIVE) PRESSURE AF.PLITUDES; II. AN IDEALIZED PRESSURE TIi!E HISTORY CFREQUENCY CONTE.'lT); III. SPATIAL DISTRIBUTIO.'l FOR PRESSURE, AND A .'iETHOD FOR COMBI.'il.'!G liULTIPLE SRV DISCHARGE EFFECTS. l

0 RESPONSES OF '4NP-2 C0flTAI.'!?iE'IT STRUCTURE CALCULATED USING PRESENT/DFFR-REV. 3 LOAD DEFI.'lITI0tl ARE UNREALISTICALLY LARGE. 4

s.

  • ,o y

s .r i SAV $1NGLE VALVE - SUBSEOUENT SSE RPV SUPPORT 10.0 l b. HCRIZCNTAL l L ~ = k 4.0 - 3.0 L i i -s ~ i i O 1 's 2.0 L [ k .~ I i ? X l b i 5 l I s i e. i i I u l \\ C I t I L l. 1.0 l- \\ l u t (_- u< I

I t-I

'I ~ Il I '.5 f I f 'm. g 1 1 J

    1. Y l

[ \\; ( x .3 = r- - - ~ s I .2 - l g g .) 4 .5 .5 1.01.2 1.62.02.4 3.24.0 5.0 3.0 10.12 15 20 24 32 40 FRECUENCY (Hz) WPPSS - NUCLEAR PROJ2CT =2 Bur'is and Ace. Inc. 11/7/79

.m ] J SRV SINGLE VALVE - SUBSECUENT 4 SSE RPV SUPPORT lo, i VERTICAL .' ".i = i 8 ~ i ~ I 3-i I M 1 2,k j ( d f I e I: I = o C 5 l g t-7 s I \\ I, i 8 I I C 1.3, \\ I c w y L ,,-.a t (- u i i r U, i 'I I \\ I \\ ,. 1 \\ \\ .4 I

  • l t

1 - l, .a S \\k l 'h i .2 - l r ~ Il g y I I I 1 j .4 .s .s i 1.2 1.s 2 2.4 3.2 4 s a to 22 ts 20 24 32 4a FREQUENCY (HZ) f 2 WFPSS - NUCLEAR PROJECT =2 Burns and Roe. Inc. 11/7/73 p I

.se Ib ( SRV SINGLE VALVE - SUBSECUENT SSE .s o STABILIZER TRUSS 10.0 I i i HORIZONTAL i i 1 4 ( = b "" t t g o s L l 1 3.0 i i i t 'm i g 2.3 l .7 i I L r--- i = i /-- ; a l g i t

1.3 l

h I i 4 ,,I u f_ I s u i. \\ l i. l 1 l 1, .50 g I: .40 l n x .30 I t' / t .00 / i / l. / I.u i .4 .6 .3 1.01.2 1.6 2.02.4 3.2 4.3 5.3 3.310.312.315.320 24 32 40 1 FR ECUENCY (HZ) WPPSS - NUCLEAR PROJECT =2 ( Burns and Ace. Inc. 11/7/79 8 1 3

m .m ( ). SRV SINGl.2 VALVE - SUBSEQUENT SSE I J STABILIZER TRUSS i i l.+ i _t VERTICAL I l l t e'70 PEAK 1 CF VAtut. ? g 'l 22.5 i "I ) 4[ 8 i. j l i 3 j

  • ~..

i g i e il 'i '1 2 I si 8 i mm C I s 2 I l C j 2 i < 1.0 ,s. = y j g /9 \\ ~ L = l' l i 8 l .4 I. I. ri t .3 I I j i r~' l I l i .2 N / 1 I l / i I. .4 .5 .5 1.31.2 1.5 2 2.4 3.2 4 5 3 10 12 16 20 24 32 40 FR ECUENCY (HZ) WPPSS - NUCLEAR PROJECT 82 Surns and Roe. Inc. 11/7/73

CAORSO Ill-PLA?ti (FULL SCALD SRV DISCHARGE TESTS BECAME AVAIL 4 ELE Ai!D C0tiFIPJ1ED E(PECTED C0i1SERVATISM IEl LOAD DEFIllITI0fl AtiD PREDICTED STRUCTURAL RESP 0tlSES. 9 4

~ c a CONCLUSIntlS. I. PRESENT/DFFR SRV DISCHARGE LOAD DE:INITION IS CONSERVATIVE. I II. STRUCTURAL MODELING TECHNIQUES AND ANALYTICAL PROCEDURES PRESENTLY USED TO CALCULATE STRUCTURAL RESPONSE TO SRV DISCHARGE LOADS MEED IliPROVEMElT. l e

A m \\ l ~ i OBJECTIVES OF THIS STUDY I. TO DEVELOP A.'l IMPROVED (MORE REALISTIC) SRV DISCHARGE LOAD DE:IflITION FROM AVAILAELE CAORSO IN-PLANT SRV TEST RESULTS. II. TODEVELOPSTRUCTURALP.0DELiNGTECHNIQUESAND ANALYTICAL PROCEDURES ADEQUATE FOR CALCULATING STRUCTURAL RESPONSES TO SRV DISCHARGE LOADS IN SWR - MARK II GEOMETRY. i i l e

o TEST DATA USED IN THIS STUDY IN-PLANT (FULL SCALE) SRV ACTUATION TESTS IMPLEMENTED IN TWO FOP.EIGN SWR - MARK II PLANTS: CA0RSO/ ITALY AND TOKAI-2/JAPAtl (SIMILAR TO NNP-2) o THESE PLANTS HAVE SRVDL's EQUIPPED WITH CROSS-QUENCHERS (SIMILAR TO THOSE USED IN WNP-2). o TESTS INCLUDED SINGLE AND MULTIPLE SRV DISCHARGES, AT INITIAL AND~ SUBSEQUENT ACTUATION, l

^ SRV TESTS IN CAORSO PLANT (CO^!CETE CONTAINMENT) TWO SETS OF PEASURE ENTS OBTAINED INDEPENDENTLY BY: c GE, UNDER " ret /ALOTE" ?ROGRAN, MOSTLY INSIDE PRIMARY CONTAINMENT; PRESSURE AND ACCELERATION MEASUR88TS USED IN THIS STUDY. o ANN, UNDER "STRET' PROGRAM, MOSTLY OUTSIDE PRIMARY CONTAINM S T; ACCELERATION MEASUREMENTS USED IN THIS STUDY. NOTE: DIGITIZED DATA AVAILABLE ON MAGNETIC TAPES AND USED IN THIS STUDY TO ACHIEVE THE TWO MAIN OBJECTIVES. L I 1 L

~ o. v. '"~ a ,\\ ~ SRV TESTS IN TOKAI-2 PLANT (STFR CONTAIN.MEm TO DATE, 0.1LY

SUMMARY

OF TOKAI-2 TEST RESULTS AVAILABLE AND USED Ill THIS STUDY AS CONFIRf!ATORY DATA (PRESSURES AND ACCELERATIONS). O e y

q IMPROVED SRV DISCHARGE LOAD DEFINITION (OBJECTIVE #1) I

n IMPROVED DESIGN LOAD SPECIFICATION FOR SINGLE VALVE DISCHARGE: DERIVED FROM STATISTICAL ANALYSIS AND ENGINEERING o EVALUATION OF CA0RSO TEST DATA; o CONFIRMED WITH TOKAI-2 TEST DATA. LOAD CHARACTERISTICS FOR MULTIPLE VALVE DISCHARGE: OBTAINED FROM ENGINEERING EVALUATION OF CAORSO o AND TOKAI-2 TEST DATA. IMPROVED DESIGN LOAD SPECIFICATION FOR MULTIPLE VALVE DISCHARGE: o DERIVED FROM ENGINEERING JUDGEMENT; o SUPPORTED BY CAORSO AND TOKAI-2 TEST DATA. b

.o SINGLE VALVE DISCHARGE IMPROVE) DESIGN LOAD SPECIFICATION CONSISTS OF: I. MAXI.MUf1 PRESSURE Af1PLITUDE; II. NO.TALIZED PRESSURE TIl1E HISTORY (FREQUENCY CONTENT); AND, III. SPATIAL DISTRIBUTION FOR PRESSURE.

m q LOAD DECINED AS "RIGIU WALI" PRESSURE IMPROVED SRV DISCHARGE LOAD IS DE?INED AS " RIGID WALL" PRESSURE,P(T),ACTINGONTHEWttiEDPERIMETER g OF A MARK II SUPPRESSION CHAMBER: P (T)

  • P (T) - Ppg ((T) g 7

TECHNICAL REASONS: o AVAILABILITY OF MEASUREMENTS (P (TD FROM CA0RS0* IN T A GEOMETRY SIMILAR TO WNP-2. o ENGINEERING EVALUATION INDICATES THAT FSI E;FECTS ARE NEGLIGIBLE FOR THE CAORSO'S CONCRETE CONTAINMENT (Ppg ((T) = 0). PRACTICAL REASON: o SIMPLER /MORE ECONOMICAL WAY TO DEVELOP AN IMPROVED LOAD DEFINITION. IN THE CA0RSO PLANT THE SRVDL's ARE EQUIPPED WITH CROSS-QUENCHERS AS EXIT DEVICES, SIMILAR TO WNP-2.

a.,.. .m EVAtEATION OF FSF H-6 CTS IN CAORSO INTERACTIVE PRESSURE COMPONENT! ep3t(T), OBTAINED FROM: Ppg ((T) = M U (T) J 3 WHERE: AM = THE ADDED MASS MATRIX, At!D ja(T) = THE BOUNDARY ACCELERATION VECTOP.. AN UPPER BOUND ESTIMATE IS: Pp3t(T) ser 2.84 %

  • 0,100 e = 0.23 ?sI ;

,, MAX. WHERE: 2.84 y = LARGEST C0hPONENT OF ADDED MASS MATRIX (CORRESPONDING TO ZERO HARMONIC) 0.100 e = LARGEST RECORDED CONTAINMENT ACCELE?ATION (CORRESPONDING TO SENSOR A13x/AMN) CONCLUSIONS,: o epst(T) NEGLIGIBLE o PRESSURE RECORDED ON CAORSO SUPPRESSION POOL BOUNDARY MAY BE CONSIDERED AS " RIGID WALL. PRESSURE.

f a

'k CA0RSO SINGLE '!ALVE TESTS

  • EVALUATION OF PRESSURE DATA BASE 4

ACTUATION OF VALVE "A'.

E 4 PRESSURE TRACES RECORDED DURING CA0RSO SINGLE VALVE TESTS WERE GROUPED AS FOLLOWS: o MULTIPLE FREQUENCY PRESSURE (MFP) 11 AVE FORM TYPE o SINGLE FREQUENCY PRESSURE (SFP) liAVE FORM TYPE b

MFP WAVE FORM CHARACTERISTICS: RICH IN FREQUENCY CONTEiT IN THE RANGE OF 15 Hz TO o 20 Hz (FRONT END OF. TRACES) A DOMINANT SINGLE CHARACTERISTIC FREQUENCY IN THE o RANGE OF 6 Hz TO 10 Hz (TAIL END OF TRACES). NEGLIGIBLE FREQUENCY CONTENT IN THE RANGE > 20 Hz. o o RANDOM PROPERTIES: PRESSURE AMPLITUDE AND FREQUENCY CONTENT. SFP WAVE FORM CHARACTERISTICS: EXHIBITS PRIMARILY A SINGLE DOMINANT CHARACTERISTIC o FREQUENCY IN THE RANGE OF S Hz TO 10 Hz. SMALLER CONTRIBUTION'(THAN MFP'S) IN THE RANGE OF 15 o TO 40 Hz. NEGLIGIBLE FREQUENCY CONTEIT IN THE RANGE > 40 Hz. o o RAliDOM PROPERTIES: PRESSURE AMPLITUDE AND FREQUENCY CONTEIT.

w a ~. ~ G CQT3,RR ATION AMAl_YSIS OF RECORDED BOUNDARY PRFSSURES TWO T/PICAL TESTS WERE CONSIDERED: o TEST 502 (MFP WAVE FORM T/PE), AND o TEST 2202 (SFP WAVE FORM TYPE). MATRIX OF CROSS-CORRELATION COEFFICIENTS FOR PRESSURE TRACES RECOP2ED BY SENSORS P 9, P13, P14, Pil :.Nc P10 WAS CALCULATED. RESULTS OBTAINED INDICATE HEAR PERFECT CORRELATION Oi1LY AT T= 0. CONCLU$ ION 3: TEMPORAL BEHAVIOR IS INDEPENDENT OF SPATIAL DISTRIBUTION o FOR MEASURED BOUNDARY PRESSURES, t.E., P(R,T)

  • F(R)
  • T(T) o WATER IN SUPPRESSION POOL MAY BE ASSUMED AN INCOM-PRESSIBLE FLUID.

n-1 l IMPROVED DESIGN LOAD SPECIFICATION FOR SINGLE VALVE DISCHARGE NNP-2 (.

{ DESIGN LOAD: P (MAX.,T) = C

  • P(MAX.,T,90/90)*

WHERE: C = 1.20 IS A FACTOR REQUIRED TO EXTRAPOLATE CAORSO l TEST CONDITIONS TO WNF-2 DESIGN CONDITI0flS l (OBTAINED USING DFFR DATA); P(MAX.,T,90/90) = P(MAX.,90/90)+ T(r,90/90) IS THE STATISTICAL ENVELOPE (90/90) 0F CAORSO SINGLE-VALVE DISCHARGE TEST DATA; P (MAX.,90/90) IS THE MAXIMUM PRESSURE AMPLITUDE DERIVED FROM STATISTICAL EVALUATION OF CA0RSO DATA; T (T,90/90) IS THE NORMALIZED TIME HISTORY (FREQUENCY CONTENT) DERIVED FROM STATISTICAL EVALUATION OF l CAORSO DATA. A STATISTICAL STATEiENT OF (90/90) WAS ACCE?TED BY NRC FOR MARK II APPLICATION IN NUREG-0487. r

i STATISTICALLY DERIVED MAXIMUM PRESSURE AMPLITUDE: P(MAX., 90/90) e

STATISTICAL ENVELOPE 0F FOURIER AMPLITUDE SPECTRUM: F (Q, 90/90)

STATISTICALLY DERIVED NORMALIZED TIME HISTORY: T (T, 90/90)

c. TWO TIME HISTORIES CHOSEN, MFP TYPE AND SFP TYPE, TO ENVELOPE CAORSO TEST DATA: F3pp (Q 90/90) A'lD F pp (2,90/90), RESPECTIVELY.* 3 TO ACCOUNT FOR VARIABILITY IN CHARACTERISTIC FREQUENCY OBSERVED DURING CAORSO TESTS (VALVE "A") AND EXPECTED IN OTHER PLANTS AND/OR DIFFERENT SRVDL GEOMETRIES, THE SELECTED TIME HISTORIES ARE COMPACTED AND EXPANDED SO THAT THE CHARACTERISTIC FREQUENCY COVERS THE RANGE: 4.0 Hz 4 f 4 12.0 Hz. SIGNIFICANT CONSERVATISM IS INTRODUCED BY THIS PROCEDURE. COULD BE EXPRESSED ALTERNATELY IN TE??S OF PRESSURE RESPONSE SPECTRUM: Rgpp (c,90/90) A.'lD R pp (0,90/90), 3 RESPECTIVELY. e

? ~~ o l SPATIAL DISTRIBUTION OF PRESSURE YERTICAL DISTRIBUTION o DERIVED FROM CA0RSO DATA o CONFIRMED WITH TOKAI-2 DATA o CONFIRMED WITH ACOUSTIC POOL ANALYSIS CIRCUMFERENTIAL DISTRIBUTION o CAORSO AND TOKAI-2 INSTRUMENTATION (PRESSURE SENSOR DISTRIBUTION) INADEQUATE o OBTAINED FROM ACOUSTIC POOL ANALYSIS o SIMILAR TO DISTRIBUTION RECOMMENDED IN DFFR-REV. 3.

m A104 S UK.*A df ~ t s,

  • P1

%'===. ,~~~ 2+ N. N. - fi s. \\ l I N I l ' f 10 l c Ee k l [ '8 'N 4 e si \\ l Q l \\. I ' P !! N I i n-l . \\ l \\. l "f it Y \\ 20 - 1 { QUENC M ru s hn s, /yfoot 60 rroM gggg e \\ 0.2.

o. +
0. 6 0.3

/. O NORMALI ED PRESSURE LEGE7D

  1. motsa4u tra re scu s e a.

O MAXIMUM MEASURED VALVES AT CAORSO on GAgAvr4 ma ustvoc CAORSO DATA CCRRESPCNDDiG TC (90/90) LDTEAR DIS'..I3CTICN USED D7 THIS ST'. DY 3p QvCNCNtA. !V614ERGENcr OFER RECOMMETDED WASHINC.'CN PUBLIC PCWER SUPPLY SYS m NORMALIZED VERTICAL DISTRIBUTION FIM NUC:J:AR P!tCL7ECY NO. 2 OF PCOL BOUNDARY PRESSLE S

e.m. m. .. ~ ^ i 4-- s' s' o' s' / l o h n \\'GUENCHER

  1. +

&9W, a L e a s. W o DFFR RECCMMENDED RESULTS OBTAriED FRCM ACOUSTIC PCOL ARLYSIS WASifI!!GTC!t PUDLIC PCifCR SUPPLY SYSTE!! ON NC OF POOL COta!DARY PRESSURES truc!. cart PRGIECT tio. 2 ( AT COh":'AI!I.'1C;JT).

I i o.30-LEGEND DESIGN ENVELOPg (CAo%) 1. j l' MFP 5ue> SEQUENT (90/90) d o.21:, - n o20-1 h o e 6 l-i e.. w l > 35 O. Of 0.lE - g > I, a g e9 .i $.3' W 'A 11 " S 'd' "1N s' [1 i,1.., 0 lo l lit b eg 'a N 5} a e4 l $,9 u, 0.05-d -on /.\\ l .0 g .'t..J ~~. ~. I 0-g ~.-._. a *1 0 10 to 30 40 50 a'l FRecutNCY (tit) l e I

s u A O ga _o e u ? Pz f cu u>> Q. I2 J O Mm J a c.s _o j hO@ t Zuu D I U O 6 z.zm o u C** ~ TW Q 0= b IL,: W L 11. _o JC en O "I ) l O II I l v l l 3 0-I w C2 _g w .//

  • $s.%

,.f ~S ~~ 7 y o ~ Q R R 9 8 o c o o a (ISd) 3305S33d wam m m m m OESIGN ENVII.CPE FRICLT.NC*l SPECTRA FI:Ints COMPARISCN W:"H S7P straszqucr ~ . h P N so. 2 - 6. 2 AC*GTION TISTS (ENVImpg Ago 90/90)

[ 60-LEGEND h' DE51GN ENVELOPE. (CA00$' h l -- MFP suBSEQUEhlT (W10) Qh 50-64 nNp .? E O 'g. a l .E.S E \\ g,x g l ~ 2o-g .e. N, 1 m,,,

) M i \\.

./ N. ' - '. s s y*f' ,1 g t-.. J -n l G M d' oBN !O - k N us f ] 8?N g n ,/ sii 1 ~ l 3 g a 3 5 e g l 5 E

  • .'1 o

e to 30 40 50 ,l FREGUENC,Y (HI) y' I,. -

mA O a o ou e e> / o2 /- geu / LWW l 01."2 J m l o=c >ee 111 -S 2w w / gj .m e d c d 4 ((

  • G e e za

\\\\ o ELL \\ w u m m.

a. ace

.e " a i / N.3 5 I ) o 9 2 / w { if _o & ww U M I.7 L (\\ l l i 4.b2 _c y ~ = : {---{, w =::: %. -

    • s.%

s 5 h 2 2 o e 0sa) n nssaad %mm-- BEs:cN cm :.CPE RESPCNSE SPECTRA M cInts CCMPAR3CN '4:TH SFP SUBSECCTC T m. 2 (CTV":.CPE AND 90/90) .9b ACTtATICN TISTS r

~ STRUCTURAL MODELING RE:INE'iE'IT M DEVELOPMENT OF IMPROVED A%LYTICAL PROCEDURES (OBJECTIVE #2) I l ,_.---_-.-..-.-----------------------.-----.-_,,e,-

BuntJS AND itOL. INC. ..... c". c..... w a w.U. t.a.. 0ase. - Ums.1:a ?w3e No.... 3:*~ues Na. Ca*c. no.

. set C,ans. on :. - t 8v C,necuen Acurovce Title

/ / o./ l y ,Nl. g,,,e (i (I-),-Els)) keg,1t{l1 v L k e 8, ,/ .~ b N W I q o t \\/ _ A El / / N6 s p fj .i - -.a i'. / / x.c+) / w ..p. / / / / / i i < / . s Bull.0/NC At3fCCG' j'D C97 H/c lost-D.S h

I BURNS AND 1101.. INC. pteeausea.nes s Cun. C* s.~ se W O '.. . Da t-I. 'c 6 tu. _ Page No. . be.vr? fia Caic. No.. . Sect Ga s. on 51.e et -. bs.. _ _ C m med Accreved ..na i; s .p- \\ 1, . r / v i ~ / i /. Liw / >U .. o , Y, /-.f / /.. // / - I o / / / / / / .f p\\ ~ g / /.o, s/,, // 4 p\\- ~-- y i ;w \\ '1 ' ~ / =. .. ~.. K s, . + e,, a ya ~ i%w~~ut-s, w.> / .t; ,/. r ~_ / /_ /,/ /. /// //// u Yk Y kg / e e ) /b l / g. .M 3 A awumc Mr.fcG 7c

  1. vou sy.vwie joiho.s Y

e.

STRUCTURAL MODELING/ ANALYTICAL PROCEDURES

SUMMARY

AXISYMMETRIC WATER-STRUCTURE-SOIL COUPLED SYSTEM ASSUMED. ~ o REASONABLE ASSUMPTION SINCE MAJOR STRUCTURAL COMPONENTS ARE AXISYMMETRIC, ARBITRARY (NON-AXISYMMETRIC) LOADIllG HANDLED THROUGH DECOMPOSITION TO FOURIER HARMONICS. FINITE ELEMENT METHOD OF ANALYSIS USED. FINITE ELEMENTS UTILIZED: AXI-SYMMETRIC SHELL ELEMENTS AXI-SYMMETRIC SOLID ELEMENTS THREE-DIMENSIONAL FLUID ELSENTS SOLllTION OBTAINED IN FREQUENCY. DOMAIN o MORE EFFICIENT / ECONOMICAL FOR THIS TYPE OF PROBLE. A F0DIFIED VERSION OF ASHD-2 COMPUTER CODE WAS USED. LINEAR FROFERTIES ASSUMED FOR ALL THREE SYSTEM COMPOENTS: WATER (INCOMPRESSIBLE, INVISCIDL STRUCTURE AND S0ll, o ASSUMPTION VALIDATED BY CA0RSO/TOKAI-2 TEST RESULTS. STRUCTURAL DAMPING CONSIDERED HYSTERETIC. o ADVANTAGE 0US FOR USE IN SYSTEMS WITH DIFFERENT ELEMENT DAMPING VALUES; FREQUENCY INDEPENDENT.

REFINED MODELING OF STRUCTURAL COMPONENTS CONSTITUTING THE SUPPRESSION CHAMBER WETTED BOUNDARY WAS IMPLEMENTED USING SOLID FINITE ELEMENTS, IMPROVED ANALYTICAL PROCEDURES ADEQUATE FOR SUCH APPLICATIONS WERE DEVELOPED. RESULTS OBTAINED WERE DIFFERENT FROM THOSE OBTAINED ANALYZING THE ORIGINAL MODEL. RESULTS OBTAINED COMPARE ADEQUATELY WITH MEASURED BUILDING RESPONSES AT CAORSO, l

.~ l l I l b tra' O J o as?!.- o "3 a l %.T 7 o I \\ s-- o a Da o G,) 1 87.29 /-Gb 2+ c 3 e 2 58.25, 3' I e .) M) o ( c a i e Es 12.1 o. C o 4 i

2. o.o.

I l wa 8 . M. 4t.3 Y _' fi$ ~ e,4.9' i - 7m.:c Pousa sinryL7 sT3 TEN CACRSC.uACTOR 3U 13:NG ~ m m*mer m. 2 CONVEIT CNAL MCDF.J.,

  • 7

---,---n-,, - -

i ? : TfG' f i t i i

i 7 a 13.t. 25._

l dl .i L le 87.2S .f l 3 96.f.9' I \\df I i Z e 2 2.2' .ina j A.,u.n. .i g

2. so.

j l e o.o', 'Q-j 1 vx. I .I x 44.*' [ II 44 t I N FN.:C Poussi sayyr.Y m CACRSC AIAC CR 3r*:LO:nc GM N N C 80. 2

.v acyrc g eg; o..,

p. l i 1!l 91. 9 o ,,j ii' l 'g 0 0 0 3t L 1 E DO L 0 ME 0 D L O 0 AM k I NOD IT E 0 NV 0 E O V R 0 D N P '2 \\ l OM \\ N CI \\ 1 E 0 G 0 E / / L / h / O s 'l ) \\ s 0 2 r 01 .1 O( / '8 / / Y C N / 0E \\ 0.U OQ '6 E R F 0 0 - '0 1 1 jU \\ \\ l i 0 V 0 g' U t (r '2 h,, \\ m 0 0 4 Eg.

u I.

'o ,.i - iii E oo c o2*n S I 2 sSm 2 'I g i.du4 L I fd 2 l Qoae , wy. 1:l J 'd

  • 8'A ): nl*

4n Qg.nOeQ,Qlia*:*\\ )< ) fE 'gQ ~ i O l* '? < a* 1 l

WNP-2 REACTOR BUILDING RESPONSE TO SRV DISCHARGE LOADS b N e

MATHE?ATICAL MODEL

s s E ~ i SRV DISCHARGE EVE. tis / LOAD CASES o SINGLE VALVE DISCHARGE CASE (INNER AND OUTER) o T4] VALVES DISCHARGE CASE o ADS VALVES DISCHARGE CASE o ALL VALVES DISCHARGE CASE t - AXISYMMETRIC LOADING CONDITION - NEARLY SYMMETRIC LOADING CGNDITION 4 9 f k

~ CALCULATED RESPONSES (ALL RESPONSES SHOWN CORRESPOND TO A MAXIMUM PRESSURE AMPLITUDE OF +1. Pst. TO OBTAIN REAUDESIGN LEVEL RESPONSES MULTIPLY RESULTS SHOWN SY +H.20.) 4 B. 1 s O

s o CC .e = e C .e a 1 e C C i .n i I t e C C _= ~ N = c c >- .c C.J

  • z t.u ao o

1 c 'cu 'I .C l.L. C l C _c s, i, ~ t j 8 4 _e [- [ ___ ~_ - r r_ r i e C ch z cc 'a as t oc t ca c cn c cc f .0 t = (3) NGI.!.68373036 "NNN 'FRTICAL RESPCNSE AT RPV SUPPCRT . m FauncT me. 2 ALL VALVES-MTP 9.3a

^ ^^~ s D C C Oa C C C .=. C C C . _ ~ C t C C _C N l C 1 C> .e u""

== LLIa O Cu c.: .e .e u a = C .e .i) 11! O 3 C F F F [ ._ ~ r L C C cs'c cc 'c ch 'a co 't cz 't cs ': cc 'c" ,.0t-(01 N G I.!. S ' 3 7 3 3 3 6 d

  • N PtitL:c Posita scryLY sT3Tzst VIRTICAI RISPCTSI AT RPV Suppea; I"

m m m. 2 - ALT VA:.VZS - ST7 3.3b

C Q .e e i i e e ~ a 2 C C C .~ C C C _= N = c*> _e a =z mo o ta c ::. .a _e u = 1 O i C 1 .e w i C C I 1 _a c-e C C cc c cs 2 co'E as t co t os c co f. c.0I* (3) NCI188313338 N N MIL 8WPLY ST3TBt ECR*::0NTAI..ES7CNSE AT ??/ SUPPCRT . 6 P E acT me. 2 S'i NGI Z VAI.*/Z (DTNZR) . w g,q

-- g-r. ec C c. \\ f ec o .= m ec .e .n. ec .e .c ~ N O e .cc3 og tu ~"3o o tu .e .c t.: e e C .cw ee L .c' _s_ 8 .Od'I CG*I 08'O C9 0 Ch '0 02*0 G C " G*. a.0I= (3) NO IJ.08313336 N N Fw um suryL7 sT3 TEM 3CR*::Oh"V RESPC?f.AT R2V ST?PCRT NUcama N ED. 2 S: DIGI.E VM.VE 'Cll:iNERl - SF? S.4b

CQ O= 1 o I o \\ C =_- e Q C ~. C C .e .o N C C >- .e a l =z w l 3o aw o :: ,a .e u m e e i o .c. = d e o .c N [we r u u u C o ac s cc 's ac h co 'c co '2 co 't ac 'a= 0I* (3) NG IJ.UM313338 N PUBL C Pewitz scrytr sTynst ECRC::C2CA7,.L.SPCNSE AT RPV SUPPCRT Ric. EAR PhM NO. 2 III OLE YAI=7E (.CC'"IR) - MF? 3.4c

n. e Q .e =_. l 1 i e C e 2' l l C C Cu e C = .= N_ = _c u =z e ao C t.:.2 o :: ,a _e u e e l ,I e t c l r -= t ,I \\ 1 i e l e f, .e N J C =. l ch a co 'a es t c2 't ca 'a - ch'c cc c - z.Ci* (3) NCii.dd'2'12336 l 4.1tEINGTt:m pasL:c pewsz SUFFLY ST5Tzu ECRI:lCN"AT RESPCNSE AT RPV SUPPCRT Nucutaa 7m7ECT mo. 2 SINGIZ VAIVE (CCTIR) - S.7 8.4d.

.........e a O e. e Q O =.. C C o ) .~ e C Oo N O O >- / .= a =z w 2a oW o :: .c c LL. G J e r-- r o / .c 1 1 N q e C = r _i" [ m m e s = cc e ac s ac h cc c ac E ac i ac

  • b*'

e.0 t = (3) NGI16'37333g d "NNN V"ATICAL.V.SPCNSE OF CCNTA :IMI:r^ MCLEE 6 PEEt:T W. 2 ""** AT UIA2H3AGM F'.CCR ALI. VALyzs ,v.rP 3.5a

o - e C C= C C e _w C \\ Q l o _a Co .e _c ~ = C _= u =zwsa o tu o :: .c _ o LL, o O C 5 %, \\, \\ _a O C rf f _f FF l m ,8 at c ci c ac 'c sc 'c ha c ac a acy e (J) NOI168273338 N N m a surrLT sysTzu VI2TICAL RESPCNSE CF CONTAn1Mnt; MM 3 ~ A7 UIAPH.MC4."CCR M PM:CICT 3D. 2 l ALL VALVES - SFP S.5b t

ee o t.2 ee .e .=

== ee .e _~ ee .e .e N =, e .e u az tu 2 C eu o: .a: .e u. = ,, f 8 r=e i w%_ xx ee .e N l i N e i e cc c sz 'o cz 'o st o o r 'o sc 'c -cc Y (3) NC I16'd373))B WAmttgGm:st PUEE.3: Pcusa scypr.T sm33g HCRIOC2 CAL RIS?CN5Z CF CC CEM;-' m 7ms:Ec? um. 2 SEZ.I AT :I APERAGM T'JCR SING.Z VA vr rec .V? 9.Sa

o o = C i o ) .o=

== c* .e _a. C C O _c N= ~ 'i o o >- .c u =zw 3 C ew o :: ,c .e u ~ 'f 8 .c w e C D c L L E E D 8 hz '.c cz c at c at c ac c ha c cc f' (3) NGilS' 373336 d numm :ts: paaL:c Poema surpr.r srsTzag HCRO::CNTAI, U;SPCNSI CF CONTACDEl2T me:.zaa P N E0. 2 SEZ:.:. AT DIAfERAGM."0CR 9.6b S Cir-_-? VA:,*n rer m v - e-- s

l l ee e cie ee .e =- ee .e~ ee .e _e N e C >= I _e u =zum cs Cu o :: .c _c u_ e ee _e u ee _e N e O i i he'0 cc c et c at a ac c nc 'c . "c. jo (3) NGI188373338 l i I t l N N m2FFu STsTzu VIRTICE RISPCNSI CF CO: Canty.E:c .M atntt mR:l2sut PlutuEt:T so. 2 SHII.T Of THE ORrd?'- ALT VM 77.S -MFP.

m., " / e C .ee e Q .e .:r O O i e 1 .u 1 e O O _a N 1 w C .x cu =z em C3 Cu 1 o :: .c: ( _o u-m O C -g a

  1. /

8 \\ 7 _d t 7 i m 1 1 C C nz 'o ot 'a st o a t 'c ac 'o hc 'c cc 'b* (3) NCI1S' 37330S d wasxInc ar Fear.c Pausz St!PFLT ST5TWE VZ20! CAL RESPCNSI CF CC CA3MZ2C wcuna FF" JECT MD. 2 SHILL 3 *HZ ORT #'* 8.7h ALL VALVTs -- s??

4 e e ec C C C

P i

i e I o I .o .~ C C I .co N e 1 o> .e u =z t.u Ij c C l o t.u .j l .C L ,i e l l [ e C .o ~ e C F F f [ eo a t 'o a t 'o so 'o sc 'c Sc 'c ac 'o cc 'd (3) NOI16'd373336 wMummm PUaLIC PCNER SUFFLT ST5 TEN HCRICONTAL.V.SPCNSZ CF CO!CA! 2CC:C

  1. IM IIIIL 3 IEE UEdEIL a y n v* 30* 2 SING'LZ VALVI (CUT. R) - MTP 8.3a

o... G 8 /~ c o ew Oo .o 2 eo C .N l C C .c 1 o N f; ( .o u x C::: k.- t,,g f '"3 h o tu n s . Q:: j _c LJ.- f; i o C .c = r ^ o \\ C AN5 .c' m r-- r-- I e O gyp nz o cz c at a et a ac.a 3c g CD) NOI16M373336 "N MN;C POWL scFFr.Y ST3Tsu HCR CN"AI. RESPCNSI CF CCN*A :Un",- MM suc:.Ena N me. 2 SHZ I. IN THE DRYWS***. ~* SINm_? VA:.VZ (CUPR) - SFp S.3b

W Epe 99 ~ ,e e O

  • e e ce WW 9

,e e D G e OS S DISOJSSION OF RESULTS e O

-.-.a ~< t }~.,.,.. a,.. y.A..,..,. m,,.--,.~* W = v., a. w s-q,.... .3 U,', ' * '

  • t

~* .~* 3. g:w* c x, ..g g r 4.,3y.ws,.Qb., -;,s', .. ww >= .. 2 '5- - #w-J-iM,,y....w.-F.W- ~~ i' ptg. r#*

  • t.

m ..c.%' M',.y,fo. .t. .a s ~~ ~~ c .,4 i Mm %,++, M6 'SE$,.,,,W_ ~-@aw *.. J. 7

  • yy *:e kip.t gs@n..t.. _.

7 ^ ~ - Mk*3....gf,. e Ps

  • s J.

.~

,Q.sk.flW'

..y Wh, h.. w, M . g :-w# - x..,. . u..- ~'1*2.., r g.. :., ;m \\ rh f) l a*

r

,.g.,+ce m Jr Jyt"l.y 6 s. v-c.' ~ ,?Ne;T\\'Ytf( - f., ,, f $~. %"Y %oq'JI.@n'M'.T.,y,T),:.Yb-E - a : ', x~,TE1. m 1 r. 7- .v ' ~ - J'y' n 'ff,h,., 3,','%. :;; a... 8. ja ^ [k $. ;.:k m ,-t ,,<c* - ~ - - A A ..g 3 ~. e m Qf.. 4=>.n ~Y: 2E?h...:. ,~,.4n q 2;-a.m'y s. =. ~,, f., ? g CW.3 h5h'Qkf' 5.bi w -:" ~ ?"e U J N;.'.Y'.?'#$$. d'i:&[**"3Nk'.~4 w &y:4.w m' . _. Pd .+& ' :fl&~'p~;% .a - n W.7%.pb.=% y; ,i,Q f< , ky2 , y,.,'d...I'M,.u*.7.: ._W ' H N "* N <=~ N .. -.'..,g 4: ~,, - - g y 4 j-. s r. 6* ss i.; -&s %p'*TW,n, -?.31**%;* 'lA d_,?*4~ L .w ~ q.<m w !' a,. f:.,.~'.'. . '. s '. '%_-D _ = ' ' 'w' p... ,,jagYF Mi'Q,. ' e J.M..s _ } r h ss .'L -e 4*' q '.. 4...... d ss .... Jane .m .?.h. t.,-]7 Y,.i ' 4.y - a

M

-ar : h .... R Y ,'Q$. a

== +

  • A,..'s e

-- h;AA*~" f-[g.5 W.:#'!

.,':4.~.t?

^ -y E?dfbasianacon f. .v.w.n.g492,:.v.ua;g;f _ %q. p.9

a n-i ww s!

e v v 1.e '1 c v .;:MiM.g' 4

4. e w%m

+4.k.,a. n 4 5 ? m.,7:pw, w. m.. .;1,. .A - f .:.w f 22 ~ =- ~ a.. :re..,m = u.r. ,.f, s pp c g%,1

    • w, M.

p.M.,%.o e.L /was,yr "?*igQ g y ,g %jg.7 .e. r ~ (., - --:ML %.. e% s @ ge$y1*Rm"*Wd.q 6 n Mj y hi 2, 2 Avst e c

g.. gw w.,.x s w

~ .p .~. u 2 - w Z! w :c. m%. e.,.,,.,.r. n.~.a.n r ~xwup = a ...an n .:2 &r.s M w.=s,:m & m.~31.=.n cu &m..R ...w.. p.g N2 Mark 11 Pressure Suppression Containment O ZONEI ZONE 11 ZONE 111 WASHINGTON PUBLIC POWER SUPPLY SYSTEM FIGURE ZONES OF STRUCTURAL. RESPONSE NUCLEAR PROJECT NO. 2 8.9

N REFERENCE 8.5 . REFERENCE 8.6 { 1.0 3 i i ! I I f i3 M l} l i ~ ( !. i. SUGGESTED LIMIT FOR '(, ^- 7 MACHINE FOUNDATIONS I f I l l \\/ / / / d l l / / I / AVERAGE LIMIT 'N 0.1 l/IQv/ OF HUMAN I s i i TOLERANCE p ',- - -! L j }.il j i 1 i 1 A 6 i;i 6 i 6 i i we i le i i -

6 i

e/t iiii N1 l 116 XI l 111 ll 'hI ll ll [ l \\ BEGIN TO 3E l N UNPLEASANT l

g I

I I t ill f i / ,, 7.. / i ee i g i .ia 6 /t SEGIN TO p 6 i iIt i /i s' PERCEIVE g. 11 il ti / t I i .re 3 l l l' i ./ l ' IIi s.- Il l/ I \\ / ^ 0.001 \\ s.# S l l l l f hI Il e 3 i I i l I l i i lil 1 l l 'l ll l l l l. ll j3 gaonip we. %2w D (OI -rs i-e l 0.0001 ./ T t 5 5 1 5 10 50 100 A 5 E. (GE ) ) FREQUENCY OF V!3 RATION, ep.. " WEE WASHINCTCN PUBLIC PCWER SUPPLY SYSTEM VIERATION TOLERANCE OBSERVATIONS ) NUCLEAR PRA'ECT NO. 2 VS. M N DA N 1

N REFERENCE 8.5 ,., - - REFERENCE 8.6 1.0 3 i 6, t l ! l ._ f f YI SUGGESTED L!ft!T FOR MACH!?tE FCU;10ATIOf4S 'I T l l i N / f l k, / / p _ x l-1 l r 8 --Nll l AVERAGE LIMIT / OF HUttAtt f lYv, l I TOLERAtiCE 0.1 + i,-;-s +. u t, t., i t _, f 0 i / I i l l l l e 1 ( e M ii m i I/ 1 6 i .i 1 i/I a l il N1 i L lill Z t l il!t h l I l l- [l T BEGIN TO BE - s il g UNPLEASAf47 / I l } Ill! / 0.01 Av / i r E m 1 i /' .I BEGIfl TO p t. ii t/i 'PERCE!YE i g I ! I i il / 6 I i ! i r1 5' il I / l i m. s 1 I/ I w / \\ / ( 0.001 \\# i ,ieie i 4 i i 3 lI ll f l l l I *l0} i ) i i !l e /l) l l I e (il l l i L li /l\\ l l II: IP N5* e

    • 9"

!/ / \\uNL l !# _ u f !Y I l TEsh 0.0001 i s 10 50 100 A13 iZ. @d FREQUE!!CY OF YIBRATIOff, ep. l WAsHINCTCH PUBLIC PCWER SUPPLY SYSTEM VIE W ION TOLERANCE OBSERVATIONS NUCLEAR P h'ECT NO. 2 MS, CACRGO DAT,ay

-~ ~ m' REFEREMCE 3.5 ,,--- REFERENCE 8.5 1.0 i i t l SUGGESTED LIMIT FOR ~- - - - ~ MACHINE FOUNDATIONS l l l 1 I i l l l x ~ -l l i ,e / 1 2 AVERAGE LIMIT Nl4I v/ sOF HUMAN 0.1 i i TOLERANCE i t+ -s ; h i, .ei i i,!, / 8 A i.I i i e e x is m i t/ I i : 'i t i/t : i 'N1 I i ; i :- XI I I i t I-h 'l I l ll i \\ BEGIN TO BE / ^ / [ il UNPLEASANT - / Q l l llll 0.01 ArY / \\ f f

  • -l l

xf l g e i i. : i' ' ' 3EGIN TO p i / ' PERCEIVE . i g -l I / 6 i : ! i ni "i li i / I I"l!i UJ-s.- l/ I w g / \\ \\ s.',/ O.001 iiiei. 4 ,,.i. i ,i4 4 _1. I ! I i.1 I J__ L I i i i i 111 4,. / 1 N/ \\j Ie54 l / l MM 0.0001 I g g g,g) s 1 5 10 50 100 FREQUENCY OF V!BRATION, cp.. NASHINCTON PUILLIC PCWER SUPPLY SYSTEM ygggg77eg TongtusnCE OBSERVATIONS NUCLEAR Pram.T No. 2 g, g gte W4

e. e. m -o .o m N REFERENCE 8.5 REFERENCE 8.6 l 1.0 s e , s (_ SUGGESTED LIMIT FOR -~ MACHINE FOUNCATIONS 'I L l 't l / l \\, ' [ x _/ l l I / i / AVERAGE LIMIT %l[NQ / OF HUMAN 0.1 /l, v . TOLERANCE I { l.f af a- 'l-6f i -- / ./ i ..f $ 4 1 0t6 i 6 6 6yi6 I/ l t t5 i if i 4 l !l N1 i eilt X1 i i t ill '\\ lllI /l Y BEGIN TO BE h l / l ll 0.01 ~ At / I a

  • t 6 6 e

+. o ie 4 i.i i /\\ BEGIN TO t i it i/i i' PERCEIVE g i ll / l l i i "i i 11 / I I!! I ue-s.. I l/ I w g / \\ / O.001 \\j iet t i 6 ..i., i .i 4 6 t i i ei ii i Li I i i I' 11 A ll - I Ili W *"" * * l y s_.- ~ s .2202 0.0001 M1hh 1 5 10 50 100 FREQUENCY OF VIBRATION, eps. WASHINGTCH PUBIIC PCWER SUPPLY SYSTEM FIm yIngATION TOLERANCE OBSERVATIONS NUCII.AR PRCkiECT NO. 2 g, g 4

m f [0NCLUSIONS-AN IMPROVED SRV DISCHARGE LOAD DEFINITION WAS DEVELOPED USING CAORSO IN-PLANT SRV TEST RESULTS. THIS DEFINITION.(AS WELL AS CA0RSO DATA) IS CONFIRMED BY TOKAI-2 IN-PLANT SRV TESTS. STRUCTURAL MODELING AND ANALYTICAL PROCEDURES ADEQUATE FOR CALCULATING RESPONSES OF A MARK II CONTAIMMENT STRUCTURE SUBJECTED TO SRV DISCHARGE LOADS HAVE BEEN DEVELOPED. WHEN THE IMPROVED LOAD IS APPLIED TO THE CA0RSO CONTAINMENT THE CALCULATED RESPONSES ARE COMPARABLE TO TEST RESULTS. WHEN THE IMPROVED LOAD IS APPLIED TO 'dNP-2 ITS STEEL CONTAINMENT PREDICTED RESPONSE IS COMPARABLE TO TOKAI-2 STEEL CONTAINMENT MEASURED RESPONSE. FINITE RESPONSES TO SRV DISCHARGE LOADS WERE RECORDED (AND ARE PREDICTED) IN THE WETWELL AREA; ATTENUATED RESPONSES IN THE DRYWELL AREA AND NEGLIGIBLE RESPONSES OUTSIDE THE PRIMARY CONTAINMENT. e e}}